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Abstract

In this thesis, we will give a partial classification of cubic fourfolds by their isolated ADE
singularities. We have a correspondence between cubic fourfolds and complete (2, 3)-
intersections in P4 having both certain isolated ADE singularities. The minimal model for
a complete (2, 3)-intersection in P4 with isolated ADE singularities is a quasi-polarized K3
surface of degree 6. We will prove that the existence of certain lattice embeddings into the
K3 lattice is a necessary and sufficient condition for the existence of these singular cubic
fourfolds and complete (2, 3)-intersections, respectively. We will determine all direct sums
of negative definite irreducible ADE lattices such that their direct sum with the rank one
lattice whose generator has self-intersection number 6 admits a primitive embedding into
the K3 lattice. This will prove the existence of complete (2, 3)-intersections in P4 lying on
smooth quadrics and having exactly these ADE singularities and their corresponding cubic
fourfolds. Finally, we will show that we have an isomorphism between the moduli space
of cubic fourfolds with certain ADE singularities and the moduli space of quasi-polarized
K3 surfaces of degree 6 such that the quasi-polarization induces a birational map from the
K3 surface into P4 whose image is a complete (2, 3)-intersection in P4 having certain ADE
singularities.

Key words : Cubic fourfolds, ADE singularities, K3 surfaces, quadratic forms, moduli
spaces of K3 surfaces.

Kurzzusammenfassung

In dieser Doktorarbeit wird eine partielle Klassifikation von kubischen Vierfaltigkeiten an-
hand ihrer isolierten ADE Singularitäten gegeben. Es gibt eine Korrespondenz zwischen
kubischen Vierfaltigkeiten und vollständigen (2, 3)-Durchschnitten in P4 mit jeweils be-
stimmten isolierten ADE Singularitäten. Das minimale Model eines vollständigen (2, 3)-
Durchschnitts in P4 mit isolierten ADE Singularitäten ist eine quasi-polarisierte K3 Fläche
vom Grad 6. Wir werden zeigen, dass die Existenz bestimmter Gittereinbettungen in das
K3 Gitter eine notwendige und hinreichende Bedingung für die Existenz dieser kubischen
Vierfaltigkeiten bzw. dieser vollständigen (2, 3)-Durchschnitte in P4 ist. Wir werden al-
le direkten Summen von negativ definiten irreduziblen ADE Gittern bestimmen, sodass
deren direkte Summe mit einem Gitter vom Rang eins, dessen Erzeuger Selbstschnitt 6
hat, eine primitive Einbettung in das K3 Gitter besitzt. Dies wird die Existenz derjenigen
vollständigen (2, 3)-Durchschnitte in P4 beweisen, die auf glatten Quadriken liegen und
exakt diese ADE Singularitäten haben, sowie den korrespondierenden kubischen Vierfal-
tigkeiten. Schließlich werden wir beweisen, dass der Modulraum der kubischen Vierfal-
tigkeiten mit bestimmten ADE Singularitäten isomorph ist zum Modulraum bestimmter
quasi-polarisierter K3 Flächen vom Grad 6, sodass die Quasi-Polarisierung eine birationale
Abbildung von der K3 Fläche in den P4 induziert, deren Bild ein vollständiger (2, 3)-
Durchschnitt mit bestimmten ADE Singularitäten in P4 ist.

Schlagwörter : kubische Vierfaltigkeiten, ADE Singularitäten, K3 Flächen, quadratische
Formen, Modulräume von K3 Flächen.





Introduction

Cubic hypersurfaces have been a central theme in Algebraic Geometry throughout the last
centuries. Starting from the famous result of A. Cayley and G. Salmon in [Cay49] and
[Sal49] that a smooth cubic surface contains exactly 27 lines, to the proof of C. H. Clemens
and P. A. Griffith that any smooth cubic threefold is irrational in [CG72], to more recent
investigations on the rationality/irrationality of cubic fourfolds (see for instance [Has00]).

Cubic fourfolds are of particular interest for at least two reasons. First, the rationality of
smooth cubic fourfolds is still an open problem in Algebraic Geometry and it is conjectured
that a very general smooth cubic fourfold is irrational. However, while some classes of
rational cubic fourfolds have been described in [Fan43], [Tre84], [Tre93], and [BD85], no
smooth cubic fourfold has yet been proven to be irrational. Second, smooth cubic fourfolds
are related to hyperkähler manifolds (see [BD85] and [LSV17]), which are themselves of
interest to algebraic geometers. Surprisingly, the period map for smooth cubic fourfolds
behaves similarly as the period map for K3 surfaces as investigated in [Voi86], [Voi08],
and [Laz10]. Furthermore, since the monodromy groups associated to ADE singularities
of cubic fourfolds are finite, the period map on smooth cubic fourfolds extends to cubic
fourfolds with isolated ADE singularities.

The ADE singularities or simple hypersurface singularities were classified by V. I. Arnol’d
in the famous ADE list in [Arn72]. In the case of surfaces, they are precisely rational
double points and there are various ways to characterize them (see [Dur79]).

The central topic of this thesis is the study of possible isolated ADE singularities on cubic
fourfolds. More precisely, we give a partial classification of cubic fourfolds by their ADE
singularities.

In the past, people have already succesfully classified other projective varieties by their
ADE singularities: The classification of cubic surfaces by their ADE singularities was do-
ne in the 19th century by L. Schläfli in [Sch63]; a more modern and geometric proof was
given by J. W. Bruce and C. T. C. Wall in [BW79]. The classification of cubic threefolds
was done about fifteen years ago by R. Laza in the (unpublished) notes [Laz05]. A par-
tial classification of quartic surfaces by their ADE singularities was given by T. Urabe
in [Ura87] and [Ura88] which was completed by J.-G. Yang in [Yan96] and a partial classi-
fication of complete (2, 2, 2)-intersections in P5 by their ADE singularities by L.-Z. Tang
in [Tan93].

The strategies in [BW79] and [Laz05] to classify all cubic surfaces and threefolds by their
isolated ADE singularities, respectively, are similar. The authors use that we can associate
to a cubic hypersurface X in Pn with only isolated ADE singularities a complete (2, 3)-
intersection in Pn�1 and prove then the existence of certain ADE singularities on the
cubic by showing the existence of corresponding ADE singularities on the complete (2, 3)-
intersection.
More precisely: In homogeneous coordinates (x0 : . . . : xn) on Pn such that one marked
ADE singularity p of X is the point (1 : 0 : . . . : 0) 2 Pn, we have

X : x0f2(x1, . . . , xn) + f3(x1, . . . , xn) = 0 ✓ Pn,

where f2 and f3 are homogeneous polynomials of degree 2 and 3, respectively. Then, X
induces the complete (2, 3)-intersection

Sp : f2(x1, . . . , xn) = f3(x1, . . . , xn) = 0 ✓ Pn�1.



We also have a more geometric and coordinate-free description of Sp. Indeed, the complete
(2, 3)-intersection Sp is the image of the union of all lines in X through the point p under
the projection of Pn through p onto the hyperplane {x0 = 0} ⇠= Pn�1.
We use the above strategy in the four dimensional case, as well, and relate the problem of
finding certain combinations of ADE singularities on cubic fourfolds to finding them on
complete (2, 3)-intersections in P4.

Since the minimal model for a complete (2, 3)-intersection in P4 with at most isolated ADE
singularities is a K3 surface with a quasi-polarization of degree 6, we obtain consequently
a geometric correspondence between cubic fourfolds with isolated ADE singularities and
quasi-polarized K3 surfaces of degree 6.

The minimal models of quartic surfaces in P3 and complete (2, 2, 2)-intersections in P5

with at most isolated ADE singularities are quartic and octic K3 surface, respectively.
In [Ura87] and [Tan93], the authors investigated that by the surjectivity of the period
map, the question if a certain combination of ADE singularities can occur on these quartic
surfaces and complete (2, 2, 2)-intersections, respectively, is transformed into a question
about lattices.

We follow this idea and relate the existence of certain combinations of isolated ADE singu-
larities on complete (2, 3)-intersections in P4 to the existence of certain lattice embeddings
into the K3 lattice. Using V. V. Nikulin’s Theorem on the existence of primitive lattice
embeddings in [Nik80] and the theory of quadratic forms as formulated by R. Miranda
and D. R. Morrison in [MM09], we determine computer-aided certain possible combinati-
ons of ADE singularities on those complete (2, 3)-intersections in P4 which lie on smooth
quadrics.

The maximal number of A1 singularities which we can find with our methods on a cubic
fourfold with no other singularities is 11. Further, the maximal combinations of A1 and
A2 singularities with respect to their Milnor number which we can here find on a cubic
fourfold with no other singularities are 3A1 + 6A2, 5A1 + 5A2, and 7A1 + 4A2.

In [Has00, 4.2], B. Hassett related the moduli space of cubic fourfolds with a single A1

singularity to the moduli space of K3 surfaces with a very ample line bundle of degree 6.
Here, we relate the moduli space of cubic fourfolds with a certain combination of isolated
ADE singularities to the moduli space of certain quasi-polarized K3 surfaces of degree 6.

Indeed, R. Laza showed in [Laz09] that cubic fourfolds with at most isolated ADE singu-
larities are stable in the sense of D. Mumford’s Geometric Invariant Theory (GIT). Using
this result, we construct the moduli space of cubic fourfolds with a certain combination
of isolated ADE singularities as GIT quotients. Further, we construct the moduli space
of certain quasi-polarized K3 surfaces of degree 6 as the moduli space of certain lattice
polarized K3 surfaces. Finally, we show that both moduli spaces are isomorphic.

Structure of the thesis and results

In Chapter 1, we will recall basics of ADE singularities on complex analytic spaces. In
particular, we will focus on properties of ADE singularities on complex analytic surfaces.

In Chapter 2, we will recall essential definitions related to symmetric bilinear and qua-
dratic forms, and quadratic modules. In particular, we will study lattices and introduce
ADE lattices and the K3 lattice as examples.



In Chapter 3, we will recall basics of (quasi-polarized) K3 surfaces. In particular, we will
study complete linear systems on K3 surface and discuss when a linear system |L| on a K3
surface S induces a birational map 'L from the K3 surface onto its image in the projective
space. We will see that if |L| is fixed part free and 'L is birational onto its image, the
existence of certain irreducible ADE lattices in Pic(S) will imply the existence of ADE
singularities of corresponding type on 'L(S). Further, if L2 = 6, the surface 'L(S) ✓ P4

will be a complete (2, 3)-intersection. Finally, we will define the period domain and the
period map for K3 surfaces and recall the theorem on the surjectivity of the period map.

In Chapter 4, we will study complete (2, 3)-intersections in P4 for each possible rank
of the underlying quadric individually. For such a complete (2, 3)-intersection S, we will,
depending on the rank of the underlying quadric, construct a certain hyperplane section
which passes through those singularities of S lying on the singular locus of the quadric. Fur-
thermore, we will classify the types of those singularities. In particular, we will understand
in this chapter the geometry of complete (2, 3)-intersections in P4.

In Chapter 5, we will study cubic hypersurfaces in Pn with isolated ADE singularities
and explain how to associate to them complete (2, 3)-intersections in Pn�1. In particular,
we explain how ADE singularities on cubic hypersurfaces correspond to ADE singularities
on the associated complete (2, 3)-intersections.

In Chapter 6, we will state and prove our first Main Theorem which establishes a corre-
spondence between the existence of firstly cubic fourfolds with certain ADE singularities,
secondly complete (2, 3)-intersections with certain ADE singularities in P4, and thirdly
embeddings of certain lattices into the K3 lattice:

For T 2 {Ai�1, Dj�4, E8�k�6} an ADE singularity type and a positive integer n, denote
by �(T) the ADE singularities on the exceptional divisor of the blowing-up of an n-
dimensional T singularity. Let corankT be n + 1 minus the rank of the Hessian matrix
of the analytic function defining T in the origin. We note that corankT is invariant with
respect to different dimensions of T. Let ��(T) as in Table 6.1 be the weighted graph which
we obtain by extending the Dynkin diagram associated to �(T) in a certain way. Let
⇤(��(T)) be the lattice associated to ��(T) and hT 2 ⇤(��(T)) a certain linear combination
of the vertices of ��(T).

Main Theorem 1. For
�

(a1, . . . , an), (d4, . . . , dm), (e6, e7, e8)
� 2 Z�0

n ⇥Z�0
m�3 ⇥Z�0

3,
let

G :=

n
X

i=1

aiAi +

m
X

j=4

djDj +

8
X

k=6

ekEk

be a formal finite sum of ADE singularity types,

�G :=

n
X

i=1

aiAi +

m
X

j=4

djDj +

8
X

k=6

ekEk

a Dynkin diagram with connected components Ai, Dj, and Ek, and ⇤(�G) the associated
lattice.

The following are equivalent:

1. There exists a cubic fourfold X in P5 with a singularity of type T and such that all
other singularities of X correspond to G.



2. There exists a complete (2, 3)-intersection S in P4 of a quadric Q of corank(Q) =
corankT in P4 and a cubic Y such that the singularities of S that lie on the singular
locus of Q are of type �(T) as in Table 6.1 and such that all other singularities of S
correspond to G.

3. There exists an embedding

i : ⇤(�G) � ⇤(��(T)) ,! LK3

such that the following conditions a), b), and c) hold:
Let SatLK3(i) be the saturation of ⇤(�G) � ⇤(��(T)) in LK3 with respect to i.

a) If x 2 SatLK3(i) with i(hT).x = 0 and x2 = �2, then x 2 i
�

⇤(�G) � ⇤(��(T))
�

.

b) There exists no element x 2 SatLK3(i) with i(hT).x = 1 and x2 = 0.

c) There exists no element x 2 SatLK3(i) with i(hT).x = 2 and x2 = 0.

In Chapter 7, we introduce finite bilinear and quadratic forms and define discriminant
bilinear and quadratic forms. For an odd prime p, we will define the normal form of qua-
dratic forms and finite quadratic forms over Zp. We will see that knowing the normal form
of a finite quadratic form (G, qp) over Zp, we can construct a quadratic Zp-module (L, Qp)
such that the rank of L coincides with the length l(G) of G and such that the discriminant
form induced by (L, Qp) is isomorphic to (G, qp). Finally, we will state Nikulin’s Theorem
on the existence of lattice embeddings.

In Chapter 8, we describe an algorithm to determine all ADE lattices ⇤ such that h6i�⇤
can be embedded primitively into the K3 lattice LK3. We wrote a code based on this algo-
rithm to be implemented in the computer-algebra software Wolfram Mathematica which
gives us the full list of these ADE lattices ⇤. Independently from our computation, S.
Brandhorst found the same list with an algorithm implemented in the computer-algebra
software Sage. We will then be able to prove our second main result:

Main Theorem 2. Let

G :=

19
X

i=1

aiAi +

19
X

j=4

djDj +

8
X

k=6

ekEk

be a formal sum of ADE singularities such that the ADE lattice

⇤ :=
19
M

i=1

aiAi �
19
M

j=4

djDj �
8
M

k=6

ekEk

is one of the 2942 elements in the list in Appendix C. The following hold:

1. There exists a complete (2, 3)-intersection S of a smooth quadric and a cubic in P4

such that S has singularities of type G.

2. There exists a cubic fourfold with ADE singularities of type G and an A1 singularity.

In Chapter 9, we will firstly recall the notion of lattice polarized K3 surfaces. For a
combination G of ADE singularities, T 2 {Ai�1, Dj�4, E8�k�6} an ADE singularity
type, and ⇤(��(T)) and ⇤(�G) as above, let

i : ⇤(��(T)) � ⇤(�G) ,! LK3



be an embedding into the K3 lattice which is unique up to automorphisms of LK3 and
SatLK3(i) the saturation of ⇤(��(T)) � ⇤(�G) in LK3 with respect to i.

We will construct the moduli space F�
SatLK3

(i) of all quasi-polarized K3 surfaces (eS, LT) of
degree 6 such that

1. 'LT : eS ! P4 is birational onto its image

2. 'LT(eS) is contained in a quadric Q ✓ P4 of corank(Q) = corankT such that

a) the singularities of 'LT(eS) lying on Sing(Q) correspond to �(T)

b) the singularities of 'LT(eS) not lying on Sing(Q) correspond to G

as an open subset of the moduli space of certain SatLK3(i)-polarized K3 surfaces. Likewi-
se, we will construct the moduli space of all cubic fourfolds MT+G having singularities
corresponding to G and T. Finally, we will prove our third Main Theorem.

Main Theorem 3. We have an isomorphism of quasi-projective varieties

MT+G ⇠�! F�
SatLK3

(i).
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1 ADE singularities

In this chapter, we will define ADE singularities of complex analytic spaces and state basic
properties of those. In particular, we will recall that on a surface we can identify an ADE
singularity with the Dynkin diagram associated to the exceptional divisor of the minimal
resolution of this ADE singularity. This chapter provides a foundation to the following
chapters where we study ADE lattices and ADE singularities on both cubic fourfolds and
complete (2, 3)-intersections in P4.

1.1 Basic notation, definitions, and properties

Let X be a complex analytic space of dimension d.

Let p be a singularity of X and assume that the germ (X, p) ✓ (Cd+1, p) is an isolated
hypersurface singularity. The (analytic) type of p is the equivalence class of the germ (X, p)
with respect to local analytic isomorphisms. We say that X has an ADE singularity of
type T 2 {Ai�1,Dj�4,E8�k�6} in p if the analytic type of p is the equivalence class of the
germ defined by the following equation T on Cd+1 at (0, . . . , 0) 2 Cd+1:

Ai : x2
1 + . . . + x2

d�1+ x2
d + xi+1

d+1 = 0 (i � 1)

Dj : x2
1 + . . . + x2

d�1+ x2
dxd+1 + xj�1

d+1 = 0 (j � 4)

E6 : x2
1 + . . . + x2

d�1+ x4
d + x3

d+1 = 0

E7 : x2
1 + . . . + x2

d�1+ x3
dxd+1 + x3

d+1 = 0

E8 : x2
1 + . . . + x2

d�1+ x5
d + x3

d+1 = 0,

where x1, . . . , xd+1 are analytic coordinates on Cd+1. We call the germ defined by the
equation T in Cd+1 at (0, . . . , 0) 2 Cd+1 a T type. We will call a singularity p simply an
ADE singularity if it is an ADE singularity of any type T. Let

G :=
X

i�1

aiAi +
X

j�4

djDj +
8
X

k=6

ekEk

be a (formal) sum of ADE types. If X has ai isolated singularities of type Ai (i � 1), dj
isolated singularities of type Dj (j � 4), and ek isolated singularities of type Ek (8 � k �
6), we say that the singularities of X correspond to G.

A direct computation shows that an ADE singularity is resolved by finitely many blowing-
ups in finitely many points. Indeed, in Table 1.1 we can find for a singularity of type
T on X the singularities �(T) occurring on the exceptional divisor of the blowing-up
⇡p : BlpX ! X of X in p.



2 1 ADE singularities

We say that a complex space germ (X, p) defined by T is adjacent to the complex space
germ (X 0, p0) defined by T0 (up to analytic isomorphism) if the germ (X, p) can be deformed
by an arbitrarily small deformation into the germ (X 0, p0). For ADE singularities, the
adjacencies are known, see [AGLV98, Chap. 2.2.7].

T A1 A2 An�3 D4 Dn�5 E6 E7 E8

�(T) ; ; An�2 3A1 A1 + Dn�2 A5 D6 E7

Table 1.1: Singularities corresponding to �(T) on the exceptional divisor of the blowing-up
of a singularity of type T. We understand D3 as A3. See [DR01, Lemma 2.1].

1.2 ADE singularities on surfaces

Let C be a curve on a smooth surface with components C1, . . . , Cs. The (weighted) graph
associated to C1, . . . , Cs is the graph whose vertices are the curves Ci with weights Ci.Ci

and such that two vertices Ci and Cj are joint by Ci.Cj edges.

If S is a surface, it is well known that we can identify the ADE type of a singularity p on
S by its weighted graph associated to the exceptional divisor of the minimal resolution of
p:

Theorem 1.2.1 ([Dur79, Theorem A]). Let S be a normal surface with a singularity p.
Let ⇡ : eS ! (S, p) be the minimal resolution of the germ (S, p) whose exceptional divisor
E := ⇡�1(p) is the union of the irreducible curves E1, . . . , Es. Then, p has type T =
Ai�1,Dj�4, or E8�k�6 if and only if the weighted graph associated to E1, . . . , Es is the
Dynkin diagram T = Ai�1, Dj�4, or E8�k�6, respectively, listed in [Dur79, Table 1].

We will refer to the graph associated to the irreducible curves in the exceptional divisor
of the minimal resolution of an ADE singularity p as in Theorem 1.2.1 for short as the
Dynkin diagram of the minimal resolution of p.

We call a disjoint finite union of connected Dynkin diagrams of type ADE again a Dynkin
diagram.

If � is a Dynkin diagram with ai, dj , and ek connected components Ai (i � 1), Dj (j � 4),
and Ek (8 � k � 6), we will write � as the (formal) sum

� =
X

i�1

aiAi +
X

j�4

djDj +

8
X

k=6

ekEk.

We note one further characterization of ADE singularities on surfaces:

Theorem 1.2.2 ([Dur79, Theorem A]). Let S be a normal surface with a singularity p
and ⇡ : eS ! (S, p) the minimal resolution of the germ (S, p). Then, p has ADE type if
and only if p is a rational singularity, i.e. the higher direct image sheaf Ri⇡⇤OeS is trivial
for all i > 0.



2 Bilinear forms, quadratic forms, and

quadratic modules

In this chapter, we will introduce symmetric bilinear forms, quadratic forms, and quadratic
modules and then define a lattice as an integral non-degenerate bilinear form. In particular,
we are interested in the lattices which we associate to the Dynkin diagrams of the minimal
resolutions of ADE singularities and the K3 lattice. This chapter provides a basis for the
chapters where we study ADE singularities on complete (2, 3)-intersections in P4 in terms
of lattices.

2.1 Basic notation, definitions, and properties

Let R be a commutative ring with 1.

A symmetric bilinear form over R is a pair (L, h , iL), where L is an R-module and

h , iL : L ⇥ L ! R

is a function which is symmetric and R-bilinear.

For simplicity and by abuse of notation, we will often write L instead of (L, h , iL) and the
associated function h , iL is assumed to be given.

We will call (L, h , iL) non-degenerate if h , iL is non-degenerate. For x, y 2 L, we will write
x.y and x2 instead of hx, yiL and hx, xiL, respectively.

A quadratic form over R is a pair (L, QL), where L is an R-module and QL is a function
such that

1. QL(rl) = r2QL(l) for all r 2 R and l 2 L

2. h , iQL : L ⇥ L ! R, (x, y) 7! QL(x + y) � QL(x) � QL(y) is a symmetric bilinear
form over R.

Remark 2.1.1. Note that we defined here the quadratic form as in [MM09, Chap. I.4.1];
in the literature one can find more often the requirement that hx, yiQL = 1

2

�

QL(x + y) �
QL(x) � QL(y)

�

.

In the cases we will consider in the following chapters, a symmetric bilinear form will
induce a unique quadratic form and vice versa:

Lemma 2.1.2 ([MM09, Chap. I, Corollary 2.4]). Assume that 2 is not a zero divisor in
R. Let (L, h , iL) be a symmetric bilinear over R such that there exists a quadratic form
(L, QL) over R with h , iL = h , iQL . Then, (L, QL) is uniquely determined.
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For two quadratic forms (L1, QL1) and (L2, QL2), the direct sum (L1 � L2, QL1 + QL2)
is the orthogonal direct sum (i.e. for x1 2 L1 and x2 2 L2, (QL1 + QL2)(x1 + x2) =
QL1(x1) + QL2(x2)).

A homomorphism (L1, QL1) ! (L2, QL2) between two quadratic forms is an R-module
homomorphism � : L1 ! L2 such that QL2 � � = QL1 .

A quadratic R-module is a non-degenerate quadratic form (L, QL) over R such that L is
a finitely generated free R-module. Let h , iQL be the bilinear function associated to QL

and let s1, . . . , sn be a basis of L. The intersection matrix of (L, QL) (or equivalently of
(L, h , iQL)) is the symmetric n ⇥ n matrix

M(L,QL) := (hsi, sjiQL)i,j=1,...,n 2 Matn(R).

On the other hand, the intersection matrix determines the bilinear function h , iQL . In-
deed, let e1, . . . , en be the standard basis on Rn and � : L ! Rn, si 7! ei the coordinate
isomorphism, then hx, x0iQL = �(x)TM(L,QL)�(x0).

If (L, QL) is a quadratic R-module, the discriminant

disc(L) := det(M(L,QL)) 2 R/(R⇥)2

of (L, QL) is the determinant in R/(R⇥)2 of the intersection matrix M(L,QL) with respect
to an arbitrary basis of L.

Lemma 2.1.3. For a direct sum (L1 � L2, QL1�L2) of quadratic R-modules, we have
disc(L1 � L2) = disc(L1) · disc(L2).

Proof. The intersection matrix ML1�L2,QL1�L2
is a block diagonal matrix with blocks given

by ML1,QL1
and ML2,QL2

. Hence, det(ML1�L2,QL1�L2
) = det(ML1,QL1

) ·det(ML2,QL2
).

2.2 Lattices

We call a non-degenerate symmetric bilinear form (L, h , iL) over Z a lattice if L is a finitely
generated free Z-module.

The lattice L is called even if x2 2 2Z for all x 2 L and odd otherwise. We say that the
lattice L is unimodular if disc(L) = ±1.

The rank rank(L) of a lattice L is the rank of its underlying free Z-module.

We call (L0, h , iL0) a sublattice of (L, h , iL) if L0 is a Z-submodule of L and h , iL0 is the
restriction of h , iL to L0. The lattice L is called irreducible if it cannot be written as the
orthogonal direct sum of two proper sublattices.

Let i : L1 ,! L be an injective homomorphism. Then, we say that i is a primitive embedding
and i(L1) is a primitive sublattice of L if the cokernel of i is torsion free. We call

SatL(i) := {x 2 L; mx 2 i(L1) for some m 2 Z}

the saturation of L1 in L. The lattice SatL(i) is the smallest primitive sublattice of L
containing i(L1).
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The signature of L is the pair (n+, n�), where n+ is the number of positive eigenvalues
and n� the number of negative eigenvalues of the extension of h , iL to the real vector
space L ⌦Z R. The lattice L is positive definite if n� = 0, negative definite if n+ = 0, and
indefinite otherwise.

An element x 2 L is primitive if the intersection of xQ with L in L ⌦Z Q is generated by
x, i.e. x cannot be written in the form x = my with m > 1.

The following three definitions will be only needed at the end of Section 9.4:

An element x 2 L is isotropic if x2 = 0. The divisibility of x 2 L is the positive integer
div(x) such that hx, LiL = div(x)Z. We then call an isotropic primitive element x 2 L
m-admissible if div(x) = m and there exists an isotropic primitive element y 2 L with
hx, yiL = m and div(y) = m.

We will refer in the sequel to the following lattices:

Example 2.2.1. 1. hmi denotes the rank 1 lattice with intersection matrix (m).

2. The hyperbolic plane U is the even, unimodular, indefinite rank two lattice with
intersection matrix

✓

0 1
1 0

◆

.

U has signature (1, 1).

3. The lattice ⇤(�) associated to a weighted graph �: The underlying free Z-module
of ⇤(�) is generated by the vertices of � and the underlying bilinear form is given
by the intersection matrix defined by the vertices of �. For simplicity, if � is one
of the Dynkin diagrams T = Ai�1, Dj�4, or E8�k�6, we will denote the associated
negative definite lattice ⇤(�) by T = Ai�1, Dj�4, or E8�k�6, respectively. By [Ebe13,
Theorem 1.2], the lattice T is irreducible.

For instance, the A2 lattice is defined by the intersection matrix
✓ �2 1

1 �2

◆

.

We will call a lattice ⇤ which is the orthogonal direct sum of irreducible ADE lattices
for short ADE lattice.

4. The K3 lattice
LK3 := 3U � 2E8

is the unique even and unimodular lattice of signature (3, 19).





3 K3 surfaces

In this chapter, we study K3 surfaces. After recalling all necessary definitions, we will inves-
tigate under which conditions the complete linear system induced by a quasi-polarization
L on a K3 surface S, defines a birational morphism 'L from S onto its image in the pro-
jective space. We will show that if 'L is birational, the existence of certain ADE lattices
in the Picard group will imply the existence of corresponding ADE singularities on 'L(S)
in the projective space. In particular, if L2 = 6, we will see that 'L(S) is a complete (2, 3)-
intersection in P4. Finally, we will prove the existence of a K3 surface having a certain
Picard group. This chapter is a foundation to the following chapters where we relate the
existence of embeddings of ADE lattices into the K3 lattice to the existence of complete
(2, 3)-intersections in P4 having corresponding ADE singularities.

3.1 Basic notation, definitions, and properties

A K3 surface is a smooth complex projective surface S with trivial canonical bundle !S

and H1(S, OS) = 0.

Let S be a K3 surface.

The exponential sequence induces the exact sequence

0 ! Pic(S)
c1�! H2(S,Z)

exp

⇤
���! H2(S, OS).

Since H2(S,Z)/c1
�

Pic(S)
�

injects into H2(S, OS) and since H2(S, OS) ⇠= C is torsion-free,
the embedding c1 : Pic(S) ,! H2(S,Z) is primitive. We will identify Pic(S) with its image
in H2(S,Z).

Let L 2 Pic(S).

The Riemann-Roch Theorem yields

h0(S, L) + h0(S, L_) � 2 +
1

2
L2, (3.1)

where L_ 2 Pic(S) is the dual line bundle of L. Hence, we can conclude:

Lemma 3.1.1. Assume that L2 � �2. Then, either L or L_ 2 Pic(S) is effective.

We say that L is nef (ample) if L.C � 0 (L.C > 0) for all curves C on S (for the general
definition of ample and nef line bundles on schemes see [Laz04, 1.2, 1.4]). We call L big
and nef if L is nef and L2 > 0.

We call L a quasi-polarization of degree d if L is big and nef such that L2 = d and L is
primitive, i.e. there exists no line bundle L0 2 Pic(S) such that L = (L0)k for k � 2.
We call two quasi-polarized K3 surfaces (S, L) and (S0, L0) isomorphic if their exists an
isomorphism � : S ! S0 between the K3 surfaces preserving the quasi-polarization, i.e.
L = �⇤L0.
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3.2 Linear systems on K3 surfaces

Let S be a surface and L a line bundle on S. Write |L| for the complete linear system on
S given by L, i.e. the space of all effective divisors linearly equivalent to L. We can show
that we have |L| = P

�

H0(S, L)
�

.

We follow [Huy16, Chap. 2.1.1] and call a divisor F on S the fixed part of |L| if F is the
biggest effective divisor on S contained in all elements of |L|, i.e. F is the one-dimensional
part of the base locus of |L|. We call a point p 2 S a fixed point of |L| if p is contained
in every element of |L|. The mobile part M := L(�F ) of L is fixed part free and has only
finitely many fixed points. Further, the mobile part is nef and satisfies M2 � 0. We can
then decompose L into its mobile and fixed part and write L = M + F .

Assume now that S is a K3 surface.

We call a curve C on S a (�2)-curve if C is irreducible and C2 = �2. It is known ([Huy16,
Chap. 2.1, p. 23]) that a (�2)-curve C is in fact smooth and rational, i.e. C ⇠= P1.

Lemma 3.2.1 ([Huy16, Chap. 2, Lemma 1.3]). The fixed part F of a linear system on S is
a linear combination of (�2)-curves, i.e. F =

Pn
i=1 aiCi with ai � 0 and Ci a (�2)-curve

(i = 1, . . . , n).

Lemma 3.2.2 ([Huy16, Chap. 2, Corollary 1.5]). Let L be a line bundle on S with L2 � 0
and such that L.C � 0 for all (�2)-curves C on S. Then, L is nef unless there exists no
(�2)-curve on S in which case L or L_ is nef.

The restriction of the intersection product on H2(S,R) to H1,1(S,R) := H2(S,R) \
H1(S, ⌦1

S) has signature (1, 19). Hence, the subspace {x 2 H1,1(S,R); x.x > 0} has
two connected components. Let CS be the connected component that contains one and
hence all Kähler classes. We call CS the positive cone of S.

For R 2 H2(S,Z) with R2 = �2, we have a reflection

sR : H2(S,Z) ! H2(S,Z), P 7! P + (P.R)R

called Picard-Lefschetz reflection. We note that sR preserves the intersection form.

Proposition 3.2.3 ([Huy16, Chap. 8, Corollary 2.9]). For a line bundle L on S with
L2 > 0 such that L 2 CS, there exist finitely many (�2)-curves C1, . . . , Cn 2 Pic(S) such
that (sC1 � . . . � sCn)(L) is nef.

Theorem 3.2.4 ([May72, Proposition 1, 5], [Nik91, Proposition 0.1]). Let L be a nef line
bundle on S. Then, one of the following holds:

1. L2 > 0, |L| is fixed point free. A generic member of |L| is an irreducible curve and
we have dim |L| = 1 + L2/2 > 0.

2. L2 > 0, |L| = m|E|+F with m > 1, where |E| is an elliptic pencil, F is a (�2)-curve,
and E.F = 1. Then, m = dim |L| and F is the fixed part of |L|.

3. L2 = 0, |L| = ;.
4. L2 = 0, |L| = m|E| with m � 1 and |E| is an elliptic pencil.
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Remark 3.2.5. Note that in case 4. in Theorem 3.2.4, a general member of |E| is in par-
ticular irreducible, see [Huy16, Chap. 2, Proposition 3.10].

If L2 � 0, inequality (3.1) implies that (after possibly replacing L by L_) L has more than
one global section. Hence, the linear system |L| on S induces a rational map

'L : S 99K Pdim |L|

which is a morphism outside its base locus.

Proposition 3.2.6. Let L be a nef line bundle on S with L2 � 4. Then, 'L fails to
be a birational morphism onto a surface of degree L2 in Pdim |L| if and only if one of the
following holds:

1. There exists E 2 Pic(S) such that E2 = 0 and L.E = 1.

2. There exists E 2 Pic(S) such that E2 = 0 and L.E = 2.

Proof. Assume that 'L fails to be birational onto its image in Pdim |L|. By [SD74, (4.1)],
the complete linear system |L| then has either a fixed part or 'L is of degree 2 and its
image has degree L2/2. Since L2 � 4, by [SD74, Theorem 5.2] the latter case can only
occur if item 2. holds. If |L| has a fixed part, we have |L| = m|E| + F for a (�2)-curve
F and an elliptic pencil |E| such that E.F = 1 by Theorem 3.2.4. Hence, L.E = 1, i.e.
item 1. holds.

Then, assume that there exists E 2 Pic(S) with E2 = 0 such that L.E = 1 or 2. We
assume to the contrary that 'L is birational onto its image in Pdim |L|. By (3.1), we have
h0(S, E) > 0 or h0(S, E_) > 0. However, if h0(S, E_) > 0, we obtain for A 2 |E_| that
L.A = �L.E = �1 or �2 in contradiction to L being nef. Hence, we have h0(S, E) > 0,
i.e. E is effective. Let M + � be a general member in |E|, where |M | is the mobile part
and � the fixed part of |E|. Since |M | is fixed part free and M2 � 0, every irreducible
component of M has by Theorem 3.2.4 a non-negative self-intersection number. Since L
is nef, we have L.� � 0 and L.M � 0. However, L.M = 0 would imply M2 < 0 by
the Hodge-Index Theorem (see [SD74, (4.2)]) which is absurd. Hence, L.M > 0. Then,
L.E = L.M +L.� = 1 or 2 implies that L.M = 1 or 2. Since 'L is by assumption birational
onto its image and generically one-to-one on M , we deduce that 'L(M) is a curve in Pdim |L|

with degree  2. By [Mum95, Corollary 5.13], an irreducible component of 'L(M) is then
isomorphic to P1. Hence, M has an irreducible component which is isomorphic to P1.
This is a contradiction to M having only irreducible components with non-negative self-
intersection number according to Theorem 3.2.4. Therefore, the assumption must be wrong
and 'L is not birational onto its image.

Remark 3.2.7. We will call a line bundle as in item 1. in Proposition 3.2.6 unigonal and a
line bundle as in item 2. hyperelliptic.

Remark 3.2.8. We note that item 1. in Proposition 3.2.6 is redundant. Indeed, if 'L fails
to be birational and |L| has a fixed part, we argue as in the proof above that we have
E 2 Pic(eS) such that E2 = 0 and E.F = 1. For E0 := 2E, we then have E02 = 0 and
L.E0 = 2. Hence, E0 satisfies item 2. Conversely, the existence of a line bundle E 2 Pic(eS)
as in item 2. implies that 'L is not birational as shown in the proof above.
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3.3 (�2)-curves on K3 surfaces

Let (S, L) be a quasi-polarized K3 surface with L2 > 0.

Define
RL := {[C] 2 Pic(S); C2 = �2, L.C = 0}.

Then, RL is a finite root system (see [Bou07, Chap. VI §1] for the definition of root system).
Let

�L := {[C] 2 Pic(S); C (�2)-curve, L.C = 0}.

By [SS19, Lemma 11.17], every element in RL can be written as a non-negative sum of
elements in �L. Hence, �L is a basis (sometimes called fundamental system) of the root
system RL (see also [Bou07, Chap. VI §1] for the definition of a basis of a root system).

Proposition 3.3.1. Let �1
L, . . . , �n

L be the connected components of �L. The intersection
matrix of the (�2)-curves in �i

L (i = 1, . . . , n) is described by the Dynkin diagram An�1,
Dn�4, or E8�n�6.

Proof. Let �i
L = [m

j=1C
i
j , where all Ci

j are (�2)-curves. By the Hodge-Index Theorem
(see [Har77, Chap. V, Theorem 1.9]), the intersection matrix (Ci

r.C
i
s)1i,jm is negative

definite. One then computes the possible intersection products Ci
r.C

i
s for all r, s = 1, . . . , m

(see [BHPVdV04, Chap. III.2.iii)]).

Theorem 3.3.2. Let �i
L (i = 1, . . . , n) be as in Proposition 3.3.1. There exists a projective

normal surface S0 and a morphism
✓ : S ! S0

such that ✓ maps each �i
L to an ADE singularity pi and ✓ : S \ [n

i=1�
i
L ! S0 \ [n

i=1pi is
an isomorphism. The singularity types of the pi are determined by the Dynkin diagrams
associated to �i

L.

Proof. The existence of ✓ follows from [Art62, Theorem 2.7]. By Proposition 3.3.1, the
(�2)-curves in �i

L (i = 1, . . . , n) are the vertices of a Dynkin diagram An�1, Dn�4, or
E8�n�6 and by Theorem 1.2.1, the singularity pi has type An�1, Dn�4, or E8�n�6, respec-
tively.

Definition 3.3.3. We call the morphism ✓ in Theorem 3.3.2 the contraction morphism of
the connected components �1

L, . . . , �n
L of �L.

The next proposition states that we can identify the normal surface S0 in Theorem 3.3.2
with the image 'L(S) of S under 'L in P4.

Proposition 3.3.4 ([SD74, Theorem 6.1 (iii)]). Assume that L is a fixed part free line
bundle on S such that 'L : S ! Pdim |L| is birational onto its image. Then, 'L admits
a factorization 'L = uL � ✓ by the contraction morphism ✓ and an embedding uL : S0 !
Pdim |L|. Further, if L2 = 6, the surface 'L(S) is the complete (2, 3)-intersection of a
quadric and a cubic in P4.
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Corollary 3.3.5. Assume that L is a fixed part free line bundle on S with L2 > 0 such
that 'L : S ! Pdim |L| is birational onto its image. Let K be the lattice in Pic(S) generated
by the elements in the root system RL. Assume that

K :=
M

i�1

aiAi �
M

j�4

djDj �
8
M

k=6

ekEk.

Then, 'L(S) ✓ Pdim |L| has ADE singularities corresponding to

G :=
X

i�1

aiAi +
X

j�4

djDj +

8
X

k=6

ekEk.

Proof. Let �1
L, . . . , �n

L be the connected components of �L. By Proposition 3.3.1, the
intersection matrix of the (�2)-curves in �i

L is described by a connected Dynkin diagram.
Let �0 :=

P

i�1 a0iAi +
P

j�4 d0jDj +
P

8�k�6 e0kEk be the union of all Dynkin diagrams
associated to the union of the �i

L and let ⇤(�0) =
L

i�1 a0iAi �
L

j�4 d0jDj �L

8�k�6 e0kEk

be the associated ADE lattice.

Since �L is the basis of RL, we have K = ⇤(�0), i.e.

M

i�1

aiAi �
M

j�4

djDj �
8
M

k=6

ekEk =
M

i�1

a0iAi �
M

j�4

d0jDj �
8
M

k=6

e0kEk.

We claim that ai = a0i (i � 1), dj = d0j (j � 4), ek = e0k (8 � k � 6). Indeed, let M be an
irreducible ADE lattice in the left-hand direct sum. Suppose that M is not contained in
any irreducible ADE lattice in ⇤(�0). Since M is contained ⇤(�0), this would imply that
M is the orthogonal direct sum of two sublattices of M . However, this is absurd since M
is irreducible. Consequently, M is contained in one irreducible ADE lattice N in ⇤(�0).
Conversely, the same argument gives that the ADE lattice N has to be contained in an
irreducible ADE lattice M 0 in K. Since N contains M , it follows that the irreducible
ADE lattice M is contained in the irreducible ADE lattice M 0. Since M was a direct
summand in K, this forces M = M 0. Consequently, it follows that any irreducible ADE
lattices in K coincides with an irreducible ADE lattices in ⇤(�0) and vice versa. In
conclusion, ai = a0i (i � 1), dj = d0j (j � 4), ek = e0k (8 � k � 6). By Theorem 3.3.2, there
exists a projective normal surface S0 whose singularities correspond to G and a contraction
morphism ✓ : S ! S0. By Proposition 3.3.4, we have a factorization 'L = uL � ✓ through
an embedding uL : S0 ! P4. Hence, 'L(S) has singularities corresponding to G.

3.4 Periods of K3 surfaces

For a K3 surface S, the integral cohomology H2(S,Z) is a free Z-module. The intersection
form on H2(S,Z) turns it into a lattice of signature (3, 19). Since this lattice is even and
unimodular, it is isometric to the K3 lattice

LK3 = 3U � 2E8
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independent of the choice of S (see [Mil58, Corollary §1]). We refer to an isometry
� : H2(S,Z) ! LK3 as a marking of S and to a pair (S,�) as a marked K3 surface.
For H2(S,C) = H2(S,Z) ⌦ C, we have the Hodge decomposition

H2(S,C) = H2(S, OS) � H1(S, ⌦1
S) � H0(S, ⌦2

S). (3.2)

Since S is a K3 surface, Pic(S) is isomorphic to H2(S,Z)\H1(S, ⌦1
S) under the embedding

c1 : Pic(S) ,! H2(S,Z). Let !S be a generator of the one-dimensional C-vector space
H2(X, OS). We note in particular that !S is uniquely determined up to a scalar multiple
in C⇤. Hence, a marked K3 surface (S,�) determines uniquely a point [�(!S)] = �(!S)
mod C⇤ 2 P(LK3 ⌦Z C) which we call the period point of (S,�). We will call the 20-
dimensional connected complex manifold

⌦LK3
:= {[x] 2 P(LK3 ⌦ C); x2 = 0, x.x > 0} (3.3)

the period domain of LK3. We note that the period point [�(!S)] is contained in ⌦LK3 .
Further, for each x 2 H2(S,Z) \ H1(S, ⌦1

S), we have x.!S = 0 by the Hodge decomposi-
tion (3.2). Hence, we deduce

Lemma 3.4.1. We have Pic(S) = {x 2 H2(S,Z); x.!S = 0}.

Let ⇡ : S ! U be a flat family of K3 surfaces with central fiber S := ⇡�1(0) 2 S over
0 2 U . For a sufficiently small contractible open neighborhood U ✓ U of 0 2 U , a marking
� : H2(S,Z) ! LK3 can be extended to a marking �U : R2⇡⇤Z ! (LK3)U in a unique way,
where (LK3)U is the constant sheaf on U with fiber LK3. We obtain a holomorphic map
⇢ : U ! ⌦LK3 , u 7! [�U (!Su)] called the period map associated to the family ⇡ : S ! U .
By the following theorem, the period map is surjective:

Theorem 3.4.2 (Horikawa-Shah-Kulikov-Persson-Pinkham-Todorov-Looijenga, for a proof
see [BHPVdV04, Chap. VIII, Theorem 14.1]). For every element [x] in ⌦LK3 , there exists
a marked K3 surface (S,�) such that [x] is the period point of (S,�).



4 Complete (2, 3)-intersections in P4

In this chapter, we will study complete (2, 3)-intersections in P4. Since projective quadrics
are determined up to isomorphism by their rank, we will consider these intersections for
each possible rank of the underlying quadric individually. We will firstly study certain
pencils of planes on quadrics in P4 and construct with these certain hyperplane sections of
complete (2, 3)-intersections in P4. Finally, we will determine which ADE singularities of
the complete (2, 3)-intersection in P4 can lie on the singular locus of the underlying quadric.
The minimal model of a complete (2, 3)-intersection in P4 with isolated ADE singularities
is a K3 surface. The results in this chapter will explain the geometry of complete (2, 3)-
intersections in P4, which we need to understand for the following chapters.

4.1 Quadrics in P4

4.1.1 Basic notation, definitions, and properties

Let (x0 : . . . : xn) be homogeneous coordinates on Pn.

A quadric Q in Pn is the zero locus of a non-trivial quadratic homogeneous polynomial,
i.e.

Q :

n
X

i,j=0

aijxixj = 0 ✓ Pn.

For MQ := (aij)i,j 2 Matn+1(C), we denote by

rank(Q) := rank(MQ)

the rank of Q and by
corank(Q) := (n + 1) � rank(Q)

the corank of Q.

We recall from linear algebra that over the complex numbers two quadrics in Pn are iso-
morphic if their ranks (or coranks) coincide. Hence, we can classify the quadrics in Pn by
their coranks.

The linear subspace of Pn corresponding to the kernel of the matrix MQ in Cn+1 is the
singular locus Sing(Q) of Q. More precisely:

Lemma 4.1.1 ([GH94, Chap. 6.1, p. 734]). A quadric Q ✓ Pn of corank k is the cone
through a (k � 1)-dimensional linear subspace ⇤ ✓ Q ✓ Pn over a smooth quadric in Pn�k

and ⇤ is the singular locus of Q. In particular, Q is smooth if and only if Q has corank 0
in Pn.



14 4 Complete (2, 3)-intersections in P4

For a quadric Q ✓ Pn of corank k in Pn and a smooth point x 2 Q (the existence of x
implies that k  n � 1), we denote by

TxQ ✓ Pn

the projective tangent space to Q at x. Then, the tangent hyperplane section TxQ \ Q ✓
Pn�1 of Q is a quadric of corank k + 1 in Pn�1. Indeed, the singular locus of TxQ \ Q is
the span of the singular locus of Q and x, i.e.

dim Sing(TxQ \ Q) = dim Sing(Q) + 1 = (k � 1) + 1 = k.

Hence, corank(TxQ \ Q) = k + 1 in Pn�1 by Lemma 4.1.1.

Lemma 4.1.2 ([Har92, Lecture 22, p. 285]). A smooth quadric in P3 is isomorphic to the
image of the Segre embedding

� : P1 ⇥ P1 ! P3,
�

(x0 : x1), (y0 : y1)
� 7! (x0y0 : x0y1 : x1y0 : x1y1). (4.1)

For ↵,� 2 P1, define the lines l1,↵ := �({↵} ⇥ P1) and l2,� := �(P1 ⇥ {�}). The quadric
has hence the two rulings {l1,↵}↵2P1 and {l2,�}�2P1 and through every point in it passes
exactly one line from each of the rulings.

4.1.2 Planes on Quadrics in P4

We collect now results on planes on quadrics of corank 0, 1, and 2 in P4 and deduce these
in the latter two cases from results on linear spaces on smooth quadrics in P3 and P2,
respectively.

4.1.2.1 Quadrics of corank 0 in P4

Lemma 4.1.3. A quadric in P4 is smooth if and only if it contains no planes in P4.

Proof. Smooth quadrics in Pn contain no planes (see [GH94, Chap. 6.1, Proposition]) so
this holds in particular for n = 4.

Let now Q be a quadric of corank k in P4 containing no planes. By Lemma 4.1.1, the
singular locus of Q is a linear subspace ⇤ of dimension k � 1 and Q is the cone through
⇤ over a smooth quadric Q0 in P4�k. If k � 3, the singular locus of the quadric contains
a plane. If k = 2, the singular locus of Q is a line and the plane spanned by the singular
line and a point in Q0 ✓ Q is contained in Q. If k = 1, the singular locus of Q is a point
and we have an isomorphism � : P1 ⇥P1 ⇠�! Q0 by Lemma 4.1.2. The plane spanned by the
singular point and �(P1 ⇥ {pt}) in Q then is a plane in Q. Consequently, we must have
k = 0, i.e. Q is smooth.

4.1.2.2 Quadrics of corank 1 in P4

Let Q be a quadric of corank 1 in P4 with vertex p. By Lemma 4.1.1, Q is the cone over a
smooth quadric Q0 in P3. By Lemma 4.1.2, we have two rulings {l1,↵}↵2P1 and {l2,�}�2P1

on Q0. For ↵,� 2 P1, let

⇧1,↵ := plane spanned by p and the line l1,↵ ✓ P4
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⇧2,� := plane spanned by p and the line l2,� ✓ P4.

We obtain two pencils of planes {⇧1,↵}↵2P1 and {⇧2,�}�2P1 on Q, see Figure 4.1.

p

Q�

l2,� l1,�

⇧1,� ⇧2,�

Figure 4.1: Cone through p over the smooth quadric surface Q0.

Lemma 4.1.4. Every line in Q through p is contained in a unique plane in each of the
pencils {⇧1,↵}↵2P1 and {⇧2,�}�2P1 .

Proof. By Lemma 4.1.2, through every point in Q0 passes a unique line from each of the
rulings {l1,↵}↵2P1 and {l2,�}�2P1 . Hence, we can deduce that through each line in Q
through p passes a unique plane from each of the pencils {⇧1,↵}↵2P1 and {⇧2,�}�2P1 .

4.1.2.3 Quadrics of corank 2 in P4

Let Q be a quadric of corank 2 in P4. By Lemma 4.1.1, Q is the cone through a line l over
a smooth quadric Q0 ✓ P2 and l is the singular locus of Q. The quadric Q0 is isomorphic
to P1. For t 2 Q0 ⇠= P1, let then

⇧t := plane in Q spanned by l and t ✓ P4.

We obtain the pencil {⇧t}t2P1 of planes on Q, see Figure 4.2.

Q�
t

l

⇧t

Figure 4.2: Cone through l over the smooth quadric curve Q0.

Lemma 4.1.5. Through any point in Q passes a plane in the pencil {⇧t}t2P1 which is
unique if the point is smooth.
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Proof. Obviously, all singular points of Q are contained in all the planes in {⇧t}t2P1 . If t0
is a smooth point of Q, the plane ⇧ through Sing(Q) and t0 intersects Q0 in a single point.
Indeed, if ⇧ intersected Q0 in two different points, the line joining those points would be
contained in Q0 which is absurd since Q0 is by definition an irreducible curve of degree 2
in P2. Hence, ⇧ is uniquely determined and contained in {⇧t}t2P1 .

4.2 Basic properties of complete (2, 3)-intersections in P4

Recall that an m-dimensional variety V ✓ Pn is a complete (d1, . . . , dn�m)-intersection if
there exist n � m homogeneous polynomials fi(x0, . . . , xn) of degree di (1  i  n � m) in
C[x0, . . . , xn] generating all homogeneous polynomials in C[x0, . . . , xn] which are vanishing
on V .

Lemma 4.2.1 ([GH94, Chap. 4.5, p. 592]). Let S be a complete (2, 3)-intersection in
P4. Then, the quadric Q ✓ P4 containing S is uniquely determined and the cubic in P4

containing S is uniquely determined modulo those cubics containing the quadric Q.

Lemma 4.2.2. Let S be a complete (2, 3)-intersection in P4 with at most isolated ADE
singularities and let ⇡ : eS ! S be the minimal resolution of S. Then, eS is a K3 surface.
The line bundle L := ⇡⇤

�OS(1)
�

on eS is nef and the map 'L : eS ! S induced by L coincides
with ⇡. Furthermore, we have deg L = L2 = 6.

Proof. The surface S has only isolated ADE singularities and these are precisely ratio-
nal double points by Theorem 1.2.2. By [Rei87, 1.5], we can naturally extend the def-
inition of the canonical bundle on smooth surfaces to those with rational double points
(see [Pan15, Theorem 1] for more details). Since S is a complete (2, 3)-intersection in
P4, we then compute using [Har77, Chap. II, Ex. 8.4 (e)] that !S = OS . Further,
by [Rei87, 1.9, Example (1)], we have !eS = ⇡⇤!S . Hence, !eS = ⇡⇤OS = OeS . Again,
since S has only rational double points, we have Ri⇡⇤OeS = 0 for all i > 0. Therefore,
�(S, R1⇡⇤OeS) = H1(eS, OeS) = 0. Consequently, eS is a K3 surface.

The minimal model eS is in particular quasi-compact and separated. Hence, we can apply
the projection formula for a (�2)-curve C on eS and obtain that ⇡⇤OP4(1).C = OP4(1).⇡⇤C
on P4. Since the hyperplane bundle OP4(1) is very ample, it is in particular nef. Hence,
OP4(1).⇡⇤C � 0. In conclusion, L = ⇡⇤OS(1) = ⇡⇤OP4(1)|S is nef. Likewise, the projection
formula implies that we cannot have a curve E on eS with the property that ⇡⇤OS(1).E = 1
or 2. Therefore, the map 'L : eS ! S is birational by Proposition 3.2.6. Then, Proposi-
tion 3.3.4 implies that 'L coincides with ⇡.

For a general hyperplane H in P4, the hyperplane section H \ S of S is a curve of degree
6. By Bertini’s Theorem, H \ S passes through none of the singularities of S. Hence,
⇡⇤(H \ S) 2 Div(eS) has degree 6 as well. Therefore, deg L = L2 = 6.

4.3 Hyperplane sections of complete (2, 3)-intersections in P4

Let S be the complete (2, 3)-intersection of a quadric Q and a cubic Y in P4.
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We will construct in the following certain hyperplane sections of S depending on the corank
of Q in P4.

We will need the following auxiliary result:

Lemma 4.3.1. Let Q ✓ P4 be a quadric of corank 1 or 2 in P4, let Y ✓ P4 a cubic such
that Q and Y have no singularities in common, and let S := Q \ Y ✓ P4. For a pencil of
planes {⇧s}s2P1 in Q as in Subsection 4.1.2.2 or 4.1.2.3, let Cs := ⇧s \ Y ✓ S. Then, the
general curve in {Cs}s2P1 is smooth in p 2 Y \ Sing(Q).

Proof. Firstly, note that Sing(Q) is contained in all planes in Q and hence all planes ⇧s

for all s 2 P1. Consequently, those singularities of S lying on the singular locus of Q are
contained in Cs for all s 2 P1, i.e. Sing(S) \ Sing(Q) ✓ \s2P1Cs.

By assumption, the cubic Y is smooth in p since Q is singular at p. Further, ⇧s is smooth
in all points as a plane. Hence, the curve Cs := Y \ ⇧s is smooth in p if and only if the
affine tangent spaces TpY and Tp⇧s of Y and ⇧s in p, respectively, intersect transversally,
i.e.

TpP4 = TpY + Tp⇧s. (4.2)

Since Y and ⇧s are both smooth in p, we have dim TpY = dim Y = 3 and dim Tp⇧s =
dim ⇧s = 2, so equation (4.2) holds if and only if Tp⇧s * TpY .

Assume that we had for all s 2 P1

Tp⇧s ✓ TpY.

By construction of the pencil of planes {⇧s}s2P1 in Q in Subsection 4.1.2.2 or 4.1.2.3, we
have

[

s2P1

⇧s = Q.

Consequently, the tangent spaces of the planes ⇧s at p span the tangent cone of Q, i.e.
X

s2P1

Tp⇧s = TpQ,

so by assumption
TpQ ✓ TpY.

Since Q is singular at p, we have 3 = dimQ < dim TpQ  4. Hence, dim TpQ = 4.
However, the four-dimensional space TpQ cannot be contained in the three-dimensional
space TpY .

Consequently, the assumption must have been wrong and there exists a plane ⇧s such that
Tp⇧s * TpY . Zariski closed proper subsets in P1 are finite. Since the open set

{s 2 P1; Tp⇧s * TpY } = P1 \ {s 2 P1; Tp⇧s ✓ TpY }
is non-empty, it is Zariski-dense in P1. Hence, the general plane ⇧s is not contained in
TpY . In conclusion, the general cubic curve in {Cs}s2P1 is smooth in p.

By the following Lemma 4.3.2, the assumption that a singularity p of S is not a singularity
of both Q and Y is satisfied if p is a hypersurface singularity and therefore in particular if
p is an ADE singularity.
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Lemma 4.3.2. Let p be a singularity of a complete (2, 3)-intersection S ✓ P4 of a quadric
Q and a cubic Y in P4. Then, p is a hypersurface singularity of S if and only if it is not
a singularity of both the quadric Q and the cubic Y .

Proof. Assume that the hypersurface singularity p is a singularity of both Q and Y . The
germ (S, p) is locally analytically isomorphic to the germ (V,0) ✓ (C3,0), where V is a sur-
face in C3 and 0 := (0, 0, 0). Since 0 is a singularity of V , we have 3 � dim T0V > dim V =
2. Therefore, dim T0V = 3. On the other hand, we have 4 � dim TpQ > dim Q = 3
and 4 � dim TpY > dim Y = 3 which forces dim TpQ = dim TpY = 4. Furthermore,
dim(TpQ + TpY )  dim TpP4 = 4. Consequently, dim TpS = dimTpQ + dim TpY �
dim(TpQ + TpY ) � 4 + 4 � 4 = 4. Therefore, dim T0V 6= dim TpS which is a contra-
diction to (S, p) and (V,0) being locally analytically isomorphic.

On the other hand, assume that p is a smooth point of Q or Y and assume without loss of
generality that Q is smooth at p. Then, locally analytically at p the quadric Q is isomorphic
to a hyperplane H ⇠= C3 in P4. If g is the cubic polynomial defining Y , the surface S is
therefore locally analytically at p on the hyperplane H ⇠= C3 defined by g. Hence, (S, p) is
a hypersurface singularity.

4.3.1 Q has corank 1 in P4

Let Q ✓ P4 be a quadric of corank 1 in P4 with vertex p and let Y ✓ P4 be a cubic
such that S := Q \ Y is a complete (2, 3)-intersection in P4 having at most isolated ADE
singularities. By Lemma 4.3.2, this implies that Q and Y have no common singularities.

Let {⇧1,↵}↵2P1 and {⇧2,�}�2P1 be the two pencils of planes on Q as in Lemma 4.1.4.

For ↵,� 2 P1, we define the plane cubic curves on S

C1,↵ := ⇧1,↵ \ Y ✓ S and C2,� := ⇧2,� \ Y ✓ S

and obtain two pencils of plane cubic curves {C1,↵}↵2P1 and {C2,�}�2P1 on S.

Lemma 4.3.3. Let ⇧1 and ⇧2 be the planes in the pencils {⇧1,↵}↵2P1 and {⇧2,�}�2P1 ,
spanned by p and l1 2 {l1,↵}↵2P1 and l2 2 {l2,�}�2P1 , respectively, as defined in subsec-
tion 4.1.2.2 and x the intersection point of l1 and l2. Let C1 := ⇧1 \ Y and C2 := ⇧2 \ Y .
The divisor C1 + C2 on S ✓ P4 is supported on TxQ \ S. In particular, C1 + C2 is a
hyperplane section of S.

Proof. TxQ \ Q is a quadric of corank 2 in P3 whose singular locus is the line lx joining
x and the vertex p of Q. By Lemma 4.1.4, there are unique planes in {⇧1,↵}↵2P1 and
{⇧2,�}�2P1 containing lx which then must be ⇧1 and ⇧2 as they both contain lx. Hence,
TxQ \ Q \ Y = TxQ \ S is the union of the curves C1 := ⇧1 \ Y and C2 := ⇧2 \ Y .

Let m1 and m2 be the positive integers such that m1C1 + m2C2 = TxQ \ S as divisors
on S. We claim that the planes ⇧1 and ⇧2 are not contained in Y . Indeed, if one of the
planes was contained in Y , the complete (2, 3)-intersection S would contain this plane,
as well. Therefore, the smooth minimal model eS of S would be rational which is absurd
since eS is a K3 surface by Lemma 4.2.2. Hence, the hyperplane section TxQ \ S ✓ P4 of
S is a curve of degree 6 by Bezout’s Theorem. Using that C1 and C2 are cubics, we have
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deg(m1C1+m2C2) = 3(m1+m2). Since TxQ\S has degree 6, it follows that m1 = m2 = 1.
In conclusion, TxQ \ Y = C1 + C2 2 Div(S).

Let
⇡(1) : S(1) := BlpS ! S

be the blowing-up of S in p with exceptional divisor E(1)
S and let C(1)

1,↵ and C(1)
2,� be the

strict transforms of C1,↵ and C2,� in S(1).

Lemma 4.3.4. We can find ↵,� 2 P1 such that the following conditions are all satisfied:

(1) C1,↵ and C2,� are smooth in p

(2) C(1)
1,↵ and C(1)

2,� are both contained in the smooth locus of S(1)

(3) C(1)
1,↵ \ C(1)

2,� \ E(1)
S = ;.

If p is of type An�2, we have E(1)
S = E(1)

1 [ E(1)
n�2, where E(1)

1 and E(1)
n�2 are irreducible

curves intersecting transversally in a singularity of type An�2 of S(1).

(4) After exchanging E(1)
1 by E(1)

n�2 if necessary, C(1)
1,↵ intersects E(1)

1 but not E(1)
n�2 and

C(1)
2,� intersects E(1)

n�2 but not E(1)
1 and the intersection point of E(1)

1 with E(1)
n�2 is

contained in neither C(1)
1,↵ nor C(1)

2,�, see Figure 4.3.

p

C1,�C(1)
1,�C(1)

2,�
C2,�

E(1)
1 E(1)

n�2

⇡(1)

Figure 4.3: Assume that p is of type An�2. The curves C1,↵ and C2,� satisfy condition (4)
in Lemma 4.3.4.

Proof. We claim firstly that the set

I1 := {(↵,�) 2 P1 ⇥ P1; C1,↵ or C2,� are singular in p}

is a proper closed subset of P1 ⇥ P1. Indeed, by Lemma 4.3.1, the general curves in
{C1,↵}↵2P1 and {C2,�}�2P1 , respectively, are smooth in p. Hence, only finitely many curves
in each family are singular in p, i.e. I1 is a proper closed subset of P1 ⇥ P1.

We claim secondly that the set

I2 := {(↵,�) 2 P1 ⇥ P1; C(1)
1,↵ or C(1)

2,� contains a singularity of S(1) outside E(1)
S }

is a proper closed subset of P1⇥P1. Indeed, since S has only isolated singularities, for only
finitely many choices of ↵ and � 2 P1 the curves C1,↵ and C2,� ✓ S contain a singularity of
S different from p. Hence, for only finitely many choices of ↵ and � the strict transforms
C(1)
1,↵ and C(1)

2,� in S(1) of the curves C1,↵ and C2,� contain a singularity of S(1) outside E(1)
S ,

i.e. I2 is a proper closed subset of P1 ⇥ P1.
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We claim thirdly that the set

I3 := {(↵,�) 2 P1 ⇥ P1; C(1)
1,↵ \ C(2)

2,� \ E(1)
S 6= ;}

is a proper closed subset of P1⇥P1 and prove this in the following by an explicit computation
in coordinates on P4.

The quadric Q ✓ P4 is up to isomorphism uniquely determined by its rank. Hence, we can
choose homogeneous coordinates (v : w : x : y : z) on P4 such that Q is the image of the
Segre embedding � in (4.1):

Q : xy � zw = 0 ✓ P4

and thus p = (1 : 0 : 0 : 0 : 0) 2 P4 is the singular point of Q.

Until the rest of the proof, let ↵,� 2 P1 \ {(0 : 1), (1 : 0)}. We then identify ↵ := (↵0 : ↵1)
and � := (�0 : �1) with

a↵ :=
↵1

↵0
and b� :=

�1
�0

2 C \ {0}, (4.3)

respectively.

In coordinates, the lines in the rulings {l1,↵}↵2P1 and {l2,�}�2P1 are given by

l1,↵ =�({↵} ⇥ P1) : y � a↵w = z � a↵x = 0✓P3

l2,� =�(P1 ⇥ {�}) : z � b�y = x � b�w = 0✓P3.

Hence,

⇧1,↵ = plane spanned by l1,↵ and p in P4: y � a↵w = z � a↵x = 0✓P4

⇧2,� = plane spanned by l2,� and p in P4: z � b�y = x � b�w = 0✓P4.

There are a1, . . . , a4 2 C and homogeneous complex polynomials f2(w, x, y, z) and f3(w, x, y, z)
in w, x, y, z of degree 2 and 3, respectively, such that the cubic Y ✓ P4 has the form

Y : v2(a1w + a2x + a3y + a4z) + vf2(w, x, y, z) + f3(w, x, y, z) = 0 ✓ P4.

Indeed, Y contains the vertex p = (1 : 0 : 0 : 0 : 0) of Q. Therefore, the polynomial
defining Y has no summand v3.

The cubic Y is smooth in p since Y and Q have by assumption no common singularities.
Hence, at least one of the coefficients a1, . . . , a4 is non-zero and we will assume in the
following without loss of generality that

a4 6= 0.

Consequently, we have on P4

S = Q \ Y :

(

xy � zw = 0

v2(a1w + a2x + a3y + a4z) + vf2(w, x, y, z) + f3(w, x, y, z) = 0

C1,↵ = ⇧1,↵ \ Y :

(

y � a↵w = z � a↵x = 0

v2(a1w + a2x + a3y + a4z) + vf2(w, x, y, z) + f3(w, x, y, z) = 0

C2,� = ⇧2,� \ Y :

(

z � b�y = x � b�w = 0

v2(a1w + a2x + a3y + a4z) + vf2(w, x, y, z) + f3(w, x, y, z) = 0.
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Let ⇡(1) : P4 ⇥ P3 ◆ (P4)(1) ! P4 be the blowing-up of P4 in p and (w1 : x1 : y1 : z1)
homogeneous coordinates on P3.

On the affine chart P4 ⇥ A3 ✓ P4 ⇥ P3 defined by w1 6= 0, we have

(P4)(1) = {�(v : w : x : y : z), (1, x1, y1, z1)
� 2 P4 ⇥ A3; x = x1w, y = y1w, z = z1w}.

We compute the strict transforms S(1), C(1)
1,↵, and C(1)

2,� of S, C1,↵, and C2,� , respectively,
in (P4)(1):

S(1) :

(

z1 = x1y1

v2(a1 + a2x1 + a3y1 + a4z1) + vwf2(1, x1, y1, z1) + w2f3(1, x1, y1, z1) = 0

with exceptional divisor E(1)
S ✓ S(1)

E(1)
S : w = x = y = z = 0, z1 = x1y1, v2

�a1
a4

+
a2
a4

x1 +
a3
a4

y1 + x1y1
�

= 0

C(1)
1,↵ :

(

y1 � a↵ = z1 � a↵x1 = 0

v2(a1 + a2x1 + a3y1 + a4z1) + vwf2(1, x1, y1, z1) + w2f3(1, x1, y1, z1) = 0

C(1)
2,� :

(

z1 � b�y1 = x1 � b� = 0

v2(a1 + a2x1 + a3y1 + a4z1) + vwf2(1, x1, y1, z1) + w2f3(1, x1, y1, z1) = 0.

A point
�

(v : w : x : y : z), (1, x1, y1, z1)
� 2 P4 ⇥ A3 is contained in C(1)

1,↵ \ C(1)
2,� \ E(1)

S if
and only if

8

>

<

>

:

w = x = y = z = 0

x1 = b� , y1 = a↵, z1 = a↵b�
v2
�

a1
a4

+ a2
a4

b� + a3
a4

a↵ + a↵b�
�

= 0.

A direct computation of the blowing-ups of S, C1,↵, and C2,� on the other charts of P3

as above shows that all points of C(1)
1,↵ \ C(1)

2,� \ E(1)
S are contained in the chart w1 6= 0 as

a↵, b� 6= 0.

Hence, with the definitions in (4.3)

I3 \ �{(1 : 0), (0 : 1)}2� =
��

(↵0 : ↵1), (�0 : �1)
� 2 �

P1 \ {(1 : 0), (0 : 1)}�2;
a1
a4

+
a2
a4

b� +
a3
a4

a↵ + a↵b� = 0
 

and this is a proper closed subset of P1 ⇥ P1.

In conclusion, P1 ⇥ P1 \ �I1 [ I2 [ I3 [ {(1 : 0), (0 : 1)}2� is a non-empty open subset of
P1 ⇥ P1 and for each (↵,�) 2 P1 ⇥ P1 \ �I1 [ I2 [ I3 [ {(1 : 0), (0 : 1)}2� the curves C1,↵

and C2,� satisfy conditions (1)-(3).

This finalizes the proof if p is of type A1.

Claim 4.3.5. The exceptional divisor E(1)
S is reducible if and only if a2

a4
· a3
a4

= a1
a4

.

Proof. Assume that E(1)
S is reducible, i.e. a1

a4
+ a2

a4
x1 + a3

a4
y1 + x1y1 = 0 ✓ A2 is reducible.

We homogenize the equation by w1 and obtain the projective quadric

q :
a1
a4

w2
1 +

a2
a4

x1w1 +
a3
a4

y1w1 + x1y1 = 0 ✓ P2.
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Then, q ✓ P2 is reducible if and only if the discriminant Disc(q) of q is zero. We have

Disc(q) =

�

�

�

�

�

�

a1
2a4

a2
2a4

a3
2a4

a2
2a4

0 1
2

a3
2a4

1
2 0

�

�

�

�

�

�

=
1

4
(
a2
a4

· a3
a4

� a1
a4

).

Hence, q ✓ P2 is reducible if and only if a2
a4

· a3
a4

� a1
a4

= 0.

Then, assume that p is of type An�2. We claim that condition (4) holds, as well. Indeed,
if p is of type An�2, the exceptional divisor E(1)

S is reducible. Therefore, we have by
Claim 4.3.5: a1

a4
= a2

a4
· a3
a4

. Hence,

E(1)
S : w =

a1
a4

+
a2
a4

x1 +
a3
a4

y1 + x1y1 = (
a3
a4

+ x1)(
a2
a4

+ y1) = 0.

Let
E(1)

1 : w =
a3
a4

+ x1 = 0 and E(1)
n�2 : w =

a2
a4

+ y1 = 0.

For (↵,�) /2 I3 [ {(1 : 0), (0 : 1)}2, we have
a1
a4

+
a2
a4

b� +
a3
a4

a↵ + a↵b� = (
a2
a4

+ a↵)(
a3
a4

+ b�) 6= 0.

Hence, a↵ 6= �a2
a4

and b� 6= �a3
a4

. We see that C(1)
1,↵ intersects E(1)

1 in
�

(v : w : x : y : z), (1 : x1 : y1 : z1)
�

=
�

(1 : 0 : 0 : 0 : 0), (1 : �a3
a4

: a↵ : �a3
a4

a↵)
�

but not E(1)
n�2 as we have y1 = �a2

a4
on E(1)

n�2 but y1 = a↵ on C(1)
1,↵ and �a2

a4
6= a↵. On the

other hand, C(1)
2,� intersects E(1)

n�2 in

�

(v : w : x : y : z), (1 : x1 : y1 : z1)
�

=
�

(1 : 0 : 0 : 0 : 0), (1 : b� : �a2
a4

: �a2
a4

b�)
�

but not E(1)
1 since we have x1 = �a3

a4
on E(1)

1 but x1 = b� on C(1)
2,� and �a3

a4
6= b� . Further,

E(1)
n�2 \ E(1)

1 : w = 0, x1 = �a3
a4

, y1 = �a2
a4

is contained in neither C(1)
1,↵ nor C(1)

2,� .

This finalizes the proof of Lemma 4.3.4.

4.3.2 Q has corank 2 in P4

Let Q ✓ P4 be a quadric of corank 2 in P4. More precisely, let Q be the cone through
its singular line l := Sing(Q) over a smooth quadric Q0 in P2. Let Y ✓ P4 be a cubic
such that S := Q \ Y is a complete (2, 3)-intersection in P4 having at most isolated ADE
singularities. By Lemma 4.3.2, this implies that Q and Y have no common singularities.

Let {⇧t}t2P1 be the pencils of planes on Q defined in Subsection 4.1.2.3.

For t 2 P1 we define the plane cubic curves on S

Ct := ⇧t \ Y ✓ S

and obtain a pencils of plane cubic curves {Ct}t2P1 on S.
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Lemma 4.3.6. Let t 2 P4 be a smooth point of Q and TtQ the projective tangent space on
Q at t. Then, 2Ct is the divisor on S supported on Ct = TtQ \ S.

Proof. TtQ\Q is a quadric of corank 3 in P3, i.e. a double plane containing t which must be
⇧t by Lemma 4.1.5 since ⇧t contains t. The plane ⇧t is not contained in Y since S contained
otherwise a plane and hence the smooth minimal model eS for S was rational which is absurd
since eS is a K3 surface by Lemma 4.2.2. Consequently, Ct := ⇧t \ S = TtQ \ S. Let m be
the positive integer such that mCt = TtQ \ S as divisors on S. The curve TtQ \ S in P4

has degree 6. Since Ct has degree 3, we must have m = 2.

Lemma 4.3.7. We can choose t 2 Q0 such that the following two conditions are satisfied.

1. Ct contains no singularity of S that is not lying on the singular line l of Q.

2. Ct is smooth in all points p 2 Y \ l.

Proof. Indeed, the set

I1 := {t 2 Q0; Ct contains a singularity of S outside of l}

is finite since S has only isolated singularities. Further, the set

I2 := {t 2 Q0; Ct is singular in some p 2 Y \ l}

is finite. Indeed, we have
[

t2Q0

⇧t = Q.

Hence, by Lemma 4.3.1 the general curve Ct is smooth in p 2 Y \ l. Hence, only finitely
many curves Ct are singular in p 2 Y \ l, i.e. I2 is finite.

In conclusion, there exists t 2 Q0 \ (I1 [ I2).

4.4 Possible ADE singularities of a complete
(2, 3)-intersection on the singular locus of the underlying
quadric

Let S be the complete (2, 3)-intersection of a quadric Q and a cubic Y in P4. Assume that
S has only isolated ADE singularities. By Lemma 4.3.2, this implies that Q and Y have
no common singularities.

We will discuss in this section which combinations of ADE singularities of S can lie on the
singular locus Sing(Q) of Q.

4.4.1 Q has corank 1 in P4

Let S be the complete (2, 3)-intersection of a quadric Q of corank 1 in P4 with vertex p
and Y a cubic in P4.
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Lemma 4.4.1. Assume that the vertex p of Q is contained in S. Then, p is a singularity
of type An�1 on S.

Proof. Let (v : w : x : y : z) be homogeneous coordinates on P4. Since two projective
quadrics of the same rank are isomorphic, we can assume that Q : wx + yz = 0, i.e.
p = (1 : 0 : 0 : 0 : 0) 2 P4. Since Q and Y have by assumption no common singularities, Y
is smooth in p. Then, the projective tangent space TpY of Y at p is a hyperplane in P4.
Since p 2 TpY , we have TpY : ↵w + �x + �y + ✏z = 0 for ↵,�, �, ✏ 2 C. One of ↵,�, �, ✏ is
not equal to zero. Assume without loss of generality that ↵ 6= 0. Now consider the chart
C3 of P4 given by v 6= 0. There exists an analytic coordinate transformation � of C4 such
that TpY = �(Y ) locally around p. Further, �(Q) : wx + yz + f(w, x, y, z) = 0, where f is
a power series in w, x, y, z with monomials of degree � 3. Then, Q \ Y is locally around p
given by TpY \ �(Q) : yz � �

↵x2 � �
↵xy � ✏

↵xz + f(�↵x � �
↵y � ✏

↵z, x, y, z) = 0 ✓ C3 which
describes by the classification of ADE singularities (see [GLS07, Chap. I, Theorem 2.48]) a
singularity of type An�1 in the origin since the corank of the Hessian matrix of the defining
power series is 0 or 1 in C3.

4.4.2 Q has corank 2 in P4

Let S be the complete (2, 3)-intersection of a quadric Q of corank 2 in P4 and Y a cubic
in P4. Let l be the singular line of Q. Since Q and Y have by assumption no common
singularities, l is not contained in Y . Let {⇧t}t2P1 be the pencil of planes in Q defined
in 4.1.2.3 and {Ct := ⇧t \ Y }t2P1 the induced pencil of plane cubic curves on S.

Recall the definition of the intersection multiplicity of closed subschemes at a point on a
smooth surface in [Ful98, Chap. 8.2].

We show in the next lemma that all plane cubic curves Ct in {Ct}t2P1 intersect the singular
line l of Q in the same points with the same multiplicities.

Lemma 4.4.2. For each t 2 P1, we have l \ Ct = l \ Y = Sing(S). Moreover, the
intersection multiplicities l.Ct on the planes ⇧t are independent of t 2 P1.

Proof. Let Ct, Ct0 2 {Ct}t2P1 . By definition Ct = ⇧t \ Y and Ct0 = ⇧t0 \ Y . Since l is
contained in both ⇧t and ⇧t0 , we have Ct \ l = ⇧t \ Y \ l = Y \ l = ⇧t0 \ Y \ l = Ct0 \ l.
Further, for p 2 Ct \ l = Ct0 \ l, the intersection multiplicities (Ct.l)p = (⇧t \ Y.l)p and
(Ct0 .l)p = (⇧t0 \ Y.l)p on ⇧t and ⇧t0 , respectively, are well-defined. By Lemma A.0.1, we
have (⇧t \ Y.l)p = (⇧t0 \ Y.l)p. Therefore, (Ct.l)p = (Ct0 .l)p. Further, since all points on l
are singularities of Q, those points on l contained in Y are singularities of S.

Lemma 4.4.3. Let Ct in {Ct}t2P1 be a curve on the plane ⇧t and p 2 Ct \ l such that on
⇧t we have (Ct.l)p = 1. Then, S has a singularity of type A1 in p.

Proof. We claim firstly that l * TpY . Assume conversely that l ✓ TpY . Since p 2 l and
since l is contained in all planes in {⇧t}t2P1 whose union is the quadric Q, the line l then
is contained in the tangent space of one of the curves Ct = ⇧t \Y , i.e. l ✓ TpCt. However,
by Lemma 4.4.2, we have (Ct.l)p = 1 which contradicts l ✓ TpCt. Hence, l * TpY .

The intersection TpY \ Q is a quadric in P3. Since l is not contained in TpY , the quadric
TpY \ Q is only singular at p. Hence, TpY \ Q is a quadric of corank 1 in P3 with
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vertex p. The analytic type of p on TpY \ Q is hence type A1, i.e. the singularity p has
type A1. Since Y is smooth in p, for an appropriate analytic coordinate change � in a
small neighborhood around p, we have TpY = �(Y ). Applying this coordinate change to
S = Y \ Q, we obtain that Y \ Q is in a small neighborhood around p via � isomorphic to
TpY \ �(Q). As in the proof of Lemma 4.4.1, we show that TpY \ �(Q) is the zero locus
of a power series in P3 whose quadratic terms are given by Q and all other terms are of
higher order. Consequently, TpY \ �(Q) has type A1 in p.

Let C 2 {Ct}t2P1 be contained in the plane ⇧ 2 {⇧t}t2P1 . Since C and l are contained in
the plane ⇧, we can apply Bezout’s Theorem and obtain

C.l =
X

p2C\l
(C.l)p = 3. (4.4)

We now establish how often we need to blow-up S over the singularities of S on l such that
the strict transform of C under these blowing-ups does not contain any of the singularities
on the exceptional divisor in the last blowing-up step. We fix some notation to which we
will also refer in a subsequent chapter:

Notation 4.4.4. Let p 2 C \ l. By (4.4), we have m := (C.l)p  3.

(P4)(0) := P4, S(0) := S, C(0) := C, l(0) := l, p(0) := p

and for i = 1, . . . , m let iteratively

⇡(i) : (P4)(i) ! (P4)(i�1)

be the blowing-up of (P4)(i�1) in p(i�1), where for i � 2, we let

p(i�1) 2 C(i�1) \ l(i�1) \ E(i�1)
P4

and E(i�1)
P4 is the exceptional divisor of ⇡(i�1) in (P4)(i�1) and S(i�1), C(i�1), and l(i�1) are

the strict transforms of S(i�2), C(i�2), and l(i�2) in (P4)(i�1), respectively.

Note that p(i�1) is uniquely determined since the blowing-up ⇡(i) is by construction an
isomorphism on C(i�1) \ (C(i�1) \E(i�1)

P4 ) and l(i�1) \ (l(i�1) \E(i�1)
P4 ) onto C \{p(i�2)} and

l \ {p(i�2)}, respectively, so C(i�1) and l(i�1) intersect E(i�1)
P4 in the same point p(i�1).

Lemma 4.4.5. The point p(i�1) 2 C(i�1) \ l(i�1) \ E(i�1)
P4 is a singularity of S(i�1) and

C(m) \ l(m) \ E(m)
P4 = ;. Further, p(m�1) is of type A1 on S(m�1).

Proof. The strict transform Q(i) of Q in (P4)(i) has singular locus l(i), hence p(i) 2 C(i) \
l(i) \ E(i)

P4 ✓ S(i) is a singular point of S(i).

Both C and l are contained in the plane ⇧ ✓ P4. For i = 1, . . . , m, let ⇧(i) be the
strict transform of ⇧ in (P4)(i). By Lemma A.0.4, we have C(1).l(1) = C.l � 1. Then,
blowing-up iteratively ⇧(i) in p(i) 2 C(i) \ l(i) \ E(i)

P4 gives C(m).l(m) = C.l � m = 3 �
m. Since the blowing-ups are isomorphisms outside their exceptional divisors and since
P

q2C\l, q 6=p(C.l)q = C.l � (C.l)p = 3 � m, it follows that C(m) \ l(m) \ E(m)
P4 = ;.

We show that p(m�1) is of type A1 on S(m�1). Indeed, we have C(m�1).l(m�1) = 3 �
(m � 1). Since

P

q2C\l; q 6=p(C.l)q = 3 � m, we must have (C(m�1).l(m�1))p(m�1) = 1. By
Lemma 4.4.3, it follows that p(m�1) is of type A1.
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Lemma 4.4.6. All possible ADE singularities of S lying on the singular line l of Q are:
3A1, A1 + Dn�2 (n � 5), A5, D6, and E7.

Proof. By Lemma 4.4.2, C and l intersect in the singular point of S lying on l.

Assume that C and l intersect in three different singularities p1, p2, and p3. By (4.4), this
implies that for i = 1, 2, 3, we have (C.l)pi = 1. By Lemma 4.4.5, this means that the
singularities pi have type A1 on S , i.e. C and l intersect in three A1 singularities.

Then, assume that C and l intersect in p1 with multiplicity one and in p2 with multiplicity
two. By Lemma 4.4.5, this means that p1 is of type A1. Further, Lemma 4.4.5 implies that
on the exceptional divisor of the blowing-up of p2 must lie an A1 singularity. According to
Table 1.1, the only ADE singularities which have an A1 singularity on the exceptional di-
visor after blow-up, are of type A3, D4, and Dn�5. In conclusion, p2 must have singularity
type Dn�3.

Finally, assume that C and l intersect in p1 with multiplicity three. Blowing-up two times
over p1, we must obtain an A1 singularity on the exceptional divisor of the second blowing-
up by Lemma 4.4.5. Again, according to Table 1.1, the only ADE singularities having an
A1 singularity on the exceptional divisor of a second blowing-up over them are of type A5,
D6, or E7. Hence, p1 is of type A5, D6, or E7.



5 Cubic hypersurfaces with isolated ADE
singularities

In this chapter, we will study cubic hypersurfaces. We will explain how to associate to a
cubic hypersurface in Pn with only isolated ADE singularities a complete (2, 3)-intersection
in Pn�1 and how the ADE singularities of the cubic hypersurface are related to the ADE
singularities of this complete (2, 3)-intersection. This will enable us to prove in the following
chapters that the existence of a cubic fourfold with a certain combination of isolated ADE
singularities is equivalent to the existence of a complete (2, 3)-intersection in P4 with certain
isolated ADE singularities.

5.1 Basic notation, definitions, and properties

Let (x0 : . . . : xn) be homogenous coordinates on Pn (n � 2).

Let X be a cubic hypersurface in Pn and assume that X is singular in p 2 X. After a
linear change of coordinates, we can assume that p = (1 : 0 : . . . : 0) 2 Pn.

Lemma 5.1.1 ([Wal, §2], [Hav16, 2.1]). In the chosen coordinates, the equation defining
X has the form

x0f2(x1, . . . , xn) + f3(x1, . . . , xn) = 0,

where f2 and f3 are homogenous polynomials of degree 2 and 3 in C[x1, . . . , xn], respectively.

We write Q and Y for the quadric and cubic in Pn�1 defined by f2 and f3, respectively, as
in Lemma 5.1.1 and refer to the form of X as the normal form of X with respect to the
chosen coordinates.

Let ⇡p : Pn 99K {x0 = 0} ⇠= Pn�1, (x0 : . . . : xn) 7! (0 : x1 : . . . : xn) be the projection
through p onto the hyperplane Pn�1 given by {x0 = 0} ✓ Pn. Let Fp ✓ X be the union of
all lines in X passing through p. Define

Sp := ⇡p
�

Fp

� ✓ Pn�1

as the image of Fp under ⇡p in Pn�1.

Lemma 5.1.2 ([CG72, Lemma 6.5], [Hav16, 2.1]). Assume that X has only isolated singu-
larities and a double point p. Then, Sp is the complete (2, 3)-intersection in Pn�1 defined
as

Sp : f2(x1, . . . , xn) = f3(x1, . . . , xn) = 0 ✓ Pn�1.

Lemma 5.1.2 shows in particular that Fp is the cone in X through p over the complete
(2, 3)-intersection Sp.
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The definition of Sp does not depend on the choice of the hyperplane H ✓ Pn with p /2 H
onto which we project Fp:

Lemma 5.1.3. The quadric Q and the complete (2, 3)-intersection Sp are uniquely deter-
mined by p and do not depend on the choice of the hyperplane H ✓ Pn with p /2 H onto
which we project Fp through p, while the cubic Y is only determined modulo Q.

Proof. Let H : x0 +
Pn

i=1 aixi = 0 ✓ Pn and

⇡Hp : Pn 99K H ⇠= Pn�1, (x0 : . . . : xn) 7! (�
n
X

i=1

aixi : x1 : . . . : xn)

be the projection of X onto H through p. Let q := (�Pn
i=1 aixi : x1 : . . . : xn) 2 Pn be

a point in H and (� � µ
Pn

i=1 aixi : µx1 : µx1 : . . . : µxn) the line connecting p and q
parametrized by (� : µ) 2 P1. This line is contained in X if and only if

0 = (�� µ
n
X

i=1

aixi)f2(µx1, . . . , µxn) + f3(µx1, . . . , µxn)

= �µ2f2(x1, . . . , xn) + µ3
�

f3(x1, . . . , xn) � (
n
X

i=1

aixi)f2(x1, . . . , xn)
�

for all choices of (� : µ) 2 P1, in particular for (0 : 1) which gives

f3(x1, . . . , xn) � (
n
X

i=1

aixi)f2(x1, . . . , xn) = 0

and for (1 : 0) which gives
f2(x1, . . . , xn) = 0.

Hence, the projection of Fp onto H is isomorphic to the zero locus

f2(x1, . . . , xn) = f3(x1, . . . , xn) � (

n
X

i=1

aixi)f2(x1, . . . , xn) = 0 ✓ Pn�1.

In conclusion, we see that Sp and the quadric on which Sp is lying are uniquely determined,
and the cubic is uniquely determined up to the quadric.

Hence, Lemma 5.1.3 shows that Sp can be defined without choosing coordinates on Pn.

5.2 ADE singularities on cubic hypersurfaces and complete
(2, 3)-intersections

We follow the notation in Section 5.1.

Assume that the cubic hypersurface X ✓ Pn has only ADE singularities, in particular p
is an ADE singularity. Let ⇡(1) : BlpX ! X be the blowing-up of X in p with exceptional
divisor E := (⇡(1))�1(p) ✓ BlpX.
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Lemma 5.2.1. E is isomorphic to the quadric Q ✓ Pn�1.

Proof. E is the projectivized tangent cone to X at p and the latter is defined as the zero
locus of f2 in {x0 = 0} ⇠= Pn�1.

We now establish that an ADE singularity of type T on Sp induces a unique singularity
with a certain singularity type on BlpX:

Proposition 5.2.2 ([Wal, §2]). Let q 2 Sp. If q is a singularity of both Q and Y , then
X is singular along the line pq connecting p and q. This means in particular that X has
non-isolated singularities. Then, assume that q is not a singularity of both Q and Y and
assume that q is of ADE type T in the locally smooth scheme Q or Y .

(i) If Q is smooth at q, the cubic hypersurface X has exactly two singularities p and p0

on the line pq and p0 has type T.

(ii) If Q is singular at q, the line pq intersects X only in p and the blowing-up BlpX has
a singularity of type T at q.

We now enhance the result in Proposition 5.2.2 and show that actually each singularity on
BlpX is induced by a singularity on Sp and determine the location of those singularities.
This establishes that the singularities of Sp are in one-to-one correspondence with the
singularities of BlpX including the singularity type.

Corollary 5.2.3. The singularities of X \{p} correspond, including their singularity type,
one-to-one to those singularities of Sp which are not contained in the singular locus of Q.
The singularities of BlpX on E correspond, including their singularity type, one-to-one to
those singularities of Sp which are contained in the singular locus of Q.

Proof. We give firstly a one-to-one correspondence between the singularities of X \{p} and
those singularities of Sp which are not lying on the singular locus of Q.

By item (i) in Proposition 5.2.2, given a singularity p0 on Sp, the cubic X has a unique
singularity q0 6= p on the line pp0.

Conversely, for an ADE singularity q := (q0 : . . . : qn) 2 X with q 6= p, the line pq must
be contained in X. Indeed, p and q are both double points of X so pq intersects X with
multiplicity 4. Since X has degree 3, this means that pq must be contained in X. We claim
that the image of pq under the projection ⇡p of Pn through p onto the hyperplane Pn�1 given
by {x0 = 0} is a singularity of Sp. In fact, the line pq is given by (��µq0 : µq1 : . . . : µqn),
where (� : µ) 2 P1. Then, ⇡p

�

(� � µq0 : µq1 : . . . : µqn)
�

= (q1 : . . . : qn). Since q is a
singularity of X, we have

0 =q0f2(q1, . . . , qn) + f3(q1, . . . , qn) (5.1)

0 =q0
@

@xi
f2(q1, . . . , qn) +

@

@xi
f3(q1, . . . , qn) for all i = 1, . . . , n (5.2)

0 =f2(q1, . . . , qn). (5.3)

Equations (5.1) and (5.3) give that (q1 : . . . : qn) 2 Sp. By equation (5.2), we have
@
@xi

f3(q1, . . . , qn) = �q0
@
@xi

f2(q1, . . . , qn) for all i = 1, . . . , n. Hence, the Jacobian matrix
of the polynomials f2 and f3 has at (q1 : . . . : qn) not full rank. Therefore, (q1 : . . . : qn) is a
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singularity of Sp. However, (q1 : . . . : qn) is not a singularity of Q. Otherwise, (q1 : . . . : qn)
would also be a singularity of Y by (5.2) and hence X would have non-isolated singularities
by Proposition 5.2.2 which is false by assumption.

The construction above establishes a one-to-one correspondence between the singularities
of X \ {p} and those singularities of Sp which are not lying on the singular locus of
Q. Moreover, by item (i) in Proposition 5.2.2, corresponding singularities have the same
singularity types.

We show by a direct computation that a singularity q of BlpX is contained in E if and
only if it naturally corresponds to a singularity of Sp lying on the singular locus of Q.

Indeed, let ⇡(1) : Pn ⇥Pn�1 ◆ (Pn)(1) ! Pn be the blowing-up of Pn in p and (y1 : . . . : yn)
homogeneous coordinates on Pn�1. Assume without loss of generality that q is contained
in the affine chart Pn ⇥ An�1 ✓ Pn ⇥ Pn�1 defined by y1 6= 0. We have

(Pn)(1) := {�(x0 : . . . : xn), (1, y2, . . . , yn)
� 2 Pn ⇥ An�1; xi = yix1 for all i = 2, . . . , n}.

The strict transform of X in (Pn)(1) is given by

BlpX : x0f2(1, y2, . . . , yn) + x1f3(1, y2, . . . , yn) = 0

and the exceptional divisor E ✓ BlpX by

E = {�(1 : 0 : . . . : 0), (1, y2, . . . , yn)
� 2 Pn ⇥ An�1; f2(1, y2, . . . , yn) = 0}.

Note that with respect to the projection pr2 : Pn ⇥ An�1 ! An�1, the exceptional divisor
E is isomorphic to Q on An�1 (this proves in particular Lemma 5.2.1 in coordinates).

Assume that we have in coordinates q =
�

(w0 : . . . : wn), (1, r2, . . . , rn)
� 2 BlpX. Since q

is a singularity of BlpX, it is a zero of all partial derivatives of the function defining BlpX
on this chart, i.e.

0 =f2(1, r2, . . . , rn) (5.4)
0 =f3(1, r2, . . . , rn) (5.5)

0 =w0 · @f2
@yi

(1, r1, . . . , rn) + w1 · @f3
@yi

(1, r1, . . . , rn) for all i = 2, . . . , n. (5.6)

Equations (5.4) and (5.5) give that the image of q under pr2 is contained in Sp.

Now assume that q is contained in E, i.e. q =
�

(1 : 0 : . . . : 0), (1, r2, . . . , rn)
�

. Equa-
tion (5.6) gives

0 = 1 · @f2
@yi

(1, r1, . . . , rn) + 0 · @f3
@yi

(1, r1, . . . , rn) =
@f2
@yi

(1, r1, . . . , rn)

for all i = 2, . . . , n. Hence, the image (1, r1, . . . , rn) of q under the projection pr2 is a
singularity of Q.

Conversely, assume that (1, r1, . . . , rn) is a singularity of Q. Then, for all i = 2, . . . , n

@f2
@yi

(1, r1, . . . , rn) = 0. (5.7)
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Furthermore, (1, r1, . . . , rn) cannot be a singularity of Y , as well, since X had other-
wise non-isolated singularities by Proposition 5.2.2. Therefore, plugging (5.7) into equa-
tion (5.6), we obtain w1 = 0. This gives wi = riw1 = 0 for all i = 1, . . . , n. Therefore,
q =

�

(1 : 0 : . . . : 0), (1, r2, . . . , rn)
�

, i.e. q 2 E (this also proves in particular partly
item (ii) in Proposition 5.2.2).

The computations are similar on the other charts of the blowing-up.

In conclusion, we see that all singularities of BlpX on E correspond to singularities of Sp on
the singular locus of Q. Furthermore, by item (ii) in Proposition 5.2.2, the corresponding
singularities have the same singularity types.

In Table 1.1, we recorded for an ADE singularity of type T on X the singularities �(T)
that occur on the exceptional divisor E.





6 Cubic fourfolds and K3 surfaces with

isolated ADE singularities

In this chapter, we prove the first Main Theorem which states that the existence of a
cubic fourfold with certain isolated ADE singularities is equivalent to both the existence of
complete (2, 3)-intersections in P4 with certain isolated ADE singularities and embeddings
of certain lattices into the K3 lattice. To prove the Main Theorem, we will firstly prove
an auxiliary technical proposition where we compute the pull-back of a certain hyperplane
section of a complete (2, 3)-intersection in P4 to the smooth minimal model of this complete
(2, 3)-intersection.

6.1 Main Theorem 1

Main Theorem 1. Let T 2 {Ai�1, Dj�4, E8�k�6} be an ADE singularity type.

For
�

(a1, . . . , an), (d4, . . . , dm), (e6, e7, e8)
� 2 Z�0

n ⇥ Z�0
m�3 ⇥ Z�0

3, let

G :=

n
X

i=1

aiAi +

m
X

j=4

djDj +

8
X

k=6

ekEk

be a formal sum of ADE singularity types and

�G :=

n
X

i=1

aiAi +

m
X

j=4

djDj +

8
X

k=6

ekEk

a Dynkin diagram with connected components Ai, Dj, and Ek.
The following are equivalent:

1. There exists a cubic fourfold X in P5 with a singularity of type T and such that all
other singularities of X correspond to G.

2. There exists a complete (2, 3)-intersection S in P4 of a quadric Q of corank(Q) =
corankT as in Table 6.1 and a cubic Y such that the singularities of S that lie on
the singular locus of Q are of type �(T) as in Table 6.1 and such that all other
singularities of S correspond to G.

3. Let ��(T) be a weighted graph as in Table 6.1. Let ⇤(�G) and ⇤(��(T)) be the lattices
associated to the weighted graphs �G and ��(T). Let hT 2 ⇤(��(T)) be the sum of the
vertices of ��(T) as in Table 6.1. There exists an embedding

i : ⇤(��(T)) � ⇤(�G) ,! LK3

such that the following conditions a), b), and c) hold:
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a) If x 2 SatLK3(i) with i(hT).x = 0 and x2 = �2, then x 2 i
�

⇤(��(T)) � ⇤(�G)
�

.

b) There exists no element x 2 SatLK3(i) with i(hT).x = 1 and x2 = 0.

c) There exists no element x 2 SatLK3(i) with i(hT).x = 2 and x2 = 0.

Remark 6.1.1. By Lemmas 4.4.1 and 4.4.6, we consider in 2. all types of singularities that a
complete (2, 3)-intersection in P4 can possibly have on the singular locus of the underlying
quadric.

6.2 Proof of Main Theorem 1

To prove Main Theorem 1, we show the following auxiliary proposition:

Proposition 6.2.1. Let T 2 {Ai�1,Dj�4,E8�k�6} be an ADE singularity type and
corankT and �(T) as in Table 6.1.

Let S be a complete (2, 3)-intersection of a quadric Q of corank(Q) = corankT and a cubic
Y in P4 such that S has only isolated ADE singularities. Assume that all singularities
of S lying on Sing(Q) are of type �(T). Let ⇡ : eS ! S be the minimal resolution of all
singularities of S.

Then, there exists a hyperplane section CT of S such that hT := ⇡⇤(CT) 2 Div(eS) is the
formal sum of curves on eS as in Table 6.1 and the associated weighted graph to these curves
is ��(T) in Table 6.1.

6.3 An auxiliary step in the proof of Main Theorem 1

As outlined in Chapter 4.1, a projective quadric is up to isomorphism uniquely determined
by its rank. Hence, we prove Proposition 6.2.1 for all possible coranks of the quadric Q in
P4 individually.

6.3.1 The quadric Q has corank 0 in P4

Proposition 6.3.1. Let S be a complete (2, 3)-intersection of a quadric Q of corank(Q) =
0 and a cubic Y in P4 such that S has only isolated ADE singularities. Let ⇡ : eS ! S be
the minimal resolution of all singularities on S.

Then, there exists a hyperplane section CA1 of S such that hA1
:= ⇡⇤(CA1) 2 Div(eS) is

an irreducible curve on eS.

Proof. Since S has only isolated ADE singularities, Bertini’s Theorem [Har77, Chap. II, The-
orem 8.18, Remark 8.18.1] implies that for a general hyperplane H in P4 the curve

C := H \ S ✓ S

is irreducible, smooth, and contains none of the singularities of S. Therefore, we have

⇡⇤C = eC 2 Div(eS),
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where eC is the strict transform of C in eS under the minimal resolution ⇡ of all singularities
on S. Further, eC is irreducible since C is irreducible. In conclusion, hA1

:= ⇡⇤(C) is an
irreducible curve on eS.

Remark 6.3.2. In the proof of Proposition 6.3.1, we actually did not use the assumption
that the quadric Q in which the complete (2, 3)-intersection is contained is of corank(Q) = 0
in P4.

6.3.2 The quadric Q has corank 1 in P4

6.3.2.1 General setting and notation

We fix some notation which we will need in the following.

Let S be a complete (2, 3)-intersection of a quadric Q and a cubic Y in P4 with the property
that S has only isolated ADE singularities. By Lemma 4.3.2, this implies that Q and Y
have no common singularities. In particular, the results in Sections 4.3 and 4.4 hold for
this choice of S.

Assume that the quadric Q has corank 1 in P4. We then recall from Subsections 4.1.1, 4.1.2,
and 4.3.1: By Lemma 4.1.1, Q is the cone through p over a smooth quadric Q0 in P3 and
p is the only singular point of Q. By Lemma 4.1.2, there are two rulings {l1,↵}↵2P1 and
{l2,�}�2P1 on Q0 such that through every point in Q0 passes exactly one line from each of
the rulings. For ↵,� 2 P1, let

⇧1,↵ := plane spanned by p and l1,↵ ✓ P4

⇧2,� := plane spanned by p and l2,� ✓ P4.

Both ⇧1,↵ and ⇧2,� are then contained in the quadric Q ✓ P4 such that we obtain two
pencils of planes {⇧1,↵}↵2P1 and {⇧2,�}�2P1 on Q. Let

C1,↵ := ⇧1,↵ \ Y ✓ S and C2,� := ⇧2,� \ Y ✓ S

be the cubic curves on S lying on the planes ⇧1,↵ and ⇧2,� , respectively. We then have
the pencils {C1,↵}↵2P1 and {C2,�}�2P1 on S.

For ↵s, �s 2 P1 such that conditions (1)-(4) in Lemma 4.3.4 are satisfied, write

⇧1 := ⇧1,↵s , ⇧2 := ⇧2,↵s , l := l↵s,�s

C1 := C1,↵s , C2 := C2,�s .
(6.1)

Let ⇡ : eS ! S the minimal resolution of all singularities on S and fC1 and fC2 the strict
transforms in eS under ⇡ of C1 and C2, respectively.

Lemma 6.3.3. We have fC1
2

= fC2
2

= 0.

Proof. Let i = 1, 2.

We compute the arithmetic genus pa(Ci) of Ci. By definition, we have

pa(Ci) = 1 � �(Ci, OCi),
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where �(Ci, OCi) is the Euler characteristic of Ci. Since dim H0(Ci, OCi) = 1, we obtain

pa(Ci) = dim H1(Ci, OCi).

We claim that we have dim H1(Ci, OCi) = 1. Indeed, the short exact sequence

0 ! OP2(�3) ! OP2 ! OCi ! 0

induces the long exact sequence on cohomology

· · · ! H1(P2, OP2)
| {z }

=0

! H1(Ci, OCi) ! H2
�

P2, OP2(�3)
� ! H2(P2, OP2)

| {z }

=0

! · · · .

Consequently, H1(Ci, OCi)
⇠= H2

�

P2, OP2(�3)
�

. Since dim H2
�

P2, OP2(�3)
�

= 1, we ob-
tain pa(Ci) = dim H1(Ci, OCi) = 1.

By Lemma 4.3.4, Ci is smooth in p and contains no singularities of S different from p.
Hence, fCi

⇠= Ci so pa(Ci) = pa(fCi). We get

pa(fCi) = 1. (6.2)

On the other hand, by the adjunction formula, we have

pa(fCi) = 1 +
1

2
deg

⇣

�

!eS ⌦OeS
OeS(fCi)

�

|fCi

⌘

.

Since eS is a K3 surface, the canonical bundle !eS is trivial. Hence,

pa(fCi) = 1 +
1

2
deg

�OeS(fCi)|fCi

�

= 1 +
1

2
fCi

2
,

so
fCi

2
= 2pa(fCi) � 2 = 0.

We conclude from (6.2) that fCi
2

= 0.

In the following subsections, we compute the pull-back ⇡⇤(C1 + C2) 2 Div(eS) explicitly.

6.3.2.2 Assumption: T = A2 (thus �(T) = ;)

We prove Proposition 6.2.1 in case corank(Q) = 1, T = A2, and thus �(A2) = ;:

Proposition 6.3.4. Let S be the complete (2, 3)-intersection of a quadric Q and a cubic
Y in P4 such that S has only isolated ADE singularities and let ⇡ : eS ! S be the minimal
resolution of all singularities on S.

Assume that Q has corank 1 in P4 and the singular point p of Q is not contained in S.

Let C1 and C2 be the plane cubic curves on S and fC1 and fC2 the strict transforms of C1

and C2 under ⇡ in eS as in (6.1).

Then, for the hyperplane section C1 + C2 of S, we have hA2
:= ⇡⇤(C1 + C2) = fC1 + fC2 2

Div(eS). The lattice in Div(eS) with basis fC1, fC2 has the intersection matrix:

fC1
fC2

✓ ◆

fC1 0 3
fC2 3 0

(6.3)
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Proof. We proved in Lemma 4.3.3 that the divisor C1 + C2 on S is a hyperplane section
of S. The curves C1 and C2 satisfy condition (2) in Lemma 4.3.4 by their choice in (6.1).
Since the singular locus of Q is not contained in Y , this means that C1 and C2 are contained
in the smooth locus S� of S. Hence, the total transforms of C1 and C2 in eS under the
minimal resolution ⇡ coincide with the strict transforms fC1 and fC2 under ⇡. Consequently,

⇡⇤(C1 + C2) = fC1 + fC2.

By Lemma 6.3.3, we have
fC1

2
= fC2

2
= 0. (6.4)

Again, since C1 and C2 are both contained in S�, they are isomorphic to fC1 and fC2 via ⇡.
Hence,

fC1.fC2 = C1.C2. (6.5)

Since C2 = Y \ ⇧2 = S� \ ⇧2, we have

C1.C2 = C1.(S
� \ ⇧2). (6.6)

Since C1 is contained in both S� and ⇧1, Lemma A.0.1 implies

C1.(S
� \ ⇧2) = C1.(⇧1 \ ⇧2). (6.7)

The line l := ⇧1 \ ⇧2 intersects the cubic C1 on the plane ⇧1 in three points by Bezout’s
Theorem. Hence,

C1.(⇧1 \ ⇧2) = C1.l = 3. (6.8)

Equations (6.5)-(6.8) together give
fC1.fC2 = 3. (6.9)

In conclusion, the lattice with basis fC1 and fC2 has by (6.4) and (6.9) the intersection
matrix (6.3) with respect to this basis.

6.3.2.3 Assumption: T = An for n � 3 (thus �(T) = An�2)

We prove Proposition 6.2.1 in case corank(Q) = 1, for n � 3, T = An, and thus �(An) =
An�2:

Proposition 6.3.5. Let S be the complete (2, 3)-intersection of a quadric Q and a cubic
Y in P4 such that S has only isolated ADE singularities and let ⇡ : eS ! S be the minimal
resolution of all singularities on S.

Assume that Q has corank 1 in P4 and the singular point p of Q is contained in S.

Let C1 and C2 be the plane cubic curves on S and fC1 and fC2 the strict transforms of C1

and C2, respectively, under ⇡ in eS.

Then, for the hyperplane section C1 + C2 of S, we have hAn := ⇡⇤(C1 + C2) = fC1 + fC2 +
E1 + . . . + En�2 2 Div(eS), where E1, . . . , En�2 are (�2)-curves on eS.

The lattice in Div(eS) with basis fC1, fC2, E1 . . . , En�2 has the intersection matrix:
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0 2 1 0 0 0

2 0 0 0 0 1

1 0 �2 1

0 0 1

0 0 1

0 1 1 �2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

fC1 fC2 E1 E2 En�3 En�2

fC1
fC2

E1

E2

En�3

En�2

An�2

(6.10)

Proof. We proved in Lemma 4.3.3 that the divisor C1 + C2 on S is a hyperplane section
of S.

By Lemma 6.3.3, we have
fC1

2
= fC2

2
= 0. (6.11)

Let ⇡(1) : (P4)(1) := BlpP4 ! P4 be the blowing-up of P4 in p. Let

S(1), Y (1), ⇧
(1)
i , l(1), and C(1)

i = ⇧
(1)
i \ Y (1) (i = 1, 2)

be the strict transforms of S, Y , ⇧i, l := ⇧1\⇧2, and Ci, respectively under ⇡(1) in (P4)(1).

We recall that C1 and C2 satisfy condition (2) in Lemma 4.3.4 by their choice in (6.1).
Hence,

C(1)
1 and C(1)

2 are contained in the smooth locus (S(1))� of S(1). (6.12)

By (6.12), C(1)
1 and C(1)

2 are isomorphic to the strict transforms fC1 and fC2 of C1 and C2,
respectively under ⇡ in eS. Hence,

fC1.fC2 = C(1)
1 .C(1)

2 . (6.13)

Further, we have C(1)
2 = (S(1))� \ ⇧

(1)
2 . Since C(1)

1 is contained in both (S(1))� and ⇧
(1)
1 ,

Lemma A.0.1 gives

C(1)
1 .C(1)

2 = C(1)
1 .

�

(S(1))� \ ⇧
(1)
2

�

= C(1)
1 .(⇧(1)

2 \ ⇧
(1)
1 ) = C(1)

1 .l(1). (6.14)

Consequently, by Lemma A.0.3

C(1)
1 .l(1) = C1.l � 1. (6.15)

Since C1 and l1 lie on the plane ⇧1, we can apply Bezout’s Theorem and obtain

C1.l � 1 = 3 � 1 = 2. (6.16)
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Equations (6.13)-(6.16) together give

fC1.fC2 = 2. (6.17)

Again, by the choice of the curves C1 and C2, the An�2 singularity p is the only singularity
of S which is contained in C1 and C2. Hence, the divisor ⇡⇤(C1 +C2) on eS is supported on
the union of fC1, fC2, and the strict transforms E1, . . . , En�2 in eS of the exceptional curves
of the minimal resolution of p. Hence, the weighted graph with vertices E1, . . . , En�2 is the
Dynkin diagram of type An�2 and we chose the notation such that it is given by Figure 6.1.

E1 E2 En�3 En�2

Figure 6.1: Dynkin diagram corresponding to the An�2 singularity p.

We compute the intersection numbers of fC1 and fC2 with E1, . . . , En�2. Let

E(1)
P4 ✓ (P4)(1), E(1)

S := E(1)
P4 \ S(1) ✓ S(1), and E(1)

⇧i
:= E(1)

P4 \ ⇧
(1)
i ✓ ⇧

(1)
i (i = 1, 2)

be the exceptional divisors of the blowing-up of P4, S, and ⇧i in p, respectively.

By (6.12) and since (S(1))� is isomorphic to its strict transform (̂S(1))� in eS, Lemma A.0.2
gives

fCi.
g

E(1)
S = (fCi| ^(S(1))�

).(
g

E(1)
S | ^(S(1))�

). (6.18)

Again, by (6.12),
fCi

⇠= C(1)
i .

Hence,

(fCi| ^(S(1))�
).(

g

E(1)
S | ^(S(1))�

) = C(1)
i .(E(1)

S |(S(1))�). (6.19)

We have E(1)
S |(S(1))� = E(1)

P4 \ (S(1))�. Moreover, C(1)
i is contained in both (S(1))� and ⇧

(1)
i .

Hence, by Lemma A.0.1
C(1)
i .(E(1)

S |(S(1))�) = C(1)
i .E(1)

⇧i
. (6.20)

By Lemma A.0.3, we have
C(1)
i .E(1)

⇧i
= 1. (6.21)

Putting together equations (6.18)–(6.21), we obtain

fCi.
g

E(1)
S = 1. (6.22)

If p is an A3�2 = A1 singularity, gE(1)
S is irreducible. We write E1 :=

g

E(1)
S and therefore

fC1.E1 = fC2.E1 = 1. (6.23)
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If p is an An�2 (n � 4) singularity, we have E(1)
S = E(1)

1 [E(1)
n�2, where the strict transforms

g

E(1)
1 and ]

E(1)
n�2 of E(1)

1 and E(1)
n�2, respectively, in the minimal model eS are two irreducible

(�2)-curves. By choice, C1 and C2 satisfy condition (4) in Lemma 4.3.4 (after exchanging
g

E(1)
1 by ]

E(1)
n�2 if necessary). Therefore,

fC1.
g

E(1)
1 = fC2.

]
E(1)

n�2 = 1 and fC1.
]
E(1)

n�2 = fC2.
g

E(1)
1 = 0.

Studying the resolution of an An�2 singularity, we see that after possibly exchanging E1

by E2, we have E1 =
g

E(1)
1 and En�2 =

]
E(1)

n�2 in Figure 6.1.

Hence, we obtain
fC1.E1 = fC2.En�2 = 1. (6.24)

If p is an An�2 singularity with n � 5, the exceptional divisors E(1)
1 and E(1)

n�2 intersect in
an An�4 singularity which is contained in neither C(1)

1 nor C(1)
2 again by the choice of C1

and C2 satisfying condition (4) in Lemma 4.3.4. Hence, the strict transforms fC1 and fC2

in the minimal model eS intersect no further exceptional divisors, i.e.

fC1.Ej = fC2.Ej = 0 (j = 2, . . . , n � 3). (6.25)

We have

hAn := ⇡⇤(C1 + C2) = fC1 + fC2 + r1E1 + . . . + rn�2En�2 2 Div(eS),

where r1, . . . , rn�2 are positive integers. By Lemma 4.2.2, the divisor hAn has degree 6.
The divisor h := fC1 + fC2 + E1 + . . . + En�2 has degree 6, as well. Let h0 := (r1 � 1)E1 +
. . . + (rn�2 � 1)En�2. For all i = 1, . . . , n � 1, we have h.Ei = 0. Therefore,

h.h0 = 0.

This gives
6 = h2

An
= h2 + 2h.h0 + h02 = 6 + h02. (6.26)

Since h0 is contained in the negative definite lattice An�2, equation (6.26) can only hold if
the divisor h0 is trivial.

In conclusion,
h = hAn = fC1 + fC2 + E1 + . . . + En�2.

By equations (6.11), (6.17), and (6.23) if n = 3 and equations (6.11), (6.17), (6.24), (6.25),
and the intersection numbers in Figure 6.1 if n � 4, the lattice with basis fC1, fC2,
E1, . . . , En�2 has with respect to this basis the intersection matrix (6.10).

6.3.3 The quadric Q has corank 2 in P4

6.3.3.1 General setting and notation

We fix some notation which we will need in the following.
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Let S be a complete (2, 3)-intersection of a quadric Q and a cubic Y in P4 such that S
has only isolated ADE singularities. By Lemma 4.3.2, this implies that Q and Y have no
common singularities. In particular, the results in Sections 4.3 and 4.4 hold for this choice
of S.

Assume that the quadric Q has corank 2 in P4. We recall from Subsections 4.1.1, 4.1.2,
and 4.3.2: By Lemma 4.1.1, Q is the cone through a line l over a smooth quadric Q0 ⇠= P1

in P2 and l is the singular locus of Q. For t 2 Q0 ✓ Q, let

⇧t := plane spanned by t and l ✓ P4.

The planes ⇧t are contained in the quadric Q and by Lemma 4.1.5, {⇧t}t2P1 is a pencil of
planes on Q such that through any non-singular point of Q passes a unique plane in this
pencil. For t 2 P1, let

Ct := ⇧t \ Y ✓ S

be the cubic curve lying on the plane ⇧t. We then have a pencil {Ct}t2P1 on S.

For ts 2 Q0 such that conditions (1) and (2) in Lemma 4.3.7 are satisfied, write

C := Cts , ⇧ := ⇧ts . (6.27)

Let ⇡ : eS ! S the minimal resolution of all singularities on S and eC the strict transform
of C in eS under ⇡.

Lemma 6.3.6. We have eC2 = 0.

Proof. As in Lemma 6.3.3, simply replace C1 by C.

We recall the notation from Subsection 4.4.2:

Since C and l are contained in the plane ⇧, we can apply Bezout’s Theorem and obtain
C.l =

P

p2C\l(C.l)p = 3 and hence, for p 2 C \ l, we have m := (C.l)p  3.

We define successive blowing-ups of P4 over p: Let

(P4)(0) := P4, S(0) := S, C(0) := C, l(0) := l, p(0) := p

and for i = 1, . . . , m let iteratively

⇡(i) : (P4)(i) ! (P4)(i�1)

be the blowing-up of (P4)(i�1) in p(i�1), where for i � 2, we let p(i�1) be the unique point
in C(i�1) \ l(i�1) \ E(i�1)

P4 (see Section 4.4.2) and E(i�1)
P4 is the exceptional divisor of ⇡(i�1)

in (P4)(i�1) and S(i�1), C(i�1), and l(i�1) are the strict transforms of S(i�2), C(i�2), and
l(i�2) in (P4)(i�1), respectively.

Let
(P4)(3)

⇡(3)��! . . .
⇡(m+1)����! (P4)(m)

be the successive blowing-up of (P4)(m) over all points in C \ l different from p and for
i = m+1, . . . , 3, let S(i) and C(i) be the strict transforms of S and C in (P4)(i), respectively.

For i = 1, 2, 3, let E(i)
S := E(i)

P4 \ S(i) and let eC and g

E(i)
S be the strict transforms of C and

E(i)
S , respectively, in the minimal model eS under ⇡.
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Lemma 6.3.7. We have

eC.
]
E(m)

S = 1, eC.
g

E(i)
S = 0 (i < m).

Proof. Let (S(3))� be the smooth locus of S(3). Let

(̂S(3))� and g

E(i)
S

be the strict transforms of (S(3))� and E(i)
S in the minimal model eS for S.

Since C contains by choice in (6.27) no singularities of S that are not lying on l and since
C(3) \ l(3) = ;, by applying successively Lemma 4.4.5, we obtain that eC is contained in
(̂S(3))�. Hence,

eC.
g

E(i)
S = eC.

�

g

E(i)
S \ (̂S(3))�

�

(6.28)

by Lemma A.0.2 and
eC ⇠= C(3).

For 1  i  3, let E(i)
⇧ := E(i)

P4 \ ⇧(i). For 3 � j > i, we denote

E(i,j)
P4 , E(i,j)

S , and E(i,j)
⇧

the strict transforms of E(i)
P4 , E(i)

S , and E(i)
⇧ in (P4)(j), S(j), and ⇧(j), respectively. Then,

g

E(i)
S \ (̂S(3))� ⇠= E(i,3)

S \ (S(3))�.

Therefore,
eC.
�

g

E(i)
S \ (̂S(3))�

�

= C(3).
�

E(i,3)
S \ (S(3))�

�

. (6.29)

We have E(i,3)
P4 \ (S(3))� = E(i,3)

S \ (S(3))� and E(i,3)
P4 \ ⇧(3) = E(i,3)

⇧ . Besides, C(3) is
contained in both (S(3))� and ⇧(3). Hence, by Lemma A.0.1

C(3).
�

E(i,3)
S \ (S(3))�

�

= C(3).E(i,3)
⇧ . (6.30)

By Lemma A.0.3, we then have

C(3).E(m,3)
⇧ = 1 and C(3).E(i,3)

⇧ = 0 for i < m. (6.31)

In conclusion, equations (6.28)-(6.31) together give

eC.
]
E(m)

S = 1 and eC.
g

E(i)
S = 0 for i < m.

6.3.3.2 Assumption: T = D4 (thus �(T) = 3A1)

We prove Proposition 6.2.1 in case corank(Q) = 2, T = D4, and thus �(D4) = 3A1, i.e.:



44 6 Cubic fourfolds and K3 surfaces with isolated ADE singularities

Proposition 6.3.8. Let S be the complete (2, 3)-intersection of a quadric Q and a cubic
Y in P4 such that S has only isolated ADE singularities and let ⇡ : eS ! S be the minimal
resolution of all singularities on S.

Assume that Q has corank 2 in P4 and the singularities of S lying on the singular line l of
Q are of type 3A1.

Let C be the plane cubic curve on S and eC the strict transform of C under ⇡ in eS as
in (6.27).

Then, for the hyperplane section 2C of S, we have hD4
:= ⇡⇤(2C) = 2 eC + E1 + E2 +

E3 2 Div(eS), where E1, E2, E3 are (�2)-curves on eS. The lattice in Div(eS) with basis
eC, E1, E2, E3 has the intersection matrix:

0 1 1 1

1 �2 0 0

1 0 �2 0

1 0 0 �2

1

C

C

C

C

A

0

B

B

B

B

@

eC E1 E2 E3

eC
E1

E2

E3

A1 A1 A1

(6.32)

Proof. Let C be the cubic curve as in Definition 6.27. We proved in Lemma 4.3.6 that the
divisor 2C is a hyperplane section of S.

By Lemma 6.3.6, we have
eC2 = 0. (6.33)

The cubic curve C and the singular line l of Q both lie on the plane ⇧. By Bezout’s
Theorem, we have: C.l =

P

p2C\l(C.l)p = 3. Since the singularities of S lying on l are
three A1 singularities p1, p2, and p3, we deduce (C.l)pi = 1 (i = 1, 2, 3).

Since C contains no singularity of S different from p1, p2, and p3, the pull-back ⇡⇤(2C) on
eS is supported on the union of eC with the strict transforms E1, E2, and E3 in eS of the
exceptional curves of the minimal resolution of p1, p2, and p3.

For i = 1, 2, 3, let ⇡(i) : S(i) ! S(i�1) be the successive blowing-up of S(i�1) in pi with

S(0) := S and exceptional divisors E(i)
S ✓ S(i). Then, Ei =

g

E(i)
S is the strict transform of

E(i)
S in eS under the minimal resolution ⇡ of all singularities on S. Since the singularities

p1, p2, and p3 are of type A1, the Ei are irreducible curves with

E2
i = �2. (6.34)

By Lemma 6.3.7, we have
eC.Ei = 1. (6.35)

Further, since the singularities p1, p2, and p3 are isolated from each other,

Ei.Ej = 0 for i 6= j. (6.36)

We have
hD4

:= ⇡⇤(2C) = 2 eC + r1E1 + r2E2 + r2E3 2 Div(eS),



6.3 An auxiliary step in the proof of Main Theorem 1 45

where r1, r2, r3 are non-negative integers. The divisor hD4 has degree 6 by Lemma 4.2.2.
On the other hand, the divisor h := 2 eC + E1 + E2 + E3 has degree 6, as well. Let
h0 := (r1 � 1)E1 + (r2 � 1)E2 + (r3 � 1)E3. For all i = 1, 2, 3, we have h.Ei = 0. Hence,
h.h0 = 0. This gives

6 = h2
D4

= h2 + 2h.h0 + h02 = 6 + h02. (6.37)

Since h0 is contained in the negative definite lattice A1 �A1 �A1, equation (6.37) can only
hold if h0 is trivial. Consequently,

h = hD4 = 2 eC + E1 + E2 + E3

and by equations (6.33), (6.34), (6.35), and (6.36), the lattice with basis eC, E1, E2, and
E3 has with respect to this basis the intersection matrix (6.32).

6.3.3.3 Assumption: T = Dn (thus �(T) = A1 + Dn�2 (n � 5))

We prove Proposition 6.2.1 in case corank(Q) = 2, T = Dn (n � 5), and thus �(Dn) =
A1 + Dn�2 (where D3 := A3):

Proposition 6.3.9. Let S be the complete (2, 3)-intersection of a quadric Q and a cubic
Y in P4 such that S has only isolated ADE singularities and let ⇡ : eS ! S be the minimal
resolution of all singularities on S.

Assume that Q has corank 2 in P4 and the singularities of S lying on the singular line l of
Q are of type A1 + Dn�2.

Let C be the plane cubic curve on S and eC the strict transform of C under ⇡ in eS as
in (6.27).

Then, for the hyperplane section 2C of S, we have

hDn := ⇡⇤(2C) = 2 eC + E1 + 2E2 + . . . + 2En�3 + En�2 + En�1

on eS, where E1, . . . , En�1 are (�2)-curves on eS. Consequently, the lattice in Div(eS) with
basis eC, E1, . . . , En�1 has the intersection matrix:

0 1 1 0 0 0 0

1 �2 0 0 0 0 0

1 0 �2 1

0 0 1

0 0 �2 1 1

0 0 1 �2 0

0 0 1 0 �2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

eC E1 E2 E3 En�3 En�2 En�1

eC
E1

E2

E3

En�3

En�2

En�1

Dn�2A1

(6.38)



46 6 Cubic fourfolds and K3 surfaces with isolated ADE singularities

Proof. We proved in Lemma 4.3.6 that 2C is a hyperplane section of S.

By Lemma 6.3.6, we have
eC2 = 0. (6.39)

By assumption, the only singularities of S lying on the singular line l of the quadric Q are
an A1 singularity p1 and a Dn�2 singularity p2. Moreover, by choice of C in (6.27), p1
and p2 are the only singularities of S contained in C. Hence, the pull-back ⇡⇤(2C) to eS
is supported on the union of eC with the exceptional divisors ⇡�1(p1) and ⇡�1(p2) of the
minimal resolution of p1 and p2, respectively. The exceptional divisors ⇡�1(p1) 2 Div(eS)
of the A1 singularity p1 is supported on an irreducible curve E1 such that

E2
1 = �2. (6.40)

The exceptional divisor ⇡�1(p2) 2 Div(eS) of the Dn�2 singularity p2 is supported on the
union of the irreducible curves E2, . . . , En�1 in eS whose corresponding weighted graph is
a Dynkin diagram of type Dn�2 and we chose the notation such that this is the graph in
Figure 6.2.

E2 En�3
En�2

E3

En�1

Figure 6.2: Dynkin diagram corresponding to the Dn�2 singularity p2 on C.

Further, since p1 and p2 are isolated

E1.Ej = 0 for all j = 2, . . . , n � 1. (6.41)

The cubic curve C and the singular line l of Q both lie on the plane ⇧. By Bezout’s
Theorem, we have C.l =

P

p2C\l(C.l)p = 3. Since an A1 singularity is resolved after one
blowing-up, Lemma 4.4.5 implies that (C.l)p1 = 1 and hence (C.l)p2 = 2.

Let ⇡(1) : (P4)(1) ! P4 be the blowing-up of P4 in the A1 singularity p1 with exceptional
divisor E(1)

P4 and S(1) the strict transform of S in (P4)(1) under ⇡(1). Let E(1)
S := E(1)

P4 \S(1).

Let g

E(1)
S be the strict transform of E(1)

S in eS. Then, E1 =
g

E(1)
S and by Lemma 6.3.7

eC.E1 = 1. (6.42)

Let ⇡(2) : (P4)(2) ! (P4)(1) be the blowing-up of (P4)(1) in the Dn�2 singularity p2 with
exceptional divisor E(2)

P4 and C(2) and l(2) the strict transforms of C(1) and l(1) in (P4)(2)

under ⇡(2), respectively. Let p(2)2 2 C(2) \ l(2) \ E(2)
P4 and let ⇡(3) : (P4)(3) ! (P4)(2) be

the blowing-up of (P4)(2) in p(2)2 with exceptional divisor E(3)
P4 . Let S(3), C(3), and l(3)

be the strict transforms of S(2), C(2), and l(2) in (P4)(3) under ⇡(3), respectively, and let

E(3)
S := E(3)

P4 \ S(3). For i = 2, 3, let g

E(i)
S be the strict transform of E(i)

S in eS. We have by
Lemma 6.3.7

eC.
g

E(3)
S = 1 and eC.

g

E(2)
S = 0 (6.43)
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and C(3) is contained in the smooth locus of S(3). Consequently, eC intersects only the

divisor g

E(3)
S 2 Div(eS) in ⇡�1(p2). Hence, we need to determine to which of the curves Ei

in Figure 6.2 the divisor g

E(3)
S corresponds.

If n = 5, the singularity p2 has type Dn�2 = A3. Therefore, the exceptional divisor E(2)
S of

the blowing-up of p2 is the union of two irreducible curves E(2)
S,1 and E(2)

S,2 intersecting in a
singularity of type A1. This must be the singularity p(2)2 on S(2) contained in C(2) and l(2).
The exceptional divisor E(3)

S of the blowing-up of p(2)2 is irreducible and separates the strict
transforms E(2,3)

S,1 and E(2,3)
S,2 in S(3) of E(2)

S,1 and E(2)
S,2, respectively. The strict transforms

g

E(3)
S , Ê(2,3)

S,1 , and Ê(2,3)
S,2 in eS of E(3)

S , E(2,3)
S,1 , and E(2,3)

S,2 , respectively, then are the vertices of
a Dynkin diagram of type A3, see Figure 6.3 for an illustration of the blowing-up process.

E(1)
SE(2)

S
E(3)

S ⇡(1)⇡(2)⇡(3)
n = 5

A1A3A1
A3

C

Figure 6.3: Blowing-up over the A1 and A3 singularity on C.

In particular, we see that g

E(3)
S = E2, Ê(2,3)

S,1 = E3, and Ê(2,3)
S,2 = E4 in Figure 6.2 after

exchanging possibly E3 by E4. Further, gE(1)
S = E1.

If n = 6, the singularity p2 has type Dn�2 = D4. Therefore, the exceptional divisor E(2)
S

of the blowing-up of p2 is one irreducible curve on which lie three A1 singularities of S(2).
One of these must be the singularity p(2)2 contained in C(2) and l(2). The exceptional divisor
E(3)

S of the blowing-up of p(2)2 is irreducible and intersects the strict transform E(2,3)
S of

E(2)
S in S(3) on which the two A1 singularities which have not been blown-up are lying, see

Figure 6.4 for an illustration of the blowing-up process.

E(1)
S

E(3)
S

E(2)
S

⇡(2)⇡(3) ⇡(1)

n = 6
C

A1A1

A1A1

D4D4

A1

A1

Figure 6.4: Blowing-up over the A1 and D4 singularity on C.

In particular, we have g

E(3)
S = E2 and g

E(2)
S = E3 in Figure 6.2 after exchanging possibly

E2 by E4 or E5. Further, gE(1)
S = E1.

Assume finally that n � 7 and the singularity p2 has type Dn�2. Therefore, the exceptional
divisor E(2)

S of the blowing-up of p2 is one irreducible curve on which lie an A1 singularity
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and a Dn�2 singularity of S(2). One of these must be the singularity p(2)2 contained in C(2)

and l(2). By Lemma 4.4.5, (C(2).l(2))
p
(2)
2

= 1 and hence p(2)2 is of type A1.

The exceptional divisor E(3)
S of the blowing-up of p(2)2 is irreducible and intersects the strict

transform E(2,3)
S of E(2)

S in S(3) on which the Dn�4 singularity which has not been blown-up
yet is lying, see Figure 6.5 for an illustration of the blowing-up process.

E(1)
S

E(2)
S

E(3)
S ⇡(2)⇡(3) ⇡(1)

n � 7
C

A1 A1 Dn�2Dn�2

Dn�4

Dn�4

Figure 6.5: Blowing-up over the A1 and Dn�2 (n � 7) singularity on C.

In particular, gE(2)
S = E3 and g

E(3)
S = E2 as in Figure 6.2, and g

E(1)
S = E1.

In conclusion, for all n � 3, we have

eC.E1 = eC.E2 = 1, and eC.Ei = 0 for i = 3, . . . , n � 1. (6.44)

Then,

hDn�5
:= ⇡⇤(2C) = 2 eC+r1E1+r2E2+ . . .+rn�4En�4+rn�3En�3+rn�2En�2+rn�1En�1,

where r1, . . . , rn�1 are positive integers. By Lemma 4.2.2, hDn�5
has degree 6. For h =

2 eC + E1 + 2E2 + . . . + 2En�4 + 2En�3 + En�2 + En�1 2 Div(eS), we have h2 = 6. As
in (6.26), we show that h0 = (r1 � 1)E1 + (r2 � 1)E2 + . . . + (rn�4 � 1)En�4 + (rn�3 �
1)En�3 + (rn�2 � 1)En�2 + (rn�1 � 1)En�1 2 Div(eS) must be trivial since it is contained
in the negative definite lattice A1 � Dn�2. Hence,

hDn�5
= h = 2 eC + E1 + 2E2 + . . . + 2En�4 + 2En�3 + En�2 + En�1

and by equations (6.39), (6.41), (6.44), and the intersection numbers in Figure 6.2, the
lattice with basis eC, E1, E2, . . . , En�1 has with respect to this basis the intersection ma-
trix (6.38).

6.3.3.4 Assumption: T = E6,E7, or E8 (thus �(T) = A5,D6, or E7, respectively)

Then, S contains exactly one singularity p of type A5,D6, or E7 on the singular locus l
of Q. Both C and l lie in the plane ⇧. By Bezout’s Theorem, C and l intersect in p with
multiplicity three, i.e. (C.l) = (C.l)p = 3.

6.3.3.5 Assumption: T = E6 (thus �(T) = A5)

We prove Proposition 6.2.1 in case corank(Q) = 2, T = E6, and thus �(E6) = A5:
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Proposition 6.3.10. Let S be the complete (2, 3)-intersection of a quadric Q and a cubic
Y in P4 such that S has only isolated ADE singularities and let ⇡ : eS ! S be the minimal
resolution of all singularities on S.

Assume that Q has corank 2 in P4 and the singularities of S lying on the singular line l of
Q are of type A5.

Let C be the plane cubic curve on S and eC the strict transform of C under ⇡ in eS as
in (6.27).

Then, for the hyperplane section 2C of S, we have hE6
:= ⇡⇤(2C) = 2 eC + E1 + 2E2 +

3E3 + 2E4 + E5 2 Div(eS) on eS, where E1, . . . , E5 are (�2)-curves on eS. The lattice in
Div(eS) with basis eC, E1, . . . , E5 has the intersection matrix:

0 0 0 1 0 0

0 �2 1 0 0 0

0 1 �2 1 0 0

1 0 1 �2 1 0

0 0 0 1 �2 1

0 0 0 0 1 �2

1

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

@

eC E1 E2 E3 E4 E5

eC
E1

E2

E3

E4

E5

A5

(6.45)

Proof. We proved in Lemma 4.3.6 that 2C is a hyperplane section of S.

By Lemma 6.3.6, we have
eC2 = 0. (6.46)

By assumption, the only singularity of S lying on the singular line l of Q is an A5 singularity
p. Since C contains by choice no singularity of S different from p , the pull-back ⇡⇤(2C) is
supported on the union of eC, and the exceptional divisor ⇡�1(p) of the minimal resolution
of p, i.e. the union of the smooth irreducible curves E1, . . . , E5 intersecting in a Dynkin
diagram of type A5 and we chose the notation such that this is the graph in Figure 6.6.

E1 E2 E3 E4 E5

Figure 6.6: Dynkin diagram corresponding to the A5 singularity p.

We use Notation 4.4.4 for m = 3.

By Lemma 6.3.7, we have

eC.
g

E(3)
S = 1 and eC.

g

E(1)
S = eC.

g

E(2)
S = 0.

We now determine to which of the curves Ei in Figure 6.6 the divisor g

E(3)
S corresponds.

By Table 1.1 and our knowledge of the exceptional divisors of ADE singularities in Theo-
rem 1.2.1:
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1. The exceptional divisor E(1)
S of the blowing-up of S in the A5 singularity p contains

only the A3 singularity p(1) and E(1)
S is the union of two irreducible curves E(1)

S =

E(1)
1,S [ E(1)

5,S intersecting in p(1).

2. The exceptional divisor E(2)
S of the blowing-up of S(1) in the A3 singularity p(1)

contains an A1 singularity p(2) and the divisor E(2)
S is the union of two irreducible

curves E(2)
S = E(2)

2,S [ E(2)
4,S intersecting in p(2).

3. The exceptional divisor E(3)
S of the blowing-up of S(2) in the A1 singularity p(2) is

contained in the smooth locus of S(3) and the divisor E(3)
S is irreducible.

See Figure 6.7 for an illustration of the blowing-up process.

E(1)
S

E(2)
S

E(3)
S

⇡(1)⇡(2)⇡(3)

A3
A1 A5

C

Figure 6.7: Blowing-up over the A5 singularity p on C.

Hence, we see that

g

E(1)
1,S = E1,

g

E(1)
5,S = E5,

g

E(2)
2,S = E2,

g

E(2)
4,S = E4,

g

E(3)
S = E3

in Figure 6.6 up to exchanging E1 by E5 and E2 by E4 if necessary, i.e.

eC.E3 = 1 and eC.Ei = 0 (i = 1, 2, 4, 5). (6.47)

Then,
hE6

:= ⇡⇤(2C) = 2 eC + r1E1 + r2E2 + r3E3 + r4E4 + r5E5,

where r1, . . . , r5 are positive integers and h2
E6

= 6 by Lemma 4.2.2. For h := 2 eC + E1 +
2E2 +3E3 +2E4 +E5, we have h2 = 6. As in (6.26), we show that h0 = (r1 � 1)E1 + . . .+
(r5 �1)E5 2 Div(eS) must be trivial since it is contained in the negative definite lattice A5.
Hence,

hE6 = h = 2 eC + E1 + 2E2 + 3E3 + 2E4 + E5.

By equations (6.46), (6.47), and the intersection numbers in Figure 6.6, the lattice with
basis eC, E1, . . . , E5 has with respect to this basis the intersection matrix (6.45).

6.3.3.6 Assumption: T = E7 (thus �(T) = D6)

We prove Proposition 6.2.1 in case corank(Q) = 2, T = E7, and thus �(E7) = D6:

Proposition 6.3.11. Let S be the complete (2, 3)-intersection of a quadric Q and a cubic
Y in P4 such that S has only isolated ADE singularities and let ⇡ : eS ! S be the minimal
resolution of all singularities on S.
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Assume that Q has corank 2 in P4 and the singularities of S lying on the singular line l of
Q are of type D6.

Let C be the plane cubic curve on S and eC the strict transform of C under ⇡ in eS as (6.27).

Then, for the hyperplane section 2C of S, we have

hE7
:= ⇡⇤(2C) = 2 eC + E1 + 2E2 + 3E3 + 4E4 + 2E5 + 3E6

on eS, where E1, . . . , E6 are (�2)-curves on eS. The lattice in Div(eS) with basis eC, E1, . . . , E6

has the intersection matrix:

0 0 0 0 0 0 1

0 �2 1 0 0 0 0

0 1 �2 1 0 0 0

0 0 1 �2 1 0 0

0 0 0 1 �2 1 1

0 0 0 0 1 �2 0

1 0 0 0 1 0 �2

1

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

@

eC E1 E2 E3 E4 E5 E6

eC
E1

E2

E3

E4

E5

E6

D6

(6.48)

Proof. We proved in Lemma 4.3.6 that 2C is a hyperplane section of S.

By Lemma 6.3.6, we have
eC2 = 0. (6.49)

By assumption, the only singularity of S lying on the singular line l of Q is a D6 singularity
p. Since C contains by choice no singularity of S different from p , the pull-back ⇡⇤(2C) is
supported on the union of eC, and the exceptional divisor ⇡�1(p) of the minimal resolution
of p, i.e. the union of the smooth irreducible curves E1, . . . , E6 intersecting in the Dynkin
diagram of type D6 and we chose the notation such that this is the graph in Figure 6.8.

E1E2E3E4

E5

E6

Figure 6.8: Dynkin diagram corresponding to the D6 singularity p on C.

We use Notation 4.4.4 for m = 3.

By Lemma 6.3.7, we have

eC.
g

E(3)
S = 1 and eC.

g

E(1)
S = eC.

g

E(2)
S = 0.

We now determine to which curve Ei in Figure 6.8 the divisor g

E(3)
S corresponds. By

Table 1.1 and our knowledge of the exceptional divisors of ADE singularities in Theo-
rem 1.2.1:
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1. The exceptional divisor E(1)
S of the blowing-up S(1) of S in p is irreducible and

contains a D4 singularity and an A1 singularity. We claim that p(1) must be of type
D4. Indeed, if p(1) 2 C(1) \ l(1) \ E(1)

P4 was of type A1, the strict transform C(2) of
C in S(2) would be contained in the smooth locus of S(2) but by Lemma 4.4.5 this is
not the case since C(2).l(2) = 1.

2. The exceptional divisor E(2)
S of the blowing-up S(2) of S(1) in p(1) is irreducible and

contains three A1 singularities. One of these A1 singularities, say p(2), is contained
in the strict transform C(2) of C(1) in S(2) since C(2) is not contained in the smooth
locus of S(2), again by Lemma 4.4.5.

3. The exceptional divisor E(3)
S of the blowing-up S(3) of S(2) in the A1 singularity p(2)

is irreducible and smooth.

See Figure 6.9 for an illustration of the blowing-up process.

E(2)
S

E(1)
S

E(3)
S

⇡(1)⇡(2)⇡(3)

D6D4

A1

A1

A1

A1 A1

A1 A1

A1
C

Figure 6.9: Blowing-up over the D6 singularity p on C.

Hence, g

E(3)
S = E6,

g

E(2)
S = E4, and g

E(1)
S = E2 in Figure 6.8 after exchanging possibly E6

by E5 so
eC.E6 = 1 and eC.Ei = 0 (i = 1, . . . , 5). (6.50)

Then,
hE7

:= ⇡⇤(2C) = 2 eC + r1E1 + r2E2 + r3E3 + r4E4 + r5E5 + r6E6,

where r1, . . . , r6 are positive integers and h2
E7

= 6 by Lemma 4.2.2. For h := 2 eC +
E1 + 2E2 + 3E3 + 4E4 + 2E5 + 3E6, we have h2 = 6. As in (6.26), we show that h0 =
(r1 � 1)E1 + . . . + (r6 � 1)E6 2 Div(eS) must be trivial since it is contained in the negative
definite lattice D6. Hence,

hE7 = h = 2 eC + E1 + 2E2 + 3E3 + 4E4 + 2E5 + 3E6.

By equations (6.49), (6.50), and the intersection numbers in Figure 6.8, the lattice with
basis eC, E1, . . . , E6 has with respect to this basis the intersection matrix (6.48).

6.3.3.7 Assumption: T = E8 (thus �(E8) = E7)

We prove Proposition 6.2.1 in case corank(Q) = 2, T = E8, and thus �(E8) = E7:

Proposition 6.3.12. Let S be the complete (2, 3)-intersection of a quadric Q and a cubic
Y in P4 such that S has only isolated ADE singularities and let ⇡ : eS ! S be the minimal
resolution of all singularities on S.

Assume that Q has corank 2 in P4 and the singularities of S lying on the singular line l of
Q are of type E7.
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Let C be the plane cubic curve on S and eC the strict transform of C under ⇡ in eS as
in (6.27).

Then, for the hyperplane section 2C of S, we have

hE8
:= ⇡⇤(2C) = 2 eC + 3E1 + 4E2 + 5E3 + 6E4 + 4E5 + 2E6 + 3E7

on eS, where E1, . . . , E7 are (�2)-curves on eS. The lattice in Div(eS) with basis eC, E1, . . . , E7

has, with respect to this basis, the intersection matrix:

0 1 0 0 0 0 0 0

1 �2 1 0 0 0 0 0

0 1 �2 1 0 0 0 0

0 0 1 �2 1 0 0 0

0 0 0 1 �2 1 0 1

0 0 0 0 1 �2 1 0

0 0 0 0 0 1 �2 0

0 0 0 0 1 0 0 �2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

eC E1 E2 E3 E4 E5 E6 E7

eC
E1

E2

E3

E4

E5

E6

E7

E7

(6.51)

Proof. We proved in Lemma 4.3.6 that 2C is a hyperplane section of S.

By Lemma 6.3.6, we have
eC2 = 0. (6.52)

By assumption, the only singularity of S lying on the singular line l of Q is an E7 singularity
p. Since C contains by choice no singularity of S different from p , the pull-back ⇡⇤(2C) is
supported on the union of eC, and the exceptional divisor ⇡�1(p) of the minimal resolution
of p, i.e. the union of the smooth irreducible curves E1, . . . , E7 intersecting in a Dynkin
diagram of type E7 and we chose the notation such that this is the graph in Figure 6.10.

E1 E2 E5 E6E4E3

E7

Figure 6.10: Dynkin diagram corresponding to the E7 singularity p on C.

We use Notation 4.4.4 for m = 3.

By Lemma 6.3.7, we have

eC.
g

E(3)
S = 1, and eC.

g

E(1)
S = eC.

g

E(2)
S = 0.

We now determine to which of the curves Ei in Figure 6.10 the divisor g

E(3)
S corresponds.

By Table 1.1 and our knowledge of the exceptional divisors of ADE singularities in Theo-
rem 1.2.1:
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1. The exceptional divisor E(1)
S of the blowing-up S(1) of S in p is irreducible and

contains a D6 singularity p(1).

2. The exceptional divisor E(2)
S of the blowing-up S(2) of S(1) in p(1) is irreducible and

contains an A1 singularity and a D4 singularity. Since C(2).l(2) = 1, the singularity
p(2) has type A1 by Lemma 4.4.5.

3. The exceptional divisor E(3)
S of the blowing-up S(3) of S(2) in the A1 singularity p(2)

is irreducible and smooth.

See Figure 6.11 for an illustration of the blowing-up process.

E(1)
S

E(2)
S

E(3)
S

⇡(1)⇡(2)⇡(3)

D6 E7

D4
D4

A1 C

Figure 6.11: Blowing-up over the E7 singularity p on C.

Hence, E1 =
g

E(3)
S , E2 =

g

E(2)
S and E7 =

g

E(1)
S in Figure 6.10 so

eC.E1 = 1 and eC.Ei = 0 (i = 2, . . . , 7). (6.53)

Then,

hE8
:= ⇡⇤(2C) = 2 eC + r1E1 + r2E2 + r3E3 + r4E4 + r5E5 + r6E6 + r7E7,

where r1, . . . , r7 are positive integers and h2
E8

= 6 by Lemma 4.2.2. For h := 2 eC + 3E1 +
4E2 + 5E3 + 6E4 + 4E5 + 2E6 + 3E7, we have h2 = 6. As in (6.26), we show that
h0 = (r1 � 1)E1 + . . . + (r7 � 1)E7 2 Div(eS) must be trivial since it is contained in the
negative definite lattice E7. Hence,

hE8 = h = 2 eC + 3E1 + 4E2 + 5E3 + 6E4 + 4E5 + 2E6 + 3E7.

By equations (6.52), (6.53), and the intersection numbers in Figure 6.10, the lattice with
basis eC, E1, . . . , E7 has with respect to this basis the intersection matrix (6.51).

This finishes the proof of Proposition 6.2.1.
Remark 6.3.13. In the situation of Proposition 6.2.1, let hT = ⇡⇤(CT) 2 Div(eS) be the
pull-back of the hyperplane section CT of S under the minimal resolution ⇡ : eS ! S of all
singularities on S. Let Z be the fundamental cycle (see [BHPVdV04, Chap. III.3, p. 95])
which is supported on the exceptional divisor of the ADE singularities of type �(T) of S
which are contained in CT. Then, we have hT � Z.

6.4 Proof of Main Theorem 1

(1) ) (2): Let X ✓ P5 be a cubic fourfold with only isolated ADE singularities and such
that one singularity p of X has type T 2 {Ai�1, Dj�4, E8�k�6} and the combination of
all other singularities of X corresponds to G.
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Let (x0 : x1 : x2 : x3 : x4 : x5) be homogeneous coordinates on P5.

After a linear change of coordinates, we can assume that p = (1 : 0 : 0 : 0 : 0 : 0) 2 P5. By
Lemma 5.1.1, X then is defined by

X : x0f2(x1, x2, x3, x4, x5) + f3(x1, x2, x3, x4, x5) = 0 ✓ P5,

where f2 and f3 are homogenous polynomials of degree 2 and 3, respectively, defining a
quadric Q of corank(Q) = corankT and a cubic Y in P4. By Lemma 5.1.2,

Sp : f2(x1, x2, x3, x4, x5) = f3(x1, x2, x3, x4, x5) = 0 ✓ P4

is a complete (2, 3)-intersection in P4. Let ⇡p : BlpX ! X be the blowing-up of X in p
with exceptional divisor E := ⇡�1

p (p) in BlpX. Then, BlpX has on E singularities of type
�(T), where �(T) is as in Table 1.1 and the types of all singularities outside E are given
by G. Hence, by Corollary 5.2.3, Sp has singularities of type �(T) lying on the singular
locus of Q and the combination of all other singularities of Sp corresponds to G.

(2) ) (1): Let S be a complete (2, 3)-intersection of a quadric Q and a cubic Y in P4 such
that the singularities of S lying on the singular locus of Q are of type �(T), where for
T 2 {Ai�1, Dj�4, E8�k�6} we let �(T) be as in Table 6.1 and such that the combination
of all other singularities on S corresponds to G.

Let (x1 : x2 : x3 : x4 : x5) be homogeneous coordinates on P4.

Assume that Q and Y are defined by homogeneous polynomials f2 and f3 of degree 2 and
3 in C[x1, . . . , x5], respectively, i.e.

S = Q \ Y : f2(x1, x2, x3, x4, x5) = f3(x1, x2, x3, x4, x5) = 0 ✓ P4.

Let (x0 : x1 : x2 : x3 : x4 : x5) be homogeneous coordinates on P5.

We then define the cubic fourfold

X : x0f2(x1, x2, x3, x4, x5) + f3(x1, x2, x3, x4, x5) = 0 ✓ P5.

Let p := (1 : 0 : 0 : 0 : 0 : 0) 2 P5. Let ⇡p : BlpX ! X be the blowing-up of X in p with
exceptional divisor E := ⇡�1

p (p) ✓ BlpX. By Corollary 5.2.3, the singularities on BlpX \E
correspond to those singularities of S that are not lying on the singular locus of Q including
their singularity type. Hence, the combination of all singularities of X \{p} corresponds to
G. Further, again by Corollary 5.2.3, the singularities of BlpX on E correspond to those
singularities of S that lie on the singular locus of Q including their singularity type. Hence,
X has singularities of type �(T) on E and therefore p is a singularity of type T according
to Table 1.1.

(2) ) (3): Let S be a complete (2, 3)-intersection of a quadric Q and a cubic Y in P4 such
that for T 2 {Ai�1, Dj�4, E8�k�6} the singularities of S lying on the singular locus of Q
are of type �(T) as in Table 6.1 and such that the combination of all other singularities
on S corresponds to G. In particular, we see that S has only isolated ADE singularities.
Let

⇡ : eS ! S

be the minimal resolution of all singularities on S. By Lemma 4.2.2, eS is a K3 surface.
By Lemmas 4.3.4 and 4.3.7, for each choice of T there exists a hyperplane section CT
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of S passing only through the singularities of type �(T) of S on the singular locus of Q.
Further, by Proposition 6.2.1, hT := ⇡⇤(CT) 2 Div(eS) is the formal sum of curves on
eS whose associated weighted graph is the graph ��(T) in Table 6.1. Let LT be the line
bundle associated to the divisor hT on eS, i.e. LT = ⇡⇤OS(1) 2 Pic(eS). By Lemma 4.2.2,
LT is nef and the induced map 'LT : eS ! P4 is birational onto its image. The line
bundles associated to the curves on eS in Proposition 6.2.1 with associated weighted graph
��(T) generate a lattice ⇤(��(T)) in Pic(eS). The exceptional (�2)-curves on eS from the
minimal resolution of the singularities of S corresponding to G span a Dynkin diagram
�G according to Theorem 1.2.1. Let ⇤(�G) be the sublattice of Pic(eS) defined by the line
bundles associated to the exceptional (�2)-curves generating �G. Since all singularities on
S are isolated, we have an orthogonal direct sum ⇤(��(T)) � ⇤(�G) which is a sublattice
of Pic(eS). Let

� : H2(eS,Z) ! LK3

be a marking of eS. By restricting �, we obtain an embedding

i : ⇤(�G) � ⇤(��(T)) ,! LK3

and the inclusion defines a primitive embedding ◆ of the saturation of ⇤(�G) � ⇤(��(T))
in the K3 lattice with respect to i into the K3 lattice

◆ : SatLK3(i) ,! LK3.

We now show that Items (3a),(3b), and (3c) hold:

Let

� := {O(C) 2 Pic(eS); C irreducible curve in the exceptional divisor of ⇡}

and
M := free Z-module generated by � in Pic(eS).

By definition, M is a lattice isomorphic to ⇤
�

�(T )
� � ⇤(�G), where �(T ) is the Dynkin

diagram corresponding to the ADE singularities �(T). Let

R := {E 2 M ; E2 = �2}.

We have LT.E = 0 for all E 2 � and hence also for all E 2 R since � is a basis of M and
R ✓ M . Define further the root system

R0 := {E 2 Pic(eS); LT.E = 0, E2 = �2}.

We have R ✓ R0 and we claim that we even have an equality: Indeed, let

✓ : eS ! S0

be the contraction of all (�2)-curves on eS as in Definition 3.3.3. By Proposition 3.3.4, we
have S ⇠= S0, i.e. R = R0.

Let x 2 SatLK3(i) such that i(hT).x = 0 and x2 = �2. We have

F := ��1(x) 2 ��1
�

SatLK3(i)
�

= Sat
H2(eS,Z)(�

�1 � i).
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Hence, there is an integer n � 1 such that nF 2 ⇤(�G) � ⇤(��(T)). However, we have
a primitive embedding Pic(eS) ,! H2(eS,Z), i.e. H2(eS,Z)/Pic(eS) is torsion free, and
⇤(�G) � ⇤(��(T)) ✓ Pic(eS). Hence, we obtain F 2 Pic(eS). Further, LT.F = 0 and
F 2 = �2 since � is an isometry, i.e. F 2 R0 = R ✓ ⇤(�G) � ⇤(��(T)). In conclusion,
x = �(F ) 2 �

�

⇤(�G) � ⇤(��(T))
�

= i
�

⇤(�G) � ⇤(��(T))
�

, i.e. item (3a) holds.

The existence of elements x, x0 2 SatLK3(i) such that x02 = x2 = 0 and i(hT).x = 1 and
i(hT).x0 = 2 would imply the existence of line bundles E := ��1(x), E0 := ��1(x0) 2
Sat

H2(eS,Z)(�
�1 � i) such that E2 = E02 = 0 and LT.E = 1 and LT.E0 = 2, respectively. As

above, we have E, E0 2 Pic(eS). However, Proposition 3.2.6 would then imply that 'LT

does not map eS birationally onto S which is a contradiction. Consequently, items (3b)
and (3c) hold, as well.

This concludes the proof of (2) ) (3).

(3) ) (2)

This step in the proof is inspired by [Ura87, Theorem 1.15].

Let
i : ⇤(��(T)) � ⇤(�G) ,! LK3

be an embedding and SatLK3(i) the saturation of ⇤(��(T)) � ⇤(�G) in LK3 with respect
to i such that that items (3a)-(3c) hold.

We construct a period point ! 2 ⌦LK3 such that

SatLK3(i) = {x 2 LK3; !.x = 0}. (6.54)

The lattice ⇤(�G)�⇤(��(T)) has to have rank r  22 as it admits an embedding into LK3.
Therefore, we must have T 2 {A1i22,D4j22,E6k8}. Computer-aided, we determine
that the signature of ⇤(�G) � ⇤(��(T)) is (1, r � 1). Let N :=

�

⇤(�G) � ⇤(��(T))
�?
LK3

be the orthogonal complement of the lattice ⇤(�G) � ⇤(��(T)) in LK3 with respect to i.
The lattice N has signature (3 � 1, 19 � (r � 1)) = (2, 20 � r). Let t := 22 � r be the
rank of N and e1, . . . , et a basis of N such that e2t > 0. We can always find such an et
since N is indefinite if r < 20 and positive definite if r = 20. Let r1, . . . , rt�1 2 R such
that r1, . . . , rt�1, 1 are linearly independent over Q. We choose a sufficiently large positive
rational number rt such that for

v =

t
X

i=1

riei 2 N ⌦Z R

we have

v2 = (
t�1
X

i=1

riei)
2 + 2

t�1
X

i=1

rirt(ei.et) + r2t e
2
t > 0.

Let x 2 LK3. We note that

0 = x.v =

t
X

i=1

ri(x.ei) () 0 = x.ei for i = 1, . . . , t () x 2 SatLK3(i). (6.55)

The first equivalence holds since x.ei 2 Z for all i = 1, . . . , t and r1, . . . , rt�1, 1 are Q-
linearly independent, while the second equivalence holds since e1, . . . , et is a basis of N .
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Let N 0 := {x 2 N ⌦Z R; v.x = 0}. The symmetric bilinear form on the R-vector space N 0

has signature (2 � 1, t � 2) = (1, t � 2). Since N 0 is indefinite if t > 2 and positive definite
if t = 2, we can find x0

0 2 N 0 such that (x0
0)

2 > 0. For x0 :=
q

v2

(x0
0)

2 x0
0 2 N 0, we then have

x2
0 = v2 and define

! := v + ix0 2 LK3 ⌦Z C.

We have !2 = v2 + 2i(v.x0) � x2
0 = 0 and !.! = v2 + x2

0 = 2v2 > 0. Consequently, the
image [!] of ! in P(LK3⌦ZC) is contained in the period domain ⌦LK3 . We claim that with
this choice of !, equation (6.54) holds. Indeed, let x 2 SatLK3(i), then v.x = 0 by (6.55).
We have an n � 1 such that nx 2 i

�

⇤(�G) � ⇤(��(T))
�

, therefore x0.x = 1
n(x0.nx) = 0

as x0 2 N ⌦Z R. Consequently, we have !.x = (v + ix0).x = v.x + i(x0.x) = 0, i.e.
x 2 {x 2 LK3; !.x = 0}. On the other hand, assume that x 2 {x 2 LK3; !.x = 0}. Then,
0 = !.x = (v + ix0).x = v.x + i(x0.x) which only holds if v.x = x0.x = 0. Hence, we have
x 2 SatLK3(i) by (6.55).

By Theorem 3.4.2, there exists a marked K3 surface (eS,�) such that [!] is the period point
of (eS,�). Then, let ⌘ 2 H0,2(eS) such that �(⌘) = !. By Lemma 3.4.1, � induces an
isomorphism

� : Pic(eS)
⇠�! SatLK3(i). (6.56)

Let LT = ��1
�

i(hT)
� 2 Pic(eS). Then, L2

T = h2
T = 6. Since [!] = [�!] in P(LK3⌦ZC), the

marked K3 surfaces (eS,�) and (eS, ��) define the same period point in ⌦LK3 . Thus, after
replacing (eS,�) by (eS, ��) if necessary, we can assume that LT belongs to the positive
cone CeS containing the Kähler class. By Proposition 3.2.3, for a finite number of elements
F1, . . . , Fr 2 Pic(eS) with F 2

i = �2 (i = 1, . . . , r), the image (sF1 � · · · � sFr)(LT) of the line
bundle LT under the Picard-Lefschetz-reflection sF1 � · · · � sFr is nef. Since ⌘.F = 0 for
all F 2 Pic(eS) with F 2 = �2, we have ! = �(⌘) = (� � sF1 � · · · � sFr)(⌘), i.e. (eS,�) and
(eS,��sF1 � · · ·�sFr) define the same period. After replacing (eS,�) by (eS,��sF1 � · · ·�sFr),
we can assume that LT is nef. By items (3b) and (3c), LT does not satisfy items (1)
and (2) in Proposition 3.2.6, i.e. we have a birational morphism 'LT : eS ! P4 of eS onto
its image. By Theorem 3.3.2, we know that the contraction ✓ : eS ! S0 defines a surface S0

whose singularities are described by the root system

RT := {F 2 Pic(eS); F 2 = �2, LT.F = 0}.

Further, Proposition 3.3.4 gives that 'LT factors through ✓ and furthermore that 'LT(eS)
is a complete (2,3)-intersection of a quadric Q and a cubic Y in P4.

We will now show for each T individually that

S := 'LT(eS) ✓ P4

lies on a quadric Q such that S has singularities of type �(T) on the singular locus of Q
and all other singularities of S correspond to G.

Assumption: T = A1

Let eC be the vertex of the graph ��(A1) in Table 6.1 and hA1 = eC. Then, eC is a basis of
the lattice ⇤(��(A1)). By means of the isomorphism

� : Pic(eS)
⇠�! SatLK3(i),
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we may assume that eC is a divisor on eS and [ eC] is its numerical equivalence class in Pic(eS).

We have
LA1 = ��1

�

i(hA1)
�

= [ eC] 2 Pic(eS).

1. We show that the singularities of S := 'LA1
(eS) ✓ P4 correspond to G:

Let MA1 be the lattice in Pic(eS) generated by the root system

RA1
:= {F 2 Pic(eS); F 2 = �2, LA1 .F = 0}.

We claim that we have an isomorphism

� : MA1

⇠�! ⇤(�G). (6.57)

Indeed, let F 2 Pic(eS) such that F 2 = �2 and LA1 .F = 0. Then, �(F )2 = �2 and
i(hA1).�(F ) = 0. Hence, by assumption (3a) in Main Theorem 1, �(F ) 2 i

�

⇤(��(A1)) �
⇤(�G)

�

. Then, write F = a eC + F 0, where �(F 0) 2 i
�

⇤(�G)
�

and a 2 Z. Since 0 =

LA1 .F = LA1 .(a eC + F 0) = 6a, we obtain a = 0. Hence, F = F 0 2 ��1
⇣

i
�

⇤(�G)
�

⌘

.

Obviously, we have ��1
⇣

i
�

⇤(�G)
�

⌘

✓ MA1 . This proves the claim.

By Corollary 3.3.5, the singularities of S then are of type G.

2. We show that S is contained in a quadric of corank zero in P4:

The quadric Q has corank  2 in P4. Indeed, if Q had corank � 3 in P4, the singular locus
of Q would have dimension � 2 and therefore the cubic Y would intersect the singular
locus of Q in a variety of dimension � 1. Hence, S would be singular along this variety in
contradiction to the fact that S has only isolated singularities corresponding to G.

If Q had corank one in P4, by Proposition 6.2.1, Pic(eS) would contain two classes of curves
fC1 and fC2 with fC1

2
= fC2

2
= 0 and such that fC1.fC2 > 0. Further, the lattice ⇤(�G) gener-

ated by the exceptional (�2)-curves of the resolution of the singularities corresponding to
G is contained in Pic(eS). Since ⇤(�G) is negative definite, neither fC1 nor fC2 can be con-
tained in ⇤(�G). Hence, the rank of Pic(eS) would be � rank

�

⇤(�G)
�

+ 2 in contradiction
to rank

�

Pic(eS)
�

= rank
�

⇤(��(A1)) � ⇤(�G)
�

= rank
�

⇤(�G)
�

+ 1.

If Q had corank two in P4, again by Proposition 6.2.1, LA1 would be the class of 2 eC + F ,
where eC is a curve on eS such that eC2 = 0 and LA1 . eC = 3 and F is a linear combination
of (�2)-curves on eS such that LA1 .F = 0. By definition, we have F 2 MA1

⇠= ⇤(�G),
therefore F. eC = 0. This implies 3 = LA1 . eC = (2 eC + F ). eC = 0 which is a contradiction.

Consequently, Q must have corank 0 in P4.

In conclusion, S is a complete (2, 3)-intersection lying on a quadric of corank 0 in P4 such
that all singularities of S correspond to G.

Assumption: T = A2

The proof is inspired by [SZ07, Proposition 7.1].
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Let fC1 and fC2 be the vertices of the graph ��(A2) in Table 6.1 and hA2 = fC1 + fC2. Then,
fC1, fC2 is a basis of the lattice ⇤(��(A2)). By means of the isomorphism

� : Pic(eS)
⇠�! SatLK3(i),

we may assume that fC1 and fC2 are divisors on eS and [fC1] and [fC2] are their numerical
equivalence classes in Pic(eS).

We have
LA2 = ��1

�

i(hA2)
�

= [fC1] + [fC2] 2 Pic(eS).

1. We show that the singularities of S := 'LA2
(eS) ✓ P4 correspond to G:

Let MA2 be the lattice in Pic(eS) generated by the root system

RA2
:= {F 2 Pic(eS); F 2 = �2, LA2 .F = 0}.

We claim that we have an isomorphism

� : MA2

⇠�! ⇤(�G). (6.58)

Indeed, let F 2 Pic(eS) such that F 2 = �2 and LA2 .F = 0. Then, �(F )2 = �2 and
i(hA2).�(F ) = 0. Hence, by assumption (3a) in Main Theorem 1, �(F ) 2 i

�

⇤(��(A2)) �
⇤(�G)

�

. Then, write F = afC1 + bfC2 + F 0, where �(F 0) 2 i
�

⇤(�G)
�

and a, b 2 Z. Since
0 = LA2 .F = 3a + 3b, we obtain a = �b. Then,

� 2 = (afC1 + bfC2 + F 0)2 = �6a2 + F 02. (6.59)

Since ⇤(�G) is negative definite, we have F 02  0. Thus, equation (6.59) can only hold if
a = 0. Hence, F = F 0 2 ��1

⇣

i
�

⇤(�G)
�

⌘

. Obviously, we have ��1
⇣

i
�

⇤(�G)
�

⌘

✓ MA2 .
This proves the claim.

By Corollary 3.3.5, the singularities of S then are of type G.

2. We show that S is contained in a quadric of corank one in P4:

Let i = 1, 2 and assume that fCi is a general member in |fCi|.
By Lemma 3.1.1, either fCi or �fCi is effective. However, if �fCi was effective, we had
LA2 .(�fCi) = �3 in contradiction to the fact that LA2 is nef. Hence, fCi must be effective.

We claim that |fCi| is fixed point free and in particular nef. Indeed, assume that we have

|fCi| = |Mi| + Fi,

where |Mi| is the mobile part of |fCi| and Fi the fixed part. Let fCi = Mi+Fi. Assume that
'LA2

(Fi) is one-dimensional. The curve 'LA2
(Mi) ✓ P4 then has degree one or two, i.e. has

an irreducible component which is isomorphic to P1. It follows that S contains a continuous
family of rational curves. Hence, S is uniruled. Since eS and S are birational it follows
that also eS is uniruled, a contradiction to the fact that eS is a K3 surface. Consequently,
'LA2

(Fi) must be a set of points in P4. Let Fi,1, . . . , Fi,n be the irreducible components
of Fi. For j = 1, . . . , n, we have F 2

i,j = �2 by Lemma 3.2.1. Since LA2 .Fi = 0, we have
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also LA2 .Fi,j = 0. Hence, [Fi,j ] 2 ��1
⇣

i
�

⇤(�G)
�

⌘

by (6.58). Therefore, fCi.Fi,j = 0 which

gives fCi.Fi = 0. Consequently, M2
i = (fCi � Fi)

2 = F 2
i < 0 since Fi is by assumption

contained in the negative definite lattice ��1
⇣

i
�

⇤(�G)
�

⌘

. However, this is absurd since

|Mi| is nef as the mobile part of |fCi| and therefore M2
i � 0. Hence, |fCi| is fixed part free.

If |fCi| had fixed points, the curves in |fCi| would intersect in these points which is absurd
since we have for all fCi 2 |fCi| that fCi

2
= 0. Hence, |fCi| is fixed point free and therefore

in particular nef.

We claim that |fCi| is an elliptic pencil. Indeed, since |fCi| is nef, it follows by Theorem 3.2.4
that |fCi| = mi|fCi

0| for a positive integer mi and an elliptic pencil |fCi
0| on eS. Note that by

Proposition 3.3.4, the map 'LA2
is generically one-to-one on a general member fC 0

i in |fC 0
i|

since fC 0
i is irreducible and fC 0

i

2
= 0. We have 3 = LA2 .fCi = mi.(LA2 .fCi

0
). This equation

only holds if mi = 1 and LA2 .fCi
0
= 3 or mi = 3 and LA2 .fCi

0
= 1. The latter case would

imply that 'LA2
(fCi

0
) is isomorphic to P1. Since 'LA2

is generically one-to-one on fC 0
i, this

would give that fC 0
i is isomorphic to P1 which is absurd. Consequently, |fCi| is an elliptic

pencil.

We claim that the curves in |fCi| are mapped by 'LA2
onto plane cubic curves such that we

obtain a pencil of planes in Q. Since fCi is general in |fCi| and |fCi| is an elliptic pencil, fCi is
irreducible, see Remark 3.2.5. Since LA2 .fCi = ([fC1]+[fC2]).fCi = 3, the curve 'LA2

(fCi) has
degree 3. If 'LA2

(fCi) was not planar, it would be the twisted cubic which is isomorphic to
P1. Since 'LA2

is generically one-to-one on fCi, this would imply that fCi is isomorphic to P1.
This is absurd since fCi is a general member in |fCi| and therefore, by Theorem 3.2.4, has no
component with self-intersection number (�2). Consequently, 'LA2

(fCi) is an irreducible
plane cubic curve. Let {gC1,↵}↵2P1 and {gC2,�}�2P1 be the families of curves induced by
the one dimensional linear systems |fC1| and |fC2|, respectively. The images 'LA2

(gC1,↵)

and 'LA2
(gC2,�) are plane cubic curves in S so in particular contained in planes ⇧1,↵ and

⇧2,� in P4. Hence, we obtain two pencils of planes {⇧1,↵}↵2P1 and {⇧2,�}�2P1 on P4.
These planes are contained in Q and not in Y since the curves 'LA2

(gC1,↵) = ⇧1,↵ \ S and
'LA2

(gC2,�) = ⇧2,� \ S had otherwise not degree 3. Write C1,↵ := 'LA2
(gC1,↵) = ⇧1,↵ \ Y

and C2,� := 'LA2
(gC2,�) = ⇧2,� \ Y .

We claim that Q can only have corank one or two in P4. Indeed, since Q contains planes,
it cannot be smooth by Lemma 4.1.3. Further, if Q had corank strictly larger than 2, the
complete (2, 3)-intersection S ✓ P4 would have non-isolated singularities on the singular
locus of Q. However, we already know that S has only isolated singularities corresponding
to G.

We claim that Q has corank 1 in P4. Indeed, if Q has corank 2 in P4, the families {⇧1,↵}↵2P1

and {⇧2,�}�2P1 coincide. Consequently, the pencils {C1,↵}↵2P1 and {C2,�}↵2P1 coincide,
as well. Thus, |fC1| = |fC2|, in contradiction to fC1.fC2 = 3. Hence, the assumption must be
wrong and Q has corank 1 in P4.

3. We show that the vertex p of Q is not contained in S:

Indeed, if p was contained in S, it would be an ADE singularity on S and for all ↵,� 2 P1
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the curves C1,↵ and C2,� would contain p. Then, '⇤
LA2

(C1,↵) and '⇤
LA2

(C2,�) 2 Div(eS)

would contain the exceptional divisor E from the minimal resolution of p and gC1,↵ and gC2,�

would intersect this exceptional divisor. We claim that this does not happen. Indeed, let
E0 be a (�2)-curve in E on eS: Since |fC1| and |fC2| are nef, we have fC1.E0 � 0, fC2.E0 � 0.
Since 0 = LA2 .E0 = fC1.E0 + fC2.E0, we obtain fC1.E0 = fC2.E0 = 0. Hence, fC1 and fC2 do
not intersect E. Therefore, p is not contained in Q.

In conclusion, S is a complete (2, 3)-intersection lying on a quadric of corank 1 in P4 such
that the singular locus of Q is not contained in S and all other singularities of S correspond
to G.

Assumption: T = An for n � 3

Let fC1, fC2, E1, . . . , En�2 be the vertices of the graph ��(An) in Table 6.1 and hAn =
fC1 + fC2 + E1 + . . . + En�2. Then, fC1, fC2, E1, . . . , En�2 is a basis of the lattice ⇤(��(An)).
By means of the isomorphism

� : Pic(eS)
⇠�! SatLK3(i),

we may assume that fC1, fC2, E1, . . . , En�2 are divisors on eS and [fC1], [fC2], [E1], . . . , [En�2]
are their numerical equivalence classes in Pic(eS).

We have

LAn = ��1
�

i(hAn)
�

= [fC1] + [fC2] + [E1] + . . . + [En�2] 2 Pic(eS).

1. We show that the singularities of S := 'LAn
(eS) ✓ P4 correspond to �(T) + G:

Let MAn be the lattice in Pic(eS) generated by the root system

RAn := {F 2 Pic(eS); F 2 = �2, LAn .F = 0}.

The subgraph of ��(An) generated by E1, . . . , En�2 is of type An�2 and the associated
lattice is ⇤(An�2) = An�2. We claim that we have an isomorphism

� : MAn ! i
�

⇤(An�2) � ⇤(�G)
�

. (6.60)

Indeed, let F 2 Pic(eS) such that F 2 = �2 and LAn .F = 0. It follows that �(F )2 = �2 and
i(hAn).�(F ) = 0. By assumption (3a) in Main Theorem 1, �(F ) 2 i

�

⇤(��(An)) � ⇤(�G)
�

.
Then, write F = afC1 + bfC2 + e1E1 + . . . + en�2En�2 + F 0, where �(F 0) 2 i

�

⇤(�G)
�

and
a, b, e1, . . . , en�2 2 Z. Since 0 = LAn .F = 3a + 3b, we obtain a = �b. Further, since
F 2 = �2 and by inequality 2eiei+1  e2i + e2i+1 for i = 1, . . . , n � 3, we obtain

�2 = (afC1 � afC2 + e1E1 + . . . + en�2En�2 + F 0)2

= �4a2 + 2a(e1 � en�2) � 2(e21 + . . . + e2n�2) + 2(e1e2 + . . . + en�3en�2) + F 02

 �4a2 + 2a(e1 � en�2) � 2(e21 + . . . + e2n�2) + e21 + 2(e22 + . . . + e2n�3) + e2n�2 + F 02

= �2a2 � �

2a2 � 2a(e1 � en�2) + e21 + e2n�2

�

+ F 02

= �2a2 � (a � e1)
2 � (a + en�2)

2 + F 02
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which only holds if 1 = a = e1 = �en�2 and F 0 = 0, or if a = 0. However, in the first
case, we have F 2 = �4 + (e1E1 + . . . + en�2En�2)

2 + F 02 < �4 which is absurd. Hence,
we must have a = 0 and therefore F = e1E1 + . . . + en�2En�2 + F 02. On the other hand,
we have obviously i

�

⇤(An�2) � ⇤(�G)
� ✓ �(MAn).

By Corollary 3.3.5, the singularities of S are of type �(T) + G.

2. We show that S is contained in a quadric of corank one in P4:

Let i = 1, 2 and assume that fCi is a general member in |fCi|.
As in the case T = A2, step 2. above, we can show that the divisor fCi 2 Div(eS) is effective.

We can write
|fCi| = |Mi| + Fi,

where |Mi| is the mobile part of |fCi| and Fi the fixed part. Let fCi = Mi + Fi. As in
the case T = A2, step 2. we can show that 'LAn

(Fi) is a point in S, i.e. LAn .Fi = 0.
Let Fi,1, . . . , Fi,n be the irreducible components of Fi. For j = 1, . . . , n, we have F 2

i,j =
�2 by Lemma 3.2.1. Since LAn .Fi = 0, we have also LAn .Fi,j = 0. Hence, [Fi,j ] 2
MAn = ��1

⇣

i
�

⇤(An�2) � ⇤(�G)
�

⌘

by (6.60). Therefore, also [Fi] 2 ��1
⇣

i
�

⇤(An�2) �
⇤(�G)

�

⌘

. The mobile part |Mi| is by definition nef. Similarly as in the case T = A2,
step 2., we show that |Mi| is an elliptic pencil. By Theorem 3.2.4, Mi has no irreducible
component which has self-intersection number (�2). Since ⇤(�G) is negative definite, this
gives �([Mi]) 2 i

�

⇤(��(An))
�

. Since �([fCi]) 2 i
�

⇤(��(An))
�

as a part of its basis, we have
�([Fi]) 2 i

�

⇤(An�2)
�

.

Let {M1,↵}↵2P1 and {M2,�}�2P1 be the families of curves induced by the one-dimensional
linear systems |M1| and |M2|, respectively. As in the case T = A2, step 2. above, we show
that |Mi| induces two families {⇧1,↵}↵2P1 and {⇧2,�}�2P1 of planes on Q and such that
C1,↵ := 'LAn

(M1,↵) = ⇧1,↵\Y and C2,� := 'LAn
(M2,�) = ⇧2,� \Y are plane cubic curves

on S. Again, as in the case T = A2, step 2., we can deduce that S lies on a quadric of
corank 1 in P4.

3. We show that the vertex of Q is an An�2 singularity on S:

Let Mi 2 |Mi|. If Mi.Fi = 0, we have 0 = fCi
2

= (Mi+Fi)
2 = M2

i +2Mi.Fi+F 2
i = F 2

i and
since �([Fi]) is contained in the negative definite lattice i

�

⇤(An�2)
�

, it follows Fi = 0, i.e.
|fCi| is fixed part free and |fCi| = |Mi|. However, the curves in |fCi| intersect the divisors
supported on the union of E1, . . . , En�2 2 Div(eS) once.

On the other hand, if Fi 6= 0, we obtain consequently that Mi intersects Fi and the support
of Fi is contained in the union of E1, . . . , En�2 2 Div(eS).

Since the curves E1, . . . , En�2 are contracted by 'LAn
to a singularity of type An�2 of

S ✓ P4 by Corollary 3.3.5, this singularity then must be contained in all plane cubic
curves in {C1,↵}↵2P1 and {C2,�}�2P1 . Since the only common intersection point of all the
planes in {⇧1,↵}↵2P1 and {⇧2,�}�2P1 containing the curves C1,↵ and C2,� is the vertex of
Q, the An�2 singularity must be the vertex of Q.

In conclusion, S is a complete (2, 3)-intersection lying on a quadric of corank 1 in P4 such
that the singular locus of Q is an An�2 singularity in S and all other singularities of S
correspond to G.
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Assumption: T = Dn for n � 4, E6,E7, or E8

Let k := rank
�

⇤(��(T))
�� 1.

Let eC, E1, . . . , Ek be the vertices of the graph ��(T) in Table 6.1 and r1, . . . , rk positive
integers such that hT = eC + r1E1 + . . . + rkEk as in in Table 6.1. Then, eC, E1, . . . , Ek is
a basis of the lattice ⇤(��(T)). By means of the isomorphism

� : Pic(eS)
⇠�! SatLK3(i),

we may assume that eC, E1, . . . , Ek are divisors on eS and [ eC], [E1], . . . , [Ek] are their nu-
merical equivalence classes in Pic(eS).

We then have
LT = ��1

�

i(hT)
� 2 Pic(eS).

1. We show that the singularities of S := 'LT(eS) ✓ P4 correspond to �(T) + G:

Let MT be the lattice in Pic(eS) generated by the root system

RT := {F 2 Pic(eS); F 2 = �2, LT.F = 0}.

Denote the subgraph of ��(T) generated by E1, . . . , Ek by �(T ) and let ⇤
�

�(T )
�

be the
associated sublattice of ⇤(��(T)). We claim that we have an isomorphism

� : MT ! i
�

⇤
�

�(T )
�� ⇤(�G)

�

. (6.61)

Indeed, let F 2 Pic(eS) such that F 2 = �2 and LT.F = 0. It follows that �(F )2 = �2 and
i(hT).�(F ) = 0. By assumption (3a) in Main Theorem 1, �(F ) 2 i

�

⇤(��(T)) � ⇤(�G)
�

.
Write F = a eC + e1E1 + . . . + ekEk + F 0 for integers a, e1, . . . , ek and �(F 0) 2 i

�

⇤(�G)
�

.
Then, 0 = LT.F = LT.(a eC + e1E1 + . . . + ekEk + F 0) = a(LT. eC) = 3a, i.e. a = 0. Hence,
F = e1E1 + . . .+ ekEk +F 0. On the other hand, we have obviously i

�

⇤(�(T ))�⇤(�G)
� ✓

�(MT).

By Corollary 3.3.5, the singularities of S then are of type �(T) + G.

2. We will show that S is contained in a quadric of corank two in P4:

Assume that eC is a general member in | eC|.
As in the case T = A2, step 2. above, we can choose eC to be a curve on eS.

We determine the fixed part of | eC|. Indeed, assume that we have

| eC| = |MT| + FT,

where |MT| is the mobile part of | eC| and FT the fixed part. Assume that eC = MT + FT.
As in the case T = A2, step 2., we show that 'LT contracts FT. Let FT,i be an irreducible
component of FT. By Lemma 3.2.1, we have F 2

T,i = �2. Since LT.FT = 0, we have
LT.FT,i = 0. Therefore, we obtain by (6.61) that �([FT,i]) 2 i

�

⇤(�(T )) � ⇤(�G)
�

and
hence also �([FT]) 2 i

�

⇤(�(T )) � ⇤(�G)
�

. As in the case T = A2, step 2., we show that
we have �([FT]) 2 i

�

⇤(�(T ))
�

.
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As in the case T = A2, step 2. above, we show that |MT| is an elliptic pencil on eS inducing
a family {⇧t}t2P1 of planes on the quadric Q. For t 2 P1, let Ct := ⇧t \ Y . We obtain a
family {Ct}t2P1 of plane cubic curves on S.

We claim that Q has corank 2 in P4. Indeed, if Q had corank one, we would find two
different families of planes in Q. Let {⇧0

t}t2P1 be a family of planes in Q. None of the
planes is contained in Y since S would otherwise contain a plane and hence eS would be
rational which contradicts the fact that eS is a K3 surface. Therefore, {⇧0

t}t2P1 induces a
family of plane cubic curves {C 0

t := ⇧0
t \ Y }t2P1 on S. Let C 0

t be a curve in {C 0
t}t2P1 . The

pull-back '⇤
LT

(C 0
t) 2 Div(eS) to eS has degree 3, i.e. LT.'⇤

LT
(C 0

t) = 3. We can assume that

'⇤
LT(C 0

t) = a eC + e1E1 + . . . + ekEk + eF 0

for a, e1, . . . , ek, e 2 Q, and F 0 a divisor whose class is contained in ��1
⇣

i
�

⇤(�G)
�

⌘

.

Then, 3 = LT.'⇤
LT

(C 0) = 3a gives a = 1, i.e. '⇤
LT

(C 0
t) = eC + e1E1 + . . . + ekEk + eF 0.

Further, since 'LT contracts E1, . . . , Ek, and F 0 to singularities on S, we must have C 0
t =

'LT

�

'⇤
LT

(C 0
t)
�

= 'LT( eC) 2 {Ct}t2P1 . Therefore, the family {C 0
t}t2P1 coincides with the

family {Ct}t2P1 . Hence, we do not find two different families of planes in Q, i.e. Q must
have corank 2 instead of 1.

3. We show that the singularities of S lying on the singular locus of Q are of type �(T):

Since the planes in {⇧t}t2P1 intersect only in the singular line l of Q, all cubic curves in
{Ct}t2P1 pass through (counted with multiplicity) the three points in l \Y on the singular
line of Q which are singularities of S.

We show that the curves in the mobile part |MT| of | eC| intersect each connected component
of the union of the divisors E1, . . . , Ek on eS:

Let MT be a general member in |MT|.
Let T = D4. Write the fixed part of | eC| as FD4 = F1,D4 + F2,D4 + F3,D4 , where Fi,D4 is
supported on Ei or Fi,D4 = 0 for i = 1, 2, 3. We have

0 = eC2 = (MD4 + F1,D4 + F2,D4 + F3,D4)
2 =

3
X

i=1

2MD4 .Fi,D4 + F 2
i,D4

and we see that this equation can only hold if MD4 .Fi,D4 � 1 for the non-trivial Fi,D4

(i = 1, 2, 3) using that the classes of F1,D4 , F2,D4 , and F3,D4 are contained in the even,
negative definite lattice ��1

⇣

i
�

⇤(�(D4))
�

⌘

. On the other hand, if Fi,D4 = 0 for some

i = 1, 2, 3, we have FD4 .Ei = 0 and therefore MD4 .Ei = ( eC � FD4).Ei = 1 by definition of
the intersection matrix ⇤

�

�(D4)
�

.

If T = Dn (n � 5), write FDn = F1,Dn + F2,Dn , where F1,Dn is supported on E1 or
F1,Dn = 0 and the support of F2,Dn is contained in the union of E2, . . . , En�1 or F2,Dn = 0.
Similarly as above, we have

0 = gCDn

2
= (MDn + F1,Dn + F2,Dn)2 = 2MDn .F1,Dn + 2MDn .F2,Dn + F 2

1,Dn
+ F 2

2,Dn

and this equation can only hold if MDn .Fi,Dn � 1 for the non-trivial Fi,Dn (i = 1, 2). On
the other hand, if Fi,Dn = 0 for i = 1 or 2, we have MDn .E1 = ( eC � FDn).E1 = 1 or
MDn .E2 = ( eC � FDn).E2 = 1, respectively, similarly as above.
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If T = E6,E7,E8, the support of FT is contained in the union of E1, . . . , Ek with k = 5, 6, 7,
respectively, or FT = 0. Similarly as above, we show that we have MT.FT � 1 if FT 6= 0. If
FT = 0, we have for T = E6,E7,E8 that MT.Ei = eC.Ei = 1 with i = 3, 6, 1, respectively,
and MT.Ej = eC.Ej = 0 for j = 1, . . . , k with j 6= i by definition of the intersection matrix
⇤
�

�(T )
�

.

Hence, for all choices of T = Dn�4,E6,E7,E8, the curves in |MT| intersect each connected
component of the union of the divisors E1, . . . , Ek on eS.

By Corollary 3.3.5, the connected components of the union of the divisors E1, . . . , Ek

are contracted by 'LT to singularities of type �(T) on S and since the curves in |MT|
intersect with these connected components, the plane cubic curves in {Ct}t2P1 intersect in
these singularities. Since the only intersection points of the curves in {Ct}t2P1 are on the
singular line of Q, we can conclude that S has singularities of type �(T) on the singular
line of Q. Further, the curves in in {Ct}t2P1 do not intersect with any divisor class in
��1

⇣

i
�

⇤(�G)
�

⌘

✓ Pic(eS) since the class of eC is not contained in ��1
⇣

i
�

⇤(�G)
�

⌘

. Hence,
the singularities of type G are not lying on the singular line of Q.

In conclusion, S is a complete (2, 3)-intersection lying on a quadric of corank 2 in P4 such
that the singularities of S lying on the singular locus of Q are of type �(T) and all other
singularities of S correspond to G.

This concludes the proof of (3) ) (2).



7 Existence of primitive lattice

embeddings

In this chapter, it is our goal to state Nikulin’s Theorem on the existence of certain lattice
embeddings. To do so, we will define firstly finite bilinear and quadratic forms and dis-
criminant bilinear and quadratic forms. We will study quadratic forms and finite quadratic
forms over the p-adic integers Zp. For odd primes, we will define their normal forms. Then,
we will explain how to construct a quadratic Zp-module Lp, given a finite quadratic form
Gp in normal form over Zp such that the rank of Lp is the length of Gp and such that
the discriminant quadratic form of Lp is isomorphic to Gp. We then will state Nikulin’s
Theorem which provides necessary and sufficient conditions for the existence of a primitive
embedding of an even lattice into an even unimodular lattice. Finally, we will state a
sufficient condition when this embedding is unique up to automorphism. The results in
this chapter will be needed in the following chapter where we will give an algorithm to
determine all ADE lattices ⇤ such that h6i � ⇤ can be embedded primitively into the K3
lattice. This algorithm will be based on Nikulin’s Theorem.

7.1 Finite symmetric bilinear forms and finite quadratic forms

Let G be a finite abelian group and h , i : G⇥G ! Q/Z a symmetric bilinear function. We
call a pair (G, h , i) a finite symmetric bilinear form.

If q : G ! Q/Z is a map such that

1. q(rg) = r2q(g) for all r 2 Z and all g 2 G

2. the function h , iq : G⇥G ! Q/Z defined by hg, g0iq = q(g+g0)�q(g)�q(g0) mod Z
is a symmetric bilinear form on G,

we call the pair (G, q) a finite quadratic form and h , iq the bilinear form associated to q.

We denote the minimal number of generators of G by l(G) and call it the length of G.

Remark 7.1.1. Note that we defined here the finite quadratic form as in [MM09, Chap. I, Def-
inition 2.1]; in the literature, it is usually required that hg, g0iq = 1

2

�

q(g+g0)�q(g)�q(g0)
�

mod Z.

7.2 The discriminant form of a lattice

Let (L, h , iL) be a lattice. The Z-module

L_ = HomZ(L,Z) ⇠= {x 2 L ⌦Z Q; hx, yiL 2 Z for all y 2 L}
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together with the natural extension h , iL_ : L_ ⇥ L_ ! Q of h , iL to L_ is the dual lattice
of L. The cokernel of the natural inclusion i : L ,! L_ is the discriminant group

A(L) := L_/i(L).

The discriminant bilinear form is the pair (A(L), bA(L)), where

bA(L) : A(L) ⇥ A(L) ! Q/Z

defined by bA(L)(x, y) = hx, yiL_ mod Z. Similarly, let (L, QL) be the quadratic form
associated to (L, h , iL). Then, the finite quadratic form (A(L), qL), where

qL : A(L) ! Q/Z

defined by qL(x) = QL_(x) mod Z is the discriminant quadratic form of L.

Lemma 7.2.1. For the orthogonal sum L1�L2 of two lattices (L1, bL1), (L2, bL2), we have
A(L1 � L2) = A(L1) � A(L2) and

bA(L1�L2) = bA(L1) � bA(L2) and qA(L1�L2) = qA(L1) � qA(L2).

The following discriminant groups will be used in the sequel where n � 1:

L h6i An D2n+2 D2n+1 E6 E7 E8

A(L) Z/6Z Z/(n + 1)Z Z/2Z ⇥ Z/2Z Z/4Z Z/3Z Z/2Z {0}

Table 7.1: Discriminant groups of ADE lattices, see [MM09, Chap. II, Table 7.2].

7.3 Quadratic forms and finite quadratic forms over Zp

Let p be a prime number. We will in the following always denote by Qp and Zp the p-adic
numbers and p-adic integers, respectively.

For a finite group G, we denote

Gp := {x 2 G; pkx = 0 for some k � 0}

the p-primary part of G.

Let (G, q) be a finite quadratic form over Z and qp : Gp ! (Q/Z)p, x 7! q(x) the restriction
of q to Gp.

Lemma 7.3.1. We have a group isomorphism Gp
⇠= G ⌦Z Zp such that

G ⌦Z Zp

⇠=
✏✏

q⌦Zp // Q/Z ⌦Z Zp

⇠=
✏✏

Gp
qp // Qp/Zp

(7.1)

commutes, where q ⌦ Zp : G ⌦Z Zp ! Q/Z ⌦Z Zp, g ⌦ ↵ 7! q(g) ⌦ ↵2. Hence, the finite
quadratic forms (G ⌦Z Zp, q ⌦ Zp) and (Gp, qp) are isomorphic over Zp.
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Proof. For x 2 (Q/Z)p, there exists a positive integer k such that pkx 2 Z. Write [x]p :=
P�1

i=�k cipi for the p-fraction part of x. Then,

(Q/Z)p
⇠�! Qp/Zp, x 7! [x]p mod Zp

is an isomorphism. Hence, we have qp : Gp ! Qp/Zp. By [Gra03, Chap. III.1.2.3], we have
an isomorphism of groups

� : G ⌦Z Zp
⇠�! Gp, g ⌦ ↵ 7! ↵g.

Then, we have for g ⌦ ↵ 2 G ⌦Z Zp:

�
�

(q ⌦ Zp)(g ⌦ ↵)
�

= �
�

q(g) ⌦ ↵2
�

= ↵2q(g) = q(↵g) = q
�

�(g ⌦ ↵)
�

= qp
�

�(g ⌦ ↵)
�

.

Hence, diagram (7.1) commutes.

We call (Gp, qp) a finite quadratic form over Zp. Likewise, the definition for discriminant
quadratic forms then extends to discriminant quadratic forms over Zp.

The following example of a quadratic form over Zp and their discriminant quadratic forms
will be needed in the next chapter:

Example 7.3.2. 1. For an odd prime p and a 2 Zp\{0}, we write a = pku with u 2 Z⇥
p

and k � 0. Let

� : Z⇥
p /(Z⇥

p )2 ! {±1}, u 7!
(

1 if u is a square mod p

�1 if u is not a square mod p

be the Legendre symbol. Then, the finite quadratic form W ✏
p,k over Zp with ✏ = �(u)

is the rank one lattice with intersection matrix (pku). The discriminant of W�(u)
p,k is

given by
disc(W�(u)

p,k ) = pku mod (Z⇥
p )2. (7.2)

2. For a prime p and k � 1, let G := Z/pkZ and let a 2 Z such that gcd(a, pk) = 1 and
apk 2 2Z. For the generator g of G and r 2 Z, let q : G ! Q/Z with q(rg) = r2a

2pk
.

This definition is well defined since q(pkg) = p2ka
2pk

= apk

2 2 Z.
For an odd prime p, let

� : G⇥/(G⇥)2 ! {±1}, u 7!
(

1 if u is a square mod p

�1 if u is not a square mod p

be the Legendre symbol.

For p = 2, let

� : (Z/2Z)⇥/
�

(Z/2Z)⇥
�2 !(Z/2Z)⇥ = {1} is the identity map

� : (Z/4Z)⇥/
�

(Z/4Z)⇥
�2 !(Z/4Z)⇥ = {1, 3} is the identity map

� : (Z/2kZ)⇥/
�

(Z/2kZ)⇥
�2 !(Z/8Z)⇥ = {1, 3, 5, 7} is the mod 8 map.

Then, we denote the finite quadratic form (G, q) over Z by w�(amod pk)
p,k , inducing the

finite quadratic form (Gp, qp) over Zp, where Gp = Z/pkZ and qp : Gp ! Qp/Zp with
qp(rg) = q(rg) for g a generator of Gp and r 2 Z. We will refer to (Gp, qp) as the
finite quadratic form w�(amod pk)

p,k over Zp.
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7.3.1 Normal form decompositions of quadratic forms and finite quadratic

forms over Zp, p odd

Let p be an odd prime.

Let (G, q) be a finite quadratic form over Zp.

Definition 7.3.3. We say that a decomposition of (G, q) is given in normal form over Zp

if
(G, q) =

M

k�1

�

(w1
p,k)

�n(k) � (w�1
p,k)

�m(k)
�

,

where n(k) and m(k) are non-negative integers for each k.

Let (L, Q) be a quadratic Zp-module.

Definition 7.3.4. We say that a decomposition of (L, Q) is given in normal form over Zp

if
(L, Q) =

M

k�0

�

(W 1
p,k)

�n(k) � (W�1
p,k )�m(k)

�

,

where n(k) and m(k) are non-negative integers for each k.

Remark 7.3.5. In the definition of a normal form of a finite quadratic form over Zp and
quadratic Zp-module in [MM09, Chap. IV, Definition 2.2, 2.6], it is furthermore requested
that m(k)  1 for each k. With these stronger definitions, we can show that if q and Q are
non-degenerate, (G, q) and (L, Q), respectively, have unique normal form decompositions
by [MM09, Chap. IV, Proposition 2.4, 2.7]. Obviously, a normal form decomposition as
in [MM09] is in particular a normal form as defined here.

Proposition 7.3.6 ([MM09, Chap. IV, Corollary 2.10]). For a finite quadratic form (G, q)
over Zp, there exists an up to isomorphism unique quadratic Zp-module (L, Q) such that
rank(L) = l(G) and the discriminant form of (L, Q) is isomorphic to (G, q).

Corollary 7.3.7. Let (G, q) be a finite quadratic form over Zp in its normal form

(G, q) :=
M

k�1

�

(w1
p,k)

�n(k) � (w�1
p,k)

�m(k)
�

.

The up to isomorphism uniquely determined Zp-module (L, Q) such that rank(L) = l(G)
and such that the discriminant form of (L, Q) is isomorphic to (G, q) is

M

k�1

�

(W 1
p,k)

�n(k) � (W�1
p,k )�m(k)

�

.

Proof. For i = ±1, we have rank(W i
p,k) = 1 and l(wi

p,k) = l(Z/pkZ) = 1. Further, the
discriminant quadratic form of W i

p,k is
�

A(W i
p,k), qW i

p,k

�

= (Z/pkZ, qW i
p,k

)

and (Z/pkZ, qW i
p,k

) is simply the finite quadratic form wi
p,k. By Lemma 7.2.1, the discrim-

inant form of
M

k�1

�

(W 1
p,k)

�n(k) � (W�1
p,k )�m(k)

�
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then is
M

k�1

�

(w1
p,k)

�n(k) � (w�1
p,k)

�m(k)
�

.

By Proposition 7.3.6, the quadratic form
L

k�1

�

(W 1
p,k)

�n(k) � (W�1
p,k )�m(k)

�

is up to iso-
morphism unique with these properties.

Remark 7.3.8. Likewise, there exists the notion of normal form for finite quadratic forms
over Z2 and quadratic Z2-modules and a version of Proposition 7.3.6 over Z2, see [MM09,
Chap. IV.4, IV.5].

7.4 Primitive embeddings into unimodular lattices

For a finite quadratic form (G, q) over Z, the induced finite quadratic form (G⌦ZZp, q⌦Zp)
over Zp is by Lemma 7.3.1 isomorphic to the finite quadratic form (Gp, qp) over Zp on the
p-primary part Gp of G. Let K(qp) be the unique quadratic Zp-module of rank l(Gp) and
with discriminant form isomorphic to (Gp, qp). Note that K(qp) exists for odd primes p by
Proposition 7.3.6 and for p = 2 by [MM09, Chap. IV, Corollary 5.6].

We recall V. V. Nikulin’s Theorem about the existence of primitive lattice embeddings into
even unimodular lattices:

Theorem 7.4.1 ([Nik80, Theorem 1.12.2 (a) , (d)]). The following properties are equiv-
alent:

1. There exists a primitive embedding of an even lattice (M, Q) with signature (m+, m�)
and discriminant form (A(M), q) into an even unimodular lattice L with signature
(l+, l�).

2. The following conditions are all satisfied:

a) l+ � l� ⌘ 0 mod 8

b) l� � m� � 0, l+ � m+ � 0

c) (l� + l+) � (m� + m+) � l
�

A(M)
�

d) If p is an odd prime and (l� + l+) � (m� + m+) = l
�

A(M)p
�

, then we have
(�1)l+�m+ |A(M)| ⌘ disc

�

K(qp)
�

mod (Z⇥
p )2

e) If (l� + l+) � (m� + m+) = l
�

A(M)2
�

and !✏2,k does not split off q2 for some
k, then we have |A(M)| ⌘ ±disc

�

K(q2)
�

mod (Z⇥
2 )2.

Remark 7.4.2. We note that V. V. Nikulin gives in [Nik80, §2] different definitions for
quadratic forms and finite quadratic forms than we do in Sections 2.1 and 7.1, respectively,
see Remarks 2.1.1 and 7.1.1. However, every quadratic form and every finite quadratic
form in Nikulin’s definition corresponds naturally to a quadratic form and finite quadratic
form, respectively, defined here and vice versa. Furthermore, this correspondence respects
naturally the decomposition of the quadratic forms and finite quadratic forms into direct
summands. Moreover, for both Nikulin’s definition and the definition here, the definitions
of the bilinear forms associated to the quadratic forms coincide. Hence, we compute for
both quadratic forms the same discriminants. Therefore, we may use the definitions made
here for Nikulin’s Theorem in [Nik80, Theorem 1.12.2].
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Imposing a stronger condition on the lattices L and M as in Theorem 7.4.1, we can
guarantee that a primitive embedding M ,! L is even unique up to automorphisms of
L.

Theorem 7.4.3 ([Dol83, Theorem 1.4.8]). A primitive embedding of an even lattice M of
signature (m+, m�) into an even lattice L of signature (l+, l�) is unique up to an auto-
morphism of L provided: (l� + l+) � (m� + m+) � l

�

A(M)
�

+ 2.
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embeddings into the K3 lattice

In this chapter, we want to find all those ADE lattices ⇤ such that h6i�⇤ has a primitive
embedding into the K3 lattice. We will present an algorithm which enables us to determine
these lattices ⇤ computer-aided. Using Main Theorem 1, the existence of these lattice em-
beddings will imply the existence of cubic fourfolds as well as complete (2, 3)-intersections
in P4 both with certain ADE singularities.

8.1 Algorithm to compute certain primitive lattice
embeddings into LK3

Theorem 8.1.1. Let ⇤ be a direct sum of irreducible ADE lattices. Then, there exists
a primitive embedding h6i � ⇤ ,! LK3 if and only if ⇤ is one of the 2942 lattices in
Appendix C. Further, all lattices ⇤ in Appendix C marked with an asterisk (⇤) have the
property that the embedding h6i � ⇤ ,! LK3 is unique up to an automorphism of LK3.

Proof. The lattice h6i � ⇤ is even and note furthermore that the K3 lattice LK3 is both
even and unimodular. Hence, Theorem 7.4.1 gives us necessary and sufficient conditions
such that h6i � ⇤ can be embedded primitively into LK3. Further, Theorem 7.4.3 gives us
a sufficient condition such that this embedding is unique up to an automorphism of LK3.
The algorithm below determines all lattices ⇤ such that for h6i�⇤ all conditions (2a)-(2e)
in Theorem 7.4.1 hold. These can be found in the list in Appendix C. The algorithm
furthermore identifies those for which the condition in Theorem 7.4.3 holds, as well. These
are the lattices ⇤ in Appendix C marked with an asterisk (⇤).

Remark 8.1.2. Independently from us, S. Brandhorst found the complete list of 2942 ADE
lattice ⇤ in Appendix C such that we have a primitive embedding h6i�⇤ ,! LK3 by means
of the computer-algebra software Sage.

We now describe the algorithm mentioned in the proof of Theorem 8.1.1 based on The-
orem 7.4.1 to determine all possible direct sums of ADE lattices ⇤ such that we have a
primitive embedding

h6i � ⇤ ,! LK3

and on Theorem 7.4.3 to determine some embeddings which are unique up to automor-
phisms of LK3. The algorithm is implemented in the computer-algebra software Wol-
fram Mathematica (version 11.1.1.0), find the code in Appendix B. Summarized, the algo-
rithm determines step-by-step the set of all ADE lattices ⇤ such that the lattices h6i � ⇤
satisfy the necessary and sufficient conditions (2a)-(2e) in Theorem 7.4.1. In the final
step we obtain the list of ADE lattices ⇤ such that there exists a primitive embedding
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h6i � ⇤ ,! LK3. Imposing a stronger condition in (2c), lattices ⇤ such that the primi-
tive embedding h6i � ⇤ ,! LK3 is unique up to an automorphism of LK3 are determined
simultaneously.

We now describe the algorithm structured by the following Subsections 8.1.1-8.1.5 in more
detail:

8.1.1 Check condition (2a) in Theorem 7.4.1

Condition (2a) in Theorem 7.4.1 is always satisfied in our case since the K3 lattice LK3

has signature (3, 19) so
19 � 3 = 16 ⌘ 0 mod 8.

8.1.2 Check condition (2b) in Theorem 7.4.1

Let

⇤ :=
M

i�1

aiAi �
M

j�4

djDj �
8
M

k=6

ekEk

be an ADE lattice. The lattice h6i � ⇤ has signature

(1,
X

i�1

aii +
X

j�4

djj +

8
X

k=6

ekk).

Hence, it satisfies condition (2b) in Theorem 7.4.1 if and only if

19 �
X

1�i

aii +
X

j�4

djj +

8
X

k=6

ekk.

In particular, this means that 1  i  19, 4  j  19, and 6  k  8. Consequently, the
set of all lattices satisfying condition (2b) in Theorem 7.4.1 is given by

listb := ([0, 19] \ Z)19 ⇥ ([0, 19] \ Z)16 ⇥ ([0, 19] \ Z)3.

Just to find all tuples in listb more time efficiently, we use an iteration in the code in
Appendix B which is justified by the following Lemma:

Lemma 8.1.3. Let n and r be positive integers with r  n. Let

Lr,n := {(a1, . . . , an) 2 (Z�0)
n;

n
X

i=1

aii = r}

and for i = 1, . . . , n � 1

stepi : Lr,n ! (Z�0)
n, (a1, . . . , an) 7! (a1, . . . , ai�1, ai � 1, ai+1 + 1, ai+2, . . . , an).

Let

Lstep

r,n :=
[

(a1,...,an)2Lr,n

{stepi

�

(a1, . . . , an)
�

; for i = 1, . . . , n � 1 with ai 6= 0}.

Then,
Lr+1,n = {(r + 1, 0, . . . , 0) 2 Zn} [ Lstep

r,n . (8.1)
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Proof. Let (a1, . . . , an) 2 Lr+1,n and assume that as 6= 0 for some 2  s  n. We have
Pn

i=1 aii = r + 1. Then, (a1, . . . , as�2, as�1 + 1, as � 1, as+1, . . . , an) 2 Lr,n since

a1 + . . . + as�2(s � 2) + (as�1 + 1)(s � 1) + (as � 1)s + as+1(s + 1) + . . . + ann

=a1 + . . . + as�2(s � 2) + as�1(s � 1) + ass + as+1(s + 1) + . . . + ann + (s � 1) � s

=r + 1 � 1 = r.

Hence, (a1, . . . , an) 2 Lstep

r,n . If (a1, . . . , an) 2 Lr+1,n such that as = 0 for all 2  s  n,
then (a1, . . . , an) = (r + 1, 0, . . . , 0).

Assume conversely that (a1, . . . , an) 2 {(r+1, 0, . . . , 0)}[Lstep

r,n . Obviously (r+1, 0, . . . , 0) 2
Lr+1,n. If (a1, . . . , an) 2 Lstep

r,n , we have as 6= 0 for some s � 2 such that (a1, . . . , as�2, as�1+
1, as � 1, as+1, . . . , an) 2 Lr,n. Hence,

n
X

i=1

aii

=
�

a1 + . . . + as�2(s � 2) + (as�1 + 1)(s � 1) + (as � 1)s + as+1(s + 1) + . . . + ann
�

+ 1

= r + 1

so (a1, . . . , an) 2 Lr+1,n.

Following the notation in Lemma 8.1.3, we define the set

listab[r] := Lr,19

which contains all tuples (a1, . . . , a19) such that
P19

i=1 aii = r. Lemma 8.1.3 now enables
us to compute listab[r] iteratively by using that listab[r] = {(r, 0, . . . , 0) 2 Z19} [ Lstep

r�1,19,
where Lstep

r�1,19 can be computed by means of listab[r-1]. This turns out to be faster than a
direct computation of listab[r].

We then define

listdb[r] := {(d1, . . . , d19) 2 listab[r]; d1 = d2 = d3 = 0}
listeb[r] := {(e1, . . . , e19) 2 listab[r]; e1 = . . . = e5 = e9 = . . . = e19 = 0}.

Consequently,

listb[r] := {�(a1, . . . , a19), (d4, . . . , d19), (e6, e7, e8)
� 2 listab[i]⇥listdb[j]⇥listeb[k]; i+j+k = r}

and
listb := [19

r=1listb[r].

8.1.3 Check condition (2c) in Theorem 7.4.1

Let ⇤ be an ADE lattice in listb, i.e. h6i � ⇤ satisfies condition (2b) in Theorem 7.4.1. In
particular, ⇤ has the form

⇤ :=
19
M

i=1

aiAi �
19
M

j=4

djDj �
8
M

k=6

ekEk.
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The signature of h6i � ⇤ is

(1,
19
X

1=i

aii +

19
X

4=j

djj +

8
X

k=6

ekk).

Hence, it satisfies condition (2c) if and only if

(3 + 19) � (1 +
19
X

1=i

aii +
19
X

4=j

djj +
8
X

k=6

ekk) � l
�

A(h6i � ⇤)
�

.

Consequently, the set of all lattices ⇤ such that h6i � ⇤ satisfies condition (2c) is given by

listbc :=
n

⇤ :=
19
M

i=1

aiAi �
19
M

j=4

djDj �
8
M

k=6

ekEk 2 listb;

21 � (

19
X

1=i

aii +

19
X

4=j

djj +

8
X

k=6

ekk) � l
�

A(h6i � ⇤)
�

o

.

The set of all lattices ⇤ such that h6i � ⇤ satisfies additionally the assumptions in Theo-
rem 7.4.3 is given by

listbcu :=
n

⇤ :=

19
M

i=1

aiAi �
19
M

j=4

djDj �
8
M

k=6

ekEk 2 listb;

19 � (

19
X

1=i

aii +

19
X

4=j

djj +

8
X

k=6

ekk) � l
�

A(h6i � ⇤)
�

o

.

We now present how we compute the length l
�

A(h6i � ⇤)
�

of the discriminant group
A(h6i � ⇤) in the code in Appendix B. Indeed, by the following Lemma 8.1.4, the length
l
�

A(h6i � ⇤)
�

is just the maximum of the lengths of the p-primary parts A(h6i � ⇤)p of
A(h6i � ⇤):

Lemma 8.1.4. Let G be a finite abelian group. Then,

l(G) = max
p prime

�

l(Gp)
�

,

where Gp is the p-primary part of G. More explicitly, let p0 be a prime such that l(G) =
l(Gp0) and

Gp0 = Z/ps10 Z � . . . � Z/psn0 Z
for s1, . . . , sn 2 Z�1, then l(G) = l(Gp0) = n.

Proof. Since Gp is a subgroup of G for all primes p, we have l(Gp)  l(G), in particular
maxp

�

l(Gp)
�  l(G). The group G has the invariant factor decomposition

G = Z/d1Z � . . . � Z/dnZ

with di|di+1 for i = 1, . . . , n � 1. Then, G has at most n generators, i.e. l(G)  n. Let p0
be a prime dividing d1. We have positive integers s1, . . . , sn such that

Gp0 = Z/ps10 Z � . . . � Z/psn0 Z,
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where psi0 |di and psi+1
0 - di for i = 1, . . . , n. Hence, l(Gp0)  n. We have a surjective

morphism

⇡ : Gp0 ! (Z/p0Z)n, (x1, . . . , xn) 7! (x1 mod p0, . . . , xn mod p0).

Assume then that g1, . . . , gm generate Gp0 with m < n. Since ⇡ is a surjective morphism,
⇡(g1), . . . ,⇡(gm) must generate (Z/p0Z)n. Since every element x 2 (Z/p0Z)n satisfies
p0x = 0, it can be written as x =

�

a1⇡(g1), . . . , am⇡(gm)
�

with 0  a1, . . . , am  p0 � 1.
However, then (Z/p0Z)n had cardinality pm0 which is false. Hence, the assumption must be
wrong and we have l(Gp0) = n. In conclusion, n = l(Gp0)  l(G)  n so n = l(Gp0) = l(G).
Hence, l(G) = maxp

�

l(Gp)
�

.

Using Lemma 7.2.1 and Table 7.1, we deduce that the discriminant group of h6i � ⇤ is
given by

A(h6i � ⇤) = Z/6Z �
19
M

1=i

aiZ/(i + 1)Z

�
9
M

j=2

d2j(Z/2Z ⇥ Z/2Z) � d2j+1Z/4Z

� e6Z/3Z � e7Z/2Z.

For all primes p, the p-primary parts of A(h6i � ⇤) are given by

A(h6i � ⇤)2 = Z/2Z

�
4
M

i=0

a4i+1Z/2Z

� a3Z/22Z � a7Z/23Z � a11Z/22Z � a15Z/24Z � a19Z/22Z

�
9
M

j=2

d2j(Z/2Z ⇥ Z/2Z) � d2j+1Z/22Z

� e7Z/2Z
A(h6i � ⇤)3 = Z/3Z

� a2Z/3Z � a5Z/3Z � a11Z/3Z � a14Z/3Z
� a8Z/32Z � a17Z/32Z
� e6Z/3Z

A(h6i � ⇤)5 = a4Z/5Z � a9Z/5Z � a14Z/5Z
A(h6i � ⇤)7 = a6Z/7Z � a13Z/7Z
A(h6i � ⇤)11 = a10Z/11Z
A(h6i � ⇤)13 = a12Z/13Z
A(h6i � ⇤)17 = a16Z/17Z
A(h6i � ⇤)19 = a18Z/19Z



78 8 Finding certain primitive lattice embeddings into the K3 lattice

and for all primes p > 19, A(h6i � ⇤)p = {0}. Hence, by Lemma 8.1.4,

l
�

A(h6i � ⇤)
�

= max
p prime

⇣

l
�

A(h6i � ⇤)p
�

⌘

= max
�

1 +

9
X

i=0

a2i+1 + 2(

9
X

j=2

d2j) +

9
X

j=2

d2j+1 + e7,

1 + a2 + a5 + a8 + a11 + a14 + a17 + e6,

a4 + a9 + a14,

a6 + a13,

a10,

a12,

a16,

a18
�

.

8.1.4 Check condition (2d) in Theorem 7.4.1

Let ⇤ be an ADE lattice in listbc, i.e. h6i � ⇤ satisfies conditions (2b) and (2c) in
Theorem 7.4.1. In particular, ⇤ has the form

⇤ :=
19
M

i=1

aiAi �
19
M

j=4

djDj �
8
M

k=6

ekEk.

Let p be an odd prime.

To check condition (2d), we assume that we chose ⇤ in listbc such that

(19 + 3) � (

19
X

1=i

aii +

19
X

4=j

djj +

8
X

k=6

ekk + 1) = l
�

A(h6i � ⇤)p
�

. (8.2)

Let
�

K(qp), Qp

�

be the unique quadratic Zp-module of rank l
�

A(h6i�⇤)p
�

and such that the
discriminant form of

�

K(qp), Qp

�

is isomorphic to the finite quadratic form
�

A(h6i�⇤)p, qp
�

over Zp. Recall that
�

K(qp), Qp

�

exists by Proposition 7.3.6.

We have to check condition (2d) for the primes p = 3, 5, 7 only since we find computer-
aided (lines 117-131 in the code in Appendix B) that just for those primes there exists a
lattice ⇤ 2 listc such that equation (8.2) holds for h6i � ⇤.

The lattice h6i � ⇤ satisfies then condition (2d) if and only if for p = 3, 5, 7 we have

(�1)3�1|A(⇤)| = |A(⇤)| ⌘ disc
�

K(qp)
�

mod (Z⇥
p )2. (8.3)

We now compute the discriminant disc
�

K(qp)
�

of
�

K(qp), Qp

�

.

By Lemma 7.2.1, we have for a prime number p a decomposition of the finite quadratic
form:

A(h6i � ⇤)p = A(h6i)p �
19
M

i=1

aiA(Ai)p �
19
M

j=4

djA(Dj)p �
8
M

k=6

ekA(Ek)p

qA(h6i�⇤)p = qA(h6i)p �
19
M

i=1

aiqA(Ai)p �
19
M

j=4

djqA(Dj)p �
8
M

k=6

ekqA(Ek)p .

(8.4)
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Hence, we compute for each prime p = 3, 5, 7 separately in the following Subsections 8.1.4.1-
8.1.4.3 the normal form of the finite quadratic form

�

A(M)p, qA(M)p

�

over Zp for

M 2 {h6i, Ai (1  i  19), Dj(4  j  19), Ek(6  k  8)}.

We associate then to
�

A(h6i � ⇤)p, qA(h6i�⇤)p

�

the quadratic form
�

K(qp), Qp

�

over Zp

using Corollary 7.3.7.

The discriminant of
�

K(qp), Qp

�

is then (see (2.1.3)) the product of the discriminants of
the direct summands W±1

p,k in the normal form of
�

K(qp), Qp

�

, see Example 7.3.2.1.

8.1.4.1 Computing the discriminant of

�

K(q3), Q3
�

According to Table 7.1, only the discriminant groups of the lattices

M 2 {h6i, A2, A5, A8, A11, A14, A17, E6}
have a non-trivial 3-primary part. The quadratic functions QM on the lattices M induce
on the discriminant groups A(M) the quadratic functions qA(M) given by (see [MM09,
Chap. II, Table 7.2]):

qA(h6i) : Z/6Z ! Q/Z, rg 7! r2

2 · 6

qA(An) : Z/(n + 1)Z ! Q/Z, rg 7!� nr2

2(n + 1)
for n = 2, 5, 8, 11, 14, 17

qA(E6) : Z/3Z ! Q/Z, rg 7! r2

2 · 3
.

We compute
�

A(M)3, qA(M)3

�

over Z3:

A(h6i)3 =Z/3Z , qA(h6i)3 : A(h6i)3 !Q3/Z3 , rg 7! r2

2 · 6
⌘ 2r2

2 · 3
mod Z3

A(A2)3 =Z/3Z , qA(A2)3 : A(A2)3 !Q3/Z3, rg 7!� 2r2

2 · 3
⌘ 4r2

2 · 3
mod Z3

A(A5)3 =Z/3Z , qA(A5)3 : A(A5)3 !Q3/Z3, rg 7!� 5r2

2 · 6
⌘ 2r2

2 · 3
mod Z3

A(A8)3 =Z/32Z, qA(A8)3 : A(A8)3 !Q3/Z3, rg 7!� 8r2

2 · 32
⌘ 10r2

2 · 32
mod Z3

A(A11)3=Z/3Z , qA(A11)3 : A(A11)3!Q3/Z3, rg 7!� 11r2

2 · 12
⌘ 4r2

2 · 3
mod Z3

A(A14)3=Z/3Z , qA(A14)3 : A(A14)3!Q3/Z3, rg 7!� 14r2

2 · 15
⌘ 2r2

2 · 3
mod Z3

A(A17)3=Z/32Z, qA(A17)3 : A(A17)3!Q3/Z3, rg 7!� 17r2

2 · 18
⌘ 14r2

2 · 32
mod Z3

A(E6)3 =Z/3Z , qA(E6)3 : A(E6)3 !Q3/Z3, rg 7! 2r2

2 · 3
mod Z3.

According to Definition 7.3.3, the normal forms of all these discriminant groups over Z3

have the form w✏
3,k with

q3 : w✏
3,k ! Q3/Z3, rg 7! r2u

2 · 3k
,
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where (u, pk) = 1, upk 2 2Z and �(u) = ✏.

We obtain:

M A(M) A(M)3
�

A(M)3, qA(M)3

�

K(qA(M)3) |A(M)| disc
�

K(qA(M)3)
�

h6i Z/6Z Z/3Z w�1
3,1 W�1

3,1 6 3 · 2 mod (Z⇥
3 )2

A2 Z/3Z Z/3Z w1
3,1 W 1

3,1 3 3 mod (Z⇥
3 )2

A5 Z/6Z Z/3Z w�1
3,1 W�1

3,1 6 3 · 2 mod (Z⇥
3 )2

A8 Z/9Z Z/32Z w1
3,2 W 1

3,2 9 32 mod (Z⇥
3 )2

A11 Z/12Z Z/3Z w1
3,1 W 1

3,1 12 3 mod (Z⇥
3 )2

A14 Z/15Z Z/3Z w�1
3,1 W�1

3,1 15 3 · 2 mod (Z⇥
3 )2

A17 Z/18Z Z/32Z w�1
3,2 W�1

3,2 18 32 · 14 mod (Z⇥
3 )2

E6 Z/3Z Z/3Z w�1
3,1 W�1

3,1 3 3 · 2 mod (Z⇥
3 )2

Table 8.1: Quadratic forms over Z3 on discriminant groups

Hence,

A(⇤)3 = w�1
3,1 � a2w

1
3,1 � a5w

�1
3,1 � a8w

1
3,2 � a11w

1
3,1 � a14w

�1
3,1 � a17w

�1
3,2 � e6w

�1
3,1

in normal form. The associated quadratic Z3-module
�

K(q3), Q3
�

is then given by Corol-
lary 7.3.7 by

K(q3) = W�1
3,1 � a2W

1
3,1 � a5W

�1
3,1 � a8W

1
3,2 � a11W

1
3,1 � a14W

�1
3,1 � a17W

�1
3,2 � e6W

�1
3,1 .

The discriminant of
�

K(q3), Q3
�

is then

disc
�

K(q3)
�

= (3·2)·3a2 ·(3·2)a5 ·(32)a8 ·3a11 ·(3·2)a14 ·(32·14)a17 ·(3·2)e6 mod (Z⇥
3 )2. (8.5)

8.1.4.2 Computing the discriminant of

�

K(q5), Q5
�

According to Table 7.1, only the discriminant groups of the lattices

M 2 {A4, A9, A14, and A19}

have a non-trivial 5-primary part. The quadratic functions QM on the lattices M induce
on the discriminant groups A(M) the quadratic functions qA(M) given by (see [MM09,
Chap. II, Table 7.2]):

qA(An) : Z/(n + 1)Z ! Q/Z, rg 7! � nr2

2(n + 1)
for n = 4, 9, 14, 19.
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We compute
�

A(M)5, qA(M)5

�

over Z5:

A(A4)5 =Z/5Z, qA(A4)5 : A(A4)5 !Q5/Z5, rg 7! � 4r2

2 · 5
⌘ 6r2

2 · 5
mod Z5

A(A9)5 =Z/5Z, qA(A9)5 : A(A9)5 !Q5/Z5, rg 7! � 9r2

2 · 10
⌘ 8r2

2 · 5
mod Z5

A(A14)5=Z/5Z, qA(A14)5 : A(A14)5!Q5/Z5, rg 7! � 14r2

2 · 15
⌘ 2r2

2 · 5
mod Z5

A(A19)5=Z/5Z, qA(A19)5 : A(A19)5!Q5/Z5, rg 7! � 19r2

2 · 20
⌘ 4r2

2 · 5
mod Z5.

According to Definition 7.3.3, the normal forms of all these discriminant groups over Z5

have the form w✏
5,k with

qw✏
5,k

: w✏
5,k ! Q5/Z5, rg 7! r2u

2 · 5k
,

where (u, 5k) = 1, u5k 2 2Z and �(u) = ✏.

We obtain:

M A(M) A(M)5
�

A(M)5, qA(M)5

�

K(qA(M)5) |A(M)| disc
�

K(qA(M)5)
�

A4 Z/5Z Z/5Z w1
5,1 W 1

5,1 5 5 mod (Z⇥
5 )2

A9 Z/10Z Z/5Z w�1
5,1 W�1

5,1 10 5 · 8 mod (Z⇥
5 )2

A14 Z/15Z Z/5Z w�1
5,1 W�1

5,1 15 5 · 2 mod (Z⇥
5 )2

A19 Z/20Z Z/5Z w1
5,1 W 1

5,1 20 5 mod (Z⇥
5 )2

Table 8.2: Quadratic forms over Z5 on discriminant groups

Hence,
A(⇤)5 = a4w

1
5,1 � a9w

�1
5,1 � a14w

�1
5,1 � a19w

1
5,1

in normal form. The associated quadratic Z5-module
�

K(q5), Q5
�

is then given by Corol-
lary 7.3.7 by

K(q5) = a4W
1
5,1 � a9W

�1
5,1 � a14W

�1
5,1 � a19W

1
5,1.

The discriminant of
�

K(q5), Q5
�

is then

disc
�

K(q5)
�

= 5a4 · (5 · 8)a9 · (5 · 2)a14 · 5a19 mod (Z⇥
5 )2. (8.6)

8.1.4.3 Computing the discriminant of

�

K(q7), Q7
�

According to Table 7.1, only the discriminant groups of the lattices

M 2 {A6, A13, }
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have a non-trivial 7-primary part. The quadratic functions QM on the lattices M induce
on the discriminant groups A(M) the quadratic functions qA(M) given by (see [MM09,
Chap. II, Table 7.2]):

qA(An) : Z/(n + 1)Z ! Q/Z, rg 7! � nr2

2(n + 1)
for n = 6, 13.

We compute
�

A(M)7, qA(M)7

�

over Z7:

A(A6)7 =Z/7Z, qA(A6)7 : A(A6)7 !Q7/Z7, rg 7! � 6r2

2 · 7
⌘ 8r2

2 · 7
mod Z7

A(A13)7=Z/7Z, qA(A13)7 : A(A13)7!Q7/Z7, rg 7! � 13r2

2 · 14
⌘18r2

2 · 7
mod Z7.

According to Definition 7.3.3, the normal forms of all these discriminant groups over Z7

have the form w✏
7,k with

qw✏
7,k

: w✏
7,k ! Q7/Z7, rg 7! r2u

2 · 7k
,

where (u, 7k) = 1, u7k 2 2Z and �(u) = ✏.

We obtain:

M A(M) A(M)7
�

A(M)7, qA(M)7

�

K(qA(M)7) |A(M)| disc
�

K(qA(M)7)
�

A6 Z/7Z Z/7Z !1
7,1 W 1

7,1 7 7 mod (Z⇥
7 )2

A13 Z/14Z Z/7Z !1
7,1 W 1

7,1 14 7 mod (Z⇥
7 )2

Table 8.3: Quadratic forms over Z7 on discriminant groups

Hence,
A(⇤)7 = a6w

1
7,1 � a13w

1
7,1

in normal form. The associated quadratic Z7-module K(q7) is then given by Corollary 7.3.7
by

K(q7) = a6W
1
7,1 � a13W

1
7,1.

The discriminant of
�

K(q7), Q7
�

is then

disc
�

K(q7)
�

= 7a6 · 7a13 mod (Z⇥
7 )2. (8.7)

8.1.4.4 Check condition (8.3)

The cardinality of the discriminant group A(⇤) is

|A(⇤)| = (
19
Y

i=1

(i + 1)ai) · (
19
Y

j=4

4dj ) · 2e6 · 3e7 . (8.8)
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For odd primes p, as a consequence of Hensel’s Lemma, an element in x 2 Z⇥
p is a square

root in Z⇥
p if and only if x is a square root mod p in (Z/pZ)⇥, see [Eis95, Chap. 7.2, p. 184].

Hence, equation (8.3) holds if and only if for all squares u mod p in (Z/pZ)⇥ we have

|A(⇤)| � u · disc
�

K(qp)
�

vp(|A(⇤)|) ⌘ 0 mod p

for all possible choices of u 2 �

(Z/pZ)⇥
�2, where vp is the p-adic valuation on Z.

We compute
�

(Z/3Z)⇥
�2

= {1},
�

(Z/5Z)⇥
�2

= {1, 4},
�

(Z/7Z)⇥
�2

= {1, 2, 4} (8.9)

and
v3
�|A(⇤)|� = a2 + a5 + 2a8 + a11 + a14 + 2a17 + e7,

v5
�|A(⇤)|� = a4 + a9 + a14,

v7
�|A(⇤)|� = a6 + a13.

(8.10)

Consequently, the set of all lattices ⇤ such that h6i � ⇤ satisfies conditions (2a)-(2d) is
given by

result :=

(

⇤ :=

19
M

i=1

aiAi �
19
M

j=4

djDj �
8
M

k=6

ekEk 2 listbc; for p = 3, 5, 7:

if 21 � (
19
X

1=i

aii +
19
X

4=j

djj +
8
X

k=6

ekk) = l
�

A(h6i � ⇤)p
�

,

then
|A(⇤)| � u · disc

�

K(qp)
�

vp
�|A(⇤)|� ⌘ 0 mod p for u 2 �

(Z/pZ)⇥
�2

)

,

where |A(⇤)| has been computed in (8.8),
�

(Z/pZ)⇥
�2 in (8.9), disc

�

K(qp)
�

in (8.5), (8.6),
and (8.7), and vp

�|A(⇤)|� in (8.10). The set of all lattices in result such that the assumptions
in Theorem 7.4.3 holds, as well, is

resultu :=

(

⇤ :=

19
M

i=1

aiAi �
19
M

j=4

djDj �
8
M

k=6

ekEk 2 listbcu; for p = 3, 5, 7:

if 21 � (
19
X

1=i

aii +
19
X

4=j

djj +
8
X

k=6

ekk) = l
�

A(h6i � ⇤)p
�

,

then
|A(⇤)| � u · disc

�

K(qp)
�

vp
�|A(⇤)|� ⌘ 0 mod p for u 2 �

(Z/pZ)⇥
�2

)

.

8.1.5 Check condition (2e) in Theorem 7.4.1

We claim that for all ADE lattices ⇤, the lattice h6i � ⇤ satisfies condition (2e) in
Theorem 7.4.1. Indeed, the discriminant group of h6i � ⇤ is given by A(h6i � ⇤) =
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A(h6i)�A(⇤). By Lemma 7.3.1, the finite quadratic form
�

A(h6i), qA(h6i)
�

over Z2 is given
by

�

A(h6i)2, qA(h6i)2
�

, where

A(h6i)2 = (Z/6Z)2 = Z/2Z, q2 : A(h6i)2 ! Q2/Z2, rg 7! r2

2 · 6
⌘ 3r2

2 · 2
mod Z2.

Hence,
�

A(h6i)2, qA(h6i)2
�

is the finite quadratic form w3
1,2 over Z2. Consequently, w3

1,2

splits off the quadratic function qA(h6i�⇤) on A(h6i � ⇤) over Z2. Hence, for all choices of
⇤, we do not need to check condition (2e).

In conclusion, the set result contains all ADE lattices ⇤ such that there exists a primitive
embedding h6i � ⇤ ,! LK3 and the set resultu a subset of lattices in resultu such that
h6i � ⇤ ,! LK3 is uniquely determined up to an automorphism of LK3.This concludes the
algorithm.

8.2 Main Theorem 2

Main Theorem 2. Let

G :=

19
X

i=1

aiAi +

19
X

j=4

djDj +

8
X

k=6

ekEk

be a formal sum of ADE singularities such that the ADE lattice

⇤ :=

19
M

i=1

aiAi �
19
M

j=4

djDj �
8
M

k=6

ekEk

is one of the 2942 elements in the list in Appendix C. The following hold:

1. There exists a complete (2, 3)-intersection S of a smooth quadric and a cubic in P4

such that S has singularities of type G.

2. There exists a cubic fourfold with ADE singularities of type G and an A1 singularity.

Proof. By choice of ⇤, we have a primitive embedding i : ⇤�h6i ,! LK3 into the K3 lattice
and let h be the generator of the rank one lattice h6i. In particular h2 = 6.

Since i is primitive, the saturation SatLK3(i) of h6i � ⇤ in LK3 is isomorphic to h6i � ⇤
with respect to i.

We claim, item (3) in Main Theorem 1 is satisfied: Let x 2 h6i�⇤ with h.x = 0 and write
x = nh+ g, where n 2 Z and g 2 ⇤. Then, 0 = h.x = h.(nh+ g) = 6n gives n = 0. Hence,
x 2 ⇤. Consequently, all x 2 h6i�⇤ with h.x = 0 and x2 = �2 are contained in ⇤. Further,
assume that we have h.x = 1 (or h.x = 2). Then, 1 = h.x = h.(nh + g) = nh2 + h.g = 6n
(or 2 = 6n). However, this equation holds for no n 2 Z. Hence, such an x does not exist.
In particular, there exists no x 2 h6i � ⇤ with h.x = 1 (or h.x = 2) and x2 = 0.

Consequently, by implications (3))(1) and (3))(2) in Main Theorem 1, there exists a
cubic fourfold having singularities of type G and an A1 singularity and a complete (2, 3)-
intersection S of a smooth quadric and a cubic in P4 such that S has singularities of type
G, respectively.
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The lattice 10A1 is the lattice with largest rank in the list in Appendix C which has only
A1 lattices as direct summands. Hence, we obtain the following:

Corollary 8.2.1. The following exist:

1. A complete (2, 3)-intersection of a smooth quadric and a cubic in P4 with precisely
10 A1 singularities.

2. A cubic fourfold with precisely 11 A1 singularities.

Proof. The list in Appendix C contains the lattice 10A1. Hence, by Main Theorem 2,
there exists a complete (2, 3)-intersection of a smooth quadric and a cubic in P4 with 10
A1 singularities and a cubic fourfold with 11 A1 singularities.

Remark 8.2.2. We note that Corollary 8.2.1 does not necessarily give the maximal number
of A1 singularities which can occur on a complete (2, 3)-intersection in P4 and a cubic
fourfold, respectively. Indeed, Varchenko’s bound for the maximal number of singularities
which can occur on a cubic fourfold is 15 (see [Var84, Theorem on the Upper Bound, p.
2781]) and hence a cubic fourfold with more than 11 but strictly less than 16 A1 singularities
could exist.

The lattices 2A1 � 6A2, 4A1 � 5A2, and 6A1 � 4A2 are the lattices with largest rank in the
list in Appendix C which have only A1 and A2 lattices as direct summands. Therefore, we
obtain:

Corollary 8.2.3. The following exist:

1. A complete (2, 3)-intersection of a smooth quadric and a cubic in P4 with precisely:

a) 2 A1 and 6 A2 singularities.

b) 4 A1 and 5 A2 singularities.

c) 6 A1 and 4 A2 singularities.

2. A complete (2, 3)-intersection of a quadric of corank 1 and a cubic in P4 with precisely:

a) 3 A1 and 5 A2 singularities.

b) 5 A1 and 4 A2 singularities.

c) 7 A1 and 3 A2 singularities.

3. A cubic fourfold with precisely:

a) 3 A1 and 6 A2 singularities.

b) 5 A1 and 5 A2 singularities.

c) 7 A1 and 4 A2 singularities.

Proof. The list in Appendix C contains the lattices 2A1 �6A2, 4A1 �5A2, and 6A1 �4A2.
Hence, by Main Theorem 2, there exist complete (2, 3)-intersections of smooth quadrics and
cubics in P4 whose singularities are precisely of type 2A1+6A2, 4A1+5A2, and 6A1+4A2.
Moreover, there exist three cubic fourfolds with singularities of type 3A1+6A2, 5A1+5A2,
and 7A1 + 4A2. By implication (1) ) (2) in Main Theorem 1, we have furthermore the
existence of complete (2, 3)-intersections of quadrics of corank 1 and cubics in P4 with
singularities precisely of type 3A1 + 5A2, 5A1 + 4A2, and 7A1 + 3A2.
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Remark 8.2.4. We note that Corollary 8.2.3 does not necessarily give the maximal number
of A1 and A2 singularities which can occur on a complete (2, 3)-intersection in P4 and a
cubic fourfold, respectively.



9 Correspondence between the moduli

space of cubic fourfolds and

quasi-polarized K3 surfaces of degree 6

In this chapter, we will firstly define lattice polarized K3 surfaces and then recall the
construction of the moduli space of big and nef lattice polarized K3 surfaces. We will
then construct the moduli space of those quasi-polarized K3 surfaces (eS, L) such that
the map 'L : eS ! P4 is birational onto its image and such that 'L(eS) has a certain
configuration of ADE singularities, as the moduli space of certain lattice polarized K3
surfaces. Secondly, we will construct the moduli space of cubic fourfolds with certain
ADE singularities. Finally, we will prove Main Theorem 3, which says that both moduli
spaces are isomorphic.

9.1 Lattice polarized K3 surfaces

9.1.1 Basic notation and definitions

Let M be an even lattice of signature (1, t) with t � 0.

An M -polarized K3 surface is a pair (eS, j), where eS is a K3 surface and j : M ,! Pic(eS)
is a primitive embedding. We say that an M -polarized K3 surface (eS, j) is big and nef
if there exists an isomorphism class of a line bundle in j

�

M
�

which is big and nef. Two
M -polarized K3 surfaces (eS, j) and (eS0, j0) are isomorphic if there exists an isomorphism
f : eS ! eS0 such that j = f⇤ � j0.

We note that for t = 0, an M -polarized K3 surface is simply a quasi-polarized K3 surface
defined in Chapter 3 and all results here specialize to the results for quasi-polarized K3
surfaces.

9.1.2 Periods of lattice polarized K3 surfaces

Let M be an even lattice of signature (1, t) with t � 0 which is embeddable into the K3
lattice LK3. We fix a primitive embedding iM : M ,! LK3 and identify M with its image
iM (M) in LK3.

We call a pair (eS,�) a marked M -polarized K3 surface if eS is a K3 surface and � : H2(eS,Z) !
LK3 is a marking such that ��1(M) ✓ Pic(eS). It follows that for j� := ��1|M : M ,!
Pic(eS) the pair (eS, j�) is an M -polarized K3 surface and we call a marked M -polarized
K3 surface big and nef if (eS, j�) is big and nef. Two marked M -polarized K3 surfaces
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(S,�) and (S0,�0) are called isomorphic if there exists an isomorphism f : S ! S0 such
that �0 = � � f⇤.

Denote by FM,m the fine moduli space of marked M -polarized K3 surfaces (see [Dol96, §3])
and by F bn

M,m the subset of all isomorphism classes of big and nef marked M -polarized K3
surfaces.

Let M?
LK3

be the orthogonal complement of M in LK3 with respect to iM . Let ⌦LK3 be
the period domain defined in Section 3.4. Then,

⌦(M) := {[x] 2 P(M?
LK3

⌦Z C); x2 = 0, x.x > 0} ✓ ⌦LK3

is the period domain of big and nef M -polarized K3 surfaces, a complex
�

20 � rank(M)
�

-
dimensional manifold with two connected components each of which is a bounded sym-
metric domain of type IV.

Let (eS,�) be a marked M -polarized K3 surface. We have a Hodge decomposition

H2(eS,C) = H2(eS, OeS) � H1(eS, ⌦1
eS) � H0(eS, ⌦2

eS).

For a generator ! of the 1-dimensional C-vector space H2(eS, OeS), we let [�(!)] := �(!)
mod C⇤ 2 P(M?

LK3
⌦Z C). We can show that [�(!)] 2 ⌦(M) and call [�(!)] the period

point of the marked M -polarized K3 surface (eS,�).

Let O(LK3) be the automorphism group of LK3 and

O(LK3, M) := {g 2 O(LK3); g|M = id|M}
the subgroup of O(LK3) fixing M point-wise. The group O(LK3, M) acts on FM,m by
sending a marked M -polarized K3 surface (eS,�) and an automorphism � 2 O(LK3, M) to
(eS,� � �) without changing the isomorphism class of the M -polarized K3 surface (eS, j�).

Let O(M?
LK3

) be the automorphism group of M?
LK3

and OM be the image of the injection
O(LK3, M) ! O(M?

LK3
) obtained by restricting an element in O(LK3, M) to M?

LK3
.

Proposition 9.1.1 ([Dol96, Proposition 3.3]). OM is an arithmetic subgroup of the indef-
inite orthogonal group O

�

2, 19 � rank(M)
�

.

The group OM acts properly-discontinuously on ⌦(M). Hence, ⌦(M)/OM is a complex
algebraic variety of dimension 20 � rank(M).

Theorem 9.1.2 ([Dol96, Remark 3.4], [HT15, 3.1]). Assume that the embedding i : M ,!
LK3 is unique up to an automorphism of LK3.

The elements of the quotient set

F bn

M := F bn

M,m/O(LK3, M)

are the isomorphism classes of big and nef M -polarized K3 surfaces. Furthermore, we have
a bijection

⇢ : F bn

M
bij�! Fbn

M := ⌦(M)/OM

defined by the period map.

We refer to Fbn

M as in Theorem 9.1.2 as a coarse moduli space of big and nef M -polarized
K3 surfaces.
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9.2 Moduli spaces of K3 surfaces with a certain Picard group

We define in the next two Subsections 9.2.1 and 9.2.2 isomorphism classes of certain quasi-
polarized K3 surfaces and certain lattice polarized K3 surfaces. In Subsection 9.2.3, we
show that we have a correspondence between the two sets of isomorphism classes. In
Subsection 9.2.4, we construct then the moduli space of these polarized K3 surfaces as a
moduli space of the corresponding lattice polarized K3 surfaces.

For T 2 {Ai�1,Dj�4,E8�k�6}, let the following be defined as in Table 6.1: The formal
sum of ADE singularity types �(T), the positive integer corankT, the weighted graph
��(T) with associated lattice ⇤(��(T)), and the linear combination hT 2 ⇤(��(T)) of the
vertices of ��(T).

Let
�

(a1, . . . , an), (d4, . . . , dm), (e6, e7, e8)
� 2 (Z�0)

n ⇥ (Z�0)
m�3 ⇥ (Z�0)

3.

9.2.1 Isomorphism classes of certain quasi-polarized K3 surfaces of degree 6

Let (eS, LT) be a polarized K3 surface of degree 6 such that 'LT : eS ! P4 is birational
onto its image. By Proposition 3.3.4, 'LT(eS) is a complete (2, 3)-intersection of a quadric
Q and a cubic Y in P4.

Let

G :=

n
X

i=1

aiAi +

m
X

j=4

djDj +

8
X

k=6

ekEk

be a formal sum of ADE singularity types.

Definition 9.2.1. Let K�
�(T),G be the set of all isomorphism classes of quasi-polarized K3

surfaces (eS, LT) of degree 6 such that

1. 'LT : eS ! P4 is birational onto its image

2. 'LT(eS) is contained in a quadric Q ✓ P4 of corank(Q) = corankT such that

a) the singularities of 'LT(eS) lying on Sing(Q) correspond to �(T)

b) the singularities of 'LT(eS) not lying on Sing(Q) correspond to G.

9.2.2 Isomorphism classes of certain lattice polarized K3 surfaces

For
�

(a1, . . . , an), (d4, . . . , dm), (e6, e7, e8)
� 2 Z�0

n ⇥ Z�0
m�3 ⇥ Z�0

3, let

G :=
n
X

i=1

aiAi +
m
X

j=4

djDj +
8
X

k=6

ekEk

be a formal sum of ADE singularity types and

�G :=
n
X

i=1

aiAi +
m
X

j=4

djDj +
8
X

k=6

ekEk
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a Dynkin diagram with connected components Ai, Dj , and Ek. Let ⇤�(T),G := ⇤(��(T)) �
⇤(�G) be the associated lattice such that we have an embedding (not necessarily primitive
or unique)

i : ⇤�(T),G ,! LK3.

Let
SatLK3(i) ✓ LK3

be the saturation of ⇤�(T),G in LK3 with respect to i. Then, LK3/SatLK3(i) is torsion-free
by definition of the saturation. Hence, the inclusion defines a primitive embedding

◆ : SatLK3(i) ,! LK3.

Definition 9.2.2. Let F �
SatLK3

(i) be the set of all isomorphism classes of SatLK3(i)-polarized

K3 surfaces (eS, j) such that for LT := j
�

i(hT)
�

we have

1. for all E 2 Pic(eS) with LT.E = 0 and E2 = �2, we have E 2 j
�

i(⇤�(T),G)
�

2. there exists no E 2 Pic(eS) such that LT.E = 1 and E2 = 0

3. there exists no E 2 Pic(eS) such that LT.E = 2 and E2 = 0.

9.2.3 Correspondence between isomorphism classes of certain

quasi-polarized and lattice polarized K3 surfaces

We keep the notation and definitions made previously in Subsection 9.2 and will make in
the following furthermore the assumption:

The embedding i : ⇤�(T),G ,! LK3 defined in Subsection 9.2.2 is unique up to an
automorphism of LK3.

(9.1)

Such lattices ⇤�(T),G exist. Indeed, in Theorem 8.1.1 we determined 1607 ADE lattices
⇤(�G) such that we have a primitive embedding ⇤�(A1),� := h6i � ⇤ ,! LK3 which is
unique up to an automorphism of LK3.

By assumption (9.1), we have then a correspondence between the sets of isomorphism
classes in Definition 9.2.1 and 9.2.2 in the last two subsections:

Lemma 9.2.3. We have a natural bijection K�
�(T),G

bij�! F �
SatLK3

(i).

Proof. We claim that a bijection K�
�(T),G ! F �

SatLK3
(i) is defined by ⌃ : [(eS, LT)] 7!

[(eS, j�)] for a marking � : H2(eS,Z) ! LK3 with �(LT) = i(hT) with hT as in Table 6.1,
where [(eS, LT)] is the isomorphism class of the quasi-polarized K3 surface (eS, LT) and
[(eS, j�)] the isomorphism class of the SatLK3(i)-lattice polarized K3 surface (eS, j�) with
j� := ��1|SatLK3

(i) : SatLK3(i) ,! Pic(eS).

We show that the map ⌃ is well-defined:

We prove that the lattice ⇤�(T),G is contained in Pic(eS). Indeed, in the proof of (2) ) (3) in
Main Theorem 1 we showed that for a specific hyperplane section CT of S := 'LT(eS) ✓ P4

the pull-back '⇤
LT

(CT) 2 Div(eS) is the linear combination of curves in Div(eS) such that the
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weighted graph associated to these curves is ��(T) as in Table 6.1. Furthermore, LT is the
line bundle on eS associated to '⇤

LT
(CT). Let ⇤(��(T)) be the lattice in Pic(eS) associated to

��(T). Further, we showed that the weighted graph associated to the exceptional divisor in
eS of the minimal resolution of all singularities corresponding to G is the graph �G and spans
the lattice ⇤(�G) in Pic(eS). Hence, the corresponding lattice ⇤�(T),G := ⇤(��(T))�⇤(�G)

is contained in Pic(eS).

The marking � : H2(eS,Z) ! LK3 with �(LT) = i(hT) restricts to an embedding

�|⇤�(T),G : ⇤�(T),G ,! LK3

and the inclusion defines naturally a primitive embedding

SatLK3(�|⇤�(T),G) ,! LK3

of the saturation of ⇤�(T),G into LK3 with respect to �|⇤�(T),G . We prove that

t� := ��1
SatLK3

(�|⇤�(T),G ) : SatLK3(�|⇤�(T),G) ,! Pic(eS) (9.2)

defines a primitive embedding. Indeed, let x 2 SatLK3(�|⇤�(T),G), i.e. x 2 LK3 and
there is nx � 1 such that nxx 2 �(⇤�(T),G). Since �(⇤�(T),G) ✓ �

�

Pic(eS)
�

, we obtain
nx��1(x) 2 Pic(eS). However, H2(eS,Z)/Pic(eS) is torsion-free and hence t�(x) = ��1(x) 2
Pic(eS). Therefore, the map is well-defined. Further, the embedding is primitive. Indeed,
let x 2 Pic(eS) such that for nx � 1, we have nxx 2 t�

�

SatLK3(�|⇤�(T),G)
�

, i.e. nx�(x) 2
SatLK3(�|⇤�(T),G). However, �(x) 2 LK3 and LK3/SatLK3(�|⇤�(T),G) is torsion-free so
�(x) 2 SatLK3(�|⇤�(T),G), i.e. x 2 t�

�

SatLK3(�|⇤�(T),G)
�

.

By assumption (9.1), the embedding i : ⇤�(T),G ,! LK3 is unique up to an automorphism
of LK3. Hence, �|⇤�(T),G = � � i for an automorphism � of LK3 inducing an isomorphism

�|SatLK3
(i) : SatLK3(i) ! SatLK3(�|⇤�(T),G).

Therefore, we have a primitive embedding

j� = t� � �|SatLK3
(i) : SatLK3(i) ,! Pic(eS).

Consequently, (eS, j�) is a SatLK3(i)-polarized K3 surface and the isomorphism class of
(eS, j�) is independent of the choice of the marking �.

We showed in (2) ) (3) in Main Theorem 1 that 1.-3. in Definition 9.2.2 hold.

In conclusion, the isomorphism class [
�

eS, j�
�

] of
�

eS, j�
�

is contained in F �
SatLK3

(i), i.e. the
map ⌃ is well-defined.

We claim that ⇥ : F �
SatLK3

(i) ! K�
�(T),G, [(eS, j)] 7! [

⇣

eS, j
�

i(hT)
�

⌘

] with hT 2 ⇤(��(T)) as
in Table 6.1, is inverse to ⌃.

We show that ⇥ is well-defined:

Let (eS, j) be an element in the isomorphism class [(eS, j)] 2 F �
SatLK3

(i). We have a primitive

embedding j : SatLK3(i) ,! Pic(eS) and items 1.-3. in Definition 9.2.2 hold.
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Let LT := j
�

i(hT)
�

. Note that for an effective Hodge isometry ↵ : H2(eS,Z) ! H2(eS,Z)

the SatLK3(i)-polarized K3 surfaces (eS, j) and (eS,↵ � j) are isomorphic. We claim that we
can choose ↵ such that ↵(LT) 2 Pic(eS) is nef. Indeed, by replacing j by �j if necessary,
we can assume that LT is contained in the positive cone CeS . Then, by Proposition 3.2.3,
we have (�2)-curves C1, . . . , Cn 2 Pic(eS) such that the image (sC1 � . . . � sCn)(LT) of
LT under the Picard-Lefschetz reflection sC1 � . . . � sCn is nef. In conclusion, taking ↵ :=
sC1 � . . . � sCn � (±id), we can assume that LT is nef.

Since items 2. and 3. in Definition 9.2.2 hold, there exists no element E 2 Pic(eS) with
E2 = 0 and LT.E 2 {1, 2}. Therefore, Proposition 3.2.6 implies that the map 'LT : eS ! P4

is birational onto its image. By Proposition 3.3.4, the image S := 'LT(eS) ✓ P4 of eS under
'LT is a complete (2, 3)-intersection in P4.

Let MT be the Z-module generated by the root system RLT := {C 2 Pic(eS); C2 =
�2, LT.C = 0}. We claim that MT = j

�

i(⇤�(T),G)
�

. By definition of LT, we have
j
�

i(⇤�(T),G)
� ✓ MT. Further, since [(eS, j)] satisfies item 1. in Definition 9.2.2, there

exists no C in Pic(eS) such that C2 = �2, C.LT = 0, and C /2 j
�

i(⇤�(T),G)
�

. Hence,
j
�

i(⇤�(T),G)
�

= MT. By Corollary 3.3.5, S has singularities of type �(T)+G correspond-
ing to the Dynkin diagram ⇤�(T),G = ⇤(��(T)) + ⇤(�G).

Following the proof of (2) ) (3) in Main Theorem 1, we see that S is contained in a
quadric Q of corank(Q) = corankT in P4 such that all singularities of S on the singular
locus of Q are of type �(T) and all other singularities of S are of type G.

We show that ⌃ and ⇥ are inverse to each other:

Let [(eS, LT)] 2 K�
�(T),G. We have ⌃([(eS, LT)]) = [(eS, j�)] for a marking � of eS such that

�(LT) = i(hT). Then, ⇥([(eS, j�)]) = [
⇣

eS, j�
�

i(hT)
�

⌘

] = [(eS, LT)]. Therefore, ⇥ � ⌃ =

idK�
�(T),G

.

Let [(eS, j)] 2 F �
SatLK3

(i). We have ⇥([(eS, j)]) = [
⇣

eS, j
�

i(hT)
�

⌘

]. Then, for a marking �

of eS such that �
⇣

j
�

i(hT)
�

⌘

= i(hT), we have ⌃([
⇣

eS, j
�

i(hT)
�

⌘

]) = [(eS, j�)]. Since the
embedding ⇤�(T),G ,! LK3 is uniquely determined up to an automorphism of LK3, we
have [(eS, j)] = [(eS, j�)]. Therefore, also ⌃ � ⇥ = idF �

SatLK3
(i)

.

9.2.4 Moduli space of certain polarized K3 surfaces as the moduli space of

certain lattice polarized K3 surfaces

We keep the notation and assumptions made at the beginning of Subsection 9.2 and in
Subsection 9.2.2. Let

�n := {x 2 LK3 \ i(⇤�(T),G); i(hT).x = 0, x2 = �2}
�u := {x 2 LK3; i(hT).x = 1, x2 = 0}
�h := {x 2 LK3; i(hT).x = 2, x2 = 0}.

Remark 9.2.4. The indices n, u, and h should remind us of nodal, unigonal, and hyperelliptic
classes in the Picard group of a K3 surface, respectively.
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For " 2 �n, �u, or �h, let

"? := {x 2 (SatLK3(i))
?
LK3

⌦Z C; ".x = 0}

be the orthogonal complement of " in LK3 and

H�n :=
[

"2�n

"?, H�u :=
[

"2�u

"?, H�h
:=

[

"2�h

"?.

We define then the following subset of the period domain ⌦
�

SatLK3(i)
�

:

⌦
�

SatLK3(i)
��

:= ⌦
�

SatLK3(i)
� \

⇣

�

H�n [ H�u [ H�h

� \ ⌦
�

SatLK3(i)
�

⌘

.

We note that
�

H�n [ H�u [ H�h

� \ ⌦
�

SatLK3(i)
�

is a countable union of hyperplanes in
⌦
�

SatLK3(i)
�

. However, we claim the number of the OSatLK3
(i)-orbits of the hyperplanes

in
�

H�n [H�u [H�h

�\ ⌦
�

SatLK3(i)
�

is finite. Indeed, by Eichler’s criterion (see [GHS13,
Lemma 7.5]), there are only finitely many O

�

LK3, SatLK3(i)
�

-orbits of elements with a
fixed length in LK3. Since O

�

LK3, SatLK3(i)
�

and OSatLK3
(i) are isomorphic, we have

consequently only finitely many OSatLK3
(i)-orbits of hyperplanes "? in

�

SatLK3(i)
�?
LK3

⌦ZC
with " 2 �n [ �u [ �h having a fixed length.

Consequently, OSatLK3
(i) \ ⌦

�

SatLK3(i)
�� is the complement of the finitely many orbits of

hyperplanes "? in the moduli space Fbn

SatLK3
(i) := OSatLK3

(i) \ ⌦
�

SatLK3(i)
�

of big and nef
SatLK3(i)-polarized K3 surfaces constructed in Theorem 9.1.2 and hence is in particular a
quasi-projective variety, i.e.

F�
SatLK3

(i) := OSatLK3
(i) \ ⌦

�

SatLK3(i)
��

is an open subvariety of Fbn

SatLK3
(i).

Proposition 9.2.5. F�
SatLK3

(i) is a coarse moduli space of all quasi-polarized K3 surface

(eS, LT) of degree 6 such that:

1. 'LT : eS ! P4 is birational onto its image

2. 'LT(eS) is contained in a quadric Q ✓ P4 of corank(Q) = corankT such that

a) the singularities of 'LT(eS) lying on Sing(Q) are of type �(T)

b) the singularities of 'LT(eS) not lying on Sing(Q) correspond to G,

i.e. with Definition 9.2.1, we have a bijection

K�
�(T),G

bij�! F�
SatLK3

(i). (9.3)

Proof. By Lemma 9.2.3, we have a bijection

K�
�(T),G

bij�! F �
SatLK3

(i), (9.4)
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where F �
SatLK3

(i) is the set of isomorphism classes of SatLK3(i)-polarized K3 surfaces in
Definition 9.2.2.

Let (eS, j) be a SatLK3(i)-polarized K3 surface whose class is contained in F �
SatLK3

(i). We

saw in the proof of (3) ) (2) in Main Theorem 1 that for a marking � : H2(eS,Z) ! LK3,
the line bundle LT := ��1

�

i(hT)
� 2 Pic(eS) with hT 2 ⇤�(T),G as in Table 6.1, is big and

nef. Hence, F �
SatLK3

(i) is a subset of the set F bn

SatLK3
(i) of all big and nef SatLK3(i)-polarized

K3 surfaces introduced in Subsection 9.1.2.

We now show that the bijection ⇢ : F bn

SatLK3
(i)

bij�! Fbn

SatLK3
(i) in Theorem 9.1.2, given by the

period map ⇢, descends to a bijection:

⇢� := ⇢|F �
SatLK3

(i)
: F �

SatLK3
(i)

bij�! F�
SatLK3

(i). (9.5)

We prove firstly that ⇢�(F �
SatLK3

(i)) ✓ F�
SatLK3

(i).

Indeed, let (eS, j) be a SatLK3(i)-polarized K3 surface in F �
SatLK3

(i). Let � be a marking

for eS such that j� := ��1
|SatLK3

(i) = j and hence j�
�

SatLK3(i)
�

= j
�

SatLK3(i)
� ✓ Pic(eS)

(note that such a � actually exists since the embedding ⇤�(T),G ,! LK3 is unique up to an
automorphism of LK3 by assumption (9.1), see [Dol96, p. 2606]). Let !eS be the generator
of the 1-dimensional C-vector space H0(eS, ⌦2

eS
). Let [�(!eS)] 2 ⌦

�

SatLK3(i)
�

be the period
point of the marked SatLK3(i)-polarized K3 surface (eS,�).

We have to show that [�(!eS)] /2 H�n [ H�u [ H�h :

Indeed, if [�(!eS)] 2 H�n , we have an " 2 �n such that ".[�(!eS)] = 0, i.e. E := ��1(") 2
Pic(eS). By definition, " 2 LK3 \ i(⇤�(T),G), "2 = �2 and ".i(hT) = 0. Therefore,
E 2 Pic(eS) \ j�

�

i(⇤�(T),G)
�

with E2 = �2 and E.LT = 0. Since the isomorphism class of
eS is contained in F �

SatLK3
(i) and hence satisfies condition 1. above, such an E and therefore

such an " cannot exist.

Likewise, if [�(!eS)] 2 H�u (or [�(!eS)] 2 H�h) we have an " 2 �u (or " 2 �h) such that
".[�(!eS)] = 0, i.e. E := ��1(") 2 Pic(eS). By definition, " 2 LK3, "2 = 0, and ".i(hT) = 1

(or ".i(hT) = 2). Therefore, E 2 Pic(eS) with E2 = 0 and E.LT = 1 (or E.LT = 2).
Again, since the isomorphism class of eS is contained in F �

SatLK3
(i) and therefore satisfies

conditions 2. (and 3.) above, such an E and therefore such an " cannot exist.

Consequently, [�(!eS)] 2 ⌦
�

SatLK3(i)
��.

Moreover, two markings as above differ by an element in the group of automorphisms
OSatLK3

(i).

In conclusion, we obtain ⇢�(F �
SatLK3

(i)) ✓ OSatLK3
(i) \ ⌦

�

SatLK3(i)
��

= F�
SatLK3

(i).

We prove secondly that ⇢� is surjective:

Indeed, for x 2 F�
SatLK3

(i), we have by the surjectivity of the period map a K3 surface eS

and a marking  for eS such that x is the period point of the marked K3 surface (eS, ).



9.3 Moduli spaces of cubic fourfolds with isolated ADE singularities 95

Since x 2 F�
SatLK3

(i), we have x.SatLK3(i) = 0. Therefore,  �1
�

SatLK3(i)
� ✓ Pic(eS).

Consequently, j :=  �1|SatLK3
(i) : SatLK3(i) ,! Pic(eS) defines a primitive embedding.

We claim that (eS, j ) 2 F �
SatLK3

(i):

Indeed, assume that we have E 2 Pic(eS) \ j 
�

i(⇤�(T),G)
�

with j 
�

i(hT)
�

.E = 0 and
E2 = �2. Then, " :=  (E) 2 LK3 \ i(⇤�(T),G), i(hT)." = 0, and "2 = �2 in contradiction
to the fact that x /2 Hn, i.e. there exists no such ".

Likewise, assume that we have E 2 Pic(eS) with E2 = 0 and j 
�

i(hT)
�

.E = 1 (or
j 
�

i(hT)
�

.E = 2). Then, " :=  (E) 2 LK3 \ i(⇤�(T),G), "2 = 0, and i(hT)." = 1 (or
i(hT)." = 2), in contradiction to the fact that x /2 Hh (or x /2 Hu), i.e. there exists no
such ".

In conclusion, ⇢� is bijective.

By (9.4) and (9.5), we have a bijection K�
�(T),G

bij�! F�
SatLK3

(i). This concludes the proof.

Lemma 9.2.6. The quasi-projective variety F�
SatLK3

(i) has dimension 20 � rank(⇤�(T),G).

Proof. The period domain ⌦
�

SatLK3(i)
�

has dimension 20 � rank
�

SatLK3(i)
�

= 20 �
rank(⇤�(T),G). As OSatLK3

(i) acts properly-discontinuously on ⌦
�

SatLK3(i)
�

, this implies
that the quotient Fbn

SatLK3
(i) = ⌦

�

SatLK3(i)
�

/OSatLK3
(i) has dimension 20 � rank(⇤�(T),G)

and since F�
SatLK3

(i) is an open subvariety of Fbn

SatLK3
(i), it has dimension 20�rank(⇤�(T),G),

as well.

Remark 9.2.7. Proposition 9.2.5 proves in particular implication (3) ) (2) in Main Theo-
rem 1 in case we have a unique embedding ⇤�(T),G ,! LK3. Indeed, we showed that the
points in the moduli space F�

SatLK3
(i) parametrize in this case quasi-polarized K3 surfaces

as in item 2. in Main Theorem 1.

9.3 Moduli spaces of cubic fourfolds with isolated ADE
singularities

Let G be a finite formal sum of ADE singularity types.

We denote MG the set of all isomorphism classes of cubic fourfolds having only singularities
corresponding to G.

The projective space P
�

H0(P5, OP5(3))
� ⇠= P55 parametrizes all cubic fourfolds. We denote

by [X] the point in P55 associated to a cubic fourfold X ✓ P5.

For each [X] 2 P55, fix a small open neighborhood U([X]) ✓ P55 of [X] such that all
points in U([X]) correspond to cubic fourfolds whose singularities are adjacent to those of
X (see Section 1.1 for the definition of adjacent).

Let
IG := {[X] 2 P55; Sing(X) = G}
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be the set of all points in P55 associated to cubic fourfolds with singularities corresponding
to G. Denote

⌃G := {G0 formal sum of ADE singularity tpes; G0 is adjacent to G and G0 6= G}

the set of all possible combinations of ADE singularity types which are adjacent but not
equal to G. Let

I 0G :=
[

G02⌃G

{[X] 2 P55; Sing(X) = G0}

be the set of all points in P55 associated to cubic fourfolds with singularities adjacent but
not equal to G. Then,

S

[X]2I0G U([X]) is an open subset of P55 containing only points in
P55 associated to cubic fourfolds whose singularities are adjacent but not equal to G.

Hence, P55 \ S[X]2I0G U([X]) is closed in P55. Likewise,
S

[X]2IG U([X]) is an open subset
of P55 containing only points in P55 such that the singularities of the associated cubic
fourfolds are adjacent to G. Consequently,

UG :=
[

[X]2IG
U([X])

\

⇣

P55 \
[

[X]2I0G
U([X])

⌘

✓ P55

is locally closed in P55, i.e. a quasi-projective variety in P55 and contains only those points
in P55 associated to cubic fourfolds with singularities corresponding exactly to G.

Let (x0 : . . . : x5) be coordinates on P5. For an element g in the special linear group
SL(6) and [X] 2 P55 the class of a cubic fourfold X : f(x0, . . . , x5) = 0 ✓ P5, defined by a
homogeneous cubic polynomial f , we let

g([X]) : f
�

g(x0, . . . , x5)
�

= 0 ✓ P5

and obtain hence an action of SL(6) on P55.

For the action of a reductive group G on a projective variety M together with a linearization
of a line bundle over M for this group action, we consider the open subset M s ✓ M of
G-stable points of M in M (see [MFK94, Chap. 1, Definitions 1.4, 1.7] for the definitions).
By Mumford’s Geometric Invariant Theory (GIT), we have a quotient M s//G of M s by
the group G (see [MFK94, Chap. 1, Theorem 1.10]). The group SL(n) is reductive for
a positive integer n. In the following, we will consider the above action of SL(6) on
the projective space P55 together with the natural SL(6)-linearization with respect to the
hyperplane bundle OP55(1). We have then:

Theorem 9.3.1 ([Laz09, Theorem 1.1]). Let X be a cubic fourfold with only isolated
singularities. Then, X is SL(6)-stable if and only if X has at most ADE singularities.

Corollary 9.3.2.
MG := UG � SL(6)

is in the sense of GIT a coarse moduli space of cubic fourfolds with ADE singularities
corresponding to G, i.e. we have a bijection

MG bij�! MG.
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Proof. By definition, all points in UG ✓ P55 parametrize cubic fourfolds with singularities
corresponding to G. By Theorem 9.3.1, all these points are stable with respect to the
action of SL(6) on P55. Hence, we have a well-defined GIT quotient UG � SL(6) which is
a quasi-projective variety, see [Muk03, Corollary 5.15, Example 4.42].

Lemma 9.3.3. Let ⌧ :=
P

p2G ⌧(p) be the sum of the Tjurina numbers of all singularities
in G. Assume that we have ⌧ < 16. Then, MG has dimension 20 � ⌧ .

Proof. Let X0 ✓ P5 be a cubic fourfold having only the singularities pX0,1, . . . , pX0,n with
ADE types T1, . . . ,Tn, respectively, such that G = T1 + . . . + Tn. Let U([X0]) ✓ P55 be
an arbitrarily small open neighborhood of [X0]. Let

Y := {([X], x) ✓ P55 ⇥ P5; X cubic fourfold, x 2 X}

be the universal cubic fourfold. For i = 1, . . . , n, we now construct a deformation of
the germ (X0, pX0,i). Indeed, for an arbitrarily small neighborhood V (pX0,i) ✓ P5 of the
singularity pX0,i of X0, let

YU([X0]),i := Y|U([X0])⇥V (pX0,i)

be the restriction of Y to U([X0]) ⇥ V (pX0,i). Then,

di : YU([X0]),i ! U([X0]), ([X], x) 7! [X] (9.6)

is a deformation of the germ (X0, pX0,i) over the base point [X0] 2 U([X0]). On the other
hand, by [GLS07, Chap. II, Corollary 1.17], we have a semi-universal deformation

uTi : XTi ! C⌧(Ti)

of the germ (X0, pX0,i) over the base point (0, . . . , 0) 2 Cµ(Ti). Consequently, there exists
a morphism

i : U([X0]) ! C⌧(Ti)

such that we have a pull-back diagram

YU([X0]),i XTi

U([X0]) C⌧(Ti)

si

di
uTi

i

for some morphism si. We obtain a commutative diagram

Qn
i=1 YU([X0]),i

Qn
i=1 XTi

Qn
i=1 U([X0])

Qn
i=1C⌧(Ti).

Qn
i=1 si

Qn
i=1 di

Qn
i=1 uTi

Qn
i=1 i
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For

j : U([X0]) !
n
Y

i=1

U([X0]), ([X], x) 7!
n
Y

i=1

([X], x),

let

 :=
�

n
Y

i=1

i
� � j : U([X0]) !

n
Y

i=1

C⌧(Ti).

We recall

Theorem 9.3.4 ([dPW00, Theorem 1.1]). Let X be a hypersurface of degree d in Pn with
only isolated singularities. Let ⌧(X) be the global Tjurina number of the singularities of X.
For d = 3, 4 or d � 5 set � = 16, 18 or � = 4(d � 1), respectively. If ⌧(X) < �, the family
of degree d hypersurfaces induces a simultaneous versal deformation of all singularities on
X.

By Theorem 9.3.4, it follows that the morphism  is a submersion, cf. [CGHL15, 3.4].
Hence, we have

dim�1(0) = dim U([X0]) � dim(

n
Y

i=1

C⌧(Ti)) = 55 � ⌧.

Since fibres of the map
Qn

i uTi over all points different from the central fibre (0, . . . , 0) 2
Qn

i=1C⌧(Ti) are singularities milder than T1, . . . ,Tn and since the diagram commutes, the
locus of all points in U([X0]) having only singularities of type G is �1(0). Since U([X0])
is an open subset in P55, this gives that the locus UG of all cubic fourfolds with ADE
singularities of type G has dimension 55 � ⌧ . Therefore, the quotient MG = UG � SL(6)
has dimension dim MG = 55 � ⌧ � (36 � 1) = 20 � ⌧ .

9.4 Main Theorem 3

In this section, we want to show that the moduli space of cubic fourfolds with a certain
combination of ADE singularities constructed in Subsection 9.3 is isomorphic to the moduli
space of certain quasi-polarized K3 surfaces constructed in Subsection 9.2.4. We keep the
notation made in those subsections.

Let T 2 {An�1,Dj�4,E8�k�6} be an ADE singularity type. For a tuple of non-negative
integers

�

(a1, . . . , an), (d4, . . . , dm), (e6, e7, e8)
� 2 (Z�0)

n ⇥ (Z�0)
m�4 ⇥ Z3,

let

G :=

n
X

i=1

aiAi +

m
X

j=4

djDj +

8
X

k=6

ekEk

be a formal finite sum of ADE singularity types, and let

�G :=
n
X

i=1

aiAi +
m
X

j=4

djDj +
8
X

k=6

ekEk
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be a finite Dynkin graph such that condition (9.1) holds for the lattice ⇤�(T),G.

Let UT+G be the locally closed subspace of all cubic fourfolds in P
�

H0(P5, OP5(3))
�

with
isolated ADE singularities of type G and a singularity of type T and

MT+G := UT+G � SL(6)

the coarse moduli space in the sense of GIT of all cubic fourfolds with singularities corre-
sponding to T + G constructed in Subsection 9.3.

Let F�
SatLK3

(i) be the moduli space constructed in Subsection 9.2.4 of all quasi-polarized

K3 surfaces (eS, LT) with the property that 'LT : eS ! P4 is birational onto its image and
'LT(eS) is contained in a quadric Q ✓ P4 of corank(Q) = corankT such that firstly the
singularities of 'LT(eS) lying on the singular locus of Q are of type �(T) and secondly
those singularities of 'LT(eS) not lying on the singular locus of Q correspond to G.

It is our goal in this subsection to prove the following Main Theorem 3.

Main Theorem 3. We have an isomorphism of quasi-projective varieties

� : MT+G ! F�
SatLK3

(i), [X] 7! [
�

gSpX ,⇡⇤OSpX
(1)

�

],

where pX is a singularity of ADE type T on a cubic fourfold X, SpX is the image of the
union of all lines in X through pX under the projection of P5 through pX onto P4 as defined
in Section 5.1, and ⇡ : gSpX ! SpX is the minimal resolution of all singularities on SpX .

We want to show that in the situation of Main Theorem 3, the minimal model fSp for the
surface Sp is up to isomorphism independent of the choice of a singularity p of type T on
the cubic fourfold X. Before we can prove this, we need one technical preparatory result:

Lemma 9.4.1. Let X ✓ P5 be a cubic fourfold with only isolated ADE singularities and
l0 ✓ X a line through an ADE singularity p of X. Let l l0 be the plane in P5 spanned by
l0 and a general line l in X through p. Then, l l0 is not contained in X.

Proof. Assume conversely that for a general line l in X through p the plane l l0 is contained
in X. As in Section 5.1, let ⇡p : P5 99K H ⇠= P4 be the projection of P5 through p onto
a hyperplane H ✓ P5 with p /2 H, let Fp be the union of all lines in X through p, and
let Sp := ⇡p(Fp) ✓ P4. By Corollary 5.2.3, Sp has only isolated ADE singularities and
the minimal model fSp of Sp is by Lemmas 5.1.2 and 4.2.2 a K3 surface. Since the plane
l l0 is by assumption contained in X, it follows that Fp contains all lines in the plane l l0
through p and Sp contains the line H \ l l0. Since l is general, we have a continuous family
of distinct planes in X through p and hence also a continuous family of distinct lines in Sp.
This implies that Sp is uniruled. Since fSp is birational to Sp, this gives that fSp is uniruled,
as well, in contradiction to fSp being a K3 surface. Hence, the assumption must have been
wrong and for a general line l in X through p the plane l l0 is not contained in X.

Proposition 9.4.2. Let X be a cubic fourfold with only isolated ADE singularities and
two singularities p1 and p2 both of the same ADE type. For i = 1, 2, let Spi be the image
of the union Fpi of all lines in X through pi under the projection ⇡pi from P5 through pi
onto P4 as defined in Section 5.1. Then, Sp1 and Sp2 are birational.
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Proof. Let l1 be a general line in X passing through p1. Let l0 be the line containing both
p1 and p2. Since p1 and p2 are double points, l0 intersects p1 and p2 with multiplicity 2,
hence l0 intersects X with multiplicity 4. However, since X has degree 3, this means that
l0 must be contained in X. Let l0l1 be the plane spanned by l0 and l1. By Lemma 9.4.1,
the plane l0l1 is not contained in X. Hence, C = X \ l0l1 is a plane cubic curve. Since
C contains the line l1, the cubic curve is reducible. Since C contains even a second line,
namely l0, it must be the union of three lines l0, l1, and l2. Since C is singular at p2, the
line l2 must pass through p2. Consequently, C is the union of the lines l0, l1, and l2 such
that l0 and l1 intersect in the singularity p1 and l0 and l2 intersect in the singularity p2.
Hence, l2 is contained in Fp2 . For i = 1, 2, now denote by Fpi the Fano scheme of all lines
in X through pi and by [l] the point in Fpi corresponding to a line l in Fpi . We now define
a rational map

 : Fp1 99K Fp2

with  ([l1]) = [l2]. Exchanging p1 by p2 in the arguments above, we can define the rational
map ' : Fp2 99K Fp1 with '([l2]) = [l1] which is inverse to  . Hence,  is birational. Since
Fp1 and Fp2 are birational to Sp1 and Sp2 via the projections ⇡p1 and ⇡p2 , respectively, Sp1

and Sp2 are consequently birational, as well.

Now we are in the position to prove Main Theorem 3:

Proof of Main Theorem 3. We show firstly that � is well-defined:

Let [X] 2 MT+G be the class of a cubic fourfold X ✓ P5 with an ADE singularity pX of
type T and such that all other singularities of X correspond to G.

Let (x0 : . . . : x5) be homogeneous coordinates on P5.

After a linear change of coordinates, we can assume that pX = (1 : 0 : 0 : 0 : 0 : 0) 2 P5

and then by Lemma 5.1.1

X : x0f2(x1, . . . , x5) + f3(x1, . . . , x5) = 0,

where f2 and f3 are homogeneous polynomials of degree 2 and 3 in C[x0, . . . , x5], respec-
tively. By Lemma 5.1.2, the projection SpX of the union of all lines in X through pX onto
P4 is a complete (2, 3)-intersection in P4 given by

SpX : f2(x1, . . . , x5) = f3(x1, . . . , x5) = 0 ✓ P4

and SpX is uniquely determined by pX by Lemma 5.1.3.

Let ⇡pX : BlpXX ! X the blowing-up of X in pX with exceptional divisor E ✓ BlpXX.
By Corollary 5.2.3, the singularities of BlpXX and SpX are in one-to-one correspondence
including the singularity types. More intrinsically, the singularities of BlpXX on E corre-
spond to the singularities of the quadric Q : f2(x1, . . . , x5) = 0 ✓ P4 and are of type �(T)
with �(T) as in Table 6.1 and the singularities on BlpXX \E correspond to the singularities
of SpX not lying on the singular locus of Q and are of type G.

Let
⇡ : gSpX ! SpX

be the minimal resolution of all singularities on SpX . By Lemma 4.2.2, fSp is a K3 surface
and the pull-back L := ⇡⇤OSpX

(1) by ⇡ of the hyperplane bundle on SpX to gSpX has degree
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6. Further, the morphism 'L induced by the linear system |L| is given by ⇡, so 'L is in
particular birational. We have 'L(gSpX ) = ⇡(gSpX ) = SpX . Consequently, the isomorphism
class [(gSpX , L)] of the quasi-polarized K3 surface (gSpX , L) is parametrized by a point in
F�
SatLK3

(i).

Assume then that X has two singularities pX and p0X both of type T. Then, SpX and SpX 0

are birational by Proposition 9.4.2. Hence, gSpX and gSp0X
are isomorphic. Consequently,

�

gSpX ,⇡⇤OSpX
(1)

�

and
�

gSp0X
,⇡⇤OSp0

X
(1)

�

are isomorphic.

In conclusion, � is well defined.

We define an inverse map to �:

Let (eS, L) be a quasi-polarized K3 surface of degree 6 such that 'L : eS ! P4 is birational
onto its image. By Proposition 3.3.4, S := 'L(eS) is a complete (2, 3)-intersection of a
quadric Q and a cubic Y in P4. By Lemma 4.2.1, the quadric Q is uniquely determined up to
isomorphism and the cubic Y is uniquely determined up to isomorphism and modulo those
cubics containing the quadric. Assume that we have homogeneous coordinates x1, . . . , x5

on P4 such that up to isomorphism

Q : f2(x1, . . . , x5) = 0 and Y : f3(x1, . . . , x5) + � l(x1, . . . , x5)f2(x1, . . . , x5) = 0 ✓ P4,

where � 2 C and l(x1, . . . , x5) is a linear polynomial. Then,

X : x0f2(x1, . . . , x5) +
�

f3(x1, . . . , x5) + � l(x1, . . . , x5)f2(x1, . . . , x5)
�

= 0 ✓ P5

defines a cubic fourfold on X. Therefore, X is isomorphic to

x0f2(x1, . . . , x5) + f3(x1, . . . , x5) = 0 ✓ P5

with respect to the linear coordinate transformation x0 7! x0 � � l(x1, . . . , x5). Hence, we
see that the isomorphism class [X] of X does not depend on the choice of the cubic Y in
which S is contained. Write S = S(f2, f3) and [X(f2, f3)] for the isomorphism class of X.

By assumption, the singularities of S lying on Q are of type �(T) and all other singularities
of S correspond to G. By Proposition 5.2.2, the singularity (1 : 0 : 0 : 0 : 0 : 0) 2 P5 of X
is of type T and all other singularities of X correspond to G. Define then

 : F�
SatLK3

(i) ! MT+G, [
� ^S(f2, f3), L

�

] 7! [X(f2, f3)].

We check that � and  are inverse to each other:

Indeed, let �([X]) =
�

gSpX ,⇡⇤OSpX
(1)

� 2 F�
SatLK3

(i) and write L := ⇡⇤OSpX
(1), where

[X] 2 MT+G is the isomorphism class of the cubic fourfold X : x0f2(x1, . . . , x5) +

f3(x1, . . . , x5) = 0. The surface SpX := 'L(gSpX ) is then a complete (2, 3)-intersection
in P4. By Lemma 4.2.1, SpX lies on a unique quadric Q and a cubic Y uniquely deter-
mined modulo those cubics containing the quadric Q. Hence, Q : f2(x1, . . . , x5) = 0 ✓ P4

and Y : f3(x1, . . . , x5) + � l(x1, . . . , x5)f2(x1, . . . , x5) = 0 ✓ P4, where � 2 C and
l(x1, . . . , x5) is a linear polynomial. Then,  

�

(gSpX , L)
�

is the class of the cubic fourfold
�

1 + �l(x1, . . . , x5)
�

f2(x1, . . . , x5) + f3(x1, . . . , x5) = 0 ✓ P5 which is simply the isomor-
phism class [X] of the cubic fourfold X and hence  � � = idMT+G .
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K3 surfaces of degree 6

On the other hand, let (eS, L) be a quasi-polarized K3 surface of degree 6 such that 'L : eS !
P4 is birational onto its image such that S := 'L(eS) is the complete (2, 3)-intersection of the
quadric Q : f2(x1, . . . , x5) and the cubic Y : f3(x1, . . . , x5)+� l(x1, . . . , x5)f2(x1, . . . , x5) =
0 in P4, where � 2 C and l(x1, . . . , x5) is a linear polynomial. We have  

�

(eS, L)
�

= [X],
where X : x0f2(x1, . . . , x5) + f3(x1, . . . , x5) = 0 ✓ P5. Then, �([X]) is the complete
(2,3)-intersection S : f2(x1, . . . , x5) = f3(x1, . . . , x5) = 0. The minimal resolution of all
singularities on S is then simply eS. Further, L = ⇡⇤

�OS(1)
�

so �([X]) = (eS, L). Hence,
� �  = idF�

SatLK3
(i)

.

Finally, the map � is holomorphic since the period map is holomorphic. By Borel’s Theo-
rem [Bor72, Theorem 3.10], the defined map is then a morphism of quasi-projective vari-
eties.

We show that � is in fact an isomorphism:

Since the morphism � is surjective, it induces an inclusion of the functions fields

�⇤ : K(F�
SatLK3

(i)) ,! K(MT+G).

Further, since � is bijective, all fibers ��1(y) with y 2 F�
SatLK3

(i) of � have cardinality one.
By [Har92, Proposition 7.16], the degree [K(MT+G) : K(F�

SatLK3
(i))] of the field extension

equals then one. Hence, � is birational. We note that the quasi-projective variety F�
SatLK3

(i)

is normal by [Huy16, Chap. 6, Theorem 1.13]. By Zariski’s Main Theorem in its original
form [Mum99, Chap. III.9, p. 209], the morphism � is then an open immersion. Since � is
surjective, it is hence even an isomorphism.

Corollary 9.4.3. The isomorphism � in Main Theorem 3 maps the connected components
of the moduli spaces F�

SatLK3
(i) and MT+G onto each other. In particular, the moduli space

MT+G has at most two connected components.

Proof. The isomorphism � is in particular a homeomorphism. Hence, � defines a bi-
jection between the connected components of F�

SatLK3
(i) and MT+G. The period do-

main ⌦
�

SatLK3(i)
�

has two connected components DSatLK3
(i) and D0

SatLK3
(i). Hence,

Fbn

SatLK3
(i) := ⌦

�

SatLK3(i)
�

/OSatLK3
(i) has one connected component if and only if OSatLK3

(i)

interchanges DSatLK3
(i) and D0

SatLK3
(i) and two connected components otherwise. The first

happens if and only if the group OSatLK3
(i) contains an element with real spinor norm �1

(see [GHS09, Sec. 1]). As F�
SatLK3

(i) is a subvariety of Fbn

SatLK3
(i), it has then also at most

two connected components. Therefore, also MT+G has at most two connected compo-
nents.

Remark 9.4.4. If the lattice
�

SatLK3(i)
�?
LK3

contains an m-admissible element with m 
2, the quasi-projective variety Fbn

SatLK3
(i) is irreducible by [Dol96, Proposition 5.6] and

F�
SatLK3

(i) is irreducible as an open subvariety of Fbn

SatLK3
(i). Since F�

SatLK3
(i) and MT+G

are isomorphic by Main Theorem 3, in this situation it follows that MT+G is irreducible.



A Intersection theory on surfaces

In this appendix, we will recall basic properties of the intersection pairing on surfaces and
compute certain intersection numbers on those.

Lemma A.0.1. Let i0 : S ,! P4 and j0 : H ,! P4 be embeddings of two-dimensional
smooth connected subvarieties S and H in P4. Let k : E ,! P4 be an embedding of a
three-dimensional variety into P4. Let i : C ,! S and j : C ,! H be embeddings of the
curve C in S and H, respectively. Assume that the following diagram commutes:

C i //

j
✏✏

S

i0
✏✏

H
j0
// P4

E
k

``

Then, we have
j⇤C.j0⇤k⇤E = i⇤C.i0⇤k⇤E.

Proof. We have j⇤C, j0⇤k⇤E 2 A1(H) so j⇤C.j0⇤k⇤E 2 A2(H) ⇠= Z. On the other hand,
i⇤C, i0⇤k⇤E 2 A1(S) so i⇤C.i0⇤k⇤E 2 A2(S) ⇠= Z. The projection formula gives

j⇤C.j0⇤k⇤E = j⇤(C.j⇤j0⇤k⇤E) and i⇤C.i0⇤k⇤E = i⇤(C.i⇤i0⇤k⇤E).

Since C, j⇤j0⇤k⇤E, and j⇤j0⇤k⇤E are curves, C.(j⇤j0⇤k⇤E) and C.i⇤i0⇤k⇤E are integers.
Hence, j⇤(C.j⇤j0⇤k⇤E) = C.j⇤j0⇤k⇤E and i⇤(C.i⇤i0⇤k⇤E) = C.i⇤i0⇤k⇤E. Further, by the
commutativity of the diagram, we have j⇤j0⇤ = i⇤i0⇤. Hence, j⇤C.j0⇤k⇤E = i⇤C.i0⇤k⇤E.

Lemma A.0.2 ([Ful98, Chap. 8.2]). Let X be quasi-projective variety and D1 and D2

closed subvarieties in X. Assume that X� is a smooth open subvariety of X such that
D1 \ D2 ✓ X�. Then,

D1.D2 = D1|X� .D2|X� .

Lemma A.0.3. Let H be a smooth projective surface and C, l 2 Div(H). Let p 2 C \ l
be a smooth point of both C and l. Let

1. H(1) = BlpH
⇡p�! H be the blowing-up of H in p with exceptional divisor E(1) =

⇡�1
p (p) and let C(1) and l(1) be the strict transforms of C and l in H(1), respectively.

Let p1 be the intersection point of E(1) with C(1).

2. H(2) = Blp1H(1) ⇡p1��! H(1) be the blowing-up of H(1) in p1 with exceptional divisor
E(2) = ⇡�1

p1 (p1) and let C(2) and E(1,2) be the strict transforms of C and E(1) in
H(2), respectively. Let p2 be the intersection point of E(2) with C(2).
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3. H(3) = Blp2H(2) ⇡p2��! H(2) be the blowing-up of H(2) in p2 with exceptional divisor
E(3) = ⇡�1

p2 (p2) and let C(3), E(1,3), and E(2,3) be the strict transforms of C, E(1)

and E(2) in H(3), respectively. Let p3 be the intersection point of E(3) with C(3).

We have the following intersection numbers, see Figure A.1:

On H(1): C(1).E(1) = 1, C(1).l(1) = C.l � 1,

On H(2): C(2).E(2) = 1, C(2).E(1,2) = 0,

E(1,2).E(3) = 1,

On H(3): C(3).E(3) = 1, C(3).E(2,3) = 0, C(3).E(1,3) = 0,

E(1,3).E(3) = 0, E(1,3).E(2,3) = 1, E(2,3).E(3) = 1.

C(2)C(3)

E(3) E(2)

p2

E(1)

p1C(1)

H

pC

(1)(2)(3)

⇡p⇡p1⇡p2

Figure A.1: Iterated blowing-ups of the surface H.

Proof. 1. On H(1), we have by [Har77, Chap. V, Proposition 3.1, 3.2, 3.6]:

(a) (E(1))2 = �1

(b) (⇡⇤pC).E(1) = (⇡⇤pl).E(1) = 0

(c) (⇡⇤pC).(⇡⇤pl) = C.l

(d) C(1) = ⇡⇤pC � E(1), l(1) = ⇡⇤pl � E(1).

Hence,
C(1).E(1) = (⇡⇤pC � E(1)).E(1) = 1 and C(1).l(1) = C.l � 1.

2. On H(2), we have by [Har77, Chap. V, Proposition 3.1, 3.2, 3.6]:

(a) (E(2))2 = �1

(b) (⇡⇤p1C
(1)).E(2) = (⇡⇤p1E

(1)).E(2) = 0

(c) (⇡⇤p1E
(1)).(⇡⇤p1C

(1)) = E(1).C(1) = 1

(d) C(2) = ⇡⇤p1C
(1) � E(2), E(1,2) = ⇡⇤p1E

(1) � E(2).

Using all these equalities, we compute

C(2).E(1,2)= (⇡⇤p1C
(1) � E(2)).(⇡⇤p1E

(1) � E(2))= 0,

C(2).E(2) = (⇡⇤p1C
(1) � E(2)).E(2) = 1,

E(1,2).E(2) = (⇡⇤p1E
(1) � E(2)).E(2) = 1.

3. On H(3), we have by [Har77, Chap. V, Proposition 3.1, 3.2, 3.6]:
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(a) (E(3))2 = �1

(b) (⇡⇤p2C
(2)).E(3) = (⇡⇤p2E

(2)).E(3) = (⇡⇤p2E
(1,2)).E(3) = 0

(c) (⇡⇤p2C
(2)).(⇡⇤p2E

(2)) = C(2).E(2) = 1,
(⇡⇤p2C

(2)).(⇡⇤p2E
(1,2)) = C(2).E(1,2) = 0

(d) C(3) = ⇡⇤p2C
(2) � E(3), E(2,3) = ⇡⇤p2E

(2) � E(3).

Using all these equalities, we compute

C(3).E(2,3)= (⇡⇤p2C
(2) � E(3)).(⇡⇤p2E

(2) � E(3))= 0,

C(3).E(3) = (⇡⇤p2C
(2) � E(3)).E(3) = 1,

E(2,3).E(3) = (⇡⇤p2E
(2) � E(3)).E(3) = 1.

Since p2 2 C(2) and C(2).E(1,2) = 0, we have p2 /2 E(1,2).

Hence, ⇡⇤p2E
(1,2) = E(1,3) and

C(3).E(1,3) =(⇡⇤p2C
(2) � E(3)).(⇡⇤p2E

(1,2)) =0,

E(1,3). E(3) = (⇡⇤p2(E
(1,2))). E(3) =0,

E(2,3).E(1,3) =(⇡⇤p2E
(2) � E(3)).(⇡⇤p2E

(1,2)) =1.

Lemma A.0.4. Let H be a smooth surface and D1, D2 2 Div(H). Assume that D1.D2 =
m. Let p 2 D1 \ D2 be a smooth point of D1 and D2. Let H(1) ! H the blowing-up
of H in p and let D(1)

1 and D(2) be the strict transforms of D1 and D2 in H(1). Then,
D(1)

1 .D(1)
2 = m � 1.

Proof. Let E(1) be the exceptional divisor of the blowing-up. By [Har77, Chap. V, Propo-
sition 3.1, 3.2, 3.6], we have

(E(1))2 = �1, (⇡⇤pD1).E
(1) = 0, (⇡⇤pD2).E

(1) = 0, (⇡⇤pD1).(⇡
⇤
pD2) = D1.D2

and
D(1)

1 = ⇡⇤pD1 � E(1), D(1)
2 = ⇡⇤pD2 � E(1).

Hence, D(1)
1 .D(1)

2 = (⇡⇤pD1 � E(1)).(⇡⇤pD2 � E(1)) = m � 1.



B Code to determine all ADE lattices ⇤
such that h6i � ⇤ has a primitive

embedding into the K3 lattice

In this appendix, we give the code to be implemented in the computer algebra software
Wolfram Mathematica (Version: 11.1.1.0) to determine the list of all ADE lattices ⇤ such
that the lattice h6i�⇤ can be embedded primitively into the K3 lattice. The code is based
on the algorithm presented in Section 8.1. Find the final list of all ADE lattice ⇤ as above
in Appendix C.

1 (⇤We realize condition (2b) in Theorem 7.4.1.⇤)
2

3 (⇤Define function which returns for x

:= {x1, ..., xrmax

} the list

{{x1 . . . , xik�1, xik � 1, xik+1 + 1, xik+2, . . . , xrmax

}; k = 1, . . . , rmax} where xi1 , ..., xir (

r 2 {1, ..., rmax � 1}) are the nonzero entries of x.⇤)
4 rmax=19;

5

6 operation [x_]:=Block[{tuplerules ,nonzeros},

7 tuplerules =ArrayRules[x];

8 nonzeros=Length[tuplerules]�1;

9 Table[x�UnitVector[rmax,tuplerules [[ i ,1,1]]]+ UnitVector[rmax, tuplerules [[ i ,1,1]]+1],{ i ,1, nonzeros}]

10 ]

11

12 (⇤Define function which 1. finds in tuplelist

:= {{xj
1, . . . , x

j
rmax

}, j = 1, . . . ,m} the largest entry c

:= x

j
i ,

2. saves {{c+ 1, 0, . . . , 0} 2 Zrmax} [ {operation[x]; x 2 tuplelist}.⇤)
13 iteration [ tuplelist_ ]:=Block[{ list },

14 list ={(Max[tuplelist]+1)UnitVector[rmax,1]};

15 list =Flatten[Append[operation[#]&/@tuplelist, list ],1];

16 DeleteDuplicates [ list ]

17 ]

18

19 (⇤Define the list step: Define the list step0 := {{1, 0, . . . , 0}},define successively

stepi := {stepi�1, iteration(stepi�1)},and step

:= step

rmax�1. step is the list whose i�th entry is the lists

of all (a1, . . . , a19) 2 Z�0
rmax

such that 1a1 + 2a2 + . . .+ 19a19 = i.⇤)
20 step={{UnitVector[rmax,1]}};

21

22 Do[step=Append[step,iteration[ step [[�1]]]];,{ rmax�1}];

23

24 listab =step;

25

26 listdb =listab ;

27

28 (⇤formd is list of all {0, 0, 0, d4, . . . , drmax

}.⇤)
29 formd=Join[{0,0,0},Table[_,{i ,4, rmax}]]

30

31 (⇤ Lists in listdb contained in formd.⇤)
32 Table[ listdb [[ j ]]=Cases[ listdb [[ j ]], formd],{ j ,1, rmax}];

33
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34 (⇤Delete the first tree entries of all lists contained in the last defined list .⇤)
35 Table[ listdb [[ j ]]= listdb [[ j ]][[ All ,4;;�1]],{ j ,1, rmax}];

36 listeb =listab ;

37

38 (⇤forme is the list of all {0, 0, 0, 0, 0, e6, e7, e8, 0, . . . , 0}.⇤)
39 forme=Join [{0,0,0,0,0},Table[_,{i ,6,8}], Table[0,{ i ,9, rmax}]]

40

41 (⇤ Lists in listeb contained in forme⇤)
42 Table[ listeb [[ j ]]=Cases[ listeb [[ j ]], forme],{ j ,1, rmax}];

43

44 (⇤Delete the first five and last rmax � 8 entries of all lists in the list defined in the last step .⇤)
45 Table[ listeb [[ j ]]= listeb [[ j ]][[ All ,6;;8]],{ j ,1, rmax}];

46

47 (⇤List of all triples {a, b, c} with a 2 {0, . . . , rmax},b 2 {0, 4, . . . , rmax},c 2 {0, 6, . . . , rmax} such that

a+ b+ c = i.⇤)
48 listcombine=Table[Select[Tuples[{Range[0,rmax],Join[{0},Range[4,rmax]],Join [{0},Range[6,rmax]]}],Total

[#]==i&],{i,1,rmax}]

49

50 (⇤Define function : For {i, j, k} the list of all {{a1, . . . , a19}, {d4, ..., d19}, {e6, e7, e8}} with {a1, . . . , a19}
from the i�th element in listab,{0, 0, 0, d4, ..., d19} from the j�th element of listdb and

{0, 0, 0, 0, 0, e6, e7, e8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} from the k�th element of listeb. We have

1a1 + . . .+ 19a19 = i, 4d4 + . . .+ 19d19 = j, 6e6 + 7e7 + 8e8 = k such that i+ j + k  rmax⇤)
51 pick [{i_,j_,k_}]:=Block[{atake,dtake,etake},

52 atake=If[ i==0,{Table[0,{rmax}]},atake=listab[[ i ]]];

53 dtake=If[ j==0,{Table[0,{irun,4,rmax}]},dtake=listdb [[ j ]]];

54 etake=If[k==0,{Table[0,{irun,6,8}]}, etake=listeb [[ k ]]];

55 Tuples[{atake,dtake,etake}]

56 ]

57

58 (⇤ lists {{a1, . . . , a19}, {d4, ..., d19}, {e6, e7, e8}} correspond to all ADE latticesL19
i=1 aiAi �

L19
j=4 djDj �

L8
k=6 ekEk of rank r.⇤)

59 (⇤Number of all ADE lattices of rank 1  r  19.⇤)
60 Table[Length[Sort[Flatten [ pick[#]&/@(listcombine[[r ]]) ,1]]],{ r ,1,19}]

61 {1,2,3,6,9,16,24,39,57,88,128,193,276,403,570,815,1137,1599,2207}

62

63 (⇤ADE lattices of rank 1  r  19⇤)
64 listb =Table[Sort[Flatten [ pick[#]&/@(listcombine[[r ]]) ,1]],{ r ,1,19}];

65

66

67 (⇤We realize condition (2c) in Theorem 7.4.1.⇤)
68

69 (⇤We compute the length of the discriminat group h6i � ⇤ for an ADE lattice ⇤.⇤)
70 l [x_]:=Block[{l2,l3 , l5 , l7 , l11 , l13 , l17 , l19}, l2=1+Sum[x[[1,2i+1]],{i,0,9}]+Sum[x[[2,2i+1�3]],{i,2,9}]+2

Sum[x[[2,2i�3]],{ i ,2,9}]+x [[3,2]];

71 l3=1+x[[1,2]]+x[[1,5]]+x [[1,8]]+ x [[1,11]]+ x [[1,14]]+ x [[1,17]]+ x [[3,1]];

72 l5=x[[1,4]]+x [[1,9]]+ x [[1,14]]+ x [[1,19]];

73 l7=x[[1,6]]+x [[1,13]];

74 l11=x [[1,10]];

75 l13=x [[1,12]];

76 l17=x [[1,16]];

77 l19=x [[1,18]];

78 Max[l2,l3 , l5 , l7 , l11 , l13 , l17 , l19 ]

79 ]

80

81 (⇤Define function which checks if an ADE lattice ⇤ satisfies condition (2c) in Theorem 7.4.1.⇤)
82 test [x_]:=Block[{r},r=Sum[i x[[1, i ]],{ i ,1,19}]+Sum[j x [[2, j�3]],{ j,4,19}]+Sum[k x[[3,k�5]],{k ,6,8}];

83 If [21�l[x]>=r,x,False ]

84 ]

85
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86 (⇤Define function which checks if an ADE lattice ⇤ satisfies condition (2c) in Theorem 7.4.1 and such

that the embedding h6i � ⇤ into LK3, if it exists, is unique up to automorphism of LK3 according to

Theorem 7.4.3.⇤)
87 testu [x_]:=Block[{r},r=Sum[i x[[1, i ]],{ i ,1,19}]+Sum[j x [[2, j�3]],{ j,4,19}]+Sum[k x[[3,k�5]],{k ,6,8}];

88 If [19�l[x]>=r,x,False ]

89 ]

90

91 (⇤Total number of ADE lattices ⇤ which satisfy condition (2b) and (2c) in Theorem 7.4.1.⇤)
92 Table[DeleteCases[test[#]&/@(listb [[ r ]]) ,False]//Length,{r,1,19}]//Total

93 3032

94

95 (⇤Total number of ADE lattices ⇤ which satisfy condition (2b) and (2c) in Theorem 7.4.1 and such that the

conditions in Theorem 7.4.3 holds.⇤)
96 Table[DeleteCases[testu[#]&/@(listb [[ r ]]) ,False]//Length,{r,1,19}]//Total

97 1607

98

99 (⇤ADE lattices ⇤ which satisfy condition (2b) and (2c) in Theorem 7.4.1.⇤)
100 listbc =Table[DeleteCases[test[#]&/@(listb[[ r ]]) ,False ],{ r ,1,19}];

101 listbcu =Table[DeleteCases[testu[#]&/@(listb[[ r ]]) ,False ],{ r ,1,19}];

102

103

104 (⇤We realize condition (2d) in Theorem 7.4.1.⇤)
105

106 (⇤For an ADE lattice ⇤, we compute the length of the p�part of the discriminant group of h6i � ⇤.⇤)
107 lp [p_,x_]:=Block[{error},error :: boole="The�value�‘1‘�is�not�allowed�for�p";

108

109 Switch[p,3,1+x[[1,2]]+x [[1,5]]+ x [[1,8]]+ x [[1,11]]+ x [[1,14]]+ x [[1,17]]+ x [[3,1]],5, x [[1,4]]+ x [[1,9]]+ x

[[1,14]]+ x [[1,19]],7, x [[1,6]]+ x [[1,13]],11, x [[1,10]],13, x [[1,12]],17, x [[1,16]],19, x [[1,18]], _,

Message[error::boole,p ];]

110 ]

111

112 (⇤Check for a specific prime p,if condition (2d) Theorem 7.4.1 has to be checked.⇤)
113 testdTrue [p_,x_]:=Block[{r},r=Sum[i x[[1,i ]],{ i ,1,19}]+Sum[j x [[2, j�3]],{ j,4,19}]+Sum[k x[[3,k�5]],{k

,6,8}];

114 If [21�r==lp[p,x],x,False ]

115 ]

116

117 (⇤For each prime p = 3, 5, 7, 11, 13, 17, 19 compute the number of ADE lattices ⇤ of rank 1  r  19 such

that we need to check for h6i � ⇤ condition (2d) in Theorem 7.4.1.⇤)
118 Table[Length[DeleteCases[testdTrue[3,#]&/@(listbc [[ r ]]) ,False ]],{ r ,1,19}]

119 Table[Length[DeleteCases[testdTrue[5,#]&/@(listbc [[ r ]]) ,False ]],{ r ,1,19}]

120 Table[Length[DeleteCases[testdTrue[7,#]&/@(listbc [[ r ]]) ,False ]],{ r ,1,19}]

121 Table[Length[DeleteCases[testdTrue[11,#]&/@(listbc[[ r ]]) ,False ]],{ r ,1,19}]

122 Table[Length[DeleteCases[testdTrue[13,#]&/@(listbc[[ r ]]) ,False ]],{ r ,1,19}]

123 Table[Length[DeleteCases[testdTrue[17,#]&/@(listbc[[ r ]]) ,False ]],{ r ,1,19}]

124 Table[Length[DeleteCases[testdTrue[19,#]&/@(listbc[[ r ]]) ,False ]],{ r ,1,19}]

125 {0,0,0,0,0,0,0,0,0,0,0,0,0,1,7,28,66,98,55}

126 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,10,14}

127 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,8}

128 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

129 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

130 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

131 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

132

133 (⇤In particular , this shows that condition (2d) in Theorem 7.4.1 has to be checked only for p = 3, 5, 7.⇤)(⇤
List of ADE lattices for which we need to check (2d) for p = 3.⇤)

134 Table[Print [DeleteCases[testdTrue[3,#]&/@(listbc [[ r ]]) ,False ]],{ r ,1,19}];

135

136 (⇤List of ADE lattices for which we need to check (2d) for p = 5.⇤)
137 Table[Print [DeleteCases[testdTrue[5,#]&/@(listbc [[ r ]]) ,False ]],{ r ,1,19}];
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138

139 (⇤List of ADE lattices for which we need to check (2d) for p = 7.⇤)
140 Table[Print [DeleteCases[testdTrue[7,#]&/@(listbc [[ r ]]) ,False ]],{ r ,1,19}];

141

142 (⇤List of all ADE lattices for which we need to check condition (2d).⇤)
143 textd [p_,r_]:=(DeleteCases[testdTrue[p,#]&/@(listbc[[r ]]) ,False ]) ;

144

145 (⇤Define function which gives the cardinality of the discriminant group of h6i � ⇤ for an ADE lattice

⇤.⇤)
146 g[x_]:=Block[{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,d4,d5,d6,d7,d8,d9,d10

,d11,d12,d13,d14,d15,d16,d17,d18,d19,e6,e7,e8},{{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,

a15,a16,a17,a18,a19},{d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19},{e6,e7,e8}}=x;

147 {x,6(Product[(i+1)^x[[1,i ]],{ i ,1,19}]) (Product[(4)^x[[2, j�3]],{ j ,4,19}]) 2^e7 3^e6}

148 ]

149

150 (⇤Define p�adic valuation.⇤)
151 v[p_,x_]:=Block[{primefactorlist }, If [IntegerQ[x ],, Print ["x� is�no�integer" ]];

152 primefactorlist =FactorInteger[x ];

153 If [MemberQ[primefactorlist[[All ,1]], p ], Select [ primefactorlist ,#[[1]]==p &][[1,2]],0]

154 ]

155

156 (⇤All lattices ⇤ such that for h6i � ⇤ conditions (2b) and (2c) in Theorem 7.4.1 are satisfied and

condition (2d) needs to be checked for p = 3.⇤)
157 testd3=Flatten[Table[DeleteCases[testdTrue[3,#]&/@(listbc [[ r ]]) ,False ],{ r ,1,19}],1];

158

159 (⇤All lattices ⇤ such that for h6i � ⇤ condition (2b) and (2c) in Theorem 7.4.1 and the conditon in

Theorem 7.4.3 are satisfied and condition (2d) needs to be checked for p = 3.⇤)
160 testd3u=Flatten[Table[DeleteCases[testdTrue[3,#]&/@(listbcu [[ r ]]) ,False ],{ r ,1,19}],1];

161

162 (⇤Compute the discriminant for the unique 3�adic lattice .⇤)
163 d3[tuple_]:=Block[{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,d4,d5,d6,d7,d8,

d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,e6,e7,e8},{{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13

,a14,a15,a16,a17,a18,a19},{d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19},{e6,e7,e8

}}=tuple;

164 {tuple,6⇤3^a2⇤6^a5⇤9^a8⇤3^a11⇤6^a14⇤126^a17⇤6^e6}

165 ]

166

167 (⇤All lattices ⇤ such that for h6i � ⇤ condition (2b) and (2c) are satisfied and condition (2d) holds/does

not hold for p = 3, as well.⇤)
168 Lr3={};

169 Ln3={};

170 If [Mod[((g[#][[2]])�(d3[#][[2]]) )/3^v[3,g [#][[2]]],3]==0, Lr3=Append[Lr3,#],Ln3=Append[Ln3,#]]&/

@testd3;

171 Length[testd3]

172 Length[Lr3]

173 Length[Ln3]

174 255

175 186

176 69

177

178 (⇤All lattices ⇤ such that for h6i � ⇤ condition (2b) and (2c) and the conditon in Theorem 7.4.3 are

satisfied and condition (2d) holds/does not hold for p = 3, as well.⇤)
179 Lr3u={};

180 Ln3u={};

181 If [Mod[((g[#][[2]])�(d3[#][[2]]) )/3^v[3,g [#][[2]]],3]==0, Lr3=Append[Lr3,#],Ln3=Append[Ln3,#]]&/

@testd3u;

182 Length[testd3u]

183 Length[Lr3u]

184 Length[Ln3u]

185 0
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186 0

187 0

188

189 (⇤All lattices ⇤ such that for h6i � ⇤ condition (2b) and (2c) are satisfied and condition (2d) needs to be

checked for p = 5.⇤)
190 testd5=Flatten[Table[DeleteCases[testdTrue[5,#]&/@(listbc [[ r ]]) ,False ],{ r ,1,19}],1];

191

192 (⇤All lattices ⇤ such that for h6i � ⇤ condition (2b) and (2c) in Theorem 7.4.1 and the conditon in

Theorem 7.4.3 are satisfied and condition (2d) needs to be checked for p = 5.⇤)
193 testd5u=Flatten[Table[DeleteCases[testdTrue[5,#]&/@(listbcu [[ r ]]) ,False ],{ r ,1,19}],1];

194

195 (⇤Compute the discriminant for a 5�adic lattice .⇤)
196 d5[tuple_]:=Block[{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,d4,d5,d6,d7,d8,

d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,e6,e7,e8},{{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13

,a14,a15,a16,a17,a18,a19},{d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19},{e6,e7,e8

}}=tuple;

197 {tuple,5^a4⇤40^a9⇤10^a14⇤5^a19}

198 ]

199

200 (⇤All lattices ⇤ such that for h6i � ⇤ condition (2b) and (2c) are satisfied and condition (2d) holds/does

not holds p = 5.⇤)
201 Lr5={};

202 Ln5={};

203

204 If [Mod[((g[#][[2]])�1(d5[#][[2]]))/5^v[5,g [#][[2]]],5] Mod[((g[#][[2]])�4(d5[#][[2]]))/5^v[5,g

[#][[2]]],5]==0, Lr5=Append[Lr5,#],Ln5=Append[Ln5,#]]&/@testd5;

205 Length[testd5]

206 Length[Lr5]

207 Length[Ln5]

208 25

209 9

210 16

211

212 (⇤All lattices ⇤ such that for h6i � ⇤ condition (2b) and (2c) and the condition in Theorem 7.4.3 are

satisfied and condition (2d) holds/does not hold for p = 5, as well.⇤)
213 Lr5u={};

214 Ln5u={};

215 If [Mod[((g[#][[2]])�1(d5[#][[2]]))/5^v[5,g [#][[2]]],5] Mod[((g[#][[2]])�4(d5[#][[2]]))/5^v[5,g

[#][[2]]],5]==0, Lr5=Append[Lr5,#],Ln5=Append[Ln5,#]]&/@testd5u;

216 Length[testd5u]

217 Length[Lr5u]

218 Length[Ln5u]

219 0

220 0

221 0

222

223 (⇤All lattices ⇤ such that for h6i � ⇤ condition (2b) and (2c) are satisfied and condition (2d) needs to be

checked for p = 7.⇤)
224 testd7=Flatten[Table[DeleteCases[testdTrue[7,#]&/@(listbc [[ r ]]) ,False ],{ r ,1,19}],1];

225

226 (⇤All lattices ⇤ such that for h6i � ⇤ condition (2b) and (2c) in Theorem 7.4.1 and the condition in

Theorem 7.4.3 are satisfied and condition (2d) needs to be checked for p = 7.⇤)
227 testd7u=Flatten[Table[DeleteCases[testdTrue[7,#]&/@(listbcu [[ r ]]) ,False ],{ r ,1,19}],1];

228

229 (⇤Compute the discriminant for a 7�adic lattice .⇤)
230 d7[tuple_]:=Block[{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,d4,d5,d6,d7,d8,

d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19,e6,e7,e8},{{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13

,a14,a15,a16,a17,a18,a19},{d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17,d18,d19},{e6,e7,e8

}}=tuple;

231 {tuple,7^a6⇤7^a13}]
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232

233 (⇤All lattices ⇤ such that for h6i � ⇤ condition (2b) and (2c) are satisfied and condition (2d) holds/does

not holds p = 7.⇤)
234 Lr7={};

235 Ln7={};

236 If [Mod[((g[#][[2]])�1(d7[#][[2]]))/7^v[7,g [#][[2]]],7] Mod[((g[#][[2]])�2(d7[#][[2]]))/7^v[7,g

[#][[2]]],7] Mod[((g[#][[2]])�4(d7[#][[2]]))/7^v[7,g [#][[2]]],7]==0, Lr7=Append[Lr7,#],Ln7=

Append[Ln7,#]]&/@testd7;

237 Length[testd7]

238 Length[Lr7]

239 Length[Ln7]

240 9

241 3

242 6

243

244 (⇤All lattices ⇤ such that for h6i � ⇤ condition (2b) and (2c) and the conditon in Theorem 7.4.3 are

satisfied and condition (2d) holds/does not hold for p = 7, as well.⇤)
245 Lr7u={};

246 Ln7u={};

247 If [Mod[((g[#][[2]])�1(d7[#][[2]]))/7^v[7,g [#][[2]]],7] Mod[((g[#][[2]])�2(d7[#][[2]]))/7^v[7,g

[#][[2]]],7] Mod[((g[#][[2]])�4(d7[#][[2]]))/7^v[7,g [#][[2]]],7]==0, Lr7=Append[Lr7,#],Ln7=

Append[Ln7,#]]&/@testd7u;

248 Length[testd7u]

249 Length[Lr7u]

250 Length[Ln7u]

251 0

252 0

253 0

254

255 (⇤All lattices ⇤ such that for h6i � ⇤ condition (2b), (2c) hold, and (2d) does not hold.⇤)
256 Ln=Join[Ln3,Ln5,Ln7];

257

258 (⇤All lattices ⇤ such that for h6i � ⇤ condition (2b), (2c) and the conditon in Theorem 7.4.3 hold, and

(2d) does not hold.⇤)
259 Lnu=Join[Ln3u,Ln5u,Ln7u];

260

261 (⇤ Cardinality of Ln and Lnu.⇤)
262 {Length[Ln]}

263 {Length[DeleteDuplicates [Ln]]}

264 {Length[Lnu]}

265 {Length[DeleteDuplicates [Lnu]]}

266

267 (⇤Delete all duplicates in Ln and Lnu⇤)
268 Ln=DeleteDuplicates[Ln];

269 Lnu=DeleteDuplicates[Lnu];

270

271 (⇤Number of lattices ⇤ such that for h6i � ⇤ condition (2b), (2c), and (2d) hold.⇤)
272 Complement[Flatten[Table[DeleteCases[test[#]&/@(listbc[[r ]]) ,False ],{ r ,1,19}],1], Ln]//Length

273 2942

274

275 (⇤Number of lattices ⇤ such that for h6i � ⇤ condition (2b), (2c), and (2d) hold and the conditon in

Theorem 7.4.3.⇤)
276 Complement[Flatten[Table[DeleteCases[test[#]&/@(listbcu[[r ]]) ,False ],{ r ,1,19}],1], Lnu]//Length

277 1607

278

279 (⇤ Lattices ⇤ such that for h6i � ⇤ condition (2b), (2c), and (2d) hold.⇤)
280 result =Complement[Flatten[Table[DeleteCases[test[#]&/@(listbc[[r]]) ,False ],{ r ,1,19}],1], Ln];

281

282 (⇤ Lattices ⇤ such that for h6i � ⇤ condition (2b), (2c), and (2d) hold and the conditon in Theorem 7.4.3.⇤)
283 resultu =Complement[Flatten[Table[DeleteCases[test[#]&/@(listbcu[[r]]) ,False ],{ r ,1,19}],1], Lnu];



112
B Code to determine all ADE lattices ⇤ such that h6i � ⇤ has a primitive

embedding into the K3 lattice

284

285 (⇤ resultr and resultu sorted by rank⇤)
286 rank[tuple_]:=(Sum[(tuple[[1, i ]] i ) ,{ i ,1,19}]) +(Sum[(tuple[[2, j�3]](j )),{ j ,4,19}]) +tuple[[3,1]]⇤6+tuple

[[3,2]]⇤7+ tuple [[3,3]]⇤8;

287 resultr =GatherBy[SortBy[result,rank[#]&],rank[#]&]

288 resultru =GatherBy[SortBy[resultu,rank[#]&],rank[#]&]

289

290 (⇤An ADE lattice ⇤ =
L19

i=1 aiA1 �
L19

j=4 djDj �
L8

k=6 ekEk in resultr has the form

{{a1, ..., a19}, {d4, ..., d19}, {e6, e7, e8}}.⇤)



C List of all ADE lattices ⇤ such that

⇤ � h6i can be embedded primitively

into the K3 lattice

In this appendix, we give the list of all ADE lattices ⇤ such that h6i�⇤ can be embedded
primitively into the K3 lattice. The list is obtained computer-aided with the code in
Appendix B. The asterisk ⇤ infront of a lattice ⇤ indicates that the lattice h6i � ⇤ admits
a unique embedding into LK3 up to automorphisms of LK3.

rank(⇤) = 1

1. ⇤
A1

rank(⇤) = 2

2. ⇤
A2

3. ⇤2A1

rank(⇤) = 3

4. ⇤
A3

5. ⇤
A1 �A2

6. ⇤3A1

rank(⇤) = 4

7. ⇤
D4

8. ⇤
A4

9. ⇤2A2

10. ⇤
A1 �A3

11. ⇤2A1 �A2

12. ⇤4A1

rank(⇤) = 5

13. ⇤
D5

14. ⇤
A5

15. ⇤
A2 �A3

16. ⇤
A1 �D4

17. ⇤
A1 �A4

18. ⇤
A1 � 2A2

19. ⇤2A1 �A3

20. ⇤3A1 �A2

21. ⇤5A1

rank(⇤) = 6

22. ⇤
E6

23. ⇤
D6

24. ⇤
A6

25. ⇤2A3

26. ⇤
A2 �D4

27. ⇤
A2 �A4

28. ⇤3A2

29. ⇤
A1 �D5

30. ⇤
A1 �A5

31. ⇤
A1 �A2 �A3

32. ⇤2A1 �D4

33. ⇤2A1 �A4

34. ⇤2A1 � 2A2

35. ⇤3A1 �A3

36. ⇤4A1 �A2

37. ⇤6A1

rank(⇤) = 7

38. ⇤
E7

39. ⇤
D7

40. ⇤
A7

41. ⇤
A3 �D4

42. ⇤
A3 �A4

43. ⇤
A2 �D5

44. ⇤
A2 �A5

45. ⇤2A2 �A3

46. ⇤
A1 � E6

47. ⇤
A1 �D6

48. ⇤
A1 �A6

49. ⇤
A1 � 2A3

50. ⇤
A1 �A2 �D4

51. ⇤
A1 �A2 �A4

52. ⇤
A1 � 3A2

53. ⇤2A1 �D5

54. ⇤2A1 �A5

55. ⇤2A1 �A2 �A3

56. ⇤3A1 �D4

57. ⇤3A1 �A4

58. ⇤3A1 � 2A2

59. ⇤4A1 �A3

60. ⇤5A1 �A2

61. ⇤7A1

rank(⇤) = 8

62. ⇤
E8

63. ⇤
D8

64. ⇤2D4

65. ⇤
A8

66. ⇤
A4 �D4

67. ⇤2A4

68. ⇤
A3 �D5

69. ⇤
A3 �A5

70. ⇤
A2 � E6

71. ⇤
A2 �D6

72. ⇤
A2 �A6

73. ⇤
A2 � 2A3

74. ⇤2A2 �D4

75. ⇤2A2 �A4

76. ⇤4A2

77. ⇤
A1 � E7

78. ⇤
A1 �D7

79. ⇤
A1 �A7

80. ⇤
A1 �A3 �D4

81. ⇤
A1 �A3 �A4

82. ⇤
A1 �A2 �D5

83. ⇤
A1 �A2 �A5

84. ⇤
A1 � 2A2 �A3

85. ⇤2A1 � E6

86. ⇤2A1 �D6

87. ⇤2A1 �A6

88. ⇤2A1 � 2A3



114
C List of all ADE lattices ⇤ such that ⇤ � h6i can be embedded primitively into the

K3 lattice

89. ⇤2A1 �A2 �D4

90. ⇤2A1 �A2 �A4

91. ⇤2A1 � 3A2

92. ⇤3A1 �D5

93. ⇤3A1 �A5

94. ⇤3A1 �A2 �A3

95. ⇤4A1 �D4

96. ⇤4A1 �A4

97. ⇤4A1 � 2A2

98. ⇤5A1 �A3

99. ⇤6A1 �A2

100. ⇤8A1

rank(⇤) = 9

101. ⇤
D9

102. ⇤
D4 �D5

103. ⇤
A9

104. ⇤
A5 �D4

105. ⇤
A4 �D5

106. ⇤
A4 �A5

107. ⇤
A3 � E6

108. ⇤
A3 �D6

109. ⇤
A3 �A6

110. ⇤3A3

111. ⇤
A2 � E7

112. ⇤
A2 �D7

113. ⇤
A2 �A7

114. ⇤
A2 �A3 �D4

115. ⇤
A2 �A3 �A4

116. ⇤2A2 �D5

117. ⇤2A2 �A5

118. ⇤3A2 �A3

119. ⇤
A1 � E8

120. ⇤
A1 �D8

121. ⇤
A1 � 2D4

122. ⇤
A1 �A8

123. ⇤
A1 �A4 �D4

124. ⇤
A1 � 2A4

125. ⇤
A1 �A3 �D5

126. ⇤
A1 �A3 �A5

127. ⇤
A1 �A2 � E6

128. ⇤
A1 �A2 �D6

129. ⇤
A1 �A2 �A6

130. ⇤
A1 �A2 � 2A3

131. ⇤
A1 � 2A2 �D4

132. ⇤
A1 � 2A2 �A4

133. ⇤
A1 � 4A2

134. ⇤2A1 � E7

135. ⇤2A1 �D7

136. ⇤2A1 �A7

137. ⇤2A1 �A3 �D4

138. ⇤2A1 �A3 �A4

139. ⇤2A1 �A2 �D5

140. ⇤2A1 �A2 �A5

141. ⇤2A1 � 2A2 �A3

142. ⇤3A1 � E6

143. ⇤3A1 �D6

144. ⇤3A1 �A6

145. ⇤3A1 � 2A3

146. ⇤3A1 �A2 �D4

147. ⇤3A1 �A2 �A4

148. ⇤3A1 � 3A2

149. ⇤4A1 �D5

150. ⇤4A1 �A5

151. ⇤4A1 �A2 �A3

152. ⇤5A1 �D4

153. ⇤5A1 �A4

154. ⇤5A1 � 2A2

155. ⇤6A1 �A3

156. ⇤7A1 �A2

157. ⇤9A1

rank(⇤) = 10

158. ⇤
D10

159. ⇤2D5

160. ⇤
D4 � E6

161. ⇤
D4 �D6

162. ⇤
A10

163. ⇤
A6 �D4

164. ⇤
A5 �D5

165. ⇤2A5

166. ⇤
A4 � E6

167. ⇤
A4 �D6

168. ⇤
A4 �A6

169. ⇤
A3 � E7

170. ⇤
A3 �D7

171. ⇤
A3 �A7

172. ⇤2A3 �D4

173. ⇤2A3 �A4

174. ⇤
A2 � E8

175. ⇤
A2 �D8

176. ⇤
A2 � 2D4

177. ⇤
A2 �A8

178. ⇤
A2 �A4 �D4

179. ⇤
A2 � 2A4

180. ⇤
A2 �A3 �D5

181. ⇤
A2 �A3 �A5

182. ⇤2A2 � E6

183. ⇤2A2 �D6

184. ⇤2A2 �A6

185. ⇤2A2 � 2A3

186. ⇤3A2 �D4

187. ⇤3A2 �A4

188. ⇤5A2

189. ⇤
A1 �D9

190. ⇤
A1 �D4 �D5

191. ⇤
A1 �A9

192. ⇤
A1 �A5 �D4

193. ⇤
A1 �A4 �D5

194. ⇤
A1 �A4 �A5

195. ⇤
A1 �A3 � E6

196. ⇤
A1 �A3 �D6

197. ⇤
A1 �A3 �A6

198. ⇤
A1 � 3A3

199. ⇤
A1 �A2 � E7

200. ⇤
A1 �A2 �D7

201. ⇤
A1 �A2 �A7

202. ⇤
A1�A2�A3�D4

203. ⇤
A1�A2�A3�A4

204. ⇤
A1 � 2A2 �D5

205. ⇤
A1 � 2A2 �A5

206. ⇤
A1 � 3A2 �A3

207. ⇤2A1 � E8

208. ⇤2A1 �D8

209. ⇤2A1 � 2D4

210. ⇤2A1 �A8

211. ⇤2A1 �A4 �D4

212. ⇤2A1 � 2A4

213. ⇤2A1 �A3 �D5

214. ⇤2A1 �A3 �A5

215. ⇤2A1 �A2 � E6

216. ⇤2A1 �A2 �D6

217. ⇤2A1 �A2 �A6

218. ⇤2A1 �A2 � 2A3

219. ⇤2A1 � 2A2 �D4

220. ⇤2A1 � 2A2 �A4

221. ⇤2A1 � 4A2

222. ⇤3A1 � E7

223. ⇤3A1 �D7

224. ⇤3A1 �A7

225. ⇤3A1 �A3 �D4

226. ⇤3A1 �A3 �A4

227. ⇤3A1 �A2 �D5

228. ⇤3A1 �A2 �A5

229. ⇤3A1 � 2A2 �A3

230. ⇤4A1 � E6

231. ⇤4A1 �D6

232. ⇤4A1 �A6

233. ⇤4A1 � 2A3

234. ⇤4A1 �A2 �D4
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235. ⇤4A1 �A2 �A4

236. ⇤4A1 � 3A2

237. ⇤5A1 �D5

238. ⇤5A1 �A5

239. ⇤5A1 �A2 �A3

240. ⇤6A1 �D4

241. ⇤6A1 �A4

242. ⇤6A1 � 2A2

243. ⇤7A1 �A3

244. ⇤8A1 �A2

245. 10A1

rank(⇤) = 11

246. ⇤
D11

247. ⇤
D5 � E6

248. ⇤
D5 �D6

249. ⇤
D4 � E7

250. ⇤
D4 �D7

251. ⇤
A11

252. ⇤
A7 �D4

253. ⇤
A6 �D5

254. ⇤
A5 � E6

255. ⇤
A5 �D6

256. ⇤
A5 �A6

257. ⇤
A4 � E7

258. ⇤
A4 �D7

259. ⇤
A4 �A7

260. ⇤
A3 � E8

261. ⇤
A3 �D8

262. ⇤
A3 � 2D4

263. ⇤
A3 �A8

264. ⇤
A3 �A4 �D4

265. ⇤
A3 � 2A4

266. ⇤2A3 �D5

267. ⇤2A3 �A5

268. ⇤
A2 �D9

269. ⇤
A2 �D4 �D5

270. ⇤
A2 �A9

271. ⇤
A2 �A5 �D4

272. ⇤
A2 �A4 �D5

273. ⇤
A2 �A4 �A5

274. ⇤
A2 �A3 � E6

275. ⇤
A2 �A3 �D6

276. ⇤
A2 �A3 �A6

277. ⇤
A2 � 3A3

278. ⇤2A2 � E7

279. ⇤2A2 �D7

280. ⇤2A2 �A7

281. ⇤2A2 �A3 �D4

282. ⇤2A2 �A3 �A4

283. ⇤3A2 �D5

284. ⇤3A2 �A5

285. ⇤4A2 �A3

286. ⇤
A1 �D10

287. ⇤
A1 � 2D5

288. ⇤
A1 �D4 � E6

289. ⇤
A1 �D4 �D6

290. ⇤
A1 �A10

291. ⇤
A1 �A6 �D4

292. ⇤
A1 �A5 �D5

293. ⇤
A1 � 2A5

294. ⇤
A1 �A4 � E6

295. ⇤
A1 �A4 �D6

296. ⇤
A1 �A4 �A6

297. ⇤
A1 �A3 � E7

298. ⇤
A1 �A3 �D7

299. ⇤
A1 �A3 �A7

300. ⇤
A1 � 2A3 �D4

301. ⇤
A1 � 2A3 �A4

302. ⇤
A1 �A2 � E8

303. ⇤
A1 �A2 �D8

304. ⇤
A1 �A2 � 2D4

305. ⇤
A1 �A2 �A8

306. ⇤
A1�A2�A4�D4

307. ⇤
A1 �A2 � 2A4

308. ⇤
A1�A2�A3�D5

309. ⇤
A1�A2�A3�A5

310. ⇤
A1 � 2A2 � E6

311. ⇤
A1 � 2A2 �D6

312. ⇤
A1 � 2A2 �A6

313. ⇤
A1 � 2A2 � 2A3

314. ⇤
A1 � 3A2 �D4

315. ⇤
A1 � 3A2 �A4

316. ⇤
A1 � 5A2

317. ⇤2A1 �D9

318. ⇤2A1 �D4 �D5

319. ⇤2A1 �A9

320. ⇤2A1 �A5 �D4

321. ⇤2A1 �A4 �D5

322. ⇤2A1 �A4 �A5

323. ⇤2A1 �A3 � E6

324. ⇤2A1 �A3 �D6

325. ⇤2A1 �A3 �A6

326. ⇤2A1 � 3A3

327. ⇤2A1 �A2 � E7

328. ⇤2A1 �A2 �D7

329. ⇤2A1 �A2 �A7

330. ⇤2A1 �A2 �A3 �
D4

331. ⇤2A1 �A2 �A3 �
A4

332. ⇤2A1 � 2A2 �D5

333. ⇤2A1 � 2A2 �A5

334. ⇤2A1 � 3A2 �A3

335. ⇤3A1 � E8

336. ⇤3A1 �D8

337. ⇤3A1 � 2D4

338. ⇤3A1 �A8

339. ⇤3A1 �A4 �D4

340. ⇤3A1 � 2A4

341. ⇤3A1 �A3 �D5

342. ⇤3A1 �A3 �A5

343. ⇤3A1 �A2 � E6

344. ⇤3A1 �A2 �D6

345. ⇤3A1 �A2 �A6

346. ⇤3A1 �A2 � 2A3

347. ⇤3A1 � 2A2 �D4

348. ⇤3A1 � 2A2 �A4

349. ⇤3A1 � 4A2

350. ⇤4A1 � E7

351. ⇤4A1 �D7

352. ⇤4A1 �A7

353. ⇤4A1 �A3 �D4

354. ⇤4A1 �A3 �A4

355. ⇤4A1 �A2 �D5

356. ⇤4A1 �A2 �A5

357. ⇤4A1 � 2A2 �A3

358. ⇤5A1 � E6

359. ⇤5A1 �D6

360. ⇤5A1 �A6

361. ⇤5A1 � 2A3

362. ⇤5A1 �A2 �D4

363. ⇤5A1 �A2 �A4

364. ⇤5A1 � 3A2

365. ⇤6A1 �D5

366. ⇤6A1 �A5

367. ⇤6A1 �A2 �A3

368. 7A1 �D4

369. ⇤7A1 �A4

370. ⇤7A1 � 2A2

371. 8A1 �A3

372. 9A1 �A2

rank(⇤) = 12

373. ⇤2E6

374. ⇤
D12

375. ⇤
D6 � E6

376. ⇤2D6

377. ⇤
D5 � E7

378. ⇤
D5 �D7

379. ⇤
D4 � E8



116
C List of all ADE lattices ⇤ such that ⇤ � h6i can be embedded primitively into the

K3 lattice

380. ⇤
D4 �D8

381. ⇤3D4

382. ⇤
A12

383. ⇤
A8 �D4

384. ⇤
A7 �D5

385. ⇤
A6 � E6

386. ⇤
A6 �D6

387. ⇤2A6

388. ⇤
A5 � E7

389. ⇤
A5 �D7

390. ⇤
A5 �A7

391. ⇤
A4 � E8

392. ⇤
A4 �D8

393. ⇤
A4 � 2D4

394. ⇤
A4 �A8

395. ⇤2A4 �D4

396. ⇤3A4

397. ⇤
A3 �D9

398. ⇤
A3 �D4 �D5

399. ⇤
A3 �A9

400. ⇤
A3 �A5 �D4

401. ⇤
A3 �A4 �D5

402. ⇤
A3 �A4 �A5

403. ⇤2A3 � E6

404. ⇤2A3 �D6

405. ⇤2A3 �A6

406. ⇤4A3

407. ⇤
A2 �D10

408. ⇤
A2 � 2D5

409. ⇤
A2 �D4 � E6

410. ⇤
A2 �D4 �D6

411. ⇤
A2 �A10

412. ⇤
A2 �A6 �D4

413. ⇤
A2 �A5 �D5

414. ⇤
A2 � 2A5

415. ⇤
A2 �A4 � E6

416. ⇤
A2 �A4 �D6

417. ⇤
A2 �A4 �A6

418. ⇤
A2 �A3 � E7

419. ⇤
A2 �A3 �D7

420. ⇤
A2 �A3 �A7

421. ⇤
A2 � 2A3 �D4

422. ⇤
A2 � 2A3 �A4

423. ⇤2A2 � E8

424. ⇤2A2 �D8

425. ⇤2A2 � 2D4

426. ⇤2A2 �A8

427. ⇤2A2 �A4 �D4

428. ⇤2A2 � 2A4

429. ⇤2A2 �A3 �D5

430. ⇤2A2 �A3 �A5

431. ⇤3A2 � E6

432. ⇤3A2 �D6

433. ⇤3A2 �A6

434. ⇤3A2 � 2A3

435. ⇤4A2 �D4

436. ⇤4A2 �A4

437. ⇤6A2

438. ⇤
A1 �D11

439. ⇤
A1 �D5 � E6

440. ⇤
A1 �D5 �D6

441. ⇤
A1 �D4 � E7

442. ⇤
A1 �D4 �D7

443. ⇤
A1 �A11

444. ⇤
A1 �A7 �D4

445. ⇤
A1 �A6 �D5

446. ⇤
A1 �A5 � E6

447. ⇤
A1 �A5 �D6

448. ⇤
A1 �A5 �A6

449. ⇤
A1 �A4 � E7

450. ⇤
A1 �A4 �D7

451. ⇤
A1 �A4 �A7

452. ⇤
A1 �A3 � E8

453. ⇤
A1 �A3 �D8

454. ⇤
A1 �A3 � 2D4

455. ⇤
A1 �A3 �A8

456. ⇤
A1�A3�A4�D4

457. ⇤
A1 �A3 � 2A4

458. ⇤
A1 � 2A3 �D5

459. ⇤
A1 � 2A3 �A5

460. ⇤
A1 �A2 �D9

461. ⇤
A1�A2�D4�D5

462. ⇤
A1 �A2 �A9

463. ⇤
A1�A2�A5�D4

464. ⇤
A1�A2�A4�D5

465. ⇤
A1�A2�A4�A5

466. ⇤
A1�A2�A3�E6

467. ⇤
A1�A2�A3�D6

468. ⇤
A1�A2�A3�A6

469. ⇤
A1 �A2 � 3A3

470. ⇤
A1 � 2A2 � E7

471. ⇤
A1 � 2A2 �D7

472. ⇤
A1 � 2A2 �A7

473. ⇤
A1 � 2A2 �A3 �
D4

474. ⇤
A1 � 2A2 �A3 �
A4

475. ⇤
A1 � 3A2 �D5

476. ⇤
A1 � 3A2 �A5

477. ⇤
A1 � 4A2 �A3

478. ⇤2A1 �D10

479. ⇤2A1 � 2D5

480. ⇤2A1 �D4 � E6

481. ⇤2A1 �D4 �D6

482. ⇤2A1 �A10

483. ⇤2A1 �A6 �D4

484. ⇤2A1 �A5 �D5

485. ⇤2A1 � 2A5

486. ⇤2A1 �A4 � E6

487. ⇤2A1 �A4 �D6

488. ⇤2A1 �A4 �A6

489. ⇤2A1 �A3 � E7

490. ⇤2A1 �A3 �D7

491. ⇤2A1 �A3 �A7

492. ⇤2A1 � 2A3 �D4

493. ⇤2A1 � 2A3 �A4

494. ⇤2A1 �A2 � E8

495. ⇤2A1 �A2 �D8

496. ⇤2A1 �A2 � 2D4

497. ⇤2A1 �A2 �A8

498. ⇤2A1 �A2 �A4 �
D4

499. ⇤2A1 �A2 � 2A4

500. ⇤2A1 �A2 �A3 �
D5

501. ⇤2A1 �A2 �A3 �
A5

502. ⇤2A1 � 2A2 � E6

503. ⇤2A1 � 2A2 �D6

504. ⇤2A1 � 2A2 �A6

505. ⇤2A1 � 2A2 � 2A3

506. ⇤2A1 � 3A2 �D4

507. ⇤2A1 � 3A2 �A4

508. ⇤2A1 � 5A2

509. ⇤3A1 �D9

510. ⇤3A1 �D4 �D5

511. ⇤3A1 �A9

512. ⇤3A1 �A5 �D4

513. ⇤3A1 �A4 �D5

514. ⇤3A1 �A4 �A5

515. ⇤3A1 �A3 � E6

516. ⇤3A1 �A3 �D6

517. ⇤3A1 �A3 �A6

518. ⇤3A1 � 3A3

519. ⇤3A1 �A2 � E7

520. ⇤3A1 �A2 �D7

521. ⇤3A1 �A2 �A7

522. ⇤3A1 �A2 �A3 �
D4

523. ⇤3A1 �A2 �A3 �
A4

524. ⇤3A1 � 2A2 �D5
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525. ⇤3A1 � 2A2 �A5

526. ⇤3A1 � 3A2 �A3

527. ⇤4A1 � E8

528. ⇤4A1 �D8

529. 4A1 � 2D4

530. ⇤4A1 �A8

531. ⇤4A1 �A4 �D4

532. ⇤4A1 � 2A4

533. ⇤4A1 �A3 �D5

534. ⇤4A1 �A3 �A5

535. ⇤4A1 �A2 � E6

536. ⇤4A1 �A2 �D6

537. ⇤4A1 �A2 �A6

538. ⇤4A1 �A2 � 2A3

539. ⇤4A1 � 2A2 �D4

540. ⇤4A1 � 2A2 �A4

541. ⇤4A1 � 4A2

542. ⇤5A1 � E7

543. ⇤5A1 �D7

544. ⇤5A1 �A7

545. 5A1 �A3 �D4

546. ⇤5A1 �A3 �A4

547. ⇤5A1 �A2 �D5

548. ⇤5A1 �A2 �A5

549. ⇤5A1 � 2A2 �A3

550. ⇤6A1 � E6

551. 6A1 �D6

552. ⇤6A1 �A6

553. 6A1 � 2A3

554. 6A1 �A2 �D4

555. ⇤6A1 �A2 �A4

556. ⇤6A1 � 3A2

557. 7A1 �D5

558. 7A1 �A5

559. 7A1 �A2 �A3

560. 8A1 �A4

561. 8A1 � 2A2

rank(⇤) = 13

562. ⇤
E6 � E7

563. ⇤
D13

564. ⇤
D7 � E6

565. ⇤
D6 � E7

566. ⇤
D6 �D7

567. ⇤
D5 � E8

568. ⇤
D5 �D8

569. ⇤
D4 �D9

570. ⇤2D4 �D5

571. ⇤
A13

572. ⇤
A9 �D4

573. ⇤
A8 �D5

574. ⇤
A7 � E6

575. ⇤
A7 �D6

576. ⇤
A6 � E7

577. ⇤
A6 �D7

578. ⇤
A6 �A7

579. ⇤
A5 � E8

580. ⇤
A5 �D8

581. ⇤
A5 � 2D4

582. ⇤
A5 �A8

583. ⇤
A4 �D9

584. ⇤
A4 �D4 �D5

585. ⇤
A4 �A9

586. ⇤
A4 �A5 �D4

587. ⇤2A4 �D5

588. ⇤2A4 �A5

589. ⇤
A3 �D10

590. ⇤
A3 � 2D5

591. ⇤
A3 �D4 � E6

592. ⇤
A3 �D4 �D6

593. ⇤
A3 �A10

594. ⇤
A3 �A6 �D4

595. ⇤
A3 �A5 �D5

596. ⇤
A3 � 2A5

597. ⇤
A3 �A4 � E6

598. ⇤
A3 �A4 �D6

599. ⇤
A3 �A4 �A6

600. ⇤2A3 � E7

601. ⇤2A3 �D7

602. ⇤2A3 �A7

603. ⇤3A3 �D4

604. ⇤3A3 �A4

605. ⇤
A2 �D11

606. ⇤
A2 �D5 � E6

607. ⇤
A2 �D5 �D6

608. ⇤
A2 �D4 � E7

609. ⇤
A2 �D4 �D7

610. ⇤
A2 �A11

611. ⇤
A2 �A7 �D4

612. ⇤
A2 �A6 �D5

613. ⇤
A2 �A5 � E6

614. ⇤
A2 �A5 �D6

615. ⇤
A2 �A5 �A6

616. ⇤
A2 �A4 � E7

617. ⇤
A2 �A4 �D7

618. ⇤
A2 �A4 �A7

619. ⇤
A2 �A3 � E8

620. ⇤
A2 �A3 �D8

621. ⇤
A2 �A3 � 2D4

622. ⇤
A2 �A3 �A8

623. ⇤
A2�A3�A4�D4

624. ⇤
A2 �A3 � 2A4

625. ⇤
A2 � 2A3 �D5

626. ⇤
A2 � 2A3 �A5

627. ⇤2A2 �D9

628. ⇤2A2 �D4 �D5

629. ⇤2A2 �A9

630. ⇤2A2 �A5 �D4

631. ⇤2A2 �A4 �D5

632. ⇤2A2 �A4 �A5

633. ⇤2A2 �A3 � E6

634. ⇤2A2 �A3 �D6

635. ⇤2A2 �A3 �A6

636. ⇤2A2 � 3A3

637. ⇤3A2 � E7

638. ⇤3A2 �D7

639. ⇤3A2 �A7

640. ⇤3A2 �A3 �D4

641. ⇤3A2 �A3 �A4

642. ⇤4A2 �D5

643. ⇤4A2 �A5

644. ⇤5A2 �A3

645. ⇤
A1 � 2E6

646. ⇤
A1 �D12

647. ⇤
A1 �D6 � E6

648. ⇤
A1 � 2D6

649. ⇤
A1 �D5 � E7

650. ⇤
A1 �D5 �D7

651. ⇤
A1 �D4 � E8

652. ⇤
A1 �D4 �D8

653. A1 � 3D4

654. ⇤
A1 �A12

655. ⇤
A1 �A8 �D4

656. ⇤
A1 �A7 �D5

657. ⇤
A1 �A6 � E6

658. ⇤
A1 �A6 �D6

659. ⇤
A1 � 2A6

660. ⇤
A1 �A5 � E7

661. ⇤
A1 �A5 �D7

662. ⇤
A1 �A5 �A7

663. ⇤
A1 �A4 � E8

664. ⇤
A1 �A4 �D8

665. ⇤
A1 �A4 � 2D4

666. ⇤
A1 �A4 �A8

667. ⇤
A1 � 2A4 �D4

668. ⇤
A1 � 3A4

669. ⇤
A1 �A3 �D9

670. ⇤
A1�A3�D4�D5

671. ⇤
A1 �A3 �A9
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672. ⇤
A1�A3�A5�D4

673. ⇤
A1�A3�A4�D5

674. ⇤
A1�A3�A4�A5

675. ⇤
A1 � 2A3 � E6

676. ⇤
A1 � 2A3 �D6

677. ⇤
A1 � 2A3 �A6

678. ⇤
A1 � 4A3

679. ⇤
A1 �A2 �D10

680. ⇤
A1 �A2 � 2D5

681. ⇤
A1�A2�D4�E6

682. ⇤
A1�A2�D4�D6

683. ⇤
A1 �A2 �A10

684. ⇤
A1�A2�A6�D4

685. ⇤
A1�A2�A5�D5

686. ⇤
A1 �A2 � 2A5

687. ⇤
A1�A2�A4�E6

688. ⇤
A1�A2�A4�D6

689. ⇤
A1�A2�A4�A6

690. ⇤
A1�A2�A3�E7

691. ⇤
A1�A2�A3�D7

692. ⇤
A1�A2�A3�A7

693. ⇤
A1 �A2 � 2A3 �
D4

694. ⇤
A1 �A2 � 2A3 �
A4

695. ⇤
A1 � 2A2 � E8

696. ⇤
A1 � 2A2 �D8

697. ⇤
A1 � 2A2 � 2D4

698. ⇤
A1 � 2A2 �A8

699. ⇤
A1 � 2A2 �A4 �
D4

700. ⇤
A1 � 2A2 � 2A4

701. ⇤
A1 � 2A2 �A3 �
D5

702. ⇤
A1 � 2A2 �A3 �
A5

703. ⇤
A1 � 3A2 � E6

704. ⇤
A1 � 3A2 �D6

705. ⇤
A1 � 3A2 �A6

706. ⇤
A1 � 3A2 � 2A3

707. ⇤
A1 � 4A2 �D4

708. ⇤
A1 � 4A2 �A4

709. A1 � 6A2

710. ⇤2A1 �D11

711. ⇤2A1 �D5 � E6

712. ⇤2A1 �D5 �D6

713. ⇤2A1 �D4 � E7

714. ⇤2A1 �D4 �D7

715. ⇤2A1 �A11

716. ⇤2A1 �A7 �D4

717. ⇤2A1 �A6 �D5

718. ⇤2A1 �A5 � E6

719. ⇤2A1 �A5 �D6

720. ⇤2A1 �A5 �A6

721. ⇤2A1 �A4 � E7

722. ⇤2A1 �A4 �D7

723. ⇤2A1 �A4 �A7

724. ⇤2A1 �A3 � E8

725. ⇤2A1 �A3 �D8

726. 2A1 �A3 � 2D4

727. ⇤2A1 �A3 �A8

728. ⇤2A1 �A3 �A4 �
D4

729. ⇤2A1 �A3 � 2A4

730. ⇤2A1 � 2A3 �D5

731. ⇤2A1 � 2A3 �A5

732. ⇤2A1 �A2 �D9

733. ⇤2A1 �A2 �D4 �
D5

734. ⇤2A1 �A2 �A9

735. ⇤2A1 �A2 �A5 �
D4

736. ⇤2A1 �A2 �A4 �
D5

737. ⇤2A1 �A2 �A4 �
A5

738. ⇤2A1 �A2 �A3 �
E6

739. ⇤2A1 �A2 �A3 �
D6

740. ⇤2A1 �A2 �A3 �
A6

741. ⇤2A1 �A2 � 3A3

742. ⇤2A1 � 2A2 � E7

743. ⇤2A1 � 2A2 �D7

744. ⇤2A1 � 2A2 �A7

745. ⇤2A1�2A2�A3�
D4

746. ⇤2A1�2A2�A3�
A4

747. ⇤2A1 � 3A2 �D5

748. ⇤2A1 � 3A2 �A5

749. ⇤2A1 � 4A2 �A3

750. ⇤3A1 �D10

751. ⇤3A1 � 2D5

752. ⇤3A1 �D4 � E6

753. 3A1 �D4 �D6

754. ⇤3A1 �A10

755. ⇤3A1 �A6 �D4

756. ⇤3A1 �A5 �D5

757. ⇤3A1 � 2A5

758. ⇤3A1 �A4 � E6

759. ⇤3A1 �A4 �D6

760. ⇤3A1 �A4 �A6

761. ⇤3A1 �A3 � E7

762. ⇤3A1 �A3 �D7

763. ⇤3A1 �A3 �A7

764. 3A1 � 2A3 �D4

765. ⇤3A1 � 2A3 �A4

766. ⇤3A1 �A2 � E8

767. ⇤3A1 �A2 �D8

768. 3A1 �A2 � 2D4

769. ⇤3A1 �A2 �A8

770. ⇤3A1 �A2 �A4 �
D4

771. ⇤3A1 �A2 � 2A4

772. ⇤3A1 �A2 �A3 �
D5

773. ⇤3A1 �A2 �A3 �
A5

774. ⇤3A1 � 2A2 � E6

775. ⇤3A1 � 2A2 �D6

776. ⇤3A1 � 2A2 �A6

777. ⇤3A1 � 2A2 � 2A3

778. ⇤3A1 � 3A2 �D4

779. ⇤3A1 � 3A2 �A4

780. ⇤3A1 � 5A2

781. ⇤4A1 �D9

782. 4A1 �D4 �D5

783. ⇤4A1 �A9

784. 4A1 �A5 �D4

785. ⇤4A1 �A4 �D5

786. ⇤4A1 �A4 �A5

787. ⇤4A1 �A3 � E6

788. 4A1 �A3 �D6

789. ⇤4A1 �A3 �A6

790. 4A1 � 3A3

791. ⇤4A1 �A2 � E7

792. ⇤4A1 �A2 �D7

793. ⇤4A1 �A2 �A7

794. 4A1�A2�A3�D4

795. ⇤4A1 �A2 �A3 �
A4

796. ⇤4A1 � 2A2 �D5

797. ⇤4A1 � 2A2 �A5

798. ⇤4A1 � 3A2 �A3

799. ⇤5A1 � E8

800. 5A1 �D8

801. ⇤5A1 �A8

802. 5A1 �A4 �D4

803. ⇤5A1 � 2A4

804. 5A1 �A3 �D5

805. 5A1 �A3 �A5

806. ⇤5A1 �A2 � E6
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807. 5A1 �A2 �D6

808. ⇤5A1 �A2 �A6

809. 5A1 �A2 � 2A3

810. 5A1 � 2A2 �D4

811. ⇤5A1 � 2A2 �A4

812. ⇤5A1 � 4A2

813. 6A1 � E7

814. 6A1 �D7

815. 6A1 �A7

816. 6A1 �A3 �A4

817. 6A1 �A2 �D5

818. 6A1 �A2 �A5

819. 6A1 � 2A2 �A3

820. 7A1 � E6

821. 7A1 �A6

822. 7A1 �A2 �A4

823. 7A1 � 3A2

rank(⇤) = 14

824. ⇤2E7

825. ⇤
E6 � E8

826. ⇤
D14

827. ⇤
D8 � E6

828. ⇤
D7 � E7

829. ⇤2D7

830. ⇤
D6 � E8

831. ⇤
D6 �D8

832. ⇤
D5 �D9

833. ⇤
D4 �D10

834. ⇤
D4 � 2D5

835. ⇤2D4 � E6

836. 2D4 �D6

837. ⇤
A14

838. ⇤
A10 �D4

839. ⇤
A9 �D5

840. ⇤
A8 � E6

841. ⇤
A8 �D6

842. ⇤
A7 � E7

843. ⇤
A7 �D7

844. ⇤2A7

845. ⇤
A6 � E8

846. ⇤
A6 �D8

847. ⇤
A6 � 2D4

848. ⇤
A6 �A8

849. ⇤
A5 �D9

850. ⇤
A5 �D4 �D5

851. ⇤
A5 �A9

852. ⇤2A5 �D4

853. ⇤
A4 �D10

854. ⇤
A4 � 2D5

855. ⇤
A4 �D4 � E6

856. ⇤
A4 �D4 �D6

857. ⇤
A4 �A10

858. ⇤
A4 �A6 �D4

859. ⇤
A4 �A5 �D5

860. ⇤
A4 � 2A5

861. ⇤2A4 � E6

862. ⇤2A4 �D6

863. ⇤2A4 �A6

864. ⇤
A3 �D11

865. ⇤
A3 �D5 � E6

866. ⇤
A3 �D5 �D6

867. ⇤
A3 �D4 � E7

868. ⇤
A3 �D4 �D7

869. ⇤
A3 �A11

870. ⇤
A3 �A7 �D4

871. ⇤
A3 �A6 �D5

872. ⇤
A3 �A5 � E6

873. ⇤
A3 �A5 �D6

874. ⇤
A3 �A5 �A6

875. ⇤
A3 �A4 � E7

876. ⇤
A3 �A4 �D7

877. ⇤
A3 �A4 �A7

878. ⇤2A3 � E8

879. ⇤2A3 �D8

880. 2A3 � 2D4

881. ⇤2A3 �A8

882. ⇤2A3 �A4 �D4

883. ⇤2A3 � 2A4

884. ⇤3A3 �D5

885. ⇤3A3 �A5

886. ⇤
A2 � 2E6

887. ⇤
A2 �D12

888. ⇤
A2 �D6 � E6

889. ⇤
A2 � 2D6

890. ⇤
A2 �D5 � E7

891. ⇤
A2 �D5 �D7

892. ⇤
A2 �D4 � E8

893. ⇤
A2 �D4 �D8

894. A2 � 3D4

895. ⇤
A2 �A12

896. ⇤
A2 �A8 �D4

897. ⇤
A2 �A7 �D5

898. ⇤
A2 �A6 � E6

899. ⇤
A2 �A6 �D6

900. ⇤
A2 � 2A6

901. ⇤
A2 �A5 � E7

902. ⇤
A2 �A5 �D7

903. ⇤
A2 �A5 �A7

904. ⇤
A2 �A4 � E8

905. ⇤
A2 �A4 �D8

906. ⇤
A2 �A4 � 2D4

907. ⇤
A2 �A4 �A8

908. ⇤
A2 � 2A4 �D4

909. ⇤
A2 � 3A4

910. ⇤
A2 �A3 �D9

911. ⇤
A2�A3�D4�D5

912. ⇤
A2 �A3 �A9

913. ⇤
A2�A3�A5�D4

914. ⇤
A2�A3�A4�D5

915. ⇤
A2�A3�A4�A5

916. ⇤
A2 � 2A3 � E6

917. ⇤
A2 � 2A3 �D6

918. ⇤
A2 � 2A3 �A6

919. ⇤
A2 � 4A3

920. ⇤2A2 �D10

921. ⇤2A2 � 2D5

922. ⇤2A2 �D4 � E6

923. ⇤2A2 �D4 �D6

924. ⇤2A2 �A10

925. ⇤2A2 �A6 �D4

926. ⇤2A2 �A5 �D5

927. ⇤2A2 � 2A5

928. ⇤2A2 �A4 � E6

929. ⇤2A2 �A4 �D6

930. ⇤2A2 �A4 �A6

931. ⇤2A2 �A3 � E7

932. ⇤2A2 �A3 �D7

933. ⇤2A2 �A3 �A7

934. ⇤2A2 � 2A3 �D4

935. ⇤2A2 � 2A3 �A4

936. ⇤3A2 � E8

937. ⇤3A2 �D8

938. ⇤3A2 � 2D4

939. ⇤3A2 �A8

940. ⇤3A2 �A4 �D4

941. ⇤3A2 � 2A4

942. ⇤3A2 �A3 �D5

943. ⇤3A2 �A3 �A5

944. 4A2 � E6

945. ⇤4A2 �D6

946. ⇤4A2 �A6

947. ⇤4A2 � 2A3

948. 5A2 �D4

949. 5A2 �A4

950. ⇤
A1 � E6 � E7

951. ⇤
A1 �D13

952. ⇤
A1 �D7 � E6

953. ⇤
A1 �D6 � E7
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954. ⇤
A1 �D6 �D7

955. ⇤
A1 �D5 � E8

956. ⇤
A1 �D5 �D8

957. ⇤
A1 �D4 �D9

958. A1 � 2D4 �D5

959. ⇤
A1 �A13

960. ⇤
A1 �A9 �D4

961. ⇤
A1 �A8 �D5

962. ⇤
A1 �A7 � E6

963. ⇤
A1 �A7 �D6

964. ⇤
A1 �A6 � E7

965. ⇤
A1 �A6 �D7

966. ⇤
A1 �A6 �A7

967. ⇤
A1 �A5 � E8

968. ⇤
A1 �A5 �D8

969. A1 �A5 � 2D4

970. ⇤
A1 �A5 �A8

971. ⇤
A1 �A4 �D9

972. ⇤
A1�A4�D4�D5

973. ⇤
A1 �A4 �A9

974. ⇤
A1�A4�A5�D4

975. ⇤
A1 � 2A4 �D5

976. ⇤
A1 � 2A4 �A5

977. ⇤
A1 �A3 �D10

978. ⇤
A1 �A3 � 2D5

979. ⇤
A1�A3�D4�E6

980. A1�A3�D4�D6

981. ⇤
A1 �A3 �A10

982. ⇤
A1�A3�A6�D4

983. ⇤
A1�A3�A5�D5

984. ⇤
A1 �A3 � 2A5

985. ⇤
A1�A3�A4�E6

986. ⇤
A1�A3�A4�D6

987. ⇤
A1�A3�A4�A6

988. ⇤
A1 � 2A3 � E7

989. ⇤
A1 � 2A3 �D7

990. ⇤
A1 � 2A3 �A7

991. A1 � 3A3 �D4

992. ⇤
A1 � 3A3 �A4

993. ⇤
A1 �A2 �D11

994. ⇤
A1�A2�D5�E6

995. ⇤
A1�A2�D5�D6

996. ⇤
A1�A2�D4�E7

997. ⇤
A1�A2�D4�D7

998. ⇤
A1 �A2 �A11

999. ⇤
A1�A2�A7�D4

1000. ⇤
A1�A2�A6�D5

1001. ⇤
A1�A2�A5�E6

1002. ⇤
A1�A2�A5�D6

1003. ⇤
A1�A2�A5�A6

1004. ⇤
A1�A2�A4�E7

1005. ⇤
A1�A2�A4�D7

1006. ⇤
A1�A2�A4�A7

1007. ⇤
A1�A2�A3�E8

1008. ⇤
A1�A2�A3�D8

1009. A1�A2�A3�2D4

1010. ⇤
A1�A2�A3�A8

1011. ⇤
A1 � A2 � A3 �
A4 �D4

1012. ⇤
A1 � A2 � A3 �
2A4

1013. ⇤
A1 �A2 � 2A3 �
D5

1014. ⇤
A1 �A2 � 2A3 �
A5

1015. ⇤
A1 � 2A2 �D9

1016. ⇤
A1 � 2A2 �D4 �
D5

1017. ⇤
A1 � 2A2 �A9

1018. ⇤
A1 � 2A2 �A5 �
D4

1019. ⇤
A1 � 2A2 �A4 �
D5

1020. ⇤
A1 � 2A2 �A4 �
A5

1021. ⇤
A1 � 2A2 �A3 �
E6

1022. ⇤
A1 � 2A2 �A3 �
D6

1023. ⇤
A1 � 2A2 �A3 �
A6

1024. ⇤
A1 � 2A2 � 3A3

1025. ⇤
A1 � 3A2 � E7

1026. ⇤
A1 � 3A2 �D7

1027. ⇤
A1 � 3A2 �A7

1028. ⇤
A1 � 3A2 �A3 �
D4

1029. ⇤
A1 � 3A2 �A3 �
A4

1030. ⇤
A1 � 4A2 �D5

1031. A1 � 4A2 �A5

1032. A1 � 5A2 �A3

1033. ⇤2A1 � 2E6

1034. ⇤2A1 �D12

1035. ⇤2A1 �D6 � E6

1036. 2A1 � 2D6

1037. ⇤2A1 �D5 � E7

1038. ⇤2A1 �D5 �D7

1039. ⇤2A1 �D4 � E8

1040. 2A1 �D4 �D8

1041. ⇤2A1 �A12

1042. ⇤2A1 �A8 �D4

1043. ⇤2A1 �A7 �D5

1044. ⇤2A1 �A6 � E6

1045. ⇤2A1 �A6 �D6

1046. ⇤2A1 � 2A6

1047. ⇤2A1 �A5 � E7

1048. ⇤2A1 �A5 �D7

1049. ⇤2A1 �A5 �A7

1050. ⇤2A1 �A4 � E8

1051. ⇤2A1 �A4 �D8

1052. 2A1 �A4 � 2D4

1053. ⇤2A1 �A4 �A8

1054. ⇤2A1 � 2A4 �D4

1055. ⇤2A1 � 3A4

1056. ⇤2A1 �A3 �D9

1057. 2A1 � A3 � D4 �
D5

1058. ⇤2A1 �A3 �A9

1059. 2A1�A3�A5�D4

1060. ⇤2A1 �A3 �A4 �
D5

1061. ⇤2A1 �A3 �A4 �
A5

1062. ⇤2A1 � 2A3 � E6

1063. 2A1 � 2A3 �D6

1064. ⇤2A1 � 2A3 �A6

1065. 2A1 � 4A3

1066. ⇤2A1 �A2 �D10

1067. ⇤2A1 �A2 � 2D5

1068. ⇤2A1 �A2 �D4 �
E6

1069. 2A1 � A2 � D4 �
D6

1070. ⇤2A1 �A2 �A10

1071. ⇤2A1 �A2 �A6 �
D4

1072. ⇤2A1 �A2 �A5 �
D5

1073. ⇤2A1 �A2 � 2A5

1074. ⇤2A1 �A2 �A4 �
E6

1075. ⇤2A1 �A2 �A4 �
D6

1076. ⇤2A1 �A2 �A4 �
A6

1077. ⇤2A1 �A2 �A3 �
E7

1078. ⇤2A1 �A2 �A3 �
D7

1079. ⇤2A1 �A2 �A3 �
A7

1080. 2A1 �A2 � 2A3 �
D4

1081. ⇤2A1�A2�2A3�
A4

1082. ⇤2A1 � 2A2 � E8

1083. ⇤2A1 � 2A2 �D8
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1084. 2A1 � 2A2 � 2D4

1085. ⇤2A1 � 2A2 �A8

1086. ⇤2A1�2A2�A4�
D4

1087. ⇤2A1 � 2A2 � 2A4

1088. ⇤2A1�2A2�A3�
D5

1089. ⇤2A1�2A2�A3�
A5

1090. ⇤2A1 � 3A2 � E6

1091. ⇤2A1 � 3A2 �D6

1092. ⇤2A1 � 3A2 �A6

1093. ⇤2A1 � 3A2 � 2A3

1094. ⇤2A1 � 4A2 �D4

1095. ⇤2A1 � 4A2 �A4

1096. 2A1 � 6A2

1097. ⇤3A1 �D11

1098. ⇤3A1 �D5 � E6

1099. 3A1 �D5 �D6

1100. 3A1 �D4 � E7

1101. 3A1 �D4 �D7

1102. ⇤3A1 �A11

1103. 3A1 �A7 �D4

1104. ⇤3A1 �A6 �D5

1105. ⇤3A1 �A5 � E6

1106. 3A1 �A5 �D6

1107. ⇤3A1 �A5 �A6

1108. ⇤3A1 �A4 � E7

1109. ⇤3A1 �A4 �D7

1110. ⇤3A1 �A4 �A7

1111. ⇤3A1 �A3 � E8

1112. 3A1 �A3 �D8

1113. ⇤3A1 �A3 �A8

1114. 3A1�A3�A4�D4

1115. ⇤3A1 �A3 � 2A4

1116. 3A1 � 2A3 �D5

1117. 3A1 � 2A3 �A5

1118. ⇤3A1 �A2 �D9

1119. 3A1 � A2 � D4 �
D5

1120. ⇤3A1 �A2 �A9

1121. 3A1�A2�A5�D4

1122. ⇤3A1 �A2 �A4 �
D5

1123. ⇤3A1 �A2 �A4 �
A5

1124. ⇤3A1 �A2 �A3 �
E6

1125. 3A1�A2�A3�D6

1126. ⇤3A1 �A2 �A3 �
A6

1127. 3A1 �A2 � 3A3

1128. ⇤3A1 � 2A2 � E7

1129. ⇤3A1 � 2A2 �D7

1130. ⇤3A1 � 2A2 �A7

1131. 3A1 � 2A2 �A3 �
D4

1132. ⇤3A1�2A2�A3�
A4

1133. ⇤3A1 � 3A2 �D5

1134. ⇤3A1 � 3A2 �A5

1135. ⇤3A1 � 4A2 �A3

1136. 4A1 �D10

1137. 4A1 � 2D5

1138. 4A1 �D4 � E6

1139. ⇤4A1 �A10

1140. 4A1 �A6 �D4

1141. 4A1 �A5 �D5

1142. 4A1 � 2A5

1143. ⇤4A1 �A4 � E6

1144. 4A1 �A4 �D6

1145. ⇤4A1 �A4 �A6

1146. 4A1 �A3 � E7

1147. 4A1 �A3 �D7

1148. 4A1 �A3 �A7

1149. 4A1 � 2A3 �A4

1150. ⇤4A1 �A2 � E8

1151. 4A1 �A2 �D8

1152. ⇤4A1 �A2 �A8

1153. 4A1�A2�A4�D4

1154. ⇤4A1 �A2 � 2A4

1155. 4A1�A2�A3�D5

1156. 4A1�A2�A3�A5

1157. ⇤4A1 � 2A2 � E6

1158. 4A1 � 2A2 �D6

1159. ⇤4A1 � 2A2 �A6

1160. 4A1 � 2A2 � 2A3

1161. 4A1 � 3A2 �D4

1162. ⇤4A1 � 3A2 �A4

1163. 4A1 � 5A2

1164. 5A1 �D9

1165. 5A1 �A9

1166. 5A1 �A4 �D5

1167. 5A1 �A4 �A5

1168. 5A1 �A3 � E6

1169. 5A1 �A3 �A6

1170. 5A1 �A2 � E7

1171. 5A1 �A2 �D7

1172. 5A1 �A2 �A7

1173. 5A1�A2�A3�A4

1174. 5A1 � 2A2 �D5

1175. 5A1 � 2A2 �A5

1176. 5A1 � 3A2 �A3

1177. 6A1 � E8

1178. 6A1 �A8

1179. 6A1 � 2A4

1180. 6A1 �A2 � E6

1181. 6A1 �A2 �A6

1182. 6A1 � 2A2 �A4

1183. 6A1 � 4A2

rank(⇤) = 15

1184. ⇤
E7 � E8

1185. ⇤
D15

1186. ⇤
D9 � E6

1187. ⇤
D8 � E7

1188. ⇤
D7 � E8

1189. ⇤
D7 �D8

1190. ⇤
D6 �D9

1191. ⇤
D5 �D10

1192. ⇤3D5

1193. ⇤
D4 �D11

1194. ⇤
D4 �D5 � E6

1195. D4 �D5 �D6

1196. 2D4 � E7

1197. 2D4 �D7

1198. ⇤
A15

1199. ⇤
A11 �D4

1200. ⇤
A10 �D5

1201. ⇤
A9 � E6

1202. ⇤
A9 �D6

1203. ⇤
A8 � E7

1204. ⇤
A8 �D7

1205. ⇤
A7 � E8

1206. ⇤
A7 �D8

1207. A7 � 2D4

1208. ⇤
A7 �A8

1209. ⇤
A6 �D9

1210. ⇤
A6 �D4 �D5

1211. ⇤
A6 �A9

1212. ⇤
A5 �D10

1213. ⇤
A5 � 2D5

1214. ⇤
A5 �D4 � E6

1215. A5 �D4 �D6

1216. ⇤
A5 �A10

1217. ⇤
A5 �A6 �D4

1218. ⇤2A5 �D5

1219. ⇤3A5

1220. ⇤
A4 �D11

1221. ⇤
A4 �D5 � E6

1222. ⇤
A4 �D5 �D6

1223. ⇤
A4 �D4 � E7



122
C List of all ADE lattices ⇤ such that ⇤ � h6i can be embedded primitively into the

K3 lattice

1224. ⇤
A4 �D4 �D7

1225. ⇤
A4 �A11

1226. ⇤
A4 �A7 �D4

1227. ⇤
A4 �A6 �D5

1228. ⇤
A4 �A5 � E6

1229. ⇤
A4 �A5 �D6

1230. ⇤
A4 �A5 �A6

1231. ⇤2A4 � E7

1232. ⇤2A4 �D7

1233. ⇤2A4 �A7

1234. ⇤
A3 � 2E6

1235. ⇤
A3 �D12

1236. ⇤
A3 �D6 � E6

1237. A3 � 2D6

1238. ⇤
A3 �D5 � E7

1239. ⇤
A3 �D5 �D7

1240. ⇤
A3 �D4 � E8

1241. A3 �D4 �D8

1242. ⇤
A3 �A12

1243. ⇤
A3 �A8 �D4

1244. ⇤
A3 �A7 �D5

1245. ⇤
A3 �A6 � E6

1246. ⇤
A3 �A6 �D6

1247. ⇤
A3 � 2A6

1248. ⇤
A3 �A5 � E7

1249. ⇤
A3 �A5 �D7

1250. ⇤
A3 �A5 �A7

1251. ⇤
A3 �A4 � E8

1252. ⇤
A3 �A4 �D8

1253. A3 �A4 � 2D4

1254. ⇤
A3 �A4 �A8

1255. ⇤
A3 � 2A4 �D4

1256. ⇤
A3 � 3A4

1257. ⇤2A3 �D9

1258. 2A3 �D4 �D5

1259. ⇤2A3 �A9

1260. 2A3 �A5 �D4

1261. ⇤2A3 �A4 �D5

1262. ⇤2A3 �A4 �A5

1263. ⇤3A3 � E6

1264. 3A3 �D6

1265. ⇤3A3 �A6

1266. 5A3

1267. ⇤
A2 � E6 � E7

1268. ⇤
A2 �D13

1269. ⇤
A2 �D7 � E6

1270. ⇤
A2 �D6 � E7

1271. ⇤
A2 �D6 �D7

1272. ⇤
A2 �D5 � E8

1273. ⇤
A2 �D5 �D8

1274. ⇤
A2 �D4 �D9

1275. A2 � 2D4 �D5

1276. ⇤
A2 �A13

1277. ⇤
A2 �A9 �D4

1278. ⇤
A2 �A8 �D5

1279. ⇤
A2 �A7 � E6

1280. ⇤
A2 �A7 �D6

1281. ⇤
A2 �A6 � E7

1282. ⇤
A2 �A6 �D7

1283. ⇤
A2 �A6 �A7

1284. ⇤
A2 �A5 � E8

1285. ⇤
A2 �A5 �D8

1286. A2 �A5 � 2D4

1287. ⇤
A2 �A5 �A8

1288. ⇤
A2 �A4 �D9

1289. ⇤
A2�A4�D4�D5

1290. ⇤
A2 �A4 �A9

1291. ⇤
A2�A4�A5�D4

1292. ⇤
A2 � 2A4 �D5

1293. ⇤
A2 � 2A4 �A5

1294. ⇤
A2 �A3 �D10

1295. ⇤
A2 �A3 � 2D5

1296. ⇤
A2�A3�D4�E6

1297. A2�A3�D4�D6

1298. ⇤
A2 �A3 �A10

1299. ⇤
A2�A3�A6�D4

1300. ⇤
A2�A3�A5�D5

1301. ⇤
A2 �A3 � 2A5

1302. ⇤
A2�A3�A4�E6

1303. ⇤
A2�A3�A4�D6

1304. ⇤
A2�A3�A4�A6

1305. ⇤
A2 � 2A3 � E7

1306. ⇤
A2 � 2A3 �D7

1307. ⇤
A2 � 2A3 �A7

1308. A2 � 3A3 �D4

1309. ⇤
A2 � 3A3 �A4

1310. ⇤2A2 �D11

1311. ⇤2A2 �D5 � E6

1312. ⇤2A2 �D5 �D6

1313. ⇤2A2 �D4 � E7

1314. ⇤2A2 �D4 �D7

1315. ⇤2A2 �A11

1316. ⇤2A2 �A7 �D4

1317. ⇤2A2 �A6 �D5

1318. 2A2 �A5 � E6

1319. ⇤2A2 �A5 �D6

1320. ⇤2A2 �A5 �A6

1321. ⇤2A2 �A4 � E7

1322. ⇤2A2 �A4 �D7

1323. ⇤2A2 �A4 �A7

1324. ⇤2A2 �A3 � E8

1325. ⇤2A2 �A3 �D8

1326. 2A2 �A3 � 2D4

1327. ⇤2A2 �A3 �A8

1328. ⇤2A2 �A3 �A4 �
D4

1329. ⇤2A2 �A3 � 2A4

1330. ⇤2A2 � 2A3 �D5

1331. ⇤2A2 � 2A3 �A5

1332. ⇤3A2 �D9

1333. ⇤3A2 �D4 �D5

1334. ⇤3A2 �A9

1335. 3A2 �A5 �D4

1336. ⇤3A2 �A4 �D5

1337. 3A2 �A4 �A5

1338. 3A2 �A3 � E6

1339. ⇤3A2 �A3 �D6

1340. ⇤3A2 �A3 �A6

1341. ⇤3A2 � 3A3

1342. 4A2 � E7

1343. 4A2 �D7

1344. 4A2 �A7

1345. 4A2 �A3 �D4

1346. 4A2 �A3 �A4

1347. 5A2 �D5

1348. ⇤
A1 � 2E7

1349. ⇤
A1 � E6 � E8

1350. ⇤
A1 �D14

1351. ⇤
A1 �D8 � E6

1352. ⇤
A1 �D7 � E7

1353. ⇤
A1 � 2D7

1354. ⇤
A1 �D6 � E8

1355. A1 �D6 �D8

1356. ⇤
A1 �D5 �D9

1357. A1 �D4 �D10

1358. A1 �D4 � 2D5

1359. A1 � 2D4 � E6

1360. ⇤
A1 �A14

1361. ⇤
A1 �A10 �D4

1362. ⇤
A1 �A9 �D5

1363. ⇤
A1 �A8 � E6

1364. ⇤
A1 �A8 �D6

1365. ⇤
A1 �A7 � E7

1366. ⇤
A1 �A7 �D7

1367. ⇤
A1 � 2A7

1368. ⇤
A1 �A6 � E8

1369. ⇤
A1 �A6 �D8

1370. A1 �A6 � 2D4
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1371. ⇤
A1 �A6 �A8

1372. ⇤
A1 �A5 �D9

1373. A1�A5�D4�D5

1374. ⇤
A1 �A5 �A9

1375. A1 � 2A5 �D4

1376. ⇤
A1 �A4 �D10

1377. ⇤
A1 �A4 � 2D5

1378. ⇤
A1�A4�D4�E6

1379. A1�A4�D4�D6

1380. ⇤
A1 �A4 �A10

1381. ⇤
A1�A4�A6�D4

1382. ⇤
A1�A4�A5�D5

1383. ⇤
A1 �A4 � 2A5

1384. ⇤
A1 � 2A4 � E6

1385. ⇤
A1 � 2A4 �D6

1386. ⇤
A1 � 2A4 �A6

1387. ⇤
A1 �A3 �D11

1388. ⇤
A1�A3�D5�E6

1389. A1�A3�D5�D6

1390. A1�A3�D4�E7

1391. A1�A3�D4�D7

1392. ⇤
A1 �A3 �A11

1393. A1�A3�A7�D4

1394. ⇤
A1�A3�A6�D5

1395. ⇤
A1�A3�A5�E6

1396. A1�A3�A5�D6

1397. ⇤
A1�A3�A5�A6

1398. ⇤
A1�A3�A4�E7

1399. ⇤
A1�A3�A4�D7

1400. ⇤
A1�A3�A4�A7

1401. ⇤
A1 � 2A3 � E8

1402. A1 � 2A3 �D8

1403. ⇤
A1 � 2A3 �A8

1404. A1�2A3�A4�D4

1405. ⇤
A1 � 2A3 � 2A4

1406. A1 � 3A3 �D5

1407. A1 � 3A3 �A5

1408. ⇤
A1 �A2 � 2E6

1409. ⇤
A1 �A2 �D12

1410. ⇤
A1�A2�D6�E6

1411. A1 �A2 � 2D6

1412. ⇤
A1�A2�D5�E7

1413. ⇤
A1�A2�D5�D7

1414. ⇤
A1�A2�D4�E8

1415. A1�A2�D4�D8

1416. ⇤
A1 �A2 �A12

1417. ⇤
A1�A2�A8�D4

1418. ⇤
A1�A2�A7�D5

1419. ⇤
A1�A2�A6�E6

1420. ⇤
A1�A2�A6�D6

1421. ⇤
A1 �A2 � 2A6

1422. ⇤
A1�A2�A5�E7

1423. ⇤
A1�A2�A5�D7

1424. ⇤
A1�A2�A5�A7

1425. ⇤
A1�A2�A4�E8

1426. ⇤
A1�A2�A4�D8

1427. A1�A2�A4�2D4

1428. ⇤
A1�A2�A4�A8

1429. ⇤
A1 �A2 � 2A4 �
D4

1430. ⇤
A1 �A2 � 3A4

1431. ⇤
A1�A2�A3�D9

1432. A1 � A2 � A3 �
D4 �D5

1433. ⇤
A1�A2�A3�A9

1434. A1 � A2 � A3 �
A5 �D4

1435. ⇤
A1 � A2 � A3 �
A4 �D5

1436. ⇤
A1 � A2 � A3 �
A4 �A5

1437. ⇤
A1 �A2 � 2A3 �
E6

1438. A1�A2�2A3�D6

1439. ⇤
A1 �A2 � 2A3 �
A6

1440. A1 �A2 � 4A3

1441. ⇤
A1 � 2A2 �D10

1442. ⇤
A1 � 2A2 � 2D5

1443. ⇤
A1 � 2A2 �D4 �
E6

1444. A1 � 2A2 � D4 �
D6

1445. ⇤
A1 � 2A2 �A10

1446. ⇤
A1 � 2A2 �A6 �
D4

1447. ⇤
A1 � 2A2 �A5 �
D5

1448. A1 � 2A2 � 2A5

1449. ⇤
A1 � 2A2 �A4 �
E6

1450. ⇤
A1 � 2A2 �A4 �
D6

1451. ⇤
A1 � 2A2 �A4 �
A6

1452. ⇤
A1 � 2A2 �A3 �
E7

1453. ⇤
A1 � 2A2 �A3 �
D7

1454. ⇤
A1 � 2A2 �A3 �
A7

1455. A1 � 2A2 � 2A3 �
D4

1456. ⇤
A1�2A2�2A3�
A4

1457. ⇤
A1 � 3A2 � E8

1458. ⇤
A1 � 3A2 �D8

1459. A1 � 3A2 � 2D4

1460. A1 � 3A2 �A8

1461. ⇤
A1 � 3A2 �A4 �
D4

1462. ⇤
A1 � 3A2 � 2A4

1463. ⇤
A1 � 3A2 �A3 �
D5

1464. A1�3A2�A3�A5

1465. A1 � 4A2 � E6

1466. A1 � 4A2 �D6

1467. A1 � 4A2 �A6

1468. A1 � 4A2 � 2A3

1469. A1 � 5A2 �A4

1470. ⇤2A1 � E6 � E7

1471. ⇤2A1 �D13

1472. ⇤2A1 �D7 � E6

1473. 2A1 �D6 � E7

1474. 2A1 �D6 �D7

1475. ⇤2A1 �D5 � E8

1476. 2A1 �D5 �D8

1477. 2A1 �D4 �D9

1478. ⇤2A1 �A13

1479. 2A1 �A9 �D4

1480. ⇤2A1 �A8 �D5

1481. ⇤2A1 �A7 � E6

1482. 2A1 �A7 �D6

1483. ⇤2A1 �A6 � E7

1484. ⇤2A1 �A6 �D7

1485. ⇤2A1 �A6 �A7

1486. ⇤2A1 �A5 � E8

1487. 2A1 �A5 �D8

1488. ⇤2A1 �A5 �A8

1489. ⇤2A1 �A4 �D9

1490. 2A1 � A4 � D4 �
D5

1491. ⇤2A1 �A4 �A9

1492. 2A1�A4�A5�D4

1493. ⇤2A1 � 2A4 �D5

1494. ⇤2A1 � 2A4 �A5

1495. 2A1 �A3 �D10

1496. 2A1 �A3 � 2D5

1497. 2A1�A3�D4�E6

1498. ⇤2A1 �A3 �A10

1499. 2A1�A3�A6�D4

1500. 2A1�A3�A5�D5

1501. 2A1 �A3 � 2A5

1502. ⇤2A1 �A3 �A4 �
E6

1503. 2A1�A3�A4�D6
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1504. ⇤2A1 �A3 �A4 �
A6

1505. 2A1 � 2A3 � E7

1506. 2A1 � 2A3 �D7

1507. 2A1 � 2A3 �A7

1508. 2A1 � 3A3 �A4

1509. ⇤2A1 �A2 �D11

1510. ⇤2A1 �A2 �D5 �
E6

1511. 2A1 � A2 � D5 �
D6

1512. 2A1�A2�D4�E7

1513. 2A1 � A2 � D4 �
D7

1514. ⇤2A1 �A2 �A11

1515. 2A1�A2�A7�D4

1516. ⇤2A1 �A2 �A6 �
D5

1517. ⇤2A1 �A2 �A5 �
E6

1518. 2A1�A2�A5�D6

1519. ⇤2A1 �A2 �A5 �
A6

1520. ⇤2A1 �A2 �A4 �
E7

1521. ⇤2A1 �A2 �A4 �
D7

1522. ⇤2A1 �A2 �A4 �
A7

1523. ⇤2A1 �A2 �A3 �
E8

1524. 2A1�A2�A3�D8

1525. ⇤2A1 �A2 �A3 �
A8

1526. 2A1 � A2 � A3 �
A4 �D4

1527. ⇤2A1 �A2 �A3 �
2A4

1528. 2A1 �A2 � 2A3 �
D5

1529. 2A1 �A2 � 2A3 �
A5

1530. ⇤2A1 � 2A2 �D9

1531. 2A1 � 2A2 �D4 �
D5

1532. ⇤2A1 � 2A2 �A9

1533. 2A1 � 2A2 �A5 �
D4

1534. ⇤2A1�2A2�A4�
D5

1535. ⇤2A1�2A2�A4�
A5

1536. ⇤2A1�2A2�A3�
E6

1537. 2A1 � 2A2 �A3 �
D6

1538. ⇤2A1�2A2�A3�
A6

1539. 2A1 � 2A2 � 3A3

1540. ⇤2A1 � 3A2 � E7

1541. ⇤2A1 � 3A2 �D7

1542. ⇤2A1 � 3A2 �A7

1543. 2A1 � 3A2 �A3 �
D4

1544. ⇤2A1�3A2�A3�
A4

1545. 2A1 � 4A2 �D5

1546. 2A1 � 4A2 �A5

1547. 2A1 � 5A2 �A3

1548. ⇤3A1 � 2E6

1549. 3A1 �D12

1550. 3A1 �D6 � E6

1551. 3A1 �D5 � E7

1552. 3A1 �D5 �D7

1553. 3A1 �D4 � E8

1554. ⇤3A1 �A12

1555. 3A1 �A8 �D4

1556. 3A1 �A7 �D5

1557. ⇤3A1 �A6 � E6

1558. 3A1 �A6 �D6

1559. ⇤3A1 � 2A6

1560. 3A1 �A5 � E7

1561. 3A1 �A5 �D7

1562. 3A1 �A5 �A7

1563. ⇤3A1 �A4 � E8

1564. 3A1 �A4 �D8

1565. ⇤3A1 �A4 �A8

1566. 3A1 � 2A4 �D4

1567. ⇤3A1 � 3A4

1568. 3A1 �A3 �D9

1569. 3A1 �A3 �A9

1570. 3A1�A3�A4�D5

1571. 3A1�A3�A4�A5

1572. 3A1 � 2A3 � E6

1573. 3A1 � 2A3 �A6

1574. 3A1 �A2 �D10

1575. 3A1 �A2 � 2D5

1576. 3A1�A2�D4�E6

1577. ⇤3A1 �A2 �A10

1578. 3A1�A2�A6�D4

1579. 3A1�A2�A5�D5

1580. 3A1 �A2 � 2A5

1581. ⇤3A1 �A2 �A4 �
E6

1582. 3A1�A2�A4�D6

1583. ⇤3A1 �A2 �A4 �
A6

1584. 3A1�A2�A3�E7

1585. 3A1�A2�A3�D7

1586. 3A1�A2�A3�A7

1587. 3A1 �A2 � 2A3 �
A4

1588. ⇤3A1 � 2A2 � E8

1589. 3A1 � 2A2 �D8

1590. ⇤3A1 � 2A2 �A8

1591. 3A1 � 2A2 �A4 �
D4

1592. ⇤3A1 � 2A2 � 2A4

1593. 3A1 � 2A2 �A3 �
D5

1594. 3A1 � 2A2 �A3 �
A5

1595. 3A1 � 3A2 � E6

1596. 3A1 � 3A2 �D6

1597. ⇤3A1 � 3A2 �A6

1598. 3A1 � 3A2 � 2A3

1599. 3A1 � 4A2 �D4

1600. 3A1 � 4A2 �A4

1601. 4A1 �D11

1602. 4A1 �D5 � E6

1603. 4A1 �A11

1604. 4A1 �A6 �D5

1605. 4A1 �A5 � E6

1606. 4A1 �A5 �A6

1607. 4A1 �A4 � E7

1608. 4A1 �A4 �D7

1609. 4A1 �A4 �A7

1610. 4A1 �A3 � E8

1611. 4A1 �A3 �A8

1612. 4A1 �A3 � 2A4

1613. 4A1 �A2 �D9

1614. 4A1 �A2 �A9

1615. 4A1�A2�A4�D5

1616. 4A1�A2�A4�A5

1617. 4A1�A2�A3�E6

1618. 4A1�A2�A3�A6

1619. 4A1 � 2A2 � E7

1620. 4A1 � 2A2 �D7

1621. 4A1 � 2A2 �A7

1622. 4A1 � 2A2 �A3 �
A4

1623. 4A1 � 3A2 �D5

1624. 4A1 � 3A2 �A5

1625. 4A1 � 4A2 �A3

1626. 5A1 �A10

1627. 5A1 �A4 � E6

1628. 5A1 �A4 �A6

1629. 5A1 �A2 � E8

1630. 5A1 �A2 �A8
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1631. 5A1 �A2 � 2A4

1632. 5A1 � 2A2 � E6

1633. 5A1 � 2A2 �A6

1634. 5A1 � 3A2 �A4

rank(⇤) = 16

1635. ⇤2E8

1636. ⇤
D16

1637. ⇤
D10 � E6

1638. ⇤
D9 � E7

1639. ⇤
D8 � E8

1640. 2D8

1641. ⇤
D7 �D9

1642. D6 �D10

1643. ⇤
D5 �D11

1644. ⇤2D5 � E6

1645. 2D5 �D6

1646. ⇤
D4 � 2E6

1647. D4 �D12

1648. D4 �D6 � E6

1649. D4 �D5 � E7

1650. D4 �D5 �D7

1651. 2D4 � E8

1652. ⇤
A16

1653. ⇤
A12 �D4

1654. ⇤
A11 �D5

1655. ⇤
A10 � E6

1656. ⇤
A10 �D6

1657. ⇤
A9 � E7

1658. ⇤
A9 �D7

1659. ⇤
A8 � E8

1660. ⇤
A8 �D8

1661. A8 � 2D4

1662. ⇤2A8

1663. ⇤
A7 �D9

1664. A7 �D4 �D5

1665. ⇤
A7 �A9

1666. ⇤
A6 �D10

1667. ⇤
A6 � 2D5

1668. ⇤
A6 �D4 � E6

1669. A6 �D4 �D6

1670. ⇤
A6 �A10

1671. ⇤2A6 �D4

1672. ⇤
A5 �D11

1673. ⇤
A5 �D5 � E6

1674. A5 �D5 �D6

1675. A5 �D4 � E7

1676. A5 �D4 �D7

1677. ⇤
A5 �A11

1678. A5 �A7 �D4

1679. ⇤
A5 �A6 �D5

1680. 2A5 � E6

1681. 2A5 �D6

1682. ⇤2A5 �A6

1683. ⇤
A4 � 2E6

1684. ⇤
A4 �D12

1685. ⇤
A4 �D6 � E6

1686. A4 � 2D6

1687. ⇤
A4 �D5 � E7

1688. ⇤
A4 �D5 �D7

1689. ⇤
A4 �D4 � E8

1690. A4 �D4 �D8

1691. ⇤
A4 �A12

1692. ⇤
A4 �A8 �D4

1693. ⇤
A4 �A7 �D5

1694. ⇤
A4 �A6 � E6

1695. ⇤
A4 �A6 �D6

1696. ⇤
A4 � 2A6

1697. ⇤
A4 �A5 � E7

1698. ⇤
A4 �A5 �D7

1699. ⇤
A4 �A5 �A7

1700. ⇤2A4 � E8

1701. ⇤2A4 �D8

1702. 2A4 � 2D4

1703. ⇤2A4 �A8

1704. ⇤3A4 �D4

1705. 4A4

1706. ⇤
A3 � E6 � E7

1707. ⇤
A3 �D13

1708. ⇤
A3 �D7 � E6

1709. A3 �D6 � E7

1710. A3 �D6 �D7

1711. ⇤
A3 �D5 � E8

1712. A3 �D5 �D8

1713. A3 �D4 �D9

1714. ⇤
A3 �A13

1715. A3 �A9 �D4

1716. ⇤
A3 �A8 �D5

1717. ⇤
A3 �A7 � E6

1718. A3 �A7 �D6

1719. ⇤
A3 �A6 � E7

1720. ⇤
A3 �A6 �D7

1721. ⇤
A3 �A6 �A7

1722. ⇤
A3 �A5 � E8

1723. A3 �A5 �D8

1724. ⇤
A3 �A5 �A8

1725. ⇤
A3 �A4 �D9

1726. A3�A4�D4�D5

1727. ⇤
A3 �A4 �A9

1728. A3�A4�A5�D4

1729. ⇤
A3 � 2A4 �D5

1730. ⇤
A3 � 2A4 �A5

1731. 2A3 �D10

1732. 2A3 � 2D5

1733. 2A3 �D4 � E6

1734. ⇤2A3 �A10

1735. 2A3 �A6 �D4

1736. 2A3 �A5 �D5

1737. 2A3 � 2A5

1738. ⇤2A3 �A4 � E6

1739. 2A3 �A4 �D6

1740. ⇤2A3 �A4 �A6

1741. 3A3 � E7

1742. 3A3 �D7

1743. 3A3 �A7

1744. 4A3 �A4

1745. ⇤
A2 � 2E7

1746. ⇤
A2 � E6 � E8

1747. ⇤
A2 �D14

1748. ⇤
A2 �D8 � E6

1749. ⇤
A2 �D7 � E7

1750. ⇤
A2 � 2D7

1751. ⇤
A2 �D6 � E8

1752. A2 �D6 �D8

1753. ⇤
A2 �D5 �D9

1754. A2 �D4 �D10

1755. A2 �D4 � 2D5

1756. A2 � 2D4 � E6

1757. ⇤
A2 �A14

1758. ⇤
A2 �A10 �D4

1759. ⇤
A2 �A9 �D5

1760. A2 �A8 � E6

1761. ⇤
A2 �A8 �D6

1762. ⇤
A2 �A7 � E7

1763. ⇤
A2 �A7 �D7

1764. ⇤
A2 � 2A7

1765. ⇤
A2 �A6 � E8

1766. ⇤
A2 �A6 �D8

1767. A2 �A6 � 2D4

1768. ⇤
A2 �A6 �A8

1769. ⇤
A2 �A5 �D9

1770. A2�A5�D4�D5

1771. ⇤
A2 �A5 �A9

1772. A2 � 2A5 �D4

1773. ⇤
A2 �A4 �D10

1774. ⇤
A2 �A4 � 2D5

1775. ⇤
A2�A4�D4�E6

1776. A2�A4�D4�D6

1777. ⇤
A2 �A4 �A10



126
C List of all ADE lattices ⇤ such that ⇤ � h6i can be embedded primitively into the

K3 lattice

1778. ⇤
A2�A4�A6�D4

1779. ⇤
A2�A4�A5�D5

1780. A2 �A4 � 2A5

1781. ⇤
A2 � 2A4 � E6

1782. ⇤
A2 � 2A4 �D6

1783. ⇤
A2 � 2A4 �A6

1784. ⇤
A2 �A3 �D11

1785. ⇤
A2�A3�D5�E6

1786. A2�A3�D5�D6

1787. A2�A3�D4�E7

1788. A2�A3�D4�D7

1789. ⇤
A2 �A3 �A11

1790. A2�A3�A7�D4

1791. ⇤
A2�A3�A6�D5

1792. A2�A3�A5�E6

1793. A2�A3�A5�D6

1794. ⇤
A2�A3�A5�A6

1795. ⇤
A2�A3�A4�E7

1796. ⇤
A2�A3�A4�D7

1797. ⇤
A2�A3�A4�A7

1798. ⇤
A2 � 2A3 � E8

1799. A2 � 2A3 �D8

1800. ⇤
A2 � 2A3 �A8

1801. A2�2A3�A4�D4

1802. ⇤
A2 � 2A3 � 2A4

1803. A2 � 3A3 �D5

1804. A2 � 3A3 �A5

1805. 2A2 � 2E6

1806. ⇤2A2 �D12

1807. 2A2 �D6 � E6

1808. 2A2 � 2D6

1809. ⇤2A2 �D5 � E7

1810. ⇤2A2 �D5 �D7

1811. ⇤2A2 �D4 � E8

1812. 2A2 �D4 �D8

1813. ⇤2A2 �A12

1814. 2A2 �A8 �D4

1815. ⇤2A2 �A7 �D5

1816. 2A2 �A6 � E6

1817. ⇤2A2 �A6 �D6

1818. ⇤2A2 � 2A6

1819. 2A2 �A5 � E7

1820. 2A2 �A5 �D7

1821. 2A2 �A5 �A7

1822. ⇤2A2 �A4 � E8

1823. ⇤2A2 �A4 �D8

1824. 2A2 �A4 � 2D4

1825. 2A2 �A4 �A8

1826. ⇤2A2 � 2A4 �D4

1827. ⇤2A2 � 3A4

1828. ⇤2A2 �A3 �D9

1829. 2A2 � A3 � D4 �
D5

1830. ⇤2A2 �A3 �A9

1831. 2A2�A3�A5�D4

1832. ⇤2A2 �A3 �A4 �
D5

1833. 2A2�A3�A4�A5

1834. 2A2 � 2A3 � E6

1835. 2A2 � 2A3 �D6

1836. ⇤2A2 � 2A3 �A6

1837. 2A2 � 4A3

1838. 3A2 �D10

1839. 3A2 � 2D5

1840. 3A2 �D4 �D6

1841. 3A2 �A10

1842. 3A2 �A6 �D4

1843. 3A2 �A5 �D5

1844. 3A2 �A4 � E6

1845. 3A2 �A4 �D6

1846. 3A2 �A4 �A6

1847. 3A2 �A3 � E7

1848. 3A2 �A3 �D7

1849. 3A2 �A3 �A7

1850. 3A2 � 2A3 �D4

1851. 3A2 � 2A3 �A4

1852. 4A2 � E8

1853. 4A2 �D8

1854. 4A2 � 2D4

1855. 4A2 � 2A4

1856. 4A2 �A3 �D5

1857. ⇤
A1 � E7 � E8

1858. ⇤
A1 �D15

1859. ⇤
A1 �D9 � E6

1860. A1 �D8 � E7

1861. ⇤
A1 �D7 � E8

1862. A1 �D7 �D8

1863. A1 �D6 �D9

1864. A1 �D5 �D10

1865. A1 � 3D5

1866. A1 �D4 �D11

1867. A1�D4�D5�E6

1868. ⇤
A1 �A15

1869. A1 �A11 �D4

1870. ⇤
A1 �A10 �D5

1871. ⇤
A1 �A9 � E6

1872. A1 �A9 �D6

1873. ⇤
A1 �A8 � E7

1874. ⇤
A1 �A8 �D7

1875. ⇤
A1 �A7 � E8

1876. A1 �A7 �D8

1877. ⇤
A1 �A7 �A8

1878. ⇤
A1 �A6 �D9

1879. A1�A6�D4�D5

1880. ⇤
A1 �A6 �A9

1881. A1 �A5 �D10

1882. A1 �A5 � 2D5

1883. A1�A5�D4�E6

1884. ⇤
A1 �A5 �A10

1885. A1�A5�A6�D4

1886. A1 � 2A5 �D5

1887. A1 � 3A5

1888. ⇤
A1 �A4 �D11

1889. ⇤
A1�A4�D5�E6

1890. A1�A4�D5�D6

1891. A1�A4�D4�E7

1892. A1�A4�D4�D7

1893. ⇤
A1 �A4 �A11

1894. A1�A4�A7�D4

1895. ⇤
A1�A4�A6�D5

1896. ⇤
A1�A4�A5�E6

1897. A1�A4�A5�D6

1898. ⇤
A1�A4�A5�A6

1899. ⇤
A1 � 2A4 � E7

1900. ⇤
A1 � 2A4 �D7

1901. ⇤
A1 � 2A4 �A7

1902. ⇤
A1 �A3 � 2E6

1903. A1 �A3 �D12

1904. A1�A3�D6�E6

1905. A1�A3�D5�E7

1906. A1�A3�D5�D7

1907. A1�A3�D4�E8

1908. ⇤
A1 �A3 �A12

1909. A1�A3�A8�D4

1910. A1�A3�A7�D5

1911. ⇤
A1�A3�A6�E6

1912. A1�A3�A6�D6

1913. ⇤
A1 �A3 � 2A6

1914. A1�A3�A5�E7

1915. A1�A3�A5�D7

1916. A1�A3�A5�A7

1917. ⇤
A1�A3�A4�E8

1918. A1�A3�A4�D8

1919. ⇤
A1�A3�A4�A8

1920. A1�A3�2A4�D4

1921. ⇤
A1 �A3 � 3A4

1922. A1 � 2A3 �D9

1923. A1 � 2A3 �A9

1924. A1�2A3�A4�D5
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1925. A1�2A3�A4�A5

1926. A1 � 3A3 � E6

1927. A1 � 3A3 �A6

1928. ⇤
A1�A2�E6�E7

1929. ⇤
A1 �A2 �D13

1930. ⇤
A1�A2�D7�E6

1931. A1�A2�D6�E7

1932. A1�A2�D6�D7

1933. ⇤
A1�A2�D5�E8

1934. A1�A2�D5�D8

1935. A1�A2�D4�D9

1936. ⇤
A1 �A2 �A13

1937. A1�A2�A9�D4

1938. ⇤
A1�A2�A8�D5

1939. ⇤
A1�A2�A7�E6

1940. A1�A2�A7�D6

1941. ⇤
A1�A2�A6�E7

1942. ⇤
A1�A2�A6�D7

1943. ⇤
A1�A2�A6�A7

1944. ⇤
A1�A2�A5�E8

1945. A1�A2�A5�D8

1946. A1�A2�A5�A8

1947. ⇤
A1�A2�A4�D9

1948. A1 � A2 � A4 �
D4 �D5

1949. ⇤
A1�A2�A4�A9

1950. A1 � A2 � A4 �
A5 �D4

1951. ⇤
A1 �A2 � 2A4 �
D5

1952. ⇤
A1 �A2 � 2A4 �
A5

1953. A1�A2�A3�D10

1954. A1�A2�A3�2D5

1955. A1 � A2 � A3 �
D4 � E6

1956. ⇤
A1 � A2 � A3 �
A10

1957. A1 � A2 � A3 �
A6 �D4

1958. A1 � A2 � A3 �
A5 �D5

1959. A1�A2�A3�2A5

1960. ⇤
A1 � A2 � A3 �
A4 � E6

1961. A1 � A2 � A3 �
A4 �D6

1962. ⇤
A1 � A2 � A3 �
A4 �A6

1963. A1�A2�2A3�E7

1964. A1�A2�2A3�D7

1965. A1�A2�2A3�A7

1966. A1�A2�3A3�A4

1967. ⇤
A1 � 2A2 �D11

1968. A1�2A2�D5�E6

1969. A1 � 2A2 � D5 �
D6

1970. A1�2A2�D4�E7

1971. A1 � 2A2 � D4 �
D7

1972. A1 � 2A2 �A11

1973. A1�2A2�A7�D4

1974. ⇤
A1 � 2A2 �A6 �
D5

1975. A1�2A2�A5�E6

1976. A1�2A2�A5�D6

1977. A1�2A2�A5�A6

1978. ⇤
A1 � 2A2 �A4 �
E7

1979. ⇤
A1 � 2A2 �A4 �
D7

1980. ⇤
A1 � 2A2 �A4 �
A7

1981. ⇤
A1 � 2A2 �A3 �
E8

1982. A1�2A2�A3�D8

1983. A1�2A2�A3�A8

1984. A1 � 2A2 � A3 �
A4 �D4

1985. ⇤
A1 � 2A2 �A3 �
2A4

1986. A1 � 2A2 � 2A3 �
D5

1987. A1 � 2A2 � 2A3 �
A5

1988. A1 � 3A2 �D9

1989. A1 � 3A2 � D4 �
D5

1990. A1 � 3A2 �A9

1991. A1�3A2�A4�D5

1992. A1�3A2�A4�A5

1993. A1�3A2�A3�E6

1994. A1�3A2�A3�D6

1995. A1�3A2�A3�A6

1996. A1 � 3A2 � 3A3

1997. A1 � 4A2 � E7

1998. A1 � 4A2 �A7

1999. A1�4A2�A3�A4

2000. 2A1 � 2E7

2001. ⇤2A1 � E6 � E8

2002. 2A1 �D14

2003. 2A1 �D8 � E6

2004. 2A1 �D7 � E7

2005. 2A1 � 2D7

2006. 2A1 �D6 � E8

2007. 2A1 �D5 �D9

2008. ⇤2A1 �A14

2009. 2A1 �A10 �D4

2010. 2A1 �A9 �D5

2011. ⇤2A1 �A8 � E6

2012. 2A1 �A8 �D6

2013. 2A1 �A7 � E7

2014. 2A1 �A7 �D7

2015. 2A1 � 2A7

2016. ⇤2A1 �A6 � E8

2017. 2A1 �A6 �D8

2018. ⇤2A1 �A6 �A8

2019. 2A1 �A5 �D9

2020. 2A1 �A5 �A9

2021. 2A1 �A4 �D10

2022. 2A1 �A4 � 2D5

2023. 2A1�A4�D4�E6

2024. ⇤2A1 �A4 �A10

2025. 2A1�A4�A6�D4

2026. 2A1�A4�A5�D5

2027. 2A1 �A4 � 2A5

2028. ⇤2A1 � 2A4 � E6

2029. 2A1 � 2A4 �D6

2030. ⇤2A1 � 2A4 �A6

2031. 2A1 �A3 �D11

2032. 2A1�A3�D5�E6

2033. 2A1 �A3 �A11

2034. 2A1�A3�A6�D5

2035. 2A1�A3�A5�E6

2036. 2A1�A3�A5�A6

2037. 2A1�A3�A4�E7

2038. 2A1�A3�A4�D7

2039. 2A1�A3�A4�A7

2040. 2A1 � 2A3 � E8

2041. 2A1 � 2A3 �A8

2042. 2A1 � 2A3 � 2A4

2043. 2A1 �A2 � 2E6

2044. 2A1 �A2 �D12

2045. 2A1�A2�D6�E6

2046. 2A1�A2�D5�E7

2047. 2A1 � A2 � D5 �
D7

2048. 2A1�A2�D4�E8

2049. ⇤2A1 �A2 �A12

2050. 2A1�A2�A8�D4

2051. 2A1�A2�A7�D5

2052. ⇤2A1 �A2 �A6 �
E6

2053. 2A1�A2�A6�D6

2054. ⇤2A1 �A2 � 2A6

2055. 2A1�A2�A5�E7

2056. 2A1�A2�A5�D7



128
C List of all ADE lattices ⇤ such that ⇤ � h6i can be embedded primitively into the

K3 lattice

2057. 2A1�A2�A5�A7

2058. ⇤2A1 �A2 �A4 �
E8

2059. 2A1�A2�A4�D8

2060. ⇤2A1 �A2 �A4 �
A8

2061. 2A1 �A2 � 2A4 �
D4

2062. ⇤2A1 �A2 � 3A4

2063. 2A1�A2�A3�D9

2064. 2A1�A2�A3�A9

2065. 2A1 � A2 � A3 �
A4 �D5

2066. 2A1 � A2 � A3 �
A4 �A5

2067. 2A1 �A2 � 2A3 �
E6

2068. 2A1 �A2 � 2A3 �
A6

2069. 2A1 � 2A2 �D10

2070. 2A1 � 2A2 � 2D5

2071. 2A1 � 2A2 �D4 �
E6

2072. ⇤2A1 � 2A2 �A10

2073. 2A1 � 2A2 �A6 �
D4

2074. 2A1 � 2A2 �A5 �
D5

2075. 2A1 � 2A2 � 2A5

2076. 2A1 � 2A2 �A4 �
E6

2077. 2A1 � 2A2 �A4 �
D6

2078. ⇤2A1�2A2�A4�
A6

2079. 2A1 � 2A2 �A3 �
E7

2080. 2A1 � 2A2 �A3 �
D7

2081. 2A1 � 2A2 �A3 �
A7

2082. 2A1�2A2�2A3�
A4

2083. 2A1 � 3A2 � E8

2084. 2A1 � 3A2 �D8

2085. 2A1 � 3A2 �A8

2086. 2A1 � 3A2 �A4 �
D4

2087. 2A1 � 3A2 � 2A4

2088. 2A1 � 3A2 �A3 �
D5

2089. 2A1 � 3A2 �A3 �
A5

2090. 2A1 � 4A2 �D6

2091. 2A1 � 4A2 �A6

2092. 2A1 � 4A2 � 2A3

2093. 3A1 � E6 � E7

2094. 3A1 �D13

2095. 3A1 �D7 � E6

2096. 3A1 �D5 � E8

2097. 3A1 �A13

2098. 3A1 �A8 �D5

2099. 3A1 �A7 � E6

2100. 3A1 �A6 � E7

2101. 3A1 �A6 �D7

2102. 3A1 �A6 �A7

2103. 3A1 �A5 � E8

2104. 3A1 �A5 �A8

2105. 3A1 �A4 �D9

2106. 3A1 �A4 �A9

2107. 3A1 � 2A4 �D5

2108. 3A1 � 2A4 �A5

2109. 3A1 �A3 �A10

2110. 3A1�A3�A4�E6

2111. 3A1�A3�A4�A6

2112. 3A1 �A2 �D11

2113. 3A1�A2�D5�E6

2114. 3A1 �A2 �A11

2115. 3A1�A2�A6�D5

2116. 3A1�A2�A5�E6

2117. 3A1�A2�A5�A6

2118. 3A1�A2�A4�E7

2119. 3A1�A2�A4�D7

2120. 3A1�A2�A4�A7

2121. 3A1�A2�A3�E8

2122. 3A1�A2�A3�A8

2123. 3A1 � A2 � A3 �
2A4

2124. 3A1 � 2A2 �D9

2125. 3A1 � 2A2 �A9

2126. 3A1 � 2A2 �A4 �
D5

2127. 3A1 � 2A2 �A4 �
A5

2128. 3A1 � 2A2 �A3 �
E6

2129. 3A1 � 2A2 �A3 �
A6

2130. 3A1 � 3A2 � E7

2131. 3A1 � 3A2 �D7

2132. 3A1 � 3A2 �A7

2133. 3A1 � 3A2 �A3 �
A4

2134. 4A1 � 2E6

2135. 4A1 �A12

2136. 4A1 �A6 � E6

2137. 4A1 � 2A6

2138. 4A1 �A4 � E8

2139. 4A1 �A4 �A8

2140. 4A1 � 3A4

2141. 4A1 �A2 �A10

2142. 4A1�A2�A4�E6

2143. 4A1�A2�A4�A6

2144. 4A1 � 2A2 � E8

2145. 4A1 � 2A2 �A8

2146. 4A1 � 2A2 � 2A4

2147. 4A1 � 3A2 �A6

rank(⇤) = 17

2148. ⇤
D17

2149. ⇤
D11 � E6

2150. D10 � E7

2151. ⇤
D9 � E8

2152. D8 �D9

2153. D7 �D10

2154. D6 �D11

2155. D5 � 2E6

2156. D5 �D12

2157. D5 �D6 � E6

2158. 2D5 � E7

2159. 2D5 �D7

2160. D4 � E6 � E7

2161. D4 �D13

2162. D4 �D7 � E6

2163. D4 �D5 � E8

2164. ⇤
A17

2165. A13 �D4

2166. ⇤
A12 �D5

2167. A11 � E6

2168. A11 �D6

2169. ⇤
A10 � E7

2170. ⇤
A10 �D7

2171. ⇤
A9 � E8

2172. A9 �D8

2173. ⇤
A8 �D9

2174. A8 �D4 �D5

2175. ⇤
A8 �A9

2176. A7 �D10

2177. A7 � 2D5

2178. A7 �D4 � E6

2179. ⇤
A7 �A10

2180. ⇤
A6 �D11

2181. ⇤
A6 �D5 � E6

2182. A6 �D5 �D6

2183. A6 �D4 � E7

2184. A6 �D4 �D7

2185. ⇤
A6 �A11

2186. A6 �A7 �D4
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2187. ⇤2A6 �D5

2188. A5 � 2E6

2189. A5 �D12

2190. A5 �D6 � E6

2191. A5 �D5 � E7

2192. A5 �D5 �D7

2193. A5 �D4 � E8

2194. ⇤
A5 �A12

2195. A5 �A8 �D4

2196. A5 �A7 �D5

2197. A5 �A6 � E6

2198. A5 �A6 �D6

2199. ⇤
A5 � 2A6

2200. 2A5 � E7

2201. 2A5 �D7

2202. 2A5 �A7

2203. ⇤
A4 � E6 � E7

2204. ⇤
A4 �D13

2205. ⇤
A4 �D7 � E6

2206. A4 �D6 � E7

2207. A4 �D6 �D7

2208. ⇤
A4 �D5 � E8

2209. A4 �D5 �D8

2210. A4 �D4 �D9

2211. ⇤
A4 �A13

2212. A4 �A9 �D4

2213. ⇤
A4 �A8 �D5

2214. ⇤
A4 �A7 � E6

2215. A4 �A7 �D6

2216. ⇤
A4 �A6 � E7

2217. ⇤
A4 �A6 �D7

2218. ⇤
A4 �A6 �A7

2219. ⇤
A4 �A5 � E8

2220. A4 �A5 �D8

2221. A4 �A5 �A8

2222. ⇤2A4 �D9

2223. 2A4 �D4 �D5

2224. 2A4 �A9

2225. 2A4 �A5 �D4

2226. 3A4 �D5

2227. 3A4 �A5

2228. A3 � 2E7

2229. ⇤
A3 � E6 � E8

2230. A3 �D14

2231. A3 �D8 � E6

2232. A3 �D7 � E7

2233. A3 � 2D7

2234. A3 �D6 � E8

2235. A3 �D5 �D9

2236. ⇤
A3 �A14

2237. A3 �A10 �D4

2238. A3 �A9 �D5

2239. A3 �A8 � E6

2240. A3 �A8 �D6

2241. A3 �A7 � E7

2242. A3 �A7 �D7

2243. A3 � 2A7

2244. ⇤
A3 �A6 � E8

2245. A3 �A6 �D8

2246. ⇤
A3 �A6 �A8

2247. A3 �A5 �D9

2248. A3 �A5 �A9

2249. A3 �A4 �D10

2250. A3 �A4 � 2D5

2251. A3�A4�D4�E6

2252. ⇤
A3 �A4 �A10

2253. A3�A4�A6�D4

2254. A3�A4�A5�D5

2255. A3 �A4 � 2A5

2256. ⇤
A3 � 2A4 � E6

2257. A3 � 2A4 �D6

2258. ⇤
A3 � 2A4 �A6

2259. 2A3 �D11

2260. 2A3 �D5 � E6

2261. 2A3 �A11

2262. 2A3 �A6 �D5

2263. 2A3 �A5 � E6

2264. 2A3 �A5 �A6

2265. 2A3 �A4 � E7

2266. 2A3 �A4 �D7

2267. 2A3 �A4 �A7

2268. 3A3 � E8

2269. 3A3 �A8

2270. 3A3 � 2A4

2271. ⇤
A2 � E7 � E8

2272. ⇤
A2 �D15

2273. A2 �D9 � E6

2274. A2 �D8 � E7

2275. ⇤
A2 �D7 � E8

2276. A2 �D7 �D8

2277. A2 �D6 �D9

2278. A2 �D5 �D10

2279. A2 � 3D5

2280. A2 �D4 �D11

2281. A2�D4�D5�E6

2282. ⇤
A2 �A15

2283. A2 �A11 �D4

2284. ⇤
A2 �A10 �D5

2285. A2 �A9 � E6

2286. A2 �A9 �D6

2287. A2 �A8 � E7

2288. A2 �A8 �D7

2289. ⇤
A2 �A7 � E8

2290. A2 �A7 �D8

2291. A2 �A7 �A8

2292. ⇤
A2 �A6 �D9

2293. A2�A6�D4�D5

2294. ⇤
A2 �A6 �A9

2295. A2 �A5 �D10

2296. A2 �A5 � 2D5

2297. A2 �A5 �A10

2298. A2�A5�A6�D4

2299. A2 � 2A5 �D5

2300. ⇤
A2 �A4 �D11

2301. A2�A4�D5�E6

2302. A2�A4�D5�D6

2303. A2�A4�D4�E7

2304. A2�A4�D4�D7

2305. A2 �A4 �A11

2306. A2�A4�A7�D4

2307. ⇤
A2�A4�A6�D5

2308. A2�A4�A5�E6

2309. A2�A4�A5�D6

2310. A2�A4�A5�A6

2311. ⇤
A2 � 2A4 � E7

2312. ⇤
A2 � 2A4 �D7

2313. ⇤
A2 � 2A4 �A7

2314. A2 �A3 � 2E6

2315. A2 �A3 �D12

2316. A2�A3�D6�E6

2317. A2�A3�D5�E7

2318. A2�A3�D5�D7

2319. A2�A3�D4�E8

2320. ⇤
A2 �A3 �A12

2321. A2�A3�A8�D4

2322. A2�A3�A7�D5

2323. A2�A3�A6�E6

2324. A2�A3�A6�D6

2325. ⇤
A2 �A3 � 2A6

2326. A2�A3�A5�E7

2327. A2�A3�A5�D7

2328. A2�A3�A5�A7

2329. ⇤
A2�A3�A4�E8

2330. A2�A3�A4�D8

2331. A2�A3�A4�A8

2332. A2�A3�2A4�D4

2333. A2 �A3 � 3A4

2334. A2 � 2A3 �D9
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2335. A2 � 2A3 �A9

2336. A2�2A3�A4�D5

2337. A2�2A3�A4�A5

2338. A2 � 3A3 � E6

2339. A2 � 3A3 �A6

2340. 2A2 � E6 � E7

2341. 2A2 �D13

2342. 2A2 �D6 � E7

2343. 2A2 �D6 �D7

2344. 2A2 �D5 � E8

2345. 2A2 �D5 �D8

2346. 2A2 �D4 �D9

2347. 2A2 �A13

2348. 2A2 �A9 �D4

2349. 2A2 �A8 �D5

2350. 2A2 �A7 � E6

2351. 2A2 �A7 �D6

2352. 2A2 �A6 � E7

2353. 2A2 �A6 �D7

2354. 2A2 �A6 �A7

2355. 2A2 �A5 � E8

2356. 2A2 �A5 �D8

2357. 2A2 �A4 �D9

2358. 2A2 � A4 � D4 �
D5

2359. 2A2 �A4 �A9

2360. 2A2 � 2A4 �D5

2361. 2A2 � 2A4 �A5

2362. 2A2 �A3 �D10

2363. 2A2 �A3 � 2D5

2364. 2A2 �A3 �A10

2365. 2A2�A3�A6�D4

2366. 2A2�A3�A5�D5

2367. 2A2�A3�A4�E6

2368. 2A2�A3�A4�D6

2369. 2A2�A3�A4�A6

2370. 2A2 � 2A3 � E7

2371. 2A2 � 2A3 �D7

2372. 2A2 � 2A3 �A7

2373. 2A2 � 3A3 �A4

2374. 3A2 �D11

2375. 3A2 �D5 �D6

2376. 3A2 �D4 �D7

2377. 3A2 �A6 �D5

2378. 3A2 �A4 � E7

2379. 3A2 �A4 �A7

2380. 3A2 �A3 � E8

2381. 3A2 �A3 �D8

2382. 3A2 �A3 � 2A4

2383. 3A2 � 2A3 �D5

2384. ⇤
A1 � 2E8

2385. A1 �D16

2386. A1 �D10 � E6

2387. A1 �D9 � E7

2388. A1 �D8 � E8

2389. A1 �D7 �D9

2390. A1 �D5 �D11

2391. A1 � 2D5 � E6

2392. A1 �D4 � 2E6

2393. ⇤
A1 �A16

2394. A1 �A12 �D4

2395. A1 �A11 �D5

2396. ⇤
A1 �A10 � E6

2397. A1 �A10 �D6

2398. A1 �A9 � E7

2399. A1 �A9 �D7

2400. ⇤
A1 �A8 � E8

2401. A1 �A8 �D8

2402. A1 � 2A8

2403. A1 �A7 �D9

2404. A1 �A7 �A9

2405. A1 �A6 �D10

2406. A1 �A6 � 2D5

2407. A1�A6�D4�E6

2408. ⇤
A1 �A6 �A10

2409. A1 � 2A6 �D4

2410. A1 �A5 �D11

2411. A1�A5�D5�E6

2412. A1 �A5 �A11

2413. A1�A5�A6�D5

2414. A1 � 2A5 � E6

2415. A1 � 2A5 �A6

2416. A1 �A4 � 2E6

2417. A1 �A4 �D12

2418. A1�A4�D6�E6

2419. A1�A4�D5�E7

2420. A1�A4�D5�D7

2421. A1�A4�D4�E8

2422. ⇤
A1 �A4 �A12

2423. A1�A4�A8�D4

2424. A1�A4�A7�D5

2425. ⇤
A1�A4�A6�E6

2426. A1�A4�A6�D6

2427. ⇤
A1 �A4 � 2A6

2428. A1�A4�A5�E7

2429. A1�A4�A5�D7

2430. A1�A4�A5�A7

2431. ⇤
A1 � 2A4 � E8

2432. A1 � 2A4 �D8

2433. ⇤
A1 � 2A4 �A8

2434. A1 � 3A4 �D4

2435. A1�A3�E6�E7

2436. A1 �A3 �D13

2437. A1�A3�D7�E6

2438. A1�A3�D5�E8

2439. A1 �A3 �A13

2440. A1�A3�A8�D5

2441. A1�A3�A7�E6

2442. A1�A3�A6�E7

2443. A1�A3�A6�D7

2444. A1�A3�A6�A7

2445. A1�A3�A5�E8

2446. A1�A3�A5�A8

2447. A1�A3�A4�D9

2448. A1�A3�A4�A9

2449. A1�A3�2A4�D5

2450. A1�A3�2A4�A5

2451. A1 � 2A3 �A10

2452. A1�2A3�A4�E6

2453. A1�2A3�A4�A6

2454. A1 �A2 � 2E7

2455. A1�A2�E6�E8

2456. A1 �A2 �D14

2457. A1�A2�D8�E6

2458. A1�A2�D7�E7

2459. A1 �A2 � 2D7

2460. A1�A2�D6�E8

2461. A1�A2�D5�D9

2462. A1 �A2 �A14

2463. A1�A2�A10�D4

2464. A1�A2�A9�D5

2465. A1�A2�A8�E6

2466. A1�A2�A8�D6

2467. A1�A2�A7�E7

2468. A1�A2�A7�D7

2469. A1 �A2 � 2A7

2470. ⇤
A1�A2�A6�E8

2471. A1�A2�A6�D8

2472. A1�A2�A6�A8

2473. A1�A2�A5�D9

2474. A1�A2�A5�A9

2475. A1�A2�A4�D10

2476. A1�A2�A4�2D5

2477. A1 � A2 � A4 �
D4 � E6

2478. ⇤
A1 � A2 � A4 �
A10

2479. A1 � A2 � A4 �
A6 �D4



131

2480. A1 � A2 � A4 �
A5 �D5

2481. A1�A2�A4�2A5

2482. A1�A2�2A4�E6

2483. A1�A2�2A4�D6

2484. ⇤
A1 �A2 � 2A4 �
A6

2485. A1�A2�A3�D11

2486. A1 � A2 � A3 �
D5 � E6

2487. A1�A2�A3�A11

2488. A1 � A2 � A3 �
A6 �D5

2489. A1 � A2 � A3 �
A5 � E6

2490. A1 � A2 � A3 �
A5 �A6

2491. A1 � A2 � A3 �
A4 � E7

2492. A1 � A2 � A3 �
A4 �D7

2493. A1 � A2 � A3 �
A4 �A7

2494. A1�A2�2A3�E8

2495. A1�A2�2A3�A8

2496. A1 � A2 � 2A3 �
2A4

2497. A1 � 2A2 �D12

2498. A1�2A2�D6�E6

2499. A1�2A2�D5�E7

2500. A1 � 2A2 � D5 �
D7

2501. A1�2A2�D4�E8

2502. A1 � 2A2 �A12

2503. A1�2A2�A7�D5

2504. A1�2A2�A6�E6

2505. A1�2A2�A6�D6

2506. A1 � 2A2 � 2A6

2507. A1�2A2�A5�E7

2508. A1�2A2�A5�A7

2509. A1�2A2�A4�E8

2510. A1�2A2�A4�D8

2511. A1�2A2�A4�A8

2512. A1 � 2A2 � 2A4 �
D4

2513. A1 � 2A2 � 3A4

2514. A1�2A2�A3�D9

2515. A1�2A2�A3�A9

2516. A1 � 2A2 � A3 �
A4 �D5

2517. A1 � 2A2 � A3 �
A4 �A5

2518. A1 � 2A2 � 2A3 �
E6

2519. A1 � 2A2 � 2A3 �
A6

2520. A1 � 3A2 �A10

2521. A1�3A2�A4�D6

2522. A1�3A2�A4�A6

2523. A1�3A2�A3�E7

2524. A1�3A2�A3�A7

2525. A1 � 3A2 � 2A3 �
A4

2526. 2A1 � E7 � E8

2527. 2A1 �D15

2528. 2A1 �D9 � E6

2529. 2A1 �D7 � E8

2530. 2A1 �A15

2531. 2A1 �A10 �D5

2532. 2A1 �A9 � E6

2533. 2A1 �A8 � E7

2534. 2A1 �A8 �D7

2535. 2A1 �A7 � E8

2536. 2A1 �A7 �A8

2537. 2A1 �A6 �D9

2538. 2A1 �A6 �A9

2539. 2A1 �A5 �A10

2540. 2A1 �A4 �D11

2541. 2A1�A4�D5�E6

2542. 2A1 �A4 �A11

2543. 2A1�A4�A6�D5

2544. 2A1�A4�A5�E6

2545. 2A1�A4�A5�A6

2546. 2A1 � 2A4 � E7

2547. 2A1 � 2A4 �D7

2548. 2A1 � 2A4 �A7

2549. 2A1 �A3 � 2E6

2550. 2A1 �A3 �A12

2551. 2A1�A3�A6�E6

2552. 2A1 �A3 � 2A6

2553. 2A1�A3�A4�E8

2554. 2A1�A3�A4�A8

2555. 2A1 �A3 � 3A4

2556. 2A1�A2�E6�E7

2557. 2A1 �A2 �D13

2558. 2A1�A2�D7�E6

2559. 2A1�A2�D5�E8

2560. 2A1 �A2 �A13

2561. 2A1�A2�A8�D5

2562. 2A1�A2�A7�E6

2563. 2A1�A2�A6�E7

2564. 2A1�A2�A6�D7

2565. 2A1�A2�A6�A7

2566. 2A1�A2�A5�E8

2567. 2A1�A2�A5�A8

2568. 2A1�A2�A4�D9

2569. 2A1�A2�A4�A9

2570. 2A1 �A2 � 2A4 �
D5

2571. 2A1 �A2 � 2A4 �
A5

2572. 2A1 � A2 � A3 �
A10

2573. 2A1 � A2 � A3 �
A4 � E6

2574. 2A1 � A2 � A3 �
A4 �A6

2575. 2A1 � 2A2 �D11

2576. 2A1 � 2A2 �A11

2577. 2A1 � 2A2 �A6 �
D5

2578. 2A1 � 2A2 �A5 �
A6

2579. 2A1 � 2A2 �A4 �
E7

2580. 2A1 � 2A2 �A4 �
D7

2581. 2A1 � 2A2 �A4 �
A7

2582. 2A1 � 2A2 �A3 �
E8

2583. 2A1 � 2A2 �A3 �
A8

2584. 2A1 � 2A2 �A3 �
2A4

2585. 2A1 � 3A2 �D9

2586. 2A1 � 3A2 �A9

2587. 2A1 � 3A2 �A3 �
A6

2588. 3A1 � E6 � E8

2589. 3A1 �A14

2590. 3A1 �A8 � E6

2591. 3A1 �A6 � E8

2592. 3A1 �A6 �A8

2593. 3A1 �A4 �A10

2594. 3A1 � 2A4 � E6

2595. 3A1 � 2A4 �A6

2596. 3A1 �A2 �A12

2597. 3A1�A2�A6�E6

2598. 3A1 �A2 � 2A6

2599. 3A1�A2�A4�E8

2600. 3A1�A2�A4�A8

2601. 3A1 �A2 � 3A4

2602. 3A1 � 2A2 �A10

2603. 3A1 � 2A2 �A4 �
A6

rank(⇤) = 18

2604. D18

2605. D12 � E6

2606. D11 � E7
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2607. D10 � E8

2608. 2D9

2609. D7 �D11

2610. D6 � 2E6

2611. D5 � E6 � E7

2612. D5 �D13

2613. D5 �D7 � E6

2614. 2D5 � E8

2615. D4 � E6 � E8

2616. ⇤
A18

2617. A14 �D4

2618. A13 �D5

2619. A12 � E6

2620. A12 �D6

2621. A11 � E7

2622. A11 �D7

2623. ⇤
A10 � E8

2624. A10 �D8

2625. A9 �D9

2626. 2A9

2627. A8 �D10

2628. A8 � 2D5

2629. A8 �A10

2630. A7 �D11

2631. A7 �D5 � E6

2632. A7 �A11

2633. A6 � 2E6

2634. A6 �D12

2635. A6 �D6 � E6

2636. A6 �D5 � E7

2637. A6 �D5 �D7

2638. A6 �D4 � E8

2639. ⇤
A6 �A12

2640. A6 �A8 �D4

2641. A6 �A7 �D5

2642. 2A6 � E6

2643. 2A6 �D6

2644. A5 � E6 � E7

2645. A5 �D13

2646. A5 �D5 � E8

2647. A5 �A13

2648. A5 �A8 �D5

2649. A5 �A7 � E6

2650. A5 �A6 � E7

2651. A5 �A6 �D7

2652. A5 �A6 �A7

2653. 2A5 � E8

2654. A4 � 2E7

2655. A4 � E6 � E8

2656. A4 �D14

2657. A4 �D8 � E6

2658. A4 �D7 � E7

2659. A4 � 2D7

2660. A4 �D6 � E8

2661. A4 �D5 �D9

2662. A4 �A14

2663. A4 �A10 �D4

2664. A4 �A9 �D5

2665. A4 �A8 � E6

2666. A4 �A8 �D6

2667. A4 �A7 � E7

2668. A4 �A7 �D7

2669. A4 � 2A7

2670. ⇤
A4 �A6 � E8

2671. A4 �A6 �D8

2672. A4 �A6 �A8

2673. A4 �A5 �D9

2674. A4 �A5 �A9

2675. 2A4 �D10

2676. 2A4 � 2D5

2677. 2A4 �D4 � E6

2678. 2A4 �A10

2679. 2A4 �A6 �D4

2680. 2A4 �A5 �D5

2681. 2A4 � 2A5

2682. 3A4 �D6

2683. A3 � E7 � E8

2684. A3 �D15

2685. A3 �D9 � E6

2686. A3 �D7 � E8

2687. A3 �A15

2688. A3 �A10 �D5

2689. A3 �A9 � E6

2690. A3 �A8 � E7

2691. A3 �A8 �D7

2692. A3 �A7 � E8

2693. A3 �A7 �A8

2694. A3 �A6 �D9

2695. A3 �A6 �A9

2696. A3 �A5 �A10

2697. A3 �A4 �D11

2698. A3�A4�D5�E6

2699. A3 �A4 �A11

2700. A3�A4�A6�D5

2701. A3�A4�A5�E6

2702. A3�A4�A5�A6

2703. A3 � 2A4 � E7

2704. A3 � 2A4 �D7

2705. A3 � 2A4 �A7

2706. 2A3 � 2E6

2707. 2A3 �A12

2708. 2A3 �A6 � E6

2709. 2A3 � 2A6

2710. 2A3 �A4 � E8

2711. 2A3 �A4 �A8

2712. 2A3 � 3A4

2713. A2 � 2E8

2714. A2 �D16

2715. A2 �D9 � E7

2716. A2 �D8 � E8

2717. A2 �D7 �D9

2718. A2 �D5 �D11

2719. A2 �A16

2720. A2 �A12 �D4

2721. A2 �A11 �D5

2722. A2 �A10 � E6

2723. A2 �A10 �D6

2724. A2 �A9 � E7

2725. A2 �A9 �D7

2726. A2 �A8 � E8

2727. A2 �A8 �D8

2728. A2 �A7 �D9

2729. A2 �A7 �A9

2730. A2 �A6 �D10

2731. A2 �A6 � 2D5

2732. A2 �A6 �A10

2733. A2 � 2A6 �D4

2734. A2 �A5 �D11

2735. A2�A5�A6�D5

2736. A2 �A4 �D12

2737. A2�A4�D6�E6

2738. A2�A4�D5�E7

2739. A2�A4�D5�D7

2740. A2�A4�D4�E8

2741. A2 �A4 �A12

2742. A2�A4�A7�D5

2743. A2�A4�A6�E6

2744. A2�A4�A6�D6

2745. A2 �A4 � 2A6

2746. A2�A4�A5�E7

2747. A2�A4�A5�A7

2748. A2 � 2A4 � E8

2749. A2 � 2A4 �D8

2750. A2 � 2A4 �A8

2751. A2�A3�E6�E7

2752. A2 �A3 �D13

2753. A2�A3�D5�E8

2754. A2 �A3 �A13
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2755. A2�A3�A8�D5

2756. A2�A3�A7�E6

2757. A2�A3�A6�E7

2758. A2�A3�A6�D7

2759. A2�A3�A6�A7

2760. A2�A3�A5�E8

2761. A2�A3�A4�D9

2762. A2�A3�A4�A9

2763. A2�A3�2A4�D5

2764. A2�A3�2A4�A5

2765. A2 � 2A3 �A10

2766. A2�2A3�A4�E6

2767. A2�2A3�A4�A6

2768. 2A2 � 2E7

2769. 2A2 �D14

2770. 2A2 � 2D7

2771. 2A2 �D6 � E8

2772. 2A2 �D5 �D9

2773. 2A2 �A9 �D5

2774. 2A2 �A7 � E7

2775. 2A2 � 2A7

2776. 2A2 �A6 � E8

2777. 2A2 �A6 �D8

2778. 2A2 �A4 �A10

2779. 2A2 � 2A4 �D6

2780. 2A2 � 2A4 �A6

2781. 2A2 �A3 �D11

2782. 2A2�A3�A6�D5

2783. 2A2�A3�A4�E7

2784. 2A2�A3�A4�A7

2785. 2A2 � 2A3 � E8

2786. 2A2 � 2A3 � 2A4

2787. A1 �D17

2788. A1 �D11 � E6

2789. A1 �D9 � E8

2790. A1 �A17

2791. A1 �A12 �D5

2792. A1 �A11 � E6

2793. A1 �A10 � E7

2794. A1 �A10 �D7

2795. A1 �A9 � E8

2796. A1 �A8 �D9

2797. A1 �A8 �A9

2798. A1 �A7 �A10

2799. A1 �A6 �D11

2800. A1�A6�D5�E6

2801. A1 �A6 �A11

2802. A1 � 2A6 �D5

2803. A1 �A5 �A12

2804. A1�A5�A6�E6

2805. A1 �A5 � 2A6

2806. A1�A4�E6�E7

2807. A1 �A4 �D13

2808. A1�A4�D7�E6

2809. A1�A4�D5�E8

2810. A1 �A4 �A13

2811. A1�A4�A8�D5

2812. A1�A4�A7�E6

2813. A1�A4�A6�E7

2814. A1�A4�A6�D7

2815. A1�A4�A6�A7

2816. A1�A4�A5�E8

2817. A1�A4�A5�A8

2818. A1 � 2A4 �D9

2819. A1�A3�E6�E8

2820. A1 �A3 �A14

2821. A1�A3�A8�E6

2822. A1�A3�A6�E8

2823. A1�A3�A6�A8

2824. A1�A3�A4�A10

2825. A1�A3�2A4�E6

2826. A1�A3�2A4�A6

2827. A1�A2�E7�E8

2828. A1 �A2 �D15

2829. A1�A2�D9�E6

2830. A1�A2�D7�E8

2831. A1 �A2 �A15

2832. A1�A2�A10�D5

2833. A1�A2�A9�E6

2834. A1�A2�A8�E7

2835. A1�A2�A7�E8

2836. A1�A2�A7�A8

2837. A1�A2�A6�D9

2838. A1�A2�A6�A9

2839. A1�A2�A5�A10

2840. A1�A2�A4�D11

2841. A1�A2�A4�A11

2842. A1 � A2 � A4 �
A6 �D5

2843. A1 � A2 � A4 �
A5 �A6

2844. A1�A2�2A4�E7

2845. A1�A2�2A4�D7

2846. A1�A2�2A4�A7

2847. A1�A2�A3�A12

2848. A1 � A2 � A3 �
A6 � E6

2849. A1�A2�A3�2A6

2850. A1 � A2 � A3 �
A4 � E8

2851. A1 � A2 � A3 �
A4 �A8

2852. A1�A2�A3�3A4

2853. A1 � 2A2 �A13

2854. A1�2A2�A6�E7

2855. A1�2A2�A6�A7

2856. A1�2A2�A4�D9

2857. A1�2A2�A4�A9

2858. A1 � 2A2 � A3 �
A10

2859. A1 � 2A2 � A3 �
A4 �A6

2860. 2A1 � 2E8

2861. 2A1 �A16

2862. 2A1 �A10 � E6

2863. 2A1 �A8 � E8

2864. 2A1 � 2A8

2865. 2A1 �A6 �A10

2866. 2A1 �A4 �A12

2867. 2A1�A4�A6�E6

2868. 2A1 �A4 � 2A6

2869. 2A1 � 2A4 � E8

2870. 2A1 � 2A4 �A8

2871. 2A1 �A2 �A14

2872. 2A1�A2�A6�E8

2873. 2A1�A2�A6�A8

2874. 2A1 � A2 � A4 �
A10

2875. 2A1 �A2 � 2A4 �
A6

2876. 2A1 � 2A2 �A12

2877. 2A1 � 2A2 � 2A6

rank(⇤) = 19

2878. D19

2879. D11 � E8

2880. A19

2881. A14 �D5

2882. A13 � E6

2883. A12 � E7

2884. A12 �D7

2885. A11 � E8

2886. A10 �D9

2887. A9 �A10

2888. A8 �D11

2889. A7 �A12

2890. A6 � E6 � E7

2891. A6 �D13

2892. A6 �D5 � E8

2893. A6 �A8 �D5

2894. A6 �A7 � E6

2895. A5 �A6 � E8
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2896. A4 � E7 � E8

2897. A4 �D15

2898. A4 �D9 � E6

2899. A4 �D7 � E8

2900. A4 �A15

2901. A4 �A10 �D5

2902. A4 �A8 � E7

2903. A4 �A7 � E8

2904. A4 �A7 �A8

2905. A4 �A6 �D9

2906. A4 �A5 �A10

2907. 2A4 �D11

2908. A3 � 2E8

2909. A3 �A16

2910. A3 �A10 � E6

2911. A3 �A8 � E8

2912. A3 �A6 �A10

2913. A3 �A4 �A12

2914. A3�A4�A6�E6

2915. A3 �A4 � 2A6

2916. A3 � 2A4 � E8

2917. A3 � 2A4 �A8

2918. A2 �D17

2919. A2 �D9 � E8

2920. A2 �A12 �D5

2921. A2 �A10 � E7

2922. A2 �A9 � E8

2923. A2 �A7 �A10

2924. A2 �A6 �D11

2925. A2 � 2A6 �D5

2926. A2 �A4 �A13

2927. A2�A4�A6�E7

2928. A2�A4�A6�A7

2929. A2�A3�A6�E8

2930. A2�A3�A4�A10

2931. A2�A3�2A4�A6

2932. A1 �A18

2933. A1 �A12 � E6

2934. A1 �A10 � E8

2935. A1 �A8 �A10

2936. A1 �A6 �A12

2937. A1 � 2A6 � E6

2938. A1�A4�A6�E8

2939. A1�A4�A6�A8

2940. A1 �A2 �A16

2941. A1�A2�A6�A10

2942. A1�A2�A4�A12
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