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Kurzfassung

Die Analyse von Persistenzeigenschaften ökonomischer Zeitreihen hat wegen ihrer Bedeu-

tung für viele wirtschaftliche Aspekte eine lange Tradition in der Ökonometrie. Diese Ar-

beit beinhaltet fünf Essays die sich mit einer Vielzahl von Themen im Rahmen der mod-

ernen Modellierung von Persistenz beschäftigen. Darunter befinden sich Einheitswurzeln,

langfristige Abhängigkeit, Strukturbrüche und Nichtlinearitäten.

Kapitel 2 wurde zusammen mit Philipp Sibbertsen verfasst und untersucht das Inferenz-

problem eines Strukturbruchs im fraktionalen Integrationsgrad einer Zeithreihe. Es wird

ein modifizierter Test vorgeschlagen und die asymptotischen Eigenschaften sowie das Ver-

halten in kleinen Stichproben analysiert. Im dritten Kapitel wird dieser Test angewendet

um die Hypothese einer rationalen Blase im Standard and Poors 500-Aktienindex em-

pirisch zu überprüfen. Die Resultate lassen neue Schlussfolgerungen über die Existenz

langfristiger Abhängigkeiten und die Präsenz von Strukturbrüchen zu. Ein neuer Test für

die Einheitswurzelhypothese gegen die Alternative eines populären nichtlinearen Zeitrei-

henmodells wird in Kapitel 4 vorgeschlagen. Der neue Test verallgemeinert einen bislang

häufig verwendeten Test durch den Einsatz einer neuen Inferenztechnik und ist diesem

durch eine höhere Güte überlegen.

Das fünfte Kapitel ist eine Zusammenarbeit mit Michael Frömmel, Lukas Menkhoff und

Philipp Sibbertsen und untersucht das Problem der empirischen Falsifizierbarkeit der

Kaufkraftparität durch den Einsatz nichtlinearer Einheitswurzeltests unter Bedingun-

gen, die in der Praxis vorherrschen. Die empirischen Ergebnisse deuten darauf hin,

dass Markov-Switching Prozesse die Hypothese der Kaufkraftparität stützen. Im letzten

Kapitel, dass mit Philipp Sibbertsen verfasst wurde, wird ein dominantes Verfahren zur

Modellselektion für potenziell nichtlineare und nichtstationäre Modelle vorgeschlagen.

Schlagwörter: Einheitswurzeln, langes Gedächtnis, Strukturbrüche, Nichtlinearitäten
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Short summary

The analysis of persistence properties of economic time series has a long tradition in

econometrics due to its paramount importance for many economic issues. This collection

of five essays deals with a variety of issues in modern persistence modeling. Among these

are unit roots, long-range dependence, structural breaks and non-linearity.

Chapter 2, written together with Philipp Sibbertsen, considers the inference problem of

a structural break in the fractional degree of integration. A modified test is proposed and

its asymptotic and small sample behaviour is studied. In chapter 3, the test is applied to

the problem of testing for a bubble in the Standard and Poors 500 stock market index.

New results on long-range dependence and structural change are obtained. A new test

for the unit root hypothesis against a popular non-linear time series model is proposed in

chapter 4. The new test generalizes an extant test by making use of a new non-standard

inference technique. Numerical results suggest that the new test is generally superior in

terms of power.

Chapter 5, co-authored with Michael Frömmel, Lukas Menkhoff and Philipp Sibbert-

sen, considers the problem of falsifying Purchasing Power Parity empirically by using

non-linear unit root tests under conditions that are relevant in practice. The empirical

results suggest that Markov Switching processes which include the modeling of destabi-

lizing forces in foreign exchange rates support the Purchasing Power Parity hypothesis.

Lastly, chapter 6, written together with Philipp Sibbertsen, deals with the decision prob-

lem regarding four different types of time series processes. A dominant model selection

strategy for potentially non-linear and non-stationary models is suggested.

Keywords: Unit roots, long memory, structural breaks, non-linearity
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Chapter 1

Introduction

The analysis of persistence properties of economic time series has a long tradition in

econometrics. A great deal of literature has focused on linear processes and their per-

sistence structures. Stationary processes and deterministic trends have especially been

considered until the outset of unit roots which have become one of the most important

research issues in modern time series analysis. The growing interest in unit roots can be

explained by the fact that trending is one of the most dominant characteristics of eco-

nomic time series. Additionally, deterministic trend processes are very limited. On the

contrary, unit root processes are stochastically trending and hence imply the permanency

of shocks to economic variables. Such behavior is called persistent.

Without a doubt, the persistence properties of economic time series are of paramount

importance for many economic issues. Policy makers for instance have to know how

shocks affect certain variables in the short and the long run. Economic forecasting builds

upon time series models that reflect the persistence properties of the underlying variables.

Moreover, the persistence of shocks is of ultimate importance for testing economic theories

like Purchasing Power Parity (PPP). PPP holds if and only if the real exchange rate

follows a stationary process which rules out any unit roots. In other words, shocks to

the real exchange rate have to be transitory. There are numerous examples of economic

theories that can be falsified by testing for unit roots.
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This collection of five essays deals with different perspectives on persistence. The com-

mon theme of all the essays is statistical inference for univariate time series processes.

Extensions can also be made into multivariate processes and dynamic panel data models.

The two main differences in this work are fractional integration and non-linearity. The

former concept resolves the classical paradigm of an integer degree of integration that

is typically zero or one for economic variables. Allowing for a fractional instead of an

integer degree of integration implies increased modeling flexibility and more importantly,

long-range dependence of shocks. Hence, the class of fractionally integrated time series

models offers a different view on the persistence. A synonym for fractional integration

is long memory, as shocks have a long lasting impact. Furthermore, long memory time

series models do not only have theoretical appeal. There are a lot of empirical studies,

including those outside the filed of economics, that successfully apply them to a variety

of problems and types of variables.

Chapter 2, written together with Philipp Sibbertsen, considers the inference problem

of a structural break in the fractional degree of integration. Leybourne et al. (2007)

proposed a CUSUM of squares test for the unit root hypothesis against the alternative

that the integer degree of integration changes from zero, which implies stationarity, to

one, which implies non-stationarity, at some breakpoint in time. This test is generalized

with respect to fractional integration. Several new theoretical results are given and the

problem of conservatism that is inherent in the original test by Leybourne et al. (2007)

is resolved. The small sample performance of the modified test is analyzed by means of a

Monte Carlo study and it appears to work well. An application to the US inflation rate

shows the empirical relevance of a break in the persistence of long memory models.

Chapter 3 is dedicated to the problem of testing for a bubble in the Standard and Poors

500 (S&P 500) stock market index. This application is motivated by two articles ana-

lyzing the persistence structure of the logarithm of dividend yields. Sollis (2006) finds a

change in persistence by using methods for integer integration. These results indicate a
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rational bubble in the stock market. This is in contrast to the results reported in Kous-

tas and Serletis (2005) which suggest that the series is fractionally integrated but there

is no evidence to indicate a rational bubble. However, Koustas and Serletis (2005) do

not take potential structural breaks into account. Therefore, it is suitable to apply the

modified CUSUM of squares test introduced in chapter 2 to this data set. The results

highlight two empirical findings: on the one hand they confirm the previous result of frac-

tional integration and on the other hand they support the hypothesis of a rational bubble.

Another viewpoint on persistence is the one implied by non-linear regime switching time

series processes. The main idea is that the data generating process exhibits more than

one regime or state of nature. Linear models implicitly assume that only one state exists

and hence, there cannot be any switch of certain characteristics in the data generating

processes over time. Structural breaks are understood as deterministic regime shifts.

When non-linear models are applied in economics, it is quite common to assume that

there are two or three regimes where every regime has different parameters and condi-

tions describing the data generating mechanism. This has an immediate consequence on

persistence since it can now be interpreted in a local and a global sense. Local persis-

tence means the persistence of the time series process in a certain regime, while global

persistence describes the overall persistence. Note that local and global persistence are

the same for linear models. To put it differently, non-linear time series models allow for

time-varying instead of constant persistence.

One of the major issues with regard to the family of regime switching models, which

comprises Markov switching and smooth transition autoregressive (STAR) models for

instance, is the determination and speed of a switch between regimes. STAR models

assume a smooth transition between regimes that is usually determined by observable

past values of the process itself or by the time period. In the latter case, the switch be-

comes deterministic. In Markov switching models regime changes are determined by an

unobservable stochastic Markov process. However, the popularity of non-linear models
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in applied economics and econometrics is due to their convenient interpretation in the

context of economic models and their increased flexibility in comparison to linear models.

A major drawback of non-linear time series models is complicated inference. This is be-

cause certain parameters are usually not identified under the null hypothesis. Therefore,

non-standard methods have to be applied. Alternatively, and this is done more often,

the non-linear model is linearized if possible, which is of particular interest for smooth

transition models. Standard techniques can be used in the linearized model, which is a

clear advantage but such an approximation may waste important information. Since the

Markov switching model cannot be linearized, inference is much more involved.

A new test for the unit root hypothesis against a stationary exponential STAR model

is proposed in chapter 4. The new test generalizes the extant test by Kapetanios et

al. (2003) that makes use of linearization and builds upon a new non-standard infer-

ence technique suggested by Abadir and Distaso (2007). First, an empirically unrealistic

assumption about the location parameter of the smooth transition function is relaxed.

Second, the resulting auxiliary regression implies a non-standard testing problem in the

sense that one parameter is one-sided under the alternative while all others are two-sided.

This gives rise to the modified test statistics introduced by Abadir and Distaso (2007)

that are explicitly designed for such problems. The limiting distribution of the modi-

fied Wald test is derived and consistency is proven. Using Monte Carlo simulations the

extant and the new test are compared under a variety of conditions. Overall, the new

test appears to be superior in many situations. An empirical application to the EU real

effective exchange rate underlines its usefulness. PPP is supported by the new test while

it is rejected by the existing one and two prominent linear unit root tests.

Chapter 5, co-authored with Michael Frömmel, Lukas Menkhoff and Philipp Sibbertsen,

considers the problem of falsifying PPP empirically by using non-linear unit root tests

under conditions that are relevant in practice. In particular, this means that sample

sizes and parameter settings are chosen carefully in the conducted large-scale Monte
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Carlo study. Beside the two non-linear unit root tests against exponential STAR and the

famous Dickey-Fuller test against linear autoregressive models, a newly proposed unit

root test against Markov switching autoregression is studied. This new test has a sta-

tionary two regime Markov switching model as the alternative and is constructed upon

the methodology for unidentified parameters under the Null that was proposed in Hansen

(1996) and has subsequently been refined by Garcia (1998). It appears to be relatively

powerful and robust against non-linear ESTAR-type dynamics. The simulation results

show that these two important properties are not shared by other studied tests. This

suggests that Markov Switching processes which include the modeling of destabilizing

forces in foreign exchange rates may be appropriate.

Lastly, chapter 6, written together with Philipp Sibbertsen, deals with the decision prob-

lem regarding four different types of time series processes. The first two types are sta-

tionary and non-stationary processes, respectively. As mentioned above, it is of great

interest for several reasons to distinguish these two types. It is widely acknowledged

that non-linearities play an important role in economics, especially in macroeconomics

and finance. Therefore, it is relevant to discriminate between linear and non-linear pro-

cesses, too. Up to now, both strands of the literature are usually isolated. In a recent

article, Harvey and Leybourne (2007) use a stationarity test that claimed to be robust

against non-linearity and a linearity test that is robust against non-stationarity. This was

done in order to classify European real exchange rates into the four possible categories.

Firstly, the quality of the proposed decision rule, which uses two tests simultaneously, is

investigated. Secondly, some alternative strategies and modifications are suggested and

compared to the original one. A broad simulation study shows that sequential procedures

outperform simultaneous ones. It turns out that no dominating rule exists since every

decision rule has its own advantages and disadvantages. Fortunately, it is possible to

construct a dominant strategy via a simple pre-testing strategy and the unification of

two well performing procedures.



Chapter 2

Testing for a Break in Persistence

under Long-Range Dependencies

Co-authored with Philipp Sibbertsen. Published as Hannover Leibniz University Discussion Pa-

per No. 381, Nov. 2007 (ISSN 0949-9962) and as a revision in the Journal of Time Series

Analysis (2009), Issue 30, pp. 263-285.

2.1 Introduction

For a practitioner it is of big importance in terms of model building and forecasting

to know whether a given time series has a certain kind of persistence, either stationary

I(d) with 0 ≤ d < 1/2 or non-stationary I(d) with 1/2 < d < 3/2 or whether the

persistence breaks from stationary to non-stationary persistence or vice versa. Recently,

a number of tests for a break in the persistence have been proposed in the classical

I(0)/I(1) framework. Kim (2000), Kim et al. (2002) and Busetti and Taylor (2004)

propose tests for the null hypothesis that the data generating process is I(0) throughout

against the alternative of a break to I(1). Contrary to these tests Banerjee et al. (1992)

and Leybourne et al. (2003) propose tests for the opposite null of I(1) throughout

against the alternative of a break to I(0). All these tests have problems when the data

generating process does not exhibit a break in persistence, i.e. when the null is false as

well. Therefore, Leybourne et al. (2007) proposed a CUSUM of squares-based test to

overcome this problem. The Leybourne et al. (2007) test is basically the ratio of two
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CUSUM of squares statistics, based on the forward and reverse evaluation of the time

series. Although the test is constructed for the null hypothesis that the data generating

process is I(1) throughout against a break in persistence to I(0), Leybourne et al. show

that it has also power against the alternative of a break from I(0) to I(1) and that it

behaves well if the process is I(0) throughout.

However, all of these tests stay in the classical I(0)/I(1) framework. One exception is

Beran and Terrin (1996) who consider a test for constancy of the long-memory parame-

ter against a change of it. Their test is based on a functional central limit theorem for

quadratic forms. By now it is broadly accepted that many economic variables exhibit

long-range dependencies which cannot be covered by the classical framework. Also in

the more flexible I(d) framework, 0 ≤ d ≤ 3/2 it is crucial to know whether the mem-

ory parameter is in the stationary region or in the non-stationary region throughout or

whether there is a change in the persistence. It turns out that the Leybourne et al.

(2007) test has serious size distortions, that means the test is conservative, if the data

generating process has long memory and therefore the test has a lack of power in this

model. This indicates that new critical values depending on the memory parameter are

necessary in the I(d) framework. In this chapter we investigate the asymptotic behavior

of the Leybourne et al. (2007) test under long-range dependencies. We derive the limiting

distribution under the null that the data generating process exhibits non-stationary long

memory. We furthermore show that the breakpoint estimator proposed by Leybourne et

al. (2007) is also consistent under long memory though with a slower rate of convergence

depending on d. In a Monte Carlo study we show that the test has satisfying size and

power properties when the adjusted critical values are used. Finally the test is applied

to monthly US inflation data.

The chapter is organized as follows. After introducing the model and the test in section

2.2, section 2.3 derives the asymptotic properties of the test. Section 2.4 contains an

intensive Monte Carlo study showing the finite sample properties of the test as well as

the power properties and gives response curves to easily compute critical values. Section

2.5 contains an empirical application to a monthly US inflation time series and section
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2.6 concludes. All proofs are given in the Appendix A of this chapter, while Appendix B

contains additional numerical results.

2.2 Model and Test

We assume that the data generating process follows an ARFIMA(p, d, q) process as pro-

posed by Granger and Joyeux (1980):

Φ(B)(1−B)dXt = Ψ(B)εt,

where εt are i.i.d. random variables with mean zero and variance σ2. The AR- and MA-

polynomials Φ(B) and Ψ(B) are assumed to have all roots outside the unit circle. The

degree of integration of Xt is therefore solely determined by the memory parameter d.

The test against a change in the persistence as proposed by Leybourne et al. (2007) uses

the statistic

R =
infτ∈Λ Kf (τ)

infτ∈Λ Kr(τ)
, (2.1)

where Kf (τ) and Kr(τ) are CUSUM of squares-based statistics depending on the forward

and reversed residuals of the data generating process as given below. Here τ is the relative

breakpoint where we assume that τ ∈ Λ and that Λ ⊂ (0, 1) is symmetric around 0.5.

For now we assume τ to be fixed though unknown. As τ is usually unknown in practice

we study the properties of a simple estimator for the breakpoint in the following section.

In detail CUSUM of squares-based statistics are defined by

Kf (τ) = [τT ]−2

[τT ]∑
t=1

v̂2
t,τ

and

Kr(τ) = (T − [τT ])−2

T−[τT ]∑
t=1

ṽ2
t,τ .

We denote by [x] the biggest integer smaller than x. Here, v̂t,τ is the residual from the

OLS regression of Xt on a constant zt = 1 ∀t based on the observations up to [τT ]. This

is

v̂t,τ = Xt − X̄(τ)
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with X̄(τ) = [τT ]−1
∑[τT ]

t=1 Xt. Similarly ṽt,τ is defined for the reversed series yt = XT−t+1.

Thus, it is given by

ṽt,τ = yt − ȳ(1− τ)

with ȳ(1 − τ) = (T − [τT ])−1
∑T−[τT ]

t=1 yt. The case of zt = [1, t]′, which corresponds to

linear de-trending, is considered later on as well.

Remark: It should be mentioned that the quantities Kf (τ) and Kr(τ) are originally

defined by including an estimator of the long-run variance of the data generating process.

As the behavior of the test statistic R is independent of the long-run variance we distance

ourselves from this issue to keep notation and proofs simple.

2.3 Asymptotic Properties

In this section we derive the asymptotic properties of the test statistic (2.1) when the

data generating process is I(d). In the following we denote by ⇒ weak convergence and

by
P→ convergence in probability. We denote by d0 the long memory parameter under the

null hypothesis regardless of its specific value while we distinguish under the alternative

hypothesis between values characterizing stationary (0 ≤ d1 < 1/2) and non-stationary

processes (1/2 < d2 < 3/2) , respectively.

Theorem 1. Under the null hypothesis H0 : Xt ∼ I(d0) ∀t with 1/2 < d0 < 3/2 the

limiting distribution for T →∞ of R is given by

T−2d0R ⇒
inf
τ∈Λ

Lf
d0

(τ)

inf
τ∈Λ

Lr
d0

(τ)
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with

Lf
d0

(τ) =

τ∫

0

W ∗
d0

(r, τ)2dr

Lr
d0

(τ) =

1−τ∫

0

V ∗
d0

(r, τ)2dr

W ∗
d0

(r, τ)2 =


Wd0(r)− τ−1

τ∫

0

Wd0(r)dr




2

V ∗
d0

(r, τ)2 =


Wd0(1− r)− (1− τ)−1

1∫

τ

Wd0(r)dr




2

for the de-meaned case (zt = 1) and

Lf
d0

(τ) =

τ∫

0

W ∗∗
d0

(r, τ)2dr

Lr
d0

(τ) =

1−τ∫

0

V ∗∗
d0

(r, τ)2dr

W ∗∗
d0

(r, τ) = Wd0(r)−B0(τ)− rB1(τ)

V ∗∗
d0

(r, τ) = −(Wd0(1)−Wd0(1− r))−Br
0(τ)− rBr

1(τ)

B0(τ) = 4τ−1

∫ τ

0

Wd0(r)dr − 6τ−2

∫ τ

0

rWd0(r)dr

B1(τ) = 6τ−2

∫ τ

0

Wd0(r)dr + 12τ−3

∫ τ

0

rWd0(r)dr

Br
0(τ) = 4(1− τ)−1

(∫ 1

τ

Wd0(r)dr − (1− τ)Wd0(1)

)

−6(1− τ)−2

(
(1− τ)2

2
Wd0(1)−

∫ 1

τ

Wd0(r)dr

∫ 1

τ

rWd0(r)dr

)

Br
1(τ) = 6(1− τ)−2

(∫ 1

τ

Wd0(r)dr − (1− τ)Wd0(1)

)

+12(1− τ)−3

(
(1− τ)2

2
Wd0(1)−

∫ 1

τ

Wd0(r)dr +

∫ 1

τ

rWd0(r)dr

)

for the de-trended case (zt = [1, t]′).
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Theorem 1 shows that the limiting distribution strongly depends on the memory pa-

rameter. This behavior of the limiting distribution leads to heavy size distortions of the

original Leybourne et al. (2007) test when long-range dependencies are neglected. There-

fore, we recommend to use new critical values that are provided in section 2.4. However,

as the critical values vary quite substantially with d this is not very handy in practice

as new critical values have to be simulated for each value of d. Therefore, we also give

response curves for finite sample critical values depending on d which are easy to imple-

ment and allow a fast computation of the critical values. As the variation of the critical

values with sample size is minor this is an easy procedure for practical applications, see

section 2.4 for further details on this issue. After establishing the limiting distribution

under the null we have to prove consistency of the test.

Theorem 2. Let 0 ≤ d1 < 1/2 and 1/2 < d2 < 3/2.

1. Under the alternative of a break from stationary to non-stationary long memory,

this is from I(d1) to I(d2), we obtain

R = OP (T d1−d2).

2. Under the alternative of a break from non-stationary to stationary long memory,

this is from I(d2) to I(d1) we obtain

R = OP (T d2−d1).

These results imply that a consistent test against the alternative of a break from non-

stationary to stationary long memory is obtained by using critical values from the upper

tail of the distribution whereas using the lower tail of the distribution leads to a consistent

test against the alternative of breaking from stationary to non-stationary long memory.

Remark: Although in both cases the break was assumed to be from stationary to non-

stationary long memory or vice versa the test also has high power if the break is from

stationary to stationary or from non-stationary to non-stationary long memory.
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So far the breakpoint was assumed to be unknown. We therefore show that the breakpoint

estimators given in Leybourne et al. (2007) are also consistent in the long memory setup.

Theorem 3. Denote by τ0 the true breakpoint. Then, for

τ̂ = inf
τ∈Λ

Kf (τ)

we have

τ̂
P→ τ0,

if the alternative is a break from stationary to non-stationary long memory. For a break

from non-stationary to stationary long memory a consistent estimator for the breakpoint

τ0 is given by

τ̂ = inf
τ∈Λ

Kr(τ).

As usual for long memory processes the convergence is slower than in the Leybourne et al.

(2007) situation. However, this does not change the consistency result in general. Finally,

we have to evaluate the behavior of the test when Xt ∼ I(d0) ∀t with 0 ≤ d0 < 1/2.

This is the situation where no break in persistence occurs but on the other hand our null

hypothesis from Theorem 1 is wrong as the data generating process exhibits stationary

long memory. We have

Theorem 4. Let Xt ∼ I(d0) ∀t with 0 ≤ d0 < 1/2. Then,

R
P→ 1.

In this situation the test has a degenerated limiting distribution. As the limit theorems

for non-stationary long memory processes hold for 1/2 < d0 < 3/2, it is reasonable to

integrate the time series in this case before applying the adjusted test. For 0 ≤ d0 < 1/2

the memory parameter of the integrated series is between 1 and 3/2. Thus, the results in

Theorem 1 to Theorem 3 still hold in this situation allowing us to construct a consistent

and correctly sized test. By this approach we can overcome the problem of the Leybourne

et al. (2007) test to have a degenerated limiting distribution when the original series is

stationary and therefore obtaining a conservative test in this situation.
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Table 2.1: Empirical Size using unadjusted Critical Values

de-meaning de-trending

d 1.0L 5.0L 10.0L 10.0U 5.0U 1.0U 1.0L 5.0L 10.0L 10.0U 5.0U 1.0U

0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.75 0.0 0.0 1.7 1.5 0.0 0.0 0.0 1.0 2.1 2.4 0.1 0.0

0.90 0.0 2.5 6.5 6.9 2.3 0.0 0.0 3.3 6.2 6.3 2.6 0.0

1.00 1.1 5.2 10.0 10.3 5.1 0.9 1.1 5.2 9.8 10.1 4.9 1.2
Notes: Sample size is T = 500, xL and xU denote the x-th lower and upper quantile of R under long-range

dependencies, respectively.

Up to now, the value of d0 has been assumed to be known. Of course, the true value of

d0 is unknown in practice and has to be estimated. However, our Monte Carlo results

in the following section show that the adjusted test performs well if d0 is estimated by a

consistent estimator.

2.4 Monte Carlo Study

In this section we evaluate the finite sample behavior of the adjusted CUSUM of squares-

type test. All simulations are computed in the open-source statistical programming

language R, see Development Core Team R (2004). We consider the sample size T = 500

and use M = 2, 000 Monte Carlo repetitions for each experiment, while simulated critical

values are obtained by setting T = 10, 000 and M = 20, 000. The memory parameter d is

treated as unknown in order to achieve realistic conditions and it is therefore estimated.

We use the log-periodogram regression introduced by Geweke and Porter Hudak (1983)

with a rate of frequencies of o(T 0.8) which is MSE-optimal.

First, we investigate the behavior of the Leybourne et al. (2007) test when the DGP ex-

hibits long-range dependencies without a break in persistence, i.e. (1−B)dXt = εt with
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Table 2.2: Empirical Size using estimated Response Curves

de-meaning de-trending

d 1.0L 5.0L 10.0L 10.0U 5.0U 1.0U 1.0L 5.0L 10.0L 10.0U 5.0U 1.0U

0.00 1.3 5.6 10.7 9.5 4.8 1.1 0.8 5.1 10.0 9.6 5.1 1.2

0.10 1.1 5.0 9.8 10.0 4.9 1.2 1.4 4.9 9.4 10.1 4.9 1.1

0.25 1.0 5.7 10.9 9.8 4.9 1.2 1.2 4.8 9.8 9.1 4.4 0.7

0.40 0.8 4.9 9.8 10.9 5.7 1.8 1.0 3.8 10.5 9.0 4.9 0.9

0.60 0.9 5.4 11.0 11.1 6.1 1.6 1.5 5.8 11.0 11.2 5.5 1.1

0.75 0.6 4.0 8.4 9.8 4.8 0.7 1.5 5.3 11.2 9.4 4.4 1.1

0.90 0.7 5.0 10.6 8.4 4.1 0.5 0.8 5.2 10.3 9.4 4.5 0.9

1.00 1.0 5.3 11.2 9.7 4.9 1.0 0.6 5.2 10.0 9.5 5.0 1.4
Notes: Sample size is T = 500, xL and xU denote the x-th lower and upper quantile of R under long-range

dependencies, respectively.

εt
i.i.d.∼ N(0, 1). The long memory parameter d takes the values 0.00, 0.10, 0.25, 0.40, 0.60,

0.75, 0.90 and 1.00. This means that both, the null and the alternative hypothesis of the

Leybourne et al. (2007) test are wrong except for the case of d = 1. As the Leybourne

et al. (2007) test is known to be conservative for a process being constantly I(0) we

would expect a similar behavior in our setup. As we can see from Table 2.1 the originally

proposed test exhibits serious size distortions in the presence of long-range dependencies

resulting in a conservative test. Unsurprisingly, the empirical size is closer to the nomi-

nal significance level as d approaches one. The test is correctly sized if d = 1. However,

even for non-stationary DGPs the size distortions are not negligible. These results under-

line the need for adjusted critical values taking into account the long-range dependencies.

Next, we simulate the asymptotic distribution of the R statistic dependening on d in the

following 99 cases: d = 0.51, ..., 1.49. Due to the fact that adjusted critical values depend

on d they have to be tabulated for a wide range of possible values of d. As this is rather

burdensome we fit polynomial functions in d to the sequence of critical values depending

on d. This response curve is given by

qα(d) =
s∑

i=0

βid
i , (2.2)
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Figure 2.1: Simulated Quantiles of the R Statistic under Long Memory with fitted Re-

sponse Curves for de-meaned (left) and de-trended Data (right).

where qα denotes the α-quantile of the asymptotic distribution of R and takes values on

the grid 0.51,...,1.49 consisting of 99 equally spaced points. The polynomial order s is set

equal to nine. Additionally, we tried other settings, but s = 9 appeared to be a satisfying

choice. Parameters βi are estimated via OLS. Following the general-to-specific approach,

we eliminate in each step the most insignificant power of d and re-estimate the function

by OLS until no further non-rejection of the hypotheses H0 : βi = 0 occurs at the five

percent level of significance. The final estimates are reported in Tables 2.6 and 2.7 given

in Appendix B of this chapter. In Figure 2.1 we display the simulated quantiles (y-axis)

depending on d = 0.51, ..., 1.49 (x-axis) and the fit of the response curves (solid line) for
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the 5% and 95% level of significance for de-meaned and de-trended data. Using the fitted

response curves we can approximate critical values easily. Beside the simplicity of this

approach it is reasonable in our opinion as the variation of critical values depends on the

memory parameter and not on the sample size. The results in Table 2.2 that we discuss

in a moment underline this argument.

Using adjusted critical values obtained from the fitted response curves we now revisit the

empirical size of the test. The results are reported in Table 2.2. Note that time series

with d̂0 < 1/2 are integrated in order to avoid a degenerated limiting distribution under

the null hypothesis. Hence, we actually consider a range of values from d = 0.60 to 1.40.

The test has satisfying properties even though there are some minor distortions for values

of d in the neighborhood of 1/2. It might happen that the estimated value of d is less

(greater) then 1/2 under H0 when the true value is greater (less) than 1/2, which means

that we wrongly integrate (not integrate) the time series and therefore obtain a biased

test result. However, the results in Table 2.2 suggest that this is not really a serious

problem.

Next we consider the power of the test based on adjusted critical values. As the test

can be seen as correctly sized, there is no need for size-adjusted critical values. For all

power experiments we consider three different locations of the breakpoint, at the be-

ginning (τ = 0.3), the middle (τ = 0.5) and the end (τ = 0.7) of the sample period.

The long memory parameter takes the same values as before. The simulation results are

given in Table 2.3 and 2.4 for de-meaned and de-trended data, respectively. We consider

breaks from stationary to non-stationary long memory (upper left part of Tables 2.3 and

2.4) and vice versa (upper right part of Tables 2.3 and 2.4). The consistency results in

Theorem 2 suggest that the test is consistent in both cases.

Furthermore, in the lower part of Tables 2.3 and 2.4 we consider breaks inside of the

stationary (0 ≤ d < 1/2) (lower left part of Tables 2.3 and 2.4) and non-stationary

region (1/2 < d < 3/2) (lower right part of Tables 2.3 and 2.4). Note that the latter
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Table 2.3: Power Experiment with de-meaned Data

d τ d τ

0.3 0.5 0.7 0.3 0.5 0.7

0.00 → 0.60 81.9 84.1 78.3 1.00 → 0.00 98.7 100.0 100.0

0.00 → 0.75 99.2 97.8 87.9 1.00 → 0.10 99.1 100.0 100.0

0.00 → 0.90 100.0 100.0 97.0 1.00 → 0.25 99.5 100.0 99.1

0.00 → 1.00 100.0 100.0 99.6 1.00 → 0.40 99.3 99.7 95.8

0.10 → 0.60 69.0 78.4 64.3 0.90 → 0.00 93.4 99.9 100.0

0.10 → 0.75 96.7 97.2 82.7 0.90 → 0.10 95.4 99.8 99.7

0.10 → 0.90 99.9 100.0 97.2 0.90 → 0.25 96.1 100.0 98.1

0.10 → 1.00 100.0 100.0 99.8 0.90 → 0.40 96.6 98.5 89.6

0.25 → 0.60 42.1 70.6 50.7 0.75 → 0.00 65.5 94.5 99.0

0.25 → 0.75 86.5 97.5 83.2 0.75 → 0.10 69.9 95.7 97.0

0.25 → 0.90 98.2 100.0 98.0 0.75 → 0.25 80.9 96.7 85.8

0.25 → 1.00 99.5 100.0 99.6 0.75 → 0.40 84.8 88.0 59.6

0.40 → 0.60 20.8 50.0 51.2 0.60 → 0.00 20.2 48.6 67.1

0.40 → 0.75 54.7 88.7 86.4 0.60 → 0.10 25.4 55.1 61.3

0.40 → 0.90 87.4 98.9 98.0 0.60 → 0.25 37.5 64.3 40.9

0.40 → 1.00 95.8 99.9 99.6 0.60 → 0.40 49.4 47.8 19.2

0.00 → 0.10 82.7 84.8 82.5 1.00 → 0.60 81.9 86.4 68.5

0.00 → 0.25 77.4 82.0 81.0 1.00 → 0.75 45.1 45.1 36.8

0.00 → 0.40 64.6 79.6 77.0 1.00 → 0.90 13.9 14.5 12.4

0.10 → 0.25 59.5 68.1 67.3 0.90 → 0.60 68.5 65.9 46.3

0.10 → 0.40 48.5 62.9 61.9 0.90 → 0.75 24.7 25.0 15.8

0.25 → 0.40 21.7 33.1 32.3 0.75 → 0.60 36.4 31.4 16.2
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Table 2.4: Power Experiment with de-trended Data

d τ d τ

0.3 0.5 0.7 0.3 0.5 0.7

0.00 → 0.60 45.1 84.7 94.2 1.00 → 0.00 100.0 99.9 97.2

0.00 → 0.75 64.1 95.8 99.5 1.00 → 0.10 100.0 99.9 96.6

0.00 → 0.90 88.6 99.7 99.9 1.00 → 0.25 99.9 99.6 95.2

0.00 → 1.00 96.5 99.9 100.0 1.00 → 0.40 99.0 98.8 89.3

0.10 → 0.60 40.8 76.6 87.1 0.90 → 0.00 99.9 99.7 90.8

0.10 → 0.75 61.1 93.7 97.6 0.90 → 0.10 99.6 99.8 90.0

0.10 → 0.90 89.3 99.6 99.7 0.90 → 0.25 98.5 98.6 85.4

0.10 → 1.00 97.1 99.9 99.9 0.90 → 0.40 97.1 95.6 73.7

0.25 → 0.60 33.6 57.4 64.9 0.75 → 0.00 99.1 96.1 64.8

0.25 → 0.75 53.7 87.4 92.0 0.75 → 0.10 96.5 94.6 63.1

0.25 → 0.90 85.5 98.4 99.0 0.75 → 0.25 91.0 88.6 57.2

0.25 → 1.00 95.0 99.7 99.8 0.75 → 0.40 80.3 71.3 42.8

0.40 → 0.60 19.6 33.1 41.7 0.60 → 0.00 94.1 84.3 46.3

0.40 → 0.75 39.1 71.7 77.9 0.60 → 0.10 85.9 75.9 42.6

0.40 → 0.90 72.5 94.4 96.4 0.60 → 0.25 65.4 58.7 32.7

0.40 → 1.00 89.3 98.5 99.5 0.60 → 0.40 42.1 34.5 19.0

0.00 → 0.10 7.3 13.5 21.8 1.00 → 0.60 85.0 85.3 63.6

0.00 → 0.25 27.5 39.4 49.5 1.00 → 0.75 48.0 47.1 34.4

0.00 → 0.40 52.4 69.3 75.8 1.00 → 0.90 14.5 15.7 12.3

0.10 → 0.25 12.8 20.5 26.0 0.90 → 0.60 65.5 64.7 39.8

0.10 → 0.40 33.6 46.6 53.5 0.90 → 0.75 23.4 24.0 17.6

0.25 → 0.40 13.4 16.3 25.7 0.75 → 0.60 29.3 26.6 16.6
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Table 2.5: Small Sample Performance of Breakpoint Estimators

de-meaning de-trending

d τ 0.3 0.5 0.7 0.3 0.5 0.7

U [0, 0.4] → U [0.6, 1] τ̂f 0.378 0.546 0.725 0.442 0.557 0.730

se(τ̂f ) 0.139 0.076 0.035 0.183 0.087 0.038

U [0.6, 1] → U [0, 0.4] τ̂ r 0.275 0.453 0.610 0.271 0.440 0.568

se(τ̂ r) 0.034 0.075 0.148 0.036 0.087 0.178

U [0, 0.2] → U [0.8, 1] τ̂f 0.327 0.521 0.717 0.340 0.524 0.717

se(τ̂f ) 0.058 0.037 0.026 0.078 0.043 0.026

U [0.8, 1] → U [0, 0.2] τ̂ r 0.281 0.477 0.672 0.279 0.473 0.660

se(τ̂ r) 0.025 0.039 0.055 0.027 0.044 0.076
Notes: Sample size is T = 500, U [i, j] denotes the uniform distribution with lower and

upper bound i and j, respectively; τ̂f and τ̂r denote the break point estimator based on the

forward (f) and reversed series (r), respectively; se(·) is the standard error.

experiments are not covered by any of our theorems but that they might be relevant in

empirical applications.

Overall, the power results of the adjusted test using de-meaned data (Table 2.3) are

good and confirm the consistency result. For quite extreme breaks, e.g. 0.00 to 0.90, the

power is almost hundred percent. Unsurprisingly, the power decreases for less extreme

breaks, e.g. 0.00 to 0.60. For a given value of d2, the power decreases with increasing d1

(left part). For a given value of d2, the power decreases with decreasing d1 (right part).

At first sight, it might not be intuitive that the power for breaks of equal distance, e.g.

0.25 to 0.75 and 0.40 to 0.90, is not the same. This is an artefact of the adjusted test

introduced by integrating the time series if the estimated value of d is located in the

stationary region. In addition, the fact that the breakpoint influences the estimate of

d under H0 further complicates the interpretation. However, the test is able to detect

switches of the long memory parameter within the stationary and non-stationary region.

The main conclusions are not changing when looking at the results for de-trended data.

After evaluating the power we consider the small sample performance of the simple break-
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point estimator, see Theorem 3. We use the same three different break points as before,

i.e. τ = 0.3, 0.5, 0.7. The memory parameter switches from the stationary to the non-

stationary region and vice versa. For both regions we draw the memory parameter from

a uniform distribution in order to cover a wide range of possible values in a small number

of experiments. The upper and lower bounds are set equal to [0, 0.4] and [0.6, 1] for the

stationary and the non-stationary region, respectively. In a more restrictive setting we set

them equal to [0, 0.2] and [0.8, 1]. Results for a sample size of five hundred observations

are reported in Table 2.5. The overall impression of the breakpoint estimator’s perfor-

mance is satisfying. Noteworthy, we observe that the breakpoint estimator performs

worse in the case of de-trended data which is due to an additional nuisance parameter

that has to be estimated, c.f. Leybourne et al. (2007). We further note that τ̂ f and τ̂ r

perform better in the more restrictive setting because the break point becomes easier to

detect.

2.5 Empirical Illustration

In this section we consider an empirical application of the adjusted test to study whether

there is any change in persistence in US inflation. Hassler and Wolters (1995) reported

that such time series exhibit long-range dependencies. In addition, there is a small but

growing literature dealing with the persistence of US inflation. Main questions in this

literature are the measurement of persistence and potential structural breaks in it. In

a recent article, Pivetta and Reis (2007) come to the conclusion that persistence of US

inflation is approximately constant over time. The authors argue that their conclusion is

in line with Stock and Watson (2003) as well as O’Reilly and Whelan (2005). However,

Kang et al. (2006) provide evidence for a decline in persistence at the very end of the

seventies. Nonetheless, to the best of our knowledge, previous studies are not concerned

with long-range dependencies and there is no previous study dealing with a structural

break in the long memory parameter regarding inflation time series. Therefore, we try

to add some new evidence by applying our long memory adjusted test.
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Figure 2.2: Time Series Plot of US Inflation.

We use the quarterly CPI data from Lanne (2006) and transform it to annualized inflation

by computing yt = 400 ln(CPIt/CPIt−1). The CPI data spans from 1953:1 to 2004:4

implying 207 observations. The time series plot is depicted in Figure 2.2. The graph

suggests a decline of persistence in the second half of the sample which might be a result

of Volcker’s policy to pull inflation down from its high level in the seventies. The vertical

line at 1982:1 shows the estimated break point of our test which will be discussed below.

Under the null hypothesis we obtain an estimated value of d0 via the GPH approach

with MSE-optimal rate of frequencies that equals 0.617 indicating non-stationary long-

memory. We apply the adjusted test without integrating the time series under consid-

eration since the asymptotic distribution of the test statistic is not degenerated as long

as d0 > 1/2 holds. Furthermore, we de-mean the data in a first step, since a clear linear

trend is not obvious. Testing the null hypothesis of constant memory against decreasing

memory gives a test statistic of 1.801 which is significant at the ten and five percent level

of significance. Note that we make use of our estimated response curves to approximate

the relevant critical values. The test result suggests that there is a decline in the per-
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sistence of US inflation. Interestingly, the estimated break point is 1982:1 which is nine

quarters after the begin of Volcker’s chairmanship at the Federal Reserve. When estimat-

ing the long memory parameter d before and after this breakpoint we get 0.862 and 0.246

which can be viewed as a sharp decline in persistence. Finally, we test the null hypothesis

of constant memory for the time period after 1982:1. Note that we have to integrate the

time series once, since the asymptotic distribution is degenerated for 0 ≤ d0 < 1/2. The

test statistic is now 1.667 and insignificant at conventional levels. Although this result is

based on only 91 observations, it suggests that there is no additional break after 1982:1.

2.6 Conclusion

In this chapter we present a modification of a test proposed by Leybourne et al. (2007)

that allows for long memory dynamics. In particular, the test is constructed for the

null hypothesis that there is no change in the long-memory parameter d against the

alternative that it breaks from a stationary value (0 ≤ d < 1/2) to a non-stationary

one (1/2 < d < 3/2) or vice versa. We derive several asymptotic properties of the test

statistic under long-range dependent DGPs and show that the asymptotic distribution

depends on d. Therefore, we propose response curves based on estimates for d to obtain

the relevant critical value easily and show by means of a Monte Carlo study that this

approach works well. Furthermore, the power of the test is good and a simple breakpoint

estimator has satisfying properties. Finally, we apply the test to US inflation data and

find a break from non-stationary to stationary long-memory in the early eighties.
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2.7 Appendix A

Proof of Theorem 1: For the proof of the theorem let us consider the de-meaned case

first. The test statistic was defined by

R =
infτ∈Λ Kf (τ)

infτ∈Λ Kr(τ)
,

with

Kf (τ) = [τT ]−2

[τT ]∑
t=1

v̂2
t,τ

and

Kr(τ) = (T − [τT ])−2

T−[τT ]∑
t=1

ṽ2
t,τ .

For the nominator we have

T−d0− 1
2 v̂t,τ = T−d0− 1

2 xt − T−d0− 1
2 x̄(τ).

We have

T−d0− 1
2 x[rt] ⇒ Wd0(r)

with Wd0 denoting fractional Brownian motion with parameter d0. Furthermore we have

T−d0− 1
2 x̄(τ) = T−d0− 1

2 [τT ]−1

[τT ]∑
t=1

xt

= T−d0− 3
2 τ−1

[τT ]∑
t=1

xt

⇒ τ−1

∫ τ

0

Wd0(r)dr.

Application of the continuous mapping theorem gives

T−d0− 1
2 v̂[rt] ⇒ Wd0(r)− τ−1

∫ τ

0

Wd0(r)dr

=: W ∗
d0

(r, τ)

and thus for the nominator

T−2d0Kf (τ) = τ−2

∫ τ

0

(T−d0− 1
2 v̂[rT ])

2dr

⇒ τ−2

∫ τ

0

W ∗
d0

(r, τ)2dr.
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Similarly we obtain for the denominator

T−d0− 1
2 ṽ[rT ] ⇒ Wd0(1)−Wd0(1− r) + (1− τ)−1

∫ 1−τ

0

(Wd0(1)−Wd0(1− r)dr)

= Wd0(1− r)− (1− τ)−1

∫ 1

τ

Wd0(r)dr

=: V ∗
d0

(r, τ).

Again using the continuous mapping theorem we obtain for the denominator

T−2d0Kr(τ) = (1− τ)−2

∫ 1−τ

0

(T−d0− 1
2 ṽ[rT ])

2dr

⇒ (1− τ)−2

∫ 1−τ

0

V ∗
d0

(r, τ)2dr.

Combining the result for the nominator and the denominator gives the result.

The result for the de-meaned and de-trended case is obtained by applying standard results

for linear regression with long-memory errors. We consider the forward statistic

Kf (τ) = [τT ]−2

[τT ]∑
t=1

v̂2
t ,

where v̂t = xt− α̂− β̂t are the residuals from the OLS regression of xt on the vector zt =

[1, t]′, t = 1, . . . , [τT ]. It is well known that T−d0−1/2(α̂ − α) ⇒ B0(τ) and T−d0−1/2(β̂ −
β) ⇒ B1(τ) and B0(τ) and B1(τ) given as in the Theorem. Therefore, we obtain

T−d0−1/2v̂[τT ] = T−d0−1/2v[τT ] − T−d0−1/2(α̂− α)− rT−d0−1/2(β̂ − β)

⇒ Wd0(r)−B0(τ)− rB1(τ)

≡ W ∗∗
d0

(r, τ).

As the forward statistic is a continuous functional of T−d0−1/2v̂[τT ] we obtain using the

CMT

T−2d0Kf (τ) = τ−2

∫ τ

0

(T−d0−1/2v̂[τT ])
2dr

⇒ τ−2

∫ τ

0

W ∗∗
d0

(r, τ)2dr

≡ Lf (τ).
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The proof for the reverse statistic is analogous and therefore omitted. For the remain-

der of this Appendix we omit proofs for the de-meaned and the de-trended case for the

brevity of notation as they are straightforward. ¤

Proof of Theorem 2: First we prove the first part of the theorem. This is we assume

a breakpoint that the DGP breaks from a stationary to a non-stationary long-memory

process. Let us first consider the situation of τ ≤ τ0, where τ0 denotes the true breakpoint.

This means that Xt ∼ I(d1) with 0 ≤ d1 < 1/2. Have in mind that the standardization

of the test statistic is obtained from H0 : Xt ∼ I(d0) with d1 6= d0. In the stationary part

we have d0 ≥ d1. In this situation we obtain:

T−2d0+1Kf
d0

(τ) = τ−1T−2d0 [τT ]−1

[τT ]∑
t=1

v2
t

P→ τ−1O(T d1−d0).

In the case of d1 = d0 the upper expression converges to τ−1γ0 with γ0 denoting the

variance of Xt. For d1 < d0, wich is the relevant case in practise, this expression tends

to zero with a rate depending on the difference of the true d0 before the break and the

hypothetic memory parameter.

We next consider the situation of τ > τ0 where we split Kf
d (τ) up in its stationary and

its non-stationary part. Have in mind that the true DGP is of order 1/2 < d2 < 3/2

after the break with d2 > d0 in the non-stationary part.

T−2d0Kf
d0

(τ) = τ−2T 2−2d0

[τT ]∑
t=1

x2
t − τ−3


T 3/2−d0

[τT ]∑
t=1

yt




2

= τ−2


T 2−2d0

[τ0T ]∑
t=1

x2
t + T 2−2d0

[τT ]∑

t=[τ0T ]+1

x2
t




−τ−3


T 3/2−d0

[τ0T ]∑
t=1

yt + T 3/2−d0

[τT ]∑

t=[τ0T ]+1

yt




2

= τ−2T 2−2d0

[τT ]∑

t=[τ0T ]+1

x2
t − τ−3


T 3/2−d0

[τT ]∑

t=[τ0T ]+1

yt




2

+ oP (1)

P→ OP (T d2−d0).
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From these considerations we see that the limit of T−2d0+1Kf
d0

(τ) is given by τ−1OP (T d1−d0)

+ ∞1(τ>τ0) which is obviously minimized by τ0. Thus, we have

T−2d0+1 inf
τ∈Λ

Kf
d0

(τ)
P→ OP (T d1−d0).

For the reversed series we obtain by similar arguments for τ ≤ τ0:

T−2d0Kr
d0

(τ)
P→ OP (T d2−d0).

This gives us

inf
τ∈Λ

Kr
d0

(τ) = OP (T d2+d0−1)

which gives us the first result of the theorem. The result in point 2 of Theorem 2 is

obtained by similar arguments as above. ¤

Proof of Theorem 3: Let us assume a break from stationary long memory to non-

stationary long memory, that is 0 ≤ d1 < 1/2 and 1/2 < d2 < 3/2. The hypothetical

memory parameter is denoted by d0 with d1 ≤ d0 ≤ d2. ¿From Theorem 2 we know

that the limit of T−2d0+1Kf
d0

(τ) is given by OP (T d1−d0)1(τ≤τ0) +∞1(τ>τ0) which is obvi-

ously minimized by τ0. The result follows now by similar arguments as in Leybourne

et al. (2007). The proof for the second part of the theorem, that is the break from

non-stationary to stationary long memory, is analogous and therefore omitted here. ¤

Proof of Theorem 4: Because of the symmetry of Λ around 0.5 we have

inf
τ∈Λ

T−2d0Kf
d0

(τ)
P→ inf

τ∈Λ
τ−1γ0

= λ−1
u γ0

inf
τ∈Λ

T−2d0Kr
d0

(τ)
P→ inf

τ∈Λ
(1− τ−1)γ0

= (1− λ−1
l )γ0

= λ−1
u γ0,

where λu and λl denote the upper and the lower bound of the interval Λ respectively.

This proves the theorem. ¤
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Chapter 3

Rational Bubbles and changing

Degree of Fractional Integration

Published as Hannover Leibniz University Discussion Paper No. 394, March 2008 (ISSN 0949-

9962).

3.1 Introduction

In this chapter we provide evidence for a rational bubble in S&P 500 stock prices by ap-

plying a test for changing persistence under fractional integration. Koustas and Serletis

(2005) find strong evidence for the existence of long memory in the S&P 500 log dividend

yield and their results support the hypothesis of no rational bubble. However, the authors

did not account for a potential change in the fractional degree of integration. We apply

a suitable test proposed by Sibbertsen and Kruse (2007) and find a significant break in

the memory of the S&P 500 log dividend yield that is located at November, 1955. This

breakpoint is also found by Sollis (2006) who apply tests for a change in persistence that

are designed for the I(0)/I(1) framework. We find strong evidence for stationary long

memory before the break in 1955 and a unit root afterwards. These results confirm on one

hand the previous result of fractional integration in this time series and on the other hand

they are in line with other empirical studies that found evidence for a rational bubble in it.

Section 3.2 reviews the test for changing memory briefly, while the empirical results are

reported in section 3.3 and section 3.4 concludes.
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3.2 Testing for changing Memory

We assume that the data generating process follows an I(d) process as proposed by

Granger and Joyeux (1980):

(1− L)dyt = εt,

where εt are i.i.d. random variables with mean zero and variance σ2 and L denotes the

lag operator (Lkyt ≡ yt−k). This process is said to be fractionally integrated of order

d. The test proposed by Sibbertsen and Kruse (2007) considers the following pair of

hypotheses,

H0 : d = d0 for all t

H1 : d = d1 for t = 1, . . . , [τT ]

d = d2 for t = [τT ] + 1, . . . , T

where [x] denotes the biggest integer smaller than x. The differencing parameter is

restricted to 0 ≤ d0 < 3/2 under H0, while 0 ≤ d1 < 1/2 and 1/2 < d2 < 3/2. Note

that, d1 and d2 can be interchanged. This means that we test the null hypothesis of

constant memory against a change from stationary (0 ≤ d1 < 1/2) to non-stationary

(1/2 < d2 < 3/2) long memory at [τT ] and vice versa. The test statistic is given by

R =
infτ∈Λ Kf (τ)

infτ∈Λ Kr(τ)
,

where Kf (τ) and Kr(τ) are CUSUM of squares-based statistics depending on the for-

ward and reversed residuals of the data generating process as given below. The relative

breakpoint τ ∈ Λ ⊂ (0, 1) is assumed to be unknown and a simple estimator is given

below. In detail, the forward and reverse CUSUM of squares-based statistics are defined

by

Kf (τ) = [τT ]−2

[τT ]∑
t=1

v̂2
t,τ

and

Kr(τ) = (T − [τT ])−2

T−[τT ]∑
t=1

ṽ2
t,τ .
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Here, v̂t,τ are the residuals from the OLS regression of yt on a constant based on the

observations up to [τT ]. This is

v̂t,τ = yt − ȳ(τ)

with ȳ(τ) = [τT ]−1
∑[τT ]

t=1 yt. Similarly ṽt,τ is defined for the reversed series zt ≡ yT−t+1.

Thus, it is given by

ṽt,τ = zt − z̄(1− τ)

with z̄(1− τ) = (T − [τT ])−1
∑T−[τT ]

t=1 zt. Since the limiting distribution of R depends on

the memory parameter under the null hypothesis d0, Sibbertsen and Kruse (2007) provide

response curves that allow an easy computation of relevant critical values. Note that,

when testing against a change from stationary to non-stationary memory the left tail of

the distribution is relevant and vice versa. Furthermore, the authors prove consistency

of the simple breakpoint estimator that is given by

τ̂ = inf
τ∈Λ

Kf (τ).

3.3 Empirical Evidence

The used monthly data set can be downloaded from Robert Shiller’s web site1. The

sample spans from January, 1871 to December, 2007 implying 1644 observations. The

time series is depicted in Figure 3.1. The graph shows a clear change in the behavior in

the last third of the sample.

In a first step of our analysis, we estimate the long memory parameter by applying the

log periodogram regression method proposed by Geweke and Porter-Hudak (1983). This

estimator is based on an approximation of the spectral density near the origin. A crucial

issue is the choice of number of frequencies m that are used to perform the log peri-

odogram regression. Hurvich et al. (1998) show that m = o(T 4/5) is MSE-optimal. On

the other hand Geweke and Porter-Hudak suggest to use m = o(T 1/2) which means that

higher frequencies are disregarded which implies that the estimator is less efficient. On

1http://cowles.econ.yale.edu/faculty/shiller.htm/
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Figure 3.1: S&P 500 Log Dividend Yield (January, 1871 to December, 2007).

the other hand, if the true DGP contains short-term dependencies which are usually

represented by an ARMA(p, q) process, the GPH estimator based on m = o(T 1/2) is less

biased. Hence, there is a tradeoff between bias and efficiency.

Davidson and Sibbertsen (2007) recently proposed a Hausman-type test for the bias in

log-periodogram regressions that compares two GPH estimators using a different number

of frequencies. Under the null hypothesis short-term dependencies are negligible and

therefore a higher number of frequencies, m = o(T 4/5), can be used without running

the risk of a bias. Under the alternative the authors suggest to use a lower number of

frequencies, m = o(T 1/2). An application of this test leads to a rejection at the nominal

five percent level of significance (p-value = 0.030). The estimate of d0 using m = T 1/2

is 0.82 which indicates a non-stationary long memory time series. Alternatively to the

log periodogram regression approach we estimate an ARFIMA(p, d, 0) model in order to

account explicitly for short-term correlations represented by a finite AR component. MA

components are omitted for simplicity. The model can be written as

(1− α1L− α2L
2 − . . .− αpL

p)(1− L)dyt = µ + εt ,
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where αi denote the AR-parameter corresponding to lag i and µ is a constant. All pa-

rameters of this model are estimated jointly via non-linear least squares which is often

referred to as the conditional sum-of-squares (CSS) estimator that has been suggested

by Beran (1995) and further studied in Chung and Baillie (1993) and Doornik and Ooms

(2004). In contrast to exact maximum likelihood or modified profile likelihood estimation,

the NLS estimator is also applicable for non-stationary ARFIMA models (0.5 < d ≤ 1).

The optimal autoregressive lag length is chosen via AIC with a lower bound of zero and

an upper bound of p4 = [4(T/100)1/4] = 7, cf. Schwert (1989).

Detailed NLS estimation results can be found in Table 3.1. Compared to the GPH esti-

mate we obtain a slightly lower value of 0.61. A simple t-test of the null hypothesis of

short memory H0 : d0 = 0 has to be strongly rejected. The Ljung-Box statistic Q with

12 lags is not significant which suggests that there is no remaining autocorrelation up to

lag 12 left in the residuals.

The interval of potential breakpoints is set as Λ = [0.2, 0.8] which is a common choice

in the literature. The test statistic R equals 0.35. Based on d̂0 = 0.82, critical values

that are computed via response curves equal 0.47, 0.38 and 0.24 for the nominal 10, 5

and 1 percent level of significance, respectively. We have to reject the null hypothesis of

constant memory in favor of the alternative that the memory increases for small values

of R. Thus, we find evidence for changing memory at the five percent level. When using

the ARFIMA model based estimate of d0 the critical values are 0.70, 0.61 and 0.48, re-

spectively. Thus, H0 has to be rejected even at the one percent level of significance. We

therefore conclude, that there might be a change in d from d1 to d2.

The estimated breakpoint is at observation 1019 which corresponds to November, 1955.

Sollis (2006) finds a very similar breakpoint by applying the Leybourne et al. (2003) test

for a unit root against a change from I(0) to I(1). The GPH estimate of the memory

parameter before the break (based on T1 = 1019 observations) is d̂1 = 0.37 and signifi-
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Table 3.1: NLS Estimation Results for ARFIMA(p,d,0) Models

t = 1− 1644 t = 1− 1019 t = 1020− 1644

µ -3.079 (0.000) -2.949 (0.000)

d 0.612 (0.000) 0.327 (0.006) 0.949 (0.000)

α1 0.712 (0.000) 1.011 (0.000) 0.324 (0.003)

α2 -0.071 (0.162) -0.191 (0.099) -0.057 (0.227)

α3 0.012 (0.787) -0.021 (0.754) 0.050 (0.343)

α4 0.061 (0.314) 0.114 (0.068) -0.011 (0.806)

α5 0.080 (0.048) 0.122 (0.015)

α6 -0.086 (0.057)

Q(12) 4.717 (0.967) 7.769 (0.803) 2.938 (0.996)
Notes: P-values are reported in brackets beside the corresponding estimate

or test statistic.

cantly different from zero (p-value = 0.000). This result suggests that the S&P 500 log

dividend yield is fractionally integrated before November, 1955. Considering the esti-

mated ARFIMA model for the first sub-sample, we find further evidence for long-range

dependence since the estimate d̂1 = 0.327 is highly significant (p-value = 0.006). After

the break the GPH estimate increases to d̂2 = 1.09 which is close to unity but higher than

one suggesting a potential unit root. This estimate is based on T2 = 625 observations.

Again, the ARFIMA model based estimate (d̂2 = 0.949) is lower but even closer to unity.

In order to carry out a formal and suitable test of the unit root hypothesis against long

memory we apply the fractional Dickey-Fuller test proposed by Dolado et al. (2002).

Their procedure is based on the test regression

∆δ0yt = φ∆δ1yt−1 +

p∑
i=1

λi∆yt−i + εt

where δ0 = 1 in our application, δ1 is unknown and has to be estimated from the data.

Note, that the estimator for δ1 has to be T 1/2-consistent, we therefore employ the para-

metric NLS estimator proposed by Beran (1995). Regarding the test regression the rele-

vant pair of hypotheses is H0 : φ = 0 versus H1 : φ < 0. Dolado et al. (2002) prove that

the limiting distribution of the t-statistic for H0 is standard normal if 0.5 ≤ δ1 < 1 which
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is the relevant case in our application. For further details, the reader is referred to Dolado

et. al (2002). As before, the maximum lag length is set equal to p4 = [4(T2/100)1/4] = 6.

The optimal length is chosen with the Schwarz information criterion and equals zero.The

estimated test regression without lags of ∆yt is given by

∆yt = 0.245∆0.949yt−1 + ε̂t .

Since the test statistic tφ = 6.593 is not significant at conventional levels, we are not able

to reject the null hypothesis of a unit root in the second sub-sample which hints at a

rationale bubble because the no-bubbles restriction is not fulfilled in this case.

3.4 Conclusions

This chapter provides evidence that the time series properties of the S&P 500 log dividend

yield are changing over time. By applying recent tests we find that the time series is

stationary and fractionally integrated before November, 1955 and that it exhibits a unit

root afterwards. The presence of a unit root in the second sub-sample suggests a rationale

bubble in the S&P 500 stock price.



Chapter 4

Unit Root Testing against ESTAR

with modified Statistics

Published as Hannover Leibniz University Discussion Paper No. 398, April 2008 (ISSN 0949-9962) and

as a revision in Statistical Papers (2009), forthcoming, DOI: 10.1007/s00362-009-0204-1.

4.1 Introduction

Non-linear time series models like the smooth transition autoregressive (STAR) model,

see Teräsvirta (1994), have become very popular in the last years. In this chapter we are

mainly concerned with the exponential STAR (ESTAR) model and develop a new test

for the unit root hypothesis against a globally stationary ESTAR model. In particular,

we focus on a prominent and widely applied specification of this model that allows for

a unit root regime and two symmetric mean-reverting regimes. The time series pro-

cess, say yt, behaves like a random walk if yt−1 was close to some location parameter

c and it is mean-reverting if yt−1 departs from c. In the exponential smooth transition

model the degree of mean-reversion depends on the squared difference between yt−1 and c.

When modeling real exchange rates for example, the economic intuition behind this spec-

ification is that the real exchange rate is non-stationary if it was quite close to its long

run equilibrium value in the last period and that there are driving forces like arbitrage

that leads to mean-reversion if the real exchange rate departs from its long run equilib-

rium. Moreover, arbitrage may not be profitable if the departure is small. Therefore, the
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degree of mean-reversion is small as well and vice versa. These facts make this ESTAR

specification quite attractive for modeling economic time series like real exchange and

interest rates, unemployment rates and log dividend yields.

There are a lot of economic theories like Purchasing Power Parity (PPP), to name a

highly debated one, that imply certain time series properties, i.e. the stationarity of real

exchange rates. Often the unit root hypothesis, which contradicts PPP, is tested against

stationarity with extant linear unit root tests. These tests have reduced power when the

true data generating process exhibits non-linearities. Therefore, many recent empirical

studies make use of non-linear unit root tests.

Regarding the ESTAR specification from above, a popular Dickey-Fuller-type test has

been proposed by Kapetanios et al. (2003). However, this test assumes that the location

parameter c in the smooth transition function is equal to zero. On the contrary, a lot

of empirical studies on real exchange rates report significant estimates of c, cf. Michael

et al. (1997), Sarantis (1999), Taylor et al. (2001) and more recently, Rapach and

Wohar (2006). When relaxing this assumption, we are faced with a non-standard testing

problem, i.e. a joint hypothesis where one parameter is one-sided under the alternative

while all others are two-sided. Since standard inference techniques are not appropriate

in this situation, we make use of the new approach by Abadir and Distaso (2007) who

propose a class of modified test statistics in order to tackle such non-standard testing

problems. Our aim is to derive a unit root test allowing for a non-zero location param-

eter c that can compete with the extant one of Kapetanios et al. (2003) in terms of power.

After introducing the ESTAR specification in more detail and presenting the existing

test by Kapetanios et al. (2003) in section 4.2, the inference techniques by Abadir

and Distaso (2007) and the new test are discussed in section 4.3. The non-standard

limiting distribution of the test statistic is derived and consistency of the test is proven.

Moreover, we show that the limiting distribution remains unchanged if we account for
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potential serial correlation in the error terms by augmenting the test regression with lags

of the dependent variable. By means of a Monte Carlo study in section 4.4 we compare

the small sample properties of both tests under a variety of conditions. The new test

is correctly sized and quite often superior in terms of power. Both tests have lower

but substantial power when the true data generating process is a logistic STAR model.

However, the new test has generally higher power against logistic STAR models than

the extant test. Finally, we provide an empirical application to a monthly real effective

exchange rate time series for the European Union in section 4.5. The results suggest the

validity of PPP if the new test is used and the opposite if the extant test is applied.

Conclusions are drawn in section 4.6. Proofs are given in the Appendix of this chapter.

4.2 DF-type Unit Root Test against ESTAR

The ESTAR specification we are concerned with is formally given by

∆yt = αyt−1 + φyt−1(1− exp{−γ(yt−1 − c)2}) + εt ,

where εt ∼ i.i.d.(0, σ2). If the smoothness parameter γ approaches zero, the ESTAR

model becomes a linear AR(1) model, i.e. ∆yt = αyt−1 + εt that is stationary if −2 <

α < 0. In the following, α is set equal to zero which means that the ESTAR model

becomes a random walk if γ = 0. Kapetanios et al. (2003) show that the ESTAR model

under the restriction α = 0,

∆yt = φyt−1(1− exp{−γ(yt−1 − c)2}) + εt ,

is globally stationary if −2 < φ < 0 is true although it is locally non-stationary in the

sense that it contains a partial unit root when yt−1 = c holds. Additionally note that

the random walk model can also be achieved when imposing the restriction φ = 0. This

means that a direct test for the unit root hypothesis is infeasible since φ is not identified

when testing H0 : γ = 0 and vice versa.

A popular approach to avoid the presence of nuisance parameters under the null hypoth-

esis is to use a Taylor approximation of the smooth transition function G(yt−1; γ, c) =
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1− exp{−γ(yt−1 − c)2}) around γ = 0, see Luukkonen et al. (1988). This approach was

adopted by Kapetanios et al. (2003) and we construct the new test on the same basis.

More specifically, Kapetanios et al. (2003) make the restriction c = 0 and consider the

model

∆yt = φyt−1(1− exp{−γy2
t−1}) + εt .

An application of a first-order Taylor approximation leads to the auxiliary regression

∆yt = β1y
3
t−1 + ut , (4.1)

with ut being a noise term depending on εt, φ and the remainder of the Taylor expan-

sion. Obviously, it looks very much like the famous Dickey-Fuller test regression without

deterministic terms. The cubic term y3
t−1 approximates the ESTAR non-linearity.

The authors suggest a t-test for the unit root hypothesis against globally stationary

ESTAR which corresponds to H0 : β1 = 0 versus H1 : β1 < 0. Hence, the unit root test is

carried out by estimating the auxiliary regression (1) and computing a Dickey-Fuller-type

t-test, labeled as KSS,

KSS ≡ β̂1√
v̂ar(β̂1)

=

∑T
t=1 y3

t−1∆yt√
σ̂2

∑T
t=1 y6

t−1

, (4.2)

where σ̂2 = 1
T

∑T
t=1(∆yt − β̂1y

3
t−1)

2 is the usual estimator of the error variance. Let

W (r) be the Brownian motion defined on r ∈ [0, 1] and let ⇒ denote convergence in

distribution. The limiting distribution of the KSS statistic is given by

KSS ⇒
1
4
W (1)4 − 3

2

∫ 1

0
W (r)2dr

(∫ 1

0
W (r)6

)1/2
,

see Theorem 1 in Kapetanios et al. (2003). Regarding deterministic terms, they suggest

to de-mean or de-trend the data in a first step, i.e.

yt = ω′dt + vt

with dt = 1 or dt = [1 t]′ and ω is a parameter vector of suitable dimension. In a second

step, the unit root test is applied to v̂t. As a consequence, the asymptotic distribution of
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the KSS statistic depends on functionals of a de-meaned or de-trended Brownian motion,

respectively. The de-meaned and de-trended Brownian motion are given by

W (r) −
∫ 1

0

W (r)dr ,

W (r) + (6r − 4)

∫ 1

0

W (r)dr + (12r − 6)

∫ 1

0

rW (r)dr ,

respectively. For details concerning this test such as proofs and critical values see

Kapetanios et al. (2003).

4.3 Modified Wald-type Test

In order to allow for a non-zero location parameter c in the exponential transition function

we consider the non-linear time series model

∆yt = φyt−1(1− exp{−γ(yt−1 − c)2}) + εt . (4.3)

Following Kapetanios et al. (2003), we apply a first-order Taylor approximation to

G(yt−1; γ, c) = (1 − exp{−γ(yt−1 − c)2}) around γ = 0 and proceed with the test re-

gression

∆yt = β1y
3
t−1 + β2y

2
t−1 + β3yt−1 + ut .

Following Kapetanios et al. (2003) we impose β3 = 0 to improve the power of the test,

see Kapetanios et al. (2003), footnote 5. Thus, we proceed with

∆yt = β1y
3
t−1 + β2y

2
t−1 + ut . (4.4)

where β1 = γφ and β2 = −2cγφ. We are interested in the pair of hypotheses given by

H0 : γ = 0 against H1 : γ > 0. In the test regression (4.4), this pair of hypothesis is

equivalent to H0 : β1 = β2 = 0 against H1 : β1 < 0, β2 6= 0. Note that the two-sidedness

of β2 under H1 stems from the fact that c is allowed to take real values. This testing

problem is non-standard in the sense that one parameter is one-sided under H1 while the

other one is two-sided. A standard Wald test would be inappropriate and we therefore

apply the methods of Abadir and Distaso (2007) to derive a suitable test. In a nutshell,
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the one-sided parameter is orthogonalized with respect to the two-sided one. The modi-

fied Wald test builds upon the one-sided parameter (β1) and the transformed two-sided

parameter, say β⊥2 , that are stochastically independent by definition.

Let the parameter vector of the regression model (4.4) be θ = [β1 β2]
′. Following the

notation of Abadir and Distaso (2007), the null hypothesis of a unit root is rewritten as

H0 : h(θ) ≡ [h1(θ) h2(θ)]
′ = [β1 β2]

′ = [0 0]′ .

The alternative hypothesis of a globally stationary ESTAR model is given by

H1 : h1(θ) < 0 or h2(θ) 6= 0 ,

which includes the subset hypothesis H∩
1 : h1(θ) < 0 and h2(θ) 6= 0. Theorem 6 in Abadir

and Distaso (2007) states that the modified Wald test is consistent against H1 as well as

H∩
1 . The standard Wald test statistic based on the Hessian matrix H is

WH = h(θ̂)′V −1h(θ̂)

where V ≡
[

∂h(θ)
∂θ′

∣∣
θ=θ̂

(−H)−1 ∂h(θ)′
∂θ

∣∣
θ=θ̂

]
with elements vij. In general, the modified Wald

test statistic of Abadir and Distaso (2007) is given by

τ =

(
∂h2·1(θ)

∂θ′

∣∣∣
θ=θ̂

(−H)−1∂h2·1(θ)′

∂θ

∣∣∣
θ=θ̂

)−1

ĥ2·1(θ̂)2

+ 1(h1(θ̂) < 0)

(
∂h1(θ)

∂θ′

∣∣∣
θ=θ̂

(−H)−1∂h1(θ)
′

∂θ

∣∣∣
θ=θ̂

)−1

ĥ1(θ̂)
2 ,

with h2·1(θ) being

h2·1(θ) = h2(θ)− h1(θ)v21

v11

.

The estimator of h2·1(θ) is simply given by ĥ2·1(θ̂) = h2(θ̂) − h1(θ̂)v̂21

v̂11
. Based on these

results, straightforward calculations lead us to

τ =

(
v̂22 − v̂2

21

v̂11

)−1 (
β̂2 − β̂1

v̂21

v̂11

)2

+ 1(β̂1 < 0)
β̂2

1

v̂11

,

which is the new test statistic for the unit root hypothesis against globally stationary

ESTAR. A simpler and more intuitive way to formulate this statistic is

τ = t2β⊥2 =0 + 1(β̂1 < 0)t2β1=0 .
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The two summands appearing in the test statistic τ can be interpreted as follows: the

first term is a squared t-statistic for the hypothesis β⊥2 ≡ β2 − β1v21/v11 = 0 with β⊥2

being orthogonal to β1. Additionally, the second term is a squared t-statistic for the

hypothesis β1 = 0, the one-sidedness under H1 is achieved by the multiplied indicator

function. In the next step, the limiting distribution of τ is derived.

Assumption 1 yt is a random walk, i.e. yt = yt−1 + εt with y0 = 0 and ut being

i.i.d.(0, σ2) and E|ut|δ < ∞ for δ ≥ 6.

In Theorem 5 we derive the asymptotic distribution of τ under the null hypothesis H0 :

γ = 0.

Theorem 5. Under Assumption 1 the τ statistic has the following asymptotic distribution

which is free of nuisance parameters:

τ ⇒ A(W (r)) + B(W (r)) ,

where A and B are functions of the Brownian motion W (r) that are given in the proof.

Under the alternative hypothesis H1 : γ > 0 the τ statistic diverges with rate T .

Proof 1. See Appendix of this chapter.

We follow the approach of Kapetanios et al. (2003) and de-mean or de-trend the data in

a first step when allowing for deterministic terms. This means that the Brownian motion

W (r) appearing in the limiting distribution of the τ statistic has to be replaced by a

de-meaned or de-trended Brownian motion, respectively.

Next, we consider the case of serially correlated errors. We allow for stationary linear

innovations that are generated by a short-memory process vt.

Assumption 2 vt = ψ(L)ut =
∑∞

j=0 ψjut−j, where
∑∞

j=0 j|ψj| < ∞ and ut ∼
i.i.d.(0, σ2).
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Table 4.1: Critical Values

dt = 0 dt = 1 dt = [1 t]′

1% 13.15 13.75 17.10

5% 9.53 10.17 12.82

10% 7.85 8.60 11.10

In Theorem 6 we show that the asymptotic distribution of the τ statistic does not change

when adding a sum of lagged differences on the right hand side of the test regression, i.e.

∆yt = β1y
3
t−1 + β2y

2
t−1 +

p∑
i=1

ρi∆yt−i + ut . (4.5)

Theorem 6. The asymptotic distribution of the τ statistic does not change when the test

regression in (4.5) is used instead of (4.4).

Proof 2. See Appendix of this chapter.

Alternatively, one could consider more general error processes and derive a Phillips-

Perron-type test for the unit root hypothesis, see Rothe and Sibbertsen (2006) and

Sandberg (2008). However, we focus on the augmented Dickey-Fuller version in this

chapter and leave the other for future research.

4.4 Monte Carlo Study

This section covers the Monte Carlo study that compares the small sample performance

of the new unit root test and the existing test by Kapetanios et al. (2003). Through-

out this section we set the number of observations T equal to 300 which is a reasonable

sample size for many macroeconomic and financial time series like unemployment rates

and interest rates. Furthermore, 500 initial observations are deleted to reduce the effect

of initial conditions.

Asymptotic critical values for the modified Wald-type test τ are provided in Table 4.1.

They are based on 20,000 replications and T = 1, 000. We report critical values for raw



Unit Root Testing against ESTAR with modified Statistics 43

(dt = 0), de-meaned (dt = 1) and de-trended data (dt = [1 t]′) for nominal significance

levels of one, five and ten percent, respectively.

We investigate the size of both tests under the following data generating processes

yt = yt−1 + εt with εt = ut (4.6)

yt = yt−1 + εt with εt = ρεt−1 + ut (4.7)

yt = yt−1 + εt with εt = ut − θut−1 , (4.8)

where ut is drawn from the standard normal distribution. The errors εt follow an i.i.d.

process, an AR(1) or MA(1) process. We adopt the approach of Phillips and Sul (2003)

and sample parameters from uniform distributions in order to cover a wide range of

values in a relatively small number of experiments. Hence, the autoregressive and moving

average parameters ρ and θ are drawn from uniform distributions:

ρ ∼ U
[
ρ, ρ̄

]
and θ ∼ U

[
θ, θ̄

]
.

We specify ρ = θ = 0 and ρ̄ = θ̄ = 0.4. The size experiments are based on 5,000 replica-

tions, results can be found in Table 4.2. Most rejection rates under the null hypothesis

are quite close to the nominal ones which suggests that both tests are correctly sized.

We observe that both tests are a little bit oversized in the presence of errors that follow

a first-order moving average process.

Next, we study the power of both tests by considering different settings in the globally

stationary non-linear ESTAR process for the parameters c and γ. The data generating

process we consider under the non-linear ESTAR alternative is

∆yt = φyt−1(1− exp{−γ(yt−1 − c)2}) + εt (4.9)

with φ = −1. This restriction is often imposed in empirical studies, see for example Taylor

et al. (2001). The location parameter c is set either equal to zero or it is drawn from

a uniform distribution with lower and upper bound, c and c, respectively. Analogously,
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Table 4.2: Size Experiments

dt Test i.i.d. AR(1) MA(1)

1.0 5.0 10.0 1.0 5.0 10.0 1.0 5.0 10.0

0 KSS 0.9 5.1 9.9 1.0 5.0 10.0 1.2 4.7 10.1

τ 1.1 5.2 10.9 1.0 5.0 10.0 1.7 5.2 11.9

1 KSS 1.1 5.1 9.9 1.1 4.8 9.7 1.3 6.0 11.8

τ 1.1 4.9 9.8 0.9 4.6 9.5 1.2 5.6 11.8

[1 t]′ KSS 1.1 4.9 10.2 0.8 5.2 9.6 1.4 6.5 10.9

τ 1.0 5.2 10.1 0.9 5.4 10.3 1.5 6.6 11.2
Notes: Reported values are rejection rates of KSS and τ test under the validity

of H0.

the smoothness parameter γ is drawn from a uniform distribution with lower and upper

bound γ and γ, respectively:

c ∼ U [ c, c̄ ] and γ ∼ U
[
γ, γ̄

]
.

Results of these power experiments are reported in the upper panel of Table 4.3. In the

first experiment we specify a zero location parameter (c0 ≡ c = 0) and slow transition be-

tween regimes (γl ≡ γ ∼ U [0.001, 0.01]). In the second and third experiments a non-zero

location parameter is allowed by drawing it from a uniform distribution with lower and

upper bound of -5 (-10) and 5 (10), respectively. The fourth and fifth settings restrict

the upper bound c̄ to zero in order to have a non-zero mean of c. Please note that we do

not report results for experiments where the lower bound c is restricted to zero because

there is no qualitative difference due to symmetry. The last two experiments are like the

two previous ones but with fast transition between regimes, i.e. γh ≡ γ ∼ U [0.01, 0.1].

When interpreting the simulated rejection probabilities against ESTAR we observe that

the new test is generally superior to the Kapetanios et al. (2003) test in terms of power.

Only in some cases where the unit root tests are applied to raw data (dt = 0), the

KSS test performs somewhat better than the modified Wald test. Most applications of

unit root tests in economics involve deterministic terms. When data is de-meaned or
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Table 4.3: Power Experiments

dt Test c0, γl c±5, γl c±10, γl c−5, γl c−10, γl c−5, γh c−10, γh

Exponential STAR

0 KSS 99.6 92.4 73.0 92.0 74.4 97.0 97.2

τ 95.3 88.1 72.6 88.5 74.5 98.2 97.9

1 KSS 91.1 87.6 77.8 88.4 79.7 98.1 97.5

τ 92.9 92.3 93.3 91.8 93.9 100 100

[1 t]′ KSS 77.5 74.2 64.1 73.4 65.9 97.7 96.3

τ 81.6 78.9 78.4 79.6 78.7 100 100

Logistic STAR

0 KSS 97.8 95.4 87.8 94.9 89.2 99.9 99.9

τ 83.2 82.5 82.7 80.3 83.3 99.9 100

1 KSS 75.6 72.4 63.7 71.4 64.6 99.0 94.4

τ 79.0 77.5 78.3 77.9 80.0 100 100

[1 t]′ KSS 53.3 50.4 46.5 50.8 48.5 97.5 92.3

τ 58.6 54.9 57.7 55.4 59.4 99.5 99.8

Notes: Reported values are rejection rates of KSS test (upper entries) and τ test (lower entries).

Nominal significance level is five percent.

de-trended, power gains up to 15 percent can be achieved by applying the new test.

In addition, we study the power of both tests against globally stationary logistic STAR

(LSTAR) models. As noted by Kapetanios et al. (2003) a non-linear adjustment scheme

alternative to the exponential one is a logistic smooth transition function. We use the

second-order logistic function

G(yt−1; γ, c1, c2) = 2/[1 + exp(−γ(yt−1 − c1)(yt−1 − c2))]− 1

that has two location parameters, namely c1 and c2. Like the exponential smooth tran-

sition function it becomes constant if γ → 0, which means that the non-linear logistic

smooth transition model becomes linear. Without loss of generality, we set c1 = 0 and

draw c2 from the uniform distribution as done before in the case of an exponential smooth

transition. The data generating process is now given by

∆yt = yt−1(1− 2/[1 + exp(−γ(yt−1 − c1)(yt−1 − c2))]) + εt . (4.10)
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Empirical rejection frequencies are reported in the lower panel of Table 4.3. Both tests

have higher power against ESTAR than against LSTAR models which is not surprising

since both have the former one as specific alternative. Nonetheless, one might expect

that both tests have substantial power against logistic STAR models because the Taylor

approximation of a logistic STAR model is quite similar. Thus, a rejection of the null

hypothesis does not necessarily contain information about the specific type of non-linear

adjustment. When comparing both unit root tests, we come to the same conclusions

as before. In addition we observe that the power is lower for de-trended data than for

de-meaned data which is due to an additional parameter that has to be estimated when

de-trending the data.

In sum, the new test shows good overall performance and is quite often more powerful

than the existing test by Kapetanios et al. (2003), especially when the test is applied to

de-meaned or de-trended data, which are the most important cases in practice.

4.5 Empirical Application

Unit root tests have become a very popular tool in the literature that is concerned with

testing the validity of the Purchasing Power Parity (PPP) which is one of the most im-

portant parities in international macroeconomics. One can say that PPP holds if and

only if the real exchange rate is stationary. Thus, testing the unit root hypothesis means

testing the non-validity of the PPP theory. Since linear unit root tests like the ones

of Dickey-Fuller (1979) and Phillips and Perron (1988) often fail to reject the null hy-

pothesis of non-stationarity when being applied to real exchange rate data, researchers

tend to use non-linear unit root tests where the specific model that is true under the

alternative is congruent with economic models of financial markets. For example, STAR

models for the real exchange rate can be interpreted in the context of transaction costs

and arbitrage, see Dumas (1992), Sercu et al. (1995) and Michael et al. (1997).

However, rejecting the null hypothesis in favor of a non-linear alternative while a linear
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Figure 4.1: Logarithm of Real Effective Exchange Rate (January, 1993 to December,

2007).

Dickey-Fuller test does not reject in favor of a linear alternative might hint at non-

linearities. Nonetheless, one should be careful with the conclusion that non-linearity is

of ESTAR-type because the test regression approximates a lot of non-linear models and

such tests can have substantial power against other non-linear mean-reverting processes,

see section 4.4.

We apply both unit root tests against non-linear alternatives and two famous tests against

linear alternatives to the monthly real effective exchange rate time series for the Euro-

pean Union. Our data is taken from Datastream (code: EMXTW..RF) and spans from

1993:01 to 2007:12 implying 180 observations. The logged time series is depicted in Fig-
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ure 4.1. No linear trend can be seen in the data but the mean appears to be highly

significant. Hence, we de-mean the data in a first step. In a second step we estimate the

test regressions with a lag length chosen accordingly to the Schwarz information criterion

(p̂ = 1). We obtain KSS = −2.21 which is not significant at the ten percent level suggest-

ing that PPP does not hold. On the contrary, using the new test one has to reject the

null hypothesis since τ = 9.19 is significant at the ten percent level which indicates that

PPP holds true. Furthermore, the unit root tests against linear alternatives by Dickey

and Fuller (1979) (DF) and Phillips and Perron (1988) (PP) do not provide any evidence

against the null hypothesis. The test statistics are DF = −1.76 and PP = −1.60, respec-

tively.

We conclude that non-linearities, potentially of exponential STAR-type with non-zero

location, are present in the data but that they are not detected by applying existing

tests. The modified Wald unit root test yields new evidence on the stationarity of the

EU real effective exchange rate which suggests the validity of PPP.

4.6 Conclusions

This chapter contributes to the literature on non-linear unit root tests by generalizing

the existing test by Kapetanios et al. (2003) with respect to a non-zero location pa-

rameter. The resulting non-standard testing problem is tackled by deriving a modified

Wald test that builds upon the inference techniques by Abadir and Distaso (2007). The

non-standard limiting distribution of the test statistic has been derived under standard

assumptions. The Monte Carlo study shows that the new test is superior to the extant

test in most situations. An empirical application to the EU real effective exchange rate

underpins its usefulness.
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4.7 Appendix

Proof of Theorem 5: In order to simplify the notation, we write
∫

instead of
∫ 1

0
in the

following. The proof makes use of the following convergence results, see Hansen (1992)

and Hamilton (1994). We have

1

T (i+2)/2

T∑
t=1

yi
t−1 ⇒ σi

∫
W (r)idr for i = 4, 5, 6

1

T 3/2

T∑
t=1

y2
t−1∆yt ⇒ σ3

(
1

3
W (1)3 −

∫
W (r)dr

)

1

T 2

T∑
t=1

y3
t−1∆yt ⇒ σ4

(
1

4
W (1)4 − 3

2

∫
W (r)2dr

)
.

We first note that the second summand of τ is given by 1(β̂1 < 0)t2β1=0 and that the OLS

estimator for β1 in (4.4) is given by

β̂1 =

∑T
t=1 y4

t−1

∑T
t=1 y3

t−1∆yt −
∑T

t=1 y2
t−1∆yt

∑T
t=1 y5

t−1

∑T
t=1 y4

t−1

∑T
t=1 y6

t−1 −
(∑T

t=1 y5
t−1

)2 .

Under Assumption 1 and by using the convergence results from above we obtain β̂1
P→ β1

and β̂1 = OP (T−2). Furthermore,

tβ1=0 =

∑T
t=1 y4

t−1

∑T
t=1 y3

t−1∆yt −
∑T

t=1 y2
t−1∆yt

∑T
t=1 y5

t−1√
σ̂2

((∑T
t=1 y4

t−1

)2 ∑T
t=1 y6

t−1 −
∑T

t=1 y4
t−1

(∑T
t=1 y5

t−1

)2
) .

Again, by using the convergence results it follows that

tβ1=0 ⇒
(∫

W (r)4dr
) (

1
4
W (1)4 − 3

2

∫
W (r)2dr

)− (
1
3
W (1)3 − ∫

W (r)dr
) (∫

W (r)5dr
)

√(∫
W (r)4dr

)2 (∫
W (r)6dr

)− (∫
W (r)4dr

) (∫
W (r)5dr

)2
,

and by applying the CMT it follows directly that t2β1=0 converges to the square of the

previous function which gives an expression for B(W (r)). Regarding the first summand

of τ , we have for the nominator of tβ⊥2 =0

β̂2 − β̂1
v̂21

v̂11

=

∑T
t=1 y4

t−1

∑T
t=1 y6

t−1

∑T
t=1 y2

t−1∆yt −
∑T

t=1 y2
t−1∆yt

(∑T
t=1 y5

t−1

)2

(∑T
t=1 y4

t−1

)2 ∑T
t=1 y6

t−1 −
∑T

t=1 y4
t−1

(∑T
t=1 y5

t−1

)2 .
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For the denominator of tβ⊥2 =0 we have after simple calculations

√
v̂22 − v̂2

21

v̂11

=

√
σ̂2

∑T
t=1 y4

t−1

.

Therefore

tβ⊥2 =0 =

∑T
t=1 y2

t−1∆yt

((∑T
t=1 y4

t−1

)3/2 ∑T
t=1 y6

t−1 −
(∑T

t=1 y4
t−1

)1/2 (∑T
t=1 y5

t−1

)2
)

σ̂

((∑T
t=1 y4

t−1

)2 ∑T
t=1 y6

t−1 −
∑T

t=1 y4
t−1

(∑T
t=1 y5

t−1

)2
)

Using the convergence results stated above it follows that

tβ⊥2 =0⇒
(

1
3
W (1)3−∫

W (r)dr
)((∫

W (r)4dr
)3/2(∫

W (r)6dr
)−(∫

W (r)4dr
)1/2(∫

W (r)5dr
)2

)

(∫
W (r)4dr

)2 (∫
W (r)6dr

)−(∫
W (r)4dr

) (∫
W (r)5dr

)2

Again, by CMT it follows that t2
β⊥2 =0

converges in distribution to the square of the pre-

vious function which gives an expression for A(W (r)). It is easy to show that σ̂2 p→ σ2,

see Kapetanios et al. (2003). Under the alternative hypothesis, ∆yt, y2
t−1 and y3

t−1 are

I(0) processes and it is easy to show that the terms appearing in the test statistic are

OP (T ). Then, t2
β⊥2 =0

= OP (T ) and t2β1=0 = OP (T ), therefore τ = OP (T ). The τ statistic

is therefore diverging with rate T . ¤

Proof of Theorem 6: The proof is very similar to the one of Kapetanios et al. (2003)

as it uses the same arguments. Let

Z = [∆y−1, ∆y−2, . . . , ∆y−p]

with

∆y−i = [∆y−i+1, ∆y−i+2, . . . , ∆yT−i]

and MT = IT − Z(Z ′Z)−1Z. Note that, σ̂2 = 1
T
ε′MT ε = 1

T
ε′ε + op(1)

p→ σ2 with

ε = [ε1, ε2, . . . , εT ]′. Moreover, we have

1

T (i+2)/2
y

i/2′
−1 MT y

i/2
−1 =

1

T (i+2)/2
y

i/2′
−1 y

i/2
−1 + op(1) ⇒ λi

∫
W (r)idr for i = 4, 6

1

T 7/2
y

5/2′
−1 MT y

5/2
−1 =

1

T 7/2
y

5/2′
−1 y

5/2
−1 + op(1) ⇒ λ5

∫
W (r)5dr ,
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and additionally,

1

T 3/2
y2′
−1MT ε =

1

T 3/2
y2′
−1ε + op(1) ⇒ 1

3
λ3W (1)3 − λσ2

∫
W (r)dr

1

T 2
y3′
−1MT ε =

1

T 2
y3′
−1ε + op(1) ⇒ 1

4
λ4W (1)4 − 3

2
σ2λ2

∫
W (r)2dr ,

where λ2 is the long-run variance of ∆yt under the null hypothesis. Based on these results

we have

tβ1=0 =

(
y2′
−1MT y2

−1

) (
y3′
−1MT ε

)− (
y2′
−1MT ε

) (
y

5/2′
−1 MT y

5/2
−1

)
√

σ̂2

((
y2′
−1MT y2

−1

)2 (
y3′
−1MT y3

−1

)− (
y2′
−1MT y2

−1

) (
y

5/2′
−1 MT y

5/2
−1

)2
)

=

(
y2′
−1y

2
−1

) (
y3′
−1ε

)− (
y2′
−1ε

) (
y

5/2′
−1 y

5/2
−1

)
√

σ̂2

((
y2′
−1y

2
−1

)2 (
y3′
−1y

3
−1

)− (
y2′
−1y

2
−1

) (
y

5/2′
−1 y

5/2
−1

)2
) + op(1) .

Furthermore,

tβ⊥2 =0 =

y2′
−1MT ε

((
y2′
−1MT y2

−1

)3/2 (
y3′
−1MT y3

−1

)− (
y2′
−1MT y2

−1

)1/2
(
y

5/2′
−1 MT y

5/2
−1

)2
)

σ̂

((
y2′
−1MT y2

−1

)2 (
y3′
−1MT y3

−1

)− (
y2′
−1MT y2

−1

) (
y

5/2′
−1 MT y

5/2
−1

)2
)

=

y2′
−1ε

((
y2′
−1y

2
−1

)3/2 (
y3′
−1y

3
−1

)− (
y2′
−1y

2
−1

)1/2
(
y

5/2′
−1 y

5/2
−1

)2
)

σ̂

((
y2′
−1y

2
−1

)2 (
y3′
−1y

3
−1

)− (
y2′
−1y

2
−1

) (
y

5/2′
−1 y

5/2
−1

)2
) + op(1) ,

which, as we have shown before, has the asymptotic distribution given in Theorem 5.

Finally, among similar lines in the foregoing proof, it is easily seen that the τ test is

consistent under the alternative. ¤



Chapter 5

What do we know about Real

Exchange Rate Non-linearity?

Co-authored with Michael Frömmel, Lukas Menkhoff and Philipp Sibbertsen

5.1 Introduction

The debate about real exchange rate behavior suggests that Purchasing Power Parity

(PPP) may hold as a longer run concept (e.g. Taylor and Taylor, 2004). Our under-

standing of exchange rate dynamics that bring about longer run PPP, however, is much

less clear. In particular, there are two competing approaches in wider use aiming for

modeling a non-linear adjustment towards PPP, i.e. Exponential Smooth Transition

Autoregressive (ESTAR) models and Markov Switching models (see e.g. Michael et al.

1997, and Kanas, 2006). This naturally raises the question which one of these approaches

is more appropriate? Does real exchange rate dynamics rather follow an ESTAR or a

Markov Switching autoregressive (MSAR) process which implies more or less tendency

towards PPP, respectively? Or is there no adjustment at all which would be implied by

the presence of a unit root?

We contribute to the empirical literature analyzing both models in a comparative per-
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spective by using extant and introducing new thorough statistical unit root testing pro-

cedures. The empirical power of different non-linear unit root tests is examined under

real world parameter constellations. These are obtained from Taylor et al. (2001) for

ESTAR models and from own calculations for MSAR models which are both fitted to

major monthly real exchange rates, namely to the German Mark (DEM), the Japanese

Yen (JPY), the British Pound (GBP) against the US Dollar (USD). Fortunately, these

time series also cover some variety in the parameters and persistence properties as we

show later. By Monte Carlo simulations, we generate realizations of these data gener-

ating processes under the assumption that PPP holds and compute the power of the

Kapetanios et al. (2003) and the Park and Shintani (2005) unit root tests against the

ESTAR alternative - in short: ESTAR tests - as well as the power of a newly developed

unit root test against a MSAR process. We report the power of these tests when the

alternative is true (this is the true DGP is ESTAR/MSAR for the ESTAR/MSAR test)

and when the alternative is misspecified (this is the true DGP is MSAR/ESTAR for the

ESTAR/MSAR test).

We find that ESTAR tests have low empirical power so that evidence for ESTAR processes

is weak at best, whereas the newly developed unit root test against Markov Switching

is powerful. This implies that disequilibrium forces in real exchange rates - as captured

by Markov Switching processes - may be stronger than seen before. In addition, a non-

rejection of an ESTAR test does not mean that we have to reject the Purchasing Power

Parity hypothesis completely. Furthermore, it turns out that the power of the ESTAR

tests is even slightly higher under the misspecified alternative compared to the true al-

ternative. Thus, rejecting the Null of a unit root by applying an ESTAR test does not

allow the premature conclusion that the non-linearity of the true underlying data gen-

erating process is really of an ESTAR-type. It is more likely for the model to be any

other non-linear process such as Markov Switching. The situation for our unit root test

in a Markov Switching framework is much better: on the one hand, its power is substan-

tially higher against the true alternative and on the other hand, it appears to be robust
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against ESTAR, meaning that it has quite a low power. This implies that the probability

of confusing both processes is generally very low when applying the proposed Markov

Switching test.

This research into the power of unit root tests has an obvious statistical motivation. In

addition, it also has an intuitive economic motivation as ESTAR and Markov Switch-

ing processes imply a different understanding of the foreign exchange market. In short

and somewhat overstating the point, the ESTAR view of real exchange rates emphasizes

the tendency towards PPP and thus towards long run equilibrium, whereas the Markov

Switching view emphasizes the fact that there may also be forces driving real exchange

rates away from equilibrium and thus causing bubbles. Taylor (2005) and similarly De

Grauwe and Grimaldi (2005) link the reasoning behind these views to heterogenous ac-

tors in this market, i.e. international goods arbitrage and short-term speculation.

ESTAR models, such as Taylor et al. (2001), pick up the argument that due to taxes and

transportation costs goods are not traded internationally as long as the price levels do not

differ too much between different countries (see the model in Dumas, 1992).1 Therefore,

the real exchange rate behaves like a random walk when it is close to its equilibrium

value. As soon as the price differences increase, a smooth transition process starts and

arbitrage will adjust prices and thus the real exchange rate towards PPP. This behavior

can be well described by an ESTAR model with a unit root regime switching to an au-

toregressive regime if the process departs from its equilibrium.

In contrast, Markov Switching models, in particular the Markov Switching model as ap-

plied in Kanas (2006), argue that real exchange rates may be driven by various forces,

some stabilizing - hinting at goods arbitrage - and some destabilizing - having short-term

1ESTAR models build on the STAR model of Teräsvirta (1994). Applications to foreign exchange

include Michael et al. (1997) who test this model with interwar data for several exchange rates as well

as with the long-span data on GBP/USD of Lothian and Taylor (1996), whereas Taylor et al. (2001)

test the model at four exchanges rates against the USD during the post war period.
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speculation in mind.2 Thus, one regime may be more stabilizing and akin to the ESTAR

view, whereas the other regime is different, i.e. either less stabilizing or even dominated

by short term speculators which may cause exchange rate bubbles. The main difference

is that the switch between the regimes is not necessarily linked to the degree of deviation

from PPP.

Both views of real exchange rate behavior have a strong substantiation in international

finance research. The ESTAR view is tentatively supported by long lasting research on

PPP which has yielded the insight that forces towards PPP have been underestimated in

earlier studies (survey in Sarno and Taylor, 2002). However, also the Markov Switching

view has remarkable economic substantiation in models of heterogeneous agents in the

foreign exchange market, such as early Frankel and Froot (1990) or recently De Grauwe

and Grimaldi (2006). Although these views do not overwhelmingly imply a policy stance,

the first view will clearly tend towards more benign neglect of the foreign exchange mar-

ket than the latter view (further implications are discussed by Sarno, 2005, p.685f.).

Our application of unit root tests to real exchange rates shows, indeed, that the ESTAR

tests cannot reject the unit root. This implies that either PPP does not hold or that

the non-linear alternative to the unit root does not capture exchange rate properties well

enough. It is consequently revealing that the Markov Switching test rejects the Null of a

unit root in four out of the six major real exchange rates considered. This indicates that

real exchange rate dynamics may be well characterized by Markov Switching processes.

The paper is organized as follows. Section 5.2 introduces the ESTAR model and the

2The Markov Switching model introduced by Hamilton (1989) was first applied to nominal exchange

rates by Engel and Hamilton (1990) and in different settings by Engel (1994), Cheung and Erlandsson

(2004) and Frömmel et al. (2005). The specific form of a Markov Switching error correction model we

are interested in here, i.e. a Markov Switching error correction model applied to real exchange rates,

has been introduced by Hall et al. (1997) and Psaradakis et al. (2004), first applied to our problem by

Kanas (2006).
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considered tests in more detail. In section 5.3 we propose a new unit root test against a

MSAR process. Section 5.4 contains our Monte Carlo study, section 5.5 applies the unit

root tests introduced above on six real exchange rates and section 5.6 concludes.

5.2 Unit Root Tests against ESTAR

In this section we briefly review the ESTAR model and the tests for a unit root against

the ESTAR alternative which are applied in this paper. The ESTAR model we consider

in our work, as used in several studies like Michael et al. (1997), Sarantis (1999), Taylor

et al. (2001) and more recently, Rapach and Wohar (2006), is defined by

∆yt = φyt−1G(zt; γ, c) + εt (5.1)

where εt is assumed to be a zero mean white noise process and the autoregressive pa-

rameter is restricted to φ = −1. The bounded exponential smooth transition function G

depends on the transition variable zt, the smoothness parameter γ > 0 and the location

parameter c:

G(yt−1; γ, c) = 1− exp{−γ(zt − c)2} ∈ [0, 1] .

In the following, we set zt = yt−1 which is a common choice in the related literature.

The parameter γ controls the speed of a regime switch, a higher value for γ implies a

higher speed of transition from one regime to another. The location parameter c is the

root of the transition function G which implies that yt is locally non-stationary, since

∆yt = εt if yt−1 = c. As long as φ < 0, yt is globally stationary although it has a partial

unit root, see Kapetanios et al. (2003). We consider a globally stationary ESTAR model

with two regimes: a unit root regime (yt−1 = c) and a symmetric mean-reverting regime

(yt−1 ≷ c). Note, that the mean of yt and the variance of the error term εt are usually

assumed to be constant across regimes.

The non-linear ESTAR model becomes a linear random walk if γ → 0. In the case that

φ = 0 or γ → ∞ holds, the ESTAR model also becomes a random walk. Therefore,
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testing the unit root hypothesis against ESTAR is complicated due to unidentified pa-

rameters under the null hypothesis which is known as the Davies problem, see Davies

(1987). Usually, the testing problem H0 : γ = 0 vs. H1 : γ > 0 is considered.

Only a few tests has been proposed for the inference problem of testing the Null that

the data generating process is a linear process with a unit root against the alternative of

a stationary ESTAR process. Choi and Moh (2007) show via an extensive Monte Carlo

study that the power of the linear Dickey-Fuller test has less power than unit root tests

that are designed for non-linear alternatives. The following subsections briefly review two

unit root tests against ESTAR which are studied in section 5.4 by Monte Carlo methods.

5.2.1 Dickey-Fuller-type Test

Kapetanios et al. (2003) suggest a modification of the Dickey-Fuller test for testing

H0 : γ = 0 against H1 : γ > 0. They make the simplifying assumption that c = 0 and

the ESTAR model is, therefore, given by

∆yt = φyt−1(1− exp{−γy2
t−1}) + εt .

Note that φ is unidentified under the null hypothesis H0 : γ = 0. Luukkonen et al. (1988)

was concerned with a linearity test against ESTAR under stationarity and suggested

overcoming the problem of unidentified parameters by applying a Taylor approximation

of G around γ = 0. The same procedure can be used for non-stationary models as well

which leads to the auxiliary regression

∆yt = ψy3
t−1 + ut (5.2)

with ψ = γφ and ut being a noise term depending on εt, φ and the remainder of the

Taylor expansion. In this regression, the pair of hypotheses is now H0 : ψ = 0, H1 : ψ < 0.

Kapetanios et al. (2003) suggest a Dickey-Fuller-type test for this hypothesis given by

tKSS ≡ tψ=0 =
ψ̂√

var(ψ̂)
=

∑T
t=1 y3

t−1∆yt√
σ̂2

∑T
t=1 y6

t−1

, (5.3)
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where σ̂2 = 1
T

∑T
t=1(∆yt − ψ̂y3

t−1)
2 is the usual estimator of the error variance. Deter-

ministic components as a constant or a constant and a linear trend are removed in a first

step, i.e. one applies the test to de-meaned or de-trended data. This means that the test

is actually applied to the residuals of the regression (ût)

yt = β′dt + ut

with dt = 1 in the case of de-meaning or dt = [1, t]′ in the case of de-trending, instead of

yt directly. For details concerning this test such as the asymptotic limiting distribution

and critical values see Kapetanios et al. (2003).

5.2.2 Least Squares Grid Search Test

Park and Shintani (2005) propose a different way of handling unidentified parameters

in the ESTAR model when testing the unit root hypothesis. Instead of applying a

Taylor approximation of G the authors propose a grid search applied to the unidentified

parameter. In contrast to the previous test, the pair of hypotheses is now H0 : φ = 0 vs.

H1 : φ < 0, therefore the smoothness parameter γ is unidentified under H0. Park and

Shintani (2005) suggest to estimate the following least squares regression

∆yt = φyt−1(1− exp{−γy2
t−1}) + εt

for a sequence of fixed values for the smoothness parameter γ, i.e. γ ∈ Γ = (10−1PT , 103PT )

with PT =
√∑

y2
t /T . This means that the grid size and its bounds depend on the sam-

ple variation of the considered time series. Park and Shintani (2005) use the infimum of

the random sequence of t-statistics to test the null hypothesis of a unit root,

tPS ≡ inf
γ∈Γ

tφ=0 .

The limiting distribution of tPS depends on the parameter grid Γ and the assumed tran-

sition function G, which is the exponential one in our work. Note that the framework of

Park and Shintani (2005) allows a lot more types of transition functions. Kapetanios et

al. (2003) show that the de-meaning and de-trending of the data in a first step and ap-

plying the unit root test in the second step leads to a similar asymptotic distribution with
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the difference that the standard Brownian motion has to be replaced with a de-meaned

or de-trended one, respectively. In our Monte Carlo study, we simulate the small sample

distribution of tPS with de-meaned and de-trended data and provide critical values.

5.3 Unit Root Test against Markov Switching

We consider a MSAR model which has similar properties to the ESTAR model discussed

in the previous section. As the mean and the variance are constant in this ESTAR model,

we restrict our attention to regime switching in the autoregressive parameters in the case

of MSAR models, too. The main difference between the ESTAR and the MSAR model

is, at least from a statistical viewpoint, the regime switching mechanism. While a regime

switch is driven by past and therefore observable values of the process itself (yt−1) for

the ESTAR model, an unobservable stochastic Markov process, labeled as (st), is the

driving force in Markov Switching models. As no unit root test against this specific

MSAR model exists, we newly develop such a test. Our test statistic is similar to the

one suggested in Caner and Hansen (2001) and the treatment of unidentified parameters

follows Hansen (1996) and Garcia (1998). In particular, we consider the following model

under the alternative hypothesis:

∆yt = φ(st)yt−1 + εt , (5.4)

where the autoregressive parameter φ(st) depends on the unobservable first order two

state Markov chain (st) that takes the values one or two. Furthermore, it is assumed

that (st) is irreducible and aperiodic, i.e. it is characterized by the transition probability

matrix

Π =


 p11 1− p11

1− p22 p22




with pii = P (st = i|st−1 = i) for i = 1, 2, being the probability that the state process is

in state i in period t, given that it was in the same state in the previous period.
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Francq and Zaköıan (2001) show that a necessary and sufficient condition for stationarity

is given by the following two inequalities:

c1 = p11(1 + φ(1))2 + p22(1 + φ(2))2 + (1− p11 − p22)(1 + φ(1))2(1 + φ(2))2 < 1 ,

c2 = p11(1 + φ(1))2 + p22(1 + φ(2))2 < 2 .

The null hypothesis that the process contains a unit root is given by

H0 : φ(1) = φ(2) = 0 ,

while the alternative hypothesis of stationarity is H1 : φ(1) < 0 or φ(2) < 0. The

alternative H∩
1 : φ(1) < 0 and φ(2) < 0 is a special case of H1. If the test has power

against H1 it will have power against H∩
1 as well, cf. Caner and Hansen (2001). A one-

sided Wald test statistic for H0 against H1 can be constructed in the spirit of Caner and

Hansen (2001):

R = 1
(
φ̂(1) < 0

)
t2φ(1)=0 + 1

(
φ̂(2) < 0

)
t2φ(2)=0 ,

where tφ(i)=0 denotes the conventional t-statistic for the null hypothesis that φ(i) equals

zero. Parameters are estimated via maximum likelihood. Note that the transition proba-

bilities p11 and p22 are unidentified under the null hypothesis. In order to tackle this

problem, we follow Garcia (1998) and consider the supremum of a sequence of test

statistics R(p11, p22) where the transition probabilities take values of a bounded grid

Γ = (0, 1)× (0, 1), i.e.

R∗ = sup
p11,p22∈Γ

R(p11, p22) .

Garcia (1998) considered among other variants a linearity test against a first-order MSAR

process under stationarity under both H0 and H1. Unfortunately, the asymptotic dis-

tribution of Garcia’s test is not invariant to the value of the autoregressive parameter

although his simulation results (Garcia (1998), Table 3) show that this dependence is

negligible. Such non-invariance problem does not appear for the unit root test against

MSAR because the parameter of our autoregressive process under H0 is fixed at one

(random walk) and is therefore unable to vary. In our Monte Carlo study we provide

critical values for the R∗ statistic. Regarding the deterministic terms, we follow the pro-

cedure suggested by Kapetanios et al. (2003), see our section 5.2.1. This means that
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data is de-meaned or de-trended before the unit root test is applied in order to cope with

non-zero means or linear trends.

5.4 Monte Carlo Study

5.4.1 General Approach

The following Monte Carlo study is about the empirical power of different unit root tests

against ESTAR and MSAR models under situations that are realistic in practice when

analyzing the persistence properties of real exchange rates. We also investigate whether

these tests are suitable to discriminate between these two models.

In a related study, Choi and Moh (2007) consider the behavior of various unit root tests

against different non-linear alternatives. Among these tests are the Park and Shintani

and Kapetanios et al. test which are considered in this paper as well. Choi and Moh

find that all unit root tests have power against various non-linear alternatives. Whether

a test has power does not depend on the correct specification of the alternative but on

how far the alternative is away from the null of a unit root. However, Choi and Moh

consider idealized parameter constellations and therefore obtain a satisfying power for

each test. They do not consider real world parameter constellations which are the focus

of this paper. As mentioned before, even unit root tests, specially constructed to detect

non-linear stationary processes which are close to a unit root, hardly ever reject the null

hypothesis of a linear unit root when applied to real exchange rates and therefore hardly

ever support the PPP hypothesis.

This Monte Carlo study answers the question whether this might be due to a lack of

power of the developed tests under realistic situations rather than to a correct decision of

the test by not rejecting the unit root hypothesis. We also consider the question whether

these tests have power against other non-linear alternatives. To be specific, we consider

whether unit root tests against ESTAR have also power against Markov Switching pro-
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cesses and whether our Markov Switching test has power against ESTAR. If they do not

have power against the other non-linear alternative this would help to select the correct

model.

In general, unit root tests have good power properties in Monte Carlo studies relying on

parameter constellations which do not appear in the analysis of real exchange rates. It is

quite common to simulate processes with N(0, 1) innovations, but we account for small

standard deviations that are often found empirically, see Rapach and Wohar (2006). An-

other issue is that the location parameter c in ESTAR models is usually assumed to be

equal to zero which is not correct in many practical situations either. Especially as the

Kapetanios et al. (2003) test is strongly based on that assumption this causes significant

power losses (see Kruse (2008)). In order to obtain realistic parameter settings, esti-

mations are carried out using data from the International Financial Statistics database

from 1973:02 to 1996:12 for the DEM/USD, FRF/USD, GBP/USD and JPY/USD real

exchange rates as done in Rapach and Wohar (2006) for ESTAR models. Their reported

estimates are very close to those reported in Taylor et al. (2001). Due to the fact that

the estimation results for the DEM/USD and the FRF/USD are quite similar, we do not

consider the latter currency in our study. Since Markov Switching models are neither

considered in Rapach and Wohar (2006) nor in Taylor et al. (2001), we fit the Markov

Switching model described in section 5.3 to the same data set in order to achieve the

highest degree of comparability.

The exact parameter constellations are given in Table 5.1 for the three considered pairs

of currencies (JPY/USD, DEM/USD, GBP/USD). In each case we use first–order au-

toregressive models. An application of standard diagnostic tests (not given here to save

space but are available upon request) suggest that these models are correctly specified.

Starting with the ESTAR specifications, we observe that the smoothness parameter γ

takes quite different values ranging from 0.165 (JPY/USD) to 0.449 (GBP/USD). Note

that it is difficult to distinguish an ESTAR process that exhibits a small value of γ from
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Table 5.1: Parameter Estimation Results

DEM/USD

ESTAR γ = 0.264, c = −0.007, σ = 0.035

MSAR [φ(1), φ(2)] = [−0.074, 0.007], [p11, p22] = [0.917, 0.945], σ = 0.028

c1 = 0.995, c2 = 1.744

GBP/USD

ESTAR γ = 0.449, c = 0.150, σ = 0.033

MSAR [φ(1), φ(2)] = [−0.310, 0.028], [p11, p22] = [0.300, 0.860], σ = 0.030

c1 = 0.971, c2 = 1.052

JPY/USD

ESTAR γ = 0.165, c = 0.515, σ = 0.033

MSAR [φ(1), φ(2)] = [−0.233, 0.001] [p11, p22] = [0.235, 0.953], σ = 0.030

c1 = 0.982, c2 = 1.093
Remarks: Estimated parameter values for DEM/USD, GBP/USD and JPY/USD are taken

from Rapach and Wohar (2006) for ESTAR models. Markov Switching models are estimated

via conditional maximum likelihood in Gauss.

a unit root process as ∆yt = εt for γ → 0. Therefore, the expected power is low for the

JPY/USD parameter constellation and somewhat higher for the GBP/USD parameters.

However, one should also bear in mind that small changes of γ near zero do change the

behavior of the process significantly. We expect to find clear differences in the behavior

of the tests for the different parameter constellations. The location parameter c varies

also across currencies, while the estimated standard deviation of the error term σ is very

low and far away from unity for each currency. It should be mentioned that the location

parameter c is significantly different from zero in each case although it seems to be rather

small for some currencies.

For the Markov Switching processes, we always find one stable mean reverting regime

and a second regime with an autoregressive parameter that is slightly above but very

close to zero implicating a unit root or a mildly explosive regime. The process is still

globally stationary for all pairs of currencies because the two conditions (c1 and c2 in

Table 5.1) derived in Francq and Zaköıan (2001) are not violated, see Table 5.1. There-
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Table 5.2: Small Sample Critical Values

de-meaning

T = 250 tDF tKSS tPS R∗ T = 500 tDF tKSS tPS R∗

1% -3.46 -3.46 -3.66 27.42 1% -3.44 -3.51 -3.70 29.26

5% -2.88 -2.91 -3.13 18.65 5% -2.87 -2.94 -3.12 20.03

10% -2.57 -2.63 -2.82 15.02 10% -2.57 -2.67 -2.83 16.20

de-trending

T = 250 tDF tKSS tPS R∗ T = 500 tDF tKSS tPS R∗

1% -3.99 -3.99 -4.23 31.53 1% -3.98 -4.01 -4.23 32.85

5% -3.43 -3.49 -3.67 22.62 5% -3.42 -3.40 -3.68 22.98

10% -3.13 -3.12 -3.39 18.40 10% -3.13 -3.12 -3.36 19.00

fore, the cyclical behavior of real exchange rates can be reproduced. However, for the

DEM/USD exchange rate, the parameter of the stable regime is almost zero. The state

probabilities are also close to one for this currency whereas they are well between zero

and one for the other two currencies. Consequently, in view of this the estimated model

for the DEM/USD exchange rate is close to a unit root which means that the expected

power of the Markov Switching unit root test is low for this exchange rate. This can

also be seen by considering the values for c1 and c2. They imply that we can expect that

the Markov Switching test has higher power when the estimated model for the British

Pound is considered instead of the one for the German Mark. The estimated standard

deviation is similar to that of the ESTAR models and thus again far away from unity for

each currency.

We simulate 2,000 replications of each process and apply them to the standard Dickey-

Fuller unit root test (denoted by DF) as a benchmark test, the unit root versus ESTAR

tests by Kapetanios et al. (denoted by KSS) and Park and Shintani (2005) (denoted by

PS), and the Markov Switching test proposed in section 5.3. The power is considered

at the 5% level by using size adjusted small sample critical values obtained from 20,000

replications for sample sizes of T = 250 and T = 500 which corresponds approximately to

20 and 40 years of monthly data, respectively. Size-adjusted critical values are reported
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Table 5.3: Empirical Power, T = 250

de-meaning tDF tKSS tPS R∗ de-trending tDF tKSS tPS R∗

JPY–ESTAR 10.5 10.1 9.7 2.6 JPY–ESTAR 8.2 7.0 7.0 9.2

JPY–MSAR 7.6 10.3 9.3 39.5 JPY–MSAR 6.1 6.7 7.8 37.7

DEM–ESTAR 11.2 12.9 11.7 2.7 DEM–ESTAR 9.1 7.8 8.6 9.3

DEM–MSAR 12.0 8.9 8.0 16.6 DEM–MSAR 7.5 5.3 5.0 13.4

GBP–ESTAR 14.3 15.7 14.7 4.8 GBP–ESTAR 10.2 10.5 10.9 10.5

GBP–MSAR 20.1 35.8 38.8 87.1 GBP–MSAR 11.5 24.5 27.4 79.7

in Table 5.2. Note, that we simulate processes of length T + 100 and delete the first

hundred observations in order to reduce the effect of the starting value. It should be

mentioned here that we use simulated small sample critical values for all tests and not

just for the Markov Switching test in order to obtain comparability of the results. The

critical values for all tests are given in Table 5.2.

Thus, we consider the power of the tests under the correctly specified alternative. This

is an ESTAR model for the Kapetanios et al. and the Park and Shintani test and a

MSAR model for the Markov Switching test, as well as the power under a misspecified

alternative which is the MSAR model for the ESTAR tests and the ESTAR model for

the Markov Switching test. The alternative is misspecified for the standard Dickey-Fuller

test for all considered models. The simulations for the ESTAR models were done in R

whereas the Markov Switching part was simulated in Gauss.

5.4.2 Results

In this subsection, we discuss the power results for the non-linear unit root tests. Table

5.3 gives the power for a sample size of T = 250 observations. We consider all non-linear

unit root tests after de-meaning as well as after de-trending as both deterministics can

be reasonable for real exchange rate data. Note, that we include a constant or a constant

and a linear trend term in the Dickey-Fuller test regression. However, it can be seen
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Table 5.4: Empirical Power, T = 500

de-meaning tDF tKSS tPS R∗ de-trending tDF tKSS tPS R∗

JPY–ESTAR 16.1 18.8 18.3 2.0 JPY–ESTAR 11.4 10.8 11.2 20.1

JPY–MSAR 16.4 19.6 18.3 74.6 JPY–MSAR 9.3 11.2 11.4 70.9

DEM–ESTAR 22.3 29.7 29.7 2.2 DEM–ESTAR 13.4 14.2 15.8 21.7

DEM–MSAR 22.8 11.6 12.1 42.3 DEM–MSAR 13.1 7.5 8.6 30.8

GBP–ESTAR 30.5 49.1 50.9 1.9 GBP–ESTAR 22.4 23.9 26.0 23.7

GBP–MSAR 50.1 63.5 71.0 92.3 GBP–MSAR 31.6 49.1 56.5 93.9

that the results are rather similar in both cases. As we can see, neither of the ESTAR

tests has considerable power against any of our models. Interestingly enough, the stan-

dard Dickey-Fuller test has higher power against ESTAR than the ESTAR tests for the

JPY/USD and the DEM/USD in the de-trended case.

However, the power of all tests is extremely low when the true DGP is an ESTAR model

in any case. This also holds for the Markov Switching test. When the true DGP is ES-

TAR, the Markov Switching test proves to be conservative. In opposition to the ESTAR

tests, this is a rather convincing test property as a non-rejection of the test is the de-

sired property for a correct model selection. Unfortunately, the ESTAR tests have power

against the Markov Switching model. In each case, it is at least in the same region as

the power against ESTAR models. For the GBP/USD it is far higher for the Markov

Switching alternative than for the ESTAR alternative. Only for the DEM/USD exchange

rate, the power of the tests is quite low. This was expected as the Markov Switching

model is close to a unit root in this case. The Markov Switching test has satisfying

power properties. Its power is quite high against a Markov Switching DGP except for

the DEM/USD exchange rate where a low power was expected because of the near unit

root structure of the DGP. On the other hand it has low power against ESTAR models.

The DF test has similar power properties to the ESTAR tests.

Similar results can be observed for T = 500 (see Table 5.4). As expected, the power
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is generally higher compared to T = 250 but the results are qualitatively the same as

before. The results for the de-trending case are qualitatively similar to those of the de-

meaning case although all tests have less power under de-trending. This was expected as

another deterministic parameter has to be fitted under de-trending. Unfortunately, the

Markov Switching test is no longer conservative under de-trending when the true DGP

is ESTAR. However, its power is still low and within the range of the ESTAR tests.

Altogether, we can say that there is no ESTAR test which dominates in terms of power.

It can be argued, however, that all ESTAR tests have rather poor power against ESTAR

with our parameter constellations which are realistic for real exchange rates. In some

constellations the power of the ESTAR tests is even better for the Markov Switching

alternative. As a result, by not rejecting the Null, these ESTAR tests do not allow us

to conclude that the null hypothesis unit root is correct and therefore we cannot reject

the Purchasing Power Parity hypothesis. However, when rejecting the Null we cannot

conclude that the true model is ESTAR either. Further inference is necessary in order to

select the correct model, but testing ESTAR against MSAR directly is quite complicated

as it implies a non-nested testing problem. However, this issue is beyond the scope of

this paper and left for future research.

5.4.3 Discussion

A natural question which arises out of this is why especially the ESTAR tests have so

poor power properties. Figure 5.1 throws some light on this problem. In these graphs,

the transition function of each estimated ESTAR process based on real data and param-

eters reported in Table 5.1 are depicted together with corresponding data points. Almost

all data points are in the region where the transition function is close to its maximum.

There are no data points at the tails of the function. Close to the maximum of the

transition function the process behaves similarly to a unit root process or a highly persis-

tent local-to-unity autoregressive process. The mean reverting property of the non-linear
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Figure 5.1: Estimated Transition Functions and Data Points.
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time series model has a strong effect only in the outer regimes away from the equilib-

rium. Therefore, for the vast majorities of data points, the process behaves like a linear

unit root process. This makes it hard or almost impossible for the tests to detect the

non-linear mean reverting behavior of the DGP.

In addition to this, our simulation study shows that the ESTAR tests have similar power

properties against ESTAR as against MSAR models. To intuitively explain this finding,

we generate plots of yt−1 against the first difference ∆yt = yt − yt−1 for ESTAR and

MSAR simulated time series generated from our parameter constellations and estimate

the functional relationship between ∆yt and yt−1 in a non-parametric way by using the

Naradaya-Watson estimator, see Figure 5.2. If the ESTAR effect is strong, the estimated

curve should be near a cubic function. If the time series process has a unit root, it is iden-

tical to zero. As we can see, the cubic behavior is clearly pronounced for the DEM/USD

and GBP/USD real exchange rate and less pronounced for the JPY/USD real exchange

rate which is in line with our parameter settings. Moreover, it can be argued that both

functions, the ESTAR and the MSAR function, are rather similar and quite close to each

other. The MSAR process generates also a cubic shape for this function which is similar

to the ESTAR model. As it can be argued that the idea of the Kapetanios et al. test

is to check whether this function has a cubic trend or not, it detects the cubic form also

for the MSAR process. As both functions are close to each other, the power is similar

for both models.

This shows that the present tests are not able to detect ESTAR non-linearities as they

are found in real exchange rates. Although the tests have convincing properties in many

situations, they prove to have a lack of power under the very special parameter conditions

which can be found in real exchange rates. It can be argued that it is rather difficult to

draw any conclusion from the outcome of an ESTAR test under these conditions. Neither

does a non-rejection of the Null mean that the true DGP which drive real exchange rates,

is a linear unit root process nor does a rejection of Null mean that the true DGP is actually

an ESTAR process.
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5.5 Application

This section applies the four unit root tests studied in the Monte Carlo simulations to

the G7 exchange rates. Thus, we examine non-linearities in the real exchange rates of

the US Dollar against the Canadian Dollar (CAD), Swiss Franc (CHF), German Mark

(DEM), British Pound (GBP), Italian Lira (ITL) and Japanese Yen (JPY). Data is taken

from the IMF International Financial Statistics database. Price levels are measured by

the consumer price index (CPI). The sample covers the post-Bretton Woods period from

1973.01 to the Euro introduction 1998.12 implying a sample size of T = 312. This data

set is chosen to achieve comparability to other studies and has the advantage that po-

tential structural breaks that might have occurred due to the introduction of the Euro

are excluded and thus not biasing our analysis. All time series seem to be persistent and

locally trending, see Figure 5.3. The estimated partial autocorrelation functions (graphs

are available upon request) indicate that all time series are first-order processes.

Next, we apply the standard Dickey-Fuller regression including a constant and test for

linearity in the residuals. Linearity is tested by the neural network test proposed by

Lee et al. (1993), Ramsey’s RESET test (1969) and the BDS test for independence by

Brock et al. (1996). These tests assume stationarity which is crucial when applied to real

exchange rates themselves but not when applied to residuals. Results can be found in

Table 5.5. They show that the linearity hypothesis has to be rejected in many cases. This

also means that the Dickey-Fuller test regression neglects important non-linearities and is

therefore misspecified. Recently, Harvey and Leybourne (2007) suggested a version of the

classic linearity test against STAR models, originated by Luukkonen et al. (1988), that

is robust against non-stationarity. However, such a robustification may reduce the test’s

power and we find only two rejections, namely for the German Mark and the Swiss Franc.

Moreover, we investigate the non-linearities by estimating the functional relationship

between ∆yt and yt−1 in a non-parametric way by employing the Nadaraya-Watson esti-

mator. Figure 5.4 shows these estimates. Only for the CAD/USD the estimated curve is
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Table 5.5: Linearity and Unit Root Test Results

Test CAD CHF DEM GBP ITL JPY

Linearity Tests

NN 0.007 0.008 0.028 0.535 0.745 0.038

RESET(2) 0.885 0.204 0.118 0.185 0.243 0.038

RESET(3) 0.727 0.356 0.053 0.147 0.288 0.228

RESET(4) NA 0.344 0.025 0.065 0.014 0.005

BDS(2) 0.135 0.006 0.054 0.008 0.012 0.408

BDS(3) 0.033 0.016 0.178 0.013 0.001 0.216

BDS(4) 0.045 0.007 0.270 0.009 0.000 0.210

HL 0.750 11.542 10.896 6.166 2.509 6.939

Unit Root Tests

tDF -0.10 -2.47 -1.92 -2.17 -1.84 -1.94

tKSS 0.08 -2.54 -1.36 -2.46 -2.10 -2.45

tPS -0.12 -2.69 -1.95 -2.46 -2.09 -2.44

R∗ 2.47 15.83 14.55 29.24 18.36 59.45
Notes: NN denotes the neural network test statistic by Lee et al. (1993).

Hochberg’s improved Bonferroni bound is used with one hundred draws to

obtain reliable p-values for the neural network test, see Lee et al. (1993).

RESET(m) is Ramsey’s (1969) test statistic with terms up to power m+1.

BDS(n) is the Brock et al. (1996) test statistic for independence with

embedding dimension n. HL is the Harvey and Leybourne (2007) robust

linearity test statistic calculated for α = 10%. For unit root tests, see

Table 5.2.

very flat suggesting that there is no relationship between ∆yt and yt−1 which hints at a

unit root. All other plots suggest the property of a mean-reversion and it is worthwhile

to note that the functional relationship appears to be non-linear.

In the last step, we apply the four unit roots that have been studied previously in the

Monte Carlo simulations to the six real exchange rate series in order to test empirically

for the validity of PPP. Since all time series appear to be first-order processes, we do not

include any lagged differences. The Dickey-Fuller regression contains a constant, while

de-meaned data is used for all non-linear unit root tests.
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The resulting test statistics are reported in the lower panel of Table 5.5. Neither the linear

unit root test by Dickey and Fuller (1979) nor the non-linear unit root tests by Kapetanios

et al. (2003) and Park and Shintani (2005) are able to reject the null hypothesis of a unit

root at the ten percent level of significance. These results contradict the validity of PPP

since there is no mean-reversion when a unit root is present. On the contrary, the new

test against MSAR rejects the Null in favor of stationarity in four out of six cases. When

having the outcomes of our preliminary analysis in mind, it is not surprising that the unit

root hypothesis cannot be rejected in the case of CAD/USD. In addition, we note that

the R∗ statistic for the DEM/USD is quite close to the critical value of 15.02 which means

that the test decision is borderline. Due to the fact that the Markov Switching unit root

test does not have substantial power against ESTAR, especially in the case of de-meaned

data, it is legitimate to conclude that there is no evidence for ESTAR dynamics in the

data. Rather Markov Switching seems to be a more plausible model for explaining the

dynamics of real exchange rates.

5.6 Conclusions

This paper provides a thorough empirical examination into the form of real exchange

rate non-linearities. In particular, we investigate the power of unit root tests against

ESTAR and Markov Switching and provide evidence supporting the relevance of Markov

Switching processes in real exchange rates.

We contribute to the literature in four ways: Firstly, this research studies unit root tests

under parameter settings that fit properties of real exchange rates. Secondly, we suggest

a unit root test against Markov Switching autoregression that is similar in principle to the

recently developed ESTAR tests and thus allows comparisons between both processes.

Thirdly, we analyze the empirical power of these tests in an extensive Monte Carlo study

where we consider a variety of ESTAR and MSAR processes. Finally, these tests are

applied to the time series of the most important real exchange rates.
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For each of these research directions we obtain findings that are of striking importance

to Markov Switching processes. Referring to the first above mentioned direction, we find

that the parameter setting is crucial for the power of ESTAR tests. Although these tests

are powerful in general, under the specific conditions of currency markets, they seem

to become clearly less useful. As we are interested in this kind of real exchange rate

non-linearities, we need a unit root test against MSAR which is not available in the form

we need here. Therefore, we propose a new test that builds upon inference techniques

developed by Hansen (1996) and refined by Garcia (1998) as a second contribution. This

brings us to the core of this research, which is to compare ESTAR and MSAR tests in a

broad simulation study showing that ESTAR tests have poor power, whereas the MSAR

test seems much more useful. Moreover, we observe that ESTAR tests are not robust

with respect to Markov Switching dynamics while the opposite holds for our newly de-

veloped test. This means that a rejection of an ESTAR test, if any occurs, does not

necessarily contain information about the type of non-linear adjustment to equilibrium.

Finally, when applying these tests to important real exchange rates, we find that ESTAR

tests cannot reject the unit root, whereas the MSAR test does this in most cases. This

indicates that either PPP does not hold - which is not very plausible - or that ESTAR

tests are not powerful - which seems to hold true - or that processes are not well described

by ESTAR models, a possibility nourished by the finding of MSAR processes.

Overall, this research has an obvious economic implication that stems from the properties

of MSAR vs. ESTAR processes. Whereas ESTAR models are used in international fi-

nance to capture the working of international arbitrage in goods and services, the Markov

Switching model fits more with the idea of currency markets with heterogeneous agents

whose interaction can create temporary exchange rate bubbles. This suggests that real

exchange rate dynamics may be influenced to a substantial degree by destabilizing forces.



Chapter 6

Unit Roots and Smooth Transition

Non-linearities

Co-authored with Philipp Sibbertsen

6.1 Introduction

Since the seminal work of Nelson and Plosser (1982) the question whether a time series

contains a unit root and is therefore integrated of order 1, that is I(1), or whether it

is a globally stationary process, that is I(0), attracted much attention in econometric

research. As an I(0) process can be interpreted as a process fluctuating around a sta-

ble equilibrium the question whether a given time series is I(0) or I(1) is equivalent to

confirm or reject miscellaneous economic theories. Among many others, famous exam-

ples are the Purchasing Power Parity hypothesis or expectation hypothesis of the term

structure. These theories are violated if a unit root is present in the real exchange rate

or the term spread, respectively.

The literature on testing for a unit root against stationarity was for a long time concen-

trated on linear processes. However, in the last decade it became more and more clear

that many economic time series are not linear. Various popular examples for highly non-

linear processes among many others can be found in financial time series. Whereas early
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papers concentrated on the question whether a stationary process is linear or non-linear

(see for example Luukkonen et al. (1988), Lee et al. (1993) or Brock et al. (1996))

the focus of econometric research recently is on testing for a unit root against globally

stationary non-linear alternatives (see for example Kapetanios et al. (2003)). As most

popular non-linear models can be interpreted as regime switching models in some sense

they can have local unit roots although they are globally stationary and therefore, this

problem is still challenging. However, these non-linear unit root tests concentrate on

globally stationary alternatives which can be treated as I(0) in the sense that the central

limit theorem still holds. Some authors define an I(0) process by the validity of the

central limit theorem (see Davidson (2007)). Harvey and Leybourne (2007) also consider

non-linear I(1) processes with a global unit root.

Therefore, the practitioner has to distinguish between four different models. Each of

these has a different economic interpretation and other implications in terms of forecast-

ing, economic modeling and analysis of impulse-response functions. The aim of this paper

is to give the empirically working econometrician a decision rule at hand which allows her

a reliable classification of her time series into one of these model classes. As a measure

of performance we use the number of correct classifications instead of size and power as

we do not propose a correctly sized test in this paper. It should also be mentioned that

we focus on STAR non-linearity which is one of the most popular non-linear models.

As there are innumerable non-linear models around, it is impossible to create a unified

procedure for all of them but our procedure can easily be generalized to Threshold AR

or Markov Switching AR non-linearities.

In this paper we propose two different types of decision rules. First, we discuss a simul-

taneous procedure based on a linearity and a stationarity test which are independently

computed. This procedure was proposed by Harvey and Leybourne (2007). They use a

linearity test which is robust against non-stationarity of the time series. As this robusti-

fication can lead to power losses, we propose an alternative procedure which can be seen

as a two-step or sequential procedure. In a first step, a unit root or a stationarity test is
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applied and the test result is used to choose the appropriate linearity test regression. If

the test suggests that the time series is I(0) the Wald-type linearity test is based on a

test regression in levels and otherwise in first differences. As a stationarity test we use

the test of Harris et al. (2003) or alternatively the non-linear unit root test of Kapetan-

ios et al. (2003). However, it turns out that both procedures have better classification

rates if the Harris et al. (2003) test is used. More importantly, the two-step procedures

outperform simultaneous decision rules and especially the one proposed by Harvey and

Leybourne (2007).

The paper is organized as follows. Section 6.2 introduces STAR models. Section 6.3 de-

scribes the linearity tests used and section 6.4 gives the unit root and stationarity tests.

In section 6.5 several decision rules are proposed and section 6.6 contains a Monte Carlo

study showing the classification rates of the various decision rules. Section 6.7 includes

empirical applications to US government bond yields, the one-month interbank rate and

the spread between them. Section 6.8 concludes. All Tables and Figures can be found in

the Appendix of this chapter.

6.2 Non-linear STAR model

In the following section we briefly discuss the often applied first-order stationary STAR

process and a non-stationary variant of it that has been studied by Harvey and Ley-

bourne (2007).

Non-linear stationary STAR model

Consider the non-linear data generating process (DGP) for yt with constant µ and let

time be t = 1, 2, . . . , T ,

yt = µ + vt (6.1)

vt = φvt−1 + δf(vt−1, θ)vt−1 + εt (6.2)

εt ∼ i.i.d.(0, σ2) . (6.3)

The error term εt is assumed to be a white noise process with mean zero and variance σ2.
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The autoregressive parameters are φ and δ. Non-linearity arises due to the presence of

the smooth transition function f that depends on the two-dimensional parameter vector

θ = (γ, c)′, where γ > 0 determines the shape and c ∈ R the location of f . Common

specifications for f are the exponential (fE) and the logistic (fL) smooth transition

function

fE(vt−1, θ) = 1− exp{−γ(vt−1 − c)2} (6.4)

fL(vt−1, θ) =
2

1 + exp{−γ(vt−1 − c)} − 1 . (6.5)

The main difference between them is the symmetry of fE and the asymmetry of fL with

respect to vt−1 − c. It is implicitly assumed that the DGP is self-exciting, which means

that a lag of the process itself, the first lag in our case, is the transition variable. A

further assumption is that there are two regimes with a smooth transition between them.

The first regime is characterized by f = {fE, fL} = 0 and the second by f = 1,

vt = φvt−1 + εt , f = 0 (6.6)

vt = (φ + δ)vt−1 + εt , f = 1 . (6.7)

Since this model comprises a linear AR process in each regime, we can measure local

persistence by the sign and the magnitude of the autoregressive parameter in the respec-

tive regime, which is given by φ and φ + δ, respectively. In particular, local persistence

changes smoothly from φ to φ + δ. Note that all other characteristics of the process, e.g.

the variance of the error term εt, are not changing as a regime switch occurs.

If f = fE, then yt is globally stationary if |φ + δ| < 1, while |φ± δ| < 1 must be fulfilled

in order to achieve global stationarity under f = fL, see Harvey and Leybourne (2007).

Further note, that a local unit root (φ = 1) or even local explosiveness (φ > 1) is permit-

ted in the case of an exponential smooth transition function (f = fE) while maintaining

global stationarity of yt. If f = fL is specified, such behavior is ruled out due to stronger

restrictions for stationarity.
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Non-linear non-stationary STAR model

Analogously to this DGP, Harvey and Leybourne (2007) consider an I(1) version of it

where non-linearity enters through first differences, i.e.

yt = µ + vt (6.8)

∆vt = φ∆vt−1 + λf(∆vt−1, θ)∆vt−1 + εt . (6.9)

In contrast to the previously discussed DGP, this one has an autoregressive lag structure

of two and is globally non-stationary, which becomes more obvious after some rearrange-

ments,

yt = µ + vt (6.10)

vt = [1 + φ + λf(∆vt−1, θ)] vt−1 − [φ + λf(∆vt−1, θ)] vt−2 + εt . (6.11)

The autoregressive parameters sum up to one, implying at least one unit root, regardless

of the value of the smooth transition function f . This property still holds if the two

extremes of f are considered,

vt = (1 + φ)vt−1 − φvt−2 + εt , f = 0 (6.12)

vt = (1 + φ + λ)vt−1 − (φ + λ)vt−2 + εt , f = 1 . (6.13)

Suppose that f = fE. If φ = 0, then the lag structure changes from one to two as a

regime shift occurs. Furthermore, if f = 0, then the process exhibits a unit root and if

f = 1, then one root lies on the unit circle while the other one lies outside of it as long

as 0 < λ < 1 holds. Moreover, if φ = 1 and −1 < λ < 0 then two unit roots are present

under f = 0, while for f = 1 one root lies again on the unit circle and the second lies

outside. A third case that is studied in the following is given by the setting φ = 1.5

and −1.5 < λ < −0.5 which implies one unit root and one root inside the unit circle for

f = 0, and one unit root and one root outside the unit circle for f = 1. Hence, the non-

linear non-stationary exponential STAR model can have very different local persistence

properties while it is globally non-stationary. Similarly to the stationary non-linear STAR

model, such dynamics are not permitted if the logistic transition function (f = fL) is

assumed.
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6.3 Testing Time Series Linearity

The non-linear DGP’s that were presented in the previous section become linear under

the constraint that the smoothness parameter equals zero, i.e. γ = 0. This holds true

for the stationary as well as for the non-stationary DGP. Additionally, linearity can be

achieved by setting δ (for the stationary DGP) or λ (for the non-stationary DGP) equal

to zero. This means that if H0 : γ = 0 is tested against H1 : γ > 0, δ or λ appears to be a

nuisance parameter under the null hypothesis. This circumstance is often referred to as

the Davies problem, see Davies (1987). Luukkonen et al. (1988) suggested to overcome

this problem of unidentified parameters under H0 by applying a Taylor approximation

to the smooth transition function f around γ = 0. This approach has been widely

adopted and also applied by Harvey and Leybourne (2007) who employ a second-order

expansion. In particular, when such an approximation is applied to the stationary and

non-stationary DGP respectively, we get

yt = β0 + β1yt−1 + β2y
2
t−1 + β3y

3
t−1 + εt (6.14)

∆yt = β0 + β4∆yt−1 + β5(∆yt−1)
2 + β6(∆yt−1)

3 + εt . (6.15)

The first equation is the Taylor approximation for the stationary I(0) process and the

second equation is the one for the corresponding non-stationary I(1) process defined

above. These auxiliary regression serve as the basis for testing linearity which is done

by testing H ′
0 : β2 = β3 = 0 (for the stationary DGP) or H ′

0 : β5 = β6 = 0 (for the non-

stationary DGP). Allowing for both degrees of integration simultaneously, I(0) as well

as I(1), Harvey and Leybourne (2007) propose a hybrid test regression that incorporates

terms from both individual test regressions, i.e.

yt = β0+β1yt−1+β2y
2
t−1+β3y

3
t−1+β4∆yt−1+β5(∆yt−1)

2+β6(∆yt−1)
3+εt . (6.16)

Now, the null hypothesis of linearity corresponds to four restrictions formulated as H ′
0 :

β2 = β3 = β5 = β6 = 0, while the alternative of non-linearity can be written as H ′
1 :

at least one of β2, β3, β5, β6 6= 0. Harvey and Leybourne (2007) suggest the Wald statistic

WT =
RSS0 −RSS1

RSS1/T
, (6.17)
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where RSSi denotes the sum of squared residuals under Hi and T is the number of

observations used in the test regression. Let us denote the Wald statistic (6.17) computed

via (6.14) by W 0
T and the one computed via (6.15) by W 1

T , where the exponent indicates

the (implicitly) assumed degree of integration. Standard results imply that the limiting

distribution of W d
T is χ2(4) if yt is I(d) with d = {0, 1}. Harvey and Leybourne (2007)

derive the non-standard distribution of W 0
T if yt is a linear random walk. Following the

notation of Harvey and Leybourne (2007), W0(= χ2(4)) denotes the limiting distribution

of W 0
T under yt ∼ I(0) and W1 denotes its limiting distribution under yt ∼ I(1). In order

to achieve the same limiting distribution under both degrees of integration, Harvey and

Leybourne (2007) make use of Vogelsang’s (1998) approach. Consider the transformed

Wald test statistic

W ∗
T = exp{−bHT}WT , (6.18)

where b is a non-zero constant and HT is a statistic for testing I(1) versus I(0) with a

pivotal limiting distribution under the null hypothesis. In addition, it is necessary that

it converges to zero in probability under the alternative. Harvey and Leybourne (2007)

set HT = |DFT |−1, with DFT being the Dickey–Fuller t–statistic obtained from

yt = π0 + π1yt−1 + κ∆yt−1 + εt .

In order to have the same critical values under both degrees of integration, that is

P (W0 > cα) = P (exp{−bH}W1 > cα) = α, the constant b, which depends on the

significance level α, has to be chosen accordingly. Harvey and Leybourne (2007) provide

a response surface by fitting a seventh–order polynomial. Therefore, asymptotic critical

values can be computed easily for any desired significance level α. This approaches, how-

ever, makes it impossible to use p-values because the test statistic W ∗
T depends on the

significance level.

The test regressions (6.14) and (6.15) can be used instead of (6.16) if the degree of in-

tegration is known, which is hardly the case in practice. Harvey and Leybourne (2007)

show that the robust test has a good overall performance, but the price paid for robusti-

fication against non-stationarity can be high in terms of power. For example, if T = 300,
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the power loss that results from using W ∗
T instead of W 1

T can be up to twenty or nearly

thirty percent for exponential or logistic processes, respectively.

6.4 Testing for and against Unit Roots

Unit Root Test

The unit root test we consider in this paper is the one proposed by Kapetanios et al.

(2003). It builds upon a first-order Taylor approximation of a stationary exponential

STAR model. The resulting test regression reads

∆yt = ψy3
t−1 +

p−1∑
i=1

ρi∆yt−i + εt

where the error term εt contains the Taylor approximation remainder that equals zero

under the null hypothesis H0 : ψ = 0. The alternative hypothesis is given by H1 : ψ < 0

which ensures global stationary. The authors suggest a Dickey-Fuller-type t-statistic

given by

tT =
ψ̂√

v̂ar(ψ̂)
=

∑T
t=1 y3

t−1∆yt√
σ̂2

∑T
t=1 y6

t−1

, (6.19)

where σ̂2 = 1
T

∑T
t=1(∆yt − ψ̂y3

t−1)
2 is the usual estimator of the error variance. For rea-

sons of comparability with the stationarity test described in section 4.2 and of empirical

relevance we use de-meaned data ỹt ≡ yt − ȳ where ȳ denotes the mean of yt.

Following the proof of consistency given in Kapetanios et al. (2003), one can verify that

the test is consistent against stationary linear autoregressive processes as well. However,

little is known about the small sample performance of this test if the true data generating

process is actually non-stationary but non-linear as well. In section 6, we conduct the

empirical size and power of the Kapetanios et al. (2003) test if data is generated by

(non-stationary) exponential and logistic STAR models. In the following, the lag length

p is set equal to two because the non-stationary STAR process is of order two.
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Stationarity Test

Harris et al. (2003) propose a test for stationarity against a unit root that is based on

sample autocovariances. Define at,k = ỹtỹt−k, where ỹt denotes the deviation of yt from

its mean ȳ ≡ 1
T

∑T
t=1 yt. The test statistic is given by

ST =
1

T 1/2

∑T
t=k+1 at,k

ω̂(at,k)

d→ N(0, 1) (6.20)

where ω̂(at,k)
2 is the Bartlett kernel-based long run variance estimator of at,k. More

specifically,

ω̂(at,k)
2 = γ̂0(at,k) + 2

l∑
j=1

(
1− j

l

)
γ̂j(at,k) (6.21)

γ̂j(at,k) =
1

T

T∑

t=j+k+1

at,kat−j,k (6.22)

The test rejects the null hypothesis of stationarity for large values of ST . Since the

simulation study in Harris et al. (2003) is somewhat limited, we extend their simulation

analysis by considering the empirical power of ST if the data generating process is (non-

)stationary and non-linear, see section 6.

6.5 Decision Rules

The benchmark decision rule is the one used in Harvey and Leybourne (2007) that can be

classified as a simultaneous procedure since it consists of two independently computed

test statistics. These two statistics are the Harris et al. (2003) stationarity statistic

ST and the robust linearity statistic W ∗
T . This decision rule is referred to as R1. If,

for example, both tests lead to a rejection (R) of their respective null hypotheses, we

conclude that the process is non-linear I(1). This procedure is depicted as follows, where

NR stands for a non-rejection:
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ST ,W ∗
T

NR, NR // L–I(0)

ST ,W ∗
T

R, NR // L–I(1)

ST ,W ∗
T

NR, R // NL–I(0)

ST ,W ∗
T

R, R // NL–I(1)

The success rate of a decision rule is measured as the the relative frequency of correct

classifications. If, for example, the true DGP is linear I(0), the success rate is simply the

percentage of correct decisions for the category L–I(0).

In the following section 6 we compare R1 with a little modification of it, labeled as R4,

where we employ the Kapetanios et al. (2003) test instead of the Harris et al. (2003)

test, by means of a Monte Carlo study. Moreover, we propose two versions of a two-step

procedure that consists of a unit root or a stationarity statistic in a first step and a

linearity test in the second step. The first-stage result is used to select the appropriate

test regression: if the test in the first stage produces evidence for I(0) we run the linearity

test regression in levels, see equation (6.14), and otherwise in first differences, see equation

(6.15). The decision rule R2 applies the Kapetanios et al. (2003) test in the first step,

while R3 uses the Harris et al. (2003) test instead. Note, that the second step of R2 and

R3 is identical. For example, the R3 procedure can be depicted as:
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The intuition behind the two-step procedures is as follows: the robustification of the

linearity test that is achieved by applying W ∗
T instead of W 0

T or W 1
T induces a substantial

power loss which is not surprising at all. We analyze whether this power loss can be

reduced by first selecting the appropriate linearity test regression given by equation

(6.14) or (6.15). Note that the linearity test can be improved if the degree of integration is

known, see Table 3 in Harvey and Leybourne (2007). In practice, the degree of integration

is generally unknown, but if we can exploit the information of a test for I(0) or I(1) that

exhibits enough power then the assumption of an unknown degree of integration becomes

superfluous. Table 6.1 gives a short overview over different data generating processes and

decision rules.

6.6 Monte Carlo Study

This section reports results of a variety of simulation experiments that shed light on the

empirical small sample properties of the four decision rules. In a first step, we study the
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performance of the Kapetanios et al. (2003) unit root test and the Harris et al. (2003)

stationarity test under non-linear I(0) and I(1) processes. On the one hand, it is not

clear whether the Kapetanios et al. (2003) test is correctly sized under non-linear I(1)

DGP’s and on the other hand there are no simulation results available yet that allow to

draw conclusions about the behavior of the Harris et al. (2003) stationarity test under

non-linear I(0) processes. Furthermore, we are interested in the power of the Kapetanios

et al. (2003) and the Harris et al. (2003) test if the DGP is of non-linear STAR-type.

The interpretation of outcomes of different decision rules will be easier when we have

these results in mind.

The parameter settings we consider are a large subset of those used in Harvey and Ley-

bourne (2007) in order to achieve comparability. The nominal significance levels are one,

five and ten percent for the size and power analysis of the Kapetanios et al. (2003) and the

Harris et al. (2003) test, while we use a nominal five percent level of significance for the

study of decision rules. The sample size is chosen as T = 300 which is also used in Harvey

and Leybourne (2007). Following Harvey and Leybourne (2007), we set k = [2T 1/2] and

l = [12(T/100)1/4], where [x] denotes the nearest integer of x, for the Harris et al. (2003)

test. Moreover, the lag length (p) for the Kapetanios et al. (2003) test is set equal to one.

Table 6.2 reports the empirical sizes and powers of the Kapetanios et al. (2003) test and

the Harris et al. (2003) test under ESTAR I(0)/I(1) and LSTAR I(0)/I(1) processes.

We observe that the Kapetanios et al. (2003) test is a bit undersized if the the true DGP

is non-linear I(1). The only exception can be found in the last row. The same conclusions

hold true for the Harris et al. (2003) test as well, where we also observe an exception.

Although we do not provide an analytic proof, we conjecture that the distributions of

tT and ST depend on the parameters of the non-linear DGP because their performance

varies with these parameters. In order to cope with this problem a suitable bootstrap

algorithm could be used to obtain more accurate critical values which is beyond the scope

of this paper. Regarding the power properties both tests show quite good performance.
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The Kapetanios et al. (2003) test often reaches hundred percent of power, while the

power of the Harris et al. (2003) test is also quite high. In particular, both tests appear

to be very powerful against logistic STAR models.

When analyzing the performance of the four decision rules we choose a nominal signif-

icance level of five percent. We start with linear first-order autoregressive processes,

labeled as L–I(0), see Table 6.3. The autoregressive parameter φ takes the values

0.00, 0.30, . . . , 0.99, 1.00. The local-to-unity values are chosen because it gets very diffi-

cult for unit root and stationarity tests to distinguish I(0) from I(1) processes in this

region. If φ lies between zero and 0.7 we cannot observe big differences between the four

decision rules and all of them show very good performance. In the local-to-unity region,

the performance of R2 and R4, which are both based on the Kapetanios et al. (2003)

test, worsens dramatically. On the contrary, the decision rules R1 and R3, which both

use the Harris et al. (2003) test, are performing relatively good although the frequency

of correct decisions is not extremely high at φ = 0.99, but this could not be expected

anyway. Wrong decision are made clearly in the direction of linear I(1) processes which

is due to the behavior of the unit root and the stationarity test.

Next, the performance of R1 to R4 is analyzed when the true DGP is a stationary non-

linear exponential STAR process. Results are reported in Table 6.4. Both simultaneous

rules (R1 and R4) are clearly outperformed by both two-step rules and in particular by

R2. However, in the experiments where φ = 0, R2 is dominated by R3. Furthermore,

the results for local unit root (φ = 1.0) and local explosiveness (φ = 1.5) suggest that

the differences between both two-step methods are not big but R2 dominates R3. One

exception to this is the case of φ = 1.5, λ = −1.0, γ = 0.1, which is due to the fact

that the Harris et al. (2003) test is definitely oversized in this case, see Table 6.2. The

overall performance of R2 and R3 is satisfying and the gains with respect to R1 range

from four to nineteen percent. Additionally, we observe only little differences between

the two simultaneous rules R1 and R4. Moreover, wrong decisions are often made in the
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direction of linear I(0) processes because of the type II-error of linearity tests. It is rarely

the case that the process is misclassified as non-stationary regardless of which decision

rule is applied.

Turning to non-stationary exponential STAR processes, the results in Table 6.5 suggest

that R2 is best performing, followed by R3. The gains from using a two-step procedure

are evident as they range from four to twenty-six percent and they are higher on average

than for ESTAR I(0) processes. Again, R1 and R4 show quite similar performance but

R4 is preferable to R1. Nonetheless, their success rates are far below those of R2 and

R3. Our conclusions do not change a lot when interpreting the outcomes for logistic

stationary (upper part of Table 6.6) and non-stationary (lower part of Table 6.6) STAR

processes. Nonetheless, the differences between simultaneous and two-step rules are less

pronounced for stationary processes. Furthermore, the frequency of correct decisions in-

creases with the smoothness parameter γ in the case of logistic STAR processes because

it does not become linear in limit (γ →∞). On the contrary, ESTAR processes become

linear in the limit.

A unified two-step procedure

Recall that the two-step procedure based on the Kapetanios et al. (2003) test (R2)

performs relatively poor in the case of linear processes but very good for non-linear

processes. Further note that the two-step procedure using the Harris et al. (2003)

test (R3) shows relatively good performance for linear processes as well. Hence, it is

worthwhile to think of a procedure that takes the best out of both. One approach we

suggest is to pre-test for linearity using the robust Wald statistic W ∗
T and to proceed with

R2 in the case of a rejection and with R3 in the case of a non-rejection. More formally,

the unified decision rule, labeled as R5 in the following, is defined by

If W ∗
T ≥ χ2

1−α(4), then R5 = R2

If W ∗
T < χ2

1−α(4), then R5 = R3 ,

where χ2
1−α(4) denotes the (1− α)% asymptotic critical value for the W ∗

T statistic. This
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unification is somehow in the spirit of the methodology used in Harvey et al. (2008b)

which is based on the comments of Breitung to Harvey et al. (2008a).

Tables 6.7 and 6.8 report the results for the decision rule R5 which clearly show that the

proposed unification works very well. On the one hand, R5 has the satisfying properties

of R3 when the true DGP is linear and on the other hand it shares the qualities of R2

if the non-linearities are present. The power gains are obvious in the case of non-linear

(non-)stationary STAR processes when compared to the performance of R1, see Tables

6.4, 6.5, 6.6 and 6.8.

6.7 Empirical Application

The unified two-step procedure R5 is applied to the US government bond yield, the one-

month interbank rate and the spread between them. Data is taken from Datastream.1

Our sample spans from 1986, February to May, 2008 and consists of 268 monthly ob-

servations. Figure 6.1 depicts the three time series. No clear trend can be detected in

the spread by visual inspection and economic theory does not suggest that there are

deterministic trends in interest rates, too. Therefore, we include only constants in the

test regressions or we use de-meaned data.

As a by-product of this application we test the expectation hypothesis of the term struc-

ture (EHT) that requires the term spread to be stationary. However, the main aim

of this empirical application is to classify the time series as (non-)linear and/or (non-

)stationary. Such classification is of big importance for model building, the analysis of

monetary shocks and for forecasting.

Results are reported in Table 6.9. As in Harvey and Leybourne (2007), we select the

lag length for the test regressions by using a general-to-specific methodology at the ten

1The relevant codes are USGBOND. and BBUSD1M for the government bond yield and the interbank

rate, respectively.
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percent level of significance. The maximum lag order is set equal to four and the minimum

equal to two. In a first step, we use the W ∗
T test statistic in order to choose the appropriate

decision rule which is R2 for all time series, because W ∗
T is significant in all cases. We

conclude that the government bond yield and the interbank rate are non-stationary. In

both cases, the Kapetanios et al. (2003) test does not reject the unit root hypothesis

at the employed ten percent level of significance. On the contrary, the term spread

appears to be stationary which supports the EHT and hints at cointegration between

the government bond yield and the interbank rate. Although not reported in Table

6.7, the Harris et al. (2003) test confirms the conclusions drawn by the Kapetanios et al.

(2003) test results, since ST equals 2.721 (government bond yield), 1.702 (interbank rate)

and 0.360 (term spread). The asymptotic critical value equals 1.282 at the nominal ten

percent level of significance. Hence, the linearity test is carried out using first differences,

see equation (6.15), in each case. In two cases we have to reject the null hypothesis

of linearity in favor of STAR-type non-linearity. We conclude that non-linearities are

more important for the shorter maturity and that the type of cointegration between the

government bond yield and the interbank rate is in fact non-linear.

6.8 Conclusions

In this paper we propose a two-step decision rule based on a sequential procedure in order

to classify a time series as either linear I(0), linear I(1), non-linear I(0) or non-linear I(1).

The procedure is based on the subsequent application of a stationarity test by Harris et

al. (2003) in a first step and, depending on the outcome of this test, the application of

a Wald-type linearity test by Harvey and Leybourne (2007) to either the original time

series or its first differences in a second step. In an extensive Monte Carlo study it is

shown that this procedure and two variants of it outperform a simultaneous procedure

suggested by Harvey and Leybourne (2007) in terms of better classification rates. Both

approaches, the two-step as well as the simultaneous procedure are alternatively given

with the non-linear unit root test of Kapetanios et al. (2003) or the stationarity test of

Harris et al. (2003).
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Whereas the procedure of Harvey and Leybourne (2007) consists of two simultaneously

computed test statistics our proposed two-step decision rules make use of the outcome

of a stationarity or unit root test in a first step before the appropriate linearity test is

applied in a second step. Harvey and Leybourne (2007) use a linearity test which is

robust against the degree of integration. Such a robustification may lead to power losses,

especially in small samples. Therefore, the first stage tests’ information about the degree

of integration is used to apply the linearity test either to the original series if it appears

to be I(0) or its first differences if it it appears to be I(1). It can be argued that the rates

of correct classifications often increase significantly when sequential procedures are used.

The gains are most pronounced for the case of an ESTAR-I(1) process. The two-step

procedures are also superior for the other cases in almost all situations.

As the two-step procedure has better classification rates for non-linear processes when

the Kapetanios et al. (2003) test is used and worse rates with this test if the true DGP

is linear it seems to be useful to pre-test the data by applying the robustified Wald-test

of Harvey and Leybourne (2007). This unified procedure proves to give satisfying results

in our Monte Carlo study and is therefore applied to the US government bond yield, the

one-month interbank rate and the spread between them. We find that the bond yield

is linear I(1) whereas the interbank rate is non-linear I(1) showing that non-linearities

are more important for shorter maturities. The spread between both rates is classified as

non-linear I(0). On the one hand, this result confirms the EHT as the term spread can

be treated as stationary and on the other hand, the cointegration relationship between

the government bond yield and the interbank rate appears to be non-linear.
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6.9 Appendix

Table 6.1: Data Generating Processes and Decision Rules

Type Expression

L–I(0) (1− φL)yt = εt

L–I(1) (1− L)yt = εt

NL–I(0) (1− φL)yt = δf(yt−1, γ)yt−1 + εt

NL–I(1) (1− φL)∆yt = λf(∆yt−1, γ)∆yt−1 + εt

R1 Simultaneous, Harris et al. (2003) Test & W ∗

R2 Two-step, Kapetanios et al. (2003) Test & W0/W1

R3 Two-step, Harris et al. (2003) Test & W0/W1

R4 Simultaneous, Kapetanios et al. (2003) Test & W ∗
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Table 6.2: Empirical Size and Power of Kapetanios et al. (2003) and Harris et al. (2003) Test

ESTAR–I(1) ESTAR–I(0)

tT ST tT ST

φ λ γ 1.0 5.0 10.0 1.0 5.0 10.0 1.0 5.0 10.0 1.0 5.0 10.0

0.0 0.7 0.1 1.0 2.2 4.8 63.9 87.3 92.2 99.0 99.7 99.9 0.4 3.4 8.0

0.5 1.4 3.5 4.9 63.2 87.0 92.2 84.1 95.2 97.8 0.4 3.4 8.8

0.9 1.0 4.6 6.2 63.4 87.3 93.3 90.6 97.8 99.1 0.3 4.4 8.6

0.9 0.1 1.0 5.0 9.1 63.7 86.7 92.4 94.6 97.5 98.2 0.4 3.6 8.5

0.5 1.1 3.8 7.2 65.0 89.2 93.7 15.2 36.9 52.7 0.2 3.3 8.0

0.9 1.0 4.2 8.0 68.6 91.0 94.9 26.2 55.0 70.2 0.4 4.8 10.3

1.0 -0.7 0.1 0.5 3.7 8.0 66.7 89.0 93.7 100.0 100.0 100.0 0.4 3.0 7.0

0.5 0.6 3.9 8.7 63.2 87.3 92.8 100.0 100.0 100.0 0.5 4.1 9.0

0.9 1.0 4.7 8.8 63.4 87.5 92.5 100.0 100.0 100.0 0.7 4.6 9.3

-0.9 0.1 0.4 3.8 8.0 64.6 88.7 93.2 100.0 100.0 100.0 0.7 4.0 8.2

0.5 0.6 4.4 9.1 62.9 88.1 92.8 100.0 100.0 100.0 0.6 4.1 8.1

0.9 1.0 4.5 9.2 64.4 87.0 92.7 100.0 100.0 100.0 0.5 3.5 8.2

1.5 -1.0 0.1 0.0 0.4 1.1 87.6 98.4 99.1 90.6 96.0 97.7 9.2 27.6 40.0

0.5 0.4 3.2 7.2 67.0 89.7 94.8 100.0 100.0 100.0 0.5 3.9 8.2

0.9 0.8 4.4 9.2 64.5 87.6 92.5 100.0 100.0 100.0 0.6 3.6 8.2

-1.4 0.1 0.1 1.0 3.2 76.6 94.4 96.8 100.0 100.0 100.0 1.0 6.1 12.6

0.5 0.7 4.0 8.7 64.4 87.4 92.7 100.0 100.0 100.0 0.6 3.6 8.6

0.9 1.2 5.0 9.6 65.7 88.6 93.3 100.0 100.0 100.0 0.4 4.0 9.4

LSTAR–I(1) LSTAR–I(0)

0.0 0.7 0.1 0.7 4.0 8.4 65.1 88.5 93.4 100.0 100.0 100.0 0.2 3.6 8.2

0.5 1.0 3.8 6.5 95.1 99.3 99.6 99.7 99.8 99.9 0.7 4.5 9.0

0.9 2.3 5.3 7.9 99.6 99.9 100.0 99.3 99.8 99.9 0.5 4.1 8.8

0.9 0.1 0.9 5.2 9.4 69.0 89.8 94.1 99.9 99.9 100.0 0.6 3.8 8.5

0.5 1.8 4.8 7.3 98.6 99.9 100.0 98.5 99.2 99.6 0.4 3.7 9.1

0.9 7.1 11.4 13.6 99.8 100.0 100.0 84.2 90.2 93.0 0.3 3.0 7.2
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Table 6.7: Classification Rates of R5 for linear AR

φ L–I(0) L–I(1) NL–I(0) NL–I(1)

0.00 90.6 4.5 4.9 0.0

0.30 92.4 2.6 5.0 0.0

0.50 92.0 3.5 4.5 0.0

0.70 92.0 3.6 4.4 0.0

0.90 86.7 8.6 4.3 0.4

0.95 70.1 24.2 4.6 1.1

0.99 21.8 72.6 1.4 4.2

1.00 11.2 83.2 0.9 4.7
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Table 6.8: Classification Rates of R5 for non-linear ESTAR I(0) and I(1)

φ λ γ L–I(0) L–I(1) NL–I(0) NL–I(1) L–I(0) L–I(1) NL–I(0) NL–I(1)

0.0 0.7 0.1 60.0 2.5 37.5 0.0 11.0 54.6 0.5 33.9

0.5 35.8 5.4 58.3 0.5 9.0 33.8 0.2 57.0

0.9 73.0 5.2 21.6 0.2 12.3 65.7 0.0 22.0

0.9 0.1 38.2 4.0 57.8 0.0 10.1 37.0 0.5 52.4

0.5 30.6 47.7 19.5 2.2 5.8 29.0 2.1 63.1

0.9 80.8 15.0 3.1 1.1 6.7 81.7 0.3 11.3

1.0 -0.7 0.1 8.7 0.4 90.9 0.0 4.3 8.7 0.0 87.0

0.5 23.0 1.4 75.6 0.0 8.1 22.5 0.1 69.3

0.9 50.8 2.1 47.1 0.0 10.9 47.0 0.0 42.1

-0.9 0.1 3.9 0.3 95.8 0.0 4.1 3.3 0.0 92.6

0.5 8.5 0.4 91.1 0.0 6.0 8.0 0.4 85.6

0.9 31.1 1.6 67.3 0.0 7.9 31.5 0.5 60.1

1.5 -1.0 0.1 0.0 2.9 95.6 1.5 0.4 0.0 0.0 99.6

0.5 2.4 0.3 97.3 0.0 4.0 2.4 0.2 93.4

0.9 27.1 1.5 71.4 0.0 9.2 23.0 0.1 67.7

-1.4 0.1 0.0 0.0 100.0 0.0 0.4 0.0 0.1 99.5

0.5 0.0 0.0 100.0 0.0 4.0 0.1 0.2 95.7

0.9 3.5 0.3 96.2 0.0 5.5 3.7 0.3 90.5

Table 6.8: Classification Rates of R5 for non-linear LSTAR I(0) and I(1)

0.0 0.7 0.1 88.5 3.2 8.3 0.0 10.0 78.8 0.6 10.6

0.5 5.8 0.2 94.0 0.0 1.9 6.0 0.2 91.9

0.9 0.1 0.1 99.6 0.2 1.8 0.0 0.9 97.3

0.9 0.1 80.9 2.3 16.8 0.0 9.4 76.3 0.8 13.5

0.5 0.6 0.1 98.8 0.5 3.2 0.6 0.6 95.6

0.9 0.0 0.9 91.8 7.3 1.3 0.0 1.8 96.9

Table 6.9: Empirical Application to US Interest Rates

Time Series W ∗
T tT ST W 0

T W 1
T Decision Rule R5

Bond Yield 8.695∗ −2.073 2.721∗ — 3.458 Linear-I(1)

Interbank Rate 26.231∗ −1.621 1.702∗ — 31.740∗ Non-linear-I(1)

Spread 27.181∗ −3.027∗ 0.360 5.396∗ — Non-linear-I(0)
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