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Zusammenfassung

In dieser Arbeit wird der Bethe-Ansatz herangezogen, um physikalische Eigen-
schaften zweier weithin untersuchter Systemklassen zu bestimmen: kalte Gase
und Quantenstörstellen.

In Teil I werden aus den finite-size Korrekturen des Modellsprektums die
kritischen Exponenten der Modelle am Quanten-kritischen Punkt bestimmt
und aus bekannten Resultaten der Konformen Feldtheorie das asymptotische
Verhalten von Korrelationsfunktionen ermittelt. Letzteres konnte sogar Bose-
Fermi Gasgemische in einer Raumdimension erweitert werden. Ein nichttriv-
iales Ergebnis dieser Analyse ist das Auftreten (bislang nicht beobachteter)
Singularitäten in der Impulsverteilungsfunktion. Sie wären ein klares Indiz
für starke Korrelationen in zukünftigen Experimenten.

Teil II beschäftigt sich mit der Physik von Randeffekten und Störstellen in
stark korrelierten Systemen. Die Quanten-Inverse-Streumethode bietet hier
ein leistungsfähiges Werkzeug zur Konstruktion zweier physikalisch interes-
santer Störstellenmodelle für die t–J Kette. Das erste dieser Modelle trägt
eine Anderson-artige Störstelle, deren lokales Spektrum über einen Rand-
parameter kontrolliert werden kann. Im thermodynamischen Limes kann
hier eine Sequenz gebundener Randzustände ausgemacht werden. Im Limes
schwacher Ankopplung der Störstellen an den Bulk konnte Kondo-artiges Ver-
halten nachgewiesen werden, welches durch einen Übergang von linearem Ver-
halten zu Sättigungsverhalten der Störstellenmagnetisierung charakterisiert
wird. Die Kondo-Skala ist dabei als Funktion der Störstellenparameter bes-
timmt worden. Schließlich konnte durch eine Projektionsmethode direkt ein
zweites integrables Modell mit Kondo-Störstelle erzeugt werden. Diese Projek-
tionsmethode ähnelt einer Schrieffer-Wolf Transformation zwischen Anderson-
und Kondo-Störstelle. Auch hier konnte klares Kondo-Verhalten in der Störstel-
lenmagnetisierung bei schwacher antiferromagnetischer Ankopplung an der
Bulk nachgewiesen werden, mit klarer Unterscheidung der Fixpunkt für s =
1/2 und s > 1/2 im Niederfeldlimes. Sowohl im ferromagnetischen als auch
im under-screened Sektor zeigt das System eine Divergenz der magnetischen
Suszeptibilität.
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Schlagworte: Bethe Ansatz lösbare Modelle – stark korrelierte Systeme –
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Abstract

In this thesis we use Bethe-ansatz solvable models to describe the properties of
two types of systems widely studied in contemporary physics: one-dimensional
cold gases and quantum impurities.

In Part I, we show how the computation of the finite-size spectrum from the
Bethe ansatz can be used to extract the critical exponents of the underlying
theory. Based on results borrowed from conformal field theory, we review how
the asymptotic behaviour of the correlation functions in the δ-Bose gas can
be calculated, and make the connection with the Tomonaga-Luttinger picture.
We then extend this approach to the case of several degrees of freedom through
the specific example of the one-dimensional Bose-Fermi mixture. We present
some original computations of the critical exponents of such systems and argue
on the experimental relevance of our results. Of particular interest is the
prediction, from our analysis, of non-trivial singularities in the momentum
distribution function of the mixture that should be observable as a signature
of the strongly interacting nature of the system.

In Part II, the issue of boundaries and impurities in models of correlated
electrons is considered. Within the quantum inverse scattering method, we
construct two models of impurities in the supersymmetric t–J model. We first
describe an Anderson-like impurity whose local spectrum can be controlled
through a continuous parameter without breaking integrability. Analysing
the Bethe-ansatz equations in the thermodynamic limit, we exhibit in the
spectrum a sequence of boundary bound states that we describe with pre-
cision. The impurity magnetization, susceptibility and compressibility are
calculated exactly. For small enough hybridization, we show that the system
exhibits a Kondo-like behaviour characterised by a crossover from a linear to
a saturated dependence of the magnetization. The Kondo regime is governed
by an intrinsic Kondo scale function of the impurity parameters. Finally, we
construct a model of a Kondo (spin-s) impurity still taking the t–J model as
the correlated host. We calculate the finite-size spectrum and the impurity
magnetization. For small anti-ferromagnetic Kondo coupling, the system fea-
tures a screening of the impurity at low-energy. A clear difference between the
s = 1/2 fixed point, which is a singlet state, and the s > 1/2 under-screened
case is established on behalf of an explicit calculation of the low-field impurity
magnetization.
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Preface

Motivations

It appears that it is rather difficult to give a satisfactory mathematical defi-
nition of quantum exactly solvable models, but generally one could say that
they constitute a class of models whose eigenstates, spectrum, and expecta-
tion values of interest are known exactly. Exactly solvable models are ”toy
models”, stripped down to the most accessible non-trivial form, which displays
nevertheless a rich physics. Historically, the first interacting quantum model
which has been solved exactly was the Heisenberg spin chain. To tackle this
problem, Bethe introduced an ansatz 1 which today is bearing his name [25].
Because of the nature of the interactions coupling only nearest-neighbours
sites, Bethe came up with a clever eigenfunction which is almost like a free
plane wave of the form exp(ikx), the effect of the interactions being simply
encoded into a two-body scattering phase. In fact, all integrable theories share
the property that the N -body scattering is purely elastic and the full S-matrix
is completely determined by the computation of the two-body operator. To-
day, many other quantum many body systems are known to be solvable by
some variant of the Bethe ansatz, and the method has been generalized and
expanded far beyond its original scope. But here we should say that, despite
the promise made by Bethe2 at the end of its original paper, the Bethe ansatz
technique remains limited to one-dimensional (1D) systems. Therefore, in this
thesis, we will restrict ourselves to the study of systems in 1+1 (space+time)
dimension only.

1D systems have been intensively investigated in the last decades and have
been proved to be very peculiar compared to 2D or 3D systems. In 1D, even
the smallest amount of interaction is known to have drastic effects leading
to a physics which cannot be captured by standard perturbation theory. In
the context of electronic systems, the Landau Fermi Liquid picture, based
on a one-to-one correspondence between electrons and low energy modes or
quasiparticles, breaks down in 1D. Instead, 1D electrons are conceptually de-
scribed by a Tomonanga-Luttinger (TL) which exhibits non-trivial physics;

1In German ansatz means trial function.
2”In einer folgenden Arbeit soll die Methode auf räumliche Gitter ausgedehnt werden”

9



10

most surprisingly, the electrons are no longer the central objects of the theory
but rather their charge and spin excitations, separately. This phenomenon is
known as the spin-charge separation. A lot of theoretical efforts have been
devoted to the understanding of the peculiar physics which occurs in 1D, with
the development of new and specific techniques, e.g. field theory descriptions
via the bosonization prescription [64, 62], conformal field theory (CFT) tech-
niques, and numerics. We want to emphasize, since it will be the core of
the present work, that Bethe-ansatz solvable models provide, by essence, a
non-perturbative approach to strongly correlated systems.

Not only they give us a good understanding of the elementary excitations
of such systems, but exactly solvable models are also a benchmark for the nu-
merics like numerical and density matrix renormalization group algorithms.
We would like to note that the Bethe-Ansatz solution of the XXZ spin-1/2
chain has also permitted to fix the values of the renormalized couplings enter-
ing the low-energy field theory [102, 27]. Recently, a more exotic (or better
saying unexpected) connection was pointed up: the anomalous scaling di-
mensions of certain supersymmetric gauge theories can be derived from the
spectrum of an integrable spin chain [21, 23, 22]. Thus, integrable models have
become very trendy among string theorists in the context of the now famous
AdS/CFT correspondence [104]. Last but not least, integrable models have
true realizations in nature, e.g. certain 1D magnets are accurately represented
by an Heisenberg spin chain. For these systems, in recent works [28] the Bethe
ansatz has permitted to determine the dynamical structure factor of the spin
excitations

Sαα(q, ω) =

∫

dt ei(qx−ωt)〈Sα(x, t)Sα(0, 0)〉

with a remarkable accuracy, and comparison with neutron scattering experi-
ments [93] is excellent (see Fig. 0.1)

Figure 0.1: Comparison of the dynamic structure factor S(q, ω) between the experiment
realized on the KCuF3 compound (Tennant’s group HMI Berlin) and Bethe Ansatz (Caux
and Maillet). Extracted from http://staff.science.uva.nl/∼jcaux/ABACUS.html.
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Outline

In this work we will concentrate on two specific physical situations where
the Bethe ansatz can be applied successfully: one-dimensional cold gases and
quantum impurity problems. The first part, decomposed into four chapters,
is dedicated to the study of the critical properties of one-dimensional cold
gases. After giving a short introduction to one-dimensional atomic gases in
the first chapter, we continue by showing an explicit Bethe-ansatz solution
of the δ-interacting Bose gas. Chapter 3 presents an elementary discussion
of the link between 1D models and CFT. A special emphasis is put on the
relation between the finite-size spectrum of the microscopic model on one
hand and the conformal data on the other hand, using the one-dimensional
Bose gas as an illustration. We conclude this part in Chapter 4 by presenting
the calculation of the exact critical exponents of a 1D Bose-Fermi mixture
invoking arguments from CFT introduced in Chapter 3. The second part
of the thesis, also divided into four chapters, is dealing with boundaries and
impurities in models of correlated electrons. Chapter 5 is a broad introduction
to the physics of quantum impurities and the Kondo effect. Chapter 6 contains
a rapid description of some model Hamiltonians widely used in condensed
matter, namely the Hubbard model and its descendants, the Heisenberg and
t–J models. Then, we make a short introduction to the modern language of
quantum integrability which goes under the name of the Quantum Inverse
Scattering Method (QISM). This technique is afterwards used to construct
two models of quantum impurities into a correlated host. More precisely, in
Chapter 7, we construct and examine the thermodynamical properties of an
Anderson impurity in a t–J model. Finally, in Chapter 8, we will show how
to derive an integrable model describing a Kondo impurity in a t–J chain
and quantify the influence of this impurity on the magnetic behaviour of the
system.
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”As it also may, how useful, not to say how necessary, pictures, and in

some cases, models, are wont to be, when engines, houses, ships, and

other structures are to be judged of, that they may be approved or

improved; but I shall rather take notice that not only mechanical,

mathematical, and anatomical things need schemes and pictures to

represent them clearly to our conceptions; but many things that are

looked upon as more purely physical may, in my opinion, be much

illustrated the same way.”

Robert Boyle – Of the Usefulness of Experimental Philosophy
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Chapter 1

Introduction to
one-dimensional atomic gases

In the first Part of this thesis, we want to discuss a specific realisation of
a one-dimensional (1D) system, namely one-dimensional atomic gases. The
early studies of such systems, which go back to the 1960’s, have been mostly
academic. But, in the past years, the technological advances in cooling and
trapping of atomic gases have opened the possibility to realize quasi one-
dimensional systems with tuneable strength of the interactions in optical lat-
tices. This gives rise to new opportunities for the investigation of the striking
phenomena appearing in correlated systems as a consequence of the enhanced
quantum fluctuations in reduced spatial dimensions.

1.1 Bosons

In 2003, a true one-dimensional atomic system, consisting of a Bose Einstein
condensate (BEC) of rubidium atoms arranged into a thin tube-like shape,
has been experimentally demonstrated for the first time, in the ETH lab in
Zurich [125]. The ETH researchers began by loading their condensate into an
optical lattice, an artificial configuration in which atoms are held and moved
about in 3D space by criss-crossing beams of laser light. This experiment
succeeded in extruding a condensate into 1000 small needle-like condensates,
one dimensional strings of merely 100 atoms (see Fig. 1.1). This experi-
mental breakthrough is an important step towards the understanding of low-
temperature 1D atomic systems which behave quite differently from their 2D
or 3D counterparts. For example, the 1D Bose gas with repulsive coupling
constant becomes more and more interacting as the density of atoms is de-
creased. This fact is in complete contradiction with what happens in higher
dimensions where the more atoms per unit of volume there are, the bigger is
the probability that they scatter. In the 1D case, the particles cannot exchange
without feeling the interaction. In particular, for an infinite local repulsion,
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CHAPTER 1. INTRODUCTION TO ONE-DIMENSIONAL ATOMIC

GASES

Figure 1.1: Bottom left figure: Time evolution of the 1D gas performing a dipole
oscillation in a single tube. Bottom right: Time evolution of the 1D gas after a breathing
mode has been excited. Reported by: Moritz et al. [125]

the bosons cannot pass through each other. In this scenario, the 1D Bose gas
acquires Fermi-like properties. This case corresponds to the so-called Tonks-
Giradeau [128, 63] limit of impenetrable bosons. This highly non-trivial effect
can be seen through the Bethe ansatz solution of the Lieb-Liniger [99] model
of δ-interacting bosons on a line. Note that contact interactions between the
particles is, in the context of atomic physics, an excellent approximation of
the leading s-wave scattering process. First solved at zero-temperature, the
Lieb and Liniger model was studied at finite temperature in the work of Yang
and Yang [140]. Interestingly, in one-dimension, there is no phase transition
leading to a BEC even at T = 01. Instead, the system is characterised by
continuously varying critical exponents and a power-law decay of the correla-
tion functions. The latter is generally viewed as the appanage of Tomonaga-
Luttinger (TL) liquids realized by correlated electrons in 1D lattices. And
indeed, Haldane [73] has shown that interacting bosons are, just like fermions,
a TL in one dimension. A recent experimental achievement of the 1D gas
in the deep Tonks-Girardeau regime has been made by Paredes et al. [117].
In this very experiment, the correlation functions of the system such as the
momentum distribution function have been measured directly and the data
confirm the ”fermionized” theory (see also the work of Kinoshita et al. [84]).

1Remember that BEC is a phase transition which appears in the 3D case even in the
absence of any interaction.
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1.2 Fermions and Bose-Fermi mixtures

New correlation effects appear when the particles considered have internal de-
grees of freedom like fermions with spin. Extensive theoretical studies exist
for 1D Fermi gases due to their equivalence with TL liquids [64, 41]. Re-
markably, the δ-interacting fermion gas is also exactly solvable [47, 60, 138],
but one has to work harder to account for the spin degrees of freedom. The
attractive case is particularly interesting because bound fermion pairs can be
created. For strong attraction, the bound states behave like tightly bound
molecular dimers (condensation-like behaviour), but in the weakly attractive
regime, the system is described by Cooper-like pairs (superconductivity be-
haviour). The attractive fermi gas is thus a playground for investigating the
famous BEC-BCS transition.

Given the ongoing experimental progresses in the trapping of fermions in
low dimensions, the 1D interacting fermion model may soon be experimentally
realized. Then the door is open to realize even more exotic systems. For exam-
ple, in cold gases containing different constituent atoms Bose-Fermi mixtures
can be realized [110, 96]. In fact, a Bose-Fermi mixture in a three-dimensional
optical lattice has recently been realised [72].





Chapter 2

The one-dimensional δ-Bose
gas

For the first part of this thesis dealing with critical properties of one-dimensional
gases, an explicit Bethe Ansatz solution is sufficient to understand what we
need. In the second part, when dealing with correlated electrons models and
integrable impurities, a more general and powerful (and also more mathemat-
ically involved) framework will be introduced: The Quantum Inverse Scatter-
ing Method (QISM). This technique is an algebraic version of the traditional
Bethe Ansatz. But first let us see through a simple example the ideas behind
the coordinate Bethe Ansatz method (as opposed to the algebraic one).

2.1 Construction of exact eigenstates

The model introduced by Lieb and Liniger [99] is given by the following Hamil-
tonian

H = −
N∑

i=1

∂2

∂x2
i

+ 2c
∑

i<j

δ(xi − xj) , (2.1.1)

or, in second quantization,

H =

∫

dx{∂xΨ†∂xΨ + cΨ†Ψ†ΨΨ} (2.1.2)

where the field Ψ is a scalar bosonic field obeying the usual commutation
relation

[Ψ(x),Ψ†(y)] = δ(x − y). (2.1.3)

This model describes a system of bosons on a line scattering via contact (δ)
interactions. The interaction strength is controlled by the parameter c that
can be positive in the case of repulsive bosons or negative, attractive bosons.
The first thing to notice is that the Hamiltonian (2.1.2) commutes with the
number operator N =

∫
Ψ†Ψ. Thus every sector a the Hilbert space of the

25



26 CHAPTER 2. THE ONE-DIMENSIONAL δ-BOSE GAS

theory can be classified by their occupation number. This provides us with a
natural vacuum |0〉 of the underlying Fock space.

In the first paragraphs of this section we will consider the case of attractive
interaction among the bosons meaning that we will choose c > 0. In the last
paragraph we will comment briefly on how to treat the repulsive case, namely
c < 0.

2.1.1 2-particle scattering

Let us start by considering the simple case of two interacting bosons. The free
eigenstates of the system are simply constructed by acting with the creation
operator a†k =

∫
dxeikxΨ†(x) on the Fock vacuum, i.e.

|ψ(0)(k1, k2)〉 =

∫

dx1dx2 e
i(k1x1+k2x2)Ψ†(x1)Ψ

†(x2)|0〉 . (2.1.4)

To first correction to the free two-boson state can be written, in perturbation
theory, as

|ψ(1)(k1, k2)〉 =

∫
dp1

2π

dp2

2π

4c(2π)δ(k1 + k2 − p1 − p2)

k2
1 + k2

2 − p2
1 − p2

2 + iǫ
a†p1

a†p2
|0〉

=
2ic

k1 − k2

∫

dx1dx2θ(x1 − x2)e
i(k1x1+k2x2)Ψ†(x1)Ψ

†(x2)|0〉 ,

(2.1.5)

with the choice k1 < k2. For the model (2.1.2) the full diagrammatic expansion
of the two-body scattering (see Fig. 2.1) can be re-summed explicitly as a
geometric series:

1 + 2

(
ic

k1 − k2

)

+ 2

(
ic

k1 − k2

)2

+ · · · =
k2 − k1 − ic

k2 − k1 + ic
≡ ei∆(k2−k1) (2.1.6)

with

∆(k) = −i ln
(
k − ic

k + ic

)

. (2.1.7)

From Eq. (2.1.6) one can deduce the relation between the in and out states

|ψ(k1, k2)〉in = ei∆(k1−k2)|ψ(k1, k2)〉out . (2.1.8)

Here we recognize the two-body S-matrix to be ei∆. Notice that the states
|ψ(k1, k2)〉 we just constructed are perfectly well normalized states. For con-
venience, it is sometimes useful to introduce an alternative normalization, and
consider the state

|Φ(k1, k2)〉 =

(

1 +
ic

k2 − k1

)

|ψ(k1, k2)〉in

=

∫

dx1dx2

(

1 +
ic

k2 − k1

)

ǫ(x1 − x2)e
i(k1x1+k2x2)Ψ†(x1)Ψ

†(x2)|0〉 ,

(2.1.9)
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= + + + + · · ·

Figure 2.1: The sum of Feynmann graphs appearing in the two-body scattering ampli-
tude.

which is also an eigenstate of the Hamiltonian (2.1.2). The Schrödinger equa-
tion satisfied by |Φ(k1, k2)〉 gives us the energy of the two-body state:

H|Φ(k1, k2)〉 = (k2
1 + k2

2)|Φ(k1, k2)〉 . (2.1.10)

2.1.2 N-particle scattering

So far, the two-particle eigenfunctions were easily constructed. The power
of the Bethe Ansatz comes from the fact that the N -particle states can be
constructed as a rather natural generalization of the two-body case. Using
the unnormalized version, the Bethe Ansatz reads

|Φ(k1, ..., kN )〉 =

∫
(

N∏

i=1

eikixidxi

)
∏

i<j≤N

(

1 − ic

ki − kj
ǫ(xi − xj)

)

×

× Ψ†(x1)...Ψ
†(xN )|0〉 (2.1.11)

and one can verifies that this is indeed an eigenstate of H through

H|Φ(k1, ..., kN )〉 =

(
N∑

i=1

k2
i

)

|Φ(k1, ..., kN )〉 (2.1.12)

for c > 0 (repulsive interaction).

2.1.3 The case of attractive interaction

For attractive interaction, i.e. c < 0, it sounds physically plausible that bound
states can be formed and are energetically stable. Within the Bethe Ansatz
description, such bound states may be constructed by letting the ki become
complex1. To obtain a N -body bound state we keep the total momentum

1This statement is in fact quite general and will come back in part II of this thesis in
the context of open chains of correlated electrons.



28 CHAPTER 2. THE ONE-DIMENSIONAL δ-BOSE GAS

Re k

Im k

ic

Figure 2.2: Illustration of the N -string configuration.

K =
∑N

i=1 ki real and arrange the ki to be spaced by ic on the imaginary axis
(see Fig. 2.2):

k1 =
K

N
+

1

2
(N − 1)ic

k2 =
K

N
+

1

2
(N − 3)ic

...

kN =
K

N
− 1

2
(N − 1)ic .

(2.1.13)

Such a mode configuration is called in the literature an N -string. Taking
(2.1.13) into consideration in Eq. (2.1.11) leads to the following N -particle
bound state wave function:

ψBS(x1, . . . , xN ) = exp




1

2
c
∑

i<j≤N

|xi − xj|



 . (2.1.14)

The energy of this bound state is

E =
N∑

i=1

k2
i =

1

N
K2 − N(N2 − 1)

12
c2 . (2.1.15)

2.2 The many-body ground state

In this section, we should go back to our analysis of repulsive interactions and
set c > 0. We will, from now on, impose Periodic Boundary Conditions (PBC)
to the system, meaning that we will consider a finite particle density arranged
on a ring of length L (see Fig. 2.3). The consequent (spatial) periodicity of
the many-body wave-function

Ψ(−L/2, x2, ..., xN ) = Ψ(L/2, x2, ...xN ) (2.2.16)
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x1

x2 · · ·

xN

Figure 2.3: Bosons arranged on a ring of length L.

restricts the possible values of the ki. In fact, the set of {ki}i=1,...,N entering
(2.1.11) and compatible with the PBC must satisfy the so-called Bethe Ansatz
Equations (BAE)

exp

(

−iki
L

2

)
∏

j 6=i

(

1 +
ic

ki − kj

)

= exp

(

ikj
L

2

)
∏

j 6=i

(

1 − ic

ki − kj

)

(2.2.17)

or, written in a more compact form,

exp(ikiL) =
∏

j 6=i

exp(i∆(ki − kj)) . (2.2.18)

At this point, a very useful and standard procedure consists in taking the
logarithm of the BAE (2.2.18). This gives

kiL =
∑

j 6=i

∆(kj − ki) + 2πni , (2.2.19)

where ni is integer (resp. half-integer) for N odd (resp. even).
NB: In order to take the log of Eq. (2.2.18) one needs to specify a branch

cut for the log appearing in the definition of ∆(k) (2.1.7). Actually, a change
in the branch is equivalent to a redefinition of the ni. We will adopt the
convention that ∆(k) → 0 as k → ∞ such that ∆(k) is a smooth function
defined on the real axis.

The logarithmic BAE (2.2.19) provide us with a suitable description of the
spectrum. Remarkably, this description, in terms of the quantum numbers ni,
is of fermionic nature. This may seem in contradiction with the fact that our
original basis was the Fock basis of free bosons, not fermions. To see how this
”fermionization” arises, let us consider the simple example of two particles in
a box. The two equations (2.2.19) may be added and subtracted to give the
condition that the total momentum k1 + k2 must be 2π/L times an integer,
while the relative value k12 ≡ k1 − k2 must satisfy

k12L = ∆(−k12) − ∆(k12) + 2π(n1 − n2)

= −4 arctan

(
k12

c

)

+ 2π(n1 − n2) , (2.2.20)
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where −π/2 < arctan < π/2. Eq. (2.2.20) has a solution k12 for each choice
of (n1 − n2). But for n1 = n2, the solution is k12 = 0 and the corresponding
state (2.1.11) vanishes identically. Thus the state n1 = n2 is excluded as it is
for free fermions. In fact, taking the limit c → ∞ (the so-called hard-core or
impenetrable bosons limit) in Eq. (2.2.20) shows that the spectrum is identical
to that of free fermions. A generalisation to N -body states holds. To conclude
on this point, we can say that the hard-core repulsive interaction has the same
effect on the density of states as the Pauli exclusion principle has in a system
of fermions. Thus the ground state has the structure of a ”Fermi sea” which
is realised by choosing the ni as closely spaced as possible, i.e. ni+1 = ni + 1.

In the thermodynamic limit, L → ∞ while N/L being finite, the Bethe
roots become dense and we can introduce a so-called counting function x(k)
defined on R which interpolates the numbers ni/L. The logarithmic BAE can
be rewritten

Lk(x) +
∑

j

∆(k(x) − kj) = 2πLx . (2.2.21)

Differentiating (2.2.21) with respect to the now continuous variable k, we
obtain

1 +
1

L

∑

j

K(k(x) − kj) = 2πρ(k(x)) (2.2.22)

where

ρ(k(x)) =
dx(k)

dk
(2.2.23)

is the root density. Taking L → ∞, all the modes will fill the volume k ∈
[−kF , kF ] where kF = limλN is the ”Fermi momentum”. Under this condition,
Eq. (2.2.22) becomes an integral equation

2πρ(k) = 1 +

∫ kF

−kF

dk′K(k − k′)ρ(k′) (2.2.24)

for the distribution of ki

ρ(ki) =
1

L(ki+1 − ki)
. (2.2.25)

The kernel entering Eq. (2.2.24) is defined by

K(k) ≡ ∆′(k) =
2c

k2 + c2
. (2.2.26)

The density of particle D and the ground state energy per site are then ex-
pressed as integrals over ρ(k):

D ≡ N

L
=

∫ kF

−kF

dk ρ(k) (2.2.27)

ǫ0 ≡ E0

L
=

∫ kF

−kF

dk k2ρ(k) (2.2.28)
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Re k

Im k

kh kpkF−kF

Figure 2.4: Particle-hole excitation above the pseudo-Fermi sea in the attractive 1D Bose
gas. The hole created in the Fermi sea has momentum kh and the particle has momentum
kp > kF . In reaction, the Fermi sea will rearrange itself leading to a blackflow of the
momentum above the hole (arrow).

2.3 Elementary excitations

The excitations above the ground state consist of quasi-particles which are
filled above the ”Fermi” surface and quasi-holes which are empty modes below
the Fermi level. Let us evaluate, as an illustration, the energy of a single
particle-hole excitation formed by removing a mode from below the Fermi
surface, at k = kh, and placing it above the Fermi level, at k = kp (see Fig.
2.4). In response to this excitation, the Fermi sea will rearrange itself. This
effect will be reflected in a slight modification of the PBC: each mode in the
sea shifts only by an amount of order 1/L, but since the number of modes is
of order L, the shift or ”backflow” of the sea makes a finite contribution to
the excitation energy. Denoting the sea modes of the excited state by k′i, we
obtain the modified PBC:

k′iL =
∑

j 6=i

∆(k′j − k′i) + ∆(kp − k′i) − ∆(kh − k′i) + 2πni . (2.3.29)

Subtracting Eq. (2.3.29) from the corresponding ground-state PBC gives

(k′i − ki)L =
∑

j

[∆(k′j − k′i)−∆(kj − ki)]+ ∆(kp − k′i)−∆(kh − k′i) . (2.3.30)

As L → ∞, the left-hand side of Eq. (2.3.30) becomes a continuous function
which we denote w(k). In this limit, Eq. (2.3.30) reduces to an integral
equation

w(k) =

∫ kF

−kF

dk′K(k−k′)[w(k′)−w(k)]ρ(k′)+∆(kp−k)−∆(kh−k) . (2.3.31)

Using (2.2.24) and defining w(k)ρ(k) ≡ F (k), Eq. (2.3.31) simplifies to

2πF (k) =

∫ kF

−kF

dk′K(k − k′)F (k′) + ∆(kp − k) − ∆(kh − k) . (2.3.32)
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Finally, the excitation energy E−E0 ≡ E1 is found by subtracting eigenvalues,

E1 = k2
p − k2

h +
∑

k∈sea

(k′2i − k2
i )

= k2
p − k2

h + 2

∫ kF

−kF

dk kF (k) . (2.3.33)

Thus, the excitation energy may be regarded as the sum of the bare energy
of the particle and hole and a blackflow energy of the sea, the latter being
expressed by the integral over the function F (k) in Eq. (2.3.33).

This concludes our summary of the results initially derived in [99, 98].
The key-steps of the solution of the Lieb-Liniger model (2.1.2) have been
presented, and the elementary excitations have been identified. We should
make use of this basic knowledge to understand the finite-size spectrum of the
system (Chap. 3), and to tackle more complicated situation involving internal
degrees of freedom (Chap. 4).



Chapter 3

Finite-size scaling and
conformal field theory

It is well known that 1+1 dimensional quantum systems can be described, at
criticality, by a two-dimensional Conformal Field Theory [24]. In the case of
one-dimensional exactly solvable models, there is a one-to-one correspondence
between the spectrum of low-lying excitations, computed with arbitrary preci-
sion from the Bethe ansatz, and the universality class of the theory describing
the system at a large scale. Therefore, the analysis of the finite-size spectrum
of a Bethe ansatz solvable model can provide us with some precious informa-
tion regarding the asymptotic behaviour of correlation functions within the
CFT.

3.1 Universality and finite-size spectrum

For periodic boundary conditions, the finite-size scaling behaviour of a 1+1
dimensional quantum model has been proved to be [2, 26]:

E0 − Lǫ0 = − π

6L
v c + o(1/L) (3.1.1)

where v is the velocity of light of the theory (more generally the speed of the
massless mode) and c is the notorious central charge of the underlying CFT
that gives the universality class. For the case of open boundary conditions,
notice the factor 1/4 in the prefactor in front of the c-term:

E0 − Lǫ0 − f0 = − π

24L
v c + o(1/L) . (3.1.2)

To be precise, in Eq. (3.1.1) and (3.1.2), E0 is the ground state energy of
the finite system, ǫ0 is the energy density of the ground state of the infinite
system and f0 is the surface energy of the system with open boundaries.

33



34
CHAPTER 3. FINITE-SIZE SCALING AND CONFORMAL FIELD

THEORY

z

Im z

Re z

L
z 7→ w(z)

w

Im w

Re w

Figure 3.1: Conformal mapping z 7→ w(z) = exp(2πz/L) from the strip −L < Im z ≤ 0
onto the full complex plane.

3.2 Correlation functions

At criticality, i.e. where the theory becomes conformal invariant, a power-law
decay of the two-point functions is expected,

〈O†(z1, z̄1)O(z2, z̄2)〉 =
C

(z1 − z2)2∆
−(z̄1 − z̄2)2∆

+ . (3.2.3)

This fact is characteristic of a massless theory. The presence of any internal
scale, such as a gap for the excitations modes, will lead, instead, to having
correlation functions decaying exponentially fast. Notice that the two-point
function (3.2.3) is the product of an holomorphic and anti-holomorphic part.

For simplicity, let us consider only the holomorphic part. Under a con-
formal mapping1 z 7→ w = w(z), the (holomorphic part of the) two-point
function changes to

〈O†(z1)O(z2)〉 →
1

(w(z1) −w(z2))2∆
−

(
∂w

∂z1

∂w

∂z2

)∆−

. (3.2.4)

A particularly useful conformal mapping is given by w(z) = exp(2πz/L).
This maps the strip −L < Im z ≤ 0 onto the full complex plane (see Fig.
3.1). This way, one can compute the correlation functions of finite quantum
chains of length L or finite temperature correlators defining T = i/L from the

1In 2D, the group of conformal transformations is infinite-dimensional and is represented
by all analytic functions in the complex plane.
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infinite system or zero temperature formula:

〈O†(z1)O(z2)〉 =

[
π

L sinh( π
L(z1 − z2))

]2∆−

. (3.2.5)

For a chain of length L,

z = τ − ix , −∞ < τ <∞ , −L < x ≤ 0 , (3.2.6)

we can expand (3.2.5) in the asymptotic limit τ12 = τ1 − τ2 ≪ 1. One obtains

〈O†(z1, z̄1)O(z2, z̄2)〉 →
(

2π

L

)2d∑

n,m

cn,m exp

(

−2πv

L
(d+ n)τ12

)

×

exp

(

−2πi

L
(s+m)x12

)

(3.2.7)

where we have introduced the scaling dimension d = ∆+ +∆− and the confor-
mal spin s = ∆− − ∆+. Alternatively a similar expression for the two-point
function can be derived from a transfer matrix formalism,

〈Ω|O†(z1, z̄1)O(z2, z̄2)|Ω〉 =
∑

q

〈Ω|O†(τ1, x1)|q〉O(τ2, x2)|Ω〉

=
∑

q

exp(−Eqτ12 − iPqx12)|〈q|O(0)|Ω〉|2 ,

(3.2.8)

where |Ω〉 is the ground state of the Hamiltonian (PBC) and |q〉 are eigenstates
with energy Eq and momentum Pq. Comparing (3.2.7) with (3.2.8) we can
read off the key relations between the scaling dimensions and spin of the
CFT on one hand, and the finite-size corrections of the spectrum (taking into
account the low-lying states) on the other hand:

EN+,N−

∆± − E0 =
2πv

L
(d+N+ +N−) + o(1/L) ,

PN+,N−

∆± − P0 =
2π

L
(s+N+ −N−) + 2DkF . (3.2.9)

Here N+, N− are non-negative integers and 2D is the macroscopic contribu-
tion to the momentum of the state O|Ω〉 in units of the ultra-violet cut-off kF .
Eqs. (3.2.9) capture a very important result: Every operator within the CFT
is in one to one correspondence with a tower of excited states labelled by N±.
In particular, after identifying the lowest energy state of such a tower to be
N± = 0, one can extract the scaling limit of a primary field φ correlator to be

〈φ∆±(x, τ)φ∆±(0, 0)〉 =
exp(2iDkFx)

(vτ + ix)2∆+(vτ − ix)2∆−

=
exp(2iDkFx)

(v2τ2 + x2)d

(
vτ − ix

vτ + ix

)s

. (3.2.10)
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3.3 Example: correlation functions for the Bose
gas

3.3.1 Finite-size corrections

In Chap. 2, we have studied the one dimensional Bose gas with δ-interaction.
We have presented the results of Lieb and Liniger and their main achievement
was the derivation of the exact ground state of the model as well as the
classification of the low-lying excitations in the system. At least for the case
of zero-temperature, we were able the evaluate physical quantities such as the
density of particles, the energy and the total momentum in the thermodynamic
limit when L → ∞. In this paragraph we will include finite-size corrections
to the energy and momentum.

Let us start with the evaluation of the finite-size corrections to the ground
state energy. Following this purpose, we shall include a chemical potential to
the original Hamiltonian

Hµ =

∫

dx {∂xΨ†∂xΨ + cΨ†Ψ†ΨΨ − µΨ†Ψ} . (3.3.11)

The total energy is then shifted due to the presence of the chemical potential
µ

E =
∑

j

ǫ0(kj) with ǫ0(kj) = k2
j − µ (3.3.12)

and the momentum is still

P =
∑

j

p0(kj) with p0(kj) = kj . (3.3.13)

Using the Euler-Maclaurin formula the equation for the density is

ρL(k) =
1

2π

∫ kF

−kF

dk′K(k − k′)ρL(k′)

+
1

2π

[

p′0(k) +
1

24L2ρ(kF )

(
K ′(k − kF ) −K ′(k + kF )

)
]

. (3.3.14)

The function ρL(k) should be used when changing the summation into a in-
tegral in Eq. (3.3.12). This gives

E = L

∫ kF

−kF

dk ǫ0(k)ρ(k)

+
1

48πLρ(kF )

∫ kF

−kF

dk ǫ(k)
(
K ′(k − kF ) −K ′(k + kF )

)
− ǫ′0(kF )

12Lρ(kF )
.

(3.3.15)
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Introducing

ǫ′(kF ) = ǫ′0(kF ) +
1

2π

∫ kF

−kF

dkK ′(k − kF )ǫ(k) , (3.3.16)

we can rewrite Eq. (3.3.15) as

E = L

∫ kF

−kF

dk ǫ0(k)ρ(k) −
π

6L
vF + · · · (3.3.17)

where vF is the ”Fermi velocity”,

vF =
1

2πρ(kF )

∂ǫ

∂k

∣
∣
∣
∣
k=kF

. (3.3.18)

Comparing Eq. (3.3.17) with (3.1.1) allows to identify an underlying c = 1
CFT.

Now, considering low-lying excitations of the type described in Chap. 2,
we can distinguish three physical processes: (1) The integer nj in (2.2.19)
corresponding to the particle on the Fermi surface will be changed by a finite
amount N+ (at k = kF ) and N− (at −kF ). (2) The number of particles can
vary of ∆N . (3) A certain number of particles (d) can undergo a backscatter-
ing process under which they jump from one Fermi point (−kF ) to the other
(+kF ). It can be proved (cf [88]) that the changes in energy and momentum
corresponding to these processes are

∆E =
2πvF

L

[(
∆N

2Z

)2

+ (Zd)2 +N+ +N−
]

∆P = 2kF d+
2π

L
(N+ −N− + ∆Nd)

(3.3.19)

where Z is the value of the dressed charge,

Z(k) = 1 +
1

2π

∫ kF

−kF

dk′K(k − k′)Z(k′) , (3.3.20)

on the Fermi surface (Z ≡ Z(±kF )). It will be convenient to introduce θ =
2Z2. The parameter θ can be expressed in terms of the density D and the
Fermi velocity as

θ =
4πD

vF
. (3.3.21)

Remember that for the one-dimensional Bose gas D = kF /π. Comparing
Eq. (3.3.19) with (3.2.9) we can infer that the conformal dimensions of the
one-dimensional Bose gas theory are given by

2∆± = 2N± +

(
∆N

2Z ± Zd
)2

. (3.3.22)



38
CHAPTER 3. FINITE-SIZE SCALING AND CONFORMAL FIELD

THEORY

3.3.2 Boson Green’s function

First, let us consider the asymptotic behaviour of the boson Green’s function
defined as

G(x, τ) = 〈Ψ(x, τ)Ψ†(0, 0)〉 . (3.3.23)

G(x, τ) can be interpreted as the response of the system to adding a particle at
the origin. Thus, we have ∆N = 1 in this case. Using (3.2.7), the asymptotic
limit of the boson Green’s function is then given by

G(x, τ) =
∑

d,N±

A(d,N±)e−2idkF x

(vτ + ix)2∆+(vτ − ix)2∆− , (3.3.24)

where ∆± are defined by Eq. (3.3.22), d and N± being integers. The leading
contribution to the asymptotics corresponds to the slowest decaying term in
(3.3.24), i.e. the minimum value of ∆±; the other terms are corrections. The
leading term is obtained by setting N± = d = 0, giving

G(x, τ) → A|vτ − ix|−1/θ . (3.3.25)

3.3.3 Density correlations

Another quantity which of relevance experimentally is the density-density cor-
relator 〈n(x, τ)n(0, 0)〉 where n(x, τ) ≡ Ψ†(x, τ)Ψ(x, τ). Since the operator
n(x, τ) conserves the number of particles in the system, we should set ∆N = 0
in the formula 3.3.22. We obtain

〈:n(x, τ)n(0, 0):〉 = 〈n(x, τ)n(0, 0)〉 − 〈n(0, 0)〉2

→ A

(vτ − ix)2
+

A

(vτ + ix)2
+
A3 cos 2kFx

|vτ − ix|θ .

(3.3.26)

The first term corresponds to d = 0, N+ = 0, N− = 1, the second term to
d = 0, N+ = 1, N− = 0 and the last term has quantum numbers d = ±1, N+ =
N− = 0. At finite coupling constant, c < ∞, the last term has θ > 2 and
therefore decays faster than the other ones.

NB: The results (3.3.24) and (3.3.26) obtained from this CFT approach
coincide with the results coming from the Tomonaga-Luttinger (TL) liquid
description of the one-dimensional Bose gas [73]. In the latter approach, the
large-distance behaviour of the boson Green’s function is controlled by the TL
parameter Kb characterizing the theory. More precisely, we have

G(x) ∼ |x|−1/2Kb . (3.3.27)
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3.3.4 Finite temperature

The finite-temperature correlation functions can be obtained with the help
of the conformal mapping we have introduced above (3.2.5). Doing so, the
asymptotics of the Green’s function and the density correlator are

〈Ψ(x, τ)Ψ(0, 0)〉T = B1

∣
∣
∣
∣
∣

πT
v

sinh πT
v (x+ ivτ)

∣
∣
∣
∣
∣

1/θ

+ · · · (3.3.28)

and

〈:n(x, τ)n(0, 0):〉 = ReB2

(
πT
v

sinh πT
v (x+ ivτ)

)2

+B3

∣
∣
∣
∣
∣

πT
v

sinh πT
v (x+ ivτ)

∣
∣
∣
∣
∣

θ

cos(2kFx) + · · · (3.3.29)

3.3.5 Experimental considerations

To conclude, we would like to emphasize that the calculation of correlation
functions within the Lieb-Liniger model is not simply a piece of mathemati-
cal physics but has some experimental relevance. A quantity like the Green’s
function, or more precisely its Fourier transform, the momentum distribu-
tion, can be measured directly in time-of-flight experiments or using Bargg
spectroscopy [117, 44]. Another setup for the measurement of various density
correlation functions has been recently proposed for the identification of dom-
inant correlations in the atomic gas [8, 106]. In Fig. 3.2, we show the results
of the experiment of Paredes et al. [117], where the momentum distribution of
a 1D Bose gas in the Tonks-Girardeau (TG) regime of dominant interactions
has been measured. In the TG regime, Kb = 1, and, according to Eq. (3.3.27),
the low-p behaviour of the density should be p−1/2. This feature is observed
in Fig 3.2.a where the slop of 1/2 line fits the data for small p in the log-log
plot. This is in the absence of any confinement trap in the axis of the atomic
tube. In Fig. 3.2.b–f, the depth of the axial trap is increased. The trap has
the effect of breaking the integrability of the original Lieb-Liniger model and
deviation from the scaling prediction starts to be observed. Nevertheless, if
the axial harmonic trap would vary smoothly along the tube, the universality
class of the model with the harmonic term taken into account should not differ
from the one of the Lieb-Liniger. For long enough tubes and large numbers of
particles, universal results should be recovered. For the case of small samples,
ab-initio theories including the trap and finte-size effects are useful to compare
with current data.
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Figure 3.2: Momentum profiles of the 1D quantum Bose gas for different axial lattice
depths Vax. From (a) Vax = 0 to (f) Vax = 18.5 in units of the recoil energy. Extracted
from [117] c©2004 Nature Publishing Group



Chapter 4

Critical one-dimensional
Bose-Fermi mixtures

Theoretical studies of correlation functions in cold atomic gases have been
performed both using analytical methods, e.g. bosonization [64] combined
with exact results from integrable models such as the Bose-gas with repulsive
δ-function interaction (see [99, 98] and Chap. 3), and numerically. Only re-
cently, theoretical investigations have been extended to Bose-Fermi mixtures:
some correlation functions have been calculated numerically in the strong cou-
pling limit [30, 76] where the problem simplifies due to the factorization of the
many-particle wave function (see e.g. [114]). For analytical results on these
systems one has to go beyond mean-field approximations and use methods
which can capture the strong quantum fluctuations in 1D systems. The phase
diagram and certain correlation functions of atomic mixtures have been stud-
ied in the Luttinger liquid picture [29, 107]. Without further input, however,
these results are limited to the weakly interacting regime since the TL param-
eters which determine the low-energy theory cannot easily be related to the
microscopic parameters describing the underlying gas. Therefore, instabili-
ties predicted within this approach may not appear in a specific realizations
[92, 76, 17].

In this chapter, we establish the relation between the TL and the mi-
croscopic parameters for an integrable Bose-Fermi mixture [92]. We employ
methods from conformal field theory (CFT) introduced in Chap. 3 to de-
termine the asymptotic (long distance, low-energy) behaviour of correlation
functions in the model from a finite size scaling analysis of the exact spectrum
obtained by means of the Bethe ansatz. This approach gives the complete
set of critical exponents of the model as a function of the parameters in the
microscopic Hamiltonian (see e.g. [49, 50, 82, 41] for applications to 1D cor-
related electrons). As an application we compute the momentum distribution
function of bosons and fermions in the atomic mixture as a function of their re-
spective densities and the effective coupling constant. It should be emphasized

41
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that our results can be expected to describe the generic (universal) low-energy
behaviour of atomic mixtures. Additional interactions – as long as they do
not lead to a phase transition – will merely change the anomalous exponents
but not the qualitative behaviour of the correlation functions.

4.1 Description of the model

The 1D Bose-Fermi mixture of N = Mf +Mb particles with repulsive inter-
action (c > 0) on a line of length of length L subject to periodic boundary
conditions is described by the integrable Hamiltonian [92]

H = −
N∑

i=1

∂2

∂x2
i

+ 2c
∑

i<j

δ(xi − xj) . (4.1.1)

Here Mf = M↑ +M↓ of the particles are fermions carrying spin σ =↑, ↓ and
Mb of them are bosons. In second quantization, the Hamiltonian looks like

H =

∫ L

0
dx(∂xΨ†

b∂xΨb + ∂xΨ†
f∂xΨf )

+ c

∫ L

0
dx
(
Ψ†

bΨ
†
bΨbΨb +

∑

σ=↑,↓
Ψ†

bΨ
†
f,σΨf,σΨb

)
. (4.1.2)

where Ψ†
b creates a boson while Ψ†

f creates a fermion. Ψ†
b (resp. Ψ†

f ) obey
the standard commutation (resp. anti-commutation) relations. NB: For the
model (4.1.1) to be integrable, the masses of all particles should be the same
as well as the boson-boson and boson-fermion interaction strengths. Although
those conditions seem somewhat restrictive, the exactly solvable model is rel-
evant to current experiments and can be used to check the validity of different
approximate approaches.

The many-particle eigenstates of (4.1.1) are parametrized by the solutions
of the Bethe ansatz equations (BAE) [92]

exp(iq
(0)
j L) =

M1∏

k=1

ec(q
(0)
j − q

(1)
k )

M0∏

j=1

ec(q
(1)
k − q

(0)
j )

M2∏

ℓ=1

ec(q
(1)
k − q

(2)
ℓ ) =

M1∏

k′ 6=k

e2c(q
(1)
k − q

(1)
k′ )

M1∏

k=1

ec(q
(2)
ℓ − q

(1)
k ) = 1 (4.1.3)
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where ea(x) = (x+ ia/2)/(x − ia/2) and M0 = N , M1 = N −M↑, M2 = Mb.
The corresponding eigenvalue of (4.1.1) is

E =
N∑

j=1

(q
(0)
j )2 . (4.1.4)

In the thermodynamic limit L → ∞ with Mi/L kept fixed, the root configu-
rations {q(i)} of Eqs. (7.2.7) can be described by distribution functions ρi (cf
Chap. 2) which, as a consequence of (7.2.7) are solutions to [92]





ρ0(k)
ρ1(λ)
ρ2(µ)



 =





c
2π
0
0



+





0
∫

1 a1 0
∫

0 a1 −
∫

1 a2

∫

2 a1

0
∫

1 a1 0



 ∗





ρ0(k)
ρ1(λ)
ρ2(µ)



 . (4.1.5)

Here we used the notation
∫

j
k ∗ f(x) ≡

∫ Qj

−Qj

dy k(x− y)f(y) (4.1.6)

and the functions entering the matrix kernel in (4.1.5) are defined by 2πan(x) =
4n/(4x2 + n2). Just like for the case of the simple Bose gas in one-dimension
(Chap. 2), the densities of the differents species in the mixture are expressed
by an integral over the ρi

N

L
=

∫ Q0

−Q0

dk ρ(0)(k)

M↓ +Mb

L
=

∫ Q1

−Q1

dλρ(1)(λ)

Mb

L
=

∫ Q2

−Q2

dµρ(2)(µ)

(4.1.7)

as well as the energy
E

L
=

∫ Q0

−Q0

dk k2ρ(0)(k) . (4.1.8)

Note that the relations (4.1.7) determine the boundaries Qi of the above inte-
gral equations (4.1.5). The dimensionless coupling strength γ = Lc/N controls
the various interacting regimes of the system, from γ = 0, the free fermions
and bosons case to γ ≫ 1, the strongly interacting regime. For later, use we
shall also introduce the fraction of bosons in the system, α = Mb/N .

4.2 Finite-size spectrum

Generically, there are three modes of collective elementary excitations, one
for each specie constituting the Bose-Fermi mixture, above the many-particle
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ground state of (4.1.1). Their dispersion relation ǫi(k) is linear at low energies
with different sound velocities vi = ∂ǫi/∂k, i = 0, 1, 2 [17]. As we have seen
in Chap. 3, these quantities determine the finite-size scaling behaviour of the
ground state energy

E0 − Lǫ∞ = − π

6L

∑

i

vi + o

(
1

L

)

. (4.2.9)

The physical excitations of the system are combinations of the elementary
ones. Due to the interacting nature of the system, the different modes are
coupled and excitations in one of the modes shift the energies in the other
ones. In general, this effect can be described in terms of generalized sus-
ceptibilities which may be determined in an experiment or numerically from
studies of small systems [41]. It is possible to describe the coupling of the
modes through the dressed charge that we already encountered in Chap. 2
in the calculation of the finite-size spectrum of the 1D Bose gas. In the case
of the Bose-Fermi mixture, and in general for models with internal degrees of
freedom (e.g. models of correlated electrons [49, 50, 82]), the dressed charge
takes the form of a matrix satisfying

Z(X) = 1+





0
∫

1 a1 0
∫

0 a1 −
∫

1 a2

∫

2 a1

0
∫

1 a1 0



 ∗ Z(X) , (4.2.10)

where X = (k, λ, µ). We should from now on introduce the matrix Z which
is the dressed charge matrix evaluated at the generalised Fermi surface:

Zij = Zij(Qi) , (4.2.11)

In the followong we will often make an abuse of language and call the matrix
Z simply the dressed charge matrix. For the Bethe ansatz solvable model,
Z determines the general form of the finite size corrections to the energies of
low-lying excitations

∆E(∆M,D) =
2π

L

(1

4
∆M⊤

(

Z⊤
)−1

V Z−1∆M

+ D⊤ZV Z⊤D +
∑

k

vk

(
N+

k +N−
k

))

+ o

(
1

L

)

. (4.2.12)

Here, V = diag(v0, v1, v2) is a 3 × 3 matrix of the sound velocities, N±
k are

non-negative integers, ∆M is a vector of integers denoting the change of Mi

with respect to the ground state for charged excitations. The Di are integers
or half-odd integers according to

D0 ∼ (∆M0 + ∆M1) /2 = ∆M↑/2 mod 1

D1 ∼ (∆M0 + ∆M2) /2 = ∆Mf/2 mod 1 (4.2.13)

D2 ∼ (∆M1 + ∆M2) /2 = ∆M↓/2 mod 1
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and enumerate finite momentum transfer processes:

∆P (∆M,D) =
2π

L

(

∆M⊤ ·D +
∑

k

(
N+

k −N−
k

)

)

+ 2kF,↑D0 + 2kF,↓ (D0 +D1) + 2kB

∑

j

Dj . (4.2.14)

Here kF,σ = πMσ/L are the Fermi momenta of the fermion components, kB =
πMb/L is the corresponding quantity for the interacting bosons. Note that
Eqs. (4.2.12) and (4.2.14) are generalization of the Eqs. (3.3.19) we obtained
for the Bose gas to the case of three degrees of freedom.

4.3 Asymptotics of correlation functions

In the framework of CFT, the finite size spectrum (4.2.9), (4.2.12) can be
understood as that of a critical theory based on the product of three Virasoro
algebras each having central charge c = 1 [49, 50, 41]. Correlation functions of
a general operator in the theory – characterized by the quantum numbers ∆Mi

and Di – will contain contributions from these three sectors. The simplest
ones, analogues of primary fields in the CFT, have correlation functions (in
Euclidean time τ)

〈φ∆(x, τ)φ∆(0, 0)〉 =
exp

(

2iD0kF,↑x+ 2i (D0 +D1) kF,↓x+ 2i
(
∑

j Dj

)

kBx
)

∏

k(vkτ + ix)2∆
+
k (vkτ − ix)2∆

−
k

.

(4.3.15)
The operators φ∆ are characterized by their scaling dimensions ∆±

k in the
chiral (left- and right moving) components of all three constituent theories.
The latter are uniquely determined from the finite size energies (4.2.12) and
momenta (4.2.14) and form towers starting at

2∆±
k =




∑

j

ZkjDj ±
1

2

∑

j

∆Mj(Z−1)jk





2

. (4.3.16)

The asymptotic exponential decay of correlation functions in a large but finite
system or at finite temperature T can be obtained from (4.3.15) by conformal
invariance. For example, at T > 0 the denominators in (4.3.15) have to be

replaced by (vkτ ± ix)2∆
±
k → (πT/vksinhπT (τ ± ix/vk))2∆

±
k (cf Chap. 3).

With (4.3.16) the critical exponents which determine the long-distance
asymptotics of any correlation function are known as soon as we have com-
puted the dressed charge matrix (4.2.11). To calculate the correlation func-
tions of a given local operator O in the microscopic theory (4.1.1) one needs
to know its expansion in terms of the fields φ∆ of the CFT. Usually, this
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expansion is not known but O and φ∆ have to generate the same set of selec-
tion rules in calculating the correlation function. This drastically reduces the
number of possible terms in the expansion.

4.3.1 Boson Green’s function

As an example, let us consider the bosonic Green’s function

Gb(x, τ) = 〈Ψb(x, τ)Ψ
†
b(0, 0)〉 . (4.3.17)

Clearly Ψ†
b generates a state with ∆Mb = 1 which implies ∆Mj ≡ 1 in (4.3.16).

By (4.2.13) the quantum numbers Dj are further restricted to integers: the
uniform part of the Green’s function (3.3.23) is described by the operator with
Dj ≡ 0 which allows to identify the TL parameter Kb [73] from (4.3.16),

Gb(x) ∼ |x|−1/2Kb . (4.3.18)

The interactions lead to additional contributions to Gb oscillating with wave
numbers k0 = 2kFσ, 2kB , . . .

For a comparison with experimental data one is often interested in Fourier
transforms of the two-point correlation functions given above. The large dis-
tance behaviour of (4.3.15) determines the singularities of spectral functions
near ω ≈ ±vk(k − k0) (see e.g. [41]). Quantities accessible in experiments
with cold gases [117, 44] are the momentum distribution functions of the con-
stituent particles. For the bosons this is the Fourier transform of the equal
time Green’s function Gb(x). From (4.3.15) its singularities at wave numbers
k ≈ k0 are then

nb(k) ∼ |k − k0|νb . (4.3.19)

The exponent νb is the minimal value of 2
(∑

k ∆+
k + ∆−

k

)
−1 compatible with

the quantum numbers ∆M and the selection rules for the D for the given k0.
For example,

1/2Kb = νb + 1 =
1

4

∑

k




∑

j

(Z−1
jk )





2

for k0 = 0 . (4.3.20)

4.3.2 Fermion Green’s function

Using the same procedure for the fermionic Green’s functions,

Gσ(x, τ) = 〈Ψσ(x, τ)Ψ†
σ(0, 0)〉 , (4.3.21)

we find that their asymptotic behaviour is determined by the conformal fields
with ∆M0 = 1, ∆M1 = ∆M2 = 0, half-odd integers D0,D1 and integer D2 for
G↑ and ∆M0 = 1 = ∆M1, ∆M2 = 0, half-odd integers D1, D2 and integer D0
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∆M0 ∆M1 ∆M2 D0 D1 D2

Ψ†
b 1 1 1 Z Z Z

Ψ†
f,↑ 1 0 0 Z+ 1/2 Z+ 1/2 Z

Ψ†
f,↓ 1 1 0 Z Z+ 1/2 Z+ 1/2

Table 4.1: The conformal fields and their associated quantum numbers corresponding
to the leading singularity in the Bose and Fermi Green’s functions.

for G↓. Again, the singularities of the fermions’ distribution functions nσ(k)
follow from (4.3.15). We find singularities of the form

nσ(k) ∼ sign(k − k0)|k − k0|νf (4.3.22)

near k0 − kFσ = 0,±2kB ,±2kF , . . .. The corresponding critical exponent, νf ,
is related to the dimensions (4.3.16) for the quantum numbers ∆M and D just
as νb above. Notice that he Fermi distribution of non-interacting particles is
recovered for νf (kFσ) = 0, but in general the presence of interacting among
the bosons and the fermions lead to additional singularities in the density
distribution like the one at kF + 2kB for instance.

NB: The various quantum numbers associated to the Bose and Fermi
Green’s functions are compiled in Tab. 4.1.

4.4 Experimentally relevant examples

In the following we consider two cases of particular relevance [92, 107, 17],
namely (i) the unpolarized case where M↑ = M↓ = Mf/2 and the ground state
of the system is invariant under rotations in the spin index of the fermions
and (ii) the fully polarized case where there is only one spin component of the
fermions.

4.4.1 The unpolarized gas

For Q1 = ∞ one obtains M↑ = M↓ from (4.1.5), i.e. with vanishing net
magnetization. In this case the dressed charge matrix (4.2.11), evaluated at
the generalised Fermi surface, takes the form

Z =
1

2





2ζ00 (ζ00 + ζ01) 2ζ01
0

√
2 0

2ζ10 (ζ10 + ζ11) 2ζ11



 . (4.4.23)

Here the Wiener-Hopf method (see App. C for details) has been used to
determine Z11 = 1/

√
2 and ζ0j = ζ0j(Q0), ζ1j = ζ1j(Q2). The functions ζij(x)

are given by

ζij(x) = δij +

∫

0
R(x− y)ζ0j(y) +

∫

2
R(x− y)ζ1j(y) (4.4.24)
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with

R(x) =
1

π

∫ ∞

0
dω e−|ω|/2 cos(ωx)

cosh(ω/2)
. (4.4.25)

Using (4.4.23), the scaling dimensions ∆±
1 in (4.3.16) are independent on the

remaining system parameters, i.e. the effective coupling γ and the bosonic
fraction α. This a consequence of the SU(2) invariance of the system in this
case. The mode ǫ1(k) is the spinon mode of the unpolarized system, the
CFT describing its low-energy properties is an [SU(2)]1 Wess-Zumino-Witten
model.

Additional simplifications arise in the strong coupling limit γ → ∞ (i.e.
Q0 → 0) where

ζ00 = 1 ,

ζ10 = 0 ,

ζ01 = ζ11(0) − 1 = α ,

and ζ11(x) = 1 + α

∫ Q0

−Q0

dy R(x− y) +

∫ Q2

−Q2

dy R(x− y)ζ11(y) .

(4.4.26)

In Fig. 4.1 we present results obtained from the numerical solution of these
integral equations for the exponents which determine the singularities of the
momentum distribution functions for bosons at k = 0 and fermions at k = kF

as a function of the bosonic fraction α for various values of γ. The exponents
νb,f at the other wave numbers are always larger than 1. Note that the system
is in a different universality class for α = 0 or 1. At α = 0, all particles are
fermionic and the critical exponents are those of the 1D Fermi gas [41]. Here
the exponent νf for the singularity at the Fermi point varies between 0 and
1/8 as a function of γ. On the other hand, the limit of νb as α → 1 gives
exactly the exponent of the 1D Bose gas with δ-interaction [73].

4.4.2 The spin-polarized gas

Setting Q2 = ∞ in (4.1.5) corresponds to M↓ = 0. This case has been
discussed recently in Ref. [76] where some correlation functions have been
computed numerically in the strong coupling limit. Integrating out the 2-
components the integral equations for the distribution function and the 2× 2
dressed charge reduce to coupled pairs with kernel

K̂ =

(
0

∫

1 a1(x− y) ·
∫

0 a1(x− y) · 0

)

(4.4.27)

In this case, the finite-size spectrum and the scaling dimensions are determined
by two gapless modes. Again, the equations simplify in the strong coupling
limit (γ → ∞) where all exponents can be given as a function of α directly.
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Figure 4.1: Exponents characterizing the singularities in the bosonic (upper panel) and
fermionic (lower panel) momentum distribution function for the unpolarized gas at k = 0
and kF , respectively, as a function of the bosonic fraction α in the mixture for γ = 0.2,
1.0, 5.0, 25.0, ∞ (bottom to top).
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In fact, the dressed charge matrix in this case is simply

Z =

(
1 α
0 1

)

. (4.4.28)

From Eq. (4.4.28) one can deduce the dominant singularities of the bosonic
and fermionic momentum distribution functions. We obtain

νb(0) = α2/2 − α (4.4.29)

for the singularity of the bosonic function close to k ≈ 0 and

νf (kF ) = α2 − α+ 1/2 . (4.4.30)

for the fermionic distribution at k ≈ kF . In Fig. 4.2, we present plots of the
critical exponents νb, νf in function of the boson ratio for different values of
γ. We notice that while the dependence of νb on α is similar to the one found
in the unpolarized case, the strong coupling behaviour of νf at small bosonic
fraction is seen to be very different. Note that the singularity at kF + 2kB

(corresponding to D0 = D1 = 1/2) becomes very pronounced for sufficiently
small α. We find

νf (kF + 2kB) = α2 + α+ 1/2 (4.4.31)

at strong coupling. In this regime, we give a comparison of the exponents
νf (kF ) and νf (kF +2kB) in Fig. 4.3 which shows the emergence of the kF +2kB

contribution at low concentration of bosons. This result that we first predicted
in [51] has been confirmed in the meantime by a numerical calculation of
the correlation function based on the exact eigenstates. The results of this
approach [77] are shown in Figs. 4.4–4.6 for different boson fractions . In Fig.
4.4 the densities of bosons and fermions are almost equal. The Fermi step at
k = kF of the well-known Fermi gas here gets smeared out by the interactions,
but the relative change in the occupation number as kF is crossed is significant.
Reducing the fraction of bosons in the system, the discontinuity at kF + 2kB

appears and becomes enhanced as α decreases (see Figs. 4.5–4.6). One should
note, that the singularity in the fermion distribution function at kF +2kB is a
direct signature of the interactions and should be observable in experiments.

4.5 Summary

In summary we have used predictions from CFT on the finite size scaling of
the low-energy spectrum to compute the critical properties of a 1D Bose-Fermi
mixture for the integrable model (4.1.1). In the generic case there are three
linearly dispersing modes which determine the low-energy effective theory and
the asymptotic behaviour of the correlation functions. Within this formalism
we have related the critical exponents directly to the parameters describing
the microscopic Hamiltonian, i.e. the coupling strength, the fraction of bosons
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Figure 4.2: Same as Fig. 4.1 for a mixture with polarized fermions.

and polarization of the fermions. At zero temperature, the boson momentum
distribution has a singularity at k ≈ 0 reminiscent of BEC in higher dimen-
sions, and its strength is controlled by the TL parameter Kb which depends
only on boson fraction for strong interactions. For polarized fermions, the
momentum distribution has a lot of interesting features. In addition to the
standard k ≈ kF discontinuity, nf (k) develops an extra singularity at kF +2kB ,
and the strength of this singularity is higher for small boson fractions. These
results on the distribution function of the gas can be extended to finite tem-
perature via a conformal mapping (cf Chap.3). It should be possible to verify
experimentally the existence of the predicted singularities. One would need to
work with systems of constant densities along the x-direction. Such constant
density can be achieved in experiments with micro traps [74, 115, 71, 43, 14],
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Figure 4.3: Comparison of the exponents νf (kF ) and νf (kF + 2kB) in the polarized
case and in the strong coupling limit in function of α. We see that, if the k ≈ kF is always
the leading singularity (smallest exponent), the singularity close to kF + 2kB becomes
more pronounced for small values of α.

kL
2π

kf

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n (k)
f

Figure 4.4: Fourier transform of the Fermi-Fermi correlation function for α = 51%.
The Fermi step at kF gets smeared out by interactions. Taken from [77]
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Figure 4.5: Fourier transform of the Fermi-Fermi correlation function for α = 31%. In
addition to the Fermi step at kF , another discontinuity appears at kF +2kB. Taken from
[77]
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Figure 4.6: Fourier transform of the Fermi-Fermi correlation function for α = 11%.
The Discontinuity at kF + 2kB gets stronger as α decreases.Taken from [77]

or in 2D arrays of tubes, if one makes a very shallow harmonic confinement,
and creates strong box-like impenetrable potential at the sides of the tubes
with the help of additional lasers. If the system is in harmonic trap, lots of
the features of correlations themselves (i.e. singularity at kF + 2kB) may get
washed out due to averaging over inhomogeneous density profile [61]. Finally,
let us mention that the approach that we developed here can be used to inves-
tigate the phase diagram of the 1D mixture by identifying the order parameter
with the slowest long-distance decay of its correlation functions (smallest ex-
ponent) [29, 107]. Within the integrable model there is no instability leading
to a phase transition [92, 17]. This reason for this is that an effect such as the
demixing predicted in [33] relies on a mean-field theory which fails at strong
interactions. The general expression (4.3.16), however, allows to obtain esti-
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mates on the exponents in a more general system based on numerical data on
the spectrum of finite systems.
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Chapter 5

Quantum impurities and
Kondo effect

A quantum impurity is, by definition, a local scatterer carrying internal de-
grees of freedom like a quantum spin or local orbitals for example. When
embedded into a many-body system, quantum impurities lead to a variety of
phenomena which are non-perturbative in nature. The most prominent exam-
ple is the so-called Kondo effect which occurs when the system contains mag-
netic impurities. The coupling between the localised spin of the impurity and
the conduction electrons of the host change dramatically the low-temperature
(low-energy in general) physics of the system. In the 1930’s it was found in
many dilute magnetic alloys that the resistivity as a function of the temper-
ature shows a minimum and increases at low temperature [34, 35]. This was
in contradiction with the accepted theoretical prediction that impurities give
a constant contribution at zero temperature (see Fig. 5.1 for comparison be-
tween the case with and wihtout magnetic impurities). In fact, Kondo found
the following expression for the resistivity:

ρ(T ) = ρ0 + aT 2 + cm ln
µ

T
+ bT 5 .

ρ0 is the residual resistance, aT 2 shows the contribution from the Fermi liquid
properties, and the term bT 5 is from the phonons. But the log-term which
diverges at T → 0 was derived by Kondo thanks to a higher order pertubative
calculation. It is important to say right now that this calculation is correct
only for temperatures larger than the so-called Kondo temperature TK which
is the threshold of validity of the perturbation theory in this case as we will
wee in next section. A special feature of the strong local electronic correlations
is the “Kondo-resonance” in the impurity spectral function which influences
various measurable properties. Recently, a novel application of such “quan-
tum impurity systems” to describe the electronic transport through artificial
“quantum dots” has emerged, as such quantum dots can be modeled by single
or multi-impurity systems.

57
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0
T

0

ρ

normal metal
with magnetic impurities

Figure 5.1: Resistivity ρ as a function of the temperature T for a sample without (solid)
and with magnetic impurities (dashed).

5.1 Conventional Kondo effect

The first step towards a theoretical understanding of the resistance minimum
emerged when Kondo proposed in 1964 a model in which the magnetic impu-
rity is modeled by a localized spin coupled to the spin density of the metal-
lic host at the impurity site, which is assumed to consist of noninteracting
electrons. The phenomenological Hamiltonian (a.k.a. the s–d model) which
captures this physical situation reads

HK = H0 + Js.S (5.1.1)

whereH0 =
∑

k,s ξkψ
†
k,sψk,s describes the electron gas, s = 1

2

∑

kk′ss′ ψ
†
ksσss′ψk′s′

is the spin density of the conduction electrons at the impurity site (with
σ = (σx, σy, σz) being the Pauli matrices), and S is a spin-1/2 operator rep-
resenting the magnetic impurity.

From now on, let us consider only the non-trivial case of anti-ferromagnetic
coupling (J > 0). Going beyond the Born approximation, Kondo obtained a
logarithmic temperature dependence already in the third order in the exchange
amplitude J [86],

δρ ∼ ni(νJ)2[1 + 2νJ ln(D/T )]. (5.1.2)

Here ν is density of states (so that νJ ≪ 1 is a dimensionless parameter) and
D is the bandwidth. This solved the problem of the resistance minimum in
magnetic alloys. Soon after Kondo’s paper, Abrikosov and Suhl found that
logarithmically-divergent contributions appear in all orders of perturbation
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theory, forming a geometric series [1, 126]

δρ(T )/δρ(0) ∝
( ∞∑

n=0

(νJ)n[ln(D/T )]n−1

)2

=

(
νJ

1 − νJ ln(D/T )

)2

. (5.1.3)

This result can be also written as

δρ(T )/δρ(0) ∝ ln(T/TK)−2, (5.1.4)

where TK is the famous Kondo temperature given by

TK = De−1/(νJ) . (5.1.5)

Obviously, Eq. (5.1.4) diverges when T approaches TK . Similar un-
tractable (and clearly unphysical) divergencies appear in thermodynamic quan-
tities as well, indicating the failure of the perturbation theory. The problem of
dealing with these divergencies became known as the Kondo problem, and its
resolution came later with the advent of the powerful Renormalization Group
(RG) ideas [10, 116, 136]. The RG-β function of the dimensionless coupling
λ = νJ is given by

β(λ) =
dλ

d lnD
≃ −λ2 + . . . (5.1.6)

where the bandwidth D is here reinterpreted as an ultraviolet cutoff of the
theory. Eq. (5.1.6) shows that at low temperature the coupling to the impurity
is described by an effective (renormalised) coupling diverging for T ≪ TK ,

λeff =
λ0

1 − λ ln(D0/D)
. (5.1.7)

This observation makes of the Kondo effect the very first example of asymp-
totic freedom in physics, in which the coupling becomes non-perturbatively
strong at low temperatures/low energies. In the Kondo problem, this refers
to the interaction between the localized magnetic impurities and the itinerant
electrons. Another very important illustration of the asymptotic freedom’s
concept is met in quantum chromodynamics (QCD), the theory of the strong
nuclear force. In QCD the quarks, the fundamental constituents of nuclear
matter, interact weakly at high energies and strongly at low energies, prevent-
ing the unbinding of baryons or mesons composing the nucleus 1.

Let us try to understand the physics by hand. In perturbation theory one
starts with the impurity decoupled from the electron gas (J → 0). Since the
spin-up and spin-down states of the impurity are degenerate, the ground state
of the system in this limit is a doublet. Because electrons are freely moving in
space, it is hard for the impurity to capture an electron and form a singlet. Yet,

1For this discovery, Frank Wilczek, David Gross, and David Politzer shared the 2004
Nobel Prize in physics.
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Figure 5.2: Schematic RG flow of the Kondo model. As the system goes to higher scales
or lower energy, it flows from a free impurity spin to an infrared fixed point characterised
by a singlet ground state. The impurity is said to be ”screened” by the conduction
electrons.

even an arbitrarily weak local antiferromagnetic exchange interaction suffices
to form a singlet ground state which is the infrared fixed point of the theory
(see Fig. 5.2). However, the characteristic energy for this singlet is given
not by the exchange amplitude J , but by the Kondo temperature TK , defined
in Eq. (5.1.5). This lifting of the degeneracy of the ground state is the very
essence of the Kondo effect. It is also the origin of the logarithmic divergences.
Treating the strength of the exchange perturbatively is then justified only
at temperatures that significantly exceed the singlet binding energy, i.e. at
T ≫ TK . In the opposite limit T ≪ TK Nozières used a perturbative approach
[111] that explicitly takes into account the correct symmetry of the ground
state right from the start yields

1 − δρ(T )/δρ(0) ∝ (T/TK)2 , T ≪ TK . (5.1.8)

Eqs. (5.1.4) and (5.1.8) are applicable, respectively, in the weak (T ≫ TK)
and strong (T ≪ TK) coupling limits. Since the Kondo effect is a crossover
phenomenon rather than a phase transition, the function δρ(T )/δρ(0) varies
smoothly with T in the crossover region T ∼ TK .

5.2 Kondo effect in nanostructures

Apparently the Kondo effect is a rather well established and well understood
problem of condensed matter physics. Nevertheless, due to the recent progress
in nanotechnology, we assist since the late 1990’s to a real ”revival of the

Kondo effect” to use the expression of Kouwenhoven and Glazman [89]. The
possibility to design pretty small and clean semiconductor devices in confined
geometries allows to create in the laboratory fully controllable artificial im-
purities. In such systems the Kondo effect is playing a non-trivial role in
the understanding of the transport properties as we will try to clarify in this
section.
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Figure 5.3: Electron microscopy image of a single electron transistor device extracted
from Ref. [69]. They additional captions drawn on top on the original black and white
picture are made to be explicit. QD stands for quantum dot. c©1998 Nature Publishing
Group

One of the device used for observing modern features of the Kondo effect
consists of a quantum dot placed between two large metallic leads (called the
source and the drain by the experts). A quantum dot is a tiny semiconductor
island that can hold a small number of electrons. The first realisation of
this circuit is shown in Fig 5.3. It is an image of a quantum dot made by
electronic microscopy extracted from the famous paper [69] of the M.I.T. team.
A voltage applied to the gate electrode of the device controls the number of
electrons N confined in the dot. If N is odd there is an effective spin S = 1/2
sitting on the quantum dot. This mimics the impurity-in-metal system which
we have been discussed so far, where a localised spin is embedded into a
metallic host. Therefore many features of Kondo physics are expected in the
Single-Electron-Transistor (SET) devices. But it should be noted that the
Kondo effect does not always manifest itself in the increase of the resistance.
Indeed, the formation of the singlet ground state leads to an increase of the
probability for an electron to scatter by the impurity. The closer the energy
of the scattered electron is to the Fermi level, the higher is the scattering
probability. If a magnetic impurity is imbedded in a bulk sample, the higher
scattering probability translates to the increase of the resistivity. However, if
the impurity resides in a tunneling barrier separating two conducting leads, the
increase of the scattering probability leads to an enhanced probability for an
electron to tunnel through the barrier, hence it is the differential conductance,
rather than the resistance, that is enhanced with lowering the temperature or
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Figure 5.4: Diagram of the charge Q of the quantum dot (black) and the differential
conductance G (cyan) as a function of the gate voltage Vg . The charge of the dot
shows a staircase-like behaviour signature of the quantised nature of this quantity. The
conductance features alternating Coulomb peaks synchronised with the variation by one
unit of the charge and Coulomb blockade valleys at fixed Q.

the bias voltage.
Let us now sketch how this Kondo-assisted tunnelling works in the case of

a quantum dot setup. At first sight the electronic transport through the dot
is not easy. There are two reasons for that: First, due to the large Coulomb
repulsion onto the dot, U , which has the tendency to prevent electrons to
tunnel on and off the dot. This phenomenon is known as the Coulomb blockade.
Second, the electron energy in the dot, εd, is in general off-resonance (i.e. away
from the Fermi level). As a consequence of the large Coulomb interaction, the
charge on the dot is quantised and shows a staircase-like behaviour when
plotted as a function of the gate voltage Vg (see Fig. 5.4). The electrostatic
energy of a state of N electrons in the dot is given by

EC =
Q2

2C
− VgQ (5.2.9)

with Q = Ne is the total charge. The gate voltage Vg acts on the dot like
a chemical potential. When the gate voltage is increased, εd is lifted up to
the Fermi level. Then, the tunnelling of an electron from the lead is possi-
ble and the dot experiences a transition between the states of charge Ne and
(N+1)e. The conductance naturally reaches a maximum at this point. When
the system is in region of fixed charge, the probability to find an electron with
energy EC is proportional to exp(−EC/T ), and we expect the conductance
to be exponentially suppressed (as long as T ≪ EC , which we assume since
we will be interested mainly in the low-T physics in the following). These are
the ”Coulomb valleys” we can see on Fig 5.4. Consider now such a Coulomb
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U

Figure 5.5: Tunneling process giving raise to the Kondo effect. If the number N of
electrons on the dot is even, it would cost a large amount of energy (of the order of U)
for an electron of the source to tunnel through the dot. At the contrary, if N is odd, a
virtual process (similar to the super-exchange see Chap. 6) allows one electron from the
source to hop onto the dot and the dot’s electron to hop itself towards the drain. This
process results in a effective spin-flip on the dot (Kondo effect) and favours tunnelling
through the dot, energetically speaking.

blockade valley with an odd number of electrons in the dot. In the ground
state, the top-most occupied level is filled with a single electron, which may be
either in a spin-up or in a spin-down state. In other words, the dot has a spin
S = 1/2 and its ground state is doubly degenerate. This singly-occupied level
plays a special role in transport, as the elastic co-tunneling process involv-
ing this level may be accompanied by a flip of the transferred electrons spin
with a simultaneous flip of the spin of the dot, see Fig. 5.5. This is precisely
the kind of spin-flip process that gives rise to the Kondo effect in tunnelling.
Accordingly, we expect the conductance to increase with the decrease of tem-
perature. As a nice illustration of this phenomenon another realisation of the
Kondo effect is presented in Fig. 5.6. This experimental curve extracted from
[112] has been obtained by measurements of the conductance (G) on a setup
consisted of a carbon nanotube suspended between two normal metallic leads.
The nanowire acts in this case like an extended quantum dot. We clearly see
a difference between the odd (O) and the even (E) regimes which are scrolled
alternatively as the gate voltage is tuned on. When the temperature is lowered
(arrows) the Kondo effect induces an increase of G as expected.
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Figure 5.6: Signature of the Kondo effect in carbon nanotubes (extracted from [112]).
Upper part shows the charging energy of the dot as the gate voltage is varied. One can
see the alternation of region with even (E) number of electrons sitting on the dot and
regions with odd (O) number of electrons. Lower part shows a plot of the differential
conductance through the nanotube. One clearly sees the increase of the conductance as
the temperature is decreased (arrows) for the odd regions (in opposition with the even
ones) signalling the formation of a local magnetic moment. c©2000 Nature Publishing
Group

5.3 Insight from exactly solvable models

5.3.1 The 1-lead Anderson model

So far we have only cited one theoretical model, namely the Kondo or s–d
model, and commented on its physics. A more natural model for the quantum
dot setup device is the Anderson model - which is equivalent in some limit to
the Kondo model via the Schrieffer-Wolff transformation [75]. It involves an
impurity with local orbitals instead of just a spin like in the Kondo model. It
reads

HA =
∑

σ

εdnd,σ + Und,↑nd,↓ +
∑

k,σ

εkc
†
k,σck,σ +

∑

k,σ

(Vkd
†
σck,σ + V ∗

k c
†
k,σdσ)

(5.3.10)
in its ”one lead” original version 2. The energy scales appearing in Eq. (5.3.10)
are εd, the discrete energy of the artificial atom and U , the on-dot Coulomb
repulsion, i.e. the cost in energy one should pay to have another electron
sitting on the dot. This term is the one responsible for the Coulomb blockade
mechanism which was discussed above. The term proportional to Vk is called
the hybridisation. It describes the hopping of an electron from the Fermi sea

2The model describes a single Fermi sea coupled to an impurity. The word ”lead” in the
text is an abused expression refering to the Fermi sea.
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onto the dot and vice versa. Here we have deliberately chosen to write the
Hamiltonian (5.3.10) in one spatial dimension. The reason why this dimension
reduction is appropriate goes as follows: If one wants to compute the effect
of a localised impurity, standard scattering theory teaches us that we have
to decompose the wave function into spherical harmonics (radial and angular
variables). Doing so, one can convince himself that the main contribution to
the scattering process comes from the s-wave term, which is invariant under
rotation. Therefore, only remains the radial dependence of the wave function,
and the scattering off the impurity can be essentially mapped onto a one-
dimensional model.

After a long history of early approximate solutions, the Anderson single im-
purity model was solved “exactly” using the numerical renormalization group
(NRG) and the Bethe ansatz method. In the early 80’s solutions for the s-d
model were found independently by Andrei [11] and Wiegmann [134] followed
by exact solutions for the Anderson model (Wiegmann [135], Kawakami and
Okiji [81]). The solution is lengthy but extremely enlightening. Unfortunately
we will not present it in full detail in this thesis. We refer to the original paper
of Wiegmann for completeness. The remarkable thing is that the main ideas
of the original Bethe-Ansatz technique, developed by Bethe in 1931 for solv-
ing the Heseinberg magnetic chain, has been adapted to solve the Anderson
model which is a model of correlated electrons. The Wiegmann solution relies
on two fundamental asumptions: First, that we have a linear (relativistic) dis-
persion for the conduction electrons and second, that there are only point-like
interactions. The first assumption makes sense as long has we are interested
in the low-lying excitations slightly above the Fermi energy. In that case, the
free fermion dispersion relation can be linearised 3 around k = kF , the ”Fermi
surface”. The second assumption is a bit more restrictive. In essence it tells
us to forget about the spatial extension of the impurity (or dot). So, taking
these assumptions for granted, we can integrate out the lattice and rewrite
the Hamiltonian (5.3.10) in the continuum limit as a field theory

HA =

∫

dx

{

−i
∑

σ

c†σ(x)∂xcσ(x) + V δ(x)(c†σ(x)dσ + d†σcσ(x))

}

+
∑

σ

εdnd,σ + Und,↑nd,↓ . (5.3.11)

Note that the hybridisation V is now k-indepedent. Then, using Yang’s tech-
nique for the one-dimensional Fermi gas with δ-interaction [139], the spectrum
of the Hamiltonian (5.3.11) is obtained by solving the following Bethe Ansatz

3It is actually the starting point of using the bosonisation technique.
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1 2

V1 V2

Figure 5.7: Diagram of the physical situation described by the 2-lead Anderson model.
Electrons from lead 1 can tunnel through the dot towards lead 2 and vice-versa. The
tunnelling barrier separated the leads from the dot are respectively V1 and V2.

equations for the k’s momenta:

exp(ikjL) =
M∏

β=1

iB(kj) − iΛβ − UV 2/2

iB(kj) − iΛβ + UV 2/2

1 + iV 2/2(kj − εd)

1 − iV 2/2(kj − εd)
, j = 1, ..., N

−
N∏

j=1

iB(kj) − iΛα + UV 2/2

iB(kj) − iΛα − UV 2/2
=

M∏

β=1

iΛα − iΛβ − UV 2

iΛα − iΛβ + UV 2
, α = 1, ...,M

(5.3.12)
where B(k) = k(k − U − 2εd). Solving the BAE (5.3.12) gives access quite
easily to the full thermodynamics of the model. In particular, the magnetic
properties of the system, such as the magnetisation and the magnetic suscep-
tibility, can be calculated exactly. Signatures of Kondo physics are revealed
by these quantities; for instance, the impurity magnetisation (at T = 0) as a
function of the applied field H features a crossover from a linear H behaviour
to a constant. The scale at which this crossover is observed is the Kondo
temperature defined by TK ∝ exp[−(π/4)(U/V 2 − V 2/U)].

5.3.2 The 2-lead Anderson model

To make contact with any experimental realisation, it is necessary to consider
a version of the Anderson model slightly more sophisticated, namely a theory
with two leads coupled to the dot (see Fig. 5.7). The Hamiltonian is then

HA2 = −t
∑

i,σ

(c†i,σci+1,σ + h.c.)

+
∑

σ

[V1(c
†
−1,σdσ + h.c.) + V2(c

†
1,σdσ + h.c.)]

+ εd(nd,↑ + nd,↓) + Und,↑nd,↓ (5.3.13)

where we have now explicitly two Fermi seas (non-interacting leads). The
conduction electrons can scatter on and off the dot passing from one lead
to another via tunnelling. This electronic transport will induce a current
through the dot. This current is actually the relevant quantity measured in
the experiments. The microscopic parameters of the two-lead Anderson model
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are related to the energy scales of the quantum dot setup. The charging energy
is defined with the help of the dot’s electric capacitance C and the energy level
spacing ∆ε, U = e2

2C + ∆ε. As usual, the gate voltage Vg acts like a chemical
potential on the dot such that εd ∝ Vg. As we already said, but it worths
emphasising it again, the gate can drift the energy level closer or away from
the Fermi level and therefore controls the number N of electrons sitting on
the dot. In particular, by tuning Vg, one can reach the regime where N is
odd and thus investigate phenomena associated to Kondo physics. V1 and V2

are the respective heights of the barriers leads-dot and Γ = (V 2
1 + V 2

2 )/2 is
width of the resonnance (just like in quantum optics when a discrete level is
coupled to continuum this induces a spreading of the spectral peaks). Once
again a theoretical analysis of the two-lead Anderson model is facilitated by
taking the continuum limit,

HA2 =
∑

l,σ

∫

dx
{

−ic†l,σ(x)∂xcl,σ(x) + Vlδ(x)(c
†
lσ(x)dσ + d†σcl,σ(x))

}

+
∑

σ

εdnd,σ + Und,↑nd,↓ , (5.3.14)

where l labels the leads 1 and 2. It is remarkable to see that the two-lead
problem can be mapped onto the one-lead model. To do so, let us introduce
the even and odd fermion operators as:

ce,o =
1

√

V 2
1 + V 2

2

(V1,2c1 ± V2,1c2) (5.3.15)

Injecting those new operators into Eq. (5.3.13) we end up with an effective
Hamiltonian for the even electrons only and the solution for the one-lead
Anderson model can be used. The Kondo temperature is now defined as
TK ∝ expπ[εd(εd + U) − Γ2]/(2ΓU)

So long, one could ask the legitimate question: If the exact spectrum of
the quantum dot problem can be inferred from results which are more than
twenty years old, why should we continue studying those models anyway?
Well in fact, the renewal of interest for the exact (thus non-perturbative)
calculations within the Anderson model comes from the fact that transport
properties like the conductance for instance can be calculated exactly, at least
at low-energy and close to equilibrium. The idea is to work directly within
the Bethe basis of quasi-particles (obeying a non-trivial statistics). In this
language, the transmission of an excitation of energy ε is given by

T (ε) =
V1V2

V 2
1 + V 2

2

(eiδ(ε) − 1) (5.3.16)

where δ(ε) is the scattering phase shift. As far as we stay in the linear response
regime, the Landauer-Büttiker formula gives us a suitable expression of the
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(a) G at T = 0, H = 0 for U = 0.75 and
Γ = U/12

(b) G at T = 0 for various H

Figure 5.8: Results of Konik et al. for the conductance in the 2-lead Anderson model
(1)

conductance,

G =
e2

h

[
|T↑(ε = 0)|2 + |T↓(ε = 0)|2

]
. (5.3.17)

The key-point is that for the excitations close to Fermi energy or to the so-
called symmetric point ǫd = −U/2 (where the Kondo effect is expected), the
Friedel sum rule holds:

|Tσ|2 = sin2

(
δσ(ε = 0)

2

)

, δσ = 2πnd,σ . (5.3.18)

This formula is far from trivial since it relates the occupation of the dot, nd,
which is a thermodynamic quantity, to the transmission (via the the dephasing
δ) which is dynamic quantity. Konik, Saleur and Ludwig performed this kind
of calculation using the Bethe Ansatz and we will show now some graphs
extracted from [87]. In Fig. 5.8(a) the conductance G at zero temperature
is depicted as a function of the gate voltage. G goes up to the unitary limit
2e2/h which is the optimal conductance of a quantum wire where both spin
channel can travel through. As the gate voltage is increased, a Coulomb valley
develops and the conductance drops down to zero. In Fig. 5.8(b) the external
magnetic field H is switched on. The maximum in the conductance curves
in shifted. It is just the sign that maximum conductance is connected to the
Kondo effect. Therefore the local magnetic moment feels to the magnetic
field and is sensitive to Zeeman splitting. Fig. 5.9(a) and 5.9(b) are plots of
the conductance at finite temperature. The conductance is enhanced as the
temperature is lowered. The crossover appears around T = TK . Fig. 5.9(b)
compares the Bethe Ansatz calculation to the experimental data of Goldhaber-
Gordon et al. [68] and the agreement is excellent (provided a rescaling of TK

to be precise [119]).
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(a) G(T/TK) at the sym. point εd = −U/2 (b) comparison with exp. data of Goldhaber-
Gordon et al. [68]

Figure 5.9: Results of Konik et al. for the conductance in the 2-lead Anderson model
(2)

5.4 Open questions and new trends in quantum
impurity problems

To summarise, we have seen that, despite its apparent simplicity, the question
of a single impurity coupled to a bath of electrons is highly non-trivial and
cannot be answered from a single particle point of view. This problem con-
tains basically all the ingredients of modern physics like the phenomenon of
asymptotic freedom that we have quickly discussed, the mechanism of mass
generation, the ideas of scaling and renormalisation. And even though it is a
rather old problem it is still up-to-date in the context of nanotechnology. The
Kondo and the Anderson models, which are the starting point (microscopi-
cally) of the theoretical understanding of the Kondo physics, can be gener-
alised in many ways. One think we haven’t mentioned is the very important
multi-channel Kondo model which has a non-Fermi liquid fixed point when the
number of channels is bigger than twice the spin of the impurity. The proper
understanding of this fixed point has required the use of very sophisticated
tools borrowed from high-energy physics, namely conformal and boundary
conformal field theory (CFT and BCFT). It is a very interesting issue that
we will not comment any longer and we will refer to the series of papers by
Affleck and Ludwig on the subject [3, 4, 5, 101, 6]. Still remain some funda-
mental issues, and we have in mind two of them in particular: 1) What are
the effects of interactions among electrons (in the bulk)? 2) What can we say
about non-equilibrium situations to make contact with concrete experimental
scenarii?
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5.4.1 Strong correlations

First, let us comment briefly on the effect of having strong correlations within
the leads. It is in fact a natural question to ask if one consider for example
the case of an impurity coupled to two (quasi)one-dimensional nanowires. As
we have said in the introduction to the thesis, the leads will be a Tomonaga-
Luttinger liquid (TLL) rather than a conventional Fermi liquid. In particular,
the density of states will behave like a power-low ρ(ω) ∝ ωα. This problem has
been tackled first by Kane and Fisher [79, 80] who considered a perturbed link
in the middle of a one-dimensional interacting electron gas. Their RG analysis
gives a quite counter- intuitive result: For repulsive electron interactions, the
electrons are completely reflected by even the smallest scatterer, leading to
a truly insulating weak link, in striking contrast to that for noninteracting
electrons. Whereas for attractive interactions, the Luttinger liquid is argued
to be perfectly transmitted through even the largest of barriers. Another result
we would like to mention is the work of Frödhj and Johannesson [57, 58] who
used BCFT to investigate the situation where a magnetic impurity is coupled
to a TLL. They showed that there are only two types of scaling behaviours
consistent with the symmetries of the problem: either a local Fermi liquid or a
non-trivial strong-coupling fixed point. The latter non-Fermi liquid fixed point
seems to govern the low-temperature physics of the system as conjectured by
Lee and Toner [94], and Furusaki and Nagaosa [59].

Certainly these (conformal) field theory approaches give a lot of infor-
mation regarding the large-distance or low-energy sector of the theory. In
particular, the characterisation of the various fixed points can be made in
very elegant and powerful way using the concept of conformal invariance. But
in order to understand the complete flow, one has to work with a particular
model which allows for the coupling constants to vary precisely within the
range between the UV to the IR fixed point(s). And of course, the best way
to get some knowledge is to take an integrable model. We have already seen
that the Anderson model for example is exactly solvable by Bethe ansatz, and
that calculating exactly the thermodynamics of the model one can indeed see
the low-temperature and high temperature behaviour of, say, the susceptibil-
ity. But not only this, the exact solution gives you also the behaviour of the
physical observables in the crossover regime. In the following chapters of this
thesis, two exactly solvable models will be constructed and studied in detail.
These models consider an impurity put at the edge of an interacting electron
chain and we will see some Kondo-like physics.

5.4.2 Out-of-equilibrium situations

The second direction towards which Kondo physics is going is the non-equilibrium
physics. A lot of actual experimental situations deal with the far from equi-
librium regime. Questions like the time-dependence of correlation functions,
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the phenomenon of relaxation and non-equilibrium transport properties are
still unsolved for the case of quantum interacting systems. And even sim-
ple localised interactions like the one we encounter in impurity problems can
lead to very rich dynamics. Clearly, usual perturbation theory (which goes
under the name of the Keldysh formalism for non-equilibrium problems) will
fail in the presence of strong interactions. To attack those problems there is,
unfortunately (or fortunately?) no universal route to follow. A lot of clever
numerical techniques are being investigated as we speak like dynamical version
of DMRG [78], flow equation techniques [83], or new methods coming from
the quantum information community [130, 131, 32]. From the perspective of
analytical results we just want to mention what may appear to be a promis-
ing technique: A non-pertubative approach to calculate transport properties,
the so-called Scattering Bethe Ansatz (SBA) developed by Mehta and Andrei
[109, 108]. The idea is to work on a basis which is not the natural free electron
basis but rather a basis for which the interaction behaves nicely. We won’t
say much more about this topic but we just want to precise that, up to our
knowledge, the very first attempt to use this type of scattering theory goes
back to Lesage, Saleur and Skorik [95] in the context of tunnelling between
edge states in the fractional quantum Hall effect. And, to be honest, the pre-
viously cited paper [87] contains also a computation of the conductance in the
two-lead Anderson model out of equilibrium, even though the authors use a
basis of quasi-particles within the bulk which is far from obvious.

To conclude this chapter in one sentence, we would say that quantum
impurity problems are still an active topic and that there are still a lot of
both fundamental and applied issues to be addressed, certainly many more
than just the two we pointed out above.





Chapter 6

Integrable lattice models of
correlated electrons

In this chapter, we first want to introduce the one-dimensional Hubbard model
and its descendants. Those models are widely used to understand the very
peculiar physics which arises in the world of one-dimension. Second, we will
give, without any proof or derivation, a couple of ideas and results regard-
ing quantum integrability (on the lattice). There, the powerful tools of the
so-called Quantum Inverse Scattering Method (QISM) and Algebraic Bethe
Ansatz (ABA) will be presented.

6.1 Models of correlated electrons

One of the main challenge of modern condensed matter theory is to fully un-
derstand the properties of many-body systems (fermions or bosons) in the
presence of strong interactions. As we have already discussed in the intro-
duction, in 1+1 dimension, the quantum correlations between the particles
of the system can neither be neglected nor treated perturbatively. Includ-
ing the interactions into any reasonable model of correlated electrons would
mean taking into account the Coulomb interaction between the electrons, the
phonon-electron coupling, the particular band-structure of the material, etc.
But this program is way beyond human or computer power. This is why
physicists introduce some simplified models writing down Hamiltonians (or
actions) containing only the ”most relevant” terms. What ”most relevant”
means and in particular what are the limits of validity of such approximate
models is really an important question to answer before drawing any physical
conclusions from the result of a calculation. But ”models are to be used, not

believed”1.

1H. Theil - Principles of Econometrics

73



74
CHAPTER 6. INTEGRABLE LATTICE MODELS OF CORRELATED

ELECTRONS

6.1.1 The Hubbard model

Certainly one of the most famous models of correlated electrons is the so-called
Hubbard model. It is considered as the most simple model which cannot
be reduced to a single electron theory. The Hubbard Hamiltonian, in one-
dimension, reads

HH = −t
∑

j,σ

(c†j,σcj+1,σ + c†j+1,σcj,σ) + U
∑

j

(nj,↑ − 1/2)(nj,↓ − 1/2) . (6.1.1)

The first term of the Hamitonian is the kinetic part (tight-binding model).
The particles can jump from site j to j + 1 with a tunnelling amplitude t.
This process conserves the spin. The term proportional to U incorporates the
short-range part of the Coulomb interaction while avoding the high complexity
of the long-range Coulomb force. The interaction is only on-site, and because
of the Pauli principle it is sufficient to consider the local coupling between
electrons of opposite spins. U can be positive, in that case we talk about the
repulsive Hubbard model, or negative, which corresponds to the attractive
Hubbard model. The symmetry of the model is a U(1) group for the charge
and SU(2) for the spin sector. However, at half-filling (one electron per site
in average), the model possesses a hidden charge SU(2) symmetry. The total
symmetry group is in that case SU(2) × SU(2) ≃ SO(4).

In one dimension, the model is exactly solvable via the Bethe Ansatz [100].
This solution has been extremely useful in understanding the critical prop-
erties of Hubbard chains [41]. Unfortunately, in higher dimensions, no such
exact solution exists, and one must rely on approximate or numerical schemes.
Even though apparently simple, the Hubbard model contains a lot of interest-
ing physics, like the Mott transition and also quantum magnetism effects as
we will see right now.

6.1.2 The Heisenberg model

The first non-trivial approximation one can make is to consider the large-
U limit of the Hubbard model. By large, we mean large compared to the
hopping, U/t ≫ 1. Let us take 〈ni ≡ ni,↑ + ni,↓〉 = 1, the half-filled band. In
that case, the charge degrees of freedom are completely frozen since they are
restricted by a huge gap of order U . Nevertheless, a second order process in t is
allowed (cf Fig. 6.1 for an intuitive explanation) which effectively amounts to
a spin-flip. This is the so-called ”super-exchange” mechanism first discussed
by Anderson [9] which is the origin of the coupling between the remaining spin
degrees of freedom. The effective Hamiltonian for the Hubbard model in the
strong-U limit at half-filling is then a pure spin Hamiltonian:

H = J
∑

j

(

Sj · Sj+1 −
1

4

)

, J =
4t2

U
. (6.1.2)
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O( t
U ) O(t) O(t)

Figure 6.1: The mechanism of ”super-exchange”. If two neighbouring sites are occupied
with electrons having their spins pointing in opposite direction, the first spin (blue) can
hop onto the red site, a process of order O(t/U). The virtual state created is unstable
since it carries a huge U Hubbard repulsion. The system will prefer to ”decay” into a
more stable state: either it goes back to the original state (blue an the left, red on the
right) or to the reverse configuration (i.e. red on the left, blue on the right). The whole
process is equivalent to a spin-flip operation and is of order O(t2/U)

This is the well known Heisenberg model. Note that if U > 0 then J > 0 such
that an anti-ferromagnetic (AF) order will be favourable.

6.1.3 The t–J model

Away from half-filling, i.e. allowing doping on top of the spin model, electrons
or holes can acquire a finite amount of kinetic energy. But the spectrum is still
clearly split into different Hubbard sectors (characterised by a given number of
doubly occupied sites) separated by a large gap U . The low-energy properties
are then obtained by discarding the double occupancies. This can be achieved
by a canonical transformation (see the book of Auerbach [15] for example),
resulting in an effective Hamiltonian of the form:

HtJ = −tP





L∑

j=1

∑

σ

c†j,σcj+1,σ + c†j+1,σcj,σ



P

+ J

L∑

j=1

(
Sj · Sj+1 −

1

4
njnj+1 +

1

2
(nj + nj+1)

)
, (6.1.3)

where P projects onto the lowest Hubbard sector (〈n↑↓〉 = 0). It is important
to notice that the t–J model is equivalent to the Hubbard model only for
J ≪ t. In the inverse limit, J ≫ t, the model becomes unstable and exhibits
a phase separation [113], the system having the tendency to have regions
occupied with holes only and others with spins. This is also a very peculiar
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signature of the spin-charge separation which is inherent to one-dimensional
electronic systems. Despite this phase separation pathology, the model is of
interest in its own right and no one prevents us from studying its physics even
away from J ≪ t. In particular, the t–J model seems to be relevant, in its
two-dimensional version, for the study of CuO cuprates, an important family
of high-Tc superconductors [118].

In the next section of this chapter we will present a general technique for
solving a variety of one-dimensional lattice models and even for constructing
some new ones. This technique goes under the name of QISM for Quantum
Inverse Scattering Method.

6.2 Elements of Quantum Inverse Scattering

Method

The coordinate Bethe Ansatz, which was developed historically to diagonalise
the Heisenberg magnetic chain and which we have used in the first part of
this thesis while dealing with one-dimensional gases, is about finding a clever
basis of pseudo-momenta to rewrite the wave-function (Ansatz) easily. In con-
trast, the combined techniques QISM+ABA are based on a purely algebraic
derivation of the Hamiltonian (which is integrable by construction). Both the
coordinate and algebraic versions of the Bethe Ansatz are equally successful
for finding the spectrum of the Heisenberg model for example. But the QISM
and ABA techniques allow to go beyond this and to build new more sophis-
ticated models keeping track of integrability at each step. What we want to
emphasize in this chapter is that QISM provides a natural toolbox to build
integrable Hamiltonians with many degrees of freedom (e.g. charge and spin),
with impurities and/or non-trivial boundary conditions.

6.2.1 The main ideas behind QISM

In the framework of the quantum inverse scattering method, the construction
of integrable Hamiltonians is based on vertex models obtained by combining
L-operators (called Lax operators) which satisfy

R12(λ− µ)
1
L(λ)

2
L(µ) =

2
L(µ)

1
L(λ)R12(λ− µ) (6.2.4)

on the tensor product V1 ⊗ V2, where we have defined
1
L = L ⊗ I and

2
L =

I ⊗ L. Eq. (6.2.4) is known as the intertwining relation. Models which are
constructed in this approach are classified by a particular choice of the R-
matrix entering (6.2.4) which in turn has to solve the quantum Yang-Baxter
equation (YBE):

R12(λ)R13(λ+ µ)R23(µ) = R23(µ)R13(λ+ µ)R12(λ) . (6.2.5)
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(Superscripts denote the spaces in the tensor product V1 ⊗ V2 ⊗ V3 in which
Rij acts nontrivially). Different representations L of the quadratic algebra
τR defined by (6.2.4) for a given R can be combined to construct integrable
lattice models. It is sometimes useful to introduce another operator, Ř, which
acts directly on the tensor product of Lax matrices as

Ř12(λ− µ) (L(λ) ⊗ L(µ)) = (L(µ) ⊗ L(λ)) Ř12(λ− µ) . (6.2.6)

Essentially Řij = ΠijRij , where Πij is a permutation operator on the space
Vi⊗Vj. A standard representation is realised by just choosing Ln

0 (λ) = R0n(λ)
which acts on the tensor product V0 ⊗ Vn. Vn is the quantum space corre-
sponding to the physical sites n = 1, . . . , L of a one-dimensional lattice while
V0 is the so-called ”auxiliary space”. Taking a product of L operators in the
auxiliary space V0, we define the so-called monodromy matrix T to be

T (λ) = LL
0 (λ)LL−1

0 (λ) . . .L1
0(λ) . (6.2.7)

Of great physical interest is the object called the transfer matrix, t(λ), which
is given by the trace taken in the auxiliary space of the monodromy matrix:

t(λ) = tr0

(

LL
0 (λ)LL−1

0 (λ) . . .L1
0(λ)

)

. (6.2.8)

It is easy to show that t(λ) forms a family of commuting operators on the
space V1 ⊗ . . . ⊗ VL, i.e.

[t(λ), t(µ)] = 0 ∀(λ, µ) ∈ C2 (6.2.9)

and thus will generate the integrals of motion of the underlying quantum
system.

To summarise what are the key ingredients in the construction of an inte-
grable quantum model: Given a solution R(λ) of the Yang-Baxter equation
(6.2.5) one can define the quadratic algebra τR through Eq. (6.2.4). Given
a representation of the algebra τR one obtains a quantum integrable system
whose quantum space is the representation space of τR and the commutative
integrals of motion are encoded in t(λ). The main problem of QISM is to find
their common spectrum and, possibly, correlators of some physically interest-
ing operators. The standard program of QISM as proposed by Sklyanin [124]
goes as follows:

1. Take a R matrix.

2. Take a representation of τR.

3. Find the spectrum of t(λ).

4. Find the correlators.
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Of particular interest are models constructed from the ‘fundamental’ ratio-
nal R-matrices Rij(λ) ∝ (λI + iΠij). The fundamental rational models with
nearest-neighbour interaction obtained within this approach are, among oth-
ers, the spin S = 1

2 Heisenberg chain and the one-dimensional supersymmetric
t–J model with periodic boundary conditions. Since it is really the example
of the method I cannot resist presenting very briefly how QISM works for the
XXX Heisenberg magnetic chain. We will also give a few results regarding the
t–J model, that will be used widely in the next chapters of the thesis.

6.2.2 Examples

The inevitable XXX spin chain

So let us recast the problem of interacting spins S = 1/2 on a chain. The sim-
plest Hamiltonian one can imagine involves just nearest neighbours interaction
between the spins. To simplify even more, let us focus on the case of isotropic
interactions, i.e. the coupling is of the same strength in any directions of the
spins. The resulting Hamiltonian

H =
N∑

n=1

[(
∑

α=x,y,z

Sα
nS

α
n+1

)

− 1

4

]

(6.2.10)

is the famous Heisenberg model that was derived from the large U limit of
the Hubbard model at half-filling (see Sec. 6.1.2). Here we have set J = 1 for
convenience. In addition, periodic boundary conditions are imposed. Let us
now carry on the program of the QISM. We will go briefly through this and
we apologise if it looks a bit like a catalogue. I refer to the excellent lecture
notes of Faddeev, Sklyanin and the book of Korepin et al. [88] for details.

The L-operator for this model is related to the rational R matrix (as
described above)

Ln
0 (λ) = λI0 ⊗ In + i

∑

α

σα ⊗ Sα
n =

(
λ+ iS3

n iS−
n

iS+
n λ− iS3

n

)

(6.2.11)

As we can see from Eq. (6.2.11), the structure of the L-operator is quite clear
in this particular example: it is a 2×2 matrix written in auxiliary space whose
entries are the physical spin operators acting on site n. Written in this way,
the L-operator reflects the SU(2) symmetry of the model. Introducing the
form of the permutation operator P on C2 ⊗C2 (such that Pa⊗ b = b⊗ a)

P =
1

2
(I ⊗ I +

∑

α

σα ⊗ σα) (6.2.12)

we can rewrite L as

Ln
0 (λ) = (λ− i

2
)I0n + iP0n . (6.2.13)
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The explicit R matrix solution of the YBE is then quite simple2

R12 = λI12 + iP12 (6.2.14)

where I12 and P12 are unity and permutation in V1 ⊗ V2. The monodromy
matrix T (λ) is a 2 × 2 matrix given by

T (λ) = LN (λ) · · · L2(λ)L1(λ) ≡
(
A(λ) B(λ)
C(λ) D(λ)

)

. (6.2.15)

As already argued in the previous section, the transfer matrix,

t(λ) = tr0 T (λ) = A(λ) +D(λ) , (6.2.16)

generates the integrals of motion, among them the Hamiltonian. It is in
fact quite straightforward (playing with the properties of the permutation
operators) to show that the Hamiltonian is obtained by taking the logarithmic
derivative of the transfer matrix at the ”special point”, λ = i/2, where L
reduces to the permutation operator up to a factor i. We have,

d ln t(λ)

dλ

∣
∣
∣
∣
λ=i/2

= −i
∑

n

Pn,n+1 (6.2.17)

such that

H =
1

2

∑

n

Pn,n+1 −
N

2
=
i

2

d

dλ
ln t(λ)

∣
∣
λ=i/2

− N

2
. (6.2.18)

The next move is to diagonalise t(λ). Within the Algebraic Bethe Ansatz
(ABA) the first key-step is to define a proper vacuum |Ω〉 (highest weight vec-
tor) which is annihilated by the off-diagonal element C(λ) of the monodromy
matrix T (λ). In addition, |Ω〉 should be an eigenstate of T ’s diagonal elements
A and D,

C(λ)|Ω〉 = 0 , (6.2.19)

A(λ)|Ω〉 = α(λ)|Ω〉 , (6.2.20)

D(λ)|Ω〉 = δ(λ)|Ω〉 . (6.2.21)

For the actual case of the XXX model, a ”good” vacuum to start with is the
ferromagnetic state where all spins are pointing up for example,

|Ω〉 =
⊗

n

| ↑〉n . (6.2.22)

2Mathematically speaking: ”R is the simplest solution of the YBE corresponding to the
Yangian Y[sl(2)]” - Sklyanin
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Acting with Ln on the pseudo-vacuum in the basis {| ↑〉 = (1, 0)⊤, | ↓〉 =
(0, 1)⊤} reduces to

Ln| ↑〉n =

(
(λ+ i

2 )| ↑〉n •
0 (λ− i

2)| ↑〉n

)

(6.2.23)

where • is some function whose explicit expression doesn’t really matter.
Therefore we have α(λ) = (λ + i

2)N and δ(λ) = (λ − i
2)N . B(λ) acts on

the pseudo-vacuum |Ω〉 by flipping a spin. Of course, since we are dealing
with a quantum chain, this excitation is not local and the flipped spin will
propagate along the chain with rapidity λ. This type of excitation is called
in the literature a magnon. In this picture, B(λ) can be interpreted as the
creation operator for the magnons. The idea is then to propose an ansatz for
the eigenstates of the transfer matrix t(u) of the form

|λ1, λ2, . . . , λM 〉 =

M∏

k=1

B(λk)|Ω〉 (6.2.24)

where M will be the number of magnons on top the ferromagnetic vacuum.
Making use of the fundamental commutation relations among the operators
elements of T , the main result of this approach is that the problem of finding
the eigenvalues τ(λ) of t(λ),

t(λ)|λ1, λ2, . . . , λM 〉 = τ(λ)|λ1, λ2, . . . , λM 〉 , (6.2.25)

is equivalent to solving the following set of BAE

(
λj + i/2

λj − i/2

)N

=

M∏

k=1
k 6=j

λj − λk + i

λj − λk − i
, j = 1, ...,M . (6.2.26)

The energy of the system is just the sum of single magnons’ dispersion,

E =
M∑

j=1

ǫ(λj) = −1

2

M∑

j=1

1

λ2
j + 1/4

, (6.2.27)

which yields the spectrum of the Heisenberg model. Eq. (6.2.27) calls for
a comment: if the spectrum of the XXX magnetic chain is complicated to
understand in terms of the original interacting spins, it is easily apprehended in
the collective excitation picture of (almost) free magnons. But the price to pay
in return is that the Bethe states B(λ1) . . . B(λk)|Ω〉 are complicated objects
in terms of the spin variables making the calculation of spin-spin correlation
functions, for example, very difficult to handle in that representation. It is
nevertheless tractable is some cases [85, 66]. Let us mention also that the
thermodynamic quantities of the Heisenberg chain can be computed by an
analysis of Eq. (6.2.27) in the M → ∞ limit where the set of {λj}j=1,...,M

becomes dense. We will not pursue this route right now but we will use this
approach extensively later on when dealing with models with impurities.
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The supersymmetric t–J model

After the spin chain we should analyse its charge-doped version which is the
t–J model. In one spatial dimension and at the special point J = 2t the
model defined by Eq. (6.1.3) becomes supersymmetric (SUSY) and is inte-
grable. For periodic boundary conditions, i.e. cL+1 ≡ c1, the SUSY t–J model
has been exactly diagonalised both by the coordinate Bethe Ansatz (see e.g.
Bares et al. [16]) and by the algebraic Bethe Ansatz (Essler and Korepin [42]).
The algebraic approach, we will concentrate on, is very interesting technically
speaking because in the construction and solution of the model occur two sub-
tleties: 1) the symmetry algebra underlying the SUSY t–J model is neither
the SU(2) × SU(2) of the Hubbard model nor the simple SU(2) algebra of
the spin chain. It is the super-algebra gl(2|1) meaning that grading has to
be taking care of (for the tensor product of two such representations) when
braiding two operators. The graded-algebra gl(2|1) has a natural representa-
tion that contains two fermions and one boson. In the following we shall call
this representation 3 or [1/2]+. 2) Since there are two inner degrees of free-
dom, spin and charge, it requires the nesting technique. A proper description
of the Nested Bethe Ansatz (NBA) is beyond the ambition of this chapter,
but let me describe how it works with hand-waving arguments. The idea is
that we need two levels of parametrization of our Bethe states. One can write
an ansatz of the form we made for the spin chain, Eq. (6.2.24). This fixes
the spin part. But now, since the t–J Hamiltonian allows for a charge to hop
from site to site, the latter ansatz is ambiguous. In order to fix completely all
the coefficients of the Bethe states one needs to apply a second Bethe Ansatz.
This is why it is called Nested Bethe Ansatz (one Ansatz to fix the coefficients
of the other Ansatz). For details concerning the NBA approach to the SUSY
t–J model, see Ref. [42].

To construct the SUSY t–J model by means of the QISM we first need
to choose an R (or Ř) matrix. Because we will work directly with tensor
products of Lax matrices let us consider the matrix

ŘtJ =
λ

λ+ i
Π +

i

λ+ i
I (6.2.28)

with Πa1b1
a2b2

= (−1)ǫb1
ǫb2δa1b2δa2b1 being the graded permutation operator act-

ing on 3 ⊗ 3. We choose the representation 3 such that it is spanned by the
three states {↑, ↓, 0} with the following grading convention: ǫ↑ = ǫ↓ = 1 and
ǫ0 = 0. The L-matrix is simply chosen to be LtJ = ΠŘtJ . It fulfils a graded
intertwining relation

Ř(λ− µ)(L(λ) ⊗ L(µ)) = (L(µ) ⊗ L(λ))Ř(λ− µ) , (6.2.29)
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or, written explicitly in components,

Ř(λ− µ)a1c1
a2c2L(λ)c1b1

αγ L(µ)c2b2
γβ (−1)ǫc2 (ǫc1+ǫb1

)

= L(µ)a1c1
αγ L(λ)a2c2

γβ (−1)ǫa2 (ǫa1+ǫc1)Řc1b1
c2b2

(λ− µ) . (6.2.30)

Once again, one can construct the monodromy matrix,

T (λ)aα1...αL

bβ1...βL
= L(λ)acL

αLβL
L(λ)

cLcL−1

αL−1βL−1
. . .L(λ)c2b

α1β1
(−1)

PL
j=2(ǫαj

+ǫβj
)

Pj−1
i=1 ǫαi ,

(6.2.31)
by simply multiplying a string of L-matrices together, and from which we
compute the transfer matrix:

t(λ) = strT (λ) ≡
3∑

a=1

(−1)ǫaT (λ)aa . (6.2.32)

The symbol str denotes a supertrace (the graded generalisation of the trace).
The Hamiltonian is given by the logarithmic derivative of the transfer matrix
at the ’special point’ where L is essentially the permutation, i.e. λ = 0 within
the notations of Ref. [42]:

HtJ = −i d

dλ
ln t(λ)

∣
∣
λ=0

− 2N = −
L∑

k=1

(Πk,k+1 − 1) − 2N . (6.2.33)

The similarity with the XXX spin chain is very striking when the Hamiltonian
is written in terms of the (graded) permutation operator as in Eq. (6.2.33).

The next step of the program is to make the ABA to find the spectrum of
t(λ). The monodromy operator is this time a 3 × 3 matrix whose entries are
the operators Aij , Bi, Ci and D defined as follows:

T =





A11 A12 B1

A21 A22 B2

C1 C2 D



 . (6.2.34)

The first question to ask is: What is a ”good” pseudo-vacuum? There are
three different choices of grading (1 boson out of three possible states) which
implies three possible reference states to start from to build up the spectrum.
One example is the so-called Lai vacuum [91],

⊗

j |0〉j , which is the state
with all sites empty. The eigenstates are constructed by application of the Ci

operators onto the bosonic Lai vacuum:

|λ1, . . . , λn;F 〉 = Ca1(λ1) . . . Can(λn)|0〉F an ...a1 . (6.2.35)

The values of the spectral parameters λi and the coefficients F an...a1 , which
are constructed by means of a nested algebraic Bethe ansatz (NABA), are
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determined by requiring the cancellation of the so-called unwanted terms [42].
One obtains the following set of BAE

(

λj − i
2

λj + i
2

)L

=

N↓∏

α=1

λj − λ
(1)
α − i

2

λj − λ
(1)
α + i

2

, j = 1, . . . , Ne

Ne∏

j=1

λ
(1)
α − λj + i

2

λ
(1)
α − λj − i

2

= −
N↓∏

β=1
α6=β

λ
(1)
α − λ

(1)
β + i

λ
(1)
α − λ

(1)
β − i

, α = 1, . . . , N↓

(6.2.36)

The energy of a Bethe state of the form (6.2.35) with spectral parameters

{λj , j = 1, . . . , Ne}, {λ(1)
γ , γ = 1, . . . , N↓} is given by

E =

Ne∑

j=1

1

λ2
j + 1

4

− L . (6.2.37)

Another ABA solution of the SUSY t–J model can be derived by starting
from another pseudo-vacuum. The Sutherland vacuum [127], for instance, is a
fermionic reference state with all spins pointing upwards (like in the spin chain
case),

⊗

j | ↑〉j . This time the Bi operators will be creating the excitations
and, after some algebra, one ends up with a new but completely equivalent
set of BAE to solve:
(

λ̃l + i
2

λ̃l − i
2

)L

=

Nh+N↓∏

m=1,m6=l

λ̃l − λ̃m + i

λ̃l − λ̃m − i

Nh∏

j=1

λ̃l − λ̃
(1)
j − i

2

λ̃l − λ̃
(1)
j + i

2

, l = 1, . . . , Nh +N↓

1 =

Nh+N↓∏

j=1

λ̃j − λ̃
(1)
k − i

2

λ̃j − λ̃
(1)
k + i

2

, k = 1, . . . , Nh .

(6.2.38)
The energy computed in this Bethe basis is expressed by the following formula:

E = L−
Nh+N↓∑

j=1

1

λ̃2
j + 1/4

. (6.2.39)

The equivalence between the Lai and the Sutherland solutions relies on a
particle-hole symmetry at the level of the BAE. We provide an explicit proof
of this equivalence in App. E for the case of open boundary conditions.

This closes our quick overview of the algebraic Bethe ansatz. The examples
we have used are the most simples ones: they are homogeneous systems with
periodic boundary conditions. But even though the condition for integrability
(YBE) may seem rather restrictive, QISM allows for some freedom. In par-
ticular, impurities and non-trivial boundary conditions can be added to the
system without spoiling integrability. And for the aim of studying impurity
problems, which is the focus of this part, having at hand integrable models is
extremely useful.
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m m+ 1

(m,S)

Figure 6.2: An isolated impurity (pink square) interacting with the Heisenberg chain
(black) in the model proposed in Ref. [13]

6.2.3 Integrable impurities

Integrable inhomogeneities can be inserted into the system by replacing the
L-operator at one site of the lattice by a different solution Limp of the in-
tertwining relation acting on V0 ⊗ Vimp (see e.g. Refs. [13, 18, 19, 122]). In
Limp the internal quantum degrees of freedom of the inhomogeneity are con-
trolled by the choice of a specific representation of the underlying algebra,
acting on the quantum space Vimp which may be different from the one used
for the other (bulk) sites (i.e. SU(2) for the Heisenberg chain, gl(2|1) for the
supersymmetric t–J model). In addition the coupling of the imhomogene-
ity site to the rest of the lattice can be varied by a shift of the argument,
i.e. Limp(λ) → Limp(λ + t) which is consistent with relation (6.2.4). This
construction has already been applied in the literature to our two favourite
models: the XXX spin chain and the SUSY t–J model.

SU(2)

To our knowledge, the first successful attempt to construct an integrable spin
chain with an impurity goes back to the paper of Andrei and Johannesson
[13]. In this work, the authors are interested in a usual Heisenberg spin chain
allowed to interact with an isolated spin-S impurity located at e.g. site m (see
Fig. 6.2). The transfer matrix of the system is obtained in the standard way,
by writing

t(λ) = tr0 LN,1/2
0 (λ) · · · Lm+1,1/2

0 (λ)Lm,S
0 (λ)Lm,1/2

0 (λ) · · · L1,1/2
0 (λ) (6.2.40)

with the following choice of Lax matrix:

L(mS)
0 =

iλ+ 1
2 + σ0 ⊗ Sm

iλ+ S + 1
2

. (6.2.41)

For S = 1/2, we recognise the L-operator of the XXX spin chain (up to a
trivial rescaling of the spectral parameter λ). For spin S > 1/2, the auxiliary
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space V0 is the 2-dimensional space of spin 1/2 while the operators acting on
the physical space Vj belong to a (2S+1)-dimensional representation of SU(2).
Within the geometry drawn in Fig. 6.2, Andrei and Johannesson derived from
Eq. (6.2.40) the form of the bulk-impurity interaction:

Hint =
4J

(2S + 1)2
[σm ·S+σm+1 ·S+

1

2
{σm ·S,σm+1 ·S}−S(S+1)σm ·σm+1] ,

(6.2.42)
where {·, ·} denotes an anti-commutator. We see that this Hamiltonian is
not as simple as one could have guessed. Despite the fact that it has some
expected Heisenberg terms (just scalar products among the spins), it contains
also some 4-spin interactions. This is, in general, the price to pay when we
demand integrability.

g(2|1)

Following the work of Andrei and Johannesson, numerous generalisations have
been accomplished, in particular some extensions to more complicated alge-
bras like gl(2|1) for instance. Let me mention two particular examples that
we will encounter in the following chapters.

The first type of inhomogeneity in the t–J model I want to consider is
an impurity of Hubbard type. Remember that the bulk sites of the usual
SUSY t–J model ”live” on a 3-dimensional representation of gl(2|1) spanned
by {↑, ↓, 0}. A Hubbard impurity will be an isolated site in the chain where
double occupancy is allowed. The quantum space of the impurity will be the
4-dimensional Hilbert space with local basis {↑↓, ↑, ↓, 0}, which is the basis
of the Hubbard model. Fortunatelly, the representation theory of the super-
algebra gl(2|1) ([120, 105] and App. A) provides us with the so-called typical

4-dimensional representation [b, 1
2 ], with α ≡ b − 1

2 > 0. Thus, we should be
able to compute a transfer matrix of a lattice model taking a L-operator based
on [b, 1

2 ] to be attached to the impurity vertex. The corresponding solution
of the intertwining relation (6.2.4) has been considered before [18, 19, 20].
Written as a matrix in auxiliary space, the L-operator of the impurity reads:

Limp(λ) =
λ− i(α

2 + 1)

λ+ i(α
2 + 1)

I +
i

λ+ i(α
2 + 1)





1 − n↑ −S− Q↑
−S+ 1 − n↓ Q↓
Q†

↑ Q†
↓ α+ 2 − n



 .

(6.2.43)

Here n =
∑

σ=↑,↓ nσ =
∑

σ c
†
σcσ and ~S = 1

2

∑

αβ c
†
α~σαβcβ are the electron

number and spin operators on the impurity site expressed in terms of canon-
ical fermionic creation and annihilation operators. The Qσ are the fermionic
generators of gl(2|1) in this representation which can be expressed in terms
of projection operators (the so called ‘Hubbard Operators’) Xab = |a〉〈b| with
a, b =↑, ↓, ↑↓, 0:

Qσ =
√
α+ 1X0σ − 2σ

√
αX−σ2 (6.2.44)
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with σ = ±1
2 corresponding to σ =↑, ↓.

The second type of inhomogeneity we want to evoke is the case of a Kondo-
type impurity. The L-operator of the impurity vertex is, in that case, based
on a so-called atypical representation, [s]+, of gl(2|1) (see Refs. [120, 105] and
App. A). This particluar representation has already been used in constructing
an integrable model of a doped spin-S Heisenberg chain [54, 48, 56]. In terms
of the generators of gl(2|1) the impurity L-operator is given by [90]

Limp(λ) ≡ Ls(λ) =
λ− i(s+ 1/2)

λ+ i(s+ 1/2)
I +

i

λ+ i(s + 1/2)
C

(0s)
2 . (6.2.45)

Here C
(0s)
2 is the quadratic Casimir operotor (A.2.9) of gl(2|1) on the ten-

sor product V0 ⊗ Vimp (the auxiliary space V0 carries the three-dimensional
fundamental representation [1/2]+ of gl(2|1)).

6.2.4 Open boundary conditions

The last topic we would like to discuss briefly is the construction of open
chains, eventually with boundary fields acting at the edge. Boundary con-
ditions different from periodic (or twisted) ones can be treated within the
QISM by extending the algebra defined by the intertwining relations through
so-called reflection equations (RE) [31, 123]. The RE define two algebras T±
whose representations allow for a classification of integrable boundary condi-
tions. T+ and T− are related by an algebra automorphism, for T− the RE
reads:

R12(λ− µ)
1
T−(λ)R21(λ+ µ)

2
T−(µ) =

2
T−(µ)R12(λ+ µ)

1
T−(λ)R21(λ− µ) ,

(6.2.46)
where R12 is again a solution of the YBE (6.2.5) on the tensor product V1⊗V2

and
1
T− = T ⊗ I,

2
T− = I ⊗ T . The representations of T± determine the

boundary terms in the Hamiltonian at the left (right) end of the chain.
Given these solutions to (6.2.4) and (6.2.46), the commuting integrals of

motion of the system can be obtained from the transfer matrix

τL(λ) = tr0

(

K+(λ)LL
0 (λ)LL−1

0 (λ) . . .L1
0(λ)×

× K−(λ)
(
L1

0(−λ)
)−1 (L2

0(−λ)
)−1

. . .
(
LL

0 (−λ)
)−1
)

, (6.2.47)

where the matrix K+(λ) (resp. K−(λ)) is an explicit realisation of the algebra
T+ (resp. T−). In particular, the Hamiltonian is obtained by taking the
derivative of τL at the ‘shift point’ λ = 0,

H =
N−1∑

n=1

hn,n+1 +
1

2
K ′

−(0) +
tr0 [K⊤

+ (0)hN0]

tr0 [K+(0)]
, (6.2.48)

with tr0K+(0) 6= 0.
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XXX spin chain

Let us start with the example of the XXX chain. For the spin chain, even
with anisotropy, the classification of the K matrices solving Sklyanin’s RE has
been obtained by de Vega and González-Ruiz [36]. Here, let us just quote the
result derived for the isotropic XXX magnetic chain. Taking the most general
2 × 2 boundary matrix,

K±(λ) =

(
β±(ξ± + λ) µ±λ

θ±λ β±(ξ± − λ)

)

, (6.2.49)

and using the fundamental rational R matrix, the formula (6.2.48) leads to

H =

N−1∑

n=1

(σx
nσ

x
n+1 + σy

nσ
y
n+1 + σz

nσ
z
n+1)

+ b−σ
z
1 − b+σ

z
N + c−σ

−
1 − c+σ

−
N + d−σ

+
1 − d+c

+
N . (6.2.50)

Here we recognise the bulk part of the Hamiltonian, the traditional XXX
Hamiltonian, but with the sum running up to N−1, indicating open boundary
conditions. The other terms are the most general boundary terms compatible
with integrability of the open XXX chain. The ”boundary fields” are expressed
in terms of the parameters of the K-matrices as follows

b± =
1

ξ±
(6.2.51)

c± =
θ±
β±ξ±

(6.2.52)

d± =
µ±
β±ξ±

(6.2.53)

where β± and ξ± are non-zero.

SUSY t–J model

In Ref. [70] González-Ruiz gave the K-matrices for the so-called trigonometric
t–J . Here let us just quote a representation of the diagonal K-matrices at the
rational point (SUSY point) that we will use in the following chapters:

Kp
− =





1 0 0
0 1 0

0 0 −pλ+i
pλ−i



 , Kh
− =





−hλ+i
hλ−i 0 0

0 1 0
0 0 1



 . (6.2.54)

They correspond respectively to a boundary chemical potential p and a bound-
ary magnetic field h (in combination with a chemical potential) [39]. The
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induced Hamiltonian is again the sum of a bulk part and a boundary part,

HtJ = −P(

L−1∑

j=1

∑

σ

c†j,σcj+1,σ + c†j+1,σcj,σ)P

+ 2
L∑

j=1

(Sj · Sj+1 −
1

4
njnj+1 +

1

2
(nj + nj+1)) +Hαβ , (6.2.55)

where four possible choices of boundary Hamiltonians Hαβ are compatible
with integrability, the conservation of total spin in the z-direction and the
particle number. Those four possible boundary terms are given by:

Haa = p1n1 + pLnL , (6.2.56)

Hba = p1n1 + hL(Sz
L − nh

L

2
) , (6.2.57)

Hab = h1(S
z
1 − nh

1

2
) + pLnL , (6.2.58)

Hbb = h1(S
z
1 − nh

1

2
) + hL(Sz

L − nh
L

2
) . (6.2.59)

We have sketched how QISM works for constructing genuine models of
correlated electrons, involving impurities, boundary fields, etc. Our main
task, in the rest of this thesis, will be to study two particular examples of
impurity problems within the SUSY t–J model.



Chapter 7

Anderson impurity in the
SUSY t–J model

In Chap. 5, we catched a glimpse of how rich the physics of quantum impu-
rity problems can be. Since those phenomena are non-perturbative, we argued
that sophisticated tools such as exactly solvable model systems and powerful
field theoretical methods are needed to gain insights into the properties of such
systems (see e.g. Refs. [129, 12, 7, 64]). The recent advances in nanofrabri-
cation have led to new realizations of quantum impurities and Kondo physics
has been observed, e.g., as Fano resonances in spectra from scanning tunnel-
ing microscopy of magnetic atoms on metallic surfaces or as zero-bias peak in
the conductance of quantum dots occupied with an odd number of electrons
[97, 103, 69]. The control over the parameters describing the impurity in
these new devices such as their internal spectrum, the coupling to the many-
body environment and the spectral properties, in particular the local density
of states, of the latter poses new questions to be answered from theoretical
investigations. For such studies specific models for a quantum impurity are
needed which allow to cover the full range of experimentally available param-
eters on one hand and at the same time to make contact to the universal
low-energy behaviour identified by the theoretical methods mentioned above.
These requirements can be met by an approach based on integrable lattice
models. In this chapter, we propose to study such a particular model describ-
ing an Anderson-like impurity embedded into a t–J chain.

7.1 Presentation of the model

There are at least two ways of dealing with impurities: one possibility is to
alter the couplings precisely at the bonds where the impurity sits. Another
possibility is to have the local Hilbert space of the impurity differing from
the one in the bulk. We shall adopt, in the following, both points of view,
and use the formalism of QISM, introduced in Chap. 6, to construct an in-

89
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tegrable model of an impurity coupled to a chain of interacting electrons. To
be specific, we consider a SUSY t–J model (which is based on the fundamen-
tal 3-dimensional representation of gl(2|1)) with one vertex replaced by an L
operator acting on a 4-dimensional quantum space. This preserves the super-
symmetry of the model but at the same time lifts the restriction of no double
occupancy present in the t–J model at the impurity site. The L-operator of
the impurity vertex is based on the typical representation [b, 1

2 ] of gl(2|1) (see
chapter 6). The first model derived from this construction was obtained by
Bedürftig, Essler and Frahm in Refs. [18, 19] who investigated the situation in
which the impurity is located in the middle of an usual, periodic, t–J chain.
Their Hamiltonian is the sum of a standard t–J chain plus a term taking the
coupling bulk–impurity into account. The latter local Hamiltonian depends
essentially on one free (continuous) parameter, α ≡ b− 1

2 > 0, associated with
the 4-dimensional representation of the super-algebra, which controls the in-
ternal spectrum of the impurity. This makes the present model particularly
interesting and relevant for the study of rather general situations since the
impurity introduced here couples to both spin and charge degrees of freedom
of the bulk Luttinger liquid.

7.1.1 The need for open boundaries

One of the only drawback of the model just cited, is the complete absence of
backscattering at the inhomogeneity. And this is in fact a quite non-generic
consequence of the embedding of a quantum impurity into an integrable lattice
model. This pathology is somehow restricting because the renormalisation
group studies [94, 59, 80] of the problem reveal that a backscattering potential
acts as a relevant perturbation in the correlated host, driving the system to
a fixed point which effectively breaks the chain at the site of the potential
scatterer. Indeed, for a quantum impurity with internal degrees of freedom,
studies based on bosonization and boundary conformal field theory imply that
both forward and back scattering amplitudes have to be considered [57, 37].
This implies that in such a system, the properties of this fixed point have to
be studied in lattice models subject to open boundary conditions. This can
be achieved, within the integrable model, by combining the inhomogeneity,
Limp, with a boundary matrix, K±, satisfying the reflection equation (6.2.46)
[20]. Furthermore, we will introduce a shift, t, of the spectral parameter at
the impurity site, i.e. Limp(λ+ t), directly entering the coupling between the
impurity and the host chain.

7.1.2 Derivation of the Hamiltonian

The situation we want to consider is depicted in Fig. 7.1 where we have placed
the impurity vertex (6.2.43) at the boundary site 1. Thus, the expression
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1234LL+ 1

Figure 7.1: Diagram of the open t–J with an impurity (pink square) located at the
boundary (site 1). Sites 2 to L + 1 are usual t–J sites (black circles). The boundaries
(dashed zones) are chosen here to be perfectly reflecting.

T−(λ) = LL+1(λ) · · · L2(λ)Limp(λ+ t)

K−(λ) (Limp(−λ+ t))−1 (L2(−λ))−1 · · · (LL+1(λ))−1 (7.1.1)

defines the integrable model with L+ 1 sites through the transfer matrix

τ(λ) = str0 [K+(λ)T−(λ)] . (7.1.2)

str0(M) =
∑

a(−1)[a]Maa is the (graded) supertrace taken in auxiliary space.
In this chapter we will focus on a chain with reflecting ends1, i.e. K± ≡1. Taking the derivative of the transfer matrix with respect to the spectral
parameter,

H ∝ i
∂

∂λ
τ(λ)

∣
∣
∣
λ=0

, (7.1.3)

leads to the following Hamiltonian of the quantum chain,

H = −P





L∑

j=2

∑

σ

c†j,σcj+1,σ + c†j+1,σcj,σ



P

+ 2

L∑

j=2

[

~Sj
~Sj+1 −

njnj+1

4
+

1

2
(nj + nj+1)

]

−HSz − µN + Hb , (7.1.4)

written in the grand-canonical ensemble. The bulk of the system is the su-
persymmetric t–J model: P projects out double occupancies on sites j = 2 to
L+ 1 and ~Sj and nj are the electronic spin and number operators on site j.

1A generalization describing, for the gl(2|1)-symmetric t–J model, a boundary potential
or boundary magnetic field is straightforward [39, 20] and will under consideration in chapter
8.
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The external magnetic field H and chemical potential µ control magnetization
and hole concentration δ = 1 −∑j nj/L of the system.

The internal spectrum of the impurity at site 1 and its coupling to the
bulk is determined by the boundary term [20] in (7.1.4)

Hb = V0

[

αn2 + 2~S1
~S2 −

n1n2

2
+ n1 + n2 −

∑

σ

(Q†
2,σQ1,σ +Q†

1,σQ2,σ)

]

,

(7.1.5)
where

Q2,σ = |0〉〈σ|2 and Q1,σ =
√
α+ 1|0〉〈σ|1 − 2σ

√
α|σ̄〉〈2|1 (7.1.6)

are generalised electron annihilation operators for the sites 1 and 2. The
parameter α labels the four-dimensional representation of gl(2|1) used in the
construction of (7.1.5) and controls the internal spectrum of the impurity.
The terms in (7.1.5) describe exchange and Coulomb interaction between the
electrons on site 1 and those in the chain as well as a term allowing for the
hopping of electrons between the bulk and the impurity. Comparing this model
with that of the single-impurity Anderson model, V0 ≡ 4

4t2+(α+2)2 can be

identified with an hybridization coupling. Since we consider an open chain, the
parameter t can be either real positive or purely imaginary, thereby allowing
to cover the entire range −∞ < V0 < ∞ for this coupling between the bulk
and the impurity site.

7.2 The Bethe Ansatz solution

The t–J model with a boundary impurity as given by Eqs. (7.1.4), (7.1.5) is
solvable by means of the algebraic Bethe Ansatz. The pseudo-vacuum |Ω〉 ≡
| ↑↑ · · · ↑〉bulk ⊗ | ↑↓〉imp with maximal number of electrons and complete
polarization of the bulk is a trivial eigenstate of the Hamiltonian. The gl(2|1)
highest weight eigenstates of (7.1.4) with Ne = N↑ + N↓ electrons can be
parametrized by Ms = L+ 1 −N↑ roots λj and Mc = L+ 2 −Ne roots ϑγ of
the Bethe Ansatz equations (BAE)

e2L
1 (λj)Φs(λj) =

Ms∏

k 6=j

e2(λj − λk)e2(λj + λk)×

Mc∏

β=1

e−1(λj − ϑβ)e−1(λj + ϑβ) , j = 1, . . . ,Ms ,

Φc(ϑγ) =
Ms∏

k=1

e−1(ϑγ − λk)e−1(ϑγ + λk) , γ = 1, . . . ,Mc ,

(7.2.7)

with
Φs(λ) ≡ 1, Φc(ϑ) = eα(ϑ + t)eα(ϑ− t) . (7.2.8)
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The spin (charge) rapidities λj (ϑγ) describe overturned spins (holes) added
to |Ω〉 and Φcs, depending on the parameters α and t, are the phase shifts due
to the presence of the impurity in the system. The corresponding energy of
the Bethe state is then given by the expression

E = V0(α+2)+2(L−1)−
Ms∑

j=1

1

λ2
j + 1

4

+

(

µ− H

2

)

Mc+HMs−µ(L+2)−H

2
L.

(7.2.9)

7.2.1 Bound states formation

To begin, we should identify which root configurations solving the BAE (7.2.7)
correspond to the ground state and to the low lying excitations of the system.2

From the solution of the t–J model with periodic and reflecting open bound-
aries but without an impurity the ground state is known to be described by
real spin and charge rapidities [121, 39]. This remains valid in the present case
for impurities described by real t. As discussed in the previous section the
combination of the impurity with open boundary conditions allows to choose
purely imaginary t = iτ ∈ iR+ and thereby extending the range covered by
the hybridization V0. In the Bethe equations (7.2.7) this amounts to choosing

Φc(ϑ) = eα+2τ (ϑγ)eα−2τ (ϑγ) . (7.2.10)

In the Hamiltonian (7.1.5), choosing t imaginary corresponds to the regime
of strong or negative hybridization V0. As a consequence one expects that it
becomes energetically favourable for a hole to be bound to the impurity. On
the level of the BAE with (7.2.10) the mechanism for bound state formation
is similar to that discussed for the t–J model in the presence of boundary
fields [40], where imaginary roots become stable solutions of the BAE. Let
us illustrate how it works: Consider the second BAE (7.2.7) which involves
explicitly the impurity phase shift Φc(θ) now defined by (7.2.10). Suppose we
have such a bound state solution (i.e. imaginary root) in the holon sector.
Without loss of generality we can take this solution to be ϑγ0 ∈ iR+. The
right-hand side of the second BAE (7.2.7) now becomes

Ms∏

k=1

iImϑγ0 − λk − i/2

iImϑγ0 − λk + i/2

iImϑγ0 + λk − i/2

iImϑγ0 + λk + i/2
=

Ms∏

k=1

λ2
k + (Imϑγ0 − 1/2)2

λ2
k + (Imϑγ0 + 1/2)2

→ 0 asMs → ∞ . (7.2.11)

thus vanishing in the thermodynamic limit. Therefore, the left-hand side of
the second BAE (7.2.7) must also vanish which, in our case, is satisfied for
ϑ̃ = i(τ − α/2). Since the BAE (7.2.7) are coupled, the emergence of a

2We restrict ourselves to T = 0 to avoid the subtleties in dealing with open boundaries
at finite temperatures [65].
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bound state in the holon sector can induce a similar imaginary solution in
the spinon sector. In fact, one can convince oneself that tuning τ across the
thresholds τk = (α + k)/2, k = 0, 1, 2 will generate a sequence of poles (or
zeroes) in the scattering phase shifts (ϑγ0 = i(τ − τ0), λj0 = i(τ − τ1) and
ϑγ1 = i(τ − τ2) with exponential accuracy in the system size L) corresponding
to bound states in the Bethe state configuration. A similar mechanism for
the creation of bound states has been found to exist in integrable impurity
problems (see e.g. [133, 67]), although it has not been studied systematically
so far.

Explicitly taking into account those imaginary roots and rearranging the
equations we end up with three different sets of BAE depending on the occu-
pancy of the bound states:

Root configuration (I), τ > τ0: ϑγ0 = i(τ − τ0)

Φs(λ) = e2τ+1−α(λ)e1+α−2τ (λ)

Φc(ϑ) = eα+2τ (ϑ)eα−2τ (ϑ)
(7.2.12)

The imaginary root ϑγ0 determines the impurity phase shifts Φcs. Therefore,
in the products over the two-particle scattering phases on the right hand side
of (7.2.7) only the remaining real rapidities enter, i.e. λj with j = 1, ...,Ms

and ϑγ with γ = 1, ...,Mc − 1.
Root configuration (II), τ > τ1: ϑγ0 and λj0 = i(τ − τ1)

Φs(λ) = e2τ−α−3(λ)e1+α−2τ (λ)

Φc(ϑ) = eα+2τ (ϑ)e2+α−2τ (ϑ)
(7.2.13)

In addition to ϑγ0 defined previously, the imaginary spin rapidity λj0 = i(τ −
τ1) is also solution of the BAE. The real rapidities are now parametrized by λj

with j = 1, ...,Ms−1 and ϑγ with γ = 1, ...,Mc−1. In Eq. (7.2.9), λj0 will give
the following contribution to the energy: EMs = [(τ − α/2)(1 − τ + α/2)]−1,
that should be interpreted as the energy of the spinon bound state.

Root configuration (III), τ > τ2: ϑγ0, λj0 and ϑγ1 = i(τ − τ2)

Φs(λ) ≡ 1

Φc(ϑ) = eα+2τ (ϑ)e2+α−2τ (ϑ)
(7.2.14)

The root configuration (III) is characterized by the emergence of a third
imaginary solution of the BAE in the charge sector, ϑγ1 = i(τ − τ2). The
real rapidities are thus labeled λj with j = 1, ...,Ms − 1 and ϑγ with γ =
1, ...,Mc − 2.

N. B.: Increasing τ beyond α/2+1 does not lead to additional bound states
as expected for an impurity with a single orbital allowing for occupation of
at most two charges. Therefore, we conclude that the maximum number of
bound states allowed to develop themselves upon variation of the hybridization
at the boundary impurity site is three - two holons and one spinon.
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7.2.2 Continuum limit - Equations for the densities

The analysis of the BAE is simplified by doubling of the real roots of the
BAE with positive and negative ones identified, i.e. λ−j = −λj and ϑ−γ =
−ϑγ . Doing so, we can show that, in the thermodynamic limit, the real roots
{λj} ({ϑγ}) form continuous distributions which are conveniently described
in terms of their densities ρs(λ) (ρc(ϑ)):

(
ρs(λ)
ρc(ϑ)

)

=

(
2a1(λ)

0

)

+
1

L

(

ρ̂
(R)
s (λ) + ρ̂

(b)
s (λ)

ρ̂
(R)
c (ϑ) + ρ̂

(b)
c (ϑ)

)

+

(

−
∫ A
−A a2

∫ B
−B a1

∫ A
−A a1 0

)

∗
(
ρs(λ)
ρc(ϑ)

)

. (7.2.15)

The detailed derivation of Eq. (7.2.15) are given in App. B. Here we have in-

troduced ay(x) = 1
2π

y
y2/4+x2 and

∫ k
−k f ∗g denotes the convolution

∫ k
−k dy f(x−

y)g(y). The driving terms of the kernel-equation (7.2.15) correspond to the
bulk (of order L0) and impurity or boundary (of order L−1) contributions to
the densities. Within our notations, the impurity’s driving terms carry a su-
perscript (R) refering to the sector of bound states spectrum they correspond.
The boundaries A and B for the spin and charge sector, respectively, are fixed
by the conditions

∫ A

−A
dλ ρs(λ) =

2 [Ms − θ(τ − τ1)] + 1

L
(7.2.16)

∫ B

−B
dϑ ρc(ϑ) =

2 [Mc − θ(τ − τ0) − θ(τ − τ2)] + 1

L
(7.2.17)

where θ(x) is the Heaviside step function and τk are the thresholds for the
appearance of bound states identified above. Alternatively, the ground state,
for given chemical potential µ and magnetic field H, is obtained by filling all
the modes with negative dressed energies εs(λ) and εc(ϑ) solving the integral
equations

(
εs(λ)
εc(ϑ)

)

=

(
−2πa1(λ) +H

µ− H
2

)

+

(

−
∫ A
−A a2

∫ B
−B a1

∫ A
−A a1 0

)

∗
(
εs(λ)
εc(ϑ)

)

(7.2.18)
where A and B have to be chosen such that εs(±A) = 0 and εc(±B) = 0.
In the dressed energies ”language”, the bulk parameters A(resp. B) can thus
be interpreted as the pseudo-Fermi levels for the spin (resp. hole) band. A
typical solution of the spinon and holon dispersion is shown in Fig. 7.2 for
a given µ and H. Since (7.2.15) is a linear system of integral equations, the
generic solution for both spin and charge densities is of the form

ρ = ρ∞ +
1

L
(ρimp + ρb). (7.2.19)
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Figure 7.2: A typical solution of the dressed energies equations (7.2.18) for an arbitrary
value of µ and H .

The first term in (7.2.19) is the bulk density obtained by solving (7.2.15) with
L = ∞. The remaining two terms of order 1/L are the contribution due to
the impurity site and the one due to the openness of the chain (boundaries).
The imaginary roots which are treated separately from the continuum of real
solutions give rise to various driving terms of the 1/L-corrections due to the
impurity. From (7.2.10)–(7.2.14), we obtain:

ρ̂(R)
s (λ) =







0 t ∈ R, R = 0
a2τ+1−α(λ) + a1+α−2τ (λ) R = I
−a3+α−2τ (λ) − a2τ−α−1(λ) R = II
0 R = III

(7.2.20)

for the spin–sector and

ρ̂(R)
c (ϑ) =







aα(ϑ+ t) + aα(ϑ− t) t ∈ R
aα+2τ (ϑ) + aα−2τ (ϑ) R = 0, I
aα+2τ (ϑ) + a2+α−2τ (ϑ) R = II, III

(7.2.21)

for the charge–sector. The label R stands for the root configurations discussed
above, R = 0 being the one without bound states solutions associated with the
phase shifts (7.2.10). The 1/L contributions due to the boundaries have to be

calculated with the driving terms ρ̂
(b)
s (λ) = a2(λ) and ρ̂

(b)
c (ϑ) = −a1(ϑ). Note

that any thermodynamic quantity can also be split into parts corresponding
to the bulk, the impurity and the boundaries. For instance, the ground state
energy of the system is

E0 = Lǫ∞ + (ǫimp + ǫb) + . . . (7.2.22)
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In the following, we will concentrate on the impurity’s contributions to these

quantities which are determined by the densities ρ
(R)
s/c . The effect of the bound-

aries, which is of purely geometric nature and therefore independent of the
impurity’s parameters, has been studied by Essler [39].

7.3 Characterization of the impurity

So far, four regions of the α–τ parameter space of the impurity have been
identified which allow for different possible bound state configurations. Each
of these configurations is described by a different set of BAE. Formally, the
impurity’s contribution to the energy expressed in terms of the densities is

ǫimp = V0(α+ 2) − 2 − π

∫ A

−A
dλ ρ(R)

s (λ)a1(λ)

+

(

µ− H

2

)(
1

2

∫ B

−B
dϑ ρ(R)

c (ϑ) + θ(τ − τ0) + θ(τ − τ2)

)

+H

(
1

2

∫ A

−A
dλ ρ(R)

s (λ) + θ(τ − τ1)

)

− 2µ. (7.3.23)

In order to identify the true ground state of the system for given impurity
parameters α and t (resp. τ), the expressions (7.3.23) have to be compared
for the different allowed bound state configurations. In Fig. 7.3, we show a
plot of ǫimp(V0) for the simple case of H = 0. One can see that for positive
hybridization V0, the maximum allowed number of bound states (in the con-
figurations 0, I, II) has to be considered for the ground state [52]. For negative
V0, τ > τ2 = α/2+1, however, the ground state is described by real rapidities
alone (configuration (0)), i.e. the BAE (7.2.7) with the impurity phase shifts
(7.2.10).

7.3.1 Zero field impurity susceptibility

With our parametrization of the BAE’s roots, the impurity contribution to
the magnetization is given by

− ∂ǫimp

∂H
≡Mimp =

1

4

∫ B

−B
dϑ ρ(R)

c (ϑ) +
1

2
(θ(τ − τ0) + θ(τ − τ2))

− 1

2

∫ A

−A
dλ ρ(R)

s (λ) − θ(τ − τ1). (7.3.24)

Performing a Fourier transform of Eq. (7.2.15), we can rewrite this expression
as an integral over the spin density only, in the low-field regime (A ≫ 1,
A≫ B):

Mimp =
1

2

∫ ∞

A
dλ ρ(R)

s (λ) − θ(τ − τ1) +
1

2
(θ(τ − τ0) + θ(τ − τ2)). (7.3.25)
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Figure 7.3: Impurity contribution to the ground state energy for different bound state
configurations as a function of the hybridization V0 for a bulk hole concentration of
δ = 0.2. The impurity parameter is fixed to α = 1. Note that the Bethe ansatz for the
configuration R = I and R = II gives identical results for ǫimp at negative V0.

This integral can be computed by means of a Wiener-Hopf (see App. C for
details) analysis of the integral equations (7.2.15). Using the expression

πA = − ln(H/H0) +
1

4 lnH
, H0 =

√

2π/e(2π − C) (7.3.26)

connecting A and H in the large A (low H) limit, the resulting expression for
the susceptibility of the impurity at zero field is then [52]:

χimp(H = 0) =
1

2π(2π − C)







C
(0)
α,τ

C
(I)
α,τ + 2cos π(τ − τ0)

C
(II)
α,τ + 2cos π(τ − τ0)

C
(III)
α,τ







R = 0
R = I
R = II
R = III

(7.3.27)

where we have defined C
(R)
α,τ ≡

∫ B
−B dϑ eπϑρ

(R)
c (ϑ) and C =

∫ B
−B dϑ eπϑεc(ϑ),

εc being the solution of Eq. (7.2.18). We present in Fig. 7.4 some numerical
computations of the zero field impurity’ susceptibility for two different hole
concentrations (δ = 20% and 80%), as a function of V0 and for various values
of α [53]. Here we consider the configuration with all possible bound states
occupied. Fig. 7.4 shows also the contribution of the impurity to the electronic
density defined by

− ∂ǫimp

∂µ
≡ Dimp = 2 − 1

2

∫ B

−B
dϑ ρ(R)

c (ϑ) − θ(τ − τ0) − θ(τ − τ2). (7.3.28)
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Figure 7.4: χimp and Dimp at zero magnetic field for hole concentration of 20% (left
panel) and 80% (right panel)

First notice that for α = 0 and 0 < V0 < 1, the impurity is doubly occu-
pied, Dimp ≡ 2. Therefore the impurity does not contribute to the magnetic
susceptibility of the system, i.e. χimp = 0. For V0 > 1 (configurations (I) and
(II)) and V0 < 0 (configuration (III)), the occupation is less than 2 due to the
filled holon bound state and there is a small finite impurity contribution to
the susceptibility. The resonance in the zero-field susceptibility is the response
of the unpaired electron on the impurity site which appears when Dimp ≈ 1.
Although still limited by fluctuations in the impurity’s occupation, the sus-
ceptibility at the resonance grows strongly with δ: while the maximum value
of χimp(H = 0) approaches the bulk susceptibility as δ → 0 it diverges for
δ → 1, i.e. vanishing bulk density of electrons. In this limit, the remaining
electron on the impurity site is essentially an uncoupled local moment.

7.3.2 Magnetization of the impurity at finite magnetic field

Behaviour close to H = 0

As it has been shown in the previous section, in the zero-field limit and for
a given set of impurity parameters (α and t), the susceptibility approaches
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a non-universal constant (7.3.27). Hence, the leading low-field behavior of
the impurity’s magnetization is expected to be linear in H, up to sublead-
ing corrections. These corrections, that can be inferred from more accurate
Wiener-Hopf analysis of Eq. (7.3.25), lead to the presence of a logarithmic
singularity at zero field in the impurity’s contribution to the susceptibility (see
insert of Fig. 7.8). In the low-field limit where the relation (7.3.26) holds, we
obtain

χimp(H → 0) = χimp(0)

[

1 − 1

2

(
1

lnH/H0
− 1

(lnH/H0)2

)]

. (7.3.29)

Such a feature is well known from the study of the magnetic response in
isotropic one-dimensional antiferromagnets (see e.g. Ref. [38]).

Behaviour close to the saturation field

In the high-field limit, the impurity’s magnetization saturates for the value
H = Hsat ≡ 4 cos2(πδ/2) of the magnetic field above which the bulk system
becomes completely polarised (see Fig. 7.5). As H approaches the saturation

0 0.2 0.4 0.6 0.8 1

δ
0

1

2

3

4

H

TL LIQUID

FULLY POLARIZED

Figure 7.5: The saturation field Hsat ≡ 4 cos2(πδ/2) separates the (δ,H) plane into
two phases: below Hsat the t–J chain behaves like a Tomonaga-Luttinger liquid, whereas
for H > Hsat, the system is described by a fully polarised ground-state.

field, an analytical expression for the impurity’s magnetization and suscep-
tibility can be given. In the Bethe Ansatz integral equations this regime
corresponds to B ≫ A with B → ∞ for H → Hsat

Mimp = M sat
imp −

1

2

(∫ −B

−∞
+

∫ ∞

B

)

dϑ

[

1 +
2

π
arctan(2ϑ − 2A)

]

ρimp
c (ϑ).

(7.3.30)
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Expanding the arctan for large arguments ϑ≫ 1, one obtains the asymptotic
behavior of the magnetization as a closed form

Mimp =
1

2
− 1

2π

(

arctan
2(As − t)

α+ 1
+ arctan

2(As + t)

α+ 1

)

.

(

1 +
1

πBs

)

− α

2πBs
,

(7.3.31)
where As and Bs are the boundaries close to saturation. Their asymptotic
behaviour near H = Hsat is determined by

As ≈
1

2

√

4/H − 1 , δ =

(

1 − 1

πBs

)
2

π
arctan 2As . (7.3.32)

Using this relation of the boundaries to the magnetic field and the doping δ
one finds that the leading field dependence of the magnetization below H =
Hsat is a linear one, ∝ Hsat −H. In Fig. 7.8 the expression (7.3.31) for the
magnetization and the derived one for the impurity susceptibility are indicated
by dotted lines.

Kondo regime

In between the two limits H = 0 and H = Hsat, the magnetic response of
the system due to the presence of the impurity can become non trivial in the
weak-hybridization regime which corresponds to real values of t. For V0 ≪ 1,
a Kondo scale can be defined as a function of the parameter t as

HK ∼ H0 exp(−πt) . (7.3.33)

For the impurity to be visible in the magnetic response, both spin and
charge sectors have to be coupled at the scale introduced by the hybridisation.
This coupling is determined by the relative size of the impurity parameter t
and that of the host parameters A and B. In Fig. 7.6 the profiles of the
charge and spin densities are drawn. Due to the presence of the driving term
aα(ϑ ± t) in the equation for the charge density (7.2.15), we can say that
ρc(ϑ) and ρs(λ) have, roughly, two main Lorentzian contributions centered
around ϑ, λ = ±t. As a consequence, two scenarii are possible: (i) For large t
(corresponding to sufficiently weak hybridization) but such that t = B > A,

the term
∫ A
−A a1 ∗ ρs in the equation for the charge densities is essentially

zero (see Fig. 7.6 left). This means that the impurity is decoupled from the
charge degrees of the host at the Kondo scale (7.3.33). The response of the
impurity to an external field is governed by a magnetic scale HB defined by
the charge parameter, t = B. In this case, the impurity contribution χimp

to the susceptibility will exhibit a resonance at H = HB > HK while being
suppressed below HB, where the magnetic scale HB is defined by t = B. In
fact, if one computes the density Dimp of electrons sitting at the impurity,
one clearly sees (cf Fig. 7.7) that below H = HB , the impurity is doubly
occupied implying that the impurity is already screened at the Kondo scale
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Figure 7.6: The two scenarii for the Kondo regime. Left: for t = B > A, the impurity
spin density is completely decoupled from the charge degrees of the freedom of the host.
Right: for t = A < B, both spin and charge densities are coupled at the Kondo scale
determined by t. Kondo resonance is expected.

Figure 7.7: The occupation Dimp of the impurity as a function of the hybridization V0

and magnetic field H for δ = 0.8 and α = 1. The phase boundaries defined by the scales
HB (green line) and HK (red line) are superimposed. We clearly see the region of double
occupancy below HB where the impurity becomes decoupled from the bulk.

and effectively decouples from the host. (ii) If the impurity and the host are
already coupled at the Kondo scale, i.e. t = A < B, Kondo physics can be
seen in the magnetic response of the impurity. In Fig. 7.8 (b) the change in
the dependence of the impurity magnetization on H from its low-field linear
behaviour, H < HK , to the high field behaviour is clearly observable. This
Kondo regime is reached for t sufficiently large, i.e. HK ≪ Hsat. In Fig. 7.7,
this regime corresponds to the average number of electrons on the impurity
being close to one, signature of the formation of a local moment.

We can also compute the fluctuations in the densities via the impurity
contribution to the magnetic susceptibility χimp and charge compressibility
κimp = ∂Dimp/∂µ of the system. Just as the corresponding bulk quantities
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Figure 7.8: Susceptibility (a) and magnetization (b) of the impurity as a function of
the external field for t=1, 2 and 3, α = 1 and δ = 0.8 are fixed. The dotted curves
show the behavior close to the saturated value (7.3.31). The insert in (a) focuses on the
log-singularity (Eq. (7.3.29)) of χimp at zero field.

these thermodynamic coefficients are accessible through the coefficients of the
dressed charge matrix [52]. In Fig. 7.9 we present some numerical results on
these quantities (taken from [52]) as a function of the hybridization and the
magnetic field are shown for hole concentration δ = 0.8. For intermediate
values of the hybridization 0.1 . V0 . 0.2 the coupling of the impurity to
the holon excitations is effective. For small magnetic fields below the Kondo
scale HK the impurity contribution to the susceptibility takes a non-universal
value χ0 characteristic for the strong coupling regime of an Anderson impurity.
Above HK the field dependence is that of a local moment with logarithmic
deviations from full polarization (see Figure 7.10). The emergence of universal
Kondo like behaviour χimp = f(H/HK)/2πHK for smaller hybridization V0 .

0.1 is suppressed by the decoupling of the impurity from the host. Here the
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double occupancy of the impurity for small fields and the formation of a local
moment with an impurity occupation close to 1 appears for fields H & HB ≫
HK are clearly visible. In the vicinity of the transition between these regions
the occupation and magnetization of the impurity fluctuate strongly, as shown
by the resonances in the susceptibilities (Fig. 7.9). Finally, for larger values
of V0 & 0.2, the occupation of the impurity decreases well below 1 and the
susceptibilities are approximately constant over the entire range of the external
field 0 < H < Hsat.

(a)

(b)

Figure 7.9: (a) Susceptibility χimp and (b) charge compressibility κimp (normalized to
its bulk value) of the impurity as a function of the hybridization V0 and magnetic field H
for δ = 0.8 and α = 1. The phase boundaries defined by the scales HB (green line) and
HK (red line) are superimposed. Note the logarithmic scale used for the shading of the
susceptibilities.

7.4 Summary

In summary, we have constructed a one-dimensional lattice model for corre-
lated electrons with an embedded Anderson-type impurity. Several parameters
can be adjusted to fine-tune the properties of the impurity. Under variation
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Figure 7.10: Magnetic field dependence of the impurity susceptibility for δ = 0.8, α = 1
and various values of the hybridization: for V0 & 0.1 the transition between the strong
coupling behaviour for small fields and the formation of a local moment above H ≃ HK

is clearly seen. At smaller values of V0 the susceptibility is strongly suppressed due to
the decoupling of the doubly occupied impurity from the host (data for V0 = 0.05 are
enhanced by a factor of 10).

of the hybridization the formation of a sequence of bound states is observed,
similar to the situation observed in systems with open boundary conditions
with static boundary potentials. By means of the Bethe Ansatz the spectrum
of the model is obtained where contributions from the bulk, the boundaries
and the impurity are easily identified. For weak hybridization the suscepti-
bility of the impurity shows a strong Kondo-like resonance for low electron
densities in the host system. Note that we have considered only contribution
of the impurity to the systems response at order 1/L. It is well known that
the presence of the boundary leads to additional terms at this order diverging
as 1/χOBC ∝ H(lnH)2 as H → 0 [39].





Chapter 8

Kondo impurity in the SUSY
t–J model

We saw that boundary impurities can be obtained by combining a Lax op-
erator satisfying the intertwining relation (6.2.4) with a boundary matrix,
solution of the reflection equation (6.2.46). In Chap. 7, we used this approach
to study a generalised Anderson model (impurity with local orbitals) and the
boundary impurity was introduced in order to mimic the effects of backscat-
tering within an integrable description of the problem. In the present chapter,
we will construct and study a model describing a purely magnetic (Kondo)
impurity in a t–J chain. This can be achieved by taking an integrable inhomo-
geneity acting on the particular representation of gl(2|1), named [s]+, which
contains two well defined spin multiplets. Together with such a defect, we will
add a boundary potential acting at the impurity site. Here the strength of this
local potential appears as an additional parameter in the model and certain
restrictions on the spectrum of the local scatterer can be relaxed. Synchronis-
ing the parameters of the impurity to the value of the boundary potential, it
becomes possible to project out some of the local configurations of the impu-
rity – similarly as in the Schrieffer-Wolff transformation allowing to go from
the Anderson to the Kondo model.

8.1 Hamiltonian

We will attribute to the impurity vertex the following L-operator

Limp(λ) ≡ Ls(λ) =
λ− i(s + 1/2)

λ+ i(s + 1/2)
I +

i

λ+ i(s + 1/2)
C

(0s)
2

whose entries act on the physical space of the impurity, Vimp through the

[s]+ representation of gl(2|1) (cf Chap. 6 and App. A). Here C
(0s)
2 is the

quadratic Casimir of gl(2|1) on the tensor product V0 ⊗ Vimp (the auxiliary
space V0 carries the three-dimensional fundamental representation [1/2]+ of

107
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gl(2|1)). Additionally, we will impose a boundary chemical potential applied
at the edge of the chain. Formally, the action of this local potential, we will
denote by p, is encoded in the boundary matrix,

Kp
−(λ) = diag

(

1, 1,−pλ + i

pλ − i

)

(8.1.1)

which is a c-number solution of the RE. Without loss of generality, we should
also choose the left end of the chain to be purely reflecting K+ ≡ 1 Thus the
following transfer matrix,

τ(λ) = str0

(

LL+1
0 (λ)LL

0 (λ) . . .L1
s(λ+ t)Kp

−(λ)×

×
(
L1

s(−λ+ t)
)−1 (L2

0(−λ)
)−1

. . .
(

LL+1
0 (−λ)

)−1)

, (8.1.2)

will then generate all the integrals of motion of the system. In particular, the
Hamiltonian is obtained by taking the derivative of τ(λ) at the ’shift point’,
λ = 0, where the L-operator of the bulk sites reduces to a permutation.

The Hamiltonian of the system described above is the sum of a usual
(open) t–J chain,

HtJ = −P





L−1∑

j=1

∑

σ

c†j,σcj+1,σ + c†j+1,σcj,σ



P

+ 2

L−1∑

j=1

[

~Sj
~Sj+1 −

njnj+1

4
+

1

2
(nj + nj+1)

]

(8.1.3)

plus a boundary Hamiltonian term including the boundary potential p and
the impurity parameters, s and t,

Hbimp = −2p

(

B1 −
1

2

)

− 1

t2 + (s+ 1/2)2

(

(2s + 1)1−C
(s1)
2

)

− 2p

t2 + (s+ 1/2)2

(

it[B1, C
(s1)
2 ] − (s+

1

2
){B1, C

(s1)
2 } + C

(s1)
2 B1C

(s1)
2

)
.

(8.1.4)

Here, B1 = 1 − 1
2n1, n1 counting the occupation at the bulk site ”1”, and

C
(s1)
2 is the quadratic Casimir operator of gl(2|1). Note that C

(s1)
2 acts on

the quantum space Vimp ⊗ V1, where Vimp = [s]+ is the space carrying the
degrees of freedom of the impurity while V1 = [1/2]+ is the three-dimensional
Hilbert space of the bulk site ”1”. Additionally, we want to be able to vary
the magnetisation and the total number of electrons so we add a chemical
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potential µ and a magnetic field H such that the full Hamiltonian of the
system is

H = HtJ + Hbimp − µN −HSz . (8.1.5)

NB1: The Hamiltonian is hermitean for (p, t) ∈ R+×R and non-hermitean
for t ∈ iR.

NB2: Since the construction of the boundary Hamiltonian following our
approach is non-standard, the key-steps of the derivation of (8.1.4) are com-
piled in App. D.

8.2 Spectrum and bound states

Both the boundary potential p and the presence of an impurity affect the
nature of the spectrum of the chain. It is natural to expect that, for sufficiently
strong p, boundary bound states (or anti-bound states) are formed at the end
of the chain. This issue has been studied in the context of the X-ray edge
singularity problem for one-dimensional lattice models of correlated electrons
[40]. Similarly, an inhomogeneity can lead to the formation of bound states as
its coupling to the bulk of the system is varied (cf Chap. 7 and Refs. [52, 53]).
For the integrable model considered here, both scenarios can be discussed by
the analysis of the Bethe ansatz equations (BAE).

8.2.1 Boundary bound states

Sutherland vacuum | ↑ ... ↑〉bulk ⊗ |s〉imp

In this section, we shall restrict ourselves to the case of a repulsive boundary
potential, p > 0. Starting from the fully polarized state which maximizes the
number of particles (the Sutherland pseudo-vacuum [127]) the wave function
of an eigenstate with Nh holes and N↓ overturned spins is parametrized by
the roots {λk} and {ϑℓ} of the BAE [39]

(e1(λk))
2L ηimp(λk)ηp(λk) =

∏

ǫ=±

Nh+N↓∏

j 6=k

e2(λk + ǫλj)

Nh∏

ℓ=1

e−1(λk + ǫϑℓ)

1 = ξimp(ϑℓ)ξp(ϑℓ)
∏

ǫ=±

Nh+N↓∏

j=1

e1(ϑℓ + ǫλj)

(8.2.6)

where ey(x) = (x + iy/2)/(x − iy/2). The terms ηp and ξp are the phase
factors related to the presence of a chemical potential acting on the boundary
while ηimp and ξimp are the phase factors induced by the impurity. As we
have already argued in Chap. 7, the presence of such phase factors will lead
corrections of order L0 to the thermodynamic quantities of the system. Let
us here analyse the effect of the boundary potential and keep the discussion
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of the influence of the impurity for the next section. First of all, for p = 0,
i.e. without any boundary potential, it is known that the ground state of
the system is given by the set of real spin {λj}j=1,Nh+N↑

and hole rapidities
{ϑℓ}ℓ=1,Nh

solving the BAE. But when the boundary field is ”switched on”,
purely imaginary solutions of the BAE may become energetically stable. Such
imaginary BAE roots, that we will interpret as bound states in the spectrum
of the system, appear step by step as p is increased. The series of boundary
bound states (BBS) induced by p goes as follows:

(i) For 0 < p < 1, no BBS is solution to the BAE. The boundary phase
factors are the ones derived by Essler [39], i.e.

ηp(λ) ≡ 1 , ξp(ϑ) = −e2/p−2(ϑ) (8.2.7)

(ii) When 1 ≤ p < 2, the BAE allow for an imaginary solution (hole
rapidity), ϑ0 = i(1− 1

p), with Imϑ0 ≥ 0). It be can checked that this solution
is indeed a stable BBS. In consequence, the boundary phase factors have to
be modified, taking into account the presence of the ϑ0 BBS into the ground
state configuration. The new phase factors are now given by

ηp(λ) = e3−2/p(λ)e2/p−1(λ) , ξp(ϑ) = −e2/p−2(ϑ) (8.2.8)

with Nh − 1 remaining real roots ϑℓ .
(iii) For p ≥ 2, an additional BBS solution (this time in the spin sector)

arises in the thermodynamic limit: λ0 = i(1
2 − 1

p) (Im λ0 ≥ 0). The effective
boundary phase factors now become

ηp(λ) = e−1−2/p(λ)e−1+2/p(λ) , ξp(ϑ) = −e2/p(ϑ) (8.2.9)

with remaining Nh−1 real hole rapidities ϑ and Nh+N↓−1 real spin rapidities
λ.

As a remark, we would like to mention that in the case of a t–J chain with
boundary chemical potential and without impurity, the ground state for, p >
0, is obtained by including all possible BBS into the Bethe root configuration.
We illustrate this result by showing a computation of the contribution of the
physical boundary to the energy in Fig. 8.1.

Lai vacuum |0...0〉bulk ⊗ |s− 1/2〉imp

A different, but completely equivalent description of the spectrum of the open
t–J model with boundary impurity can be obtained by starting from the Fock
vacuum |ΩL〉 ≡ |0〉⊗L ⊗ |s − 1

2〉imp (the so-called Lai pseudo-vacuum [91]).
In this case the many-particle wave functions are parametrized by Ne charge
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Figure 8.1: Contribution of the boundary potential term to the energy for p > 0 and
H = 0. The ground state of the system with boundary chemical potential and without
impurity is realised by populated all possible BS allowed.

rapidities wk and N↓ spin rapidities xℓ which solve the following set of BAE

(e1(wk))
2L Φimp(wk)Φp(wk) =

∏

ǫ=±

N↓∏

ℓ=1

e1(wk + ǫxℓ)

Ξimp(xℓ)Ξp(xℓ)
∏

ǫ=±

Ne∏

j=1

e1(xℓ + ǫwj) =

N↓∏

m6=ℓ

e2(xℓ + ǫxm)

(8.2.10)

As already mentioned in Chap. 6, the equivalence between the Lai and Suther-
land description of the t–J model can be proved on the basis of particle-hole
(p–h) transformation at the level of the BAE [137, 16, 42]. A detailed ex-
tension of this proof to the case of non-trivial open boundary conditions can
be found in App. E. The main result of this transformation is that it fixes
the relation among the isolated (we mean impurity and/or boundary) phase
factors within the Lai (Φ, Ξ) and Sutherland (η, ξ) ”language”. Formally we
have,

η(λ)
ξ+(λ+ i/2)

ξ−(λ− i/2)
= Φ(λ) , ξ−1(x) = Ξ(x)

Φ−(x+ i/2)

Φ+(x− i/2)
(8.2.11)

where the subscripts +/− stand for the polynomial numerator/denominator of
the rational functions ξ and Φ. Starting from the ‘bare’ Sutherland equations
(i.e. without occupied BBS) the p–h transformation (8.2.11) gives

Φp(w) = −e2/p−1(w) , Ξp(x) ≡ 1 . (8.2.12)
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(i) The analysis of the Lai BAE in the thermodynamic limit shows that
no BBS exist in this formulation for p < 2.

(ii) For p ≥ 2, w0 = i(1
2 − 1

p) is solution to the BAE (with Imw0 ≥ 0). It
corresponds to a charge-like excitation in the Lai sector and therefore is not
energetically stable for repulsive boundary potential (p > 0). The solution
w0 can nevertheless be including into the root configuration if the boundary
phases are modified according to

Φp(w) = −e2/p−1(w) , Ξp(x) = e2/p(x)e2−2/p(x) . (8.2.13)

The number of charge rapidities should be lowered by one, Ne → Ne − 1.

8.2.2 Impurity bound states

A similar sequence of bound states appears when the coupling to the impurity
is varied by changing the parameter t in Eq. (8.1.2). Starting from the state
with maximal polarization |ΩS〉 = | ↑〉⊗L ⊗ |s〉 the spectrum is determined by
BAE of Sutherland type (8.2.6) with

ηimp(λ) = e2s(λ− t)e2s(λ+ t)

ξimp(ϑ) ≡ 1 ,
(8.2.14)

while in the corresponding phase shifts in the Lai formulation of the BAE read

Φimp(w) = e2s(wk + t)e2s(wk − t)

Ξimp(x) = e2s−1(xℓ + t)e2s−1(xℓ − t) .
(8.2.15)

The additional phases, e.g. ηimp from (8.2.14) in (8.2.6), allow for new
imaginary solutions to the BAE which can be interpreted as impurity bound
states (IBS) similar as in a continuum model related to the Kondo problem
[67, 133] and for an Anderson-type impurity in the t–J model (see [52, 53]
and Chap. 7). They appear for t being a pure imaginary number itself,
t = iτ with τ ∈ R+. A short analysis of the Eqs. (8.2.6) with (8.2.14) in the
thermodynamic limit reveals that there are two absolute thresholds opening
an IBS:
(i) If τ ≥ s, λ0 = i(τ − s) is a IBS solution with Imλ0 ≥ 0.
(ii) For τ ≥ s+ 1/2, a ϑ-IBS appears, ϑ0 = i(τ − s− 1/2) (Imϑ0 ≥ 0).

8.3 Reduction to a boundary Kondo problem

8.3.1 The projection method

As we have already foreseen in the introduction to this chapter, new integrable
boundary Hamiltonians may be obtained after fine tuning of the parame-
ters characterizing the boundary and impurity, respectively [55] by projection
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onto an invariant subspace. An important application of this procedure is
a Kondo spin coupled to the t–J model. To apply the projecting method,
one has to start from an operator-valued solution of the RE obtained by
’dressing’ a c-number boundary matrix with an inhomogeneity (cite Sklyanin):
K−(λ) = [Limp(λ+ t)Kp

−(λ) (Limp(−λ+ t))−1]. Such solutions are called ’reg-
ular’. Then, one should find a decomposition of the impurity Hilbert spaceH = H1⊕H2 and fine tune the parameters in K− such that one of the following
conditions is satisfied

Π1K−(λ)Π2 = 0, or Π2K−(λ)Π1 = 0 (8.3.16)

where Π1 (resp. Π2) projects onto the subspace H1 (resp. H2).
The ‘projected’ boundary matrices resulting from this construction are

called ‘singular’ in a sense that they cannot be derived from the standard
dressing prescription. In the present case, the inhomogeneity is build upon the
[s]+ representation of gl(2|1). This represenation contains two spin multiplets
thus providing a natural decomposition of the impurity Hilbert space as H1 =
span{|s, s,m〉} and H2 = span{|s + 1

2 , s − 1
2 ,m〉}. With this decomposition

one finds that Π1K−(λ)Π2 vanishes for

t = i

(

−1

p
− s+

1

2

)

≡ it̃ (8.3.17)

while Π2K−(λ)Π1 vanishes for t = −it̃
NB: Both projections are actually equivalent and give rise to the same effective
Hamiltonians within the two spin subsectors.

Enforcing the projection condition (8.3.17) implies that the two impurity
subspaces H1 and H2 are decoupled. As a direct consequence, all the matrix
elements of the boundary Hamiltonian (8.1.4) connecting H1 and H2 will van-
ish. This leads to an effective boundary Hamiltonian which has the following
simple form

Hs
bimp = −2p(B1 −

1

2
) +

2ps

−t̃2 + (s + 1/2)2
(2B1 − 1)

+
2

−t̃2 + (s+ 1/2)2
(s · S1 −BsB1) (8.3.18)

for the spin s sector. Noticing that Bs ≡ s in that case, we can rewrite the
local Hamiltonian as the sum of a boundary potential contribution plus a
purely Kondo coupling between the site 1 of the chain and the impurity spin
s. This reads

Hs = V n1 + JKs · S1 (8.3.19)

up to an irrelevant constant. In fact, the boundary Hamiltonian (8.3.19) is
of the same form as the one derived in [132, 142, 141, 45] following a differ-
ent path. The coupling constants in our cases are given as function of the
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parameters p and s by

V =
p2 − sp2 − p

(p− 1)(2sp + 1)
and JK =

2p2

(p− 1)(2sp + 1)
. (8.3.20)

8.3.2 The projected BAE

The question we want to address in this section is how the spectrum of the
pure spin-s impurity system emerges from the original one and how the BAE
have to be modified for the projected Kondo-type Hamiltonian. We first
remark that after synchronizing the impurity and boundary parameters to
the ‘projecting line’ Eq. (8.3.17), the sequences of BBS and IBS are no longer
independent. Instead, one finds, that IBS’ thresholds now coincide with the
BBS ones exactly, leaving only one sequence of bound states to take care of
(see Fig. 8.2).

1 1.5 2 2.5 3

Im t
0

0.5

1

1.5

2

1/
p

projection line

Figure 8.2: Intersection of the IBS (dash-dotted lines) and BBS thresholds (dashed lines)
with the ‘projection line’ (solid line) (8.3.17) for s = 3/2 as an example.

Replacing t = it̃ (8.3.17) into the ’bare’ (i.e. without bound states) Suther-
land BAE results in the following BAE:

(e1(λk))
2L e1−2/p(λk)e4s+2/p−1(λk) =

∏

ǫ=±

Nh+N↓∏

j 6=k

e2(λk + ǫλj)

Nh∏

ℓ=1

e−1(λk + ǫϑℓ)

1 = −e2/p−2(ϑℓ)
∏

ǫ=±

Nh+N↓∏

j=1

e1(ϑℓ + ǫλj)

(8.3.21)
Since the Sutherland BA starts from the fully polarized state, in particular the
state |s〉imp for the impurity site, the solution to these equations will describe
the spectrum of a Kondo spin s impurity in a correlated t–J chain.
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Alternatively, a description of the spectrum of the spin s impurity sector
should be possible starting from a Lai vacuum |0 . . . 0〉bulk ⊗|s− 1/2〉imp. The
problem is that the reference state of the impurity in the Lai description,
namely |s−1/2〉imp, does not belong to the subspace H1. Let us apply blindly
the p–h transformation to the BAE (8.3.21) to obtain a new set of BAE

− (e1(wk))
2L e4s+2/p−1(wk) =

∏

ǫ=±

N↓∏

ℓ=1

e1(wk + ǫxℓ)

e2−2/p(xℓ)
∏

ǫ=±

Ne∏

j=1

e1(xℓ + ǫwj) = e2−4s−2/p(xℓ)

N↓∏

m6=ℓ

e2(xℓ + ǫxm) .

(8.3.22)

If we focus on the p and s dependent phase shifts, we can notice that Eqs.
(8.3.22) are not the bare projected Lai BAE but instead are the equations one
would obtain after populating the charge bound state w0 explicitly. Therefore,
the problem of working with a proper pseudo-vacuum in the Lai sector is
overcome by enforcing the occupation of the bound state. In clear, both sets
of BAE (8.3.21) and (8.3.22) can be used for studying the spin-s subspace H1

of the impurity, provided that the correct BS configuration is used.
We can follow the same reasoning concerning the spin-(s− 1/2) impurity

subspace and convince ourself that the spectrum of the system restricted toH2 can be obtained solving either the bare projected Lai equations or a set
of Sutherland equations with both λ0 and ϑ0 BBS occupied. Those various
equivalence of BAE before and after projection are summarised in Fig. 8.3.

spin − sector Sutherland Lai

s No BS w0 − BS

s− 1/2 {ϑ0, λ0} − BS No BS

p−h

p−h

Figure 8.3: When the projection is enforced the link between the bare Sutherland and
the bare Lai equations (dotted line) does not exist anymore as it would connect two states
living in in H1 and the other in H2. Instead, BAE involving bound states solutions have
to be considered to ensure the validity of a p–h transformation connecting the Sutherland
and Lai sectors.

At this point we would like to make one more observation: due to the
particular division of the impurity Hilbert space into a spin s and a spin
(s−1/2) sector, the impurity spectrum has the structure of a ”spin multiplets
cascade”. In particular, the construction of a pure spin-(s − 1/2) impurity
can be achieved by either starting from an inhomogeneity ”living” in the [s]+
representation or directly in the [s− 1/2]+ (see Fig. 8.4).
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gl(2|1) − repr. spin multiplet

[s]+ s

[s− 1/2]+ s− 1/2

[s− 1]+ s− 1

...
...

Figure 8.4: The ”spin cascade” structure of the impurity Hilbert space.

8.4 Magnetic behaviour of the Kondo impurity

Now that we understand how to describe reliably the spectrum of a pure
Kondo spin-s in the t–J model, we will solve the BAE we derived in the
previous section to extract the thermodynamic contributions of the impurity.
More specifically, we will focus on its magnetic behaviour.

8.4.1 Ground state configuration

First, we should exhibit the true ground state configuration that may differ
depending on the values of p and s. Since the boundary impurity parameters
enter directly into the potential V and the Kondo coupling JK , it is likely that
a series of bound states will be found while analysing the thermodynamic limit
of the BAE. These bound states are in fact the BBS and IBS we discussed
in the previous sections, but which are now synchronised. Indeed, in the
Sutherland description, we can identify five different regimes, that we will
eventually relate to the ground state configurations:

(1) p < p0 ≡ 2

1−4s
: No BS is present in the Bethe root configuration and

the BAE are just the ’bare equations’ obtained in Eq. (8.3.21). Using
the same notation as in Eq. (8.2.6), the boundary impurity phase shifts
are in this case:

φ(λk) = e1−2/p(λk)e4s+2/p−1(λk) ,

ξ(ϑℓ) = −e2/p−2(ϑℓ) .
(8.4.23)
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(2) p0 ≤ p < p1 ≡ − 1

2s
: One spinon BS, λ0 = i(1

2 − 1
p − 2s), is allowed and

is, as we will see when computing the finite-size spectrum, is energetically
stable. Taking the imaginary root λ0 into account in the BAE, we end
up with new effective phase shifts

φ(λk) = e1−2/p(λk)e4s+2/p−1(λk)e−4s−2/p−1(λk)e4s+2/p−3(λk) ,

ξ(ϑℓ) = −e2/p−2(ϑℓ)e4s+2/p(ϑℓ)e2−2/p−4s(ϑℓ) .
(8.4.24)

(3) p1 ≤ p < p2 ≡ 1 : No BS is allowed and the BAE are the same as for
the case (1).

(4) p2 ≤ p < p3 ≡ 2 : Another spin BS solution can be realised, different
that the one of configuration (2) though. Absorbing the corresponding
imaginary root, λ1 = i(1

p − 1
2), into the BAE we obtain the following

modified phase shifts:

φ(λk) = e1−2/p(λk)e4s+2/p−1(λk)e2/p−3(λk)e−2/p−1(λk) ,

ξ(ϑℓ) = −e2/p−2(ϑℓ) .
(8.4.25)

(5) p ≥ p3 : No BS in the configuration, the situation is described by the
BAE for region (1).

In order to analyse the thermodynamic properties of the system we shall from
now on use the standard description in terms of root densities (cf Chap. 7 for
example). The impurity contribution to the spin and charge densities are

ρ
(R)
s,i (λ) = Φ(R)(λ) −

∫ A

−A
dν a2(λ− ν)ρ

(R)
s,i (ν) +

∫ B

−B
dϑa1(λ− ϑ)ρ

(R)
c,i (ϑ)

(8.4.26)

ρ
(R)
c,i (ϑ) = Ξ(R)(ϑ) +

∫ A

−A
dλa1(ϑ− λ)ρ

(R)
s,i (λ) .

Here (R) labels the different root configurations (or regions) associated to the
ground state when p is varied. The driving terms appearing in Eq. 8.4.26 are
given as follows: For R = 1, 3 and 5, we have

Φ(R)(λ) = a1−2/p(λ) + a4s+2/p−1(λ)

Ξ(R)(ϑ) = a2/p−2(ϑ) .
(8.4.27)

For R = 2, the driving terms are

Φ(R)(λ) = a1−2/p(λ) + a4s+2/p−1(λ) − a4s+2/p+1(λ) + a4s+2/p−3(λ)

Ξ(R)(ϑ) = a2/p−2(ϑ) + a4s+2/p(ϑ) + a2−4s−2/p(ϑ)
(8.4.28)
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and finally for R = 4

Φ(R)(λ) = a1−2/p(λ) + a4s+2/p−1(λ) − a1+2/p(λ) + a2/p−3(λ)

Ξ(R)(ϑ) = a2/p(ϑ) .
(8.4.29)

The impurity contribution to the ground state energy is

ǫimp = cst − π

∫ A

−A
dλρ

(R)
s,i (λ) +

1

2

(

µ− H

2

)∫ B

−B
dϑρ

(R)
c,i (ϑ)

+H

(
1

2

∫ A

−A
dλρ

(R)
s,i (λ) + θ(p− p0)θ(p1 − p) + θ(p− p2)θ(p3 − p)

)

(8.4.30)

In Fig. 8.5, a numerical integration of Eq. (8.4.30) is presented for the
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Figure 8.5: Impurity contribution to the energy for H = 0 and s = 1. Different root
configurations are compared and the ground state appears to be realised by the ones
described above from region (1) to (5). The Kondo coupling JK and the potential V are
also superimposed on the finite-size spectrum.

special case of zero-field and a spin-1 impurity. One can confirm on behalf
of this graph that the five configurations we wrote previously correspond to
the ground state of the system. Other bound states configuration leading to
excitations in the spectrum are also depicted, but we will not comment any
longer on their existence and will concentrate on the properties of the ground
state. Super-imposed to this finite-size spectrum, are plotted the potential
V and the Kondo coupling JK . We can clearly see different regimes in the
coupling constants themselves which will help us understanding physically the
structure of bound states in the ground state. In region (1), p < 2

1−4s , both
V are small and positive: No bound states is expected in the ground state
configuration. In region (2), 2

1−4s ≤ p < − 1
2s , V and JK grow to infinity
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and surely a bound state should be occupied to insure a stable configuration.
The first threshold appearing at the level of the BAE is in the spin sector.
Therefore, the strong anti-ferromagnetic (AF) Kondo coupling will enforce
the occupation of a spin bound state to minimise the energy. The region we
called (3), − 1

2s ≤ p < 1, is, regarding the coupling constant, divided into
two regimes: first, for − 1

2s ≤ p < 0, both V and JK are negative. Since
we explicitly chose a Sutherland description of the elementary excitations in
terms of spinons and holons, neither an attractive V nor a ferromagnetic (F)
JK could leave to the formation of a bound state. The ground state is thus
described by the bare BAE (8.3.21); second, if 0 ≤ p < 1, we see that the
Kondo coupling remains ferromagnetic but the potential becomes large and
repulsive as p approaches 1. Nevertheless, the analysis of the phase shift in
the BAE shows that an holon BS is allowed only for p ≥ 1, and the system
will prefer to stay into a configuration without BS. This mechanism signals
a competition between the potential and the Kondo terms in the boundary
Hamiltonian. We pursue in region (4), 1 ≤ p < 2. Here, the Kondo coupling
is large AF while the potential becomes attractive. The holon BS allowed as
a solution of the BAE is therefore an excited state as we can confirm from the
numerics in Fig. 8.5. Instead, the system finds preferable to relax the strong
AF constraint by binding a spinon at the impurity site. In region (5), p ≥ 2,
both V and JK stay small and the situation is the same as the one for region
(1) i.e. the ground state root configuration contains no BS.

8.4.2 Impurity magnetization

Having the ground state configuration of the system clarified, let us study its
magnetic properties. Just like in Chap. 7, the impurity magnetization can be
expressed by means of the spin and charge densities (order 1/L):

Mimp = s+
1

4

∫ B

−B
dϑ ρ

(α)
c,i (ϑ) − 1

2

∫ A

−A
dλρ

(α)
s,i (λ)

− θ(p− p0)θ(p1 − p) − θ(p− p2)θ(p3 − p) (8.4.31)

For finite A and B, the various BAE can be solved numerically for the various
root configurations discussed above. The computation of Mimp as a function
of the magnetic field H and for different values of p (thus different bound
states configurations) is shown in Fig. 8.6, for a spin-1/2 impurity, and in
Fig. 8.7, for the spin-1 case. The hole doping is fixed to be δ = 0.2

One immediately notices in both Figs. 8.6 and 8.7 that, depending on
p, the magnetisation curves split into two groups: the first group with a
residual spin s (i.e. Mimp(H = 0) = s) for values of p lying in region (3), the
second group having a residual spin s − 1/2. For the first group of curves,
the Kondo coupling is ferromagnetic whereas for the second group, JK is anti-
ferromagnetic leading to a screening of the impurity spin by the conduction
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Figure 8.6: Impurity magnetization for s = 1/2 as a function of the uniform magnetic
field. The hole concentration is fixed at δ = 20%
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Figure 8.7: Impurity magnetization for s = 1 as a function of the uniform magnetic
field. The hole concentration is fixed at δ = 20%

electrons. This screening mechanism has already been widely discussed in
Chap. 5 in the conventional Kondo effect.

NB: Remark that Mimp calculated in this way can be larger than s. The
reason is that the expression (8.4.31) takes all the 1/L-contributions from the
impurity and the physical boundary into account. Those contributions are
”entangled” due to the fact that we work on the projection line are cannot be
substracted one from the other trivially.



8.4. MAGNETIC BEHAVIOUR OF THE KONDO IMPURITY 121

Low-field behaviour: Wiener-Hopf analysis of the density
equations

In order to get a better understanding of the magnetisation curves shown
above, some analytical results will be useful. We first want to understand the
difference between the spin-1/2 and the spin-1 case in the screening regime.
We will restrict ourselves to the case of small AF Kondo coupling where sig-
natures of the Kondo effect are expected. We shall then work in region (5)
where the spectrum is described through the bare BAE (8.3.21). In the low-
field regime, corresponding to A≫ 1, we remind that the following expression
for H holds:

πA = − ln(H/H0) +
1

4 lnH
, H0 =

√

2π/e(2π − C) . (8.4.32)

In this limit, it is convenient to rewrite the integral equation for ρs (in Fourier
space) as follows

ρs,i =
a1−2/p + a4s+2/p−1

1 + a2

+

(∫ −A

−∞
+

∫ ∞

A

)
a2

1 + a2
∗ ρs,i +

∫ B

−B

a1

1 + a2
∗ ρc,i (8.4.33)

Therefore, using the definition (8.4.31), the low-field magnetization of the
impurity is given by an integral aver the density density only

Mimp = s− 1

4

∫ ∞

−∞
dλ
(
a1−2/p(λ) + a4s+2/p−1(λ)

)
+

1

2

∫ ∞

A
dλρs(λ)

=

(

s− 1

2

)

+
1

2

∫ ∞

A
dλρs(λ) , p > 2 . (8.4.34)

Introducing g(z) = ρs(A + z) the evaluation of the impurity magnetization
in the low-field limit boils down to the resolution of an integral equation for
g(z). This integral equation is of Wiener-Hopf type and its form is often met
in dealing with impurity problems (see e.g. [129])

g(z) = g0(z) +

∫ B

−B
dz′G0(z − z′ +A)ρc(z

′)

∫ ∞

0
dz′G1(z − z′)g(z′) +

∫ ∞

0
dz′G1(2A + z + z′)g(z′) , (8.4.35)

with the function Gα being defined as

Gα(x) = F−1

[
exp(−α|ω|/2)
2 cosh(ω/2)

]

(8.4.36)

and
g0(z) = G−2/p(A+ z) +G4s+2/p−1(A+ z) (8.4.37)
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The leading contribution to the impurity magnetization in the large A limit
is obtained by

MA≫1
imp ≃

(

s− 1

2

)

+
1

2

∫ ∞

0
dz g1(z) (8.4.38)

with

g1(z) = g0(z) + CpG0(A+ z) +

∫ ∞

0
dz′G1(z − z′)g1(z

′). (8.4.39)

Cp is a constant determined by the charge sector, Cp =
∫ B
−B dz exp(πz)ρc(z).

For s = 1/2 the driving term in Eq. (8.4.39) becomes proportional to
G0 and gives a linear in H contribution to the impurity magnetization, i.e.
proportional to exp(−πA) (cf Eq. 8.4.32) .

Mimp =

(

2 cos
π

p
+ Cp

)
e−πA

√
2πe

(8.4.40)

This result, derived explicitly in App. C, explains what is seen in Fig. 8.6.
For s > 1/2, we have to deal with contributions involving driving terms of

the form Gα(A + z), with α 6= 0 which are a bit tricky. They give (see App.
C for details) a contribution to the magnetization of the form

Mα =

∫ ∞

0
dy

sin(πα̃y)

y
Γ

(
1

2
− y

)(y

e

)y
e−2πAy (8.4.41)

where we have introduced

α̃ =

{
α− 1 if α > 0
α+ 1 otherwise .

(8.4.42)

Collecting terms together gives the form of the low field contribution of the
impurity to the magnetization:

Mimp =

(

s− 1

2

)

+ Cp
e−πA

√
2πe

+
1

2π3/2

∫ ∞

0

dy

y

(
sin(π(1 − 2/p)y)

+ sin(π(4s + 2/p − 3)y)
)
Γ

(
1

2
− y

)(y

e

)y
e−2πAy . (8.4.43)

The non-trivial field dependence of the integral in (8.4.43) is responsible for
the zero-field singularity in the magnetization (see Fig. 8.7).

To summarise, deep into the region where the impurity is screened (p > 2),
a WH calculation allows to extract the correct behaviour of the magnetization
in the low-filed limit. For s = 1/2, Mimp is linear in H whereas for s > 1/2,
Mimp diverges for H → 0. This latter observation can be understood physi-
cally by saying that the impurity is underscreened, the conduction electrons
carrying a spin-1/2. Therefore, in the Kondo regime, remains an effective spin
s− 1/2 > 0, that is essentially free, obeying a Curie-law for the susceptibility.
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To explain the difference in behaviour between the screened and unscreened
case for s = 1/2, we should compare the results of the magnetization in region
(3) and (5) for example. Again we shall start from the same equations for the
densities with driving terms given by Eq. (8.4.27). In region (3), and without
loss of generality for 0 < p < 1, one has to solve the WH integral equation
(8.4.39) with driving term

g0(z) = −G2/p−2(A+ z) +G2/p(A+ z) . (8.4.44)

This leads to the following expression for the magnetization of the impurity

Mimp = Cp
e−πA

√
2πe

+
1

π3/2

∫ ∞

0
dy

sin(π(2/p − 1)y)

y
Γ

(
1

2
− y

)(y

e

)y
e−2πAy .

(8.4.45)
The latter equation contains again this integral which is not present in Eq.
(8.4.40). This particular term explains, formally, the difference between the
low-field behaviour of the magnetization in the screened and un-screened
regime.

NB: the later discussion can be extended to all regions (1) to (5). One has
to carry out the WH calculation of Mimp with the appropriate driving terms.
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Figure 8.8: Zoom on the low-field behaviour of Mimp for 0 < p < 1 (region (3)) and
s = 1/2. The points have been obtained from a numerical resolution of the BAE and the
lines are the WH expression (8.4.45)

Behaviour close to saturation

As we already mentioned in Chap. 7, the presence of a finite band-width in
the host system induces that above the saturation field, Hsat = 4cos2(πδ/2),
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Figure 8.9: Zoom on the low-field behaviour of Mimp for p > 2 (region (5)) and s = 1/2.
The points have been obtained from a numerical resolution of the BAE and the lines are
the WH expression 8.4.40

the ground state is fully polarised. The regime of magnetic field values close
to the saturation corresponds to A → Asat = 1

2

√

4/Hsat − 1 while B → ∞.
In this limit, the equations for the densities (8.4.26) can be solved easily by
Fourier transform. Since the analysis of the behaviour of the magnetization
close to saturation is the same for all regions, let us, for the sake of clarity,
focus on the region of low-boundary field 0 < p < 1. in that case, one obtains
the value of the impurity magnetization at saturation to be

M sat
imp = s+

1

4

(

1 −
∫ A

−A
dν ρ

(R)
s,i (ν)

)

. (8.4.46)

In the limit B → ∞, the spin density has a simple form:

ρ(R)
s (ν) = a4s+2/p−1(ν) (8.4.47)

Performing the integral in Eq. (8.4.46) explicitly we can write

M sat
imp = s+

1

4

(

1 − 2

π
arctan

2Ap

4sp+ 2 − p

)

(8.4.48)

We notice that at maximum hole doping (δ = 1) M sat
imp given by Eq. (8.4.48)

is just equal to s, the strength of the impurity spin, as it should be.
To understand the effect of small doping on top of the fully polarised state

let us have a look at the effective boundary Hamiltonian at saturation. If one
imposes sz ≡ s and Sz

1 ≡ n1/2 in Eq. (8.3.19) we obtain

Hsat = Ṽ n1 Ṽ =
p

2sp+ 1
. (8.4.49)
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This means that at saturation the spectrum of the boundary impurity is es-
sentially controlled by an effective local chemical potential Ṽ . It is interesting
to notice that the result (8.4.48) can be obtained starting from the BAE of
the t–J chain with a just a boundary potential, changing p to Ṽ . Using
this analogy, one can compute the spin density in the limit B → ∞ to be
ρs,i(µ) = a1−2/Ṽ (µ) which is nothing than Eq. (8.4.47).

Slightly below Hsat a close formula for the impurity magnetization can be
derived, just like we did in Chap. 7. Within our example, for 0 < p < 1, an

expansion in 1/B in the integral over ρ
(R)
c,i in Eq. (8.4.26) leads to

MB≫1
imp = 1 − 1

π



2 − 1

2

πδ

arctan
√

4−h
h



 arctan




p
√

4−h
h

2 + 4sp− p





+
p− 1

p



1 − 1

2

πδ

arctan
√

4−h
h



 (8.4.50)

which captures the behaviour of the impurity magnetization in the ”large field”
limit. In Fig. 8.10 we compare this asymptotic to a numerical calculation and
the agreement is excellent.
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Figure 8.10: Zoom on the high-field behaviour of Mimp for 0 < p < 1 (region (3)) and
s = 1/2. The solid curves are the result of a numerical calculation and the dashed lines
are the asymptotic expression (8.4.50)

8.5 Summary and Outlook

In this Chapter, we constructed and studied an integrable model of a pure
Kondo spin in an open t–J chain. Using the techniques we have learned
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from Chapters 6 and 7, we were able to combine an inhomogeneity together
with a boundary chemical potential p. Remarkably, when the parameters
characterising the impurity, such as the spin strength s or the spectral shift
t, are adjusted in a particular way with respect to p, the charge fluctuations
are completely suppressed and the impurity becomes purely magnetic. This
’projection’ has the consequence of breaking the standard p–h symmetry at
the level of the bare BAE. Instead, we have seen that the equivalence of the
Bethe ansätze obtained from different reference states relies on the proper
choice of bound states configurations to select the relevant sector (spin s or
spin (s− 1/2)).

Having clarified the way the spectrum of the Kondo impurity problem
should be described, we made use of the techniques introduced in Chapter 7 to
calculate the contribution of the impurity to the magnetisation. Here we were
able to identify essentially two different regimes: First, if the Kondo coupling
entering the effective Hamiltonian is ferromagnetic then the impurity spin is
free and have a diverging Curie-like susceptibility for zero field. Second if the
Kondo coupling is antiferromagnetic (AF), then screening of the impurity is
effective at small energies and signatures of the Kondo effect are likely. In the
non-trivial AF-regime, a clear distinction between the s = 1/2 impurity and
the s > 1/2 case appears. The s = 1/2 situation corresponds to the standard
Kondo effect where the impurity is exactly screened by the host electrons. The
low-field magnetization is linear in H in this case. In the s > 1/2 scenario the
impurity is only partially screened and the residual spin s − 1/2 acts like a
free spin. The magnetization exhibits a zero-field singularity in this case.

Note that despite the striking similarity with the textbook Kondo effect
we discussed in Chapter 5, the ground state here is always a non-Fermi liquid
since the bulk is strongly correlated. It would be, in our opinion, interesting
to analyse the situation of an over-screened Kondo impurity within this inte-
grable lattice model approach. In that particular case if the spin density of
the bulk electrons is higher than the impurity spin, a non-Fermi liquid fixed
point is expected even without interaction in the bulk. Practically, one could
study the situation where the bulk is constructed from a [s]+ representation
while the impurity relies on [s′]+, with s > s′. A bulk Hamiltonian obtained
from the [s > 1/2]+ representation has already been studied in connection
with the physics of doped one-dimensional magnets [48]. But the extension
to the impurity problem we are arguing raises several new issues: 1) Open
boundary conditions should be incorporated. 2) One would have to verify the
existence of simple c-numbered solution of the RE in this case. 3) Is a simple
projection condition discarding one spin multiplet still holds? 4) Finally, the
question of the emergence of a bound states spectrum should be answered.



Appendix A

The (super)algebra gl(2|1)

A.1 Generators

Apart from the generators 1, Sz, S± forming an (ungraded) gl(2) subalgebra,
gl(2|1) has an additional generator B of even parity (charge), commuting
with the spin operators, and four odd parity generators V ± and W±. The
commutation relations between even and odd generators are listed below:

[Sz, V ±] = ±1
2V

±, [S±, V ±] = 0, [S∓, V ±] = V ∓,
[Sz,W±] = ±1

2W
±, [S±,W±] = 0, [S∓,W±] = W∓,

[B,V±] = 1
2V±, [B,W±] = −1

2W±.

The odd generators satisfy anticommutation relations

{V ±, V ±} = {V ±, V ∓} = {W±,W±} = {V ±,W∓} = 0,
{V ±,W±} = ±1

2S
±, {V ±,W∓} = 1

2(Sz ±B).

These relations are visualised graphically in the root diagram of the super-
algebra gl(2|1) (cf Fig. A.1)

A.2 Irreducible representations

The irreducible representations of gl(2|1) can be classified into typical and
atypical ones [120, 105]. With respect to to the even parity U(1) and SU(2)
subalgebras they can be decomposed into spin multiplets and are conveniently
labelled by the eigenvalues of the even parity operators B, S2 and Sz.

A.2.1 [b, s]

The typical 8s-dimensional representation [b, s] contains four spin-multiplets

{|b, s,m〉, m = −s, . . . , s} ,
{|b, s − 1,m〉, m = −s+ 1, . . . , s − 1} ,
{|b± 1

2 , s− 1
2 ,m〉, m = −s+ 1

2 , . . . , s − 1
2} .
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Figure A.1: Root diagram of gl(2|1).

Explicitly, for s = 1/2, we have for the bosonic generators

S+ = c†↑c↓ (A.2.1)

S− = c†↓c↑ (A.2.2)

S+ =
1

2
(c†↑c↑ − c†↓c↓) (A.2.3)

B = b+
1

2
(1 −N) (A.2.4)

and

V + =
1

2
[
√

2b+ 1(1 − n↑) +
√

2b− 1n↑]c↓ (A.2.5)

V − = −1

2
[
√

2b+ 1(1 − n↓) +
√

2b− 1n↓]c↑ (A.2.6)

W+ =
1

2
[
√

2b+ 1(1 − n↓) +
√

2b− 1n↓]c
†
↑ (A.2.7)

W− =
1

2
[
√

2b+ 1(1 − n↑) +
√

2b− 1n↑]c
†
↓ (A.2.8)

for the fermionic ones.

A.2.2 [s]±

As b → ±s these representations degenerate into two atypical ones. Atypical
representations are denoted by [s]± and contain 4s + 1 states in two spin
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multiplets

{| ± s, s,m〉, m = −s, . . . , s} ,
{| ± (s+ 1

2), s − 1
2 ,m〉, m = −s+ 1

2), . . . , s− 1
2}

respectively. When no confusion is possible we denote the SU(2) highest
weight states in the atypical representation [s]+ by |s, s, s〉 ≡ |s〉 and |s +
1
2 , s− 1

2 , s − 1
2 〉 ≡ |s− 1

2〉.
An important particular example is the three-dimensional [1/2]+ case

which is the ’natural’ representation on which is constructed the t–J model.
doublet (1/2, 1/2) and singlet (1,0). We make the association | ↑〉 = |12 , 1

2 ,
1
2 〉,

| ↓〉 = |12 , 1
2 ,−1

2〉 for the doublet and |0〉 = |1, 0, 0〉 for the singlet. The gener-
ators are obtained by taking b = 1/2 above... N.B. :The superalgebra gl(2|1)
has two Casimir operators, we have used the quadratic one

C2 = B2 − S2 +W−V+ −W+V− + V−W+ − V+W− (A.2.9)

to express the L-operator and the Hamiltonian in the main text. On a typical
representation [b, s], C2 takes the value b2−s2 while it vanishes on the atypical
ones for any s.

A.3 Matrix representation

A.3.1 [b, s]

S±|b, s,m〉 =
√

(s∓m)(s±m+ 1)|b, s,m± 1〉 (A.3.10)

on (b, s), (b − 1
2 , s− 1

2), (b + 1
2 , s− 1

2), (b, s − 1)

V ± =









0 ǫ
√

s±m+ 1
2 0 0

0 0 0 0
±α

√
s∓m 0 0 τ

√
s±m

0 ±ζ
√

s∓m− 1
2 0 0









(A.3.11)

W± =









0 0 γ
√

s±m+ 1
2 0

±β
√
s∓m 0 0 ω

√
s±m

0 0 0 0

0 0 ±δ
√

s∓m− 1
2 0









(A.3.12)

The parameters α, . . . , ω satisfy

(
α ζ
ω γ

)

·
(
ǫ δ
τ β

)

= 0 αγ = ζω =
s+ b

4s
βǫ = δτ =

s− b

4s
(A.3.13)
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A.3.2 [1
2
]+

In the natural basis {| ↓〉 = |12 , 1
2 ,−1

2〉, | ↓〉 = |12 , 1
2 ,−1

2 〉, |0〉 = |1, 0, 0〉} the
bosonic generators take the following matrix form

S+ =





0 1 0
0 0 0
0 0 0



 (A.3.14)

S− =





0 0 0
1 0 0
0 0 0



 (A.3.15)

Sz =





1
2 0 0
0 −1

2 0
0 0 0



 (A.3.16)

B =





1
2 0 0
0 1

2 0
0 0 1



 (A.3.17)

and the fermionic generators

V + =





0 0 0
0 0 0
0 1√

2
0



 (A.3.18)

V − =





0 0 0
0 0 0

− 1√
2

0 0



 (A.3.19)

W+ =





0 0 1√
2

0 0 0
0 0 0



 (A.3.20)

W− =





0 0 0
0 0 1√

2

0 0 0



 (A.3.21)



Appendix B

Density equations for the
open t–J chain

In this appendix we derive the equations for the densities in a general open
t–J chain with boundary terms.

Starting from the BAE (7.2.7), we choose the roots {λj}j=1,...,Ms and
{ϑγ}γ=1,...,Mc to be real. Taking the logarithm of the BAE gives

2π

L
Ij = (2 +

1

L
)θ(λj) −

1

L

∑

k

θ(
λj − λk

2
) + θ(

λj + λk

2
)

+
1

L

∑

β

θ(λj − ϑβ) + θ(λj + ϑβ) +
1

L
κ(λj) ,

2π

L
Jγ =

1

L

∑

k

θ(ϑγ − λk) + θ(ϑγ + λk) +
1

L
ω(ϑγ) . (B.0.1)

Here, Ij, Jγ are integers and θ(x) = 2 arctan(2x). The functions κ(λj) and
ω(ϑγ) are the real part of the logarithm of Φs(λj) and Φc(ϑγ) respectively. The
ground state for given magnetic field H and chemical potential µ is obtained
by filling all vacancies for the integers Ij from 1 to Imax = Ms and all vacancies
for the integers Jγ between 1 and Jmax = Mc. Inserting this description into
the Bethe equations (B.0.1) and then subtracting susequent equations for j
and j + 1 and γ and γ + 1 we obtain the following equations for the densities
̺s(λj) = 1

L(λj+1−λj)
and ̺c(ϑγ) = 1

L(ϑγ+1−ϑγ)

̺s(λj) = 2a1(λj) −
1

L

∑

β

a2(λj − λk) + a2(λj + λk)

+
1

L

∑

β

a1(λj − ϑβ) + a1(λj + ϑβ) +
1

L

(
κ′(λj)

2π
+ a1(λj)

)

̺c(ϑγ) =
1

L

∑

α

a1(ϑγ − λk) + a1(ϑγ + λk) +
1

2πL
ω′(ϑγ) . (B.0.2)
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Now we follow [46] and rewrite (B.0.2) in terms of a set of “doubled” variables

νj =

{

−λMs−j j = 0, . . . ,Ms

λj−Ms j = Ms + 1, . . . , 2Ms

ν(1)
γ =

{

−ϑMc−γ γ = 0, . . .Mc

ϑγ−Mc γ = Mc + 1, . . . 2Mc ,
(B.0.3)

where we defined λ0 = 0 and ϑ0 = 0. Now we take the thermodynamic limit
of the equations (B.0.2) written in the new variables. This is done by using
the Euler-Maclaurin formula to turn sums into integrals. Note that we should
subtract explicitly terms depending on the spectral parameters located at zero.
After some manipulations we arrive at following coupled integral equations for

the densities ρs(νj) = 1
L(νj+1−νj)

and ρc(ν
(1)
γ ) = 1

L(ν
(1)
γ+1−ν

(1)
γ )

ρs(λ) = 2a1(λ) −
∫ A

−A
dµ a2(λ− µ) ρs(µ) +

∫ B

−B
dϑ a1(λ− ϑ) ρc(ϑ)

+
1

L

(
κ′(λ)

2π
+ a2(λ)

)

ρc(ϑ) =

∫ A

−A
dλ a1(ϑ− λ) ρs(λ) +

1

L

(
ω′(ϑ)

2π
− a1(ϑ)

)

, (B.0.4)

where A and B are the spectral parameters corresponding to the maximal
taken integers Ij and Jγ plus 1

2 . Higher order terms in the Euler-Maclaurin
expansion have been dropped as they turn out to not contribute to the surface
energy.



Appendix C

The Wiener-Hopf method

The Wiener-Hopf (WH) technique is widely used as a method to solve inte-
gral equations. We have seen throughout this thesis that the Bethe-Ansatz
equations giving the properties of an integral model, are, in the continuum
limit, expressed in terms of integral equations for the Bethe root densities.

C.1 Wiener-Hopf factorization

In the examples we have met so far (Lai and Yang or t–J model), the WH-type
integral equation we were confronted to is the form

g(z) = g0(z) +

∫ ∞

0
dz′ G1(z − z′)g(z′) (C.1.1)

where we should define

Gβ(x) =

∫ ∞

−∞

dω

2π
e−iωx e

−β|x|/2

2 cosh ω
2

. (C.1.2)

The first key-step of the WH technique is to find a proper factorization of the
Fourier transformed kernel G1(ω)

[1 −G1(ω)]−1 = G+(ω)G−(ω) , lim
ω→∞

G±(ω) = 1 (C.1.3)

into functions G±(ω) which are analytic for Imω > 0 (< 0), respectively.
For the t–J model these techniques have been applied before[121, 39] and the
factorization of the kernel is known to be

G−(ω) = G+(−ω) =

√
2π

Γ(1
2 + i ω

2π )

(
iω

2πe

) iω
2π

. (C.1.4)

C.2 Applications

In this section we want to solve the function g and to compute its integral in
four relevant types of driving terms g0.
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C.2.1 g0(z) = G0(A + z)

This kind of driving term already appears in the calculation of bulk quantities
such as the dressed energies for the t–J model. Following Refs. [121, 39] we
find for g

g+(ω) = iG+(ω)G−(−iπ)
e−πA

ω + iπ
≡ G(ω) . (C.2.5)

Using the explicit expressions (C.1.4) we obtain

∫ ∞

0
dz g(z) = g+(ω = 0) =

√

2

eπ
e−πA, (C.2.6)

which will be necessary to compute the impurity’s magnetization.

C.2.2 g0(z) = Gβ(z + A) + G−β(z + A)

In this case, the analysis of the WH equation is completely analogous to the
first case and we find

g+(ω) = 2iG+(ω)G−(−iπ)
e−πA

ω + iπ
cos(

πβ

2
) = 2 cos(

πβ

2
)G(ω). (C.2.7)

C.2.3 g0(z) = Gα(z + A)

In the case of a driving of the form g0(z) = Gα(z+A) with α 6= 0 the situation
is a little more involved. The Fourier transform of the driving term is easily

g
(R)
0 (ω) = sgn(α)Gα(ω)e−iωA. One encounters a similar WH equation with

such a driving term in the exact solution of the s–d exchange model. There,
α plays the role of the impurity spin. Following the work of Tsvelick and
Wiegmann [129] one obtains

g+(ω = 0) = sgn(α)
i

2π3/2

∫ ∞

−∞
dω

Γ(1
2 + iω)

ω + i0+
e2iπωAfα+1

+ (ω)fα
−(ω) (C.2.8)

where Γ is the Gamma function. The right-hand side of Eq. (C.2.8) can be
evaluated by contour integration. This leads to the following result for the
integral over g

∫ ∞

0
dz g(z) = sgn(α)

1

2π3/2

∫ ∞

0
dy

sin(πα̃y)

y
Γ

(
1

2
− y

)(y

e

)y
e−2πAy

(C.2.9)
where we have introduced

α̃ =

{
α− 1 if α > 0
α+ 1 otherwise .

(C.2.10)
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C.2.4 g0(z) =
∫∞
0

dz′ G1(2A + z + z′)G0(A + z′)

Finally, the driving term we would like to consider is a the form: g0(z) =
∫∞
0 dz′ G1(2A+ z + z′)G0(A+ z′). This particular driving term enters in the

computation of sub-leading contribution to the thermodynamics in the t–J
model and, in particular, the characterization of the logarithmic singularity in
the low-field susceptibility. Following Ref. [39], we perform a Laplace tansform
of g0(z) to obtain:

g0(z) ≃
1

4π

∫ ∞

0
dx e−2Axe−|z|xG(ix) (x+ . . .) , (C.2.11)

where we have used the asymptotic expansion of the functionG1(z) ∼ 1/4πz2+
O(z−4). Now the solution of the Wiener–Hopf equation is given by

g+(ω) ≃ G+(ω)
i

4π

∫ ∞

0
dx e−2Ax (x+ . . .)

G+(ix)G(ix)

ω + ix
(C.2.12)

The presence of the rapidly decaying factor exp(−2Ax) (remember that A≫ 1
at small field) in the integrand suggests the following expansion around x = 0

G(ix)G+(ix) (x+ . . .) ∼ 2
e−πA

√
eπ

x+ O(x2). (C.2.13)

From this expression we obtain

∫ ∞

0
dz g(z) = g+(ω = 0) =

√

2

eπ

e−πA

4πA
+ O

(
1

A2

)

. (C.2.14)





Appendix D

Derivation of the Hamiltonian
(8.1.4)

In this Appendix, we give all the hints and formulas required to reproduce the
boundary Hamiltonian (8.1.4). This Hamiltonian is essentially the derivative
of the dressed K-matrix with respect to the spectral parameter and evaluated
at the ’shift point’ λ = 0. Formally we write

Hbimp =
1

2i

∂

∂λ
str0 K−(λ)

∣
∣
∣
∣
λ=0

, (D.0.1)

We remind that

K−(λ) = Limp(λ+ t)Kp
−(λ)(Limp(−λ+ t))−1 . (D.0.2)

and

Kp
−(λ) = diag (1, 1,−pλ+ i

pλ− i
) (D.0.3)

NB: To streamline the notations, let us call Kp
−(λ) simply K(λ) and Limp

simply L.
Applying the chain rule for the derivative, we see that the boundary Hamil-

tonian is the sum of three terms,

Hbimp = Ls,1(−t)K ′(0)Ls,1(t)
︸ ︷︷ ︸

(a)

+ L′
s,1(−t)K(0)Ls,1(t)
︸ ︷︷ ︸

(b)

+ Ls,1(−t)K ′(0)Ls,1(t)
︸ ︷︷ ︸

(c)

, (D.0.4)

where we have used the normalization of L

L(λ)L(−λ) = 1 . (D.0.5)
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Furthermore, we have performed the super-trace over the auxiliary space to
obtain L-matrices directly acting on the physical sites s (impurity) and 1
(bulk). The representation space on which L acts is thus [s]+ ⊗ [1/2]+ which
can be decompose [105] as a direct sum of an atypical and a typical represen-
tation of gl(2|1), namely

[s]+ ⊗ [1/2]+ = [s+ 1/2]+ ⊕ [s+ 1, s] . (D.0.6)

Using this decomposing of the quantum space, the L-operator can be written
as [48]

Ls,1 =
λ+ i(s + 1/2)

λ− i(s + 1/2)
P[s+1/2]+ − P[s+1,s] , (D.0.7)

where P[s+1/2]+ (resp. P[s+1,s]) is the projector onto the representation [s +
1/2]+ (resp. [s + 1, s]). In terms of the quadratic Casimir of gl(2|1) (cf Eq.
(A.2.9)), these projectors are expressed in the following way:

P[s+1/2]+ = 1+
Cs1

2

2s + 1

P[s+1,s] =
Cs1

2

s2 − (s+ 1)2
= − Cs1

2

2s+ 1
.

(D.0.8)

We are now in position to compute explicitly each term (a), (b) and (c) entering
Eq. (D.0.4). Using the relations (D.0.7) and noticing that K ′(0) = 1, we can
show, after some algebra that

(b) =
i(2s + 1)

t2 + (s+ 1/2)2
+

2s + 1

(−t+ i(s+ 1/2))(t2 + (s+ 1/2)2)
C

(s1)
2

+
i

t2 + (s+ 1/2)2
Cs1

2 − 1

(−t+ i(s+ 1/2))(t2 + (s+ 1/2)2)
(C

(s1)
2 )2 (D.0.9)

and

(c) =
i(2s + 1)

t2 + (s+ 1/2)2
+

2s + 1

(t+ i(s+ 1/2))(t2 + (s+ 1/2)2)
C

(s1)
2

+
i

t2 + (s+ 1/2)2
Cs1

2 − 1

(t+ i(s+ 1/2))(t2 + (s+ 1/2)2)
(C

(s1)
2 )2 . (D.0.10)

Combining (D.0.9) and (D.0.10) together, and using the fundamental property
of the Casimir,i.e.

(C
(s1)
2 )2 = (2s + 1)C

(s1)
2 (D.0.11)

we end up with the simple form

(b) + (c) = 2i

[

2s+ 1

t2 + (s + 1/2)2
+

C
(s1)
2

t2 + (s+ 1/2)2

]

. (D.0.12)
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Concerning the (a)-term which will generate the bulk-impurity interaction,
the computation is much lengthy but, again, all the ingredients are there, in
the relations above. Formally, it reads

(a) = cst +
2s+ 1

t2 + (s+ 1/2)2
K ′(0)C(s1)

2 +
1

t2 + (s+ 1/2)2
C

(s1)
2 K ′(0)C(s1)

2 .

(D.0.13)
Using the expression for the Casimir (A.2.9) in terms of the generators of
gl(2|1) and K ′(0) = diag (0, 0,−2ip) we finally arrive to

(a)

2i
= −2p

(

B1 −
1

2

)

− 2p

t2 + (s+ 1/2)2

(

it[B1, C
(s1)
2 ]

− (s+
1

2
){B1, C

(s1)
2 } + C

(s1)
2 B1C

(s1)
2

)
(D.0.14)





Appendix E

Lai and Sutherland BAE

There are three different BAE for the gl(2|1) supersymmetric t–J model de-
pending on the choice of grading in the algebra that contains two fermions
and one boson [42]. Here we will focus on two equivalent constructions of the
spectrum of the t–J model with an [s]+-impurity which differ in the choice of
the highest-weight state used for the pseudo vacuum in the algebraic Bethe
ansatz. Either one can construct the Bethe states starting from the so-called
Lai vacuum |ΩL〉 = |0〉⊗L⊗|s+ 1

2 , s− 1
2 , s− 1

2〉imp or from the so-called Suther-
land vacuum |ΩS〉 = | ↑〉⊗L ⊗ |s, s, s〉imp. The two approaches are perfectly
equivalent for the description of the system’s spectrum. In the case of the ho-
mogeneous chain with periodic boundary conditions, the equivalence of the Lai
and Sutherland BAE has been proven in Ref. [16] using a p–h transformation
introduced by Woynarovich [137]. The aim of this Appendix is to generalize
this technique to open boundary conditions including the possibility of having
boundary fields and impurity phase shifts. Nevertheless the spirit of the proof
is very similar to the one derived in the periodic case.

If one starts from the Sutherland vacuum, the resulting BAE for a t–J
model with boundaries are given by:

(e1(λk))
2Lη(λk) =

Nh+N↓∏

j 6=k

e2(λk − λj)e2(λk + λj)

Nh∏

ℓ=1

e−1(λk − ϑℓ)e−1(λk + ϑℓ) ,

1 = ξ(ϑℓ)

Nh+N↓∏

j=1

e1(ϑℓ − λj)e1(ϑℓ + λj) .

(E.0.1)
where η and ξ are phase factors (rational functions in their arguments) de-
scribing the boundary and inhomogeneity scattering (see Eqs. (8.2.6)). From
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the second set of these equations we find that ϑℓ are zeroes of the polynomial

P (w) = ξ+(w)

Nh+N↓∏

j=1

(w − λj +
i

2
)(w + λj +

i

2
)

−ξ−(w)

Nh+N↓∏

j=1

(w − λj −
i

2
)(w + λj −

i

2
) ≡ 0. (E.0.2)

Here ξ+ (resp. ξ−) stands for the numerator (resp. denominator) of the
function ξ. P (w) is of degree 2(Nh + N↓) + δ where δ is determined by the
degree and the parity of ξ±(w). Hence, in addition to the first 2Nh roots
of P (w) which we identify with the roots {ϑℓ} of the BAE (E.0.1) there are
2N↓ + δ additional zeroes {xℓ}. Notice that P (w) is an odd polynomial in all
cases considered in this paper. Consequently, the zeroes of P come in pairs
ϑℓ = −ϑ−ℓ and xℓ = −x−ℓ except from a single root at x0 = 0. Using the
residue theorem we obtain:

Nh∑

ℓ=1

1

i
ln

(

λk − ϑℓ − i
2

λk − ϑℓ + i
2

λk + ϑℓ − i
2

λk + ϑℓ + i
2

)

=

Nh∑

ℓ=1

1

2πi

∮

Cℓ

dz
1

i
ln

(

λk − z − i
2

λk − z + i
2

)

d

dz
lnP (z)

= −
N↓∑

ℓ=1

1

i
ln

(

λk − xℓ − i
2

λk − xℓ + i
2

λk + xℓ − i
2

λk + xℓ + i
2

)

− 1

i
ln

(

λk − i
2

λk + i
2

)

+
1

i
ln

(

P (λk − i
2 )

P (λk + i
2 )

)

(E.0.3)

(the last sum runs over the nonzero xℓ). The contour Cℓ is chosen such that
it encloses both zeroes ϑℓ and −ϑℓ carefully avoiding the logarithm’s branch
cut between λk − i/2 and λk + i/2 (see Fig. E.1). By definition of P (E.0.2)
we evaluate its value at both ends of the branch cuts,

P (λk − i

2
) = −ξ−(λk − i

2
)

Nh+N↓∏

j=1

(λk − λj − i)(λk + λj − i) ,

(E.0.4)

P (λk +
i

2
) = ξ+(λk +

i

2
)

Nh+N↓∏

j=1

(λk − λj + i)(λk + λj + i) .
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0

θl

λk+ i/2

λk - i/2− θl

Figure E.1: The Contour Cℓ used in Eq. (E.0.3) encloses the points ϑℓ and −ϑℓ. The
branch cut of the logarithm in the integrand is depicted as the dashed line connecting
from λk − i/2 to λk + i/2.

Exponentiating Eq. (E.0.3) we obtain

Nh∏

ℓ=1

e−1(λk − ϑℓ)e−1(λk + ϑℓ) = −e1(λk)
ξ−(λk − i

2)

ξ+(λk + i
2)

×

N↓∏

ℓ=1

e1(λk − xℓ)e1(λk + xℓ)

Nh+N↓∏

j=1

e−2(λk − λj)e−2(λk + λj) . (E.0.5)

The last product appearing on the r.h.s. can be reexpressed as

Nh+N↓∏

j=1

e−2(λk − λj)e−2(λk + λj) = −e−1(λk)

Nh+N↓∏

j 6=k

e−2(λk − λj)e−2(λk + λj)

(E.0.6)
since e−2(2λk) = e−1(λk). Then, using Eq. (E.0.5) in the first of Eqs. (E.0.1)
we obtain:

η(λk)[e1(λk)]
2L =

ξ−(λk − i
2)

ξ+(λk + i
2)

N↓∏

ℓ=1

e1(λk − xℓ)e1(λk + xℓ) (E.0.7)

(cf. the first of the Lai equations (E.0.8)). Starting from Eq. (E.0.7), it is
straightforward to apply the same procedure as before to derive the second
Lai type equation.

To summarize the main result of this Appendix let us write the relation
connecting the boundary phase factors within BAE in the Sutherland repre-
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sentation (E.0.1) and those in the Lai representation:

Φ(wk)[e1(wk)]
2L =

N↓∏

ℓ=1

e1(wk − xℓ)e1(wk + xℓ),

(E.0.8)

Ξ(xℓ)

Ne∏

j=1

e1(xℓ − wj)e1(xℓ + wj) =

N↓∏

m6=ℓ

e2(xℓ − xm)e2(xℓ + xm).

Comparing the result of the particle-hole transformation applied to (E.0.1)
with (E.0.8) we find

η(λ)
ξ+(λ+ i

2 )

ξ−(λ− i
2 )

= Φ(λ) , ξ−1(x) = Ξ(x)
Φ−(x+ i

2 )

Φ+(x− i
2 )
. (E.0.9)
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