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Abstract

Researchers and practitioners employ a variety of time-series pro-

cesses to forecast betas, using either short-memory models or implic-

itly imposing infinite memory. We find that both approaches are

inadequate: beta factors show consistent long-memory properties.

For the vast majority of stocks, we reject both the short-memory

and difference-stationary (random walk) alternatives. A pure long-

memory model reliably provides superior beta forecasts compared to

all alternatives. Finally, we document the relation of firm characteris-

tics with the forecast error differentials that result from inadequately

imposing short-memory or random walk instead of long-memory pro-

cesses.
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1 Introduction

In factor pricing models like the Capital Asset Pricing Model (CAPM) (Sharpe, 1964;

Lintner, 1965; Mossin, 1966) or the arbitrage pricing theory (APT) (Ross, 1976) the

drivers of expected returns are the stock’s sensitivities to risk factors, i.e., beta factors.

For many applications such as asset pricing, portfolio choice, capital budgeting, or risk

management, the market beta is still the single most important factor. Indeed, Graham

& Harvey (2001) document that chief financial officers of large U.S. companies primarily

rely on one-factor market model cost-of-capital forecasts. In addition, Barber et al. (2016)

and Berk & Van Binsbergen (2016) also show that investors mainly use the market model

for capital allocation decisions. However, since beta factors are not directly observable

one needs to estimate them. For this purpose, researchers and practitioners alike typically

use past information, i.e., employ time-series models.

The degree of memory is an important determinant of the characteristics of a time

series. In an I(0), or short-memory, process (e.g., AR(p) or ARMA(p,q)), the impact of

shocks is short-lived and dies out quickly. On the other hand, for an I(1), or difference-

stationary, process like, for example, the random walk (RW), shocks persist infinitely.

Thus, any change in a variable will have an impact on all future realizations. For an I(d)

process with 0 < d < 1, shocks neither die out quickly nor persist infinitely, but have a

hyperbolically decaying impact. In this case, the current value of a variable depends on

past shocks, but the less so the further these shocks are past.

Researchers and practitioners estimate betas in several different ways. One approach

is to use constant beta coefficients for the full sample (e.g., Fama & French, 1992). This

relates to the most extreme I(0) case possible. However, there is a strong consensus

in the literature that betas vary over time. The usual approach to account for such

time-variation is the use of rolling windows, where the most current estimate is taken as

forecast for the next month (e.g., Fama & MacBeth, 1973; Frazzini & Pedersen, 2014).

This approach inherently imposes infinite memory and resembles a random walk, i.e.,

presuming that the best forecast for the future beta is today’s estimate.1

1Black et al. (1992), for example, explicitly model beta dynamics with a random walk.
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Numerous other studies employ explicit or implicit short-memory processes for mod-

eling beta dynamics. These include, among others, an AR(1) process in Ang & Chen

(2007), an AR(1) process with further latent and exogenous variables in Adrian & Fran-

zoni (2009), and an ARMA(1,1) process in Pagan (1980). Blume (1971) imposes a joint

AR(1) process for the entire beta cross-section. The implications of these differing ap-

proaches for the modeling of betas, though, vary substantially.

However, the literature on volatility modeling documents that volatility has clear long-

memory properties (Baillie et al., 1996; Bollerslev & Mikkelsen, 1996; Ding & Granger,

1996). It is thus natural to ask whether this is also true for beta. Andersen et al. (2006)

tackle this issue and conclude that betas do not exhibit long memory. However, this

conclusion is based on a relatively small sample of daily data and only considering tests

on the autocorrelation functions. In this study, we use a large dataset of high-frequency

data to comprehensively reexamine whether betas are best described by either (i) short-

memory processes, (ii) difference-stationary processes, or (iii) whether beta time series

instead show long-memory properties.

First, we use 30-minute high-frequency data to estimate each month the realized betas

for each stock included in the S&P 500 during the 1996–2015 sample period. Next, we

estimate the memory of realized beta using the two-step exact local Whittle (2ELW)

estimator by Shimotsu & Phillips (2005) and Shimotsu (2010). We find that betas show

consistent long-memory properties. The average estimate for the long-memory parameter

d is 0.56. Adjusting for potential structural breaks in the beta series decreases the average

d only modestly, to 0.52. For virtually all stocks, the statistical tests clearly reject both

the short-memory (d = 0) and difference-stationary (d = 1) alternatives. Thus, the vast

majority of previous studies substantially misspecifies the properties of the beta time

series.

Our findings differ considerably from those of Andersen et al. (2006). There are

several causes for this difference. First, our study has a substantially broader focus: we

consider more than 800 stocks. Second, we use high-frequency data to estimate beta

factors. This enables us to obtain more precise and less noisy estimates of beta (see also
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Hollstein et al., 2019a). Noise in the beta series of Andersen et al. (2006) could potentially

lead to a downward bias in memory estimates as found by Deo & Hurvich (2001) and

Arteche (2004). Third, using simulations, we show that for small samples, tests based on

autocorrelation functions, as opposed to direct estimates with the 2ELW estimator, have

little power to detect true long memory.

Having documented that betas exhibit distinct long-memory properties, we next ex-

amine the implications of this result for forecasting. Beta forecasts are of paramount

importance for many applications in finance. For example, capital allocation decisions,

portfolio risk management (Daniel et al., 2018), as well as firms’ cost of capital (Levi &

Welch, 2017) strongly hinge on precise forecasts of betas. We find that a FI model, which

uses only the long-memory properties for beta forecasting, yields the lowest root mean

squared error (RMSE). The FI model significantly outperforms both the short-memory

(AR(p), ARMA(p,q)) and difference-stationary (RW) alternatives for a substantial frac-

tion of the stocks. A full-fledged FIARMA(d,p,q) alternative performs somewhat worse

than the pure FI model, but better than the AR, ARMA, and RW models. We further

show that the outperformance of the FI model over alternatives gets stronger for longer-

horizon beta forecasts up to 1 year. Thus, incorporating the long-memory property is

highly important for obtaining good beta forecasts.

In a next step, we examine which firm characteristics are associated with different

degrees of memory in betas. We find that higher memory in beta is to some extent linked

with higher levels of a stock’s beta, book-to-market ratio, and leverage. In addition, stocks

with high memory typically have lower market capitalization, turnover, idiosyncratic

volatility, and short interest. Furthermore, we find substantial industry effects: stocks in

the Energy and Manufacturing industries have comparably high memory in beta while

stocks in the Healthcare, HiTec Equipment, Telephone, and Wholesale industries tend to

have relatively low memory in beta. The latter industries are and have been particularly

prone to disruptions and creative destruction. The somewhat shorter memory of the betas

of these stocks is thus consistent with what one might intuitively expect. One should note,

however, that these still exhibit long memory: past shocks also have a long-lasting impact
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on their betas.

Finally, we document that for high-momentum stocks and those with high short in-

terest, using a RW model instead of the FI model yields particularly high errors. On

the other hand, for high-beta stocks, illiquid stocks, and those with high idiosyncratic

volatility, it is most harmful to use an ARMA(p,q) model instead of the FI model.

We run a battery of tests to document the robustness of these results. First, we show

that the FI model also outperforms its competitors when using hedging errors instead of

the RMSE to evaluate the forecasts. Second, we also document long-memory properties

of betas for the entire Center for Research in Security Prices (CRSP) sample. For this

substantially larger sample and a much longer time period, we find that the FI model

also outperforms all alternatives. Third, we estimate the short-memory and difference-

stationary models in a state-space framework. In addition, we consider the Vasicek (1973)

and Levi & Welch (2017) estimators, a heterogeneous AR (HAR) model, as well as a FI

model, for which we set the long-memory parameter d to 0.5 instead of estimating it. We

find that all alternative models underperform the FI model. Instead, the FI(0.5) model

performs even somewhat better than the standard FI model. Fourth, we use the alter-

native estimator of the d parameter of Geweke & Porter-Hudak (1983) and obtain very

similar results. Finally, we consider alternative intra-day sampling frequencies, alternative

rolling estimation windows, and bandwidths. Our conclusions remain unchanged.

Our paper contributes to the literature on beta estimation. Hollstein & Prokopczuk

(2016) consider both I(0) and I(1) beta forecasts, but do not take into account models

that account for long memory. Further contributions that deal with beta estimation

include Buss & Vilkov (2012), Levi & Welch (2017), and Hollstein et al. (2019b). We

complement these studies by explicitly considering long-memory processes to make beta

forecasts. To the best of our knowledge, we are the first to show that forecasting beta with

long-memory models yields superior forecasts compared to both I(0) and I(1) models.

We organize the remainder of this paper as follows. Section 2 introduces the data

and presents summary statistics. We present results about the long memory in betas

in Section 3. In Section 4, we examine the impact of our findings for the forecasting of
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betas. We study the economic implications of our findings in Section 5. In Section 6, we

draw conclusions. The Online Appendix contains several further analyses and robustness

checks.

2 Data and Methodology

2.1 Data

Our dataset covers U.S. stocks for the sample period from January 1996 to December

2015. Following Bollerslev et al. (2016), for our main analysis we restrict our attention

to stocks that are part of the S&P 500 index at least once during our sample period.

We collect high-frequency price data from the Thomson Reuters Tick History (TRTH)

database. On average, the stocks for which high-frequency data are available represent

79 percent of the entire market capitalization of ordinary common U.S. stocks.

In order to process the final high-frequency dataset, we follow the data-cleaning steps

outlined in Barndorff-Nielsen et al. (2009). First, we use only data with a time stamp

during the exchange trading hours, i.e., between 9:30AM and 4:00PM Eastern Standard

Time. Second, we remove recording errors in prices. To be more specific, we filter out

prices that differ by more than 10 mean absolute deviations from a rolling centered median

of 50 observations. Afterwards, we assign prices to every 30-minute interval using the

most recent entry recorded that occurred at most one day before. Finally, we follow

Bollerslev et al. (2016) and supplement the TRTH data with data on stock splits and

distributions from CRSP to adjust the TRTH overnight returns.

In the Online Appendix, we also present results for the entire CRSP dataset and a

time period starting from 1926. These results are qualitatively similar to those of our

main analysis.

2.2 Beta Estimation

Following Andersen et al. (2006), we use the realized beta estimator to obtain betas.

We utilize intra-day high-frequency log-returns, sampled at intervals of 30 minutes to
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estimate2

βi,t =

∑O
τ=1 ri,τrM,τ∑O
τ=1 r2

M,τ

,

where O is the number of high-frequency return observations during the time period under

investigation. βi,t is the beta estimate for asset i using data until the end of month t. ri,τ

and rM,τ refer to the return of asset i and the market return at time τ, respectively. For

the main analysis, we consider monthly realized beta estimates.

The choice of sampling frequency underlies a delicate trade-off (Patton & Verardo,

2012). On the one hand, using low-frequency data could result in noisy estimates of beta

(Andersen et al., 2005). On the other hand, pushing the analysis to a very high frequency

introduces a number of microstructure issues (Scholes & Williams, 1977; Epps, 1979). To

balance these effects, we focus our main analysis on a sampling frequency of 30 minutes.

In Section A.2 of the Online Appendix, we show that our main results are robust to the

choice of sampling frequency.

2.3 Long-Memory Estimation

Our estimation of the order of integration d of a beta time series relies on the 2ELW

estimator as introduced in Shimotsu & Phillips (2005) and Shimotsu (2010). Given a

time series yt we can obtain this estimator as follows. We first calculate the tapered local

Whittle estimator by Velasco (1999) which is obtained by

d̂Vel = argmind∈(−1/2,2)

log

 3
m

m∑
j

λ2d
j I∗y (λ j)

−2d
3
m

m∑
j

logλ j

 .
2Note that this formula resembles the expanded formula for the variance, while neglecting both the drift
term and the risk-free rate. Andersen et al. (2006) note that the effect of the drift term vanishes as the
sampling frequency increases, which effectively “annihilates” the mean. Empirically, for example, the
average 30-minute return of the S&P 500 index amounts to 0.0017 percent. The average daily riskless
interest rate during our sample period amounts to 0.01 percent, which is equivalent to an average risk-
free rate as low as 0.0007 percent over 30-minute intervals. Thus, at this sampling frequency both the
drift and the risk-free rate can indeed be neglected.
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Here, I∗y (λ j) is the cosine-bell tapered periodogram of the series at frequency λ j with j =

3,6, . . . ,m. Furthermore, m is the bandwidth parameter which determines the number of

frequencies used for estimation. Larger m imply less variance of the estimates but then the

estimator will be biased in case the underlying process exhibits short-run dependencies.

We follow Shimotsu (2010) and consider m = T 0.7 in the following and report qualitatively

similar results for alternative bandwidths of m = T 0.65 and m = T 0.75 as a robustness check

in the Online Appendix.

Under some mild assumptions this estimator is consistent and asymptotically normal

for d ∈ (−1/2,2). However, as the estimator considers only every third frequency of the

periodogram its variance exceeds that of the the standard local Whittle estimator by

Robinson (1995). To account for this, the estimate is adjusted in the second step using

d̂2ELW = d̂Vel−
L′(d̂Vel)

L′′(d̂Vel)
, with

L(d) = log

 1
m

m∑
j=1

I∆dy−µ(d)(λ j)

−2d
1
m

m∑
j=1

logλ j.

Here, I∆dy−µ(d)(λ j) is the periodogram of the demeaned series. Since the arithmetic mean

ȳ is inconsistent for d > 1/2, Shimotsu (2010) suggests using µ(d) = ȳ if d < 1/2, µ(d) = y1

if d > 3/4, and µ(d) = ω(d)ȳ + (1−ω(d))y1 with ω(d) = 1/2[1 + cos(4πd)] if d ∈ [1/2,3/4].

This two-step estimator then has the same limiting variance as the standard local Whittle

estimator while being consistent and asymptotically normally distributed for d ∈ (−1/2,2).

Consequently, the 2ELW estimator can be used to distinguish short-memory series (d = 0),

stationary long-memory series (0 < d < 1/2), nonstationary long-memory series (1/2 <

d < 1), and difference-stationary series (d = 1) such as the random walk. This is an

advantage over the standard local Whittle estimator, which can only be used for inference

for −1/2 < d < 3/4 as it has a nonnormal limit distribution otherwise.
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Standard Adjusted for Breaks in Mean
¯̂di sd(d̂i) vs. di = 0 vs. di = 1 ¯̂di sd(d̂i) vs. di = 0 vs. di = 1

βi 0.561 0.112 0.998 0.999 0.523 0.136 0.993 0.999

Table 1: This table presents average estimates of the memory parameter of realized beta across
all stocks ( ¯̂di) using the 2ELW estimator of Shimotsu & Phillips (2005) and Shimotsu (2010).
Additionally, sd(d̂i) displays the standard deviation of the estimates across stocks and vs. di = 0
and vs. di = 1 indicate the relative frequency with which the null hypotheses d = 0 and d = 1,
respectively, are rejected at the ten percent level. The left panel reports the results for the
original series and the right panel reports results after adjusting the series for structural breaks
using the procedure of Lavielle & Moulines (2000).

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

d

D
e
n
s
it
y

Standard

Adjusted for Breaks in Mean

Figure 1: Density plot showing the distribution of the estimated beta memory parameters across
stocks. For estimation we consider the Gaussian kernel and choose the bandwidth according to
Silverman (1986).

3 Long Memory in Beta

3.1 Estimation Results

The left panel of Table 1 shows the average estimated d across the realized beta

series of all stocks with more than 100 monthly observations (for N = 823 stocks we

have sufficient data) using the 2ELW estimator. Additionally, we present the standard

deviation of the estimates across stocks and the relative frequency with which the d

estimates of different stocks are significantly different from 0 and 1, respectively, at the

ten percent level. To illustrate the variation in d across stocks, Figure 1 additionally plots

the corresponding density of the estimates.
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Table 1 reveals that the average d is approximately 0.56 and Figure 1 shows that

while there is some variation across stocks, most of them have a d between 0.4 and 0.8.

A formal statistical test also confirms that for more than 99 percent of the stocks it holds

that 0 < d < 1 at the ten percent level. At the one percent level this is still true for more

than 98 percent of the stocks.

As a firm’s business may change over time, some of the considered companies could

exhibit a structural break in the realized beta series. When the underlying process is

stationary, i.e. d < 1/2, but exhibits structural breaks in mean, then the local Whittle

estimator and therefore also the 2ELW estimator is positively biased (e.g. Diebold &

Inoue, 2001; Granger & Hyung, 2004). One way to account for this would be to use the

estimators by Iacone (2010) or Hou & Perron (2014), as these remain consistent when

structural breaks are present. However, as we also show in simulations in the Online

Appendix, these are negatively biased for sample sizes smaller than 500, making them

unsuitable for our application. To examine the robustness of our results, we therefore

use an alternative two-step procedure. We first estimate the points at which the series

exhibit structural breaks in mean using the procedure by Lavielle & Moulines (2000) and

then apply the 2ELW estimator estimator for the cleaned series.3

The results are shown in the right panel of Table 1 and are visualized by the dashed

line in Figure 1. We find that the average d̂ decreases slightly to 0.523, implying that

some stocks do indeed exhibit structural breaks in their betas time series. However, the

reduction is small and for more than 99 percent of the stocks the null that d = 0 can still

be rejected.

Our results stand in contrast to those by Andersen et al. (2006), who argue that betas

are integrated of a much smaller order, often even I(0). There are two main reasons for

this difference in results.

First, Andersen et al. (2006) base their analysis on daily data which leads to noisy

3Bai & Perron (1998) and Bai & Perron (2003) suggest estimating breaks in mean by minimizing the
residual sum of squares (RSS) of βt = µs + et, where µs is the mean in segment s with s = 1, . . . ,S and
S determined by means of the BIC. Lavielle & Moulines (2000) extend this approach by adding a
penalty term to the BIC criterion which is then BIC = RS S (S ) + 4S log(T )T 2d−1. This leads to a more
parsimonious break point selection, as for long-memory time series the standard procedure indicates
too many break points.
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estimates of beta, as also acknowledged by the authors themselves. Deo & Hurvich

(2001) and Arteche (2004) show that for perturbed series any inference on the order of

integration is biased such that the series appear to be less integrated. Our beta estimates

based on intra-day observations, on the other hand, are less noisy, implying that the true

order of integration can be better detected. To further illustrate this, one might think

of comparing the 2ELW estimates to estimates made by noise robust estimators such as

those of Sun & Phillips (2003) or Frederiksen et al. (2012). However, these are positively

biased when the sample size is smaller than 500, making them inappropriate for our

setup. As an alternative we show in Table A.2 of the Online Appendix that changing the

bandwidth m in the 2ELW estimation leads to similar estimates of d. As demonstrated

by Hurvich et al. (2005), this would not be the case if the series were seriously perturbed.

Second, Andersen et al. (2006) rely on graphical investigation of the first 36 autocor-

relations instead of consistent estimation of the memory parameter. Particularly in small

samples (Andersen et al., 2006 consider T = 148) this type of inference may lead to false

conclusions. We illustrate this by means of a small simulation study for which we report

the results in Table A.1 of the Online Appendix. We simulate fractionally integrated

noise, i.e., (1− B)dyt = εt, with B being the backshift operator, for memory parameters

of d = 0.2,0.4,0.6 and sample sizes of T = 100,148,240,1000. The table reveals that on

average only 24 percent of the first 36 autocorrelations of an I(0.4) process with T = 148

are significantly larger than zero. From this result one might falsely infer that the series

exhibit short memory. In contrast, the simulation results shows that the 2ELW estimator

is also unbiased in small samples, implying that the correct order of integration can be

detected. For further details on the simulation setup and results we refer to Section A.1

of the Online Appendix.4

We therefore conclude that realized betas are highly persistent and are best described

by either pure long-memory processes or a combination of break and long-memory process.

4Table A.1 also presents results for the estimators by Sun & Phillips (2003), Iacone (2010), Frederiksen
et al. (2012), and Hou & Perron (2014) to validate our claim that these are biased in small samples.
Additionally, the table presents results for the log periodogram estimator which we consider in Section
A.2 of the Online Appendix as a robustness check. This estimator is also unbiased, but exhibits a larger
variance than the 2ELW estimator.
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3.2 Beta Decomposition

Since beta is actually a combination of different components it seems interesting to

investigate which of these drives the persistence. For that purpose, consider the following

decomposition

βi,t = σi,M,tσ
−2
M,t = ρi,M,tσi,tσM,tσ

−2
M,t = ρi,M,tσi,tσ

−1
M,t, (1)

where σi,M,t is the realized covariance of asset i and the market M at time t, ρi,M,t their

realized correlation, and σi,t is the realized volatility. Consequently, Equation (1) shows

that the realized beta series evolves as the product of realized correlation, realized volatil-

ity, and the inverse of realized market volatility. Leschinski (2017) shows theoretically

that the products of stationary long-memory series with nonzero mean are integrated

with the maximum memory of the series. This would mean that one of the components

needs to exhibit the same degree of memory as realized beta while the others could ex-

hibit a smaller d, even d = 0. However, for approximately 70 percent of the stocks it

holds that d > 1/2, meaning that the beta series exhibit nonstationary long memory. In

these cases, it is theoretically unclear how products of such series behave. We therefore

also estimate the order of integration of realized correlation, realized volatility, and the

inverse of realized market volatility using the 2ELW estimator.5

The results are shown in Table 2.6 Again, we consider the possibility of structural

breaks and also report results when adjusting for these. The realized correlation and the

inverse of realized market volatility on average exhibit a d of approximately 0.56, while

the d of realized volatility is even slightly higher on average, with 0.59. Again, tests

indicate that for almost all stocks the order of integration is different from 0 and 1 for all

three components.

When adjusting for structural breaks, the d of the realized correlation decreases

5We obtain the realized volatility for stock i and the market (i = M) as σi,t =

√∑O
τ=1 r2

i,τ, the realized

covariance as σi,M,t =
∑O
τ=1 ri,τrM,τ, and the realized correlation as ρi,M,t =

σi,M,t
σi,tσM,t

.
6We Fisher-transform the realized correlation series to guarantee that there is no bias due to the restricted
character of the variable. If we use the original series the results are similar.
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Standard Adjusted for Breaks in Mean
¯̂di sd(d̂i) vs. di = 0 vs. di = 1 ¯̂di sd(d̂i) vs. di = 0 vs. di = 1

ρi,M 0.559 0.096 1.000 0.999 0.557 0.099 1.000 1.000

σi 0.594 0.142 0.996 0.977 0.594 0.142 0.996 0.977

σ−1
M 0.562 - 1.000 1.000 0.561 - 1.000 1.000

Table 2: This table presents average estimates of the memory parameter of realized correlation
(Fisher-transformed), and volatility across all stocks (N = 823), as well as that of the inverse of
the market volatility, using the 2ELW estimator of Shimotsu & Phillips (2005) and Shimotsu
(2010). sd(d̂i) displays the standard deviation of the estimates across stocks and vs. di = 0
and vs. di = 1 indicate the relative frequency with which the null hypotheses d = 0 and d = 1,
respectively, are rejected at the ten percent level. The left panel reports the results for the
original series and the right panel reports results after adjusting the series for structural breaks
using the procedure of Lavielle & Moulines (2000).

slightly, while the d of realized volatility does not. Consequently, it is rather breaks

in realized correlation than breaks in volatility that drive the breaks observed in the re-

alized betas. When comparing the actual estimate of d to the estimate of the memory of

the realized beta series it can be seen that all three components exhibit a slightly higher

degree of persistence. Thus, it seems that no single component, but rather all of them,

drives the persistence in realized betas.

4 Forecasting

Having shown that betas have consistent long-memory properties, a natural next

question to ask is: Can we leverage the long-memory properties in betas to make better

forecasts? How big are the errors when inaccurately imposing I(0) or I(1) dynamics for

forecasting betas? Is accounting for long memory more important for long-term beta

forecasts? In this section, we set out to answer these questions. For this purpose, we

compare pseudo out-of-sample forecasts for the realized beta series of models accounting

for the long-memory characteristics with those for short-memory and difference-stationary

processes.
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4.1 Forecasting Methodology

For forecasting using long-memory models we follow the approach proposed by Hassler

& Pohle (2019). Given the estimated order of integration of a series, we first remove the

persistence by filtering. Then we calculate the mean of the series. In a next step, we

forecast the filtered data accounting for potential short-run dependencies. Finally, we

reintegrate the series to obtain a forecast.

In more detail, given the first T betas of stock i, we first compute the d̂th difference

∆d̂iβi,t = (1−L)d̂iβi,t =

t−1∑
j=0

(
d̂i

j

)
(−1) jβi,t− j, with t = 1, . . . ,T,

where d̂i is the estimate of the 2ELW estimator with a bandwidth of m = T 0.7. Again, we

report qualitatively similar results for m = T 0.65 and m = T 0.75 in the Online Appendix.

We then set out to calculate the mean µi of the series, which is complicated by the long-

memory characteristics. As discussed above, the arithmetic mean cannot be considered

for nonstationary long-memory series as it does not exhibit a finite variance. We therefore

consider the approach by Robinson (1994) to estimate µi. For this purpose, we perform

the following regression

∆d̂iβi,t = ψi,tµi +ηi,t, with ψi,t =

t−1∑
j=0

(
d̂i

j

)
(−1) j,

where ηi,t is the error term that contains possible short-run dynamics. This allows us to

calculate the residuals

εi,t = ∆d̂iβi,t −ψi,tµ̂i,

which are not fractionally integrated any longer, but might exhibit short-run dependen-

cies. We can optionally account for these using an ARMA(p,q) model

εi,t = φi,1εi,t−1 + . . .+φi,pεi,t−p + θi,1ζi,t−1 + . . .+ θi,qζi,t−q + ζi,t, with t = 2, . . . ,T,

- 13 -



where ζi,t is the mean zero error term and p and q are determined by means of the BIC

with a maximum lag length of 12[(T/100)0.25]. This allows us to forecast the residuals h

steps ahead

ε̂i,T+h = φ̂i,1ε̂i,T+h−1 + . . .+ φ̂i,pε̂i,T+h−p + θ̂i,1ζ̂i,T+h−1 + . . .+ θ̂i,qζ̂i,T+h−q.

For ε̂i,T+h, the hat indicates that it is a forecast and h denotes the forecast window in

months. In a case without short-run dependencies we simply set ε̂i,T+h = 0. We then

reintegrate the series to account for the long-memory characteristics by calculating Ẑi,t =

∆−d̂i ε̂i,t for t = 1, . . . ,T + h, respectively t = 2, . . . ,T + h. Forecasts of the original sequence

then evolve as

β̂i,T+h = µi + Ẑi,T+h.

This approach allows us to forecast stationary as well as nonstationary series while

also accounting for potential short-run dynamics. We denote the model with short-run

components by FIARMA in the following to emphasize that there is a difference from

the standard ARFIMA models as introduced by Granger & Joyeux (1980) and Hosking

(1981), which only allow modeling and forecasting stationary series with d < 1/2. We

refer to the model without short-run dependencies simply as FI.

As difference-stationary and short-memory competitor models, we consider the ran-

dom walk model, for which β̂T+h = βT , as well as AR(p) and ARMA(p,q) models, respec-

tively. We estimate the latter models based on

βi,t = ai +φi,1βi,t−1 + . . .+φi,pβi,t−p + θi,1ei,t−1 + . . .+ θi,qei,t−q + ei,t, with t = 2, . . . ,T

For the AR model we set θi,1 = . . . = θi,q = 0. Again, we choose p and q according to the

BIC with a maximum lag length of 12[(T/100)0.25].7

7To ease the presentation we focus on these five models. In the Online Appendix we additionally consider
state-space AR, ARMA, and FIARMA models, the HAR-model of Corsi (2009), and the beta forecast
approaches by Vasicek (1977) and Levi & Welch (2017). The results are qualitatively similar to those
presented here.
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To examine the out-of-sample forecast accuracy of the different approaches, we per-

form the analysis using the root mean squared error (RMSE), a loss function commonly

applied in the literature

RMSEi,h =

√√√
1
Υ

Υ∑
T=1

(βi,T+h− β̂i,T+h)2,

where Υ is the number of out-of-sample observations of realized and predicted betas

of one stock. βi,T+h is the realized beta and β̂i,T+h denotes a beta forecast. The RMSE

criterion is suitable since it is robust to the presence of (mean zero) noise in the evaluation

proxy, while other commonly employed loss functions are not (Patton, 2011).8 We test for

significance in RMSE differences using the modified Diebold–Mariano (DM) test proposed

by Harvey et al. (1997).

4.2 Forecast Results

The results of the various beta forecasts can be found in Table 3. We use a forecast

window of 1 month and a rolling estimation window of 100 observations. Qualtitatively

similar results for window sizes of 75 and 125 can be found in the Online Appendix. Table

3 presents the average RMSE across all stocks and the number of times the model yields

the lowest RMSE when forecasting the realized beta of a stock. The remainder of the

table indicates the number of stocks for which the column-model is significantly better

than the row-model at the ten percent level. To allow for valid inference we only consider

stocks for which we have at least 50 forecasts (N = 689 stocks fulfill this criterion).

Table 3 reveals that the FI model performs best across all considered models. It has

the lowest RMSE on average and is the model with the lowest RMSE for more than

54 percent of the stocks. Second best is the FIARMA model, which is the best model

for 24 percent of the stocks. The models that do not account for the long-memory

characteristics of the beta time series, on the other hand, are only the most accurate for

a combined 22 percent of the stocks. The outperformance of the long-memory models is

8The results when using the mean absolute error criterion instead of the RMSE are qualitatively similar.
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RW AR ARMA FI FIARMA

RMSE 0.3149 0.2942 0.2875 0.2792 0.2800

Best 4 24 123 374 164

vs RW 0 272 344 560 518

vs AR 3 0 177 305 307

vs ARMA 1 8 0 186 179

vs FI 0 3 14 0 7

vs FIARMA 0 2 13 24 0

N 689 689 689 689 689

Table 3: This table illustrates the forecast performance of the models for one-month beta
forecasts from a rolling estimation window of 100 observations. The first row shows average
RMSEs of different models across all stocks. The row “Best” indicates the number of times a
model achieves the lowest RMSE for a certain stock. Furthermore, the rows denoted by “vs.
X” correspond to modified DM-tests (Harvey et al., 1997), providing the number of times the
column-model yields a significantly lower RMSE than the row-model at the 10 percent level.
Finally, N is the number of investigated stocks. To allow for reliable inference, we exclude all
stocks for which we have less than 50 forecasts.

often also statistically significant. Compared to the RW forecasts, the FI forecasts are

significantly better for 81 percent of the stocks; compared to AR and ARMA forecasts

this number is 44 and 27 percent, respectively. On the other hand, the forecasts by

the RW, AR, and ARMA models are almost never significantly better than those of the

FI model. Consequently, we can conclude that accounting for the long-run dependence

substantially improves forecasts for realized betas.

Our finding that the FI model yields a significantly lower RMSE than the RW model

for almost all stocks has broad implications. Hollstein et al. (2019a) show that a RW

model outperforms other predictors based on daily data as well as the Buss & Vilkov

(2012) option-implied beta. Thus, the FI forecasts appear to be preferable not only to

other time-series models but also to a broader set of potential estimators.9

To further investigate the causes of the differential forecast performance of the models,

we follow Mincer & Zarnowitz (1969) and decompose the mean squared error (MSE) in

9In untabulated results, we confirm this also empirically: the FI model outperforms estimators based on
daily return data as well as option-implied estimators.
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RW AR ARMA FI FIARMA

Bias 0.0000 0.0035 0.0023 0.0009 0.0009

Inefficiency 0.0290 0.0083 0.0062 0.0047 0.0048

Random Error 0.0910 0.0947 0.0922 0.0879 0.0887

Table 4: MSE Decomposition: This table shows the Mincer & Zarnowitz (1969) decomposition
of the MSE as of Equation (2). The MSE is based on one-month forecasts of the realized beta
series performed with a rolling estimation window of 100 observations. All numbers represent
the average across all stocks for which at least 50 forecasts exist.

the following fashion

MSEi = (β̄i−
¯̂βi)2︸    ︷︷    ︸

bias

+ (1−bi)2σ2(β̂i)︸            ︷︷            ︸
inefficiency

+ (1−ρ2
i )σ2(βi)︸           ︷︷           ︸

random error

.

bi is the slope coefficient of the regression βi = ai + biβ̂i + ei and ρ2
i is the coefficient of

determination of this regression. A bias indicates that the model is misspecified and the

prediction is, on average, different from the realization. Inefficiency represents a tendency

of an estimator to systematically yield positive forecast errors for low values and negative

forecast errors for high values or vice versa. The remaining random forecast errors are

unrelated to the predictions and realizations.

Table 4 presents the results of the MSE decomposition. Again, the numbers represent

the averages across all considered stocks. We find that the RW model is on average

unbiased, but highly inefficient. Thus, particularly for high- and low-beta stocks, the

RW approach generates sizable measurement errors. For the AR and ARMA models, the

bias component is moderately larger than that of the RW model. Thus, these models

appear to be somewhat misspecified. On the other hand, the inefficiency is dramatically

smaller compared to the RW model. The random error component, which is the largest

component for all models, is slightly higher for the AR and ARMA models than for the

RW model.

The models that account for long memory are approximately unbiased and yield a low

inefficiency on average. In particular the FI model yields the lowest overall inefficiency

component, which indicates that the model does well in particular for stocks with the most

extreme betas. Finally, the FI model also yields the lowest random error. Both inefficiency
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and random error are slightly higher for the FIARMA model. Thus, accounting for short-

run dynamics in addition to long memory on average rather adds noise than helping to

capture important parts of the variation in betas.

4.3 Longer Forecast Horizons

For many applications, such as capital budgeting decisions, managers typically plan

over longer periods. Thus, they do not only need 1-month beta forecasts, but also forecasts

over several months. Therefore, in this section, we also consider forecasts for three-month,

six-month, and twelve-month horizons.

Table 5 presents the results for these forecast horizons, the table shows that the

outperformance of the FI model forecasts persists and gets even stronger for horizons

longer than one month. For all considered horizons the forecasts by the FI model have

the lowest average RMSE and are the best for more than half of the stocks. It can further

be seen that the absolute difference in RMSE between FI forecasts and RW, AR, and

ARMA forecasts increases in the forecast horizon. Consequently, it is even more beneficial

to consider long-memory models when forecasting for horizons longer than one month.

Not only is the magnitude of the forecast error loss differentials larger, but also is this

differential statistically significant more often for longer horizons. For the three-month

forecast horizon, the FI model is significantly better than the RW, AR, and ARMA

models for 84, 52, and 30 percent of the stocks, respectively. These numbers are only

slightly smaller for the twelve-month horizons with 73, 39, and 27 percent, respectively.

In addition, the forecasts of the FI model are still barely ever outperformed by forecasts

of models that do not account for the long-run dependencies. This is the case for less

than 3 percent of the stocks, independently of the forecasts horizon.

To summarize, using models that account for long-run dependencies, instead of short-

memory or difference-stationary alternatives, does not only improve one-month forecasts

but also forecasts for longer horizons up to one year.
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RW AR ARMA FI FIARMA

Panel A: Three-Month Forecast Horizon

RMSE 0.2918 0.2753 0.2589 0.2377 0.2417

Best 2 27 102 439 115

vs RW 0 184 303 572 617

vs AR 12 0 255 359 260

vs ARMA 4 7 0 210 130

vs FI 0 6 11 0 2

vs FIARMA 0 9 27 149 0

N 685 685 685 685 685

Panel B: Six-Month Forecast Horizon

RMSE 0.2955 0.2882 0.2616 0.2286 0.2367

Best 3 28 81 451 115

vs RW 0 146 274 554 614

vs AR 29 0 240 334 200

vs ARMA 3 2 0 193 77

vs FI 0 3 12 0 0

vs FIARMA 0 16 41 208 0

N 678 678 678 678 678

Panel C: Twelve-Month Forecast Horizon

RMSE 0.3075 0.3093 0.2766 0.2331 0.2451

Best 2 39 56 419 138

vs RW 0 139 236 478 588

vs AR 27 0 161 256 133

vs ARMA 11 4 0 177 61

vs FI 1 5 12 0 3

vs FIARMA 0 22 45 212 0

N 654 654 654 654 654

Table 5: In analogy to Table 3, this table illustrates the forecast performance of the models
for three-, six-, and twelve-month beta forecasts from a rolling estimation window of 100 ob-
servations. The first row shows average RMSEs of different models across all stocks. The row
“Best” indicates the number of times a model achieves the lowest RMSE for a certain stock.
Furthermore, the rows denoted by “vs. X” correspond to modified DM-tests (Harvey et al.,
1997), providing the number of times the column-model yields a significantly lower RMSE than
the row-model at the 10 percent level. Finally, N is the number of investigated stocks. To allow
for reliable inference, we exclude all stocks for which we have less than 50 forecasts.
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5 Economic Implications

5.1 The Memory in Beta and Stock Characteristics

We continue the empirical analysis by examining to what extent the memory in beta

factors relates to different firm characteristics. There are various candidate variables that

might explain part of the difference in a stock’s beta-memory. It is, for example, possible

that the beta estimates of small and illiquid stocks contain more random noise, which

has zero autocorrelation. Furthermore, it is possible that growth stocks, firms that invest

more, or those that are most profitable change more frequently, which might make past

shocks to their systematic risk die out more quickly. On the other hand, it is possible

that current loser stocks or firms whose stocks experience high shorting activity are more

prone to change their business models, which likely changes their systematic risk. Finally,

there may be industry effects: for some industries, the business models, and with that

the constituent firms’ systematic risk, may be more persistent, while others experience

more frequent changes.

For this analysis, we sort the stocks into five portfolios (P1 up to P5), based on

their estimates for d. We do this at the end of each month using d-estimates based

on a 100-month rolling window. For each portfolio we record the average of several

firm characteristics at the end of that month. Subsequently, we examine whether there

are systematic differences in the average firm characteristics of the different d-sorted

portfolios. The variable definitions are in Section A.3 of the Online Appendix.

We present the results in Table 6. The quintile portfolio of the stocks with the lowest

ds (P1) on average has a memory parameter of 0.35 while that of the stocks with the

highest ds has a d of 0.73 on average. These averages are far away from both 0 and 1.

This result is consistent with our previous finding that the betas of virtually all stocks

have long-memory properties. Naturally, the difference between the memory parameters

of portfolios 5 and 1 is highly statistically significant.

The second variable of interest is beta itself. We find that the average beta of high-

beta-memory stocks is significantly higher than that of low-beta-memory stocks. The
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P1 P2 P3 P4 P5 t−stat
d 0.3494 0.4789 0.5491 0.6173 0.7291 22.9
βββ 0.9326 0.9747 1.0219 1.0411 1.1182 3.02
log(Market Cap) 16.140 16.154 16.064 16.073 15.983 −2.40
BtM 0.4906 0.4972 0.4552 0.5334 0.5916 3.43
Investment 0.1073 0.0868 0.0880 0.1031 0.1033 −0.46
Profitability 0.2512 0.3398 −3.9065 −2.1864 −0.3117 −0.89
Momentum 0.1444 0.1252 0.1357 0.1368 0.1641 0.82
BAS 0.0008 0.0008 0.0008 0.0008 0.0009 1.52
Turnover 0.2339 0.2377 0.2444 0.2380 0.2503 0.90
iVol 0.0133 0.0134 0.0136 0.0134 0.0141 1.13
iSkew 0.1077 0.1169 0.1099 0.1048 0.1183 1.00
Short Interest 0.0397 0.0386 0.0402 0.0379 0.0374 −0.57
Leverage 0.5803 0.5775 0.5831 0.5759 0.6084 1.91
Age 34.330 36.799 36.839 36.302 35.992 0.75

Table 6: Portfolio sorts: This table presents portfolio sorts by the estimated d. At the end of
each month, we sort the stocks in our sample based on the d-parameters estimated with the
2ELW estimator using a rolling window of 100 observations. Sorting the stocks into quintile
portfolios, we save each portfolio’s average of the firm characteristics at the end of the respective
months. The main body of the table shows the average of the different firm characteristics over
time. t-stat denotes the t-statistic of a test whether the firm characteristics of portfolio P5 and
P1 are equal, with the standard errors calculated with the heteroscedasticity and autocorrela-
tion robust approach by Andrews (1991), using a quadratic spectral density and data-driven
bandwidth selection. Characteristics for which this difference is statistically significant at 10
percent are printed in bold.

relation appears to be monotonic, but overall economically not too strong. For the natural

logarithm of a stock’s market capitalization, we make an opposite observation. The stocks

with the longest memory in beta appear to be somewhat smaller than those with the

shortest memory in beta.

The average BtM ratio of the stocks in P1 is significantly smaller than that of P5. As

the firms grow, the past shocks to their beta factors are essentially to those of different

firms and their impact seems to die out more quickly. On the other hand, we detect no

relation between the beta-memory and firms’ investment, profitability, momentum, bid-

ask spread, turnover, idiosyncratic volatility, idiosyncratic skewness, and short interest.

Low-d stocks on average exhibit lower leverage than high-d stocks. Age appears to be

unrelated to the memory in betas.

Finally, we turn the focus on the stocks’ industries. We present the results in Table 7.
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¯̂d t-stat

Durables 0.5188 -1.70

Energy 0.6013 3.64

Healthcare 0.5529 -0.58

HiTec Equipment 0.5243 -3.85

Manufacturing 0.6079 4.77

NonDurables 0.5642 0.20

Other 0.5915 3.19

Telephone 0.5209 -1.40

Utilities 0.5489 -0.82

Wholesale 0.5036 -5.12

Table 7: This table shows the average estimate of d in each industry. The t-stat corresponds
to t-statistics testing the null that the average d of the industry equals the average across all
industries. Standard errors are calculated with the heteroscedasticity and autocorrelation robust
approach by Andrews (1991), using a quadratic spectral density and data-driven bandwidth
selection. Industries for which the average d is significantly higher or lower than this value at
the 10 percent level are printed in bold.

Stocks in the Energy, Manufacturing, and Other industries have on average the highest

ds. Thus, these traditional industries tend to have higher persistence in their systematic

risk than many others. For the Durables, HiTec Equipment, Telephone, and Wholesale

industries, the opposite holds true. These industries have in part been particularly prone

to disruptions and creative destruction during the recent two decades. Thus, many of

these firms and/or their market environment have experienced substantial changes and

past shocks to their systematic risk die out more quickly.

In Table A.3 of the Online Appendix, we also present the results of portfolios sorted

on beta. We confirm that the relation of beta and beta-memory is on average positive,

but weakly so. There is very little difference in the d-parameters of the first three beta

quintiles. Only for the two quintiles of the highest betas is the d estimate somewhat

larger.

5.2 The Determinants of Forecast Errors

Having documented that accounting for long memory in betas substantially improves

the forecasts, we next analyze for which stocks one makes the biggest mistakes when using
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short-memory processes or those that impose infinite memory. To that end, we regress

the difference in absolute forecast errors on different firm characteristics. In more detail,

we perform the following regressions

abs(β̂RW
i,t −βi,t)−abs(β̂FI

i,t −βi,t) = a + bxi,t−1 + ei,t,

abs(β̂ARMA
i,t −βi,t)−abs(β̂FI

i,t −βi,t) = a + bxi,t−1 + ei,t.

Here, β̂i,t are the forecasts made by the RW, ARMA, and FI models as presented in

Section 4.2 and xi,t−1 contains the set of explanatory variables lagged by one period.

We present the result for the forecast error differential between the RW model and

the FI model in Table 8 and that between the ARMA(p,q) model and the FI model in

Table 9.

Starting with the errors made when inadequately imposing a difference-stationary RW

model in Table 8, we first obtain an economically large and statistically highly significant

intercept term. This echoes our previous findings that the FI model yields substantially

lower forecast errors on average than the RW model. Second, consistent with what

one would intuitively expect, the slope coefficient on d is highly significantly negative.

Thus, the higher the memory in betas, the less inadequate becomes the RW assumption.

However, a one-standard-deviation increase in d from its average, while keeping all else

equal, reduces the average forecast error differential (implied by the intercept term) by

only one tenth.

The level of the idiosyncratic volatility has a positive effect on the forecast error

differential. This effect is economically large: for an idiosyncratic volatility two-standard-

deviation below the average, all else being equal, the forecast error of RW and FI processes

are approximately the same. Thus, for high volatility stocks a random walk assumption

appears to be less suitable.

We further observe that a one-standard-deviation increase in momentum, short in-

terest, and leverage increases the forecast error differential by on average 0.21, 0.20, and

0.13 percentage points, respectively. It is well known that betas of stocks with extreme

momentum are highly time-varying (Grundy & Martin, 2001). Similarly, firms whose
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coef se t−stat p−value
Intercept 0.0253 0.0014 18.26 0.0000
d −0.0034 0.0007 −5.28 0.0000
β 0.0013 0.0014 0.94 0.3200
log(Market Cap) 0.0006 0.0008 0.73 0.4730
BtM 0.0013 0.0037 0.34 0.7010
Investment 0.0000 0.0006 0.03 0.9790
Profitability 0.0000 0.0001 0.29 0.7200
Momentum 0.0021 0.0009 2.36 0.0170
BAS −0.0071 0.0038 −1.84 0.0630
Turnover −0.0039 0.0013 −2.93 0.0050
iVol 0.0127 0.0016 7.93 0.0000
iSkew −0.0003 0.0006 −0.47 0.6420
Short Interest 0.0020 0.0012 1.71 0.0870
Leverage 0.0013 0.0008 1.71 0.0870
Age −0.0005 0.0005 −1.01 0.3120
Durables 0.0008 0.0047 0.17 0.8620
Energy −0.0030 0.0023 −1.33 0.1710
Healthcare 0.0010 0.0018 0.55 0.5600
HiTec Equipment −0.0002 0.0021 −0.09 0.9160
Manufacturing −0.0015 0.0017 −0.90 0.3540
NonDurables 0.0009 0.0023 0.40 0.6680
Telephone −0.0069 0.0030 −2.28 0.0230
Utilities 0.0030 0.0232 0.13 0.6500
Wholesale 0.0007 0.0018 0.39 0.6590

Table 8: In this table, we run regressions of the difference in absolute forecast errors from the
RW and FI models on different firm characteristics variables. Firm characteristics (except for
the dummy variables) are standardized to have zero mean and a volatility of one. The standard
errors (se) are bootstrapped using the procedure of Cameron et al. (2008). t-stat and p-value
denote the corresponding t-statistics and p-values, respectively. Characteristics which yield a
statistically significant regression coefficient (coef) at 10 percent are printed in bold.

stocks exhibit very high short interest are also prone to substantial changes in systematic

risk. For these stocks, in particular, it is therefore advisable to rely on the long-range

dependencies when making forecasts. On the other hand, the bid-ask spread and the

turnover have a negative impact on the loss differential. The beta of highly liquid stocks

should therefore be predicted with long memory models rather than the random walk.

In Table 9, we analyze the determinants of the ARMA and FI model error differentials.

Consistent with our previous results, we also detect a strongly statistically significant
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coef se t−stat p−value
Intercept 0.0103 0.0009 11.13 0.0000
d −0.0005 0.0005 −0.98 0.3260
βββ 0.0059 0.0011 5.41 0.0000
log(Market Cap) −0.0004 0.0005 −0.65 0.5250
BtM 0.0003 0.0033 0.10 0.8960
Investment 0.0007 0.0007 1.00 0.3020
Profitability −0.0002 0.0000 −4.90 0.0000
Momentum −0.0005 0.0005 −1.03 0.3030
BAS 0.0040 0.0018 2.21 0.0310
Turnover 0.0016 0.0011 1.46 0.1490
iVol −0.0004 0.0009 −0.41 0.6770
iSkew −0.0002 0.0003 −0.59 0.5540
Short Interest −0.0015 0.0007 −2.23 0.0260
Leverage −0.0006 0.0006 −0.89 0.3590
Age −0.0014 0.0004 −3.28 0.0010
Durables −0.0025 0.0021 −1.21 0.2210
Energy 0.0017 0.0022 0.78 0.3870
Healthcare 0.0005 0.0017 0.27 0.7730
HiTec Equipment 0.0003 0.0014 0.23 0.8220
Manufacturing −0.0010 0.0015 −0.65 0.5310
NonDurables 0.0014 0.0020 0.69 0.5210
Telephone −0.0036 0.0043 −0.83 0.4780
Utilities −0.0056 0.0059 −0.95 0.3760
Wholesale 0.0006 0.0013 0.47 0.6380

Table 9: In this table, we run regressions of the difference in absolute forecast errors from the
ARMA and FI models on different firm characteristics variables. Firm characteristics (except
for the dummy variables) are standardized to have zero mean and a volatility of one. The
standard errors (se) are bootstrapped using the procedure of Cameron et al. (2008). t-stat and
p-value denote the corresponding t-statistics and p-values, respectively. Characteristics which
yield a statistically significant regression coefficient (coef) at 10 percent are printed in bold.

intercept term of 0.0103. This intercept term is substantially smaller than that for the

RW–FI forecast error differential.

The forecast error differential increases with beta. The impact of beta on these fore-

cast error differentials is economically large: for betas two-standard-deviation below the

average, all else being equal, the forecast error of ARMA and FI processes are approxi-

mately the same.

The profitability, short interest, and age all have a significant negative impact on the
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forecast error differential. Smaller firms and firms with higher short interest might be

more prone to short-run changes in betas. Thus, the short-memory models perform a

little less badly for these. The impact of each of these variables, however, is economically

substantially smaller than that of the level of beta. The bid-ask spread has a positive

impact on the forecast error differential. Thus, for the rather illiquid stocks the betas

might contain more noise. The short-memory models might pick up too much of this

noise to generate reliable forecasts.

6 Conclusion

In this paper, we analyze the memory of beta factors. We first document that the betas

of virtually all stocks exhibit long-memory properties. We further show that accounting

for these long-memory properties is very important for forecasting. A pure long-memory

FI model outperforms all other short-memory or difference-stationary models. For longer

forecast horizons, the errors made by falsely imposing structures that do not account for

long memory increase further.

Failing to account for the long-memory properties of betas can lead to very high errors,

in particular for high-momentum stocks, those with strong short-selling pressure, high-

beta stocks, illiquid stocks, and those with high idiosyncratic volatility. For the former

two, imposing a random walk is most hurtful while for the latter short-memory processes

are particularly inadequate.
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A.1 Simulation Study

To investigate the performance of different approaches for estimating the memory

parameter d in small samples, we perform a small simulation study. For this purpose we

simulate data according to

(1−B)dyt = εt,

where ε ∼ N(0,1). To account for the high persistence in the series we consider a burn-in

period of 250 observations.

We then infer on the order of integration of the series using various approaches. These

include the two-step exact local Whittle estimator by Shimotsu (2010) (2ELW) as con-

sidered in this paper, the log periodogram estimator by Geweke & Porter-Hudak (1983)

(GPH) as considered in Section A.2, the structural break robust estimators by Iacone

(2010) (trLW) and Hou & Perron (2014) (HP), and the noise robust estimators by Hur-

vich et al. (2005) (LWN) and Frederiksen et al. (2012) (LPWN). Additionally, we consider

the approach by Andersen et al. (2006) to infer on the order of integration. They inves-

tigate the autocorrelation function of the beta series and perform Ljung–Box tests on

the residuals when estimating an AR(p) model to the realized beta series where p is

determined by means of the AIC.

Table A.1 reports results for d = 0.2,0.4,0.6 and T = 100,148,240,1000 averaged across

1000 repetitions.

The table reveals that the 2ELW and GPH estimators are almost unbiased, also for

a small sample of size T = 100. We further find that the variance of the 2ELW estimator

is smaller than that of the GPH estimator, which is in line with the results presented

in Section A.2. Concerning the break robust estimators, it can be seen that both the

HP estimator is negatively biased and the trLW estimator is positively biased in sample

sizes of 100, 148, and 240. The noise robust estimators, on the other hand, are positively

biased for sample sizes of 100, 148, and 240.

Andersen et al. (2006) investigate quarterly betas for which, due to the noise, the
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d = 0.2 d = 0.4 d = 0.6
T = 100 T = 148 T = 240 T = 1000 T = 100 T = 148 T = 240 T = 1000 T = 100 T = 148 T = 240 T = 1000

¯̂d2ELW 0.22 0.21 0.22 0.20 0.43 0.42 0.41 0.40 0.63 0.62 0.62 0.61

sd(d̂2ELW) 0.13 0.11 0.09 0.05 0.13 0.11 0.09 0.05 0.13 0.11 0.09 0.05
¯̂dGPH 0.20 0.20 0.21 0.20 0.42 0.41 0.41 0.40 0.62 0.62 0.62 0.61

sd(d̂GPH) 0.16 0.13 0.11 0.06 0.16 0.14 0.12 0.06 0.17 0.14 0.11 0.06
¯̂dHP 0.11 0.12 0.16 0.19 0.27 0.29 0.33 0.38 0.38 0.43 0.49 0.57

sd(d̂HP) 0.19 0.16 0.12 0.06 0.23 0.21 0.15 0.06 0.36 0.30 0.22 0.08
¯̂dtrLW 0.30 0.19 0.14 0.17 0.47 0.38 0.32 0.35 0.66 0.55 0.53 0.55

sd(d̂trLW) 0.42 0.34 0.24 0.11 0.44 0.34 0.24 0.11 0.45 0.32 0.25 0.12
¯̂dLWN 0.36 0.36 0.32 0.25 0.52 0.49 0.47 0.43 0.68 0.67 0.65 0.63

sd(d̂LWN) 0.29 0.26 0.20 0.08 0.21 0.17 0.13 0.06 0.16 0.14 0.11 0.06
¯̂dLPWN 0.40 0.39 0.37 0.28 0.55 0.53 0.50 0.45 0.69 0.69 0.68 0.65

sd(d̂LPWN) 0.36 0.33 0.29 0.16 0.29 0.26 0.20 0.09 0.24 0.19 0.15 0.08

Sign. ac (%) 4.30 6.49 10.53 30.29 13.56 22.70 37.79 88.41 28.21 45.74 67.28 99.55

Ljung–Box 0.006 0.008 0.006 0.000 0.004 0.003 0.001 0.000 0.008 0.001 0.002 0.000

Table A.1: Simulation results: We simulate T observations of fractional white noise that is in-
tegrated of order I(d) and then compare different approaches to infer on the memory parameter
d. This table reports average d estimate and standard deviation (sd()) for the estimators by
Shimotsu (2010) (2ELW), Geweke & Porter-Hudak (1983) (GPH), Hou & Perron (2014) (HP),
Iacone (2010) (trLW), Hurvich et al. (2005) (LWN), and Frederiksen et al. (2012) (LPWN).
Additionally, the table shows the average percent of the first 36 autocorrelations that are indi-
cated to be significantly larger than zero by 95 percent Bartlett confidence intervals. This is the
technique Andersen et al. (2006) use to decide on the order of integration of the series. They
further consider Ljung–Box tests on the residuals of AR(p) processes, where p is selected by the
AIC. In case there is significant autocorrelation in the residuals, the null is rejected, indicating
that there is long memory in the series. The last row reports the power of this approach for the
simulated series, i.e. the relative number of times the null hypothesis is rejected. All results are
the averages over 1000 repetitions.

observed order of integration is decreased, such that the 2ELW estimator yields a d of 0.4

on average. They then fractionally differenced the series by 0.2, such that the resulting

series should be approximately I(0.2). For such a series the simulations indicate that only

6 percent of the first 36 autocorrelations are significantly greater than zero according

to 95 percent Bartlett confidence intervals. It is understandable that, based on such

autocorrelation functions, the authors conclude that realized betas exhibit a d of 0.2 or

smaller. The simulations further reveal that Ljung–Box tests on the residuals of an AR(p)

with p selected by the AIC are not particularly useful to detect long-memory time series.

The order p is simply chosen to be high, such that the long-memory characteristics can

be captured by the AR model.
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A.2 Additional Analyses and Robustness

A.2.1 Tables Referenced in the Main Manuscript

Standard Adjusted for Breaks in Mean
¯̂di sd(d̂i) vs. di = 0 vs. di = 1 ¯̂di sd(d̂i) vs. di = 0 vs. di = 1

Panel A: Bandwidth m = T 0.65

βi 0.575 0.127 0.996 0.989 0.532 0.156 0.987 0.989

ρi,M 0.554 0.102 1.000 0.998 0.561 0.109 1.000 0.996

σi 0.586 0.146 0.991 0.968 0.586 0.146 0.991 0.968

σ−1
M 0.544 - 1.000 1.000 0.544 - 1.000 1.000

Panel B: Bandwidth m = T 0.75

βi 0.549 0.103 0.999 0.998 0.517 0.122 0.996 0.998

ρi,M 0.546 0.088 0.995 1.000 0.543 0.090 1.000 1.000

σi 0.592 0.137 1.000 0.989 0.592 0.137 1.000 0.989

σ−1
M 0.591 - 1.000 1.000 0.590 - 1.000 1.000

Table A.2: In analogy to Tables 1 and 2, this table presents average estimates of the memory
parameter of realized betas, realized correlation (Fisher-transformed), and volatility across all
stocks (N = 823), as well as that of the inverse of the market volatility, using the 2ELW estimator
of Shimotsu & Phillips (2005) and Shimotsu (2010) with alternative bandwidths of m = T 0.65

and m = T 0.75. sd(d̂i) displays the standard deviation of the estimates across stocks and vs. di = 0
and vs. di = 1 indicate the relative frequency with which the null hypotheses d = 0 and d = 1,
respectively, are rejected at the ten percent level. The left panel reports the results for the
original series and the right panel reports results after adjusting the series for structural breaks
using the procedure of Lavielle & Moulines (2000).
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P1 P2 P3 P4 P5 t−stat
βββ 0.4830 0.7726 0.9769 1.2075 1.6887 22.1
d 0.5333 0.5213 0.5394 0.5550 0.5822 3.57
log(Market Cap) 16.175 16.215 16.177 16.016 15.673 −4.55
BtM 0.5380 0.5060 0.5016 0.5299 0.5628 0.49
Investment 0.0938 0.1067 0.1077 0.1191 0.1177 1.59
Profitability −0.5928 −3.4268 −0.5836 0.2827 0.1098 1.07
Momentum 0.1276 0.1329 0.1359 0.1485 0.2029 1.39
BAS 0.0009 0.0007 0.0007 0.0008 0.0010 0.98
Turnover 0.1846 0.1893 0.2114 0.2540 0.3882 6.40
iVol 0.0115 0.0115 0.0125 0.0143 0.0193 5.10
iSkew 0.0834 0.1044 0.1038 0.1269 0.1500 5.06
Short Interest 0.0302 0.0337 0.0369 0.0419 0.0558 11.2
Leverage 0.5920 0.5889 0.5774 0.5745 0.5922 0.01
Age 37.611 33.049 33.317 32.864 29.838 −11.0
Durables 0.0048 0.0107 0.0230 0.0384 0.0309 10.3
Energy 0.0309 0.0319 0.0441 0.0783 0.1137 3.42
Healthcare 0.1299 0.1096 0.0664 0.0448 0.0378 −2.79
HiTec Equipment 0.0812 0.1401 0.1790 0.1776 0.2001 2.41
Manufacturing 0.0781 0.1153 0.1655 0.1721 0.1661 9.19
NonDurables 0.1624 0.0819 0.0518 0.0364 0.0309 −18.0
Telephone 0.0397 0.0452 0.0340 0.0227 0.0132 −8.33
Utilities 0.1721 0.0806 0.0341 0.0230 0.0108 −10.0
Wholesale 0.1185 0.1374 0.1259 0.1128 0.0775 −2.97

Table A.3: This table presents portfolio sorts by beta. At the end of each month, we sort
the stocks in our sample based on the realized beta during the past month. Sorting the stocks
into quintile portfolios, we save each portfolio’s average of the firm characteristics and dummy
variables at the end of the respective months. The main body of the table shows the average of
the different firm characteristics over time (T = 141 months). t-stat denotes the t-statistic of a
test whether the firm characteristics of portfolio P5 and P1 are equal with the standard errors
being calculated using the heteroscedacity and autocorrelation robust approach by Andrews
(1991). Characteristics, for which this difference is statistically significant at 10 percent are
printed in bold.

A.2.2 Hedging Errors

To account for the possibility that the ex-post realized betas are measured with error,

we follow Liu et al. (2018) and examine the out-of-sample hedging errors of our main
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RW AR ARMA FI FIARMA

Mean 4.3890 4.3765 4.3699 4.3582 4.3640

∆RW 0.0000 −0.0124∗∗ −0.0191∗∗∗ −0.0308∗∗∗ −0.0250∗∗∗

(−2.0180) (−2.9422) (−5.1588) (−3.4989)
∆ARMA 0.0191∗∗∗ 0.0067 0.0000 −0.0117∗∗∗ −0.0059

(2.9422) (1.5468) (−3.5983) (−0.9233)

Table A.4: Hedging errors: This table presents the ratio of hedging error variances to the
market variance for different approaches. For each stock, estimator, and month, we obtain the
hedging error over the next month as (ri,T+1 − r f ,T+1)− β̂i,T+1(rM,T+1 − r f ,T+1). We estimate the
hedging error and market variances using rolling 5-year windows and use the average ratio over
time. The table presents the average ratio of the hedging error variance to the market variance
across all stocks. Additionally, ∆RW and ∆ARMA report the differences between the hedging
errors of RW and ARMA, respectively, and the other models. In parentheses, we present the
robust Andrews (1991) t-statistics, using a quadratic spectral density and data-driven bandwidth
selection, of a test for equal average hedging errors. *, **, and *** indicate significance at the
10 percent, 5 percent, and 1 percent level, respectively.

approaches. We compute the hedging error for each stock as

Hi,T+1 = (ri,T+1− r f ,T+1)− β̂i,T+1(rM,T+1− r f ,T+1).

ri,T+1 is the return of stock i in month T +1. r f ,T+1 and rM,T+1 are the risk-free rate and the

return on the market portfolio over the same horizon. We use 1-month returns. β̂i,T+1 is

the forecast for beta using data up to month T . Liu et al. (2018) show that under certain

assumptions the hedging error variance ratio
var(Hi,T+1)

var(rM,T+1−r f ,T+1) is approximately equal to the

mean squared error relative to the true realized beta plus a term that is constant for all

beta forecasts. We follow Liu et al. (2018) and estimate the variance ratios using rolling

five-year windows to account for the possibility that the variances in the numerator and

denominator change over time. We report the average ratio over time.

We present the results in Table A.4. These are consistent with our previous results

relying on the RMSE. The average hedging error of the FI-model forecasts is lowest. In

particular, the average hedging error is significantly lower than both that of the difference-

stationary RW and the short-memory ARMA models.
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Standard Adjusted for Breaks in Mean
¯̂di sd(d̂i) vs. di = 0 vs. di = 1 ¯̂di sd(d̂i) vs. di = 0 vs. di = 1

βi 0.382 0.157 0.916 0.999 0.330 0.181 0.841 0.999

Table A.5: In analogy to Table 1, this table presents average estimates of the memory parameter
of realized beta across all stocks ( ¯̂di) using the 2ELW estimator of Shimotsu & Phillips (2005)
and Shimotsu (2010). The results are for the entire CRSP sample (3,153 stocks) and quarterly
betas calculated from daily data. sd(d̂i) displays the standard deviation of the estimates across
stocks and vs. di = 0 and vs. di = 1 indicate the relative frequency with which the null hypotheses
d = 0 and d = 1, respectively, are rejected at the ten percent level. The left panel reports the
results for the original series and the right panel reports results after adjusting the series for
structural breaks using the procedure of Lavielle & Moulines (2000).

A.2.3 Entire CRSP Dataset

In our main analysis, based on the need to have high-frequency data for liquid instru-

ments, we restrict our dataset to the S&P 500 firms and start in 1996. In this section, we

examine whether the results found for this sample can also be generalized to a broader

sample of stocks and for a longer sample period. We extend our dataset to consider the

entire CRSP dataset starting from 1926. As intra-day observations are only available from

1996 onward, we calculate betas from daily returns. Since monthly beta estimates based

on daily returns are too noisy, we follow Andersen et al. (2006) and consider quarterly

estimates instead.10

Table A.5 shows the estimated order of integration of the series averaged across all

stocks for which more than 100 observations are available (N = 3,153). Again we present

results when investigating the original series as well as when adjusting for structural

breaks.

We find that the average d estimate decreases from 0.56 to 0.38 when considering the

expanded sample of daily returns. This also holds when only considering the same stocks

as in our main analysis, for which the average d estimate is now 0.36, and even when

considering the same stocks and same time period as for our main analysis, where the

average d is 0.42. Consequently, the observed reduction in d is mainly due to the change

of the recording frequency and not to the expanded set of stocks and time period. As

10Since the zero-approximation to the risk-free rate becomes less reliable for daily returns, we deviate
from the description in Equation (1) by using excess returns to estimate realized betas based on daily
data.
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RW AR ARMA FI FIARMA

RMSE 0.5654 0.4981 0.4881 0.4720 0.4724

Best 27 82 157 821 282

vs RW 0 721 802 1104 1052

vs AR 29 0 345 656 701

vs ARMA 15 38 0 458 480

vs FI 0 9 27 0 28

vs FIARMA 1 7 25 27 0

N 1369 1369 1369 1369 1369

Table A.6: In analogy to Table 3, this table illustrates the forecast performance of the models
for quarterly beta forecasts, based on daily data, from a rolling estimation window of 100
observations. The first row shows average RMSEs of different models across all stocks. The
row “Best” indicates the number of times a model achieves the lowest RMSE for a certain stock.
Furthermore, the rows denoted by “vs. X” correspond to modified DM-tests (Harvey et al.,
1997), providing the number of times the column-model yields a significantly lower RMSE than
the row-model at the 10 percent level. Finally, N is the number of investigated stocks. To allow
for reliable inference, we exclude all stocks for which we have less than 50 forecasts.

already discussed in Section 3, decreasing the recording frequency increases the level of

noise in the realized beta time series. This then leads to a negative bias of the 2ELW

estimator, which explains the reduction of the memory estimate.11

Even though the d estimates are negatively biased, more than 84 percent of the stocks

still have a d that is significantly greater than zero. The forecast results displayed in Table

A.6 also echo this finding. It can be seen that the FI model still significantly outperforms

all models that do not account for the long-range dependencies. Its forecasts obtain the

lowest average RMSE and are the most accurate for almost half of the stocks. Forecasts

by RW, AR, or ARMA models, on the other hand, are only the most accurate for a

combined 19 percent of the stocks. These models significantly outperform FI forecasts

for less than three percent of the stocks in total. We should further note that as the

FI model relies on a biased estimate of d, its performance would likely be even better if

we accounted for this bias by adding a constant to each d estimate or even fixed d at a

certain level for all stocks.

11In Section A.2.6, we explore this issue further by considering alternative intra-day sampling frequencies
of 15-minutes and 75-minutes. There, we already find that increased noise in realized betas derived
from 75-minute data biases the d estimates negatively.
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A.2.4 Alternative Models

Due to its great importance there are numerous approaches and models to forecast

beta. For the ease of presentation in our main analysis, we compare the performance

of the long-memory models only to the performance of the most popular competitors,

RW, AR, and ARMA. In this section we now consider other approaches that have been

proposed in the literature.

Andersen et al. (2005) consider an AR(1) process to model beta in a state-space

framework. Hollstein & Prokopczuk (2016) investigate the forecast performance of RW,

AR(1), and ARMA(1,1) models in a state-space framework and find that the RW model

performs somewhat better than the AR(1) and ARMA(1,1) models. Thus, in this section

we also consider the forecasts from RW, AR(1), and ARMA(1,1) models when estimated

as a state-space system. The measurement equation for all three models is

βi,t = β̃i,t + ξi,t,

where β̃i,t is the unobserved true beta. It evolves according to one of the following

transition equations for the different models

β̃RW
i,t = β̃i,t−1 + vi,t,

β̃AR
i,t = γi +φiβ̃i,t−1 + vi,t, and

β̃ARMA
i,t = γi +φiβ̃i,t−1 + θivi,t−1 + vi,t.

We estimate those models using the Kalman filter (Pagan, 1980; Black et al., 1992) and

then perform forecasts as for the standard models.

To the best of our knowledge, long-memory models in a state-space framework have

only been investigated for the stationary d < 0.5 case (Chan & Palma, 1998; Dissanayake

et al., 2016). As we investigate mostly nonstationary time series here, these models are

likely inappropriate. As an alternative, we consider a FIARMA model as before, but

with the short-run dynamics now estimated with an ARMA(1,1) model in a state-space
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framework.

Another popular way to model and forecast long-memory time series is to use the

HAR-model by Corsi (2009). For the realized beta series, it evolves as

βi,t = ai +φ1,iβi,t−1 +
φ2,i

5

5∑
j=1

βi,t− j +
φ3,i

22

22∑
j=1

βi,t− j + ei,t,

where ei,t is a mean zero error term. While the HAR-model does not formally belong

to the class of long-memory models, when applied to return volatility time series, this

model has been shown to be able to reproduce long-memory patterns. We therefore also

consider forecasts made by this model in the following.

Hassler & Pohle (2019) argue that although local Whittle-based approaches yield bet-

ter results than other estimators, they still have a large variance. Moreover, as discussed

above, the estimators are negatively biased when the degree of noise in the series becomes

large. These considerations lead the authors to believe that it might be beneficial for fore-

casting to fix d at a certain value instead of estimating it. This eliminates estimation

uncertainty, while the model is still able to capture the long-memory characteristics of

the series. Based on the results of Section 3 we fix d to 0.5. We refer to this model as

FI(0.5) in the following.

Finally, we also consider two popular shrinkage approaches. First, we apply the Va-

sicek (1973) estimator as modification to the RW forecast. We obtain a posterior beta

by combining the RW forecast with a prior (b j,t) in the following way

βRWV
i,t =

s2
bi,t

σ2
βi,t

+ s2
bi,t

βi,t +
σ2
βi,t

σ2
βi,t

+ s2
bi,t

bi,t.

σ2
βi,t

and s2
bi,t

are the squared standard errors of the beta estimate and the prior, respec-

tively. Hence, the degree of shrinkage depends on the relative precision of the historical

estimate and the prior. As prior, we use the cross-sectional average beta, as suggested by

Vasicek (1973).

Levi & Welch (2017) argue that a simple Vasicek (1973) shrinkage is not sufficient to
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RW RWV RWLW AR ARMA FIARMA HAR FI(0.5) FI

RMSE 0.2820 0.3124 0.3862 0.2854 0.2850 0.2808 0.3176 0.2775 0.2792

Best 92 39 4 11 19 84 4 313 123

vs RW 0 2 1 2 2 53 0 85 80

vs RWV 279 0 0 248 243 315 78 394 335

vs RWLW 569 522 0 560 560 572 432 592 584

vs AR 171 6 1 0 41 81 1 107 109

vs ARMA 139 5 1 40 0 81 0 103 101

vs FIARMA 15 1 1 9 9 0 1 68 49

vs HAR 489 81 2 425 419 495 0 440 400

vs FI(0.5) 9 1 0 3 4 8 0 0 11

vs FI 24 2 0 12 11 22 0 82 0

N 689 689 689 689 689 689 689 689 689

Table A.7: In analogy to Table 3, this table illustrates the forecast performance of different
additional models for one-month beta forecasts from a rolling estimation window of 100 obser-
vations. RW, AR, ARMA, and FIARMA are estimated in a state-space framework. RWV and
RWLW correspond to the forecasts from the approaches of Vasicek (1973) and Levi & Welch
(2017), respectively. Finally, HAR corresponds to the model by Corsi (2009) and FI(0.5) uses
a FI model with d fixed at 0.5. The first row shows average RMSEs of different models across
all stocks. The row “Best” indicates the number of times a model achieves the lowest RMSE for
a certain stock. Furthermore, the rows denoted by “vs. X” correspond to modified DM-tests
(Harvey et al., 1997), providing the number of times the column-model yields a significantly
lower RMSE than the row-model at the 10 percent level. Finally, N is the number of investi-
gated stocks. To allow for reliable inference, we exclude all stocks for which we have less than
50 forecasts.

create good forecasts for beta. They suggest further shrinkage using

βRWLW
i,t = 0.75βRWV

i,t + 0.25βtarget
i ,

where β
target
i is set to 0.5 for the smallest market capitalization tercile, to 0.7 for the

middle tercile, and to 0.9 for the highest market capitalization tercile. One has to bear in

mind, though, that Levi & Welch (2017) optimize this double-shrinkage for betas based

on daily return data. Since we rely on a highly liquid subset of stocks and use more

precise estimates based on high-frequency data it is likely that this approach does not

work too well.

Table A.7 shows the forecast results for these models and for comparison again the

results by the FI model considered before. In line with the results by Hollstein &

Prokopczuk (2016), we find that the performance of the RW model improves when esti-
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Standard Adjusted for Breaks in Mean
¯̂di sd(d̂i) vs. di = 0 vs. di = 1 ¯̂di sd(d̂i) vs. di = 0 vs. di = 1

βi 0.557 0.133 0.994 0.953 0.518 0.158 0.967 0.965

ρi,M 0.572 0.122 0.995 0.966 0.572 0.128 0.991 0.962

σi 0.593 0.164 0.978 0.930 0.593 0.164 0.978 0.930

σ−1
M 0.591 - 1.000 1.000 0.590 - 1.000 1.000

Table A.8: In analogy to Tables 1 and 2, this table presents average estimates of the memory
parameter of realized betas, realized correlation (Fisher-transformed), and volatility across all
stocks (N = 823), as well as that of the inverse of the market volatility, using the log periodogram
estimator by Geweke & Porter-Hudak (1983). sd(d̂i) displays the standard deviation of the
estimates across stocks and vs. di = 0 and vs. di = 1 indicate the relative frequency with which
the null hypotheses d = 0 and d = 1, respectively, are rejected at the ten percent level. The left
panel reports the results for the original series and the right panel reports results after adjusting
the series for structural breaks using the procedure of Lavielle & Moulines (2000).

mated with a state-space framework as it on average now produces more accurate forecasts

than AR and ARMA models. However, the models that account for long-range depen-

dencies still perform substantially better and are more accurate for almost 80 percent of

the stocks. The RMV model performs somewhat better than the simple RW model. The

performance of the RVLW model, on the other hand, is very poor, as was expected.

Finally, it is noteworthy that the results for the FI(0.5) model are even slightly better

than those by the FI model considered before. Thus, fixing d at 0.5 instead of using

estimates appears to be a practical and well-performing approach for beta forecasting.

A.2.5 Alternative Long-Memory Estimator

We base our main analysis on the 2ELW estimator, as we believe it is the most

suitable estimator in our setup. A popular alternative is the log periodogram estimator

by Geweke & Porter-Hudak (1983). Although the variance of log periodogram-based

approaches commonly exceeds that of local Whittle-based approaches, they are often

considered due to their simplicity in application and calculation.

Table A.8 shows the average estimate of d when using the log periodogram estimator.

While the average estimates of d are almost equal, the relative number of stocks for which

d is significantly different from 0 and 1 decreases slightly due to the higher variance of

the estimates. However, still more than 95 percent of the stocks exhibit significant long
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RW AR ARMA FI FIARMA

RMSE 0.3149 0.2942 0.2878 0.2812 0.2814

Best 7 30 128 332 192

vs RW 0 271 343 507 455

vs AR 3 0 155 228 259

vs ARMA 1 5 0 140 135

vs FI 1 5 22 0 21

vs FIARMA 1 4 11 21 0

N 689 689 689 689 689

Table A.9: In analogy to Table 3, this table illustrates the forecast performance of the models
for one-month beta forecasts from a rolling estimation window of 100 observations. FI and
FIARMA model are now calculated using d estimates by the log periodogram estimator instead
of the 2ELW estimator. The first row shows average RMSEs of different models across all stocks.
The row “Best” indicates the number of times a model achieves the lowest RMSE for a certain
stock. Furthermore, the rows denoted by “vs. X” correspond to modified DM-tests (Harvey
et al., 1997), providing the number of times the column-model yields a significantly lower RMSE
than the row-model at the 10 percent level. Finally, N is the number of investigated stocks. To
allow for reliable inference, we exclude all stocks for which we have less than 50 forecasts.

memory in beta. We can therefore conclude that with the log periodogram estimator

realized betas are also highly persistent.

Table A.9 repeats the analysis of Table 3 and shows the forecast performance of the

FI and FIARMA model when estimating d using the log periodogram estimator. For

comparison, we also present the results for the RW, AR, and ARMA models. It can be

seen that compared to the results using the 2ELW estimate, the performance of the FI

and FIARMA model slightly decreases, which is probably due to the higher variance of

the estimates. However, the forecasts by the FI model still clearly outperform all forecasts

by models that do not account for the long-memory characteristics.

A.2.6 Alternative Sampling Frequencies

In our main analysis, our results are based on measures calculated with 30-minute

data. Since the sampling frequency influences the bias as well as the variance of the

estimates, we repeat our analysis for realized betas calculated from 15- and 75-minute

data.

Table A.10 shows that decreasing the frequency to 75-minute data decreases the es-
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Standard Adjusted for Breaks in Mean
¯̂di sd(d̂i) vs. di = 0 vs. di = 1 ¯̂di sd(d̂i) vs. di = 0 vs. di = 1

Panel A: 15-Minute Data

βi 0.593 0.112 0.999 0.996 0.553 0.139 0.994 0.998

ρi,M 0.583 0.099 1.000 0.996 0.585 0.101 1.000 0.996

σi 0.598 0.139 0.996 0.977 0.597 0.139 0.996 0.977

σ−1
M 0.553 - 1.000 1.000 0.553 - 1.000 1.000

Panel B: 75-Minute Data

βi 0.498 0.123 0.994 0.998 0.457 0.148 0.977 0.998

ρi,M 0.505 0.096 0.999 0.998 0.496 0.099 1.000 1.000

σi 0.578 0.140 0.995 0.984 0.578 0.140 0.995 0.984

σ−1
M 0.568 - 1.000 1.000 0.566 - 1.000 1.000

Table A.10: In analogy to Tables 1 and 2, this table presents average estimates of the memory
parameter of realized betas, realized correlation (Fisher-transformed), and volatility across all
stocks (N = 823), as well as that of the inverse of the market volatility, using the 2ELW estimator
of Shimotsu & Phillips (2005) and Shimotsu (2010). The realized measures are now calculated
from 15 and 75-minute data. sd(d̂i) displays the standard deviation of the estimates across stocks
and vs. di = 0 and vs. di = 1 indicate the relative frequency with which the null hypotheses d = 0
and d = 1, respectively, are rejected at the ten percent level. The left panel reports the results
for the original series and the right panel reports results after adjusting the series for structural
breaks using the procedure of Lavielle & Moulines (2000).

timated memory in realized beta from 0.56 to 0.50. This is again due to an increase of

the noise level in the ex-post realized betas, which negatively biases the 2ELW estimator.

When increasing the recording frequency from 30- to 15-minute data the estimated d

increases only slightly to 0.59, implying that the amount of noise in the betas calculated

from 30-minute data is already small. Despite these smaller changes, it still holds for at

least 97 percent of the stocks that the order of integration of their betas is significantly

different from 0 and 1.

Concerning the order of integration of the realized correlation series we observe a

similar pattern. For 75-minute data the estimate decreases from the original value of 0.56

to 0.51 and for 15-minute data there is a small increase to 0.58. The ex-post estimates of

stock and market volatility, on the other hand, seem to be less perturbed when decreasing

the recording frequency. Here, the estimated memory is almost the same for 15-, 30-, and

75-minute data ranging from 0.58 to 0.60 for stock volatility and 0.55 to 0.57 for the

inverse of market volatility.

- 13 -



RW AR ARMA FI FIARMA

Panel A: 15-Minute Data

RMSE 0.2876 0.2713 0.2660 0.2586 0.2595

Best 5 27 124 362 171

vs RW 0 268 320 530 499

vs AR 2 0 139 277 293

vs ARMA 1 8 0 182 180

vs FI 1 4 15 0 13

vs FIARMA 1 4 18 19 0

N 689 689 689 689 689

Panel B: 75-Minute Data

RMSE 0.3724 0.3421 0.3355 0.3241 0.3248

Best 2 25 90 432 140

vs RW 0 291 360 574 541

vs AR 4 0 156 333 353

vs ARMA 2 9 0 231 222

vs FI 0 1 4 0 12

vs FIARMA 0 2 11 21 0

N 689 689 689 689 689

Table A.11: In analogy to Table 3, this table illustrates the forecast performance of the models
for one-month beta forecasts from a rolling estimation window of 100 observations. For the
different panels, the realized beta series are now, however, based on 15-minute and 75-minute
data. The first row shows average RMSEs of different models across all stocks. The row
“Best” indicates the number of times a model achieves the lowest RMSE for a certain stock.
Furthermore, the rows denoted by “vs. X” correspond to modified DM-tests (Harvey et al.,
1997), providing the number of times the column-model yields a significantly lower RMSE than
the row-model at the 10 percent level. Finally, N is the number of investigated stocks. To allow
for reliable inference, we exclude all stocks for which we have less than 50 forecasts.

Table A.11 presents the forecast performance of the different models. We find that

the ranking of the models stays the same for all considered frequencies. The FI model

is the best independently of the sampling frequency. In addition, models that account

for long-range dependencies perform substantially better than those that do not. Due to

the difference in noise of the ex-post realized beta estimates, however, the average RMSE

increases with decreasing sampling frequency. In line with the discussion above, this effect

is more pronounced when changing from 30- to 75-minute data than when changing from

30- to 15-minute data.
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Table A.11 further reveals that changing the recording frequency only leads to small

changes when comparing the models against each other. For 15-minute data the FI

model significantly outperforms the RW, AR, and ARMA models for 77, 40, and 26

percent of the stocks while for 75-minute data this holds for 83, 48, 34 percent of the

stocks, respectively.

Overall, the main message of Section 4 remains unchanged: accounting for long-range

dependencies significantly improves the forecasting performance for realized betas.

A.2.7 Alternative Estimation Windows and Bandwidths

Our main analysis regarding the forecast performance of the models uses a rolling

estimation window of 100 observations. To show that the results are robust to other

specifications of the estimation window, Table A.12 shows the results for window sizes of

75 and 125 observations.

While the smaller estimation window allows for more stocks to be included in the

analysis, it can be seen that the results are qualitatively similar. The forecasts by the FI

model perform the best and are outperformed by models that do not account for long-run

dependencies only for a tiny number of stocks.

We also consider alternative bandwidths of m = T 0.65 and m = T 0.75 for forecasting as

a final robustness check in Table A.13 . These results are qualitatively similar as for our

main bandwidth choice of m = T 0.7.
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RW AR ARMA FI FIARMA

Panel A: Rolling Window of 75 Observations

RMSE 0.3102 0.2914 0.2864 0.2764 0.2775

Best 4 33 78 446 208

vs RW 0 263 318 612 570

vs AR 3 0 168 367 384

vs ARMA 2 22 0 235 241

vs FI 0 0 3 0 11

vs FIARMA 0 2 9 28 0

N 769 769 769 769 769

Panel B: Rolling Window of 125 Observations

RMSE 0.3017 0.2800 0.2746 0.2676 0.2683

Best 4 19 120 330 130

vs RW 0 255 302 479 433

vs AR 4 0 114 205 201

vs ARMA 3 15 0 116 113

vs FI 0 1 11 0 13

vs FIARMA 0 1 17 25 0

N 603 603 603 603 603

Table A.12: In analogy to Table 3, this table illustrates the forecast performance of the models
for one-month beta forecasts from a rolling estimation window of 75 as well as 125 observations.
The first row shows average RMSEs of different models across all stocks. The row “Best” indi-
cates the number of times a model achieves the lowest RMSE for a certain stock. Furthermore,
the rows denoted by “vs. X” correspond to modified DM-tests (Harvey et al., 1997), providing
the number of times the column-model yields a significantly lower RMSE than the row-model
at the 10 percent level. Finally, N is the number of investigated stocks. To allow for reliable
inference, we exclude all stocks for which we have less than 50 forecasts.
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RW AR ARMA FI FIARMA

Panel A: Bandwidth m = T 0.65

RMSE 0.3149 0.2942 0.2878 0.2797 0.2806

Best 3 23 108 367 188

vs RW 0 271 343 558 506

vs AR 3 0 155 270 295

vs ARMA 1 5 0 166 172

vs FI 0 2 13 0 21

vs FIARMA 0 2 12 24 0

N 689 689 689 689 689

Panel B: Bandwidth m = T 0.75

RMSE 0.3149 0.2942 0.2878 0.2794 0.2801

Best 6 30 100 399 154

vs RW 0 271 343 564 534

vs AR 3 0 155 310 313

vs ARMA 1 5 0 192 189

vs FI 0 4 7 0 10

vs FIARMA 0 4 9 20 0

N 689 689 689 689 689

Table A.13: In analogy to Table 3, this table illustrates the forecast performance of the models
for one-month beta forecasts from a rolling estimation window of 100 observations. FI and
FIARMA model now calculated using d estimates of the 2ELW estimator calculated with band-
widths of m = T 0.65 and m = T 0.75. The first row shows average RMSEs of different models across
all stocks. The row “Best” indicates the number of times a model achieves the lowest RMSE for
a certain stock. Furthermore, the rows denoted by “vs. X” correspond to modified DM-tests
(Harvey et al., 1997), providing the number of times the column-model yields a significantly
lower RMSE than the row-model at the 10 percent level. Finally, N is the number of investi-
gated stocks. To allow for reliable inference, we exclude all stocks for which we have less than
50 forecasts.
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A.3 Firm Characteristics

• Age (Zhang, 2006) is the number of years up to time t since a firm first appeared
in the CRSP database.

• Beta is the median beta estimate for a certain stock across all estimation approaches
considered.

• Bid–ask spread (BAS) is the stock’s average daily relative bid–ask spread over
the previous month.

• Book-to-market (BtM) (Fama & French, 1992) is the most current observation
for“book equity”divided by the market capitalization. Following the standard liter-
ature, we assume that the book equity of the previous year’s balance sheet statement
becomes available at the end of June and use the market capitalization at the end
of the corresponding fiscal year. Book equity is defined as stockholders’ equity, plus
balance sheet deferred taxes and investment tax credit, plus post-retirement benefit
liabilities, minus the book value of preferred stock.

• Idiosyncratic volatility (iVol) (Ang et al., 2006) is the standard deviation of the
residuals εi,τ in the Fama & French (1993) 3-factor model ri,τ− r f ,τ = αi,t +β

M
i,t (rM,τ−

r f ,τ)+βS
i,tS MBτ+βH

i,tHMLτ+εi,τ, using daily returns over the previous month. S MBτ
and HMLτ denote the returns on the Fama & French (1993) factors.

• Idiosyncratic skewness (iSkew) (Boyer et al., 2009) is the iSkew of the residuals
εi,τ in the Fama & French (1993) 3-factor model ri,τ − r f ,τ = αi,t + βM

i,t (rM,τ − r f ,τ) +

βS
i,tS MBτ+βH

i,tHMLτ+ εi,τ, using daily returns over the previous month.

• Industry Classifications employ the definition for 10 industry portfolios ap-
plied by Kenneth French. ‘’Durable” is Consumer Durables, “Energy” is the oil,
gas, and coal extraction industry, “Healthcare” is Healthcare, Medical Equipment,
and Drugs, “HiTec Equipment” is Business Equipment, “NonDurables” is Consumer
Non-Durables, “Telephone” is Telephone and Television Transmission, “Wholesale”
is Wholesale, Retail, Services, and“Other” contains Mines, Construction, Construc-
tion Materials, Transport, Hotels, Bus Services, Entertainment, as well as Finance.

• Investment (Fama & French, 2015) is the change in total assets from the fiscal
year ending in year t−2 to that ending in t−1, divided by the total assets of year
t−2. As for BtM, we assume that accounting data become available by the end of
June of year t.

• Leverage (Bhandari, 1988) is defined as one minus book equity (see “Book-to-
market”) divided by total assets (Compustat: AT). Book equity and total assets
are updated every 12 months at the end of June.

• Marked Cap (Banz, 1981) is the current market capitalization of a firm. Market
capitalization is computed as the product of the stock price and the number of
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shares outstanding. In regressions, we take the natural logarithm to remove the
extreme iSkew in this variable.

• Momentum (Jegadeesh & Titman, 1993) is the cumulative stock return over the
period from t−12 until t−1.

• Profitability (Fama & French, 2015) is a firm’s operating profitability. Operating
profitability is revenues minus cost of goods sold minus selling, general, and admin-
istrative expenses minus interest expense, all divided by current book equity. As
for BtM, we assume that accounting data become available by the end of June of
year t.

• Short interest (RSI) (Boehme et al., 2006) is the ratio of short interest of a firm,
obtained from Compustat, over the number of shares outstanding. If available, we
use the short interest as of the end of month t, otherwise we use the last observation
recorded in that month.
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