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Abstract

This thesis contains six essays on financial time series. Special attention is paid to the
opportunities that high-frequency data offers for modeling and forecasting the return and
the risk, measured by the volatility or beta, of an asset.

After an introduction in the first chapter, Chapter 2 shows that, using a variety of
high-frequency based explanatory variables, the sign of daily stock returns is predictable
in an out-of-sample environment. This predictability is of a magnitude that is statistically
significant and consistent over time. Even after accounting for transaction costs, a simple
trading strategy based on directional forecasts yields a Sharpe ratio that is nearly double
that of the market and an annualized alpha of more than eight percent in a multi-factor
model. Consequently, standard risk based models are not able to explain the returns
generated by this strategy.

Chapter 3 provides a simple approach to estimate the volatility of economy wide risk
factors such as size or value. Models based on these factors are ubiquitous in asset pricing.
Therefore, portfolio allocation and risk management require estimates of the volatility
of these factors. While realized measures based on high-frequency observations, such as
realized variance, have become the standard tools for the estimation of the volatility of
liquid individual assets, these measures are difficult to obtain for economy wide risk factors
that include smaller illiquid stocks that are not traded at a high frequency. The approach
suggested in Chapter 3 improves on this issue as it yields an estimate that is close in
precision to realized variance. The efficacy of this approach is demonstrated using Monte
Carlo simulations and forecasts of the variance of the market factor.

Chapter 4 shows that realized variance underestimates the variance of daily stock index
returns by an average of 14 percent. This is documented for a wide range of international
stock indices, using the fact that the average of realized variance and that of squared
returns should be the same over longer time horizons. It is shown that the magnitude of
this bias cannot be explained by market microstructure noise. Instead, it can be attributed
to correlation between the continuous components of intra-day returns.

Chapter 5 reveals that beta series show consistent long-memory properties. This result
is based on the analysis of the realized beta series of over 800 stocks. Researchers and
practitioners employ a variety of time-series processes to forecast beta series, using either
short-memory models or implicitly imposing infinite memory. The results in Chapter 5
suggest that both approaches are inadequate. A pure long-memory model reliably provides
superior beta forecasts compared to all alternatives.



III

Building on the result that beta series can be best described by long-memory processes,
Chapter 6 suggests a new multivariate approach to estimate the long-memory parameter
robust to low-frequency contaminations. This estimator requires a priori knowledge of the
cointegration rank. Since low-frequency contaminations bias inference on the cointegration
rank, a robust estimator of the cointegration rank is also provided. An extensive Monte
Carlo exercise shows the applicability of the estimators in finite samples. Furthermore,
the procedures are applied to the realized beta series of two American energy companies
discovering that the series are fractionally cointegrated. As the series exhibit low-frequency
contaminations, standard procedures are unable to detect this relation.

Finally, Chapter 7 presents the R package memochange. The package includes several
change-in-mean tests that are applicable under long memory as standard change-in-mean
tests are invalid in this case. Moreover, the package contains various tests for a break in
persistence. These can be used to detect a change in the memory parameter.

Keywords: Asset Pricing · Beta · Directional Predictability · Factor Models · Forecasting
· Fractional Cointegration · High-Frequency Data · Long Memory · Persistence · Return
Predictability · Realized Variance · Squared Returns · Volatility
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Chapter 1

Introduction

The return and the risk of an asset or portfolio are two of the most important variables in
financial decision making. Modeling and forecasting them is therefore of vital importance
for academics and practitioners alike.

While the definition of asset returns is rather undisputed, there exist various measures
for the risk of an asset. Until the 1960s the variance or standard deviation, commonly
referred to as volatility, of asset returns was the most popular risk measure (Markowitz,
1952). The Capital Asset Pricing Model (Sharpe, 1964; Lintner, 1965; Mossin, 1966) and
the arbitrage pricing theory (Ross, 1976) extend this view. They relate the risk of an
asset to its sensitivity to economy wide risk factors, often referred to as beta. This beta
captures the systematic part of an assets risk while volatility also includes non-systematic
risk, which can be eliminated by diversification. For asset pricing and capital allocation
decisions, beta is therefore the key risk measure nowadays. For risk management and
option pricing, however, volatility also plays an important role.

While the calculation of asset returns is straightforward, neither the volatility of an
asset nor its beta can be observed. Instead, both need to be estimated based on past asset
prices. Clearly, from a statistical point of view, the precision of these estimates increases
with an increasing number of observations. On the other hand, it is well established that
both measures vary over time so that considering long time spans likely results in biased
estimates. This causes a bias-variance trade-off which has been circumvented for a long
time by imposing restrictions using parametric models (e.g., Bollerslev, 1986).

In recent years the increased availability of high-frequency data gave rise to nonpara-
metric approaches for the estimation of volatility and beta. Nowadays, in a liquid market,
the number of observations within a day equals the amount of daily data collected in
20 to 30 years. Consequently, long time spans are not needed to obtain a large num-
ber of observations for estimation. This is the basis for the concept of realized variance
(RV). Here, the variance of an asset during some interval is estimated by summing up
all squared returns of the asset during this interval. Given certain assumptions on the
price process, Barndorff-Nielsen and Shephard (2001) show that a consistent estimate of
the true volatility can be constructed using this approach. Based on this idea it is also
possible to calculate realized betas (Barndorff-Nielsen and Shephard, 2004a), which allow
for a better estimation of the systematic risk component.
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It is, however, not only the estimation of the risk of an asset that has been improved by
the availability of high-frequency data. Several authors find that high-frequency data can
improve forecasting asset returns. Chernov (2007) and Bollerslev et al. (2009), for example,
introduce a measure of aggregate risk aversion based on high-frequency observations that
is shown to be a significant predictor for the level of monthly stock returns.

Given the recency of its availability, the opportunities high-frequency data offers for
modeling and forecasting the return and the risk of assets or portfolios are far from
exhaustedly explored. This thesis presents several approaches and methods that can help
to close this gap.

Chapter 2 presents an approach to forecast the sign of daily stock returns. For this
purpose, we use a simple logistic regression model and a variety of explanatory variables
from which the majority is based on high-frequency measures which were not available
before 1996. We find statistically significant evidence of sign predictability for 19 out of
26 stocks that were part of the Dow Jones Industrial Average in 1996. This predictability
is time consistent and not restricted to certain periods. It can further be exploited by a
market-timing strategy to generate abnormally high returns which cannot be explained
by standard risk based models. These findings are unexpected as there seems to be a
consensus among researchers that, when measured at high frequencies such as days, the
returns of liquid stocks are unpredictable. This is based on popular theories and models
such as the random walk theory (Regnault, 1863; Malkiel, 1973), the efficient market
hypothesis (Fama, 1970), and consumption based asset pricing models (e.g., Lucas, 1978;
Cochrane, 2009), which all rule out the possibility of significant daily return predictability.

Chapter 3 and 4 deal with opportunities that high-frequency data offers for the esti-
mation of volatility.

In Chapter 3, we propose an approach to improve the estimation of portfolio volatility,
in particular the volatility of economy wide risk factors. While RV has become a standard
tool for liquid individual stocks, this measure is difficult to obtain for economy wide
risk factors such as the size and value factor of Fama and French (1993). These contain
much more illiquid stocks that are simply not traded often enough to calculate RVs.
Practitioners or researchers that need to estimate factor volatilities therefore still rely
on estimates based on daily data so that they face the bias-variance trade-off mentioned
above (e.g., He et al., 2015; Moreira and Muir, 2017). Our approach improves on this
issue as it yields an estimate of factor volatility that is close in precision to RV. This is
achieved by approximating high-frequency factor returns by a linear combination of the
returns of over 1,000 liquid stocks. Due to the large number of parameters in the linear
combination that have to be estimated, it is necessary to apply a regularized estimation
method such as ridge regression. We correct for the bias induced by this method and then
perform a RV-type estimation using the approximated high-frequency factor returns. The
efficacy of this approach is demonstrated using Monte Carlo simulations and forecasts of
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the variance of the market factor, where we can use the realized variance of the S&P 500
to evaluate the accuracy of our forecasts.

Despite being nonparametric, RV requires certain assumptions on the asset’s price
process to provide a consistent estimate of volatility. These include that markets are
frictionless and that asset prices behave as semimartingales. While the consequences of
market frictions have been largely investigated (e.g., Zhou, 1996; Hansen and Lunde, 2006;
Bandi and Russell, 2008), the validity of the semimartingale assumption has been widely
accepted so far. In a recent paper, Gao et al. (2018) find contrary evidence by showing
that significant dependencies between aggregates of returns within a trading day exist
for the S&P 500. The analysis in Chapter 4 shows that this correlation negatively biases
the RV estimate causing an underestimation of the variance of daily S&P 500 returns by
an average of 15 percent. Furthermore, it is revealed that the effect is not only present
for the S&P 500 but also for a wide range of other international stock indices, such as
the SSEC, the BSESN, and the N225. On average, the variance of the daily stock index
returns is underestimated by 14 percent. By providing a detailed investigation of the
source of the bias, Chapter 4 further shows that an alternative unbiased RV estimator
can be constructed in the spirit of Hansen and Lunde (2005).

Chapter 5 and 6 deal with the systematic risk component. In contrast to the essays
on volatility discussed above, the focus in these chapters is not on estimating the risk
measure but on modeling and forecasting the estimated risk measure series. For these
purposes, it is of major importance to adequately capture the dependency structure of
the series. In empirical applications it is often found that volatility series show long-
memory properties, i.e., the impact of shocks dies out slowly which creates a hyperbolically
decaying autocorrelation function that solely depends on the memory parameter d for large
lags. It is natural to ask whether this is also true for beta series.

Chapter 5 seeks to answer this question. For this purpose, we consider the monthly re-
alized beta series relative to the market factor of over 800 stocks. We find that the realized
beta series of the vast majority of stocks show long-memory properties. Furthermore, it is
revealed that by incorporating this characteristic into the model, we can improve the accu-
racy of forecasts of the realized beta series. This is done by showing superior performance
of the forecasts of a long-memory model compared to the forecasts of short-memory and
random walk models, which ignore the long-memory properties, but yet have been com-
monly considered in the literature for forecasting realized betas. We further document
the relation of firm characteristics with the forecast error differentials that result from
inadequately imposing short-memory or random walk instead of long-memory processes.

Having documented that the degree of dependence plays an important role for mod-
eling and forecasting asset risk, we suggest a new approach for estimating the memory
parameter d in Chapter 6. The risk of companies continuously changes over time as they
develop, create new products, and enter new markets. Certain events such as, for exam-
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ple, selling parts of the company, however, cause abrupt changes in the risk series. As
shown by Granger and Ding (1996) and Diebold and Inoue (2001), among others, such
structural changes bias the estimate of d. Forecasts based on this estimate would then also
be biased and inaccurate. Iacone (2010) suggests an approach to robustify the estimation
concerning the presence of structural changes. This estimator is, however, univariate. It
is well known that working in a multivariate framework can result in efficiency gains and
is therefore preferable where suitable. In Chapter 6, we therefore extend the approach by
Iacone (2010) to a multivariate setting. As our estimator requires a priori knowledge of
the cointegration rank of the series, i.e., whether there exists a linear combination of the
series whose memory parameter is smaller than that of the original series, and structural
changes also bias inference on the cointegration rank, we also provide a robust estimator
of the cointegration rank. The efficacy of both estimators is demonstrated by Monte Carlo
simulations and an application to the daily realized beta series of two American energy
companies. Here, we discover that the series are fractionally cointegrated which standard
procedures are unable to detect.

Although many economic time series, such as volatilities and betas, show long-memory
properties, long-memory models are often ignored in the literature. This is likely due to
the fact that at first glance they seem rather complicated and hard to implement. To
remedy this, we provide the R package memochange which is presented in Chapter 7. The
package includes several change-in-mean tests that are applicable under long memory as
standard change-in-mean tests are invalid in this case. These can be used to determine
whether a beta series truly exhibits an abrupt change as mentioned above. Moreover, the
package contains various tests for a break in persistence. These can be used to detect a
change in the memory parameter.



Chapter 2

Directional Predictability of Daily Stock Re-
turns

Co-authored with Christian Leschinski.

2.1 Introduction

While the debate about predictability on longer time horizons is still ongoing (e.g., Welch
and Goyal, 2008; Rapach and Zhou, 2013), there is a consensus that daily returns of
liquid stocks are unpredictable. In this paper, we provide contrary evidence and show in
an out-of-sample environment that the sign of daily returns is predictable. This effect is
so sizeable that trading strategies exploiting it yield an annualized alpha of more than
eight percent after transaction costs.

Asset return prediction is of vital importance for practitioners and academics alike.
In its semi-strong form, the efficient market hypothesis (EMH) requires that asset prices
fully reflect all publicly available information at all times (Fama, 1970). Price changes can
therefore only reflect the arrival of new information, which is unpredictable by definition.
This gives rise to the random walk hypothesis for the level of (log-)prices. If we denote
the continuously compounded return by rt, then it can be decomposed as

rt = πt + µt + εt,

where πt denotes the risk-free interest rate, µt is the equity premium, and εt is a mean-
zero innovation term that is serially uncorrelated. If investors are risk-neutral, we have
µt = 0 and the EMH implies that excess returns should be unpredictable. On the other
hand, if investors are risk averse, a certain degree of predictability in the equity premium
µt is possible in efficient markets as long as the predictability reflects time-varying aggre-
gate risk (Rapach and Zhou, 2013). On a daily frequency, however, both πt and µt are
essentially zero since their scale is minuscule compared to the variation of εt. The daily
return rt should therefore be unpredictable. The same conclusion can be drawn using con-
sumption based asset pricing models. Ross (2009) and Zhou (2010), for example, derive
an upper bound for the potential predictability of stock returns. This bound increases in
the variance of the stochastic discount factor. Since on a daily horizon the variance of the
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stochastic discount factor is small compared to the monthly case, there is no theoretical
basis to expect significant predictability of daily stock returns.

In contrast to these considerations, we show empirically that the sign of daily stock
returns is in fact predictable. For this purpose, we use a dataset consisting of all stocks
that were part of the Dow Jones Industrial Average (DJIA) in 1996 and a simple logistic
regression model. The relevant explanatory variables are selected in the subsample from
1996 to 2003 based on a forward selection procedure. Subsequently, the predictive perfor-
mance of the selected models is evaluated in an out-of-sample environment for the period
from 2004 to 2017, where each model is re-estimated in a rolling window to generate one-
step-ahead forecasts. The setup therefore mimics the situation a forecaster would face in
real time.

Using this approach, we are able to correctly predict 52 percent of the signs of the
considered stock returns. This predictability is found to be statistically significant for
19 out of 26 stocks. We further show that the predictability is time consistent and not
restricted to certain periods.

To determine the economic significance of these findings, we devise a market-timing
strategy that invests in a value-neutral portfolio. The long and short positions are de-
termined with help of the classification model by sorting the stocks according to their
predicted probability of a positive return. In absence of transaction costs, this strategy
generates an annualized alpha of 16.70 percent compared to the market factor and an
alpha of 16.08 percent relative to the five-factor model of Fama and French (2015). These
numbers heavily exceed those of previous predictability studies, such as Moreira and Muir
(2017), who report an annualized alpha of 4.9 percent. After accounting for realistic trans-
action costs, we find that the annualized alpha relative to the five-factor model of Fama
and French (2015) is still at 7.17 percent.

The magnitude of the alpha generated by our strategy is rooted in the fact that the
logistic model itself signals the presence or absence of directional predictability through
the dispersion of the predicted probabilities for positive returns in the cross section of
stocks. Our strategy only invests if this signal is sufficiently large. Otherwise, no trades
are initiated. The strategy therefore only trades on a subset of all predictions. For this
subset the hitrate is as high as 54.17 percent, which is considerably higher than the
aforementioned 52 percent that is obtained for all stocks and trading days.

While there is no previous contribution in the finance literature that successfully fore-
casts the level or the sign of daily stock returns in an out-of-sample environment, our
finding is in line with those of Linton and Whang (2007) and Han et al. (2016), who pro-
vide statistical evidence of directional predictability in daily stock returns. These findings,
however, are in-sample and based on nonparametric tests that do not allow to generate
actual forecasts.
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The remainder of this paper is organized as follows. The next section introduces the
dataset and the explanatory variables. Afterwards, we discuss our model selection and
forecasting procedure in Section 2.3. Section 2.4 then reports the empirical results showing
the statistical as well as economic significance of our forecasts. Furthermore, the direction
of the influence of the explanatory variables is explored. Section 2.5 contains additional
analyses and robustness checks and Section 2.6 concludes.

2.2 Data

We consider 5-minute data for N = 30 stocks included in the DJIA on January 1, 1996
and several explanatory variables. The dataset is obtained from the Thomson Reuters
Tick History database and ends on January 31, 2017.

Since high-frequency data is often subject to minor recording mistakes, it is common
practice to apply some form of data cleaning. Here, we adopt the approach of Barndorff-
Nielsen et al. (2009), which comprises, among other things, the removal of observations
with negative stock prices and abnormal high or low entries in comparison to other ob-
servations on the same day. The resulting cleaned dataset is then used to calculate daily
stock returns and more than 20 explanatory variables.1

For modeling and forecasting purposes, we calculate logarithmic returns that facilitate
the computation of explanatory variables such as moving averages or realized variances.
Even though the differences between discrete and logarithmic returns are small due to
the short time horizon, the logarithmic returns are transformed to discrete returns when
considering trading strategies in Section 2.4.2. This allows for the calculation of portfolio
returns.

Our analysis is based on the companies that were components of the DJIA in the
beginning of our sample in January, 1996. Over the course of time, several companies
faced bankruptcy or were taken over so that the respective time series end before 2017.2

2.2.1 Explanatory Variables

Since predictability of daily stock returns has been ruled out in the literature, there is
no established set of potential explanatory variables. We therefore focus on variables that
(i) exhibit meaningful variation on a daily frequency, (ii) are easily available, and (iii) for
which a plausible economic argument can be made or where predictability on a longer
horizon has been found in previous studies.
1Since transaction costs tend to be higher at market closing time than they are five minutes before and we
intend to use the resulting forecasts for trading purposes, daily returns are calculated using the closing
prices at 3:55pm each day.

2This concerns Bethlehem Steel, Eastman Kodak, Sears Roebuck, Texaco, Union Carbide, and Westing-
house Electric. General Motors went bankrupt in 2009 but returned to the New York Stock Exchange
only one year later.
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This includes measures of moments of the return distribution, such as log-realized
variances and realized skewness, since Christoffersen and Diebold (2006) argue that direc-
tional predictability can be generated by persistence in |rt| if µt 6= 0, and Christoffersen
et al. (2007) argue that variation in higher moments can generate directional predictability
even if µt = 0, as long as the return distribution is asymmetric.

Market measures, such as S&P 500 returns and realized market betas, are considered
because the CAPM implies a strong relationship between market and stock returns. The
log-realized variance of the S&P 500 and the VIX are included for the same reasons as
the other risk measures mentioned before.

A number of recent studies such as Chernov (2007), Bollerslev et al. (2009), and
Bollerslev et al. (2014) introduce the variance premium that is defined as the difference
between the implied variance under the assumption of risk neutrality and the conditional
expectation of the variance. This measure is related to the aggregate risk aversion and it
is shown to be a significant predictor for the level of monthly stock returns. Therefore, it
is included as well.3

The yield curve is found to be predictive for future macroeconomic activity (Ang et al.,
2006b), which should also influence stock prices. Furthermore, Koijen et al. (2017) show
that risk factors driving bond yields are also priced in the cross section of stock returns.
We therefore include the first three principal components (PC) of the yield curve (along
with their changes) that can be interpreted as level, slope, and curvature of the curve.
These are calculated using U.S. bonds with over 40 different maturities.

Finally, we consider some technical indicators used in the machine learning literature.
Using these indicators, Kara et al. (2011) and Qiu and Song (2016) report that they are
able to correctly classify 70-80 percent of the returns. Even though this is theoretically
implausible and points to an issue with overfitting, we take this as a reason to include
them in the set of potential explanatory variables. This results in the following list of 24
explanatory variables.

• (Realized) Measures of Moments: log-realized variance (e.g., Amaya et al.,
2015), high-low variance (Corrado and Truong, 2007), realized skewness (e.g., Amaya
et al., 2015).

• Financial Market Indicators: S&P 500 return, realized betas calculated from
S&P 500 5-minute returns, log-realized variance S&P 500, level VIX, VIX return,
oil return.

• Risk Aversion Indicators: variance premium (Bollerslev et al., 2009).

• Yield Curve Measures: level and change of first PC (level of the yield curve),
second PC (slope of the yield curve), and third PC (curvature of the yield curve).

3We estimate the conditional expectation of the variance using the HAR model of Corsi (2009).
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• Technical Indicators: stock return, 5-day moving average stock return, on-balance
volume, 12-day moving average of binary stock returns, momentum indicator, A/O
oscillator, and rate-of-change indicator (Qiu and Song, 2016).4

Detailed explanations and discussions of these variables can be found in the referenced
articles. Summary statistics and the correlation matrix of the variables are shown in Table
2.4 and Figure 2.6 in the Appendix.

2.3 Methodology

In this section, we describe our model selection and forecasting framework and discuss
the econometric reasoning behind the respective modeling choices.

2.3.1 Model Framework

In contrast to regression problems, where the dependent variable can take values in R,
directional predictability is a classification problem, which means that the dependent
variable yi,t+1 = I(ri,t+1 > 0) takes the value one if the return of stock i at time t +
1 is positive, and zero otherwise. Therefore, we use predictive logistic regressions for
forecasting. The model can be represented in the form

yi,t+1 = G(x′i,t βi) + εi,t+1, (2.1)

with G(v) = 1
1+exp(−v) . Here, εi,t+1 is an error term, xi,t is a (p + 1)-dimensional vector

of explanatory variables with 1 as the first element, βi is a vector of (p + 1) parameters,
i = 1, . . . , N , and t = 1, . . . , T . Note that the explanatory variables in xi,t are lagged by
one period relative to the dependent variable yi,t+1 as the aim is to obtain one-step-ahead
forecasts.

The signal-to-noise ratio in stock returns is extremely low, which is challenging for
statistical analysis in several ways. First, in-sample results likely overestimate the amount
of predictability as the model adjusts to noise components that do not resurface in other
periods. Second, we consider a large number of potential explanatory variables so that it
is likely that variables appear to be significant due to random covariation with the noise
component.

To address the first issue, we evaluate the predictive performance in an out-of-sample
environment. In the empirical analysis, the model selection and the forecasting period are
strictly separated. While the model is chosen in the years from 1996 to 2003 (TM ≈ 2, 000
4Let Ci,t be the closing price, Li,t the lowest price, Hi,t the highest price, and Vi,t the volume of trade of
stock i at day t. Moreover, let Θi,t = 1 if Ct ≥ Ci,t−1, and Θi,t = −1 otherwise. Then, the on-balance
volume (OBV) is given by OBVi,t−1 + Θi,t ∗ Vi,t, the momentum indicator by Ci,t − Ci,t−4, the A/O
oscillator by Hi,t−Ci,t−1

Hi,t−Li,t
, and the rate-of-change indicator by Ci,t/Ci,t−14 × 100.
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observations per stock), out-of-sample forecasts take place from 2004 to 2017 (TF ≈ 3, 300
predictions per stock).5 Obviously, it holds that TM + TF = T . It needs to be emphasized
that this separation entails that our out-of-sample analysis simulates the situation an
investor starting to invest in 2004 would have faced in real time. Clearly, the length of
these two periods is selected rather arbitrarily. However, we show that the results are
robust with respect to the choice of these periods in Section 2.5.3.

To deal with the second issue, we restrict the set of explanatory variables M, which is
included in the regressor vector xi,t, to be the same across all stocks. This has the advan-
tage that the number of observations for model selection increases drastically compared
to the case where each stock is allowed to have a different set of regressors. Consequently,
we obtain more stable results. This restriction neither means that the values of the ex-
planatory variables are the same for all stocks nor that the coefficients βi associated with
the variables are identical.

2.3.2 Model Selection

With 24 possible explanatory variables and a low signal-to-noise ratio, we require a model
selection procedure to obtain a more parsimonious model. In general, a model selection
procedure consists of two components, a goodness-of-fit criterion to evaluate the perfor-
mance of each candidate model and a rule that defines which models are considered as
candidate models.

It is important to note that the objective of this study is to predict the direction of
future returns and not to determine the true data generating process driving them. It
is well known that these are conflicting objectives. For a discussion of this issue, often
referred to as the AIC-BIC dilemma, cf. Arlot and Celisse (2010).

With respect to the choice of the goodness-of-fit criterion, we face several statisti-
cal complications. First, daily stock returns are non-Gaussian so that likelihood based
information criteria lose their optimality properties. Second, since some of the potential
predictor variables are highly persistent but returns are not, there is an unbalanced regres-
sion issue similar to those discussed by Stambaugh (1999). We therefore adopt a simple,
yet robust approach and evaluate each candidate model based on its actual out-of-sample
performance. To achieve this, we consider one-step-ahead forecasts for the latter part of
the model selection period generated from the logistic model estimated in an expanding
window. We then calculate the proportion of correctly predicted yi,t (the so-called hitrate)
in this pseudo out-of-sample experiment. This is a direct estimate of the out-of-sample
hitrate conditional on the model, which is exactly the objective of our forecasting exercise.

5Some companies went bankrupt which results in varying TM and TF per stock. Furthermore, days with
recording errors (indicated by the procedure of Barndorff-Nielsen et al., 2009) were excluded, which also
implies slightly different sample sizes per stock.
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More formally, denote the logistic model estimated using the observations from time
1 to time t by G[1,t](x

′
i,t β̂i). Then, for a given set of explanatory variables M, the average

out-of-sample hitrate (OOSH) is defined as

OOSH(M) = N−1
N∑
i=1

#
{
I
(
G[1,t](x

′
i,t β̂i) > 0.5

)
= yi,t+1

}
t∈{S,...,TM−1}

(TM − S) . (2.2)

With respect to the set of candidate models, it would be optimal to consider all possible
combinations of variables. This approach is referred to as best subset selection. Unfor-
tunately, this would require to evaluate 224 models, which is computationally infeasible.
Therefore, we use stepwise forward selection as a computational surrogate.

If the set of all K possible explanatory variables is denoted by P and Mk is the set
of explanatory variables that is already selected as part of the model in step k, then
Pk = P\Mk−1 is the set of variables that could still be added to the model. Each of these
variables is referred to as Pk,j. The procedure then proceeds as follows:

0. Initialization:

Set k = 1 and M0 = ∅.

1. Forward Selection:

Set Mk = arg maxj=1,...,K−k+1OOSH (Mk−1 ∪ Pk,j).

2. Model Selection:

If k < K, increase k by one and go back to Step 1.
Otherwise set M = arg maxk=1,...,K OOSH (Mk) and terminate the procedure.

In simpler terms, we generate a sequence of models by iterating through a procedure
that starts out with the empty model in Step 0 and sequentially adds variables to the
model until the full set of regressors is used in the K-th model MK .

In each iteration k of Step 1, we sequentially add each of the remaining variables in
Pk to the k − 1-variable model from the previous iteration to generate candidate models
with k regressors. For each candidate model we calculate the OOSH and then select the
model that generates the largest improvement. To reduce the computational effort, the
expanding window estimate G[1,t](x

′
i,t β̂i) is updated only every 40th observation.

Finally in Step 2, we consider the sequence of models of increasing size and select the
set of regressors M that achieves the lowest OOSH.

It is important to note that since the findings presented in this paper are based on
a pure out-of-sample experiment, their validity is not tied to that of the model selection
procedure. In fact, a better model selection procedure could potentially select a better
forecasting model and thus produce even stronger results in the out-of-sample environ-
ment. However, as discussed above, there are good reasons to assume that the procedure
suggested here is the most suitable to select an appropriate forecasting model.
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Applying the procedure results in the following list of seven explanatory variables that
are selected for the final model.

• S&P 500 Return, VIX Return, Variance Premium, Level Third PC (Curvature),
Stock Return, 5-Day Moving Average Return, A/O Oscillator.

Of course, it would be desirable to gain further insights into the form of the depen-
dence between the selected explanatory variables and the sign of the next days return.
Unfortunately, the parameters of the models are allowed to vary across stocks and the es-
timations are carried out in an expanding window so that the size and direction of effects
may change over time.

Instead of considering the functional form here, we therefore conduct a full sample
analysis later on in Section 2.4.4, once it is established that there actually is significant
predictability.

2.3.3 Forecasting Procedure

After selecting the set of explanatory variables based on the model selection period from
1996 to 2003, the actual tests of directional predictability are carried out for the out-of-
sample period from 2004 to 2017.

Based on (2.1) we generate one-step-ahead forecasts using

G[TM−W+t+1,TM+t](x
′

i,t β̂i) = P̂ (yi,t+1 = 1|xi,t) (2.3)

for t = 0, . . . , TF − 1, where xi,t contains the seven variables in M as presented in the
previous section. This means the model is re-estimated in each period using a rolling
window of the previous W = 1, 000 observations.

As indicated by the equation, each value of G[TM−W+t+1,TM+t](x
′
i,t β̂i) is an estimate of

the probability that there is a positive return on the next day. To convert these probabil-
ities into actual forecasts for yi,t+1, we need to define a threshold above which we predict
the next days return to be positive.

The simplest threshold is the Bayes classifier that assigns

ŷi,t+1 = I
(
G[TM−W+t+1,TM+t](x

′

i,t β̂i) > 0.5
)
,

with I(·) being the indicator function. This decision rule is optimal since the loss of falsely
classifying positive and negative returns is equal. Note that this threshold has already been
used in Equation (2.2).
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2.4 Empirical Analysis

In the following, we evaluate the forecasting performance of the logistic model compared
to two naive benchmarks in Section 2.4.1. Section 2.4.2 then addresses the economic
significance of the results, 2.4.3 investigates the stability of the results over time, and
Section 2.4.4 analyzes the influence of the selected variables on the predicted probability
of a positive return on the next trading day.

2.4.1 Forecast Results

To evaluate the performance of the forecasts generated by the procedure described in
Section 2.3.3, it is helpful to consider the performance of a naive benchmark forecast.

In the level predictability literature, the naive benchmark is typically the expanding
mean of previous returns (Welch and Goyal, 2008). This is because on monthly or longer
horizons the average return should be equal to the equity premium. Since the size of the
equity premium is unknown, the expanding mean is the best available estimate of the
unconditional expectation.

For directional predictions there is no such established benchmark. We therefore con-
sider two possible approaches.

A first naive approach could be to assume that positive and negative returns are equally
likely. This would correspond to a random walk model without drift and with a symmetric
innovation distribution. Although the scale of the equity premium and the risk-free rate is
minuscule compared to the variation of the returns, theoretically both should be slightly
positive. This introduces a positive drift. Furthermore, daily stock returns are typically
found to have slightly negative skewness (Christoffersen, 2003). Therefore, positive returns
can occur more often than negative returns, even if the mean of the returns is zero. Taking
these two arguments together, the hitrate obtained by predicting a positive return for each
day should be higher than randomly predicting positive and negative returns with equal
probability. We refer to this benchmark as the optimist forecast.

As the second benchmark, we consider an analogue to the expanding mean used in
the level predictability literature. This forecast, referred to as the historical majority
forecast, is obtained by predicting a positive or a negative return depending on whether
the majority of the previous returns of the stock in an expanding window was positive or
negative.
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The quality of the predictions will be judged based on the hitrate (HR), the sensitivity
(SE), and the specificity (SP). For each stock these are defined as follows:

HRi =
∑TF
t=1 I(ŷit = yit)

TF
,

SEi =
∑TF
t=1 I(ŷit = yit = 1)∑TF

t=1 I(yit = 1)
,

and SPi =
∑TF
t=1 I(ŷit = yit = 0)∑TF

t=1 I(yit = 0)
.

The hitrate is therefore simply the proportion of correctly classified returns, the sensitiv-
ity is defined as the proportion of positive returns that are correctly classified, and the
specificity is the corresponding proportion for negative returns. Consequently, hitrate,
sensitivity, and specificity lie between zero and one with higher values indicating better
classification performance.

The results of the forecasting procedure for each stock are shown in Table 2.1. It can
be seen that the hitrate of the logistic model varies between 50.06 percent for Industrial
Paper (IP) and 53.27 percent for General Electric (GE). The hitrate of the historical
majority forecast ranges from 48.28 percent for Caterpillar (CAT) to 53.36 percent for
Eastman Kodak (EK) and the hitrate of the optimist forecast ranges from 46.64 percent
for EK to 53.61 percent for Altria (MO). On average, the logistic model achieves a hitrate
of 51.99 percent while that of the historical majority benchmark is 50.03 percent and
that of the optimist benchmark is 50.86 percent. With regard to the sensitivity and the
specificity, it can be observed that the sensitivity typically outweighs the specificity, except
for those stocks where the proportion of positive returns in the sample (the hitrate of the
optimist forecast) is below 50 percent. The model therefore overpredicts the majority
class. A similar observation is made by Nyberg (2011), who predicts monthly stock index
movements using a dynamic probit model.

Overall, it can be stated that the hitrate achieved with the logistic model is higher
than that of the benchmark models. This holds for the majority of stocks as well as for
the average across all stocks.

Testing whether this difference is significant can be done using a Diebold and Mariano
(1995) type test statistic. Denote the forecasts of two competing models by ŷ(1)

i,t and ŷ(2)
i,t .

Then, the loss differential between these forecasts at day t for stock i is given by

li,t =
(
yit − ŷ(1)

i,t

)2
−
(
yi,t − ŷ(2)

i,t

)2
.
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DM test
RIC HR SE SP HM Opt PT test
AA 51.95 43.17 60.46 50.76 49.24** 2.11**
AXP 52.68 56.90 48.29 50.27** 51.00* 2.98***
BA 52.14 55.44 48.62 49.77** 51.66 2.33**
AT 51.69 57.45 45.64 48.28*** 51.23 1.78**
CVX 52.66 75.70 27.50 50.32** 52.21 2.09**
D 50.75 57.75 43.27 48.37** 51.63 0.59
DIS 51.75 58.33 44.82 50.11* 51.29 1.82**
EK 53.17 23.75 78.87 53.36 46.64*** 1.41*
FL 52.18 48.52 55.90 49.59** 50.41* 2.54***
GE 53.27 45.04 61.39 50.35*** 49.65*** 3.73***
GM 52.41 27.59 74.92 52.44 47.56*** 1.53*
GT 50.78 44.24 57.45 49.47 50.53 0.98
HON 52.49 62.07 42.26 50.40** 51.64 2.54***
IBM 52.33 51.94 52.73 50.05** 50.90 2.68***
IP 50.06 52.54 47.50 49.18 50.82 0.02
JPM 52.39 49.76 55.05 49.74** 50.26** 2.76***
KO 53.09 58.93 47.07 48.92*** 50.71** 3.47***
MCD 51.81 77.90 22.43 50.08 52.96 0.23
MMM 52.23 64.78 38.51 49.89** 52.23 1.96**
MO 53.27 78.60 24.00 53.09 53.61 1.78**
MRK 51.41 47.58 55.28 48.80*** 50.23 1.65**
PG 52.20 60.66 43.53 50.62* 50.62* 2.44***
S 50.49 71.14 30.77 51.15 48.85 0.36
T 50.85 51.16 50.53 48.69** 51.31 0.97
UTX 51.06 61.74 40.22 49.30* 50.40 1.15
XOM 51.87 63.80 39.45 50.44* 50.99 1.93**
Average 51.99 55.99 47.86 50.03*** 50.86** -

Table 2.1: Forecast results.
RIC states the identification code of the stock used by Thomson Reuters. The
left panel shows the hitrate (HR), sensitivity (SE), and specificity (SP) in per-
cent for the logistic model. The panel in the middle shows the hitrate in per-
cent for the historical majority forecast (HM) and the optimist forecast (Opt).
*, **, and *** indicate whether the logistic forecasts are significantly better
than the respective benchmark according to a one-sided Diebold–Mariano
(DM) test at the ten percent, five percent, and one percent level, respectively.
The right Panel show the PT test results for which it holds that under the
null hypothesis the realizations are not predictable using the model under
consideration and under the alternative they are predictable.

A simple Diebold–Mariano statistic that is asymptotically standard normal is then given
by

DMi =
√
TF

∑TF
t=1 li,t√
V ar(li,t)

.
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Another test specifically designed to test the null of no directional predictability is
the test by Pesaran and Timmermann (1992). Under the null hypothesis the forecasts
ŷi,t and the realizations yi,t are independent, which implies that the realizations are not
predictable using the model under consideration. Under the alternative hypothesis there
is a positive relationship between ŷi,t and yi,t. This would imply that the direction of the
returns is, to some extent, predictable. The test statistic is given by

PTi =
√
TF (SEi + SPi − 1)(

Z̄yi (1−Z̄yi )
ȳi(1−ȳi)

)1/2 ,

where sensitivity and specificity are defined as above, ȳi is the average class of the stock,
and Z̄yi evolves as Z̄yi = ȳi · SEi + (1− ȳi) · (1− SPi).

The test is consistent and asymptotically standard normal distributed under the null
hypothesis. In case of no predictability the values of sensitivity and specificity will sum up
to one meaning the numerator and consequently the test statistic will be close to zero. If
a positive relationship between the forecasts and the realizations is present, it holds that
SEi + SPi > 1 and hence PTi →∞ for TF →∞.

It needs to be noted that the Diebold–Mariano test can be applied for both, the cross
section as well as individual stocks. The test by Pesaran and Timmermann (1992), on the
other hand, can only be applied for univariate time series.

With regard to the Diebold–Mariano test, the null of equal predictive accuracy is
rejected at the 10 percent level in 18 cases for the historical majority benchmark and in 9
cases for the optimist benchmark. Moreover, the hypothesis of equal predictive accuracy
relative to both benchmarks is rejected if tested jointly for the whole cross section, which
is shown in the last row of Table 2.1. For the PT test, we find that the statistic is positive
for all stocks indicating that there is some extent of predictability. This predictability is
reported to be significant at the 10 percent level for 19 out of 26 stocks.

Overall, it can therefore be concluded that there is strong evidence for the statistical
significance of directional predictability. We need to emphasize that finding significant
predictability for only one stock might already allow for economically meaningful trading
strategies as long as this stock can be identified ahead of time.

2.4.2 Economic Significance

The previous section showed that signs of daily stock returns are, to some extent, pre-
dictable. The obvious question raised by this finding is whether this predictability is of
a magnitude that is economically meaningful so that it can be exploited to generate ab-
normal returns. This section therefore addresses the design and performance of trading
strategies based on sign predictability.
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Figure 2.1: Density and model confidence plots.
The left graph shows the density of the predicted probabilities in the model
selection period from 1996 until 2003 across all stocks. The right graph shows
the hitrate in percent during this period conditional on the difference of the
forecasts from the threshold 0.5.

Directional forecasting is as an attempt to time the market. It is therefore obvious
to buy stocks which are expected to have positive returns and to sell stocks which are
expected to have negative returns. This is the basis for a long-short equity strategy that
trades a value neutral portfolio with zero net-investment and where the market risk is
hedged. There are, however, several a priori considerations that have to be addressed in
the design of the trading strategy.

As mentioned before, the logistic model does not only produce a binary forecast ŷit
that specifies whether the stock is expected to have a positive or negative return. Instead,
Equation (2.3) gives an estimate of the probabilities P̂ (yi,t+1 = 1|xi,t) that the stock
return will be positive.

The plot on the left hand side of Figure 2.1 shows the density of these predicted
probabilities in the pseudo out-of-sample part of the model selection period. It can be seen
that the majority of the probabilities are in the neighborhood of 50 percent. Obviously,
the hitrate that can be expected from directional forecasts based on these probabilities
will also be close to 50 percent. Conversely, if we only consider predictions for which the
probability to be positive is further away from 50 percent, then the hitrate will be higher.
This can be seen on the right hand side of Figure 2.1 that shows the hitrate in the pseudo
out-of-sample part of the model selection period for those stocks where the probability
to be positive was at least v percent higher or lower than 50 percent. We refer to this
distance v of the predicted probabilities from the 50 percent threshold as the confidence of
the prediction. It is clear to see that the hitrate for those stocks that are predicted to have
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a probability to move up of at least 60 percent or at most 40 percent is nearly 56 percent.
This implies that accounting for the probabilities leads to higher hitrates indicating a
larger degree of predictability than that reported in the previous section. In other terms,
the graph gives strong evidence that the model is able to identify stocks and periods for
which directional predictability exists ahead of time.

Now, with regard to the design of the trading strategy, there is a trade-off between
trading few stocks for which the model generates a strong signal so that the hitrate and
therefore the average return per trade are high, and trading many stocks to reduce the
variability of the traded portfolio.

Furthermore, it should be noted that a strategy that requires daily trading will gener-
ate much higher transaction costs than a strategy with monthly portfolio rebalancing. It
is therefore crucial to keep the portfolio turnover low and to carefully consider the effect
of transaction costs on the performance of the portfolio.

It would be possible to consider a strategy where all stocks for which the probability of
a positive return is higher than 50 + v percent are bought and where all stocks for which
the probability is lower than 50−v percent are sold. This could, however, cause situations
where trading is suspended, because all stocks are predicted to have positive returns with
a probability of more than 50− v percent so that the short portfolio is empty. The same
would be possible for the long portfolio. These effects can arise even though the dispersion
among the predicted probabilities is high so that we would have a strong signal to trade
on. If, for example, stock A is predicted to increase with probability 95 percent and stock
B is predicted to increase with probability 51 percent, then buying A and selling B will
on average generate positive returns. To capture this effect, the strategy is formulated in
terms of the difference w in the probability of up-movements between pairs of stocks.

Assume, without loss of generality, that there is an even number of stocks N . The
strategy is then implemented as follows. For each day t = 1, . . . , TF :

1) Sort the stocks in ascending order according to the predicted probabilities P̂ (yi,t+1 =
1|xi,t) from (2.3) and denote the rank by r = 1, . . . , N .

2) Form pairs of stocks so that the stock with the lowest probability to have a positive
return (r = 1) and the stock with the highest probability (r = N) are matched
together, the stock with the second lowest and highest probability (r = 2 and
r = N − 1) are matched together, and so on.

3) For all m pairs where the difference between the probabilities to have a positive
return is at least w percent, buy the stock that is more likely to go up and sell the
stock that is less likely to go up.

This strategy allows us to trade on the cross-sectional dispersion in the predicted
probabilities for positive returns. If the probabilities are close to 50 percent for all stocks,
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trading is suspended. If there is a strong signal for a low number of stocks, the number
of pairs that is traded is kept low, and if the signal is strong for a large number of stocks,
the traded portfolio contains a large number of stocks.

To avoid trading stocks that are distressed, trading is suspended for those stocks where
the log-realized variance at the previous day was more than 5 standard deviations larger
than the cross-sectional average.6

To consider the effect of transaction costs on the performance of the directional trading
strategy, we follow Bajgrowicz and Scaillet (2012) and Moreira and Muir (2017) and
deduct a fee to account for the commission, spread, and market impact of each trade.
Historically, transaction costs have been steadily declining (Hasbrouck, 2009). Recent
estimates of transaction costs by De Groot et al. (2012) range from 5bps for large cap
stocks to 50bps for small cap stocks. Since the components of the DJIA are liquid large
cap stocks where the market impact is typically low, the 5bps can be expected to be the
most appropriate estimate for our setup.

Table 2.2 reports the trading returns of the strategy outlined above with w = (0.15,
0.17, 0.19, 0.21). In addition to the mean and standard deviation of the trading returns,
the table presents several commonly used performance measures. This includes the Sharpe
ratio and CAPM-alphas as well as alphas for the five-factor model considered by Fama
and French (2015).7

As a benchmark, we report performance measures for buying and holding the S&P 500
and the DJIA. Both of these benchmarks almost doubled between 2004 and 2017 and are
closely related to the optimist forecast, since an investor that predicts a positive return
for every stock and every trading day could simply buy and hold the index portfolio.

In absence of transaction costs, the table reveals superior performance of the trading
strategy compared to the benchmarks for all considered values of w. For w = 0.15, for
example, the average annualized return of the trading strategy is 15.73 percent, whereas
that of the S&P 500, which outperforms the DJIA for the considered time period, is only
7.58 percent. At the same time, the standard deviation of 12.94 percent is lower than that
of the S&P 500, which is 18.70 percent. Consequently, the Sharpe ratio of the trading
strategy is 3.3 times that of the best performing benchmark.

Cumulated over the trading period, the trading strategy yielded a return of 597 per-
cent, whereas the benchmark only increased by 205 percent during the same period.

The magnitude of these results shines a different light on the extent of directional
predictability. We discussed above that the hitrate can be expected to be significantly
higher for those days where the model predicts a probability for a positive return that
is further away from 50 percent. In fact, the hitrate for all stocks traded by the strategy

6This rule would have been suitable in the model selection part of our sample to identify the period
during which Bethlehem Steel went bankrupt.

7Returns of the factors are obtained from the website of Kenneth French.
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Mean SD SR α (CAPM) α (five factors) Max TC
Benchmark (S&P 500) 7.58 18.70 0.34 - - -
Benchmark (DJIA) 6.72 17.59 0.31 - - -

w = 0.15
0bps 15.73 12.94 1.11 16.70*** 16.08*** 9bps
5bps 6.77 12.92 0.43 7.74** 7.17**
10bps -1.50 12.92 -0.21 -0.54 -1.05

w = 0.17
0bps 14.86 12.48 1.08 15.88*** 15.44*** 11bps
5bps 8.12 12.45 0.55 9.08*** 8.68***
10bps 1.78 12.45 0.05 2.68 2.31

w = 0.19
0bps 13.14 11.76 1.00 13.86*** 13.30*** 14bps
5bps 8.40 11.73 0.61 8.95*** 8.43***
10bps 3.59 11.72 0.20 4.25 3.76

w = 0.21
0bps 10.60 10.72 0.87 11.07*** 10.62*** 16bps
5bps 7.04 10.68 0.54 7.61*** 7.19***
10bps 3.85 10.67 0.25 4.26* 3.86*

Table 2.2: Annualized performance measures for the trading strategy.
SD states the standard deviation, SR the Sharpe ratio, and w states the
amount of dispersion across forecasts that is required to initiate a trade.
Moreover, α states the intercept of regressing the daily trading return of our
strategy on the market factor, respectively the five factors proposed by Fama
and French (2015). *, **, and *** indicate that this alpha is significantly
larger zero at the ten percent, five percent, and one percent level, respectively.
MaxTC is the break-even transaction cost level that would reduce the α in the
five-factor model to zero. All measures reported are annualized and all values,
except for the Sharpe ratio, are given in percent. As benchmarks, we state
the return of buying and holding the S&P 500 respectively the DJIA in the
trading period from 2004 until 2017. Furthermore, the returns are also stated
after adjusting for transaction costs of 5bps and 10bps per trade, respectively.

with w = 0.15 is as high as 54.17 percent, which is higher than that for any single stock
and explains the magnitude of the mean returns shown in Table 2.2. This underlines
that the model itself indicates the degree of predictability through the magnitude of the
probability of a positive return. If this is close to 50 percent, the predictability is low,
otherwise it is stronger.

Most importantly, however, a positive alpha is indicated by the CAPM as well as
the five-factor model for all considered values of w and it is found to be statistically
significant. The alphas relative to the five-factor model are as high as 16.08 percent. This
implies that the trading returns cannot be explained by any of the established risk factors.
As a comparison, the alpha reported by Moreira and Muir (2017) for volatility-managed
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Figure 2.2: Break-even transaction costs.
For different values of w, the break-even transaction costs per trade are
plotted so that they set the alpha relative to the five-factor model of Fama
and French (2015) to zero.

portfolios is only 4.9 percent before transaction costs, which underlines the magnitude of
predictability uncovered here.

With transaction costs of 5bps significant alphas between 7 and 9 percent are obtained
for all w. If transaction costs are higher than that, one can observe that the choice of w
has an important effect. The higher w, the stronger the signal required to initiate the
trade. Therefore, the strategy will trade less often and can be expected to have a high
hitrate on those trades that are actually initiated. Therefore, for w = 0.21, we obtain
significant alpha of about 4 percent even with transaction costs of 10bps. Further insights
into this mechanism can be gained from Figure 2.2 that shows the break-even transaction
costs that would set the alpha relative to the five-factor model of Fama and French (2015)
to zero for different values of w. As one can see, if w is sufficiently large, the strategy
generates excess returns even with transaction costs of more than 30bps.

While Section 2.4.1 establishes the fact that directional predictability of daily stock
returns is statistically significant in an out-of-sample environment, the findings presented
in this section clearly show that this predictability is also economically significant so that
it can be used to construct market-timing strategies. Even after accounting for transaction
costs, we obtain higher Sharpe ratios than the S&P 500 and significant alphas measured
relative to the five-factor model of Fama and French (2015). The positive alphas imply
that standard risk-based arguments fail to explain the generated returns. It should be
emphasized that the results presented here are based on a relatively small cross section
of 30 stocks or less. A trading strategy based on a larger asset universe can be expected
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Figure 2.3: Cumulative difference plot and cumulative trading return plot.
The left plot shows the rescaled cumulative difference between the hitrate of
the logistic model and the hitrate of the respective benchmark for w = 0.15.
To ensure that the variance of the curve is stable over time, this difference
is scaled by the square root of the time index. We also excluded the first
100 observations as these were too variable leading to scales that distort the
true relationship. Therefore, the curves do not necessarily start at zero. The
right plot shows the cumulative trading return of the trading strategy with
and without transaction costs.

to produce even more dispersion among the predicted probabilities and therefore higher
trading returns.

2.4.3 Performance of the Trading Strategy over Time

In the level predictability literature, it is often found that predictability is concentrated
in recession periods. Welch and Goyal (2008), for example, find a short period of pre-
dictability after the oil price shock in 1973. This is also backed by theoretical arguments,
for example those of Timmermann and Granger (2004) and Lo (2004), who argue that
rational investors will pick up on emerging patterns and exploit them so that it cannot
be expected that any forecasting patterns will persist for long periods of time. Therefore,
this section investigates the forecasting and trading performance over time.

The left plot of Figure 2.3 presents a cumulated scaled difference plot as a graphical
illustration. This can be considered as the classification equivalent to the cumulative plots
given in Welch and Goyal (2008). The plot shows the cumulated difference between the
hitrate of the logistic model and the benchmarks for all traded stocks for w = 0.15. To
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ensure that the variance of the curve is stable over time, this difference is scaled by the
square root of the time index.8

As argued in Welch and Goyal (2008), the level of these curves cannot be interpreted
but the slope. For periods with positive slopes, it holds that the directional forecasts out-
perform the benchmark and for periods with negative slopes the opposite holds. Therefore,
the plots help to identify whether a model is superior compared to its benchmark for any
chosen period by simply comparing the height of the curve at the beginning of the period
with the height of the curve at the end of the period.

For both benchmarks, the curves exhibit a predominantly positive slope indicating
consistent superior performance of the forecasts made by the logistic model. Consequently,
the directional predictability of daily stock returns is not restricted to certain periods.
Instead, it constitutes a phenomenon that can be observed consistently over time.

The plot on the right hand side of Figure 2.3 shows the cumulative return of the
trading strategy over time for w = 0.15. In contrast to the plots on the left hand side,
the curves in Figure 2.3 are not scaled since they do not represent means and therefore
exhibit equal variance over time. Therefore, we can interpret both, the slope and the level
of these curves.

Again, the curve that does not take transaction costs into account has a predominantly
positive slope, which shows that the model picks up on a signal that is consistently present
over time.

If we take transaction costs into account, the curve is mostly flat, which indicates
that the returns from successful directional trades are offset by the transaction costs.
This implies that directional predictability is still present but not of a magnitude that is
economically significant. However, there are brief periods with extremely high slopes. This
concerns mostly the period from 2008 to 2009 and that from 2014 onwards. We therefore
find that the economic significance of directional predictability is concentrated in these
periods.

Overall, the analysis in this section demonstrates that directional predictability is a
permanent feature, at least for the time period investigated here. This is in clear contra-
diction to the random walk hypothesis and to the best of our knowledge the first approach
with the ability to predict daily stock returns consistently over such a long time period.

Concerning the trading strategy, it is found that a large proportion of the returns
is concentrated in the periods from 2008 until 2009 and from 2014 onwards. While it
is tempting to argue that a risk based explanation for this phenomenon may exist in
the context of the subprime mortgage crisis, such an explanation seems far fetched for
the second period from 2014 onwards. Furthermore, the analysis in Section 2.4.2 already

8We also excluded the first 100 observations as these were too variable leading to scales that distort the
true relationship. Therefore, the curves do not necessarily start at zero.
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Mean Minimum Median Maximum Positive
S&P 500 Return -0.03 -0.13 -0.04 0.13 0.35
VIX Return -0.01 -0.08 -0.01 0.07 0.46
Variance Premium 0.03 -0.01 0.05 0.10 0.96
Level Third PC (Curvature) -0.03 -0.09 -0.03 0.01 0.08
Stock Return -0.06 -0.21 -0.06 0.08 0.27
5-Day Moving Average Return -0.05 -0.15 -0.04 0.04 0.08
A/O Oscillator 0.08 -0.04 0.08 0.22 0.77

Table 2.3: Summary statistics of the coefficients in the logistic regression mod-
els.
For all 26 stocks the logistic regression model is estimated separately for the
full sample. The column Positive then states the percentage of stocks for
which the variable is estimated to have a positive impact on the probability
of a positive return. As the variables are standardized to have zero mean and
unit variance prior to the estimation of the models, the magnitude of the
effects is comparable across variables.

controls for the known priced risk factors that are subsumed in the five-factor model of
Fama and French (2015).

2.4.4 Economic Implications

From an economic perspective, it is interesting to gain insights into the sources of pre-
dictability. In the following, we therefore analyze the influence of the selected variables
on the predicted probability of a positive return on the next trading day.

The logistic regression model can be interpreted as a linear model for the log-odds
and the sign of the estimated coefficients indicates whether an increase of the respective
explanatory variable leads to an increase or decrease in the probability to observe a
positive return on the next day.

Due to the rolling window procedure and the fact that the estimated coefficients
are allowed to vary across stocks, it is difficult to give a comprehensive overview of the
direction of the effects. We therefore report the results of a full sample estimation of the
selected model over the period from 1996 to 2017. This gives 26 different models — one
for each stock. Due to issues with the nonstationarity of some of the regressors, standard
inference is not applicable so that we cannot test whether the estimated effect for a specific
regressor is significantly different from zero. Instead, we focus on the interpretation of the
signs.

Table 2.3 shows summary statistics for the estimated coefficients. Since the variables
are standardized to have zero mean and unit variance prior to the estimation of the
models, the magnitude of the effects is comparable across variables. The last column on
the right shows the proportion of the estimated coefficients for the respective variable that
is positive. It is found that the effects of the A/O oscillator and the variance premium
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Figure 2.4: Correlation plot for the estimated coefficients from the logistic re-
gression models.
Size and color of the circles correspond to degree and direction of the corre-
lation.

are predominantly positive. Conversely, both the 5-day moving average return and the
curvature of the yield curve have a negative influence for nearly all stocks. Both, the lagged
return of the S&P 500 and the lagged return of the stock itself have a positive impact
on the probability to observe a positive return on the following day for approximately a
third of the stocks and a negative impact for two thirds of them. The percentage change
of the VIX has a positive impact for approximately half of the stocks.

We therefore find that on average positive returns are more likely if the trading range
on the previous day and the variance premium are high, and if the previous returns and
the curvature of the yield curve are low. If one restricts the analysis to the model selection
period, the results remain qualitatively similar.

The correlation of the estimated coefficients for the different stocks is given in Figure
2.4. It can be seen that there is a negative correlation among the coefficient on the lagged
stock return and that of the A/O oscillator and the change of the VIX. This means that
stocks that have a higher probability of a positive return after a negative return also tend
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to have higher returns if the previous day’s trading range and the change of expected risk
are high. In line with this, there is a positive relationship between the coefficient of the
A/O oscillator and that of the return of the VIX.

One finding that strikes out is that the coefficients for Stock Return, 5-day moving
average, and for the S&P 500 are negative. This is evidence for individual return reversals
and reversals of market-wide returns.

This appears to be in line with previous findings on short-term reversals such as those
of Brown and Harlow (1988) and Atkins and Dyl (1990), who find significant reversals for
stocks that experience one-day price declines. Cox and Peterson (1994) attribute these
reversals to the bid-ask bounce and liquidity effects which implies that short term reversals
cannot be exploited by trading strategies. In a more recent contribution, De Groot et al.
(2012) show that short term reversal effects are mostly observed for small cap stocks and
not for large cap stocks such as the components of the DJIA considered here.

To establish that daily directional predictability and short term reversal are separate
phenomena, we construct a short term reversal factor by buying the 20 percent of stocks
that performed worst on the previous day and selling the 20 percent of stocks that per-
formed best. Adding this factor to the five-factor model yields annualized alphas of 19.13,
17.38, 15.58, and 10.00 for w = (0.15, 0.17, 0.19, 0.21). As the alphas are similar to those
presented in the last section, the abnormal trading returns cannot be explained by short
term reversal effects.

2.5 Additional Analyses and Robustness

2.5.1 Further Results on the Behavior of the Trading Strategy

To gain further insights into the behavior of the trading strategy, the first two rows
of Figure 2.5 show the predicted probabilities from Equation (2.3) exemplary for four
stocks. It can be seen that the model tends to predict a probability for a positive return
that is close to 50 percent for most of the time. However, the variation in the predicted
probabilities changes significantly over time and there is some degree of persistence in the
deviations from 50 percent. It is interesting to note that the variation in the predicted
probabilities seems consistently higher for General Electric (GE) and Coca-Cola (KO)
than for Goodyear Tire (GT) and Du Pont (DD). When considering the results on the
significance of the observed predictability in Table 2.1, it is found that GE and KO, for
which the model generates stronger variation in the predicted probabilities, are indicated
to be significantly predictable by all tests, whereas GT and DD are not.

The overall dispersion of the forecasts across all stocks is considered in the bottom
left plot of Figure 2.5. The figure reveals that the model differentiates especially strong
between potential winner- and loser stocks during the subprime mortgage crisis. An effect
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Figure 2.5: Range of the predicted probabilities for a positive return.
The graphs show individual forecasts for four stocks (top), the range of the
predicted probabilities for positive returns across all stocks (bottom left),
and the number of stocks m traded by the strategy with w = 0.15 (bottom
right).
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that can also be seen, although less obvious, in the four plots above. Consequently, the
trading strategy invests in a larger number of stocks during this period as the dispersion
across stocks is larger. This is confirmed in the bottom right graph of Figure 2.5, where
the number of stocks m in which the strategy invests is plotted over time. This behavior
corresponds to the more pronounced slopes in the period from 2008 to 2009 in Figure 2.3.

2.5.2 Impact of the Subprime Mortgage Crisis

Section 2.4.3 revealed that a large proportion of the returns of the strategy is generated
during the subprime mortgage crisis. This is in line with the known finding that level
predictability appears to be concentrated in recessions (Welch and Goyal, 2008). Since
our analysis relies on high-frequency data, there are not enough recession periods in the
sample to test this hypothesis. Instead, Table 2.5 in the Appendix presents the result
of a regression of the daily trading return of our strategy on the probability of a bull
market obtained through a Markov switching mean-variance model with two regimes
corresponding to a bull and a bear market. The coefficient of the bull market probability
is negative, which implies that the trading returns are indeed higher in bear markets. It
should be noted, however, that the intercept is still significantly larger than zero so that
the market sentiment alone is not able to explain the average returns generated by the
trading strategy.

To further investigate the impact of the subprime mortgage crisis period on our overall
results, we repeat the analysis from Table 2.2 excluding the period from August 2008 until
March 2009 (where the market dropped by 43 percent) completely from the sample. As
already demonstrated in Figure 2.3, the statistical evidence for directional predictability is
remarkably stable over time. The results in Table 2.6 in the Appendix underline that even
though the economic significance of directional predictability was particularly pronounced
during the subprime mortgage crisis, it is not limited to it. Instead, Table 2.6 shows that
significant alpha is generated even if the subprime mortgage crisis is disregarded and we
account for transactions costs.

2.5.3 Robustness

The methodology established in Section 2.3 involves a number of ad-hoc choices, most
notably the relative size of the model selection and the forecasting period, the size S of
the initial window in the model selection period in (2.2), and the size W of the rolling
estimation window for the forecasting model in (2.3).

In the following, we therefore consider the robustness of the forecasting performance
with respect to these modeling choices. The results of this exercise are reported in the
Appendix in Table 2.7 that shows aggregated average forecast results analogous to the last
row of Table 2.1, in Table 2.8 that reports trading returns repeating the analysis of Table
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2.2 for w = 0.15 and 0bps transaction costs, and in Figure 2.7 that shows cumulative
difference plots in analogy to the left plot of Figure 2.3.

First, we consider changing the length of the model selection period so that the window
ends in 2002 or 2004 instead of 2003. In theory, a longer model selection period should
be beneficial for the model selection procedure as more observations are available and
consequently the results get more stable. However, a longer model selection period implies
a shorter forecasting period so that less observations are available to evaluate the actual
out-of-sample performance of the models.

For a model selection period from 1996 until the end of 2002, the procedure selected
exactly the same model as reported in Section 2.3.2. Consequently, all results presented
in Section 4 also hold if the model selection period is one year shorter. The hitrate and
trading return change slightly, however, due to the additional year in the forecasting
period.

Adding another year, i.e., performing model selection from 1996 until the end of 2004,
results in a slightly different model. The variables oil return and the 12-day moving aver-
age of the yit are now included in the model with all other variables being the same. As
the top right graph in Figure 2.7 shows, this has only a slight impact on the forecasting
performance. The curves are still predominantly upward sloped indicating superior per-
formance of the forecasts. Furthermore, the hitrate of 52.00 percent reported in Table 2.7
is almost exactly the same as in the main analysis. The average trading return slightly
decreases to 11.44 percent as the trading strategy performs above average in the year
2004, which is now excluded.

Second, we change the length S of the initial window in the model selection procedure
from 500 to 250, respectively 750. In general, smaller values of S lead to a lower stability of
the initial estimates, but there is also a larger number of pseudo out-of-sample observations
available to select the variables.

The right graph in the second row of Figure 2.7 reveals that increasing this number
to 750 has a moderate effect on the forecasts. The selected model stays the same with
the exception that the variable VIX return is replaced by the change of the third PC
(curvature). Consequently, graph, hitrate (51.93 percent), and average trading return
(15.44 percent) are almost identical to the ones in the initial setup.

This, however, does not hold when decreasing the size of the initial window S to 250.
The forecasts for this specification remain slightly better than the optimist benchmark,
but between 2010 and 2017 a predominantly negative slope is observed. Nevertheless, as
the trading strategy trades on the dispersion of probabilities and therefore does not invest
in all forecasts, it still generates an average trading return of 13.42 percent. This is due to
the fact that the hitrate of all stocks traded is at 54.08 percent which is only marginally
smaller than in the main analysis.
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Third, we changed the lengthW of the estimation window for out-of-sample forecasting
in (2.3) from 1,000 to 750, respectively 1,250. As before, graphs and hitrates remain
qualitatively similar despite these changes. For the average trading return, we observe a
decline for the larger window size, which is again due to the smaller forecasting period
excluding the year 2004.

Fourth, as argued in the introduction, returns and excess returns are essentially the
same on a daily horizon since the magnitude of the risk-free rate is marginal. The analysis
in this paper is therefore conducted directly for the log-returns. To judge the impact of
this modeling choice, we repeat the analysis using excess returns. As can be seen from
Table 2.7 and Table 2.8, this delivers results that are very similar to those presented in
Section 2.4.

2.6 Conclusion

Daily stock returns are generally regarded as unpredictable. However, the results presented
here show that the direction of daily stock returns is, to some extent, predictable. This
predictability is shown to be statistically significant in an out-of-sample environment, of a
magnitude that is economically meaningful so that it can be exploited by suitable trading
strategies, and consistent over time.

The logistic regression model used to generate these predictions is not designed to
address the properties of stock returns in an efficient manner and it is likely that a more
suitable statistical approach can generate even better forecast results. Furthermore, the
trading strategies proposed in Section 2.4.2 trade on the dispersion between the predicted
probabilities for expected returns, but the cross section of the DJIA dataset considered is
relatively small. It is therefore likely that the trading performance can be further improved
by considering a larger asset universe.

While the degree of predictability is much lower than that found in previous studies
in the machine learning literature, it is still clear that there is some form of nonlinear
dependence in daily stock returns. These results may be unexpected from a theoretical
perspective, but they are clearly in line with those of Linton and Whang (2007) and
Han et al. (2016), who find evidence for directional predictability of daily returns based
on nonparametric tests. We therefore conclude that directional forecasts are a promising
field for future research on the predictability of stock returns.
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Appendix

Mean SD 1% 25% 50% 75% 99%
Log-Realized Variance -8.592 0.911 -10.476 -9.344 -8.708 -8.036 -6.370
High-Low Variance in Percent 0.033 0.163 0.001 0.006 0.013 0.029 0.309
Realized Skewness 0.033 1.009 -2.670 -0.544 0.019 0.603 2.758
S&P 500 Return in Percent 0.025 1.210 -3.412 -0.522 0.056 0.612 3.386
Realized Beta 0.800 0.396 -0.049 0.654 0.914 1.151 1.868
Log-Realized Variance S&P 500 -9.715 1.015 -11.784 -10.443 -9.794 -9.109 -6.888
Level VIX 21.562 8.632 10.680 15.160 20.300 25.240 50.930
VIX Return in Percent -0.001 6.690 -16.040 -3.818 -0.411 3.308 20.197
Variance Premium 6.868 4.217 0.000 4.092 6.318 9.257 19.507
Oil Return in Percent 0.028 2.380 -6.305 -1.260 0.036 1.379 6.029
Level First PC (Level) -1.301 6.389 -12.334 -6.492 -0.684 5.907 8.162
Level Second PC (Slope) -0.138 1.120 -2.800 -0.798 -0.057 0.761 1.750
Level Third PC (Curvature) 0.004 0.310 -0.807 -0.197 0.023 0.224 0.574
Change First PC (Level) 0.003 0.171 -0.480 -0.082 0.000 0.087 0.460
Change Second PC (Slope) 0.000 0.090 -0.240 -0.043 0.001 0.046 0.222
Change Third PC (Curvature) 0.000 0.049 -0.122 -0.019 0.000 0.018 0.151
Stock Return in Percent 0.013 2.167 -5.905 -0.926 0.000 0.966 5.811
5-Day Moving Average Return in Percent 0.014 0.944 -2.683 -0.407 0.040 0.465 2.439
On-Balance Volume (×10−4) -0.426 3.146 -10.268 -1.262 -0.098 0.606 12.443
12-Day Binary Moving Average 0.497 0.140 0.167 0.417 0.500 0.583 0.833
Momentum Indicator 0.047 1.544 -4.559 -0.539 0.053 0.665 4.312
A/O Oscillator 0.515 0.538 -0.680 0.167 0.500 0.861 1.753
Rate-of-Change Indicator 1.006 0.077 0.791 0.969 1.007 1.044 1.211

Table 2.4: Summary statistics of the explanatory variables.
Mean corresponds to the mean of the variables, SD to the standard deviation
and the remaining columns state the respective quantiles of the variables. All
statistics are based on the whole period, i.e., 1996 until 2017.
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Figure 2.6: Correlation plot of the explanatory variables.
Size and color of the circles correspond to the degree and direction of the
correlation. All correlations are based on the whole period, i.e., 1996 until
2017.
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Level p-value
Intercept 0.146 0.000
Probability of Bull Market -0.189 0.000

Table 2.5: Regression results.
The table shows the results of regressing the daily trading return on the
probability of a bull market. The bull-market probability is measured by
the filtered state probability from a Markov switching mean-variance model
fitted to the S&P 500 returns. The Markov switching model has two regimes
corresponding to a bull and a bear market.

Mean SD SR α (CAPM) α (five factors) Max TC
w = 0.15

0bps 11.72 12.10 0.86 13.22*** 12.42*** 8bps
5bps 3.33 12.10 0.17 4.73* 4.00
10bps -4.44 12.10 -0.46 -3.11 -3.78

w = 0.17
0bps 10.60 11.33 0.82 11.68*** 11.16*** 9bps
5bps 4.38 11.32 0.28 5.43** 4.95*
10bps -1.50 11.32 -0.24 -0.47 -0.91

w = 0.19
0bps 8.67 10.24 0.72 9.37*** 8.85*** 11bps
5bps 4.38 10.21 0.31 5.01** 4.53*
10bps 0.25 10.21 -0.09 0.83 0.37

w = 0.21
0bps 7.58 9.11 0.69 8.03*** 7.68*** 13bps
5bps 4.64 9.10 0.37 5.05** 4.72**
10bps 1.78 9.08 0.06 2.14 1.84

Table 2.6: Annualized performance measures for the trading strategy exclud-
ing the period of the subprime mortgage crisis.
In analogy to Table 2.2, the table shows performance measures for the trading
strategy when excluding the period from August 2008 until March 2009 from
the sample.
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DM test
HR SE SP HM Opt

Modelselection until 2002 51.77 53.61 49.85 49.91*** 50.88**
Modelselection until 2004 52.00 54.07 49.86 50.10*** 50.88**
Initial Model Selection Window 250 50.98 52.89 49.02 50.03*** 50.86
Initial Model Selection Window 750 51.93 56.41 47.29 50.03*** 50.86**
Forecasting Window 750 51.76 56.34 47.02 50.03*** 50.86**
Forecasting Window 1,250 51.70 53.05 50.30 50.03*** 50.86**
Excess Return Forecasting 51.85 54.85 48.76 50.00*** 50.82**

Table 2.7: Aggregated forecasting results for a number of robustness checks.
In analogy to the last row of Table 2.1, the table reports average hitrate,
sensitivity, and specificity in percent for the robustness checks. Again, the
right panel shows the hitrate in percent for the historical majority forecast and
the optimist forecast and the asterisks indicate whether the logistic forecasts
are significantly better than the respective benchmark according to a one-
sided Diebold–Mariano test.

Mean SD SR α (CAPM) α (five factors) Max TC
Modelselection until 2002 13.71 12.43 1.00 14.66*** 14.45*** 11bps
Modelselection until 2004 11.44 13.30 0.76 12.44*** 11.75*** 10bps
Initial Model Selection Window 250 13.42 12.76 0.95 13.98*** 13.49*** 11bps
Initial Model Selection Window 750 15.44 13.18 1.07 15.98*** 15.71*** 12bps
Forecasting Window 750 18.09 13.22 1.26 18.97*** 18.24*** 13bps
Forecasting Window 1,250 10.33 12.21 0.74 11.31*** 10.79*** 11bps
Excess Return Forecasting 12.29 13.06 0.84 13.10*** 12.22*** 11bps

Table 2.8: Annualized performance measures for the trading strategy for a
number of robustness checks.
In analogy to Table 2.2, the table shows performance measures for the trading
strategy for a number of robustness checks for w = 0.15 and 0bps transaction
costs. All measures reported are annualized and all values, except for the
Sharpe ratio, are given in percent.
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Figure 2.7: Cumulative difference plots for a number of robustness checks.
The plots are in analogy to the left plot in Figure 2.3. The first row shows the
effect of changing the length of the model selection window, the second row
corresponds to changing the window size S in the model selection period,
and the last row considers changes in the window size W of the forecasting
period.



Chapter 3

Estimating the Volatility of Asset Pricing Fac-
tors

Co-authored with Christian Leschinski.

3.1 Introduction

There is a wide consensus that the cross section of asset returns is best described by factor
models that proxy for economy wide risk factors. In addition to the established market,
size, and value factors of Fama and French (1993), and the momentum factor of Carhart
(1997), a plethora of anomalies has been uncovered in the literature that largely failed to
attain the status of additional factors (Stambaugh and Yuan, 2016). Recently, Fama and
French (2015), Hou et al. (2015), and Stambaugh and Yuan (2016) suggest investment,
profitability, and mispricing factors that subsume a large proportion of these anomalies.

In a simplified form, these factors are constructed as follows. First, all stocks in the
asset universe are sorted according to some firm characteristic. Second, two value weighted
portfolios are formed from those stocks whose firm characteristics fall into the highest and
lowest x%-quantile. The factor return is then obtained as the return from buying one of
these portfolios and selling the other.

For risk management and portfolio formation purposes, it is, however, not only the
return but also the volatility of these factors that is of interest. Return volatility is a key
variable for the pricing of options, speaks directly to the risk-return trade-off central to
portfolio allocation, and even finds its way into government regulations.

For liquid individual assets, the unobservability of volatility has been alleviated through
the increased availability of high-frequency data and the advent of realized variance. Given
that returns of the asset can be observed frictionless in arbitrarily small time intervals,
realized variance provides a consistent estimate of the quadratic variation of the asset
return. For a review of these concepts cf. Andersen and Benzoni (2009).

While this approach is straightforward for individual assets, the calculation of realized
variances for empirical asset pricing factors is challenging. This is because the COMPU-
STAT and CRSP databases that are typically used to construct the factor returns do not
provide high-frequency data. To calculate realized factor variances, it would therefore be
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necessary to match the stocks in these databases with those from a high-frequency data
provider.

This is the approach considered by Ait-Sahalia et al. (2019). It is, however, not straight-
forward. High-frequency data is typically only available for the most liquid stocks that
are traded regularly in short time intervals. The CRSP portfolios that are used to con-
struct empirical factor models, on the other hand, contain much more illiquid stocks that
are simply not traded often enough to calculate realized variances. Furthermore, high-
frequency databases are not necessarily free of survivorship bias, and finally — even if
these hindrances would not exist — the matching of databases typically constitutes a
large effort and there tend to be non-negligible matching errors.

Practitioners or researchers that need to estimate factor volatilities therefore either
rely on squared daily returns as, for example, in Moreira and Muir (2017), or estimate
the underlying volatility process through a GARCH model as, for example, in He et al.
(2015). Both approaches have major drawbacks. Squared returns provide an unbiased but
inconsistent estimate of the true volatility and were the standard measure considered in
the GARCH literature prior to the emergence of realized variance. It is, however, well
known that squared returns are extremely noisy. Andersen and Bollerslev (1998a) show
that, despite the high degree of persistence in stock return volatility, even the true model
is only able to explain five to ten percent of the daily fluctuation in squared returns.
Volatility estimates based on GARCH models, on the other hand, have a lower variance,
but they are biased and inconsistent if the model is misspecified.

The main contribution of this paper is to propose an estimation method for fac-
tor volatility that is close in precision to realized variance. Our approach is applicable
whenever the researcher has access to daily factor return series and some high-frequency
database. The idea is to approximate the factor return using a linear combination of
the returns in the database. In the first step, an appropriate linear combination is esti-
mated using ridge regression. In the second step, the bias of the approximate factor is
corrected, before the realized variance of this approximate factor is calculated and used
as an estimate for the volatility of the actual factor.

The details of this procedure are discussed in Section 3.2. We demonstrate the validity
of our approach in a Monte Carlo study in Section 3.3. The empirical validity and useful-
ness of this approach for the estimation and prediction of factor volatility is demonstrated
in Section 3.4. First, we analyze the relationship between our estimate and the squared
returns for the factors considered by Carhart (1997) and Fama and French (2015) and
show that both are estimates of the same underlying volatility process. Second, we con-
sider the example of the market factor where we can use the realized variance of the S&P
500 to evaluate the accuracy of volatility forecasts. Here, we find that using our measure
improves forecasts of the factor volatility considerably compared to squared returns and
GARCH-type models. Conclusions are discussed in Section 3.5.
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3.2 Estimating Factor Volatility

If stock returns are driven by a given factor model, then it holds true that the return
of each stock is a linear combination of the returns of these factors and an idiosyncratic
error term. As our procedure is based on daily and high-frequency data, we assume that
expected stock and factor returns are zero so that they do not contain risk premia. Let
there be K factors and denote the return of factor k = 1, . . . , K at time t by fkt. Then,
the return of stock i at time t according to this model is given by

rit =
K∑
k=1

λikfkt + εit, (3.1)

where εit ∼ (0, σ2
ε), λik is the loading of the i-th stock on the k-th factor, and i = 1, . . . , N .

It is assumed that the εit have limited cross-sectional and serial dependence and that they
are independent of all λik and fkt.

Conversely, it follows that the return of each factor can be approximated by a linear
combination of the stock returns. For suitable βik, we therefore have

fkt =
N∑
i=1

βikrit + νkt, (3.2)

where νkt represents the approximation error, which can be expected to be small for large
N since the idiosyncratic errors εit in (3.1) average out.

The rationale behind this approach becomes clear if we rewrite model (3.1) for a
vector of N stocks. With Rt = (r1t, . . . , rNt)′, Ft = (f1t, . . . , fKt)′, λi = (λi1, . . . , λiK)′,
εt = (ε1t, . . . , εNt)′, and Λ = (λ1, . . . , λN)′, we obtain Rt = ΛFt + εt. If Λ was known (and
Λ′Λ invertible), we could estimate Ft by (Λ′Λ)−1Λ′Rt = Ft + (Λ′Λ)−1Λ′εt = Ft + ε∗t .

Since Λ is N × K and εt is N × 1, ε∗t is K × 1. Therefore, every element of ε∗t is a
weighted average of the innovation terms ε1t, . . . , εNt and the vector ε∗t converges to zero
by a suitable law of large numbers (cf. Stock and Watson (2011) for a related discussion
of cross-sectional averaging and statistical factor models).

The coefficient vector βk = (β1k, . . . , βNk)′ in (3.2) corresponds to the k-th row of
the matrix (Λ′Λ)−1Λ′. Since the returns fkt of the observed factors are readily available,
the problem in estimating βk is that it is N -dimensional and therefore potentially very
variable if the time dimension T is not large enough. In fact, it is likely that N > T in
empirical applications so that standard estimation methods cannot be applied.
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We therefore resort to regularization and estimate βk using ridge regression. The esti-
mator is given by

β̂k =arg min
β1k,...,βNk


T∑
t=1

(
fkt −

N∑
i=1

βikrit

)2

+ γ
N∑
i=1

β2
ik

 , (3.3)

with γ > 0. This is a least squares estimator with an additional penalty term that shrinks
the coefficients towards zero. The size of the penalty term depends on the parameter γ
that can be selected using cross validation. Here, we select γ so that the out-of-sample
mean squared error between the observed and estimated factor is minimized in ten-fold
cross-validation. While the introduction of the penalty term introduces some bias, the
rationale behind ridge regression is that for suitable γ, the reduction in variance outweighs
the size of the bias so that β̂k is more accurate than the OLS estimator in terms of the
mean squared error. Moreover, γ lowers the effective degrees of freedom so that N > T is
permitted if γ is sufficiently large.

Holding the weights β̂k in the linear combination constant then allows to obtain ap-
proximate high-frequency factor returns. Denote the m-th ofM intra-day returns of stock
i on day t by r(m)

it , then the m-th intra-day return of factor k on day t is given by

f̂
(m)
kt =

N∑
i=1

β̂ikr
(m)
it . (3.4)

This allows for a RV-type estimation of the daily factor volatility Vkt.
The approach is subject to two sources of bias. On the one hand, regularization shrinks

the coefficients towards zero so that the volatility is underestimated. On the other hand,
the variance of the coefficient estimates can be translated to the volatility estimate, which
causes a positive bias. To correct for these biases, we include an auxiliary regression step.
We calculate the predicted daily values of the factors f̂kt = β̂′kRt based on (3.2) and then
use ordinary least squares to estimate fkt = δf̂kt + ηkt, where ηkt is assumed to be a
mean-zero martingale difference sequence. Since Vkt = δ2V ar(f̂kt) + σ2

ηk
, we can use the

estimated coefficient δ̂ and the residual variance estimate σ̂2
ηk

to correct for the bias.
Consequently, an unbiased estimator for Vkt analogous to realized variance is given by

V̂kt = δ̂2
M∑
m=1

(
f̂

(m)
kt

)2
+ σ̂2

ηk
. (3.5)

We refer to V̂kt as the Ridge-RV estimator. Note that when speaking of volatility, some
researchers refer to the variance and others to the standard deviation of asset returns.
By defining V̂kt as in (3.5), we implicitly follow Andersen and Benzoni (2009) and Aït-
Sahalia et al. (2011) and refer to volatility as the variance of asset returns. Performing
the analyses in Section 3.3 and 3.4 for

√
V̂kt leads to qualitatively similar results.
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To summarize, our method proceeds as follows.

1) Perform a ridge regression of the daily factor return fkt on the daily returns of the
N stocks to obtain β̂k and f̂kt = β̂′kRt from (3.2).

2) Obtain estimates f̂ (m)
kt of the intra-day returns of the factors using (3.4).

3) Estimate the auxiliary regression model fkt = δf̂kt + ηkt.

4) Estimate the volatility of the factor from the estimated intra-day returns f̂ (m)
kt and

the estimated coefficients δ̂ and σ̂2
ηk

using the Ridge-RV estimator in (3.5).

It should be noted that it is not necessary to have high-frequency returns of all stocks
that are part of the original portfolios used to construct the asset pricing factors. As long
as the assumed empirical asset pricing model is a linear factor model and it is a good
approximation of the true underlying process, a large number of stocks should have non-
zero loadings on the factor. For example, the return of the size factor can be estimated from
large stocks that have negative loadings on the size factor. High-frequency observations
of small illiquid stocks are not required.

3.3 Monte Carlo Simulation

To demonstrate the validity of the Ridge-RV estimator, we conduct a simulation study
that is tailored to resemble the setup in the empirical applications in Section 3.4.

It is well known that stock volatilities tend to have long memory and are well described
by fractionally integrated processes (Baillie et al., 1996; Bollerslev and Mikkelsen, 1996;
Ding and Granger, 1996). A fractionally integrated process Xt is given by

(1−B)dXt = vt, (3.6)

where B defined by BXt = Xt−1 is the lag operator, vt is a short-memory process, and
−1/2 < d ≤ 1. The fractional difference operator (1−B)d is defined in terms of generalized
binomial coefficients. For details cf. the original contributions of Granger and Joyeux
(1980) or Hosking (1981). A process that fulfills (3.6), such as the well known ARFIMA
model, is referred to as I(d). Standard short-memory processes are included for d = 0 and
unit root processes are obtained for d = 1.

To resemble these long-memory patterns in the daily volatility Vkt of the K factors, we
use the long-memory stochastic volatility framework of Breidt et al. (1998) and simulate
T daily observations (with 250 burn-in observations) for each factor using

Vkt = exp(Xkt) with Xkt ∼ ARFIMA(0,d,0).
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The log-volatilities therefore follow a fractionally integrated model. Applying the expo-
nential function guarantees that all volatilities are positive. The Vkt obtained this way are
used as the true daily volatilities.

Based on these, we subsequently drawM intra-day factor returns f (m)
kt

iid∼ N (0, Vkt/M)
for each day and factor. The daily factor returns are obtained as ∑M

m=1 f
(m)
kt so that they

have volatility Vkt. Using the intra-day factor returns, we can simulate intra-day returns
of N stocks. In analogy to Equation (3.1), the m-th return of stock i at day t evolves as

r
(m)
it =

K∑
k=1

λikf
(m)
kt + ε

(m)
it ,

where ε(m)
it

iid∼ N (0, σ2
ε/M) is a noise component. As for the daily factor returns, daily stock

returns are obtained as the sum over the M intra-day returns so that rit = ∑M
m=1 r

(m)
it .

All parameters are chosen such that the situation in our empirical application in
Section 3.4 is replicated as closely as possible. This means we consider K = 6 factors
whose correlation matrix matches the correlation matrix of the six factors considered
there, we chose the memory parameter d to be 0.6 for all factors as the literature suggests
the memory parameter of return volatility to be in this region (Wenger et al., 2018), we
simulate M = 78 intra-day returns, which corresponds to 5-minute stock data, the factor
loadings λik used for the simulation of stock returns are given by regression estimates
of the factor loadings of N = 500 randomly chosen stocks that were in the S&P 500 at
some point in the last 20 years, and σ2

ε evolves as the residual variance of this regression.
Moreover, we set T = 750.

Based on this simulated data, we then apply the procedure described in Section 3.2
based on Equations (3.3) to (3.5). Using the intra-day factor returns f (m)

kt , we can also
compute the actual realized variance. As a comparison, we further fit a GARCH(1,1)
(Bollerslev, 1986) and a FIGARCH(1,d,1) (Baillie et al., 1996) model and we consider the
squared daily factor returns as an estimate of Vkt too.

Results from 1,000 Monte Carlo repetitions can be found in the upper panel of Table
3.1 that shows the bias compared to the true volatility and the RMSE of all the proce-
dures considered. The results are qualitatively similar for all factors and indicate realized
variance and Ridge-RV to be the best estimators. They are both unbiased and exhibit a
similar degree of variance resulting in comparable RMSEs.

The squared returns are unbiased, but their large variance leads to an RMSE that is
several times larger than that of the Ridge-RV estimator. The GARCH(1,1) model cannot
remedy the noise problem and is biased since it does not allow for long memory but the
data generating process is I(d). The FIGARCH(1,d,1) model achieves an improvement
since it allows for long memory, but it is still too noisy resulting in a RMSE six times
that of the Ridge-RV estimator.
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F1 F2 F3 F4 F5 F6
ARFIMA(0,d,0)

Realized Variance RMSE 1.042 1.195 1.088 1.278 1.612 1.238
Bias 0.002 -0.005 0.007 0.000 -0.011 -0.006

Ridge-RV RMSE 1.046 1.202 1.082 1.322 1.611 1.235
Bias 0.002 -0.011 0.001 0.016 -0.016 -0.014

Squared Return RMSE 8.383 9.787 8.708 12.188 12.486 10.163
Bias 0.000 0.014 -0.041 0.073 0.103 -0.010

GARCH(1,1) RMSE 8.337 10.401 8.717 13.266 14.237 10.738
Bias 0.998 1.234 1.042 1.440 1.708 1.234

FIGARCH(1,d,1) RMSE 6.257 7.424 6.460 8.207 9.079 7.811
Bias 0.020 0.019 -0.039 0.053 0.113 0.002

ARMA(1,1)

Realized Variance RMSE 0.440 0.440 0.435 0.440 0.439 0.439
Bias 0.001 -0.000 -0.001 0.000 0.001 0.001

Ridge-RV RMSE 0.435 0.463 0.440 0.477 0.452 0.450
Bias 0.005 -0.022 -0.021 -0.013 0.021 -0.020

Squared Return RMSE 3.792 3.838 3.735 3.760 3.709 3.752
Bias 0.002 0.012 -0.005 0.002 -0.008 -0.002

GARCH(1,1) RMSE 2.215 2.212 2.201 2.225 2.212 2.216
Bias 0.007 0.016 -0.001 0.006 -0.005 0.000

FIGARCH(1,d,1) RMSE 2.221 2.224 2.207 2.232 2.217 2.220
Bias 0.010 0.021 0.002 0.011 -0.002 0.004

Table 3.1: Simulation results.
Reported are RMSE ×103 and Bias ×103 for different volatility estimation
approaches. The true volatility processes of the six factors (F1, F2,..) evolve as
Vkt = exp(Xkt) with Xkt ∼ ARFIMA(0,d,0) respectively Xkt ∼ARMA(1,1).
Moreover, the correlation matrix of the simulated processes matches the cor-
relation matrix of the six factors considered in the empirical application.

As a robustness check, we repeat the same simulation but with a stochastic volatility
ARMA(1,1) process since it is still often assumed that short-memory GARCH-type models
allow for an accurate description of the volatility process. The parameter values used for
the simulation are obtained via estimation of an ARMA(1,1) for the respective Ridge-RV
series.

The results are shown in the lower panel of Table 3.1. It can be seen that Ridge-RV
still performs comparable to the infeasible RV estimate and that it is considerably better
than the competitors. In situations where the intra-day returns of a portfolio cannot be
observed, the Ridge-RV estimator is therefore the best available choice.

3.4 Empirical Analysis

In the following, we consider the market (MKT), size (SMB), and value (HML) factors in-
cluded in the three-factor model of Fama and French (1993), the profitability (RMW) and
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investment (CMA) factors added in the five-factor model of Fama and French (2015), and
the momentum factor (MOM) included by Carhart (1997). These factors are commonly
used in the asset pricing literature and their validity is widely accepted. Daily returns of
these factors are freely available on the homepage of Kenneth French.

In addition to the daily factor returns we require daily stock returns rit and high-
frequency returns r(m)

it for the estimation of (3.2) and the calculation of approximate
high-frequency factor returns f (m)

kt from (3.4).
Since it is common to calculate realized variances from 5-minute returns, we extract

5-minute prices of all stocks that were part of the S&P 500 at some point between 1996
and 2017 from the Thomson Reuters Tick History database. This results in a total amount
of 1,367 stocks that are considered. Since high-frequency data is often subject to minor
recording mistakes, it is common practice to apply some form of data cleaning. Here,
we adopt the approach of Barndorff-Nielsen et al. (2009), which comprises, among other
things, the removal of observations with negative stock prices and abnormal high or low
entries in comparison to other observations on the same day.

Due to the long time span, it cannot be expected that the coefficients βik stay constant
over time. The loading of individual stocks on factors can change as competitors are
acquired that have a different exposure to market risk, small firms grow into large firms,
and growth stocks turn into value stocks as companies mature. We therefore conduct the
estimation of the coefficient vector β̂k according to (3.3) in a rolling window of size W .
For the factors MKT, SMB, HML, and RMW, which are based on firm characteristics
that are relatively stable over time, we set W = 750. The factors MOM and CMA that
are based on more dynamic features are estimated in a window of size W = 125. Results
for other values of W are qualitatively similar and available upon request.

To demonstrate the empirical validity of our factor volatility estimates, the next sec-
tion shows a number of model diagnostics. Afterwards, Section 3.4.2 demonstrates that
volatility forecasts can be improved by using our measure.

3.4.1 In-Sample Volatility Estimates and Model Diagnostics

When trying to evaluate the performance of the Ridge-RV estimator, we face the problem
that the true volatility process is unobserved and realized variances are not available for
the factors. Only squared returns can be observed. We therefore consider a number of
model diagnostics that demonstrate the satisfactory performance of our procedure before
turning to the forecasts in Section 3.4.2.

Figure 3.1 plots the natural logarithms of squared returns and Ridge-RV for the six
factors over time. Two main observations can be made. First, our measure is comoving
with the squared factor returns, which is a first indication that both measures estimate
the same underlying volatility process. Larger values of the squared factor returns are

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library.html
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Figure 3.1: Graphical comparison of Ridge-RV and squared returns.
The figure displays time-series plots of the natural logarithms of Ridge-RV
and squared returns for market (MKT), size (SMB), value (HML), momen-
tum (MOM), profitability (RMW), and investment (CMA) factor.
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MKT SMB HML MOM RMW CWA
R2 98.63 88.68 88.78 90.10 88.42 89.71

Table 3.2: Auxiliary regression results.
Reported is the coefficient of determination R2 in percent for the auxiliary
regression model fkt = δf̂kt + ηkt.

associated with larger values of the Ridge-RV and vice versa. This holds for all factors
and all time periods. Second, the Ridge-RV appears to be far less perturbed than the
squared returns.

The Ridge-RV estimate is based on the approximation of the factor of interest by a
linear combination of stock returns. If this approximation in (3.2) is sufficiently accurate,
so are those in (3.4) and (3.5). A first indication of the quality of the estimate can therefore
be obtained from the coefficients of determination R2 in the auxiliary regression of fkt on
δf̂kt. Table 3.2 shows that the measure is above 88 percent for all of the six considered
factors indicating a high precision of the estimates.

Since squared returns and Ridge-RV are both estimates of the same unobserved volatil-
ity process, they can both be understood as differently perturbed versions of it. An ap-
proach to test the validity of the Ridge-RV estimator in this empirical setup is therefore
to test for fractional cointegration between the squared returns and V̂kt. Fractional coin-
tegration is a natural generalization of cointegration to fractionally integrated series. Two
time series Xt and Yt are said to be fractionally cointegrated if both are I(d) and there
exists a linear combination Xt−α−βYt = ut so that ut is I(d− b) for some 0 < b ≤ d. As
in standard cointegration, both series must be highly persistent and they are (fractionally)
cointegrated if a linear combination of them has reduced persistence. The extension lies
in the fact that the reduction of persistence does not have to be from I(1) to I(0) but
can be from I(d) to I(d− b).

When modeling volatility time series it is common practice to work with the natural
logarithm of the series since it is better approximated by the normal distribution (Ander-
sen et al., 2001). If log Vkt denotes the true volatility process, then log f 2

kt = log Vkt + ωkt

and log V̂kt = log Vkt + ηkt, where ωkt and ηkt are the respective estimation errors. There-
fore, if log Vkt is I(d), then V̂kt can only be a reasonable estimator of log Vkt, if it is
fractionally cointegrated with log f 2

kt so that log V̂kt − log f 2
kt = ηkt − ωkt is I(d− b).

To formally test the hypothesis of fractional cointegration between log V̂kt and log f 2
kt,

we apply the tests of Chen and Hurvich (2006) and Souza et al. (2018) for the null
hypothesis of no fractional cointegration. Under the alternative a fractional cointegration
relationship exists.

Table 3.3 reports the results of the tests. As expected from Figure 3.1, the test by
Chen and Hurvich (2006) rejects the null of no fractional cointegration for all factors
and the test by Souza et al. (2018) rejects the null for all factors, except for the size
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MKT SMB HML MOM RMW CMA
CH 4.438 2.542 3.673 4.923 1.897 4.780 (1.697)
SRF 3.807 1.381 3.020 3.263 2.751 3.770 (1.960)

Table 3.3: Fractional cointegration test results.
Reported are test statistics and critical values for the tests by Chen and Hur-
vich (2006) (CH) and Souza et al. (2018) (SRF). Here, the null of no fractional
cointegration between log-squared returns and log-Ridge-RVs is tested against
the alternative of fractional cointegration. The values in brackets are critical
values at the five percent level.

factor. Therefore, we can conclude that squared returns and Ridge-RV are fractionally
cointegrated.

All of the statistics presented so far show that our Ridge-RV estimator works well.
However, as discussed above, the evidence provided is indirect since the actual volatility
process is unobserved. For the market factor, however, we can conduct one experiment
that provides insight into the actual accuracy of the Ridge-RV estimate. Even though we
do not observe realized variances for the market factor, it is well known that the value
weighted CRSP return, which is generally regarded as the best available market proxy, is
highly correlated with the return of the S&P 500. The correlation coefficient is about 99
percent meaning that the direction of the variation and its scaling over time is essentially
the same. For the S&P 500, it is possible to obtain intra-day prices so that we can calculate
realized variances. Consequently, we can compare our estimate of market factor volatility
with the realized variance of the S&P 500. As Andersen and Benzoni (2009) stress, the
realized variance is the natural ex-post measure of the underlying volatility process to
consider.

Figure 3.2 shows that the two measures are close to identical. In fact, they have a
correlation of 91.4 percent, are fractionally cointegrated, and regressing our volatility
estimate on the realized variance yields a slope of 0.99 that is not significantly different
from 1.

We therefore conclude that our estimate is appropriate for describing the volatility
of the market factor. Even though the results in Tables 3.2 and 3.3 indicate that the
procedure works slightly better for the market factor than for the other factors, the
degree of precision obtained for the market implies that the Ridge-RV should still be
a good estimate for the volatility of the other factors.

It should be noted, however, that the procedure is based on the assumption that the
factors under consideration are actually relevant for the cross section of stock returns.
This may be an issue if one wishes to apply the procedure to any of the many weak
factors discussed in the literature.
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Figure 3.2: Graphical comparison of Ridge-RV and true RV.
Both plots display the Ridge-RV estimate of market factor volatility and the
true market factor volatility approximated by the realized variance of the
S&P 500. While the left plot shows the two measures over time, the right
plot displays a scatter plot.

3.4.2 Out-of-Sample Forecasts of Market Factor Volatility

For portfolio allocation and risk management purposes, accurate forecasts are needed
in addition to ex-post and on-line estimates of the factor volatility. In this section, we
therefore compare the performance of forecasts using squared returns and GARCH-type
models with those using Ridge-RV.

When trying to evaluate these forecasts, we again face the problem that the true fac-
tor volatility is unobserved. As shown by Andersen and Bollerslev (1998a), considering
squared returns as a proxy for the true factor volatility when evaluating volatility forecasts
is not suitable since the tremendous amount of noise in the return generating process in-
evitably causes a poor performance of the forecasting models. On the other hand, it seems
tautological to show superior performance of our Ridge-RV measure when considering it
as the true factor volatility. We therefore proceed as in the previous section and conduct
a forecast comparison for the volatility of the market factor, where we can use realized
variances of the S&P 500 to proxy for the true factor volatility. This makes for a fair
comparison since both types of models (Ridge-RV and models based on squared returns)
do not use the realized variance of the S&P 500 in any way.

The Ridge-RV is predicted using the HAR model of Corsi (2009). We refer to this
forecast as the HAR-Ridge-RV model. As a benchmark, we also consider the standard
HAR-RV model, which is possible for the market but not for the other factors. It can
thus be interpreted as the “infeasible” model that we try to approximate when predict-
ing factors such as SMB, HML, or others. As feasible benchmark models, we include a
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1-Step 5-Step 22-Step
RMSE QLIKE R2 RMSE QLIKE R2 RMSE QLIKE R2

GARCH(1,1) 0.211 0.298 0.492 0.171 0.238 0.596 0.181 0.259 0.513
FIGARCH(1,d,1) 0.222 0.299 0.444 0.168 0.230 0.606 0.175 0.250 0.535

HAR-RV 0.175 0.215 0.603 0.120 0.195 0.745 0.113 0.248 0.710
HAR-Ridge-RV 0.175 0.220 0.608 0.123 0.196 0.731 0.120 0.240 0.664

Table 3.4: Forecast results.
Reported are RMSE ×103, QLIKE, and R2 from Mincer-Zarnowitz regres-
sions for the competing models and different forecast horizons. GARCH and
FIGARCH use squared returns to forecast the market factor volatility, HAR-
RV uses the true volatility approximated by the realized variance of the S&P
500, and HAR-Ridge-RV uses the Ridge-RV estimate.

GARCH(1,1) and due to the long range dependence in factor volatility, we also use a
FIGARCH(1,d,1) model fitted to the squared returns. All estimations are carried out in a
rolling window of 750 observations and for multistep-ahead forecasts we predict the mean
volatility over the multiperiod horizon.

For the evaluation of the forecasts, we consider the RMSE and the QLIKE loss func-
tion, since Patton (2011) shows that these are the only commonly used measures that
preserve the true ordering of the forecasts if they are evaluated on a perturbed volatility
proxy. Furthermore, we report the coefficient of determination R2 from Mincer-Zarnowitz
(Mincer and Zarnowitz, 1969) regressions given by

1
h

h∑
j=1

RVt+j = b0 + b1
1
h

h∑
j=1

V̂t+j + ukt.

Here, RVt+j is the observed volatility approximated by the realized variance of the S&P
500, V̂t+j is the predicted volatility based on all information available in t, h is the forecast
horizon, and ukt is an error term. Consequently, larger values of R2 imply that the forecasts
are performing better in predicting the true volatility.

Table 3.4 shows the results of this forecasting exercise for 1-step, 5-step, and 22-step
forecasts. It can be seen that for all forecasting horizons and for all evaluation measures,
the HAR-Ridge-RV model performs better than all of the models based on squared daily
returns. For 1-step forecasts, for example, the RMSE ×103 of the HAR-Ridge-RV model
is 0.175, QLIKE is 0.220, and the R2 is 0.608, while for the GARCH(1,1) model, which
is the best model using squared returns, the RMSE ×103 is 0.211, QLIKE is 0.298, and
the R2 is 0.492. Due to the averaging, the forecasting performance of the models becomes
slightly better on longer horizons. The ranking of the models, however, stays the same.

When comparing the forecasts based on our volatility estimate with the HAR-RV
forecasts based on the realized variance of the S&P 500, it can be seen that the two
models deliver qualitatively similar results.
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1-Step 5-Step 22-Step
GARCH(1,1) 3.632*** 2.526** 1.654*

FIGARCH(1,d,1) 3.840*** 2.596*** 1.680*
HAR-RV -0.013 -0.260 -0.538

Table 3.5: Diebold–Mariano test statistics.
Reported are the test statistics of the modified Diebold–Mariano test (Harvey
et al., 1997) when testing for equal accuracy of the forecasts made by the
HAR-Ridge-RV model and the competing models. Positive statistics imply
that the forecasts of the HAR-Ridge-RV model are better and *, **, and ***
indicate that this difference is significant at the ten percent, five percent, and
one percent level, respectively.

Both of these findings are confirmed by results of modified Diebold–Mariano tests
(Harvey et al., 1997) reported in Table 3.5. Here, we report the test statistics for equal
accuracy of the forecasts by the HAR-Ridge-RV model and the forecasts by the com-
peting models. Positive statistics imply that the forecasts of the HAR-Ridge-RV model
are more accurate. It can be seen that for all considered forecast horizons the forecasts
of the HAR-Ridge-RV model are significantly better than those of the GARCH(1,1) and
FIGARCH(1,d,1) model at the ten percent level. In contrast, when comparing to the
HAR-RV forecasts, the null hypothesis of equal forecast accuracy cannot be rejected at
any commonly considered significance level.

Consequently, forecasts based on Ridge-RV achieve their objective to approximate
those that are obtained if realized variances are available and they significantly outperform
forecasts of models that use squared returns. For factors other than the market, where
realized variances are not available, they can therefore be expected to provide results that
are far better than standard approaches.

3.5 Conclusion

Although the volatility of economy wide risk factors such as the size and value factors of
Fama and French (1993) are of importance for risk management and portfolio allocation
purposes, the development of methods for their estimation has lagged behind that for
liquid individual assets or indices, where intra-day returns are available.

The Ridge-RV approach suggested in this paper circumvents the lack of high-frequency
data for factor returns and provides a volatility measure that is closely related to realized
variance. This is achieved by approximating the daily factor returns by a linear combina-
tion of the returns of stocks for which intra-day returns are available. Holding the weights
in the linear combination constant then allows to obtain approximate high-frequency fac-
tor returns that are the basis for the estimation of the factor volatility. Due to the large
number of parameters in the linear combination that have to be estimated, it is necessary
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to apply a regularized estimation method such as ridge regression. This introduces a bias
which is corrected by including an auxiliary regression step.

The subsequent applications to the market, size, value, momentum, investment, and
profitability factors demonstrate that the proposed measure performs well in practice and
outperforms competing approaches such as GARCH-type models. We therefore find that
adopting the proposed approach has the potential for significant improvements in asset
allocation decisions and risk management.



Chapter 4

The Bias of Realized Variance

Co-authored with Christian Leschinski.

4.1 Introduction and Main Finding

Volatility is at the heart of everything from risk management to derivative pricing and
asset management. While estimates of the unobserved volatility process were originally
obtained using GARCH and stochastic volatility models, today high-frequency data has
become widely available and realized variance (RV) has been adopted as the standard mea-
sure. Due to its nature as a nonparametric estimate that is consistent for the quadratic
variation in continuous price processes that behave as semimartingales, RV is often even
treated as a direct observation of the underlying volatility process. This drastic improve-
ments in the quality of volatility estimates has led to major advances in volatility fore-
casting and risk management.

Previous contributions on the shortcomings of RV have mostly focused on the effect of
market microstructure noise and violations of the assumption that the price process can
be observed frictionless at arbitrarily small time intervals (e.g., Zhou, 1996; Hansen and
Lunde, 2006; Bandi and Russell, 2008).

Here, we focus on the semimartingale assumption and show that RV is a biased es-
timator for the variance of stock index returns on daily and longer horizons. The bias
is negative so that the stock market risk is systematically underestimated. This effect
is demonstrated for a wide range of international stock market indices and the average
magnitude of the bias is 14 percent. The RV of the S&P 500, for example, underestimates
the mean level of daily return variance by 15 percent.

We further provide a detailed investigation of the bias, which reveals that it is caused
by dependencies between aggregates of returns within a trading day as recently docu-
mented by Gao et al. (2018). This invalidates not only the assumptions of the standard
RV estimator but also the assumptions of any alternative high-frequency estimator sug-
gested in the literature so far, such as the BV estimator (Barndorff-Nielsen and Shephard,
2004b), the medRV estimator (Andersen et al., 2012), and sub-sampled RV estimators.
Our analysis shows that even realized kernel variance estimators (Barndorff-Nielsen et al.,
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2008) are biased, although these are specifically designed to be robust against serial de-
pendencies in the returns.

To make our point, we consider the following jump-diffusion model, which is custom-
arily used in the literature to model the log-price process p(τ) of a financial asset,

dp(τ) = µ(τ)dτ + σ(τ)dB(τ) + ξ(τ)dq(τ). (4.1)

Here, σ(τ) is the instantaneous or spot volatility, strictly positive and (almost) surely
square integrable. Furthermore, q(τ) is a Poisson process uncorrelated with B(τ) and
governed by the jump intensity λ(τ) so that P (dq(τ) = 1) = λ(τ)dτ , which implies a
finite number of jumps in the price path per time period. The scaling factor ξ(τ) denotes
the magnitude of the jump in the return process if a jump occurs at time τ .

For the sake of the argument presented here, we will assume that µ(τ) = 0 for all
τ . This means that the equity premium is zero, which is a reasonable assumption on
short time horizons such as days because it is so small. Nevertheless, this is purely for
expositional purposes and the arguments could easily be extended to allow for µ(τ) 6= 0.

Denote the continuously compounded return at day t by rt = p(t) − p(t − 1), for
t = 1, . . . , T . Since µ(τ) = 0, we have

rt =
� t

t−1
dp(τ)dτ =

� t

t−1
σ(τ)dB(τ) +

∑
t−1≤τ≤t

J(τ).

Therefore, E[r2
t ] = V ar[rt] = IVt + E

 ∑
t−1≤τ≤t

J2(τ)
 , (4.2)

where IVt =
� t

t−1
σ2(τ)dτ

and J(τ) = ξ(τ)dq(τ) is non-zero only if there is a jump at time τ . This is due to the
assumed independence between the continuous components and jump components, the
independence of the increments of the Brownian motion, and the independence between
successive jumps.

Equation (4.2) shows that squared returns are an unbiased estimator for the daily
return variance. It is, however, well known that squared returns are extremely noisy and
inconsistent, since there is only a single daily return per trading day (Andersen and
Bollerslev, 1998a).

RV, on the other hand, makes use of the availability of high-frequency data. If M
intra-day returns are observed, then the RV is given by

RVt =
M∑
i=1

r2
it,
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where rit is the i-th intra-day return. Under the assumption that the log-price process
follows a jump-diffusion, such as (4.1), with µ(τ) = 0, RV is an unbiased measure for the
quadratic variation QVt of the price process. For QVt it holds that

QVt = IVt +
∑

t−1≤τ≤t
J2(τ). (4.3)

This means the quadratic variation equals the integrated variance plus the sum of squared
jumps. For a review of these concepts cf. Andersen and Benzoni (2009).

Equations (4.2) and (4.3) therefore imply that

E[r2
t ] = V ar[rt] = E[RVt]. (4.4)

This equality is the basis for the arguments made in this paper. It implies the convergence
of long term averages of r2

t and RVt so that for r2
t = T−1∑T

t=1 r
2
t and RVt = T−1∑T

t=1RVt,
we have

r2
t −RVt

p→ 0,

as T →∞. Furthermore, we have

√
T∆σ2 =

√
T
(
r2
t −RVt

)
d→ N(0, V ), (4.5)

where the long run variance V of the differential r2
t − RVt can be estimated with HAC

estimators so that we can test the hypothesis that (4.4) is true using (4.5).
Note that the first equality in (4.2) and (4.4) holds generally as long as µ(τ) = 0. The

equality E[RVt] = V ar[rt], on the other hand, only holds under the assumption that the
log-price process p(t) follows a jump-diffusion, since this implies the independence within
and between continuous changes and jumps. A rejection of (4.4) is therefore indicative of
a bias in RVt and not in r2

t .
To summarize, both RVs and squared returns approximate the same underlying vari-

ance process with the difference being that squared returns are noisier. Therefore, devia-
tions between the two measures should be random and cancel each other out over time.
Consequently, average squared return and average RV should be equal given a long enough
horizon.

Figure 4.1 shows that this is not the case for a wide cross section of stock indices.
Here, and in the following, we use 15-minute data for the years 1996 until 2017 from the
Thomson Reuters Tick History database. The annualized average RV is plotted against
the annualized average squared return for 22 commonly considered indices, such as the
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Figure 4.1: Average variance scatter plot.
The plot shows average annualized variance estimates for 22 stock indices
using squared returns respectively RVs. RVs are calculated from 15-minute
data and squared returns are adjusted for overnight returns so that both
estimates are based on the same time horizon.

S&P 500, the DAX, and the SSEC. It can be seen that for all indices, except for the DAX,
the average squared return is larger than the average RV in the same time period.9

Figure 4.2 sheds light on the relation of average RV and average squared return over
time. In the left plot, the average variance estimate of the two estimators in a rolling
window of 750 observations is displayed for the S&P 500. Again, it can be observed that
the average RV is systematically smaller than the average squared return. This is not only
true for isolated periods but holds all the time. However, the difference between the two
time series seems to be larger in times of high variance, such as the subprime mortgage

9It should be noted that the squared returns are calculated from open-to-close returns so that overnight
returns are excluded and the time horizon is the same as that for the RVs. As a robustness check,
Figure 4.5 in the Appendix shows the results of the same analysis using RVs for 31 stock indices from
Oxford-Man Institute’s realised library compiled by Heber et al. (2009) and considered by Shephard
and Sheppard (2010) and Han and Kristensen (2014), among others. These RVs are calculated from 10-
minute data. It can be seen that the analysis yields very similar results, which underlines the robustness
of our finding.
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Figure 4.2: Average variance time-series plots S&P 500.
Left: average annualized S&P 500 variance estimate of the last 750 obser-
vations using squared returns respectively RVs extracted from 15-minute
returns. Right: ratio between rolling averages of squared return and RV.

crisis, indicating that average RV and average squared return differ by a factor rather
than a constant. This factor is plotted over time on the right hand side of Figure 4.2.
It seems relatively stable over time with an average of 1.15, which means that the RV
underestimates the variance of the S&P 500 by 15 percent.10

Table 4.1 presents more detailed results for all 22 indices. It is apparent that the effect
is especially pronounced for ATX, MCX, and SSEC with a factor between average squared
return and average RV of 1.42, 1.30, and 1.24. This results in standard deviations that
are larger by 3.25, 3.5, respectively 2.53 percentage points per annum than indicated by
the RV estimator. For DAX, FCHI, and FTSE with factors of 1.00, 1.01, and 1.02, on the
other hand, the effect is negligible. Averaged over all indices, the mean RV is 14 percent
smaller than the mean squared return. This amounts to an annualized underestimation
of the standard deviation by 1.34 percentage points.

The table further reports the test statistics tHAC =
√
T (r2

t −RVt)/
√
VHAC for autocor-

relation and heteroscedasticity robust t-tests of the null hypothesis that E[RVt] = E[r2
t ].

Here, VHAC is the long run variance of r2
t − RVt, which is estimated using the method

of Andrews (1991). As a robustification, we also report the tMAC statistic of Robinson
(2005) and Abadir et al. (2009), which accounts for the possibility of long memory in

10Here and hereafter, we focus our analysis mostly on the S&P 500. Plots for other indices show that
investigating any of the indices for which the effect is present would have yielded similar results. Some
of these are displayed in Figure 4.10 to 4.12 in the Appendix. The others are available from the authors
upon request.
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RIC Country r2 RV r2/RV
√
r̄2 −

√
RV tHAC tMAC tMOM T

.AEX Netherlands 3.50 3.15 1.11 0.96 2.91*** 2.48** 3.59*** 4,567

.ATX Austria 4.10 2.89 1.42 3.25 8.56*** 4.31*** 6.91*** 4,179

.BFX Belgium 1.63 1.54 1.06 0.38 1.91* 1.41 1.37 5,275

.BSESN India 4.21 3.56 1.18 1.65 6.63*** 3.86*** 8.03*** 4,948

.BVSP Brazil 9.15 7.94 1.15 2.07 4.08*** 2.58*** 5.13*** 4,728

.GDAXI Germany 4.29 4.29 1.00 -0.00 -0.01 -0.01 0.91 5,264

.FCHI France 3.52 3.47 1.02 0.14 0.58 0.49 1.24 5,272

.FTMIB Italy 6.53 5.66 1.15 1.76 3.23*** 3.43*** 3.77*** 1,942

.FTSE Great Britain 3.31 3.25 1.02 0.15 0.53 0.87 2.77*** 5,218

.GSPTSE Canada 2.79 2.42 1.15 1.14 2.77*** 3.73*** 7.35*** 3,654

.IBEX Spain 4.28 3.98 1.08 0.74 2.74*** 2.31** 3.40*** 5,188

.JALSH South Africa 3.46 2.98 1.16 1.32 4.72*** 4.72*** 6.27*** 3,216

.MCX Russia 7.91 6.07 1.30 3.48 6.19*** 2.36** 7.78*** 3,892

.N225 Japan 3.57 3.08 1.16 1.34 3.83*** 0.76 4.59*** 5,080

.OBX Norway 5.62 5.31 1.06 0.67 1.44 4.87*** 4.40*** 2,679

.OMXC20 Denmark 4.05 3.78 1.07 0.69 1.78* 4.42*** 4.48*** 2,821

.OMXHPI Finland 4.33 3.66 1.18 1.66 4.12*** 4.04*** 6.59*** 2,835

.OMXS30 Sweden 4.46 3.94 1.13 1.27 3.13*** 2.88*** 5.39*** 3,005

.PSI20 Portugal 2.80 2.30 1.22 1.56 4.89*** 4.24*** 5.08*** 4,866

.SPX United States 3.37 2.93 1.15 1.26 4.96*** 3.47*** 5.77*** 5,183

.SSEC China 6.15 4.96 1.24 2.53 7.24*** 5.37*** 9.10*** 5,019

.SSMI Switzerland 2.59 2.33 1.11 0.85 3.39*** 1.90* 3.90*** 4,770

Table 4.1: Statistics on average squared return and average RV.
Reported are average squared return r2 per annum in percent, average RV RV
per annum in percent, and ratio between the two measures for all of the 22
considered indices. For better assessing the degree of the bias,

√
r̄2−
√
RV is

stated, which gives the average percentage points that the standard deviation
implied by the two measures deviates per annum. Moreover, the table reports
results of autocorrelation and heteroscedasticity robust t-tests tHAC for the
null hypothesis that the two estimates are equal. As it is commonly found
in the literature that squared returns and RVs are highly persistent, tMAC

(Robinson, 2005; Abadir et al., 2009), which accounts for this degree of persis-
tence, is also stated. Moreover, we report tMOM , which yields valid inference if
the return distribution does not exhibit unconditional finite fourth moments.
For all tests *, **, and *** indicate that the null hypothesis E[r2

t ] = E[RVt]
is rejected at the ten percent, five percent, and one percent level, respec-
tively. Positive test statistics thereby imply that squared returns are larger
on average. Finally, T gives the number of days considered for estimation.

r2
t −RVt. This might be present since both, r2

t and RVt, are commonly found to be highly
persistent (Baillie et al., 1996; Bollerslev and Mikkelsen, 1996; Ding and Granger, 1996).
To account for the fact that the unconditional fourth moment of the return distribution
might not exist, we conduct an additional test tMOM for which the difference between
RVs and squared returns is standardized by an estimate of the conditional standard de-
viation of the series. The test results suggest that for 16 (tHAC), 13 (tMAC), respectively
19 (tMOM) indices the average squared return is significantly larger than the average RV
at the one percent level.
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To summarize, average squared returns and average RVs are not identical in expec-
tations. Instead, mean squared returns are larger by a factor of 1.14. This observation is
time consistent and can be found for all of the 22 considered indices except DAX, FCHI,
and FTSE.

Recalling Equation (4.4) and the considerations stated thereafter, this implies that RV
is a biased estimator for the variance of daily index returns. The next section provides a
detailed investigation of possible explanations for this bias. Here, we provide evidence that
the deviation between average squared return and average RV is caused by dependencies
in intra-day returns that violate the assumptions required for consistency of RV as an
estimator for the daily variance. Section 4.3 then concludes.

4.2 Explaining the Bias of Realized Variance

To determine the source of the difference between average squared return and average
RV, it is useful to decompose the observed continuously compounded return rit into its
components.

It is now broadly accepted that stock prices can be represented by a jump-diffusion
model such as (4.1) (e.g., Aït-Sahalia, 2004; Barndorff-Nielsen and Shephard, 2007; Corsi
et al., 2010). Consequently, we can decompose the continuously compounded stock return
at time i on day t rit into jump component Jit, continuous component Cit, and equity
premium. As mentioned before, we assume that the equity premium is zero to ease the
presentation.11

Another important component of the observed return at high frequencies is market
microstructure noise due to price discreteness, bid-ask spreads, trades taking place at
different markets and networks, gradual response of prices to a block trade, difference in
information contained in orders of different sizes, strategic order flows, and recording er-
rors. Starting with Zhou (1996), numerous contributions find these effects to significantly
influence the observed intra-day return at high frequencies such as 1-second data. At low
frequencies, however, the effect is often found to be negligible. To capture this charac-
teristic, market microstructure noise is denoted by ηit,M in the following with M defined
as the number of intra-day observations and E[ηit,M ] = 0. We then assume that market
microstructure effects are not present on a daily frequency, i.e., V ar(ηit,1) = 0, and that
V ar(ηit,M) is monotonically increasing with the sampling frequency M .

The observed continuously compounded return can then be written as

rit = Cit + Jit + ηit,M

11Our results would not be altered by a non-zero equity premium unless it would exhibit sizable intra-day
variation (which is theoretically implausible).
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so that for the two estimators it holds that

RVt =
M∑
i=1

(Cit + Jit + ηit,M)2

and r2
t =

(
M∑
i=1

Cit +
M∑
i=1

Jit

)2

.

Calculating the difference between the two estimators yields

r2
t −RVt =

M∑
i,j=1,i 6=j

CitCjt +
M∑

i,j=1,i 6=j
JitJjt + 2

M∑
i,j=1,i 6=j

CitJjt

−
M∑
i=1

ηit,Mηit,M − 2
M∑
i=1

Citηit,M − 2
M∑
i=1

Jitηit,M .

To simplify notation, let ABt = ∑M
i,j=1,i 6=j AitBjt and AB∗t = ∑M

i=1AitBit, such that

r2
t −RVt =CCt + JJt + 2CJt − ηη∗t,M − 2Cη∗t,M − 2Jη∗t,M . (4.6)

The first two terms capture the intra-day dependencies in continuous and jump compo-
nent. If, for example, E[CCt] is positive, then positive and negative intra-day continuous
returns would tend to occur in clusters. It would therefore be more likely that Cit is a
large positive return if (C1t, . . . , Ci−1t, Ci+1t, . . . , CMt) are large positive returns. The third
term captures the dependencies between the leads and lags of jump and continuous com-
ponent. If E[CJt] is positive, then it would be more likely to observe positive continuous
returns at days where a positive jump occurs. The fourth term captures the variance of
the market microstructure noise and the last two terms capture intra-day dependencies
between the noise component and the continuous and jump components. If, for example,
E[Cη∗t,M ] is positive, then it is more likely to observe positive microstructure noise ηit,M
if Cit is large and positive.

As mentioned before, when calculating the RV estimator it is commonly assumed
that the log-price process follows a jump-diffusion such as (4.1) and that markets are
frictionless. This implies that all of the terms in Equation (4.6) are zero in expectations
and the expected values of squared return and RV are identical. However, Figures 4.1 and
4.2 together with Table 4.1 show that the average squared return is systematically larger
than the average RV for a wide cross section of stock indices. Hence, at least one of the
terms in Equation (4.6) has to be significantly larger than zero to explain the negative
bias of RV as an estimator for the daily variance. In the following, we therefore analyze
each of the terms in Equation (4.6) separately to determine the source of the bias.
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4.2.1 Market Microstructure Noise

It is well established that market microstructure effects cause biased RV estimates (e.g.,
Hansen and Lunde, 2006; Bandi and Russell, 2006). Therefore, it is tempting to conjecture
that the difference between average squared return and average RV can be attributed to
the presence of microstructure noise. Since microstructure noise is not observable and
cannot be estimated without access to tick data, this conjecture can only be refuted on
the basis of plausibility arguments. These, however, are quite compelling.

First, the results presented here are obtained using 15-minute data to mitigate the
impact of microstructure noise right from the start. Microstructure effects are commonly
found to be relevant on high frequencies such as 1-second data. For sampling frequency
lower than five minutes as considered here, Bandi and Russell (2008) argue that the effect
of market microstructure noise is negligible. This is also confirmed by Figures 4.6 and 4.7
in the Appendix, which show that repeating our analysis for 5-minute and 30-minute data
yields qualitatively similar results.

Second, market microstructure noise only generates a negative bias in the RV if
ηη∗t,M < −2Cη∗t,M − 2Jη∗t,M . This would imply negative correlation between noise and
continuous component respectively between noise and jump component which outweighs
the variance of the market microstructure noise. This is typically not the case as can be
seen in the volatility signature plots of, for example, Hansen and Lunde (2006), Bandi and
Russell (2006), and Aït-Sahalia et al. (2011). Here, market microstructure effects generate
a positive bias in the RV. In contrast to that, the bias observed here is negative.

Third, as a final robustness check, Figure 4.8 in the Appendix repeats the analysis
of Figure 4.1 for the realized kernel variance estimator of Barndorff-Nielsen et al. (2008)
that is constructed to be robust against market microstructure noise. Again, it can be
observed that the average squared returns are significantly larger.

We therefore conclude that market microstructure effects cannot explain the difference
between average RV and average squared return documented in Section 4.1. Since we use
15-minute data, it seems reasonable to assume that the magnitude of ηit is negligible and
Equation (4.6) can be further simplified such that

r2
t −RVt ≈ CCt + JJt + 2CJt. (4.7)

4.2.2 Jumps and Continuous Returns

To determine the relative magnitude of the remaining terms in Equation (4.7), we need to
decompose the intra-day returns rit into continuous and jump components. While numer-
ous model-free estimators and tests have been proposed to disentangle the contribution of
jumps and continuous components to the daily RV (e.g., Barndorff-Nielsen and Shephard,
2004b; Aït-Sahalia and Jacod, 2009; Corsi et al., 2010), only the methodology of Lee and
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Mykland (2007) is able to determine jump and continuous components for every intra-day
return. The idea of Lee and Mykland (2007) is to compare each 15-minute return to an
estimate of the volatility using the previous K observations. If the 15-minute return is
large in comparison to the volatility of the previous observations, then it is concluded
that a jump occurred. Since V ar(Cit) = O(M−1), the jump asymptotically dominates the
continuous component as M →∞ and rit is a suitable estimator for Jit. Consequently, if
the test rejects the null of no jump at time i on day t, we conclude that a jump of size rit
has occurred.

Lee and Mykland (2007) suggest to estimate the volatility of the previous K observa-
tions using the bipower variation introduced by Barndorff-Nielsen and Shephard (2004b).
However, Corsi et al. (2010) show that this estimator is substantially biased in finite
samples leading to a large underestimation of the jump component. To circumvent this
problem, we consider their threshold bipower variation estimator. This is less affected by
small sample bias and has the same limit as bipower variation in probability.12

The test statistic then evolves as

Lit = rit√
σ̂2
it

, where σ̂2
it = π

2
1

K − 2

i−1∑
j=i−M+2

|rj||rj−1|I(r2
j ≤ θ)I(r2

j−1 ≤ θ).

Here, I(·) is the indicator function and θ is a threshold, which is estimated using the
approach suggested by Corsi et al. (2010) that ensures that jumps do not influence the
estimation of σ̂2

it.
In the absence of jumps, a single test is standard normally distributed. For multiple

testing as it is performed here, critical values are derived based on Gaussian extreme value
theory.

Since the variance estimator σ̂2
it is the threshold bipower variation by Corsi et al.

(2010), the test is still consistent if a jump has already occurred in one of the previous
K observations. As suggested by Lee and Mykland (2007), we set K = 156 and employ a
significance level of one percent to decrease the likelihood of spuriously detecting jumps.

After decomposing every return into jump and continuous component, we are able to
calculate daily values of CCt, CJt, and JJt. Panel A of Table 4.2 provides t-statistics
robust to autocorrelation and heteroscedasticity for the null hypothesis that E[CCt] = 0,
respectively E[CJt] = 0 or E[JJt] = 0.13 For all indices with a significant bias, it can
be seen that the component CCt is positive and significantly different from zero at the
one percent level. For the S&P 500, for example, the value of the test statistic is 4.83.
The components CJt and JJt, on the other hand, are not indicated to be significantly

12The results using the bipower variation estimator are qualitatively similar and available upon request.
13In analogy, Tables 4.4 and 4.5 in the Appendix state tMAC and tMOM , i.e., the t-statistics when
accounting for persistence respectively infinite unconditional fourth moments of the return distribution.
The results are qualitatively similar.
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A: 15-minute Data B: Seasonally Adjusted C: 5-minute Data
RIC Country CC CJ JJ CC CJ JJ CC CJ JJ
.AEX Netherlands 3.21*** 0.64 0.38 3.18*** 0.17 0.43 2.23** 1.81* 0.38
.ATX Austria 10.47*** 0.64 -0.51 10.09*** -0.21 -0.57 11.26*** 1.57 2.67***
.BFX Belgium 1.78* 0.94 -0.54 1.66* 1.20 -0.74 1.10 0.80 1.04
.BSESN India 7.17*** -0.46 -0.59 7.10*** -1.51 1.42 6.79*** 3.49*** -0.72
.BVSP Brazil 6.10*** 1.62 -1.76* 4.60*** 0.51 -1.55 6.82*** 4.12*** -0.71
.GDAXI Germany -0.02 0.38 -0.66 0.12 -0.31 0.07 -0.68 1.51 0.82
.FCHI France 0.97 -0.13 -0.69 0.51 -0.05 0.55 2.08** 2.10** 0.77
.FTMIB Italy 3.99*** 1.89* -0.40 3.46*** 1.94* -0.53 3.28*** 1.56 0.47
.FTSE Great Britain 2.04** 0.18 -2.07** 2.16** -0.98 -1.92* -3.53*** 1.06 1.90*
.GSPTSE Canada 5.05*** 0.18 -0.48 5.21*** -0.87 -1.65* 6.60*** -0.24 -1.78*
.IBEX Spain 3.53*** 0.60 -0.35 3.07*** 0.73 0.41 2.95*** 1.67* 0.27
.JALSH South Africa 5.79*** 1.91* -1.07 5.31*** 1.35 -0.17 4.97*** 3.81*** -0.66
.MCX Russia 7.31*** 1.81* -0.69 6.10*** 3.03*** -0.73 7.62*** 1.84* 0.73
.N225 Japan 3.34*** 2.17** 1.45 3.71*** 1.49 1.69* 3.58*** 4.98*** 2.76***
.OBX Norway 2.01** 0.43 -1.26 1.91* -0.26 0.53 2.87*** -1.00 -2.2**
.OMXC20 Denmark 4.11*** -0.77 -1.71* 2.00** 1.44 -2.22** 4.92*** 0.55 -2.01**
.OMXHPI Finland 5.18*** 1.65* -1.13 4.43*** 0.50 0.88 6.65*** 1.65* 0.41
.OMXS30 Sweden 2.93*** 1.86* -1.11 2.52** 2.11** -1.19 2.95*** 1.03 -0.77
.PSI20 Portugal 6.31*** -0.42 0.99 5.61*** 0.47 1.04 4.22*** 0.47 0.95
.SPX United States 4.83*** 1.12 -1.98** 4.79*** 0.68 -2.33** 5.39*** 3.27*** -0.74
.SSEC China 7.68*** 2.43** 1.03 7.78*** 2.59*** 0.99 8.49*** 3.91*** 1.38
.SSMI Switzerland 2.79*** 0.78 1.49 2.37** 3.17*** 1.48 1.54 2.36** 1.46

Table 4.2: HAC t-test statistics.
Reported are HAC t-test statistics for the null hypothesis that E[CCt] = 0,
E[CJt] = 0, and E[JJt] = 0. *, **, and *** indicate that the null hypothesis
is rejected at the ten percent, five percent, and one percent level, respectively.
In Panel A, CCt, CJt, and JJt are determined using 15-minute data and the
methodology by Lee and Mykland (2007) with the threshold bipower variation
instead of the bipower variation to estimate the instantaneous volatility. In
analogy, Panel B shows the test results when the estimates of σ2

it are adjusted
for intra-day seasonality as found by Andersen and Bollerslev (1997) and
Andersen and Bollerslev (1998b), and in Panel C, the three components are
estimated using 5-minute data.

different from zero at the one percent level for any of the indices. It can further be seen
that for the DAX and the FCHI for which Table 4.1 reports no significant bias of the RV
estimator, CCt is not significantly different from zero. For the FTSE, Table 4.2 reports
significant dependence at the five percent level in the continuous component, although
Table 4.1 states that there is no significant bias. The reason for this observation is that
for the FTSE there is significant negative dependence in the jump component JJt at the
five percent level which compensates for the bias caused by CCt.

To show the robustness of the results, Panel B of Table 4.2 repeats the analysis adjust-
ing the estimate of σ̂2

it for intra-day seasonality as documented by Andersen and Bollerslev
(1997) and Andersen and Bollerslev (1998b), among others, and Panel C reports the test
statistics using 5-minute instead of 15-minute data. The results are qualitatively similar
with CCt being positive and significantly different from zero for most indices and CJt and
JJt being insignificant for most indices.
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Figure 4.3: Correlation matrix S&P 500.
Depicted is the correlation matrix for the continuous return component
(CCt) of the S&P 500 using 30-minute Returns.

The term CCt captures the dependence structure in Cit. Let ct = (C1t, . . . , CMt)′

denote the vector of continuous returns on day t and let ι be an M × 1 vector of ones.
Then,

CCt = ι′(ctc′t)ι− c′tct.

It is well established, that the autocorrelation function of rit is essentially zero at all leads
and lags. This justifies the semimartingale assumptions imposed in (4.1) that implies that
all off-diagonal elements of E[ctc′t] are zero so that E[CCt] = 0.

An unfortunate property of the autocorrelation function, however, is the fact that it
masks dependencies that do not depend on the lag but on the location of the returns
within a trading day. In a recent paper, Gao et al. (2018) find significant correlation
between 30-minute intra-day returns of the S&P 500. This concerns in particular the last
two returns in a trading day and the first and last returns of the day. They argue that
these correlation patterns stem from investors infrequent rebalancing of their portfolios
and late-informed investors who trade early morning information in the last hour, where
liquidity is larger.

To shed further light into the dependence structure of the continuous components of
the intra-day returns of the S&P 500, Figure 4.3 shows their average correlation matrix.
In line with Gao et al. (2018), the correlation matrix shows a momentum effect between
first and last half hour of the trading day and in the last hour of the trading day. However,
the plot also reveals positive as well as negative correlation between the other half-hour
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Return locations within a trading day Correlation p-value Critical p-value
ρ5,8 (11:30 - 12:00, 13:00 - 13:30) -0.0888 0.0004 0.0006
ρ1,13 (09:30 - 10:00, 15:30 - 16:00) 0.1314 0.0010 0.0013
ρ1,4 (09:30 - 10:00, 11:00 - 11:30) 0.0740 0.0010 0.0019
ρ12,13 (15:00 - 15:30, 15:30 - 16:00) 0.1379 0.0016 0.0026
ρ11,12 (14:30 - 15:00, 15:00 - 15:30) 0.0815 0.0025 0.0032

Table 4.3: Significant correlations S&P 500.
The table shows all correlations between half-hour returns of the S&P 500
that are significantly different from zero after accounting for the multiple
testing problem. The last column states the corresponding critical p-values
for an alpha of five percent when applying Simes’ correction (Simes, 1986).

returns of the S&P 500. When testing for the joint significance of all pairwise correlation
coefficients, we obtain a chi-square statistic of 168, which vastly exceeds the critical value
of 110 at the 1 percent level.

When testing for the significance of individual correlations, there is a multiple testing
problem. We account for this by applying Simes correction (Simes, 1986), which consists
of ordering all p-values in ascending order and then comparing them with α

N
, 2α
N
, . . . , Nα

N

with N = 78 being the number of performed tests. If any of the ordered p-values exceeds
its respective threshold, the null hypothesis that the corresponding correlation between
the two returns equals zero is rejected. Table 4.3 reports all combinations of returns for
which this is the case at an alpha level of five percent. The table states that there is
significant positive correlation between first and fourth, first and thirteenth (last), fourth
and twelfth, eleventh and twelfth and the last two half-hour returns. In contrast, negative
correlation that is significantly different from zero only exists between the fifth and the
eighth half-hour return. With regard to the strength of the dependency, the correlation
between first and last and second last and last half-hour return are found to be the largest.

To summarize, there is significant positive correlation in continuous index returns.
This does not only hold when considering the correlations separately but also when tak-
ing them all together. This violates the semimartingale assumption that is necessary for
the consistency of the RV as an estimator for the variance of daily stock returns and
causes a significant negative bias as observed in Figure 4.1.14 Since the correlation is in
the continuous component, jump robust estimators such as the BV estimator (Barndorff-
Nielsen and Shephard, 2004b) or the medRV estimator (Andersen et al., 2012) are biased
14There is a growing body of literature which provides evidence that jumps are often erroneously iden-
tified when estimating them from 5 or 15-minute data. When considering tick data, where estimation
precision is higher, the jump component is found to account for only a small fraction of the total price
variation making it almost negligible (Christensen et al., 2014; Bajgrowicz et al., 2015). Additionally,
it is theoretically unclear whether the approach by Lee and Mykland (2007) is still consistent under
this kind of dependence. Consequently, we might have misidentified jump and continuous component,
at least for some returns. We should therefore note that performing our analysis without differentiating
between jump and continuous component yields qualitatively the same results, i.e., there is correlation
in index returns which causes biased RV estimates.
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Figure 4.4: Corrected average variance scatter plot.
In analogy to Figure 4.1 with the difference that the RVs are now corrected
by CCt. Again, the RV estimates are calculated from 15-minute data and
the squared returns are adjusted for overnight returns so that both estimates
are based on the same time horizon.

as well. This also holds for sub-sampled RV estimators and realized kernel variance esti-
mators (Barndorff-Nielsen et al., 2008). These can handle frictions in event time which
vanish with decreasing sampling frequency. They are, however, not robust to correlations
in calendar time as found here.

To further illustrate that CCt causes the bias, Figure 4.4 repeats the analysis of Figure
4.1 and plots the average squared return against the sample average of the corrected RV
measure R̃V t = RVt + CCt. From Equation (4.7), adding CJt and JJt to R̃V t would
give exactly r2

t . It can be seen that accounting for the CCt component almost completely
eliminates the difference observed in Figure 4.1. Moreover, robust t-tests reject E[r2

t −
R̃V t] = 0 not once for any of the indices at the one percent level and moving average
plots indicate the factor between r2

t and R̃V to be close to one all the time. More detailed
results can be found in the Appendix in Table 4.6 and Figure 4.9 which repeat the analysis
of Table 4.1 and Figure 4.2 for the corrected RV measure.
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As a final check whether for the S&P 500 the correlation in the first and last hour
of the trading day is the reason for the observed bias, we repeat our analysis excluding
the first and last hour of the trading day for the calculation of RVs and squared returns.
As expected, average squared return and average RV now have a ratio of 0.97 and are
not indicated to be significantly different from another at any level. For the other indices,
however, it is not necessarily correlation in the first and last hour of the trading day that
causes the negative bias reported in Table 4.1. If we repeat this analysis for these indices,
then there is still a significant negative bias of the RV estimator for 12 (tHAC), 8 (tHAC),
respectively 11 (tMOM) indices at the one percent level. More detailed results can be found
in Table 4.7 in the Appendix that repeats the analysis of Table 4.1 when excluding the
first and last hour of the trading day.

4.3 Conclusion

As an ex-post measure of the quadratic variation of the price process, RV has become
the standard measure for volatility estimation. While RV is often used to estimate the
volatility of daily stock returns, this is only a valid approach if the log-price process is a
semimartingale or a jump-diffusion.

As shown here, there are significant correlations between intra-day returns that are
in contradiction to the semimartingale assumption and cause a considerable bias if RV is
used as an estimate for the variance of daily or weekly index returns.

While previous research on market microstructure effects has focused on frictions in
event time, these results indicate that structural effects in calendar time should be inves-
tigated further to illuminate the source of these intra-day dependencies.

Another important task for further research is the development of bias-corrected RV
estimates that combine the unbiasedness of squared returns with the low variance of RV
estimates. The most intuitive idea would be to add CCt to the daily RV estimate, i.e.,
use R̃V t. While this solves the bias problem, it brings back the noise problem since R̃V t

is almost as noisy as r2
t itself. A more promising way would be to assume that the sum

of the correlations between the intra-day returns is constant so that E[CCt/σ2
t ] = ρ. In

this case, E[RVt] and E[r2
t ] differ by the constant 1 + ρ that can be estimated by r2

t /RVt.
A similar type of estimator has been introduced in Hansen and Lunde (2005) to account
for market microstructure effects.
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Figure 4.5: Average variance scatter plot — realized library.
In analogy to Figure 4.1 with the difference that now data from Oxford-
Man Institute’s realised library (Heber et al., 2009) for 31 stock indices is
considered. Here, the RVs are calculated from 10-minute data. As before, the
squared returns are adjusted for overnight returns so that both estimates are
based on the same time horizon.
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Figure 4.6: Average variance scatter plot — 5-minute data.
In analogy to Figure 4.1 with the difference that RVs are now calculated
from 5-minute data. As before, squared returns are adjusted for overnight
returns so that both estimates are based on the same time horizon.
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Figure 4.7: Average variance scatter plot — 30-minute data.
In analogy to Figure 4.1 with the difference that RVs are now calculated
from 30-minute data. As before, squared returns are adjusted for overnight
returns such that both estimates are based on the same time horizon.
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Figure 4.8: Average variance scatter plot — realized kernel variance.
In analogy to Figure 4.5 again using the data from the Oxford-Man Insti-
tute’s realised library for the 31 indices. Now, however, the realized kernel
variance, which is robust to market microstructure noise, is depicted on the
y-axis.
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A: 15-minute Data B: Seasonally Adjusted C: 5-minute Data
RIC Country CC CJ JJ CC CJ JJ CC CJ JJ
.AEX Netherlands 3.09*** 0.56 0.29 2.32** 0.23 0.42 1.50 1.21 0.67
.ATX Austria 2.81*** 0.50 -0.47 2.49** -0.18 -0.54 3.07*** 1.18 0.72
.BFX Belgium 0.74 1.63 -0.42 0.74 1.16 -0.94 0.60 0.66 0.89
.BSESN India 2.21** -0.40 -0.58 2.42** -1.08 1.29 2.23** 3.51*** -0.71
.BVSP Brazil 1.74* 1.40 -1.35 2.32** 0.46 -1.31 1.58 1.91* -0.69
.GDAXI Germany -0.04 0.35 -0.66 0.14 -0.33 0.06 -0.53 1.60 1.29
.FCHI France 1.17 -0.15 -0.69 0.64 -0.05 0.64 1.68* 1.81* 0.72
.FTMIB Italy 4.16*** 1.19 -0.40 4.15*** 1.75* -0.54 2.19** 2.90*** 0.99
.FTSE Great Britain 1.46 0.24 -1.83* 2.60*** -0.60 -1.85* -2.70*** 1.67* 3.32***
.GSPTSE Canada 2.53** 0.05 -0.61 1.92* -0.24 -0.87 2.68*** -0.34 -1.58
.IBEX Spain 3.73*** 0.57 -0.34 3.01*** 0.76 0.41 2.80*** 2.31** 0.23
.JALSH South Africa 8.44*** 2.57** -0.96 7.96*** 2.00** -0.17 6.98*** 2.55** -1.01
.MCX Russia 2.42** 1.88* -0.62 1.71* 2.35** -0.53 1.68* 1.98** 0.46
.N225 Japan 2.71*** 1.16 1.13 1.33 0.65 1.71* 0.26 3.37*** 2.92***
.OBX Norway 5.51*** 1.56 -0.33 7.41*** -1.08 0.36 5.36*** -2.81*** -1.69*
.OMXC20 Denmark 4.31*** -1.11 -0.56 3.77*** 2.56** -0.94 4.19*** 1.89* -1.30
.OMXHPI Finland 5.85*** 2.83*** -0.95 11.05*** 1.06 0.95 4.14*** 3.94*** 0.46
.OMXS30 Sweden 2.86*** 3.77*** -1.11 2.66*** 2.49** -1.16 2.25** 1.92* -0.89
.PSI20 Portugal 3.24*** -0.49 1.03 4.19*** 0.41 1.08 0.84 0.53 0.87
.SPX United States 1.39 1.68* -2.52** 1.47 0.67 -2.43** 2.26** 3.73*** -0.62
.SSEC China 4.97*** 3.10*** 0.79 5.54*** 3.86*** 0.63 4.12*** 3.21*** 1.22
.SSMI Switzerland 2.33** 0.87 1.56 1.66* 3.88*** 1.54 0.96 2.38** 1.50

Table 4.4: MAC t-test statistics.
In analogy to Table 4.2 with MAC instead of HAC t-test statistics. Again,
Panel A is based on 15-minute data, Panel B adjusts for intra-day seasonality
and Panel C is based on 5-minute data.
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A: 15-minute Data B: Seasonally Adjusted C: 5-minute Data
RIC Country CC CJ JJ CC CJ JJ CC CJ JJ
.AEX Netherlands 2.84*** 0.32 0.81 2.85*** 1.81* 0.24 0.88 2.22** 1.09
.ATX Austria 12.13*** 1.17 -0.35 12.46*** 0.48 -0.61 13.05*** 0.77 2.67***
.BFX Belgium 1.42 1.00 -0.52 1.80* 1.61 -0.79 0.70 -0.75 1.52
.BSESN India 8.25*** -0.24 -0.96 8.75*** -0.46 0.79 6.67*** 4.31*** -2.12**
.BVSP Brazil 7.37*** 0.22 -1.74* 6.22*** 0.60 -1.54 11.63*** 2.97*** -0.51
.GDAXI Germany 0.85 1.02 0.04 0.87 -0.46 0.56 -2.41** 2.7*** 2.04**
.FCHI France 0.98 0.79 -0.67 0.49 0.55 0.39 -0.98 2.93*** 1.46
.FTMIB Italy 3.90*** 2.64*** -0.44 4.38*** 1.95* -0.68 2.15** 3.02*** 0.60
.FTSE Great Britain 3.99*** 1.44 -1.48 5.01*** -0.01 -1.86* 6.34*** 1.99** 1.27
.GSPTSE Canada 8.71*** 1.34 -0.13 8.00*** -1.39 -1.33 12.14*** 0.60 -1.13
.IBEX Spain 4.94*** 0.98 -0.28 4.15*** 1.58 0.22 4.03*** 1.71* 0.20
.JALSH South Africa 6.97*** 1.36 -0.84 6.36*** 2.46** -0.52 6.88*** 3.65*** 0.10
.MCX Russia 12.04*** 1.88* -0.68 10.79*** 3.57*** -0.68 13.38*** 4.10*** 1.33
.N225 Japan 3.87*** 1.62 2.05** 2.38** 1.63 1.70* 3.91*** 5.09*** 3.32***
.OBX Norway 4.19*** 1.89* -1.19 4.64*** 0.35 0.08 5.21*** -0.02 -1.58
.OMXC20 Denmark 6.22*** 0.43 -1.87* 4.98*** 1.45 -2.11** 6.40*** 1.52 -1.71*
.OMXHPI Finland 8.12*** 2.53** -0.61 7.82*** 1.29 0.91 9.56*** 2.67*** 3.02***
.OMXS30 Sweden 4.86*** 1.74* -1.06 5.03*** 2.35** -1.12 3.82*** 1.23 -0.86
.PSI20 Portugal 6.85*** -0.34 1.00 6.64*** 0.82 1.03 5.45*** 1.59 0.99
.SPX United States 5.66*** 2.83*** -1.81* 5.87*** 0.95 -2.35** 6.44*** 3.74*** -0.10
.SSEC China 9.43*** 2.51** 0.63 9.3*** 2.52** 0.83 13.29*** 4.95*** 1.76*
.SSMI Switzerland 4.36*** 1.16 1.46 4.36*** 3.82*** 1.48 2.63*** 2.21** 1.47

Table 4.5: MOM t-test statistics.
In analogy to Table 4.2 with MOM instead of HAC t-test statistics. Again
Panel A is based on 15-minute data, Panel B adjusts for intra-day seasonality
and Panel C is based on 5-minute data.
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RIC Country r2 R̃V r2/R̃V
√
r2 −

√
R̃V tHAC tMAC tMOM T

.AEX Netherlands 3.50 3.45 1.02 0.14 0.95 0.82 0.79 4,567

.ATX Austria 4.10 4.12 1.00 -0.04 -0.15 -0.13 0.70 4,179

.BFX Belgium 1.63 1.61 1.01 0.09 0.74 0.86 0.61 5,275

.BSESN India 4.21 4.26 0.99 -0.13 -0.97 -0.87 -0.81 4,948

.BVSP Brazil 9.15 9.28 0.99 -0.22 -0.65 -0.96 0.13 4,728

.GDAXI Germany 4.29 4.30 1.00 -0.02 -0.12 -0.11 -0.23 5,264

.FCHI France 3.52 3.53 1.00 -0.02 -0.13 -0.15 -0.15 5,272

.FTMIB Italy 6.53 6.30 1.04 0.44 1.00 0.69 1.84* 1,942

.FTSE Great Britain 3.31 3.37 0.98 -0.16 -0.71 -0.91 -0.49 5,218

.GSPTSE Canada 2.79 2.78 1.00 0.03 0.09 0.05 0.73 3,654

.IBEX Spain 4.28 4.24 1.01 0.09 0.39 0.41 -0.14 5,188

.JALSH South Africa 3.46 3.34 1.04 0.32 1.43 2.12** 1.41 3,216

.MCX Russia 7.91 7.82 1.01 0.16 0.56 0.56 1.66* 3,892

.N225 Japan 3.57 3.40 1.05 0.46 2.09** 1.87* 2.65*** 5,080

.OBX Norway 5.62 5.57 1.01 0.13 0.37 1.40 0.87 2,679

.OMXC20 Denmark 4.05 4.29 0.94 -0.58 -1.88* -1.83* -0.81 2,821

.OMXHPI Finland 4.33 4.20 1.03 0.30 1.08 1.58 2.10** 2,835

.OMXS30 Sweden 4.46 4.29 1.04 0.40 1.53 5.17*** 2.69*** 3,005

.PSI20 Portugal 2.80 2.72 1.03 0.24 1.01 1.10 1.21 4,866

.SPX United States 3.37 3.32 1.02 0.15 0.86 1.00 0.28 5,183

.SSEC China 6.15 6.02 1.02 0.26 1.76* 2.30** 2.67*** 5,019

.SSMI Switzerland 2.59 2.48 1.05 0.36 2.57** 3.41*** 1.97** 4,770

Table 4.6: Statistics on average squared return and average corrected RV.
In analogy to Table 4.1 with the difference that now the corrected RV measure
R̃V t = RVt+CCt instead of RVt is considered. Again, average squared return,
average corrected RV, and average deviation between the two are stated per
annum in percent.
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Figure 4.9: Corrected average variance time-series plots S&P 500.
In analogy to Figure 4.2 but now including R̃V = RVt + CCt. Again, both
plots depict the moving average of the previous 750 observations.
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Figure 4.10: Corrected average variance time-series plots SSEC.
In analogy to Figure 4.9 for the SSEC. Again, both plots depict the moving
average of the previous 750 observations.
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Figure 4.11: Corrected average variance time-series plots BSESN.
In analogy to Figure 4.9 for the BSESN. Again, both plots depict the
moving average of the previous 750 observations.
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Figure 4.12: Corrected average variance time-series plots DAX.
In analogy to Figure 4.9 for the DAX. Again, both plots depict the moving
average of the previous 750 observations.
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RIC Country r2 RV r2/RV
√
r̄2 −

√
RV tHAC tMAC tMOM T

.AEX Netherlands 2.01 1.93 1.04 0.28 1.28 0.83 1.58 4,567

.ATX Austria 1.92 1.28 1.49 2.52 8.44*** 2.79*** 9.04*** 4,179

.BFX Belgium 0.88 0.85 1.05 0.21 1.46 0.65 1.76* 5,274

.BSESN India 1.82 1.78 1.02 0.15 0.74 1.10 1.76* 4,947

.BVSP Brazil 3.83 3.25 1.18 1.52 3.15*** 3.28*** 5.96*** 4,728

.GDAXI Germany 2.43 2.55 0.95 -0.40 -1.97** -1.69* -2.05** 5,263

.FCHI France 2.09 2.18 0.96 -0.32 -1.68* -0.65 -0.65 5,272

.FTMIB Italy 3.20 2.89 1.11 0.91 2.71*** 1.80* 2.96*** 1,942

.FTSE Great Britain 1.42 1.40 1.01 0.07 0.46 0.29 1.58 5,218

.GSPTSE Canada 0.86 0.73 1.17 0.71 3.26*** 5.87*** 9.21*** 3,654

.IBEX Spain 2.39 2.24 1.07 0.49 2.63*** 2.44** 2.90*** 5,188

.JALSH South Africa 1.30 1.14 1.14 0.74 4.12*** 3.49*** 5.20*** 3,216

.MCX Russia 4.05 3.30 1.23 1.95 5.74*** 3.51*** 7.97*** 3,892

.N225 Japan 1.33 1.18 1.12 0.65 3.44*** 3.39*** 3.60*** 5,080

.OBX Norway 2.14 1.89 1.14 0.91 2.68*** 4.51*** 5.00*** 2,678

.OMXC20 Denmark 1.64 1.42 1.15 0.89 3.51*** 3.26*** 3.93*** 2,821

.OMXHPI Finland 2.16 1.76 1.22 1.40 4.35*** 2.83*** 6.42*** 2,835

.OMXS30 Sweden 1.97 1.86 1.06 0.39 1.52 0.71 1.19 3,005

.PSI20 Portugal 1.44 1.29 1.11 0.62 3.30*** 1.66* 2.43** 4,866

.SPX United States 1.18 1.22 0.97 -0.18 -1.16 -0.55 1.41 5,183

.SSEC China 2.14 2.08 1.03 0.22 1.01 0.68 1.73* 5,019

.SSMI Switzerland 1.46 1.37 1.07 0.39 1.51 1.67* 2.19** 4,770

Table 4.7: Statistics on average squared return and average RV – excluding
first and last hour of the trading day.
In analogy to Table 4.1 with the difference that average RV and average
squared return are now calculated without including the first and last hour
of the trading day. Again, average squared return, average RV, and average
deviation between the two are stated per annum in percent.



Chapter 5

The Memory of Beta

Co-authored with Fabian Hollstein, Marcel Prokopczuk, and Philipp Sibbertsen.

5.1 Introduction

In factor pricing models like the Capital Asset Pricing Model (CAPM) (Sharpe, 1964;
Lintner, 1965; Mossin, 1966) or the arbitrage pricing theory (APT) (Ross, 1976), the
drivers of expected returns are the stock’s sensitivities to risk factors, i.e., beta factors.
For many applications such as asset pricing, portfolio choice, capital budgeting, or risk
management, the market beta is still the single most important factor. Indeed, Graham
and Harvey (2001) document that chief financial officers of large U.S. companies primarily
rely on one-factor market model cost-of-capital forecasts. In addition, Barber et al. (2016)
and Berk and Van Binsbergen (2016) also show that investors mainly use the market model
for capital allocation decisions. However, since beta factors are not directly observable,
one needs to estimate them. For this purpose, researchers and practitioners alike typically
use past information, i.e., employ time-series models.

The degree of memory is an important determinant of the characteristics of a time
series. In an I(0), or short-memory, process (e.g., AR(p) or ARMA(p,q)), the impact of
shocks is short-lived and dies out quickly. On the other hand, for an I(1), or difference-
stationary, process like, for example, the random walk (RW), shocks persist infinitely.
Thus, any change in a variable will have an impact on all future realizations. For an I(d)
process with 0 < d < 1, shocks neither die out quickly nor persist infinitely but have a
hyperbolically decaying impact. In this case, the current value of a variable depends on
past shocks but the less so the further these shocks are past.

Researchers and practitioners estimate betas in several different ways. One approach
is to use constant beta coefficients for the full sample (e.g., Fama and French, 1992). This
relates to the most extreme I(0) case possible. However, there is a strong consensus in the
literature that betas vary over time. The usual approach to account for such time-variation
is the use of rolling windows, where the most current estimate is taken as forecast for the
next month (e.g., Fama and MacBeth, 1973; Frazzini and Pedersen, 2014). This approach
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inherently imposes infinite memory and resembles a random walk, i.e., presuming that
the best forecast for the future beta is today’s estimate.15

Numerous other studies employ explicit or implicit short-memory processes for model-
ing beta dynamics. These include, among others, AR(1) processes in Ang and Chen (2007)
and Levi and Welch (2017), an AR(1) process with further latent and exogenous variables
in Adrian and Franzoni (2009), and an ARMA(1,1) process in Pagan (1980). Blume (1971)
imposes a joint AR(1) process for the entire beta cross-section. The implications of these
differing approaches for the modeling of betas, though, vary substantially.

However, the literature on volatility modeling documents that volatility has clear long-
memory properties (Baillie et al., 1996; Bollerslev and Mikkelsen, 1996; Ding and Granger,
1996). It is thus natural to ask whether this is also true for beta. Andersen et al. (2006)
tackle this issue and conclude that betas do not exhibit long memory. However, this
conclusion is based on a relatively small sample of daily data and only considering tests
on the autocorrelation functions. In this study, we use a large dataset of high-frequency
data to comprehensively reexamine whether betas are best described by either (i) short-
memory processes, (ii) difference-stationary processes, or (iii) whether beta time series
instead show long-memory properties.

First, we use 30-minute high-frequency data to estimate each month the realized betas
for each stock included in the S&P 500 during the 1996–2015 sample period. Next, we
estimate the memory of realized beta using the two-step exact local Whittle (2ELW)
estimator by Shimotsu and Phillips (2005) and Shimotsu (2010).16 We find that betas show
consistent long-memory properties. The average estimate for the long-memory parameter
d is 0.56. Adjusting for potential structural breaks in the beta series decreases the average
d only modestly, to 0.52. For virtually all stocks, the statistical tests clearly reject both
the short-memory (d = 0) and difference-stationary (d = 1) alternatives. Thus, the vast
majority of previous studies substantially misspecifies the properties of the beta time
series.

Our findings differ considerably from those of Andersen et al. (2006). There are several
causes for this difference. First, our study has a substantially broader focus: we consider
more than 800 stocks. Second, we use high-frequency data to estimate beta factors. This
enables us to obtain more precise and less noisy estimates of beta (see also Hollstein
et al., 2019a). Noise in the beta series of Andersen et al. (2006) could potentially lead to
a downward bias in memory estimates as found by Deo and Hurvich (2001) and Arteche
(2004). In contrast, we find that changing the bandwidth in the 2ELW estimation leads
to similar estimates of the memory parameter. This suggests that the noise in our beta

15Black et al. (1992), for example, explicitly model beta dynamics with a random walk.
16In simulations, we show that, as opposed to the 2ELW estimator, the alternative, theoretically noise or
structural break robust, estimators of Hurvich et al. (2005), Iacone (2010), Frederiksen et al. (2012), and
Hou and Perron (2014) suffer from material biases in finite samples. Therefore, for our main analysis,
we use the 2ELW estimator.
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series is small. Third, using simulations, we show that for small samples, tests based on
autocorrelation functions, as opposed to direct estimates with the 2ELW estimator, have
little power to detect true long memory.

Having documented that betas exhibit distinct long-memory properties, we next ex-
amine the implications of this result for forecasting. Beta forecasts are of paramount
importance for many applications in finance. For example, capital allocation decisions,
portfolio risk management (Daniel et al., 2018), as well as firms’ cost of capital (Levi and
Welch, 2017) strongly hinge on precise forecasts of betas. We find that a FI model, which
uses only the long-memory properties for beta forecasting, yields the lowest root mean
squared error (RMSE). The FI model significantly outperforms both the short-memory
(AR(p), ARMA(p,q)) and difference-stationary (RW) alternatives for a substantial frac-
tion of the stocks. A full-fledged ARFIMA(p,d,q) alternative performs somewhat worse
than the pure FI model but better than the AR, ARMA, and RW models. We further
show that the outperformance of the FI model over alternatives gets stronger for longer-
horizon beta forecasts up to one year. Thus, incorporating the long-memory property is
highly important for obtaining good beta forecasts.

In a next step, we examine which firm characteristics are associated with different
degrees of memory in betas. We find that higher memory in beta is to some extent
linked with higher levels of a stock’s beta, book-to-market ratio, and leverage. In addition,
stocks with high memory typically have lower market capitalization. Furthermore, we
find substantial industry effects: stocks in the Energy and Manufacturing industries have
comparably high memory in beta, while stocks in the Durables, HiTec Equipment, and
Wholesale industries tend to have relatively low memory in beta. The latter industries are
and have been particularly prone to disruptions and creative destruction. The somewhat
shorter memory of the betas of these stocks is thus consistent with what one might
intuitively expect. One should note, however, that these still exhibit long memory: past
shocks also have a long-lasting impact on their betas.

Finally, we document that for high-momentum stocks, liquid stocks, and those with
high short interest or high idiosyncratic volatility, using a RW model instead of the FI
model yields particularly high errors. On the other hand, for high-beta stocks, illiquid
stocks, and those with low short interest, it is most harmful to use an ARMA(p,q) model
instead of the FI model.

We run a battery of tests to document the robustness of these results. First, we show
that the FI model also outperforms its competitors when using hedging errors instead of
the RMSE to evaluate the forecasts. Second, we also document long-memory properties
of betas for the entire Center for Research in Security Prices (CRSP) sample. For this
substantially larger sample and a much longer time period, we find that the FI model
also outperforms all alternatives. Third, we estimate the short-memory and difference-
stationary models in a state-space framework. In addition, we consider the Vasicek (1973)
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and Levi and Welch (2017) estimators, a heterogeneous AR (HAR) model, as well as a FI
model, for which we set the long-memory parameter d to 0.5 instead of estimating it. We
find that all alternative models underperform the FI model. Instead, the FI(0.5) model
performs even somewhat better than the standard FI model. Fourth, we use the alternative
estimator of the d parameter of Geweke and Porter-Hudak (1983) and obtain very similar
results. Finally, we consider alternative intra-day sampling frequencies, alternative rolling
estimation windows, and bandwidths. Our conclusions remain unchanged.

Our paper contributes to the literature on beta estimation. Hollstein and Prokopczuk
(2016) consider both I(0) and I(1) beta forecasts but do not take into account models
that account for long memory. Further contributions that deal with beta estimation in-
clude Buss and Vilkov (2012), Levi and Welch (2017), and Hollstein et al. (2019b). We
complement these studies by explicitly considering long-memory processes to make beta
forecasts. To the best of our knowledge, we are the first to show that forecasting beta with
long-memory models yields superior forecasts compared to both I(0) and I(1) models.

What is the underlying economic mechanism that creates long memory in betas?
Müller et al. (1993), LeBaron (2001), LeBaron (2006), Alfarano and Lux (2007), and
Corsi (2009) propose variations of models with heterogeneous agents. The primary mech-
anism is typically that agents incur heterogeneous planning and investment horizons. The
interaction of these agents creates long memory in volatility. Kamara et al. (2016) and
Brennan and Zhang (2018) put forward and examine a similar idea for systematic risk
factors.

We organize the remainder of this paper as follows. Section 5.2 introduces the data and
presents summary statistics. We present results about the long memory in betas in Section
5.3. In Section 5.4, we examine the impact of our findings for the forecasting of betas.
We study the economic implications of our findings in Section 5.5. Section 5.6 contains
several further analyses and robustness checks. In Section 5.7, we draw conclusions.

5.2 Data and Methodology

5.2.1 Data

Our dataset covers U.S. stocks for the sample period from January 1996 to December
2015. Following Bollerslev et al. (2016), for our main analysis we restrict our attention
to stocks that are part of the S&P 500 index at least once during our sample period.
We collect high-frequency price data from the Thomson Reuters Tick History (TRTH)
database. On average, the stocks for which high-frequency data are available represent 79
percent of the entire market capitalization of ordinary common U.S. stocks.

In order to process the final high-frequency dataset, we follow the data-cleaning steps
outlined in Barndorff-Nielsen et al. (2009). First, we use only data with a time stamp
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during the exchange trading hours, i.e., between 9:30AM and 4:00PM Eastern Standard
Time. Second, we remove recording errors in prices. To be more specific, we filter out prices
that differ by more than 10 mean absolute deviations from a rolling centered median of
50 observations. Afterwards, we assign prices to every 30-minute interval using the most
recent entry recorded that occurred at most one day before. Finally, we follow Bollerslev
et al. (2016) and supplement the TRTH data with data on stock splits and distributions
from CRSP to adjust the TRTH overnight returns.

5.2.2 Beta Estimation

Following Andersen et al. (2006), we use the realized beta estimator to obtain betas.
We utilize intra-day high-frequency log-returns, sampled at intervals of 30 minutes to
estimate17

βi,t =
∑O
τ=1 ri,τrM,τ∑O
τ=1 r

2
M,τ

,

where O is the number of high-frequency return observations during the time period under
investigation. βi,t is the beta estimate for asset i using data until the end of month t. ri,τ
and rM,τ refer to the return of asset i and the market return at time τ , respectively. For
the main analysis, we consider monthly realized beta estimates.

The choice of sampling frequency underlies a delicate trade-off (Patton and Verardo,
2012). On the one hand, using low-frequency data could result in noisy estimates of beta
(Andersen et al., 2005). On the other hand, pushing the analysis to a very high frequency
introduces a number of microstructure issues (Scholes and Williams, 1977; Epps, 1979). To
balance these effects, we focus our main analysis on a sampling frequency of 30 minutes. In
Section 5.6, we show that our main results are robust to the choice of sampling frequency.

5.2.3 Long-Memory Estimation

Our estimation of the order of integration d of a beta time series relies on the 2ELW
estimator as introduced in Shimotsu and Phillips (2005) and Shimotsu (2010). Given a

17Note that this formula resembles the expanded formula for the variance, while neglecting both the drift
term and the risk-free rate. Andersen et al. (2006) note that the effect of the drift term vanishes as the
sampling frequency increases, which effectively “annihilates” the mean. Empirically, for example, the
average 30-minute return of the S&P 500 index amounts to 0.0017 percent. The average daily risk-free
interest rate during our sample period amounts to 0.01 percent, which is equivalent to an average risk-
free rate as low as 0.0007 percent over 30-minute intervals. Thus, at this sampling frequency both the
drift and the risk-free rate can indeed be neglected.
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time series yt, we can obtain this estimator as follows. We first calculate the tapered local
Whittle estimator by Velasco (1999) which is obtained by

d̂V el = arg min
d∈(−1/2,2)

log
 3
m

m∑
j

λ2d
j I
∗
y (λj)

− 2d 3
m

m∑
j

log λj

 .
Here, I∗y (λj) is the cosine-bell tapered periodogram of the series at frequency λj with
j = 3, 6, . . . ,m. Furthermore,m is the bandwidth parameter which determines the number
of frequencies used for estimation. Larger m imply less variance of the estimates but then
the estimator will be biased in case the underlying process exhibits short-run dependencies.
We follow Shimotsu (2010) and considerm = T 0.7 in the following and report qualitatively
similar results for alternative bandwidths of m = T 0.65 and m = T 0.75 as a robustness
check in Table 5.14 in the Appendix.

Under some mild assumptions, this estimator is consistent and asymptotically normal
for d ∈ (−1/2, 2). However, as the estimator considers only every third frequency of the
periodogram its variance exceeds that of the the standard local Whittle estimator by
Robinson (1995). To account for this, the estimate is adjusted in the second step using

d̂2ELW = d̂V el −
L′(d̂V el)
L′′(d̂V el)

, where

L(d) = log
 1
m

m∑
j=1

I∆dy−µ(d)(λj)
− 2d 1

m

m∑
j=1

log λj.

Here, I∆dy−µ(d)(λj) is the periodogram of the demeaned series. Since the arithmetic mean
ȳ is inconsistent for d > 1/2, Shimotsu (2010) suggests using µ(d) = ȳ if d < 1/2,
µ(d) = y1 if d > 3/4, and µ(d) = ω(d)ȳ + (1 − ω(d))y1 with ω(d) = 1/2[1 + cos(4πd)] if
d ∈ [1/2, 3/4]. This two-step estimator then has the same limiting variance as the standard
local Whittle estimator while being consistent and asymptotically normally distributed
for d ∈ (−1/2, 2). Consequently, the 2ELW estimator can be used to distinguish short-
memory series (d = 0), stationary long-memory series (0 < d < 1/2), nonstationary
long-memory series (1/2 < d < 1), and difference-stationary series (d = 1) such as the
random walk. This is an advantage over the standard local Whittle estimator, which can
only be used for inference for −1/2 < d < 3/4 as it has a non-normal limit distribution
otherwise.
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Standard Adjusted for Breaks in Mean
¯̂
di sd(d̂i) vs. di = 0 vs. di = 1 ¯̂

di sd(d̂i) vs. di = 0 vs. di = 1
βi 0.561 0.112 0.998 0.999 0.523 0.136 0.993 0.999

Table 5.1: Average memory parameter estimates – realized beta.
Reported are average estimates of the memory parameter of realized beta
across all stocks ( ¯̂

di) using the 2ELW estimator of Shimotsu and Phillips
(2005) and Shimotsu (2010). Additionally, sd(d̂i) displays the standard devi-
ation of the estimates across stocks and vs. di = 0 and vs. di = 1 indicate
the relative frequency with which the null hypotheses d = 0 and d = 1,
respectively, are rejected at the ten percent level. The left panel reports the
results for the original series and the right panel reports results after adjusting
the series for structural breaks using the procedure of Lavielle and Moulines
(2000).

5.3 Long Memory in Beta

5.3.1 Estimation Results

The left panel of Table 5.1 shows the average estimated d across the realized beta series of
all stocks with more than 100 monthly observations (for N = 823 stocks we have sufficient
data) using the 2ELW estimator. Additionally, we present the standard deviation of the
estimates across stocks and the relative frequency with which the d estimates of different
stocks are significantly different from 0 and 1, respectively, at the ten percent level. To
illustrate the variation in d across stocks, Figure 5.1 additionally plots the corresponding
density of the estimates.

Table 5.1 reveals that the average d is approximately 0.56 and Figure 5.1 shows that
while there is some variation across stocks, most of them have a d between 0.4 and 0.8. A
formal statistical test also confirms that for more than 99 percent of the stocks it holds
that 0 < d < 1 at the ten percent level. At the one percent level this is still true for more
than 98 percent of the stocks.

As a firm’s business may change over time, some of the considered companies could
exhibit a structural break in the realized beta series. When the underlying process is
stationary, i.e., d < 1/2, but exhibits structural breaks in mean, then the local Whittle
estimator and therefore also the 2ELW estimator is positively biased (e.g., Diebold and
Inoue, 2001; Granger and Hyung, 2004). One way to account for this would be to use the
estimators by Iacone (2010) or Hou and Perron (2014), as these remain consistent when
structural breaks are present. However, as we also show in simulations in the Appendix,
these are negatively biased for sample sizes smaller than 500, making them unsuitable for
our application. To examine the robustness of our results, we therefore use an alternative
two-step procedure. We first estimate the points at which the series exhibit structural
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Figure 5.1: Density plots for memory parameter estimates.
Density plot showing the distribution of the estimated beta memory pa-
rameters across stocks. For estimation we consider the Gaussian kernel and
choose the bandwidth according to Silverman (1986).

breaks in mean using the procedure by Lavielle and Moulines (2000) and then apply the
2ELW estimator estimator for the cleaned series.18

The results are shown in the right panel of Table 5.1 and are visualized by the dashed
line in Figure 5.1. We find that the average d̂ decreases slightly to 0.523, implying that
some stocks do indeed exhibit structural breaks in their betas time series. However, the
reduction is small and for more than 99 percent of the stocks the null that d = 0 can still
be rejected.

Our results stand in contrast to those by Andersen et al. (2006), who argue that betas
are integrated of a much smaller order, often even I(0). There are two main reasons for
this difference in results.

First, Andersen et al. (2006) base their analysis on daily data which leads to noisy
estimates of beta, as also acknowledged by the authors themselves. Deo and Hurvich
(2001) and Arteche (2004) show that for perturbed series any inference on the order of
integration is biased such that the series appear to be less integrated. Our beta estimates
based on intra-day observations, on the other hand, are less noisy, implying that the true
order of integration can be better detected. To further illustrate this, one might think
of comparing the 2ELW estimates to estimates made by noise robust estimators such as

18Bai and Perron (1998) and Bai and Perron (2003) suggest estimating breaks in mean by minimizing
the residual sum of squares (RSS) of βt = µs + et, where µs is the mean in segment s with s = 1, . . . , S
and S determined by means of the BIC. Lavielle and Moulines (2000) extend this approach by adding a
penalty term to the BIC criterion which is then BIC = RSS(S)+4S log(T )T 2d−1. This leads to a more
parsimonious break point selection, as for long-memory time series the standard procedure indicates
too many break points.
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those of Sun and Phillips (2003) or Frederiksen et al. (2012). However, these are positively
biased when the sample size is smaller than 500, making them inappropriate for our setup.
As an alternative we show in Table 5.14 of the Appendix that changing the bandwidth
m in the 2ELW estimation leads to similar estimates of d. As demonstrated by Hurvich
et al. (2005), this would not be the case if the series were seriously perturbed.

Second, Andersen et al. (2006) rely on graphical investigation of the first 36 auto-
correlations instead of consistent estimation of the memory parameter. Particularly in
small samples (Andersen et al., 2006 consider T = 148) this type of inference may lead
to false conclusions. We illustrate this by means of a small simulation study for which
we report the results in Table 5.13 in the Appendix. We simulate fractionally integrated
noise, i.e., (1 − B)dyt = εt with B being the backshift operator, for memory parame-
ters of d = 0.2, 0.4, 0.6 and sample sizes of T = 100, 148, 240, 1000. The table reveals
that on average only 24 percent of the first 36 autocorrelations of an I(0.4) process with
T = 148 are significantly larger than zero. From this result one might falsely infer that
the series exhibit short memory. In contrast, the simulation results shows that the 2ELW
estimator is also unbiased in small samples, implying that the correct order of integration
can be detected. For further details on the simulation setup and results we refer to the
Appendix.19

We therefore conclude that realized betas are highly persistent and are best described
by either pure long-memory processes or a combination of break and long-memory process.

5.3.2 Beta Decomposition

Since beta is actually a combination of different components, it seems interesting to in-
vestigate which of these drives the persistence. For that purpose, consider the following
decomposition

βi,t = σi,M,tσ
−2
M,t = ρi,M,tσi,tσM,tσ

−2
M,t = ρi,M,tσi,tσ

−1
M,t, (5.1)

where σi,M,t is the realized covariance of asset i and the market M at time t, ρi,M,t their
realized correlation, and σi,t is the realized volatility. Consequently, Equation (5.1) shows
that the realized beta series evolves as the product of realized correlation, realized volatil-
ity, and the inverse of realized market volatility. Leschinski (2017) shows theoretically that
the products of stationary long-memory series with non-zero mean are integrated with
the maximum memory of the series. This would mean that one of the components needs
to exhibit the same degree of memory as realized beta, while the others could exhibit

19Table 5.13 also presents results for the estimators by Sun and Phillips (2003), Iacone (2010), Frederiksen
et al. (2012), and Hou and Perron (2014) to validate our claim that these are biased in small samples.
Additionally, the table presents results for the log-periodogram estimator which we consider in Section
5.6 as a robustness check. This estimator is also unbiased but exhibits a larger variance than the 2ELW
estimator.
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Standard Adjusted for Breaks in Mean
¯̂
di sd(d̂i) vs. di = 0 vs. di = 1 ¯̂

di sd(d̂i) vs. di = 0 vs. di = 1
ρi,M 0.559 0.096 1.000 0.999 0.557 0.099 1.000 1.000
σi 0.594 0.142 0.996 0.977 0.594 0.142 0.996 0.977
σ−1
M 0.562 - 1.000 1.000 0.561 - 1.000 1.000

Table 5.2: Average memory parameter estimates – realized correlation, real-
ized volatility, inverse of realized market volatility.
Reported are average estimates of the memory parameter of realized correla-
tion (Fisher-transformed) and volatility across all stocks (N = 823), as well
as that of the inverse of the market volatility, using the 2ELW estimator of
Shimotsu and Phillips (2005) and Shimotsu (2010). sd(d̂i) displays the stan-
dard deviation of the estimates across stocks and vs. di = 0 and vs. di = 1
indicate the relative frequency with which the null hypotheses d = 0 and
d = 1, respectively, are rejected at the ten percent level. The left panel re-
ports the results for the original series and the right panel reports results after
adjusting the series for structural breaks using the procedure of Lavielle and
Moulines (2000).

a smaller d, even d = 0. However, for approximately 70 percent of the stocks it holds
that d > 1/2, meaning that the beta series exhibit nonstationary long memory. In these
cases, it is theoretically unclear how products of such series behave. We therefore also
estimate the order of integration of realized correlation, realized volatility, and the inverse
of realized market volatility using the 2ELW estimator.20

The results are shown in Table 5.2.21 Again, we consider the possibility of structural
breaks and also report results when adjusting for these. The realized correlation and the
inverse of realized market volatility on average exhibit a d of approximately 0.56, while the
d of realized volatility is even slightly higher on average, with 0.59. Again, tests indicate
that for almost all stocks the order of integration is different from 0 and 1 for all three
components.

When adjusting for structural breaks, the d of the realized correlation decreases
slightly, while the d of realized volatility does not. Consequently, it is rather breaks in
realized correlation than breaks in volatility that drive the breaks observed in the realized
betas. When comparing the actual estimate of d to the estimate of the memory of the
realized beta series, it can be seen that all three components exhibit a slightly higher
degree of persistence. Thus, it seems that no single component, but rather all of them,
drives the persistence in realized betas.

20We obtain the realized volatility for stock i and the market (i = M) as σi,t =
√∑O

τ=1 r
2
i,τ , the realized

covariance as σi,M,t =
∑O
τ=1 ri,τrM,τ , and the realized correlation as ρi,M,t = σi,M,t

σi,tσM,t
.

21We Fisher-transform the realized correlation series to guarantee that there is no bias due to the restricted
character of the variable. If we use the original series, the results are similar.
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5.4 Forecasting

Having shown that betas have consistent long-memory properties, a natural next question
to ask is: Can we leverage the long-memory properties in betas to make better forecasts?
How big are the errors when inaccurately imposing I(0) or I(1) dynamics for forecasting
betas? Is accounting for long memory more important for long-term beta forecasts? In this
section, we set out to answer these questions. For this purpose, we compare pseudo out-
of-sample forecasts for the realized beta series of models accounting for the long-memory
characteristics with those for short-memory and difference-stationary processes.

5.4.1 Forecasting Methodology

For forecasting using long-memory models, we follow the approach proposed by Hassler
and Pohle (2019). Given the estimated order of integration of a series, we first remove
the persistence by filtering. Then, we calculate the mean of the series. In a next step,
we forecast the filtered data accounting for potential short-run dependencies. Finally, we
reintegrate the series to obtain a forecast.

In more detail, given the first T betas of stock i, we first compute the d̂-th difference

∆d̂iβi,t = (1− L)d̂iβi,t =
t−1∑
j=0

(
d̂i
j

)
(−1)jβi,t−j, with t = 1, . . . , T,

where d̂i is the estimate of the 2ELW estimator with a bandwidth of m = T 0.7. Again,
we report qualitatively similar results for m = T 0.65 and m = T 0.75 in Table 5.22 of the
Appendix.

We then set out to calculate the mean µi of the series, which is complicated by the long-
memory characteristics. As discussed above, the arithmetic mean cannot be considered
for nonstationary long-memory series as it does not exhibit a finite variance. We therefore
consider the approach by Robinson (1994) to estimate µi. For this purpose, we perform
the following regression

∆d̂iβi,t = ψi,tµi + ηi,t, with ψi,t =
t−1∑
j=0

(
d̂i
j

)
(−1)j,

where ηi,t is the error term that contains possible short-run dynamics. This allows us to
calculate the residuals

εi,t = ∆d̂iβi,t − ψi,tµ̂i,
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which are not fractionally integrated any longer but might exhibit short-run dependencies.
We can optionally account for these using an ARMA(p,q) model

εi,t = φi,1εi,t−1 + . . .+ φi,pεi,t−p + θi,1ζi,t−1 + . . .+ θi,qζi,t−q + ζi,t,

with t = max{p, q} + 1, . . . , T . Here, ζi,t is the mean-zero error term and p and q are
determined by means of the BIC with a maximum lag length of 12[(T/100)0.25]. This
allows us to forecast the residuals h steps ahead

ε̂i,T+h = φ̂i,1ε̂i,T+h−1 + . . .+ φ̂i,pε̂i,T+h−p + θ̂i,1ζ̂i,T+h−1 + . . .+ θ̂i,q ζ̂i,T+h−q.

For ε̂i,T+h, the hat indicates that it is a forecast and h denotes the forecast window in
months. In a case without short-run dependencies we simply set ε̂i,T+h = 0. We then
reintegrate the series to account for the long-memory characteristics by calculating Ẑi,t =
∆−d̂i ε̂i,t for t = 1, . . . , T + h, respectively t = max{p, q} + 1, . . . , T + h. Forecasts of the
original sequence then evolve as

β̂i,T+h = µi + Ẑi,T+h.

This approach allows us to forecast stationary as well as nonstationary series while
also accounting for potential short-run dynamics. We denote the model with short-run
components by ARFIMA in the following, while the model without short-run dependencies
is referred to as FI.

As difference-stationary and short-memory competitor models, we consider the random
walk model, for which β̂T+h = βT , as well as AR(p) and ARMA(p,q) models, respectively.
We estimate the latter models based on

βi,t = ai + φi,1βi,t−1 + . . .+ φi,pβi,t−p + θi,1ei,t−1 + . . .+ θi,qei,t−q + ei,t,

with t = max{p, q} + 1, . . . , T . For the AR model we set θi,1 = . . . = θi,q = 0. Again, we
choose p and q according to the BIC with a maximum lag length of 12[(T/100)0.25].

To examine the out-of-sample forecast accuracy of the different approaches, we perform
the analysis using the RMSE, a loss function commonly applied in the literature

RMSEi,h =

√√√√ 1
Υ

Υ∑
T=1

(βi,T+h − β̂i,T+h)2,

where Υ is the number of out-of-sample observations of realized and predicted betas
of one stock. βi,T+h is the realized beta and β̂i,T+h denotes a beta forecast. The RMSE
criterion is suitable since it is robust to the presence of (mean-zero) noise in the evaluation
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RW AR ARMA FI ARFIMA
RMSE 0.3149 0.2942 0.2875 0.2792 0.2800
Best 4 24 123 374 164
vs RW 0 272 344 560 518
vs AR 3 0 177 305 307
vs ARMA 1 8 0 186 179
vs FI 0 3 14 0 7
vs ARFIMA 0 2 13 24 0
N 689 689 689 689 689

Table 5.3: Forecast results.
This table illustrates the forecast performance of the models for one-month
beta forecasts from a rolling estimation window of 100 observations. The
first row shows average RMSEs of different models across all stocks. The row
“Best” indicates the number of times a model achieves the lowest RMSE
for a certain stock. Furthermore, the rows denoted by “vs. X” correspond to
modified DM tests (Harvey et al., 1997), providing the number of times the
forecasts of the column-model are significantly better than the forecasts of the
row-model at the ten percent level. Finally, N is the number of investigated
stocks. To allow for valid inference, we exclude all stocks for which we have
less than 50 forecasts.

proxy, while other commonly employed loss functions are not (Patton, 2011).22 We test
for significance in forecast differences using the modified Diebold–Mariano (DM) test
proposed by Harvey et al. (1997).

5.4.2 Forecast Results

The results of the various beta forecasts can be found in Table 5.3. We use a forecast
window of one month and a rolling estimation window of 100 observations. The table
5.3 presents the average RMSE across all stocks and the number of times the model
yields the lowest RMSE when forecasting the realized beta of a stock. The remainder
of the table indicates the number of stocks for which the forecasts of the column-model
are significantly better than the forecasts of the row-model at the ten percent level. To
allow for valid inference, we only consider stocks for which we have at least 50 forecasts
(N = 689 stocks fulfill this criterion).

Table 5.3 reveals that the FI model performs best across all considered models. It has
the lowest RMSE on average and is the model with the lowest RMSE for more than 54
percent of the stocks. Second best is the ARFIMA model, which is the best model for 24
percent of the stocks. The models that do not account for the long-memory characteristics
of the beta time series, on the other hand, are only the most accurate for a combined
22 percent of the stocks. The outperformance of the long-memory models is often also

22The results when using the mean absolute error criterion instead of the RMSE are qualitatively similar.
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RW AR ARMA FI ARFIMA
Bias 0.0000 0.0035 0.0023 0.0009 0.0009
Inefficiency 0.0290 0.0083 0.0062 0.0047 0.0048
Random Error 0.0910 0.0947 0.0922 0.0879 0.0887

Table 5.4: MSE decomposition.
This table shows the Mincer and Zarnowitz (1969) decomposition of the MSE
as of Equation (5.2). The MSE is based on one-month forecasts of the realized
beta series performed with a rolling estimation window of 100 observations.
All numbers represent the average across all stocks for which at least 50
forecasts exist.

statistically significant. Compared to the RW forecasts, the FI forecasts are significantly
better for 81 percent of the stocks; compared to AR and ARMA forecasts this number
is 44 and 27 percent, respectively. On the other hand, the forecasts by the RW, AR,
and ARMA models are almost never significantly better than those of the FI model.
Consequently, we can conclude that accounting for the long-run dependence substantially
improves forecasts for realized betas.

Our finding that the FI model yields significantly better forecasts than the RW model
for almost all stocks has broad implications. Hollstein et al. (2019a) show that a RW
model outperforms other predictors based on daily data as well as the Buss and Vilkov
(2012) option-implied beta. Thus, the FI forecasts appear to be preferable not only to
other time-series models but also to a broader set of potential estimators.23

To further investigate the causes of the differential forecast performance of the models,
we follow Mincer and Zarnowitz (1969) and decompose the mean squared error (MSE) in
the following fashion

MSEi = (β̄i − ¯̂
βi)2︸ ︷︷ ︸

bias

+ (1− bi)2σ2(β̂i)︸ ︷︷ ︸
inefficiency

+ (1− ρ2
i )σ2(βi)︸ ︷︷ ︸

random error

. (5.2)

bi is the slope coefficient of the regression βi = ai + biβ̂i + ei and ρ2
i is the coefficient of

determination of this regression. A bias indicates that the model is misspecified and the
prediction is, on average, different from the realization. Inefficiency represents a tendency
of an estimator to systematically yield positive forecast errors for low values and negative
forecast errors for high values or vice versa. The remaining random forecast errors are
unrelated to the predictions and realizations.

Table 5.4 presents the results of the MSE decomposition. Again, the numbers represent
the averages across all considered stocks. We find that the RW model is on average
unbiased but highly inefficient. Thus, particularly for high- and low-beta stocks, the RW
approach generates sizable measurement errors. For the AR and ARMA models, the bias
23In untabulated results, we confirm this also empirically: the FI model outperforms estimators based on
daily return data as well as option-implied estimators.
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component is moderately larger than that of the RW model. Thus, these models appear
to be somewhat misspecified. On the other hand, the inefficiency is dramatically smaller
compared to the RWmodel. The random error component, which is the largest component
for all models, is slightly higher for the AR and ARMA models than for the RW model.

The models that account for long memory are approximately unbiased and yield a low
inefficiency on average. In particular the FI model yields the lowest overall inefficiency
component, which indicates that the model does well in particular for stocks with the most
extreme betas. Finally, the FI model also yields the lowest random error. Both inefficiency
and random error are slightly higher for the ARFIMA model. Thus, accounting for short-
run dynamics in addition to long memory on average rather adds noise than helping to
capture important parts of the variation in betas.

5.4.3 Longer Forecast Horizons

For many applications, such as capital budgeting decisions, managers typically plan over
longer periods. Thus, they do not only need one-month beta forecasts but also forecasts
over several months. Therefore, in this section, we also consider forecasts for three-month,
six-month, and twelve-month horizons.

Table 5.5 presents the results for these forecast horizons, the table shows that the
outperformance of the FI model forecasts persists and gets even stronger for horizons
longer than one month. For all considered horizons, the forecasts by the FI model have
the lowest average RMSE and are the best for more than half of the stocks. It can further
be seen that the absolute difference in RMSE between FI forecasts and RW, AR, and
ARMA forecasts increases in the forecast horizon. Consequently, it is even more beneficial
to consider long-memory models when forecasting for horizons longer than one month.

Not only is the magnitude of the forecast error loss differentials larger, but also is this
differential statistically significant more often for longer horizons. For the three-month
forecast horizon, the FI forecasts are significantly better than the RW, AR, and ARMA
forecasts for 84, 52, and 30 percent of the stocks, respectively. These numbers are only
slightly smaller for the twelve-month horizons with 73, 39, and 27 percent, respectively.
In addition, the forecasts of the FI model are still barely ever outperformed by forecasts
of models that do not account for the long-run dependencies. This is the case for less than
3 percent of the stocks, independently of the forecasts horizon.

To summarize, using models that account for long-run dependencies, instead of short-
memory or difference-stationary alternatives, does not only improve one-month forecasts
but also forecasts for longer horizons up to one year.
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RW AR ARMA FI ARFIMA
Three-Month Forecast Horizon

RMSE 0.2918 0.2753 0.2589 0.2377 0.2417
Best 2 27 102 439 115
vs RW 0 184 303 572 617
vs AR 12 0 255 359 260
vs ARMA 4 7 0 210 130
vs FI 0 6 11 0 2
vs ARFIMA 0 9 27 149 0
N 685 685 685 685 685

Six-Month Forecast Horizon
RMSE 0.2955 0.2882 0.2616 0.2286 0.2367
Best 3 28 81 451 115
vs RW 0 146 274 554 614
vs AR 29 0 240 334 200
vs ARMA 3 2 0 193 77
vs FI 0 3 12 0 0
vs ARFIMA 0 16 41 208 0
N 678 678 678 678 678

Twelve-Month Forecast Horizon
RMSE 0.3075 0.3093 0.2766 0.2331 0.2451
Best 2 39 56 419 138
vs RW 0 139 236 478 588
vs AR 27 0 161 256 133
vs ARMA 11 4 0 177 61
vs FI 1 5 12 0 3
vs ARFIMA 0 22 45 212 0
N 654 654 654 654 654

Table 5.5: Forecast results – longer horizons.
In analogy to Table 5.3, this table illustrates the forecast performance of the
models for three-, six-, and twelve-month beta forecasts from a rolling esti-
mation window of 100 observations. The first row shows average RMSEs of
different models across all stocks. The row “Best” indicates the number of
times a model achieves the lowest RMSE for a certain stock. Furthermore,
the rows denoted by “vs. X” correspond to modified DM tests (Harvey et al.,
1997), providing the number of times the forecasts of the column-model are
significantly better than the forecasts of the row-model at the ten percent
level. Finally, N is the number of investigated stocks. To allow for valid in-
ference, we exclude all stocks for which we have less than 50 forecasts.
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5.5 Economic Implications

5.5.1 The Memory in Beta and Stock Characteristics

We continue the empirical analysis by examining to what extent the memory in beta
factors relates to different firm characteristics. There are various candidate variables that
might explain part of the difference in a stock’s beta-memory. It is, for example, possible
that the beta estimates of small and illiquid stocks contain more random noise, which
has zero autocorrelation. Furthermore, it is possible that growth stocks, firms that invest
more, or those that are most profitable change more frequently, which might make past
shocks to their systematic risk die out more quickly. On the other hand, it is possible
that current loser stocks or firms whose stocks experience high shorting activity are more
prone to change their business models, which likely changes their systematic risk. Finally,
there may be industry effects: for some industries, the business models, and with that the
constituent firms’ systematic risk, may be more persistent, while others experience more
frequent changes.

For this analysis, we sort the stocks into five portfolios (P1 up to P5), based on their es-
timates for d. We do this at the end of each month using d-estimates based on a 100-month
rolling window. For each portfolio we record the average of several firm characteristics at
the end of that month. Subsequently, we examine whether there are systematic differ-
ences in the average firm characteristics of the different d-sorted portfolios. The variable
definitions are found in the Appendix.

We present the results in Table 5.6. The quintile portfolio of the stocks with the
lowest ds (P1) on average has a memory parameter of 0.35 while that of the stocks with
the highest ds has a d of 0.73 on average. These averages are far away from both 0 and
1. This result is consistent with our previous finding that the betas of virtually all stocks
have long-memory properties. Naturally, the difference between the memory parameters
of portfolios 5 and 1 is highly statistically significant.

The second variable of interest is beta itself. We find that the average beta of high-
beta-memory stocks is significantly higher than that of low-beta-memory stocks. The
relation appears to be monotonic but overall economically not too strong. For the natural
logarithm of a stock’s market capitalization, we make an opposite observation. The stocks
with the longest memory in beta appear to be somewhat smaller than those with the
shortest memory in beta.

The average BtM ratio of the stocks in P1 is significantly smaller than that of P5. As
the firms grow, the past shocks to their beta factors are essentially to those of different
firms and their impact seems to die out more quickly. On the other hand, we detect no
relation between the beta-memory and firms’ investment, profitability, momentum, bid-
ask spread, turnover, idiosyncratic volatility, idiosyncratic skewness, and short interest.
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P1 P2 P3 P4 P5 t-stat
ddd 0.3494 0.4789 0.5491 0.6173 0.7291 22.9
βββ 0.9326 0.9747 1.0219 1.0411 1.1182 3.02
log(Market Cap) 16.140 16.154 16.064 16.073 15.983 -2.40
BtM 0.4906 0.4972 0.4552 0.5334 0.5916 3.43
Investment 0.1073 0.0868 0.0880 0.1031 0.1033 -0.46
Profitability 0.2512 0.3398 -3.9065 -2.1864 -0.3117 -0.89
Momentum 0.1444 0.1252 0.1357 0.1368 0.1641 0.82
BAS 0.0008 0.0008 0.0008 0.0008 0.0009 1.52
Turnover 0.2339 0.2377 0.2444 0.2380 0.2503 0.90
iVol 0.0133 0.0134 0.0136 0.0134 0.0141 1.13
iSkew 0.1077 0.1169 0.1099 0.1048 0.1183 1.00
Short Interest 0.0397 0.0386 0.0402 0.0379 0.0374 -0.57
Leverage 0.5803 0.5775 0.5831 0.5759 0.6084 1.91
Age 34.330 36.799 36.839 36.302 35.992 0.75

Table 5.6: Portfolio sorts by estimated d.
At the end of each month, we sort the stocks in our sample based on the d-
parameters estimated with the 2ELW estimator using a rolling window of 100
observations. Sorting the stocks into quintile portfolios, we save each portfo-
lio’s average of the firm characteristics at the end of the respective months.
The main body of the table shows the average of the different firm character-
istics over time. t-stat denotes the t-statistic of a test whether the firm charac-
teristics of portfolio P5 and P1 are equal, with the standard errors calculated
with the heteroscedasticity and autocorrelation robust approach by Andrews
(1991), using a quadratic spectral density and data-driven bandwidth selec-
tion. Characteristics for which this difference is statistically significant at ten
percent are printed in bold.

Low-d stocks on average exhibit lower leverage than high-d stocks. Age appears to be
unrelated to the memory in betas.

Finally, we turn the focus on the stocks’ industries. We present the results in Table
5.7. Stocks in the Energy and Manufacturing industries have on average the highest ds.
Thus, these traditional industries tend to have higher persistence in their systematic risk
than many others. For the Durables, HiTec Equipment, and Wholesale industries, the
opposite holds true. These industries have in part been particularly prone to disruptions
and creative destruction during the recent two decades. Thus, many of these firms and/or
their market environment have experienced substantial changes and past shocks to their
systematic risk die out more quickly.

In Table 5.15 of the Appendix, we also present the results of portfolios sorted on beta.
We confirm that the relation of beta and beta-memory is on average positive but weakly
so. There is very little difference in the d-parameters of the first three beta quintiles. Only
for the two quintiles of the highest betas is the d estimate somewhat larger.
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¯̂
d t-stat

Durables 0.5188 -1.70
Energy 0.6013 3.64
Healthcare 0.5529 -0.58
HiTec Equipment 0.5243 -3.85
Manufacturing 0.6079 4.77
NonDurables 0.5642 0.20
Other 0.5915 3.19
Telephone 0.5209 -1.40
Utilities 0.5489 -0.82
Wholesale 0.5036 -5.12

Table 5.7: Average memory estimate by industry.
The t-stat corresponds to t-statistics testing the null that the average d of
the industry equals the average across all industries. Standard errors are cal-
culated with the heteroscedasticity and autocorrelation robust approach by
Andrews (1991), using a quadratic spectral density and data-driven band-
width selection. Industries for which the average d is significantly higher or
lower than this value at the ten percent level are printed in bold.

5.5.2 The Determinants of Forecast Errors

Having documented that accounting for long memory in betas substantially improves the
forecasts, we next analyze for which stocks one makes the biggest mistakes when using
short-memory processes or those that impose infinite memory. To that end, we regress
the difference in absolute forecast errors on different firm characteristics. In more detail,
we perform the following regressions

abs(β̂RWi,t − βi,t)− abs(β̂FIi,t − βi,t) = a+ bxi,t−1 + ei,t,

abs(β̂ARMA
i,t − βi,t)− abs(β̂FIi,t − βi,t) = a+ bxi,t−1 + ei,t.

Here, β̂i,t are the forecasts made by the RW, ARMA, and FI models as presented in
Section 5.4.2 and xi,t−1 contains the set of explanatory variables lagged by one period.

We present the result for the forecast error differential between the RW model and
the FI model in Table 5.8 and that between the ARMA(p,q) model and the FI model in
Table 5.9.

Starting with the errors made when inadequately imposing a difference-stationary
RW model in Table 5.8, we first obtain an economically large and statistically highly
significant intercept term. This echoes our previous findings that the FI model yields
substantially lower forecast errors on average than the RW model. Second, consistent with
what one would intuitively expect, the slope coefficient on d is highly significantly negative.
Thus, the higher the memory in betas, the less inadequate becomes the RW assumption.
However, a one-standard-deviation increase in d from its average, while keeping all else
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coef se t-stat p-value
Intercept 0.0253 0.0014 18.26 0.0000
ddd -0.0034 0.0007 -5.28 0.0000
β 0.0013 0.0014 0.94 0.3200
log(Market Cap) 0.0006 0.0008 0.73 0.4730
BtM 0.0013 0.0037 0.34 0.7010
Investment 0.0000 0.0006 0.03 0.9790
Profitability 0.0000 0.0001 0.29 0.7200
Momentum 0.0021 0.0009 2.36 0.0170
BAS -0.0071 0.0038 -1.84 0.0630
Turnover -0.0039 0.0013 -2.93 0.0050
iVol 0.0127 0.0016 7.93 0.0000
iSkew -0.0003 0.0006 -0.47 0.6420
Short Interest 0.0020 0.0012 1.71 0.0870
Leverage 0.0013 0.0008 1.71 0.0870
Age -0.0005 0.0005 -1.01 0.3120
Durables 0.0008 0.0047 0.17 0.8620
Energy -0.0030 0.0023 -1.33 0.1710
Healthcare 0.0010 0.0018 0.55 0.5600
HiTec Equipment -0.0002 0.0021 -0.09 0.9160
Manufacturing -0.0015 0.0017 -0.90 0.3540
NonDurables 0.0009 0.0023 0.40 0.6680
Telephone -0.0069 0.0030 -2.28 0.0230
Utilities 0.0030 0.0232 0.13 0.6500
Wholesale 0.0007 0.0018 0.39 0.6590

Table 5.8: Forecast error regressions – RW.
In this table, we run regressions of the difference in absolute forecast errors
from the RW and FI models on different firm characteristics variables. Firm
characteristics (except for the dummy variables) are standardized to have zero
mean and a volatility of one. The standard errors (se) are bootstrapped using
the procedure of Cameron et al. (2008). t-stat and p-value denote the corre-
sponding t-statistics and p-values, respectively. Characteristics which yield a
statistically significant regression coefficient (coef) at ten percent are printed
in bold.

equal, reduces the average forecast error differential (implied by the intercept term) by
only one tenth.

The level of the idiosyncratic volatility has a positive effect on the forecast error
differential. This effect is economically large: for an idiosyncratic volatility two-standard-
deviation below the average, all else being equal, the forecast error of RW and FI processes
are approximately the same. Thus, for high volatility stocks a random walk assumption
appears to be less suitable.

We further observe that a one-standard-deviation increase in momentum, short inter-
est, and leverage increases the forecast error differential by on average 0.21, 0.20, and 0.13
percentage points, respectively. It is well known that betas of stocks with extreme momen-
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coef se t-stat p-value
Intercept 0.0103 0.0009 11.13 0.0000
d -0.0005 0.0005 -0.98 0.3260
βββ 0.0059 0.0011 5.41 0.0000
log(Market Cap) -0.0004 0.0005 -0.65 0.5250
BtM 0.0003 0.0033 0.10 0.8960
Investment 0.0007 0.0007 1.00 0.3020
Profitability -0.0002 0.0000 -4.90 0.0000
Momentum -0.0005 0.0005 -1.03 0.3030
BAS 0.0040 0.0018 2.21 0.0310
Turnover 0.0016 0.0011 1.46 0.1490
iVol -0.0004 0.0009 -0.41 0.6770
iSkew -0.0002 0.0003 -0.59 0.5540
Short Interest -0.0015 0.0007 -2.23 0.0260
Leverage -0.0006 0.0006 -0.89 0.3590
Age -0.0014 0.0004 -3.28 0.0010
Durables -0.0025 0.0021 -1.21 0.2210
Energy 0.0017 0.0022 0.78 0.3870
Healthcare 0.0005 0.0017 0.27 0.7730
HiTec Equipment 0.0003 0.0014 0.23 0.8220
Manufacturing -0.0010 0.0015 -0.65 0.5310
NonDurables 0.0014 0.0020 0.69 0.5210
Telephone -0.0036 0.0043 -0.83 0.4780
Utilities -0.0056 0.0059 -0.95 0.3760
Wholesale 0.0006 0.0013 0.47 0.6380

Table 5.9: Forecast error regressions – ARMA.
In this table, we run regressions of the difference in absolute forecast errors
from the ARMA and FI models on different firm characteristics variables.
Firm characteristics (except for the dummy variables) are standardized to
have zero mean and a volatility of one. The standard errors (se) are boot-
strapped using the procedure of Cameron et al. (2008). t-stat and p-value
denote the corresponding t-statistics and p-values, respectively. Characteris-
tics which yield a statistically significant regression coefficient (coef) at ten
percent are printed in bold.

tum are highly time-varying (Grundy and Martin, 2001). Similarly, firms whose stocks
exhibit very high short interest are also prone to substantial changes in systematic risk.
For these stocks, in particular, it is therefore advisable to rely on the long-range depen-
dencies when making forecasts. On the other hand, the bid-ask spread and the turnover
have a negative impact on the loss differential. The beta of highly liquid stocks should
therefore be predicted with long-memory models rather than the random walk.

In Table 5.9, we analyze the determinants of the ARMA and FI model error differen-
tials. Consistent with our previous results, we also detect a strongly statistically significant
intercept term of 0.0103. This intercept term is substantially smaller than that for the
RW–FI forecast error differential.
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The forecast error differential increases with beta. The impact of beta on these forecast
error differentials is economically large: for betas two-standard-deviation below the aver-
age, all else being equal, the forecast error of ARMA and FI processes are approximately
the same.

The profitability, short interest, and age all have a significant negative impact on the
forecast error differential. Smaller firms and firms with higher short interest might be
more prone to short-run changes in betas. Thus, the short-memory models perform a
little less badly for these. The impact of each of these variables, however, is economically
substantially smaller than that of the level of beta. The bid-ask spread has a positive
impact on the forecast error differential. Thus, for the rather illiquid stocks the betas
might contain more noise. The short-memory models might pick up too much of this
noise to generate reliable forecasts.

5.6 Additional Analyses and Robustness

5.6.1 Hedging Errors

To account for the possibility that the ex-post realized betas are measured with error,
we follow Liu et al. (2018) and examine the out-of-sample hedging errors of our main
approaches. We compute the hedging error for each stock as

Hi,T+1 = (ri,T+1 − rf,T+1)− β̂i,T+1(rM,T+1 − rf,T+1).

ri,T+1 is the return of stock i in month T + 1. rf,T+1 and rM,T+1 are the risk-free rate
and the return on the market portfolio over the same horizon. We use one-month returns.
β̂i,T+1 is the forecast for beta using data up to month T . Liu et al. (2018) show that under
certain assumptions the hedging error variance ratio var(Hi,T+1)

var(rM,T+1−rf,T+1) is approximately
equal to the mean squared error relative to the true realized beta plus a term that is
constant for all beta forecasts. We follow Liu et al. (2018) and estimate the variance
ratios using rolling five-year windows to account for the possibility that the variances in
the numerator and denominator change over time. We report the average ratio over time.

We present the results in Table 5.10. These are consistent with our previous results
relying on the RMSE. The average hedging error of the FI-model forecasts is lowest. In
particular, the average hedging error is significantly lower than both that of the difference-
stationary RW and the short-memory ARMA models.

5.6.2 Entire CRSP Dataset

In our main analysis, based on the need to have high-frequency data for liquid instruments,
we restrict our dataset to the S&P 500 firms and start in 1996. In this section, we examine
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RW AR ARMA FI ARFIMA
Mean 4.3890 4.3765 4.3699 4.3582 4.3640
∆RW 0.0000 −0.0124∗∗ −0.0191∗∗∗ −0.0308∗∗∗ −0.0250∗∗∗

(-2.0180) (-2.9422) (-5.1588) (-3.4989)
∆ARMA 0.0191∗∗∗ 0.0067 0.0000 −0.0117∗∗∗ -0.0059

(2.9422) (1.5468) (-3.5983) (-0.9233)

Table 5.10: Hedging errors.
This table presents the ratio of hedging error variances to the market
variance for different approaches. For each stock, estimator, and month,
we obtain the hedging error over the next month as (ri,T+1 − rf,T+1) −
β̂i,T+1(rM,T+1−rf,T+1). We estimate the hedging error and market variances
using rolling five-year windows and use the average ratio over time. The
table presents the average ratio of the hedging error variance to the mar-
ket variance across all stocks. Additionally, ∆RW and ∆ARMA report the
differences between the hedging errors of RW and ARMA, respectively, and
the other models. In parentheses, we present the robust Andrews (1991)
t-statistics, using a quadratic spectral density and data-driven bandwidth
selection, of a test for equal average hedging errors. *, **, and *** indicate
significance at the ten percent, five percent, and one percent level, respec-
tively.

Standard Adjusted for Breaks in Mean
¯̂
di sd(d̂i) vs. di = 0 vs. di = 1 ¯̂

di sd(d̂i) vs. di = 0 vs. di = 1
βi 0.382 0.157 0.916 0.999 0.330 0.181 0.841 0.999

Table 5.11: Average memory parameter estimates – entire CRSP sample.
In analogy to Table 5.1, this table presents average estimates of the memory
parameter of realized beta across all stocks ( ¯̂

di) using the 2ELW estimator
of Shimotsu and Phillips (2005) and Shimotsu (2010). The results are for
the entire CRSP sample (3,153 stocks) and quarterly betas calculated from
daily data. sd(d̂i) displays the standard deviation of the estimates across
stocks and vs. di = 0 and vs. di = 1 indicate the relative frequency with
which the null hypotheses d = 0 and d = 1, respectively, are rejected at the
ten percent level. The left panel reports the results for the original series
and the right panel reports results after adjusting the series for structural
breaks using the procedure of Lavielle and Moulines (2000).

whether the results found for this sample can also be generalized to a broader sample of
stocks and for a longer sample period. We extend our dataset to consider the entire CRSP
dataset starting from 1926. As intra-day observations are only available from 1996 onward,
we calculate betas from daily returns. Since monthly beta estimates based on daily returns
are too noisy, we follow Andersen et al. (2006) and consider quarterly estimates instead.24

24Since the zero-approximation to the risk-free rate becomes less reliable for daily returns, we deviate
from the description in Equation (5.1) by using excess returns to estimate realized betas based on daily
data.
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RW AR ARMA FI ARFIMA
RMSE 0.5654 0.4981 0.4881 0.4720 0.4724
Best 27 82 157 821 282
vs RW 0 721 802 1104 1052
vs AR 29 0 345 656 701
vs ARMA 15 38 0 458 480
vs FI 0 9 27 0 28
vs ARFIMA 1 7 25 27 0
N 1369 1369 1369 1369 1369

Table 5.12: Forecast results – entire CRSP sample.
In analogy to Table 5.3, this table illustrates the forecast performance of
the models for quarterly beta forecasts, based on daily data, from a rolling
estimation window of 100 observations. The first row shows average RMSEs
of different models across all stocks. The row “Best” indicates the number of
times a model achieves the lowest RMSE for a certain stock. Furthermore,
the rows denoted by “vs. X” correspond to modified DM tests (Harvey et al.,
1997), providing the number of times the forecasts of the column-model are
significantly better than the forecasts of the row-model at the ten percent
level. Finally, N is the number of investigated stocks. To allow for valid
inference, we exclude all stocks for which we have less than 50 forecasts.

Table 5.11 shows the estimated order of integration of the series averaged across all
stocks for which more than 100 observations are available (N = 3, 153). Again, we present
results when investigating the original series as well as when adjusting for structural
breaks.

We find that the average d estimate decreases from 0.56 to 0.38 when considering the
expanded sample of daily returns. This also holds when only considering the same stocks
as in our main analysis, for which the average d estimate is now 0.36, and even when
considering the same stocks and same time period as for our main analysis, where the
average d is 0.42. Consequently, the observed reduction in d is mainly due to the change
of the recording frequency and not to the expanded set of stocks and time period. As
already discussed in Section 5.3, decreasing the recording frequency increases the level
of noise in the realized beta time series. This then leads to a negative bias of the 2ELW
estimator, which explains the reduction of the memory estimate.25

Even though the d estimates are negatively biased, more than 84 percent of the stocks
still have a d that is significantly greater than zero. The forecast results displayed in
Table 5.12 also echo this finding. It can be seen that the FI model still outperforms all
models that do not account for the long-range dependencies. Its forecasts obtain the lowest
average RMSE and are the most accurate for almost half of the stocks. Forecasts by RW,

25In Section 5.6.5, we explore this issue further by considering alternative intra-day sampling frequencies
of 15-minutes and 75-minutes. There, we already find that increased noise in realized betas derived
from 75-minute data biases the d estimates negatively.
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AR, or ARMA models, on the other hand, are only the most accurate for a combined 19
percent of the stocks. The forecast of these models significantly outperform FI forecasts
for less than three percent of the stocks in total. We should further note that as the FI
model relies on a biased estimate of d, its performance would likely be even better if we
accounted for this bias by adding a constant to each d estimate or even fixed d at a certain
level for all stocks.

5.6.3 Alternative Models

Due to its great importance, there are numerous approaches and models to forecast beta.
For the ease of presentation in our main analysis, we compare the performance of the
long-memory models only to the performance of the most popular competitors, RW, AR,
and ARMA. In this section we now consider other approaches that have been proposed
in the literature.

Andersen et al. (2005) consider an AR(1) process to model beta in a state-space
framework. Hollstein and Prokopczuk (2016) investigate the forecast performance of RW,
AR(1), and ARMA(1,1) models in a state-space framework and find that the RW model
performs somewhat better than the AR(1) and ARMA(1,1) models. Thus, in this section
we also consider the forecasts from RW, AR(1), and ARMA(1,1) models when estimated
as a state-space system. The measurement equation for all three models is

βi,t = β̃i,t + ξi,t,

where β̃i,t is the unobserved true beta. It evolves according to one of the following tran-
sition equations for the different models

β̃RWi,t = β̃i,t−1 + vi,t,

β̃ARi,t = γi + φiβ̃i,t−1 + vi,t, and

β̃ARMA
i,t = γi + φiβ̃i,t−1 + θivi,t−1 + vi,t.

We estimate those models using the Kalman filter (Pagan, 1980; Black et al., 1992) and
then perform forecasts as for the standard models.

To the best of our knowledge, long-memory models in a state-space framework have
only been investigated for the stationary d < 0.5 case (Chan and Palma, 1998; Dissanayake
et al., 2016). As we investigate mostly nonstationary time series here, these models are
likely inappropriate. As an alternative, we consider a ARFIMA model as before, but
with the short-run dynamics now estimated with an ARMA(1,1) model in a state-space
framework.
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Another popular way to model and forecast long-memory time series is to use the
HAR model by Corsi (2009). For the realized beta series, it evolves as

βi,t = ai + φ1,iβi,t−1 + φ2,i

5

5∑
j=1

βi,t−j + φ3,i

22

22∑
j=1

βi,t−j + ei,t,

where ei,t is a mean-zero error term. While the HAR model does not formally belong to
the class of long-memory models, when applied to return volatility time series, this model
has been shown to be able to reproduce long-memory patterns. We therefore also consider
forecasts made by this model in the following.

Hassler and Pohle (2019) argue that although local Whittle-based approaches yield
better results than other estimators, they still have a large variance. Moreover, as discussed
above, the estimators are negatively biased when the degree of noise in the series becomes
large. These considerations lead the authors to believe that it might be beneficial for
forecasting to fix d at a certain value instead of estimating it. This eliminates estimation
uncertainty, while the model is still able to capture the long-memory characteristics of
the series. Based on the results of Section 5.3, we fix d to 0.5. We refer to this model as
FI(0.5) in the following.

Finally, we also consider two popular shrinkage approaches. First, we apply the Vasicek
(1973) estimator as modification to the RW forecast. We obtain a posterior beta by
combining the RW forecast with a prior (bj,t) in the following way

βRWV
i,t =

s2
bi,t

σ2
βi,t

+ s2
bi,t

βi,t +
σ2
βi,t

σ2
βi,t

+ s2
bi,t

bi,t.

σ2
βi,t

and s2
bi,t

are the squared standard errors of the beta estimate and the prior, respec-
tively. Hence, the degree of shrinkage depends on the relative precision of the historical
estimate and the prior. As prior, we use the cross-sectional average beta, as suggested by
Vasicek (1973).

Levi and Welch (2017) argue that a simple Vasicek (1973) shrinkage is not sufficient
to create good forecasts for beta. They suggest further shrinkage using

βRWLW
i,t = 0.75βRWV

i,t + 0.25βtarget
i ,

where βtarget
i is set to 0.5 for the smallest market capitalization tercile, to 0.7 for the

middle tercile, and to 0.9 for the highest market capitalization tercile. One has to bear
in mind, though, that Levi and Welch (2017) optimize this double-shrinkage for betas
based on daily return data. Since we rely on a highly liquid subset of stocks and use more
precise estimates based on high-frequency data, it is likely that this approach does not
work too well.
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Table 5.16 of the Appendix shows the forecast results for these models and for com-
parison again the results by the FI model considered before. In line with the results by
Hollstein and Prokopczuk (2016), we find that the performance of the RW model im-
proves when estimated with a state-space framework as it on average now produces more
accurate forecasts than AR and ARMA models. However, the models that account for
long-range dependencies still perform substantially better and are more accurate for al-
most 80 percent of the stocks. The RMV model performs somewhat better than the simple
RW model. The performance of the RVLW model, on the other hand, is very poor, as was
expected.

Finally, it is noteworthy that the results for the FI(0.5) model are even slightly better
than those by the FI model considered before. Thus, fixing d at 0.5 instead of using
estimates appears to be a practical and well-performing approach for beta forecasting.

5.6.4 Alternative Long-Memory Estimator

We base our main analysis on the 2ELW estimator, as we believe it is the most suitable
estimator in our setup. A popular alternative is the log-periodogram estimator by Geweke
and Porter-Hudak (1983). Although the variance of log-periodogram-based approaches
commonly exceeds that of local Whittle-based approaches, they are often considered due
to their simplicity in application and calculation.

Table 5.17 of the Appendix shows the average estimate of d when using the log-
periodogram estimator. While the average estimates of d are almost equal, the relative
number of stocks for which d is significantly different from 0 and 1 decreases slightly
due to the higher variance of the estimates. However, still more than 95 percent of the
stocks exhibit significant long memory in beta. We can therefore conclude that with the
log-periodogram estimator realized betas are also highly persistent.

Table 5.18 of the Appendix repeats the analysis of Table 5.3 and shows the forecast
performance of the FI and ARFIMA model when estimating d using the log-periodogram
estimator. For comparison, we also present the results for the RW, AR, and ARMAmodels.
It can be seen that compared to the results using the 2ELW estimate, the performance
of the FI and ARFIMA model slightly decreases, which is probably due to the higher
variance of the estimates. However, the forecasts by the FI model still clearly outperform
all forecasts by models that do not account for the long-memory characteristics.

5.6.5 Alternative Sampling Frequencies

In our main analysis, our results are based on measures calculated with 30-minute data.
Since the sampling frequency influences the bias as well as the variance of the estimates,
we repeat our analysis for realized betas calculated from 15-minute and 75-minute data.
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Table 5.19 of the Appendix shows that decreasing the frequency to 75-minute data
decreases the estimated memory in realized beta from 0.56 to 0.50. This is again due to
an increase of the noise level in the ex-post realized betas, which negatively biases the
2ELW estimator. When increasing the recording frequency from 30-minute to 15-minute
data the estimated d increases only slightly to 0.59, implying that the amount of noise in
the betas calculated from 30-minute data is already small. Despite these smaller changes,
it still holds for at least 97 percent of the stocks that the order of integration of their
betas is significantly different from 0 and 1.

Concerning the order of integration of the realized correlation series, we observe a
similar pattern. For 75-minute data the estimate decreases from the original value of 0.56
to 0.51 and for 15-minute data there is a small increase to 0.58. The ex-post estimates of
stock and market volatility, on the other hand, seem to be less perturbed when decreasing
the recording frequency. Here, the estimated memory is almost the same for 15-minute,
30-minute, and 75-minute data ranging from 0.58 to 0.60 for stock volatility and 0.55 to
0.57 for the inverse of market volatility.

Table 5.20 of the Appendix presents the forecast performance of the different models.
We find that the ranking of the models stays the same for all considered frequencies. The
FI model is the best independently of the sampling frequency. In addition, models that
account for long-range dependencies perform substantially better than those that do not.
Due to the difference in noise of the ex-post realized beta estimates, however, the average
RMSE increases with decreasing sampling frequency. In line with the discussion above,
this effect is more pronounced when changing from 30-minute to 75-minute data than
when changing from 30-minute to 15-minute data.

Table 5.20 of the Appendix further reveals that changing the recording frequency only
leads to small changes when comparing the models against each other. For 15-minute data
the FI forecasts significantly outperforms the RW, AR, and ARMA forecasts for 77, 40,
and 26 percent of the stocks while for 75-minute data this holds for 83, 48, 34 percent of
the stocks, respectively.

Overall, the main message of Section 5.4 remains unchanged: accounting for long-range
dependencies significantly improves the forecasting performance for realized betas.

5.6.6 Alternative Estimation Windows and Bandwidths

Our main analysis regarding the forecast performance of the models uses a rolling estima-
tion window of 100 observations. To show that the results are robust to other specifications
of the estimation window, Table 5.21 of the Appendix shows the results for window sizes
of 75 and 125 observations.

While the smaller estimation window allows for more stocks to be included in the
analysis, it can be seen that the results are qualitatively similar. The forecasts by the FI
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model perform the best and are outperformed by models that do not account for long-run
dependencies only for a tiny number of stocks.

We also consider alternative bandwidths of m = T 0.65 and m = T 0.75 for forecasting
as a final robustness check in Table 5.22 of the Appendix. These results are qualitatively
similar as for our main bandwidth choice of m = T 0.7.

5.7 Conclusion

In this paper, we analyze the memory of beta factors. We first document that the betas
of virtually all stocks exhibit long-memory properties. We further show that accounting
for these long-memory properties is very important for forecasting. A pure long-memory
FI model outperforms all other short-memory or difference-stationary models. For longer
forecast horizons, the errors made by falsely imposing structures that do not account for
long memory increase further.

Failing to account for the long-memory properties of betas can lead to very high
errors, in particular for high-momentum stocks, liquid stocks, those with strong short-
selling pressure or high idiosyncratic volatility, high-beta stocks, illiquid stocks, and those
with low short interest. For the former four, imposing a random walk is most hurtful while
for the latter three short-memory processes are particularly inadequate.
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Appendix

Firm Characteristics

• Age (Zhang, 2006) is the number of years up to time t since a firm first appeared
in the CRSP database.

• Beta is the median beta estimate for a certain stock across all estimation approaches
considered.

• Bid–ask spread (BAS) is the stock’s average daily relative bid–ask spread over
the previous month.

• Book-to-market (BtM) (Fama and French, 1992) is the most current observation
for “book equity” divided by the market capitalization. Following the standard liter-
ature, we assume that the book equity of the previous year’s balance sheet statement
becomes available at the end of June and use the market capitalization at the end
of the corresponding fiscal year. Book equity is defined as stockholders’ equity, plus
balance sheet deferred taxes and investment tax credit, plus post-retirement benefit
liabilities, minus the book value of preferred stock.

• Idiosyncratic volatility (iVol) (Ang et al., 2006a) is the standard deviation of
the residuals εi,τ in the Fama and French (1993) 3-factor model ri,τ − rf,τ = αi,t +
βMi,t (rM,τ − rf,τ ) +βSi,tSMBτ +βHi,tHMLτ + εi,τ , using daily returns over the previous
month. SMBτ and HMLτ denote the returns on the Fama and French (1993)
factors.

• Idiosyncratic skewness (iSkew) (Boyer et al., 2009) is the iSkew of the residuals
εi,τ in the Fama and French (1993) 3-factor model ri,τ − rf,τ = αi,t + βMi,t (rM,τ −
rf,τ ) + βSi,tSMBτ + βHi,tHMLτ + εi,τ , using daily returns over the previous month.

• Industry Classifications employ the definition for 10 industry portfolios applied
by Kenneth French. ‘’Durable” is Consumer Durables, “Energy” is the oil, gas,
and coal extraction industry, “Healthcare” is Healthcare, Medical Equipment, and
Drugs, “HiTec Equipment” is Business Equipment, “NonDurables” is Consumer
Non-Durables, “Telephone” is Telephone and Television Transmission, “Wholesale”
is Wholesale, Retail, Services, and “Other” contains Mines, Construction, Construc-
tion Materials, Transport, Hotels, Bus Services, Entertainment, as well as Finance.

• Investment (Fama and French, 2015) is the change in total assets from the fiscal
year ending in year t− 2 to that ending in t− 1, divided by the total assets of year
t− 2. As for BtM, we assume that accounting data become available by the end of
June of year t.

• Leverage (Bhandari, 1988) is defined as one minus book equity (see “Book-to-
market”) divided by total assets (Compustat: AT). Book equity and total assets are
updated every 12 months at the end of June.
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• Marked Cap (Banz, 1981) is the current market capitalization of a firm. Market
capitalization is computed as the product of the stock price and the number of shares
outstanding. In regressions, we take the natural logarithm to remove the extreme
iSkew in this variable.

• Momentum (Jegadeesh and Titman, 1993) is the cumulative stock return over the
period from t− 12 until t− 1.

• Profitability (Fama and French, 2015) is a firm’s operating profitability. Operating
profitability is revenues minus cost of goods sold minus selling, general, and admin-
istrative expenses minus interest expense, all divided by current book equity. As for
BtM, we assume that accounting data become available by the end of June of year
t.

• Short interest (RSI) (Boehme et al., 2006) is the ratio of short interest of a firm,
obtained from Compustat, over the number of shares outstanding. If available, we
use the short interest as of the end of month t, otherwise we use the last observation
recorded in that month.

Simulation Study

To investigate the performance of different approaches for estimating the memory pa-
rameter d in small samples, we perform a small simulation study. For this purpose, we
simulate data according to

(1−B)dyt = εt,

where ε ∼ N(0, 1). To account for the high persistence in the series we consider a burn-in
period of 250 observations.

We then infer on the order of integration of the series using various approaches. These
include the two-step exact local Whittle estimator by Shimotsu (2010) (2ELW) as con-
sidered in this paper, the log-periodogram estimator by Geweke and Porter-Hudak (1983)
(GPH) as considered in Section 5.6, the structural break robust estimators by Iacone
(2010) (trLW) and Hou and Perron (2014) (HP), and the noise robust estimators by
Hurvich et al. (2005) (LWN) and Frederiksen et al. (2012) (LPWN). Additionally, we
consider the approach by Andersen et al. (2006) to infer on the order of integration. They
investigate the autocorrelation function of the beta series and perform Ljung–Box tests
on the residuals when estimating an AR(p) model to the realized beta series where p is
determined by means of the AIC.

Table 5.13 reports results for d = 0.2, 0.4, 0.6 and T = 100, 148, 240, 1000 averaged
across 1,000 repetitions.

The table reveals that the 2ELW and GPH estimators are almost unbiased, also for a
small sample of size T = 100. We further find that the variance of the 2ELW estimator
is smaller than that of the GPH estimator, which is in line with the results presented
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d = 0.2 d = 0.4 d = 0.6
T = 100 T = 148 T = 240 T = 1000 T = 100 T = 148 T = 240 T = 1000 T = 100 T = 148 T = 240 T = 1000

¯̂
d2ELW 0.22 0.21 0.22 0.20 0.43 0.42 0.41 0.40 0.63 0.62 0.62 0.61
sd(d̂2ELW ) 0.13 0.11 0.09 0.05 0.13 0.11 0.09 0.05 0.13 0.11 0.09 0.05
¯̂
dGPH 0.20 0.20 0.21 0.20 0.42 0.41 0.41 0.40 0.62 0.62 0.62 0.61
sd(d̂GPH) 0.16 0.13 0.11 0.06 0.16 0.14 0.12 0.06 0.17 0.14 0.11 0.06
¯̂
dHP 0.11 0.12 0.16 0.19 0.27 0.29 0.33 0.38 0.38 0.43 0.49 0.57
sd(d̂HP ) 0.19 0.16 0.12 0.06 0.23 0.21 0.15 0.06 0.36 0.30 0.22 0.08
¯̂
dtrLW 0.30 0.19 0.14 0.17 0.47 0.38 0.32 0.35 0.66 0.55 0.53 0.55
sd(d̂trLW ) 0.42 0.34 0.24 0.11 0.44 0.34 0.24 0.11 0.45 0.32 0.25 0.12
¯̂
dLWN 0.36 0.36 0.32 0.25 0.52 0.49 0.47 0.43 0.68 0.67 0.65 0.63
sd(d̂LWN) 0.29 0.26 0.20 0.08 0.21 0.17 0.13 0.06 0.16 0.14 0.11 0.06
¯̂
dLPWN 0.40 0.39 0.37 0.28 0.55 0.53 0.50 0.45 0.69 0.69 0.68 0.65
sd(d̂LPWN) 0.36 0.33 0.29 0.16 0.29 0.26 0.20 0.09 0.24 0.19 0.15 0.08
Sign. ac (%) 4.30 6.49 10.53 30.29 13.56 22.70 37.79 88.41 28.21 45.74 67.28 99.55
Ljung–Box 0.006 0.008 0.006 0.000 0.004 0.003 0.001 0.000 0.008 0.001 0.002 0.000

Table 5.13: Simulation results.
We simulate T observations of fractional white noise that is integrated of
order I(d) and then compare different approaches to infer on the memory
parameter d. This table reports average d estimate and standard deviation
(sd(·)) for the estimators by Shimotsu (2010) (2ELW), Geweke and Porter-
Hudak (1983) (GPH), Hou and Perron (2014) (HP), Iacone (2010) (trLW),
Hurvich et al. (2005) (LWN), and Frederiksen et al. (2012) (LPWN). Ad-
ditionally, the table shows the average percent of the first 36 autocorrela-
tions that are indicated to be significantly larger than zero by 95 percent
Bartlett confidence intervals. This is the technique Andersen et al. (2006)
use to decide on the order of integration of the series. They further consider
Ljung–Box tests on the residuals of AR(p) processes, where p is selected by
the AIC. In case there is significant autocorrelation in the residuals, the null
is rejected, indicating that there is long memory in the series. The last row
reports the power of this approach for the simulated series, i.e., the relative
number of times the null hypothesis is rejected. All results are the averages
over 1,000 repetitions.

in Section 5.6. Concerning the break robust estimators, it can be seen that both the HP
estimator and the trLW estimator are negatively biased in sample sizes of 148 and 240.
The noise robust estimators, on the other hand, are positively biased for sample sizes of
100, 148, and 240.

Andersen et al. (2006) investigate quarterly betas for which, due to the noise, the
observed order of integration is decreased, such that the 2ELW estimator yields a d of 0.4
on average. They then fractionally differenced the series by 0.2, such that the resulting
series should be approximately I(0.2). For such a series the simulations indicate that only 6
percent of the first 36 autocorrelations are significantly larger zero according to 95 percent
Bartlett confidence intervals. It is understandable that, based on such autocorrelation
functions, the authors conclude that realized betas exhibit a d of 0.2 or smaller. The
simulations further reveal that Ljung–Box tests on the residuals of an AR(p) with p

selected by the AIC are not particularly useful to detect long-memory time series. The
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order p is simply chosen to be high, such that the long-memory characteristics can be
captured by the AR model.

Tables Referenced in the Main Manuscript

Standard Adjusted for Breaks in Mean
¯̂
di sd(d̂i) vs. di = 0 vs. di = 1 ¯̂

di sd(d̂i) vs. di = 0 vs. di = 1
Bandwidth m = T 0.65

βi 0.575 0.127 0.996 0.989 0.532 0.156 0.987 0.989
ρi,M 0.554 0.102 1.000 0.998 0.561 0.109 1.000 0.996
σi 0.586 0.146 0.991 0.968 0.586 0.146 0.991 0.968
σ−1
M 0.544 - 1.000 1.000 0.544 - 1.000 1.000

Bandwidth m = T 0.75

βi 0.549 0.103 0.999 0.998 0.517 0.122 0.996 0.998
ρi,M 0.546 0.088 0.995 1.000 0.543 0.090 1.000 1.000
σi 0.592 0.137 1.000 0.989 0.592 0.137 1.000 0.989
σ−1
M 0.591 - 1.000 1.000 0.590 - 1.000 1.000

Table 5.14: Average memory parameter estimates – bandwidth m = T 0.65 and
m = T 0.75.
In analogy to Tables 5.1 and 5.2, this table presents average estimates
of the memory parameter of realized betas, realized correlation (Fisher-
transformed), and volatility across all stocks (N = 823), as well as that of
the inverse of the market volatility, using the 2ELW estimator of Shimotsu
and Phillips (2005) and Shimotsu (2010) with alternative bandwidths of
m = T 0.65 and m = T 0.75. sd(d̂i) displays the standard deviation of the
estimates across stocks and vs. di = 0 and vs. di = 1 indicate the relative
frequency with which the null hypotheses d = 0 and d = 1, respectively, are
rejected at the ten percent level. The left panel reports the results for the
original series and the right panel reports results after adjusting the series
for structural breaks using the procedure of Lavielle and Moulines (2000).
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P1 P2 P3 P4 P5 t-stat
βββ 0.4830 0.7726 0.9769 1.2075 1.6887 22.1
d 0.5333 0.5213 0.5394 0.5550 0.5822 3.57
log(Market Cap) 16.175 16.215 16.177 16.016 15.673 -4.55
BtM 0.5380 0.5060 0.5016 0.5299 0.5628 0.49
Investment 0.0938 0.1067 0.1077 0.1191 0.1177 1.59
Profitability -0.5928 -3.4268 -0.5836 0.2827 0.1098 1.07
Momentum 0.1276 0.1329 0.1359 0.1485 0.2029 1.39
BAS 0.0009 0.0007 0.0007 0.0008 0.0010 0.98
Turnover 0.1846 0.1893 0.2114 0.2540 0.3882 6.40
iVol 0.0115 0.0115 0.0125 0.0143 0.0193 5.10
iSkew 0.0834 0.1044 0.1038 0.1269 0.1500 5.06
Short Interest 0.0302 0.0337 0.0369 0.0419 0.0558 11.2
Leverage 0.5920 0.5889 0.5774 0.5745 0.5922 0.01
Age 37.611 33.049 33.317 32.864 29.838 -11.0
Durables 0.0048 0.0107 0.0230 0.0384 0.0309 10.3
Energy 0.0309 0.0319 0.0441 0.0783 0.1137 3.42
Healthcare 0.1299 0.1096 0.0664 0.0448 0.0378 -2.79
HiTec Equipment 0.0812 0.1401 0.1790 0.1776 0.2001 2.41
Manufacturing 0.0781 0.1153 0.1655 0.1721 0.1661 9.19
NonDurables 0.1624 0.0819 0.0518 0.0364 0.0309 -18.0
Telephone 0.0397 0.0452 0.0340 0.0227 0.0132 -8.33
Utilities 0.1721 0.0806 0.0341 0.0230 0.0108 -10.0
Wholesale 0.1185 0.1374 0.1259 0.1128 0.0775 -2.97

Table 5.15: Portfolio sorts by beta.
At the end of each month, we sort the stocks in our sample based on the
realized beta during the past month. Sorting the stocks into quintile portfo-
lios, we save each portfolio’s average of the firm characteristics and dummy
variables at the end of the respective months. The main body of the table
shows the average of the different firm characteristics over time (T = 141
months). t-stat denotes the t-statistic of a test whether the firm charac-
teristics of portfolio P5 and P1 are equal with the standard errors being
calculated using the heteroscedacity and autocorrelation robust approach
by Andrews (1991). Characteristics, for which this difference is statistically
significant at ten percent are printed in bold.
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RW RWV RWLW AR ARMA ARFIMA HAR FI(0.5) FI
RMSE 0.2820 0.3124 0.3862 0.2854 0.2850 0.2808 0.3176 0.2775 0.2792
Best 92 39 4 11 19 84 4 313 123
vs RW 0 2 1 2 2 53 0 85 80
vs RWV 279 0 0 248 243 315 78 394 335
vs RWLW 569 522 0 560 560 572 432 592 584
vs AR 171 6 1 0 41 81 1 107 109
vs ARMA 139 5 1 40 0 81 0 103 101
vs ARFIMA 15 1 1 9 9 0 1 68 49
vs HAR 489 81 2 425 419 495 0 440 400
vs FI(0.5) 9 1 0 3 4 8 0 0 11
vs FI 24 2 0 12 11 22 0 82 0
N 689 689 689 689 689 689 689 689 689

Table 5.16: Forecast results – alternative models.
In analogy to Table 5.3, this table illustrates the forecast performance of
different additional models for one-month beta forecasts from a rolling es-
timation window of 100 observations. RW, AR, ARMA, and ARFIMA are
estimated in a state-space framework. RWV and RWLW correspond to the
forecasts from the approaches of Vasicek (1973) and Levi and Welch (2017),
respectively. Finally, HAR corresponds to the model by Corsi (2009) and
FI(0.5) uses a FI model with d fixed at 0.5. The first row shows average
RMSEs of different models across all stocks. The row “Best” indicates the
number of times a model achieves the lowest RMSE for a certain stock.
Furthermore, the rows denoted by “vs. X” correspond to modified DM tests
(Harvey et al., 1997), providing the number of times the forecasts of the
column-model are significantly better than the forecasts of the row-model
at the ten percent level. Finally, N is the number of investigated stocks. To
allow for valid inference, we exclude all stocks for which we have less than
50 forecasts.

Standard Adjusted for Breaks in Mean
¯̂
di sd(d̂i) vs. di = 0 vs. di = 1 ¯̂

di sd(d̂i) vs. di = 0 vs. di = 1
βi 0.557 0.133 0.994 0.953 0.518 0.158 0.967 0.965
ρi,M 0.572 0.122 0.995 0.966 0.572 0.128 0.991 0.962
σi 0.593 0.164 0.978 0.930 0.593 0.164 0.978 0.930
σ−1
M 0.591 - 1.000 1.000 0.590 - 1.000 1.000

Table 5.17: Average memory parameter estimates – log-periodogram estima-
tor.
In analogy to Tables 5.1 and 5.2, this table presents average estimates
of the memory parameter of realized betas, realized correlation (Fisher-
transformed), and volatility across all stocks (N = 823), as well as that
of the inverse of the market volatility, using the log-periodogram estimator
by Geweke and Porter-Hudak (1983). sd(d̂i) displays the standard deviation
of the estimates across stocks and vs. di = 0 and vs. di = 1 indicate the rela-
tive frequency with which the null hypotheses d = 0 and d = 1, respectively,
are rejected at the ten percent level. The left panel reports the results for the
original series and the right panel reports results after adjusting the series
for structural breaks using the procedure of Lavielle and Moulines (2000).
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RW AR ARMA FI ARFIMA
RMSE 0.3149 0.2942 0.2878 0.2812 0.2814
Best 7 30 128 332 192
vs RW 0 271 343 507 455
vs AR 3 0 155 228 259
vs ARMA 1 5 0 140 135
vs FI 1 5 22 0 21
vs ARFIMA 1 4 11 21 0
N 689 689 689 689 689

Table 5.18: Forecast results – log-periodogram estimator.
In analogy to Table 5.3, this table illustrates the forecast performance of the
models for one-month beta forecasts from a rolling estimation window of 100
observations. FI and ARFIMA model are now calculated using d estimates
by the log-periodogram estimator instead of the 2ELW estimator. The first
row shows average RMSEs of different models across all stocks. The row
“Best” indicates the number of times a model achieves the lowest RMSE
for a certain stock. Furthermore, the rows denoted by “vs. X” correspond to
modified DM tests (Harvey et al., 1997), providing the number of times the
forecasts of the column-model are significantly better than the forecasts of
the row-model at the ten percent level. Finally, N is the number of inves-
tigated stocks. To allow for valid inference, we exclude all stocks for which
we have less than 50 forecasts.
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Standard Adjusted for Breaks in Mean
¯̂
di sd(d̂i) vs. di = 0 vs. di = 1 ¯̂

di sd(d̂i) vs. di = 0 vs. di = 1
15-Minute Data

βi 0.593 0.112 0.999 0.996 0.553 0.139 0.994 0.998
ρi,M 0.583 0.099 1.000 0.996 0.585 0.101 1.000 0.996
σi 0.598 0.139 0.996 0.977 0.597 0.139 0.996 0.977
σ−1
M 0.553 - 1.000 1.000 0.553 - 1.000 1.000

75-Minute Data
βi 0.498 0.123 0.994 0.998 0.457 0.148 0.977 0.998
ρi,M 0.505 0.096 0.999 0.998 0.496 0.099 1.000 1.000
σi 0.578 0.140 0.995 0.984 0.578 0.140 0.995 0.984
σ−1
M 0.568 - 1.000 1.000 0.566 - 1.000 1.000

Table 5.19: Average memory parameter estimates – 15-minute and 75-minute
data.
In analogy to Tables 5.1 and 5.2, this table presents average estimates
of the memory parameter of realized betas, realized correlation (Fisher-
transformed), and volatility across all stocks (N = 823), as well as that
of the inverse of the market volatility, using the 2ELW estimator of Shi-
motsu and Phillips (2005) and Shimotsu (2010). The realized measures are
now calculated from 15 and 75-minute data. sd(d̂i) displays the standard
deviation of the estimates across stocks and vs. di = 0 and vs. di = 1 indi-
cate the relative frequency with which the null hypotheses d = 0 and d = 1,
respectively, are rejected at the ten percent level. The left panel reports the
results for the original series and the right panel reports results after ad-
justing the series for structural breaks using the procedure of Lavielle and
Moulines (2000).
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RW AR ARMA FI ARFIMA
15-Minute Data

RMSE 0.2876 0.2713 0.2660 0.2586 0.2595
Best 5 27 124 362 171
vs RW 0 268 320 530 499
vs AR 2 0 139 277 293
vs ARMA 1 8 0 182 180
vs FI 1 4 15 0 13
vs ARFIMA 1 4 18 19 0
N 689 689 689 689 689

75-Minute Data
RMSE 0.3724 0.3421 0.3355 0.3241 0.3248
Best 2 25 90 432 140
vs RW 0 291 360 574 541
vs AR 4 0 156 333 353
vs ARMA 2 9 0 231 222
vs FI 0 1 4 0 12
vs ARFIMA 0 2 11 21 0
N 689 689 689 689 689

Table 5.20: Forecast results – 15-minute and 75-minute data.
In analogy to Table 5.3, this table illustrates the forecast performance of
the models for one-month beta forecasts from a rolling estimation window
of 100 observations. For the different panels, the realized beta series are now,
however, based on 15-minute and 75-minute data. The first row shows aver-
age RMSEs of different models across all stocks. The row “Best” indicates
the number of times a model achieves the lowest RMSE for a certain stock.
Furthermore, the rows denoted by “vs. X” correspond to modified DM tests
(Harvey et al., 1997), providing the number of times the forecasts of the
column-model are significantly better than the forecasts of the row-model
at the ten percent level. Finally, N is the number of investigated stocks. To
allow for valid inference, we exclude all stocks for which we have less than
50 forecasts.
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RW AR ARMA FI ARFIMA
Rolling Window of 75 Observations

RMSE 0.3102 0.2914 0.2864 0.2764 0.2775
Best 4 33 78 446 208
vs RW 0 263 318 612 570
vs AR 3 0 168 367 384
vs ARMA 2 22 0 235 241
vs FI 0 0 3 0 11
vs ARFIMA 0 2 9 28 0
N 769 769 769 769 769

Rolling Window of 125 Observations
RMSE 0.3017 0.2800 0.2746 0.2676 0.2683
Best 4 19 120 330 130
vs RW 0 255 302 479 433
vs AR 4 0 114 205 201
vs ARMA 3 15 0 116 113
vs FI 0 1 11 0 13
vs ARFIMA 0 1 17 25 0
N 603 603 603 603 603

Table 5.21: Forecast results – rolling window sizes of 75 and 125 observations.
In analogy to Table 5.3, this table illustrates the forecast performance of
the models for one-month beta forecasts from a rolling estimation window
of 75 as well as 125 observations. The first row shows average RMSEs of
different models across all stocks. The row “Best” indicates the number of
times a model achieves the lowest RMSE for a certain stock. Furthermore,
the rows denoted by “vs. X” correspond to modified DM tests (Harvey et al.,
1997), providing the number of times the forecasts of the column-model are
significantly better than the forecasts of the row-model at the ten percent
level. Finally, N is the number of investigated stocks. To allow for valid
inference, we exclude all stocks for which we have less than 50 forecasts.
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RW AR ARMA FI ARFIMA
Bandwidth m = T 0.65

RMSE 0.3149 0.2942 0.2878 0.2797 0.2806
Best 3 23 108 367 188
vs RW 0 271 343 558 506
vs AR 3 0 155 270 295
vs ARMA 1 5 0 166 172
vs FI 0 2 13 0 21
vs ARFIMA 0 2 12 24 0
N 689 689 689 689 689

Bandwidth m = T 0.75

RMSE 0.3149 0.2942 0.2878 0.2794 0.2801
Best 6 30 100 399 154
vs RW 0 271 343 564 534
vs AR 3 0 155 310 313
vs ARMA 1 5 0 192 189
vs FI 0 4 7 0 10
vs ARFIMA 0 4 9 20 0
N 689 689 689 689 689

Table 5.22: Forecast results – bandwidth m = T 0.65 and m = T 0.75.
In analogy to Table 5.3, this table illustrates the forecast performance of the
models for one-month beta forecasts from a rolling estimation window of 100
observations. FI and ARFIMA model now calculated using d estimates of
the 2ELW estimator calculated with bandwidths of m = T 0.65 and m =
T 0.75. The first row shows average RMSEs of different models across all
stocks. The row “Best” indicates the number of times a model achieves the
lowest RMSE for a certain stock. Furthermore, the rows denoted by “vs.
X” correspond to modified DM tests (Harvey et al., 1997), providing the
number of times the forecasts of the column-model are significantly better
than the forecasts of the row-model at the ten percent level. Finally, N is
the number of investigated stocks. To allow for valid inference, we exclude
all stocks for which we have less than 50 forecasts.



Chapter 6

Robust Multivariate Local Whittle Estima-
tion and Spurious Fractional Cointegration

Co-authored with Christian Leschinski and Philipp Sibbertsen.

6.1 Introduction

It has been a well-established fact that level shifts among many other so-called low-
frequency contaminations can be mistaken as long memory. Künsch (1986), Granger and
Ding (1996), and Diebold and Inoue (2001), among others, show that various forms of low-
frequency contaminations such as deterministic breaks and trends can cause spurious long
memory. This leads to a bias of semiparametric estimators for the memory parameter,
which mainly use these frequencies. This feature has been used by Qu (2011) to test
against spurious long memory.

However, the notion of spurious long memory is not restricted to the univariate case
but can as well be found in multivariate systems. An extension of the test by Qu (2011)
to the multivariate case relying on the same idea can be found in Sibbertsen et al. (2018).
This paper shows that working in a multivariate system can result in efficiency gains
and is therefore preferable where suitable. Multivariate local Whittle estimation of the
memory parameter has been considered in Shimotsu (2007). Robinson (2008) extends
this to the case of possible fractional cointegration and simultaneously estimates the
cointegration vector. Two series are called fractionally cointegrated if they have the same
memory parameter and their linear combination has a reduced order of integration (see
among many others Nielsen, 2007). Neither of these two estimators is robust against
low-frequency contaminations.

The aim of this paper is to provide such a robust multivariate local Whittle estimator
of the memory parameter and the fractional cointegration vector that remains consistent
in case of low-frequency contaminations. Similar to the estimator of Robinson (2008), our
proposed estimator requires a priori knowledge of the cointegration rank. This is because
local Whittle-based methods need the inverse of the so-called G matrix of the spectral
density, which becomes singular in the case of fractional cointegration. Christensen and
Santucci de Magistris (2010) and Kellard et al. (2015) discuss that in case of low-frequency
contaminations inference on the fractional cointegration rank is likely to be biased. For ex-
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ample, simultaneous breaks in the series can cause tests and estimators to falsely indicate
the series to be fractionally cointegrated.

We therefore additionally suggest a robust estimator of the cointegration rank. For
this purpose, we investigate what we call spurious fractional cointegration further by
generalizing the definition of cobreaking in Hendry and Massmann (2007) to what we
call common low-frequency contaminations. We show that low-frequency contaminations
dominate the G matrix of the periodogram for frequencies close to the origin and there-
fore empirically effect, among others, local Whittle-based procedures. Due to this domi-
nance of low-frequency contaminations in the observed G matrix, we find that common
low-frequency contaminations spuriously indicate the presence of fractional cointegration,
whereas distinct low-frequency contaminations falsely indicate the absence of fractional
cointegration.

To obtain our estimators, we use the idea of Iacone (2010) of trimming away the
contaminated frequencies. This idea is applied to provide a consistent estimator of the
cointegration rank of the system by proposing a trimmed version of the procedure by
Robinson and Yajima (2002) as well as to construct a robust multivariate local Whittle
estimator for the memory parameter and the cointegration vector. As our estimators rely
on properties of the periodogram of processes with low-frequency contaminations, we
find it useful to additionally provide some deeper understanding of the behavior of the
periodogram in this situation.

The paper is structured as follows. First, we provide some results for the periodogram
of a contaminated process in a rather general framework of low-frequency contaminations
generalizing previously obtained results in Section 6.2. Section 6.3 formally defines com-
mon low-frequency contaminations and contains our robust procedure to estimate the
cointegration rank while Section 6.4 has the robust multivariate local Whittle estimator.
Section 6.5 contains some Monte Carlo and Section 6.6 an empirical example. Section 6.7
concludes. All the proofs are gathered in the Appendix and additional simulation results
are provided in a Supplementary Appendix.

6.2 The Periodogram of Spurious Long-Memory Pro-
cesses

In this section, we obtain some properties of the periodogram for a very general class of
low-frequency contaminations, which are partly needed later but are also of an interest
on its own. We therefore discuss it in more detail then necessary for our robust estimators
and see this as an additional contribution of the paper. Although the focus of this paper
is on multivariate estimation, we derive the results in this section in a univariate setup
to avoid notational complexity. We will later assume the trend process to be independent
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from the noise process, which means that an extension of the results to a multivariate
framework is straightforward. It further implies that effects of additional noise components
are irrelevant for the mean process so that we are only concerned with the behavior of
the pseudo-periodogram of a time-varying mean process in this section.

For the mean process, we use a very general specification allowing for deterministic
mean shifts, smooth deterministic trends, and random level shifts with rare shift asymp-
totics as well as random level shifts with medium rare shifts, where the number of shifts
tends to infinity with sample size but with a slower rate. This model embeds many of
the processes discussed in the literature to generate spurious long memory such as the
fractional trend of Bhattacharya et al. (1983) or the STOPBREAK model of Engle and
Smith (1999).

The mean process that can be either deterministic or stochastic is represented by

µt = µ0 +
K∑
k=1

∆µk1(t ≥ Tk), (6.1)

or
µt = µ0 +

K∑
k=0

µk1(Tk−1 ≤ t < Tk). (6.2)

Here, K is either a fixed number or a random variable giving the number of breaks, T is
the length of the series, 1 corresponds to the indicator function, Tk denotes the breakpoint,
and µ0 = µ1 − 1/T ∑T

t=1 µt.
The expression in Equation (6.1) is a suitable representation of the mean for processes

which have a nonstationary nature. Examples include deterministic trends or mean shifts
as well as nonstationary random level-shift models or the STOPBREAK model. The
model is accumulative in the sense that the break at time t depends on all shifts that
occurred before t. It also nests a random walk. The model in (6.2), on the other hand, has
a stationary character and seems appropriate for models such as the Markov-Switching
model or stationary random level-shift models. It has a non-cumulative structure and
nests the White Noise.

In the following, we denote by Iz(λj) = wz(λj)w∗z(λj) the periodogram of the series zt
at frequency λj. Here, wz(λj) = 1√

2πT
∑T
t=1 zte

iλjt is the Fourier transform of the series zt
and the asterisk denotes complex conjugation. Iµ(λj) is then the pseudo-periodogram of
the mean process. We focus on the behavior of this pseudo-periodogram at the Fourier
frequencies λj = 2πj

T
for λj → 0+.

We now derive the properties of the induced periodogram of the process (6.1) and
(6.2). Let us first consider the case of a smooth trend h(s, T ) and assume:

Assumption A1. |h(s, T )|,
∣∣∣∂h(s,T )

∂s

∣∣∣ <∞, for s ∈ [0, 1].

We have the following Lemma:
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Lemma 1. If µt = h(t/T, T ), under Assumption A1 we have

Iµ(λj) ∼
T

8π3j2


[� 1

0

∂h(s, T )
∂s

sin(2πjs)ds
]2

+
[� 1

0

∂h(s, T )
∂s

(1− cos(2πjs))ds
]2
 .

Since the integrals in Lemma 1 are functions of j (and possibly T ), it can be seen that
the exact rate of the periodogram Iµ(λj) depends on the derivative of the trend function.
Therefore, if the trend function is known and the integrals have a closed form solution, it is
possible to determine the exact order. If this is not the case, we can still recover the upper
bound on the rate of decay for increasing j that was established by Künsch (1986), Iacone
(2010), and Qu (2011). To see this, note that sin(2πjs) ≤ 1 and 1− cos(2πjs) ≤ 2 for all
j and s. It therefore follows immediately for µt = h(s, T ) = h(s) that the periodogram is
Iµ(λj) = O(Tj−2).

We now turn to the behavior of the periodogram of abrupt level-shift processes. To
simplify the exposition, let ζk denote either ∆µk or µk, depending on whether the accumu-
lative structural-change model (6.1) or the non-accumulative model (6.2) is considered.

To characterize the behavior of different groups of processes, we require different groups
of assumptions. First, in the case of deterministic structural breaks, we assume:

Assumption A2. |ζk| < ∞ and the δk = Tk/T are deterministic with 0 < δk < 1 for
k = 1, . . . , K <∞.

For stochastic level shifts we require the following assumptions.

Assumption A3. E[ζk] = 0 and V ar[ζk] = σ2
∆T
−β for some 0 ≤ β ≤ 1 and 0 < σ2

∆ <∞.

Assumption A4. P (t ∈ {T1, . . . , TK}) = pt, where 0 ≤ pt ≤ 1, and E[pt] = p̃T−α for
some 0 ≤ α ≤ 1. Furthermore, the dependence in pt is limited such that E[K] = p̃T 1−α,
E [((Tk − Tk−1)/T )2] = 2D̃

p̃2 T
2(α−1), and E [((Tk − Tk−1)/T )4] = O(T 4(α−1)), for some 0 <

p̃, D̃ <∞.

Assumption A5. pt is independent of ζk for all k = 1, . . . , K and t = 1, . . . , T . Addi-
tionally, V ar[ζk]C̃ = ∑∞

τ=1 |E[ζkζk−τ ]| for k = 1, 2, . . . and 0 ≤ C̃ <∞.

The rate T−β in Assumption A3 is required to nest a number of mean-change processes
from the literature, such as the STOPBREAK process of Engle and Smith (1999). For
other processes, setting β = 0 gives the familiar setup with non-degenerate breaks.

Assumption A4 imposes a structure on the nature of the mean change process. The
nature of the dependence in pt is restricted by the additional requirement that the expected
squared length of the k-th regime expressed as a fraction of the sample is 2D̃

p̃2 T
2(α−1), which

means that the second moment of the regime lengths is still of the same order as that of
a geometric distribution. In this context, the constant D̃ depends on the dependence in
pt, and it is equal to one if pt = p for all t = 1, . . . , T .
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Since there are T observations in the sample, the expected number of mean shifts
in the series is E[K] = p̃T 1−α. The parameter α controls the asymptotic frequency of
level changes. The expected number of shifts remains constant for α = 1, whereas it goes
to infinity for α < 1. The first case (α = 1) is referred to as rare shifts asymptotics
or low-frequency contaminations. We refer to the second case (α < 1) as intermediate-
frequency contaminations. Here, we have K → ∞ but K/T → 0 as T → ∞. That
means we asymptotically have an infinite number of shifts but also an infinite number of
observations between shifts. Finally, for α > 1 shifts are so rare that we will no longer
observe any in a sample, asymptotically.

Even though it may seem unusual to tie the properties of the process to the sample size,
this is a common approach in the related literature. Guégan (2005) refers to this practice
as a thought experiment. The validity of this approach depends on the purpose of the
analysis. Obviously, it is unreasonable to assume that structural changes will become less
common in the future if the objective is to forecast a time series. On the other hand,
if the objective is statistical inference based on a given sample, we argue that assuming
that the frequency of structural change is tied to the sample size T can be thought of as
an asymptotic framework that is better suited to approximate the statistical properties
of the quantities of interest than keeping p fixed. The latter would imply, for example,
that level changes are so frequent that the mean between two shifts cannot be estimated
consistently.

Finally, we require some bound on the degree of dependence between the means or
mean changes ζk in consecutive segments. This is imposed by Assumption A5 according
to which the autocovariance function of the ζk has to be absolutely summable. We then
obtain the following result.

Lemma 2. Denote by κ > 0 a finite constant and by |κT | ≤ 1 a sequence of constants.
Then, for j/T → 0 and level-shift processes characterized by (6.1),

i.) Iµ(λj) ∼ T
4π3j2

κ, under Assumption A2.

ii.) E [Iµ(λj)] ∼
σ2

∆p̃T
2−α−β

4π3j2

(
1 + κT C̃

)
, for α ≤ 1, and under Assumptions A3, A4, and

A5.

Lemma 2 establishes the properties of the periodogram of the accumulative mean-
change process in (6.1). The first case i.) derives the growth rate of the peak near the
origin and the rate of decay for frequencies further away from the zero frequency for a de-
terministic structural break process. This order was previously established by McCloskey
and Perron (2013). Interesting is the contrast to case ii.), where rare random level shifts
are considered. In contrast to i.), the periodogram becomes stochastic instead of deter-
ministic. Furthermore, the scaling factor T−β influences the scaling of the peak local to
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the origin, which is of order T 1−β instead of T . In i.) the periodogram is a determinis-
tic function. In ii.) there is a well defined expectation and the process is not ergodic for
α = 1, the expected number of shifts in the sample is always given by E[K] = p̃. The case
of α < 1, on the other hand, covers intermediate frequency contaminations so that the
expected number of shifts is E[K] = p̃T 1−α and the process is ergodic. In this situation,
the scaling of the peak near the origin is determined by both, α and β. Since α < 1, the
growth rate is always faster than that in case i.) and for α = 1. The rate of decay for
increasing j, however, is the same for all three types of processes.

Similar results to these can be obtained for the non-accumulative mean-change process
in (6.2).

Lemma 3. Denote by κ′ > 0, |κ′T | ≤ 1, and κ′P,T , a finite constant, a sequence of constants,
and a sequence of positive valued random variables with constant expectation and finite
variance, respectively. Then, for j/T → 0 and level-shift processes characterized by (6.2),

i.) Iµ(λj) ∼ T
2π3j2

κ′, under Assumption A2.

ii.) Iµ(λj) ∼
σ2

∆p̃T
1−β

2π3j2
κ′P,T , for α = 1, and under Assumptions A3 and A4.

iii.) E [Iµ(λj)] ∼
σ2

∆D̃

πp̃
Tα−β

(
1 + κ′T C̃

)
, for α < 1, and under Assumptions A3, A4, and

A5.

As one can see, the orders for cases i.) and ii.) in Lemma 3 are identical to those in
Lemma 2. This means that accumulative and non-accumulative structural change have
the same impact on the periodogram local to zero as long as the mean changes are de-
terministic or rare. In contrast to that, the case α < 1 is remarkably different and needs
to be treated separately. In presence of intermediate frequency contaminations, when the
process becomes ergodic, the order of the peak is reduced to Tα−β instead of T 2−α−β.
Furthermore, the peak local to zero no longer decays for increasing j. This is a behav-
ior similar to a white noise reflecting the stationary structure of the non-accumulative
approach.

Important special cases of both the accumulative and the non-accumulative process
are obtained for α = 0. In this case, the accumulative process boils down to a unit root
process and the non-accumulative process becomes a simple stationary short-memory
process. In this situation, case ii.) in Lemma 2 and iii.) in Lemma 3 reduces to the well
known result that the periodogram of the unit root process local to the origin is of order
OP (T 2/j2) and that of the short-memory process is OP (1).

6.3 Robust Fractional Cointegration Rank Estimator

In this section, we first provide evidence that existing semiparametric estimators and tests
for the fractional cointegration rank are biased in case of low-frequency contaminations.
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We then derive our robust fractional cointegration rank estimator as an extension of the
rank estimator by Robinson and Yajima (2002).

Point of departure is a vector valued long-memory process yt with low-frequency con-
taminations. For expositional simplicity, we focus on a bivariate system, i.e., yt = (yat, ybt)

′ ,
extensions to higher dimensions are straightforward. The process under investigation is

yt = xt + µt, (6.3)

where µt = (µat, µbt)
′ is a bivariate low-frequency contamination process that is indepen-

dent of xt and where for µat and µbt either of the Assumptions A1, A2, or A3 with β = 0
holds. Moreover, xt = (xat, xbt)

′ is a bivariate long-memory process whose spectral density
matrix f(λj) at frequency λj fulfills

f(λj) ∼ Λj(d)GxΛ∗j(d), (6.4)

where Λj(d) = diag(λ−daj ei(π−λj)da/2, λ−dbj ei(π−λj)db/2) with i =
√
−1, and d = (da, db) are

the memory parameters. Further, A ∼ B denotes that A/B → 1 as λ → 0+, and A∗

denotes the complex conjugate of A.
As shown in Marinucci and Robinson (2001), the matrix Gx is positive definite if

and only if xt is not (fractionally) cointegrated and it becomes singular otherwise. Con-
sequently, by estimating the rank of Gx we can investigate whether the time series are
(fractionally) cointegrated as suggested by Robinson and Yajima (2002). However, if in-
stead of the pure memory process we observe a contaminated process such as (6.3), then
our estimate of the rank will be based on Gy which comprises the influence of Gx and Gµ.

To illustrate this, note that the periodogram as an estimate of Gy is given by

Iy(λj) = Iµ(λj) + Ix(λj) + Iµx(λj) + Ixµ(λj),

where Iµx(λj) = wµ(λj)w∗x(λj) and Ixµ(λj) = wx(λj)w∗µ(λj) are the cross periodograms of
µt and xt. Consequently, E[Iy(λj)] = E[Iµ(λj)] +E[Ix(λj)] if xt and µt are assumed to be
independent.

For the long-memory component it holds that E[Ix(λj)] =
(
T
j

)2 max{da,db}
Gx as j/T →

0. The properties of E[Iµ(λj)] can be derived based on our results presented in Section
6.2. Here, we are interested in the empirically relevant situations of a smooth trend, a
deterministic break, or a random level-shift process with rare shifts. These low-frequency
contaminations can be distinct, i.e., each series faces different contaminations, or they can
be common as discussed in Hendry and Massmann (2007). Their definition is limited to
contemporaneous mean cobreaking, i.e., common deterministic structural changes. Fur-
thermore, their definition refers to changes relative to some initial parametrization so that
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processes with a stable monotonous trend, for example, are not included. We therefore
propose the following slightly modified definition:

Definition 1 (CLFC). The bivariate process yt in (6.3) has common low-frequency com-
ponents if there exists a 2 × 1 matrix Φ 6= 021 , such that Φ′ (µt − µ1) = 0 for all
t = 1, . . . , T .

Now, we are able to derive the order of the expected pseudo-periodogram of µt.

Theorem 1. Suppose yt is generated by (6.3) and j/T → 0, we have

E[Iµ(λj)] = T

j2Gµ,

and Gµ has rank 1 if and only if µt is a common low-frequency component according to
Definition 1.

It is obvious from the rate in the theorem that the Gµ matrix dominates the Gy matrix
for low frequencies, while the Gx matrix is the dominating one for higher frequencies.
If we now observe time series which are not fractionally cointegrated but exhibit joint
breaks, then the estimator by Robinson and Yajima (2002) might spuriously identify a
fractional cointegration relation since the Gµ matrix is singular. On the other hand, if
we observe fractionally cointegrated time series which exhibit distinct breaks, then the
same estimator might wrongly identify no fractional cointegration relation since the Gµ

matrix has full rank. These problems do not only arise for the estimator by Robinson
and Yajima (2002) but for all existing semiparametric estimators and tests concerning
the fractional cointegration relation, since all of them use the Gy matrix in some form.
We will demonstrate this by simulations in Section 6.5.

It should further be noted that testing the homogeneity of fractional difference pa-
rameters, as suggested by Robinson and Yajima (2002), is also not possible in case of
low-frequency contaminations. This is due to two reasons. First, the estimates of the
memory parameter will be biased when using the standard local Whittle estimator. This
issue can be overcome by considering a robust estimator such as those by Iacone (2010),
McCloskey and Perron (2013), or Hou and Perron (2014). However, the test statistics
also includes an estimate of the Gx matrix which is based on the first m1 frequencies. In
case of joint breaks, this matrix might be estimated to be singular letting the statistics
converge to zero no matter if the order of integrations are truly equal.

Let us now introduce an approach to estimate the Gx matrix consistently also in
case of low-frequency contaminations. We know from Theorem 1 that the Gµ matrix
only dominates for the low frequencies. If we trim these away, then we can estimate the
rank of the Gx matrix without distortions no matter if low-frequency contaminations
are present or not. We first show that the estimated Gy matrix trimmed by the first
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frequencies converges to the estimated Gx matrix. For this purpose, we need to introduce
the following assumptions.

Assumption B1. It holds that

xt − E[xt] = A(L)εt =
∞∑
j=0

Ajεt−j,

where ∑∞j=0 ‖Aj‖2 < ∞, and ‖ · ‖ denotes the supremum norm. It is further assumed
that E[εtε

′
t|Ft−1] = Iq, E[εt|Ft−1] = 0 a.s. for t = 0,±1,±2, . . . where Ft denotes the

σ-field generated by εs and Iq is an identity matrix, s ≤ t. Furthermore, there exists a
scalar random variable ε such that E[ε2] < ∞ and for all τ > 0 and some C > 0 it is
P (‖εt‖2 > τ) ≤ CP (ε2 > τ).

Assumption B2. As T →∞,
l

m1
+ m1

T
→ 0,

where l is a trimming parameter with l = max(1, [clT δl ]) and m1 = max(l + 1, [cm1T
δm1 ])

is the bandwidth parameter with 0 ≤ δl < δm1 < 1 and cl, cm1 ∈ (0,∞).

Let us further assume for the moment that the order of integration is known and
denote

Ĝy(d, l,m1) =(m1 − l + 1)−1
m1∑
j=l

Λj(d)Iy(λj)Λ∗j(d)

=(m1 − l + 1)−1
m1∑
j=l

Λj(d)Ix(λj)Λ∗j(d)

+ (m1 − l + 1)−1
m1∑
j=l

Λj(d)Iµ(λj)Λ∗j(d)

+ (m1 − l + 1)−1
m1∑
j=l

Λj(d)Ixµ(λj)Λ∗j(d)

+ (m1 − l + 1)−1
m1∑
j=l

Λj(d)Iµx(λj)Λ∗j(d)

and Ĝx(d, l,m1) =(m1 − l + 1)−1
m1∑
j=l

Λj(d)Ix(λj)Λ∗j(d).

Theorem 2. Suppose yt is generated by (6.3), Assumptions B1 and B2 hold with m1 =
T δm1 and l = T δl for some 0 ≤ δl < δm1 < 1, and T →∞, it is

Ĝy(d, l,m1) p→ Ĝx(d, 1,m1),

if either

i.) l = 1 and d0
a + d0

b > 1, or l = 1, d0
a + d0

b < 1, and δm1 > 1− d0
a − d0

b .
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ii.) d0
a + d0

b < 1, l = O
(
T (d0

a+d0
b−1)/(d0

a+d0
b−2)+υ

)
for some υ > 0, and (d0

a + d0
b − 1)/(d0

a +
d0
b − 2) + υ < ((da − d0

a) + (db − d0
b) + δm1)/((da − d0

a) + (db − d0
b) + 1).

Here and in the rest of the paper, the superscript 0 denotes the true value of a param-
eter, for example, d0

a is the true memory parameter of series a.
The first part of the theorem shows that for nonstationary long-memory processes

the long-memory component always dominates the mean component and no trimming is
needed. Here, we can use the procedure by Nielsen and Shimotsu (2007) to determine
the fractional cointegration rank even when low-frequency contaminations are present. In
the case of stationary long memory, however, this is not the case. Here, the second part
of the condition gives the frequency from which onwards the long-memory component
becomes dominant. This depends on the true order of integration, which we assumed
to be known so far. If this is not the case, a feasible choice would be to trim away
l =
√
T frequencies. We could also estimate d using univariate approaches that are robust

to low-frequency contaminations and then choose l based on these estimates. However,
unreported simulations indicate that setting l =

√
T yields superior results.

Nevertheless, we still have to estimate d for determining Ĝy(d, l,m1). For this purpose,
we need an estimator that is robust to low-frequency contaminations and converges with
a rate of logm, which is the standard rate for semiparametric estimators. Moreover, as
discussed in Robinson and Yajima (2002) and Nielsen and Shimotsu (2007), we require
an estimate of d that converges faster than the estimate of Gy such that the effect of
estimating d vanishes asymptotically and we cannot rely on multivariate estimators since
these require knowledge of the cointegration rank. Possible estimators are those of Iacone
(2010), McCloskey and Perron (2013), or Hou and Perron (2014). Denote the bandwidth
for estimating d by m for which the following assumption holds.

Assumption B3. For any ψ > 0,

m
1/2−ψ
1 Tψ

m1/2 + m1+2ψ log(m)2

T 2ψ → 0 as T →∞.

Theorem 3. Suppose yt is generated by (6.3), Assumptions B1 to B3 hold, and let
d̂(m)− d0 = o(logm), then

Ĝy(d̂(m), l,m1) p→ Ĝy(d0, l,m1).

Theorem 3 in conjunction with 2 ii.) and Proposition 3 of Robinson and Yajima (2002)
implies that G can be estimated consistently and Ĝy(d̂(m), l,m1) is asymptotically Gaus-
sian given the additional assumptions made in Robinson and Yajima (2002). Note that
these assumptions restrict the series to be stationary. This might seem restrictive but as
discussed before, for nonstationary series low-frequency contaminations are not trouble-
some such that the standard extension by Nielsen and Shimotsu (2007) can be considered.



6.4 Robust Multivariate Local Whittle Estimator 126

We can then follow the route of Robinson and Yajima (2002) to estimate the fractional
cointegration rank of the series. For the sake of completeness, we will briefly outline the
steps. We can test whether two series have equal memory using

T̂TRE = m1/2(d̂a − d̂b)
(1/2(1− Ĝ2

ab/(ĜaaĜab)))1/2 + n(T )
,

where Gab are the respective elements of the estimated matrix Ĝy(d̂(m), l,m1), da and db
are estimated using a robust estimator as discussed above, and n(T ) > 0. Consistency of
the test follows under the same additional assumptions as in Robinson and Yajima (2002).

If the test indicates the two series to have equal memory, we can then determine
whether they are fractionally cointegrated by estimating the fractional cointegration rank.
To do so, denote by q1,G the first eigenvalue of Gy(d̂(m), l,m1) and let q̂1,G denote its
empirical counterpart. If rank(A) = 2, we have q1,A > q2,A > 0, whereas for rank(A) = 1,
it is q1,A > q2,A = 0. Define furthermore σv,G = ∑v

i=1 qi,G and N(T ) > 0 such that
N(T ) +m

−1/2
1 N(T )−1 → 0 as T →∞. We can estimate the fractional cointegration rank

by minimizing the loss function

L(u) = N(T )(2− u)− σ̂2−u,G.

The estimator for the fractional cointegration rank is

r̂kTRE = arg min
u=0,1

L(u).

Again, consistency of this estimator follows directly from Robinson and Yajima (2002)
given the same additional assumptions.

6.4 Robust Multivariate Local Whittle Estimator

After determining the fractional cointegration rank, we aim to estimate the cointegration
vector and the memory parameter robust to potential low-frequency contaminations. In
this section, we obtain a robust local Whittle estimator for the parameter θ containing of
the memory parameters d = (da, db) and the possible cointegration vector β.

It should be mentioned that our robust local Whittle estimator depends on the a priori
specified fractional cointegration rank as much as the original local Whittle estimator in
Robinson (2008). The cointegration rank is needed to know the dimension of the parameter
to be estimated. It does not enter the estimation procedure as a nuisance parameter.
Therefore, we see the estimation of the cointegration rank in a first step as part of the
model specification procedure and find the assumption of a known cointegration rank when
it comes to parameter estimation justified. The same assumption is implicitly used by
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Robinson (2008) and Shimotsu (2012) and is therefore standard in the literature. A short
Monte Carlo analysis underpinning this can be found in the Supplementary Appendix.

The expectation of the periodogram of the contaminated multivariate long-memory
process has an additive structure. Consequently, a robust multivariate local Whittle es-
timator can be constructed in a similar fashion as for the fractional cointegration rank
estimator, i.e., by trimming away the frequencies dominated by the low-frequency contam-
ination. Our estimator is then based on the univariate trimmed local Whittle estimator
by Iacone (2010). In Section 6.2, we showed that OP (Tj−2) is an upper bound for the pole
of the periodogram at the zero frequency for a fairly general class of processes. Therefore,
trimming the periodogram by the first l =

√
T frequencies eliminates the influence of the

low-frequency contaminations and leads to a robust estimate of the memory parameter.
We aim to estimate the parameter θ = (d, β)′ , where we restrict the series to be

stationary, i.e., −1/2 < da, db < 1/2. As discussed in Section 6.3, for nonstationary time
series trimming is not needed. Our trimmed multivariate local Whittle estimator

θ̂ = arg minR(θ)

is defined by the objective function using here and in what follows the superscript tri to
indicate the trimmed version

R(θ) = log det Ω̂tri(θ)− 2(da + db)
1

m− l + 1

m∑
j=l

log λj,

where

Ωtri(θ) = 1
m− l + 1

m∑
j=l

Re[Λj(d)BI triy (λj)B
′Λ∗j(d)] with B =

 1 −β
0 1

 .
To show consistency of this estimator, we need to make the following assumptions.

Assumption C1. As λ→ 0+,

fx,ab(λ) = exp
(
iπ
(
d0
a − d0

b

)
/2
)
λ−d

0
a−d0

bG0
x,ab = O

(
λ−d

0
a−d0

b

)
,

where fx,ab and Gx,ab are the respective element of the matrices fx and Gx of xt.

Assumption C2. Assumption B1 holds.

Assumption C3. In a neighborhood (0, α) of the origin, A(λ) = ∑∞
j=0Aje

ijλ is differen-
tiable and

∂

∂λ
aA(λ) = O

(
λ−1‖aA(λ)‖

)
as λ→ 0+,

where aA(λ) is the a-th row of A(λ).
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Assumption C4. As T →∞,
l

m
+ m

T
→ 0,

where l is a trimming parameter with l = max(1, [clT δl ]) and m = max(l + 1, [cmT δm ]) is
the bandwidth parameter with 0 ≤ δl < δm < 1 and cl, cm ∈ (0,∞).

Assumptions C1, C2, and C3 are analogous to Assumptions A1 to A3 of Lobato (1999)
respectively Assumptions 1 to 3 of Shimotsu (2007) and Assumption C4 corresponds to
A4 of Shimotsu (2007). We furthermore denote in what follows ν0 = d0

b − d0
a.

Theorem 4. Suppose yt is generated by (6.3) and Assumptions C1 to C4 hold with the
trimming parameter l =

√
T , it is

d̂− d0 P→ 0, β̂ = β0 + oP

((
m

T

)ν0)
.

As usual, the assumptions required to prove the normality of the estimator are some-
what stronger than those needed for consistency. Here, we assume

Assumption D1. For ζ ∈ (0, 2] and as λ→ 0+,

fx,ab(λ) = exp
(
i (π − λ)

(
d0
a − d0

b

)
/2
)
λ−d

0
a−d0

bG0
x,ab = O

(
λ−d

0
a−d0

b+ζ
)
.

Assumption D2. Assumption B1 holds and in addition it holds for a, b, c, d = 1, 2,
t = 0,±1,±2, . . . that

E(εatεbtεct|Ft−1) = µabc a.s.

and
E(εatεbtεctεdt|Ft−1) = µabcd a.s.,

where |µabc| <∞ and |µabcd| <∞.

Assumption D3. Assumption C3 holds.

Assumption D4. As T →∞, it holds for any τ > 0

l

m
+ m1+2τ (logm)2

T 2τ + log T
mτ

→ 0.

Assumption D5. There exists a finite real matrix Q such that

Λj(d0)−1A(λj) = Q+ o(1) as λj → 0.

These assumptions allow for non-Gaussianity. Assumption D1 and D5 are satisfied
by multivariate ARFIMA processes. Assumption D4 is necessary for the Hessian of the
objective function of the local Whittle function to converge. It should be mentioned that
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Assumption D4 gives a sharp upper bound for the number of frequencies m which can be
used for the local Whittle estimator. It is m = o(T 0.8).

For the robust estimator, we obtain the following results.

Theorem 5. Suppose yt is generated by (6.3), Assumptions D1 to D5 hold with T →∞,
and ∆T = diag(λ−ν0

m , 1, 1), then

√
m∆T (θ̂ − θ0) d→ N(0,Ξ−1),

where Ξaa = 2µ̃[(1 − 2ν0)−1 − (1 − ν0)−2cos2(γ̃0)]Gbb/Gaa, Ξab = Ξ21 = −2µ̃ν0(1 −
ν0)−2cos(γ̃0)Gab/Gaa + (π/2)2µ̃(1 − ν0)−1sin(γ̃0)(Gab/Gaa), Ξ13 = Ξ31 = −Ξab, Ξbb =
Ξ33 = 4 + (π2/4− 1)2µ̃ρ2, ρ = Gab/(GaaGbb)1/2, µ̃ = (1− ρ2)−1, and γ̃0 = (π/2)ν0.

Consequently, the estimator is consistent and asymptotically normal with the same
limiting variance as the GSE estimator in Robinson (2008). We can therefore robustify
the estimator without an asymptotic loss in efficiency. If Gµ = 0, the estimator is reduced
to the standard multivariate estimator of Robinson (2008).

6.5 Monte Carlo Simulation

In this section, we show the behavior of our proposed methods in finite samples by means
of a simulation study. We first investigate the behavior of our robust fractional cointe-
gration rank estimator and then consider the robust multivariate local Whittle estimator.
Our framework as stated in Section 6.2 allows for various forms of low-frequency contam-
inations. For the ease of the presentation, we present results for nonstationary random
level-shift processes with rare shifts in the following as this seems to be the empirical most
relevant case and move the qualitatively similar results for stationary random level-shift
processes and deterministic trends to Tables 6.8-6.13 in the Supplementary Appendix.

As data generating process (DGP), we consider the following bivariate stationary long-
memory process with random level shifts

yat = ζaµt + ξµ̃t + xt + (1− L)−(d−d̃)ut (6.5)

ybt = ζbµt + xt, (6.6)

where

µt = µt−1 + πtηt, πt ∼ B(5/T ), ηt ∼ N(0, 1), (6.7)

µ̃t = µ̃t−1 + π̃tη̃t, π̃t ∼ B(5/T ), η̃t ∼ N(0, 1), (6.8)

xt = (1− L)−det, and
et
ut

 ∼ N

0,
1 r

r 1

 . (6.9)
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Here, L is the usual lag operator such that (1 − L)d = ∑∞
k=0

(
d
k

)
(−1)kLk with

(
d
k

)
=

d(d−1)(d−2)...(d−(k−1))
k! . This model allows for fractional cointegration, distinct structural

breaks, and joint structural breaks.
Concerning the fractional cointegration component, we investigate the case of no frac-

tional cointegration with d̃ = 0 and the case of fractional cointegration with d̃ = d and
the cointegration vector being β = (1,−1)′ . Concerning the low-frequency contamina-
tion component, we investigate the situations of no low-frequency contaminations, i.e.,
ζa = ζb = ξ = 0, of distinct structural breaks, i.e., ζa = 0 but ζb = ξ = 1, and of joint
breaks with ζa = ζb = 1 and ξ = 0. Break sizes are random with mean zero and variance
one and they occur with probability 5/T .

We present results for cross-sectionally uncorrelated (r = 0) series with orders of
integration of d = 0.2, 0.4. Qualitatively similar results for r = 0.5 can be found in Tables
6.5 to 6.7 of the Supplementary Appendix. We consider sample sizes of T = 250, 1000
with a burn-in period of 250 observations and all presented results are the averages over
5,000 replications.

6.5.1 Fractional Cointegration

We first consider the results for the estimation of the fractional cointegration rank. To put
the performance of our estimator into perspective, we also report the results of all other
procedures applicable when the series exhibit stationary long memory. This includes the
rank estimator by Robinson and Yajima (2002) (RY02) and the fractional cointegration
tests by Chen and Hurvich (2006) (CH06) and Souza et al. (2018) (SRF). Parameter
values are all chosen according to the authors recommendation.

For our robust estimator, abbreviated TRE in the table, we need to choose l,m,m1, N ,
and the type of robust univariate estimator. Unreported simulations indicate that l = T 0.5,
m = T 0.75, m1 = T 0.7, N = m−0.2

1 , and the univariate estimator by Iacone (2010) yielded
the best trade-off between correctly and spuriously identifying fractional cointegration
in our simulations. We therefore show the results for this parameter combination in the
following and recommend it to be considered in empirical applications.

The results can be found in Table 6.1. In the table, “NO” indicates no low-frequency
contaminations, “DIS” means that the series exhibit distinct breaks, and “COB” refers to
joint breaks. Furthermore, “TRUE” means that the series are fractionally cointegrated,
whereas “FALSE” indicates that they are not. We then state the mean estimated coin-
tegration rank for the rank estimators, which should be 1 for “TRUE” and 0 otherwise,
and the mean rejection rate for the tests, which should be 1 for “TRUE“ and 0.05 (the
significance level) otherwise as all procedures test the null of no fractional cointegration.

Table 6.1 shows that our procedure works well for all of the considered scenarios. It
correctly identifies fractional cointegration respectively no fractional cointegration in most
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Cointegration TRUE FALSE
d T Breaks TRE RY02 CH06 SRF TRE RY02 CH06 SRF

0.2

250
NO 1.00 0.99 0.29 0.09 0.00 0.00 0.16 0.00
DIS 0.96 0.35 0.24 0.10 0.00 0.00 0.51 0.16

COB 1.00 1.00 0.81 0.66 0.00 0.02 0.75 0.37

1000
NO 1.00 1.00 0.63 0.29 0.00 0.00 0.18 0.00
DIS 0.99 0.23 0.44 0.54 0.00 0.00 0.63 0.61

COB 1.00 1.00 0.97 0.92 0.00 0.00 0.90 0.72

0.4

250
NO 1.00 1.00 0.80 0.39 0.00 0.00 0.23 0.00
DIS 0.98 0.68 0.18 0.10 0.00 0.00 0.38 0.04

COB 1.00 1.00 0.93 0.71 0.00 0.00 0.52 0.10

1000
NO 1.00 1.00 1.00 0.90 0.00 0.00 0.19 0.01
DIS 1.00 0.78 0.22 0.42 0.00 0.00 0.41 0.13

COB 1.00 1.00 1.00 0.98 0.00 0.00 0.57 0.22

Table 6.1: Simulation results fractional cointegration rank
Reported is the mean estimated fractional cointegration rank for a bivariate
fractionally integrated system. The DGP is based on Equations (6.5) to (6.9)
with r = 0. In case of fractional cointegration, β = (−1, 1)′ and b = d.
Break sizes are random with mean zero and variance one and they occur with
probability 5/T . Our estimator (TRE) is considered with l = T 0.5, m = T 0.75,
m1 = T 0.7, N = m−0.2

1 , and the univariate estimator by Iacone (2010) to
estimate d. For the procedures by Robinson and Yajima (2002) (RY02), Chen
and Hurvich (2006) (CH06), and Souza et al. (2018) (SRF), parameter values
are chosen according to the authors recommendation.

of the cases. In Section 6.3, we mentioned that two scenarios are of particular importance,
the case when no fractional cointegration is present but joint breaks as standard procedure
might spuriously indicate fractional cointegration, and the case of fractional cointegration
but distinct breaks as standard procedure might have problems detecting the fractional
cointegration relation in this case. The table shows that our estimator works well in both
cases with minor distortions for the first case in a small sample size of T = 250. When
increasing the sample size, these vanish completely.

In contrast to this, all other procedures show problems in at least one of the two
cases. In the first case, the rejection rates of CH06 and SRF increase with increasing T
implying that asymptotically the tests always indicate fractional cointegration in the case
of joint breaks, no matter if the series truly are fractionally cointegrated. RY02 has serious
problems in the second case where, at least for d = 0.2, the estimated cointegration rank
decreases with increasing T implying that asymptotically the estimator always indicate
no fractional cointegration in the case of distinct breaks.

Consequently, there is a risk in empirical applications that these procedures miss a
fractional cointegration relation due to structural breaks or falsely indicate a fractional
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Estimator TMLW GSE
Bias RMSE Bias RMSE

d T Breaks d̂1 d̂2 d̂1 d̂2 d̂1 d̂2 d̂1 d̂2

0.2

250
NO -0.03 -0.02 0.19 0.20 -0.02 -0.02 0.08 0.08
DIS 0.02 0.01 0.20 0.20 0.18 0.18 0.22 0.22

COB 0.01 0.01 0.19 0.20 0.17 0.17 0.20 0.20

1000
NO -0.02 -0.01 0.09 0.09 -0.01 -0.01 0.04 0.04
DIS 0.01 0.01 0.09 0.09 0.17 0.17 0.19 0.19

COB 0.01 0.01 0.09 0.09 0.16 0.16 0.18 0.18

0.4

250
NO -0.04 -0.04 0.20 0.20 -0.02 -0.02 0.08 0.08
DIS -0.01 -0.01 0.19 0.20 0.08 0.08 0.12 0.12

COB -0.01 -0.01 0.19 0.19 0.07 0.07 0.11 0.11

1000
NO -0.02 -0.02 0.09 0.09 -0.01 -0.01 0.04 0.04
DIS -0.01 -0.01 0.09 0.09 0.06 0.06 0.09 0.09

COB -0.01 -0.01 0.09 0.09 0.06 0.06 0.08 0.08

Table 6.2: Simulation results order of integration — no fractional cointegra-
tion
Reported are bias and RMSE of our trimmed multivariate local Whittle esti-
mator (TMLW) and the standard multivariate local Whittle estimator (GSE)
in a bivariate fractionally integrated system. The DGP is based on Equations
(6.5) to (6.9) with r = 0. Break sizes are random with mean zero and variance
one and they occur with probability 5/T . We use m = T 0.75, l = 1 for the
standard estimator, and l = T 0.5 for our procedure.

cointegration relation due to joint breaks in the series. In contrast, our procedure delivers
the required robustness to correctly detect whether fractional cointegration is present.

6.5.2 Order of Integration

After providing evidence that we can robustly determine the fractional cointegration rank
also in small samples, we now focus on robust estimation of the memory parameter. We
consider the same DGP as before and again use m = T 0.75 and l = T 0.5 for robust es-
timation. Furthermore, we state the results for the standard multivariate estimator by
Shimotsu (2007) and Robinson (2008). For comparison, we assume the fractional cointe-
gration rank to be known. Tables 6.14 and 6.15 in the Supplementary Appendix show the
qualitatively similar results when first estimating the fractional cointegration rank and
then estimating the order of integration.

Table 6.2 has bias and RMSE of the estimators when no fractional cointegration is
present and Table 6.3 states bias and RMSE when fractional cointegration is present.

In the case of no fractional cointegration, we estimate the two memory parameters
d1 and d2 of the two time series. Table 6.2 shows that in this case bias and RMSE of
our estimator (TMLW) are small in all scenarios and that they decrease with increasing
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Estimator TMLW GSE
Bias RMSE Bias RMSE

d T Breaks d̂− d̃ d̂ β̂ d̂− d̃ d̂ β̂ d̂− d̃ d̂ β̂ d̂− d̃ d̂ β̂

0.2

250
NO -0.02 -0.03 -0.28 0.20 0.19 2.75 -0.02 -0.02 0.01 0.08 0.07 1.15
DIS 0.08 0.01 0.11 0.22 0.19 2.82 0.37 0.17 1.32 0.39 0.21 3.88

COB -0.02 0.01 -0.21 0.20 0.19 2.65 -0.02 0.18 0.00 0.08 0.22 0.32

1000
NO -0.01 -0.02 -0.02 0.09 0.09 1.27 -0.01 -0.01 0.00 0.04 0.04 0.17
DIS 0.06 0.01 0.10 0.12 0.09 1.84 0.37 0.16 1.50 0.39 0.18 3.92

COB -0.01 0.01 -0.03 0.09 0.09 1.18 -0.01 0.17 0.00 0.04 0.19 0.06

0.4

250
NO -0.02 -0.04 -0.12 0.19 0.20 1.99 -0.02 -0.01 0.00 0.08 0.08 0.18
DIS 0.08 -0.01 0.05 0.22 0.19 2.16 0.38 0.07 0.58 0.40 0.12 3.15

COB -0.02 -0.02 -0.13 0.20 0.20 1.84 -0.02 0.08 0.00 0.08 0.13 0.09

1000
NO -0.01 -0.02 -0.01 0.09 0.09 0.25 -0.01 -0.01 0.00 0.04 0.04 0.05
DIS 0.06 -0.01 -0.02 0.12 0.09 0.59 0.39 0.05 0.46 0.40 0.08 2.88

COB -0.01 -0.01 0.00 0.09 0.09 0.22 -0.01 0.06 0.00 0.04 0.09 0.03

Table 6.3: Simulation results order of integration — fractional cointegration
Reported are bias and RMSE of our trimmed multivariate local Whittle
estimator (TMLW) and the standard multivariate local Whittle estimator
(GSE) in a bivariate fractionally cointegrated system with cointegration vec-
tor β = (1,−1)′ . The DGP is based on Equations (6.5) to (6.9) with r = 0.
Break sizes are random with mean zero and variance one and they occur with
probability 5/T . We use m = T 0.75, l = 1 for the standard estimator, and
l = T 0.5 for our procedure.

sample size. If we consider the standard estimator (GSE), we can see that it is upward
biased in case of low-frequency contaminations. The bias is large for d = 0.2 and does
not seem to vanish asymptotically when increasing T . However, it does decrease when
increasing d as implied by Theorem 2. The table further reveals that the variance of the
standard estimator is lower than those of our procedure since more frequencies are used
for estimation. When increasing T , the difference becomes smaller as implied by Theorem
5.

In the case of fractional cointegration, we estimate the memory parameter d, the reduc-
tion of memory through the fractional cointegration relation d− d̃, and the cointegration
vector β. As Table 6.3 shows, for the robust estimation of the memory parameter the same
conclusion as for the case without a cointegration relation can be drawn. Bias and RMSE
are small even for T = 250 and they decrease with increasing sample size. Concerning the
estimation of d̂− d̃, it can be observed that our estimator works well when considering
the processes without breaks or with joint breaks. For the process with distinct breaks,
there is a positive bias which vanishes with increasing sample size. We could decrease
this bias by increasing l which, however, comes at the cost of an increased variance of
the estimator. Concerning the estimate of the cointegration vector β, we can see that the
estimate exhibits some variation in small samples resulting in rather large RMSEs.

As in the case of no fractional cointegration, the standard estimator shows a substantial
positive bias for d, which decreases in d but not in T , when low-frequency contaminations
are present. The estimate of d− d̃ is accurate in the case of joint breaks but enormously
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upward biased in the case of distinct breaks. The same conclusion can also be drawn for
the estimate of β. As before, it can again be observed that the variance of the standard
estimator is smaller than of our procedure resulting in smaller RMSEs when no low-
frequency contaminations are present.

To summarize, the standard estimators are upward biased in the case of low-frequency
contaminations. In contrast, our estimator is robust to low-frequency contaminations in
the case of no fractional cointegration as well as in the case of fractional cointegration.
The price for this robustness is an increased variance which might be problematic when
estimating β in small samples, as the variance of the standard estimator is already large
in this case. When increasing T , this problem disappears making our estimator well suited
for estimating the order of integration and the cointegration vector.

6.6 Empirical Example

To demonstrate the empirical relevance of our procedures, we consider an example in-
vestigating the daily realized beta of two American stocks, namely Chevron (CVX) and
ExxonMobil (XOM), relative to the S&P 500 between January 1996 and February 2017
(T = 5, 238). Realized betas measure the systematic risk of a stock and are defined as the
realized covariance of the stock with the market divided by the realized variance of the
market. To construct these series, we use 5-minute returns obtained from the Thomson
Reuters Tick History database. These returns are cleaned following the recommendations
of Barndorff-Nielsen et al. (2009) to account for the typical high frequency data quality
issues.

To give a first graphical impression, Figure 6.1 plots the realized betas and the corre-
sponding autocorrelation function and periodogram for the two stocks. It can be seen that
the autocorrelation function and periodogram indicate the series to be highly persistent
with significant positive correlation even after 200 lags and a pole at the origin.

Despite such evidence for persistence, realized betas have been sparsely investigated
concerning their order of integration so far. A noteworthy study in this context is the one
by Andersen et al. (2006), who find that quarterly betas in the time period 1969 until
1999 were best described by a process with d ≈ 0.2. Due to the small number of observa-
tions, their analysis is based on graphical investigation rather than consistent and robust
estimation of the memory parameter. The two constituents of realized beta, realized vari-
ance and realized covariance, on the other hand, have been investigated more extensively.
Depending on the investigated asset and time period, it is found that realized variances
can be best described by pure long-memory processes (e.g., Andersen et al., 2003) or a
combination of long-memory process and shift process (e.g., Liu and Maheu, 2007). For
realized covariances, although less considered in the literature, a similar conclusion might
be drawn (e.g., Asai and McAleer, 2015).
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Figure 6.1: Realized beta plots.
Left: daily realized betas of Chevron (CVX) and ExxonMobile (XOM) rel-
ative to the S&P 500 from January 1996 to February 2017. Middle: corre-
sponding autocorrelation functions excluding lag zero. Right: corresponding
periodograms.

To summarize, there is evidence that realized betas are fractionally integrated. Further-
more, since we investigate two companies who both mainly operate in the same industry,
it seems reasonable to assume that they face the same relation to the systematic risk fac-
tor. This would imply a fractional cointegration relation between the two series. However,
the series might also exhibit low-frequency contaminations caused by structural breaks
in the realized variance or the realized covariance. Therefore, estimating the memory of
realized betas and thereby estimating the fractional cointegration relation should be done
using our robust methods.

To demonstrate this, we test whether the two series exhibit equal order of integration
and then estimate the fractional cointegration rank of the two series using the standard
procedure by Robinson and Yajima (2002) and our robust procedure. As mentioned in
Section 6.3, for the test we need to decide for a robust univariate estimator. Here, we con-
sider the estimator by Iacone (2010), the results are, however, qualitatively similar when
considering the estimators by McCloskey and Perron (2013) or Hou and Perron (2014).
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T̂RY T̂TRE r̂kRY r̂kTRE MLWS GSE TMLW ˆ̃d β̂
Chevron 0.21 0.40 0 1 3.84 0.346 0.180 0.059 0.491ExxonMobile 0.375

Table 6.4: Estimation results.
T̂RY and r̂kRY correspond to the test statistics for equality of d and the
fractional cointegration rank estimator by Robinson and Yajima (2002) and
T̂TRE and r̂kTRE to our robust procedures. In analogy, GSE corresponds to
the d estimate by the standard multivariate local Whittle estimator from
Shimotsu (2007) and Robinson (2008) and TMLW to the estimate by our
trimmed estimator for which we also state the estimated reduction in memory
b̂ and the estimated cointegration vector β̂. Finally, MLWS corresponds to the
test statistic of the multivariate test for spurious long memory by Sibbertsen
et al. (2018). For our procedures, we employ the parameter combination used
in Section 6.5. For the procedures by Robinson and Yajima (2002), Shimotsu
(2007) and Robinson (2008), and Sibbertsen et al. (2018) we consider the
parameter combinations recommended by the authors.

We are then able to compute the multivariate local Whittle estimator by Shimotsu (2007)
and Robinson (2008) and our robust multivariate local Whittle estimator. Additionally,
we apply the multivariate MLWS test by Sibbertsen et al. (2018) to test for low-frequency
contaminations. For our methods, we use the parameter combinations recommended in
Section 6.5 and for the other methods we use the parameter combinations recommended
by the authors of the procedures. The results are displayed in Table 6.4.

For estimating the fractional cointegration rank, we first need to test whether the series
exhibit an equal order of integration. Otherwise, fractional cointegration can be excluded
right away. The table shows that both, robust and standard test statistic are clearly below
the five percent critical value of 1.96. Therefore, the null hypothesis that the series are
equally integrated cannot be rejected meaning that it is sensible to investigate whether the
two series are fractionally integrated. It can be seen that the procedure by Robinson and
Yajima (2002) indicates the cointegration rank to be zero, i.e., no fractional cointegration,
while our robust procedure estimates it to be 1. Furthermore, the multivariate MLWS by
Sibbertsen et al. (2018) shows a test statistic of 3.84 which is above the one percent critical
value of 1.517 implying that the series exhibit low-frequency contaminations. These then
dominate the G matrix in the lower frequencies letting the matrix appear to have full rank
which makes the standard estimator by Robinson and Yajima (2002) unable to detect the
cointegration relation. In contrast, our procedure trims those frequencies and is therefore
robust to the contaminations.

If we then estimate the order of integration using the standard multivariate local
Whittle estimator, our error is twofold. First, we have a positive bias of the estimates
caused by the low-frequency contaminations. Second, we ignore the fact that the two
series are fractionally cointegrated causing a bias as well. This reflects in the estimates
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made by the standard multivariate local Whittle estimator and our trimmed estimate
stated in column four and five of Table 6.4. While the standard procedure estimates the
memory parameters to be 0.35 respectively 0.38, our robust estimator yields a significantly
lower value of 0.18 for both series which is in line with the considerations by Andersen
et al. (2006) that realized betas have a d of approximately 0.2. The estimator further
states the reduction in memory to be 0.06 and the fractional cointegration vector to be
(1,−0.49)′ .

6.7 Conclusion

It is well known that low-frequency contaminations bias inference on the order of inte-
gration of a series. Therefore, several authors have proposed robust approaches that yield
valid inference also in the case of low-frequency contaminations. These are, however, all
univariate. As working in multivariate systems often yields efficiency gains, we suggest a
multivariate local Whittle estimator robust to low-frequency contaminations in this pa-
per. This does not only yield an estimate of the order of integration of the series but also
of the cointegration vector.

Our estimator requires a priori knowledge of the fractional cointegration rank. We
provide theoretical as well as simulation-based evidence that low-frequency contamina-
tions bias inference on the fractional cointegration rank. On the one hand, common low-
frequency contaminations cause spurious fractional cointegration. On the other hand,
distinct low-frequency contaminations cause tests and estimators to falsely indicate the
absence of fractional cointegration. We therefore also propose an estimator of the frac-
tional cointegration rank robust to low-frequency contaminations. Using this estimator,
we find that the realized beta series of ExxonMobil and Chevron are fractionally cointe-
grated. As the series exhibit low-frequency contaminations, non-robust procedures were
unable to detect this relation.
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Appendix

Before proving Lemmas 1, 2, and 3, we need two auxiliary lemmas. For the structural-
change processes in (6.1) and (6.2), we have the following result.

Lemma 4. The discrete Fourier transform (DFT) of the process in (6.1) can be repre-
sented as

wµ(λj) = − 1√
2πT

K∑
k=1

∆µkDTk(λj),

and that of the process in (6.2) can be represented as

wµ(λj) = − 1√
2πT

K∑
k=0

µk
(
DTk−1(λj)−DTk−1(λj)

)
,

where DTk(λj) = ∑Tk
t=1 e

iλjt is a version of the Dirichlet kernel.

Note that Lemma 4 is completely algebraic and we do not impose any conditions on
the ∆µk, µk, or Tk.

Proof of Lemma 4:

From (6.1), we have

wµ(λj) = 1√
2πT

T∑
t=1

{
µ0 +

K∑
k=1

1(t ≥ Tk)∆µk

}
eiλjt

= 1√
2πT

{
µ0

T∑
t=1

eiλjt +
K∑
k=1

∆µk
T∑
t=1

1(t ≥ Tk)eiλjt
}
.

Here,

T∑
t=1

1(t ≥ Tk)eiλjt =
T∑

t=Tk

eiλjt =
T∑
t=1

eiλjt −
Tk∑
t=1

eiλjt = DT (λj)−DTk(λj).

Therefore,

wµ(λj) = 1√
2πT

{
DT (λj)µ0 +

K∑
k=1

∆µk [DT (λj)−DTk(λj)]
}

= 1√
2πT

{[
µ0 +

K∑
k=1

∆µk

]
DT (λj)−

K∑
k=1

∆µkDTk(λj)
}
.

Furthermore, we have

DT (λj) = ei(T+1)λj − eiλj
eiλj − 1

= ei(T−1)λj/2 sin(Tλj/2)
sin(λj/2) , (6.10)
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cf. Beran et al. (2013), p. 327. Note that λjT = 2πj, ei(T+1)λj = eiλjT eiλj , and ei2πj = cos(2πj)+
i sin(2πj) = cos(2π) + i sin(2π) = 1. Therefore, DT (λj) = eiλj−eiλj

eiλj−1
= 0, which proves the first

part of the lemma.
Similarly, for the second part of the lemma, we have from (6.2) that

wµ(λj) = 1√
2πT

T∑
t=1

{
µ0 +

K∑
k=0

µk1(Tk−1 ≤ t < Tk)
}
eiλjt

= 1√
2πT

{
µ0

T∑
t=1

eiλjt +
K∑
k=0

µk

T∑
t=1

1(Tk−1 ≤ t < Tk)eiλjt
}
.

Here,

T∑
t=1

1(Tk−1 ≤ t < Tk)eiλjt =
T∑
t=1
{1(Tk > t)− 1(Tk−1 ≥ t)} eiλjt

=
Tk−1∑
t=1

eiλjt −
Tk−1∑
t=1

eiλjt = DTk−1(λj)−DTk−1(λj)

Therefore, since DT (λj) = 0, we have

wµ(λj) = 1√
2πT

K∑
k=0

µk
{
DTk−1(λj)−DTk−1(λj)

}
.

�

Since Lemma 4 implies that the properties of the DFT and thus the properties of the
periodogram of a structural-change process are directly related to those of the Dirich-
let kernel, the following lemma provides an approximation for the Dirichlet kernel at
frequencies local to zero.

Lemma 5. We have for Tk/T = δk ∈ (0, 1) and j/T → 0,

DTk(λj) =Tj−1 sin(2δkπj)
2π + sin2(πjδk)

+ i

[
Tj−1 sin2(πδkj)

π
− 1

2 sin(2πδkj)
]

+OP (jT−1).

Clearly, from Lemma 5, both the real and the imaginary part of the Dirichlet kernel are
O(Tj−1) for deterministic δk and Op(Tj−1) if any of the δk are stochastic. Furthermore,
the order is exact. Again, this is an approximation based on a Laurent expansion that
holds irrespective of the stochastic properties of the Tk.
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Proof of Lemma 5:

From the second expression in (6.10) in the proof of Lemma 4, we can decompose the real and
the imaginary parts of the DFT at the Fourier frequencies λj = 2πj/T as follows,

DTk(λj) = ei(Tk−1)λj/2 sin(Tkλj/2)
sin(λj/2)

= [cos((Tk − 1)λj/2) + i sin((Tk − 1)λj/2)] sin(Tkλj/2)
sin(λj/2) .

It follows by the sum-to-product identities that

DTk(λj) =
sin(Tk−1

T πj + Tk
T πj)− sin(Tk−1

T πj − Tk
T πj)

2 sin(πjT )

+ i
cos(Tk−1

T πj − Tk
T πj)− cos(Tk−1

T πj + Tk
T πj)

2 sin(πjT )

=
sin(2δkπj − πj

T ) + sin(πjT )
2 sin(πjT )

+ i
cos(πjT )− cos(2δkπj − πj

T )
2 sin(πjT )

.

By a Laurent series approximation around λj = 0, we obtain

DTk(λj) =Tj−1 sin(2δkπj)
2π + sin2(πjδk) +OP (jT−1)

+ i

[
Tj−1 sin2(πδkj)

π
− 1

2 sin(2πδkj) +OP (jT−1)
]
,

where the Laurent series is obtained from separate Taylor approximations for each of the trigono-
metric functions. This proves the lemma.

We can now prove the Lemmas 1, 2, and 3.
Proof of Lemma 1:

For µt = h(t/T, T ), by combining Lemma 4 with Lemma 5, we have

Iµ(λj) =
∣∣∣∣∣− 1√

2πT

T∑
t=1

∆µtDt(λj)
∣∣∣∣∣
2

=(2πT )−1


[
T

T∑
t=1

∆µt sin(2πjt/T )
2πj +

T∑
t=1

∆µt sin2(πjt/T ) + T−1
T∑
t=1

∆µtOP (j)
]2

+
[
T

T∑
t=1

∆µt
sin2(πjt/T )

πj
− 1/2

T∑
t=1

∆µt sin(2πjt/T ) + T−1
T∑
t=1

∆µtOP (j)
]2 .
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Factoring out T from the square brackets gives

2πIµ(λj)T−1 =


[
T∑
t=1

∆µt sin(2πjt/T )
2πj + T−1

T∑
t=1

∆µt sin2(πjt/T ) + T−2
T∑
t=1

∆µtOP (j)
]2

+
[
T∑
t=1

∆µt
sin2(πjt/T )

πj
− 1

2T

T∑
t=1

∆µt sin(2πjt/T ) + T−2
T∑
t=1

∆µtOP (j)
]2 .

Now, using ∆µt = h (t/T, T )− h ((t− 1)/T, T ), we have

lim
T→∞

∆µtT = lim
T→∞

∂h(t/T, T )
∂(t/T ) ,

so that

2πIµ(λj)T−1 ∼
[

1
2πjT

T∑
t=1

∂h(t/T, T )
∂(t/T ) sin(2πjt/T ) +

T∑
t=1

∂h(t/T, T )
∂(t/T )

1
T 2 sin2(πjt/T ) + 1

T 3

T∑
t=1

∂h(t/T, T )
∂(t/T ) OP (j)

]2

+
[
T∑
t=1

∂h(t/T, T )
∂(t/T )

sin2(πjt/T )
πjT

− 1
2

T∑
t=1

∂h(t/T, T )
∂(t/T )

1
T 2 sin(2πjt/T ) + 1

T 3

T∑
t=1

∂h(t/T, T )
∂(t/T ) OP (j)

]2 ,
where A ∼ B means that the ratio of A and B converge to 1 as T →∞.

By the definition of a Riemann integral,

2πIµ(λj)T−1 ∼
[

1
2πj

� 1

0

∂h(s, T )
∂s

sin(2πjs)ds+ 1
T

� 1

0

∂h(s, T )
∂s

sin2(πjs)ds+ T−2
� 1

0

∂h(s, T )
∂s

OP (j)ds
]2

+
[� 1

0

∂h(s, T )
∂s

sin2(πjs)
πj

ds− 1
2T

� 1

0

∂h(s, T )
∂s

sin(2πjs)ds+ T−2
� 1

0

∂h(s, T )
∂s

OP (j)ds
]2
 .

Clearly, both parts of this expression are dominated by the first term in the respective square
bracket, such that

Iµ(λj) ∼
T

8π3j2


[� 1

0

∂h(s, T )
∂s

sin(2πjs)ds
]2

+
[� 1

0

∂h(s, T )
∂s

(1− cos(2πjs))ds
]2
 ,

which finishes our proof.

Proof of Lemma 2:

First, by (6.10) in the proof of Lemma 4, we have

DTk(λj)D∗Tu(λj) = ei(Tk−Tu)λj/2 sin(Tkλj/2) sin(Tuλj/2)
sin2(λj/2)

= 2eiπj(δk−δu) sin(δkπj) sin(δuπj)
1− cos(λj)

.
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By a Laurent expansion around λj = 0, we have

DTk(λj)D∗Tu(λj) = 2eiπj(δk−δu) sin(δkπj) sin(δuπj)
1− [1− 2π2(j/T )2 +O((j/T )4)]

= T 2

π2j2 e
iπj(δk−δu) sin(δkπj) sin(δuπj) +OP (1). (6.11)

In particular, for the case when Tk = Tu = t, we obtain

Dt(λj)D∗t (λj) = T 2

2π2j2 (1− cos(2πtj/T )) +O(1). (6.12)

Furthermore, we have

K∑
k=1

∆µkDTk(λj) =
T∑
t=1

∆µtDt(λj), where ∆µt =

∆µk, if t = Tk

0, otherwise.

In addition to that,

Iµ(λj) = A+B = 1
2πT

T∑
t=1

T∑
s=1

∆µt∆µsDt(λj)D∗s(λj)

= 1
2πT

T∑
t=1

(∆µt)2Dt(λj)D∗t (λj) + 1
2πT

∑
t6=s

∆µt∆µsDt(λj)D∗s(λj).

Consequently, we have for term A and from (6.12) above

A = 1
2πT

T∑
t=1

(∆µt)2Dt(λj)D∗t (λj) = T

4π3j2

T∑
t=1

(∆µt)2(1− cos(2πjt/T )) + O(1)
2πT

T∑
t=1

(∆µt)2

= T

4π3j2

{
T∑
t=1

(∆µt)2 −
T∑
t=1

(∆µt)2 cos(2πjt/T )
}

+OP (1). (6.13)

= T

4π3j2

{
K∑
k=1

(∆µk)2 −
K∑
k=1

(∆µk)2 cos(2πjδk)
}

+OP (1). (6.14)

To deal with term B, we revert back to the original representation in which the sum is
random and write

B = 1
2πT

∑
t6=s

∆µt∆µsDt(λj)D∗s(λj) = 1
2πT

∑
k 6=u

∆µk∆µuDTk(λj)D∗Tu(λj),

where k, l = 1, . . . ,K. Similar to the approach above, we have from (6.11)

B = T

2π3j2

∑
k 6=u

∆µk∆µueiπj(δk−δu) sin(δkπj) sin(δuπj) + 1
2πT

∑
k 6=u

∆µk∆µuOP (1). (6.15)

The first part of the lemma i.) follows immediately from (6.14) and (6.15).
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For the second part of the lemma, from Assumption A4 we have E[K] = E[ptT ] = p̃T 1−α

and, from (6.13) and (6.14),

E[A] = T

4π3j2

{
E

[
K∑
k=1

(∆µk)2
]
− E[∆µ2

t ]
T∑
t=1

cos(2πjt/T )
}

+O(1)

= T

4π3j2E

[
K∑
k=1

(∆µk)2
]

+O(1),

since
∑T
t=1 cos(2πjt/T ) = 0.

Now, from Assumption A3 we have E[(∆µk)2] = σ2
∆T
−β so that by the generalized Wald

identity of Brown (1974) and Assumption A4

E[A] = T

4π3j2E[K]E[(∆µk)2] = p̃σ2
∆T

2−α−β

4π3j2 + o(1).

Similarly, from (6.15)

E[B] = T

2π3j2E

∑
k 6=u

∆µk∆µueiπj(δk−δu) sin(δkπj) sin(δuπj)

+ O(1)
2πT E

∑
k 6=u

∆µk∆µu


and by the generalized Wald identity of Brown (1974) in conjunction with Assumption A5

E[B] = T

2π3j2E

∑
k 6=u

E [∆µk∆µu]E
[
eiπj(δk−δu) sin(δkπj) sin(δuπj)

]
+ O(1)

2πT E

∑
k 6=u

E [∆µk∆µu]

 .
Therefore,

|E[B]| ≤ T

2π3j2E

∑
k 6=u
|E [∆µk∆µu]|

∣∣∣E [eiπj(δk−δu) sin(δkπj) sin(δuπj)
]∣∣∣


+

∣∣∣∣∣∣O(1)
2πT E

∑
k 6=u

E [∆µk∆µu]

∣∣∣∣∣∣
≤ T

2π3j2E

∑
k 6=u
|E [∆µk∆µu]|

+ |O(1)|
2πT E

∑
k 6=u
|E [∆µk∆µu]]

∣∣∣∣∣∣ .
Assumption A5 combined with Assumptions A3 and A4 implies that

E

∑
k 6=u
|E[∆µk∆µu]|

 = 2E
[
K∑
k=2

k−1∑
τ=1
|E[∆µk∆µk−τ ]|

]
≤ 2E [K]V ar(∆µk)C̃ = 2p̃C̃σ2

∆T
1−α−β,

so that |E[B]| ≤ p̃σ2
∆C̃

π3j2 T
2−α−β +

∣∣∣O(T−α−β)
∣∣∣ . �
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Proof of Lemma 3:

From wµ(λj) = − 1√
2πT

∑K
k=0 µk[DTk−1(λj)−DTk−1(λj)], as shown in Lemma 4, we have

Iµ(λj) = Ã+ B̃

= 1
2πT

K∑
k=0

µ2
k[DTk−1(λj)D∗Tk−1(λj)−DTk−1(λj)D∗Tk−1(λj)−DTk−1(λj)D∗Tk−1(λj)

+DTk−1(λj)D∗Tk−1(λj)] + 1
2πT

∑
k 6=u

µkµu[DTk−1(λj)D∗Tu−1(λj)−DTk−1(λj)D∗Tu−1(λj)

−DTk−1(λj)D∗Tu−1(λj) +DTk−1(λj)D∗Tu−1(λj)].

Denoting (Tk − 1)/T = δ̃k, we have from (6.11) for the term in square brackets in Ã

ãk =[DTk−1(λj)D∗Tk−1(λj)−DTk−1(λj)D∗Tk−1(λj)−DTk−1(λj)D∗Tk−1(λj) +DTk−1(λj)D∗Tk−1(λ)]

= T 2

π2j2

[
sin2(δ̃kπj) + sin2(δk−1πj)− eiπj(δ̃k−δk−1) sin(δ̃kπj) sin(δk−1πj)

−eiπj(δk−1−δ̃k) sin(δ̃kπj) sin(δk−1πj)
]

+OP (1)

= T 2

π2j2 [1− 1
2
[
cos(2δ̃kπj) + cos(2δk−1πj)

]
− 2 sin(δ̃kπj) sin(δk−1πj) cos(πj(δ̃k − δk−1))]

+OP (1),

from Euler’s formula. By the sum-to-product identity for the cosine, it follows

ãk = T 2

π2j2

[
1− 1

2
[
2 cos(πj(δ̃k + δk−1)) cos(πj(δ̃k − δk−1))

]
−2 sin(δ̃kπj) sin(δk−1πj) cos(πj(δ̃k − δk−1))

]
+OP (1)

= T 2

π2j2

[
1− cos(πj(δ̃k − δk−1))

[
cos(πj(δ̃k + δk−1)) + 2 sin(δ̃kπj) sin(δk−1πj)

]]
+OP (1).

Now, by the product-to-sum identity of the sine

ãk = T 2

π2j2

[
1− cos(πj(δ̃k − δk−1))

[
cos(πj(δ̃k + δk−1))

+ cos(πj(δ̃k − δk−1))− cos(πj(δ̃k + δk−1))
]]

+OP (1)

= T 2

π2j2

[
1− cos2(πj(δ̃k − δk−1))

]
+OP (1).

Therefore, we have

Ã = 1
2πT

K∑
k=0

µ2
kãk = T

2π3j2

K∑
k=0

µ2
k[1− cos2(πj(δ̃k − δk−1))] + (K + 1)OP (1)

2πT . (6.16)
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For α < 1, by a Taylor expansion of the squared cosine at zero

ãk = T 2

π2j2

[
1−

[
1− π2j2(δ̃k − δk−1)2 + π4j4O((δ̃k − δk−1)4)

]]
+OP (1)

= T 2
[
(δ̃k − δk−1)2 − π2j2O((δ̃k − δk−1)4)

]
+OP (1).

Therefore, we obtain

Ã = 1
2πT

K∑
k=0

µ2
k

{
T 2
[
(δ̃k − δk−1)2 − π2j2O((δ̃k − δk−1)4)

]
+OP (1)

}

= T

2π

K∑
k=0

{
µ2
k(δ̃k − δk−1)2

}
− Tπj2

4

K∑
k=0

µ2
kO
(
(δ̃k − δk−1)4

)
+ OP (1)

2πT

K∑
k=0

µ2
k.

By applying the Wald identity for dependent random sums of Brown (1974) and then using
Assumption A5, we obtain

E[Ã] =E[K + 1]E[µ2
k]
{
T

2πE[(δ̃k − δk−1)2]− Tπj2

4 E[O((δ̃k − δk−1)4)] + O(1)
2πT

}

=(p̃T 1−α + 1)σ2
∆T
−β
{
T

π

D̃

p̃2T
2(α−1) − Tπj2

2 O(T 4(α−1)) +O(T−1)
}

=σ2
∆D̃

πp̃
Tα−β − σ2

∆p̃πj
2

2 O(T−2+3α−β) + σ2
∆p̃O(T−α−β)

+ σ2
∆D̃

πp̃
T−1+2α−β − πj2O(T−3+4α−β) +O(T−1−β). (6.17)

For B̃, we have from (6.11),

B̃ = T

2π2j2

∑
k 6=u

µkµu
[
eiπj(δk−δu) sin(δkπj) sin(δuπj)− eiπj(δk−δu−1) sin(δkπj) sin(δu−1πj)

−eiπj(δk−1−δu) sin(δk−1πj) sin(δuπj) + eiπj(δk−1−δu−1) sin(δk−1πj) sin(δu−1πj)
]

+ OP (1)
2πT

∑
k 6=u

µkµu. (6.18)

Denote the term in the square bracket by b̃, and let b̃1 denote the first two summands and b̃2
the last two summands so that b̃ = b̃1 + b̃2. We have

b̃1 = sin(δkπj)
[
eiπj(δk−δu) sin(δuπj)− eiπj(δk−δu−1) sin(δu−1πj)

]
= sin(δkπj) [cos(πj(δk − δu)) sin(δuπj)− cos(πj(δk − δu−1)) sin(δu−1πj)

+i {sin(πj(δk − δu)) sin(πjδu)− sin(πj(δk − δu−1)) sin(πjδu−1)}] .

Now, let γu = δu − δu−1. Then, by a Taylor approximation at γu = 0

b̃1 = πjγu sin(δkπj)eiπj(δk−2δu) +OP (γ2
u).
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Similarly, we have for the third and fourth term in the square bracket

b̃2 = − sin(δk−1πj)
[
eiπj(δk−1−δu) sin(δuπj)− eiπj(δk−1−δu−1) sin(δu−1πj)

]
,

and by a Taylor approximation at γu = 0,

b̃2 = −πjγu sin(δk−1πj)eiπj(δk−1−2δu) +OP (γ2
u).

Therefore, we have

b̃ =− πjγu
[
sin(δkπj)eiπj(δk−2δu) − sin(δk−1πj)eiπj(δk−1−2δu)

]
.

Defining γk = δk − δk−1 and approximating at γk = 0, we obtain

b̃ =π2j2γuγke
2iπj(δk−δu) +OP (γ2

u) +OP (γ2
k)

so that

B̃ = T

2π2j2

∑
k 6=l

µkµu
[
π2j2γuγke

2iπj(δk−δu) +OP (γ2
u) +OP (γ2

k)
]

+ OP (1)
2πT

∑
k 6=u

µkµu

=T

2
∑
k 6=u

µkµuγuγke
2iπj(δk−δu) + T

2π2j2

∑
k 6=l

µkµuOP (γ2
u) + T

2π2j2

∑
k 6=l

µkµuOP (γ2
k)

+ OP (1)
2πT

∑
k 6=u

µkµu.

Similar to the proof of Lemma 2, we have from the Wald identity of Brown (1974) and
Assumption A5

E[B̃] =B̃1 + B̃2 + B̃3

=T

2E

∑
k 6=l

E [µkµu]E
[
γuγke

2iπj(δk−δu)
]+ T

2π2j2E

∑
k 6=l

E [µkµu]E[OP (γ2
k)]


+ O(1)

2πT E

∑
k 6=u

E[µkµu]

 .
For the first term,

∣∣∣E[B̃1]
∣∣∣ ≤ T

2E

∑
k 6=l
|E [µkµu]| |E [γuγk]|

 = TE

[
K∑
k=1

k−1∑
τ=1
|E [µkµk−τ ]| |E [γkγk−τ ]|

]

≤ TE
[
K∑
k=1

∣∣∣E [γ2
k

]∣∣∣ k−1∑
τ=1
|E [µkµk−τ ]|

]
.
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Therefore, by Assumptions A4 and A5

∣∣∣E[B̃1]
∣∣∣ ≤ TE [ K∑

k=1

∣∣∣E [γ2
k

]∣∣∣V ar(µk)C̃
]

= TE[K]E
[
γ2
k

]
V ar(µk)C̃

= 2C̃D̃σ2
∆

p̃
Tα−β + C̃

[
O(T 2α−1−β) +O(T−β) +O(Tα−β−1)

]
. (6.19)

Similarly, for the second term

∣∣∣E[B̃2]
∣∣∣ ≤ 2T

π2j2E

[
K∑
k=1

k−1∑
τ=1

∣∣∣E [µkµk−τ ]E
[
OP (γ2

k)
]∣∣∣]

≤ 2T
π2j2E

[
K∑
k=1

E
[
OP (γ2

k)
] k−1∑
τ=1
|E [µkµk−τ ]|

]
≤ 2C̃σ2

∆
π2j2 T

1−βE

[
K∑
k=1

OP (γ2
k)
]

= 2C̃σ2
∆p̃

π2j2 T 2−α−β
[
O(T 2(α−1)) +O(Tα−2)

]
= 2C̃σ2

∆p̃

π2j2

[
O(Tα−β) +O(T−β)

]
. (6.20)

The term B̃3 is of order O(T−α−β) by the same arguments as in the proof of Lemma 2. Conse-
quently, parts i.) and ii.) of the Lemma follow directly from Equations (6.16) and (6.18). Simi-
larly, part iii.) is the direct consequence of Equation (6.17) and Equations (6.19) and (6.20).

Proof of Theorem 1:

From Lemma 1 to 3, we have Iµ(λj) ∼ Tj−2κ under Assumption A2, Iµ(λj) ∼ Tj−2κ̃ under
Assumption A1, and Iµ(λj) ∼ Tj−2κP,T under Assumption A3 with β = 0, where κ, κ̃ and κP,T
are two finite constants and a random variable with finite variance, respectively. E[Iµ(λj)] =
Gµ

T
j2 therefore follows immediately.
To prove that the rank of Gµ is reduced if and only if µt has common low-frequency con-

taminations, we first show that co-shifting according to Definition 1 implies a reduced rank of
Gµ and then we show that Gµ has full rank if µt is not co-shifting.

For the first part, note that Φ′µt = 0⇔ µat = φb/φaµbt. Let µbt = ωt, then

µt =

 µat

µbt

 =

 φb/φa

1

⊗
 0 φb/φa

0 1

 0
ωt

 .
Therefore,

fµ(λj) =

 0 φb/φa

0 1

 0 0
0 fω(λj)

 0 φb/φa

0 1

′

= fω(λj)

 (φb/φa)2 φb/φa

φb/φa 1


so that det (fµ(λj)) = (φb/φa)2 − (φb/φa)2 = 0.
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For the second part, let Φ′µt = ct, where ∃ ct 6= 0, then Φ′µt = ct ⇔ µat = φ−1
a ct − φa/φbµbt

so that for µbt = ωt

µt =

 µat

µbt

 =

 φ−1
a −φa/φb
0 1

 ct

ωt

 .
Then, denoting ω̃t = (ct, ωt)′, we have

fµt(λj) =

 φ−1
a −φb/φa
0 1

 fω̃(λj)

 φ−1
a 0

−φb/φa 1


=

 φ−2
a fcω(λj)− φbφ−2

a fωc(λj)− φbφ−2
a fcω(λj) + φ2

bφ
−2
a fωω(λj)2 φ−1

a fcω(λj)− φbφ−1
a fωω(λj)

φ−1
a fωc(λj)− φaφ−1

b fωω(λj) fωω(λj)


so that det [fµt(λj)] = φ−1

a (fcc(λj)fωω(λj)− fcω(λj)fωc(λj)) 6= 0.

To prove Theorem 2, we need the following Lemma.

Lemma 6. For e > −1

lim
m1→∞

m1∑
j=1

je = ζ(−e) + me+1
1

e+ 1 +O(me
1),

where ζ is the Riemann zeta function.

Proof of Lemma 6:

From the extension of the Faulhaber formula derived by McGown and Parks (2007),

lim
m1→∞

(e+ 1)
m1∑
j=1

je −mγFe(m1)

 = (e+ 1)ζ(−e)

lim
m1→∞

(e+ 1)
m1∑
j=1

je = (e+ 1)ζ(−e) +mγ
1Fe(m1)

lim
m→∞

m1∑
j=1

je = ζ(−e) + mγ
1Fe(m1)
(e+ 1) ,

where

Fe(m1) = m
bec+2
1 +

bec+1∑
k=1

(−1)k
(
e+ 1
k

)
Bkm

bec+2−k
1

= m
bec+2
1 +O

(
m
bec+1
1

)
,
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the constants Bk are the Bernoulli numbers, and γ = −(bec) + 1− e = e− bec − 1, so that

lim
m→∞

m1∑
j=1

je = ζ(−e) +
m
e−bec−1
1

(
m
bec+2
1 +O

(
m
bec+1
1

))
e+ 1

= ζ(−e) + me+1
1 +O (me

1)
e+ 1 .

Proof of Theorem 2:

To prove the theorem, we show that the difference of Ĝy(d, l,m1) and Ĝx(d, 1,m1) vanishes in
probability. Let therefore ∆(d) = ‖Ĝy(d, l,m1)− Ĝx(d, 1,m1)‖, then

∆(d) = ‖(m1 − l + 1)−1
m1∑
j=l

Λj(d)Iµ(λj)Λ∗j (d)−m−1
1

l−1∑
j=1

Λj(d)Ix(λj)Λ∗j (d) + Z +R‖,

where Z = (m1−l+1)−1∑m1
j=l Λj(d)Ixµ(λj)Λ∗j (d)+(m1−l+1)−1∑m1

j=l Λj(d)Iµx(λj)Λ∗j (d) andR =
(l−1)(m1(m1− l+1))−1∑m1

j=l Λj(d)Ix(λj)Λ∗j (d). Furthermore, define ν− = (da−d0
a)− (db−d0

b),

ν+ = (da−d0
a)+(db−d0

b), and Ix(λj) = λ
−d0

a−d0
b

j χje
iπ(d0

a−d0
b)/2, where χj is a random matrix with

E[χj ] = I and V ar[χj ] <∞. Similarly, Iµ(λj) = κjλ
−2
j T−1, where E[κj ] <∞ and V ar[κj ] <∞.

Then,

∆(d) = ‖ eiπ(da−db)/2

(m1 − l + 1)T

m1∑
j=l

λda+db−2
j κj −

eiπν
−/2

m1

l−1∑
j=1

λν
+
j χj + Z +R‖

= ‖(2π)da+db−2eiπ(da−db)/2

(m1 − l + 1)T da+db−1

m1∑
j=l

jda+db−2κj −
(2π)ν+

eiπν
−/2

m1T ν
+

l−1∑
j=1

jν
+
χj + Z +R‖.

Due to the independence of xt and µt, Z
p→ 0 as T → ∞. Obviously, R p→ 0 for T → ∞ holds

as well.
For l = 1, the second sum is empty and for the first sum it holds with A = ‖(m1 − l +

1)−1T−da−db+1∑m1
j=l j

da+db−2κj‖ and da + db > 1 from Lemma 6,

A ≤ max ‖κj‖
O(mda+db−2

1 )
T da+db−1 = op(1).

For da + db < 1, we have by definition of the Riemann ζ-function

A ≤ max ‖κj‖ζ(−da − db + 2)
m1T da+db−1 ,

which is oP (1), for δm1 > 1− da − db.
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For the second part of the theorem, we have
∑m1
j=l j

da+db−2 ≤ m1l
da+db−2. Therefore, with

da + db < 1,

A ≤ m1l
da+db−2

(m1 − l + 1)T da+db−1 = O(lda+db−2T−(da+db−1)) = oP (1),

for δm1 > δl and l = T (da+db−1)/(da+db−2)+υ. Furthermore, let B = ‖m−1
1 T−ν

+ ∑l−1
j=1 j

ν+
χj‖,

then

B ≤ maxj<l ‖χj‖
m1T ν

+

l−1∑
j=1

jν
+ = maxj<l ‖χj‖

m1T ν
+ O(lν++1) = oP (1),

for l = o(T (ν++δm1 )/(ν++1)).

Proof of Theorem 3:

The proof directly follows from a Taylor expansion of the matrix Ĝy(d̂(m), l,m1) at d0 and is
omitted here.

Proof of Theorem 4:

The proof follows ideas in Robinson (2008). For any c > 0, define neighborhoods Nβ(c) = {β :
|β − β0| < c] and Nd(c) = {d : ‖d − d0‖ < c]. Furthermore, fix ε > 0 and define N(ε) =
Nβ(ε−1(mT )ν

0
)Nd(ε), N(ε) = Θ\N(ε), and ζi = di − d0

i .

We split the parameter space into two. For a constant 0 < C ≤ 1
8 , define Θda = {d ∈ Θd : ζa ≥

−1
2 + C; ζb ≥ −1

2 + C] and Θdb = Θd\Θda. Since P (θ̂ ∈ N(ε)) ≤ P (inf ¯N(ε){R(θ)− R(θ0)] ≤ 0),
the consistency of Θ̂ follows if we show

P

(
inf

N(ε)∩{Θβ×Θda}
{R(θ)−R(θ0)} ≤ 0

)
→ 0 as T →∞ and (6.21)

P

(
inf

N(ε)∩{Θβ×Θdb}
{R(θ)−R(θ0)} ≤ 0

)
→ 0 as T →∞. (6.22)

First we show (6.21). Rewrite R(θ)−R(θ0) as

R(θ)−R(θ0) = log det
[
Ω̂tri(θ)Ω̂tri(θ0)−1]− 2(ζa + ζb)

1
m− l + 1

m∑
j=l

log λj ,

where Ω̂tri(θ) = 1
m−l+1

m∑
j=l

Re[Λj(d)BItriyy (λj)B
′Λj(d)∗] instead of Ω̂(θ) in Robinson (2008). De-

fine a vector type II I(d0
a, d

0
b) process as

ξt =
(
ξat
ξbt

)
= B0, zt =

 (1− L)−d0
a yat 1(t ≥ 1)

(1− L)−d0
b ybt 1(t ≥ 1)

 , B0 =

 1 −β0

0 1

 .
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Define further analogously to Robinson (2008)

Hj = (hk1k2j) = Λj(d0)Itriξj (λj)Λj(d0)∗ and

Ĝ(1)(d) = (ĝ(1)
k1k2

), where ĝ(1)
k1k1

= 1
m− l + 1

m∑
j=l

(
j

m

)2ζk1
hk1k1j and

ĝ
(1)
ab = ĝ

(1)
ba = 1

m− l + 1

m∑
j=l

(
j

m

)ζa+ζb (
ei(π−λj)(ζb−ζa)/2habj + e−i(π−λj)(ζb−ζa)/2hbaj

)
.

Similar to Robinson (2008), we obtain R(θ)−R(θ0) = Ud(d) + Uβ(θ) with

U(d) = log det
[
Υ(d)Ĝ(1)(d)Υ(d)Ĝ(1)(d0)−1]+ Φa(d, l) + u(d) + Φb(d, l) and

Uβ(θ) = log det
[
Ω̂tri∗(θ)Ĝ(1)(d)−1

]
− Φa(d, l) + Φb(d, l).

Here,

Υ(d) = diag
(
(2ζa + 1)1/2, (2ζb + 1)1/2

)
,

Ω̂tri∗(θ) = Ξ(θ)Ω̂tri(θ)Ξ(θ),

Ξ(θ) = diag
(
λ−ζam , λ−ζbm

)
,

Φ1(d, l) = log
[
(l − 1)2(l2ζa+1)−1(l2ζb+1)−1

]
,

Φ2(d, l) = 2(ζa + ζb)(l − 1)−1l log l, and

u(d) =
∑
i=a,b

2ζi − log(2ζi + 1) + 2ζi

logm− 1
m− l + 1

m∑
j=l

log j − 1

 .
The functions Φa(d, l) and Φb(d, l) control effects of taking summations from l by application
of the Euler-McLaurin formula as in Lemma 2(a) of Shimotsu (2010). In contrast to Robinson
(2008), all matrices here are defined by the trimmed periodogram and we do not have the
parameter γ.
Now, (6.21) follows if we show that, as T →∞,

P

(
inf

N(ε)∩Θda
Ud(d) ≤ 0

)
→ 0 and (6.23)

P

(
inf

Nβ( 1
ε
( T
m

)ν0 )×Θd
Uβ(d) ≤ 0

)
→ 0. (6.24)

The proof of (6.23) is similar to Robinson (2008). Define the population analogue of ĝ(1)
k1k2

as

g
(1)
k1k2

= ωk1k1
1
l

� 1

l
x2ζk1dx

and

g
(1)
ab = g

(1)
ba = ωab

1
l

� 1

l
xζa+ζbdx cos τ,
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where

τ = (ζb − ζa)
π

2 .

Then, (6.23) holds if

sup
Θda

∣∣∣∣∣∣Υ(d)[Ĝ(1)(d)−G(1)(d)]Υ(d)
∣∣∣∣∣∣ P−→ 0, (6.25)

sup
Θda

∣∣∣∣∣∣ [Υ(d)G(1)(d)Υ(d)
]−1 ∣∣∣∣∣∣ <∞, (6.26)

inf
Nd(ε)∩Θda

[
log det

[
Υ(d)G(1)(d)Υ(d)G(1)(d0)−1

]
+ Φa(θ, l)

]
≥ 0, and (6.27)

lim
T→∞

inf
Nd(ε)∩Θda

[u(d)− Φb(d, l)] > 0. (6.28)

These conditions correspond to (7.5) - (7.8) in Robinson (2008).
The proof of (6.25) follows from observing that

∣∣∣∣∣∣ 1
m− l + 1

m∑
j=l

Re
[
Λj(d)BItriy (λj)B′Λj(d)∗

] ∣∣∣∣∣∣
=
∣∣∣∣∣∣ 1
m− l + 1

m∑
j=l

Re
[
Λj(d)B(Itrix (λj) + Itrixµ (λj) + Itriµx (λj) + Itriµ (λj))B′Λj(d)∗

] ∣∣∣∣∣∣.
Now,

1
m− l + 1

m∑
j=l

Re
[
Λj(d)BItriµ (λj)B′Λj(d)∗

]
= OP

 1
m

(
δM
T

)2
(
da+db

2 − 1
2

) = oP (1).
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In addition to this, we have because ||Iµx(λj)||2 = Iµ(λj)Ix(λj)

∣∣∣∣∣∣ 1
m− l + 1

m∑
j=l

Re
[
Λj(d)BItriµx (λj)B′Λj(d)∗

] ∣∣∣∣∣∣
≤ 1
m− l + 1

m∑
j=l

∣∣∣∣∣∣Re
[
Λj(d)BItriµx (λj)B′Λj(d)∗

] ∣∣∣∣∣∣
≤ 1
m− l + 1

m∑
j=l

(
Re
[
Λj(d)BItrix (λj)B′Λj(d)∗

]) 1
2

·
(
Re
[
Λj(d)BItriµ (λj)B′Λj(d)∗

]) 1
2

≤

 1
m− l + 1

m∑
j=l

Re
[
Λj(d)BItrix (λj)B′Λj(d)∗

] 1
2

︸ ︷︷ ︸
OP (1)

·

 1
m− l + 1

m∑
j=l

Re
[
Λj(d)BItriµ (λj)B′Λj(d)∗

] 1
2

︸ ︷︷ ︸
OP (1)

.

Applying now the same arguments as in the proof of (17) in Shimotsu (2012) gives (6.25). Also
the proof of (6.26), (6.27), and (6.28) is equal to Shimotsu (2012) proving his Equations (18),
(19), and (20).

We proceed to show (6.24). Define ĝ(i)
k1k2

similarly to Robinson (2008) but using 1
m−l+1

∑m
j=l

and setting τ = (ζb − ζa)π2 and γ0 = (d0
b − d0

a)π2 . Let further

α̂a =
(
ĝ(2)
aa ĝ

(1)
bb − 2ĝ(1)

ab ĝ
(2)
ab /det(Ĝ(1)(d)

)
and

α̂b =
(
ĝ(3)
aa ĝ

(1)
bb − (ĝ(2)

ab )2)/ det(Ĝ(1)(d)
)
.

Define g(i)
k1k2

, the population counterpart of ĝ(i)
k1k2

, analogously to g(1)
k1k2

: for example,

g
(2)
ab = g

(2)
ba = 1

l
ωbb cos γ

� 1

l
xda−d

0
b+ζbdx and

g(3)
aa = 1

l
ωbb

� 1

l
x2(da−d0

b)dx,

where γ = (db−da)π2 . Using summation by parts and Lemma 1(b) of Shimotsu (2012), we obtain

sup
Θd
|ĝ(i)
k1k2
− g(i)

k1k2
| P−→ 0,

for i = 1, 2, 3, k1, k2 = a, b, and as T → ∞. Rewrite Uβ(d) = logQ(bn(β)) − Φa(d, l) + Φb(d, l),
where Q(s) = 1 + â1s+ â2s

2 and bn(β) = λ−ν
0

j (β0 − β). Define

αa =
(
g(2)
aa g

(1)
bb − 2g(1)

ab g
(2)
ab /det(G(1)(d)

)
and

αb =
(
g(3)
aa g

(1)
bb − (g(2)

ab )2)/ det(G(1)(d)
)
.
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Following Robinson (2008), with ρ = supΘd |Φa(d, l)−Φb(d, l)| <∞, the probability in (6.24) is
bounded by

P

(
log

[
1−

(
sup
Θd

|α̂a|
ε

+ inf
Θd

|α̂b|
ε2

)]
≤ ρ

)
+ P

(
sup
Θd

|α̂a|
2|α̂b|

>
1
ε

)

≤ 2P
(

sup
Θd
|α̂a − aa|+

2
ε

sup
Θd
|α̂b − αb|+ ερ ≥ 1

ε
inf
Θd
αb − sup

Θd
|αa|

)
,

which has an additional term ερ compared to (7.13) in Robinson (2008). (6.24) follows now
exactly as in Shimotsu (2012).

It remains to show (6.22). Write

R(θ)−R(θ0) = U∗d (d) + U∗β(θ),

where

U∗d (d) = log det
[
Ξ(d)Ĝ(1)(d)Ξ(d)Ĝ(1)(d0)−1

]
− 2(ζa + ζb)

1
m− l + 1

m∑
j=l

log λj ,

and

U∗β(θ) = log det[Ω̂tri∗(θ)Ĝ(1)(d)−1] = Uβ(θ) + Φa(d, l)− Φb(d, l).

Then,

P

(
inf

Nβ(ε−1)( T
m

)ν0 )×Θd
U∗β(θ) ≤ 0

)
→ 0

follows from the proof of (6.24), so it suffices to show

P

(
inf
Θdb

U∗d (d) ≤ 0
)
→ 0.

Rewrite U∗d (d) as

U∗d (d) = log det D̂(d)− log det D̂(d0),

where

D̂(d) = 1
m− l + 1

m∑
j=l


(
j
q

)2ζa
haaj

(
j
q

)ζa+ζb Re
(
ei(π−λj)

(ζb−ζa)
2 habj

)
(
j
q

)ζa+ζb Re
(
ei(π−λj)

(ζb−ζa)
2 habj

) (
j
q

)2ζb
hbbj

 ,
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and

q = exp

 1
m− l + 1

m∑
j=l

log j

 .
Define K(d) as D̂(d) but hk1k2j is replaced with ωk1k2 .
Now,

sup
Θdb
|D(d)−K(d)| P→ 0

follows from Lemma 1 of Shimotsu (2010) and the proof of Theorem 1 of Shimotsu (2007).
Furthermore, it follows from Shimotsu (2007) and Shimotsu (2012) that there exists an ε ∈
(0, 0.1) and l < m such that

inf
Θdb

detK(d) ≥ (1 + ε) detG0 + o(1).

Therefore,

det D̂(d) ≥ (1 + ε) detG0 + o(1).

Since

det D̂(d0) = det Ĝ(1)(d0) = det Ω0 + oP (1)

from (6.25), we establish (6.22). �

Proof of Theorem 5:

θ̂ has now the stated limiting distribution if for any θ̃ such that θ̃ − θ0 = OP (m−1/2),

√
m(∆T )−1dR(θ0)

dθ
|θ0

d⇒ N(0,Ξ)

and
(∆T )−1d

2R(θ̃)
dθdθ′

(∆T )−1 P→ Ξ.
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For the score vector approximation, denote by sk(θ) the k-th element of dR(θ)
dθ and by Eij the

matrix of zeros where the ij-th element has been replaced by a one. Following exactly the lines
of Theorem 4 of Robinson (2008), we have that

s1(θ0) = −tr 1
m− l + 1

m∑
j=l

λ
d0
b−d

0
a

j (E12 Re[Λj(d0)B0Itriy (λj)B0′Λj(d0)∗]eiπ(db−da)/2

+ Re[Λj(d0)B0Itrix (λj)B0′Λj(d0)∗]E21e
−iπ(db−da)/2)Ĝ(d0)−1

= −tr 1
m− l + 1

m∑
j=l

λ
d0
b−d

0
a

j (E12 Re[Λj(d0)B0Itriy (λj)B0′Λj(d0)∗]eiπ(db−da)/2

+ Re[Λj(d0)B0Itrix (λj)B0′Λj(d0)∗]E21e
−iπ(db−da)/2)Ĝ(d0)−1 + oP (1),

s2(θ0) = itr

[ 1
m− l + 1

m∑
j=l

(Re[Λj(d0)B0Itriy (λj)B0′Λj(d0)∗]E22

−E22 Re[Λj(d0)B0Itriy (λj)B0′Λj(d0)∗])Ĝ(d0)−1
]

= itr

[ 1
m− l + 1

m∑
j=l

(Re[Λj(d0)B0Itrix (λj)B0′Λj(d0)∗]E22

−E22 Re[Λj(d0)B0Itrix (λj)B0′Λj(d0)∗])Ĝ(d0)−1
]

+ oP (1), and

s2+k(θ0) = tr
1

m− l + 1

m∑
j=l

(log λj −
1

m− l + 1

m∑
j=l

log λj)

(Ekk Re[Λj(d0)B0Itriy (λj)B0′Λj(d0)∗] + Re[Λj(d0)B0Itriy (λj)B0′Λj(d0)∗]Ekk)Ĝ(d0)−1

= tr
1

m− l + 1

m∑
j=l

(log λj −
1

m− l + 1

m∑
j=l

log λj)

(Ekk Re[Λj(d0)B0Itrix (λj)B0′Λj(d0)∗] + Re[Λj(d0)B0Itrix (λj)B0′Λj(d0)∗]Ekk)Ĝ(d0)−1,

for k = 1, 2 and by the same arguments as in the consistency proof. The score vector approxi-
mation follows now directly as in Robinson (2008).

The Hessian approximation is also similar to the arguments in Robinson (2008) and therefore
omitted here.
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Supplementary Appendix

This Supplementary Appendix contains additional simulation results. The first part shows
the results when investigating cross-sectionally correlated errors with r = 0.5, the second
part shows the results when the DGP is a combination of long-memory process and
stationary random level-shift process, the third part gives the results when the DGP is
a combination of long memory process and deterministic trend process, and finally the
fourth part shows results when combining our two suggested procedures, i.e., we estimate
the order of integration based on the estimated fractional cointegration rank instead of
assuming it to be known as in Section 6.5.2.

Cross-sectionally Correlated Errors

Cointegration TRUE FALSE
d T Breaks TRE RY02 CH06 SRF TRE RY02 CH06 SRF

0.2

250
NO 1.00 1.00 0.18 0.10 0.35 0.07 0.08 0.01
DIS 1.00 0.59 0.15 0.03 0.26 0.03 0.39 0.11

COB 1.00 1.00 0.60 0.55 0.47 0.53 0.68 0.45

1000
NO 1.00 1.00 0.46 0.25 0.01 0.00 0.07 0.01
DIS 1.00 0.50 0.34 0.21 0.01 0.00 0.55 0.54

COB 1.00 1.00 0.92 0.88 0.03 0.09 0.83 0.77

0.4

250
NO 1.00 1.00 0.62 0.34 0.35 0.08 0.10 0.01
DIS 1.00 0.83 0.10 0.03 0.26 0.03 0.26 0.03

COB 1.00 1.00 0.82 0.60 0.46 0.34 0.38 0.15

1000
NO 1.00 1.00 0.99 0.83 0.01 0.00 0.07 0.01
DIS 1.00 0.88 0.16 0.16 0.01 0.00 0.30 0.10

COB 1.00 1.00 1.00 0.95 0.02 0.02 0.43 0.30

Table 6.5: Simulation results fractional cointegration rank — cross-sectionally
correlated errors.
In analogy to Table 6.1, the table reports the mean estimated fractional coin-
tegration rank for a bivariate fractionally integrated system. The DGP is
based on Equations (6.5) to (6.9) with r = 0.5. In case of fractional coin-
tegration, β = (−1, 1)′ and b = d. Break sizes are random with mean zero
and variance one and they occur with probability 5/T . Our estimator (TRE)
is considered with l = T 0.5, m = T 0.75, m1 = T 0.7, N = m−0.2

1 , and the
univariate estimator by Iacone (2010) to estimate d. For the procedures by
Robinson and Yajima (2002) (RY02), Chen and Hurvich (2006) (CH06), and
Souza et al. (2018) (SRF), parameter values are chosen according to the au-
thors recommendation.
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Estimator TMLW GSE
Bias RMSE Bias RMSE

d T Breaks d̂1 d̂2 d̂1 d̂2 d̂1 d̂2 d̂1 d̂2

0.2

250
NO -0.02 -0.02 0.15 0.15 -0.01 -0.02 0.06 0.07
DIS 0.03 0.03 0.16 0.16 0.20 0.20 0.23 0.23

COB 0.00 0.00 0.15 0.15 0.13 0.13 0.17 0.17

1000
NO -0.01 -0.01 0.07 0.07 -0.01 -0.01 0.04 0.04
DIS 0.02 0.02 0.08 0.08 0.19 0.19 0.21 0.21

COB 0.00 0.00 0.07 0.07 0.13 0.13 0.15 0.15

0.4

250
NO -0.04 -0.04 0.16 0.16 -0.02 -0.02 0.06 0.07
DIS 0.00 0.00 0.15 0.15 0.09 0.09 0.13 0.13

COB -0.02 -0.02 0.15 0.15 0.05 0.05 0.09 0.09

1000
NO -0.02 -0.02 0.07 0.07 -0.01 -0.01 0.04 0.04
DIS 0.00 0.00 0.07 0.07 0.07 0.07 0.09 0.09

COB -0.01 -0.01 0.07 0.07 0.04 0.04 0.07 0.07

Table 6.6: Simulation results order of integration — no fractional cointegra-
tion but cross-sectionally correlated errors.
In analogy to Table 6.2, the table reports bias and RMSE of our trimmed
multivariate local Whittle estimator (TMLW) and the standard multivariate
local Whittle estimator (GSE) in a bivariate fractionally integrated system.
The DGP is based on Equations (6.5) to (6.9) with r = 0.5. Break sizes are
random with mean zero and variance one and they occur with probability
5/T . Moreover, we use m = T 0.75, l = 1 for the standard estimator, and
l = T 0.5 for our procedure.
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Estimator TMLW GSE
Bias RMSE Bias RMSE

d T Breaks d̂− d̃ d̂ β̂ d̂− d̃ d̂ β̂ d̂− d̃ d̂ β̂ d̂− d̃ d̂ β̂

0.2

250
NO -0.03 -0.02 -2.58 0.18 0.18 5.28 -0.02 -0.02 -0.48 0.07 0.07 2.05
DIS 0.12 0.04 -3.34 0.23 0.19 5.95 0.43 0.18 -2.62 0.44 0.22 5.92

COB -0.02 0.02 -2.29 0.18 0.18 4.98 0.03 0.18 -0.10 0.08 0.22 0.82

1000
NO -0.02 -0.01 -0.90 0.09 0.09 2.89 -0.01 -0.01 -0.05 0.04 0.04 0.38
DIS 0.10 0.02 -3.09 0.15 0.09 5.51 0.42 0.17 -4.11 0.43 0.19 6.93

COB -0.01 0.01 -0.74 0.09 0.09 2.63 0.04 0.16 -0.03 0.06 0.19 0.10

0.4

250
NO -0.02 -0.03 -1.08 0.18 0.18 3.19 -0.02 -0.02 -0.03 0.08 0.07 0.17
DIS 0.11 0.00 -2.15 0.23 0.18 4.55 0.42 0.09 -3.09 0.44 0.13 5.73

COB -0.01 0.00 -0.93 0.19 0.18 2.97 0.01 0.08 -0.02 0.07 0.12 0.11

1000
NO -0.01 -0.02 -0.07 0.09 0.09 0.38 -0.01 -0.01 -0.01 0.04 0.04 0.05
DIS 0.10 0.00 -0.53 0.15 0.09 1.64 0.42 0.07 -4.53 0.43 0.09 6.54

COB -0.01 -0.01 -0.06 0.09 0.09 0.43 0.02 0.06 -0.01 0.04 0.08 0.04

Table 6.7: Simulation results order of integration — fractional cointegration
and cross-sectionally correlated errors.
In analogy to Table 6.3, the table reports bias and RMSE of our trimmed
multivariate local Whittle estimator (TMLW) and the standard multivariate
local Whittle estimator (GSE) in a bivariate fractionally cointegrated system
with cointegration vector β = (1,−1)′ . The DGP is based on Equations (6.5)
to (6.9) with r = 0.5. Break sizes are random with mean zero and variance
one and they occur with probability 5/T . Moreover, we use m = T 0.75, l = 1
for the standard estimator, and l = T 0.5 for our procedure.
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Stationary Random Level-Shift Process

Now, we present the results when the DGP is a combination of long-memory process and
stationary random level-shift process. In analogy to the DGP in Section 6.5, we consider
the following process

yat = ζaµt + ξµ̃t + xt + (1− L)−(d−d̃)ut (6.29)

ybt = ζbµt + xt, (6.30)

where

µt = (1− πt)µt−1 + πtηt, πt ∼ B(5/T ), ηt ∼ N(0, 1), (6.31)

µ̃t = (1− π̃t)µ̃t−1 + π̃tη̃t, π̃t ∼ B(5/T ), η̃t ∼ N(0, 1), (6.32)

xt = (1− L)−det, and
et
ut

 ∼ N

0,
1 r

r 1

 . (6.33)

Again, we present results for d = 0.2, 0.4, r = 0, 0.5, T = 250, 1000, d̃ = 0, d, the case of
joint breaks, and the case of distinct breaks. We omit the case of no breaks as the results
are identical to those presented in Section 6.5.

The results concerning the investigation of the fractional cointegration relation can
be found in Table 6.8 and the results for the estimation of the order of integration in
Tables 6.9 and 6.10. It can be seen that the results are qualitatively similar to those
for the nonstationary random level-shift process. The trimmed rank estimator and the
trimmed multivariate local Whittle estimator are robust to low-frequency contaminations
and provide accurate inference also when the series is contaminated by stationary random
level shifts. The non-robust approaches, on the other hand, are seriously distorted and
should not be considered for series that potentially exhibit stationary random level shifts.
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Cointegration TRUE FALSE
r d T Breaks TRE RY02 CH06 SRF TRE RY02 CH06 SRF

0

0.2
250 DIS 0.96 0.26 0.12 0.04 0.00 0.00 0.38 0.06

COB 1.00 1.00 0.83 0.64 0.00 0.01 0.78 0.30

1000 DIS 1.00 0.12 0.28 0.30 0.00 0.00 0.48 0.46
COB 1.00 1.00 0.97 0.93 0.00 0.00 0.89 0.68

0.4
250 DIS 0.98 0.66 0.08 0.04 0.00 0.00 0.30 0.01

COB 1.00 1.00 0.94 0.70 0.00 0.00 0.49 0.04

1000 DIS 1.00 0.80 0.10 0.24 0.00 0.00 0.29 0.05
COB 1.00 1.00 1.00 0.98 0.00 0.00 0.54 0.13

0.5

0.2
250 DIS 1.00 0.56 0.05 0.01 0.22 0.01 0.27 0.04

COB 1.00 1.00 0.60 0.49 0.52 0.57 0.68 0.41

1000 DIS 1.00 0.44 0.22 0.06 0.00 0.00 0.42 0.35
COB 1.00 1.00 0.93 0.88 0.03 0.08 0.84 0.75

0.4
250 DIS 1.00 0.85 0.03 0.02 0.25 0.02 0.17 0.01

COB 1.00 1.00 0.84 0.58 0.48 0.36 0.36 0.10

1000 DIS 1.00 0.93 0.07 0.07 0.00 0.00 0.18 0.04
COB 1.00 1.00 1.00 0.95 0.02 0.01 0.41 0.23

Table 6.8: Simulation results fractional cointegration rank — stationary ran-
dom level-shift process shifts.
In analogy to Table 6.1, the table reports the mean estimated fractional
cointegration rank for a bivariate fractionally integrated system. The DGP
is based on Equations (6.29) to (6.33). In case of fractional cointegration,
β = (−1, 1)′ and d̃ = d. Our estimator (TRE) is considered with l = T 0.5,
m = T 0.75, m1 = T 0.7, N = m−0.2

1 , and the univariate estimator by Iacone
(2010) to estimate d. For the procedures by Robinson and Yajima (2002)
(RY02), Chen and Hurvich (2006) (CH06), and Souza et al. (2018) (SRF),
parameter values are chosen according to the authors recommendation.
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Estimator TMLW GSE
Bias RMSE Bias RMSE

r d T Breaks d̂1 d̂2 d̂1 d̂2 d̂1 d̂2 d̂1 d̂2

0

0.2
250 DIS 0.02 0.02 0.20 0.20 0.18 0.18 0.21 0.21

COB 0.01 0.02 0.19 0.20 0.16 0.16 0.19 0.19

1000 DIS 0.01 0.01 0.09 0.09 0.16 0.16 0.18 0.18
COB 0.01 0.01 0.09 0.09 0.15 0.15 0.17 0.17

0.4
250 DIS -0.01 -0.01 0.20 0.20 0.08 0.08 0.12 0.12

COB -0.01 -0.01 0.19 0.20 0.07 0.07 0.11 0.11

1000 DIS -0.01 -0.01 0.09 0.09 0.06 0.05 0.08 0.08
COB 0.00 -0.01 0.09 0.09 0.05 0.05 0.08 0.08

0.5

0.2
250 DIS 0.04 0.04 0.16 0.16 0.20 0.20 0.23 0.23

COB 0.00 0.00 0.15 0.15 0.13 0.13 0.16 0.16

1000 DIS 0.02 0.02 0.08 0.08 0.18 0.18 0.20 0.20
COB 0.00 0.00 0.07 0.07 0.12 0.12 0.14 0.14

0.4
250 DIS 0.00 0.00 0.15 0.15 0.09 0.09 0.12 0.12

COB -0.02 -0.02 0.15 0.15 0.05 0.05 0.09 0.09

1000 DIS 0.00 0.00 0.07 0.07 0.07 0.07 0.08 0.09
COB -0.01 -0.01 0.07 0.07 0.04 0.04 0.06 0.06

Table 6.9: Simulation results order of integration — stationary random level-
shift process and no fractional cointegration.
In analogy to Table 6.2, the table reports the bias and RMSE of our trimmed
multivariate local Whittle estimator (TMLW) and the standard multivariate
local Whittle estimator (GSE) in a bivariate fractionally integrated system.
The DGP is based on Equations (6.29) to (6.33). Moreover, we use m = T 0.75,
l = 1 for the standard estimator, and l = T 0.5 for our procedure.
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Estimator TMLW GSE
Bias RMSE Bias RMSE

r d T Breaks d̂− d̃ d̂ β̂ d̂− d̃ d̂ β̂ d̂− d̃ d̂ β̂ d̂− d̃ d̂ β̂

0

0.2
250 DIS 0.10 0.02 0.20 0.23 0.19 2.84 0.38 0.17 1.77 0.39 0.20 4.24

COB -0.02 0.02 -0.19 0.19 0.20 2.60 -0.02 0.18 0.00 0.08 0.21 0.37

1000 DIS 0.07 0.01 0.08 0.12 0.09 1.94 0.37 0.15 1.93 0.38 0.17 4.25
COB -0.01 0.01 -0.02 0.09 0.09 1.13 -0.01 0.16 0.00 0.04 0.18 0.06

0.4
250 DIS 0.10 -0.01 0.12 0.23 0.19 2.28 0.39 0.07 0.61 0.40 0.11 3.23

COB -0.02 0.00 -0.09 0.20 0.19 1.78 -0.02 0.07 0.00 0.08 0.11 0.18

1000 DIS 0.07 -0.01 -0.04 0.13 0.09 0.57 0.39 0.05 0.49 0.40 0.07 2.97
COB -0.01 0.00 0.00 0.09 0.09 0.15 -0.01 0.06 0.00 0.04 0.08 0.03

0.5

0.2
250 DIS 0.15 0.04 -3.62 0.24 0.19 6.20 0.43 0.19 -2.52 0.45 0.22 5.99

COB -0.02 0.03 -2.12 0.18 0.19 4.79 0.03 0.17 -0.08 0.08 0.20 0.73

1000 DIS 0.12 0.02 -3.46 0.15 0.09 5.82 0.42 0.17 -4.41 0.43 0.19 7.28
COB -0.01 0.01 -0.72 0.09 0.09 2.58 0.04 0.15 -0.03 0.06 0.17 0.09

0.4
250 DIS 0.14 0.01 -2.43 0.24 0.18 4.78 0.43 0.09 -3.55 0.44 0.12 6.04

COB -0.01 0.00 -0.96 0.18 0.18 3.05 0.01 0.08 -0.01 0.07 0.11 0.10

1000 DIS 0.11 0.00 -0.54 0.15 0.09 1.64 0.42 0.07 -5.26 0.42 0.09 6.97
COB -0.01 -0.01 -0.06 0.09 0.09 0.36 0.01 0.05 -0.01 0.04 0.07 0.04

Table 6.10: Simulation results order of integration — stationary random level-
shift process and fractional cointegration.
In analogy to Table 6.3, the table reports bias and RMSE of our trimmed
multivariate local Whittle estimator (TMLW) and the standard multivari-
ate local Whittle estimator (GSE) in a bivariate fractionally cointegrated
system with cointegration vector β = (1,−1)′ . The DGP is based on Equa-
tions (6.29) to (6.33). Moreover, we use m = T 0.75, l = 1 for the standard
estimator, and l = T 0.5 for our procedure.
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Deterministic Trend

For the simulation results concerning processes contaminated with deterministic trends,
we simulate the following process with common trends

y1t = xt + (1− L)−(d−d̃)ut + t/T − 1/2 (6.34)

y2t = xt + t/T − 1/2, (6.35)

where xt = (1− L)−det, and
et
ut

 ∼ N

0,
1 r

r 1

 , (6.36)

and the following process with distinct trends

y1t = xt + (1− L)−(d−d̃)ut + t/T − 1/2 (6.37)

y2t = xt + sin(4πt/T ), (6.38)

where xt = (1− L)−det, and
et
ut

 ∼ N

0,
1 r

r 1

 . (6.39)

Both trends were also considered by Qu (2011) in his simulation.
Again, we present results for d = 0.2, 0.4, r = 0, 0.5, T = 250, 1000, d̃ = 0, d, the case

of common trends, and the case of distinct trends. We omit the case of no trend as the
results are identical to those presented in Section 6.5.

The results concerning the investigation of the fractional cointegration relation can be
found in Table 6.11 and the results for the estimation of the order of integration in Tables
6.12 and 6.13. Again, the trimmed rank estimator and the trimmed multivariate local
Whittle estimator perform substantially better than the non-robust approaches yielding
valid inference also for series that exhibit deterministic trends.
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Cointegration TRUE FALSE
r d T Trend TRE RY02 CH06 SRF TRE RY02 CH06 SRF

0

0.2
250 DIS 1.00 0.23 0.04 0.10 0.00 0.00 0.58 0.08

COT 1.00 1.00 0.48 0.27 0.00 0.00 0.34 0.03

1000 DIS 1.00 0.04 0.56 0.85 0.00 0.00 0.77 0.57
COT 1.00 1.00 0.91 0.74 0.00 0.00 0.55 0.14

0.4
250 DIS 1.00 0.90 0.05 0.13 0.00 0.00 0.34 0.02

COT 1.00 1.00 0.85 0.48 0.00 0.00 0.26 0.01

1000 DIS 1.00 1.00 0.09 0.79 0.00 0.00 0.32 0.04
COT 1.00 1.00 1.00 0.93 0.00 0.00 0.23 0.01

0.5

0.2
250 DIS 1.00 0.70 0.00 0.04 0.34 0.00 0.27 0.06

COT 1.00 1.00 0.20 0.20 0.36 0.14 0.22 0.06

1000 DIS 1.00 0.51 0.33 0.65 0.01 0.00 0.70 0.51
COT 1.00 1.00 0.68 0.61 0.01 0.00 0.37 0.22

0.4
250 DIS 1.00 0.99 0.01 0.07 0.34 0.02 0.14 0.02

COT 1.00 1.00 0.66 0.40 0.36 0.10 0.14 0.02

1000 DIS 1.00 1.00 0.05 0.61 0.01 0.00 0.15 0.03
COT 1.00 1.00 1.00 0.88 0.01 0.00 0.12 0.04

Table 6.11: Simulation results fractional cointegration rank — deterministic
trend.
In analogy to Table 6.1, the table reports the mean estimated fractional
cointegration rank for a bivariate fractionally integrated system. The DGP
is based on Equations (6.34) to (6.39). In case of fractional cointegration,
β = (−1, 1)′ and d̃ = d. Our estimator (TRE) is considered with l = T 0.5,
m = T 0.75, m1 = T 0.7, N = m−0.2

1 , and the univariate estimator by Iacone
(2010) to estimate d. For the procedures by Robinson and Yajima (2002)
(RY02), Chen and Hurvich (2006) (CH06), and Souza et al. (2018) (SRF),
parameter values are chosen according to the authors recommendation.
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Estimator TMLW GSE
Bias RMSE Bias RMSE

r d T Trend d̂1 d̂2 d̂1 d̂2 d̂1 d̂2 d̂1 d̂2

0

0.2
250 DIS -0.02 -0.03 0.19 0.20 0.04 0.19 0.08 0.20

COT -0.02 -0.02 0.20 0.20 0.04 0.04 0.08 0.08

1000 DIS -0.01 -0.02 0.09 0.09 0.05 0.17 0.06 0.17
COT -0.01 -0.01 0.09 0.09 0.05 0.05 0.06 0.06

0.4
250 DIS -0.03 -0.04 0.20 0.20 0.00 0.08 0.07 0.10

COT -0.03 -0.04 0.19 0.20 0.00 0.00 0.08 0.07

1000 DIS -0.02 -0.02 0.09 0.09 0.00 0.05 0.04 0.06
COT -0.02 -0.02 0.09 0.09 0.00 0.00 0.04 0.04

0.5

0.2
250 DIS -0.02 -0.02 0.15 0.15 0.10 0.21 0.12 0.22

COT -0.02 -0.02 0.15 0.16 0.02 0.02 0.06 0.07

1000 DIS -0.01 -0.01 0.07 0.07 0.10 0.18 0.10 0.19
COT -0.02 -0.01 0.07 0.07 0.03 0.03 0.05 0.05

0.4
250 DIS -0.03 -0.04 0.16 0.15 0.04 0.09 0.08 0.11

COT -0.04 -0.04 0.16 0.15 0.00 0.00 0.06 0.06

1000 DIS -0.02 -0.02 0.07 0.07 0.03 0.06 0.05 0.07
COT -0.02 -0.02 0.07 0.07 0.00 0.00 0.04 0.04

Table 6.12: Simulation results order of integration — deterministic trend and
no fractional cointegration.
In analogy to Table 6.2, the table reports bias and RMSE of our trimmed
multivariate local Whittle estimator (TRE) and the standard multivariate
local Whittle estimator (GSE) in a bivariate fractionally integrated system.
The DGP is based on Equations (6.34) to (6.39). Moreover, we usem = T 0.75,
l = 1 for the standard estimator, and l = T 0.5 for our procedure.
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Estimator TMLW GSE
Bias RMSE Bias RMSE

r d T Trend d̂− d̃ d̂ β̂ d̂− d̃ d̂ β̂ d̂− d̃ d̂ β̂ d̂− d̃ d̂ β̂

0

0.2
250 DIS -0.01 -0.03 -0.28 0.19 0.19 2.83 0.32 0.18 2.23 0.32 0.19 5.23

COT -0.02 -0.02 -0.25 0.19 0.19 2.72 -0.02 0.04 0.00 0.08 0.08 0.70

1000 DIS -0.01 -0.02 -0.06 0.09 0.09 1.38 0.32 0.15 3.23 0.32 0.15 6.10
COT -0.01 -0.01 -0.02 0.09 0.09 1.41 -0.01 0.05 0.00 0.04 0.06 0.10

0.4
250 DIS -0.01 -0.04 -0.07 0.19 0.20 1.90 0.34 0.07 -0.05 0.35 0.10 2.68

COT -0.02 -0.04 -0.13 0.19 0.19 2.01 -0.02 0.00 0.00 0.08 0.08 0.19

1000 DIS -0.01 -0.02 0.00 0.09 0.09 0.21 0.35 0.04 -0.53 0.35 0.06 1.75
COT -0.01 -0.02 0.00 0.09 0.09 0.25 -0.01 0.00 0.00 0.04 0.04 0.05

0.5

0.2
250 DIS -0.02 -0.02 -2.66 0.18 0.18 5.36 0.40 0.21 -7.05 0.40 0.21 8.71

COT -0.03 -0.01 -2.68 0.18 0.18 5.40 0.00 0.04 -0.26 0.07 0.08 1.37

1000 DIS -0.01 -0.01 -1.07 0.09 0.09 3.17 0.36 0.18 -10.09 0.37 0.18 10.46
COT -0.01 -0.01 -0.90 0.09 0.09 2.90 0.01 0.04 -0.05 0.04 0.06 0.22

0.4
250 DIS -0.02 -0.04 -1.21 0.19 0.18 3.39 0.40 0.09 -4.73 0.41 0.10 6.31

COT -0.03 -0.03 -1.08 0.18 0.18 3.22 -0.01 0.00 -0.03 0.07 0.07 0.15

1000 DIS -0.01 -0.02 -0.09 0.09 0.09 0.55 0.38 0.05 -3.97 0.38 0.06 5.20
COT -0.01 -0.02 -0.07 0.09 0.09 0.41 0.00 0.00 -0.01 0.04 0.04 0.05

Table 6.13: Simulation results order of integration — deterministic trend and
fractional cointegration.
In analogy to Table 6.3, the table reports bias and RMSE of our trimmed
multivariate local Whittle estimator (TMLW) and the standard multivari-
ate local Whittle estimator (GSE) in a bivariate fractionally cointegrated
system with cointegration vector β = (1,−1)′ . The DGP is based on Equa-
tions (6.34) to (6.39). Moreover, we use m = T 0.75, l = 1 for the standard
estimator, and l = T 0.5 for our procedure.
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Estimating d when rk is unknown

In Section 6.5.2, we presented results of the GSE and TMLW estimator when the fractional
cointegration rank is known as otherwise differences of the estimates might be caused
by differences in the rank estimates. In empirical applications, however, the fractional
cointegration is commonly unknown and needs to be estimated beforehand. To show that
our procedure is also applicable in this case, Tables 6.14 and 6.15 show bias and RMSE
of GSE and TMLW estimator when the fractional cointegration rank is not assumed
to be known but estimated beforehand. For the non-robust GSE estimator, we consider
estimating the fractional cointegration rank using the estimator by Robinson and Yajima
(2002) and for the TMLW estimator we consider our trimmed estimator as presented in
Section 6.3. The DGP is again based on Equations (6.5) to (6.9) and parameter values
are also chosen as in Section 6.5.

The tables reveal that the results for the TMLW estimator are almost identical to
those presented in Section 6.5.2. This is due to the fact that the robust rank estimator
correctly identifies the fractional cointegration rank in almost all cases as indicated in
Table 6.1. For the GSE estimator, the results change slightly displaying an increase in
bias in some situations and a decrease in bias in others. However, the conclusion remains
the same. The non-robust GSE estimator is severely biased when the series exhibit distinct
or common low-frequency contaminations while the robust TMLW is unbiased in case of
common low-frequency contaminations and slightly positively biased in case of distinct
low-frequency contaminations. This bias vanishes asymptotically which is not the case for
the bias of the GSE estimator.
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Estimator TMLW GSE
Bias RMSE Bias RMSE

r d T Breaks d̂1 d̂2 d̂1 d̂2 d̂1 d̂2 d̂1 d̂2

0

0.2

250
NO -0.03 -0.02 0.20 0.20 -0.01 -0.02 0.07 0.08
DIS 0.01 0.01 0.20 0.20 0.18 0.18 0.21 0.22

COB 0.01 0.01 0.19 0.20 0.16 0.17 0.20 0.20

1000
NO -0.02 -0.01 0.09 0.09 -0.01 -0.01 0.04 0.04
DIS 0.01 0.01 0.09 0.09 0.17 0.17 0.19 0.19

COB 0.01 0.01 0.09 0.09 0.16 0.16 0.18 0.18

0.4

250
NO -0.04 -0.04 0.20 0.20 -0.02 -0.02 0.08 0.08
DIS -0.01 -0.01 0.20 0.20 0.08 0.08 0.12 0.12

COB -0.01 -0.01 0.20 0.20 0.07 0.07 0.11 0.12

1000
NO -0.02 -0.02 0.09 0.09 -0.01 -0.01 0.04 0.04
DIS -0.01 -0.01 0.09 0.09 0.06 0.06 0.09 0.09

COB -0.01 -0.01 0.09 0.09 0.06 0.06 0.08 0.08

0.5

0.2

250
NO -0.04 -0.02 0.17 0.17 -0.02 -0.01 0.07 0.07
DIS 0.01 0.03 0.17 0.17 0.20 0.21 0.23 0.24

COB -0.02 0.02 0.18 0.17 0.05 0.16 0.11 0.20

1000
NO -0.01 -0.01 0.07 0.07 -0.01 -0.01 0.04 0.04
DIS 0.01 0.02 0.08 0.08 0.19 0.19 0.21 0.21

COB 0.00 0.00 0.07 0.07 0.12 0.14 0.14 0.16

0.4

250
NO -0.05 -0.03 0.18 0.17 -0.02 -0.01 0.07 0.07
DIS -0.01 0.00 0.18 0.17 0.10 0.10 0.13 0.13

COB -0.04 0.00 0.18 0.17 0.02 0.07 0.08 0.11

1000
NO -0.02 -0.02 0.07 0.07 -0.01 -0.01 0.04 0.04
DIS 0.00 0.00 0.07 0.07 0.07 0.07 0.09 0.09

COB -0.01 -0.01 0.07 0.07 0.04 0.04 0.06 0.07

Table 6.14: Simulation results estimating d when rk is unknown — no frac-
tional cointegration.
In analogy to Table 6.2, the table shows Bias and RMSE of our trimmed
multivariate local Whittle estimator (TMLW) and the standard multivariate
local Whittle estimator (GSE) in a bivariate fractionally integrated system
with the DGP being based on Equations (6.5) to (6.9). Now, however, the
fractional cointegration rank is not assumed to be known but estimated be-
forehand. Based on this estimate we then estimate the order of integration in
a second step. Parameter values are identical to those considered in Tables
6.1 and 6.2.
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Estimator TMLW GSE
Bias RMSE Bias RMSE

r d T Breaks d̂− d̃ d̂ β̂ d̂− d̃ d̂ β̂ d̂− d̃ d̂ β̂ d̂− d̃ d̂ β̂

0

0.2

250
NO -0.02 -0.03 -0.28 0.20 0.20 2.81 -0.02 -0.02 0.00 0.08 0.08 1.12
DIS 0.08 0.02 0.07 0.22 0.19 2.86 0.35 0.21 0.05 0.37 0.25 2.75

COB -0.02 0.01 -0.20 0.20 0.19 2.60 -0.02 0.18 -0.01 0.08 0.22 0.37

1000
NO -0.01 -0.02 -0.02 0.09 0.09 1.21 -0.01 -0.01 0.00 0.04 0.04 0.16
DIS 0.06 0.01 0.11 0.12 0.09 1.85 0.36 0.20 -0.09 0.37 0.22 2.34

COB -0.01 0.01 -0.04 0.09 0.10 1.11 -0.01 0.17 0.00 0.04 0.20 0.06

0.4

250
NO -0.02 -0.04 -0.13 0.20 0.20 2.12 -0.02 -0.01 0.00 0.08 0.08 0.12
DIS 0.08 -0.01 0.02 0.22 0.19 2.21 0.38 0.09 -0.10 0.40 0.13 2.30

COB -0.02 -0.02 -0.12 0.20 0.20 1.89 -0.02 0.08 0.00 0.08 0.13 0.08

1000
NO -0.01 -0.02 -0.01 0.09 0.09 0.32 -0.01 -0.01 0.00 0.04 0.04 0.05
DIS 0.06 -0.01 -0.02 0.12 0.09 0.58 0.39 0.07 -0.07 0.40 0.09 2.17

COB -0.01 -0.01 0.00 0.09 0.09 0.18 -0.01 0.06 0.00 0.04 0.09 0.03

0.5

0.2

250
NO -0.03 -0.02 -2.67 0.19 0.18 5.38 -0.02 -0.02 -0.49 0.08 0.07 2.07
DIS 0.12 0.04 -3.41 0.24 0.19 6.03 0.41 0.24 -3.48 0.42 0.27 6.14

COB -0.02 0.02 -2.29 0.19 0.19 4.99 0.03 0.18 -0.10 0.08 0.22 0.83

1000
NO -0.02 -0.01 -0.92 0.09 0.09 2.95 -0.01 -0.01 -0.05 0.04 0.04 0.37
DIS 0.10 0.02 -3.11 0.15 0.09 5.53 0.40 0.23 -5.01 0.41 0.26 7.29

COB -0.01 0.01 -0.75 0.09 0.09 2.67 0.04 0.16 -0.03 0.06 0.19 0.10

0.4

250
NO -0.02 -0.03 -1.10 0.19 0.19 3.23 -0.02 -0.01 -0.03 0.08 0.07 0.17
DIS 0.11 0.00 -2.18 0.23 0.18 4.58 0.42 0.11 -3.52 0.43 0.15 5.73

COB -0.02 0.00 -0.98 0.19 0.18 3.09 0.01 0.08 -0.02 0.07 0.12 0.11

1000
NO -0.01 -0.02 -0.07 0.09 0.09 0.38 -0.01 -0.01 -0.01 0.04 0.04 0.05
DIS 0.10 0.00 -0.54 0.15 0.09 1.71 0.42 0.09 -4.63 0.42 0.12 6.47

COB -0.01 -0.01 -0.07 0.09 0.09 0.49 0.02 0.06 -0.01 0.04 0.08 0.04

Table 6.15: Simulation results estimating d when rk is unknown — fractional
cointegration.
In analogy to Table 6.3, the table shows Bias and RMSE of our trimmed
multivariate local Whittle estimator (TMLW) and the standard multivariate
local Whittle estimator (GSE) in a bivariate fractionally cointegrated system
with the DGP being based on Equations (6.5) to (6.9). Now, however, the
fractional cointegration rank is not assumed to be known but estimated
beforehand. Based on this estimate we then estimate the order of integration
in a second step. Parameter values are identical to those considered in Tables
6.1 and 6.3.
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