# Cubic fourfolds with ADE singularities and K3 surfaces 

Von der Fakultät für Mathematik und Physik der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades<br>Doktorin der Naturwissenschaften<br>Dr. rer. nat.<br>genehmigte Dissertation von

M.Sc. Ann-Kathrin Stegmann

| Referent: | Prof. Dr. Klaus Hulek |
| :--- | :--- |
| Korreferent: | Prof. Dr. Radu Laza |
| Korreferent: | Prof. Dr. David Ploog |

Tag der Promotion: 13. Mai 2020


#### Abstract

In this thesis, we will give a partial classification of cubic fourfolds by their isolated $A D E$ singularities. We have a correspondence between cubic fourfolds and complete ( 2,3 )intersections in $\mathbb{P}^{4}$ having both certain isolated $A D E$ singularities. The minimal model for a complete ( 2,3 )-intersection in $\mathbb{P}^{4}$ with isolated $A D E$ singularities is a quasi-polarized K 3 surface of degree 6 . We will prove that the existence of certain lattice embeddings into the K3 lattice is a necessary and sufficient condition for the existence of these singular cubic fourfolds and complete ( 2,3 )-intersections, respectively. We will determine all direct sums of negative definite irreducible $A D E$ lattices such that their direct sum with the rank one lattice whose generator has self-intersection number 6 admits a primitive embedding into the K3 lattice. This will prove the existence of complete (2,3)-intersections in $\mathbb{P}^{4}$ lying on smooth quadrics and having exactly these $A D E$ singularities and their corresponding cubic fourfolds. Finally, we will show that we have an isomorphism between the moduli space of cubic fourfolds with certain $A D E$ singularities and the moduli space of quasi-polarized K3 surfaces of degree 6 such that the quasi-polarization induces a birational map from the K3 surface into $\mathbb{P}^{4}$ whose image is a complete (2,3)-intersection in $\mathbb{P}^{4}$ having certain $A D E$ singularities.


Key words: Cubic fourfolds, $A D E$ singularities, K3 surfaces, quadratic forms, moduli spaces of K3 surfaces.

## Kurzzusammenfassung

In dieser Doktorarbeit wird eine partielle Klassifikation von kubischen Vierfaltigkeiten anhand ihrer isolierten $A D E$ Singularitäten gegeben. Es gibt eine Korrespondenz zwischen kubischen Vierfaltigkeiten und vollständigen (2,3)-Durchschnitten in $\mathbb{P}^{4}$ mit jeweils bestimmten isolierten $A D E$ Singularitäten. Das minimale Model eines vollständigen (2,3)Durchschnitts in $\mathbb{P}^{4}$ mit isolierten $A D E$ Singularitäten ist eine quasi-polarisierte K3 Fläche vom Grad 6. Wir werden zeigen, dass die Existenz bestimmter Gittereinbettungen in das K3 Gitter eine notwendige und hinreichende Bedingung für die Existenz dieser kubischen Vierfaltigkeiten bzw. dieser vollständigen ( 2,3 )-Durchschnitte in $\mathbb{P}^{4}$ ist. Wir werden alle direkten Summen von negativ definiten irreduziblen $A D E$ Gittern bestimmen, sodass deren direkte Summe mit einem Gitter vom Rang eins, dessen Erzeuger Selbstschnitt 6 hat, eine primitive Einbettung in das K3 Gitter besitzt. Dies wird die Existenz derjenigen vollständigen (2,3)-Durchschnitte in $\mathbb{P}^{4}$ beweisen, die auf glatten Quadriken liegen und exakt diese $A D E$ Singularitäten haben, sowie den korrespondierenden kubischen Vierfaltigkeiten. Schließlich werden wir beweisen, dass der Modulraum der kubischen Vierfaltigkeiten mit bestimmten $A D E$ Singularitäten isomorph ist zum Modulraum bestimmter quasi-polarisierter K3 Flächen vom Grad 6, sodass die Quasi-Polarisierung eine birationale Abbildung von der K3 Fläche in den $\mathbb{P}^{4}$ induziert, deren Bild ein vollständiger (2,3)Durchschnitt mit bestimmten $A D E$ Singularitäten in $\mathbb{P}^{4}$ ist.

Schlagwörter: kubische Vierfaltigkeiten, $A D E$ Singularitäten, K3 Flächen, quadratische Formen, Modulräume von K3 Flächen.

## Introduction

Cubic hypersurfaces have been a central theme in Algebraic Geometry throughout the last centuries. Starting from the famous result of A. Cayley and G. Salmon in [Cay49] and [Sal49] that a smooth cubic surface contains exactly 27 lines, to the proof of C. H. Clemens and P. A. Griffith that any smooth cubic threefold is irrational in [CG72], to more recent investigations on the rationality/irrationality of cubic fourfolds (see for instance [Has00]).

Cubic fourfolds are of particular interest for at least two reasons. First, the rationality of smooth cubic fourfolds is still an open problem in Algebraic Geometry and it is conjectured that a very general smooth cubic fourfold is irrational. However, while some classes of rational cubic fourfolds have been described in [Fan43], [Tre84], [Tre93], and [BD85], no smooth cubic fourfold has yet been proven to be irrational. Second, smooth cubic fourfolds are related to hyperkähler manifolds (see [BD85] and [LSV17]), which are themselves of interest to algebraic geometers. Surprisingly, the period map for smooth cubic fourfolds behaves similarly as the period map for K3 surfaces as investigated in [Voi86], [Voi08], and [Laz10]. Furthermore, since the monodromy groups associated to $A D E$ singularities of cubic fourfolds are finite, the period map on smooth cubic fourfolds extends to cubic fourfolds with isolated $A D E$ singularities.

The $A D E$ singularities or simple hypersurface singularities were classified by V. I. Arnol'd in the famous $A D E$ list in [Arn72]. In the case of surfaces, they are precisely rational double points and there are various ways to characterize them (see [Dur79]).

The central topic of this thesis is the study of possible isolated $A D E$ singularities on cubic fourfolds. More precisely, we give a partial classification of cubic fourfolds by their $A D E$ singularities.

In the past, people have already succesfully classified other projective varieties by their $A D E$ singularities: The classification of cubic surfaces by their $A D E$ singularities was done in the 19th century by L. Schläfli in [Sch63]; a more modern and geometric proof was given by J. W. Bruce and C. T. C. Wall in [BW79]. The classification of cubic threefolds was done about fifteen years ago by R. Laza in the (unpublished) notes [Laz05]. A partial classification of quartic surfaces by their $A D E$ singularities was given by T. Urabe in [Ura87] and [Ura88] which was completed by J.-G. Yang in [Yan96] and a partial classification of complete ( $2,2,2$ )-intersections in $\mathbb{P}^{5}$ by their $A D E$ singularities by L.-Z. Tang in [Tan93].
The strategies in [BW79] and [Laz05] to classify all cubic surfaces and threefolds by their isolated $A D E$ singularities, respectively, are similar. The authors use that we can associate to a cubic hypersurface $X$ in $\mathbb{P}^{n}$ with only isolated $A D E$ singularities a complete (2,3)intersection in $\mathbb{P}^{n-1}$ and prove then the existence of certain $A D E$ singularities on the cubic by showing the existence of corresponding $A D E$ singularities on the complete ( 2,3 )intersection.
More precisely: In homogeneous coordinates $\left(x_{0}: \ldots: x_{n}\right)$ on $\mathbb{P}^{n}$ such that one marked $A D E$ singularity $p$ of $X$ is the point $(1: 0: \ldots: 0) \in \mathbb{P}^{n}$, we have

$$
X: x_{0} f_{2}\left(x_{1}, \ldots, x_{n}\right)+f_{3}\left(x_{1}, \ldots, x_{n}\right)=0 \subseteq \mathbb{P}^{n},
$$

where $f_{2}$ and $f_{3}$ are homogeneous polynomials of degree 2 and 3 , respectively. Then, $X$ induces the complete ( 2,3 )-intersection

$$
S_{p}: f_{2}\left(x_{1}, \ldots, x_{n}\right)=f_{3}\left(x_{1}, \ldots, x_{n}\right)=0 \subseteq \mathbb{P}^{n-1}
$$

We also have a more geometric and coordinate-free description of $S_{p}$. Indeed, the complete (2,3)-intersection $S_{p}$ is the image of the union of all lines in $X$ through the point $p$ under the projection of $\mathbb{P}^{n}$ through $p$ onto the hyperplane $\left\{x_{0}=0\right\} \cong \mathbb{P}^{n-1}$.
We use the above strategy in the four dimensional case, as well, and relate the problem of finding certain combinations of $A D E$ singularities on cubic fourfolds to finding them on complete ( 2,3 )-intersections in $\mathbb{P}^{4}$.
Since the minimal model for a complete (2,3)-intersection in $\mathbb{P}^{4}$ with at most isolated $A D E$ singularities is a K 3 surface with a quasi-polarization of degree 6 , we obtain consequently a geometric correspondence between cubic fourfolds with isolated $A D E$ singularities and quasi-polarized K3 surfaces of degree 6 .
The minimal models of quartic surfaces in $\mathbb{P}^{3}$ and complete ( $2,2,2$ )-intersections in $\mathbb{P}^{5}$ with at most isolated $A D E$ singularities are quartic and octic K3 surface, respectively. In [Ura87] and [Tan93], the authors investigated that by the surjectivity of the period map, the question if a certain combination of $A D E$ singularities can occur on these quartic surfaces and complete ( $2,2,2$ )-intersections, respectively, is transformed into a question about lattices.

We follow this idea and relate the existence of certain combinations of isolated $A D E$ singularities on complete ( 2,3 )-intersections in $\mathbb{P}^{4}$ to the existence of certain lattice embeddings into the K3 lattice. Using V. V. Nikulin's Theorem on the existence of primitive lattice embeddings in [Nik80] and the theory of quadratic forms as formulated by R. Miranda and D. R. Morrison in [MM09], we determine computer-aided certain possible combinations of $A D E$ singularities on those complete (2,3)-intersections in $\mathbb{P}^{4}$ which lie on smooth quadrics.

The maximal number of $A_{1}$ singularities which we can find with our methods on a cubic fourfold with no other singularities is 11 . Further, the maximal combinations of $A_{1}$ and $A_{2}$ singularities with respect to their Milnor number which we can here find on a cubic fourfold with no other singularities are $3 A_{1}+6 A_{2}, 5 A_{1}+5 A_{2}$, and $7 A_{1}+4 A_{2}$.
In [Has00, 4.2], B. Hassett related the moduli space of cubic fourfolds with a single $A_{1}$ singularity to the moduli space of K3 surfaces with a very ample line bundle of degree 6 . Here, we relate the moduli space of cubic fourfolds with a certain combination of isolated $A D E$ singularities to the moduli space of certain quasi-polarized K3 surfaces of degree 6 .
Indeed, R. Laza showed in [Laz09] that cubic fourfolds with at most isolated $A D E$ singularities are stable in the sense of D. Mumford's Geometric Invariant Theory (GIT). Using this result, we construct the moduli space of cubic fourfolds with a certain combination of isolated $A D E$ singularities as GIT quotients. Further, we construct the moduli space of certain quasi-polarized K3 surfaces of degree 6 as the moduli space of certain lattice polarized K3 surfaces. Finally, we show that both moduli spaces are isomorphic.

## Structure of the thesis and results

In Chapter 1, we will recall basics of $A D E$ singularities on complex analytic spaces. In particular, we will focus on properties of $A D E$ singularities on complex analytic surfaces.

In Chapter 2, we will recall essential definitions related to symmetric bilinear and quadratic forms, and quadratic modules. In particular, we will study lattices and introduce $A D E$ lattices and the K3 lattice as examples.

In Chapter 3, we will recall basics of (quasi-polarized) K3 surfaces. In particular, we will study complete linear systems on K3 surface and discuss when a linear system $|L|$ on a K3 surface $S$ induces a birational map $\varphi_{L}$ from the K3 surface onto its image in the projective space. We will see that if $|L|$ is fixed part free and $\varphi_{L}$ is birational onto its image, the existence of certain irreducible $A D E$ lattices in $\operatorname{Pic}(S)$ will imply the existence of $A D E$ singularities of corresponding type on $\varphi_{L}(S)$. Further, if $L^{2}=6$, the surface $\varphi_{L}(S) \subseteq \mathbb{P}^{4}$ will be a complete $(2,3)$-intersection. Finally, we will define the period domain and the period map for K3 surfaces and recall the theorem on the surjectivity of the period map.
In Chapter 4, we will study complete (2,3)-intersections in $\mathbb{P}^{4}$ for each possible rank of the underlying quadric individually. For such a complete $(2,3)$-intersection $S$, we will, depending on the rank of the underlying quadric, construct a certain hyperplane section which passes through those singularities of $S$ lying on the singular locus of the quadric. Furthermore, we will classify the types of those singularities. In particular, we will understand in this chapter the geometry of complete $(2,3)$-intersections in $\mathbb{P}^{4}$.

In Chapter 5, we will study cubic hypersurfaces in $\mathbb{P}^{n}$ with isolated $A D E$ singularities and explain how to associate to them complete (2,3)-intersections in $\mathbb{P}^{n-1}$. In particular, we explain how $A D E$ singularities on cubic hypersurfaces correspond to $A D E$ singularities on the associated complete (2,3)-intersections.

In Chapter 6, we will state and prove our first Main Theorem which establishes a correspondence between the existence of firstly cubic fourfolds with certain $A D E$ singularities, secondly complete $(2,3)$-intersections with certain $A D E$ singularities in $\mathbb{P}^{4}$, and thirdly embeddings of certain lattices into the K3 lattice:

For $\mathbf{T} \in\left\{\mathbf{A}_{i \geq 1}, \mathbf{D}_{j \geq 4}, \mathbf{E}_{8 \geq k \geq 6}\right\}$ an $A D E$ singularity type and a positive integer $n$, denote by $\sigma(\mathbf{T})$ the $A D E$ singularities on the exceptional divisor of the blowing-up of an $n$ dimensional $\mathbf{T}$ singularity. Let corank $\mathbf{T}_{\mathbf{T}}$ be $n+1$ minus the rank of the Hessian matrix of the analytic function defining $\mathbf{T}$ in the origin. We note that corank $\mathbf{T}_{\mathbf{T}}$ is invariant with respect to different dimensions of $\mathbf{T}$. Let $\Gamma_{\sigma(\mathbf{T})}$ as in Table 6.1 be the weighted graph which we obtain by extending the Dynkin diagram associated to $\sigma(\mathbf{T})$ in a certain way. Let $\Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)$ be the lattice associated to $\Gamma_{\sigma(\mathbf{T})}$ and $h_{\mathbf{T}} \in \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)$ a certain linear combination of the vertices of $\Gamma_{\sigma(\mathbf{T})}$.

Main Theorem 1. For $\left(\left(a_{1}, \ldots, a_{n}\right),\left(d_{4}, \ldots, d_{m}\right),\left(e_{6}, e_{7}, e_{8}\right)\right) \in \mathbb{Z}_{\geq 0}{ }^{n} \times \mathbb{Z}_{\geq 0}{ }^{m-3} \times \mathbb{Z}_{\geq 0}{ }^{3}$, let

$$
\mathbf{G}:=\sum_{i=1}^{n} a_{i} \mathbf{A}_{i}+\sum_{j=4}^{m} d_{j} \mathbf{D}_{j}+\sum_{k=6}^{8} e_{k} \mathbf{E}_{k}
$$

be a formal finite sum of $A D E$ singularity types,

$$
\Gamma_{\mathbf{G}}:=\sum_{i=1}^{n} a_{i} \mathcal{A}_{i}+\sum_{j=4}^{m} d_{j} \mathcal{D}_{j}+\sum_{k=6}^{8} e_{k} \mathcal{E}_{k}
$$

a Dynkin diagram with connected components $\mathcal{A}_{i}, \mathcal{D}_{j}$, and $\mathcal{E}_{k}$, and $\Lambda\left(\Gamma_{\mathbf{G}}\right)$ the associated lattice.

The following are equivalent:

1. There exists a cubic fourfold $X$ in $\mathbb{P}^{5}$ with a singularity of type $\mathbf{T}$ and such that all other singularities of $X$ correspond to $\mathbf{G}$.
2. There exists a complete (2,3)-intersection $S$ in $\mathbb{P}^{4}$ of a quadric $Q$ of $\operatorname{corank}(Q)=$ corank $_{\mathbf{T}}$ in $\mathbb{P}^{4}$ and a cubic $Y$ such that the singularities of $S$ that lie on the singular locus of $Q$ are of type $\sigma(\mathbf{T})$ as in Table 6.1 and such that all other singularities of $S$ correspond to $\mathbf{G}$.
3. There exists an embedding

$$
i: \Lambda\left(\Gamma_{\mathbf{G}}\right) \oplus \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right) \hookrightarrow L_{K 3}
$$

such that the following conditions a), b), and c) hold:
Let $\mathrm{Sat}_{L_{K 3}}(i)$ be the saturation of $\Lambda\left(\Gamma_{\mathbf{G}}\right) \oplus \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)$ in $L_{K 3}$ with respect to $i$.
a) If $x \in \operatorname{Sat}_{L_{K 3}}(i)$ with $i\left(h_{\mathbf{T}}\right) \cdot x=0$ and $x^{2}=-2$, then $x \in i\left(\Lambda\left(\Gamma_{\mathbf{G}}\right) \oplus \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)\right)$.
b) There exists no element $x \in \operatorname{Sat}_{L_{K 3}}(i)$ with $i\left(h_{\mathbf{T}}\right) \cdot x=1$ and $x^{2}=0$.
c) There exists no element $x \in \operatorname{Sat}_{L_{K 3}}(i)$ with $i\left(h_{\mathbf{T}}\right) \cdot x=2$ and $x^{2}=0$.

In Chapter 7, we introduce finite bilinear and quadratic forms and define discriminant bilinear and quadratic forms. For an odd prime $p$, we will define the normal form of quadratic forms and finite quadratic forms over $\mathbb{Z}_{p}$. We will see that knowing the normal form of a finite quadratic form $\left(G, q_{p}\right)$ over $\mathbb{Z}_{p}$, we can construct a quadratic $\mathbb{Z}_{p}$-module ( $L, Q_{p}$ ) such that the rank of $L$ coincides with the length $l(G)$ of $G$ and such that the discriminant form induced by $\left(L, Q_{p}\right)$ is isomorphic to ( $G, q_{p}$ ). Finally, we will state Nikulin's Theorem on the existence of lattice embeddings.

In Chapter 8, we describe an algorithm to determine all $A D E$ lattices $\Lambda$ such that $\langle 6\rangle \oplus \Lambda$ can be embedded primitively into the K3 lattice $L_{K 3}$. We wrote a code based on this algorithm to be implemented in the computer-algebra software Wolfram Mathematica which gives us the full list of these $A D E$ lattices $\Lambda$. Independently from our computation, S . Brandhorst found the same list with an algorithm implemented in the computer-algebra software Sage. We will then be able to prove our second main result:

Main Theorem 2. Let

$$
\mathbf{G}:=\sum_{i=1}^{19} a_{i} \mathbf{A}_{i}+\sum_{j=4}^{19} d_{j} \mathbf{D}_{j}+\sum_{k=6}^{8} e_{k} \mathbf{E}_{k}
$$

be a formal sum of $A D E$ singularities such that the $A D E$ lattice

$$
\Lambda:=\bigoplus_{i=1}^{19} a_{i} A_{i} \oplus \bigoplus_{j=4}^{19} d_{j} D_{j} \oplus \bigoplus_{k=6}^{8} e_{k} E_{k}
$$

is one of the 2942 elements in the list in Appendix C. The following hold:

1. There exists a complete (2,3)-intersection $S$ of a smooth quadric and a cubic in $\mathbb{P}^{4}$ such that $S$ has singularities of type $\mathbf{G}$.
2. There exists a cubic fourfold with $A D E$ singularities of type $\mathbf{G}$ and an $\mathbf{A}_{1}$ singularity.

In Chapter 9, we will firstly recall the notion of lattice polarized K3 surfaces. For a combination $\mathbf{G}$ of $A D E$ singularities, $\mathbf{T} \in\left\{\mathbf{A}_{i \geq 1}, \mathbf{D}_{j \geq 4}, \mathbf{E}_{8 \geq k \geq 6}\right\}$ an $A D E$ singularity type, and $\Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)$ and $\Lambda\left(\Gamma_{\mathbf{G}}\right)$ as above, let

$$
i: \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right) \oplus \Lambda\left(\Gamma_{\mathbf{G}}\right) \hookrightarrow L_{K 3}
$$

be an embedding into the K3 lattice which is unique up to automorphisms of $L_{K 3}$ and Sat $_{L_{K 3}}(i)$ the saturation of $\Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right) \oplus \Lambda\left(\Gamma_{\mathbf{G}}\right)$ in $L_{K 3}$ with respect to $i$.
We will construct the moduli space $\mathcal{F}_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$ of all quasi-polarized K 3 surfaces $\left(\widetilde{S}, L_{\mathbf{T}}\right)$ of degree 6 such that

1. $\varphi_{L_{T}}: \widetilde{S} \rightarrow \mathbb{P}^{4}$ is birational onto its image
2. $\varphi_{L_{\mathbf{T}}}(\widetilde{S})$ is contained in a quadric $Q \subseteq \mathbb{P}^{4}$ of $\operatorname{corank}(Q)=\operatorname{corank}_{\mathbf{T}}$ such that
a) the singularities of $\varphi_{L_{\mathbf{T}}}(\widetilde{S})$ lying on $\operatorname{Sing}(Q)$ correspond to $\sigma(\mathbf{T})$
b) the singularities of $\varphi_{L_{\mathbf{T}}}(\widetilde{S})$ not lying on $\operatorname{Sing}(Q)$ correspond to $\mathbf{G}$
as an open subset of the moduli space of certain $\operatorname{Sat}_{L_{K 3}}(i)$-polarized K3 surfaces. Likewise, we will construct the moduli space of all cubic fourfolds $\mathcal{M}^{\mathbf{T}+\mathbf{G}}$ having singularities corresponding to G and T. Finally, we will prove our third Main Theorem.

Main Theorem 3. We have an isomorphism of quasi-projective varieties

$$
\mathcal{M}^{\mathbf{T}+\mathbf{G}} \xrightarrow{\sim} \mathcal{F}_{\text {Sat }_{L_{K 3}}(i)}^{\circ} .
$$

## Contents

Abstract ..... iii
Kurzzusammenfassung ..... iii
Introduction ..... v
$1 A D E$ singularities ..... 1
1.1 Basic notation, definitions, and properties ..... 1
1.2 $A D E$ singularities on surfaces ..... 2
2 Bilinear forms, quadratic forms, and quadratic modules ..... 3
2.1 Basic notation, definitions, and properties ..... 3
2.2 Lattices ..... 4
3 K3 surfaces ..... 7
3.1 Basic notation, definitions, and properties ..... 7
3.2 Linear systems on K3 surfaces ..... 8
3.3 (-2)-curves on K3 surfaces ..... 10
3.4 Periods of K3 surfaces ..... 11
4 Complete (2,3)-intersections in $\mathbb{P}^{4}$ ..... 13
4.1 Quadrics in $\mathbb{P}^{4}$ ..... 13
4.1.1 Basic notation, definitions, and properties ..... 13
4.1.2 Planes on Quadrics in $\mathbb{P}^{4}$ ..... 14
4.2 Basic properties of complete (2,3)-intersections in $\mathbb{P}^{4}$ ..... 16
4.3 Hyperplane sections of complete (2,3)-intersections in $\mathbb{P}^{4}$ ..... 16
4.3.1 $\quad Q$ has corank 1 in $\mathbb{P}^{4}$ ..... 18
4.3.2 $\quad Q$ has corank 2 in $\mathbb{P}^{4}$ ..... 22
4.4 Possible $A D E$ singularities of a complete (2,3)-intersection on the singular locus of the underlying quadric ..... 23
4.4.1 $\quad Q$ has corank 1 in $\mathbb{P}^{4}$ ..... 23
4.4.2 $\quad Q$ has corank 2 in $\mathbb{P}^{4}$ ..... 24
5 Cubic hypersurfaces with isolated $A D E$ singularities ..... 27
5.1 Basic notation, definitions, and properties ..... 27
5.2 $A D E$ singularities on cubic hypersurfaces and complete (2,3)-intersections ..... 28
6 Cubic fourfolds and K3 surfaces with isolated $A D E$ singularities ..... 33
6.1 Main Theorem 1 ..... 33
6.2 Proof of Main Theorem 1 ..... 34
6.3 An auxiliary step in the proof of Main Theorem 1 ..... 34
6.3.1 The quadric $Q$ has corank 0 in $\mathbb{P}^{4}$ ..... 34
6.3.2 The quadric $Q$ has corank 1 in $\mathbb{P}^{4}$ ..... 36
6.3.3 The quadric $Q$ has corank 2 in $\mathbb{P}^{4}$ ..... 41
6.4 Proof of Main Theorem 1 ..... 54
7 Existence of primitive lattice embeddings ..... 67
7.1 Finite symmetric bilinear forms and finite quadratic forms ..... 67
7.2 The discriminant form of a lattice ..... 67
7.3 Quadratic forms and finite quadratic forms over $\mathbb{Z}_{p}$ ..... 68
7.3.1 Normal form decompositions of quadratic forms and finite quadratic forms over $\mathbb{Z}_{p}, p$ odd ..... 70
7.4 Primitive embeddings into unimodular lattices ..... 71
8 Finding certain primitive lattice embeddings into the K3 lattice ..... 73
8.1 Algorithm to compute certain primitive lattice embeddings into $L_{K 3}$ ..... 73
8.1.1 Check condition (2a) in Theorem 7.4.1 ..... 74
8.1.2 Check condition (2b) in Theorem 7.4.1 ..... 74
8.1.3 Check condition (2c) in Theorem 7.4.1 ..... 75
8.1.4 Check condition (2d) in Theorem 7.4.1 ..... 78
8.1.5 Check condition (2e) in Theorem 7.4.1 ..... 83
8.2 Main Theorem 2 ..... 84
9 Correspondence between the moduli space of cubic fourfolds and quasi- polarized K3 surfaces of degree 6 ..... 87
9.1 Lattice polarized K3 surfaces ..... 87
9.1.1 Basic notation and definitions ..... 87
9.1.2 Periods of lattice polarized K3 surfaces ..... 87
9.2 Moduli spaces of K3 surfaces with a certain Picard group ..... 89
9.2.1 Isomorphism classes of certain quasi-polarized K3 surfaces of degree 6 ..... 89
9.2.2 Isomorphism classes of certain lattice polarized K3 surfaces ..... 89
9.2.3 Correspondence between isomorphism classes of certain quasi-polarized and lattice polarized K3 surfaces ..... 90
9.2.4 Moduli space of certain polarized K3 surfaces as the moduli space of certain lattice polarized K3 surfaces ..... 92
9.3 Moduli spaces of cubic fourfolds with isolated $A D E$ singularities ..... 95
9.4 Main Theorem 3 ..... 98
Appendices ..... 103
A Intersection theory on surfaces ..... 103
B Code to determine all $A D E$ lattices $\Lambda$ such that $\langle 6\rangle \oplus \Lambda$ has a primitive embedding into the K3 lattice ..... 106
C List of all $A D E$ lattices $\Lambda$ such that $\Lambda \oplus\langle 6\rangle$ can be embedded primitively into the K3 lattice ..... 113
Bibliography ..... 138
Acknowledgments ..... 139
Curriculum Vitae ..... 141

## $1 A D E$ singularities

In this chapter, we will define $A D E$ singularities of complex analytic spaces and state basic properties of those. In particular, we will recall that on a surface we can identify an $A D E$ singularity with the Dynkin diagram associated to the exceptional divisor of the minimal resolution of this $A D E$ singularity. This chapter provides a foundation to the following chapters where we study $A D E$ lattices and $A D E$ singularities on both cubic fourfolds and complete ( 2,3 )-intersections in $\mathbb{P}^{4}$.

### 1.1 Basic notation, definitions, and properties

Let $X$ be a complex analytic space of dimension $d$.
Let $p$ be a singularity of $X$ and assume that the germ $(X, p) \subseteq\left(\mathbb{C}^{d+1}, p\right)$ is an isolated hypersurface singularity. The (analytic) type of $p$ is the equivalence class of the germ $(X, p)$ with respect to local analytic isomorphisms. We say that $X$ has an $A D E$ singularity of type $\mathbf{T} \in\left\{\mathbf{A}_{i \geq 1}, \mathbf{D}_{j \geq 4}, \mathbf{E}_{8 \geq k \geq 6}\right\}$ in $p$ if the analytic type of $p$ is the equivalence class of the germ defined by the following equation $\mathbf{T}$ on $\mathbb{C}^{d+1}$ at $(0, \ldots, 0) \in \mathbb{C}^{d+1}$ :

$$
\begin{array}{lll}
\mathbf{A}_{i}: & x_{1}^{2}+\ldots+x_{d-1}^{2}+x_{d}^{2}+x_{d+1}^{i+1}=0 & (i \geq 1) \\
\mathbf{D}_{j}: & x_{1}^{2}+\ldots+x_{d-1}^{2}+x_{d}^{2} x_{d+1}+x_{d+1}^{j-1}=0 \quad(j \geq 4) \\
\mathbf{E}_{6}: & x_{1}^{2}+\ldots+x_{d-1}^{2}+x_{d}^{4}+x_{d+1}^{3}=0 \\
\mathbf{E}_{7}: & x_{1}^{2}+\ldots+x_{d-1}^{2}+x_{d}^{3} x_{d+1}+x_{d+1}^{3}=0 \\
\mathbf{E}_{8}: & x_{1}^{2}+\ldots+x_{d-1}^{2}+x_{d}^{5}+x_{d+1}^{3}=0, &
\end{array}
$$

where $x_{1}, \ldots, x_{d+1}$ are analytic coordinates on $\mathbb{C}^{d+1}$. We call the germ defined by the equation $\mathbf{T}$ in $\mathbb{C}^{d+1}$ at $(0, \ldots, 0) \in \mathbb{C}^{d+1}$ a $\mathbf{T}$ type. We will call a singularity $p$ simply an $A D E$ singularity if it is an $A D E$ singularity of any type $\mathbf{T}$. Let

$$
\mathbf{G}:=\sum_{i \geq 1} a_{i} \mathbf{A}_{i}+\sum_{j \geq 4} d_{j} \mathbf{D}_{j}+\sum_{k=6}^{8} e_{k} \mathbf{E}_{k}
$$

be a (formal) sum of $A D E$ types. If $X$ has $a_{i}$ isolated singularities of type $\mathbf{A}_{i}(i \geq 1), d_{j}$ isolated singularities of type $\mathbf{D}_{j}(j \geq 4)$, and $e_{k}$ isolated singularities of type $\mathbf{E}_{k}(8 \geq k \geq$ 6 ), we say that the singularities of $X$ correspond to $\mathbf{G}$.

A direct computation shows that an $A D E$ singularity is resolved by finitely many blowingups in finitely many points. Indeed, in Table 1.1 we can find for a singularity of type $\mathbf{T}$ on $X$ the singularities $\sigma(\mathbf{T})$ occurring on the exceptional divisor of the blowing-up $\pi_{p}: \mathrm{Bl}_{p} X \rightarrow X$ of $X$ in $p$.

We say that a complex space germ $(X, p)$ defined by $\mathbf{T}$ is adjacent to the complex space germ ( $X^{\prime}, p^{\prime}$ ) defined by $\mathbf{T}^{\prime}$ (up to analytic isomorphism) if the germ ( $X, p$ ) can be deformed by an arbitrarily small deformation into the germ $\left(X^{\prime}, p^{\prime}\right)$. For $A D E$ singularities, the adjacencies are known, see [AGLV98, Chap. 2.2.7].

| $\mathbf{T}$ | $\mathbf{A}_{1}$ | $\mathbf{A}_{2}$ | $\mathbf{A}_{n \geq 3}$ | $\mathbf{D}_{4}$ | $\mathbf{D}_{n \geq 5}$ | $\mathbf{E}_{6}$ | $\mathbf{E}_{7}$ | $\mathbf{E}_{8}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\sigma(\mathbf{T})$ | $\emptyset$ | $\emptyset$ | $\mathbf{A}_{n-2}$ | $3 \mathbf{A}_{1}$ | $\mathbf{A}_{1}+\mathbf{D}_{n-2}$ | $\mathbf{A}_{5}$ | $\mathbf{D}_{6}$ | $\mathbf{E}_{7}$ |

Table 1.1: Singularities corresponding to $\sigma(\mathbf{T})$ on the exceptional divisor of the blowing-up of a singularity of type $\mathbf{T}$. We understand $\mathbf{D}_{3}$ as $\mathbf{A}_{3}$. See [DR01, Lemma 2.1].

## 1.2 $A D E$ singularities on surfaces

Let $C$ be a curve on a smooth surface with components $C_{1}, \ldots, C_{s}$. The (weighted) graph associated to $C_{1}, \ldots, C_{s}$ is the graph whose vertices are the curves $C_{i}$ with weights $C_{i} . C_{i}$ and such that two vertices $C_{i}$ and $C_{j}$ are joint by $C_{i} \cdot C_{j}$ edges.

If $S$ is a surface, it is well known that we can identify the $A D E$ type of a singularity $p$ on $S$ by its weighted graph associated to the exceptional divisor of the minimal resolution of $p$ :

Theorem 1.2.1 ([Dur79, Theorem A]). Let $S$ be a normal surface with a singularity $p$. Let $\pi: \widetilde{S} \rightarrow(S, p)$ be the minimal resolution of the germ $(S, p)$ whose exceptional divisor $E:=\pi^{-1}(p)$ is the union of the irreducible curves $E_{1}, \ldots, E_{s}$. Then, $p$ has type $\mathbf{T}=$ $\mathbf{A}_{i \geq 1}, \mathbf{D}_{j \geq 4}$, or $\mathbf{E}_{8 \geq k \geq 6}$ if and only if the weighted graph associated to $E_{1}, \ldots, E_{s}$ is the Dynkin diagram $\mathcal{T}=\mathcal{A}_{i \geq 1}, \mathcal{D}_{j \geq 4}$, or $\mathcal{E}_{8 \geq k \geq 6}$, respectively, listed in [Dur79, Table 1].

We will refer to the graph associated to the irreducible curves in the exceptional divisor of the minimal resolution of an $A D E$ singularity $p$ as in Theorem 1.2.1 for short as the Dynkin diagram of the minimal resolution of $p$.

We call a disjoint finite union of connected Dynkin diagrams of type $A D E$ again a Dynkin diagram.

If $\Gamma$ is a Dynkin diagram with $a_{i}, d_{j}$, and $e_{k}$ connected components $\mathcal{A}_{i}(i \geq 1), \mathcal{D}_{j}(j \geq 4)$, and $\mathcal{E}_{k}(8 \geq k \geq 6)$, we will write $\Gamma$ as the (formal) sum

$$
\Gamma=\sum_{i \geq 1} a_{i} \mathcal{A}_{i}+\sum_{j \geq 4} d_{j} \mathcal{D}_{j}+\sum_{k=6}^{8} e_{k} \mathcal{E}_{k} .
$$

We note one further characterization of $A D E$ singularities on surfaces:
Theorem 1.2.2 ([Dur79, Theorem A]). Let $S$ be a normal surface with a singularity $p$ and $\pi: \widetilde{S} \rightarrow(S, p)$ the minimal resolution of the germ $(S, p)$. Then, $p$ has ADE type if and only if $p$ is a rational singularity, i.e. the higher direct image sheaf $R^{i} \pi_{*} \mathcal{O}_{\tilde{S}}$ is trivial for all $i>0$.

## 2 Bilinear forms, quadratic forms, and quadratic modules

In this chapter, we will introduce symmetric bilinear forms, quadratic forms, and quadratic modules and then define a lattice as an integral non-degenerate bilinear form. In particular, we are interested in the lattices which we associate to the Dynkin diagrams of the minimal resolutions of $A D E$ singularities and the K3 lattice. This chapter provides a basis for the chapters where we study $A D E$ singularities on complete $(2,3)$-intersections in $\mathbb{P}^{4}$ in terms of lattices.

### 2.1 Basic notation, definitions, and properties

Let $R$ be a commutative ring with 1 .
A symmetric bilinear form over $R$ is a pair $\left(L,\langle,\rangle_{L}\right)$, where $L$ is an $R$-module and

$$
\langle,\rangle_{L}: L \times L \rightarrow R
$$

is a function which is symmetric and $R$-bilinear.
For simplicity and by abuse of notation, we will often write $L$ instead of $\left(L,\langle,\rangle_{L}\right)$ and the associated function $\langle,\rangle_{L}$ is assumed to be given.

We will call $\left(L,\langle,\rangle_{L}\right)$ non-degenerate if $\langle,\rangle_{L}$ is non-degenerate. For $x, y \in L$, we will write $x . y$ and $x^{2}$ instead of $\langle x, y\rangle_{L}$ and $\langle x, x\rangle_{L}$, respectively.

A quadratic form over $R$ is a pair $\left(L, Q_{L}\right)$, where $L$ is an $R$-module and $Q_{L}$ is a function such that

1. $Q_{L}(r l)=r^{2} Q_{L}(l)$ for all $r \in R$ and $l \in L$
2. $\langle,\rangle_{Q_{L}}: L \times L \rightarrow R,(x, y) \mapsto Q_{L}(x+y)-Q_{L}(x)-Q_{L}(y)$ is a symmetric bilinear form over $R$.
Remark 2.1.1. Note that we defined here the quadratic form as in [MM09, Chap. I.4.1]; in the literature one can find more often the requirement that $\langle x, y\rangle_{Q_{L}}=\frac{1}{2}\left(Q_{L}(x+y)-\right.$ $\left.Q_{L}(x)-Q_{L}(y)\right)$.

In the cases we will consider in the following chapters, a symmetric bilinear form will induce a unique quadratic form and vice versa:

Lemma 2.1.2 ([MM09, Chap. I, Corollary 2.4]). Assume that 2 is not a zero divisor in $R$. Let $\left(L,\langle,\rangle_{L}\right)$ be a symmetric bilinear over $R$ such that there exists a quadratic form $\left(L, Q_{L}\right)$ over $R$ with $\langle,\rangle_{L}=\langle,\rangle_{Q_{L}}$. Then, $\left(L, Q_{L}\right)$ is uniquely determined.

For two quadratic forms $\left(L_{1}, Q_{L_{1}}\right)$ and $\left(L_{2}, Q_{L_{2}}\right)$, the direct sum $\left(L_{1} \oplus L_{2}, Q_{L_{1}}+Q_{L_{2}}\right)$ is the orthogonal direct sum (i.e. for $x_{1} \in L_{1}$ and $x_{2} \in L_{2},\left(Q_{L_{1}}+Q_{L_{2}}\right)\left(x_{1}+x_{2}\right)=$ $\left.Q_{L_{1}}\left(x_{1}\right)+Q_{L_{2}}\left(x_{2}\right)\right)$.
A homomorphism $\left(L_{1}, Q_{L_{1}}\right) \rightarrow\left(L_{2}, Q_{L_{2}}\right)$ between two quadratic forms is an $R$-module homomorphism $\phi: L_{1} \rightarrow L_{2}$ such that $Q_{L_{2}} \circ \phi=Q_{L_{1}}$.
A quadratic $R$-module is a non-degenerate quadratic form $\left(L, Q_{L}\right)$ over $R$ such that $L$ is a finitely generated free $R$-module. Let $\langle,\rangle_{Q_{L}}$ be the bilinear function associated to $Q_{L}$ and let $s_{1}, \ldots, s_{n}$ be a basis of $L$. The intersection matrix of ( $L, Q_{L}$ ) (or equivalently of $\left.\left(L,\langle,\rangle_{Q_{L}}\right)\right)$ is the symmetric $n \times n$ matrix

$$
M_{\left(L, Q_{L}\right)}:=\left(\left\langle s_{i}, s_{j}\right\rangle_{Q_{L}}\right)_{i, j=1, \ldots, n} \in \operatorname{Mat}_{n}(R) .
$$

On the other hand, the intersection matrix determines the bilinear function $\langle,\rangle_{Q_{L}}$. Indeed, let $e_{1}, \ldots, e_{n}$ be the standard basis on $R^{n}$ and $\phi: L \rightarrow R^{n}, s_{i} \mapsto e_{i}$ the coordinate isomorphism, then $\left\langle x, x^{\prime}\right\rangle_{Q_{L}}=\phi(x)^{T} M_{\left(L, Q_{L}\right)} \phi\left(x^{\prime}\right)$.
If ( $L, Q_{L}$ ) is a quadratic $R$-module, the discriminant

$$
\operatorname{disc}(L):=\operatorname{det}\left(M_{\left(L, Q_{L}\right)}\right) \in R /\left(R^{\times}\right)^{2}
$$

of $\left(L, Q_{L}\right)$ is the determinant in $R /\left(R^{\times}\right)^{2}$ of the intersection matrix $M_{\left(L, Q_{L}\right)}$ with respect to an arbitrary basis of $L$.

Lemma 2.1.3. For a direct sum $\left(L_{1} \oplus L_{2}, Q_{L_{1} \oplus L_{2}}\right)$ of quadratic $R$-modules, we have $\operatorname{disc}\left(L_{1} \oplus L_{2}\right)=\operatorname{disc}\left(L_{1}\right) \cdot \operatorname{disc}\left(L_{2}\right)$.

Proof. The intersection matrix $M_{L_{1} \oplus L_{2}, Q_{L_{1} \oplus L_{2}}}$ is a block diagonal matrix with blocks given by $M_{L_{1}, Q_{L_{1}}}$ and $M_{L_{2}, Q_{L_{2}}}$. Hence, $\operatorname{det}\left(M_{L_{1} \oplus L_{2}, Q_{L_{1} \oplus L_{2}}}\right)=\operatorname{det}\left(M_{L_{1}, Q_{L_{1}}}\right) \cdot \operatorname{det}\left(M_{L_{2}, Q_{L_{2}}}\right)$.

### 2.2 Lattices

We call a non-degenerate symmetric bilinear form $\left(L,\langle,\rangle_{L}\right)$ over $\mathbb{Z}$ a lattice if $L$ is a finitely generated free $\mathbb{Z}$-module.

The lattice $L$ is called even if $x^{2} \in 2 \mathbb{Z}$ for all $x \in L$ and odd otherwise. We say that the lattice $L$ is unimodular if $\operatorname{disc}(L)= \pm 1$.

The rank $\operatorname{rank}(L)$ of a lattice $L$ is the rank of its underlying free $\mathbb{Z}$-module.
We call $\left(L^{\prime},\langle,\rangle_{L^{\prime}}\right)$ a sublattice of $\left(L,\langle,\rangle_{L}\right)$ if $L^{\prime}$ is a $\mathbb{Z}$-submodule of $L$ and $\langle,\rangle_{L^{\prime}}$ is the restriction of $\langle,\rangle_{L}$ to $L^{\prime}$. The lattice $L$ is called irreducible if it cannot be written as the orthogonal direct sum of two proper sublattices.

Let $i: L_{1} \hookrightarrow L$ be an injective homomorphism. Then, we say that $i$ is a primitive embedding and $i\left(L_{1}\right)$ is a primitive sublattice of $L$ if the cokernel of $i$ is torsion free. We call

$$
\operatorname{Sat}_{L}(i):=\left\{x \in L ; m x \in i\left(L_{1}\right) \text { for some } m \in \mathbb{Z}\right\}
$$

the saturation of $L_{1}$ in $L$. The lattice $\operatorname{Sat}_{L}(i)$ is the smallest primitive sublattice of $L$ containing $i\left(L_{1}\right)$.

The signature of $L$ is the pair $\left(n_{+}, n_{-}\right)$, where $n_{+}$is the number of positive eigenvalues and $n_{-}$the number of negative eigenvalues of the extension of $\langle,\rangle_{L}$ to the real vector space $L \otimes_{\mathbb{Z}} \mathbb{R}$. The lattice $L$ is positive definite if $n_{-}=0$, negative definite if $n_{+}=0$, and indefinite otherwise.
An element $x \in L$ is primitive if the intersection of $x \mathbb{Q}$ with $L$ in $L \otimes_{\mathbb{Z}} \mathbb{Q}$ is generated by $x$, i.e. $x$ cannot be written in the form $x=m y$ with $m>1$.
The following three definitions will be only needed at the end of Section 9.4:
An element $x \in L$ is isotropic if $x^{2}=0$. The divisibility of $x \in L$ is the positive integer $\operatorname{div}(x)$ such that $\langle x, L\rangle_{L}=\operatorname{div}(x) \mathbb{Z}$. We then call an isotropic primitive element $x \in L$ $m$-admissible if $\operatorname{div}(x)=m$ and there exists an isotropic primitive element $y \in L$ with $\langle x, y\rangle_{L}=m$ and $\operatorname{div}(y)=m$.

We will refer in the sequel to the following lattices:
Example 2.2.1. 1. $\langle m\rangle$ denotes the rank 1 lattice with intersection matrix $(m)$.
2. The hyperbolic plane $U$ is the even, unimodular, indefinite rank two lattice with intersection matrix

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

$U$ has signature $(1,1)$.
3. The lattice $\Lambda(\Gamma)$ associated to a weighted graph $\Gamma$ : The underlying free $\mathbb{Z}$-module of $\Lambda(\Gamma)$ is generated by the vertices of $\Gamma$ and the underlying bilinear form is given by the intersection matrix defined by the vertices of $\Gamma$. For simplicity, if $\Gamma$ is one of the Dynkin diagrams $\mathcal{T}=\mathcal{A}_{i \geq 1}, \mathcal{D}_{j \geq 4}$, or $\mathcal{E}_{8 \geq k \geq 6}$, we will denote the associated negative definite lattice $\Lambda(\Gamma)$ by $T=A_{i \geq 1}, D_{j \geq 4}$, or $E_{8 \geq k \geq 6}$, respectively. By [Ebe13, Theorem 1.2], the lattice $T$ is irreducible.

For instance, the $A_{2}$ lattice is defined by the intersection matrix

$$
\left(\begin{array}{rr}
-2 & 1 \\
1 & -2
\end{array}\right)
$$

We will call a lattice $\Lambda$ which is the orthogonal direct sum of irreducible $A D E$ lattices for short $A D E$ lattice.
4. The K3 lattice

$$
L_{K 3}:=3 U \oplus 2 E_{8}
$$

is the unique even and unimodular lattice of signature $(3,19)$.

## 3 K3 surfaces

In this chapter, we study K3 surfaces. After recalling all necessary definitions, we will investigate under which conditions the complete linear system induced by a quasi-polarization $L$ on a K3 surface $S$, defines a birational morphism $\varphi_{L}$ from $S$ onto its image in the projective space. We will show that if $\varphi_{L}$ is birational, the existence of certain $A D E$ lattices in the Picard group will imply the existence of corresponding $A D E$ singularities on $\varphi_{L}(S)$ in the projective space. In particular, if $L^{2}=6$, we will see that $\varphi_{L}(S)$ is a complete $(2,3)$ intersection in $\mathbb{P}^{4}$. Finally, we will prove the existence of a K3 surface having a certain Picard group. This chapter is a foundation to the following chapters where we relate the existence of embeddings of $A D E$ lattices into the K3 lattice to the existence of complete $(2,3)$-intersections in $\mathbb{P}^{4}$ having corresponding $A D E$ singularities.

### 3.1 Basic notation, definitions, and properties

A K3 surface is a smooth complex projective surface $S$ with trivial canonical bundle $\omega_{S}$ and $H^{1}\left(S, \mathcal{O}_{S}\right)=0$.

Let $S$ be a K3 surface.
The exponential sequence induces the exact sequence

$$
0 \rightarrow \operatorname{Pic}(S) \xrightarrow{c_{1}} H^{2}(S, \mathbb{Z}) \xrightarrow{\exp ^{*}} H^{2}\left(S, \mathcal{O}_{S}\right) .
$$

Since $H^{2}(S, \mathbb{Z}) / c_{1}(\operatorname{Pic}(S))$ injects into $H^{2}\left(S, \mathcal{O}_{S}\right)$ and since $H^{2}\left(S, \mathcal{O}_{S}\right) \cong \mathbb{C}$ is torsion-free, the embedding $c_{1}: \operatorname{Pic}(S) \hookrightarrow H^{2}(S, \mathbb{Z})$ is primitive. We will identify $\operatorname{Pic}(S)$ with its image in $H^{2}(S, \mathbb{Z})$.
Let $L \in \operatorname{Pic}(S)$.
The Riemann-Roch Theorem yields

$$
\begin{equation*}
h^{0}(S, L)+h^{0}\left(S, L^{\vee}\right) \geq 2+\frac{1}{2} L^{2} \tag{3.1}
\end{equation*}
$$

where $L^{\vee} \in \operatorname{Pic}(S)$ is the dual line bundle of $L$. Hence, we can conclude:
Lemma 3.1.1. Assume that $L^{2} \geq-2$. Then, either $L$ or $L^{\vee} \in \operatorname{Pic}(S)$ is effective.
We say that $L$ is nef (ample) if $L . C \geq 0(L . C>0)$ for all curves $C$ on $S$ (for the general definition of ample and nef line bundles on schemes see [Laz04, 1.2, 1.4]). We call $L$ big and nef if $L$ is nef and $L^{2}>0$.

We call $L$ a quasi-polarization of degree $d$ if $L$ is big and nef such that $L^{2}=d$ and $L$ is primitive, i.e. there exists no line bundle $L^{\prime} \in \operatorname{Pic}(S)$ such that $L=\left(L^{\prime}\right)^{k}$ for $k \geq 2$. We call two quasi-polarized K3 surfaces $(S, L)$ and ( $S^{\prime}, L^{\prime}$ ) isomorphic if their exists an isomorphism $\phi: S \rightarrow S^{\prime}$ between the K3 surfaces preserving the quasi-polarization, i.e. $L=\phi^{*} L^{\prime}$.

### 3.2 Linear systems on K3 surfaces

Let $S$ be a surface and $L$ a line bundle on $S$. Write $|L|$ for the complete linear system on $S$ given by $L$, i.e. the space of all effective divisors linearly equivalent to $L$. We can show that we have $|L|=\mathbb{P}\left(H^{0}(S, L)\right)$.
We follow [Huy16, Chap. 2.1.1] and call a divisor $F$ on $S$ the fixed part of $|L|$ if $F$ is the biggest effective divisor on $S$ contained in all elements of $|L|$, i.e. $F$ is the one-dimensional part of the base locus of $|L|$. We call a point $p \in S$ a fixed point of $|L|$ if $p$ is contained in every element of $|L|$. The mobile part $M:=L(-F)$ of $L$ is fixed part free and has only finitely many fixed points. Further, the mobile part is nef and satisfies $M^{2} \geq 0$. We can then decompose $L$ into its mobile and fixed part and write $L=M+F$.

Assume now that $S$ is a K3 surface.
We call a curve $C$ on $S$ a (-2)-curve if $C$ is irreducible and $C^{2}=-2$. It is known ([Huy16, Chap. 2.1, p. 23]) that a ( -2 -curve $C$ is in fact smooth and rational, i.e. $C \cong \mathbb{P}^{1}$.

Lemma 3.2.1 ([Huy16, Chap. 2, Lemma 1.3]). The fixed part $F$ of a linear system on $S$ is a linear combination of ( -2 )-curves, i.e. $F=\sum_{i=1}^{n} a_{i} C_{i}$ with $a_{i} \geq 0$ and $C_{i}$ a ( -2 )-curve $(i=1, \ldots, n)$.

Lemma 3.2.2 ([Huy16, Chap. 2, Corollary 1.5]). Let $L$ be a line bundle on $S$ with $L^{2} \geq 0$ and such that $L . C \geq 0$ for all $(-2)$-curves $C$ on $S$. Then, $L$ is nef unless there exists no $(-2)$-curve on $S$ in which case $L$ or $L^{\vee}$ is nef.

The restriction of the intersection product on $H^{2}(S, \mathbb{R})$ to $H^{1,1}(S, \mathbb{R}):=H^{2}(S, \mathbb{R}) \cap$ $H^{1}\left(S, \Omega_{S}^{1}\right)$ has signature ( 1,19 ). Hence, the subspace $\left\{x \in H^{1,1}(S, \mathbb{R}) ; x . x>0\right\}$ has two connected components. Let $\mathcal{C}_{S}$ be the connected component that contains one and hence all Kähler classes. We call $\mathcal{C}_{S}$ the positive cone of $S$.

For $R \in H^{2}(S, \mathbb{Z})$ with $R^{2}=-2$, we have a reflection

$$
s_{R}: H^{2}(S, \mathbb{Z}) \rightarrow H^{2}(S, \mathbb{Z}), P \mapsto P+(P . R) R
$$

called Picard-Lefschetz reflection. We note that $s_{R}$ preserves the intersection form.
Proposition 3.2.3 ([Huy16, Chap. 8, Corollary 2.9]). For a line bundle $L$ on $S$ with $L^{2}>0$ such that $L \in \mathcal{C}_{S}$, there exist finitely many $(-2)$-curves $C_{1}, \ldots, C_{n} \in \operatorname{Pic}(S)$ such that $\left(s_{C_{1}} \circ \ldots \circ s_{C_{n}}\right)(L)$ is nef.

Theorem 3.2.4 ([May72, Proposition 1, 5], [Nik91, Proposition 0.1]). Let L be a nef line bundle on $S$. Then, one of the following holds:

1. $L^{2}>0,|L|$ is fixed point free. A generic member of $|L|$ is an irreducible curve and we have $\operatorname{dim}|L|=1+L^{2} / 2>0$.
2. $L^{2}>0,|L|=m|E|+F$ with $m>1$, where $|E|$ is an elliptic pencil, $F$ is a $(-2)$-curve, and $E . F=1$. Then, $m=\operatorname{dim}|L|$ and $F$ is the fixed part of $|L|$.
3. $L^{2}=0,|L|=\emptyset$.
4. $L^{2}=0,|L|=m|E|$ with $m \geq 1$ and $|E|$ is an elliptic pencil.

Remark 3.2.5. Note that in case 4. in Theorem 3.2.4, a general member of $|E|$ is in particular irreducible, see [Huy16, Chap. 2, Proposition 3.10].

If $L^{2} \geq 0$, inequality (3.1) implies that (after possibly replacing $L$ by $L^{\vee}$ ) $L$ has more than one global section. Hence, the linear system $|L|$ on $S$ induces a rational map

$$
\varphi_{L}: S \rightarrow \mathbb{P}^{\operatorname{dim}|L|}
$$

which is a morphism outside its base locus.
Proposition 3.2.6. Let $L$ be a nef line bundle on $S$ with $L^{2} \geq 4$. Then, $\varphi_{L}$ fails to be a birational morphism onto a surface of degree $L^{2}$ in $\mathbb{P}^{\text {dim }|L|}$ if and only if one of the following holds:

1. There exists $E \in \operatorname{Pic}(S)$ such that $E^{2}=0$ and $L \cdot E=1$.
2. There exists $E \in \operatorname{Pic}(S)$ such that $E^{2}=0$ and $L \cdot E=2$.

Proof. Assume that $\varphi_{L}$ fails to be birational onto its image in $\mathbb{P}^{\text {dim }|L|}$. By [SD74, (4.1)], the complete linear system $|L|$ then has either a fixed part or $\varphi_{L}$ is of degree 2 and its image has degree $L^{2} / 2$. Since $L^{2} \geq 4$, by [SD74, Theorem 5.2] the latter case can only occur if item 2. holds. If $|L|$ has a fixed part, we have $|L|=m|E|+F$ for a (-2)-curve $F$ and an elliptic pencil $|E|$ such that $E . F=1$ by Theorem 3.2.4. Hence, $L . E=1$, i.e. item 1. holds.

Then, assume that there exists $E \in \operatorname{Pic}(S)$ with $E^{2}=0$ such that $L . E=1$ or 2 . We assume to the contrary that $\varphi_{L}$ is birational onto its image in $\mathbb{P}^{\operatorname{dim}|L|}$. By (3.1), we have $h^{0}(S, E)>0$ or $h^{0}\left(S, E^{\vee}\right)>0$. However, if $h^{0}\left(S, E^{\vee}\right)>0$, we obtain for $A \in\left|E^{\vee}\right|$ that $L . A=-L . E=-1$ or -2 in contradiction to $L$ being nef. Hence, we have $h^{0}(S, E)>0$, i.e. $E$ is effective. Let $M+\Gamma$ be a general member in $|E|$, where $|M|$ is the mobile part and $\Gamma$ the fixed part of $|E|$. Since $|M|$ is fixed part free and $M^{2} \geq 0$, every irreducible component of $M$ has by Theorem 3.2.4 a non-negative self-intersection number. Since $L$ is nef, we have $L . \Gamma \geq 0$ and $L . M \geq 0$. However, $L . M=0$ would imply $M^{2}<0$ by the Hodge-Index Theorem (see [SD74, (4.2)]) which is absurd. Hence, $L . M>0$. Then, $L . E=L . M+L . \Gamma=1$ or 2 implies that $L . M=1$ or 2. Since $\varphi_{L}$ is by assumption birational onto its image and generically one-to-one on $M$, we deduce that $\varphi_{L}(M)$ is a curve in $\mathbb{P}^{\text {dim }|L|}$ with degree $\leq 2$. By [Mum95, Corollary 5.13], an irreducible component of $\varphi_{L}(M)$ is then isomorphic to $\mathbb{P}^{1}$. Hence, $M$ has an irreducible component which is isomorphic to $\mathbb{P}^{1}$. This is a contradiction to $M$ having only irreducible components with non-negative selfintersection number according to Theorem 3.2.4. Therefore, the assumption must be wrong and $\varphi_{L}$ is not birational onto its image.

Remark 3.2.7. We will call a line bundle as in item 1. in Proposition 3.2.6 unigonal and a line bundle as in item 2. hyperelliptic.
Remark 3.2.8. We note that item 1. in Proposition 3.2.6 is redundant. Indeed, if $\varphi_{L}$ fails to be birational and $|L|$ has a fixed part, we argue as in the proof above that we have $E \in \operatorname{Pic}(\widetilde{S})$ such that $E^{2}=0$ and $E . F=1$. For $E^{\prime}:=2 E$, we then have $E^{\prime 2}=0$ and $L . E^{\prime}=2$. Hence, $E^{\prime}$ satisfies item 2. Conversely, the existence of a line bundle $E \in \operatorname{Pic}(\widetilde{S})$ as in item 2. implies that $\varphi_{L}$ is not birational as shown in the proof above.

## 3.3 (-2)-curves on K3 surfaces

Let $(S, L)$ be a quasi-polarized K 3 surface with $L^{2}>0$.
Define

$$
R_{L}:=\left\{[C] \in \operatorname{Pic}(S) ; C^{2}=-2, L . C=0\right\}
$$

Then, $R_{L}$ is a finite root system (see [Bou07, Chap. VI §1] for the definition of root system). Let

$$
\Delta_{L}:=\{[C] \in \operatorname{Pic}(S) ; C(-2) \text {-curve, } L \cdot C=0\}
$$

By [SS19, Lemma 11.17], every element in $R_{L}$ can be written as a non-negative sum of elements in $\Delta_{L}$. Hence, $\Delta_{L}$ is a basis (sometimes called fundamental system) of the root system $R_{L}$ (see also [Bou07, Chap. VI §1] for the definition of a basis of a root system).

Proposition 3.3.1. Let $\Delta_{L}^{1}, \ldots, \Delta_{L}^{n}$ be the connected components of $\Delta_{L}$. The intersection matrix of the $(-2)$-curves in $\Delta_{L}^{i}(i=1, \ldots, n)$ is described by the Dynkin diagram $\mathcal{A}_{n \geq 1}$, $\mathcal{D}_{n \geq 4}$, or $\mathcal{E}_{8 \geq n \geq 6}$.

Proof. Let $\Delta_{L}^{i}=\cup_{j=1}^{m} C_{j}^{i}$, where all $C_{j}^{i}$ are $(-2)$-curves. By the Hodge-Index Theorem (see [Har77, Chap. V, Theorem 1.9]), the intersection matrix $\left(C_{r}^{i} . C_{s}^{i}\right)_{1 \leq i, j \leq m}$ is negative definite. One then computes the possible intersection products $C_{r}^{i} . C_{s}^{i}$ for all $r, s=1, \ldots, m$ (see [BHPVdV04, Chap. III.2.iii)]).

Theorem 3.3.2. Let $\Delta_{L}^{i}(i=1, \ldots, n)$ be as in Proposition 3.3.1. There exists a projective normal surface $S^{\prime}$ and a morphism

$$
\theta: S \rightarrow S^{\prime}
$$

such that $\theta$ maps each $\Delta_{L}^{i}$ to an $A D E$ singularity $p_{i}$ and $\theta: S \backslash \cup_{i=1}^{n} \Delta_{L}^{i} \rightarrow S^{\prime} \backslash \cup_{i=1}^{n} p_{i}$ is an isomorphism. The singularity types of the $p_{i}$ are determined by the Dynkin diagrams associated to $\Delta_{L}^{i}$.

Proof. The existence of $\theta$ follows from [Art62, Theorem 2.7]. By Proposition 3.3.1, the $(-2)$-curves in $\Delta_{L}^{i}(i=1, \ldots, n)$ are the vertices of a Dynkin diagram $\mathcal{A}_{n \geq 1}, \mathcal{D}_{n \geq 4}$, or $\mathcal{E}_{8 \geq n \geq 6}$ and by Theorem 1.2.1, the singularity $p_{i}$ has type $\mathbf{A}_{n \geq 1}, \mathbf{D}_{n \geq 4}$, or $\mathbf{E}_{8 \geq n \geq 6}$, respectively.

Definition 3.3.3. We call the morphism $\theta$ in Theorem 3.3.2 the contraction morphism of the connected components $\Delta_{L}^{1}, \ldots, \Delta_{L}^{n}$ of $\Delta_{L}$.

The next proposition states that we can identify the normal surface $S^{\prime}$ in Theorem 3.3.2 with the image $\varphi_{L}(S)$ of $S$ under $\varphi_{L}$ in $\mathbb{P}^{4}$.

Proposition 3.3.4 ([SD74, Theorem 6.1 (iii)]). Assume that $L$ is a fixed part free line bundle on $S$ such that $\varphi_{L}: S \rightarrow \mathbb{P}^{\operatorname{dim}|L|}$ is birational onto its image. Then, $\varphi_{L}$ admits a factorization $\varphi_{L}=u_{L} \circ \theta$ by the contraction morphism $\theta$ and an embedding $u_{L}: S^{\prime} \rightarrow$ $\mathbb{P}^{\operatorname{dim}|L|}$. Further, if $L^{2}=6$, the surface $\varphi_{L}(S)$ is the complete $(2,3)$-intersection of a quadric and a cubic in $\mathbb{P}^{4}$.

Corollary 3.3.5. Assume that $L$ is a fixed part free line bundle on $S$ with $L^{2}>0$ such that $\varphi_{L}: S \rightarrow \mathbb{P}^{\operatorname{dim}|L|}$ is birational onto its image. Let $K$ be the lattice in $\operatorname{Pic}(S)$ generated by the elements in the root system $R_{L}$. Assume that

$$
K:=\bigoplus_{i \geq 1} a_{i} A_{i} \oplus \bigoplus_{j \geq 4} d_{j} D_{j} \oplus \bigoplus_{k=6}^{8} e_{k} E_{k} .
$$

Then, $\varphi_{L}(S) \subseteq \mathbb{P}^{\operatorname{dim}|L|}$ has $A D E$ singularities corresponding to

$$
\mathbf{G}:=\sum_{i \geq 1} a_{i} \mathbf{A}_{i}+\sum_{j \geq 4} d_{j} \mathbf{D}_{j}+\sum_{k=6}^{8} e_{k} \mathbf{E}_{k} .
$$

Proof. Let $\Delta_{L}^{1}, \ldots, \Delta_{L}^{n}$ be the connected components of $\Delta_{L}$. By Proposition 3.3.1, the intersection matrix of the $(-2)$-curves in $\Delta_{L}^{i}$ is described by a connected Dynkin diagram. Let $\Gamma^{\prime}:=\sum_{i \geq 1} a_{i}^{\prime} \mathcal{A}_{i}+\sum_{j \geq 4} d_{j}^{\prime} \mathcal{D}_{j}+\sum_{8 \geq k \geq 6} e_{k}^{\prime} \mathcal{E}_{k}$ be the union of all Dynkin diagrams associated to the union of the $\Delta_{L}^{i}$ and let $\bar{\Lambda}\left(\bar{\Gamma}^{\prime}\right)=\bigoplus_{i \geq 1} a_{i}^{\prime} A_{i} \oplus \bigoplus_{j \geq 4} d_{j}^{\prime} D_{j} \oplus \bigoplus_{8 \geq k \geq 6} e_{k}^{\prime} E_{k}$ be the associated $A D E$ lattice.

Since $\Delta_{L}$ is the basis of $R_{L}$, we have $K=\Lambda\left(\Gamma^{\prime}\right)$, i.e.

$$
\bigoplus_{i \geq 1} a_{i} A_{i} \oplus \bigoplus_{j \geq 4} d_{j} D_{j} \oplus \bigoplus_{k=6}^{8} e_{k} E_{k}=\bigoplus_{i \geq 1} a_{i}^{\prime} A_{i} \oplus \bigoplus_{j \geq 4} d_{j}^{\prime} D_{j} \oplus \bigoplus_{k=6}^{8} e_{k}^{\prime} E_{k} .
$$

We claim that $a_{i}=a_{i}^{\prime}(i \geq 1), d_{j}=d_{j}^{\prime}(j \geq 4), e_{k}=e_{k}^{\prime}(8 \geq k \geq 6)$. Indeed, let $M$ be an irreducible $A D E$ lattice in the left-hand direct sum. Suppose that $M$ is not contained in any irreducible $A D E$ lattice in $\Lambda\left(\Gamma^{\prime}\right)$. Since $M$ is contained $\Lambda\left(\Gamma^{\prime}\right)$, this would imply that $M$ is the orthogonal direct sum of two sublattices of $M$. However, this is absurd since $M$ is irreducible. Consequently, $M$ is contained in one irreducible $A D E$ lattice $N$ in $\Lambda\left(\Gamma^{\prime}\right)$. Conversely, the same argument gives that the $A D E$ lattice $N$ has to be contained in an irreducible $A D E$ lattice $M^{\prime}$ in $K$. Since $N$ contains $M$, it follows that the irreducible $A D E$ lattice $M$ is contained in the irreducible $A D E$ lattice $M^{\prime}$. Since $M$ was a direct summand in $K$, this forces $M=M^{\prime}$. Consequently, it follows that any irreducible $A D E$ lattices in $K$ coincides with an irreducible $A D E$ lattices in $\Lambda\left(\Gamma^{\prime}\right)$ and vice versa. In conclusion, $a_{i}=a_{i}^{\prime}(i \geq 1)$, $d_{j}=d_{j}^{\prime}(j \geq 4), e_{k}=e_{k}^{\prime}(8 \geq k \geq 6)$. By Theorem 3.3.2, there exists a projective normal surface $S^{\prime}$ whose singularities correspond to $\mathbf{G}$ and a contraction morphism $\theta: S \rightarrow S^{\prime}$. By Proposition 3.3.4, we have a factorization $\varphi_{L}=u_{L} \circ \theta$ through an embedding $u_{L}: S^{\prime} \rightarrow \mathbb{P}^{4}$. Hence, $\varphi_{L}(S)$ has singularities corresponding to $\mathbf{G}$.

### 3.4 Periods of K3 surfaces

For a K3 surface $S$, the integral cohomology $H^{2}(S, \mathbb{Z})$ is a free $\mathbb{Z}$-module. The intersection form on $H^{2}(S, \mathbb{Z})$ turns it into a lattice of signature (3,19). Since this lattice is even and unimodular, it is isometric to the K3 lattice

$$
L_{K 3}=3 U \oplus 2 E_{8}
$$

independent of the choice of $S$ (see [Mil58, Corollary $\S 1]$ ). We refer to an isometry $\phi: H^{2}(S, \mathbb{Z}) \rightarrow L_{K 3}$ as a marking of $S$ and to a pair $(S, \phi)$ as a marked $K 3$ surface. For $H^{2}(S, \mathbb{C})=H^{2}(S, \mathbb{Z}) \otimes \mathbb{C}$, we have the Hodge decomposition

$$
\begin{equation*}
H^{2}(S, \mathbb{C})=H^{2}\left(S, \mathcal{O}_{S}\right) \oplus H^{1}\left(S, \Omega_{S}^{1}\right) \oplus H^{0}\left(S, \Omega_{S}^{2}\right) \tag{3.2}
\end{equation*}
$$

Since $S$ is a K3 surface, $\operatorname{Pic}(S)$ is isomorphic to $H^{2}(S, \mathbb{Z}) \cap H^{1}\left(S, \Omega_{S}^{1}\right)$ under the embedding $c_{1}: \operatorname{Pic}(S) \hookrightarrow H^{2}(S, \mathbb{Z})$. Let $\omega_{S}$ be a generator of the one-dimensional $\mathbb{C}$-vector space $H^{2}\left(X, \mathcal{O}_{S}\right)$. We note in particular that $\omega_{S}$ is uniquely determined up to a scalar multiple in $\mathbb{C}^{*}$. Hence, a marked K3 surface $(S, \phi)$ determines uniquely a point $\left[\phi\left(\omega_{S}\right)\right]=\phi\left(\omega_{S}\right)$ $\bmod \mathbb{C}^{*} \in \mathbb{P}\left(L_{K 3} \otimes_{\mathbb{Z}} \mathbb{C}\right)$ which we call the period point of $(S, \phi)$. We will call the 20 dimensional connected complex manifold

$$
\begin{equation*}
\Omega_{L_{K 3}}:=\left\{[x] \in \mathbb{P}\left(L_{K 3} \otimes \mathbb{C}\right) ; x^{2}=0, x . \bar{x}>0\right\} \tag{3.3}
\end{equation*}
$$

the period domain of $L_{K 3}$. We note that the period point $\left[\phi\left(\omega_{S}\right)\right]$ is contained in $\Omega_{L_{K 3}}$. Further, for each $x \in H^{2}(S, \mathbb{Z}) \cap H^{1}\left(S, \Omega_{S}^{1}\right)$, we have $x . \omega_{S}=0$ by the Hodge decomposition (3.2). Hence, we deduce

Lemma 3.4.1. We have $\operatorname{Pic}(S)=\left\{x \in H^{2}(S, \mathbb{Z}) ; x \cdot \omega_{S}=0\right\}$.
Let $\pi: \mathcal{S} \rightarrow \mathcal{U}$ be a flat family of K3 surfaces with central fiber $S:=\pi^{-1}(0) \in \mathcal{S}$ over $0 \in \mathcal{U}$. For a sufficiently small contractible open neighborhood $U \subseteq \mathcal{U}$ of $0 \in \mathcal{U}$, a marking $\phi: H^{2}(S, \mathbb{Z}) \rightarrow L_{K 3}$ can be extended to a marking $\phi_{U}: R^{2} \pi_{*} \mathbb{Z} \rightarrow\left(L_{K 3}\right)_{U}$ in a unique way, where $\left(L_{K 3}\right)_{U}$ is the constant sheaf on $U$ with fiber $L_{K 3}$. We obtain a holomorphic map $\rho: U \rightarrow \Omega_{L_{K 3}}, u \mapsto\left[\phi_{U}\left(\omega_{\mathcal{S}_{u}}\right)\right]$ called the period map associated to the family $\pi: \mathcal{S} \rightarrow U$. By the following theorem, the period map is surjective:

Theorem 3.4.2 (Horikawa-Shah-Kulikov-Persson-Pinkham-Todorov-Looijenga, for a proof see [BHPVdV04, Chap. VIII, Theorem 14.1]). For every element $[x]$ in $\Omega_{L_{K 3}}$, there exists a marked K3 surface $(S, \phi)$ such that $[x]$ is the period point of $(S, \phi)$.

## 4 Complete $(2,3)$-intersections in $\mathbb{P}^{4}$

In this chapter, we will study complete $(2,3)$-intersections in $\mathbb{P}^{4}$. Since projective quadrics are determined up to isomorphism by their rank, we will consider these intersections for each possible rank of the underlying quadric individually. We will firstly study certain pencils of planes on quadrics in $\mathbb{P}^{4}$ and construct with these certain hyperplane sections of complete $(2,3)$-intersections in $\mathbb{P}^{4}$. Finally, we will determine which $A D E$ singularities of the complete $(2,3)$-intersection in $\mathbb{P}^{4}$ can lie on the singular locus of the underlying quadric. The minimal model of a complete ( 2,3 )-intersection in $\mathbb{P}^{4}$ with isolated $A D E$ singularities is a K3 surface. The results in this chapter will explain the geometry of complete $(2,3)$ intersections in $\mathbb{P}^{4}$, which we need to understand for the following chapters.

### 4.1 Quadrics in $\mathbb{P}^{4}$

### 4.1.1 Basic notation, definitions, and properties

Let $\left(x_{0}: \ldots: x_{n}\right)$ be homogeneous coordinates on $\mathbb{P}^{n}$.
A quadric $Q$ in $\mathbb{P}^{n}$ is the zero locus of a non-trivial quadratic homogeneous polynomial, i.e.

$$
Q: \sum_{i, j=0}^{n} a_{i j} x_{i} x_{j}=0 \subseteq \mathbb{P}^{n}
$$

For $M_{Q}:=\left(a_{i j}\right)_{i, j} \in \operatorname{Mat}_{n+1}(\mathbb{C})$, we denote by

$$
\operatorname{rank}(Q):=\operatorname{rank}\left(M_{Q}\right)
$$

the rank of $Q$ and by

$$
\operatorname{corank}(Q):=(n+1)-\operatorname{rank}(Q)
$$

the corank of $Q$.
We recall from linear algebra that over the complex numbers two quadrics in $\mathbb{P}^{n}$ are isomorphic if their ranks (or coranks) coincide. Hence, we can classify the quadrics in $\mathbb{P}^{n}$ by their coranks.

The linear subspace of $\mathbb{P}^{n}$ corresponding to the kernel of the matrix $M_{Q}$ in $\mathbb{C}^{n+1}$ is the singular locus $\operatorname{Sing}(Q)$ of $Q$. More precisely:

Lemma 4.1.1 ([GH94, Chap. 6.1, p. 734]). A quadric $Q \subseteq \mathbb{P}^{n}$ of corank $k$ is the cone through a $(k-1)$-dimensional linear subspace $\Lambda \subseteq Q \subseteq \mathbb{P}^{n}$ over a smooth quadric in $\mathbb{P}^{n-k}$ and $\Lambda$ is the singular locus of $Q$. In particular, $Q$ is smooth if and only if $Q$ has corank 0 in $\mathbb{P}^{n}$.

For a quadric $Q \subseteq \mathbb{P}^{n}$ of corank $k$ in $\mathbb{P}^{n}$ and a smooth point $x \in Q$ (the existence of $x$ implies that $k \leq n-1$ ), we denote by

$$
\mathbb{T}_{x} Q \subseteq \mathbb{P}^{n}
$$

the projective tangent space to $Q$ at $x$. Then, the tangent hyperplane section $\mathbb{T}_{x} Q \cap Q \subseteq$ $\mathbb{P}^{n-1}$ of $Q$ is a quadric of corank $k+1$ in $\mathbb{P}^{n-1}$. Indeed, the singular locus of $\mathbb{T}_{x} Q \cap Q$ is the span of the singular locus of $Q$ and $x$, i.e.

$$
\operatorname{dim} \operatorname{Sing}\left(\mathbb{T}_{x} Q \cap Q\right)=\operatorname{dim} \operatorname{Sing}(Q)+1=(k-1)+1=k
$$

Hence, $\operatorname{corank}\left(\mathbb{T}_{x} Q \cap Q\right)=k+1$ in $\mathbb{P}^{n-1}$ by Lemma 4.1.1.
Lemma 4.1.2 ([Har92, Lecture 22, p. 285]). A smooth quadric in $\mathbb{P}^{3}$ is isomorphic to the image of the Segre embedding

$$
\begin{equation*}
\sigma: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{3},\left(\left(x_{0}: x_{1}\right),\left(y_{0}: y_{1}\right)\right) \mapsto\left(x_{0} y_{0}: x_{0} y_{1}: x_{1} y_{0}: x_{1} y_{1}\right) \tag{4.1}
\end{equation*}
$$

For $\alpha, \beta \in \mathbb{P}^{1}$, define the lines $l_{1, \alpha}:=\sigma\left(\{\alpha\} \times \mathbb{P}^{1}\right)$ and $l_{2, \beta}:=\sigma\left(\mathbb{P}^{1} \times\{\beta\}\right)$. The quadric has hence the two rulings $\left\{l_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{l_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$ and through every point in it passes exactly one line from each of the rulings.

### 4.1.2 Planes on Quadrics in $\mathbb{P}^{4}$

We collect now results on planes on quadrics of corank 0,1 , and 2 in $\mathbb{P}^{4}$ and deduce these in the latter two cases from results on linear spaces on smooth quadrics in $\mathbb{P}^{3}$ and $\mathbb{P}^{2}$, respectively.

### 4.1.2.1 Quadrics of corank 0 in $\mathbb{P}^{4}$

Lemma 4.1.3. A quadric in $\mathbb{P}^{4}$ is smooth if and only if contains no planes in $\mathbb{P}^{4}$.

Proof. Smooth quadrics in $\mathbb{P}^{n}$ contain no planes (see [GH94, Chap. 6.1, Proposition]) so this holds in particular for $n=4$.

Let now $Q$ be a quadric of corank $k$ in $\mathbb{P}^{4}$ containing no planes. By Lemma 4.1.1, the singular locus of $Q$ is a linear subspace $\Lambda$ of dimension $k-1$ and $Q$ is the cone through $\Lambda$ over a smooth quadric $Q^{\prime}$ in $\mathbb{P}^{4-k}$. If $k \geq 3$, the singular locus of the quadric contains a plane. If $k=2$, the singular locus of $Q$ is a line and the plane spanned by the singular line and a point in $Q^{\prime} \subseteq Q$ is contained in $Q$. If $k=1$, the singular locus of $Q$ is a point and we have an isomorphism $\sigma: \mathbb{P}^{1} \times \mathbb{P}^{1} \xrightarrow{\sim} Q^{\prime}$ by Lemma 4.1.2. The plane spanned by the singular point and $\sigma\left(\mathbb{P}^{1} \times\{\mathrm{pt}\}\right)$ in $Q$ then is a plane in $Q$. Consequently, we must have $k=0$, i.e. $Q$ is smooth.

### 4.1.2.2 Quadrics of corank 1 in $\mathbb{P}^{4}$

Let $Q$ be a quadric of corank 1 in $\mathbb{P}^{4}$ with vertex $p$. By Lemma 4.1.1, $Q$ is the cone over a smooth quadric $Q^{\prime}$ in $\mathbb{P}^{3}$. By Lemma 4.1.2, we have two rulings $\left\{l_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{l_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$ on $Q^{\prime}$. For $\alpha, \beta \in \mathbb{P}^{1}$, let

$$
\Pi_{1, \alpha}:=\text { plane spanned by } p \text { and the line } l_{1, \alpha} \subseteq \mathbb{P}^{4}
$$

$$
\Pi_{2, \beta}:=\text { plane spanned by } p \text { and the line } l_{2, \beta} \subseteq \mathbb{P}^{4}
$$

We obtain two pencils of planes $\left\{\Pi_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{\Pi_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$ on $Q$, see Figure 4.1.


Figure 4.1: Cone through $p$ over the smooth quadric surface $Q^{\prime}$.
Lemma 4.1.4. Every line in $Q$ through $p$ is contained in a unique plane in each of the pencils $\left\{\Pi_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{\Pi_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$.

Proof. By Lemma 4.1.2, through every point in $Q^{\prime}$ passes a unique line from each of the rulings $\left\{l_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{l_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$. Hence, we can deduce that through each line in $Q$ through $p$ passes a unique plane from each of the pencils $\left\{\Pi_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{\Pi_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$.

### 4.1.2.3 Quadrics of corank 2 in $\mathbb{P}^{4}$

Let $Q$ be a quadric of corank 2 in $\mathbb{P}^{4}$. By Lemma 4.1.1, $Q$ is the cone through a line $l$ over a smooth quadric $Q^{\prime} \subseteq \mathbb{P}^{2}$ and $l$ is the singular locus of $Q$. The quadric $Q^{\prime}$ is isomorphic to $\mathbb{P}^{1}$. For $t \in Q^{\prime} \cong \mathbb{P}^{1}$, let then

$$
\Pi_{t}:=\text { plane in } Q \text { spanned by } l \text { and } t \subseteq \mathbb{P}^{4}
$$

We obtain the pencil $\left\{\Pi_{t}\right\}_{t \in \mathbb{P}^{1}}$ of planes on $Q$, see Figure 4.2.


Figure 4.2: Cone through $l$ over the smooth quadric curve $Q^{\prime}$.
Lemma 4.1.5. Through any point in $Q$ passes a plane in the pencil $\left\{\Pi_{t}\right\}_{t \in \mathbb{P}^{1}}$ which is unique if the point is smooth.

Proof. Obviously, all singular points of $Q$ are contained in all the planes in $\left\{\Pi_{t}\right\}_{t \in \mathbb{P}^{1}}$. If $t_{0}$ is a smooth point of $Q$, the plane $\Pi$ through $\operatorname{Sing}(Q)$ and $t_{0}$ intersects $Q^{\prime}$ in a single point. Indeed, if $\Pi$ intersected $Q^{\prime}$ in two different points, the line joining those points would be contained in $Q^{\prime}$ which is absurd since $Q^{\prime}$ is by definition an irreducible curve of degree 2 in $\mathbb{P}^{2}$. Hence, $\Pi$ is uniquely determined and contained in $\left\{\Pi_{t}\right\}_{t \in \mathbb{P}^{1}}$.

### 4.2 Basic properties of complete $(2,3)$-intersections in $\mathbb{P}^{4}$

Recall that an $m$-dimensional variety $V \subseteq \mathbb{P}^{n}$ is a complete $\left(d_{1}, \ldots, d_{n-m}\right)$-intersection if there exist $n-m$ homogeneous polynomials $f_{i}\left(x_{0}, \ldots, x_{n}\right)$ of degree $d_{i}(1 \leq i \leq n-m)$ in $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ generating all homogeneous polynomials in $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ which are vanishing on $V$.

Lemma 4.2 .1 ([GH94, Chap. 4.5, p. 592]). Let $S$ be a complete (2,3)-intersection in $\mathbb{P}^{4}$. Then, the quadric $Q \subseteq \mathbb{P}^{4}$ containing $S$ is uniquely determined and the cubic in $\mathbb{P}^{4}$ containing $S$ is uniquely determined modulo those cubics containing the quadric $Q$.

Lemma 4.2.2. Let $S$ be a complete (2,3)-intersection in $\mathbb{P}^{4}$ with at most isolated $A D E$ singularities and let $\pi: \widetilde{S} \rightarrow S$ be the minimal resolution of $S$. Then, $\widetilde{S}$ is a K3 surface. The line bundle $L:=\pi^{*}\left(\mathcal{O}_{S}(1)\right)$ on $\widetilde{S}$ is nef and the $\operatorname{map} \varphi_{L}: \widetilde{S} \rightarrow S$ induced by $L$ coincides with $\pi$. Furthermore, we have $\operatorname{deg} L=L^{2}=6$.

Proof. The surface $S$ has only isolated $A D E$ singularities and these are precisely rational double points by Theorem 1.2.2. By [Rei87, 1.5], we can naturally extend the definition of the canonical bundle on smooth surfaces to those with rational double points (see [Pan15, Theorem 1] for more details). Since $S$ is a complete ( 2,3 )-intersection in $\mathbb{P}^{4}$, we then compute using [Har77, Chap. II, Ex. 8.4 (e)] that $\omega_{S}=\mathcal{O}_{S}$. Further, by [Rei87, 1.9, Example (1)], we have $\omega_{\tilde{S}}=\pi^{*} \omega_{S}$. Hence, $\omega_{\tilde{S}}=\pi^{*} \mathcal{O}_{S}=\mathcal{O}_{\tilde{S}}$. Again, since $S$ has only rational double points, we have $R^{i} \pi_{*} \mathcal{O}_{\tilde{S}}=0$ for all $i>0$. Therefore, $\Gamma\left(S, R^{1} \pi_{*} \mathcal{O}_{\widetilde{S}}\right)=H^{1}\left(\widetilde{S}, \mathcal{O}_{\widetilde{S}}\right)=0$. Consequently, $\widetilde{S}$ is a K3 surface.

The minimal model $\widetilde{S}$ is in particular quasi-compact and separated. Hence, we can apply the projection formula for a $(-2)$-curve $C$ on $\widetilde{S}$ and obtain that $\pi^{*} \mathcal{O}_{\mathbb{P}^{4}}(1) \cdot C=\mathcal{O}_{\mathbb{P}^{4}}(1) \cdot \pi_{*} C$ on $\mathbb{P}^{4}$. Since the hyperplane bundle $\mathcal{O}_{\mathbb{P}^{4}}(1)$ is very ample, it is in particular nef. Hence, $\mathcal{O}_{\mathbb{P}^{4}}(1) \cdot \pi_{*} C \geq 0$. In conclusion, $L=\pi^{*} \mathcal{O}_{S}(1)=\pi^{*} \mathcal{O}_{\mathbb{P}^{4}}(1)_{\mid S}$ is nef. Likewise, the projection formula implies that we cannot have a curve $E$ on $\widetilde{S}$ with the property that $\pi^{*} \mathcal{O}_{S}(1) \cdot E=1$ or 2. Therefore, the map $\varphi_{L}: \widetilde{S} \rightarrow S$ is birational by Proposition 3.2.6. Then, Proposition 3.3.4 implies that $\varphi_{L}$ coincides with $\pi$.

For a general hyperplane $H$ in $\mathbb{P}^{4}$, the hyperplane section $H \cap S$ of $S$ is a curve of degree 6. By Bertini's Theorem, $H \cap S$ passes through none of the singularities of $S$. Hence, $\pi^{*}(H \cap S) \in \operatorname{Div}(\widetilde{S})$ has degree 6 as well. Therefore, $\operatorname{deg} L=L^{2}=6$.

### 4.3 Hyperplane sections of complete (2,3)-intersections in $\mathbb{P}^{4}$

Let $S$ be the complete (2,3)-intersection of a quadric $Q$ and a cubic $Y$ in $\mathbb{P}^{4}$.

We will construct in the following certain hyperplane sections of $S$ depending on the corank of $Q$ in $\mathbb{P}^{4}$.

We will need the following auxiliary result:
Lemma 4.3.1. Let $Q \subseteq \mathbb{P}^{4}$ be a quadric of corank 1 or 2 in $\mathbb{P}^{4}$, let $Y \subseteq \mathbb{P}^{4}$ a cubic such that $Q$ and $Y$ have no singularities in common, and let $S:=Q \cap Y \subseteq \mathbb{P}^{4}$. For a pencil of planes $\left\{\Pi_{s}\right\}_{s \in \mathbb{P}^{1}}$ in $Q$ as in Subsection 4.1.2.2 or 4.1.2.3, let $C_{s}:=\Pi_{s} \cap Y \subseteq S$. Then, the general curve in $\left\{C_{s}\right\}_{s \in \mathbb{P}^{1}}$ is smooth in $p \in Y \cap \operatorname{Sing}(Q)$.

Proof. Firstly, note that $\operatorname{Sing}(Q)$ is contained in all planes in $Q$ and hence all planes $\Pi_{s}$ for all $s \in \mathbb{P}^{1}$. Consequently, those singularities of $S$ lying on the singular locus of $Q$ are


By assumption, the cubic $Y$ is smooth in $p$ since $Q$ is singular at $p$. Further, $\Pi_{s}$ is smooth in all points as a plane. Hence, the curve $C_{s}:=Y \cap \Pi_{s}$ is smooth in $p$ if and only if the affine tangent spaces $T_{p} Y$ and $T_{p} \Pi_{s}$ of $Y$ and $\Pi_{s}$ in $p$, respectively, intersect transversally, i.e.

$$
\begin{equation*}
T_{p} \mathbb{P}^{4}=T_{p} Y+T_{p} \Pi_{s} \tag{4.2}
\end{equation*}
$$

Since $Y$ and $\Pi_{s}$ are both smooth in $p$, we have $\operatorname{dim} T_{p} Y=\operatorname{dim} Y=3$ and $\operatorname{dim} T_{p} \Pi_{s}=$ $\operatorname{dim} \Pi_{s}=2$, so equation (4.2) holds if and only if $T_{p} \Pi_{s} \nsubseteq T_{p} Y$.
Assume that we had for all $s \in \mathbb{P}^{1}$

$$
T_{p} \Pi_{s} \subseteq T_{p} Y
$$

By construction of the pencil of planes $\left\{\Pi_{s}\right\}_{s \in \mathbb{P}^{1}}$ in $Q$ in Subsection 4.1.2.2 or 4.1.2.3, we have

$$
\bigcup_{s \in \mathbb{P}^{1}} \Pi_{s}=Q
$$

Consequently, the tangent spaces of the planes $\Pi_{s}$ at $p$ span the tangent cone of $Q$, i.e.

$$
\sum_{s \in \mathbb{P}^{1}} T_{p} \Pi_{s}=T_{p} Q
$$

so by assumption

$$
T_{p} Q \subseteq T_{p} Y
$$

Since $Q$ is singular at $p$, we have $3=\operatorname{dim} Q<\operatorname{dim} T_{p} Q \leq 4$. Hence, $\operatorname{dim} T_{p} Q=4$. However, the four-dimensional space $T_{p} Q$ cannot be contained in the three-dimensional space $T_{p} Y$.

Consequently, the assumption must have been wrong and there exists a plane $\Pi_{s}$ such that $T_{p} \Pi_{s} \nsubseteq T_{p} Y$. Zariski closed proper subsets in $\mathbb{P}^{1}$ are finite. Since the open set

$$
\left\{s \in \mathbb{P}^{1} ; T_{p} \Pi_{s} \nsubseteq T_{p} Y\right\}=\mathbb{P}^{1} \backslash\left\{s \in \mathbb{P}^{1} ; T_{p} \Pi_{s} \subseteq T_{p} Y\right\}
$$

is non-empty, it is Zariski-dense in $\mathbb{P}^{1}$. Hence, the general plane $\Pi_{s}$ is not contained in $T_{p} Y$. In conclusion, the general cubic curve in $\left\{C_{s}\right\}_{s \in \mathbb{P}^{1}}$ is smooth in $p$.

By the following Lemma 4.3.2, the assumption that a singularity $p$ of $S$ is not a singularity of both $Q$ and $Y$ is satisfied if $p$ is a hypersurface singularity and therefore in particular if $p$ is an $A D E$ singularity.

Lemma 4.3.2. Let $p$ be a singularity of a complete (2,3)-intersection $S \subseteq \mathbb{P}^{4}$ of a quadric $Q$ and a cubic $Y$ in $\mathbb{P}^{4}$. Then, $p$ is a hypersurface singularity of $S$ if and only if it is not a singularity of both the quadric $Q$ and the cubic $Y$.

Proof. Assume that the hypersurface singularity $p$ is a singularity of both $Q$ and $Y$. The germ $(S, p)$ is locally analytically isomorphic to the germ $(V, \mathbf{0}) \subseteq\left(\mathbb{C}^{3}, \mathbf{0}\right)$, where $V$ is a surface in $\mathbb{C}^{3}$ and $\mathbf{0}:=(0,0,0)$. Since $\mathbf{0}$ is a singularity of $V$, we have $3 \geq \operatorname{dim} T_{\mathbf{0}} V>\operatorname{dim} V=$ 2. Therefore, $\operatorname{dim} T_{0} V=3$. On the other hand, we have $4 \geq \operatorname{dim} T_{p} Q>\operatorname{dim} Q=3$ and $4 \geq \operatorname{dim} T_{p} Y>\operatorname{dim} Y=3$ which forces $\operatorname{dim} T_{p} Q=\operatorname{dim} T_{p} Y=4$. Furthermore, $\operatorname{dim}\left(T_{p} Q+T_{p} Y\right) \leq \operatorname{dim} T_{p} \mathbb{P}^{4}=4$. Consequently, $\operatorname{dim} T_{p} S=\operatorname{dim} T_{p} Q+\operatorname{dim} T_{p} Y-$ $\operatorname{dim}\left(T_{p} Q+T_{p} Y\right) \geq 4+4-4=4$. Therefore, $\operatorname{dim} T_{0} V \neq \operatorname{dim} T_{p} S$ which is a contradiction to $(S, p)$ and ( $V, \mathbf{0}$ ) being locally analytically isomorphic.

On the other hand, assume that $p$ is a smooth point of $Q$ or $Y$ and assume without loss of generality that $Q$ is smooth at $p$. Then, locally analytically at $p$ the quadric $Q$ is isomorphic to a hyperplane $H \cong \mathbb{C}^{3}$ in $\mathbb{P}^{4}$. If $g$ is the cubic polynomial defining $Y$, the surface $S$ is therefore locally analytically at $p$ on the hyperplane $H \cong \mathbb{C}^{3}$ defined by $g$. Hence, $(S, p)$ is a hypersurface singularity.

### 4.3.1 $Q$ has corank 1 in $\mathbb{P}^{4}$

Let $Q \subseteq \mathbb{P}^{4}$ be a quadric of corank 1 in $\mathbb{P}^{4}$ with vertex $p$ and let $Y \subseteq \mathbb{P}^{4}$ be a cubic such that $S:=Q \cap Y$ is a complete $(2,3)$-intersection in $\mathbb{P}^{4}$ having at most isolated $A D E$ singularities. By Lemma 4.3.2, this implies that $Q$ and $Y$ have no common singularities.

Let $\left\{\Pi_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{\Pi_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$ be the two pencils of planes on $Q$ as in Lemma 4.1.4.
For $\alpha, \beta \in \mathbb{P}^{1}$, we define the plane cubic curves on $S$

$$
C_{1, \alpha}:=\Pi_{1, \alpha} \cap Y \subseteq S \quad \text { and } \quad C_{2, \beta}:=\Pi_{2, \beta} \cap Y \subseteq S
$$

and obtain two pencils of plane cubic curves $\left\{C_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{C_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$ on $S$.
Lemma 4.3.3. Let $\Pi_{1}$ and $\Pi_{2}$ be the planes in the pencils $\left\{\Pi_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{\Pi_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$, spanned by $p$ and $l_{1} \in\left\{l_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $l_{2} \in\left\{l_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$, respectively, as defined in subsection 4.1.2.2 and $x$ the intersection point of $l_{1}$ and $l_{2}$. Let $C_{1}:=\Pi_{1} \cap Y$ and $C_{2}:=\Pi_{2} \cap Y$. The divisor $C_{1}+C_{2}$ on $S \subseteq \mathbb{P}^{4}$ is supported on $\mathbb{T}_{x} Q \cap S$. In particular, $C_{1}+C_{2}$ is a hyperplane section of $S$.

Proof. $\mathbb{T}_{x} Q \cap Q$ is a quadric of corank 2 in $\mathbb{P}^{3}$ whose singular locus is the line $l_{x}$ joining $x$ and the vertex $p$ of $Q$. By Lemma 4.1.4, there are unique planes in $\left\{\Pi_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{\Pi_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$ containing $l_{x}$ which then must be $\Pi_{1}$ and $\Pi_{2}$ as they both contain $l_{x}$. Hence, $\mathbb{T}_{x} Q \cap Q \cap Y=\mathbb{T}_{x} Q \cap S$ is the union of the curves $C_{1}:=\Pi_{1} \cap Y$ and $C_{2}:=\Pi_{2} \cap Y$.

Let $m_{1}$ and $m_{2}$ be the positive integers such that $m_{1} C_{1}+m_{2} C_{2}=\mathbb{T}_{x} Q \cap S$ as divisors on $S$. We claim that the planes $\Pi_{1}$ and $\Pi_{2}$ are not contained in $Y$. Indeed, if one of the planes was contained in $Y$, the complete ( 2,3 )-intersection $S$ would contain this plane, as well. Therefore, the smooth minimal model $\widetilde{S}$ of $S$ would be rational which is absurd since $\widetilde{S}$ is a K3 surface by Lemma 4.2.2. Hence, the hyperplane section $\mathbb{T}_{x} Q \cap S \subseteq \mathbb{P}^{4}$ of $S$ is a curve of degree 6 by Bezout's Theorem. Using that $C_{1}$ and $C_{2}$ are cubics, we have
$\operatorname{deg}\left(m_{1} C_{1}+m_{2} C_{2}\right)=3\left(m_{1}+m_{2}\right)$. Since $\mathbb{T}_{x} Q \cap S$ has degree 6 , it follows that $m_{1}=m_{2}=1$. In conclusion, $\mathbb{T}_{x} Q \cap Y=C_{1}+C_{2} \in \operatorname{Div}(S)$.

Let

$$
\pi^{(1)}: S^{(1)}:=\mathrm{Bl}_{p} S \rightarrow S
$$

be the blowing-up of $S$ in $p$ with exceptional divisor $E_{S}^{(1)}$ and let $C_{1, \alpha}^{(1)}$ and $C_{2, \beta}^{(1)}$ be the strict transforms of $C_{1, \alpha}$ and $C_{2, \beta}$ in $S^{(1)}$.
Lemma 4.3.4. We can find $\alpha, \beta \in \mathbb{P}^{1}$ such that the following conditions are all satisfied:
(1) $C_{1, \alpha}$ and $C_{2, \beta}$ are smooth in $p$
(2) $C_{1, \alpha}^{(1)}$ and $C_{2, \beta}^{(1)}$ are both contained in the smooth locus of $S^{(1)}$
(3) $C_{1, \alpha}^{(1)} \cap C_{2, \beta}^{(1)} \cap E_{S}^{(1)}=\emptyset$.

If $p$ is of type $\mathbf{A}_{n \geq 2}$, we have $E_{S}^{(1)}=E_{1}^{(1)} \cup E_{n-2}^{(1)}$, where $E_{1}^{(1)}$ and $E_{n-2}^{(1)}$ are irreducible curves intersecting transversally in a singularity of type $\mathbf{A}_{n-2}$ of $S^{(1)}$.
(4) After exchanging $E_{1}^{(1)}$ by $E_{n-2}^{(1)}$ if necessary, $C_{1, \alpha}^{(1)}$ intersects $E_{1}^{(1)}$ but not $E_{n-2}^{(1)}$ and $C_{2, \beta}^{(1)}$ intersects $E_{n-2}^{(1)}$ but not $E_{1}^{(1)}$ and the intersection point of $E_{1}^{(1)}$ with $E_{n-2}^{(1)}$ is contained in neither $C_{1, \alpha}^{(1)}$ nor $C_{2, \beta}^{(1)}$, see Figure 4.3.


Figure 4.3: Assume that $p$ is of type $\mathbf{A}_{n \geq 2}$. The curves $C_{1, \alpha}$ and $C_{2, \beta}$ satisfy condition (4) in Lemma 4.3.4.

Proof. We claim firstly that the set

$$
I_{1}:=\left\{(\alpha, \beta) \in \mathbb{P}^{1} \times \mathbb{P}^{1} ; C_{1, \alpha} \text { or } C_{2, \beta} \text { are singular in } p\right\}
$$

is a proper closed subset of $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Indeed, by Lemma 4.3.1, the general curves in $\left\{C_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{C_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$, respectively, are smooth in $p$. Hence, only finitely many curves in each family are singular in $p$, i.e. $I_{1}$ is a proper closed subset of $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

We claim secondly that the set

$$
I_{2}:=\left\{(\alpha, \beta) \in \mathbb{P}^{1} \times \mathbb{P}^{1} ; C_{1, \alpha}^{(1)} \text { or } C_{2, \beta}^{(1)} \text { contains a singularity of } S^{(1)} \text { outside } E_{S}^{(1)}\right\}
$$

is a proper closed subset of $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Indeed, since $S$ has only isolated singularities, for only finitely many choices of $\alpha$ and $\beta \in \mathbb{P}^{1}$ the curves $C_{1, \alpha}$ and $C_{2, \beta} \subseteq S$ contain a singularity of $S$ different from $p$. Hence, for only finitely many choices of $\alpha$ and $\beta$ the strict transforms $C_{1, \alpha}^{(1)}$ and $C_{2, \beta}^{(1)}$ in $S^{(1)}$ of the curves $C_{1, \alpha}$ and $C_{2, \beta}$ contain a singularity of $S^{(1)}$ outside $E_{S}^{(1)}$, i.e. $I_{2}$ is a proper closed subset of $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

We claim thirdly that the set

$$
I_{3}:=\left\{(\alpha, \beta) \in \mathbb{P}^{1} \times \mathbb{P}^{1} ; C_{1, \alpha}^{(1)} \cap C_{2, \beta}^{(2)} \cap E_{S}^{(1)} \neq \emptyset\right\}
$$

is a proper closed subset of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and prove this in the following by an explicit computation in coordinates on $\mathbb{P}^{4}$.
The quadric $Q \subseteq \mathbb{P}^{4}$ is up to isomorphism uniquely determined by its rank. Hence, we can choose homogeneous coordinates $(v: w: x: y: z)$ on $\mathbb{P}^{4}$ such that $Q$ is the image of the Segre embedding $\sigma$ in (4.1):

$$
Q: x y-z w=0 \subseteq \mathbb{P}^{4}
$$

and thus $p=(1: 0: 0: 0: 0) \in \mathbb{P}^{4}$ is the singular point of $Q$.
Until the rest of the proof, let $\alpha, \beta \in \mathbb{P}^{1} \backslash\{(0: 1),(1: 0)\}$. We then identify $\alpha:=\left(\alpha_{0}: \alpha_{1}\right)$ and $\beta:=\left(\beta_{0}: \beta_{1}\right)$ with

$$
\begin{equation*}
a_{\alpha}:=\frac{\alpha_{1}}{\alpha_{0}} \text { and } b_{\beta}:=\frac{\beta_{1}}{\beta_{0}} \in \mathbb{C} \backslash\{0\}, \tag{4.3}
\end{equation*}
$$

respectively.
In coordinates, the lines in the rulings $\left\{l_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{l_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$ are given by

$$
\begin{aligned}
& l_{1, \alpha}=\sigma\left(\{\alpha\} \times \mathbb{P}^{1}\right): y-a_{\alpha} w=z-a_{\alpha} x=0 \subseteq \mathbb{P}^{3} \\
& l_{2, \beta}=\sigma\left(\mathbb{P}^{1} \times\{\beta\}\right): z-b_{\beta} y=x-b_{\beta} w=0 \subseteq \mathbb{P}^{3} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \Pi_{1, \alpha}=\text { plane spanned by } l_{1, \alpha} \text { and } p \text { in } \mathbb{P}^{4}: y-a_{\alpha} w=z-a_{\alpha} x=0 \subseteq \mathbb{P}^{4} \\
& \Pi_{2, \beta}=\text { plane spanned by } l_{2, \beta} \text { and } p \text { in } \mathbb{P}^{4}: z-b_{\beta} y=x-b_{\beta} w=0 \subseteq \mathbb{P}^{4} .
\end{aligned}
$$

There are $a_{1}, \ldots, a_{4} \in \mathbb{C}$ and homogeneous complex polynomials $f_{2}(w, x, y, z)$ and $f_{3}(w, x, y, z)$ in $w, x, y, z$ of degree 2 and 3 , respectively, such that the cubic $Y \subseteq \mathbb{P}^{4}$ has the form

$$
Y: v^{2}\left(a_{1} w+a_{2} x+a_{3} y+a_{4} z\right)+v f_{2}(w, x, y, z)+f_{3}(w, x, y, z)=0 \subseteq \mathbb{P}^{4}
$$

Indeed, $Y$ contains the vertex $p=(1: 0: 0: 0: 0)$ of $Q$. Therefore, the polynomial defining $Y$ has no summand $v^{3}$.

The cubic $Y$ is smooth in $p$ since $Y$ and $Q$ have by assumption no common singularities. Hence, at least one of the coefficients $a_{1}, \ldots, a_{4}$ is non-zero and we will assume in the following without loss of generality that

$$
a_{4} \neq 0 .
$$

Consequently, we have on $\mathbb{P}^{4}$

$$
\begin{aligned}
& S=Q \cap Y \quad:\left\{\begin{array}{l}
x y-z w=0 \\
v^{2}\left(a_{1} w+a_{2} x+a_{3} y+a_{4} z\right)+v f_{2}(w, x, y, z)+f_{3}(w, x, y, z)=0
\end{array}\right. \\
& C_{1, \alpha}=\Pi_{1, \alpha} \cap Y \quad:\left\{\begin{array}{l}
y-a_{\alpha} w=z-a_{\alpha} x=0 \\
v^{2}\left(a_{1} w+a_{2} x+a_{3} y+a_{4} z\right)+v f_{2}(w, x, y, z)+f_{3}(w, x, y, z)=0
\end{array}\right. \\
& C_{2, \beta}=\Pi_{2, \beta} \cap Y \quad:\left\{\begin{array}{l}
z-b_{\beta} y=x-b_{\beta} w=0 \\
v^{2}\left(a_{1} w+a_{2} x+a_{3} y+a_{4} z\right)+v f_{2}(w, x, y, z)+f_{3}(w, x, y, z)=0 .
\end{array}\right.
\end{aligned}
$$

Let $\pi^{(1)}: \mathbb{P}^{4} \times \mathbb{P}^{3} \supseteq\left(\mathbb{P}^{4}\right)^{(1)} \rightarrow \mathbb{P}^{4}$ be the blowing-up of $\mathbb{P}^{4}$ in $p$ and $\left(w_{1}: x_{1}: y_{1}: z_{1}\right)$ homogeneous coordinates on $\mathbb{P}^{3}$.

On the affine chart $\mathbb{P}^{4} \times \mathbb{A}^{3} \subseteq \mathbb{P}^{4} \times \mathbb{P}^{3}$ defined by $w_{1} \neq 0$, we have

$$
\left(\mathbb{P}^{4}\right)^{(1)}=\left\{\left((v: w: x: y: z),\left(1, x_{1}, y_{1}, z_{1}\right)\right) \in \mathbb{P}^{4} \times \mathbb{A}^{3} ; x=x_{1} w, y=y_{1} w, z=z_{1} w\right\}
$$

We compute the strict transforms $S^{(1)}, C_{1, \alpha}^{(1)}$, and $C_{2, \beta}^{(1)}$ of $S, C_{1, \alpha}$, and $C_{2, \beta}$, respectively, in $\left(\mathbb{P}^{4}\right)^{(1)}$ :

$$
S^{(1)}:\left\{\begin{array}{l}
z_{1}=x_{1} y_{1} \\
v^{2}\left(a_{1}+a_{2} x_{1}+a_{3} y_{1}+a_{4} z_{1}\right)+v w f_{2}\left(1, x_{1}, y_{1}, z_{1}\right)+w^{2} f_{3}\left(1, x_{1}, y_{1}, z_{1}\right)=0
\end{array}\right.
$$

with exceptional divisor $E_{S}^{(1)} \subseteq S^{(1)}$

$$
\begin{aligned}
& E_{S}^{(1)}: w=x=y=z=0, z_{1}=x_{1} y_{1}, v^{2}\left(\frac{a_{1}}{a_{4}}+\frac{a_{2}}{a_{4}} x_{1}+\frac{a_{3}}{a_{4}} y_{1}+x_{1} y_{1}\right)=0 \\
& C_{1, \alpha}^{(1)}:\left\{\begin{array}{l}
y_{1}-a_{\alpha}=z_{1}-a_{\alpha} x_{1}=0 \\
v^{2}\left(a_{1}+a_{2} x_{1}+a_{3} y_{1}+a_{4} z_{1}\right)+v w f_{2}\left(1, x_{1}, y_{1}, z_{1}\right)+w^{2} f_{3}\left(1, x_{1}, y_{1}, z_{1}\right)=0
\end{array}\right. \\
& C_{2, \beta}^{(1)}:\left\{\begin{array}{l}
z_{1}-b_{\beta} y_{1}=x_{1}-b_{\beta}=0 \\
v^{2}\left(a_{1}+a_{2} x_{1}+a_{3} y_{1}+a_{4} z_{1}\right)+v w f_{2}\left(1, x_{1}, y_{1}, z_{1}\right)+w^{2} f_{3}\left(1, x_{1}, y_{1}, z_{1}\right)=0
\end{array}\right.
\end{aligned}
$$

A point $\left((v: w: x: y: z),\left(1, x_{1}, y_{1}, z_{1}\right)\right) \in \mathbb{P}^{4} \times \mathbb{A}^{3}$ is contained in $C_{1, \alpha}^{(1)} \cap C_{2, \beta}^{(1)} \cap E_{S}^{(1)}$ if and only if

$$
\left\{\begin{array}{l}
w=x=y=z=0 \\
x_{1}=b_{\beta}, y_{1}=a_{\alpha}, z_{1}=a_{\alpha} b_{\beta} \\
v^{2}\left(\frac{a_{1}}{a_{4}}+\frac{a_{2}}{a_{4}} b_{\beta}+\frac{a_{3}}{a_{4}} a_{\alpha}+a_{\alpha} b_{\beta}\right)=0
\end{array}\right.
$$

A direct computation of the blowing-ups of $S, C_{1, \alpha}$, and $C_{2, \beta}$ on the other charts of $\mathbb{P}^{3}$ as above shows that all points of $C_{1, \alpha}^{(1)} \cap C_{2, \beta}^{(1)} \cap E_{S}^{(1)}$ are contained in the chart $w_{1} \neq 0$ as $a_{\alpha}, b_{\beta} \neq 0$.

Hence, with the definitions in (4.3)

$$
\begin{aligned}
I_{3} \backslash\left(\{(1: 0),(0: 1)\}^{2}\right)=\{ & \left(\left(\alpha_{0}: \alpha_{1}\right),\left(\beta_{0}: \beta_{1}\right)\right) \in\left(\mathbb{P}^{1} \backslash\{(1: 0),(0: 1)\}\right)^{2} \\
& \left.\frac{a_{1}}{a_{4}}+\frac{a_{2}}{a_{4}} b_{\beta}+\frac{a_{3}}{a_{4}} a_{\alpha}+a_{\alpha} b_{\beta}=0\right\}
\end{aligned}
$$

and this is a proper closed subset of $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
In conclusion, $\mathbb{P}^{1} \times \mathbb{P}^{1} \backslash\left(I_{1} \cup I_{2} \cup I_{3} \cup\{(1: 0),(0: 1)\}^{2}\right)$ is a non-empty open subset of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and for each $(\alpha, \beta) \in \mathbb{P}^{1} \times \mathbb{P}^{1} \backslash\left(I_{1} \cup I_{2} \cup I_{3} \cup\{(1: 0),(0: 1)\}^{2}\right)$ the curves $C_{1, \alpha}$ and $C_{2, \beta}$ satisfy conditions (1)-(3).

This finalizes the proof if $p$ is of type $\mathbf{A}_{1}$.
Claim 4.3.5. The exceptional divisor $E_{S}^{(1)}$ is reducible if and only if $\frac{a_{2}}{a_{4}} \cdot \frac{a_{3}}{a_{4}}=\frac{a_{1}}{a_{4}}$.
Proof. Assume that $E_{S}^{(1)}$ is reducible, i.e. $\frac{a_{1}}{a_{4}}+\frac{a_{2}}{a_{4}} x_{1}+\frac{a_{3}}{a_{4}} y_{1}+x_{1} y_{1}=0 \subseteq \mathbb{A}^{2}$ is reducible. We homogenize the equation by $w_{1}$ and obtain the projective quadric

$$
q: \frac{a_{1}}{a_{4}} w_{1}^{2}+\frac{a_{2}}{a_{4}} x_{1} w_{1}+\frac{a_{3}}{a_{4}} y_{1} w_{1}+x_{1} y_{1}=0 \subseteq \mathbb{P}^{2}
$$

Then, $q \subseteq \mathbb{P}^{2}$ is reducible if and only if the discriminant $\operatorname{Disc}(q)$ of $q$ is zero. We have

$$
\operatorname{Disc}(q)=\left|\begin{array}{ccc}
\frac{a_{1}}{2 a_{4}} & \frac{a_{2}}{2 a_{4}} & \frac{a_{3}}{2 a_{4}} \\
\frac{a_{2}}{2 a_{4}} & 0 & \frac{1}{2} \\
\frac{a_{3}}{2 a_{4}} & \frac{1}{2} & 0
\end{array}\right|=\frac{1}{4}\left(\frac{a_{2}}{a_{4}} \cdot \frac{a_{3}}{a_{4}}-\frac{a_{1}}{a_{4}}\right) .
$$

Hence, $q \subseteq \mathbb{P}^{2}$ is reducible if and only if $\frac{a_{2}}{a_{4}} \cdot \frac{a_{3}}{a_{4}}-\frac{a_{1}}{a_{4}}=0$.
Then, assume that $p$ is of type $\mathbf{A}_{n \geq 2}$. We claim that condition (4) holds, as well. Indeed, if $p$ is of type $\mathbf{A}_{n \geq 2}$, the exceptional divisor $E_{S}^{(1)}$ is reducible. Therefore, we have by Claim 4.3.5: $\frac{a_{1}}{a_{4}}=\frac{a_{2}}{a_{4}} \cdot \frac{a_{3}}{a_{4}}$. Hence,

$$
E_{S}^{(1)}: w=\frac{a_{1}}{a_{4}}+\frac{a_{2}}{a_{4}} x_{1}+\frac{a_{3}}{a_{4}} y_{1}+x_{1} y_{1}=\left(\frac{a_{3}}{a_{4}}+x_{1}\right)\left(\frac{a_{2}}{a_{4}}+y_{1}\right)=0
$$

Let

$$
E_{1}^{(1)}: w=\frac{a_{3}}{a_{4}}+x_{1}=0 \text { and } E_{n-2}^{(1)}: w=\frac{a_{2}}{a_{4}}+y_{1}=0
$$

For $(\alpha, \beta) \notin I_{3} \cup\{(1: 0),(0: 1)\}^{2}$, we have

$$
\frac{a_{1}}{a_{4}}+\frac{a_{2}}{a_{4}} b_{\beta}+\frac{a_{3}}{a_{4}} a_{\alpha}+a_{\alpha} b_{\beta}=\left(\frac{a_{2}}{a_{4}}+a_{\alpha}\right)\left(\frac{a_{3}}{a_{4}}+b_{\beta}\right) \neq 0
$$

Hence, $a_{\alpha} \neq-\frac{a_{2}}{a_{4}}$ and $b_{\beta} \neq-\frac{a_{3}}{a_{4}}$. We see that $C_{1, \alpha}^{(1)}$ intersects $E_{1}^{(1)}$ in

$$
\left((v: w: x: y: z),\left(1: x_{1}: y_{1}: z_{1}\right)\right)=\left((1: 0: 0: 0: 0),\left(1:-\frac{a_{3}}{a_{4}}: a_{\alpha}:-\frac{a_{3}}{a_{4}} a_{\alpha}\right)\right)
$$

but not $E_{n-2}^{(1)}$ as we have $y_{1}=-\frac{a_{2}}{a_{4}}$ on $E_{n-2}^{(1)}$ but $y_{1}=a_{\alpha}$ on $C_{1, \alpha}^{(1)}$ and $-\frac{a_{2}}{a_{4}} \neq a_{\alpha}$. On the other hand, $C_{2, \beta}^{(1)}$ intersects $E_{n-2}^{(1)}$ in

$$
\left((v: w: x: y: z),\left(1: x_{1}: y_{1}: z_{1}\right)\right)=\left((1: 0: 0: 0: 0),\left(1: b_{\beta}:-\frac{a_{2}}{a_{4}}:-\frac{a_{2}}{a_{4}} b_{\beta}\right)\right)
$$

but not $E_{1}^{(1)}$ since we have $x_{1}=-\frac{a_{3}}{a_{4}}$ on $E_{1}^{(1)}$ but $x_{1}=b_{\beta}$ on $C_{2, \beta}^{(1)}$ and $-\frac{a_{3}}{a_{4}} \neq b_{\beta}$. Further, $E_{n-2}^{(1)} \cap E_{1}^{(1)}: w=0, x_{1}=-\frac{a_{3}}{a_{4}}, y_{1}=-\frac{a_{2}}{a_{4}}$ is contained in neither $C_{1, \alpha}^{(1)} \operatorname{nor} C_{2, \beta}^{(1)}$.
This finalizes the proof of Lemma 4.3.4.

### 4.3.2 $Q$ has corank 2 in $\mathbb{P}^{4}$

Let $Q \subseteq \mathbb{P}^{4}$ be a quadric of corank 2 in $\mathbb{P}^{4}$. More precisely, let $Q$ be the cone through its singular line $l:=\operatorname{Sing}(Q)$ over a smooth quadric $Q^{\prime}$ in $\mathbb{P}^{2}$. Let $Y \subseteq \mathbb{P}^{4}$ be a cubic such that $S:=Q \cap Y$ is a complete $(2,3)$-intersection in $\mathbb{P}^{4}$ having at most isolated $A D E$ singularities. By Lemma 4.3.2, this implies that $Q$ and $Y$ have no common singularities.

Let $\left\{\Pi_{t}\right\}_{t \in \mathbb{P}^{1}}$ be the pencils of planes on $Q$ defined in Subsection 4.1.2.3.
For $t \in \mathbb{P}^{1}$ we define the plane cubic curves on $S$

$$
C_{t}:=\Pi_{t} \cap Y \subseteq S
$$

and obtain a pencils of plane cubic curves $\left\{C_{t}\right\}_{t \in \mathbb{P}^{1}}$ on $S$.

Lemma 4.3.6. Let $t \in \mathbb{P}^{4}$ be a smooth point of $Q$ and $\mathbb{T}_{t} Q$ the projective tangent space on $Q$ at $t$. Then, $2 C_{t}$ is the divisor on $S$ supported on $C_{t}=\mathbb{T}_{t} Q \cap S$.

Proof. $\mathbb{T}_{t} Q \cap Q$ is a quadric of corank 3 in $\mathbb{P}^{3}$, i.e. a double plane containing $t$ which must be $\Pi_{t}$ by Lemma 4.1.5 since $\Pi_{t}$ contains $t$. The plane $\Pi_{t}$ is not contained in $Y$ since $S$ contained otherwise a plane and hence the smooth minimal model $\widetilde{S}$ for $S$ was rational which is absurd since $\widetilde{S}$ is a K3 surface by Lemma 4.2.2. Consequently, $C_{t}:=\Pi_{t} \cap S=\mathbb{T}_{t} Q \cap S$. Let $m$ be the positive integer such that $m C_{t}=\mathbb{T}_{t} Q \cap S$ as divisors on $S$. The curve $\mathbb{T}_{t} Q \cap S$ in $\mathbb{P}^{4}$ has degree 6 . Since $C_{t}$ has degree 3 , we must have $m=2$.

Lemma 4.3.7. We can choose $t \in Q^{\prime}$ such that the following two conditions are satisfied.

1. $C_{t}$ contains no singularity of $S$ that is not lying on the singular line $l$ of $Q$.
2. $C_{t}$ is smooth in all points $p \in Y \cap l$.

Proof. Indeed, the set

$$
I_{1}:=\left\{t \in Q^{\prime} ; C_{t} \text { contains a singularity of } S \text { outside of } l\right\}
$$

is finite since $S$ has only isolated singularities. Further, the set

$$
I_{2}:=\left\{t \in Q^{\prime} ; C_{t} \text { is singular in some } p \in Y \cap l\right\}
$$

is finite. Indeed, we have

$$
\bigcup_{t \in Q^{\prime}} \Pi_{t}=Q
$$

Hence, by Lemma 4.3 .1 the general curve $C_{t}$ is smooth in $p \in Y \cap l$. Hence, only finitely many curves $C_{t}$ are singular in $p \in Y \cap l$, i.e. $I_{2}$ is finite.

In conclusion, there exists $t \in Q^{\prime} \backslash\left(I_{1} \cup I_{2}\right)$.

### 4.4 Possible $A D E$ singularities of a complete $(2,3)$-intersection on the singular locus of the underlying quadric

Let $S$ be the complete (2,3)-intersection of a quadric $Q$ and a cubic $Y$ in $\mathbb{P}^{4}$. Assume that $S$ has only isolated $A D E$ singularities. By Lemma 4.3.2, this implies that $Q$ and $Y$ have no common singularities.

We will discuss in this section which combinations of $A D E$ singularities of $S$ can lie on the singular locus $\operatorname{Sing}(Q)$ of $Q$.

### 4.4.1 $Q$ has corank 1 in $\mathbb{P}^{4}$

Let $S$ be the complete (2,3)-intersection of a quadric $Q$ of corank 1 in $\mathbb{P}^{4}$ with vertex $p$ and $Y$ a cubic in $\mathbb{P}^{4}$.

Lemma 4.4.1. Assume that the vertex $p$ of $Q$ is contained in $S$. Then, $p$ is a singularity of type $\mathbf{A}_{n \geq 1}$ on $S$.

Proof. Let $(v: w: x: y: z)$ be homogeneous coordinates on $\mathbb{P}^{4}$. Since two projective quadrics of the same rank are isomorphic, we can assume that $Q: w x+y z=0$, i.e. $p=(1: 0: 0: 0: 0) \in \mathbb{P}^{4}$. Since $Q$ and $Y$ have by assumption no common singularities, $Y$ is smooth in $p$. Then, the projective tangent space $\mathbb{T}_{p} Y$ of $Y$ at $p$ is a hyperplane in $\mathbb{P}^{4}$. Since $p \in \mathbb{T}_{p} Y$, we have $\mathbb{T}_{p} Y: \alpha w+\beta x+\gamma y+\epsilon z=0$ for $\alpha, \beta, \gamma, \epsilon \in \mathbb{C}$. One of $\alpha, \beta, \gamma, \epsilon$ is not equal to zero. Assume without loss of generality that $\alpha \neq 0$. Now consider the chart $\mathbb{C}^{3}$ of $\mathbb{P}^{4}$ given by $v \neq 0$. There exists an analytic coordinate transformation $\phi$ of $\mathbb{C}^{4}$ such that $T_{p} Y=\phi(Y)$ locally around $p$. Further, $\phi(Q): w x+y z+f(w, x, y, z)=0$, where $f$ is a power series in $w, x, y, z$ with monomials of degree $\geq 3$. Then, $Q \cap Y$ is locally around $p$ given by $T_{p} Y \cap \phi(Q): y z-\frac{\beta}{\alpha} x^{2}-\frac{\gamma}{\alpha} x y-\frac{\epsilon}{\alpha} x z+f\left(\frac{\beta}{\alpha} x-\frac{\gamma}{\alpha} y-\frac{\epsilon}{\alpha} z, x, y, z\right)=0 \subseteq \mathbb{C}^{3}$ which describes by the classification of $A D E$ singularities (see [GLS07, Chap. I, Theorem 2.48]) a singularity of type $\mathbf{A}_{n \geq 1}$ in the origin since the corank of the Hessian matrix of the defining power series is 0 or 1 in $\mathbb{C}^{3}$.

### 4.4.2 $Q$ has corank 2 in $\mathbb{P}^{4}$

Let $S$ be the complete (2,3)-intersection of a quadric $Q$ of corank 2 in $\mathbb{P}^{4}$ and $Y$ a cubic in $\mathbb{P}^{4}$. Let $l$ be the singular line of $Q$. Since $Q$ and $Y$ have by assumption no common singularities, $l$ is not contained in $Y$. Let $\left\{\Pi_{t}\right\}_{t \in \mathbb{P}^{1}}$ be the pencil of planes in $Q$ defined in 4.1.2.3 and $\left\{C_{t}:=\Pi_{t} \cap Y\right\}_{t \in \mathbb{P}^{1}}$ the induced pencil of plane cubic curves on $S$.

Recall the definition of the intersection multiplicity of closed subschemes at a point on a smooth surface in [Ful98, Chap. 8.2].

We show in the next lemma that all plane cubic curves $C_{t}$ in $\left\{C_{t}\right\}_{t \in \mathbb{P}^{1}}$ intersect the singular line $l$ of $Q$ in the same points with the same multiplicities.

Lemma 4.4.2. For each $t \in \mathbb{P}^{1}$, we have $l \cap C_{t}=l \cap Y=\operatorname{Sing}(S)$. Moreover, the intersection multiplicities l. $C_{t}$ on the planes $\Pi_{t}$ are independent of $t \in \mathbb{P}^{1}$.

Proof. Let $C_{t}, C_{t^{\prime}} \in\left\{C_{t}\right\}_{t \in \mathbb{P}^{1}}$. By definition $C_{t}=\Pi_{t} \cap Y$ and $C_{t^{\prime}}=\Pi_{t^{\prime}} \cap Y$. Since $l$ is contained in both $\Pi_{t}$ and $\Pi_{t^{\prime}}$, we have $C_{t} \cap l=\Pi_{t} \cap Y \cap l=Y \cap l=\Pi_{t^{\prime}} \cap Y \cap l=C_{t^{\prime}} \cap l$. Further, for $p \in C_{t} \cap l=C_{t^{\prime}} \cap l$, the intersection multiplicities $\left(C_{t} . l\right)_{p}=\left(\Pi_{t} \cap Y . l\right)_{p}$ and $\left(C_{t^{\prime}} . l\right)_{p}=\left(\Pi_{t^{\prime}} \cap Y . l\right)_{p}$ on $\Pi_{t}$ and $\Pi_{t^{\prime}}$, respectively, are well-defined. By Lemma A.0.1, we have $\left(\Pi_{t} \cap Y . l\right)_{p}=\left(\Pi_{t^{\prime}} \cap Y . l\right)_{p}$. Therefore, $\left(C_{t} . l\right)_{p}=\left(C_{t^{\prime}} . l\right)_{p}$. Further, since all points on $l$ are singularities of $Q$, those points on $l$ contained in $Y$ are singularities of $S$.

Lemma 4.4.3. Let $C_{t}$ in $\left\{C_{t}\right\}_{t \in \mathbb{P}^{1}}$ be a curve on the plane $\Pi_{t}$ and $p \in C_{t} \cap l$ such that on $\Pi_{t}$ we have $\left(C_{t} . l\right)_{p}=1$. Then, $S$ has a singularity of type $\mathbf{A}_{1}$ in $p$.

Proof. We claim firstly that $l \nsubseteq \mathbb{T}_{p} Y$. Assume conversely that $l \subseteq \mathbb{T}_{p} Y$. Since $p \in l$ and since $l$ is contained in all planes in $\left\{\Pi_{t}\right\}_{t \in \mathbb{P}^{1}}$ whose union is the quadric $Q$, the line $l$ then is contained in the tangent space of one of the curves $C_{t}=\Pi_{t} \cap Y$, i.e. $l \subseteq \mathbb{T}_{p} C_{t}$. However, by Lemma 4.4.2, we have $\left(C_{t} . l\right)_{p}=1$ which contradicts $l \subseteq \mathbb{T}_{p} C_{t}$. Hence, $l \nsubseteq \mathbb{T}_{p} Y$.

The intersection $\mathbb{T}_{p} Y \cap Q$ is a quadric in $\mathbb{P}^{3}$. Since $l$ is not contained in $\mathbb{T}_{p} Y$, the quadric $\mathbb{T}_{p} Y \cap Q$ is only singular at $p$. Hence, $\mathbb{T}_{p} Y \cap Q$ is a quadric of corank 1 in $\mathbb{P}^{3}$ with
vertex $p$. The analytic type of $p$ on $\mathbb{T}_{p} Y \cap Q$ is hence type $\mathbf{A}_{1}$, i.e. the singularity $p$ has type $\mathbf{A}_{1}$. Since $Y$ is smooth in $p$, for an appropriate analytic coordinate change $\phi$ in a small neighborhood around $p$, we have $\mathbb{T}_{p} Y=\phi(Y)$. Applying this coordinate change to $S=Y \cap Q$, we obtain that $Y \cap Q$ is in a small neighborhood around $p$ via $\phi$ isomorphic to $\mathbb{T}_{p} Y \cap \phi(Q)$. As in the proof of Lemma 4.4.1, we show that $\mathbb{T}_{p} Y \cap \phi(Q)$ is the zero locus of a power series in $\mathbb{P}^{3}$ whose quadratic terms are given by $Q$ and all other terms are of higher order. Consequently, $\mathbb{T}_{p} Y \cap \phi(Q)$ has type $\mathbf{A}_{1}$ in $p$.

Let $C \in\left\{C_{t}\right\}_{t \in \mathbb{P}^{1}}$ be contained in the plane $\Pi \in\left\{\Pi_{t}\right\}_{t \in \mathbb{P}^{1}}$. Since $C$ and $l$ are contained in the plane $\Pi$, we can apply Bezout's Theorem and obtain

$$
\begin{equation*}
C . l=\sum_{p \in C \cap l}(C . l)_{p}=3 \tag{4.4}
\end{equation*}
$$

We now establish how often we need to blow-up $S$ over the singularities of $S$ on $l$ such that the strict transform of $C$ under these blowing-ups does not contain any of the singularities on the exceptional divisor in the last blowing-up step. We fix some notation to which we will also refer in a subsequent chapter:
Notation 4.4.4. Let $p \in C \cap l$. By (4.4), we have $m:=(C . l)_{p} \leq 3$.

$$
\left(\mathbb{P}^{4}\right)^{(0)}:=\mathbb{P}^{4}, \quad S^{(0)}:=S, \quad C^{(0)}:=C, \quad l^{(0)}:=l, \quad p^{(0)}:=p
$$

and for $i=1, \ldots, m$ let iteratively

$$
\pi^{(i)}:\left(\mathbb{P}^{4}\right)^{(i)} \rightarrow\left(\mathbb{P}^{4}\right)^{(i-1)}
$$

be the blowing-up of $\left(\mathbb{P}^{4}\right)^{(i-1)}$ in $p^{(i-1)}$, where for $i \geq 2$, we let

$$
p^{(i-1)} \in C^{(i-1)} \cap l^{(i-1)} \cap E_{\mathbb{P}^{4}}^{(i-1)}
$$

and $E_{\mathbb{P}^{4}}^{(i-1)}$ is the exceptional divisor of $\pi^{(i-1)}$ in $\left(\mathbb{P}^{4}\right)^{(i-1)}$ and $S^{(i-1)}, C^{(i-1)}$, and $l^{(i-1)}$ are the strict transforms of $S^{(i-2)}, C^{(i-2)}$, and $l^{(i-2)}$ in $\left(\mathbb{P}^{4}\right)^{(i-1)}$, respectively.
Note that $p^{(i-1)}$ is uniquely determined since the blowing-up $\pi^{(i)}$ is by construction an isomorphism on $C^{(i-1)} \backslash\left(C^{(i-1)} \cap E_{\mathbb{P}^{4}}^{(i-1)}\right)$ and $l^{(i-1)} \backslash\left(l^{(i-1)} \cap E_{\mathbb{P}^{4}}^{(i-1)}\right)$ onto $C \backslash\left\{p^{(i-2)}\right\}$ and $l \backslash\left\{p^{(i-2)}\right\}$, respectively, so $C^{(i-1)}$ and $l^{(i-1)}$ intersect $E_{\mathbb{P}^{4}}^{(i-1)}$ in the same point $p^{(i-1)}$.
Lemma 4.4.5. The point $p^{(i-1)} \in C^{(i-1)} \cap l^{(i-1)} \cap E_{\mathbb{P}^{4}}^{(i-1)}$ is a singularity of $S^{(i-1)}$ and $C^{(m)} \cap l^{(m)} \cap E_{\mathbb{P}^{4}}^{(m)}=\emptyset$. Further, $p^{(m-1)}$ is of type $\mathbf{A}_{1}$ on $S^{(m-1)}$.

Proof. The strict transform $Q^{(i)}$ of $Q$ in $\left(\mathbb{P}^{4}\right)^{(i)}$ has singular locus $l^{(i)}$, hence $p^{(i)} \in C^{(i)} \cap$ $l^{(i)} \cap E_{\mathbb{P}^{4}}^{(i)} \subseteq S^{(i)}$ is a singular point of $S^{(i)}$.
Both $C$ and $l$ are contained in the plane $\Pi \subseteq \mathbb{P}^{4}$. For $i=1, \ldots, m$, let $\Pi^{(i)}$ be the strict transform of $\Pi$ in $\left(\mathbb{P}^{4}\right)^{(i)}$. By Lemma A.0.4, we have $C^{(1)} . l^{(1)}=C . l-1$. Then, blowing-up iteratively $\Pi^{(i)}$ in $p^{(i)} \in C^{(i)} \cap l^{(i)} \cap E_{\mathbb{P}^{4}}^{(i)}$ gives $C^{(m)} . l^{(m)}=C . l-m=3-$ $m$. Since the blowing-ups are isomorphisms outside their exceptional divisors and since $\sum_{q \in C \cap l, q \neq p}(C . l)_{q}=C . l-(C . l)_{p}=3-m$, it follows that $C^{(m)} \cap l^{(m)} \cap E_{\mathbb{P}^{4}}^{(m)}=\emptyset$.
We show that $p^{(m-1)}$ is of type $\mathbf{A}_{1}$ on $S^{(m-1)}$. Indeed, we have $C^{(m-1)} . l^{(m-1)}=3-$ $(m-1)$. Since $\sum_{q \in C \cap l ; q \neq p}(C . l)_{q}=3-m$, we must have $\left(C^{(m-1)} . l^{(m-1)}\right)_{p^{(m-1)}}=1$. By Lemma 4.4.3, it follows that $p^{(m-1)}$ is of type $\mathbf{A}_{1}$.

Lemma 4.4.6. All possible $A D E$ singularities of $S$ lying on the singular line $l$ of $Q$ are: $3 \mathbf{A}_{1}, \mathbf{A}_{1}+\mathbf{D}_{n-2}(n \geq 5), \mathbf{A}_{5}, \mathbf{D}_{6}$, and $\mathbf{E}_{7}$.

Proof. By Lemma 4.4.2, $C$ and $l$ intersect in the singular point of $S$ lying on $l$.
Assume that $C$ and $l$ intersect in three different singularities $p_{1}, p_{2}$, and $p_{3}$. By (4.4), this implies that for $i=1,2,3$, we have $(C . l)_{p_{i}}=1$. By Lemma 4.4.5, this means that the singularities $p_{i}$ have type $\mathbf{A}_{1}$ on $S$, i.e. $C$ and $l$ intersect in three $\mathbf{A}_{1}$ singularities.

Then, assume that $C$ and $l$ intersect in $p_{1}$ with multiplicity one and in $p_{2}$ with multiplicity two. By Lemma 4.4.5, this means that $p_{1}$ is of type $\mathbf{A}_{1}$. Further, Lemma 4.4.5 implies that on the exceptional divisor of the blowing-up of $p_{2}$ must lie an $\mathbf{A}_{1}$ singularity. According to Table 1.1, the only $A D E$ singularities which have an $\mathbf{A}_{1}$ singularity on the exceptional divisor after blow-up, are of type $\mathbf{A}_{3}, \mathbf{D}_{4}$, and $\mathbf{D}_{n \geq 5}$. In conclusion, $p_{2}$ must have singularity type $\mathbf{D}_{n \geq 3}$.

Finally, assume that $C$ and $l$ intersect in $p_{1}$ with multiplicity three. Blowing-up two times over $p_{1}$, we must obtain an $\mathbf{A}_{1}$ singularity on the exceptional divisor of the second blowingup by Lemma 4.4.5. Again, according to Table 1.1, the only $A D E$ singularities having an $\mathbf{A}_{1}$ singularity on the exceptional divisor of a second blowing-up over them are of type $\mathbf{A}_{5}$, $\mathbf{D}_{6}$, or $\mathbf{E}_{7}$. Hence, $p_{1}$ is of type $\mathbf{A}_{5}, \mathbf{D}_{6}$, or $\mathbf{E}_{7}$.

## 5 Cubic hypersurfaces with isolated $A D E$ singularities

In this chapter, we will study cubic hypersurfaces. We will explain how to associate to a cubic hypersurface in $\mathbb{P}^{n}$ with only isolated $A D E$ singularities a complete ( 2,3 )-intersection in $\mathbb{P}^{n-1}$ and how the $A D E$ singularities of the cubic hypersurface are related to the $A D E$ singularities of this complete ( 2,3 )-intersection. This will enable us to prove in the following chapters that the existence of a cubic fourfold with a certain combination of isolated $A D E$ singularities is equivalent to the existence of a complete $(2,3)$-intersection in $\mathbb{P}^{4}$ with certain isolated $A D E$ singularities.

### 5.1 Basic notation, definitions, and properties

Let $\left(x_{0}: \ldots: x_{n}\right)$ be homogenous coordinates on $\mathbb{P}^{n}(n \geq 2)$.
Let $X$ be a cubic hypersurface in $\mathbb{P}^{n}$ and assume that $X$ is singular in $p \in X$. After a linear change of coordinates, we can assume that $p=(1: 0: \ldots: 0) \in \mathbb{P}^{n}$.

Lemma 5.1.1 ([Wal, §2], [Hav16, 2.1]). In the chosen coordinates, the equation defining $X$ has the form

$$
x_{0} f_{2}\left(x_{1}, \ldots, x_{n}\right)+f_{3}\left(x_{1}, \ldots, x_{n}\right)=0,
$$

where $f_{2}$ and $f_{3}$ are homogenous polynomials of degree 2 and 3 in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, respectively.
We write $Q$ and $Y$ for the quadric and cubic in $\mathbb{P}^{n-1}$ defined by $f_{2}$ and $f_{3}$, respectively, as in Lemma 5.1.1 and refer to the form of $X$ as the normal form of $X$ with respect to the chosen coordinates.
Let $\pi_{p}: \mathbb{P}^{n} \rightarrow\left\{x_{0}=0\right\} \cong \mathbb{P}^{n-1},\left(x_{0}: \ldots: x_{n}\right) \mapsto\left(0: x_{1}: \ldots: x_{n}\right)$ be the projection through $p$ onto the hyperplane $\mathbb{P}^{n-1}$ given by $\left\{x_{0}=0\right\} \subseteq \mathbb{P}^{n}$. Let $F_{p} \subseteq X$ be the union of all lines in $X$ passing through $p$. Define

$$
S_{p}:=\pi_{p}\left(F_{p}\right) \subseteq \mathbb{P}^{n-1}
$$

as the image of $F_{p}$ under $\pi_{p}$ in $\mathbb{P}^{n-1}$.
Lemma 5.1.2 ([CG72, Lemma 6.5], [Hav16, 2.1]). Assume that $X$ has only isolated singularities and a double point $p$. Then, $S_{p}$ is the complete $(2,3)$-intersection in $\mathbb{P}^{n-1}$ defined as

$$
S_{p}: f_{2}\left(x_{1}, \ldots, x_{n}\right)=f_{3}\left(x_{1}, \ldots, x_{n}\right)=0 \subseteq \mathbb{P}^{n-1}
$$

Lemma 5.1.2 shows in particular that $F_{p}$ is the cone in $X$ through $p$ over the complete $(2,3)$-intersection $S_{p}$.

The definition of $S_{p}$ does not depend on the choice of the hyperplane $H \subseteq \mathbb{P}^{n}$ with $p \notin H$ onto which we project $F_{p}$ :

Lemma 5.1.3. The quadric $Q$ and the complete $(2,3)$-intersection $S_{p}$ are uniquely determined by $p$ and do not depend on the choice of the hyperplane $H \subseteq \mathbb{P}^{n}$ with $p \notin H$ onto which we project $F_{p}$ through $p$, while the cubic $Y$ is only determined modulo $Q$.

Proof. Let $H: x_{0}+\sum_{i=1}^{n} a_{i} x_{i}=0 \subseteq \mathbb{P}^{n}$ and

$$
\pi_{p}^{H}: \mathbb{P}^{n} \rightarrow H \cong \mathbb{P}^{n-1},\left(x_{0}: \ldots: x_{n}\right) \mapsto\left(-\sum_{i=1}^{n} a_{i} x_{i}: x_{1}: \ldots: x_{n}\right)
$$

be the projection of $X$ onto $H$ through $p$. Let $q:=\left(-\sum_{i=1}^{n} a_{i} x_{i}: x_{1}: \ldots: x_{n}\right) \in \mathbb{P}^{n}$ be a point in $H$ and $\left(\lambda-\mu \sum_{i=1}^{n} a_{i} x_{i}: \mu x_{1}: \mu x_{1}: \ldots: \mu x_{n}\right)$ the line connecting $p$ and $q$ parametrized by $(\lambda: \mu) \in \mathbb{P}^{1}$. This line is contained in $X$ if and only if

$$
\begin{aligned}
0 & =\left(\lambda-\mu \sum_{i=1}^{n} a_{i} x_{i}\right) f_{2}\left(\mu x_{1}, \ldots, \mu x_{n}\right)+f_{3}\left(\mu x_{1}, \ldots, \mu x_{n}\right) \\
& =\lambda \mu^{2} f_{2}\left(x_{1}, \ldots, x_{n}\right)+\mu^{3}\left(f_{3}\left(x_{1}, \ldots, x_{n}\right)-\left(\sum_{i=1}^{n} a_{i} x_{i}\right) f_{2}\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

for all choices of $(\lambda: \mu) \in \mathbb{P}^{1}$, in particular for $(0: 1)$ which gives

$$
f_{3}\left(x_{1}, \ldots, x_{n}\right)-\left(\sum_{i=1}^{n} a_{i} x_{i}\right) f_{2}\left(x_{1}, \ldots, x_{n}\right)=0
$$

and for $(1: 0)$ which gives

$$
f_{2}\left(x_{1}, \ldots, x_{n}\right)=0
$$

Hence, the projection of $F_{p}$ onto $H$ is isomorphic to the zero locus

$$
f_{2}\left(x_{1}, \ldots, x_{n}\right)=f_{3}\left(x_{1}, \ldots, x_{n}\right)-\left(\sum_{i=1}^{n} a_{i} x_{i}\right) f_{2}\left(x_{1}, \ldots, x_{n}\right)=0 \subseteq \mathbb{P}^{n-1}
$$

In conclusion, we see that $S_{p}$ and the quadric on which $S_{p}$ is lying are uniquely determined, and the cubic is uniquely determined up to the quadric.

Hence, Lemma 5.1.3 shows that $S_{p}$ can be defined without choosing coordinates on $\mathbb{P}^{n}$.

## 5.2 $A D E$ singularities on cubic hypersurfaces and complete (2,3)-intersections

We follow the notation in Section 5.1.
Assume that the cubic hypersurface $X \subseteq \mathbb{P}^{n}$ has only $A D E$ singularities, in particular $p$ is an $A D E$ singularity. Let $\pi^{(1)}: \mathrm{Bl}_{p} X \rightarrow X$ be the blowing-up of $X$ in $p$ with exceptional divisor $E:=\left(\pi^{(1)}\right)^{-1}(p) \subseteq \mathrm{Bl}_{p} X$.

Lemma 5.2.1. $E$ is isomorphic to the quadric $Q \subseteq \mathbb{P}^{n-1}$.
Proof. $E$ is the projectivized tangent cone to $X$ at $p$ and the latter is defined as the zero locus of $f_{2}$ in $\left\{x_{0}=0\right\} \cong \mathbb{P}^{n-1}$.

We now establish that an $A D E$ singularity of type $\mathbf{T}$ on $S_{p}$ induces a unique singularity with a certain singularity type on $\mathrm{Bl}_{p} X$ :

Proposition 5.2.2 ([Wal, §2]). Let $q \in S_{p}$. If $q$ is a singularity of both $Q$ and $Y$, then $X$ is singular along the line $\overline{p q}$ connecting $p$ and $q$. This means in particular that $X$ has non-isolated singularities. Then, assume that $q$ is not a singularity of both $Q$ and $Y$ and assume that $q$ is of ADE type $\mathbf{T}$ in the locally smooth scheme $Q$ or $Y$.
(i) If $Q$ is smooth at $q$, the cubic hypersurface $X$ has exactly two singularities $p$ and $p^{\prime}$ on the line $\overline{p q}$ and $p^{\prime}$ has type $\mathbf{T}$.
(ii) If $Q$ is singular at $q$, the line $\overline{p q}$ intersects $X$ only in $p$ and the blowing-up $B l_{p} X$ has a singularity of type $\mathbf{T}$ at $q$.

We now enhance the result in Proposition 5.2.2 and show that actually each singularity on $\mathrm{Bl}_{p} X$ is induced by a singularity on $S_{p}$ and determine the location of those singularities. This establishes that the singularities of $S_{p}$ are in one-to-one correspondence with the singularities of $\mathrm{Bl}_{p} X$ including the singularity type.

Corollary 5.2.3. The singularities of $X \backslash\{p\}$ correspond, including their singularity type, one-to-one to those singularities of $S_{p}$ which are not contained in the singular locus of $Q$. The singularities of $B l_{p} X$ on $E$ correspond, including their singularity type, one-to-one to those singularities of $S_{p}$ which are contained in the singular locus of $Q$.

Proof. We give firstly a one-to-one correspondence between the singularities of $X \backslash\{p\}$ and those singularities of $S_{p}$ which are not lying on the singular locus of $Q$.
By item (i) in Proposition 5.2.2, given a singularity $p^{\prime}$ on $S_{p}$, the cubic $X$ has a unique singularity $q^{\prime} \neq p$ on the line $\overline{p p^{\prime}}$.
Conversely, for an $A D E$ singularity $q:=\left(q_{0}: \ldots: q_{n}\right) \in X$ with $q \neq p$, the line $\overline{p q}$ must be contained in $X$. Indeed, $p$ and $q$ are both double points of $X$ so $\overline{p q}$ intersects $X$ with multiplicity 4. Since $X$ has degree 3, this means that $\overline{p q}$ must be contained in $X$. We claim that the image of $\overline{p q}$ under the projection $\pi_{p}$ of $\mathbb{P}^{n}$ through $p$ onto the hyperplane $\mathbb{P}^{n-1}$ given by $\left\{x_{0}=0\right\}$ is a singularity of $S_{p}$. In fact, the line $\overline{p q}$ is given by $\left(\lambda-\mu q_{0}: \mu q_{1}: \ldots: \mu q_{n}\right)$, where $(\lambda: \mu) \in \mathbb{P}^{1}$. Then, $\pi_{p}\left(\left(\lambda-\mu q_{0}: \mu q_{1}: \ldots: \mu q_{n}\right)\right)=\left(q_{1}: \ldots: q_{n}\right)$. Since $q$ is a singularity of $X$, we have

$$
\begin{align*}
& 0=q_{0} f_{2}\left(q_{1}, \ldots, q_{n}\right)+f_{3}\left(q_{1}, \ldots, q_{n}\right)  \tag{5.1}\\
& 0=q_{0} \frac{\partial}{\partial x_{i}} f_{2}\left(q_{1}, \ldots, q_{n}\right)+\frac{\partial}{\partial x_{i}} f_{3}\left(q_{1}, \ldots, q_{n}\right) \text { for all } i=1, \ldots, n  \tag{5.2}\\
& 0=f_{2}\left(q_{1}, \ldots, q_{n}\right) . \tag{5.3}
\end{align*}
$$

Equations (5.1) and (5.3) give that $\left(q_{1}: \ldots: q_{n}\right) \in S_{p}$. By equation (5.2), we have $\frac{\partial}{\partial x_{i}} f_{3}\left(q_{1}, \ldots, q_{n}\right)=-q_{0} \frac{\partial}{\partial x_{i}} f_{2}\left(q_{1}, \ldots, q_{n}\right)$ for all $i=1, \ldots, n$. Hence, the Jacobian matrix of the polynomials $f_{2}$ and $f_{3}$ has at $\left(q_{1}: \ldots: q_{n}\right)$ not full rank. Therefore, $\left(q_{1}: \ldots: q_{n}\right)$ is a
singularity of $S_{p}$. However, $\left(q_{1}: \ldots: q_{n}\right)$ is not a singularity of $Q$. Otherwise, $\left(q_{1}: \ldots: q_{n}\right)$ would also be a singularity of $Y$ by (5.2) and hence $X$ would have non-isolated singularities by Proposition 5.2 .2 which is false by assumption.

The construction above establishes a one-to-one correspondence between the singularities of $X \backslash\{p\}$ and those singularities of $S_{p}$ which are not lying on the singular locus of $Q$. Moreover, by item (i) in Proposition 5.2.2, corresponding singularities have the same singularity types.
We show by a direct computation that a singularity $q$ of $\mathrm{Bl}_{p} X$ is contained in $E$ if and only if it naturally corresponds to a singularity of $S_{p}$ lying on the singular locus of $Q$.
Indeed, let $\pi^{(1)}: \mathbb{P}^{n} \times \mathbb{P}^{n-1} \supseteq\left(\mathbb{P}^{n}\right)^{(1)} \rightarrow \mathbb{P}^{n}$ be the blowing-up of $\mathbb{P}^{n}$ in $p$ and $\left(y_{1}: \ldots: y_{n}\right)$ homogeneous coordinates on $\mathbb{P}^{n-1}$. Assume without loss of generality that $q$ is contained in the affine chart $\mathbb{P}^{n} \times \mathbb{A}^{n-1} \subseteq \mathbb{P}^{n} \times \mathbb{P}^{n-1}$ defined by $y_{1} \neq 0$. We have

$$
\left(\mathbb{P}^{n}\right)^{(1)}:=\left\{\left(\left(x_{0}: \ldots: x_{n}\right),\left(1, y_{2}, \ldots, y_{n}\right)\right) \in \mathbb{P}^{n} \times \mathbb{A}^{n-1} ; x_{i}=y_{i} x_{1} \text { for all } i=2, \ldots, n\right\}
$$

The strict transform of $X$ in $\left(\mathbb{P}^{n}\right)^{(1)}$ is given by

$$
\mathrm{Bl}_{p} X: x_{0} f_{2}\left(1, y_{2}, \ldots, y_{n}\right)+x_{1} f_{3}\left(1, y_{2}, \ldots, y_{n}\right)=0
$$

and the exceptional divisor $E \subseteq \mathrm{Bl}_{p} X$ by

$$
E=\left\{\left((1: 0: \ldots: 0),\left(1, y_{2}, \ldots, y_{n}\right)\right) \in \mathbb{P}^{n} \times \mathbb{A}^{n-1} ; f_{2}\left(1, y_{2}, \ldots, y_{n}\right)=0\right\}
$$

Note that with respect to the projection $\mathrm{pr}_{2}: \mathbb{P}^{n} \times \mathbb{A}^{n-1} \rightarrow \mathbb{A}^{n-1}$, the exceptional divisor $E$ is isomorphic to $Q$ on $\mathbb{A}^{n-1}$ (this proves in particular Lemma 5.2.1 in coordinates).

Assume that we have in coordinates $q=\left(\left(w_{0}: \ldots: w_{n}\right),\left(1, r_{2}, \ldots, r_{n}\right)\right) \in \mathrm{Bl}_{p} X$. Since $q$ is a singularity of $\mathrm{Bl}_{p} X$, it is a zero of all partial derivatives of the function defining $\mathrm{Bl}_{p} X$ on this chart, i.e.

$$
\begin{align*}
& 0=f_{2}\left(1, r_{2}, \ldots, r_{n}\right)  \tag{5.4}\\
& 0=f_{3}\left(1, r_{2}, \ldots, r_{n}\right)  \tag{5.5}\\
& 0=w_{0} \cdot \frac{\partial f_{2}}{\partial y_{i}}\left(1, r_{1}, \ldots, r_{n}\right)+w_{1} \cdot \frac{\partial f_{3}}{\partial y_{i}}\left(1, r_{1}, \ldots, r_{n}\right) \quad \text { for all } i=2, \ldots, n . \tag{5.6}
\end{align*}
$$

Equations (5.4) and (5.5) give that the image of $q$ under $\mathrm{pr}_{2}$ is contained in $S_{p}$.
Now assume that $q$ is contained in $E$, i.e. $q=\left((1: 0: \ldots: 0),\left(1, r_{2}, \ldots, r_{n}\right)\right)$. Equation (5.6) gives

$$
0=1 \cdot \frac{\partial f_{2}}{\partial y_{i}}\left(1, r_{1}, \ldots, r_{n}\right)+0 \cdot \frac{\partial f_{3}}{\partial y_{i}}\left(1, r_{1}, \ldots, r_{n}\right)=\frac{\partial f_{2}}{\partial y_{i}}\left(1, r_{1}, \ldots, r_{n}\right)
$$

for all $i=2, \ldots, n$. Hence, the image $\left(1, r_{1}, \ldots, r_{n}\right)$ of $q$ under the projection $\mathrm{pr}_{2}$ is a singularity of $Q$.

Conversely, assume that $\left(1, r_{1}, \ldots, r_{n}\right)$ is a singularity of $Q$. Then, for all $i=2, \ldots, n$

$$
\begin{equation*}
\frac{\partial f_{2}}{\partial y_{i}}\left(1, r_{1}, \ldots, r_{n}\right)=0 \tag{5.7}
\end{equation*}
$$

Furthermore, $\left(1, r_{1}, \ldots, r_{n}\right)$ cannot be a singularity of $Y$, as well, since $X$ had otherwise non-isolated singularities by Proposition 5.2.2. Therefore, plugging (5.7) into equation (5.6), we obtain $w_{1}=0$. This gives $w_{i}=r_{i} w_{1}=0$ for all $i=1, \ldots, n$. Therefore, $q=\left((1: 0: \ldots: 0),\left(1, r_{2}, \ldots, r_{n}\right)\right)$, i.e. $q \in E$ (this also proves in particular partly item (ii) in Proposition 5.2.2).

The computations are similar on the other charts of the blowing-up.
In conclusion, we see that all singularities of $\mathrm{Bl}_{p} X$ on $E$ correspond to singularities of $S_{p}$ on the singular locus of $Q$. Furthermore, by item (ii) in Proposition 5.2.2, the corresponding singularities have the same singularity types.

In Table 1.1, we recorded for an $A D E$ singularity of type $\mathbf{T}$ on $X$ the singularities $\sigma(\mathbf{T})$ that occur on the exceptional divisor $E$.

## 6 Cubic fourfolds and K3 surfaces with isolated $A D E$ singularities

In this chapter, we prove the first Main Theorem which states that the existence of a cubic fourfold with certain isolated $A D E$ singularities is equivalent to both the existence of complete (2,3)-intersections in $\mathbb{P}^{4}$ with certain isolated $A D E$ singularities and embeddings of certain lattices into the K3 lattice. To prove the Main Theorem, we will firstly prove an auxiliary technical proposition where we compute the pull-back of a certain hyperplane section of a complete ( 2,3 )-intersection in $\mathbb{P}^{4}$ to the smooth minimal model of this complete (2,3)-intersection.

### 6.1 Main Theorem 1

Main Theorem 1. Let $\mathbf{T} \in\left\{\mathbf{A}_{i \geq 1}, \mathbf{D}_{j \geq 4}, \mathbf{E}_{8 \geq k \geq 6}\right\}$ be an $A D E$ singularity type.
For $\left(\left(a_{1}, \ldots, a_{n}\right),\left(d_{4}, \ldots, d_{m}\right),\left(e_{6}, e_{7}, e_{8}\right)\right) \in \mathbb{Z}_{\geq 0}{ }^{n} \times \mathbb{Z}_{\geq 0}{ }^{m-3} \times \mathbb{Z}_{\geq 0}{ }^{3}$, let

$$
\mathbf{G}:=\sum_{i=1}^{n} a_{i} \mathbf{A}_{i}+\sum_{j=4}^{m} d_{j} \mathbf{D}_{j}+\sum_{k=6}^{8} e_{k} \mathbf{E}_{k}
$$

be a formal sum of $A D E$ singularity types and

$$
\Gamma_{\mathbf{G}}:=\sum_{i=1}^{n} a_{i} \mathcal{A}_{i}+\sum_{j=4}^{m} d_{j} \mathcal{D}_{j}+\sum_{k=6}^{8} e_{k} \mathcal{E}_{k}
$$

a Dynkin diagram with connected components $\mathcal{A}_{i}, \mathcal{D}_{j}$, and $\mathcal{E}_{k}$.
The following are equivalent:

1. There exists a cubic fourfold $X$ in $\mathbb{P}^{5}$ with a singularity of type $\mathbf{T}$ and such that all other singularities of $X$ correspond to $\mathbf{G}$.
2. There exists a complete $(2,3)$-intersection $S$ in $\mathbb{P}^{4}$ of a quadric $Q$ of $\operatorname{corank}(Q)=$ corank $_{\mathbf{T}}$ as in Table 6.1 and a cubic $Y$ such that the singularities of $S$ that lie on the singular locus of $Q$ are of type $\sigma(\mathbf{T})$ as in Table 6.1 and such that all other singularities of $S$ correspond to $\mathbf{G}$.
3. Let $\Gamma_{\sigma(\mathbf{T})}$ be a weighted graph as in Table 6.1. Let $\Lambda\left(\Gamma_{\mathbf{G}}\right)$ and $\Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)$ be the lattices associated to the weighted graphs $\Gamma_{\mathbf{G}}$ and $\Gamma_{\sigma(\mathbf{T})}$. Let $h_{\mathbf{T}} \in \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)$ be the sum of the vertices of $\Gamma_{\sigma(\mathbf{T})}$ as in Table 6.1. There exists an embedding

$$
i: \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right) \oplus \Lambda\left(\Gamma_{\mathbf{G}}\right) \hookrightarrow L_{K 3}
$$

such that the following conditions a), b), and c) hold:
a) If $x \in \operatorname{Sat}_{L_{K 3}}(i)$ with $i\left(h_{\mathbf{T}}\right) \cdot x=0$ and $x^{2}=-2$, then $x \in i\left(\Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right) \oplus \Lambda\left(\Gamma_{\mathbf{G}}\right)\right)$.
b) There exists no element $x \in \operatorname{Sat}_{L_{K 3}}(i)$ with $i\left(h_{\mathbf{T}}\right) \cdot x=1$ and $x^{2}=0$.
c) There exists no element $x \in \operatorname{Sat}_{L_{K 3}}(i)$ with $i\left(h_{\mathbf{T}}\right) \cdot x=2$ and $x^{2}=0$.

Remark 6.1.1. By Lemmas 4.4.1 and 4.4.6, we consider in 2. all types of singularities that a complete (2,3)-intersection in $\mathbb{P}^{4}$ can possibly have on the singular locus of the underlying quadric.

### 6.2 Proof of Main Theorem 1

To prove Main Theorem 1, we show the following auxiliary proposition:
Proposition 6.2.1. Let $\mathbf{T} \in\left\{\mathbf{A}_{i \geq 1}, \mathbf{D}_{j \geq 4}, \mathbf{E}_{8 \geq k \geq 6}\right\}$ be an $A D E$ singularity type and $\operatorname{corank}_{\mathbf{T}}$ and $\sigma(\mathbf{T})$ as in Table 6.1.

Let $S$ be a complete (2,3)-intersection of a quadric $Q$ of $\operatorname{corank}(Q)=\operatorname{corank}_{\mathbf{T}}$ and a cubic $Y$ in $\mathbb{P}^{4}$ such that $S$ has only isolated $A D E$ singularities. Assume that all singularities of $S$ lying on $\operatorname{Sing}(Q)$ are of type $\sigma(\mathbf{T})$. Let $\pi: \widetilde{S} \rightarrow S$ be the minimal resolution of all singularities of $S$.
Then, there exists a hyperplane section $C_{\mathbf{T}}$ of $S$ such that $h_{\mathbf{T}}:=\pi^{*}\left(C_{\mathbf{T}}\right) \in \operatorname{Div}(\widetilde{S})$ is the formal sum of curves on $\widetilde{S}$ as in Table 6.1 and the associated weighted graph to these curves is $\Gamma_{\sigma(\mathbf{T})}$ in Table 6.1.

### 6.3 An auxiliary step in the proof of Main Theorem 1

As outlined in Chapter 4.1, a projective quadric is up to isomorphism uniquely determined by its rank. Hence, we prove Proposition 6.2 .1 for all possible coranks of the quadric $Q$ in $\mathbb{P}^{4}$ individually.

### 6.3.1 The quadric $Q$ has corank 0 in $\mathbb{P}^{4}$

Proposition 6.3.1. Let $S$ be a complete (2,3)-intersection of a quadric $Q$ of $\operatorname{corank}(Q)=$ 0 and a cubic $Y$ in $\mathbb{P}^{4}$ such that $S$ has only isolated $A D E$ singularities. Let $\pi: \widetilde{S} \rightarrow S$ be the minimal resolution of all singularities on $S$.
Then, there exists a hyperplane section $C_{\mathbf{A}_{1}}$ of $S$ such that $h_{\mathbf{A}_{1}}:=\pi^{*}\left(C_{\mathbf{A}_{1}}\right) \in \operatorname{Div}(\widetilde{S})$ is an irreducible curve on $\widetilde{S}$.

Proof. Since $S$ has only isolated $A D E$ singularities, Bertini's Theorem [Har77, Chap. II, Theorem 8.18, Remark 8.18.1] implies that for a general hyperplane $H$ in $\mathbb{P}^{4}$ the curve

$$
C:=H \cap S \subseteq S
$$

is irreducible, smooth, and contains none of the singularities of $S$. Therefore, we have

$$
\pi^{*} C=\widetilde{C} \in \operatorname{Div}(\widetilde{S}),
$$

Table 6.1

| T | $\operatorname{corank}_{\mathbf{T}}$ | $\sigma(\mathbf{T})$ | $\Gamma_{\sigma(\mathbf{T})}$ |  |  |  |  | $h_{\mathbf{T}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}_{1}$ | 0 | $\emptyset$ | $\diamond \widetilde{C}$ |  |  |  |  | $\widetilde{C}$ |
| $\mathbf{A}_{2}$ | 1 | $\emptyset$ | $\widetilde{C_{1}} \bigcirc \bigcirc \widetilde{C_{2}}$ |  |  |  |  | $\widetilde{C_{1}}+\widetilde{C_{2}}$ |
| $\mathbf{A}_{n \geq 3}$ | 1 | $\mathbf{A}_{n-2}$ |  |  |  |  |  | $\widetilde{C_{1}}+\widetilde{C_{2}}+E_{1}+\ldots+E_{n-2}$ |
| D 4 | 2 | $3 \mathbf{A}_{1}$ |  |  |  |  |  | $2 \widetilde{C}+E_{1}+E_{2}+E_{3}$ |
| $\mathbf{D}_{n \geq 5}$ | 2 | $\mathbf{A}_{1}+\mathbf{D}_{n-2}$ |  |  |  |  |  | $2 \widetilde{C}+E_{1}+2 E_{2}+\ldots+2 E_{n-4}+2 E_{n-3}+E_{n-2}+E_{n-1}$ |
| $\mathrm{E}_{6}$ | 2 | $\mathrm{A}_{5}$ | $\begin{array}{lll}  & & \\ & \widetilde{C} \\ E_{1} & E_{2} & E_{3} \\ \hline \end{array}$ | $E_{4}$ |  |  |  | $2 \widetilde{C}+E_{1}+2 E_{2}+3 E_{3}+2 E_{4}+E_{5}$ |
| $\mathrm{E}_{7}$ | 2 | $\mathbf{D}_{6}$ | $\begin{array}{ccc}  & & E_{5} \\ \widetilde{C} & E_{6} & E_{4} \\ 0 & \end{array}$ | $E_{3}$ | E2 |  |  | $2 \widetilde{C}+E_{1}+2 E_{2}+3 E_{3}+4 E_{4}+2 E_{5}+3 E_{6}$ |
| $\mathrm{E}_{8}$ | 2 | $\mathbf{E}_{7}$ |     <br> $E_{6}$   $E_{5}$ | $E_{3}$ | $E_{2}$ | $E_{1}$ | ${ }_{\sim}^{\widetilde{C}}$ | $2 \widetilde{C}+3 E_{1}+4 E_{2}+5 E_{3}+6 E_{4}+4 E_{5}+2 E_{6}+3 E_{7}$ |

The vertices of the graphs in column $\Gamma_{\sigma(\mathbf{T})}$ are curves intersecting each other according to the number of edges joining them. The vertex $\diamond$ has self-intersection number 6 , the vertices o self-intersection number 0 , and the vertices $\bullet$ self-intersection number $(-2)$.
where $\widetilde{C}$ is the strict transform of $C$ in $\widetilde{S}$ under the minimal resolution $\pi$ of all singularities on $S$. Further, $\widetilde{C}$ is irreducible since $C$ is irreducible. In conclusion, $h_{\mathbf{A}_{1}}:=\pi^{*}(C)$ is an irreducible curve on $\widetilde{S}$.

Remark 6.3.2. In the proof of Proposition 6.3.1, we actually did not use the assumption that the quadric $Q$ in which the complete (2,3)-intersection is contained is of $\operatorname{corank}(Q)=0$ in $\mathbb{P}^{4}$.

### 6.3.2 The quadric $Q$ has corank 1 in $\mathbb{P}^{4}$

### 6.3.2.1 General setting and notation

We fix some notation which we will need in the following.
Let $S$ be a complete (2,3)-intersection of a quadric $Q$ and a cubic $Y$ in $\mathbb{P}^{4}$ with the property that $S$ has only isolated $A D E$ singularities. By Lemma 4.3.2, this implies that $Q$ and $Y$ have no common singularities. In particular, the results in Sections 4.3 and 4.4 hold for this choice of $S$.

Assume that the quadric $Q$ has corank 1 in $\mathbb{P}^{4}$. We then recall from Subsections 4.1.1, 4.1.2, and 4.3.1: By Lemma 4.1.1, $Q$ is the cone through $p$ over a smooth quadric $Q^{\prime}$ in $\mathbb{P}^{3}$ and $p$ is the only singular point of $Q$. By Lemma 4.1.2, there are two rulings $\left\{l_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{l_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$ on $Q^{\prime}$ such that through every point in $Q^{\prime}$ passes exactly one line from each of the rulings. For $\alpha, \beta \in \mathbb{P}^{1}$, let

$$
\begin{aligned}
& \Pi_{1, \alpha}:=\text { plane spanned by } p \text { and } l_{1, \alpha} \subseteq \mathbb{P}^{4} \\
& \Pi_{2, \beta}:=\text { plane spanned by } p \text { and } l_{2, \beta} \subseteq \mathbb{P}^{4} .
\end{aligned}
$$

Both $\Pi_{1, \alpha}$ and $\Pi_{2, \beta}$ are then contained in the quadric $Q \subseteq \mathbb{P}^{4}$ such that we obtain two pencils of planes $\left\{\Pi_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{\Pi_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$ on $Q$. Let

$$
C_{1, \alpha}:=\Pi_{1, \alpha} \cap Y \subseteq S \text { and } C_{2, \beta}:=\Pi_{2, \beta} \cap Y \subseteq S
$$

be the cubic curves on $S$ lying on the planes $\Pi_{1, \alpha}$ and $\Pi_{2, \beta}$, respectively. We then have the pencils $\left\{C_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{C_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$ on $S$.

For $\alpha_{s}, \beta_{s} \in \mathbb{P}^{1}$ such that conditions (1)-(4) in Lemma 4.3.4 are satisfied, write

$$
\begin{align*}
& \Pi_{1}:=\Pi_{1, \alpha_{s}}, \quad \Pi_{2}:=\Pi_{2, \alpha_{s}}, \quad l:=l_{\alpha_{s}, \beta_{s}}  \tag{6.1}\\
& C_{1}:=C_{1, \alpha_{s}}, \quad C_{2}:=C_{2, \beta_{s}} .
\end{align*}
$$

Let $\pi: \widetilde{S} \rightarrow S$ the minimal resolution of all singularities on $S$ and $\widetilde{C_{1}}$ and $\widetilde{C_{2}}$ the strict transforms in $\widetilde{S}$ under $\pi$ of $C_{1}$ and $C_{2}$, respectively.

Lemma 6.3.3. We have ${\widetilde{C_{1}}}^{2}={\widetilde{C_{2}}}^{2}=0$.

Proof. Let $i=1,2$.
We compute the arithmetic genus $p_{a}\left(C_{i}\right)$ of $C_{i}$. By definition, we have

$$
p_{a}\left(C_{i}\right)=1-\chi\left(C_{i}, \mathcal{O}_{C_{i}}\right),
$$

where $\chi\left(C_{i}, \mathcal{O}_{C_{i}}\right)$ is the Euler characteristic of $C_{i}$. Since $\operatorname{dim} H^{0}\left(C_{i}, \mathcal{O}_{C_{i}}\right)=1$, we obtain

$$
p_{a}\left(C_{i}\right)=\operatorname{dim} H^{1}\left(C_{i}, \mathcal{O}_{C_{i}}\right) .
$$

We claim that we have $\operatorname{dim} H^{1}\left(C_{i}, \mathcal{O}_{C_{i}}\right)=1$. Indeed, the short exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-3) \rightarrow \mathcal{O}_{\mathbb{P}^{2}} \rightarrow \mathcal{O}_{C_{i}} \rightarrow 0
$$

induces the long exact sequence on cohomology

$$
\cdots \rightarrow \underbrace{H^{1}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}\right)}_{=0} \rightarrow H^{1}\left(C_{i}, \mathcal{O}_{C_{i}}\right) \rightarrow H^{2}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(-3)\right) \rightarrow \underbrace{H^{2}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}\right)}_{=0} \rightarrow \cdots .
$$

Consequently, $H^{1}\left(C_{i}, \mathcal{O}_{C_{i}}\right) \cong H^{2}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(-3)\right)$. Since $\operatorname{dim} H^{2}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(-3)\right)=1$, we ob$\operatorname{tain} p_{a}\left(C_{i}\right)=\operatorname{dim} H^{1}\left(C_{i}, \mathcal{O}_{C_{i}}\right)=1$.
By Lemma 4.3.4, $C_{i}$ is smooth in $p$ and contains no singularities of $S$ different from $p$. Hence, $\widetilde{C_{i}} \cong C_{i}$ so $p_{a}\left(C_{i}\right)=p_{a}\left(\widetilde{C_{i}}\right)$. We get

$$
\begin{equation*}
p_{a}\left(\widetilde{C_{i}}\right)=1 \tag{6.2}
\end{equation*}
$$

On the other hand, by the adjunction formula, we have

$$
p_{a}\left(\widetilde{C_{i}}\right)=1+\frac{1}{2} \operatorname{deg}\left(\left(\omega_{\widetilde{S}} \otimes \mathcal{O}_{\widetilde{S}} \mathcal{O}_{\widetilde{S}}\left(\widetilde{C_{i}}\right)\right)_{\mid \widetilde{C_{i}}}\right)
$$

Since $\widetilde{S}$ is a K3 surface, the canonical bundle $\omega_{\widetilde{S}}$ is trivial. Hence,

$$
p_{a}\left(\widetilde{C_{i}}\right)=1+\frac{1}{2} \operatorname{deg}\left(\mathcal{O}_{\widetilde{S}}\left(\widetilde{C_{i}}\right)_{\mid \widetilde{C_{i}}}\right)=1+\frac{1}{2}{\widetilde{C_{i}}}^{2}
$$

so

$$
{\widetilde{C_{i}}}^{2}=2 p_{a}\left(\widetilde{C_{i}}\right)-2=0 .
$$

We conclude from (6.2) that ${\widetilde{C_{i}}}^{2}=0$.
In the following subsections, we compute the pull-back $\pi^{*}\left(C_{1}+C_{2}\right) \in \operatorname{Div}(\widetilde{S})$ explicitly.

### 6.3.2.2 Assumption: $\mathbf{T}=\mathbf{A}_{2}$ (thus $\sigma(\mathbf{T})=\emptyset$ )

We prove Proposition 6.2.1 in case $\operatorname{corank}(Q)=1, \mathbf{T}=\mathbf{A}_{2}$, and thus $\sigma\left(\mathbf{A}_{2}\right)=\emptyset$ :
Proposition 6.3.4. Let $S$ be the complete $(2,3)$-intersection of a quadric $Q$ and a cubic $Y$ in $\mathbb{P}^{4}$ such that $S$ has only isolated $A D E$ singularities and let $\pi: \widetilde{S} \rightarrow S$ be the minimal resolution of all singularities on $S$.
Assume that $Q$ has corank 1 in $\mathbb{P}^{4}$ and the singular point $p$ of $Q$ is not contained in $S$.
Let $C_{1}$ and $C_{2}$ be the plane cubic curves on $S$ and $\widetilde{C_{1}}$ and $\widetilde{C_{2}}$ the strict transforms of $C_{1}$ and $C_{2}$ under $\pi$ in $\widetilde{S}$ as in (6.1).
Then, for the hyperplane section $C_{1}+C_{2}$ of $S$, we have $h_{\mathbf{A}_{2}}:=\pi^{*}\left(C_{1}+C_{2}\right)=\widetilde{C_{1}}+\widetilde{C_{2}} \in$ $\operatorname{Div}(\widetilde{S})$. The lattice in $\operatorname{Div}(\widetilde{S})$ with basis $\widetilde{C_{1}}, \widetilde{C_{2}}$ has the intersection matrix:

$$
\begin{gather*}
\widetilde{C_{1}}  \tag{6.3}\\
\widetilde{C_{1}} \\
\widetilde{C_{2}} \\
\left(\begin{array}{rr}
0 & 3 \\
3 & 0
\end{array}\right)
\end{gather*}
$$

Proof. We proved in Lemma 4.3.3 that the divisor $C_{1}+C_{2}$ on $S$ is a hyperplane section of $S$. The curves $C_{1}$ and $C_{2}$ satisfy condition (2) in Lemma 4.3 .4 by their choice in (6.1). Since the singular locus of $Q$ is not contained in $Y$, this means that $C_{1}$ and $C_{2}$ are contained in the smooth locus $S^{\circ}$ of $S$. Hence, the total transforms of $C_{1}$ and $C_{2}$ in $\widetilde{S}$ under the minimal resolution $\pi$ coincide with the strict transforms $\widetilde{C_{1}}$ and $\widetilde{C_{2}}$ under $\pi$. Consequently,

$$
\pi^{*}\left(C_{1}+C_{2}\right)=\widetilde{C_{1}}+\widetilde{C_{2}}
$$

By Lemma 6.3.3, we have

$$
\begin{equation*}
\widetilde{C}_{1}^{2}={\widetilde{C_{2}}}^{2}=0 \tag{6.4}
\end{equation*}
$$

Again, since $C_{1}$ and $C_{2}$ are both contained in $S^{\circ}$, they are isomorphic to $\widetilde{C_{1}}$ and $\widetilde{C_{2}}$ via $\pi$. Hence,

$$
\begin{equation*}
\widetilde{C_{1}} \cdot \widetilde{C_{2}}=C_{1} \cdot C_{2} \tag{6.5}
\end{equation*}
$$

Since $C_{2}=Y \cap \Pi_{2}=S^{\circ} \cap \Pi_{2}$, we have

$$
\begin{equation*}
C_{1} \cdot C_{2}=C_{1} \cdot\left(S^{\circ} \cap \Pi_{2}\right) \tag{6.6}
\end{equation*}
$$

Since $C_{1}$ is contained in both $S^{\circ}$ and $\Pi_{1}$, Lemma A.0.1 implies

$$
\begin{equation*}
C_{1} \cdot\left(S^{\circ} \cap \Pi_{2}\right)=C_{1} \cdot\left(\Pi_{1} \cap \Pi_{2}\right) \tag{6.7}
\end{equation*}
$$

The line $l:=\Pi_{1} \cap \Pi_{2}$ intersects the cubic $C_{1}$ on the plane $\Pi_{1}$ in three points by Bezout's Theorem. Hence,

$$
\begin{equation*}
C_{1} \cdot\left(\Pi_{1} \cap \Pi_{2}\right)=C_{1} \cdot l=3 \tag{6.8}
\end{equation*}
$$

Equations (6.5)-(6.8) together give

$$
\begin{equation*}
\widetilde{C_{1}} \cdot \widetilde{C_{2}}=3 \tag{6.9}
\end{equation*}
$$

In conclusion, the lattice with basis $\widetilde{C_{1}}$ and $\widetilde{C_{2}}$ has by (6.4) and (6.9) the intersection matrix (6.3) with respect to this basis.

### 6.3.2.3 Assumption: $\mathbf{T}=\mathbf{A}_{n}$ for $n \geq 3$ (thus $\sigma(\mathbf{T})=\mathbf{A}_{n-2}$ )

We prove Proposition 6.2.1 in case $\operatorname{corank}(Q)=1$, for $n \geq 3, \mathbf{T}=\mathbf{A}_{n}$, and thus $\sigma\left(\mathbf{A}_{n}\right)=$ $\mathbf{A}_{n-2}$ :

Proposition 6.3.5. Let $S$ be the complete $(2,3)$-intersection of a quadric $Q$ and a cubic $Y$ in $\mathbb{P}^{4}$ such that $S$ has only isolated $A D E$ singularities and let $\pi: \widetilde{S} \rightarrow S$ be the minimal resolution of all singularities on $S$.

Assume that $Q$ has corank 1 in $\mathbb{P}^{4}$ and the singular point $p$ of $Q$ is contained in $S$.
Let $C_{1}$ and $C_{2}$ be the plane cubic curves on $S$ and $\widetilde{C_{1}}$ and $\widetilde{C_{2}}$ the strict transforms of $C_{1}$ and $C_{2}$, respectively, under $\pi$ in $\widetilde{S}$.
Then, for the hyperplane section $C_{1}+C_{2}$ of $S$, we have $h_{\mathbf{A}_{n}}:=\pi^{*}\left(C_{\widetilde{S}}+C_{2}\right)=\widetilde{C_{1}}+\widetilde{C_{2}}+$ $E_{1}+\ldots+E_{n-2} \in \operatorname{Div}(\widetilde{S})$, where $E_{1}, \ldots, E_{n-2}$ are $(-2)$-curves on $\widetilde{S}$.

The lattice in $\operatorname{Div}(\widetilde{S})$ with basis $\widetilde{C_{1}}, \widetilde{C_{2}}, E_{1} \ldots, E_{n-2}$ has the intersection matrix:


Proof. We proved in Lemma 4.3.3 that the divisor $C_{1}+C_{2}$ on $S$ is a hyperplane section of $S$.

By Lemma 6.3.3, we have

$$
\begin{equation*}
{\widetilde{C_{1}}}^{2}={\widetilde{C_{2}}}^{2}=0 \tag{6.11}
\end{equation*}
$$

Let $\pi^{(1)}:\left(\mathbb{P}^{4}\right)^{(1)}:=\mathrm{Bl}_{p} \mathbb{P}^{4} \rightarrow \mathbb{P}^{4}$ be the blowing-up of $\mathbb{P}^{4}$ in $p$. Let

$$
S^{(1)}, \quad Y^{(1)}, \quad \Pi_{i}^{(1)}, \quad l^{(1)}, \quad \text { and } \quad C_{i}^{(1)}=\Pi_{i}^{(1)} \cap Y^{(1)} \quad(i=1,2)
$$

be the strict transforms of $S, Y, \Pi_{i}, l:=\Pi_{1} \cap \Pi_{2}$, and $C_{i}$, respectively under $\pi^{(1)}$ in $\left(\mathbb{P}^{4}\right)^{(1)}$. We recall that $C_{1}$ and $C_{2}$ satisfy condition (2) in Lemma 4.3 .4 by their choice in (6.1). Hence,

$$
\begin{equation*}
C_{1}^{(1)} \text { and } C_{2}^{(1)} \text { are contained in the smooth locus }\left(S^{(1)}\right)^{\circ} \text { of } S^{(1)} . \tag{6.12}
\end{equation*}
$$

By (6.12), $C_{1}^{(1)}$ and $C_{2}^{(1)}$ are isomorphic to the strict transforms $\widetilde{C_{1}}$ and $\widetilde{C_{2}}$ of $C_{1}$ and $C_{2}$, respectively under $\pi$ in $\widetilde{S}$. Hence,

$$
\begin{equation*}
\widetilde{C_{1}} \cdot \widetilde{C_{2}}=C_{1}^{(1)} \cdot C_{2}^{(1)} . \tag{6.13}
\end{equation*}
$$

Further, we have $C_{2}^{(1)}=\left(S^{(1)}\right)^{\circ} \cap \Pi_{2}^{(1)}$. Since $C_{1}^{(1)}$ is contained in both $\left(S^{(1)}\right)^{\circ}$ and $\Pi_{1}^{(1)}$, Lemma A.0.1 gives

$$
\begin{equation*}
C_{1}^{(1)} \cdot C_{2}^{(1)}=C_{1}^{(1)} \cdot\left(\left(S^{(1)}\right)^{\circ} \cap \Pi_{2}^{(1)}\right)=C_{1}^{(1)} \cdot\left(\Pi_{2}^{(1)} \cap \Pi_{1}^{(1)}\right)=C_{1}^{(1)} \cdot l^{(1)} . \tag{6.14}
\end{equation*}
$$

Consequently, by Lemma A.0.3

$$
\begin{equation*}
C_{1}^{(1)} \cdot l^{(1)}=C_{1} \cdot l-1 . \tag{6.15}
\end{equation*}
$$

Since $C_{1}$ and $l_{1}$ lie on the plane $\Pi_{1}$, we can apply Bezout's Theorem and obtain

$$
\begin{equation*}
C_{1} \cdot l-1=3-1=2 . \tag{6.16}
\end{equation*}
$$

Equations (6.13)-(6.16) together give

$$
\begin{equation*}
\widetilde{C_{1}} \cdot \widetilde{C_{2}}=2 \tag{6.17}
\end{equation*}
$$

Again, by the choice of the curves $C_{1}$ and $C_{2}$, the $\mathbf{A}_{n-2}$ singularity $p$ is the only singularity of $S$ which is contained in $C_{1}$ and $C_{2}$. Hence, the divisor $\pi^{*}\left(C_{1}+C_{2}\right)$ on $\widetilde{S}$ is supported on the union of $\widetilde{C_{1}}, \widetilde{C_{2}}$, and the strict transforms $E_{1}, \ldots, E_{n-2}$ in $\widetilde{S}$ of the exceptional curves of the minimal resolution of $p$. Hence, the weighted graph with vertices $E_{1}, \ldots, E_{n-2}$ is the Dynkin diagram of type $\mathcal{A}_{n-2}$ and we chose the notation such that it is given by Figure 6.1.

$$
\stackrel{\bullet}{E}_{1} \quad E_{2} \cdots \overrightarrow{E_{n-3}} \quad \stackrel{E}{E}_{n-2}
$$

Figure 6.1: Dynkin diagram corresponding to the $\mathbf{A}_{n-2}$ singularity $p$.

We compute the intersection numbers of $\widetilde{C_{1}}$ and $\widetilde{C_{2}}$ with $E_{1}, \ldots, E_{n-2}$. Let

$$
E_{\mathbb{P}^{4}}^{(1)} \subseteq\left(\mathbb{P}^{4}\right)^{(1)}, \quad E_{S}^{(1)}:=E_{\mathbb{P}^{4}}^{(1)} \cap S^{(1)} \subseteq S^{(1)}, \quad \text { and } \quad E_{\Pi_{i}}^{(1)}:=E_{\mathbb{P}^{4}}^{(1)} \cap \Pi_{i}^{(1)} \subseteq \Pi_{i}^{(1)} \quad(i=1,2)
$$

be the exceptional divisors of the blowing-up of $\mathbb{P}^{4}, S$, and $\Pi_{i}$ in $p$, respectively.
By (6.12) and since $\left(S^{(1)}\right)^{\circ}$ is isomorphic to its strict transform $\widetilde{\left(S^{(1)}\right)^{\circ}}$ in $\widetilde{S}$, Lemma A.0.2 gives

$$
\begin{equation*}
\widetilde{C_{i}} \cdot \widetilde{E_{S}^{(1)}}=\left(\widetilde{C_{i}} \mid \widetilde{\mid\left(\widetilde{\left.S^{(1)}\right)^{\circ}}\right.}\right) \cdot\left(\widetilde{E_{S}^{(1)}} \mid \widetilde{\mid\left(S^{(1)}\right)^{\circ}}\right) \tag{6.18}
\end{equation*}
$$

Again, by (6.12),

$$
\widetilde{C_{i}} \cong C_{i}^{(1)}
$$

Hence,

$$
\begin{equation*}
\left(\widetilde{C_{i}} \mid \widetilde{\left(\widetilde{\left.S^{(1)}\right)^{\circ}}\right.}\right) \cdot\left(\widetilde{E_{S}^{(1)}} \mid \widetilde{\left(\widetilde{\left.S^{(1)}\right)^{\circ}}\right.}\right)=C_{i}^{(1)} \cdot\left(E_{S}^{(1)} \mid\left(S^{(1)}\right)^{\circ}\right) \tag{6.19}
\end{equation*}
$$

We have $E_{S}^{(1)}{ }_{\mid\left(S^{(1)}\right)^{\circ}}=E_{\mathbb{P}^{4}}^{(1)} \cap\left(S^{(1)}\right)^{\circ}$. Moreover, $C_{i}^{(1)}$ is contained in both $\left(S^{(1)}\right)^{\circ}$ and $\Pi_{i}^{(1)}$. Hence, by Lemma A.0.1

$$
\begin{equation*}
C_{i}^{(1)} \cdot\left(E_{S}^{(1)} \mid\left(S^{(1)}\right)^{\circ}\right)=C_{i}^{(1)} \cdot E_{\Pi_{i}}^{(1)} \tag{6.20}
\end{equation*}
$$

By Lemma A.0.3, we have

$$
\begin{equation*}
C_{i}^{(1)} \cdot E_{\Pi_{i}}^{(1)}=1 \tag{6.21}
\end{equation*}
$$

Putting together equations (6.18)-(6.21), we obtain

$$
\begin{equation*}
\widetilde{C_{i}} \cdot \widetilde{E_{S}^{(1)}}=1 \tag{6.22}
\end{equation*}
$$

If $p$ is an $\mathbf{A}_{3-2}=\mathbf{A}_{1}$ singularity, $\widetilde{E_{S}^{(1)}}$ is irreducible. We write $E_{1}:=\widetilde{E_{S}^{(1)}}$ and therefore

$$
\begin{equation*}
\widetilde{C_{1}} \cdot E_{1}=\widetilde{C_{2}} \cdot E_{1}=1 \tag{6.23}
\end{equation*}
$$

If $p$ is an $\mathbf{A}_{n-2}(n \geq 4)$ singularity, we have $E_{S}^{(1)}=E_{1}^{(1)} \cup E_{n-2}^{(1)}$, where the strict transforms $\widetilde{E_{1}^{(1)}}$ and $\widetilde{E_{n-2}^{(1)}}$ of $E_{1}^{(1)}$ and $E_{n-2}^{(1)}$, respectively, in the minimal model $\widetilde{S}$ are two irreducible $(-2)$-curves. By choice, $C_{1}$ and $C_{2}$ satisfy condition (4) in Lemma 4.3.4 (after exchanging $\widetilde{E_{1}^{(1)}}$ by $\widetilde{E_{n-2}^{(1)}}$ if necessary). Therefore,

$$
\widetilde{C_{1}} \cdot \widetilde{E_{1}^{(1)}}=\widetilde{C_{2}} \cdot \widetilde{E_{n-2}^{(1)}}=1 \text { and } \widetilde{C_{1}} \cdot \widetilde{E_{n-2}^{(1)}}=\widetilde{C_{2}} \cdot \widetilde{E_{1}^{(1)}}=0 .
$$

Studying the resolution of an $\mathbf{A}_{n-2}$ singularity, we see that after possibly exchanging $E_{1}$ by $E_{2}$, we have $E_{1}=\widetilde{E_{1}^{(1)}}$ and $E_{n-2}=\widetilde{E_{n-2}^{(1)}}$ in Figure 6.1.

Hence, we obtain

$$
\begin{equation*}
\widetilde{C_{1}} \cdot E_{1}=\widetilde{C_{2}} \cdot E_{n-2}=1 \tag{6.24}
\end{equation*}
$$

If $p$ is an $\mathbf{A}_{n-2}$ singularity with $n \geq 5$, the exceptional divisors $E_{1}^{(1)}$ and $E_{n-2}^{(1)}$ intersect in an $\mathbf{A}_{n-4}$ singularity which is contained in neither $C_{1}^{(1)}$ nor $C_{2}^{(1)}$ again by the choice of $C_{1}$ and $C_{2}$ satisfying condition (4) in Lemma 4.3.4. Hence, the strict transforms $\widetilde{C_{1}}$ and $\widetilde{C_{2}}$ in the minimal model $\widetilde{S}$ intersect no further exceptional divisors, i.e.

$$
\begin{equation*}
\widetilde{C_{1}} \cdot E_{j}=\widetilde{C_{2}} \cdot E_{j}=0 \quad(j=2, \ldots, n-3) \tag{6.25}
\end{equation*}
$$

We have

$$
h_{\mathbf{A}_{n}}:=\pi^{*}\left(C_{1}+C_{2}\right)=\widetilde{C_{1}}+\widetilde{C_{2}}+r_{1} E_{1}+\ldots+r_{n-2} E_{n-2} \in \operatorname{Div}(\widetilde{S})
$$

where $r_{1}, \ldots, r_{n-2}$ are positive integers. By Lemma 4.2.2, the divisor $h_{\mathbf{A}_{n}}$ has degree 6 . The divisor $h:=\widetilde{C_{1}}+\widetilde{C_{2}}+E_{1}+\ldots+E_{n-2}$ has degree 6 , as well. Let $h^{\prime}:=\left(r_{1}-1\right) E_{1}+$ $\ldots+\left(r_{n-2}-1\right) E_{n-2}$. For all $i=1, \ldots, n-1$, we have $h . E_{i}=0$. Therefore,

$$
h . h^{\prime}=0 .
$$

This gives

$$
\begin{equation*}
6=h_{\mathbf{A}_{n}}^{2}=h^{2}+2 h \cdot h^{\prime}+h^{\prime 2}=6+h^{\prime 2} \tag{6.26}
\end{equation*}
$$

Since $h^{\prime}$ is contained in the negative definite lattice $A_{n-2}$, equation (6.26) can only hold if the divisor $h^{\prime}$ is trivial.

In conclusion,

$$
h=h_{\mathbf{A}_{n}}=\widetilde{C_{1}}+\widetilde{C_{2}}+E_{1}+\ldots+E_{n-2}
$$

By equations (6.11), (6.17), and (6.23) if $n=3$ and equations (6.11), (6.17), (6.24), (6.25), and the intersection numbers in Figure 6.1 if $n \geq 4$, the lattice with basis $\widetilde{C_{1}}, \widetilde{C_{2}}$, $E_{1}, \ldots, E_{n-2}$ has with respect to this basis the intersection matrix (6.10).

### 6.3.3 The quadric $Q$ has corank 2 in $\mathbb{P}^{4}$

### 6.3.3.1 General setting and notation

We fix some notation which we will need in the following.

Let $S$ be a complete $(2,3)$-intersection of a quadric $Q$ and a cubic $Y$ in $\mathbb{P}^{4}$ such that $S$ has only isolated $A D E$ singularities. By Lemma 4.3.2, this implies that $Q$ and $Y$ have no common singularities. In particular, the results in Sections 4.3 and 4.4 hold for this choice of $S$.

Assume that the quadric $Q$ has corank 2 in $\mathbb{P}^{4}$. We recall from Subsections 4.1.1, 4.1.2, and 4.3.2: By Lemma 4.1.1, $Q$ is the cone through a line $l$ over a smooth quadric $Q^{\prime} \cong \mathbb{P}^{1}$ in $\mathbb{P}^{2}$ and $l$ is the singular locus of $Q$. For $t \in Q^{\prime} \subseteq Q$, let

$$
\Pi_{t}:=\text { plane spanned by } t \text { and } l \subseteq \mathbb{P}^{4}
$$

The planes $\Pi_{t}$ are contained in the quadric $Q$ and by Lemma 4.1.5, $\left\{\Pi_{t}\right\}_{t \in \mathbb{P}^{1}}$ is a pencil of planes on $Q$ such that through any non-singular point of $Q$ passes a unique plane in this pencil. For $t \in \mathbb{P}^{1}$, let

$$
C_{t}:=\Pi_{t} \cap Y \subseteq S
$$

be the cubic curve lying on the plane $\Pi_{t}$. We then have a pencil $\left\{C_{t}\right\}_{t \in \mathbb{P}^{1}}$ on $S$.
For $t_{s} \in Q^{\prime}$ such that conditions (1) and (2) in Lemma 4.3.7 are satisfied, write

$$
\begin{equation*}
C:=C_{t_{s}}, \quad \Pi:=\Pi_{t_{s}} . \tag{6.27}
\end{equation*}
$$

Let $\pi: \widetilde{S} \rightarrow S$ the minimal resolution of all singularities on $S$ and $\widetilde{C}$ the strict transform of $C$ in $\widetilde{S}$ under $\pi$.
Lemma 6.3.6. We have $\widetilde{C}^{2}=0$.
Proof. As in Lemma 6.3.3, simply replace $C_{1}$ by $C$.
We recall the notation from Subsection 4.4.2:
Since $C$ and $l$ are contained in the plane $\Pi$, we can apply Bezout's Theorem and obtain $C . l=\sum_{p \in C \cap l}(C . l)_{p}=3$ and hence, for $p \in C \cap l$, we have $m:=(C . l)_{p} \leq 3$.
We define successive blowing-ups of $\mathbb{P}^{4}$ over $p$ : Let

$$
\left(\mathbb{P}^{4}\right)^{(0)}:=\mathbb{P}^{4}, \quad S^{(0)}:=S, \quad C^{(0)}:=C, \quad l^{(0)}:=l, \quad p^{(0)}:=p
$$

and for $i=1, \ldots, m$ let iteratively

$$
\pi^{(i)}:\left(\mathbb{P}^{4}\right)^{(i)} \rightarrow\left(\mathbb{P}^{4}\right)^{(i-1)}
$$

be the blowing-up of $\left(\mathbb{P}^{4}\right)^{(i-1)}$ in $p^{(i-1)}$, where for $i \geq 2$, we let $p^{(i-1)}$ be the unique point in $C^{(i-1)} \cap l^{(i-1)} \cap E_{\mathbb{P}^{4}}^{(i-1)}$ (see Section 4.4.2) and $E_{\mathbb{P}^{4}}^{(i-1)}$ is the exceptional divisor of $\pi^{(i-1)}$ in $\left(\mathbb{P}^{4}\right)^{(i-1)}$ and $S^{(i-1)}, C^{(i-1)}$, and $l^{(i-1)}$ are the strict transforms of $S^{(i-2)}, C^{(i-2)}$, and $l^{(i-2)}$ in $\left(\mathbb{P}^{4}\right)^{(i-1)}$, respectively.
Let

$$
\left(\mathbb{P}^{4}\right)^{(3)} \xrightarrow{\pi^{(3)}} \ldots \xrightarrow{\pi^{(m+1)}}\left(\mathbb{P}^{4}\right)^{(m)}
$$

be the successive blowing-up of $\left(\mathbb{P}^{4}\right)^{(m)}$ over all points in $C \cap l$ different from $p$ and for $i=m+1, \ldots, 3$, let $S^{(i)}$ and $C^{(i)}$ be the strict transforms of $S$ and $C$ in $\left(\mathbb{P}^{4}\right)^{(i)}$, respectively.
For $i=1,2,3$, let $E_{S}^{(i)}:=E_{\mathbb{P}^{4}}^{(i)} \cap S^{(i)}$ and let $\widetilde{C}$ and $\widetilde{E_{S}^{(i)}}$ be the strict transforms of $C$ and $E_{S}^{(i)}$, respectively, in the minimal model $\widetilde{S}$ under $\pi$.

Lemma 6.3.7. We have

$$
\widetilde{C} \cdot \widetilde{E_{S}^{(m)}}=1, \quad \widetilde{C} \cdot \widetilde{E_{S}^{(i)}}=0 \quad(i<m)
$$

Proof. Let $\left(S^{(3)}\right)^{\circ}$ be the smooth locus of $S^{(3)}$. Let

$$
\widetilde{\left(S^{(3)}\right)^{\circ}} \text { and } \widetilde{E_{S}^{(i)}}
$$

be the strict transforms of $\left(S^{(3)}\right)^{\circ}$ and $E_{S}^{(i)}$ in the minimal model $\widetilde{S}$ for $S$.
Since $C$ contains by choice in (6.27) no singularities of $S$ that are not lying on $l$ and since $C^{(3)} \cap l^{(3)}=\emptyset$, by applying successively Lemma 4.4.5, we obtain that $\widetilde{C}$ is contained in $\widetilde{\left(S^{(3)}\right)^{\circ} \text {. Hence, }}$

$$
\begin{equation*}
\widetilde{C} \cdot \widetilde{E_{S}^{(i)}}=\widetilde{C} \cdot \widetilde{\left(E_{S}^{(i)}\right.} \cap \widetilde{\left(\widetilde{\left.S^{(3)}\right)^{\circ}}\right)} \tag{6.28}
\end{equation*}
$$

by Lemma A. 0.2 and

$$
\widetilde{C} \cong C^{(3)}
$$

For $1 \leq i \leq 3$, let $E_{\Pi}^{(i)}:=E_{\mathbb{P}^{4}}^{(i)} \cap \Pi^{(i)}$. For $3 \geq j>i$, we denote

$$
E_{\mathbb{P}^{4}}^{(i, j)}, \quad E_{S}^{(i, j)}, \quad \text { and } \quad E_{\Pi}^{(i, j)}
$$

the strict transforms of $E_{\mathbb{P}^{4}}^{(i)}, E_{S}^{(i)}$, and $E_{\Pi}^{(i)}$ in $\left(\mathbb{P}^{4}\right)^{(j)}, S^{(j)}$, and $\Pi^{(j)}$, respectively. Then,

$$
\widetilde{E_{S}^{(i)}} \cap \widetilde{\left(S^{(3)}\right)^{\circ}} \cong E_{S}^{(i, 3)} \cap\left(S^{(3)}\right)^{\circ}
$$

Therefore,

$$
\begin{equation*}
\left.\widetilde{C} \cdot \widetilde{\left(E_{S}^{(i)}\right.} \cap \widetilde{\left(S^{(3)}\right)^{\circ}}\right)=C^{(3)} \cdot\left(E_{S}^{(i, 3)} \cap\left(S^{(3)}\right)^{\circ}\right) \tag{6.29}
\end{equation*}
$$

We have $E_{\mathbb{P}^{4}}^{(i, 3)} \cap\left(S^{(3)}\right)^{\circ}=E_{S}^{(i, 3)} \cap\left(S^{(3)}\right)^{\circ}$ and $E_{\mathbb{P}^{4}}^{(i, 3)} \cap \Pi^{(3)}=E_{\Pi}^{(i, 3)}$. Besides, $C^{(3)}$ is contained in both $\left(S^{(3)}\right)^{\circ}$ and $\Pi^{(3)}$. Hence, by Lemma A.0.1

$$
\begin{equation*}
C^{(3)} \cdot\left(E_{S}^{(i, 3)} \cap\left(S^{(3)}\right)^{\circ}\right)=C^{(3)} \cdot E_{\Pi}^{(i, 3)} \tag{6.30}
\end{equation*}
$$

By Lemma A.0.3, we then have

$$
\begin{equation*}
C^{(3)} \cdot E_{\Pi}^{(m, 3)}=1 \quad \text { and } \quad C^{(3)} \cdot E_{\Pi}^{(i, 3)}=0 \text { for } i<m \tag{6.31}
\end{equation*}
$$

In conclusion, equations (6.28)-(6.31) together give

$$
\widetilde{C} \cdot \widetilde{E_{S}^{(m)}}=1 \quad \text { and } \quad \widetilde{C} \cdot \widetilde{E_{S}^{(i)}}=0 \text { for } i<m
$$

### 6.3.3.2 Assumption: $\mathbf{T}=\mathbf{D}_{4}$ (thus $\sigma(\mathbf{T})=3 \mathbf{A}_{1}$ )

We prove Proposition 6.2.1 in case $\operatorname{corank}(Q)=2, \mathbf{T}=\mathbf{D}_{4}$, and thus $\sigma\left(\mathbf{D}_{4}\right)=3 \mathbf{A}_{1}$, i.e.:

Proposition 6.3.8. Let $S$ be the complete (2,3)-intersection of a quadric $Q$ and a cubic $Y$ in $\mathbb{P}^{4}$ such that $S$ has only isolated $A D E$ singularities and let $\pi: \widetilde{S} \rightarrow S$ be the minimal resolution of all singularities on $S$.

Assume that $Q$ has corank 2 in $\mathbb{P}^{4}$ and the singularities of $S$ lying on the singular line $l$ of $Q$ are of type $3 \mathbf{A}_{1}$.
Let $C$ be the plane cubic curve on $S$ and $\widetilde{C}$ the strict transform of $C$ under $\pi$ in $\widetilde{S}$ as in (6.27).
Then, for the hyperplane section $2 C$ of $S$, we have $h_{\mathbf{D}_{4}}:=\pi^{*}(2 C)=2 \widetilde{C}+E_{1}+E_{2}+$ $E_{3} \in \operatorname{Div}(\widetilde{S})$, where $E_{1}, E_{2}, E_{3}$ are (-2)-curves on $\widetilde{S}$. The lattice in $\operatorname{Div}(\widetilde{S})$ with basis $\widetilde{C}, E_{1}, E_{2}, E_{3}$ has the intersection matrix:

$$
\begin{align*}
&  \tag{6.32}\\
& \widetilde{C} \\
& E_{1} \\
& E_{2} \\
& E_{3}
\end{align*} \begin{gathered}
\widetilde{C} \\
E_{1}
\end{gathered} E_{2} \quad E_{3}
$$

Proof. Let $C$ be the cubic curve as in Definition 6.27. We proved in Lemma 4.3.6 that the divisor $2 C$ is a hyperplane section of $S$.
By Lemma 6.3.6, we have

$$
\begin{equation*}
\widetilde{C}^{2}=0 \tag{6.33}
\end{equation*}
$$

The cubic curve $C$ and the singular line $l$ of $Q$ both lie on the plane $\Pi$. By Bezout's Theorem, we have: $C . l=\sum_{p \in C \cap l}(C . l)_{p}=3$. Since the singularities of $S$ lying on $l$ are three $\mathbf{A}_{1}$ singularities $p_{1}, p_{2}$, and $p_{3}$, we deduce $(C . l)_{p_{i}}=1(i=1,2,3)$.
Since $C$ contains no singularity of $S$ different from $p_{1}, p_{2}$, and $p_{3}$, the pull-back $\pi^{*}(2 C)$ on $\widetilde{S}$ is supported on the union of $\widetilde{C}$ with the strict transforms $E_{1}, E_{2}$, and $E_{3}$ in $\widetilde{S}$ of the exceptional curves of the minimal resolution of $p_{1}, p_{2}$, and $p_{3}$.
For $i=1,2,3$, let $\pi^{(i)}: S^{(i)} \rightarrow S^{(i-1)}$ be the successive blowing-up of $S^{(i-1)}$ in $p_{i}$ with $S^{(0)}:=S$ and exceptional divisors $E_{S}^{(i)} \subseteq S^{(i)}$. Then, $E_{i}=\widetilde{E_{S}^{(i)}}$ is the strict transform of $E_{S}^{(i)}$ in $\widetilde{S}$ under the minimal resolution $\pi$ of all singularities on $S$. Since the singularities $p_{1}, p_{2}$, and $p_{3}$ are of type $\mathbf{A}_{1}$, the $E_{i}$ are irreducible curves with

$$
\begin{equation*}
E_{i}^{2}=-2 \tag{6.34}
\end{equation*}
$$

By Lemma 6.3.7, we have

$$
\begin{equation*}
\widetilde{C} \cdot E_{i}=1 \tag{6.35}
\end{equation*}
$$

Further, since the singularities $p_{1}, p_{2}$, and $p_{3}$ are isolated from each other,

$$
\begin{equation*}
E_{i} . E_{j}=0 \quad \text { for } i \neq j \tag{6.36}
\end{equation*}
$$

We have

$$
h_{\mathbf{D}_{4}}:=\pi^{*}(2 C)=2 \widetilde{C}+r_{1} E_{1}+r_{2} E_{2}+r_{2} E_{3} \in \operatorname{Div}(\widetilde{S})
$$

where $r_{1}, r_{2}, r_{3}$ are non-negative integers. The divisor $h_{\mathbf{D}_{4}}$ has degree 6 by Lemma 4.2.2. On the other hand, the divisor $h:=2 \widetilde{C}+E_{1}+E_{2}+E_{3}$ has degree 6, as well. Let $h^{\prime}:=\left(r_{1}-1\right) E_{1}+\left(r_{2}-1\right) E_{2}+\left(r_{3}-1\right) E_{3}$. For all $i=1,2,3$, we have $h . E_{i}=0$. Hence, $h . h^{\prime}=0$. This gives

$$
\begin{equation*}
6=h_{\mathbf{D}_{4}}^{2}=h^{2}+2 h \cdot h^{\prime}+h^{\prime 2}=6+h^{\prime 2} . \tag{6.37}
\end{equation*}
$$

Since $h^{\prime}$ is contained in the negative definite lattice $A_{1} \oplus A_{1} \oplus A_{1}$, equation (6.37) can only hold if $h^{\prime}$ is trivial. Consequently,

$$
h=h_{\mathbf{D}_{4}}=2 \widetilde{C}+E_{1}+E_{2}+E_{3}
$$

and by equations (6.33), (6.34), (6.35), and (6.36), the lattice with basis $\widetilde{C}, E_{1}, E_{2}$, and $E_{3}$ has with respect to this basis the intersection matrix (6.32).
6.3.3.3 Assumption: $\mathbf{T}=\mathbf{D}_{n}\left(\right.$ thus $\left.\sigma(\mathbf{T})=\mathbf{A}_{1}+\mathbf{D}_{n-2}(n \geq 5)\right)$

We prove Proposition 6.2.1 in case corank $(Q)=2, \mathbf{T}=\mathbf{D}_{n}(n \geq 5)$, and thus $\sigma\left(\mathbf{D}_{n}\right)=$ $\mathbf{A}_{1}+\mathbf{D}_{n-2}\left(\right.$ where $\left.\mathbf{D}_{3}:=\mathbf{A}_{3}\right)$ :

Proposition 6.3.9. Let $S$ be the complete (2,3)-intersection of a quadric $Q$ and a cubic $Y$ in $\mathbb{P}^{4}$ such that $S$ has only isolated $A D E$ singularities and let $\pi: \widetilde{S} \rightarrow S$ be the minimal resolution of all singularities on $S$.

Assume that $Q$ has corank 2 in $\mathbb{P}^{4}$ and the singularities of $S$ lying on the singular line $l$ of $Q$ are of type $\mathbf{A}_{1}+\mathbf{D}_{n-2}$.
Let $C$ be the plane cubic curve on $S$ and $\widetilde{C}$ the strict transform of $C$ under $\pi$ in $\widetilde{S}$ as in (6.27).

Then, for the hyperplane section $2 C$ of $S$, we have

$$
h_{\mathbf{D}_{n}}:=\pi^{*}(2 C)=2 \widetilde{C}+E_{1}+2 E_{2}+\ldots+2 E_{n-3}+E_{n-2}+E_{n-1}
$$

on $\widetilde{S}$, where $E_{1}, \ldots, E_{n-1}$ are $(-2)$-curves on $\widetilde{S}$. Consequently, the lattice in $\operatorname{Div}(\widetilde{S})$ with basis $\widetilde{C}, E_{1}, \ldots, E_{n-1}$ has the intersection matrix:

$$
\begin{gather*}
 \tag{6.38}\\
\widetilde{C} \\
E_{1} \\
E_{2} \\
E_{3} \\
\vdots \\
E_{n-3} \\
E_{n-2} \\
E_{n-1}
\end{gathered} \underbrace{}_{A_{1}} \begin{gathered}
\widetilde{C} \\
A_{1}
\end{gather*} E_{2} \quad E_{3} \cdots \cdots \cdots \cdots \cdots E_{n-3} E_{n-2} E_{n-1}
$$

Proof. We proved in Lemma 4.3.6 that $2 C$ is a hyperplane section of $S$.
By Lemma 6.3.6, we have

$$
\begin{equation*}
\widetilde{C}^{2}=0 \tag{6.39}
\end{equation*}
$$

By assumption, the only singularities of $S$ lying on the singular line $l$ of the quadric $Q$ are an $\mathbf{A}_{1}$ singularity $p_{1}$ and a $\mathbf{D}_{n-2}$ singularity $p_{2}$. Moreover, by choice of $C$ in (6.27), $p_{1}$ and $p_{2}$ are the only singularities of $S$ contained in $C$. Hence, the pull-back $\pi^{*}(2 C)$ to $\widetilde{S}$ is supported on the union of $\widetilde{C}$ with the exceptional divisors $\pi^{-1}\left(p_{1}\right)$ and $\pi^{-1}\left(p_{2}\right)$ of the minimal resolution of $p_{1}$ and $p_{2}$, respectively. The exceptional divisors $\pi^{-1}\left(p_{1}\right) \in \operatorname{Div}(\widetilde{S})$ of the $\mathbf{A}_{1}$ singularity $p_{1}$ is supported on an irreducible curve $E_{1}$ such that

$$
\begin{equation*}
E_{1}^{2}=-2 \tag{6.40}
\end{equation*}
$$

The exceptional divisor $\pi^{-1}\left(p_{2}\right) \in \operatorname{Div}(\widetilde{S})$ of the $\mathbf{D}_{n-2}$ singularity $p_{2}$ is supported on the union of the irreducible curves $E_{2}, \ldots, E_{n-1}$ in $\widetilde{S}$ whose corresponding weighted graph is a Dynkin diagram of type $\mathcal{D}_{n-2}$ and we chose the notation such that this is the graph in Figure 6.2.


Figure 6.2: Dynkin diagram corresponding to the $\mathbf{D}_{n-2}$ singularity $p_{2}$ on $C$.
Further, since $p_{1}$ and $p_{2}$ are isolated

$$
\begin{equation*}
E_{1} \cdot E_{j}=0 \quad \text { for all } j=2, \ldots, n-1 \tag{6.41}
\end{equation*}
$$

The cubic curve $C$ and the singular line $l$ of $Q$ both lie on the plane $\Pi$. By Bezout's Theorem, we have $C . l=\sum_{p \in C \cap l}(C . l)_{p}=3$. Since an $\mathbf{A}_{1}$ singularity is resolved after one blowing-up, Lemma 4.4.5 implies that $(C . l)_{p_{1}}=1$ and hence $(C . l)_{p_{2}}=2$.
Let $\pi^{(1)}:\left(\mathbb{P}^{4}\right)^{(1)} \rightarrow \mathbb{P}^{4}$ be the blowing-up of $\mathbb{P}^{4}$ in the $\mathbf{A}_{1}$ singularity $p_{1}$ with exceptional divisor $E_{\mathbb{P}^{4}}^{(1)}$ and $S^{(1)}$ the strict transform of $S$ in $\left(\mathbb{P}^{4}\right)^{(1)}$ under $\pi^{(1)}$. Let $E_{S}^{(1)}:=E_{\mathbb{P}^{4}}^{(1)} \cap S^{(1)}$. Let $\widetilde{E_{S}^{(1)}}$ be the strict transform of $E_{S}^{(1)}$ in $\widetilde{S}$. Then, $E_{1}=\widetilde{E_{S}^{(1)}}$ and by Lemma 6.3.7

$$
\begin{equation*}
\widetilde{C} \cdot E_{1}=1 \tag{6.42}
\end{equation*}
$$

Let $\pi^{(2)}:\left(\mathbb{P}^{4}\right)^{(2)} \rightarrow\left(\mathbb{P}^{4}\right)^{(1)}$ be the blowing-up of $\left(\mathbb{P}^{4}\right)^{(1)}$ in the $\mathbf{D}_{n-2}$ singularity $p_{2}$ with exceptional divisor $E_{\mathbb{P}^{4}}^{(2)}$ and $C^{(2)}$ and $l^{(2)}$ the strict transforms of $C^{(1)}$ and $l^{(1)}$ in $\left(\mathbb{P}^{4}\right)^{(2)}$ under $\pi^{(2)}$, respectively. Let $p_{2}^{(2)} \in C^{(2)} \cap l^{(2)} \cap E_{\mathbb{P}^{4}}^{(2)}$ and let $\pi^{(3)}:\left(\mathbb{P}^{4}\right)^{(3)} \rightarrow\left(\mathbb{P}^{4}\right)^{(2)}$ be the blowing-up of $\left(\mathbb{P}^{4}\right)^{(2)}$ in $p_{2}^{(2)}$ with exceptional divisor $E_{\mathbb{P}^{4}}^{(3)}$. Let $S^{(3)}, C^{(3)}$, and $l^{(3)}$ be the strict transforms of $S^{(2)}, C^{(2)}$, and $l^{(2)}$ in $\left(\mathbb{P}^{4}\right)^{(3)}$ under $\pi^{(3)}$, respectively, and let $E_{S}^{(3)}:=E_{\mathbb{P}^{4}}^{(3)} \cap S^{(3)}$. For $i=2,3$, let $\widetilde{E_{S}^{(i)}}$ be the strict transform of $E_{S}^{(i)}$ in $\widetilde{S}$. We have by Lemma 6.3.7

$$
\begin{equation*}
\widetilde{C} \cdot \widetilde{E_{S}^{(3)}}=1 \quad \text { and } \quad \widetilde{C} \cdot \widetilde{E_{S}^{(2)}}=0 \tag{6.43}
\end{equation*}
$$

and $C^{(3)}$ is contained in the smooth locus of $S^{(3)}$. Consequently, $\widetilde{C}$ intersects only the divisor $\widetilde{E_{S}^{(3)}} \in \operatorname{Div}(\widetilde{S})$ in $\pi^{-1}\left(p_{2}\right)$. Hence, we need to determine to which of the curves $E_{i}$ in Figure 6.2 the divisor $\widetilde{E_{S}^{(3)}}$ corresponds.

If $n=5$, the singularity $p_{2}$ has type $\mathbf{D}_{n-2}=\mathbf{A}_{3}$. Therefore, the exceptional divisor $E_{S}^{(2)}$ of the blowing-up of $p_{2}$ is the union of two irreducible curves $E_{S, 1}^{(2)}$ and $E_{S, 2}^{(2)}$ intersecting in a singularity of type $\mathbf{A}_{1}$. This must be the singularity $p_{2}^{(2)}$ on $S^{(2)}$ contained in $C^{(2)}$ and $l^{(2)}$. The exceptional divisor $E_{S}^{(3)}$ of the blowing-up of $p_{2}^{(2)}$ is irreducible and separates the strict transforms $E_{S, 1}^{(2,3)}$ and $E_{S, 2}^{(2,3)}$ in $S^{(3)}$ of $E_{S, 1}^{(2)}$ and $E_{S, 2}^{(2)}$, respectively. The strict transforms $\widetilde{E_{S}^{(3)}}, \widetilde{E_{S, 1}^{(2,3)}}$, and $\widetilde{E_{S, 2}^{(2,3)}}$ in $\widetilde{S}$ of $E_{S}^{(3)}, E_{S, 1}^{(2,3)}$, and $E_{S, 2}^{(2,3)}$, respectively, then are the vertices of a Dynkin diagram of type $\mathcal{A}_{3}$, see Figure 6.3 for an illustration of the blowing-up process.


Figure 6.3: Blowing-up over the $\mathbf{A}_{1}$ and $\mathbf{A}_{3}$ singularity on $C$.

In particular, we see that $\widetilde{E_{S}^{(3)}}=E_{2}, \widetilde{E_{S, 1}^{(2,3)}}=E_{3}$, and $\widetilde{E_{S, 2}^{(2,3)}}=E_{4}$ in Figure 6.2 after exchanging possibly $E_{3}$ by $E_{4}$. Further, $E_{S}^{(1)}=E_{1}$.
If $n=6$, the singularity $p_{2}$ has type $\mathbf{D}_{n-2}=\mathbf{D}_{4}$. Therefore, the exceptional divisor $E_{S}^{(2)}$ of the blowing-up of $p_{2}$ is one irreducible curve on which lie three $\mathbf{A}_{1}$ singularities of $S^{(2)}$. One of these must be the singularity $p_{2}^{(2)}$ contained in $C^{(2)}$ and $l^{(2)}$. The exceptional divisor $E_{S}^{(3)}$ of the blowing-up of $p_{2}^{(2)}$ is irreducible and intersects the strict transform $E_{S}^{(2,3)}$ of $E_{S}^{(2)}$ in $S^{(3)}$ on which the two $\mathbf{A}_{1}$ singularities which have not been blown-up are lying, see Figure 6.4 for an illustration of the blowing-up process.


Figure 6.4: Blowing-up over the $\mathbf{A}_{1}$ and $\mathbf{D}_{4}$ singularity on $C$.

In particular, we have $\widetilde{E_{S}^{(3)}}=E_{2}$ and $\widetilde{E_{S}^{(2)}}=E_{3}$ in Figure 6.2 after exchanging possibly $E_{2}$ by $E_{4}$ or $E_{5}$. Further, $\widetilde{E_{S}^{(1)}}=E_{1}$.

Assume finally that $n \geq 7$ and the singularity $p_{2}$ has type $\mathbf{D}_{n-2}$. Therefore, the exceptional divisor $E_{S}^{(2)}$ of the blowing-up of $p_{2}$ is one irreducible curve on which lie an $\mathbf{A}_{1}$ singularity
and a $\mathbf{D}_{n-2}$ singularity of $S^{(2)}$. One of these must be the singularity $p_{2}^{(2)}$ contained in $C^{(2)}$ and $l^{(2)}$. By Lemma 4.4.5, $\left(C^{(2)} . l^{(2)}\right)_{p_{2}^{(2)}}=1$ and hence $p_{2}^{(2)}$ is of type $\mathbf{A}_{1}$.

The exceptional divisor $E_{S}^{(3)}$ of the blowing-up of $p_{2}^{(2)}$ is irreducible and intersects the strict transform $E_{S}^{(2,3)}$ of $E_{S}^{(2)}$ in $S^{(3)}$ on which the $\mathbf{D}_{n-4}$ singularity which has not been blown-up yet is lying, see Figure 6.5 for an illustration of the blowing-up process.


Figure 6.5: Blowing-up over the $\mathbf{A}_{1}$ and $\mathbf{D}_{n-2}(n \geq 7)$ singularity on $C$.

In particular, $\widetilde{E_{S}^{(2)}}=E_{3}$ and $\widetilde{E_{S}^{(3)}}=E_{2}$ as in Figure 6.2, and $\widetilde{E_{S}^{(1)}}=E_{1}$.
In conclusion, for all $n \geq 3$, we have

$$
\begin{equation*}
\widetilde{C} \cdot E_{1}=\widetilde{C} \cdot E_{2}=1, \text { and } \widetilde{C} \cdot E_{i}=0 \quad \text { for } i=3, \ldots, n-1 \tag{6.44}
\end{equation*}
$$

Then,
$h_{\mathbf{D}_{n \geq 5}}:=\pi^{*}(2 C)=2 \widetilde{C}+r_{1} E_{1}+r_{2} E_{2}+\ldots+r_{n-4} E_{n-4}+r_{n-3} E_{n-3}+r_{n-2} E_{n-2}+r_{n-1} E_{n-1}$,
where $r_{1}, \ldots, r_{n-1}$ are positive integers. By Lemma 4.2.2, $h_{\mathbf{D}_{n \geq 5}}$ has degree 6. For $h=$ $2 \widetilde{C}+E_{1}+2 E_{2}+\ldots+2 E_{n-4}+2 E_{n-3}+E_{n-2}+E_{n-1} \in \operatorname{Div}(\widetilde{S})$, we have $h^{2}=6$. As in (6.26), we show that $h^{\prime}=\left(r_{1}-1\right) E_{1}+\left(r_{2}-1\right) E_{2}+\ldots+\left(r_{n-4}-1\right) E_{n-4}+\left(r_{n-3}-\right.$ 1) $E_{n-3}+\left(r_{n-2}-1\right) E_{n-2}+\left(r_{n-1}-1\right) E_{n-1} \in \operatorname{Div}(\widetilde{S})$ must be trivial since it is contained in the negative definite lattice $A_{1} \oplus D_{n-2}$. Hence,

$$
h_{\mathbf{D}_{n \geq 5}}=h=2 \widetilde{C}+E_{1}+2 E_{2}+\ldots+2 E_{n-4}+2 E_{n-3}+E_{n-2}+E_{n-1}
$$

and by equations (6.39), (6.41), (6.44), and the intersection numbers in Figure 6.2, the lattice with basis $\widetilde{C}, E_{1}, E_{2}, \ldots, E_{n-1}$ has with respect to this basis the intersection matrix (6.38).

### 6.3.3.4 Assumption: $\mathbf{T}=\mathbf{E}_{6}, \mathbf{E}_{7}$, or $\mathbf{E}_{8}$ (thus $\sigma(\mathbf{T})=\mathbf{A}_{5}, \mathbf{D}_{6}$, or $\mathbf{E}_{7}$, respectively)

Then, $S$ contains exactly one singularity $p$ of type $\mathbf{A}_{5}, \mathbf{D}_{6}$, or $\mathbf{E}_{7}$ on the singular locus $l$ of $Q$. Both $C$ and $l$ lie in the plane $\Pi$. By Bezout's Theorem, $C$ and $l$ intersect in $p$ with multiplicity three, i.e. $(C . l)=(C . l)_{p}=3$.
6.3.3.5 Assumption: $\mathbf{T}=\mathbf{E}_{6}$ (thus $\sigma(\mathbf{T})=\mathbf{A}_{5}$ )

We prove Proposition 6.2.1 in case $\operatorname{corank}(Q)=2, \mathbf{T}=\mathbf{E}_{6}$, and thus $\sigma\left(\mathbf{E}_{6}\right)=\mathbf{A}_{5}$ :

Proposition 6.3.10. Let $S$ be the complete (2,3)-intersection of a quadric $Q$ and a cubic $Y$ in $\mathbb{P}^{4}$ such that $S$ has only isolated $A D E$ singularities and let $\pi: \widetilde{S} \rightarrow S$ be the minimal resolution of all singularities on $S$.

Assume that $Q$ has corank 2 in $\mathbb{P}^{4}$ and the singularities of $S$ lying on the singular line $l$ of $Q$ are of type $\mathbf{A}_{5}$.
Let $C$ be the plane cubic curve on $S$ and $\widetilde{C}$ the strict transform of $C$ under $\pi$ in $\widetilde{S}$ as in (6.27).
Then, for the hyperplane section $2 C$ of $S$, we have $h_{\mathbf{E}_{6}}:=\pi^{*}(2 C)=2 \widetilde{C}+E_{1}+2 E_{2}+$ $3 E_{3}+2 E_{4}+E_{5} \in \operatorname{Div}(\widetilde{S})$ on $\widetilde{S}$, where $E_{1}, \ldots, E_{5}$ are $(-2)$-curves on $\widetilde{S}$. The lattice in $\operatorname{Div}(\widetilde{S})$ with basis $\widetilde{C}, E_{1}, \ldots, E_{5}$ has the intersection matrix:

$$
\begin{align*}
&  \tag{6.45}\\
& \widetilde{C} \\
& E_{1} \\
& E_{2} \\
& E_{3} \\
& E_{4} \\
& E_{5}
\end{align*}\left(\begin{array}{c}
\widetilde{C} \\
E_{1} \\
E_{2}
\end{array} E_{3} \begin{array}{c}
E_{4} \\
E_{5} \\
0 \\
0 \\
0 \\
\begin{array}{rrrrrr} 
& 0 & 0 & 1 & 0 & 0 \\
\hline-2 & 1 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 1 & -2 \\
\hline
\end{array}
\end{array}\right)
$$

Proof. We proved in Lemma 4.3.6 that $2 C$ is a hyperplane section of $S$.
By Lemma 6.3.6, we have

$$
\begin{equation*}
\widetilde{C}^{2}=0 \tag{6.46}
\end{equation*}
$$

By assumption, the only singularity of $S$ lying on the singular line $l$ of $Q$ is an $\mathbf{A}_{5}$ singularity $p$. Since $C$ contains by choice no singularity of $S$ different from $p$, the pull-back $\pi^{*}(2 C)$ is supported on the union of $\widetilde{C}$, and the exceptional divisor $\pi^{-1}(p)$ of the minimal resolution of $p$, i.e. the union of the smooth irreducible curves $E_{1}, \ldots, E_{5}$ intersecting in a Dynkin diagram of type $\mathcal{A}_{5}$ and we chose the notation such that this is the graph in Figure 6.6.


Figure 6.6: Dynkin diagram corresponding to the $\mathbf{A}_{5}$ singularity $p$.
We use Notation 4.4.4 for $m=3$.
By Lemma 6.3.7, we have

$$
\widetilde{C} \cdot \widetilde{E_{S}^{(3)}}=1 \quad \text { and } \quad \widetilde{C} \cdot \widetilde{E_{S}^{(1)}}=\widetilde{C} \cdot \widetilde{E_{S}^{(2)}}=0
$$

We now determine to which of the curves $E_{i}$ in Figure 6.6 the divisor $\widetilde{E_{S}^{(3)}}$ corresponds. By Table 1.1 and our knowledge of the exceptional divisors of $A D E$ singularities in Theorem 1.2.1:

1. The exceptional divisor $E_{S}^{(1)}$ of the blowing-up of $S$ in the $\mathbf{A}_{5}$ singularity $p$ contains only the $\mathbf{A}_{3}$ singularity $p^{(1)}$ and $E_{S}^{(1)}$ is the union of two irreducible curves $E_{S}^{(1)}=$ $E_{1, S}^{(1)} \cup E_{5, S}^{(1)}$ intersecting in $p^{(1)}$.
2. The exceptional divisor $E_{S}^{(2)}$ of the blowing-up of $S^{(1)}$ in the $\mathbf{A}_{3}$ singularity $p^{(1)}$ contains an $\mathbf{A}_{1}$ singularity $p^{(2)}$ and the divisor $E_{S}^{(2)}$ is the union of two irreducible curves $E_{S}^{(2)}=E_{2, S}^{(2)} \cup E_{4, S}^{(2)}$ intersecting in $p^{(2)}$.
3. The exceptional divisor $E_{S}^{(3)}$ of the blowing-up of $S^{(2)}$ in the $\mathbf{A}_{1}$ singularity $p^{(2)}$ is contained in the smooth locus of $S^{(3)}$ and the divisor $E_{S}^{(3)}$ is irreducible.

See Figure 6.7 for an illustration of the blowing-up process.


Figure 6.7: Blowing-up over the $\mathbf{A}_{5}$ singularity $p$ on $C$.

Hence, we see that

$$
\widetilde{E_{1, S}^{(1)}}=E_{1}, \quad \widetilde{E_{5, S}^{(1)}}=E_{5}, \quad \widetilde{E_{2, S}^{(2)}}=E_{2}, \quad \widetilde{E_{4, S}^{(2)}}=E_{4}, \quad \widetilde{E_{S}^{(3)}}=E_{3}
$$

in Figure 6.6 up to exchanging $E_{1}$ by $E_{5}$ and $E_{2}$ by $E_{4}$ if necessary, i.e.

$$
\begin{equation*}
\widetilde{C} \cdot E_{3}=1 \quad \text { and } \quad \widetilde{C} \cdot E_{i}=0 \quad(i=1,2,4,5) \tag{6.47}
\end{equation*}
$$

Then,

$$
h_{\mathbf{E}_{6}}:=\pi^{*}(2 C)=2 \widetilde{C}+r_{1} E_{1}+r_{2} E_{2}+r_{3} E_{3}+r_{4} E_{4}+r_{5} E_{5}
$$

where $r_{1}, \ldots, r_{5}$ are positive integers and $h_{\mathbf{E}_{6}}^{2}=6$ by Lemma 4.2.2. For $h:=2 \widetilde{C}+E_{1}+$ $2 E_{2}+3 E_{3}+2 E_{4}+E_{5}$, we have $h^{2}=6$. As in (6.26), we show that $h^{\prime}=\left(r_{1}-1\right) E_{1}+\ldots+$ $\left(r_{5}-1\right) E_{5} \in \operatorname{Div}(\widetilde{S})$ must be trivial since it is contained in the negative definite lattice $A_{5}$. Hence,

$$
h_{\mathbf{E}_{6}}=h=2 \widetilde{C}+E_{1}+2 E_{2}+3 E_{3}+2 E_{4}+E_{5} .
$$

By equations (6.46), (6.47), and the intersection numbers in Figure 6.6, the lattice with basis $\widetilde{C}, E_{1}, \ldots, E_{5}$ has with respect to this basis the intersection matrix (6.45).

### 6.3.3.6 Assumption: $\mathbf{T}=\mathbf{E}_{7}$ (thus $\sigma(\mathbf{T})=\mathbf{D}_{6}$ )

We prove Proposition 6.2.1 in case corank $(Q)=2, \mathbf{T}=\mathbf{E}_{7}$, and thus $\sigma\left(\mathbf{E}_{7}\right)=\mathbf{D}_{6}$ :
Proposition 6.3.11. Let $S$ be the complete (2,3)-intersection of a quadric $Q$ and a cubic $Y$ in $\mathbb{P}^{4}$ such that $S$ has only isolated $A D E$ singularities and let $\pi: \widetilde{S} \rightarrow S$ be the minimal resolution of all singularities on $S$.

Assume that $Q$ has corank 2 in $\mathbb{P}^{4}$ and the singularities of $S$ lying on the singular line $l$ of $Q$ are of type $\mathbf{D}_{6}$.

Let $C$ be the plane cubic curve on $S$ and $\widetilde{C}$ the strict transform of $C$ under $\pi$ in $\widetilde{S}$ as (6.27).
Then, for the hyperplane section $2 C$ of $S$, we have

$$
h_{\mathbf{E}_{7}}:=\pi^{*}(2 C)=2 \widetilde{C}+E_{1}+2 E_{2}+3 E_{3}+4 E_{4}+2 E_{5}+3 E_{6}
$$

on $\widetilde{S}$, where $E_{1}, \ldots, E_{6}$ are $(-2)$-curves on $\widetilde{S}$. The lattice in $\operatorname{Div}(\widetilde{S})$ with basis $\widetilde{C}, E_{1}, \ldots, E_{6}$ has the intersection matrix:

Proof. We proved in Lemma 4.3.6 that $2 C$ is a hyperplane section of $S$.
By Lemma 6.3.6, we have

$$
\begin{equation*}
\widetilde{C}^{2}=0 \tag{6.49}
\end{equation*}
$$

By assumption, the only singularity of $S$ lying on the singular line $l$ of $Q$ is a $\mathbf{D}_{6}$ singularity $p$. Since $C$ contains by choice no singularity of $S$ different from $p$, the pull-back $\pi^{*}(2 C)$ is supported on the union of $\widetilde{C}$, and the exceptional divisor $\pi^{-1}(p)$ of the minimal resolution of $p$, i.e. the union of the smooth irreducible curves $E_{1}, \ldots, E_{6}$ intersecting in the Dynkin diagram of type $\mathcal{D}_{6}$ and we chose the notation such that this is the graph in Figure 6.8.


Figure 6.8: Dynkin diagram corresponding to the $\mathbf{D}_{6}$ singularity $p$ on $C$.
We use Notation 4.4.4 for $m=3$.
By Lemma 6.3.7, we have

$$
\widetilde{C} \cdot \widetilde{E_{S}^{(3)}}=1 \quad \text { and } \quad \widetilde{C} \cdot \widetilde{E_{S}^{(1)}}=\widetilde{C} \cdot \widetilde{E_{S}^{(2)}}=0
$$

We now determine to which curve $E_{i}$ in Figure 6.8 the divisor $\widetilde{E_{S}^{(3)}}$ corresponds. By Table 1.1 and our knowledge of the exceptional divisors of $A D E$ singularities in Theorem 1.2.1:

1. The exceptional divisor $E_{S}^{(1)}$ of the blowing-up $S^{(1)}$ of $S$ in $p$ is irreducible and contains a $\mathbf{D}_{4}$ singularity and an $\mathbf{A}_{1}$ singularity. We claim that $p^{(1)}$ must be of type $\mathbf{D}_{4}$. Indeed, if $p^{(1)} \in C^{(1)} \cap l^{(1)} \cap E_{\mathbb{P}^{4}}^{(1)}$ was of type $\mathbf{A}_{1}$, the strict transform $C^{(2)}$ of $C$ in $S^{(2)}$ would be contained in the smooth locus of $S^{(2)}$ but by Lemma 4.4.5 this is not the case since $C^{(2)} . l^{(2)}=1$.
2. The exceptional divisor $E_{S}^{(2)}$ of the blowing-up $S^{(2)}$ of $S^{(1)}$ in $p^{(1)}$ is irreducible and contains three $\mathbf{A}_{1}$ singularities. One of these $\mathbf{A}_{1}$ singularities, say $p^{(2)}$, is contained in the strict transform $C^{(2)}$ of $C^{(1)}$ in $S^{(2)}$ since $C^{(2)}$ is not contained in the smooth locus of $S^{(2)}$, again by Lemma 4.4.5.
3. The exceptional divisor $E_{S}^{(3)}$ of the blowing-up $S^{(3)}$ of $S^{(2)}$ in the $\mathbf{A}_{1}$ singularity $p^{(2)}$ is irreducible and smooth.

See Figure 6.9 for an illustration of the blowing-up process.


Figure 6.9: Blowing-up over the $\mathbf{D}_{6}$ singularity $p$ on $C$.
Hence, $\widetilde{E_{S}^{(3)}}=E_{6}, \widetilde{E_{S}^{(2)}}=E_{4}$, and $\widetilde{E_{S}^{(1)}}=E_{2}$ in Figure 6.8 after exchanging possibly $E_{6}$ by $E_{5}$ so

$$
\begin{equation*}
\widetilde{C} \cdot E_{6}=1 \quad \text { and } \quad \widetilde{C} \cdot E_{i}=0 \quad(i=1, \ldots, 5) . \tag{6.50}
\end{equation*}
$$

Then,

$$
h_{\mathbf{E}_{7}}:=\pi^{*}(2 C)=2 \widetilde{C}+r_{1} E_{1}+r_{2} E_{2}+r_{3} E_{3}+r_{4} E_{4}+r_{5} E_{5}+r_{6} E_{6},
$$

where $r_{1}, \ldots, r_{6}$ are positive integers and $h_{\mathbf{E}_{7}}^{2}=6$ by Lemma 4.2.2. For $h:=2 \widetilde{C}+$ $E_{1}+2 E_{2}+3 E_{3}+4 E_{4}+2 E_{5}+3 E_{6}$, we have $h^{2}=6$. As in (6.26), we show that $h^{\prime}=$ $\left(r_{1}-1\right) E_{1}+\ldots+\left(r_{6}-1\right) E_{6} \in \operatorname{Div}(\widetilde{S})$ must be trivial since it is contained in the negative definite lattice $D_{6}$. Hence,

$$
h_{\mathbf{E}_{7}}=h=2 \widetilde{C}+E_{1}+2 E_{2}+3 E_{3}+4 E_{4}+2 E_{5}+3 E_{6} .
$$

By equations (6.49), (6.50), and the intersection numbers in Figure 6.8, the lattice with basis $\widetilde{C}, E_{1}, \ldots, E_{6}$ has with respect to this basis the intersection matrix (6.48).

### 6.3.3.7 Assumption: $\mathbf{T}=\mathbf{E}_{8}$ (thus $\sigma\left(\mathbf{E}_{8}\right)=\mathbf{E}_{7}$ )

We prove Proposition 6.2.1 in case $\operatorname{corank}(Q)=2, \mathbf{T}=\mathbf{E}_{8}$, and thus $\sigma\left(\mathbf{E}_{8}\right)=\mathbf{E}_{7}$ :
Proposition 6.3.12. Let $S$ be the complete (2,3)-intersection of a quadric $Q$ and a cubic $Y$ in $\mathbb{P}^{4}$ such that $S$ has only isolated $A D E$ singularities and let $\pi: \widetilde{S} \rightarrow S$ be the minimal resolution of all singularities on $S$.

Assume that $Q$ has corank 2 in $\mathbb{P}^{4}$ and the singularities of $S$ lying on the singular line $l$ of $Q$ are of type $\mathbf{E}_{7}$.

Let $C$ be the plane cubic curve on $S$ and $\widetilde{C}$ the strict transform of $C$ under $\pi$ in $\widetilde{S}$ as in (6.27).

Then, for the hyperplane section $2 C$ of $S$, we have

$$
h_{\mathbf{E}_{8}}:=\pi^{*}(2 C)=2 \widetilde{C}+3 E_{1}+4 E_{2}+5 E_{3}+6 E_{4}+4 E_{5}+2 E_{6}+3 E_{7}
$$

on $\widetilde{S}$, where $E_{1}, \ldots, E_{7}$ are $(-2)$-curves on $\widetilde{S}$. The lattice in $\operatorname{Div}(\widetilde{S})$ with basis $\widetilde{C}, E_{1}, \ldots, E_{7}$ has, with respect to this basis, the intersection matrix:

Proof. We proved in Lemma 4.3.6 that $2 C$ is a hyperplane section of $S$.
By Lemma 6.3.6, we have

$$
\begin{equation*}
\widetilde{C}^{2}=0 \tag{6.52}
\end{equation*}
$$

By assumption, the only singularity of $S$ lying on the singular line $l$ of $Q$ is an $\mathbf{E}_{7}$ singularity $p$. Since $C$ contains by choice no singularity of $S$ different from $p$, the pull-back $\pi^{*}(2 C)$ is supported on the union of $\widetilde{C}$, and the exceptional divisor $\pi^{-1}(p)$ of the minimal resolution of $p$, i.e. the union of the smooth irreducible curves $E_{1}, \ldots, E_{7}$ intersecting in a Dynkin diagram of type $\mathcal{E}_{7}$ and we chose the notation such that this is the graph in Figure 6.10.


Figure 6.10: Dynkin diagram corresponding to the $\mathbf{E}_{7}$ singularity $p$ on $C$.
We use Notation 4.4.4 for $m=3$.
By Lemma 6.3.7, we have

$$
\widetilde{C} \cdot \widetilde{E_{S}^{(3)}}=1, \text { and } \quad \widetilde{C} \cdot \widetilde{E_{S}^{(1)}}=\widetilde{C} \cdot \widetilde{E_{S}^{(2)}}=0
$$

We now determine to which of the curves $E_{i}$ in Figure 6.10 the divisor $\widetilde{E_{S}^{(3)}}$ corresponds. By Table 1.1 and our knowledge of the exceptional divisors of $A D E$ singularities in Theorem 1.2.1:

1. The exceptional divisor $E_{S}^{(1)}$ of the blowing-up $S^{(1)}$ of $S$ in $p$ is irreducible and contains a $\mathbf{D}_{6}$ singularity $p^{(1)}$.
2. The exceptional divisor $E_{S}^{(2)}$ of the blowing-up $S^{(2)}$ of $S^{(1)}$ in $p^{(1)}$ is irreducible and contains an $\mathbf{A}_{1}$ singularity and a $\mathbf{D}_{4}$ singularity. Since $C^{(2)} . l^{(2)}=1$, the singularity $p^{(2)}$ has type $\mathbf{A}_{1}$ by Lemma 4.4.5.
3. The exceptional divisor $E_{S}^{(3)}$ of the blowing-up $S^{(3)}$ of $S^{(2)}$ in the $\mathbf{A}_{1}$ singularity $p^{(2)}$ is irreducible and smooth.

See Figure 6.11 for an illustration of the blowing-up process.


Figure 6.11: Blowing-up over the $\mathbf{E}_{7}$ singularity $p$ on $C$.
Hence, $E_{1}=\widetilde{E_{S}^{(3)}}, E_{2}=\widetilde{E_{S}^{(2)}}$ and $E_{7}=\widetilde{E_{S}^{(1)}}$ in Figure 6.10 so

$$
\begin{equation*}
\widetilde{C} \cdot E_{1}=1 \quad \text { and } \quad \widetilde{C} \cdot E_{i}=0 \quad(i=2, \ldots, 7) \tag{6.53}
\end{equation*}
$$

Then,

$$
h_{\mathbf{E}_{8}}:=\pi^{*}(2 C)=2 \widetilde{C}+r_{1} E_{1}+r_{2} E_{2}+r_{3} E_{3}+r_{4} E_{4}+r_{5} E_{5}+r_{6} E_{6}+r_{7} E_{7},
$$

where $r_{1}, \ldots, r_{7}$ are positive integers and $h_{\mathbf{E}_{8}}^{2}=6$ by Lemma 4.2.2. For $h:=2 \widetilde{C}+3 E_{1}+$ $4 E_{2}+5 E_{3}+6 E_{4}+4 E_{5}+2 E_{6}+3 E_{7}$, we have $h^{2}=6$. As in (6.26), we show that $h^{\prime}=\left(r_{1}-1\right) E_{1}+\ldots+\left(r_{7}-1\right) E_{7} \in \operatorname{Div}(\widetilde{S})$ must be trivial since it is contained in the negative definite lattice $E_{7}$. Hence,

$$
h_{\mathbf{E}_{8}}=h=2 \widetilde{C}+3 E_{1}+4 E_{2}+5 E_{3}+6 E_{4}+4 E_{5}+2 E_{6}+3 E_{7} .
$$

By equations (6.52), (6.53), and the intersection numbers in Figure 6.10, the lattice with basis $\widetilde{C}, E_{1}, \ldots, E_{7}$ has with respect to this basis the intersection matrix (6.51).

This finishes the proof of Proposition 6.2.1.
Remark 6.3.13. In the situation of Proposition 6.2.1, let $h_{\mathbf{T}}=\pi^{*}\left(C_{\mathbf{T}}\right) \in \operatorname{Div}(\widetilde{S})$ be the pull-back of the hyperplane section $C_{\mathbf{T}}$ of $S$ under the minimal resolution $\pi: \widetilde{S} \rightarrow S$ of all singularities on $S$. Let $Z$ be the fundamental cycle (see [BHPVdV04, Chap. III.3, p. 95]) which is supported on the exceptional divisor of the $A D E$ singularities of type $\sigma(\mathbf{T})$ of $S$ which are contained in $C_{\mathbf{T}}$. Then, we have $h_{\mathbf{T}} \geq Z$.

### 6.4 Proof of Main Theorem 1

$(1) \Rightarrow(2)$ : Let $X \subseteq \mathbb{P}^{5}$ be a cubic fourfold with only isolated $A D E$ singularities and such that one singularity $p$ of $X$ has type $\mathbf{T} \in\left\{\mathbf{A}_{i \geq 1}, \mathbf{D}_{j \geq 4}, \mathbf{E}_{8 \geq k \geq 6}\right\}$ and the combination of all other singularities of $X$ corresponds to $\mathbf{G}$.

Let $\left(x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}\right)$ be homogeneous coordinates on $\mathbb{P}^{5}$.
After a linear change of coordinates, we can assume that $p=(1: 0: 0: 0: 0: 0) \in \mathbb{P}^{5}$. By Lemma 5.1.1, $X$ then is defined by

$$
X: x_{0} f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)+f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=0 \subseteq \mathbb{P}^{5}
$$

where $f_{2}$ and $f_{3}$ are homogenous polynomials of degree 2 and 3 , respectively, defining a quadric $Q$ of $\operatorname{corank}(Q)=\operatorname{corank}_{\mathbf{T}}$ and a cubic $Y$ in $\mathbb{P}^{4}$. By Lemma 5.1.2,

$$
S_{p}: f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=0 \subseteq \mathbb{P}^{4}
$$

is a complete $(2,3)$-intersection in $\mathbb{P}^{4}$. Let $\pi_{p}: \mathrm{Bl}_{p} X \rightarrow X$ be the blowing-up of $X$ in $p$ with exceptional divisor $E:=\pi_{p}^{-1}(p)$ in $\mathrm{Bl}_{p} X$. Then, $\mathrm{Bl}_{p} X$ has on $E$ singularities of type $\sigma(\mathbf{T})$, where $\sigma(\mathbf{T})$ is as in Table 1.1 and the types of all singularities outside $E$ are given by G. Hence, by Corollary $5.2 .3, S_{p}$ has singularities of type $\sigma(\mathbf{T})$ lying on the singular locus of $Q$ and the combination of all other singularities of $S_{p}$ corresponds to $\mathbf{G}$.
$(2) \Rightarrow(1)$ : Let $S$ be a complete $(2,3)$-intersection of a quadric $Q$ and a cubic $Y$ in $\mathbb{P}^{4}$ such that the singularities of $S$ lying on the singular locus of $Q$ are of type $\sigma(\mathbf{T})$, where for $\mathbf{T} \in\left\{\mathbf{A}_{i \geq 1}, \mathbf{D}_{j \geq 4}, \mathbf{E}_{8 \geq k \geq 6}\right\}$ we let $\sigma(\mathbf{T})$ be as in Table 6.1 and such that the combination of all other singularities on $S$ corresponds to $\mathbf{G}$.
Let $\left(x_{1}: x_{2}: x_{3}: x_{4}: x_{5}\right)$ be homogeneous coordinates on $\mathbb{P}^{4}$.
Assume that $Q$ and $Y$ are defined by homogeneous polynomials $f_{2}$ and $f_{3}$ of degree 2 and 3 in $\mathbb{C}\left[x_{1}, \ldots, x_{5}\right]$, respectively, i.e.

$$
S=Q \cap Y: f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=0 \subseteq \mathbb{P}^{4}
$$

Let $\left(x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}\right)$ be homogeneous coordinates on $\mathbb{P}^{5}$.
We then define the cubic fourfold

$$
X: x_{0} f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)+f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=0 \subseteq \mathbb{P}^{5}
$$

Let $p:=(1: 0: 0: 0: 0: 0) \in \mathbb{P}^{5}$. Let $\pi_{p}: \mathrm{Bl}_{p} X \rightarrow X$ be the blowing-up of $X$ in $p$ with exceptional divisor $E:=\pi_{p}^{-1}(p) \subseteq \mathrm{Bl}_{p} X$. By Corollary 5.2.3, the singularities on $\mathrm{Bl}_{p} X \backslash E$ correspond to those singularities of $S$ that are not lying on the singular locus of $Q$ including their singularity type. Hence, the combination of all singularities of $X \backslash\{p\}$ corresponds to G. Further, again by Corollary 5.2.3, the singularities of $\mathrm{Bl}_{p} X$ on $E$ correspond to those singularities of $S$ that lie on the singular locus of $Q$ including their singularity type. Hence, $X$ has singularities of type $\sigma(\mathbf{T})$ on $E$ and therefore $p$ is a singularity of type $\mathbf{T}$ according to Table 1.1.
$(2) \Rightarrow(3)$ : Let $S$ be a complete (2,3)-intersection of a quadric $Q$ and a cubic $Y$ in $\mathbb{P}^{4}$ such that for $\mathbf{T} \in\left\{\mathbf{A}_{i \geq 1}, \mathbf{D}_{j \geq 4}, \mathbf{E}_{8 \geq k \geq 6}\right\}$ the singularities of $S$ lying on the singular locus of $Q$ are of type $\sigma(\mathbf{T})$ as in Table 6.1 and such that the combination of all other singularities on $S$ corresponds to $\mathbf{G}$. In particular, we see that $S$ has only isolated $A D E$ singularities. Let

$$
\pi: \widetilde{S} \rightarrow S
$$

be the minimal resolution of all singularities on $S$. By Lemma 4.2.2, $\widetilde{S}$ is a K3 surface. By Lemmas 4.3.4 and 4.3.7, for each choice of $\mathbf{T}$ there exists a hyperplane section $C_{\mathbf{T}}$
of $S$ passing only through the singularities of type $\sigma(\mathbf{T})$ of $S$ on the singular locus of $Q$. Further, by Proposition 6.2.1, $h_{\mathbf{T}}:=\pi^{*}\left(C_{\mathbf{T}}\right) \in \operatorname{Div}(\widetilde{S})$ is the formal sum of curves on $\widetilde{S}$ whose associated weighted graph is the graph $\Gamma_{\sigma(\mathbf{T})}$ in Table 6.1. Let $L_{\mathbf{T}}$ be the line bundle associated to the divisor $h_{\mathbf{T}}$ on $\widetilde{S}$, i.e. $L_{\mathbf{T}}=\pi^{*} \mathcal{O}_{S}(1) \in \operatorname{Pic}(\widetilde{S})$. By Lemma 4.2.2, $L_{\mathbf{T}}$ is nef and the induced map $\varphi_{L_{\mathbf{T}}}: \widetilde{S} \rightarrow \mathbb{P}^{4}$ is birational onto its image. The line bundles associated to the curves on $\widetilde{S}$ in Proposition 6.2 .1 with associated weighted graph $\Gamma_{\sigma(\mathbf{T})}$ generate a lattice $\Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)$ in $\operatorname{Pic}(\widetilde{S})$. The exceptional ( -2 -curves on $\widetilde{S}$ from the minimal resolution of the singularities of $S$ corresponding to G span a Dynkin diagram $\Gamma_{\mathbf{G}}$ according to Theorem 1.2.1. Let $\Lambda\left(\Gamma_{\mathbf{G}}\right)$ be the sublattice of $\operatorname{Pic}(\widetilde{S})$ defined by the line bundles associated to the exceptional ( -2 )-curves generating $\Gamma_{\mathbf{G}}$. Since all singularities on $S$ are isolated, we have an orthogonal direct $\operatorname{sum} \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right) \oplus \Lambda\left(\Gamma_{\mathbf{G}}\right)$ which is a sublattice of $\operatorname{Pic}(\widetilde{S})$. Let

$$
\phi: H^{2}(\widetilde{S}, \mathbb{Z}) \rightarrow L_{K 3}
$$

be a marking of $\widetilde{S}$. By restricting $\phi$, we obtain an embedding

$$
i: \Lambda\left(\Gamma_{\mathbf{G}}\right) \oplus \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right) \hookrightarrow L_{K 3}
$$

and the inclusion defines a primitive embedding $\iota$ of the saturation of $\Lambda\left(\Gamma_{\mathbf{G}}\right) \oplus \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)$ in the K3 lattice with respect to $i$ into the K3 lattice

$$
\iota: \operatorname{Sat}_{L_{K 3}}(i) \hookrightarrow L_{K 3} .
$$

We now show that Items (3a),(3b), and (3c) hold:
Let

$$
\Delta:=\{\mathcal{O}(C) \in \operatorname{Pic}(\widetilde{S}) ; C \text { irreducible curve in the exceptional divisor of } \pi\}
$$

and

$$
M:=\text { free } \mathbb{Z} \text {-module generated by } \Delta \text { in } \operatorname{Pic}(\widetilde{S})
$$

By definition, $M$ is a lattice isomorphic to $\Lambda(\sigma(\mathcal{T})) \oplus \Lambda\left(\Gamma_{\mathbf{G}}\right)$, where $\sigma(\mathcal{T})$ is the Dynkin diagram corresponding to the $A D E$ singularities $\sigma(\mathbf{T})$. Let

$$
R:=\left\{E \in M ; E^{2}=-2\right\}
$$

We have $L_{\mathbf{T}} \cdot E=0$ for all $E \in \Delta$ and hence also for all $E \in R$ since $\Delta$ is a basis of $M$ and $R \subseteq M$. Define further the root system

$$
R^{\prime}:=\left\{E \in \operatorname{Pic}(\widetilde{S}) ; L_{\mathbf{T}} \cdot E=0, E^{2}=-2\right\}
$$

We have $R \subseteq R^{\prime}$ and we claim that we even have an equality: Indeed, let

$$
\theta: \widetilde{S} \rightarrow S^{\prime}
$$

be the contraction of all (-2)-curves on $\widetilde{S}$ as in Definition 3.3.3. By Proposition 3.3.4, we have $S \cong S^{\prime}$, i.e. $R=R^{\prime}$.

Let $x \in \operatorname{Sat}_{L_{K 3}}(i)$ such that $i\left(h_{\mathbf{T}}\right) \cdot x=0$ and $x^{2}=-2$. We have

$$
F:=\phi^{-1}(x) \in \phi^{-1}\left(\operatorname{Sat}_{L_{K 3}}(i)\right)=\operatorname{Sat}_{H^{2}(\widetilde{S}, \mathbb{Z})}\left(\phi^{-1} \circ i\right)
$$

Hence, there is an integer $n \geq 1$ such that $n F \in \Lambda\left(\Gamma_{\mathbf{G}}\right) \oplus \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)$. However, we have a primitive embedding $\operatorname{Pic}(\widetilde{S}) \hookrightarrow H^{2}(\widetilde{S}, \mathbb{Z})$, i.e. $H^{2}(\widetilde{S}, \mathbb{Z}) / \operatorname{Pic}(\widetilde{S})$ is torsion free, and $\Lambda\left(\Gamma_{\mathbf{G}}\right) \oplus \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right) \subseteq \operatorname{Pic}(\widetilde{S})$. Hence, we obtain $F \in \operatorname{Pic}(\widetilde{S})$. Further, $L_{\mathbf{T}} . F=0$ and $F^{2}=-2$ since $\phi$ is an isometry, i.e. $F \in R^{\prime}=R \subseteq \Lambda\left(\Gamma_{\mathbf{G}}\right) \oplus \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)$. In conclusion, $x=\phi(F) \in \phi\left(\Lambda\left(\Gamma_{\mathbf{G}}\right) \oplus \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)\right)=i\left(\Lambda\left(\Gamma_{\mathbf{G}}\right) \oplus \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)\right)$, i.e. item (3a) holds.

The existence of elements $x, x^{\prime} \in \operatorname{Sat}_{L_{K 3}}(i)$ such that $x^{\prime 2}=x^{2}=0$ and $i\left(h_{\mathbf{T}}\right) \cdot x=1$ and $i\left(h_{\mathbf{T}}\right) \cdot x^{\prime}=2$ would imply the existence of line bundles $E:=\phi^{-1}(x), E^{\prime}:=\phi^{-1}\left(x^{\prime}\right) \in$ Sat $_{H^{2}(\widetilde{S}, \mathbb{Z})}\left(\phi^{-1} \circ i\right)$ such that $E^{2}=E^{\prime 2}=0$ and $L_{\mathbf{T}} \cdot E=1$ and $L_{\mathbf{T}} \cdot E^{\prime}=2$, respectively. As above, we have $E, E^{\prime} \in \operatorname{Pic}(\widetilde{S})$. However, Proposition 3.2.6 would then imply that $\varphi_{L_{\mathbf{T}}}$ does not map $\widetilde{S}$ birationally onto $S$ which is a contradiction. Consequently, items (3b) and (3c) hold, as well.

This concludes the proof of $(2) \Rightarrow(3)$.
$(3) \Rightarrow(2)$
This step in the proof is inspired by [Ura87, Theorem 1.15].
Let

$$
i: \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right) \oplus \Lambda\left(\Gamma_{\mathbf{G}}\right) \hookrightarrow L_{K 3}
$$

be an embedding and $\operatorname{Sat}_{L_{K 3}}(i)$ the saturation of $\Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right) \oplus \Lambda\left(\Gamma_{\mathbf{G}}\right)$ in $L_{K 3}$ with respect to $i$ such that that items (3a)-(3c) hold.
We construct a period point $\omega \in \Omega_{L_{K 3}}$ such that

$$
\begin{equation*}
\operatorname{Sat}_{L_{K 3}}(i)=\left\{x \in L_{K 3} ; \omega \cdot x=0\right\} \tag{6.54}
\end{equation*}
$$

The lattice $\Lambda\left(\Gamma_{\mathbf{G}}\right) \oplus \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)$ has to have rank $r \leq 22$ as it admits an embedding into $L_{K 3}$. Therefore, we must have $\mathbf{T} \in\left\{\mathbf{A}_{1 \leq i \leq 22}, \mathbf{D}_{4 \leq j \leq 22}, \mathbf{E}_{6 \leq k \leq 8}\right\}$. Computer-aided, we determine that the signature of $\Lambda\left(\Gamma_{\mathbf{G}}\right) \oplus \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)$ is $(1, r-1)$. Let $N:=\left(\Lambda\left(\Gamma_{\mathbf{G}}\right) \oplus \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)\right)_{L_{K 3}}^{\perp}$ be the orthogonal complement of the lattice $\Lambda\left(\Gamma_{\mathbf{G}}\right) \oplus \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)$ in $L_{K 3}$ with respect to $i$. The lattice $N$ has signature $(3-1,19-(r-1))=(2,20-r)$. Let $t:=22-r$ be the rank of $N$ and $e_{1}, \ldots, e_{t}$ a basis of $N$ such that $e_{t}^{2}>0$. We can always find such an $e_{t}$ since $N$ is indefinite if $r<20$ and positive definite if $r=20$. Let $r_{1}, \ldots, r_{t-1} \in \mathbb{R}$ such that $r_{1}, \ldots, r_{t-1}, 1$ are linearly independent over $\mathbb{Q}$. We choose a sufficiently large positive rational number $r_{t}$ such that for

$$
v=\sum_{i=1}^{t} r_{i} e_{i} \in N \otimes_{\mathbb{Z}} \mathbb{R}
$$

we have

$$
v^{2}=\left(\sum_{i=1}^{t-1} r_{i} e_{i}\right)^{2}+2 \sum_{i=1}^{t-1} r_{i} r_{t}\left(e_{i} \cdot e_{t}\right)+r_{t}^{2} e_{t}^{2}>0
$$

Let $x \in L_{K 3}$. We note that

$$
\begin{equation*}
0=x \cdot v=\sum_{i=1}^{t} r_{i}\left(x . e_{i}\right) \Longleftrightarrow 0=x . e_{i} \text { for } i=1, \ldots, t \Longleftrightarrow x \in \operatorname{Sat}_{L_{K 3}}(i) \tag{6.55}
\end{equation*}
$$

The first equivalence holds since $x \cdot e_{i} \in \mathbb{Z}$ for all $i=1, \ldots, t$ and $r_{1}, \ldots, r_{t-1}, 1$ are $\mathbb{Q}$ linearly independent, while the second equivalence holds since $e_{1}, \ldots, e_{t}$ is a basis of $N$.

Let $N^{\prime}:=\left\{x \in N \otimes_{\mathbb{Z}} \mathbb{R} ; v \cdot x=0\right\}$. The symmetric bilinear form on the $\mathbb{R}$-vector space $N^{\prime}$ has signature $(2-1, t-2)=(1, t-2)$. Since $N^{\prime}$ is indefinite if $t>2$ and positive definite if $t=2$, we can find $x_{0}^{\prime} \in N^{\prime}$ such that $\left(x_{0}^{\prime}\right)^{2}>0$. For $x_{0}:=\sqrt{\frac{v^{2}}{\left(x_{0}^{\prime}\right)^{2}}} x_{0}^{\prime} \in N^{\prime}$, we then have $x_{0}^{2}=v^{2}$ and define

$$
\omega:=v+i x_{0} \in L_{K 3} \otimes_{\mathbb{Z}} \mathbb{C}
$$

We have $\omega^{2}=v^{2}+2 i\left(v \cdot x_{0}\right)-x_{0}^{2}=0$ and $\omega \cdot \bar{\omega}=v^{2}+x_{0}^{2}=2 v^{2}>0$. Consequently, the image [ $\omega$ ] of $\omega$ in $\mathbb{P}\left(L_{K 3} \otimes_{\mathbb{Z}} \mathbb{C}\right)$ is contained in the period domain $\Omega_{L_{K 3}}$. We claim that with this choice of $\omega$, equation (6.54) holds. Indeed, let $x \in \operatorname{Sat}_{L_{K 3}}(i)$, then $v \cdot x=0$ by (6.55). We have an $n \geq 1$ such that $n x \in i\left(\Lambda\left(\Gamma_{\mathbf{G}}\right) \oplus \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)\right)$, therefore $x_{0} \cdot x=\frac{1}{n}\left(x_{0} \cdot n x\right)=0$ as $x_{0} \in N \otimes_{\mathbb{Z}} \mathbb{R}$. Consequently, we have $\omega \cdot x=\left(v+i x_{0}\right) \cdot x=v \cdot x+i\left(x_{0} \cdot x\right)=0$, i.e. $x \in\left\{x \in L_{K 3} ; \omega \cdot x=0\right\}$. On the other hand, assume that $x \in\left\{x \in L_{K 3} ; \omega \cdot x=0\right\}$. Then, $0=\omega \cdot x=\left(v+i x_{0}\right) \cdot x=v \cdot x+i\left(x_{0} \cdot x\right)$ which only holds if $v \cdot x=x_{0} \cdot x=0$. Hence, we have $x \in \operatorname{Sat}_{L_{K 3}}(i)$ by (6.55).
By Theorem 3.4.2, there exists a marked K3 surface $(\widetilde{S}, \phi)$ such that $[\omega]$ is the period point of $(\widetilde{S}, \phi)$. Then, let $\eta \in H^{0,2}(\widetilde{S})$ such that $\phi(\eta)=\omega$. By Lemma 3.4.1, $\phi$ induces an isomorphism

$$
\begin{equation*}
\phi: \operatorname{Pic}(\widetilde{S}) \xrightarrow{\sim} \operatorname{Sat}_{L_{K 3}}(i) . \tag{6.56}
\end{equation*}
$$

Let $L_{\mathbf{T}}=\phi^{-1}\left(i\left(h_{\mathbf{T}}\right)\right) \in \operatorname{Pic}(\widetilde{S})$. Then, $L_{\mathbf{T}}^{2}=h_{\mathbf{T}}^{2}=6$. Since $[\omega]=[-\omega]$ in $\mathbb{P}\left(L_{K 3} \otimes_{\mathbb{Z}} \mathbb{C}\right)$, the marked K3 surfaces $(\widetilde{S}, \phi)$ and ( $\widetilde{S},-\phi)$ define the same period point in $\Omega_{L_{K 3}}$. Thus, after replacing $(\widetilde{S}, \phi)$ by $(\widetilde{S},-\phi)$ if necessary, we can assume that $L_{\mathbf{T}}$ belongs to the positive cone $\mathcal{C}_{\widetilde{S}}$ containing the Kähler class. By Proposition 3.2.3, for a finite number of elements $F_{1}, \ldots, F_{r} \in \operatorname{Pic}(\widetilde{S})$ with $F_{i}^{2}=-2(i=1, \ldots, r)$, the image $\left(s_{F_{1}} \circ \cdots \circ s_{F_{r}}\right)\left(L_{\mathbf{T}}\right)$ of the line bundle $L_{\mathbf{T}}$ under the Picard-Lefschetz-reflection $s_{F_{1}} \circ \cdots \circ s_{F_{r}}$ is nef. Since $\eta \cdot F=0$ for all $F \in \operatorname{Pic}(\widetilde{S})$ with $F^{2}=-2$, we have $\omega=\phi(\eta)=\left(\phi \circ s_{F_{1}} \circ \cdots \circ s_{F_{r}}\right)(\eta)$, i.e. $(\widetilde{S}, \phi)$ and $\left(\widetilde{S}, \phi \circ s_{F_{1}} \circ \cdots \circ s_{F_{r}}\right)$ define the same period. After replacing $(\widetilde{S}, \phi)$ by $\left(\widetilde{S}, \phi \circ s_{F_{1}} \circ \cdots \circ s_{F_{r}}\right)$, we can assume that $L_{\mathbf{T}}$ is nef. By items (3b) and (3c), $L_{\mathbf{T}}$ does not satisfy items (1) and (2) in Proposition 3.2.6, i.e. we have a birational morphism $\varphi_{L_{\mathbf{T}}}: \widetilde{S} \rightarrow \mathbb{P}^{4}$ of $\widetilde{S}$ onto its image. By Theorem 3.3.2, we know that the contraction $\theta: \widetilde{S} \rightarrow S^{\prime}$ defines a surface $S^{\prime}$ whose singularities are described by the root system

$$
R_{\mathbf{T}}:=\left\{F \in \operatorname{Pic}(\widetilde{S}) ; F^{2}=-2, L_{\mathbf{T}} \cdot F=0\right\}
$$

Further, Proposition 3.3.4 gives that $\varphi_{L_{\mathbf{T}}}$ factors through $\theta$ and furthermore that $\varphi_{L_{\mathbf{T}}}(\widetilde{S})$ is a complete ( 2,3 )-intersection of a quadric $Q$ and a cubic $Y$ in $\mathbb{P}^{4}$.
We will now show for each $\mathbf{T}$ individually that

$$
S:=\varphi_{L_{\mathbf{T}}}(\widetilde{S}) \subseteq \mathbb{P}^{4}
$$

lies on a quadric $Q$ such that $S$ has singularities of type $\sigma(\mathbf{T})$ on the singular locus of $Q$ and all other singularities of $S$ correspond to $\mathbf{G}$.

Assumption: $\mathbf{T}=\mathbf{A}_{1}$
Let $\widetilde{C}$ be the vertex of the graph $\Gamma_{\sigma\left(\mathbf{A}_{1}\right)}$ in Table 6.1 and $h_{\mathbf{A}_{1}}=\widetilde{C}$. Then, $\widetilde{C}$ is a basis of the lattice $\Lambda\left(\Gamma_{\sigma\left(\mathbf{A}_{1}\right)}\right)$. By means of the isomorphism

$$
\phi: \operatorname{Pic}(\widetilde{S}) \xrightarrow{\sim} \operatorname{Sat}_{L_{K 3}}(i),
$$

we may assume that $\widetilde{C}$ is a divisor on $\widetilde{S}$ and $[\widetilde{C}]$ is its numerical equivalence class in $\operatorname{Pic}(\widetilde{S})$.
We have

$$
L_{\mathbf{A}_{1}}=\phi^{-1}\left(i\left(h_{\mathbf{A}_{1}}\right)\right)=[\widetilde{C}] \in \operatorname{Pic}(\widetilde{S})
$$

1. We show that the singularities of $S:=\varphi_{L_{\mathbf{A}_{1}}}(\widetilde{S}) \subseteq \mathbb{P}^{4}$ correspond to $\mathbf{G}$ :

Let $M_{\mathbf{A}_{1}}$ be the lattice in $\operatorname{Pic}(\widetilde{S})$ generated by the root system

$$
R_{\mathbf{A}_{1}}:=\left\{F \in \operatorname{Pic}(\widetilde{S}) ; F^{2}=-2, L_{\mathbf{A}_{1}} \cdot F=0\right\}
$$

We claim that we have an isomorphism

$$
\begin{equation*}
\phi: M_{\mathbf{A}_{1}} \xrightarrow{\sim} \Lambda\left(\Gamma_{\mathbf{G}}\right) \tag{6.57}
\end{equation*}
$$

Indeed, let $F \in \operatorname{Pic}(\widetilde{S})$ such that $F^{2}=-2$ and $L_{\mathbf{A}_{1}} . F=0$. Then, $\phi(F)^{2}=-2$ and $i\left(h_{\mathbf{A}_{1}}\right) \cdot \phi(F)=0$. Hence, by assumption (3a) in Main Theorem 1, $\phi(F) \in i\left(\Lambda\left(\Gamma_{\sigma\left(\mathbf{A}_{1}\right)}\right) \oplus\right.$ $\left.\Lambda\left(\Gamma_{\mathbf{G}}\right)\right)$. Then, write $F=a \widetilde{C}+F^{\prime}$, where $\phi\left(F^{\prime}\right) \in i\left(\Lambda\left(\Gamma_{\mathbf{G}}\right)\right)$ and $a \in \mathbb{Z}$. Since $0=$ $L_{\mathbf{A}_{1}} \cdot F=L_{\mathbf{A}_{1}} \cdot\left(a \widetilde{C}+F^{\prime}\right)=6 a$, we obtain $a=0$. Hence, $F=F^{\prime} \in \phi^{-1}\left(i\left(\Lambda\left(\Gamma_{\mathbf{G}}\right)\right)\right)$. Obviously, we have $\phi^{-1}\left(i\left(\Lambda\left(\Gamma_{\mathbf{G}}\right)\right)\right) \subseteq M_{\mathbf{A}_{1}}$. This proves the claim.
By Corollary 3.3.5, the singularities of $S$ then are of type G.
2. We show that $S$ is contained in a quadric of corank zero in $\mathbb{P}^{4}$ :

The quadric $Q$ has corank $\leq 2$ in $\mathbb{P}^{4}$. Indeed, if $Q$ had corank $\geq 3$ in $\mathbb{P}^{4}$, the singular locus of $Q$ would have dimension $\geq 2$ and therefore the cubic $Y$ would intersect the singular locus of $Q$ in a variety of dimension $\geq 1$. Hence, $S$ would be singular along this variety in contradiction to the fact that $S$ has only isolated singularities corresponding to $\mathbf{G}$.

If $Q$ had corank one in $\mathbb{P}^{4}$, by Proposition $6.2 .1, \operatorname{Pic}(\widetilde{S})$ would contain two classes of curves $\widetilde{C_{1}}$ and $\widetilde{C_{2}}$ with ${\widetilde{C_{1}}}^{2}={\widetilde{C_{2}}}^{2}=0$ and such that $\widetilde{C_{1}} \cdot \widetilde{C_{2}}>0$. Further, the lattice $\Lambda\left(\Gamma_{\mathbf{G}}\right)$ generated by the exceptional $(-2)$-curves of the resolution of the singularities corresponding to $\mathbf{G}$ is contained in $\operatorname{Pic}(\widetilde{S})$. Since $\Lambda\left(\Gamma_{\mathbf{G}}\right)$ is negative definite, neither $\widetilde{C_{1}}$ nor $\widetilde{C_{2}}$ can be contained in $\Lambda\left(\Gamma_{\mathbf{G}}\right)$. Hence, the rank of $\operatorname{Pic}(\widetilde{S})$ would be $\geq \operatorname{rank}\left(\Lambda\left(\Gamma_{\mathbf{G}}\right)\right)+2$ in contradiction to $\operatorname{rank}(\operatorname{Pic}(\widetilde{S}))=\operatorname{rank}\left(\Lambda\left(\Gamma_{\sigma\left(\mathbf{A}_{1}\right)}\right) \oplus \Lambda\left(\Gamma_{\mathbf{G}}\right)\right)=\operatorname{rank}\left(\Lambda\left(\Gamma_{\mathbf{G}}\right)\right)+1$.

If $Q$ had corank two in ${\underset{\widetilde{S}}{ }}^{\mathbb{P}}$, again by Proposition $6.2 .1, L_{\mathbf{A}_{1}}$ would be the class of $2 \widetilde{C}+F$, where $\widetilde{C}$ is a curve on $\widetilde{S}$ such that $\widetilde{C}^{2}=0$ and $L_{\mathbf{A}_{1}} \cdot \widetilde{C}=3$ and $F$ is a linear combination of $(-2)$-curves on $\widetilde{S}$ such that $L_{\mathbf{A}_{1}} \cdot F=\underset{\sim}{0}$. By definition, we have $F \in M_{\mathbf{A}_{1}} \cong \Lambda\left(\Gamma_{\mathbf{G}}\right)$, therefore $F \cdot \widetilde{C}=0$. This implies $3=L_{\mathbf{A}_{1}} \cdot \widetilde{C}=(2 \widetilde{C}+F) \cdot \widetilde{C}=0$ which is a contradiction.

Consequently, $Q$ must have corank 0 in $\mathbb{P}^{4}$.
In conclusion, $S$ is a complete $(2,3)$-intersection lying on a quadric of corank 0 in $\mathbb{P}^{4}$ such that all singularities of $S$ correspond to $\mathbf{G}$.

## Assumption: $\mathbf{T}=\mathbf{A}_{2}$

The proof is inspired by [SZ07, Proposition 7.1].

Let $\widetilde{C_{1}}$ and $\widetilde{C_{2}}$ be the vertices of the graph $\Gamma_{\sigma\left(\mathbf{A}_{2}\right)}$ in Table 6.1 and $h_{\mathbf{A}_{2}}=\widetilde{C_{1}}+\widetilde{C_{2}}$. Then, $\widetilde{C_{1}}, \widetilde{C_{2}}$ is a basis of the lattice $\Lambda\left(\Gamma_{\sigma\left(\mathbf{A}_{2}\right)}\right)$. By means of the isomorphism

$$
\phi: \operatorname{Pic}(\widetilde{S}) \xrightarrow{\sim} \operatorname{Sat}_{L_{K 3}}(i)
$$

we may assume that $\widetilde{C_{1}}$ and $\widetilde{C_{2}}$ are divisors on $\widetilde{S}$ and $\left[\widetilde{C_{1}}\right]$ and $\left[\widetilde{C_{2}}\right]$ are their numerical equivalence classes in $\operatorname{Pic}(\widetilde{S})$.

We have

$$
L_{\mathbf{A}_{2}}=\phi^{-1}\left(i\left(h_{\mathbf{A}_{2}}\right)\right)=\left[\widetilde{C_{1}}\right]+\left[\widetilde{C_{2}}\right] \in \operatorname{Pic}(\widetilde{S})
$$

1. We show that the singularities of $S:=\varphi_{L_{\mathbf{A}_{2}}}(\widetilde{S}) \subseteq \mathbb{P}^{4}$ correspond to $\mathbf{G}$ :

Let $M_{\mathbf{A}_{2}}$ be the lattice in $\operatorname{Pic}(\widetilde{S})$ generated by the root system

$$
R_{\mathbf{A}_{2}}:=\left\{F \in \operatorname{Pic}(\widetilde{S}) ; F^{2}=-2, L_{\mathbf{A}_{2}} \cdot F=0\right\}
$$

We claim that we have an isomorphism

$$
\begin{equation*}
\phi: M_{\mathbf{A}_{2}} \xrightarrow{\sim} \Lambda\left(\Gamma_{\mathbf{G}}\right) \tag{6.58}
\end{equation*}
$$

Indeed, let $F \in \operatorname{Pic}(\widetilde{S})$ such that $F^{2}=-2$ and $L_{\mathbf{A}_{2}} . F=0$. Then, $\phi(F)^{2}=-2$ and $i\left(h_{\mathbf{A}_{2}}\right) \cdot \phi(F)=0$. Hence, by assumption (3a) in Main Theorem 1, $\phi(F) \in i\left(\Lambda\left(\Gamma_{\sigma\left(\mathbf{A}_{2}\right)}\right) \oplus\right.$ $\left.\Lambda\left(\Gamma_{\mathbf{G}}\right)\right)$. Then, write $F=a \widetilde{C_{1}}+b \widetilde{C_{2}}+F^{\prime}$, where $\phi\left(F^{\prime}\right) \in i\left(\Lambda\left(\Gamma_{\mathbf{G}}\right)\right)$ and $a, b \in \mathbb{Z}$. Since $0=L_{\mathbf{A}_{2}} . F=3 a+3 b$, we obtain $a=-b$. Then,

$$
\begin{equation*}
-2=\left(a \widetilde{C_{1}}+b \widetilde{C_{2}}+F^{\prime}\right)^{2}=-6 a^{2}+F^{\prime 2} \tag{6.59}
\end{equation*}
$$

Since $\Lambda\left(\Gamma_{\mathbf{G}}\right)$ is negative definite, we have ${F^{\prime}}^{2} \leq 0$. Thus, equation (6.59) can only hold if $a=0$. Hence, $F=F^{\prime} \in \phi^{-1}\left(i\left(\Lambda\left(\Gamma_{\mathbf{G}}\right)\right)\right)$. Obviously, we have $\phi^{-1}\left(i\left(\Lambda\left(\Gamma_{\mathbf{G}}\right)\right)\right) \subseteq M_{\mathbf{A}_{2}}$. This proves the claim.

By Corollary 3.3.5, the singularities of $S$ then are of type G.
2. We show that $S$ is contained in a quadric of corank one in $\mathbb{P}^{4}$ :

Let $i=1,2$ and assume that $\widetilde{C_{i}}$ is a general member in $\left|\widetilde{C_{i}}\right|$.
By Lemma 3.1.1, either $\widetilde{C_{i}}$ or $-\widetilde{C_{i}}$ is effective. However, if $-\widetilde{C_{i}}$ was effective, we had $L_{\mathbf{A}_{2}} \cdot\left(-\widetilde{C_{i}}\right)=-3$ in contradiction to the fact that $L_{\mathbf{A}_{2}}$ is nef. Hence, $\widetilde{C_{i}}$ must be effective. We claim that $\left|\widetilde{C_{i}}\right|$ is fixed point free and in particular nef. Indeed, assume that we have

$$
\left|\widetilde{C_{i}}\right|=\left|M_{i}\right|+F_{i}
$$

where $\left|M_{i}\right|$ is the mobile part of $\left|\widetilde{C_{i}}\right|$ and $F_{i}$ the fixed part. Let $\widetilde{C_{i}}=M_{i}+F_{i}$. Assume that $\varphi_{L_{\mathbf{A}_{2}}}\left(F_{i}\right)$ is one-dimensional. The curve $\varphi_{L_{\mathbf{A}_{2}}}\left(M_{i}\right) \subseteq \mathbb{P}^{4}$ then has degree one or two, i.e. has an irreducible component which is isomorphic to $\mathbb{P}^{1}$. It follows that $S$ contains a continuous family of rational curves. Hence, $S$ is uniruled. Since $\widetilde{S}$ and $S$ are birational it follows that also $\widetilde{S}$ is uniruled, a contradiction to the fact that $\widetilde{S}$ is a K3 surface. Consequently, $\varphi_{L_{\mathbf{A}_{2}}}\left(F_{i}\right)$ must be a set of points in $\mathbb{P}^{4}$. Let $F_{i, 1}, \ldots, F_{i, n}$ be the irreducible components of $F_{i}$. For $j=1, \ldots, n$, we have $F_{i, j}^{2}=-2$ by Lemma 3.2.1. Since $L_{\mathbf{A}_{2}} . F_{i}=0$, we have
also $L_{\mathbf{A}_{2}} . F_{i, j}=0$. Hence, $\left[F_{i, j}\right] \in \phi^{-1}\left(i\left(\Lambda\left(\Gamma_{\mathbf{G}}\right)\right)\right)$ by (6.58). Therefore, $\widetilde{C}_{i} . F_{i, j}=0$ which gives $\widetilde{C_{i}} \cdot F_{i}=0$. Consequently, $M_{i}^{2}=\left(\widetilde{C_{i}}-F_{i}\right)^{2}=F_{i}^{2}<0$ since $F_{i}$ is by assumption contained in the negative definite lattice $\phi^{-1}\left(i\left(\Lambda\left(\Gamma_{\mathbf{G}}\right)\right)\right)$. However, this is absurd since $\left|M_{i}\right|$ is nef as the mobile part of $\left|\widetilde{C_{i}}\right|$ and therefore $M_{i}^{2} \geq 0$. Hence, $\left|\widetilde{C_{i}}\right|$ is fixed part free. If $\left|\widetilde{C_{i}}\right|$ had fixed points, the curves in $\left|\widetilde{C_{i}}\right|$ would intersect in these points which is absurd since we have for all $\widetilde{C_{i}} \in\left|\widetilde{C_{i}}\right|$ that ${\widetilde{C_{i}}}^{2}=0$. Hence, $\left|\widetilde{C_{i}}\right|$ is fixed point free and therefore in particular nef.
We claim that $\left|\widetilde{C_{i}}\right|$ is an elliptic pencil. Indeed, since $\left|\widetilde{C_{i}}\right|$ is nef, it follows by Theorem 3.2.4 that $\left|\widetilde{C_{i}}\right|=m_{i}\left|\widetilde{C_{i}}\right|$ for a positive integer $m_{i}$ and an elliptic pencil $\left|\widetilde{C}_{i}{ }^{\prime}\right|$ on $\widetilde{S}$. Note that by Proposition 3.3.4, the map $\varphi_{L_{\mathbf{A}_{2}}}$ is generically one-to-one on a general member $\widetilde{C_{i}^{\prime}}$ in $\left|\widetilde{C_{i}^{\prime}}\right|$ since $\widetilde{C_{i}^{\prime}}$ is irreducible and ${\widetilde{C_{i}^{\prime}}}^{\prime}=0$. We have $3=L_{\mathbf{A}_{2}} \cdot \widetilde{C_{i}}=m_{i} \cdot\left(L_{\mathbf{A}_{2}} \cdot{\widetilde{C_{i}}}^{\prime}\right)$. This equation only holds if $m_{i}=1$ and $L_{\mathbf{A}_{2}} \cdot \widetilde{C}_{i}^{\prime}=3$ or $m_{i}=3$ and $L_{\mathbf{A}_{2}} \cdot \widetilde{C}_{i}^{\prime}=1$. The latter case would imply that $\varphi_{L_{\mathbf{A}_{2}}}\left(\widetilde{C}_{i}^{\prime}\right)$ is isomorphic to $\mathbb{P}^{1}$. Since $\varphi_{L_{\mathbf{A}_{2}}}$ is generically one-to-one on $\widetilde{C_{i}^{\prime}}$, this would give that $\widetilde{C_{i}^{\prime}}$ is isomorphic to $\mathbb{P}^{1}$ which is absurd. Consequently, $\left|\widetilde{C_{i}}\right|$ is an elliptic pencil.
We claim that the curves in $\left|\widetilde{C_{i}}\right|$ are mapped by $\varphi_{L_{\mathbf{A}_{2}}}$ onto plane cubic curves such that we obtain a pencil of planes in $Q$. Since $\widetilde{C_{i}}$ is general in $\left|\widetilde{C_{i}}\right|$ and $\left|\widetilde{C_{i}}\right|$ is an elliptic pencil, $\widetilde{C_{i}}$ is irreducible, see Remark 3.2.5. Since $L_{\mathbf{A}_{2}} \cdot \widetilde{C_{i}}=\left(\left[\widetilde{C_{1}}\right]+\left[\widetilde{C_{2}}\right]\right) \cdot \widetilde{C_{i}}=3$, the curve $\varphi_{L_{\mathbf{A}_{2}}}\left(\widetilde{C_{i}}\right)$ has degree 3. If $\varphi_{L_{\mathbf{A}_{2}}}\left(\widetilde{C_{i}}\right)$ was not planar, it would be the twisted cubic which is isomorphic to $\mathbb{P}^{1}$. Since $\varphi_{L_{\mathbf{A}_{2}}}$ is generically one-to-one on $\widetilde{C_{i}}$, this would imply that $\widetilde{C_{i}}$ is isomorphic to $\mathbb{P}^{1}$. This is absurd since $\widetilde{C_{i}}$ is a general member in $\left|\widetilde{C_{i}}\right|$ and therefore, by Theorem 3.2.4, has no component with self-intersection number ( -2 ). Consequently, $\varphi_{L_{\mathbf{A}_{2}}}\left(\widetilde{C_{i}}\right)$ is an irreducible plane cubic curve. Let $\left\{\widetilde{C_{1, \alpha}}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{\widetilde{C_{2, \beta}}\right\}_{\beta \in \mathbb{P}^{1}}$ be the families of curves induced by the one dimensional linear systems $\left|\widetilde{C_{1}}\right|$ and $\left|\widetilde{C_{2}}\right|$, respectively. The images $\varphi_{L_{\mathbf{A}_{2}}}\left(\widetilde{C_{1, \alpha}}\right)$ and $\varphi_{L_{\mathbf{A}_{2}}}\left(\widetilde{C_{2, \beta}}\right)$ are plane cubic curves in $S$ so in particular contained in planes $\Pi_{1, \alpha}$ and $\Pi_{2, \beta}$ in $\mathbb{P}^{4}$. Hence, we obtain two pencils of planes $\left\{\Pi_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{\Pi_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$ on $\mathbb{P}^{4}$. These planes are contained in $Q$ and not in $Y$ since the curves $\varphi_{L_{\mathbf{A}_{2}}}\left(\widetilde{C_{1, \alpha}}\right)=\Pi_{1, \alpha} \cap S$ and $\varphi_{L_{\mathbf{A}_{2}}}\left(\widetilde{C_{2, \beta}}\right)=\Pi_{2, \beta} \cap S$ had otherwise not degree 3. Write $C_{1, \alpha}:=\varphi_{L_{\mathbf{A}_{2}}}\left(\widetilde{C_{1, \alpha}}\right)=\Pi_{1, \alpha} \cap Y$ and $C_{2, \beta}:=\varphi_{L_{\mathbf{A}_{2}}}\left(\widetilde{C_{2, \beta}}\right)=\Pi_{2, \beta} \cap Y$.
We claim that $Q$ can only have corank one or two in $\mathbb{P}^{4}$. Indeed, since $Q$ contains planes, it cannot be smooth by Lemma 4.1.3. Further, if $Q$ had corank strictly larger than 2, the complete (2,3)-intersection $S \subseteq \mathbb{P}^{4}$ would have non-isolated singularities on the singular locus of $Q$. However, we already know that $S$ has only isolated singularities corresponding to $\mathbf{G}$.

We claim that $Q$ has corank 1 in $\mathbb{P}^{4}$. Indeed, if $Q$ has corank 2 in $\mathbb{P}^{4}$, the families $\left\{\Pi_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{\Pi_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$ coincide. Consequently, the pencils $\left\{C_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{C_{2, \beta}\right\}_{\alpha \in \mathbb{P}^{1}}$ coincide, as well. Thus, $\left|\widetilde{C_{1}}\right|=\left|\widetilde{C_{2}}\right|$, in contradiction to $\widetilde{C_{1}} \cdot \widetilde{C_{2}}=3$. Hence, the assumption must be wrong and $Q$ has corank 1 in $\mathbb{P}^{4}$.
3. We show that the vertex $p$ of $Q$ is not contained in $S$ :

Indeed, if $p$ was contained in $S$, it would be an $A D E$ singularity on $S$ and for all $\alpha, \beta \in \mathbb{P}^{1}$
the curves $C_{1, \alpha}$ and $C_{2, \beta}$ would contain $p$. Then, $\varphi_{L_{\mathbf{A}_{2}}}^{*}\left(C_{1, \alpha}\right)$ and $\varphi_{L_{\mathbf{A}_{2}}}^{*}\left(C_{2, \beta}\right) \in \operatorname{Div}(\widetilde{S})$ would contain the exceptional divisor $E$ from the minimal resolution of $p$ and $\widetilde{C_{1, \alpha}}$ and $\widetilde{C_{2, \beta}}$ would intersect this exceptional divisor. We claim that this does not happen. Indeed, let $E_{0}$ be a $(-2)$-curve in $E$ on $\widetilde{S}$ : Since $\left|\widetilde{C_{1}}\right|$ and $\left|\widetilde{C_{2}}\right|$ are nef, we have $\widetilde{C_{1}} \cdot E_{0} \geq 0, \widetilde{C_{2}} \cdot E_{0} \geq 0$. Since $0=L_{\mathbf{A}_{2}} \cdot E_{0}=\widetilde{C_{1}} \cdot E_{0}+\widetilde{C_{2}} \cdot E_{0}$, we obtain $\widetilde{C_{1}} \cdot E_{0}=\widetilde{C_{2}} \cdot E_{0}=0$. Hence, $\widetilde{C_{1}}$ and $\widetilde{C_{2}}$ do not intersect $E$. Therefore, $p$ is not contained in $Q$.

In conclusion, $S$ is a complete $(2,3)$-intersection lying on a quadric of corank 1 in $\mathbb{P}^{4}$ such that the singular locus of $Q$ is not contained in $S$ and all other singularities of $S$ correspond to G.
$\underline{\text { Assumption: } \mathbf{T}=\mathbf{A}_{n} \text { for } n \geq 3}$
Let $\widetilde{C_{1}}, \widetilde{C_{2}}, E_{1}, \ldots, E_{n-2}$ be the vertices of the graph $\Gamma_{\sigma\left(\mathbf{A}_{n}\right)}$ in Table 6.1 and $h_{\mathbf{A}_{n}}=$ $\widetilde{C_{1}}+\widetilde{C_{2}}+E_{1}+\ldots+E_{n-2}$. Then, $\widetilde{C_{1}}, \widetilde{C_{2}}, E_{1}, \ldots, E_{n-2}$ is a basis of the lattice $\Lambda\left(\Gamma_{\sigma\left(\mathbf{A}_{n}\right)}\right)$. By means of the isomorphism

$$
\phi: \operatorname{Pic}(\widetilde{S}) \xrightarrow{\sim} \operatorname{Sat}_{L_{K 3}}(i)
$$

we may assume that $\widetilde{C_{1}}, \widetilde{C_{2}}, E_{1}, \ldots, E_{n-2}$ are divisors on $\widetilde{S}$ and $\left[\widetilde{C_{1}}\right],\left[\widetilde{C_{2}}\right],\left[E_{1}\right], \ldots,\left[E_{n-2}\right]$ are their numerical equivalence classes in $\operatorname{Pic}(\widetilde{S})$.

We have

$$
L_{\mathbf{A}_{n}}=\phi^{-1}\left(i\left(h_{\mathbf{A}_{n}}\right)\right)=\left[\widetilde{C_{1}}\right]+\left[\widetilde{C_{2}}\right]+\left[E_{1}\right]+\ldots+\left[E_{n-2}\right] \in \operatorname{Pic}(\widetilde{S})
$$

1. We show that the singularities of $S:=\varphi_{L_{\mathbf{A}_{n}}}(\widetilde{S}) \subseteq \mathbb{P}^{4}$ correspond to $\sigma(\mathbf{T})+\mathbf{G}$ :

Let $M_{\mathbf{A}_{n}}$ be the lattice in $\operatorname{Pic}(\widetilde{S})$ generated by the root system

$$
R_{\mathbf{A}_{n}}:=\left\{F \in \operatorname{Pic}(\widetilde{S}) ; F^{2}=-2, L_{\mathbf{A}_{n}} \cdot F=0\right\}
$$

The subgraph of $\Gamma_{\sigma\left(\mathbf{A}_{n}\right)}$ generated by $E_{1}, \ldots, E_{n-2}$ is of type $\mathcal{A}_{n-2}$ and the associated lattice is $\Lambda\left(\mathcal{A}_{n-2}\right)=A_{n-2}$. We claim that we have an isomorphism

$$
\begin{equation*}
\phi: M_{\mathbf{A}_{n}} \rightarrow i\left(\Lambda\left(\mathcal{A}_{n-2}\right) \oplus \Lambda\left(\Gamma_{\mathbf{G}}\right)\right) \tag{6.60}
\end{equation*}
$$

Indeed, let $F \in \operatorname{Pic}(\widetilde{S})$ such that $F^{2}=-2$ and $L_{\mathbf{A}_{n}} . F=0$. It follows that $\phi(F)^{2}=-2$ and $i\left(h_{\mathbf{A}_{n}}\right) \cdot \phi(F)=0$. By assumption (3a) in Main Theorem $1, \phi(F) \in i\left(\Lambda\left(\Gamma_{\sigma\left(\mathbf{A}_{n}\right)}\right) \oplus \Lambda\left(\Gamma_{\mathbf{G}}\right)\right)$. Then, write $F=a \widetilde{C_{1}}+b \widetilde{C_{2}}+e_{1} E_{1}+\ldots+e_{n-2} E_{n-2}+F^{\prime}$, where $\phi\left(F^{\prime}\right) \in i\left(\Lambda\left(\Gamma_{\mathbf{G}}\right)\right)$ and $a, b, e_{1}, \ldots, e_{n-2} \in \mathbb{Z}$. Since $0=L_{\mathbf{A}_{n}} . F=3 a+3 b$, we obtain $a=-b$. Further, since $F^{2}=-2$ and by inequality $2 e_{i} e_{i+1} \leq e_{i}^{2}+e_{i+1}^{2}$ for $i=1, \ldots, n-3$, we obtain

$$
\begin{aligned}
-2 & =\left(a \widetilde{C_{1}}-a \widetilde{C_{2}}+e_{1} E_{1}+\ldots+e_{n-2} E_{n-2}+F^{\prime}\right)^{2} \\
& =-4 a^{2}+2 a\left(e_{1}-e_{n-2}\right)-2\left(e_{1}^{2}+\ldots+e_{n-2}^{2}\right)+2\left(e_{1} e_{2}+\ldots+e_{n-3} e_{n-2}\right)+{F^{\prime}}^{2} \\
& \leq-4 a^{2}+2 a\left(e_{1}-e_{n-2}\right)-2\left(e_{1}^{2}+\ldots+e_{n-2}^{2}\right)+e_{1}^{2}+2\left(e_{2}^{2}+\ldots+e_{n-3}^{2}\right)+e_{n-2}^{2}+{F^{\prime}}^{2} \\
& =-2 a^{2}-\left(2 a^{2}-2 a\left(e_{1}-e_{n-2}\right)+e_{1}^{2}+e_{n-2}^{2}\right)+{F^{\prime}}^{2} \\
& =-2 a^{2}-\left(a-e_{1}\right)^{2}-\left(a+e_{n-2}\right)^{2}+{F^{\prime}}^{2}
\end{aligned}
$$

which only holds if $1=a=e_{1}=-e_{n-2}$ and $F^{\prime}=0$, or if $a=0$. However, in the first case, we have $F^{2}=-4+\left(e_{1} E_{1}+\ldots+e_{n-2} E_{n-2}\right)^{2}+{F^{\prime}}^{2}<-4$ which is absurd. Hence, we must have $a=0$ and therefore $F=e_{1} E_{1}+\ldots+e_{n-2} E_{n-2}+{F^{\prime}}^{2}$. On the other hand, we have obviously $i\left(\Lambda\left(\mathcal{A}_{n-2}\right) \oplus \Lambda\left(\Gamma_{\mathbf{G}}\right)\right) \subseteq \phi\left(M_{\mathbf{A}_{n}}\right)$.
By Corollary 3.3.5, the singularities of $S$ are of type $\sigma(\mathbf{T})+\mathbf{G}$.
2. We show that $S$ is contained in a quadric of corank one in $\mathbb{P}^{4}$ :

Let $i=1,2$ and assume that $\widetilde{C_{i}}$ is a general member in $\left|\widetilde{C_{i}}\right|$.
As in the case $\mathbf{T}=\mathbf{A}_{2}$, step 2. above, we can show that the divisor $\widetilde{C_{i}} \in \operatorname{Div}(\widetilde{S})$ is effective.
We can write

$$
\left|\widetilde{C_{i}}\right|=\left|M_{i}\right|+F_{i}
$$

where $\left|M_{i}\right|$ is the mobile part of $\left|\widetilde{C_{i}}\right|$ and $F_{i}$ the fixed part. Let $\widetilde{C_{i}}=M_{i}+F_{i}$. As in the case $\mathbf{T}=\mathbf{A}_{2}$, step 2. we can show that $\varphi_{L_{\mathbf{A}_{n}}}\left(F_{i}\right)$ is a point in $S$, i.e. $L_{\mathbf{A}_{n}} . F_{i}=0$. Let $F_{i, 1}, \ldots, F_{i, n}$ be the irreducible components of $F_{i}$. For $j=1, \ldots, n$, we have $F_{i, j}^{2}=$ -2 by Lemma 3.2.1. Since $L_{\mathbf{A}_{n}} . F_{i}=0$, we have also $L_{\mathbf{A}_{n}} \cdot F_{i, j}=0$. Hence, $\left[F_{i, j}\right] \in$ $M_{\mathbf{A}_{n}}=\phi^{-1}\left(i\left(\Lambda\left(\mathcal{A}_{n-2}\right) \oplus \Lambda\left(\Gamma_{\mathbf{G}}\right)\right)\right)$ by (6.60). Therefore, also $\left[F_{i}\right] \in \phi^{-1}\left(i\left(\Lambda\left(\mathcal{A}_{n-2}\right) \oplus\right.\right.$ $\left.\Lambda\left(\Gamma_{\mathbf{G}}\right)\right)$ ). The mobile part $\left|M_{i}\right|$ is by definition nef. Similarly as in the case $\mathbf{T}=\mathbf{A}_{2}$, step 2., we show that $\left|M_{i}\right|$ is an elliptic pencil. By Theorem 3.2.4, $M_{i}$ has no irreducible component which has self-intersection number $(-2)$. Since $\Lambda\left(\Gamma_{\mathbf{G}}\right)$ is negative definite, this gives $\phi\left(\left[M_{i}\right]\right) \in i\left(\Lambda\left(\Gamma_{\sigma\left(\mathbf{A}_{n}\right)}\right)\right)$. Since $\left.\phi\left(\widetilde{C_{i}}\right]\right) \in i\left(\Lambda\left(\Gamma_{\sigma\left(\mathbf{A}_{n}\right)}\right)\right)$ as a part of its basis, we have $\phi\left(\left[F_{i}\right]\right) \in i\left(\Lambda\left(\mathcal{A}_{n-2}\right)\right)$.
Let $\left\{M_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{M_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$ be the families of curves induced by the one-dimensional linear systems $\left|M_{1}\right|$ and $\left|M_{2}\right|$, respectively. As in the case $\mathbf{T}=\mathbf{A}_{2}$, step 2. above, we show that $\left|M_{i}\right|$ induces two families $\left\{\Pi_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{\Pi_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$ of planes on $Q$ and such that $C_{1, \alpha}:=\varphi_{L_{\mathbf{A}_{n}}}\left(M_{1, \alpha}\right)=\Pi_{1, \alpha} \cap Y$ and $C_{2, \beta}:=\varphi_{L_{\mathbf{A}_{n}}}\left(M_{2, \beta}\right)=\Pi_{2, \beta} \cap Y$ are plane cubic curves on $S$. Again, as in the case $\mathbf{T}=\mathbf{A}_{2}$, step 2., we can deduce that $S$ lies on a quadric of corank 1 in $\mathbb{P}^{4}$.
3. We show that the vertex of $Q$ is an $\mathbf{A}_{n-2}$ singularity on $S$ :

Let $M_{i} \in\left|M_{i}\right|$. If $M_{i} \cdot F_{i}=0$, we have $0=\widetilde{C}_{i}^{2}=\left(M_{i}+F_{i}\right)^{2}=M_{i}^{2}+2 M_{i} \cdot F_{i}+F_{i}^{2}=F_{i}^{2}$ and since $\phi\left(\left[F_{i}\right]\right)$ is contained in the negative definite lattice $i\left(\Lambda\left(\mathcal{A}_{n-2}\right)\right)$, it follows $F_{i}=0$, i.e. $\left|\widetilde{C_{i}}\right|$ is fixed part free and $\left|\widetilde{C_{i}}\right|=\left|M_{i}\right|$. However, the curves in $\left|\widetilde{C_{i}}\right|$ intersect the divisors supported on the union of $E_{1}, \ldots, E_{n-2} \in \operatorname{Div}(\widetilde{S})$ once.
On the other hand, if $F_{i} \neq 0$, we obtain consequently that $M_{i}$ intersects $F_{i}$ and the support of $F_{i}$ is contained in the union of $E_{1}, \ldots, E_{n-2} \in \operatorname{Div}(\widetilde{S})$.
Since the curves $E_{1}, \ldots, E_{n-2}$ are contracted by $\varphi_{L_{\mathbf{A}_{n}}}$ to a singularity of type $\mathbf{A}_{n-2}$ of $S \subseteq \mathbb{P}^{4}$ by Corollary 3.3.5, this singularity then must be contained in all plane cubic curves in $\left\{C_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{C_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$. Since the only common intersection point of all the planes in $\left\{\Pi_{1, \alpha}\right\}_{\alpha \in \mathbb{P}^{1}}$ and $\left\{\Pi_{2, \beta}\right\}_{\beta \in \mathbb{P}^{1}}$ containing the curves $C_{1, \alpha}$ and $C_{2, \beta}$ is the vertex of $Q$, the $\mathbf{A}_{n-2}$ singularity must be the vertex of $Q$.

In conclusion, $S$ is a complete (2,3)-intersection lying on a quadric of corank 1 in $\mathbb{P}^{4}$ such that the singular locus of $Q$ is an $\mathbf{A}_{n-2}$ singularity in $S$ and all other singularities of $S$ correspond to G.

## $\underline{\text { Assumption: } \mathbf{T}=\mathbf{D}_{n} \text { for } n \geq 4, \mathbf{E}_{6}, \mathbf{E}_{7} \text {, or } \mathbf{E}_{8}}$

Let $k:=\operatorname{rank}\left(\Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)\right)-1$.
Let $\widetilde{C}, E_{1}, \ldots, E_{k}$ be the vertices of the graph $\Gamma_{\sigma(\mathbf{T})}$ in Table 6.1 and $r_{1}, \ldots, r_{k}$ positive integers such that $h_{\mathbf{T}}=\widetilde{C}+r_{1} E_{1}+\ldots+r_{k} E_{k}$ as in in Table 6.1. Then, $\widetilde{C}, E_{1}, \ldots, E_{k}$ is a basis of the lattice $\Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)$. By means of the isomorphism

$$
\phi: \operatorname{Pic}(\widetilde{S}) \xrightarrow{\sim} \operatorname{Sat}_{L_{K 3}}(i),
$$

we may assume that $\widetilde{C}, E_{1}, \ldots, E_{k}$ are divisors on $\widetilde{S}$ and $[\widetilde{C}],\left[E_{1}\right], \ldots,\left[E_{k}\right]$ are their numerical equivalence classes in $\operatorname{Pic}(\widetilde{S})$.

We then have

$$
L_{\mathbf{T}}=\phi^{-1}\left(i\left(h_{\mathbf{T}}\right)\right) \in \operatorname{Pic}(\widetilde{S})
$$

1. We show that the singularities of $S:=\varphi_{L_{\mathbf{T}}}(\widetilde{S}) \subseteq \mathbb{P}^{4}$ correspond to $\sigma(\mathbf{T})+\mathbf{G}$ :

Let $M_{\mathbf{T}}$ be the lattice in $\operatorname{Pic}(\widetilde{S})$ generated by the root system

$$
R_{\mathbf{T}}:=\left\{F \in \operatorname{Pic}(\widetilde{S}) ; F^{2}=-2, L_{\mathbf{T}} \cdot F=0\right\}
$$

Denote the subgraph of $\Gamma_{\sigma(\mathbf{T})}$ generated by $E_{1}, \ldots, E_{k}$ by $\sigma(\mathcal{T})$ and let $\Lambda(\sigma(\mathcal{T}))$ be the associated sublattice of $\Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)$. We claim that we have an isomorphism

$$
\begin{equation*}
\phi: M_{\mathbf{T}} \rightarrow i\left(\Lambda(\sigma(\mathcal{T})) \oplus \Lambda\left(\Gamma_{\mathbf{G}}\right)\right) \tag{6.61}
\end{equation*}
$$

Indeed, let $F \in \operatorname{Pic}(\widetilde{S})$ such that $F^{2}=-2$ and $L_{\mathbf{T}} \cdot F=0$. It follows that $\phi(F)^{2}=-2$ and $i\left(h_{\mathbf{T}}\right) \cdot \phi(F)=0$. By assumption (3a) in Main Theorem 1, $\phi(F) \in i\left(\Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right) \oplus \Lambda\left(\Gamma_{\mathbf{G}}\right)\right)$. Write $F=a \widetilde{C}+e_{1} E_{1}+\ldots+e_{k} E_{k}+F^{\prime}$ for integers $a, e_{1}, \ldots, e_{k}$ and $\phi\left(F^{\prime}\right) \in i\left(\Lambda\left(\Gamma_{\mathbf{G}}\right)\right)$. Then, $0=L_{\mathbf{T}} \cdot F=L_{\mathbf{T}} \cdot\left(a \widetilde{C}+e_{1} E_{1}+\ldots+e_{k} E_{k}+F^{\prime}\right)=a\left(L_{\mathbf{T}} \cdot \widetilde{C}\right)=3 a$, i.e. $a=0$. Hence, $F=e_{1} E_{1}+\ldots+e_{k} E_{k}+F^{\prime}$. On the other hand, we have obviously $i\left(\Lambda(\sigma(\mathcal{T})) \oplus \Lambda\left(\Gamma_{\mathbf{G}}\right)\right) \subseteq$ $\phi\left(M_{\mathbf{T}}\right)$.

By Corollary 3.3.5, the singularities of $S$ then are of type $\sigma(\mathbf{T})+\mathbf{G}$.
2. We will show that $S$ is contained in a quadric of corank two in $\mathbb{P}^{4}$ :

Assume that $\widetilde{C}$ is a general member in $|\widetilde{C}|$.
As in the case $\mathbf{T}=\mathbf{A}_{2}$, step 2. above, we can choose $\widetilde{C}$ to be a curve on $\widetilde{S}$.
We determine the fixed part of $|\widetilde{C}|$. Indeed, assume that we have

$$
|\widetilde{C}|=\left|M_{\mathbf{T}}\right|+F_{\mathbf{T}}
$$

where $\left|M_{\mathbf{T}}\right|$ is the mobile part of $|\widetilde{C}|$ and $F_{\mathbf{T}}$ the fixed part. Assume that $\widetilde{C}=M_{\mathbf{T}}+F_{\mathbf{T}}$. As in the case $\mathbf{T}=\mathbf{A}_{2}$, step 2., we show that $\varphi_{L_{\mathbf{T}}}$ contracts $F_{\mathbf{T}}$. Let $F_{\mathbf{T}, i}$ be an irreducible component of $F_{\mathbf{T}}$. By Lemma 3.2.1, we have $F_{\mathbf{T}, i}^{2}=-2$. Since $L_{\mathbf{T}} \cdot F_{\mathbf{T}}=0$, we have $L_{\mathbf{T}} \cdot F_{\mathbf{T}, i}=0$. Therefore, we obtain by (6.61) that $\phi\left(\left[F_{\mathbf{T}, i}\right]\right) \in i\left(\Lambda(\sigma(\mathcal{T})) \oplus \Lambda\left(\Gamma_{\mathbf{G}}\right)\right)$ and hence also $\phi\left(\left[F_{\mathbf{T}}\right]\right) \in i\left(\Lambda(\sigma(\mathcal{T})) \oplus \Lambda\left(\Gamma_{\mathbf{G}}\right)\right)$. As in the case $\mathbf{T}=\mathbf{A}_{2}$, step 2., we show that we have $\phi\left(\left[F_{\mathbf{T}}\right]\right) \in i(\Lambda(\sigma(\mathcal{T})))$.

As in the case $\mathbf{T}=A_{2}$, step 2. above, we show that $\left|M_{\mathbf{T}}\right|$ is an elliptic pencil on $\widetilde{S}$ inducing a family $\left\{\Pi_{t}\right\}_{t \in \mathbb{P}^{1}}$ of planes on the quadric $Q$. For $t \in \mathbb{P}^{1}$, let $C_{t}:=\Pi_{t} \cap Y$. We obtain a family $\left\{C_{t}\right\}_{t \in \mathbb{P}^{1}}$ of plane cubic curves on $S$.
We claim that $Q$ has corank 2 in $\mathbb{P}^{4}$. Indeed, if $Q$ had corank one, we would find two different families of planes in $Q$. Let $\left\{\Pi_{t}^{\prime}\right\}_{t \in \mathbb{P}^{1}}$ be a family of planes in $Q$. None of the planes is contained in $Y$ since $S$ would otherwise contain a plane and hence $\widetilde{S}$ would be rational which contradicts the fact that $\widetilde{S}$ is a K3 surface. Therefore, $\left\{\Pi_{t}^{\prime}\right\}_{t \in \mathbb{P}^{1}}$ induces a family of plane cubic curves $\left\{C_{t}^{\prime}:=\Pi_{t}^{\prime} \cap Y\right\}_{t \in \mathbb{P}^{1}}$ on $S$. Let $C_{t}^{\prime}$ be a curve in $\left\{C_{t}^{\prime}\right\}_{t \in \mathbb{P}^{1}}$. The pull-back $\varphi_{L_{\mathbf{T}}}^{*}\left(C_{t}^{\prime}\right) \in \operatorname{Div}(\widetilde{S})$ to $\widetilde{S}$ has degree 3, i.e. $L_{\mathbf{T}} \cdot \varphi_{L_{\mathbf{T}}}^{*}\left(C_{t}^{\prime}\right)=3$. We can assume that

$$
\varphi_{L_{\mathbf{T}}}^{*}\left(C_{t}^{\prime}\right)=a \widetilde{C}+e_{1} E_{1}+\ldots+e_{k} E_{k}+e F^{\prime}
$$

for $a, e_{1}, \ldots, e_{k}, e \in \mathbb{Q}$, and $F^{\prime}$ a divisor whose class is contained in $\phi^{-1}\left(i\left(\Lambda\left(\Gamma_{\mathbf{G}}\right)\right)\right)$. Then, $3=L_{\mathbf{T}} \cdot \varphi_{L_{\mathbf{T}}}^{*}\left(C^{\prime}\right)=3 a$ gives $a=1$, i.e. $\varphi_{L_{\mathbf{T}}}^{*}\left(C_{t}^{\prime}\right)=\widetilde{C}+e_{1} E_{1}+\ldots+e_{k} E_{k}+e F^{\prime}$. Further, since $\varphi_{L_{\mathbf{T}}}$ contracts $E_{1}, \ldots, E_{k}$, and $F^{\prime}$ to singularities on $S$, we must have $C_{t}^{\prime}=$ $\varphi_{L_{\mathbf{T}}}\left(\varphi_{L_{\mathbf{T}}}^{*}\left(C_{t}^{\prime}\right)\right)=\varphi_{L_{\mathbf{T}}}(\widetilde{C}) \in\left\{C_{t}\right\}_{t \in \mathbb{P}^{1}}$. Therefore, the family $\left\{C_{t}^{\prime}\right\}_{t \in \mathbb{P}^{1}}$ coincides with the family $\left\{C_{t}\right\}_{t \in \mathbb{P}^{1}}$. Hence, we do not find two different families of planes in $Q$, i.e. $Q$ must have corank 2 instead of 1.
3. We show that the singularities of $S$ lying on the singular locus of $Q$ are of type $\sigma(\mathbf{T})$ :

Since the planes in $\left\{\Pi_{t}\right\}_{t \in \mathbb{P}^{1}}$ intersect only in the singular line $l$ of $Q$, all cubic curves in $\left\{C_{t}\right\}_{t \in \mathbb{P}^{1}}$ pass through (counted with multiplicity) the three points in $l \cap Y$ on the singular line of $Q$ which are singularities of $S$.
We show that the curves in the mobile part $\left|M_{\mathbf{T}}\right|$ of $|\widetilde{C}|$ intersect each connected component of the union of the divisors $E_{1}, \ldots, E_{k}$ on $\widetilde{S}$ :

Let $M_{\mathbf{T}}$ be a general member in $\left|M_{\mathbf{T}}\right|$.
Let $\mathbf{T}=\mathbf{D}_{4}$. Write the fixed part of $|\widetilde{C}|$ as $F_{\mathbf{D}_{4}}=F_{1, \mathbf{D}_{4}}+F_{2, \mathbf{D}_{4}}+F_{3, \mathbf{D}_{4}}$, where $F_{i, \mathbf{D}_{4}}$ is supported on $E_{i}$ or $F_{i, \mathbf{D}_{4}}=0$ for $i=1,2,3$. We have

$$
0=\widetilde{C}^{2}=\left(M_{\mathbf{D}_{4}}+F_{1, \mathbf{D}_{4}}+F_{2, \mathbf{D}_{4}}+F_{3, \mathbf{D}_{4}}\right)^{2}=\sum_{i=1}^{3} 2 M_{\mathbf{D}_{4}} \cdot F_{i, \mathbf{D}_{4}}+F_{i, \mathbf{D}_{4}}^{2}
$$

and we see that this equation can only hold if $M_{\mathbf{D}_{4}} \cdot F_{i, \mathbf{D}_{4}} \geq 1$ for the non-trivial $F_{i, \mathbf{D}_{4}}$ ( $i=1,2,3$ ) using that the classes of $F_{1, \mathbf{D}_{4}}, F_{2, \mathbf{D}_{4}}$, and $F_{3, \mathbf{D}_{4}}$ are contained in the even, negative definite lattice $\phi^{-1}\left(i\left(\Lambda\left(\sigma\left(\mathcal{D}_{4}\right)\right)\right)\right)$. On the other hand, if $F_{i, \mathbf{D}_{4}}=0$ for some $i=1,2,3$, we have $F_{\mathbf{D}_{4}} \cdot E_{i}=0$ and therefore $M_{\mathbf{D}_{4}} \cdot E_{i}=\left(\widetilde{C}-F_{\mathbf{D}_{4}}\right) \cdot E_{i}=1$ by definition of the intersection matrix $\Lambda\left(\sigma\left(\mathcal{D}_{4}\right)\right)$.
If $\mathbf{T}=\mathbf{D}_{n}(n \geq 5)$, write $F_{\mathbf{D}_{n}}=F_{1, \mathbf{D}_{n}}+F_{2, \mathbf{D}_{n}}$, where $F_{1, \mathbf{D}_{n}}$ is supported on $E_{1}$ or $F_{1, \mathbf{D}_{n}}=0$ and the support of $F_{2, \mathbf{D}_{n}}$ is contained in the union of $E_{2}, \ldots, E_{n-1}$ or $F_{2, \mathbf{D}_{n}}=0$. Similarly as above, we have

$$
0={\widetilde{C_{\mathbf{D}_{n}}}}^{2}=\left(M_{\mathbf{D}_{n}}+F_{1, \mathbf{D}_{n}}+F_{2, \mathbf{D}_{n}}\right)^{2}=2 M_{\mathbf{D}_{n}} \cdot F_{1, \mathbf{D}_{n}}+2 M_{\mathbf{D}_{n}} \cdot F_{2, \mathbf{D}_{n}}+F_{1, \mathbf{D}_{n}}^{2}+F_{2, \mathbf{D}_{n}}^{2}
$$

and this equation can only hold if $M_{\mathbf{D}_{n}} \cdot F_{i, \mathbf{D}_{n}} \geq 1$ for the non-trivial $F_{i, \mathbf{D}_{n}}(i=1,2)$. On the other hand, if $F_{i, \mathbf{D}_{n}}=0$ for $i=1$ or 2 , we have $M_{\mathbf{D}_{n}} \cdot E_{1}=\left(\widetilde{C}-F_{\mathbf{D}_{n}}\right) \cdot E_{1}=1$ or $M_{\mathbf{D}_{n}} \cdot E_{2}=\left(\widetilde{C}-F_{\mathbf{D}_{n}}\right) \cdot E_{2}=1$, respectively, similarly as above.

If $\mathbf{T}=\mathbf{E}_{6}, \mathbf{E}_{7}, \mathbf{E}_{8}$, the support of $F_{\mathbf{T}}$ is contained in the union of $E_{1}, \ldots, E_{k}$ with $k=5,6,7$, respectively, or $F_{\mathbf{T}}=0$. Similarly as above, we show that we have $M_{\mathbf{T}} \cdot F_{\mathbf{T}} \geq 1$ if $F_{\mathbf{T}} \neq 0$. If $F_{\mathbf{T}}=0$, we have for $\mathbf{T}=\mathbf{E}_{6}, \mathbf{E}_{7}, \mathbf{E}_{8}$ that $M_{\mathbf{T}} \cdot E_{i}=\widetilde{C} \cdot E_{i}=1$ with $i=3,6,1$, respectively, and $M_{\mathbf{T}} \cdot E_{j}=\widetilde{C} \cdot E_{j}=0$ for $j=1, \ldots, k$ with $j \neq i$ by definition of the intersection matrix $\Lambda(\sigma(\mathcal{T}))$.
Hence, for all choices of $\mathbf{T}=\mathbf{D}_{n \geq 4}, \mathbf{E}_{6}, \mathbf{E}_{7}, \mathbf{E}_{8}$, the curves in $\left|M_{\mathbf{T}}\right|$ intersect each connected component of the union of the divisors $E_{1}, \ldots, E_{k}$ on $\widetilde{S}$.

By Corollary 3.3.5, the connected components of the union of the divisors $E_{1}, \ldots, E_{k}$ are contracted by $\varphi_{L_{\mathbf{T}}}$ to singularities of type $\sigma(\mathbf{T})$ on $S$ and since the curves in $\left|M_{\mathbf{T}}\right|$ intersect with these connected components, the plane cubic curves in $\left\{C_{t}\right\}_{t \in \mathbb{P}^{1}}$ intersect in these singularities. Since the only intersection points of the curves in $\left\{C_{t}\right\}_{t \in \mathbb{P}^{1}}$ are on the singular line of $Q$, we can conclude that $S$ has singularities of type $\sigma(\mathbf{T})$ on the singular line of $Q$. Further, the curves in in $\left\{C_{t}\right\}_{t \in \mathbb{P}^{1}}$ do not intersect with any divisor class in $\phi^{-1}\left(i\left(\Lambda\left(\Gamma_{\mathbf{G}}\right)\right)\right) \subseteq \operatorname{Pic}(\widetilde{S})$ since the class of $\widetilde{C}$ is not contained in $\phi^{-1}\left(i\left(\Lambda\left(\Gamma_{\mathbf{G}}\right)\right)\right)$. Hence, the singularities of type $\mathbf{G}$ are not lying on the singular line of $Q$.

In conclusion, $S$ is a complete ( 2,3 )-intersection lying on a quadric of corank 2 in $\mathbb{P}^{4}$ such that the singularities of $S$ lying on the singular locus of $Q$ are of type $\sigma(\mathbf{T})$ and all other singularities of $S$ correspond to G.

This concludes the proof of $(3) \Rightarrow(2)$.

## 7 Existence of primitive lattice embeddings

In this chapter, it is our goal to state Nikulin's Theorem on the existence of certain lattice embeddings. To do so, we will define firstly finite bilinear and quadratic forms and discriminant bilinear and quadratic forms. We will study quadratic forms and finite quadratic forms over the $p$-adic integers $\mathbb{Z}_{p}$. For odd primes, we will define their normal forms. Then, we will explain how to construct a quadratic $\mathbb{Z}_{p}$-module $L_{p}$, given a finite quadratic form $G_{p}$ in normal form over $\mathbb{Z}_{p}$ such that the rank of $L_{p}$ is the length of $G_{p}$ and such that the discriminant quadratic form of $L_{p}$ is isomorphic to $G_{p}$. We then will state Nikulin's Theorem which provides necessary and sufficient conditions for the existence of a primitive embedding of an even lattice into an even unimodular lattice. Finally, we will state a sufficient condition when this embedding is unique up to automorphism. The results in this chapter will be needed in the following chapter where we will give an algorithm to determine all $A D E$ lattices $\Lambda$ such that $\langle 6\rangle \oplus \Lambda$ can be embedded primitively into the K3 lattice. This algorithm will be based on Nikulin's Theorem.

### 7.1 Finite symmetric bilinear forms and finite quadratic forms

Let $G$ be a finite abelian group and $\langle\rangle:, G \times G \rightarrow \mathbb{Q} / \mathbb{Z}$ a symmetric bilinear function. We call a pair $(G,\langle\rangle$,$) a finite symmetric bilinear form.$

If $q: G \rightarrow \mathbb{Q} / \mathbb{Z}$ is a map such that

1. $q(r g)=r^{2} q(g)$ for all $r \in \mathbb{Z}$ and all $g \in G$
2. the function $\langle,\rangle_{q}: G \times G \rightarrow \mathbb{Q} / \mathbb{Z}$ defined by $\left\langle g, g^{\prime}\right\rangle_{q}=q\left(g+g^{\prime}\right)-q(g)-q\left(g^{\prime}\right) \bmod \mathbb{Z}$ is a symmetric bilinear form on $G$,
we call the pair $(G, q)$ a finite quadratic form and $\langle,\rangle_{q}$ the bilinear form associated to $q$.
We denote the minimal number of generators of $G$ by $l(G)$ and call it the length of $G$.
Remark 7.1.1. Note that we defined here the finite quadratic form as in [MM09, Chap. I, Definition 2.1]; in the literature, it is usually required that $\left\langle g, g^{\prime}\right\rangle_{q}=\frac{1}{2}\left(q\left(g+g^{\prime}\right)-q(g)-q\left(g^{\prime}\right)\right)$ $\bmod \mathbb{Z}$.

### 7.2 The discriminant form of a lattice

Let $\left(L,\langle,\rangle_{L}\right)$ be a lattice. The $\mathbb{Z}$-module

$$
L^{\vee}=\operatorname{Hom}_{\mathbb{Z}}(L, \mathbb{Z}) \cong\left\{x \in L \otimes_{\mathbb{Z}} \mathbb{Q} ;\langle x, y\rangle_{L} \in \mathbb{Z} \text { for all } y \in L\right\}
$$

together with the natural extension $\langle,\rangle_{L^{\vee}}: L^{\vee} \times L^{\vee} \rightarrow \mathbb{Q}$ of $\langle,\rangle_{L}$ to $L^{\vee}$ is the dual lattice of $L$. The cokernel of the natural inclusion $i: L \hookrightarrow L^{\vee}$ is the discriminant group

$$
A(L):=L^{\vee} / i(L)
$$

The discriminant bilinear form is the pair $\left(A(L), b_{A(L)}\right)$, where

$$
b_{A(L)}: A(L) \times A(L) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

defined by $b_{A(L)}(x, y)=\langle x, y\rangle_{L^{\vee}} \bmod \mathbb{Z}$. Similarly, let $\left(L, Q_{L}\right)$ be the quadratic form associated to $\left(L,\langle,\rangle_{L}\right)$. Then, the finite quadratic form $\left(A(L), q_{L}\right)$, where

$$
q_{L}: A(L) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

defined by $q_{L}(x)=Q_{L^{\vee}}(x) \bmod \mathbb{Z}$ is the discriminant quadratic form of $L$.
Lemma 7.2.1. For the orthogonal sum $L_{1} \oplus L_{2}$ of two lattices $\left(L_{1}, b_{L_{1}}\right),\left(L_{2}, b_{L_{2}}\right)$, we have $A\left(L_{1} \oplus L_{2}\right)=A\left(L_{1}\right) \oplus A\left(L_{2}\right)$ and

$$
b_{A\left(L_{1} \oplus L_{2}\right)}=b_{A\left(L_{1}\right)} \oplus b_{A\left(L_{2}\right)} \text { and } q_{A\left(L_{1} \oplus L_{2}\right)}=q_{A\left(L_{1}\right)} \oplus q_{A\left(L_{2}\right)}
$$

The following discriminant groups will be used in the sequel where $n \geq 1$ :

| $L$ | $\langle 6\rangle$ | $A_{n}$ | $D_{2 n+2}$ | $D_{2 n+1}$ | $E_{6}$ | $E_{7}$ | $E_{8}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A(L)$ | $\mathbb{Z} / 6 \mathbb{Z}$ | $\mathbb{Z} /(n+1) \mathbb{Z}$ | $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ | $\mathbb{Z} / 4 \mathbb{Z}$ | $\mathbb{Z} / 3 \mathbb{Z}$ | $\mathbb{Z} / 2 \mathbb{Z}$ | $\{0\}$ |

Table 7.1: Discriminant groups of $A D E$ lattices, see [MM09, Chap. II, Table 7.2].

### 7.3 Quadratic forms and finite quadratic forms over $\mathbb{Z}_{p}$

Let $p$ be a prime number. We will in the following always denote by $\mathbb{Q}_{p}$ and $\mathbb{Z}_{p}$ the $p$-adic numbers and $p$-adic integers, respectively.

For a finite group $G$, we denote

$$
G_{p}:=\left\{x \in G ; p^{k} x=0 \text { for some } k \geq 0\right\}
$$

the $p$-primary part of $G$.
Let $(G, q)$ be a finite quadratic form over $\mathbb{Z}$ and $q_{p}: G_{p} \rightarrow(\mathbb{Q} / \mathbb{Z})_{p}, x \mapsto q(x)$ the restriction of $q$ to $G_{p}$.

Lemma 7.3.1. We have a group isomorphism $G_{p} \cong G \otimes_{\mathbb{Z}} \mathbb{Z}_{p}$ such that

commutes, where $q \otimes \mathbb{Z}_{p}: G \otimes_{\mathbb{Z}} \mathbb{Z}_{p} \rightarrow \mathbb{Q} / \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}, g \otimes \alpha \mapsto q(g) \otimes \alpha^{2}$. Hence, the finite quadratic forms $\left(G \otimes_{\mathbb{Z}} \mathbb{Z}_{p}, q \otimes \mathbb{Z}_{p}\right)$ and $\left(G_{p}, q_{p}\right)$ are isomorphic over $\mathbb{Z}_{p}$.

Proof. For $x \in(\mathbb{Q} / \mathbb{Z})_{p}$, there exists a positive integer $k$ such that $p^{k} x \in \mathbb{Z}$. Write $[x]_{p}:=$ $\sum_{i=-k}^{-1} c_{i} p^{i}$ for the $p$-fraction part of $x$. Then,

$$
(\mathbb{Q} / \mathbb{Z})_{p} \xrightarrow{\sim} \mathbb{Q}_{p} / \mathbb{Z}_{p}, x \mapsto[x]_{p} \quad \bmod \mathbb{Z}_{p}
$$

is an isomorphism. Hence, we have $q_{p}: G_{p} \rightarrow \mathbb{Q}_{p} / \mathbb{Z}_{p}$. By [Gra03, Chap. III.1.2.3], we have an isomorphism of groups

$$
\lambda: G \otimes_{\mathbb{Z}} \mathbb{Z}_{p} \xrightarrow{\sim} G_{p}, g \otimes \alpha \mapsto \alpha g .
$$

Then, we have for $g \otimes \alpha \in G \otimes_{\mathbb{Z}} \mathbb{Z}_{p}$ :

$$
\lambda\left(\left(q \otimes \mathbb{Z}_{p}\right)(g \otimes \alpha)\right)=\lambda\left(q(g) \otimes \alpha^{2}\right)=\alpha^{2} q(g)=q(\alpha g)=q(\lambda(g \otimes \alpha))=q_{p}(\lambda(g \otimes \alpha)) .
$$

Hence, diagram (7.1) commutes.
We call $\left(G_{p}, q_{p}\right)$ a finite quadratic form over $\mathbb{Z}_{p}$. Likewise, the definition for discriminant quadratic forms then extends to discriminant quadratic forms over $\mathbb{Z}_{p}$.
The following example of a quadratic form over $\mathbb{Z}_{p}$ and their discriminant quadratic forms will be needed in the next chapter:
Example 7.3.2. 1. For an odd prime $p$ and $a \in \mathbb{Z}_{p} \backslash\{0\}$, we write $a=p^{k} u$ with $u \in \mathbb{Z}_{p}^{\times}$ and $k \geq 0$. Let

$$
\chi: \mathbb{Z}_{p}^{\times} /\left(\mathbb{Z}_{p}^{\times}\right)^{2} \rightarrow\{ \pm 1\}, u \mapsto \begin{cases}1 & \text { if } u \text { is a square } \bmod p \\ -1 & \text { if } u \text { is not a square } \bmod p\end{cases}
$$

be the Legendre symbol. Then, the finite quadratic form $W_{p, k}^{\epsilon}$ over $\mathbb{Z}_{p}$ with $\epsilon=\chi(u)$ is the rank one lattice with intersection matrix $\left(p^{k} u\right)$. The discriminant of $W_{p, k}^{\chi(u)}$ is given by

$$
\begin{equation*}
\operatorname{disc}\left(W_{p, k}^{\chi(u)}\right)=p^{k} u \quad \bmod \left(\mathbb{Z}_{p}^{\times}\right)^{2} . \tag{7.2}
\end{equation*}
$$

2. For a prime $p$ and $k \geq 1$, let $G:=\mathbb{Z} / p^{k} \mathbb{Z}$ and let $a \in \mathbb{Z}$ such that $\operatorname{gcd}\left(a, p^{k}\right)=1$ and $a p^{k} \in 2 \mathbb{Z}$. For the generator $g$ of $G$ and $r \in \mathbb{Z}$, let $q: G \rightarrow \mathbb{Q} / \mathbb{Z}$ with $q(r g)=\frac{r^{2} a}{2 p^{k}}$. This definition is well defined since $q\left(p^{k} g\right)=\frac{p^{2 k} a}{2 p^{k}}=\frac{a p^{k}}{2} \in \mathbb{Z}$.
For an odd prime $p$, let

$$
\chi: G^{\times} /\left(G^{\times}\right)^{2} \rightarrow\{ \pm 1\}, u \mapsto \begin{cases}1 & \text { if } u \text { is a square } \bmod p \\ -1 & \text { if } u \text { is not a square } \bmod p\end{cases}
$$

be the Legendre symbol.
For $p=2$, let
$\chi:(\mathbb{Z} / 2 \mathbb{Z})^{\times} /\left((\mathbb{Z} / 2 \mathbb{Z})^{\times}\right)^{2} \rightarrow(\mathbb{Z} / 2 \mathbb{Z})^{\times}=\{1\}$ is the identity map
$\chi:(\mathbb{Z} / 4 \mathbb{Z})^{\times} /\left((\mathbb{Z} / 4 \mathbb{Z})^{\times}\right)^{2} \rightarrow(\mathbb{Z} / 4 \mathbb{Z})^{\times}=\{1,3\}$ is the identity map
$\chi:\left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)^{\times} /\left(\left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)^{\times}\right)^{2} \rightarrow(\mathbb{Z} / 8 \mathbb{Z})^{\times}=\{1,3,5,7\}$ is the $\bmod 8$ map.
Then, we denote the finite quadratic form $(G, q)$ over $\mathbb{Z}$ by $w_{p, k}^{\chi\left(a \bmod p^{k}\right)}$, inducing the finite quadratic form $\left(G_{p}, q_{p}\right)$ over $\mathbb{Z}_{p}$, where $G_{p}=\mathbb{Z} / p^{k} \mathbb{Z}$ and $q_{p}: G_{p} \rightarrow \mathbb{Q}_{p} / \mathbb{Z}_{p}$ with $q_{p}(r g)=q(r g)$ for $g$ a generator of $G_{p}$ and $r \in \mathbb{Z}$. We will refer to $\left(G_{p}, q_{p}\right)$ as the finite quadratic form $w_{p, k}^{\chi\left(a \bmod p^{k}\right)}$ over $\mathbb{Z}_{p}$.

### 7.3.1 Normal form decompositions of quadratic forms and finite quadratic forms over $\mathbb{Z}_{p}, p$ odd

Let $p$ be an odd prime.
Let $(G, q)$ be a finite quadratic form over $\mathbb{Z}_{p}$.
Definition 7.3.3. We say that a decomposition of $(G, q)$ is given in normal form over $\mathbb{Z}_{p}$ if

$$
(G, q)=\bigoplus_{k \geq 1}\left(\left(w_{p, k}^{1}\right)^{\oplus n(k)} \oplus\left(w_{p, k}^{-1}\right)^{\oplus m(k)}\right),
$$

where $n(k)$ and $m(k)$ are non-negative integers for each $k$.
Let $(L, Q)$ be a quadratic $\mathbb{Z}_{p}$-module.
Definition 7.3.4. We say that a decomposition of $(L, Q)$ is given in normal form over $\mathbb{Z}_{p}$ if

$$
(L, Q)=\bigoplus_{k \geq 0}\left(\left(W_{p, k}^{1}\right)^{\oplus n(k)} \oplus\left(W_{p, k}^{-1}\right)^{\oplus m(k)}\right)
$$

where $n(k)$ and $m(k)$ are non-negative integers for each $k$.
Remark 7.3.5. In the definition of a normal form of a finite quadratic form over $\mathbb{Z}_{p}$ and quadratic $\mathbb{Z}_{p}$-module in [MM09, Chap. IV, Definition 2.2, 2.6], it is furthermore requested that $m(k) \leq 1$ for each $k$. With these stronger definitions, we can show that if $q$ and $Q$ are non-degenerate, $(G, q)$ and $(L, Q)$, respectively, have unique normal form decompositions by [MM09, Chap. IV, Proposition 2.4, 2.7]. Obviously, a normal form decomposition as in [MM09] is in particular a normal form as defined here.

Proposition 7.3.6 ([MM09, Chap. IV, Corollary 2.10]). For a finite quadratic form ( $G, q$ ) over $\mathbb{Z}_{p}$, there exists an up to isomorphism unique quadratic $\mathbb{Z}_{p}$-module $(L, Q)$ such that $\operatorname{rank}(L)=l(G)$ and the discriminant form of $(L, Q)$ is isomorphic to $(G, q)$.

Corollary 7.3.7. Let $(G, q)$ be a finite quadratic form over $\mathbb{Z}_{p}$ in its normal form

$$
(G, q):=\bigoplus_{k \geq 1}\left(\left(w_{p, k}^{1}\right)^{\oplus n(k)} \oplus\left(w_{p, k}^{-1}\right)^{\oplus m(k)}\right)
$$

The up to isomorphism uniquely determined $\mathbb{Z}_{p}$-module $(L, Q)$ such that $\operatorname{rank}(L)=l(G)$ and such that the discriminant form of $(L, Q)$ is isomorphic to $(G, q)$ is

$$
\bigoplus_{k \geq 1}\left(\left(W_{p, k}^{1}\right)^{\oplus n(k)} \oplus\left(W_{p, k}^{-1}\right)^{\oplus m(k)}\right) .
$$

Proof. For $i= \pm 1$, we have $\operatorname{rank}\left(W_{p, k}^{i}\right)=1$ and $l\left(w_{p, k}^{i}\right)=l\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)=1$. Further, the discriminant quadratic form of $W_{p, k}^{i}$ is

$$
\left(A\left(W_{p, k}^{i}\right), q_{W_{p, k}^{i}}\right)=\left(\mathbb{Z} / p^{k} \mathbb{Z}, q_{W_{p, k}^{i}}\right)
$$

and $\left(\mathbb{Z} / p^{k} \mathbb{Z}, q_{W_{p, k}^{i}}\right)$ is simply the finite quadratic form $w_{p, k}^{i}$. By Lemma 7.2 .1 , the discriminant form of

$$
\bigoplus_{k \geq 1}\left(\left(W_{p, k}^{1}\right)^{\oplus n(k)} \oplus\left(W_{p, k}^{-1}\right)^{\oplus m(k)}\right)
$$

then is

$$
\bigoplus_{k \geq 1}\left(\left(w_{p, k}^{1}\right)^{\oplus n(k)} \oplus\left(w_{p, k}^{-1}\right)^{\oplus m(k)}\right)
$$

By Proposition 7.3.6, the quadratic form $\bigoplus_{k \geq 1}\left(\left(W_{p, k}^{1}\right)^{\oplus n(k)} \oplus\left(W_{p, k}^{-1}\right)^{\oplus m(k)}\right)$ is up to isomorphism unique with these properties.

Remark 7.3.8. Likewise, there exists the notion of normal form for finite quadratic forms over $\mathbb{Z}_{2}$ and quadratic $\mathbb{Z}_{2}$-modules and a version of Proposition 7.3.6 over $\mathbb{Z}_{2}$, see [MM09, Chap. IV.4, IV.5].

### 7.4 Primitive embeddings into unimodular lattices

For a finite quadratic form $(G, q)$ over $\mathbb{Z}$, the induced finite quadratic form $\left(G \otimes_{\mathbb{Z}} \mathbb{Z}_{p}, q \otimes \mathbb{Z}_{p}\right)$ over $\mathbb{Z}_{p}$ is by Lemma 7.3 .1 isomorphic to the finite quadratic form $\left(G_{p}, q_{p}\right)$ over $\mathbb{Z}_{p}$ on the $p$-primary part $G_{p}$ of $G$. Let $K\left(q_{p}\right)$ be the unique quadratic $\mathbb{Z}_{p}$-module of rank $l\left(G_{p}\right)$ and with discriminant form isomorphic to $\left(G_{p}, q_{p}\right)$. Note that $K\left(q_{p}\right)$ exists for odd primes $p$ by Proposition 7.3.6 and for $p=2$ by [MM09, Chap. IV, Corollary 5.6].

We recall V. V. Nikulin's Theorem about the existence of primitive lattice embeddings into even unimodular lattices:

Theorem 7.4.1 ([Nik80, Theorem $1.12 .2(a) \Leftrightarrow(d)])$. The following properties are equivalent:

1. There exists a primitive embedding of an even lattice $(M, Q)$ with signature $\left(m_{+}, m_{-}\right)$ and discriminant form $(A(M), q)$ into an even unimodular lattice $L$ with signature $\left(l_{+}, l_{-}\right)$.
2. The following conditions are all satisfied:
a) $l_{+}-l_{-} \equiv 0 \bmod 8$
b) $l_{-}-m_{-} \geq 0, l_{+}-m_{+} \geq 0$
c) $\left(l_{-}+l_{+}\right)-\left(m_{-}+m_{+}\right) \geq l(A(M))$
d) If $p$ is an odd prime and $\left(l_{-}+l_{+}\right)-\left(m_{-}+m_{+}\right)=l\left(A(M)_{p}\right)$, then we have $(-1)^{l_{+}-m_{+}}|A(M)| \equiv \operatorname{disc}\left(K\left(q_{p}\right)\right) \bmod \left(\mathbb{Z}_{p}^{\times}\right)^{2}$
e) If $\left(l_{-}+l_{+}\right)-\left(m_{-}+m_{+}\right)=l\left(A(M)_{2}\right)$ and $\omega_{2, k}^{\epsilon}$ does not split off $q_{2}$ for some $k$, then we have $|A(M)| \equiv \pm \operatorname{disc}\left(K\left(q_{2}\right)\right) \bmod \left(\mathbb{Z}_{2}^{\times}\right)^{2}$.

Remark 7.4.2. We note that V. V. Nikulin gives in [Nik80, §2] different definitions for quadratic forms and finite quadratic forms than we do in Sections 2.1 and 7.1, respectively, see Remarks 2.1.1 and 7.1.1. However, every quadratic form and every finite quadratic form in Nikulin's definition corresponds naturally to a quadratic form and finite quadratic form, respectively, defined here and vice versa. Furthermore, this correspondence respects naturally the decomposition of the quadratic forms and finite quadratic forms into direct summands. Moreover, for both Nikulin's definition and the definition here, the definitions of the bilinear forms associated to the quadratic forms coincide. Hence, we compute for both quadratic forms the same discriminants. Therefore, we may use the definitions made here for Nikulin's Theorem in [Nik80, Theorem 1.12.2].

Imposing a stronger condition on the lattices $L$ and $M$ as in Theorem 7.4.1, we can guarantee that a primitive embedding $M \hookrightarrow L$ is even unique up to automorphisms of $L$.

Theorem 7.4.3 ([Dol83, Theorem 1.4.8]). A primitive embedding of an even lattice $M$ of signature ( $m_{+}, m_{-}$) into an even lattice $L$ of signature ( $l_{+}, l_{-}$) is unique up to an automorphism of $L$ provided: $\left(l_{-}+l_{+}\right)-\left(m_{-}+m_{+}\right) \geq l(A(M))+2$.

# 8 Finding certain primitive lattice embeddings into the K3 lattice 

In this chapter, we want to find all those $A D E$ lattices $\Lambda$ such that $\langle 6\rangle \oplus \Lambda$ has a primitive embedding into the K3 lattice. We will present an algorithm which enables us to determine these lattices $\Lambda$ computer-aided. Using Main Theorem 1, the existence of these lattice embeddings will imply the existence of cubic fourfolds as well as complete ( 2,3 )-intersections in $\mathbb{P}^{4}$ both with certain $A D E$ singularities.

### 8.1 Algorithm to compute certain primitive lattice embeddings into $L_{K 3}$

Theorem 8.1.1. Let $\Lambda$ be a direct sum of irreducible $A D E$ lattices. Then, there exists a primitive embedding $\langle 6\rangle \oplus \Lambda \hookrightarrow L_{K 3}$ if and only if $\Lambda$ is one of the 2942 lattices in Appendix C. Further, all lattices $\Lambda$ in Appendix C marked with an asterisk (*) have the property that the embedding $\langle 6\rangle \oplus \Lambda \hookrightarrow L_{K 3}$ is unique up to an automorphism of $L_{K 3}$.

Proof. The lattice $\langle 6\rangle \oplus \Lambda$ is even and note furthermore that the K3 lattice $L_{K 3}$ is both even and unimodular. Hence, Theorem 7.4.1 gives us necessary and sufficient conditions such that $\langle 6\rangle \oplus \Lambda$ can be embedded primitively into $L_{K 3}$. Further, Theorem 7.4 .3 gives us a sufficient condition such that this embedding is unique up to an automorphism of $L_{K 3}$. The algorithm below determines all lattices $\Lambda$ such that for $\langle 6\rangle \oplus \Lambda$ all conditions (2a)-(2e) in Theorem 7.4.1 hold. These can be found in the list in Appendix C. The algorithm furthermore identifies those for which the condition in Theorem 7.4.3 holds, as well. These are the lattices $\Lambda$ in Appendix $C$ marked with an asterisk (*).

Remark 8.1.2. Independently from us, S. Brandhorst found the complete list of $2942 A D E$ lattice $\Lambda$ in Appendix C such that we have a primitive embedding $\langle 6\rangle \oplus \Lambda \hookrightarrow L_{K 3}$ by means of the computer-algebra software Sage.

We now describe the algorithm mentioned in the proof of Theorem 8.1.1 based on Theorem 7.4.1 to determine all possible direct sums of $A D E$ lattices $\Lambda$ such that we have a primitive embedding

$$
\langle 6\rangle \oplus \Lambda \hookrightarrow L_{K 3}
$$

and on Theorem 7.4.3 to determine some embeddings which are unique up to automorphisms of $L_{K 3}$. The algorithm is implemented in the computer-algebra software Wolfram Mathematica (version 11.1.1.0), find the code in Appendix B. Summarized, the algorithm determines step-by-step the set of all $A D E$ lattices $\Lambda$ such that the lattices $\langle 6\rangle \oplus \Lambda$ satisfy the necessary and sufficient conditions (2a)-(2e) in Theorem 7.4.1. In the final step we obtain the list of $A D E$ lattices $\Lambda$ such that there exists a primitive embedding
$\langle 6\rangle \oplus \Lambda \hookrightarrow L_{K 3}$. Imposing a stronger condition in (2c), lattices $\Lambda$ such that the primitive embedding $\langle 6\rangle \oplus \Lambda \hookrightarrow L_{K 3}$ is unique up to an automorphism of $L_{K 3}$ are determined simultaneously.

We now describe the algorithm structured by the following Subsections 8.1.1-8.1.5 in more detail:

### 8.1.1 Check condition (2a) in Theorem 7.4.1

Condition (2a) in Theorem 7.4 .1 is always satisfied in our case since the K3 lattice $L_{K 3}$ has signature $(3,19)$ so

$$
19-3=16 \equiv 0 \quad \bmod 8
$$

### 8.1.2 Check condition (2b) in Theorem 7.4.1

Let

$$
\Lambda:=\bigoplus_{i \geq 1} a_{i} A_{i} \oplus \bigoplus_{j \geq 4} d_{j} D_{j} \oplus \bigoplus_{k=6}^{8} e_{k} E_{k}
$$

be an $A D E$ lattice. The lattice $\langle 6\rangle \oplus \Lambda$ has signature

$$
\left(1, \sum_{i \geq 1} a_{i} i+\sum_{j \geq 4} d_{j} j+\sum_{k=6}^{8} e_{k} k\right)
$$

Hence, it satisfies condition (2b) in Theorem 7.4.1 if and only if

$$
19 \geq \sum_{1 \geq i} a_{i} i+\sum_{j \geq 4} d_{j} j+\sum_{k=6}^{8} e_{k} k
$$

In particular, this means that $1 \leq i \leq 19,4 \leq j \leq 19$, and $6 \leq k \leq 8$. Consequently, the set of all lattices satisfying condition (2b) in Theorem 7.4.1 is given by

$$
\text { listb }:=([0,19] \cap \mathbb{Z})^{19} \times([0,19] \cap \mathbb{Z})^{16} \times([0,19] \cap \mathbb{Z})^{3}
$$

Just to find all tuples in listb more time efficiently, we use an iteration in the code in Appendix B which is justified by the following Lemma:

Lemma 8.1.3. Let $n$ and $r$ be positive integers with $r \leq n$. Let

$$
\mathrm{L}_{r, n}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{n} ; \sum_{i=1}^{n} a_{i} i=r\right\}
$$

and for $i=1, \ldots, n-1$

$$
\operatorname{step}_{i}: \mathrm{L}_{r, n} \rightarrow\left(\mathbb{Z}_{\geq 0}\right)^{n},\left(a_{1}, \ldots, a_{n}\right) \mapsto\left(a_{1}, \ldots, a_{i-1}, a_{i}-1, a_{i+1}+1, a_{i+2}, \ldots, a_{n}\right)
$$

Let

$$
\mathrm{L}_{r, n}^{\text {step }}:=\bigcup_{\left(a_{1}, \ldots, a_{n}\right) \in \mathrm{L}_{r, n}}\left\{\operatorname{step}_{i}\left(\left(a_{1}, \ldots, a_{n}\right)\right) ; \text { for } i=1, \ldots, n-1 \text { with } a_{i} \neq 0\right\}
$$

Then,

$$
\begin{equation*}
\mathrm{L}_{r+1, n}=\left\{(r+1,0, \ldots, 0) \in \mathbb{Z}^{n}\right\} \cup \mathrm{L}_{r, n}^{\text {step }} \tag{8.1}
\end{equation*}
$$

Proof. Let $\left(a_{1}, \ldots, a_{n}\right) \in \mathrm{L}_{r+1, n}$ and assume that $a_{s} \neq 0$ for some $2 \leq s \leq n$. We have $\sum_{i=1}^{n} a_{i} i=r+1$. Then, $\left(a_{1}, \ldots, a_{s-2}, a_{s-1}+1, a_{s}-1, a_{s+1}, \ldots, a_{n}\right) \in \mathrm{L}_{r, n}$ since

$$
\begin{aligned}
& a_{1}+\ldots+a_{s-2}(s-2)+\left(a_{s-1}+1\right)(s-1)+\left(a_{s}-1\right) s+a_{s+1}(s+1)+\ldots+a_{n} n \\
= & a_{1}+\ldots+a_{s-2}(s-2)+a_{s-1}(s-1)+a_{s} s+a_{s+1}(s+1)+\ldots+a_{n} n+(s-1)-s \\
= & r+1-1=r .
\end{aligned}
$$

Hence, $\left(a_{1}, \ldots, a_{n}\right) \in \mathrm{L}_{r, n}^{\text {step }}$. If $\left(a_{1}, \ldots, a_{n}\right) \in \mathrm{L}_{r+1, n}$ such that $a_{s}=0$ for all $2 \leq s \leq n$, then $\left(a_{1}, \ldots, a_{n}\right)=(r+1,0, \ldots, 0)$.
Assume conversely that $\left(a_{1}, \ldots, a_{n}\right) \in\{(r+1,0, \ldots, 0)\} \cup L_{r, n}^{\text {step }}$. Obviously $(r+1,0, \ldots, 0) \in$ $\mathrm{L}_{r+1, n}$. If $\left(a_{1}, \ldots, a_{n}\right) \in \mathrm{L}_{r, n}^{\text {step }}$, we have $a_{s} \neq 0$ for some $s \geq 2$ such that $\left(a_{1}, \ldots, a_{s-2}, a_{s-1}+\right.$ $\left.1, a_{s}-1, a_{s+1}, \ldots, a_{n}\right) \in \mathrm{L}_{r, n}$. Hence,
$\sum_{i=1}^{n} a_{i} i$
$=\left(a_{1}+\ldots+a_{s-2}(s-2)+\left(a_{s-1}+1\right)(s-1)+\left(a_{s}-1\right) s+a_{s+1}(s+1)+\ldots+a_{n} n\right)+1$
$=r+1$
so $\left(a_{1}, \ldots, a_{n}\right) \in \mathrm{L}_{r+1, n}$.

Following the notation in Lemma 8.1.3, we define the set

$$
\operatorname{listab}[r]:=L_{r, 19}
$$

which contains all tuples $\left(a_{1}, \ldots, a_{19}\right)$ such that $\sum_{i=1}^{19} a_{i} i=r$. Lemma 8.1.3 now enables us to compute listab[r] iteratively by using that listab[r] $=\left\{(r, 0, \ldots, 0) \in \mathbb{Z}^{19}\right\} \cup \mathrm{L}_{r-1,19}^{\text {step }}$, where $\mathrm{L}_{r-1,19}^{\text {step }}$ can be computed by means of listab[r-1]. This turns out to be faster than a direct computation of listab[r].

We then define

$$
\begin{aligned}
\operatorname{listdb}[r] & :=\left\{\left(d_{1}, \ldots, d_{19}\right) \in \operatorname{listab}[r] ; d_{1}=d_{2}=d_{3}=0\right\} \\
\text { listeb }[r] & :=\left\{\left(e_{1}, \ldots, e_{19}\right) \in \operatorname{listab}[r] ; e_{1}=\ldots=e_{5}=e_{9}=\ldots=e_{19}=0\right\}
\end{aligned}
$$

Consequently,
$\operatorname{listb}[\mathrm{r}]:=\left\{\left(\left(a_{1}, \ldots, a_{19}\right),\left(d_{4}, \ldots, d_{19}\right),\left(e_{6}, e_{7}, e_{8}\right)\right) \in \operatorname{listab}[\mathrm{i}] \times \operatorname{listdb}[\mathrm{j}] \times \operatorname{listeb}[\mathrm{k}] ; i+j+k=r\right\}$ and

$$
\text { listb }:=\cup_{r=1}^{19} \text { listb[r]. }
$$

### 8.1.3 Check condition (2c) in Theorem 7.4.1

Let $\Lambda$ be an $A D E$ lattice in listb, i.e. $\langle 6\rangle \oplus \Lambda$ satisfies condition (2b) in Theorem 7.4.1. In particular, $\Lambda$ has the form

$$
\Lambda:=\bigoplus_{i=1}^{19} a_{i} A_{i} \oplus \bigoplus_{j=4}^{19} d_{j} D_{j} \oplus \bigoplus_{k=6}^{8} e_{k} E_{k}
$$

The signature of $\langle 6\rangle \oplus \Lambda$ is

$$
\left(1, \sum_{1=i}^{19} a_{i} i+\sum_{4=j}^{19} d_{j} j+\sum_{k=6}^{8} e_{k} k\right)
$$

Hence, it satisfies condition (2c) if and only if

$$
(3+19)-\left(1+\sum_{1=i}^{19} a_{i} i+\sum_{4=j}^{19} d_{j} j+\sum_{k=6}^{8} e_{k} k\right) \geq l(A(\langle 6\rangle \oplus \Lambda))
$$

Consequently, the set of all lattices $\Lambda$ such that $\langle 6\rangle \oplus \Lambda$ satisfies condition (2c) is given by

$$
\begin{aligned}
\text { listbc }:= & \left\{\Lambda:=\bigoplus_{i=1}^{19} a_{i} A_{i} \oplus \bigoplus_{j=4}^{19} d_{j} D_{j} \oplus \bigoplus_{k=6}^{8} e_{k} E_{k} \in\right. \text { listb; } \\
& \left.21-\left(\sum_{1=i}^{19} a_{i} i+\sum_{4=j}^{19} d_{j} j+\sum_{k=6}^{8} e_{k} k\right) \geq l(A(\langle 6\rangle \oplus \Lambda))\right\}
\end{aligned}
$$

The set of all lattices $\Lambda$ such that $\langle 6\rangle \oplus \Lambda$ satisfies additionally the assumptions in Theorem 7.4.3 is given by

$$
\begin{aligned}
\text { listbcu }:= & \left\{\Lambda:=\bigoplus_{i=1}^{19} a_{i} A_{i} \oplus \bigoplus_{j=4}^{19} d_{j} D_{j} \oplus \bigoplus_{k=6}^{8} e_{k} E_{k} \in\right. \text { listb; } \\
& \left.19-\left(\sum_{1=i}^{19} a_{i} i+\sum_{4=j}^{19} d_{j} j+\sum_{k=6}^{8} e_{k} k\right) \geq l(A(\langle 6\rangle \oplus \Lambda))\right\}
\end{aligned}
$$

We now present how we compute the length $l(A(\langle 6\rangle \oplus \Lambda))$ of the discriminant group $A(\langle 6\rangle \oplus \Lambda)$ in the code in Appendix B. Indeed, by the following Lemma 8.1.4, the length $l(A(\langle 6\rangle \oplus \Lambda))$ is just the maximum of the lengths of the $p$-primary parts $A(\langle 6\rangle \oplus \Lambda)_{p}$ of $A(\langle 6\rangle \oplus \Lambda):$

Lemma 8.1.4. Let $G$ be a finite abelian group. Then,

$$
l(G)=\max _{p \text { prime }}\left(l\left(G_{p}\right)\right),
$$

where $G_{p}$ is the p-primary part of $G$. More explicitly, let $p_{0}$ be a prime such that $l(G)=$ $l\left(G_{p_{0}}\right)$ and

$$
G_{p_{0}}=\mathbb{Z} / p_{0}^{s_{1}} \mathbb{Z} \oplus \ldots \oplus \mathbb{Z} / p_{0}^{s_{n}} \mathbb{Z}
$$

for $s_{1}, \ldots, s_{n} \in \mathbb{Z}_{\geq 1}$, then $l(G)=l\left(G_{p_{0}}\right)=n$.

Proof. Since $G_{p}$ is a subgroup of $G$ for all primes $p$, we have $l\left(G_{p}\right) \leq l(G)$, in particular $\max _{p}\left(l\left(G_{p}\right)\right) \leq l(G)$. The group $G$ has the invariant factor decomposition

$$
G=\mathbb{Z} / d_{1} \mathbb{Z} \oplus \ldots \oplus \mathbb{Z} / d_{n} \mathbb{Z}
$$

with $d_{i} \mid d_{i+1}$ for $i=1, \ldots, n-1$. Then, $G$ has at most $n$ generators, i.e. $l(G) \leq n$. Let $p_{0}$ be a prime dividing $d_{1}$. We have positive integers $s_{1}, \ldots, s_{n}$ such that

$$
G_{p_{0}}=\mathbb{Z} / p_{0}^{s_{1}} \mathbb{Z} \oplus \ldots \oplus \mathbb{Z} / p_{0}^{s_{n}} \mathbb{Z}
$$

where $p_{0}^{s_{i}} \mid d_{i}$ and $p_{0}^{s_{i}+1} \nmid d_{i}$ for $i=1, \ldots, n$. Hence, $l\left(G_{p_{0}}\right) \leq n$. We have a surjective morphism

$$
\pi: G_{p_{0}} \rightarrow\left(\mathbb{Z} / p_{0} \mathbb{Z}\right)^{n},\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1} \bmod p_{0}, \ldots, x_{n} \bmod p_{0}\right)
$$

Assume then that $g_{1}, \ldots, g_{m}$ generate $G_{p_{0}}$ with $m<n$. Since $\pi$ is a surjective morphism, $\pi\left(g_{1}\right), \ldots, \pi\left(g_{m}\right)$ must generate $\left(\mathbb{Z} / p_{0} \mathbb{Z}\right)^{n}$. Since every element $x \in\left(\mathbb{Z} / p_{0} \mathbb{Z}\right)^{n}$ satisfies $p_{0} x=0$, it can be written as $x=\left(a_{1} \pi\left(g_{1}\right), \ldots, a_{m} \pi\left(g_{m}\right)\right)$ with $0 \leq a_{1}, \ldots, a_{m} \leq p_{0}-1$. However, then $\left(\mathbb{Z} / p_{0} \mathbb{Z}\right)^{n}$ had cardinality $p_{0}^{m}$ which is false. Hence, the assumption must be wrong and we have $l\left(G_{p_{0}}\right)=n$. In conclusion, $n=l\left(G_{p_{0}}\right) \leq l(G) \leq n$ so $n=l\left(G_{p_{0}}\right)=l(G)$. Hence, $l(G)=\max _{p}\left(l\left(G_{p}\right)\right)$.

Using Lemma 7.2.1 and Table 7.1, we deduce that the discriminant group of $\langle 6\rangle \oplus \Lambda$ is given by

$$
\begin{aligned}
& A(\langle 6\rangle \oplus \Lambda)=\mathbb{Z} / 6 \mathbb{Z} \oplus \bigoplus_{1=i}^{19} a_{i} \mathbb{Z} /(i+1) \mathbb{Z} \\
& \oplus \bigoplus_{j=2}^{9} d_{2 j}(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}) \oplus d_{2 j+1} \mathbb{Z} / 4 \mathbb{Z} \\
& \oplus e_{6} \mathbb{Z} / 3 \mathbb{Z} \oplus e_{7} \mathbb{Z} / 2 \mathbb{Z}
\end{aligned}
$$

For all primes $p$, the $p$-primary parts of $A(\langle 6\rangle \oplus \Lambda)$ are given by

$$
\begin{aligned}
A(\langle 6\rangle \oplus \Lambda)_{2}= & \mathbb{Z} / 2 \mathbb{Z} \\
& \oplus \bigoplus_{i=0}^{4} a_{4 i+1} \mathbb{Z} / 2 \mathbb{Z} \\
& \oplus a_{3} \mathbb{Z} / 2^{2} \mathbb{Z} \oplus a_{7} \mathbb{Z} / 2^{3} \mathbb{Z} \oplus a_{11} \mathbb{Z} / 2^{2} \mathbb{Z} \oplus a_{15} \mathbb{Z} / 2^{4} \mathbb{Z} \oplus a_{19} \mathbb{Z} / 2^{2} \mathbb{Z} \\
& \oplus \bigoplus_{j=2}^{9} d_{2 j}(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}) \oplus d_{2 j+1} \mathbb{Z} / 2^{2} \mathbb{Z} \\
& \oplus e_{7} \mathbb{Z} / 2 \mathbb{Z} \\
A(\langle 6\rangle \oplus \Lambda)_{3}= & \mathbb{Z} / 3 \mathbb{Z} \\
& \oplus a_{2} \mathbb{Z} / 3 \mathbb{Z} \oplus a_{5} \mathbb{Z} / 3 \mathbb{Z} \oplus a_{11} \mathbb{Z} / 3 \mathbb{Z} \oplus a_{14} \mathbb{Z} / 3 \mathbb{Z} \\
& \oplus a_{8} \mathbb{Z} / 3^{2} \mathbb{Z} \oplus a_{17} \mathbb{Z} / 3^{2} \mathbb{Z} \\
& \oplus e_{6} \mathbb{Z} / 3 \mathbb{Z} \\
A(\langle 6\rangle \oplus \Lambda)_{5}= & a_{4} \mathbb{Z} / 5 \mathbb{Z} \oplus a_{9} \mathbb{Z} / 5 \mathbb{Z} \oplus a_{14} \mathbb{Z} / 5 \mathbb{Z} \\
A(\langle 6\rangle \oplus \Lambda)_{7}= & a_{6} \mathbb{Z} / 7 \mathbb{Z} \oplus a_{13} \mathbb{Z} / 7 \mathbb{Z} \\
A(\langle 6\rangle \oplus \Lambda)_{11}= & a_{10} \mathbb{Z} / 11 \mathbb{Z} \\
A(\langle 6\rangle \oplus \Lambda)_{13}= & a_{12} \mathbb{Z} / 13 \mathbb{Z} \\
A(\langle 6\rangle \oplus \Lambda)_{17}= & a_{16} \mathbb{Z} / 17 \mathbb{Z} \\
A(\langle 6\rangle \oplus \Lambda)_{19}= & a_{18} \mathbb{Z} / 19 \mathbb{Z}
\end{aligned}
$$

and for all primes $p>19, A(\langle 6\rangle \oplus \Lambda)_{p}=\{0\}$. Hence, by Lemma 8.1.4,

$$
\begin{aligned}
l(A(\langle 6\rangle \oplus \Lambda))= & \max _{p \text { prime }} \\
=\max ( & \left.l\left(A(\langle 6\rangle \oplus \Lambda)_{p}\right)\right) \\
& 1+\sum_{i=0}^{9} a_{2 i+1}+2\left(\sum_{j=2}^{9} d_{2 j}\right)+\sum_{j=2}^{9} d_{2 j+1}+e_{7} \\
& 1+a_{2}+a_{5}+a_{8}+a_{11}+a_{14}+a_{17}+e_{6} \\
& a_{4}+a_{9}+a_{14} \\
& a_{6}+a_{13} \\
& a_{10} \\
& a_{12} \\
& a_{16} \\
& \left.a_{18}\right)
\end{aligned}
$$

### 8.1.4 Check condition (2d) in Theorem 7.4.1

Let $\Lambda$ be an $A D E$ lattice in listbc, i.e. $\langle 6\rangle \oplus \Lambda$ satisfies conditions (2b) and (2c) in Theorem 7.4.1. In particular, $\Lambda$ has the form

$$
\Lambda:=\bigoplus_{i=1}^{19} a_{i} A_{i} \oplus \bigoplus_{j=4}^{19} d_{j} D_{j} \oplus \bigoplus_{k=6}^{8} e_{k} E_{k}
$$

Let $p$ be an odd prime.
To check condition (2d), we assume that we chose $\Lambda$ in listbc such that

$$
\begin{equation*}
(19+3)-\left(\sum_{1=i}^{19} a_{i} i+\sum_{4=j}^{19} d_{j} j+\sum_{k=6}^{8} e_{k} k+1\right)=l\left(A(\langle 6\rangle \oplus \Lambda)_{p}\right) \tag{8.2}
\end{equation*}
$$

Let $\left(K\left(q_{p}\right), Q_{p}\right)$ be the unique quadratic $\mathbb{Z}_{p}$-module of $\operatorname{rank} l\left(A(\langle 6\rangle \oplus \Lambda)_{p}\right)$ and such that the discriminant form of $\left(K\left(q_{p}\right), Q_{p}\right)$ is isomorphic to the finite quadratic form $\left(A(\langle 6\rangle \oplus \Lambda)_{p}, q_{p}\right)$ over $\mathbb{Z}_{p}$. Recall that $\left(K\left(q_{p}\right), Q_{p}\right)$ exists by Proposition 7.3.6.
We have to check condition (2d) for the primes $p=3,5,7$ only since we find computeraided (lines 117-131 in the code in Appendix B) that just for those primes there exists a lattice $\Lambda \in$ listc such that equation (8.2) holds for $\langle 6\rangle \oplus \Lambda$.

The lattice $\langle 6\rangle \oplus \Lambda$ satisfies then condition (2d) if and only if for $p=3,5,7$ we have

$$
\begin{equation*}
(-1)^{3-1}|A(\Lambda)|=|A(\Lambda)| \equiv \operatorname{disc}\left(K\left(q_{p}\right)\right) \quad \bmod \left(\mathbb{Z}_{p}^{\times}\right)^{2} \tag{8.3}
\end{equation*}
$$

We now compute the discriminant $\operatorname{disc}\left(K\left(q_{p}\right)\right)$ of $\left(K\left(q_{p}\right), Q_{p}\right)$.
By Lemma 7.2.1, we have for a prime number $p$ a decomposition of the finite quadratic form:

$$
\begin{align*}
A(\langle 6\rangle \oplus \Lambda)_{p} & =A(\langle 6\rangle)_{p} \oplus \bigoplus_{i=1}^{19} a_{i} A\left(A_{i}\right)_{p} \oplus \bigoplus_{j=4}^{19} d_{j} A\left(D_{j}\right)_{p} \oplus \bigoplus_{k=6}^{8} e_{k} A\left(E_{k}\right)_{p}  \tag{8.4}\\
q_{A(\langle 6\rangle \oplus \Lambda)_{p}} & =q_{A(\langle 6\rangle)_{p}} \oplus \bigoplus_{i=1}^{19} a_{i} q_{A\left(A_{i}\right)_{p}} \oplus \bigoplus_{j=4}^{19} d_{j} q_{A\left(D_{j}\right)_{p}} \oplus \bigoplus_{k=6}^{8} e_{k} q_{A\left(E_{k}\right)_{p}}
\end{align*}
$$

Hence, we compute for each prime $p=3,5,7$ separately in the following Subsections 8.1.4.18.1.4.3 the normal form of the finite quadratic form $\left(A(M)_{p}, q_{A(M)_{p}}\right)$ over $\mathbb{Z}_{p}$ for

$$
M \in\left\{\langle 6\rangle, A_{i}(1 \leq i \leq 19), D_{j}(4 \leq j \leq 19), E_{k}(6 \leq k \leq 8)\right\} .
$$

We associate then to $\left(A(\langle 6\rangle \oplus \Lambda)_{p}, q_{A(\langle 6\rangle \oplus \Lambda)_{p}}\right)$ the quadratic form $\left(K\left(q_{p}\right), Q_{p}\right)$ over $\mathbb{Z}_{p}$ using Corollary 7.3.7.

The discriminant of $\left(K\left(q_{p}\right), Q_{p}\right)$ is then (see (2.1.3)) the product of the discriminants of the direct summands $W_{p, k}^{ \pm 1}$ in the normal form of $\left(K\left(q_{p}\right), Q_{p}\right)$, see Example 7.3.2.1.

### 8.1.4.1 Computing the discriminant of $\left(K\left(q_{3}\right), Q_{3}\right)$

According to Table 7.1, only the discriminant groups of the lattices

$$
M \in\left\{\langle 6\rangle, A_{2}, A_{5}, A_{8}, A_{11}, A_{14}, A_{17}, E_{6}\right\}
$$

have a non-trivial 3-primary part. The quadratic functions $Q_{M}$ on the lattices $M$ induce on the discriminant groups $A(M)$ the quadratic functions $q_{A(M)}$ given by (see [MM09, Chap. II, Table 7.2]):

$$
\begin{aligned}
& q_{A((6))}: \quad \mathbb{Z} / 6 \mathbb{Z} \rightarrow \mathbb{Q} / \mathbb{Z}, r g \mapsto \frac{r^{2}}{2 \cdot 6} \\
& q_{A\left(A_{n}\right)}: \mathbb{Z} /(n+1) \mathbb{Z} \rightarrow \mathbb{Q} / \mathbb{Z}, r g \mapsto-\frac{n r^{2}}{2(n+1)} \quad \text { for } n=2,5,8,11,14,17 \\
& q_{A\left(E_{6}\right)}:
\end{aligned} \quad \mathbb{Z} / 3 \mathbb{Z} \rightarrow \mathbb{Q} / \mathbb{Z}, r g \mapsto \frac{r^{2}}{2 \cdot 3} . \quad \text {. }
$$

We compute $\left(A(M)_{3}, q_{A(M)_{3}}\right)$ over $\mathbb{Z}_{3}$ :

$$
\begin{array}{llll}
A(\langle 6\rangle)_{3}=\mathbb{Z} / 3 \mathbb{Z}, & q_{A(\langle 6\rangle)_{3}}: A(\langle 6\rangle)_{3} \rightarrow \mathbb{Q}_{3} / \mathbb{Z}_{3}, r g \mapsto & \frac{r^{2}}{2 \cdot 6} \equiv \frac{2 r^{2}}{2 \cdot 3} & \bmod \mathbb{Z}_{3} \\
A\left(A_{2}\right)_{3}=\mathbb{Z} / 3 \mathbb{Z}, & q_{A\left(A_{2}\right)_{3}}: A\left(A_{2}\right)_{3} \rightarrow \mathbb{Q}_{3} / \mathbb{Z}_{3}, r g \mapsto-\frac{2 r^{2}}{2 \cdot 3} \equiv \frac{4 r^{2}}{2 \cdot 3} & \bmod \mathbb{Z}_{3} \\
A\left(A_{5}\right)_{3}=\mathbb{Z} / 3 \mathbb{Z}, & q_{A\left(A_{5}\right)_{3}}: A\left(A_{5}\right)_{3} \rightarrow \mathbb{Q}_{3} / \mathbb{Z}_{3}, r g \mapsto-\frac{5 r^{2}}{2 \cdot 6} \equiv \frac{2 r^{2}}{2 \cdot 3} & \bmod \mathbb{Z}_{3} \\
A\left(A_{8}\right)_{3}=\mathbb{Z} / 3^{2} \mathbb{Z}, & q_{A\left(A_{8}\right)_{3}}: A\left(A_{8}\right)_{3} \rightarrow \mathbb{Q}_{3} / \mathbb{Z}_{3}, r g \mapsto-\frac{8 r^{2}}{2 \cdot 3^{2}} \equiv \frac{10 r^{2}}{2 \cdot 3^{2}} & \bmod \mathbb{Z}_{3} \\
A\left(A_{11}\right)_{3}=\mathbb{Z} / 3 \mathbb{Z}, & q_{A\left(A_{11}\right)_{3}}: A\left(A_{11}\right)_{3} \rightarrow \mathbb{Q}_{3} / \mathbb{Z}_{3}, r g \mapsto-\frac{11 r^{2}}{2 \cdot 12} \equiv \frac{4 r^{2}}{2 \cdot 3} & \bmod \mathbb{Z}_{3} \\
A\left(A_{14}\right)_{3}=\mathbb{Z} / 3 \mathbb{Z}, & q_{A\left(A_{14}\right)_{3}}: A\left(A_{14}\right)_{3} \rightarrow \mathbb{Q}_{3} / \mathbb{Z}_{3}, r g \mapsto-\frac{14 r^{2}}{2 \cdot 15} \equiv \frac{2 r^{2}}{2 \cdot 3} & \bmod \mathbb{Z}_{3} \\
A\left(A_{17}\right)_{3}=\mathbb{Z} / 3^{2} \mathbb{Z}, & q_{A\left(A_{17}\right)_{3}}: A\left(A_{17}\right)_{3} \rightarrow \mathbb{Q}_{3} / \mathbb{Z}_{3}, r g \mapsto-\frac{17 r^{2}}{2 \cdot 18} \equiv \frac{14 r^{2}}{2 \cdot 3^{2}} & \bmod \mathbb{Z}_{3} \\
A\left(E_{6}\right)_{3}=\mathbb{Z} / 3 \mathbb{Z}, & q_{A\left(E_{6}\right)_{3}}: A\left(E_{6}\right)_{3} \rightarrow \mathbb{Q}_{3} / \mathbb{Z}_{3}, r g \mapsto & \frac{2 r^{2}}{2 \cdot 3} & \bmod \mathbb{Z}_{3} .
\end{array}
$$

According to Definition 7.3.3, the normal forms of all these discriminant groups over $\mathbb{Z}_{3}$ have the form $w_{3, k}^{\epsilon}$ with

$$
q_{3}: w_{3, k}^{\epsilon} \rightarrow \mathbb{Q}_{3} / \mathbb{Z}_{3}, r g \mapsto \frac{r^{2} u}{2 \cdot 3^{k}},
$$

where $\left(u, p^{k}\right)=1, u p^{k} \in 2 \mathbb{Z}$ and $\chi(u)=\epsilon$.
We obtain:

| $M$ | $A(M)$ | $A(M)_{3}$ | $\left(A(M)_{3}, q_{\left.A(M)_{3}\right)}\right)$ | $K\left(q_{\left.A(M)_{3}\right)}\right.$ | $\|A(M)\|$ | $\operatorname{disc}\left(K\left(q_{\left.A(M)_{3}\right)}\right)\right.$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\langle 6\rangle$ | $\mathbb{Z} / 6 \mathbb{Z}$ | $\mathbb{Z} / 3 \mathbb{Z}$ | $w_{3,1}^{-1}$ | $W_{3,1}^{-1}$ | 6 | $3 \cdot 2 \bmod \left(\mathbb{Z}_{3}^{\times}\right)^{2}$ |
| $A_{2}$ | $\mathbb{Z} / 3 \mathbb{Z}$ | $\mathbb{Z} / 3 \mathbb{Z}$ | $w_{3,1}^{1}$ | $W_{3,1}^{1}$ | 3 | $3 \bmod \left(\mathbb{Z}_{3}^{\times}\right)^{2}$ |
| $A_{5}$ | $\mathbb{Z} / 6 \mathbb{Z}$ | $\mathbb{Z} / 3 \mathbb{Z}$ | $w_{3,1}^{-1}$ | $W_{3,1}^{-1}$ | 6 | $3 \cdot 2 \bmod \left(\mathbb{Z}_{3}^{\times}\right)^{2}$ |
| $A_{8}$ | $\mathbb{Z} / 9 \mathbb{Z}$ | $\mathbb{Z} / 3^{2} \mathbb{Z}$ | $w_{3,2}^{1}$ | $W_{3,2}^{1}$ | 9 | $3^{2} \bmod \left(\mathbb{Z}_{3}^{\times}\right)^{2}$ |
| $A_{11}$ | $\mathbb{Z} / 12 \mathbb{Z}$ | $\mathbb{Z} / 3 \mathbb{Z}$ | $w_{3,1}^{1}$ | $W_{3,1}^{1}$ | 12 | $3 \bmod \left(\mathbb{Z}_{3}^{\times}\right)^{2}$ |
| $A_{14}$ | $\mathbb{Z} / 15 \mathbb{Z}$ | $\mathbb{Z} / 3 \mathbb{Z}$ | $w_{3,1}^{-1}$ | $W_{3,1}^{-1}$ | 15 | $3 \cdot 2 \bmod \left(\mathbb{Z}_{3}^{\times}\right)^{2}$ |
| $A_{17}$ | $\mathbb{Z} / 18 \mathbb{Z}$ | $\mathbb{Z} / 3^{2} \mathbb{Z}$ | $w_{3,2}^{-1}$ | $W_{3,2}^{-1}$ | 18 | $3^{2} \cdot 14 \bmod \left(\mathbb{Z}_{3}^{\times}\right)^{2}$ |
| $E_{6}$ | $\mathbb{Z} / 3 \mathbb{Z}$ | $\mathbb{Z} / 3 \mathbb{Z}$ | $w_{3,1}^{-1}$ | $W_{3,1}^{-1}$ | 3 | $3 \cdot 2 \bmod \left(\mathbb{Z}_{3}^{\times}\right)^{2}$ |

Table 8.1: Quadratic forms over $\mathbb{Z}_{3}$ on discriminant groups

Hence,

$$
A(\Lambda)_{3}=w_{3,1}^{-1} \oplus a_{2} w_{3,1}^{1} \oplus a_{5} w_{3,1}^{-1} \oplus a_{8} w_{3,2}^{1} \oplus a_{11} w_{3,1}^{1} \oplus a_{14} w_{3,1}^{-1} \oplus a_{17} w_{3,2}^{-1} \oplus e_{6} w_{3,1}^{-1}
$$

in normal form. The associated quadratic $\mathbb{Z}_{3}$-module $\left(K\left(q_{3}\right), Q_{3}\right)$ is then given by Corollary 7.3.7 by

$$
K\left(q_{3}\right)=W_{3,1}^{-1} \oplus a_{2} W_{3,1}^{1} \oplus a_{5} W_{3,1}^{-1} \oplus a_{8} W_{3,2}^{1} \oplus a_{11} W_{3,1}^{1} \oplus a_{14} W_{3,1}^{-1} \oplus a_{17} W_{3,2}^{-1} \oplus e_{6} W_{3,1}^{-1}
$$

The discriminant of $\left(K\left(q_{3}\right), Q_{3}\right)$ is then

$$
\operatorname{disc}\left(K\left(q_{3}\right)\right)=(3 \cdot 2) \cdot 3^{a_{2}} \cdot(3 \cdot 2)^{a_{5}} \cdot\left(3^{2}\right)^{a_{8}} \cdot 3^{a_{11}} \cdot(3 \cdot 2)^{a_{14}} \cdot\left(3^{2} \cdot 14\right)^{a_{17}} \cdot(3 \cdot 2)^{e_{6}} \quad \bmod \left(\mathbb{Z}_{3}^{\times}\right)^{2} \cdot
$$

### 8.1.4.2 Computing the discriminant of $\left(K\left(q_{5}\right), Q_{5}\right)$

According to Table 7.1, only the discriminant groups of the lattices

$$
M \in\left\{A_{4}, A_{9}, A_{14}, \text { and } A_{19}\right\}
$$

have a non-trivial 5 -primary part. The quadratic functions $Q_{M}$ on the lattices $M$ induce on the discriminant groups $A(M)$ the quadratic functions $q_{A(M)}$ given by (see [MM09, Chap. II, Table 7.2]):

$$
q_{A\left(A_{n}\right)}: \mathbb{Z} /(n+1) \mathbb{Z} \rightarrow \mathbb{Q} / \mathbb{Z}, r g \mapsto-\frac{n r^{2}}{2(n+1)} \quad \text { for } n=4,9,14,19
$$

We compute $\left(A(M)_{5}, q_{A(M)_{5}}\right)$ over $\mathbb{Z}_{5}$ :

$$
\begin{array}{lll}
A\left(A_{4}\right)_{5}=\mathbb{Z} / 5 \mathbb{Z}, & q_{A\left(A_{4}\right)_{5}}: A\left(A_{4}\right)_{5} \rightarrow \mathbb{Q}_{5} / \mathbb{Z}_{5}, r g \mapsto-\frac{4 r^{2}}{2 \cdot 5} \equiv \frac{6 r^{2}}{2 \cdot 5} & \bmod \mathbb{Z}_{5} \\
A\left(A_{9}\right)_{5}=\mathbb{Z} / 5 \mathbb{Z}, & q_{A(A 9)_{5}}: A\left(A_{9}\right)_{5} \rightarrow \mathbb{Q}_{5} / \mathbb{Z}_{5}, r g \mapsto-\frac{9 r^{2}}{2 \cdot 10} \equiv \frac{8 r^{2}}{2 \cdot 5} & \bmod \mathbb{Z}_{5} \\
A\left(A_{14}\right)_{5}=\mathbb{Z} / 5 \mathbb{Z}, & q_{A\left(A_{14}\right)_{5}}: A\left(A_{14}\right)_{5} \rightarrow \mathbb{Q}_{5} / \mathbb{Z}_{5}, r g \mapsto-\frac{14 r^{2}}{2 \cdot 15} \equiv \frac{2 r^{2}}{2 \cdot 5} & \bmod \mathbb{Z}_{5} \\
A\left(A_{19}\right)_{5}=\mathbb{Z} / 5 \mathbb{Z}, & q_{A\left(A_{19}\right)_{5}}: A\left(A_{19}\right)_{5} \rightarrow \mathbb{Q}_{5} / \mathbb{Z}_{5}, r g \mapsto-\frac{19 r^{2}}{2 \cdot 20} \equiv \frac{4 r^{2}}{2 \cdot 5} & \bmod \mathbb{Z}_{5} .
\end{array}
$$

According to Definition 7.3.3, the normal forms of all these discriminant groups over $\mathbb{Z}_{5}$ have the form $w_{5, k}^{\epsilon}$ with

$$
q_{w_{5, k}^{\epsilon}}: w_{5, k}^{\epsilon} \rightarrow \mathbb{Q}_{5} / \mathbb{Z}_{5}, r g \mapsto \frac{r^{2} u}{2 \cdot 5^{k}},
$$

where $\left(u, 5^{k}\right)=1, u 5^{k} \in 2 \mathbb{Z}$ and $\chi(u)=\epsilon$.
We obtain:

| $M$ | $A(M)$ | $A(M)_{5}$ | $\left(A(M)_{5}, q_{A(M)_{5}}\right)$ | $K\left(q_{\left.A(M)_{5}\right)}\right)$ | $\|A(M)\|$ | $\operatorname{disc}\left(K\left(q_{\left.A(M)_{5}\right)}\right)\right.$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{4}$ | $\mathbb{Z} / 5 \mathbb{Z}$ | $\mathbb{Z} / 5 \mathbb{Z}$ | $w_{5,1}^{1}$ | $W_{5,1}^{1}$ | 5 | $5 \bmod \left(\mathbb{Z}_{5}^{\times}\right)^{2}$ |
| $A_{9}$ | $\mathbb{Z} / 10 \mathbb{Z}$ | $\mathbb{Z} / 5 \mathbb{Z}$ | $w_{5,1}^{-1}$ | $W_{5,1}^{-1}$ | 10 | $5 \cdot 8 \bmod \left(\mathbb{Z}_{5}^{\times}\right)^{2}$ |
| $A_{14}$ | $\mathbb{Z} / 15 \mathbb{Z}$ | $\mathbb{Z} / 5 \mathbb{Z}$ | $w_{5,1}^{-1}$ | $W_{5,1}^{-1}$ | 15 | $5 \cdot 2 \bmod \left(\mathbb{Z}_{5}^{\times}\right)^{2}$ |
| $A_{19}$ | $\mathbb{Z} / 20 \mathbb{Z}$ | $\mathbb{Z} / 5 \mathbb{Z}$ | $w_{5,1}^{1}$ | $W_{5,1}^{1}$ | 20 | $5 \bmod \left(\mathbb{Z}_{5}^{\times}\right)^{2}$ |

Table 8.2: Quadratic forms over $\mathbb{Z}_{5}$ on discriminant groups

Hence,

$$
A(\Lambda)_{5}=a_{4} w_{5,1}^{1} \oplus a_{9} w_{5,1}^{-1} \oplus a_{14} w_{5,1}^{-1} \oplus a_{19} w_{5,1}^{1}
$$

in normal form. The associated quadratic $\mathbb{Z}_{5}$-module $\left(K\left(q_{5}\right), Q_{5}\right)$ is then given by Corollary 7.3.7 by

$$
K\left(q_{5}\right)=a_{4} W_{5,1}^{1} \oplus a_{9} W_{5,1}^{-1} \oplus a_{14} W_{5,1}^{-1} \oplus a_{19} W_{5,1}^{1} .
$$

The discriminant of $\left(K\left(q_{5}\right), Q_{5}\right)$ is then

$$
\begin{equation*}
\operatorname{disc}\left(K\left(q_{5}\right)\right)=5^{a_{4}} \cdot(5 \cdot 8)^{a_{9}} \cdot(5 \cdot 2)^{a_{14}} \cdot 5^{a_{19}} \quad \bmod \left(\mathbb{Z}_{5}^{\times}\right)^{2} \tag{8.6}
\end{equation*}
$$

### 8.1.4.3 Computing the discriminant of $\left(K\left(q_{7}\right), Q_{7}\right)$

According to Table 7.1, only the discriminant groups of the lattices

$$
M \in\left\{A_{6}, A_{13},\right\}
$$

have a non-trivial 7 -primary part. The quadratic functions $Q_{M}$ on the lattices $M$ induce on the discriminant groups $A(M)$ the quadratic functions $q_{A(M)}$ given by (see [MM09, Chap. II, Table 7.2]):

$$
q_{A\left(A_{n}\right)}: \mathbb{Z} /(n+1) \mathbb{Z} \rightarrow \mathbb{Q} / \mathbb{Z}, r g \mapsto-\frac{n r^{2}}{2(n+1)} \quad \text { for } n=6,13
$$

We compute $\left(A(M)_{7}, q_{A(M)_{7}}\right)$ over $\mathbb{Z}_{7}$ :

$$
\begin{aligned}
& A\left(A_{6}\right)_{7}=\mathbb{Z} / 7 \mathbb{Z}, \quad q_{A\left(A_{6}\right)_{7}}: A\left(A_{6}\right)_{7} \rightarrow \mathbb{Q}_{7} / \mathbb{Z}_{7}, r g \mapsto-\frac{6 r^{2}}{2 \cdot 7} \equiv \frac{8 r^{2}}{2 \cdot 7} \quad \bmod \mathbb{Z}_{7} \\
& A\left(A_{13}\right)_{7}=\mathbb{Z} / 7 \mathbb{Z}, \quad q_{A\left(A_{13}\right)_{7}}: A\left(A_{13}\right)_{7} \rightarrow \mathbb{Q}_{7} / \mathbb{Z}_{7}, r g \mapsto-\frac{13 r^{2}}{2 \cdot 14} \equiv \frac{18 r^{2}}{2 \cdot 7} \quad \bmod \mathbb{Z}_{7}
\end{aligned}
$$

According to Definition 7.3.3, the normal forms of all these discriminant groups over $\mathbb{Z}_{7}$ have the form $w_{7, k}^{\epsilon}$ with

$$
q_{w_{7, k}^{\epsilon}}: w_{7, k}^{\epsilon} \rightarrow \mathbb{Q}_{7} / \mathbb{Z}_{7}, r g \mapsto \frac{r^{2} u}{2 \cdot 7^{k}}
$$

where $\left(u, 7^{k}\right)=1, u 7^{k} \in 2 \mathbb{Z}$ and $\chi(u)=\epsilon$.
We obtain:

| $M$ | $A(M)$ | $A(M)_{7}$ | $\left(A(M)_{7}, q_{A(M)_{7}}\right)$ | $K\left(q_{A(M)_{7}}\right)$ | $\|A(M)\|$ | $\operatorname{disc}\left(K\left(q_{\left.A(M)_{7}\right)}\right)\right.$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{6}$ | $\mathbb{Z} / 7 \mathbb{Z}$ | $\mathbb{Z} / 7 \mathbb{Z}$ | $\omega_{7,1}^{1}$ | $W_{7,1}^{1}$ | 7 | $7 \bmod \left(\mathbb{Z}_{7}^{\times}\right)^{2}$ |
| $A_{13}$ | $\mathbb{Z} / 14 \mathbb{Z}$ | $\mathbb{Z} / 7 \mathbb{Z}$ | $\omega_{7,1}^{1}$ | $W_{7,1}^{1}$ | 14 | $7 \bmod \left(\mathbb{Z}_{7}^{\times}\right)^{2}$ |

Table 8.3: Quadratic forms over $\mathbb{Z}_{7}$ on discriminant groups

Hence,

$$
A(\Lambda)_{7}=a_{6} w_{7,1}^{1} \oplus a_{13} w_{7,1}^{1}
$$

in normal form. The associated quadratic $\mathbb{Z}_{7}$-module $K\left(q_{7}\right)$ is then given by Corollary 7.3.7 by

$$
K\left(q_{7}\right)=a_{6} W_{7,1}^{1} \oplus a_{13} W_{7,1}^{1}
$$

The discriminant of $\left(K\left(q_{7}\right), Q_{7}\right)$ is then

$$
\begin{equation*}
\operatorname{disc}\left(K\left(q_{7}\right)\right)=7^{a_{6}} \cdot 7^{a_{13}} \quad \bmod \left(\mathbb{Z}_{7}^{\times}\right)^{2} \tag{8.7}
\end{equation*}
$$

### 8.1.4.4 Check condition (8.3)

The cardinality of the discriminant group $A(\Lambda)$ is

$$
\begin{equation*}
|A(\Lambda)|=\left(\prod_{i=1}^{19}(i+1)^{a_{i}}\right) \cdot\left(\prod_{j=4}^{19} 4^{d_{j}}\right) \cdot 2^{e_{6}} \cdot 3^{e_{7}} \tag{8.8}
\end{equation*}
$$

For odd primes $p$, as a consequence of Hensel's Lemma, an element in $x \in \mathbb{Z}_{p}^{\times}$is a square root in $\mathbb{Z}_{p}^{\times}$if and only if $x$ is a square root $\bmod p$ in $(\mathbb{Z} / p \mathbb{Z})^{\times}$, see [Eis95, Chap. 7.2, p. 184]. Hence, equation (8.3) holds if and only if for all squares $u \bmod p$ in $(\mathbb{Z} / p \mathbb{Z})^{\times}$we have

$$
\frac{|A(\Lambda)|-u \cdot \operatorname{disc}\left(K\left(q_{p}\right)\right)}{v_{p}(|A(\Lambda)|)} \equiv 0 \quad \bmod p
$$

for all possible choices of $u \in\left((\mathbb{Z} / p \mathbb{Z})^{\times}\right)^{2}$, where $v_{p}$ is the $p$-adic valuation on $\mathbb{Z}$.
We compute

$$
\begin{equation*}
\left((\mathbb{Z} / 3 \mathbb{Z})^{\times}\right)^{2}=\{1\}, \quad\left((\mathbb{Z} / 5 \mathbb{Z})^{\times}\right)^{2}=\{1,4\}, \quad\left((\mathbb{Z} / 7 \mathbb{Z})^{\times}\right)^{2}=\{1,2,4\} \tag{8.9}
\end{equation*}
$$

and

$$
\begin{align*}
& v_{3}(|A(\Lambda)|)=a_{2}+a_{5}+2 a_{8}+a_{11}+a_{14}+2 a_{17}+e_{7} \\
& v_{5}(|A(\Lambda)|)=a_{4}+a_{9}+a_{14}  \tag{8.10}\\
& v_{7}(|A(\Lambda)|)=a_{6}+a_{13}
\end{align*}
$$

Consequently, the set of all lattices $\Lambda$ such that $\langle 6\rangle \oplus \Lambda$ satisfies conditions (2a)-(2d) is given by

$$
\begin{aligned}
& \text { result }:=\left\{\Lambda:=\bigoplus_{i=1}^{19} a_{i} A_{i} \oplus \bigoplus_{j=4}^{19} d_{j} D_{j} \oplus \bigoplus_{k=6}^{8} e_{k} E_{k} \in \text { listbc; for } p=3,5,7:\right. \\
& \\
& \text { if } 21-\left(\sum_{1=i}^{19} a_{i} i+\sum_{4=j}^{19} d_{j} j+\sum_{k=6}^{8} e_{k} k\right)=l\left(A(\langle 6\rangle \oplus \Lambda)_{p}\right) \\
& \\
& \text { then } \left.\frac{|A(\Lambda)|-u \cdot \operatorname{disc}\left(K\left(q_{p}\right)\right)}{v_{p}(|A(\Lambda)|)} \equiv 0 \bmod p \quad \text { for } u \in\left((\mathbb{Z} / p \mathbb{Z})^{\times}\right)^{2}\right\}
\end{aligned}
$$

where $|A(\Lambda)|$ has been computed in (8.8), $\left((\mathbb{Z} / p \mathbb{Z})^{\times}\right)^{2}$ in (8.9), $\operatorname{disc}\left(K\left(q_{p}\right)\right)$ in (8.5), (8.6), and (8.7), and $v_{p}(|A(\Lambda)|)$ in (8.10). The set of all lattices in result such that the assumptions in Theorem 7.4.3 holds, as well, is

$$
\begin{aligned}
& \text { resultu }:=\left\{\Lambda:=\bigoplus_{i=1}^{19} a_{i} A_{i} \oplus \bigoplus_{j=4}^{19} d_{j} D_{j} \oplus \bigoplus_{k=6}^{8} e_{k} E_{k} \in \text { listbcu; for } p=3,5,7\right. \text { : } \\
& \text { if } \quad 21-\left(\sum_{1=i}^{19} a_{i} i+\sum_{4=j}^{19} d_{j} j+\sum_{k=6}^{8} e_{k} k\right)=l\left(A(\langle 6\rangle \oplus \Lambda)_{p}\right), \\
& \text { then } \left.\frac{|A(\Lambda)|-u \cdot \operatorname{disc}\left(K\left(q_{p}\right)\right)}{v_{p}(|A(\Lambda)|)} \equiv 0 \bmod p \quad \text { for } u \in\left((\mathbb{Z} / p \mathbb{Z})^{\times}\right)^{2}\right\} .
\end{aligned}
$$

### 8.1.5 Check condition (2e) in Theorem 7.4.1

We claim that for all $A D E$ lattices $\Lambda$, the lattice $\langle 6\rangle \oplus \Lambda$ satisfies condition (2e) in Theorem 7.4.1. Indeed, the discriminant group of $\langle 6\rangle \oplus \Lambda$ is given by $A(\langle 6\rangle \oplus \Lambda)=$
$A(\langle 6\rangle) \oplus A(\Lambda)$. By Lemma 7.3.1, the finite quadratic form $\left(A(\langle 6\rangle), q_{A(\langle 6\rangle)}\right)$ over $\mathbb{Z}_{2}$ is given by $\left(A(\langle 6\rangle)_{2}, q_{A(\langle 6\rangle)_{2}}\right)$, where

$$
A(\langle 6\rangle)_{2}=(\mathbb{Z} / 6 \mathbb{Z})_{2}=\mathbb{Z} / 2 \mathbb{Z}, \quad q_{2}: A(\langle 6\rangle)_{2} \rightarrow \mathbb{Q}_{2} / \mathbb{Z}_{2}, r g \mapsto \frac{r^{2}}{2 \cdot 6} \equiv \frac{3 r^{2}}{2 \cdot 2} \quad \bmod \mathbb{Z}_{2}
$$

Hence, $\left(A(\langle 6\rangle)_{2}, q_{A(\langle 6\rangle)_{2}}\right)$ is the finite quadratic form $w_{1,2}^{3}$ over $\mathbb{Z}_{2}$. Consequently, $w_{1,2}^{3}$ splits off the quadratic function $q_{A(\langle 6\rangle \oplus \Lambda)}$ on $A(\langle 6\rangle \oplus \Lambda)$ over $\mathbb{Z}_{2}$. Hence, for all choices of $\Lambda$, we do not need to check condition (2e).

In conclusion, the set result contains all $A D E$ lattices $\Lambda$ such that there exists a primitive embedding $\langle 6\rangle \oplus \Lambda \hookrightarrow L_{K 3}$ and the set resultu a subset of lattices in resultu such that $\langle 6\rangle \oplus \Lambda \hookrightarrow L_{K 3}$ is uniquely determined up to an automorphism of $L_{K 3}$. This concludes the algorithm.

### 8.2 Main Theorem 2

Main Theorem 2. Let

$$
\mathbf{G}:=\sum_{i=1}^{19} a_{i} \mathbf{A}_{i}+\sum_{j=4}^{19} d_{j} \mathbf{D}_{j}+\sum_{k=6}^{8} e_{k} \mathbf{E}_{k}
$$

be a formal sum of $A D E$ singularities such that the $A D E$ lattice

$$
\Lambda:=\bigoplus_{i=1}^{19} a_{i} A_{i} \oplus \bigoplus_{j=4}^{19} d_{j} D_{j} \oplus \bigoplus_{k=6}^{8} e_{k} E_{k}
$$

is one of the 2942 elements in the list in Appendix C. The following hold:

1. There exists a complete $(2,3)$-intersection $S$ of a smooth quadric and a cubic in $\mathbb{P}^{4}$ such that $S$ has singularities of type $\mathbf{G}$.
2. There exists a cubic fourfold with ADE singularities of type $\mathbf{G}$ and an $\mathbf{A}_{1}$ singularity.

Proof. By choice of $\Lambda$, we have a primitive embedding $i: \Lambda \oplus\langle 6\rangle \hookrightarrow L_{K 3}$ into the K3 lattice and let $h$ be the generator of the rank one lattice $\langle 6\rangle$. In particular $h^{2}=6$.
Since $i$ is primitive, the saturation $\operatorname{Sat}_{L_{K 3}}(i)$ of $\langle 6\rangle \oplus \Lambda$ in $L_{K 3}$ is isomorphic to $\langle 6\rangle \oplus \Lambda$ with respect to $i$.
We claim, item (3) in Main Theorem 1 is satisfied: Let $x \in\langle 6\rangle \oplus \Lambda$ with $h . x=0$ and write $x=n h+g$, where $n \in \mathbb{Z}$ and $g \in \Lambda$. Then, $0=h . x=h .(n h+g)=6 n$ gives $n=0$. Hence, $x \in \Lambda$. Consequently, all $x \in\langle 6\rangle \oplus \Lambda$ with $h . x=0$ and $x^{2}=-2$ are contained in $\Lambda$. Further, assume that we have $h \cdot x=1$ (or $h \cdot x=2$ ). Then, $1=h \cdot x=h \cdot(n h+g)=n h^{2}+h \cdot g=6 n$ (or $2=6 n$ ). However, this equation holds for no $n \in \mathbb{Z}$. Hence, such an $x$ does not exist. In particular, there exists no $x \in\langle 6\rangle \oplus \Lambda$ with $h . x=1$ (or $h . x=2$ ) and $x^{2}=0$.

Consequently, by implications $(3) \Rightarrow(1)$ and $(3) \Rightarrow(2)$ in Main Theorem 1, there exists a cubic fourfold having singularities of type $\mathbf{G}$ and an $\mathbf{A}_{1}$ singularity and a complete (2,3)intersection $S$ of a smooth quadric and a cubic in $\mathbb{P}^{4}$ such that $S$ has singularities of type G, respectively.

The lattice $10 A_{1}$ is the lattice with largest rank in the list in Appendix C which has only $A_{1}$ lattices as direct summands. Hence, we obtain the following:
Corollary 8.2.1. The following exist:

1. A complete $(2,3)$-intersection of a smooth quadric and a cubic in $\mathbb{P}^{4}$ with precisely $10 A_{1}$ singularities.
2. A cubic fourfold with precisely $11 A_{1}$ singularities.

Proof. The list in Appendix C contains the lattice $10 A_{1}$. Hence, by Main Theorem 2, there exists a complete ( 2,3 )-intersection of a smooth quadric and a cubic in $\mathbb{P}^{4}$ with 10 $A_{1}$ singularities and a cubic fourfold with $11 A_{1}$ singularities.

Remark 8.2.2. We note that Corollary 8.2.1 does not necessarily give the maximal number of $A_{1}$ singularities which can occur on a complete (2,3)-intersection in $\mathbb{P}^{4}$ and a cubic fourfold, respectively. Indeed, Varchenko's bound for the maximal number of singularities which can occur on a cubic fourfold is 15 (see [Var84, Theorem on the Upper Bound, p. 2781]) and hence a cubic fourfold with more than 11 but strictly less than $16 A_{1}$ singularities could exist.

The lattices $2 A_{1} \oplus 6 A_{2}, 4 A_{1} \oplus 5 A_{2}$, and $6 A_{1} \oplus 4 A_{2}$ are the lattices with largest rank in the list in Appendix C which have only $A_{1}$ and $A_{2}$ lattices as direct summands. Therefore, we obtain:
Corollary 8.2.3. The following exist:

1. A complete $(2,3)$-intersection of a smooth quadric and a cubic in $\mathbb{P}^{4}$ with precisely:
a) $2 A_{1}$ and $6 A_{2}$ singularities.
b) $4 A_{1}$ and $5 A_{2}$ singularities.
c) $6 A_{1}$ and $4 A_{2}$ singularities.
2. A complete (2,3)-intersection of a quadric of corank 1 and a cubic in $\mathbb{P}^{4}$ with precisely:
a) $3 A_{1}$ and $5 A_{2}$ singularities.
b) $5 A_{1}$ and $4 A_{2}$ singularities.
c) $7 A_{1}$ and $3 A_{2}$ singularities.
3. A cubic fourfold with precisely:
a) $3 A_{1}$ and $6 A_{2}$ singularities.
b) $5 A_{1}$ and $5 A_{2}$ singularities.
c) $7 A_{1}$ and $4 A_{2}$ singularities.

Proof. The list in Appendix C contains the lattices $2 A_{1} \oplus 6 A_{2}, 4 A_{1} \oplus 5 A_{2}$, and $6 A_{1} \oplus 4 A_{2}$. Hence, by Main Theorem 2, there exist complete (2,3)-intersections of smooth quadrics and cubics in $\mathbb{P}^{4}$ whose singularities are precisely of type $2 A_{1}+6 A_{2}, 4 A_{1}+5 A_{2}$, and $6 A_{1}+4 A_{2}$. Moreover, there exist three cubic fourfolds with singularities of type $3 A_{1}+6 A_{2}, 5 A_{1}+5 A_{2}$, and $7 A_{1}+4 A_{2}$. By implication $(1) \Rightarrow(2)$ in Main Theorem 1 , we have furthermore the existence of complete ( 2,3 )-intersections of quadrics of corank 1 and cubics in $\mathbb{P}^{4}$ with singularities precisely of type $3 A_{1}+5 A_{2}, 5 A_{1}+4 A_{2}$, and $7 A_{1}+3 A_{2}$.

Remark 8.2.4. We note that Corollary 8.2.3 does not necessarily give the maximal number of $A_{1}$ and $A_{2}$ singularities which can occur on a complete $(2,3)$-intersection in $\mathbb{P}^{4}$ and a cubic fourfold, respectively.

## 9 Correspondence between the moduli space of cubic fourfolds and quasi-polarized K3 surfaces of degree 6

In this chapter, we will firstly define lattice polarized K3 surfaces and then recall the construction of the moduli space of big and nef lattice polarized K3 surfaces. We will then construct the moduli space of those quasi-polarized K3 surfaces $(\widetilde{S}, L)$ such that the map $\varphi_{L}: \widetilde{S} \rightarrow \mathbb{P}^{4}$ is birational onto its image and such that $\varphi_{L}(\widetilde{S})$ has a certain configuration of $A D E$ singularities, as the moduli space of certain lattice polarized K3 surfaces. Secondly, we will construct the moduli space of cubic fourfolds with certain $A D E$ singularities. Finally, we will prove Main Theorem 3, which says that both moduli spaces are isomorphic.

### 9.1 Lattice polarized K3 surfaces

### 9.1.1 Basic notation and definitions

Let $M$ be an even lattice of signature $(1, t)$ with $t \geq 0$.
An $M$-polarized $K 3$ surface is a pair $(\widetilde{S}, j)$, where $\widetilde{S}$ is a K3 surface and $j: M \hookrightarrow \operatorname{Pic}(\widetilde{S})$ is a primitive embedding. We say that an $M$-polarized K3 surface $(\widetilde{S}, j)$ is big and nef if there exists an isomorphism class of a line bundle in $j(M)$ which is big and nef. Two $M$-polarized K3 surfaces $(\widetilde{S}, j)$ and $\left(\widetilde{S}^{\prime}, j^{\prime}\right)$ are isomorphic if there exists an isomorphism $f: \widetilde{S} \rightarrow \widetilde{S}^{\prime}$ such that $j=f^{*} \circ j^{\prime}$.

We note that for $t=0$, an $M$-polarized K3 surface is simply a quasi-polarized K3 surface defined in Chapter 3 and all results here specialize to the results for quasi-polarized K3 surfaces.

### 9.1.2 Periods of lattice polarized K3 surfaces

Let $M$ be an even lattice of signature $(1, t)$ with $t \geq 0$ which is embeddable into the K3 lattice $L_{K 3}$. We fix a primitive embedding $i_{M}: M \hookrightarrow L_{K 3}$ and identify $M$ with its image $i_{M}(M)$ in $L_{K 3}$.
We call a pair $(\widetilde{S}, \phi)$ a marked $M$-polarized $K 3$ surface if $\widetilde{S}$ is a K3 surface and $\phi: H^{2}(\widetilde{S}, \mathbb{Z}) \rightarrow$ $L_{K 3}$ is a marking such that $\phi^{-1}(M) \subseteq \operatorname{Pic}(\widetilde{S})$. It follows that for $j_{\phi}:=\phi^{-1}{ }_{\mid M}: M \hookrightarrow$ $\operatorname{Pic}(\widetilde{S})$ the pair $\left(\widetilde{S}, j_{\phi}\right)$ is an $M$-polarized K3 surface and we call a marked $M$-polarized K3 surface big and nef if $\left(\widetilde{S}, j_{\phi}\right)$ is big and nef. Two marked $M$-polarized K3 surfaces
$(S, \phi)$ and $\left(S^{\prime}, \phi^{\prime}\right)$ are called isomorphic if there exists an isomorphism $f: S \rightarrow S^{\prime}$ such that $\phi^{\prime}=\phi \circ f^{*}$.

Denote by $F_{M, \mathrm{~m}}$ the fine moduli space of marked $M$-polarized K3 surfaces (see [Dol96, §3]) and by $F_{M, \mathrm{~m}}^{\mathrm{bn}}$ the subset of all isomorphism classes of big and nef marked $M$-polarized K3 surfaces.

Let $M_{L_{K 3}}^{\perp}$ be the orthogonal complement of $M$ in $L_{K 3}$ with respect to $i_{M}$. Let $\Omega_{L_{K 3}}$ be the period domain defined in Section 3.4. Then,

$$
\Omega(M):=\left\{[x] \in \mathbb{P}\left(M_{L_{K 3}}^{\perp} \otimes_{\mathbb{Z}} \mathbb{C}\right) ; x^{2}=0, x . \bar{x}>0\right\} \subseteq \Omega_{L_{K 3}}
$$

is the period domain of big and nef $M$-polarized $K 3$ surfaces, a complex $(20-\operatorname{rank}(M))$ dimensional manifold with two connected components each of which is a bounded symmetric domain of type IV.
Let $(\widetilde{S}, \phi)$ be a marked $M$-polarized K3 surface. We have a Hodge decomposition

$$
H^{2}(\widetilde{S}, \mathbb{C})=H^{2}\left(\widetilde{S}, \mathcal{O}_{\widetilde{S}}\right) \oplus H^{1}\left(\widetilde{S}, \Omega_{\widetilde{S}}^{1}\right) \oplus H^{0}\left(\widetilde{S}, \Omega_{\widetilde{S}}^{2}\right)
$$

For a generator $\omega$ of the 1-dimensional $\mathbb{C}$-vector space $H^{2}\left(\widetilde{S}, \mathcal{O}_{\widetilde{S}}\right)$, we let $[\phi(\omega)]:=\phi(\omega)$ $\bmod \mathbb{C}^{*} \in \mathbb{P}\left(M_{L_{K 3}}^{\perp} \otimes_{\mathbb{Z}} \mathbb{C}\right)$. We can show that $[\phi(\omega)] \in \Omega(M)$ and call $[\phi(\omega)]$ the period point of the marked $M$-polarized K3 surface $(\widetilde{S}, \phi)$.
Let $O\left(L_{K 3}\right)$ be the automorphism group of $L_{K 3}$ and

$$
O\left(L_{K 3}, M\right):=\left\{g \in O\left(L_{K 3}\right) ; g_{\mid M}=\operatorname{id}_{\mid M}\right\}
$$

the subgroup of $O\left(L_{K 3}\right)$ fixing $M$ point-wise. The group $O\left(L_{K 3}, M\right)$ acts on $F_{M, \mathrm{~m}}$ by sending a marked $M$-polarized K3 surface $(\widetilde{S}, \phi)$ and an automorphism $\sigma \in O\left(L_{K 3}, M\right)$ to $(\widetilde{S}, \sigma \circ \phi)$ without changing the isomorphism class of the $M$-polarized K3 surface $\left(\widetilde{S}, j_{\phi}\right)$.
Let $O\left(M_{L_{K 3}}^{\perp}\right)$ be the automorphism group of $M_{L_{K 3}}^{\perp}$ and $O_{M}$ be the image of the injection $O\left(L_{K 3}, M\right) \rightarrow O\left(M_{L_{K 3}}^{\perp}\right)$ obtained by restricting an element in $O\left(L_{K 3}, M\right)$ to $M_{L_{K 3}}^{\perp}$.
Proposition 9.1.1 ([Dol96, Proposition 3.3]). $O_{M}$ is an arithmetic subgroup of the indefinite orthogonal group $O(2,19-\operatorname{rank}(M))$.

The group $O_{M}$ acts properly-discontinuously on $\Omega(M)$. Hence, $\Omega(M) / O_{M}$ is a complex algebraic variety of dimension $20-\operatorname{rank}(M)$.

Theorem 9.1.2 ([Dol96, Remark 3.4], [HT15, 3.1]). Assume that the embedding $i: M \hookrightarrow$ $L_{K 3}$ is unique up to an automorphism of $L_{K 3}$.

The elements of the quotient set

$$
F_{M}^{\mathrm{bn}}:=F_{M, \mathrm{~m}}^{\mathrm{bn}} / O\left(L_{K 3}, M\right)
$$

are the isomorphism classes of big and nef M-polarized K3 surfaces. Furthermore, we have a bijection

$$
\rho: F_{M}^{\mathrm{bn}} \xrightarrow{\mathrm{bij}} \mathcal{F}_{M}^{\mathrm{bn}}:=\Omega(M) / O_{M}
$$

defined by the period map.
We refer to $\mathcal{F}_{M}^{\mathrm{bn}}$ as in Theorem 9.1.2 as a coarse moduli space of big and nef $M$-polarized K3 surfaces.

### 9.2 Moduli spaces of K3 surfaces with a certain Picard group

We define in the next two Subsections 9.2.1 and 9.2.2 isomorphism classes of certain quasipolarized K3 surfaces and certain lattice polarized K3 surfaces. In Subsection 9.2.3, we show that we have a correspondence between the two sets of isomorphism classes. In Subsection 9.2.4, we construct then the moduli space of these polarized K3 surfaces as a moduli space of the corresponding lattice polarized K3 surfaces.

For $\mathbf{T} \in\left\{\mathbf{A}_{i \geq 1}, \mathbf{D}_{j \geq 4}, \mathbf{E}_{8 \geq k \geq 6}\right\}$, let the following be defined as in Table 6.1: The formal sum of $A D E$ singularity types $\sigma(\mathbf{T})$, the positive integer corank $\mathbf{T}_{\mathbf{T}}$, the weighted graph $\Gamma_{\sigma(\mathbf{T})}$ with associated lattice $\Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)$, and the linear combination $h_{\mathbf{T}} \in \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)$ of the vertices of $\Gamma_{\sigma(\mathbf{T})}$.

Let

$$
\left(\left(a_{1}, \ldots, a_{n}\right),\left(d_{4}, \ldots, d_{m}\right),\left(e_{6}, e_{7}, e_{8}\right)\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{n} \times\left(\mathbb{Z}_{\geq 0}\right)^{m-3} \times\left(\mathbb{Z}_{\geq 0}\right)^{3}
$$

### 9.2.1 Isomorphism classes of certain quasi-polarized K 3 surfaces of degree 6

Let $\left(\widetilde{S}, L_{\mathbf{T}}\right)$ be a polarized K3 surface of degree 6 such that $\varphi_{L_{\mathbf{T}}}: \widetilde{S} \rightarrow \mathbb{P}^{4}$ is birational onto its image. By Proposition 3.3.4, $\varphi_{L_{\mathbf{T}}}(\widetilde{S})$ is a complete $(2,3)$-intersection of a quadric $Q$ and a cubic $Y$ in $\mathbb{P}^{4}$.

Let

$$
\mathbf{G}:=\sum_{i=1}^{n} a_{i} \mathbf{A}_{i}+\sum_{j=4}^{m} d_{j} \mathbf{D}_{j}+\sum_{k=6}^{8} e_{k} \mathbf{E}_{k}
$$

be a formal sum of $A D E$ singularity types.
Definition 9.2.1. Let $K_{\sigma(\mathbf{T}), \mathbf{G}}^{\circ}$ be the set of all isomorphism classes of quasi-polarized K3 surfaces $\left(\widetilde{S}, L_{\mathbf{T}}\right)$ of degree 6 such that

1. $\varphi_{L_{\mathbf{T}}}: \widetilde{S} \rightarrow \mathbb{P}^{4}$ is birational onto its image
2. $\varphi_{L_{\mathbf{T}}}(\widetilde{S})$ is contained in a quadric $Q \subseteq \mathbb{P}^{4}$ of $\operatorname{corank}(Q)=\operatorname{corank}_{\mathbf{T}}$ such that
a) the singularities of $\varphi_{L_{\mathbf{T}}}(\widetilde{S})$ lying on $\operatorname{Sing}(Q)$ correspond to $\sigma(\mathbf{T})$
b) the singularities of $\varphi_{L_{\mathbf{T}}}(\widetilde{S})$ not lying on $\operatorname{Sing}(Q)$ correspond to $\mathbf{G}$.

### 9.2.2 Isomorphism classes of certain lattice polarized K3 surfaces

For $\left(\left(a_{1}, \ldots, a_{n}\right),\left(d_{4}, \ldots, d_{m}\right),\left(e_{6}, e_{7}, e_{8}\right)\right) \in \mathbb{Z}_{\geq 0}{ }^{n} \times \mathbb{Z}_{\geq 0}{ }^{m-3} \times \mathbb{Z}_{\geq 0}{ }^{3}$, let

$$
\mathbf{G}:=\sum_{i=1}^{n} a_{i} \mathbf{A}_{i}+\sum_{j=4}^{m} d_{j} \mathbf{D}_{j}+\sum_{k=6}^{8} e_{k} \mathbf{E}_{k}
$$

be a formal sum of $A D E$ singularity types and

$$
\Gamma_{\mathbf{G}}:=\sum_{i=1}^{n} a_{i} \mathcal{A}_{i}+\sum_{j=4}^{m} d_{j} \mathcal{D}_{j}+\sum_{k=6}^{8} e_{k} \mathcal{E}_{k}
$$

a Dynkin diagram with connected components $\mathcal{A}_{i}, \mathcal{D}_{j}$, and $\mathcal{E}_{k}$. Let $\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}:=\Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right) \oplus$ $\Lambda\left(\Gamma_{\mathbf{G}}\right)$ be the associated lattice such that we have an embedding (not necessarily primitive or unique)

$$
i: \Lambda_{\sigma(\mathbf{T}), \mathbf{G}} \hookrightarrow L_{K 3}
$$

Let

$$
\operatorname{Sat}_{L_{K 3}}(i) \subseteq L_{K 3}
$$

be the saturation of $\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}$ in $L_{K 3}$ with respect to $i$. Then, $L_{K 3} / \operatorname{Sat}_{L_{K 3}}(i)$ is torsion-free by definition of the saturation. Hence, the inclusion defines a primitive embedding

$$
\iota: \operatorname{Sat}_{L_{K 3}}(i) \hookrightarrow L_{K 3} .
$$

Definition 9.2.2. Let $F_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$ be the set of all isomorphism classes of $\operatorname{Sat}_{L_{K 3}}(i)$-polarized K3 surfaces $(\widetilde{S}, j)$ such that for $L_{\mathbf{T}}:=j\left(i\left(h_{\mathbf{T}}\right)\right)$ we have

1. for all $E \in \operatorname{Pic}(\widetilde{S})$ with $L_{\mathbf{T}} \cdot E=0$ and $E^{2}=-2$, we have $E \in j\left(i\left(\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}\right)\right)$
2. there exists no $E \in \operatorname{Pic}(\widetilde{S})$ such that $L_{\mathbf{T}} \cdot E=1$ and $E^{2}=0$
3. there exists no $E \in \operatorname{Pic}(\widetilde{S})$ such that $L_{\mathbf{T}} \cdot E=2$ and $E^{2}=0$.

### 9.2.3 Correspondence between isomorphism classes of certain quasi-polarized and lattice polarized K3 surfaces

We keep the notation and definitions made previously in Subsection 9.2 and will make in the following furthermore the assumption:

The embedding $i: \Lambda_{\sigma(\mathbf{T}), \mathbf{G}} \hookrightarrow L_{K 3}$ defined in Subsection 9.2.2 is unique up to an automorphism of $L_{K 3}$.

Such lattices $\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}$ exist. Indeed, in Theorem 8.1.1 we determined $1607 A D E$ lattices $\Lambda\left(\Gamma_{\mathbf{G}}\right)$ such that we have a primitive embedding $\Lambda_{\sigma\left(\mathbf{A}_{1}\right), \Gamma}:=\langle 6\rangle \oplus \Lambda \hookrightarrow L_{K 3}$ which is unique up to an automorphism of $L_{K 3}$.

By assumption (9.1), we have then a correspondence between the sets of isomorphism classes in Definition 9.2.1 and 9.2.2 in the last two subsections:
Lemma 9.2.3. We have a natural bijection $K_{\sigma(\mathbf{T}), \mathbf{G}}^{\circ} \xrightarrow{\mathrm{bij}^{\longrightarrow}} F_{\mathrm{Sat}_{L_{K}}(i)}^{\circ}$.
Proof. We claim that a bijection $K_{\sigma(\mathbf{T}), \mathbf{G}}^{\circ} \rightarrow F_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$ is defined by $\Sigma:\left[\left(\widetilde{S}, L_{\mathbf{T}}\right)\right] \mapsto$ $\left[\left(\widetilde{S}, j_{\phi}\right)\right]$ for a marking $\phi: H^{2}(\widetilde{S}, \mathbb{Z}) \rightarrow L_{K 3}$ with $\phi\left(L_{\mathbf{T}}\right)=i\left(h_{\mathbf{T}}\right)$ with $h_{\mathbf{T}}$ as in Table 6.1, where $\left[\left(\widetilde{S}, L_{\mathbf{T}}\right)\right]$ is the isomorphism class of the quasi-polarized K3 surface $\left(\widetilde{S}, L_{\mathbf{T}}\right)$ and $\left[\left(\widetilde{S}, j_{\phi}\right)\right]$ the isomorphism class of the $\operatorname{Sat}_{L_{K 3}}(i)$-lattice polarized K3 surface $\left(\widetilde{S}, j_{\phi}\right)$ with $j_{\phi}:=\phi^{-1}{ }_{\mid \operatorname{Sat}_{L_{K 3}}(i)}: \operatorname{Sat}_{L_{K 3}}(i) \hookrightarrow \operatorname{Pic}(\widetilde{S})$.
We show that the map $\Sigma$ is well-defined:
We prove that the lattice $\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}$ is contained in $\operatorname{Pic}(\widetilde{S})$. Indeed, in the proof of $(2) \Rightarrow(3)$ in Main Theorem 1 we showed that for a specific hyperplane section $C_{\mathbf{T}}$ of $S:=\varphi_{L_{\mathbf{T}}}(\widetilde{S}) \subseteq \mathbb{P}^{4}$ the pull-back $\varphi_{L_{\mathbf{T}}}^{*}\left(C_{\mathbf{T}}\right) \in \operatorname{Div}(\widetilde{S})$ is the linear combination of curves in $\operatorname{Div}(\widetilde{S})$ such that the
weighted graph associated to these curves is $\Gamma_{\sigma(\mathbf{T})}$ as in Table 6.1. Furthermore, $L_{\mathbf{T}}$ is the line bundle on $\widetilde{S}$ associated to $\varphi_{L_{\mathbf{T}}}^{*}\left(C_{\mathbf{T}}\right)$. Let $\Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)$ be the lattice in $\operatorname{Pic}(\widetilde{S})$ associated to $\Gamma_{\sigma(\mathbf{T})}$. Further, we showed that the weighted graph associated to the exceptional divisor in $\widetilde{S}$ of the minimal resolution of all singularities corresponding to $\mathbf{G}$ is the graph $\Gamma_{\mathbf{G}}$ and spans the lattice $\Lambda\left(\Gamma_{\mathbf{G}}\right)$ in $\operatorname{Pic}(\widetilde{S})$. Hence, the corresponding lattice $\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}:=\Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right) \oplus \Lambda\left(\Gamma_{\mathbf{G}}\right)$ is contained in $\operatorname{Pic}(\widetilde{S})$.
The marking $\phi: H^{2}(\widetilde{S}, \mathbb{Z}) \rightarrow L_{K 3}$ with $\phi\left(L_{\mathbf{T}}\right)=i\left(h_{\mathbf{T}}\right)$ restricts to an embedding

$$
\phi_{\mid \Lambda_{\sigma(\mathbf{T}), \mathbf{G}}}: \Lambda_{\sigma(\mathbf{T}), \mathbf{G}} \hookrightarrow L_{K 3}
$$

and the inclusion defines naturally a primitive embedding

$$
\operatorname{Sat}_{L_{K 3}}\left(\phi_{\mid \Lambda_{\sigma(\mathbf{T}), \mathbf{G}}}\right) \hookrightarrow L_{K 3}
$$

of the saturation of $\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}$ into $L_{K 3}$ with respect to $\phi_{\mid \Lambda_{\sigma(\mathbf{T}), \mathbf{G}}}$. We prove that

$$
\begin{equation*}
t_{\phi}:=\phi_{\operatorname{Sat}_{L_{K 3}}\left(\phi_{\mid \Lambda_{\sigma(\mathbf{T}), \mathbf{G}}}\right)}^{-1}: \operatorname{Sat}_{L_{K 3}}\left(\phi_{\mid \Lambda_{\sigma(\mathbf{T}), \mathbf{G}}}\right) \hookrightarrow \operatorname{Pic}(\widetilde{S}) \tag{9.2}
\end{equation*}
$$

defines a primitive embedding. Indeed, let $x \in \operatorname{Sat}_{L_{K 3}}\left(\phi_{\mid \Lambda_{\sigma(\mathbf{T}), \mathbf{G}}}\right)$, i.e. $x \in L_{K 3}$ and there is $n_{x} \geq 1$ such that $n_{x} x \in \phi\left(\Lambda_{\sigma(\mathbf{T}), \mathbf{G})}\right)$. Since $\phi\left(\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}\right) \subseteq \phi(\operatorname{Pic}(\widetilde{S}))$, we obtain $n_{x} \phi^{-1}(x) \in \operatorname{Pic}(\widetilde{S})$. However, $H^{2}(\widetilde{S}, \mathbb{Z}) / \operatorname{Pic}(\widetilde{S})$ is torsion-free and hence $t_{\phi}(x)=\phi^{-1}(x) \in$ $\operatorname{Pic}(\widetilde{S})$. Therefore, the map is well-defined. Further, the embedding is primitive. Indeed, let $x \in \operatorname{Pic}(\widetilde{S})$ such that for $n_{x} \geq 1$, we have $n_{x} x \in t_{\phi}\left(\operatorname{Sat}_{L_{K 3}}\left(\phi_{\mid \Lambda_{\sigma(\mathbf{T}), \mathbf{G}}}\right)\right)$, i.e. $n_{x} \phi(x) \in$ $\operatorname{Sat}_{L_{K 3}}\left(\phi_{\mid \Lambda_{\sigma(\mathbf{T}), \mathbf{G}}}\right)$. However, $\phi(x) \in L_{K 3}$ and $L_{K 3} / \operatorname{Sat}_{L_{K 3}}\left(\phi_{\mid \Lambda_{\sigma(\mathbf{T}), \mathbf{G}}}\right)$ is torsion-free so $\phi(x) \in \operatorname{Sat}_{L_{K 3}}\left(\phi_{\mid \Lambda_{\sigma(\mathbf{T}), \mathbf{G}}}\right)$, i.e. $x \in t_{\phi}\left(\operatorname{Sat}_{L_{K 3}}\left(\phi_{\mid \Lambda_{\sigma(\mathbf{T}), \mathbf{G}}}\right)\right)$.
By assumption (9.1), the embedding $i: \Lambda_{\sigma(\mathbf{T}), \mathbf{G}} \hookrightarrow L_{K 3}$ is unique up to an automorphism of $L_{K 3}$. Hence, $\phi_{\mid \Lambda_{\sigma(\mathbf{T}), \mathbf{G}}}=\lambda \circ i$ for an automorphism $\lambda$ of $L_{K 3}$ inducing an isomorphism

$$
\lambda_{\mid \operatorname{Sat}_{L_{K 3}}(i)}: \operatorname{Sat}_{L_{K 3}}(i) \rightarrow \operatorname{Sat}_{L_{K 3}}\left(\phi_{\mid \Lambda_{\sigma(\mathbf{T}), \mathbf{G}}}\right) .
$$

Therefore, we have a primitive embedding

$$
j_{\phi}=t_{\phi} \circ \lambda_{\mid \operatorname{Sat}_{L_{K 3}}(i)}: \operatorname{Sat}_{L_{K 3}}(i) \hookrightarrow \operatorname{Pic}(\widetilde{S}) .
$$

Consequently, $\left(\widetilde{S}, j_{\phi}\right)$ is a $\operatorname{Sat}_{L_{K 3}}(i)$-polarized K3 surface and the isomorphism class of $\left(\widetilde{S}, j_{\phi}\right)$ is independent of the choice of the marking $\phi$.
We showed in $(2) \Rightarrow(3)$ in Main Theorem 1 that 1.-3. in Definition 9.2.2 hold.
In conclusion, the isomorphism class $\left[\left(\widetilde{S}, j_{\phi}\right)\right]$ of $\left(\widetilde{S}, j_{\phi}\right)$ is contained in $F_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$, i.e. the map $\Sigma$ is well-defined.
We claim that $\Theta: F_{\text {Sat }_{L_{K 3}}(i)}^{\circ} \rightarrow K_{\sigma(\mathbf{T}), \mathbf{G}}^{\circ},[(\widetilde{S}, j)] \mapsto\left[\left(\widetilde{S}, j\left(i\left(h_{\mathbf{T}}\right)\right)\right)\right]$ with $h_{\mathbf{T}} \in \Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)$ as in Table 6.1, is inverse to $\Sigma$.
We show that $\Theta$ is well-defined:
Let $(\widetilde{S}, j)$ be an element in the isomorphism class $[(\widetilde{S}, j)] \in{F_{\text {Sat }_{L_{K 3}}(i)}^{\circ} \text {. We have a primitive }}$ embedding $j: \operatorname{Sat}_{L_{K 3}}(i) \hookrightarrow \operatorname{Pic}(\widetilde{S})$ and items 1.-3. in Definition 9.2.2 hold.

Let $L_{\mathbf{T}}:=j\left(i\left(h_{\mathbf{T}}\right)\right)$. Note that for an effective Hodge isometry $\alpha: H^{2}(\widetilde{S}, \mathbb{Z}) \rightarrow H^{2}(\widetilde{S}, \mathbb{Z})$ the $\operatorname{Sat}_{L_{K 3}}(i)$-polarized K3 surfaces $(\widetilde{S}, j)$ and $(\widetilde{S}, \alpha \circ j)$ are isomorphic. We claim that we can choose $\alpha$ such that $\alpha\left(L_{\mathbf{T}}\right) \in \operatorname{Pic}(\widetilde{S})$ is nef. Indeed, by replacing $j$ by $-j$ if necessary, we can assume that $L_{\mathbf{T}}$ is contained in the positive cone $\mathcal{C}_{\widetilde{S}}$. Then, by Proposition 3.2.3, we have $(-2)$-curves $C_{1}, \ldots, C_{n} \in \operatorname{Pic}(\widetilde{S})$ such that the image $\left(s_{C_{1}} \circ \ldots \circ s_{C_{n}}\right)\left(L_{\mathbf{T}}\right)$ of $L_{\mathbf{T}}$ under the Picard-Lefschetz reflection $s_{C_{1}} \circ \ldots \circ s_{C_{n}}$ is nef. In conclusion, taking $\alpha:=$ $s_{C_{1}} \circ \ldots \circ s_{C_{n}} \circ( \pm \mathrm{id})$, we can assume that $L_{\mathbf{T}}$ is nef.
Since items 2. and 3. in Definition 9.2.2 hold, there exists no element $E \in \operatorname{Pic}(\widetilde{S})$ with $E^{2}=0$ and $L_{\mathbf{T}} \cdot E \in\{1,2\}$. Therefore, Proposition 3.2.6 implies that the map $\varphi_{L_{\mathbf{T}}}: \widetilde{S} \rightarrow \mathbb{P}^{4}$ is birational onto its image. By Proposition 3.3.4, the image $S:=\varphi_{L_{\mathbf{T}}}(\widetilde{S}) \subseteq \mathbb{P}^{4}$ of $\widetilde{S}$ under $\varphi_{L_{\mathbf{T}}}$ is a complete $(2,3)$-intersection in $\mathbb{P}^{4}$.
Let $M_{\mathbf{T}}$ be the $\mathbb{Z}$-module generated by the root system $R_{L_{\mathbf{T}}}:=\left\{C \in \operatorname{Pic}(\widetilde{S}) ; C^{2}=\right.$ $\left.-2, L_{\mathbf{T}} \cdot C=0\right\}$. We claim that $M_{\mathbf{T}}=j\left(i\left(\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}\right)\right)$. By definition of $L_{\mathbf{T}}$, we have $j\left(i\left(\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}\right)\right) \subseteq M_{\mathbf{T}}$. Further, since $[(\widetilde{S}, j)]$ satisfies item 1. in Definition 9.2.2, there exists no $C$ in $\operatorname{Pic}(\widetilde{S})$ such that $C^{2}=-2, C \cdot L_{\mathbf{T}}=0$, and $C \notin j\left(i\left(\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}\right)\right)$. Hence, $j\left(i\left(\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}\right)\right)=M_{\mathbf{T}}$. By Corollary 3.3.5, $S$ has singularities of type $\sigma(\mathbf{T})+\mathbf{G}$ corresponding to the Dynkin diagram $\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}=\Lambda\left(\Gamma_{\sigma(\mathbf{T})}\right)+\Lambda\left(\Gamma_{\mathbf{G}}\right)$.

Following the proof of $(2) \Rightarrow(3)$ in Main Theorem 1, we see that $S$ is contained in a quadric $Q$ of $\operatorname{corank}(Q)=\operatorname{corank}_{\mathbf{T}}$ in $\mathbb{P}^{4}$ such that all singularities of $S$ on the singular locus of $Q$ are of type $\sigma(\mathbf{T})$ and all other singularities of $S$ are of type $\mathbf{G}$.
We show that $\Sigma$ and $\Theta$ are inverse to each other:
Let $\left[\left(\widetilde{S}, L_{\mathbf{T}}\right)\right] \in K_{\sigma(\mathbf{T}), \mathbf{G}}^{\circ}$. We have $\Sigma\left(\left[\left(\widetilde{S}, L_{\mathbf{T}}\right)\right]\right)=\left[\left(\widetilde{S}, j_{\phi}\right)\right]$ for a marking $\phi$ of $\widetilde{S}$ such that $\phi\left(L_{\mathbf{T}}\right)=i\left(h_{\mathbf{T}}\right)$. Then, $\Theta\left(\left[\left(\widetilde{S}, j_{\phi}\right)\right]\right)=\left[\left(\widetilde{S}, j_{\phi}\left(i\left(h_{\mathbf{T}}\right)\right)\right)\right]=\left[\left(\widetilde{S}, L_{\mathbf{T}}\right)\right]$. Therefore, $\Theta \circ \Sigma=$ $\mathrm{id}_{K_{\sigma(\mathbf{T}), \mathbf{G}}^{\circ}}$.
Let $[(\widetilde{S}, j)] \in F_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$. We have $\Theta([(\widetilde{S}, j)])=\left[\left(\widetilde{S}, j\left(i\left(h_{\mathbf{T}}\right)\right)\right)\right]$. Then, for a marking $\phi$ of $\widetilde{S}$ such that $\phi\left(j\left(i\left(h_{\mathbf{T}}\right)\right)\right)=i\left(h_{\mathbf{T}}\right)$, we have $\Sigma\left(\left[\left(\widetilde{S}, j\left(i\left(h_{\mathbf{T}}\right)\right)\right)\right]\right)=\left[\left(\widetilde{S}, j_{\phi}\right)\right]$. Since the embedding $\Lambda_{\sigma(\mathbf{T}), \mathbf{G}} \hookrightarrow L_{K 3}$ is uniquely determined up to an automorphism of $L_{K 3}$, we have $[(\widetilde{S}, j)]=\left[\left(\widetilde{S}, j_{\phi}\right)\right]$. Therefore, also $\Sigma \circ \Theta=\operatorname{id}_{F_{\text {Sat }_{L_{K 3}}}^{\circ}}$.

### 9.2.4 Moduli space of certain polarized K3 surfaces as the moduli space of certain lattice polarized K3 surfaces

We keep the notation and assumptions made at the beginning of Subsection 9.2 and in Subsection 9.2.2. Let

$$
\begin{aligned}
\Delta_{n} & :=\left\{x \in L_{K 3} \backslash i\left(\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}\right) ; \quad i\left(h_{\mathbf{T}}\right) \cdot x=0, x^{2}=-2\right\} \\
\Delta_{u} & :=\left\{x \in L_{K 3} ; \quad i\left(h_{\mathbf{T}}\right) \cdot x=1, x^{2}=0\right\} \\
\Delta_{h} & :=\left\{x \in L_{K 3} ; \quad i\left(h_{\mathbf{T}}\right) \cdot x=2, x^{2}=0\right\} .
\end{aligned}
$$

Remark 9.2.4. The indices $n, u$, and $h$ should remind us of nodal, unigonal, and hyperelliptic classes in the Picard group of a K3 surface, respectively.

For $\varepsilon \in \Delta_{n}, \Delta_{u}$, or $\Delta_{h}$, let

$$
\varepsilon^{\perp}:=\left\{x \in\left(\operatorname{Sat}_{L_{K 3}}(i)\right)_{L_{K 3}}^{\perp} \otimes_{\mathbb{Z}} \mathbb{C} ; \varepsilon \cdot x=0\right\}
$$

be the orthogonal complement of $\varepsilon$ in $L_{K 3}$ and

$$
H_{\Delta_{n}}:=\bigcup_{\varepsilon \in \Delta_{n}} \varepsilon^{\perp}, \quad H_{\Delta_{u}}:=\bigcup_{\varepsilon \in \Delta_{u}} \varepsilon^{\perp}, \quad H_{\Delta_{h}}:=\bigcup_{\varepsilon \in \Delta_{h}} \varepsilon^{\perp}
$$

We define then the following subset of the period domain $\Omega\left(\operatorname{Sat}_{L_{K 3}}(i)\right)$ :

$$
\Omega\left(\operatorname{Sat}_{L_{K 3}}(i)\right)^{\circ}:=\Omega\left(\operatorname{Sat}_{L_{K 3}}(i)\right) \backslash\left(\left(H_{\Delta_{n}} \cup H_{\Delta_{u}} \cup H_{\Delta_{h}}\right) \cap \Omega\left(\operatorname{Sat}_{L_{K 3}}(i)\right)\right) .
$$

We note that $\left(H_{\Delta_{n}} \cup H_{\Delta_{u}} \cup H_{\Delta_{h}}\right) \cap \Omega\left(\operatorname{Sat}_{L_{K 3}}(i)\right)$ is a countable union of hyperplanes in $\Omega\left(\operatorname{Sat}_{L_{K 3}}(i)\right)$. However, we claim the number of the $O_{\mathrm{Sat}_{L_{K 3}}(i) \text {-orbits of the hyperplanes }}$ in $\left(H_{\Delta_{n}} \cup H_{\Delta_{u}} \cup H_{\Delta_{h}}\right) \cap \Omega\left(\operatorname{Sat}_{L_{K 3}}(i)\right)$ is finite. Indeed, by Eichler's criterion (see [GHS13, Lemma 7.5]), there are only finitely many $O\left(L_{K 3}, \operatorname{Sat}_{L_{K 3}}(i)\right)$-orbits of elements with a fixed length in $L_{K 3}$. Since $O\left(L_{K 3}, \operatorname{Sat}_{L_{K 3}}(i)\right)$ and $O_{\text {Sat }_{L_{K 3}}(i)}$ are isomorphic, we have consequently only finitely many $O_{\text {Sat }_{L_{K 3}}(i)}$-orbits of hyperplanes $\varepsilon^{\perp}$ in $\left(\operatorname{Sat}_{L_{K 3}}(i)\right)_{L_{K 3}}^{\perp} \otimes_{\mathbb{Z}} \mathbb{C}$ with $\varepsilon \in \Delta_{n} \cup \Delta_{u} \cup \Delta_{h}$ having a fixed length.

Consequently, $O_{\text {Sat }_{L_{K 3}}(i)} \backslash \Omega\left(\operatorname{Sat}_{L_{K 3}}(i)\right)^{\circ}$ is the complement of the finitely many orbits of hyperplanes $\varepsilon^{\perp}$ in the moduli space $\mathcal{F}_{\operatorname{Sat}_{L_{K 3}}(i)}^{\mathrm{bn}}:=O_{\mathrm{Sat}_{L_{K 3}}(i)} \backslash \Omega\left(\operatorname{Sat}_{L_{K 3}}(i)\right)$ of big and nef Sat $_{L_{K 3}}(i)$-polarized K3 surfaces constructed in Theorem 9.1.2 and hence is in particular a quasi-projective variety, i.e.

$$
\mathcal{F}_{\text {Sat }_{L_{K 3}}(i)}^{\circ}:=O_{\text {Sat }_{L_{K 3}}(i)} \backslash \Omega\left(\operatorname{Sat}_{L_{K 3}}(i)\right)^{\circ}
$$

is an open subvariety of $\mathcal{F}_{\text {Sat }_{L_{K 3}}(i)}^{\mathrm{bn}}$.
Proposition 9.2.5. $\mathcal{F}_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$ is a coarse moduli space of all quasi-polarized K3 surface $\left(\widetilde{S}, L_{\mathbf{T}}\right)$ of degree 6 such that:

1. $\varphi_{L_{\mathbf{T}}}: \widetilde{S} \rightarrow \mathbb{P}^{4}$ is birational onto its image
2. $\varphi_{L_{\mathbf{T}}}(\widetilde{S})$ is contained in a quadric $Q \subseteq \mathbb{P}^{4}$ of $\operatorname{corank}(Q)=\operatorname{corank}_{\mathbf{T}}$ such that
a) the singularities of $\varphi_{L_{\mathbf{T}}}(\widetilde{S})$ lying on $\operatorname{Sing}(Q)$ are of type $\sigma(\mathbf{T})$
b) the singularities of $\varphi_{L_{\mathbf{T}}}(\widetilde{S})$ not lying on $\operatorname{Sing}(Q)$ correspond to $\mathbf{G}$,
i.e. with Definition 9.2.1, we have a bijection

$$
\begin{equation*}
K_{\sigma(\mathbf{T}), \mathbf{G}}^{\circ} \stackrel{\text { bij }}{ } \mathcal{F}_{\mathrm{Sat}_{L_{K 3}}(i)}^{\circ} . \tag{9.3}
\end{equation*}
$$

Proof. By Lemma 9.2.3, we have a bijection

$$
\begin{equation*}
K_{\sigma(\mathbf{T}), \mathbf{G}}^{\circ} \xrightarrow{\mathrm{bij}} F_{\mathrm{Sat}_{L_{K 3}}(i)}^{\circ}, \tag{9.4}
\end{equation*}
$$

where $F_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$ is the set of isomorphism classes of $\operatorname{Sat}_{L_{K 3}}(i)$-polarized K3 surfaces in Definition 9.2.2.

Let $(\widetilde{S}, j)$ be a $\operatorname{Sat}_{L_{K 3}}(i)$-polarized K3 surface whose class is contained in $F_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$. We saw in the proof of $(3) \Rightarrow(2)$ in Main Theorem 1 that for a marking $\phi: H^{2}(\widetilde{S}, \mathbb{Z}) \rightarrow L_{K 3}$, the line bundle $L_{\mathbf{T}}:=\phi^{-1}\left(i\left(h_{\mathbf{T}}\right)\right) \in \operatorname{Pic}(\widetilde{S})$ with $h_{\mathbf{T}} \in \Lambda_{\sigma(\mathbf{T}), \mathbf{G}}$ as in Table 6.1, is big and nef. Hence, $F_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$ is a subset of the set $F_{\text {Sat }_{L_{K 3}}(i)}^{\mathrm{bn}}$ of all big and nef $\operatorname{Sat}_{L_{K 3}}(i)$-polarized K3 surfaces introduced in Subsection 9.1.2.
We now show that the bijection $\rho: F_{\mathrm{Sat}_{L_{K 3}}(i)}^{\mathrm{bn}} \xrightarrow{\mathrm{bij}} \mathcal{F}_{\mathrm{Sat}_{L_{K 3}}(i)}^{\mathrm{bn}}$ in Theorem 9.1.2, given by the period map $\rho$, descends to a bijection:

$$
\begin{equation*}
\rho^{\circ}:=\rho_{\mid F_{\mathrm{Sat}_{L_{K 3}}(i)}^{\circ}}: F_{\mathrm{Sat}_{L_{K 3}}(i)}^{\circ} \xrightarrow{\mathrm{bij}^{\circ}} \mathcal{F}_{\mathrm{Sat}_{L_{K 3}}(i)}^{\circ} . \tag{9.5}
\end{equation*}
$$

We prove firstly that $\rho^{\circ}\left(F_{\text {Sat }_{L_{K 3}}(i)}^{\circ}\right) \subseteq \mathcal{F}_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$.
Indeed, let $(\widetilde{S}, j)$ be a $\operatorname{Sat}_{L_{K 3}}(i)$-polarized K3 surface in $F_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$. Let $\phi$ be a marking for $\widetilde{S}$ such that $j_{\phi}:=\phi_{\mid \operatorname{Sat}_{L_{K 3}}(i)}^{-1}=j$ and hence $j_{\phi}\left(\operatorname{Sat}_{L_{K 3}}(i)\right)=j\left(\operatorname{Sat}_{L_{K 3}}(i)\right) \subseteq \operatorname{Pic}(\widetilde{S})$ (note that such a $\phi$ actually exists since the embedding $\Lambda_{\sigma(\mathbf{T}), \mathbf{G}} \hookrightarrow L_{K 3}$ is unique up to an automorphism of $L_{K 3}$ by assumption (9.1), see [Dol96, p. 2606]). Let $\omega_{\widetilde{S}}$ be the generator of the 1-dimensional $\mathbb{C}$-vector space $H^{0}\left(\widetilde{S}, \Omega_{\widetilde{S}}^{2}\right)$. Let $\left[\phi\left(\omega_{\widetilde{S}}\right)\right] \in \Omega\left(\operatorname{Sat}_{L_{K 3}}(i)\right)$ be the period point of the marked $\operatorname{Sat}_{L_{K 3}}(i)$-polarized $K 3$ surface $(\widetilde{S}, \phi)$.

We have to show that $\left[\phi\left(\omega_{\widetilde{S}}\right)\right] \notin H_{\Delta_{n}} \cup H_{\Delta_{u}} \cup H_{\Delta_{h}}$ :
Indeed, if $\left[\phi\left(\omega_{\widetilde{S}}\right)\right] \in H_{\Delta_{n}}$, we have an $\varepsilon \in \Delta_{n}$ such that $\varepsilon .\left[\phi\left(\omega_{\widetilde{S}}\right)\right]=0$, i.e. $E:=\phi^{-1}(\varepsilon) \in$ $\operatorname{Pic}(\widetilde{S})$. By definition, $\varepsilon \in L_{K 3} \backslash i\left(\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}\right), \varepsilon^{2}=-2$ and $\varepsilon \cdot i\left(h_{\mathbf{T}}\right)=0$. Therefore, $E \in \operatorname{Pic}(\widetilde{S}) \backslash j_{\phi}\left(i\left(\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}\right)\right)$ with $E^{2}=-2$ and $E . L_{\mathbf{T}}=0$. Since the isomorphism class of $\widetilde{S}$ is contained in $F_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$ and hence satisfies condition 1. above, such an $E$ and therefore such an $\varepsilon$ cannot exist.

Likewise, if $\left[\phi\left(\omega_{\widetilde{S}}\right)\right] \in H_{\Delta_{u}}$ (or $\left[\phi\left(\omega_{\widetilde{S}}\right)\right] \in H_{\Delta_{h}}$ ) we have an $\varepsilon \in \Delta_{u}$ (or $\varepsilon \in \Delta_{h}$ ) such that $\varepsilon .\left[\phi\left(\omega_{\widetilde{S}}\right)\right]=0$, i.e. $E:=\phi^{-1}(\varepsilon) \in \operatorname{Pic}(\widetilde{S})$. By definition, $\varepsilon \in L_{K 3}, \varepsilon^{2}=0$, and $\varepsilon . i\left(h_{\mathbf{T}}\right)=1$ (or $\varepsilon . i\left(h_{\mathbf{T}}\right)=2$ ). Therefore, $E \in \operatorname{Pic}(\widetilde{S})$ with $E^{2}=0$ and $E . L_{\mathbf{T}}=1$ (or $E . L_{\mathbf{T}}=2$ ). Again, since the isomorphism class of $\widetilde{S}$ is contained in $F_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$ and therefore satisfies conditions 2. (and 3.) above, such an $E$ and therefore such an $\varepsilon$ cannot exist.

Consequently, $\left[\phi\left(\omega_{\widetilde{S}}\right)\right] \in \Omega\left(\operatorname{Sat}_{L_{K 3}}(i)\right)^{\circ}$.
Moreover, two markings as above differ by an element in the group of automorphisms $O_{\text {Sat }_{L_{K 3}}(i)}$.

In conclusion, we obtain $\rho^{\circ}\left(F_{\operatorname{Sat}_{L_{K 3}}(i)}^{\circ}\right) \subseteq O_{\operatorname{Sat}_{L_{K 3}}(i)} \backslash \Omega\left(\operatorname{Sat}_{L_{K 3}}(i)\right)^{\circ}=\mathcal{F}_{\operatorname{Sat}_{L_{K 3}}(i)}^{\circ}$.
We prove secondly that $\rho^{\circ}$ is surjective:
Indeed, for $x \in \mathcal{F}_{\text {Sat }_{L_{K 3}}}^{\circ}(i)$, we have by the surjectivity of the period map a K3 surface $\widetilde{S}$ and a marking $\psi$ for $\widetilde{S}$ such that $x$ is the period point of the marked K3 surface $(\widetilde{S}, \psi)$.

Since $x \in \mathcal{F}_{\operatorname{Sat}_{L_{K 3}}(i)}^{\circ}$, we have $x \cdot \operatorname{Sat}_{L_{K 3}}(i)=0$. Therefore, $\psi^{-1}\left(\operatorname{Sat}_{L_{K 3}}(i)\right) \subseteq \operatorname{Pic}(\widetilde{S})$. Consequently, $j_{\psi}:=\psi^{-1}{ }_{\mid \operatorname{Sat}_{L_{K 3}}(i)}: \operatorname{Sat}_{L_{K 3}}(i) \hookrightarrow \operatorname{Pic}(\widetilde{S})$ defines a primitive embedding.
We claim that $\left(\widetilde{S}, j_{\psi}\right) \in F_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$ :
Indeed, assume that we have $E \in \operatorname{Pic}(\widetilde{S}) \backslash j_{\psi}\left(i\left(\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}\right)\right)$ with $j_{\psi}\left(i\left(h_{\mathbf{T}}\right)\right) \cdot E=0$ and $E^{2}=-2$. Then, $\varepsilon:=\psi(E) \in L_{K 3} \backslash i\left(\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}\right), i\left(h_{\mathbf{T}}\right) . \varepsilon=0$, and $\varepsilon^{2}=-2$ in contradiction to the fact that $x \notin H_{n}$, i.e. there exists no such $\varepsilon$.
Likewise, assume that we have $E \in \operatorname{Pic}(\widetilde{S})$ with $E^{2}=0$ and $j_{\psi}\left(i\left(h_{\mathbf{T}}\right)\right) \cdot E=1$ (or $j_{\psi}\left(i\left(h_{\mathbf{T}}\right)\right) \cdot E=2$ ). Then, $\varepsilon:=\psi(E) \in L_{K 3} \backslash i\left(\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}\right), \varepsilon^{2}=0$, and $i\left(h_{\mathbf{T}}\right) \cdot \varepsilon=1$ (or $i\left(h_{\mathbf{T}}\right) . \varepsilon=2$ ), in contradiction to the fact that $x \notin H_{h}$ (or $x \notin H_{u}$ ), i.e. there exists no such $\varepsilon$.

In conclusion, $\rho^{\circ}$ is bijective.
By (9.4) and (9.5), we have a bijection $K_{\sigma(\mathbf{T}), \mathbf{G}}^{\circ} \xrightarrow{\mathrm{bij}} \mathcal{F}_{\mathrm{Sat}_{L_{K 3}}(i)}^{\circ}$. This concludes the proof.

Lemma 9.2.6. The quasi-projective variety $\mathcal{F}_{\operatorname{Sat}_{L_{K 3}}(i)}^{\circ}$ has dimension $20-\operatorname{rank}\left(\Lambda_{\sigma(\mathbf{T}), \mathbf{G})}\right.$.

Proof. The period domain $\Omega\left(\operatorname{Sat}_{L_{K 3}}(i)\right)$ has dimension $20-\operatorname{rank}\left(\operatorname{Sat}_{L_{K 3}}(i)\right)=20-$ $\operatorname{rank}\left(\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}\right)$. As $O_{\text {Sat }_{L_{K 3}}(i)}$ acts properly-discontinuously on $\Omega\left(\operatorname{Sat}_{L_{K 3}}(i)\right)$, this implies that the quotient $\mathcal{F}_{\operatorname{Sat}_{L_{K 3}}(i)}^{\mathrm{bn}}=\Omega\left(\operatorname{Sat}_{L_{K 3}}(i)\right) / O_{\text {Sat }_{L_{K 3}}(i)}$ has dimension $20-\operatorname{rank}\left(\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}\right)$ and since $\mathcal{F}_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$ is an open subvariety of $\mathcal{F}_{\operatorname{Sat}_{L_{K 3}}(i)}^{\mathrm{bn}}$, it has dimension $20-\operatorname{rank}\left(\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}\right)$, as well.

Remark 9.2.7. Proposition 9.2 .5 proves in particular implication (3) $\Rightarrow(2)$ in Main Theorem 1 in case we have a unique embedding $\Lambda_{\sigma(\mathbf{T}), \mathbf{G}} \hookrightarrow L_{K 3}$. Indeed, we showed that the points in the moduli space $\mathcal{F}_{\mathrm{Sat}_{L_{K 3}}(i)}^{\circ}$ parametrize in this case quasi-polarized K3 surfaces as in item 2. in Main Theorem 1.

### 9.3 Moduli spaces of cubic fourfolds with isolated $A D E$ singularities

Let $\mathbf{G}$ be a finite formal sum of $A D E$ singularity types.
We denote $M^{\mathbf{G}}$ the set of all isomorphism classes of cubic fourfolds having only singularities corresponding to $\mathbf{G}$.
The projective space $\mathbb{P}\left(H^{0}\left(\mathbb{P}^{5}, \mathcal{O}_{\mathbb{P}^{5}}(3)\right)\right) \cong \mathbb{P}^{55}$ parametrizes all cubic fourfolds. We denote by $[X]$ the point in $\mathbb{P}^{55}$ associated to a cubic fourfold $X \subseteq \mathbb{P}^{5}$.

For each $[X] \in \mathbb{P}^{55}$, fix a small open neighborhood $U([X]) \subseteq \mathbb{P}^{55}$ of $[X]$ such that all points in $U([X])$ correspond to cubic fourfolds whose singularities are adjacent to those of $X$ (see Section 1.1 for the definition of adjacent).

Let

$$
I_{\mathbf{G}}:=\left\{[X] \in \mathbb{P}^{55} ; \operatorname{Sing}(X)=\mathbf{G}\right\}
$$

be the set of all points in $\mathbb{P}^{55}$ associated to cubic fourfolds with singularities corresponding to G. Denote

$$
\Sigma_{\mathbf{G}}:=\left\{\mathbf{G}^{\prime} \text { formal sum of } A D E \text { singularity tpes; } \mathbf{G}^{\prime} \text { is adjacent to } \mathbf{G} \text { and } \mathbf{G}^{\prime} \neq \mathbf{G}\right\}
$$

the set of all possible combinations of $A D E$ singularity types which are adjacent but not equal to G. Let

$$
I_{\mathbf{G}}^{\prime}:=\bigcup_{\mathbf{G}^{\prime} \in \Sigma_{\mathbf{G}}}\left\{[X] \in \mathbb{P}^{55} ; \operatorname{Sing}(X)=\mathbf{G}^{\prime}\right\}
$$

be the set of all points in $\mathbb{P}^{55}$ associated to cubic fourfolds with singularities adjacent but not equal to $\mathbf{G}$. Then, $\bigcup_{[X] \in I_{\mathbf{G}}^{\prime}} U([X])$ is an open subset of $\mathbb{P}^{55}$ containing only points in $\mathbb{P}^{55}$ associated to cubic fourfolds whose singularities are adjacent but not equal to $\mathbf{G}$.

Hence, $\mathbb{P}^{55} \backslash \bigcup_{[X] \in I_{\mathbf{G}}^{\prime}} U([X])$ is closed in $\mathbb{P}^{55}$. Likewise, $\bigcup_{[X] \in I_{\mathbf{G}}} U([X])$ is an open subset of $\mathbb{P}^{55}$ containing only points in $\mathbb{P}^{55}$ such that the singularities of the associated cubic fourfolds are adjacent to G. Consequently,

$$
\mathcal{U}^{\mathbf{G}}:=\bigcup_{[X] \in I_{\mathbf{G}}} U([X]) \bigcap\left(\mathbb{P}^{55} \backslash \bigcup_{[X] \in I_{\mathbf{G}}^{\prime}} U([X])\right) \subseteq \mathbb{P}^{55}
$$

is locally closed in $\mathbb{P}^{55}$, i.e. a quasi-projective variety in $\mathbb{P}^{55}$ and contains only those points in $\mathbb{P}^{55}$ associated to cubic fourfolds with singularities corresponding exactly to $\mathbf{G}$.

Let $\left(x_{0}: \ldots: x_{5}\right)$ be coordinates on $\mathbb{P}^{5}$. For an element $g$ in the special linear group $\mathrm{SL}(6)$ and $[X] \in \mathbb{P}^{55}$ the class of a cubic fourfold $X: f\left(x_{0}, \ldots, x_{5}\right)=0 \subseteq \mathbb{P}^{5}$, defined by a homogeneous cubic polynomial $f$, we let

$$
g([X]): f\left(g\left(x_{0}, \ldots, x_{5}\right)\right)=0 \subseteq \mathbb{P}^{5}
$$

and obtain hence an action of $\mathrm{SL}(6)$ on $\mathbb{P}^{55}$.
For the action of a reductive group $G$ on a projective variety $M$ together with a linearization of a line bundle over $M$ for this group action, we consider the open subset $M^{s} \subseteq M$ of $G$-stable points of $M$ in $M$ (see [MFK94, Chap. 1, Definitions 1.4, 1.7] for the definitions). By Mumford's Geometric Invariant Theory (GIT), we have a quotient $M^{s} / / G$ of $M^{s}$ by the group $G$ (see [MFK94, Chap. 1, Theorem 1.10]). The group $\operatorname{SL}(n)$ is reductive for a positive integer $n$. In the following, we will consider the above action of $\mathrm{SL}(6)$ on the projective space $\mathbb{P}^{55}$ together with the natural $\mathrm{SL}(6)$-linearization with respect to the hyperplane bundle $\mathcal{O}_{\mathbb{P}^{55}}(1)$. We have then:

Theorem 9.3.1 ([Laz09, Theorem 1.1]). Let $X$ be a cubic fourfold with only isolated singularities. Then, $X$ is $\mathrm{SL}(6)$-stable if and only if $X$ has at most $A D E$ singularities.

## Corollary 9.3.2.

$$
\mathcal{M}^{\mathbf{G}}:=\mathcal{U}^{\mathbf{G}} / / \mathrm{SL}(6)
$$

is in the sense of GIT a coarse moduli space of cubic fourfolds with ADE singularities corresponding to $\mathbf{G}$, i.e. we have a bijection

$$
M^{\mathbf{G}} \xrightarrow{\mathrm{bij}} \mathcal{M}^{\mathbf{G}}
$$

Proof. By definition, all points in $\mathcal{U}^{\mathbf{G}} \subseteq \mathbb{P}^{55}$ parametrize cubic fourfolds with singularities corresponding to $\mathbf{G}$. By Theorem 9.3.1, all these points are stable with respect to the action of $\operatorname{SL}(6)$ on $\mathbb{P}^{55}$. Hence, we have a well-defined GIT quotient $\mathcal{U}^{\mathbf{G}} / / \mathrm{SL}(6)$ which is a quasi-projective variety, see [Muk03, Corollary 5.15, Example 4.42].

Lemma 9.3.3. Let $\tau:=\sum_{p \in \mathbf{G}} \tau(p)$ be the sum of the Tjurina numbers of all singularities in $\mathbf{G}$. Assume that we have $\tau<16$. Then, $\mathcal{M}^{\mathbf{G}}$ has dimension $20-\tau$.

Proof. Let $X_{0} \subseteq \mathbb{P}^{5}$ be a cubic fourfold having only the singularities $p_{X_{0}, 1}, \ldots, p_{X_{0}, n}$ with $A D E$ types $\mathbf{T}_{1}, \ldots, \mathbf{T}_{n}$, respectively, such that $\mathbf{G}=\mathbf{T}_{1}+\ldots+\mathbf{T}_{n}$. Let $U\left(\left[X_{0}\right]\right) \subseteq \mathbb{P}^{55}$ be an arbitrarily small open neighborhood of $\left[X_{0}\right]$. Let

$$
\mathcal{Y}:=\left\{([X], x) \subseteq \mathbb{P}^{55} \times \mathbb{P}^{5} ; X \text { cubic fourfold, } x \in X\right\}
$$

be the universal cubic fourfold. For $i=1, \ldots, n$, we now construct a deformation of the germ $\left(X_{0}, p_{X_{0}, i}\right)$. Indeed, for an arbitrarily small neighborhood $V\left(p_{X_{0}, i}\right) \subseteq \mathbb{P}^{5}$ of the singularity $p_{X_{0}, i}$ of $X_{0}$, let

$$
\mathcal{Y}_{U\left(\left[X_{0}\right]\right), i}:=\mathcal{Y}_{\mid U\left(\left[X_{0}\right]\right) \times V\left(p_{X_{0}, i}\right)}
$$

be the restriction of $\mathcal{Y}$ to $U\left(\left[X_{0}\right]\right) \times V\left(p_{X_{0}, i}\right)$. Then,

$$
\begin{equation*}
d_{i}: \mathcal{Y}_{U\left(\left[X_{0}\right]\right), i} \rightarrow U\left(\left[X_{0}\right]\right),([X], x) \mapsto[X] \tag{9.6}
\end{equation*}
$$

is a deformation of the germ $\left(X_{0}, p_{X_{0}, i}\right)$ over the base point $\left[X_{0}\right] \in U\left(\left[X_{0}\right]\right)$. On the other hand, by [GLS07, Chap. II, Corollary 1.17], we have a semi-universal deformation

$$
u_{\mathbf{T}_{i}}: \mathcal{X}_{\mathbf{T}_{i}} \rightarrow \mathbb{C}^{\tau\left(\mathbf{T}_{i}\right)}
$$

of the germ $\left(X_{0}, p_{X_{0}, i}\right)$ over the base point $(0, \ldots, 0) \in \mathbb{C}^{\mu\left(\mathbf{T}_{i}\right)}$. Consequently, there exists a morphism

$$
\kappa_{i}: U\left(\left[X_{0}\right]\right) \rightarrow \mathbb{C}^{\tau\left(\mathbf{T}_{i}\right)}
$$

such that we have a pull-back diagram

for some morphism $s_{i}$. We obtain a commutative diagram

$$
\begin{aligned}
& \prod_{i=1}^{n} \mathcal{Y}_{U\left(\left[X_{0}\right]\right), i} \xrightarrow[i=1]{n} s_{i} \\
& \prod_{i=1}^{n} \mathcal{X}_{\mathbf{T}_{i}} \\
& \quad \prod_{i=1}^{n} d_{i} \prod_{i=1}^{n} u_{\mathbf{T}_{i}} \\
& \prod_{i=1}^{n} U\left(\left[X_{0}\right]\right) \xrightarrow{\prod_{i=1}^{n} \kappa_{i}} \prod_{i=1}^{n} \stackrel{\mathbb{C}^{\tau\left(\mathbf{T}_{i}\right)} .}{ } .
\end{aligned}
$$

For

$$
j: \quad U\left(\left[X_{0}\right]\right) \rightarrow \prod_{i=1}^{n} U\left(\left[X_{0}\right]\right), \quad([X], x) \mapsto \prod_{i=1}^{n}([X], x)
$$

let

$$
\kappa:=\left(\prod_{i=1}^{n} \kappa_{i}\right) \circ j: \quad U\left(\left[X_{0}\right]\right) \rightarrow \prod_{i=1}^{n} \mathbb{C}^{\tau\left(\mathbf{T}_{i}\right)}
$$

We recall
Theorem 9.3.4 ([dPW00, Theorem 1.1]). Let $X$ be a hypersurface of degree $d$ in $\mathbb{P}^{n}$ with only isolated singularities. Let $\tau(X)$ be the global Tjurina number of the singularities of $X$. For $d=3,4$ or $d \geq 5$ set $\delta=16,18$ or $\delta=4(d-1)$, respectively. If $\tau(X)<\delta$, the family of degree d hypersurfaces induces a simultaneous versal deformation of all singularities on $X$.

By Theorem 9.3.4, it follows that the morphism $\kappa$ is a submersion, cf. [CGHL15, 3.4]. Hence, we have

$$
\operatorname{dim} \kappa^{-1}(0)=\operatorname{dim} U\left(\left[X_{0}\right]\right)-\operatorname{dim}\left(\prod_{i=1}^{n} \mathbb{C}^{\tau\left(\mathbf{T}_{i}\right)}\right)=55-\tau
$$

Since fibres of the map $\prod_{i}^{n} u_{\mathbf{T}_{i}}$ over all points different from the central fibre $(0, \ldots, 0) \in$ $\prod_{i=1}^{n} \mathbb{C}^{\tau\left(\mathbf{T}_{i}\right)}$ are singularities milder than $\mathbf{T}_{1}, \ldots, \mathbf{T}_{n}$ and since the diagram commutes, the locus of all points in $U\left(\left[X_{0}\right]\right)$ having only singularities of type $\mathbf{G}$ is $\kappa^{-1}(0)$. Since $U\left(\left[X_{0}\right]\right)$ is an open subset in $\mathbb{P}^{55}$, this gives that the locus $\mathcal{U}^{\mathbf{G}}$ of all cubic fourfolds with $A D E$ singularities of type $\mathbf{G}$ has dimension $55-\tau$. Therefore, the quotient $\mathcal{M}^{\mathbf{G}}=\mathcal{U}^{\mathbf{G}} / / \mathrm{SL}(6)$ has dimension $\operatorname{dim} \mathcal{M}^{\mathbf{G}}=55-\tau-(36-1)=20-\tau$.

### 9.4 Main Theorem 3

In this section, we want to show that the moduli space of cubic fourfolds with a certain combination of $A D E$ singularities constructed in Subsection 9.3 is isomorphic to the moduli space of certain quasi-polarized K3 surfaces constructed in Subsection 9.2.4. We keep the notation made in those subsections.

Let $\mathbf{T} \in\left\{\mathbf{A}_{n \geq 1}, \mathbf{D}_{j \geq 4}, \mathbf{E}_{8 \geq k \geq 6}\right\}$ be an $A D E$ singularity type. For a tuple of non-negative integers

$$
\left(\left(a_{1}, \ldots, a_{n}\right),\left(d_{4}, \ldots, d_{m}\right),\left(e_{6}, e_{7}, e_{8}\right)\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{n} \times\left(\mathbb{Z}_{\geq 0}\right)^{m-4} \times \mathbb{Z}^{3}
$$

let

$$
\mathbf{G}:=\sum_{i=1}^{n} a_{i} \mathbf{A}_{i}+\sum_{j=4}^{m} d_{j} \mathbf{D}_{j}+\sum_{k=6}^{8} e_{k} \mathbf{E}_{k}
$$

be a formal finite sum of $A D E$ singularity types, and let

$$
\Gamma_{\mathbf{G}}:=\sum_{i=1}^{n} a_{i} \mathcal{A}_{i}+\sum_{j=4}^{m} d_{j} \mathcal{D}_{j}+\sum_{k=6}^{8} e_{k} \mathcal{E}_{k}
$$

be a finite Dynkin graph such that condition (9.1) holds for the lattice $\Lambda_{\sigma(\mathbf{T}), \mathbf{G}}$.
Let $\mathcal{U}^{\mathbf{T}+\mathbf{G}}$ be the locally closed subspace of all cubic fourfolds in $\mathbb{P}\left(H^{0}\left(\mathbb{P}^{5}, \mathcal{O}_{\mathbb{P}^{5}}(3)\right)\right)$ with isolated $A D E$ singularities of type $\mathbf{G}$ and a singularity of type $\mathbf{T}$ and

$$
\mathcal{M}^{\mathbf{T}+\mathbf{G}}:=\mathcal{U}^{\mathbf{T}+\mathbf{G}} / / \mathrm{SL}(6)
$$

the coarse moduli space in the sense of GIT of all cubic fourfolds with singularities corresponding to $\mathbf{T}+\mathbf{G}$ constructed in Subsection 9.3.

Let $\mathcal{F}_{\text {Sat }_{L_{K} 3}(i)}^{\circ}$ be the moduli space constructed in Subsection 9.2 .4 of all quasi-polarized K3 surfaces $\left(\widetilde{S}, L_{\mathbf{T}}\right)$ with the property that $\varphi_{L_{\mathbf{T}}}: \widetilde{S} \rightarrow \mathbb{P}^{4}$ is birational onto its image and $\varphi_{L_{\mathbf{T}}}(\widetilde{S})$ is contained in a quadric $Q \subseteq \mathbb{P}^{4}$ of $\operatorname{corank}(Q)=$ corank $_{\mathbf{T}}$ such that firstly the singularities of $\varphi_{L_{\mathbf{T}}}(\widetilde{S})$ lying on the singular locus of $Q$ are of type $\sigma(\mathbf{T})$ and secondly those singularities of $\varphi_{L_{\mathbf{T}}}(\widetilde{S})$ not lying on the singular locus of $Q$ correspond to $\mathbf{G}$.
It is our goal in this subsection to prove the following Main Theorem 3.
Main Theorem 3. We have an isomorphism of quasi-projective varieties

$$
\phi: \mathcal{M}^{\mathbf{T}+\mathbf{G}} \rightarrow \mathcal{F}_{\mathrm{Sat}_{L_{K 3}}(i)}^{\circ}, \quad[X] \mapsto\left[\left(\widetilde{S_{p_{X}}}, \pi^{*} \mathcal{O}_{S_{p_{X}}}(1)\right)\right],
$$

where $p_{X}$ is a singularity of $A D E$ type $\mathbf{T}$ on a cubic fourfold $X, S_{p_{X}}$ is the image of the union of all lines in $X$ through $p_{X}$ under the projection of $\mathbb{P}^{5}$ through $p_{X}$ onto $\mathbb{P}^{4}$ as defined in Section 5.1, and $\pi: \widetilde{S_{p_{X}}} \rightarrow S_{p_{X}}$ is the minimal resolution of all singularities on $S_{p_{X}}$.

We want to show that in the situation of Main Theorem 3, the minimal model $\widetilde{S_{p}}$ for the surface $S_{p}$ is up to isomorphism independent of the choice of a singularity $p$ of type $\mathbf{T}$ on the cubic fourfold $X$. Before we can prove this, we need one technical preparatory result:

Lemma 9.4.1. Let $X \subseteq \mathbb{P}^{5}$ be a cubic fourfold with only isolated $A D E$ singularities and $l_{0} \subseteq X$ a line through an $A D E$ singularity $p$ of $X$. Let $\overline{l l_{0}}$ be the plane in $\mathbb{P}^{5}$ spanned by $l_{0}$ and a general line $l$ in $X$ through $p$. Then, $\overline{l l_{0}}$ is not contained in $X$.

Proof. Assume conversely that for a general line $l$ in $X$ through $p$ the plane $\overline{l l_{0}}$ is contained in $X$. As in Section 5.1, let $\pi_{p}: \mathbb{P}^{5} \rightarrow H \cong \mathbb{P}^{4}$ be the projection of $\mathbb{P}^{5}$ through $p$ onto a hyperplane $H \subseteq \mathbb{P}^{5}$ with $p \notin H$, let $F_{p}$ be the union of all lines in $X$ through $p$, and let $S_{p}:=\pi_{p}\left(F_{p}\right) \subseteq \mathbb{P}^{4}$. By Corollary 5.2.3, $S_{p}$ has only isolated $A D E$ singularities and the minimal model $\widetilde{S_{p}}$ of $S_{p}$ is by Lemmas 5.1.2 and 4.2.2 a K3 surface. Since the plane $\overline{l_{0}}$ is by assumption contained in $X$, it follows that $F_{p}$ contains all lines in the plane $\overline{l_{0}}$ through $p$ and $S_{p}$ contains the line $H \cap \overline{l_{0}}$. Since $l$ is general, we have a continuous family of distinct planes in $X$ through $p$ and hence also a continuous family of distinct lines in $S_{p}$. This implies that $S_{p}$ is uniruled. Since $\widetilde{S_{p}}$ is birational to $S_{p}$, this gives that $\widetilde{S_{p}}$ is uniruled, as well, in contradiction to $\widetilde{S_{p}}$ being a K3 surface. Hence, the assumption must have been wrong and for a general line $l$ in $X$ through $p$ the plane $\overline{l_{0}}$ is not contained in $X$.

Proposition 9.4.2. Let $X$ be a cubic fourfold with only isolated $A D E$ singularities and two singularities $p_{1}$ and $p_{2}$ both of the same $A D E$ type. For $i=1,2$, let $S_{p_{i}}$ be the image of the union $F_{p_{i}}$ of all lines in $X$ through $p_{i}$ under the projection $\pi_{p_{i}}$ from $\mathbb{P}^{5}$ through $p_{i}$ onto $\mathbb{P}^{4}$ as defined in Section 5.1. Then, $S_{p_{1}}$ and $S_{p_{2}}$ are birational.

Proof. Let $l_{1}$ be a general line in $X$ passing through $p_{1}$. Let $l_{0}$ be the line containing both $p_{1}$ and $p_{2}$. Since $p_{1}$ and $p_{2}$ are double points, $l_{0}$ intersects $p_{1}$ and $p_{2}$ with multiplicity 2 , hence $l_{0}$ intersects $X$ with multiplicity 4 . However, since $X$ has degree 3 , this means that $l_{0}$ must be contained in $X$. Let $\overline{l_{0} l_{1}}$ be the plane spanned by $l_{0}$ and $l_{1}$. By Lemma 9.4.1, the plane $\overline{l_{0} l_{1}}$ is not contained in $X$. Hence, $C=X \cap \overline{l_{0} l_{1}}$ is a plane cubic curve. Since $C$ contains the line $l_{1}$, the cubic curve is reducible. Since $C$ contains even a second line, namely $l_{0}$, it must be the union of three lines $l_{0}, l_{1}$, and $l_{2}$. Since $C$ is singular at $p_{2}$, the line $l_{2}$ must pass through $p_{2}$. Consequently, $C$ is the union of the lines $l_{0}, l_{1}$, and $l_{2}$ such that $l_{0}$ and $l_{1}$ intersect in the singularity $p_{1}$ and $l_{0}$ and $l_{2}$ intersect in the singularity $p_{2}$. Hence, $l_{2}$ is contained in $F_{p_{2}}$. For $i=1,2$, now denote by $\mathbf{F}_{p_{i}}$ the Fano scheme of all lines in $X$ through $p_{i}$ and by $[l]$ the point in $\mathbf{F}_{p_{i}}$ corresponding to a line $l$ in $F_{p_{i}}$. We now define a rational map

$$
\psi: \mathbf{F}_{p_{1}} \rightarrow \mathbf{F}_{p_{2}}
$$

with $\psi\left(\left[l_{1}\right]\right)=\left[l_{2}\right]$. Exchanging $p_{1}$ by $p_{2}$ in the arguments above, we can define the rational $\operatorname{map} \varphi: \mathbf{F}_{p_{2}} \rightarrow \mathbf{F}_{p_{1}}$ with $\varphi\left(\left[l_{2}\right]\right)=\left[l_{1}\right]$ which is inverse to $\psi$. Hence, $\psi$ is birational. Since $\mathbf{F}_{p_{1}}$ and $\mathbf{F}_{p_{2}}$ are birational to $S_{p_{1}}$ and $S_{p_{2}}$ via the projections $\pi_{p_{1}}$ and $\pi_{p_{2}}$, respectively, $S_{p_{1}}$ and $S_{p_{2}}$ are consequently birational, as well.

Now we are in the position to prove Main Theorem 3:

Proof of Main Theorem 3. We show firstly that $\phi$ is well-defined:
Let $[X] \in \mathcal{M}^{\mathbf{T}+\mathbf{G}}$ be the class of a cubic fourfold $X \subseteq \mathbb{P}^{5}$ with an $A D E$ singularity $p_{X}$ of type $\mathbf{T}$ and such that all other singularities of $X$ correspond to $\mathbf{G}$.

Let $\left(x_{0}: \ldots: x_{5}\right)$ be homogeneous coordinates on $\mathbb{P}^{5}$.
After a linear change of coordinates, we can assume that $p_{X}=(1: 0: 0: 0: 0: 0) \in \mathbb{P}^{5}$ and then by Lemma 5.1.1

$$
X: x_{0} f_{2}\left(x_{1}, \ldots, x_{5}\right)+f_{3}\left(x_{1}, \ldots, x_{5}\right)=0
$$

where $f_{2}$ and $f_{3}$ are homogeneous polynomials of degree 2 and 3 in $\mathbb{C}\left[x_{0}, \ldots, x_{5}\right]$, respectively. By Lemma 5.1.2, the projection $S_{p_{X}}$ of the union of all lines in $X$ through $p_{X}$ onto $\mathbb{P}^{4}$ is a complete $(2,3)$-intersection in $\mathbb{P}^{4}$ given by

$$
S_{p_{X}}: f_{2}\left(x_{1}, \ldots, x_{5}\right)=f_{3}\left(x_{1}, \ldots, x_{5}\right)=0 \subseteq \mathbb{P}^{4}
$$

and $S_{p_{X}}$ is uniquely determined by $p_{X}$ by Lemma 5.1.3.
Let $\pi_{p_{X}}: \mathrm{Bl}_{p_{X}} X \rightarrow X$ the blowing-up of $X$ in $p_{X}$ with exceptional divisor $E \subseteq \mathrm{Bl}_{p_{X}} X$. By Corollary 5.2.3, the singularities of $\mathrm{Bl}_{p_{X}} X$ and $S_{p_{X}}$ are in one-to-one correspondence including the singularity types. More intrinsically, the singularities of $\mathrm{Bl}_{p_{X}} X$ on $E$ correspond to the singularities of the quadric $Q: f_{2}\left(x_{1}, \ldots, x_{5}\right)=0 \subseteq \mathbb{P}^{4}$ and are of type $\sigma(\mathbf{T})$ with $\sigma(\mathbf{T})$ as in Table 6.1 and the singularities on $\mathrm{Bl}_{p_{X}} X \backslash E$ correspond to the singularities of $S_{p_{X}}$ not lying on the singular locus of $Q$ and are of type $\mathbf{G}$.

Let

$$
\pi: \widetilde{S_{p_{X}}} \rightarrow S_{p_{X}}
$$

be the minimal resolution of all singularities on $S_{p_{X}}$. By Lemma 4.2.2, $\widetilde{S_{p}}$ is a K3 surface and the pull-back $L:=\pi^{*} \mathcal{O}_{S_{p_{X}}}(1)$ by $\pi$ of the hyperplane bundle on $S_{p_{X}}$ to $\widetilde{S_{p_{X}}}$ has degree
6. Further, the morphism $\varphi_{L}$ induced by the linear system $|L|$ is given by $\pi$, so $\varphi_{L}$ is in particular birational. We have $\varphi_{L}\left(\widetilde{S_{p_{X}}}\right)=\pi\left(\widetilde{S_{p_{X}}}\right)=S_{p_{X}}$. Consequently, the isomorphism class $\left[\left(\widetilde{S_{p_{X}}}, L\right)\right]$ of the quasi-polarized K3 surface $\left(\widetilde{S_{p_{X}}}, L\right)$ is parametrized by a point in $\mathcal{F}_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$.
Assume then that $X$ has two singularities $p_{X}$ and $p_{X}^{\prime}$ both of type $\mathbf{T}$. Then, $S_{p_{X}}$ and $S_{p_{X^{\prime}}}$ are birational by Proposition 9.4.2. Hence, $\widetilde{S_{p_{X}}}$ and $\widetilde{S_{p_{X}^{\prime}}}$ are isomorphic. Consequently, $\left(\widetilde{S_{p_{X}}}, \pi^{*} \mathcal{O}_{S_{p_{X}}}(1)\right)$ and $\left(\widetilde{S_{p_{X}^{\prime}}}, \pi^{*} \mathcal{O}_{S_{p_{X}^{\prime}}}(1)\right)$ are isomorphic.
In conclusion, $\phi$ is well defined.
We define an inverse map to $\phi$ :
Let ( $\widetilde{S}, L$ ) be a quasi-polarized K3 surface of degree 6 such that $\varphi_{L}: \widetilde{S} \rightarrow \mathbb{P}^{4}$ is birational onto its image. By Proposition 3.3.4, $S:=\varphi_{L}(\widetilde{S})$ is a complete (2,3)-intersection of a quadric $Q$ and a cubic $Y$ in $\mathbb{P}^{4}$. By Lemma 4.2.1, the quadric $Q$ is uniquely determined up to isomorphism and the cubic $Y$ is uniquely determined up to isomorphism and modulo those cubics containing the quadric. Assume that we have homogeneous coordinates $x_{1}, \ldots, x_{5}$ on $\mathbb{P}^{4}$ such that up to isomorphism

$$
Q: f_{2}\left(x_{1}, \ldots, x_{5}\right)=0 \text { and } Y: f_{3}\left(x_{1}, \ldots, x_{5}\right)+\lambda l\left(x_{1}, \ldots, x_{5}\right) f_{2}\left(x_{1}, \ldots, x_{5}\right)=0 \subseteq \mathbb{P}^{4}
$$

where $\lambda \in \mathbb{C}$ and $l\left(x_{1}, \ldots, x_{5}\right)$ is a linear polynomial. Then,

$$
X: x_{0} f_{2}\left(x_{1}, \ldots, x_{5}\right)+\left(f_{3}\left(x_{1}, \ldots, x_{5}\right)+\lambda l\left(x_{1}, \ldots, x_{5}\right) f_{2}\left(x_{1}, \ldots, x_{5}\right)\right)=0 \subseteq \mathbb{P}^{5}
$$

defines a cubic fourfold on $X$. Therefore, $X$ is isomorphic to

$$
x_{0} f_{2}\left(x_{1}, \ldots, x_{5}\right)+f_{3}\left(x_{1}, \ldots, x_{5}\right)=0 \subseteq \mathbb{P}^{5}
$$

with respect to the linear coordinate transformation $x_{0} \mapsto x_{0}-\lambda l\left(x_{1}, \ldots, x_{5}\right)$. Hence, we see that the isomorphism class $[X]$ of $X$ does not depend on the choice of the cubic $Y$ in which $S$ is contained. Write $S=S\left(f_{2}, f_{3}\right)$ and $\left[X\left(f_{2}, f_{3}\right)\right]$ for the isomorphism class of $X$.
By assumption, the singularities of $S$ lying on $Q$ are of type $\sigma(\mathbf{T})$ and all other singularities of $S$ correspond to G. By Proposition 5.2.2, the singularity $(1: 0: 0: 0: 0: 0) \in \mathbb{P}^{5}$ of $X$ is of type $\mathbf{T}$ and all other singularities of $X$ correspond to $\mathbf{G}$. Define then

$$
\left.\psi: \mathcal{F}_{\mathrm{Sat}_{L_{K 3}}(i)}^{\circ} \rightarrow \mathcal{M}^{\mathbf{T}+\mathbf{G}},\left[\left(\widetilde{S\left(f_{2}, f_{3}\right.}\right), L\right)\right] \mapsto\left[X\left(f_{2}, f_{3}\right)\right] .
$$

We check that $\phi$ and $\psi$ are inverse to each other:
Indeed, let $\phi([X])=\left(\widetilde{S_{p_{X}}}, \pi^{*} \mathcal{O}_{S_{p_{X}}}(1)\right) \in \mathcal{F}_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$ and write $L:=\pi^{*} \mathcal{O}_{S_{p_{X}}}(1)$, where $[X] \in \mathcal{M}^{\mathbf{T}+\mathbf{G}}$ is the isomorphism class of the cubic fourfold $X: x_{0} f_{2}\left(x_{1}, \ldots, x_{5}\right)+$ $f_{3}\left(x_{1}, \ldots, x_{5}\right)=0$. The surface $S_{p_{X}}:=\varphi_{L}\left(\widetilde{S_{p_{X}}}\right)$ is then a complete $(2,3)$-intersection in $\mathbb{P}^{4}$. By Lemma 4.2.1, $S_{p_{X}}$ lies on a unique quadric $Q$ and a cubic $Y$ uniquely determined modulo those cubics containing the quadric $Q$. Hence, $Q: f_{2}\left(x_{1}, \ldots, x_{5}\right)=0 \subseteq \mathbb{P}^{4}$ and $Y: f_{3}\left(x_{1}, \ldots, x_{5}\right)+\lambda l\left(x_{1}, \ldots, x_{5}\right) f_{2}\left(x_{1}, \ldots, x_{5}\right)=0 \subseteq \mathbb{P}^{4}$, where $\lambda \in \mathbb{C}$ and $l\left(x_{1}, \ldots, x_{5}\right)$ is a linear polynomial. Then, $\psi\left(\left(\widetilde{S_{p_{X}}}, L\right)\right)$ is the class of the cubic fourfold $\left(1+\lambda l\left(x_{1}, \ldots, x_{5}\right)\right) f_{2}\left(x_{1}, \ldots, x_{5}\right)+f_{3}\left(x_{1}, \ldots, x_{5}\right)=0 \subseteq \mathbb{P}^{5}$ which is simply the isomorphism class $[X]$ of the cubic fourfold $X$ and hence $\psi \circ \phi=\operatorname{id}_{\mathcal{M}^{\mathbf{T}+\mathbf{G}}}$.

On the other hand, let $(\widetilde{S}, L)$ be a quasi-polarized K3 surface of degree 6 such that $\varphi_{L}: \widetilde{S} \rightarrow$ $\mathbb{P}^{4}$ is birational onto its image such that $S:=\varphi_{L}(\widetilde{S})$ is the complete (2,3)-intersection of the quadric $Q: f_{2}\left(x_{1}, \ldots, x_{5}\right)$ and the cubic $Y: f_{3}\left(x_{1}, \ldots, x_{5}\right)+\lambda l\left(x_{1}, \ldots, x_{5}\right) f_{2}\left(x_{1}, \ldots, x_{5}\right)=$ 0 in $\mathbb{P}^{4}$, where $\lambda \in \mathbb{C}$ and $l\left(x_{1}, \ldots, x_{5}\right)$ is a linear polynomial. We have $\psi((\widetilde{S}, L))=[X]$, where $X: x_{0} f_{2}\left(x_{1}, \ldots, x_{5}\right)+f_{3}\left(x_{1}, \ldots, x_{5}\right)=0 \subseteq \mathbb{P}^{5}$. Then, $\phi([X])$ is the complete $(2,3)$-intersection $S: f_{2}\left(x_{1}, \ldots, x_{5}\right)=f_{3}\left(x_{1}, \ldots, x_{5}\right)=0$. The minimal resolution of all singularities on $S$ is then simply $\widetilde{S}$. Further, $L=\pi^{*}\left(\mathcal{O}_{S}(1)\right)$ so $\phi([X])=(\widetilde{S}, L)$. Hence, $\phi \circ \psi=\mathrm{id}_{\mathcal{F}_{\text {Sat }_{L_{K}}(i)}^{\circ}}$.
Finally, the map $\phi$ is holomorphic since the period map is holomorphic. By Borel's Theorem [Bor72, Theorem 3.10], the defined map is then a morphism of quasi-projective varieties.

We show that $\phi$ is in fact an isomorphism:
Since the morphism $\phi$ is surjective, it induces an inclusion of the functions fields

$$
\phi^{*}: K\left(\mathcal{F}_{\mathrm{Sat}_{L_{K 3}}(i)}^{\circ}\right) \hookrightarrow K\left(\mathcal{M}^{\mathbf{T}+\mathbf{G}}\right) .
$$

Further, since $\phi$ is bijective, all fibers $\phi^{-1}(y)$ with $y \in \mathcal{F}_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$ of $\phi$ have cardinality one. By [Har92, Proposition 7.16], the degree $\left[K\left(\mathcal{M}^{\mathbf{T}+\mathbf{G}}\right): K\left(\mathcal{F}_{\text {Sat }_{L_{K 3}}(i)}^{\circ}\right)\right]$ of the field extension equals then one. Hence, $\phi$ is birational. We note that the quasi-projective variety $\mathcal{F}_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$ is normal by [Huy16, Chap. 6, Theorem 1.13]. By Zariski's Main Theorem in its original form [Mum99, Chap. III.9, p. 209], the morphism $\phi$ is then an open immersion. Since $\phi$ is surjective, it is hence even an isomorphism.

Corollary 9.4.3. The isomorphism $\phi$ in Main Theorem 3 maps the connected components of the moduli spaces $\mathcal{F}_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$ and $\mathcal{M}^{\mathbf{T}+\mathbf{G}}$ onto each other. In particular, the moduli space $\mathcal{M}^{\mathbf{T}+\mathbf{G}}$ has at most two connected components.

Proof. The isomorphism $\phi$ is in particular a homeomorphism. Hence, $\phi$ defines a bijection between the connected components of $\mathcal{F}_{\text {Sat }_{L_{K 3}}(i)}^{\circ}$ and $\mathcal{M}^{\mathbf{T}+\mathbf{G}}$. The period domain $\Omega\left(\operatorname{Sat}_{L_{K 3}}(i)\right)$ has two connected components $D_{\operatorname{Sat}_{L_{K 3}}(i)}$ and $D_{\text {Sat }_{L_{K 3}}(i)}^{\prime}$. Hence, $\mathcal{F}_{\operatorname{Sat}_{L_{K 3}}(i)}^{\mathrm{bn}}:=\Omega\left(\operatorname{Sat}_{L_{K 3}}(i)\right) / O_{\operatorname{Sat}_{L_{K 3}}(i)}$ has one connected component if and only if $O_{\operatorname{Sat}_{L_{K 3}}(i)}$ interchanges $D_{\text {Sat }_{L_{K 3}}(i)}$ and $D_{\text {Sat }_{L_{K 3}}(i)}^{\prime}$ and two connected components otherwise. The first happens if and only if the group $O_{\text {Sat }_{L_{K 3}}(i)}$ contains an element with real spinor norm -1 (see [GHS09, Sec. 1]). As $\mathcal{F}_{\mathrm{Sat}_{L_{K 3}}(i)}^{\circ}$ is a subvariety of $\mathcal{F}_{\mathrm{Sat}_{L_{K 3}}(i)}^{\mathrm{bn}}$, it has then also at most two connected components. Therefore, also $\mathcal{M}^{\mathbf{T}+\mathbf{G}}$ has at most two connected components.

Remark 9.4.4. If the lattice $\left(\operatorname{Sat}_{L_{K 3}}(i)\right)_{L_{K 3}}^{\perp}$ contains an $m$-admissible element with $m \leq$ 2, the quasi-projective variety $\mathcal{F}_{\mathrm{Sat}_{L_{K 3}}(i)}^{\mathrm{bn}}$ is irreducible by [Dol96, Proposition 5.6] and $\mathcal{F}_{\mathrm{Sat}_{L_{K 3}}(i)}^{\circ}$ is irreducible as an open subvariety of $\mathcal{F}_{\mathrm{Sat}_{L_{K 3}}(i)}^{\mathrm{bn}}$. Since $\mathcal{F}_{\mathrm{Sat}_{L_{K 3}}(i)}^{\circ}$ and $\mathcal{M}^{\mathbf{T}+\mathbf{G}}$ are isomorphic by Main Theorem 3, in this situation it follows that $\mathcal{M}^{\mathbf{T}+\mathbf{G}}$ is irreducible.

## A Intersection theory on surfaces

In this appendix, we will recall basic properties of the intersection pairing on surfaces and compute certain intersection numbers on those.

Lemma A.0.1. Let $i^{\prime}: S \hookrightarrow \mathbb{P}^{4}$ and $j^{\prime}: H \hookrightarrow \mathbb{P}^{4}$ be embeddings of two-dimensional smooth connected subvarieties $S$ and $H$ in $\mathbb{P}^{4}$. Let $k: E \hookrightarrow \mathbb{P}^{4}$ be an embedding of $a$ three-dimensional variety into $\mathbb{P}^{4}$. Let $i: C \hookrightarrow S$ and $j: C \hookrightarrow H$ be embeddings of the curve $C$ in $S$ and $H$, respectively. Assume that the following diagram commutes:


Then, we have

$$
j_{*} C \cdot j^{\prime *} k_{*} E=i_{*} C \cdot i^{\prime *} k_{*} E .
$$

Proof. We have $j_{*} C, j^{\prime *} k_{*} E \in A^{1}(H)$ so $j_{*} C \cdot j^{\prime *} k_{*} E \in A^{2}(H) \cong \mathbb{Z}$. On the other hand, $i_{*} C, i^{\prime *} k_{*} E \in A^{1}(S)$ so $i_{*} C . i^{\prime *} k_{*} E \in A^{2}(S) \cong \mathbb{Z}$. The projection formula gives

$$
j_{*} C \cdot j^{\prime *} k_{*} E=j_{*}\left(C \cdot j^{*} j^{\prime *} k_{*} E\right) \text { and } i_{*} C \cdot i^{\prime *} k_{*} E=i_{*}\left(C . i^{*} i^{\prime *} k_{*} E\right) .
$$

Since $C, j^{*} j^{\prime *} k_{*} E$, and $j^{*} j^{\prime *} k_{*} E$ are curves, $C .\left(j^{*} j^{\prime *} k_{*} E\right)$ and $C . i^{*} i^{\prime *} k_{*} E$ are integers. Hence, $j_{*}\left(C . j^{*} j^{\prime *} k_{*} E\right)=C . j^{*} j^{\prime *} k_{*} E$ and $i_{*}\left(C . i^{*} i^{\prime *} k_{*} E\right)=C . i^{*} i^{\prime *} k_{*} E$. Further, by the commutativity of the diagram, we have $j^{*} j^{\prime *}=i^{*} i^{\prime *}$. Hence, $j_{*} C . j^{\prime *} k_{*} E=i_{*} C . i^{\prime *} k_{*} E$.

Lemma A.0.2 ([Ful98, Chap. 8.2]). Let $X$ be quasi-projective variety and $D_{1}$ and $D_{2}$ closed subvarieties in $X$. Assume that $X^{\circ}$ is a smooth open subvariety of $X$ such that $D_{1} \cap D_{2} \subseteq X^{\circ}$. Then,

$$
D_{1} \cdot D_{2}=D_{1 \mid X^{\circ}} \cdot D_{2 \mid X^{\circ}} .
$$

Lemma A.0.3. Let $H$ be a smooth projective surface and $C, l \in \operatorname{Div}(H)$. Let $p \in C \cap l$ be a smooth point of both $C$ and $l$. Let

1. $H^{(1)}=B l_{p} H \xrightarrow{\pi_{p}} H$ be the blowing-up of $H$ in $p$ with exceptional divisor $E^{(1)}=$ $\pi_{p}^{-1}(p)$ and let $C^{(1)}$ and $l^{(1)}$ be the strict transforms of $C$ and $l$ in $H^{(1)}$, respectively. Let $p_{1}$ be the intersection point of $E^{(1)}$ with $C^{(1)}$.
2. $H^{(2)}=B l_{p_{1}} H^{(1)} \xrightarrow{\pi_{p_{1}}} H^{(1)}$ be the blowing-up of $H^{(1)}$ in $p_{1}$ with exceptional divisor $E^{(2)}=\pi_{p_{1}}^{-1}\left(p_{1}\right)$ and let $C^{(2)}$ and $E^{(1,2)}$ be the strict transforms of $C$ and $E^{(1)}$ in $H^{(2)}$, respectively. Let $p_{2}$ be the intersection point of $E^{(2)}$ with $C^{(2)}$.
3. $H^{(3)}=B l_{p_{2}} H^{(2)} \xrightarrow{\pi_{p_{2}}} H^{(2)}$ be the blowing-up of $H^{(2)}$ in $p_{2}$ with exceptional divisor $E^{(3)}=\pi_{p_{2}}^{-1}\left(p_{2}\right)$ and let $C^{(3)}, E^{(1,3)}$, and $E^{(2,3)}$ be the strict transforms of $C, E^{(1)}$ and $E^{(2)}$ in $H^{(3)}$, respectively. Let $p_{3}$ be the intersection point of $E^{(3)}$ with $C^{(3)}$.

We have the following intersection numbers, see Figure A.1:

$$
\begin{aligned}
& \text { On } H^{(1)}: \quad C^{(1)} \cdot E^{(1)}=1, \quad C^{(1)} \cdot l^{(1)}=C . l-1, \\
& \text { On } H^{(2)}: \quad C^{(2)} \cdot E^{(2)}=1, \quad C^{(2)} \cdot E^{(1,2)}=0, \\
& E^{(1,2)} \cdot E^{(3)}=1, \\
& \text { On } H^{(3)} \text { : } \\
& C^{(3)} \cdot E^{(3)}=1, \quad C^{(3)} \cdot E^{(2,3)}=0, \quad C^{(3)} \cdot E^{(1,3)}=0, \\
& E^{(1,3)} \cdot E^{(3)}=0, \quad E^{(1,3)} \cdot E^{(2,3)}=1, \quad \quad E^{(2,3)} \cdot E^{(3)}=1 .
\end{aligned}
$$



Figure A.1: Iterated blowing-ups of the surface $H$.

Proof. 1. On $H^{(1)}$, we have by [Har77, Chap. V, Proposition 3.1, 3.2, 3.6]:
(a) $\left(E^{(1)}\right)^{2}=-1$
(b) $\left(\pi_{p}^{*} C\right) \cdot E^{(1)}=\left(\pi_{p}^{*} l\right) \cdot E^{(1)}=0$
(c) $\left(\pi_{p}^{*} C\right) \cdot\left(\pi_{p}^{*} l\right)=C . l$
(d) $C^{(1)}=\pi_{p}^{*} C-E^{(1)}, l^{(1)}=\pi_{p}^{*} l-E^{(1)}$.

Hence,

$$
C^{(1)} \cdot E^{(1)}=\left(\pi_{p}^{*} C-E^{(1)}\right) \cdot E^{(1)}=1 \text { and } C^{(1)} \cdot l^{(1)}=C \cdot l-1 .
$$

2. On $H^{(2)}$, we have by [Har77, Chap. V, Proposition 3.1, 3.2, 3.6]:
(a) $\left(E^{(2)}\right)^{2}=-1$
(b) $\left(\pi_{p_{1}}^{*} C^{(1)}\right) \cdot E^{(2)}=\left(\pi_{p_{1}}^{*} E^{(1)}\right) \cdot E^{(2)}=0$
(c) $\left(\pi_{p_{1}}^{*} E^{(1)}\right) \cdot\left(\pi_{p_{1}}^{*} C^{(1)}\right)=E^{(1)} \cdot C^{(1)}=1$
(d) $C^{(2)}=\pi_{p_{1}}^{*} C^{(1)}-E^{(2)}, E^{(1,2)}=\pi_{p_{1}}^{*} E^{(1)}-E^{(2)}$.

Using all these equalities, we compute

$$
\begin{array}{rlrl}
C^{(2)} \cdot E^{(1,2)} & =\left(\pi_{p_{1}}^{*} C^{(1)}-E^{(2)}\right) \cdot\left(\pi_{p_{1}}^{*} E^{(1)}-E^{(2)}\right) & =0 \\
C^{(2)} \cdot E^{(2)} & =\left(\pi_{p_{1}}^{*} C^{(1)}-E^{(2)}\right) \cdot E^{(2)} & =1 \\
E^{(1,2)} \cdot E^{(2)} & =\left(\pi_{p_{1}}^{*} E^{(1)}-E^{(2)}\right) \cdot E^{(2)} & & =1 .
\end{array}
$$

3. On $H^{(3)}$, we have by [Har77, Chap. V, Proposition 3.1, 3.2, 3.6]:
(a) $\left(E^{(3)}\right)^{2}=-1$
(b) $\left(\pi_{p_{2}}^{*} C^{(2)}\right) \cdot E^{(3)}=\left(\pi_{p_{2}}^{*} E^{(2)}\right) \cdot E^{(3)}=\left(\pi_{p_{2}}^{*} E^{(1,2)}\right) \cdot E^{(3)}=0$
(c) $\left(\pi_{p_{2}}^{*} C^{(2)}\right) \cdot\left(\pi_{p_{2}}^{*} E^{(2)}\right)=C^{(2)} \cdot E^{(2)}=1$, $\left(\pi_{p_{2}}^{*} C^{(2)}\right) \cdot\left(\pi_{p_{2}}^{*} E^{(1,2)}\right)=C^{(2)} \cdot E^{(1,2)}=0$
(d) $C^{(3)}=\pi_{p_{2}}^{*} C^{(2)}-E^{(3)}, E^{(2,3)}=\pi_{p_{2}}^{*} E^{(2)}-E^{(3)}$.

Using all these equalities, we compute

$$
\begin{aligned}
C^{(3)} \cdot E^{(2,3)} & =\left(\pi_{p_{2}}^{*} C^{(2)}-E^{(3)}\right) \cdot\left(\pi_{p_{2}}^{*} E^{(2)}-E^{(3)}\right)=0 \\
C^{(3)} \cdot E^{(3)} & =\left(\pi_{p_{2}}^{*} C^{(2)}-E^{(3)}\right) \cdot E^{(3)} \\
E^{(2,3)} \cdot E^{(3)} & =\left(\pi_{p_{2}}^{*} E^{(2)}-E^{(3)}\right) \cdot E^{(3)}
\end{aligned}
$$

Since $p_{2} \in C^{(2)}$ and $C^{(2)} \cdot E^{(1,2)}=0$, we have $p_{2} \notin E^{(1,2)}$.
Hence, $\pi_{p_{2}}^{*} E^{(1,2)}=E^{(1,3)}$ and

$$
\begin{aligned}
C^{(3)} \cdot E^{(1,3)} & =\left(\pi_{p_{2}}^{*} C^{(2)}-E^{(3)}\right) \cdot\left(\pi_{p_{2}}^{*} E^{(1,2)}\right)=0, \\
E^{(1,3)} \cdot E^{(3)} & =\left(\pi_{p_{2}}^{*}\left(E^{(1,2)}\right)\right) . \quad E^{(3)}=0, \\
E^{(2,3)} \cdot E^{(1,3)} & =\left(\pi_{p_{2}}^{*} E^{(2)}-E^{(3)}\right) \cdot\left(\pi_{p_{2}}^{*} E^{(1,2)}\right)=1 .
\end{aligned}
$$

Lemma A.0.4. Let $H$ be a smooth surface and $D_{1}, D_{2} \in \operatorname{Div}(H)$. Assume that $D_{1} \cdot D_{2}=$ $m$. Let $p \in D_{1} \cap D_{2}$ be a smooth point of $D_{1}$ and $D_{2}$. Let $H^{(1)} \rightarrow H$ the blowing-up of $H$ in $p$ and let $D_{1}^{(1)}$ and $D^{(2)}$ be the strict transforms of $D_{1}$ and $D_{2}$ in $H^{(1)}$. Then, $D_{1}^{(1)} \cdot D_{2}^{(1)}=m-1$.

Proof. Let $E^{(1)}$ be the exceptional divisor of the blowing-up. By [Har77, Chap. V, Proposition 3.1, 3.2, 3.6], we have

$$
\left(E^{(1)}\right)^{2}=-1,\left(\pi_{p}^{*} D_{1}\right) \cdot E^{(1)}=0,\left(\pi_{p}^{*} D_{2}\right) \cdot E^{(1)}=0,\left(\pi_{p}^{*} D_{1}\right) \cdot\left(\pi_{p}^{*} D_{2}\right)=D_{1} \cdot D_{2}
$$

and

$$
D_{1}^{(1)}=\pi_{p}^{*} D_{1}-E^{(1)}, D_{2}^{(1)}=\pi_{p}^{*} D_{2}-E^{(1)} .
$$

Hence, $D_{1}^{(1)} \cdot D_{2}^{(1)}=\left(\pi_{p}^{*} D_{1}-E^{(1)}\right) \cdot\left(\pi_{p}^{*} D_{2}-E^{(1)}\right)=m-1$.

## B Code to determine all $A D E$ lattices $\Lambda$ such that $\langle 6\rangle \oplus \Lambda$ has a primitive embedding into the K3 lattice

In this appendix, we give the code to be implemented in the computer algebra software Wolfram Mathematica (Version: 11.1.1.0) to determine the list of all $A D E$ lattices $\Lambda$ such that the lattice $\langle 6\rangle \oplus \Lambda$ can be embedded primitively into the K3 lattice. The code is based on the algorithm presented in Section 8.1. Find the final list of all $A D E$ lattice $\Lambda$ as above in Appendix C.

```
(*We realize condition (2b) in Theorem 7.4.1.*)
(*Define function which returns for }x:={\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{\textrm{rmax}}{}}\mathrm{ the list
    {{\mp@subsup{x}{1}{}\ldots,\mp@subsup{x}{\mp@subsup{i}{k}{}-1}{},\mp@subsup{x}{\mp@subsup{i}{k}{}}{}-1,\mp@subsup{x}{\mp@subsup{i}{k}{}+1}{}+1,\mp@subsup{x}{\mp@subsup{i}{k}{}+2}{},\ldots,\mp@subsup{x}{\textrm{rmax}}{}};k=1,\ldots,\operatorname{rmax}}\mathrm{ where }\mp@subsup{x}{\mp@subsup{i}{1}{}}{},\ldots,\mp@subsup{x}{\mp@subsup{i}{r}{}}{}(
    r\in{1,\ldots,rmax - 1}) are the nonzero entries of x.*)
rmax=19;
operation [x_]:=Block[{tuplerules, nonzeros},
tuplerules =ArrayRules[x];
nonzeros=Length[tuplerules]-1;
Table[x-UnitVector[rmax, tuplerules [[ i ,1,1]]]+ UnitVector[rmax, tuplerules [[ i ,1,1]]+1],{ i ,1, nonzeros}]
]
(*Define function which 1. finds in tuplelist :={{\mp@subsup{x}{1}{j},\ldots,\mp@subsup{x}{\textrm{rmax}}{j}},j=1,\ldots,m} the largest entry c:= 利,
    2. saves }{{c+1,0,\ldots,0}\in\mp@subsup{\mathbb{Z}}{}{\mathrm{ rmax }}}\cup{\mathrm{ operation }[x];x\in\mathrm{ tuplelist }.*)
iteration [ tuplelist_]:=Block[{ list },
list ={(Max[tuplelist]+1)UnitVector[rmax,1]};
list =Flatten[Append[operation[#]&/@tuplelist, list ],1];
DeleteDuplicates [ list ]
]
(*Define the list step: Define the list step
```



```
    of all ( }\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{19}{})\in\mp@subsup{\mathbb{Z}}{\geq0}{}\mp@subsup{}{}{\mathrm{ rmax }}\mathrm{ such that }1\mp@subsup{a}{1}{}+2\mp@subsup{a}{2}{}+\ldots+19\mp@subsup{a}{19}{}=i.*
step }={{\mathrm{ UnitVector[rmax,1]}};
Do[step=Append[step,iteration[step [[-1]]]];,{ rmax-1}];
listab =step;
listdb = listab;
(*formd is list of all {0,0,0,\mp@subsup{d}{4}{},\ldots,\mp@subsup{d}{\textrm{rmax}}{}}.*)
formd=Join[{0,0,0},Table[_,{i,4,rmax}]]
(*Lists in listdb contained in formd.*)
Table[ listdb [[ j]]=Cases[ listdb [[ j ]], formd],{j ,1, rmax}];
```

```
(*Delete the first tree entries of all lists contained in the last defined list .*)
Table[ listdb [[j]]= listdb [[j ]][[ All ,4;;-1]],{ j ,1,rmax}];
listeb = listab;
(*forme is the list of all {0,0,0,0,0, e. , e},\mp@code{,},\mp@subsup{e}{8}{},0,\ldots,0}.*
forme=Join[{0,0,0,0,0}, Table[_,{i ,6,8}], Table[0,{ i ,9, rmax}]]
(* Lists in listeb contained in forme*)
Table[ listeb [[ j]]=Cases[ listeb [[ j ]], forme],{j ,1, rmax}];
(*Delete the first five and last rmax - 8 entries of all lists in the list defined in the last step.*)
Table[ listeb [[j]]= listeb [[j ]][[ All ,6;;8]],{ j ,1, rmax}];
(*List of all triples {a,b,c} with }a\in{0,\ldots,rmax},b\in{0,4,\ldots,rmax},c\in{0,6,\ldots,rmax} such tha
    a+b+c=i.*)
listcombine =Table[Select[Tuples[{Range[0,rmax],Join[{0},Range[4,rmax]], Join[{0},Range[6,rmax]]}], Total
        [#]==i&],{i,1,rmax}]
(*Define function: For {i,j,k} the list of all {{\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{19}{}},{\mp@subsup{d}{4}{},\ldots,\mp@subsup{d}{19}{}},{\mp@subsup{e}{6}{},\mp@subsup{e}{7}{},\mp@subsup{e}{8}{}}}\mathrm{ with {a, ,.., a}\mp@subsup{a}{19}{}}
    from the i-th element in listab, {0,0,0, d4,\ldots, d19} from the j-th element of listdb and
    {0,0,0,0,0, e. , e. , e8, 0, 0, 0,0,0,0,0,0,0,0,0} from the k-th element of listeb. We have
    1a⿱亠䒑⿱日十
pick[{i_,j_,k_}]:=Block[{atake,dtake,etake},
atake=If[i==0,{Table[0,{rmax}]}, atake=listab[[i ]]];
dtake=If[j==0,{Table[0,{irun,4,rmax}]},dtake=listdb [[ j ]]];
etake=If[k==0,{Table[0,{irun ,6,8}]}, etake=listeb [[k ]]];
Tuples[{atake,dtake,etake}]
]
(* lists {{\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{19}{}},{\mp@subsup{d}{4}{},\ldots,\mp@subsup{d}{19}{}},{\mp@subsup{e}{6}{},\mp@subsup{e}{7}{},\mp@subsup{e}{8}{}}}\mathrm{ correspond to all ADE lattices}
    \oplus }\mp@subsup{\mp@code{i=1}}{19}{2,}\mp@subsup{a}{i}{}\mp@subsup{A}{i}{}\oplus\mp@subsup{\bigoplus}{j=4}{19}\mp@subsup{d}{j}{}\mp@subsup{D}{j}{}\oplus\mp@subsup{\bigoplus}{k=6}{8}\mp@subsup{e}{k}{}\mp@subsup{E}{k}{\prime}\mathrm{ of rank r.*)
(*Number of all ADE lattices of rank 1\leqr\leq19.*)
Table[Length[Sort[Flatten[pick[#]&/@(listcombine[[r ]]) ,1]]],{ r,1,19}]
    {1,2,3,6,9,16,24,39,57,88,128,193,276,403,570,815,1137,1599,2207}
(*ADE lattices of rank 1\leqr\leq19*)
listb =Table[Sort[Flatten[pick[#]&/@(listcombine[[r ]]),1]],{ r ,1,19}];
(*We realize condition (2c) in Theorem 7.4.1.*)
(*We compute the length of the discriminat group }\langle6\rangle\oplus\Lambda\mathrm{ for an ADE lattice \.*)
I[x_]:=Block[{I2,I3, I5,I7,I11, I13, I17,I19}, I2=1+Sum[x[[1,2i+1]],{i,0,9}]+Sum[x[[2,2i+1-3]],{i,2,9}]+2
        Sum[x[[2,2i-3]],{i,2,9}]+x [[3,2]];
I3=1+x[[1,2]]+x[[1,5]]+x[[1,8]]+x[[1,11]]+x[[[1,14]]+x[[1,17]]+x [[3,1]];
I5=x[[1,4]]+x[[1,9]]+x[[1,14]]+x [[1,19]];
I7=x[[1,6]]+x [[1,13]];
I11=x [[1,10]];
I13=x [[1,12]];
|17=x [[1,16]];
I19=x [[1,18]];
Max[l2,I3, I5 , I7 , I11, I13, I17 , I19]
]
(*Define function which checks if an ADE lattice \Lambda satisfies condition (2c) in Theorem 7.4.1.*)
test [x_]:=Block[{r},r=Sum[i x[[1,i ]],{ i,1,19}]+Sum[j \times[[2, j - 3]],{j,4,19}]+Sum[k x[[3,k-5]],{k,6,8}];
If [21-|[x]>=r,x,False]
]
```

```
(*Define function which checks if an ADE lattice \Lambda satisfies condition (2c) in Theorem 7.4.1 and such
        that the embedding }\langle6\rangle\oplus\Lambda\mathrm{ into }\mp@subsup{L}{K3}{}\mathrm{ , if it exists, is unique up to automorphism of L}\mp@subsup{L}{K3}{}\mathrm{ according to
        Theorem 7.4.3.*)
testu [x_]:=Block[{r},r=Sum[i x[[1,i ]],{ i,1,19}]+Sum[j x[[2, j-3]],{j,4,19}]+Sum[k x[[3,k-5]],{k ,6,8}];
If [19-|[x]>=r,x,False]
] ]
(*Total number of ADE lattices \Lambda which satisfy condition (2b) and (2c) in Theorem 7.4.1.*)
Table[DeleteCases[test[#]&/@(listb[[r r]), False]//Length,{r,1,19}]// Total
3032
(*Total number of ADE lattices \Lambda which satisfy condition (2b) and (2c) in Theorem 7.4.1 and such that the
    conditions in Theorem 7.4.3 holds.*)
Table[DeleteCases[testu[#]&/@(listb [[r r]]),False]//Length,{r,1,19}]// Total
1607
(*ADE lattices \Lambda which satisfy condition (2b) and (2c) in Theorem 7.4.1.*)
listbc =Table[DeleteCases[test[#]&/@(listb[[r r]) ,False ],{ r ,1,19}];
listbcu =Table[DeleteCases[testu[#]&/@(listb[[r]]), False],{r,1,19}];
(*We realize condition (2d) in Theorem 7.4.1.*)
(*For an ADE lattice }\Lambda\mathrm{ , we compute the length of the p-part of the discriminant group of }\langle6\rangle\oplus\Lambda.*
lp[p_,x_]:=Block[{error}, error :: boole="The&value
Switch[p,3,1+x[[1,2]]+x[[1,5]]+x[[1,8]]+x[[1,11]]+x[[1,14]]+x[[1,17]]+x[[3,1]],5, x[[1,4]]+x[[1,9]]+x
        [[1,14]]+\times [[1,19]],7, x[[1,6]]+ x [[1,13]],11, x [[1,10]],13, x [[1,12]],17, x [[1,16]],19, x[[1,18]],
        Message[error::boole, p];]
]
(*Check for a specific prime p,if condition (2d) Theorem 7.4.1 has to be checked.*)
testdTrue[p_,x_]:=Block[{r},r=Sum[i x[[1,i]],{ i,1,19}]+Sum[j x[[2, j-3]],{j,4,19}]+Sum[k x[[3,k-5]],{k
    ,6,8}];
If [21-r==lp[p,x],x, False]
5]
(*For each prime p=3,5,7,11,13,17,19 compute the number of ADE lattices \Lambda of rank 1\leqr\leq19 such
    that we need to check for }\langle6\rangle\oplus\Lambda\mathrm{ condition (2d) in Theorem 7.4.1.*)
Table[Length[DeleteCases[testdTrue[3,#]&/@(listbc[[r r]) , False ]],{ r,1,19}]
Table[Length[DeleteCases[testdTrue[5,#]&/@(listbc[[r r]) , False ]],{r,1,19}]
Table[Length[DeleteCases[testdTrue[7,#]&/@(listbc[[r r]) , False ]],{ r,1,19}]
Table[Length[DeleteCases[testdTrue[11,#]&/@(listbc[[r r]) , False ]],{ r,1,19}]
Table[Length[DeleteCases[testdTrue[13,#]&/@(listbc[[r r]) , False ]],{ r,1,19}]
Table[Length[DeleteCases[testdTrue[17,#]&/@(listbc[[r ]]) , False ]],{ r,1,19}]
Table[Length[DeleteCases[testdTrue[19,#]&/@(listbc[[r r]) , False ]],{ r r,1,19}]
    {0,0,0,0,0,0,0,0,0,0,0,0,0,1,7,28,66,98,55}
    {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,10,14}
    {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,8}
    {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
    {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
    {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
    {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
(*In particular, this shows that condition (2d) in Theorem 7.4.1 has to be checked only for p=3,5,7.*)(*
    List of ADE lattices for which we need to check (2d) for p=3.*)
Table[Print [DeleteCases[testdTrue[3,#]&/@(listbc [[ r ]]) ,False ]],{ r , 1,19}];
(*List of ADE lattices for which we need to check (2d) for p=5.*)
Table[Print[DeleteCases[testdTrue[5,#]&/@(listbc [[ r ]]) ,False ]],{ r,1,19}];
```

```
(*List of ADE lattices for which we need to check (2d) for p=7.*)
Table[Print[DeleteCases[testdTrue[7,#]&/@(listbc [[ r ]]), False ]],{ r ,1,19}];
(* List of all ADE lattices for which we need to check condition (2d).*)
textd[p_,r_]:=(DeleteCases[testdTrue[p,#]&/@(listbc[[r]]), False ]);
(*Define function which gives the cardinality of the discriminant group of }\langle6\rangle\oplus\Lambda\mathrm{ for an ADE lattice
        \Lambda.*)
g[x_]:=Block[{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,d4,d5,d6,d7,d8,d9,d10
        ,d11,d12,d13,d14,d15,d16,d17,d18,d19,e6,e7,e8},{{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,
        a15,a16,a17,a18,a19},{d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19},{e6,e7,e8}}=x;
{x,6(Product[(i+1)^x[[1,i]],{ i,1,19}])(Product[(4)^x[[2,j-3]],{j,4,19}]) 2^e7 3^e6}
]
(*Define p-adic valuation.*)
v[p_,x_]:=Block[{ primefactorlist }, If [IntegerQ[x],, Print ["x [ [ is &no_integer" ]];
primefactorlist =FactorInteger[x];
If [MemberQ[primefactorlist[[All ,1]], p], Select [ primefactorlist ,#[[1]]==p &][[1,2]],0]
]
(*All lattices }\Lambda\mathrm{ such that for }\langle6\rangle\oplus\Lambda\mathrm{ conditions (2b) and (2c) in Theorem 7.4.1 are satisfied and
    condition (2d) needs to be checked for p=3.*)
testd3=Flatten[Table[DeleteCases[testdTrue[3,#]&/@(listbc [[ r ]]), False ],{r ,1,19}],1];
(*All lattices }\Lambda\mathrm{ such that for }\langle6\rangle\oplus\Lambda\mathrm{ condition (2b) and (2c) in Theorem 7.4.1 and the conditon in
        Theorem 7.4.3 are satisfied and condition (2d) needs to be checked for p=3.*)
testd3u=Flatten[Table[DeleteCases[testdTrue[3,#]&/@(listbcu [[r r]]), False ],{r ,1,19}],1];
(*Compute the discriminant for the unique 3-adic lattice .*)
d3[tuple_]:=Block[{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,d4,d5,d6,d7,d8,
        d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,e6,e7,e8},{{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13
        ,a14,a15,a16,a17,a18,a19},{d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19},{e6,e7,e8
        }}=tuple;
{tuple,6*3^a2*6^a5*9^a8*3^a11*6^a14*126^a17*6^e6}
]
(*All lattices }\Lambda\mathrm{ such that for }\langle6\rangle\oplus\Lambda condition (2b) and (2c) are satisfied and condition (2d) holds/doe
    not hold for }p=3\mathrm{ , as well.*)
Lr3={};
Ln3={};
If [Mod[((g[#][[2]]) -(d3[#][[2]]) )/3^v[3,g[#][[2]]],3]==0, Lr3=Append[Lr3,#],Ln3=Append[Ln3,#]]&/
        @testd3;
Length[testd3]
Length[Lr3]
Length[Ln3]
255
186
69
(*All lattices }\Lambda\mathrm{ such that for }\langle6\rangle\oplus\Lambda condition (2b) and (2c) and the conditon in Theorem 7.4.3 ar
        satisfied and condition (2d) holds/does not hold for p=3, as well.*)
    Lr3u={};
Ln3u={};
If [Mod[((g[#][[2]]) -(d3[#][[2]]) )/3^v[3,g[#][[2]]],3]==0, Lr3=Append[Lr3,#],Ln3=Append[Ln3,#]]&/
        @testd3u;
Length[testd3u]
Length[Lr3u]
Length[Ln3u]
5
```

9 (*All lattices $\Lambda$ such that for $\langle 6\rangle \oplus \Lambda$ condition (2b) and (2c) are satisfied and condition (2d) needs to be
checked for $p=5 . *$ )
testd5 $=$ Flatten[Table[DeleteCases[testdTrue[5,\#]\&/@(listbc [[r ]]), False ], $\{r, 1,19\}], 1]$;
191
192
(*All lattices $\Lambda$ such that for $\langle 6\rangle \oplus \Lambda$ condition (2b) and (2c) in Theorem 7.4.1 and the conditon in
Theorem 7.4.3 are satisfied and condition (2d) needs to be checked for $p=5 . *$ )
testd5u =Flatten[Table[DeleteCases[testdTrue[5,\#]\&/@(listbcu [[r $]$ ]) , False ], $\{r, 1,19\}], 1]$;
194
5 (*Compute the discriminant for a 5-adic lattice .*)
d5[tuple_]:=Block[\{a1,a2,a3,a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, d4, d5, d6, d7, d8,
d9, d10, d11, d12, d13,d14,d15, d16,d17,d18,d19,e6, e7, e8\}, \{\{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13
,a14, a15,a16,a17,a18,a19\}, \{d4, d5, d6, d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19\}, \{e6,e7, e8
\}\}=tuple;
\{tuple, $5^{\wedge} \mathrm{a} 4 * 40^{\wedge} \mathrm{a} 9 * 10^{\wedge}$ a $14 * 5^{\wedge}$ a 19 \}
98 ]
199
200
(*All lattices $\Lambda$ such that for $\langle 6\rangle \oplus \Lambda$ condition (2b) and (2c) are satisfied and condition (2d) holds/does
not holds $p=5 . *$ )
$\operatorname{Lr} 5=\{ \}$;
$\operatorname{Ln} 5=\{ \} ;$
If $\left[\operatorname{Mod}\left[((g[\#][[2]])-1(d 5[\#][[2]])) / 5^{\wedge} v[5, g[\#][[2]]], 5\right] \operatorname{Mod}\left[((g[\#][[2]])-4(d 5[\#][[2]])) / 5^{\wedge} v[5, g\right.\right.$
[\#] [[2]]]],5]==0, Lr5=Append[Lr5,\#],Ln5=Append[Ln5,\#]]\&/@testd5;
Length[testd5]
Length[Lr5]
Length[Ln5]
25
9
16
(*All lattices $\Lambda$ such that for $\langle 6\rangle \oplus \Lambda$ condition (2b) and (2c) and the condition in Theorem 7.4.3 are
satisfied and condition (2d) holds/does not hold for $p=5$, as well.*)
Lr5u=\{\};
$\operatorname{Ln} 5 u=\{ \} ;$
If $\left[\operatorname{Mod}\left[((\mathrm{g}[\#][[2]])-1(\mathrm{~d} 5[\#][[2]])) / 5^{\wedge} v[5, \mathrm{~g}[\#][[2]]], 5\right] \operatorname{Mod}\left[((\mathrm{g}[\#][[2]])-4(\mathrm{~d} 5[\#][[2]])) / 5^{\wedge} v[5, \mathrm{~g}\right.\right.$
[\#][[2]]],5] ==0, Lr5=Append[Lr5,\#],Ln5=Append[Ln5,\#]]\&/Otestd5u;
Length[testd5u]
Length[Lr5u]
Length[Ln5u]
0
0
0
$(*$ All lattices $\Lambda$ such that for $\langle 6\rangle \oplus \Lambda$ condition (2b) and (2c) are satisfied and condition (2d) needs to be
checked for $p=7 . *$ )
testd7 = Flatten[Table[DeleteCases[testdTrue[7,\#]\&/@(listbc [[ r ]]), False ], \{r,1,19\}],1];
(*All lattices $\Lambda$ such that for $\langle 6\rangle \oplus \Lambda$ condition (2b) and (2c) in Theorem 7.4.1 and the condition in
Theorem 7.4.3 are satisfied and condition (2d) needs to be checked for $p=7 . *$ )
testd7u = Flatten[Table[DeleteCases[testdTrue[7,\#]\&/@(listbcu [[r ]]) , False ], \{r,1,19\}],1];
(*Compute the discriminant for a 7-adic lattice .*)
d7[tuple_]:=Block[\{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,d4,d5,d6,d7,d8,
d9, $\mathrm{d} 10, \mathrm{~d} 11, \mathrm{~d} 12, \mathrm{~d} 13, \mathrm{~d} 14, \mathrm{~d} 15, \mathrm{~d} 16, \mathrm{~d} 17, \mathrm{~d} 18, \mathrm{~d} 19, e 6, e 7, e 8\},\{\{a 1, a 2, a 3, a 4, a 5, a 6, a 7, a 8, a 9, a 10, a 11, a 12, a 13$
,a14,a15,a16, a17, a18, a19\}, \{d4, d5, d6, d7, d8, d9, d10, d11,d12,d13,d14,d15,d16,d17,d18,d19\}, \{e6,e7,e8
\}\}=tuple;
\{tuple, $7^{\wedge}$ a6 $* 7^{\wedge}$ a13\}]

```
(*All lattices \Lambda such that for }\langle6\rangle\oplus\Lambda\mathrm{ condition (2b) and (2c) are satisfied and condition (2d) holds/does
    not holds p=7.*)
Lr7={};
Ln7={};
If [Mod[((g[#][[2]]) -1(d7[#][[2]]))/7^v[7,g[#][[2]]],7] Mod[((g[#][[2]])-2(d7[#][[2]]))/7^v[7,g
        [#][[2]]],7] Mod[((g[#][[2]])-4(d7[#][[2]]))/7^v[7,g[#][[2]]],7]==0, Lr7=Append[Lr7,#],Ln7=
        Append[Ln7,#]]&/@testd7;
Length[testd7]
Length[Lr7]
Length[Ln7]
9
3
6
(*All lattices \Lambda such that for }\langle6\rangle\oplus\Lambda\mathrm{ condition (2b) and (2c) and the conditon in Theorem 7.4.3 are
    satisfied and condition (2d) holds/does not hold for p=7, as well.*)
Lr7u={};
Ln7u={};
If [Mod[((g[#][[2]]) - (d7[#][[2]]))/7^v[7,g [#][[2]]],7] Mod[((g[#][[2]]) -2(d7[#][[2]]))/7^v[7,g
        [#][[2]]],7] Mod[((g[#][[2]])-4(d7[#][[2]]))/7^v[7,g[#][[2]]],7]==0, Lr7=Append[Lr7,#],Ln7=
        Append[Ln7,#]]&/@testd7u;
Length[testd7u]
Length[Lr7u]
Length[Ln7u]
0
0
0
(*All lattices }\Lambda\mathrm{ such that for }\langle6\rangle\oplus\Lambda\mathrm{ condition (2b), (2c) hold, and (2d) does not hold.*)
Ln=Join[Ln3,Ln5,Ln7];
(*All lattices }\Lambda\mathrm{ such that for }\langle6\rangle\oplus\Lambda\mathrm{ condition (2b), (2c) and the conditon in Theorem 7.4.3 hold, and
    (2d) does not hold.*)
Lnu=Join[Ln3u,Ln5u,Ln7u];
(* Cardinality of Ln and Lnu.*)
{Length[Ln]}
{Length[DeleteDuplicates[Ln]]}
{Length[Lnu]}
{Length[DeleteDuplicates[Lnu]]}
(*Delete all duplicates in Ln and Lnu*)
Ln=DeleteDuplicates[Ln];
Lnu=DeleteDuplicates[Lnu];
(*Number of lattices \Lambda such that for }\langle6\rangle\oplus\Lambda\mathrm{ condition (2b), (2c), and (2d) hold.*)
Complement[Flatten[Table[DeleteCases[test[#]&/@(listbc[[r ]]),False ],{r , 1,19}],1], Ln]//Length
2942
(*Number of lattices }\Lambda\mathrm{ such that for }\langle6\rangle\oplus\Lambda\mathrm{ condition (2b), (2c), and (2d) hold and the conditon in
    Theorem 7.4.3.*)
Complement[Flatten[Table[DeleteCases[test[#]&/@(listbcu[[r ]]), False ],{r ,1,19}],1], Lnu]//Length
1607
(* Lattices \Lambda such that for }\langle6\rangle\oplus\Lambda\mathrm{ condition (2b), (2c), and (2d) hold.*)
result =Complement[Flatten[Table[DeleteCases[test[#]&/@(listbc[[r]]), False],{r ,1,19}],1], Ln];
(* Lattices \Lambda such that for }\langle6\rangle\oplus\Lambda\mathrm{ condition (2b), (2c), and (2d) hold and the conditon in Theorem 7.4.3.*)
resultu =Complement[Flatten[Table[DeleteCases[test[#]&/@(listbcu[[r]]), False ],{r ,1,19}],1], Lnu];
```

284
285 (* resultr and resultu sorted by rank*)
$286 \operatorname{rank}[$ tuple_]:=(Sum[(tuple[[1, i $]] \mathrm{i}),\{\mathrm{i}, 1,19\}])+(\operatorname{Sum}[(\operatorname{tuple}[[2, \mathrm{j}-3]](\mathrm{j})),\{\mathrm{j}, 4,19\}])+$ tuple[[3,1]]*6+tuple $[[3,2]] * 7+$ tuple $[[3,3]] * 8$;
287 resultr =GatherBy[SortBy[result,rank[\#]\&],rank[\#]\&]
288 resultru =GatherBy[SortBy[resultu,rank[\#]\&],rank[\#]\&]
$290\left(* A n A D E\right.$ lattice $\Lambda=\bigoplus_{i=1}^{19} a_{i} A_{1} \oplus \bigoplus_{j=4}^{19} d_{j} D_{j} \oplus \bigoplus_{k=6}^{8} e_{k} E_{k}$ in resultr has the form $\{\{a 1, \ldots, a 19\},\{d 4, \ldots, d 19\},\{e 6, e 7, e 8\}\} . *)$

## C List of all $A D E$ lattices $\Lambda$ such that $\Lambda \oplus\langle 6\rangle$ can be embedded primitively into the K3 lattice

In this appendix, we give the list of all $A D E$ lattices $\Lambda$ such that $\langle 6\rangle \oplus \Lambda$ can be embedded primitively into the K3 lattice. The list is obtained computer-aided with the code in Appendix B. The asterisk * infront of a lattice $\Lambda$ indicates that the lattice $\langle 6\rangle \oplus \Lambda$ admits a unique embedding into $L_{K 3}$ up to automorphisms of $L_{K 3}$.

| $\underline{\operatorname{rank}(\Lambda)=1}$ | 20. ${ }^{*} 3 A_{1} \oplus A_{2}$ | 42. ${ }^{*} A_{3} \oplus A_{4}$ | 65. ${ }^{*} A_{8}$ |
| :---: | :---: | :---: | :---: |
| 1. ${ }^{*} A_{1}$ | 21. ${ }^{*} 5 A_{1}$ | 43. ${ }^{*} A_{2} \oplus D_{5}$ | 66. ${ }^{*} A_{4} \oplus D_{4}$ |
| $\underline{\operatorname{rank}}(\Lambda)=2$ | $\underline{\operatorname{rank}}(\Lambda)=6$ | 44. ${ }^{*} A_{2} \oplus A_{5}$ | 67. ${ }^{*} 2 A_{4}$ |
| 2. ${ }^{*} A_{2}$ | 22. ${ }^{*} E_{6}$ | 45. ${ }^{*} 2 A_{2} \oplus A_{3}$ | 68. ${ }^{*} A_{3} \oplus D_{5}$ |
| 3. ${ }^{*} 2 A_{1}$ | 23. ${ }^{*} D_{6}$ | 46. ${ }^{*} A_{1} \oplus E_{6}$ | 69. ${ }^{*} A_{3} \oplus A_{5}$ |
| $\underline{\operatorname{rank}(\Lambda)=3}$ | 24. ${ }^{*} A_{6}$ | 47. ${ }^{*} A_{1} \oplus D_{6}$ | 70. ${ }^{*} A_{2} \oplus E_{6}$ |
| 4. ${ }^{*} A_{3}$ | 25. ${ }^{*} 2 A_{3}$ | 48. ${ }^{*} A_{1} \oplus A_{6}$ | 71. ${ }^{*} A_{2} \oplus D_{6}$ |
| 5. ${ }^{*} A_{1} \oplus A_{2}$ | 26. ${ }^{*} A_{2} \oplus D_{4}$ | 49. ${ }^{*} A_{1} \oplus 2 A_{3}$ | 72. ${ }^{*} A_{2} \oplus A_{6}$ |
| 6. ${ }^{*} 3 A_{1}$ | 27. ${ }^{*} A_{2} \oplus A_{4}$ | 50. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{4}$ | 73. ${ }^{*} A_{2} \oplus 2 A_{3}$ |
| $\underline{\operatorname{rank}(\Lambda)=4}$ | 28. ${ }^{*} 3 A_{2}$ | 51. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{4}$ | 74. ${ }^{*} 2 A_{2} \oplus D_{4}$ |
| 7. ${ }^{*} D_{4}$ | 29. ${ }^{*} A_{1} \oplus D_{5}$ | 52. ${ }^{*} A_{1} \oplus 3 A_{2}$ | 75. ${ }^{*} 2 A_{2} \oplus A_{4}$ |
| 8. ${ }^{*} A_{4}$ | 30. ${ }^{*} A_{1} \oplus A_{5}$ | 53. ${ }^{*} 2 A_{1} \oplus D_{5}$ | 76. ${ }^{*} 4 A_{2}$ |
| 9. ${ }^{*} 2 A_{2}$ | 31. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3}$ | 54. ${ }^{*} 2 A_{1} \oplus A_{5}$ | 77. ${ }^{*} A_{1} \oplus E_{7}$ |
| 10. ${ }^{*} A_{1} \oplus A_{3}$ | 32. ${ }^{*} 2 A_{1} \oplus D_{4}$ | 55. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{3}$ | 78. ${ }^{*} A_{1} \oplus D_{7}$ |
| 11. ${ }^{*} 2 A_{1} \oplus A_{2}$ | 33. ${ }^{*} 2 A_{1} \oplus A_{4}$ | 56. ${ }^{*} 3 A_{1} \oplus D_{4}$ | 79. ${ }^{*} A_{1} \oplus A_{7}$ |
| 12. ${ }^{*} 4 A_{1}$ | 34. ${ }^{*} 2 A_{1} \oplus 2 A_{2}$ | 57. ${ }^{*} 3 A_{1} \oplus A_{4}$ | 80. ${ }^{*} A_{1} \oplus A_{3} \oplus D_{4}$ |
| $\underline{\operatorname{rank}(\Lambda)=5}$ | 35. ${ }^{*} 3 A_{1} \oplus A_{3}$ | 58. ${ }^{*} 3 A_{1} \oplus 2 A_{2}$ | 81. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{4}$ |
| 13. ${ }^{*} D_{5}$ | 36. ${ }^{*} 4 A_{1} \oplus A_{2}$ | 59. ${ }^{*} 4 A_{1} \oplus A_{3}$ | 82. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{5}$ |
| 14. ${ }^{*} A_{5}$ | 37. ${ }^{*} 6 A_{1}$ | 60. ${ }^{*} 5 A_{1} \oplus A_{2}$ | 83. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{5}$ |
| 15. ${ }^{*} A_{2} \oplus A_{3}$ | $\underline{\operatorname{rank}(\Lambda)=7}$ | 61. ${ }^{*} 7 A_{1}$ | 84. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{3}$ |
| 16. ${ }^{*} A_{1} \oplus D_{4}$ | 38. ${ }^{*} E_{7}$ | $\underline{\operatorname{rank}(\Lambda)=8}$ | 85. ${ }^{*} 2 A_{1} \oplus E_{6}$ |
| 17. ${ }^{*} A_{1} \oplus A_{4}$ | 39. ${ }^{*} D_{7}$ | 62. ${ }^{*} E_{8}$ | 86. ${ }^{*} 2 A_{1} \oplus D_{6}$ |
| 18. ${ }^{*} A_{1} \oplus 2 A_{2}$ | 40. ${ }^{*} A_{7}$ | 63. ${ }^{*} D_{8}$ | 87. ${ }^{*} 2 A_{1} \oplus A_{6}$ |
| 19. ${ }^{*} 2 A_{1} \oplus A_{3}$ | 41. ${ }^{*} A_{3} \oplus D_{4}$ | 64. ${ }^{*} 2 D_{4}$ | 88. ${ }^{*} 2 A_{1} \oplus 2 A_{3}$ |

C List of all $A D E$ lattices $\Lambda$ such that $\Lambda \oplus\langle 6\rangle$ can be embedded primitively into the 114
89. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus D_{4}$
90. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{4}$
91. ${ }^{*} 2 A_{1} \oplus 3 A_{2}$
92. ${ }^{*} 3 A_{1} \oplus D_{5}$
93. ${ }^{*} 3 A_{1} \oplus A_{5}$
94. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus A_{3}$
95. ${ }^{*} 4 A_{1} \oplus D_{4}$
96. ${ }^{*} 4 A_{1} \oplus A_{4}$
97. ${ }^{*} 4 A_{1} \oplus 2 A_{2}$
98. ${ }^{*} 5 A_{1} \oplus A_{3}$
99. ${ }^{*} 6 A_{1} \oplus A_{2}$
100. ${ }^{*} 8 A_{1}$
$\underline{\operatorname{rank}(\Lambda)=9}$
101. ${ }^{*} D_{9}$
102. ${ }^{*} D_{4} \oplus D_{5}$
103. ${ }^{*} A_{9}$
104. ${ }^{*} A_{5} \oplus D_{4}$
105. ${ }^{*} A_{4} \oplus D_{5}$
106. ${ }^{*} A_{4} \oplus A_{5}$
107. ${ }^{*} A_{3} \oplus E_{6}$
108. ${ }^{*} A_{3} \oplus D_{6}$
109. ${ }^{*} A_{3} \oplus A_{6}$
110. ${ }^{*} 3 A_{3}$
111. ${ }^{*} A_{2} \oplus E_{7}$
112. ${ }^{*} A_{2} \oplus D_{7}$
113. ${ }^{*} A_{2} \oplus A_{7}$
114. ${ }^{*} A_{2} \oplus A_{3} \oplus D_{4}$
115. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{4}$
116. ${ }^{*} 2 A_{2} \oplus D_{5}$
117. ${ }^{*} 2 A_{2} \oplus A_{5}$
118. ${ }^{*} 3 A_{2} \oplus A_{3}$
119. ${ }^{*} A_{1} \oplus E_{8}$
120. ${ }^{*} A_{1} \oplus D_{8}$
121. ${ }^{*} A_{1} \oplus 2 D_{4}$
122. ${ }^{*} A_{1} \oplus A_{8}$
123. ${ }^{*} A_{1} \oplus A_{4} \oplus D_{4}$
124. ${ }^{*} A_{1} \oplus 2 A_{4}$
125. ${ }^{*} A_{1} \oplus A_{3} \oplus D_{5}$
126. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{5}$
127. ${ }^{*} A_{1} \oplus A_{2} \oplus E_{6}$
128. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{6}$
129. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{6}$
130. ${ }^{*} A_{1} \oplus A_{2} \oplus 2 A_{3}$
131. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus D_{4}$
132. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{4}$
133. ${ }^{*} A_{1} \oplus 4 A_{2}$
134. ${ }^{*} 2 A_{1} \oplus E 7$
135. ${ }^{*} 2 A_{1} \oplus D_{7}$
136. ${ }^{*} 2 A_{1} \oplus A_{7}$
137. ${ }^{*} 2 A_{1} \oplus A_{3} \oplus D_{4}$
138. ${ }^{*} 2 A_{1} \oplus A_{3} \oplus A_{4}$
139. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus D_{5}$
140. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{5}$
141. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus A_{3}$
142. ${ }^{*} 3 A_{1} \oplus E_{6}$
143. ${ }^{*} 3 A_{1} \oplus D_{6}$
144. ${ }^{*} 3 A_{1} \oplus A_{6}$
145. ${ }^{*} 3 A_{1} \oplus 2 A_{3}$
146. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus D_{4}$
147. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus A_{4}$
148. ${ }^{*} 3 A_{1} \oplus 3 A_{2}$
149. ${ }^{*} 4 A_{1} \oplus D_{5}$
150. ${ }^{*} 4 A_{1} \oplus A_{5}$
151. ${ }^{*} 4 A_{1} \oplus A_{2} \oplus A_{3}$
152. ${ }^{*} 5 A_{1} \oplus D_{4}$
153. ${ }^{*} 5 A_{1} \oplus A_{4}$
154. ${ }^{*} 5 A_{1} \oplus 2 A_{2}$
155. ${ }^{*} 6 A_{1} \oplus A_{3}$
156. ${ }^{*} 7 A_{1} \oplus A_{2}$
157. ${ }^{*} 9 A_{1}$
$\operatorname{rank}(\Lambda)=10$
158. ${ }^{*} D_{10}$
159. ${ }^{*} 2 D_{5}$
160. ${ }^{*} D_{4} \oplus E_{6}$
161. ${ }^{*} D_{4} \oplus D_{6}$
162. ${ }^{*} A_{10}$
163. ${ }^{*} A_{6} \oplus D_{4}$
164. ${ }^{*} A_{5} \oplus D_{5}$
165. ${ }^{*} 2 A_{5}$
166. ${ }^{*} A_{4} \oplus E_{6}$
167. ${ }^{*} A_{4} \oplus D_{6}$
168. ${ }^{*} A_{4} \oplus A_{6}$
169. ${ }^{*} A_{3} \oplus E_{7}$
170. ${ }^{*} A_{3} \oplus D_{7}$
171. ${ }^{*} A_{3} \oplus A_{7}$
172. ${ }^{*} 2 A_{3} \oplus D_{4}$
173. ${ }^{*} 2 A_{3} \oplus A_{4}$
174. ${ }^{*} A_{2} \oplus E_{8}$
175. ${ }^{*} A_{2} \oplus D_{8}$
176. ${ }^{*} A_{2} \oplus 2 D_{4}$
177. ${ }^{*} A_{2} \oplus A_{8}$
178. ${ }^{*} A_{2} \oplus A_{4} \oplus D_{4}$
179. ${ }^{*} A_{2} \oplus 2 A_{4}$
180. ${ }^{*} A_{2} \oplus A_{3} \oplus D_{5}$
181. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{5}$
182. ${ }^{*} 2 A_{2} \oplus E_{6}$
183. ${ }^{*} 2 A_{2} \oplus D_{6}$
184. ${ }^{*} 2 A_{2} \oplus A_{6}$
185. ${ }^{*} 2 A_{2} \oplus 2 A_{3}$
186. ${ }^{*} 3 A_{2} \oplus D_{4}$
187. ${ }^{*} 3 A_{2} \oplus A_{4}$
188. ${ }^{*} 5 A_{2}$
189. ${ }^{*} A_{1} \oplus D_{9}$
190. ${ }^{*} A_{1} \oplus D_{4} \oplus D_{5}$
191. ${ }^{*} A_{1} \oplus A_{9}$
192. ${ }^{*} A_{1} \oplus A_{5} \oplus D_{4}$
193. ${ }^{*} A_{1} \oplus A_{4} \oplus D_{5}$
194. ${ }^{*} A_{1} \oplus A_{4} \oplus A_{5}$
195. ${ }^{*} A_{1} \oplus A_{3} \oplus E_{6}$
196. ${ }^{*} A_{1} \oplus A_{3} \oplus D_{6}$
197. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{6}$
198. ${ }^{*} A_{1} \oplus 3 A_{3}$
199. ${ }^{*} A_{1} \oplus A_{2} \oplus E_{7}$
200. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{7}$
201. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{7}$
202. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus D_{4}$
203. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{4}$
204. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus D_{5}$
205. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{5}$
206. ${ }^{*} A_{1} \oplus 3 A_{2} \oplus A_{3}$
207. ${ }^{*} 2 A_{1} \oplus E_{8}$
208. ${ }^{*} 2 A_{1} \oplus D_{8}$
209. ${ }^{*} 2 A_{1} \oplus 2 D_{4}$
210. ${ }^{*} 2 A_{1} \oplus A_{8}$
211. ${ }^{*} 2 A_{1} \oplus A_{4} \oplus D_{4}$
212. ${ }^{*} 2 A_{1} \oplus 2 A_{4}$
213. ${ }^{*} 2 A_{1} \oplus A_{3} \oplus D_{5}$
214. ${ }^{*} 2 A_{1} \oplus A_{3} \oplus A_{5}$
215. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus E_{6}$
216. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus D_{6}$
217. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{6}$
218. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus 2 A_{3}$
219. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus D_{4}$
220. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus A_{4}$
221. ${ }^{*} 2 A_{1} \oplus 4 A_{2}$
222. ${ }^{*} 3 A_{1} \oplus E_{7}$
223. ${ }^{*} 3 A_{1} \oplus D_{7}$
224. ${ }^{*} 3 A_{1} \oplus A_{7}$
225. ${ }^{*} 3 A_{1} \oplus A_{3} \oplus D_{4}$
226. ${ }^{*} 3 A_{1} \oplus A_{3} \oplus A_{4}$
227. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus D_{5}$
228. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus A_{5}$
229. ${ }^{*} 3 A_{1} \oplus 2 A_{2} \oplus A_{3}$
230. ${ }^{*} 4 A_{1} \oplus E_{6}$
231. ${ }^{*} 4 A_{1} \oplus D_{6}$
232. ${ }^{*} 4 A_{1} \oplus A_{6}$
233. ${ }^{*} 4 A_{1} \oplus 2 A_{3}$
234. ${ }^{*} 4 A_{1} \oplus A_{2} \oplus D_{4}$

| 235. ${ }^{*} 4 A_{1} \oplus A_{2} \oplus A_{4}$ | 271. ${ }^{*} A_{2} \oplus A_{5} \oplus D_{4}$ |
| :---: | :---: |
| 236. ${ }^{*} 4 A_{1} \oplus 3 A_{2}$ | 272. ${ }^{*} A_{2} \oplus A_{4} \oplus D_{5}$ |
| 237. ${ }^{*} 5 A_{1} \oplus D_{5}$ | 273. ${ }^{*} A_{2} \oplus A_{4} \oplus A_{5}$ |
| 238. ${ }^{*} 5 A_{1} \oplus A_{5}$ | 274. ${ }^{*} A_{2} \oplus A_{3} \oplus E_{6}$ |
| 239. ${ }^{*} 5 A_{1} \oplus A_{2} \oplus A_{3}$ | 275. ${ }^{*} A_{2} \oplus A_{3} \oplus D_{6}$ |
| 240. ${ }^{*} 6 A_{1} \oplus D_{4}$ | 276. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{6}$ |
| 241. ${ }^{*} 6 A_{1} \oplus A_{4}$ | 277. ${ }^{*} A_{2} \oplus 3 A_{3}$ |
| 242. ${ }^{*} 6 A_{1} \oplus 2 A_{2}$ | 278. ${ }^{*} 2 A_{2} \oplus E_{7}$ |
| 243. ${ }^{*} 7 A_{1} \oplus A_{3}$ | 279. ${ }^{*} 2 A_{2} \oplus D_{7}$ |
| 244. ${ }^{*} 8 A_{1} \oplus A_{2}$ | 280. ${ }^{*} 2 A_{2} \oplus A_{7}$ |
| 245. $10 A_{1}$ | 281. ${ }^{*} 2 A_{2} \oplus A_{3} \oplus D_{4}$ |
| $\underline{\operatorname{rank}}(\Lambda)=11$ | 282. ${ }^{*} 2 A_{2} \oplus A_{3} \oplus A_{4}$ |
| 246. ${ }^{*} D_{11}$ | 283. ${ }^{*} 3 A_{2} \oplus D_{5}$ |
| 247. ${ }^{*} D_{5} \oplus E_{6}$ | 284. ${ }^{*} 3 A_{2} \oplus A_{5}$ |
| 248. ${ }^{*} D_{5} \oplus D_{6}$ | 285. ${ }^{*} 4 A_{2} \oplus A_{3}$ |
| 249. ${ }^{*} D_{4} \oplus E_{7}$ | 286. ${ }^{*} A_{1} \oplus D_{10}$ |
| 250. ${ }^{*} D_{4} \oplus D_{7}$ | 287. ${ }^{*} A_{1} \oplus 2 D_{5}$ |
| 251. ${ }^{*} A_{11}$ | 288. ${ }^{*} A_{1} \oplus D_{4} \oplus E_{6}$ |
| 252. ${ }^{*} A_{7} \oplus D_{4}$ | 289. ${ }^{*} A_{1} \oplus D_{4} \oplus D_{6}$ |
| 253. ${ }^{*} A_{6} \oplus D_{5}$ | 290. ${ }^{*} A_{1} \oplus A_{10}$ |
| 254. ${ }^{*} A_{5} \oplus E_{6}$ | 291. ${ }^{*} A_{1} \oplus A_{6} \oplus D_{4}$ |
| 255. ${ }^{*} A_{5} \oplus D_{6}$ | 292. ${ }^{*} A_{1} \oplus A_{5} \oplus D_{5}$ |
| 256. ${ }^{*} A_{5} \oplus A_{6}$ | 293. ${ }^{*} A_{1} \oplus 2 A_{5}$ |
| 257. ${ }^{*} A_{4} \oplus E_{7}$ | 294. ${ }^{*} A_{1} \oplus A_{4} \oplus E_{6}$ |
| 258. ${ }^{*} A_{4} \oplus D_{7}$ | 295. ${ }^{*} A_{1} \oplus A_{4} \oplus D_{6}$ |
| 259. ${ }^{*} A_{4} \oplus A_{7}$ | 296. ${ }^{*} A_{1} \oplus A_{4} \oplus A_{6}$ |
| 260. ${ }^{*} A_{3} \oplus E_{8}$ | 297. ${ }^{*} A_{1} \oplus A_{3} \oplus E_{7}$ |
| 261. ${ }^{*} A_{3} \oplus D_{8}$ | 298. ${ }^{*} A_{1} \oplus A_{3} \oplus D_{7}$ |
| 262. ${ }^{*} A_{3} \oplus 2 D_{4}$ | 299. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{7}$ |
| 263. ${ }^{*} A_{3} \oplus A_{8}$ | 300. ${ }^{*} A_{1} \oplus 2 A_{3} \oplus D_{4}$ |
| 264. ${ }^{*} A_{3} \oplus A_{4} \oplus D_{4}$ | 301. ${ }^{*} A_{1} \oplus 2 A_{3} \oplus A_{4}$ |
| 265. ${ }^{*} A_{3} \oplus 2 A_{4}$ | 302. ${ }^{*} A_{1} \oplus A_{2} \oplus E_{8}$ |
| 266. ${ }^{*} 2 A_{3} \oplus D_{5}$ | 303. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{8}$ |
| 267. ${ }^{*} 2 A_{3} \oplus A_{5}$ | 304. ${ }^{*} A_{1} \oplus A_{2} \oplus 2 D_{4}$ |
| 268. ${ }^{*} A_{2} \oplus D_{9}$ | 305. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{8}$ |
| 269. ${ }^{*} A_{2} \oplus D_{4} \oplus D_{5}$ | 306. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{4} \oplus D_{4}$ |
| 270. ${ }^{*} A_{2} \oplus A_{9}$ | 307. ${ }^{*} A_{1} \oplus A_{2} \oplus 2 A_{4}$ |

271. ${ }^{*} A_{2} \oplus A_{5} \oplus D_{4}$
272. ${ }^{*} A_{2} \oplus A_{4} \oplus D_{5}$
273. ${ }^{*} A_{2} \oplus A_{4} \oplus A_{5}$
274. $\quad A_{2} \oplus A_{3} \oplus E_{6}$
275. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{6}$
276. ${ }^{*} A_{2} \oplus 3 A_{3}$
277. ${ }^{*} 2 A_{2} \oplus A_{7}$
278. ${ }^{*} 2 A_{2} \oplus A_{3} \oplus D_{4}$
279. ${ }^{*} 3 A_{2} \oplus D_{5}$
280. ${ }^{*} 3 A_{2} \oplus A_{5}$
$4 A_{2} \oplus A_{3}$
281. ${ }^{*} A_{1} \oplus 2 D_{5}$
282. ${ }^{*} A_{1} \oplus D_{4} \oplus E_{6}$
283. ${ }^{*} A_{1} \oplus A_{10}$
284. ${ }^{*} A_{1} \oplus A_{6} \oplus D_{4}$
285. ${ }^{*} A_{1} \oplus A_{5} \oplus D_{5}$
286. ${ }^{*} A_{1} \oplus A_{4} \oplus E_{6}$
287. ${ }^{*} A_{1} \oplus A_{4} \oplus D_{6}$
288. ${ }^{*} A_{1} \oplus A_{4} \oplus A_{6}$
289. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus D_{5}$
290. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus A_{5}$
291. ${ }^{*} 2 A_{1} \oplus 3 A_{2} \oplus A_{3}$
292. ${ }^{*} 3 A_{1} \oplus E_{8}$
293. ${ }^{*} 3 A_{1} \oplus D_{8}$
294. ${ }^{*} 3 A_{1} \oplus 2 D_{4}$
295. ${ }^{*} 3 A_{1} \oplus A_{8}$
296. ${ }^{*} 3 A_{1} \oplus A_{4} \oplus D_{4}$
297. ${ }^{*} 3 A_{1} \oplus 2 A_{4}$
298. ${ }^{*} 3 A_{1} \oplus A_{3} \oplus D_{5}$
299. ${ }^{*} 3 A_{1} \oplus A_{3} \oplus A_{5}$
300. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus E_{6}$
301. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus D_{6}$
302. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus A_{6}$
303. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus 2 A_{3}$
304. ${ }^{*} 3 A_{1} \oplus 2 A_{2} \oplus D_{4}$
305. ${ }^{*} 3 A_{1} \oplus 2 A_{2} \oplus A_{4}$
306. ${ }^{*} 3 A_{1} \oplus 4 A_{2}$
307. ${ }^{*} 4 A_{1} \oplus E_{7}$
308. ${ }^{*} 4 A_{1} \oplus D_{7}$
309. ${ }^{*} 4 A_{1} \oplus A_{7}$
310. ${ }^{*} 4 A_{1} \oplus A_{3} \oplus D_{4}$
311. ${ }^{*} 4 A_{1} \oplus A_{3} \oplus A_{4}$
312. ${ }^{*} 4 A_{1} \oplus A_{2} \oplus D_{5}$
313. ${ }^{*} 4 A_{1} \oplus A_{2} \oplus A_{5}$
314. ${ }^{*} 4 A_{1} \oplus 2 A_{2} \oplus A_{3}$
315. ${ }^{*} 5 A_{1} \oplus E_{6}$
316. ${ }^{*} 5 A_{1} \oplus D_{6}$
317. ${ }^{*} 5 A_{1} \oplus A_{6}$
318. ${ }^{*} 5 A_{1} \oplus 2 A_{3}$
319. ${ }^{*} 5 A_{1} \oplus A_{2} \oplus D_{4}$
320. ${ }^{*} 5 A_{1} \oplus A_{2} \oplus A_{4}$
321. ${ }^{*} 5 A_{1} \oplus 3 A_{2}$
322. ${ }^{*} 6 A_{1} \oplus D_{5}$
323. ${ }^{*} 6 A_{1} \oplus A_{5}$
324. ${ }^{*} 6 A_{1} \oplus A_{2} \oplus A_{3}$
325. $7 A_{1} \oplus D_{4}$
326. ${ }^{*} 7 A_{1} \oplus A_{4}$
327. ${ }^{*} 7 A_{1} \oplus 2 A_{2}$
328. $8 A_{1} \oplus A_{3}$
329. $9 A_{1} \oplus A_{2}$
$\operatorname{rank}(\Lambda)=12$
330. ${ }^{*} 2 E_{6}$
331. ${ }^{*} D_{12}$
332. ${ }^{*} D_{6} \oplus E_{6}$
333. ${ }^{*} 2 D_{6}$
334. ${ }^{*} D_{5} \oplus E_{7}$
335. ${ }^{*} D_{5} \oplus D_{7}$
336. ${ }^{*} D_{4} \oplus E_{8}$
337. ${ }^{*} D_{4} \oplus D_{8}$
338. ${ }^{*} 3 D_{4}$
339. ${ }^{*} A_{12}$
340. ${ }^{*} A_{8} \oplus D_{4}$
341. ${ }^{*} A_{7} \oplus D_{5}$
342. ${ }^{*} A_{6} \oplus E_{6}$
343. ${ }^{*} A_{6} \oplus D_{6}$
344. ${ }^{*} 2 A_{6}$
345. ${ }^{*} A_{5} \oplus E_{7}$
346. ${ }^{*} A_{5} \oplus D_{7}$
347. ${ }^{*} A_{5} \oplus A_{7}$
348. ${ }^{*} A_{4} \oplus E_{8}$
349. ${ }^{*} A_{4} \oplus D_{8}$
350. ${ }^{*} A_{4} \oplus 2 D_{4}$
351. ${ }^{*} A_{4} \oplus A_{8}$
352. ${ }^{*} 2 A_{4} \oplus D_{4}$
353. ${ }^{*} 3 A_{4}$
354. ${ }^{*} A_{3} \oplus D_{9}$
355. ${ }^{*} A_{3} \oplus D_{4} \oplus D_{5}$
356. ${ }^{*} A_{3} \oplus A_{9}$
357. ${ }^{*} A_{3} \oplus A_{5} \oplus D_{4}$
358. ${ }^{*} A_{3} \oplus A_{4} \oplus D_{5}$
359. ${ }^{*} A_{3} \oplus A_{4} \oplus A_{5}$
360. ${ }^{*} 2 A_{3} \oplus E_{6}$
361. ${ }^{*} 2 A_{3} \oplus D_{6}$
362. ${ }^{*} 2 A_{3} \oplus A_{6}$
363. ${ }^{*} 4 A_{3}$
364. ${ }^{*} A_{2} \oplus D_{10}$
365. ${ }^{*} A_{2} \oplus 2 D_{5}$
366. ${ }^{*} A_{2} \oplus D_{4} \oplus E_{6}$
367. ${ }^{*} A_{2} \oplus D_{4} \oplus D_{6}$
368. ${ }^{*} A_{2} \oplus A_{10}$
369. ${ }^{*} A_{2} \oplus A_{6} \oplus D_{4}$
370. ${ }^{*} A_{2} \oplus A_{5} \oplus D_{5}$
371. ${ }^{*} A_{2} \oplus 2 A_{5}$
372. ${ }^{*} A_{2} \oplus A_{4} \oplus E_{6}$
373. ${ }^{*} A_{2} \oplus A_{4} \oplus D_{6}$
374. ${ }^{*} A_{2} \oplus A_{4} \oplus A_{6}$
375. ${ }^{*} A_{2} \oplus A_{3} \oplus E_{7}$
376. ${ }^{*} A_{2} \oplus A_{3} \oplus D_{7}$
377. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{7}$
378. ${ }^{*} A_{2} \oplus 2 A_{3} \oplus D_{4}$
379. ${ }^{*} A_{2} \oplus 2 A_{3} \oplus A_{4}$
380. ${ }^{*} 2 A_{2} \oplus E_{8}$
381. ${ }^{*} 2 A_{2} \oplus D_{8}$
382. ${ }^{*} 2 A_{2} \oplus 2 D_{4}$
383. ${ }^{*} 2 A_{2} \oplus A_{8}$
384. ${ }^{*} 2 A_{2} \oplus A_{4} \oplus D_{4}$
385. ${ }^{*} 2 A_{2} \oplus 2 A_{4}$
386. ${ }^{*} 2 A_{2} \oplus A_{3} \oplus D_{5}$
387. ${ }^{*} 2 A_{2} \oplus A_{3} \oplus A_{5}$
388. ${ }^{*} 3 A_{2} \oplus E_{6}$
389. ${ }^{*} 3 A_{2} \oplus D_{6}$
390. ${ }^{*} 3 A_{2} \oplus A_{6}$
391. ${ }^{*} 3 A_{2} \oplus 2 A_{3}$
392. ${ }^{*} 4 A_{2} \oplus D_{4}$
393. ${ }^{*} 4 A_{2} \oplus A_{4}$
394. ${ }^{*} 6 A_{2}$
395. ${ }^{*} A_{1} \oplus D_{11}$
396. ${ }^{*} A_{1} \oplus D_{5} \oplus E_{6}$
397. ${ }^{*} A_{1} \oplus D_{5} \oplus D_{6}$
398. ${ }^{*} A_{1} \oplus D_{4} \oplus E_{7}$
399. ${ }^{*} A_{1} \oplus D_{4} \oplus D_{7}$
400. ${ }^{*} A_{1} \oplus A_{11}$
401. ${ }^{*} A_{1} \oplus A_{7} \oplus D_{4}$
402. ${ }^{*} A_{1} \oplus A_{6} \oplus D_{5}$
403. ${ }^{*} A_{1} \oplus A_{5} \oplus E_{6}$
404. ${ }^{*} A_{1} \oplus A_{5} \oplus D_{6}$
405. ${ }^{*} A_{1} \oplus A_{5} \oplus A_{6}$
406. ${ }^{*} A_{1} \oplus A_{4} \oplus E_{7}$
407. ${ }^{*} A_{1} \oplus A_{4} \oplus D_{7}$
408. ${ }^{*} A_{1} \oplus A_{4} \oplus A_{7}$
409. ${ }^{*} A_{1} \oplus A_{3} \oplus E_{8}$
410. ${ }^{*} A_{1} \oplus A_{3} \oplus D_{8}$
411. ${ }^{*} A_{1} \oplus A_{3} \oplus 2 D_{4}$
412. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{8}$
413. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{4} \oplus D_{4}$
414. ${ }^{*} A_{1} \oplus A_{3} \oplus 2 A_{4}$
415. ${ }^{*} A_{1} \oplus 2 A_{3} \oplus D_{5}$
416. ${ }^{*} A_{1} \oplus 2 A_{3} \oplus A_{5}$
417. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{9}$
418. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{4} \oplus D_{5}$
419. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{9}$
420. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{5} \oplus D_{4}$
421. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{4} \oplus D_{5}$
422. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{4} \oplus A_{5}$
423. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus E_{6}$
424. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus D_{6}$
425. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{6}$
426. ${ }^{*} A_{1} \oplus A_{2} \oplus 3 A_{3}$
427. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus E_{7}$
428. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus D_{7}$
429. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{7}$
430. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $D_{4}$
431. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $A_{4}$
432. ${ }^{*} A_{1} \oplus 3 A_{2} \oplus D_{5}$
433. ${ }^{*} A_{1} \oplus 3 A_{2} \oplus A_{5}$
434. ${ }^{*} A_{1} \oplus 4 A_{2} \oplus A_{3}$
435. ${ }^{*} 2 A_{1} \oplus D_{10}$
436. ${ }^{*} 2 A_{1} \oplus 2 D_{5}$
437. ${ }^{*} 2 A_{1} \oplus D_{4} \oplus E_{6}$
438. ${ }^{*} 2 A_{1} \oplus D_{4} \oplus D_{6}$
439. ${ }^{*} 2 A_{1} \oplus A_{10}$
440. ${ }^{*} 2 A_{1} \oplus A_{6} \oplus D_{4}$
441. ${ }^{*} 2 A_{1} \oplus A_{5} \oplus D_{5}$
442. ${ }^{*} 2 A_{1} \oplus 2 A_{5}$
443. ${ }^{*} 2 A_{1} \oplus A_{4} \oplus E_{6}$
444. ${ }^{*} 2 A_{1} \oplus A_{4} \oplus D_{6}$
445. ${ }^{*} 2 A_{1} \oplus A_{4} \oplus A_{6}$
446. ${ }^{*} 2 A_{1} \oplus A_{3} \oplus E_{7}$
447. ${ }^{*} 2 A_{1} \oplus A_{3} \oplus D_{7}$
448. ${ }^{*} 2 A_{1} \oplus A_{3} \oplus A_{7}$
449. ${ }^{*} 2 A_{1} \oplus 2 A_{3} \oplus D_{4}$
450. ${ }^{*} 2 A_{1} \oplus 2 A_{3} \oplus A_{4}$
451. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus E_{8}$
452. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus D_{8}$
453. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus 2 D_{4}$
454. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{8}$
455. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $D_{4}$
456. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus 2 A_{4}$
457. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $D_{5}$
458. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{5}$
459. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus E_{6}$ 503. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus D_{6}$ 504. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus A_{6}$ 505. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus 2 A_{3}$ 506. ${ }^{*} 2 A_{1} \oplus 3 A_{2} \oplus D_{4}$ 507. ${ }^{*} 2 A_{1} \oplus 3 A_{2} \oplus A_{4}$ 508. ${ }^{*} 2 A_{1} \oplus 5 A_{2}$
460. ${ }^{*} 3 A_{1} \oplus D_{9}$
461. ${ }^{*} 3 A_{1} \oplus D_{4} \oplus D_{5}$
462. ${ }^{*} 3 A_{1} \oplus A_{9}$
463. ${ }^{*} 3 A_{1} \oplus A_{5} \oplus D_{4}$
464. ${ }^{*} 3 A_{1} \oplus A_{4} \oplus D_{5}$
465. ${ }^{*} 3 A_{1} \oplus A_{4} \oplus A_{5}$
466. ${ }^{*} 3 A_{1} \oplus A_{3} \oplus E_{6}$
467. ${ }^{*} 3 A_{1} \oplus A_{3} \oplus D_{6}$
468. ${ }^{*} 3 A_{1} \oplus A_{3} \oplus A_{6}$
469. ${ }^{*} 3 A_{1} \oplus 3 A_{3}$
470. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus E_{7}$
471. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus D_{7}$
472. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus A_{7}$
473. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $D_{4}$
474. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{4}$
475. ${ }^{*} 3 A_{1} \oplus 2 A_{2} \oplus D_{5}$

| 525. | ${ }^{*} 3 A_{1} \oplus 2 A_{2} \oplus A_{5}$ | $\underline{\operatorname{rank}(\Lambda)=13}$ |
| :---: | :---: | :---: |
| 526. | ${ }^{*} 3 A_{1} \oplus 3 A_{2} \oplus A_{3}$ | 562. ${ }^{*} E_{6} \oplus E_{7}$ |
| 527. | ${ }^{*} 4 A_{1} \oplus E_{8}$ | 563. ${ }^{*} D_{13}$ |
| 528. | ${ }^{*} 4 A_{1} \oplus D_{8}$ | 564. ${ }^{*} D_{7} \oplus E_{6}$ |
| 529. | $4 A_{1} \oplus 2 D_{4}$ | 565. ${ }^{*} D_{6} \oplus E_{7}$ |
| 530. | ${ }^{*} 4 A_{1} \oplus A_{8}$ | 566. ${ }^{*} D_{6} \oplus D_{7}$ |
| 531. | ${ }^{*} 4 A_{1} \oplus A_{4} \oplus D_{4}$ | 567. ${ }^{*} D_{5} \oplus E_{8}$ |
| 532. | ${ }^{*} 4 A_{1} \oplus 2 A_{4}$ | 568. ${ }^{*} D_{5} \oplus D_{8}$ |
| 533. | ${ }^{*} 4 A_{1} \oplus A_{3} \oplus D_{5}$ | 569. ${ }^{*} D_{4} \oplus D_{9}$ |
| 534. | ${ }^{*} 4 A_{1} \oplus A_{3} \oplus A_{5}$ | 570. ${ }^{*} 2 D_{4} \oplus D_{5}$ |
| 535. | ${ }^{*} 4 A_{1} \oplus A_{2} \oplus E_{6}$ | 571. ${ }^{*} A_{13}$ |
| 536. | ${ }^{*} 4 A_{1} \oplus A_{2} \oplus D_{6}$ | 572. ${ }^{*} A_{9} \oplus D_{4}$ |
| 537. | ${ }^{*} 4 A_{1} \oplus A_{2} \oplus A_{6}$ | 573. ${ }^{*} A_{8} \oplus D_{5}$ |
| 538. | ${ }^{*} 4 A_{1} \oplus A_{2} \oplus 2 A_{3}$ | 574. ${ }^{*} A_{7} \oplus E_{6}$ |
| 539. | ${ }^{*} 4 A_{1} \oplus 2 A_{2} \oplus D_{4}$ | 575. ${ }^{*} A_{7} \oplus D_{6}$ |
| 540. | ${ }^{*} 4 A_{1} \oplus 2 A_{2} \oplus A_{4}$ | 576. ${ }^{*} A_{6} \oplus E_{7}$ |
| 541. | ${ }^{*} 4 A_{1} \oplus 4 A_{2}$ | 577. ${ }^{*} A_{6} \oplus D_{7}$ |
| 542. | ${ }^{*} 5 A_{1} \oplus E_{7}$ | 578. ${ }^{*} A_{6} \oplus A_{7}$ |
| 543. | ${ }^{*} 5 A_{1} \oplus D_{7}$ | 579. ${ }^{*} A_{5} \oplus E_{8}$ |
| 544. | ${ }^{*} 5 A_{1} \oplus A_{7}$ | 580. ${ }^{*} A_{5} \oplus D_{8}$ |
| 545. | $5 A_{1} \oplus A_{3} \oplus D_{4}$ | 581. ${ }^{*} A_{5} \oplus 2 D_{4}$ |
| 546. | ${ }^{*} 5 A_{1} \oplus A_{3} \oplus A_{4}$ | 582. ${ }^{*} A_{5} \oplus A_{8}$ |
| 547. | ${ }^{*} 5 A_{1} \oplus A_{2} \oplus D_{5}$ | 583. ${ }^{*} A_{4} \oplus D_{9}$ |
| 548. | ${ }^{*} 5 A_{1} \oplus A_{2} \oplus A_{5}$ | 584. ${ }^{*} A_{4} \oplus D_{4} \oplus D_{5}$ |
| 549. | ${ }^{*} 5 A_{1} \oplus 2 A_{2} \oplus A_{3}$ | 585. ${ }^{*} A_{4} \oplus A_{9}$ |
| 550. | ${ }^{*} 6 A_{1} \oplus E_{6}$ | 586. ${ }^{*} A_{4} \oplus A_{5} \oplus D_{4}$ |
| 551. | $6 A_{1} \oplus D_{6}$ | 587. ${ }^{*} 2 A_{4} \oplus D_{5}$ |
| 552. | ${ }^{6} 6 A_{1} \oplus A_{6}$ | 588. ${ }^{*} 2 A_{4} \oplus A_{5}$ |
| 553. | $6 A_{1} \oplus 2 A_{3}$ | 589. ${ }^{*} A_{3} \oplus D_{10}$ |
| 554. | $6 A_{1} \oplus A_{2} \oplus D_{4}$ | 590. ${ }^{*} A_{3} \oplus 2 D_{5}$ |
| 555. | ${ }^{*} 6 A_{1} \oplus A_{2} \oplus A_{4}$ | 591. ${ }^{*} A_{3} \oplus D_{4} \oplus E_{6}$ |
| 556. | ${ }^{*} 6 A_{1} \oplus 3 A_{2}$ | 592. ${ }^{*} A_{3} \oplus D_{4} \oplus D_{6}$ |
| 557. | $7 A_{1} \oplus D_{5}$ | 593. ${ }^{*} A_{3} \oplus A_{10}$ |
| 558. | $7 A_{1} \oplus A_{5}$ | 594. ${ }^{*} A_{3} \oplus A_{6} \oplus D_{4}$ |
| 559. | $7 A_{1} \oplus A_{2} \oplus A_{3}$ | 595. ${ }^{*} A_{3} \oplus A_{5} \oplus D_{5}$ |
| 560. | $8 A_{1} \oplus A_{4}$ | 596. ${ }^{*} A_{3} \oplus 2 A_{5}$ |
| 561. | $8 A_{1} \oplus 2 A_{2}$ | 597. ${ }^{*} A_{3} \oplus A_{4} \oplus E_{6}$ |

598. ${ }^{*} A_{3} \oplus A_{4} \oplus D_{6}$
599. ${ }^{*} A_{3} \oplus A_{4} \oplus A_{6}$
600. ${ }^{*} 2 A_{3} \oplus E_{7}$
601. ${ }^{*} 2 A_{3} \oplus D_{7}$
602. ${ }^{*} 2 A_{3} \oplus A_{7}$
603. ${ }^{*} 3 A_{3} \oplus D_{4}$
604. ${ }^{*} 3 A_{3} \oplus A_{4}$
605. ${ }^{*} A_{2} \oplus D_{11}$
606. ${ }^{*} A_{2} \oplus D_{5} \oplus E_{6}$
607. ${ }^{*} A_{2} \oplus D_{5} \oplus D_{6}$
608. ${ }^{*} A_{2} \oplus D_{4} \oplus E_{7}$
609. ${ }^{*} A_{2} \oplus D_{4} \oplus D_{7}$
610. ${ }^{*} A_{2} \oplus A_{11}$
611. ${ }^{*} A_{2} \oplus A_{7} \oplus D_{4}$
612. ${ }^{*} A_{2} \oplus A_{6} \oplus D_{5}$
613. ${ }^{*} A_{2} \oplus A_{5} \oplus E_{6}$
614. ${ }^{*} A_{2} \oplus A_{5} \oplus D_{6}$
615. ${ }^{*} A_{2} \oplus A_{5} \oplus A_{6}$
616. ${ }^{*} A_{2} \oplus A_{4} \oplus E_{7}$
617. ${ }^{*} A_{2} \oplus A_{4} \oplus D_{7}$
618. ${ }^{*} A_{2} \oplus A_{4} \oplus A_{7}$
619. ${ }^{*} A_{2} \oplus A_{3} \oplus E_{8}$
620. ${ }^{*} A_{2} \oplus A_{3} \oplus D_{8}$
621. ${ }^{*} A_{2} \oplus A_{3} \oplus 2 D_{4}$
622. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{8}$
623. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{4} \oplus D_{4}$
624. ${ }^{*} A_{2} \oplus A_{3} \oplus 2 A_{4}$
625. ${ }^{*} A_{2} \oplus 2 A_{3} \oplus D_{5}$
626. ${ }^{*} A_{2} \oplus 2 A_{3} \oplus A_{5}$
627. ${ }^{*} 2 A_{2} \oplus D_{9}$
628. ${ }^{*} 2 A_{2} \oplus D_{4} \oplus D_{5}$
629. ${ }^{*} 2 A_{2} \oplus A_{9}$
630. ${ }^{*} 2 A_{2} \oplus A_{5} \oplus D_{4}$
631. ${ }^{*} 2 A_{2} \oplus A_{4} \oplus D_{5}$
632. ${ }^{*} 2 A_{2} \oplus A_{4} \oplus A_{5}$
633. ${ }^{*} 2 A_{2} \oplus A_{3} \oplus E_{6}$
634. ${ }^{*} 2 A_{2} \oplus A_{3} \oplus D_{6}$
635. ${ }^{*} 2 A_{2} \oplus A_{3} \oplus A_{6}$
636. ${ }^{*} 2 A_{2} \oplus 3 A_{3}$
637. ${ }^{*} 3 A_{2} \oplus E_{7}$
638. ${ }^{*} 3 A_{2} \oplus D_{7}$
639. ${ }^{*} 3 A_{2} \oplus A_{7}$
640. ${ }^{*} 3 A_{2} \oplus A_{3} \oplus D_{4}$
641. ${ }^{*} 3 A_{2} \oplus A_{3} \oplus A_{4}$
642. ${ }^{*} 4 A_{2} \oplus D_{5}$
643. ${ }^{*} 4 A_{2} \oplus A_{5}$
644. ${ }^{*} 5 A_{2} \oplus A_{3}$
645. ${ }^{*} A_{1} \oplus 2 E_{6}$
646. ${ }^{*} A_{1} \oplus D_{12}$
647. ${ }^{*} A_{1} \oplus D_{6} \oplus E_{6}$
648. ${ }^{*} A_{1} \oplus 2 D_{6}$
649. ${ }^{*} A_{1} \oplus D_{5} \oplus E_{7}$
650. ${ }^{*} A_{1} \oplus D_{5} \oplus D_{7}$
651. ${ }^{*} A_{1} \oplus D_{4} \oplus E_{8}$
652. ${ }^{*} A_{1} \oplus D_{4} \oplus D_{8}$
653. $A_{1} \oplus 3 D_{4}$
654. ${ }^{*} A_{1} \oplus A_{12}$
655. ${ }^{*} A_{1} \oplus A_{8} \oplus D_{4}$
656. ${ }^{*} A_{1} \oplus A_{7} \oplus D_{5}$
657. ${ }^{*} A_{1} \oplus A_{6} \oplus E_{6}$
658. ${ }^{*} A_{1} \oplus A_{6} \oplus D_{6}$
659. ${ }^{*} A_{1} \oplus 2 A_{6}$
660. ${ }^{*} A_{1} \oplus A_{5} \oplus E_{7}$
661. ${ }^{*} A_{1} \oplus A_{5} \oplus D_{7}$
662. ${ }^{*} A_{1} \oplus A_{5} \oplus A_{7}$
663. ${ }^{*} A_{1} \oplus A_{4} \oplus E_{8}$
664. ${ }^{*} A_{1} \oplus A_{4} \oplus D_{8}$
665. ${ }^{*} A_{1} \oplus A_{4} \oplus 2 D_{4}$
666. ${ }^{*} A_{1} \oplus A_{4} \oplus A_{8}$
667. ${ }^{*} A_{1} \oplus 2 A_{4} \oplus D_{4}$
668. ${ }^{*} A_{1} \oplus 3 A_{4}$
669. ${ }^{*} A_{1} \oplus A_{3} \oplus D_{9}$
670. ${ }^{*} A_{1} \oplus A_{3} \oplus D_{4} \oplus D_{5}$
671. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{9}$
672. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{5} \oplus D_{4}$
673. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{4} \oplus D_{5}$
674. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{4} \oplus A_{5}$
675. ${ }^{*} A_{1} \oplus 2 A_{3} \oplus E_{6}$
676. ${ }^{*} A_{1} \oplus 2 A_{3} \oplus D_{6}$
677. ${ }^{*} A_{1} \oplus 2 A_{3} \oplus A_{6}$
678. ${ }^{*} A_{1} \oplus 4 A_{3}$
679. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{10}$
680. ${ }^{*} A_{1} \oplus A_{2} \oplus 2 D_{5}$
681. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{4} \oplus E_{6}$
682. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{4} \oplus D_{6}$
683. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{10}$
684. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{6} \oplus D_{4}$
685. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{5} \oplus D_{5}$
686. ${ }^{*} A_{1} \oplus A_{2} \oplus 2 A_{5}$
687. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{4} \oplus E_{6}$
688. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{4} \oplus D_{6}$
689. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{4} \oplus A_{6}$
690. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus E_{7}$
691. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus D_{7}$
692. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{7}$
693. ${ }^{*} A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus$ $D_{4}$
694. ${ }^{*} A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus$ $A_{4}$
695. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus E_{8}$
696. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus D_{8}$
697. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus 2 D_{4}$
698. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{8}$
699. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $D_{4}$
700. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus 2 A_{4}$
701. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $D_{5}$
702. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $A_{5}$
703. ${ }^{*} A_{1} \oplus 3 A_{2} \oplus E_{6}$
704. ${ }^{*} A_{1} \oplus 3 A_{2} \oplus D_{6}$
705. ${ }^{*} A_{1} \oplus 3 A_{2} \oplus A_{6}$
706. ${ }^{*} A_{1} \oplus 3 A_{2} \oplus 2 A_{3}$
707. ${ }^{*} A_{1} \oplus 4 A_{2} \oplus D_{4}$
708. ${ }^{*} A_{1} \oplus 4 A_{2} \oplus A_{4}$
709. $A_{1} \oplus 6 A_{2}$
710. ${ }^{*} 2 A_{1} \oplus D_{11}$
711. ${ }^{*} 2 A_{1} \oplus D_{5} \oplus E_{6}$
712. ${ }^{*} 2 A_{1} \oplus D_{5} \oplus D_{6}$
713. ${ }^{*} 2 A_{1} \oplus D_{4} \oplus E_{7}$
714. ${ }^{*} 2 A_{1} \oplus D_{4} \oplus D_{7}$
715. ${ }^{*} 2 A_{1} \oplus A_{11}$
716. ${ }^{*} 2 A_{1} \oplus A_{7} \oplus D_{4}$
717. ${ }^{*} 2 A_{1} \oplus A_{6} \oplus D_{5}$
718. ${ }^{*} 2 A_{1} \oplus A_{5} \oplus E_{6}$
719. ${ }^{*} 2 A_{1} \oplus A_{5} \oplus D_{6}$
720. ${ }^{*} 2 A_{1} \oplus A_{5} \oplus A_{6}$
721. ${ }^{*} 2 A_{1} \oplus A_{4} \oplus E_{7}$
722. ${ }^{*} 2 A_{1} \oplus A_{4} \oplus D_{7}$
723. ${ }^{*} 2 A_{1} \oplus A_{4} \oplus A_{7}$
724. ${ }^{*} 2 A_{1} \oplus A_{3} \oplus E_{8}$
725. ${ }^{*} 2 A_{1} \oplus A_{3} \oplus D_{8}$
726. $2 A_{1} \oplus A_{3} \oplus 2 D_{4}$
727. ${ }^{*} 2 A_{1} \oplus A_{3} \oplus A_{8}$
728. ${ }^{*} 2 A_{1} \oplus A_{3} \oplus A_{4} \oplus$ $D_{4}$
729. ${ }^{*} 2 A_{1} \oplus A_{3} \oplus 2 A_{4}$
730. ${ }^{*} 2 A_{1} \oplus 2 A_{3} \oplus D_{5}$
731. ${ }^{*} 2 A_{1} \oplus 2 A_{3} \oplus A_{5}$
732. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus D_{9}$
733. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus D_{4} \oplus$ $D_{5}$
734. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{9}$
735. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{5} \oplus$ $D_{4}$
736. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $D_{5}$
737. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $A_{5}$
738. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $E_{6}$
739. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $D_{6}$
740. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{6}$
741. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus 3 A_{3}$
742. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus E_{7}$
743. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus D_{7}$
744. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus A_{7}$
745. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $D_{4}$
746. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $A_{4}$
747. ${ }^{*} 2 A_{1} \oplus 3 A_{2} \oplus D_{5}$
748. ${ }^{*} 2 A_{1} \oplus 3 A_{2} \oplus A_{5}$
749. ${ }^{*} 2 A_{1} \oplus 4 A_{2} \oplus A_{3}$
750. ${ }^{*} 3 A_{1} \oplus D_{10}$
751. ${ }^{*} 3 A_{1} \oplus 2 D_{5}$
752. ${ }^{*} 3 A_{1} \oplus D_{4} \oplus E_{6}$
753. $3 A_{1} \oplus D_{4} \oplus D_{6}$
754. ${ }^{*} 3 A_{1} \oplus A_{10}$
755. ${ }^{*} 3 A_{1} \oplus A_{6} \oplus D_{4}$
756. ${ }^{*} 3 A_{1} \oplus A_{5} \oplus D_{5}$
757. ${ }^{*} 3 A_{1} \oplus 2 A_{5}$
758. ${ }^{*} 3 A_{1} \oplus A_{4} \oplus E_{6}$
759. ${ }^{*} 3 A_{1} \oplus A_{4} \oplus D_{6}$
760. ${ }^{*} 3 A_{1} \oplus A_{4} \oplus A_{6}$
761. ${ }^{*} 3 A_{1} \oplus A_{3} \oplus E_{7}$
762. ${ }^{*} 3 A_{1} \oplus A_{3} \oplus D_{7}$
763. ${ }^{*} 3 A_{1} \oplus A_{3} \oplus A_{7}$
764. $3 A_{1} \oplus 2 A_{3} \oplus D_{4}$
765. ${ }^{*} 3 A_{1} \oplus 2 A_{3} \oplus A_{4}$
766. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus E_{8}$
767. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus D_{8}$
768. $3 A_{1} \oplus A_{2} \oplus 2 D_{4}$
769. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus A_{8}$
770. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $D_{4}$
771. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus 2 A_{4}$
772. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $D_{5}$
773. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{5}$
774. ${ }^{*} 3 A_{1} \oplus 2 A_{2} \oplus E_{6}$
775. ${ }^{*} 3 A_{1} \oplus 2 A_{2} \oplus D_{6}$
776. ${ }^{*} 3 A_{1} \oplus 2 A_{2} \oplus A_{6}$
777. ${ }^{*} 3 A_{1} \oplus 2 A_{2} \oplus 2 A_{3}$
778. ${ }^{*} 3 A_{1} \oplus 3 A_{2} \oplus D_{4}$
779. ${ }^{*} 3 A_{1} \oplus 3 A_{2} \oplus A_{4}$
780. ${ }^{*} 3 A_{1} \oplus 5 A_{2}$
781. ${ }^{*} 4 A_{1} \oplus D_{9}$
782. $4 A_{1} \oplus D_{4} \oplus D_{5}$
783. ${ }^{*} 4 A_{1} \oplus A_{9}$
784. $4 A_{1} \oplus A_{5} \oplus D_{4}$
785. ${ }^{*} 4 A_{1} \oplus A_{4} \oplus D_{5}$
786. ${ }^{*} 4 A_{1} \oplus A_{4} \oplus A_{5}$ 787. ${ }^{*} 4 A_{1} \oplus A_{3} \oplus E_{6}$
787. $4 A_{1} \oplus A_{3} \oplus D_{6}$
788. ${ }^{*} 4 A_{1} \oplus A_{3} \oplus A_{6}$
789. $4 A_{1} \oplus 3 A_{3}$
790. ${ }^{*} 4 A_{1} \oplus A_{2} \oplus E_{7}$
791. ${ }^{*} 4 A_{1} \oplus A_{2} \oplus D_{7}$
792. ${ }^{*} 4 A_{1} \oplus A_{2} \oplus A_{7}$
793. $4 A_{1} \oplus A_{2} \oplus A_{3} \oplus D_{4}$
794. ${ }^{*} 4 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{4}$
795. ${ }^{*} 4 A_{1} \oplus 2 A_{2} \oplus D_{5}$
796. ${ }^{*} 4 A_{1} \oplus 2 A_{2} \oplus A_{5}$
797. ${ }^{*} 4 A_{1} \oplus 3 A_{2} \oplus A_{3}$
798. ${ }^{*} 5 A_{1} \oplus E_{8}$
799. $5 A_{1} \oplus D_{8}$
800. ${ }^{*} 5 A_{1} \oplus A_{8}$
801. $5 A_{1} \oplus A_{4} \oplus D_{4}$
802. ${ }^{*} 5 A_{1} \oplus 2 A_{4}$
803. $5 A_{1} \oplus A_{3} \oplus D_{5}$
804. $5 A_{1} \oplus A_{3} \oplus A_{5}$
805. ${ }^{*} 5 A_{1} \oplus A_{2} \oplus E_{6}$

| 807. $5 A_{1} \oplus A_{2} \oplus D_{6}$ | 843. ${ }^{*} A_{7} \oplus D_{7}$ |
| :---: | :---: |
| 808. ${ }^{*} 5 A_{1} \oplus A_{2} \oplus A_{6}$ | 844. ${ }^{*} 2 A_{7}$ |
| 809. $5 A_{1} \oplus A_{2} \oplus 2 A_{3}$ | 845. ${ }^{*} A_{6} \oplus E_{8}$ |
| 810. $5 A_{1} \oplus 2 A_{2} \oplus D_{4}$ | 846. ${ }^{*} A_{6} \oplus D_{8}$ |
| 811. ${ }^{*} 5 A_{1} \oplus 2 A_{2} \oplus A_{4}$ | 847. ${ }^{*} A_{6} \oplus 2 D_{4}$ |
| 812. ${ }^{*} 5 A_{1} \oplus 4 A_{2}$ | 848. ${ }^{*} A_{6} \oplus A_{8}$ |
| 813. $6 A_{1} \oplus E_{7}$ | 849. ${ }^{*} A_{5} \oplus D_{9}$ |
| 814. $6 A_{1} \oplus D_{7}$ | 850. ${ }^{*} A_{5} \oplus D_{4} \oplus D_{5}$ |
| 815. $6 A_{1} \oplus A_{7}$ | 851. ${ }^{*} A_{5} \oplus A_{9}$ |
| 816. $6 A_{1} \oplus A_{3} \oplus A_{4}$ | 852. ${ }^{*} 2 A_{5} \oplus D_{4}$ |
| 817. $6 A_{1} \oplus A_{2} \oplus D_{5}$ | 853. ${ }^{*} A_{4} \oplus D_{10}$ |
| 818. $6 A_{1} \oplus A_{2} \oplus A_{5}$ | 854. ${ }^{*} A_{4} \oplus 2 D_{5}$ |
| 819. $6 A_{1} \oplus 2 A_{2} \oplus A_{3}$ | 855. ${ }^{*} A_{4} \oplus D_{4} \oplus E_{6}$ |
| 820. $7 A_{1} \oplus E_{6}$ | 856. ${ }^{*} A_{4} \oplus D_{4} \oplus D_{6}$ |
| 821. $7 A_{1} \oplus A_{6}$ | 857. ${ }^{*} A_{4} \oplus A_{10}$ |
| 822. $7 A_{1} \oplus A_{2} \oplus A_{4}$ | 858. ${ }^{*} A_{4} \oplus A_{6} \oplus D_{4}$ |
| 823. $7 A_{1} \oplus 3 A_{2}$ | 859. ${ }^{*} A_{4} \oplus A_{5} \oplus D_{5}$ |
| $\underline{\operatorname{rank}}(\Lambda)=14$ | 860. ${ }^{*} A_{4} \oplus 2 A_{5}$ |
| 824. ${ }^{*} 2 E_{7}$ | 861. ${ }^{*} 2 A_{4} \oplus E_{6}$ |
| 825. ${ }^{*} E_{6} \oplus E_{8}$ | 862. ${ }^{*} 2 A_{4} \oplus D_{6}$ |
| 826. ${ }^{*} D_{14}$ | 863. ${ }^{*} 2 A_{4} \oplus A_{6}$ |
| 827. ${ }^{*} D_{8} \oplus E_{6}$ | 864. ${ }^{*} A_{3} \oplus D_{11}$ |
| 828. ${ }^{*} D_{7} \oplus E_{7}$ | 865. ${ }^{*} A_{3} \oplus D_{5} \oplus E_{6}$ |
| 829. ${ }^{*} 2 D_{7}$ | 866. ${ }^{*} A_{3} \oplus D_{5} \oplus D_{6}$ |
| 830. ${ }^{*} D_{6} \oplus E_{8}$ | 867. ${ }^{*} A_{3} \oplus D_{4} \oplus E_{7}$ |
| 831. ${ }^{*} D_{6} \oplus D_{8}$ | 868. ${ }^{*} A_{3} \oplus D_{4} \oplus D_{7}$ |
| 832. ${ }^{*} D_{5} \oplus D_{9}$ | 869. ${ }^{*} A_{3} \oplus A_{11}$ |
| 833. ${ }^{*} D_{4} \oplus D_{10}$ | 870. ${ }^{*} A_{3} \oplus A_{7} \oplus D_{4}$ |
| 834. ${ }^{*} D_{4} \oplus 2 D_{5}$ | 871. ${ }^{*} A_{3} \oplus A_{6} \oplus D_{5}$ |
| 835. ${ }^{*} 2 D_{4} \oplus E_{6}$ | 872. ${ }^{*} A_{3} \oplus A_{5} \oplus E_{6}$ |
| 836. $2 D_{4} \oplus D_{6}$ | 873. ${ }^{*} A_{3} \oplus A_{5} \oplus D_{6}$ |
| 837. ${ }^{*} A_{14}$ | 874. ${ }^{*} A_{3} \oplus A_{5} \oplus A_{6}$ |
| 838. ${ }^{*} A_{10} \oplus D_{4}$ | 875. ${ }^{*} A_{3} \oplus A_{4} \oplus E_{7}$ |
| 839. ${ }^{*} A_{9} \oplus D_{5}$ | 876. ${ }^{*} A_{3} \oplus A_{4} \oplus D_{7}$ |
| 840. ${ }^{*} A_{8} \oplus E_{6}$ | 877. ${ }^{*} A_{3} \oplus A_{4} \oplus A_{7}$ |
| 841. ${ }^{*} A_{8} \oplus D_{6}$ | 878. ${ }^{*} 2 A_{3} \oplus E_{8}$ |
| 2. ${ }^{*} A_{7} \oplus E_{7}$ | 879. ${ }^{*} 2 A_{3} \oplus D_{8}$ |

843. ${ }^{*} A_{7} \oplus D_{7}$
844. ${ }^{*} 2 A_{7}$
845. ${ }^{*} A_{6} \oplus E_{8}$
846. $\quad A_{6} \oplus D_{8}$
847. ${ }^{*} A_{6} \oplus A_{8}$
848. ${ }^{*} A_{5} \oplus D_{9}$
. $A_{5} \oplus D_{4} \oplus D_{5}$
849. ${ }^{*} A_{5} \oplus A_{9}$
850. ${ }^{*} 2 A_{5} \oplus D_{4}$
851. $A_{4} \oplus D_{10}$
852. ${ }^{*} A_{4} \oplus D_{4} \oplus E_{6}$
853. ${ }^{*} A_{4} \oplus D_{4} \oplus D_{6}$
854. $A_{4} \oplus A_{10}$
855. ${ }^{*} A_{4} \oplus A_{5} \oplus D_{5}$
856. ${ }^{*} A_{4} \oplus 2 A_{5}$
${ }^{*} 2 A_{4} \oplus E_{6}$
857. ${ }^{*} 2 A_{4} \oplus A_{6}$
858.     * $A_{3} \oplus D_{11}$
859. ${ }^{*} A_{3} \oplus D_{5} \oplus D_{6}$
860. ${ }^{*} A_{3} \oplus D_{4} \oplus E_{7}$
$A_{3} \oplus D_{4} \oplus D_{7}$
861. ${ }^{*} A_{3} \oplus A_{7} \oplus D_{4}$
862. ${ }^{*} A_{3} \oplus A_{6} \oplus D_{5}$
863. ${ }^{*} A_{3} \oplus A_{5} \oplus D_{6}$
864. ${ }^{*} A_{3} \oplus A_{5} \oplus A_{6}$
865. ${ }^{*} A_{3} \oplus A_{4} \oplus E_{7}$
866. ${ }^{*} A_{3} \oplus A_{4} \oplus A_{7}$
867. ${ }^{*} 2 A_{3} \oplus D_{8}$
868. $2 A_{3} \oplus 2 D_{4}$
869. ${ }^{*} 2 A_{3} \oplus A_{8}$
870. ${ }^{*} 2 A_{3} \oplus A_{4} \oplus D_{4}$
871. ${ }^{*} 2 A_{3} \oplus 2 A_{4}$
872. ${ }^{*} 3 A_{3} \oplus D_{5}$
873. ${ }^{*} 3 A_{3} \oplus A_{5}$
874. ${ }^{*} A_{2} \oplus 2 E_{6}$
875. ${ }^{*} A_{2} \oplus D_{12}$
876. ${ }^{*} A_{2} \oplus D_{6} \oplus E_{6}$
877. ${ }^{*} A_{2} \oplus 2 D_{6}$
878. ${ }^{*} A_{2} \oplus D_{5} \oplus E_{7}$
879. ${ }^{*} A_{2} \oplus D_{5} \oplus D_{7}$
880. ${ }^{*} A_{2} \oplus D_{4} \oplus E_{8}$
881. ${ }^{*} A_{2} \oplus D_{4} \oplus D_{8}$
882. $A_{2} \oplus 3 D_{4}$
883. ${ }^{*} A_{2} \oplus A_{12}$
884. ${ }^{*} A_{2} \oplus A_{8} \oplus D_{4}$
885. ${ }^{*} A_{2} \oplus A_{7} \oplus D_{5}$
886. ${ }^{*} A_{2} \oplus A_{6} \oplus E_{6}$
887. ${ }^{*} A_{2} \oplus A_{6} \oplus D_{6}$
888. ${ }^{*} A_{2} \oplus 2 A_{6}$
889. ${ }^{*} A_{2} \oplus A_{5} \oplus E_{7}$
890. ${ }^{*} A_{2} \oplus A_{5} \oplus D_{7}$
891. ${ }^{*} A_{2} \oplus A_{5} \oplus A_{7}$
892. ${ }^{*} A_{2} \oplus A_{4} \oplus E_{8}$
893. ${ }^{*} A_{2} \oplus A_{4} \oplus D_{8}$
894. ${ }^{*} A_{2} \oplus A_{4} \oplus 2 D_{4}$
895. ${ }^{*} A_{2} \oplus A_{4} \oplus A_{8}$
896. ${ }^{*} A_{2} \oplus 2 A_{4} \oplus D_{4}$
897. ${ }^{*} A_{2} \oplus 3 A_{4}$
898. ${ }^{*} A_{2} \oplus A_{3} \oplus D_{9}$
899. ${ }^{*} A_{2} \oplus A_{3} \oplus D_{4} \oplus D_{5}$
900. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{9}$
901. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{5} \oplus D_{4}$
902. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{4} \oplus D_{5}$
903. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{4} \oplus A_{5}$
904. ${ }^{*} A_{2} \oplus 2 A_{3} \oplus E_{6}$
905. ${ }^{*} A_{2} \oplus 2 A_{3} \oplus D_{6}$
906. ${ }^{*} A_{2} \oplus 2 A_{3} \oplus A_{6}$
907. ${ }^{*} A_{2} \oplus 4 A_{3}$
908. ${ }^{*} 2 A_{2} \oplus D_{10}$
909. ${ }^{*} 2 A_{2} \oplus 2 D_{5}$
910. ${ }^{*} 2 A_{2} \oplus D_{4} \oplus E_{6}$
911. ${ }^{*} 2 A_{2} \oplus D_{4} \oplus D_{6}$
912. ${ }^{*} 2 A_{2} \oplus A_{10}$
913. ${ }^{*} 2 A_{2} \oplus A_{6} \oplus D_{4}$
914. ${ }^{*} 2 A_{2} \oplus A_{5} \oplus D_{5}$
915. ${ }^{*} 2 A_{2} \oplus 2 A_{5}$
916. ${ }^{*} 2 A_{2} \oplus A_{4} \oplus E_{6}$
917. ${ }^{*} 2 A_{2} \oplus A_{4} \oplus D_{6}$
918. ${ }^{*} 2 A_{2} \oplus A_{4} \oplus A_{6}$
919. ${ }^{*} 2 A_{2} \oplus A_{3} \oplus E_{7}$
920. ${ }^{*} 2 A_{2} \oplus A_{3} \oplus D_{7}$
921. ${ }^{*} 2 A_{2} \oplus A_{3} \oplus A_{7}$
922. ${ }^{*} 2 A_{2} \oplus 2 A_{3} \oplus D_{4}$
923. ${ }^{*} 2 A_{2} \oplus 2 A_{3} \oplus A_{4}$
924. ${ }^{*} 3 A_{2} \oplus E_{8}$
925. ${ }^{*} 3 A_{2} \oplus D_{8}$
926. ${ }^{*} 3 A_{2} \oplus 2 D_{4}$
927. ${ }^{*} 3 A_{2} \oplus A_{8}$
928. ${ }^{*} 3 A_{2} \oplus A_{4} \oplus D_{4}$
929. ${ }^{*} 3 A_{2} \oplus 2 A_{4}$
930. ${ }^{*} 3 A_{2} \oplus A_{3} \oplus D_{5}$
931. ${ }^{*} 3 A_{2} \oplus A_{3} \oplus A_{5}$
932. $4 A_{2} \oplus E_{6}$
933. ${ }^{*} 4 A_{2} \oplus D_{6}$
934. ${ }^{*} 4 A_{2} \oplus A_{6}$
935. ${ }^{*} 4 A_{2} \oplus 2 A_{3}$
936. $5 A_{2} \oplus D_{4}$
937. $5 A_{2} \oplus A_{4}$
938. ${ }^{*} A_{1} \oplus E_{6} \oplus E_{7}$
939. ${ }^{*} A_{1} \oplus D_{13}$
940. ${ }^{*} A_{1} \oplus D_{7} \oplus E_{6}$
941. ${ }^{*} A_{1} \oplus D_{6} \oplus E_{7}$

C List of all $A D E$ lattices $\Lambda$ such that $\Lambda \oplus\langle 6\rangle$ can be embedded primitively into the
954. ${ }^{*} A_{1} \oplus D_{6} \oplus D_{7}$
955. ${ }^{*} A_{1} \oplus D_{5} \oplus E_{8}$
956. ${ }^{*} A_{1} \oplus D_{5} \oplus D_{8}$
957. ${ }^{*} A_{1} \oplus D_{4} \oplus D_{9}$
958. $A_{1} \oplus 2 D_{4} \oplus D_{5}$
959. ${ }^{*} A_{1} \oplus A_{13}$
960. ${ }^{*} A_{1} \oplus A_{9} \oplus D_{4}$
961. ${ }^{*} A_{1} \oplus A_{8} \oplus D_{5}$
962. ${ }^{*} A_{1} \oplus A_{7} \oplus E_{6}$
963. ${ }^{*} A_{1} \oplus A_{7} \oplus D_{6}$
964. ${ }^{*} A_{1} \oplus A_{6} \oplus E_{7}$
965. ${ }^{*} A_{1} \oplus A_{6} \oplus D_{7}$
966. ${ }^{*} A_{1} \oplus A_{6} \oplus A_{7}$
967. ${ }^{*} A_{1} \oplus A_{5} \oplus E_{8}$
968. ${ }^{*} A_{1} \oplus A_{5} \oplus D_{8}$
969. $A_{1} \oplus A_{5} \oplus 2 D_{4}$
970. ${ }^{*} A_{1} \oplus A_{5} \oplus A_{8}$
971. ${ }^{*} A_{1} \oplus A_{4} \oplus D_{9}$
972. ${ }^{*} A_{1} \oplus A_{4} \oplus D_{4} \oplus D_{5}$
973. ${ }^{*} A_{1} \oplus A_{4} \oplus A_{9}$
974. ${ }^{*} A_{1} \oplus A_{4} \oplus A_{5} \oplus D_{4}$
975. ${ }^{*} A_{1} \oplus 2 A_{4} \oplus D_{5}$
976. ${ }^{*} A_{1} \oplus 2 A_{4} \oplus A_{5}$
977. ${ }^{*} A_{1} \oplus A_{3} \oplus D_{10}$
978. ${ }^{*} A_{1} \oplus A_{3} \oplus 2 D_{5}$
979. ${ }^{*} A_{1} \oplus A_{3} \oplus D_{4} \oplus E_{6}$
980. $A_{1} \oplus A_{3} \oplus D_{4} \oplus D_{6}$
981. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{10}$
982. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{6} \oplus D_{4}$
983. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{5} \oplus D_{5}$
984. ${ }^{*} A_{1} \oplus A_{3} \oplus 2 A_{5}$
985. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{4} \oplus E_{6}$
986. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{4} \oplus D_{6}$
987. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{4} \oplus A_{6}$
988. ${ }^{*} A_{1} \oplus 2 A_{3} \oplus E_{7}$
989. ${ }^{*} A_{1} \oplus 2 A_{3} \oplus D_{7}$
990. ${ }^{*} A_{1} \oplus 2 A_{3} \oplus A_{7}$
991. $A_{1} \oplus 3 A_{3} \oplus D_{4}$
992. ${ }^{*} A_{1} \oplus 3 A_{3} \oplus A_{4}$
993. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{11}$
994. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{5} \oplus E_{6}$
995. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{5} \oplus D_{6}$
996. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{4} \oplus E_{7}$
997. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{4} \oplus D_{7}$
998. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{11}$
999. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{7} \oplus D_{4}$
1000. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{6} \oplus D_{5}$
1001. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{5} \oplus E_{6}$
1002. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{5} \oplus D_{6}$
1003. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{5} \oplus A_{6}$
1004. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{4} \oplus E_{7}$
1005. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{4} \oplus D_{7}$
1006. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{4} \oplus A_{7}$
1007. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus E_{8}$
1008. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus D_{8}$
1009. $A_{1} \oplus A_{2} \oplus A_{3} \oplus 2 D_{4}$
1010. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{8}$
1011. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus D_{4}$
1012. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $2 A_{4}$
1013. ${ }^{*} A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus$ $D_{5}$
1014. ${ }^{*} A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus$ $A_{5}$
1015. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus D_{9}$
1016. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus D_{4} \oplus$ $D_{5}$
1017. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{9}$
1018. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{5} \oplus$ $D_{4}$
1019. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $D_{5}$
1020. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $A_{5}$
1021. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $E_{6}$
1022. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ 1056. ${ }^{*} 2 A_{1} \oplus A_{3} \oplus D_{9}$ $D_{6}$
1023. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $A_{6}$
1024. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus 3 A_{3}$
1025. ${ }^{*} A_{1} \oplus 3 A_{2} \oplus E_{7}$
1026. ${ }^{*} A_{1} \oplus 3 A_{2} \oplus D_{7}$
1027. ${ }^{*} A_{1} \oplus 3 A_{2} \oplus A_{7}$
1028. ${ }^{*} A_{1} \oplus 3 A_{2} \oplus A_{3} \oplus$ $D_{4}$
1029. ${ }^{*} A_{1} \oplus 3 A_{2} \oplus A_{3} \oplus$ $A_{4}$
1030. ${ }^{*} A_{1} \oplus 4 A_{2} \oplus D_{5}$
1031. $A_{1} \oplus 4 A_{2} \oplus A_{5}$
1032. $A_{1} \oplus 5 A_{2} \oplus A_{3}$
1033. ${ }^{*} 2 A_{1} \oplus 2 E_{6}$
1034. ${ }^{*} 2 A_{1} \oplus D_{12}$
1035. ${ }^{*} 2 A_{1} \oplus D_{6} \oplus E_{6}$
1036. $2 A_{1} \oplus 2 D_{6}$
1037. ${ }^{*} 2 A_{1} \oplus D_{5} \oplus E_{7}$
1038. ${ }^{*} 2 A_{1} \oplus D_{5} \oplus D_{7}$
1039. ${ }^{*} 2 A_{1} \oplus D_{4} \oplus E_{8}$ 1040. $2 A_{1} \oplus D_{4} \oplus D_{8}$
1041. ${ }^{*} 2 A_{1} \oplus A_{12}$
1042. ${ }^{*} 2 A_{1} \oplus A_{8} \oplus D_{4}$
1043. ${ }^{*} 2 A_{1} \oplus A_{7} \oplus D_{5}$
1044. ${ }^{*} 2 A_{1} \oplus A_{6} \oplus E_{6}$
1045. ${ }^{*} 2 A_{1} \oplus A_{6} \oplus D_{6}$
1046. ${ }^{*} 2 A_{1} \oplus 2 A_{6}$
1047. ${ }^{*} 2 A_{1} \oplus A_{5} \oplus E_{7}$
1048. ${ }^{*} 2 A_{1} \oplus A_{5} \oplus D_{7}$
1049. ${ }^{*} 2 A_{1} \oplus A_{5} \oplus A_{7}$
1050. ${ }^{*} 2 A_{1} \oplus A_{4} \oplus E_{8}$
1051. ${ }^{*} 2 A_{1} \oplus A_{4} \oplus D_{8}$
1052. $2 A_{1} \oplus A_{4} \oplus 2 D_{4}$
1053. ${ }^{*} 2 A_{1} \oplus A_{4} \oplus A_{8}$
1054. ${ }^{*} 2 A_{1} \oplus 2 A_{4} \oplus D_{4}$
1055. ${ }^{*} 2 A_{1} \oplus 3 A_{4}$
1057. $2 A_{1} \oplus A_{3} \oplus D_{4} \oplus$ $D_{5}$
1058. ${ }^{*} 2 A_{1} \oplus A_{3} \oplus A_{9}$
1059. $2 A_{1} \oplus A_{3} \oplus A_{5} \oplus D_{4}$
1060. ${ }^{*} 2 A_{1} \oplus A_{3} \oplus A_{4} \oplus$ $D_{5}$
1061. ${ }^{*} 2 A_{1} \oplus A_{3} \oplus A_{4} \oplus$ $A_{5}$
1062. ${ }^{*} 2 A_{1} \oplus 2 A_{3} \oplus E_{6}$
1063. $2 A_{1} \oplus 2 A_{3} \oplus D_{6}$
1064. ${ }^{*} 2 A_{1} \oplus 2 A_{3} \oplus A_{6}$
1065. $2 A_{1} \oplus 4 A_{3}$
1066. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus D_{10}$
1067. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus 2 D_{5}$
1068. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus D_{4} \oplus$ $E_{6}$
1069. $2 A_{1} \oplus A_{2} \oplus D_{4} \oplus$ $D_{6}$
1070. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{10}$
1071. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{6} \oplus$ $D_{4}$
1072. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{5} \oplus$ $D_{5}$
1073. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus 2 A_{5}$
1074. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{4} \oplus$ E6
1075. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $D_{6}$
1076. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $A_{6}$
1077. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $E_{7}$
1078. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $D_{7}$
1079. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{7}$
1080. $2 A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus$ $D_{4}$
1081. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus$ $A_{4}$
1082. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus E_{8}$
1083. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus D_{8}$
1084. $2 A_{1} \oplus 2 A_{2} \oplus 2 D_{4}$
1085. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus A_{8}$
1086. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $D_{4}$
1087. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus 2 A_{4}$ 1088. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $D_{5}$
1089. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $A_{5}$
1090. ${ }^{*} 2 A_{1} \oplus 3 A_{2} \oplus E_{6}$ 1091. ${ }^{*} 2 A_{1} \oplus 3 A_{2} \oplus D_{6}$ 1092. ${ }^{*} 2 A_{1} \oplus 3 A_{2} \oplus A_{6}$ 1093. ${ }^{*} 2 A_{1} \oplus 3 A_{2} \oplus 2 A_{3}$ 1094. ${ }^{*} 2 A_{1} \oplus 4 A_{2} \oplus D_{4}$ 1095. ${ }^{*} 2 A_{1} \oplus 4 A_{2} \oplus A_{4}$
1096. $2 A_{1} \oplus 6 A_{2}$
1097. ${ }^{*} 3 A_{1} \oplus D_{11}$
1098. ${ }^{*} 3 A_{1} \oplus D_{5} \oplus E_{6}$
1099. $3 A_{1} \oplus D_{5} \oplus D_{6}$ 1100. $3 A_{1} \oplus D_{4} \oplus E_{7}$ 1101. $3 A_{1} \oplus D_{4} \oplus D_{7}$ 1102. ${ }^{*} 3 A_{1} \oplus A_{11}$ 1103. $3 A_{1} \oplus A_{7} \oplus D_{4}$ 1104. ${ }^{*} 3 A_{1} \oplus A_{6} \oplus D_{5}$ 1105. ${ }^{*} 3 A_{1} \oplus A_{5} \oplus E_{6}$ 1106. $3 A_{1} \oplus A_{5} \oplus D_{6}$ 1107. ${ }^{*} 3 A_{1} \oplus A_{5} \oplus A_{6}$ 1108. ${ }^{*} 3 A_{1} \oplus A_{4} \oplus E_{7}$ 1109. ${ }^{*} 3 A_{1} \oplus A_{4} \oplus D_{7}$ 1110. ${ }^{*} 3 A_{1} \oplus A_{4} \oplus A_{7}$ 1111. ${ }^{*} 3 A_{1} \oplus A_{3} \oplus E_{8}$ 1112. $3 A_{1} \oplus A_{3} \oplus D_{8}$ 1113. ${ }^{*} 3 A_{1} \oplus A_{3} \oplus A_{8}$ 1114. $3 A_{1} \oplus A_{3} \oplus A_{4} \oplus D_{4}$ 1115. ${ }^{*} 3 A_{1} \oplus A_{3} \oplus 2 A_{4}$ 1116. $3 A_{1} \oplus 2 A_{3} \oplus D_{5}$ 1117. $3 A_{1} \oplus 2 A_{3} \oplus A_{5}$ 1118. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus D_{9}$
1119. $3 A_{1} \oplus A_{2} \oplus D_{4} \oplus$ $D_{5}$
1120. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus A_{9}$
1121. $3 A_{1} \oplus A_{2} \oplus A_{5} \oplus D_{4}$
1122. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $D_{5}$
1123. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $A_{5}$
1124. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $E_{6}$
1125. $3 A_{1} \oplus A_{2} \oplus A_{3} \oplus D_{6}$
1126. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{6}$
1127. $3 A_{1} \oplus A_{2} \oplus 3 A_{3}$
1128. ${ }^{*} 3 A_{1} \oplus 2 A_{2} \oplus E_{7}$
1129. ${ }^{*} 3 A_{1} \oplus 2 A_{2} \oplus D_{7}$
1130. ${ }^{*} 3 A_{1} \oplus 2 A_{2} \oplus A_{7}$
1131. $3 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $D_{4}$
1132. ${ }^{*} 3 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $A_{4}$
1133. ${ }^{*} 3 A_{1} \oplus 3 A_{2} \oplus D_{5}$
1134. ${ }^{*} 3 A_{1} \oplus 3 A_{2} \oplus A_{5}$
1135. ${ }^{*} 3 A_{1} \oplus 4 A_{2} \oplus A_{3}$
1136. $4 A_{1} \oplus D_{10}$
1137. $4 A_{1} \oplus 2 D_{5}$
1138. $4 A_{1} \oplus D_{4} \oplus E_{6}$
1139. ${ }^{*} 4 A_{1} \oplus A_{10}$
1140. $4 A_{1} \oplus A_{6} \oplus D_{4}$
1141. $4 A_{1} \oplus A_{5} \oplus D_{5}$
1142. $4 A_{1} \oplus 2 A_{5}$
1143. ${ }^{*} 4 A_{1} \oplus A_{4} \oplus E_{6}$
1144. $4 A_{1} \oplus A_{4} \oplus D_{6}$
1145. ${ }^{*} 4 A_{1} \oplus A_{4} \oplus A_{6}$
1146. $4 A_{1} \oplus A_{3} \oplus E_{7}$
1147. $4 A_{1} \oplus A_{3} \oplus D_{7}$
1148. $4 A_{1} \oplus A_{3} \oplus A_{7}$
1149. $4 A_{1} \oplus 2 A_{3} \oplus A_{4}$
1150. ${ }^{*} 4 A_{1} \oplus A_{2} \oplus E_{8}$
1151. $4 A_{1} \oplus A_{2} \oplus D_{8}$
1152. ${ }^{*} 4 A_{1} \oplus A_{2} \oplus A_{8}$
1153. $4 A_{1} \oplus A_{2} \oplus A_{4} \oplus D_{4}$
1154. ${ }^{*} 4 A_{1} \oplus A_{2} \oplus 2 A_{4}$
1155. $4 A_{1} \oplus A_{2} \oplus A_{3} \oplus D_{5}$
1156. $4 A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{5}$
1157. ${ }^{*} 4 A_{1} \oplus 2 A_{2} \oplus E_{6}$
1158. $4 A_{1} \oplus 2 A_{2} \oplus D_{6}$
1159. ${ }^{*} 4 A_{1} \oplus 2 A_{2} \oplus A_{6}$
1160. $4 A_{1} \oplus 2 A_{2} \oplus 2 A_{3}$
1161. $4 A_{1} \oplus 3 A_{2} \oplus D_{4}$
1162. ${ }^{*} 4 A_{1} \oplus 3 A_{2} \oplus A_{4}$
1163. $4 A_{1} \oplus 5 A_{2}$
1164. $5 A_{1} \oplus D_{9}$
1165. $5 A_{1} \oplus A_{9}$
1166. $5 A_{1} \oplus A_{4} \oplus D_{5}$
1167. $5 A_{1} \oplus A_{4} \oplus A_{5}$
1168. $5 A_{1} \oplus A_{3} \oplus E_{6}$
1169. $5 A_{1} \oplus A_{3} \oplus A_{6}$
1170. $5 A_{1} \oplus A_{2} \oplus E_{7}$
1171. $5 A_{1} \oplus A_{2} \oplus D_{7}$
1172. $5 A_{1} \oplus A_{2} \oplus A_{7}$
1173. $5 A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{4}$
1174. $5 A_{1} \oplus 2 A_{2} \oplus D_{5}$
1175. $5 A_{1} \oplus 2 A_{2} \oplus A_{5}$
1176. $5 A_{1} \oplus 3 A_{2} \oplus A_{3}$
1177. $6 A_{1} \oplus E_{8}$
1178. $6 A_{1} \oplus A_{8}$
1179. $6 A_{1} \oplus 2 A_{4}$
1180. $6 A_{1} \oplus A_{2} \oplus E_{6}$
1181. $6 A_{1} \oplus A_{2} \oplus A_{6}$
1182. $6 A_{1} \oplus 2 A_{2} \oplus A_{4}$
1183. $6 A_{1} \oplus 4 A_{2}$
$\underline{\operatorname{rank}(\Lambda)}=15$
1184. ${ }^{*} E_{7} \oplus E_{8}$
1185. ${ }^{*} D_{15}$
1186. ${ }^{*} D_{9} \oplus E_{6}$
1187. ${ }^{*} D_{8} \oplus E_{7}$
1188. ${ }^{*} D_{7} \oplus E_{8}$
1189. ${ }^{*} D_{7} \oplus D_{8}$
1190. ${ }^{*} D_{6} \oplus D_{9}$
1191. ${ }^{*} D_{5} \oplus D_{10}$
1192. ${ }^{*} 3 D_{5}$
1193. ${ }^{*} D_{4} \oplus D_{11}$
1194. ${ }^{*} D_{4} \oplus D_{5} \oplus E_{6}$
1195. $D_{4} \oplus D_{5} \oplus D_{6}$
1196. $2 D_{4} \oplus E_{7}$
1197. $2 D_{4} \oplus D_{7}$
1198. ${ }^{*} A_{15}$
1199. ${ }^{*} A_{11} \oplus D_{4}$
1200. ${ }^{*} A_{10} \oplus D_{5}$
1201. ${ }^{*} A_{9} \oplus E_{6}$
1202. ${ }^{*} A_{9} \oplus D_{6}$
1203. ${ }^{*} A_{8} \oplus E_{7}$
1204. ${ }^{*} A_{8} \oplus D_{7}$
1205. ${ }^{*} A_{7} \oplus E_{8}$
1206. ${ }^{*} A_{7} \oplus D_{8}$
1207. $A_{7} \oplus 2 D_{4}$
1208. ${ }^{*} A_{7} \oplus A_{8}$
1209. ${ }^{*} A_{6} \oplus D_{9}$
1210. ${ }^{*} A_{6} \oplus D_{4} \oplus D_{5}$
1211. ${ }^{*} A_{6} \oplus A_{9}$
1212. ${ }^{*} A_{5} \oplus D_{10}$
1213. ${ }^{*} A_{5} \oplus 2 D_{5}$
1214. ${ }^{*} A_{5} \oplus D_{4} \oplus E_{6}$
1215. $A_{5} \oplus D_{4} \oplus D_{6}$
1216. ${ }^{*} A_{5} \oplus A_{10}$
1217. ${ }^{*} A_{5} \oplus A_{6} \oplus D_{4}$
1218. ${ }^{*} 2 A_{5} \oplus D_{5}$
1219. ${ }^{*} 3 A_{5}$
1220. ${ }^{*} A_{4} \oplus D_{11}$
1221. ${ }^{*} A_{4} \oplus D_{5} \oplus E_{6}$
1222. ${ }^{*} A_{4} \oplus D_{5} \oplus D_{6}$
1223. ${ }^{*} A_{4} \oplus D_{4} \oplus E_{7}$

C List of all $A D E$ lattices $\Lambda$ such that $\Lambda \oplus\langle 6\rangle$ can be embedded primitively into the

| 1224. ${ }^{*} A_{4} \oplus D_{4} \oplus D_{7}$ |
| :---: |
| 1225. ${ }^{*} A_{4} \oplus A_{11}$ |
| 1226. ${ }^{*} A_{4} \oplus A_{7} \oplus D_{4}$ |
| 1227. ${ }^{*} A_{4} \oplus A_{6} \oplus D_{5}$ |
| 1228. ${ }^{*} A_{4} \oplus A_{5} \oplus E_{6}$ |
| 1229. ${ }^{*} A_{4} \oplus A_{5} \oplus D_{6}$ |
| 1230. ${ }^{*} A_{4} \oplus A_{5} \oplus A_{6}$ |
| 1231. ${ }^{*} 2 A_{4} \oplus E_{7}$ |
| 1232. ${ }^{*} 2 A_{4} \oplus D_{7}$ |
| 1233. ${ }^{*} 2 A_{4} \oplus A_{7}$ |
| 1234. ${ }^{*} A_{3} \oplus 2 E_{6}$ |
| 1235. ${ }^{*} A_{3} \oplus D_{12}$ |
| 1236. ${ }^{*} A_{3} \oplus D_{6} \oplus E_{6}$ |
| 1237. $A_{3} \oplus 2 D_{6}$ |
| 1238. ${ }^{*} A_{3} \oplus D_{5} \oplus E_{7}$ |
| 1239. ${ }^{*} A_{3} \oplus D_{5} \oplus D_{7}$ |
| 1240. ${ }^{*} A_{3} \oplus D_{4} \oplus E_{8}$ |
| 1241. $A_{3} \oplus D_{4} \oplus D_{8}$ |
| 1242. ${ }^{*} A_{3} \oplus A_{12}$ |
| 1243. ${ }^{*} A_{3} \oplus A_{8} \oplus D_{4}$ |
| 1244. ${ }^{*} A_{3} \oplus A_{7} \oplus D_{5}$ |
| 1245. ${ }^{*} A_{3} \oplus A_{6} \oplus E_{6}$ |
| 1246. ${ }^{*} A_{3} \oplus A_{6} \oplus D_{6}$ |
| 1247. ${ }^{*} A_{3} \oplus 2 A_{6}$ |
| 1248. ${ }^{*} A_{3} \oplus A_{5} \oplus E_{7}$ |
| 1249. ${ }^{*} A_{3} \oplus A_{5} \oplus D_{7}$ |
| 1250. ${ }^{*} A_{3} \oplus A_{5} \oplus A_{7}$ |
| 1251. ${ }^{*} A_{3} \oplus A_{4} \oplus E_{8}$ |
| 1252. ${ }^{*} A_{3} \oplus A_{4} \oplus D_{8}$ |
| 1253. $A_{3} \oplus A_{4} \oplus 2 D_{4}$ |
| 1254. ${ }^{*} A_{3} \oplus A_{4} \oplus A_{8}$ |
| 1255. ${ }^{*} A_{3} \oplus 2 A_{4} \oplus D_{4}$ |
| 1256. ${ }^{*} A_{3} \oplus 3 A_{4}$ |
| 1257. ${ }^{*} 2 A_{3} \oplus D_{9}$ |
| 1258. $2 A_{3} \oplus D_{4} \oplus D_{5}$ |
| 1259. ${ }^{*} 2 A_{3} \oplus A_{9}$ |
| 1260. $2 A_{3} \oplus A_{5} \oplus D_{4}$ |

1261. ${ }^{*} 2 A_{3} \oplus A_{4} \oplus D_{5}$
1262. ${ }^{*} 2 A_{3} \oplus A_{4} \oplus A_{5}$
1263. ${ }^{*} 3 A_{3} \oplus E_{6}$
1264. $3 A_{3} \oplus D_{6}$
1265. ${ }^{*} 3 A_{3} \oplus A_{6}$
1266. $5 A_{3}$
1267. ${ }^{*} A_{2} \oplus E_{6} \oplus E_{7}$
1268. ${ }^{*} A_{2} \oplus D_{13}$
1269. ${ }^{*} A_{2} \oplus D_{7} \oplus E_{6}$
1270. ${ }^{*} A_{2} \oplus D_{6} \oplus E_{7}$
1271. ${ }^{*} A_{2} \oplus D_{6} \oplus D_{7}$
1272. ${ }^{*} A_{2} \oplus D_{5} \oplus E_{8}$
1273. ${ }^{*} A_{2} \oplus D_{5} \oplus D_{8}$
1274. ${ }^{*} A_{2} \oplus D_{4} \oplus D_{9}$
1275. $A_{2} \oplus 2 D_{4} \oplus D_{5}$
1276. ${ }^{*} A_{2} \oplus A_{13}$
1277. ${ }^{*} A_{2} \oplus A_{9} \oplus D_{4}$
1278. ${ }^{*} A_{2} \oplus A_{8} \oplus D_{5}$
1279. ${ }^{*} A_{2} \oplus A_{7} \oplus E_{6}$
1280. ${ }^{*} A_{2} \oplus A_{7} \oplus D_{6}$
1281. ${ }^{*} A_{2} \oplus A_{6} \oplus E_{7}$
1282. ${ }^{*} A_{2} \oplus A_{6} \oplus D_{7}$
1283. ${ }^{*} A_{2} \oplus A_{6} \oplus A_{7}$
1284. ${ }^{*} A_{2} \oplus A_{5} \oplus E_{8}$ 1285. ${ }^{*} A_{2} \oplus A_{5} \oplus D_{8}$
1285. $A_{2} \oplus A_{5} \oplus 2 D_{4}$
1286. ${ }^{*} A_{2} \oplus A_{5} \oplus A_{8}$
1287. ${ }^{*} A_{2} \oplus A_{4} \oplus D_{9}$
1288. ${ }^{*} A_{2} \oplus A_{4} \oplus D_{4} \oplus D_{5}$
1289. ${ }^{*} A_{2} \oplus A_{4} \oplus A_{9}$
1290. ${ }^{*} A_{2} \oplus A_{4} \oplus A_{5} \oplus D_{4}$
1291. ${ }^{*} A_{2} \oplus 2 A_{4} \oplus D_{5}$
1292. ${ }^{*} A_{2} \oplus 2 A_{4} \oplus A_{5}$
1293. ${ }^{*} A_{2} \oplus A_{3} \oplus D_{10}$
1294. ${ }^{*} A_{2} \oplus A_{3} \oplus 2 D_{5}$
1295. ${ }^{*} A_{2} \oplus A_{3} \oplus D_{4} \oplus E_{6}$
1296. $A_{2} \oplus A_{3} \oplus D_{4} \oplus D_{6}$
1297. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{10}$ 1299. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{6} \oplus D_{4}$ 1300. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{5} \oplus D_{5}$
1298. ${ }^{*} A_{2} \oplus A_{3} \oplus 2 A_{5}$
1299. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{4} \oplus E_{6}$
1300. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{4} \oplus D_{6}$
1301. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{4} \oplus A_{6}$
1302. ${ }^{*} A_{2} \oplus 2 A_{3} \oplus E_{7}$
1303. ${ }^{*} A_{2} \oplus 2 A_{3} \oplus D_{7}$
1304. ${ }^{*} A_{2} \oplus 2 A_{3} \oplus A_{7}$ 1308. $A_{2} \oplus 3 A_{3} \oplus D_{4}$
1305. ${ }^{*} A_{2} \oplus 3 A_{3} \oplus A_{4}$
1306. ${ }^{*} 2 A_{2} \oplus D_{11}$
1307. ${ }^{*} 2 A_{2} \oplus D_{5} \oplus E_{6}$
1308. ${ }^{*} 2 A_{2} \oplus D_{5} \oplus D_{6}$
1309. ${ }^{*} 2 A_{2} \oplus D_{4} \oplus E_{7}$
1310. ${ }^{*} 2 A_{2} \oplus D_{4} \oplus D_{7}$
1311. ${ }^{*} 2 A_{2} \oplus A_{11}$
1312. ${ }^{*} 2 A_{2} \oplus A_{7} \oplus D_{4}$
1313. ${ }^{*} 2 A_{2} \oplus A_{6} \oplus D_{5}$
1314. $2 A_{2} \oplus A_{5} \oplus E_{6}$
1315. ${ }^{*} 2 A_{2} \oplus A_{5} \oplus D_{6}$
1316. ${ }^{*} 2 A_{2} \oplus A_{5} \oplus A_{6}$
1317. ${ }^{*} 2 A_{2} \oplus A_{4} \oplus E_{7}$
1318. ${ }^{*} 2 A_{2} \oplus A_{4} \oplus D_{7}$
1319. ${ }^{*} 2 A_{2} \oplus A_{4} \oplus A_{7}$
1320. ${ }^{*} 2 A_{2} \oplus A_{3} \oplus E_{8}$
1321. ${ }^{*} 2 A_{2} \oplus A_{3} \oplus D_{8}$
1322. $2 A_{2} \oplus A_{3} \oplus 2 D_{4}$
1323. ${ }^{*} 2 A_{2} \oplus A_{3} \oplus A_{8}$
1324. ${ }^{*} 2 A_{2} \oplus A_{3} \oplus A_{4} \oplus$ $D_{4}$
1325. ${ }^{*} 2 A_{2} \oplus A_{3} \oplus 2 A_{4}$
1326. ${ }^{*} 2 A_{2} \oplus 2 A_{3} \oplus D_{5}$
1327. ${ }^{*} 2 A_{2} \oplus 2 A_{3} \oplus A_{5}$
1328. ${ }^{*} 3 A_{2} \oplus D_{9}$
1329. ${ }^{*} 3 A_{2} \oplus D_{4} \oplus D_{5}$
1330. ${ }^{*} 3 A_{2} \oplus A_{9}$
1331. $3 A_{2} \oplus A_{5} \oplus D_{4}$
1332. ${ }^{*} 3 A_{2} \oplus A_{4} \oplus D_{5}$
1333. $3 A_{2} \oplus A_{4} \oplus A_{5}$
1334. $3 A_{2} \oplus A_{3} \oplus E_{6}$
1335. ${ }^{*} 3 A_{2} \oplus A_{3} \oplus D_{6}$
1336. ${ }^{*} 3 A_{2} \oplus A_{3} \oplus A_{6}$
1337. ${ }^{*} 3 A_{2} \oplus 3 A_{3}$
1338. $4 A_{2} \oplus E_{7}$
1339. $4 A_{2} \oplus D_{7}$
1340. $4 A_{2} \oplus A_{7}$
1341. $4 A_{2} \oplus A_{3} \oplus D_{4}$
1342. $4 A_{2} \oplus A_{3} \oplus A_{4}$
1343. $5 A_{2} \oplus D_{5}$
1344. ${ }^{*} A_{1} \oplus 2 E_{7}$
1345. ${ }^{*} A_{1} \oplus E_{6} \oplus E_{8}$
1346. ${ }^{*} A_{1} \oplus D_{14}$
1347. ${ }^{*} A_{1} \oplus D_{8} \oplus E_{6}$
1348. ${ }^{*} A_{1} \oplus D_{7} \oplus E_{7}$
1349. ${ }^{*} A_{1} \oplus 2 D_{7}$
1350. ${ }^{*} A_{1} \oplus D_{6} \oplus E_{8}$
1351. $A_{1} \oplus D_{6} \oplus D_{8}$
1352. ${ }^{*} A_{1} \oplus D_{5} \oplus D_{9}$
1353. $A_{1} \oplus D_{4} \oplus D_{10}$
1354. $A_{1} \oplus D_{4} \oplus 2 D_{5}$
1355. $A_{1} \oplus 2 D_{4} \oplus E_{6}$
1356. ${ }^{*} A_{1} \oplus A_{14}$
1357. ${ }^{*} A_{1} \oplus A_{10} \oplus D_{4}$
1358. ${ }^{*} A_{1} \oplus A_{9} \oplus D_{5}$
1359. ${ }^{*} A_{1} \oplus A_{8} \oplus E_{6}$
1360. ${ }^{*} A_{1} \oplus A_{8} \oplus D_{6}$
1361. ${ }^{*} A_{1} \oplus A_{7} \oplus E_{7}$
1362. ${ }^{*} A_{1} \oplus A_{7} \oplus D_{7}$
1363. ${ }^{*} A_{1} \oplus 2 A_{7}$
1364. ${ }^{*} A_{1} \oplus A_{6} \oplus E_{8}$
1365. ${ }^{*} A_{1} \oplus A_{6} \oplus D_{8}$
1366. $A_{1} \oplus A_{6} \oplus 2 D_{4}$
1367. ${ }^{*} A_{1} \oplus A_{6} \oplus A_{8}$ 1372. ${ }^{*} A_{1} \oplus A_{5} \oplus D_{9}$ 1373. $A_{1} \oplus A_{5} \oplus D_{4} \oplus D_{5}$ 1374. ${ }^{*} A_{1} \oplus A_{5} \oplus A_{9}$ 1375. $A_{1} \oplus 2 A_{5} \oplus D_{4}$ 1376. ${ }^{*} A_{1} \oplus A_{4} \oplus D_{10}$ 1377. ${ }^{*} A_{1} \oplus A_{4} \oplus 2 D_{5}$ 1378. ${ }^{*} A_{1} \oplus A_{4} \oplus D_{4} \oplus E_{6}$ 1379. $A_{1} \oplus A_{4} \oplus D_{4} \oplus D_{6}$ 1380. ${ }^{*} A_{1} \oplus A_{4} \oplus A_{10}$ 1381. ${ }^{*} A_{1} \oplus A_{4} \oplus A_{6} \oplus D_{4}$ 1382. ${ }^{*} A_{1} \oplus A_{4} \oplus A_{5} \oplus D_{5}$ 1383. ${ }^{*} A_{1} \oplus A_{4} \oplus 2 A_{5}$ 1384. ${ }^{*} A_{1} \oplus 2 A_{4} \oplus E_{6}$ 1385. ${ }^{*} A_{1} \oplus 2 A_{4} \oplus D_{6}$ 1386. ${ }^{*} A_{1} \oplus 2 A_{4} \oplus A_{6}$ 1387. ${ }^{*} A_{1} \oplus A_{3} \oplus D_{11}$ 1388. ${ }^{*} A_{1} \oplus A_{3} \oplus D_{5} \oplus E_{6}$ 1389. $A_{1} \oplus A_{3} \oplus D_{5} \oplus D_{6}$ 1390. $A_{1} \oplus A_{3} \oplus D_{4} \oplus E_{7}$ 1391. $A_{1} \oplus A_{3} \oplus D_{4} \oplus D_{7}$ 1392. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{11}$ 1393. $A_{1} \oplus A_{3} \oplus A_{7} \oplus D_{4}$ 1394. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{6} \oplus D_{5}$ 1395. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{5} \oplus E_{6}$ 1396. $A_{1} \oplus A_{3} \oplus A_{5} \oplus D_{6}$ 1397. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{5} \oplus A_{6}$ 1398. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{4} \oplus E_{7}$ 1399. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{4} \oplus D_{7}$ 1400. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{4} \oplus A_{7}$ 1401. ${ }^{*} A_{1} \oplus 2 A_{3} \oplus E_{8}$ 1402. $A_{1} \oplus 2 A_{3} \oplus D_{8}$ 1403. ${ }^{*} A_{1} \oplus 2 A_{3} \oplus A_{8}$ 1404. $A_{1} \oplus 2 A_{3} \oplus A_{4} \oplus D_{4}$ 1405. ${ }^{*} A_{1} \oplus 2 A_{3} \oplus 2 A_{4}$ 1406. $A_{1} \oplus 3 A_{3} \oplus D_{5}$ 1407. $A_{1} \oplus 3 A_{3} \oplus A_{5}$
1368. ${ }^{*} A_{1} \oplus A_{2} \oplus 2 E_{6}$
1369. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{12}$
1370. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{6} \oplus E_{6}$ 1411. $A_{1} \oplus A_{2} \oplus 2 D_{6}$
1371. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{5} \oplus E_{7}$
1372. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{5} \oplus D_{7}$
1373. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{4} \oplus E_{8}$
1374. $A_{1} \oplus A_{2} \oplus D_{4} \oplus D_{8}$
1375. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{12}$
1376. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{8} \oplus D_{4}$
1377. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{7} \oplus D_{5}$
1378. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{6} \oplus E_{6}$
1379. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{6} \oplus D_{6}$
1380. ${ }^{*} A_{1} \oplus A_{2} \oplus 2 A_{6}$
1381. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{5} \oplus E_{7}$
1382. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{5} \oplus D_{7}$
1383. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{5} \oplus A_{7}$
1384. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{4} \oplus E_{8}$
1385. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{4} \oplus D_{8}$
1386. $A_{1} \oplus A_{2} \oplus A_{4} \oplus 2 D_{4}$
1387. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{4} \oplus A_{8}$
1388. ${ }^{*} A_{1} \oplus A_{2} \oplus 2 A_{4} \oplus$ $D_{4}$
1389. ${ }^{*} A_{1} \oplus A_{2} \oplus 3 A_{4}$
1390. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus D_{9}$
1391. $A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $D_{4} \oplus D_{5}$
1392. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{9}$
1393. $A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{5} \oplus D_{4}$
1394. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus D_{5}$
1395. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus A_{5}$
1396. ${ }^{*} A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus$ $E_{6}$
1397. $A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus D_{6}$
1398. ${ }^{*} A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus$ $A_{6}$
1399. $A_{1} \oplus A_{2} \oplus 4 A_{3}$
1400. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus D_{10}$
1401. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus 2 D_{5}$
1402. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus D_{4} \oplus$ $E_{6}$
1403. $A_{1} \oplus 2 A_{2} \oplus D_{4} \oplus$ $D_{6}$
1404. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{10}$
1405. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{6} \oplus$ $D_{4}$
1406. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{5} \oplus$ $D_{5}$
1407. $A_{1} \oplus 2 A_{2} \oplus 2 A_{5}$
1408. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $E_{6}$
1409. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $D_{6}$
1410. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $A_{6}$
1411. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $E_{7}$
1412. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $D_{7}$
1413. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $A_{7}$
1414. $A_{1} \oplus 2 A_{2} \oplus 2 A_{3} \oplus$ $D_{4}$
1415. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus 2 A_{3} \oplus$ $A_{4}$
1416. ${ }^{*} A_{1} \oplus 3 A_{2} \oplus E_{8}$
1417. ${ }^{*} A_{1} \oplus 3 A_{2} \oplus D_{8}$
1418. $A_{1} \oplus 3 A_{2} \oplus 2 D_{4}$
1419. $A_{1} \oplus 3 A_{2} \oplus A_{8}$
1420. ${ }^{*} A_{1} \oplus 3 A_{2} \oplus A_{4} \oplus$ $D_{4}$
1421. ${ }^{*} A_{1} \oplus 3 A_{2} \oplus 2 A_{4}$
1422. ${ }^{*} A_{1} \oplus 3 A_{2} \oplus A_{3} \oplus$ $D_{5}$
1423. $A_{1} \oplus 3 A_{2} \oplus A_{3} \oplus A_{5}$ 1465. $A_{1} \oplus 4 A_{2} \oplus E_{6}$ 1466. $A_{1} \oplus 4 A_{2} \oplus D_{6}$
1424. $A_{1} \oplus 4 A_{2} \oplus A_{6}$
1425. $A_{1} \oplus 4 A_{2} \oplus 2 A_{3}$
1426. $A_{1} \oplus 5 A_{2} \oplus A_{4}$
1427. ${ }^{*} 2 A_{1} \oplus E_{6} \oplus E_{7}$
1428. ${ }^{*} 2 A_{1} \oplus D_{13}$
1429. ${ }^{*} 2 A_{1} \oplus D_{7} \oplus E_{6}$
1430. $2 A_{1} \oplus D_{6} \oplus E_{7}$
1431. $2 A_{1} \oplus D_{6} \oplus D_{7}$
1432. ${ }^{*} 2 A_{1} \oplus D_{5} \oplus E_{8}$
1433. $2 A_{1} \oplus D_{5} \oplus D_{8}$
1434. $2 A_{1} \oplus D_{4} \oplus D_{9}$
1435. ${ }^{*} 2 A_{1} \oplus A_{13}$
1436. $2 A_{1} \oplus A_{9} \oplus D_{4}$
1437. ${ }^{*} 2 A_{1} \oplus A_{8} \oplus D_{5}$
1438. ${ }^{*} 2 A_{1} \oplus A_{7} \oplus E_{6}$
1439. $2 A_{1} \oplus A_{7} \oplus D_{6}$
1440. ${ }^{*} 2 A_{1} \oplus A_{6} \oplus E_{7}$ 1484. ${ }^{*} 2 A_{1} \oplus A_{6} \oplus D_{7}$
1441. ${ }^{*} 2 A_{1} \oplus A_{6} \oplus A_{7}$
1442. ${ }^{*} 2 A_{1} \oplus A_{5} \oplus E_{8}$
1443. $2 A_{1} \oplus A_{5} \oplus D_{8}$
1444. ${ }^{*} 2 A_{1} \oplus A_{5} \oplus A_{8}$
1445. ${ }^{*} 2 A_{1} \oplus A_{4} \oplus D_{9}$
1446. $2 A_{1} \oplus A_{4} \oplus D_{4} \oplus$ $D_{5}$
1447. ${ }^{*} 2 A_{1} \oplus A_{4} \oplus A_{9}$
1448. $2 A_{1} \oplus A_{4} \oplus A_{5} \oplus D_{4}$
1449. ${ }^{*} 2 A_{1} \oplus 2 A_{4} \oplus D_{5}$
1450. ${ }^{*} 2 A_{1} \oplus 2 A_{4} \oplus A_{5}$
1451. $2 A_{1} \oplus A_{3} \oplus D_{10}$
1452. $2 A_{1} \oplus A_{3} \oplus 2 D_{5}$
1453. $2 A_{1} \oplus A_{3} \oplus D_{4} \oplus E_{6}$
1454. ${ }^{*} 2 A_{1} \oplus A_{3} \oplus A_{10}$
1455. $2 A_{1} \oplus A_{3} \oplus A_{6} \oplus D_{4}$
1456. $2 A_{1} \oplus A_{3} \oplus A_{5} \oplus D_{5}$
1457. $2 A_{1} \oplus A_{3} \oplus 2 A_{5}$
1458. ${ }^{*} 2 A_{1} \oplus A_{3} \oplus A_{4} \oplus$ $E_{6}$
1459. $2 A_{1} \oplus A_{3} \oplus A_{4} \oplus D_{6}$

C List of all $A D E$ lattices $\Lambda$ such that $\Lambda \oplus\langle 6\rangle$ can be embedded primitively into the 124
1504. ${ }^{*} 2 A_{1} \oplus A_{3} \oplus A_{4} \oplus$ $A_{6}$
1505. $2 A_{1} \oplus 2 A_{3} \oplus E_{7}$
1506. $2 A_{1} \oplus 2 A_{3} \oplus D_{7}$
1507. $2 A_{1} \oplus 2 A_{3} \oplus A_{7}$
1508. $2 A_{1} \oplus 3 A_{3} \oplus A_{4}$
1509. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus D_{11}$
1510. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus D_{5} \oplus$ $E_{6}$
1511. $2 A_{1} \oplus A_{2} \oplus D_{5} \oplus$ $D_{6}$
1512. $2 A_{1} \oplus A_{2} \oplus D_{4} \oplus E_{7}$
1513. $2 A_{1} \oplus A_{2} \oplus D_{4} \oplus$ $D_{7}$
1514. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{11}$
1515. $2 A_{1} \oplus A_{2} \oplus A_{7} \oplus D_{4}$
1516. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{6} \oplus$ $D_{5}$
1517. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{5} \oplus$ $E_{6}$
1518. $2 A_{1} \oplus A_{2} \oplus A_{5} \oplus D_{6}$
1519. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{5} \oplus$ $A_{6}$
1520. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $E_{7}$
1521. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $D_{7}$
1522. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $A_{7}$
1523. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $E_{8}$
1524. $2 A_{1} \oplus A_{2} \oplus A_{3} \oplus D_{8}$
1525. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{8}$
1526. $2 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus D_{4}$
1527. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $2 A_{4}$
1528. $2 A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus$ $D_{5}$
1529. $2 A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus$ $A_{5}$
1530. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus D_{9}$
1531. $2 A_{1} \oplus 2 A_{2} \oplus D_{4} \oplus$ $D_{5}$
1532. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus A_{9}$
1533. $2 A_{1} \oplus 2 A_{2} \oplus A_{5} \oplus$ $D_{4}$
1534. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $D_{5}$
1535. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $A_{5}$
1536. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $E_{6}$
1537. $2 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $D_{6}$
1538. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $A_{6}$
1539. $2 A_{1} \oplus 2 A_{2} \oplus 3 A_{3}$
1540. ${ }^{*} 2 A_{1} \oplus 3 A_{2} \oplus E_{7}$
1541. ${ }^{*} 2 A_{1} \oplus 3 A_{2} \oplus D_{7}$
1542. ${ }^{*} 2 A_{1} \oplus 3 A_{2} \oplus A_{7}$
1543. $2 A_{1} \oplus 3 A_{2} \oplus A_{3} \oplus$ $D_{4}$
1544. ${ }^{*} 2 A_{1} \oplus 3 A_{2} \oplus A_{3} \oplus$ $A_{4}$
1545. $2 A_{1} \oplus 4 A_{2} \oplus D_{5}$
1546. $2 A_{1} \oplus 4 A_{2} \oplus A_{5}$
1547. $2 A_{1} \oplus 5 A_{2} \oplus A_{3}$
1548. ${ }^{*} 3 A_{1} \oplus 2 E_{6}$
1549. $3 A_{1} \oplus D_{12}$
1550. $3 A_{1} \oplus D_{6} \oplus E_{6}$
1551. $3 A_{1} \oplus D_{5} \oplus E_{7}$
1552. $3 A_{1} \oplus D_{5} \oplus D_{7}$
1553. $3 A_{1} \oplus D_{4} \oplus E_{8}$
1554. ${ }^{*} 3 A_{1} \oplus A_{12}$
1555. $3 A_{1} \oplus A_{8} \oplus D_{4}$
1556. $3 A_{1} \oplus A_{7} \oplus D_{5}$
1557. ${ }^{*} 3 A_{1} \oplus A_{6} \oplus E_{6}$
1558. $3 A_{1} \oplus A_{6} \oplus D_{6}$
1559. ${ }^{*} 3 A_{1} \oplus 2 A_{6}$
1560. $3 A_{1} \oplus A_{5} \oplus E_{7}$
1561. $3 A_{1} \oplus A_{5} \oplus D_{7}$
1562. $3 A_{1} \oplus A_{5} \oplus A_{7}$ 1563. ${ }^{*} 3 A_{1} \oplus A_{4} \oplus E_{8}$ 1564. $3 A_{1} \oplus A_{4} \oplus D_{8}$ 1565. ${ }^{*} 3 A_{1} \oplus A_{4} \oplus A_{8}$ 1566. $3 A_{1} \oplus 2 A_{4} \oplus D_{4}$ 1567. ${ }^{*} 3 A_{1} \oplus 3 A_{4}$ 1568. $3 A_{1} \oplus A_{3} \oplus D_{9}$ 1569. $3 A_{1} \oplus A_{3} \oplus A_{9}$ 1570. $3 A_{1} \oplus A_{3} \oplus A_{4} \oplus D_{5}$
1571. $3 A_{1} \oplus A_{3} \oplus A_{4} \oplus A_{5}$
1572. $3 A_{1} \oplus 2 A_{3} \oplus E_{6}$
1573. $3 A_{1} \oplus 2 A_{3} \oplus A_{6}$
1574. $3 A_{1} \oplus A_{2} \oplus D_{10}$
1575. $3 A_{1} \oplus A_{2} \oplus 2 D_{5}$
1576. $3 A_{1} \oplus A_{2} \oplus D_{4} \oplus E_{6}$
1577. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus A_{10}$
1578. $3 A_{1} \oplus A_{2} \oplus A_{6} \oplus D_{4}$
1579. $3 A_{1} \oplus A_{2} \oplus A_{5} \oplus D_{5}$
1580. $3 A_{1} \oplus A_{2} \oplus 2 A_{5}$
1581. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $E_{6}$
1582. $3 A_{1} \oplus A_{2} \oplus A_{4} \oplus D_{6}$
1583. ${ }^{*} 3 A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $A_{6}$
1584. $3 A_{1} \oplus A_{2} \oplus A_{3} \oplus E_{7}$ 1585. $3 A_{1} \oplus A_{2} \oplus A_{3} \oplus D_{7}$ 1586. $3 A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{7}$
1587. $3 A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus$ $A_{4}$
1588. ${ }^{*} 3 A_{1} \oplus 2 A_{2} \oplus E_{8}$
1589. $3 A_{1} \oplus 2 A_{2} \oplus D_{8}$
1590. ${ }^{*} 3 A_{1} \oplus 2 A_{2} \oplus A_{8}$
1591. $3 A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $D_{4}$
1592. ${ }^{*} 3 A_{1} \oplus 2 A_{2} \oplus 2 A_{4}$
1593. $3 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $D_{5}$
1594. $3 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $A_{5}$
1595. $3 A_{1} \oplus 3 A_{2} \oplus E_{6}$ 1596. $3 A_{1} \oplus 3 A_{2} \oplus D_{6}$ 1597. ${ }^{*} 3 A_{1} \oplus 3 A_{2} \oplus A_{6}$ 1598. $3 A_{1} \oplus 3 A_{2} \oplus 2 A_{3}$ 1599. $3 A_{1} \oplus 4 A_{2} \oplus D_{4}$ 1600. $3 A_{1} \oplus 4 A_{2} \oplus A_{4}$ 1601. $4 A_{1} \oplus D_{11}$
1602. $4 A_{1} \oplus D_{5} \oplus E_{6}$ 1603. $4 A_{1} \oplus A_{11}$ 1604. $4 A_{1} \oplus A_{6} \oplus D_{5}$ 1605. $4 A_{1} \oplus A_{5} \oplus E_{6}$ 1606. $4 A_{1} \oplus A_{5} \oplus A_{6}$ 1607. $4 A_{1} \oplus A_{4} \oplus E_{7}$ 1608. $4 A_{1} \oplus A_{4} \oplus D_{7}$ 1609. $4 A_{1} \oplus A_{4} \oplus A_{7}$ 1610. $4 A_{1} \oplus A_{3} \oplus E_{8}$ 1611. $4 A_{1} \oplus A_{3} \oplus A_{8}$ 1612. $4 A_{1} \oplus A_{3} \oplus 2 A_{4}$ 1613. $4 A_{1} \oplus A_{2} \oplus D_{9}$ 1614. $4 A_{1} \oplus A_{2} \oplus A_{9}$ 1615. $4 A_{1} \oplus A_{2} \oplus A_{4} \oplus D_{5}$ 1616. $4 A_{1} \oplus A_{2} \oplus A_{4} \oplus A_{5}$ 1617. $4 A_{1} \oplus A_{2} \oplus A_{3} \oplus E_{6}$ 1618. $4 A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{6}$ 1619. $4 A_{1} \oplus 2 A_{2} \oplus E_{7}$ 1620. $4 A_{1} \oplus 2 A_{2} \oplus D_{7}$ 1621. $4 A_{1} \oplus 2 A_{2} \oplus A_{7}$ 1622. $4 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $A_{4}$
1623. $4 A_{1} \oplus 3 A_{2} \oplus D_{5}$ 1624. $4 A_{1} \oplus 3 A_{2} \oplus A_{5}$ 1625. $4 A_{1} \oplus 4 A_{2} \oplus A_{3}$ 1626. $5 A_{1} \oplus A_{10}$ 1627. $5 A_{1} \oplus A_{4} \oplus E_{6}$ 1628. $5 A_{1} \oplus A_{4} \oplus A_{6}$ 1629. $5 A_{1} \oplus A_{2} \oplus E_{8}$ 1630. $5 A_{1} \oplus A_{2} \oplus A_{8}$
1631. $5 A_{1} \oplus A_{2} \oplus 2 A_{4}$
1632. $5 A_{1} \oplus 2 A_{2} \oplus E_{6}$
1633. $5 A_{1} \oplus 2 A_{2} \oplus A_{6}$
1634. $5 A_{1} \oplus 3 A_{2} \oplus A_{4}$
$\operatorname{rank}(\Lambda)=16$
1635. ${ }^{*} 2 E_{8}$
1636. ${ }^{*} D_{16}$
1637. ${ }^{*} D_{10} \oplus E_{6}$
1638. ${ }^{*} D_{9} \oplus E_{7}$
1639. ${ }^{*} D_{8} \oplus E_{8}$
1640. $2 D_{8}$
1641. ${ }^{*} D_{7} \oplus D_{9}$
1642. $D_{6} \oplus D_{10}$ 1643. ${ }^{*} D_{5} \oplus D_{11}$
1644. ${ }^{*} 2 D_{5} \oplus E_{6}$ 1645. $2 D_{5} \oplus D_{6}$ 1646. ${ }^{*} D_{4} \oplus 2 E_{6}$ 1647. $D_{4} \oplus D_{12}$
1648. $D_{4} \oplus D_{6} \oplus E_{6}$
1649. $D_{4} \oplus D_{5} \oplus E_{7}$ 1650. $D_{4} \oplus D_{5} \oplus D_{7}$ 1651. $2 D_{4} \oplus E_{8}$ 1652. ${ }^{*} A_{16}$
1653. ${ }^{*} A_{12} \oplus D_{4}$
1654. ${ }^{*} A_{11} \oplus D_{5}$ 1655. ${ }^{*} A_{10} \oplus E_{6}$ 1656. ${ }^{*} A_{10} \oplus D_{6}$ 1657. ${ }^{*} A_{9} \oplus E_{7}$ 1658. ${ }^{*} A_{9} \oplus D_{7}$ 1659. ${ }^{*} A_{8} \oplus E_{8}$ 1660. ${ }^{*} A_{8} \oplus D_{8}$ 1661. $A_{8} \oplus 2 D_{4}$ 1662. ${ }^{*} 2 A_{8}$
1663. ${ }^{*} A_{7} \oplus D_{9}$
1664. $A_{7} \oplus D_{4} \oplus D_{5}$ 1665. ${ }^{*} A_{7} \oplus A_{9}$ 1666. ${ }^{*} A_{6} \oplus D_{10}$
1667. ${ }^{*} A_{6} \oplus 2 D_{5}$
1668. ${ }^{*} A_{6} \oplus D_{4} \oplus E_{6}$ 1669. $A_{6} \oplus D_{4} \oplus D_{6}$ 1670. ${ }^{*} A_{6} \oplus A_{10}$
1671. ${ }^{*} 2 A_{6} \oplus D_{4}$ 1672. ${ }^{*} A_{5} \oplus D_{11}$ 1673. ${ }^{*} A_{5} \oplus D_{5} \oplus E_{6}$ 1674. $A_{5} \oplus D_{5} \oplus D_{6}$ 1675. $A_{5} \oplus D_{4} \oplus E_{7}$ 1676. $A_{5} \oplus D_{4} \oplus D_{7}$ 1677. ${ }^{*} A_{5} \oplus A_{11}$
1678. $A_{5} \oplus A_{7} \oplus D_{4}$ 1679. ${ }^{*} A_{5} \oplus A_{6} \oplus D_{5}$ 1680. $2 A_{5} \oplus E_{6}$ 1681. $2 A_{5} \oplus D_{6}$ 1682. ${ }^{*} 2 A_{5} \oplus A_{6}$ 1683. ${ }^{*} A_{4} \oplus 2 E_{6}$ 1684. ${ }^{*} A_{4} \oplus D_{12}$ 1685. ${ }^{*} A_{4} \oplus D_{6} \oplus E_{6}$ 1686. $A_{4} \oplus 2 D_{6}$ 1687. ${ }^{*} A_{4} \oplus D_{5} \oplus E_{7}$ 1688. ${ }^{*} A_{4} \oplus D_{5} \oplus D_{7}$ 1689. ${ }^{*} A_{4} \oplus D_{4} \oplus E_{8}$ 1690. $A_{4} \oplus D_{4} \oplus D_{8}$ 1691. ${ }^{*} A_{4} \oplus A_{12}$ 1692. ${ }^{*} A_{4} \oplus A_{8} \oplus D_{4}$ 1693. ${ }^{*} A_{4} \oplus A_{7} \oplus D_{5}$ 1694. ${ }^{*} A_{4} \oplus A_{6} \oplus E_{6}$ 1695. ${ }^{*} A_{4} \oplus A_{6} \oplus D_{6}$ 1696. ${ }^{*} A_{4} \oplus 2 A_{6}$
1697. ${ }^{*} A_{4} \oplus A_{5} \oplus E_{7}$ 1698. ${ }^{*} A_{4} \oplus A_{5} \oplus D_{7}$ 1699. ${ }^{*} A_{4} \oplus A_{5} \oplus A_{7}$ 1700. ${ }^{*} 2 A_{4} \oplus E_{8}$ 1701. ${ }^{*} 2 A_{4} \oplus D_{8}$ 1702. $2 A_{4} \oplus 2 D_{4}$ 1703. ${ }^{*} 2 A_{4} \oplus A_{8}$
1704. ${ }^{*} 3 A_{4} \oplus D_{4}$
1705. $4 A_{4}$
1706. ${ }^{*} A_{3} \oplus E_{6} \oplus E_{7}$
1707. ${ }^{*} A_{3} \oplus D_{13}$
1708. ${ }^{*} A_{3} \oplus D_{7} \oplus E_{6}$
1709. $A_{3} \oplus D_{6} \oplus E_{7}$
1710. $A_{3} \oplus D_{6} \oplus D_{7}$
1711. ${ }^{*} A_{3} \oplus D_{5} \oplus E_{8}$
1712. $A_{3} \oplus D_{5} \oplus D_{8}$
1713. $A_{3} \oplus D_{4} \oplus D_{9}$
1714. ${ }^{*} A_{3} \oplus A_{13}$
1715. $A_{3} \oplus A_{9} \oplus D_{4}$
1716. ${ }^{*} A_{3} \oplus A_{8} \oplus D_{5}$
1717. ${ }^{*} A_{3} \oplus A_{7} \oplus E_{6}$
1718. $A_{3} \oplus A_{7} \oplus D_{6}$
1719. ${ }^{*} A_{3} \oplus A_{6} \oplus E_{7}$
1720. ${ }^{*} A_{3} \oplus A_{6} \oplus D_{7}$
1721. ${ }^{*} A_{3} \oplus A_{6} \oplus A_{7}$
1722. ${ }^{*} A_{3} \oplus A_{5} \oplus E_{8}$
1723. $A_{3} \oplus A_{5} \oplus D_{8}$
1724. ${ }^{*} A_{3} \oplus A_{5} \oplus A_{8}$
1725. ${ }^{*} A_{3} \oplus A_{4} \oplus D_{9}$
1726. $A_{3} \oplus A_{4} \oplus D_{4} \oplus D_{5}$
1727. ${ }^{*} A_{3} \oplus A_{4} \oplus A_{9}$
1728. $A_{3} \oplus A_{4} \oplus A_{5} \oplus D_{4}$
1729. ${ }^{*} A_{3} \oplus 2 A_{4} \oplus D_{5}$
1730. ${ }^{*} A_{3} \oplus 2 A_{4} \oplus A_{5}$
1731. $2 A_{3} \oplus D_{10}$
1732. $2 A_{3} \oplus 2 D_{5}$
1733. $2 A_{3} \oplus D_{4} \oplus E_{6}$
1734. ${ }^{*} 2 A_{3} \oplus A_{10}$
1735. $2 A_{3} \oplus A_{6} \oplus D_{4}$
1736. $2 A_{3} \oplus A_{5} \oplus D_{5}$
1737. $2 A_{3} \oplus 2 A_{5}$
1738. ${ }^{*} 2 A_{3} \oplus A_{4} \oplus E_{6}$
1739. $2 A_{3} \oplus A_{4} \oplus D_{6}$
1740. ${ }^{*} 2 A_{3} \oplus A_{4} \oplus A_{6}$
1741. $3 A_{3} \oplus E_{7}$
1742. $3 A_{3} \oplus D_{7}$
1743. $3 A_{3} \oplus A_{7}$
1744. $4 A_{3} \oplus A_{4}$
1745. ${ }^{*} A_{2} \oplus 2 E_{7}$
1746. ${ }^{*} A_{2} \oplus E_{6} \oplus E_{8}$
1747. ${ }^{*} A_{2} \oplus D_{14}$
1748. ${ }^{*} A_{2} \oplus D_{8} \oplus E_{6}$
1749. ${ }^{*} A_{2} \oplus D_{7} \oplus E_{7}$
1750. ${ }^{*} A_{2} \oplus 2 D_{7}$
1751. ${ }^{*} A_{2} \oplus D_{6} \oplus E_{8}$
1752. $A_{2} \oplus D_{6} \oplus D_{8}$
1753. ${ }^{*} A_{2} \oplus D_{5} \oplus D_{9}$
1754. $A_{2} \oplus D_{4} \oplus D_{10}$
1755. $A_{2} \oplus D_{4} \oplus 2 D_{5}$
1756. $A_{2} \oplus 2 D_{4} \oplus E_{6}$
1757. ${ }^{*} A_{2} \oplus A_{14}$
1758. ${ }^{*} A_{2} \oplus A_{10} \oplus D_{4}$
1759. ${ }^{*} A_{2} \oplus A_{9} \oplus D_{5}$
1760. $A_{2} \oplus A_{8} \oplus E_{6}$
1761. ${ }^{*} A_{2} \oplus A_{8} \oplus D_{6}$
1762. ${ }^{*} A_{2} \oplus A_{7} \oplus E_{7}$
1763. ${ }^{*} A_{2} \oplus A_{7} \oplus D_{7}$
1764. ${ }^{*} A_{2} \oplus 2 A_{7}$
1765. ${ }^{*} A_{2} \oplus A_{6} \oplus E_{8}$
1766. ${ }^{*} A_{2} \oplus A_{6} \oplus D_{8}$
1767. $A_{2} \oplus A_{6} \oplus 2 D_{4}$
1768. ${ }^{*} A_{2} \oplus A_{6} \oplus A_{8}$
1769. ${ }^{*} A_{2} \oplus A_{5} \oplus D_{9}$
1770. $A_{2} \oplus A_{5} \oplus D_{4} \oplus D_{5}$
1771. ${ }^{*} A_{2} \oplus A_{5} \oplus A_{9}$
1772. $A_{2} \oplus 2 A_{5} \oplus D_{4}$
1773. ${ }^{*} A_{2} \oplus A_{4} \oplus D_{10}$
1774. ${ }^{*} A_{2} \oplus A_{4} \oplus 2 D_{5}$
1775. ${ }^{*} A_{2} \oplus A_{4} \oplus D_{4} \oplus E_{6}$
1776. $A_{2} \oplus A_{4} \oplus D_{4} \oplus D_{6}$
1777. ${ }^{*} A_{2} \oplus A_{4} \oplus A_{10}$

## C List of all $A D E$ lattices $\Lambda$ such that $\Lambda \oplus\langle 6\rangle$ can be embedded primitively into the 126

1778. ${ }^{*} A_{2} \oplus A_{4} \oplus A_{6} \oplus D_{4}$
1779. ${ }^{*} A_{2} \oplus A_{4} \oplus A_{5} \oplus D_{5}$
1780. $A_{2} \oplus A_{4} \oplus 2 A_{5}$
1781. ${ }^{*} A_{2} \oplus 2 A_{4} \oplus E_{6}$
1782. ${ }^{*} A_{2} \oplus 2 A_{4} \oplus D_{6}$
1783. ${ }^{*} A_{2} \oplus 2 A_{4} \oplus A_{6}$
1784. ${ }^{*} A_{2} \oplus A_{3} \oplus D_{11}$
1785. ${ }^{*} A_{2} \oplus A_{3} \oplus D_{5} \oplus E_{6}$
1786. $A_{2} \oplus A_{3} \oplus D_{5} \oplus D_{6}$
1787. $A_{2} \oplus A_{3} \oplus D_{4} \oplus E_{7}$
1788. $A_{2} \oplus A_{3} \oplus D_{4} \oplus D_{7}$
1789. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{11}$
1790. $A_{2} \oplus A_{3} \oplus A_{7} \oplus D_{4}$
1791. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{6} \oplus D_{5}$
1792. $A_{2} \oplus A_{3} \oplus A_{5} \oplus E_{6}$
1793. $A_{2} \oplus A_{3} \oplus A_{5} \oplus D_{6}$
1794. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{5} \oplus A_{6}$
1795. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{4} \oplus E_{7}$
1796. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{4} \oplus D_{7}$
1797. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{4} \oplus A_{7}$
1798. ${ }^{*} A_{2} \oplus 2 A_{3} \oplus E_{8}$
1799. $A_{2} \oplus 2 A_{3} \oplus D_{8}$
1800. ${ }^{*} A_{2} \oplus 2 A_{3} \oplus A_{8}$
1801. $A_{2} \oplus 2 A_{3} \oplus A_{4} \oplus D_{4}$
1802. ${ }^{*} A_{2} \oplus 2 A_{3} \oplus 2 A_{4}$
1803. $A_{2} \oplus 3 A_{3} \oplus D_{5}$
1804. $A_{2} \oplus 3 A_{3} \oplus A_{5}$
1805. $2 A_{2} \oplus 2 E_{6}$
1806. ${ }^{*} 2 A_{2} \oplus D_{12}$
1807. $2 A_{2} \oplus D_{6} \oplus E_{6}$
1808. $2 A_{2} \oplus 2 D_{6}$
1809. ${ }^{*} 2 A_{2} \oplus D_{5} \oplus E_{7}$
1810. ${ }^{*} 2 A_{2} \oplus D_{5} \oplus D_{7}$
1811. ${ }^{*} 2 A_{2} \oplus D_{4} \oplus E_{8}$
1812. $2 A_{2} \oplus D_{4} \oplus D_{8}$
1813. ${ }^{*} 2 A_{2} \oplus A_{12}$
1814. $2 A_{2} \oplus A_{8} \oplus D_{4}$
1815. ${ }^{*} 2 A_{2} \oplus A_{7} \oplus D_{5}$
1816. $2 A_{2} \oplus A_{6} \oplus E_{6}$
1817. ${ }^{*} 2 A_{2} \oplus A_{6} \oplus D_{6}$ 1818. ${ }^{*} 2 A_{2} \oplus 2 A_{6}$
1818. $2 A_{2} \oplus A_{5} \oplus E_{7}$ 1820. $2 A_{2} \oplus A_{5} \oplus D_{7}$ 1821. $2 A_{2} \oplus A_{5} \oplus A_{7}$ 1822. ${ }^{*} 2 A_{2} \oplus A_{4} \oplus E_{8}$ 1823. ${ }^{*} 2 A_{2} \oplus A_{4} \oplus D_{8}$ 1824. $2 A_{2} \oplus A_{4} \oplus 2 D_{4}$ 1825. $2 A_{2} \oplus A_{4} \oplus A_{8}$ 1826. ${ }^{*} 2 A_{2} \oplus 2 A_{4} \oplus D_{4}$ 1827. ${ }^{*} 2 A_{2} \oplus 3 A_{4}$ 1828. ${ }^{*} 2 A_{2} \oplus A_{3} \oplus D_{9}$ 1829. $2 A_{2} \oplus A_{3} \oplus D_{4} \oplus$ $D_{5}$
1819. ${ }^{*} 2 A_{2} \oplus A_{3} \oplus A_{9}$
1820. $2 A_{2} \oplus A_{3} \oplus A_{5} \oplus D_{4}$
1821. ${ }^{*} 2 A_{2} \oplus A_{3} \oplus A_{4} \oplus$ $D_{5}$
1822. $2 A_{2} \oplus A_{3} \oplus A_{4} \oplus A_{5}$
1823. $2 A_{2} \oplus 2 A_{3} \oplus E_{6}$ 1835. $2 A_{2} \oplus 2 A_{3} \oplus D_{6}$
1824. ${ }^{*} 2 A_{2} \oplus 2 A_{3} \oplus A_{6}$ 1837. $2 A_{2} \oplus 4 A_{3}$ 1838. $3 A_{2} \oplus D_{10}$ 1839. $3 A_{2} \oplus 2 D_{5}$
1825. $3 A_{2} \oplus D_{4} \oplus D_{6}$ 1841. $3 A_{2} \oplus A_{10}$
1826. $3 A_{2} \oplus A_{6} \oplus D_{4}$ 1843. $3 A_{2} \oplus A_{5} \oplus D_{5}$ 1844. $3 A_{2} \oplus A_{4} \oplus E_{6}$ 1845. $3 A_{2} \oplus A_{4} \oplus D_{6}$ 1846. $3 A_{2} \oplus A_{4} \oplus A_{6}$ 1847. $3 A_{2} \oplus A_{3} \oplus E_{7}$ 1848. $3 A_{2} \oplus A_{3} \oplus D_{7}$ 1849. $3 A_{2} \oplus A_{3} \oplus A_{7}$ 1850. $3 A_{2} \oplus 2 A_{3} \oplus D_{4}$
1827. $3 A_{2} \oplus 2 A_{3} \oplus A_{4}$
1828. $4 A_{2} \oplus E_{8}$
1829. $4 A_{2} \oplus D_{8}$
1830. $4 A_{2} \oplus 2 D_{4}$
1831. $4 A_{2} \oplus 2 A_{4}$
1832. $4 A_{2} \oplus A_{3} \oplus D_{5}$ 1857. ${ }^{*} A_{1} \oplus E_{7} \oplus E_{8}$ 1858. ${ }^{*} A_{1} \oplus D_{15}$
1833. ${ }^{*} A_{1} \oplus D_{9} \oplus E_{6}$ 1860. $A_{1} \oplus D_{8} \oplus E_{7}$ 1861. ${ }^{*} A_{1} \oplus D_{7} \oplus E_{8}$ 1862. $A_{1} \oplus D_{7} \oplus D_{8}$ 1863. $A_{1} \oplus D_{6} \oplus D_{9}$ 1864. $A_{1} \oplus D_{5} \oplus D_{10}$ 1865. $A_{1} \oplus 3 D_{5}$
1834. $A_{1} \oplus D_{4} \oplus D_{11}$ 1867. $A_{1} \oplus D_{4} \oplus D_{5} \oplus E_{6}$ 1868. ${ }^{*} A_{1} \oplus A_{15}$
1835. $A_{1} \oplus A_{11} \oplus D_{4}$ 1870. ${ }^{*} A_{1} \oplus A_{10} \oplus D_{5}$ 1871. ${ }^{*} A_{1} \oplus A_{9} \oplus E_{6}$ 1872. $A_{1} \oplus A_{9} \oplus D_{6}$ 1873. ${ }^{*} A_{1} \oplus A_{8} \oplus E_{7}$ 1874. ${ }^{*} A_{1} \oplus A_{8} \oplus D_{7}$ 1875. ${ }^{*} A_{1} \oplus A_{7} \oplus E_{8}$ 1876. $A_{1} \oplus A_{7} \oplus D_{8}$ 1877. ${ }^{*} A_{1} \oplus A_{7} \oplus A_{8}$ 1878. ${ }^{*} A_{1} \oplus A_{6} \oplus D_{9}$ 1879. $A_{1} \oplus A_{6} \oplus D_{4} \oplus D_{5}$ 1880. ${ }^{*} A_{1} \oplus A_{6} \oplus A_{9}$ 1881. $A_{1} \oplus A_{5} \oplus D_{10}$ 1882. $A_{1} \oplus A_{5} \oplus 2 D_{5}$ 1883. $A_{1} \oplus A_{5} \oplus D_{4} \oplus E_{6}$ 1884. ${ }^{*} A_{1} \oplus A_{5} \oplus A_{10}$ 1885. $A_{1} \oplus A_{5} \oplus A_{6} \oplus D_{4}$ 1886. $A_{1} \oplus 2 A_{5} \oplus D_{5}$ 1887. $A_{1} \oplus 3 A_{5}$
1836. ${ }^{*} A_{1} \oplus A_{4} \oplus D_{11}$
1837. ${ }^{*} A_{1} \oplus A_{4} \oplus D_{5} \oplus E_{6}$ 1890. $A_{1} \oplus A_{4} \oplus D_{5} \oplus D_{6}$ 1891. $A_{1} \oplus A_{4} \oplus D_{4} \oplus E_{7}$ 1892. $A_{1} \oplus A_{4} \oplus D_{4} \oplus D_{7}$ 1893. ${ }^{*} A_{1} \oplus A_{4} \oplus A_{11}$ 1894. $A_{1} \oplus A_{4} \oplus A_{7} \oplus D_{4}$ 1895. ${ }^{*} A_{1} \oplus A_{4} \oplus A_{6} \oplus D_{5}$ 1896. ${ }^{*} A_{1} \oplus A_{4} \oplus A_{5} \oplus E_{6}$ 1897. $A_{1} \oplus A_{4} \oplus A_{5} \oplus D_{6}$ 1898. ${ }^{*} A_{1} \oplus A_{4} \oplus A_{5} \oplus A_{6}$ 1899. ${ }^{*} A_{1} \oplus 2 A_{4} \oplus E_{7}$ 1900. ${ }^{*} A_{1} \oplus 2 A_{4} \oplus D_{7}$ 1901. ${ }^{*} A_{1} \oplus 2 A_{4} \oplus A_{7}$ 1902. ${ }^{*} A_{1} \oplus A_{3} \oplus 2 E_{6}$ 903. $A_{1} \oplus A_{3} \oplus D_{12}$ 1904. $A_{1} \oplus A_{3} \oplus D_{6} \oplus E_{6}$ 1905. $A_{1} \oplus A_{3} \oplus D_{5} \oplus E_{7}$ 1906. $A_{1} \oplus A_{3} \oplus D_{5} \oplus D_{7}$ 1907. $A_{1} \oplus A_{3} \oplus D_{4} \oplus E_{8}$ 1908. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{12}$ 1909. $A_{1} \oplus A_{3} \oplus A_{8} \oplus D_{4}$ 1910. $A_{1} \oplus A_{3} \oplus A_{7} \oplus D_{5}$ 1911. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{6} \oplus E_{6}$ 1912. $A_{1} \oplus A_{3} \oplus A_{6} \oplus D_{6}$ 1913. ${ }^{*} A_{1} \oplus A_{3} \oplus 2 A_{6}$ 1914. $A_{1} \oplus A_{3} \oplus A_{5} \oplus E_{7}$ 1915. $A_{1} \oplus A_{3} \oplus A_{5} \oplus D_{7}$ 1916. $A_{1} \oplus A_{3} \oplus A_{5} \oplus A_{7}$ 1917. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{4} \oplus E_{8}$ 1918. $A_{1} \oplus A_{3} \oplus A_{4} \oplus D_{8}$ 1919. ${ }^{*} A_{1} \oplus A_{3} \oplus A_{4} \oplus A_{8}$ 1920. $A_{1} \oplus A_{3} \oplus 2 A_{4} \oplus D_{4}$ 1921. ${ }^{*} A_{1} \oplus A_{3} \oplus 3 A_{4}$ 1922. $A_{1} \oplus 2 A_{3} \oplus D_{9}$ 1923. $A_{1} \oplus 2 A_{3} \oplus A_{9}$
1838. $A_{1} \oplus 2 A_{3} \oplus A_{4} \oplus D_{5}$
1839. $A_{1} \oplus 2 A_{3} \oplus A_{4} \oplus A_{5}$ 1926. $A_{1} \oplus 3 A_{3} \oplus E_{6}$ 1927. $A_{1} \oplus 3 A_{3} \oplus A_{6}$ 1928. ${ }^{*} A_{1} \oplus A_{2} \oplus E_{6} \oplus E_{7}$ 1929. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{13}$ 1930. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{7} \oplus E_{6}$ 1931. $A_{1} \oplus A_{2} \oplus D_{6} \oplus E_{7}$ 1932. $A_{1} \oplus A_{2} \oplus D_{6} \oplus D_{7}$ 1933. ${ }^{*} A_{1} \oplus A_{2} \oplus D_{5} \oplus E_{8}$ 1934. $A_{1} \oplus A_{2} \oplus D_{5} \oplus D_{8}$ 1935. $A_{1} \oplus A_{2} \oplus D_{4} \oplus D_{9}$ 1936. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{13}$ 1937. $A_{1} \oplus A_{2} \oplus A_{9} \oplus D_{4}$ 1938. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{8} \oplus D_{5}$ 1939. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{7} \oplus E_{6}$ 1940. $A_{1} \oplus A_{2} \oplus A_{7} \oplus D_{6}$ 1941. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{6} \oplus E_{7}$ 1942. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{6} \oplus D_{7}$ 1943. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{6} \oplus A_{7}$ 1944. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{5} \oplus E_{8}$ 1945. $A_{1} \oplus A_{2} \oplus A_{5} \oplus D_{8}$ 1946. $A_{1} \oplus A_{2} \oplus A_{5} \oplus A_{8}$ 1947. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{4} \oplus D_{9}$
1840. $A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $D_{4} \oplus D_{5}$
1841. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{4} \oplus A_{9}$
1842. $A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $A_{5} \oplus D_{4}$
1843. ${ }^{*} A_{1} \oplus A_{2} \oplus 2 A_{4} \oplus$ $D_{5}$
1844. ${ }^{*} A_{1} \oplus A_{2} \oplus 2 A_{4} \oplus$ $A_{5}$
1845. $A_{1} \oplus A_{2} \oplus A_{3} \oplus D_{10}$ 1954. $A_{1} \oplus A_{2} \oplus A_{3} \oplus 2 D_{5}$ 1955. $A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $D_{4} \oplus E_{6}$
1846. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{10}$
1847. $A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{6} \oplus D_{4}$
1848. $A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{5} \oplus D_{5}$
1849. $A_{1} \oplus A_{2} \oplus A_{3} \oplus 2 A_{5}$
1850. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus E_{6}$
1851. $A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus D_{6}$
1852. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus A_{6}$
1853. $A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus E_{7}$ 1964. $A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus D_{7}$
1854. $A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus A_{7}$ 1966. $A_{1} \oplus A_{2} \oplus 3 A_{3} \oplus A_{4}$ 1967. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus D_{11}$ 1968. $A_{1} \oplus 2 A_{2} \oplus D_{5} \oplus E_{6}$
1855. $A_{1} \oplus 2 A_{2} \oplus D_{5} \oplus$ $D_{6}$
1856. $A_{1} \oplus 2 A_{2} \oplus D_{4} \oplus E_{7}$
1857. $A_{1} \oplus 2 A_{2} \oplus D_{4} \oplus$ $D_{7}$
1858. $A_{1} \oplus 2 A_{2} \oplus A_{11}$
1859. $A_{1} \oplus 2 A_{2} \oplus A_{7} \oplus D_{4}$
1860. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{6} \oplus$ $D_{5}$
1861. $A_{1} \oplus 2 A_{2} \oplus A_{5} \oplus E_{6}$
1862. $A_{1} \oplus 2 A_{2} \oplus A_{5} \oplus D_{6}$
1863. $A_{1} \oplus 2 A_{2} \oplus A_{5} \oplus A_{6}$
1864. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $E_{7}$
1865. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $D_{7}$
1866. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $A_{7}$
1867. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $E_{8}$
1868. $A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus D_{8}$
1869. $A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus A_{8}$
1870. $A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus D_{4}$
1871. ${ }^{*} A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $2 A_{4}$
1872. $A_{1} \oplus 2 A_{2} \oplus 2 A_{3} \oplus$
$D_{5}$
1873. $A_{1} \oplus 2 A_{2} \oplus 2 A_{3} \oplus$ $A_{5}$
1874. $A_{1} \oplus 3 A_{2} \oplus D_{9}$
1875. $A_{1} \oplus 3 A_{2} \oplus D_{4} \oplus$ $D_{5}$
1876. $A_{1} \oplus 3 A_{2} \oplus A_{9}$
1877. $A_{1} \oplus 3 A_{2} \oplus A_{4} \oplus D_{5}$
1878. $A_{1} \oplus 3 A_{2} \oplus A_{4} \oplus A_{5}$
1879. $A_{1} \oplus 3 A_{2} \oplus A_{3} \oplus E_{6}$
1880. $A_{1} \oplus 3 A_{2} \oplus A_{3} \oplus D_{6}$ 1995. $A_{1} \oplus 3 A_{2} \oplus A_{3} \oplus A_{6}$ 1996. $A_{1} \oplus 3 A_{2} \oplus 3 A_{3}$ 1997. $A_{1} \oplus 4 A_{2} \oplus E_{7}$ 1998. $A_{1} \oplus 4 A_{2} \oplus A_{7}$ 1999. $A_{1} \oplus 4 A_{2} \oplus A_{3} \oplus A_{4}$ 2000. $2 A_{1} \oplus 2 E_{7}$ 2001. ${ }^{*} 2 A_{1} \oplus E_{6} \oplus E_{8}$ 2002. $2 A_{1} \oplus D_{14}$ 2003. $2 A_{1} \oplus D_{8} \oplus E_{6}$ 2004. $2 A_{1} \oplus D_{7} \oplus E_{7}$ 2005. $2 A_{1} \oplus 2 D_{7}$ 2006. $2 A_{1} \oplus D_{6} \oplus E_{8}$ 2007. $2 A_{1} \oplus D_{5} \oplus D_{9}$ 2008. ${ }^{*} 2 A_{1} \oplus A_{14}$ 2009. $2 A_{1} \oplus A_{10} \oplus D_{4}$ 2010. $2 A_{1} \oplus A_{9} \oplus D_{5}$ 2011. ${ }^{*} 2 A_{1} \oplus A_{8} \oplus E_{6}$ 2012. $2 A_{1} \oplus A_{8} \oplus D_{6}$ 2013. $2 A_{1} \oplus A_{7} \oplus E_{7}$ 2014. $2 A_{1} \oplus A_{7} \oplus D_{7}$ 2015. $2 A_{1} \oplus 2 A_{7}$
1881. ${ }^{*} 2 A_{1} \oplus A_{6} \oplus E_{8}$ 2017. $2 A_{1} \oplus A_{6} \oplus D_{8}$ 2018. ${ }^{*} 2 A_{1} \oplus A_{6} \oplus A_{8}$ 2019. $2 A_{1} \oplus A_{5} \oplus D_{9}$ 2020. $2 A_{1} \oplus A_{5} \oplus A_{9}$
1882. $2 A_{1} \oplus A_{4} \oplus D_{10}$ 2022. $2 A_{1} \oplus A_{4} \oplus 2 D_{5}$ 2023. $2 A_{1} \oplus A_{4} \oplus D_{4} \oplus E_{6}$ 2024. ${ }^{*} 2 A_{1} \oplus A_{4} \oplus A_{10}$ 2025. $2 A_{1} \oplus A_{4} \oplus A_{6} \oplus D_{4}$ 2026. $2 A_{1} \oplus A_{4} \oplus A_{5} \oplus D_{5}$ 2027. $2 A_{1} \oplus A_{4} \oplus 2 A_{5}$ 2028. ${ }^{*} 2 A_{1} \oplus 2 A_{4} \oplus E_{6}$ 2029. $2 A_{1} \oplus 2 A_{4} \oplus D_{6}$ 2030. ${ }^{*} 2 A_{1} \oplus 2 A_{4} \oplus A_{6}$ 2031. $2 A_{1} \oplus A_{3} \oplus D_{11}$ 2032. $2 A_{1} \oplus A_{3} \oplus D_{5} \oplus E_{6}$ 2033. $2 A_{1} \oplus A_{3} \oplus A_{11}$ 2034. $2 A_{1} \oplus A_{3} \oplus A_{6} \oplus D_{5}$ 2035. $2 A_{1} \oplus A_{3} \oplus A_{5} \oplus E_{6}$ 2036. $2 A_{1} \oplus A_{3} \oplus A_{5} \oplus A_{6}$ 2037. $2 A_{1} \oplus A_{3} \oplus A_{4} \oplus E_{7}$ 2038. $2 A_{1} \oplus A_{3} \oplus A_{4} \oplus D_{7}$ 2039. $2 A_{1} \oplus A_{3} \oplus A_{4} \oplus A_{7}$ 2040. $2 A_{1} \oplus 2 A_{3} \oplus E_{8}$ 2041. $2 A_{1} \oplus 2 A_{3} \oplus A_{8}$ 2042. $2 A_{1} \oplus 2 A_{3} \oplus 2 A_{4}$ 2043. $2 A_{1} \oplus A_{2} \oplus 2 E_{6}$ 2044. $2 A_{1} \oplus A_{2} \oplus D_{12}$ 2045. $2 A_{1} \oplus A_{2} \oplus D_{6} \oplus E_{6}$ 2046. $2 A_{1} \oplus A_{2} \oplus D_{5} \oplus E_{7}$ 2047. $2 A_{1} \oplus A_{2} \oplus D_{5} \oplus$ $D_{7}$
1883. $2 A_{1} \oplus A_{2} \oplus D_{4} \oplus E_{8}$ 2049. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{12}$ 2050. $2 A_{1} \oplus A_{2} \oplus A_{8} \oplus D_{4}$ 2051. $2 A_{1} \oplus A_{2} \oplus A_{7} \oplus D_{5}$ 2052. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{6} \oplus$ $E_{6}$
1884. $2 A_{1} \oplus A_{2} \oplus A_{6} \oplus D_{6}$ 2054. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus 2 A_{6}$ 2055. $2 A_{1} \oplus A_{2} \oplus A_{5} \oplus E_{7}$ 2056. $2 A_{1} \oplus A_{2} \oplus A_{5} \oplus D_{7}$

C List of all $A D E$ lattices $\Lambda$ such that $\Lambda \oplus\langle 6\rangle$ can be embedded primitively into the
2057. $2 A_{1} \oplus A_{2} \oplus A_{5} \oplus A_{7}$
2058. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $E_{8}$
2059. $2 A_{1} \oplus A_{2} \oplus A_{4} \oplus D_{8}$
2060. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $A_{8}$
2061. $2 A_{1} \oplus A_{2} \oplus 2 A_{4} \oplus$ $D_{4}$
2062. ${ }^{*} 2 A_{1} \oplus A_{2} \oplus 3 A_{4}$
2063. $2 A_{1} \oplus A_{2} \oplus A_{3} \oplus D_{9}$
2064. $2 A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{9}$
2065. $2 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus D_{5}$
2066. $2 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus A_{5}$
2067. $2 A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus$ $E_{6}$
2068. $2 A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus$ $A_{6}$
2069. $2 A_{1} \oplus 2 A_{2} \oplus D_{10}$
2070. $2 A_{1} \oplus 2 A_{2} \oplus 2 D_{5}$
2071. $2 A_{1} \oplus 2 A_{2} \oplus D_{4} \oplus$ $E_{6}$
2072. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus A_{10}$
2073. $2 A_{1} \oplus 2 A_{2} \oplus A_{6} \oplus$ $D_{4}$
2074. $2 A_{1} \oplus 2 A_{2} \oplus A_{5} \oplus$ $D_{5}$
2075. $2 A_{1} \oplus 2 A_{2} \oplus 2 A_{5}$
2076. $2 A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $E_{6}$
2077. $2 A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $D_{6}$
2078. ${ }^{*} 2 A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $A_{6}$
2079. $2 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $E_{7}$
2080. $2 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $D_{7}$
2081. $2 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $A_{7}$
2082. $2 A_{1} \oplus 2 A_{2} \oplus 2 A_{3} \oplus$ $A_{4}$
2083. $2 A_{1} \oplus 3 A_{2} \oplus E_{8}$
2084. $2 A_{1} \oplus 3 A_{2} \oplus D_{8}$
2085. $2 A_{1} \oplus 3 A_{2} \oplus A_{8}$
2086. $2 A_{1} \oplus 3 A_{2} \oplus A_{4} \oplus$ $D_{4}$
2087. $2 A_{1} \oplus 3 A_{2} \oplus 2 A_{4}$
2088. $2 A_{1} \oplus 3 A_{2} \oplus A_{3} \oplus$ $D_{5}$
2089. $2 A_{1} \oplus 3 A_{2} \oplus A_{3} \oplus$ $A_{5}$
2090. $2 A_{1} \oplus 4 A_{2} \oplus D_{6}$
2091. $2 A_{1} \oplus 4 A_{2} \oplus A_{6}$
2092. $2 A_{1} \oplus 4 A_{2} \oplus 2 A_{3}$
2093. $3 A_{1} \oplus E_{6} \oplus E_{7}$ 2094. $3 A_{1} \oplus D_{13}$
2095. $3 A_{1} \oplus D_{7} \oplus E_{6}$ 2096. $3 A_{1} \oplus D_{5} \oplus E_{8}$ 2097. $3 A_{1} \oplus A_{13}$ 2098. $3 A_{1} \oplus A_{8} \oplus D_{5}$ 2099. $3 A_{1} \oplus A_{7} \oplus E_{6}$ 2100. $3 A_{1} \oplus A_{6} \oplus E_{7}$ 2101. $3 A_{1} \oplus A_{6} \oplus D_{7}$ 2102. $3 A_{1} \oplus A_{6} \oplus A_{7}$ 2103. $3 A_{1} \oplus A_{5} \oplus E_{8}$ 2104. $3 A_{1} \oplus A_{5} \oplus A_{8}$ 2105. $3 A_{1} \oplus A_{4} \oplus D_{9}$ 2106. $3 A_{1} \oplus A_{4} \oplus A_{9}$ 2107. $3 A_{1} \oplus 2 A_{4} \oplus D_{5}$ 2108. $3 A_{1} \oplus 2 A_{4} \oplus A_{5}$ 2109. $3 A_{1} \oplus A_{3} \oplus A_{10}$ 2110. $3 A_{1} \oplus A_{3} \oplus A_{4} \oplus E_{6}$ 2111. $3 A_{1} \oplus A_{3} \oplus A_{4} \oplus A_{6}$ 2112. $3 A_{1} \oplus A_{2} \oplus D_{11}$ 2113. $3 A_{1} \oplus A_{2} \oplus D_{5} \oplus E_{6}$ 2114. $3 A_{1} \oplus A_{2} \oplus A_{11}$
2115. $3 A_{1} \oplus A_{2} \oplus A_{6} \oplus D_{5}$ 2116. $3 A_{1} \oplus A_{2} \oplus A_{5} \oplus E_{6}$ 2117. $3 A_{1} \oplus A_{2} \oplus A_{5} \oplus A_{6}$
2118. $3 A_{1} \oplus A_{2} \oplus A_{4} \oplus E_{7}$
2119. $3 A_{1} \oplus A_{2} \oplus A_{4} \oplus D_{7}$
2120. $3 A_{1} \oplus A_{2} \oplus A_{4} \oplus A_{7}$
2121. $3 A_{1} \oplus A_{2} \oplus A_{3} \oplus E_{8}$
2122. $3 A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{8}$
2123. $3 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $2 A_{4}$
2124. $3 A_{1} \oplus 2 A_{2} \oplus D_{9}$
2125. $3 A_{1} \oplus 2 A_{2} \oplus A_{9}$
2126. $3 A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $D_{5}$
2127. $3 A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $A_{5}$
2128. $3 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $E_{6}$
2129. $3 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $A_{6}$
2130. $3 A_{1} \oplus 3 A_{2} \oplus E_{7}$ 2131. $3 A_{1} \oplus 3 A_{2} \oplus D_{7}$ 2132. $3 A_{1} \oplus 3 A_{2} \oplus A_{7}$ 2133. $3 A_{1} \oplus 3 A_{2} \oplus A_{3} \oplus$ $A_{4}$
2134. $4 A_{1} \oplus 2 E_{6}$
2135. $4 A_{1} \oplus A_{12}$
2136. $4 A_{1} \oplus A_{6} \oplus E_{6}$
2137. $4 A_{1} \oplus 2 A_{6}$
2138. $4 A_{1} \oplus A_{4} \oplus E_{8}$
2139. $4 A_{1} \oplus A_{4} \oplus A_{8}$
2140. $4 A_{1} \oplus 3 A_{4}$
2141. $4 A_{1} \oplus A_{2} \oplus A_{10}$
2142. $4 A_{1} \oplus A_{2} \oplus A_{4} \oplus E_{6}$
2143. $4 A_{1} \oplus A_{2} \oplus A_{4} \oplus A_{6}$
2144. $4 A_{1} \oplus 2 A_{2} \oplus E_{8}$
2145. $4 A_{1} \oplus 2 A_{2} \oplus A_{8}$
2146. $4 A_{1} \oplus 2 A_{2} \oplus 2 A_{4}$
2147. $4 A_{1} \oplus 3 A_{2} \oplus A_{6}$
$\operatorname{rank}(\Lambda)=17$
2148. ${ }^{*} D_{17}$
2149. ${ }^{*} D_{11} \oplus E_{6}$
2150. $D_{10} \oplus E_{7}$
2151. ${ }^{*} D_{9} \oplus E_{8}$
2152. $D_{8} \oplus D_{9}$
2153. $D_{7} \oplus D_{10}$
2154. $D_{6} \oplus D_{11}$
2155. $D_{5} \oplus 2 E_{6}$
2156. $D_{5} \oplus D_{12}$
2157. $D_{5} \oplus D_{6} \oplus E_{6}$
2158. $2 D_{5} \oplus E_{7}$ 2159. $2 D_{5} \oplus D_{7}$ 2160. $D_{4} \oplus E_{6} \oplus E_{7}$ 2161. $D_{4} \oplus D_{13}$ 2162. $D_{4} \oplus D_{7} \oplus E_{6}$ 2163. $D_{4} \oplus D_{5} \oplus E_{8}$ 2164. ${ }^{*} A_{17}$
2165. $A_{13} \oplus D_{4}$ 2166. ${ }^{*} A_{12} \oplus D_{5}$ 2167. $A_{11} \oplus E_{6}$ 2168. $A_{11} \oplus D_{6}$ 2169. ${ }^{*} A_{10} \oplus E_{7}$ 2170. ${ }^{*} A_{10} \oplus D_{7}$ 2171. ${ }^{*} A_{9} \oplus E_{8}$ 2172. $A_{9} \oplus D_{8}$ 2173. ${ }^{*} A_{8} \oplus D_{9}$ 2174. $A_{8} \oplus D_{4} \oplus D_{5}$ 2175. ${ }^{*} A_{8} \oplus A_{9}$ 2176. $A_{7} \oplus D_{10}$ 2177. $A_{7} \oplus 2 D_{5}$ 2178. $A_{7} \oplus D_{4} \oplus E_{6}$ 2179. ${ }^{*} A_{7} \oplus A_{10}$ 2180. ${ }^{*} A_{6} \oplus D_{11}$ 2181. ${ }^{*} A_{6} \oplus D_{5} \oplus E_{6}$ 2182. $A_{6} \oplus D_{5} \oplus D_{6}$ 2183. $A_{6} \oplus D_{4} \oplus E_{7}$ 2184. $A_{6} \oplus D_{4} \oplus D_{7}$ 2185. ${ }^{*} A_{6} \oplus A_{11}$ 2186. $A_{6} \oplus A_{7} \oplus D_{4}$
2187. ${ }^{*} 2 A_{6} \oplus D_{5}$
2188. $A_{5} \oplus 2 E_{6}$
2189. $A_{5} \oplus D_{12}$
2190. $A_{5} \oplus D_{6} \oplus E_{6}$ 2191. $A_{5} \oplus D_{5} \oplus E_{7}$ 2192. $A_{5} \oplus D_{5} \oplus D_{7}$ 2193. $A_{5} \oplus D_{4} \oplus E_{8}$ 2194. ${ }^{*} A_{5} \oplus A_{12}$ 2195. $A_{5} \oplus A_{8} \oplus D_{4}$ 2196. $A_{5} \oplus A_{7} \oplus D_{5}$ 2197. $A_{5} \oplus A_{6} \oplus E_{6}$ 2198. $A_{5} \oplus A_{6} \oplus D_{6}$ 2199. ${ }^{*} A_{5} \oplus 2 A_{6}$ 2200. $2 A_{5} \oplus E_{7}$ 2201. $2 A_{5} \oplus D_{7}$ 2202. $2 A_{5} \oplus A_{7}$ 2203. ${ }^{*} A_{4} \oplus E_{6} \oplus E_{7}$ 2204. ${ }^{*} A_{4} \oplus D_{13}$ 2205. ${ }^{*} A_{4} \oplus D_{7} \oplus E_{6}$ 2206. $A_{4} \oplus D_{6} \oplus E_{7}$ 2207. $A_{4} \oplus D_{6} \oplus D_{7}$ 2208. ${ }^{*} A_{4} \oplus D_{5} \oplus E_{8}$ 2209. $A_{4} \oplus D_{5} \oplus D_{8}$ 2210. $A_{4} \oplus D_{4} \oplus D_{9}$ 2211. ${ }^{*} A_{4} \oplus A_{13}$
2212. $A_{4} \oplus A_{9} \oplus D_{4}$ 2213. ${ }^{*} A_{4} \oplus A_{8} \oplus D_{5}$ 2214. ${ }^{*} A_{4} \oplus A_{7} \oplus E_{6}$ 2215. $A_{4} \oplus A_{7} \oplus D_{6}$ 2216. ${ }^{*} A_{4} \oplus A_{6} \oplus E_{7}$ 2217. ${ }^{*} A_{4} \oplus A_{6} \oplus D_{7}$ 2218. ${ }^{*} A_{4} \oplus A_{6} \oplus A_{7}$ 2219. ${ }^{*} A_{4} \oplus A_{5} \oplus E_{8}$ 2220. $A_{4} \oplus A_{5} \oplus D_{8}$ 2221. $A_{4} \oplus A_{5} \oplus A_{8}$ 2222. ${ }^{*} 2 A_{4} \oplus D_{9}$ 2223. $2 A_{4} \oplus D_{4} \oplus D_{5}$
2224. $2 A_{4} \oplus A_{9}$
2225. $2 A_{4} \oplus A_{5} \oplus D_{4}$ 2226. $3 A_{4} \oplus D_{5}$
2227. $3 A_{4} \oplus A_{5}$
2228. $A_{3} \oplus 2 E_{7}$
2229. ${ }^{*} A_{3} \oplus E_{6} \oplus E_{8}$ 2230. $A_{3} \oplus D_{14}$
2231. $A_{3} \oplus D_{8} \oplus E_{6}$
2232. $A_{3} \oplus D_{7} \oplus E_{7}$ 2233. $A_{3} \oplus 2 D_{7}$
2234. $A_{3} \oplus D_{6} \oplus E_{8}$
2235. $A_{3} \oplus D_{5} \oplus D_{9}$ 2236. ${ }^{*} A_{3} \oplus A_{14}$ 2237. $A_{3} \oplus A_{10} \oplus D_{4}$
2238. $A_{3} \oplus A_{9} \oplus D_{5}$
2239. $A_{3} \oplus A_{8} \oplus E_{6}$
2240. $A_{3} \oplus A_{8} \oplus D_{6}$
2241. $A_{3} \oplus A_{7} \oplus E_{7}$
2242. $A_{3} \oplus A_{7} \oplus D_{7}$
2243. $A_{3} \oplus 2 A_{7}$
2244. ${ }^{*} A_{3} \oplus A_{6} \oplus E_{8}$
2245. $A_{3} \oplus A_{6} \oplus D_{8}$
2246. ${ }^{*} A_{3} \oplus A_{6} \oplus A_{8}$
2247. $A_{3} \oplus A_{5} \oplus D_{9}$
2248. $A_{3} \oplus A_{5} \oplus A_{9}$
2249. $A_{3} \oplus A_{4} \oplus D_{10}$
2250. $A_{3} \oplus A_{4} \oplus 2 D_{5}$
2251. $A_{3} \oplus A_{4} \oplus D_{4} \oplus E_{6}$
2252. ${ }^{*} A_{3} \oplus A_{4} \oplus A_{10}$
2253. $A_{3} \oplus A_{4} \oplus A_{6} \oplus D_{4}$
2254. $A_{3} \oplus A_{4} \oplus A_{5} \oplus D_{5}$
2255. $A_{3} \oplus A_{4} \oplus 2 A_{5}$
2256. ${ }^{*} A_{3} \oplus 2 A_{4} \oplus E_{6}$
2257. $A_{3} \oplus 2 A_{4} \oplus D_{6}$
2258. ${ }^{*} A_{3} \oplus 2 A_{4} \oplus A_{6}$
2259. $2 A_{3} \oplus D_{11}$
2260. $2 A_{3} \oplus D_{5} \oplus E_{6}$
2261. $2 A_{3} \oplus A_{11}$
2262. $2 A_{3} \oplus A_{6} \oplus D_{5}$
2263. $2 A_{3} \oplus A_{5} \oplus E_{6}$
2264. $2 A_{3} \oplus A_{5} \oplus A_{6}$
2265. $2 A_{3} \oplus A_{4} \oplus E_{7}$ 2266. $2 A_{3} \oplus A_{4} \oplus D_{7}$
2267. $2 A_{3} \oplus A_{4} \oplus A_{7}$ 2268. $3 A_{3} \oplus E_{8}$
2269. $3 A_{3} \oplus A_{8}$
2270. $3 A_{3} \oplus 2 A_{4}$
2271. ${ }^{*} A_{2} \oplus E_{7} \oplus E_{8}$ 2272. ${ }^{*} A_{2} \oplus D_{15}$
2273. $A_{2} \oplus D_{9} \oplus E_{6}$ 2274. $A_{2} \oplus D_{8} \oplus E_{7}$ 2275. ${ }^{*} A_{2} \oplus D_{7} \oplus E_{8}$ 2276. $A_{2} \oplus D_{7} \oplus D_{8}$ 2277. $A_{2} \oplus D_{6} \oplus D_{9}$ 2278. $A_{2} \oplus D_{5} \oplus D_{10}$ 2279. $A_{2} \oplus 3 D_{5}$
2280. $A_{2} \oplus D_{4} \oplus D_{11}$ 2281. $A_{2} \oplus D_{4} \oplus D_{5} \oplus E_{6}$ 2282. ${ }^{*} A_{2} \oplus A_{15}$
2283. $A_{2} \oplus A_{11} \oplus D_{4}$ 2284. ${ }^{*} A_{2} \oplus A_{10} \oplus D_{5}$ 2285. $A_{2} \oplus A_{9} \oplus E_{6}$ 2286. $A_{2} \oplus A_{9} \oplus D_{6}$ 2287. $A_{2} \oplus A_{8} \oplus E_{7}$ 2288. $A_{2} \oplus A_{8} \oplus D_{7}$ 2289. ${ }^{*} A_{2} \oplus A_{7} \oplus E_{8}$ 2290. $A_{2} \oplus A_{7} \oplus D_{8}$ 2291. $A_{2} \oplus A_{7} \oplus A_{8}$ 2292. ${ }^{*} A_{2} \oplus A_{6} \oplus D_{9}$ 2293. $A_{2} \oplus A_{6} \oplus D_{4} \oplus D_{5}$ 2294. ${ }^{*} A_{2} \oplus A_{6} \oplus A_{9}$ 2295. $A_{2} \oplus A_{5} \oplus D_{10}$ 2296. $A_{2} \oplus A_{5} \oplus 2 D_{5}$ 2297. $A_{2} \oplus A_{5} \oplus A_{10}$
2298. $A_{2} \oplus A_{5} \oplus A_{6} \oplus D_{4}$ 2299. $A_{2} \oplus 2 A_{5} \oplus D_{5}$ 2300. ${ }^{*} A_{2} \oplus A_{4} \oplus D_{11}$ 2301. $A_{2} \oplus A_{4} \oplus D_{5} \oplus E_{6}$ 2302. $A_{2} \oplus A_{4} \oplus D_{5} \oplus D_{6}$ 2303. $A_{2} \oplus A_{4} \oplus D_{4} \oplus E_{7}$ 2304. $A_{2} \oplus A_{4} \oplus D_{4} \oplus D_{7}$ 2305. $A_{2} \oplus A_{4} \oplus A_{11}$ 2306. $A_{2} \oplus A_{4} \oplus A_{7} \oplus D_{4}$ 2307. ${ }^{*} A_{2} \oplus A_{4} \oplus A_{6} \oplus D_{5}$ 2308. $A_{2} \oplus A_{4} \oplus A_{5} \oplus E_{6}$ 2309. $A_{2} \oplus A_{4} \oplus A_{5} \oplus D_{6}$ 2310. $A_{2} \oplus A_{4} \oplus A_{5} \oplus A_{6}$ 2311. ${ }^{*} A_{2} \oplus 2 A_{4} \oplus E_{7}$ 2312. ${ }^{*} A_{2} \oplus 2 A_{4} \oplus D_{7}$ 2313. ${ }^{*} A_{2} \oplus 2 A_{4} \oplus A_{7}$ 2314. $A_{2} \oplus A_{3} \oplus 2 E_{6}$ 2315. $A_{2} \oplus A_{3} \oplus D_{12}$ 2316. $A_{2} \oplus A_{3} \oplus D_{6} \oplus E_{6}$ 2317. $A_{2} \oplus A_{3} \oplus D_{5} \oplus E_{7}$ 2318. $A_{2} \oplus A_{3} \oplus D_{5} \oplus D_{7}$ 2319. $A_{2} \oplus A_{3} \oplus D_{4} \oplus E_{8}$ 2320. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{12}$ 2321. $A_{2} \oplus A_{3} \oplus A_{8} \oplus D_{4}$ 2322. $A_{2} \oplus A_{3} \oplus A_{7} \oplus D_{5}$ 2323. $A_{2} \oplus A_{3} \oplus A_{6} \oplus E_{6}$ 2324. $A_{2} \oplus A_{3} \oplus A_{6} \oplus D_{6}$ 2325. ${ }^{*} A_{2} \oplus A_{3} \oplus 2 A_{6}$ 2326. $A_{2} \oplus A_{3} \oplus A_{5} \oplus E_{7}$ 2327. $A_{2} \oplus A_{3} \oplus A_{5} \oplus D_{7}$ 2328. $A_{2} \oplus A_{3} \oplus A_{5} \oplus A_{7}$ 2329. ${ }^{*} A_{2} \oplus A_{3} \oplus A_{4} \oplus E_{8}$ 2330. $A_{2} \oplus A_{3} \oplus A_{4} \oplus D_{8}$ 2331. $A_{2} \oplus A_{3} \oplus A_{4} \oplus A_{8}$ 2332. $A_{2} \oplus A_{3} \oplus 2 A_{4} \oplus D_{4}$ 2333. $A_{2} \oplus A_{3} \oplus 3 A_{4}$ 2334. $A_{2} \oplus 2 A_{3} \oplus D_{9}$

## C List of all $A D E$ lattices $\Lambda$ such that $\Lambda \oplus\langle 6\rangle$ can be embedded primitively into the 130

2335. $A_{2} \oplus 2 A_{3} \oplus A_{9}$
2336. $A_{2} \oplus 2 A_{3} \oplus A_{4} \oplus D_{5}$
2337. $A_{2} \oplus 2 A_{3} \oplus A_{4} \oplus A_{5}$
2338. $A_{2} \oplus 3 A_{3} \oplus E_{6}$
2339. $A_{2} \oplus 3 A_{3} \oplus A_{6}$
2340. $2 A_{2} \oplus E_{6} \oplus E_{7}$ 2341. $2 A_{2} \oplus D_{13}$
2341. $2 A_{2} \oplus D_{6} \oplus E_{7}$ 2343. $2 A_{2} \oplus D_{6} \oplus D_{7}$
2342. $2 A_{2} \oplus D_{5} \oplus E_{8}$ 2345. $2 A_{2} \oplus D_{5} \oplus D_{8}$ 2346. $2 A_{2} \oplus D_{4} \oplus D_{9}$ 2347. $2 A_{2} \oplus A_{13}$
2343. $2 A_{2} \oplus A_{9} \oplus D_{4}$ 2349. $2 A_{2} \oplus A_{8} \oplus D_{5}$
2344. $2 A_{2} \oplus A_{7} \oplus E_{6}$
2345. $2 A_{2} \oplus A_{7} \oplus D_{6}$
2346. $2 A_{2} \oplus A_{6} \oplus E_{7}$
2347. $2 A_{2} \oplus A_{6} \oplus D_{7}$
2348. $2 A_{2} \oplus A_{6} \oplus A_{7}$
2349. $2 A_{2} \oplus A_{5} \oplus E_{8}$
2350. $2 A_{2} \oplus A_{5} \oplus D_{8}$
2351. $2 A_{2} \oplus A_{4} \oplus D_{9}$
2352. $2 A_{2} \oplus A_{4} \oplus D_{4} \oplus$ $D_{5}$
2353. $2 A_{2} \oplus A_{4} \oplus A_{9}$
2354. $2 A_{2} \oplus 2 A_{4} \oplus D_{5}$
2355. $2 A_{2} \oplus 2 A_{4} \oplus A_{5}$
2356. $2 A_{2} \oplus A_{3} \oplus D_{10}$
2357. $2 A_{2} \oplus A_{3} \oplus 2 D_{5}$
2358. $2 A_{2} \oplus A_{3} \oplus A_{10}$
2359. $2 A_{2} \oplus A_{3} \oplus A_{6} \oplus D_{4}$
2360. $2 A_{2} \oplus A_{3} \oplus A_{5} \oplus D_{5}$
2361. $2 A_{2} \oplus A_{3} \oplus A_{4} \oplus E_{6}$
2362. $2 A_{2} \oplus A_{3} \oplus A_{4} \oplus D_{6}$
2363. $2 A_{2} \oplus A_{3} \oplus A_{4} \oplus A_{6}$
2364. $2 A_{2} \oplus 2 A_{3} \oplus E_{7}$
2365. $2 A_{2} \oplus 2 A_{3} \oplus D_{7}$
2366. $2 A_{2} \oplus 2 A_{3} \oplus A_{7}$ 2373. $2 A_{2} \oplus 3 A_{3} \oplus A_{4}$ 2374. $3 A_{2} \oplus D_{11}$
2367. $3 A_{2} \oplus D_{5} \oplus D_{6}$ 2376. $3 A_{2} \oplus D_{4} \oplus D_{7}$ 2377. $3 A_{2} \oplus A_{6} \oplus D_{5}$ 2378. $3 A_{2} \oplus A_{4} \oplus E_{7}$ 2379. $3 A_{2} \oplus A_{4} \oplus A_{7}$ 2380. $3 A_{2} \oplus A_{3} \oplus E_{8}$ 2381. $3 A_{2} \oplus A_{3} \oplus D_{\delta}$ 2382. $3 A_{2} \oplus A_{3} \oplus 2 A_{4}$ 2383. $3 A_{2} \oplus 2 A_{3} \oplus D_{5}$ 2384. ${ }^{*} A_{1} \oplus 2 E_{8}$ 2385. $A_{1} \oplus D_{16}$
2368. $A_{1} \oplus D_{10} \oplus E_{6}$ 2387. $A_{1} \oplus D_{9} \oplus E_{7}$ 2388. $A_{1} \oplus D_{8} \oplus E_{8}$ 2389. $A_{1} \oplus D_{7} \oplus D_{9}$ 2390. $A_{1} \oplus D_{5} \oplus D_{11}$ 2391. $A_{1} \oplus 2 D_{5} \oplus E_{6}$ 2392. $A_{1} \oplus D_{4} \oplus 2 E_{6}$ 2393. ${ }^{*} A_{1} \oplus A_{16}$ 2394. $A_{1} \oplus A_{12} \oplus D_{4}$ 2395. $A_{1} \oplus A_{11} \oplus D_{5}$ 2396. ${ }^{*} A_{1} \oplus A_{10} \oplus E_{6}$ 2397. $A_{1} \oplus A_{10} \oplus D_{6}$ 2398. $A_{1} \oplus A_{9} \oplus E_{7}$ 2399. $A_{1} \oplus A_{9} \oplus D_{7}$ 2400. ${ }^{*} A_{1} \oplus A_{8} \oplus E_{8}$ 2401. $A_{1} \oplus A_{8} \oplus D_{8}$ 2402. $A_{1} \oplus 2 A_{8}$ 2403. $A_{1} \oplus A_{7} \oplus D_{9}$ 2404. $A_{1} \oplus A_{7} \oplus A_{9}$ 2405. $A_{1} \oplus A_{6} \oplus D_{10}$ 2406. $A_{1} \oplus A_{6} \oplus 2 D_{5}$ 2407. $A_{1} \oplus A_{6} \oplus D_{4} \oplus E_{6}$
2369. ${ }^{*} A_{1} \oplus A_{6} \oplus A_{10}$ 2409. $A_{1} \oplus 2 A_{6} \oplus D_{4}$ 2410. $A_{1} \oplus A_{5} \oplus D_{11}$ 2411. $A_{1} \oplus A_{5} \oplus D_{5} \oplus E_{6}$ 2412. $A_{1} \oplus A_{5} \oplus A_{11}$ 2413. $A_{1} \oplus A_{5} \oplus A_{6} \oplus D_{5}$ 2414. $A_{1} \oplus 2 A_{5} \oplus E_{6}$ 2415. $A_{1} \oplus 2 A_{5} \oplus A_{6}$ 2416. $A_{1} \oplus A_{4} \oplus 2 E_{6}$ 2417. $A_{1} \oplus A_{4} \oplus D_{12}$ 2418. $A_{1} \oplus A_{4} \oplus D_{6} \oplus E_{6}$ 2419. $A_{1} \oplus A_{4} \oplus D_{5} \oplus E_{7}$ 2420. $A_{1} \oplus A_{4} \oplus D_{5} \oplus D_{7}$ 2421. $A_{1} \oplus A_{4} \oplus D_{4} \oplus E_{8}$ 2422. ${ }^{*} A_{1} \oplus A_{4} \oplus A_{12}$ 2423. $A_{1} \oplus A_{4} \oplus A_{8} \oplus D_{4}$ 2424. $A_{1} \oplus A_{4} \oplus A_{7} \oplus D_{5}$ 2425. ${ }^{*} A_{1} \oplus A_{4} \oplus A_{6} \oplus E_{6}$ 2426. $A_{1} \oplus A_{4} \oplus A_{6} \oplus D_{6}$ 2427. ${ }^{*} A_{1} \oplus A_{4} \oplus 2 A_{6}$ 2428. $A_{1} \oplus A_{4} \oplus A_{5} \oplus E_{7}$ 2429. $A_{1} \oplus A_{4} \oplus A_{5} \oplus D_{7}$ 2430. $A_{1} \oplus A_{4} \oplus A_{5} \oplus A_{7}$ 2431. ${ }^{*} A_{1} \oplus 2 A_{4} \oplus E_{8}$ 2432. $A_{1} \oplus 2 A_{4} \oplus D_{8}$ 2433. ${ }^{*} A_{1} \oplus 2 A_{4} \oplus A_{8}$ 2434. $A_{1} \oplus 3 A_{4} \oplus D_{4}$ 2435. $A_{1} \oplus A_{3} \oplus E_{6} \oplus E_{7}$ 2436. $A_{1} \oplus A_{3} \oplus D_{13}$ 2437. $A_{1} \oplus A_{3} \oplus D_{7} \oplus E_{6}$ 2438. $A_{1} \oplus A_{3} \oplus D_{5} \oplus E_{8}$ 2439. $A_{1} \oplus A_{3} \oplus A_{13}$ 2440. $A_{1} \oplus A_{3} \oplus A_{8} \oplus D_{5}$ 2441. $A_{1} \oplus A_{3} \oplus A_{7} \oplus E_{6}$ 2442. $A_{1} \oplus A_{3} \oplus A_{6} \oplus E_{7}$ 2443. $A_{1} \oplus A_{3} \oplus A_{6} \oplus D_{7}$ 2444. $A_{1} \oplus A_{3} \oplus A_{6} \oplus A_{7}$
2370. $A_{1} \oplus A_{3} \oplus A_{5} \oplus E_{8}$ 2446. $A_{1} \oplus A_{3} \oplus A_{5} \oplus A_{8}$ 2447. $A_{1} \oplus A_{3} \oplus A_{4} \oplus D_{9}$ 2448. $A_{1} \oplus A_{3} \oplus A_{4} \oplus A_{9}$ 2449. $A_{1} \oplus A_{3} \oplus 2 A_{4} \oplus D_{5}$ 2450. $A_{1} \oplus A_{3} \oplus 2 A_{4} \oplus A_{5}$ 2451. $A_{1} \oplus 2 A_{3} \oplus A_{10}$ 2452. $A_{1} \oplus 2 A_{3} \oplus A_{4} \oplus E_{6}$ 2453. $A_{1} \oplus 2 A_{3} \oplus A_{4} \oplus A_{6}$ 2454. $A_{1} \oplus A_{2} \oplus 2 E_{7}$ 2455. $A_{1} \oplus A_{2} \oplus E_{6} \oplus E_{8}$ 2456. $A_{1} \oplus A_{2} \oplus D_{14}$ 2457. $A_{1} \oplus A_{2} \oplus D_{8} \oplus E_{6}$ 2458. $A_{1} \oplus A_{2} \oplus D_{7} \oplus E_{7}$ 2459. $A_{1} \oplus A_{2} \oplus 2 D_{7}$ 2460. $A_{1} \oplus A_{2} \oplus D_{6} \oplus E_{8}$ 2461. $A_{1} \oplus A_{2} \oplus D_{5} \oplus D_{9}$ 2462. $A_{1} \oplus A_{2} \oplus A_{14}$ 2463. $A_{1} \oplus A_{2} \oplus A_{10} \oplus D_{4}$ 2464. $A_{1} \oplus A_{2} \oplus A_{9} \oplus D_{5}$ 2465. $A_{1} \oplus A_{2} \oplus A_{8} \oplus E_{6}$ 2466. $A_{1} \oplus A_{2} \oplus A_{8} \oplus D_{6}$ 2467. $A_{1} \oplus A_{2} \oplus A_{7} \oplus E_{7}$ 2468. $A_{1} \oplus A_{2} \oplus A_{7} \oplus D_{7}$ 2469. $A_{1} \oplus A_{2} \oplus 2 A_{7}$ 2470. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{6} \oplus E_{8}$ 2471. $A_{1} \oplus A_{2} \oplus A_{6} \oplus D_{8}$ 2472. $A_{1} \oplus A_{2} \oplus A_{6} \oplus A_{8}$ 2473. $A_{1} \oplus A_{2} \oplus A_{5} \oplus D_{9}$ 2474. $A_{1} \oplus A_{2} \oplus A_{5} \oplus A_{9}$ 2475. $A_{1} \oplus A_{2} \oplus A_{4} \oplus D_{10}$ 2476. $A_{1} \oplus A_{2} \oplus A_{4} \oplus 2 D_{5}$ 2477. $A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $D_{4} \oplus E_{6}$ 2478. ${ }^{*} A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $A_{10}$ 2479. $A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $A_{6} \oplus D_{4}$
2371. $A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $A_{5} \oplus D_{5}$
2372. $A_{1} \oplus A_{2} \oplus A_{4} \oplus 2 A_{5}$ 2482. $A_{1} \oplus A_{2} \oplus 2 A_{4} \oplus E_{6}$ 2483. $A_{1} \oplus A_{2} \oplus 2 A_{4} \oplus D_{6}$
2373. ${ }^{*} A_{1} \oplus A_{2} \oplus 2 A_{4} \oplus$ $A_{6}$
2374. $A_{1} \oplus A_{2} \oplus A_{3} \oplus D_{11}$
2375. $A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $D_{5} \oplus E_{6}$
2376. $A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{11}$
2377. $A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{6} \oplus D_{5}$
2378. $A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{5} \oplus E_{6}$
2379. $A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{5} \oplus A_{6}$
2380. $A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus E_{7}$
2381. $A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus D_{7}$
2382. $A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus A_{7}$
2383. $A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus E_{8}$
2384. $A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus A_{8}$
2385. $A_{1} \oplus A_{2} \oplus 2 A_{3} \oplus$
$2 A_{4}$
2386. $A_{1} \oplus 2 A_{2} \oplus D_{12}$
2387. $A_{1} \oplus 2 A_{2} \oplus D_{6} \oplus E_{6}$
2388. $A_{1} \oplus 2 A_{2} \oplus D_{5} \oplus E_{7}$
2389. $A_{1} \oplus 2 A_{2} \oplus D_{5} \oplus$ $D_{7}$
2390. $A_{1} \oplus 2 A_{2} \oplus D_{4} \oplus E_{8}$ 2502. $A_{1} \oplus 2 A_{2} \oplus A_{12}$
2391. $A_{1} \oplus 2 A_{2} \oplus A_{7} \oplus D_{5}$ 2504. $A_{1} \oplus 2 A_{2} \oplus A_{6} \oplus E_{6}$ 2505. $A_{1} \oplus 2 A_{2} \oplus A_{6} \oplus D_{6}$ 2506. $A_{1} \oplus 2 A_{2} \oplus 2 A_{6}$
2392. $A_{1} \oplus 2 A_{2} \oplus A_{5} \oplus E_{7}$ 2508. $A_{1} \oplus 2 A_{2} \oplus A_{5} \oplus A_{7}$ 2509. $A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus E_{8}$
2393. $A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus D_{8}$
2394. $A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus A_{8}$
2395. $A_{1} \oplus 2 A_{2} \oplus 2 A_{4} \oplus$ $D_{4}$
2396. $A_{1} \oplus 2 A_{2} \oplus 3 A_{4}$
2397. $A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus D_{9}$
2398. $A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus A_{9}$
2399. $A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus D_{5}$
2400. $A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus A_{5}$
2401. $A_{1} \oplus 2 A_{2} \oplus 2 A_{3} \oplus$ $E_{6}$
2402. $A_{1} \oplus 2 A_{2} \oplus 2 A_{3} \oplus$ $A_{6}$
2403. $A_{1} \oplus 3 A_{2} \oplus A_{10}$ 2521. $A_{1} \oplus 3 A_{2} \oplus A_{4} \oplus D_{6}$ 2522. $A_{1} \oplus 3 A_{2} \oplus A_{4} \oplus A_{6}$ 2523. $A_{1} \oplus 3 A_{2} \oplus A_{3} \oplus E_{7}$
2404. $A_{1} \oplus 3 A_{2} \oplus A_{3} \oplus A_{7}$
2405. $A_{1} \oplus 3 A_{2} \oplus 2 A_{3} \oplus$ $A_{4}$
2406. $2 A_{1} \oplus E_{7} \oplus E_{8}$ 2527. $2 A_{1} \oplus D_{15}$ 2528. $2 A_{1} \oplus D_{9} \oplus E_{6}$ 2529. $2 A_{1} \oplus D_{7} \oplus E_{8}$ 2530. $2 A_{1} \oplus A_{15}$
2407. $2 A_{1} \oplus A_{10} \oplus D_{5}$
2408. $2 A_{1} \oplus A_{9} \oplus E_{6}$ 2533. $2 A_{1} \oplus A_{8} \oplus E_{7}$ 2534. $2 A_{1} \oplus A_{8} \oplus D_{7}$ 2535. $2 A_{1} \oplus A_{7} \oplus E_{8}$ 2536. $2 A_{1} \oplus A_{7} \oplus A_{8}$ 2537. $2 A_{1} \oplus A_{6} \oplus D_{9}$ 2538. $2 A_{1} \oplus A_{6} \oplus A_{9}$ 2539. $2 A_{1} \oplus A_{5} \oplus A_{10}$ 2540. $2 A_{1} \oplus A_{4} \oplus D_{11}$ 2541. $2 A_{1} \oplus A_{4} \oplus D_{5} \oplus E_{6}$ 2542. $2 A_{1} \oplus A_{4} \oplus A_{11}$
2409. $2 A_{1} \oplus A_{4} \oplus A_{6} \oplus D_{5}$
2410. $2 A_{1} \oplus A_{4} \oplus A_{5} \oplus E_{6}$ 2545. $2 A_{1} \oplus A_{4} \oplus A_{5} \oplus A_{6}$
2411. $2 A_{1} \oplus 2 A_{4} \oplus E_{7}$
2412. $2 A_{1} \oplus 2 A_{4} \oplus D_{7}$
2413. $2 A_{1} \oplus 2 A_{4} \oplus A_{7}$
2414. $2 A_{1} \oplus A_{3} \oplus 2 E_{6}$
2415. $2 A_{1} \oplus A_{3} \oplus A_{12}$
2416. $2 A_{1} \oplus A_{3} \oplus A_{6} \oplus E_{6}$
2417. $2 A_{1} \oplus A_{3} \oplus 2 A_{6}$
2418. $2 A_{1} \oplus A_{3} \oplus A_{4} \oplus E_{8}$
2419. $2 A_{1} \oplus A_{3} \oplus A_{4} \oplus A_{8}$
2420. $2 A_{1} \oplus A_{3} \oplus 3 A_{4}$
2421. $2 A_{1} \oplus A_{2} \oplus E_{6} \oplus E_{7}$
2422. $2 A_{1} \oplus A_{2} \oplus D_{13}$
2423. $2 A_{1} \oplus A_{2} \oplus D_{7} \oplus E_{6}$ 2559. $2 A_{1} \oplus A_{2} \oplus D_{5} \oplus E_{8}$
2424. $2 A_{1} \oplus A_{2} \oplus A_{13}$
2425. $2 A_{1} \oplus A_{2} \oplus A_{8} \oplus D_{5}$
2426. $2 A_{1} \oplus A_{2} \oplus A_{7} \oplus E_{6}$
2427. $2 A_{1} \oplus A_{2} \oplus A_{6} \oplus E_{7}$
2428. $2 A_{1} \oplus A_{2} \oplus A_{6} \oplus D_{7}$
2429. $2 A_{1} \oplus A_{2} \oplus A_{6} \oplus A_{7}$
2430. $2 A_{1} \oplus A_{2} \oplus A_{5} \oplus E_{8}$
2431. $2 A_{1} \oplus A_{2} \oplus A_{5} \oplus A_{8}$
2432. $2 A_{1} \oplus A_{2} \oplus A_{4} \oplus D_{9}$
2433. $2 A_{1} \oplus A_{2} \oplus A_{4} \oplus A_{9}$
2434. $2 A_{1} \oplus A_{2} \oplus 2 A_{4} \oplus$ $D_{5}$
2435. $2 A_{1} \oplus A_{2} \oplus 2 A_{4} \oplus$ $A_{5}$
2436. $2 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{10}$
2437. $2 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus E_{6}$
2438. $2 A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus A_{6}$
2439. $2 A_{1} \oplus 2 A_{2} \oplus D_{11}$
2440. $2 A_{1} \oplus 2 A_{2} \oplus A_{11}$
2441. $2 A_{1} \oplus 2 A_{2} \oplus A_{6} \oplus$ $D_{5}$
2442. $2 A_{1} \oplus 2 A_{2} \oplus A_{5} \oplus$ $A_{6}$
2443. $2 A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $E_{7}$
2444. $2 A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $D_{7}$
2445. $2 A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $A_{7}$
2446. $2 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $E_{8}$
2447. $2 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $A_{8}$
2448. $2 A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $2 A_{4}$
2449. $2 A_{1} \oplus 3 A_{2} \oplus D_{9}$
2450. $2 A_{1} \oplus 3 A_{2} \oplus A_{9}$
2451. $2 A_{1} \oplus 3 A_{2} \oplus A_{3} \oplus$ $A_{6}$
2452. $3 A_{1} \oplus E_{6} \oplus E_{8}$ 2589. $3 A_{1} \oplus A_{14}$
2453. $3 A_{1} \oplus A_{8} \oplus E_{6}$
2454. $3 A_{1} \oplus A_{6} \oplus E_{8}$
2455. $3 A_{1} \oplus A_{6} \oplus A_{8}$ 2593. $3 A_{1} \oplus A_{4} \oplus A_{10}$ 2594. $3 A_{1} \oplus 2 A_{4} \oplus E_{6}$ 2595. $3 A_{1} \oplus 2 A_{4} \oplus A_{6}$ 2596. $3 A_{1} \oplus A_{2} \oplus A_{12}$ 2597. $3 A_{1} \oplus A_{2} \oplus A_{6} \oplus E_{6}$ 2598. $3 A_{1} \oplus A_{2} \oplus 2 A_{6}$ 2599. $3 A_{1} \oplus A_{2} \oplus A_{4} \oplus E_{8}$ 2600. $3 A_{1} \oplus A_{2} \oplus A_{4} \oplus A_{8}$ 2601. $3 A_{1} \oplus A_{2} \oplus 3 A_{4}$ 2602. $3 A_{1} \oplus 2 A_{2} \oplus A_{10}$ 2603. $3 A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus$ $A_{6}$
$\operatorname{rank}(\Lambda)=18$
2456. $D_{18}$
2457. $D_{12} \oplus E_{6}$
2458. $D_{11} \oplus E_{7}$

C List of all $A D E$ lattices $\Lambda$ such that $\Lambda \oplus\langle 6\rangle$ can be embedded primitively into the
2607. $D_{10} \oplus E_{8}$
2608. $2 D_{9}$
2609. $D_{7} \oplus D_{11}$
2610. $D_{6} \oplus 2 E_{6}$
2611. $D_{5} \oplus E_{6} \oplus E_{7}$
2612. $D_{5} \oplus D_{13}$
2613. $D_{5} \oplus D_{7} \oplus E_{6}$
2614. $2 D_{5} \oplus E_{8}$
2615. $D_{4} \oplus E_{6} \oplus E_{8}$ 2616. ${ }^{*} A_{18}$
2617. $A_{14} \oplus D_{4}$ 2618. $A_{13} \oplus D_{5}$ 2619. $A_{12} \oplus E_{6}$ 2620. $A_{12} \oplus D_{6}$
2621. $A_{11} \oplus E_{7}$ 2622. $A_{11} \oplus D_{7}$ 2623. ${ }^{*} A_{10} \oplus E_{8}$ 2624. $A_{10} \oplus D_{8}$ 2625. $A_{9} \oplus D_{9}$ 2626. $2 A_{9}$
2627. $A_{8} \oplus D_{10}$
2628. $A_{8} \oplus 2 D_{5}$
2629. $A_{8} \oplus A_{10}$
2630. $A_{7} \oplus D_{11}$
2631. $A_{7} \oplus D_{5} \oplus E_{6}$
2632. $A_{7} \oplus A_{11}$
2633. $A_{6} \oplus 2 E_{6}$
2634. $A_{6} \oplus D_{12}$
2635. $A_{6} \oplus D_{6} \oplus E_{6}$
2636. $A_{6} \oplus D_{5} \oplus E_{7}$
2637. $A_{6} \oplus D_{5} \oplus D_{7}$
2638. $A_{6} \oplus D_{4} \oplus E_{8}$
2639. ${ }^{*} A_{6} \oplus A_{12}$
2640. $A_{6} \oplus A_{8} \oplus D_{4}$
2641. $A_{6} \oplus A_{7} \oplus D_{5}$
2642. $2 A_{6} \oplus E_{6}$
2643. $2 A_{6} \oplus D_{6}$
2644. $A_{5} \oplus E_{6} \oplus E_{7}$
2645. $A_{5} \oplus D_{13}$
2646. $A_{5} \oplus D_{5} \oplus E_{8}$ 2647. $A_{5} \oplus A_{13}$
2648. $A_{5} \oplus A_{8} \oplus D_{5}$ 2649. $A_{5} \oplus A_{7} \oplus E_{6}$
2650. $A_{5} \oplus A_{6} \oplus E_{7}$
2651. $A_{5} \oplus A_{6} \oplus D_{7}$
2652. $A_{5} \oplus A_{6} \oplus A_{7}$
2653. $2 A_{5} \oplus E_{8}$
2654. $A_{4} \oplus 2 E_{7}$
2655. $A_{4} \oplus E_{6} \oplus E_{8}$
2656. $A_{4} \oplus D_{14}$
2657. $A_{4} \oplus D_{8} \oplus E_{6}$
2658. $A_{4} \oplus D_{7} \oplus E_{7}$
2659. $A_{4} \oplus 2 D_{7}$
2660. $A_{4} \oplus D_{6} \oplus E_{8}$
2661. $A_{4} \oplus D_{5} \oplus D_{9}$
2662. $A_{4} \oplus A_{14}$
2663. $A_{4} \oplus A_{10} \oplus D_{4}$
2664. $A_{4} \oplus A_{9} \oplus D_{5}$
2665. $A_{4} \oplus A_{8} \oplus E_{6}$
2666. $A_{4} \oplus A_{8} \oplus D_{6}$
2667. $A_{4} \oplus A_{7} \oplus E_{7}$
2668. $A_{4} \oplus A_{7} \oplus D_{7}$
2669. $A_{4} \oplus 2 A_{7}$
2670. ${ }^{*} A_{4} \oplus A_{6} \oplus E_{8}$
2671. $A_{4} \oplus A_{6} \oplus D_{8}$
2672. $A_{4} \oplus A_{6} \oplus A_{8}$
2673. $A_{4} \oplus A_{5} \oplus D_{9}$
2674. $A_{4} \oplus A_{5} \oplus A_{9}$
2675. $2 A_{4} \oplus D_{10}$
2676. $2 A_{4} \oplus 2 D_{5}$
2677. $2 A_{4} \oplus D_{4} \oplus E_{6}$
2678. $2 A_{4} \oplus A_{10}$
2679. $2 A_{4} \oplus A_{6} \oplus D_{4}$
2680. $2 A_{4} \oplus A_{5} \oplus D_{5}$
2681. $2 A_{4} \oplus 2 A_{5}$
2682. $3 A_{4} \oplus D_{6}$
2683. $A_{3} \oplus E_{7} \oplus E_{8}$
2684. $A_{3} \oplus D_{15}$
2685. $A_{3} \oplus D_{9} \oplus E_{6}$
2686. $A_{3} \oplus D_{7} \oplus E_{8}$
2687. $A_{3} \oplus A_{15}$
2688. $A_{3} \oplus A_{10} \oplus D_{5}$
2689. $A_{3} \oplus A_{9} \oplus E_{6}$
2690. $A_{3} \oplus A_{8} \oplus E_{7}$
2691. $A_{3} \oplus A_{8} \oplus D_{7}$
2692. $A_{3} \oplus A_{7} \oplus E_{8}$
2693. $A_{3} \oplus A_{7} \oplus A_{8}$
2694. $A_{3} \oplus A_{6} \oplus D_{9}$
2695. $A_{3} \oplus A_{6} \oplus A_{9}$
2696. $A_{3} \oplus A_{5} \oplus A_{10}$
2697. $A_{3} \oplus A_{4} \oplus D_{11}$
2698. $A_{3} \oplus A_{4} \oplus D_{5} \oplus E_{6}$
2699. $A_{3} \oplus A_{4} \oplus A_{11}$
2700. $A_{3} \oplus A_{4} \oplus A_{6} \oplus D_{5}$
2701. $A_{3} \oplus A_{4} \oplus A_{5} \oplus E_{6}$
2702. $A_{3} \oplus A_{4} \oplus A_{5} \oplus A_{6}$
2703. $A_{3} \oplus 2 A_{4} \oplus E_{7}$
2704. $A_{3} \oplus 2 A_{4} \oplus D_{7}$
2705. $A_{3} \oplus 2 A_{4} \oplus A_{7}$
2706. $2 A_{3} \oplus 2 E_{6}$
2707. $2 A_{3} \oplus A_{12}$
2708. $2 A_{3} \oplus A_{6} \oplus E_{6}$
2709. $2 A_{3} \oplus 2 A_{6}$
2710. $2 A_{3} \oplus A_{4} \oplus E_{8}$
2711. $2 A_{3} \oplus A_{4} \oplus A_{8}$
2712. $2 A_{3} \oplus 3 A_{4}$
2713. $A_{2} \oplus 2 E_{8}$
2714. $A_{2} \oplus D_{16}$
2715. $A_{2} \oplus D_{9} \oplus E_{7}$
2716. $A_{2} \oplus D_{8} \oplus E_{8}$
2717. $A_{2} \oplus D_{7} \oplus D_{9}$
2718. $A_{2} \oplus D_{5} \oplus D_{11}$
2719. $A_{2} \oplus A_{16}$
2720. $A_{2} \oplus A_{12} \oplus D_{4}$
2721. $A_{2} \oplus A_{11} \oplus D_{5}$
2722. $A_{2} \oplus A_{10} \oplus E_{6}$
2723. $A_{2} \oplus A_{10} \oplus D_{6}$
2724. $A_{2} \oplus A_{9} \oplus E_{7}$
2725. $A_{2} \oplus A_{9} \oplus D_{7}$
2726. $A_{2} \oplus A_{8} \oplus E_{8}$
2727. $A_{2} \oplus A_{8} \oplus D_{8}$
2728. $A_{2} \oplus A_{7} \oplus D_{9}$
2729. $A_{2} \oplus A_{7} \oplus A_{9}$
2730. $A_{2} \oplus A_{6} \oplus D_{10}$
2731. $A_{2} \oplus A_{6} \oplus 2 D_{5}$
2732. $A_{2} \oplus A_{6} \oplus A_{10}$
2733. $A_{2} \oplus 2 A_{6} \oplus D_{4}$
2734. $A_{2} \oplus A_{5} \oplus D_{11}$
2735. $A_{2} \oplus A_{5} \oplus A_{6} \oplus D_{5}$
2736. $A_{2} \oplus A_{4} \oplus D_{12}$
2737. $A_{2} \oplus A_{4} \oplus D_{6} \oplus E_{6}$ 2738. $A_{2} \oplus A_{4} \oplus D_{5} \oplus E_{7}$
2739. $A_{2} \oplus A_{4} \oplus D_{5} \oplus D_{7}$
2740. $A_{2} \oplus A_{4} \oplus D_{4} \oplus E_{8}$
2741. $A_{2} \oplus A_{4} \oplus A_{12}$
2742. $A_{2} \oplus A_{4} \oplus A_{7} \oplus D_{5}$
2743. $A_{2} \oplus A_{4} \oplus A_{6} \oplus E_{6}$
2744. $A_{2} \oplus A_{4} \oplus A_{6} \oplus D_{6}$
2745. $A_{2} \oplus A_{4} \oplus 2 A_{6}$
2746. $A_{2} \oplus A_{4} \oplus A_{5} \oplus E_{7}$
2747. $A_{2} \oplus A_{4} \oplus A_{5} \oplus A_{7}$
2748. $A_{2} \oplus 2 A_{4} \oplus E_{8}$
2749. $A_{2} \oplus 2 A_{4} \oplus D_{8}$
2750. $A_{2} \oplus 2 A_{4} \oplus A_{8}$
2751. $A_{2} \oplus A_{3} \oplus E_{6} \oplus E_{7}$
2752. $A_{2} \oplus A_{3} \oplus D_{13}$
2753. $A_{2} \oplus A_{3} \oplus D_{5} \oplus E_{8}$
2754. $A_{2} \oplus A_{3} \oplus A_{13}$
2755. $A_{2} \oplus A_{3} \oplus A_{8} \oplus D_{5}$ 2756. $A_{2} \oplus A_{3} \oplus A_{7} \oplus E_{6}$ 2757. $A_{2} \oplus A_{3} \oplus A_{6} \oplus E_{7}$ 2758. $A_{2} \oplus A_{3} \oplus A_{6} \oplus D_{7}$ 2759. $A_{2} \oplus A_{3} \oplus A_{6} \oplus A_{7}$ 2760. $A_{2} \oplus A_{3} \oplus A_{5} \oplus E_{8}$ 2761. $A_{2} \oplus A_{3} \oplus A_{4} \oplus D_{9}$ 2762. $A_{2} \oplus A_{3} \oplus A_{4} \oplus A_{9}$ 2763. $A_{2} \oplus A_{3} \oplus 2 A_{4} \oplus D_{5}$ 2764. $A_{2} \oplus A_{3} \oplus 2 A_{4} \oplus A_{5}$ 2765. $A_{2} \oplus 2 A_{3} \oplus A_{10}$ 2766. $A_{2} \oplus 2 A_{3} \oplus A_{4} \oplus E_{6}$ 2767. $A_{2} \oplus 2 A_{3} \oplus A_{4} \oplus A_{6}$ 2768. $2 A_{2} \oplus 2 E_{7}$ 2769. $2 A_{2} \oplus D_{14}$
2770. $2 A_{2} \oplus 2 D_{7}$
2771. $2 A_{2} \oplus D_{6} \oplus E_{8}$ 2772. $2 A_{2} \oplus D_{5} \oplus D_{9}$ 2773. $2 A_{2} \oplus A_{9} \oplus D_{5}$
2774. $2 A_{2} \oplus A_{7} \oplus E_{7}$ 2775. $2 A_{2} \oplus 2 A_{7}$
2776. $2 A_{2} \oplus A_{6} \oplus E_{8}$ 2777. $2 A_{2} \oplus A_{6} \oplus D_{8}$ 2778. $2 A_{2} \oplus A_{4} \oplus A_{10}$ 2779. $2 A_{2} \oplus 2 A_{4} \oplus D_{6}$ 2780. $2 A_{2} \oplus 2 A_{4} \oplus A_{6}$ 2781. $2 A_{2} \oplus A_{3} \oplus D_{11}$ 2782. $2 A_{2} \oplus A_{3} \oplus A_{6} \oplus D_{5}$ 2783. $2 A_{2} \oplus A_{3} \oplus A_{4} \oplus E_{7}$ 2784. $2 A_{2} \oplus A_{3} \oplus A_{4} \oplus A_{7}$ 2785. $2 A_{2} \oplus 2 A_{3} \oplus E_{8}$ 2786. $2 A_{2} \oplus 2 A_{3} \oplus 2 A_{4}$ 2787. $A_{1} \oplus D_{17}$ 2788. $A_{1} \oplus D_{11} \oplus E_{6}$ 2789. $A_{1} \oplus D_{9} \oplus E_{8}$ 2790. $A_{1} \oplus A_{17}$ 2791. $A_{1} \oplus A_{12} \oplus D_{5}$
2792. $A_{1} \oplus A_{11} \oplus E_{6}$ 2793. $A_{1} \oplus A_{10} \oplus E_{7}$ 2794. $A_{1} \oplus A_{10} \oplus D_{7}$ 2795. $A_{1} \oplus A_{9} \oplus E_{8}$ 2796. $A_{1} \oplus A_{8} \oplus D_{9}$ 2797. $A_{1} \oplus A_{8} \oplus A_{9}$ 2798. $A_{1} \oplus A_{7} \oplus A_{10}$ 2799. $A_{1} \oplus A_{6} \oplus D_{11}$ 2800. $A_{1} \oplus A_{6} \oplus D_{5} \oplus E_{6}$ 2801. $A_{1} \oplus A_{6} \oplus A_{11}$ 2802. $A_{1} \oplus 2 A_{6} \oplus D_{5}$ 2803. $A_{1} \oplus A_{5} \oplus A_{12}$ 2804. $A_{1} \oplus A_{5} \oplus A_{6} \oplus E_{6}$ 2805. $A_{1} \oplus A_{5} \oplus 2 A_{6}$
2806. $A_{1} \oplus A_{4} \oplus E_{6} \oplus E_{7}$
2807. $A_{1} \oplus A_{4} \oplus D_{13}$ 2808. $A_{1} \oplus A_{4} \oplus D_{7} \oplus E_{6}$
2809. $A_{1} \oplus A_{4} \oplus D_{5} \oplus E_{8}$ 2810. $A_{1} \oplus A_{4} \oplus A_{13}$
2811. $A_{1} \oplus A_{4} \oplus A_{8} \oplus D_{5}$
2812. $A_{1} \oplus A_{4} \oplus A_{7} \oplus E_{6}$
2813. $A_{1} \oplus A_{4} \oplus A_{6} \oplus E_{7}$
2814. $A_{1} \oplus A_{4} \oplus A_{6} \oplus D_{7}$
2815. $A_{1} \oplus A_{4} \oplus A_{6} \oplus A_{7}$
2816. $A_{1} \oplus A_{4} \oplus A_{5} \oplus E_{8}$
2817. $A_{1} \oplus A_{4} \oplus A_{5} \oplus A_{8}$
2818. $A_{1} \oplus 2 A_{4} \oplus D_{9}$
2819. $A_{1} \oplus A_{3} \oplus E_{6} \oplus E_{8}$ 2820. $A_{1} \oplus A_{3} \oplus A_{14}$
2821. $A_{1} \oplus A_{3} \oplus A_{8} \oplus E_{6}$ 2822. $A_{1} \oplus A_{3} \oplus A_{6} \oplus E_{8}$ 2823. $A_{1} \oplus A_{3} \oplus A_{6} \oplus A_{8}$ 2824. $A_{1} \oplus A_{3} \oplus A_{4} \oplus A_{10}$ 2825. $A_{1} \oplus A_{3} \oplus 2 A_{4} \oplus E_{6}$ 2826. $A_{1} \oplus A_{3} \oplus 2 A_{4} \oplus A_{6}$ 2827. $A_{1} \oplus A_{2} \oplus E_{7} \oplus E_{8}$ 2828. $A_{1} \oplus A_{2} \oplus D_{15}$
2829. $A_{1} \oplus A_{2} \oplus D_{9} \oplus E_{6}$
2830. $A_{1} \oplus A_{2} \oplus D_{7} \oplus E_{8}$ 2831. $A_{1} \oplus A_{2} \oplus A_{15}$ 2832. $A_{1} \oplus A_{2} \oplus A_{10} \oplus D_{5}$ 2833. $A_{1} \oplus A_{2} \oplus A_{9} \oplus E_{6}$ 2834. $A_{1} \oplus A_{2} \oplus A_{8} \oplus E_{7}$ 2835. $A_{1} \oplus A_{2} \oplus A_{7} \oplus E_{8}$ 2836. $A_{1} \oplus A_{2} \oplus A_{7} \oplus A_{8}$ 2837. $A_{1} \oplus A_{2} \oplus A_{6} \oplus D_{9}$ 2838. $A_{1} \oplus A_{2} \oplus A_{6} \oplus A_{9}$ 2839. $A_{1} \oplus A_{2} \oplus A_{5} \oplus A_{10}$ 2840. $A_{1} \oplus A_{2} \oplus A_{4} \oplus D_{11}$ 2841. $A_{1} \oplus A_{2} \oplus A_{4} \oplus A_{11}$ 2842. $A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $A_{6} \oplus D_{5}$
2843. $A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $A_{5} \oplus A_{6}$
2844. $A_{1} \oplus A_{2} \oplus 2 A_{4} \oplus E_{7}$ 2845. $A_{1} \oplus A_{2} \oplus 2 A_{4} \oplus D_{7}$ 2846. $A_{1} \oplus A_{2} \oplus 2 A_{4} \oplus A_{7}$ 2847. $A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{12}$ 2848. $A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{6} \oplus E_{6}$
2849. $A_{1} \oplus A_{2} \oplus A_{3} \oplus 2 A_{6}$
2850. $A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus E_{8}$
2851. $A_{1} \oplus A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus A_{8}$
2852. $A_{1} \oplus A_{2} \oplus A_{3} \oplus 3 A_{4}$ 2853. $A_{1} \oplus 2 A_{2} \oplus A_{13}$ 2854. $A_{1} \oplus 2 A_{2} \oplus A_{6} \oplus E_{7}$ 2855. $A_{1} \oplus 2 A_{2} \oplus A_{6} \oplus A_{7}$ 2856. $A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus D_{9}$ 2857. $A_{1} \oplus 2 A_{2} \oplus A_{4} \oplus A_{9}$ 2858. $A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $A_{10}$
2859. $A_{1} \oplus 2 A_{2} \oplus A_{3} \oplus$ $A_{4} \oplus A_{6}$
2860. $2 A_{1} \oplus 2 E_{8}$
2861. $2 A_{1} \oplus A_{16}$
2862. $2 A_{1} \oplus A_{10} \oplus E_{6}$
2863. $2 A_{1} \oplus A_{8} \oplus E_{8}$
2864. $2 A_{1} \oplus 2 A_{8}$
2865. $2 A_{1} \oplus A_{6} \oplus A_{10}$
2866. $2 A_{1} \oplus A_{4} \oplus A_{12}$
2867. $2 A_{1} \oplus A_{4} \oplus A_{6} \oplus E_{6}$
2868. $2 A_{1} \oplus A_{4} \oplus 2 A_{6}$
2869. $2 A_{1} \oplus 2 A_{4} \oplus E_{8}$
2870. $2 A_{1} \oplus 2 A_{4} \oplus A_{8}$
2871. $2 A_{1} \oplus A_{2} \oplus A_{14}$
2872. $2 A_{1} \oplus A_{2} \oplus A_{6} \oplus E_{8}$
2873. $2 A_{1} \oplus A_{2} \oplus A_{6} \oplus A_{8}$
2874. $2 A_{1} \oplus A_{2} \oplus A_{4} \oplus$ $A_{10}$
2875. $2 A_{1} \oplus A_{2} \oplus 2 A_{4} \oplus$ $A_{6}$
2876. $2 A_{1} \oplus 2 A_{2} \oplus A_{12}$
2877. $2 A_{1} \oplus 2 A_{2} \oplus 2 A_{6}$
$\operatorname{rank}(\Lambda)=19$
2878. $D_{19}$
2879. $D_{11} \oplus E_{8}$
2880. $A_{19}$
2881. $A_{14} \oplus D_{5}$
2882. $A_{13} \oplus E_{6}$
2883. $A_{12} \oplus E_{7}$
2884. $A_{12} \oplus D_{7}$
2885. $A_{11} \oplus E_{8}$
2886. $A_{10} \oplus D_{9}$
2887. $A_{9} \oplus A_{10}$
2888. $A_{8} \oplus D_{11}$
2889. $A_{7} \oplus A_{12}$
2890. $A_{6} \oplus E_{6} \oplus E_{7}$
2891. $A_{6} \oplus D_{13}$
2892. $A_{6} \oplus D_{5} \oplus E_{8}$
2893. $A_{6} \oplus A_{8} \oplus D_{5}$
2894. $A_{6} \oplus A_{7} \oplus E_{6}$
2895. $A_{5} \oplus A_{6} \oplus E_{8}$

C List of all $A D E$ lattices $\Lambda$ such that $\Lambda \oplus\langle 6\rangle$ can be embedded primitively into the 134
2896. $A_{4} \oplus E_{7} \oplus E_{8}$
2897. $A_{4} \oplus D_{15}$
2898. $A_{4} \oplus D_{9} \oplus E_{6}$
2899. $A_{4} \oplus D_{7} \oplus E_{8}$
2900. $A_{4} \oplus A_{15}$
2901. $A_{4} \oplus A_{10} \oplus D_{5}$
2902. $A_{4} \oplus A_{8} \oplus E_{7}$
2903. $A_{4} \oplus A_{7} \oplus E_{8}$
2904. $A_{4} \oplus A_{7} \oplus A_{8}$
2905. $A_{4} \oplus A_{6} \oplus D_{9}$
2906. $A_{4} \oplus A_{5} \oplus A_{10}$
2907. $2 A_{4} \oplus D_{11}$
2908. $A_{3} \oplus 2 E_{8}$
2909. $A_{3} \oplus A_{16}$
2910. $A_{3} \oplus A_{10} \oplus E_{6}$
2911. $A_{3} \oplus A_{8} \oplus E_{8}$
2912. $A_{3} \oplus A_{6} \oplus A_{10}$
2913. $A_{3} \oplus A_{4} \oplus A_{12}$
2914. $A_{3} \oplus A_{4} \oplus A_{6} \oplus E_{6}$
2915. $A_{3} \oplus A_{4} \oplus 2 A_{6}$
2916. $A_{3} \oplus 2 A_{4} \oplus E_{8}$
2917. $A_{3} \oplus 2 A_{4} \oplus A_{8}$
2918. $A_{2} \oplus D_{17}$
2919. $A_{2} \oplus D_{9} \oplus E_{8}$
2920. $A_{2} \oplus A_{12} \oplus D_{5}$
2921. $A_{2} \oplus A_{10} \oplus E_{7}$
2922. $A_{2} \oplus A_{9} \oplus E_{8}$
2923. $A_{2} \oplus A_{7} \oplus A_{10}$
2924. $A_{2} \oplus A_{6} \oplus D_{11}$
2925. $A_{2} \oplus 2 A_{6} \oplus D_{5}$
2926. $A_{2} \oplus A_{4} \oplus A_{13}$
2927. $A_{2} \oplus A_{4} \oplus A_{6} \oplus E_{7}$
2928. $A_{2} \oplus A_{4} \oplus A_{6} \oplus A_{7}$
2929. $A_{2} \oplus A_{3} \oplus A_{6} \oplus E_{8}$
2930. $A_{2} \oplus A_{3} \oplus A_{4} \oplus A_{10}$
2931. $A_{2} \oplus A_{3} \oplus 2 A_{4} \oplus A_{6}$
2932. $A_{1} \oplus A_{18}$
2933. $A_{1} \oplus A_{12} \oplus E_{6}$
2934. $A_{1} \oplus A_{10} \oplus E_{8}$
2935. $A_{1} \oplus A_{8} \oplus A_{10}$
2936. $A_{1} \oplus A_{6} \oplus A_{12}$
2937. $A_{1} \oplus 2 A_{6} \oplus E_{6}$
2938. $A_{1} \oplus A_{4} \oplus A_{6} \oplus E_{8}$
2939. $A_{1} \oplus A_{4} \oplus A_{6} \oplus A_{8}$
2940. $A_{1} \oplus A_{2} \oplus A_{16}$
2941. $A_{1} \oplus A_{2} \oplus A_{6} \oplus A_{10}$
2942. $A_{1} \oplus A_{2} \oplus A_{4} \oplus A_{12}$

## Bibliography

[AGLV98] V. I. Arnol'd, V. V. Goryunov, O. V. Lyashko, and V. A. Vasil'ev. Singularity theory I. Springer-Verlag Berlin Heidelberg, first edition, 1998.
[Arn72] V. I. Arnol'd. Normal forms of functions near degenerate critical points, the Weyl groups $A_{k}, D_{k}, E_{k}$ and Lagrangian singularities. Funkcional. Anal. $i$ Priložen., 6(4):3-25, 1972.
[Art62] M. Artin. Some numerical criteria for contractability of curves on algebraic surfaces. Am. J. Math., 84(3):485-496, 1962.
[BD85] A. Beauville and R. Donagi. La variété des droites d'une hypersurface cubique de dimension 4. C. R. Acad. Sci. Paris Sér. I Math., 301(14):703-706, 1985.
[BHPVdV04] W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven. Compact complex surfaces, volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics. Springer-Verlag Berlin Heidelberg, second edition, 2004.
[Bor72] A. Borel. Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem. J. Differential Geometry, 6:543-560, 1972.
[Bou07] N. Bourbaki. Groupes et algèbres de Lie: Chapitres 4, 5 et 6. Springer-Verlag Berlin Heidelberg, 2007. Edition originale publiée par Hermann, Paris, 1968.
[BW79] J. W. Bruce and C. T. C. Wall. On the classification of cubic surfaces. J. London Math. Soc. (2), 19(2):245-256, 1979.
[Cay49] A. Cayley. On the triple tangent planes of surfaces of the third order. Cambridge and Dublin Math. J., 4:118-132, 1849.
[CG72] C. H. Clemens and P. A. Griffiths. The intermediate Jacobian of the cubic threefold. Ann. of Math. (2), 95(2):281-356, 1972.
[CGHL15] S. Casalaina-Martin, S. Grushevsky, K. Hulek, and R. Laza. Complete moduli of cubic threefolds and their intermediate Jacobians. arXiv:1510.08891, 2015.
[Dol83] I. V. Dolgachev. Integral quadratic forms: applications to algebraic geometry. In Séminaire Bourbaki : volume 1982/83, exposés 597-614, number 105106 in Astérisque, pages 251-278. Société mathématique de France, 1983. talk:611.
[Dol96] I. V. Dolgachev. Mirror symmetry for lattice polarized $K 3$ surfaces. J. Math. Sci., New York, 81(3):2599-2630, 1996.
[dPW00] A. A. du Plessis and C. T. C. Wall. Singular hypersurfaces, versality, and Gorenstein algebras. J. Algebraic Geom., 9(2):309-322, 2000.
[DR01] D. I. Dais and M. Roczen. On the string-theoretic Euler numbers of 3dimensional $A-D-E$ singularities. Adv. Geom., 1(4):373-426, 2001.
[Dur79] A. H. Durfee. Fifteen characterizations of rational double points and simple critical points. Enseign. Math. (2), 25(1-2):131-163, 1979.
[Ebe13] W. Ebeling. Lattices and codes: A course partially based on lectures by Friedrich Hirzebruch. Advanced Lectures in Mathematics. Springer Spektrum Wiesbaden, third edition, 2013.
[Eis95] D. Eisenbud. Commutative algebra: With a view toward algebraic geometry, volume 150 of Graduate Texts in Mathematics. Springer-Verlag New York, first edition, 1995.
[Fan43] G. Fano. Sulle forme cubiche dello spazio a cinque dimensioni contenenti rigate razionali del $4^{\circ}$ ordine. Comment. Math. Helv., 15:71-80, 1943.
[Ful98] W. Fulton. Intersection theory. Springer-Verlag New York, second edition, 1998.
[GH94] P. A. Griffiths and J. Harris. Principles of algebraic geometry. Wiley Classics Library. John Wiley \& Sons, Inc., New York, 1994. Reprint of the 1978 original.
[GHS09] V. Gritsenko, K. Hulek, and G. K. Sankaran. Abelianisation of orthogonal groups and the fundamental group of modular varieties. J. Algebra, 322(2):463-478, 2009.
[GHS13] V. Gritsenko, K. Hulek, and G. K. Sankaran. Moduli of K3 surfaces and irreducible symplectic manifolds. In Handbook of moduli. Vol. I, volume 24 of Adv. Lect. Math. (ALM), pages 459-526. Int. Press, Somerville, MA, 2013.
[GLS07] G.-M. Greuel, C. Lossen, and E. I. Shustin. Introduction to singularities and deformations. Springer Monographs in Mathematics. Springer-Verlag Berlin Heidelberg, first edition, 2007.
[Gra03] G. Gras. Class field theory: From theory to practice. Springer Monographs in Mathematics. Springer-Verlag Berlin Heidelberg, first edition, 2003.
[Har77] R. Hartshorne. Algebraic geometry, volume 52 of Graduate Texts in Mathematics. Springer-Verlag New York, first edition, 1977.
[Har92] J. Harris. Algebraic geometry: A first course, volume 133 of Graduate Texts in Mathematics. Springer-Verlag New York, first edition, 1992.
[Has00] B. Hassett. Special cubic fourfolds. Compositio Math., 120(1):1-23, 2000.
[Hav16] K. Havasi. Geometric realization of strata in the boundary of the intermediate Jacobian locus, 2016. PhD thesis.
[HT15] A. Harder and A. Thompson. The geometry and moduli of K3 surfaces. In Calabi-Yau varieties: arithmetic, geometry and physics, volume 34 of Fields Inst. Monogr., pages 3-43. Fields Inst. Res. Math. Sci., Toronto, ON, 2015.
[Huy16] D. Huybrechts. Lectures on K3 surfaces, volume 158 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2016.
[Laz04] R. K. Lazarsfeld. Positivity in Algebraic Geometry I: Classical setting: Line bundles and linear series, volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics. Springer-Verlag Berlin Heidelberg, first edition, 2004.
[Laz05] R. Laza. Deformations of the cone over a cubic surface. unpublished notes, 2005.
[Laz09] R. Laza. The moduli space of cubic fourfolds. J. Algebraic Geom., 18(3):511545, 2009.
[Laz10] R. Laza. The moduli space of cubic fourfolds via the period map. Ann. of Math. (2), 172(1):673-711, 2010.
[LSV17] R. Laza, G. Saccà, and C. Voisin. A hyper-Kähler compactification of the intermediate Jacobian fibration associated with a cubic 4-fold. Acta Math., 218(1):55-135, 2017.
[May72] A. L. Mayer. Families of $K-3$ surfaces. Nagoya Math. J., 48:1-17, 1972.
[MFK94] D. Mumford, J. Fogarty, and F. Kirwan. Geometric Invariant Theory, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge. Springer-Verlag Berlin Heidelberg, third edition, 1994.
[Mil58] J. Milnor. On simply connected 4-manifolds. In Symposium internacional de topología algebraica International symposi um on algebraic topology, pages 122-128. Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958.
[MM09] R. Miranda and D. R. Morrison. Embeddings of integral quadratic forms. http://web.math.ucsb.edu/~drm/manuscripts/eiqf.pdf, 2009.
[Muk03] S. Mukai. An introduction to invariants and moduli, volume 81 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2003. Translated from the 1998 and 2000 Japanese editions by W. M. Oxbury.
[Mum95] D. Mumford. Algebraic Geometry I: Complex projective varieties. Classics in Mathematics. Springer-Verlag Berlin Heidelberg, first edition, 1995.
[Mum99] D. Mumford. The red book of varieties and schemes: Includes the Michigan lectures (1974) on curves and their Jacobians, volume 1358 of Lecture Notes in Mathematics. Springer-Verlag Berlin Heidelberg, second edition, 1999.
[Nik80] V. V. Nikulin. Integral symmetric bilinear forms and some of their applications. Math. USSR-Izv., 14(1):103-167, 1980.
[Nik91] V. V. Nikulin. Weil linear systems on singular K3 surfaces. In Algebraic geometry and analytic geometry (Tokyo, 1990), ICM-90 Satell. Conf. Proc., pages 138-164. Springer-Verlag Tokyo, 1991.
[Pan15] R. Pannekoek. Diophantus Revisited: On rational surfaces and K3 surfaces in the Arithmetica. arXiv:1509.06138, 2015.
[Rei87] M. Reid. Young person's guide to canonical singularities. In Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), volume 46 of Proc. Sympos. Pure Math., pages 345-414. Amer. Math. Soc., Providence, RI, 1987.
[Sal49] G. Salmon. On the triple tangent planes to a surface of the third order. Cambridge and Dublin Math. J., 4:252-260, 1849.
[Sch63] L. Schläfli. On the distribution of surfaces of the third order into species, in reference to the absence or presence of singular points, and the reality of their lines. Phil. Trans. R. Soc., 153:193-241, 1863.
[SD74] B. Saint-Donat. Projective models of $K-3$ surfaces. Amer. J. Math., 96(4):602-639, 1974.
[SS19] M. Schütt and T. Shioda. Mordell-Weil lattices, volume 70 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics. Springer Singapore, first edition, 2019.
[SZ07] I. Shimada and D.-Q. Zhang. K3 surfaces with ten cusps. In Algebraic geometry, volume 422 of Contemp. Math., pages 187-211. Amer. Math. Soc., Providence, RI, 2007.
[Tan93] L. Z. Tang. Rational double points on a normal octic K3 surface. Nagoya Math. J., 129:147-177, 1993.
[Tre84] S. L. Tregub. Three constructions of rationality of a cubic fourfold. Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3:8-14, 1984.
[Tre93] S. L. Tregub. Two remarks on four-dimensional cubics. Uspekhi Mat. Nauk, 48(2(290)):201-202, 1993.
[Ura87] T. Urabe. Elementary transformations of Dynkin graphs and singularities on quartic surfaces. Invent. Math., 87(3):549-572, 1987.
[Ura88] T. Urabe. Combinations of rational singularities on plane sextic curves with the sum of Milnor numbers less than sixteen. In Singularities (Warsaw, 1985), volume 20 of Banach Center Publ., pages 429-456. PWN, Warsaw, 1988.
[Var84] A. N. Varchenko. Asymptotic integrals and Hodge structures. J. Math. Sci., 27:2760-2784, 1984.
[Voi86] C. Voisin. Théorème de Torelli pour les cubiques de $\mathbb{P}^{5}$. Invent. Math., 86(3):577-601, 1986.
[Voi08] C. Voisin. Erratum: "Théorème de Torelli pour les cubiques de $\mathbb{P}^{5}$ ". Invent. Math., 172(2):455-458, 2008.
[Wal] C. T. C. Wall. Sextic curves and quartic surfaces with higher singularities. preprint. Version: July 19, 1999.
[Yan96] J.-G. Yang. Sextic curves with simple singularities. Tohoku Math. J., 48(2):203-227, 1996.

## Acknowledgments

This thesis has been developed under the supervision of Klaus Hulek. I wish to thank him for having proposed this nice research topic to me, for all the mathematical discussions we had, for having patiently explained me so many things, for always having been available on short notice when I needed his advice, and for his support throughout my PhD.

I wish to thank Radu Laza for having been a wonderful host during my research stay at the University of Stony Brook in fall 2017, for having given my PhD project further inspiration, for having answered me so many questions, and for having taught me so much mathematics, not only in Stony Brook but also during his stay in Hannover for the conference "Arithmetic and Geometry of Cubic Hypersurfaces" in August 2018.

I am very grateful to David Ploog for not only several mathematical discussions, explanations, and comments on my work but also for his encouraging words in the last period of my PhD.

Furthermore, I thank Simon Brandhorst and Víctor González Alonso for having thought with me about mathematical problems.
The first 2,5 years of my PhD were funded by the Research Training Group 1463 "Analysis, Geometry and String Theory". I am very thankful for this support.

I thank all members of the Institute of Algebraic Geometry in Hannover for the friendly and supportive atmosphere and all the happy moments we shared together.

Finally, I thank my entire family, in particular my parents and my brothers for being always there for me at any time.

## Curriculum Vitae

## Personal Data

Name
Date of birth
Place of birth

## Education

| $11 / 2015-05 / 2020$ | PhD program in Mathematics, Leibniz Universität Hannover <br> Advisor: Klaus Hulek |
| :--- | :--- |
| $01 / 2014-10 / 2015$ | M.Sc. in Mathematics, Universität Duisburg-Essen <br> Master's thesis: Goren-Oort strata of certain unitary Shimura <br> varieties <br> Advisor: Ulrich Görtz |
| $10 / 2010-01 / 2014$ | B.Sc. in Mathematics, Universität Duisburg-Essen <br> Bachelor's thesis: Compactification of Modular Curves <br> as Riemann Surfaces |
|  | Advisor: Ulrich Görtz |
| $10 / 2009-09 / 2010$ | B.Sc. program in Chemistry, Universität Duisburg-Essen |
| $08 / 2000-06 / 2009$ | Abitur at Josef-Albers-Gymnasium Bottrop |
| $08 / 1996-06 / 2000$ | Paul-Gerhardt-Schule Bottrop |

## Stays abroad

Ann-Kathrin Stegmann
February 17, 1990
Bottrop, Germany
$10 / 2017-11 / 2017$

09/2014-02/2015

Academic visit at Stony Brook University as a guest of Radu Laza

Semester abroad within the framework of the Erasmus+ program at the Université Paris-Sud in France

## Employment

11/2015-03/2020 Research fellow, Leibniz Universität Hannover
10/2012 - 02/2013 Teaching assistant, Universität Duisburg-Essen
04/2014-07/2014

