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Abstract

Atom interferometers belong among today’s most precise sensors and offer a
broad range of possible metrological applications. Given their ability to measure
accelerations and rotations precisely, they are suitable for inertial sensing, navi-
gation and geodesy. Beyond this, they proved indispensible for time-keeping as
well as fundamental research. This explains why the improvement of achievable
sensitivities of atom interferometers is of particular interest.
However the sensitivity of atom interferometers is fundamentally restricted by
the standard quantum limit. The standard quantum limit can only be surpassed
by employing entangled many-partice states. Entangled states, such as the twin-
Fock state, allow atom interferometers to improve the phase sensitivity beyond
the standard quantum limit, but they are reliant on an accurate detection of the in-
terferometric out come. In this work, an experimental apparatus is designed and
set up that will allow for routine generation of highly entangled twin-Fock states
in a 87Rb spinor Bose-Einstein condensate. As the main feature of this apparatus,
an accurate atom counting fluorescence detection has been implemented. This
detection achieves single-particle resolving fluorescence measurements for 1 up
to 30 atoms. According to the noise analysis the single-atom resolution extends
to a limiting atom number of 390(20) atoms. The implemented quadrupole coils
with their strong gradient of up to 300 G/cm offer a tight confinement that in
combination with the 55 W optical dipole trap laser will enable a fast repetition
rate of the creation of highly entangled quantum states.

Key words: accurate atom counting, entanglement-enhanced atom interfer-
ometry, single-atom resolution
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Chapter 1

Introduction

The story of entanglement begins with one of physics’ most famous paradoxes
and a hand full physicists that later will be known as pioneers in the, at the
time, young field of quantum mechanics. Einstein, Podolsky and Rosen came
up with a thought experiment of two perfectly correlated particles that violated
EPRs notions of realism and/or locality, when described by quantum mechan-
ics [1]. The ensuing discussion about this so-called EPR paradoxon with their
peers Schrödinger, Born and Dirac manifested the concept of entangled particles
[2–4]. Even today the correlations exhibited by entangled particles are equally
as intriguing as they were 85 years ago. They only seem to be observable in
the microscopic quantum world but are absent in our everyday experience of
the macroscopic world. This divide between the physical laws governing the
microscopic and the macroscopic realms begs the question for the transition be-
tween the two [5–7] and what types of entanglement can be created in different
systems and sizes. In smaller, well-controlled systems, entanglement for up to
10 photons [8] and 20 ions has been created [9]. More entangled particles but
less control about the individual constituents is offered by up to 910 entangled
atoms in a Bose-Einstein condensate [10]. Beyond being a mere subject in the
fundamental question for the classical-to-quantum transition, entanglement has
become a resource for many new fields of research. Divers applications of the
the fields of quantum simulation [11], quantum cryptography [12], quantum in-
formation processing [13], quantum computation and quantum communication
[14] rely on entangled states of particles. Entanglement plays a pivotal role for
the field of quantum metrology, in particular for atom interferometers. These
measurement devices rely on interference effects between massive particles to
measure time [15, 16], acceleration [17–19], earth’s rotation [20–24], magnetic [25]
fields, microwave fields [26] and are even employed for tests of general relativity
[27]. A fundamental limit in the context of atom interferometry is the standard
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2 Chapter 1. Introduction

quantum limit. It is a direct consequence of counting uncorrelated particles and
limits the achievable sensitivity to 1/

√
N, where N is the number of employed

particles. While using more particles does increase the sensitivity, it also comes
with the drawbacks of technical problems like increased collision rates and
density-dependent losses. A paradigm shift comes about with the use of entan-
gled many-particle states as they allow to overcome the standard quantum limit
and enhance the measurement precision [28]. These entanglement-enhanced
atom interferometers are fundamentally limited only by the Heisenberg limit,
according to which the achievable sensitivity for N particles scales as 1/N. Ions
have excelled at reaching this limit due to their well-controlled interactions and
efficient detection schemes [29]. Experiments with spin-squeezed Bose-Einstein
condensates [30, 31] have demonstrated a sensitivity gain beyond the standard
quantum limit [32, 33]. Spin-changing collisions are an established technique to
create highly entangled many particle states of neutral atoms in Bose-Einstein
condensates [34, 35] and were employed in the demonstration of a an atomic
twin-Fock interferometer [36]. In this case, the performance was mainly limited
by the detection noise of the applied absorption detection. To gain full access
to the sensitivity enhancement that mesoscopic entangled states could deliver,
they need to be paired with a detection that can distinguish single atoms at
mesoscopic sample sizes. In order to count the atoms within an ultracold cloud,
detection techniques like absorption imaging and fluorescence imaging are most
commonly employed. Absorption imaging works by illuminating the atomic
cloud with a resonant laser beam and detecting the shadow that is cast by the
cloud. With this technique detection uncertainties of about 4 atoms are possible
[37]. Fluorescence imaging is based on exciting the atoms internal energy state
by (near-) resonant laser light and detecting the emitted fluorescence photons.
This technique is especially applicable to detect atoms in a magneto-optical trap,
as the emission of fluorescence photons occurring naturally. While fluorescence
detection can be applied to atoms in other trapping scenarios, the fact that atoms
in a magneto-optical trap are not only trapped but also actively cooled by the
excitation light allows for prolonged interrogation times. Longer detection times
scale the signal-to-noise ratio caused by photon shot noise favorably. Detect-
ing the fluorescence photons emitted by atoms held in a magneto-optical traps,
the detection of single and few atoms simultaneously has already been realized
[38–42]. Yet only recently, this detection limit of a few atoms was pushed to-
wards the mesoscopic regime [43] in a dedicated setup and combined with a
state selective detection technique in a double-well potential [44]. Specifically
the ability to accurately count atoms within an ensemble of mesoscopic size of
highly entangled atoms will enable to approach Heisenberg scaling of the phase
sensitivity for mesoscopic atom numbers in atom interferometers [45, 46]. The
idea of combining these two experimental techniques in on apparatus is stands
at the center of this work. Within the scope of this thesis, an apparatus that com-
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bines an accurate atom counting detection and efficient entanglement creation
has been designed and partially constructed. The presented thesis is structured
as follows. The second chapter of this thesis gives introductions to three fields of
research on ultracold atoms, where an accurate atom counting detection enables:
Atom interferometry at the Heisenberg limit, the creation and characterization of
few-particle Fock states and Bell tests. Chapter 3 reviews currently available de-
tection techniques with respect to their ability to count single-atoms accurately.
As a main result, the apparatus designed and build within the work of this thesis
is presented in Chapter 4. The aspired experimental sequence is outlined and the
implemented subsystems of the apparatus are characterized. In Chapter 5, as a
second main result, the performance of the implemented accurate atom counting
detection is tested. The stable and reproducible fluorescence time traces show
single-particle resolution for atom numbers from 1 up to 30. Further, the noise
analysis puts the limit of atoms detectable with single-atom counting to 390(20)
atoms. Finally, Chapter 6 sums up the presented work and gives an outlook on
the next steps in the construction of the experimental apparatus aiming towards
becoming an entanglement-enhanced atom interferometer.
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Chapter 2

Why to be an atom nit-picker

This first chapter outlines the motivation behind taking on the challenge of de-
signing and building an experimental apparatus aims at combining all the tools
and techniques needed to efficiently create large highly entangled quantum
states with a single-atom detection. The first section describes the current limi-
tations of atom interferometry and is a paramount example of the prospects that
the combination of the aforementioned techniques offers. In fact, the outlined
experiment is the reason for naming the apparatus the quantum-enhanced atom
interferometer (QAI). The following two sections highlight uses of an accurate
atom detection beyond atom interferometry. Detection and creation of atomic
few particle Fock states will be enabled by the analogon to the single-photon
detector. Further, tests of Bells inequality with spatially separated Bose-Einstein
condensates can be accomplished with the aid of a single-atom detection.

2.1 The twin-Fock interferometer

Within this section, the basic physics of quantum interferometry are outlined
using the example of a two-level quantum system pictured on the Bloch sphere.
The naturally occurring boundaries, given by the standard quantum limit for co-
herent states and the Heisenberg limit for entangled states, are discussed. Over-
coming the standard quantum limit in interferometric cold atom and ion experi-
ments is a highly investigated task, with the goal of reaching the ultimate phase
estimation precision at the Heisenberg limit for larger and larger particle num-
bers. Using the example of the entangled twin-Fock state, this section shows
that in order to fully exploit the benefits of entangled states towards Heisen-
berg scaling, an accurate atom counting detection is needed. The combination
of twin-Fock states created in a spinor Bose-Einstein condensate in conjunction

5
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Trapped ions
I1 [47]Sackett et al., 2000
I2 [48]Meyer et al., 2001
I3 [49]Leibfried et al., 2003
I4 [50]Leibfried et al., 2004
I5 [51]Leibfried et al., 2005
I6 [52]Monz et al., 2011
I7 [29]Bohnet et al., 2016

Bose-Einstein condensates
B1 [30]Estève et al., 2008
B2 [32]Gross et al., 2010
B3 [33]Riedel et al., 2010
B4 [36]Lücke et al., 2011
B5 [53]Hamley et al., 2012
B6 [54]Berrada et al., 2013
B7 [55]Ockeloen et al., 2013
B8 [56]Muessel et al., 2014
B9 [57]Strobel et al., 2014

B10 [58]Muessel et al., 2015
B11 [59]Kruse et al., 2016
B12 [60]Zou et al., 2018

Cold thermal atoms
C1 [31]Appel et al., 2009
C2 [61]Leroux et al., 2010
C3 [62]Leroux et al., 2010
C4 [63]Louchet-Chauvet et al., 2010
C5 [64]Schleier-Smith et al., 2010
C6 [65]Chen et al., 2011
C7 [66]Sewell et al., 2012
C8 [67]Bohnet et al., 2014
C9 [68]Sewell et al., 2014

C10 [69]Barontini et al., 2015
C11 [70]Cox et al., 2016
C12 [16]Hosten et al., 2016

Figure 2.1 & Table 2.1: Overview of experimentally demonstrated in-
terferometric sensitivity gain. Logarithmic (left vertical axis scaling as
10 log10((∆θSQL)2/(∆θ)2) in dB) and linear (right vertical axis scaling as
(∆θSQL)2/(∆θ)2) map of experimental demonstrations obtaining a phase sen-
sitivity gain with respect to the standard quantum limit using trapped ions
(black), Bose-Einstein condensates (red) and cold thermal atomic ensembles (vi-
olet). Stars reference full phase estimation experiments, filled cirlces an obtained
gain by characterization of the underlying quantum state and open circles an in-
ferred gain after substraction of technical and/or imaging noise. Corresponding
publications are referenced in the accompanying table on the right. The Heisen-
berg limit is represented by the solid line bordering the physically unaccesible
region in orange. While trapped ions follow the Heisenberg limit closely for par-
ticles numbers N < 10, beyond this experiments have not been able to achieve
Heisenberg scaling. The experimental apparatus build within this work will in-
corperate the experimental techniques neccessary to access the area highlighted
in green and allow for Heisenberg scaling with particle numbers beyond N = 10
based on the twin-Fock interferometer scheme presented in Ref. [36]. The lower
gray line indicates the theoretical limit of the twin-Fock interferometer. Adapted
from Ref. [28] and extended.

with such a detection can potentially outperform currently employed experi-
mental schemes for particle numbers from 10 to 1000 (Fig. 2.1).
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(a) (b)

Figure 2.2: Classical interferometric experiment. a N independent particles
enter the apparatus through one port of a balanced beam splitter, while the
other port is left open. The beam splitter puts each particle in a superposition
of following the upper path (state one |↑〉) and the lower path (state two |↓〉).
A phase shift θ in the upper path only affects state one |↑〉. A second beam
splitter combines the two paths again, where the value of the phase shift will
alter the number of particles N↑ (N↓) leaving the interferometer at the upper
(lower) output port. b The relation between the atom number N↑ at the upper
output port and the phase shift θ allows to estimate the experienced phase shift
θest from the mean number 〈N↑〉 of atoms detected at the upper output port. The
uncertainty ∆N↑ of the atom number directly translates into a corresponding
uncertainty ∆θest of the estimated phase.

2.1.1 Interferometry and its limits

An interferometer is an experimental apparatus that transforms a probe state ρ̂0

based on the unknown value of a phase shift θ. The resulting output state ρ̂θ is
detected and used to infer the value of the phase shift. While the phase shift itself
is not measured directly, the choice of the measurement observable in combina-
tion with the input state is crucial as it will determine the sensitivity with which
the phase shift can be estimated. Depending on the exact apparatus, the phase
shift θ can be coupled to a multitude of physical quantities. This directly links
improvements in phase estimation to improved sensor performance for a wide
variety of applications in magnetometry [56, 66, 71], microwave characterization
[55], gravimetry [72] and time-keeping [16].

The standard quantum limit

Consider an input state of N uncorrelated particles entering a Mach-Zehnder
interferometer setup (Fig. 2.2 a) [73, 74]. A balanced beam splitter puts each
particle into a superposition state of appearing on both output ports of the beam
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splitter. The two spatially distinct paths can be considered as two spatially
separated states or modes, labeled |↑〉 and |↓〉. One of them will experience
an additional phase shift θ. Finally, the two states are being combined again
by another balanced beam splitter. The outcome is measured in terms of the
mean particle numbers 〈N↓〉 and 〈N↑〉 on the corresponding output ports of the
second beam splitter. For the output port |↑〉, both possible paths leading to
it are perfectly symmetric with respect to the experienced reflections. Thus
for a vanishing phase shift constructive interference causes each particle to
appear on this output port. The full dependence of the appearance probability
on the phase shift is given by p↑ = cos2 (θ/2) (Fig. 2.2 b). An estimation of
this probability can be obtained by p↑,est = 〈N↑〉/N, allowing to estimate the
phase in the interferometer by using θest = 2 arccos

(√
p↑,est

)
. The error of this

estimation can be calculated from the standard deviation ∆N↑ =
√

Np↑
(
1 − p↑

)
of the binomially distributed particle number N↑ and reads [75]

∆θest =
∆N↑
∂θ〈N↑〉

=
1
√

N
. (2.1)

This equation describes a fundamental relation in quantum metrology and is
known as the shot noise limit (SNL) or standard quantum limit (SQL). For
repeated measurements, the estimation improves by a factor of 1/

√
m, yielding

∆θ(SQL)
est =

1
√

mN
, (2.2)

where m is the number of repetitions [76, 77]. This can be understood recalling
the independence of the particles. In this idealized view, it does not matter if
all the particles are employed in the interferometer within the same realization
or sequentially. Repeating the measurement with single particles and averaging
or running multiple particles in the same instance will yield the same precision.
This insight about independent particles immediately bares a conceptual ad-
vance in interferometric sensitivity: the use of correlated or entangled particles.

The Heisenberg limit

While the previous assumption of uncorrelated particles invariably led to a bi-
nomial distribution of the measured atom number N↑, this changes drastically
for correlated particles. Entangled quantum states can lead to more complex
distributions with narrower features (Fig. 2.7), ultimately improving the phase
estimation error. By applying the Heisenberg uncertainty between phase differ-
ence and particle number difference [78],

∆θ∆
(
N↑ −N↓

)
≥ 1, (2.3)
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a more fundamental precision limit can be derived under the assumption,
that the maximum fluctuation in the particle number difference is given by
∆

(
N↑ −N↓

)
= N [76, 77]:

∆θ ≥
1
N
. (2.4)

This relation is also known as the Heisenberg limit (HL), where the same scaling
for m repeated measurements holds as for the SQL:

∆θ(HL)
≥

1
√

mN
. (2.5)

A simplified understanding of the origin of this limit can be gained by making
the semiclassical argument, that the smallest change in the outcome of the ex-
periment is given by the quantization of the probe, i.e. the particles. Therefore
the limit set to the sensitivity of a phase measurement can at best scale inversely
with the number N of employed particles.

A more rigorous approach to estimation limitations like the SQL and HL makes
use of the more general concepts of the Fisher information (FI) [79, 80] and the
Cramér-Rao bound (CR) [81, 82]. In the context of quantum measurements the
quantum Cramér-Rao bound has been introduced [83]

∆θ(QCR)
est ≥

1√
mFQ

[
ρ0, Ĵ~n

] , (2.6)

where m is again the number of independent measurements and FQ is the quan-
tum Fisher information (QFI). The quantum Fisher information depends on the
input state ρ0 of the interferometric evolution described by Ĵ~n, as well as the
optimal choice of the measurement observable. It serves as an upper limit to the
Fisher information and reflects the best possible phase sensitivity for the given
state. A potential improvement in phase sensitivity compared to the standard
quantum limit can be written in the form

∆θest ≥
χ
√

N
(2.7)

where the achieved quantum-enhancement is quantified by the parameter

χ2 =
N
FQ
. (2.8)

The QFI uniquely links entanglement and metrological gain in the condition
χ2 < 1 [84]. From a comparison of Eqn. 2.2 and Eqn. 2.6 it becomes apparent,
that states with FQ > N provide entanglement that can be used to surpass the
the standard quantum limit. Any state providing a QFI content that fulfills
FQ > N is thus useful for metrological purposes. The QFI is bound by FQ < N2

underlining the validity of the Heisenberg limit (Eqn. 2.5).
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2.1.2 The Bloch sphere

The theory of two-level quantum systems or qubits is one of the most fun-
damental constituents of quantum mechanical physics. Despite its seemingly
theoretical simplicity it allows for a feature rich representation of quantum phe-
nomena and experimental techniques, including two-mode interferometers. A
very intuitive geometrical depiction of these kinds of systems is the Bloch sphere
(Fig. 2.3).

The single-particle Bloch sphere

In analogy to a spin-1/2 particle the orthonormal state basis of a single particle
in a two-level system is often depicted as |↑〉 for one level and |↓〉 for the other.
The direction of the associated spin orientation is commonly chosen to be the
z direction. The basis states |↑〉 and |↓〉 thus must be the eigenstates to the
corresponding spin measurement operator. A spin measurement in this picture
is defined by the (pseudo) spin operators ŝx, ŝy and ŝz [78], measuring along the
orthonormal directions x, y and z, respectively. They can be defined using the
Pauli matrices σ̂k [85] and s = 1/2 as

ŝx = 1
2 (|↓〉 〈↑| + |↑〉 〈↓|) = sσ̂x

ŝy = 1
2i (|↓〉 〈↑| − |↑〉 〈↓|) = sσ̂y

ŝz = 1
2 (|↑〉 〈↑| − |↓〉 〈↓|) = sσ̂z .

(2.9)

The operators ŝk thus fulfill the commutation relations

[ŝk, ŝl] = iεklmŝm, (2.10)

similar to the Pauli matrices, where εklm is the Levi-Civita tensor. Using the spin-
up and spin-down basis every possible normalized pure state of the system can
be written as a superposition in the form∣∣∣ψ〉

=
∣∣∣ϕ, ϑ〉 = eiϕ/2 cos (ϑ) |↑〉 + e−iϕ/2 sin (ϑ) |↓〉 , (2.11)

where 0 ≤ ϕ < 2π describes the relative phase and the sinusoidal prefactors with
−
π
2 ≤ ϑ <

π
2 quantify the relative occupation of the two basis states. The mean

value of the spin operators is given in vectorial notation by

〈ŝ 〉 =

 〈ŝx〉

〈ŝy〉

〈ŝz〉

 =
1
2

 sin 2ϑ cosϕ
sin 2ϑ sinϕ

cos 2ϑ

 = ~s (2.12)
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Figure 2.3: Single particle spin state Bloch sphere. Top and bottom of the
sphere can be associated with the basis states |↑〉 and |↓〉, respectively. A single
spin-1/2 state is best described by a cone, the center of which represents the
spins mean orientation 〈ŝ〉 = ~s as a vector, oriented according to the angles ϑ and
ϕ, on the surface of the Bloch sphere. The uncertainty of the spins orthogonal
components is visualized as the opening disk spanning across the wide end of
the cone (not to scale with respect to the sphere). The spin’s length is given by√

s (s + 1).

and its length is |~s| = 1/2. This spherical coordinate parameterization of the
mean spin vector is referred to as the Bloch vector and lends itself directly to a
sphere representation with a radius of 1/2, the Bloch sphere (Fig. 2.3). The poles
of the Bloch sphere can be identified with the basis states |↑〉 and |↓〉. Every pure
state’s spin expectation value can now be interpreted as a point on the Bloch
sphere’s surface1. But the total quantum mechanical spin ŝ of length

|ŝ| =
√
〈ŝ2〉 =

√
s (s + 1) =

√
3/4 (2.13)

is best described by a cone around its mean value ~s, such that the projection
onto the cone’s axis matches the expectation value of |〈ŝ〉| = 1/2. This behavior
can be understood as a direct result of the non-vanishing commutator relations
(Eqn. 2.10) between the different spin components, which lead to Heisenberg

1A mixed state ρ̂ =
(
1l + r~s · σ̂

)
can be viewed as an object within the sphere, where the length

of the effective state vector is given by 0 ≤ r ≤ 1.
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uncertainty relations of the form2

(∆sy)2(∆sz)2
≥

1
4
|〈ŝx〉|

2 . (2.14)

This relation holds for any direction the spin could be pointing in (in this case ŝx)
with respect to the corresponding orthogonal directions (in this case ŝy and ŝz).
Within this picture the opening disc of the cone thus represents the uncertainty
of the spin components orthogonal to its mean direction. The size of the disc
can be derived from an example, assuming that the spin is orientated along ŝx

and the fluctuations are symmetric in ŝy and ŝz. As a direct consequence of this
it follows that 〈ŝx〉 = 1/2. The bestcase scenario of uncertainty relation Eq. 2.14
thus yields ∆sy/z = 1/2.

The multi-particle Bloch sphere

When considering not only one single spin but many spins, a very similar
depiction holds true. By adding the individual spin contributions of N particles
within the considered ensemble, a collective spin can be defined as

Ĵ =

N∑
m=1

ŝ(m) (2.15)

where ŝ(m) is the single particle spin vector3 of the m-th particle. Once more
the commutation relations from Eqn. 2.10 will hold for the newly defined spin
operators [

Ĵk, Ĵl

]
= iεklm Ĵm, (2.16)

immediately yielding the associated uncertainty relations

(∆Jk)2(∆Jl)2
≥

1
4

∣∣∣〈 Ĵm〉
∣∣∣2 . (2.17)

Only considering the case of states that are symmetric with respect to particle
exchange allows for writing the spin length as

∣∣∣Ĵ∣∣∣ =
√

J (J + 1) =

√
N
2

(N
2

+ 1
)

N�1
≈

N
2
, (2.18)

2The uncertainty of the spin operators is defined following the textbook standard as (∆si)
2 =〈

ψ
∣∣∣(ŝi − 〈ŝi〉)

2
∣∣∣ψ〉

3The one of which the mean value has been derived in Eqn. 2.12.



2.1. The twin-Fock interferometer 13

where the collective spin is at its maximum J = N/2 and the last approximation
assumes large particle numbers N. States of this kind can now be visualized
by means of a generalized multi-particle Bloch sphere representing all possible
collective spins Ĵ (Fig. 2.4). A state aligned to either pole of the sphere has
all spins within the ensemble pointing along |↑〉 or |↓〉, respectively. Thus, it is
intuitive that Ĵz is given by the difference of the populations N̂↑ and N̂↓ of the
respective single particle states:

Ĵz =
1
2

(
N̂↑ − N̂↓

)
. (2.19)

Again the collective spin is best represented by a mean direction with a cone
around it and an uncertainty disc at its end. As well as for the single spin
consideration an example helps to estimate the uncertainty represented by Eq.
2.17. Assuming all N contributing spins are aligned along ŝ(m)

x , such that 〈ŝ(m)
x 〉 =

1/2 for all m = 1, . . . ,N forms a state that is called the coherent spin state and
posses a collective spin that also points into the x direction where

〈Ĵx〉 =

N∑
m=1

〈ŝ(m)
x 〉 =

N
2

= J. (2.20)

Assuming there are no correlations between the particles allows to set ∆Jy = ∆Jz.
Employing Eq. 2.17 yields a minimum uncertainty of ∆Jy/z =

√
N/2. Eq. 2.19

reveals a linear relationship between the population imbalance and Ĵz, such that

∆
(
N↑ −N↓

)
= 2∆Jz =

√

N. (2.21)

This particle number uncertainty can be linked to the phase uncertainty to
retrieve the fundamental scaling relations for the phase sensitivity from equation
2.1. To reveal this connection the mean collective spin can be written in vectorial
form, as has been done for the single spin in Eq. 2.12, i.e.

〈Ĵ 〉 =


〈 Ĵx〉

〈 Ĵy〉

〈Ĵz〉

 = r

 sin 2ϑ cosϕ
sin 2ϑ sinϕ

cos 2ϑ

 = ~J, (2.22)

with the mean spin length r. Choosingϕ = ϕ↑−ϕ↓ = 0 without loss of generality
and approximating for small phases ϕ this leads to the relations

〈 Ĵx〉 = r sin 2ϑ
∆Jy ≈ r sin 2ϑ∆ϕ

(2.23)

These results together with the commutation relations from Eq. 2.17 yield

∆
(
N↑ −N↓

)
∆ϕ ≥ 1 (2.24)
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(b)

+ + + + =...

(c)

+ + + + =...

correlated

(d)

+ + + + =...

(a)

Figure 2.4: Multi particle spin state Bloch sphere and collective spin forma-
tion. a The collective spin state of N spin-1/2 particles is best described by a cone,
the center of which represents the spins mean orientation 〈Ĵ〉 = ~J as a vector on
the surface of the Bloch sphere. The collective uncertainty of the spins’ orthogo-
nal components is visualized as the opening disk spanning across the wide end
of the cone. The spins’ length in the case of symmetry with respect to particle
exchange is

√
J (J + 1). b A collection of (indistinguishable) spins all residing

in the identical pure single spin state form a symmetric polarized or coherent
spin state of maximum spin length. c A collection of distinguishable spins can
form a non-symmetric collective spin of reduced spin length. d A spin-squeezed
state is the result of correlations between the individual spins, featuring reduced
fluctuations along one direction while the other direction suffers from increased
fluctuations.

as the relation between number and phase uncertainties, showing that at the
expense of either phase or number fluctuations, the respective other can be im-
proved upon. Figure 2.4d already mentions the spin-squeezed states that exploit
this behaviour to gain advantageous scaling of the phase sensitivity.

2.1.3 The interferometer on the Bloch sphere

The Bloch sphere picture does not only cover the states themselves but can
be used to depict state manipulation and dynamics as well (Fig. 2.5 a-d). In
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particular, the representation of an interferometric sequence for a given input
state can help to gain a visual understanding of the states’ distinctive features
and useful metrological properties. In order to compose an interferometric se-
quence, at least two ingredients are needed: the beam splitters and the phase
shift. Both can be derived from the single-particle representation and extended
to the multi-particle representation [86].

Firstly, the resulting transformation for the beam splitter reads

Ĵ =


Ĵx

Ĵy

Ĵz

→
 1 0 0

0 cosα − sinα
0 sinα cosα




Ĵx

Ĵy

Ĵz

 , (2.25)

where the angle α defines the splitting ratio of the beam splitter. A balanced
50:50 beam splitter is obtained for α = π/2. In the Schrödinger representation
for a given input state

∣∣∣ψ〉
in

the output state of the beamsplitter action reads∣∣∣ψ〉
out

= exp
(
−iα Ĵx

) ∣∣∣ψ〉
in
. (2.26)

On the Bloch sphere this results in a rotation of any given input state around the
Jx axis4 (Fig. 2.5 b).

Secondly, the transformation representing the phase shift can be written as

Ĵ =


Ĵx

Ĵy

Ĵz

→
 cosθ − sinθ 0

sinθ cosθ 0
0 0 1




Ĵx

Ĵy

Ĵz

 , (2.27)

where θ represents the added relative phase. The Schrödinger picture in this
case is given by ∣∣∣ψ〉

out
= exp

(
−iθ Ĵz

) ∣∣∣ψ〉
in
. (2.28)

Just like the beam splitting action, this phase shift transformation can be under-
stood in terms of state rotations on the Bloch sphere, only this time around the
Jz axis.

Hence, the full interferometric action, consisting of a balanced beam splitting
process, a phase shift and a recombining balanced beam splitter, on a collective
spin state is given in terms of a multiplication of the corresponding matrices,
yielding

Ĵ =


Ĵx

Ĵy

Ĵz

→
 cosθ 0 sinθ

0 −1 0
sinθ 0 − cosθ




Ĵx

Ĵy

Ĵz

 . (2.29)

4A representation that results in rotation around the Jy axis can also be given and is equally
valid. For simplicity, the Jx representation will be chosen within the context of this work.
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(a) (b) (c) (d)

Figure 2.5: Stepwise depiction of a standard interferometric sequence on the
Bloch sphere. a The initial input state is prepared along the Jz direction, as
depicted by the blue vector. b A balanced beam splitter acts as a π/2 rotation
around the Jx axis and aligns the state vector with the Jy axis in the equatorial
plane. c The phase evolution θ is represented by a rotation around Jz. A full turn
would correspond to a phase shift of θ = 2π. Illustrated is a phase shift close
to θ = π/2, almost aligning the state vector with the Jx axis. d A final balanced
beam splitting operation turns the state around the Jx axis. The resulting output
state is slightly offset from the Jx axis in the Jx-Jz plane. The last operation turned
the imprinted phase into a measurable population difference between the two
involved single particle states |↑〉 and |↓〉.

This shows that the combined action of the interferometer can be understood as
a collective rotation of the state around the generalized Bloch sphere’s Jy axis.
The Schrödinger representation allows to summarize the whole interferometric
sequence into one operator ÛIS that acts on the input state

∣∣∣ψ〉
in

as∣∣∣ψ〉
out

= ÛIS

∣∣∣ψ〉
in

= exp
(
−iπ2 Ĵx

)
exp

(
−iθ Ĵz

)
exp

(
−iπ2 Ĵx

) ∣∣∣ψ〉
in

=

(
i sin θ

2 cos θ
2

cos θ
2 i sin θ

2

) ∣∣∣ψ〉
in
.

(2.30)

Coherent state interferometry

While the coherent spin state has already been introduced in the context of
its representation on the generalized Bloch sphere, it is also the most common
starting point for looking at the interplay of a state’s phase sensitivity and the
interferometric sequence described above. Its mathematical representation in
terms of the single particle spin states is given by∣∣∣ϑ,ϕ,N〉

=

N⊗
m=1

[
cosϑ |↑〉m + eiϕ sinϑ |↓〉m

]
. (2.31)

Simply making use of the fact that the interferometric sequence acts like a rota-
tion around the y-axis on the Bloch sphere (Fig. 2.6), shows that a change in the
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Figure 2.6: Depiction of standard interferometric sequences using a coherent
spin state and the resulting distributions of detectable population imbalances
Jz for different values of the experienced phase shift θ. In each case (a θ = π/2,
b θ = 3π/8, c θ = π/4) the interferometric sequences undergo the same three
steps, involving four different states in the process (including the initial state),
all depicted on the same Bloch sphere. The colored vectors represent the mean
spin orientation of the state while the accordingly colored distributions on the
spheres surfaces depict the Husimi distribution of the state. The initial state is
colored in blue, always orientated along the Jz axis. The beam splitting process
turns the state to the equator (green) where a phase θ is acquired (orange).
The combining beam splitter operation turns the state from the equator into the
Jx-Jz-plane (red). The projection of the state onto the Jz axis is the measured
output of the interferometer and is accessed experimentally by the observed
occupation difference of the single particle states |↑〉 and |↓〉. d-f Corresponding
Jz distributions are shown below for a coherent spin state consisting of N = 10
particles. A change in phase θ simple shifts the distribution. Its mean can be
used as an estimator for the underlying phase change.

acquired phase θ can be measured indirectly by measuring the states 〈 Ĵz〉, i.e.
the population imbalance between |↑〉 and |↓〉. For both the initial and the final
state this measurement is a projection of the state onto the z-axis, resulting in a
Gaussian distribution. The corresponding shift of the mean value between final
and initial state acts as a measure for the acquired phase. Coherent spin states
possess a quantum Fisher information that is given by FQ = N, making it exactly
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fulfill the SQL (Eq. 2.2).

Twin-Fock state interferometry

In contrast to the coherent spin state, the twin-Fock state is a highly entangled
quantum state and belongs to the family of Dicke states. While Dicke states
in general feature a well defined number of atoms in the |↑〉 and |↓〉 state, the
twin-Fock state features the exact same amount of atoms in both states:

|mz〉Dicke = |N/2 + m〉↑ |N/2 −m〉↓ = |N/2 + m,N/2 −m〉 (2.32)

|mz〉TF = |N/2,N/2〉 . (2.33)

In turn, the vanishing population difference N↑ − N↓ = 0 and the vanishing
mean collective spin 〈Ĵ〉 = (0, 0, 0)T cause the phase ϑ to be completely undefined
as it is not possible to assign an angle between mean spin and Jx-axis. These
characteristics are best described by a ring around the equator of the Bloch sphere
(Fig. 2.7 a-c). The quantum Fisher information for a Dicke state reads [28]

FQ

[
|mz〉 , Ĵ⊥

]
=

N2

2
− 2m2 + N, (2.34)

implying that in case of a twin-Fock state (i.e. m = 0) Heisenberg scaling FQ ∝ N2

can be achieved. While the statement, that a state without a well defined phase
should be useful for phase estimation appears counterintuitive at first, it be-
comes clear once the interferometric sequence is applied step by step (Fig. 2.7).
Already the first beam splitter turns the ring from its horizontal orientation at
the equator by 90 degrees into a vertical position. This immediately converts
the well defined population difference into a precisely defined phase at the cost
of largely increased fluctuations in the population difference. The phase accu-
mulation now turns the ring around the Jz-axis of the Bloch sphere before the
second beam splitting process turns the state around the Jx-axis again. Once the
interferometric sequence is completed, the population difference can be mea-
sured, acting as a projection of the state onto Jz. As opposed to the coherent
state, for the twin-Fock state the mean value 〈 Ĵz〉 of the resulting distribution
cannot serve as a measure of the phase shift θ since it does not depend on it.
Indeed this holds true for the mean values of each collective spin component
〈 Ĵz〉 = 〈 Ĵy〉 = 〈Ĵx〉 = 0 for all possible turning angles on the Bloch sphere. But
the phase shift ϑ in this case has an even more dramatic influence on the dis-
tribution. It changes its overall shape rather than only shifting it. Exactly this
type of influence is captured well by the Fisher information, as it quantifies the
observable’s probability distribution’s rate of change with respect to a change in
the phase. This implies the need for a more advanced phase estimation scheme
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Figure 2.7: Depiction of standard interferometric sequences for a twin-Fock
input state and the resulting distributions of detectable population imbal-
ances Jz for different values of the experienced phase shift θ. In each case (a
θ = 0, b θ = π/8, c θ = π/4) the interferometric sequences undergo the same
three steps, involving four different states in the process (including the initial
state), all depicted on the same Bloch sphere using their Husimi distribution.
The initial state (blue) is located on the equator. A first beam splitting operation
turns it upright (green). Now the narrow feature of the distribution is orientated
along the direction of phase accumulation, making the twin-Fock state highly
sensitive to phase changes (yellow). A final beam splitting operation turns the
ring one more time (red). As for the initial state, the narrow width of the distri-
bution is orientated along the Jz axis translating the phase change into a change
in occupation number. d-f Below, the resulting Jz distribution for each case are
shown for a twin-Fock state consisting of N = 20 particles. These distributions
always stay centered around the same mean value, rendering the mean useless
for the estimation of the underlying phase.

[87, 88]. The width (∆Jz)
2 = 〈J2

z〉 of the distribution is one way to track a change
in the phase θ [36, 46, 88]. To date, a twin-Fock interferometer has been real-
ized in photonic [89, 90] and ionic [48] systems. An accompanying sensitivity
increase of 1.61 dB below the standard quantum limit for a bosonic system has
also been demonstrated experimentally at an optimal phase shift of 15 mrad
using a twin-Fock state created by spin changing collisions of 7000 87Rb atoms
within a Bose-Einstein condensate [36]. These results were mainly limited by
the experiment’s detection system that offered a counting uncertainty of about
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Figure 2.8: The quantum Cramer-Rao bound on the phase estimation for the
twin-Fock state and achievable phase sensitivities limited by detection noise.
This graph shows the phase sensitivity for a twin-Fock interferometer based on
its Fisher information for different levels of detection noise depending on the
rotation angle θ within the interferometer for N = 1000 atoms. The standard
quantum limit (SQL) and Heisenberg limit (HL) are shown as a dashed black
and a solid black line, respectively. The grey shaded area between these two
lines marks the region of fundamental improvement below the SQL. The solid
curves depict the expected phase sensitivity for different levels of detection noise.
While a detection noise of σdn = 10 (violet) would not allow to break the SQL, a
detection noise of σdn = 5 (red) already reaches below the SQL. Even better is the
performance of a detection noise σdn = 1 (orange), where a wide range of rotation
angles can be detected with a sensitivity below the SQL. Decreasing the detection
noise even further allows to scale towards the true quantum Cramer-Rao bound
of the twin-Fock state for vanishing detection noise σdn = 0 (blue).

σdn = 20 atoms. A detection that provides single atom counting precision could
immediately push the limit for the phase sensitivity towards the Heisenberg
limit for the range of small phase shifts. Beyond that, the full counting statistics
of the final state

∣∣∣ψ〉
out

would be revealed, ultimately allowing to use the shape
of the entire distribution for phase estimation purposes (Fig. 2.7 lower panel).
A striking feature of this distribution is, that given a symmetric mixing of the
two modes with a π/2-pulse, only odd or only even numbers of atoms can be
observed at the output ports, depending on the phase shift within the interfero-
meter. This leads to a strong dependence of the parity on the phase shift close
to multiples of θ = π/2 and in fact a parity measurement is sufficient to achieve
Heisenberg scaling [45, 91, 92]. This behaviour is a many-particle variant of the
two-particle Hong-Ou-Mandel effect, first observed on photons [93]. Eventually,
a detection that performs at a single atom counting level will fully unlock the
potential of the experimental concept of a twin-Fock interferometer, as it will
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allow to satisfy the Cramer-Rao bound for the twin-Fock state and push the
phase sensitivity towards the fundamental Heisenberg limit for a broad range of
the phase values θ (Fig. 2.8) by using either a Bayesian method or a maximum
likelihood estimator [87, 94, 95].

2.2 Characterization and reconstruction
of non-classical quantum states

Harnessing the power of non-classical quantum states for the purposes of quan-
tum information technology implies the need for full knowledge of and control
over those states, from creation and characterization to manipulation and in-
terpretation. In photonic systems a wide variety of fundamental non-classical
quantum states have been realized and characterized experimentally [96]. A par-
ticular highlight is the creation of heralded single-photon, two-photon and even
three-photon Fock states as well as the reconstruction of their corresponding
Wigner functions and density matrices by means of homodyne quantum to-
mography [97–100]. Further the photon-added coherent state [101, 102] first
characterized the result of the action of the bosonic creation operator on a co-
herent state. Beyond this characterization of quantum states goes the concept
of quantum process tomography of the creation and annihilation operators for
single photons [103]. This progress is enabled by three key techniques and
technologies available to photonic quantum optics: optical homodyne tomog-
raphy [104], parametric down conversion [105, 106] and efficient single photon
detectors. Homodyne detection has been demonstrated for atomic systems
[107] and has been used to implement an interaction free measurement scheme
based on the quantum Zeno effect [108]. Spin dynamics in spinor Bose-Einstein
condensates are spontaneously occurring spin changing collisions that can be
understood as the atomic analogon to optical parametric down conversion [109].
They similarly create excitation pairs of opposing spin orientation, ultimately
generating entanglement in between the particles. It is the efficient detection of
single atoms that is needed in order to not only translate the progress in creation
and characterization of quantum states from photonic systems onto atomic sys-
tems, but also to access the benefits that atomic systems can offer when it comes
to the synthesis of non-classical quantum states. This section outlines the nec-
essary concepts and techniques to advance the characterization of fundamental
atomic quantum states.

2.2.1 The Wigner function

For a classical particle, the simultaneous determination of position and momen-
tum allows to depict its state as an exact point in phase space. An ensemble of
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Figure 2.9: Wigner Functions. This panel shows the Wigner functions of
a few exemplary quantum states. a The vacuum state |0〉 forms a gaussian
distribution around the origin. b A coherent state for n̄ = 10 particles is created
by displacing the vacuum state but maintains its gaussian shape. c-f Fock states
|n〉 with a defined particle number n show oscillating characteristics while still
being centered and symmetric with respect to the origin. c Most strikingly
already for a single particle state |1〉, the Wigner function takes on negative
values. Similar features are seen for two, three and 10 particles (|2〉 in d, |3〉
in e and |10〉 in f). The number of oscillations is determined by the number of
particles.

classical particles is best described by a probability distribution, the Liouville
density, that quantifies the likeliness of finding a particle with a given combina-
tion of position and momentum. For quantum-mechanical particles, this kind
of description cannot be readily adopted, since the uncertainty relation forbids
a simultaneous determination of position and momentum, necessitating the use
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of a quasi-probability distribution for even a single particle. The Wigner func-
tion takes over this role[78, 110, 111]. For an arbitrary density operator ρ̂, the
Wigner function is defined as

W
(
x, p

)
=

1
2π~

∞∫
−∞

〈
x +

1
2

x′
∣∣∣∣∣ ρ̂ ∣∣∣∣∣x − 1

2
x′
〉

eipx′/~ dx′, (2.35)

where
∣∣∣q ± 1

2x
〉

are the eigenstates of the position operator5. Since it is linked
to a state’s density matrix it can readily be used to calculate any property of
the quantum state, such as its quadratures which are linked to the Wigner
function by the Radon transformation [112]. Conversely the density matrix can
be obtained from the Wigner function via a Fourier transformation. For pure
states the marginal distributions are given by the states momentum and position
distribution, e.g.

∞∫
−∞

W
(
x, p

)
dp =

∣∣∣ψ (x)
∣∣∣2 . (2.36)

While positivity is a property that classical probability distributions over phase
space have to obey strictly, non-classical quantum states force the Wigner dis-
tribution to take on negative values. For this reason, it is usually referred to as
a quasi-probability distribution. Its negativity can thus be used to demonstrate
that a quantum state has no classical analogon. This makes the Wigner function
a useful tool for the characterization of quantum states and an interesting prop-
erty to obtain experimentally.

Figure 2.9 depicts the Wigner functions for different classical and non-classical
quantum states. For a coherent state

∣∣∣β〉, the Wigner function can be written as

W (α) =
2
π

exp
(
−2|α − β|2

)
, (2.37)

while the Wigner function of a Fock state |n〉 is given by

W (α) =
2
π

(−1)n Ln

(
4|α|2

)
exp

(
−2|α|2

)
, (2.38)

where Ln (ζ) is the n-th Laguerre polynomial.

2.2.2 Homodyne detection

Homodyne detection and tomography have proven themselves to be valuable
experimental tools in quantum optics [78, 113, 114]. The corresponding concepts

5In general any pair of conjugate variables, i.e. the real and imaginary parts of the electric
field, will work as a phase space description.
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Figure 2.10: Sketch of the experimental realization of homodyne detection. a
A balanced homodyning setup analyzes an unknown state

∣∣∣ψ〉
with the aid of

a strong coherent state |α〉. The states are mixed using a balanced beam splitter
and the particle number difference at the output ports is recorded. b Normalized
counting statistics vary greatly with the unknown input state. For the vacuum
state

∣∣∣ψ〉
= |0〉 a normal distribution is found (solid red line). If the input state

is a Fock-state
∣∣∣ψ〉

= |n〉 the probability distribution changes drastically as it is
described by the Hermitian polynomials. Shown are the cases

∣∣∣ψ〉
= |1〉 (dashed

blue line) and
∣∣∣ψ〉

= |n〉 (dash-dotted grey line).

have also been applied to ultracold atoms using the same quantum physical
foundation by applying microwave or radio-frequency pulses that act as beam
splitters. In a typical homodyne detection setup the quantum state of interest∣∣∣ψ〉

is mixed with a strong coherent state |α〉 on a symmetric beam splitter6

(Fig. 2.10 a). This strong coherent state |α〉 is named the local oscillator. The
difference signal of the two particle numbers on the output ports is recorded
for multiple realizations. Characteristics of the input state

∣∣∣ψ〉
can be inferred

from the counting statistics of this signal (Fig. 2.10 b). For a given value of the
phase θ of the local oscillator, the particle difference can be expressed using the
corresponding particle number operators as

n̂1 − n̂2 =
|α|
2

X̂ (θ) . (2.39)

Thus the particle number difference is proportional to the quadrature operator
of the input state

X̂ (θ) =
1
2

(
â1e−iθ + â†1eiθ

)
(2.40)

where â1 and â†1 are the annihilation and creation operators of the input state,
respectively. Amplification of the quadrature signal by the amplitude of the

6This type of homodyne detection is also referred to as balanced homodyne detection.
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coherent state, which is the square root of the mean number of particles in the
coherent state |α| =

√
〈n〉, can be deciding in scenarios with finite detection effi-

ciency, detection noise or small quadrature signals.

The resulting counting statistics show distinguishable features depending on
the input state

∣∣∣ψ〉
. In Fig. 2.10 b, the probability of observing a certain particle

number difference in the homodyne detection for the vacuum state
∣∣∣ψ〉

= |0〉,
the single-particle Fock state

∣∣∣ψ〉
= |1〉 and the two-particle Fock state

∣∣∣ψ〉
= |2〉

is shown.

2.2.3 Homodyne tomography

Instead of measuring only a single quadrature X̂ (θ) the phase θ of the local
oscillator can be varied, effectively rotating the sampled quadrature For each
phase value θ a probability distribution Pθ (xθ) can be recorded. This set of
probability distributions characterizes the underlying quantum state and can
be used to reconstruct the states’ density matrix and the Wigner function, both
equally providing a full characterization of the state itself. This has successfully
been demonstrated for the photonic vacuum squeezed state by employing an
inverse Radon transformation to link the probability distributions to the Wigner
function [104, 112]. A more graphic way of understanding this is viewing
the collected distributions as projections of the Wigner function. For example,
the distribution Pθ (xθ) is given by integrating the Wigner function along the
corresponding conjugate variable xθ+π/2 = pθ, such that

Pθ (xθ) =

∞∫
−∞

W
(
xθ cosθ − pθ sinθ, xθ sinθ + pθ cosθ

)
dpθ. (2.41)

In this manner, each different phase angle θ of the local oscillator provides
information about the Wigner function along a certain direction, resulting in a
tomographic representation. Besides the inverse Radon transformation, more
recent reconstruction techniques are available. A more direct way to obtain
the density matrix from the measured quadrature distribution, avoiding the
detour via the Wigner function, uses so-called pattern functions and allows for
a straightforward representation of the density matrix in the Fock basis [115–
118]. Moreover, these advances also consider the impact of nonideal detectors
with less than unit detection efficiencies η. Furthermore, a maximum likelihood
reconstruction method omits even the calculation of marginal distributions and
directly finds the most probable quantum state to produce the measured data
[119–121].
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Figure 2.11: Sketch of the experimental apparatus to measure the photonic
single Fock state Wigner function. Redrawing of the experimental setup used
in [97]. The single photon state is generated by parametric down-conversion
of a previously frequency-doubled pump beam. Spontaneous annihilation of a
pump photon may produce a photon pair of lower energy separated into two
emission channels. Detecting one of these photons in the trigger channel (green)
causes a collapse of the photon pair and projects the quantum state in the signal
channel (orange) into a single photon state. A major challenge of such a setup is
the mode matching between the local oscillator and the signaling mode for the
homodyne detection [122].

2.2.4 Experimental setup the for creation and the detection of
Fock states

Reviewing the experimental details of the successful advances in the character-
ization of the single-photon [97, 101], two-photon [99] and three-photon Fock
states [100] reveals a common scheme, that relies on the three key techniques
discussed in the previous sections. Figure 2.11 shows a sketch of the experi-
mental setup used to characterize the single-photon Fock state. The creation
of photon pairs is achieved by consecutive frequency doubling and parametric
down conversion of a pulsed laser source.

The detection scheme is two tiered. Firstly, a spatial filter defines a spatial
mode in the trigger arm of the experiment that is detected by a single photon
counting device (avalanche photo diode). A successful event detection heralds
the creation of a desired Fock state in the signaling arm of the experiment. Sec-
ondly a strong coherent source is used to analyze the state in the signaling arm.

For the higher order Fock states |2〉 and |3〉 not only one single photon counter is
used in the trigger arm, but an array of detectors corresponding to the size of the
desired Fock state is needed [99, 100]. Only a simultaneous detection of the right
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number of photons on all devices heralds the creation of the desired Fock state.
The detection events project the quantum state of the photon pair(s) onto a Fock
state within the signal arm that can be characterized by the homodyning setup.
Spatial and spectral filtering in the heralding arm of the experiment ensures
sufficient overlap with the local oscillator [122]. Especially when this scheme is
extended to many particles, an efficient parallel detection becomes exponentially
important. In atomic systems the parallel and accurate detection of many atoms
with only one collective detection setup is experimentally feasible and will aid
in the heralded creation of single- and many-particle states.

2.3 Entanglement and Bell tests

As one of the core features of quantum mechanics, entangled states are involved
in thew wide range experiments fundamental test of quantum mechanics to
applications in quantum metrology (Chapter 2.1.3). Even before the creation
of pairwise entangled photons [123], the concept of entanglement, including
its quantum mechanical description, has been a core topic among the physical
community and gave rise to two of the world’s most famous paradoxes. Still
today, the test of quantum mechanics as a valid description of reality is an active
research topic. This section reviews the idea of the EPR paradoxon and how
it gave rise the a whole research field of Bell tests, before concluding with a
proposed experiment that requires a single-particle detection to violate a Bell
inequality.

2.3.1 The origin of entanglement: The Einstein-Podolsky-Rosen
paradox

The peculiarity of the quantum mechanical concept of entanglement has inspired
physicists to challenge their notion of reality ever since the famous publication by
Einstein, Podolsky and Rosen that today is best known as the Einstein-Podolsky-
Rosen (EPR) thought experiment [1]. In their pivotal work in which they brought
the completeness of quantum mechanics into question they consider a pair of
perfectly correlated quantum particlesA andB (Fig. 2.12 a). These particles are
emitted from a source in which their initial interaction causes them to pose equal
but opposing momenta pA = −pB. Both particles will always occupy a position
at the same relative distance with respect to the source - the only difference
being the direction, such that xA = −xB holds for their respective position.
A measurement performed on the value of either position or momentum of
one of the particles will allow to precisely predict the corresponding position
or momentum of the respective other particle. This would imply, that even
though neither position nor momentum have been measured on particle two,



28 Chapter 2. Why to be an atom nit-picker

(a)

(b)

Figure 2.12: Sketch of the original Einstein-Podolsky-Rosen thought exper-
iment and the principle of spin changing collisions in spinor Bose-Einstein
condensate. a In the original version of their Gedankenexperiment [1] , Einstein,
Podolsky and Rosen envisioned a physical system where two particles A and
B poses perfectly correlated positions xA and xB and perfectly anti-correlated
momenta pA and pA. The paradox arises, when measuring both particles si-
multaneously allows to infer on the state of the respective other particle with
arbitrary precision which stands in contradiction to the Heisenberg uncertainty
relation. This contradiction challenged the notions of locality and reality in the
context of quantum mechanical predictions. b Spin changing collisions in a 87Rb
spinor Bose-Einstein condensate create entangled particles in pairs in two dif-
ferent Zeeman levels that can be considered as spin-1/2 system. By tuning the
microwave dressing necessary to start the dynamics an excited trapping mode
can be targeted for the pair creation.

the corresponding quantity would be determined with precision. Since the
measured quantity can be chosen at random after the particles parted ways,
both outcomes must be predefined. This idea is referred to as realism and is
in contradiction to the Heisenberg uncertainty principle which states, that the
product of the uncertainties of two complementary observables such as position
and momentum must of any quantum particle always fulfill [124]

∆p j∆x j ≥
1
2

with j ∈ {A,B} . (2.42)

The only resolve for this conflict would be to allow, that a measurement on
the state of one particle would influence the state of the other particle — even
when the measurements were made in such rapid succession, that not even
light could communicate any state change between the two particles. This ex-
planation comes with its own complications, as it would seemingly allow for
information to travel faster than the speed of light and violate the principles of
locality.
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Concluding that the theory of quantum mechanics is incomplete, EPR argued
that a more precise theory including so-called hidden variables would solve
the seeming paradox while still following the principles of locality and realism.
Such hidden variables could carry the information about the outcome of the
measurements disregarding whether the measurements actually take place.

The existence of hidden variables would make quantities like momentum and
position "real"7, allowing the theory to be guided by the principle of realism.
This further would rule out the need for any kind of interaction that takes place
at a speed faster than light, upholding the idea that actions are only conveyed
locally or using an intermediate field thus maintaining the principle of locality.
The combination of the two assumptions of locality and realism is often referred
to as "local realism".

The ensuing discussion with their peers produced the ideas of entangled and
seperable states, steering in EPR states, as well as the famous thought exper-
iment nowadays known as Schrödinger’s cat [2–4]. About 30 years after the
initial formulation of the divide between quantum mechanics and local realism,
Bell published inequalities that allowed to test quantum mechanics against the
existence of hidden variables [125]. Bell based his theory on a simplified refor-
mulation of the original EPR problem by Bohm and Aharonov that uses spin-1/2
particles [126]. Better suited to experimental realizations is the generalization
of Bell’s inequalities by Clauser, Horne, Shimony and Holt, known as CHSH
inequalities [127]. An experimentally provided violation of Bell’s or CHSH in-
equalities provides an indication towards the failure of local realism and rule
out hidden-variable theories as a solution for the EPR paradox.

2.3.2 Experimental Bell tests

In the subsequent years and until the present day, many varying experimental
attempts have been undertaken with the goal to test either of these inequali-
ties, often referred to as Bell tests. The polarization correlations of photon pairs
emitted by an radiative cascade of Ca atoms were investigated in the first re-
ported violation and following experiments [128]. The use of non-linear laser
excitations and two-channel polarizers improved the violation with respect to
previous results and provided further support for the predictions of quantum
mechanics [129–131]. Also Hg atoms were used as a source to produce cor-
related photon pairs in an atomic radiative cascade [132, 133]. By employing

7According to the wording of the original publication it would assign those quantities an
"element of reality".
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time-varying polarization analyzers that allowed to change the experimental
settings during the flight of the particle an important locality loophole that al-
lowed local theories to explain the violations was closed [134]. A short review
on the photonic Bell test experiments up to the year 1998 may be found in a
publication by Aspect [131].

Shortly afterwards a first atomic Bell test was carried out using a linear Paul
trap loaded with two Be+ ions [135]. Compared to their photonic counterparts
the Bell tests performed on atomic systems have the advantage of detection
efficiencies close to unity. While this is a solution to an argument within the
detection loophole discussion, the locality loophole opened widely due to the
small separation distances between subsystems that atomic experiments could
provide initially. In ensuing work the separation distance grew from 3µm [135],
over a seperation of 1 m utilizing two Yb+ ions in separated traps [136] to a
distance of 20 m between two single 87Rb atoms [137]. A more extensive elabo-
ration on the history of photonic and atomic Bell tests as well as an even broader
review on the whole concept of Bell nonlocality up to the year 2014 can be found
in the publication by Brunner et al. [138].

Only in experimental results dating even more recently conclusive loophole-
free Bell tests were demonstrated. Using the electron spins of two nitrogen
vacancy centers separated by 1.3 km a Bell inequality violation was reported
[139]. Reports for loophole-free experiments employing entangled photon pairs
rejecting the hypothesis of local realism were published within the same year
[140–142]. In a further experiment, detection and locality loopholes were closed
in an atomic Bell test based on a heralded entanglement scheme of two 87Rb
atoms separated by 398 m [143]. Combining the effort of 12 institutions on five
continents the BIG Bell Test collaboration (BBT) used the random input of 100000
human participants to choose the measurement settings of Bell tests conducted
conclusively in 13 laboratories [144].

Striving to find the macroscopic boundary at which the strongest quantum
correlation ceases, Bell tests have been performed using larger systems than just
pairs of particles. A system consisting of 14 40Ca+ ions captured in a linear Paul
trap has been reported to show multipartite Bell violations [52, 145]. Increas-
ing the system size further to hundreds or even thousands of particles draws
attention to ultracold atomic gases or even Bose-Einstein condensates which
form physical systems that are particularly well suited to generate many-body
entanglement. Especially the connection between global properties of the state
and the fundamental correlations causing a violation of a Bell inequality can be
studied. The top-down approach of ultracold atomic gases allows for entangle-
ment generation of a few thousand particles [146]. Also EPR correlations have
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been demonstrated in a Bose-Einstein condensate by violating the Heisenberg
inequality for the inferred uncertainties of the conjugate variables certifying
symmetric steering [108, 147, 148].

But the lack of identifiable subsystems with individual control, whereby the
indistinguishability of the constituting particles is inherently linked to the entan-
glement generation [149], necessitated a new framework of inequalities. These
inequalities were build upon first- and second-order correlation functions, open-
ing tests of nonlocality to many-body systems, such as spin ensembles, by mea-
suring collective spin components [150, 151]. Spin-squeezing a Bose-Einstein
condensate of 480 87Rb atoms was reported to show a violation of a correspond-
ing Bell witness by 3.8 standard deviations [152]. Thermal ensembles of 105

87Rb spin-squeezed atoms exhibited correlations that violated the same witness
by 124 standard deviations [153]. Following a different approach, employing a
compound system consisting of two silicon optomechanical oscillators made up
of approximately 1010 atoms each and two optical modes, Bell violations by four
standard deviations have been observed [154].

Reintroducing the question for addressability it has been demonstrated, that
entanglement within a spinor Bose-Einstein condensate of 87Rb persists between
two spatially separated parts of an excited trapping mode of an optical dipole
potential [155]. Similar results were obtained for spatial entanglement patterns
in a Bose-Einstein condensate of 87Rb including demonstrations of EPR steering
in between the spatial regions [156]. Additionally, a similiar physical system
provided evidence for spatially distributed multipartite entanglement in Bose-
Einstein condensate and EPR steering [157].

2.3.3 Spatially separated Bell test with a Bose-Einstein conden-
sate

In Fig. 2.13 the relation between different classes of entanglement or rather sets
of entangled quantum states is depicted. While Bell violations are usually con-
sidered the strongest form of correlations caused by quantum entanglement, not
all entangled (non-separable) states are suited for this task. The same argument
holds for quantum states that exhibit EPR steering features. While the set of
steerable states is subset of the entangled states, the set of non-local states is
a subset of the steerable states [160]. Further aspects under which states can
be classified is their metrological usefulness, best described by their quantum
Fisher information content (Section 2.1.1), and their ability to provide spatially
separated subsystems that exhibit the desired correlations.
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Non-locality, Bell correlations

Steering, EPR correlations

Entanglement, non-separability

Spatially separated Metrologically useful

Bose-Einstein condensate experiments

[152]Schmied et al., 2016

[157]Kunkel et al., 2018
[156]Fadel et al., 2018

[108]Peise et al., 2015

[155]Lange et al., 2018

[36]Lücke et al., 2011
[32]Gross et al., 2010
[33]Riedel et al., 2010
[60]Zou et al., 2018
[59]Kruse et al., 2016
[158]Lange et al., 2018

Figure 2.13 & Table 2.2: Classification of entangled states and corresponding
experimental demonstrations using Bose-Einstein condensates. The class of
entangled states or non-separable states encloses the largest amount of quantum
states. Einstein-Podolsky-Rosen correlated states that allow for steering and vi-
olations of inferred Heisenberg uncertainty relations are a true subset of the
entangled states. All states that demonstrate non-local behavior by violating a
Bell inequality are again a true subset of the Einstein-Podolsky-Rosen correlated
states. The Fisher information of states naturally imposes a different classifica-
tion onto the set of all quantum states. Every state providing a quantum Fisher
information N2 > FQ > N is entangled and provides useful metrological proper-
ties, but this is not true for every entangled state. Showing all these properties
across spatially separated subsystems is another distinctive classifying aspect.
A Bell test with spatially separated parts of a Bose-Einstein condensate ( ) has
not yet been performed. Reprinted from Ref. [159].

Hence the next advancement would be to perform a Bell test between spa-
tially separated parts of a Bose-Einstein condensate and provide an answer to
the question whether even strong Bell correlations can gap the spatial divide in
the range of mesoscopic and macroscopic particle numbers. Taking the quan-
tum state generated in Ref. [155] as a basis and pairing it with a single-atom
resolving detection will be particularly fitting to answer this question.

A proposal by Yurke and Stoler suggests a Bell test using two independent
single-particle sources [161]. The theoretical setup from the original publica-
tion is depicted in Fig. 2.14 a. It consists of two particles originating from
independent sources (i.e. setting Nα = Nβ = 1) and entering an array of four
balanced beam splitters on opposing sides before being detected in four detec-
tion channels. Even though the initial state is a pure product state as opposed
to the original EPR idea this setup still allows to observe a Bell violation. The
entanglement is generated by the respective first beam splitter (BS+1 and BS−1)



2.3. Entanglement and Bell tests 33

encountered by the particles on their path, entangling each particle with the vac-
uum mode entering the open port of the beam splitter. A second pair of beam
splitters (BSL and BSR) mixes the four modes pairwise before the resulting four
modes are detected with two pairs of particle counters. Correlations between
the counts on the four output ports can be analyzed to retain violations of a
Bell inequality. By refining the idea originally intended for pairs of single par-
ticles, Laloë and Mullin came up with a scheme that is even suitable to be used
with higher order Fock states [162] and even three participating Fock states [163].

A possible adaption of the scheme towards the use of atomic twin-Fock states
is also schematically drawn in Fig. 2.14 a. The state created by Lange et al. in
Ref. [155] utilizes spin changing collisions in a 87Rb Bose-Einstein condensate
to populate the first excited mode of an external trapping potential with atoms
in the |F = 1,mF = ±1〉 states. This provides both inputs of the scheme with the
same population number Nα = Nβ resulting in the configuration that produces
the maximum violation possible [162]. The mode structure of the excited trap
mode itself acts as the first beam splitter pair (BS+1 and BS−1) by splitting each
magnetic sublevel population into two spatially distinct regions (L and R) di-
vided by a line of zero density. A spatially selective phase shift can be applied
by partially illuminating the cloud with a detuned light field after a free fall time
that allows the Bose-Einstein condensate to expand. Microwaves can be applied
in order to act as beam splitters BSL and BSR by coupling the |F = 1,mF = ±1〉
states. A Stern-Gerlach pulse can finally spatially separate these states before
the resulting four modes N+1,L, N−1,L, N+1,R and N−1,R need to be detected.

Fig. 2.14 b shows the expected violation of the Bell witness QBell derived in
[162] for different numbers of particles Nα = Nβ = N/2 at the input ports of the
scheme, where any value QBell > 2 constitutes a violation. Solid lines depict the
ideal case where all atoms are detected. In each case, a violation can be obtained,
but the strength of the violation as well as the phase range ∆ϕ over which the
violation extends decrease with increasing particle number (Fig. 2.14 c and Fig.
2.14 d). Thus initial attempts should focus on the use of Fock states with small
atom numbers to make use of both, a larger violation and a more forgiving phase
range. The dashed lines indicate the nonideal case where not all particles are
detected. Since the Bell test is based on parity measurements already the loss
of a single particle causes the violations to vanish, rendering a reliable detection
that can resolve single atoms indispensable.
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Figure 2.14: Bell test using two independent Fock states. a Sketch of the
idea from Ref. [162] and translation to an atomic spinor system. Spin changing
collisions create two Fock states with particle numbers N/2 in the mF = ±1
manifolds (red and orange, respectively) of the first excited trap mode, readily
incorporating the first beam splitting action of BS±1 by dividing each condensate
fraction into a left (L) and right part (R). The second pair of beam splitters BSL,R

can be implemented by means of microwave coupling between the mF = ±1
states. b Bell violation witness QBell as a function of the phase difference ϕ. A
Bell violation occurs for values larger than Qcrit = 2. Colors indicate different
absolute particle numbers N. Colored dashed lines show that detection losses
for the corresponding initial particle numbers destroy the desired correlations. c
Maximum violation strength of the witness QBell for different particle numbers.
Even for larger particle numbers a relatively strong violation of Bell inequalities
can occur. d Range ∆ϕ over which a violation can be detected as a function of
the total number N of particles used.



Chapter 3

Detecting single atoms in atomic
quantum gases

The preceding chapter reported on the current state quantum metrology with
atom interferometers, the creation and detection of non-classical quantum states
and Bell tests with Bose-Einstein condensates. These research topics share the
characteristic, that single-particle detection will play a crucial role in pushing the
boundaries of the respective state-of-the-art experiments. This chapter briefly
reviews currently available techniques for the detection of neutral atoms within
ultra-cold atom experiments with respect to their capability of reliably detecting
single atoms and accurately determining atom numbers. The concept of fluo-
rescence detection in a magneto-optical trap will be discussed in more detail, as
the detection system implemented within the scope of this work pursues this
approach. The review follows a more exhaustive overview on this topic, cover-
ing the detection of single neutral atoms as well as ions, in Ref. [164].

3.1 Techniques

Since the term single-atom detection can be understood in a few different ways,
a distinction has to be made between those detection approaches that offer sin-
gle atom sensitivity and those that offer spatially resolved detection of single
atoms8. The experiments proposed in Chapter 2 all rely on a detection scheme

8Single-atom detection could also be understood as a temporally resolved detection of many
atoms. While this aspect is mainly important in the detection of ionized atoms with microchannel
plates, this aspect will not be discussed within the scope of this thesis.

35
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that can accurately determine atom numbers, but not necessarily resolve single
atoms spatially. Hence the term accurate atom counting is chosen to refer to this
type of detection. Alternatively, this kind of detection may be described as a
number resolving detection. The act of determining the atom numbers of sub-
ensembles depending on their internal state will be referred to as a state-selective
detection. This task can be accomplished by sequencing or paralleling an accurate
atom counting technique. Spatially resolving individual atoms in a quantum
gas imposes the strongest requirements on the apparatus’ spatial resolution ca-
pabilities, as it is typically performed in optical lattices that operate at inter-site
distances of about 1µm or less [165].

The challenge of accurately detecting atom numbers is twofold. Firstly, a single
atom needs to be distinguished from the background or more precisely from the
noise of the background. Secondly, the addition and removal of single atoms for
large numbers of atoms needs to be discerned from the collective noise of all the
other atoms. This second requirement makes it challenging to uphold the atom
counting ability for larger ensembles.

3.1.1 Direct detection

By utilizing the energy stored in the metastable internal state of Helium atoms
it is possible to directly detect neutral atoms that collide with a microchannel
plate [166–168]. After being released from a trap and a time of flight, the atoms
hit the microchannel plate that is located below the atom cloud. Upon impact,
the internal state of the atoms is quenched and the excess energy ejects electrons
from the surface, leading to a detectable signal. A big advantage of this detec-
tion scheme is, that in principle it offers two dimensional spatial resolution and
temporal information, allowing for a reconstruction of the three-dimensional
shape of the cloud. However, the detection efficiencies reached in this kind of
setups of about 10 % [169] are far from unity and thus accurate particle counting
cannot be achieved.

3.1.2 Ionization

Instead of detecting a neutral atom directly it can be ionized using two different
experimental approaches: electron impact ionization and photoionization.
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Electron impact ionization

Microchannel plates are also used to detect charged particles, such as atoms
that were ionized by electron impact. Using a scanning electron beam with a
diameter of only 500 nm a high resolution imaging of single atoms in a quantum
gas was achieved [170–173]. In this case, the detection efficiency is limited by the
ratio of electron collisions leading to an ionization of an atom and non-ionizing
collisions of about 10 − 20 %. This caveat renders electron impact ionization
unfeasible for accurate atom detection.

Photoionization

A similar scanning method can be applied using the concept of photoionization
based on single- or multiphoton absorption. On a chip, photoionization of 87Rb
atoms [174, 175] reaching single-atom detection efficiencies of 60 % [176] has
been demonstrated. By means of three-photon ionization, a 67 % detection effi-
ciency was achieved using a channel electron multiplier for single magnetically
trapped 87Rb atoms in a chip setup [177]. For larger atom numbers three-photon
ionization was used to probe sub-Poissonian number statistics of atomic samples
[178]. State-selective two-color photoionization detection for a single, optically
trapped 87Rb atom with with an efficiency as high as 98 % using a joined channel
electron multiplier to capture the resulting ion and electron was reported [179].
Two-photon ionization was also achieved for ensembles of rubidium atoms in
a magneto-optical trap and a Bose-Einstein condensate, where the detection
efficiency for ions from the condesate reached 35 % [180].

3.1.3 Optical detection

The most common detection techniques in ultra cold atom experiments rely
on the interaction of the atomic specimen with some kind of probe light field.
This interaction can either result in a change of the polarization of passing light
(Faraday rotation), the absorption of near-resonant illumination light or the
emission of fluorescence light - all of which can be detected and in turn be used
to refer back to the number of atoms within the atomic sample.

Absorption imaging

In absorption imaging, an atomic cloud, typically during free fall after being
released from a trap, is being hit with a resonant laser beam for a few ten
microseconds. By scattering light, the atoms reduce the laser beam’s intensity
that is recorded on a CCD camera. Comparing the shadow of the atoms with
a reference image of just the illumination beam and an additional background
image allows to deduce the optical density of the atomic sample and hence the
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number of atoms in the column above each pixel. A final summation over the
pixels yields the total atom number. Any photon scattered out of the probe beam
contributes to the detected signal. The combination of the spatial resolution of
the pixel detector and a preceding Stern-Gerlach pulse in form of a magnetic
field gradient enables the simultaneous detection of multiple internal states
or spin components (i.e. state-selective). Exactly this technique was used to
obtain the results for the twin-Fock interferometer discussed in Chapter 2.1.3 and
provided a counting uncertainty of 14 atoms for 104 atoms [34, 46]. Optimization
for clouds of 300 atoms achieved a counting uncertainty of 3.7 limited by the
strongest contribution of 3.6 atoms from photon shot noise [37]. By exposing a
single 87Rb atom in a far-off-resonant optical dipole trap (FORT) to a strongly
focused weak gaussian beam for about 130 − 140 ms, the scattering probability
of a single neutral atom was measured, showing that in principle the detection
of even a single particle is possible with an absorption detection scheme [181].
This technique is intrinsically limited by the photon shot noise of the bright
illumination beam that enters twice into the signal.

Fluorescence imaging

In contrast to absorption imaging, fluorescence imaging relies on detecting light
that is emitted by the atoms after they have been excited. The collection of
the emitted fluorescence photons suffers from the fact, that the emission direc-
tion is chosen randomly and the signal is hence distributed isotropically across
the full solid angle of 4π. Due to the limited optical access in typical ultra-
cold quantum gas experiments, only a fraction of the available signal can be
detected by an imaging system. A freely falling Bose-Einstein condensate of
87Rb atoms passing a resonant light sheet consisting of two counter propagating
laser beams has been used to demonstrate single-atome sensitivity [182–185].
Fluorescence emission occurs naturally from repeated excitation during laser
cooling schemes. The combination of fluorescence imaging and cooling or trap-
ping techniques enables prolonged interrogation times. In turn, the collected
amount of photons is increased, scaling the signal-to-noise ratio favorably. Espe-
cially for spinor Bose-Einstein condensates, a typical experiment may end with
the condensate being trapped in an optical dipole trap. Hence the combination
of optical dipole traps and optical tweezers9 has been investigated heavily and
can be considered a group of in situ methods. Combinations of optical dipole
traps with MOT beams [186] and polarization gradient cooling provided by a
blue-detuned standing-wave probe beam resulted in the successful detection
of individual atoms. The distinction of atom numbers up to three in terms of
characteristic steps in the fluorescence signal was observed [187, 188]. Further

9An optical tweezer or microtrap refers to a very small optical dipole trap typically holding
only individual to a few atoms.
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Figure 3.1: Principle of magneto-optical trapping. a Configuration for a MOT
in 1D. Assuming simple hyperfine states F and Zeeman levels mF split up by a
linear magnetic field. The vertical axis depicts the internal energy of the atom,
the horizontal axis the radial distance from the center of the trap. The dashed
line illustrates the laser frequency ωlaser with a detuning ∆ from mF = 0. Due to
the spatially dependent Zeeman splitting only atoms at certain position in space
are resonant with the light field. The σ− polarization of the beam allows only
the incoming beams to excite the atoms. b Configuration for a MOT in 3D. Two
coils in anti-Helmholtz configuration create a magnetic quadrupole field. Six
laser beams with polarizations depending on the direction the magnetic field
need to be polarized accordingly as left-handed or right-handed circular (lhcp
and rhcp) for them to be recognized as σ− light when approaching the center
of the trap. The atoms in the trap run through many absorption and emission
cycles during the cooling process. Using a lens with large numerical aperture
the fluorescence signal can be collected and used to derive the number of atoms
residing in the trap.

improvements of this method relied on sophisticated modeling and characteri-
zation of the dominant loss mechanisms, i.e. light assisted two-body collisions
[189, 190]. This led to a phenomenon called collisional blockade [186, 191] and a
prolonged imaging sequence but could not extend the unambiguous signature
of single atoms to significantly larger samples [192]. Similar limitations apply
to attempts of imaging neutral atoms in optical lattices.

3.2 Fluorescence detection in a magneto-optical trap

Magneto-optical traps (MOTs) are at the heart of almost every experiment that
deals with ultracold neutral atoms and the working principle can be found in
many textbooks [193–195]. Figure 3.1 briefly sums up the working principle of a
MOT. A spatially varying magnetic field splits the Zeeman sublevels. At the ori-
gin the direction of the magnetic field reveres together with the quantization axis
of the atoms. An appropriately polarized σ− red detuned light beam approaches
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the origin will at some point along the way become resonant with the atoms.
This of course is reflected in a high scattering rate. Due to the random isotropic
direction of the emission a net force pushes the atoms towards the origin. Once
the light has passed the origin the atoms experience the opposite polarization
of the light, as their quantization axis has turned. By applying a counterprop-
agating beam of equal intensity and detuning the same argument can be made
for the opposing direction. The extension of this principle to three dimensions
and six beams is the basic idea of the MOT. Usually their large capture velocity
is used to load atoms from a background gas into an atomic cloud that serves as
the starting point of the experiment. But due to the long life time, that can reach
hundreds of seconds, and the large amount of fluorescence photons send out by
them atoms they are a natural candidate for fluorescence detection – especially
on the single to few atom level [38–42]. Even mesoscopic atom numbers of up
1200 atoms were detected by fluorescence imaging of a MOT [43] and up to 500
in a MOT split by a blue detuned light sheet [44]. One of the most important
parameters in the MOT detection is the scattering rate

Rsc =
Γ

2
s0

1 + s0 + 4 (∆/Γ)2 , (3.1)

where s0 = I/Isat is the saturation parameter given by the ratio of light intensity
I and saturation intensity Isat, Γ the natural linewidth of the transition and ∆
the detuning of the light field with respect to the transition frequency. Two
processes inherently limit the measurement precision of Nats atoms even for
perfectly known and stable parameters of the trap. Firstly, photon shot noise will
contribute to the variance σ2

Nats
with a term σ2

psn = Nats/nph, where nph = ηRscτexp

is the number of photons detected per atom during the exposure time τexp. The
detection efficiency of the detector is reflected by the parameter η. Secondly,
the contribution of atom loss to the variance is described by σ2

loss = Natsτexp/τlife,
where τlife is the life time of a single atom in the trap. This simple noise model
reads

σ2
Nats

=
Nats

(ηRscτexp)
+

Natsτexp

τlife
(3.2)

and can be used to derive an optimal detection time τexp,opt =
√

2τlife/(ηRsc) and
single-particle resolution threshold of Nats,max =

√
ηRscτlife/2 by setting σ2

Nats
= 1.

For typical fluorescence detection setups, the excitation light can be brought in
from a direction perpendicular to the imaging axis. This minimizes the chances
of scattering unwanted stray light from the excitation beam into the detection. 10

This is different for fluorescence detection schemes that utilize a MOT. Here the
10Because illumination light and fluorescence light in this case share the same frequency the

signal cannot be separated from the background by an optical filter.
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direction of the six beams is dictated by the magnetic gradient field, offering way
more potential to scatter light into the detection lens. Additionally, to optimize
the amount of light captured by the detection, the detection lens has to be big
and as close to the MOT as possible. Hence, great attention must be paid to
estimating any cooling light that could be scattered into the detection. If the
detected background is so large that the fluorescence signal of single atoms is
smaller than the background noise, no accurate atom counting detection will be
possible.

In conclusion the fluorescence detection in MOT faces three main challenges
that can be overcome by technical means. The photon shot noise influence can
be reduced by collecting more of light and by detecting it more efficiently. From
the experimental side this can be approached using a detection lens with a large
numerical aperture, choosing a camera with high quantum efficiency and tak-
ing care of any possible losses due to reflections on optics surfaces. The life
time of atoms in the MOT can be optimized by low background pressure and
good vacuum conditions. Additionally, well balanced cooling beams, as well as
stable powers and frequencies help with increasing the life time. Background
light impact can be managed by careful design of the optical path by consider-
ing probable scatter centers in advance. Blocking off any direct reflections into
the detection system and reduction of stray light inside the detection system by
spatial filtering are applicable strategies. With these technical solutions at hand
fluorescence imaging in a MOT is the best candidate for an application as an
accurate atom detection.
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Chapter 4

Experimental apparatus

The following chapter outlines the details of the experimental apparatus, that
has been designed and set up during the work of this thesis. The demands on
a modern quantum optics experiments are diverse, at times even irreconcilable.
A careful assessment of all involved aspects has to be made in order to be able to
fulfill the various requirements of the ambitious goals of the quantum-enhanced
atom interferometer and pose the right respective requirements on the various
subsystems of the setup. These goals and requirements were in part derived in
the previous chapters and are summarized in the first section of this chapter and
put into context of the experimental concept. The ensuing section lays out the
vacuum system with its various components. The third and fourth sections deal
with the components creating the light fields and magnetic fields of the setup,
that steer the desired interactions with the atoms and will allow for capture
and manipulation. Finally, the fifth section delineates the detection system,
the details of which are decisive for one of the central design goals: achieving
accurate atom counting.

4.1 Experimental procedure

The design goals for the experimental apparatus are aimed at the ability to per-
form high-precision atom interferometry using many-particle entangled states
of 87Rb atoms created by spin changing collisions. They can best be understood
in context of a schematic experimental sequence (Fig. 4.1). A very coarse yet
helpful classification allows to distinguish between three main parts of the se-
quence: Preparation, experiment and detection. The following three subsections
describe the planned experimental procedure, before the ensuing sections cover
the already implemented hardware.

43
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Figure 4.1: Experimental concept. A 2D+-MOT is employed to load 87Rb atoms
from the background gas and feed them through two differential pumping stages
into a initial 3D-MOT (i-MOT) that is operated in the octagonal science glass cell.
The sequential application of an optical molasses, optical pumping into a mag-
netically sensitive sub-state, a magnetic quadrupole trap and an evaporation
process in a strong dipole trap will eventually cool the atomic sample until it
reaches Bose-Einstein condensation. This will conclude the preparation pro-
cess that will be followed by entanglement generation through spin-changing
collisions and a specific experimental sequence, for instance a twin-Fock inter-
ferometer scheme. A Stern-Gerlach pulse can be used to spatially separate the
spin components. Fluorescence detection in a special magneto-optical trapping
configuration (d-MOT) will allow to accurately detect atom numbers as a result
of the experiment.

4.1.1 Preparation

The generation of large ultracold atomic samples at high repetition rates is
mandatory for a state-of-the-art atom interferometer. Fast sample generation
allows for short averaging times featuring an increased temporal resolution and
decreased sensitivity to long-term drifts. The repetition speed of a BEC appara-
tus depends on a large group of its components, yet two main steps in preparing
a Bose-Einstein condensed spinor sample are typically very time consuming. On
the one hand, the initial loading of atoms from a background gas into a three-
dimensional magneto-optical trap can take several seconds. On the other hand,
the evaporation process in a magnetic trap or optical dipole trap is inherently
slowing down for shallow trapping confinement. Both challenges will be taken
on by the newly build apparatus.

The loading of the initial three-dimensional magneto-optical trap (i-MOT), be-
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ing the first step in the sequence, is performed by means of an atomic beam
originating from a two-dimensional magneto-optical trap setup with a pusher
beam (2D+-MOT). Cooling light for this process is driving the |52S1/2,F = 2〉 →
|52P3/2,F′ = 3〉11 transition o 87Rb, while additional repump light on the |F = 1〉 →
|F′ = 2〉 transition returns atoms that decayed into the ground state to the cooling
cycle. This concept already demonstrated a very high atomic flux of 8×1010 atoms

s
used to load a three-dimensional magneto-optical trap with 8 × 109 atoms

s within
200 ms [196] in a former setup. First tests on the presented apparatus showed
a loading rate of 9.5(1) × 109 atoms/s and about 3.3(1) × 109 atoms in the i-MOT
after 400 ms (Fig. 4.2). These preliminary values will be subject to optimization
of 2D+-MOT cooling light detuning, power and exact gradient fields to best
match the double differential pumping geometry, once larger amounts of atoms
are needed for evaporative cooling.

Subsequently, an optical molasses phase [195, 197] is planned to cool the atomic
cloud further. The i-MOT cooling light already is in the desired configuration
of six pairwise counter-propagating beams of opposite polarization. Further,
the magnetic fields of the i-MOT will be turned off. Ambient magnetic fields
will be canceled by the dedicated compensation coils . Lastly, by increasing the
frequency detuning this sub-doppler-cooling technique will be realized.

Afterwards, optical pumping using σ+-polarized light on the |F = 2〉 → |F′ = 2〉
transition transfers the atoms into the |F = 2,mF = 2〉 state. The quantization
axis will be defined by the magnetic field created by the homogenous field coils.
The magnetic quadrupole trap, that is generated by the magnetic gradient fields
of the quadrupole coils, will capture the atoms. After ramping the gradient to
300 G/cm, a brief radio-frequency evaporation will cool the sample down [198].
Further evaporation will be performed in a crossed-beam optical dipole trap
[199, 200]. The process will be sped up by employing a high-power 55 W laser
beam with a wavelength of 1064 nm (Coherent Mephisto MOPA 55W) to form
a strong crossed-beam optical dipole trapping potential. The implementation
of acousto-optical deflectors will allow to change the optical trapping potential
rapidly [201, 202]. When the gradient field of the quadrupole coils is being
ramped down, homogeneous field coils will be used to maintain a controlled
quantization axis for the atomic sample. Reaching Bose-Einstein condensation
concludes the first major step in the procedure, the preparation. Good vacuum
conditions in the science glass cell, where the Bose-Einstein condensate will be
situated, will reduce the probability of background collisions. While this is di-
rectly beneficial towards the ensemble life times in all trapping geometries, it
also aids in preparing and controlling sensitive multi-particle entangled states

11In further notation the fine structure levels will not be mentioned explicitly. Instead the
hyperfine levels are noted as F and F′, referring to 52S1/2 and 52P3/2, respectively.
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as it reduces the chances of collisions causing dephasing.

4.1.2 Experiment

In order to drive spin-changing collisions in a 87Rb spinor Bose-Einstein con-
densate, precise spin-preparation is crucial.12 After transfer from the magnetic
trap, the atoms reside in the state |F = 2,mF = 2〉 in the optical trap with the
homogeneous field coils dictating the quantization axis. By a sequence of mi-
crowave π-pulses between |F = 2〉 and |F = 1〉manifolds, the atomic population
is transferred to the |F = 1,mF = 0〉 state. Interleaved resonant light pulses on
the |F = 2〉 → |F′ = 3〉 transition clean up any residual populations in the |F = 2〉
manifold. Using microwave dressing [107, 203–205] between the internal Zee-
man levels |F = 1,mF = −1〉 and |F = 2,mF = −2〉, the state |F = 1,mF = −1〉 is
shifted such, that the asymmetric splitting of |F = 1,mF = −1〉 and |F = 1,mF = 1〉
due to the quadratic Zeeman shift is canceled. This equalizes the energetic split-
ting of |F = 1,mF = −1〉 and |F = 1,mF = 1〉 and with respect to |F = 1,mF = 0〉 and
allows spin-changing collisions to take place. Generating entanglement between
the atoms by means of these collisions is the starting point for all experiments
proposed in Chapter 2.

4.1.3 Detection

The introductory Chapter 2 describes multiple atom optics experiments that rely
on detecting an accurate atom number. The concept of twin-Fock interferome-
try is one way to realize a quantum-enhanced interferometer in an atom optics
experiment and as such relies on the apparatus’ capability to reliably detect ac-
curate atom numbers in the interferometer states. As discussed in Chapter 3, a
detection scheme is chosen where the atoms are loaded into a dedicated three-
dimensional magneto-optical trapping configuration, referred to as a detection
MOT (d-MOT) where their fluorescence signal is recorded. For this type of
detection, a stable laser power in the involved cooling laser beams is crucial,
making an active power stabilization for them a necessity. Demonstrating the
accurate atom counting capability of the apparatus is the first major milestone
in the construction process (Chapter 5).

Running a full interferometric sequence will require the accurate detection of

12An in-depth description of the spin-preparation process and spin-changing collisions can
be found in Ref. [46].
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Figure 4.2: Performance of the 2D+-MOT and i-MOTȧ The number of atoms
in the i-MOT as a function of time for a dispenser current of 5 A. The initial
linear loading rate is estimated over the first 300 ms and results in 9.5(1) ×
109 atoms/s. After 400 ms the saturation of 3.3(1) × 109 atoms is reached.b The
extracted loading rate as a function of the dispenser current.

multiple output modes rather than just one. A state-selective detection will
be needed, to take full advantage of the twin-Fock approach. Using only one
detection setup, the selective detection either has to be realized by separating
the output states spatially or temporally, i.e. detecting them in sequence. Our
approach so far focuses on a spatially separated detection, that builds upon the
Stern-Gerlach effect. This makes use of the fact, that the desired outcome of the
experiment is measured in terms of the atom numbers in different spin states.
Thus employing a magnetic field gradient to separate these states is a natural
choice, before recapturing the atoms in the d-MOT. The state-selective detection
then can be realized by deploying a blue-detuned light sheet to the center of
the d-MOT, which was shown to be able to resolve the atom number difference
of two spatially separated clouds for up to 500 atoms accurately [44]. Acting
as a repulsive potential barrier, the light sheet allows for a spatial separation of
individual modes on the scale of a few micrometers, making a simultaneous de-
tection of the modes feasible without posing strong requirements on the spatial
resolution capabilities of the imaging system.

4.2 Vacuum system

In order to perform experiments on samples of ultracold atoms, the vacuum
system (Fig. 4.3) has to match a certain set of requirements. A high background
pressure of rubidium atoms in the 2D+-MOT glass cell is desirable to quickly and
efficiently generate a strong beam of pre-cooled atoms that is sent towards the
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Figure 4.3: Vacuum system overview. This drawing shows all components of
the UHV vacuum system. The main components for the experimental operation
are the two glass cells (2D+-MOT cell and science cell) at the center. Peripherals
are the two differential pumping stages in between the two glass cells, the
two ion getter pumps (IGP), the titanium sublimation pump, the valve and the
vacuum gauge. All parts are connected using ConFlat (CF) flanges sealed with
copper gaskets. The shown coordinate system is used in the description of the
apparatus.

3D-MOT [206]. The glass cell for the 2D+-MOT is made out of quartz glass that
is anti-reflection coated for a wavelength of 780 nm, allowing the cooling and
repumping light needed to drive the 2D+-MOT to be used most effectively. The
high background pressure is realized by heating up one of three dispensers that
hold a rubidium salt, that during an electric heating process is reduced chemi-
cally. The exit slit that allows the rubidium to leave the dispenser is aimed at the
trapping region of the 2D+-MOT to avoid condensation on the glass surfaces of
the cell.

The 3D-MOT is situated in the science chamber, where all further experimental
steps with the atoms are conducted. Thus, this region has to conform a much
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Figure 4.4: Differential pumping stages. This cut through the 2D+-MOT glass
cell, the custom four-way cross and the science glass cell shows the separation
into three different vacuum ares by the use of two consecutive differential pump-
ing stages (highlighted in red and cyan). Area A only consists of the 2D+-MOT
glass cell with a high 87Rb background pressure. It is connected to area B by the
first differential pumping stage (red). A first IGP is used to pump area B. The
second differential pumping stage (cyan) connects to the science glass cell. Area
C is also directly connected (white arrow) to a second IGP, to the Titanium subli-
mation pump, the valve and the vacuum gauge for maintaining and monitoring
the vacuum conditions.

different standard for the background pressure, that usually is referred to as
ultrahigh vacuum (UHV) and features a background pressure of < 10−11 mbar.
These two different requirements for the background pressure between 2D+-
MOT and 3D-MOT are in conflict, because the atomic beam requires a direct line
of sight between the 2D+-MOT and 3D-MOT regions. The implementation of a
succession of two differential pumping stages (Fig. 4.4) resolves this issue ele-
gantly, by internally dividing the vacuum system into three regions of different
pressure: the 2D+-MOT region, a pumping region of intermediate pressure and
the science or 3D-MOT region that allows for the lowest possible pressure.

The first differential pumping stage is placed such that it separates the 2D+-
MOT glass cell from the remainder of the system, shielding it from the compa-
rably high pressure in the 2D+-MOT glass cell. This pumping stage measures
100 mm in length, has an entrance diameter of 2 mm that widens over a distance
of 25 mm to an inner diameter of 8 mm. The entrance cap of the differential
pumping stage is polished and cut at an 45 ◦ angle to act as a redirecting mirror
for the pushing and retarding light beams. The vacuum area neighboring the
2D+-MOT region is being pumped by an ion getter pump (VacIon Plus 150 Star
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Figure 4.5: Photographs of the science glass cell. The images show the science
glass cell from the side in its final mounting position (a) and from the side before
the installation (b). The combination of two large 3 inch side windows and seven
smaller 1 inch windows along the perimeter of the octagonal frame allows for
maximal optical access to the atomic sample. The bigger side windows enable
high numerical aperture (NA) imaging specifically.

Cell Model 919 - 0104) and serves the purpose of shielding the science region
from unwanted background gas. Following the first differential pumping is a
custom designed four-way vacuum connection, that connects the pumps and
the glass cells. Along the diagonal of the four-way crossing, an additional wall
further separates the science region from the intermediate region. The second
differential pumping stage built into this wall allows the atoms from the 2D+-
MOT glass cell to travel towards the science region. Via the custom four-way
cross science region is also connected to an additional ion getter pump (Varian
Large Star cell Model 929 - 0172), a titanium sublimation pump, a vacuum gauge
(Balzers IKR 250 Compact Cold Cathode Gauge), as well as a vacuum valve to
connect turbo pumps for initial evacuation of the vacuum system.

The glass cell housing of the 3D-MOT and science region is a custom made
quartz class cell (modified from the 3 Inch Octagonal MOT/BEC Glass Cell line
by Precision Glass Blowing in Denver, CO) that is designed to maximize optical
access to the atomic probe at its center (Fig. 4.5). Since the science glass cell
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houses the atoms during all stages of the experimental sequence, i.e. 3D-MOT,
magnetic and consecutive optical trapping and detection, a large optical access
is beneficial and even mandatory for the detection scheme we apply. Future
potential extensions of the experiment using optical lattices or painted poten-
tials will also greatly benefit from a design that gives multiple optical access
points. It features two large opposing main windows with an outside diameter
of 3 in (76.2 mm) of which 2.75 in (69.85 mm) can be used to gain optical access
to the sample. The main windows are 0.375 in (9.525 mm) thick and placed at
an inner distance of 1.21 in (30.734 mm). This thickness needs to be taken into
account when considering aiming any directed light source at the atoms, as it
will noticeably displace an optical beam. An anti-reflection coating from both
inside and outside ensures that the optical beams for all MOT configurations
at a wavelength of 780 nm can pass with maximum transmissivity at an angle
of incidence of 45 ◦. The coating is additionally optimized for a wavelength of
1064 nm, facilitating the use of a high power laser for the generation of an optical
dipole potential. The circumference of the glass cell is of octagonal shape and
allows optical access through seven 1 in (25.4 mm) windows. These smaller win-
dows are anti-reflection coated for 780 nm and 1064 nm at an orthogonal angle
of incidence on the inside and outside. The eighth outside edge is featuring the
vacuum connection that links the science glass cell to the rest of the vacuum
setup using a CF40 flange.

The orientation of the 2D+-MOT and science glass cell at an angle of 45 ◦ rel-
ative to the optical table is connected to the orientation of the detection system
and the science glass cell. Since the detection system features large optical ele-
ments as well as robust and heavy constructions to hold these optics, mounting
it along an horizontal axes, rather than a vertical one, allows for safer, easier
repeated handling and adjustments of the devices. Hence the orientation of the
science glass cell with the big windows facing sideways is fixed by this principle.
The 2D+-MOT can be considered a well understood component of the system
that has been tested in a previous experimental apparatus and has been proven
to be very robust. Thus the decision was made to put the well tested parts of the
apparatus into the 45 ◦ inclined orientation, while the more delicate and more
often changed and altered parts would be placed at the positions that are more
convenient to access. Additionally, this frees up another horizontal axes through
the science chamber for the optical dipole trap.

4.3 Laser system

For the operation of the experiment, multiple laser sources are needed in order to
interact with the atomic samples (Fig. 4.6). Exploiting these interactions atoms
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can be cooled, trapped, detected and have their internal state specifically manip-
ulated. Thus during different stages of the experiment, different laser systems
are used to generate the needed wavelengths, polarizations and powers. This
section focuses mainly on the laser sources needed to run the magneto-optical
trapping configurations for 87Rb, as they are important for both preparation and
detection stage. Since dipole trap optics are being set up during the writing
of this thesis and might still be subject to change, they will only be outlined
briefly. The optical setup is spread across a dedicated "optics table" holding the
cooling and repumping laser systems and the "vacuum table"13. On the laser
table the needed frequencies and the needed amount of optical power are being
generated and delivered to the table with the vacuum setup with the help of
optical fibers. On the vacuum table beam shaping, polarization preparation and
power distribution is being performed.

Optics table

All frequencies used in the magneto-optical traps are located in the vicinity of the
87Rb D2 line at 780.241 nm [207]. The light at these wavelengths is supplied by
two diode laser sources. The natural linewidth of ΓRb = 2π × 6.065(9) MHz sets
the fundamental requirements for the laser sources and their locking scheme.
The first laser uses a Doppler-free saturation spectroscopy setup for frequency
stabilization. Choosing the F = 2 → F′ = 1/3 crossover transition in combina-
tion with a 200 MHz modulation AOM enables access to all transitions starting
at F = 2 within the D2 line by simply employing another 200 MHz AOM within
the respective beam path. Thus the first laser can act as a source for deriving
light fields driving the F = 2 → F′ = 3 cooling transitions in the 2D+-MOT the
two 3D-MOT configurations i-MOT and d-MOT, as well as find its use for a
potential absorption detection setup. In accordance with its main application
the first laser is referred to as the cooling laser. Also frequencies driving tran-
sitions originating at the F = 1 level are needed for providing a repumping
mechanism in all MOT configurations. Due to the large gap of 6.8 GHz between
the F = 1 and F = 2 levels, it is not possible to use the first laser to generate the
appropriate frequencies. Thus, a second laser, referred to as the repump laser, is
used and stabilized with respect to the cooling laser by means of a microwave
interferometer Here, an adjustable delay stage is used to allow setting of the
relative locking point. This light source generates the repumping light on the
F = 1→ F′ = 2 transition.

Since the laser diodes only provide output powers in the range of a few 10 mW,
but especially 2D+-MOT and i-MOT performance scales favorably with the pro-

13The quick-witted reader now may deduce that this table does contain nothing at all, but in
fact it supports the vacuum chamber.
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Figure 4.6: Level scheme of 87Rb and laser frequencies used in the experiment.
Optical frequencies for the cooling transition, resonant detection and optical
pumping (blue hues) are derived from the reference laser (violet and light violet
background) that is locked onto the F = 2 → F′ = 1/3 crossover transition
with an offset of 200 MHz. Light for pumping the internal atomic state back
into the cooling cycle is generated using a second laser diode (green and light
green background). Frequency shifts generated by acousto-optical modulators
are shown (red to orange hues). The corresponding laser system is shown in
Fig. 4.7.
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Figure 4.7: Laser light distribution setup on the optics table. Layout of the laser
system to generate the desired optical frequencies (compare Fig. 4.6) including
all optical components. Fiber couplings are numbered to reference the delivery
to different outputs on the vacuum table (Fig. 4.8). This is an updated version
of the system shown in [201].
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MOT config. 2w0 [mm] Pcl [mW] ∆cl [MHz] Prp [mW]

2D+-MOT 87/30 390 mW 13 MHz -

i-MOT 14 190 mW 13 MHz 210µW

d-MOT 1.25 146µW 6 MHz 20µW

Table 4.1: Laser system parameters. The table lists the Gaussian beam waists
w0, powers P and detunings ∆ used to operate the different MOT configurations.
The index refers to either the cooling (cl) or the repump (rp) laser system for
powers and detunings. The beam waist is in all cases the same for cooling and
repump light. The power is to be understood as the total power summed up
over all beams. In case of the 2D+-MOT the repump light is generated on the
same tapered amplifier as the cooling light and their respective powers cannot
be determined easily. For the 2D+-MOT the beam waists refer to the long and
short axis of the elliptical beam shape.

vided optical power, a total of four tapered amplifiers (TAs) is used to generate
the necessary amount of light for all MOT configurations. One of these TAs is
used as a preamplifier for the cooling light, while another is solely amplifing
the repump light. The other two generate the needed cooling power for the
2D+-MOT and 3D-MOT, respectively. For the 2D+-MOT repump and cooling
light are combined before the last TA, allowing for simultaneous amplification
of both needed frequencies. From here on the light is delivered to the dedicated
2D+-MOT optics using three optical fibers. Both 3D-MOT configurations, i-MOT
and d-MOT, share a majority of the optical path and components (Fig. 4.8) on
the vacuum table. For the operation of the d-MOT a separate power stabilization
of the cooling and repump light is needed. The cooling and repump light are
being amplified and delivered to the vacuum table separately using two distinct
optical fibers. A 200 MHz-AOM in a double-pass configuration as a last element
before the fibers in the respective beam paths allows to control the optical power
by changing the power of radio frequency input.

Vacuum table distribution optics for 2D+-MOT and 3D-MOT

On the vacuum table the light from the laser table gets feed into different distri-
bution optics for the 2D+-MOT and the 3D-MOT. A total of three fibers delivers
the combination of cooling and repumping light to the 2D+-MOT optics. One
fiber is specifically used to supply light to the pushing and retarding beam. This
beam is collimated to a diameter of 5 mm and split by a polarizing beam splitter.
One part acts as the pushing beam, enters the glass cell from the back, gets send
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along the zero line of the quadrupole field of the 2D+-MOT coils and is aimed
at the reflective front of the differential pumping stage. The other beam acts as
a retarding beam and is put into a counter propagating alignment. The other
two fibers carry the light used for the two elliptical transversal cooling beams of
the 2D+-MOT with a power of about 195 mW each. By passing a quarter wave
plate (QWP) the light is polarized circularly. Passing a lens setup of three lenses
and a final fourth concave cylindrical lens with a focal length of f = −150.8 mm
the beams are expended to an elliptical profile of with diameters of 87 mm and
30 mm. On the opposing side of the 2D+-MOT glass cell a highly reflective mir-
ror with a quarter wave plate coating retro-reflects the beams into themselves
while changing their polarization in accordance with the magneto-optical trap-
ping principle. Not only does this minimize the amount of optics needed and
reduce the alignment effort, it also makes more efficient use of the available
optical power.

Cooling and repumping light are delivered by separate fibers to optics for the
3D-MOT configurations. After polarization cleaning, a part of the incoming
power is picked off and send onto a dedicated photo diode. In conjunction with
a home-build PID controller a control signal is feed back onto the radio fre-
quency power of an AOM in front of the fiber. Both beams are than overlapped
by means of a polarization beam splitter and build a common source to drive
both i-MOT and d-MOT configuration. Since these two 3D-MOT configurations
are spatially superimposed but require different powers and beam diameters, a
beam splitter with a splitting ratio of 10 : 90 splits the light into two different
paths, one for each configuration. The major part of the power is send into a
telescope to become the i-MOT beam with a diameter of about 14 mm. From
the remaining light by means of a another telescope the d-MOT beam with a
diameter of 1.25 mm is formed. Another balanced beam splitter combines the
d-MOT and i-MOT beam again for a super imposed delivery using the same
optics. Typical operation points for the 2D+-MOT and 3D-MOT laser systems
are listed in Table 4.1. In order not to loose optical power, both output ports
of this combining beam splitter each feed into three of the total of six beams of
the 3D-MOT configuration. Shutters placed before or after telescopes allow to
switch between i-MOT and d-MOT configuration.
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homogeneous MOT coils.
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4.4 Coil system and magnetic fields

Magnetic fields are essential for the operation of an experiment with ultracold
atomic gases. The magnetic moment of the atoms allows the magnetic fields
to act on the magnetic sub-levels of the hyperfine structure. Two of the most
prominent trapping configurations that require magnetic fields are MOTs and
the magnetic trap, both using the minimum of an inhomogeneous magnetic field.
In order to drive spin changing collisions, a constant homogeneous magnetic
field is needed. This section gives an overview of the coils used within the setup,
concentrating on the 3D-MOT, quadrupole coils and homogeneous field coils,
as these are the ones especially designed to match the needs of the detection
setup. All calculations of circular coils are based on analytic expressions of the
magnetic field ~B of a single circular current-carrying wire loop in cylindrical
coordintates ρ and z [208]:

Bρ =
µ0I z

2πα2βρ

[(
a2 + ρ2 + z2

)
E
(
k2

)
− α2K

(
k2

)]
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− ρ2

− z2
)

E
(
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)
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(
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(4.2)

where the substitutions α2 = a2 + ρ2 + z2
− 2aρ, β2 = a2 + ρ2z2 + 2aρ and k2 =

1 − α2

β2 were made. The current through the winding is given by I, the vacuum
permeability µ0, while K

(
k2) and E

(
k2) are complete elliptic integrals of the first

and second kind, respectively, whose results are obtained numerically within
Mathematica. In the calculations the spatial extend of the a single wire is taken
into account by placing successive turns of a coil at greater distances and radii.
The single wire itself is centered with respect to spatial extent of the physical
cross section of the wire. The total magnetic field is obtained by summation
over all contributing wires. Gradients are calculated by the respective spatial
derivatives of the modulus of the magnetic field.

4.4.1 Compensation coils

The compensation coils consist of three pairs of rectangular coils oriented along
the principle axis of the experiment with 36 windings each. Their main purpose
is to cancel out residual magnetic fields at the position of the atomic sample, like
for example the earth magnetic field and stray magnetic fields from the ion getter
pumps, by creating a magnetic field that cancels the unwanted residual fields.
The dimensions of the box edges formed by the coils are 2000 mm × 2000 mm ×
1200 mm.
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z
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x

homogeneous field coils

3D-MOT coils

quadrupole coils

Figure 4.9: Coil assembly. The CAD drawing shows the quadrupole (green),
3DMOT (blue), and homogeneous field coils (yellow) and their mounting struc-
tures surrounding the science glass cell. The colored axes through the con-
struction show the main symmetry axis of the correspondingly colored coil pair.
For the principle axis of the 3D-MOT coil, quadrupole coil and homogeneous
field coil are aligned along the z, y and x axis of the laboratory framework, re-
spectively. The post height is designed to match the common origin of all coil
geometries to the center of the science glass cell at a total height of 300 mm above
the table surface.

4.4.2 2D+-MOT coils

The 2D+-MOT coils are oriented in a rectangular fashion around the correspond-
ing glass cell and measure 120 mm× 170 mm. Using 81 turns a two dimensional
quadrupole field with a gradient of 3.3 G

Acm can be created. The currents of
the four coils are optimized with respect to the loading speed of the 3D-MOT
configuration.
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Figure 4.10: Measurement of the 3D-MOT coil field and fitted gradient. All
three components of the magnetic field where measured while moving the sensor
(F. W. Bell model 7030 Gauss/Tesla meter) along the z (a) and y (b) direction. a The
z axis is orientated along the symmetry axis of the 3D-MOT coils and accordingly
delivers the stronger gradient of dBz/dz = 10.85(2) G/cm at a current of I = 92 A.
Normalizing for the applied current this results in 0.1180(2) G/(A cm). b Along
the weaker y direction a gradient of dBy/dy = −5.28(1) G/cm was measured,
yielding 0.0574(1) G/(A cm).

4.4.3 3D-MOT coils

The 3D-MOT coil pair (Fig. 4.9) aims at generating a gradient of 15 G/cm that
is needed to realize both 3D-MOT traps, i.e. the i-MOT and the d-MOT. Each
coil is made up of 40 windings in two layers of 20 windings each, fully using
up the space that is left between the quadrupole coils. By design the innermost
winding starts with a radius of 18.375 mm set by the mounting frame. The
two coils are positioned at a distance of 187.5 mm and the wire cross section
is 6 mm × 1.12 mm. For the principle axis, according to the design, a value of
0.106 G

Acm was estimated, implying that a current of 142 A is needed to create
the desired gradient of 15 G/cm. While the coil pair is estimated to have a total
resistance of 0.038 Ω, resulting in a needed voltage of 6 V. Figure 4.10 depicts
the results of measuring the generated magnetic field gradient of the coils. The
measured value of 0.118 G

Acm slightly deviates from the designed value just as
the measured resistance of 0.04 Ω. The currents were measured using a current
transducer (LEM Danfysik IT 200-S Ultrastab). This deviation can be explained
by the fact, that during the winding of the coil in two layers, one layer is wound
from the outside in, the innermost winding has to make a transition from the
lower layer to the top layer, and then the top layer is wound from the inside out.
All calculations where based on perfect circular loops, not following the actual
spiral shape of a coil. Hence the coil is better described by an inner layer of 21
turns and a top layer of 20 turns, summing up to a total of 41 turns per coil.
The calculated values of 0.114 G/(A cm) and 0.04 Ω match the experimentally
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determined values much closer.

Splitting the mounting frame into two half circles and merging them with
a 1 mm phenolic paper (Pertinax) spacer in between electrically isolates both
halves from each other in order to prevent eddy currents. Running the desired
gradient continuously generates about 862 W of heat that need to be dissipated,
but will be at reduced by half due the duty cycle of the coils. To counter the
heat generation, the mounting structure is designed to feature water cooling on
its outside surface. Due to the split geometry of the coil mount, it is necessary
to cool both halves of each coil separately. To this end, the outside surfaces
feature connectors (Serto SO 41121-8-1/8) compatible with 8 mm tubing from
Serto as well as tranches that are closed with a lid and surface sealant (Loctite
SI 5926). A chiller (H.I.B Industriekühlsysteme RK/W-03000-L-R23-011E-2-IW)
with a cooling capacity of 3 kW connected to the coils water cooling circuit. The
current is supplied by two Gen-7.5-1000 from TDK Lambda that are connected
in series and hence can deliver up to 1000A at 15 V.

4.4.4 Homogeneous field coils

In order to be able to drive spin dynamics in a Bose-Einstein condensate a
quantization axis for the magnetic sublevels of 87Rb is needed. The magnetic field
created by the homogeneous field coils (Fig. 4.9) lifts the degeneracy between
the magnetic sublevels. The coil pair consists of two coils with 12 windings of
round enameled copper wire with a diameter of 1 mm, that is wound in three
layers of four windings each. The coil mount is split in six parts per coil to allow
for electrical isolation and easy installation.

4.4.5 Quadrupole coils

The design goal for the quadrupole coils (Fig. 4.9 and 4.11) is to allow for the
generation of a steep magnetic trap, i.e. the creation of a strong gradient field
on the order of 300 G/cm. Within the experimental sequence the magnetic trap
is used as an intermediate form of trapping, enabling the transition from i-MOT
to the optical dipole trap. Additionally it allows to carry out a first step of evap-
orative cooling.

The desired gradient can be maximized by increasing the current through the
coils or by placing the coil pair closer to their geometrical center and making
the radius of the windings smaller. These measures find their limits in the phys-
ical limitations of the science glass cell, the optical access needed for detection
setup and the 14 mm i-MOT beams. Figure 4.11 c helps to gain a geometrical
understanding of this situation by superimposing the spatial requirements of
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Figure 4.11: Mounting structure of the quadrupole coils. a Outside view. The
mount is split along its vertical axis and separated by a 1 mm thick phenolic
paper (Pertinax) spacer to prevent eddy currents. The left half is shown with
the water cooling lid on, the right half exposes the tranches underneath. The
water inlets are compatible with 8 mm tubing from Serto. b Inside view. This
side is the one facing the science glass cell. It features another layer of water
cooling while trying to place the coil as close to the cell as possible. The left
side is shown with the lid on, while the right side reveals the tranches of the
water cooling. The water inlets are connectors from Festo that are compatible to
a 1 mm tube. c Cut cross section view. This representation shows the 62 current-
carrying windings of the coil in solid red. They are distributed in 4 layers of two
times 20 and two times eleven windings. The space occupied by a pair of big
14 mm cooling beams for the i-MOT are depicted as green shaded areas coming
in at an angle of 45 ◦. These beams prohibit the windings to be places closer to
the center. The detection lens L1 reaches inside the coil mount to make full use
of its large numerical aperture.

the i-MOT beams, the large numerical aperture of the detection and the coils.
Only one half of the coil pair is shown, the other being an exact mirror image.
Also increasing the current through the coil will increase the dissipated heat and
result in an stronger, undesirable temperature increase.

The mounting frame of the quadrupole coils is designed to solve these geo-
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Figure 4.12: Measurement of the quadrupole coil field and fitted gradient
along the strong axis. The graph shows the measured field strength of the
quadrupole coils for a current of I = 45 A along their strong axis. The linear fit
yields a slope of dBy/dy = 80.51(14) G/cm. This results in a universal gradient
of 1.790(3) G/A cm, which is in good agreement with the value of 1.779 G/A cm
that was calculated for the designed geometry. The deviations between the
measured and calculated value can be explained by the fact that the innermost
turn of coils has to move from one layer to another.

metrical and thermal challenges by maintaining a large optical access, hold the
desired number of wire turns as well as allow for water cooling of the wire
during operation. Copper was chosen as the material for the mount as it has
very good heat conductance. The downside of the choice of material is that the
good electrical conductance makes the circular mounting structure susceptible
to eddy currents caused by switching the coils on and off. These eddy currents
in turn can induce magnetic fields that can disturb the control over the atomic
sample. To avoid this, the structure is split in two half circles. A gap of 1 mm
is filled with isolating phenolic paper (Pertinax) and glued together to form the
full mount of one coil.

Water Cooling

Due to the splitting of the coil mounts into half circles to supress eddy currents,
the water cooling needs to be incorporated on each half circle separately. Each
half circle part features trenches, that are used to actively cool the mounting
structure by connecting it to a water cooling circuit. The trenches are milled
into the outside and inside plate of the mounting structure. They are closed
by respective lids that are screwed to the mounting body and sealed by the



64 Chapter 4. Experimental apparatus

application of sealant (Loctite SI 5926) across the whole surface. While the
outside water cooling features deeper trenches of and with a cross section of
104.5 mm2 and tubing connectors (Serto SI 41121-8-1/8) that connect 8 mm tubing,
the inside water cooling close to the science glass cell is especially delicate.
Without any water cooling on the inside, the windings located close to the
science glass cell would become the hottest part of the coil during operation.
These windings were located furthest away from outside water cooling and the
heat transport across the layers of windings is deteriorated due to the isolation
varnish on the wires as well as the resin holding the layers in place. Having
any device close to the science glass cell heating up substantially could cause
a temperature gradient across the glass cell resulting in either a leak or broken
vacuum. Yet moving the windings away from the glass cell to make room
for water cooling also increases the needed current for reaching the desired
gradient, and thus also increases the deposited heat and finally the resulting
temperature during operation. In essence, the water cooling on the inside of
the coils has to take up as little space as possible. The trenches on the inside
surface feature a cross section of 60 mm2 while the copper lid is only 1.5 mm
thick. Temperature monitoring is done by a series of 36 negative temperature
coefficient thermistors (EPCOS B57861S, NTC 10 kΩ) that are glued (Fischer
Elektronik Wärmeleitkleber WLK 120) to the coil mounting structure and read in
using home-build electronics in combination with a LabView computer interface.
Cooling is provided by a dedicated chiller (H.I.B Industriekühlsysteme RK/W-
03000-L-R23-011E-2-IW) with a cooling capability of 3 kW. A huge cooling
capacity is needed as a steady state operations and the desired specs would
result in about 5 kW Joule heating. By assuming a duty cycle of 20 % or less
the heat can rougly be reduced to 1 kW which is well within the chillers cooling
capacity.

Windings

Splitting the windings into four cascading layers of a total of 62 windings, i.e.
two layers of 20 and two layers of 11, makes the best use of the space available
under the geometrical restrictions while trying to keep the number of turns
low to reduce the coils inductance. A flat enameled wire with a cross section
of 5 mm × 1 mm is used to create the turns. The inner radius of the inner
most winding is 48.4 mm and the distance between the coils is 52.75 mm. The
simulation shows that with its 1.779 G

Acm along the main axis, the coil pair will be
able to produce a gradient of 300 G

cm when supplied with a current of 168.668 A.
Due to the total resistance of the coils of 0.18 Ω a voltage of at least 30 V is needed.
As a current driver a Gen-60-250 from TDK Lambda able to drive up to 250 A at
60 V is used.
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coil pair ∇B or B I [A]

2D+-MOT 14.85 G
cm 4.5

3D-MOT 15.00 G
cm 151

QF 300.00 G
cm 168.67

HOM 3 G 3.98

COMP 270 mG
A max. 3

Table 4.2: The table lists the desired operation points of the coil pairs involved
in the system.

4.4.6 Summary

The integrated design of all three main coil setups (i.e 3D-MOT, quadrupole
fiel coils and homogenous field coils) features water cooling for the 3D-MOT
and quadrupole coils. Simultaneously, it grants optical access through all nine
viewports of the glass cell, especially for the big 14 mm i-MOT beams. Eddy
currents are countered by avoiding any closed conductive loop around the glass
cell within the mount design. The coil mounts themselves are made up of
two identical parts separated by 1 mm phenolic paper (Pertinax). With this
coil concept the apparatus is equipped for all magnetic fields that need to be
generated during the experimental procedure (Fig. 4.1).

4.5 d-MOT detection system

The d-MOT detection system is built to register as many fluorescence photons
from the atoms trapped in the d-MOT as possible. At the same time its equally
important task is to reduce the amount of collected background photons. This
is achieved by maximizing the amount of initially collected photons and mini-
mizing the photon losses within the imaging system. Additionally background
contributions from out of focus areas and scattering centers are to be minimized.

4.5.1 Optical components

A central component of the detection system is the first aspheric lens (Edmund
Optics GmbH, ED67283, 50 mm diameter, 48.34 mm working distance, 50 mm
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Figure 4.13: Cut through the CAD drawing of the detection optics path of the
d-MOT imaging system. On the right hand side the glass cell with the six d-
MOT beams (red) is shown. Their cross section marks the position of the atomic
sample. Green lines mark the optical path of the detection system. The first
imaging lens L1 (blue) gathers about 5 % of the total light emitted by the atoms.
Together with the second imaging lens L2 (blue) an intermediate image is formed
at the position of an exchangable aperture (red). The aperture reduces unwanted
stray light that originates in out-of-focus planes. Another lens pair consisting
of L3 and L4 (blue) relays the image from the pinhole plane onto the CCD chip.
The solid green lines outline the bounding rays of the imaging path. The dashed
green line represents the imaging axis. Two three-dimensional translation stages
(orange) allow for precise focusing of the optics onto the position of the atomic
sample. An adjustable lens tube (collimation adapter) ensures that the image can
always be relayed onto the CCD camera chip. When in operation the detection
system is fully enclosed to keep stray light from entering.

focal length), made out of fused silica with an effective numerical aperture
NA of 0.448 (L1 in Fig. 4.13). In conjunction with three more ensuing lenses,
the collected photons are imaged onto a low noise CCD camera chip (Prince-
ton Instruments, 1024 BR eXcelon liquid cooled, back-illuminated deep deple-
tion CCD). The covered solid angle of about Ω = NA2/4 ≈ 5 % quantifies the
relative amount of collected photons and is the main design parameter. The
anti-reflection coating reduces the reflected portion of the collected light at the
desired wavelength of 780 nm down to below 0.25 %, i.e. is a transmittance of
T1,2 = 99.75 % per pass. A benefit of the large working distance is, that this
allows the positioning of the first lens already outside the vacuum at a distance
of 24.9 mm from the surface of the science glass cell.
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Figure 4.14: Objective lens. a Front view of the objective lens showing its flat
front surface with a diameter of 50 mm. b The back view of the second lens in the
imaging system reveals its diameter of 75 mm and the mounts brass retaining
ring. The objective lens tube is mounted as rigidly as possible to rule out the
influence of vibrations. A three dimensional translation stage enables tuning
the focus of the detection system onto the position of the d-MOT.

The second lens (L2 in Fig. 4.13) within the imaging system is a plano-convex
lens (Edmund Optics GmbH, ED86917, 75 mm diameter, 142.45 mm working
distance, 150 mm focal length) made from N-BK7 and subjected to the same
anti-reflection coating. Together with the first lens it is housed inside a home-
built aluminum lens tube to fix the relative position of the lenses. Painting the
inside of the tube black (Albrecht Schultafellack, matt) reduces the stray light
that enters the first lens. In combination, the first two lenses form an interme-
diate image 158.35 mm behind the second lens. A three-dimensional translation
stage (Newport M562-XYZ) with micrometer actuators (Newport SM-13) allows
to focus precisely on the position of the atomic sample.

At the intermediate image plane a pinhole is positioned (Fig. 4.13). This con-
focal setup blocks light, that originates behind or in front of the focus region.
Any light source that is not located within the focal plane will appear to be
defocused in the intermediate image plane, allowing for a spatial filter to cut
out only the region of interest and to remove unwanted background light. The
three-dimensional translation mount (Thorlabs CXYZ1M) allows positioning the
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pinhole in the intermediate image plane and select the desired region of interest
in the lateral directions.

Lenses three and four (L3 and L4 in Fig. 4.13) are both plano-convex aspheric
lenses made of N-BK7 (Thorlabs, AL50100-B, 50 mm diamater, 100 mm focal
length). The applied broadband anti-reflection coating reduces reflections at
780 nm down to 0.19 %. This allows to assume a transmittance of T3,4 = 99.81 %
per pass. These last two lenses relay the intermediate image without any further
magnification and are mounted in a threaded lens tube (Thorlabs SM2F) that
allows for the adjustment of the distance between the lenses in order to focus the
image correctly onto the camera’s (Princeton Instruments PIXIS 1024BR eXcelon)
CCD chip (CCD in Fig. 4.13). An additional three-dimensional translation stage
(Newport M562-XYZ and SM-13) supports the two lenses (L3 and L4).

The total magnification M = 2.62 of the imaging system is determined by the
choice of the first two lenses. In combination with the physical pixel size of
the CCD camera chip of 13µm × 13µm for the total of 1024 × 1024 pixels this
results in a total image size of 5.08 mm × 5.08 mm. Alternatively, one pixel cor-
responds to a distance of 4.96µm in the object plane. For the application in an
accurate atom counting detection, the CCD camera’s most important property is
its quantum efficiency QE = 98 %, describing the ratio of the number of primary
electrons generated by the CCD chip to the number of incident photons hitting
the CCD chip. The window in front of the chip features an angled cut at 1.5 ◦ to
avoid etalon effects and an anti-reflection coating on both sides that allows for a
transmittance of TCCD = 99.8 %.

The total detection efficiency is given as a product of all the factors mentioned
above and can be written as

η = Ω ×QE ×
∏

i

Tki
i , (4.3)

where Ω and QE are the relative covered solid angle and the quantum efficiency
of the CCD camera chip, respectively. The transmittances Ti need to be con-
sidered for every surface within the detection path and the exponents ki simply
take care of multiple passes of comparable surfaces, e.g. same anti-reflection
coatings. A detailed overview of the relevant influences is given in Tab. 4.3,
showing that the total expected detection efficiency is η = 4.71 %, a value that is
more than four times higher than in comparable systems [209]. The advantages
of the setup presented in this work are the large numerical aperture of the first
lens, vastly increasing the covered solid angle as well as the anti-reflection coat-
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component symbol factor occur. total contribution

science cell glass surface T 98.92 % 2 97.85 %

lens 1 solid angle Ω 5.02 % - 5.02 %

lens 1,2 surface T 99.75 % 4 99.00 %

lens 3,4 surface T 99.81 % 4 99.26 %

camera window surface T 99.80 % 2 99.60 %

CCD chip quantum efficiency QE 98.00 % - 98.00 %

total η 4.71 %

Table 4.3: Detection efficiency of the d-MOT detection system. The table lists
the different quantities influencing the total detection efficiency of the d-MOT
detection setup and their respective contribution to it. The comparably large nu-
merical aperture for a MOT detection system paired with the excellent quantum
efficiency of the camera enable excellent photon counting rates (Chapter 5.3).

ing of the vacuum science cell windows14.

While for a single d-MOT only the photons emitted from the atoms within
the trap need to be collected and counted, this becomes different when consid-
ering counting the atoms in multiple traps. Spatial separations that are typically
reached in split magneto-optical trapping setups of a few 10µm [209] do not
pose requirements comparable to single site resolution of an optical lattice. The
theoretical resolution of 1.2µm of the imaging system is limited by the pixel size
due to the small magnification of M = 2.6. Any feature on a scale below 5µm
will be imaged onto a single pixel. But then again a smaller magnification dis-
tributes the signal across fewer pixels and thus reduces readout noise, increases
read out speed and picks up less background across the signal area on the CCD
chip. Although, for larger atom numbers the amount of pixels in the region of
interest can become important in order to avoid saturation of single pixels.

The gain factor of the camera’s conversion from primary electrons to digital
counts was measured to be g = 1.089(4) (Fig. 4.15). Additionally the manufac-
turers value for the quantum efficiency was verified as QE = 97(1) %. In order
to relate the camera counts to a fluorescence signal it is plausible to gather all

14Typical comparable glass cells without anti-reflection coating only offer a transmittance of
T = 96 % per pass.
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Figure 4.15: Calibration of the camera gain. Using the slope of the linear
relation between the variance and the mean number of digital camera counts
the gain of the camera is estimated to be g = 1.089(4). This procedure is described
in more detail in the Appendix of [46].

the factors that determine how many of those photons that an atom emits are
converted to camera counts, forming an effective detection efficiency

η̃ = η/g = 4.33 %. (4.4)

4.5.2 Scattering estimation

In order to reliably derive accurate atom numbers from the detected photons,
the background signal and the corresponding noise of the background signal
need to be sufficiently small. Thus, the potential background signal during the
imaging process needs to be considered and estimated already in the design
process as well as characterized experimentally. For the estimation, possible
scattering sources that could interact with the d-MOT beams as well as probable
optical paths through the imaging system onto the CCD chip are being reviewed.
The only light source that necessarily is turned on during the d-MOT imaging
sequence are the six d-MOT cooling and repumping light beams. By reducing
the size of these beams to 1.25 mm, the likeliness of scattering events is reduced
from the first. Due to the immediate vicinity to the detection lens, the science
glass cell is the most likely source for reflections and scattering events that may
cause photons of the cooling beams to be captured by the detection setup (Fig.
4.16). In a typical detection scenario, the d-MOT may run at a power of about
Pd−MOT = 150µW. Dividing this by the energy Eph = hc/λ of a single photon at
a wavelength λ = 780 nm yields the total rate of incident photons

rinc =
Pd−MOT

Eph
=
λPd−MOT

hc
≈ 6 × 1014 photons/s, (4.5)

where h is the Planck constant and c the speed of light. Depending on the
amount of reflections and the potential encounter of a scattering center, only a
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Figure 4.16: Possible reflections and scattering sources of the d-MOT beams
and suppression of out-of-focus light sources by the detection aperture. a The
top view shows a horizontal cut through the science glass cell with the large side
windows on the top and bottom of the sketch respectively. The blue cone depicts
the solid angle that is covered by the detection lens. Cooling light beams for the
d-MOT entering from the front (back) are shown in red (green). Each surface is
a potential source for reflections and surface scattering. The numbers display
the multipe orders of reflection that can occur on surfaces of the glass cell. b
Ray tracing simulation of possible scattering light entering the detection system
originating at the positions marked by the corresponding capital letters in a. L1,
L2 and Ap. mark the position of the first and second detection lens as well as
the aperture in the intermediate image plane. As can be seen from position E
only close to the detection axis it is possible for light from out-of-focus sources
to pass the detection 1 mm aperture.

fraction of these photons will be caught by the detection system. Table 4.4 gives
an overview of the relevant parameters for the estimation of these background
contributions. The noise of the background signal is the real quantity of interest.
If the background noise is larger than the signal of a single atom, no accurate
atom number detection will be possible. In fact, the background noise level
should only be on the order of a fraction of a single atom signal for the detection
to work reliably. In anticipation of Chapter 5, a single atom signal for our applied
experimental parameters is on the order of ratom = 6 × 105 photons/s. Assuming
the noise of the background follows a Poisson distribution, the standard devia-
tion is given by the square root of its mean. From these assumptions, a critical
suppression value of 6 × 10−4 can be derived.15 When the incident cooling light
enters the detection setup with a weaker attenuation, it becomes a thread to the

15This critical suppression is an overestimation in the sense, that it does assume a perfect
spatial overlap between the background signal and the atom signal on the camera chip. In
reality this will never be the case.
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source symbol probability

reflections inside of the chamber (multiple n > 1) P(n)
ref 0.83 %

science cell surface quality (scattering) Pscat 0.02 %

detection efficiency η 4.71 %

pinhole suppression Psupp 0.07 %

Table 4.4: Scatter estimation. This table lists the different estimated probabili-
ties involved in scattered light from the cooling laser beams entering the detec-
tion system. The reflection probability is derived from the reflectivity curves of
the applied coating supplied by the manufacturer. Scattering can occur when
the cooling light beams hit an imperfection in the glass cell surface. The surface
quality is described by the scratch-dig specifications that can be used to estimate
the probability of the beam hitting an imperfection. This value has been verified
experimentally in a dedicated setup [201]. The detection efficiency is derived in
Table 4.3. The pinhole suppression is an estimate derived from ray tracing sim-
ulations for different points across the in- and outside surfaces the big windows
of the science glass cell.

detection principle.

Because of the symmetry of the problem, it is sufficient to consider only two
cooling beams. One entering from the front, along the detection setup and one
from the back, entering through the window opposite to the detection (Fig. 4.16).
For the parallel beam, direct first order reflections pose the biggest threat, as they
are still very powerful and will contribute the most of the background offset.
While these first order reflections might enter the first detection lens they will
inevitably end up on the aperture, such that they are not directly hitting the CCD
chip. Indeed, if the first order reflection were to be distributed across the same
area on the CCD chip, accurate atom detection would not be possible. Hence,
to reduce their chance of scattering inside the lens tube, the inside surface of the
lens tube has been painted black (Albrecht Schultafellack, matt).

Higher order reflections might bring the beam in a position, where scatter-
ing on a surface of the science glass cell could allow a portion of the light to
pass the aperture (Fig. 4.16b). But then again, reflecting the beam twice should
reduce its intensity below the threshold needed for accurate atom detection. In
cases where one reflection followed by a scattering event occurs, only a fraction
of 8 × 10−8 of the incident photons will reach the position of the aperture. For
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the presented use case, this turns out to be about 5 × 107 photons/s. In conclu-
sion, all combinations of the probabilities listed in Table 4.4 will result in small
background contributions compared to the first order reflections and can be ne-
glected. The experimental results in chapter 5.2.2 demonstrate that painting the
lens tube from the inside is sufficient to reduce the background noise to a level
that corresponds to 6 % of the signal of a single atom, as during the experiment
neither the beam blocks nor the detection aperture where in place. This also
suggests that the background level was dominated by contributions from the
first order reflections. Extrapolating the measured background count rate of
3.76(3) Mcts/s to the whole CCD chip size yields rate of 5.30(4) × 108 photons/s.
Comparing this to the a direct reflection of the incident photons on the glass cell
window results in a suppression of about 10−3 by only painting the inside of the
lens tube. In a previous stage of the apparatus, the addition of beam blocks along
the edges of the detection cone proved useful to keep these reflections from even
hitting the first lens at the cost of an insignificant reduction of the numerical
aperture. Even for the first order reflections, applying only one of three possible
means (i.e. reflection beam blocks, detection aperture and darkened lens tube)
to reduce the background signal is sufficient.

4.6 Experimental control

Running an atom optics experiment requires the control of many experimen-
tal parameters. Light fields need to be controlled in power and frequency by
means of the radio frequency and power supplied to an acousto-optical modu-
lator. Beam paths are altered by closing and opening optical shutters. Magnetic
fields are created by running a particular current through special coil geome-
tries. All these variables need to be controlled meticulously and timed precisely
in the form of digital and analog control voltages that are sent to the respective
drivers. The experimental control used for this apparatus is based on the system
used in a former experiment described in [210]. Here, only the most important
technical aspects are rounded up.

The experimental control is driven by a LabView software that is run on a
field-programmable gate array (FPGA, Virtex-II 3M) on a commercial PCI-card
(National Instruments NI PCI-7813R R Series Digital RIO) in a designated com-
puter system. The FPGA features an internal clock cycle of 40 MHz with an
accuracy of ±100 ppm and a minimal time step of 5 ns. A total of 160 binary
output ports (TTL-standard) is available. Digital-analog converters (National
Instruments NI 9263) convert 10 of the TTL-channels into 4 analog channels that
can deliver ±10 V with a 16 bit resolution at sampling rate of 100 kSamples/s.
They are used in three groups of four (National Instruments 9151 - R Series
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Expansion Chassis) to create a total of 48 analog channels. The remaining 40
TTL channels are directly made accessible through a breakout board equipped
with BNC and SMA connectors.

4.7 Summary

This section outlined the design process, main features and construction pro-
cess of an experimental apparatus that aims at performing quantum-enhanced
atom interferometry. The successful build up of 2D+-MOT, i-MOT and d-MOT
together with the detection system allows for a first test the systems’ accurate
atom counting capabilities (Chapter 5) — they key subsystem will enable atom
interferometry at the Heisenberg limit. Beyond this, the implemented coil sys-
tem is able to supply the needed magnetic fields and gradients for all steps of
the experimental procedure (Fig. 4.1). Optical molasses and magnetic trapping
are the next subsystems to be tested with all their components already in place.
Pending the finalization of the deployment of the optical dipole trap optics,
optical trapping and Bose-Einstein condensation will be possible.



Chapter 5

Accurate atom counting

Within this chapter, the experimental sequence to operate and calibrate the
detection MOT (d-MOT) is outlined. The gathered fluorescence signal of atoms
captured in the d-MOT as well as the background signal is analyzed. In this
process the characteristic steps that correspond to integer atom numbers in the d-
MOTare revealed. A calibration of the atom number is performed that will allow
for on-the-fly evaluation of the atom number. Further analysis of the statistics
of the steps in the fluorescence signal yields an estimate of the trapping life time
of the atoms of τlife = 540(150) s. A noise model for the two-point variance of
the atom counting signal is presented, revealing the limiting noise contributions
from scattering rate fluctuations. The noise model further demonstrates that
the single-atom counting limit will be reached at Nats = 390(20) atoms, when a
successful scattering rate drift compensation is applied.

5.1 Experimental sequence

In order to verify and characterize the accurate atom counting capabilities of
the experimental apparatus, statistics of the background signal of the d-MOT
configuration and of the fluorescence signal of atoms trapped in the d-MOT need
to be gathered. Thus, the experimental sequence includes an initial background
image that is taken right at the beginning, before any atoms enter the science
glass cell. During this exposure, the d-MOT cooling laser beams are turned
on and running at the operational parameters with a saturation parameter of
s0 = 6.65 and a detuning of ∆ = 2π × 6 MHz. The exposure time of 90 ms is
also matched to that of the fluorescence acquisition that happens later during
the sequence. Once the background image has been acquired and the camera
picture is being read out, the 2D+-MOT and i-MOT are activated simultaneously
to transfer atoms from the 2D+-MOT glass cell into the science chamber where

75
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ROI

Figure 5.1: On-the-fly image processing. Color bars represent the scale of
digital counts within the image. The size of the images is 50 pixels in both
directions, while 2 × 2 binning was used. The white scale bar measures the
length of five recorded pixels (i.e. a length of 10 physical pixels on the CCD
chip), corresponding to 49.6µm in the object plane. left Example image of
a single atom trapped in the d-MOT. center Subtracting an initially acquired
background image enables to estimate the digital counts due to the fluorescence
of atoms within the d-MOT. right Only a central region of interest (ROI) is chosen
by removing the outer pixels in order to avoid edge artifacts. An additional mask
can (white ring) be applied to the resulting image, only selecting the atomic
clouds’ fluorescence signal. By summing up the counts of the pixels within the
mask or even within the ROI the fluorescence signal can be estimated.

they are trapped in the i-MOT. Since the characterization of the d-MOT only
requires small numbers of atoms, a loading time of 15 ms suffices. For another
10 ms, all laser lights are turned off to allow for a dilution of the cloud to reduce
the initial atom number. Afterwards the d-MOT configuration utilizing the
small MOT beams with a diameter of only 1.25 mm is activated to recapture
the a small amount of the atoms. Following an initial holding time of 500 ms
that absolutely ensures all untrapped atoms have dropped out of the detection
region, the fluorescence signal emitted from the atoms trapped in the d-MOT
is imaged for τexp = 90 ms. This is followed by an additional holding time of
230 ms, during which the camera image is being read out. These last two steps
of fluorescence imaging and holding (readout) time are then repeated 10 more
times, such that the time from finished exposure to the next finished exposure is
310 ms. One full cycle of the sequence thus delivers one background image and
11 images containing an atomic signal from the d-MOT. Continuously tracking
the background signal interleaved with the atomic data, allows to not only
observe potential drifts in the light intensity, but also to estimate the drift during
the acquisition of the atomic data.
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Figure 5.2: Time traces of the experimental sequence. Six graphs show time
traces of the fluorescence signal gathered from the d-MOT. Each graph contains
10 full repetitions of the experimental sequence. Each repetition consists of
one initial background image, marked by the vertical grid lines in the graphs,
followed by 11 images containing fluorescence signal of atoms in the d-MOT. The
horizontal axis shows the running image number Nimg, while the right and left
vertical axis measure the signal strength in digital counts Ncts and atom number
Nats. The calibrated scaling for the atom number is derived in the following
section. Exemplary single atom loss events are highlighted with a red shaded
background.
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5.2 Data analysis

5.2.1 On-the-fly image handling and time traces

The acquired images displaying the acquired camera counts (cts) are handled
as shown in Fig. 5.1. Only the minimally necessary region of interest of 100
by 100 physical pixels on the CCD chip is readout to speed up the read out
process and data handling. In data processing, the 5 edge pixels are removed to
exclude any edge effects from entering the calculations. By binning the pixels
in a 2 × 2 fashion on camera, the readout speed is further increased. While
pixel binning also reduces readout noise, the camera in use features a readout
noise level of 10.1 cts at the single pixel level that renders it negligible for the
presented measurements. Even when summed over the full region of interest of
100 × 100 physical pixels, the total readout noise contributes only 1000 cts. For
pixel binning, this number scales approximately linearly with the binning size,
i.e. about 500 cts (250 cts) for 2×2 (4×4) binning with respect to the same region
of interest. All images taken during the sequence described in the previous
section have a previously acquired base background image subtracted. This is
necessary to enable an on-the-fly estimation of the signal strength relative to the
background. By summing up the counts of all the pixels within the mask, the
total fluorescence signal of the d-MOT is obtained. Typical time traces of the
fluorescence signal across many sequences are shown in Fig. 5.2 a-f for a total of
60 experimental realizations in both units of camera counts and converted atom
number. The single traces show clear constant atom numbers, where repeated
measurements of the same cloud show very reproducible signal — a strong
indication of successfully counting single atoms. Visible steps within some time
traces are caused by the loss individual atoms due to the finite life time of the trap
(Section 5.2.4). These events especially further emphasize the discriminability
of two adjacent atom numbers, and hence herald the achievement of true single-
atom counting resolution.

5.2.2 Background characterization and correction

The total amount of counts of the background images is comprised of ambient
light hitting the camera chip, occurring dark counts, the light background from
the cooling laser and additional offset counts per pixel, that get added during
the pixel readout procedure. While the former two sources proved negligible in
separate experiments, the additional offset counts of 604(11) cts per 2× 2 binned
pixel are subtracted to retrieve the actual amplitude of the background signal
(Fig. 5.3). The evaluation of this background time trace shows that the back-
ground performance with a mean signal of 338(3) kcts (i.e. a mean background
counting rate of 3.76(3) Mcts/s) is sufficient. Note, that these background levels
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Figure 5.3: Absolute background signal time trace and background correction.
a The acquired background signal (data points) is shown in units of atoms (left
vertical axis) and in units of camera counts (right vertical axis). It exhibits a
maximal drift equivalent to 0.5 atoms over the measurement time. This can
be partially corrected for by grouping the background images and fitting a
piecewise linear function (blue solid line). Here, the first background image
is used as a reference. The atomic data has been taken in between the shown
background images The corresponding offset corrections are calculated from the
fitted function. b Correcting the background signal itself by yields a remaining
background a standard deviation of about σbkg = 3 × 10−2 atoms.

are referring to the extracted region of interest of 90 × 90 physical pixels. This
average signal strength offsets the atomic signal by 6.81(6) atoms in the d-MOT.
More important than the overall background strength is its very small standard
deviation compared to the signal of a single atom. Such a low background noise
is a crucial prerequisite in order to be able to operate a detection setup capable
of counting atoms accurately. If the background noise would outscale the signal
of a single atom no single-atom detection would be possible.
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However, a good part of the noise can be attributed to a slight drift in the
background signal over the course of the measurement. Using a piecewise
linear function that minimizes the squared deviations, a background offset es-
timation is made that is used to correct the camera counts in the atom images
(Fig. 5.3 a). Applying the background correction to the background data itself
yields a remaining background standard deviation of σbkg = 3× 10−2 atoms (Fig.
5.3 b). This strategy of repeated background calibration is also applicable be-
yond the presented calibration procedure. When the detection system is used to
evaluate atom numbers as the outcome of an experiment, interleaving the acqui-
sition of background images with the experimental sequence is strongly advised.

Beyond the background estimation the background signal can be used to ana-
lyze the fluctuations in the cooling intensity in terms of the saturation parameter
s0 and their contribution to the counting noise beyond the background noise.
By interpreting the background signal as a measurement of the cooling light
intensity stability, the variance of the saturation parameter can be estimated as

σs0 =
√

s2
0 σ

2
Ncts,bkg/〈Ncts,bkg〉

2 = 6 × 10−2. (5.1)

After applying the background correction the corresponding saturation param-
eter variance becomes σs0,corr = 3 × 10−2. The comparison of these two values
already hints, that a non-negligible portion of the scattering rate noise is caused
by a drift in the intensity stabilization. A probable cause for this can be found
in the temperature dependent polarization properties of the optical fibers. This
becomes especially important as the imperfect polarization beam splitter that
feeds a small part of the cooling light onto the photo diode for the stabilization
will reflect a disproportional amount of the polarization drifts.

5.2.3 Atom number detection

The most precise way to determine the atom number in the d-MOT is to ex-
tract the signal strength of a single trapped atom experimentally. To this end,
a histogram (Fig. 5.4) of the acquired camera counts across all images is build
up, after the background signal has been subtracted. As the main result of this
work, the histogram reveals the formation of distinct equidistant peaks. Here,
the first peak corresponds to the corrected background data. The second peak
is the signal of a single atom trapped in the d-MOT and each further peak cor-
responds to the addition of another atom to the trap.

To determine the center position of the peaks, the first 20 peaks of the histogram
are selected. Peaks belonging to higher atom numbers are neglected in this
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Figure 5.4: Atom signal histogram and atom scaling calibration (inset). The
histogram shows the collected atomic signal on the horizontal axis units of atoms
after calibration (bottom) and in units of camera counts after offset subtraction
(top) with a bin size of about 1280 cts or 0.026 atoms. Clearly distinguishable
peaks correspond to different integer atom numbers. A sum of Gaussian distri-
butions is used as a modeling function (black line) for the first 20 peaks including
the background peak. Inset The resulting center positions of the Gaussian fits
are fitted linearly against the integer peak number yielding a linear scaling factor
ncts = 49.60(9) kcts/atom that gauges the ratio of camera counts per atom. The
error bars are smaller than the symbol size.

procedure due to the limited size of contributing data points. A simultaneous
fit of a sum of Gaussian distributions

fhist(Ñats) =

19∑
j=0

h j exp

−
(
Ñats − 〈Ñats〉 j

)2

2σ2
j

 (5.2)

with a set of three free parameters for each peak is performed. The result yields
the corresponding center positions 〈Ñats〉 j, widths σ j and heights h j of the peaks.
Plotting the fitted center positions against the corresponding atom number, i.e.
the integer position of the peak counting from the background peak, shows a
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linear relation (Fig. 5.4 inset). To obtain a scaling factor16, a linear function17 is
fitted yielding a slope value of

ncts = 49.60(9) kcts/atom. (5.3)

This calibrated scaling factor is the key parameter of the presented accurate atom
counting detection. A precise determination of the signal of individual atoms
is only possible due to the sufficiently low detection noise, reflected in the well
resolved peaks and their corresponding width.

The most general way to express the found scaling for the atom number is
by correcting it for the exposure time, yielding a counting rate that describes the
camera counts generated per atom captured in the d-MOT and per second of
camera exposure:

rcts =
ncts

τexp
= 551.1(9) kts/(s atom). (5.4)

This very high single atom counting rate is a result of the careful design of all
relevant parts of the d-MOT detection scheme and will enable scaling the accu-
rate atom detection to higher mesoscopic atom numbers.

The experimental sequence parameters, i.e. detuning of the cooling light ∆ = 6 MHz
and the saturation parameter s0 = 6.65, allow to estimate the expected scattering
rate of the atoms within the d-MOT according to equation 3.1 as

Rexpected
sc (∆, s0) ≈ 1.096 × 107 photons/s. (5.5)

Based on the design parameters of the d-MOT detection setup, an effective
conversion factor of photons originating isotropically in the focus of the detection
system to digital camera counts18 is calculated η̃det = 4.33 %. The expected
camera counts per atom per second can be estimated

rexpected
cts = η̃det Rsc (∆, s0) ≈ 474 kcts/(s atom). (5.6)

During the exposure time of τexp = 90 ms a total of

nexpected
cts = rexpected

cts ∗ τexp = 43 kcts/atom (5.7)

16This quantity by nature is unit-less as it gives the value of digital camera counts generated
per atom in the d-MOT. But in order to maintain readability with all the different amounts of
photons, counts and atoms within the detection scheme, an explicit notation seems appropriate.

17Quadratic contributions proved to be negligible. This justifies the intrinsically made as-
sumption, that no non-linearity, for example by reabsorption of fluorescence photons, has to be
considered for the presented atom numbers.

18This conversion factor already takes into account the measured gain g = 1.089(4) of the
camera model.
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are expected.

The calibrated scaling factor ncts (Eqn. 5.3) differs from the expected value
nexpected

cts calculated above. Errors may be found in the assumptions made about
the detection system alignment that was based on the designed values and not
measured after optimizing its focus on the atomic position.

The presented accurate atom counting detection can be considered self-calibrating,
as it does not rely on any external value or a priori knowledge to identify a single
atom unambiguously. An initial estimation of the single-atom signal served as
a means to run the experiment in the correct regime and ensure the sampling on
the single-atom scale. Once all designed parameters and experimental param-
eters are controlled well enough to obtain a reasonable estimate for the signal
of an individual atom, the experimental data itself provides the best scale.19

This is a huge advantage when compared to typical fluorescence or absorption
detection setups, that cannot provide a natural, experimentally extractable scale
for the atom number and rather have to rely on a priori knowledge or multi-
ple measurements of all involved experimental parameters, each further being
another potential source of inaccuracy.

5.2.4 Life time and loading rate analysis

For optimal performance of the accurate atom counting detection the knowl-
edge of the d-MOT life time τlife is inevitable, as the ideal exposure time τexp,opt

depends on it (Chapter 3.2). Utilizing the occurrence of loss events during the
experimental repetitions while holding the atoms in the d-MOT, the life time
of the d-MOT can be evaluated. In a Poissonian loss process, loss events are
independent and during a sufficiently small time interval [t, t + ∆t] only one loss
process is assumed to occur. This assumption holds true, as long as the time
interval is small compared to the characteristic time scale τlife, i.e. the life time, of
the process. Further, the probability p1 for a single loss event to happen during
a time interval of length ∆t scales linearly with the length of the time interval,
s.t.

p1 (∆t) = g∆t. (5.8)

Consequently, the probability p0 for no loss event to take place is given by

p0 (∆t) = 1 − p1 (∆t) = 1 − g∆t. (5.9)

19Of course this is somewhat a double-edged sword as the knowledge of the constituents to
the scaling factor is crucial to both designing the experimental setup and future improvements
concerning the systems noise.
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Hence, the probability for no loss event to have happened until the time t + ∆t
can be expressed as

p0 (t + ∆t) = p0 (t) p0 (∆t) = p0 (t) − p0 (t) g∆t (5.10)

leading to the differential equation

dp0 (t)
dt

= −gp0 (t) (5.11)

that is solved by using an exponential ansatz under the condition that p0(t =
0) = 1. Therefore, the solution reads

p0 (t) = exp
(
−gt

)
= exp

(
−

t
τlife

)
. (5.12)

Thus, the life time τlife is given as the inverse of the linear scaling factor

τlife = g−1 =
∆t

p1 (∆t)
. (5.13)

The probability p1 (∆t) of a loss event to happen during the experimental se-
quence spanning the time interval ∆t = 310 ms can be evaluated by counting
the steps in the fluorescence time traces. This is performed by pairing up atom
numbers from consecutive images within the sequence runs. The first in the
pair determines the atom number Npre

ats before the time step ∆t by rounding it
to the nearest integer. This is used to group the paired data according to the
atom number in the first image. The second image determines the atom number
Nats after the time step. Depending on a loss or possibly a loading event this
atom number might have changed or not. Figure 5.5 shows histograms of the
resulting atom numbers after the time step for fifteen initial atom numbers from
Npre

ats = 1 to Npre
ats = 15. Losses of more than one atom during a time step are

not present in the statistics, underlining the initial assumption of maximally one
loss event during the time window ∆t and justifying the negligence of higher
order loss events. The histograms show that single-atom loss events and load-
ing events are rare, as the time traces in Fig. 5.2 suggested. The most common
case appears to be an unchanged atom number, depicted by the strong peak in
the center of each histogram. Approaching this analysis by treating each time
step as an independent experiment with one of three possible outcomes, i.e.
loss, survival and loading, allows to quantify the characteristics of the loading
and loss process. Hence, the number of times an event occurs are called M j,loss,
M j,surv and M j,load. These numbers can be extracted from each histogram in Fig.
5.5, where the index j refers to the corresponding initial atom number Npre

ats . By
suppressing the index dependence on j in

Mk =

15∑
j=1

M j,k k = loss, surv, load , (5.14)
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Figure 5.5: Histograms of single-atom loss and loading events. The histograms
show the measured atom number Nats depending on the atom number Npre

ats
measured in the previous time step. Data for atom numbers from Npre

ats = 1
to Npre

ats = 15 is considered in the histograms a-o, respectively. Possible loss
and loading events are highlighted in red and green, respectively. The blue
contributions are considered survival events.
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occurences
event Mevent Mattempts result

single-atom loading 12 2710 Rload = 0.014(4) s−1

single-atom loss 14 24482 τlife = 540(150) s

Table 5.1: Life time and loading rate analysis. This table sums up the statistics
and the results of the time step analysis from the time traces of the atomic signal
from the d-MOT.

these quantities are considered the respective sums across all values of Nprev
ats . The

loading probability of the d-MOT configuration is determined by comparing
Mload to the count of all single time step experiments where a loading event
could have possibly occurred:

pload =
Mload

Mloss + Msurv + Mload
. (5.15)

Dividing this loading probability by the time step of the experimental sequence
allows to extract the loading rate Rload = pload/∆t ≈ 0.014(4) s−1. The low loading
rate can be explained by the combination of small cooling beams used in the
d-MOT configuration, leading to a lower capture velocity, and low background
pressure in the science cell.

To calculate the loss probability the number of loss events Mloss is compared
to the number of experiments that could have exhibited a loss event. This time
not only all time steps need to be considered as independent experiments, but
also each atom captured in the d-MOT that undergoes a time step is regarded
an individual loss test. The is considered by appropriately scaling the number
of survival events with the atom number Nprev

ats present in the trap:

ploss =
Mloss

Mloss +
∑15

j=1 jM j,surv + Mload

. (5.16)

According to Eq. 5.13 the life time is given by τlife = ∆t/ploss ≈ 540(150) s.
While life times in magneto-optical traps can reach values up to 200 s [43], the
presented d-MOT system exhibits an exceptional life time performance. While
the pressure in the science chamber is not measurable directly, this long life time
can very well be interpreted as the result of a low background pressure enabled
by the double differential pumping scheme in the vacuum setup. The results are
summed up in Tab. 5.1.
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5.2.5 Noise analysis

The fitted Gaussian distributions from Fig. 5.4 d yield not only the positions of
the respective peaks belonging to integer atom numbers, but also their widths.
These widths and the corresponding variances are a measure for the detection
noise with the caveat, that they are largely made up out of long term drifts
of the cooling intensity and frequency that accumulated during the extend of
the measurement. Additionally, the results of a mathematical fit that is based
on a least squares method, may not accurately reflect the statistical properties
of the underlying sample. But turning to the use of the statistical variance
of the distinct distributions in the histogram in Fig. 5.4 still will lead to a
drift dominated noise description. The goal here is to characterize the typical
fluctuations that occur during a single experimental realization of the detection
scheme. These shot-to-shot deviations are aptly described by the two-sample
variance:

σ2
Nats

=
1
2

〈(
N j+1,ats −N j,ats

)2〉
j
. (5.17)

There are two main benefits to this approach. Firstly, it allows to include data
from atom numbers where the statistical sample is too small to fit a full Gaussian
function. Secondly, long term drifts in the scattering rate due to intensity or
frequency drifts do not affect this quantity. It rather captures the short behavior
of the intensity and frequency fluctuations. In fact the simple noise model from
Equation 3.2 only includes contributions from the photon shot noise as of the
atomic sample as σ2

psn and single-atom losses due to a finite trapping life time as
σ2

loss. A more general noise model additionally includes the background noise,
the scattering rate noise and even two-body losses due to light-assisted collisions
as a higher order loss process:

σ2
Nats

= σ2
bkg + σ2

psn + σ2
srn + σ2

loss , (5.18)

where σ2
bkg is an additional offset variance from the background signal that

is independent of atom number and σ2
srn captures the scattering rate noise. Ac-

cording to section 5.2.2 the background noise after application of the background
correction is estimated to be σ2

bkg = 8.4 × 10−4.

Photon shot noise and scattering rate fluctuations

Contributions from the photon shot noise and scattering rate fluctuations in-
duced by frequency and intensity noise are best understood by reviewing how
the camera counts emerge from the fluorescence signal. The number of detected
fluorescence photons is on the order of a few 104 photons per atom. For a fixed
number of atoms Nats, the detected photons can be assumed to follow a Gaussian
distribution with a mean value of 〈Ncts〉 = Nats η̃ τexp Rsc (∆, s0). The variance is
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determined by contributions from photo-electron shot noise and scattering rate
noise:

σ2
Ncts

= σ2
Ncts,psn + σ2

Ncts,srn

= 〈Ncts〉/g +
(
σ2

∆
(∂∆Rsc)

2 + σ2
s0

(
∂s0Rsc

)2
)

N2
atsη̃

2τ2
exp ,

(5.19)

where the symbol ∂ j denotes a partial derivative with respect to the variable
j. Dividing the variance of the camera counts by (η̃ τexp Rsc)2 reveals the corre-
sponding contribution to the atom counting variance to be

σ2
Nats

= Nats
η τexp Rsc

+ N2
ats

((
σ∆

Rsc
∂∆Rsc

)2
+

( σs0
Rsc
∂s0Rsc

)2
)

= σ2
psn + σ2

srn.
(5.20)

Noteworthy are the different dependencies on the atom number for these noise
contributions. While photon shot noise depends linearly on the atom number,
scattering rate noise scales with the square of the atom number. This kind of
dependence reflects that the scattering rate noise is correlated for all the atoms,
i.e. they all experience the same scattering rate noise. In the histogram picture
a fluctuation in the scattering rate changes the distance between the different
peaks, which scales linearly with their distance from the origin. On average
this increases a peak’s width linearly with the corresponding atom number and
in turn the variance will exhibit a quadratic dependence for this process. The
scattering rate noise can be summed up using a common parameter

α2 = τexp

((
σ∆

Rsc
∂∆Rsc

)2

+
( σs0

Rsc
∂s0Rsc

)2
)

(5.21)

such that the scattering rate noise term finally reads

σ2
srn =

α2

τexp
N2

ats, (5.22)

while the photon shot noise contribution can be written as

σ2
psn =

Nats

η τexp Rsc
. (5.23)

For the scattering rate noise, the inverse scaling with the exposure time reflects
that for longer exposures, the influence of scattering rate noise is reduced due to
the increased averaging time. In the last line of Equation 5.20, this dependence
is hidden in the variances of frequency detuning ∆ and saturation parameters s0

as they must be considered in reference to a certain averaging timescale.
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Atom loss noise

In case of the two-sample variance, the noise stemming from loss events, both
single-atom loss and two-body loss, can be derived using a master-equation
approach [43, 209]20 and read

σ2
loss =

Natsτexp

2τlife
+ βN2

atsτexp +
1
2

(Nats

τlife
+ βN2

ats

)2

τ2
exp, (5.24)

where β describes the two-body loss rate.

Table 5.2 gives an overview of the expected contributions from all considered
noise sources in Equations 5.22, 5.23 and 5.24 for the data presented in an ef-
fort to reduce the amount of terms to consider. From low atom numbers on,
the scattering rate term is expected to largely contribute to the noise. Only for
atom numbers as high as 105 orders higher than the quadratic order in Nats are
expected to match the scattering rate contribution. Atom numbers this high are
outside of the range of atom numbers that are detectable accurately. Lastly, for
the presented data it suffices to truncate the noise model at the second order,
only including the scattering rate term and disregarding loss related terms of
higher orders in Nats. With this the reduced noise model reads

σ2
Nats

= σ2
bkg + σ2

psn + σ2
srn + σ2

loss

= σ2
bkg + Nats

η τexp Rsc
+

α2N2
ats

τexp
+

Natsτexp

2τlife

= σ2
bkg + Nats

(
1

η τexp Rsc
+

τexp

2τlife

)
+ N2

ats
α2

τexp

(5.25)

Before this noise model can be applied to the two-sample variance of the ex-
perimental data, the influence of the loss contribution needs to be considered
carefully. An atom getting lost during the exposure will only contribute a frac-
tion of the expected fluorescence signal, depending on at which exact point in
time during the exposure it left the trap. Section 5.2.4 showed that only very
few loss events are present within the complete dataset. This means that not
even at every atom number a loss event has occurred. As a consequence, the
loss contribution to the two-sample variance will only affect certain atom atom
numbers. Additionally, the experimental sequence (Section 5.1) features a dead
time between the images to allow for the image readout. This dead time of
τdead = 220 ms gives each atom an additional probability to leave the trap pro-
portional to the duration of the dead time. Thus, an atom is about two times more

20The inclined reader might find interest in the lengthy derivation presented in [209].
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order coefficient value source

— σ2
bkg 8 × 10−4 background noise

Nats
(ηRscτexp)−1 2 × 10−5 photon shot noise

τexp/(2 τlife) 8 × 10−5 single-atom loss

N2
ats

α2/τexp 4 × 10−5 scattering rate noise

βτexp 3 × 10−8 two-body loss

τ2
exp/(2 τ2

life) 1 × 10−8 mean atom loss

N3
ats βτ2

exp/τlife 4 × 10−12 mean atom loss

N4
ats β2τ2

exp/2 4 × 10−16 mean atom loss

Table 5.2: Noise model terms and their expected contributions. Different
contributions for the noise model are estimated using the values τlife = 540(150) s,
α = 1×10−3 s1/2 (derived fromσs0 = 6×10−2, negelecting the presence of frequency
noise σ2

∆
in Equation 5.21) that were obtained in the life time and background

analysis sections of this chapter, respectively. Since no two-body loss events are
present in the statistics the two-body loss rate is assumed to be β = 3 × 10−7 s−1

[43].

likely to get lost off camera, than on camera. For this reason the experimental
sequence detects full steps in the signal with increased probability, rather than
the expected uniform distribution of expected fractional signals from an atom
leaving the trap at a random time during the exposure. This would lead to an
overrepresentation of loss induced noise for those atom numbers where losses
occurred and a simultaneous underrepresentation for atom numbers where no
loss was detected. Thus, the two-sample variance is only considered for the data
set excluding detected loss events. While this removes the full steps, where the
loss occurred during the dead time, it leaves those events where the atom got
lost during the first half of the exposure unaffected21. By estimating the atom
loss noise contribution based on the exposure and life time values (Table 5.2)
and adding this back onto the two-sample variance, it is ensured that despite
the exclusion of the loss events, the loss contribution to the noise is at best over-
estimated and evened out across all detected atom numbers.

Also the photon shot noise can be derived from the inverse of the calibrated

21These losses are identified as losses on the next image, when the signal crosses the halfway
mark between integer atom numbers
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Figure 5.6: Two-point variance and noise model extrapolation. The two-
point variance for atom numbers up to Nats = 38 was calculated and fitted with
the noise model from Equation 5.25 only using the scattering rate parameter
α = 7.6(4) × 10−4 s1/2 as a free parameter. Already for small atom numbers the
scattering rate noise is the dominant noise contribution. Error bars show the
one standard deviation interval. The blue dashed lines outline the model’s error
band in terms of one standard deviation of the fit parameter α. Inset The model
can be extrapolated up to the limiting atom number Nlim,ats = 390(20) where
σ2

Nats
= 1, beyond which no accurate atom detection is possible for the chosen

exposure time of 90 ms. Only data points with at least 20 counting events are
considered.

single-atom signal from Section 5.2.3. The scattering rate noise term includes
the most unknown factors as the estimation in Table 5.2 neglects additional noise
in the detuning of the cooling light. Using the fluorescence noise parameter as
the only free parameter when fitting the noise model from Equation 5.25 to
the two-point variance of the atomic signal, a value of α = 7.6(4) × 10−4 s1/2 is
obtained (Fig. 5.6). From Equation 5.21, the standard deviation of the cooling
light detuning22 σ∆ = 15.6 kHz can be inferred when applying the drift corrected
saturation parameter uncertainty.

22This frequency fluctuation is calculated from the two-sample variance. Thus, it does not
include any long term drifts with respect to the imaging time.
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Figure 5.7: Exposure time optimization. a Exposure time dependence of the
atom number variance for different atom numbers: 1 , 10 , 50 , 200 and
400 . The red points mark the position of minimal variance for the respective
atom numbers. The dashed lines show the limiting contributions of scattering
rate and photon shot noise for short timescales (dark gray) and atom loss con-
tributions for longer time scales (light grad). b The highest detectable atom
number Nats,maxlim = 640 with a variance below unity is found by optimizing the
exposure time to τexp,maxlim = 408 ms to best accommodate to the specific noise
environment. This does not consider that the dynamic range of the camera pix-
els is finite and hence for the current choice of magnification and binning c The
optimal exposure time changes with atom number as the long life time allows
to compensate for the scattering rate noise that grows quadratically with the
atom number. Nevertheless with increasing atom number the optimal exposure
time seems to saturate, but only around the point where the fluctuations inhibit
accurate atom counting.

Beyond this, the noise model can be used to extrapolate the atom counting
performance towards higher atom numbers, finally reaching the accurate atom
detection threshold σ2

Nats
= 1 for Nats = 390(20) atoms (Fig. 5.6 inset). Note, that

this accurate counting limit depends on the exposure time τexp applied when
taking the data. The known contributions from the different noise sources can
be utilized to estimate an optimal exposure time τopt,exp for every atom number.
Revisiting the noise model in Equation 5.25, it becomes clear that scattering rate
and photon shot noise will reduce with increasing exposure time. However, life
time driven atom loss will at some point dominate the fluctuations. Figure 5.7 a
shows the dependence of the atom detection variance on the exposure time for
different atom numbers. Due to the strong scattering rate noise, the optimal
exposure time shifts towards longer times for increasing atom numbers. For the
presented data with an exposure time of τexp = 90 ms the average atom number
〈Nats〉 ≈ 15 shows a variance of σ2

Nats
(Nats = 15) = 0.004(1). Compared to the

ideal exposure time of τexp,opt = 106 ms for 15 atoms with minimal fluctuations
of σ2

Nats,opt(Nats = 15) = 0.004 our measured result aligns very well and justifies
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the chosen exposure time in retrospect.

From the model, an ultimate limit with respect to the current noise perfor-
mance of the system can be derived by solving for the maximum atom number
Nats,maxlim at which the ideal exposure time still allows for detection fluctuations
below the single-atom detection threshold. At Nats,maxlim = 640 for an ideal expo-
sure time of τexp,maxlim = 408 ms, even the minimal detection fluctuations reach
unity (Fig. 5.7 b and c). In order to realize this in the current setup without being
stopped by the saturation of the camera, the binning and also the magnification
may need to be adapted to accommodate for the increased single-atom signal.

5.2.6 Scale factor optimization

Building on the insight that scattering rate noise in the form of long term drifts
and short term fluctuations contributes most of the noise to the atom count-
ing signal, a reevaluation of the data that incorporates a varying scale factor is
justified. The atom counting data for less than 15 atoms from the histogram in
Fig. 5.4 split into a set of 100 consecutive groups. For each group a linearly
changing scale factor that minimizes the squared distance to integer atom num-
bers is found (inset of Fig. 5.8 a). Applying this scale factor changes the shape
of the individual peaks in the histogram and the peaks experience a reduction
in width. Especially noteworthy are the improvements for the data beyond
Nats = 15 atoms. This shows that the scale factor optimization successfully used
a smaller part of the data to infer on the scattering rate drift of the whole sample.
Most interestingly, at the position for Nats = 27 a peak becomes visible (Fig. 5.8 b
and c). This result underlines the observations made during the noise analysis,
that scattering rate noise is the currently limiting noise source in the system.
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Figure 5.8: Scale factor optimization. Inset a Piecewise optimized scaling
factor plotted against the image number. a Histogram of the atomic data after
rescaling with the optimized scale factor and subsequent fit using multiple
Gaussian distributions. b,c Close up on the histogram for the atom numbers
Nats = 16 through Nats = 30 using the non-optimized (b) and the optimized (c)
scale factor. While the distributions around atom numbers Nats = 16 through
Nats = 30 qualitatively demonstrate a narrowing effect, the peak for Nats = 27
only becomes visible when using the optimized scaling factor.



Chapter 6

Outlook

Within this thesis, accurate atom counting has been accomplished. This was
demonstrated by stable and reproducible fluorescence time traces, distinct equi-
distant peaks in the fluorescence histogram for more than 30 atoms and the ex-
traction of an scale factor. Characterizing the atom number fluctuations beyond
long term drifts predicts that the single-atom resolution threshold is reached
at Nats = 390(20) atoms. This thesis has outlined the important role, that such
an accurate atom counting detection scheme will play in the advancement of
atom optics experiments. It will enable pushing the interferometric sensitivity
of interferometers operating with mesoscopic numbers of massive neutral parti-
cles towards the Heisenberg limit. Further it will aid in gaining insight in more
fundamental physical concepts, such as Bell-tests and single-particle Wigner
functions applied to ultracold atoms. A detailed description of these concepts
was already given in Chapter 2 as it served as the motivation for the construction
of a dedicated experiment that will be able to perform entanglement-enhanced
atom interferometry. Around these requirements, the apparatus was designed
and set up. The following sections focus on short and midterm progress with
the experimental apparatus.

6.1 Improve counting performance

In order to improve the accurate atom counting performance the noise analy-
sis of Chapter 5 already hinted that the currently limiting noise source are the
scattering rate noise and drift. Thus, the frequency and intensity stability of
the cooling light needs to be revisited. Automated full time monitoring of the
laser powers available to the 3D-MOT configurations and the temperature on
the optics tables could be used to characterize and investigate the causes of long
term drifts.
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If the setup is to be used as a dedicated atom number detection only, the ki-
netics mode of the CCD camera can be used to take images in faster succession.
The kinetics mode works by physically blocking a part of the chip, only expos-
ing a finite number of rows along its edge. After an exposure is completed, the
image gets shifted within 1 ms onto the covered part of the CCD chip and a new
exposure can be started. From the presented region of interest about 100 × 100
physical pixels it follows that up to ten images can fit on the CCD chip of the
camera, allowing for the fast acquisition of one background and nine atom im-
ages. Even though it is possible to derive the atom number from a single image,
this method allows to make the best use of the available dynamic range of the
camera and the noise can be reduced by combining these images.

6.2 State selective detection

Extending the detection to accommodate for more than one single output mode
of an experiment will be crucial to fully exploit the benefits of an accurate atom
counting detection. In order to simultaneously detect the number of atoms
in more than one sub ensemble to challenges need to be tackled. Firstly, the
ensembles need to be separated spatially, for example by employing the of Stern-
Gerlach separation. Secondly, the ensembles need to be trapped individually.
This can be achieved by alternating the d-MOT with a trapping potential that
forces the sub ensembles apart. A blue light sheet for example can act as repulsive
barrier in between the two clouds and has been used to demonstrate a limit of upt
500 atoms for single-atom resolution [44, 44, 209]. One main benefit of using blue
detuned light is that it creates a repulsive potential. Compared to an attractive
potential, created by red detuned light, the unwanted scattering events are
suppressed by the fact that the atoms will avoid the regions of higher intensity.
The Stark shift however will increase the energy of the ground state, necessitating
alternating the repulsive potential and the d-MOTṪhis can be extended upon
by replacing the light sheet by a tightly focused blue detuned beam steered
by an acousto-optical deflector to paint arbitrary partitions into the d-MOT. An
optical filter can be employed to protect the detection system from the unwanted
wavelength, such that only a very minute change in background signal should
be expected.

6.3 Atom number stabilization

In ultracold atom experiments, fluctuating starting conditions are a seemingly
unavoidable result of the preparation procedure and will occur in virtually ev-
ery experimental apparatus following the typical steps outlined in Section 4.1.
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Figure 6.1: Preliminary data on atom number stabilization in the d-MOT.
Time traces for experimental runs with an active atom number stabilization
through loss induced by repump black outs of for a duration 3.5 ms. The red
horizontal line marks the targeted atom number of Nats = 4. The dashed vertical
lines indicate the start of a new repetition of the experimental sequence. After
the desired atom number was reached four additional images were taken in
order to demonstrate the successfully reached atom number. In 74(3) % of all
319 repetitions the atom number was successfully controlled.

From the first step onwards, all events leading to an atom ending up within an
ultracold atomic cloud are probabilistic by nature. The search for a deterministic
way to prepare neutral atomic samples has lead to deterministic loading of a few
Cs atoms from a magneto-optical trap into a dipole trap [211]. Single Cr atoms
have been loaded into a magneto-optical trap using feedback from the fluores-
cence signal reaching an occupation probability as high as 98.7% [212, 213]. For
much larger samples of 106 87Rb atoms, the number of particles in a magnetic
traps was determined by a series of Farraday images [214]. There, feedback
was employed by varying the number of successively applied radio-frequency
pulses, spilling a controlled number of atoms from the trap.

After calibration, the accurate atom counting detection allows to accurately
determine atom numbers on-the-fly. This live knowledge can be utilized in a
real-time feedback loop to stabilize the atom number in the d-MOT, enabling the
on-demand preparation of atom numbers. To this end, each atom image is eval-
uated directly after readout by the camera software. Comparing the detected
number of counts to a prior set level of expected counts is used to stop a loss
procedure during the holding within the experimental sequence23. Repeating
these two steps eventually will lead to the desired number of atoms in the d-
MOT. Due to the lack for designated TTL output ports on the camera computer
itself, the trigger output of the camera is used to send a TTL signal to the FPGA

23The experimental sequence in this case is essentially the same as described in 5.1 except for
the addition of a loss-mechanism during the holding time between images.
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running experimental control sequence. Upon receiving the trigger signal, a
predefined loss mechanism is stopped and four more images are acquired. In
an initial attempt simply turning off any repump light for a duration of 3.5 ms
during the holding time of the d-MOT was used to induce losses. Time traces
for this are shown in Fig. 6.1. For 319 realizations in 74(3) % of the attempts
the desired atom number of Nats = 4 was successfully attained. Not being able
to change the strength of the induced loss makes it inevitable to design the loss
process such, that the probability for an atom to get lost is low in order to avoid
multiple losses in one step. Otherwise the last loss step just before reaching
the desired atom number could likely fail, as the control will "overshoot" the
target. Thus, to further pursuit the deterministic generation of atom numbers in
the d-MOT a protocol will be needed to communicate the strength of the atom
number deviation to the FPGA. Fully controlling the atom number cannot be
achieved by only inducing losses to the atoms currently trapped. In order to
also reach the desired atom number, when the initially loaded atom number is
lower than the target could be achieved by selectively turning on the 2D+-MOT
in order to send atoms into the science cell.

6.4 Moving towards a spinor BEC

The next steps in the construction of the apparatus will be to establish protocols
for the optical molasses, optical pumping, generation of Bose-Einstein conden-
sates and spin dynamics, while implementing remaining optics and hardware.
Starting with the optical molasses, the needed optics are already in place as
the i-MOT beams will be used, but careful compensation of the residual mag-
netic fields needs to be done. For the optical pumping, the light source is
already set up and coils to generate a quantization axis are in place. A magnetic
quadrupole trap should readily be realized, as the dedicated coil system is in
place and connected. The dipole trap laser is put in place and the dipole trap
optics are currently being implemented, including a combination of acousto-
optical deflectors that will be used to steer them and generate time-averaged
optical potentials.For spin-dynamics the corresponding microwave electronics
need be set up.

6.5 A first experiment using accurate atom counting

Once a spin-dynamics protocol for the apparatus has been established the accu-
rate atom counting detection can be used in conjunction with highly entangled
states. In a first experiment the pair creation of the spin-dynamics process could
be analyzed with single-atom precision. After a twin-Fock state of 1 to 100 atoms
in the |F = 1,mF = ±1〉 states has been created, the remaining atoms of the con-
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densate in |F = 1,mF = 0〉 could be pushed away by a resonant light pulse. The
twin-Fock state could be released from the optical dipole trap and recaptured
within the d-MOT. Upon counting the atoms only even numbers should occur,
proving that the process naturally involves pairs of atoms.
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