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Abstract

In this thesis, we will give a partial classification of cubic fourfolds by their isolated ADFE
singularities. We have a correspondence between cubic fourfolds and complete (2,3)-
intersections in P* having both certain isolated ADFE singularities. The minimal model for
a complete (2, 3)-intersection in P* with isolated ADFE singularities is a quasi-polarized K3
surface of degree 6. We will prove that the existence of certain lattice embeddings into the
K3 lattice is a necessary and sufficient condition for the existence of these singular cubic
fourfolds and complete (2, 3)-intersections, respectively. We will determine all direct sums
of negative definite irreducible ADF lattices such that their direct sum with the rank one
lattice whose generator has self-intersection number 6 admits a primitive embedding into
the K3 lattice. This will prove the existence of complete (2, 3)-intersections in P* lying on
smooth quadrics and having exactly these ADFE singularities and their corresponding cubic
fourfolds. Finally, we will show that we have an isomorphism between the moduli space
of cubic fourfolds with certain ADFE singularities and the moduli space of quasi-polarized
K3 surfaces of degree 6 such that the quasi-polarization induces a birational map from the
K3 surface into P* whose image is a complete (2, 3)-intersection in P* having certain ADE
singularities.

Key words: Cubic fourfolds, ADFE singularities, K3 surfaces, quadratic forms, moduli
spaces of K3 surfaces.

Kurzzusammenfassung

In dieser Doktorarbeit wird eine partielle Klassifikation von kubischen Vierfaltigkeiten an-
hand ihrer isolierten ADFE Singularitdten gegeben. Es gibt eine Korrespondenz zwischen
kubischen Vierfaltigkeiten und vollstindigen (2, 3)-Durchschnitten in P* mit jeweils be-
stimmten isolierten ADFE Singularitdten. Das minimale Model eines vollstdandigen (2, 3)-
Durchschnitts in P4 mit isolierten ADE Singularitiiten ist eine quasi-polarisierte K3 Fliche
vom Grad 6. Wir werden zeigen, dass die Existenz bestimmter Gittereinbettungen in das
K3 Gitter eine notwendige und hinreichende Bedingung fiir die Existenz dieser kubischen
Vierfaltigkeiten bzw. dieser vollstindigen (2,3)-Durchschnitte in P4 ist. Wir werden al-
le direkten Summen von negativ definiten irreduziblen ADFE Gittern bestimmen, sodass
deren direkte Summe mit einem Gitter vom Rang eins, dessen Erzeuger Selbstschnitt 6
hat, eine primitive Einbettung in das K3 Gitter besitzt. Dies wird die Existenz derjenigen
vollstandigen (2, 3)-Durchschnitte in P4 beweisen, die auf glatten Quadriken liegen und
exakt diese ADFE Singularitdten haben, sowie den korrespondierenden kubischen Vierfal-
tigkeiten. Schlieklich werden wir beweisen, dass der Modulraum der kubischen Vierfal-
tigkeiten mit bestimmten ADFE Singularitdten isomorph ist zum Modulraum bestimmter
quasi-polarisierter K3 Flédchen vom Grad 6, sodass die Quasi-Polarisierung eine birationale
Abbildung von der K3 Fliche in den P* induziert, deren Bild ein vollstindiger (2,3)-
Durchschnitt mit bestimmten ADE Singularititen in P* ist.

Schlagwdérter: kubische Vierfaltigkeiten, ADFE Singularititen, K3 Flachen, quadratische
Formen, Modulraume von K3 Flachen.






Introduction

Cubic hypersurfaces have been a central theme in Algebraic Geometry throughout the last
centuries. Starting from the famous result of A. Cayley and G. Salmon in [Cay49| and
[Sal49] that a smooth cubic surface contains exactly 27 lines, to the proof of C. H. Clemens
and P. A. Griffith that any smooth cubic threefold is irrational in [CG72|, to more recent
investigations on the rationality /irrationality of cubic fourfolds (see for instance [Has00]).

Cubic fourfolds are of particular interest for at least two reasons. First, the rationality of
smooth cubic fourfolds is still an open problem in Algebraic Geometry and it is conjectured
that a very general smooth cubic fourfold is irrational. However, while some classes of
rational cubic fourfolds have been described in [Fan43|, [Tre84]|, [Tre93|, and [BD85|, no
smooth cubic fourfold has yet been proven to be irrational. Second, smooth cubic fourfolds
are related to hyperkihler manifolds (see [BD85| and [LSV17]), which are themselves of
interest to algebraic geometers. Surprisingly, the period map for smooth cubic fourfolds
behaves similarly as the period map for K3 surfaces as investigated in [Voi86], [Voi08§],
and |[Laz10]. Furthermore, since the monodromy groups associated to ADE singularities
of cubic fourfolds are finite, the period map on smooth cubic fourfolds extends to cubic
fourfolds with isolated ADFE singularities.

The ADFE singularities or simple hypersurface singularities were classified by V. I. Arnol’d
in the famous ADFE list in [Arn72|. In the case of surfaces, they are precisely rational
double points and there are various ways to characterize them (see [Dur79|).

The central topic of this thesis is the study of possible isolated ADFE singularities on cubic
fourfolds. More precisely, we give a partial classification of cubic fourfolds by their ADE
singularities.

In the past, people have already succesfully classified other projective varieties by their
ADEF singularities: The classification of cubic surfaces by their ADFE singularities was do-
ne in the 19th century by L. Schléfli in [Sch63|; a more modern and geometric proof was
given by J. W. Bruce and C. T. C. Wall in [BW79|. The classification of cubic threefolds
was done about fifteen years ago by R. Laza in the (unpublished) notes [Laz05|. A par-
tial classification of quartic surfaces by their ADE singularities was given by T. Urabe
in [Ura87] and [Ura88] which was completed by J.-G. Yang in [Yan96| and a partial classi-
fication of complete (2,2, 2)-intersections in P° by their ADE singularities by L.-Z. Tang
in [Tan93].

The strategies in [BW79] and [Laz05] to classify all cubic surfaces and threefolds by their
isolated ADE singularities, respectively, are similar. The authors use that we can associate
to a cubic hypersurface X in P" with only isolated ADFE singularities a complete (2, 3)-
intersection in P"~! and prove then the existence of certain ADE singularities on the
cubic by showing the existence of corresponding ADFE singularities on the complete (2, 3)-
intersection.

More precisely: In homogeneous coordinates (xg : ... : z,,) on P such that one marked
ADE singularity p of X is the point (1:0:...:0) € P", we have

X:xofo(x1,...,2n) + f3(x1,...,2,) =0 C P,

where fo and f3 are homogeneous polynomials of degree 2 and 3, respectively. Then, X
induces the complete (2, 3)-intersection

Sp: fg(ﬂj‘l, ce ,xn) = fg(xl, .. .,xn) =0C Pn_l.



We also have a more geometric and coordinate-free description of S,. Indeed, the complete
(2, 3)-intersection Sy, is the image of the union of all lines in X through the point p under
the projection of P through p onto the hyperplane {zg = 0} = Pn~1.

We use the above strategy in the four dimensional case, as well, and relate the problem of
finding certain combinations of ADF singularities on cubic fourfolds to finding them on
complete (2, 3)-intersections in P*.

Since the minimal model for a complete (2, 3)-intersection in P4 with at most isolated ADE
singularities is a K3 surface with a quasi-polarization of degree 6, we obtain consequently
a geometric correspondence between cubic fourfolds with isolated ADE singularities and
quasi-polarized K3 surfaces of degree 6.

The minimal models of quartic surfaces in P? and complete (2,2,2)-intersections in P?
with at most isolated ADE singularities are quartic and octic K3 surface, respectively.
In [Ura87] and [Tan93|, the authors investigated that by the surjectivity of the period
map, the question if a certain combination of ADFE singularities can occur on these quartic
surfaces and complete (2,2,2)-intersections, respectively, is transformed into a question
about lattices.

We follow this idea and relate the existence of certain combinations of isolated ADFE singu-
larities on complete (2, 3)-intersections in P* to the existence of certain lattice embeddings
into the K3 lattice. Using V. V. Nikulin’s Theorem on the existence of primitive lattice
embeddings in |[Nik80| and the theory of quadratic forms as formulated by R. Miranda
and D. R. Morrison in [MMO09], we determine computer-aided certain possible combinati-
ons of ADE singularities on those complete (2, 3)-intersections in P* which lie on smooth
quadrics.

The maximal number of A; singularities which we can find with our methods on a cubic
fourfold with no other singularities is 11. Further, the maximal combinations of A; and
Ay singularities with respect to their Milnor number which we can here find on a cubic
fourfold with no other singularities are 34, + 645, 541 + 5A5, and TA; + 4As.

In [Has00, 4.2|, B. Hassett related the moduli space of cubic fourfolds with a single A;
singularity to the moduli space of K3 surfaces with a very ample line bundle of degree 6.
Here, we relate the moduli space of cubic fourfolds with a certain combination of isolated
ADE singularities to the moduli space of certain quasi-polarized K3 surfaces of degree 6.

Indeed, R. Laza showed in [Laz09] that cubic fourfolds with at most isolated ADE singu-
larities are stable in the sense of D. Mumford’s Geometric Invariant Theory (GIT). Using
this result, we construct the moduli space of cubic fourfolds with a certain combination
of isolated ADE singularities as GIT quotients. Further, we construct the moduli space
of certain quasi-polarized K3 surfaces of degree 6 as the moduli space of certain lattice
polarized K3 surfaces. Finally, we show that both moduli spaces are isomorphic.

Structure of the thesis and results

In Chapter 1, we will recall basics of ADFE singularities on complex analytic spaces. In
particular, we will focus on properties of ADFE singularities on complex analytic surfaces.

In Chapter 2, we will recall essential definitions related to symmetric bilinear and qua-
dratic forms, and quadratic modules. In particular, we will study lattices and introduce
ADEFE lattices and the K3 lattice as examples.



In Chapter 3, we will recall basics of (quasi-polarized) K3 surfaces. In particular, we will
study complete linear systems on K3 surface and discuss when a linear system |L| on a K3
surface S induces a birational map ¢y, from the K3 surface onto its image in the projective
space. We will see that if |L| is fixed part free and ¢ is birational onto its image, the
existence of certain irreducible ADE lattices in Pic(S) will imply the existence of ADE
singularities of corresponding type on ¢y (S). Further, if L? = 6, the surface ¢ (S) C P*
will be a complete (2, 3)-intersection. Finally, we will define the period domain and the
period map for K3 surfaces and recall the theorem on the surjectivity of the period map.

In Chapter 4, we will study complete (2,3)-intersections in P* for each possible rank
of the underlying quadric individually. For such a complete (2, 3)-intersection S, we will,
depending on the rank of the underlying quadric, construct a certain hyperplane section
which passes through those singularities of S lying on the singular locus of the quadric. Fur-
thermore, we will classify the types of those singularities. In particular, we will understand
in this chapter the geometry of complete (2, 3)-intersections in P*.

In Chapter 5, we will study cubic hypersurfaces in P™ with isolated ADFE singularities
and explain how to associate to them complete (2, 3)-intersections in P*~!. In particular,
we explain how ADF singularities on cubic hypersurfaces correspond to ADFE singularities
on the associated complete (2, 3)-intersections.

In Chapter 6, we will state and prove our first Main Theorem which establishes a corre-
spondence between the existence of firstly cubic fourfolds with certain ADFE singularities,
secondly complete (2, 3)-intersections with certain ADE singularities in P4, and thirdly
embeddings of certain lattices into the K3 lattice:

For T € {Aj>1, Dj>4, Eg>>6} an ADE singularity type and a positive integer n, denote
by o(T) the ADE singularities on the exceptional divisor of the blowing-up of an n-
dimensional T singularity. Let corankt be m + 1 minus the rank of the Hessian matrix
of the analytic function defining T in the origin. We note that corankry is invariant with
respect to different dimensions of T. Let I'; () as in Table 6.1 be the weighted graph which
we obtain by extending the Dynkin diagram associated to o(T) in a certain way. Let
A(T, (1)) be the lattice associated to I,;(r) and ht € A(I,()) a certain linear combination
of the vertices of I';(r).

Main Theorem 1. For ((a1,...,an),(d4, ..., dn), (€6, €7, €8)) € Zxo™ X Z>0™ 3 x Zso®,

let
n m 8
G = ZGZAZ + Zdej + ZekEk
i—1 =4 k=6

be a formal finite sum of ADE singularity types,

n m 8
I'g = Z a;A; + Z d;D; + Z erlr
i=1 j=4 k=6

a Dynkin diagram with connected components A;, Dj;, and &, and A(T'g) the associated
lattice.

The following are equivalent:

1. There exists a cubic fourfold X in P® with a singularity of type T and such that all
other singularities of X correspond to G.



2. There exists a complete (2,3)-intersection S in P* of a quadric Q of corank(Q) =
corankr in P* and a cubic Y such that the singularities of S that lie on the singular
locus of Q are of type o(T) as in Table 6.1 and such that all other singularities of S
correspond to G.

3. There exists an embedding
1: A(Fg) ® A(FO'(T)) — Lisg

such that the following conditions a), b), and c) hold:
Let Satp,, (i) be the saturation of A(T'q) ® A(L, (1)) in Lks with respect to i.

a) If x € Satp,, (i) with i(hp).x = 0 and 2* = =2, then x € i(A(Tg) ® AT, (1))).
b) There exists no element x € Saty,., (i) with i(ht).z =1 and 2 = 0.

¢) There exists no element x € Saty,,, (i) with i(ht).x =2 and 22 = 0.

In Chapter 7, we introduce finite bilinear and quadratic forms and define discriminant
bilinear and quadratic forms. For an odd prime p, we will define the normal form of qua-
dratic forms and finite quadratic forms over Z,. We will see that knowing the normal form
of a finite quadratic form (G, g,) over Z,, we can construct a quadratic Z,-module (L, Q)
such that the rank of L coincides with the length /(G) of G and such that the discriminant
form induced by (L, @) is isomorphic to (G, ¢,). Finally, we will state Nikulin’s Theorem
on the existence of lattice embeddings.

In Chapter 8, we describe an algorithm to determine all ADE lattices A such that (6) ®A
can be embedded primitively into the K3 lattice Lxs. We wrote a code based on this algo-
rithm to be implemented in the computer-algebra software Wolfram Mathematica which
gives us the full list of these ADE lattices A. Independently from our computation, S.
Brandhorst found the same list with an algorithm implemented in the computer-algebra
software Sage. We will then be able to prove our second main result:

Main Theorem 2. Let

19 19 8
G = Z a; A; + Z dej + Z erEr
i—1 =4 k=6

be a formal sum of ADE singularities such that the ADE lattice

19 19 8
A= @ a;A; & @ d;D; ® @ ex By
i=1 j=4 k=6

is one of the 2942 elements in the list in Appendix C. The following hold:

1. There erists a complete (2,3)-intersection S of a smooth quadric and a cubic in P*
such that S has singularities of type G.

2. There exists a cubic fourfold with ADE singularities of type G and an A1 singularity.
In Chapter 9, we will firstly recall the notion of lattice polarized K3 surfaces. For a

combination G of ADE singularities, T € {A;>1, Dj>4, Eg>r>6} an ADE singularity
type, and A([, (1)) and A(T'q) as above, let

i A(Iyr) ® A(lg) = Lks



be an embedding into the K3 lattice which is unique up to automorphisms of Lx3 and
Sat ., (7) the saturation of A(I,(1)) ® A(l'g) in Lg3 with respect to i.

We will construct the moduli space }—gamm @) of all quasi-polarized K3 surfaces (§ , L) of
degree 6 such that
1. prp: S — P* is birational onto its image
2. ¢ LT(g ) is contained in a quadric @ C P* of corank(Q)) = coranky such that
a) the singularities of ¢ LT(§ ) lying on Sing(Q) correspond to o(T)
b) the singularities of ¢ LT(§ ) not lying on Sing(Q) correspond to G

as an open subset of the moduli space of certain Saty,,.,(i)-polarized K3 surfaces. Likewi-
se, we will construct the moduli space of all cubic fourfolds MT*E having singularities
corresponding to G and T. Finally, we will prove our third Main Theorem.

Main Theorem 3. We have an isomorphism of quasi-projective varieties
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1 ADE singularities

In this chapter, we will define ADE singularities of complex analytic spaces and state basic
properties of those. In particular, we will recall that on a surface we can identify an ADFE
singularity with the Dynkin diagram associated to the exceptional divisor of the minimal
resolution of this ADFE singularity. This chapter provides a foundation to the following
chapters where we study ADFE lattices and ADFE singularities on both cubic fourfolds and
complete (2, 3)-intersections in P4,

1.1 Basic notation, definitions, and properties

Let X be a complex analytic space of dimension d.

Let p be a singularity of X and assume that the germ (X,p) C (C%!, p) is an isolated
hypersurface singularity. The (analytic) type of p is the equivalence class of the germ (X, p)
with respect to local analytic isomorphisms. We say that X has an ADE singularity of
type T € {A;>1,Dj>4, Eg>>6} in p if the analytic type of p is the equivalence class of the
germ defined by the following equation T on C4*! at (0,...,0) € C*+1:

A;: m%—}—...—l—x%_l—%—x?l—{—xéj_ll:O (i>1)
D;: xf ... +ai +airan —l—:czlj =0 (j>4)
Eq: x%+...+x3_1+x3+xz+120
E7: :c%—i—...—i—xfl,l—&—xf’lxdﬂ—i—mgﬂ:0
Es: x%+...+x§,1+$2+x3+1:0,
where x1,..., 2441 are analytic coordinates on C%!. We call the germ defined by the

equation T in C?*! at (0,...,0) € C¥! a T type. We will call a singularity p simply an
ADE singularity if it is an ADFE singularity of any type T. Let

8
G = ZaZAI + Zdej + ZekEk
k=6

i>1 >4

be a (formal) sum of ADE types. If X has a; isolated singularities of type A; (i > 1), d;
isolated singularities of type D; (j > 4), and ey, isolated singularities of type Ej (8 > k >
6), we say that the singularities of X correspond to G.

A direct computation shows that an ADE singularity is resolved by finitely many blowing-
ups in finitely many points. Indeed, in Table 1.1 we can find for a singularity of type
T on X the singularities o(T) occurring on the exceptional divisor of the blowing-up
mp: Bl,X — X of X in p.



1 ADF singularities

We say that a complex space germ (X, p) defined by T is adjacent to the complex space
germ (X', p’) defined by T/ (up to analytic isomorphism) if the germ (X, p) can be deformed
by an arbitrarily small deformation into the germ (X',p’). For ADE singularities, the
adjacencies are known, see [AGLV9S8, Chap. 2.2.7].

T Ar | Ay | A>3 | Dy D,>5 E¢ | E7 | Eg
oT)|| 0 | 0 | A2 |3A1 | A1 +D, 5| As | Dg | E7

Table 1.1: Singularities corresponding to o(T) on the exceptional divisor of the blowing-up
of a singularity of type T. We understand D3 as Aj3. See [DRO1, Lemma 2.1].

1.2 ADFE singularities on surfaces

Let C be a curve on a smooth surface with components C1,...,Cs. The (weighted) graph
associated to C',...,Cs is the graph whose vertices are the curves C; with weights C;.C;
and such that two vertices C; and C; are joint by C;.C; edges.

If S is a surface, it is well known that we can identify the ADFE type of a singularity p on
S by its weighted graph associated to the exceptional divisor of the minimal resolution of

p:

Theorem 1.2.1 ([Dur79, Theorem Al). Let S be a normal surface with a singularity p.
Let m: S — (S,p) be the minimal resolution of the germ (S, p) whose exceptional divisor
E = 7 Y(p) is the union of the irreducible curves E1,...,Es. Then, p has type T =
Ai>1,Dj>4, or Eg>i>¢ if and only if the weighted graph associated to En,...,Es is the
Dynkin diagram T = Ai>1,Dj>a, or Eg>k>6, respectively, listed in [Dur79, Table 1.

We will refer to the graph associated to the irreducible curves in the exceptional divisor
of the minimal resolution of an ADE singularity p as in Theorem 1.2.1 for short as the
Dynkin diagram of the minimal resolution of p.

We call a disjoint finite union of connected Dynkin diagrams of type ADFE again a Dynkin
diagram.

If I is a Dynkin diagram with a;, d;, and ej, connected components A; (i > 1), D; (j > 4),
and & (8 > k > 6), we will write I' as the (formal) sum

8
I'= Z a; A; + Zdjpj + Zekgk.
k=6

i>1 j>4

We note one further characterization of ADFE singularities on surfaces:

Theorem 1.2.2 ([Dur79, Theorem Al). Let S be a normal surface with a singularity p
and w: S — (S,p) the minimal resolution of the germ (S,p). Then, p has ADE type if
and only if p is a rational singularity, i.e. the higher direct image sheaf Riﬂ'*Og 1s trivial
for all i > 0.



2 Bilinear forms, quadratic forms, and
quadratic modules

In this chapter, we will introduce symmetric bilinear forms, quadratic forms, and quadratic
modules and then define a lattice as an integral non-degenerate bilinear form. In particular,
we are interested in the lattices which we associate to the Dynkin diagrams of the minimal
resolutions of ADFE singularities and the K3 lattice. This chapter provides a basis for the
chapters where we study ADFE singularities on complete (2, 3)-intersections in P4 in terms
of lattices.

2.1 Basic notation, definitions, and properties

Let R be a commutative ring with 1.

A symmetric bilinear form over R is a pair (L, (, )1,), where L is an R-module and
( R >L: LxL—R

is a function which is symmetric and R-bilinear.

For simplicity and by abuse of notation, we will often write L instead of (L, (, )1) and the
associated function (, )z is assumed to be given.

We will call (L, (, )1) non-degenerate if (, )1, is non-degenerate. For x,y € L, we will write
x.y and 22 instead of (x,y)r, and (z, )y, respectively.

A quadratic form over R is a pair (L,Qr), where L is an R-module and @), is a function
such that

1. Qr(rl) =r*Qr(l) for allr € Rand [ € L

2. (), LxL =R, (z,y) = Qrlxr+vy) — Qr(z) — Qr(y) is a symmetric bilinear
form over R.

Remark 2.1.1. Note that we defined here the quadratic form as in [MMO09, Chap. 1.4.1];
in the literature one can find more often the requirement that (z,y)q, = %(Q (x+y)—

QL(z) — QL(y)).

In the cases we will consider in the following chapters, a symmetric bilinear form will
induce a unique quadratic form and vice versa:

Lemma 2.1.2 ([MMO09, Chap. I, Corollary 2.4|). Assume that 2 is not a zero divisor in
R. Let (L,{,)r) be a symmetric bilinear over R such that there exists a quadratic form
(L,Qr) over R with (, )r = (, )q,. Then, (L,Qr) is uniquely determined.



2 Bilinear forms, quadratic forms, and quadratic modules

For two quadratic forms (L1,Qpr,) and (L2,Qr,), the direct sum (L1 & Lo, Qr, + Qr,)
is the orthogonal direct sum (i.e. for x; € Ly and xo € Lo, (Qr, + Qr,)(z1 + x2) =
Qr,(71) + Qr, (22)).

A homomorphism (L1,Qr,) — (L2,QL,) between two quadratic forms is an R-module
homomorphism ¢: Ly — Ly such that Qr, o ¢ = Qr,.

A quadratic R-module is a non-degenerate quadratic form (L, Q1) over R such that L is
a finitely generated free R-module. Let (, )g, be the bilinear function associated to Qr,
and let s1,...,s, be a basis of L. The intersection matriz of (L,Qr) (or equivalently of
(L, (, )g,)) is the symmetric n x n matrix

M0,y = ((si,5§)Qy )ij=1...n € Maty(R).

On the other hand, the intersection matrix determines the bilinear function (, )g,. In-
deed, let eq,...,e, be the standard basis on R” and ¢: L — R", s; — e; the coordinate
isomorphism, then (z,2')g, = qﬁ(:):)TM(LQL)qb(x').

If (L,Qp) is a quadratic R-module, the discriminant
disc(L) = det(M1q,)) € R/(R*)?

of (L,Qr) is the determinant in R/(R*)? of the intersection matrix My, o, ) with respect
to an arbitrary basis of L.

Lemma 2.1.3. For a direct sum (L1 © Lo, Qr,e1,) of quadratic R-modules, we have
disc(Ly & La) = disc(Ly) - disc(La).

Proof. The intersection matrix My, ¢ 1,0 Li@L, 1S4 block diagonal matrix with blocks given
by My, q,, and My, q,,- Hence, det(MLl@L27QL1@L2) = det(ML1,QL1) ~det(ML2,QL2)- O

2.2 Lattices

We call a non-degenerate symmetric bilinear form (L, (, ) 1) over Z a lattice if L is a finitely
generated free Z-module.

The lattice L is called even if 22 € 2Z for all z € L and odd otherwise. We say that the
lattice L is unimodular if disc(L) = +1.

The rank rank(L) of a lattice L is the rank of its underlying free Z-module.

We call (L', (, )r) a sublattice of (L, (, )r) if L' is a Z-submodule of L and (, )z is the
restriction of (, ) to L'. The lattice L is called irreducible if it cannot be written as the
orthogonal direct sum of two proper sublattices.

Let 2: Ly — L be an injective homomorphism. Then, we say that i is a primitive embedding
and i(Lq) is a primitive sublattice of L if the cokernel of 7 is torsion free. We call

Saty (i) == {x € L; mx € i(L) for some m € Z}

the saturation of Ly in L. The lattice Saty (i) is the smallest primitive sublattice of L
containing i(Lq).



2.2 Lattices

The signature of L is the pair (n4,n_), where ny is the number of positive eigenvalues
and n_ the number of negative eigenvalues of the extension of (, )z, to the real vector
space L ®z R. The lattice L is positive definite if n_ = 0, negative definite if n, = 0, and
indefinite otherwise.

An element x € L is primitive if the intersection of zQ with L in L ®z Q is generated by
x, i.e. x cannot be written in the form x = my with m > 1.

The following three definitions will be only needed at the end of Section 9.4:

An element = € L is isotropic if 2 = 0. The divisibility of € L is the positive integer
div(zx) such that (x,L); = div(x)Z. We then call an isotropic primitive element x € L
m-admissible if div(x) = m and there exists an isotropic primitive element y € L with
(x,y)r = m and div(y) = m.

We will refer in the sequel to the following lattices:
Example 2.2.1. 1. (m) denotes the rank 1 lattice with intersection matrix (m).

2. The hyperbolic plane U is the even, unimodular, indefinite rank two lattice with

Intersection matrix
0 1
1 0 /°

3. The lattice A(T") associated to a weighted graph I': The underlying free Z-module
of A(T") is generated by the vertices of I' and the underlying bilinear form is given
by the intersection matrix defined by the vertices of I'. For simplicity, if " is one
of the Dynkin diagrams 7 = A;>1,Dj>4, or E>1>6, we will denote the associated
negative definite lattice A(T") by T' = Aj>1, Dj>4, or Eg>i>6, respectively. By [Ebel3,
Theorem 1.2|, the lattice T is irreducible.

U has signature (1,1).

For instance, the As lattice is defined by the intersection matrix

-2 1
1 -2 )
We will call a lattice A which is the orthogonal direct sum of irreducible ADF lattices

for short ADE lattice.

4. The K3 lattice
Lys:=3U @ 2Fg

is the unique even and unimodular lattice of signature (3,19).






3 K3 surfaces

In this chapter, we study K3 surfaces. After recalling all necessary definitions, we will inves-
tigate under which conditions the complete linear system induced by a quasi-polarization
L on a K3 surface S, defines a birational morphism ¢y, from S onto its image in the pro-
jective space. We will show that if ¢, is birational, the existence of certain ADFE lattices
in the Picard group will imply the existence of corresponding ADFE singularities on ¢r,(S)
in the projective space. In particular, if L? = 6, we will see that ¢r,(S) is a complete (2, 3)-
intersection in P*. Finally, we will prove the existence of a K3 surface having a certain
Picard group. This chapter is a foundation to the following chapters where we relate the
existence of embeddings of ADFE lattices into the K3 lattice to the existence of complete
(2, 3)-intersections in P* having corresponding ADE singularities.

3.1 Basic notation, definitions, and properties

A K3 surface is a smooth complex projective surface S with trivial canonical bundle wg

and H'(S,Og) = 0.
Let S be a K3 surface.
The exponential sequence induces the exact sequence
0 — Pic(S) 2 H2(S,2) 225 H2(S,0g).

Since H?(S,Z)/c1(Pic(S)) injects into H*(S, Og) and since H*(S, Og) = C is torsion-free,
the embedding ¢y : Pic(S) — H2(S,Z) is primitive. We will identify Pic(S) with its image
in H%(S,Z).

Let L € Pic(95).

The Riemann-Roch Theorem yields
1
hO(S, L) +h°(S,LY) > 2 + 5L2, (3.1)

where LV € Pic(S) is the dual line bundle of L. Hence, we can conclude:

Lemma 3.1.1. Assume that L?> > —2. Then, either L or LY € Pic(9S) is effective.

We say that L is nef (ample) if L.C > 0 (L.C > 0) for all curves C on S (for the general
definition of ample and nef line bundles on schemes see [Laz04, 1.2, 1.4]). We call L big
and nef if L is nef and L% > 0.

We call L a quasi-polarization of degree d if L is big and nef such that L? = d and L is
primitive, i.e. there exists no line bundle L' € Pic(S) such that L = (L')* for k > 2.
We call two quasi-polarized K3 surfaces (S, L) and (S’, L’) isomorphic if their exists an
isomorphism ¢: S — S’ between the K3 surfaces preserving the quasi-polarization, i.e.
L=¢*L.



3 K3 surfaces

3.2 Linear systems on K3 surfaces

Let S be a surface and L a line bundle on S. Write |L| for the complete linear system on
S given by L, i.e. the space of all effective divisors linearly equivalent to L. We can show
that we have |L| = P(H°(S,L)).

We follow [Huy16, Chap. 2.1.1| and call a divisor F' on S the fized part of |L| if F' is the
biggest effective divisor on S contained in all elements of |L|, i.e. F' is the one-dimensional
part of the base locus of |L|. We call a point p € S a fized point of |L| if p is contained
in every element of |L|. The mobile part M = L(—F) of L is fixed part free and has only
finitely many fixed points. Further, the mobile part is nef and satisfies M? > 0. We can
then decompose L into its mobile and fixed part and write L = M + F.

Assume now that S is a K3 surface.

We call a curve C on S a (—2)-curve if C is irreducible and C? = —2. It is known ([Huy16,
Chap. 2.1, p. 23]) that a (—2)-curve C is in fact smooth and rational, i.e. C' = P!

Lemma 3.2.1 (|[Huyl6, Chap. 2, Lemma 1.3|). The fized part F' of a linear system on S is
a linear combination of (—2)-curves, i.e. F =", a;C; with a; > 0 and C; a (—2)-curve
(i=1,...,n).

Lemma 3.2.2 ([Huy16, Chap. 2, Corollary 1.5]). Let L be a line bundle on S with L? > 0
and such that L.C > 0 for all (—2)-curves C on S. Then, L is nef unless there exists no
(—2)-curve on S in which case L or LV is nef.

The restriction of the intersection product on H?(S,R) to H!(S,R) = H?(S,R) N
H'(S,0k) has signature (1,19). Hence, the subspace {x € HM(S,R); z.x > 0} has
two connected components. Let Cg be the connected component that contains one and
hence all Kahler classes. We call Cg the positive cone of S.

For R € H*(S,Z) with R? = —2, we have a reflection
sp: H*(S,7Z) — H*(S,Z), P+ P+ (P.R)R
called Picard-Lefschetz reflection. We note that sp preserves the intersection form.

Proposition 3.2.3 (|[Huyl6, Chap. 8, Corollary 2.9]). For a line bundle L on S with
L? > 0 such that L € Cg, there exist finitely many (—2)-curves Cy,...,Cy, € Pic(S) such
that (s¢, o ...0s¢,)(L) is nef.

Theorem 3.2.4 (|[May72, Proposition 1, 5|, [Nik91, Proposition 0.1]). Let L be a nef line
bundle on S. Then, one of the following holds:

1. L? >0, |L| is fized point free. A generic member of |L| is an irreducible curve and
we have dim |L| =1+ L?/2 > 0.

2. L? >0, |L| = m|E|+F withm > 1, where |E| is an elliptic pencil, F is a (—2)-curve,
and E.F =1. Then, m = dim |L| and F is the fized part of |L|.

3. L?=0,|L| =0.

4. L? =0, |L| = m|E| with m > 1 and |E| is an elliptic pencill.



3.2 Linear systems on K3 surfaces

Remark 3.2.5. Note that in case 4. in Theorem 3.2.4, a general member of |E| is in par-
ticular irreducible, see [Huy16, Chap. 2, Proposition 3.10].

If L? > 0, inequality (3.1) implies that (after possibly replacing L by L) L has more than
one global section. Hence, the linear system |L| on S induces a rational map

oL S s Pdim‘.ﬂ

which is a morphism outside its base locus.

Proposition 3.2.6. Let L be a nef line bundle on S with L?> > 4. Then, oy, fails to
be a birational morphism onto a surface of degree L? in PU™ILl if and only if one of the
following holds:

1. There exists E € Pic(S) such that E*> =0 and L.E = 1.

2. There exists E € Pic(S) such that E* =0 and L.E = 2.

Proof. Assume that g, fails to be birational onto its image in P4 Xl By [SD74, (4.1)],
the complete linear system |L| then has either a fixed part or ¢y, is of degree 2 and its
image has degree L?/2. Since L? > 4, by [SD74, Theorem 5.2| the latter case can only
occur if item 2. holds. If |L| has a fixed part, we have |L| = m|E| + F for a (—2)-curve
F and an elliptic pencil |E| such that E.F = 1 by Theorem 3.2.4. Hence, L.E = 1, i.e.
item 1. holds.

Then, assume that there exists £ € Pic(S) with E? = 0 such that L.E = 1 or 2. We
assume to the contrary that ¢ is birational onto its image in pdim|L| - By (3.1), we have
h(S,E) > 0 or h°(S, EV) > 0. However, if h%(S, EV) > 0, we obtain for A € |EV| that
L.A=—LFE = —1or —2 in contradiction to L being nef. Hence, we have h°(S, E) > 0,
i.e. E is effective. Let M +T' be a general member in |E|, where |M| is the mobile part
and T the fixed part of |E|. Since |M| is fixed part free and M? > 0, every irreducible
component of M has by Theorem 3.2.4 a non-negative self-intersection number. Since L
is nef, we have LI' > 0 and L.M > 0. However, L.M = 0 would imply M? < 0 by
the Hodge-Index Theorem (see [SD74, (4.2)]) which is absurd. Hence, L.M > 0. Then,
L.E=LM+L.TI =1or2implies that L.M = 1 or 2. Since ¢y, is by assumption birational
onto its image and generically one-to-one on M, we deduce that ¢ (M) is a curve in P4m IL|
with degree < 2. By [Mum95, Corollary 5.13], an irreducible component of ¢, (M) is then
isomorphic to P'. Hence, M has an irreducible component which is isomorphic to P!.
This is a contradiction to M having only irreducible components with non-negative self-
intersection number according to Theorem 3.2.4. Therefore, the assumption must be wrong
and ¢y, is not birational onto its image. O

Remark 3.2.7. We will call a line bundle as in item 1. in Proposition 3.2.6 unigonal and a
line bundle as in item 2. hyperelliptic.

Remark 3.2.8. We note that item 1. in Proposition 3.2.6 is redundant. Indeed, if ¢y, fails
to be birational and |L| has a fixed part, we argue as in the proof above that we have
E € Pic(S) such that E2 = 0 and E.F = 1. For E' := 2E, we then have E'> = 0 and
L.E' = 2. Hence, E’ satisfies item 2. Conversely, the existence of a line bundle E € Pic(5)
as in item 2. implies that ¢, is not birational as shown in the proof above.
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3.3 (—2)-curves on K3 surfaces

Let (S, L) be a quasi-polarized K3 surface with L? > 0.

Define
Ry, = {[C] € Pic(S); C* = —2,L.C = 0}.

Then, Ry, is a finite root system (see [Bou07, Chap. VI §1] for the definition of root system).
Let

Ap ={[C] € Pic(S); C (—2)-curve, L.C = 0}.

By [SS19, Lemma 11.17], every element in Rj, can be written as a non-negative sum of
elements in Ay. Hence, Ay is a basis (sometimes called fundamental system) of the root
system Ry, (see also [Bou07, Chap. VI §1] for the definition of a basis of a root system).

Proposition 3.3.1. Let AlL, ..., A" be the connected components of Ar. The intersection
matriz of the (—2)-curves in A} (i =1,...,n) is described by the Dynkin diagram A,>1,
Dy>4, or Eg>n>6-

Proof. Let A} = UT:1CJZ:7 where all C; are (—2)-curves. By the Hodge-Index Theorem
(see |Har77, Chap. V, Theorem 1.9]), the intersection matrix (CL.C)1<; j<m is negative

definite. One then computes the possible intersection products C:.C? for all r,5s = 1,...,m
(see [BHPVAV04, Chap. III.2.iii)]). O

Theorem 3.3.2. Let A’}J (i=1,...,n) be as in Proposition 3.3.1. There ezists a projective
normal surface S’ and a morphism

0: 85— 5

such that 8 maps each AiL to an ADE' singularity p; and 6: S\ UZ”ZIAiL — S'\ U p; is
an isomorphism. The singularity types of the p; are determined by the Dynkin diagrams

associated to AiL.

Proof. The existence of 6 follows from |[Art62, Theorem 2.7]. By Proposition 3.3.1, the

(—2)-curves in A} (i = 1,...,n) are the vertices of a Dynkin diagram A,>1, Dy>4, or
Es>n>6 and by Theorem 1.2.1, the singularity p; has type A,>1, Dy>4, or Eg>p,>¢, respec-
tively. O

Definition 3.3.3. We call the morphism 6 in Theorem 3.3.2 the contraction morphism of
the connected components A}, ... AT of Aj,.

The next proposition states that we can identify the normal surface S’ in Theorem 3.3.2
with the image ¢r,(S) of S under ¢y, in P*.

Proposition 3.3.4 ([SD74, Theorem 6.1 (iii)|). Assume that L is a fizved part free line
bundle on S such that ¢r: S — PE™ILL s birational onto its image. Then, oy admits
a factorization oy, = ur, o 0 by the contraction morphism 6 and an embedding ur: S" —
PA L Purther, if L? = 6, the surface pr(S) is the complete (2,3)-intersection of a
quadric and a cubic in P*.



3.4 Periods of K3 surfaces

Corollary 3.3.5. Assume that L is a fived part free line bundle on S with L? > 0 such
that ¢r,: S — PI™IL 45 birational onto its image. Let K be the lattice in Pic(S) generated
by the elements in the root system Rp. Assume that

K = @alA @@dD @@%Ek

i>1 j>4

Then, ¢ (S) C PI™IL has ADE singularities corresponding to

G = j{:(hf\ +-§E:(ZI) -+'§E:€k13k

i>1 j>4

Proof. Let AL, ... , A7 be the connected components of Az. By Proposition 3.3.1, the
intersection matrix of the (—2)-curves in A’]'-J is described by a connected Dynkin diagram.
Let I == > o1 aiAi + 30,5, djDj + > g5 p>6 €€k be the union of all Dynkin diagrams
associated to the union of the A%} and let A(I) = D1 G A OB, >4 d;Dj O DBgsp>6 €1k
be the associated ADE lattice.

Since Ay, is the basis of Ry, we have K = A(IV), i.e

P aidi © P d;D; @@ekEk—@aA ® (P d;D; @@ekEk

i>1 j>4 i>1 j>4

We claim that a; = a; (i > 1), dj = d; (j > 4), ey = €}, (8 > k > 6). Indeed, let M be an
irreducible ADFE lattice in the left-hand direct sum. Suppose that M is not contained in
any irreducible ADFE lattice in A(I”). Since M is contained A(I”), this would imply that
M is the orthogonal direct sum of two sublattices of M. However, this is absurd since M
is irreducible. Consequently, M is contained in one irreducible ADE lattice N in A(T”).
Conversely, the same argument gives that the ADFE lattice N has to be contained in an
irreducible ADE lattice M’ in K. Since N contains M, it follows that the irreducible
ADE lattice M is contained in the irreducible ADFE lattice M'. Since M was a direct
summand in K, this forces M = M’. Consequently, it follows that any irreducible ADE
lattices in K coincides with an irreducible ADE lattices in A(I') and vice versa. In
conclusion, a; = a; (i > 1), dj = dj (j > 4), ex, = ¢}, (8 > k > 6). By Theorem 3.3.2, there
exists a projective normal surface S’ whose singularities correspond to G and a contraction
morphism #: S — S’. By Proposition 3.3.4, we have a factorization ¢y, = uy, o # through
an embedding uy: S" — P*. Hence, ¢ (S) has singularities corresponding to G. O

3.4 Periods of K3 surfaces

For a K3 surface S, the integral cohomology H?(S,Z) is a free Z-module. The intersection
form on H?2(S,Z) turns it into a lattice of signature (3,19). Since this lattice is even and
unimodular, it is isometric to the K3 lattice

Lis =3U @& 2Fg
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independent of the choice of S (see [Mil58, Corollary §1]). We refer to an isometry
¢: H*(S,Z) — Lk3 as a marking of S and to a pair (S,¢) as a marked K3 surface.
For H?(S,C) = H%(S,Z) ® C, we have the Hodge decomposition

H?*(S,C) = H*(S,05) @ H'(S,0%) @ H(S,0%). (3.2)

Since S is a K3 surface, Pic(S) is isomorphic to H%(S, Z)NH'(S, Q%) under the embedding
c1: Pic(S) — H?(S,Z). Let wg be a generator of the one-dimensional C-vector space
H?(X,0g). We note in particular that wg is uniquely determined up to a scalar multiple
in C*. Hence, a marked K3 surface (S, ¢) determines uniquely a point [¢(ws)] = ¢(ws)
mod C* € P(Lis ®z C) which we call the period point of (S,¢). We will call the 20-

dimensional connected complex manifold
Orps = {[r] €P(Lgs ®C); 22 =0,2.Z > 0} (3.3)

the period domain of Lks. We note that the period point [¢(wg)] is contained in Q..
Further, for each z € H%(S,Z) N H'(S,Q}L), we have z.wg = 0 by the Hodge decomposi-
tion (3.2). Hence, we deduce

Lemma 3.4.1. We have Pic(S) = {z € H?(S,Z); x.ws = 0}.

Let m: & — U be a flat family of K3 surfaces with central fiber S := 771(0) € S over
0 € U. For a sufficiently small contractible open neighborhood U C U of 0 € U, a marking
¢: H*(S,Z) — L3 can be extended to a marking ¢ : R?mZ — (Li3)y in a unique way,
where (Lg3)y is the constant sheaf on U with fiber Lis. We obtain a holomorphic map
p: U — Q... u— [py(ws,)] called the period map associated to the family 7: S — U.
By the following theorem, the period map is surjective:

Theorem 3.4.2 (Horikawa-Shah-Kulikov-Persson-Pinkham-Todorov-Looijenga, for a proof
see [BHPVAV04, Chap. VIII, Theorem 14.1|). For every element [z] in Qp,,,, there exists
a marked K3 surface (S, ¢) such that [z] is the period point of (S, ®).



4 Complete (2,3)-intersections in P*

In this chapter, we will study complete (2, 3)-intersections in P4. Since projective quadrics
are determined up to isomorphism by their rank, we will consider these intersections for
each possible rank of the underlying quadric individually. We will firstly study certain
pencils of planes on quadrics in P* and construct with these certain hyperplane sections of
complete (2, 3)-intersections in P4, Finally, we will determine which ADE singularities of
the complete (2, 3)-intersection in P4 can lie on the singular locus of the underlying quadric.
The minimal model of a complete (2, 3)-intersection in P* with isolated ADFE singularities
is a K3 surface. The results in this chapter will explain the geometry of complete (2, 3)-
intersections in P*, which we need to understand for the following chapters.

4.1 Quadrics in P*

4.1.1 Basic notation, definitions, and properties

Let (xg:...: zy) be homogeneous coordinates on P".

A quadric @@ in P™ is the zero locus of a non-trivial quadratic homogeneous polynomial,
i.e.
n
Q . Z Qi TiT5 = 0 - P".
i.j=0

For Mg = (a;j)i; € Mat,+1(C), we denote by
rank(Q) = rank(Mg)

the rank of () and by
corank(Q) == (n + 1) — rank(Q)

the corank of Q.

We recall from linear algebra that over the complex numbers two quadrics in P™ are iso-
morphic if their ranks (or coranks) coincide. Hence, we can classify the quadrics in P™ by
their coranks.

The linear subspace of P" corresponding to the kernel of the matrix Mg in C"*1 s the
singular locus Sing(Q) of Q. More precisely:

Lemma 4.1.1 (|[GH94, Chap. 6.1, p. 734]). A quadric Q C P™ of corank k is the cone
through a (k — 1)-dimensional linear subspace A C Q C P™ over a smooth quadric in P"*

and A is the singular locus of Q. In particular, Q is smooth if and only if Q has corank 0O
in P™.
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For a quadric @ C P" of corank k£ in P and a smooth point z € @ (the existence of x
implies that £k < n — 1), we denote by

T,Q C P"

the projective tangent space to () at x. Then, the tangent hyperplane section T,Q NQ C
P! of Q is a quadric of corank k + 1 in P*~!. Indeed, the singular locus of T,Q N Q is
the span of the singular locus of () and z, i.e.

dim Sing(T,Q@ N Q) = dimSing(Q) +1=(k—1)+ 1 = k.
Hence, corank(T,Q N Q) = k + 1 in P*~! by Lemma 4.1.1.

Lemma 4.1.2 ([Har92, Lecture 22, p. 285]). A smooth quadric in P3 is isomorphic to the
image of the Segre embedding

o: Pl x P! = P3, (o : 1), (wo : 1)) — (@oyo : Toy1 : 1Yo : T1Y1). (4.1)

For a, B € PY, define the lines I o == o({a} x PY) and ly g == o(P! x {B}). The quadric
has hence the two rulings {l1,a}aepr and {lzg}gepr and through every point in it passes
exactly one line from each of the rulings.

4.1.2 Planes on Quadrics in P*

We collect now results on planes on quadrics of corank 0, 1, and 2 in P* and deduce these
in the latter two cases from results on linear spaces on smooth quadrics in P? and P2,
respectively.

4.1.2.1 Quadrics of corank 0 in P*

Lemma 4.1.3. A quadric in P* is smooth if and only if it contains no planes in P*.

Proof. Smooth quadrics in P™ contain no planes (see [GH94, Chap. 6.1, Proposition|) so
this holds in particular for n = 4.

Let now @ be a quadric of corank k in P* containing no planes. By Lemma 4.1.1, the
singular locus of @ is a linear subspace A of dimension £ — 1 and @ is the cone through
A over a smooth quadric Q' in P*~%. If k > 3, the singular locus of the quadric contains
a plane. If k = 2, the singular locus of @ is a line and the plane spanned by the singular
line and a point in Q' C Q is contained in Q. If k = 1, the singular locus of @Q is a point
and we have an isomorphism o: P! x P! &5 @’ by Lemma 4.1.2. The plane spanned by the
singular point and (P! x {pt}) in @ then is a plane in Q. Consequently, we must have
k=0, ie. Q is smooth. O

4.1.2.2 Quadrics of corank 1 in P*

Let Q be a quadric of corank 1 in P* with vertex p. By Lemma 4.1.1, Q is the cone over a
smooth quadric Q" in P?. By Lemma 4.1.2, we have two rulings {l1,a}aepr and {l2 5} sept
on Q. For a, 8 € P!, let

IT; o, == plane spanned by p and the line {1 , C P



4.1 Quadrics in P*

15

Il g = plane spanned by p and the line I g C Pt

We obtain two pencils of planes {II1 o },ecpr and {II g} gepr on @, see Figure 4.1.

4

Q/

Figure 4.1: Cone through p over the smooth quadric surface @’.

Lemma 4.1.4. Every line in Q) through p is contained in a unique plane in each of the
pencils {I11 o }oepr and {11z g} gepr .

Proof. By Lemma 4.1.2, through every point in @’ passes a unique line from each of the
rulings {l1,a}aepr and {log}gepr. Hence, we can deduce that through each line in Q
through p passes a unique plane from each of the pencils {II1 o },ecpr and {Ilz g}gepr. O

4.1.2.3 Quadrics of corank 2 in P*

Let @ be a quadric of corank 2 in P*. By Lemma 4.1.1, Q is the cone through a line I over
a smooth quadric Q' C P? and [ is the singular locus of Q. The quadric @’ is isomorphic
to PL. For t € Q' = P!, let then

II, := plane in Q spanned by [ and ¢t C P*.

We obtain the pencil {II; },cp1 of planes on @), see Figure 4.2.

Q/

Figure 4.2: Cone through [ over the smooth quadric curve @Q’.

Lemma 4.1.5. Through any point in Q) passes a plane in the pencil {Il;};cp1 which is
unique if the point is smooth.
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Proof. Obviously, all singular points of @ are contained in all the planes in {II; };cp1. If to
is a smooth point of @, the plane II through Sing(Q) and ¢y intersects @’ in a single point.
Indeed, if IT intersected @’ in two different points, the line joining those points would be
contained in @’ which is absurd since @’ is by definition an irreducible curve of degree 2
in P2. Hence, II is uniquely determined and contained in {IT;};cp1. O

4.2 Basic properties of complete (2, 3)-intersections in P*

Recall that an m-dimensional variety V' C P" is a complete (dy, ..., dn—p)-intersection if
there exist n — m homogeneous polynomials f;(zo,...,x,) of degree d; (1 <i<n—m) in
Clzo, . . ., zy] generating all homogeneous polynomials in C[zy, ..., z,] which are vanishing
on V.

Lemma 4.2.1 (|GH94, Chap. 4.5, p. 592|). Let S be a complete (2,3)-intersection in
P4, Then, the quadric Q C P* containing S is uniquely determined and the cubic in P4
containing S is uniquely determined modulo those cubics containing the quadric Q.

Lemma 4.2.2. Let S be a complete (2, 3)-intersection in P* with at most isolated ADE
singularities and let w: S — S be the minimal resolution of S. Then, S is a K3 surface.
The line bundle L := 7*(Og(1)) on S is nef and the map pr: S — S induced by L coincides
with . Furthermore, we have deg L = L?> = 6.

Proof. The surface S has only isolated ADF singularities and these are precisely ratio-
nal double points by Theorem 1.2.2. By [Rei87, 1.5], we can naturally extend the def-
inition of the canonical bundle on smooth surfaces to those with rational double points
(see |[Panlb, Theorem 1] for more details). Since S is a complete (2,3)-intersection in
P* we then compute using [Har77, Chap. II, Ex. 8.4 (e)] that wg = Og. Further,
by [Rei87, 1.9, Example (1)], we have wg = T'wg. Hence, wg = 7*0g = Og. Again,
since S has only rational double points, we have R'm.Og = 0 for all i > 0. Therefore,
I(S, R'm,Oz) = H(S, Og) = 0. Consequently, S is a K3 surface.

The minimal model S is in particular quasi-compact and separated. Hence, we can apply
the projection formula for a (—2)-curve C' on S and obtain that 7*Ops(1).C' = Ops(1).7.C
on P, Since the hyperplane bundle Ops(1) is very ample, it is in particular nef. Hence,
Opa(1).7.C > 0. In conclusion, L = 7*Og(1) = 7*Ops (1) s is nef. Likewise, the projection
formula implies that we cannot have a curve E on S with the property that 7*Og(1).E =1
or 2. Therefore, the map r: S — S is birational by Proposition 3.2.6. Then, Proposi-
tion 3.3.4 implies that ¢y, coincides with .

For a general hyperplane H in P4, the hyperplane section H N S of S is a curve of degree
6. By Bertini’s Theorem, H NS passes through none of the singularities of S. Hence,
7*(H N S) € Div(S) has degree 6 as well. Therefore, deg L = L? = 6. O

4.3 Hyperplane sections of complete (2, 3)-intersections in P*

Let S be the complete (2, 3)-intersection of a quadric @ and a cubic Y in P*
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We will construct in the following certain hyperplane sections of S depending on the corank
of Q in P*.

We will need the following auxiliary result:

Lemma 4.3.1. Let Q C P* be a quadric of corank 1 or 2 in P*, let Y C P* a cubic such
that Q and Y have no singularities in common, and let S == QNY C PY. For a pencil of
planes {Is},cpr in Q as in Subsection 4.1.2.2 or 4.1.2.3, let Cs :=1I,NY C S. Then, the
general curve in {Cs} cpr is smooth in p € Y N Sing(Q).

Proof. Firstly, note that Sing(Q) is contained in all planes in @ and hence all planes II;
for all s € P'. Consequently, those singularities of S lying on the singular locus of @ are
contained in Cy for all s € P!, i.e. Sing(S) N Sing(Q) C Nyepr Cs.

By assumption, the cubic Y is smooth in p since @) is singular at p. Further, II; is smooth
in all points as a plane. Hence, the curve Cy; := Y NIl; is smooth in p if and only if the
affine tangent spaces T,Y and T},II; of Y and Il in p, respectively, intersect transversally,
ie.

T,P* = T,Y + T,1L. (4.2)

Since Y and II; are both smooth in p, we have dim7,Y = dimY = 3 and dimT,II, =
dim II; = 2, so equation (4.2) holds if and only if T),II; & T,,Y.

Assume that we had for all s € P!

T,1I, CT,Y.
By construction of the pencil of planes {II3},cp1 in @ in Subsection 4.1.2.2 or 4.1.2.3, we
have

U I, = Q.

sePL

Consequently, the tangent spaces of the planes Il at p span the tangent cone of @), i.e.

> T =T,Q,
s€Pt
so by assumption
T,Q CT,Y.

Since @ is singular at p, we have 3 = dim@ < dim7,Q < 4. Hence, dim7,Q = 4.
However, the four-dimensional space T,,() cannot be contained in the three-dimensional
space 1,Y.

Consequently, the assumption must have been wrong and there exists a plane Il such that
T, € T,Y . Zariski closed proper subsets in P! are finite. Since the open set

{s e P, TII, € T,Y} =P\ {s € P'; T,1I, C T,Y}
is non-empty, it is Zariski-dense in P'. Hence, the general plane II; is not contained in

T,Y . In conclusion, the general cubic curve in {Cs}scp1 is smooth in p. O

By the following Lemma 4.3.2, the assumption that a singularity p of S is not a singularity
of both @) and Y is satisfied if p is a hypersurface singularity and therefore in particular if
p is an ADFE singularity.
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Lemma 4.3.2. Let p be a singularity of a complete (2, 3)-intersection S C P* of a quadric
Q and a cubic Y in P*. Then, p is a hypersurface singularity of S if and only if it is not
a singularity of both the quadric Q and the cubic Y.

Proof. Assume that the hypersurface singularity p is a singularity of both @@ and Y. The
germ (S, p) is locally analytically isomorphic to the germ (V,0) C (C3,0), where V is a sur-
face in C? and 0 := (0,0,0). Since 0 is a singularity of V', we have 3 > dim TpV > dimV =
2. Therefore, dim7pV = 3. On the other hand, we have 4 > dim7,Q > dim@ = 3
and 4 > dim7,Y > dimY = 3 which forces dim7,Q) = dim7,Y = 4. Furthermore,
dim(7,Q + T,Y) < dimT,P* = 4. Consequently, dim7,S = dim7,Q + dim7T,Y —
dim(7T,Q + T,Y) > 4+ 4 — 4 = 4. Therefore, dimTpV # dim7T,S which is a contra-
diction to (S,p) and (V,0) being locally analytically isomorphic.

On the other hand, assume that p is a smooth point of @ or Y and assume without loss of
generality that @) is smooth at p. Then, locally analytically at p the quadric @ is isomorphic
to a hyperplane H = C3 in PY. If ¢ is the cubic polynomial defining Y, the surface S is
therefore locally analytically at p on the hyperplane H = C? defined by g. Hence, (S, p) is
a hypersurface singularity. O

4.3.1 @ has corank 1 in P*

Let Q@ C P* be a quadric of corank 1 in P* with vertex p and let Y C P* be a cubic
such that S := QNY is a complete (2, 3)-intersection in P* having at most isolated ADE
singularities. By Lemma 4.3.2, this implies that () and Y have no common singularities.

Let {IT1,0}qepr and {IIz 5} gepr be the two pencils of planes on @ as in Lemma 4.1.4.

For a, 8 € P!, we define the plane cubic curves on S

Cl,a = Hl,a NY CS and 027/3 = HQWB nNY csS

and obtain two pencils of plane cubic curves {C1,q }aepr and {Ca}gepr on S.

Lemma 4.3.3. Let IIy and Il be the planes in the pencils {11 o }aepr and {1z g} gepr,
spanned by p and Iy € {l1,a}taepr and Iz € {lag}gepr, respectively, as defined in subsec-
tion 4.1.2.2 and x the intersection point of Iy and ly. Let Cp =111 NY and Cy =1loNY.
The divisor C1 + Cy on S C P* is supported on T,Q N S. In particular, C1 + Co is a
hyperplane section of S.

Proof. T,Q N Q is a quadric of corank 2 in P? whose singular locus is the line I, joining
x and the vertex p of Q). By Lemma 4.1.4, there are unique planes in {II; o },cp1 and
{Hgﬁ}ge]}m containing [, which then must be II; and I, as they both contain [,,. Hence,
T.QNQNY =T,Q NS is the union of the curves C7 :=1I1 NY and Cy :=1Io, NY.

Let m; and ms be the positive integers such that m1C; + moCy = T,Q NS as divisors
on S. We claim that the planes II; and Iy are not contained in Y. Indeed, if one of the
planes was contained in Y, the complete (2,3)-intersection S would contain this plane,
as well. Therefore, the smooth minimal model S of S would be rational which is absurd
since S is a K3 surface by Lemma 4.2.2. Hence, the hyperplane section T,Q NS C P4 of
S is a curve of degree 6 by Bezout’s Theorem. Using that C7 and Cy are cubics, we have
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deg(m1C1+maCs) = 3(my+mz). Since T, QNS has degree 6, it follows that m; = mg = 1.
In conclusion, T,Q NY = C; + Cy € Div(S). O

Let
AR O BL,S — S
be the blowing-up of S in p with exceptional divisor Eg) and let Cflo)é and Célﬁ) be the
strict transforms of C o and Cy g in S,
Lemma 4.3.4. We can find o, 3 € P! such that the following conditions are all satisfied:

(1) Ci,o and Cy g are smooth in p

(2) Cﬁi and C’élﬁ) are both contained in the smooth locus of S()
5 e nEd —.

If p is of type Ay,>2, we have Eél) = EF) UEW, where Eg) and ET(ll_)2 are irreducible

n—27
curves intersecting transversally in a singularity of type Ap—o of SM).

(4) After exchanging E%l) by E,(Ll_)2 if necessary, C{lo)é intersects EF) but not E7(11—)2 and

Célﬁ) intersects ET(QQ but not E;l) and the intersection point of E%l) with E7(1122 18

(1) (1)

contained in neither C; ; nor Cy 5, see Figure 4.5.

BB,
e
01(710)6 Cl,(x

Figure 4.3: Assume that p is of type A,>2. The curves C o and C5 g satisfy condition (4)
in Lemma 4.3.4.

Proof. We claim firstly that the set
L = {(a,8) € P! x P; Cy, or Cy 5 are singular in p}

is a proper closed subset of P! x P!. Indeed, by Lemma 4.3.1, the general curves in
{C1,a}aepr and {Ca g} gepr, respectively, are smooth in p. Hence, only finitely many curves
in each family are singular in p, i.e. I is a proper closed subset of P! x P!,

We claim secondly that the set
I = {(a, B) € P! x P, C’flci or C’;Ig contains a singularity of St outside Eg)}

is a proper closed subset of P! x P!, Indeed, since S has only isolated singularities, for only
finitely many choices of & and 3 € P! the curves Ci,o and Cy g C S contain a singularity of
S different from p. Hence, for only finitely many choices of o and 3 the strict transforms
C{}O)[ and C’SB) in S of the curves (1, and Cy g contain a singularity of S outside Egl),

i.e. I is a proper closed subset of P! x P
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We claim thirdly that the set

Iy = {(, 8) € P x PY; ) nCP) n B # 0}
is a proper closed subset of P! x P! and prove this in the following by an explicit computation
in coordinates on P*.

The quadric Q@ C P* is up to isomorphism uniquely determined by its rank. Hence, we can
choose homogeneous coordinates (v : w : x : y : z) on P* such that @ is the image of the
Segre embedding o in (4.1):

Q:ay—zw=0CP*
and thus p=(1:0:0:0:0) € P* is the singular point of Q.
Until the rest of the proof, let a, 3 € P\ {(0: 1), (1:0)}. We then identify o := (g : 1)
and = (B : f1) with

Ao ‘= fah and bg == b

o G EC\ {0, (4.3)

respectively.

In coordinates, the lines in the rulings {/1,a},cpr and {lz 5} gep1 are given by

lha=0({a} XPl) : y—aawzz—aaxzog]}”3
bs=0P' x{8}): 2—bgy =x —bgw=0C P>

Hence,
IT; o = plane spanned by I , and p in P Yy—agw=2z—aar=0C P4
II; 3 = plane spanned by [ g and p in Ptz — bgy =2 —bgw=0C P4,
There are ay, ..., a4 € C and homogeneous complex polynomials fo(w, z,y, z) and f3(w, z,y, z)

in w, z,y, z of degree 2 and 3, respectively, such that the cubic Y C P* has the form
Y : v*(a1w + agz + azy + asz) + vfo(w, z,y, 2) + f3(w,z,y,2) = 0 C PL

Indeed, Y contains the vertex p = (1 : 0 : 0 : 0 : 0) of . Therefore, the polynomial
defining Y has no summand v>.

The cubic Y is smooth in p since Y and @) have by assumption no common singularities.
Hence, at least one of the coefficients ai,...,a4 is non-zero and we will assume in the
following without loss of generality that

ag # 0.

Consequently, we have on P*

— 2w =0
S=Qny T
v (alw + a2x +a3y +CL4Z) —i—va(w,x,y,z) + f3(wax7y7 Z) =0

_ = » — =0
Cl,a _ Hl,a Yy - 92 AW = 2 — AT
v (alw + a2x + asy + G4Z) + va(w,x,y,z) + f3(wax7y7 Z) =0

—bgy =z — byw =0
02:6 — H27,3 N Y . 22 By v 'Bw
v (arw + asx + azy + asz) + v fo(w, x,y, 2) + f3(w,z,y,2) = 0.
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Let 70 P4 x P3 D (IP’4)(1) — P* be the blowing-up of P4 in p and (w1 : @1 : y1 : 21)
homogeneous coordinates on P3.

On the affine chart P* x A% C P* x P3 defined by w; # 0, we have
(P4)(1) = {((v TwixT Y z), (1,m1,y1,21)) eP' x A3 2 = 2w, y = ypw, z = ziw}.

We compute the strict transforms S™), C'fo){, and Célg of S, C1,a, and Cy g, respectively,
in (P4)M):

) . 21 = T11
v2(a1 + aewy + azyr + asz1) +vwfo(l, 21,91, 21) + w2 f3(1, 21, 91,21) =0

with exceptional divisor Eél) cS (1)
a a a
Egl) rw=zr=y=2=0, 21 = 2191, v2(4+f2x1+*3y1+3:1y1) =0
aq aq a4

oW . Y1 —aq =21 —aqx1 =0

L v (a1 + agwy + azyr + asz1) +vwfo(l, 1,91, 21) + w?fa(1, 21,1, 21) = 0
oW 21 —bgyr =21 —bg =0

207 w2 (a1 + agwy + azyy + asz1) + vw fo(1, 21,91, 21) + w2 f3(1, 1,91, 21) = 0.

A point ((v:w:z:y:2),(l,21,y1,21)) € P* x A is contained in Cﬁi N C’é}g N Eg) if
and only if

w=r=y=2z=0

1 = bg, y1 = aqa, 21 = aabs

v (& + 2bg+ Pag + aabg) = 0.

a4

A direct computation of the blowing-ups of S, C1 4, and C g on the other charts of P3
as above shows that all points of C’flc)y N Célg N Eg) are contained in the chart wy # 0 as
e, bg # 0.

Hence, with the definitions in (4.3)

LA\ ({(1:0),(0:1)32) = {((a0 s 1), (Bo : A1) € (B \ {(1:0),(0: D}
ai T a—ibﬁ + By + agbs = 0}
a ay4

a
and this is a proper closed subset of P! x P!.

In conclusion, P! x P!\ (I1 U, UI3U{(1:0),(0: 1)}2) is a non-empty open subset of
P! x P! and for each (o, 8) € P! x P!\ (I; UL, UI3U{(1:0),(0:1)}?) the curves Cj 4
and Cs g satisfy conditions (1)-(3).

This finalizes the proof if p is of type A;.

az , a3 _ a1

Claim 4.3.5. The exceptional divisor Eg) 1s reducible if and only i @A T o
Proof. Assume that Eg) is reducible, i.e. Z—i + g—ixl + Z*i@ﬂ + z1y1 = 0 C A? is reducible.
We homogenize the equation by w; and obtain the projective quadric
a a a
q: —lw% + —2m1w1 + jylwl +x1y1 =0C P2,
ay a4 ay
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Then, ¢ C P? is reducible if and only if the discriminant Disc(g) of ¢ is zero. We have

a1 ay  az
2 2 2
. A e ¢ 1ax a3

Disc(q) = | 25, 0 3 |=,(=-———
a3 1 0 4 as Qg aq
2a4 2

Hence, ¢ C P? is reducible if and only if 92 . 98 — 41 — ). O
y 4 y
as a4 a4

Then, assume that p is of type A,>2. We claim that condition (4) holds, as well. Indeed,
if p is of type A,>2, the exceptional divisor Eél)

- . a1 _ 02 a3
Claim 4.3.5: o = o o . Hence,

is reducible. Therefore, we have by

a1 as as as as
—+ —z1+—y1 +11y1 = (— +21)(— +y1) =0.
4 Q. Q4 a4 a4

Eg) Tw =
4

a

Let
E{l) : w:@+$1:0andE£1_)2: w:@—i—yl:().
a4 Q4
For (o, 8) ¢ I3 U{(1:0),(0:1)}?, we have
1

a a2 as az a3
L 42 bg = (— = 4 bg) #0.
a4+a4 5+a4aa+aa 8 (a4+aa)(a4+ 5)7'é

Hence, ao # —¢2 and bg # —22. We see that C’fl) intersects Eil) in

,

as as

Twix iy 1:xy iy =((1:0:0:0: 1:——:aq4:——aq
((v wix:y:z),(l:xy:my zl)) (( 0:0:0:0),( o a a4a ))
but not E,(llzz as we have y; = —Z—Z on ET(QQ but 1 = an on C’flo)é and —Z—i # aq. On the
other hand, C’élﬁ) intersects Er(ll_)2 in
as as
(viw:iz:y:z),l:iar:yr:21)=(1:0:0:0:0),(1:bg:——: ——bg))
ay ay
but not Eg) since we have r1 = —g—i on E%l) but 21 = bg on C’élg and —Z—i # bg. Further,
ET(LI_)2 N Eg) rw=0,71 = _Z%’ Y1 = —%i is contained in neither Cflc)y nor C’élﬁ)
This finalizes the proof of Lemma 4.3.4. O

4.3.2 () has corank 2 in P*

Let Q C P* be a quadric of corank 2 in P%. More precisely, let @ be the cone through
its singular line I := Sing(Q) over a smooth quadric Q" in P2. Let Y C P* be a cubic
such that S := QNY is a complete (2, 3)-intersection in P* having at most isolated ADE
singularities. By Lemma 4.3.2, this implies that () and Y have no common singularities.

Let {IT; };cp1 be the pencils of planes on @ defined in Subsection 4.1.2.3.

For t € P! we define the plane cubic curves on S

C’t::HtﬂYQS

and obtain a pencils of plane cubic curves {C}};cpr on S.
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Lemma 4.3.6. Let t € P* be a smooth point of Q and T;Q the projective tangent space on
Q att. Then, 2Cy is the divisor on S supported on Cy = TQ N S.

Proof. T;QNQ is a quadric of corank 3 in P3, i.e. a double plane containing ¢ which must be
II; by Lemma 4.1.5 since II; contains t. The plane I1; is not contained in Y since S contained
otherwise a plane and hence the smooth minimal model S for S was rational which is absurd
since S is a K3 surface by Lemma 4.2.2. Consequently, C; :=1I; NS = T NS. Let m be
the positive integer such that mCy = T;Q N S as divisors on S. The curve T;Q N S in P*
has degree 6. Since C; has degree 3, we must have m = 2. O

Lemma 4.3.7. We can choose t € Q' such that the following two conditions are satisfied.
1. Cy contains no singularity of S that is not lying on the singular line | of Q.

2. Cy is smooth in all points p € Y N 1.

Proof. Indeed, the set
I, == {t € Q'; C; contains a singularity of S outside of }
is finite since S has only isolated singularities. Further, the set
I, = {t € Q'; C; is singular in some p € Y N1}

is finite. Indeed, we have

Um=a

teq’

Hence, by Lemma 4.3.1 the general curve C; is smooth in p € Y NI. Hence, only finitely
many curves C; are singular in p € Y N1, i.e. I is finite.

In conclusion, there exists t € Q" \ (11 U I2). O

4.4 Possible ADE singularities of a complete
(2,3)-intersection on the singular locus of the underlying
quadric

Let S be the complete (2, 3)-intersection of a quadric @ and a cubic Y in P*. Assume that
S has only isolated ADFE singularities. By Lemma 4.3.2, this implies that @) and Y have
no common singularities.

We will discuss in this section which combinations of ADFE singularities of S can lie on the
singular locus Sing(Q) of Q.

4.4.1 Q has corank 1 in P*

Let S be the complete (2, 3)-intersection of a quadric @ of corank 1 in P* with vertex p
and Y a cubic in P%.
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Lemma 4.4.1. Assume that the vertex p of Q is contained in S. Then, p is a singularity
of type Ap>1 on S.

Proof. Let (v : w : x : y : z) be homogeneous coordinates on P*. Since two projective
quadrics of the same rank are isomorphic, we can assume that @ : wx + yz = 0, i.e.
p=(1:0:0:0:0) € P% Since @ and Y have by assumption no common singularities, Y’
is smooth in p. Then, the projective tangent space T,Y of Y at p is a hyperplane in P
Since p € T,Y, we have T),Y : aw + x4y +ez =0 for o, 3,77,e € C. One of o, 3,7, € is
not equal to zero. Assume without loss of generality that o # 0. Now consider the chart
C3 of P* given by v # 0. There exists an analytic coordinate transformation ¢ of C* such
that T,Y = ¢(Y") locally around p. Further, ¢(Q) : wx +yz+ f(w,z,y,2) = 0, where f is
a power series in w, x,y, z with monomials of degree > 3. Then, Q NY is locally around p
given by T,Y N¢(Q) : yz — ng — oy — Saz+ f(gx —Ty—Szm,y,2)=0C C3 which
describes by the classification of ADFE singularities (see [GLS07, Chap. I, Theorem 2.48|) a
singularity of type A,>1 in the origin since the corank of the Hessian matrix of the defining
power series is 0 or 1 in C3. ]

4.4.2 () has corank 2 in P*

Let S be the complete (2,3)-intersection of a quadric @ of corank 2 in P* and Y a cubic
in P4, Let [ be the singular line of Q. Since @ and Y have by assumption no common
singularities, ! is not contained in Y. Let {II;};cp1 be the pencil of planes in @ defined
in 4.1.2.3 and {C; :==II; N Y };¢p1 the induced pencil of plane cubic curves on S.

Recall the definition of the intersection multiplicity of closed subschemes at a point on a
smooth surface in [Ful98, Chap. 8.2|.

We show in the next lemma that all plane cubic curves Ct in {C} };¢p1 intersect the singular
line [ of () in the same points with the same multiplicities.

Lemma 4.4.2. For each t € P!, we have INCy = INY = Sing(S). Moreover, the
intersection multiplicities 1.Cy on the planes II; are independent of t € P!,

Proof. Let Cy,Cy € {Ci}iepr. By definition C; = II; NY and Cp = IIy NY. Since [ is
contained in both II; and IIy, we have Cy NI =1LNY NI=Y Ni=1lyNY NI =Cy NI
Further, for p € Cy Nl = Cy N1, the intersection multiplicities (Cy.l), = (II; N Y.l), and
(Cyp.l)p = (IIy N Y1), on II; and IIy, respectively, are well-defined. By Lemma A.0.1, we
have (II; NY.l), = (IIy NY.l),,. Therefore, (Cy.l), = (Cyp.l),. Further, since all points on [
are singularities of (), those points on [ contained in Y are singularities of S. O

Lemma 4.4.3. Let C; in {Ci}icpr be a curve on the plane II; and p € Cy N1 such that on
IT; we have (Cy.l), = 1. Then, S has a singularity of type Ay in p.

Proof. We claim firstly that [ ¢ T,Y. Assume conversely that [ C T,Y. Since p € | and
since [ is contained in all planes in {II;};cp1 whose union is the quadric @, the line [ then
is contained in the tangent space of one of the curves C; = 1I; "Y', i.e. [ C T,C;. However,
by Lemma 4.4.2, we have (C}.l), = 1 which contradicts | C T,Cy. Hence, | € T,Y.

The intersection T,Y N @ is a quadric in P3. Since [ is not contained in T,Y, the quadric
T,Y N Q is only singular at p. Hence, T,Y N @ is a quadric of corank 1 in P? with
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vertex p. The analytic type of p on T, Y N @ is hence type Ay, i.e. the singularity p has
type Aj. Since Y is smooth in p, for an appropriate analytic coordinate change ¢ in a
small neighborhood around p, we have T,Y = ¢(Y). Applying this coordinate change to
S =Y NQ, we obtain that Y N is in a small neighborhood around p via ¢ isomorphic to
T,Y N¢(Q). As in the proof of Lemma 4.4.1, we show that T,Y N ¢(Q) is the zero locus
of a power series in P? whose quadratic terms are given by @ and all other terms are of
higher order. Consequently, T, Y N ¢(Q) has type A in p. O

Let C € {C;};cp1 be contained in the plane IT € {II; },cp1. Since C and [ are contained in
the plane II, we can apply Bezout’s Theorem and obtain

Cl= Y (Clp=3. (4.4)

peCnl

We now establish how often we need to blow-up S over the singularities of S on [ such that
the strict transform of C' under these blowing-ups does not contain any of the singularities
on the exceptional divisor in the last blowing-up step. We fix some notation to which we
will also refer in a subsequent chapter:

Notation 4.4.4. Let p € C'N 1. By (4.4), we have m := (C.l), < 3.
EHO =pt SO =g cO.=¢, 1©.= pO=p
and for i = 1,...,m let iteratively
7@ (PHO - (P
be the blowing-up of (P*)=1 in p—1) where for i > 2, we let
p(i—l) c o= 16D A E]I(Difl)

and Elgi_l) is the exceptional divisor of 7(i=1) in (}P’4)(i_1) and SV, (-1 and 16-Y are
the strict transforms of S¢=2), C=2) and 1(=2) in (P*)(—1 respectively.

Note that p(i—1) is uniquely determined since the blowing-up ﬂ(i) is by construction an
isomorphism on C¢~D\ (C—Dn E]I(Jifl)) and 10-D\ (16-Dn Eg{l)) onto C'\ {p~?} and

I\ {pU"=2}, respectively, so C0~1 and 10~ intersect E]I(]i_l) in the same point pi—1).

Lemma 4.4.5. The point pti=1) e =1 0 (=1 n ngl) is a singularity of S and
cm nm N Elg,T) = (. Further, p'™=b is of type A; on S(m=1.

Proof. The strict transform Q) of Q in (P4)(i) has singular locus 19| hence p(¥ € C) N
1N E&) C SO is a singular point of S@.

Both C and [ are contained in the plane II C P* For i = 1,...,m, let II® be the
strict transform of II in (P*)®. By Lemma A.0.4, we have C(V.]0) = C.I — 1. Then,
blowing-up iteratively I in p@® e C® 1O N EIED? gives O (M) = Ol —m = 3 —
m. Since the blowing-ups are isomorphisms outside their exceptional divisors and since
S gecrt qzpy(CDg = C.l— (C.1), = 3 — m, it follows that C™ N 1™ N B = 0.

We show that p(™~1 is of type Ay on S(m~Y. Indeed, we have C(m—1) j(m=1) — 3 _
(m —1). Since 3 cony. gzp(C-l)g = 3 —m, we must have (C’(m_l).l(m_l))p(m,l) =1. By
Lemma 4.4.3, it follows that p(™~1 is of type A;. O
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Lemma 4.4.6. All possible ADE singularities of S lying on the singular line | of Q are:
3A1, A1+ D, (n > 5), A5, Dg, and Er.

Proof. By Lemma 4.4.2, C' and [ intersect in the singular point of S lying on .

Assume that C' and [ intersect in three different singularities p1, p2, and p3. By (4.4), this
implies that for ¢ = 1,2,3, we have (C.l),, = 1. By Lemma 4.4.5, this means that the
singularities p; have type Aj; on S, i.e. C' and [ intersect in three A singularities.

Then, assume that C' and [ intersect in p; with multiplicity one and in ps with multiplicity
two. By Lemma 4.4.5, this means that p; is of type A;. Further, Lemma 4.4.5 implies that
on the exceptional divisor of the blowing-up of po must lie an Ay singularity. According to
Table 1.1, the only ADFE singularities which have an A singularity on the exceptional di-
visor after blow-up, are of type Ag, Dy, and D,,>5. In conclusion, pp must have singularity
type Dp>3.

Finally, assume that C' and [ intersect in p; with multiplicity three. Blowing-up two times
over pi, we must obtain an Ay singularity on the exceptional divisor of the second blowing-
up by Lemma 4.4.5. Again, according to Table 1.1, the only ADF singularities having an
A singularity on the exceptional divisor of a second blowing-up over them are of type As,
D¢, or E7. Hence, p; is of type As, Dg, or E~. ]



5 Cubic hypersurfaces with isolated ADFE
singularities

In this chapter, we will study cubic hypersurfaces. We will explain how to associate to a
cubic hypersurface in P with only isolated ADFE singularities a complete (2, 3)-intersection
in P"~! and how the ADE singularities of the cubic hypersurface are related to the ADFE
singularities of this complete (2, 3)-intersection. This will enable us to prove in the following
chapters that the existence of a cubic fourfold with a certain combination of isolated ADFE
singularities is equivalent to the existence of a complete (2, 3)-intersection in P* with certain
isolated ADFE singularities.

5.1 Basic notation, definitions, and properties

Let (xo : ... : z,) be homogenous coordinates on P" (n > 2).

Let X be a cubic hypersurface in P" and assume that X is singular in p € X. After a
linear change of coordinates, we can assume that p=(1:0:...:0) € P™.

Lemma 5.1.1 ([Wal, §2|, [Hav16, 2.1|). In the chosen coordinates, the equation defining
X has the form
iL'on(.lel, e ,xn) + fg(xl, e ,mn) =0,

where fo and f3 are homogenous polynomials of degree 2 and 3 in Clx1, . .., z,], respectively.

We write @ and Y for the quadric and cubic in P*~! defined by fo and f3, respectively, as
in Lemma 5.1.1 and refer to the form of X as the normal form of X with respect to the
chosen coordinates.

Let mp: P* —=» {2 =0} X P" ! (zp:...:2,) = (0: 2y :...:x,) be the projection
through p onto the hyperplane P"~! given by {zo = 0} C P". Let F,, C X be the union of
all lines in X passing through p. Define

Sp = mp(Fp) S P
as the image of F}, under 7, in Pl

Lemma 5.1.2 (|[CG72, Lemma 6.5|, [Hav16, 2.1]). Assume that X has only isolated singu-
larities and a double point p. Then, S, is the complete (2, 3)-intersection in P! defined
as

Sp : fg(l’l, R ,:Iin) = f3(331, ... ,xn) =0C Pl

Lemma 5.1.2 shows in particular that [}, is the cone in X through p over the complete
(2, 3)-intersection Sy,
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The definition of S}, does not depend on the choice of the hyperplane H C P" with p ¢ H
onto which we project F):

Lemma 5.1.3. The quadric Q and the complete (2, 3)-intersection S, are uniquely deter-
mined by p and do not depend on the choice of the hyperplane H C P™ with p ¢ H onto
which we project F,, through p, while the cubic Y is only determined modulo Q.

Proof. Let H : xo+ > a;xz; =0 C P™ and

n
71']{{: P" --» H~Pr !, (To:...:xy) — (—Zaiaji:xl Ce.oidy)
=1
be the projection of X onto H through p. Let ¢ := (=Y 1" aiz; : x1:...: z,) € P be
a point in H and (A — u> " a;x; : pxy @ py ... : pay,) the line connecting p and ¢

parametrized by (A : u) € P'. This line is contained in X if and only if

0= (>\ - Mzaifﬂi)ﬁ(ﬂxlw . a”xn) + f3(#xla .. 7/"3771)
=1

n
=M fo(w1, . mn) + 12 (f3(21, ..o 20) — (Z aiz;) fa(1, ..., xy))
i=1
for all choices of (A : u) € P!, in particular for (0 : 1) which gives
n
fa(@e, -y an) = O @) falwy, . n) =0
=1

and for (1 :0) which gives
fz(:l)l, ce ,:cn) = 0.

Hence, the projection of F, onto H is isomorphic to the zero locus

fol@r, . yn) = falorseosan) — (3 @) folan,. .. ) = 0 C PP,
=1

In conclusion, we see that .S}, and the quadric on which S, is lying are uniquely determined,
and the cubic is uniquely determined up to the quadric. ]

Hence, Lemma 5.1.3 shows that .S}, can be defined without choosing coordinates on P".

5.2 ADEF singularities on cubic hypersurfaces and complete
(2, 3)-intersections

We follow the notation in Section 5.1.

Assume that the cubic hypersurface X C P” has only ADFE singularities, in particular p
is an ADE singularity. Let 7(1): Bl,X — X be the blowing-up of X in p with exceptional
divisor E := (7)~1(p) C BL,X.
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Lemma 5.2.1. E is isomorphic to the quadric Q C P 1.

Proof. E is the projectivized tangent cone to X at p and the latter is defined as the zero
locus of fy in {zg =0} 2P L. O

We now establish that an ADFE singularity of type T on S, induces a unique singularity
with a certain singularity type on Bl,X:

Proposition 5.2.2 ([Wal, §2|). Let g € Sp. If q is a singularity of both Q and Y, then
X is singular along the line pq connecting p and q. This means in particular that X has
non-isolated singularities. Then, assume that q is not a singularity of both Q and Y and
assume that q is of ADE type T in the locally smooth scheme @) orY.

(i) If Q is smooth at q, the cubic hypersurface X has exactly two singularities p and p/
on the line pq and p' has type T.

(11) If Q is singular at q, the line pq intersects X only in p and the blowing-up Bl,X has
a singularity of type T at q.

We now enhance the result in Proposition 5.2.2 and show that actually each singularity on
Bl,X is induced by a singularity on S, and determine the location of those singularities.
This establishes that the singularities of S, are in one-to-one correspondence with the
singularities of Bl,.X including the singularity type.

Corollary 5.2.3. The singularities of X \ {p} correspond, including their singularity type,
one-to-one to those singularities of S, which are not contained in the singular locus of Q.
The singularities of Bl,X on E correspond, including their singularity type, one-to-one to
those singularities of S, which are contained in the singular locus of Q.

Proof. We give firstly a one-to-one correspondence between the singularities of X \ {p} and
those singularities of S, which are not lying on the singular locus of Q.

By item (i) in Proposition 5.2.2, given a singularity p' on S, the cubic X has a unique
singularity ¢’ # p on the line pp’.

Conversely, for an ADFE singularity ¢ := (qo : ... : g,) € X with ¢ # p, the line pg must
be contained in X. Indeed, p and ¢ are both double points of X so pqg intersects X with
multiplicity 4. Since X has degree 3, this means that pg must be contained in X. We claim
that the image of pg under the projection 7, of P"* through p onto the hyperplane P~ given

by {zo = 0} is a singularity of S,. In fact, the line pg is given by (A —pqo : pg1 = ... 1 pgn),
where (X : u) € PL. Then, 7Tp((>\ — pqo : Mqg1 v ... ,uqn)) =(q:...:qn). Since ¢ is a
singularity of X, we have

0=qof2(q1,--- ) + f3(ar, - qn) (5.1)

0 0 .

0 :qoaxi folqr, . qn) + 8:r¢f3(q1’ cooyqp) foralli=1,...,n (5.2)

0=falqr,-- - qn) (5.3)
Equations (5.1) and (5.3) give that (g1 : ... : ¢,) € Sp. By equation (5.2), we have
aii falqiy ..o qn) = —qoa%ifg(ql, ...yqp) for all = 1,...,n. Hence, the Jacobian matrix

of the polynomials fo and f3 has at (qq : ... : gn) not full rank. Therefore, (¢ : ... : qy) is a
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singularity of S,. However, (g : ... : gy) is not a singularity of Q). Otherwise, (g1 : ... : qn)
would also be a singularity of Y by (5.2) and hence X would have non-isolated singularities
by Proposition 5.2.2 which is false by assumption.

The construction above establishes a one-to-one correspondence between the singularities
of X \ {p} and those singularities of S, which are not lying on the singular locus of
Q. Moreover, by item (i) in Proposition 5.2.2, corresponding singularities have the same
singularity types.

We show by a direct computation that a singularity ¢ of Bl,X is contained in F if and
only if it naturally corresponds to a singularity of .S}, lying on the singular locus of Q.

Indeed, let 71 : P x P! D (P")() — P" be the blowing-up of P" in p and (y : ... : yn)
homogeneous coordinates on P!, Assume without loss of generality that ¢ is contained
in the affine chart P* x A"~1 C P x P"~! defined by y; # 0. We have

P D = {((o: .- i 2n), Ly, .y yn)) €EP" x A" 1y 2y =y forall i =2,...,n}.
The strict transform of X in (P*)(!) is given by
Bl X : zofa(1,y2,. - yn) +21f3(1, 42, yn) = 0
and the exceptional divisor ¥ C Bl, X by
E={((1:0:...:0),(L,y2,...,yn)) €P" x A" fo(1,ya,...,yn) = O}.

Note that with respect to the projection pry: P* x A"~! — A"~ the exceptional divisor
E is isomorphic to @ on A"~! (this proves in particular Lemma 5.2.1 in coordinates).

Assume that we have in coordinates ¢ = ((wo St wy), (L7, .. ,rn)) € Bl,X. Since ¢
is a singularity of Bl, X, it is a zero of all partial derivatives of the function defining Bl, X
on this chart, i.e.

OZfQ(l,TQ,...,Tn) (54)

0:f3(1,7“2,...,7’n) (55)
af2 JE .

—wo - 21,7, 3 ey ry) foralli=2,... . n. .

0 =wy (9yi( JT1y ey Tn) + w1 3%( r1 rn) for all ¢ n (5.6)

Equations (5.4) and (5.5) give that the image of ¢ under pry is contained in S,,.

Now assume that ¢ is contained in F, i.e. ¢ = ((1 0. 0),(1,r2,...,rn)). Equa-
tion (5.6) gives

01, oh o

0=1-2201,r,..., 0 1L, .., 1L, ..,
0; (1,7 Tn) + B0 (1,7 Tn) 0 (1,7 Tn)
for all i = 2,...,n. Hence, the image (1,71,...,7,) of ¢ under the projection pry is a
singularity of Q.
Conversely, assume that (1,71,...,7,) is a singularity of Q. Then, for alli =2,...,n
0
ﬁ(l,rl,...,rn) = 0. (5.7)

0y;
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Furthermore, (1,71,...,7,) cannot be a singularity of Y, as well, since X had other-
wise non-isolated singularities by Proposition 5.2.2. Therefore, plugging (5.7) into equa-
tion (5.6), we obtain w; = 0. This gives w; = rw; = 0 for all i = 1,...,n. Therefore,
q = ((1 0L 0),(1,7‘2,...,7‘n)), i.e. ¢ € E (this also proves in particular partly
item (ii) in Proposition 5.2.2).

The computations are similar on the other charts of the blowing-up.

In conclusion, we see that all singularities of Bl, X on E correspond to singularities of .S, on
the singular locus of (). Furthermore, by item (ii) in Proposition 5.2.2, the corresponding
singularities have the same singularity types. O

In Table 1.1, we recorded for an ADFE singularity of type T on X the singularities o(T)
that occur on the exceptional divisor E.






6 Cubic fourfolds and K3 surfaces with
isolated ADFE singularities

In this chapter, we prove the first Main Theorem which states that the existence of a
cubic fourfold with certain isolated ADF singularities is equivalent to both the existence of
complete (2, 3)-intersections in P4 with certain isolated ADE singularities and embeddings
of certain lattices into the K3 lattice. To prove the Main Theorem, we will firstly prove
an auxiliary technical proposition where we compute the pull-back of a certain hyperplane
section of a complete (2, 3)-intersection in P4 to the smooth minimal model of this complete
(2, 3)-intersection.

6.1 Main Theorem 1

Main Theorem 1. Let T € {A;>1, Dj>4, Eg>i>6} be an ADE singularity type.

For ((al, ce an), (d4, - ,dm), (66, €7, 68)) S Zzgn X Z20m73 X ZZQ?’, let

n m 8
G = ZaiAi + Zdej + ZekEk
i=1 j=4 k=6

be a formal sum of ADE singularity types and

n m 8
I'g = Z a;A; + Z dej + Z ek
i—1 =4 k=6

a Dynkin diagram with connected components A;, D;, and Ey.
The following are equivalent:

1. There exists a cubic fourfold X in P® with a singularity of type T and such that all
other singularities of X correspond to G.

2. There exists a complete (2,3)-intersection S in P* of a quadric Q of corank(Q) =
coranky as in Table 6.1 and a cubic Y such that the singularities of S that lie on
the singular locus of @ are of type o(T) as in Table 6.1 and such that all other
singularities of S correspond to G.

3. Let Ty be a weighted graph as in Table 6.1. Let A(T'g) and A(T,(1)) be the lattices
associated to the weighted graphs I'c and I'y(t). Let ht € A(I‘J(T) be the sum of the
vertices of Iy(y as in Table 6.1. There exists an embedding

7 A(FO(T)) D A(F(;) — Lg3
such that the following conditions a), b), and c) hold:
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a) If x € Satp,, (i) with i(hp).x = 0 and 2* = =2, then x € i(A(T,m) @ A(lq)).
b) There exists no element x € Saty,,., (i) with i(ht).x =1 and 2% = 0.

¢) There exists no element x € Saty,,, (i) with i(ht).x =2 and 2> = 0.

Remark 6.1.1. By Lemmas 4.4.1 and 4.4.6, we consider in 2. all types of singularities that a
complete (2, 3)-intersection in P4 can possibly have on the singular locus of the underlying
quadric.

6.2 Proof of Main Theorem 1

To prove Main Theorem 1, we show the following auxiliary proposition:

Proposition 6.2.1. Let T € {A;>1,Dj>4,Eg>1>6} be an ADE singularity type and
coranky and o(T) as in Table 6.1.

Let S be a complete (2,3)-intersection of a quadric Q of corank(Q) = coranky and a cubic
Y in P* such that S has only isolated ADE singularities. Assume that all singularities
of S lying on Sing(Q) are of type o(T). Let 7: S — S be the minimal resolution of all
singularities of S.

Then, there exists a hyperplane section Ct of S such that hy = n*(Ct) € Div(S) is the
formal sum of curves on S as in Table 6.1 and the associated weighted graph to these curves
is sty in Table 6.1.

6.3 An auxiliary step in the proof of Main Theorem 1

As outlined in Chapter 4.1, a projective quadric is up to isomorphism uniquely determined
by its rank. Hence, we prove Proposition 6.2.1 for all possible coranks of the quadric Q) in
P* individually.

6.3.1 The quadric Q has corank 0 in P*

Proposition 6.3.1. Let S be a complete (2, 3)-intersection of a quadric ) of corank(Q) =
0 and a cubic Y in P* such that S has only isolated ADE singularities. Let m: S — S be
the minimal resolution of all singularities on S.

Then, there exists a hyperplane section Ca, of S such that ha, = 7*(Ca,) € Div(5) is
an irreducible curve on S.

Proof. Since S has only isolated ADE singularities, Bertini’s Theorem [Har77, Chap. II, The-
orem 8.18, Remark 8.18.1] implies that for a general hyperplane H in P* the curve

C=HnNnSCS
is irreducible, smooth, and contains none of the singularities of S. Therefore, we have

7C = C € Div(5),
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where C is the strict transform of C' in S under the minimal resolution 7 of all singularities
on S. Further, C' is irreducible since C' is irreducible. In conclusion, ha, = 7*(C) is an
irreducible curve on S. O

Remark 6.3.2. In the proof of Proposition 6.3.1, we actually did not use the assumption
that the quadric @ in which the complete (2, 3)-intersection is contained is of corank(Q) = 0
in P*.

6.3.2 The quadric Q has corank 1 in P*

6.3.2.1 General setting and notation

We fix some notation which we will need in the following.

Let S be a complete (2, 3)-intersection of a quadric @ and a cubic Y in P* with the property
that S has only isolated ADE singularities. By Lemma 4.3.2, this implies that () and Y
have no common singularities. In particular, the results in Sections 4.3 and 4.4 hold for
this choice of S.

Assume that the quadric Q has corank 1 in P4, We then recall from Subsections 4.1.1, 4.1.2,
and 4.3.1: By Lemma 4.1.1, Q is the cone through p over a smooth quadric Q' in P? and
p is the only singular point of ). By Lemma 4.1.2, there are two rulings {l1 o }qecpr and
{l2,8} gepr on Q' such that through every point in Q' passes exactly one line from each of
the rulings. For o, B € P!, let

II; o = plane spanned by p and [y o C P
Il g :=plane spanned by p and I3 g C P

Both II; , and Il g are then contained in the quadric @ C P* such that we obtain two
pencils of planes {II1 o }nepr and {II; g} gepr on Q. Let

CLQ = Hl,a NY C S and ngg = Hgﬁ nNY cs

be the cubic curves on S lying on the planes II; o, and Il g, respectively. We then have
the pencils {C1,a }aepr and {Ca g} gepr on S.

For as, s € P! such that conditions (1)-(4) in Lemma 4.3.4 are satisfied, write

Hl = HLOcsv H2 = H?,asa I = las:ﬁs

(6.1)
Cr= Cla, Cy:= Cp,.

Let 7: S — S~the minimal resolution of all singularities on S and a and EJZ the strict
transforms in S under 7 of C and C, respectively.

—~2 =2
Lemma 6.3.3. We have C7 =Cy = 0.

Proof. Let i =1,2.

We compute the arithmetic genus p,(C;) of C;. By definition, we have

pa(ci) =1- X(Cu OCi)a
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where x(Cj, Oc,) is the Euler characteristic of C;. Since dim H%(C;, O¢,) = 1, we obtain
pa(C;) = dim H'(C;, Oc,).
We claim that we have dim H'(C;, Oc¢,) = 1. Indeed, the short exact sequence
0— Op2(—3) = Op2 = O¢;, — 0
induces the long exact sequence on cohomology
- — HY(P?, Op2) — H'(C;,O¢,) — H*(P?, Op2(—3)) — H*(P?, Opz) —
= 5

Consequently, H (CZ, Oc;) (IP’ Op2(— ) Since dim H? (]P’Q, Op2(—3)) = 1, we ob-
tain p,(C;) = dim H(C;, (901)

By Lemma 4.3.4, C; is smooth in p and contains no singularities of S different from p.

Hence, C; = C; so p.(C;) = pa(Ci). We get
pa(a) =1 (6.2)
On the other hand, by the adjunction formula, we have
—~ 1
pa(ci) = 1+§deg (( ®(9 Oz (C ))|C’)

Since S is a K3 surface, the canonical bundle wg is trivial. Hence,

— 1 —_ 1~2
Pa(Ci) =1+ 3 deg (Og(Ci)@) =1+ §Cz' ,

SO

—~9 —~

Ci = 2pa(ci) —2=0.
We conclude from (6.2) that a? = 0. O

In the following subsections, we compute the pull-back 7*(Cy + C3) € Div(S) explicitly.

6.3.2.2 Assumption: T = Ay (thus o(T) = ()

We prove Proposition 6.2.1 in case corank(Q) =1, T = Ay, and thus o(Ay) = 0:

Proposition 6.3.4. Let S be the complete (2, 3)-intersection of a quadric Q and a cubic
Y in P* such that S has only isolated ADE singularities and let w: S — S be the minimal
resolution of all singularities on S.

Assume that Q has corank 1 in P* and the singular point p of Q is not contained in S.

Let C1 and Cq be th~e plane cubic curves on S and CNH and 6’; the strict transforms of C
and Cy under ™ in S as in (6.1).

Then, for the hyperplane section C1 4+ Co ofS we have ha, = 7" (C1 4+ Cq) = a + 6’; €
Div(S). The lattice in Div(S) with basis C1,Cy has the intersection matriz:

e

21
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Proof. We proved in Lemma 4.3.3 that the divisor C7 + C5 on S is a hyperplane section
of S. The curves C; and Cj satisfy condition (2) in Lemma 4.3.4 by their choice in (6.1).
Since the singular locus of () is not contained in Y, this means that Cy and C are contained
in the smooth locus S° of S. Hence, the total transforms of C; and C in S under the
minimal resolution 7 coincide with the strict transforms Cy and Cs under 7. Consequently,

™(Cy + Cy) = Cy + Cs.
By Lemma 6.3.3, we have
—~2 —~2
C; =Cy =0. (6.4)

Again, since C and Cy are both contained in S°, they are isomorphic to /C'\I and /C'\; via .
Hence,

C1.Cy = C1.Co. (6.5)

Since Cy =Y N1ly, = S° N 1ly, we have
C1.Cy = C1.(5° N1ly). (6.6)
Since (' is contained in both S° and II;, Lemma A.0.1 implies
C1.(S° N1ly) = Cy.(I1 N1y). (6.7)

The line [ := II; NIl intersects the cubic C7 on the plane II; in three points by Bezout’s
Theorem. Hence,

Cl.(Hl N Hg) =(C1.l=3. (68)

Equations (6.5)-(6.8) together give
C1.Cy = 3. (6.9)

In conclusion, the lattice with basis C; and Cy has by (6.4) and (6.9) the intersection
matrix (6.3) with respect to this basis. O

6.3.2.3 Assumption: T = A,, for n > 3 (thus o¢(T) = A,,_2)
We prove Proposition 6.2.1 in case corank(Q) = 1, for n > 3, T = A,,, and thus 0(A,,) =

An_QZ

Proposition 6.3.5. Let S be the complete (2,3)-intersection of a quadric Q and a cubic
Y in P* such that S has only isolated ADE singularities and let w: S — S be the minimal
resolution of all singularities on S.

Assume that Q has corank 1 in P* and the singular point p of Q is contained in S.

Let Cy and Co be the plane cubic~curves on S and 671 and /C'\; the strict transforms of Cq
and Cy, respectively, under w in S.

Then, for the hyperplane section C1 + Ca of S, we have ha, = 7*(Cy + C2) = Cr+ Co+
Ei+...+ E,_2 € Div(5), where Ey, ..., En_o are (—2)-curves on S.

The lattice in Div(g) with basis 6’1, 6’;, Eq..., E,_ 9 has the intersection matriz:
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Ci Cy E Ey -~ -0 En_3 By

i 0 2 1 0 oo 0 0

Cy 2 0 0 e 0 1

o) 1 0 [—2 1

E.

2 0 0 1 (6.10)
Enf?) 0 1
E,o\ 0 1 1 -2
Anf2

Proof. We proved in Lemma 4.3.3 that the divisor C7 4+ C5 on S is a hyperplane section
of §.

By Lemma 6.3.3, we have
—~9 —

C; =Cy =0. (6.11)
Let 71 (PH)(M) := BL,P* — P* be the blowing-up of P4 in p. Let
s yW  g® 0 and ¢ =M nav® (=1,2)

be the strict transforms of S, Y, II;, I := II; NIy, and Cj, respectively under 7(Y) in (P*)(),

We recall that C7 and Cy satisfy condition (2) in Lemma 4.3.4 by their choice in (6.1).
Hence,

Cfl) and Cél) are contained in the smooth locus (SM)° of S, (6.12)

By (6.12), C’{l) and C’él) are isomorphic to the strict transforms 6’1 and 6’; of 1 and Cy,
respectively under 7 in S. Hence,

C1.Cy =M.V, (6.13)

Further, we have C’él) = (SW)°n Hgl). Since C’fl) is contained in both (S(1))° and Hgl),
Lemma A.0.1 gives

cM.cfV =W (s nmV) = e @) V) = ¢ o, (6.14)

Consequently, by Lemma A.0.3
M = cp1—1. (6.15)
Since C and [; lie on the plane I1;, we can apply Bezout’s Theorem and obtain

Cil—1=3-1=2 (6.16)
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Equations (6.13)-(6.16) together give

C1.C5 = 2. (6.17)

Again, by the choice of the curves C] and Cs, the A, _s singularity p is the only singularity
of S which is contained in C and Cs. Hence, the divisor 7*(C1 4 C3) on S is supported on
the union of a ) 6’;, and the strict transforms F4,..., FE,_» in S of the exceptional curves
of the minimal resolution of p. Hence, the weighted graph with vertices F1, ..., E,_o is the
Dynkin diagram of type A,,_2 and we chose the notation such that it is given by Figure 6.1.

Ey B E,_3 E,_»

Figure 6.1: Dynkin diagram corresponding to the A, singularity p.

We compute the intersection numbers of a and 6’; with Fq,..., E,_o. Let

ED c @V, EY =B nsWcs®, and EY =ED oY cn (i=1,2)
be the exceptional divisors of the blowing-up of P*, S, and II; in p, respectively.

—_~—

By (6.12) and since (S())° is isomorphic to its strict transform (S(1)° in S, Lemma A.0.2
gives

Ci.Eg) = @" (W)o)wg)‘ ) (6.18)
Again, by (6.12),
Gi=cl.
Hence, B
(auﬁo)wg)uﬁo) = V(B (sye)- (6.19)

We have Eg)‘(s(l))o = I&) N (SM)°. Moreover, C’Z-(l) is contained in both (S™M)° and Hgl).
Hence, by Lemma A.0.1

1 1 1) (1
(B0 ) = D, 620
By Lemma A.0.3, we have
oV B =1. (6.21)

Putting together equations (6.18)—(6.21), we obtain

C.EY =1. (6.22)

If p is an As_o = A singularity, Eél) is irreducible. We write Fp = Egl) and therefore

C1.Ey = Cy.Ey = 1. (6.23)
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If pis an An 2 (n > 4) singularity, we have Eg) = E( JUEW, | where the strict transforms

n—2

Efl) nd E(l)2 of E( ) and BV respectively, in the minimal model S are two irreducible

n—2

(—2)-curves. By ch01ce, C; and O} satisfy condition (4) in Lemma 4.3.4 (after exchanging

——~——

E%l) by E7(11_)2 if necessary). Therefore,

— —~

GED =GB, =1 and G1.ED, = Gy.ED — 0.

Studying the resolution of an A,_o singularity, we see that after possibly exchanging F;

by Es, we have By = E\" and E,_5 = E\", in Figure 6.1.

n

Hence, we obtain . -
C1.Ey=Cy.E, o =1. (6.24)

If p is an A, _o singularity with n > 5, the exceptional divisors E(l) and E(l)2 intersect in

an A,,_4 singularity which is contained in neither C; D hor C’( ) again by the choice of 01
and Cy satisfying condition (4) in Lemma 4.3.4. Hence, the strict transforms C'1 and Cz

in the minimal model S intersect no further exceptional divisors, i.e.

Cl.E;=Cy.E;j=0 (j=2,...,n—3). (6.25)
We have
ha, =7 (C1+ Cy) =Cr+ Ca+ riEy + ... + rn_9Fn_y € Div(5),
where rq,...,7,—2 are positive integers. By Lemma 4.2.2, the divisor ha, has degree 6.

The divisor h := a + 6*; + E1 + ...+ E,—2 has degree 6, as well. Let b/ .= (r; — 1)E; +
oot (rp—a—1)E,_o. Foralli=1,...,n — 1, we have h.E; = 0. Therefore,

h.h' = 0.
This gives
6="h4 =h>+2hh +0*=6+h"> (6.26)

Since I’ is contained in the negative definite lattice A,_o, equation (6.26) can only hold if
the divisor h’ is trivial.

In conclusion, o
h=ha, =Ci1+Co+Ei+...+ E, 9.

By equations (6.11), (6.17), and (6.23) if n = 3 and equations (6.11), (6.17), (6.24), (6.25),
and the intersection numbers in Figure 6.1 if n > 4, the lattice with basis Cl, Cg,
Eq, ..., E,_o has with respect to this basis the intersection matrix (6.10). O

6.3.3 The quadric Q has corank 2 in P*
6.3.3.1 General setting and notation

We fix some notation which we will need in the following.
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Let S be a complete (2, 3)-intersection of a quadric @ and a cubic Y in P4 such that S
has only isolated ADFE singularities. By Lemma 4.3.2, this implies that ) and Y have no

common singularities. In particular, the results in Sections 4.3 and 4.4 hold for this choice
of S.

Assume that the quadric @ has corank 2 in P*. We recall from Subsections 4.1.1, 4.1.2,
and 4.3.2: By Lemma 4.1.1, @ is the cone through a line [ over a smooth quadric Q" = P!
in P? and [ is the singular locus of Q. For t € Q' C Q, let

II; := plane spanned by t and [ C P,

The planes II; are contained in the quadric @ and by Lemma 4.1.5, {II; };cp1 is a pencil of
planes on @ such that through any non-singular point of ) passes a unique plane in this
pencil. For t € P!, let

Ct = Ht ny Q S

be the cubic curve lying on the plane II;. We then have a pencil {C;};cpr on S.

For ts € @' such that conditions (1) and (2) in Lemma 4.3.7 are satisfied, write
C=0Cy,, II=IL,. (6.27)

Let SL — S the minimal resolution of all singularities on S and C the strict transform
of C'in S under 7.

Lemma 6.3.6. We have C2 = 0.
Proof. As in Lemma 6.3.3, simply replace Cy by C. O

We recall the notation from Subsection 4.4.2:

Since C' and [ are contained in the plane II, we can apply Bezout’s Theorem and obtain
Cl=73ccri(Cl)y =3 and hence, for p € C' NI, we have m = (C.1), < 3.

We define successive blowing-ups of P4 over p: Let
PHO =Pt SO =g CcO=c, 1= pO=p
and for i = 1,...,m let iteratively
7@ ([p4)(i) N ([p:4)(i—1)
be the blowing-up of (P4)(i_1) in p~1_ where for i > 2, we let pli=1 be the unique point

in C0-DNE=Hn E]l(],i_l) (see Section 4.4.2) and E]I(Di_l) is the exceptional divisor of 7(*~1)

in (PYH@=D and SC-1, 6D and 10D are the strict transforms of S¢=2) C(=2) and
1G=2) in (]}D‘*)(i*l), respectively.

Let

73 r(m+1)

@)

be the successive blowing-up of (P*)(™) over all points in C N1 different from p and for
i=m+1,...,3,let S and C® be the strict transforms of S and C' in (IP’A‘)(“, respectively.

()

Fori=1,2,3, let Eéi) = EH(Q N S® and let C and Eéi) be the strict transforms of C' and

Eg), respectively, in the minimal model S under .
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Lemma 6.3.7. We have

CEM =1, CEY=0 (i<m).

Proof. Let (S©)° be the smooth locus of S©). Let

—_—

(SG))e and EY

be the strict transforms of (S®))° and Eg) in the minimal model S for S.

Since C' contains by choice in (6.27) no singularities of S that are not lying on / and since
C® NG =@, by applying successively Lemma 4.4.5, we obtain that C is contained in

P

(S®))°. Hence,

—_—

C.EY = C.(EY N (5®)°) (6.28)
by Lemma A.0.2 and
C =0,

For 1 <i<3,let EY = EY) nTI0. For 3> j > i, we denote

ES EGY and EGY

the strict transforms of E&), Eg), and El(]i) in (IP’4)(j ), 8U) | and 11| respectively. Then,

—_—

EY N (@) = EGY n (5®)e,

Therefore,

C.(EY 1 (5®)e) = 0B (B 1 (5@)e). (6.29)

We have Eéi’s) N (S®)e = ESB) N (S®)° and Elgi’?)) NG = Eg’g’). Besides, C) is
contained in both (§®))° and 11, Hence, by Lemma A.0.1

C®(ESY 0 (59)°) = c® . EGY. (6.30)
By Lemma A.0.3, we then have
cOEM =1 and C®.EP =0 for i <m. (6.31)
In conclusion, equations (6.28)-(6.31) together give

—_~— —_—

C.EJ" =1 and C.EY =0fori<m. 0

6.3.3.2 Assumption: T = Dy (thus o(T) = 3A,)

We prove Proposition 6.2.1 in case corank(Q) = 2, T = Dy, and thus o(D4) = 3A4, i.e.
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Proposition 6.3.8. Let S be the complete (2,3)-intersection of a quadric Q and a cubic
Y in P* such that S has only isolated ADE singularities and let w: S — S be the minimal
resolution of all singularities on S.

Assume that Q has corank 2 in P* and the singularities of S lying on the singular line | of
Q are of type 3A;.

Let C be the plane cubic curve on S and C the strict transform of C under w in S as
in (6.27).

Then, for the hyperplane section 2C of S, we have hp, = 7*(2C) = 2C + Ey + By +
E5 € Div(S), where Ey, Ea, E3 are (=2)-curves on S. The lattice in Div(S) with basis
C, E1, Es, E3 has the intersection matrix:

(6.32)

&
— = = O
|
(e} [N}
(an)
|
IO O =

~

A1 A1 A1
Proof. Let C be the cubic curve as in Definition 6.27. We proved in Lemma 4.3.6 that the
divisor 2C is a hyperplane section of S.

By Lemma 6.3.6, we have B
C%=o. (6.33)

The cubic curve C' and the singular line [ of @ both lie on the plane II. By Bezout’s
Theorem, we have: C.I = Zpele(C-Z)p = 3. Since the singularities of S lying on [ are
three A; singularities p1,p2, and p3, we deduce (C.),, =1 (i =1,2,3).

Since C' contains no singularity of S different from py, pa, and p3, the pull-back 7*(2C) on
S is supported on the union of C' with the strict transforms E7, Fs, and E3 in S of the
exceptional curves of the minimal resolution of p1, po, and ps.

For i = 1,2,3, let #(): §() — §G=1) he the successive blowing-up of SG=1) in p; with
S0 .= S and exceptional divisors Eéi) C S®. Then, E; = Eéi) is the strict transform of

Eg) in S under the minimal resolution 7 of all singularities on S. Since the singularities
p1, p2, and p3 are of type A1, the E; are irreducible curves with

E? = -2 (6.34)

)

By Lemma 6.3.7, we have B
C.E; =1. (6.35)

Further, since the singularities p1, p2, and p3 are isolated from each other,

We have _ _
hD4 = 7[‘*(20) =2C +rE| +roFEy +1r9F3 € DiV(S),
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where 71,72, 73 are non-negative integers. The divisor hp, has degree 6 by Lemma 4.2.2.
On the other hand, the divisor h = 20 + Eq1 + E5 + E3 has degree 6, as well. Let
B = (ri —1)E1 4 (ro — 1)E2 + (r3 — 1)E3. For all i = 1,2, 3, we have h.E; = 0. Hence,
h.h/ = 0. This gives

6 = hd, = h*+ 200 + h'% =6+ 1. (6.37)

Since b’ is contained in the negative definite lattice A; @ A; ® Ay, equation (6.37) can only
hold if A/ is trivial. Consequently,

h=hp, =2C + E| + E + E3

and by equations (6.33), (6.34), (6.35), and (6.36), the lattice with basis C, E1, Es, and
E5 has with respect to this basis the intersection matrix (6.32). O

6.3.3.3 Assumption: T =D,, (thus ¢(T) = A; + D,,—2 (n >5))
We prove Proposition 6.2.1 in case corank(Q) = 2, T = D,, (n > 5), and thus o(D,,) =
A+ D, _5 (where D3 := Aj3):

Proposition 6.3.9. Let S be the complete (2,3)-intersection of a quadric Q and a cubic
Y in P* such that S has only isolated ADE singularities and let 7: S — S be the minimal
resolution of all singularities on S.

Assume that Q has corank 2 in P* and the singularities of S lying on the singular line | of
Q are of type A1 + D,,_o.

Let C' be the plane cubic curve on S and C the strict transform of C under w in S as
in (6.27).

Then, for the hyperplane section 2C' of S, we have

th = 71'*(20) = 25 +FE1+2E+...+2E, s+ FE, o+ FE, 1
on S, where B, ..., E,_1 are (—2)-curves on S. Consequently, the lattice in Div(S) with
basis C, En, ..., E,_1 has the intersection matriz:
C E E By o En—3 Epn—o En_y
C 0 1 1 0 eeeeeeeee 0o 0 0
E. | 120 o0 - 0 0 0
By 1 0 |-2 1
Es 0 0 1
(6.38)
En—3 0 0 —2 1 1
En o 0 0 1 =2 0
Ena\ 0 0 1 0 -2

{
{
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Proof. We proved in Lemma 4.3.6 that 2C is a hyperplane section of S.

By Lemma 6.3.6, we have N
Cc?=0. (6.39)

By assumption, the only singularities of S lying on the singular line [ of the quadric @ are
an A; singularity p; and a D,,_y singularity pa. Moreover, by choice of C in (6.27), p;
and po are the only singularities of S contained in C. Hence, the pull-back 7*(2C) to S
is supported on the union of C' with the exceptional divisors 7= !(p;) and 7~ !(p2) of the
minimal resolution of p; and pa, respectively. The exceptional divisors 7~!(p;) € Div(§ )
of the A singularity p; is supported on an irreducible curve F4 such that

E} = 2. (6.40)
The exceptional divisor 7~ !(py) € Div(§ ) of the Dy, singularity ps is supported on the
union of the irreducible curves Fs, ..., E,_1 in S whose corresponding weighted graph is
a Dynkin diagram of type D,,_s and we chose the notation such that this is the graph in
Figure 6.2.

.....

Ey Ej E,_3

Figure 6.2: Dynkin diagram corresponding to the D,,_o singularity ps on C.

Further, since p; and p2 are isolated

E\E;=0 forallj=2,...,n—1. (6.41)

The cubic curve C' and the singular line [ of @) both lie on the plane II. By Bezout’s
Theorem, we have C.l = 3 - (C.1), = 3. Since an A; singularity is resolved after one
blowing-up, Lemma 4.4.5 implies that (C.l),, =1 and hence (C.1),, = 2.

Let 70 (PH)() — P* be the blowing-up of P* in the A; singularity p; with exceptional
divisor E&) and S the strict transform of S in (P*)®) under 7). Let Eg) = Eﬂgi) NS,

Let Egl) be the strict transform of Eg) in S. Then, Fy = Eél) and by Lemma 6.3.7
C.E =1. (6.42)

Let 73 : (PH)® — (PH)M be the blowing-up of (P*)() in the D,,_o singularity py with
exceptional divisor EIE’EL) and C® and I the strict transforms of C(1) and I(V) in (P*)()

under 7(?)| respectively. Let pg) e @ ni@n Eﬂ(ji) and let 74 : (PHG) — (PHP be

the blowing-up of (]P’4)(2) in pgz) with exceptional divisor Elg,i). Let S©®), ¢®) and 1®
be the strict transforms of S@, €2, and (@ in (P4)(3) under 73| respectively, and let

Eg3) = Elg,‘z) NSG). Fori =23, let Eg) be the strict transform of Eg) in S. We have by
Lemma 6.3.7

CEY =1 and C.EY =0 (6.43)



6.3 An auxiliary step in the proof of Main Theorem 1 47

and C®) is contained in the smooth locus of S®). Consequently, C intersects only the

divisor ES’) € Div(S) in 7 1(py). Hence, we need to determine to which of the curves E;

in Figure 6.2 the divisor Eég) corresponds.

If n = 5, the singularity ps has type D,_2 = A3. Therefore, the exceptional divisor Eg) of
(2)

the blowing-up of po is the union of two irreducible curves Eg} and Eg, intersecting in a

singularity of type A;. This must be the singularity p§2) on S@ contained in C® and (.

The exceptional divisor Eé?’) of the blowing-up of pg) is irreducible and separates the strict
transforms Eg?f) and Egé?’) in G of Eg?% and Eg?%, respectively. The strict transforms

Egg), Eg?f’), and Eg;’) in S of Eés), EgQis), and ng), respectively, then are the vertices of

a Dynkin diagram of type As, see Figure 6.3 for an illustration of the blowing-up process.

(2) (1)
(3) bs b
Ly e) \/ z® () C .
A-l A3 Al A3

Figure 6.3: Blowing-up over the A; and Aj singularity on C.

— —_— —_—

In particular, we see that Eés) = Fo, Eg’lg) = Fj3, and Eézé?’) = F, in Figure 6.2 after

exchanging possibly F3 by E4. Further, Eg) = Fj.

If n = 6, the singularity po has type D,,_o = Dy4. Therefore, the exceptional divisor Eéz)
of the blowing-up of ps is one irreducible curve on which lie three A; singularities of S(2).
One of these must be the singularity pg) contained in C® and [®). The exceptional divisor

Eg’) of the blowing-up of pgz) is irreducible and intersects the strict transform E§2,3) of

Eg) in S® on which the two A singularities which have not been blown-up are lying, see
Figure 6.4 for an illustration of the blowing-up process.

A, EY B
Eég) a3 AIT A 72 L C
‘A, D, A, Dy

n==~06

Figure 6.4: Blowing-up over the A; and Dy singularity on C.

In particular, we have Eg’) = F5 and Eg) = F3 in Figure 6.2 after exchanging possibly

FEs by E4 or E5. Further, Eél) = F;.

Assume finally that n > 7 and the singularity po has type D,,_s. Therefore, the exceptional

divisor Eg) of the blowing-up of ps is one irreducible curve on which lie an A singularity
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and a D,,_ singularity of S(?). One of these must be the singularity ng) contained in C'?)

and [(®. By Lemma 4.4.5, (0(2).l(2))p(2) =1 and hence pgz) is of type A;.
2

The exceptional divisor Eég) of the blowing-up of pg) is irreducible and intersects the strict

transform Eg’g) of Egz) in S on which the D,,_4 singularity which has not been blown-up

yet is lying, see Figure 6.5 for an illustration of the blowing-up process.

Dn—4
Dn—4 Eé‘l)
(3)
B/ @) E?f e SCOR .
7 n -~
A,y D,_» A, D,

Figure 6.5: Blowing-up over the A; and D,,_3 (n > 7) singularity on C.

In particular, Eg) = F3 and Eég) = F5 as in Figure 6.2, and Eg) = Fi.

In conclusion, for all n > 3, we have

CE =CFEy=1 and C.E;=0 fori=3,...,n—1. (6.44)
Then,
hp, ., = 71°(2C) = 2C+11E1 +13Bs+. ..+ 70 -aBna+7n-3En_3+7m—2Bn_2+7n-1E,_1,

where 71,...,7,—1 are positive integers. By Lemma 4.2.2, hp, ., has degree 6. For h =

2C + Ey + 2By + ...+ 2Ey_4 + 2En_3 4+ Ey_g + En_y € Div(S), we have h2 = 6. As
in (6.26), we show that A’ = (r1 — 1)Ey + (re — 1)Ea + ... + (rp—a — D) Epg + (13 —
VE,—3+ (rn—2a—1)Ep—2+ (rp—1 — 1)E,—1 € Div(S) must be trivial since it is contained
in the negative definite lattice A7 @ D,,_o. Hence,

hp .. =h=20+F +2Es+ ...+ 2E, 4 +2E, 3+ E, o+ E,_1

n>5

and by equations (6.39), (6.41), (6.44), and the intersection numbers in Figure 6.2, the

lattice with basis C', Fq, Es, ..., E,_1 has with respect to this basis the intersection ma-
trix (6.38). O

6.3.3.4 Assumption: T = E¢, E7, or Eg (thus o(T) = A3, Dg, or E7, respectively)

Then, S contains exactly one singularity p of type As, Dg, or E7 on the singular locus [
of . Both C and [ lie in the plane II. By Bezout’s Theorem, C and [ intersect in p with
multiplicity three, i.e. (C.l) = (C.l), = 3.

6.3.3.5 Assumption: T = Eg (thus o(T) = As)

We prove Proposition 6.2.1 in case corank(Q) = 2, T = Eg, and thus o(Eg) = As:
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Proposition 6.3.10. Let S be the complete (2, 3)-intersection of a quadric Q and a cubic
Y in P* such that S has only isolated ADE singularities and let m: S — S be the minimal
resolution of all singularities on S.

Assume that Q has corank 2 in P* and the singularities of S lying on the singular line | of
Q are of type As.
Let C' be the plane cubic curve on S and C the strict transform of C under w in S as

in (6.27).

Then, for the hyperplane section 2C of S, we have hg, = 7*(2C) = 2§' + By + 2B +
3E3 + 2E4 + E5 € Div(S) on S, where Ex, ..., E5 are (=2)-curves on S. The lattice in
Div(S) with basis C, E, ..., E5 has the intersection matriz:

6’ E1 E2 E3 E4 E5

C 0 0 1 0 0
Ey 0 |-2 1 0 0
Es 0 1 =2 1 0 0
6.45
b3 1 0 1 -2 1 0 ( )
Ey 0 0 0 1 =2 1
Es 0| 0 0 0 1 -2
As
Proof. We proved in Lemma 4.3.6 that 2C is a hyperplane section of S.
By Lemma 6.3.6, we have N
C? =0. (6.46)

By assumption, the only singularity of .S lying on the singular line [ of @) is an Ay singularity
p. Since C' contains by choice no singularity of S different from p , the pull-back 7*(2C) is
supported on the union of C', and the exceptional divisor 7~!(p) of the minimal resolution
of p, i.e. the union of the smooth irreducible curves Fjy,..., E5 intersecting in a Dynkin
diagram of type As and we chose the notation such that this is the graph in Figure 6.6.

El .E'Z Evg E4 E5

Figure 6.6: Dynkin diagram corresponding to the Ay singularity p.

We use Notation 4.4.4 for m = 3.

By Lemma 6.3.7, we have

CEY =1 and C.EY) =CEY =0

We now determine to which of the curves E; in Figure 6.6 the divisor Egg) corresponds.
By Table 1.1 and our knowledge of the exceptional divisors of ADFE singularities in Theo-

rem 1.2.1:
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1. The exceptional divisor Eg) of the blowing-up of S in the Aj singularity p contains

only the Ajs singularity p") and Eg) is the union of two irreducible curves Eg) =
Eﬁ)q U Eélgv intersecting in p().

2. The exceptional divisor Eéz) of the blowing-up of S in the As singularity p™)
contains an A, singularity p® and the divisor Eé?) is the union of two irreducible

curves Eg) = Eéi% U Ef% intersecting in p(®).

3. The exceptional divisor Egg) of the blowing-up of S in the A; singularity p®) is

contained in the smooth locus of S®) and the divisor E’g’) is irreducible.

See Figure 6.7 for an illustration of the blowing-up process.

ﬁ ey
~(3) ﬁ ~(2) S (D) 8.
E®\ AVS As As

EY

Figure 6.7: Blowing-up over the Ajs singularity p on C.

Hence, we see that

Bl =B, E{\=pE;, EJy=F, E=E;, E{ =E;

in Figure 6.6 up to exchanging E; by E5 and Es by Ej if necessary, i.e.
CE3;=1 and C.E;=0 (i=1,2,4,5). (6.47)
Then, N
hgs = 7"(20) = 2C + r1Ey + roFo + r3E3 4+ r4E4 + 15 E5,

where 71, ...,r5 are positive integers and h%% = 6 by Lemma 4.2.2. For h = 2C + By +
2F, +3E3+2E4 + Es5, we have h? = 6. Asin (6.26), we show that A’ = (r; —1)Ey +...+
(rs —1)Es5 € Div(S) must be trivial since it is contained in the negative definite lattice As.
Hence,

hgs = h = 2C + Ey + 2E + 3E3 + 2E4 + Es.

By equations (6.46), (6.47), and the intersection numbers in Figure 6.6, the lattice with
basis C, Fy, ..., E5 has with respect to this basis the intersection matrix (6.45). O

6.3.3.6 Assumption: T = E; (thus o(T) = D)

We prove Proposition 6.2.1 in case corank(Q)) = 2, T = E7, and thus o(E7) = Dg:

Proposition 6.3.11. Let S be the complete (2, 3)-intersection of a quadric Q) and a cubic
Y in P* such that S has only isolated ADE singularities and let m: S — S be the minimal
resolution of all singularities on S.
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Assume that Q has corank 2 in P* and the singularities of S lying on the singular line | of
Q are of type Dg.
Let C be the plane cubic curve on S and C the strict transform of C' under w in S as (6.27).
Then, for the hyperplane section 2C' of S, we have

hg, = 7*(20) = 2C + E1 + 2E2 + 3E3 + 4E; + 25 + 3E;

on S, where E, . .., Eg are (—2)-curves on S. The lattice in Div(g) with basis C, Ex, . .., Eg
has the intersection matriz:

6 E1 E2 Eg E4 EE) EG
C 0 0 o 0 0 1
Ey 0 |-2 1 0 0 0 0
Ey 0 1 =2 1 0 0 0
Es 0 0 1 -2 1 0 0 (6.48)
Ey4 0 0 0 1 -2 1 1
Es 0 0 0 0 1 -2 0
Eg 1 0 0 0 0 -2
Deg
Proof. We proved in Lemma 4.3.6 that 2C is a hyperplane section of S.
By Lemma 6.3.6, we have B
Cc?=o. (6.49)

By assumption, the only singularity of S lying on the singular line [ of @) is a Dg singularity
p. Since C contains by choice no singularity of S different from p , the pull-back 7*(2C) is
supported on the union of C , and the exceptional divisor 771(p) of the minimal resolution
of p, i.e. the union of the smooth irreducible curves F1, ..., Eg intersecting in the Dynkin
diagram of type Dg and we chose the notation such that this is the graph in Figure 6.8.

E5

Ee E4 E:3 Ezz Ey

Figure 6.8: Dynkin diagram corresponding to the Dg singularity p on C.

We use Notation 4.4.4 for m = 3.

By Lemma 6.3.7, we have

CEY =1 and C.EY) =CEY =0
We now determine to which curve E; in Figure 6.8 the divisor Eg?’) corresponds. By
Table 1.1 and our knowledge of the exceptional divisors of ADE singularities in Theo-
rem 1.2.1:
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1. The exceptional divisor Egl) of the blowing-up S of S in p is irreducible and
contains a Dy singularity and an A; singularity. We claim that p") must be of type
Dy. Indeed, if p e ¢ N 1M N Eéi) was of type A, the strict transform C'® of
C in S@ would be contained in the smooth locus of S but by Lemma 4.4.5 this is
not the case since C(?.1(2) = 1.

2. The exceptional divisor Eg) of the blowing-up S® of S in pM) is irreducible and
contains three A; singularities. One of these A; singularities, say p(?, is contained
in the strict transform C® of C™ in S®@ since C? is not contained in the smooth
locus of S@), again by Lemma 4.4.5.

3. The exceptional divisor Eé3) of the blowing-up S®) of S@ in the A singularity p(®
is irreducible and smooth.

See Figure 6.9 for an illustration of the blowing-up process.

A A,
N Al A
1
. @ AT e BYAC C
: /- Y
ES) Ay /éé@ Dy D¢

Figure 6.9: Blowing-up over the Dg singularity p on C.

Hence, Eg?’) = Eg, Eéz) = Fy4, and Eg) = F5 in Figure 6.8 after exchanging possibly Fjg
by Ej5 so

CEs=1 and C.E;=0 (i=1,...,5). (6.50)
Then, B
hg, = 7%(2C) = 2C + r1Ey + roEs 4+ r3E3 + raEy + 15 E5 + 16 Eg,
where r1,...,7¢ are positive integers and h%:7 = 6 by Lemma 4.2.2. For h = 2C +

By + 2F5 + 3E3 + 4E4 + 2E5 + 3Eg, we have h2 = 6. As in (6.26), we show that h' =

(ri—1)E1+...+ (r¢ — 1)Eg € Div(S) must be trivial since it is contained in the negative
definite lattice Dg. Hence,

hg, = h = 2C + E| + 2E; + 3E5 + 4E, + 2E5 + 3E;.

By equations (6.49), (6.50), and the intersection numbers in Figure 6.8, the lattice with
basis C, Fy, ..., Eg has with respect to this basis the intersection matrix (6.48). O

6.3.3.7 Assumption: T = Eg (thus o(Eg) = E7)

We prove Proposition 6.2.1 in case corank(Q) = 2, T = Eg, and thus o(Eg) = E7:

Proposition 6.3.12. Let S be the complete (2, 3)-intersection of a quadric Q and a cubic
Y in P* such that S has only isolated ADE singularities and let m: S — S be the minimal
resolution of all singularities on S.

Assume that Q has corank 2 in P* and the singularities of S lying on the singular line | of
Q are of type E7.
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Let C' be the plane cubic curve on S and C the strict transform of C' under m in S as
in (6.27).

Then, for the hyperplane section 2C of S, we have
his =7 (20) = 2C + 3E; + 4By + 5E3 + 6 Ey + 4E5 + 2Fq + 3B7

on S, where E, . .., E7 are (—2)-curves on S. The lattice in Div(g) with basis C, B, ..., Er
has, with respect to this basis, the intersection matriz:

C E E, FE3 E, Es FE¢ FE;
C o 1 0 0 0 0 0 0
By 1 |-2 1 0 0 0 0 0
Es 0 1 =2 1 0 0 0 0
E 0 0 1 =2 1 0 0 0
’ (6.51)
Ey 0 0 0 1 -2 1 0 1
Es 0 0 0 0 1 -2 1 0
Eg 0 0 0 0 0 1 =2 0
Er 0 0 0 0 1 0 0 -2
E7
Proof. We proved in Lemma 4.3.6 that 2C is a hyperplane section of S.
By Lemma 6.3.6, we have B
C? =0. (6.52)

By assumption, the only singularity of S lying on the singular line [ of Q) is an E7 singularity
p. Since C' contains by choice no singularity of S different from p , the pull-back 7*(2C) is
supported on the union of C , and the exceptional divisor 771 (p) of the minimal resolution
of p, i.e. the union of the smooth irreducible curves FE1,..., E7 intersecting in a Dynkin
diagram of type £ and we chose the notation such that this is the graph in Figure 6.10.

Er

Ey E, E3 FEy Es Eg
Figure 6.10: Dynkin diagram corresponding to the E7 singularity p on C.

We use Notation 4.4.4 for m = 3.

By Lemma 6.3.7, we have

C.EY =1,and C.EY) =CEY =0
We now determine to which of the curves E; in Figure 6.10 the divisor Eg?’) corresponds.
By Table 1.1 and our knowledge of the exceptional divisors of ADE singularities in Theo-
rem 1.2.1:
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1. The exceptional divisor Egl) of the blowing-up S of S in p is irreducible and
contains a Dg singularity p(!).

2. The exceptional divisor Eg) of the blowing-up S® of S in pM) is irreducible and
contains an A; singularity and a Dy singularity. Since C'?).1(2) = 1, the singularity

p? has type A by Lemma 4.4.5.
3. The exceptional divisor Efq?’) of the blowing-up S® of $?) in the A; singularity p(®
is irreducible and smooth.

See Figure 6.11 for an illustration of the blowing-up process.

D,

EY i BV
o A8 A/ (2 S/ ey 8.

| éé?) /Dg E.

Figure 6.11: Blowing-up over the E7 singularity p on C.

Hence, Ey = Eé?’), Ey = Eé2) and E7; = Eél) in Figure 6.10 so
CE =1 and C.E;=0 (i=2,...,7). (6.53)
Then,
hg, = 1*(20) = 2C + r1E| + roEy + r3Es 4+ r4Ey + r5E5 + r¢Eg + r7 B,

where r1,...,ry are positive integers and h2E8 = 6 by Lemma 4.2.2. For h = 2C + 3F; +
4Ey + 5E3 + 6Ey + 4E5 + 2B + 3E7, we_have h? = 6. As in (6.26), we show that
h = (r1 —1)Ey + ...+ (r7 — 1)E7 € Div(S) must be trivial since it is contained in the
negative definite lattice F7. Hence,

his = h = 2C + 3E; + 4F3 + 5F3 4 6E4 + 4F5 + 2Es + 3E7.

By equations (6.52), (6.53), and the intersection numbers in Figure 6.10, the lattice with
basis C, Fy, ..., E7 has with respect to this basis the intersection matrix (6.51). O

This finishes the proof of Proposition 6.2.1.

Remark 6.3.13. In the situation of Proposition 6.2.1, let hy = 7*(Ct) € Div(S) be the
pull-back of the hyperplane section Ct of S under the minimal resolution : S — S of all
singularities on S. Let Z be the fundamental cycle (see [BHPVAV04, Chap. IIL.3, p. 95])
which is supported on the exceptional divisor of the ADE singularities of type o(T) of S
which are contained in Cp. Then, we have ht > Z.

6.4 Proof of Main Theorem 1

(1) = (2): Let X C P° be a cubic fourfold with only isolated ADE singularities and such
that one singularity p of X has type T € {A;>1, Dj>4, Eg>1>6} and the combination of
all other singularities of X corresponds to G.
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Let (20 : 21 : @2 : 23 : 24 : o5) be homogeneous coordinates on PP,

After a linear change of coordinates, we can assume that p=(1:0:0:0:0:0) € P5. By
Lemma 5.1.1, X then is defined by

X $0f2($1,$2,$3,$4,335) + f3($1,l‘2,$37$4,$5) =0 g P57

where fo and f3 are homogenous polynomials of degree 2 and 3, respectively, defining a
quadric @ of corank(Q) = coranky and a cubic Y in P*. By Lemma 5.1.2,

Sp : f2($1,$2,x3,x4,x5) - f3($1,$2,$3,$4,.’1)5) =0 g ]P)4

is a complete (2, 3)-intersection in P4, Let 7,: BL,X — X be the blowing-up of X in p
with exceptional divisor E =7, L(p) in Bl,X. Then, Bl,X has on E singularities of type
o(T), where o(T) is as in Table 1.1 and the types of all singularities outside E are given
by G. Hence, by Corollary 5.2.3, S, has singularities of type o(T) lying on the singular

locus of ) and the combination of all other singularities of S, corresponds to G.

(2) = (1): Let S be a complete (2, 3)-intersection of a quadric Q and a cubic Y in P4 such
that the singularities of S lying on the singular locus of @ are of type o(T), where for
T € {Ai>1, Dj>4, Eg>i>6} we let 0(T) be as in Table 6.1 and such that the combination
of all other singularities on S corresponds to G.

Let (z1 : 29 : @3 : 24 : x5) be homogeneous coordinates on P4,

Assume that (Q and Y are defined by homogeneous polynomials fo and f3 of degree 2 and
3 in Clxy,...,xzs5], respectively, i.e.

S=QNY : fo(w1, 29,73, 24,25) = f3(71, 22,23, 74,25) = 0 C P,

Let (2o : 21 : @2 : x3 : 24 : o5) be homogeneous coordinates on P5.

We then define the cubic fourfold
X ¢ zofo(w1, 2, 73,24, 75) + f3(T1, T2, ¥3, 74, 75) = 0 C PP

Let p:=(1:0:0:0:0:0) € P, Let mp: Bl X — X be the blowing-up of X in p with
exceptional divisor £ = 7 1(p) € BL,X. By Corollary 5.2.3, the singularities on B, X \
correspond to those singularities of .S that are not lying on the singular locus of @) including
their singularity type. Hence, the combination of all singularities of X \ {p} corresponds to
G. Further, again by Corollary 5.2.3, the singularities of Bl,X on E correspond to those
singularities of S that lie on the singular locus of () including their singularity type. Hence,
X has singularities of type o(T) on E and therefore p is a singularity of type T according
to Table 1.1.

(2) = (3): Let S be a complete (2, 3)-intersection of a quadric @ and a cubic Y in P4 such
that for T € {A;>1, Dj>4, Eg>i>6} the singularities of S lying on the singular locus of Q
are of type o(T) as in Table 6.1 and such that the combination of all other singularities
on S corresponds to G. In particular, we see that S has only isolated ADFE singularities.
Let

S— S

be the minimal resolution of all singularities on S. By Lemma 4.2.2 S is a K3 surface.
By Lemmas 4.3.4 and 4.3.7, for each choice of T there exists a hyperplane section C
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of S passing only through the singularities of type o(T) of S on the singular locus of Q.

Further, by Proposition 6.2.1, hy = 7*(Ct) € Div(S) is the formal sum of curves on
S whose associated weighted graph is the graph I';(p) in Table 6.1. Let Lt be the line

bundle associated to the divisor At on S, i.e. Ly = m*Og(1) € Pic(S). By Lemma 4.2.2,
L is nef and the induced map ¢r..: S — P* is birational onto its image. The line
bundles associated to the curves on S in Proposition 6.2.1 with associated weighted graph
I, (1) generate a lattice A(I;(y) in Pic(S). The exceptional (—2)-curves on S from the
minimal resolution of the singularities of S corresponding to G span a Dynkin diagram
I'g according to Theorem 1.2.1. Let A(I'g) be the sublattice of Pic(S) defined by the line
bundles associated to the exceptional (—2)-curves generating I'g. Since all singularities on
S are isolated, we have an orthogonal direct sum A(I}, (1)) © A(I'g) which is a sublattice

of Pic(S). Let _
¢: H*(S,Z) — Lis

be a marking of S. By restricting ¢, we obtain an embedding
i: AT'c) ® A(Ty(T)) = Lks

and the inclusion defines a primitive embedding ¢ of the saturation of A(I'g) © A(Iy(T))
in the K3 lattice with respect to ¢ into the K3 lattice

L: Sath (Z) — Lks.

We now show that Items (3a),(3b), and (3c) hold:
Let

A = {O(C) € Pic(S); C irreducible curve in the exceptional divisor of 7}

and

M = free Z-module generated by A in Pic(S5).

By definition, M is a lattice isomorphic to A(o (7)) @ A(I'g), where o(T) is the Dynkin
diagram corresponding to the ADFE singularities o(T). Let

R:={F e M; E* = -2},

We have Lt.E = 0 for all E € A and hence also for all £ € R since A is a basis of M and
R C M. Define further the root system

R :={E € Pic(S); L1.E =0, B> = —2}.
We have R C R’ and we claim that we even have an equality: Indeed, let
9: 5 — S

be the contraction of all (—2)-curves on S as in Definition 3.3.3. By Proposition 3.3.4, we
have S = S’ ie. R=R'.

Let @ € Saty,,, (i) such that i(ht).x = 0 and 22 = —2. We have

F=¢ )€ qS_I(SatLKS(i)) = SatHQ(iZ)(gb_l 01).
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Hence, there is an integer n > 1 such that nF' € A(l'g) ® A(T(T)). However, we have
a primitive embedding Pic(S) < H2(S,Z), i.e. H2(S,Z)/Pic(S) is torsion free, and

ATg) ® AMT,T)) C Pic(S). Hence, we obtain F' € Pic(S). Further, Lt.F = 0 and
F? = —2 since ¢ is an isometry, i.e. F € R = R C A(l'g) & A(T,(T)). In conclusion,

z=¢(F) € p(AMTc) ® AT, (1))) = i(ATg) & A(L,(1))), i-e. item (3a) holds.

The existence of elements x, 2’ € Satr,,,(¢) such that 2 =22 = 0 and i(hp).z = 1 and
i(ht).2’ = 2 would imply the existence of line bundles E = ¢ 1(z), E' == ¢ (2) €
SatH2(§ Z)(¢_1 oi) such that B2 = B> =0 and Ly.E = 1 and L1.E’ = 2, respectively. As

above, we have E, E' € Pic(S). However, Proposition 3.2.6 would then imply that ¢r..

does not map S birationally onto S which is a contradiction. Consequently, items (3b)
and (3c) hold, as well.

This concludes the proof of (2) = (3).
3)=(2)
This step in the proof is inspired by [Ura87, Theorem 1.15].

Let
i: A(FO’(T)) D A(F(;) — Lgs

be an embedding and Saty (i) the saturation of A(I;;(1)) ® A(T'q) in Lg3 with respect
to ¢ such that that items (3a)-(3c) hold.

We construct a period point w € €r,,., such that
Satp (i) = {z € Lgs; w.o =0} (6.54)

The lattice A(I'g) @ A(T(T)) has to have rank r < 22 as it admits an embedding into Ls.
Therefore, we must have T € {A1<j<22, Da<j<22, Eg<r<s}. Computer-aided, we determine

that the signature of A(T'g) ® A(Ly(t)) is (1,7 —1). Let N := (A(Tg) & A(I‘U(T)))Z{3
be the orthogonal complement of the lattice A(T'c) ® A(I'y(T)) in Lks with respect to i.
The lattice N has signature (3 — 1,19 — (r — 1)) = (2,20 — r). Let t :== 22 — r be the
rank of N and eg,...,e; a basis of N such that e? > 0. We can always find such an e,
since N is indefinite if » < 20 and positive definite if » = 20. Let r1,...,7:—1 € R such
that r1,...,7:—1,1 are linearly independent over Q. We choose a sufficiently large positive

rational number r; such that for

t
v:Zriei € N®zR
i=1

we have
t—1 t—1
v? = (Z rie;) + 2 Zrirt(ei.et) +riel > 0.
i=1 i=1

Let x € Ligs. We note that

t
O=zv= Zﬂ'(l’-ei) < O=uzefori=1,...,t < =z € Satr,,(7). (6.55)

i=1
The first equivalence holds since x.e; € Z for all ¢ = 1,...,¢t and ry,...,74_1,1 are Q-

linearly independent, while the second equivalence holds since eq,...,e; is a basis of V.
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Let N :=={z € N ®z R; v.z = 0}. The symmetric bilinear form on the R-vector space N’

has signature (2 — 1,¢ —2) = (1,¢ — 2). Since N’ is indefinite if ¢ > 2 and positive definite

if t = 2, we can find ), € N’ such that (z{)? > 0. For zg = , /ﬁxf) € N’, we then have
0

x3 = v? and define
w:=v+41irg € L3 ®yC.

We have w? = v? + 2i(v.z9) — 73 = 0 and w.@ = v? + 23 = 2v? > 0. Consequently, the
image [w] of w in P(Lk3®zC) is contained in the period domain Qy,,,. We claim that with
this choice of w, equation (6.54) holds. Indeed, let x € Saty,, (i), then v.z = 0 by (6.55).
We have an n > 1 such that nz € i(A(Lg) ® AT, (1)), therefore zg.x = % (x¢.nz) =0
as rg € N ®z R. Consequently, we have w.x = (v + izg).x = v.z + i(zg.z) = 0, ie.
x € {x € Lgs; w.x = 0}. On the other hand, assume that « € {x € Lgs; w.x = 0}. Then,
0 =w.x = (v+izg).x =v.x +i(xg.x) which only holds if v.z = xg.x = 0. Hence, we have
x € Satr,., (i) by (6.55).

By Theorem 3.4.2, there exists a marked K3 surface (S, ¢) such that [w] is the period point
of (S,¢). Then, let n € H%2(S) such that ¢(n) = w. By Lemma 3.4.1, ¢ induces an
isomorphism

¢: Pic(S) = Satp,., (). (6.56)
Let Lt = ¢~ ! (i(ht)) € Pic(S). Then, L% = h3 = 6. Since [w] = [~w] in P(Li3®@7zC), the
marked K3 surfaces (§ ,¢) and (§ , —¢) define the same period point in Q. Thus, after

replacing (S, ¢) by (S, —¢) if necessary, we can assume that Lt belongs to the positive
cone Cg containing the Kéhler class. By Proposition 3.2.3, for a finite number of elements

F1,...,F, € Pic(S) with F2 = —2 (i = 1,...,r), the image (sp, o---0sp, ) (L) of the line
bundle Lt under the Picard-Lefschetz-reflection sp, o --- o sp. is nef. Since n.F = 0 for
all F € Pic(S) with F2 = —2, we have w = ¢(n) = (posp, 0---0sp) (), i.e. (S,¢) and
(S, posp o---osp ) define the same period. After replacing (S, ) by (S, posp o---0sp ),
we can assume that Lp is nef. By items (3b) and (3c), Lt does not satisfy items (1)
and (2) in Proposition 3.2.6, i.e. we have a birational morphism ¢y, : S — P4 of S onto
its image. By Theorem 3.3.2, we know that the contraction 6: S — S’ defines a surface S’
whose singularities are described by the root system

Ry = {F € Pic(S); F? = =2, Ly.F = 0}.

Further, Proposition 3.3.4 gives that ¢ factors through 6 and furthermore that ¢ LT(§)
is a complete (2,3)-intersection of a quadric @ and a cubic Y in P4

We will now show for each T individually that
S = p1.(5) C P*

lies on a quadric @) such that S has singularities of type o(T) on the singular locus of @
and all other singularities of S correspond to G.

Assumption: T = A,

Let C be the vertex of the graph I';(a,) in Table 6.1 and ha, = C. Then, C is a basis of
the lattice A(I';(a,)). By means of the isomorphism

¢: Pic(S) = Saty,., (i),
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we may assume that C is a divisor on S and [6’] is its numerical equivalence class in Pic(§ ).

We have N N
La, = ¢ '(i(ha,)) = [C] € Pic(9).

1. We show that the singularities of S := ¢r, (S) C P* correspond to G:
Let Ma, be the lattice in Pic(S) generated by the root system
Ra, = {F € Pic(S); F> = —2,Ls,.F = 0}.
We claim that we have an isomorphism
¢: Ma, = ATq). (6.57)

Indeed, let F € Pic(S) such that F2 = —2 and La,.F = 0. Then, ¢(F)? = —2 and
i(ha,).¢(F) = 0. Hence, by assumption (3a) in Main Theorem 1, ¢(F) € i(A(L,(a,))
A(Tg)). Then, write F = aC + F', where ¢(F') € i(A(Tg)) and a € Z. Since 0 =
La,.F = La,. (aC+F’) = 6a, we obtain a = 0. Hence, FF = F' € ¢~ ( ( (Fg))>

Obviously, we have ¢~ ( ( (Fg))> C Ma,. This proves the claim.

By Corollary 3.3.5, the singularities of S then are of type G.
2. We show that S is contained in a quadric of corank zero in P*:

The quadric Q has corank < 2 in P*. Indeed, if Q had corank > 3 in P4, the singular locus
of @ would have dimension > 2 and therefore the cubic Y would intersect the singular
locus of @ in a variety of dimension > 1. Hence, S would be singular along this variety in
contradiction to the fact that S has only isolated singularities corresponding to G.

If @ had corank one in P, by Proposition 6.2.1, Pic(§ ) would contain two classes of curves
CN’l and CN’Q with CN’12 = CN’QQ = 0 and such that CNHCN’Q > 0. Further, the lattice A(I'g) gener-
ated by the exceptional (—2)-curves of the resolution of the singularities corresponding to
G is contained in Pic(S). Since A(T'g) is negative definite, neither C nor Cs can be con-
tained in A(I'g). Hence, the rank of Pic(g) would be > rank(A(T'g)) + 2 in contradiction
to rank(Pic(g)) = rank(A(T,(a,)) ® A(Tg)) = rank(A(Tg)) + 1.

If @ had corank two in P*, again by _Proposition 6.2.1, La, would be the class of 2C + F,
where C is a curve on S such that C2 = 0 and L A;- .C' =3 and F is a linear combination
of (—2)-curves on S such that La,.F = 0. By definition, we have F' € Ma, = A(l'g),
therefore F.C' = 0. This implies 3 = L A;- .C = (2C + F).C = 0 which is a contradiction.

Consequently, @ must have corank 0 in P*.

In conclusion, S is a complete (2, 3)-intersection lying on a quadric of corank 0 in P* such
that all singularities of S correspond to G.

Assumption: T = Ay

The proof is inspired by [SZ07, Proposition 7.1].
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Let C; and Cs be the vertices of the graph I5;(a,) in Table 6.1 and ha, = C1 + Cs. Then,
C’l, C’g is a basis of the lattice A(I';(a,)). By means of the isomorphism

¢: Pic(S) = Satr,, (i),

we may assume that C; and Cs are divisors on S and [Cy] and [Cs] are their numerical
equivalence classes in Pic(5).
We have . . N

La, = ¢ ' (i(ha,)) = [C1] + [Ca] € Pic(S).
1. We show that the singularities of S := ¢r,, (S) C P* correspond to G-
Let Ma, be the lattice in Pic(g ) generated by the root system

Ra, = {F € Pic(S); F? = =2, L,.F = 0}.
We claim that we have an isomorphism

6: Ma, = A(Tg). (6.58)

Indeed, let F € Pic(S) such that F2 = —2 and La,.F = 0. Then, ¢(F)? = —2 and
i(ha,).¢(F) = 0. Hence, by assumption (3a) in Main Theorem 1, ¢(F) € i(A(L,(a,)) &
A(Tg)). Then, write F = aCy + bCy + F', where ¢(F') € i(A(T'g)) and a,b € Z. Since
0= La,.F = 3a+ 3b, we obtain a = —b. Then,

— 2= (aCy +bCy + F')? = —6a® + F"°. (6.59)

Since A(T'g) is negative definite, we have F'> < 0. Thus, equation (6. 59) can only hold if
a =0. Hence, FF = F' € ¢~ ( (A (Fc;))> Obviously, we have ¢~ ( (A (Fg))) C Ma,.
This proves the claim.

By Corollary 3.3.5, the singularities of S then are of type G.

2. We show that S is contained in a quadric of corank one in P*:

Let i = 1,2 and assume that C; is a general member in |Cj].

By Lemma 3.1.1, either C; or —C; is effective. However, if —C; was effective, we had
La,.(— C’i) = —3 in contradiction to the fact that La, is nef. Hence, C must be effective.

We claim that \CZ\ is fixed point free and in particular nef. Indeed, assume that we have
|Ci| = |[M;| + Fi,

where |M;| is the mobile part of ]6’;| and F; the fixed part. Let a = M; + F;. Assume that
PLa, (F;) is one-dimensional. The curve ¢r,, (M;) C P* then has degree one or two, i.e. has
an irreducible component which is isomorphic to P'. It follows that S contains a continuous
family of rational curves. Hence, .S is uniruled. Since § and S are birational it follows
that also S is uniruled, a contradiction to the fact that S is a K3 surface. Consequently,
PLa, (F;) must be a set of points in Pt Let Fi1,...,F;, be the irreducible components
of F;. For j =1,...,n, we have Ffd = —2 by Lemma 3.2.1. Since La,.F; = 0, we have
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also La,.Fi; = 0. Hence, [Fij] € ¢! (i(A(FG)) by (6.58). Therefore, C;.F; ; = 0 which
gives aFZ = 0. Consequently, Mf = (6‘; - F)? = Ff < 0 since F; is by assumption
contained in the negative definite lattice ¢+ (z (A(F(;))). However, this is absurd since
|M;] is nef as the mobile part of |Zi| and therefore M? > 0. Hence, |a\ is fixed part free.
If |C;| had fixed points, the curves in |C;| would intersect in these points which is absurd
— — ) —

since we have for all C; € |C;| that C; = 0. Hence, |C;] is fixed point free and therefore
in particular nef.

We claim that |/C\'/| is an elliptic pencil. Indeed, since |/C\'/| is nef, it follows by Theorem 3.2.4

that |C;| = m;|C; ] for a positive integer m; and an elliptic pencil |C; \ on S. Note that by
Proposition 3.3.4, the map ¢r, s is generically one-to-one on a general member C” in \C’ |

since C’Zf is irreducible and C’Zf = 0. We have 3 = LAQ.C" =m;.(La,- 5) This equation

only holds if m; = 1 and LAZ.a/ =3 orm; =3 and Ly,. CZ/ = 1. The latter case would
— —

imply that ¢, Ay (C;) is isomorphic to P!. Since ¢p, A, I8 generically one-to-one on C/, this

would give that C’ is isomorphic to P! which is absurd. Consequently, \C’ | is an elliptic
pencil.

We claim that the curves in ]a] are mapped by ¢y, A, onto plane cubic curves such that we
obtain a pencil of planes in Q. Since Cj is general in |C;] and |C;] is an elliptic pencil, C; is
irreducible, see Remark 3.2.5. Since La,.C; = ([C1]+[C3]).C; = 3, the curve PLa, (C;) has
degree 3. If ¢, Ay (a) was not planar, it would be the twisted cubic which is isomorphic to
P!, Since o1, A, 1s generically one-to-one on C;, this would imply that C; is isomorphic to P!.
This is absurd since Cj is a general member in |C;| and therefore, by TEgorem 3.2.4, has no
component with self-intersection number (—2). Consequently, ¢r, Ay (C;) is an irreducible
plane cubic curve. Let {Cl atacp and {Ca 5}5@@1 be the families of curves induced by
the one dimensional linear systems |C1| and ]C’g] respectively. The images ¢r,, (C’l )
and ¢r, Ay (Cg’g) are plane cubic curves in S so in particular contained in planes II; , and
Iy in PY. Hence, we obtain two pencils of planes {II1q}aepr and {Ils g} sepr on P4
These planes are contained in ) and not in Y since the curves PLa, (Cra) =11 4,NS and
PlLa, (Cy3) =1II3 3N S had otherwise not degree 3. Write C1 o = PLa, (Cra)=ILaNY
and Cy g = PLa, (C/TQ—;-}) =1IlhgNY.

We claim that @ can only have corank one or two in P4. Indeed, since @) contains planes,
it cannot be smooth by Lemma 4.1.3. Further, if () had corank strictly larger than 2, the
complete (2, 3)-intersection S C P* would have non-isolated singularities on the singular
locus of Q. However, we already know that S has only isolated singularities corresponding
to G.

We claim that @ has corank 1 in P4. Indeed, if Q has corank 2 in P4, the families {II1 4} qcpt
and {Ily g} gepr coincide. Consequently, the pencﬂs {Cia}aepr and {Cyg}aepr coincide,

as well. Thus, |Cy| = |Ca|, in contradiction to Cy.Cy = 3. Hence, the assumption must be
wrong and @Q has corank 1 in P*.

3. We show that the vertex p of ) is not contained in S:

Indeed, if p was contained in S, it would be an ADE singularity on S and for all a, 3 € P!
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the curves C}, and C5 3 would contain p. Then, goLA (C1,a) and chA (Cap) € Div(5)

would contain the exceptional divisor £ from the minimal resolution of p and C’1 o and 02 B
would intersect this exceptional divisor. We claim that this does not happen. Indeed, let
Eq be a (—2)-curve in E on S: Since |C’1| and |C’2| are nef, we have C1.Eg > 0, Ca. Ey > 0.
Since 0 = La,.Ey = C’l Ey + Cg Ey, we obtain 01 Ey = 02 Ey = 0. Hence, 01 and 02 do
not intersect E. Therefore, p is not contained in ().

In conclusion, S is a complete (2, 3)-intersection lying on a quadric of corank 1 in P4 such
that the singular locus of @ is not contained in S and all other singularities of .S correspond
to G.

Assumption: T= A, for n >3

Let a,a’;,El,...,En_g be the vertices of the graph I';(a,) in Table 6.1 and ha, =

Ci+Co+FEy+...4+ Eps. Then, /C'\I, /C'\;, Ey,..., Ey 2 is a basis of the lattice A(T;(a,,))-
By means of the isomorphism

¢: Pic(S) = Saty,., (i),

we may assume that C1,Ca, Ey, ..., Ep_s are divisors on S and [C1],[Ca), [EL; - .., [En—2]
are their numerical equivalence classes in Pic(S).
We have

La, = ¢ (i(ha,)) = [C1] + [Co] + [B1] + ... + [Ens] € Pic(8).
1. We show that the singularities of S = ¢, (S) C P* correspond to o(T) + G:
Let My, be the lattice in Pic(S) generated by the root system
Ra, = {F € Pic(S); F? = —2,La,.F = 0}.

The subgraph of I} 4,y generated by Ej, ..., E,—2 is of type A,_2 and the associated
lattice is A(Ap—2) = Ap—2. We claim that we have an isomorphism

¢: Ma, — i(A(Ap—2) ® A(Tq)). (6.60)

Indeed, let F' € Pic(S) such that F2 = —2 and La.F = 0. It follows that ¢(F)2 = —2 and
i(ha,)-¢(F) = 0. By assumption (3a) in Main Theorem 1, ¢(F) € i(A(T,a,)) ® ATc)).
Then, write F' = aCy +bCy + e By + ...+ ey oB, o+ F', where ¢(F') € i(A(Fg)) and
a,b,e1,...,en_2 € Z. Since 0 = La,.F' = 3a + 3b, we obtain a = —b. Further, since
F? = —2 and by inequality 2e;e;41 < e% + 612+1 fori=1,...,n — 3, we obtain
—2=(aCy —aCs+e1E1 + ...+ enoEp_o+ F')?

= —4a® +2a(e; — e o) —2(eF 4 ...+ €2 ) +2(erea + ...+ en_zen o)+ F"?

—da® +2a(er —en_g) =23+ ... 4 )+ 3 +2(eR+...+e2 ) +ed o+ F?
= —2a% — (2@2 —2a(ey — en_g) + €2 + 6%_2) +F?
=-2a®—(a—e1)? = (a+ en_g)?+ F"?
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which only holds if 1 = a = ey = —e,_9 and F/ = 0, or if a = 0. However, in the first
case, we have F2 = —4 + (ey By + ... + en_2FE, 2)% + F'? < —4 which is absurd. Hence,
we must have a = 0 and therefore FF =e1E1 + ...+ ep—o0F,_9 + F'?. On the other hand,
we have obviously i (A(An—2) ® A(Tg)) C ¢(Ma,,).

By Corollary 3.3.5, the singularities of S are of type o(T) + G.

2. We show that S is contained in a quadric of corank one in P*:

Let i = 1,2 and assume that C; is a general member in |Cy].

As in the case T = Ay, step 2. above, we can show that the divisor a € Div(g) is effective.

We can write -
|Cil = [Mi] + Fj,

where |M;| is the mobile part of |6’;| and F; the fixed part. Let C; = M; + F;. As in
the case T = Ag, step 2. we can show that ¢, (F;) is a point in S, i.e. La,.F; = 0.
Let Fj1,...,F;, be the irreducible components of F;. For j = 1,...,n, we have Ff’j =
—2 by Lemma 3.2.1. Since La,.F; = 0, we have also La,.F;; = 0. Hence, [F;;] €

Mp, = ¢! (i(A(An_Q) @ A(Fg))) by (6.60). Therefore, also [F;] € ¢ 1 (i(A(An—2) ®

A(Fg))). The mobile part |M;| is by definition nef. Similarly as in the case T = Ag,

step 2., we show that |M;| is an elliptic pencil. By Theorem 3.2.4, M; has no irreducible
component which has self-intersection number (—2). Since A(I'g) is negative definite, this

gives ¢([M;]) € i(A(Ty(a,))). Since ¢([Ci]) € i(A(T,a,))) as a part of its basis, we have
O([Fi]) € i(A(An—2)).

Let {M1a}qepr and {Ma g} gepr be the families of curves induced by the one-dimensional
linear systems |M;| and |My|, respectively. As in the case T = Ag, step 2. above, we show
that [M;| induces two families {Il1 o }nepr and {Ilz g} gepr of planes on @ and such that
Cra =L, (M1,a) =11 ,NY and Cy g = @1, (Mag) = Il 5NY are plane cubic curves
on S. Again, as in the case T = Ay, step 2., we can deduce that S lies on a quadric of
corank 1 in P*.

3. We show that the vertex of @) is an A,,_s singularity on S:

—~2

Let M; € |M;|. If M;.F; = 0, we have 0 = C} (M; + F})* = M?+2M,.F;+ F? = F? and
since ¢([F;]) is contained in the negative definite lattice i (A(An—2)), it follows F; =0, i.e.
\6’;\ is fixed part free and |a\ = |M;|. However, the curves in \6’;] intersect the divisors
supported on the union of Fq,...,FE, o € Div(g) once.

On the other hand, if F; # 0, we obtain consequently that M; intersects F;j and the support
of F; is contained in the union of Fy, ..., E,_s € Div(S).

Since the curves Fi,..., E, o are contracted by ¢, to a singularity of type A,_2 of
S C P* by Corollary 3.3.5, this singularity then must be contained in all plane cubic
curves in {C1 o }aepr and {Cy g} gepr. Since the only common intersection point of all the
planes in {I11 o }4epr and {Ilz g} gepr containing the curves C1, and Cy g is the vertex of
Q, the A,,_» singularity must be the vertex of Q.

In conclusion, S is a complete (2, 3)-intersection lying on a quadric of corank 1 in P* such
that the singular locus of @ is an A,_o singularity in S and all other singularities of S
correspond to G.
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Assumption: T =D, for n > 4, Eg, E7, or Eg

Let k := rank (A(T,(T))) — 1.

Let 5, Ey, ..., Ex be the vertices of the graph I';() in Table 6.1 and 71, ..., positive
integers such that A = C + riE1 + ...+ rpE as in in Table 6.1. Then, 5’, E,...,E is
a basis of the lattice A(I';(T)). By means of the isomorphism

¢: Pic(S) = Saty,., (i),

we may assume that 5’, Ey, ..., By are divisors on S and [C~’], [E1],...,[Fx] are their nu-
merical equivalence classes in Pic(S5).

We then have N
Lt = ¢ ' (i(ht)) € Pic(5).

1. We show that the singularities of S == ¢..(S) C P* correspond to o(T) + G

Let Mt be the lattice in Pic(S) generated by the root system
Ry = {F € Pic(S); F?> = =2, Ly.F = 0}.

Denote the subgraph of ;1) generated by Ei, ..., Ej by o(T) and let A(o(T)) be the
associated sublattice of A(I;(1)). We claim that we have an isomorphism

¢: My — i(A(o(T)) ® A(la)). (6.61)

Indeed, let F € Pic(S) such that F? = —2 and Ly.F = 0. It follows that ¢(F)? = —2 and
i(hr).¢(F) = 0. By assumption (3a) in Main Theorem 1, ¢(F) € i(A(L (1)) ® A(Tg)).
Write F = aC + 1By + ... + ex By + F' for integers a, e, ..., e, and o(F') € i(A(Fg)).
Then, 0 = Lp.F = Ly.(aC 4 e1 By + ... + e By + F') = a(L1.C) = 3a, i.e. a =0. Hence,
F =e1E1+...4+¢eEp+ F'. On the other hand, we have obviously i (A(o(T))®A(l'g)) C
¢(Mr).

By Corollary 3.3.5, the singularities of S then are of type o(T) + G.

2. We will show that S is contained in a quadric of corank two in P4:
Assume that C is a general member in |C).

As in the case T = Ag, step 2. above, we can choose C to be a curve on S.

We determine the fixed part of |C|. Indeed, assume that we have
|C| = |Mx| + Fr,

where [Mry| is the mobile part of |C| and Fr the fixed part. Assume that C = My + Fr.
As in the case T = Ay, step 2., we show that ¢, contracts Frp. Let Fr; be an irreducible
component of Fp. By Lemma 3.2.1, we have F%’i = —2. Since Lt.Fpr = 0, we have
Ly.Fr; = 0. Therefore, we obtain by (6.61) that ¢([Fr;]) € i(A(c(T)) ® A(Tg)) and
hence also ¢([Fr]) € i(A(c(T)) ®@ A(Tg)). As in the case T = Ay, step 2., we show that
we have ¢([Fr]) € i(A(a(T))).
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As in the case T = Ag, step 2. above, we show that | M| is an elliptic pencil on S inducing
a family {IT;},cp1 of planes on the quadric Q. For t € P!, let C; := I, N Y. We obtain a
family {C}};cpr of plane cubic curves on S.

We claim that @ has corank 2 in P*. Indeed, if @ had corank one, we would find two
different families of planes in Q. Let {II}},cp1 be a family of planes in Q. None of the
planes is contained in Y since S would otherwise contain a plane and hence S would be
rational which contradicts the fact that S is a K3 surface. Therefore, {I1} };cp1 induces a
family of plane cubic curves {C] :=II; NY },cp1 on S. Let C} be a curve in {C}};cp1. The
pull-back ¢} _(C}) € Div(S) to S has degree 3, i.c. Lr.¢}, (Cf) = 3. We can assume that

©7.(C}) = aC + e1E1 + ... + ey Ej + eF’

for a,eq,...,ep,e € Q, and F' a divisor whose class is contained in ¢! (z(A(Fg))>
Then, 3 = Lt.¢},(C") = 3a gives a = 1, i.e. ¢} _(C}) = C+e1Ey+ ...+ epEy + eF'.
Further, since ¢r,,. contracts Ei,..., Ey, and F’ to singularities on S, we must have C} =
oL (91 (Ch) = ¢rp(C) € {Ci}1epr. Therefore, the family {C}};cp1 coincides with the
family {C}};ep1. Hence, we do not find two different families of planes in @), i.e. ) must
have corank 2 instead of 1.

3. We show that the singularities of S lying on the singular locus of @ are of type o(T):

Since the planes in {II; };cp1 intersect only in the singular line [ of @), all cubic curves in
{Ct};cpr pass through (counted with multiplicity) the three points in /NY on the singular
line of () which are singularities of S.

We show that the curves in the mobile part | M| of |C| intersect each connected component
of the union of the divisors Fjy,..., Ex on S:

Let M be a general member in |Mr|.

Let T = D4. Write the fixed part of |6’| as I'p, = Fip, + Fop, + F3p,, where F, p, is
supported on E; or F;p, = 0 for ¢ = 1,2,3. We have

3
0=C?=(Mp, + Fip, + Fop, + Fsp,)° =Y _2Mp,.F,p, + F’p,
=1

and we see that this equation can only hold if Mp,.F;p, > 1 for the non-trivial F;p,
(¢ = 1,2,3) using that the classes of Fip,,F>p,, and F3p, are contained in the even,
negative definite lattice ¢—1 <z (A(U(D4)))>. On the other hand, if F;p, = 0 for some

i1 =1,2,3, we have Fp,.F; = 0 and therefore Mp,.E; = (6 — Fp,).E; = 1 by definition of
the intersection matrix A(o(Dy)).

If T =D, (n>5), write Fp, = Fip, + F5p,, where Fy p, is supported on E; or
Fi p, = 0and the support of F» p, is contained in the union of Fs, ..., F,_1 or Fp, = 0.
Similarly as above, we have

— 2
0=Cp, = (Mp, + Fip, + Fop,)* =2Mp, .Fip, +2Mp, . Fap, + Fip, + F5p,

the other hand, if Fjp, = 0 for i = 1 or 2, we have Mp,.F1 = (C — Fp,).E1 =1 or
Mp, .Ey = (C — Fp,).E2 = 1, respectively, similarly as above.

and this equation can only hold if Mp,,.F;p, > 1 for the non-trivial F;p, (i =1,2). On
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If T = Eg, E7, Eg, the support of Frr is contained in the union of E1, ..., B with k = 5,6,7,
respectively, or Fp = 0. Similarly as above, we show that we have Mr.Fr > 1if Fp # 0. If
Fr =0, we have for T = Eg, E7, Eg that Mr.E; = C.E; = 1 with i = 3,6, 1, respectively,
and Mrt.E; = C.E; =0 for j = 1,...,k with j # i by definition of the intersection matrix
A(o(T)).

Hence, for all choices of T = D;,>4, Eg, E7, Eg, the curves in [Mr| intersect each connected
component of the union of the divisors Fy,..., E; on S.

By Corollary 3.3.5, the connected components of the union of the divisors FEi,..., Ej
are contracted by ¢ to singularities of type o(T) on S and since the curves in |[Mry
intersect with these connected components, the plane cubic curves in {C}},cp1 intersect in
these singularities. Since the only intersection points of the curves in {Cy};cp1 are on the
singular line of @, we can conclude that S has singularities of type o(T) on the singular
line of ). Further, the curves in in {C;};cp1 do not intersect with any divisor class in

ot (z (A(Fg))) C Pic(S) since the class of C is not contained in ¢~ (z (A(Fg))>. Hence,
the singularities of type G are not lying on the singular line of Q).
In conclusion, S is a complete (2, 3)-intersection lying on a quadric of corank 2 in P4 such

that the singularities of S lying on the singular locus of @ are of type o(T) and all other
singularities of S correspond to G.

This concludes the proof of (3) = (2).



7 Existence of primitive lattice
embeddings

In this chapter, it is our goal to state Nikulin’s Theorem on the existence of certain lattice
embeddings. To do so, we will define firstly finite bilinear and quadratic forms and dis-
criminant bilinear and quadratic forms. We will study quadratic forms and finite quadratic
forms over the p-adic integers Z,. For odd primes, we will define their normal forms. Then,
we will explain how to construct a quadratic Z,-module L, given a finite quadratic form
G, in normal form over Z, such that the rank of L, is the length of G, and such that
the discriminant quadratic form of L, is isomorphic to G). We then will state Nikulin’s
Theorem which provides necessary and sufficient conditions for the existence of a primitive
embedding of an even lattice into an even unimodular lattice. Finally, we will state a
sufficient condition when this embedding is unique up to automorphism. The results in
this chapter will be needed in the following chapter where we will give an algorithm to
determine all ADE lattices A such that (6) @ A can be embedded primitively into the K3
lattice. This algorithm will be based on Nikulin’s Theorem.

7.1 Finite symmetric bilinear forms and finite quadratic forms

Let G be a finite abelian group and (, ): G x G — Q/Z a symmetric bilinear function. We
call a pair (G, (, )) a finite symmetric bilinear form.

If g: G — Q/Z is a map such that
1. q(rg) =r%q(g) for allr € Z and all g € G

2. the function (, )q: G x G — Q/Z defined by (g,9')q = ¢(9+9') —a(9) —q(¢’) mod Z
is a symmetric bilinear form on G,

we call the pair (G, q) a finite quadratic form and (, ), the bilinear form associated to q.

We denote the minimal number of generators of G by I[(G) and call it the length of G.

Remark 7.1.1. Note that we defined here the finite quadratic form as in [MMO09, Chap. I, Def-
inition 2.1|; in the literature, it is usually required that (g, ¢'), = %(q(ngg') —q(9)—q(9))
mod Z.

7.2 The discriminant form of a lattice

Let (L, (, )r) be a lattice. The Z-module

LY =Homy(L,Z) = {z € L ®z Q; (x,y)r, € Z for all y € L}
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together with the natural extension (, Ypv: LY x LY — Q of (, )1, to LY is the dual lattice
of L. The cokernel of the natural inclusion i: L < LV is the discriminant group

A(L) = LY /i(L).
The discriminant bilinear form is the pair (A(L),bs(r)), where

defined by ba(r)(7,y) = (z,y)rv mod Z. Similarly, let (L,Qr) be the quadratic form
associated to (L, (, )r). Then, the finite quadratic form (A(L), qr,), where

qr.: A(L) — Q/Z
defined by qr(x) = Qpv(x) mod Z is the discriminant quadratic form of L.

Lemma 7.2.1. For the orthogonal sum L1&® Lo of two lattices (L1,br,), (L2, br,), we have
A(L1 ©® Lg) = A(Ll) D A(LQ) and

bA(Li®Ls) = ba(Ly) D ba(L.) and qA(L @L2) = A(Ly) D dA(L)-

The following discriminant groups will be used in the sequel where n > 1:

L (6) Ay Doyt Dopi1 | Es E; | Eg
AL [ Z/6Z [ ZJin+ 1)Z | Z)2Z x ZJ2Z | ZJAZ | ZJ3Z | Z)2Z | {0}

Table 7.1: Discriminant groups of ADFE lattices, see [MMO09, Chap. II, Table 7.2]|.

7.3 Quadratic forms and finite quadratic forms over Z,

Let p be a prime number. We will in the following always denote by Q, and Z, the p-adic
numbers and p-adic integers, respectively.

For a finite group G, we denote

Gp = {x € G; p*z = 0 for some k > 0}

the p-primary part of G.

Let (G, ¢) be a finite quadratic form over Z and ¢,: G, = (Q/Z),, x — q(z) the restriction
of q to Gy

Lemma 7.3.1. We have a group isomorphism G, = G ®z, Z, such that

7
G ®z Ly —= > Q/Z @ Ly
iN lN (7.1)
Gy L Q,/Z,

commutes, where ¢ ®@ Zyp: G @z Ly — QJZ @7 Zp, g @ o + q(g) @ o®. Hence, the finite
quadratic forms (G @z ZLyp,q @ Zyp) and (Gp,qp) are isomorphic over Zy.
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Proof. For x € (Q/Z),, there exists a positive integer k such that p*x € Z. Write [z], =
Z;l_k c;p* for the p-fraction part of . Then,

(Q/Z)p = Qp/Zyp, x — [z], mod Z,

is an isomorphism. Hence, we have ¢,: G, = Q,/Z,. By [Gra03, Chap. I11.1.2.3|, we have
an isomorphism of groups

N G®z7Zy = Gy, g®a— ag.
Then, we have for g ® a € G ®7z Zy:

Mg®Zy)(g®a)) = Aq(g) @ &) = a’q(g) = qlag) = ¢(Mg ® @) = g,(Mg ® @)).

Hence, diagram (7.1) commutes. O

We call (G, qp) a finite quadratic form over Z,. Likewise, the definition for discriminant
quadratic forms then extends to discriminant quadratic forms over Z,,.

The following example of a quadratic form over Z, and their discriminant quadratic forms
will be needed in the next chapter:

Example 7.3.2. 1. For an odd prime p and a € Z,\ {0}, we write a = pfu with u € /
and k£ > 0. Let

1 if u is a square mod p

—1 if uw is not a square mod p

X: Z;/(Z;)Q — {+1}, us {

be the Legendre symbol. Then, the finite quadratic form W5 . over Zy with € = x(u)

is the rank one lattice with intersection matrix (p*u). The discriminant of ng(fu) is
given by

disc(W)\") = pbu  mod (Z))*. (7.2)

2. For a prime p and k > 1, let G := Z/p*Z and let a € Z such that ged(a,p*) = 1 and

ap® € 27. For the generator g of G and r € Z, let q: G — Q/Z with q(rg) = 72"%‘;.

This definition is well defined since q(p*g) = % = % € Z.
For an odd prime p, let

XIGX/(GX)2—>{:|:1},U+—>{1 if u is a square mod p

—1 if uw is not a square mod p
be the Legendre symbol.
For p =2, let
x: (2/22)) ((Z/22)*)* —=(Z/2Z)* = {1} is the identity map
X: (2/A7)%) ((Z)AZ)*)* —(Z/AZ)* = {1,3} is the identity map
x: (Z/252)% )((2)2"2)*)® —=(Z/82)* = {1,3,5,7} is the mod 8 map.
Then, we denote the finite quadratic form (G, q) over Z by w;fﬁ: modp k), inducing the
finite quadratic form (G, ,) over Z,, where G, = Z/p*Z and g,: G, — Q,/Z, with

qp(rg) = q(rg) for g a generator of G, and r € Z. We will refer to (Gp,qp) as the

. . dpF
finite quadratic form w;f(ka modp®) ver L.
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7.3.1 Normal form decompositions of quadratic forms and finite quadratic
forms over Z,, p odd

Let p be an odd prime.
Let (G, q) be a finite quadratic form over Z,.

Definition 7.3.3. We say that a decomposition of (G, q) is given in normal form over Z,

if
(G,q) = @ ((wévk)éBn(k) ® (ij]lf)@m(k))’
k>1

where n(k) and m(k) are non-negative integers for each k.

Let (L, @) be a quadratic Zy-module.
Definition 7.3.4. We say that a decomposition of (L, Q) is given in normal form over Z,
if
(L,Q) = D (W)= & (W)= ®),
k>0

where n(k) and m(k) are non-negative integers for each k.

Remark 7.3.5. In the definition of a normal form of a finite quadratic form over Z, and
quadratic Zy-module in [MMO09, Chap. IV, Definition 2.2, 2.6|, it is furthermore requested
that m(k) < 1 for each k. With these stronger definitions, we can show that if ¢ and @ are
non-degenerate, (G, q) and (L, @), respectively, have unique normal form decompositions

by [MMO09, Chap. IV, Proposition 2.4, 2.7]. Obviously, a normal form decomposition as
in [MMO09] is in particular a normal form as defined here.

Proposition 7.3.6 ([MMO09, Chap. IV, Corollary 2.10]). For a finite quadratic form (G, q)
over Zy, there exists an up to isomorphism unique quadratic Zy-module (L, Q) such that
rank(L) = [(G) and the discriminant form of (L, Q) is isomorphic to (G, q).

Corollary 7.3.7. Let (G, q) be a finite quadratic form over Z, in its normal form

(G.q) =P ((wp )™ & (w, 1) ®).

k>1

The up to isomorphism uniquely determined Z,-module (L,Q) such that rank(L) = I(G)
and such that the discriminant form of (L, Q) is isomorphic to (G, q) is

D (W)= P @ (W, 1em®),
k>1

Proof. For i = £1, we have rank(Wg’k) =1 and l(wéyk) = I(Z/p*7Z) = 1. Further, the

discriminant quadratic form of W; Pt
) k
(AWyn)saws ) = (Z/D*Z. gy )

and (Z/p"*Z, qW;’-’k) is simply the finite quadratic form w;k. By Lemma 7.2.1, the discrim-

@ ((Wpl,k)@n(k) > (Wp_,kl)@m(k))
k>1

inant form of
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then is
D () @ (g ) V).
K p7
k>1
By Proposition 7.3.6, the quadratic form @, ((Wz}’k)@”(k) ® (Wp_’kl)@m(k)) is up to iso-
morphism unique with these properties. O

Remark 7.3.8. Likewise, there exists the notion of normal form for finite quadratic forms
over Zs and quadratic Zg-modules and a version of Proposition 7.3.6 over Zsg, see [MMO09,
Chap. IV.4, IV.5].

7.4 Primitive embeddings into unimodular lattices

For a finite quadratic form (G, ¢) over Z, the induced finite quadratic form (G®zZy, R Zy)
over Zj is by Lemma 7.3.1 isomorphic to the finite quadratic form (G), g,) over Z, on the
p-primary part G, of G. Let K(g,) be the unique quadratic Zy-module of rank I(G)) and
with discriminant form isomorphic to (Gp, gp). Note that K(g,) exists for odd primes p by
Proposition 7.3.6 and for p = 2 by [MM09, Chap. IV, Corollary 5.6].

We recall V. V. Nikulin’s Theorem about the existence of primitive lattice embeddings into
even unimodular lattices:

Theorem 7.4.1 ([Nik80, Theorem 1.12.2 (a) < (d)]). The following properties are equiv-
alent:

1. There exists a primitive embedding of an even lattice (M, Q) with signature (my, m_)
and discriminant form (A(M),q) into an even unimodular lattice L with signature

(I4,02).
2. The following conditions are all satisfied:
a) ly —1-=0 mod 8
b) Il —m_>0,l4y —my >0
&) (I +1+) — (m_+my) > [(A(M))

d) If p is an odd prime and (I + 13) — (m— + my) = [(A(M),), then we have
(—1)l+ =™+ |A(M)| = disc(K(qp)) mod (Z)?

e) If (I- +14) — (m— +my) = 1(A(M)3) and ws . does not split off gz for some
k, then we have |A(M)| = +disc(K (g2)) mod (ZJ)2.

Remark 7.4.2. We note that V. V. Nikulin gives in [Nik80, §2| different definitions for
quadratic forms and finite quadratic forms than we do in Sections 2.1 and 7.1, respectively,
see Remarks 2.1.1 and 7.1.1. However, every quadratic form and every finite quadratic
form in Nikulin’s definition corresponds naturally to a quadratic form and finite quadratic
form, respectively, defined here and vice versa. Furthermore, this correspondence respects
naturally the decomposition of the quadratic forms and finite quadratic forms into direct
summands. Moreover, for both Nikulin’s definition and the definition here, the definitions
of the bilinear forms associated to the quadratic forms coincide. Hence, we compute for
both quadratic forms the same discriminants. Therefore, we may use the definitions made
here for Nikulin’s Theorem in [Nik80, Theorem 1.12.2].
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Imposing a stronger condition on the lattices L and M as in Theorem 7.4.1, we can

guarantee that a primitive embedding M < L is even unique up to automorphisms of
L.

Theorem 7.4.3 (|Dol83, Theorem 1.4.8]). A primitive embedding of an even lattice M of
signature (m4, m_) into an even lattice L of signature (I4,1_) is unique up to an auto-
morphism of L provided: (I + 1) — (m— +my) > [(A(M)) + 2.



8 Finding certain primitive lattice
embeddings into the K3 lattice

In this chapter, we want to find all those ADF lattices A such that (6) ® A has a primitive
embedding into the K3 lattice. We will present an algorithm which enables us to determine
these lattices A computer-aided. Using Main Theorem 1, the existence of these lattice em-
beddings will imply the existence of cubic fourfolds as well as complete (2, 3)-intersections
in P4 both with certain ADFE singularities.

8.1 Algorithm to compute certain primitive lattice
embeddings into L3

Theorem 8.1.1. Let A be a direct sum of irreducible ADE lattices. Then, there exists
a primitive embedding (6) ® A — Lgs if and only if A is one of the 2942 lattices in
Appendiz C. Further, all lattices A in Appendiz C marked with an asterisk (*) have the
property that the embedding (6) ® A — Lgs is unique up to an automorphism of Lis.

Proof. The lattice (6) @ A is even and note furthermore that the K3 lattice Lg3 is both
even and unimodular. Hence, Theorem 7.4.1 gives us necessary and sufficient conditions
such that (6) ® A can be embedded primitively into Lxs. Further, Theorem 7.4.3 gives us
a sufficient condition such that this embedding is unique up to an automorphism of Lgs.
The algorithm below determines all lattices A such that for (6) & A all conditions (2a)-(2e)
in Theorem 7.4.1 hold. These can be found in the list in Appendix C. The algorithm
furthermore identifies those for which the condition in Theorem 7.4.3 holds, as well. These
are the lattices A in Appendix C marked with an asterisk (*). O

Remark 8.1.2. Independently from us, S. Brandhorst found the complete list of 2942 ADFE
lattice A in Appendix C such that we have a primitive embedding (6) ® A — L3 by means
of the computer-algebra software Sage.

We now describe the algorithm mentioned in the proof of Theorem 8.1.1 based on The-
orem 7.4.1 to determine all possible direct sums of ADFE lattices A such that we have a
primitive embedding

<6> DA — Lgs

and on Theorem 7.4.3 to determine some embeddings which are unique up to automor-
phisms of Lgj3. The algorithm is implemented in the computer-algebra software Wol-
fram Mathematica (version 11.1.1.0), find the code in Appendix B. Summarized, the algo-
rithm determines step-by-step the set of all ADE lattices A such that the lattices (6) @ A
satisfy the necessary and sufficient conditions (2a)-(2e) in Theorem 7.4.1. In the final
step we obtain the list of ADFE lattices A such that there exists a primitive embedding
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(6) ® A — Lgs. Imposing a stronger condition in (2c), lattices A such that the primi-
tive embedding (6) @ A < Lgs is unique up to an automorphism of Lys are determined
simultaneously.

We now describe the algorithm structured by the following Subsections 8.1.1-8.1.5 in more
detail:

8.1.1 Check condition (2a) in Theorem 7.4.1

Condition (2a) in Theorem 7.4.1 is always satisfied in our case since the K3 lattice Lgs
has signature (3,19) so
19-3=16=0 mod 8.

8.1.2 Check condition (2b) in Theorem 7.4.1

Let

A= aidi o Pd;D; @@ekEk

i>1 j>4
be an ADE lattice. The lattice (6) @ A has signature

Za,z—l—Zdﬂ—l—Zekk

i>1 j>4

Hence, it satisfies condition (2b) in Theorem 7.4.1 if and only if

19>Zaﬂ+2d;+26kk

1>4 j>4

In particular, this means that 1 <7 <19, 4 < j <19, and 6 < k < 8. Consequently, the
set of all lattices satisfying condition (2b) in Theorem 7.4.1 is given by

listb == ([0,19] N Z)™ x (]0,19] N Z)'® x ([0,19] N Z)?.
Just to find all tuples in listb more time efficiently, we use an iteration in the code in
Appendix B which is justified by the following Lemma:

Lemma 8.1.3. Let n and r be positive integers with r < n. Let

L,n,={(a1,...,an) € (Z>0)" Za,z =r}

and fori=1,...,n—1
step;: Ly, = (Z>0)", (a1,...,an) = (a1,...,6i—1,a; — L, aix1 + 1,ai42, ..., ap).
Let
Lffpr = U {stepi((al,...,an));fori: 1,...,n —1 with a; # 0}.
(a1,....,an)ELrn

Then,
Lryin={(r+1,0,...,0) € Z"} ULP. (8.1)
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Proof. Let (ai,...,an) € Ly41,, and assume that a; # 0 for some 2 < s < n. We have
oy aii =7+ 1. Then, (ai,...,as-2,as-1 + 1,a5 — 1,as41,...,a,) € Ly, since
a1+ ...+ as—2(s—2)+ (as—1+1)(s—1)+ (as — 1)s+asy1(s+ 1)+ ...+ ayn
=a;+...+as-2(s —2)+as—1(s—1)+ass+ast1(s+1)+...+amn+(s—1)—s
=sr+1—-1=r
Hence, (a1,...,a,) € Lifgp. If (a1,...,a,) € Lyy1, such that ag = 0 for all 2 < s < n,
then (ai,...,a,) = (r+1,0,...,0).

Assume conversely that (a1,...,a,) € {(r+1,0,...,0)}ULsP. Obviously (r+1,0,...,0) €

Loyin. If(a1,...,ay) € Lifgp, we have as # 0 for some s > 2 such that (ay,...,a5-2,a5-1+
l,as —1,a541,...,0an) € Ly,. Hence,
n
o
=1

=(a1+...+as—2(s = 2)+ (as—1 + 1)(s = 1) + (as — )s + asy1(s + 1) + ... + apn) + 1
=r+1

so (a1,...,an) € Lygip. d
Following the notation in Lemma 8.1.3, we define the set

listab[r] .= L, 19

which contains all tuples (ay, ...,a19) such that S°1° a;i = r. Lemma 8.1.3 now enables
us to compute listab[r] iteratively by using that listab[r] = {(r,0,...,0) € Z*} U Litfilg,

where Litf?lg can be computed by means of listab[r-1]. This turns out to be faster than a
direct computation of listab[r].

We then define

listdb[r] .= {(d1,...,d19) € listab[r]; di = d2 = d3 = 0}

listeb[r] :== {(e1,...,e19) € listab[r]; e1 =... =e5 =eg = ... = e19 = 0}.

Consequently,

listb[r] := {((a1, .., a10), (da, .. -, dao), (€5, €7, es)) € listabli] xlistdbl[j] x listeb[k]; i+j-+k = r}

and
listb := U2, listb[r].

8.1.3 Check condition (2c) in Theorem 7.4.1

Let A be an ADFE lattice in listb, i.e. (6) ® A satisfies condition (2b) in Theorem 7.4.1. In
particular, A has the form

19 19 8
A= @ a;A; & @ d;D; ® @ ex B
i—1 =4 k=6
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The signature of (6) & A is
19 19 8
(1, Z a;t + Z d;j + Z ekk).
1=i 4=j k=6
Hence, it satisfies condition (2c) if and only if
19 19 8
(B+19) —(1+ D ai+ Y djj+ > epk) > I(A((6) & A)).
1=i 4=j k=6

Consequently, the set of all lattices A such that (6) @ A satisfies condition (2c) is given by

19 19 8
listbc := {A = @aiAi @ @dej @ @ekEk € listb;
=1 =4 k=6
19 1]9 8
21— (Y aii+ Y djj+ Y exk) > L(A((6) @ A))}.
1=i 4=j k=6

The set of all lattices A such that (6) @ A satisfies additionally the assumptions in Theo-
rem 7.4.3 is given by

19 19 8
listbcu = {A = @ a;A; D GB d;D; @ @ erEy. € listb;
i=1 j=4 k=6
19 19 8
19— (Y ai+ Y dij+ 3 enk) = 1(A((6) @ A)) }
1=i 4=j k=6

We now present how we compute the length I(A((6) ® A)) of the discriminant group
A((6) @ A) in the code in Appendix B. Indeed, by the following Lemma 8.1.4, the length
[(A((6) ® A)) is just the maximum of the lengths of the p-primary parts A((6) & A), of
A((6) ® A):

Lemma 8.1.4. Let G be a finite abelian group. Then,
I(G) = max (I(Gp)),

p prime

where Gy, is the p-primary part of G. More explicitly, let py be a prime such that [(G) =
U(Gpy) and
Gpy =Z/p)'2 & ... © L[py" L

for s1,...,8, € Z>1, then I(G) = U(Gp,) = n.

Proof. Since G is a subgroup of G for all primes p, we have {(G,) < I(G), in particular

max;, (I(Gp)) < I(G). The group G has the invariant factor decomposition
G=Z/hZ&...&Z/d,Z

with d;|d;11 for i =1,...,n — 1. Then, G has at most n generators, i.e. I(G) < n. Let pgy
be a prime dividing d;. We have positive integers s1, ..., s, such that

Gpo =Z/Dy'Z& ... & ZL/py L,
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where pgi|d; and pgiﬂ fd; for i = 1,...,n. Hence, I(Gp,) < n. We have a surjective
morphism

w: Gpy = (Z/poZ)", (z1,...,2n) — (21 mod po,...,z, mod py).
Assume then that g1, ..., gy, generate G, with m < n. Since 7 is a surjective morphism,

m(g1),...,m(gm) must generate (Z/poZ)". Since every element x € (Z/poZ)"™ satisfies
pox = 0, it can be written as = = (alw(gl), . ,amﬂ(gm)) with 0 < aq,...,am < po— 1.
However, then (Z/poZ)"™ had cardinality pg* which is false. Hence, the assumption must be
wrong and we have [(Gp,) = n. In conclusion, n = l[(G),) < I(G) < nson =1(G,,) = I(G).
Hence, [(G) = max, ({(G,)). O

Using Lemma 7.2.1 and Table 7.1, we deduce that the discriminant group of (6) & A is
given by

19
A((6) ®A) =Z/6Z & P aiZ/(i + 1)Z
1=1i
9
® @dgj(Z/QZ X Z/QZ) D d2j+1Z/4Z
j=2
@ eZ/37 B erZ/27.

For all primes p, the p-primary parts of A((6) ® A) are given by
A((6) ®N)e =7Z/27

4
D @ a4i+1Z/2Z
=0

® a3Z/2°7 & a;Z)2%7 ® annZ)2°7 ® a157/2 7 © a10Z/2*Z
9
& @D do;(2/22 x 1)22) & dy; 1 2/2°Z
j=2
@ erZ/27
A((6) D N)3 = 7/3Z
D CLQZ/3Z D CL5Z/3Z D CL11Z/3Z D a14Z/3Z
© asZ/3°7 & a177)3*7
@ e¢Z /37

A((6) ®AN)s = aaZ/5Z & a9gZ/5Z & a14Z/5Z
A((6) ®N)7 = agZ/TZ & a13Z])TZ

A((6) ® A)11 = a10Z/11Z

A((6) @ A)13 = a12Z/13%

A((6) & N)17 = a16Z/17Z

A((6) & N)19 = a18Z/19Z
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and for all primes p > 19, A((6) & A), = {0}. Hence, by Lemma 8.1.4,

H(A((6) @A) = max (1(A((6) © A),))

p prime

9 9 9
=max ( 1+ Z a1 + 2(2 daj) + Z dajy1 + er,
=0 =2 =

1+ a2+ a5+ ag + a1 + ays + a7 + eg,
a4 + ag + aiy,

ae + ai3,

aio,

a2,

aie,

alg) .

8.1.4 Check condition (2d) in Theorem 7.4.1

Let A be an ADE lattice in listbc, i.e. (6) @ A satisfies conditions (2b) and (2¢) in
Theorem 7.4.1. In particular, A has the form

19 19 8
A= @CLZAZ &) @ dej b @ ekEk.
i=1 j=4 k=6

Let p be an odd prime.

To check condition (2d), we assume that we chose A in listbc such that
19 19 8
(19+43) = O i+ dij+ > exk+1) =1(A(6) ®A),). (8.2)
1=i 4=j k=6

Let (K (gp), Qp) be the unique quadratic Z,-module of rank [ (A({6)A),) and such that the
discriminant form of (K(qp), Qp) is isomorphic to the finite quadratic form (A(<6> ®A)p, qp)
over Zjy. Recall that (K(qp), Qp) exists by Proposition 7.3.6.

We have to check condition (2d) for the primes p = 3,5,7 only since we find computer-
aided (lines 117-131 in the code in Appendix B) that just for those primes there exists a
lattice A € listc such that equation (8.2) holds for (6) & A.

The lattice (6) @ A satisfies then condition (2d) if and only if for p = 3,5, 7 we have
(—1)*71A(A)| = |A(A)| = disc(K(gy)) mod (Z;)% (8.3)
We now compute the discriminant disc(K (gp)) of (K(gp), Qp)-

By Lemma 7.2.1, we have for a prime number p a decomposition of the finite quadratic
form:

19 19 8
A((6) ® A), = A((6)), © D ai A(Ai), & P d;A(D;), & EP ex A(Er)y
i=1 j=4 k=6
(8.4)

19 19 8
qaBo8), = 4a(6), D D aidaw,), ® B diaan,), ® P eraae,),
i=1 j=4 k=6
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Hence, we compute for each prime p = 3, 5, 7 separately in the following Subsections 8.1.4.1-
8.1.4.3 the normal form of the finite quadratic form (A(M)p, QA(M)p) over Zj, for

M e {(6), A; (1 <i<19), D;j(4<j<19), Ex(6 < k <38)}.

We associate then to (A((6) & A)p,qA(<6>@A)p) the quadratic form (K (gp),Qp) over Z,
using Corollary 7.3.7.

The discriminant of (K(gp),Qp) is then (see (2.1.3)) the product of the discriminants of
the direct summands W;E,i in the normal form of (K (ap), Qp), see Example 7.3.2.1.

8.1.4.1 Computing the discriminant of (K(g3),Q3)

According to Table 7.1, only the discriminant groups of the lattices
M € {{6), A2, A5, As, A11, A1a, A17, Eg}

have a non-trivial 3-primary part. The quadratic functions @js on the lattices M induce
on the discriminant groups A(M) the quadratic functions ga(as) given by (see [MMO9,
Chap. II, Table 7.2]):

2

”
qa((6)): Z/6Z — Q/Z, rg — 76
nr?
qaan: L/ (n+ D2 = Q/Z, rg = =57 === Oy for n =2,5,8,11,14,17
2
r
We compute (A(M)g, qA(M)g) over Zs:

2 22

A(6))s =Z/3Z . qaqe)s : A6))s =Qs/Zs. 19— 5o =5 modZy
22 472

A(Az)g :Z/?)Z R qA(A2)3 : A(Ag)g —>Q3/Zg, rg—— ﬁ ET?) mod Zg
512 22

A(A5)3 =Z/3Z , qa(as), : A(As5)3s —Qs/Zs, rg—— 55>53 mod Zg
2 8r? _ 10r?

A(Ag)s =2/3°Z, dA(As)s * A(Ag)z —Q3/Zs, TQH—W =5.32 mod Z3
1172 4r2

A(A11)3=Z/37 qA(AL)s A(A11)3—Q3/Zs, rg»—>—2 ET 573 mod Zs
14r2 22

A(A14)3:Z/3Z v GA(A14)3* A(A14)3—>@3/Z3, Tgi—)—z 15 ETS mod Zs
1772 14r?

A(Al?):g:Z/‘j‘)?Z7 dA(A17)s " A(A17)3—>Q3/Zg, T‘gl—>—2 18 E2 32 mod Zs
2 2

A(Ee)s =Z/3Z , qa(kq); : A(Ees)s —Qs/Zs, g Q—T?) mod Zs.

According to Definition 7.3.3, the normal forms of all these discriminant groups over Zs

have the form w§, with

7“2U

qs3: wgkﬁ(@fﬂ/ZSa rg — 2. 3k’
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where (u,p*) = 1, up® € 27 and x(u) =

We obtain:
M | AM) | A(M)3 | (A(M)3,qa0)5) | K(qaon),) | [AM)] | disc(K(qgans,))
(6) | Z/6Z | Z/3Z w3 Wit 6 3-2 mod (Z})?
Ay | ZJ3Z | Z/3Z w3 W3, 3 3 mod (Z3)?
As | Z)6Z | 7./3Z w3 Wi 6 3-2 mod (Z))?
As | Z)9Z | 7Z./3°Z Wy, Wi, 9 32 mod (Z3)?
An | Z)12Z | Z/3Z wy W3, 12 3 mod (Z3)?
A | ZJ)15Z | Z./3Z w3 Wi 15 3-2 mod (Z})?
Ay | Z)18Z | Z/3*Z w3, Wiy 18 | 3214 mod (Z5)?
Es | Z/37 | Z/3Z w3 Wi 3 3-2 mod (Z))?

Table 8.1: Quadratic forms over Zs on discriminant groups

Hence,

-1
A(A)g = '11}3 1 @ a2w3 1D CL5’U)3 1 @ a8w3 9 @ a11w3 1D a14w3 1 @ a17w3 2 ) €6Ws 1

in normal form. The associated quadratic Zs-module (K (g3), Qg) is then given by Corol-
lary 7.3.7 by

K(Q3) = W3_711 (&) CLQW31’1 & a5W3:11 (&) CL8W3172 & CL11W3171 & CL14W3_711 (&) a17W3:21 & €6W3:11.
The discriminant of (K(Q3), Qg) is then

disc(K (g3)) = (3-2)-3%2+(3-2)%-(3%)8.3%11.(3.2)"14.(32.14)17-(3-2)°  mod (Z])*. (8.5)

8.1.4.2 Computing the discriminant of (K(q5),Q5)

According to Table 7.1, only the discriminant groups of the lattices
M € {A4, Ag, A14, and Alg}

have a non-trivial 5-primary part. The quadratic functions (s on the lattices M induce
on the discriminant groups A(M) the quadratic functions ga(ns) given by (see [MMO9,
Chap. II, Table 7.2]):

TZT‘2

2 Z/( VZ — Q/Z, - f =4,9,14,19.
QA /n+ Q/ rg 2(n+1) orn ) )
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We compute (A(M)5, qA(M)5) over Zs:

492 612

A(A4)5 :Z/5Z, qA(Ay)s ° A(A4)5 —>Q5/Z5, rg— — ﬁ Eﬁ mod Z5
9r2  8r?

A(Ag)s =Z/5Z, qaag)s + AlAo)s =Qs/Zs, rg— — 5 0=7.5 modZs
1472 272

A(A14)5:Z/5Z, QA(A14)s A(A14)5—>Q5/Z5, rg— — o 15Eﬁ mod Zs
1972 4r?

A(A19)5:Z/5Z, QA(ALg)s - A(A19)5—>Q5/Z5, rg— — 5 QOEﬁ mod Zs.

According to Definition 7.3.3, the normal forms of all these discriminant groups over Zs
have the form w¢ ;, with

2

Qw5k w5k_>@5/Z57 T'g'—> 5k’

where (u,5%) = 1, us¥ € 2Z and x(u) =

We obtain:
M | AM) | A(M)s | (AM)s,qa0m)5) | K(gann,) | [ADM)] | dise(K (gacarys;))
Ay | Z)5Z | Z/57Z ws 4 Wi, 5 5 mod (Z)?
Ag | ZJ10Z | Z/5Z w5 Wit 10 | 5-8 mod (Z))?
Ay | ZJ15Z | Z/57 wiy Wi 15 | 5-2 mod (ZX)?
Ay | ZJ20Z | 7./5Z w; 4 Wi, 20 5 mod (Z)?

Table 8.2: Quadratic forms over Zs on discriminant groups

Hence,
1 —1 1 1
A(A)s = asws ; ® agws | © a14ws 1 S a19ws 4

in normal form. The associated quadratic Zs-module (K (g5), Q5) is then given by Corol-
lary 7.3.7 by
K(qs5) = G4W51,1 D a9W5T11 S 6114W5:11 S a19W51,1-

The discriminant of (K(q5), Q5) is then

disc(K (g5)) = 5% - (5-8)% - (5-2)™4 .59 mod (ZJ)*. (8.6)

8.1.4.3 Computing the discriminant of (K(q7), Q)

According to Table 7.1, only the discriminant groups of the lattices

M e {Aq, A3, }
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have a non-trivial 7-primary part. The quadratic functions ;s on the lattices M induce
on the discriminant groups A(M) the quadratic functions ga(ns) given by (see [MMO9,
Chap. II, Table 7.2]):

2

nr
A 1)Z Z ———  f =6,13.
qa): L/ (n+ 1)Z — Q/Z, rg gD T 6,13
We compute (A(M)7,qA(M)7) over Zr:
612 82
A(Ae)7 =ZJTZ, qa(ag), : A(Ae)7 —=Q7/Z7, rg— — 77 =57 mod Z;
13r2 1872
A(A)r=L/TL,  qaas),: AAi)r=Qr/Ls, rgmr — o—=7=5—  mod Zr.

According to Definition 7.3.3, the normal forms of all these discriminant groups over Zr
have the form w¢ , with

2

qw7k w?k_>Q7/Z77 Tg’_> 9. 7k’

where (u, 7%) = 1, u7* € 27 and x(u) =
We obtain:

M | AM) | A(M)7 | (AM)7,q9400m)) | K(qaan,) | [AM)] | disc(K (ganr),))
A¢ | Z)TZ | ZJTZ Wy 1 Wi, 7 7 mod (ZF
Az | Z)14Z | Z)7Z wr 1 Wi, 14 7 mod (ZF

2

)
)2

Table 8.3: Quadratic forms over Z7 on discriminant groups

Hence,
AAN); = agw%l @ a13w%71

in normal form. The associated quadratic Z7-module K (g7) is then given by Corollary 7.3.7
by
K(q7) = a6W7171 @ CL13W7171.

The discriminant of (K(q7), Q7) is then

disc(K(g7)) = 7% - 7% mod (Z5)*. (8.7)

8.1.4.4 Check condition (8.3)

The cardinality of the discriminant group A(A) is

19
AW = (JJG+1)™) - H4d L 9% . 37, (8.8)
=1
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For odd primes p, as a consequence of Hensel’s Lemma, an element in x € Z; is a square
root in Z, if and only if z is a square root mod p in (Z/pZ)*, see [Eis95, Chap. 7.2, p. 184].
Hence, equation (8.3) holds if and only if for all squares u mod p in (Z/pZ)* we have

JA(A)] — u - disc(K (gp))
up(|A(A)])

for all possible choices of u € ((Z / pZ)X)Z, where v, is the p-adic valuation on Z.

=0 modp

We compute

(Z/32))° = {1}, ((Z/52)°)° = {1, 4}, ((Z/72)*)* = {1, 2, 4} (8.9)

and
v3(|A(A)]) = a2 + a5 + 2as + a1 + aiq + 2a17 + ez,

1)5(’14([\)‘) = a4 + a9 + a4, (8.10)
v7(JA(N)]) = ag + ass.

Consequently, the set of all lattices A such that (6) & A satisfies conditions (2a)-(2d) is
given by

19 19 8
result := {A = @aiAi &) EijDj @ @ ex By, € listbe; for p = 3,5, 7:
i=1 j=4 k=6
19 19 8
if 21— () a4+ Y dij+ Y exk) =1(A((6) ® A)y),
1=i 4=j k=6
|A(A)] — u - disc(K (gp))

then Up(\A(A)D

=0modp foruc ((Z/pZ)X)2 }7

where |A(A)| has been computed in (8.8), ((Z/pZ)X)2 in (8.9), disc(K(gp)) in (8.5), (8.6),
and (8.7), and vy (|A(A)|) in (8.10). The set of all lattices in result such that the assumptions
in Theorem 7.4.3 holds, as well, is

19 19 8
resultu := {A = @aiAi D @dej P @ekEk € listbcu; for p = 3,5, 7:
i=1 j=4 k=6
19 19 8
if 21— () ai+ Y dij+ Y exk) =1(A((6) ® A)y),
1=i 4=j k=6

JA(A)| — u - disc(K (gp))

then =AM

=0modp foruce ((Z/pZ)X)2 }

8.1.5 Check condition (2¢) in Theorem 7.4.1

We claim that for all ADE lattices A, the lattice (6) & A satisfies condition (2e) in
Theorem 7.4.1. Indeed, the discriminant group of (6) @ A is given by A((6) ® A) =
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A((6))® A(A). By Lemma 7.3.1, the finite quadratic form (A((6)), ga((y)) over Zs is given
by (A(<6>)2>QA(<6>)2), where

A(6))s = (Z/6) = 22T, g3: A((6))s — Qa/Ta, rg b e = S

mode.
2-6 2-2

Hence, (A(<6>)2,qA(<6>)2) is the finite quadratic form w?, over Zs. Consequently, w:l)’v2

splits off the quadratic function g4(gea) on A((6) © A) over Zs. Hence, for all choices of
A, we do not need to check condition (2e).

In conclusion, the set result contains all ADFE lattices A such that there exists a primitive
embedding (6) & A — Lgs and the set resultu a subset of lattices in resultu such that
(6) ® A — Ls is uniquely determined up to an automorphism of Lg3.This concludes the
algorithm.

8.2 Main Theorem 2

Main Theorem 2. Let
19 19 8
G = Z a;A; + Z dej + Z er By
i=1 j=4 k=6

be a formal sum of ADE singularities such that the ADE lattice

19 19 8
A=Paidie @d;D; & P erEr
i=1 j=4 k=6

is one of the 2942 elements in the list in Appendixz C. The following hold:

1. There exists a complete (2,3)-intersection S of a smooth quadric and a cubic in P*
such that S has singularities of type G.

2. There exists a cubic fourfold with ADE singularities of type G and an A1 singularity.

Proof. By choice of A, we have a primitive embedding i: A® (6) — Lgs into the K3 lattice
and let h be the generator of the rank one lattice (6). In particular h? = 6.

Since ¢ is primitive, the saturation Saty,,, (i) of (6) & A in Lk3 is isomorphic to (6) & A
with respect to 1.

We claim, item (3) in Main Theorem 1 is satisfied: Let z € (6) ® A with h.x = 0 and write
x =nh+g, where n € Z and g € A. Then, 0 = h.x = h.(nh+ g) = 6n gives n = 0. Hence,
x € A. Consequently, all x € (6)@®A with h.xz = 0 and 22 = —2 are contained in A. Further,
assume that we have h.x = 1 (or h.x = 2). Then, 1 = h.xz = h.(nh + g) = nh?> + h.g = 6n
(or 2 = 6n). However, this equation holds for no n € Z. Hence, such an x does not exist.
In particular, there exists no x € (6) ® A with h.x = 1 (or h.x = 2) and 2% = 0.

Consequently, by implications (3)=-(1) and (3)=(2) in Main Theorem 1, there exists a
cubic fourfold having singularities of type G and an A; singularity and a complete (2, 3)-
intersection S of a smooth quadric and a cubic in P* such that S has singularities of type
G, respectively. O
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The lattice 10A; is the lattice with largest rank in the list in Appendix C which has only
Ay lattices as direct summands. Hence, we obtain the following:

Corollary 8.2.1. The following exist:

1. A complete (2,3)-intersection of a smooth quadric and a cubic in P* with precisely
10 Ay singularities.

2. A cubic fourfold with precisely 11 Ay singularities.

Proof. The list in Appendix C contains the lattice 104;. Hence, by Main Theorem 2,
there exists a complete (2,3)-intersection of a smooth quadric and a cubic in P* with 10
Aj singularities and a cubic fourfold with 11 A; singularities. O

Remark 8.2.2. We note that Corollary 8.2.1 does not necessarily give the maximal number
of A; singularities which can occur on a complete (2, 3)-intersection in P4 and a cubic
fourfold, respectively. Indeed, Varchenko’s bound for the maximal number of singularities
which can occur on a cubic fourfold is 15 (see [Var84, Theorem on the Upper Bound, p.
2781]) and hence a cubic fourfold with more than 11 but strictly less than 16 A; singularities
could exist.

The lattices 241 $6As, 441 B5As, and 6 A1 ®4A, are the lattices with largest rank in the
list in Appendix C which have only A; and As lattices as direct summands. Therefore, we
obtain:

Corollary 8.2.3. The following exist:
1. A complete (2,3)-intersection of a smooth quadric and a cubic in P* with precisely:
a) 2 Ay and 6 Ay singularities.
b) 4 Ay and 5 As singularities.
c) 6 Ay and 4 Ay singularities.
2. A complete (2,3)-intersection of a quadric of corank 1 and a cubic in P* with precisely:
a) 8 Ay and 5 Ay singularities.
b) 5 A1 and 4 Ay singularities.
c) 7 A1 and 3 Ay singularities.
3. A cubic fourfold with precisely:
a) 8 Ay and 6 Ay singularities.
b) 5 A1 and 5 Ay singularities.
c) 7T Ay and 4 Az singularities.
Proof. The list in Appendix C contains the lattices 241 $6A49, 441 §5A2, and 6A; G 4A,.
Hence, by Main Theorem 2, there exist complete (2, 3)-intersections of smooth quadrics and
cubics in P* whose singularities are precisely of type 241+ 649, 4414+ 545, and 641 +4As.
Moreover, there exist three cubic fourfolds with singularities of type 341 +6A42, 541 +5A4,,
and 7TA; + 4A,. By implication (1) = (2) in Main Theorem 1, we have furthermore the

existence of complete (2,3)-intersections of quadrics of corank 1 and cubics in P* with
singularities precisely of type 341 + 5As, 5A1 + 4As, and 7TA; + 3A,. O
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Remark 8.2.4. We note that Corollary 8.2.3 does not necessarily give the maximal number
of A; and A, singularities which can occur on a complete (2, 3)-intersection in P* and a
cubic fourfold, respectively.



9 Correspondence between the moduli
space of cubic fourfolds and
quasi-polarized K3 surfaces of degree 6

In this chapter, we will firstly define lattice polarized K3 surfaces and then recall the
construction of the moduli space of big and nef lattice polarized K3 surfaces. We will
then construct the moduli space of those quasi-polarized K3 surfaces (S, L) such that
the map ¢r: S — P* is birational onto its image and such that ¢ (S) has a certain
configuration of ADFE singularities, as the moduli space of certain lattice polarized K3
surfaces. Secondly, we will construct the moduli space of cubic fourfolds with certain
ADF singularities. Finally, we will prove Main Theorem 3, which says that both moduli

spaces are isomorphic.

9.1 Lattice polarized K3 surfaces

9.1.1 Basic notation and definitions

Let M be an even lattice of signature (1,¢) with ¢t > 0.

An M -polarized K3 surface is a pair (g,j), where S is a K3 surface and ji M — Pic(g)
is a primitive embedding. We say that an M-polarized K3 surface (g,j) is big and nef
if there exists an isomorphism class of a line bundle in j(M ) which is big and nef. Two
M-polarized K3 surfaces (§ ,7) and (5’ ,j') are isomorphic if there exists an isomorphism
f: S — & such that j = f*oj'.

We note that for ¢t = 0, an M-polarized K3 surface is simply a quasi-polarized K3 surface
defined in Chapter 3 and all results here specialize to the results for quasi-polarized K3
surfaces.

9.1.2 Periods of lattice polarized K3 surfaces

Let M be an even lattice of signature (1,¢) with ¢ > 0 which is embeddable into the K3
lattice Lgs. We fix a primitive embedding i5;: M < Lgs and identify M with its image
’LM(M) in LK3.

We call a pair (S, ¢) a marked M -polarized K3 surface if S is a K3 surface and ¢: H2(S,Z) —

Lis is a marking such that ¢~ (M) C Pic(S). It follows that for j, = ¢_1|M5 M —
Pic(S) the pair (S, Jg) is an M-polarized K3 surface and we call a marked M-polarized
K3 surface big and nef if (S,js) is big and nef. Two marked M-polarized K3 surfaces
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(S,¢) and (S',¢') are called isomorphic if there exists an isomorphism f: S — S’ such
that ¢/ = ¢ o f*.

Denote by Fm the fine moduli space of marked M-polarized K3 surfaces (see [Dol96, §3])
and by F}\'jfm the subset of all isomorphism classes of big and nef marked M-polarized K3
surfaces.

Let M LLK3 be the orthogonal complement of M in L3 with respect to ips. Let Qp,., be
the period domain defined in Section 3.4. Then,

QM) = {[z] € P(M, ., ®zC); 2> = 0,27 > 0} € Qp,,

is the period domain of big and nef M-polarized K3 surfaces, a complex (20 — rank(M))—
dimensional manifold with two connected components each of which is a bounded sym-
metric domain of type IV.

Let (§ ,®) be a marked M-polarized K3 surface. We have a Hodge decomposition
H*(S,C) = H*(S,05) & H'(S,0%) & H(S,0%).

For a generator w of the 1-dimensional C-vector space H2(S, Og), we let [p(w)] = ¢(w)
mod C* € P(M; , ®z C). We can show that [¢p(w)] € Q(M) and call [¢(w)] the period

K

point of the marked M-polarized K3 surface (§ ,0).

Let O(Lks) be the automorphism group of Lxs and
O(LK3>M) = {g S O(LKg); 9m = 1d\M}

the subgroup of O(Lk3) fixing M point-wise. The group O(Lgs, M) acts on Fjsym, by
sending a marked M-polarized K3 surface (S, ¢) and an automorphism o € O(Lgs, M) to
(S, 0 0 ¢) without changing the isomorphism class of the M-polarized K3 surface (.5, jg).

Let O(M Lle) be the automorphism group of M i‘Ks and Oy be the image of the injection
O(Lks, M) — O(Mi‘m) obtained by restricting an element in O(Lgs, M) to Mng.
Proposition 9.1.1 ([Dol96, Proposition 3.3|). Oy is an arithmetic subgroup of the indef-
inite orthogonal group 0(2, 19 — rank(M)),

The group Oy acts properly-discontinuously on Q(M). Hence, Q(M)/Oys is a complex
algebraic variety of dimension 20 — rank(M).

Theorem 9.1.2 ([Dol96, Remark 3.4|, [HT15, 3.1]). Assume that the embedding i: M —
Ls is unique up to an automorphism of Lis.

The elements of the quotient set
Fyf = Fypn/O(Lics, M)

are the isomorphism classes of big and nef M -polarized K3 surfaces. Furthermore, we have
a bijection

pr FPn DU pbn o oy /0y
defined by the period map.

We refer to f}\’f as in Theorem 9.1.2 as a coarse moduli space of big and nef M-polarized
K3 surfaces.
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9.2 Moduli spaces of K3 surfaces with a certain Picard group

We define in the next two Subsections 9.2.1 and 9.2.2 isomorphism classes of certain quasi-
polarized K3 surfaces and certain lattice polarized K3 surfaces. In Subsection 9.2.3, we
show that we have a correspondence between the two sets of isomorphism classes. In
Subsection 9.2.4, we construct then the moduli space of these polarized K3 surfaces as a
moduli space of the corresponding lattice polarized K3 surfaces.

For T € {A;>1,Dj>4,Eg>1>6}, let the following be defined as in Table 6.1: The formal
sum of ADFE singularity types o(T), the positive integer corankr, the weighted graph
[, (1) with associated lattice A(I,(t)), and the linear combination hr € A(T;(T)) of the
vertices of I (.

Let
((al, . ,an), (d4, e ,dm), (66, er, 68)) - (Zzo)n X (Zzo)m_g X (220)3.

9.2.1 Isomorphism classes of certain quasi-polarized K3 surfaces of degree 6

Let (§ ,Lt) be a polarized K3 surface of degree 6 such that ¢r..: S — P* is birational

onto its image. By Proposition 3.3.4, ¢r..(S) is a complete (2, 3)-intersection of a quadric
Q and a cubic Y in P%.

Let
n m 8
G = ZaiAi + Zdej + Z erEp
i=1 j=4 k=6
be a formal sum of ADE singularity types.
Definition 9.2.1. Let K?°

- o(T),G
surfaces (S, L) of degree 6 such that

be the set of all isomorphism classes of quasi-polarized K3

1. orp: S — P* is birational onto its image

2. ¢ LT(§ ) is contained in a quadric @ C P* of corank(Q)) = coranky such that

a) the singularities of ¢r..(S) lying on Sing(Q) correspond to o(T)

b) the singularities of ¢ LT(§ ) not lying on Sing(Q) correspond to G.

9.2.2 Isomorphism classes of certain lattice polarized K3 surfaces

For ((al, coyap), (dyy ... dp), (66, €7, 68)) € Z>o" % Zzom_g X 2203, let

n m 8
G = ZaiAi + Zdej + ZekEk
i=1 =4 k=6

be a formal sum of ADFE singularity types and

n m 8
I'g = Z a;A; + Z dej + Z el
i=1 j=4 k=6
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a Dynkin diagram with connected components A;, Dj, and &. Let Ay = ALy (1)) ©
A(T'g) be the associated lattice such that we have an embedding (not necessarily primitive
or unique)

i: AO’(T),G — Lgs.

Let
SatLKS (’L) C Lgs

be the saturation of A, (t) g in L3 with respect to i. Then, Lg3/Saty,, (i) is torsion-free
by definition of the saturation. Hence, the inclusion defines a primitive embedding

L: Sath (Z) — Lgs.

Definition 9.2.2. Let FSo
atr,

K3 surfaces (S, ) such that for Lt = j(i(ht)) we have

) be the set of all isomorphism classes of Satr, ., (7)-polarized

1. for all E € Pic(S) with Lp.E = 0 and E? = —2, we have E € j(i(A,(1).c))
2. there exists no E € Pic(g) such that Lp.E =1 and E? =0
3. there exists no E € Pic(S) such that Ly.E = 2 and E2? = 0.

9.2.3 Correspondence between isomorphism classes of certain
quasi-polarized and lattice polarized K3 surfaces

We keep the notation and definitions made previously in Subsection 9.2 and will make in
the following furthermore the assumption:

The embedding i: Ay(T),g <> Lis defined in Subsection 9.2.2 is unique up to an

automorphism of Lgs. (9.1)

Such lattices Agy(T) g exist. Indeed, in Theorem 8.1.1 we determined 1607 ADE lattices
A(l'g) such that we have a primitive embedding As(a,)r = (6) ® A — Lgg which is
unique up to an automorphism of Ls.

By assumption (9.1), we have then a correspondence between the sets of isomorphism
classes in Definition 9.2.1 and 9.2.2 in the last two subsections:

Lemma 9.2.3. We have a natural bijection Kg( ™G Fe

Proof. We claim that a bijection K qy o — FsatL L) is defined by ¥: [(S,Lt)] ~—

[(S, Jg)] for a marking ¢: H2(S,Z) = Lgs with qb(LT) = i(hT) with ht as in Table 6.1,
where [(S,Lt)] is the isomorphism class of the quasi-polarized K3 surface (S Lt) and
[(S,jg)] the isomorphism class of the Saty,,(i)-lattice polarized K3 surface (S, js) with

Jo = & Vsaty ()t SatLe (1) = Pic(9).
We show that the map X is well-defined:
We prove that the lattice Ay(T) g is contained in Pic(S). Indeed, in the proof of (2) = (3) in

Main Theorem 1 we showed that for a specific hyperplane section Cp of S == ¢ LT(S )y C Pt
the pull-back o7 _(Cr) € Div(5S) is the linear combination of curves in Div(S) such that the
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weighted graph associated to these curves is I';() as in Table 6.1. Furthermore, Lt is the

line bundle on S associated to ©7(Cr). Let A(Ty(T)) be the lattice in Pic(S) associated to
I'y(T). Further, we showed that the weighted graph associated to the exceptional divisor in

S of the minimal resolution of all singularities corresponding to G is the graph I'g and spans

the lattice A(T'g) in Pic(S). Hence, the corresponding lattice Asmy,a = A1) ©A(Tq)

is contained in Pic(S).

The marking ¢: H2(S,Z) — Lgs with ¢(Lt) = i(ht) restricts to an embedding

P Ayery e No(T),G = LKs

and the inclusion defines naturally a primitive embedding

SatLK’S (¢‘AU(T),G) — LKS

of the saturation of A,(1) g into Lk with respect to ¢|AU(T) <+ We prove that

. -1 . :
ty = (bsatLszlA[,(T),G). SatLK3(¢IAU(T),G) — Pic(95) (9.2)

defines a primitive embedding. Indeed, let z € SatLKS(gZ)‘AU(T)’G), ie. z € Lgs and
there is n, > 1 such that n,x € ¢(Ay(1)g). Since ¢(Ay(1)c) C ¢(Pic(§)), we obtain
ng¢ 1 (z) € Pic(S). However, H2(S,Z)/Pic(S) is torsion-free and hence tolx) =97 1(z) €
Pic(g). Therefore, the map is well-defined. Further, the embedding is primitive. Indeed,
let = € Pic(S) such that for n, > 1, we have n,a € t4(Saty,, (¢|A0(T),G))’ ie. nyo(x) €
SatL s (DA, (py.o)- However, ¢(x) € Liz and Lgs/Satr,(d)a, ) o) is torsion-free so

¢($) c SatLK3 <¢|AU(T>,G)7 le. x € t¢(SatLK3(¢|Ao(T),G))'

By assumption (9.1), the embedding i: As(1),c = Lks3 is unique up to an automorphism
of Lks. Hence, ¢|5 —— Ao for an automorphism A of Lg3 inducing an isomorphism

)‘|SatLK3(z‘)3 Saty ey (i) — Sat, e, (¢|AU(T),G)'

Therefore, we have a primitive embedding

j¢ = t¢ o >‘|SatLK3(i): SatLKs (’L) — PiC(S).

Consequently, (S, Js) is a Satr,.,(i)-polarized K3 surface and the isomorphism class of
(S,7e) is independent of the choice of the marking ¢.

We showed in (2) = (3) in Main Theorem 1 that 1.-3. in Definition 9.2.2 hold.

In conclusion, the isomorphism class [(g, j¢)] of (g, j¢) is contained in Fé’atL (i) i.e. the
K3

map X is well-defined.
We claim that ©: Fg, o) = Kgp) g [(S,5)] — [(S", j(i(hT))>} with hr € A(T, ) as
in Table 6.1, is inverse to X.

We show that © is well-defined:

Let (S, ) be an element in the isomorphism class [(S, j)] € FSyt, (- We have a primitive
K3

embedding j: Saty,,(7) <= Pic(S) and items 1.-3. in Definition 9.2.2 hold.
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Let Lt := j(i(hr)). Note that for an effective Hodge isometry a: H2(S,Z) — H%(S,Z)
the Saty,,(i)-polarized K3 surfaces (S,7) and (S, a0 j) are isomorphic. We claim that we
can choose « such that a(Lyt) € Pic(g) is nef. Indeed, by replacing j by —j if necessary,
we can assume that Lt is contained in the positive cone Cg. Then, by Proposition 3.2.3,

we have (—2)-curves C1,...,C, € Pic(S) such that the image (s¢, o ... o sg,)(Lt) of
Lt under the Picard-Lefschetz reflection s¢, o ... 0 s¢, is nef. In conclusion, taking o ==
Scy ©...08¢, o (£id), we can assume that Ly is nef.

Since items 2. and 3. in Definition 9.2.2 hold, there exists no element E € Pic(S) with
E? =0and Lt.E € {1,2}. Therefore, Proposition 3.2.6 implies that the map (... S — Pt
is birational onto its image. By Proposition 3.3.4, the image S = goLT(g) C P* of S under
¢Ly is a complete (2, 3)-intersection in P4.

Let Mt be the Z-module generated by the root system Rp,. = {C € Pic(S); €2 =
—2,Lp.C = 0}. We claim that My = j(i(AU(T),G)). By definition of L, we have
j(i(Aa(T),G)) C M. Further, since [(g,j)] satisfies item 1. in Definition 9.2.2, there
exists no C in Pic(9) such that C2 = —2, C.Lt = 0, and C ¢ j(i(Ap(r),c)). Hence,
j (i(Ao(T),G)) = M. By Corollary 3.3.5, S has singularities of type o(T)+ G correspond-
ing to the Dynkin diagram Ay (1).g = A(ly(1)) + AMla).

Following the proof of (2) = (3) in Main Theorem 1, we see that S is contained in a
quadric Q of corank(Q) = coranky in P* such that all singularities of S on the singular
locus of @ are of type o(T) and all other singularities of S are of type G.

We show that ¥ and © are inverse to each other:
Let [(S, Lt)] € K7 1),g- We have >([(S, L1)) = [(S, Jo)] for a marking ¢ of S such that

#(Lt) = i(ht). Then, O([(S,74)]) = [(5, j¢(i(hT))>] = [(S,Lt)]. Therefore, @ 0 ¥ =

ldK;(T),G'

Let [(S,5)] € FSui, ) We have O([(S,)]) = [(g,j(z(hT))>] Then, for a marking ¢
of S such that ¢<]( (h T))) = i(ht), we have E([(g,](z(hrr)))]) = [(§,j¢)]. Since the
embedding A,(1),g <> Lks3 is uniquely determined up to an automorphism of Lgs, we

have [(S, )] = [(S, Js)]. Therefore, also ¥ 0 © = idpe N O

SatLKB (2)

9.2.4 Moduli space of certain polarized K3 surfaces as the moduli space of
certain lattice polarized K3 surfaces

We keep the notation and assumptions made at the beginning of Subsection 9.2 and in
Subsection 9.2.2. Let

Ap = {z € Lgs \ i(Ay(T) ); i(ht).x = 0,2° = —2}
A, ={x € Lgs; z(hT) 1,2% = 0}
Ay = {z € Lgs; i(hp)x=222=0}.

Remark 9.2.4. The indices n, u, and h should remind us of nodal, unigonal, and hyperelliptic
classes in the Picard group of a K3 surface, respectively.
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For e € A, Ay, or Ay, let

et = {x € (Satz,,(i)t,. ®2 C; c.x = 0}

Lks

be the orthogonal complement of ¢ in Lg3 and

. 4 . 1 . 1
HAn = U (SN HAu = U (ST HAh = U (S
€Ay e€EAy cEA

We define then the following subset of the period domain Q(Saty,,,(i)):

QSatr ey (1)) = Q(Satres () \ ((Ha, U Ha, U Ha,) 0 Q(Sats () ).

We note that (Ha, UHa, UHa,) N Q(Sat,,(i)) is a countable union of hyperplanes in
Q(SatLK3 (2)) However, we claim the number of the OSath(i)‘OTbitS of the hyperplanes
in (HAn UHA}, UHAh) N Q(SatLK3 (z)) is finite. Indeed, by Eichler’s criterion (see [GHS13,
Lemma 7.5]), there are only finitely many O(Lgs,Saty,,(i))-orbits of elements with a
fixed length in Lgj3. Since O(LKg,SatLK3 (z)) and OSatLKg(i) are isomorphic, we have

consequently only finitely many OSatLKS(i)‘OrbitS of hyperplanes et in (Sath (Z))Z{3 ®zC
with e € A, UA, UAp having a fixed length.

Consequently, OSath @) \ Q(SatLKs(i))o is the complement of the finitely many orbits of
L in the moduli space Fr" = OSath OR Q(Sa‘tLK3 (l)) of big and nef

Satp g (4)
Satr,., (i)-polarized K3 surfaces constructed in Theorem 9.1.2 and hence is in particular a
quasi-projective variety, i.e.

hyperplanes ¢

fé)atLK3(i) = OSatLK3 (%) \ Q(Saths (i))o

is an open subvariety of ]:é’;ltL ()"
K3

Proposition 9.2.5. }—gath(i) s a coarse moduli space of all quasi-polarized K3 surface
(S, Lt) of degree 6 such that:
1. opy: S — P* is birational onto its image
2. goLT(g) is contained in a quadric Q@ C P* of corank(Q) = coranky such that
a) the singularities of goLT(g) lying on Sing(Q) are of type o(T)
b) the singularities of goLT(g) not lying on Sing(Q) correspond to G,
i.e. with Definition 9.2.1, we have a bijection
o(T),G 2, Satp ey (i)° (9.3)

Proof. By Lemma 9.2.3, we have a bijection

(e} bij o
Komye = Fsatp,, () (9.4)
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where Fg, o) is the set of isomorphism classes of Satp,.,(i)-polarized K3 surfaces in

Definition 9. 2 2.

Let (S, 4) be a Satr,., (i)-polarized K3 surface whose class is contained in FsatL L) We

saw in the proof of (3) = (2) in Main Theorem 1 that for a marking ¢: H2(S,Z) — Lis,
the line bundle Ly := ¢! (i(ht)) € Pic(S) with hr € Ay(T),g as in Table 6.1, is big and

nef. Hence, F¢
Saty, Lis

K3 surfaces introduced in Subsection 9.1.2.

(1) 1s a subset of the set Fg; on (1) of all big and nef Satp ., (i)-polarized
Lks

We now show that the bijection p: Féb;t ) le .Fé’nt (@) in Theorem 9.1.2, given by the

period map p, descends to a bijection:
¥ = 78 (9.5)
o= = PIFg Satr, 4 (1) Satr, 4 (2) Satp 4 (4)" :

We prove firstly that p°(Fg,, ) € F§
K3

Satp 4 (8)

Indeed, let (S,7) be a Satp, ., (i)-polarized K3 surface in Fg, =

for S such that j, = <Z>|_S;tLK3(i) = j and hence j4(Satp,. (i )) = j(Satr,,(i)) C Pic(S)
(note that such a ¢ actually exists since the embedding A, (), = Lk3 is unique up to an
automorphism of Lg3 by assumption (9.1), see [Dol96, p. 2606]). Let wg be the generator
of the 1-dimensional C-vector space H°(S, Q%) Let [p(wg)] € Q(SatLKS( )) be the period

point of the marked Saty, ., (i)-polarized K3 surface (S, ).

) Let ¢ be a marking

We have to show that [p(wz)] € Ha, U Ha, U Ha,,:

Indeed, if [¢(wg)] € Ha,, we have an € € A, such that e.[p(wg)] =0, i.e. E:=¢ 1(c) €
Pic(S). By definition, ¢ € Lgs \ i(A o(T),G): €8 = —2 and c.i(hy) = 0. Therefore,
E € Pic(S) \ Jo (i(Ay(1),g)) with E? = —2 and E.Lt = 0. Since the isomorphism class of
S is contained in FSo,
such an € cannot ex1st

() and hence satisfies condition 1. above, such an E and therefore

Likewise, if [p(wg)] € Ha, (or [¢p(wg)] € Ha,) we have an € € A, (or € € Ap,) such that
e[p(wz)] =0, ie. E:=¢ () € Pic(S). By definition, € € Lgs, €* = 0, and e.i(hy) = 1
(or e.i(hy) = 2). Therefore, E € Pic(S) with E> = 0 and E.Ly = 1 (or E.Ly = 2).
Again, since the isomorphism class of S is contained in FSat ) and therefore satisfies
conditions 2. (and 3.) above, such an E and therefore such an 5 cannot exist.

Consequently, [¢(wg)] € Q(Satr,, (i))°.

Moreover, two markings as above differ by an element in the group of automorphisms
OSat, ., (i)

In conclusion, we obtain pO(FSOatL S )) OSatL @ \ Q(Satr,, (i) = ]:§atLK3 (i)

We prove secondly that p° is surjective:

Indeed, for x € F¢

Satp ., (i) Ve have by the surjectivity of the period map a K3 surface S

and a marking v for 5’ such that x is the period point of the marked K3 surface (S ).
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: (o)
Since =z € ‘FSatLKS(

i), we have x.Satr,, (i) = 0. Therefore, ¥~ (Satr,.,(i)) C Pic(S).

Consequently, j, = 9 (i) " Satr (i) < Pic(S) defines a primitive embedding.

-1
‘SE:\.(ZLK3

We claim that (S, jy) € Fé)atLK3(i):
Indeed, assume that we have E € Pic(S) \ Ju (i(Ay(T),c)) with jy(i(hr)).E = 0 and
E? = =2. Then, ¢ = ¢(E) € Lgs \ i(Ay(1),g), i(hr).c =0, and €2 = —2 in contradiction
to the fact that = ¢ H,, i.e. there exists no such e.

Likewise, assume that we have E € Pic(S) with E? = 0 and jy(i(ht)).E = 1 (or
jy(i(hp)).E = 2). Then, € := ¢(E) € Lgs \ i(Ay(T)c), € = 0, and i(hy).e = 1 (or
i(ht).c = 2), in contradiction to the fact that = ¢ Hy (or x ¢ H,), i.e. there exists no
such e.

In conclusion, p° is bijective.
By (9.4) and (9.5), we have a bijection Kl m.a Pl ro

SatLK3 (’L

) This concludes the proof.
O

Lemma 9.2.6. The quasi-projective variety fgatL () has dimension 20 — rank(AU(T)’G).
3

K 2

Proof. The period domain (Satp,.(i)) has dimension 20 — rank(Satz,,(i)) = 20 —
rank(A,(r),g)- As OSatLKS(i) acts properly-discontinuously on Q(SatLK3(i)), this implies
that the quotient fé’;‘tLKB(i) = Q(SatLKg(i))/Osath(i) has dimension 20 — rank(A,(1).c)
and since Fg (i) is an open subvariety of F2n (i) it has dimension 20—rank (A, (T).c),

SatLK3 SatLK3
as well. O

Remark 9.2.7. Proposition 9.2.5 proves in particular implication (3) = (2) in Main Theo-

rem 1 in case we have a unique embedding Ay(1),g < Lks3. Indeed, we showed that the

points in the moduli space Fg ats .. (i) parametrize in this case quasi-polarized K3 surfaces
K3

as in item 2. in Main Theorem 1.

9.3 Moduli spaces of cubic fourfolds with isolated ADFE
singularities

Let G be a finite formal sum of ADFE singularity types.

We denote MG the set of all isomorphism classes of cubic fourfolds having only singularities
corresponding to G.

The projective space P(H O(P5, Ops (3))) = P55 parametrizes all cubic fourfolds. We denote
by [X] the point in P associated to a cubic fourfold X C P°.

For each [X] € P5°, fix a small open neighborhood U([X]) C P of [X] such that all
points in U([X]) correspond to cubic fourfolds whose singularities are adjacent to those of
X (see Section 1.1 for the definition of adjacent).

Let
Ig = {[X] € P%; Sing(X) = G}
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be the set of all points in P> associated to cubic fourfolds with singularities corresponding
to G. Denote

Yg = {G' formal sum of ADEFE singularity tpes; G’ is adjacent to G and G’ # G}

the set of all possible combinations of ADFE singularity types which are adjacent but not
equal to G. Let

Ig = U {[X] € P?5; Sing(X) = G'}
G/EEG
be the set of all points in P?® associated to cubic fourfolds with singularities adjacent but
not equal to G. Then, U[X}e]é U([X]) is an open subset of P® containing only points in

P55 associated to cubic fourfolds whose singularities are adjacent but not equal to G.

Hence, P55 \ U[X]e[é U([X)) is closed in P5. Likewise, Uixjere U([X]) is an open subset
of P containing only points in P?® such that the singularities of the associated cubic
fourfolds are adjacent to G. Consequently,

ué = |J vaxp(F*\ UJ vix)) cp®

Xela [X]elg

is locally closed in P??, i.e. a quasi-projective variety in P?® and contains only those points
in P5® associated to cubic fourfolds with singularities corresponding exactly to G.

Let (zg : ... : x5) be coordinates on P5. For an element g in the special linear group
SL(6) and [X] € P? the class of a cubic fourfold X : f(xg,...,z5) =0 C P?, defined by a

homogeneous cubic polynomial f, we let

g([X]) : f(g(x(]v s 7$5)) =0¢C IP)5
and obtain hence an action of SL(6) on P.

For the action of a reductive group G on a projective variety M together with a linearization
of a line bundle over M for this group action, we consider the open subset M* C M of
G-stable points of M in M (see [MFK94, Chap. 1, Definitions 1.4, 1.7] for the definitions).
By Mumford’s Geometric Invariant Theory (GIT), we have a quotient M*//G of M? by
the group G (see [MFK94, Chap. 1, Theorem 1.10]). The group SL(n) is reductive for
a positive integer n. In the following, we will consider the above action of SL(6) on
the projective space P5 together with the natural SL(6)-linearization with respect to the
hyperplane bundle Opss(1). We have then:

Theorem 9.3.1 (|Laz09, Theorem 1.1]). Let X be a cubic fourfold with only isolated
singularities. Then, X is SL(6)-stable if and only if X has at most ADE singularities.

Corollary 9.3.2.
MSC =1 ) SL(6)

is in the sense of GIT a coarse moduli space of cubic fourfolds with ADE singularities
corresponding to G, i.e. we have a bijection

bij
MG 2L MG,
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Proof. By definition, all points in Y& C P5® parametrize cubic fourfolds with singularities
corresponding to G. By Theorem 9.3.1, all these points are stable with respect to the
action of SL(6) on P%. Hence, we have a well-defined GIT quotient 4 // SL(6) which is
a quasi-projective variety, see [Muk03, Corollary 5.15, Example 4.42|. O

Lemma 9.3.3. Let 7= ZpGG T(p) be the sum of the Tjurina numbers of all singularities
in G. Assume that we have T < 16. Then, MS has dimension 20 — 7.

Proof. Let Xo C P° be a cubic fourfold having only the singularities px, 1, ..., Pxyn With
ADE types Ty, ..., T,, respectively, such that G = Ty + ...+ T,,. Let U([Xq]) C P? be
an arbitrarily small open neighborhood of [Xj]. Let

Y = {([X],x) C P x P°; X cubic fourfold, z € X}

be the universal cubic fourfold. For ¢ = 1,...,n, we now construct a deformation of
the germ (Xo,px,,). Indeed, for an arbitrarily small neighborhood V(px, ) C P5 of the
singularity px,,; of Xo, let

Yo (X)) = VU xo) <V (px.0)
be the restriction of Y to U([Xo]) X V(px,,i). Then,
di: Vu(ixo)),i = U([Xol), ([X],2) = [X] (9:6)

is a deformation of the germ (Xo,px,,) over the base point [Xo] € U([Xo]). On the other
hand, by |[GLS07, Chap. II, Corollary 1.17], we have a semi-universal deformation

ur, : XTi — (CT(Ti)

of the germ (Xo, px, ) over the base point (0,...,0) € CHTi) . Consequently, there exists
a morphism

Ki: U([Xo]) — (CT(T"L)

such that we have a pull-back diagram

Vu(xoli —— X,

" Jo=

U([Xo)) — C7(T

for some morphism s;. We obtain a commutative diagram

n [Ty si n
[T Yoqxops ——— [Tz
J/H?:l d; ln?:1 uT,

[T, U([Xo)) == [T, €T,
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K3 surfaces of degree 6

For
i+ U(Xo)) = [Tudxo)),  (X],2) = [J(1X],2),
i=1 i=1
let . .
k= ([[ri)oi: U(Xo)) = [JC7™.
i=1 i=1
We recall

Theorem 9.3.4 (|[dPWO00, Theorem 1.1|). Let X be a hypersurface of degree d in P™ with
only isolated singularities. Let T(X) be the global Tjurina number of the singularities of X .
Ford=3,4 ord>5 set 6 =16,18 or § = 4(d — 1), respectively. If 7(X) < 9§, the family
of degree d hypersurfaces induces a simultaneous versal deformation of all singularities on

X.

By Theorem 9.3.4, it follows that the morphism & is a submersion, cf. [CGHL15, 3.4].
Hence, we have

dim £7(0) = dim U([Xo]) — dim(] [ €"™)) =55 — .
i=1

Since fibres of the map ]} ur, over all points different from the central fibre (0,...,0) €
| ) C7(T) are singularities milder than T4, ..., T, and since the diagram commutes, the
locus of all points in U([X]) having only singularities of type G is x~1(0). Since U([Xo))
is an open subset in P°® this gives that the locus UC of all cubic fourfolds with ADE
singularities of type G has dimension 55 — 7. Therefore, the quotient M =S // SL(6)
has dimension dim MY =55 — 7 — (36 — 1) = 20 — 7. O

9.4 Main Theorem 3

In this section, we want to show that the moduli space of cubic fourfolds with a certain
combination of ADFE singularities constructed in Subsection 9.3 is isomorphic to the moduli
space of certain quasi-polarized K3 surfaces constructed in Subsection 9.2.4. We keep the
notation made in those subsections.

Let T € {Ap>1,Dj>4, Eg>t>6} be an ADE singularity type. For a tuple of non-negative
integers

((alv s 70%)1 (d47 s 7dm)7 (667 €7, 68)) € (ZZO)TL X (ZZO)m_4 X Z37

let
n m 8
G = Z CLiAi + Z dej + Z 6kEk
i1 =4 k=6

be a formal finite sum of ADFE singularity types, and let

n m 8
T'g = Z a;A; + Z dej + Z erEr
i=1 j=4 k=6
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be a finite Dynkin graph such that condition (9.1) holds for the lattice A, (1) G-

Let UTTC be the locally closed subspace of all cubic fourfolds in P(H(P5, Ops(3))) with
isolated ADFE singularities of type G and a singularity of type T and

MT+G UT+G //SL( )

the coarse moduli space in the sense of GIT of all cubic fourfolds with singularities corre-
sponding to T + G constructed in Subsection 9.3.

Let FSat

() be the moduli space constructed in Subsection 9.2.4 of all quasi-polarized
K3 surfaces (§ , L) with the property that ¢r..: S — P* is birational onto its image and
¢r(S) is contained in a quadric Q C P* of corank(Q) = coranky such that firstly the
singularities of ¢r...(S) lying on the singular locus of @ are of type ¢(T) and secondly

those singularities of ¢r..(S) not lying on the singular locus of @) correspond to G.

It is our goal in this subsection to prove the following Main Theorem 3.

Main Theorem 3. We have an isomorphism of quasi-projective varieties
¢p: MTTG 5 FS @ X [(Spy, 05, (D)),

where px s a singularity of ADE type T on a cubic fourfold X, S, is the image of the
union of all lines in X through px under the projection of P? through px onto P* as defined
in Section 5.1, and w: Sy — Spy 15 the minimal resolution of all singularities on Sy .

We want to show that in the situation of Main Theorem 3, the minimal model :S'; for the
surface .S}, is up to isomorphism independent of the choice of a singularity p of type T on
the cubic fourfold X. Before we can prove this, we need one technical preparatory result:

Lemma 9.4.1. Let X C P5 be a cubic fourfold with only isolated ADE singularities and
lo € X a line through an ADE singularity p of X. Let L1y be the plane in P° spanned by
lo and a general line | in X through p. Then, lly is not contained in X .

Proof. Assume conversely that for a general line [ in X through p the plane I is contained
in X. As in Section 5.1, let m,: P®> --» H = P* be the projection of P5 through p onto
a hyperplane H C P° with p ¢ H, let F), be the union of all lines in X through p, and
let S, == m,(F,) € P* By Corollary 5.2.3, S, has only isolated ADE singularities and
the minimal model :S’; of Sp is by Lemmas 5.1.2 and 4.2.2 a K3 surface. Since the plane
1y is by assumption contained in X, it follows that F, contains all lines in the plane Iy
through p and S, contains the line H N1ly. Since [ is general, we have a continuous family
of distinct planes in X through p and hence also a continuous family of distinct lines in .S,.

This implies that S, is uniruled. Since S is birational to S, this gives that S is uniruled,
as well, in contradiction to Sp being a K3 surface. Hence, the assumption must have been
wrong and for a general line [ in X through p the plane Il is not contained in X. O

Proposition 9.4.2. Let X be a cubic fourfold with only isolated ADE singularities and
two singularities p1 and py both of the same ADE type. For i = 1,2, let S,, be the image
of the union Fy,, of all lines in X through p; under the projection m,, from P® through p;
onto P4 as defined in Section 5.1. Then, Sp, and Sp, are birational.
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Proof. Let l; be a general line in X passing through p;. Let Iy be the line containing both
p1 and po. Since p; and py are double points, [y intersects p; and po with multiplicity 2,
hence [y intersects X with multiplicity 4. However, since X has degree 3, this means that
lp must be contained in X. Let lgl; be the plane spanned by Iy and /;. By Lemma 9.4.1,
the plane lgl; is not contained in X. Hence, C = X Nlyl; is a plane cubic curve. Since
C' contains the line l1, the cubic curve is reducible. Since C' contains even a second line,
namely o, it must be the union of three lines Iy, I, and ls. Since C' is singular at po, the
line Iy must pass through py. Consequently, C' is the union of the lines Iy, {1, and Il such
that [y and [; intersect in the singularity p; and lp and l2 intersect in the singularity po.
Hence, 3 is contained in F},,. For i = 1,2, now denote by F,,, the Fano scheme of all lines
in X through p; and by [{] the point in F, corresponding to a line [ in F},;. We now define
a rational map
V: Fp - Fp,

with ¢ ([l1]) = [le]. Exchanging p; by py in the arguments above, we can define the rational
map ¢: Fp, --» F,,, with ¢([lz]) = [l1] which is inverse to 1. Hence, 1 is birational. Since
F,, and F,, are birational to Sy, and S, via the projections m,, and m,,, respectively, S,
and S, are consequently birational, as well. O

Now we are in the position to prove Main Theorem 3:

Proof of Main Theorem 3. We show firstly that ¢ is well-defined:

Let [X] € MT*G be the class of a cubic fourfold X C P5 with an ADE singularity px of
type T and such that all other singularities of X correspond to G.

Let (20 : ... : x5) be homogeneous coordinates on P?.

After a linear change of coordinates, we can assume that px = (1:0:0:0:0:0) € P°
and then by Lemma 5.1.1

X .'L'()fQ(wl,-..,x5) +f3(.f617... 7:1:5) = 07

where fy and f3 are homogeneous polynomials of degree 2 and 3 in C|xy, ..., x5], respec-
tively. By Lemma 5.1.2, the projection S, of the union of all lines in X through px onto
P* is a complete (2, 3)-intersection in P* given by

pr . f2(3§‘1,...,$5) = f3($1,...,3§‘5) =0 g IP)4
and S is uniquely determined by px by Lemma 5.1.3.

Let mp, : Bl, X — X the blowing-up of X in px with exceptional divisor £ C Bl,, X.
By Corollary 5.2.3, the singularities of Bl,, X and S}, are in one-to-one correspondence
including the singularity types. More intrinsically, the singularities of Bl,, X on E corre-
spond to the singularities of the quadric Q : fa(x1,...,25) = 0 C P* and are of type o(T)
with o(T') as in Table 6.1 and the singularities on Bl,, X \ E correspond to the singularities
of S, not lying on the singular locus of @) and are of type G.

Let -
T Spx = Spx

be the minimal resolution of all singularities on S,,. By Lemma 4.2.2, g; is a K3 surface
and the pull-back L = W*ngx (1) by 7 of the hyperplane bundle on S, to Sp, has degree
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6. Further, the morphism ¢, induced by the linear system |L| is given by m, so ¢y, is in
particular birational. We have ¢, (S, ) = m(Spy) = Spy. Consequently, the isomorphism
class [(Spy,L)] of the quasi-polarized K3 surface (Sp,, L) is parametrized by a point in
fO

SatLKB ()

Assume then that X has two singularities px and p’y both of type T. Then, S,, and S,
are birational by Proposition 9.4.2. Hence, S,, and Sp/x are isomorphic. Consequently,

(pr,ﬂ'*Ost (1)) and (,/S\/J W*Osp/x(l)) are isomorphic.

Px?
In conclusion, ¢ is well defined.
We define an inverse map to ¢:

Let (§ , L) be a quasi-polarized K3 surface of degree 6 such that ¢y, : S — P* is birational
onto its image. By Proposition 3.3.4, S = @L(g) is a complete (2,3)-intersection of a
quadric @ and a cubic Y in P*. By Lemma 4.2.1, the quadric @ is uniquely determined up to
isomorphism and the cubic Y is uniquely determined up to isomorphism and modulo those
cubics containing the quadric. Assume that we have homogeneous coordinates x1, ..., s
on P* such that up to isomorphism

Q: folz1,...,x5) =0and Y : f3(zq,...,25) + N(z1,...,25) f2(21,...,25) =0 C P4,
where A € C and I(z1,...,x5) is a linear polynomial. Then,

X : zofo(zr,...,x5) + (f3(.731, ceoyy) F A2, . ) faT, ,x5)) =0C P°

defines a cubic fourfold on X. Therefore, X is isomorphic to

zofo(z1, ..., x5) + f3(z1, ... 25) =0 C PP

with respect to the linear coordinate transformation zg — z¢g — Al(z1,...,25). Hence, we
see that the isomorphism class [X] of X does not depend on the choice of the cubic Y in
which S is contained. Write S = S(f2, f3) and [X (f2, f3)] for the isomorphism class of X.

By assumption, the singularities of S lying on @ are of type o(T) and all other singularities
of S correspond to G. By Proposition 5.2.2, the singularity (1:0:0:0:0:0) € P® of X
is of type T and all other singularities of X correspond to G. Define then

—_—

U Fag, )~ MU (S (2 £3), L)) = [X(f2, f3))-

We check that ¢ and v are inverse to each other:
Indeed, let ¢([X]) = (S’;;,W*OSPX(I)) € .7:§ath

[X] € MT*G is the isomorphism class of the cubic fourfold X : zgfo(xy,...,25) +

fa(z1,...,25) = 0. The surface Sp, = ch(gva) is then a complete (2,3)-intersection
in P*. By Lemma 4.2.1, Spy lies on a unique quadric ¢ and a cubic Y uniquely deter-
mined modulo those cubics containing the quadric Q. Hence, Q : fa(z1,...,25) =0 C P*
and Y : f3(x1,...,25) + M(z1,...,25) f2(x1,...,25) = 0 C P* where A\ € C and
l(x1,...,25) is a linear polynomial. Then, w((g;,;,L)) is the class of the cubic fourfold
(1 + M(zq, ... ,x5))f2(x1, o, w5) + f3(z1,...,25) = 0 C P5 which is simply the isomor-
phism class [X] of the cubic fourfold X and hence 9 o ¢ = id \yr+c.

(i and write L := 7*Og, (1), where
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On the other hand, let (§ , L) be a quasi-polarized K3 surface of degree 6 such that ¢y, S —
IP* is birational onto its image such that S = ¢ L(§ ) is the complete (2, 3)-intersection of the
quadric @ : fa(z1,...,x5) and the cubic Y : f3(z1,...,x5)+ A l(21,...,25) fa(21,...,25) =
0 in P4, where A € C and [(z1,...,z5) is a linear polynomial. We have ¢((§, L)) = [X],
where X : zofa(w1,...,25) + f3(z1,...,25) = 0 C P5. Then, ¢([X]) is the complete

(2,3)-intersection S : fa(z1,...,25) = f3(w1,...,25) = 0. The minimal resolution of all
singularities on S is then simply S. Further, L = 7*(Og(1)) so ¢([X]) = (S, L). Hence,
¢ ] 1/] = idFO .

SatLKS(z)

Finally, the map ¢ is holomorphic since the period map is holomorphic. By Borel’s Theo-
rem |Bor72, Theorem 3.10|, the defined map is then a morphism of quasi-projective vari-
eties.

We show that ¢ is in fact an isomorphism:

Since the morphism ¢ is surjective, it induces an inclusion of the functions fields
. T+G
o*: K<}—§atLK3 (i)) — K(M ).

Further, since ¢ is bijective, all fibers ¢!(y) with y € F (i) of ¢ have cardinality one.

SatLK3 7

By [Har92, Proposition 7.16], the degree [K (MT+G) : K(Fga, 1)) of the field extension
K3

equals then one. Hence, ¢ is birational. We note that the quasi-projective variety fé’atL (i)
K3

is normal by [Huy16, Chap. 6, Theorem 1.13]. By Zariski’s Main Theorem in its original
form [Mum99, Chap. II1.9, p. 209], the morphism ¢ is then an open immersion. Since ¢ is
surjective, it is hence even an isomorphism. O

Corollary 9.4.3. The isomorphism ¢ in Main Theorem 3 maps the connected components
of the moduli spaces fé’atL (i) and MT+G onto each other. In particular, the moduli space
K3

MTHG has at most two connected components.

Proof. The isomorphism ¢ is in particular a homeomorphism. Hence, ¢ defines a bi-

jection between the connected components of fé)atL () and MT+G_ The period do-
K3
main Q(Sath (z)) has two connected components DSatLKB(i) and D’SatL (i)
K3

fg;th 0 = Q(Saty,,(i)) /OSatLK3 (i) has one connected component if and only if OSatLK3 (i)

interchanges Dy, Lyes () and D’SatLK3 )

happens if and only if the group Ogy Lres (0) contains an element with real spinor norm —1

(see [GHS09, Sec. 1]). As Fg (1) is a subvariety of Fbn

SatLK3 Satr,
two connected components. Therefore, also MTTG has at most two connected compo-
nents. O

Hence,

and two connected components otherwise. The first

(i)’ it has then also at most
K3

Remark 9.4.4. If the lattice (Sat LK3(i))J' contains an m-admissible element with m <

Lks

2, the quasi-projective variety fé’;tL (i) is irreducible by [Dol96, Proposition 5.6] and
K3

]:é)ath(i) is irreducible as an open subvariety of ‘FSarthLm () Since Fg at, g (i) and M

are isomorphic by Main Theorem 3, in this situation it follows that MT*& is irreducible.



A Intersection theory on surfaces

In this appendix, we will recall basic properties of the intersection pairing on surfaces and
compute certain intersection numbers on those.

Lemma A.0.1. Let i': S — P* and j': H — P* be embeddings of two-dimensional
smooth connected subvarieties S and H in P*. Let k: E — P* be an embedding of a
three-dimensional variety into P*. Let i: C — S and j: C — H be embeddings of the
curve C' in S and H, respectively. Assume that the following diagram commutes:

C S
H——DP

BN

E

.

~

i

Then, we have
§xC.5" kB = i,.C.i" k. E.

Proof. We have j,.C, i k.E € AY(H) so j.C.j""k.E € A>(H) = Z. On the other hand,
i.C, "k E € AY(S) s0 i,C.i"" k E € A%(S) = Z. The projection formula gives

§xC.7 ks E = j.(C.5%j" ko E) and i,C.4" ko E = i, (C.i*" k. E).

Since C, j*j""k.E, and j*j"k.E are curves, C.(j*j""k«E) and C.i*i""k.E are integers.
Hence, j.(C.j*j"" k.E) = C.j*j" k. FE and i,(C.i*i" k. FE) = C.i*i""k.E. Further, by the
commutativity of the diagram, we have j*j'* = i*i'*. Hence, j,C.j" ks F = i,C.i"" k,E. O

Lemma A.0.2 (|[Ful98, Chap. 8.2|). Let X be quasi-projective variety and Dy and Dy
closed subvarieties in X. Assume that X° is a smooth open subvariety of X such that
DiNDy C X°. Then,

D1.Dy = Dyxo.Daxo.

Lemma A.0.3. Let H be a smooth projective surface and C, 1 € Div(H). Let p € C N1
be a smooth point of both C' and l. Let

1. HY = Bl,H o H be the blowing-up of H in p with exceptional divisor E() =
ﬂljl(p) and let CY and V) be the strict transforms of C' and | in H®Y | respectively.
Let p1 be the intersection point of EY with C).

2. H? = Blle(l) 1 HO) e the blowing-up of HW in py with exceptional divisor
E®? = 7, Hp1) and let C®? and EM?) be the strict transforms of C and EWY) in
H® | respectively. Let ps be the intersection point of E® with C?) .
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3. HG®) = Blsz(Z) 20 H®) pe the blowing-up of H® in py with exceptional divisor
EG) = 77;21(1)2) and let C®), EM3) - and E23) be the strict transforms of C, EM)
and E® in H®) | respectively. Let ps be the intersection point of E®) with C®).

We have the following intersection numbers, see Figure A.1:

On HY: cW E® =1, cWIM =i -1,
On H®?: c E? =1, c® g2 =,
EWL2 BB =1,
On H®: c® E® =1, c® B3 =, c® g3 =,
EW) EG) —o, B0 pR3) =1, E®3) EG) =1,
H
c® T o® Do oM . -
(3) (2) (1)

Figure A.1: Iterated blowing-ups of the surface H.

Proof. 1. On HM | we have by [Har77, Chap. V, Proposition 3.1, 3.2, 3.6]:

(a) (BM)2=-1

(b) (m;C).EW = (31).EM =0

(c) (m3C).(m3l) = Cl

(d) cW =mC— EW 1V =7 — ED).

Hence,
cW.EW = (r2C — EW).EW =1 and cCW1W = Cl1 - 1.

2. On H® | we have by [Har77, Chap. V, Proposition 3.1, 3.2, 3.6]:

(a) (E®)? = -1

(b) (w5, CM).E@ = (zx EW).E®) =0

(©) (n5, B

(d) Cc? — 77510(1) — F® pl2) = 77;31]5(1) — E@)

D). (m5,cM) = EM.c) =1

Using all these equalities, we compute

0@ p2)_ (77;10(1) _ E(2)).(7r;1E(1) — EM=0,
c? g2 — (ﬂ-;lc(l) — E@).E®) =1,
EGD E@ = (xx gV — E@) g =1.

3. On H®) | we have by [Har77, Chap. V, Proposition 3.1, 3.2, 3.6]:
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(a) (E®)?2 =—-1
w5, CP).EG) = (r E?).E®) = (72 E1Y) EG) =0

(
(

(c) (mp,C).(
(7, C®)).(

7T;2E(2)) =@ gQ® =1,
ms, BE1) = c@) E12) =0

(d) ¢®) = W;2C’(2) — E®) p23) = W;2E(2) — E®),
Using all these equalities, we compute

0B p23)— (7‘(’;20(2) _ E(3)).(7r;2E(2) — EGh=0,

c® gB) — (77;20(2) — EO)H.EG) =1,
E®Y E® = (rx E® — E®)) g6) =1

Since py € C?) and C®.E(12) = 0, we have p, ¢ E(12).

Hence, 7T;2E(1’2) — B13) and

C® L3 —(z* 0@ — EO) (z* E1:2)) =0,

p2 p2
E®. G = (m (L)), E® =,
E® EWS) =(x* B®) — EO)) (x3 ELY) =1.

O

Lemma A.0.4. Let H be a smooth surface and D1, Dy € Div(H). Assume that D1.Dy =

m. Let p € D1 N Dy be a smooth point of Dy and Dy. Let HY — H the blowing-up

of H in p and let Dgl) and D@ be the strict transforms of D1 and Dy in HV . Then,
DD —m — 1.

Proof. Let EM be the exceptional divisor of the blowing-up. By [Har77, Chap. V, Propo-
sition 3.1, 3.2, 3.6, we have

and

(EW)? = —1, (n5Dy).EW =0, (13 Ds).EY = 0, (73D1).(m3Ds) = Dy.Ds

DV = 7Dy — EW, DV = 75Dy — EW.

Hence, Dgl).Dél) = (m, D1 — E(l)).(Tr;Dg —EW)=m 1.
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B Code to determine all ADE lattices A
such that (6) ® A has a primitive
embedding into the K3 lattice

In this appendix, we give the code to be implemented in the computer algebra software
Wolfram Mathematica (Version: 11.1.1.0) to determine the list of all ADFE lattices A such
that the lattice (6) ® A can be embedded primitively into the K3 lattice. The code is based
on the algorithm presented in Section 8.1. Find the final list of all ADFE lattice A as above
in Appendix C.

(x*We realize condition (2b) in Theorem 7.4.1.x)

(xDefine function which returns for x = {x1, ..., Zrmax} the list

Hz1 -1, 26, — L, @ip+1 + L, @i 42, ., Temax s kK =1,...,rmax} where z;, ..., s, (
r € {1,...,rmax — 1}) are the nonzero entries of x.x)
rmax=19;

operation [x__]:=Block[{tuplerules, nonzeros},

tuplerules =ArrayRules[x];

nonzeros=Length[tuplerules]—1;

Table[x—UnitVector[rmax, tuplerules [[ i ,1,1]]]4+ UnitVector[rmax, tuplerules [[ i ,1,1]]4+1],{ i ,1, nonzeros}]

]

(xDefine function which 1. finds in tuplelist :== {{JCJ17 oy @i}, 5 =1,...,m} the largest entry c := mj
2. saves {{c+1,0,...,0} € Z™*} U {operation[z]; = € tuplelist}.x)

iteration [ tuplelist  ]:=Block[{ list },

list ={(Max[tuplelist]+1)UnitVector[rmax,1]};

list =Flatten[Append[operation[#]&/@tuplelist, list ],1];

DeleteDuplicates | list ]

"]

(xDefine the list step: Define the list step, := {{1,0,...,0}},define successively
step, := {step,_,, iteration(step,_;)},and step := step,,.._1- step is the list whose i—th entry is the lists
of all (ay,...,a19) € Z>o""** such that la; +2a2 + ...+ 19a19 = i.x)

step={{UnitVector[rmax,1]}};

Do[step=Append[step,iteration[step [[—1]]]];,{ rmax—1}];

listab =step;

listdb =listab;

(xformd is list of all {0,0,0,d4, ..., drmax}-*)
formd=Join[{0,0,0} Table[ ,{i 4, rmax}]]

(* Lists in listdb contained in formd.x)

2 Table[ listdb [[ j]]=Cases[ listdb [[j ]], formd],{j .1, rmax}];



34
35
36
3

7
38

)
10
11
12
13
4

15
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(#Delete the first tree entries of all lists contained in the last defined list .x)
Table[ listdb [[ j]]=listdb [[j ]][[ All ,4;;—1]].{ j .1, rmax}];
listeb =listab;

(+forme is the list of all {0,0,0,0,0, eq, e7,€5,0,...,0}.%)

o forme=Join[{0,0,0,0,0}, Table[ ,{i 6,8}], Table[0,{i,9, rmax}]]

(* Lists in listeb contained in formex)
Table[ listeb [[ j]]=Cases| listeb [[j ]], forme],{j .1, rmax}];

(*Delete the first five and last rmax — 8 entries of all lists in the list defined in the last step.x)
Table[ listeb [[j]]= listeb [[j ]][[ All ,6;;8]],{ j.1,rmax}];

(xList of all triples {a,b,c} witha € {0,...,rmax},b € {0,4,...,rmax},c € {0,6,...,rmax} such that
a+b+c=ix)

listcombine =Table[Select[ Tuples[{Range[0,rmax],Join[{0}, Range[4,rmax]],Join [{0}, Range[6,rmax]]}], Total
[#]==i&],{i,1,rmax}]

(*Define function : For {’Lj, k‘} the list of all {{ah e 61,19}7 {d47 ey d19}, {667 er, 68}} with {a1, ey CL19}
from the i—th element in listab,{0,0,0,dy, ...,d19} from the j—th element of listdb and
{0,0,0,0,0, e, €7,€58,0,0,0,0,0,0,0,0,0,0,0} from the k—th element of listeb. We have
lai 4+ ... 4+ 1919 =%, 4da + ... + 19d19 = j, 6es + Te7 + 8es = k such thati+j+k < rmax*)
pick[{i_.j_,k_}]:=Block[{atake dtake,etake},
atake=If[i==0,{Table[0,{rmax}|} atake=listab[[i ]]];
dtake=If[j==0,{Table[0,{irun,4,rmax}]} dtake=listdb [[ j ]]];
etake=If[k==0,{Table[0,{irun,6,8}|}, etake=listeb [[ k ]]];
Tuples[{atake, dtake, etake}]
]

(x lists {{a1,...,a19},{d4,...,d1o},{es,e7,es}} correspond to all ADE lattices
D2, A @ @;14 d;D; & @) _, enEx of rank r.x)
(*Number of all ADE lattices of rank 1 < r < 19.x)
Table[Length[Sort[Flatten [ pick [#]&/@(listcombine[[r]]) ,1]]].{ r.1,19}]
{1,2,3,6,9,16,24,39,57,88,128,193,276,403,570,815,1137,1599,2207}

s (xADE lattices of rank 1 < r < 19%)

listb =Table[Sort[Flatten [ pick[#]&/Q(listcombine[[r]]) ,1]].{ r,1,19}];

7 (*We realize condition (2c) in Theorem 7.4.1.x)

(+*We compute the length of the discriminat group (6) ® A for an ADE lattice A.x)

[[x_]:=Block[{I2,I3,15,17,111,113,117,119}, 12=14+Sum|x[[1,2i+1]],{i,0,9}] +Sum[x[[2,2i+1—-3]] {i,2,9}] +2
Sum(x[[2,2i—3]],{i,2,9}]+x [[3.2]];

13 =1-x{[L 20|FXI[L, ST [[L 8]+  [[L, LUl x [[L, 14T+ [[L, 7)1+ x [[3,1]};

15=x[[1,4]]4+x [[1,9]]+ x [[1,14]]+ x [[1,19]];

17=x[[1,6]]+x [[1,13]];

11=x[[1,10]];

113=x[[1,12]];

i 117=x[[1,16]];

119=x [[1,18]];
Max[I2,13,15,17,111,113,117,119]
]

(*Define function which checks if an ADE lattice A satisfies condition (2c) in Theorem 7.4.1.x)
test [x_]:=Block[{r},r=Sum[i x[[1,i ]],{ i,1,19}]+Sum[j x[[2, j —3]],{j.4,19}]+Sum[k x[[3,k—5]],{k ,6,8}];

s If[21—I[x]>=r x,False]

]
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B Code to determine all ADE lattices A such that (6) & A has a primitive
embedding into the K3 lattice

86

92
93
94

95

96

98

99
100
101
102
103
104
105
106
107
108

109

110
111
112
113

114
115
116
117

118
119

120

© N o o & N o~
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i

[ R

134
135
136

137

(xDefine function which checks if an ADE lattice A satisfies condition (2c) in Theorem 7.4.1 and such
that the embedding (6) ® A into Ls, if it exists, is unique up to automorphism of L3 according to
Theorem 7.4.3.x)

testu [x_]:=Block[{r},r=Sumli x[[1,i ]].{ i,1,19}]+Sum][j x[[2, j —3]].{}.4,19}]+Sum[k x[[3,k—5]].{k ,6,8}];

s If[19—I[x]>=r,x,False]

]

(* Total number of ADE lattices A which satisfy condition (2b) and (2c) in Theorem 7.4.1.x)
Table[DeleteCases[test [#]&/Q(listb[[r]]) , False]//Length,{r,1,19}]// Total
3032

(* Total number of ADE lattices A which satisfy condition (2b) and (2c) in Theorem 7.4.1 and such that the
conditions in Theorem 7.4.3 holds.x)
Table[DeleteCases[testu[#]& /Q(listb[[ r]]) , False]//Length,{r,1,19}]// Total

7 1607

(*ADE lattices A which satisfy condition (2b) and (2c) in Theorem 7.4.1.x)
listbc =Table[DeleteCases[test[#]& /Q(listb[[r]]) , False],{r ,1,19}];
listbcu =Table[DeleteCases[testu[#]& /@(listb[[r]]) , False],{r ,1,19}];

(*We realize condition (2d) in Theorem 7.4.1.x)

(xFor an ADE lattice A, we compute the length of the p—part of the discriminant group of (6) ® A.x)
Ip[p_,x_]:=Block[{error},error :: boole="The_value, 'l Lisunot allowed for_p";

Switchp,3, 14 [[L,2]]+ [[1,5]]-  [[L8]]+ x [L,11]]+x [L,14]]+x [1,17]] x [[3.1]15, x [[L.4]14x [[1.9]]x
[[114]]+x [[1,19]],7, x[[1.6]]+ x [[1,13]].11, x [[1,10].13, x [[1,12]].17, x [[1,16]),19, x [[1,18]], .
Message[error::boole,p |;]

]

(xCheck for a specific prime p,if condition (2d) Theorem 7.4.1 has to be checked.x)

testdTrue[p_,x_]:=Block[{r},r=Suml[i x[[1,i]].{ i,1,19}]4+Sum]j x[[2, j —3]1.{]j.4,19}]+Sum[k x[[3,k—5]].{k
.6,8}];

If [21—r==Ip[p,x] %, False]

]

(#For each prime p = 3,5,7,11,13,17,19 compute the number of ADE lattices A of rank 1 < r < 19 such
that we need to check for (6) & A condition (2d) in Theorem 7.4.1.x)

Table[Length[DeleteCases|testd True[3,#]&/Q(listbc[[r]]) , False ]].{ r,1,19}]

Table[Length[DeleteCases[testd True[5,#]&/Q(listbc[[ r]]) , False ]].{ r,1,19}]

Table[Length[DeleteCases[testd True[7,#]&/@(listbc[[ r]]) , False ]],{ r,1,19}]

Table[Length[DeleteCases|testd True[11,#]&/@(listbc[[r]]) . False ]].{ r,1,19}]

Table[Length[DeleteCases[testd True[13,#]&/@(listbc[[r]]) , False ]].{ r,1,19}]

(
; Table[Length[DeleteCases|testd True[17,#]& /Q(listbc[[r ]]) , False ]],{ r ,1,19}]
(

Table[Length[DeleteCases|testd True[19,#]&/Q(listbc[[r ]]) , False ]].{ r,1,19}]
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,7,28,66,98,55}
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,10,14}
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,8}

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

(xIn particular , this shows that condition (2d) in Theorem 7.4.1 has to be checked only for p = 3,5, 7.x )(x
List of ADE lattices for which we need to check (2d) for p = 3.x)
Table[Print [DeleteCases[testd True[3,#]& /@(listbc [[ r]]) , False ]],{ r ,1,19}];

(x List of ADE lattices for which we need to check (2d) for p = 5.x)
Table[Print [ DeleteCases[testd True[5,#]& /Q(listbc [[ r]]) , False ]],{ r ,1,19}];



138
139
140
141
142
143
144
145

146

147
148
149

15(

151
152
153
154
155

156

157

159

16(

161
162

163

179

182
183
184

185
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(x List of ADE lattices for which we need to check (2d) for p = 7.x)
Table[Print [ DeleteCases[testd True[7,#]& /Q(listbc [[ r]]) , False ]].{ r ,1,19}];

(xList of all ADE lattices for which we need to check condition (2d).x)
textd[p_,r_]:=(DeleteCases[testd True[p,#]& /@(listbc[[r]]) , False]) ;

(*Define function which gives the cardinality of the discriminant group of (6) ® A for an ADE lattice
A.x)

g[x_]:=Block[{al,a2,a3,a4,a5,a6,a7,a8,a9,a10,all,al2,a13,al4,al5,al6,al7,a18,a19,d4,d5,d6,d7,d8,d9,d10
.d11,d12,d13,d14,d15,d16,d17,d18,d19,e6,e7,e8},{{al,a2,a3,a4,a5,a6,a7,a8,a9,al0,all,al2,al3,al4,
alb,al6,al7,al8,al19},{d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19},{eb6,e7,e8} }=x;

{x,6(Product[(i+1)"x[[1,i ]],{ i,1,19}]) (Product[(4)~x[[2,j—3]].{]j 4,19}]) 2"e7 3"e6}

]

(*Define p—adic valuation.x)

v[p_ x_]:=Block[{ primefactorlist }, If [IntegerQ[x ],, Print ["x_is_noyinteger" ]];
primefactorlist =Factorlnteger|x];

If [MemberQ][primefactorlist[[ All ,1]], p], Select[ primefactorlist ,#[[1]]==p &][[1.2]].0]

]

(xAll lattices A such that for (6) @& A conditions (2b) and (2c) in Theorem 7.4.1 are satisfied and
condition (2d) needs to be checked for p = 3.x)

7 testd3=Flatten[Table[DeleteCases[testd True[3,#]&/@(listbc[[ r]]) , False],{r ,1,19}],1];

(xAll lattices A such that for (6) @ A condition (2b) and (2c) in Theorem 7.4.1 and the conditon in
Theorem 7.4.3 are satisfied and condition (2d) needs to be checked for p = 3.x)
testd3u=Flatten|[Table[DeleteCases[testd True[3,#]&/Q(listbcu [[ r]]) , False],{r ,1,19}],1];

(*Compute the discriminant for the unique 3—adic lattice .x)

d3[tuple ]:=Block[{al,a2,a3,a4,a5,a6,a7,a8,a9,a10,all,al2,a13,al4,al5,a16,al7,a18,a19,d4,d5,d6,d7,ds,
d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,e6,e7,e8},{{al,a2,a3,a4,a5,a6,a7,a8,a9,al0,all,al2,al3
,al4,al5,al6,al7,al8,a19},{d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19},{eb,e7,e8
}}=tuple;

{tuple,6x3"a2x6"ab*9"a8+x3"allx6"aldx126"al7+6"e6}

]

7 (% All lattices A such that for (6) & A condition (2b) and (2c) are satisfied and condition (2d) holds/does

not hold for p = 3, as well.x)
Lr3={};
Ln3={};
F Mo 12) (63 L) /3" (3.2 I 31 =0, Lis=AppendlL3 ] Ln3=AppendiLns 2/
testd3;
Length[testd3]
Length[Lr3]

; Length[Ln3]

255

5 186
; 69

(xAll lattices A such that for (6) @ A condition (2b) and (2c) and the conditon in Theorem 7.4.3 are
satisfied and condition (2d) holds/does not hold for p = 3, as well.x)

Lr3u={};

Ln3u={};

If [Mod[((g [#1][2]]) —(d3[#][[2]]) ) /3~ v[3.& [#][[2]]]3]==0, Lr3=Append[Lr3,#],Ln3=Append[Ln3,#]]&/
Otestd3u;

Length[testd3u]

Length[Lr3u]

Length[Ln3u]

0
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186
187
188

189

190
191

192

193
194
195

196

197
198
199

20(

201
202
203

204

205
206
207
208

209

231

0
0

(xAll lattices A such that for (6) & A condition (2b) and (2c) are satisfied and condition (2d) needs to be
checked for p = 5.x)
testd5=Flatten[Table[DeleteCases[testd True[5,#]& /Q(listbc [[ r]]) , False],{r ,1,19}],1];

(%Al lattices A such that for (6) @ A condition (2b) and (2c) in Theorem 7.4.1 and the conditon in
Theorem 7.4.3 are satisfied and condition (2d) needs to be checked for p = 5.x)
testd5u=Flatten|[Table[DeleteCases[testd True[5,#]&/Q@(listbcu [[r]]) , False],{ r ,1,19}].1];

(*Compute the discriminant for a 5—adic lattice .*)

d5[tuple ]:=Block[{al,a2,a3,a4,a5,a6,a7,a8,a9,a10,all,al2,a13,al4,al5,al6,al7,a18,a19,d4,d5,d6,d7,ds,
d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,e6,e7,e8},{{al,a2,a3,a4,a5,a6,a7,a8,a9,al0,all,al2,al3
,al4,al5,al6,al7,al8,a19},{d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19},{eb,e7,e8
}}=tuple;

{tuple,5~a4x40~a9x10"al4x5"al9}

]

(xAll lattices A such that for (6) @ A condition (2b) and (2c) are satisfied and condition (2d) holds/does
not holds p = 5.x)

Lr5={};

Ln5={};

If [Mod[((g [#1[[2]]) - 1(d5[#][[2]]) ) /5" v[5.& [#][[2]]].5] Mod[((g[#][[2]]) —4(d5[#][[2]]))/5" V5.8
[#][[2]]],5]==0, Lr5=Append][Lr5,#],Ln5=Append[Ln5,#]]&/Qtestd5;

Length[testd5]

Length[Lr5]

Length[Ln5]

25

9

16

(% All lattices A such that for (6) @& A condition (2b) and (2c) and the condition in Theorem 7.4.3 are
satisfied and condition (2d) holds/does not hold for p = 5, as well.x)

s Lrbu={};

Ln5u={};

5 IF[Mod[((g[#][[2]]) - 1(d5[#][[2]]) ) /5" v[5.& [#][[2]]].5] ModI((g[#][[2]]) —4(d5[#][[2]]))/5" V5.8

[#][[2]]].5]==0, Lr5=Append[Lr5,#],Ln5=Append[Ln5,#]] & /Otestd5u;
Length[testd5u]
Length[Lr5u]
Length[Ln5u]
0
0
0

s (xAll lattices A such that for (6) @ A condition (2b) and (2c) are satisfied and condition (2d) needs to be

checked for p = 7.x)
testd7=Flatten[Table[DeleteCases[testd True[7,#]& /@(listbc [[ r]]) , False],{r ,1,19}],1];

(% All lattices A such that for (6) @ A condition (2b) and (2c) in Theorem 7.4.1 and the condition in
Theorem 7.4.3 are satisfied and condition (2d) needs to be checked for p = 7.x)
testd7u=Flatten[Table[DeleteCases[testd True[7,#]& /Q(listbcu[[r]]) , False],{ r ,1,19}].1];

(x*Compute the discriminant for a 7—adic lattice .x)

d7[tuple ]:=Block[{al,a2,a3,a4,a5,a6,a7,a8,a9,al0,all,al2,al3,al4,al5,al6,al7,al8,al9,d4,d5,d6,d7,ds,
d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,e6,e7,e8},{{al,a2,a3,a4,a5,a6,a7,a8,a9,al0,all,al2,al3
,al4,al5,al6,al7,a18,a19},{d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19},{e6,e7,e8
}}=tuple;

{tuple,7~a6x7"al3}]
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s (xAll lattices A such that for (6) @ A condition (2b) and (2c) are satisfied and condition (2d) holds/does

not holds p = 7.x)

Lr7={};

Ln7={};

IF [Mod[((g [#1[[21]) —1(¢7 [#I[1211))/7"VI7.g [#11[2111.7] Mod]((g[#][[21]) —2(d7 [#I[[21])) /7 V[7.

[#1[1211].7] Mod[((g[#I[[2]]) —4(d7[#][[2]1))/7"v[7.g [#][[2]]] 7]==0, Lr7=Append|Lr7 #] Ln7=

Append[Ln7,#]]&/Otestd7;

Length[testd7]

Length[Lr7]

Length[Ln7]

9

3

6

(xAll lattices A such that for (6) @& A condition (2b) and (2c) and the conditon in Theorem 7.4.3 are
satisfied and condition (2d) holds/does not hold for p = 7, as well.x)

5 Lrru={};

246 Ln7u={};

If [Mod[((g[#][[2]]) -1(d7 [#[[2]]))/7"v[7.& [#][[2]].7] Med[((g[#][[2]]) —2(d7[#][[2]]))/7"V[7.&
[#][[211].7] Mod[((g [#][[2]]) —4(d7[#][[2]])) /7" v[7.g [#][[2]]] 7]==0, Lr7=Append|Lr7 #] Ln7=
Append[Ln7,#]]&/Otestd7u;
Length[testd7u]
Length[Lr7u]
Length[Ln7u]

(*All lattices A such that for (6) @ A condition (2b), (2c) hold, and (2d) does not hold.x)
Ln=Join[Ln3,Ln5,Ln7];

(xAll lattices A such that for (6) @ A condition (2b), (2¢) and the conditon in Theorem 7.4.3 hold, and
(2d) does not hold.x)
Lnu=Join[Ln3u,Ln5u,Ln7u];

(* Cardinality of Ln and Lnu.x)

i2 {Length[Ln]}
3 {Length[DeleteDuplicates[Ln]]}

{Length[Lnu]}

i5 {Length[DeleteDuplicates[Lnu]]}

7 (xDelete all duplicates in Ln and Lnux)

Ln=DeleteDuplicates[Ln];
Lnu=DeleteDuplicates[Lnu];

(*Number of lattices A such that for (6) & A condition (2b), (2c), and (2d) hold.x)
Complement[Flatten[Table[DeleteCases|test[#]& /Q(listbc[[r ]]) , False],{ r ,1,19}],1], Ln]//Length
2942

(*Number of lattices A such that for (6) & A condition (2b), (2c), and (2d) hold and the conditon in
Theorem 7.4.3.x)

Complement[Flatten[Table[DeleteCases|test[#]& /Q(listbcu[[r ]]) , False ],{ r ,1,19}],1], Lnu]//Length

1607

(* Lattices A such that for (6) @ A condition (2b), (2c), and (2d) hold.x)
result =Complement|[Flatten|[Table[DeleteCases[test[#]&/Q(listbc[[r]]) , False],{ r ,1,19}],1], Ln];

> (% Lattices A such that for (6) ® A condition (2b), (2¢), and (2d) hold and the conditon in Theorem 7.4.3.x)
3 resultu =Complement|[Flatten[Table[DeleteCases[test[#]&/@(listbcu[[r]]), False],{r ,1,19}],1], Lnu];
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284

285 (% resultr and resultu sorted by rankx)

286 rank[tuple ]:=(Sum|[(tuple[[1,i]]i),{i,1,19}]) +(Sum[(tuple[[2,j—3]]1(j)).{j 4,19}]) +tuple[[3,1]]*6+ tuple
[3.2]]+7+ tuple [[3,3]]+8;

7 resultr =GatherBy[SortBy[result, rank[#]&],rank[#]&]

288 resultru =GatherBy[SortBy|[resultu,rank[#]&] rank[#]&]

289

200 (xAn ADE lattice A = @2, a; A1 @ @]1.9:4 d;D; & @} _g erEx in resultr has the form

{{al,...,a19},{d4,...,d19}, {e6, e7,e8} }.x)

2

]




C List of all ADFE lattices A such that
A @ (6) can be embedded primitively

into the K3 lattice

In this appendix, we give the list of all ADFE lattices A such that (6) @ A can be embedded

primitively into the K3 lattice.

The list is obtained computer-aided with the code in

Appendix B. The asterisk * infront of a lattice A indicates that the lattice (6) & A admits
a unique embedding into Lg3 up to automorphisms of Lgs.

rank(A) =1

1.

*Al

rank(A) = 2

2.
3.

*AQ
24,

rank(A) =3

4.
5.
6.

*AS
AL D A
*3A1

rank(A) =4

7.
8.
9.
10.
11.

12.

Dy
A,

*2A,

TAL @ Az
*2A1 @ Ao
*4A,

rank(A) =5

13.
14.
15.
16.
17.
18.
19.

“Ds
Ay

TA2 @ As
TA1 @ Dy
TAL® Ay
A D 2A,
241 @ As

20. *3A:1 & As

21. *5A;

rank(A) =6

22. *Es
23. *Dsg
24. *Ag
25. *2As
26. "As @ Dy
27. TAs @ As
28. *3A,
29. A1 & Ds
30. "A1 @ As

31. "A1 ® Ay @ As

32. "2A1 @ Dy

33. "2A:1 ® Ay

34. "2A; @ 2A,

35. "3A1 @ As

36. "4A1 & Az

37. *6A;
rank(A) =7

38. *Er

39. "Dy

40. A7

41. "A3 ® D4

42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.

62.
63.
64.

FA3 @ Ag

*A2 ® Ds

*As ® As
*2A5 ® As
*A1L @ Es

*A1 ® Ds

*A1 @ As

A1 B 243
A1 @ A2 ® Dy
AL DA D Ay
A @ 3A,
*2A1 & Ds
*2A1 @ As
241 D Ay ® As
*3A1 @ Dy
*3A1 @ Ay
*3A1 & 24,
T4A1 D As
541 @ Az
*TAq

rank(A) = 8

*ES
*Dg

*2Dy

65.
66.
67.
68.
69.
70.
71.
72.
73.
4.
75.
76.
e
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.

“Aq
TAL® Dy
*2A4

*As3 @ Ds

TAs @ As

*As @ F

*A2 @ Ds

*As ® Asg

*As @243
*2A0 ® Dy
*2A, @ Ay
*4A,

*AL @ By

*AL @ Dy

AL @ Ay
TA1® A3 @ Dy
TA1L® Az @ Ay
A1 © A2 @ Ds
AL B A B As
A D 2As D As
*2A1 @ Fs
*2A1 & Dsg
*2A1 @ As

*2A1 B 243
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89. "2A;1 @ As @ Dy 125. A1 ® As ® Ds 161. *D4 ® Dg 198. *A; ® 3A3
90. "2A; ® Ax @ Ay 126. A1 & Az & As 162. *Aio 199. A1 ¢ A2 @ E7
91. "2A; @ 3A, 127. "A1 ® As ® Es 163. "Ag ® D4 200. A1 @ A2 @ Dy
92. *3A:1 @ D5 128. "A1 ® Ax ® Ds 164. "As ® Ds 201. "A1 ® Ax B A7
93. "3A:1 ® A5 129. A1 @ A2 & As 165. *2A4s 202. "A1®A2®A3® D,
94. "3A1 ® Ay @ As 130. A1 @ Ax @ 243 166. *As @ FEs 203. A1 A0 A3P AL
95. "4A1 & Dy 131. *A1 ®2A2 @ Dy 167. A4 ® Ds 204. A1 ®2A2 @ D5
96. *4A; ® Ay 132. "A1 ® 24> @ Ay 168. "As @ As 205. A1 ©2A2 D As
97. "4A; @ 2A, 133. "A; ® 4A, 169. "As ® E7 206. A1 ©3A2 D As
98. "5A; @ A3 134. *2A; & E~ 170. *As & D7 207. *2A; @ Eg
99. "6A; @ A, 135. *2A: @ D7 171. "As @ Az 208. *2A; @ Ds
100. *8A; 136. *2A: & A7 172. *2A3® D4 209. *2A; @ 2Dy
rank(A) =9 137. *2A1 ® A3 @ D4 173. *2A3 ® Ay 210. *2A; @ As
101. *Dy 138. *2A1 @ As; ® Ay 174. Ay ® Es 211. *2A1 ® As @ Dy
102. *D4 @ D5 139. *2A1 ® A @ Ds 175. *As @ Ds 212. *2A; ® 2A,
103. *Ag 140. "2A1 @ Az @ As 176. “Ax @ 2Dy 213. *2A; ® A3 ® Ds
104. *As ® D4 141. "2A; 242 d As 177. "As @ Asg 214. "2A; ® As @ As
105. *A4 ® Ds 142. *3A: ® Fs 178. "As ® Ay ® Dy 215. "2A1 ® A2 @ Es
106. *As ® As 143. *3A1 ® Dg 179. *As @ 2A4 216. "2A1 ® A2 @ Ds
107. *As @ Eg 144. *3A1 @ As 180. *As @ A3 @ Ds 217. "2A1 ® A2 @ As
108. *As ® Ds 145. *3A; @ 2A3 181. "Ax @ Az ® As 218. "2A1 ® Ax d 2A3
109. *As ® As 146. *3A1 @ A @ Dy 182. "2A5 @ Fs 219. *2A; ®2A5 @ Dy
110. *3A; 147. *3A1 @ As @ Ay 183. "2A2 @ Dg 220. "2A; ®2A2 ® Ay
111. *Ax @ E7 148. *3A; ® 3A2 184. *2A2 ® Ag 221. *2A; ® 4A,
112. *As ® D7 149. "4A, & Ds 185. *2A, @ 2A3 222. *3A1 @ E7
113. Ay ® A~ 150. *4A1 & As 186. *3A2 @ Dy 223. *3A1 @ D7
114. "As ® Az ® Dy 151. "4A; ® A ® As 187. *3A2 @ Ay 224. *3A1 @ Az
115. "As ® Az ® As 152. *5A1 @ Dy 188. *5A2 225. *3A1 @ Az @ Dy
116. *2A2 & Ds 153. 541 @ Ay 189. "A1 @ Doy 226. *3A1 ® Az D As
117. *2A5 @ As 154. *5A; ® 2A2 190. A1 ® D4+ @ D5 227. *3A1 @ A2 @ D5
118. *3A; @ A3 155. 641 & As 191. A1 @ Ag 228. *3A1  Ax P As
119. A, @ Eg 156. *TA1 @ A, 192. A1 ® As & Dy 229. "3A1 @242, @ A3
120. *A1 @ Ds 157. *9A; 193. "A1 @ A4 & Ds 230. "4A, @ FEs
121. *A; ® 2D, rank(A) = 10 194. *A; ® Ay @ As 231. *4A, ® Ds
122. A1 ® As 158. * Do 195. A1 ® As ® Es 232. "4A1 @ As
123. "A1 ® Ay ® Dy 159. *2Ds 196. A1 @ As ® Ds 233. *4A; ® 243
124. *A; § 2A4 160. *D4 @ Es 197. "A1 ® As D As 234. *4A1 @ As @ Dy
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235. "4A1 B A @ Ay
236. "4A; © 3A;
237. *5A1 @ Ds
238. *5A1 @ As
239. "5A1 @ A2 @ As
240. *6A1 @ Day
241. "6A1 @ As
242. "6A; © 24,
243. *TA1 ® As
244. *8A;1 @ Az
245. 104,

rank(A) =11
246. * D11
247. *Ds & Eg
248. *Ds & Dg
249. *D4 & E7
250. *D4 & Dy
251. *A1
252. A7 @ Dy
253. *As @ Ds
254. *As & Es
255. *As @ Dsg
256. *As @ As
257. A4 ® Er
258. "As ® Dy
259. "As ® Ay
260. A3 @ Es
261. *As @ Ds
262. *As @ 2Dy
263. A3 @ As
264. *A3@® As P Dy
265. A3 © 244
266. *2A3 @ Ds
267. *2A3 @ As
268. *As @ Do
269. *A> ® D4 ® Ds
270. Az @ Ag

271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.

*As ® As @ Dy
*As ® Ay @ Ds
A2 @ AL D As
Ay ® A3 @ Es
*As @ As @ Ds
“Ax © Az @ As
*As @ 3A;3

*2A2 @ B

*2A2 ® D7
*2A5 ® Az
“2A2® A3 ® Dy
"2A2 © A3 © Ay
“3A2 ® Ds
*3A2® As

“4A2 @ As

*A1 @ Do

A1 @ 2Ds

A1 ® Dy @ Es
*A1® Dy ® Ds
*A1 @ Axo
*A1® Ae @ Da
A1 ® As @ Ds
A1 D245

A1 ® AL D Es
*A1® As D Ds
*A1 © AL D As
A1 ® A3 © B
A1 ® As © D
AL D A3 D Ay
A1 ®2A3® Dy
AL D243 @ Ay
A1 © A2 @ Es
*A1® A2 @ Ds
A1 ® A2 @ 2D,
A1 ® A2 @ As
FAI AP ALBDy
YA D Ax P 2A,

308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.

331.

332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.

*A1DA2DA3DDs
TAIB AP AsBAs
*A1 ®2A2 @ E
*A1 ®2A2 ® Ds
A B 2A; D As
*A1 ®2A2 243
A1 ®3A2® Dy
AL D 3A; D Ay
*A1 ®5A2

*2A1 6 Dy

*2A1 ® Dy ® Ds
*2A1 @ Ag

"2A1 ® As ® Dy
*2A1 ® Ay @ Ds
241 © A1 @ As
*2A1 ® As ® Es
*2A1 ® A3 ® Ds
241 ® A3 D As
*2A1 @ 3A3
"2A1 ® A ® By
*2A1 ® Ay ® Dy
*2A1 ® A2 ® Ar

QA1 B AP A3 B
Dy

QA1 B AP As B
Ay

*2A1 G242 ® Ds
*2A1 ®2A2 D As
"2A1 ®3A2 ® Az
*3A1 ® Es

*3A1 ® Ds

*3A1 ®2Dy
*3A1 @ Ag

*3A1 ® Ay ® Dy
*3A1 ¢ 24,4

*3A1 ® A3 ® Ds
"3A1 ® A3 ® As
*3A1® A> ® Es

344.
345.
346.
347.
348.
349.
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.

373.
374.
375.
376.
377.
378.
379.

*3A1 ® A2 @ Ds
"3A1 ® A2 @ As
"3A1 @ A2 @ 243
*3A1 ©2A2® Dy
*3A1 G242 D Ay
*3A1 44

*4A, ® B

*4A1 ® Dy

*4A @ Ay

"4A1 ® A3 @ Dy
T4A1 © A3 @ As
*4A1 @ A2 & Ds
"4A; A2 @ As
*4A1 @ 2A2 ® Az
*5A1 @ Es

*5A1 ® Ds

*5A1 @ As

*5A1 ® 243

*5A1 ® A2 @ Dy
"5A1 @ A2 ® Ay
*5A1 @ 3A,

*6A1 ® Ds

*6A1 @ As

*6A1 ® Ax @ As
TA1 & Dy
TTAL® Ay

*TAL @ 2A,

8A1 @ A3

9A1 @ A2

rank(A) =12

*2F¢
*Di2
*De @ Es
*2Dg
*Ds @ Er
*Ds @ Dr
"Dy @ Es
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380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.
416.

"Dy ® Dg
*3Dy

Ay

*As @ Dy

*A7 ® Ds

*As © Es

*As ® Ds
*2A6

*As ® Er

"As © Dy

TAs ® A7

*As @ Es

*Ay ® Dg

Ay ® 2Dy
*As ® As
*2A4 ® Dy
*3A4

*A3 @ Do

*A3 ® Dy ® Ds
*As ® Ag

*As ® As © Dy
*As ® Ay @ Ds
TAs ® Ay D As
*2A3 @ Es
*2A3 @ D
*2A3 @ As
*4A3

*As ® D1o

*As ®2Ds
*A2 ® Dy @ Es
*A2 ® Dy ® Ds
*Ax @ Ao

*As ® Ae @ Dy
*As ® As @ Ds
*Ar ® 245
*A2 ® Ay D Es
TA2 ® A1 @ Ds

417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
436.
437.
438.
439.
440.
441.
442.
443.
444.
445.
446.
447.
448.
449.
450.
451.
452.
453.

TAs ® Ay @ As
A ® A3z @ Er
A2 ® A3 © Dy
TAs @ Az © Az
TA2 ®2A3 @ Dy
TAs ©2A3 D Ay
*2A5 @ Es
*2A2 @ Ds
*2As ® 2Dy
*2A5 @ As
"2A2 ® Ay © Dy
"2A2 B 244
"242 ® A3 @ Ds
"2A2 ® Az © As
*3A2 @ Fs
*3A2 @ Ds
*3A42 ® As
*3A ® 243
*4A5 @ Dy
*4A0 @ Ay
*6As

*A1® Dn

"A1 @ Ds @ Es
*A1® Ds @ Ds
"A1© Dy ® B
*A1® Dy ® Dy
AL @ An

A1 ® A7 @ Dy
"A1® A6 @ Ds
A1 @ As © Ee
"A1 @ As @ Ds
TAL @ As D As
AL ® AL D Er
A1 ® A1 @ Dy
AL DAL D Ay
"A1® A3 © By
"A1® A3 @ Ds

454.
455.
456.
457.
458.
459.
460.
461.
462.
463.
464.
465.
466.
467.
468.
469.
470.
471.
472.
473.

474.

475.
476.
477.
478.
479.
480.
481.
482.
483.
484.
485.
486.
487.
488.
489.

A1 ® Az © 2D,
A1 ©® A3 D As
FA1DA3DALD D,y
A1 ® Az ®2A,4
A1 @ 2A3 D Ds
*A1 ®2A3 @ As
A1 @ A2 @ Dy
*AL1DA2B DB D5
A1 ® A2 @ Ay
*A1DA2DAsDDy
*A1DA2DALDDs
TALDADALD A5
FAIDADA3DEs
*A1®A2DA3D De
TA1B AP AsD As
A1 D Ax @ 3A3
A1 ®2A2 ® B
A1 @ 2A2 @ Dy
*A1 ®2A2 ® Ar

TAL D24 D Az D
Dy

A1 D242 D A3 D
Ay

*A1 @342 @ Ds
A1 ©3Ax D As
A1 ®4A2 ® Az
*2A1 ® D1o

*2A1 ® 2Ds

"2A1 ® Dy ® Es
“2A1 ® D1 @ Ds
*2A1 ® Awo

*2A1 © As @ Da
“2A1 ®© As ® Ds
*2A1 & 245

“2A1 ® AL ® Es
*2A1 ® Ay ® Ds
"2A1 ® Ay ® As
"2A1 @ As @ B

490.
491.
492.
493.
494.
495.
496.
497.
498.

499.
500.

501.

502.
503.
504.
505.
506.
507.
508.
509.
510.
511.
512.
513.
514.
515.
516.
517.
518.
519.
520.
521.
522.

523.

524.

*2A1 ® A3 @ Dr
2A1 ® A3 ® Ar
*2A1 & 2A3 D Dy
*2A1 ®2A3 D Ay
*2A1 ® A2 @ Ej
*2A1 ® A2 @ Ds
*2A1 @ Ay 2Dy
*2A1 ® A2 ® As

QA1 DA DAL D
Dy

F2A1 D Ay D 2A4

QA1 DA D Az D
Ds

QA1 DA D Az D
As

*2A1 ©2A2 ® Ep
*2A1 242 ® Dg
241 ® 242 @ Ag
*2A1 B2As D 2A3
*2A1 ®3As D Dy
*2A1 ®3A2 B Ay
*2A1 ®5A:

*3A1 ® Do

*3A1 ® Dy ® Ds
*3A1 @ Ay
*3A1® As © Dy
*3A1 ©@ AL ® Ds
*3A1 ® Ay ® As
*3A1 @ As @ Fg
*3A1 ® A3 @ Ds
*3A1 @ A3 @ As
*3A1 & 343
*3A1® A @ Ex
*3A1 ® A2 ® Dy
*3A1 @ A @ Az

"BAL DA DA D
Dy

BA1BADAP
Ay

*3A1 © 242 ® Ds



117

525.
526.
527.
528.
529.
530.
531.
532.
533.
534.
535.
536.
537.
538.
539.
540.
541.
542.
543.
544.
545.
546.
547.
548.
549.
550.
551.
552.
553.
554.
555.
556.
557.
558.
559.
560.
561.

*3A1 @24 @ As
*3A1 @ 3A: @ Az
*4A, @ Es

*4A; ® Ds

4A1 ® 2Dy

*4A, @ As

"4A1 ® Ay @ Dy
*4A B 2A4
"4A1 ® A3 @ Ds
"4A1 © A3 @ As
*4A1 D Ay B Fs
"4A1 © A2 @ De
T4A1 @ As ® Ag
F4A1 B Ax B 2A3
*4A1 §2A5 @ Dy
T4AL ©2A2 B Ay
*4A; ®4As

“5A1 ® Er

*5A1 @ Dy

"5A1 @ A7

5A1 @ A3 ® Dy
"5A1 ® A3 © Ay
*5A1 ® A2 @ Ds
*5A1 ® Ax @ As
*5A1 @ 2A; @ Az
*6A1 @© Fs

6A1 ® De

*6A1 @ As

6A; ® 243

6A1 @B A @ Dy
“6A1 @ As D Ay
*6A1 @ 3A2

TA1 @ Ds

TA1 @ As

TA1 @ A2 @ As
8A1 @ As

8A1 @ 2A,

rank(A) = 13

562. *Es ® E7

563. *D13

564. *D7 @ Fjs

565. *Dg ® FE7

566. *Dg¢ @ D7

567. *Ds & Eg

568. *Ds @ Dsg

569. D4 @ Doy

570. *2D4 @ Ds
571. *Ais

572. *Ag @ D4

573. *As ® Ds

574. *A7 & Es

575. A7 @ Dsg

576. *Ag @ Er

577. *Ae¢ @ D7

578. *A¢ @ Az

579. *As @ Fs

580. *As @ Ds

581. *As ® 2Dy
582. *As @ As

583. *A4 @ Dy

584. *A4® D4 ® Ds
585. *A4 & Ag

586. A4 ® As ® Dy
587. *2A4 ® D5
588. *2A4 @ As

589. *As & D1o
590. *As @ 2Ds
591. A3 ® Dy @ Es
592. "A3® D4 & D¢
593. *As @ A1o

594. *A3 ® A¢ ® Dy
595. *As @ As @ Ds
596. *As @ 245
597. *A3 ® A1 @ Es

598.
599.
600.
601.
602.
603.
604.
605.
606.
607.
608.
609.
610.
611.
612.
613.
614.
615.
616.
617.
618.
619.
620.
621.
622.
623.
624.
625.
626.
627.
628.
629.
630.
631.
632.
633.
634.

*As ® Ay @ Ds
*As ® Ay @ As
*2A3 @ Er
*2A3 & Dy
"2A3 @ A7

*3A3 & Dy

*3A3 @ Ay

*Az ® D11

*A2 ® Ds ® Eg
*A2 ® Ds ® Ds
A2 ® Dy @ B
*A2® Dy ® Dr
Ay ® An

*As ® A7 @ Dy
*As ® Ae @ Ds
*Ax ® As @ Es
*A2 ® As @ Ds
FA2 @ As © Ao
A2 @ AL D B
*As ® Ay @ Dr
Ay ® Ay @ A
*Ax ® A3 @ Es
*A2 ® A3 @ Ds
A2 ® A3 2D,
FAx @ Az © Ag
*As®DA3DALDDy
*As ® Az @244
*As ®2A3 @ Ds
*A2 ®2A3 @ As
*2A0 @ Doy
*2A2® D4 @ D5
*2A5 ® Ay
*2A2® As ® Dy
*2A2 ® Ay @ Ds
"2A2 ® Ay ® As
*2A2 ® A3 @ Es
*2A2 ® A3 @ Ds

635.
636.
637.
638.
639.
640.
641.
642.
643.
644.
645.
646.
647.
648.
649.
650.
651.
652.
653.
654.
655.
656.
657.
658.
659.
660.
661.
662.
663.
664.
665.
666.
667.
668.
669.
670.
671.

*2A2 ® A3 ® A
*2A5 @ 3A3
*3A2 @ Er
*3A42 ® D7
*3A: @ A7
"3A2 ® A3 ® Dy
*3A2 @ As ® Ay
*4A2 @ Ds
*4As @ As
*5A2 @ A3

A1 @ 2FEg

*A1 ® D2

“A1 @ De @ Es
*A1 ®2Dsg
*A1® Ds ® Er
*A1® Ds @ D
"A1® Dy @ Es
*A; © Dy ® Dsg
A1 @ 3Dy

YA @ Aio
*A1® As © Dy
*A1® A7 @ Ds
*A1® As © Es
"A1® A6 © Ds
A1 @246

A1 @ As @ Er
A1 ® As @ Dy
AL ® A5 @ Ay
*A1® Ay D Es
*A1® A1 @ Ds
AL @ AL D 2Dy
A1 © Ay D As
*A1 ®2A4 @ Dy
A1 @ 3A4
*A1® A3 @ Do
*A1DA3DD1®Ds
A1 ® Az © Ao
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672. *A1DAsBAsBDs  T06. A1 B3Ay @245 T39. 24, DA As®  T72. *3A1 0 Ay B As B
673. *A1©As®AEDs  T0T. *Ay © 44> ® Dy be bs
670 oA T8 A s AL 740. ;126/11 A BAz®  TT3. ZAl OA2 D A3 D
675. *A1 ®2A3 ® Es 709. A1 ®6A; TAL. *2A, & Ay B 3As 774, *3A, @ 245 @ Eg
676. A1 ®243® Ds  710. *24; @ Dy, 742, "2A, B 24y @ B.  T75. *3A, & 24s & Dg
677. *A @243 & Ag ML 24 @ Ds©E6 wy3 w94 god, D, TT6. “3A1 624, & Ag
678. "A1 © 443 712. *2A:1 @ D5 ® Ds T44. *2A, B2As ® A, TTT. T3A1 ®2A; 245
679. *A1 @ A2 ® Do 3. 248 Di®Br L e ot @A 778 T3A1®34:® Dy
680. *A1 @ Az ©2D; 714. *2A; ® Dy @ Dy Da 779. *3A; © 342 @ Ay
681. *A1®A:0Ds®Es 715, *24, ® Ay, 746. j42A1@2A2@A369 780. *3A; ©5A2
682. "A160A20D49Ds  716. *2A, @ A7 @ Da . ! 781. *4A; ® Dy
683. *A1 & As P A1o 717. *2A1 © A @ Ds [k *2A1 PG Ds 782. 4A1 ® Dy & D5
684. "A1©0A20A6®Ds 718, *24, @ As @ Es s A e3d s 783. *4A; @ Ag
685. "A1®A20A50Ds5 719, *24, & As & De o A e A ds 784. 4A1 ® As ® Dy
686. "A1 & Ax B 245 720. *2A4: @ As ® As 70 T3S Do 785. *4A; © Ay @ Ds
687. "A0A20A10Es 791 *24, ¢ Ay @ Er 7L T3 @ 2D 786. *4A1 ® Ay @ As
688. "A1®A20A1BDs 799 *24, @ A, @ Dy 752 "84G Da® B 787. *4A, ® A3 ® Eo
689. "MBA8ADAs 793 oA @ A @A, 0 S ODiS D 788. 4A; ® As ® Dg
690. “MBA:BADEr g9y vop @ Ay B Ok oA 789. *AA; ® A3 @ Ag
691. "A1®A2®AsDD7 795 94 @ As @ Ds 755. "3A1 ® As © Da 790. 44, B 345
692. "M©A20A3BA7 795 94, @ A p2p, 00 BMOASDs oL e A e
693. ;f‘il DA 02430 497 9p @A @Ay O BAID24s 792. *4A;, @ Ay @ Dy
4. Aoz P MOA oA 58 BAG A Ee gg3 wya, @ A0 A

Au 4 9. BAOADDs 1o yu oA A Dy
695. “Av@2Az @By o0 PHOMOM 160 s e Ae A Lor s oa e Ao
696, “As 24, @ Dy T30 24182450 Ds 761 wg4 g A e By Ay
697 AL oAy map, Ol M@ D A5 g0 w34 g a g p, 796 AL ©24: 8 Ds
698, A, @ 240 @ As 732. *2A; @ As @ Do 763. *3A4, ® As B Ar 797. 4A1 ©2A2, @ A5
699. A1 @24, DA OO 25‘41 ©A0Di® g5 34, 024500, 798 O34 04
D :
700. *,:1 ©24, m24, Ob 204284 o e e ;zz' 5ZA1@®DE8
X 766. *3A; & As & Fy COTE s
01 “A @24 B Az OO DQAl@A2®A5@ i 801. *5A; @ Ag
e 4 767. *3A; @ A2 @ Dg
102, A @2 Ay T30 2410484 768 34, @ Ay@2aD, 0% S OAO D
45 B 9. 3 @ Ao Ay L DS
03 "A @34, 0B O A25A1 R o oAy A, e B0L 541 A ® Dy
04 CM@ILEDs Di 805. 5A; @ A3 ® As
705. *Ay ® 345 & Ag Es 771. *3A1 B As P 2A, 806. *5A1 ® Ax @ Es
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807. 5A1 @ As @ Dg

808. "5A1 @ A2 @ As

809. 5A1 © Az D 243

810. 5A; ©2A>® Dy

811. "5A; ®2A> @ Ay

812. "5A; @ 4A,

813. 64, @ Ex

814. 6A1 & Dy

815. 641 ® A~

816. 641 @ A3 D Ay

817. 6A1 @ A2 @ Ds

818. 6A1 @ Az @ As

819. 641 ©2A2® A3

820. 7TA1 @ Es

821. TA; @ As

822. TA1 ® Ax ® Ay

823. TA; ¢ 3A;
rank(A) = 14

824. *2F7

825. "E¢ @ Es

826. *Dis

827. *Dg & Eg

828. *D7 @ E7

829. *2D7

830. "D ® Es

831. *D¢ @ Ds

832. *Ds5 @ Dy

833. *D4 @ Dqo

834. *D4s ®2Ds

835. 2D, @ Es

836. 2D4 @ Ds

837. "Aia

838. "A10® Dy

839. *Ag @ Ds

840. "As @ Es

841. *As @ Dsg

842. *A7 @ E7

843.
844.
845.
846.
847.
848.
849.
850.
851.
852.
853.
854.
855.
856.
857.
858.
859.
860.
861.
862.
863.
864.
865.
866.
867.
868.
869.
870.
871.
872.
873.
874.
875.
876.
877.
878.
879.

*A7 ® D
*2A7

"As @ Es

“As @ Ds

A ® 2Dy
*As © As

*As ® Do

*As ® Dy ® Ds
*As ® Ag

*2A5 @ Dy
*As @ Do

*As @ 2Ds
A1 ® Dy ® Es
*Ay ® Dy ® Ds
*As ® Aro

"AL @ A6 @ Da
Ay ® As @ Ds
*AL B 2A5
“2A4 @ Es
*2A4 ® Do
*2A4 ® As

*A3 ® D1

"As @ Ds @ Es
*As ® Ds @ Ds
A3 ® Dy ® By
"As ® Da® Dy
A3 ® An

A3 ® A7 @ Dy
"A3 @ A6 @ Ds
*A3 @ As @ Es
*As @ As @ Ds
A3 @ As @ A6
A3 ® AL @ B
*A3 ® Ay @ Dr
A3 ® AL @ Az
*2A3 @ Eg
*2A3 @ Dg

880.
881.
882.
883.
884.
885.
886.
887.
888.
889.
890.
891.
892.
893.
894.
895.
896.
897.
898.
899.
900.
901.
902.
903.
904.
905.
906.
907.
908.
909.
910.
911.
912.
913.
914.
915.
916.

2A3 ® 2Dy

*2A3 @ As
*2A3® Ay @ Dy
*2A3 ® 2A4

*3A3 & Ds

*3A3 @ As

*As @ 2Fs

*Az ® D12

*A2 ® Ds ® Eg
*As ®2Dsg

A2 ® Ds @ B
"A2 @ Ds & Dy
*As ® Dy ® Eg
*As ® Dy ® Ds
Az @ 3Dy

FAz @ Ar2

FA2 ® As @ Dy
A2 ® A7 © Ds
*Ax @ As D Es
*As ® As ® Ds
*As ® 246

A2 ® As © B
*A2 ® As © D
A2 ® As © A7
A2 ® Ay D Es
A2 © Ay ® Ds
*As ® Ay @ 2Dy
*Az ® Ay @ Ag
*A2 ®2A4 @ Dy
FAr @ 3A4

FA2 ® A3 @ Do
*A20A30 DD Ds
A ® Az @ Ay
*A2®DA3DAs DDy
*A2DA3DALDDs
FA2DA3DALDAs
Ay ®2A3 D Es

917.
918.
919.
920.
921.
922.
923.
924.
925.
926.
927.
928.
929.
930.
931.
932.
933.
934.
935.
936.
937.
938.
939.
940.
941.
942.
943.
944.
945.
946.
947.
948.
949.
950.
951.
952.
953.

*As ®2A3 @ De
TAs ®2A3 @ As
Ay B 4As

*2As ® D1o
*2A2 @ 2Ds
"242 ® Dy @ Eo
*2A2 ® Dy ® Ds
*2A2 ® A1o
*2A2 ® Ae @ Dy
"2A2® As @ Ds
*2A5 @ 2A5
"24> DAL ® Es
*2A2 ® Ay @ Dg
"2A2 ® Ay ® A
*2A2 ® A3 ® B
"2A2® A3 ® Dy
"2A2® A3 @ A
"2A2 ©2A3® Dy
*2A2 ®2A3 P Ag
*3A2 ® Eg

*3A2 ® Ds
*3A42 ® 2Dy
*3A2 @ As
*3A2® A4 @ Dy
*3A2 B 24,4
*3A2 ® A3z @ Ds
*3A2 ® A3 ® As
4A2 @ Es

*4A2 & Deg
*4Ay B Ag

*4A; D 2A3
5A2 @ Dy

5A2 ® Ay
*A1® Es @ Er
*A1® D13
*A1® D7 @ Es
*A1® Ds @ I
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954.
955.
956.
957.
958.
959.
960.
961.
962.
963.
964.
965.
966.
967.
968.
969.
970.
971.
972.
973.
974.
975.
976.
977.
978.
979.
980.
981.
982.
983.
984.
985.
986.
987.
988.
989.
990.

*A1 ® Ds ® D
*A1® Ds @ Es
*A1® Ds @ Ds
*A1® Dy ® Do
A1 ® 2Dy ® Ds
*A1 @ Ais

A1 ® Ay © Dy
*A1 ® As @ Ds
*A1® A7 © Ee
*A1® A7 @ Ds
TA1® A6 © B
*A1® A6 © D7
A @ As @ Ar
*A1 ® As @ Es
*A1® As © Ds
A1 @ As © 2Dy
A1 ® As © Ag
AL © AL ® Dy
*A1®ALDD4BDs
AL ® AL D Ag
*A1DALDAsD Dy
*A1 ®2A4 @ Ds
A1 D2AL D As
*A1® A3 @ Dio
A1 @ A3 ©2Ds
A1 A3 DLBEs
A1DA3DDs® De
*A1® Az @ Aio
FA1DA3DAD Dy
TA1DA3DAsDDs
TA1® As D245
A1 BA3BALBEs
*A1DA3DALD Do
FA1DA3PALD A
*A1 ®2A3 ® By
A1 ®2A5 D Dy
A D 2As D Az

991.
992.
993.
994.
995.
996.
997.
998.
999.
1000.
1001.
1002.
1003.
1004.
1005.
1006.
1007.
1008.
1009.
1010.
1011.

1012.

1013.

1014.

1015.
1016.

1017.
1018.

1019.

1020.

1021.

A1 ®3A3® Dy
AL ®3A3 0 Ay
A1 ® Ay @ Diy
"A10A20D5DEs
"A1DA2®Ds5® Ds
TAI @A DD E,
FA1®A® DB Dy
AL @ A2 @ A
TA1DA2D AP Dy
FTA1DA2DAcB D5
TAL DA D AsDEs
"A1BA2DAsDDs
TAI A DA D As
TAIDA2QALDE,
TAIBADALBDy
TAIDABALD AL
TA1DA2DA3DER
TA1®A2DA3B Dy
A1BADAsD2D,y
AL DA P A3 D Ag

TAL B A B A3 D
A4 @ Dy

FAL D A D A3 D
2A4

FAL DA D243 D
Ds

FAL DA D2A3D
As

*AL @242 B Dy

FAL D24 Dy
Ds

AL 24> B Ag

TALB2A2 D A5 D
Dy

FALD2A D ALD
Ds

FALD2A2 DAL D
As

FALB2A2D A3 D
Fg

1022.

1023.

1024.
1025.
1026.
1027.
1028.

1029.

1030.
1031.
1032.
1033.
1034.
1035.
1036.
1037.
1038.
1039.
1040.
1041.
1042.
1043.
1044.
1045.
1046.
1047.
1048.
1049.
1050.
1051.
1052.
1053.
1054.
1055.

TAL D24 D A3 D
Dsg

AL D2A2 D A3 D
Ag

A1 P 2A; B 3As
A1 @ 3Ax ® E7
*A1 ®3A2 ® D
A1 ®3A2 ® Ar

TALP3A B A3 B
Dy

*ALD3A DA D
Ay

A1 ®4A; ® Ds
A1 ©4A2 D A5
A1 B 5A2 D A3
*2A1 ® 2Fs
*2A1 ® D12
*2A1 ® Ds ® Es
241 @ 2Ds
“2A1 ®© Ds © Er
“2A1 ® Ds © Dy
"2A1 ® Dy @ Es
2A1 ® Dy @ Ds
*2A1 @ A1z
*2A1 ® As ® Dy
*2A1 ® A7 ® Ds
*2A1 © As ® Es
*2A1 © As @ Ds
*2A1 @ 246
“2A1 @ As @ B
*2A1 ® As ® D
*2A1 ® As ® Ar
*2A1 ® Ay ® Es
*2A1 ® Ay ® Ds
2A1 ® Ay ® 2Dy
241 @ Ay @ As
“2A1 ©2A4® Dy
F2A1 ®3A4

1056.
1057.

1058.
1059.
1060.

1061.

1062.
1063.
1064.
1065.
1066.
1067.
1068.

1069.

1070.
1071.

1072.

1073.
1074.

1075.

1076.

1077.

1078.

1079.

1080.

1081.

1082.
1083.

*2A1 @ A3 @ Dy

241 @ A3 ® Dy &
Ds

"2A1 B As B Ay
2A160A30A5® D,y

QA BADALD
Ds

QA BADALD
As

*2A1 B 2A3 ® Eg
2A1 @ 2A3 @ Dg
241 ®2A3 @ As
2A1 @ 4A3

*2A1 ®© A2 @ Do
*2A1 @ As @ 2Ds5

2A1 DA ® Dy D
Es

21 A2 Ds P
Dg

2A1 6 A2 B Ao

QA DA DA D
Dy

AL DA DAD
Ds

*2A1 @B As B 245

QA1 DA DAL D
Es

A BADALD
Dg

A BADALD
Ae

AL BADAZD
Er

AL DA DAZD
Dy

AL DA DAD
Ar

241D A2 D243 P
Dy

QA1 DA D2A3D
Ay

*2A1 & 24>, ® Eg
*2A1 G242 ® Dg
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1084.
1085.
1086.

1087.
1088.

1089.

1090.
1091.
1092.
1093.
1094.
1095.
1096.
1097.
1098.
1099.
1100.
1101.
1102.
1103.
1104.
1105.
1106.
1107.
1108.
1109.
1110.
1111.
1112.
1113.
1114.
1115.
1116.
1117.
1118.

241 ®2A, D 2D,
*2A1 @245 @ Asg

2A1 0240 A4B
Dy

*2141 b 2A2 D 2A4

2A1 0240 A3D
Ds

2A1 0240 A30
As

*2A1 © 342 ® Fg
*2A1 ®3A2 ® Dg
*2A1 @ 3A: @ Ag
*2A1 B3A; D 2A;
*2A1 ®4A2 ® Dy
241 ®4A2 P Ay
2A;1 ®6A,

*3A1 ® D1

*3A1 ® Ds ® Es
341 @ Ds @ Ds
3A1 @ Dy ® Er
341 ® D4 ® D7
"3A1 @ An

3A1 D A7 ® Dy
"3A1 @ A6 @ Ds
"3A1 ® As © Es
3A1 @ As ® Ds
“3A1 @ As D As
*3A1 @ Ay @ Er
"3A1 ® As @ Dy
"3A1® AL @ A
"3A1 ® A3 © Es
341 ® As @ Ds
*3A1 @ As @ As
3A10A3PALDDy
*3A1 @ A3 B 2A4
3A1 ®243® Ds
3A1 @ 2A3 P A5
*3A1 ® A @ Dy

1119.

1120.
1121.
1122.

1123.

1124.

1125.
1126.

1127.
1128.
1129.
1130.
1131.

1132.

1133.
1134.
1135.
1136.
1137.
1138.
1139.
1140.
1141.
1142.
1143.
1144.
1145.
1146.
1147.
1148.
1149.
1150.

341 @A @ Dy @
Ds

*3A1 D Ay ® Ag
3A1BPAPAsB Dy

BAL DA DALD
Ds

"BAID A2 DAL D
As

BA1 DA D A3 D
Es

3A10 AP AsD D

"BA1 AP A3 D
Ag

3A1 @ As @ 343

*3A1 ® 24> @ Er
*3A1 6242 & Dy
*3A1 ® 242 B Ar

3A1 P2A2 A3
Dy

*3A1 P2ADAsD
Ay

*3A1 @342 @ Ds
*3A1 @ 3A2 D A5
*3A1 ©4A: D As
4A1 @ D1o

4A, @ 2Ds

4A1 © D1 @ Es
*4A1 @ A1o

4A1 © As ® D4
4A1 ® As ® Ds
4A; @ 245

“4A1 © AL ® Es
4A1 ® Ay ® Ds
“4A1 @ Ay @ As
4A1 © A3 ® B
4A1 ® As ® D7
4A: © As @ Ay
4A; ©2A3 D As
4A1 D Ay @ Es

1151.
1152.
1153.
1154.
1155.
1156.
1157.
1158.
1159.
1160.
1161.
1162.
1163.
1164.
1165.
1166.
1167.
1168.
1169.
1170.
1171.
1172.
1173.
1174.
1175.
1176.
1177.
1178.
1179.
1180.
1181.
1182.
1183.

1184.
1185.
1186.

4A1 © A2 ® Ds
*4A1 ® A2 ® As
4A1DA20A1BDy
F4A1 D Ay D 2A4
4A1BA2DA3BDs
4A10A2DA3DAs
*4A1 & 242 ® Eg
4A1 ©2A2 @ Ds
1AL ®2A2 D As
4A1 ®2A5 B 245
4A1 ®3A2® Dy
*4A1 ©3A2 B Ay
4A; @ 5A,

5A1 @ Do

5A1 @ Ag

5A1 ® A1 ® D5
541 @ Ay @ As
541 @ A3 @ Es
541 @ A3 @ As
5A1 ® A2 @ Er
5A1 ® A2 ® Dr
5A1 ® A2 ® A7
5A1DA2DA3DAY
5A1 ®2A2 @ D5
5A1 ®2A; P As
5A1 & 3A2 P A3
6A1 @ Es

6A1 @ Asg

6A1 P 2A4

6A1® Az @ Fs
6A1 @ Az @ Ag
6A1 ®242 D Ay
6A1 ©4A,

rank(A) =15

*E7 @ Eg
*D1s

*Dg & Eg

1187.
1188.
1189.
1190.
1191.
1192.
1193.
1194.
1195.
1196.
1197.
1198.
1199.
1200.
1201.
1202.
1203.
1204.
1205.
1206.
1207.
1208.
1209.
1210.
1211.
1212.
1213.
1214.
1215.
1216.
1217.
1218.
1219.
1220.
1221.
1222.
1223.

*Ds @ Er

D7 ® Es

*D7® Ds

*De @ Do

*Ds @ Dio
*3Ds

*Dy ® D1y
"Dy ® Ds @ Es
Dy ® Ds @ Ds
2D4s ® Er

2Dy @ D7
*Ais

*A11 © Dy
*A10 ® Ds

*Ao @ Ee

*Ao @ Ds

TAs @ Er

*As @ Dr

*A7 ® Eg

*A7 @ Ds

A7 ® 2Dy

*A7 ® As

*Ae @ Do

*Ae ® D1 ® Ds
*As @ Ag

*As © Dio

*As @ 2Ds
*As ® Dy @ Eg
As © D4 ® Ds
*As @ Aio

TAs ® A6 © Dy
*2A5 @ Ds
*3As5

*As ® D
*As® Ds @ Eg
*As® Ds @ Ds
"As® Dy ® B
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1224. *Ay ® Dy ® D7 1261. *2A3 ® As @ D5 1298. *As @ A3z @ A1o 1334. *3A2 @ Ag
1225. *Ay @ Aqx 1262. *2A3 @ Ay @ As 1299. *AsPAsPAcPDDs 1335. 3A2 P As ® Dy
1226. "Ay ® A7 @ Dy 1263. *3A3 @ Es 1300. *As®AsPAsD®Ds 1336. "3A2 ® Ay & Ds
1227. "A4 @ A6 ® Ds 1264. 3As @ Ds 1301. *As @ A3z @ 245 1337. 3A2 @ Ay @ As
1228. "A4 @ As ® Fs 1265. *3A3 @ As 1302. *A;®AsPALPEs 1338. 342 ® A3 @ Fs
1229. "Ay4 @ As & D¢ 1266. 5A3 1303. *AsPAsPAsbDg 1339, *3A2® A3 & Ds
1230. *A4 @ As ® As 1267. *As ® Es ® Er 1304. *As@®As DAL DAs 1340. "3A2 @ A3 @ As
1231. *2A, @ E; 1268. *As @ D3 1305. *As @ 243 & E 1341. *3A5 @ 3A3
1232. *2A, @ Dy 1269. *A2 @ D7 & Eg 1306. *As @ 243 ® D, 1342, 442 @ Exr
1233. *244 ® Ar 1270. *As @ Ds & Er 1307. *Ay @245 @ A, 1343. 442 @ Dy
1234. *As @ 2F; 1271. *As @ D6 & D+ 1308. Ay 343 @ Dy 1344. 44, & A
1235. *A3 @ D12 1272. *As @ D5 @ Es 1309, *Ay B 3As® A, 1345 442 @ A3 @ Dy
1236. *As @ Ds @ Es 1273. *As @ Ds & Ds 1310. *24, @ D13 1346. 4A2 @ As @ Ay
1237. A3 ®2Ds 1274. *A> @ D4 @ Dy 1311 "24, @ Ds @ Eg  1347. 5A2 @ Ds
1238. *A3; ® Ds @ Er 1275. A, ©2D4 @ Ds 1319 *94, @ Ds @ Dg 1348, “A1 ® 2E-
1239. *As ® Ds ® D+ 1276. *A> @ Aus 1313. *24, @ Dy @ B, 1349, "A1 & Eg @ Fs
1240. *As & D4 & Es 1277. *Ay & Ag & Dy 1314, *245 @& Dy @ D, 1350. “A1 @ Diy
1241. A3 @ D4 @ Ds 1278. *As & As ® Ds 1315. *245 @ A1 1351. *A1 @ Ds & Es
1242, *As & Axs 1279. *As & A7 & Eg 1316. 24y @ Ay @ D, 1352 "A1 @ Dr @ Er
1243. A3 ® As ® Dy 1280. *As @ A7 @ Dg 1317, *245 @ Ag @ Ds 1353. *A1 @ 2D~
1244. *As ® A7 ® Ds 1281. *As @ Ag ® Er 1318. 24, @ As @ E 1354. *A1 @ Dg @ Fs
1245. *As ® As ® Es 1282. *As @ As ® D7 1319. *245 @ As ® De 1355. A1 @ De ® Ds
1246. *As @ As ® Ds 1283. "As d Ag ® A7 1320. *24, & As & Ag 1356. *A1 @ Ds & Dy
1247. *As @ 246 1284. "As ® As ® Es 1321, *24, @ Ay & Ex 1357. A1 ® D4 ® D1o
1248. *As ® As & Er 1285. A @ As & Ds 1322, *245 & Ay & D+ 1358. A1 & D4y @ 2Ds
1249. *As ® As & D7 1286. Az @ As @ 2D4 1323, 240 ® Ay @ As 1359. A1 @ 2D, @ E¢
1250. *As @ As ® Ay 1287. *As @ As @ As 1324. *245 @ As @ Es 1360. *A; @ A1a
1251. *As ® Ay ® Es 1288. *As @ Ay @ Do 1325. *2A45 @ As @ Ds 1361. *A1 ® A1o @ D4
1252. *As ® Ay @ Ds 1289. *As®A1sDD1D D5 1326. 245 @ As @ 2D, 1362. A1 @ Ag @ Ds
1253. As @ Ay ® 2Dy 1290. *As @ Ay B Ao 1327, *240 @ As & As 1363. A1 ® As & Es
1254. *As @ Ay ® As 1291. *AsDA4PAsDDy 1398, *240 ® As B Ay 1364. A1 ® As @ Ds
1255. A3 ® 244 ® D4 1292. Ay @244 ® Ds Dy 1365. A1 @ A7 @ Ex
1256. *As & 3A4 1293. "A; @24, As 1329. "2A; @ A3 ® 244 1366. *A1 © Ay ® Dy
1257. *2A3 & Dy 1294. A @ A3 @ D1o 1330. "2A2 @243 d D5 1367. *A1 © 2A~
1258. 2A3® D4 & Ds 1295. Ay @ A3z @ 2Ds 1331. "2A; ®2A3® As  1368. *A; @ As @ Es
1259. *2A3 @ Ao 1296. *As®A3DDysDEs  1332. *3A2 ® Dy 1369. *A1 ® Ag ® Ds
1260. 2A3 @ As @ D4 1297. AsPAs®DsBDs  1333. *3A2 ® Dy ® Ds 1370. A1 @ Ag ® 2Dy
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1371.
1372.
1373.
1374.
1375.
1376.
1377.
1378.
1379.
1380.
1381.
1382.
1383.
1384.
1385.
1386.
1387.
1388.
1389.
1390.
1391.
1392.
1393.
1394.
1395.
1396.
1397.
1398.
1399.
1400.
1401.
1402.
1403.
1404.
1405.
1406.
1407.

TAL® A @ Ag
TA1® As @ Do
A1®AsDD1® D5
A1 @ As D Ao
A1 ®2A5 ® Dy
*A1 © Ay D Dio
*A1 @ Ay @ 2Ds
"A1©A1D DD Es
A1®A1DD4® Dg
TA1® Al @ Ao
TAIPALDAD D,y
TALDALDAsBDs
AL @ AL D245
TA1L ®2A4 ® Es
TA1 @ 2A4 @ De
TA1 ®2A4 D As
A1 ® A3 © D
TA1DA3DDsDEs
A1DA3DDsD De
A1 ®A3DDLDEY
A1®As®Ds® D7
TA1L® Az @ A
A1QA3DA7D Dy
TA1DA3DADDs
FAIBA3BAsBEs
A1®A3DAsD De
TAL1DA3DAsDAs
TAIDA3BALDE,
TA1DA3DAID Dy
TAIDA3BALD AL
A1 ®2A3 D Fs
A1 ®2A5 @ Ds
TA1L ®2A;3 ® Asg
A1B2A30A1B Dy
AL B 2A3 B 2A,
A1 ®3A3 @ Ds
A1 ®3A3 D As

1408.
1409.
1410.
1411.
1412.
1413.
1414.
1415.
1416.
1417.
1418.
1419.
1420.
1421.
1422.
1423.
1424.
1425.
1426.
1427.
1428.
1429.

1430.
1431.
1432.

1433.
1434.

1435.

1436.

1437.

1438.
1439.

A1 ® Az @ 2FEg
FA; @ Az @ Di2
*A10 A28 DB Es
A1 ® A2 ®2Ds
*A1®ADDsDE7
*A1®A20Ds® D7
FAI A DyDEs
A1®A2®Ds® Dg
A1 ® Az @ Asz
AP ADAD Dy
*A1DADA7DDs
TAI1DA2DAcDEs
*A10 A28 AcBDs
*A1L @ A2 @246
FA1DADAsDEY
*A1DADAsD Dy
TAIDA DA DAY
AP AP ALBES
*A1DA2DALDDs
A1DAPALD2Dy
AL DA DALD A

FALD A D2A4 D
Dy

A1 D A ®3A,
*A1BADAsB Dy

A1 @ A @ A3 &
D4 @ Ds

A1 BABA3DAg

AL @ Ay @ A3 &
As @ Dy

AL DA B A P
A4 @ Ds

FAL B A B A3 D
As B As

AL D Ay D2A3 D
Es

A1DAP2A38Ds

AL DA B2A3 D
Asg

1440.
1441.
1442.
1443.

1444.

1445.
1446.

1447.

1448.
1449.

1450.

1451.

1452.

1453.

1454.

1455.

1456.

1457.
1458.
1459.
1460.
1461.

1462.
1463.

1464.
1465.
1466.
1467.

A1 @© Ay D 4As
*A1 @242 ® D1o
AL ®2A> B 2Ds

*ALB2A2 B Dy B
Es

AL 242D Ds P
Dsg

AL ® 242 D Ao

FAL D24 D As D
Dy

FALD2AD A5 D
Ds

A1 ®2A; 245

FALD2A2DALD
Ee

FALBD2ADALD
Dg

TALB2A2 B ALD
Asg

FAL D24 DAz D
Er

FALD2A2D A3 D
D~

FALBD2A DA D
A7

A1 B2A:B2A3 0
Dy

*A1€B2A2@2A3@
Ay

*A1 ®3A2 @ Es
A1 ®3A2 @ Ds
A1 ® 342 ® 2D,
A1 ®3A; & Ag

FALB3ADALD
Dy

AL @ 3A B 2A4

*AID3A DA D
Ds

A1B3A20A3D 45
A1 ©4A2 @ Es
A1 ®4A; @ Dg
A1 ®4A; @ Ag

1468.
1469.
1470.
1471.
1472.
1473.
1474.
1475.
1476.
1477.
1478.
1479.
1480.
1481.
1482.
1483.
1484.
1485.
1486.
1487.
1488.
1489.
1490.

1491.
1492.
1493.
1494.
1495.
1496.
1497.
1498.
1499.
1500.
1501.
1502.

1503.

AL ©4A; ©2A3
A1 ®5A: @ Ay
*2A1 @ Es @ L7
*2A1 @ Di3
"2A1® D7 @ Es
2A1 ® De @ Er
241 @ De © D7
"2A1 ® Ds @ Es
2A1 ® D5 @© Ds
2A1 ® Dy @ Dy
*2A1 @ Ans

2A1 ® A9 @ Dy
*2A1 ® As ® Ds
*2A1 ® A7 ® Es
2A1 @ A7 @ Dg
*2A1 ® Ag @ Er
*2A1 ® As ® D7
"2A1 @ As @ Ar
"2A1 ® As © Es
2A1 ® A5 ® Ds
"2A1 © As @ As
*2A1 ® Ay @ Dy

21 DAL DDy P
Ds

"2A1 @ AL ® Ag
2A10A1BAsDDy
*2A1 ©2A4® D5
241 ®2A4 P As
2A1 ® A3 ® D1o
2A1 @ A3 & 2Ds
2410 A3®D1®Es
*2A1 ® Az @ Aio
2A10A30A6DDy
2A19A3BAsD D5
2A1 @ A3z @ 245

AP A DALD
Es

2A10A30A4DDs
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1504.

1505.
1506.
1507.
1508.
1509.
1510.

1511.

1512.

1513.

1514.
1515.
1516.

1517.

1518.
1519.

1520.

1521.

1522.

1523.

1524.
1525.

1526.

1527.

1528.

1529.

1530.

2A1 A3 DAL D
Ag

2A1 ®2A3 6 Er
24, ®2A3 @ Dy
2A1 2430 Ar
2A1 ©3A3 ® Ay
*2A1 © A2 ® D1y

2A1DA2®Ds®
Eg

21 A2 Ds P
Deg

2A160A206DsBE7

24 DA D Ds @
Dy

T2A1 @A @ An
2A1 @AQ @A7@D4

2A1 D A D As D
Ds

QA1 DA D A5 D
Es

2A10A20 A58 Ds

241 QA2 D As D
As

QA1 DA DAL D
Er

QA1 P As D AL D
D~

AL BADALD
Az

QAL DA DAZD
Ey

2A160A260A36Dsg

AL PADAD
As

241 A2 B Az P
A4 @ Dy

241 A D A3 D
244

241 B A2B2A3 P
Ds

2A1 B A P2As P
As

*2A1 © 245 @ Dy

1531.

1532.
1533.

1534.

1535.

1536.

1537.

1538.

1539.
1540.
1541.
1542.
1543.

1544.

1545.
1546.
1547.
1548.
1549.
1550.
1551.
1552.
1553.
1554.
1555.
1556.
1557.
1558.
1559.
1560.
1561.

24192428 D4 @
Ds

*2A1 ®2A2 ® Ay

2A1 92420 A5 D
Dy

F2A1 0240 A4D
Ds

2A1 024, A4B
As

*2A1B2A2DA3D
Es

2410242 P Az P
Dsg

2A1 024D A3D
Asg

2A1 @ 2A2 B 3A3
*2A1 ©3A; @ Er
*2A1 @ 3A2 @ D7
*2A1 §3A; @ A7

2A103A2P Az D
Dy

*2A103A20A3®
Ay

2A1 D 4As ® D5
2A; ®4A2 @ As
2A1 ®5A2 @ As
*3A1 ® 2FEs

3A1 ® D2

341 ® Ds ® Es
341 @ Ds @ Er
341 @ Ds @ Dy
341 ® D1 @ Es
*3A1 @ A1z

3A1 @ As ® Dy
3A1 @D A7 ® Ds
"3A1 ® As © Es
3A1 @ As @ Ds
*3A1 @246
341 @ As @ B
341 © As ® D7

1562.
1563.
1564.
1565.
1566.
1567.
1568.
1569.
1570.
1571.
1572.
1573.
1574.
1575.
1576.
1577.
1578.
1579.
1580.
1581.

1582.
1583.

1584.
1585.
1586.
1587.

1588.
1589.
1590.

1591.

1592.

1593.

1594.

3A1 D A5 A
“3A1 ®© Ay @ Es
341 © A1 @ Ds
*3A1 ® Ay @ As
3A1 ®2A4 @ Dy
*3A1 ® 3A,4

3A1 ® A3 ® Dy
341 @ A3 @ Ay
3A1DA3DALDDs
3A10AsDALDAs
3A1 ®2A3 P Es
3A1 243D Ap
3A1 @ A2 ® D1o
3A1 ® A2 @ 2Ds
3A19A20D1DEs
*3A1 @ Ax @ Avo
3A10A2DA¢®Dy
3A19A20A50 D5
3A1 ® Ay B 2A5

BAL DA DALD
Es

3A1BA2P AP Ds

BAL DA DALD
Ag

3A10APAsBEY
3A1BA2BA3B Dy
3A1PADA3D A

3A1 DA B2A3 D
Ay

*3A1 ®2A> @ Es
3A1 ®2A2 & Ds
*3A1 & 24, B Asg

3A1 D24, AL D
Dy

*3A1 ®2A2 B2A4

3A1 B2A2 B A3
Ds

3410242 Az D
As

1595.
1596.
1597.
1598.
1599.
1600.
1601.
1602.
1603.
1604.
1605.
1606.
1607.
1608.
1609.
1610.
1611.
1612.
1613.
1614.
1615.
1616.
1617.
1618.
1619.
1620.
1621.
1622.

1623.
1624.
1625.
1626.
1627.
1628.
1629.
1630.

3A1 ®3A2 P Es
3A1 ®3A2 @ D¢
*3A1 @ 3Ar ® Ag
3A1 ®3A2 ® 243
3A1 ®4A2 ® Dy
3A1 ®4A> D Ay
4A1 @ D1y

4A1 ® D5 © Eg
4A:1 @ A1n

4A1 © As ® Ds
4A1 ® As © Es
4A1 © As @ As
4A, DAL B Br
4A1 ® Ay ® D7
4A, © Ay ® A7
4A, © A3 @ Es
4A1 © A3 ® As
4A1 @ Az P 2A4
4A1 @ A2 @ Dy
4A1 ® A2 @ Ag
4A1DADALDDs
4410 A2PALBAs
4A10A2DA3DEs
4A10A2DA3D As
1A, ®2A, @ Er
4A1 ©2A2 @ Dy
4A, B 2A2 6 A7

4A1 P2A D A3 D
Ay

4A1 ©3A2® Ds
4A1 ®3A> D As
4A1 @ 4A2 D A3
5A1 ® Ao

541 @ A4 @ Es
5A1 ® AL @ Ap
5A1 ® A2 @ Es
5A1 @ Ay @ Ag
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1631.
1632.
1633.
1634.

5A1 @ Ay @ 2A4
5A1 ©2A2 ® Es
5A1 B 242 P As
5A1 @ 3A2 ® Ay

rank(A) = 16

1635.
1636.
1637.
1638.
1639.
1640.
1641.
1642.
1643.
1644.
1645.
1646.
1647.
1648.
1649.
1650.
1651.
1652.
1653.
1654.
1655.
1656.
1657.
1658.
1659.
1660.
1661.
1662.
1663.
1664.
1665.
1666.

*2Es

*Dis

*D1o @ Es
"Do @ E7
"Ds @ Es
2Dg

*D7 @ Dy

D¢ @ Do
*Ds ® D11
*2D5 & Es
2Ds @ Ds
*Dy & 2Fs
Dy @ D12

Dy ® Ds ® Es
Dy @ Ds @ B
Dy ® Ds & D~
2D, @ Eg
A

TA12 @ Dy
*A11 @ Ds
*A10 @ Eg
*A10 ® Ds
*Ao ® B

*Ao @ D
"As @ Es

*As @ Ds

As @ 2Dy
*2As

*A7 @ Do

A7 ® Ds® Ds
TA7 ® Ag

*Ae @ D1o

1667.
1668.
1669.
1670.
1671.
1672.
1673.
1674.
1675.
1676.
1677.
1678.
1679.
1680.
1681.
1682.
1683.
1684.
1685.
1686.
1687.
1688.
1689.
1690.
1691.
1692.
1693.
1694.
1695.
1696.
1697.
1698.
1699.
1700.
1701.
1702.
1703.

*As @ 2Ds5
*As ® Dy ® Es
As © D4 @ Ds
*As @ Aro
*2A6 @ D4
“As © D

*As ® Ds ® Es
As ® D5 @ Dg
As ® Dy @ Er
As @ Dy ® D7
“As @ An

As @ A7 @ Dy
“As © Ae © Ds
2A5 @ Fs

2A5 @ Ds
*2A5 ® As
AL D 2Fs
“As @ D12

*As @ Ds @ Es
Ay @ 2Dg

*Ay ® Ds ® B
*Ay ® Ds ® D
AL @ Dy ® Es
Ay ® Dy ® Ds
AL D Arz

A4 D As D Dy
Ay ® A7 @ Ds
*As® As @ Es
"AL @ A6 @ De
AL D246
AL ® As © B
AL @ As @ Dr
AL ® As @ Ay
*2A4 & Es
*2A4 ® Dsg
2A4 ® 2Dy
*2A4 @ As

1704.
1705.
1706.
1707.
1708.
1709.
1710.
1711.
1712.
1713.
1714.
1715.
1716.
1717.
1718.
1719.
1720.
1721.
1722.
1723.
1724.
1725.
1726.
1727.
1728.
1729.
1730.
1731.
1732.
1733.
1734.
1735.
1736.
1737.
1738.
1739.
1740.

*3A4 & Dy
4A4

*As ® Ee @ Er
*As ® D3

*As ® D7 @ Es
A3z @ Ds @ Er7
A3 @ De ® D7
*As ® Ds ® Es
As ® D5 ® Ds
As @ D4 ® Do
“As @ Axs

A3 © Ag ® Dy
*As ® As @ Ds
*As ® A7 @ Eg
A3 ® A7 @ Ds
*As ® As © B
*As ® As © D7
FAs ® As © A7
*As © As @ Es
A3 ® A5 © Ds
*As ® As @ Ag
*As ® Ay @ Do

As®AsBDs® D5

A3 B Ay B Ag

AsPAL P A5 D Dy

“A3 © 2440 Ds
*As ®2A4 B As
2A3 ® Do

2A35 @ 2Ds5

243 @ Dy @ Es
*2A3 @ Aqo

245 ® As © D4
2A3 ® A5 @ Ds
2A3 @ 245

*2A3 ® Ay @ Es
243 @ A4 ® Ds
"2A3® A1 @ As

1741.
1742.
1743.
1744.
1745.
1746.
1747.
1748.
1749.
1750.
1751.
1752.
1753.
1754.
1755.
1756.
1757.
1758.
1759.
1760.
1761.
1762.
1763.
1764.
1765.
1766.
1767.
1768.
1769.
1770.
1771.
1772.
1773.
1774.
1775.
1776.
1777.

3A3 @ Er

3A3 & D7

3A3 @ Ar

4A3 @ Ay

*As @ 2F7

*A2 @ Es @ Es
*As ® D1y

*As ® Ds @ Eg
*As ® D7 ® B
*As ® 2Dy

"Az @ D¢ @ Es
A2 ® Ds @ Dg
*As ® D5 @ Dy
A2 ® Dy ® Do
A2® Dy ®2Ds
A2 ®2Ds @ Es
FAr @ Awg

TA2 @ A1o ® Dy
A2 ® Ao © Ds
Az @ As @ Es
*As ® As @ Ds
A2 ® A7 @ B
TA2 ® A7 @ Dy
Ay ®2A7

"Ax @ Ae O Es
*Ax @ A © Ds
Az @ Ag 2D,
*As ® Ae @ Ag
TA2 ® As @ Do
Ay@As®D1DDs
TA2 @ As © Ao
Ay @ 2A5 @ Dy
*As ® Ay @ Do
*As ® Ay @ 2Ds
*A2®A1D DD Es
AsDALDD4® Dg
TA2 @ As @ Axo
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1778.
1779.
1780.
1781.
1782.
1783.
1784.
1785.
1786.
1787.
1788.
1789.
1790.
1791.
1792.
1793.
1794.
1795.
1796.
1797.
1798.
1799.
1800.
1801.
1802.
1803.
1804.
1805.
1806.
1807.
1808.
1809.
1810.
1811.
1812.
1813.
1814.

*As®ALDAD Dy
*A2DALDAsDDs
Az @ Ay B 245
Ay ®2A4 B Es
Ay ®2A4 ® Ds
A2 ©2A4 @ As
*As ® A3 @ D
*A2®A3DDsDEe
A2 A3 D Ds® Do
Ay A3 DL D Er
Ay@As®DsD Dy
A2 @ Az © A
A2DA3D A7 DDy
*A2®A3DAcDDs
A2 D A3 D As D Ep
A2DAsD A5 D Do
TA2DA3DAs D Ao
*AsDAsDAIDES
*As®A3DALB Dy
TAsDA3BALD AL
*As ®2A3 @ Es
Az ®2A3 @ Ds
Ay ®2As D As
As®2A30A1DDy
Ay ®2A3 B 2As
A2 ®3A3 @ Ds
A @3A3 D As
2A2 @ 2Es

*2A2 ® D12

242 @ D6 @ Es
2As ® 2Dg

"242 ® Ds © Er
*2A2 ® Ds ® Dy
*2A2® Dy ® Eg
2A2® D4 @ Ds
*2A5 @ A1z

242 @ As @ Dy

1815.
1816.
1817.
1818.
1819.
1820.
1821.
1822.
1823.
1824.
1825.
1826.
1827.
1828.
1829.

1830.
1831.
1832.

1833.
1834.
1835.
1836.
1837.
1838.
1839.
1840.
1841.
1842.
1843.
1844.
1845.
1846.
1847.
1848.
1849.
1850.

*2A2 ® A7 @ Ds
242 @ As @ Es
"2A2 ® Ae @ Ds
*2A2 @ 246
242, @ As © Er
242 ® A5 ® D7
2A: B As  Ar
"2A2® Ay @ Es
*2A2 ® Ay @ Ds
242 Ay ® 2D,
24> ® Ay @ As
*2A0 & 2A4® Dy
*2As @ 3A4
*2A2 ® A3z @ Dy

24 B A3 ® Dy &
Ds

*2A2 ® As P Ag
2420 A3PAsD Dy

2A2 D As D AL D
Ds

2A2BA3DALDAs
2As B 2A3 b Es
2A2 @ 2A3 @ Ds
*2A2 ®2A3 D As
2A2 @ 4As

3A2 @ Dio

3A2 & 2Ds
3A2® D4 ® Ds
3A2 @ Ao

342 @ As ® Da
3A2 @ A5 ® Ds
342 @® Ay @ Es
3A2 @ A4 @ Ds
3A2 D AL ® Ap
342 @ A3 @ B
3A2 @ A3 ® D7
3A2 D A3 ® Ar
3A2 §2A3 D Dy

1851.
1852.
1853.
1854.
1855.
1856.
1857.
1858.
1859.
1860.
1861.
1862.
1863.
1864.
1865.
1866.
1867.
1868.
1869.
1870.
1871.
1872.
1873.
1874.
1875.
1876.
1877.
1878.
1879.
1880.
1881.
1882.
1883.
1884.
1885.
1886.
1887.

342 @ 2A3 D As
442 @ Eg

4A> @ Dg

4A5 ® 2D,

4A; B 2A4

445 @ A3z & Ds
*A1 ® E7 ® Es
*A1 ® Dis

*A1® Do ® Eg
A1 ® Ds © Er
A1 ® D7 @ Es
A1 ® D7 ® Ds
A1 @ Ds @ Do
A1 ® D5 © Dio
A1 ®3Ds

A1 ® Ds® D11
A1®Ds®Ds® Eg
AL D Ass

A1 @ A1 ® Dy
*A1 ® Ao ® Ds
A1 ® Ao @ Es
A1 @ A9 ® Dg
A1 ® As @ By
A1 ® As @ Dr
A1 ® A7 D Es
A1 @ A7 @ Ds
A1 ® A7 @ As
*A1 ® Ae @ Dy
A1®As®D1® D5
A1 ® As D A
A1 ® As @ Dio
A1 @ As @ 2Ds
A1®As DD Es
A1 ® As @ Ao
A1®A;DAs D Dy
A1 @® 245 @ Ds
A1 b 3As

1888.
1889.
1890.
1891.
1892.
1893.
1894.
1895.
1896.
1897.
1898.
1899.
1900.
1901.
1902.
1903.
1904.
1905.
1906.
1907.
1908.
1909.
1910.
1911.
1912.
1913.
1914.
1915.
1916.
1917.
1918.
1919.
1920.
1921.
1922.
1923.
1924.

A1 ® Ay @ Dn
*A1®AL1DDsDEs
A1®A1®Ds® Do
A1 DALODIDE,
A1®AL® Dy D Dy
AL QAL D An
A1DALBA7 DDy
*A1DALDADDs
*A1DAIDAsDEs
A1 QALIDAsD Ds
FA1DAIDAsD Ao
A1 P 2A4 B Er
*A1 ®2A4 ® Dy
A1 ®2A4® A
*A1 ® Az @ 2Es
A1 @ A3 ® D12
A1@A3DDs® Es
A1©A3s®Ds DB
A1® A3 Ds DDy
A1 D A3 B Dy D Es
A1 ® Az © Are
A1DA3DAsD Dy
A1QA3DA7DDs
FA1DA3DAsDEs
A1 QA3 DA D Ds
A1 © Az D246
A1QAsDAsDEr
A1DAsD A DDy
A1 DA D As D A7
FA1DA3DAIDES
A1 QA3 DALDDs
FA1DA3DALD AR
A1®A3P2A4BDy
*A1 ® A3z ©3A,4
A1 ® 243 ® Dy
A1 ®2A3 D Ag
A1®2A30A4BDs
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1925.
1926.
1927.
1928.
1929.
1930.
1931.
1932.
1933.
1934.
1935.
1936.
1937.
1938.
1939.
1940.
1941.
1942.
1943.
1944.
1945.
1946.
1947.
1948.

1949.
1950.

1951.

1952.

1953.
1954.
1955.

1956.

1957.

A1D2A30A4D A5
A1 ®3A3 6 Es
A1 ®3A3 D As
TAIDABEsDE,
*A1 @ A2 @ D13
"A1®A20 D7D Es
A1@A2® Ds @ Er
A1@A2® D6 D7
TA1©DA20D5DEg
A1®A2®Ds® Ds
A1DA2DDs® Dy
AL B A B A
A1@A2D A9 DDy
TA1DA2DADDs
TA1DABATDEs
A1@A20A7D Ds
TA1DA2BADE
TA1DA2D A DDy
TA1DA2 B A DAY
TAL DA BAsDER
A1@A2D A5 D Ds
A1 A2 As D As
TA1DA2DA1D Dy

AL @ A B As @
Dy ® Ds

FALBADALD Ag

AL @ A D As @
As @ Dy

FAL DA D244 D
Ds

FAL DA D2A4LD
As

A1®A2®AsPD1o
A1BAPAsD2D5

AL @ A d Az &
Dy ® Es

FAL D A D A3 D
Aro

AL @ A @ Az @
A6 ® Dy

1958.

1959.

1960.

1961.

1962.

1963.
1964.
1965.
1966.
1967.
1968.

1969.

1970.

1971.

1972.
1973.

1974.

1975.
1976.
1977.

1978.

1979.

1980.

1981.

1982.
1983.

1984.

1985.

AL @ A @ A3 @
As @ Ds

A1DABA3P2As5

AL DA B AP
As @ Es

AL @ Ay @ A3 @
A4 & Ds

AL G A B As
As @ As

A1DA2D2A3DE7
A1®A2®2A30 D7
A1DA2D2A30 A7
A1 A2P3A3DA,
*A1 ®2A2 ® D
A192420D5DFEs

A1 24 & Ds @
Dg

A1©92A26D4DEr

AL @24 @ Dy @
D~

A1 B 2A2 6 A
A1682A20A7@0 Dy

AL D242 D Ac D
Ds

A102A2P AP Es
A1682A28 A58 D¢
A1B2A2P AP A¢

AL D2A D ALD
Er

TALB2A B AL B
D~

TALD2A2 D ALD
Az

AL P2A D AP
Es

A1D2A2PA3DDs
A1D2A2P AP As

A1 242 B A3 &
A4 @ Dy

AL D2A: D A3 D
2A4

1986.

1987.

1988.
1989.

1990.
1991.
1992.
1993.
1994.
1995.
1996.
1997.
1998.
1999.
2000.
2001.
2002.
2003.
2004.
2005.
2006.
2007.
2008.
2009.
2010.
2011.
2012.
2013.
2014.
2015.
2016.
2017.
2018.
2019.
2020.

A1 B2A2B2A3P
Ds

A1 B2A2B2A3P
As

A1 @ 3A2 @ Dy

AL ®3A2dDs P
Ds

A1 ® 3420 A9
A1®3A420 A48 D5
A1B3A20A4D A5
A1B3APDAsDEs
A1®3A420A33De
A1B3A20A3D A6
A1 @ 3A: B 3A;3
A1 ®4A; @ Er
AL ®4A; @ Az
A1B4A2D A3 DAy
2A1 ® 2E7

*2A1 @ Es @ Es
2A1 ® D14

2A1 ® Ds @ Es
2A:1 ® D7 @ Er
2A1 ® 2D~

241 @© Do @ Es
2A1 @ Ds @ Dy
*2A1 @ Aa

2A1 ® A10® Dy
241 @ A9 @ Ds
241 ® As ® Es
2A1 ® As @ Ds
2A1 ® A7 © By
2A1 ® A7 @ Dy
2A1 ®2A7

*2A1 ® Ag ® Es
2A1 ® A6 ® Ds
*2A1 ® As ® As
241 @ As @ Do
241 @ As @ Ay

2021.
2022.
2023.
2024.
2025.
2026.
2027.
2028.
2029.
2030.
2031.
2032.
2033.
2034.
2035.
2036.
2037.
2038.
2039.
2040.
2041.
2042.
2043.
2044.
2045.
2046.
2047.

2048.
2049.
2050.
2051.
2052.

2053.
2054.
2055.
2056.

2A1 ® A4 ® Do
2A1 @ Ay @ 2D5
2410440 D1DEg
*2A1 ® Ay @ Aso
2A10A4PAsDDy
2A10A4BAsDDs
2A1 @ Ay D 245
*2A1 ®2A4 ® Es
2A1 @ 2A4 @ Dg
241 ®2A4 D As
2A1 @ A3 ® D11
2A10A30Ds D Eg
241 @ A3 ® An
2A10A3BAsDDs
2410 A3D AT Es
2410 A3DA5D As
2410 A30A4BE,
2A10A30A40D7
2A10A30A1B A7
2A1 ©2A3 ® Es
2A1 @ 2A3 P As
2A1 @ 2A3 B 2A,
2A1 @ Ay @ 2E5s
2A1 @ A2 @ D12
2A10A2®Ds D Eg
2A10A:®DsDE7

24, DA D Ds P
D7

2A19A20D4DEs
"2A1 @ Az @ Aio

2A1@A2PAsPB Dy
2A10A280A70Ds

F2A1 B A D Asg D
Es

2A1®A2D A6 B Ds
"2A1 @ Ax B 246
2A10A:0A5BE,
2410 A28 As® D7
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2057. 2A1DADAsD A7 2083. 2A1 ©3A> & Ey 2118. 3A10ADADE;  2150. Do @ Er
2058. *241 ®As® AL ® 2084. 241 © 342D Ds 2119, 3A1DADALDD, 2151, *Do @ Es

Es 2085. 241 ®3As B As  2120. 3A10A:BADA; 2152, Ds @ Do
2059. 20 8A204EDs 9005 94, @34, As® 2121, 34,0 A0 AsBFs 2153, Dy & Dio
* D
2060. AQAl DA2D AL D 4 2122. 3A1DADAsBAs 2154, Dg @ D1
8
2087. 241 B 345 ©2A
D061 24, b As 94, 1034 @24 2123. 3A1 ® A2 ® As @ 2155. D5 @ 2Fg
. 1 2 4
by 2088. %Al B34, DA D 244 2156. Ds @ Dis
5
2124. 3A; ® 242 @ Dy
* 2157. Ds @& D @ E
2062. "24 © A2 D341 9000 94 3400 A Y25 54 9 & A 5@ Do Lo
2063. 241@As®A3B Dy As e 29 9158, 2Ds @ By
2126. 3A1 @242 B AL B
2064. 24, @A, A3 A, 2090 241 © 442 Do Ds T 2189, 2D 6 Dr
2091. 2A; ®4A: D A 2160. D E F
2065. 2A1 A2 B As P 1 2 6 2127. 3A1 B245 @ Ay ® 1@ e © L7
Ay @ Ds 2092. 24; @ 44> @ 243 As 2161. D4 @ D3
2066. 241 © A2 © As ® 9093 34, @ Fy @ Br 2128. 341 24D A3 ®  2162. Dy ® D» & Ey
As @ As E
2094. 3A; @ D13 2163. D4 @ D5 & Fs
By 2095. 341 @ D7 @ Es A 2164. *Air
2068. 124,41 DA D245 2096. 341 ® Ds B Eg 2130. 34, ® 34y ® Er 2165. Ai13® Dy
6 *
) 2097. 3A1 ® A3 2131. 34, @ 3As ® D 2166. *A12 @ Ds
2069. 241 ©2A5 @ D1
2098. 341 @ As ® Ds 2132, 34, B34y @ A, 2167 A @ Eg
2070. 241 @ 245 @ 2Ds
2099. 341 @ A7 @ Es 2133. 34, B34y ®As @ 2168 Au @ Dg
2071. 2EA1 D20 8D1D 5100 34, ¢ A @ By Aq 2169. *Ayo @ Er
6
2101. 341 P Ag ® D 2134. 4A; @ 2E¢ 2170. *A1o @ D
2072. *24, & 245 & Aro P ae T 10T
2102. 341 P As @ Ar 2135. 4A; @ Az 2171. *Ag @ Fs
2073. 2A1 P2A2P A P
D 2103. 3A; ® As @ Es 2136. 4A1 @ As @ Eo 2172. Ao ® Dsg
2074. 241 ©2A: B As D 2104. 34, G As P Asg 2137. 44, ® 246 2173. *As @ Do
Ds 2105. 3A1 ® Ay @ Dy 2138. 4A1 ® A4 © Es 2174. As @ D4 & Ds
. 24
2075. 241 242 245 2106. 341 @ Ay © Ag 2139. 4A; & Ay ® As 2175. *As @ Ao
2076. 2EA1 D24:0 40 34, @24, ® D5 2140. 44; 34,4 2176. A7 @ D1o
6
A 2141. 4A; B A, ® A 2177. A7 ® 2D
2077, 241 D24y Ay 2108 341 B 244 ® A 1® A2 @ Ao 7@ 2Ds
Ds 2109. 3A; ® A3 ® A1 2142. 4A10A2®ADEs 2178, A7 © Dy @ Fs
2078. "241924:0 A48 2110. 3410430 ADEs 2143, 4A10A0AD A6 2179, *Ar & Ao
A
‘ 211, 34,0 As0 A1 A 2144, 44, B 24, B Es 2180, *Ag @ Dy
2079. 241 ® 242 @ As @
BT o112 3Ai@ As@ Dy 2145, 441024, © A 2181, “Ag & Ds @ Eg
2080. 24, @24, Az @ 2113 3A10AODsGEs 2146, 4A; & 24> 244 2182, As @ Ds @ Dg
D7 2114. 34, ® Ay @ Ay 2147, 4A; B34 & As 2183, A ® Da® Er
Aq —_—
2116. 3A10ADAsSEs 2148, *Dis 2185. *Ag @ A
2082. 2A1®2A2PD2A5D
Au 2117. 3A10A®AsDAs  2149. *D1; @ Fg 2186. Ag® A7 ® Dy



129

2187.
2188.
2189.
2190.
2191.
2192.
2193.
2194.
2195.
2196.
2197.
2198.
2199.
2200.
2201.
2202.
2203.
2204.
2205.
2206.
2207.
2208.
2209.
2210.
2211.
2212.
2213.
2214.
2215.
2216.
2217.
2218.
2219.
2220.
2221.
2222.
2223.

*2A6 @ Ds

As @ 2Fg

As @ D12

As ® D @ Es
As ® Ds @ Er
As @ Ds @ Dy
As ® Dy @ Es
TAs @ Aiz

As @ As @ Dy
As ® A7 @ Ds
As © As @ Es
As ® A © Ds
*As @246
2A5 @ Er

2A5 @ D7

2A5 ® Ar
TAL® Ee © By
*As @ D13
*As ®© D7 @ Es
Ay ® Do @ Er
Ay ® D6 @ Dr
*As @ Ds @ Es
Ay ® Ds ® Ds
A1 ® Dy ® Do
TAsL @ Az

Ay @ Ag @ Dy
*Ay ® As @ Ds
TAL® A7 @ Ee
Ay @ A7 ® Ds
TAL® A6 © B
"A1® A6 © D7
TAL @ As © A
TAL® As @ Eg
Ay @ As @ Ds
Ay @ As © As
*2A4 ® Do
2A4® Dy & D5

2224.
2225.
2226.
2227.
2228.
2229.
2230.
2231.
2232.
2233.
2234.
2235.
2236.
2237.
2238.
2239.
2240.
2241.
2242,
2243.
2244.
2245.
2246.
2247.
2248.
2249.
2250.
2251.
2252.
2253.
2254.
2255.
2256.
2257.
2258.
2259.
2260.

2A4 @ Ag

244 ® A5 ® Dy
3A4 @ Ds
3A, 0 As

Az @ 2E7

“As @ Es © Es
A3 @ D1y

A3 ® Ds @ Es
As ® D7 © Er
A3z ® 2D

As @ Ds @ Es
A3z @ Ds @ Dy
*A3 ® Awg

A3 @ A10 ® Dy
Az ® Ao ® Ds
As © As @ Ep
As @ As ® Dg
Az @ A7 © By
Az ® A7 © D7
As ®2A7

*A3 ® As @ Es
Az @ As ® Ds
TA3 @ A © As
A3 @ As @ Dy
Az @ As © Ag
A3 ® A4 ® D1o
A3 ® As®2Ds
AsDAL® DD Es
TA3 @ AL @ Aro
AsDA1DAc D Dy
As@QA1DAs D D5
A3 @ Ay @ 245
*As ®2A4 ® Eg
A3 ®2A44® Ds
*A3 ®2A4 ® As
2A3 ® D11

243 ® D5 © Es

2261.
2262.
2263.
2264.
2265.
2266.
2267.
2268.
2269.
2270.
2271.
2272.
2273.
2274.
2275.
2276.
2277.
2278.
2279.
2280.
2281.
2282.
2283.
2284.
2285.
2286.
2287.
2288.
2289.
2290.
2291.
2292.
2293.
2294.
2295.
2296.
2297.

2A3 ® A

2A3 ® A6 @ Ds
2A3 ® A5 © Eg
243 @ As @ As
243 ® AL @ Er
243 ® As @ Do
243 D Ay @ Az
3A3 @ FEg
3A3 @ Asg
3A3 D 2A,
Ay ® E7 @ Es
*A2 @ Dis

Ax @ Dy @ Es
A2 ® Ds @ Er
*As ® D7 ® Es
Az ® D7 ® Ds
Az @ De @ Do
A2 ® D5 @ Dio
A2 @ 3Ds
As® Dy ® D1y
A2®Dy® D5 D Ep
*As ® Ass

A2 ® A11 @ Dy
*A2 ® A10 @ Ds
A2 @ Ay © Es
A2 @ Ag ® Ds
Ay D As @ Er
Az @ As @ Dr
*Ax ® A7 @ Es
A @ A7 ® Ds
A @ A7 @ As
*A2 @ As @ Do
A2 As®DsD D5
*Ax ® As @ Ao
Az ® As ® D1o
Az @ As ©2D5
Ax @ As @ Aro

2298.
2299.
2300.
2301.
2302.
2303.
2304.
2305.
2306.
2307.
2308.
2309.
2310.
2311.
2312.
2313.
2314.
2315.
2316.
2317.
2318.
2319.
2320.
2321.
2322.
2323.
2324.
2325.
2326.
2327.
2328.
2329.
2330.
2331.
2332.
2333.
2334.

A2DAs D Ac D Dy
A2 @245 @ Ds
*A2 ® A1 @ Dna
Ay A1DDs D Es
Ay As®Ds® Dg
A2 ALDDLDE,
A2 A1 ®Ds® D7
A2 @ AL @ A
A2DA1DA7D Dy
A2 ALDADDs
AP AL QA5 D Es
Ay QA1 D A5 D Ds
A PAL B AsD As
*As ®2A4 ® B
*As ®2A4 ® Dy
TA2 ®2A4 D A
Ax @ A3 @ 2Es
As @ As @ Do
A2DA3D D6 D Eg
A2DA3DDs D E7
A2 As®Ds® D7
A2®D A3 D DD Es
TA2 ® Az @ Aiz
Ay QA3 D AsD Dy
AxDA3 DA D Ds
AP A3 A @ Es
A2D A3 D As D Do
TAs ® Az @246
A2 D A3 B As D E7
A2DAsD A5 D D7
A2 DAsDAs D A7
A2 DA3BALBES
A2DA3DAL1DDs
A2 DAz DAL D As
A2DA3B2A1B Dy
Ax @ Az ©3A4
Ay ®2A3 @ Do
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2335. As ® 243 @ Ag 2371. 245 ®2A3 ® Dy 2408. *A; ® Ag ® Arg 2445, A P A3 As D Fy
2336. As®2As®AsBDs 2372, 2A: 243 B A7 2409. Ay & 246 @ Dy 2446. A1 B As®As B Ag
2337. AsB2A3BAsPAs 2373, 24> ®3A3 P Ay 2410. Ay & As @ D1y 2447. A1 ®As® Ay ® Do
2338. Ay ® 343 @ Es 2374. 3As ® D1y 2411. A1®As®Ds®Es  2448. A1 As® Ay Ag
2339. A, ® 345 @ Ag 2375. 342 @ Ds @ Dy 2412. A1 ® As ® Any 2449. A1 ®A3B2A43Ds
2340. 24, @ Fs & Er 2376. 342 @© Dy @ Dy 2413. A1®As®AsBDs  2450. A1 DAz D2A1D A5
2341. 245 @ D13 2377. 3A2 ® As ® Ds 2414. A1 ®2A5® Es 2451. A1 © 243 Ao
2342. 2A2 ® D¢ ® E 2378. 3A2 @ A4 © Er 2415. A1 ©2A5 @ Ae 2452. A192A3DALDEs
2343. 245 ® D¢ @ Dy 2379. 3A2 B A4 ® Ay 2416. A1 ® Ay © 2Es 2453. A1D2A3DALD A
2344. 245 @ D5 & Es 2380. 345 @ Az @ Fs 2417. A1 ® A4 ® D12 2454. A1 ® As ® 2E;
2345. 245 @ Ds @ Ds 2381. 34> @ As @ Dg 2418. A1®A1®Ds®DEs 2455. Ay DA D Es® Fs
2346. 245 ® D4y @ Dy 2382. 3A> A3 ® 244 2419. A1 AIBDs®Er  2456. A1 @ Ay & D1
2347. 245 @ A1z 2383. 342 ®2A3 D D5 2420. A1®A1D®Ds® D7 2457. A1 ®HAs® Ds® Fg
2348. 245 @ Ao @ D4 2384. *A, @ 2Eg 2421. A1®As®Ds®Es  2458. A1 ®A-®D D7D E
2349. 245 @ Ag ® Ds 2385. A1 @ Dis 2422. *A1 @ Ay & Aro 2459. A1 @® Az @ 2D+
2350. 24> @ A @ Eg 2386. A1 @ D10 ® Es 2423. A1 A1BAs®Ds 2460. A1 DA ® D ® Fy
2351. 245 @ A» & Dg 2387. A1 @ Do @® E7 2424. A10As0A7®Ds  2461. A1 @ A2® Ds® Dy
2352. 24, @ As © Fr 2388. A1 @ Ds @ Fs 2425. "A10A1DAcO s 2462. A1 ® A ® Awa
2353. 24, @ Ag @ D, 2389 A1 ® D7 ® Do 2426. Ai®A1©ADDs 2463, A1 DA;BA10® Dy
2354, 245 B Ag ® Ar 2390. A1 @ D5 @ D1, 2427. *A1 P Ay P 246 2464. A1 B Ay Ag® Ds
2355. 24, @ As @ By 2391 Ai®2Ds @ Es 2428, L@ Ai@AsDEr 2465, A1 B A2 B As® B
9356. 24, & As & Ds 2392. A; ® Dy ® 2Es 2429. A®AIOAsD D7 2466. Ay As® As Dy
2357, 245 @ Ay ® D 2393. A1 @ Ass 2430. A1DA1DAsDAT 2467 A1D A DA D E
9358, 24y B Ay B Dy 2994 A ©A®Dy 2431 "A1 2400 Bs 2468, A1 A2@ A @Dy

Ds 2395. A; & A1 @ Ds 2432. A, ¢ 24, & Dy 2469. Ay & Ay & 245

2359. 242 ® A1 ® Ag 2396. A1 © A10 D Es 2433. *A1 ©2A4 © Ag 2470. *A1 DA AcD Fs
2360. 242 ®2A4® D5 2397. A, @ Ao @ Ds 2434. A, ® 344 ® Dy 2471, Ay @ Ay ® Ag® Ds
2361. 242 ©2440 A5 2398. A; @ Ag ® F; 2435. A1@As®Es®E7r 2472, Ay @Ay Ag P As
2362. 242 @ A3 @ Do 2399. A1 @ Ay @ D~ 2436. A; ® A3 @ Di3 2473, A1 @ As® As® Do
2363. 2A> @ As @ 2Ds 2400. *A1 @ As @ Ex 2437. A1 ®A3sD D, Eg 2474, A1 @ As® A5 ® Ag
2364. 24 @ A3 d Ao 2401. A, @ As @ Ds 2438. A1@®As®Ds®Es 9475, A, As® A Dio
2365. 24:®As®AsBDs 2402. A, @ 2As 2439. A; ® Az ® Ars 2476, Ay As®AsB2Ds
2366. 2A20A3DAsDDs  2403. A1 @ A7 ® Dy 2440. A1©A3DAs®Ds 9477, A, & Ay & Ay &
2367. 2420 A0 A1BEs  2404. A1 & A7 @ Ao 2441. Ay ®As® Az ® F D1 @ Ee

2368. 2420 As®ALDDs  2405. A1 @ Ag ® Dio 2442, A, BAs®AcDE, 2478 lAl A0 A ®
2369. 24P AsBALBAs  2406. Ay ® Ag ® 2Ds 243. M@ A3 @ AODr AT@ d o A
2370. 2A2 & 2A3 @ E7 2407. A1 AP DsDFEs 2444, A1 DAsD AsD A7 A @ Dy
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2480.

2481.
2482.
2483.
2484.

2485.
2486.

2487.
2488.

2489.

2490.

2491.

2492.

2493.

2494.
2495.
2496.

2497.
2498.
2499.
2500.

2501.
2502.
2503.
2504.
2505.
2506.
2507.
2508.
2509.

AL @ A B As @
As @ Ds

A1BAPALP2As
A1BAP2ALDEs
A1DAB2A48Ds

FAL DA D2A4D
Ae

A19AB AP D1y

AL @ A @ Az @
Ds @ Es

A1BABA3B AL

AL @ A @ Az @
A6 & Ds

AL @ A d Az @
As ® Eg

AL @A B A3 @
As @ As

AL @ A @ A3 &
As® Er

AL @ A @ Az @
As & Dy

AL @ A @ Az @
Ay @ Az

A1DAB2A3P ER
A1BAP2A3D As

A1 @A B 243D
2A4

Al b 2142 ©® D12
A182A28 DB Es
A1©02A:@Ds@Er

A1 © 24 & Ds &
D~

A1®02420 D4 Es
A1 B 242 & Aro

A1®82420A7BDs
A1D2A2DAs D Es
A1®P24:0A6DDe
A1 B 2A; @ 246

A1D2A2BAsDE,
A1D2A20A50 A7
A1D2A2D AP Es

2510.
2511.
2512.

2513.
2514.
2515.
2516.

2517.

2518.

2519.

2520.
2521.
2522.
2523.
2524.
2525.

2526.
2527.
2528.
2529.
2530.
2531.
2532.
2533.
2534.
2535.
2536.
2537.
2538.
2539.
2540.
2541.

2542.

A192A20 A48 Dg
A1D2A20 AP As

A1 D242 B2A4 8
Dy

A1 ©2A5 ®3A4
A192A2PA3B Dy
A1©02A,BA3BAg

A1 242 B A3 &
A4 @ Ds

AL ®24; @ Az @
As B As

A1 D242 B2A3D
Es

A1 B2A2 B2A3 0
Asg

A1 ©3A2 ® Ao

A1B3A2® A4 Dgs
A1®3A20A4D As
A1B3A2BAsDES
A1®3A2DA3D A7

A1 B34, 02438
Ay

241 ® E7 @ Eg
2A; ® D15

2A1 ® Do & Es
241 ® D7 @ Es
2A;1 @ Ais

241 ® A10® Ds
2A1 @ A9 @ Es
2A: ® As © Er
241 ® As & Dy
2A; ® A7 @ Es
2A1 @ A7 P As
241 & As ® Dy
2A1 ® As @ A9
2A1 @ A5 @ A1o
2A: ©@ Ay ® D1y
2A10A1BDs D Es
241 ® Ay ® A

2543.
2544.
2545.
2546.
2547.
2548.
2549.
2550.
2551.
2552.
2553.
2554.
2555.
2556.
2557.
2558.
2559.
2560.
2561.
2562.
2563.
2564.
2565.
2566.
2567.
2568.
2569.
2570.

2571.

2572.

2573.

2574.

2575.
2576.

2A10A1D A D D5
2A10A4DAsDEs
2410 AP A5D A
2A1 ®2A4 @ Er
2A1 ® 244 @ Dy
2A1 ®2A4 D A7
2A1 @ A3 @ 2E¢
241 @ Az & A1
241 A3DAsDEs
2A1 @ As ® 246
2A10A3DALDES
2A10A3PALBAs
241 @ As @ 3A4
2A10A0EcDE?
2A1 ® A2 ® Di3
2A10A20 D7D Es
2A10 A28 D5D FEs
2A1 ® Ax @ Ays
2410 A28 A0 D5
2A10A20A7DFEs
2A1 D A2DAcDES
2410 AP A6 ® D7
2A10A20Ac DA
241 A2DAsDEs
2A1BD AP AP Asg
2410 A28 A48 Dy
2A10A20A4D A9

2A1 EB Az @ 2144 @
Ds

21 B A2 B2A4 P
As

241 @ A2 B A3 @
Aro

21 A2 B Az P
As @ Es

2A1@A2€BA3@
Ay ® Ag

2A1 ®2A2 ® D11
2A1 ®2A2 @ A

2577. 2A1 D 2A2 D As D

Ds

2578. 2A1 D242 D A5 @

Ag

2579. 2A1 ®2A: DAL D

Er

2580. 2A1 D 2A2 D As D

D7

2581. 2A1 D 2A2 D As D

Az

2582. 2A1 ©2A2 D A3 D

Ey

2583. 2A1®2A2 D Az P

As

2584. 2A1 B 2A2 D A3 D

2A4

2585. 241 @ 3A2 @ Dy

2586. 241 @ 3A2 @ Ay

2587. 2A1®3A2 B Az P

Ag

2588. 3A1 @ Es @ Es

2589. 3A1 P Aus

2590. 3A1 © As © Fe

2591. 341 @ A6 © s

2592. 34, ® As @ As

2593. 3A1 ® A4 @ Ao

2594. 3A1 ©2A4 @ E¢

2595. 3A1 @244 ® Ag

2596. 341 @ A2 & A2

2597. 3A1DADAsDEs

2598. 341 @ Az B 246

2599. 3A1DADALDES

2600. 3A1PA2DALDAs

2601. 341 @ A2 © 344

2602. 3A; ®2A2 @ Ao

2603. 341 ®24: DAL D

Ag

rank(A) =18

2604. Dsig
2605. D12 @ Es
2606. D11 @ Er
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2607. D10 ® Es 2644. As @® Eg ® Er 2681. 2A4 @ 245 2718. A2 @ Ds ® D1y
2608. 2Dg 2645. As @ Dis 2682. 3A4 & Dg 2719. Ax @ Ais
2609. D7 ® D11 2646. As @ D5 @ Fs 2683. A3 @ Er @ Fs 2720. Az @ A12 @ Dy
2610. Dg ® 2Es 2647. As @ Ais 2684. Az @ D15 2721. A2 @ A1 @ Ds
2611. Ds ® E¢ @ Er 2648. As © As @ Ds 2685. A3 @ Do @ Es 2722. As @ A1o @ Fs
2612. D5 @ Di3 2649. A5 © A7 @ Es 2686. A; @ D7 @ Es 2723. Ay @ A1 ® D¢
2613. D5 @ D7 @ Eg 2650. As © As @ Er 2687. Az @ Ais 2724. As @ A9 @ Er
2614. 2Ds @ Es 2651. As © As ® D7 2688. Az @ A1 @ Ds 2725. As @ A9 ® D7
2615. Dy ® E¢ ® Es 2652. As @ As ® Az 2689. Az @ Ao @ Fe 2726. Az @ Az @ Fs
2616. *Aig 2653. 245 @ Es 2690. As @ Az @ Er 2727. As @ As @ Dsg
2617. A14 @ Dy 2654. Ay @ 2E; 2691. As; @ Az © D7 2728. Az @ A7 @ Dy
2618. Ais ® Ds 2655. A4 @ Fe © Es 2692. As; @ A7 © Eg 2729. As @ A7 @ Ay
2619. A12 ® Es 2656. A4 @® Dia 2693. A; @ A7 © As 2730. A2 @ A © D1
2620. A12 ® Ds 2657. Ay @ Ds @ Eg 2694. A3 @ A @ Dy 2731. As @ Ag @ 2Ds
2621. A1 @ Ex 2658. Ay @ D7 @ Ex 2695. Az @ Ag @ Ao 2732. Ay @ As P Ao
2622. A1 ® Dy 2659. Ay @ 2D+ 2696. Az @ As © Ao 2733. Ay @246 @ Dy
2623. *A10 @ Fs 2660. A4 ® Ds @ Es 2697. As @ A4 @ D11 2734. Az @ As @ D11
2624. A10 @ Ds 2661. Ay @ D5 @ Dy 2698. As® AL DsDEs 2735, A2 DAsDAs® Ds
2625. Ag @ Dg 2662. Ay D A1 2699. A; @ A4 A1 2736. As @ Ay @ Do
2626. 2Ao 2663. Ay @ A10 @ Dy 2700. As®AsPAsBDs 2737. A2PALB D6 Es
2627. As @ D1 2664. A4 @ A9 @ Ds 2701. As@AL1DAsDEs 2738, AoDALDDsBEr
2628. As @ 2Ds 2665. A4 @ As @ Es 2702. AsDALDAsDAs 2739, AsDALBDs® D7
2629. As @ A1 2666. A4 @ As O Dg 2703. As; @244 @ B 2740. A2 ®AL®D4D Es
2630. A7 @ D11 2667. A4 A7 @ Er 2704. A3 ©2A4 @ D 2741. Az @ Ay @ Ara
2631. A7 @ Ds @ Fg 2668. A4 © A7 @ Dy 2705. As @244 @ A7 2742. As® AL D A7 D Ds
2632. A7 @ A1x 2669. Ay @247 2706. 2A; @ 2Es 2743. A2 @ A1 D A D Es
2633. A¢ @ 2Es 2670. *As @ As @ Es 2707. 2A3 @ Aio 2744. As® AL D As® Ds
2634. Ag @ D12 2671. A4 @ A ® Ds 2708. 2A3 ® As @ Egs 2745. As @ Ay ® 246
2635. Ag @ D¢ @ Fg 2672. A4 D As ® As 2709. 2A; ® 246 2746. Ax @ AL DA D Er
2636. As @ Ds @ Er 2673. A4 @ As @ Dy 2710. 2A3 ® A4 @ Fs 2747. A2 @ AL D As D Ar
2637. A¢ @ Ds @ D+ 2674. Ay © As @ Ao 2711. 2A3 ® Ay @ Ag 2748. As ©2A4 @ Fs
2638. A © D4 @ Fs 2675. 2A4 @ D1 2712. 2A;3 ® 344 2749. As ©2A4 @ Ds
2639. *Ag @ A1z 2676. 2A4 @ 2Ds 2713. A2 @ 2F3 2750. A2 @ 2A4 @ Asg
2640. Ag P As D Dy 2677. 2A4 6 D4 @ Es 2714. A2 & D1 2751. AsPAsPEcP E7
2641. A @ A7 @ Ds 2678. 2A4 @ A1 2715. As @ Do ® Ex 2752. As @ A3z @ D3
2642. 2A¢ @ Fg 2679. 2A4 @ A6 ® Da 2716. As @ Ds @ Es 2753. As®As®DsD Es
2643. 2A¢ @ Ds 2680. 244 & A5 ® Ds 2717. A2 @ D7 @ Dy 2754. As @ A3z @ A1a
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2755.
2756.
2757.
2758.
2759.
2760.
2761.
2762.
2763.
2764.
2765.
2766.
2767.
2768.
2769.
2770.
2771.
2772.
2773.
2774.
2775.
2776.
2777.
2778.
2779.
2780.
2781.
2782.
2783.
2784.
2785.
2786.
2787.
2788.
2789.
2790.
2791.

A2D A3 D AsD D5
A2D Az D A7 D Ep
A2 D A3 B As D E7
Ay @ A3 D As D D7
A DAz DA DA
A DAz D As D Es
A2 D A3 D A1D Dy
Az DAz DAL D Ag
AP A3B2A1B D5
AsDA3D2A4D As
Ay ®2A3 @ Avo
AxD2A3DALBEs
A2D2A3DA4LDAs
2A5 @ 2E7

2A2 ® D14

2A5 @ 2D7

242 @ D6 © Es
242 @ D5 @ Dy
2A2 @ Ay & Ds
242D A7 © B
242 @ 2A7

2A2 @ A ® Es
2A5 @ Ae @ Ds
242 @ Ay @ Axo
242 ®2A4 6 Ds
242 B2A4 B As
242 ® A3 ® D11
2A20A3BA6DDs
2A20A3BAsDEY
2420 A3DAID A7
2A5 ®2A3 ® Es
245 @ 2A3 B 2A,
A1 ® D17y

A1 ® D11 @ Es
A1 ® Do @ Es

A1 @ Arr

A1 ® A12® Ds

2792.
2793.
2794.
2795.
2796.
2797.
2798.
2799.
2800.
2801.
2802.
2803.
2804.
2805.
2806.
2807.
2808.
2809.
2810.
2811.
2812.
2813.
2814.
2815.
2816.
2817.
2818.
2819.
2820.
2821.
2822.
2823.
2824.
2825.
2826.
2827.
2828.

A1 ® A @ Es
A1 @ Ao ® B
A1 @ Ao ® D7
A1 ® Ao @ Es

A1 @ As @ Dy

A1 @ Az © Ag

A1 © A7 @ Ao
A1 @ As ® D11
A1®Ac® D5 D Es
A1 @ Ag © A1
A1 ®2A6 @ Ds
A1 @ As O Arz
A1@As D As D Es
A1 @ As 246
A1DALBCEsDEr
A1 ® Ay @ Dis
A1@ AL D7D Es
A1 AL Ds D Es
A1 @ AL @ Axs
A1®ALDAsD D5
A1 DAL D AT D Es
A1DAL B As D E7
A1®ALDAc D D7
A1 DAL AD Ay
A1 @ AL D A5 D Es
A1 @A QA5 D As
A1 ®244® Do
A1 D A3 D Es® Es
A1 © As B A
A1 ® A3 D As D Es
A1 @ A3 DA D Es
A1 DAz D As D As
A1DA3DALDAro
A1BA3B2A4D Es
A1DA3D2A4D As
A1DA2OE; D Es
A1 ® A2 @ D1

2829.
2830.
2831.
2832.
2833.
2834.
2835.
2836.
2837.
2838.
2839.
2840.
2841.
2842.

2843.

2844.
2845.
2846.
2847.
2848.

2849.
2850.

2851.

2852.
2853.
2854.
2855.
2856.
2857.
2858.

2859.

2860.

A1 D A2® Dy D Eg
A1@A2 D7D Es
A1 ® A2 @ Ass

A1BA2DA10B D5
A1Q A As @ Es
A1 DA D AsDEr
A1QA QA7 D Es
A1QA QAT D Ag
A1D A2 As D Dy
A1 AP A D A
A1DA2D A5 B Aro
A1BA20A4D D1y
A1BADALDAN

AL @ A D Ay @
A6 @ Ds

AL @ A B As @
As @ As

A1 AD2A4DEr
A1®A282A40 D7
A1 DA P2AL DAY
A1BADA3D A1

Al @ A D Az @
Ae ® Es

A1BADA3P2Ag

Al @ Ay @ Az @
Ay ® Eg

AL @ A d Az @
As @ Ag

A1DA2DA3D3A,
A1 ®242 @ Ass

A1B2A:DAcDES
A1B2A2D A6 DA
A1®02420 A1 Dy
A192A:PALB Ay

Al ®24A, B Az P
Ao

A1 B24: @ A3 &
As @ As

2A, @ 2Es

2861.
2862.
2863.
2864.
2865.
2866.
2867.
2868.
2869.
2870.
2871.
2872.
2873.
2874.

2875.

2876.
2877.

2878.
2879.
2880.
2881.
2882.
2883.
2884.
2885.
2886.
2887.
2888.
2889.
2890.
2891.
2892.
2893.
2894.
2895.

2A1 @ Aie

241 @ A0 © Es
2A1 @ As ® Es
2A1 @ 2As

241 @ As @ Aro
2A1 ® Ay @ Arz
2410 A1DAc D Es
2A1 @ Ay B 246
2A1 ©2A4 @ Eg
2A1 ®2A4 @ As
2A1 ® A2 @ Ana
2410A:0A6DE3
2A1DA2DAcDAg

2 @A B AL D
Aro

2A1 0 A2 P2AL P
Asg

241 ®2A2 B Ar2
2A1 ©2A5 © 244

rank(A) =19

D9

D11 @ Es

Arg

A14® Ds

A13 @ Es

A12 ® Er

A2 ® D7

A1 © Es

A10 @ Dy

Ag @ Aro

As @® D11

A7 @ Arz

Ae © Es @ Er
Ae @ D13

As @ D5 @ Es
As @ As @ Ds
A © A7 @ Es
As @ As @ Es



C List of all ADF lattices A such that A & (6) can be embedded primitively into the

134 K3 lattice
2896. A4 ® E7 @ Es 2908. A3z @ 2Fs 2920. A2 @ A12 6 Ds 2032. A1 @ Aig
2897. A4 @ D15 2909. A3 @ Ase 2921. A2 @ A0 © E7 2933. A1 @ A12 @ Es
2898. A4 ® Dy @ Eg 2910. A3 P A10 D Es 2922. Ay @ Ay ® Es 2934, A1 @ A1 @ Fs
2899. Ay @ D7 & Exs 2911. As® As ® Es 2923. As @ A7 @ Ao 2035. A, @ As @ Ao
2900. A4 A 2012. As® AP A 2924. As @ A & D
1@ Ais 3 Ae @ Ao PEACEIL 9936, AL @ Ag @ A
2901. A4 @ Ao ® D5 2913. A3 @ Ay D Aqa 2925. As @ 2As @ Ds
2937. A1 © 246 ® Es
2902. A4 O As @ Er 2014. A3sQALDAcDEs 2926. A AL D A3
2938. A1 AP AP Es
2903. A4 D A7 @ Ey 2915. A3 @ Ay @ 246 2027. As@ AL DA D ES
2004. Ay @ Ar @ Ag 2916. A3 ©24,® Fs 2928, As@ A AgoA; 000 ATABAD s
2005. A4 & Ag & Dy 2017 As®24s® As 2029 As@ Az Aso By 2940 A1 ®A2© Ase
2006. Ay @ As ® Ao 2918. As @ D 2930. A>®A3®A1DAw0 2941 A1© A28 4D A0
2907. 2A4® D1y 2919. A> ® Dg @ Ex 2931. AsPA3DP2ALDAs 2942. AT DADALD A1
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