
CONFERENCE ON PRODUCTION SYSTEMS AND LOGISTICS 
CPSL 2020 

__________________________________________________________________________________ 

DOI: https://doi.org/10.15488/9676 

1st Conference on Production Systems and Logistics 

Sheet-Metal Production Scheduling Using AlphaGo Zero 

Alexandru Rinciog1, Carina Mieth2, Paul Maria Scheikl3, Anne Meyer1 
1Chair of Enterprise Logistics (LFO), TU Dortmund Univerity, Germany 

2TRUMPF GmbH + Co. KG, Ditzingen, Germany 
3Institute for Intelligent Process Automation and Robotics (IPR), Karlsruhe Institute of Technology, Germany 

Abstract 

This work investigates the applicability of a reinforcement learning (RL) approach, specifically AlphaGo 
Zero (AZ), for optimizing sheet-metal (SM) production schedules with respect to tardiness and material 
waste. SM production scheduling is a complex job shop scheduling problem (JSSP) with dynamic operation 
times, routing flexibility and supplementary constraints. SM production systems are capable of processing a 
large number of highly heterogeneous jobs simultaneously. While very large relative to the JSSP literature, 
the SM-JSSP instances investigated in this work are small relative to the SM production reality. Given the 
high dimensionality of the SM-JSSP, computation of an optimal schedule is not tractable. Simple heuristic 
solutions often deliver bad results. We use AZ to selectively search the solution space. To this end, a single 
player AZ version is pretrained using supervised learning on schedules generated by a heuristic, fine-tuned 
using RL and evaluated through comparison with a heuristic baseline and Monte Carlo Tree Search. It will 
be shown that AZ outperforms the other approaches. The work’s scientific contribution is twofold: On the 
one hand, a novel scheduling problem is formalized such that it can be tackled using RL approaches. On the 
other hand, it is proved that AZ can be successfully modified to provide a solution for the problem at hand, 
whereby a new line of research into real-world applications of AZ is opened. 

Keywords 

Production Scheduling; Sheet-Metal Production; Job Shop Scheduling Problem; Reinforcement Learning; 
Monte Carlo Tree Search; AlphaGo Zero 

1. Introduction

1.1 Motivation 

The reasons for focusing on sheet-metal (SM) production scheduling are twofold. On the one hand, SM 
products are ubiquitous. The spectrum of SM products is very large, ranging from industrial to household 
items. As such, successfully optimizing the production process would be of high impact. On the other hand, 
the problem is only summarily studied [1], [2] and of considerable difficulty. 

The input to a sheet-metal production system is a stream of product specifications, where each product has 
a variable number of associated constituent parts, a monetary value and a deadline. To complete a product, 
parts are batched onto a metal sheet from which they are then separated, bent into three-dimensional shapes 
and assembled together. Parallel processing resources are available for each step. During batching, material 
waste occurs. If deadlines are missed, the product value is penalized. The goal of a production scheduler is 
to map operations to resources, such that both tardiness and material waste is minimized. 

342



 

 

SM production scheduling is most closely related to the job shop scheduling problem (JSSP) with routing 
[3], [4], albeit considerably more complex and presenting a unique challenge: Since cutting operations occur 
in dynamic batches, whose processing times are only available after batch definition, scheduling is 
interwoven with a two-dimensional packing problem. Additionally, SM production systems are capable of 
processing a large number of highly heterogeneous parts simultaneously. Mapping the SM production reality 
to a JSSP would lead to far larger instances than any available in benchmark data sets [5]. 

Commonly, high dimensional JSSPs, are solved by selectively searching the space of all possible schedules 
using mainly local search and genetic algorithms (GA) [6]–[10]. More recently, reinforcement learning (RL) 
approaches for solving JSSPs started to gain momentum. This is because RL presents some advantages over 
GA/search and other approaches: As per Waschneck et al. [11], global transparency and global optimization 
are among the advantages offered by RL solutions. Global transparency pertains to scheduling systems’ 
ability to monitor the production state as a whole, as opposed to merging several local optimization 
strategies. Global optimization describes the system’s capability to jointly optimize different goals. Given 
the interdependence between batching and scheduling, both properties are very desirable for SM production 
scheduling. AZ has the added advantage of incorporating search with RL, thereby alleviating the sample 
inefficiency problem deep RL approaches can suffer from [12]. 

1.2 Related Work 

Reinforcement Learning: RL has been applied to small JSSPs with varying optimization targets and 
degrees of success since the mid-90s [13]–[19]. More recently, Reyna et al. [20] uses a value based Q-
learning approach on a simple JSSP with makespan as the optimization target. The RL solutions are tested 
against optimal solutions from the OR-Library benchmark data set (up to 20 jobs and 5 machines). Qu et al. 
investigate the adequacy of multi-agent Q-learning on top of an ontology in the context of a multi-objective 
dynamic flow shop scheduling problem [21]. Waschneck et al. embed the Atari deep Q-learning algorithm 
[22] in a multi-agent system aimed at optimizing the uptime utilization in the semiconductor industry [11]. 
The trained system fails to outperform the heuristic baseline. In [23], [24], policy learning, namely Trust 
Region Policy Optimization [25] is used to solve the complex JSSP of the semiconductor industry. Resource 
utilization and lead time provide the concomitant optimization goal. The RL algorithm surpasses a heuristic 
approach on both optimization targets. 

Supervised Learning: Another AI solution to complex scheduling problems is offered by supervised 
learning (SL) as investigated in [26]. The authors use a data set created by human demonstrators and a 
synthetic data set created using heuristics for binary classifier training. The binary classifiers are used to 
discriminate high from low priority scheduling tasks given the two tasks and the scheduling problem’s state. 
Using the trained models, tasks are ranked through pairwise comparison. The approach achieves a high task 
assignment accuracy of over 90%. The most recent supervised learning approach to solving the JSSP w.r.t. 
makespan was taken in [27]. Here, the authors generate optimal solutions for a 6 machines and 6 jobs JSSP. 
They then train a linear classifier to learn a dispatching rule given the production state. While the results 
obtained through SL are proved to be superior to heuristics, generating training data for large JSSPs is 
intractable. 

AlphaGo Zero: The first version of AlphaGo, introduced in [28], combines SL, RL and a probabilistic 
search strategy, namely Monte Carlo Tree Search (MCTS) [29]. Through SL, human expertise is 
incorporated in a neural network (NN). Through self-play using RL and MCTS, the NN is further tuned until 
it outperforms human players at Go. The second version [30], named AlphaGo Zero (AZ), simplifies both 
the self-play algorithm and the training process considerably: Here, the algorithm relies solely on RL for 
training. In [31], the authors use a slightly modified version of AZ, to outperform the respective state of the 
art for Chess and Shogi, in addition to Go. This constitutes proof of AZ’s game agnosticism. 

343



 

 

1.3 This Work 

The SM scheduling problem can be formalized as a JSSP with routing flexibility, cutting constraints, 
assembly constraints, (dynamic) batch processing capabilities and an additional optimization target. Jobs 
correspond to SM parts and consist of 3 operations: cutting, bending and assembly. The set of jobs is divided 
into partitions corresponding to SM products. In SM-JSSPs, operations are fixed to a machine type, whereby 
routing flexibility ensues. Standard JSSPs limit machines to processing one operation at a time in the absence 
of preemption. This applies solely to bending machines in the SM-JSSP context. Cutting operations can be 
processed simultaneously, as long as the associated parts fit on the same sheet of metal (cutting constraints). 
Assembly operations of jobs from the same partition must be processed together (assembly constraints). 
While the processing times for bending and assembly operations are known a priori, the duration of cutting 
operations is only known post the dynamic batch definition, i.e. during schedule computation. Figure 1 
provides a representation of the main aspects of the SM-JSSP. Besides the common JSSP optimization 
targets (e.g. makespan, flow/lead time, tardiness [32]), the minimization of material waste incurred during 
cutting is additionally considered in SM-JSSPs (additional target). 

 

Figure 1: A representation of the SM-JSSP. A stream of products with variable number of parts, a monetary value and 
a deadline are the SM-JSSP input. Processing starts with batching parts onto a metal sheet. After cutting and 

extracting the parts, bending operations are executed. All parts from a product are assembled together in a final step. 
Bending and assembly times can be computed a priori per part and per product respectively. Cutting times vary 

depending on the batch content. 

This work focuses on jointly minimizing tardiness and material waste for medium-sized, offline SM-JSSP 
instances using AZ. Since this is a preliminary study, we defer some supplementary sources of complexity 
to future work. For now, we do not consider setup times, machine/worker availability and transportation 
times. Furthermore, we flatten the two dimensional packing problem into one dimension, i.e. the cutting 
constraints now simply state that the summed areas of all parts batched on a sheet must be smaller than the 
sheets’ area. We also limit ourselves to considering SM-JSSP instances, which, while large with respect to 
the JSSP literature, are not large enough to accommodate the larger SM production systems. The exact 
instance size is presented in Section 2.3. 

In SM production, despite advanced planning systems (APS) being used for coarsely defining production 
plans, daily scheduling decisions on the shop floor are often done by human experts using simple heuristic 
solutions such as earliest due date (EDD) to prioritize operations. This is because APS plans can quickly 
become obsolete given unforeseeable events. The solution we investigate as an alternative involves 
modifying AZ to a single player version, training its integrated NN in a supervised fashion on heuristic 
solutions to offline SM-JSSP instances and fine-tuning the NN through self-play. Our scientific contribution 
is twofold. First, we design a new state formalism for a complex new scheduling problem and integrate it in 
an environment, which can be used with RL methods. Secondly, we show AZ to be able to incorporate and 

344



 

 

outperform a heuristic approach dominated by the EDD. Priority ties are broken by supplementary criteria 
(see Section 2.3). MCTS was added as a supplementary comparison baseline. 

This paper is structured as follows: Section 2 presents the inner workings of AZ in Subsection 2.1, followed 
by the RL design for SM-JSSP in Subsection 2.2, as well as our experiment setup in Subsection 2.3. After a 
brief discussion of our results in Section 3, we present our conclusion in Section 4. 

2. Methods 

2.1 AlphaGo Zero 

The data structure central to AZ is a tree with nodes corresponding to game states ݏ and edges corresponding 
to actions ܽ. Each edge in the tree stores the probability ܲሺݏ, ܽሻ of it being the best action in the state ݏ a 
visit count ܰሺݏ, ܽሻ and the average expected result ܳሺݏ, ܽሻ of taking action ܽ in state ݏ. Nodes store the 
expected result over all actions possible from state ݏ as	ܸܵ Below we describe how moves are selected using 
NN and MCTS, whereupon the NN training scheme is detailed. 

Neural MCTS: Given a state ݏ AZ picks a move repeating four phases ݉ times followed by a final move 
selection. The four phases are selection, expansion, evaluation and backup as shown in Figure 2. These 
correspond to the MCTS phases modified to be guided by a NN. During the selection phase (Figure 2a) 
nodes reached over edges maximizing ܳሺݏ, ܽሻ ൅ ܷሺݏ, ܽሻ where  

   
( , ) ( , )

( , ) ( , )
1 ( , ) 1 ( , )

b
puct

N s b P s a
U s a P s a c

N s a N s a
 

 


  (1) 

are selected until a dangling edge is encountered. In the Equation (1), ∑ 	௕ܰሺݏ, ܾሻ is the cumulative visit 
count of all outgoing edges from ݏ and ܿ௣௨௖௧ is a tunable exploration parameter. At first, actions with high 

probability and low visit count are preferred. Asymptotically, high valued actions are preferred. By 

increasing ܿ௣௨௖௧ this asymptotic transition is slowed down. Assuming the current iteration is ݊ and ݏ௅
௜   is the 

leaf node reached in iteration ݅ the current leaf node ݏ௅
௡ reachable over the selected dangling edge, as well 

as its egress edges are added to the tree. This constitutes the expansion phase. During the evaluation phase, 
the NN ݂ is used to evaluate the new node ݏ௅

௡ : ܲሺݏ௅
௡ሻܸሺݏ௅௡ሻሻ ≔ ݂ሺݏ௅

௡ሻ. First ܲሺݏ௅
௡ሻ  is used to update 

the egress edges from ݏ௅
௡ (Figure 2b). Then the backup phase ensues (Figure 2c). Herein, all edges up the 

selection path are updated. This update implies incrementing the edge visit counts	ܰሺݏ, ܽሻ and setting their 
values ܳሺݏ, ܽሻ to the average accumulated value up to the current iteration. This is described by Equation 

(2), where 1ሺݏ, ܽ, ݅ሻ is 1 if the ݏ௅
௜  is reachable over the edge ሺݏ, ܽሻ and 0 otherwise: 

   
1

1
( , ) 1( , , ) ( ).

( , )

n
i
L

i

Q s a s a i V s
N s a 

       (2) 

After the predetermined number of MCTS iterations the final move selection is performed. The visit counts 
of the root edges are exponentiated with 1	/߬, where ߬ is an exploration parameter, and normalized to create 
a probability distribution over the legal actions relative to the root node. The final move is then selected by 
sampling from this distribution. Note that infinitesimal values of ߬ induce a Dirac distribution, while high 
values of ߬ induce an asymptotically uniform distribution.  

AZ Training Loop: The NN needs to be trained to estimate the move probabilities ܲሺݏሻ and the expected 
value of a node ܸሺݏሻ accurately. AZ training has two steps, which are repeated until the model weights 
saturate. These are self-play and neural-network training. During self-play (Figure 3a), the MCTS scheme 
introduced above is used to play games from start to finish, i.e. iterations 1 to ݐ by sampling from probability 

345



 

 

·

distributions ߨ௜ returned by the MCTS algorithm for states ݏ௜ States and the corresponding MCTS action 
probabilities ሺݏ௜,  is reached (i.e. end of ்ݏ ௜ሻ are stored for every performed move. When a terminal stateߨ
the game), the reward ݖ ≔ ,௜ݏሻ is used to form triples ሺ்ݏሺݎ ,௜ߨ  depend on how the reward ݖ ሻ. The values ofݖ
function ݎ is modelled, e.g. for chess, ݖ is either -1, 0 or 1 for loss, draw or win respectively, for Go	ݖ ൌ േ1. 
The AZ network can now be trained on them using stochastic gradient descent to minimize the loss function 
݈ ൌ ሺݖ െ ሻଶݒ െ ்ߨ log ,݌where ሺ ݌ ሻݒ ൌ ݂ሺݏሻ (Figure 3b).  

 

Figure 2: Neural MCTS: a Nodes are selected recursively by traversing edges corresponding to an action ܽ ൌ
,ݏ௔ܳሺݔܽ݉݃ݎܽ ܽሻ ൅ ܷሺݏ, ܽሻ until the egress edge of a leaf node; b A new node ݏ௅ is added to the tree, 

ܲሺݏሻܸሺݏ௅	 ሻሻ ≔ ݂ሺݏ௅
	 ሻ is evaluated and its egress edges are updated with probabilities	ܲሺݏሻ. c Action values ܳ 

are updated up the tree path using the mean of all state values ܸ stored in the nodes.  
Source: [30] 

 

(a) Self-Play (b) NW Training 

Figure 3: (a) Games are played from start to finish, using neural MCTS to select a move. The move probabilities ߨ௜ 
are stored together with the corresponding state	ݏ௜. When the end-state ்ݏ is reached, the reward ݖ is associated with 

every pair ሺݏ௜,  ௜ሻ. (b) The network ݂ is trained using stochastic gradient descent to minimize a combination of meanߨ
squared error on the value head and cross entropy on the policy head. Source: [30]. 

 

2.2 RL Design for SM-JSSP 

To apply AZ to the SM-JSSP, the agent environment interaction needs to be redesigned. This is done by 
creating the SM-JSSP state and action space together with a reward signal corresponding to the joint 
objective function of material waste and tardiness. Additionally, the NN architecture is adapted. 

The following state space was used for SM-JSSP instances of 	݉ଵ cutting, ݉ଶ bending and 	݉ଷ assembly 
stations and up to 	݊݇ jobs. Processing stations are indexed using the set 	ܯ ≔ ሼ1…݉ଵ ൅݉ଶ ൅݉ଷሽ, where 1 
to ݉ଵ correspond to cutting machines, ݉ଵ ൅ 1 to ݉ଵ ൅݉ଶ correspond to bending machines and so on. Jobs 
are represented through the indices of a ݊݇ݔ matrix, where every row corresponds to a job partition. To each 
job we associate 2 descriptors: Area and outline. Both are needed to compute the dynamic processing times 
for the cutting (and extraction) operations. Areas are also needed to enforce area constraints. The material 
waste is stored per cutting machine in a vector of length ݉ଵ. Operation processing times are stored per job - 

346



 

 

bending -, job partition - assembly - or per cutting machine - cutting -. To track remaining operations, for 
every job, the index ݅ ∈  .of the last machine a contained operation was assigned to, is noted down ܯ
Additionally, the state encodes whether the current machine ݅ is actively processing the corresponding 
operation (1) or whether the operation has finished (2) for every job. The state also encodes the remaining 
slack time and value for every job partition. Finally yet importantly, the idle machine onto which an operation 
needs to be scheduled next is encoded. This yields a state space of 5݊݇ ൅ 3݊ ൅ 2݉ଵ ൅ 1 entries. 

The AZ agent schedules by interacting with a deterministic event discrete simulation: Whenever a machine 
is idle, the agent is asked to schedule an operation to it. The environment maps the operation, selects the next 
free machine for a decision and updates the state representation accordingly. If no decision is possible at the 
current time, the state is rolled forward in time by marking the operation with least remaining processing 
time as finished, updating all the time variables and freeing the corresponding machine. Cutting batches are 
defined iteratively by requesting operations for the same machine until the agent produces a finish flag. 
Assembly operations are triggered by the agent outputting the index of the first job in a job partition. Bending 

operations are triggered by a job index. As such the action space is given by 1.nk   

To compute the SM-JSSP reward, the environment keeps track of wasted material and the tardiness for every 
job partition. After all operations were scheduled, ݎ௔௕௦ ≔ െܿሺܹሻ ൅ ∑ ௜ݒ െ max	ሼ0, ௜ܶሽ

௡
௜ୀଵ , where ܿሺܹሻ is the 

cost of the total used material (including waste), ௜ܶ and ݒ௜ are the tardiness and value for the job partition ݅ 
respectively and  is parameter punishing tardiness. ݎ௔௕௦	 reflects the sum of product values, discounted 
proportional to deadlines, minus the total material cost. The reward is scaled to [0, 1] using the maximum 

possible score ݎ௠௔௫ i.e. no tardiness and no waste, ݎ௥௘௟ ≔ 1 െ
௥೘ೌೣି௥ೌ್ೞ

௥೘ೌೣ
. 

Both move probabilities and expected value from a state are provided by a single NN as in [28]. As opposed 
to [28] however, a simple feed-forward NN is used for the SM-JSSP instead of ConvNets. This is because 
we do not stack the input states, and there is no geometric correlation in the SM-JSSP states. Note that since 
there is a strong temporal correlation between states, passing a stack of states to a ConvNet could be 
beneficial. 

2.3 Experiment Setup 

To validate our approach, we create 80 different offline scheduling instances and use AZ, the EDD heuristic, 
as well as an MCTS implementation as per [29] to find a scheduling sequence. Then we compare the 
respective results in three ways: First, we plot the relative scores achieved to get a rough assessment of the 
scheduling behavior. Secondly, we count the number of times a particular scheduling approach provided the 
best result among its peers. Lastly, we average the 80 obtained scores for each individual scheduling scheme. 

We chose the EDD baseline as it is the most intuitive solution for a scenario where tardiness is to be 
minimized. Since due dates can be the same for different parts, ties are being broken by higher product value, 
larger area and higher number of bending steps. Whenever a machine is free, the operations that can be 
assigned to it are prioritized as per EDD and the one with the highest priority is scheduled to it. 

The SM-JSSP instances are created as follows. The set of jobs ܬ contains 10 job partitions. The number of 
jobs per partition is sampled from ܷሼ1,7ሽ Areas, outlines and number of bending steps are sampled from the 
uniform distributions ܷሺ1݀݉ଶ, 164.26݀݉ଶሻ, ܷሺ1݀݉, 122.83݀݉ሻ, and ܷሼ0,30ሽ respectively. The resulting one 
dimensional histograms are used to create a three dimensional histogram from which part descriptors are 
sampled uniformly at random for each job. These part descriptors are the independent variables needed to 
calculate the processing times for the different operations. The sheet area is fixed to 589.19݀݉². Processing 
times for cutting are calculated on batch definition using a nonlinear estimator with the summed part areas 
to sheet area and summed part outlines to sheet outline ratios as input. Bending times are a linear function 

347



 

 

of the area and the number of bends per part. Assembly times are a linear combination of the average part 
area, the average number of bends and the total number of parts in a job partition.  

In terms of the AZ implementation, we use a fully connected feed forward NN with 2 layers à 1024 and 512 
nodes respectively, a dropout of 0.3 to avoid over-fitting, batch-normalization to speed up training, and 
Adam for learning rate optimization. During self-play, ߬  is set to 1 for the first 15 decisions and then dropped 
to 0. During evaluation ߬ ൌ 0. ܿ௣௨௖௧	is 1.5 throughout. Prior to any decision, the selection, evaluation, 

expansion and backup steps are repeated 6 times. The tree is kept until the end-state is reached.  

The three scheduling techniques considered were implemented in python. The environment implementation 
is consistent with the openaiGym (https://gym.openai.com) API for RL. The AZ agent was implemented 
using Keras with a TensorFlow backend for the embedded NN and was trained using 12 CPU cores for 
parallel execution of self-play episodes and 2 GPUs for NN training.  

Rather than training AZ from scratch, we pretrain it to mirror the EDD heuristic first. To that end, we use 
the random SM-JSSP instance generation scheme described above to generate 10଺ (state, decision, reward) 
triples on which we then train the NN until a validation accuracy of 90 % is achieved for move probabilities. 
To check the learned behavior, we do a small evaluation round on 30 SM-JSSP instances at this point as 
well. Thereafter we run the AZ RL training pipeline for 254 iterations, which takes about 5 days. For each 
iteration, data from 80 self-play episodes is added to a replay buffer of the 800 most recent SM-JSSP games, 
on which the NN is then trained. 

3. Evaluation 

Scheduling a SM-JSSP instance to completion (circa 70 moves) takes about 150 seconds for both MCTS 
and AZ. Note that, while the self-play time is currently comparable, AZ should scale much better than MCTS 
with the size of the scheduling instance. For a game of depth n, MCTS runs n simulations to completion for 
every move selection step, while AZ simply makes n calls to the network’s predict function. As n increases, 
so does the simulation time, while the call to the predict function stays constant. 

Figure 4 shows the performance of AZ, EDD and MCTS before and after AZ RL fine-tuning side by side. 
We elaborate on the aspects showcased by the figure. As a first observation we note that the performance of 
MCTS alone is quite lacking, compared to the heuristic approach or AZ. It registers both the lowest average 
score and the lowest number of wins in both evaluation rounds. This is to be expected given the small number 
of rollouts for a game tree as vast as the one corresponding to the SM-JSSP. Nevertheless, in 3% and 7% of 
post pretraining and post RL finetuning cases respectively, MCTS does find the best schedule. 

Secondly, the scheduling behavior of AZ and EDD seems to be quite similar, as can be seen in the lineplots 
in Figure 4. This is not at all surprising given that EDD is a fairly good heuristic and AZ’s network was 
pretrained on it. We notice that the overlap between the AZ and EDD curves is significantly higher 
immediately after pretraining than after RL fine-tuning. This suggests that AZ has developed strategies 
additional to EDD during self-play. The lineplots also reveal just how different the considered scheduling 
instances are, with best solutions achieving scores between 0.4 and 1 of the maximum producible value. 

Thirdly, and most importantly, training AZ using RL leads to it outperforming its teacher, EDD. Immediately 
after pretraining however, the best scheduling approach, as ranked by both the number of wins and the 
average score, was EDD.  

348



 

 

 

(a) AZ Performance Post Pretraining 

(b) AZ Performance Post RL Fine Tuning (254 Iterations) 
 

Figure 4: Comparison between AZ, MCTS and EDD using the relative score rrel defined in  
Section 2.2. 

4. Conclusion 

This work studied the applicability of AZ ran on modest hardware to the static SM-JSSP with a combined 
material waste and tardiness minimization target. We have shown, that AZ leads to better results than both 
EDD and MCTS, thereby providing the first successful application of AZ to the realm of production 
scheduling. On the way to our results, we formalized a novel production scheduling problem corresponding 
to sheet-metal production by extending the JSSP formalism and provided a RL design for it. 

Our solution was tested with SM-JSSP instances of up to 70 jobs, 6 resources and 8 paths, leading to a 
combinatorial complexity higher than anything published in literature to date. For real world sheet-metal 
production however, the solution needs to scale to hundreds of jobs. To that end two aspects should be 
studied in the future. On the one hand, the investigation should be extended to larger SM-JSSP instances. 
On the other, it should be studied how AZ performs in an online setting. The two targets can be combined 
to provide the scalability required for real world applications. 

Furthermore, it could pay off to offer some attention to the use of ConvNets within AZ for SM-JSSP to 
capture temporal correlations between states as well as relaxing the environment observability requirement. 
Currently, all the part descriptors involved in calculating the dynamic batch processing times are provided 
in the state model. If these times are to be computed accurately, the dimension of the agent’s input space 
will explode, since both cutting and extraction times are dependent on a large number of factors such as 
machine configuration, material properties, further geometric features and so on. As such, it should be 
investigated whether AZ can still perform as strongly if we eliminate the part descriptors completely, save 
for areas. 

349



 

 

Currently, the validation of AZ for the SM-JSSP is limited to the comparison with a heuristic baseline. It is 
planned to test AZ against GAs and exact solutions on smaller SM-JSSP instances. Additionally, AZ should 
be tested against the state of the art for JSSPs on benchmark data sets. 

 

References 

[1] F. Pfitzer, J. Provost, C. Mieth, W. Liertz, “Event-driven production rescheduling in job shop environments”, in 
2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), IEEE, pp. 939–944, 
2018. 

[2] M. Putz, A. Schlegel, “Simulationsbasierte Untersuchung von Priorit¨ats- und Kommissionierregeln zur 
Steuerung des Materialflusses in der Blechindustrie”, Simulation in Produktion und Logistik, pp. 370-379, 2019. 

[3] L Li, C Li, L Li, Y Tang, Q Yang, “An integrated approach for remanufacturing job shop scheduling with routing 
alternatives.”, Mathematical biosciences and engineering: MBE, vol. 16, no. 4, pp. 2063–2085, 2019.  

[4] M. Gondran, M.-J. Huguet, P. Lacomme, N. Tchernev, “Comparison between two ap- proaches to solve the job-
shop scheduling problem with routing”, 2019. 

[5] J. J. van Hoorn, “The current state of bounds on benchmark instances of the job-shop scheduling problem”, 
Journal of Scheduling, vol. 21, no. 1, pp. 127–128, 2018. 

[6] S.-C. Lin, E. D. Goodman, W. F. Punch III, “A genetic algorithm approach to dynamic job shop scheduling 
problem”, in ICGA, 1997, pp. 481–488. 

[7] T. Yamada, R. Nakano, “Scheduling by genetic local search with multi-step crossover”, in International 
Conference on Parallel Problem Solving from Nature, Springer, 1996, pp. 960– 969. 

[8] B. M. Ombuki, M. Ventresca, “Local search genetic algorithms for the job shop scheduling problem”, Applied 
Intelligence, vol. 21, no. 1, pp. 99–109, 2004. 

[9] E. S. Nicoara, F. G. Filip, N. Paraschiv, “Simulation-based optimization using genetic algorithms for multi-
objective flexible jssp”, Studies in Informatics and Control, vol. 20, no. 4, pp. 333–344, 2011. 

[10] L. Asadzadeh, “A local search genetic algorithm for the job shop scheduling problem with intelligent agents”, 
Computers & Industrial Engineering, vol. 85, pp. 376–383, 2015. 

[11] B. Waschneck, A. Reichstaller, L. Belzner, T. Altenmu¨ller, T. Bauernhansl, A. Knapp, A. Kyek, “Optimization 
of global production scheduling with deep reinforcement learning”, Procedia CIRP, vol. 72, pp. 1264–1269, 2018. 

[12] M. Botvinick, S. Ritter, J. X. Wang, Z. Kurth-Nelson, C. Blundell, D. Hassabis, “Rein- forcement learning, fast 
and slow”, Trends in cognitive sciences, 2019. 

[13] W. Zhang, T. G. Dietterich, “A reinforcement learning approach to job-shop scheduling”, in IJCAI, Citeseer, vol. 
95, 1995, pp. 1114–1120. 

[14] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning, 4. MIT press Cambridge, 1998, vol. 2. 

[15] S. Mahadevan, G. Theocharous, “Optimizing production manufacturing using reinforce- ment learning”, in 
FLAIRS Conference, 1998, pp. 372–377. 

[16] S. J. Bradtke, M. O. Duff, “Reinforcement learning methods for continuous-time markov decision problems”, in 
Advances in neural information processing systems, 1995, pp. 393–400. 

[17] S. Riedmiller, M. Riedmiller, “A neural reinforcement learning approach to learn local dispatching policies in 
production scheduling”, in IJCAI, vol. 2, 1999, pp. 764–771. 

[18] C. D. Paternina-Arboleda, T. K. Das, “A multi-agent reinforcement learning approach to obtaining dynamic 
control policies for stochastic lot scheduling problem”, Simulation Modelling Practice and Theory, vol. 13, no. 5, 
pp. 389–406, 2005. 

350



 

 

[19] T. Gabel, M. Riedmiller, “Scaling adaptive agent-based reactive job-shop scheduling to large-scale problems”, in 
2007 IEEE Symposium on Computational Intelligence in Scheduling, IEEE, 2007, pp. 259–266. 

[20] Y. C. F. Reyna, Y. M. Jim´enez, J. M. B. Cabrera, B. M. M. Hern´andez, “A reinforce- ment learning approach 
for scheduling problems”, Investigaci´on  Operacional, vol. 36, no. 3, pp. 225–231, 2015. 

[21] S. Qu, J. Wang, S. Govil, J. O. Leckie, “Optimized adaptive scheduling of a manufactur- ing process system with 
multi-skill workforce and multiple machine types: An ontology-based, multi-agent reinforcement learning 
approach”, Procedia CIRP, vol. 57, pp. 55–60, 2016. 

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried- miller, “Playing atari 
with deep reinforcement learning”, arXiv preprint arXiv:1312.5602, 2013. 

[23] A. Kuhnle, L. Sch¨afer, N. Stricker, G. Lanza, “Design, implementation and evaluation of reinforcement learning 
for an adaptive order dispatching in job shop manufacturing systems”, Procedia CIRP, vol. 81, pp. 234–239, 2019. 

[24] N. Stricker, A. Kuhnle, R. Sturm, S. Friess, “Reinforcement learning for adaptive order dispatching in the 
semiconductor industry”, CIRP Annals, vol. 67, no. 1, pp. 511–514, 2018. 

[25] J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, “Trust region policy optimization”, International 
conference on machine learning, 2015, pp. 1889–1897. 

[26] M. Gombolay, R. Jensen, J. Stigile, S.-H. Son, J. Shah, “Apprenticeship scheduling: Learning to schedule from 
human experts”, AAAI Press/International Joint Conferences on Artificial Intelligence, 2016. 

[27] H. Ingimundardottir, T. P. Runarsson, “Supervised learning linear priority dispatch rules for job-shop 
scheduling”, International conference on learning and intelligent optimization, 2011, pp. 263–277. 

[28] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, 
V. Panneershelvam, M. Lanctot, et al., “Mastering the game of go with deep neural networks and tree search”, 
nature, vol. 529, no. 7587, p. 484, 2016. 

[29] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-carlo tree search: A new framework for game ai”, in 
AIIDE, 2008. 

[30] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. 
Bolton, et al., “Mastering the game of go without human knowledge”, Nature, vol. 550, no. 7676, p. 354, 2017. 

[31] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. 
Graepel, et al., “Mastering chess and shogi by self-play with a general reinforcement learning algorithm”, arXiv 
preprint arXiv:1712.01815, 2017. 

[32] R. D. Reid, N. R. Sanders, Operations Management. John Wiley & Sons, 2012, pp. 561– 564. 

 

Biography 

Alexandru Rinciog obtained his M.Sc. in Computer Science from Karlsruhe Institute of Technology in 
2019. He became a Ph.D. candidate at the Chair of Enterprise Logistics of the TU Dortmund University the 
same year. As part of the DFG project “Smart Production Control”, his focus lies with production 
optimization using machine learning.  

Carina Mieth is a PhD candidate in mechanical engineering at the TU Dortmund University. She received 
her M.Sc. in electrical engineering from the Karlsruhe Institute of Technology in 2017. Currently, she works 
in the predevelopment networked systems at TRUMPF GmbH + Co. KG. She is an associated member in 
the DFG-funded research training group adaption intelligence of factories in a dynamic and complex 
environment. Her research focuses on cyber-physical production systems and simulation input modeling for 
manufacturing simulation. 

Paul Maria Scheikl received his B.Sc. and M.Sc. in mechanical engineering from Karlsruhe Institute of 
Technology, Germany in 2015 and 2017, respectively. He is now pursuing his Ph.D. in robotics to continue 

351



 

 

his research with learning systems and collaborative robots. His research interests include dynamic systems, 
computer vision, and machine learning. 

Anne Meyer is a junior professor for enterprise digitalization and supply-chain management at the Chair of 
Enterprise Logistics of the TU Dortmund University. She obtained her Ph.D. from Karlsruhe Institute of 
Technology in 2015. The 10-year colaboration with the FZI Research Center for Information Technology, 
served to grow her hands-on expertise in the fields of logistics, machine learning and data analytics. 

352




