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Abstract

We study a free boundary problem arising from the modeling of an idealized electrostat-

ically actuated MEMS device. In contrast to existing literature, we consider a three-

dimensional device involving a hinged elastic plate. The model couples the electrostatic

potential to the displacement of the elastic plate, which is caused by a voltage difference

that is applied to the device. The electrostatic potential is harmonic in the free domain

between the elastic plate and a rigid ground plate. The elastic plate displacement solves

a fourth-order parabolic equation with hinged boundary conditions and a right-hand side

proportional to the square of the trace of the gradient of the electrostatic potential on the

elastic plate. We establish local and global well-posedness of the model in dependence of

the applied voltage difference and show that only touchdown of the elastic plate on the

ground plate can generate a finite time singularity. Next, we consider stationary solutions

and prove that such solutions exist for small voltage values and do not exist for large

voltage values. To prove the nonexistence result, we show that the fourth-order elliptic

operator with hinged boundary conditions satisfies a positivity preserving property and

has a positive eigenpair.

Keywords: MEMS, free boundary problem, hinged plate, well-posedness, positivity pre-

serving property, nonexistence.
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Chapter 1

Introduction

A free boundary problem consists of one or more partial differential equations (PDEs)

which have to be solved in a domain with a boundary that is partly unknown a priori; this

part is accordingly named a free boundary. Thus, in addition to the standard boundary

conditions that are needed to solve the PDEs, an extra condition must be prescribed on

the free boundary. One then wishes to determine both the free boundary and the solution

of the PDEs. As the behavior of the free boundary depends on the solution, the problem

as a whole is going to be a nonlinear problem which greatly complicates the analysis. The

theory of free boundary problems has seen great progress in the last forty years. Moreover,

many problems in physics, chemistry, biology, mechanics, and other areas can be described

as free boundary problems.

The present thesis deals with a free boundary problem that arises in the modeling

of microelectromechanical systems (MEMS), that is, integrated electromechanical devices

with a size on the order of micrometers. Richard Feynman, in his famous 1959 lecture

“There’s Plenty of Room at the Bottom” [21], predicted that MEMS will become an

important and indispensable field of scientific research in the 21st century:

“It is a staggeringly small world that is below. In the year 2000, when they

look back at this age, they will wonder why it was not until the year 1960 that

anybody began seriously to move in this direction.”

Nowadays, there are a wide variety of applications for MEMS to report on: MEMS are

commonly used as microsensors or microactuators, they appear in accelerometers and

gyroscopes, they have commercial applications, e.g., in radio frequency (RF) switches,

micropumps for inkjet printer heads and micromirrors for projection displays, and are

even used in the medical field, e.g., to measure blood pressure within the body. Many

more examples can be found in [65, 74, 85]. A number of different sensing and actuation

properties like piezoelectric, piezoresistive, electrostatic, thermal, electromagnetic, and

optical have been used in MEMS [65]. Of these, electrostatics is often the preferred

technique.

Most of the electrostatically actuated MEMS devices consist of an elastic plate sus-

pended above a rigid ground plate and operate in a similar fashion: Holding both plates

at different voltages induces an electric field and hence a Coulomb force, resulting in a

mechanical deformation of the elastic plate. When a sufficiently large voltage difference is
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Chapter 1. Introduction

applied, the elastic plate may touch down on the rigid plate, creating a so-called “pull-in

instability”. This instability may limit the effectiveness of some devices such as micromir-

rors and microresonators but be essential for the operation of others such as switches

and microvalves. Such pull-in instability was first experimentally observed by Taylor [82]

and Nathanson et al. [67]. Understanding and quantifying this instability is a topic of

technological and mathematical interest.

An introduction to the mathematical theory of MEMS devices can be found in [74].

Recently, the following idealized model for an electrostatically actuated MEMS device

has been proposed, see [19, 53, 74]: There is a thin elastic plate that is clamped on its

boundary and lies above a rigid grounded plate. Let D ⊂ Rn with n = 1, 2 be a bounded

smooth domain representing the identical shapes of the two plates and consider a function

u(t, x) of time t > 0 and x ∈ D with u > −1. The MEMS device will be modeled by the

(n+ 1)-dimensional domain

Ω(u(t)) = {(x, z) ∈ Rn+1 ; x ∈ D,−1 < z < u(t, x)},

and its two horizontal boundary components will be denoted by Gu(t) = {z = u(t, x)}
and G−1 = {z = −1}. The function u models the n-dimensional displacement of the

elastic plate from G0 when a positive voltage difference is applied to the device Ω(0). The

electrostatic potential in the region between both plates is denoted by ψ and it satisfies

Laplace’s equation, equals to one on the upper and vanishes on the lower plate, and is

assumed to be an affine function of z on the lateral boundary components. The evolution

of the elastic plate starts from its initial position u(0, x) = u0(x) at its initial velocity

∂tu(0, x) = u1(x) and is described by a fourth-order damped wave equation with a right-

hand side that depends on the square of the trace of the gradient of the electrostatic

potential on the elastic plate. By rescaling, there is a parameter ε > 0 called the aspect

ratio of the device, that is, the ratio between the vertical and horizontal length scales.

Let ∇′ and ∆′ denote the gradient and the Laplace operator with respect to x ∈ D for

functions of x and z. Then, the problem reads

ε2∆′ψ + ∂2
zψ = 0 in Ω(u), t > 0 (1.1)

ψ =
1 + z

1 + u
on ∂Ω(u), t > 0, (1.2)

α2∂2
t u+ ∂tu+ β∆2u− τ∆u = −λ

{
ε2|∇′ψ|2 + (∂zψ)2

}
on Gu, t > 0, (1.3)

u = ∂νu = 0 on ∂D, t > 0, (1.4)

u(0, ·) = u0, ∂tu(0, ·) = u1 in D, (1.5)

with ν denoting the outward unit normal on ∂D. The parameter α2 is a ratio of inertial

terms and a damping constant, while β > 0 and τ ≥ 0 are related to bending and stretching

of the elastic plate, respectively. The Dirichlet boundary conditions (1.4) mean that the

elastic plate is clamped. Note that (1.1)-(1.5) is a free boundary problem since the domain

2



Chapter 1. Introduction

Ω(u) and its boundary component Gu are a priori unknown and depend on the solution

(u, ψ). For this reason, equations (1.1) and (1.3) are strongly coupled.

In (1.3), λ > 0 is a tuning parameter proportional to the square of the applied voltage

difference. Accordingly, the pull-in instability is expected to take place if λ is large enough.

This, though, is rather well-understood for the “vanishing aspect ratio model”, obtained

by formally setting ε = 0 in (1.1)-(1.5). Such an assumption is often made in MEMS and

allows one to explicitly solve for the potential, that is, ψ = (1 + z)/(1 + u) in Ω(u), t > 0,

thus reducing the free boundary problem to the singular evolution equation

α2∂2
t u+ ∂tu+ β∆2u− τ∆u = − λ

(1 + u)2
in D, t > 0, (1.6)

subject to (1.4) and (1.5) solely involving u. A serious difficulty for its study is caused by

the lack of a maximum principle in general for the fourth-order operator β∆2 − τ∆ with

Dirichlet boundary conditions. But if one restricts one’s attention to the unit ball, then

one does have a positivity preserving property (PPP) for the bilaplace operator β∆2 due

to Boggio [9]. That is, β∆2u ≥ 0 implies u ≥ 0. Boggio’s result was recently extended in

[49] to the operator β∆2 − τ∆ in radial symmetry.

On the contrary, in the case of Navier boundary conditions, i.e.,

u = ∆u = 0 on ∂D, (1.7)

β∆2 − τ∆ enjoys a PPP in arbitrary smooth domains. This fact has been applied in

[19, 34, 60] to prove the existence of a threshold value λ∗ of λ so that there is at least one

stationary solution to (1.6)-(1.7) for 0 < λ < λ∗ and no stationary solution for λ > λ∗.

Concerning the evolution equation (1.6) subject to Navier boundary conditions (1.7), it is

shown in [32] that there exists a λ such that, if 0 < λ < λ ≤ λ∗, the solution exists globally

in time, while, if λ > λ∗, then the solution must touch down to u = −1 at some finite time

T ∗. In addition, some other interesting results have also been obtained by these authors.

When D equals the strip (−1, 1) ⊂ R or the unit disk B1 ⊂ R2, then some results are

also available for (1.6) under Dirichlet boundary conditions (1.4). See [19, 47, 61]. The

results, however, are less complete and there are still open questions.

When the upper component of the device is modeled by a membrane rather than a

plate, that is, when β = 0, (1.6) reduces to a second-order evolution equation that has been

studied extensively in recent years, and there are now many established results concerning

the behavior of solutions. See [10, 19, 22, 57] and the references therein for a thorough

account. Several variants of the second-order model have also been studied in [73, 75, 58].

Far less is known about the free boundary problem (1.1)-(1.5) with ε > 0, which, due

to the present coupling of u and ψ, turns out to be even more involved. For this case, the

literature is particularly sparse. A few recent papers, however, take a first step towards

demonstrating the presence of the pull-in instability; i.e., there is a number λ∗ > 0 such

that when λ > λ∗, (1.1)-(1.5) possesses no stationary solutions and will touch down to

3



Chapter 1. Introduction

u = −1 in finite time. See [52, 48] for the case when D is the strip (−1, 1) and [45, 51]

for the parabolic (α = 0) version with a two-dimensional convex domain D. It should be

mentioned here that the nonexistence result of [51] is limited to the unit disk B1 due to

the absence of PPP in general geometries.

Much more literature can be found on the second-order parabolic (α = β = 0) equiva-

lent of (1.1)-(1.5) and variants thereof. See [11, 15, 18, 55, 40] and the references therein.

The present thesis offers the following new contributions to the topics introduced so far:

There is a rigid ground plate of shape D ⊂ R2 and a thin elastic plate of the same shape

at rest which is suspended above the rigid one. We assume here that the elastic plate is

hinged at its boundary, that is,

u = 0 on ∂D, (1.8)

but unlike the clamped case, we do not prescribe ∂νu = 0 on ∂D. In that case, the function

u additionally satisfies a natural boundary condition, namely

∆u− (1− σ)κ∂νu = 0 on ∂D, (1.9)

with Poisson ratio σ ∈ (−1, 1) and boundary curvature κ. These boundary conditions are

sometimes called “Steklov” due to their first appearance in [79] and may be considered

as an intermediate situation between Navier and Dirichlet boundary conditions. A free

boundary problem for an idealized electrostatically actuated MEMS device involving a

hinged upper plate is derived in detail in Chapter 2. The model consists of a fourth-order

parabolic equation with Steklov boundary conditions for the elastic plate displacement

u which is coupled to an elliptic equation for the electrostatic potential ψ in the free

domain between the elastic and the ground plate. In particular, this model corresponds to

the problem (1.1)-(1.5) with α = 0 and Steklov boundary conditions (1.8)-(1.9) instead of

Dirichlet boundary conditions (1.4). To the best of our knowledge, this model has not been

discussed in the literature up to now. In analogy to the model with Dirichlet boundary

conditions, we assume that D ⊂ R2 is a bounded and convex domain with a sufficiently

smooth boundary. In Chapter 3, we show that our model is locally well-posed in time and

that solutions exist globally for small values of λ. A criterion for global existence implying

that a finite time singularity can only result from touchdown of the elastic plate on the

ground plate is obtained in Chapters 4 and 5. In Chapters 6 and 7, we show that the

operator β∆2 − τ∆, subject to the boundary conditions (1.8)-(1.9), satisfies a PPP in D

and further establish the existence of a positive eigenpair. Founded on these results, we

derive the existence of an asymptotically stable stationary solution for small values of λ

and the nonexistence of stationary solutions for large values of λ. This is done in Chapter

8. Appendices A and B collect proofs of auxiliary results and Appendix C contains an

alternative proof of the nonexistence result for stationary solutions. At the end of Chapter

2 we give a short overview of the main results and address some open problems.
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Chapter 2

A mathematical model for electrostatic MEMS

with a hinged top plate

In this chapter, we propose a new mathematical model for the study of the stationary and

dynamical behavior of an idealized electrostatically actuated MEMS device. The geometry

of the MEMS device is sketched in Figure 2.1.

elastic plate
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Figure 2.1: Geometry of the idealized MEMS device

The type of MEMS device under consideration consists of a rigid ground plate and a

thin elastic plate which is suspended above the rigid one and hinged on its boundary. Both

plates are perfect conductors and a dielectric medium, generally air or vacuum, fills the

space in between. When a positive voltage difference is applied to the device, an electric
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field is created in the space between the elastic plate and the rigid plate and a Coulomb

force causes a mechanical deformation of the elastic plate, thereby changing the geometry

of the device. The induced Coulomb force is varied in strength by varying the applied

voltage difference. In practical applications, however, the applied voltage difference has

an upper limit, beyond which the electrostatic attractive force is not balanced by the

mechanical restoring force in the elastic plate that eventually snaps and touches down

on the rigid plate, and the MEMS device collapses. This phenomenon, known as pull-in

instability, is a key limiting factor in the effectiveness of our device, and the corresponding

voltage is called pull-in voltage. Thus, for designing and manufacturing purposes of the

device it is important to know the precise value of the pull-in voltage. The applied voltage

difference will appear in the model as a parameter.

The modeling of the above-described MEMS device involves the electrostatic potential

between the two plates and the deformation of the elastic plate, which is assumed to be

small and only in the vertical direction. To be more specific, let us consider a rigid ground

plate of shape D ⊂ R2 and a thin elastic plate with the same shape D at rest and being

made of a homogeneous isotropic material; see Figure 2.2 for a cross section of the geom-

etry of our MEMS device. The plates are assumed to be perfectly electrically conducting

and are separated by air or vacuum as a dielectric (i.e., the relative permittivity is one).

The ground plate is located at height z = −H and held at zero voltage, while the elastic

plate at rest is located at z = 0. When a voltage V > 0 is applied to the top plate, an elec-

tric field is generated causing a deformation of the top plate from rest whose displacement

in the z-direction is modeled by the function u = u(x) for x = (x1, x2) ∈ D.

The elastic plate is assumed to be hinged, meaning that the vertical position at the

boundary is fixed. This gives

u(x) = 0, x ∈ ∂D.

Moreover, we shall see in Section 2.2 below that the hinged plate additionally satisfies a

natural boundary condition. Next, let ψu = ψu(x, z) denote the electrostatic potential

defined in the region

Ω(u) := {(x, z) ∈ D × R ; −H < z < u(x)}

between the two plates. In order to avoid the top plate touching the ground plate and

thus making the region Ω(u) disconnected, we presuppose that u(x) > −H for x ∈ D.
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Figure 2.2: Cross section of the idealized MEMS device

The remainder of this chapter is organized as follows. In the section below, we formu-

late the equations governing the electrostatic potential ψu.

In Section 2.2, we derive the governing equations for the vertical displacement u of the

elastic plate by applying a variational principle to the total energy E of the MEMS device.

Then, assuming that u is a function of time t, i.e., u = u(t, x), we present the equation

describing the motion of the device.

In Section 2.3, we combine the equations for the potential and the plate displacement

to get a free boundary problem. It couples a fourth-order semilinear parabolic equation

for the displacement u of the elastic plate with the Laplace equation for the electrostatic

potential ψu in the device. Finally, we rewrite the free boundary problem in a non-

dimensional form.

In Section 2.4, we provide a short outline of the subsequent chapters.

2.1 Governing equations for the electrostatic potential ψu

By virtue of Gauss’s law, see [37, Section 1.7], the electrostatic potential ψu for a given

displacement u solves the Laplace equation

ε0 ∆ψu = 0 in Ω(u), (2.1)

along with the boundary conditions

ψu(x,−H) = 0, ψu(x, u(x)) = V, x ∈ D,
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where the constant ε0 is the vacuum permittivity. The boundary conditions of ψu given a

priori only on the ground plate and on the elastic plate are continuously extended to the

vertical sides of Ω(u) by

ψu(x, z) =
V (H + z)

H
, x ∈ ∂D, z ∈ (−H, 0),

and hence

ψu(x, z) =
V (H + z)

H + u(x)
, (x, z) ∈ ∂Ω(u). (2.2)

2.2 Governing equations for the plate displacement u

2.2.1 Involved energies

In this subsection we give all the energy contributions involved in the MEMS device aiming

to derive the Euler-Lagrange equation. The total potential energy E of the MEMS device

is the sum of the mechanical energy Em and the electrostatic energy Ee, i.e., for a given

displacement u, it holds

E(u) := Em(u) + Ee(u).

Electrostatic energy of the MEMS device

According to [56, Section 2.1], the electrostatic energy is given by

Ee(u) := −ε0

2

∫
Ω(u)
|∇ψu|2 d(x, z), (2.3)

where ψu is, for a sufficiently smooth u : D → (−H,∞), the maximizer of the Dirichlet

integral

− ε0

2

∫
Ω(u)
|∇ϑ|2 d(x, z) (2.4)

in the set of functions ϑ ∈W 1
2 (Ω(u)) satisfying the boundary condition (2.2).

Clearly, we have Ee(u) ≤ 0. Let us note that the functional Ee depends on the dis-

placement u not only via its domain of integration Ω(u), but also via the potential ψu,

which itself depends implicitly on u. We further remark that, given a displacement u,

equations (2.1)-(2.2) for the electrostatic potential can be obtained by using the fact that

it is a critical point of the functional (2.4) with respect to ϑ.

Mechanical energy of the MEMS device

The mechanical energy Em of the device is composed of two terms. The first term cor-

responds to the energy due to bending and torsion of the plate and the second term is

determined by the change of the surface area of the plate.
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The Kirchhoff-Love model [39, 62] for the energy corresponding to bending and torsion

is given by

B

∫
D

(
1

2

(
K2

1 +K2
2

)
+ σK1K2

)
dx, (2.5)

where K1 and K2 are the principal curvatures of the graph of u. See also [12, p.250],

[24, Section 1.1.2], and [64, Chapter 6]. The parameter σ denotes the Poisson ratio, that

is, the ratio between bending and torsion. It is a physical constant that depends on the

material of the plate and is usually positive, although auxetic materials have a negative

Poisson ratio, see [20]. The Poisson ratio for metals is close to 0.3, see [62, p.105], while

for concrete it ranges from 0.1 to 0.2. In any case, see also [20, 62], it always holds true

that −1 < σ ≤ 1
2 . From a mathematical point of view, it suffices to assume that

−1 < σ < 1.

The parameter B defines the flexural rigidity of the plate, a measure of its resistance to

deformation. For physical reasons it holds that B > 0; see, e.g., [84, Section 2.3].

For a small displacement u, the following approximations hold:

(K1 +K2)2

2
≈ (∆u)2

2
and K1K2 ≈ det(∇2u) = ∂2

x1u ∂
2
x2u− (∂x2∂x1u)2,

where ∇2u is the Hessian matrix of u. Therefore,

1

2

(
K2

1 +K2
2

)
+ σK1K2 =

(K1 +K2)2

2
− (1− σ)K1K2

≈ 1

2
(∆u)2 + (1− σ)

(
(∂x2∂x1u)2 − ∂2

x1u ∂
2
x2u
)

(2.6)

and thus (2.5) becomes

B

∫
D

{1

2
(∆u)2 + (1− σ)

(
(∂x2∂x1u)2 − ∂2

x1u ∂
2
x2u
)}
dx.

Next, prestressing the plate and then fixing the horizontal displacement at the boundary

results in the term

P

∫
D

(√
1 + |∇u|2 − 1

)
dx,

which we may call the stretching energy. Here, P ∈ [0,∞) is the (pre)stress parameter.

This term is a result of the larger surface area for nonzero u compared with u = 0. For a

small displacement u, the approximation
√

1 + |∇u|2− 1 ≈ |∇u|2/2 leads to the Dirichlet

integral
P

2

∫
D
|∇u|2 dx.

Consequently, for a small vertical displacement u, the mechanical energy of the plate D
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approximately equals

Em(u) := B

∫
D

{1

2
(∆u)2 + (1− σ)

(
(∂x2∂x1u)2 − ∂2

x1u ∂
2
x2u
)}
dx+

P

2

∫
D
|∇u|2 dx. (2.7)

Let us make a few comments on the mechanical energy (2.7).

Remark 2.2.1 The mechanical energy is nonnegative. In fact, since P ≥ 0, we have
P
2

∫
D |∇u|2 dx ≥ 0. By applying Young’s inequality and by using σ ∈ (−1, 1) and B > 0,

we easily obtain that

B

∫
D

[
1

2
(∆u)2 + (1− σ)

(
(∂x2∂x1u)2 − ∂2

x1u ∂
2
x2u
)]
dx

= B

∫
D

[
1

2
(∂2
x1u)2 +

1

2
(∂2
x2u)2 + (1− σ)(∂x2∂x1u)2 + σ ∂2

x1u ∂
2
x2u

]
dx

≥ B
∫
D

[
1

2
(∂2
x1u)2 +

1

2
(∂2
x2u)2 + (1− σ)(∂x2∂x1u)2 − |σ|

2

(
(∂2
x1u)2 + (∂2

x2u)2
)]
dx

≥ B
∫
D

[
(1− |σ|)

2

(
(∂2
x1u)2 + (∂2

x2u)2
)

+ (1− |σ|) (∂x2∂x1u)2

]
dx

=
B(1− |σ|)

2

∫
D

[
(∂2
x1u)2 + (∂2

x2u)2 + 2(∂x2∂x1u)2
]
dx ≥ 0,

and so, Em(u) ≥ 0.

For large deformations of the elastic plate, we cannot simply start with the combination

(2.5) of curvatures, but have to consider an energy formulation that takes into account

the displacements in all three directions. Let us note:

Remark 2.2.2 For large deformations, we do not have linear strain-displacement rela-

tions resulting in (2.6). Consider a thin plate − a three dimensional body of uniform

thickness h > 0 that is small compared to the other two dimensions − having a mid-

dle surface dividing the thickness. Prior to its deformation, the plate’s middle surface is

assumed to occupy the region D in the x1x2-plane. Assuming moderately large deforma-

tions and considering the Kirchhoff-Love hypothesis, we get the (von Karman) nonlinear

strain-displacement relations (see [43, Section 1.5] or [76, Section 3.3])

ε11 = ∂x1w + 1
2(∂x1u)2 − z∂2

x1u,

ε22 = ∂x2v + 1
2(∂x2u)2 − z∂2

x2u,

ε12 = 1
2 (∂x2w + ∂x1v + ∂x1u ∂x2u− 2z∂x2∂x1u) ,

ε13 = ε23 = 0,

(2.8)

where w = w(x), v = v(x), and u = u(x) denote the components (in the x1, x2, and z

directions respectively) of the displacement vector at a point x = (x1, x2) of the middle
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surface D. According to [43, (1.7)] the mechanical energy reads

E

2(1− σ2)

∫ h/2

−h/2

∫
D

(
ε2

11 + 2σε11ε22 + ε2
22 + 2(1− σ)(ε2

12 + ε2
13 + ε2

23)
)
dx dz,

where E is Young’s modulus. Using the strains (2.8) and carrying out the integration with

respect to z, we find the following expression for the mechanical energy, see [43, Section

1.5.]:

B

∫
D

[
1

2
(∆u)2 + (1− σ)

(
(∂x2∂x1u)2 − ∂2

x1u ∂
2
x2u
)]
dx

+
E h

2(1− σ2)

∫
D

[(
∂x1w +

1

2
(∂x1u)2

)2
+
(
∂x2v +

1

2
(∂x2u)2

)2
(2.9)

+ 2σ
(
∂x1w +

1

2
(∂x1u)2

)(
∂x2v +

1

2
(∂x2u)2

)
+

1− σ
2

(
∂x2w + ∂x1v + ∂x1u ∂x2u

)2
]
dx.

We note that there is a coupling between the stretching components v, w and the vertical

component u. The first term in (2.9), containing the second order derivatives of u, corre-

sponds to pure bending and torsion of the plate and has already been computed in (2.7).

The second term is the interaction of u with the stretching components v and w.

In this thesis, however, we are not interested in describing the behavior of the MEMS

device under large deformations and thus restrict ourselves to (2.7).

Total energy of the MEMS device

Summarizing, by recalling both (2.3) and (2.7), the total potential energy for a given

displacement u is

E(u) = −ε0

2

∫
Ω(u)
|∇ψu|2 d(x, z)

+B

∫
D

{
1

2
(∆u)2 + (1− σ)

(
(∂x2∂x1u)2 − ∂2

x1u ∂
2
x2u
)}

dx+
P

2

∫
D
|∇u|2 dx.

2.2.2 The Euler-Lagrange equation

We derive the Euler-Lagrange equation and the accompanying natural boundary condition

by applying variational principles to the energy functional E , that is, by finding its critical

points. We need to compute the first variation of E and to find u such that

δE(u; v) :=
d

dr
E(u+ rv)|r=0 = 0 for all v.

Since the elastic plate is supposed to be hinged, an appropriate space in order to look for

critical points is {v ∈ C∞(D) ; v = 0 on ∂D}.
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In the following, we assume that D is a bounded domain in R2 with a sufficiently smooth

boundary, such that the exterior unit normal ν and the curvature κ of ∂D are well-defined

and continuous. For example, ∂D ∈ C2.

Formal derivation of the first variation of the electrostatic energy

Here, we follow the same approach as the one discussed in [56]. Let us fix a smooth defor-

mation u : D → R such that u = 0 on ∂D and u > −H in D. Let ψu be the corresponding

solution to (2.1)-(2.2). Note that according to (2.1) the potential ψu depends nonlocally

on u. Next, let v ∈ C∞(D) with v = 0 on ∂D be arbitrary and set ur := u + rv for

−r0 < r < r0, where r0 > 0 is chosen sufficiently small so that

ur > −H in D for all r ∈ (−r0, r0).

Since u is fixed, we shall write ψ and Ω rather than ψu and Ω(u) in the sequel. In order

to compute δEe(u; v), we introduce, for r ∈ (−r0, r0), the transformation Φ(r) by

Φ(r)(x, z) :=

(
x, z + rv(x)

H + z

H + u(x)

)
, (x, z) ∈ Ω, (2.10)

and notice that

Ω(ur) = Φ(r)(Ω) and det(∇Φ(r)) = 1 +
rv

H + u
> 0.

Next, let ψ(r) be the solution to (2.1)-(2.2) in Ω(ur), that is,{
∆ψ(r) = 0 in Ω(ur),

ψ(r)(x, z) = V H+z
H+ur(x) , (x, z) ∈ ∂Ω(ur).

(2.11)

Then, we have ψ(0) = ψ. Let us now compute the derivative of

Ee(ur) = −ε0

2

∫
Ω(ur)

|∇ψ(r)|2 d(x, z)

with respect to r. By the Reynolds transport theorem, see, e.g., [36, Theorem 5.2.2] or [7,

XII.Theorem 2.11], we deduce that

d

dr
Ee(ur)|r=0 = −ε0

∫
Ω

{
∇ψ · ∇∂rψ(0) + div

( |∇ψ|2
2

∂rΦ(0)

)}
d(x, z).

An integration by parts gives

d

dr
Ee(ur)|r=0 = ε0

∫
Ω

∆ψ ∂rψ(0) d(x, z)− ε0

∫
∂Ω

(
∂rψ(0)∇ψ +

|∇ψ|2
2

∂rΦ(0)

)
· n∂Ω dS,
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where n∂Ω is the outward unit normal to ∂Ω. Using that ∆ψ = 0 in Ω, we observe that

d

dr
Ee(ur)|r=0 = −ε0

∫
∂Ω

(
∂rψ(0)∇ψ +

|∇ψ|2
2

∂rΦ(0)

)
· n∂Ω dS. (2.12)

From (2.10), we see that

∂rΦ(0)(x, z) =

(
0, v(x)

H + z

H + u(x)

)
, (x, z) ∈ Ω, (2.13)

and thus ∂rΦ(0) = (0, 0) on D × {−H}. It also holds that ∂rψ(0) = 0 on D × {−H}.
Since v = 0 on ∂D, ∂rΦ(0) and ∂rψ(0) vanish on ∂D × (−H, 0). Then, (2.12) reduces to

d

dr
Ee(ur)|r=0 = −ε0

∫
G

(
∂rψ(0)∇ψ +

|∇ψ|2
2

∂rΦ(0)

)
· nG dS,

where

nG :=
1√

1 + |∇u(x)|2
(−∇u(x), 1), x ∈ D,

denotes the outward unit normal on the upper boundary G := {(x, u(x)) ; x ∈ D}. Hence,

d

dr
Ee(ur)|r=0 = −ε0

∫
D

(
∂rψ(0)(x, u(x))∇ψ(x, u(x))

+
|∇ψ(x, u(x))|2

2
∂rΦ(0)(x, u(x))

)
· (−∇u(x), 1) dx. (2.14)

If we put ∇′ := (∂x1 , ∂x2) and differentiate the boundary condition ψ(x, u(x)) = V with

respect to x, we obtain

∇′ψ(x, u(x)) = −∇u(x)∂zψ(x, u(x)), x ∈ D. (2.15)

Now recalling from (2.11) that

ψ(r)(x, ur(x)) = V, x ∈ D, r ∈ (−r0, r0),

it follows that

∂rψ(0)(x, u(x)) = −∂zψ(x, u(x)) v(x), x ∈ D.

This, together with ∂rΦ(0)(x, u(x)) = (0, v(x)), x ∈ D, and (2.15), then yields that

d

dr
Ee(ur)|r=0 =

ε0

2

∫
D

(
1 + |∇u(x)|2

)
(∂zψ(x, u(x)))2 v(x) dx.

By (2.15) again,(
1 + |∇u(x)|2

)
(∂zψ(x, u(x)))2 = |∇ψ(x, u(x))|2, x ∈ D,
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and hence
d

dr
Ee(ur)|r=0 =

ε0

2

∫
D
|∇ψ(x, u(x))|2 v(x) dx. (2.16)

Remark 2.2.3 We observe that the above calculations are formal since we did not specify

the regularity of ψ(r), neither with respect to r nor with respect to (x, z) ∈ Ω(ur).

Derivation of the first variation of the mechanical energy

Fix u ∈ C∞(D) with u = 0 on ∂D and u > −H in D. Let v and ur be as above. We

calculate δEm(u; v) for an arbitrary v as follows: First, we observe that

d

dr
Em(ur)|r=0

= B

∫
D

[
∆u∆v + (1− σ)

(
2∂x2∂x1u ∂x2∂x1v − ∂2

x1u ∂
2
x2v − ∂2

x2u∂
2
x1v
) ]
dx

+ P

∫
D
∇u · ∇v dx. (2.17)

Then, we rewrite the right-hand side using integration by parts. Let us start with the

second term in the first integral. Two integrations by parts and the boundary condition

on u yield that

2

∫
D
∂x2∂x1u ∂x2∂x1v dx =

∫
D
∂x2∂x1u ∂x2∂x1v dx+

∫
D
∂x2∂x1u ∂x2∂x1v dx

=

∫
∂D

ν2 ∂x2∂x1v ∂x1u dω +

∫
D

(∂2
x2∂

2
x1v)u dx

+

∫
∂D

ν1∂x2∂x1v ∂x2u dω +

∫
D

(∂2
x2∂

2
x1v)u dx

=

∫
∂D

∂x2∂x1v (ν2 ∂x1u+ ν1 ∂x2u) dω + 2

∫
D

(∂2
x2∂

2
x1v)u dx

with ν = (ν1, ν2) denoting the exterior unit normal of ∂D. Again by integration by parts

and u|∂D = 0, we get

−
∫
D
∂2
x1u ∂

2
x2v dx = −

∫
∂D

ν1 ∂
2
x2v ∂x1u dω −

∫
D

(∂2
x2∂

2
x1v)u dx

and

−
∫
D
∂2
x2u ∂

2
x1v dx = −

∫
∂D

ν2 ∂
2
x1v ∂x2u dω −

∫
D

(∂2
x2∂

2
x1v)u dx.

Hence, it follows that∫
D

(
2∂x2∂x1u ∂x2∂x1v − ∂2

x1u ∂
2
x2v − ∂2

x2u ∂
2
x1v
)
dx
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=

∫
∂D

(
ν1 ∂x2∂x1v ∂x2u+ ν2 ∂x2∂x1v ∂x1u− ν2 ∂

2
x1v ∂x2u− ν1 ∂

2
x2v ∂x1u

)
dω.

With the counterclockwise oriented tangent vector s = (s1, s2) on ∂D and the fact that

∂x1u|∂D = ν1∂νu + s1∂su, ∂x2u|∂D = ν2∂νu + s2∂su, and ∂su|∂D = 0 since u|∂D = 0, we

obtain ∫
∂D

(
ν1 ∂x2∂x1v ∂x2u+ ν2 ∂x2∂x1v ∂x1u− ν2 ∂

2
x1v ∂x2u− ν1∂

2
x2v ∂x1u

)
dω

=

∫
∂D

(
2ν1ν2 ∂x2∂x1v − ν2

2 ∂
2
x1v − ν2

1 ∂
2
x2v
)
∂νu dω

=

∫
∂D

(
2ν1ν2 ∂x2∂x1v + ν2

1 ∂
2
x1v + ν2

2 ∂
2
x2v −∆v

)
∂νu dω

=

∫
∂D

(
∂2
νv −∆v

)
∂νu dω.

In the last step we used ∂2
νv = ν2

1 ∂
2
x1v + ν2

2 ∂
2
x2v + 2ν1 ν2 ∂x2∂x1v. Using the relation

∆v = ∂2
νv + ∂2

sv + κ ∂νv, see, e.g., [78, Section 4.1], and ∂sv = ∂2
sv = 0 on ∂D since

v|∂D = 0, we get ∫
∂D

(
∂2
νv −∆v

)
∂νu dω = −

∫
∂D

κ ∂νv ∂νu dω.

Here, the function κ denotes the signed curvature of the boundary ∂D. Consequently, we

deduce that∫
D

(
2∂x2∂x1u ∂x2∂x1v − ∂2

x1u ∂
2
x2v − ∂2

x2u ∂
2
x1v
)
dx = −

∫
∂D

κ ∂νv ∂νu dω. (2.18)

Integrating the first term on the right-hand side of (2.17) by parts twice and using the

boundary condition on v gives∫
D

∆u∆v dx =

∫
∂D

∆u ∂νv dω −
∫
D
∇∆u · ∇v dx

=

∫
∂D

∆u ∂νv dω +

∫
D
v∆2u dx. (2.19)

An integration by parts again shows that

P

∫
D
∇u · ∇v dx = −P

∫
D
v∆u dx,

and together with (2.18) and (2.19), we finally obtain

d

dr
Em(ur)|r=0 =

∫
D

(
B∆2u− P∆u

)
v dx+B

∫
∂D

(∆u− (1− σ)κ ∂νu) ∂νv dω. (2.20)

Remark 2.2.4 The identity (2.18) can be proved under weaker regularity assumptions on
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u and v. See appendix A for details.

The Euler-Lagrange equation and boundary conditions

Gathering (2.16) and (2.20), we get

δE(u; v) = δ (Ee(u; v) + Em(u; v))

=

∫
D

(
B∆2u− P∆u+

ε0

2
|∇ψu(x, u(x))|2

)
v dx

+B

∫
∂D

(∆u− (1− σ)κ ∂νu) ∂νv dω, (2.21)

where v was an arbitrary function in C∞(D) such that v|∂D = 0. Setting the first variation

equal to zero results in

0 =

∫
D

(
B∆2u− P∆u+

ε0

2
|∇ψu(x, u(x))|2

)
v dx+B

∫
∂D

(∆u− (1− σ)κ ∂νu) ∂νv dω

for all v ∈ C∞(D) with v = 0 on ∂D, and by the fundamental lemma of calculus of

variations, first in D and then on ∂D, it follows that

0 = −B∆2u+ P∆u− ε0

2
|∇ψu(x, u(x))|2 in D, (2.22){

u = 0 on ∂D,

B (∆u− (1− σ)κ ∂νu) = 0 on ∂D.
(2.23)

Let us point out that the first boundary condition in (2.23) is an a priori boundary

condition, whereas the second boundary condition arises as a natural boundary condition

for the energy functional E .

Remark 2.2.5 In the case where D is a polygonal domain, which is commonly used in

engineering, the hinged (or Steklov) boundary conditions (2.23) lead to the Navier boundary

conditions u = B∆u = 0 on ∂D with some singularity at corner points (due to “κ =∞”).

For more details, we refer the reader to [68], where the authors study the linear hinged

plate boundary value problem

∆2u = f in D, u = ∆u− (1− σ)κ ∂νu = 0 on ∂D,

for the special case of a rectangular plate and for the general case of a plate with corners

of arbitrary opening angle.

Remark 2.2.6 Let us briefly consider the case in which the top plate is clamped instead

of hinged on the boundary. This means that both the vertical position and the angle at the

boundary are fixed, that is,

u = ∂νu = 0 on ∂D. (2.24)
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In this case, we infer from (2.18) that∫
D

(
(∂x2∂x1u)2 − ∂2

x1u ∂
2
x2u
)
dx = 0,

and thus the mechanical energy (2.7) simply becomes

Em(u) =
B

2

∫
D

(∆u)2 dx+
P

2

∫
D
|∇u|2 dx.

The corresponding Euler-Lagrange equation together with the clamped boundary conditions

(2.24) read {
0 = −B∆2u+ P∆u− ε0

2 |∇ψu(x, u(x))|2 in D,

u = ∂νu = 0 on ∂D.

Note that the Poisson ratio σ plays no role for clamped boundary conditions.

2.3 Governing equations for (u,ψu)

Stationary case

Combining the equations for the electrostatic potential ψu and the displacement u, we

arrive at the following system of equations:

∆ψu = 0 in Ω(u),

ψu(x, z) = V
H + z

H + u(x)
, (x, z) ∈ ∂Ω(u),

0 = −B∆2u+ P∆u− ε0

2
|∇ψu(x, u(x))|2 in D,

u = B (∆u− (1− σ)κ∂νu) = 0 on ∂D.

(2.25)

(2.26)

(2.27)

(2.28)

Observe that (2.25)-(2.28) is a free boundary problem as the domain Ω(u) and its boundary

component Gu := {(x, u(x)) ; x ∈ D} have to be determined together with the solution

(u, ψu). At an equilibrium state of the MEMS device, the mechanical force is equal to the

electrostatic force. Regarding the right-hand side of (2.27) as forces on Gu, i.e.,

mechanical force = −B∆2u+ P∆u and electrostatic force = −ε0

2
|∇ψu(x, u(x))|2,

the equilibrium configurations of the device are given by the solutions to the system (2.25)-

(2.28), which in turn are the critical points of the total energy E .
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Dynamic case

Finally, assume that u also depends on time t, i.e., u = u(t, x). Applying Newton’s second

law, we obtain that the sum of all forces equals m
|D| ∂

2
t u (inertial force), where m denotes

the mass of the plate. With a damping force of the form −d∂tu, where d > 0 is the

damping constant, the evolution equation for the displacement u reads

m

|D| ∂
2
t u+ d∂tu+B∆2u− P∆u = −ε0

2
|∇ψu(t)(x, u(t, x))|2 in D, t > 0, (2.29)

supplemented with hinged boundary conditions

u = B (∆u− (1− σ)κ ∂νu) = 0 on ∂D, t > 0, (2.30)

and some initial conditions. The electrostatic potential ψu(t) = ψu(t)(x, z) satisfies

∆ψu(t) = 0 in Ω(u(t)), t > 0, (2.31)

along with the nonhomogeneous Dirichlet boundary condition

ψu(t)(x, z) = V
H + z

H + u(t, x)
, (x, z) ∈ ∂Ω(u(t)), t > 0. (2.32)

Rescaled equations for the free boundary problem (2.29)-(2.32)

Now, we introduce dimensionless variables in equations (2.31)-(2.32) for ψu and (2.29)-

(2.30) for u. We scale time based on the strength of damping, the variable x with a

characteristic length L of the device, both z and u with the size of the gap H between the

ground plate and the undeformed elastic plate, and the electrostatic potential ψu with the

applied voltage V ; so, we define

t̃ :=
t

δL4
, x̃ :=

x

L
, z̃ :=

z

H
, ũ :=

u

H
, ψ̃ũ :=

ψu

V
,

and the aspect ratio ε := H/L > 0 of the device. We introduce the sets

D̃ := {x̃ ∈ R2 ; Lx̃ ∈ D}, Ω̃(ũ(t̃)) := {(x̃, z̃) ∈ D̃ × R ; −1 < z̃ < ũ(t̃, x̃)},

and define the parameters

α2 :=
m

|D|δL4
≥ 0, β := B > 0, τ := PL2 ≥ 0, λ = λ(ε) :=

ε0V
2L

2ε3
> 0.

We then substitute these relations into (2.29)-(2.32) to derive dimensionless equations.

Dropping the tilde symbol, we get for the dimensionless displacement of the elastic

18



Chapter 2. A mathematical model for electrostatic MEMS with a hinged top plate

plate the evolution equation

α2∂2
t u+ ∂tu+ β∆2u− τ∆u

= −λ
{
ε2|∇′ψu(t)(x, u(t, x))|2 + (∂zψu(t)(x, u(t, x)))2

}
, x ∈ D, t > 0, (2.33)

where ∇′ := (∂x1 , ∂x2). In this thesis, we shall assume that α << 1, meaning that the

damping force dominates over the inertial force. Rewriting equations (2.30)-(2.32) in terms

of dimensionless variables and dropping again the tilde in all expressions, we end up with

the following system of equations

ε2∆′ψu(t) + ∂2
zψu(t) = 0, (x, z) ∈ Ω(u(t)), t > 0,

ψu(t)(x, z) =
1 + z

1 + u(t, x)
, (x, z) ∈ ∂Ω(u(t)), t > 0,

∂tu+ β∆2u− τ∆u

= −λ
{
ε2|∇′ψu(t)(x, u(t, x))|2 + (∂zψu(t)(x, u(t, x)))2

}
, x ∈ D, t > 0,

u = ∆u− (1− σ)κ∂νu = 0, x ∈ ∂D, t > 0,

u(0, x) = u0(x), x ∈ D,

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

where ∆′ := ∂2
x1 + ∂2

x2 . Here, σ ∈ (−1, 1) is the Poisson ratio as described in Section 2.2

and u0(x) is the initial position of the elastic plate. This is the system describing the

dynamics of an idealized MEMS device with hinged boundary conditions that

we will consider throughout this thesis. The rescaled total potential energy of the device

for a given displacement u is

E(u) := Em(u)− λEe(u)

with rescaled mechanical energy

Em(u) = β

∫
D

{
1

2
(∆u)2 + (1− σ)

(
(∂x2∂x1u)2 − ∂2

x1u ∂
2
x2u
)}

dx+
τ

2

∫
D
|∇u|2 dx

and rescaled electrostatic energy −λEe(u), where

Ee(u) =

∫
Ω(u)

{
ε2 |∇′ψu|2 + (∂zψu)2

}
d(x, z).

Let us emphasize that the system (2.34)-(2.38) features a strong coupling between the un-

knowns u and ψu. In fact, the source term in (2.36), governing the evolution of u, is

proportional to the square of the gradient trace of ψu on the elastic plate. The electrostatic

potential in turn solves an elliptic boundary value problem on a domain moving according

to the evolution of u. Thus, the source term in (2.36) depends in a nonlocal and nonlinear
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way on u.

Furthermore, let us point out that (2.34)-(2.38) is only well-defined as long as the top

plate does not touch down on the ground plate, that is, the displacement u stays above

−1. In fact, if u reaches the value −1 somewhere in D at some time t > 0, the region Ω(u)

gets disconnected. In addition, the vertical derivative ∂zψu appearing in (2.36) becomes

singular at such touchdown points as ψu = 1 along z = u while ψu = 0 along z = −1

(due to (2.35)). This singularity is tuned by the parameter λ which is proportional to the

square of the applied voltage V and thus plays an important role in the pull-in instability,

which in turn is related to the existence of stationary solutions and to global existence

of solutions to (2.34)-(2.38). That will be the topic of the next section. But first let us

remark on the vanishing aspect ratio model.

Remark 2.3.1 We now derive a simplified model from (2.34)-(2.38) by letting the aspect

ratio ε = H/L go to zero, meaning that the vertical dimension of the device is much

smaller than its horizontal dimension. Setting formally ε = 0, the system (2.34)-(2.35)

can be solved explicitly, yielding the potential

ψu(t)(x, z) =
1 + z

1 + u(t, x)
, (x, z) ∈ Ω(u(t)) ∪ ∂Ω(u(t)), t > 0.

In view of the evolution equation (2.36) with the hinged boundary conditions (2.37) and

the initial condition (2.38), we arrive at the vanishing aspect ratio model
∂tu+ β∆2u− τ∆u = − λ

(1 + u(t, x))2
, x ∈ D, t > 0,

u = ∆u− (1− σ)κ∂νu = 0, x ∈ ∂D, t > 0,

u(0, x) = u0(x), x ∈ D.

(2.39)

(2.40)

(2.41)

In the limit ε → 0, the coupled problem (2.34)-(2.38) is thus reduced to a single semilin-

ear parabolic equation for the displacement u with a nonlinear source term which is still

singular when the top plate touches down on the ground plate, but no longer nonlocal. Let

us point out that for Navier boundary conditions

u(t, x) = β∆u(t, x) = 0, x ∈ ∂D, t > 0,

there are several studies of the vanishing aspect ratio model, including a characterization

of the pull-in voltage. We refer to [19, 32, 33, 61] and the references therein. The inertial

force was also taken into account. It is worthwile to note that the above computation is

formal. To give a rigorous justification of the vanishing aspect ratio model, by showing that

the solution of the MEMS model (2.34)-(2.38) with ε > 0 converges towards the solution

of the vanishing aspect ratio model (2.39)-(2.41) as ε → 0 is a task for future research.

For D = (−1, 1) ⊂ R and clamped boundary conditions

u(t,±1) = β∂xu(t,±1) = 0, t > 0,
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this has been established in [54].

2.4 Brief overview

The free boundary problem for MEMS with clamped boundary conditions, which is system

(2.33)-(2.38) with u = ∂νu = 0 on ∂D, t > 0, instead of (2.37), has been studied in [45, 51]

and in [48, 50, 52] for the one-dimensional setting D = (−1, 1). A detailed overview can

be found in [53]. In contrast to this situation, our MEMS model with a hinged top plate

has not been discussed from the mathematical point of view so far and the challenging

task is to refine and extend some of the arguments in the abovementioned literature for

the clamped plate as well as to introduce some new methods.

The main contents of this thesis are divided into two major parts.

Part I: Dynamic case

The first part of this thesis is devoted to the dynamics of the plate displacement and the

electrostatic potential. In Chapters 3 to 5 we shall establish the following results for the

dynamic free boundary problem (2.34)-(2.38):

• Local-in-time well-posedness. For any λ, there exists a unique solution (u, ψu)

on a maximal interval of existence [0, Tmax) with regularity

u ∈ C([0, Tmax),W 4
2 (D)) ∩ C1([0, Tmax), L2(D)),

ψu(t) ∈W 2
2 (Ω(u(t))),

satisfying u > −1, provided the initial value u0 ∈W 4
2 (D) satisfies u0 > −1 in D and

the hinged boundary conditions. We refer to Theorem 3.1.1 in the next chapter for

a more precise statement under weaker regularity assumptions on u0.

• Global solutions. The solution (u, ψu) exists globally in time, i.e., Tmax = ∞,

provided λ and u0 are sufficiently small. In particular, neither touchdown of the top

plate on the ground plate nor a norm blow up of the displacement occurs.

• Finite time singularity. If Tmax <∞, there is touchdown of the top plate in the

sense that

lim inf
t↗Tmax

min
D

u(t) = −1.

It remains an open problem whether a finite time singularity occurs when λ is large enough,

as is expected on physical grounds.
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Part II: Stationary case

The second part of this thesis focusses on the stationary case of problem (2.34)-(2.38). In

Chapters 6 to 8 we shall show the following results:

• Existence. For sufficiently small λ, there is a stationary solution that is asymptot-

ically stable.

It remains an open problem whether there is more than one equilibrium configuration of

the device, as is physically expected.

• Positivity preserving property. The boundary value problem for a hinged plate

with stress {
∆2v − τ∆v = f in D,

v = ∆v − (1− σ)κ ∂νv = 0 on ∂D,

is strongly positivity preserving, meaning 0 6≡ f ≥ 0 implies v > 0.

This general result will be used to prove the following:

• Nonexistence. There is an upper threshold for λ above which no stationary solution

exists.

The last statement makes sense physically: If the electrostatic attractive force is increased

by increasing the applied voltage λ and if that force is greater than the mechanical restoring

force, then the equilibrium configuration is lost and the elastic plate might collapse on the

lower rigid plate.
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Chapter 3

Local and global well-posedness of the MEMS

model

Our aim in this chapter is to study the parabolic MEMS model introduced in Chapter 2,

i.e., the system

ε2∆′ψu(t) + ∂2
zψu(t) = 0, (x, z) ∈ Ω(u(t)), t > 0,

ψu(t)(x, z) =
1 + z

1 + u(t, x)
, (x, z) ∈ ∂Ω(u(t)), t > 0,

∂tu+ β∆2u− τ∆u

= −λ
{
ε2|∇′ψu(t)(x, u(t, x))|2 + (∂zψu(t)(x, u(t, x)))2

}
, x ∈ D, t > 0,

u = ∆u− (1− σ)κ∂νu = 0, x ∈ ∂D, t > 0,

u(0, x) = u0(x), x ∈ D,

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

with

Ω(u(t)) := {(x, z) ∈ D × R ; −1 < z < u(t, x)},

∇′ := (∂x1 , ∂x2), and ∆′ := ∂2
x1 + ∂2

x2 . Throughout the chapter, we assume that D ⊂ R2

is a bounded and convex domain with a C4-boundary ∂D. The function κ is the signed

curvature of the boundary ∂D, taken positive on strict convex boundary parts, and ν is

the exterior unit normal of ∂D. The parameters

β > 0, τ ≥ 0, λ > 0, ε > 0, σ ∈ (−1, 1)

and their physical meaning were discussed in Chapter 2. In order to deal with the hinged

boundary conditions (3.4), we introduce, for q ∈ [1,∞], the function spaces

Wα
q,B(D) :=


Wα
q (D), 0 ≤ α ≤ 1

q ,{
v ∈Wα

q (D) ; v = 0 on ∂D
}
, 1

q < α ≤ 2 + 1
q ,{

v ∈Wα
q (D) ; v = ∆v − (1− σ)κ∂νv = 0 on ∂D

}
, 2 + 1

q < α ≤ 4.
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Here, we show that (3.1)-(3.5) is locally well-posed in time for any voltage value and that

solutions exist globally for small voltage values.

3.1 Main result

The main result in this chapter is:

Theorem 3.1.1 (Well-posedness) Let 4ξ ∈
(

7
3 , 4
)
\{5

2}. Consider an initial value u0 ∈
W 4ξ

2,B(D) such that u0 > −1 in D. Then, the following holds:

(i) (Local existence) For any λ > 0, there is a unique solution (u, ψu) to (3.1)-(3.5)

on the maximal interval of existence [0, Tmax) in the sense that

u ∈ C([0, Tmax),W 4ξ
2,B(D)) ∩ C((0, Tmax),W 4

2,B(D)) ∩ C1((0, Tmax), L2(D)) (3.6)

satisfies (3.3)-(3.5) together with

u(t, x) > −1, (t, x) ∈ [0, Tmax)×D,

and

ψu(t) ∈W 2
2 (Ω(u(t))) (3.7)

solves (3.1)-(3.2) in Ω(u(t)) for each t ∈ [0, Tmax). In addition, if u0 ∈ W 4
2,B(D),

then

u ∈ C([0, Tmax),W 4
2,B(D)) ∩ C1([0, Tmax), L2(D)).

(ii) (Norm blow up or touchdown) If Tmax <∞, then

lim sup
t↗Tmax

‖u(t)‖
W 4ξ

2 (D)
=∞ or lim inf

t↗Tmax

(
min
x∈D

u(t, x)
)

= −1. (3.8)

(iii) (Global existence) Given ρ ∈ (0, 1/2), there are λ∗ := λ∗(ρ, ε) > 0 and m :=

m(ρ, ε) > 0 such that the solution (u, ψu) exists globally in time, i.e., Tmax = ∞,

provided that λ ∈ (0, λ∗), ‖u0‖
W 4ξ

2 (D)
≤ m, and u0 ≥ −1 + 2ρ in D. In this case,

u ∈ L∞(0,∞;W 4ξ
2,B(D))

with

inf
(t,x)∈[0,∞)×D

u(t, x) > −1.

The first part of this theorem ensures the existence of a unique solution (u, ψu), defined

on a maximal time interval [0, Tmax), with u > −1 and the regularity specified in (3.6)-

(3.7) for any λ > 0. Part (iii) shows that this solution exists globally in time provided

that both λ and the initial value u0 are sufficiently small. The second part of the theorem
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states that the finiteness of Tmax implies touchdown of the top plate on the ground plate

or blow up of the displacement in W 4ξ
2 (D). Physically, only the former seems possible. In

Chapter 5, however, we will mathematically exclude the norm blow up in finite time.

The proof of Theorem 3.1.1 is based on the following idea: In a first step, the free bound-

ary problem (3.1)-(3.5) is transformed into a problem on a fixed reference domain. For a

given displacement u(t), one can uniquely solve the transformed elliptic subproblem for

the potential ψu(t). Then, rewriting the transformed evolution problem for u as an ab-

stract semilinear Cauchy problem, one obtains a solution from the variation of constants

formula and the fixed point theorem for contraction mappings.

3.2 The elliptic problem

In this section, we focus our attention on the elliptic problem (3.1)-(3.2) for ψu(t) and

investigate its solvability for a given function u(t). We first transform the problem (3.1)-

(3.5) on the a priori unknown domain Ω(u(t)) into a corresponding problem on the fixed

domain Ω := D × (0, 1). In order to do so, we follow the lines of [51, Section 2]:

Let q ∈ (2,∞] be given and let v ∈ W 2
q,B(D) be an arbitrary function that takes val-

ues in (−1,∞). We introduce a transformation of coordinates Tv : Ω(v)→ Ω by setting

Tv(x, z) :=

(
x,

1 + z

1 + v(x)

)
, (x, z) ∈ Ω(v). (3.9)

It is easily seen that Tv is a diffeomorphism Ω(v)→ Ω with the inverse

T−1
v (x, η) = (x, (1 + v(x))η − 1) , (x, η) ∈ Ω.

x1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

z
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

z = 0
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Figure 3.1: Transformation onto a fixed domain

Note that Ω(v) is a Lipschitz domain and that Ω is convex. Under this transformation
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Chapter 3. Local and global well-posedness of the MEMS model

of coordinates, the rescaled Laplace operator from (3.1) becomes

Lvw := ε2∆′w − 2ε2η
∇v(x)

1 + v(x)
· ∇′∂ηw +

1 + ε2η2|∇v(x)|2
(1 + v(x))2

∂2
ηw

+ ε2η

(
2
|∇v(x)|2

(1 + v(x))2
− ∆v(x)

1 + v(x)

)
∂ηw. (3.10)

The subproblem (3.1)-(3.2) is then equivalent to

{ (Lu(t)φu(t)

)
(x, η) = 0, (x, η) ∈ Ω, t > 0,

φu(t)(x, η) = η, (x, η) ∈ ∂Ω, t > 0,

(3.11)

(3.12)

for φu(t) = ψu(t) ◦ T−1
u(t). Furthermore, (3.3)-(3.5) become

∂tu+ β∆2u− τ∆u = −λ
{

1 + ε2|∇u(t, x)|2
(1 + u(t, x))2

(
∂ηφu(t)(x, 1)

)2}
, x ∈ D, t > 0,

u = ∆u− (1− σ)κ ∂νu = 0, x ∈ ∂D, t > 0,

u(0, x) = u0(x), x ∈ D,

(3.13)

(3.14)

(3.15)

where we have used

∇′φu(t)(x, 1) = (0, 0), x ∈ D, t > 0,

due to φu(t)(x, 1) = 1 for x ∈ D, t > 0, by (3.12). Next, for ρ ∈ (0, 1), we define the set

Sq(ρ) :=

{
v ∈W 2

q,B(D) ; v > −1 + ρ in D and ‖v‖W 2
q (D) <

1

ρ

}
, (3.16)

which is open in W 2
q,B(D). The closure of Sq(ρ) denoted by Sq(ρ) is given by

Sq(ρ) =

{
v ∈W 2

q,B(D) ; v ≥ −1 + ρ in D and ‖v‖W 2
q (D) ≤

1

ρ

}
.

The next step is to solve the subproblem (3.11)-(3.12) for u(t) ∈ Sq(ρ) given and to discuss

some useful properties of the right-hand side of (3.13).

Theorem 3.2.1 Let q ∈ [3,∞] and ρ ∈ (0, 1). Then, for each v ∈ Sq(ρ) there is a unique

solution φv ∈W 2
2 (Ω) to{

(Lvφv) (x, η) = 0, (x, η) ∈ Ω,

φv(x, η) = η, (x, η) ∈ ∂Ω,
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Chapter 3. Local and global well-posedness of the MEMS model

and there is a constant C > 0 only depending on ρ, ε, and D such that

‖φv1 − φv2‖W 2
2 (Ω) ≤ C‖v1 − v2‖W 2

q (D), v1, v2 ∈ Sq(ρ).

Moreover, the mapping

gε : Sq(ρ)→ L2(D), v 7→ 1 + ε2|∇v|2
(1 + v)2

(∂ηφv(·, 1))2

is analytic, bounded, and globally Lipschitz continuous.

Remark 3.2.2 We observe that the functions v ∈ Sq(ρ) in Theorem 3.2.1 satisfy the

boundary condition v = 0 on ∂D. In [51], this theorem is proved for v ∈ Sq(ρ) with

v = ∂νv = 0 on ∂D, but the arguments are exactly the same in our case. For the sake

of completeness we present the proof of Theorem 3.2.1, with some minor modifications, in

Appendix B.

Theorem 3.2.1 implies in particular that, if u(t) ∈ S3(ρ), then ψu(t) belongs toW 2
2 (Ω(u(t)))

and solves (3.1)-(3.2).

3.3 The semilinear abstract evolution equation

In L2(D), (3.13)-(3.15) is formulated as the following Cauchy problem:{
∂tu+Au = −λgε(u), t > 0,

u(0) = u0.
(3.17)

Here, the operator A ∈ L(W 4
2,B(D), L2(D)) is given by

Av := (β∆2 − τ∆)v, v ∈ dom(A) = W 4
2,B(D).

Observe that the hinged boundary conditions (3.14) are incorporated in the domain of A.

Since C∞c (D), the space of C∞(D)-functions having compact support in D, is dense in

L2(D) and since C∞c (D) ⊂W 4
2,B(D), we have that W 4

2,B(D) is dense in L2(D). Hence,

W 4
2,B(D)

d
↪→ L2(D).

Note that once (3.17) is solved, we obtain a solution ψu(t) to (3.1)-(3.2) by Theorem 3.2.1.

Below we formulate some important properties of A.
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3.3.1 Some properties of the fourth-order operator

Let us first look at the following property of A.

Lemma 3.3.1 It holds that

A ∈ H(W 4
2,B(D), L2(D)),

meaning that −A is the generator of a strongly continuous analytic semigroup {e−tA ; t ≥
0} on L2(D).

Proof. We want to apply [5, Remark 4.2 (b)]. Let D1 := −i∂x1 and D2 := −i∂x2 . We

can rewrite the operator A as

Av = β
2∑

k,l=1

D2
kD

2
l v + τ

2∑
k=1

D2
kv.

The principal symbol of A is given by

aπ(ξ) := β|ξ|4, ξ ∈ R2. (3.18)

Let S1 be the unit sphere in R2. Since β > 0, the spectrum σ(aπ(ξ)) satisfies

σ(aπ(ξ)) ⊂ {z ∈ C ; Rez > 0} for all ξ ∈ S1.

This means that A is normally elliptic (see [5, p.18] for a definition). Furthermore, it

follows from (3.14) that the system B of boundary operators is B := (B1,B2) with

B1v = tr v, B2v = −
2∑

k=1

trD2
kv − (1− σ)i κ

2∑
k=1

νk trDkv, (3.19)

for v ∈ W 4
2,B(D), where tr denotes the trace operator on ∂D. Since ∂D ∈ C4, we have

ν ∈ C3(∂D) and κ ∈ C2(∂D), and hence

(1− σ)i κ νk ∈ C2(∂D,C), k = 1, 2.

Next, the principal boundary symbol of B is given by

bπ(ξ) :=
(
1,−|ξ|2

)
, ξ ∈ R2. (3.20)

Recall from [5, p.18] that (A,B) is said to be normally elliptic if A is normally elliptic and

B satisfies the normal complementing condition with respect to A. The latter condition

is also called the Lopatinskii-Shapiro condition and requires that, for any x ∈ ∂D, ξ ∈ R2

with ξ · ν(x) = 0 and any µ ∈ C with Reµ ≥ 0 and |µ| + |ξ| 6= 0, zero is the only
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exponentially decaying solution of the initial value problem on [0,∞):{
[µ+ aπ(ξ + ν(x)i ∂t)] v = 0,

bπ(ξ + ν(x)i ∂t) v(0) = 0.
(3.21)

From [5, Remark 4.2(b)] we obtain A ∈ H(W 4
2,B(D), L2(D)) provided that (A,B) is nor-

mally elliptic. So, it remains to check the normal complementing condition. Notice that

(3.21) can be written as  [µ+ β
(
|ξ|2 − ∂2

t

)2
] v(t) = 0, t > 0,

v(0) = ∂2
t v(0) = 0.

(3.22)

(3.23)

If µ = 0, then the general solution to (3.22) is

v(t) = (C1 + C2t)e
|ξ|t + (C3 + C4t)e

−|ξ|t, t ≥ 0,

with Ck ∈ R, 1 ≤ k ≤ 4. In this case ξ 6= 0. Since the solution v must decay exponentially,

we must have C1 = C2 = 0. Imposing that v also satisfies the initial conditions (3.23), we

get C3 = C4 = 0 and hence v ≡ 0.

When µ 6= 0, the characteristic equation of (3.22) is given by

r4 − 2|ξ|2r2 + |ξ|4 +
µ

β
= 0.

Its roots are

rk = ±

√
|ξ|2 ± i

√
µ√
β
, 1 ≤ k ≤ 4.

We recall that the square root of a complex number has a nonnegative real part. Now

we write
√
µ = aµ + ibµ with aµ, bµ ∈ R, aµ ≥ 0 and note that Reµ ≥ 0 implies aµ > 0.

Therefore,

r1,3 = ±

√√√√(|ξ|2 − bµ√
β

)
+ i

aµ√
β
, r2,4 = ±

√√√√(|ξ|2 +
bµ√
β

)
− i

aµ√
β
,

with r1 and r2 having positive real part. Moreover, since each root has multiplicity one,

the general solution of (3.22) is given by

v(t) =

4∑
k=1

Cke
rkt, t ≥ 0,

with Ck ∈ R, 1 ≤ k ≤ 4. Since v must decay exponentially, C1 = C2 = 0. Invoking (3.23),
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we find

0 = v(0) = C3 + C4, 0 = ∂2
t v(0) = C3r

2
3 + C4r

2
4.

The initial-value problem (3.22)-(3.23) has for (ξ, µ) ∈ R2 × {z ∈ C ; Re z ≥ 0} with

|µ|+ |ξ| 6= 0 only the trivial solution v ≡ 0 if

r2
4 − r2

3 = (r4 + r3)(r4 − r3) 6= 0. (3.24)

Since r4 6= ±r3, condition (3.24) is fulfilled. Therefore, (A,B) is normally elliptic.

In the next lemma we show that the spectrum of −A is contained in the left half-plane

{z ∈ C ; Re z < 0}.

Lemma 3.3.2 We have

σ(−A) ⊂ {z ∈ C ; Re z < 0}.

Proof. Since W 4
2,B(D) embeds compactly in L2(D) and A ∈ H(W 4

2,B(D), L2(D)), the

operator −A has compact resolvent. For the compact embedding we refer to [1, Theorem

6.3]. In view of [38, Theorem 6.29], the spectrum of −A consists only of isolated eigen-

values of finite multiplicity. If µ ∈ C is such an eigenvalue of −A with a corresponding

eigenfunction ϕ ∈W 4
2,B(D,C), then multiplying the equation

−β∆2ϕ+ τ∆ϕ = µϕ

by ϕ and integrating the product in D gives

µ

∫
D
|ϕ|2 dx =

∫
D

(
−β∆2ϕ+ τ∆ϕ

)
ϕdx. (3.25)

Here, ϕ(x) = ϕ(x) is the complex conjugate of ϕ(x). We write ϕ : D → C in terms of its

real and imaginary parts, say

ϕ(x) = a(x) + ib(x), a(x), b(x) ∈ R.

Note that

|∇ϕ|2 = |∇a|2 + |∇b|2, |∂νϕ|2 = (∂νa)2 + (∂νb)
2, |∆ϕ|2 = (∆a)2 + (∆b)2. (3.26)

Using integration by parts twice and the boundary conditions for ϕ, we get

−β
∫
D

(
∆2ϕ

)
ϕdx = β

∫
D
∇∆ϕ · ∇ϕdx

= β

∫
∂D

∆ϕ∂νϕdω − β
∫
D

∆ϕ ∆ϕdx

= β(1− σ)

∫
∂D

κ |∂νϕ|2 dω − β
∫
D
|∆ϕ|2 dx.
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Integrating by parts and using ϕ|∂D = 0, yields

τ

∫
D

(∆ϕ)ϕdx = −τ
∫
D
|∇ϕ|2 dx

and thus

µ

∫
D
|ϕ|2 dx = β(1− σ)

∫
∂D

κ |∂νϕ|2 dω − β
∫
D
|∆ϕ|2 dx− τ

∫
D
|∇ϕ|2 dx.

Moreover, it follows from Lemma A.0.1 that

β(1− σ)

∫
∂D

κ (∂νa)2 dω

= −2β(1− σ)

∫
D

(
(∂x2∂x1a)2 − ∂2

x1a ∂
2
x2a
)
dx

= −β(1− σ)

∫
D

(
(∂2
x1a)2 + (∂2

x2a)2 + 2(∂x2∂x1a)2 − (∆a)2
)
dx (3.27)

and analogously

β(1−σ)

∫
∂D

κ (∂νb)
2 dω = −β(1−σ)

∫
D

(
(∂2
x1b)

2+(∂2
x2b)

2+2(∂x2∂x1b)
2−(∆b)2

)
dx. (3.28)

Thus, by (3.26),

µ

∫
D
|ϕ|2 dx = −β(1− σ)

∫
D

(
|∂2
x1ϕ|2 + |∂2

x2ϕ|2 + 2|∂x2∂x1ϕ|2
)
dx

− βσ
∫
D
|∆ϕ|2 dx− τ

∫
D
|∇ϕ|2 dx.

By Young’s inequality, we have

1

2
(∆a)2 ≤ (∂2

x1a)2 + (∂2
x2a)2 + 2(∂x2∂x1a)2 in D (3.29)

and
1

2
(∆b)2 ≤ (∂2

x1b)
2 + (∂2

x2b)
2 + 2(∂x2∂x1b)

2 in D, (3.30)

so that

µ

∫
D
|ϕ|2 dx ≤ −1

2
β(1− σ)

∫
D
|∆ϕ|2 dx− βσ

∫
D
|∆ϕ|2 dx− τ

∫
D
|∇ϕ|2 dx

= −1

2
β(1 + σ)

∫
D
|∆ϕ|2 dx− τ

∫
D
|∇ϕ|2 dx. (3.31)
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Since β(1 + σ) > 0 and τ ≥ 0, we deduce

µ

∫
D
|ϕ|2 dx ≤ 0,

and hence µ ≤ 0. It remains to show that µ < 0. If µ = 0, then, due to (3.31),

−1

2
β(1 + σ)

∫
D
|∆ϕ|2 dx− τ

∫
D
|∇ϕ|2 dx = 0,

and since τ ≥ 0, it follows that

− 1

2
β(1 + σ)

∫
D
|∆ϕ|2 dx = 0. (3.32)

So, ∆ϕ = 0 in D. Since ϕ = 0 on ∂D, we conclude that ϕ ≡ 0, which is a contradiction.

Thus, µ < 0.

Thanks to this lemma, it follows from [72, Theorem 4.4.3] that the semigroup {e−tA ; t ≥
0} has exponential decay, that is, there are M ≥ 1 and $ > 0 such that

‖e−tA‖L(L2(D)) ≤Me−$t, t ≥ 0.

Moreover, it satisfies the following regularizing properties.

Lemma 3.3.3 There exists $ > 0 such that the following holds true: If 0 ≤ γ ≤ α ≤ 1

with 4α, 4γ /∈
{

1
2 ,

5
2

}
, then

‖e−tA‖L(W 4γ
2,B(D),W 4α

2,B(D))
≤Me−$ttγ−α, t > 0,

for some number M ≥ 1 depending on α and γ.

In the following, we denote by [·, ·]θ the complex and by (·, ·)θ,q, 1 ≤ q ≤ ∞, the real

interpolation functor for 0 < θ < 1. We refer to [6, Section I.2] for a summary of interpo-

lation theory and to [83] for more details and proofs.

Proof. It is easily seen that the system of boundary operators B := (B1, B2) given

in (3.19) forms a normal system in the sense of [83, Definition 4.3.3 (1)]. Let θ ∈ (0, 1).

Then, by [83, Theorem 4.3.3 (a)], we have

(
L2(D),W 4

2,B(D)
)
θ

.
= W 4θ

2,B(D) if 4θ /∈
{

1

2
,
5

2

}
, (3.33)

where

(·, ·)θ :=

{
(·, ·)θ,2 if 4θ /∈ {1, 2, 3} ,
[·, ·]θ if 4θ ∈ {1, 2, 3} .
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Let E0 := L2(D), E1 := W 4
2,B(D), and put

Eθ :=
(
L2(D),W 4

2,B (D)
)
θ

.
= W 4θ

2,B (D), 4θ /∈
{

1

2
,
5

2

}
.

In view of Lemmas 3.3.1 and 3.3.2, we can apply [6, Theorem V.2.1.3] to conclude that

there are $ > 0 and M ≥ 1 such that

‖e−tA‖L(Eγ ,Eα) ≤Me−$ttγ−α, t > 0,

where 0 ≤ γ ≤ α ≤ 1 with 4α, 4γ /∈
{

1
2 ,

5
2

}
. The constant M depends on α and γ.

Remark 3.3.4 Let p ∈ (1,∞) and θ ∈ (0, 1). Repeating the same arguments as in the

proof of Lemma 3.3.3, we obtain that
(
Lp(D),W 4

p,B(D)
)
θ,p

.
= W 4θ

p,B(D) if 4θ ∈ (0, 4)\{1
p , 1, 2, 2 + 1

p , 3},[
Lp(D),W 4

p,B(D)
]
θ

.
= W 4θ

p,B(D) if 4θ ∈ {1, 2, 3} .

We close this subsection with a result concerning maximal L2-regularity.

Theorem 3.3.5 Let 4ξ ∈ (2, 4)\{5
2} and 0 < T <∞. Then, for every

(f, u0) ∈ L2(0, T ;L2(D))×W 4ξ
2,B(D),

the Cauchy problem {
∂tu+Au = f(t), 0 < t ≤ T,
u(0) = u0

has a unique solution u ∈ L2(0, T ;W 4
2,B(D)) ∩W 1

2 (0, T ;L2(D)) and we have the estimate

‖u‖L2(0,T ;L2(D))+‖∂tu‖L2(0,T ;L2(D))+‖Au‖L2(0,T ;L2(D)) ≤ C
(
‖f‖L2(0,T ;L2(D))+‖u0‖

W 4ξ
2,B(D)

)
with C > 0 independent of f and u0. This means that A has maximal L2-regularity on

[0, T ].

Proof. We want to apply [6, Theorem III.4.10.8]. Let us show that its assumptions hold.

Since A ∈ H(W 4
2,B(D), L2(D)) with

s(−A) := sup{Reµ ; µ ∈ σ(−A)} < 0,

we infer from [6, Theorem I.1.4.3] that A satisfies condition [6, III.(4.10.1)]. We next verify

that A is self-adjoint and positive definite, that is, A = A∗ ≥ m for some m > 0. We know
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that A is densely defined on dom(A) = W 4
2,B(D). Moreover, by integration by parts, we

have, for v1, v2 ∈W 4
2,B(D,C),

〈Av1, v2〉L2(D) =

∫
D

(
β∆2v1 − τ∆v1

)
v2 dx

= −β
∫
D
∇∆v1 · ∇v2 dx+ τ

∫
D
∇v1 · ∇v2 dx

= β

∫
D

∆v1 ∆v2 dx− β
∫
∂D

∆v1 ∂νv2 dω − τ
∫
D
v1 ∆v2 dx,

where we used v1|∂D = 0 and v2|∂D = 0. Again, using integration by parts and v1|∂D = 0,

the first integral in the right-hand side can be rewritten in the form

β

∫
D

∆v1 ∆v2 dx = β

∫
∂D

∆v2 ∂νv1 dω + β

∫
D
v1 ∆2v2 dx,

and hence

〈Av1, v2〉L2(D) = β

∫
∂D

(∆v2 ∂νv1 −∆v1 ∂νv2) dω +

∫
D
v1

(
β∆2v2 − τ∆v2

)
dx.

Taking into account the second boundary conditions for v1 and v2, we obtain that

〈Av1, v2〉L2(D) =

∫
D
v1

(
β∆2v2 − τ∆v2

)
dx = 〈v1, Av2〉L2(D) .

So, A is a symmetric operator in L2(D). Lemma 3.3.2 shows that im(A) = L2(D).

Thus A is self-adjoint in L2(D) and hence σ(A) ⊂ R. By Lemma 3.3.2, we even have

σ(A) ⊂ (0,∞).

By the same reason as above, we have, for v1 ∈W 4
2,B(D,C),

〈Av1, v1〉L2(D) = β

∫
D
|∆v1|2 dx− β

∫
∂D

∆v1 ∂νv1 dω + τ

∫
D
|∇v1|2 dx.

Using the second boundary condition for v1, we get

〈Av1, v1〉L2(D) = β

∫
D
|∆v1|2 dx− β(1− σ)

∫
∂D

κ |∂νv1|2 dω + τ

∫
D
|∇v1|2 dx.

Then, we can argue in a similar way as in the proof of Lemma 3.3.2. Writing v1 in terms

of its real and imaginary parts, say

v1(x) = a(x) + ib(x), a(x), b(x) ∈ R,

it follows from (3.26)-(3.28) that

〈Av1, v1〉L2(D)
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= β

∫
D
|∆v1|2 dx+ β(1− σ)

∫
∂D

(
|∂2
x1v1|2 + |∂2

x2v1|2 + 2|∂x2∂x1v1|2 − |∆v1|2
)
dx

+ τ

∫
D
|∇v1|2 dx

= β(1− σ)

∫
∂D

(
|∂2
x1v1|2 + |∂2

x2v1|2 + 2|∂x2∂x1v1|2
)
dx+ βσ

∫
D
|∆v1|2 dx

+ τ

∫
D
|∇v1|2 dx.

Then, due to (3.29)-(3.30),

〈Av1, v1〉L2(D) ≥
β(1− σ)

2

∫
D
|∆v1|2 dx+ βσ

∫
D
|∆v1|2 dx+ τ

∫
D
|∇v1|2 dx

≥ β(1 + σ)

2

∫
D
|∆v1|2 dx.

This, together with [28, Theorem 3.1.2.1] (since D is convex), yields that

〈Av1, v1〉L2(D) ≥ c ‖v1‖2W 2
2 (D) ≥ c ‖v1‖2L2(D), v1 ∈W 4

2,B(D,C),

where c > 0 depends only on β, σ, and D. Thus, A is a positive definite self-adjoint

operator. Therefore, by [6, Examples III.4.7.3 (a)] it follows that A ∈ BIP(1, 0). We

refer to [6, Section III.4.7] for a definition of the bounded imaginary powers (BIP) of an

operator. Furthermore, according to (3.33) and [6, Section 2.5],

W 4ξ
2,B(D) ↪→

(
L2(D),W 4

2,B(D)
)

1
2
,2
.

Now the theorem follows from [6, Theorem III.4.10.8].

We can now proceed to the proof of Theorem 3.1.1.

3.4 Proof of Theorem 3.1.1

Our proof more or less follows the lines of [51]. Fix 4ξ ∈
(

7
3 , 4
)
\{5

2} and consider an initial

value u0 ∈W 4ξ
2,B(D) such that u0 > −1 in D. By the continuous embedding of W 4ξ

2 (D) in

W 2
3 (D) and in C(D), there are ρ ∈ (0, 1

2) and a constant c1 > 1 such that

‖v‖W 2
3 (D) ≤ c1‖v‖W 4ξ

2 (D)
, v ∈W 4ξ

2 (D),

and

u0 ∈ S3(2ρ) with ‖u0‖
W 4ξ

2 (D)
≤ 1

2ρ
. (3.34)
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Furthermore, by Lemma 3.3.3, we have

‖e−tA‖L(W 4ξ
2,B(D))

+ tξ‖e−tA‖L(L2(D),W 4ξ
2,B(D))

≤Me−$t, t ≥ 0. (3.35)

Let ρ0 := ρ
Mc1
∈ (0, ρ). Recall from Theorem 3.2.1 that, for v1, v2 ∈ S3(ρ0),

‖gε(v1)− gε(v2)‖L2(D) ≤ CL‖v1 − v2‖W 2
3 (D), (3.36)

and that

‖gε(v)‖L2(D) ≤ CB for all v ∈ S3(ρ0) (3.37)

with constants CL > 0 and CB > 0, depending only on ρ, ε, and D.

Part (i): We want to apply the fixed point theorem for contraction mappings. For

0 < T <∞, we introduce

VT := C([0, T ], S3(ρ0))

and observe that this set is a nonempty complete metric space. For v ∈ VT , we define a

function on [0,T]

Λ(v)(t) := e−tAu0 − λ
∫ t

0
e−(t−s)A gε(v(s)) ds. (3.38)

We want to show that, for any λ > 0, Λ is a contraction mapping from VT into itself,

provided that T is sufficiently small, and that the fixed point of Λ is the desired solution

of (3.17).

Let us verify that Λ(v) ∈ VT for every v ∈ VT . Let v ∈ VT and 4θ ∈
(

7
3 , 4ξ

)
\{5

2}.
Then, according to [6, Theorem II.5.3.1], there is a constant c2 > 0, independent of T ,

such that, for 0 ≤ s ≤ t ≤ T ,

‖Λ(v)(t)−Λ(v)(s)‖W 4θ
2,B(D) ≤ c2(t− s)ξ−θ

(
‖u0‖

W 4ξ
2,B(D)

+ ‖λgε(v)‖L∞((0,t),L2(D))

)
. (3.39)

Fix η ∈ (0, ξ − θ). Observing the continuous embedding W 4θ
2 (D) ↪→ W 2

3 (D) with embed-

ding constant, say, c3 > 0, and using (3.39), (3.34), and (3.37), we obtain

‖Λ(v)(t)− Λ(v)(s)‖W 2
3 (D) ≤ c2 c3 T

ξ−θ−η
(

1

2ρ
+ λCB

)
(t− s)η.

Hence, if T > 0 is sufficiently small, then

‖Λ(v)(t)− Λ(v)(s)‖W 2
3 (D) ≤ (t− s)η, 0 ≤ s ≤ t ≤ T. (3.40)

Similar arguments yield that

‖Λ(v)(t)‖W 2
3 (D) ≤ c3‖Λ(v)(t)‖W 4θ

2,B(D) ≤ c3

(
‖Λ(v)(t)− Λ(v)(0)‖W 4θ

2,B(D) + ‖u0‖W 4θ
2,B(D)

)
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≤ c2 c3 T
ξ−θ
(
‖u0‖

W 4ξ
2,B(D)

+ ‖λgε(v)‖L∞((0,t),L2(D))

)
+ c3‖u0‖W 4θ

2,B(D)

≤ c2 c3 T
ξ−θ
(

1

2ρ
+ λCB

)
+
c1

2ρ
, 0 ≤ t ≤ T.

Moreover, since u0 > −1+2ρ in D and since W 4θ
2 (D) is continuously embedded in L∞(D)

with embedding constant denoted by c4 > 0, it follows from (3.39) that, for 0 ≤ t ≤ T ,

Λ(v)(t) = u0 − (Λ(v)(0)− Λ(v)(t)) ≥ u0 − ‖Λ(v)(0)− Λ(v)(t)‖L∞(D)

≥ u0 − c4‖Λ(v)(0)− Λ(v)(t)‖W 4θ
2,B(D)

≥ −1 + 2ρ− c2 c4 T
ξ−θ
(

1

2ρ
+ λCB

)
in D. Hence, Λ maps VT into itself, provided that T > 0 is sufficiently small.

Let us show that Λ is a contraction mapping of C([0, T ],W 2
3 (D)). Let vi ∈ VT , i = 1, 2.

Applying [6, Theorem II.5.2.1] (or using (3.35)) together with W 4ξ
2 (D) ↪→W 2

3 (D), we see

that there exists a constant c5 > 0, independent of T , such that, for 0 ≤ t ≤ T ,

‖Λ(v1)(t)− Λ(v2)(t)‖W 2
3 (D) ≤ c1‖Λ(v1)(t)− Λ(v2)(t)‖

W 4ξ
2,B(D)

≤ c1 c5 t
1−ξ λ ‖gε(v1)− gε(v2)‖L∞((0,t),L2(D)) .

This together with (3.36) then yields that

‖Λ(v1)− Λ(v2)‖C([0,T ],W 2
3 (D)) ≤ c1 c5 T

1−ξλCL‖v1 − v2‖C([0,T ],W 2
3 (D)),

which shows that Λ is a contraction in C([0, T ],W 2
3 (D)), provided that T > 0 is sufficiently

small.

Let T := T (ρ, λ, ε) > 0 be small enough to make the mapping Λ : VT → VT a con-

traction and (3.40) to be satisfied. Then, there exists a unique fixed point u ∈ VT of Λ.

This means that u is a mild solution of (3.17) on [0, T ]. Moreover, by (3.36) and (3.40),

we know that gε(u) belongs to Cη([0, T ], L2(D)). Hence, the linear theory in [5, Theorem

10.1] implies that

u ∈ C1((0, T ], L2(D)) ∩ C((0, T ],W 4
2,B(D)) ∩ C([0, T ],W 4ξ

2,B(D))

is a solution to (3.17), which then clearly can be extended to some maximal interval of

existence [0, Tmax) with Tmax ∈ (0,∞].

We notice that, if we assume that u0 ∈ W 4
2,B(D), then it follows from [5, Theo-

rem 10.1] that u belongs to C([0, Tmax),W 4
2,B(D)) and thus by (3.17) and the property
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gε(u) ∈ C([0, Tmax), L2(D)) that u ∈ C1([0, Tmax), L2(D)).

Finally, we observe that ψu(t) = φu(t) ◦ Tu(t) belongs to W 2
2 (Ω(u(t))) and solves (3.1)-

(3.2) for each t ∈ [0, Tmax).

This proves part (i) of Theorem 3.1.1.

Part (ii): Assume (3.8) is false. Then, there is a ρ ∈ (0, 1) and a sequence tj converging

to Tmax <∞ from below such that

‖u(tj)‖W 4ξ
2 (D)

≤ 1

ρ
and u(tj) ≥ −1 + ρ in D

for all j. One easily verifies that there exists a time T > 0, independent of j, such that the

solution on [0, tj ] can be extended to [0, tj + T ]. By choosing tj such that tj > Tmax − T ,

it follows that the solution can be extended beyond Tmax, which contradicts the definition

of Tmax.

Part (iii): We use a similar argument as in the proof of part (i). We choose λ∗ :=

λ∗(ρ, ε) > 0 such that

λ∗ c1M $ξ−1Γ(1− ξ) max{CB, CL} < 1 <
1

2ρ0

and

λ∗ c6M $ξ−1Γ(1− ξ)CB ≤
ρ0

2
,

where Γ(·) is the gamma function and c6 > 0 denotes the embedding constant for the

continuous embedding of W 4ξ
2 (D) in L∞(D). Take m := m(ρ, ε) > 0 such that

mc6(M + 1) ≤ ρ0

2
and mc1M ≤

1

2ρ0
.

We show that, if ‖u0‖
W 4ξ

2,B(D)
≤ m and if λ ≤ λ∗, then Λ maps VT into itself and is a con-

traction with respect to the C([0, T ],W 2
3 (D))-norm for any T > 0. Let T be any positive

time.

Let v ∈ VT . First, let us observe that thanks to [6, Theorem II.5.3.1], we have Λ(v) ∈
C([0, T ],W 4ξ

2,B(D)). Furthermore, using the continuous embedding W 4ξ
2 (D) ↪→ W 2

3 (D),

(3.35), and (3.37), we obtain

‖Λ(v)(t)‖W 2
3 (D) ≤ c1‖Λ(v)(t)‖

W 4ξ
2,B(D)

≤ c1‖e−tA‖L(W 4ξ
2,B(D))

‖u0‖
W 4ξ

2,B(D)
+ c1

∫ t

0
‖e−(t−s)A‖L(L2(D),W 4ξ

2,B(D))
ds‖λgε(v)‖L∞((0,t),L2(D))
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≤ c1M‖u0‖
W 4ξ

2,B(D)
+ c1M

∫ t

0
e−$(t−s)(t− s)−ξ ds ‖λgε(v)‖L∞((0,t),L2(D))

≤ c1M‖u0‖
W 4ξ

2,B(D)
+ c1M$ξ−1Γ(1− ξ)λCB 0 ≤ t ≤ T.

By similar arguments, we observe that

‖Λ(v)(t)− u0‖
W 4ξ

2,B(D)
≤ (M + 1)‖u0‖

W 4ξ
2,B(D)

+M$ξ−1Γ(1− ξ)λCB,

for 0 ≤ t ≤ T . It then follows from the continuous embedding of W 4ξ
2 (D) in L∞(D) and

u0 ≥ −1 + 2ρ in D that, for 0 ≤ t ≤ T ,

Λ(v)(t) = u0 −
(
u0 − Λ(v)(t)

)
≥ u0 − c6‖Λ(v)(t)− u0‖

W 4ξ
2,B(D)

≥ −1 + 2ρ− c6(M + 1)‖u0‖
W 4ξ

2,B(D)
− c6M$ξ−1Γ(1− ξ)λCB

in D. Thus, if ‖u0‖
W 4ξ

2,B(D)
≤ m and λ ≤ λ∗, then Λ maps the set VT into itself. Next, let

vi ∈ VT , i = 1, 2. It follows from (3.35) and (3.36) that

‖Λ(v1)(t)− Λ(v2)(t)‖W 2
3 (D) ≤ c1‖Λ(v1)(t)− Λ(v2)(t)‖

W 4ξ
2,B(D)

≤ c1

∫ t

0

∥∥∥e−(t−s)A
∥∥∥
L(L2(D),W 4ξ

2,B(D))
ds ‖λ (gε(v1)− gε(v2))‖L∞((0,t),L2(D))

≤ c1M

∫ t

0
e−$(t−s)(t− s)−ξ ds ‖λ (gε(v1)− gε(v2))‖L∞((0,t),L2(D))

≤ c1M$ξ−1Γ(1− ξ)λCL‖v1 − v2‖C([0,T ],W 2
3 (D)), 0 ≤ t ≤ T.

This shows that Λ is a contraction in C([0, T ],W 2
3 (D)), provided λ ≤ λ∗. We have thus

shown that the map Λ : VT → VT is a contraction for any T > 0, provided that λ ≤ λ∗
and ‖u0‖

W 4ξ
2,B(D)

≤ m, and consequently Λ possesses a unique fixed point u ∈ VT for any

T > 0. According to the definition of VT , this implies part (iii).
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Chapter 4

The energy equality

In this chapter, we will prove a technical theorem about the total potential energy of our

MEMS device, which will be used to prove the main theorem of Chapter 5 stating that

touchdown of the top plate on the ground plate is the only finite time singularity.

We first recall from Chapter 2 that the total potential energy of the MEMS device is

given by

E(u) = Em(u)− λEe(u).

It includes the mechanical energy

Em(u) = β

∫
D

{
1

2
(∆u)2 − (1− σ) det(∇2u)

}
dx+

τ

2

∫
D
|∇u|2 dx

and the electrostatic energy −λEe(u) with

Ee(u) =

∫
Ω(u)

{
ε2 |∇′ψu|2 + (∂zψu)2

}
d(x, z).

Here,∇2u denotes the Hessian matrix of u and∇′ := (∂x1 , ∂x2). The parameters β, σ, τ, λ, ε,

are the same as in the previous chapters. As in Chapter 3, we assume that D ⊂ R2 is a

bounded and convex domain with ∂D ∈ C4.

4.1 Main result

The following theorem states the energy equality for solutions (u, ψu) of Theorem 3.1.1.

Theorem 4.1.1 (Energy equality) Under the assumptions of Theorem 3.1.1,

E(u(t)) +

∫ t

0
‖∂tu(s)‖2L2(D) ds = E(u0), t ∈ [0, Tmax).

The energy equality shows that the evolution problem (3.1)-(3.5) is the L2-gradient flow

for E , a fact which is also indirectly and formally contained in the model derivation.
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The idea of proving Theorem 4.1.1 is taken from [48], but in our case the proof is

more delicate, since here we are dealing with an arbitrary two-dimensional domain D and

hinged boundary conditions on ∂D.

One of the difficulties in the proof of Theorem 4.1.1 is the computation of the derivative

dEe(u(t))/dt. This is due to the fact that the underlying domain Ω(u(t)) varies according

to u(t). In Proposition 4.2.1 presented below we use the transformation Tu(t) introduced

in Chapter 3 to convert Ee(u(t)) to an integral over the fixed cylinder Ω := D × (0, 1).

Another difficulty arises from the fact that the time regularity of u as stated in The-

orem 3.1.1 is not sufficient for a direct computation of the derivative dE(u(t))/dt. This

difficulty can be overcome by using an approximation argument based on Proposition 4.2.1.

Now, let us prepare the proof of Theorem 4.1.1.

4.2 A preliminary result on the electrostatic energy

As in [48], in order to prove Theorem 4.1.1, we first establish a preliminary result:

Proposition 4.2.1 Let T > 0, 4ξ ∈
(

7
3 , 4
)
\{5

2} and let v ∈ C1([0, T ],W 4ξ
2,B (D)) be such

that

v(t, x) > −1, (t, x) ∈ [0, T ]×D. (4.1)

Then,

Ee(v(t2))− Ee(v(t1))

= −
∫ t2

t1

∫
D

{
ε2 |∇′ψv(s)(·, v(s))|2 + (∂zψv(s)(·, v(s)))2

}
∂tv(s) dx ds (4.2)

for 0 ≤ t1 ≤ t2 ≤ T .

Here, we recall from Section 3.2 that

ε2 |∇′ψv(s)(·, v(s))|2 + (∂zψv(s)(·, v(s)))2

=
1 + ε2|∇v(s)|2

(1 + v(s))2
(∂ηφv(s)(·, 1))2 = gε(v(s)). (4.3)

In the case of a one-dimensional interval D = (−1, 1) and clamped boundary conditions

on ∂D, Proposition 4.2.1 has been proved in [48, Proposition 2.2].

We now give the proof for the two-dimensional case D, by following similar steps as

those in [48]: First, we rewrite the electrostatic energy Ee(v(t)) as an integral over the

fixed domain Ω. The resulting electrostatic energy is thus expressed in terms of φv(t). We

next verify the differentiability of φv in t. With this result, we show that the transformed

electrostatic energy is differentiable in t and compute its derivative. Finally, we transform
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the obtained derivative back to the original coordinates to get (4.2).

We note that the proof of Proposition 4.2.1 uses only the first boundary condition of

W 4ξ
2,B (D).

Proof. Let v ∈ C1([0, T ],W 4ξ
2,B (D)) satisfy (4.1). Since W 4ξ

2 (D) embeds continuously

in W 2
3 (D) and in C(D), there is ρ ∈ (0, 1) such that v(t) ∈ S3(ρ) for all t ∈ [0, T ],

and hence Theorem 3.2.1 can be applied. In order to simplify notation, let, for each

t ∈ [0, T ], φ(t) = φv(t) ∈ W 2
2 (Ω) be the solution to (3.11)-(3.12) associated to v(t) and

ψ(t) = ψv(t) ∈W 2
2 (Ω(v(t))) be the corresponding solution to (3.1)-(3.2) also associated to

v(t). For (t, x, η) ∈ [0, T ]× Ω, we put

Φ(t, x, η) := φ(t, x, η)− η, V (t, x) :=
∇v(t, x)

1 + v(t, x)
, (4.4)

and denote the components of V by V1 and V2. We recall that ψ(t) = φ(t)◦Tv(t), with the

transformation Tv(t) as in (3.9). Then, by the change of variables (x, z)→ (x, η), Ee(v(t))

is rewritten in the form

Ee(v(t)) = ε2

∫
Ω

∣∣∇′φ(t)− η ∂ηφ(t)V (t)
∣∣2 (1 + v(t)) d(x, η) +

∫
Ω

(∂ηφ(t))2

1 + v(t)
d(x, η). (4.5)

Next, we set W 2
2,B(Ω) := W 2

2 (Ω) ∩W 1
2,B(Ω) with

W 1
2,B(Ω) :=

{
w ∈W 1

2 (Ω) ; w = 0 on ∂Ω
}
.

It follows from (4.4) that, for 0 ≤ t ≤ T , Φ(t) ∈W 2
2,B(Ω) solves{

−Lv(t)Φ(t) = f(t) in Ω,

Φ(t) = 0 on ∂Ω,
(4.6)

where

f(t, x, η) := ε2η
[
|V (t, x)|2 − divV (t, x)

]
, (t, x, η) ∈ [0, T ]× Ω.

The operator Lv(t) is given by

Lv(t)w = α1(t) ∆′w + (α2(t), α3(t)) · ∇′∂ηw + α4(t) ∂2
ηw + (α5(t) + α6(t)) ∂ηw.

Here, ∆′ := ∂2
x1 + ∂2

x2 and

α1(t, x, η) := ε2, α2(t, x, η) := −2ε2η V1(t, x), α3(t, x, η) := −2ε2η V2(t, x),

α4(t, x, η) :=
1

(1 + v(t, x))2
+ ε2η2 |V (t, x)|2, α5(t, x, η) := 2ε2η |V (t, x)|2,
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α6(t, x, η) := −ε2η
∆v(t, x)

1 + v(t, x)
, (t, x, η) ∈ [0, T ]× Ω.

For later use, we write Lv(t) in divergence form:

Lv(t)w = div (α(t)∇w) + b(t) · ∇w,

where

α(t) :=

 α1(t) 0 α2(t)/2

0 α1(t) α3(t)/2

α2(t)/2 α3(t)/2 α4(t)


and b(t) := (b1(t), b2(t), b3(t)) with

b1(t, x, η) := ε2 V1(t, x), b2(t, x, η) := ε2 V2(t, x),

b3(t, x, η) := −ε2η |V (t, x)|2, (t, x, η) ∈ [0, T ]× Ω.

Let us next verify the differentiability of Φ in t. We start by briefly recalling some proper-

ties of Lv(t); for further details and proofs see Section B.2. We introduce a bounded linear

operator A(t) ∈ L(W 2
2,B (Ω), L2(Ω)) by setting

A(t)w := −Lv(t)w, w ∈W 2
2,B(Ω), t ∈ [0, T ].

For each t ∈ [0, T ], it is seen that A(t) is invertible and that Φ(t) = A(t)−1f(t).

Furthermore, from the time regularity of v, the fact that v(t) ∈ S3(ρ), and the embed-

dings

W 4ξ
2 (D) ↪→W 2

3 (D) ↪→ C1(D),

it follows by direct computation that

α2, α3, α4, α5 ∈ C1([0, T ], L∞(Ω)) and α6 ∈ C1([0, T ], L3(Ω)).

So, we easily see that

A ∈ C1([0, T ],L(W 2
2,B(Ω), L2(Ω)))

and that

f ∈ C1([0, T ], L2(Ω)). (4.7)

Since the map taking an invertible operator to its inverse is continuously differentiable on

the space of bounded operators, the mapping

[t 7→ A(t)−1] : [0, T ]→ L(L2(Ω),W 2
2,B(Ω))

is continuously differentiable and hence ‖A(t)−1‖L(L2(Ω),W 2
2,B(Ω)) ≤ C for some constant
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C > 0. Together with (4.7), this implies

Φ ∈ C1([0, T ],W 2
2,B(Ω))

with derivative

∂tΦ(t) = A(t)−1
(
∂tf(t)− ∂tA(t) Φ(t)

)
∈W 2

2,B(Ω), t ∈ [0, T ].

Therefore, in view of (4.4), we have

φ ∈ C1([0, T ],W 2
2 (Ω)) with ∂tφ(t) = ∂tΦ(t), t ∈ [0, T ]. (4.8)

Let us now again consider (4.5). By direct calculations, we can verify from the fact that

v ∈ C1([0, T ],W 4ξ
2,B (D)) and (4.8) that Ee(v) ∈ C1([0, T ]) with derivative

d

dt
Ee(v(t))

= 2ε2

∫
Ω

[(
∇′φ(t)− η ∂ηφ(t)V (t)

)
·
(
∇′∂tφ(t)− η ∂ηφ(t) ∂tV (t)

− η ∂η∂tφ(t)V (t)
)]

(1 + v(t)) d(x, η)

+ ε2

∫
Ω

∣∣∇′φ(t)− η ∂ηφ(t)V (t)
∣∣2 ∂tv(t) d(x, η) (4.9)

+ 2

∫
Ω

∂ηφ(t) ∂η∂tφ(t)

1 + v(t)
d(x, η)−

∫
Ω

(∂ηφ(t))2 ∂tv(t)

(1 + v(t))2
d(x, η), t ∈ [0, T ].

We want to write equation (4.9) in a simpler form. For this purpose, we multiply

Lv(t)φ(t) = 0 in Ω by (1 + v(t))∂tφ(t) and integrate the product over Ω. Then, for

0 ≤ t ≤ T ,

0 =

∫
Ω

(1 + v(t)) ∂tφ(t)Lv(t)φ(t) d(x, η). (4.10)

Using the divergence form of Lv(t), integration by parts, and the fact that ∂tφ(t) = 0 on

∂Ω, we deduce from (4.10) that

0 = −
∫

Ω
∇
(

(1 + v(t)) ∂tφ(t)
)
· (α(t)∇φ(t)) d(x, η)

+

∫
Ω

(1 + v(t)) ∂tφ(t) b(t) · ∇φ(t) d(x, η), t ∈ [0, T ]. (4.11)

By the definitions of bi(t), i = 1, 2, 3, and V (t), we observe that∫
Ω

(1 + v(t)) ∂tφ(t) b(t) · ∇φ(t) d(x, η)
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= ε2

∫
Ω
∂tφ(t)∇v(t) ·

(
∇′φ(t)− η ∂ηφ(t)V (t)

)
d(x, η). (4.12)

By the definitions of αi(t), 1 ≤ i ≤ 4, and V (t), we have that

−
∫

Ω
∇
(

(1 + v(t)) ∂tφ(t)
)
· (α(t)∇φ(t)) d(x, η)

= −ε2

∫
Ω

(
∂tφ(t)∇v(t) + (1 + v(t))∇′∂tφ(t)

)
·
(
∇′φ(t)− η ∂ηφ(t)V (t)

)
d(x, η)

+ ε2

∫
Ω
η (1 + v(t)) ∂η∂tφ(t)V (t) ·

(
∇′φ(t)− η ∂ηφ(t)V (t)

)
d(x, η)

−
∫

Ω

∂η∂tφ(t) ∂ηφ(t)

1 + v(t)
d(x, η),

and together with (4.12), (4.11) becomes

0 = −ε2

∫
Ω

(
∂tφ(t)∇v(t) + (1 + v(t))∇′∂tφ(t)

)
·
(
∇′φ(t)− η ∂ηφ(t)V (t)

)
d(x, η)

+ ε2

∫
Ω
η (1 + v(t)) ∂η∂tφ(t)V (t) ·

(
∇′φ(t)− η ∂ηφ(t)V (t)

)
d(x, η)

−
∫

Ω

∂η∂tφ(t) ∂ηφ(t)

1 + v(t)
d(x, η)

+ ε2

∫
Ω
∂tφ(t)∇v(t) ·

(
∇′φ(t)− η ∂ηφ(t)V (t)

)
d(x, η).

Rearranging yields

0 = −ε2

∫
Ω

(1 + v(t))
(
∇′φ(t)− η ∂ηφ(t)V (t)

)
·
(
∇′∂tφ(t)− η ∂η∂tφ(t)V (t)

)
d(x, η)

−
∫

Ω

∂η∂tφ(t) ∂ηφ(t)

1 + v(t)
d(x, η).

Combining this with (4.9), we get

d

dt
Ee(v(t)) = −2ε2

∫
Ω

(
∇′φ(t)− η ∂ηφ(t)V (t)

)
· ∂tV (t) ∂ηφ(t) η (1 + v(t)) d(x, η)

+ ε2

∫
Ω

∣∣∇′φ(t)− η ∂ηφ(t)V (t)
∣∣2 ∂tv(t) d(x, η)

−
∫

Ω
(∂ηφ(t))2 ∂tv(t)

(1 + v(t))2
d(x, η), t ∈ [0, T ].
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Using the transformation Tv(t) to write dEe(v(t))/dt in terms of ψ(t), we easily obtain

d

dt
Ee(v(t)) = −2ε2

∫
Ω(v(t))

(1 + z) ∂zψ(t)∇′ψ(t) · ∂tV (t) d(x, z)

+

∫
Ω(v(t))

(
ε2|∇′ψ(t)|2 − (∂zψ(t))2

) ∂tv(t)

1 + v(t)
d(x, z), t ∈ [0, T ]. (4.13)

We next observe that, for 0 ≤ t ≤ T ,

∂tV (t) = ∂t
(
∇ ln (1 + v(t))

)
= ∇

(
∂tv(t)

1 + v(t)

)
.

Then, using integration by parts and ∂tv(t) = 0 on ∂D, the first integral on the right-hand

side of (4.13) is rewritten in the form

− 2ε2

∫
Ω(v(t))

(1 + z) ∂zψ(t)∇′ψ(t) · ∂tV (t) d(x, z)

= 2ε2

∫
Ω(v(t))

(1 + z)
[
∂zψ(t) ∆′ψ(t) +∇′ψ(t) · ∇′∂zψ(t)

] ∂tv(t)

1 + v(t)
d(x, z)

+ 2ε2

∫
D
∂tv(t) ∂zψ(t, ·, v(t))∇′ψ(t, ·, v(t)) · ∇v(t) dx.

Since 2∇′ψ(t) · ∇′∂zψ(t) = ∂z
(
|∇′ψ(t)|2

)
, we have

− 2ε2

∫
Ω(v(t))

(1 + z) ∂zψ(t)∇′ψ(t) · ∂tV (t) d(x, z)

= ε2

∫
Ω(v(t))

(1 + z)
[
2 ∂zψ(t) ∆′ψ(t) + ∂z

(
|∇′ψ(t)|2

)] ∂tv(t)

1 + v(t)
d(x, z)

+ 2ε2

∫
D
∂tv(t) ∂zψ(t, ·, v(t))∇′ψ(t, ·, v(t)) · ∇v(t) dx.

Therefore, we obtain from (4.13) that, for 0 ≤ t ≤ T ,

d

dt
Ee(v(t)) =

∫
Ω(v(t))

(1 + z)
[
2ε2 ∆′ψ(t) ∂zψ(t) + ε2 ∂z

(
|∇′ψ(t)|2

)] ∂tv(t)

1 + v(t)
d(x, z)

+

∫
Ω(v(t))

(
ε2|∇′ψ(t)|2 − (∂zψ(t))2

) ∂tv(t)

1 + v(t)
d(x, z)

+ 2ε2

∫
D
∂tv(t) ∂zψ(t, ·, v(t))∇′ψ(t, ·, v(t)) · ∇v(t) dx.
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Since ε2∆′ψ(t) + ∂2
zψ(t) = 0 in Ω(v(t)), it follows that, for 0 ≤ t ≤ T ,

d

dt
Ee(v(t)) =

∫
Ω(v(t))

(1 + z)
[
−∂z

(
(∂zψ(t))2

)
+ ε2 ∂z

(
|∇′ψ(t)|2

)] ∂tv(t)

1 + v(t)
d(x, z)

+

∫
Ω(v(t))

(
ε2|∇′ψ(t)|2 − (∂zψ(t))2

) ∂tv(t)

1 + v(t)
d(x, z)

+ 2ε2

∫
D
∂tv(t) ∂zψ(t, ·, v(t))∇′ψ(t, ·, v(t)) · ∇v(t) dx. (4.14)

By integration by parts,∫
Ω(v(t))

(1 + z)
[
−∂z

(
(∂zψ(t))2

)
+ ε2 ∂z

(
|∇′ψ(t)|2

)] ∂tv(t)

1 + v(t)
d(x, z)

= −
∫

Ω(v(t))

(
ε2|∇′ψ(t)|2 − (∂zψ(t))2

) ∂tv(t)

1 + v(t)
d(x, z)

+

∫
D

(
ε2|∇′ψ(t, ·, v(t))|2 − (∂zψ(t, ·, v(t)))2

)
∂tv(t) dx.

Hence, for 0 ≤ t ≤ T , we have

d

dt
Ee(v(t)) =

∫
D

(
ε2|∇′ψ(t, ·, v(t))|2 − (∂zψ(t, ·, v(t)))2

)
∂tv(t) dx

+ 2ε2

∫
D
∂tv(t) ∂zψ(t, ·, v(t))∇′ψ(t, ·, v(t)) · ∇v(t) dx.

Finally, we use the identity

∇′ψ(t, x, v(t)) = −∂zψ(t, x, v(t))∇v(t), (t, x) ∈ [0, T ]×D,

which follows from differentiating the boundary condition ψ(t, x, v(t)) = 1, x ∈ D, to

deduce that

d

dt
Ee(v(t)) = −

∫
D

(
1 + ε2|∇v(t)|2

)
(∂zψ(t, ·, v(t)))2 ∂tv(t) dx

= −
∫
D

{
ε2|∇′ψ(t, ·, v(t))|2 + (∂zψ(t, ·, v(t)))2

}
∂tv(t) dx, t ∈ [0, T ].

Integrating this equality in [t1, t2], we obtain that

Ee(v(t2))− Ee(v(t1)) = −
∫ t2

t1

∫
D

{
ε2|∇′ψ(s, ·, v(s))|2 + (∂zψ(s, ·, v(s)))2

}
∂tv(s) dx ds,

for 0 ≤ t1 ≤ t2 ≤ T , and the proposition is proved.
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Remark 4.2.2 An alternative approach to compute the derivative dEe(v(t))/dt and to

investigate differentiability properties of Ee is presented in [44, Section 4]. This approach

is based on a transformation that maps Ω(w(t)) onto Ω(v(t)) instead of the transformation

Tv(t) to a fixed cylinder. Doing this transformation allows one to rewrite Ee(w(t)), for each

w(t) in a neighborhood of v(t), as an integral over Ω(v(t)) and then to study the behavior

of Ee(w(t))− Ee(v(t)) as w(t)→ v(t).

We are finally in a position to prove the main theorem of this chapter.

4.3 Proof of Theorem 4.1.1

Under the assumptions of Theorem 3.1.1, let (u, ψu) be the solution to (3.1)-(3.5). We first

notice that we cannot apply Proposition 4.2.1, since we only have u ∈ C1((0, Tmax), L2(D)).

To get around this problem, we shall use an approximation argument:

We define the Steklov average uδ of u by

uδ(t, x) :=
1

δ

∫ t+δ

t
u(s, x) ds, t ∈ [0, Tmax), x ∈ D, δ ∈ (0, Tmax − t).

Now, we fix T ∈ (0, Tmax), and let δ ∈ (0, Tmax−T ). Since u ∈ C([0, T + δ],W 4ξ
2,B(D)), we

get by the fundamental theorem of calculus that

uδ ∈ C1([0, T ],W 4ξ
2,B(D)) with ∂tuδ(t) =

u(t+ δ)− u(t)

δ
, t ∈ [0, T ]. (4.15)

Moreover, for 0 ≤ t ≤ T , it holds that

‖uδ(t)− u(t)‖
W 4ξ

2,B(D)
=

∥∥∥∥1

δ

∫ t+δ

t
(u(s)− u(t)) ds

∥∥∥∥
W 4ξ

2,B (D)

≤ max
s∈[t,t+δ]

‖u(s)− u(t)‖
W 4ξ

2,B(D)
−→ 0 as δ ↘ 0

and thus

uδ → u in C([0, T ],W 4ξ
2,B(D)) as δ ↘ 0. (4.16)

We next note that, for any t0 ∈ (0, T ), we have u ∈ C([t0, T + δ],W 4
2,B(D)). Then, the

estimate

‖uδ(t)− u(t)‖W 4
2,B(D) ≤ max

s∈[t,t+δ]
‖u(s)− u(t)‖W 4

2,B(D)
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proves that, as δ ↘ 0, uδ(t) converges to u(t) in W 4
2,B (D) uniformly on [t0, T ] for any

t0 ∈ (0, T ). Since t0 is arbitrary,

uδ → u in C((0, T ],W 4
2,B (D)) as δ ↘ 0. (4.17)

Since u ∈ C1([t0, T + δ], L2(D)) for every t0 ∈ (0, T ), it follows from (4.15) that

∂tuδ(t) =
1

δ

∫ t+δ

t
∂tu(s) ds, t ∈ [t0, T ].

This implies that

‖∂tuδ(t)− ∂tu(t)‖L2(D) → 0 as δ ↘ 0,

uniformly in t ∈ [t0, T ], for each t0 ∈ (0, T ). Since t0 is arbitrary,

∂tuδ → ∂tu in C((0, T ], L2(D)) as δ ↘ 0. (4.18)

Recall next that the mechanical energy with respect to uδ(t) is given by

Em(uδ(t)) = β

∫
D

{
1

2
(∆uδ(t))

2 − (1− σ) det(∇2uδ(t))

}
dx+

τ

2

∫
D
|∇uδ(t)|2 dx.

By direct calculations, it is easily verified from uδ ∈ C1([0, T ],W 4ξ
2,B (D)) that

Em(uδ) ∈ C1([0, T ])

with derivative

d

dt
Em(uδ(t))

= β

∫
D

∆uδ(t) ∆∂tuδ(t) dx

+ β(1− σ)

∫
D

(
2 ∂x2∂x1uδ(t) ∂x2∂x1∂tuδ(t)− ∂2

x2uδ(t) ∂
2
x1∂tuδ(t)− ∂2

x1uδ(t) ∂
2
x2∂tuδ(t)

)
dx

+ τ

∫
D
∇uδ(t) · ∇∂tuδ(t) dx, t ∈ [0, T ].

On account of Lemma A.0.1, we obtain that

β(1− σ)

∫
D

(
2 ∂x2∂x1uδ(t) ∂x2∂x1∂tuδ(t)− ∂2

x2uδ(t) ∂
2
x1∂tuδ(t)− ∂2

x1uδ(t) ∂
2
x2∂tuδ(t)

)
dx

= −β(1− σ)

∫
∂D

κ ∂νuδ(t) ∂ν∂tuδ(t) dω.
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So,

d

dt
Em(uδ(t)) = β

∫
D

∆uδ(t) ∆∂tuδ(t) dx+ τ

∫
D
∇uδ(t) · ∇∂tuδ(t) dx

− β(1− σ)

∫
∂D

κ ∂νuδ(t) ∂ν∂tuδ(t) dω, t ∈ [0, T ].

Applying integration by parts to the first two terms and using ∂tuδ(t) = 0 on ∂D, we have

d

dt
Em(uδ(t)) = β

∫
D

∆2uδ(t) ∂tuδ(t) dx− τ
∫
D

∆uδ(t) ∂tuδ(t) dx

+ β

∫
∂D

(
∆uδ(t)− (1− σ)κ ∂νuδ(t)

)
∂ν∂tuδ(t) dω, t ∈ (0, T ].

Therefore, in view of the second boundary condition for uδ(t) (due to uδ(t) ∈W 4
2,B(D) for

t ∈ (0, T ]), we deduce that

d

dt
Em(uδ(t)) = β

∫
D

∆2uδ(t) ∂tuδ(t) dx− τ
∫
D

∆uδ(t) ∂tuδ(t) dx, t ∈ (0, T ].

Integrating this equality on [t1, t2], we obtain that

Em(uδ(t2)) − Em(uδ(t1))

= β

∫ t2

t1

∫
D

∆2uδ(s) ∂tuδ(s) dx ds− τ
∫ t2

t1

∫
D

∆uδ(s) ∂tuδ(s) dx ds (4.19)

for 0 < t1 ≤ t2 ≤ T .

We are now concerned with the limit of (4.19) as δ ↘ 0. By (4.17) and (4.18), we see

that, for any 0 < t1 ≤ t2 ≤ T , the right-hand side of (4.19) converges to

β

∫ t2

t1

∫
D

∆2u(s) ∂tu(s) dx ds− τ
∫ t2

t1

∫
D

∆u(s) ∂tu(s) dx ds (4.20)

as δ ↘ 0. On the other hand, due to (4.16) and the continuous embedding W 4ξ
2 (D) ↪→

W 2
2 (D), we observe that

|Em(uδ(tk)) − Em(u(tk))| −→ 0 as δ ↘ 0,

tk ∈ [0, T ], k = 1, 2. Together with (4.19) and (4.20), we obtain

Em(u(t2))− Em(u(t1)) =

∫ t2

t1

∫
D

(
β∆2u(s)− τ∆u(s)

)
∂tu(s) dx ds (4.21)

for 0 < t1 ≤ t2 ≤ T . Furthermore, since u ∈ C([0, T ],W 4ξ
2,B (D)) and since
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W 4ξ
2 (D) ↪→W 2

2 (D), we conclude that

Em(u(t1)) −→ Em(u0) <∞ as t1 ↘ 0.

This then shows that (4.21) is valid for t1 = 0.

Next, consider the electrostatic energy. Thanks to Proposition 4.2.1 and (4.3), we have

Ee(uδ(t2))− Ee(uδ(t1)) = −
∫ t2

t1

∫
D
gε(uδ(s))∂tuδ(s) dx ds, 0 ≤ t1 ≤ t2 ≤ T. (4.22)

We are then interested in the limit of (4.22) as δ ↘ 0. Since u(t) > −1 in D, it follows

from (4.16) that u(t) and uδ(t) belong to S3(ρ) for some ρ ∈ (0, 1) and for t ∈ [0, T ] and

δ ∈ (0, δ0) with δ0 > 0 sufficiently small. Hence, Theorem 3.2.1 yields

‖gε(uδ)(t)− gε(u)(t)‖L2(D) ≤ CL ‖uδ(t)− u(t)‖W 2
3 (D)

≤ CL c1 ‖uδ(t)− u(t)‖
W 4ξ

2,B(D)
, 0 ≤ t ≤ T,

where CL is the constant occurring in (3.36) and c1 > 0 denotes the embedding constant

for the embedding W 4ξ
2 (D) ↪→W 2

3 (D). Then, by using (4.16), we have

gε(uδ)→ gε(u) in C([0, T ], L2(D)) as δ ↘ 0. (4.23)

From (4.23) it follows that

gε(uδ)→ gε(u) in L2(0, T ;L2(D)) as δ ↘ 0.

Using this together with (4.18) and Hölder’s inequality, we deduce that, for any t0 ∈ (0, T ),

gε(uδ) ∂tuδ → gε(u) ∂tu in L1(t0, T ;L1(D)) as δ ↘ 0.

Thus, for any 0 < t1 ≤ t2 ≤ T ,∣∣∣∣∫ t2

t1

∫
D

[
gε(uδ(s)) ∂tuδ(s)− gε(u(s)) ∂tu(s)

]
dx ds

∣∣∣∣ −→ 0 as δ ↘ 0. (4.24)

In terms of the coordinates (x, η) ∈ Ω, the electrostatic energy reads

Ee(uδ(t)) = ε2

∫
Ω

∣∣∇′φδ(t)− η ∂ηφδ(t)Uδ(t)∣∣2 (1 + uδ(t)) d(x, η)

+

∫
Ω

(∂ηφδ(t))
2

1 + uδ(t)
d(x, η), (4.25)
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where

φδ(t) := φuδ(t) and Uδ(t) :=
∇uδ(t)

1 + uδ(t)
, t ∈ [0, T ].

Finally, we show that

|Ee(uδ(tk))− Ee(u(tk))| −→ 0 as δ ↘ 0, (4.26)

tk ∈ [0, T ], k = 1, 2. From Theorem 3.2.1 we know that

‖φδ(t)− φ(t)‖W 2
2 (Ω) ≤ C‖uδ(t)− u(t)‖W 2

3 (D), 0 ≤ t ≤ T,

with a constant C > 0 only depending on ρ, ε, and D. Using the continuous embedding

W 4ξ
2 (D) ↪→W 2

3 (D) and (4.16), we conclude that

φδ → φ in C([0, T ],W 2
2 (Ω)) as δ ↘ 0. (4.27)

Again, by (4.16) and the embeddings W 4ξ
2 (D) ↪→W 2

3 (D) ↪→ C1(D), we have that

Uδ → U in C([0, T ], L∞(D)) as δ ↘ 0.

This, together with (4.27), implies

∇′φδ − η ∂ηφδ Uδ → ∇′φ− η ∂ηφU in C([0, T ], L2(Ω)) as δ ↘ 0;

hence, by Hölder’s inequality and (4.16),∣∣∇′φδ − η ∂ηφδ Uδ∣∣2 (1+uδ)→
∣∣∇′φ− η ∂φδ U ∣∣2 (1+u) in C([0, T ], L1(Ω)) as δ ↘ 0.

Furthermore, from (4.16) and (4.27) it follows that

(∂ηφδ)
2

1 + uδ
→

(∂ηφ)2

1 + u
in C([0, T ], L1(Ω)) as δ ↘ 0.

Thus, (4.26) is obtained. Therefore, (4.22), together with (4.24) and (4.26), yields that

Ee(u(t2))− Ee(u(t1)) = −
∫ t2

t1

∫
D
gε(u(s)) ∂tu(s) dx ds, 0 < t1 ≤ t2 ≤ T. (4.28)

Now, since u ∈ C([0, T ],W 4ξ
2,B(D)), we can repeat arguments quite similar to those above

to prove that

Ee(u(t1)) −→ Ee(u0) <∞ as t1 ↘ 0.

Thus, equation (4.28) also holds true for t1 = 0.
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In this way, we have verified that

E(u(t2))− E(u(t1)) = Em(u(t2))− Em(u(t1))− λ
[
Ee(u(t2))− Ee(u(t1))

]
=

∫ t2

t1

∫
D

{
β∆2u(s)− τ ∆u(s) + λ gε(u(s))

}
∂tu(s) dx ds

= −
∫ t2

t1

‖∂tu(s)‖2L2(D) ds, 0 ≤ t1 ≤ t2 ≤ T,

where in the last step we used the equation (3.3). We have thus accomplished the proof

of Theorem 4.1.1.

Theorem 4.1.1 provides a crucial step in the proof of the improved criterion for global

existence, which we will discuss in the next chapter.
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Touchdown is the only finite time singu-

larity

In this chapter it is our aim to improve part (ii) of Theorem 3.1.1 by showing that u

cannot blow up in W 4ξ
2 (D) in finite time and hence touchdown of u on the ground plate

is the only possible finite time singularity.

5.1 Main result

We assume that D ⊂ R2 is a bounded convex domain with ∂D ∈ C4,γ for some γ ∈ (0, 1).

The main result in this chapter is:

Theorem 5.1.1 (Touchdown) Under the assumptions of Theorem 3.1.1, let (u, ψu) be

the unique solution to (3.1)-(3.5) defined on the maximal interval [0, Tmax). Assume that

there are T0 > 0 and ρ0 ∈ (0, 1) such that

u(t) ≥ −1 + ρ0 inD, t ∈ [0, Tmax) ∩ [0, T0]. (5.1)

Then, Tmax ≥ T0.

Moreover, if, for each T > 0, there is ρ(T ) ∈ (0, 1) such that

u(t) ≥ −1 + ρ(T ) inD, t ∈ [0, Tmax) ∩ [0, T ],

then Tmax =∞.

In the case of clamped boundary conditions on ∂D, this theorem has been proved by

Laurençot and Walker in [48] for a one-dimensional interval D and in [45] for a two-

dimensional convex domain D.

We follow the proof given in [45]. The idea is to use the lower bound (5.1) on u to

obtain a lower bound on the total potential energy of the device. The energy equality from

Chapter 4 then gives an upper bound on the mechanical energy which in turn implies a

W 2
2 (D)-bound on u(t) for t ∈ [0, Tmax) ∩ [0, T0]. This leads to an L1(D)-bound on the

right-hand side of equation (3.3). We then use semigroup theory and embedding properties
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of Besov spaces to derive a W 4ξ
2 (D)-bound on u(t) for t ∈ [0, Tmax) ∩ [0, T0], which is

independent of Tmax. Part (ii) of Theorem 3.1.1 finishes the proof.

5.2 Proof of Theorem 5.1.1

The second statement follows by applying the first to an arbitrary T0 > 0. So, we restrict

our attention to the first.

Let the assumptions of Theorem 3.1.1 be satisfied and let (u, ψu) be the solution to

(3.1)-(3.5) defined on [0, Tmax). Let ρ0 ∈ (0, 1) and T0 > 0 be such that (5.1) is satisfied.

We want to show that

‖u(t)‖
W 4ξ

2 (D)
≤ c(ρ0, T0), t ∈ [0, Tmax) ∩ [0, T0], (5.2)

with some constant c(ρ0, T0) > 0 independent of Tmax. Then, Theorem 3.1.1 (ii) will imply

Tmax ≥ T0.

To verify estimate (5.2), we first recall that ψu(t) ∈ W 2
2 (Ω(u(t))) for all t ∈ [0, Tmax)

and that Ω(u(t)) is a Lipschitz domain. Hence, due to [69, Theorem II.5.5], we have[
x 7→ ∇ψu(t)(x, u(t, x))

]
∈W 1/2

2 (D) ↪→ L4(D) and therefore quantity

G(u(t))(x) := ε2|∇′ψu(t)(x, u(t, x))|2+(∂zψu(t)(x, u(t, x)))2, (t, x) ∈ [0, Tmax)×D, (5.3)

which appears in the right-hand side of (3.3), belongs to L2(D) (or see Theorem 3.2.1).

Moreover, since

∇′ψu(t)(x, u(t, x)) = −∂zψu(t)(x, u(t, x))∇u(t, x), (t, x) ∈ [0, Tmax)×D,

due to (3.2), (5.3) becomes

G(u(t))(x) =
(
1 + ε2|∇u(t, x)|2

)
(∂zψu(t)(x, u(t, x)))2.

We also need the following two results from [45]. The first lemma provides us with the

key estimate on the L1(D)-norm of G(u(t)).

Lemma 5.2.1 ([45, Corollary 3.5]) Let ρ ∈ (0, 1), and let v ∈ W 2
3,B(D) be such that

v ≥ −1 + ρ in D. Then,

‖G(v)‖L1(D) ≤
(

4 +
2

ρ2

)
|D|+ 4ε2‖∇v‖2L2(D).

For the next lemma, we recall the total potential energy E(v) = Em(v) − λEe(v) with

mechanical energy

Em(v) = β

∫
D

{
1

2
(∆v)2 − (1− σ) det(∇2v)

}
dx+

τ

2

∫
D
|∇v|2 dx,
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where ∇2v is the Hessian matrix of v, and electrostatic energy −λEe(v), where

Ee(v) =

∫
Ω(v)

{
ε2 |∇′ψv|2 + (∂zψv)

2
}
d(x, z). (5.4)

Lemma 5.2.2 Let ρ ∈ (0, 1), and let v ∈W 2
3,B(D) be such that v ≥ −1 + ρ in D. Then,

E(v) ≥ Em(v)− 3λε2‖∇v‖2L2(D) − λ
(

4 +
1

2ρ2

)
|D|.

Proof. We observe that the electrostatic energy in (5.4) is precisely the same as in [45].

Thus, by applying [45, Lemma 3.6], we find that

E(v) = Em(v)− λEe(v) = Em(v)− λ|D|+ λ

∫
D
v
(
1 + ε2|∇v|2

)
∂zψv(·, v) dx.

Now we can estimate the last term in the right hand-side by using exactly the same

arguments as in the proof of [45, Corollary 3.7].

Since W 4ξ
2 (D) embeds continuously in W 2

3 (D) and since (5.1) holds, we can apply the

above two lemmas with v = u(t).

For the remainder of this section, c denotes a positive constant which depends only on ρ0,

T0, u0, β, σ, λ, ε, and D, and may vary from occurrence to occurrence. We emphasize

that the constant c is independent of Tmax.

5.2.1 Auxiliary estimates on the plate displacement

We begin with an L2(D)-bound on u(t).

Lemma 5.2.3 There is c > 0 (depending on T0) such that

‖u(t)‖L2(D) ≤ c, t ∈ [0, Tmax) ∩ [0, T0].

Proof. We multiply equation (3.3) by u(t) and integrate the product in D. Then,

− λ
∫
D
G(u(t))u(t) dx

=
1

2

d

dt

∫
D
u(t)2 dx+ β

∫
D

(
∆2u(t)

)
u(t) dx− τ

∫
D

(
∆u(t)

)
u(t) dx, t ∈ (0, Tmax). (5.5)

Two integration by parts and the boundary conditions for u(t) yield

−λ
∫
D
G(u(t))u(t) dx
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=
1

2

d

dt

∫
D
u(t)2 dx+ β

∫
D

(∆u(t))2 dx− β(1− σ)

∫
∂D

κ (∂νu(t))2 dω

+ τ

∫
D
|∇u(t)|2 dx.

Applying Lemma A.0.1, we obtain that

− λ
∫
D
G(u(t))u(t) dx =

1

2

d

dt
‖u(t)‖2L2(D) + 2Em(u(t)), t ∈ (0, Tmax). (5.6)

Since u(t) > −1 in D and since G(u(t)) ≥ 0 in D, it follows that

− λ
∫
D
G(u(t))u(t) dx ≤ λ ‖G(u(t))‖L1(D), t ∈ [0, Tmax). (5.7)

In addition, by Lemma 5.2.1,

‖G(u(t))‖L1(D) ≤ c
(

1 + ‖∇u(t)‖2L2(D)

)
, t ∈ [0, Tmax) ∩ [0, T0]. (5.8)

Furthermore, by integration by parts and Hölder’s inequality, we obtain

‖∇u(t)‖2L2(D) = −
∫
D

(
∆u(t)

)
u(t) dx ≤ ‖∆u(t)‖L2(D) ‖u(t)‖L2(D). (5.9)

Moreover, the inequality

1

2
(∆u(t))2 ≤ (∂2

x1u(t))2 + (∂2
x2u(t))2 + 2(∂x2∂x1u(t))2 in D

implies that

2Em(u(t))

= β

∫
D

{
(∆u(t))2 + (1− σ)

[
2(∂x2∂x1u(t))2 + (∂2

x1u(t))2 + (∂2
x2u(t))2 − (∆u(t))2

]}
dx

+ τ

∫
D
|∇u(t)|2 dx

≥ β(1 + σ)

2
‖∆u(t)‖2L2(D), t ∈ [0, Tmax). (5.10)

The estimate just established, together with (5.8), (5.9), and Young’s inequality yields

‖G(u(t))‖L1(D) ≤
1

λ
Em(u(t)) + c

(
1 + ‖u(t)‖2L2(D)

)
, t ∈ [0, Tmax) ∩ [0, T0]. (5.11)

Therefore, by (5.6), (5.7) and (5.11),

1

2

d

dt
‖u(t)‖2L2(D) + Em(u(t)) ≤ c

(
1 + ‖u(t)‖2L2(D)

)
, t ∈ (0, Tmax) ∩ (0, T0],
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and thus 1
2
d
dt ‖u(t)‖2L2(D) ≤ c

(
1 + ‖u(t)‖2L2(D)

)
. Solving this differential inequality, we

conclude that

‖u(t)‖2L2(D) ≤ c, t ∈ [0, Tmax) ∩ [0, T0].

With the aid of Lemma 5.2.2 we obtain the following result:

Lemma 5.2.4 There is c > 0 such that

E(u(t)) ≥ 1

2
Em(u(t))− c, t ∈ [0, Tmax) ∩ [0, T0].

Proof. By Lemma 5.2.2 and (5.9),

E(u(t)) ≥ Em(u(t))− 3λε2 ‖∆u(t)‖L2(D) ‖u(t)‖L2(D) − λ|D|
(

4 +
1

2ρ2
0

)
(5.12)

for t ∈ [0, Tmax)∩ [0, T0]. In view of (5.10) and Young’s inequality, we get from (5.12) that

E(u(t)) ≥ 1

2
Em(u(t))− c

(
1 + ‖u(t)‖2L2(D)

)
, t ∈ [0, Tmax) ∩ [0, T0].

The assertion now follows from Lemma 5.2.3.

Using the energy equality discussed in Chapter 4, we can prove the following estimate.

Corollary 5.2.5 There is c > 0 such that

β(1 + σ)

8
‖∆u(t)‖2L2(D) +

∫ t

0
‖∂tu(s)‖2L2(D) ds ≤ c, t ∈ [0, Tmax) ∩ [0, T0].

Proof. According to Theorem 4.1.1, we have

E(u(t)) +

∫ t

0
‖∂tu(s)‖2L2(D) ds = E(u0), t ∈ [0, Tmax).

By virtue of Lemma 5.2.4, it then follows that

E(u0) ≥ 1

2
Em(u(t))− c+

∫ t

0
‖∂tu(s)‖2L2(D) ds, t ∈ [0, Tmax) ∩ [0, T0],

and the assertion follows from (5.10) and the fact that E(u0) <∞.

We can now prove the following important corollary.

Corollary 5.2.6 There is c > 0 such that

‖G(u(t))‖L1(D) ≤ c, t ∈ [0, Tmax) ∩ [0, T0].
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Proof. By [28, Theorem 3.1.2.1] (since D is convex) and Corollary 5.2.5, we deduce that

‖u(t)‖2W 2
2 (D) ≤ c, t ∈ [0, Tmax) ∩ [0, T0].

The assertion then follows from Lemma 5.2.1.

Next, we are going to show that the L1(D)-bound of G(u(t)) obtained in Corollary 5.2.6

implies

‖u(t)‖
W 4ξ

2 (D)
≤ c, t ∈ [0, Tmax) ∩ [0, T0]. (5.13)

However, first we require an auxiliary result. In what follows, we assume that 4ξ ∈
(

5
2 ,

7
2

)
and fix α ∈ (4ξ − 7

2 , 0). The cases 4ξ ∈
(

7
3 ,

5
2

)
and 4ξ ∈

[
7
2 , 4
)

can be treated in the same

way. From now on, we allow the constant c to depend also on ξ and α, but still not on

Tmax. We explicitly indicate the dependence on any additional parameter.

5.2.2 An auxiliary result on the fourth-order operator in Besov spaces

We first recall that ∂D ∈ C4,γ , γ ∈ (0, 1). For s ∈ (−3 − γ, 4 + γ)\{1, 3}, we introduce

Bs
1,1,B(D), i.e., Besov spaces Bs

1,1(D) which incorporate the boundary conditions (3.4):

Bs
1,1,B(D) :=


Bs

1,1(D), s ∈ (−3− γ, 1),{
v ∈ Bs

1,1(D) ; v = 0 on ∂D
}
, s ∈ (1, 3),{

v ∈ Bs
1,1(D) ; v = ∆v − (1− σ)κ ∂νv = 0 on ∂D

}
, s ∈ (3, 4 + γ).

We want to show that the operator −A, given by

−Av := −(β∆2 − τ∆)v, v ∈ B4+α
1,1,B(D),

generates a strongly continuous analytic semigroup {e−tA ; t ≥ 0} on Bα
1,1(D) which sat-

isfies the regularizing property stated in Lemma 5.2.7 below.

In Lemma 3.3.1 and 3.3.3, we have shown that −A restricted to W 4
2,B(D) generates a

strongly continuous analytic semigroup {e−tA ; t ≥ 0} on L2(D) satisfying

‖e−tA‖L(W 4ξ
2,B(D))

≤M, t ≥ 0.

We can argue in a similar way as in Lemma 3.3.1 to obtain the following result.

Lemma 5.2.7 It holds that

A ∈ H(B4+α
1,1,B(D), Bα

1,1(D)). (5.14)

Moreover, given θ ∈ (0, 1) with θ /∈
{

(1−α)
4 , (3−α)

4

}
, there is a constant c(θ) > 0 (depending
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on T0 but not on Tmax) such that, for t ∈ (0, T0],

‖e−tA‖L(Bα1,1(D),B4θ+α
1,1,B (D)) ≤ c(θ) t

−θ. (5.15)

Proof. To prove (5.14), we want to apply [29, Theorem 2.18]. We first note that α ∈
(4ξ − 7

2 , 0) ⊂ (−1, 1). Let us check that assumptions (m), (n), and (o) of [29, Theorem

2.18] are satisfied. Assumptions (m) and (n) are verified in the same way as in the proof

of Lemma 3.3.1. Assumption (o) requires that, for any x ∈ ∂D, ζ ∈ R2, r ≥ 0 with

ζ · ν(x) = 0 and (ζ, r) 6= (0, 0), and any ϑ ∈ [−π
2 ,

π
2 ], zero is the only bounded solution in

[0,∞) to 
[
−β
(
|ζ|2 − ∂2

t

)2 − reiϑ] v = 0,

v(0) = ∂2
t v(0) = 0.

But this has already been proved in Lemma 3.3.1. Hence, we can apply [29, Theorem 2.18]

and conclude that −A generates a strongly continuous analytic semigroup {e−tA ; t ≥ 0}
on Bα

1,1(D). It remains to prove (5.15). By [30, Proposition 4.13], we see that(
Bα

1,1(D), B4+α
1,1,B(D)

)
θ,1

.
= B4θ+α

1,1,B (D), 4θ ∈ (0, 4)\{1− α, 3− α},

where (·, ·)θ,1 denotes the real interpolation functor. Then the desired result follows from

[6, Lemma II.5.1.3].

5.2.3 Proof of Theorem 5.1.1

According to [31, Section 4] or [5, Section 5], we have the continuous embeddings

B4+α
1,1,B(D) ↪→ Bs

1,1,B(D) ↪→ B0
1,1(D) ↪→ L1(D) ↪→ B0

1,∞(D) ↪→ Bα
1,1(D)

for s ∈ (0, 4 + α)\{1, 3}. This, together with Corollary 5.2.6, implies

‖G(u(t))‖Bα1,1(D) ≤ c, t ∈ [0, Tmax) ∩ [0, T0]. (5.16)

We next fix θ ∈ (0, 1) and 4ξ1 ∈ (4ξ, 4)\{3} so that

4θ + α > 4ξ1 + 1 > 4ξ + 1.

In view of [5, Section 5], we observe that

B4θ+α
1,1,B (D) ↪→ B4ξ1

2,2,B(D)
.
= W 4ξ1

2,B(D) ↪→W 4ξ
2,B(D). (5.17)

Using the variation of constants formula

u(t) = e−tAu0 − λ
∫ t

0
e−(t−s)AG(u(s)) ds, t ∈ [0, Tmax),
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we derive from (5.15), (5.16), (5.17), and Lemma 3.3.3 (letting c0 > 0 denote the corre-

sponding embedding constant) that

‖u(t)‖
W 4ξ

2,B(D)

≤ ‖e−tAu0‖
W 4ξ

2,B(D)
+ λ

∫ t

0
‖e−(t−s)AG(u(s))‖

W 4ξ
2,B(D)

ds

≤ ‖e−tA‖L(W 4ξ
2,B(D))

‖u0‖
W 4ξ

2,B(D)
+ λc0

∫ t

0
‖e−(t−s)AG(u(s))‖B4θ+α

1,1,B (D) ds

≤M‖u0‖
W 4ξ

2,B(D)
+ λc0

∫ t

0
‖e−(t−s)A‖L(Bα1,1(D),B4θ+α

1,1,B (D)) ‖G(u(t))‖Bα1,1(D) ds

≤ c(θ), t ∈ [0, Tmax) ∩ [0, T0].

So, we have verified (5.13). Theorem 3.1.1 (ii) completes the proof of Theorem 5.1.1.

We have just proved that the top plate certainly touches down on the ground plate when

Tmax <∞.
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Chapter 6

Positivity preserving property for a hinged

convex plate with stress

6.1 Introduction

This chapter is an adaptation of

• G. Sweers and K. Vassi, Positivity for a hinged convex plate with stress, SIAM J.

Math. Anal., 50 (2018), pp. 1163-1174.

In this chapter, we restrict ourselves to the analysis of the following boundary value

problem for a hinged plate with stress:

∆2u− τ∆u = f in D, u = ∆u− (1− σ)κ∂νu = 0 on ∂D. (6.1)

We will prove that this problem is positivity preserving on convex domains, meaning f ≥ 0

implies u ≥ 0. This task is motivated by the absence of a general maximum principle for

fourth order elliptic equations. The proof relies on optimal estimates for a weighted first

Steklov eigenvalue and on an application of the Krĕın-Rutman theorem for an auxiliary

problem.

For convenience, we briefly recall the derivation of (6.1) from Section 2.2.

The model

The energy of a hinged thin plate under the action of a vertical force density f : D → R
approximately equals to, by a suitable normalization,

E(u) :=

∫
D

{1

2
(∆u)2 + (1− σ)

(
(∂x2∂x1u)2 − ∂2

x1u ∂
2
x2u
)

+
1

2
τ |∇u|2 − fu

}
dx, (6.2)

where D ⊂ R2 describes the shape of the plate and u : D → R its vertical displacement

from the rest position. The first two terms in E form the energy that one may describe as

bending respectively torsion. Fixing the vertical position at the boundary gives u|∂D = 0.

Fixing the horizontal direction at the boundary introduces the term 1
2τ |∇u|

2, a stress
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term due to an increasing surface for nonzero u. The parameter τ that appears is taken

in [0,∞); the parameter σ is the Poisson ratio of the plate and satisfies −1 < σ < 1. For

more details, see Section 2.2. The last term is the potential energy from a downward force.

Friedrichs [23] was among the first to study the variational formulation for thin plates.

Weak and strong solution

The solution uf , that we are looking at, for example, for f ∈ L2(D), is a minimizer of E
on the space

W := W 2
2 (D) ∩W 1

2,B(D),

where, as introduced in Chapter 3,

W 1
p,B(D) =

{
v ∈W 1

p (D) ; v = 0 on ∂D
}
, p ∈ (1,∞).

We assume that Ω is a bounded domain in R2 with ∂Ω ∈ C2,1. One may show, see [23, 68],

that E hence has a unique minimizer on the Hilbert space W, which satisfies

δE(u;ϕ) = 0 for all ϕ ∈ W (6.3)

with

δE(u;ϕ) =

∫
D

{
∆u∆ϕ+ (1− σ)

(
2∂x2∂x1u ∂x2∂x1ϕ− ∂2

x1u ∂
2
x2ϕ− ∂2

x2u ∂
2
x1ϕ
)

+ τ∇u · ∇ϕ− fϕ
}
dx.

Integration by parts with smooth functions u, ϕ ∈ W shows that (see Lemma A.0.1),

δE(u;ϕ) = 〈u, ϕ〉W,τ −
∫
D
fϕ dx, (6.4)

where

〈u, ϕ〉W,τ :=

∫
D

(∆u∆ϕ+ τ∇u · ∇ϕ) dx− (1− σ)

∫
∂D

κ ∂νu ∂νϕdω.

Here κ is the signed curvature of the boundary, which is taken positive on strict convex

boundary parts, and ν is the exterior unit normal of ∂D. If u ∈ W and ∆u ∈W 2
2 (D) holds

and u is such that δE(u;ϕ) = 0 for all ϕ ∈ W, then two integration by parts, starting

from (6.4), lead to

0 = δE(u;ϕ) =

∫
D

(
∆2u− τ∆u− f

)
ϕdx+

∫
∂D

(∆u− (1− σ)κ ∂νu) ∂νϕdω,

and by the fundamental lemma of calculus of variations, first in D and then on ∂D,
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we obtain 
∆2u− τ∆u = f in D,

∆u = (1− σ)κ ∂νu on ∂D,

u = 0 on ∂D.

(6.5)

Note that the boundary condition u|∂D = 0 follows from u ∈W 1
2,B(D).

Definition 6.1.1 A function u ∈ W satisfying (6.3), we call a weak solution of (6.5).

When ∂D is smooth enough, a weak solution of (6.3) is a strong solution, i.e., lies in

W 4
2 (D). If also f is smooth, then it will be a classical solution of (6.5), i.e., lies in C4(D).

See [24, Theorems 2.20 and 2.19].

Setting v = −∆u, we may formally rewrite (6.5) as{ −∆v + τv = f in D,

v = − (1− σ)κ ∂νu on ∂D,
and

{ −∆u = v in D,

u = 0 on ∂D.
(6.6)

For ∂D ∈ C2,1 and f ∈ L2(D), we will prove in Proposition 6.3.4 that u,∆u ∈ C(D).

With v ∈ C(D), one finds u ∈ W 2
p (D) for all p ∈ (1,∞) and hence, through embedding,

that u ∈ C1,γ(D) for p > 2
1−γ . Thus, ∂νu lies in C0,γ(∂D) for all γ ∈ (0, 1).

The problem

First, we fix the following positivity conventions.

Notation Let A ⊂ Rn. For functions ϕ ∈ C(A), we set

• ϕ ≥ 0 when ϕ(x) ≥ 0 for all x ∈ A;

• ϕ  0 when ϕ(x) ≥ 0 for all x ∈ A and ϕ 6≡ 0 in A;

• ϕ > 0 when ϕ(x) > 0 for all x ∈ A.

For L2(A)-functions the (in)equalities hold almost everywhere.

The operator T : C(A)→ C(B) with A,B ⊂ Rn, we call

• positive if ϕ ≥ 0 implies Tϕ ≥ 0;

• strictly positive if T is positive and if ϕ  0 implies Tϕ  0.

We will use a notion of strong positivity. The definition will need a precise setting and is

given later on.

The question that we are interested in is the following. Supposing that u is a solution of

(6.5), we ask

Does f ≥ 0 imply u ≥ 0 ?

This is the so-called “positivity preserving property”, namely, the property which ensures

that if the force density f is of one sign, then also the vertical displacement u has this
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same sign. For τ = 0 and D convex with ∂D ∈ C2,1, Parini and Stylianou in [71], using

[25], showed that (6.5) is strongly positivity preserving, namely, f  0 implies u > 0. In

[77], Romani considered a semilinear version of (6.2). We will consider τ > 0 and the

following theorem is the main result of the present chapter.

Theorem 6.1.3 Let D ⊂ R2 be a bounded and convex domain with a C2,1-boundary ∂D.

Suppose that f ∈ L2(D) satisfies f  0. Then the unique minimizer uf of E in W satisfies

uf > 0 in D. Moreover, uf ∈ C1,γ(D) for all γ ∈ (0, 1) and −∂νuf > 0 on ∂D.

6.2 Positivity in a second order system

With the system setting in (6.6) one finds that v is coupled with ∂νu through the boundary

and u with v as a source. For a bounded domain D ∈ R2 with ∂D ∈ C2,γ for some

γ ∈ (0, 1) and τ ≥ 0, both boundary value problems in (6.6) have well-defined solutions in

Hölder as well as in Sobolev space settings for given right-hand sides in the appropriate

spaces. When the functions involved are pointwise defined and assuming that D is a

convex domain, hence κ ≥ 0, one finds from the maximum principle that

−∂νu ≥ 0 on ∂D,

f ≥ 0 in D

}
=⇒ v ≥ 0 in D =⇒ u ≥ 0 in D =⇒ −∂νu ≥ 0 on ∂D. (6.7)

Moreover, an inequality that is strict, i.e., , implies strong inequalities, i.e., >. However,

for κ ≥ 0 the chain of inequalities in (6.7) shows that the coupling in (6.6) is cooperative

in nature (see [66]), which means that by Krĕın-Rutman we have the positivity preserving

property, whenever we stay below the first “eigenvalue”. Such an ordered setting was

employed in [25].

Since our approach strongly depends on properties of the solution operator, it will be

convenient to fix the following operators and recall some of their properties:

• We write w = Gτf for the solution of{ −∆w + τw = f in D,

w = 0 on ∂D,
(6.8)

and set C0(D) := {v ∈ C(D) ; v = 0 on ∂D}.

Lemma 6.2.1 Let D ⊂ R2 be bounded and ∂D ∈ C2,γ. Then for all f ∈ C(D), there

exists a unique solution u ∈ C0(D)∩W 2
p (D) of (6.8) for all p ∈ (1,∞). Moreover, setting

u = Gτf one finds that

Gτ : C(D)→ C1,γ(D) (6.9)

is a well-defined compact linear operator.

Proof. Indeed, by [26, Theorems 9.13 and 9.15, Lemma 9.17] there exists for τ ≥ 0 a

solution operator Sτ for (6.8) from Lp(D) to W 2
p (D) ∩W 1

p,B(D), and moreover, there is a
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constant c > 0 depending only on τ , p, and D, such that

‖Sτf‖W 2
p (D) ≤ c ‖f‖Lp(D) for all f ∈ Lp(D).

Denoting by I1 : C(D) → Lp(D) the trivial embedding and by I2 : W 2
p (D) ∩W 1

p,B(D) →
C1,γ(D) ∩ C0(D) the compact embedding that is guaranteed by a Sobolev embedding

whenever p > 2
1−γ , one finds that Gτ = I2SτI1 has the desired properties. For the compact

embedding we refer to [1, Theorem 6.3].

• We write w = Kτψ for the solution of{ −∆w + τw = 0 in D,

w = ψ on ∂D.
(6.10)

Lemma 6.2.2 Let D ⊂ R2 be bounded and ∂D ∈ C2,γ. Then for all ψ ∈ C(∂D), there

exists a (unique) solution w ∈ C(D) ∩C2,γ(D) of (6.10). Moreover, setting w = Kτψ one

finds that

Kτ : C(∂D)→ C(D) (6.11)

is a well-defined bounded linear operator, which is even strictly positive.

Proof. Since ∂D ∈ C2,γ the Perron method [26, Theorem 2.14] and the maximum princi-

ple yield a continuous solution operator for τ = 0. The same holds true for τ ≥ 0. See [26,

Theorem 6.13]. The maximum principle implies ‖Kτψ‖C(D) = max {|ψ(x)| ;x ∈ ∂D} =

‖ψ‖C(∂D) and also that if ψ  0, then Kτψ  0 holds.

• Finally, set Nw = − (ν · ∇w) |∂D. For ∂D ∈ C2,γ , one has ν ∈ C1,γ(∂D) and

κ ∈ C0,γ(∂D). So, for w ∈ C1,γ(D) one finds κNw ∈ C0,γ(∂D) and

κN : C1,γ(D)→ C(∂D) (6.12)

is well-defined.

With these operators one finds that the system in (6.6) turns into

u = G0v = G0Gτf + (1− σ)G0KτκNu. (6.13)

Moreover, if the spectral radius rsp := r ((1− σ)G0KτκN ) is less than 1, then

u = (I − (1− σ)G0KτκN )−1 G0Gτf =

∞∑
k=0

((1− σ)G0KτκN )k G0Gτf. (6.14)

Since G0KτκN : C1,γ(D)→ C1,γ(D) is compact, its spectrum consists of eigenvalues with

0 as the only possible accumulation point. So r(G0KτκN ) = sup |µ| holds with µ an
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eigenvalue of G0KτκN , i.e.,

G0KτκNϕ = µϕ (6.15)

for some eigenfunction ϕ ∈ C1,γ(D). Moreover, such an eigenfunction yields an eigenfunc-

tion ψ := KτκNϕ ∈ C(D) of

KτκNG0ψ = µψ (6.16)

and vice versa. Hence, in order to have rsp < 1, it will be sufficient to find that the in

absolute sense largest eigenvalue for (6.16) lies in
(
0, 1

2

]
. In fact, it will be more convenient

to consider

Tτ := KτκNG0 : C(D)→ C(D). (6.17)

The first positivity result we collect is as follows.

Lemma 6.2.3 Let D ⊂ R2 be bounded and ∂D ∈ C2,γ. Then NG0 ∈ L(C(D), C(∂D)) is

such that

w  0 implies NG0w > 0.

Proof. This is a direct consequence of Hopf’s boundary point lemma and the regularity

of ∂D.

For ∂D ∈ C2,γ and D convex, we have κ  0 and with Lemmas 6.2.2 and 6.2.3, the

operator Tτ in (6.17) is strictly positive. Next, we will show that Tτ satisfies a property

called “strongly positive”.

Definition 6.2.4 Let T ∈ L(C(D)) be a positive operator.

• We call 0 � u0 ∈ C(D) a unit for T if for each 0 � u ∈ C(D), there exists a constant

cu > 0 such that Tu ≤ cuu0.

• We call T strongly positive with respect to the unit u0 if for each 0 � u ∈ C(D),

there exists a constant c∗u > 0 such that Tu ≥ c∗uu0.

Proposition 6.2.5 Suppose that D ⊂ R2 is a bounded convex domain with ∂D ∈ C2,γ

for some γ ∈ (0, 1). Then, the operator Tτ in (6.17) is compact and strongly positive with

respect to the unit u0 := Kτκ1.

Proof. By Lemmas 6.2.1 and 6.2.2 and the definition of κN in (6.12) it follows that

Tτ = KτκNG0 is compact. Since Kτ and κNG0 are strictly positive, so is Tτ .

We first show that u0 is a unit. For u ∈ C(D) with u  0 the boundedness of NG0

implies NG0u ≤ cu1 for some cu ∈ (0,∞) and hence, using κ ≥ 0 and the positivity of Kτ ,

one gets

Tτu = KτκNG0u ≤ Kτκ (cu1) = cuu0, (6.18)

which implies u0 is a unit.

For the strong positivity, let u ∈ C(D) with u  0. One finds by Lemma 6.2.3 that

NG0u > 0 and, since ∂D is compact, that NG0u ≥ c∗u1 for some c∗u > 0. From Lemma
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6.2.2, we know that Kτ is positive and since κ ≥ 0, we find

Tτu = KτκNG0u ≥ c∗uKτκ1 = c∗uu0, (6.19)

which shows that Tτ is strongly positive with respect to u0.

Corollary 6.2.6 Suppose the conditions of Proposition 6.2.5 hold. Then the spectral ra-

dius is the in absolute sense largest eigenvalue of (6.17) and is the only eigenvalue with a

positive eigenfunction.

Proof. Set u0 := Kτκ1. Since Tτu0 ≥ cu0 for some c > 0, it follows that ‖T nτ ‖1/nL(C(D))
≥ c

and hence that r(Tτ ) ≥ c > 0. So, the Krĕın-Rutman Theorem implies that the spectral

radius is the in absolute sense largest eigenvalue, i.e., µ1 = r (Tτ ), all other eigenvalues µi
of Tτ satisfy |µi| < µ1, and µ1 corresponds to a positive eigenfunction ψ1 ∈ C(D):

Tτψ1 = µ1ψ1

(see [42], [80, Appendix 1], [41, Chapter 11]). To find uniqueness of the positive eigen-

function and that the eigenspace is one-dimensional, one uses that for all u  0 one gets

c2u0 ≥ Tτu ≥ c1u0 > 0 in D.

This implies that Tτ is irreducible on C(D) as described in [80, Appendix 1]. Alternatively

one may use the space

Cu0(D) :=

{
u ∈ C(D) ; ‖u‖u0 := sup

x∈D

∣∣∣∣ u (x)

u0 (x)

∣∣∣∣ <∞}
as in [3, 2] or [41] and note that Tτ (C(D)) ⊂ Cu0(D).

6.2.1 An auxiliary first eigenvalue is small enough

In order to prove that the series in (6.14) converges, we have to show that the spectral

radius of (1− σ)G0KτκN is less than 1 as r(G0KτκN ) = r(Tτ ) = µ1 by (6.15) and (6.16).

In view of Corollary 6.2.6, it suffices to verify that µ1 <
1

1−σ , where µ1 is the principal

eigenvalue of G0KτκN . Since 1
1−σ > 1

2 , it is sufficient to show that µ1 ≤ 1
2 . Note that

G0KτκNϕ1 = µ1ϕ1 from (6.15) corresponds with
(
∆2 − τ∆

)
ϕ1 = 0 in D,

ϕ1 = 0 on ∂D,

−∆ϕ1 = µ−1
1 κ (−∂νϕ1) on ∂D.

(6.20)

For the case τ = 0, σ ∈ (−1, 1), and D convex with ∂D ∈ C2,1, this has been done by

Parini and Stylianou in [71] using sharp estimates for the corresponding “weighted first
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Steklov eigenvalue” δ1 := δ1,0. More precisely, it was proved that δ1 ≥ 2 holds. In [8] it

was shown that this bound is sharp, since for D = B1 := {x ∈ R2 ; |x| < 1} one finds

δ1 = 2. The same proof applies for τ > 0. Indeed, following [71], we define

δ1,τ := inf
0 6≡u∈W

R (u) for R(u) :=

∫
D

(
(∆u)2 + τ |∇u|2

)
dx∫

∂D
κ (∂νu)2 dω

(6.21)

and the convention that R (u) = +∞ whenever
∫
∂D κ (∂νu)2 dω = 0.

Proposition 6.2.7 Suppose that D ⊂ R2 is bounded and convex with a C2,1-boundary.

Then for all τ ≥ 0 and σ ∈ (−1, 1), one finds that δ1,τ ≥ 2.

Remark 6.2.8 If we allow arbitrary τ ≥ 0 and σ ∈ (−1, 1), then 2 is optimal. For each

|σ| ≤ s < 1 and τ > 0 one obtains δ1,τ ≥ c(s, τ) > 2.

Proof. Using the fact that τ |∇u|2 ≥ 0 and [71, Proposition 2.7], we conclude that

δ1,τ ≥ 2.

Corollary 6.2.9 With the assumptions of Proposition 6.2.7, τ ≥ 0, and σ ∈ (−1, 1), we

have

r ((1− σ)G0KτκN ) < 1.

Proof. Let µ1 > 0 be the principal eigenvalue of G0KτκN and let ϕ1 ∈ C1,γ(D) be its

associated eigenfunction, i.e.,

G0KτκNϕ1 = µ1ϕ1. (6.22)

Then ϕ1 ∈ W. Using (6.22) and integration by parts, we obtain

µ1

∫
D

(
(∆ϕ1)2 + τ |∇ϕ1|2

)
dx

=

∫
D

((−∆ϕ1) (KτκNϕ1) + τ∇ϕ1 · ∇ (G0KτκNϕ1)) dx

= −
∫
∂D

(KτκNϕ1) ∂νϕ1 dω +

∫
D
∇ϕ1 · ∇ (KτκNϕ1) dx+ τ

∫
D
ϕ1 (KτκNϕ1) dx.

Here we used ϕ1|∂Ω = 0 and the definition of G0. Integrating by parts once more and using

ϕ1|∂D = 0 and the definitions of Kτ and N , yields

µ1

∫
D

(
(∆ϕ1)2 + τ |∇ϕ1|2

)
dx = −

∫
∂D

(KτκNϕ1) ∂νϕ1 dω +

∫
D
ϕ1 (−∆ + τ)KτκNϕ1dx

=

∫
∂D

κ (∂νϕ1)2 dω. (6.23)
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We find from (6.21) that ϕ1 satisfies∫
D

(
(∆ϕ1)2 + τ |∇ϕ1|2

)
dx = δ1,τ

∫
∂D

κ (∂νϕ1)2 dω. (6.24)

On account of (6.23) and (6.24), we obtain µ1 = δ−1
1,τ . From Proposition 6.2.7 it follows

that µ1 ≤ 1
2 . Since σ ∈ (−1, 1), we have r ((1− σ)G0KτκN ) < 1.

Remark 6.2.10 Instead of estimating the weighted first Steklov eigenvalue as done in

[71], one may also try to find a special positive supersolution ũ, that is, ũ ∈ C1,γ(D) with

ũ  0 and

ũ  (1− σ)G0KτκN ũ.

This means that the solution u∗ of{ −∆v∗ + τv∗ = 0 in D,

v∗ = − (1− σ)κ ∂ν ũ on ∂D,
and

{ −∆u∗ = v∗ in D,

u∗ = 0 on ∂D,
(6.25)

satisfies ũ  u∗. In general it is hard to find such a function. For a disk, however, this

can be done. See Section 6.4.

6.3 Proof of Theorem 6.1.3

Proposition 6.3.1 Suppose that D ⊂ R2 is a bounded convex domain with a C2,1-

boundary. Take u0 := G01. Then

∞∑
k=0

((1− σ)G0KτκN )k G0 : C(D)→ C(D) (6.26)

is a strongly positive operator with respect to the unit u0.

Remark 6.3.2 Note that Gτ : C(D) → C(D) is also strongly positive with respect to

the unit u0 := Gτ1. See [2, Lemma 5.3]. Moreover, the operator Gτ : L2(D) → W is

well-defined and W is embedded in C(D). By the maximum principle it even follows that

0 � f ∈ L2(D) implies Gτf > 0 in D. Thus,

∞∑
k=0

((1− σ)G0KτκN )k G0Gτ : L2(D)→ C(D)

is a positive operator and satisfies

f  0 in D =⇒
∞∑
k=0

((1− σ)G0KτκN )k G0Gτf > 0 in D.

This, together with (6.14), immediately implies u > 0 in D when f  0.
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Proof. Observe that

∞∑
k=0

((1− σ)G0KτκN )k G0 = G0

∞∑
k=0

((1− σ)KτκNG0)k .

Since r ((1− σ)KτκNG0) = rsp < 1 holds due to Corollary 6.2.9, the series converges.

Since G0 and (1− σ)KτκNG0 are strongly positive operators in the appropriate senses, so

is the combination in (6.26).

Before stating the next proposition, let us specify the notion of a C-solution to (6.5).

Definition 6.3.3 For f ∈ L2(D) we say that u is a C-solution of (6.5) if u ∈ C(D)

satisfies

u = G0 (I − (1− σ)KτκNG0)−1 Gτf. (6.27)

Proposition 6.3.4 Suppose that D is a bounded convex domain in R2 with ∂D ∈ C2,1.

If f ∈ L2(D), then a C-solution u of (6.5) exists. Moreover, u ∈W 2
p (D)∩C1,γ(D) for all

p ∈ (1,∞) and γ ∈ (0, 1) and u is also a weak solution.

Proof. For f ∈ L2(D), one finds Gτf ∈ W, which is embedded in C(D). Since

r ((1− σ)KτκNG0) < 1,

the following series converges and it holds that

z := (I − (1− σ)KτκNG0)−1 Gτf =
∞∑
k=0

((1− σ)KτκNG0)k Gτf ∈ C(D) ⊂ L2(D).

Furthermore, we note that

G0

∞∑
k=0

((1− σ)KτκNG0)k Gτ =
∞∑
k=0

((1− σ)G0KτκN )k G0Gτ .

Then, it follows from (6.14) that u = G0z. Regularity results for second order elliptic

problems imply that u = G0z ∈ W and even that u ∈W 2
p (D) ∩ C1,γ(D) for all p ∈ (1,∞)

and γ ∈ (0, 1). Owing to r ((1− σ)KτκNG0) < 1, we can rewrite u = G0z in the form

u = G0Gτf + (1− σ)G0KτκNu.

For such u and for any ϕ ∈ W we have∫
D

(∆u∆ϕ+ τ∇u · ∇ϕ) dx

=

∫
D

(
(−Gτf − (1− σ)KτκNu) ∆ϕ+ τ∇ (G0Gτf + (1− σ)G0KτκNu) · ∇ϕ

)
dx.
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Chapter 6. Positivity preserving property for a hinged convex plate with stress

With two integration by parts, ϕ|∂D = 0, and the definitions of Gτ , Kτ , and N , we obtain

−
∫
D

(Gτf) ∆ϕdx =

∫
D
∇ (Gτf) · ∇ϕdx

= −
∫
D

(∆Gτf)ϕdx

and

−(1− σ)

∫
D

(KτκNu) ∆ϕdx = (1− σ)

∫
∂D

κ ∂νu ∂νϕdω + (1− σ)

∫
D
∇ (KτκNu) · ∇ϕdx

= (1− σ)

∫
∂D

κ ∂νu ∂νϕdω − (1− σ)

∫
D

(∆KτκNu)ϕdx.

Moreover, an integration by parts, ϕ|∂D = 0, and the definition of G0 yield

τ

∫
D
∇ (G0Gτf) · ∇ϕdx = τ

∫
D

(Gτf)ϕdx

and

τ (1− σ)

∫
D
∇ (G0KτκNu) · ∇ϕdx = τ (1− σ)

∫
D

(KτκNu)ϕdx.

Hence, ∫
D

(∆u∆ϕ+ τ∇u · ∇ϕ) dx

= (1− σ)

∫
∂D

κ ∂νu ∂νϕdω +

∫
D

((−∆ + τ)Gτf)ϕdx

+ (1− σ)

∫
D

((−∆ + τ)KτκNu)ϕdx

= (1− σ)

∫
∂D

κ ∂νu ∂νϕdω +

∫
D
fϕ dx,

which shows, together with Lemma A.0.1, that u is a weak solution.

Corollary 6.3.5 Suppose that D is a bounded convex domain in R2 with ∂D ∈ C2,1. If

f ∈ L2(D) satisfies f  0 in D, then the C-solution u satisfies u > 0 in D and −∂νu > 0

on ∂D.

Proof. Since the operator in (6.27) satisfies G0 (I − (1− σ)KτκNG0)−1 Gτf > 0 in D

when f  0, one finds v > 0 and u > 0 in D. With v > 0 on the right hand side of (6.6),

it follows from Hopf’s boundary point Lemma that −∂νu > 0 on ∂D.
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Chapter 6. Positivity preserving property for a hinged convex plate with stress

6.4 The case of a disk

In the case that τ = 0, one finds an explicit formula for the first eigenfunction ϕ1 of

G0K0κN on B1, namely,

ϕ1(x) = 1
2

(
1− |x|2

)
.

Since κ = 1, it is immediately obvious that κNϕ1 = 1 and K0κNϕ1 = 1. So

ϕ∗(x) := G0K0κNϕ1(x) = 1
4

(
1− |x|2

)
.

One indeed finds ϕ∗ = 1
2ϕ1 and hence, with δ1 from Subsection 6.2.1,

δ1 =
ϕ1(x)

ϕ∗(x)
= 2 and µ1 =

1

2
<

1

1− σ .

Even in the case τ > 0, the auxiliary eigenfunction and eigenvalue can be computed in

the case of the disk. Recall that the first eigenfunction ϕ1 and the Steklov eigenvalue δ1,τ

correspond to (6.20)-(6.21).

Lemma 6.4.1 Let D = B1 and τ > 0. Then ϕ1 can be written by using I0, the modified

Bessel function of the first kind:

ϕ1(x) =
I0(
√
τ)− I0(

√
τ |x|)

τI0(
√
τ)

.

Moreover, it holds that

δ1,τ = α(
√
τ) with α(t) :=

t I0(t)

I1(t)
, (6.28)

and α(0) = 2. Here In is the nth modified Bessel function of the first kind. The function

α ∈ C∞(R) is strictly increasing on (0,∞).

Proof. We take a function ũ with κN ũ = 1. A direct computation gives

KτκN ũ = Kτ1 =
I0(
√
τ |·|)

I0(
√
τ)

with

I0(r) =

∞∑
m=0

1

(m!)2

(r
2

)2m
.

Then,

ϕ∗(x) := (G0KτκN ũ) (x) =
1

I0(
√
τ)

∞∑
m=0

(2/
√
τ)

2

4 ((m+ 1)!)2

((√
τ

2

)2m+2

−
(√

τ |x|
2

)2m+2
)
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Chapter 6. Positivity preserving property for a hinged convex plate with stress

=

∑∞
m=1

1
(m!)2

((√
τ

2

)2m
−
(√

τ |x|
2

)2m
)

τI0(
√
τ)

=
I0(
√
τ)− I0(

√
τ |x|)

τI0(
√
τ)

.

Note that we did not fix ũ except for the normal derivative at the boundary. So we may

take

ũ(x) =
I0(
√
τ)− I0(

√
τ |x|)√

τI1(
√
τ)

,

which, since I ′0 = I1 holds, satisfies κN ũ = 1. Since now ũ is a multiple of ϕ∗, we have

found the first eigenfunction and

δ1,τ =
ũ(x)

ϕ∗(x)
=

τI0(
√
τ)√

τI1(
√
τ)
.

The last claims concerning α follow from

α(t) =
t I0(t)

I1(t)
=

2
∑∞

m=0
1

(m!)2

(
t
2

)2m+1∑∞
m=0

1
(m!)2(m+1)

(
t
2

)2m+1 ,

where 1
(m!)2

> 1
(m!)2(m+1)

for all m ≥ 1.

Remark 6.4.2 Indeed, this confirms the estimate for the auxiliary eigenvalue in the case

of the disk for all σ ∈ (−1, 1), since τ 7→ I1(
√
τ)

√
τI0(
√
τ)

is decreasing and

lim
τ↘0

I1 (
√
τ)√

τI0 (
√
τ)

=
1

2
<

1

1− σ .

See Figure 6.1.
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Figure 6.1: The eigenvalue µ1 = δ−1
1,τ of G0KτκN for the unit disk as a function of τ
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Chapter 7

The eigenvalue problem

In this chapter, we study the eigenvalue problem
β∆2ϕ− τ∆ϕ = µϕ in D ⊂ R2,

ϕ = 0 on ∂D,

∆ϕ = (1− σ)κ ∂νϕ on ∂D

(7.1)

with parameters β > 0, τ ≥ 0, and σ ∈ (−1, 1). Here, again, κ denotes the signed cur-

vature of the boundary ∂D, positive on strict convex boundary parts, and ν the exterior

unit normal on ∂D.

We are interested in the existence and uniqueness of µ ∈ R for which (7.1) admits a

positive eigenfunction ϕ. This fundamental result will be derived by combining the posi-

tivity preserving property established in Chapter 6 with the Krĕın-Rutman theorem.

Before stating the main result, let us recall the notation:

W 4
2,B(D) = {v ∈W 4

2 (D) ; v = ∆v − (1− σ)κ ∂νv = 0 on ∂D}.

Theorem 7.0.1 Let D ⊂ R2 be a bounded convex domain with ∂D ∈ C4. The eigenvalue

problem (7.1) admits a unique eigenvalue µ1 ∈ R which has a positive eigenfunction ϕ1.

The eigenvalue µ1 is positive and simple. Moreover, ϕ1 ∈W 4
2,B(D) and ∂νϕ1 < 0 on ∂D.

Proof. Consider the problem (7.1) with f = f(x) as a right-hand side, i.e.,
β∆2ϕ− τ∆ϕ = f in D,

ϕ = 0 on ∂D,

∆ϕ = (1− σ)κ ∂νϕ on ∂D.

(7.2)

Then, by [24, Theorem 2.20], there exists a solution operator S for (7.2) from L2(D) to

W 4
2,B(D) and moreover, there is a constant c > 0, only depending on τ , β, and D, such

that

‖Sf‖W 4
2 (D) ≤ c‖f‖L2(D) for all f ∈ L2(D).

Since the embedding I3 : W 4
2,B(D)→ L2(D) is compact due to [1, Theorem 6.3], one finds

that L := SI3 is a compact endomorphism of W 4
2,B(D). The Banach space W 4

2,B(D) is an
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Chapter 7. The eigenvalue problem

ordered Banach space with positive cone:

(W 4
2,B(D))+ := {v ∈W 4

2,B(D) ; v ≥ 0 in D}.

For the terminology, see [3, 13]. Next, set

C1
0 (D) := {v ∈ C1(D) ; v = 0 on ∂D}

and observe that W 4
2,B(D) is continuously embedded in C1

0 (D). It is well-known that the

space C1
0 (D) has a positive cone with nonempty interior. The interior points are given

by those functions v ∈ C1
0 (D) satisfying v(x) > 0 for all x ∈ D and ∂νv(x) < 0 for all

x ∈ ∂D (see, e.g., [3] or [13, Chapter 12]). This implies, in particular, that (W 4
2,B(D))+

has a nonempty interior. It is easy to see that the interior of (W 4
2,B(D))+ is given by

int
(
(W 4

2,B(D))+

)
= {v ∈W 4

2,B(D) ; v > 0 in D and ∂νv < 0 on ∂D}.

Let us now show that L
(
(W 4

2,B(D))+ \ {0}
)
⊂ int

(
(W 4

2,B(D))+

)
, i.e.,

for any 0 � f ∈W 4
2,B(D) it holds that Lf > 0 in D and ∂ν(Lf) < 0 on ∂D.

But this follows directly from Theorem 6.1.3. The sharper version of the Krĕın-Rutman

theorem (see [3, Theorem 3.2] or [14, Theorem 19.3]) then applies to L. Hence the assertion

follows.

Remark 7.0.2 Assuming that ∂D ∈ C4,γ for some γ ∈ (0, 1), one can show that ϕ1

additionally belongs to C4,γ(D); see [24, Theorem 2.19].
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Chapter 8

Stationary solutions of the MEMS model

In the following two sections we will discuss the stationary version of (3.1)-(3.5). It is

given by the following system of equations

ε2∆′ψu + ∂2
zψu = 0, (x, z) ∈ Ω(u),

ψu(x, z) =
1 + z

1 + u(x)
, (x, z) ∈ ∂Ω(u),

β∆2u− τ∆u = −λ
{
ε2|∇′ψu(x, u(x))|2 + (∂zψu(x, u(x)))2

}
, x ∈ D,

u = ∆u− (1− σ)κ∂νu = 0, x ∈ ∂D.

(8.1)

(8.2)

(8.3)

(8.4)

We first prove the existence of a stationary solution for small values of the parameter λ,

i.e., for small voltage values. Next, we complement this result by a nonexistence theorem

for large voltage values.

8.1 Existence of stable stationary solutions

In this section, it is our aim to prove that, for λ sufficiently small, the problem (3.1)-(3.5)

possesses a unique stationary solution with u ∈ S3(ρ) for some ρ ∈ (0, 1). We recall

that the set S3(ρ) is defined in (3.16). We also show that this stationary solution is

exponentially stable. The following theorem is the analog of [51, Theorem 1.2] and [48,

Theorem 1.7].

Theorem 8.1.1 (Existence) Suppose that D ⊂ R2 is a bounded convex domain with

∂D ∈ C4. Let ρ ∈ (0, 1) be fixed.

(i) There are δ = δ(ρ, ε) > 0 and an analytic function [0, δ)→W 4
2,B(D), λ 7→ Uλ, such

that (Uλ,ΨUλ) is for each λ ∈ (0, δ) the unique stationary solution of (3.1)-(3.5)

with Uλ ∈ S3(ρ) and ΨUλ ∈W 2
2 (Ω(Uλ)). Moreover, −1 < Uλ ≤ 0 in D.

(ii) Let λ ∈ (0, δ). There are $0, r0, R > 0 such that for each initial value u0 ∈W 4
2,B(D)

satisfying u0 > −1 in D and ‖u0−Uλ‖W 4
2 (D) < r0, the associated solution (u, ψu) to
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Chapter 8. Stationary solutions of the MEMS model

(3.1)-(3.5) exists globally in time with

u ∈ C([0,∞),W 4
2,B(D)) ∩ C1([0,∞), L2(D)),

ψu(t) ∈W 2
2 (Ω(u(t))), t ≥ 0,

and u(t) > −1 in D for each t ≥ 0. Moreover,

‖u(t)− Uλ‖W 4
2 (D) + ‖∂tu(t)‖L2(D) ≤ Re−$0t‖u0 − Uλ‖W 4

2 (D), t ≥ 0. (8.5)

The proof of Theorem 8.1.1 relies on the implicit function theorem for part (i) and the

principle of linearized stability for part (ii).

Proof. The proof goes in the same spirit as that of [16, Theorem 3]. To prove (i), we note

that W 4
2 (D) is continuously embedded in W 2

3 (D) and recall that gε defined in Theorem

3.2.1 is an analytic map S3(ρ)→ L2(D). According to Lemma 3.3.2 (or alternatively [24,

Theorem 2.20]), the operator A = β∆2 − τ∆ ∈ L(W 4
2,B(D), L2(D)) is invertible. Hence,

we find that the map

F : R× (W 4
2,B(D) ∩ S3(ρ))→W 4

2,B(D), (λ, v) 7→ v + λA−1gε(v)

is well-defined and analytic. Moreover, we have

F (0, 0) = 0 and DvF (0, 0) = IdW 4
2,B(D).

In view of the implicit function theorem, there is δ = δ(ρ, ε) > 0 and an analytic map

[λ 7→ Uλ] : [0, δ)→W 4
2,B(D)

such that U0 = 0 and F (λ,Uλ) = 0 for λ ∈ [0, δ). For λ 6= 0, let ΨUλ be the potential

associated with Uλ. Then (Uλ,ΨUλ) is the unique stationary solution to (3.1)-(3.5) satis-

fying Uλ ∈W 4
2,B(D) ∩ S3(ρ) and ΨUλ ∈W 2

2 (Ω(Uλ)) when λ ∈ (0, δ). The nonpositivity of

Uλ follows from the fact that gε(Uλ) ≥ 0 in D and the positivity preserving property for

the hinged plate (see Theorem 6.1.3).

We now prove part (ii). Let λ ∈ (0, δ) and write v = u−Uλ. From the analyticity of the

map gε and the continuous embedding W 4
2 (D) ↪→ W 2

3 (D), we infer that Bλ := λDgε(Uλ)

is a well-defined bounded linear operator from W 4
2,B(D) to L2(D). If we linearize the

Cauchy problem (3.17) around the stationary solution Uλ, we obtain{
∂tv + (A+Bλ)v = Gλ(v) := −λ

(
gε(Uλ + v)− gε(Uλ)−Dgε(Uλ)v

)
, t > 0,

v(0) = v0,

where, according to Theorem 3.2.1, the map Gλ ∈ C∞(Oλ, L2(D)) is defined on a neigh-
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borhood Oλ of zero in W 4
2,B(D) such that Uλ +Oλ ⊂ S3(ρ). Moreover, we find

Gλ(0) = 0 and DGλ(0) = 0.

From Lemmas 3.3.1 and 3.3.2 we know that −A is the generator of a strongly continuous

analytic semigroup on L2(D) with a negative spectral bound. Hence, since

‖Bλ‖L(W 4
2,B (D),L2(D)) → 0, as λ→ 0,

it follows from [6, Proposition I.1.4.2] that −(A+Bλ) is again the generator of a strongly

continuous analytic semigroup on L2(D) with a negative spectral bound, provided λ is

sufficiently small. Applying [63, Theorem 9.1.2] and making δ > 0 smaller if necessary,

part (ii) follows and the proof of Theorem 8.1.1 is complete.

The following is an immediate consequence of (8.5) and the Lipschitz continuity of φv
obtained in Theorem 3.2.1:

Corollary 8.1.2 Assume that the conditions of Theorem 8.1.1 hold. Then φu(t) converges

exponentially to φUλ as t→∞, i.e.,

‖φu(t) − φUλ‖W 2
2 (Ω) ≤ R1e

−$0t‖u0 − Uλ‖W 4
2 (D), t ≥ 0,

with a positive constant R1.

8.2 Nonexistence of stationary solutions

We show that there is a threshold for the parameter λ above which no solution to (8.1)-(8.4)

exists. We recall that, by Theorem 7.0.1, the operator β∆2 − τ∆ with hinged boundary

conditions has a positive eigenvalue µ1 > 0 with a corresponding positive eigenfunction

ϕ1 ∈W 4
2,B(D). The proof of the following theorem relies on the positive eigenpair (µ1, ϕ1).

Theorem 8.2.1 (Nonexistence) Let D ⊂ R2 be a bounded convex domain with ∂D ∈
C4. Suppose that λ ≥ µ1. Then there is no stationary solution (u, ψu) to (3.1)-(3.5) such

that u ∈W 4
2,B(D), ψu ∈W 2

2 (Ω(u)), and u(x) > −1 for x ∈ D.

Proof. Consider a stationary solution (u, ψu) to (3.1)-(3.5) with regularity u ∈W 4
2,B(D),

ψu ∈W 2
2 (Ω(u)), and satisfying u > −1 in D. In order to simplify the notation, we set

γe(x) := ∂zψu(x, u(x)) and G(x) :=
(
1 + ε2|∇u(x)|2

)
γe(x)2, x ∈ D.

Using the identity

∇′ψu(x, u(x)) = −∇u(x)γe(x), x ∈ D, (8.6)

which follows from differentiating the boundary condition ψu(x, u(x)) = 1, x ∈ D, the
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function u solves 
β∆2u− τ∆u = −λG in D,

u = 0 on ∂D,

∆u− (1− σ)κ∂νu = 0 on ∂D.

(8.7)

Since ψu ∈ W 2
2 (Ω(u)) implies that [x 7→ ∇ψu(x, u(x))] ∈ W 1/2

2 (D) ↪→ L4(D), we get that

G ∈ L2(D), and since G ≥ 0, we obtain by Theorem 6.1.3 that

u ≤ 0 in D.

We next provide upper and lower bounds for the potential ψu.

Lemma 8.2.2 For (x, z) ∈ Ω(u),

0 ≤ ψu(x, z) ≤ 1.

Proof. The function (x, z) 7→ m clearly solves (8.1) for m = {0, 1}, and furthermore, it

holds that 0 ≤ ψu ≤ 1 on ∂Ω(u) since u = 0 on ∂D. The maximum principle then implies

that 0 ≤ ψu ≤ 1 in Ω(u).

The following lemma is the main ingredient in the proof of Theorem 8.2.1.

Lemma 8.2.3 For (x, z) ∈ Ω(u), define M(x, z) := 1 + z − u(x). Then

ψu(x, z) ≤M(x, z), (x, z) ∈ Ω(u), (8.8)

and

∂zψu(x, u(x)) ≥ 1, x ∈ D. (8.9)

For D = (−1, 1) ⊂ R, β = 0 in (8.3), and for clamped boundary conditions, that is,

when u solves

∂2
xu(x) = λ

{
ε2(∂xψu(x, u(x)))2 + (∂zψu(x, u(x)))2

}
, x ∈ (−1, 1), u(±1) = 0,

such a result has been proved by Laurençot and Walker in [46]. In this case, u is clearly

convex and the proof then follows from the maximum principle.

A somewhat different approach is needed to prove Lemma 8.2.3. Fortunately, the

combination of the boundary conditions for u allows us to rewrite the fourth-order problem

(8.7) as a second order system.

Proof. Since u|∂D = 0, the function M obviously satisfies

M(x, z) = 1 + z = ψu(x, z), x ∈ ∂D, z ∈ (−1, 0)

and

M(x, u(x)) = 1 = ψu(x, u(x)), x ∈ D. (8.10)
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Due to the nonpositivity of u, it also satisfies

M(x,−1) = −u(x) ≥ 0 = ψu(x,−1), x ∈ D,

so that M ≥ ψu on ∂Ω(u). In addition, for (x, z) ∈ Ω(u), we have

−ε2∆′M(x, z)− ∂2
zM(x, z) = ε2∆u(x).

To verify that ∆u ≥ 0 in D, we rewrite (8.7) as the coupled system{ −β∆v + τv = −λG in D,

v = − (1− σ)κ ∂νu on ∂D,
and

{ −∆u = v in D,

u = 0 on D.
(8.11)

Since D is convex, hence κ ≥ 0, we find that

u ≤ 0 in D =⇒ − (1− σ)κ ∂νu ≤ 0 on ∂D,

and it follows from −λG ≤ 0 in D and the maximum principle (for the problem on the

left in (8.11)) that v ≤ 0 in D. Thus, ∆u ≥ 0 in D. Hence, as

−ε2∆′M(x, z)− ∂2
zM(x, z) ≥ 0 = −ε2∆′ψu(x, z)− ∂2

zψu(x, z), (x, z) ∈ Ω(u),

we can apply the maximum principle to conclude that M ≥ ψu in Ω(u). This, together

with (8.10), yields that, for x ∈ D and z ∈ (−1, u(x)),

ψu(x, z)− ψu(x, u(x))

z − u(x)
≥ M(x, z)−M(x, u(x))

z − u(x)
= 1.

Sending z to u(x), we see that ∂zψu(x, u(x)) ≥ 1 for all x ∈ D.

Lemma 8.2.3 implies

G(x) ≥ 1, x ∈ D,

so that by Theorem 6.1.3 we even have u < 0 in D. Moreover, we infer by (8.7) that

− β∆2u+ τ∆u ≥ λ in D. (8.12)

Multiplying (8.12) by the eigenfunction ϕ1 and integrating over D gives

λ

∫
D
ϕ1 dx ≤

∫
D

(
−β∆2u+ τ∆u

)
ϕ1 dx.

Integrating by parts and using ϕ1|∂D = 0, yields∫
D

(
−β∆2u+ τ∆u

)
ϕ1 dx = β

∫
D
∇∆u · ∇ϕ1 dx− τ

∫
D
∇u · ∇ϕ1 dx.
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With two integration by parts, and taking into account that u = 0 on ∂D, we further

obtain ∫
D

(
−β∆2u+ τ∆u

)
ϕ1 dx

= β

∫
∂D

(∆u ∂νϕ1 −∆ϕ1 ∂νu) dω + β

∫
D
∇u · ∇∆ϕ1 dx+ τ

∫
D
u∆ϕ1 dx.

From this, using again integration by parts and u|∂D = 0, we infer that∫
D

(
−β∆2u+ τ∆u

)
ϕ1 dx

= β

∫
∂D

(∆u ∂νϕ1 −∆ϕ1 ∂νu) dω +

∫
D

(
−β∆2ϕ1 + τ∆ϕ1

)
u dx

=

∫
D

(
−β∆2ϕ1 + τ∆ϕ1

)
u dx.

The last step follows from the second boundary condition for u and ϕ1. Then

λ

∫
D
ϕ1 dx ≤

∫
D

(
−β∆2ϕ1 + τ∆ϕ1

)
u dx = −µ1

∫
D
ϕ1 u dx < µ1

∫
D
ϕ1 dx,

since u > −1 in D. So λ < µ1, and this completes the proof.

Remark 8.2.4 An alternative proof of Theorem 8.2.1 is contained in Appendix C. It is

based on the construction of an appropriate auxiliary problem rather than on the lower

bound for ∂zψu(x, u(x)) provided by Lemma 8.2.3. More precisely, we will show that for

ε < ε∗ :=

√
6

7‖∆ϕ1‖L1(D)
and λ ≥

ε2

(
µ1 +

(
K1 +

β

ε2

)
αε

)2

2αεβ

(
1− ε2

ε2
∗

)2 ,

there exists no stationary solution. Here, αε := min{1, ε2} and K1 is a positive constant

such that K1 > 2β. This result is weaker than Theorem 8.2.1 since one easily verifies that

ε2

(
µ1 +

(
K1 +

β

ε2

)
αε

)2

2αεβ

(
1− ε2

ε2
∗

)2 > µ1.

However, it may be that a modification of the estimates in the proof of Theorem C.0.1

could lead to a better outcome.
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Appendix A

An important identity

In this appendix we prove identity (2.18) under weaker assumptions.

Lemma A.0.1 ([81, Lemma A.1]) Let D ⊂ R2 be a bounded domain with ∂D ∈ C2,1 and

let κ be its signed curvature. Then for

u, ϕ ∈W 2
2 (D) ∩W 1

2,B(D) = {v ∈W 2
2 (D) ; v = 0 on ∂D}

it holds that∫
D

(
2∂x2∂x1ϕ∂x2∂x1u− ∂2

x1ϕ∂
2
x2u− ∂2

x2ϕ∂
2
x1u
)
dx = −

∫
∂D

κ ∂νϕ∂νu dω,

where ν is the outward unit normal on ∂D.

Proof. For ∂D ∈ C2,1, the functions
{
v ∈ C∞(D) ; v = 0 on ∂D

}
lie dense in W 2

2 (D) ∩
W 1

2,B(D). Indeed, one may locally rectify a boundary section by a C2,γ-diffeomorphism

and use a reflection argument. Hence we may assume that u ∈ W 2
2 (D) ∩W 1

2,B(D) and

ϕ ∈ C∞(D) with ϕ = 0 on ∂D, and so we may use the same arguments as for (2.18). In

fact, integrating by parts and using u|∂D = 0, one finds that∫
D

(
2∂x2∂x1ϕ∂x2∂x1u− ∂2

x1ϕ∂
2
x2u− ∂2

x2ϕ∂
2
x1u
)
dx

=

∫
∂D

(
ν1 ∂x2∂x1ϕ∂x2u+ ν2 ∂x2∂x1ϕ∂x1u− ν2 ∂

2
x1ϕ∂x2u− ν1 ∂

2
x2ϕ∂x1u

)
dω.

With the counterclockwise oriented tangent vector s = (s1, s2) on ∂D and using the fact

that ∂x1u|∂D = ν1∂νu + s1∂su, ∂x2u|∂D = ν2∂νu + s2∂su and that ∂su|∂D = 0 due to

u|∂D = 0, one gets∫
D

(
2∂x2∂x1ϕ∂x2∂x1u− ∂2

x1ϕ∂
2
x2u− ∂2

x2ϕ∂
2
x1u
)
dx

=

∫
∂D

(
2ν1ν2 ∂x2∂x1ϕ− ν2

2 ∂
2
x1ϕ− ν2

1 ∂
2
x2ϕ
)
∂νu dω

=

∫
∂D

(
2ν1ν2 ∂x2∂x1ϕ+ ν2

1 ∂
2
x1ϕ+ ν2

2 ∂
2
x2ϕ−∆ϕ

)
∂νu dω.
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Taking into account that ∂2
νϕ = ν2

1∂
2
x1ϕ+ ν2

2∂
2
x2ϕ+ 2ν1ν2∂x2∂x1ϕ and ∆ϕ = ∂2

νϕ+ ∂2
sϕ+

κ∂νϕ (see [78, Section 4.1]), one has∫
D

(
2∂x2∂x1ϕ∂x2∂x1u− ∂2

x1ϕ∂
2
x2u− ∂2

x2ϕ∂
2
x1u
)
dx

=

∫
∂D

(
∂2
νϕ−∆ϕ

)
∂νu dω

=

∫
∂D

(
−∂2

sϕ− κ∂νϕ
)
∂νu dω.

Since ∂sϕ = ∂2
sϕ = 0 on ∂D when ϕ|∂D = 0, the proof is complete.
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Appendix B

Proof of Theorem 3.2.1

This proof follows that of [51, Proposition 2.1] with minor changes.

By CB, CL, C1, C2, . . ., we will denote positive constants that depend on ρ, ε, q,D only.

These constants are allowed to vary from line to line.

B.1 Some preliminary lemmas

In order to prove Theorem 3.2.1 we need some preliminary lemmas. In this section, we

consider the Dirichlet problem { −LvΦ = F in Ω,

Φ = 0 on ∂Ω,
(B.1)

where Ω := D × (0, 1) and Lv is defined in (3.10). We have the following existence and

uniqueness result.

Lemma B.1.1 Let ρ ∈ (0, 1) and q ∈ (2,∞]. For each v ∈ Sq(ρ) and F ∈ L2(Ω), there

is a unique solution

Φ ∈W 1
2,B(Ω) :=

{
w ∈W 1

2 (Ω) ; w = 0 on ∂Ω
}

to the boundary value problem (B.1). Furthermore, if v ∈ S∞(ρ), then Φ ∈ W 2
2,B(Ω) :=

W 2
2 (Ω) ∩W 1

2,B(Ω).

Proof. It follows from the definition of Sq(ρ) and Sobolev’s embedding theorem that

there is C1 > 0 such that

1 + v(x) ≥ ρ, x ∈ D, ‖v‖C1(D) ≤
C1

ρ
, (B.2)

for all v ∈ Sq(ρ). Writing −Lv in divergence form,

−Lvw = −div (α(v)∇w)− b(v) · ∇w,
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where, for (x, η) ∈ Ω,

α(v) :=



ε2 0 −ε2η
∂x1v(x)

1 + v(x)

0 ε2 −ε2η
∂x2v(x)

1 + v(x)

−ε2η
∂x1v(x)

1 + v(x)
−ε2η

∂x2v(x)

1 + v(x)

1 + ε2η2|∇v(x)|2
(1 + v(x))2


and

b(v) :=

(
ε2 ∂x1v(x)

1 + v(x)
, ε2 ∂x2v(x)

1 + v(x)
,−ε2η

|∇v(x)|2
(1 + v(x))2

)
,

one easily verifies that −Lv is strictly elliptic with an ellipticity constant depending on ρ

and ε but not on v. Moreover, by the definition of Sq(ρ) and (B.2), one gets

3∑
i,j=1

‖αij(v)‖L∞(Ω) +

3∑
i=1

‖bi(v)‖L∞(Ω) ≤ C2, for all v ∈ Sq(ρ),

where αij(v) denotes the (i, j)-entry of α(v) and bi(v) the components of b(v). Then, [26,

Theorem 8.3] ensures that (B.1) has a unique weak solution Φ ∈W 1
2,B(Ω).

Next, let v ∈ S∞(ρ) and set G := F + b(v) · ∇Φ. Since Φ ∈W 1
2,B(Ω), one has G ∈ L2(Ω).

Furthermore, since αij(v) ∈ W 1
∞(Ω), 1 ≤ i, j ≤ 3, and since Ω is convex, [28, Theorem

3.2.1.2] implies that the problem{ −div (α(v)∇Ψ) = G in Ω,

Ψ = 0 on ∂Ω,
(B.3)

possesses a unique solution Ψ ∈W 2
2,B(Ω). From [26, Theorem 8.3], one deduces that (B.3)

also admits a unique weak solution in W 1
2,B(Ω), and, hence, according to the definition of

G, Φ and Ψ are both weak solutions to (B.3). Thus, Φ = Ψ ∈W 2
2,B(Ω).

What remains to show is that, for v ∈ Sq(ρ), the weak solution of (B.1) has higher

regularity and that, in fact, it belongs to W 2
2,B(Ω). For this purpose, we proceed in two

steps. First, we derive a uniform estimate for Φ in the anisotropic space

X(Ω) :=
{
w ∈W 1

2,B(Ω) ; ∂ηw ∈W 1
2 (Ω)

}
,

and then, using this information, we show that Φ ∈W 2
2 (Ω).

Lemma B.1.2 (Improved regularity: step 1)

Let ρ ∈ (0, 1) and q ∈ (2,∞]. For each v ∈ Sq(ρ) and F ∈ L2(Ω), the weak solution
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Φ ∈W 1
2,B(Ω) to (B.1) belongs to X(Ω), and there exists C3 > 0 such that

‖Φ‖W 1
2 (Ω) + ‖∂ηΦ‖W 1

2 (Ω) ≤ C3‖F‖L2(Ω). (B.4)

Proof. Since W 2
∞(D) embeds continuously in W 2

q (D), we prove the lemma only for

v ∈ Sq(ρ) with q ∈ (2,∞).

Let Φ ∈ W 1
2,B(Ω) be the weak solution to (B.1). We first estimate the W 1

2 (Ω)-norm

of Φ. Using the divergence form of −Lv and taking (1 + v) Φ as a test function in the

weak formulation of (B.1), we obtain∫
Ω

(1 + v) ΦF d(x, η) =

∫
Ω
∇
(
(1 +v)Φ

)
·
(
α(v)∇Φ

)
d(x, η)−

∫
Ω

(1 + v) Φ b(v) ·∇Φ d(x, η).

The definition of α(v) implies that∫
Ω
∇
(
(1 + v)Φ

)
·
(
α(v)∇Φ

)
d(x, η)

= ε2

∫
Ω

(
Φ∇v + (1 + v)∇′Φ

)
·
(
∇′Φ− η ∂ηΦ

∇v
1 + v

)
d(x, η)

− ε2

∫
Ω
η (1 + v) ∂ηΦ

∇v
1 + v

·
(
∇′Φ− η ∂ηΦ

∇v
1 + v

)
d(x, η) +

∫
Ω

(∂ηΦ)2

1 + v
d(x, η),

and by the definition of b(v), we have

−
∫

Ω
(1 + v) Φ b(v) · ∇Φ d(x, η) = −ε2

∫
Ω

Φ∇v ·
(
∇′Φ− η ∂ηΦ

∇v
1 + v

)
d(x, η).

Hence,∫
Ω

(1 + v) ΦF d(x, η) = ε2

∫
Ω

(1 + v)

∣∣∣∣∇′Φ− η ∂ηΦ ∇v
1 + v

∣∣∣∣2 d(x, η) +

∫
Ω

(∂ηΦ)2

1 + v
d(x, η).

Using Hölder’s inequality, we get∫
Ω

(1 + v) ΦF d(x, η) ≤ ‖ (1 + v) ΦF‖L1(Ω) ≤ ‖1 + v‖L∞(D)‖Φ‖L2(Ω)‖F‖L2(Ω),

and it follows from (B.2) that

ε2

∫
Ω

(1 + v)

∣∣∣∣∇′Φ− η ∂ηΦ ∇v
1 + v

∣∣∣∣2 d(x, η) +

∫
Ω

(∂ηΦ)2

1 + v
d(x, η)

≥ ρ
∫

Ω

(
ε2

∣∣∣∣∇′Φ− η ∂ηΦ ∇v
1 + v

∣∣∣∣2 +
(∂ηΦ)2

(1 + v)2

)
d(x, η).
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Combining the above relations, we infer that∫
Ω

(
ε2

∣∣∣∣∇′Φ− η ∂ηΦ ∇v
1 + v

∣∣∣∣2 +
(∂ηΦ)2

(1 + v)2

)
d(x, η) ≤ 1

ρ
‖1 + v‖L∞(D)‖Φ‖L2(Ω)‖F‖L2(Ω),

and, by (B.2) and Young’s inequality, that∫
Ω

(
ε2

∣∣∣∣∇′Φ− η ∂ηΦ ∇v
1 + v

∣∣∣∣2 +
(∂ηΦ)2

(1 + v)2

)
d(x, η) ≤ C4

(
‖Φ‖2L2(Ω) + ‖F‖2L2(Ω)

)
. (B.5)

Using (B.2), it is easy to see by an elementary computation that there exists a constant

m(ρ, ε) ∈ (0, 1
2) such that for any ζ = (ζ1, ζ2, ζ3) ∈ R3,

m(ρ, ε) |ζ|2 ≤ ε2

∣∣∣∣(ζ1, ζ2)− η ζ3
∇v

1 + v

∣∣∣∣2 +

(
ζ3

1 + v

)2

in Ω (B.6)

(see also [17]). Setting ζ = ∇Φ in (B.6) and integrating the inequality over Ω, we deduce

‖∇Φ‖2L2(Ω) ≤
1

m(ρ, ε)

∫
Ω

(
ε2

∣∣∣∣∇′Φ− η ∂ηΦ ∇v
1 + v

∣∣∣∣2 +
(∂ηΦ)2

(1 + v)2

)
d(x, η),

which combined with (B.5), gives

‖Φ‖W 1
2 (Ω) ≤ C5

(
‖Φ‖L2(Ω) + ‖F‖L2(Ω)

)
.

Actually the above estimate can be improved to

‖Φ‖W 1
2 (Ω) ≤ C5 ‖F‖L2(Ω) (B.7)

by arguing in the same way as in the proof of [16, Eq.(19)].

Let us next estimate the W 1
2 (Ω)-norm of ∂ηΦ. We first assume that v ∈ Sq(ρ) ∩W 2

∞(D).

Then Φ ∈ W 2
2,B(Ω) by Lemma B.1.1. Setting (ζx1 , ζx2) := ∇′∂ηΦ and ζη := ∂2

ηΦ, multi-

plying (B.1) by ζη (with Lv as in (3.10)), and integrating over Ω, we get

−
∫

Ω
ζη F d(x, η)

=

∫
Ω
ζη LvΦ d(x, η)

= ε2

∫
Ω
ζη ∆′Φ d(x, η)− 2ε2

∫
Ω
η ζη

∇v
1 + v

·
(
ζx1 , ζx2

)
d(x, η)

+

∫
Ω

(
1 + ε2η2|∇v|2

(1 + v)2

)
ζ2
η d(x, η) + ε2

∫
Ω
η

(
2|∇v|2 −∆v (1 + v)

(1 + v)2

)
∂ηΦ ζη d(x, η).
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In [51] Laurençot and Walker have shown that for Φ ∈W 2
2,B(Ω),∫

Ω
∂2
xiΦ ∂2

ηΦ d(x, η) =

∫
Ω

(∂xi∂ηΦ)2 d(x, η), i = 1, 2.

From this fact, we deduce that

−
∫

Ω
ζη F d(x, η)

= ε2

∫
Ω

(ζ2
x1 + ζ2

x2) d(x, η)− 2ε2

∫
Ω
η ζη

∇v
1 + v

·
(
ζx1 , ζx2

)
d(x, η)

+

∫
Ω

(
1 + ε2η2|∇v|2

(1 + v)2

)
ζ2
η d(x, η) + ε2

∫
Ω
η

(
2|∇v|2 −∆v (1 + v)

(1 + v)2

)
∂ηΦ ζη d(x, η),

and a rearranging of terms leads to

−
∫

Ω
ζη F d(x, η) =

∫
Ω

(
ε2

∣∣∣∣(ζx1 , ζx2)− η ζη ∇v1 + v

∣∣∣∣2 +

(
ζη

1 + v

)2
)
d(x, η)

+ ε2

∫
Ω
η

(
2|∇v|2 −∆v (1 + v)

(1 + v)2

)
∂ηΦ ζη d(x, η).

Using the fact that ∂ηΦ ζη = ∂η
(
(∂ηΦ)2

)
/2 and integration by parts one easily verifies that

ε2

∫
Ω
η

(
2|∇v|2 −∆v (1 + v)

(1 + v)2

)
∂ηΦ ζη d(x, η)

=
ε2

2

∫
∂Ω
η

(
2|∇v|2 −∆v (1 + v)

(1 + v)2

)(
0, (∂ηΦ)2

)
· n∂Ω dS

− ε2

2

∫
Ω

(
2|∇v|2 −∆v (1 + v)

(1 + v)2

)
(∂ηΦ)2 d(x, η)

=
ε2

2

∫
D

(
2|∇v|2 −∆v (1 + v)

(1 + v)2

)
(∂ηΦ(x, 1))2 dx

− ε2

2

∫
Ω

(
2|∇v|2 −∆v (1 + v)

(1 + v)2

)
(∂ηΦ)2 d(x, η)

and hence∫
Ω

(
ε2

∣∣∣∣(ζx1 , ζx2)− η ζη ∇v1 + v

∣∣∣∣2 +

(
ζη

1 + v

)2
)
d(x, η)

= −
∫

Ω
ζη F d(x, η) +

ε2

2

∫
Ω

(
2|∇v|2 −∆v (1 + v)

(1 + v)2

)
(∂ηΦ)2 d(x, η)
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− ε2

2

∫
D

(
2|∇v|2 −∆v (1 + v)

(1 + v)2

)
(∂ηΦ(x, 1))2 dx. (B.8)

Next, let q′ := q
q−1 ∈ (1, 2). By (B.2), Hölder’s inequality, and the trace estimate for

∂ηΦ(·, 1) (see [51, Lemma 2.4]), we obtain that

−ε
2

2

∫
D

(
2|∇v|2 −∆v (1 + v)

(1 + v)2

)
(∂ηΦ(x, 1))2 dx

≤ ε2

2ρ2

∥∥(2|∇v|2 −∆v(1 + v))(∂ηΦ(·, 1))2
∥∥
L1(D)

≤ ε2

2ρ2

∥∥2|∇v|2 −∆v(1 + v)
∥∥
Lq(D)

‖∂ηΦ(·, 1)‖2L2q′ (D)

≤ ε2

2ρ2

(
2‖∇v‖L∞(D)‖∇v‖Lq(D) + ‖1 + v‖L∞(D)‖∆v‖Lq(D)

)
‖∂ηΦ(·, 1)‖2L2q′ (D)

≤ C6 ‖∂ηΦ‖
3q′−2
q′

W 1
2 (Ω)
‖∂ηΦ‖

2−q′
q′

L2(Ω) = C6 ‖∂ηΦ‖
q+2
q

W 1
2 (Ω)
‖∂ηΦ‖

q−2
q

L2(Ω)

= C6

(
‖∂ηΦ‖2L2(Ω) + ‖∇∂ηΦ‖2L2(Ω)

) q+2
2q ‖∂ηΦ‖

q−2
q

L2(Ω). (B.9)

From the inequality (B.6), it follows that

‖∇∂ηΦ‖2L2(Ω) ≤
1

m(ρ)

∫
Ω

(∣∣∣∣(ζx1 , ζx2)− η ζη ∇v1 + v

∣∣∣∣2 +

(
ζη

1 + v

)2
)
d(x, η). (B.10)

Inserting this into (B.9) and using Young’s inequality yields

−ε
2

2

∫
D

(
2|∇v|2 −∆v (1 + v)

(1 + v)2

)
(∂ηΦ(x, 1))2 dx

≤ C7 ‖∂ηΦ‖2L2(Ω) +
ε2

4

∫
Ω

∣∣∣∣(ζx1 , ζx2)− η ζη ∇v1 + v

∣∣∣∣2 d(x, η) (B.11)

+
1

4

∫
Ω

(
ζη

1 + v

)2

d(x, η).

To estimate the second integral on the right-hand side of (B.8), we again use (B.2), Hölder’s

inequality, and the Gagliardo-Nirenberg inequality [70, Theorem 1], since Ω is a bounded

Lipschitz domain. We get

ε2

2

∫
Ω

(
2|∇v|2 −∆v (1 + v)

(1 + v)2

)
(∂ηΦ)2 d(x, η)

≤ ε2

2ρ2

∥∥(2|∇v|2 −∆v(1 + v))(∂ηΦ)2
∥∥
L1(Ω)
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≤ ε2

2ρ2

(
2‖∇v‖L∞(D)‖∇v‖Lq(D) + ‖1 + v‖L∞(D)‖∆v‖Lq(D)

)
‖∂ηΦ‖2L2q′ (Ω)

≤ C8 ‖∂ηΦ‖
3
q

W 1
2 (Ω)
‖∂ηΦ‖

2q−3
q

L2(Ω)

= C8

(
‖∂ηΦ‖2L2(Ω) + ‖∇∂ηΦ‖2L2(Ω)

) 3
2q ‖∂ηΦ‖

2q−3
q

L2(Ω).

Then, arguing as above, we conclude that

ε2

2

∫
Ω

(
2|∇v|2 −∆v (1 + v)

(1 + v)2

)
(∂ηΦ)2 d(x, η)

≤ C9 ‖∂ηΦ‖2L2(Ω) +
ε2

4

∫
Ω

∣∣∣∣(ζx1 , ζx2)− η ζη ∇v1 + v

∣∣∣∣2 d(x, η) (B.12)

+
1

4

∫
Ω

(
ζη

1 + v

)2

d(x, η).

From Hölder’s and Young’s inequalities and (B.2), it follows that

−
∫

Ω
ζη F d(x, η) ≤ ‖(1 + v)F‖L2(Ω)

∥∥∥∥ ζη
1 + v

∥∥∥∥
L2(Ω)

≤ C10‖F‖2L2(Ω) +
1

4

∫
Ω

(
ζη

1 + v

)2

d(x, η).

This, combined with (B.8), (B.11), and (B.12) implies∫
Ω

(
ε2

∣∣∣∣(ζx1 , ζx2)− η ζη ∇v1 + v

∣∣∣∣2 +

(
ζη

1 + v

)2
)
d(x, η) ≤ C11

(
‖F‖2L2(Ω) + ‖∂ηΦ‖2L2(Ω)

)
,

and since

‖∇∂ηΦ‖2L2(Ω) ≤
1

m(ρ, ε)

∫
Ω

(
ε2

∣∣∣∣(ζx1 , ζx2)− η ζη ∇v1 + v

∣∣∣∣2 +

(
ζη

1 + v

)2
)
d(x, η)

according to (B.6), we have

‖∇∂ηΦ‖2L2(Ω) ≤ C12

(
‖F‖2L2(Ω) + ‖∂ηΦ‖2L2(Ω)

)
.

Thus,

‖∂ηΦ‖2W 1
2 (Ω) ≤ (1 + C12)

(
‖F‖2L2(Ω) + ‖∂ηΦ‖2L2(Ω)

)
,

and together with (B.7), this gives (B.4).

We have just shown that, if v ∈ Sq(ρ) ∩W 2
∞(D), then Φ ∈ X(Ω) and (B.4) holds. Let

now v ∈ Sq(ρ). Since W 2
∞(D) is dense in W 2

q (D), there exists a sequence (vn)n in W 2
∞(D)

that converges to v in W 2
q (D) as n → ∞, and since W 2

q (D) ↪→ C1(D), we may assume
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that vn ∈ Sq(1+ρ
2 ). Then(

aij(vn), bi(vn)
)
−→

(
aij(v), bi(v)

)
in C(Ω)

for all 1 ≤ i, j ≤ 3. Denoting the solution to (B.1) with vn instead of v by Φn, it follows

from the above discussion that Φn ∈ X(Ω) satisfies

‖Φn‖W 1
2 (Ω) + ‖∂ηΦn‖W 1

2 (Ω) ≤ C3 ‖F‖L2(Ω).

Since X(Ω) is a Hilbert space, there exists a subsequence, again denoted by (Φn)n, and a

Ψ ∈ X(Ω) such that

Φn ⇀ Ψ in X(Ω).

Hence, ‖Ψ‖X(Ω) ≤ lim infn→∞ ‖Φn‖X(Ω) ≤ C3 ‖F‖L2(Ω). Combining the previous conver-

gences and letting n → ∞ in the weak formulation for −LvnΦn = F shows that Ψ is

a weak solution to (B.1). Consequently, thanks to Lemma B.1.1, Ψ coincides with the

unique weak solution Φ to (B.1).

To show the W 2
2 (Ω)-regularity of our weak solution Φ, we need to assume higher

regularity of v.

Lemma B.1.3 (Improved regularity: step 2)

Let ρ ∈ (0, 1) and q ∈ [3,∞]. For each v ∈ Sq(ρ) and F ∈ L2(Ω), the weak solution

Φ ∈W 1
2,B(Ω) to (B.1) belongs to W 2

2 (Ω), and there is a constant C13 > 0 such that

‖Φ‖W 2
2 (Ω) ≤ C13‖F‖L2(Ω). (B.13)

Proof. Let Φ ∈W 1
2,B(Ω) be the weak solution to (B.1). For (x, η) ∈ Ω, we set

J(x, η) := 2ε2η
∇v(x)

1 + v(x)
· ∇′∂ηΦ(x, η) +

(
1− 1 + ε2η2|∇v(x)|2

(1 + v(x))2

)
∂2
ηΦ(x, η)

− ε2η

(
2
|∇v(x)|2

(1 + v(x))2
− ∆v(x)

1 + v(x)

)
∂ηΦ(x, η).

Then, Φ is also a weak solution of{
ε2∆′Φ + ∂2

ηΦ = J − F in Ω,

Φ = 0 on ∂Ω.

Thanks to Lemma B.1.2, (B.2), and, since W 2
q (D) ↪→ C1(D) and W 1

2 (Ω) ↪→ L6(Ω), it

follows that J ∈ L2(Ω) with

‖J‖L2(Ω) ≤ C14 ‖∂ηΦ‖W 1
2 (Ω) ≤ C15‖F‖L2(Ω). (B.14)

Applying [28, Theorem 3.2.1.2], we conclude that Φ ∈ W 2
2,B(Ω). Moreover, [28, Theorem
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3.1.3.1 and Lemma 3.2.1.1], together with an inspection of the proof of [28, Theorem

3.2.1.2], yield the result that there is a positive constant C16 such that

‖Φ‖W 2
2 (Ω) ≤ C16‖J − F‖L2(Ω),

and, hence, by (B.14), we get (B.13).

B.2 Proof of Theorem 3.2.1

The next result states that, for a given displacement u(t), the transformed problem (3.11)-

(3.12) on the fixed domain Ω has a unique solution φu(t) ∈W 2
2 (Ω).

Proposition B.2.1 Let ρ ∈ (0, 1) and q ∈ [3,∞]. For each v ∈ Sq(ρ), there exists a

unique solution φv ∈W 2
2 (Ω) to the boundary value problem{

(Lvφv)(x, η) = 0, (x, η) ∈ Ω,

φv(x, η) = η, (x, η) ∈ ∂Ω.
(B.15)

Proof. Setting

fv(x, η) := Lvη = ε2η

(
2
|∇v(x)|2

(1 + v(x))2
− ∆v(x)

1 + v(x)

)
, (x, η) ∈ Ω, (B.16)

it follows from the continuous embedding W 2
q (D) ↪→ C1(D) and (B.2) that the function

fv belongs to L2(Ω) with

‖fv‖L2(Ω) ≤ C17. (B.17)

So, by Lemmas B.1.1 and B.1.3, we deduce that the problem{
LvΦv = fv in Ω,

Φv = 0 on ∂Ω,

admits a unique solution Φv ∈W 2
2,B(Ω) such that

‖Φv‖W 2
2 (Ω) ≤ C13‖fv‖L2(Ω), (B.18)

and, hence, the function

φv(x, η) := Φv(x, η) + η, (x, η) ∈ Ω,

solves (B.15). Moreover, it follows from (B.17) and (B.18) that

‖φv‖W 2
2 (Ω) ≤ ‖Φv‖W 2

2 (Ω) + ‖η‖W 2
2 (Ω) ≤ C18. (B.19)
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We next show that φv depends Lipschitz continuously on v ∈ Sq(ρ).

Proposition B.2.2 Let ρ ∈ (0, 1) and q ∈ [3,∞]. Then there exists a constant C19 > 0

such that, for all v1, v2 ∈ Sq(ρ),

‖φv1 − φv2‖W 2
2 (Ω) ≤ C19‖v1 − v2‖W 2

q (D). (B.20)

Proof. For v ∈ Sq(ρ), we define a second order linear operator A(v) ∈ L(W 2
2,B(Ω), L2(Ω))

by setting

A(v)w := −Lvw, w ∈W 2
2,B(Ω).

Thanks to Lemma B.1.3, A(v) is invertible and its inverse A(v)−1 ∈ L(L2(Ω),W 2
2,B(Ω))

satisfies

‖A(v)−1‖L(L2(Ω),W 2
2,B(Ω)) ≤ C13. (B.21)

For non-zero w ∈ W 2
2,B(Ω) and v1, v2 ∈ Sq(ρ), we get, by Hölder’s inequality and the

continuity of the map Lq(Ω) ·W 1
2 (Ω) ↪→ L2(Ω) with embedding constant, say, C > 0,

‖A(v1)w −A(v2)w‖L2(Ω)

‖w‖W 2
2 (Ω)

≤ 2ε2

∥∥∥∥ ∇v1

1 + v1
− ∇v2

1 + v2

∥∥∥∥
L∞(D)

+

∥∥∥∥1 + ε2η2|∇v1|2
(1 + v1)2

− 1 + ε2η2|∇v2|2
(1 + v2)2

∥∥∥∥
L∞(Ω)

+ 2ε2

∥∥∥∥ |∇v1|2
(1 + v1)2

− |∇v2|2
(1 + v2)2

∥∥∥∥
L∞(D)

+ Cε2

∥∥∥∥ ∆v1

1 + v1
− ∆v2

1 + v2

∥∥∥∥
Lq(D)

.

In view of property (B.2) and the continuous embedding of W 1
q (D) in L∞(D), we observe

that the terms on the right-hand side can be bounded by a positive constant, depending

only on ρ, ε, q, and D, times ‖v1 − v2‖W 2
q (D). Thus,

‖A(v1)−A(v2)‖L(L2(Ω),W 2
2,B(Ω)) ≤ C20‖v1 − v2‖W 2

q (D),

and, hence, due to (B.21) and the second resolvent identity, i.e.,

A(v1)−1 −A(v2)−1 = A(v1)−1 (A(v2)−A(v1))A(v2)−1, v1, v2 ∈ Sq(ρ),

we have

‖A(v1)−1 −A(v2)−1‖L(L2(Ω),W 2
2,B(Ω))

≤ ‖A(v1)−1‖L(L2(Ω),W 2
2,B(Ω))‖A(v2)−A(v1)‖L(W 2

2,B(Ω),L2(Ω))‖A(v2)−1‖L(L2(Ω),W 2
2,B(Ω))

≤ C2
13 ‖A(v2)−A(v1)‖L(W 2

2,B(Ω),L2(Ω))

≤ C2
13C20 ‖v1 − v2‖W 2

q (D). (B.22)
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By similar arguments, one finds that

‖fv1 − fv2‖L2(Ω) ≤ C21 ‖v1 − v2‖W 2
q (D), v1, v2 ∈ Sq(ρ),

where fv is defined in (B.16). This estimate, together with (B.17), (B.21), and (B.22),

implies

‖φv1 − φv2‖W 2
2 (Ω) = ‖Φv1 − Φv2‖W 2

2 (Ω) = ‖A(v1)−1fv1 −A(v2)−1fv2‖W 2
2 (Ω)

≤ ‖(A(v1)−1 −A(v2)−1)fv1‖W 2
2 (Ω) + ‖A(v2)−1(fv1 − fv2)‖W 2

2 (Ω)

≤ C22 ‖v1 − v2‖W 2
q (D),

for v1, v2 ∈ Sq(ρ).

Next, we prove that the transformed right-hand side gε depends analytically and Lip-

schitz continuously on v.

Proposition B.2.3 Let ρ ∈ (0, 1), q ∈ [3,∞] and v ∈ Sq(ρ). Let φv ∈ W 2
2 (Ω) be the

associated unique solution to (B.15). Then the mapping gε : Sq(ρ)→ L2(D) defined by

gε(v) =
1 + ε2|∇v|2

(1 + v)2
(∂ηφv(·, 1))2

is analytic, bounded, and globally Lipschitz continuous.

Proof. Since Ω is a bounded Lipschitz domain, it follows from [69, Theorem II.5.5] that,

for v ∈ Sq(ρ),

‖∂ηφv(·, 1)‖
W

1/2
2 (D)

≤ C‖φv‖W 2
2 (Ω), (B.23)

which combined with (B.20), gives

‖∂ηφv1(·, 1)− ∂ηφv2(·, 1)‖
W

1/2
2 (D)

≤ C19‖v1 − v2‖W 2
q (D),

for v1, v2 ∈ Sq(ρ), and, hence, the mapping

Sq(ρ)→W
1/2
2 (D), v 7→ ∂ηφv(·, 1)

is globally Lipschitz continuous. We infer from the continuity of pointwise multiplication

W
1/2
2 (D) ·W 1/2

2 (D) ↪→ L2(D), (B.24)

guaranteed by W
1/2
2 (D) ↪→ L4(D), that

Sq(ρ)→ L2(D), v 7→ (∂ηφv(·, 1))2
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is globally Lipschitz continuous. Using the continuity of the pointwise multiplications

W 1
q (D) ·W 1

q (D) ↪→W 1
q (D), W 1

q (D) ·W 1
∞(D) ↪→W 1

q (D)

(see e.g. [4, Theorem 2.1]), one finds that the mapping

Sq(ρ)→W 1
q (D), v 7→ 1 + ε2|∇v|2

(1 + v)2

is globally Lipschitz continuous. Since

W 1
q (D) · L2(D) ↪→ L2(D)

(due to W 1
q (D) ↪→ L∞(D)), one obtains the global Lipschitz continuity of gε. Together

with the fact that 0 ∈ Sq(ρ), this gives

‖gε(v)‖L2(D) ≤ ‖gε(v)− gε(0)‖L2(D) + ‖gε(0)‖L2(D)

≤ CL ‖v‖W 2
q (D) + ‖(∂ηφ0(·, 1))2‖L2(D)

for v ∈ Sq(ρ). It follows from (B.19), (B.23), and (B.24) that

‖(∂ηφ0(·, 1))2‖L2(D) ≤ C23

and hence,

‖gε(v)‖L2(D) ≤
CL
ρ

+ C23 =: CB for all v ∈ Sq(ρ).

To prove that gε is analytic, we observe that Sq(ρ) is open in W 2
q,B(D) and that the

mappings

A : Sq(ρ)→ L(W 2
2,B(Ω), L2(Ω)) and [v 7→ fv] : Sq(ρ)→ L2(Ω)

are analytic. Noting that the map taking an invertible operator to its inverse is an-

alytic on the space of bounded operators, we deduce that
[
v 7→ A(v)−1

]
: Sq(ρ) →

L(L2(Ω),W 2
2,B(Ω)) is analytic, and thus [v 7→ φv] : Sq(ρ) → W 2

2 (Ω) is analytic. This and

the above results on pointwise multiplication imply that gε : Sq(ρ)→ L2(D) is analytic.
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An alternative proof of Theorem 8.2.1

This appendix presents an alternative proof for the nonexistence of stationary solutions;

it is based on an auxiliary oblique derivative problem.

Theorem C.0.1 Suppose that D ⊂ R2 is a bounded convex domain with ∂D ∈ C4,γ for

some γ ∈ (0, 1). There are ε∗ > 0 and a function Λ : (0, ε∗) → (0,∞) such that there is

no stationary solution (u, ψu) to (3.1)-(3.5) for ε ∈ (0, ε∗) and λ ≥ Λ(ε).

The idea of the proof comes from Laurençot and Walker [48].

Proof. Let (u, ψu) be a stationary solution to (3.1)-(3.5) with u ∈ W 4
2,B(D), ψu ∈

W 2
2 (Ω(u)), and u(x) > −1 for x ∈ D. Set

γe(x) := ∂zψu(x, u(x)) and G(x) :=
(
1 + ε2|∇u(x)|2

)
γe(x)2

for x ∈ D. Then u solves

β∆2u− τ∆u = −λG in D (C.1)

with hinged boundary conditions (8.4), and by the nonnegativity of G and the positivity

preserving property one finds that

− 1 < u ≤ 0 in D. (C.2)

Let ϕ1 be the positive eigenfunction of β∆2 − τ∆ in C4,γ
B (D) := C4,γ(D) ∩ W 4

2,B(D)

satisfying ∂νϕ1 < 0 on ∂D and normalized by ‖ϕ1‖L1(D) = 1, and let µ1 > 0 be the

corresponding eigenvalue; see Chapter 7.

Let us now modify the calculations in [48]. We begin with the following inequality:

Lemma C.0.2 One has ∫
D

ϕ1

1 + u
dx ≤

∫
Ω(u)

ϕ1(∂zψu)2 d(x, z).

Proof. Let x ∈ D, it follows from the boundary conditions for ψu and Hölder’s inequality

that

1 = ψu(x, u(x))− ψu(x,−1)

105



Appendix C. An alternative proof of Theorem 8.2.1

=

∫ u(x)

−1
∂zψu(x, z) dz ≤

(∫ u(x)

−1
|∂zψu(x, z)|2 dz

)1/2√
1 + u(x) ,

and since u > −1 in D,

1

1 + u(x)
≤
∫ u(x)

−1
|∂zψu(x, z)|2 dz, x ∈ D. (C.3)

Multiplying both sides of (C.3) with ϕ1 and integrating over D, we obtain the assertion.

The next result is a consequence of (8.1)-(8.2).

Lemma C.0.3 One has∫
D
ϕ1

(
1 + ε2|∇u|2

)
γe dx

=

∫
Ω(u)

ϕ1

(
ε2|∇′ψu|2 + (∂zψu)2

)
d(x, z)− ε2

2

∫
Ω(u)

ψ2
u ∆ϕ1 d(x, z)

+
ε2

2

∫
D
u∆ϕ1 dx+

ε2

6

∫
D

∆ϕ1 dx.

Proof. We multiply (8.1) by the function ϕ1ψu and integrate over Ω(u) to get

0 = ε2

∫
Ω(u)

(
∆′ψu

)
ϕ1ψu d(x, z) +

∫
Ω(u)

(∂2
zψu)ϕ1ψu d(x, z).

Integrating the last integral by parts and using the boundary conditions both for ϕ1 and

ψu, yields

0 = ε2

∫
Ω(u)

(
∆′ψu

)
ϕ1ψu d(x, z)−

∫
Ω(u)

ϕ1(∂zψu)2 d(x, z) +

∫
D
ϕ1 ∂zψu(·, u) dx,

which can be rewritten as

0 = ε2

∫
Ω(u)

ϕ1 div′(ψu∇′ψu) d(x, z)−
∫

Ω(u)
ϕ1

(
ε2|∇′ψu|2 + (∂zψu)2

)
d(x, z)

+

∫
D
ϕ1 ∂zψu(·, u) dx.

Again, using integration by parts on the first integral, ϕ1|∂D = 0, and ψu = 1 on Gu =

{(x, u(x)) ; x ∈ D}, we find

0 = −ε2

∫
Ω(u)

ψu∇′ψu · ∇ϕ1 d(x, z)−
∫

Ω(u)
ϕ1

(
ε2|∇′ψu|2 + (∂zψu)2

)
d(x, z)

− ε2

∫
D
ϕ1∇′ψu(·, u) · ∇u dx+

∫
D
ϕ1 ∂zψu(·, u) dx,
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and, due to (see (8.6))

∇′ψu(x, u(x)) = −∇u(x) γe(x), x ∈ D,

we have

0 = −ε2

∫
Ω(u)

ψu∇′ψu · ∇ϕ1 d(x, z)−
∫

Ω(u)
ϕ1

(
ε2|∇′ψu|2 + (∂zψu)2

)
d(x, z)

+

∫
D
ϕ1

(
1 + ε2|∇u|2

)
γe dx. (C.4)

Since ψu∇′ψu = 1
2∇′(ψ2

u), an integration by parts in the first integral gives

−ε2

∫
Ω(u)

ψu∇′ψu · ∇ϕ1 d(x, z) =
ε2

2

∫
Ω(u)

ψ2
u ∆ϕ1 d(x, z) +

ε2

2

∫
D
∇ϕ1 · ∇u dx

− ε2

6

∫
∂D

∂νϕ1 dω,

where we used (8.2). Furthermore,

−ε
2

6

∫
∂D

∂νϕ1 dω = −ε
2

6

∫
D

∆ϕ1 dx,

and
ε2

2

∫
D
∇ϕ1 · ∇u dx = −ε

2

2

∫
D
u∆ϕ1 dx.

Hence,

−ε2

∫
Ω(u)

ψu∇′ψu · ∇ϕ1 d(x, z) =
ε2

2

∫
Ω(u)

ψ2
u ∆ϕ1 d(x, z)− ε2

2

∫
D
u∆ϕ1 dx

− ε2

6

∫
D

∆ϕ1 dx.

Inserting this in (C.4) yields the desired result.

We next consider the auxiliary boundary value problem{
−∆U + cU = u in D,

∇ϕ1 · ∇U = 0 on ∂D,
(C.5)

where c ∈ (2,∞) is a constant coefficient. Since ∂νϕ1 < 0 on ∂D, ∇ϕ1 is nowhere tangen-

tial to ∂D, that is, (C.5) is an oblique derivative problem (see [59]). Then, according to

[28, Theorem 2.4.2.7], (C.5) admits a unique solution U ∈ W 2
2 (D). Since ∂D ∈ C4,γ and

ϕ1 ∈ C4,γ(D), [28, Remark 2.5.1.2] implies that U lies in W 4
2 (D).
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Since ∆U − cU = −u ≥ 0 in D, it follows from the maximum principle (see [59, Lemma

1.6] or [35, Corollary 11.2.2]) that U ≤ 0 in D. Similarly, since u > −1 in D, we get that

−1
2 ≤ U in D. Hence,

− 1 < −1

2
≤ U ≤ 0 in D. (C.6)

Next, taking into account that ∂x1ϕ1|∂D = ν1∂νϕ1 + s1∂sϕ1, ∂x2ϕ1|∂D = ν2∂νϕ1 +

s2∂sϕ1, where s represents the counterclockwise oriented tangent vector on ∂D, and that

∂sϕ1|∂D = 0 due to ϕ1 = 0 on ∂D, we deduce that

0 = ∇ϕ1 · ∇U = ∂νϕ1 ∂νU on ∂D. (C.7)

As ∂νϕ1 < 0 on ∂D, (C.7) implies that ∂νU = 0 on ∂D, and since D is convex, we can

apply [28, Theorem 3.1.1.1] (or [27, Theorem 2.1]) to obtain∫
D
|∆U |2 dx ≥

∫
D
|D2U |2 dx, (C.8)

where |D2U |2 := (∂2
x1U)2 +(∂2

x2U)2 +2(∂x2∂x1U)2. An integration by parts, together with

(C.5) and ∂νU = 0 on ∂D, shows that∫
D
uU dx =

∫
D

(−∆U + cU)U dx =

∫
D
|∇U |2 dx+ c

∫
D
|U |2 dx,

and applying Hölder’s inequality we infer that∫
D
|∇U |2 dx+ c

∫
D
|U |2 dx ≤ ‖u‖L2(D) ‖U‖L2(D).

Thus,

‖U‖L2(D) ≤
1

c
‖u‖L2(D), (C.9)

and

‖∇U‖2L2(D) ≤
1

c
‖u‖2L2(D). (C.10)

Combining (C.8)-(C.10), we get

‖U‖2W 2
2 (D) ≤

(
1

c2
+

1

c

)
‖u‖2L2(D) + ‖∆U‖2L2(D). (C.11)

Thanks to Young’s inequality, (C.5), and (C.9),

‖∆U‖2L2(D) = ‖∆U − cU + cU‖2L2(D) ≤ 2
(
‖∆U − cU‖2L2(D) + ‖cU‖2L2(D)

)
≤ 4 ‖u‖2L2(D),
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and hence (C.11) entails

‖U‖W 2
2 (D) ≤

(
1

c2
+

1

c
+ 4

)1/2

‖u‖L2(D). (C.12)

Let α ∈ (0, 1] be a constant which will be determined later. We now multiply (C.1) by

the function ϕ1 (1 + αU) and integrate over D. Three integrations by parts, and using

ϕ1|∂D = 0 and u|∂D = 0, yield

λ

∫
D

(1 + αU)ϕ1Gdx

=

∫
D

(1 + αU)ϕ1

(
−β∆2u+ τ∆u

)
dx

= β

∫
D
∇
(
(1 + αU)ϕ1

)
· ∇∆u dx− τ

∫
D
∇
(
(1 + αU)ϕ1

)
· ∇u dx

= β

∫
∂D

(1 + αU) ∂νϕ1 ∆u dω − β
∫
D

∆
(
(1 + αU)ϕ1

)
∆u dx

+ τ

∫
D

∆
(
(1 + αU)ϕ1

)
u dx

= β

∫
∂D

(1 + αU) ∂νϕ1 ∆u dω − β
∫
∂D

∆
(
(1 + αU)ϕ1

)
∂νu dω

+ β

∫
D
∇∆

(
(1 + αU)ϕ1

)
· ∇u dx+ τ

∫
D

∆
(
(1 + αU)ϕ1

)
u dx.

We note that

∆
(
(1 + αU)ϕ1

)
= αϕ1∆U + 2α∇U · ∇ϕ1 + (1 + αU)∆ϕ1. (C.13)

This, together with (C.5), integration by parts, and u|∂D = 0, implies

β

∫
D
∇∆

(
(1 + αU)ϕ1

)
· ∇u dx

= αβc

∫
D
∇(Uϕ1) · ∇u dx− αβ

∫
D
ϕ1|∇u|2 dx

− αβ
∫
D
u∇u · ∇ϕ1 dx− β

∫
D

(
2α∆(∇U · ∇ϕ1) + ∆

(
(1 + αU) ∆ϕ1

))
u dx.

Again, by (C.5),

τ

∫
D

∆
(
(1 + αU)ϕ1

)
u dx

= τ

∫
D

(
αcUϕ1 − αϕ1u+ 2α∇U · ∇ϕ1 + (1 + αU)∆ϕ1

)
u dx.
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So,

λ

∫
D

(1 + αU)ϕ1Gdx

= β

∫
∂D

(1 + αU) ∂νϕ1 ∆u dω − β
∫
∂D

∆
(
(1 + αU)ϕ1

)
∂νu dω

+ αβc

∫
D
∇(Uϕ1) · ∇u dx− αβ

∫
D
ϕ1|∇u|2 dx− αβ

∫
D
u∇u · ∇ϕ1 dx

− β
∫
D

(
2α∆(∇U · ∇ϕ1) + ∆

(
(1 + αU) ∆ϕ1

))
u dx (C.14)

+ τ

∫
D

(
αcUϕ1 − αϕ1u+ 2α∇U · ∇ϕ1 + (1 + αU) ∆ϕ1

)
u dx.

We can simplify the right-hand side of this equation by integration by parts. Taking into

account that u|∂D = 0 and (C.5), we deduce

αβc

∫
D
∇(Uϕ1) · ∇u dx = −αβc

∫
D

∆(Uϕ1)u dx

= −αβc
∫
D

(
ϕ1∆U + 2∇U · ∇ϕ1 + U∆ϕ1

)
u dx

= −αβc2

∫
D
ϕ1 U udx+ αβc

∫
D
ϕ1 u

2 dx

− 2αβc

∫
D
u∇U · ∇ϕ1 dx− αβc

∫
D
U u∆ϕ1 dx, (C.15)

and

− αβ
∫
D
u∇u · ∇ϕ1 dx = −αβ

2

∫
D
∇(u2) · ∇ϕ1 dx =

αβ

2

∫
D
u2 ∆ϕ1 dx. (C.16)

Furthermore, by (C.5) and (C.16), we find that

−2αβ

∫
D

∆(∇U · ∇ϕ1)u dx

= −2αβ

∫
D

(
∇∆U · ∇ϕ1 +∇U · ∇∆ϕ1

+ 2
(
∂2
x1U ∂

2
x1ϕ1 + ∂2

x2U ∂
2
x2ϕ1 + 2∂x2∂x1U ∂x2∂x1ϕ1

))
u dx

= −2αβc

∫
D
u∇U · ∇ϕ1 dx− αβ

∫
D
u2 ∆ϕ1 dx− 2αβ

∫
D
u∇U · ∇∆ϕ1 dx

− 4αβ

∫
D

(
∂2
x1U ∂

2
x1ϕ1 + ∂2

x2U ∂
2
x2ϕ1 + 2∂x2∂x1U ∂x2∂x1ϕ1

)
u dx. (C.17)
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Again by (C.5) we find that

−β
∫
D

∆
(
(1 + αU)∆ϕ1

)
u dx

= −β
∫
D

(
(1 + αU) ∆2ϕ1 + α∆U ∆ϕ1 + 2α∇U · ∇∆ϕ1

)
u dx

= −β
∫
D
u (1 + αU) ∆2ϕ1 dx− αβc

∫
D
U u∆ϕ1 dx+ αβ

∫
D
u2 ∆ϕ1 dx

− 2αβ

∫
D
u∇U · ∇∆ϕ1 dx. (C.18)

Moreover, using (C.5), (C.13), and the boundary conditions for both u and ϕ1, yields

β

∫
∂D

(1 + αU) ∂νϕ1 ∆u dω − β
∫
∂D

∆
(
(1 + αU)ϕ1

)
∂νu dω

= β

∫
∂D

(1 + αU)
(
∂νϕ1 ∆u− ∂νu∆ϕ1

)
dω = 0. (C.19)

Therefore, by combining (C.14)-(C.19), we get

λ

∫
D

(1 + αU)ϕ1Gdx

= −αc (cβ − τ)

∫
D
ϕ1 U udx+ α (cβ − τ)

∫
D
ϕ1 u

2 dx

− 2α (2βc− τ)

∫
D
u∇U · ∇ϕ1 dx− 2αβc

∫
D
U u∆ϕ1 dx

− αβ
∫
D
ϕ1|∇u|2 dx+

αβ

2

∫
D
u2 ∆ϕ1 dx− 4αβ

∫
D
u∇U · ∇∆ϕ1 dx

− 4αβ

∫
D

(
∂2
x1U ∂

2
x1ϕ1 + ∂2

x2U ∂
2
x2ϕ1 + 2∂x2∂x1U ∂x2∂x1ϕ1

)
u dx

− µ1

∫
D

(1 + αU)ϕ1 u dx, (C.20)

where we have used the fact that (β∆2 − τ∆)ϕ1 = µ1ϕ1 in D. Next we need to estimate

the integrals on the right-hand side of (C.20). From (C.2), (C.6), and the positivity of ϕ1,

it follows that

− αc (cβ − τ)

∫
D
ϕ1 U udx ≤ αcτ

∫
D
ϕ1 U udx ≤

αcτ

2
‖ϕ1‖L1(D) =

αcτ

2
, (C.21)

and

α (cβ − τ)

∫
D
ϕ1 u

2 dx ≤ αcβ
∫
D
ϕ1 u

2 dx < αcβ ‖ϕ1‖L1(D) = αcβ. (C.22)
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Similarly, we get

− 2αβc

∫
D
U u∆ϕ1 dx ≤ αβc ‖∆ϕ1‖L1(D) ≤ 2αβc |D|1/2 ‖ϕ1‖W 4

2 (D), (C.23)

and

− µ1

∫
D

(1 + αU)ϕ1 u dx ≤ −µ1

∫
D
ϕ1 u dx < µ1 ‖ϕ1‖L1(D) = µ1. (C.24)

By (C.2), we see that

αβ

2

∫
D
u2 ∆ϕ1 dx ≤

αβ

2
‖∆ϕ1‖L1(D) ≤ αβ |D|1/2 ‖ϕ1‖W 4

2 (D). (C.25)

By virtue of (C.2), Young’s inequality and (C.12), we have

−2α (2βc−τ)

∫
D
u∇U · ∇ϕ1 dx

≤ 2α (2βc+ τ)

∫
D
|∇U · ∇ϕ1| dx

≤ α (2βc+ τ)
(
‖∇U‖2L2(D) + ‖∇ϕ1‖2L2(D)

)
≤ α (2βc+ τ)

((
1

c2
+

1

c
+ 4

)
‖u‖2L2(D) + ‖ϕ1‖2W 4

2 (D)

)
< α (2βc+ τ)

((
1

c2
+

1

c
+ 4

)
|D|+ ‖ϕ1‖2W 4

2 (D)

)
. (C.26)

By the same arguments, we find that

−4αβ

∫
D

(
∂2
x1U ∂

2
x1ϕ1 + ∂2

x2U ∂
2
x2ϕ1 + 2∂x2∂x1U ∂x2∂x1ϕ1

)
u dx

≤ 4αβ

∫
D
|∂2
x1U ∂

2
x1ϕ1 + ∂2

x2U ∂
2
x2ϕ1 + 2∂x2∂x1U ∂x2∂x1ϕ1| dx

≤ 2αβ
(
‖D2U‖2L2(D) + ‖D2ϕ1‖2L2(D)

)
≤ 2αβ

((
1

c2
+

1

c
+ 4

)
‖u‖2L2(D) + ‖ϕ1‖2W 4

2 (D)

)
< 2αβ

((
1

c2
+

1

c
+ 4

)
|D|+ ‖ϕ1‖2W 4

2 (D)

)
, (C.27)

and that

−4αβ

∫
D
u∇U · ∇∆ϕ1 dx

≤ 4αβ

∫
D
|∇U · ∇∆ϕ1| dx
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≤ 2αβ
(
‖∇U‖2L2(D) + ‖∇∆ϕ1‖2L2(D)

)
≤ 2αβ

((
1

c2
+

1

c
+ 4

)
‖u‖2L2(D) + 2‖ϕ1‖2W 4

2 (D)

)
< 2αβ

((
1

c2
+

1

c
+ 4

)
|D|+ 2‖ϕ1‖2W 4

2 (D)

)
. (C.28)

Inserting (C.21)-(C.28) into (C.20) gives

λ

∫
D

(1 + αU)ϕ1Gdx < µ1 + αK1 − αβ
∫
D
ϕ1|∇u|2 dx, (C.29)

where

K1 := c (τ/2 + β) + (2β (c+ 2) + τ)

(
1

c2
+

1

c
+ 4

)
|D|+ |D|1/2β (2c+ 1)‖ϕ1‖W 4

2 (D)

+ (2β (c+ 3) + τ) ‖ϕ1‖2W 4
2 (D)

is a positive constant independent of u. This, combined with the fact that

1

2
≤ 1− α

2
≤ 1 + αU in D,

due to (C.6), shows that

λ

2

∫
D
ϕ1Gdx ≤ λ

∫
D

(1 + αU)ϕ1Gdx < µ1 + αK1 − αβ
∫
D
ϕ1|∇u|2 dx. (C.30)

We next give a lower estimate for λ
2

∫
D ϕ1Gdx. Let δ > 0 be a small number to be

determined later. By applying Young’s inequality we get∫
D
ϕ1

(
1 + ε2|∇u|2

)
γe dx ≤

δ

2

∫
D
ϕ1Gdx+

1

2δ

∫
D
ϕ1

(
1 + ε2|∇u|2

)
dx

and hence that

λ

2

∫
D
ϕ1Gdx ≥

λ

δ

∫
D
ϕ1

(
1 + ε2|∇u|2

)
γe dx−

λ

2δ2

(
1 + ε2

∫
D
ϕ1|∇u|2 dx

)
.

Using Lemmas C.0.2 and C.0.3, we further obtain

λ

2

∫
D
ϕ1Gdx ≥

λ

δ

(
ε2

∫
Ω(u)

ϕ1 |∇′ψu| d(x, z) +

∫
Ω(u)

ϕ1(∂zψu)2 d(x, z)

− ε2

2

∫
Ω(u)

ψ2
u ∆ϕ1 d(x, z) +

ε2

2

∫
D
u∆ϕ1 dx+

ε2

6

∫
D

∆ϕ1 dx

)

− λ

2δ2

(
1 + ε2

∫
D
ϕ1|∇u|2 dx

)
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≥ λ

δ

∫
D

ϕ1

1 + u
dx− λε2

2δ

∫
Ω(u)

ψ2
u ∆ϕ1 d(x, z) +

λε2

2δ

∫
D
u∆ϕ1 dx

+
λε2

6δ

∫
D

∆ϕ1 dx−
λ

2δ2

(
1 + ε2

∫
D
ϕ1|∇u|2 dx

)
.

So, thanks to (C.2), Lemma 8.2.2, and using the positivity of ϕ1, we deduce that

λ

2

∫
D
ϕ1Gdx ≥

λ

δ
− λε2

2δ
‖∆ϕ1‖L1(D) −

λε2

2δ
‖∆ϕ1‖L1(D) −

λε2

6δ
‖∆ϕ1‖L1(D)

− λ

2δ2
− λε2

2δ2

∫
D
ϕ1|∇u|2 dx

=
λ

δ

(
1− 7

6
ε2 ‖∆ϕ1‖L1(D) −

1

2δ

)
− λε2

2δ2

∫
D
ϕ1|∇u|2 dx.

This, combined with (C.30), yields

µ1 + αK1 >
λ

δ

(
1− 7

6
ε2 ‖∆ϕ1‖L1(D) −

1

2δ

)
+

(
αβ − λε2

2δ2

)∫
D
ϕ1|∇u|2 dx,

and choosing δ = ε
√

λ
2αβ shows that

µ1 + αK1 >

√
2αβ

ε

(
1− 7

6
ε2 ‖∆ϕ1‖L1(D)

)√
λ− αβ

ε2
.

Finally, taking α = αε := min{1, ε2} ∈ (0, 1], we end up with

ε√
2αεβ

(
µ1 +

(
K1 +

β

ε2

)
αε

)
>

(
1− 7

6
ε2 ‖∆ϕ1‖L1(D)

)√
λ . (C.31)

From this we readily infer that λ cannot exceed a threshold value, depending on ε, provided

ε < ε∗ :=

√
6

7 ‖∆ϕ1‖L1(D)
.

Especially, for 0 < ε < min{1, ε∗/2}, we conclude from (C.31) that

λ <
8 (µ1 +K1 + β)2

9β
,

which is independent of ε.
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