Synthese enantiomerenreiner Polycyclen an einem chiralen Templat

Vom Fachbereich Chemie der Universität Hannover

zur Erlangung des Grades

Doktor der Naturwissenschaften

-Dr. rer. nat.-

genehmigte

Dissertation

von

Dipl.-Chem. Martina Wolter geboren am 4. Mai 1971 in Uelzen

2000

Referent:

Prof. Dr. Dr. h.c. E. Winterfeldt Prof. Dr. H. Meyer

Korreferent:

1101. DI. II. Meyer

Tag der Promotion:13. November 2000

Kurzfassung

Es wurde das Potential des elektronenreichen Siloxydiens **8** als chirales Templat bei Diels-Alder-Additionen zur Synthese enantiomerenreiner Polycyclen untersucht.

Die über die Anellierung von Exomethylen-Dienophilen gewonnenen Spiro-Addukte bzw. Spiro-Retroprodukte **23a/15/18/19** konnten regio- und chemoselektiv, aber nur mit mangelnder Diastereoselektivität transformiert werden.

Die unter optimierten Bedingungen dargestellten Addukte bzw. Retroprodukte mit elektronenreicher Dienophil-Substruktur **11a/11b** und **12a/12b** wiesen einen Cyclisierungsgrad auf, der über weitere lineare, aufwachsende Cyclisierungen nicht mehr zu steigern war.

Zur Synthese komplexerer Polycyclen wurde daher ein Konzept entwickelt, über das Addukte vom Typ **10**, **37** und **45**, welche eine elektronenarme Dienophil-Substruktur besitzen, in einem linearen Anellierungsschritt mit carbo- bzw. heterocyclischen Dienen um zwei Cyclen vergrößert werden sollten. Die regio- und stereoselektiven α -endo-Cycloadditionen des carbocyclischen Siloxydiens **42**, der heterocyclischen 6- und 7-Ring-Diene **54/55** sowie der Indolylacrylsäurederivate **69-71** an das Cyclopentenonaddukt **45** konnten unter 14 kbar Hochdruck mit guten bis sehr guten Ausbeuten durchgeführt werden. Das Monoketaladdukt **10** erwies sich als zu unreaktiv. Das *p*-Benzochinonaddukt **37** zeigte zwar eine hohe Reaktivität, aber eine mangelnde Regioselektivität. Die Retro-Diels-Alder-Reaktionen an den neuen Addukten zur Generierung enantiomerenreiner polycyclischer Cyclohexenone waren mit guten bis sehr guten Musbeuten möglich. Die Retroprodukte gingen jedoch als vinyloge 1,3-Dicarbonylverbindungen leicht Enolisierungs- und Isomerisierungsprozesse ein.

Als Ausweg aus dieser Problematik konnte ein Synthesekonzept verwirklicht werden, über das ausgehend vom Monoketaladdukt **10** in zwei Stufen mit sehr guten Ausbeuten ein neues elektronenarmes, unsymmetrisches Cyclohexenonaddukt **82** generierbar war, das allen Anforderungen hinsichtlich konfigurativer Stabilität sowie Reaktivität und Regioselektivität bei einer stereoselektiven α -endo-Diels-Alder-Cycloaddition gerecht wurde. Auch die abschließende Retroreaktion konnte in sehr guten Ausbeuten erfolgreich durchgeführt werden und lieferte das konfigurativ stabile, polycyclische Cyclohexenon **84**.

Abschließend wurde das Potential des Siloxydiens 8 bei einer Hetero-Diels-Alder-Reaktion mit dem elektronenarmen, heterocyclischen 2π -System des Imino-Dienophils Dihydro-norharman 95 untersucht. Unter optimierten Bedingungen konnte in sehr guter Ausbeute selektiv das α *exo*-Addukt 98 dargestellt werden und über eine Retro-Diels-Alder-Reaktion in guter Ausbeute in den interessanten Alkaloidbaustein Indol[2,3- α]chinolizin-2-on 101 überführt werden.

Abstract

Wolter, Martina

Synthesis of enantiopure polycycles with the help of a chiral template

The potential of the electron-rich siloxydiene 8 as a chiral template in Diels-Alder reactions for the synthesis of enantiopure polycycles was investigated.

Starting with the adducts and the corresponding retro-Diels-Alder products of diene **8** containing an electron-rich dienophile-substructure (**11a/11b** and **12a/12b**) the studies of stepwise construction of polycycles were not successful.

Therefore, an alternative concept was developed with the intention to make complex anellated polycyclic systems. Adducts like **10**, **37** and **45** with an electron-poor dienophile-substructure should be increased for two cycles in one linear Diels-Alder step with carbo- and heterocyclic dienes. The regio- and stereoselective *?-endo*-cycloadditions of the carbocyclic siloxydiene **42**, the heterocyclic 6- and 7-membered-ring-dienes **54**/**55** and the indole-3-acrylic-acid derivates **69-71** to the cyclopentenone **45** under 14 kbar were successful. The monoketal-adduct **10** was unsufficient reactiv. The *p*-benzoquinone-adduct **37** showed enough reactivity, but a lack of regioselectivity. The following thermal retro-Diels-Alder reactions of the new adducts were successful. But the separated polycyclic cyclohexenone-products were unstable because of their vinologous 1,3-dicarbonyl structure.

To resolve these problems an alternative strategie was developed. Starting with the monoketaladduct **10** a new electron-poor, nonsymmetric cyclohexenone-adduct **82** was prepared in two steps with very high yields. In the following stereoselective *?-endo*-Diels-Alder cycloadditions the adduct **82** complied all requirements like stability, reactivity and regioselectivity. The concluding thermal retro-reaction was successful and supplied the cyclohexenone **84** in very good yields.

Finally, the potential of the siloxydiene **8** in hetero-Diels-Alder reactions with the electronpoor, heterocyclic 2?-system of the imino-dienophile 3,4-dihydro-?-carboline **95** was investigated. On optimized conditions the ?-*exo*-adduct **98** was selectively synthesized in very high yield. The following retro-Diels-Alder reaction provided the interesting alkaloid building block indolo[2,3-?]quinolizin-2-one **101** in good yield.

Schlagworte

Diels-Alder-Reaktion - Polycyclische Cyclohexenone - Indolchinolizinone

Keywords

Diels-Alder-reaction - polycyclic cyclohexenones - indoloquinolizinones

Die vorliegende Arbeit wurde in der Zeit von Mai 1998 bis November 2000 am Institut für Organische Chemie der Universität Hannover unter der Leitung von Herrn *Prof. Dr. Dr. h.c. E. Winterfeldt* angefertigt.

Herrn *Prof. Dr. Dr. h.c. E. Winterfeldt* danke ich sehr herzlich für die stets freundliche und hilfreiche Unterstützung, die zahlreichen Anregungen und die mir gewährten Freiheiten bei der Durchführung dieser Arbeit.

Herrn *Prof. Dr. H. Meyer* danke ich für die Übernahme des Korreferates und die jederzeit vorhandene Diskussionsbereitschaft zur Organisation der Chemikalienverwaltung.

Frau *G.* $Ha\beta$ möchte ich für ihre freundliche Unterstützung in organisatorischen Fragen danken sowie für die gute Zusammenarbeit und das große Vertrauen, das sie mir in allen Punkten der Chemikalienbeschaffung entgegengebracht hat.

Mein weiterer Dank gilt den stets hilfsbereiten Mitarbeitern und Mitarbeiterinnen der spektroskopischen Abteilung, insbesondere Frau *D. Körtje*, Frau *M. Rettstadt* und Herrn *Dr. E. Hofer*.

Für die Durchführung der Röntgenstrukturanalyse bedanke ich mich bei Herrn Dr. R. Wartchow.

Der *Deutschen Forschungsgemeinschaft DFG* danke ich für ein Stipendium im Rahmen des Graduiertenkollegs "Chemische und technische Grundlagen der Naturstofftransformation".

Allen aktuellen und ehemaligen Mitarbeitern und Mitarbeiterinnen der Arbeitskreise Winterfeldt und Doye, die mich während der Anfertigung dieser Arbeit begleitet und unterstützt haben, danke ich sehr herzlich. Mein ganz besonderer Dank gilt S. Doye, der mir in vielen Bereichen durch erfrischende Diskussionen und aufmunternde Tips sehr geholfen hat. C. Knappwost, V. Ludwig, N. Pleuß, F. Schulz und der "Doye-Bande" möchte ich für das angenehme Arbeitsklima und die lustige Zeit im Labor danken. Für zahlreiche interessante Informationen und Anregungen danke ich T. Fleßner, O. Gaertzen und F. Nerenz.

INHALTSVERZEICHNIS

1. EINLEI	ΓUNG
1.1 Synthe	ese enantiomerenreiner Polycyclen über Diels-Alder-Cycloadditionen
1.2 Enant	ioselektive Synthese mit chiralen Cyclopentadienen
1.3 Studie	en am konformativ flexiblen Siloxydien
1.4 Diaste	reoselektive Anellierung von Cyclohexenon an Dienophile
1.5 Anelli	erendes Wachstum von Ringsystemen: Stand der Forschung5
2. AUFGA	BENSTELLUNG
8. ERGEBI	NISSE7
3.1 Anelli	erendes Wachstum und Transformation von carbocyclischen Systemen7
3.1.1	Spiroverbindungen
3.1	1.1 Anellierung von unsymmetrischen Exomethylen-Dienophilen
3.1	1.1.1 Cycloaddition und Retroreaktion - Stand der Forschung
3.1	1.1.2 Transformationen des Retroprodukts
3.1	1.2 Anellierung eines symmetrischen Exomethylen-Dienophils
3.1	1.2.1 Cycloaddition und Retroreaktion - Stand der Forschung
3.1	1.2.2 Transformationen am Methylencyclopentandionaddukt
3.1	1.3 Zusammenfassung und Ausblick13
3.1.2	Lineare Cyclisierungen an Addukten und deren Retroprodukten14
3.1	2.1 Synthese und Syntheseoptimierung der Edukte mit elektronenreicher
	Dienophil-Substruktur14
3.1	2.2 Syntheseplan für ein Addukt mit elektronenarmer Dienophil-
	Substruktur
3.1	2.3 Folgeadditionen an Addukten und Retroprodukten
3.1.3	Lineare Anellierungen von carbocyclischen Dienen21
3.2 Bildu	ng von Carbocyclen mit Hilfe von heterocyclischen Dienen27
321	Auswahl und Synthese der Diene

3.2.2 Cycloadditionen und Retro-Diels-Alder-Reaktionen	29
3.2.2.1 Umsetzungen mit dem Monoketaladdukt und dem Benzochinonaddukt .	29
3.2.2.2 Umsetzung des 6-Ring-Diens mit dem Cyclopentenonaddukt	33
3.2.2.3 Umsetzung des 7-Ring-Diens mit dem Cyclopentenonaddukt	38
3.2.2.4 Folgereaktionen am Addukt bzw. Retroprodukt	40
3.3 Carbocyclen-Synthese mit Indolacrylsäurederivaten	43
3.4 Ausweg aus der Regioselektivitäts- und Enolisierungsproblematik	49
3.4.1 Beschreibung der Reaktivitäts- und Regioselektivitätsprobleme	49
3.4.2 Beschreibung der cis-trans-Isomerisierung des Benzochinonaddukts	51
3.4.3 Beschreibung der Enolisierung und Isomerisierung der Retroprodukte	54
3.4.4 Synthese eines neuen elektronenarmen Cyclohexenonaddukts	57
3.4.5 Durchführung der regio- und stereoselektiven Cycloaddition	60
3.4.6 Retro-Diels-Alder-Reaktion zu stabilen polycyclischen Cyclohexenonen	61
3.4.7 Ausblick: Ein möglicher Weg zu stabilen Cyclohexenon-Cyclopentanon	•••••
systemen	62
3.5 Hetero-Diels-Alder-Reaktion mit einem Imino-Dienophil	65
3.5 Hetero-Diels-Alder-Reaktion mit einem Imino-Dienophil 3.5.1 Stand der Forschung	65
 3.5 Hetero-Diels-Alder-Reaktion mit einem Imino-Dienophil 3.5.1 Stand der Forschung 3.5.2 Synthese des Imino-Dienophils Dihydronorharman 	65 65 66
 3.5 Hetero-Diels-Alder-Reaktion mit einem Imino-Dienophil 3.5.1 Stand der Forschung 3.5.2 Synthese des Imino-Dienophils Dihydronorharman 3.5.3 Durchführung der Hetero-Diels-Alder-Reaktion 	65 65 66 67
 3.5 Hetero-Diels-Alder-Reaktion mit einem Imino-Dienophil	65 65 66 67
 3.5 Hetero-Diels-Alder-Reaktion mit einem Imino-Dienophil	65 65 66 67 71
 3.5 Hetero-Diels-Alder-Reaktion mit einem Imino-Dienophil	65 65 66 67 71 71
 3.5 Hetero-Diels-Alder-Reaktion mit einem Imino-Dienophil	65 65 66 67 71 71 72
 3.5 Hetero-Diels-Alder-Reaktion mit einem Imino-Dienophil	65 65 66 67 71 71 72 73
 3.5 Hetero-Diels-Alder-Reaktion mit einem Imino-Dienophil 3.5.1 Stand der Forschung 3.5.2 Synthese des Imino-Dienophils Dihydronorharman 3.5.3 Durchführung der Hetero-Diels-Alder-Reaktion 3.5.4 Retro-Diels-Alder-Reaktion zur Generierung des Alkaloidbausteins vom Typ der Indolchinolizinone 3.5.4.1 Stand der Forschung 3.5.4.2 Durchführung der Retro-Diels-Alder-Reaktion 4. ZUSAMMENFASSUNG UND AUSBLICK 	65 65 66 67 71 71 72 73 76
 3.5 Hetero-Diels-Alder-Reaktion mit einem Imino-Dienophil	65 65 67 71 71 72 73 76
 3.5 Hetero-Diels-Alder-Reaktion mit einem Imino-Dienophil	65 65 67 71 71 72 73 76 78
 3.5 Hetero-Diels-Alder-Reaktion mit einem Imino-Dienophil	65 65 67 71 71 72 72 73 76 76 78 78 78 78

Abkürzungsverzeichnis

α	Substituent unterhalb der Ringebene bzw. in 2-Position
Abb.	Abbildung
abs.	absolut
Ac	Acetyl
Ac ₂ O	Essigsäureanhydrid
ALOX	Aluminiumoxid
β	Substituent oberhalb der Ringebene bzw. in 3-Position
Bn	Benzyl
Boc	tertButoxycarbonyl
Bsp.	Beispiel
n-BuLi	n-Butyllithium
tBu	tertButyl
CSA	Camphersulfonsäure-Monohydrat
Δ	Erwärmen
d	Tag
DC	Dünnschichtchromatographie
DEPT	Distortionless Enhancement by Polarization Transfer
DIBAH	Diisobutylaluminiumhydrid
DMAP	4-Dimethylaminopyridin
DMF	N-Dimethylformamid
DMSO	Dimethylsulfonsäure
Don	Donor
Е	Diethylether
EE	Essigsäureethylester
eq	Äquivalente
Et	Ethyl
FAB	Fast Atom Bombardement
ges.	gesättigt
h	Stunde
HMBC	Hetero Multiple Bond Correlation
HMQC	Hetero Multiple Quantum Correlation
H-Ms	Hochauflösende Massenspektroskopie

IR	Infrarot			
J	Kopplungskonstante			
kat.	katalytisch			
KHMDS	Kaliumbis(trimethylsilyl-)amid			
konz.	konzentriert			
K-Selectrid	Kaliumtri(s-butyl-)borhydrid			
L	großer Substituent			
LDA	Lithiumdiisopropylamid			
Lit.	Literatur			
Lsg.	Lösung			
М	molar			
Me	Methyl			
MeOH	Methanol			
min	Minute			
MHz	Megahertz			
MS	Massenspektroskopie			
NEt ₃	Triethylamin			
NMR	Kernmagnetische Resonanz			
NOE	Nuclear Overhauser Effect			
PE	Petrolether			
Ph	Phenyl			
PIFA	[Bis-(trifluoracetoxy)-iod]-benzol			
R	Substituent			
RT	Raumtemperatur			
S	kleiner Substituent			
TBAF	Tetrabutylammoniumfluorid			
TBDMS	tertButyldimethylsilyl			
ТЕМРО	2,2,6,6-Tetramethylpiperidin-1-oxyl			
Tf	Trifluorsulfonat			
TFA	Trifluoressigsäure			
THF	Tetrahydrofuran			
TMS	Trimethylsilyl			
Ts	p-Toluolsulfonat			
verd.	verdünnt			

I. Theoretischer Teil

1. Einleitung

1.1 Synthese enantiomerenreiner Polycyclen über Diels-Alder-Cycloadditionen

In der präparativen organischen Chemie ist die Darstellung enantiomerenreiner Polycyclen von großer Bedeutung, da diese Verbindungen weit verbreitet sind und viele von ihnen interessante biologische Aktivitäten aufweisen. Cyclisierungen spielen deshalb vor allem beim Aufbau chiraler Natur- und Wirkstoffe eine wichtige Rolle.

Eine ideale Methode zum Ringaufbau stellt die enantioselektive Diels-Alder-Cycloaddition¹ dar. In einem Reaktionsschritt können 6-gliedrige Ringsysteme mit bis zu vier Chiralitätszentren, deren relative und absolute Konfiguration vorhersagbar ist, erzeugt werden.

Die Anwendungsbreite und Vielseitigkeit dieses Diels-Alder-Prozesses ist beachtlich. Neben carbocyclischen Systemen sind durch die Wahl geeigneter Heterodiene bzw. Hetero-dienophile auch eine Fülle von Heterocyclen² zugänglich. Dabei werden zahlreiche funktionelle Gruppen nicht nur toleriert, sondern tragen auch entscheidend zur regio- und stereoselektiven Lenkung der Cycloaddition bei. Durch die Reversibilität dieses Prozesses stellt auch die Rückreaktion, die Retro-Diels-Alder-Reaktion³, ein präparativ interessantes Verfahren dar.

Weiterhin ist hervorzuheben, daß es sich bei der Diels-Alder-Cycloaddition um ein umweltund ressourcenschonendes Syntheseverfahren⁴ handelt, welches den Prinzipien der Atomökonomie⁵ folgt, da meist reagenz- und katalysatorfreie Reaktionsbedingungen vorliegen und oft sehr hohe Ausbeuten erzielt werden.

1.2 Enantioselektive Synthese mit chiralen Cyclopentadienen

Im Arbeitskreis *Winterfeldt* ist die Untersuchung enantioselektiver Diels-Alder-Cycloadditionen an chiralen Cyclopentadienen⁶ schon seit längerer Zeit Gegenstand intensiver Forschungsbemühungen.

Dabei wurden an den chiralen Auxiliaren vom Typ **1** und **2** (Abbildung 1) Sequenzen aus Diels-Alder-Reaktion, diastereoselektiven Transformationen am Addukt und abschließender Retro-Diels-Alder-Reaktion durchgeführt und so enantiomerenreine ungesättigte Synthese-bausteine mit ausgezeichneter Regio- und Stereoselektivität erzeugt.

1

Durch den Zusatz von Lewis-Säuren⁷ oder durch die Anwendung von Hochdruck⁸ konnte eine Beschleunigung der Cycloadditionen erzielt werden.

Im Laufe der Untersuchungen zeigte sich, daß das anfangs verwendete chirale Östronderivat⁹ 1 auf sein CD-Ringsystem 2 reduziert werden konnte, ohne daß Selektivitätsverluste in den Diels-Alder-Reaktionen zu beobachten waren.

Abbildung 1

Die Darstellung des Hydrindansystems 2 erfolgt in wenigen Stufen aus dem enantiomerenreinen Hajos-Wiechert-Keton¹⁰ 3, das in beiden absoluten Konfigurationen erhältlich ist (Schema 1)¹¹. Durch die Einführung des *p*-Methoxy-Substituenten in den Phenylrest erhöht sich die Elektronendichte und somit die Reaktivität des Diensystems.

Schema 1

In umfangreichen Studien¹² konnte gezeigt werden (Abbildung 2), daß der Arylsubstituent als konjugierter, elektronenreicher Rest die Regioselektivität der Cycloaddition lenkt. Dabei erfolgen aufgrund der konkaven Form des Hydrindandiens 2 alle Angriffe der Dienophile nur von der β -Seite. Weiterhin bildet sich unter den gewählten Reaktionsbedingungen (Raumtemperatur, Hochdruck) kinetisch kontrolliert bevorzugt das *endo*-Produkt. Die Ursache hierfür sind sekundäre Orbitalwechselwirkungen (*endo*-Regel)¹³. Bei der chiralen Erkennung optisch aktiver Dienophile und der Unterscheidung enantiotoper Gruppen im *endo*-Übergangszustand spielt die olefinische Brücke eine entscheidende Rolle.

Abbildung 2

1.3 Studien am konformativ flexiblen Siloxydien

Ein weiteres chirales Auxiliar für interessante Studien von Cycloadditionen ist das Siloxydien **8**, welches leicht aus dem Hydrindandien **2b** darstellbar ist (Schema 2) und als ein chirales enantiomerenreines *Danishefsky*-Dien¹⁴ (Abbildung 3) angesehen werden kann.

Schema 2

Aufgrund der hohen Selektivitäten, die bei den Cycloadditionen mit dem starren Hydrindandien 2 erzielt werden konnten, sollte nun auch das Potential der stereochemischen Induktion des elektronenreichen, konformativ flexibleren 4π -Systems 8 untersucht werden.

Im Vergleich zum Hydrindandien **2b** zeigten alle bisher mit elektronenarmen Dienophilen durchgeführten Diels-Alder-Reaktionen¹⁹ eine gesteigerte Reaktivität, die über die erhöhte Elektronendichte des Siloxydiens **8** erklärbar ist. Außerdem wurde eine hohe Regio-selektivität beobachtet. Im Sinne der Grenzorbitaltheorie^{15/16/17} wird diese Regiochemie ebenso wie beim *Danishefsky*-Dien¹⁸ von der elektronenreichen Trimethylsiloxy-Gruppe bestimmt. Weiterhin liefen die Cyclisierungen mit einer sehr hohen α -exo-Selektivität^{19/20} ab (Abbildung 3).

Abbildung 3

"Chirales Danishefsky-Dien"

Die Annäherung der Dienophile von der α -Seite ergibt sich durch die anguläre Methylgruppe und den Arylrest des Siloxydiens **8**, die eine Annäherung von der Oberseite des Moleküls unmöglich machen. Für die *exo*-Selektivität ist die olefinische Brücke des Siloxydiens **8** verantwortlich.

Im Fall des *endo*-Übergangszustandes sollte es zu einer elektronischen und sterischen Abstoßung zwischen der Carbonylgruppe des Dienophils und der olefinischen Brücke des Siloxydiens **8** kommen (Abbildung 3).

1.4 Diastereoselektive Anellierung von Cyclohexenon an Dienophile

Neben den Reaktivitäts- und Selektivitätsuntersuchungen am Siloxydien **8** wurde mit diesem chiralen Auxiliar auch ein neuer Weg zu enantiomerenreinen Bausteinen beschritten.

Über eine Sequenz aus Diels-Alder-Cycloaddition, Silylenolether-Spaltung und Retro-Diels-Alder-Reaktion sind enantiomerenreine, bicyclische Cyclohexenone¹⁹ **III** zugänglich (Schema 3). Mit anderen Worten erlaubt diese Methode die diastereoselektive Anellierung von Cyclohexenon an elektronenarme Dienophile.

Dabei ist zu beachten, daß an den beiden Addukten I und II sowie am Retroprodukt III chemo-, regio- und stereoselektive Transformationen durchführbar sind. Durch eine gezielte Auswahl geeigneter Dienophile können so über entsprechende Folgreaktionen wichtige Synthesebausteine generiert werden.

1.5 Anellierendes Wachstum von Ringsystemen: Stand der Forschung

Durch den Einsatz elektronenarmer Dienophile mit kreuzkonjugierter Dienonstruktur vom Typ 9 können über Diels-Alder-Additionen am Siloxydien 8 Addukte vom Typ 10 synthetisiert werden, die ihrerseits eine elektronenarme Dienophil-Substruktur aufweisen. Eine weitere Cycloaddition mit einem elektronenreichen Dien ist somit am Addukt 10 durchführbar. Im Endeffekt findet also ein anellierendes Wachstum von Ringsystemen statt. Über eine diastereoselektive Diels-Alder-Sequenz und anschließende thermische Abspaltung des chiralen Auxiliars 2b sind so enantiomerenreine Polycyclen (z.B. 12) zugänglich.

In diesem Zusammenhang beschäftigte sich bereits *C. Borm*²⁰ mit der Frage nach chiraler Lenkung der Diels-Alder-Cycloaddition über neu eingeführte Strukturelemente (s. Bsp. in Schema 4). Mit anderen Worten wurde also das Potential des Siloxydiens **8** bei aufwachsenden Cyclisierungen untersucht. Es stellte sich heraus, daß alle bisher durchgeführten Additionen an Cycloaddukten des Siloxydiens α -endo-selektiv verliefen.

2. Aufgabenstellung

Ziel der vorliegenden Arbeit war die Synthese enantiomerenreiner Polycyclen an dem chiralen Templat **8**. Es sollten neben carbocyclischen Systemen auch selektiv Heterocyclen aufgebaut werden. Dies sollte unter Nutzung von Heteroatomen als Lieferanten von Elektronendichte bzw. als Bestandteil eines elektronenarmen 2π -Systems geschehen.

Im Hinblick auf zahlreiche polycyclische Natur- und Wirkstoffe war darüber hinaus die Frage, ob Retro-Diels-Alder-Reaktionen an den generierten Addukten erfolgreich durch-führbar sind, von großer Bedeutung.

Außerdem sollte in diesem Rahmen das Potential des elektronenreichen, konformativ flexiblen Siloxydiens **8** als chirales Intermediat und bei aufwachsenden Cyclisierungen untersucht werden. Es sollte der Frage nachgegangen werden, bis zu welchem Grad das anellierende Wachstum von Ringsystemen über Diels-Alder-Sequenzen am Addukt als auch an den entsprechenden Retroprodukten möglich ist. Von Interesse war hierbei auch, inwiefern regiound stereoselektive Lenkung durch das chirale Templat **8** bzw. über neu eingeführte Ringstrukturelemente möglich ist.

3. Ergebnisse

3.1 Anellierendes Wachstum und Transformation von carbocyclischen Systemen

3.1.1 Spiroverbindungen

Zahlreiche niedermolekulare Naturstoffe²¹ mit interessanten biologischen Aktivitäten besitzen ein Spirocyclohexenon-Grundgerüst.

Eine prinzipielle Möglichkeit zur Darstellung dieser Spiroverbindungen bietet das Konzept der Differenzierung enantiotoper Gruppen²² in einer Diels-Alder-Reaktion mit dem Hydrindandien **2b**. Hierbei werden durch oxidative Cyclisierungen^{23/24} aus Phenolderivaten Spirocyclohexadienone erzeugt, welche unter Differenzierung der Doppelbindungen an das Dien **2b** addierbar sind. Diastereoselektive Transformation der Addukte und abschließende Retro-Diels-Alder-Reaktion liefern dann enantiomerenreine Bausteine.

Ein Nachteil dieses Synthesekonzepts ist die häufig sehr geringe Ausbeute bei der Herstellung einiger Dienophile^{23/24}. Außerdem können über die oxidative Cyclisierung keine Ver-bindungen mit einer Carbonylgruppe in α -Stellung zum Spirozentrum erhalten werden.

Es stellte sich also die Frage, ob über Diels-Alder-Cycloadditionen mit dem Siloxydien **8** regiound stereoselektiv enantiomerenreine Spiroverbindungen zugänglich sind. Hierzu sollten als Dienophile cyclische Systeme mit einer elektronenarmen Exomethylengruppe dienen (Schema 5). Nach Spaltung des Silylenolethers und anschließender Retro-Diels-Alder-Reaktion wären so enantiomerenreine Spirocyclohexenone generierbar, die durch weitere Transformationen Naturstoff-Bausteine liefern könnten. Außerdem war die durch dieses Synthesekonzept mögliche Funktionalisierbarkeit neben einem Spirozentrum von Interesse.

Mit den Untersuchungen dieser Syntheseroute wurde bereits von *C. Borm*²⁰ und während meiner Diplomarbeit²⁵ begonnen.

Schema 5

3.1.1.1 Anellierung von unsymmetrischen Exomethylen-Dienophilen

3.1.1.1.1 Cycloaddition und Retroreaktion - Stand der Forschung

Zur Generierung einer Spiroverbindung mit zwei 6-gliedrigen Ringen wurde das stabile kreuzkonjugierte Dienophil 3-Ethoxy-6-methylencyclohex-2-enon **13** mit dem Siloxydien **8** umgesetzt (Schema 6). Dabei wurden über α -exo-Addition unter sterischer Lenkung der Regiochemie die Hauptkomponente **14a** und unter elektronischer Lenkung das Neben-produkt **14b** gewonnen. Als weiteres Nebenprodukt trat zu 9% ein α -endo-Addukt mit sterisch gelenkter Regiochemie auf. Die leicht trennbaren Addukte konnten in guter Ausbeute retrogespalten werden. Die resultierenden Retroprodukte **15** und **18** standen für weitere Transformationen zur Verfügung.

Schema 6

3.1.1.1.2 Transformationen des Retroprodukts

In Hinblick auf die Synthese von Naturstoff-Bausteinen waren weitere regio- und chemoselektive Transformationen der generierten spirocyclischen Verbindung **15** von Interesse. Bei diesen Untersuchungen sollten zwei wesentliche Aspekte geklärt werden (Abbildung 4). a) Die regioselektive 1,2- bzw. 1,4-Addition am α,β -ungesättigten Keton des Ringes **A** b) Die chemoselektive Differenzierung der Carbonylfunktionen von Ring **A** und **B**

Abbildung 4

An Verbindung **15** konnte bereits in meiner Diplomarbeit²⁵ über eine NaBH₄-Reduktion und eine Enolpivalat-Bildung an der Carbonylfunktion in Ring **A** gezeigt werden, daß prinzipiell die Möglichkeit der regio- und chemoselektiven Transformation der Spiroverbindung besteht.

Im Rahmen dieser Arbeit sollte die Untersuchung der selektiven Transformationen an den Spirocyclohexenonen **15** und **18** weitergeführt werden.

Begonnen wurde mit der <u>Durchführung von Michael-Additionen²⁶</u>:

Dabei konnten bei der Umsetzung von Verbindung **15** mit Malonsäure-methyl-tert.butyl-ester **16** 66% des Michaeladdukts **17** als nicht trennbares 1:1-Diastereomerengemisch isoliert werden (Schema 7). Es konnte also gezeigt werden, daß auch eine regio- und chemoselektive 1,4-Addition an Ring **A** durchführbar ist.

Schema 7

Daraufhin stellte sich die Frage, ob diese 1,4-Addition auch bei dem regioisomeren Retroprodukt **18**, welches aus dem α -*exo*-Nebenprodukt der Cycloaddition unter elektronischer Lenkung der Regiochemie erzeugt wurde, stattfindet (Schema 7). Unter identischen Versuchsbedingungen konnte jedoch kein Umsatz erzielt werden. Dieses Ergebnis zeigt, daß 1,4-Additionen vermutlich nur dann möglich sind, wenn das Spirozentrum genügend weit vom Reaktionsort entfernt ist. Ansonsten scheint die sterische Hinderung aufgrund der Neopentylstellung zu groß zu sein.

Während meiner Diplomarbeit²⁵ konnte über die Enolpivalat-Bildung an dem Spirocyclohexenon **15** eine Möglichkeit aufdeckt werden, den Ring **A** zu schützen, damit anschließend gezielte chemische Transformationen am vinylogen Ester des zweiten Ringes **B** durchführbar sind. Nach Spaltung der entsprechenden Schutzgruppe sollten auf diese Weise Bausteine zur Synthese spirocyclischer Naturstoffe zugänglich sein.

Begonnen wurde mit dem Versuch einer 1,4-Addition mit Malonsäuremethylesternitril. Allerdings konnte hier keine Umsetzung beobachtet werden.

Daß 1,2-Additionen an die Carbonylfunkion des Ringes **B** hingegen möglich sind, konnte über die DIBAH-Reduktion²⁷ (Schema 8) gezeigt werden. Allerdings konnte das Reduktionsprodukt nur als trennbares ca. 1:1-Diastereomerengemisch **20a/b** in relativ schlechter Ausbeute isoliert werden.

Schema 8

3.1.1.2 Anellierung eines symmetrischen Exomethylen-Dienophils

3.1.1.2.1 Cycloaddition und Retroreaktion - Stand der Forschung

Zur Generierung eines Spiro-Cyclohexenons mit einem 5-gliedrigen Ring wurde das symmetrische, stark aktivierte Dienophil 2-Methylen-1,3-cyclopentandion **22** an das Siloxydien **8** anelliert (Schema 9). Dazu mußte dieses sehr reaktive Endion **22** zunächst *in situ* aus dem stabilen 2-(Phenylsulfoxymethyl-)-1,3-cyclopentandion **21** durch Zusatz von Pyridin unter milden Reaktionsbedingungen freigesetzt werden^{28/29/30}.

Bemerkenswert an dieser Reaktion ist, daß sie in sehr kurzer Zeit bei Raumtemperatur und Normaldruck das Cycloaddukt **23a** unter elektronischer Lenkung der Regiochemie liefert. Aufgrund dieser starken Abweichung von den bisher notwendigen Reaktionsbedingungen bestehen jedoch Zweifel, ob tatsächlich eine konzertierte Diels-Alder-Cycloaddition oder eine *Michael*-Additionssequenz^{28/29/30} stattgefunden hat.

3.1.1.2.2 Transformationen am Methylencyclopentandionaddukt

Das gut zugängliche TMS-geschützte Addukt **23a** bietet interessante Möglichkeiten zur diastereoselektiven Differenzierung der Carbonylgruppen. Über eine anschließende Spaltung des Silylenolethers und eine Retro-Diels-Alder-Reaktion sollten so enantiomerenreine Synthese-Bausteine zugänglich sein. Dieses Synthesekonzept wurde im folgenden untersucht. Da Versuche zur selektiven Ketalisierung der Carbonylfunktion fehlschlugen, wurde das Addukt **23a** verschiedenen Reduktionsmethoden unterworfen.

Selektive Reduktion der Carbonylfunktion

Bei ersten Experimenten zeigte sich, daß das Addukt **23a** in Gegenwart von DIBAH²⁷ in abs. Ether bei 0 °C \rightarrow RT stabil ist. Die Umsetzung mit K-Selectrid³¹ in abs. THF bei RT führte hingegen zu einem nicht weiter aufgeklärten Produktgemisch. Als erfolgreich erwies sich die Reduktion mit NaBH₄ in einem Isopropanol-Methylenchlorid-Gemisch bei 0 °C (Schema 10). Bei dieser Umsetzung wurde als Hauptprodukt das Addukt **25** in einer Ausbeute von 75% isoliert, welches leicht durch Spaltung des Silylenolethers in Verbindung **26** überführbar war. Eine Retroreaktion des Addukts **26** wurde nicht durchgeführt. Sie sollte aber prinzipiell keine Probleme bereiten, wie die thermische Spaltung von Addukt **23b** (Schema 9) zeigt. Auch hatten Alkoholfunktionen bei anderen Retroreaktionen bisher nicht gestört²⁰.

Schema 10

Eine Aussage bezüglich der Chemoselektivität der Reduktion konnte anhand der chemischen Verschiebungen des Protons H_a der olefinischen Brücke von Edukt **23a**, Hauptprodukt **25** und Nebenprodukt **27** getroffen werden (Abbildung 4).

Abbildung 4

 $\delta_{\text{Ha}} = 5.44 \ (1\text{H}, \text{d}, \text{J} = 6 \text{ Hz})$ $\delta_{\text{Ha}} = 5.47 \ (1\text{H}, \text{d}, \text{J} = 6 \text{ Hz})$ $\delta_{\text{Ha}} = 6.05 \ (1\text{H}, \text{d}, \text{J} = 6 \text{ Hz})$

Die Protonen H_a des Hauptaddukts **25** und des Edukts **23a** zeigen im Vergleich zum Nebenprodukt **27** eine deutliche Hochfeldverschiebung durch den Anisotropieeffekt der Carbonylfunktion des 5-Rings im Innenraum der Addukte und somit in räumlicher Nähe zur olefinischen Brücke.

Die in den Innenraum des Addukts **23a** hineinreichende Carbonylgruppe ist also sterisch gut abgeschirmt, somit weniger reaktiv und wird nur zu 7% zu Addukt **27** reduziert. Dieses Ergebnis deckt sich mit der Vermutung, daß Reaktionen bevorzugt an der leichter zugänglichen Carbonylgruppe am Addukt **23a** stattfinden sollten. Die Stereochemie konnte an dieser Stelle nicht aufgeklärt werden.

3.1.1.3 Zusammenfassung

Die an den Spiroverbindungen vorgenommenen Studien haben gezeigt, daß einige Probleme bei dem in Schema 5 beschriebenen Synthesekonzept auftraten:

1. Bei den Cycloadditionen mit unsymmetrischen Exomethylen-Dienophilen treten aufgrund der zu hohen Flexibilität bei der Ausbildung der entsprechenden Übergangszustände *exo/endo*-Selektivitätsprobleme auf.

2. Bei den Anellierungen besteht die Gefahr der Bildung von Regioisomeren, da unter elektronischer Lenkung im Übergangszustand ein quartäres Zentrum neben einem tertiären Zentrum erzeugt werden muß (sterischer Härtetest).

3. Die Folgereaktionen an den Retroprodukten und Addukten sind nur sehr eingeschränkt möglich. Transformationen der Retroprodukte laufen unter Bildung von z.T. nicht trennbaren Diastereomerengemischen ab und sind nur dann erfolgreich, wenn sie nicht in Neopentylstellung zum Spirozentrum durchgeführt werden.

3.1.2 Lineare Cyclisierungen an Addukten und deren Retroprodukten

Aufgrund der beschriebenen Probleme, die sich bei den an Spiroverbindungen vorgenommenen Untersuchungen ergaben, wurde im folgenden mit linear anellierbaren Ringsystemen weitergearbeitet.

Bei lineraren Cyclisierungen sollten vergleichsweise weniger Schwierigkeiten auftreten, da 1. die *exo*-Selektivität aufgrund der sterischen und elektronischen Situation der substituierten Dienophil-Doppelbindung gewährleistet sein sollte,

2. kein Spirozentrum erzeugt werden muß, und somit das Problem der Regioselektivität durch sterische Hinderung beim Ausbilden des elektronisch gelenkten Übergangszustandes wegfällt,

3. durch das Fehlen eines quartären Spiro-Zentrums Folgereaktionen leichter ablaufen sollten. Von Vorteil ist weiterhin, daß in den bisher durchgeführten Studien^{19/20} am Siloxydien 8 unter elektronischer als auch unter sterischer Lenkung dasselbe Addukt zu erwarten war (s. Schema 4: $9 \rightarrow 10$), und somit die Regioselektivitätsproblematik nicht auftrat.

3.1.2.1 Synthese und Syntheseoptimierung der Edukte mit elektronenreicher Dienophil-Substruktur

Wie in Abschnitt 1.5 geschildert, beschäftigte sich bereits *C. Borm*²⁰ mit aufwachsenden Cyclisierungen an Addukten vom Typ **10** (s. Schema 4). Um in Rahmen dieser Arbeit zu untersuchen, bis zu welchem Grad und mit welchen Selektivitäten das anellierende Wachstum von Ringsystemen über Diels-Alder-Sequenzen an den resultierenden Addukten vom Typ **11** als auch an den entsprechenden Retroprodukten **12** möglich ist, wurden zunächst die Syntheserouten für die notwendigen Ausgangsverbindungen optimiert.

Es zeigte sich, daß die hochdruckkatalysierte Addition des Monoketals **9** an das Siloxydien **8** (Schema 11) auch bei 14 kbar in nur 4 Tagen α -*exo*-selektiv und nahezu quantitativ zu Addukt **10** verläuft (bisher²⁰: 6.5 kbar, 5 d). Die anschließende [4+2]-Cyclisierung mit 1-Methoxybutadien lieferte nach 14 d bei 14 kbar quantitativ (bisher¹⁹: 93%) Addukt **11a**, welches zu 99% (bisher²⁰: 76%) in Produkt **12a** retrogespalten werden konnte.

In Schema 12 ist die Darstellung von Addukt **11b** aufgeführt. Bisher²⁰ konnte nur eine Ausbeute von 53% erzielt werden. Durch den Zusatz von TEMPO als Radikalfänger wurde die Polymerisation von 1-Acetoxybutadien vermieden und somit eine Ausbeute von 90% an Addukt **11b** erzielt. Die hier erstmalig durchgeführte Retroreaktion lieferte unter optimierten Bedingungen, d.h. bei schnellem Hochheizen des Pyrolysekolbens in 15 min auf nur 200 °C, zu 49% das gewünschte Retroprodukt **12b**. Als Nebenprodukt wurde zu 17% die Enolform von Verbindung **28** isoliert, welche unter Eliminierung von AcOH aus dem Retroprodukt **12b** hervorgegangen ist. Vorab hatten mehrere Retroversuche bei höheren Pyrolysetemperaturen und längeren Pyrolysezeiten gezeigt, daß unter diesen Bedingungen nur ca. 26% Retroprodukt **12b** neben 42-46% Eliminierungsprodukt **28** isolierbar sind. Die beobachtete Eliminierung ist durch die laut Modell anticoplanare Anordnung des zur Carbonylgruppe α -ständigen und somit aciden Protons und der guten Acetat-Fluchtgruppe stark begünstigt (s. auch Kapitel 3.1.2.2: basenkatalysierte Eliminierung von AcOH an Addukt **11b**). Als Triebkraft für die Enolisierung ist die Bildung eines gut durchkonjugierten Systems zu nennen.

Als weiterer Kandidat für die anschließenden Untersuchungen wurde aus dem leicht generierbaren²⁰ Cyclopentenonaddukt **45** in 14 d bei 14 kbar Addukt **29** synthetisiert (Schema 13).

Schema 13

Zur Klärung der Selektivität dieser Cycloaddition wurden über ein H,H-cosy die ¹H-NMR-Signale den entscheidenden Protonen zugewiesen. Ein Vergleich der Kopplungskonstanten von Addukt **29** (Abbildung 5) mit denen des von *C. Borm* synthetisierten und röntgenkristallographisch bewiesenen²⁰ Addukts **30** erlaubt die Aussage, daß die Cycloaddition wie zu erwarten war vermutlich unter α -endo-Selektivität ablief.

Abbildung 5

3.1.2.2 Syntheseplan für ein Addukt mit elektronenarmer Dienophil-Substruktur

Die polycyclischen Addukte vom Typ **11** beinhalten eine elektronenreiche Dienophil-Substruktur. Da jedoch zahlreiche elektronenreiche Diene verfügbar sind, liegt es nahe, nach einem Weg zu einem vergleichbaren Addukt mit elektronenarmer Dienophil-Substruktur zu suchen, um weitere Cycloadditionen zu ermöglichen.

Dazu wurde folgender Syntheseplan entwickelt (Schema 14). Ausgehend vom in guten Ausbeuten zugänglichen Addukt **11b** (s. Schema 12) sollte durch Verseifung des Allylacetats der Allylalkohol **31** generiert werden, welcher nach einer MnO₂-Oxidation ein α , β -ungesättigtes Keton **32** liefern würde. Es wäre so ein Addukt mit elektronenarmer Dienophil-Substruktur synthetisierbar, welches weiteren Diels-Adler-Reaktionen mit elektronenreichen Dienen zur Verfügung stände.

Es zeigte sich jedoch, daß dieser Syntheseplan bereits an der ersten Stufe scheitert (Schema 15), da sich das Edukt **11b** bzw. der gewünschte Allylalkohol **31** unter den gewählten Verseifungsbedingungen (Tabelle 1) als instabil erwies. Es wurde vielmehr eine basenkatalysierte Eliminierung von AcOH bzw. H₂O beobachtet, die zu dem Dienaddukt **33** führte, welches in methanolischer Lösung bei RT unter Michael-Addition von MeOH z.T. zu dem Addukt **34** weiterreagierte.

Nach den ersten wenig erfolgreichen Versuchen unter Verwendung von K₂CO₃ als Base (Bsp. 1) wurde zu LiOH gewechselt, um den Allylalkohol als Li-Alkoholat abzufangen und so die Eliminierung zu verhindern. Allerdings mußte der Reaktionslösung wiederum MeOH zugefügt werden, um das LiOH in Lösung zu bringen. Dies führte wahrscheinlich dazu, daß das Li-Alkoholat durch MeOH solvolysiert wurde, so daß erneut nur die beiden Neben-produkte **33** und **34** isoliert werden konnten (Bsp. 2). Nur in einer einzigen Ausnahme (Bsp. 2b) konnte tatsächlich der gewünschte Allylalkohol **31** zu 15% als Nebenprodukt nachge-wiesen werden. Die Michaelreaktion ließ sich durch das Arbeiten bei 0°C (Bsp. 3) weitest-gehend zurückdrängen, so daß das Eliminierungsprodukt **33** zum Hauptprodukt wurde. Durch einen Wechsel des Lösungsmittels zu abs. DMF (Bsp. 4) war zwar die Michael-Addition vollständig vermeidbar, die Eliminierung jedoch nicht. Es muß also davon ausgegangen werden, daß

bereits eine basenkatalysierte Eliminerung von AcOH an Addukt **11b** stattfindet, und somit gar nicht die Stufe des Allylalkohols **31** durchlaufen wird.

Am Modell des Addukts **11b** ist die anticoplanare Anordnung des α zur Carbonylgruppe ständigen und somit aciden Protons und der Fluchtgruppe gut sichtbar, so daß die basenkatalysierte Eliminierung nahezu unvermeidbar scheint, ebenso wie die thermische Eliminierung von AcOH, die bei der Retrospaltung von Addukt **11b** beobachtet werden konnte (s. Schema 12).

Ein Wechsel der Verseifungsmethode zu einer Lipase-katalysierten Umsetzung³² bei pH 7 und RT (Bsp. 5) führte zu keinerlei Reaktion. Das Edukt erwies sich unter diesen Bedingungen als inert.

Schema 15

Tabelle 1

Bsp.	Verseifungsbedingungen	31	33	34
1	1.5 eq K ₂ CO ₃ , abs. MeOH/THF			
	1 h, RT		35%	27%
2	2.5 eq LiOH, abs. MeOH/THF			
	10 min, RT		58%	40%
2b	2.5 eq LiOH, abs. MeOH/THF			
	2 h, RT	15%	45%	38%
3	1.5 eq LiOH, abs. MeOH/THF			
	2 h, 0 °C		85%	10%
4	1.5 eq LiOH, abs. DMF			
	2 h, 0 °C		96%	
5	Lipase, Phosphat-Puffer pH 7			
	PE/CH ₂ Cl ₂ , 7 d, RT	keine Umsetzung		

3.1.2.3 Folgeadditionen an Addukten und Retroprodukten

Die syntheseoptimierten Addukte und auch Retroprodukte sollten im folgenden auf ihr Potential für Cycloadditionen hinsichtlich der Reaktivität als auch der Selektivität untersucht werden. Dabei war auch von Interesse, bis zu welchem Grad das ursprüngliche Dien-Grundgerüst noch zur selektiven Lenkung der Cycloaddition beitragen kann bzw. ob die Additionen von den neu eingeführten Strukturelementen und somit von der Gesamt-Konformation der Verbindung gelenkt wird. Ein Vergleich von Reaktionen am Addukt und dem entsprechenden Retroprodukt sollte diesbezüglich eine Aussage zulassen.

Von *C. Borm* wurden die Möglichkeiten von Addukt **11a** bislang in 2 Fällen²⁰ untersucht, allerdings ohne eine Umsetzung erreichen zu können. Da eine Fortführung der Donor-Akzeptor-Donor-Additionssequenz am Addukt also scheinbar problematisch ist, sollte nun das Augenmerk auf das leicht generierbare Retroprodukt **12a** gerichtet werden. Allerdings konnten auch hier bei den durchgeführten Cyclisierungsversuchen auch nach 28 d bei 14 kbar keinerlei Umsetzungen beobachtet werden (Schema 16).

Es muß also davon ausgegangen werden, daß sowohl Addukt als auch Retroprodukt auf dieser Stufe an einem Cyclisierungsgrad angekommen sind, der über vormals noch erfolgreiche Diels-Alder-Reaktionen nicht weiter gesteigert werden kann. Am Siloxydien **8** ist also in diesem Fall maximal eine Sequenz aus 2 aufeinanderfolgenden Cyclisierungen durchführbar. Danach bricht die Kette am Addukt bzw. Retroprodukt ab. Die nicht-aktivierte Doppelbindung des Allylethers versagt ihren Dienst, und das Cyclohexenon ist vermutlich sterisch nicht zugänglich.

3.1.3 Lineare Anellierungen von carbocyclischen Dienen

Da wie in Kapitel 3.1.2.3 beschrieben eine Fortführung der Additionssequenz über 2 aufeinanderfolgende Cyclisierungen hinaus am Siloxydien 8 problematisch sein könnte, wurde nun ein neues Konzept entwickelt, um komplexere Polycyclen erzeugen zu können. Addukte vom Typ 10 sollten über eine weitere lineare Anellierung in einem Schritt um 2 Carbocyclen vergrößert werden.

Hierzu bieten sich Diene an, die bereits einen Carbocyclus mitbringen. Dabei fiel die Wahl auf das aus 1-Acetyl-1-cyclohexen **35** leicht darzustellende Siloxydien 36^{33} (Schema 17).

Schema 17

Das erste Konzept sah vor, dieses carbocyclische Siloxydien **36** *in situ* zu erzeugen³³ und direkt mit dem *p*-Benzochinonaddukt **37** umzusetzen (Schema 18). Dazu wurde zunächst bei Normaldruck und RT aus 1-Acetyl-1-cyclohexen **35** durch Zusatz von Triethylamin das Enolat gewonnen und mit TMS-OTf abgefangen. Das so *in situ* generierte Siloxydien **36** sollte mit dem anschließend hinzugefügten *p*-Benzochinonaddukt **37** bei RT direkt eine Diels-Alder-Reaktion eingehen.

Allerdings wurde weder bei Normaldruck noch unter Hochdruck das gewünschte Cyclisierungsprodukt erhalten. Vielmehr führte der Überschuß an Triethylamin und TMS-OTf in der Reaktionslösung zur Enolisierung und Silylierung des Addukts **37**, so daß lediglich das silylierte Hydrochinonaddukt **38** isoliert wurde.

Schema 18

Ein Vergleichsexperiment (Schema 18) mit *p*-Benzochinon **39** und *in situ* erzeugtem Siloxydien **36** zeigte, daß auch hier der Reagenzienüberschuß die Diels-Alder-Reaktion zugunsten der Bildung von silyliertem Hydrochinon **40** zurückdrängt.

Diese Ergebnisse machten es notwendig einem zweiten Synthesekonzept zu folgen. Es hatte sich gezeigt, daß das carbocyclische Siloxydien **36** nicht *in situ* eingesetzt werden darf, sondern vorher isoliert werden muß, um eine Diels-Alder-Reaktion zu ermöglichen. Zunächst wurde als Vergleichsexperiment (Schema 19) das aufgereinigte Dien **36** mit *p*-Benzochinon **39** bei RT umgesetzt. Dabei konnte diesmal das enolisierte Cycloadditionsprodukt **41** isoliert werden. Die sehr geringe Ausbeute läßt sich u. a. darüber erklären, daß sich die TMS-Gruppe am

Siloxydien **36** als sehr labil erwies, und dieses somit leicht in die Ausgangsverbindung **35** zerfiel.

Schema 19

Aus diesem Grund wurde im folgenden mit dem TBDMS-geschützten Siloxydien **42** (Schema 20) gearbeitet, welches ebenso leicht darstellbar und zusätzlich deutlich stabiler war.

Schema 20

Zunächst wurde das Siloxydien **42** wiederum mit dem *p*-Benzochinonaddukt **37** bei RT unter Normaldruck umgesetzt, was aber auch nach 6 d zu keinem Cyclisierungsprodukt führte. Die Anwendung von 14 kbar Hochdruck ermöglichte hingegen innerhalb nur 2 d laut DC den vollständigen Umsatz von Edukt **37** (Schema 21).

Allerdings konnte lediglich ein nicht trennbares Adduktgemisch **43/44** im Verhältnis 2:1 isoliert werden. Da bereits in früheren Studien²⁰ mit dem *p*-Benzochinonaddukt **37** Regioselektivitätsprobleme bei der α -endo-Addition unsymmetrischer, offenkettiger Diene auftraten, liegen hier vermutlich auch unter einer α -endo-Addition gebildete Regioisomere **43/44** vor.

Dieses Ergebnis zeigte, daß mit dem p-Benzochinonaddukt **37** auch unter Einsatz von sterisch anspruchsvolleren Dienen wie dem carbocyclischen Siloxydien **42** keine vollständig regioselekive Anellierung möglich ist. Das bisher²⁰ beobachtete 1:1-Regioisomerenverhältnis konnte lediglich auf 2:1 verbessert werden. Das sterische Lenkungsvermögen des Diengrundgerüstes **2b** ist also für regioselektive Cyclisierungen an dieser Adduktstufe nicht mehr ausreichend. Um einheitliche Produkte generieren zu können, bedarf es zusätzlich einer elektronischen Lenkung durch die eingeführten Strukturelemente.

Im folgenden sollte also hauptsächlich das Potential von Addukten untersucht werden, die diesen Anforderungen genügen. Zunächst wurde versucht, das Monoketaladdukt **10**, welches sein elektronisches Lenkungsvermögen bereits unter Beweis gestellt hatte (s. Abschnitt 3.1.2.1), mit dem Siloxydien **42** umzusetzen. Es erwies sich allerdings auch nach 21 d bei 14 kbar als vollständig inert (Schema 22).

Schema 22

Daraufhin wurde auf das reaktivere Cyclopentenonaddukt²⁰ **45** zurückgegriffen. Nach nur 2 d bei 14 kbar wurde das Siloxydien **42** zu 91% selektiv addiert (Schema 23). Das isolierte, TBDMS-geschütze Addukt **46** wurde im folgenden unter Verwendung von TBAF zu 84% zu Addukt **47** entschützt. Als Nebenprodukt bildete sich mit 8% das Diastereomer **48**. Setzt man hingegen zur Hydrolyse des Silylenolethers Amberlyst 15 ein, so erhält man das trennbare Diastereomerengemisch **47/48** im Verhältnis 1:1.

Bezüglich der Selektivität von Addition und Entschützung und somit der Stereochemie der Addukte **46/47/48** läßt sich nur die Vermutung aussprechen, daß wie in allen bisher durchgeführten sowie im folgenden noch beschriebenen Additionen auch hier eine α -endo-Addition stattgefunden hat. Eine spektroskopische bzw. röntgenkristallographische Aufklärung der Konfiguration war leider nicht möglich.

Im Anschluß wurde die Retroreaktion an Addukt **47** untersucht (Schema 24). Im Kugelrohr der Pyrolyseapparatur konnte das Addukt **47** in kurzer Zeit bereits bei einer Temperatur von nur 170°C verdampft und gespalten werden, wobei das relativ schwerflüchtige Retroprodukt als gelbes Öl im Pyrolsekolben verblieb. Es stellte sich heraus, daß die Retrospaltung an der gewünschten Stelle im Molekül stattfand, d.h. das Hydrindandien **2b** konnte nahezu quantitativ aus der Kühlfalle, die hinter das eigentliche, 350°C heiße Pyrolyserohr geschaltet war, isoliert werden.

Allerdings zeigte das ¹H-NMR, daß das zu 86% isolierte, gelbe Öl neben dem gewünschten *cis*-verknüpften Cyclohexenon **49** mit dem *trans*-verknüpften Cyclohexenon **50**, einem Doppelbindungsisomer **51** und einer Enolform **52** des Retroprodukts im Verhältnis 1 : 0.1 : 0.15 : 0.1 verunreinigt war. Auch eine erneute Aufreinigung lieferte wieder nur ein Produkt-gemisch, so daß das erwünschte Retroprodukt **49** nicht als stabil angesehen werden kann.

Die Signale im ¹H-NMR ließen sich mit Hilfe eines H,H-cosys den einzelnen Verbindungen zuordnen. Die *cis*- bzw. *trans*-Verknüpfung wurde an Hand der Kopplungskonstanten im ¹H-NMR aufgeklärt. Bei dem Doppelbindungsisomer **51** und bei dem Enol **52** handelt es sich um Vermutungen resultierend aus der Interpretation von ¹H-NMR und IR (Abbildung 6).

An dieser Stelle wurde erstmalig beobachtet, daß das stark CH-acide Zentrum im Retroprodukt Probleme in Form von Enolisierung und daraus hervorgehender *cis/trans-* bzw. Doppelbindungs-Isomerisierung bereitet. Am Addukt wurde diese Isomerisierungsneigung noch nicht beobachtet. Erst die Abspaltung des Hydrindandiens **2b** acidifiziert das zur 5-Ring-Carbonylfunktion α -ständige Zentrum zusätzlich durch die vinyloge Position zur Carbonylgruppe des Cyclohexenons. Diese Problematik sowie ein geeigneter Ausweg werden eingehend in Abschnitt 3.4 beschrieben.
Abbildung 6

¹H-NMR (ppm):

6.06 (H _a , dd,	6.1 (H _a , ddd,	6.79 (H _a , ddd,	6.25 (H _a , d,
J = 2.4/10 Hz)	J = 1/3/10 Hz)	$J^{(ab/ac/ax)} = 5/3/3 \text{ Hz})$	J = 10 Hz)
6.88 (H _b , dd,	6.71 (H _b , ddd,		6.43 (H _b , dd,
J = 5/10 Hz)	J = 1/3.5/10 Hz)		J = 1.6/10 Hz)
3.33 (H _c , ddd,			
J = 2.5/5/8 Hz)			

3.2 Bildung von Carbocyclen mit Hilfe von heterocyclischen Dienen

Nachdem gezeigt werden konnte, daß das Cyclopentenonaddukt **45** über die Addition eines carbocyclischen Diens in einem Schritt um zwei Ringsysteme erweiterbar ist, sollte nun das Augenmerk auf die lineare Anellierung heterocyclischer Diene gerichtet werden. Ziel dieses Synthesekonzepts war es, einen Carbocyclus mit Hilfe eines Heterocyclus am eingesetzten Dien aufzubauen. Dabei sollte von der Donorkapazität des Heteroatoms profitiert werden, d.h. es galt die Reaktivität als auch die Selektivität der Cyclisierung positiv zu beeinflussen.

Außerdem sollte die Eigenschaft des in das Addukt hineingebrachten Heterocyclus als Stellvertreter von Funktionalität genutzt werden. Das bedeutet, daß das Addukt um eine "verkappte" Funktionsgruppe bereichert werden sollte, die es über anschließende Transformationen am Addukt oder Retroprodukt freizusetzen galt.

3.2.1 Auswahl und Synthese der Diene

Als geeignete Diene wurden die aus den korrespondierenden Lactamen **I** synthetisierbaren N-Heterocyclen³⁴ **IV** ausgewählt (Abbildung 7).

Abbildung 7

Von *Nicolaou*³⁴ wurde die Synthese einer Bandbreite dieser N-Heterocyclen **IV** beschrieben. Ausgehend von den N-Phenylcarbamat- oder N-Boc-geschützten³⁵ Lactamen **II** unterschiedlicher Ringgröße stellte man zunächst die korrespondierenden Enolphosphonate **III** dar und kuppelte diese Pd-katalysiert unter *Stille*³⁶-Bedingungen mit Tributylvinylzinn.

Für die nachfolgenden Cycloadditionsversuche sollten als kleine Auswahl die 5-, 6- und 7-Ring-Diene **53/54/55** synthetisiert werden. Die Darstellung der 6- und 7-Ring-Diene **54** und **55** verlief glatt und in guten Ausbeuten (Schema 25).

Schema 25

a: 1.1 eq BuLi; 1.1 eq PhCO₂Cl; abs. THF; 6 h; -78°C

b: 1.5 eq (PhO)₂P(O)Cl; 1.2 eq KHMDS; abs. THF; 3 h; -78°C

c: 1.5 eq Bu₃Sn-CH=CH₂; 2 eq LiCl; 0.02 eq Pd(PPh₃)₄; abs. THF; 8 h; reflux

Allerdings bereitete die Synthese des 5-Ring-Diens auf der Stufe des Enolphosphonats **III** große Probleme, da sich dieses als sehr instabil erwies. So war zur Aufarbeitung eine schnelle Säulenfiltration notwendig, und auch bei -20°C unter Argon zerfiel die Verbindung nach max. 2 Tagen. Auch unter den von *Nicolaou* beschriebenen³⁴ *Stille*-Bedingungen war das Enolphosphonat nicht stabil und somit für die Kupplung nicht geeignet.

Eine daraufhin durchgeführte Literaturrecherche³⁷⁻⁴² ergab, daß mehrere Maßnahmen notwendig sind, um das γ -Butyrolactam I in ein kupplungsfähiges Enolat zu überführen. Die Schutzgruppe³⁷ muß stark elektronenziehend sein, um eine Kupplung zu erleichtern. Also wurde Phenylcarbamat an Stelle von Boc eingesetzt. Weiterhin ist als Fluchtgruppe³⁸ das Phosphonat im Vergleich zum Triflat bei 5-Ringen sinnvoll, um dem Enolat eine höhere Stabilität zu verleihen. Die trotz allem bleibende thermische Instabilität³⁹ der 5-Ring-Enolate im Vergleich zu anderen Ringgrößen kann durch einen α -Ethoxy-substituenten⁴⁰ etwas verringert werden. Allerdings sind weiterhin sehr milde Kupplungs-bedingungen⁴¹ unter Verwendung von Katalysatoren⁴², die auch bei RT gute Ergebnisse liefern, notwendig.

Daraufhin wurde beschlossen, die anschließenden Cycloadditionsversuche auf die leicht und in guten Ausbeuten generierbaren 6- und 7-Ring-Diene **54/55** zu beschränken.

3.2.2 Cycloadditionen und Retro-Diels-Alder-Reaktionen

Von $Nicolaou^{34}$ wurde als Anwendungsbeispiel dieser heterocyclischen Diene **IV** die Diels-Alder-Reaktion des 8-Ring-Diens mit *p*-Benzochinon aufgeführt, welche unter Erhitzen in Toluol in 24 h mit guten Ausbeuten verläuft.

Aufgrund dieses vielversprechenden Ergebnisses sollte nun das Additionsverhalten des 6- und 7-Ring-Diens 54/55 an das *p*-Benzochinonaddukt 37, das Monoketaladdukt 10 sowie das Cyclopentenonaddukt 45 untersucht werden.

3.2.2.1 Umsetzungen mit dem Monoketaladdukt und dem Benzochinonaddukt

Zunächst wurde versucht, das Monoketaladdukt **10** mit den Dienen **54/55** umzusetzen. Es erwies sich allerdings auch nach 21 d bei 14 kbar als vollständig inert (Schema 26).

Diese mangelnde Reaktivität des Monoketaladdukts **10** wurde bereits bei den Cycloadditionsversuchen mit dem carbocyclischen Siloxydien **42** festgestellt (s. Abschnitt 3.1.3: Schema 22). Das Addukt **10** scheint also trotz seines guten elektronischen Lenkungsvermögens und der hohen Ausbeuten bei den Additionen von acyclischen, unsymmetrischen Dienen (s. Abschnitt 1.5 und 3.1.2.1), für Diels-Alder-Cycloadditionen mit komplexeren, cyclischen Dienen nicht geeignet zu sein.

Daraufhin wurde das *p*-Benzochinonaddukt **37** eingesetzt, um zu untersuchen, ob auch hier die in Abschnitt 3.1.3 beschriebene Regioselektivitätsproblematik, die bisher bei der Addition acyclischer als auch cyclischer Diene beobachtet wurde, auftritt.

Zunächst wurde das Addukt **37** mit dem 6-Ring-Dien **54** in Methylenchlorid für 7 d einem Druck von 14 kbar ausgesetzt (Schema 27).

Als Hauptprodukte wurden zu 24% Addukt **56** sowie dessen Doppelbindungsisomer **57** zu 53% isoliert. Weiterhin konnten 10% Nebenprodukt nachgewiesen werden, wobei es sich vermutlich um das Regioisomer **58** handelt. Es liegt somit ein Regioisomerenverhältnis von ca. 8:1 vor. Zur Verbesserung der Regioselektivität wurde ein weiterer Versuch bei einem geringeren Druck von 6.5 kbar durchgeführt. Allerdings konnte hier nach 14 d bei einem Umsatz von nur 50% keine höhere Regioselektivität festgestellt werden.

Die Regio- und Stereochemie von Addukt **56** konnte mit Hilfe eines H,H-cosys sowie eines NOE-Experimentes (Abbildung 8) bewiesen werden. Es hat wie erwartet eine α -endo-Addition stattgefunden, wobei sich hinsichtlich der Regiochemie unter sterischer Lenkung der Heterocyclus von der dem Diengrundgerüst abgewandten Seite genähert hat.

Abbildung 8

Die Isomerisierung der trisubstituierten Doppelbindung in Addukt **56** zur tetrasubstituierten Doppelbindung von Addukt **57** wurde zum einen bei der Verwendung von Methylenchlorid als Lösungsmittel bei der Addition bzw. von deuteriertem Chloroform bei den NMR-Messungen und zum anderen bei der säulenchromatographischen Aufreinigung mit Kieselgel beobachtet. Diese Isomerisierung der Enamiddoppelbindung läuft somit relativ leicht unter Protonenkatalyse ab. Daher wurde im folgenden ein Anellierungsversuch in abs. Toluol als Lösungsmittel unternommen. Nach 28 d bei 14 kbar war die Umsetzung noch nicht vollständig, so daß das Edukt **37** zu 16% reisoliert wurde. Weiterhin erhielt man das Addukt **56** zu 58% sowie 17% an Regioisomer **58** (Schema 28).

Schema 28

Um eine anschließende Isomerisierung zu vermeiden, wurde die Säulenchromatographie relativ schnell durchgeführt und die NMR-Spektroskopie in CD₂Cl₂ vorgenommen. Dieser Versuch zeigte, daß unter entsprechenden Vorsichtsmaßnahmen eine Doppelbindungs-isomerisierung vermeidbar ist. Allerdings ist in dem unpolaren Lösungsmittel Toluol ein deutlicher Abfall der Reaktivität zu beobachten, und auch die Regioselektivität ist von vormals 8:1 auf ca. 3:1 herabgesetzt.

Zusammenfassend läßt sich zur Regioselektivitätsproblematik die Aussage treffen, daß das alleinige sterische Lenkungsvermögen des *p*-Benzochinonaddukts **37** nicht ausreichend ist. Bei den Anellierungen von acyclischen Dienen²⁰ traten bisher Regioisomerengemische im Verhältnis 1:1 auf. Mit dem carbocyclischen Siloxydien **42** konnte ein Isomerenverhältnis von 2:1 erzielt werden (s. Abschnitt 3.1.3). Die Addition des heterocylischen Diens **54** lieferte je nach Lösungsmittel 3:1- bzw. 8:1-Regioisomeren-gemische. Eine Verbesserung der Regioselektivität kann also über die vom Dien mitgebrachten Strukturelemente erzielt werden, allerdings konnte keine 100% ige Lenkung der Regiochemie erreicht werden.

Im Anschluß an die Anellierungsversuche galt es, die Retroreaktion zur Generierung polycyclischer Cyclohexenone zu untersuchen. Daher wurde Addukt **56** zunächst zur Spaltung des Silylenolethers mit Camphersulfonsäure behandelt und unter Doppelbindungsisomerisierung quantitativ in Addukt **59** überführt. Die anschließend durchgeführte Retroreaktion lieferte zu 71% das Retroprodukt **60** (Schema 29) als rotes Öl.

Zahlreiche spektroskopische Untersuchungen (IR, H,H-cosy, H,D-Austausch, HMBC, HMQC) zeigten, daß es sich hierbei um ein achirales Hydrochinonderivat handelt, und somit bei dieser Retrospaltung alle Chiralitätszentren verloren gingen. Unter den thermischen Retrobedingungen hat eine Enolisierung sowie eine Doppelbindungsisomerisierung zum aromatischen System **60** stattgefunden. Wie bereits in Abschnitt 3.1.3 beschrieben hat das durch die Retroreaktion entstandene stark CH-acide Zentrum erneut Probleme in Form von Enolisierung und Doppelbindungsisomerisierung bereitet. In diesem Fall wurde jedoch kein Produktgemisch isoliert, sondern einheitlich das stabile, aromatische Produkt **60**.

Die Versuche mit dem *p*-Benzochinonaddukt **37** haben erneut die Probleme der Regioselektivität der Cycloaddition bzw. der Stabilität der Cyclohexenon-Retroprodukte aufgezeigt. In Abschnitt 3.4 wird ein Ausweg aus beiden Schwierigkeiten beschrieben.

3.2.2.2 Umsetzung des 6-Ring-Diens mit dem Cyclopentenonaddukt

Da bereits die Anellierung des carbocyclischen Diens **42** an das Cyclopentenonaddukt **45** hoch regio- und stereoselektiv mit guter Ausbeute verlief, sollte nun auch das heterocyclische Dien **54** an dieses Addukt addiert werden. Zunächst wurden beide Komponenten in Methylenchlorid gelöst und 5 d einem Druck von 14 kbar ausgesetzt (Schema 30), wodurch zu 78% das Cycloadditionsprodukt **61** entstand.

Erhöht sich jedoch die notwendige Reaktionszeit in Methylenchlorid unter Hochdruckbedingungen auf 7 d bzw. 10 d, so findet wieder die bereits am Benzochinon-Anellierungsprodukt **56** beobachtete Isomerisierung der Enamid-Doppelbindung zu Verbindung **62** (Schema 31) statt. Nach 7 d unter Hochdruck liegt das Verhältnis von **61** zu **62** bei 2:1, nach 10 d Reaktionsdauer bei 1:2. Ein Wechsel des Lösungsmittels zu einem aprotischen DMSO/Ether-Gemisch führte nach 10 d bei 14 kbar zu einem Umsatz von lediglich 17%. Das Isomer **62** konnte jedoch nicht nachgewiesen werden.

a: 7 d; 14 kbar; CH₂Cl₂; **61**:**62** 2:1 c: 10 d; 14 kbar; DMSO/Et₂O; **61** e: Pyrolyse

b: 10 d; 14 kbar; CH₂Cl₂; **61**:**62**1:2 d: **61**; 2 d; CHCl₃; 92% **62**

Diese Isomerisierung der Doppelbindung findet weiterhin zu 92% statt, wenn Addukt **61** in Chloroform bei RT für 2 Tage stehengelassen wird. Als Lösungsmitel für die Spektroskopie sollte somit nicht das in Spuren acide CDCl₃ sondern CD_2Cl_2 verwendet werden. Die Doppelbindungsumlagerung läuft also auch hier leicht unter Protonenkatalyse ab und zusätzlich thermisch bei der im folgenden beschriebenen Retroreaktion.

Mit Hilfe von H,H-cosy-Spektren und von NOE-Experimenten (Abbildung 9) an den Addukten **61** und **62** konnte die Regiochemie aufgeklärt werden. Die Anellierung verlief in der nach elektronischer und sterischer Lenkung zu erwartenden Richtung. Zur Stereochemie erlaubte die NOE-Messung an Addukt **61** lediglich die Aussage, daß ein α -Angriff stattgefunden hatte. Eine Röntgenstrukturanalyse war nicht möglich, da sich auch bei den Versuchen zur Kristallzüchtung die Doppelbindung umlagerte.

Weil das Stereozentrum, welches über die *exo/endo*-Selektivität Auskunft geben könnte, durch die Isomerisierung der Doppelbindung verloren geht, kann auch das NOE-Experiment am Isomer **62** nur den α -Angriff aufklären. Da aber bei der vergleichbaren Addition von Dien **54** an das *p*-Benzochinonaddukt **37** ein α -*endo*-Angriff stattgefunden hat, und auch alle bisher durchgeführten Anellierungen auf dieser Adduktstufe α -*endo*-selektiv verliefen, wird auch in diesem Fall ein *endo*-Übergangszustand postuliert.

Abbildung 9

Im Anschluß an die Anellierungsversuche wurde die Retroreaktion zur Generierung polycyclischer Cyclohexenone untersucht (Schema 32). Zur Spaltung von Addukt **62** wurde die Substanz im Kugelrohr der Pyrolyseapparatur innerhalb von 10 min von RT auf 170 °C erhitzt und weitere 5 min bei dieser Temperatur belassen. Das Addukt wurde so verdampft und bereits bei dieser relativ geringen Temperatur retrogespalten. Das Hydrindandien **2b** konnte aus der Kühfalle hinter dem eigentlichen 350°C-heißem Pyrolyserohr isoliert werden. Das Retroprodukt verblieb als gelbes Öl im Kugelrohr mit einer Ausbeute von 85%.

Schema 32

Diese Schwerflüchtigkeit der Retroverbindungen wurde bereits bei der carbocyclischen Substanz **49** (s. Abschnitt 3.1.3: Lineare Anellierung carbocyclischer Diene) als auch bei dem Hydrochinonderivat **59** (s. Schema 29) beobachtet. Ab einer bestimmten Größe der polycyclischen Verbindungen reicht das Vakuum von ca. 10^{-2} mbar also nicht mehr aus, um die Retroprodukte in die Kühlfalle zu ziehen. Diese Beobachtung machte es notwendig, die Pyrolysezeit auf das unbedingt notwendige Maß zu beschränken, um die Retroverbindungen nicht unnötig thermisch zu belasten. Bemerkenswert ist jedoch, daß bereits in einem relativ niedrigen Temperaturbereich von 170-200°C die Retrospaltung dieser polycylischen Verbindungen erfolgt. Ob bei einem geringeren Anellierungsgrad der in früheren Studien synthetisierten Addukte die Temperatur des Pyrolyserohrs von 350 °C tatsächlich notwendig war oder ob auch hier die Retroreaktion bereits im Kugelrohr einsetzte, wurde an dieser Stelle nicht geklärt.

Die spektroskopischen Untersuchungen des Retroprodukts zeigten, daß es nicht als Reinsubstanz isolierbar war, wie die Gelbfärbung der öligen Substanz bereits vermuten ließ. Es handelte sich vielmehr um ein nicht trennbares 2:1-Gemisch aus dem erwünschten Cyclohexenon **63** und dem isomerisierten Cyclopentenon **64** (s. Schema 32). Darüber hinaus waren im ¹H-NMR weitere, nicht abtrennbare Verunreinigungen im aromatischen sowie aliphatischen Bereich auszumachen. Diese Isomerisierung der zur Ketogruppe α,β -ständigen Doppelbindung wurde auch bei dem carbocyclischen Retroprodukt **49** (s. Abb. 6: Isomer **51**) beobachtet. Eine Enolform oder ein *trans*-Produkt konnten in diesem Fall jedoch nicht nachgewiesen werden. Eine erneute Säulenchromatographie lieferte kein besseres Ergebnis, da sich die zunächst farblose Substanz sehr schnell wieder infolge von Enolisierungsprozessen gelb färbte.

Die Pyrolyse von Addukt **61** lieferte bei den oben beschriebenen Bedingungen unter Isomerisierung der Enamid-Doppelbindung ebenfalls das Retroproduktgemisch **63/64** zu 96% (Schema 33).

Die Umlagerung findet also nicht nur protonenkatalysiert, sondern auch thermisch statt und zwar bereits auf der Adduktstufe, denn bei sehr kurzer Retroreaktionszeit von nur 6 min in dem Temperaturintervall von RT bis 170 °C entsteht laut DC als Zwischenprodukt zunächst das Isomer **62**, welches nach weiteren 5 min bei 170 °C retrogespalten werden konnte.

3.2.2.3 Umsetzung des 7-Ring-Diens mit dem Cyclopentenonaddukt

Im Anschluß an die Anellierungen mit dem 6-Ring-Dien **54** wurde die Umsetzung des Cyclopentenonaddukts **45** mit dem 7-Ring-Dien **55** untersucht. Nach 22 d bei 14 kbar in Methylenchlorid konnte zu 74% ein laut DC einheitliches Addukt isoliert werden, das sich vermutlich wieder über eine α -endo-Addition (s. Schema 34: **65**) gebildet hatte. Auffällig bei dieser Addition im Vergleich zur 6-Ring-Anellierung (s. Abschnitt 3.2.2.2) ist, daß eine wesentlich längere Reaktionszeit notwendig ist, und daß bei der Verwendung von Methylen-chlorid als Lösungsmittel keine Doppelbindungsisomerisierung zu beobachten war.

Schema 34

Allerdings zeigte das ¹H-NMR in einigen Bereichen eine Signalverbreiterung bzw.

-aufspaltung (Abbildung 10). Diese Signalaufspaltung im Verhältnis von 0.7:0.3 tritt an dem Brückenkopfatom H_a , bei der angulären Methylgruppe, an dem Proton H_b der olefinischen Brücke, beim Enamidproton H_c und an der NCH₂-Gruppe auf.

Das Spektrum zeigt also nicht bei allen Signalen eine klare Aufspaltung, so daß davon ausgegangen werden kann, daß kein *exo/endo*-Diastereomerengemisch vorliegt. Auch ist ein β -Angriff auf Grund der Konformation des Cyclopentenonaddukts **45** sterisch stark gehindert und somit nahezu auszuschließen. Ein Regioisomer, welches sich unter elektronischer sowie sterischer Hinderung bilden müßte, ist ebenfalls anhand der Spektren nicht identifizierbar. Da kein Hinweis auf eine Isomerisierung der Enamid-Doppelbindung zu finden war, und laut IR auch kein Enol vorliegt, kann man davon ausgehen, daß die Verbreiterung bzw. Aufspaltung der ¹H-NMR-Signale von einer Rotation der Phenylcarbamat-Schutzgruppe um die C-N-Bindung bzw. von einer Inversion am Stickstoff herrührt. Es kommt so zu unterschiedlichen Anisotropie-Effekten des Aromaten bzw. der Carbonylfunktion der Schutz-gruppe auf das Addukt **65**, so daß die Signalaufspaltungen an den in Abbildung 10 beschriebenen Positionen am Modell nachvollziehbar sind.

Abbildung 10

Im Anschluß an diese Cycloaddition wurde die thermische Retrospaltung durchgeführt (Schema 35). Zu 97% konnte ein auch hier laut DC einheitliches Produkt **66** entsprechender Masse (H-MS) isoliert werden.

Allerdings vereinfachte sich die ¹H-NMR-Situation nicht, da auch hier vermutlich das Isomerisierungs- sowie Enolisierungsproblem (s. Abschnitt 3.2.2.2) hinzukam, denn im IR war eine scharfe OH-Bande zu erkennen.

3.2.2.4 Folgereaktionen am Addukt bzw. Retroprodukt

Der über die im Abschnitt 3.2.2 beschriebenen Cycloadditionen in die Addukte eingefügte Heterocyclus ist im folgenden als ein Stellvertreter von Funktionalität anzusehen. Diese "verkappte" Funktionsgruppe galt es durch weitere Transformationen freizusetzen bzw. zu nutzen. Dabei bieten sich zwei Synthesekonzepte an (Schema 36).

Zum einen (Weg A) sollten über eine Reduktion der Enamiddoppelbindung polycyclische Verbindungen, die cyclische Amine unterschiedlicher Ringgröße enthalten, zugänglich sein. Zum anderen (Weg B) würde die Hydrolyse des Enamids ein Cyclohexanon erzeugen mit einer α -ständigen Alkylamin-Seitenkette unterschiedlicher Länge. Bei diesen beiden Konzepten war weiterhin von Interesse, ob die Transformationen sowohl am Addukt als auch am

korrespondierenden Retroprodukt durchführbar sind und ob die transformierten Addukte erfolgreich einer Retroreaktion unterzogen werden können.

Zur Durchführung dieser Folgereaktionen wurde das isomerisierte 6-Ring-Cyclopentenon-Cyclisierungsprodukt **62** ausgewählt. Begonnen wurde mit Versuchen zum Synthesekonzept A (Schema 37). Zunächst wurde das Addukt **62** mit TFA behandelt, um das entsprechende Iminium-Salz zu erzeugen und dieses mit Natriumcyanoborhydrid⁴³ zu reduzieren. Da sich das Enamid **62** unter diesen Bedingungen als inert erwies, wurde im folgenden auf eine Reduktion mit einem H⁺/Natriumborhydrid-System⁴⁴ zurückgegriffen. Dabei führte der Einsatz von TFA als Säure laut DC zwar zu zwei neuen Produkten. Die Spektroskopie zeigte jedoch, daß es sich nicht um Addukte handelte. Daraufhin wurde die vergleichsweise milde Essigsäure in Kombination mit NaBH₄ eingesetzt. Unter diesen Bedingungen zeigte das Addukt **62** keine Reaktion.

Schema 37

a: TFA/NaBH₃CN; abs. THF; RT b: TFA/NaBH₄; CH₂Cl₂/CH₃CN; RT c: AcOH/NaBH₄; THF; RT

Da das Reduktionskonzept A nicht erfolgversprechend erschien, wurde im weiteren Verlauf die Durchführbarkeit des Hydrolysekonzepts B untersucht (Schema 38). Das in Dioxan gelöste Addukt **62** konnte mit 2N wäßriger HCl innerhalb von 4 d bei RT zu 50% in das Hydrolyseprodukt **67** überführt werden. Daneben wurden 37% des Edukts **62** zurückgewonnen, so daß die umsatzbereinigte Ausbeute an **67** bei 79% liegt. Bezüglich der Stereochemie der Verbindung **67** läßt sich auf Grund der einheitlichen Signale im ¹H-NMR die Aussage treffen, daß die Hydrolyse sterisch einheitlich verlief. Das CH-acide Zentrum neben der erzeugten Ketofunktion scheint unter diesen Bedingungen stabil zu sein und nicht zu equilibrieren. Die absolute Konfiguration dieses neu gewonnen Chiralitätszentrums konnte

nicht bestimmt werden, da eine Röntgenstrukturanalyse nicht möglich war, und das entsprechende zur Ketogruppe α -ständige Proton über ein H,H-cosy für ein anschließendes NOE-Experiment nicht zuzuordnen war.

Danach wurde diese Hydrolysemethode auf das Retroprodukt **63** angewendet (Schema 38). Nach 6 h bei RT konnte laut DC nur eine Zersetzung in 3-4 Substanzen nachgewiesen werden. Das Edukt hatte vollständig abreagiert.

Da eine Hydrolyse des Retroproduktes 63 zu Verbindung 68 scheinbar nicht möglich ist, sollte nun das hydrolysierte Addukt 67 über eine Retroreaktion in das Zielmolekül 68 überführt werden (Schema 38). Aber auch dieser Versuch schlug unter Zersetzung von Addukt 67 fehl. Vermutlich ist neben der Gefahr einer Enolisierung und Doppelbindungs-isomerisierung auch das zur Carbonylgruppe α -ständige CH-Zentrum unter thermischen Bedingungen nicht konfigurationsstabil.

3.3 Carbocyclen-Synthese mit Indolacrylsäurederivaten

In den in Abschnitt 3.2 vorgestellten Anellierungen heterocyclischer Diene stand nicht der eingeführte Heterocyclus als solcher im Vordergrund, sondern sein Potential als Lieferant von Elektronendichte und als Stellvertreter von Funktionalität. Im Anschluß sollte weiterhin von der Donorkapazität des Stickstoffs als Bestandteil des Butadiens profitiert werden, aber zusätzlich war nun auch der entstehende Heterocyclus von Bedeutung. Besonders interessant erschien dabei die Möglichkeit, über eine lineare Anellierung einen Carbocyclus aufzubauen, an den ein Indol gebunden ist, und so Grundbausteine für die Synthese von Terpen-alkaloiden⁴⁵ zu erzeugen.

Um dieses Synthesekonzept zu erfüllen, fiel die Wahl auf Derivate der 3-(3-Indolyl-) acrylsäure (Abbildung 11).

Abbildung 11

Zunächst sollte untersucht werden, ob die Anellierung direkt mit der freien Säure **69** möglich ist, oder ob es gegebenenfalls notwendig ist, den entsprechenden Methylester **70** einzusetzen, welcher über die Veresterung der Acrylsäure **69** mit Diazomethan bei RT leicht zugänglich war (Schema 39).

Weiterhin wurde vermutet, daß der basische Indolstickstoff Nebenreaktionen an den $\alpha_{\lambda}\beta_{-}$ ungesättigten Carbonylfunktionen der Addukte hervorrufen könnte. Daher sollte diese Position mit einer Schutzgruppe versehen werden. Die Umsetzung des Methylesters **70** mit DMAP und Acetanhydrid⁴⁶ lieferte bei RT in guten Ausbeuten den geschützten 3-(3-Indolyl-) acrylsäuremethylester **71** (Schema 40).

Schema 40

Im Rahmen der Cycloadditionsversuche wurde zunächst versucht, die Indolylacrylsäure **69** bzw. den korrespondierenden Methylester **70** an das Monoketaladdukt **10** zu addieren (Schema 41). Wie in den vorherigen Anellierungsversuchen mit komplexeren carbo- bzw. heterocyclischen Dienen (s. Abschnitt 3.1.3 und 3.2) konnte auch hier auf Grund der mangelnden Reaktivität des Addukts **10** kein Umsatz registriert werden.

Schema 41

Auch aus den Diels-Alder-Cycloadditionsversuchen am *p*-Benzochinonaddukt **37** ließ sich kein einheitliches Produkt isolieren (Schema 42). Vermutlich liefen neben der Bildung von Regioisomeren weitere Nebenreaktionen ab, z.B. eine Michael-Addition des Indolstickstoffs an das Addukt **37**.

Daraufhin wurden die Anellierungen der 3-(3-Indolyl-)acrylsäurederivate **69/70/71** an das Cyclopentenonaddukt **45** untersucht (Schema 43 und 44).

Aus einer Lösung der Indolylacrylsäure 69 und des Cyclopentenonaddukts 45 in einem $CH_2Cl_2/DMSO$ -Gemisch konnte nach 7 d bei 14 kbar das Cyclisierungsprodukt 72 in 40%

Ausbeute isoliert werden (Schema 43). Vermutlich fand auch hier wieder eine α -endo-Addition statt. Die geringe Ausbeute von nur 40% an Produkt 72, die trotz vollständiger Abreaktion des Edukts 45 erhalten wurde, deutete darauf hin, daß durch die freie Säure 69 tatsächlich Nebenreaktionen auftraten. Außerdem war die säulenchromatographische Auf-reinigung des polaren Addukts 72 vermutlich mit einem Substanzverlust verbunden.

Der Wechsel zum Indolylacrylsäuremethylester **70** sollte diesbezüglich Abhilfe schaffen. Nach 14 d bei 14 kbar konnte das Dien **70** mit dem Cyclopentenonaddukt **45** in Methylen-chlorid zu 72% in das Addukt **73** überführt werden (Schema 43).

Im Vergleich zur Addition der freien Säure **69** konnte mit dem Methylester **70** eine wesentlich bessere Aubeute erzielt werden. Nebenreaktionen ließen sich also weitestgehend vermeiden. Allerdings war eine doppelt so lange Reaktionszeit notwendig. Das Dien **70** scheint auf Grund des höheren δ^+ -Charakters des Esters elektronenärmer und somit weniger reaktiv zu sein.

Eine Röntgenstrukturanalyse zeigte, daß das Produkt **73** unter α -endo-Addition entstanden war (Abbildung 12).

Abbildung 12

Daß auch die Addition der freien Säure 69 über einen α -endo-Übergangszustand verlief, ließ sich beweisen, indem das Addukt 72 mit Diazomethan bei RT in Ausbeute von 57% verestert wurde (Schema 43). Die spektroskopischen Untersuchungen ergaben, daß es sich bei dem Produkt der Veresterung um das α -endo-Addukt 73 handelte.

Zum Abschluß der Untersuchungen sollte das Cyclopentenonadddukt **45** mit dem geschützten Indolylacrylsäureester **71** umgesetzt werden. Nach 28 d bei 14 kbar konnte das Additionsprodukt **74** mit einer Ausbeute von 80% isoliert werden (Schema 44).

Schema 44

Dieses Ergebnis der Cycloaddition zeigte, daß auch hier die Gefahr von Nebenreaktionen gesenkt werden konnte. Trotz einer sehr langen Reaktionszeit wurde das gewünschte Produkt 74 in einer guten Ausbeute erhalten. Die geringere Reaktivität des Diens 71 ist mit der herabgesetzten Basizität bzw. Nucleophilie des geschützten Indolstickstoffs und der daraus resultierenden geringeren Elektronendichte des Diens zu erklären.

Bezüglich der Stereochemie des Addukts 74 kann auch hier von einer α -endo-Addition ausgegangen werden.

Das ¹H-NMR der Verbindung **74** zeigt eine Signalaufspaltung im Verhältnis von 2:1 für die CH₃-Gruppe der Acetylschutzgruppe und für das Proton H_a der olefinischen Brücke (Schema 44). Dies weißt darauf hin, daß ein 2:1-Rotamerengemisch bezüglich der C-N-Bindung des Acetamids vorliegt. Laut Modell erfährt je nach Lage der Schutzgruppe im Raum das Proton H_a der olefinischen Brücke einen anderen Anisotropie-Effekt durch die Carbonylfunktion des Acetylrests. Gleichzeitig steht die CH₃-Gruppe dieser Acetylgruppe entweder unter dem Anisotropieeinfluß der olefinischen Brücke oder des Indolsystems.

Im Anschluß an diese Cycloadditionen wurde die Retroreaktion anhand des Addukts **73** untersucht (Schema 45).

Das Addukt **73** wurde im Kugelrohr der Pyrolyseapparatur bei einem Vakuum von 10⁻² mbar innerhalb von 15 min von RT auf 200°C erhitzt, verdampft und retrogespalten. Das Hydrindandien **2b** konnte aus der Kühlfalle isoliert werden. Das schwerflüchtige Retroprodukt verblieb im Kugelrohr und wurde zu 71% als gelbes Öl isoliert. Diese Gelbfärbung der Substanz wies, wie bereits bei den anderen Retroreaktionen (s. Abschnitt 3.1.3 und 3.2) beobachtet, auf Enolisierungen und Isomerisierungen hin. Über das IR-Spektrum konnte der Verdacht auf Enolisierung bestätigt werden. Das ¹H-NMR zeigte, daß das Cyclohexenon **75** hauptsächlich als ein Enol **76** anfiel und zwar in einem **75/76**-Verhältnis von 1:3.3. Die genaue Struktur des Enols **76** konnte in diesem Zusammenhang nicht aufgeklärt werden.

3.4 Ausweg aus der Regioselektivitäts- und Enolisierungsproblematik

Bei den Cycloadditionen und Retroreaktionen, die sowohl in den Abschnitten 3.1.3, 3.2 und 3.3 dieser Arbeit als auch in früheren Arbeiten^{19/20} beschrieben wurden, ist es immer wieder zu Problemen der Reaktivität der Addukte, der Regioselektivität der Anellierungen und der Instabilität der Retroprodukte gekommen. Im folgenden soll diese Problematik zusammengefaßt und genau erläutert werden. Weiterhin werden verschiedene Auswege bzw. Lösungsansätze vorgestellt.

3.4.1 Beschreibung der Reaktivitäts- und Regioselektivitätsprobleme

Die bisher an dem Cylopentenonaddukt **45** und dem Monoketaladdukt **10** durchgeführten α endo-Cycloadditionen liefen unter elektronischer Lenkung des unsymmetrischen 2π -Systems vollständig regioselektiv ab (Schema 46).

Allerdings mußte festgestellt werden, daß sich das Monoketaladdukt **10** trotz seines guten elektronischen Lenkungsvermögens und der hohen Ausbeuten bei den Additionen von acyclischen, unsymmetrischen Dienen (s. Abschnitt 1.5 und 3.1.2.1) für Diels-Alder-Cyclo-additionen mit komplexeren, cyclischen Dienen (s. Abschnitt 3.1.3, 3.2 und 3.3) nicht eignet, da in diesen Fällen eine mangelnde Reaktivität vorliegt (Schema 47).

Schema 47

Als Ausweg aus diesem Mangel an Reaktivität bot sich das *p*-Benzochinonaddukt **37** für die Synthese von Decalinderivaten an. Allerdings zeigten alle bisherigen Cycloadditionen an diesem symmetrischen 2π -System eine mangelnde Regioselektivität (Schema 48).

Das alleinige sterische Lenkungsvermögen dieses Addukts ist also nicht ausreichend. Bei den Anellierungen von acyclischen Dienen traten bisher Regioisomerengemische im Verhältnis 1:1 auf. Mit dem carbocyclischen Siloxydien **42** und dem heterocyclischen Dien **54** lagen die Isomerenverhältnisse im Bereich von 2:1 bis 8:1. Um die Regioselektivität etwas zu verbessern, sind also Diene mit komplexeren Strukturelementen notwendig.

Zusammenfassend läßt sich sagen, daß es für die Synthese von Decalinderivaten eines reaktiveren Addukts bedarf, welches ein unsymmetrisches 2π -System aufweist, um die notwendige elektronische Lenkung der Cycloadditionen zu gewährleisten.

3.4.2 Beschreibung der cis-trans-Isomerisierung des Benzochinonaddukts

Als weiteres Problem trat bei der Synthese des *p*-Benzochinonaddukts **37** eine *cis-trans*-Isomerisierung auf. Neben dem über eine α -*exo*-Addition generierten *cis*-verknüpften Addukt **37** wurde das *trans*-verknüpfte Nebenprodukt **77** isoliert. Diese Isomerisierung läßt sich über eine Equilibrierung des zur Carbonylgruppe α -ständigen CH-aciden Zentrums erklären. Daß hier keine *exo/endo*-Problematik vorlag und welches der beiden aciden Zentren konfigurativ instabil ist, konnte anhand der vicinalen Kopplungskonstanten ³J in den ¹H-NMR-Spektren nachgewiesen werden. Die über die Karplus-Kurve ermittelten entsprechenden Diederwinkel ließen sich den Modellen der einzelnen Addukte zuordnen (Abbildung 13).

Abbildung 13

Unterstützt wurden diese Befunde durch Anisotropieeffekte der olefinischen Brücke, des Silylenolethers bzw. der Carbonylfunktionen auf die laut Modell in räumlicher Nähe befindlichen Protonen und den daraus resultierenden Hoch- bzw. Tieffeldverschiebungen.

Intensive Studien konnten zeigen, daß das Ausmaß der Isomerisierung von den Bedingungen abhängig ist, unter denen die Cycloadditionen durchgeführt werden (Schema 49). *E. Merten*¹⁹ hatte bereits ermittelt, daß eine Cycloaddition unter Hochdruck (6.5 kbar) zu einem Gemisch aus zwei Addukten führt, wobei nicht aufgeklärt wurde, ob es sich dabei um *exo/endo-* oder *cis/trans*-Diastereomere handelt. Daraufhin wurde die selektive α -*exo*-Addition des *p*-Benzochinons an das Siloxydien **8** in Methylenchlorid bei Normaldruck und RT innerhalb von 2 Tagen durchgeführt. Eine 0.025 molare Lösung an Siloxydien **8** in Methylenchlorid lieferte ein untrennbares *cis-trans*-Gemisch im Verhältnis 1:1. Aus einer höher konzentrierten Lösung von 0.1 mol/l konnte ein 2:1-cis:trans-Gemisch isoliert werden. Diese Isomerisierung wurde von *E. Merten*¹⁹ nicht beobachtet. Es muß davon ausgegangen werden, daß das hier verwendete Methylenchlorid Säurespuren enthält, und so eine protonenkatalysierte Equilibrierung stattfindet. Daher wurde das Lösungsmittel zu abs. Toluol gewechselt. Nach 2 d bei RT konnte quantitativ das *p*-Benzochinonaddukt **37** in einem *cis-trans*-Verhältnis von 20:1 isoliert werden.

Schema 49

37: *cis*-Verknüpfung **77:** *trans*-Verknüpfung

a: 6.5 kbar; CH_2Cl_2 b: 2 d, RT; 0.025 M 8 in abs. $CH_2Cl_2 \Longrightarrow 37:77$ 1:1 c: 2 d, RT; 0.1 M 8 in abs. $CH_2Cl_2 \Longrightarrow 37:77$ 2:1 d: 2 d, RT; abs. Toluol $\Longrightarrow 37:77$ 20:1

Aufgrund der Gefahr einer protonenkatalysierten Isomerisierung mußte auch der Spaltung des Silylenolethers⁴⁷ des *p*-Benzochinonaddukts **37** besondere Aufmerksamkeit geschenkt werden (Schema 50). Bei der Verwendung von Camphersulfonsäure und Methylenchlorid wurden je nach Reaktionszeit *cis-trans*-Gemische der Addukte **78** und **79** isoliert (Abbildung 14).

Abbildung 14

Es stellte sich heraus, daß in einer möglichst kurzen Reaktionszeit von 10 min mit CSA das *cis*-verknüpfte Addukt **78** ohne Isomerisierung quantitativ erhältlich ist. Auch mit Amberlyst 15⁴⁸ in Aceton konnte nach 10 min das Addukt **78** unter einfacher Aufarbeitung (Filtration) quantitativ isoliert werden. Die Spaltung des Silylenolethers mit TBAF⁴⁹ in Toluol führte nach 10 min bei RT lediglich zur Zersetzung.

Schema 50

a: CSA; CH₂Cl₂; 10 min; RT: 100% 78
b: Amberlyst 15; Aceton; 10 min; RT: 100% 78
c: TBAF; Toluol; 10 min; RT: Zersetzung

Dieses Isomerisierungsproblem machte es also notwendig, einige Vorsichtsmaßnahmen einzuhalten. Protische Lösungsmittel gilt es sowohl in der Darstellung als auch in der Spektroskopie zu vermeiden. Die Spaltung des Silylenolethers mit CSA muß in möglichst kurzer Zeit erfolgen, ebenso wie die säulenchromatographische Aufarbeitung. Im folgenden interessierte, ob die Instabilität der Konfiguration auch bei dem Monoketaladdukt **10** vorliegt (Schema 51). Es zeigte sich, daß weder bei der Cycloaddition des Monoketals **9** an das Siloxydien **8** unter 14 kbar Hochdruck in Methylenchlorid noch bei der Spaltung des Silylenolethers mit CSA in Methylenchlorid eine Isomerisierung beobachtet werden konnte. Auch nach 7 Tagen in Methylenchlorid unter Zusatz von CSA erwies sich das Addukt **10** als absolut konfigurationsstabil. Die Isomerisierungstendenz der Addukte scheint also je nach ihrer Konstitution stark zu variieren.

Schema 51

Aufgrund dieser Problematik der Konfigurationsinstabilität des Addukts **37** und der mangelnden Regioselektivität bei den Additionen war es notwendig, nach einem neuen konfigurationsstabilen, reaktiven und unsymmetrischen Cyclohexenon-Addukt Ausschau zu halten.

3.4.3 Beschreibung der Enolisierung und Isomerisierung der Retroprodukte

Neben den in den Abschnitten 3.4.1 und 3.4.2 beschriebenen Problemen der Reaktivität, Selektivität und Stabilität der Addukte bei den Diels-Alder-Cycloadditionen traten weiterhin Schwierigkeiten bei den anschließenden Retroreaktionen auf. Die Spaltung der in den Abschnitten 3.1.3 bis 3.3 aufgeführten Addukte konnte schnell und unter relativ geringer thermischer Belastung durchgeführt werden. Außerdem fand die Retro-Diels-Alder-Reaktion an der erwünschten Sollbruchstelle in den Addukten mit guten bis sehr guten Ausbeuten statt. Allerdings erwiesen sich die neben dem Hydrindandien **2b** isolierten Retroprodukte als Produktgemische aus verschiedenen Enolen, Aromatisierungsprodukten und *cis/trans-* bzw. Doppelbindungsisomeren. Betrachtet man die Grundstruktur dieser Retroprodukte, so ist allen ein vinyloges 1,3-Dicarbonylsystem gemeinsam (Abbildung 15). Das im Addukt zu einer Ketofunktion α ständige Zentrum wird im Retroprodukt zusätzlich durch seine vinyloge Stellung zum Cyclohexenon acidifiziert und verliert somit seine konfigurative Stabilität.

Abbildung 15

Die Retroprodukte weisen eine mehr oder weniger ausgeprägte Neigung zur Keto-Enol-Tautomerie auf. Das Ausmaß dieser Instabilität sowie die Richtung der Enolisierungen und Isomerisierungen scheinen von der Stereochemie der polycyclischen Cyclohexenone abhängig zu sein. Ein Vergleich mit den bisher^{19/20} erfolgreich durchgeführten Retro-reaktionen läßt vermuten, daß je komplexer die Verbindungen mit steigendem Anellierungs-grad werden, desto eher gibt die daraus resultierende Konformation Anlaß zu Keto-Enol-Prozessen. Interessant ist, daß viele der in früheren Arbeiten^{19/20} beschriebenen bi- bzw. tri-cyclischen Retroprodukte keine Probleme bezüglich ihrer Instabilität bereiteten. Fehlschläge bei den Retroreaktionen wurden häufig mit Spaltungen und Aromatisierungen in anderen Bereichen der Polycylen erklärt und nicht genauer untersucht. Daß eine generelle Gefahr der Instabilität durch die vinyloge 1,3-Dicarbonylgruppe besteht, wurde bisher in diesem Ausmaß nicht vermutet. Eine Übersicht über die stabilen sowie instabilen Retroprodukte ist in Abbildung 16 gegeben. Speziell der Vergleich von Verbindung **12a** mit dem korrespondierenden Cyclopentadienaddukt (s. instabile Retroprodukte: Aromatisierung²⁰) dokumentiert die entscheidende Rolle definierter starrer Konformationen.

Diese Problematik machte es ausgesprochen wichtig, nach einem Ausweg zu suchen, also nach einem neuen Addukt, aus dem über die Retro-Diels-Alder-Reaktion konstitutionell und konfigurativ stabile Cyclohexenon-Systeme gewonnen werden können.

Abbildung 16

Stabile Retroprodukte:

3.4.4 Synthese eines neuen elektonenarmen Cyclohexenonaddukts

OPh

Aufgrund der in den Abschnitten 3.4.1 bis 3.4.3 beschriebenen Probleme der mangelnden Reaktivität des Monketaladdukts **10**, der Konfigurationsinstabilität des *p*-Benzochinon-addukts **37** sowie dessen mangelnder Regioselektivität bei den Additionen und der Instabilität der Retroprodukte ist es notwendig, nach einem neuen konfigurativ stabilen, reaktiven und unsymmetrischen Cyclohexenon-Addukt zur Synthese von Decalinderivaten Ausschau zu halten, dessen Retroprodukte die notwendige Stabilität aufweisen.

Da sich das leicht darstellbare Monoketaladdukt **10** auch unter drastischen Bedingungen als konfigurativ stabil erwiesen hat, bot es sich an, ein Synthesekonzept ausgehend von diesem Addukt zu entwickeln (Schema 52). Dieses Konzept sah vor, die Cyclohexenoneinheit des TMS-geschützten Monoketaladdukts **80** zum Allylalkohol **81** zu reduzieren. Durch Spaltung des Silylenolethers und des Ketals sollte das Addukt **82** erzeugt werden.

Schema 52

Dieses elektonenarme, unsymmetrische 2π -System des Addukts **82** (Abbildung 17) sollte allen oben beschriebenen Anforderungen hinsichtlich der Reaktivität und Regio- bzw. Stereoselektivität der nachfolgenden Cyclisierungen genügen. Wobei im Vergleich zum Monoketal- bzw. Cyclopentenonaddukt **10/45** unter elektronischer Lenkung Cycloadditionsprodukte mit "umgekehrter" Regiochemie entstehen dürften. Auch sollte das bisher konfigurativ labile, CH-acide Zentrum in diesem Fall keine Probleme bereiten, da es nun nicht mehr in α -Stellung zu einer Ketogruppe sondern zu einer Alkoholfunktion liegt. Weiter-hin dürfte nach einer Retroreaktion die CH-Acidität dieser vinylogen Carbonyl-Position geringer ausfallen als bei den bisherigen vinylogen 1,3-Dicarbonyl-Retroprodukten. Offen bleibt indessen die Frage nach der Eliminierungsfähigkeit der OH-Gruppe.

Abbildung 17

Zur Synthese dieses neuen Synthesebausteins **82** wurde das TMS-geschützte Monoketaladdukt **80** direkt nach der Hochdruckreaktion, ohne das ein Wechsel des Lösungsmittels notwendig war, in Methylenchlorid mit K-Selectrid⁵⁰ bei -78°C bis -10°C innerhalb von 6.5 h quantitativ zum Allylalkohol **81** reduziert (Schema 53).

Der Allylalkohol **81** konnte in einem Schritt durch die Behandlung mit Amberlyst 15⁴⁸ in Aceton bei RT unter Spaltung des Ketals und des Silylenolethers quantitativ in das Addukt **82** überführt werden. Bei der Hydrolyse mußte allerdings eine ständige Kontrolle per DC er-

folgen. Es war darauf zu achten, daß die Reaktionszeit möglichst kurz gehalten wurde und die Temperatur nicht über 20°C anstieg, da ansonsten die Retroreaktion des Addukts **82** unter Freisetzung des Hydrindandiens **2b** und des Retroprodukts **82b** einsetzte (Schema 54). Daß hier unter drastischen Bedingungen die Retroreaktion den Eliminierungstendenzen den Rang abläuft, muß als sehr ermutigendes Resultat gewertet werden.

Schema 54

Die beiden neuen Addukte **81** und **82** erwiesen sich auf allen Stufen der Synthese, Aufarbeitung und spektroskopischen Untersuchung im Gegensatz zu den Benzochinonaddukten **37/78** als konfigurativ stabil. Über ein H,H-cosy konnten die Protonen des Allylalkohols **81** genau zugeordnet werden, und ein NOE-Experiment zeigte, daß sich das Reduktionsmittel der Ketofunktion von der α -Seite genähert hatte (Abbildung 18). Diese Angriffsrichtung war aufgrund der Konformation des Addukts **81** und des Raumanspruchs des Reduktionsmittels auch zu erwarten.

Abbildung 18

3.4.5 Durchführung der regio- und stereoselektiven Cycloaddition

Der neu entwickelte und in sehr guten Ausbeuten synthetisierbare Cyclohexenonalkohol 82 sollte nun hinsichtlich seines elektronischen sowie sterischen Lenkungsvermögens von Diels-

Alder-Cycloadditionen untersucht werden.

Hierzu wurde eine Lösung des Addukts **82** und des heterocyclischen Diens **54** in Toluol einem Druck von 14 kbar ausgesetzt. Die Wahl fiel auf das aprotische Toluol, um eine Isomerisierung der Enamid-Doppelbindung des angestrebten Produkts **83** zu vermeiden und so die vermutete *endo*-Selektivität beweisen zu können.

Nach 5 d bei 14 kbar lag das Edukt-Produkt-Verhältnis laut DC bei etwa 1:1. Nach weiteren 5 d bei ca. 1:2. Auch nach 14 d bei 14 kbar war die Cycloaddition noch nicht vollständig abgelaufen. Das Cycloadditionsprodukt **83** konnte aber unter Vermeidung der Doppelbindungsisomerisierung in 67% Ausbeute isoliert werden (Schema 55).

Schema 55

Bereits bei früheren Untersuchungen (s. Schema 28) wurde beobachtet, daß der Wechsel des Lösungsmittels von Methylenchlorid zu Toluol mit einem drastischen Abfall der Reaktionsgeschwindigkeit und einer Verringerung der Ausbeute verbunden sein kann. Daher wird vermutet, daß die Ausbeute und die Reaktionsgeschwindigkeit dieser Cycloaddition unter Verwendung von Methylenchlorid noch zu steigern ist.

Über ein H,H-cosy konnte bewiesen werden, daß die Anellierung unter elektronischer Lenkung der Regiochemie stattgefunden hatte. Ein NOE-Experiment ermöglichte die Aussage, daß auch an dem neuen Addukt **82** die Cycloaddition α -selektiv abgelaufen war (Abbildung 19). Die

vermutete *endo*-Selektivität konnte über das NOE nicht eindeutig bewiesen werden, da das ¹H-NMR-Signal für das entscheidende Proton H_g nicht separat vorlag.

Abbildung 19

Mit dem Addukt **82** konnte also ein Synthesebaustein generiert werden, der ebenso wie das Monoketaladdukt **10** den Anforderungen bezüglich der Regio- und Stereoselektivität bei den Anellierung gerecht wird und der zusätzlich noch eine ausreichende Reaktivität mitbringt.

3.4.6 Retro-Diels-Alder-Reaktion zu stabilen polycyclischen Cyclohexenonen

Von besonderem Interesse war nun, ob das Cycloadditionsprodukt **83** erfolgreich einer Retroreaktion unterzogen werden kann. Diese Frage ist von entscheidender Bedeutung, denn den Wert des neu entwickelten Synthesebausteins **82** macht insbesondere die Tatsache aus, daß die an diesem Addukt generierten polycyclischen Verbindungen unter Abspaltung des Hydrindandiens **2b** freigesetzt werden können und sich als konfigurativ stabil erweisen.

Das Addukt **83** wurde in der Pyrolyseapparatur innerhalb von 10 min von RT auf 150°C erhitzt und konnte bereits bei dieser niedrigen Temperatur quantitativ und unter Erhalt der Konfiguration retrogespalten werden (Schema 56).

Schema 56

Eine Isomerisierung, Enolisierung oder Eliminierung war an der farblosen, öligen Substanz **84** nicht festzustellen, wie auch die einheitlichen Signale in den NMR-Spektren zeigten.

3.4.7 Ausblick: Ein möglicher Weg zu stabilen Cyclohexenon-Cyclopentanonsystemen

Ein Ausweg zur Synthese von Decalinderivaten konnte erfolgreich beschritten werden und ist in den Abschnitten 3.4.4 bis 3.4.6 beschrieben. Die Probleme, die sich aus der Arbeit mit dem Monoketaladdukt **10** und dem *p*-Benzochinonaddukt **37** ergaben, lassen sich also umgehen.

Des weiteren stellt sich die Frage, wie anellierte Cyclohexenon-Cyclopentanon-Bausteine, also Polycyclen, die einen 5-Ring enthalten, generiert werden können, ohne daß bei den Retroreaktionen auf Cycloadditionsprodukte des problematischen Cyclopentenonaddukts **45** zurückgegriffen werden muß. Ein möglicher Lösungsansatz konnte über das Studium der Bemühungen, die *C. Borm*²⁰ zur Beseitigung eines Retroproblems unternommen hatte, entwickelt werden.

C. $Borm^{20}$ konnte zeigen, daß nach Reduktion der Carbonylfunktionen im Addukt **85** eine anschließende Retroreaktion erfolgreich durchführbar war und in einer Ausbeute von 50% zu einem stabilen Produkt **87** führte (Schema 57).
Durch diese Transformation sollten Nebenreaktionen in Form von Spaltung an verschiedenen Stellen des Moleküls und Aromatisierung des hochenolisierungsfähigen Triketons **88** unter den thermischen Bedingungen der Retroreaktion vermieden werden, da die direkte Spaltung des Addukts **85** zu nicht weiter aufgeklärten Aromatisierungsprodukten geführt hatte.

Schema 57

Aufgrund dieses Ergebnisses kann davon ausgegangen werden, daß auch im Fall der Diels-Alder-Produkte des Cyclopentenonaddukts **45** eine der Retroreaktion vorausgehende Reduktion des Cyclopentanons zu stabilen Retroprodukten führen könnte (Schema 58). Dabei ist allerdings zu beachten, daß der Cyclohexanonring vor den Diels-Alder-Reaktionen spätestens aber vor der Reduktion geschützt werden muß, um eine abschließende Retrospaltung zum Cyclohexenonsystem gewährleisten zu können.

3.5 Hetero-Diels-Alder-Reaktion mit einem Imino-Dienophil

3.5.1 Stand der Forschung

Bereits *E. Merten*^{!)} beschäftigte sich mit der Frage, ob sich das Siloxydien **8** auch für Hetero-Diels-Alder-Reaktionen mit einem Imino-Dienophil⁵² eignet.

Als Dienophil diente für diese ersten Untersuchungen das benzylgeschützte Dihydronorharman⁵¹ (3,4-Dihydro- β -carbolin) **89**, ein vielseitig verwendbarer Synthesebaustein der Indolalkaloidchemie. Nach 4 d bei 6.5 kbar konnte das Indoladdukt **90** in 21% Ausbeute isoliert werden (Schema 59). Dabei ließ sich anhand der ¹H-NMR-Daten feststellen, daß das unter elektronischer Lenkung zu erwartende Regioisomer entstanden war. Ob hingegen die am Siloxydien **8** zu erwartende α -*exo*-Addition stattgefunden hatte, wurde zum damaligen Zeitpunkt nicht geklärt. Zusätzlich galt es die Frage zu beantworten, ob auf die weitere Stufen verlangende Benzylschutzgruppe verzichtet werden kann. Schließlich blieb noch offen, ob nach Spaltung des Silylenolethers eine Retrospaltung erfolgreich durchführbar ist, und so ein für die Alkaloidchemie interessanter, enantiomerenreiner Synthesebaustein **91** (Schema 59) darstellbar ist.

3.5.2 Synthese des Imino-Dienophils Dihydronorharman

Zur Darstellung des Imino-Dienophils Diydronorharman⁵¹ **95** wurde nach einer Vorschrift von *N. Whittaker*⁵³ das Tryptamin **92** zunächst mit Ameisensäure in das Tryptamin-Formiat-Salz **93** überführt, welches durch Erhitzen im Kugelrohr zum N-Formyltryptamin **94** weiter-reagierte. Dieses Formamid **94** läßt sich in Phosphorylchlorid bei RT über eine *Bischler-Napieralski*⁵⁴-Cyclisierung in das 3,4-Dihydro- β -carbolin **95** umwandeln (Schema 60).

Schema 60

Die Ergebnisse der Hetero-Diels-Alder-Reaktion (s. Abschnitt 3.5.3) mit dem freien Imin des Dihydronorharmans 95 machten es notwendig, die korrespondierenden Imminium-Salze 96 und 97 des Dienophils 95 darzustellen und im folgenden einzusetzen (Schema 61). Von diesen Imminiumsalzen erhoffte man sich aufgrund des höheren δ^+ -Charakters eine gesteigerte Reaktivität und Selektivität.

3.5.3 Durchführung der Hetero-Diels-Alder-Reaktion

Zunächst wurde das Siloxydien 8 mit dem Dihydronorharman 95 in Methylenchlorid für 14 d einem Druck von 14 kbar ausgesetzt. Dabei konnte nach Spaltung des Silylenolethers mit CSA das Cycloadditionsprodukt 98 in nur 16% Ausbeute isoliert werden (Schema 62). Weitere Versuche ergaben, daß die Ausbeute unter diesen Bedingungen sehr schwankt und zwischen 8% und 16% liegt (Tabelle 2: Bsp. 1). Außerdem wurde festgestellt, daß das Siloxydien 8 leicht unter Verlust der TMS-Gruppe in das Butiononaddukt 7 zerfällt und somit für die Diels-Alder-Reaktion verloren geht.

Schema 62

Die lange Reaktionszeit, die schwankenden und schlechten Ausbeuten sowie die Instabilität des Siloxydiens 8 gaben Anlaß, nach neuen Reaktionsbedingungen zu suchen.

In den folgenden Versuchen wurden die Imminium-Salze **96/97** des Dihdronorharmans **95** sowohl rein als auch als Gemische mit dem freien Imin **95** eingesetzt (Schema 62). Weiterhin wurde das Lösungsmittel variiert und z.T. eine katalytische Menge an 2,5-Di-tert.-Butylpyridin **99** als nicht-nucleophiler Protonenfänger⁵⁵ hinzugefügt, um den Zerfall des Siloxy-diens **8** zu bremsen und somit die Ausbeute zu erhöhen. Die Ergebnisse dieser Versuche sind in der Tabelle 2 zusammengefaßt.

Tabelle	2
---------	---

Bsp.	Versuchsbedingungen	α-exo 98	α-endo 100	Gesamt
1	95 , CH ₂ Cl ₂ , 14 d, 14 kbar	8-16%		8-16%
2	95:96 5:1, CH ₂ Cl ₂ /DMSO, 14 d, 14 kbar	11%	28%	39%
3	95:96 1:1, CH ₂ Cl ₂ /DMSO, 7 d, 14 kbar	53%	37%	90%
4	96 , CH ₂ Cl ₂ /DMSO, 7 d, 14 kbar	32%		32%
5	97 , 10% 99 , DMSO, 10 d, 14 kbar	65%		65%
6	97 , 10% 99 , DMF/CH ₃ CN, 44 h, 14 kbar	98%		98%

Bemerkenswert ist, daß unter Verwendung eines Gemisches aus freiem Imin **95** und Hydrochlorid **96** Probleme bei der *endo-exo*-Selektivität der Cycloadditionen an das Siloxydien **8** auftraten (Schema 62).

Je nach dem Verhältnis des Gemisches variierte auch das *exo-endo*-Produktverhältnis **98/100** (Bsp. 2 und 3). Ein höherer Anteil an Hydrochlorid-Imminium-Salz **96** führte zu besseren Ausbeuten und zu einer bevorzugten Bildung des *exo*-Produkts **98** (Bsp. 3). Wurde das reine Hydrochlorid **96** eingesetzt, so konnte nur das *exo*-Produkt **98** nachgewiesen werden, allerdings in relativ schlechter Ausbeute (Bsp. 4).

Über das ¹H-NMR des Addukts **98** konnte nachgewiesen werden, daß es sich unter elektronischer Lenkung der Regiochemie gebildet hatte. Ein NOE-Experiment (Abbildung 20) erlaubte die Aussage, daß ein α -exo-Angriff stattgefunden hatte.

Abbildung 20

Daß es sich bei dem Nebenprodukt **100** tatsächlich um ein Stereoisomer und kein Regioisomer handelte, konnte eindeutig über die im Abschnitt 3.5.4.2 beschriebenen Retroreaktionen der beiden diastereomeren Addukte **98** und **100** nachgewiesen werden, da unter diesen Umständen die korrespondierenden Enantiomere **101** und **102** gebildet wurden, welche identische spektroskopische Daten aufwiesen.

Weiterhin ist aus den verschiedenen Versuchen in Tabelle 2 abzulesen, daß sich das Lösungsmittelgemisch Acetonitril/DMF gegenüber DMSO durch höhere Ausbeuten bei ansonsten gleichbleibenden Bedingungen bewähren konnte (Bsp. 6 und 7).

Als reproduzierbares Optimum (Bsp. 6) zur Synthese des erwünschten Addukts **98** mit der hinsichtlich der interessanten Indolalkaloide richtigen Stereochemie erwies sich eine Lösung aus dem Siloxydien **8** und dem TFA-Imminium-Salz **97** in einem 1:1-Acetonitril/DMF-Gemisch unter Zusatz von 10% 2,5-Di-tert.Butylpyridin **99**, die für 44 h einem Druck von 14 kbar ausgesetzt wurde. Nach Spaltung des Silylenolethers mit CSA konnte so in einer hohen Ausbeute von 98% das α -exo-Produkt **98** isoliert werden (Schema 63).

Im Vergleich zur Verwendung des reinen HCl-Imminium-Salzes **96** wurde hier eine wesentlich kürzere Reaktionszeit und eine deutlich höhere Ausbeute festgestellt. Ein Vorteil des TFA-Salzes **97** liegt darin, daß es weitestgehend nucleophilfrei ist, Nebenreaktionen vermieden werden können und dadurch höhere Ausbeute möglich sind. Außerdem hat die hohe Reaktivität den Vorteil, daß die Addition schnell beendet ist, und es zu keinen Gleichgewichtseinstellungen zwischen *exo-* und *endo-*Produkt kommen kann.

Bei den Cycloadditionsversuchen wurde ferner beobachtet, daß ein gelbes Öl als Nebenprodukt mit einer doppelten Adduktmasse auftrat, wenn mit dem freien Amin **95** gearbeitet wurde. Vermutlich ist diese Verbindung über eine säure- oder basenkatalysierte Indoldimerisierung entstanden. Darüber hinaus wurde eine Gelbfärbung der Produkte bei der weiteren Aufarbeitung beobachtet. Wahrscheinlich findet an den Addukten ein für Indole typischer Oxidationsprozeß statt, so daß möglichst rasch und unter Schutzgas gearbeitet werden sollte.

Weiterhin fiel auf, daß die Addukte **98** und **100** in CDCl₃ und CD₂Cl₂ nicht sehr stabil sind, da bereits nach kurzer Zeit neben einer Verfärbung der Lösung von schwachgelb nach orange/gelb ein unlöslicher, weißer Niederschlag entstand. Da diese Addukte eine tertiäre Aminfunktion besitzen und somit stark basisch sind, kann es in Chloroform und auch in Methylenchlorid leicht unter Freisetzung von HCl zur Salzbildung (schwerlöslicher Niederschlag) und Indoldimerisierung (Gelbfärbung der Lösung) kommen. Daher sollten diese Lösungsmittel bei der Darstellung, Aufarbeitung und Spektroskopie vermieden werden.

3.5.4 Retro-Diels-Alder-Reaktion zur Generierung des Alkaloidbausteins vom Typ der Indolchinolizinone

3.5.4.1 Stand der Forschung

Da zahlreiche Alkaloide ein Indol[2,3- α]chinolizidin^{56/57}-Grundgerüst mit Substituenten in C1und C3-Position (Abbildung 21) aufweisen, beschäftigt man sich schon seit langem in einigen Arbeitskreisen^{56/57} mit der Synthese von Indol-Chinolizidin-Derivaten.

Abbildung 21

Indol[2,3- α]chinolizidin

Die Synthese von Indol[2,3- α]chinolizin-2-on⁵⁸, als Grundstruktur zahlreicher natürlicher Alkaloide^{59/60} mit interessanten biologischen Aktivitäten, über eine Imino-Diels-Alder-Reaktion mit dem *Danishefsky*-Dien **103** und dem Diydronorharman **95** unter Lewis-Säure-Katalyse wurde bereits in der Literatur⁶¹ vorgestellt (Schema 64). Allerdings lagen die Ausbeuten dieser Cycloaddition mit anschließender säurekatalysierter Spaltung des Silylenolethers je nach Reaktionsbedingungen bei nur 39-43%. Auch wurde keine Aussage bezüglich der Konfiguration des Produkts gemacht.

Schema 64

Indol[2,3- α]chinolizin-2-on

3.5.4.2 Durchführung der Retro-Diels-Alder-Reaktion

Über die Retroreaktionen der Addukte **98** und **100** sollten im folgenden die Alkaloidbausteine vom Typ der Indolchinolizinone generiert werden.

In der Pyrolyseapparatur wurde zunächst das Addukt **98** unter Vakuum innerhalb von 5 min auf 150°C erhitzt und in weiteren 5 min bei dieser Temperatur verdampft und retrogespalten (Schema 65). Das im Pyrolysekolben verbliebene Retroprodukt **101** konnte in 86% Ausbeute als hellgelber Feststoff isoliert werden. Daß das Indol[2,3- α]chinolizin-2-on **101** aus dem unter elektronischer Lenkung entstanden Addukt **98** hervorgegangen ist, konnte durch ein H,H-cosy bestätigt werden.

Unter den gleichen Retroreaktionsbedingungen wurde das Addukt **100** gespalten, und das Enantiomer **102** wurde als hellgelber Feststoff in 59% Ausbeute isoliert (Schema 65).

Über eine Sequenz aus Hetero-Diels-Alder-Cycloaddition, Silylenoletherspaltung und Retro-Diels-Alder-Reaktion läßt sich also aus dem Siloxydien **8** in sehr guten Ausbeuten der für die Indolalkaloidchemie wichtige Synthesebaustein **101** darstellen.

4. Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit wurde zunächst das Potential des elektronenreichen, konformativ flexiblen Siloxydiens **8** als chirales Templat bei aufwachsenden Diels-Alder-Cyclisierungen und Transformationen von carbocyclischen Addukten untersucht (Abschnitt 3.1).

Begonnen wurden diese Studien mit über die Anellierung von symmetrischen sowie unsymmetrischen Exomethylen-Dienophilen gewonnen Spiroaddukten bzw. Spiroretroprodukten (Abschnitt 3.1.1). Die Carbonylfunktionen des Spiroaddukts **23a** ließen sich unter Lenkung des Diengrundgerüstes diastereoselektiv und mit relativ hoher Chemoselektivität differenzieren. Die Spirocyclohexenone **15/18/19** konnten zwar regio- und chemoselektiv, nicht aber diastereoselektiv und nicht in Neopentylstellung zum Spirozentrum transformiert werden. Diese Studien zeigten, daß neben den Stereo- und Regioselektivitätsproblemen bei der Darstellung der Spiroverbindungen auch die Transformationen nur sehr eingeschränkt und mit mangelnder Diastereoselektivität möglich sind.

Im Zuge der Untersuchung der linearen, aufwachsenden Cyclisierungen an Addukten und Retroprodukten (Abschnitt 3.1.2) konnten die Syntheserouten zu Verbindungen mit elektronenreicher Dienophil-Substruktur **11a/11b** und **12a/12b** auf allen Stufen optimiert werden. Der Syntheseplan für Addukte mit elektronenarmer Dienophil-Substruktur ließ sich hingegen nicht verwirklichen. Bei den anschließenden Cycloadditionsversuchen an das Addukt **11a** und das Retroprodukt **12a** stellte sich heraus, daß diese Verbindungen bereits an einem Cyclisierungsgrad angekommen sind, der über weitere Diels-Alder-Reaktionen nicht mehr zu steigern ist. Am Siloxydien **8** ist in diesem Fall nur eine Sequenz aus zwei aufeinanderfolgenden Cyclisierungen durchführbar.

Daraufhin wurde zur Synthese komplexerer Polycyclen ein Konzept entwickelt, daß vorsah, die über die erste Cycloadditionssequenz aus dem Siloxydien 8 hervorgegangenen Addukte, welche eine Dienophil-Substruktur aufweisen, in einem Schritt durch eine lineare Anellierung von carbocylischen Dienen um zwei Cyclen zu vergrößern (Abschnitt 3.1.3). Es konnte gezeigt werden, daß eine regio- und stereoselektive Cycloaddition des carbocylischen Siloxydiens 42 an das Cyclopentenonaddukt 45 in kurzer Zeit unter 14 kbar Hochdruck mit sehr guter Ausbeute möglich ist. Das so gewonnene Addukt 47 läßt sich mit guter Ausbeute retrospalten, allerdings ging das Retroprodukt 49 als vinyloge 1,3-Dicarbonylverbindung Enolisierungs- und Isomerisierungsprozesse ein.

Zur Synthese komplexer, ein Heteroatom beinhaltender Polycyclen wurden Diels-Alder-Additionen mit den heterocyclischen 6-Ring- und 7-Ring-Dienen 54 und 55 an den Addukten mit elektronenarmer Dienophil-Substruktur durchgeführt (Abschnitt 3.2). Eine regio- und stereoselektive α -endo-Addition war erfolgreich an dem Cyclopentenonaddukt 45 unter Hochdruckbedingungen möglich. Über eine Hydrolyse des Enamins des heterocyclischen 6-Ring-Produkts 62 wurde gezeigt, daß durch diese Transformation prinzipiell polycylische Cyclohexanone mit einer α -ständigen Alkylamin-Seitenkette unterschiedlicher Länge darstellbar sind, und der Heterocyclus in den Addukten als ein Stellvertreter von Funktionalität genutzt werden kann. Die Retroprodukte 63, 66 und 68 erwiesen sich allerdings durch ihre vinyloge 1,3-Dicarbonylgrundstruktur erneut als anfällig gegenüber Enolisierungen und Isomerisierungen.

Über die linerare Anellierung von Indolylacrylsäurederivaten an das Addukt mit elektronenarmer Dienophil-Substruktur 45 (Abschnitt 3.3) wurden, unter Nutzung der Donorkapazität des Indolstickstoffs als Bestandteil des Butadiensystems, polycyclische Verbindungen generiert. Dabei zeigte sich, daß mit dem N-substituierten Indolylacrylsäuremethylester 71 unter regio- und stereoselektiver α -endo-Addition die höchsten Ausbeuten unter Vermeidung von Nebenreaktionen zu erzielen waren. Eine verlängerte Reaktionszeit unter Hochdruck ist jedoch, aufgrund der durch die verringerte Elektronendichte bedingte Reaktivitätsabnahme des Diens 71 in Kauf zu nehmen. Die Retrospaltung zur Generierung von Terpenalkaloid-Grundbausteinen war wiederum in guten Ausbeuten möglich, allerdings trat auch hier die Isomerisierungs/Enolisierungsproblematik auf.

Der Verlauf der bisherigen Studien machte es notwendig nach einem Ausweg aus dieser Enolisierungs- und Isomerisierungsproblematik der Retroprodukte zu suchen (Abschnitt 3.4). Hinzu kam, daß die Additionen der komplexeren carbo- bzw. heterocyclischen Diene an die Addukte mit elektronenarmer Dienopil-Substruktur nur im Fall des Cyclopentenonaddukts **45** erfolgreich verliefen. Das Monoketaladdukt **10** erwies sich als zu unreaktiv trotz seines guten elektronischen und sterischen Lenkungsvermögens. Das *p*-Benzochinonaddukt **37** zeigte zwar eine hohe Reaktivität, aber neben einer mangelnden Konfigurationsstabilität eine mangelnde Regioselektivität durch sein alleiniges sterisches Lenkungsvermögen.

Als Ausweg aus diesen Problemen konnte ein Synthesekonzept verwirklicht werden, über das ausgehend vom leicht darstellbaren Monoketaladdukt **10** in zwei Stufen mit sehr guten Ausbeuten ein neues elektronenarmes, unsymmetrisches Cyclohexenonaddukt **82** generiert werden konnte, das allen Anforderungen hinsichtlich konfigurativer Stabilität sowie Reaktivität und Regioselektivität bei einer stereoselektiven α -endo-Diels-Alder-Cyclo-addition gerecht wurde. Auch die abschließende Retroreaktion konnte in sehr guten Ausbeuten erfolgreich durchgeführt werden und lieferte ein konfigurativ stabiles, poly-cyclisches Cyclohexenon **84**. Ob das ebenfalls in Abschnitt 3.4.7 vorgeschlagene Synthese-konzept zum Aufbau stabiler Cyclohexenon-Cyclopetanonsysteme erfolgreich ausgeführt werden kann, bleibt noch zu untersuchen.

Abschließend wurde das Potential des Siloxydiens **8** bei Hetero-Diels-Alder-Reaktionen mit einem elektronenarmen, heterocyclischen 2π -System getestet. In Hinblick auf die Möglichkeit, Alkaloidbausteine vom Typ der Indolchinolizinone über eine derartige Anellierung synthetisieren zu können, wurde das Imino-Dienophil Dihydronorharman **95** für diese Studien ausgewählt. Unter optimierten Bedingungen konnte in sehr guter Ausbeute selektiv das α -exo-Addukt **98** dargestellt werden und über eine Retro-Diels-Alder-Reaktion in guter Ausbeute in den interessanten Alkaloidbaustein Indol[2,3- α]chinolizin-2-on **101** über-führt werden.

II. Experimenteller Teil

1. Allgemeine Bemerkungen

Schmelzpunkte wurden mit einer Schmelzpunktbestimmungsapparatur der Firma *Gallenkamp* ermittelt und sind nicht korrigiert.

Drehwerte wurden mit dem Polarimeter 341 der Firma *Perkin-Elmer* bei Raumtemperatur in Chloroform gemessen. Die Angabe der Konzentration c erfolgt in g/100 ml. Alle Messungen wurden mit der Natrium-D-Linie durchgeführt.

IR-Spektren wurden mit dem Spektrometer IFS 25 der Firma *Bruker* in Chloroform (CHCl₃) gelöst oder mit dem Spektrometer Vector 22 der Firma *Bruker* als Golden Gate ATR wie angegeben aufgenommen. Die Wellenzahlen v charakteristischer Absorptionsbanden sind in cm⁻¹ angegeben. Die Intensitäten sowie die Form der Banden werden durch folgende Abkürzungen beschrieben: vs = sehr stark, s = stark, m = mittel, w = schwach, br = breit.

¹**H-NMR-Spektren** wurden mit den Geräten AVS 200 (200 MHz) sowie AM 400 (400 MHz) der Firma *Bruker* aufgenommen. Die Messungen wurden im angegebenen Lösungsmittel mit Tetramethylsilan als internem Standard durchgeführt. Die chemischen Verschiebungen δ sind in ppm, die Kopplungskonstanten *J* in Hz angegeben. Für die Signalmultiplizitäten gelten folgende Abkürzungen: s = Singulett, d = Dublett, dd = Doppeldublett, ddd = Doppeldoppeldublett, tr = Triplett, dtr = Doppeltriplett, q = Quartett, dq = Doppelquartett, m = Multiplett, m_c = zentriertes Multiplett. Breite Signale sind mit einem _{br} gekennzeichnet.

¹³C-NMR-Spktren wurden mit dem Gerät AM 400 (100 MHz) der Firma *Bruker* aufgenommen. Die Messungen wurden im angegebenen Lösungsmittel mit Tetramethylsilan als internem Standard durchgeführt. Die chemischen Verschiebungen δ sind in ppm angegeben. Die Multiplizität der Signale wurde durch die APT- und DEPT-Aufnahmetechnik bestimmt. Für die Signalmultiplizitäten gelten folgende Abkürzungen: s = Singulett, d = Dublett, tr = Triplett, q = Quartett.

Massenspektren (**MS**) wurden mit dem Massenspektrometer MAT 312 der Firma *Finnigan* bei einem Ionisierungspotential von 70 eV und der jeweils angegebenen Temperatur gemessen. Die relativen Signalintensitäten sind in % bezogen auf den Basispeak angegeben.

FAB-Spektren (MS-FAB) wurden mit einem VG Autospec in einer *m*-Nitrobenzylalkohol-Matrix bei Niederauflösung aufgenommen. Die relativen Signalintensitäten sind in % bezogen auf den Basispeak angegeben.

MS-Hochauflösungen wurden mit dem VG Autospec bei Auflösungen größer gleich 10000 nach der Peak-Matching-Methode gemessen.

Röntgenstrukturanalysen wurden mit einem *Stoe*-IPDS-Diffraktometer^{62/63} durchgeführt. Zur Auswertung wurden die Programmsysteme Stoe-IPDS-Software, SHELXL-93, SHELXS-86 und PLATON verwendet.

Analytische Dünnschichtchromatographie wurde mit DC-Alufolien Kieselgel $60F_{254}$ der Firma *Merck* durchgeführt. Die Detektion erfolgte mit Hilfe einer UV-Lampe ($\lambda = 254$ nm) und einem Tauchreagenz aus Cer(IV)-Sulfat/Phosphormolybdänsäure⁶⁴.

Präparative Säulenchromatographie wurde nach dem Prinzip der Flash-Chromatographie⁶⁵ mit Kieselgel der Firma *Baker* (Korngröße 30-60 μm) bei angepaßtem Überdruck mit den angegebenen Lösungsmitteln durchgeführt.

Lösungsmittel wurden vor Gebrauch destilliert und gegebenenfalls entsprechend den Standard-Methoden⁶⁶ absolutiert. Reaktionen mit absoluten Lösungsmitteln wurden unter Argon-Atmosphäre in ausgeheizter Apparatur durchgeführt.

Die Reaktionen unter Hochdruck wurden in einer **Hochdruckapparatur** der Firma *Hofer*⁶⁷ durchgeführt.

Für die Retro-Diels-Alder-Reaktionen wurde eine **Flash-Vakuum-Pyrolyse-Apparatur** nach *Seybold* und *Jersak*⁶⁸ verwendet.

2. Beschreibung der Versuche

Hydrindandien 2b

 $\begin{array}{l} C_{17}H_{20}O\\ M=240 \ g/mol \end{array}$

Darstellung und spektroskopische Daten s. Lit.⁶⁹

Butinonaddukt 7

 $\begin{array}{l} C_{21}H_{24}O_2\\ M=308 \ g/mol \end{array}$

OCH₃

Darstellung und spektroskopische Daten s. Lit.¹⁹

Siloxydien 8

 $C_{24}H_{32}O_2Si$ M = 380 g/mol

Darstellung und spektroskopische Daten s. Lit.¹⁹

Monoketal 9

 $C_8H_8O_3$ M = 152 g/mol

Darstellung und spektroskopische Daten s. Lit.⁷⁰

Monoketaladdukt 10

 $\begin{array}{l} C_{29}H_{32}O_5\\ M=460 \text{ g/mol} \end{array}$

Eine Lösung von 400 mg (1.05 mmol) Siloxydien **8** und 208 mg (1.37 mmol; 1.3 eq) Monoketal **9** in 1.5 ml abs. CH_2Cl_2 wurde in einen Teflonschlauch eingeschweißt und 4 d einem Druck von 14 kbar ausgesetzt.

Zur Spaltung des Silylenolethers wurden das Reaktionsgemisch mit Camphersulfonsäure-Monohydrat versetzt. Nach 30 min bei RT wurde mit ges. NaHCO₃-Lsg. neutralisiert und mit CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen wurden mit ges. NaCl-Lsg. gewaschen, über MgSO₄ getrocknet und am Rotationsverdampfer eingeengt. Säulenchromatographische Reinigung (E/PE 1:1) lieferte das Monoketaladdukt **10** als farbloses Öl.

Spektroskopische Daten s. Lit.¹⁹

Weitere Daten:

Ausbeute: 473 mg (1029 µmol; 98%)

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = -0.3^{\circ} (c = 1.75)$

¹³**C-NMR (100 MHz; CDCl₃):** $\delta = 15.35$ (q), 21.15 (tr), 23.45 (tr), 25.47 (tr), 28.65 (tr), 38.84 (tr), 42.34 (d), 44.09 (d), 47.56 (d), 53.17 (d), 55.15 (q), 60.57 (s), 61.32 (s), 64.57 (tr), 66.01 (tr), 67.65 (s), 104.22 (s), 113.02 (d, 2x), 128.37 (d, 2x), 128.72 (d), 130.72 (s), 138.20 (d), 139.05 (d), 143.04 (d), 157.91 (s), 201.46 (C=O), 209.93 (C=O) ppm

MS (140 °**C):** m/z (%) = 460 (M⁺, 1), 240 (100), 225 (9), 197 (6), 126 (10), 98 (7)

MS-Hochauflösung: berechnet: 460.224974

gefunden: 460.223785

Methoxybutadienaddukt 11a

 $C_{34}H_{40}O_6$ M = 544 g/mol

Eine Lösung von 230 mg (0.50 mmol) Monoketaladdukt **10** und 100 μ l (1 mmol; 2 eq) 1-Methoxybutadien in 2 ml abs. CH₂Cl₂ wurde in einen Teflonschlauch eingeschweißt und 14 d einem Druck von 14 kbar ausgesetzt. Anschließend wurde das Lösungsmittel entfernt und das Rohprodukt säulenchromatographisch (E/PE 1:1) gereinigt. Man erhielt das Methoxybutadienaddukt **11a** als farbloses Öl.

Ausbeute: 272 mg (0.50 mol; 100%)

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = -15.4^{\circ} (c = 4.10)$

IR (Golden Gate ATR CHCl₃): v = 2918 (m), 1714 (s), 1698 (vs), 1614 (m), 1518 (vs), 1445 (m), 1387 (m), 1258 (s), 1122 (s), 1102 (s) cm⁻¹

¹**H-NMR (400 MHz; CDCl₃):** $\delta = 0.50$ (1H, d, J = 13 Hz), 0.82 (3H, s), 1.05-1.34 (3H, m), 1.36-1.44 (1H, m), 1.55-1.63 (2H, m), 1.76-1.88 (2H, m), 1.91 (1H, dd, J = 7/16.3 Hz), 1.99

(1H, d, J = 13 Hz), 2.15 (1H, d_{br} , J = 19 Hz), 2.32 (1H, dd, J = 2/16.3 Hz), 2.40-2.48 (2H, m), 2.86-2.94 (1H, m), 2.90 (1H, d, J = 9 Hz), 3.44 (3H, s), 3.79 (3H, s), 3.80 (1H, d, J = 9 Hz), 3.89-4.10 (5H, m), 5.58 (1H, m_c), 5.85 (1H, dd_{br}, J = 1/10.4 Hz), 6.15 (2H, ABq, J = 6 Hz), 6.87 (2H, d, J = 9 Hz), 7.26 (2H, d, J = 9 Hz) ppm

¹³C-NMR (100 MHz; CDCl₃): $\delta = 15.19$ (q), 21.17 (tr), 23.31 (tr), 24.50 (tr), 25.47 (tr), 28.80 (tr), 38.82 (tr), 42.34 (d), 42.80 (d), 44.06 (d), 46.58 (d), 51.90 (d), 53.06 (d), 55.15 (q), 57.10 (q), 61.25 (s), 61.40 (s), 64.92 (tr), 65.34 (tr), 68.33 (s), 76.48 (d), 109.32 (s), 112.99 (d), 124.33 (d), 127.99 (d), 128.65 (d), 130.06 (s), 137.48 (d), 139.59 (d), 158.03 (s), 208.99 (C=O), 210.38 (C=O) ppm

MS-FAB: m/z (%) = 677 (49), 545 (MH⁺, 2), 544 (M⁺, 6), 514 (2), 305 (4), 286 (6), 273 (12), 240 (100), 154 (13), 133 (27)

Acetoxybutadienaddukt 11b

 $\begin{array}{l} C_{35}H_{40}O_7\\ M=572 \ g/mol \end{array}$

Eine Lösung von 57 mg (0.125 mmol) Monoketaladdukt **10** und 60 μ l (0.5 mmol) 1-Acetoxybutadien in 1 ml abs. CH₂Cl₂ wurde unter Zusatz einer kat. Menge TEMPO in einen Teflonschlauch eingeschweißt und 21 d einem Druck von 14 kbar ausgesetzt. Anschließend wurde das Lösungsmittel entfernt und das Rohprodukt säulenchromatographisch (E/PE 1:1) gereinigt. Man erhielt das Acetoxybutadienaddukt **11b** als weißen Feststoff.

Spektroskopische Daten s. Lit.²⁰

Weitere Daten:

Ausbeute: 64 mg (0.113 mmol; 90%)

¹**H-NMR** (**400 MHz; CDCl₃**): $\delta = 0.51$ (1H, d, J = 13 Hz), 0.79 (3H, s), 1.01 (1H, dtr, J = 4/13 Hz), 1.10-1.35 (2H, m), 1.36-1.44 (1H, m), 1.49-1.51 (1H, m), 1.72-1.88 (3H, m), 2.00 (1H, dd, J = 8/16 Hz), 2.07 (3H, s), 2.13-2.22 (1H, m), 2.31 (1H, dd, J = 6/11 Hz), 2.38 (1H, dd, J = 2/16 Hz), 2.57 (1H, dtr, J = 11/6 Hz), 2.94 (1H, m_c), 3.10 (1H, tr, J = 10 Hz), 3.78 (1H, d, J = 10 Hz), 3.79 (3H, s), 3.93-4.02 (2H, m), 4.08-4.20 (2H, m), 4.24 (1H, tr, J = 5 Hz), 5.37-5.41 (1H, m), 5.72 (2H, s_{br}), 6.05 (1H, d, J = 6 Hz), 6.17 (1H, d, J = 6 Hz), 6.85 (2H, d, J = 9 Hz), 7.19 (2H, d, J = 9 Hz) ppm

¹³C-NMR (100 MHz; CDCl₃): $\delta = 14.98$ (q), 21.04 (q), 21.10 (tr), 23.36 (tr), 24.13 (tr), 25.15 (tr), 28.62 (tr), 38.06 (tr), 42.34 (d), 43.32 (d), 43.66 (d), 47.22 (d), 52.16 (d), 53.44 (d), 55.14 (q), 60.49 (s), 61.15 (s), 64.72 (tr), 65.63 (tr), 66.76 (s), 69.28 (d), 109.28 (s), 113.09 (d), 125.94 (d), 126.44 (d), 128.29 (s), 130.36 (d), 137.73 (d), 138.41 (d), 158.00 (s), 171.05 (C=O), 208.98 (C=O), 210.45 (C=O) ppm

Methoxycyclohexenon 12a

 $C_{17}H_{20}O_5$ M = 304 g/mol

Darstellung und spektroskopische Daten s. Lit.²⁰

Weitere Daten:

Ausbeute: 99%

Acetoxycyclohexenon 12b

 $\begin{array}{l} C_{18}H_{20}O_6\\ \\ M=332 \ g/mol \end{array}$

60 mg (105 μ mol) Addukt **11b** wurden in einer Pyrolyseapparatur bei 2·10⁻² mbar innerhalb von 15 min von RT auf 200 °C erhitzt, verdampft und durch ein auf 350 °C erhitztes Pyrolyserohr geleitet. Die Produkte schieden sich in der Kühlfalle ab und wurden nach Abkühlen und Belüften der Apparatur mit Methylenchlorid eluiert. Das Lösungsmittel wurde am Rotationsverdampfer entfernt. Säulenchromatographische Reinigung (E/PE 2:1) lieferte das Retroprodukt **12b** als farbloses Öl und das Retro-Eliminierungsprodukt **28** als oranges Öl.

Ausbeute: 17 mg (52 µmol; 49%) 12b

Drehwert (CHCl₃): $[\alpha]_{D}^{20} = -28.3^{\circ} (c = 1.10)$

IR (Golden Gate ATR): v = 2905 (w), 1725 (vs), 1682 (s), 1240 (vs), 1142 (s), 1029 (vs) cm⁻¹

¹**H-NMR** (**400 MHz; CDCl₃**): δ = 1.81-1.91 (1H, m), 2.11 (3H, s), 2.22-2.33 (1H, m), 2.52 (1H, d, J = 12.3 Hz), 2.54 (1H, d, J = 4.3 Hz), 2.57-2.65 (1H, m), 2.80 (1H, dtr, J = 4.3/12.3 Hz), 3.53 (1H, dtr, J = 12/2 Hz), 3.77 (1H, tr, J = 5 Hz), 4.02-4.18 (4H, m), 5.38 (1H, tr_{br}, J = 5 Hz), 5.66-5.87 (2H, m), 6.07 (1H, dd, J = 2.7/10 Hz), 7.33 (1H, dd, J = 2/10 Hz) ppm

MS (130 °C): m/z (%) = 333 (MH⁺, 31), 291 (23), 274 (22), 205 (37), 165 (36), 149 (100)

MS-Hochauflösung: berechnet: 333.133814

gefunden: 333.130157

3-Ethoxy-6-methylencyclohex-2-enon 13

Darstellung und spektroskopische Daten s. Lit.⁷¹

Ethoxymethylencyclohexenonaddukt 14a

M = 460 g/mol

 $C_{30}H_{36}O_4$

Darstellung und spektroskopische Daten s. Lit.^{20/25}

Ethoxymethylencyclohexenonaddukt 14b

M = 460 g/mol

Darstellung und spektroskopische Daten s. Lit.^{20/25}

0

0

OEt

 $C_9H_{12}O_2$

Spirocyclohexenon 15

 $C_{13}H_{16}O_3$ M = 220 g/mol

Darstellung und spektroskopische Daten s. Lit.^{20/25}

Spiro-Michaeladdukt 17

 $C_{21}H_{30}O_7$ M = 394 g/mol

In einem ausgeheizten Zweihalskolben wurden unter Argon bei RT zu 2 ml abs. THF 19 mg (0.4 mmol) einer 50% igen NaH-Suspension und anschließend 68 μ l (0.4 mmol) Malonsäuremethyl-tert.-butylester **16** gegeben. Nach 20 min wurden 22 mg (0.1 mmol) Spirocyclohexenon **15** gelöst in 2.5 ml abs. THF hinzugespritzt. Nach 3 h wurde zur Aufarbeitung mit ges. NH₄Cl-Lsg. gequencht, mit CH₂Cl₂ extrahiert und über MgSO₄ getrocknet. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und das Rohprodukt säulenchromatographisch (E/PE 1:1) gereinigt. Das Produkt **17** wurde als farbloses Öl in einem nicht-trennbaren Diastereomerenverhältnis von 1:1 erhalten.

Ausbeute: 26 mg (66 µmol; 66%)

IR (CHCl₃): v = 2984 (m), 1744 (s), 1724 (vs), 1644 (s), 1604 (vs), 1252 (s), 1192 (s), 1024 (s) cm⁻¹

¹**H-NMR (400 MHz; CDCl₃):** $\delta = 1.37$ (6H, dtr, J = 2/7 Hz), 1.42 (6H, s), 1.45 (6H, s), 1.46 (6H, s), 1.63-1.76 (2H, m), 1.78-1.87 (2H, m), 1.89-2.02 (4H, m), 2.15 (2H, ddtr, J = 14/4/2 Hz), 2.26 (2H, tr_{br}, J = 13.5 Hz), 2.33-2.45 (4H, m), 2.50-2.71 (4H, m), 2.95 (2H, dd, J = 9/14

Hz), 3.19 (1H, d, J = 9 Hz), 3.21 (1H, d, J = 9 Hz), 3.72 (3H, s), 3.74 (3H, s), 3.89 (2H, m_c), 3.91 (2H, m_c), 5.28 (1H, s), 5.29 (1H, s) ppm

¹³C-NMR (100 MHz; CDCl₃): $\delta = 14.08$ (q), 25.52 (tr), 27.86 (q, 3x), 27.87 (q, 3x), 28.83 (tr), 28.91 (tr), 33.68 (d), 33.74 (d), 34.13 (tr), 34.19 (tr), 44.41 (tr), 44.53 (tr), 46.64 (s), 46.69 (s), 47.23 (tr), 47.34 (tr), 52.45 (q), 52.46 (q), 57.69 (d), 57.79 (d), 64.46 (tr), 82.71 (s), 82.78 (s), 100.67 (d), 100.69 (d), 166.64 (s), 166.66 (s), 168.43 (C=O), 168.50 (C=O), 176.42 (C=O), 176.50 (C=O), 199.73 (C=O), 199.75 (C=O), 209.19 (C=O), 209.24 (C=O) ppm

MS (130 °C): m/z (%) = 394 (M⁺, 4), 363 (2), 350 (2), 338 (44), 221 (44), 180 (85), 153 (100), 112 (85), 84 (50)

MS-Hochauflösung: berechnet: 394.199154 gefunden: 394.199486

Spirocyclohexenon 18

 $\begin{array}{l} C_{13}H_{16}O_{3}\\\\ M=220 \text{ g/mol} \end{array}$

Darstellung und spektroskopische Daten s. Lit.^{20/25}

Spirocyclohexadienolpivalat 19

 $\begin{array}{l} C_{18}H_{24}O_4\\ M=304 \ g/mol \end{array}$

Darstellung und spektroskopische Daten s. Lit.²⁵

Spiroalkohol 20a

 $C_{18}H_{26}O_4$ M = 306 g/mol

In einem ausgeheizten Zweihalskolben wurden 28 mg (92 µmol) Spirocyclohexadienolpivalat 19 in 3 ml abs. THF unter Argon gelöst. Bei 0 °C wurden langsam 115 µl (0.138 mmol; 1.5 eq) einer 1.2 M DIBAH-Lsg. in Toluol zugespritzt. Nach 4 h bei 0 °C wurde die Reaktionslösung zur Aufarbeitung bei 0 °C mit einer K₂CO₃-Paste versetzt und für 2 h gerührt. Der ausgefallene Niederschlag wurde abfiltriert und mit CH₂Cl₂ gewaschen. Das Filtrat wurde mit H₂O gewaschen. Anschließend wurde mit CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet. Säulenchromatographische Reinigung (E/PE 1:2) lieferte die trennbaren Diastereomere **20a** und **20b** als farblose Öle.

Ausbeute: 6 mg (20 µmol; 22%) 20a

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = +14.0^{\circ} (c = 0.10)$

IR (**Golden Gate ATR**): v = 3271 (w), 2929 (m), 1748 (s), 1655 (s), 1602 (w), 1396 (m), 1377 (m), 1275 (m), 1198 (s), 1142 (vs), 1118 (vs) cm⁻¹

¹**H-NMR (400 MHz; CDCl₃):** $\delta = 1.25$ (9H, s), 1.29 (3H, tr, J = 7 Hz), 1.46-1.59 (1H, m), 1.62-1.74 (2H, m), 2.06 (1H, dtr, J = 18/5 Hz), 2.13-2.21 (2H, m), 2.57 (1H, ddd, J = 2/4/18 Hz), 3.74 (2H, q, J = 7 Hz), 4.03-4.07 (1H, m), 4.73 (1H, d, J = 5 Hz), 5.13 (1H, dd, J = 1/2 Hz), 5.65 (1H, dq, J = 10/2 Hz), 5.92 (1H, m_c) ppm

MS (80 °C): m/z (%) = 306 (M⁺, 49), 277 (26), 260 (15), 203 (19), 192 (29), 176 (40), 149 (51), 108 (100), 85 (57)

MS-Hochauflösung: berechnet: 306.183110

gefunden: 306.183205

Spiroalkohol 20b

 $\begin{array}{l} C_{18}H_{26}O_4\\ M=306 \ g/mol \end{array}$

Darstellung s. Spiroalkohol 20a

Ausbeute: 8 mg (26 µmol; 28%)

Drehwert (CHCl₃): $[\alpha]_{D}^{20} = -17.1^{\circ} (c = 0.35)$

IR (**CHCl**₃): $\nu = 3688$ (w), 2928 (s), 1740 (s), 1656 (m), 1604 (s), 1396 (w), 1380 (w), 1192 (m), 1148 (s), 1128 (s), 1028 (m) cm⁻¹

¹**H-NMR (400 MHz; CDCl₃):** $\delta = 1.26$ (9H, s), 1.30 (3H, tr, J = 7 Hz), 1.54-1.61 (1H, m), 1.77-1.87 (1H, m), 1.95-2.22 (4H, m), 2.44 (1H, ddd, J = 2/4.4/18 Hz), 3.74 (2H, m_c), 4.14 (1H, s_{br}), 4.64 (1H, d, J = 4.5 Hz), 5.28 (1H, d, J = 1 Hz), 5.65 (1H, dq, J = 10/2 Hz), 5.86 (1H, dtr, J = 10/5 Hz) ppm

MS (RT): m/z (%) = 307 (MH⁺, 4), 304 (10), 261 (18), 204 (20), 176 (56), 108 (100), 85 (49)

2-(Phenylsulfoxymethyl)-1,3-cyclopentandion 21

 $\begin{array}{l} C_{12}H_{12}O_{3}S\\ M=236 \text{ g/mol} \end{array}$

Darstellung und spektroskopische Daten s. Lit.^{25/28-30}

Spirocyclopentandionaddukt 23a

 $C_{30}H_{38}O_4Si$ M = 490 g/mol

135 mg (0.57 mmol) 2-(Phenylsulfoxymethyl)-1,3-cyclopentandion **21** wurden in 2 ml abs. Methylenchlorid suspendiert und bei RT mit 90 mg (0.24 mmol) Siloxydien **8** und 0.25 ml Pyridin versetzt. Das Reaktionsgemisch wurde 1 h bei RT gerührt. Zur Aufarbeitung wurde das Pyridin am Rotationsverdampfer entfernt. Der Rückstand wurde in CH_2Cl_2 aufgenommen, zweimal mit 5% iger H_2SO_4 -Lsg. und einmal mit H_2O gewaschen. Die organische Phase wurde über MgSO₄ getrocknet und säulenchromatographisch (E/PE 1:4) gereinigt. Das Addukt **23a** wurde als farbloses Öl isoliert.

Ausbeute: 210 mg (428 µmol; 75%)

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = -85.6^{\circ} (c = 2.34)$

IR (**Golden Gate ATR**): v = 2919 (m), 1751 (w), 1715 (vs), 1686 (m), 1666 (w), 1614 (m), 1581 (w), 1513 (vs), 1355 (m), 1246 (vs), 1177 (s) cm⁻¹

¹**H-NMR (400 MHz; CDCl₃):** δ = -0.18 (9H, s), 0.37 (1H, d_{br}, J = 13 Hz), 0.81 (3H, s), 1.09 (1H, m_c), 1.18-1.37 (3H, m), 1.38-1.48 (1H, m), 1.50-1.59 (2H, m), 1.63-1.78 (1H, m), 1.84 (1H, m_c), 2.14-2.23 (1H, m), 2.35 (1H, m_c), 2.60-2.72 (2H, m), 2.74-2.82 (1H, m), 2.85-2.94 (1H, m), 2.98 (1H, s), 3.76 (3H, s), 5.44 (1H, d, J = 6 Hz), 6.03 (1H, d, J = 6 Hz), 6.73-6.84 (2H, m), 6.93-7.08 (2H, m) ppm

¹³C-NMR (100 MHz; CDCl₃): $\delta = 0.37$ (q, 3x), 16.70 (q), 21.18 (tr), 23.53 (tr), 26.83 (tr), 28.29 (tr), 28.45 (tr), 30.53 (tr), 35.53 (tr), 36.99 (tr), 54.62 (d), 55.29 (q), 58.11 (s), 62.11 (s), 67.89 (s), 113.05 (d), 115.30 (s), 128.91 (d), 130.00 (s), 132.12 (d, 2x), 136.12 (d, 2x), 143.67 (s), 157.91 (s), 213.91 (C=O), 217.48 (C=O) ppm

MS (**190** °**C**): m/z (%) = 491 (MH⁺, 10), 490 (M⁺, 27), 475 (2), 434 (6), 406 (4), 379 (11), 324 (14), 309 (100), 294 (80), 265 (88), 252 (71)

MS-Hochauflösung: berechnet: 490.253938 gefunden: 490.253782

Methylencyclopentandionaddukt 23b

 $\begin{array}{l} C_{27}H_{30}O_4\\ \\ M=418 \ g/mol \end{array}$

OCH₃ OCH₃

Darstellung und spektroskopische Daten s. Lit.²⁵

Spirocyclopentandion 24

 $C_{10}H_{10}O_3$ M = 178 g/mol

Darstellung und spektroskopische Daten s. Lit.²⁵

Spiroalkoholaddukt 25

 $C_{30}H_{40}O_4Si$ M = 492 g/mol

In 3 ml eines Isopropanol/CH₂Cl₂-Gemisches wurden 24 mg (49 μ mol) Addukt **23a** gelöst und bei 0°C mit 2.8 mg (74 μ mol; 1.5 eq) NaBH₄ versetzt. Nach 3 h bei 0°C wurde 30 min bei RT gerührt. Zur Aufarbeitung wurde mit H₂O versetzt und mit Ether extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet und eingeengt. Säulenchromatographische Trennung (E/PE 1:2) lieferte die Regioisomere **25** und **26** als farblose Öle.

Ausbeute: 23 mg (47 µmol; 75%) 25

IR (CHCl₃): v = 3612 (m), 3432 (w, br), 3000 (s), 2924 (s), 1728 (s), 1688 (s), 1612 (m), 1512 (vs), 1248 (vs) cm⁻¹

¹**H-NMR (400 MHz; CDCl₃):** $\delta = -0.19$ (9H, s), 0.29 (1H, d_{br}, J = 13 Hz), 0.85 (3H, s), 1.22-1.38 (1H, m), 1.45-1.58 (3H, m), 1.60-1.72 (1H, m), 1.74 (1H, d, J = 7 Hz), 1.88-2.10 (2H, m), 2.12-2.32 (4H, m), 2.35-2.49 (2H, m), 2.85 (1H, s), 3.77 (3H, s), 3.98 (1H, dtr, J = 10.5/7.5 Hz), 5.47 (1H, d, J = 6 Hz), 5.99 (1H, d, J = 6 Hz), 6.75 (1H, d, J = 8.3 Hz), 6.81 (1H, d, J = 8.2 Hz), 7.06 (1H, d, J = 8.2 Hz), 7.29 (1H, d, J = 8.5 Hz) ppm

MS (130 °C): m/z (%) = 493 (MH⁺, 18), 492 (M⁺, 42), 436 (24), 405 (12), 240 (100)

MS-Hochauflösung: berechnet: 492.269589 gefunden: 492.269379

Spiroalkoholaddukt 26

 $\begin{array}{l} C_{27}H_{32}O_4\\ M=420 \text{ g/mol} \end{array}$

Zur Spaltung des Silylenolethers wurden 23 mg (47 μ mol) Addukt **25** in 5 ml CH₂Cl₂ gelöst und mit Camphersulfonsäure-Monohydrat versetzt. Nach 30 min bei RT wurde mit ges. NaHCO₃-Lsg. neutralisiert und mit CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen wurden mit ges. NaCl-Lsg. gewaschen, über MgSO₄ getrocknet und am Rotationsverdampfer eingeengt. Säulenchromatographische Reinigung (E/PE 1:1) lieferte das Produkt **26** als farbloses Öl.

Ausbeute: 16 mg (38 µmol; 81%)

Drehwert (CHCl₃): $[\alpha]_{D}^{20} = -137.5^{\circ} (c = 0.4)$

IR (**Golden Gate ATR**): v = 3494 (m), 2920 (m), 1732 (s), 1681 (s), 1615 (m), 1580 (w), 1514 (s), 1454 (s), 1252 (s), 1034 (s) cm⁻¹

¹**H-NMR** (**400 MHz**; **CDCl**₃): $\delta = 0.37$ (1H, d_{br}, J = 13 Hz), 0.79 (3H, s), 1.50-1.17 (2H, m), 1.18-1.28 (2H, m), 1.33 (1H, dd_{br}, J = 4/14 Hz), 1.54 (2H, d_{br}, J = 11 Hz), 1.77-1.87 (2H, m), 2.04-2.29 (4H, m), 2.35-2.48 (2H, m), 2.52-2.63 (1H, m), 2.87 (1H, d, J = 8 Hz), 3.77 (3H, s), 3.79 (1H, d, J = 8 Hz), 4.00-4.07 (1H, m), 6.03 (1H, d, J = 6 Hz), 6.28 (1H, d, J = 6 Hz), 6.83 (2H, d, J = 9 Hz), 7.26 (2H, d, J = 9 Hz) ppm

¹³C-NMR (100 MHz; CDCl₃): $\delta = 15.70$ (q), 21.03 (tr), 23.89 (tr), 25.69 (tr), 27.98 (tr), 28.17 (tr), 28.72 (tr), 34.84 (tr), 36.15 (tr), 44.34 (d), 52.91 (s), 54.49 (d), 55.15 (q), 60.78 (s), 62.84 (s), 68.17 (s), 80.99 (d), 112.93 (d, 2x), 128.92 (d, 2x), 130.10 (s), 134.98 (d), 139.37 (d), 158.02 (s), 212.01 (C=O), 219.60 (C=O) ppm

MS-FAB: m/z (%) = 421 (MH⁺, 4), 420 (M⁺, 4), 419 (6), 391 (12), 307 (15), 289 (10), 279 (9), 240 (100)

Spiroalkoholaddukt 27

 $C_{30}H_{40}O_4Si$ M = 492 g/mol

Darstellung s. Spiroalkoholaddukt 25

Ausbeute: 20 mg (4 µmol; 8%)

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = -44.0^{\circ} (c = 0.10)$

IR (CHCl₃): v = 3612 (w), 2932 (s), 1732 (m), 1684 (m), 1612 (w), 1512 (vs), 1252 (vs), 1180 (s), 844 (s) cm⁻¹

¹**H-NMR** (400 MHz; CDCl₃): $\delta = -0.28$ (9H, s), 0.33 (1H, d, J = 12.5 Hz), 0.95 (3H, s), 1.07-1.43 (5H, m), 1.55-1.73 (3H, s), 1.82 (1H, d, J = 12 Hz), 1.92-2.05 (3H, m), 2.06-2.11 (1H, m), 2.12-2.26 (2H, m), 2.62 (1H, d, J = 1 Hz), 2.64-2.72 (1H, m), 3.78 (3H, s), 4.02 (1H, m_c), 6.05 (1H, d, J = 6 Hz), 6.14 (1H, d, J = 6 Hz), 6.72-6.82 (2H, m), 7.18-7.32 (2H, m) ppm

MS (90 °C): m/z (%) = 492 (M⁺, 35), 436 (9), 279 (9), 240 (68), 205 (100), 149 (60)

MS-Hochauflösung: berechnet: 492.269589

gefunden: 492.270447

Cyclohexenon 28

 $\begin{array}{l} C_{16}H_{16}O_4\\\\ M=272 \ g/mol \end{array}$

Darstellung s. Acetoxycyclohexenon 12b

Ausbeute: 5 mg (18 µmol; 17%)

Drehwert (CHCl₃): $[\alpha]^{20}{}_{D} = +7.0^{\circ} (c = 0.10)$

IR (**Golden Gate ATR**): v = 3273 (m), 2923 (m), 1716 (w), 1668 (m), 1598 (s), 1580 (s), 1511 (m), 1459 (m), 1248 (vs), 1059 (vs) cm⁻¹

¹**H-NMR (400 MHz; CDCl₃):** $\delta = 1.50-1.75$ (2H, m), 1.90 (1H, dd_{br}, J = 2/13 Hz), 2.05-2.11 (2H, m), 2.39 (1H, ddd, J = 3/5/13 Hz), 3.52-3.58 (1H, s_{br}), 4.00 (1H, m_c), 4.08 (1H, m_c), 4.17 (1H, m_c), 4.32 (1H, m_c), 5.69 (1H, s_{br}), 5.82-5.88 (1H, m), 6.15-6.21 (1H, m), 6.87 (1H, dd, J = 2.6/8.5 Hz), 6.97 (1H, d, J = 2.6 Hz), 7.94 (1H, d, J = 8.5 Hz) ppm

MS (160 °**C):** m/z (%) = 272 (M⁺, 76), 244 (18), 227 (35), 210 (21), 192 (24), 164 (100), 120 (61)

MS-Hochauflösung: berechnet: 272.104859 gefunden: 272.104919

Methoxybutadienaddukt 29

 $C_{31}H_{36}O_4$ M = 472 g/mol

Eine Lösung von 50 mg (0.13 mmol) Cyclopentenonaddukt **45** und 14 μ l (0.14 mmol; 1.5 eq) 1-Methoxybutadien in 1 ml abs. CH₂Cl₂ wurde in einen Teflonschlauch eingeschweißt und 14 d einem Druck von 14 kbar ausgesetzt. Anschließend wurde das Lösungsmittel entfernt und das Rohprodukt säulenchromatographisch (E/PE 1:1) gereinigt. Man erhielt das Methoxybutadienaddukt **29** als weißen Feststoff.

Ausbeute: 57 mg (0.12 mmol; 95%)

Schmelzpunkt: 170 °C

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = +31.5^{\circ} (c = 2.50)$

IR (**CHCl**₃): v = 3048 (w), 2928 (m), 1740 (m), 1700 (m), 1516 (m), 1264 (vs) cm⁻¹

¹**H-NMR (400 MHz; CDCl₃):** $\delta = 0.52$ (1H, d, J = 13 Hz), 0.78 (3H, s), 1.15-1.47 (4H, m), 1.58-1.71 (1H, m), 1.77-2.01 (3H, m), 2.04-2.32 (5H, m), 2.36 (1H, dd, J = 3/8 Hz), 2.71 (1H, dd, J = 6/9.4 Hz), 3.06 (1H, dd, J = 3/9 Hz), 3.30 (3H, s), 3.62 (1H, d, J = 9.4 Hz), 3.79 (3H, s), 4.10 (1H, dd, J = 4.4/6 Hz), 5.97 (1H, d, J = 6 Hz), 6.09 (2H, m), 6.20 (1H, d, J = 6 Hz), 6.85 (2H, d, J = 9 Hz), 7.17 (2H, d, J = 9 Hz) ppm

¹³C-NMR (100 MHz; CDCl₃): $\delta = 15.39$ (q), 21.54 (tr), 23.47 (tr), 25.28 (tr), 26.82 (tr), 28.48 (tr), 37.51 (d), 41.73 (d), 42.59 (d), 45.04 (tr), 48.61 (d), 49.20 (d), 55.00 (q), 55.15 (d), 56.96 (q), 60.67 (s), 61.07 (s), 68.20 (s), 72.63 (d), 113.16 (d, 2x), 128.17 (d, 2x), 128.44 (d), 130.90 (s), 132.16 (d), 138.63 (d), 139.54 (d), 157.93 (s), 210.68 (C=O), 217.16 (C=O) ppm

MS (160 °**C):** m/z (%) = 472 (M⁺, 2), 329 (2), 303 (2), 263 (3), 240 (100), 225 (11), 197 (9), 136 (12), 91 (26)

MS-Hochauflösung: berechnet: 472.261360 gefunden: 472.261627

Acetoxybutadienaddukt 30

 $C_{32}H_{36}O_5$ M = 500 g/mol

Darstellung und spektroskopische Daten s. Lit.²⁰

Weitere Daten:

¹**H-NMR** (400 MHz; CDCl₃): $\delta = 0.53$ (1H, d, J = 13 Hz), 0.77 (3H, s), 1.15-1.48 (6H, m), 1.59-1.72 (1H, m), 1.76-1.87 (2H, m), 1.94-2.07 (1H, m), 2.08 (3H, s), 2.15-2.25 (1H, m), 2.26-2.39 (3H, m), 2.97 (1H, dd, J = 8/8 Hz), 3.06 (1H, dd, J = 3/9 Hz), 3.63 (1H, d, J = 9 Hz), 3.79 (3H, s), 5.49 (1H, ddd, 1/4/8 Hz), 5.94 (1H, d, J = 6 Hz), 5.90-5.97 (1H, m), 6.02-6.08 (1H, m), 6.23 (1H, d, J = 6 Hz), 6.85 (2H, d, J = 9 Hz), 7.14 (2H, d, J = 9 Hz) ppm

¹³**C-NMR (100 MHz; CDCl₃):** $\delta = 15.41$ (q), 21.06 (q), 21.49 (tr), 23.44 (tr), 25.29 (tr), 26.90 (tr), 28.40 (tr), 37.02 (d), 42.02 (d), 43.15 (d), 44.62 (tr), 45.81 (d), 48.86 (d), 55.16 (q), 55.34 (d), 60.57 (s), 60.97 (s), 67.00 (s), 67.92 (d), 113.22 (d, 2x), 127.01 (d), 128.04 (d, 2x), 130.85 (s), 131.39 (d), 138.11 (d), 140.20 (d), 157.96 (s), 170.41 (C=O), 210.01 (C=O), 215.73 (C=O) ppm

Allylalkohol 31

 $C_{33}H_{38}O_6$ M = 530 g/mol

Eine Lösung von 80 mg (0.14 mmmol) Acetoxybutadienaddukt **11b** in 20 ml abs. THF/MeOH 1:1 wurde mit 7 mg (0.17 mmol; 1.2 eq) LiOH versetzt und 5 h bei RT gerührt. Zur Aufarbeitung wurde mit H₂O verdünnt und mit CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, eingeengt und säulenchromatographisch (E/PE 1:2 \rightarrow 1:1) gereinigt. Die Produkte **31**, **33** und **34** wurden als farblose bzw. leicht gelbliche Öle erhalten.

Ausbeute: 11 mg (21 µmol; 15%) 31

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = -38.5^{\circ} (c = 0.40)$

IR (**Golden Gate ATR**): v = 3529 (w), 2920 (m), 1699 (s), 1614 (m), 1547 (w), 1515 (s), 1248 (s), 1152 (m), 1028 (s) cm⁻¹

¹**H-NMR** (**400 MHz**; **CDCl**₃): $\delta = 0.50$ (1H, d, J = 13 Hz), 0.83 (3H, s), 1.15-1.40 (2H, m), 1.50-1.73 (3H, m), 1.77-1.88 (2H, m), 1.98-2.11 (1H, m), 2.21-2.33 (4H, m), 2.34-2.42 (2H, m), 2.62 (1H, dd, J = 9/12 Hz), 3.11 (1H, d, J = 6 Hz), 3.42 (1H, d, J = 9 Hz), 3.73 (1H, d, J = 9 Hz), 3.79 (3H, s), 3.92-4.11 (4H, m), 4.64 (1H, d_{br}, J = 8 Hz), 5.62 (1H, d_{br}, J = 10 Hz), 5.71-5.77 (1H, m), 5.96 (1H, d, J = 6 Hz), 6.14 (1H, d, J = 6 Hz), 6.85 (2H, d, J = 9 Hz), 7.19 (2H, d, J = 9 Hz) ppm

MS (190 °**C):** m/z (%) = 530 (M⁺, 2), 512 (1), 324 (2), 307 (3), 287 (8), 271 (7), 240 (100), 205 (46), 149 (16)

MS-Hochauflösung: berechnet: 530.266839

gefunden: 530.266418

Eliminierungsprodukt 33

 $C_{33}H_{36}O_5$ M = 512 g/mol

1) Darstellung s. Allylalkohol 31

Ausbeute: 32 mg (63 µmol; 45%)

2) Eine Lösung von 12 mg (0.021 mmmol) Acetoxybutadienaddukt **11b** in 2 ml abs. DMF wurde mit 1.3 mg (0.031 mmol; 1.5 eq) LiOH versetzt und 2 h bei 0°C gerührt. Zur Aufarbeitung wurde mit H₂O verdünnt und mit CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, eingeengt und säulenchromatographisch (E/PE 1:2) gereinigt. Das Produkt **33** wurde als leicht gelbliches Öl erhalten.

Ausbeute: 11 mg (20.6 µmol; 98%)

Drehwert (CHCl₃): $[\alpha]_{D}^{20} = -35.2^{\circ} (c = 1.05)$

IR (**Golden Gate ATR**): v = 3038 (w), 2920 (m), 1703 (s), 1669 (s), 1616 (m), 1545 (s), 1515 (vs), 1463 (m), 1443 (m), 1247 (vs), 1180 (vs), 1152 (vs), 1035 (vs) cm⁻¹

¹**H-NMR** (**400 MHz**; **CDCl**₃): $\delta = 0.50$ (1H, d, J = 13 Hz), 0.83 (3H, s), 1.16-1.47 (5H, m), 1.69 (1H, d_{br}, J = 12 Hz), 1.78-1.88 (2H, m), 1.90 (1H, d, J = 13 Hz), 2.20-2.32 (3H, m), 2.35 (1H, dd, J = 1/13 Hz), 2.82 (1H, d, J = 5 Hz), 3.06 (1H, ddd, J = 2/8/18 Hz), 3.66 (2H, ABq, J = 9 Hz), 3.79 (3H, s), 3.90-4.05 (4H, m), 5.97 (1H, d, J = 6 Hz), 6.12-6.18 (1H, m), 6.17 (1H, d, J = 6 Hz), 6.28-6.34 (1H, m), 6.85 (2H, d, J = 9 Hz), 7.12 (1H, dd, J = 3/5 Hz), 7.18 (1H, d, J = 9 Hz) ppm

¹³C-NMR (100 MHz; CDCl₃): $\delta = 15.77$ (q), 21.52 (tr), 22.23 (tr), 23.50 (tr), 25.00 (tr), 28.10 (tr), 30.30 (q), 37.03 (d), 39.21 (d), 41.27 (tr), 41.90 (d), 45.56 (d), 55.05 (d), 60.43 (s), 61.70 (s), 65.05 (tr), 65.89 (tr), 68.94 (s), 108.40 (s), 113.08 (d, 2x), 124.31 (d), 128.13 (d, 2x), 129.72 (s), 131.19 (s), 133.14 (d), 135.64 (d), 138.57 (d), 139.43 (d), 157.84 (s), 198.67 (C=O), 208.79 (C=O) ppm

MS-FAB: m/z (%) = 513 (MH⁺, 5), 512 (M⁺, 4), 511 (69), 447 (9), 427 (5), 391 (9), 307 (6), 289 (5), 273 (23), 240 (100), 219 (24)

Michaeladditionsprodukt 34

 $C_{34}H_{40}O_6$ M = 544 g/mol

Darstellung s. Allylalkohol **31**

Ausbeute: 28 mg (53 µmol; 38%)
Drehwert (CHCl₃): $[\alpha]_{D}^{20} = -37.9^{\circ} (c = 1.40)$

IR (Golden Gate ATR): v = 2920 (s), 1702 (s), 1691 (s), 1614 (m), 1515 (vs), 1462 (m), 1443 (m), 1248 (vs), 1154 (s), 1034 (vs) cm⁻¹

¹**H-NMR** (**400 MHz; CDCl₃**): $\delta = 0.49$ (1H, d, J = 13 Hz), 0.83 (3H, s), 1.15-1.42 (4H, m), 1.51-1.69 (2H, m), 1.76-1.86 (2H, m), 1.96 (1H, tr, J = 14 Hz), 2.11 (1H, dtr, J = 13/4 Hz), 2.23-2.32 (2H, m), 2.37 (1H, d, J = 14 Hz), 2.42 (1H, d, J = 3.6 Hz), 2.76 (1H, d, J = 5.4 Hz), 2.97 (1H, m_c), 3.32 (3H, s), 3.64-3.74 (3H, m), 3.80 (3H, s), 3.91-4.05 (4H, m), 5.94 (1H, d, J = 6 Hz), 6.16 (1H, d, J = 6 Hz), 6.77 (1H, m_c), 6.85 (2H, d, J = 9 Hz), 7.18 (2H, d, J = 9 Hz) ppm

¹³C-NMR (100 MHz; CDCl₃): $\delta = 15.44$ (q), 21.16 (tr), 23.14 (tr), 24.08 (tr), 24.65 (tr), 27.74 (tr), 29.96 (q), 30.81 (tr), 34.17 (d), 40.10 (d), 40.69 (d), 41.21 (tr), 45.53 (d), 54.78 (d), 55.56 (q), 59.99 (s), 61.35 (s), 64.93 (tr), 65.47 (tr), 68.55 (s), 72.00 (d), 108.80 (s), 112.74 (d, 2x), 125.15 (d), 127.89 (d, 2x), 130.88 (s), 134.67 (s), 138.12 (d), 139.10 (d), 157.50 (s), 198.93 (C=O), 208.59 (C=O) ppm

MS-FAB: m/z (%) = 545 (MH⁺, 2), 544 (M⁺, 3), 543 (4), 461 (5), 447 (24), 391 (27), 305 (14), 289 (10), 240 (100)

Siloxydien 36

 $C_{11}H_{20}OSi$

M = 196 g/mol

In einem ausgeheizten Zweihalskolben wurden unter Argon 64 μ l (0.5 mmol) 1-Acetyl-1cyclohexen **35** in 1.5 ml abs. CH₂Cl₂ gelöst und mit 208 μ l (1.5 mmol; 3 eq) abs. Triethylamin versetzt. Nach 10 min Rühren bei RT wurden 145 μ l (0.75 mmol; 1.5 eq) TMS-OTf hinzugespritzt. Nach 1.5 h wurde die Reaktionslösung am Rotationsverdampfer eingeengt und säulenfiltriert (E/PE 1:5). Das Siloxydien **36** wurde als farbloses Öl isoliert.

Ausbeute: 77 mg (0.39 mol; 98%)

¹**H-NMR (400 MHz; CDCl₃):** $\delta = 0.21$ (9H, s), 1.55 (2H, m), 1.63 (2H, m), 2.11 (4H, m), 4.17 (1 H, d, J = 0.6 Hz), 4.33 (1H, d, J = 0.6 Hz), 6.18 (1H, s) ppm

p-Benzochinonaddukt 37

 $C_{30}H_{36}O_4Si$ M = 488 g/mol

Eine Lösung von 106 mg (0.28 mmol) Siloxydien 8 und 33 mg (0.31 mmol; 1.1 eq) p-Benzochinon 39 in 15 ml abs. Toluol wurde bei RT 2 d gerührt. Anschließend wurde das Lösungsmittel entfernt und das Rohprodukt säulenchromatographisch (E/PE 1:5) gereinigt. Man erhielt das p-Benzochinonaddukt 37 als hellgelbes Öl.

Ausbeute: 134 mg (0.28 mmol; 100%)

Spektroskopische Daten s. Lit.¹⁹

Hydrochinonaddukt 38

$$\begin{split} C_{36}H_{54}O_4Si_3\\ M = 634 \text{ g/mol} \end{split}$$

In einem ausgeheizten Zweihalskolben wurden unter Argon 15 μ l (0.124 mmol; 2 eq) 1-Acetyl-1-cyclohexen **35** in 3 ml abs. CH₂Cl₂ gelöst und mit 51 μ l (0.372 mmol; 6 eq) abs. Triethylamin versetzt. Nach 10 min Rühren bei RT wurden 36 μ l (0.186 mmol; 3 eq) TMS-OTf hinzugespritzt. Nach 1.5 h wurden zu der Reaktionslösung 30 mg (0.062 mmol; 1 eq) *p*-Benzochinonaddukt **37** gegeben. Die farblose Lösung färbte sich innerhalb von 2 h langsam dunkelrot. Säulenchromatische Reinigung (E/PE 1:9) lieferte das silylierte Hydrochinon-addukt **38** im 1:0.3-Gemisch mit dem Siloxydien-Zwischenprodukt **36** als farbloses Öl.

Ausbeute: 19 mg (0.030 mmol; 48%) 38

¹**H-NMR (400 MHz; CDCl₃):** $\delta = -0.30$ (9H, s), 0.20 (9H, s), 0.37 (9H, s), 0.95 (3H, s), 1.20-1.31 (1H, m), 1.35-1.44 (3H, m), 1.51-1.68 (2H, m), 1.86 (1H, dtr, J = 4/13 Hz), 2.89 (1H, dd, J = 3/9 Hz), 3.00 (1H, d, J = 4 Hz), 3.09 (1H, dd, J = 4/17 Hz), 3.47 (1H, d, J = 17 Hz), 3.78 (3H, s), 5.94 (1H, d, J = 6 Hz), 6.19 (1H, d, J = 6 Hz), 6.50 (2H, ABq, J = 9 Hz), 6.80 (2H, d, J = 9 Hz), 7.29 (2H, d_{br}, J = 8 Hz) ppm

¹³**C-NMR (100 MHz; CDCl₃):** $\delta = -0.07$ (q), 0.04 (q), 0.34 (q), 1.09 (q), 16.51 (q), 22.11 (tr), 22.73 (tr), 24.88 (tr), 25.44 (tr), 52.47 (d), 55.23 (q), 59.09 (s), 63.77 (s), 66.50 (s), 89.68 (tr), 112.07 (d), 115.54 (d), 115.75 (d), 125.25 (s), 125.33 (d), 129.77 (s), 132.29 (s), 132.64 (d), 133.08 (s), 138.09 (d), 140.83 (s), 144.71 (s), 145.23 (s), 156.58 (s), 157.77 (s) ppm

Silyliertes Hydrochinon 40

 $C_{12}H_{22}O_2Si_2$ M = 254 g/mol

In einem ausgeheizten Zweihalskolben wurden unter Argon 51 µl (0.4 mmol; 2 eq) 1-Acetyl-1cyclohexen **35** in 2 ml abs. CH_2Cl_2 gelöst und mit 167 µl (1.2 mmol; 6 eq) abs. Triethylamin versetzt. Nach 10 min Rühren bei RT wurden 116 µl (0.6 mmol; 3 eq) TMS-OTf hinzugespritzt. Nach 1.5 h wurden zu der Reaktionslösung 22 mg (0.2 mmol; 1 eq) *p*-Benzochinon **39** gegeben. Die farblose Lösung färbte sich unter Erwärmen und Aufschäumen sofort dunkelrot/violett. Säulenchromatographische Reinigung (E/PE 1:5) lieferte das silylierte Hydrochinon **40** im 1:1-Gemisch mit dem Siloxydien-Zwischenprodukt **36** als oranges Öl. Durch Kristallisation konnte die Verbindung **40** in Form eines farblosen Feststoffes isoliert werden.

Ausbeute: 40 mg (0.16 mmol; 79%)

IR (Golden Gate ATR): v = 2962 (m), 1501 (vs), 1465 (m), 1251 (vs), 1222 (vs), 911 (s, br), 827 (vs, br), 752 (s, br) cm⁻¹

¹**H-NMR (400 MHz; CDCl₃):** $\delta = 0.21$ (18H, s), 6.68 (4H, s) ppm

MS (RT): m/z (%) = 255 (MH⁺, 26), 254 (M⁺, 93), 239 (100), 112 (17), 97 (3), 73 (20)

MS-Hochauflösung: berechnet: 254.115837

gefunden: 254.115997

```
Hydrochinonaddukt 41
```

 $C_{17}H_{24}O_3Si$ M = 304 g/mol

Zu einer Lösung von 47 mg (0.24 mmol; 1.2 eq) Siloxydien **36** in 1.5 ml abs. CH_2Cl_2 wurden unter Argon 22 mg (0.20 mmol; 1 eq) *p*-Benzochinon **39** gegeben. Nach 2 h bei RT wurde die dunkelbraune Reaktionslösung am Rotationsverdampfer eingeengt und säulenchromatographisch (E/PE 1:9) gereinigt. Das Addukt **41** wurde als gelb-oranges Öl isoliert.

Ausbeute: 6 mg (20 µmol; 10%)

IR (**Golden Gate ATR**): v = 3392 (m, br), 2939 (m), 1725 (m), 1650 (s), 1571 (s), 1448 (m), 1315 (m), 1251 (s), 1045 (m), 842 (vs) cm⁻¹

¹**H-NMR (400 MHz; CDCl₃):** $\delta = 0.22$ (9H, s), 1.04 (1H, ddtr, J = 3/12/12 Hz), 1.25 (1H, m_c), 1.50-1.62 (3H, m), 1.79 (2H, m_c), 2.16 (1H, m_c), 2.86 (1H, m_c), 3.04 (2H, dtr, J = 6/2 Hz), 3.19-3.27 (1H, m), 6.67 (1H, d, J = 10 Hz), 6.69 (1H, d, J = 10 Hz) ppm

MS (80 °C): m/z (%) = (M⁺-2, 4), 301 (3), 300 (14), 285 (7), 228 (6), 213 (5), 147 (100), 75 (34)

Siloxydien 42

 $C_{14}H_{26}OSi$

$$M = 238 \text{ g/mol}$$

In einem ausgeheizten Zweihalskolben wurden unter Argon 64 μ l (0.5 mmol) 1-Acetyl-1cyclohexen **35** in 1.5 ml abs. CH₂Cl₂ gelöst und mit 208 μ l (1.5 mmol; 3 eq) abs. Triethylamin versetzt. Nach 10-minütigem Rühren bei RT wurden 172 μ l (0.75 mmol; 1.5 eq) TBDMS-OTf hinzugespritzt. Nach 1.5 h wurde die Reaktionslösung am Rotationsverdampfer eingeengt und durch Säulenfiltration (E/PE 1:5) gereinigt. Das Siloxydien **42** wurde als farbloses Öl isoliert.

Ausbeute: 119 mg (0.5 mmol; 100%)

IR (Golden Gate ATR): v = 2929 (s), 2858 (m), 1646 (w), 1593 (m), 1287 (s), 1258 (s), 1015 (m), 831 (s) cm⁻¹

¹**H-NMR** (**400 MHz**; **CD**₂**Cl**₂): $\delta = 0.16$ (6H, s), 0.96 (9H, s), 1.57 (2H, m), 1.65 (2H, m), 2.13 (4H, m), 4.17 (1H, d_{br}, J = 1 Hz), 4.33 (1H, m), 6.23 (1H, s_{br}) ppm

¹³C-NMR (100 MHz; CD₂Cl₂): $\delta = -4.84$ (q, 2x), 18.30 (s), 22.28 (tr), 22.91 (tr), 25.11 (tr), 25.55 (tr), 25.60 (q), 25.75 (q, 2x), 89.40 (tr), 125.42 (d), 133.32 (s), 156.97 (s) ppm MS (RT): m/z (%) = 238 (M⁺, 3), 223 (8), 182 (65), 167 (21), 147 (21), 75 (100)

Benzochinonaddukte 43/44

 $C_{44}H_{62}O_5Si_2$ M = 726 g/mol

Eine Lösung von 20 mg (0.04 mmol) *p*-Benzochinon **37** und 14 μ l (0.06 mmol; 1.5 eq) Siloxydien **42** in 1.5 ml abs. CH₂Cl₂ wurde in einen Teflonschlauch eingeschweißt und 2 d

einem Druck von 14 kbar ausgesetzt. Anschließend wurde das Lösungsmittel entfernt und das Rohprodukt säulenchromatographisch (E/PE 1:10) gereinigt. Man erhielt das nicht trennbare Regioisomerengemisch 43/44 als farbloses Öl.

Η

റ

OCH₃

0

Η

Ausbeute: 29 mg (0.04 mmol; 100%)

Cyclopentenonaddukt 45

Darstellung und spektroskopische Daten s. Lit.²⁰

Silylenoladdukt 46

Eine Lösung von 90 mg (0.23 mmol) Cyclopentenonaddukt **45** und 83 mg (0.35 mmol; 1.5 eq) Siloxydien 42 in 2 ml abs. CH₂Cl₂ wurde in einen Teflonschlauch eingeschweißt und 2 d einem Druck von 14 kbar ausgesetzt. Anschließend wurde das Lösungsmittel entfernt und das

 $C_{40}H_{54}O_4Si$ M = 626 g/mol Rohprodukt säulenchromatographisch (E/PE 1:4) gereinigt. Man erhielt das Silylenoladdukt **46** als farbloses Öl.

Ausbeute: 130 mg (0.21 mmol; 91%)

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = -7.6^{\circ} (c = 1.30)$

IR (Golden Gate ATR): v = 2925 (m), 1734 (m), 1708 (m), 1614 (w), 1515 (s), 1249 (vs), 1179 (vs) cm⁻¹

¹**H-NMR (400 MHz; CD₂Cl₂):** $\delta = 0.09$ (6H, s, 2x), 0.48 (1H, d_{br}, J = 13 Hz), 0.74 (3H, s), 0.92 (9H, s, 2x), 1.10-1.46 (7H, m), 1.48-1.58 (1H, m), 1.68 (2H, d_{br}, J = 10.5 Hz), 1.78-1.92 (5H, m), 1.96-2.04 (1H, m), 2.13-2.21 (3H, m), 2.22-2.30 (1H, m), 2.42-2.55 (3H, m), 2.85 (1H, d_{br}, J = 15 Hz), 2.92 (1H, dd, J = 3/9 Hz), 3.63 (1H, d, J = 9 Hz), 3.78 (3H, s), 5.94 (1H, d, J = 6 Hz), 6.20 (1H, d, J = 6 Hz), 6.84 (2H, d, J = 9 Hz), 7.14 (2H, d, J = 9 Hz) ppm

¹³C-NMR (100 MHz; CD₂Cl₂): $\delta = -4.09$ (q), -3.91 (q), 15.22 (q), 18.15 (s), 21.66 (tr), 23.54 (tr), 25.52 (tr), 25.68 (q, 3x), 26.06 (tr), 26.21 (tr), 26.84 (tr), 28.64 (tr), 30.02 (tr), 32.30 (tr), 37.42 (d), 38.53 (d), 41.41 (d), 43.92 (tr), 45.59 (d), 46.50 (d), 46.99 (d), 55.21 (q), 56.17 (d), 60.70 (s), 61.05 (s), 67.28 (s), 113.12 (d, 2x), 117.24 (s), 128.14 (d, 2x), 131.41 (s), 138.14 (d), 139.43 (s), 140.10 (d), 158.13 (s), 210.76 (C=O), 218.32 (C=O) ppm MS-FAB: m/z (%) = 627 (MH⁺, 3), 626 (M⁺, 4), 625 (8), 387 (13), 263 (6), 240 (100)

Cyclohexanonaddukt 47

 $\begin{array}{l} C_{34}H_{40}O_4\\\\ M=512 \text{ g/mol} \end{array}$

1) Eine Lösung von 27 mg (0.07 mmol) Cyclopentenonaddukt **45** und 25 mg (0.10 mmol; 1.5 eq) Siloxydien **42** in 1.5 ml abs. CH₂Cl₂ wurde in einen Teflonschlauch eingeschweißt und 2 d einem Druck von 14 kbar ausgesetzt. Anschließend wurde die Reaktionslösung mit TBAF (1 M in THF) versetzt und 10 min bei RT gerührt. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und das Rohprodukt säulenchromatographisch (E/PE 1:1) gereinigt. Man erhielt 84% des Cyclohexanonaddukts **47** als farbloses Öl. Als Nebenprodukt wurden 8% des Addukts **48** isoliert.

Ausbeute: 30 mg (59 µmol; 84%)

2) Darstellung s. Addukt 48

Ausbeute: 35 mg (69 µmol; 41%)

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = -58.0^{\circ} (c = 0.10)$

IR (Golden Gate ATR): v = 2921 (m), 2856 (m), 1726 (m), 1704 (s, br), 1613 (w), 1515 (s), 1248 (s), 1034 (s) cm⁻¹

¹**H-NMR (400 MHz; CD₂Cl₂):** $\delta = 0.48$ (1H, d_{br}, J = 13 Hz), 0.77 (3H, s), 1.09-1.38 (8H, m), 1.39-1.49 (2H, m), 1.64-1.73 (2H, m), 1.74-1.93 (4H, m), 1.96-2.10 (1H, m), 2.11-2.21 (4H, m), 2.22-2.38 (2H, m), 2.48-2.58 (2H, m), 3.01 (1H, dd, J = 3/9.4 Hz), 3.67 (1H, d, J = 9.4 Hz), 3.79 (3H, s), 5.93 (1H, d, J = 6 Hz), 6.19 (1H, d, J = 6 Hz), 6.85 (2H, d, J = 9 Hz), 7.13 (2H, d, J = 9 Hz) ppm

¹³**C-NMR (100 MHz; CD₂Cl₂):** $\delta = 15.26$ (q), 21.63 (tr), 23.49 (tr), 25.26 (tr), 25.43 (tr), 26.37 (tr), 26.50 (tr), 28.52 (tr), 29.30 (tr), 41.56 (d), 41.62 (d), 42.25 (d), 43.41 (tr), 44.42 (tr), 45.04 (d), 47.93 (d), 48.49 (d), 50.19 (d), 55.21 (q), 56.10 (d), 60.72 (s), 60.88 (s), 67.37 (s), 113.14 (d, 2x), 128.10 (d, 2x), 131.35 (s), 138.01 (d), 140.37 (d), 158.15 (s), 209.94 (C=O), 211.10 (C=O); 218.44 (C=O) ppm

MS (120 °C): m/z (%) = 513 (MH⁺, 1), 512 (M⁺, 1), 307 (6), 272 (22), 240 (100), 149 (52)

MS-Hochauflösung: berechnet: 512.292660

gefunden: 512.291748

Cyclohexanonaddukt 48

 $C_{34}H_{40}O_4$ M = 512 g/mol

 Zur Spaltung des Silylenolethers wurden 105 mg (0.168 mmol) Addukt 46 in 10 ml Aceton gelöst und mit Amberlyst 15 versetzt. Nach 2.5 h bei RT wurde die Suspension filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Säulenchromatographische Reinigung (E/PE 2:1) lieferte 39% des Addukts 48 als farbloses Öl neben 41% des Addukts 47.

Ausbeute: 34 mg (66 µmol; 39%)

2) Darstellung s. Addukt 47

Ausbeute: 29 mg (69 µmol; 8%)

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = -9.2^{\circ} (c = 1.70)$

IR (Golden Gate ATR): v = 2922 (s), 1732 (s), 1702 (vs), 1613 (m), 1514 (s), 1444 (m), 1248 (vs), 1032 (s) cm⁻¹

¹**H-NMR** (**400 MHz**; **CD**₂**Cl**₂): $\delta = 0.47$ (1H, d, J = 13 Hz), 0.80 (3H, s), 1.12 (1H, trtr, J = 3/13 Hz), 1.17-1.38 (4H, m), 1.39-1.51 (2H, m), 1.64-1.72 (2H, m), 1.73-1.90 (4H, m), 1.93 (1H, d, J = 13 Hz), 2.03-2.12 (1H, m), 2.13-2.19 (2H, m), 2.29 (1H, dd, J = 13/16 Hz), 2.34-2.44 (3H, m), 2.45-2.48 (1H, m), 2.49-2.59 (2H, m), 2.92 (1H, dd, J = 9.5/9.5 Hz), 3.20 (1H, dd, J = 2/9 Hz), 3.64 (1H, d, J = 9 Hz), 3.79 (3H, s), 5.94 (1H, d, J = 6 Hz), 6.18 (1H, d, J = 6 Hz), 6.84 (2H, d, J = 9 Hz), 7.14 (2H, d, J = 9 Hz) ppm

¹³C-NMR (100 MHz; CD₂Cl₂): $\delta = 15.69$ (q), 21.97 (tr), 22.44 (tr), 23.82 (tr), 25.53 (tr), 26.06 (tr), 26.61 (tr), 28.01 (tr), 28.74 (tr), 36.35 (d), 36.67 (d), 40.82 (d), 41.84 (tr), 42.39 (d), 45.35 (tr), 46.87 (d), 48.16 (d), 49.01 (d), 55.55 (q), 55.72 (d), 60.66 (s), 61.30 (s), 68.38 (s), 113.45 (d, 2x), 128.55 (d, 2x), 131.73 (s), 138.64 (d), 140.44 (d), 158.49 (s), 209.82 (C=O), 211.54 (C=O), 218.02 (C=O) ppm

MS (180 °**C):** m/z (%) = 512 (M⁺, 1), 272 (16), 240 (100), 225 (14), 197 (12), 148 (8), 121 (7)

MS-Hochauflösung: berechnet: 512.292660 gefunden: 512.293030

Cyclohexenon 49

 $\begin{array}{l} C_{17}H_{20}O_{3}\\\\ M=272 \ g/mol \end{array}$

33 mg (64 μ mol) Addukt **47** wurden in einer Pyrolyseapparatur bei $6 \cdot 10^{-2}$ mbar 15 min bei RT bis 170°C und 5 min bei 170°C erhitzt, verdampft und retrogespalten. Das Hydrindandien **2b** wurde durch ein auf 350 °C erhitztes Pyrolyserohr geleitet und schied sich in der Kühlfalle ab. Das im Pyrolysekolben verbliebene Retroprodukt **49** wurde nach Abkühlen und Belüften der Apparatur mit Methylenchlorid eluiert. Das Lösungsmittel wurde am Rotations-verdampfer entfernt. Säulenchromatographische Reinigung (E/PE 1:1) lieferte das mit den Nebenprodukten **50**, **51** und **52** verunreinigte Retoprodukt **49** als gelbes Öl.

Gesamt-Ausbeute: 15 mg (55 µmol; 86%)

IR (Golden Gate ATR): v = 2922 (m), 1705 (vs, br), 1681 (vs, br), 1513 (w), 1448 (m), 1422 (m), 1242 (m), 1130 (m), 1052 (m) cm⁻¹

¹**H-NMR (400 MHz; CD₂Cl₂):** $\delta = 3.33$ (1H, ddd, J = 2.5/5/8 Hz), 6.06 (1H, dd, J = 2.4/10 Hz), 6.88 (1H, dd, J = 5/10 Hz) ppm

MS (70 °**C):** m/z (%) = 272 (M⁺, 2), 254 (5), 239 (8), 220 (9), 205 (100), 149 (27), 130 (5), 97 (4), 84 (64), 69 (7)

MS-Hochauflösung: berechnet: 272.141245

gefunden: 272.140381

N-Phenylcarbamat-Lactam 54.II

$$C_{12}H_{13}O_3N$$
$$M = 219 \text{ g/mol}$$

Darstellung und spektroskopische Daten s. Lit.³⁴

Weitere Daten:

¹**H-NMR** (**400 MHz; CDCl₃**): δ = 1.86-1.97 (4H, m), 2.61 (2H, tr, J = 7 Hz), 3.85 (2H, tr, J = 6 Hz), 7.16-7.20 (2H, m), 7.22-7.30 (1H, m), 7.35-7.45 (2H, m) ppm

Enolphosphonat 54.III

 $\begin{array}{l} C_{24}H_{22}O_6NP\\ M=451 \ g/mol \end{array}$

In einem ausgeheizten Zweihalskolben wurden unter Argon 65 mg (0.30 mmol; 1 eq) Phenylcarbamat **54.II** in 5 ml abs. THF gelöst und mit 93 μ l (0.45 mmol; 1.5 eq) Phosphorsäurediphenylesterchlorid versetzt. Bei -78 °C wurden 1.4 ml (0.36 mmol; 1.2 eq) KHMDS-Lsg. (0.5 M in Toluol) hinzugespritzt. Nach 3 h bei -78 °C wurde die Reaktion mit 5 ml 1-molarer wäßriger NH₃-Lsg. gequencht. Nach 10-minütigem Rühren bei RT wurde eine Phasentrennung durchgeführt und die wäßrige Phase mit Ether extrahiert. Die über MgSO₄ getrockneten, vereinigten organischen Phasen wurden am Rotationsverdampfer eingeengt und säulenchromatographisch (E/PE 1:1; 2% NH₃) gereinigt. Das Phosphonat **54.III** wurde als hellgelbes Öl erhalten.

Ausbeute: 135 mg (0.3 mmol; 99%)

Darstellung und spektroskopische Daten s. Lit.³⁴

6-Ring-Dien 54

676 mg (1.50 mmol; 1 eq) Phosphonat **54.III** wurden in einem ausgeheizten Kolben unter Argon in 40 ml abs. THF gelöst und mit 650 μ l (2.21 mmol; 1.5 eq) Tributylvinylzinn, 130 mg (3.08 mmol; 2 eq) LiCl und 32 mg (29 μ mol; 0.02 eq) Pd(PPh₃)₄ versetzt. Die Reaktionslösung wurde für 8 h unter Rückfluß gekocht. Anschließend wurde das Lösungsmittel am Rotationsverdampfer entfernt. Nach einer kurzen Säulenfiltration zur Entfernung der festen Pd-Verbindungen wurden zunächst säulenchromatographisch (E/PE 1:20) die unpolaren Zinnverbindungen abgetrennt und dann das Dien **54** als farbloses Öl von der Säule (E/PE 1:5) eluiert.

Ausbeute: 280 mg (1.22 mmol; 82%)

IR (CHCl₃): v = 2951 (m), 1713 (vs), 1644 (m), 1594 (m), 1494 (m), 1384 (vs), 1365 (vs), 1187 (vs) cm⁻¹

¹**H-NMR (400 MHz; CDCl₃):** $\delta = 1.87 - 1.96$ (2H, m), 2.24-2.32 (2H, m), 3.72 (2H, tr, J = 5.5 Hz), 5.02 (1H, dd, J = 0.5/11 Hz), 5.34 (1H, dd, J = 0.6/17 Hz), 5.50 (1H, tr, J = 4 Hz), 6.34 (1H, ddd, J = 0.6/11/17 Hz), 7.09-7.14 (2H, m), 7.16-7.21 (1H, m), 7.31-7.37 (2H, m) ppm

¹³**C-NMR (100 MHz; CDCl₃):** δ = 23.19 (tr), 26.82 (tr), 27.82 (tr), 111.86 (tr), 121.46 (d, 2x), 125.29 (d, 2x), 129.20 (d, 2x), 134.80 (d), 138.45 (s), 151.17 (s) ppm

MS (RT): m/z (%) = 229 (59, M⁺), 136 (59), 108 (100)

N-Phenylcarbamat 55.II

 $C_{13}H_{15}O_3N$ M = 233 g/mol

In einem ausgeheizten Zweihalskolben wurden unter Argon 1.13 g (10 mmol; 1 eq) ε -Caprolactam **55.I** in 50 ml abs. THF gelöst und bei -78 °C mit 7.4 ml (11 mmol; 1.1 eq) BuLi (1.5 M) versetzt. Nach 30 min bei -78 °C wurden 1.39 ml (11 mmol; 1.1 eq) Chlorameisensäurephenylester hinzugespritzt. Nach 6 h bei -78 °C ließ man die Reaktionslösung über Nacht auf RT kommen. Zur Aufarbeitung wurde mit ges. NaCl-Lsg. gequencht und mit Ether extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, am Rotationsverdampfer eingeengt und einer schnellen Säulenchromatographie (E/PE 1:1) unterzogen. Das Phenylcarbamat **55.II** wurde als hellgelbes Öl erhalten.

Ausbeute: 1.55 g (6.65 mmol; 67%)

Darstellung und spektroskopische Daten s. Lit.³⁴

Enolphosphonat 55.III

 $C_{25}H_{24}O_6NP$ M = 465 g/mol

Darstellung und spektroskopische Daten s. Lit.³⁴ und Verbindung **54.III**

Weitere Daten:

Ausbeute: 634 mg (1.36 mmol; 63%); hellgelbes Öl

7-Ring-Dien 55

 $\begin{array}{l} C_{15}H_{17}O_2N\\ M=243 \ g/mol \end{array}$

Darstellung s. Lit.³⁴ und 6-Ring-Dien 54

Ausbeute: 244 mg (1.00 mmol; 71%); farbloses Öl

IR (Golden Gate ATR): v = 2929 (m), 1721 (vs), 1648 (w), 1595 (w), 1493 (m), 1391 (s), 1203 (vs) cm⁻¹

¹**H-NMR** (**400 MHz**; **CDCl**₃): $\delta = 1.26-1.32$ (2H, m), 1.60-1.69 (2H, m), 1.86-1.99 (2H, m), 2.26-2.34 (2H, m), 5.12 (1H, d, J = 10.7 Hz), 5.29 (1H, d, J = 17 Hz), 5.88 (1H, tr, J = 7 Hz), 6.35 (1H, dd, J = 10.5/17 Hz), 7.04-7.09 (2H, m), 7.13-7.19 (1H, m), 7.29-7.35 (2H, m) ppm

¹³**C-NMR (100 MHz; CDCl₃):** $\delta = 17.54$ (tr), 26.85 (tr), 27.85 (tr), 29.62 (tr), 112.41 (tr), 115.30 (d), 121.65 (d, 2x), 125.19 (d), 129.14 (d, 2x), 133.89 (d), 143.43 (s), 151.42 (s), 153.12 (C=O) ppm

MS (70 °**C):** m/z (%) = 243 (M⁺, 93), 213 (39), 177 (61), 150 (100), 122 (93), 108 (80)

Enaminbenzochinonaddukt 56

 $C_{44}H_{51}O_6NSi$ M = 717 g/mol

1) Eine Lösung von 120 mg (0.25 mmol) *p*-Benzochinonaddukt **37** und 85 mg (0.37 mmol; 1.5 eq) Dien **54** in 2 ml abs. Toluol wurde in einen Teflonschlauch eingeschweißt und 28 d einem Druck von 14 kbar ausgesetzt. Anschließend wurde das Lösungsmittel entfernt und das Rohprodukt säulenchromatographisch (E/PE 1:4 \rightarrow 1:2) gereinigt. Man erhielt das Addukt **56** als farbloses Öl. Weiterhin wurden 17% Nebenprodukt **58** sowie 16% Edukt **37** isoliert.

Ausbeute: 104 mg (0.145 mmol; 58%)

2) Eine Lösung von 35 mg (0.072 mmol) *p*-Benzochinonaddukt **37** und 17 mg (0.07 mmol) Dien **54** in 1 ml abs. CH₂Cl₂ wurde in einen Teflonschlauch eingeschweißt und 7 d einem Druck von 14 kbar ausgesetzt. Anschließend wurde das Lösungsmittel entfernt und das Rohprodukt säulenchromatographisch (E/PE $1:1 \rightarrow 2:1$) gereinigt. Man erhielt das Addukt **56** zu 24% als farbloses Öl neben 53% des Doppelbindungsisomer **57**. Weiterhin wurden 10% Nebenprodukt **58** isoliert.

Ausbeute: 12 mg (0.017 mmol; 24%)

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = -6.0^{\circ} (c = 0.10)$

IR (CHCl₃): v = 2929 (s), 1711 (vs), 1652 (m), 1612 (m), 1514 (s), 1398 (s), 1252 (s), 1198 (s), 1180 (s) cm⁻¹

¹**H-NMR (400 MHz; CD₂Cl₂):** $\delta = -0.18$ (9H, s), 0.38 (1H, d br, J = 12.7 Hz), 0.79 (3H, s), 1.12-1.25 (1H, m), 1.26-1.32 (2H, m), 1.33-1.41 (1H, m), 1.42-1.52 (1H, m), 1.53-1.71 (4H, m), 1.74-1.85 (2H, m), 2.00 (1H, dd, J = 9/18 Hz), 2.17 (1H, dd, J = 7/11 Hz), 2.27 (1H, ddd, J = 3.5/3.5/17.5 Hz), 2.44-2.51 (1H, m), 2.54 (1H, d, J = 11 Hz), 2.70 (1H, dd br, J = 3.5/17.5 Hz), 2.97 (1H, tr br, J = 11 Hz), 3.03-3.11 (2H, m), 3.46 (1H, ddd, J = 2.5/7.5/7.5 Hz), 3.55 (1H, dd, J = 7.5/7.5 Hz), 3.78 (3H,s), 4.26 (1H, d br, J = 14 Hz), 5.85 (1H, d, J = 6 Hz), 5.86-5.90 (1H, m), 6.17 (1H, d, J = 6 Hz), 6.81 (2H, d, J = 9 Hz), 7.09 (2H, dd, J = 1/8 Hz), 7.14-7.21 (1H,m), 7.22 (2H, d, J = 9 Hz), 7.37 (2H, dtr, J = 1/8 Hz) ppm

NOE-Experiment (CD₂Cl₂):
$$2.17 (c)$$
 \Rightarrow $2.70 (i, 2\%); 3.03-3.11 (d, 6\%); 5.85$ (s. Abbildung 8)(j, 6\%); 6.17 (k, 1%) $2.5(g)/(2.54 (b))$ \Rightarrow $0.79 (a, 2\%); 3.46 (e, 1\%);$ $3.55 (f, 11\%)$

$$\begin{array}{rcl} 2.54 \ (b)/(2.5 \ (g)) & \Rightarrow & 0.79 \ (a, 8\%); \ 2.17 \ (c, 13\%); \ 3.46 \ (e, \\ & 7\%); \ 3.55 \ (f, 4\%) \\ 3.46 \ (e) & \Rightarrow & 2.27 \ (h, 6\%); \ 2.54 \ (b, 10\%); \ 2.70 \ (i, \\ & 2\%); \ 3.55 \ (f, 3\%) \end{array}$$

- 3.55 (f) \Rightarrow 2.27 (h, 1%); 2.44-2.51 (g, 17%); 3.46 (e, 2%)
- 6.17 (k) \Rightarrow 2.17 (c, 1%); 5.85 (j, 8%); 7.14-7.21 (-OPh, 9%)

¹³C-NMR (100 MHz; CD₂Cl₂):δ = 0.18 (q, 3x), 16.30 (q), 21.36 (tr), 21.70 (tr), 23.64 (tr), 25.26 (tr), 25.79 (tr), 26.92 (tr), 28.70(tr), 29.32 (tr), 36.04 (d), 40.86 (d), 47.27 (tr), 48.25 (d), 51.80 (d), 53.27 (d), 55.24 (q), 58.92 (d), 61.94 (s), 68.26 (s), 102.55 (d), 112.45 (d), 119.92 (d), 120.54 (s), 121.84 (d, 2x), 125.23 (d), 129.24 (d, 2x), 129.73 (s), 134.43 (d), 135.18 (d), 135.92 (s), 141.76 (s), 151.76 (s), 152.90 (s), 158.18 (C=O), 207.71 (C=O), 211.98 (C=O) ppm

Enaminbenzochinonaddukt 57

 $C_{44}H_{51}O_6NSi \label{eq:masses}$ $M=717 \ g/mol$

Eine Lösung von 35 mg (0.072 mmol) *p*-Benzochinonaddukt **37** und 17 mg (0.07 mmol) Dien **54** in 1 ml abs. CH_2Cl_2 wurde in einen Teflonschlauch eingeschweißt und 7 d einem Druck von 14 kbar ausgesetzt. Anschließend wurde das Lösungsmittel entfernt und das Rohprodukt säulenchromatographisch (E/PE 1:1 \rightarrow 2:1) gereinigt. Man erhielt das isomerisierte Addukt **57** zu 53% als farbloses Öl. Weiterhin wurden das nicht-isomerisierte Addukt **56** zu 24%, sowie ein Nebenprodukt **58** zu 10% isoliert.

Ausbeute: 27 mg (38 µmol; 53%)

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = -99.6^{\circ} (c = 0.50)$

IR (Golden Gate ATR): v = 2923 (m), 1710 (s), 1614 (w), 1515 (m), 1495 (m), 1377 (m), 1248 (s), 1202 (s), 1178 (s) cm⁻¹

¹**H-NMR (400 MHz; CDCl₃):** $\delta = 0.13$ (9H, s), 0.51 (1H, d br, J = 13 Hz), 0.69 (3H, s), 0.78-0.89 (1H, m), 1.01-1.17 (2H, m), 1.18-1.31 (1H, m), 1.32-1.43 (1H, m), 1.46-1.60 (2H, m), 1.64-1.91 (4H, m), 2.01 (2H, dd, J = 8/17.5 Hz), 2.34-2.46 (1H, m), 2.54 (1H, dd, J = 5/12 Hz), 2.71 (1H, dd, J = 10/12 Hz), 2.88 (1H, dd, J = 2/17.5 Hz), 2.94-3.06 (1H, m), 3.24-3.42 (3H, m), 3.62-3.67 (1H, m), 3.66 (1H, d, J = 10 Hz), 3.77 (3H, s), 3.96 (1H, dtr, J = 12.5/5 Hz), 5.96 (1H, d, J = 6 Hz), 6.21 (1H, d, J = 6 Hz), 6.84 (2H, d, J = 9 Hz), 7.08 (2H, dd, J = 1/8.5 Hz), 7.11 (2H, d, J = 9 Hz), 7.19 (1H, tr, J = 7.5 Hz), 7.35 (2H, tr, J = 7.5 Hz) ppm

¹³C-NMR (100 MHz; CDCl₃): $\delta = 1.32$ (q, 3x), 15.03 (q), 21.03 (tr), 22.13 (tr), 23.18 (tr), 23.36 (tr), 25.11 (tr), 25.57 (tr), 28.60 (tr), 29.69 (tr), 36.26 (tr), 43.37 (d), 45.03 (tr), 46.69 (d), 53.39 (d), 54.10 (d), 54.95 (d), 55.17 (q), 59.92 (s), 60.82 (s), 65.73 (s), 101.85 (s), 113.31 (d, 2x), 115.62 (s), 121.53 (d, 2x), 125.55 (d), 127.86 (d, 2x), 129.35 (d, 2x), 130.47 (s), 136.23 (s), 136.95 (d), 139.66 (d), 146.06 (s), 150.96 (s), 152.59 (s), 158.05 (C=O), 208.33 (C=O), 208.57 (C=O) ppm

MS-FAB: m/z (%) = 718 (MH⁺, 100), 478 (10), 240 (54), 165 (10)

Addukt 59

Eine Lösung von 97 mg (0.135 mmol) Addukt **56** in 3 ml CH_2Cl_2 wurde mit CSA versetzt und 10 min bei RT gerührt. Die Reaktionslösung wurde mit ges. NaHCO₃-Lsg. neutralisiert und mit CH_2Cl_2 extrahiert. Anschließend wurde über MgSO₄ getrocknet und das Lösungsmittel entfernt. Man erhielt das Addukt **59** als gelbes Öl.

Ausbeute: 87 mg (135 µmol; 100%)

IR (Golden Gate ATR): v = 2925 (m), 1706 (vs), 1613 (w), 1595 (w), 1515 (m), 1249 (s), 1178 (vs) cm⁻¹

¹**H-NMR (400 MHz; CD₂Cl₂):** $\delta = 0.46$ (1H, d, J = 13 Hz), 0.71 (3H, s), 1.03-1.23 (4H, m), 1.24-1.33 (1H, m), 1.34-1.42 (1H, d br, J = 12 Hz), 1.48-1.64 (2H, m), 1.65-1.81 (2H, m), 1.82-1.91 (2H, m), 1.98 (2H, dd, J = 7.8/17.6 Hz), 2.32-2.44 (2H, m), 2.56 (1H, dd, J = 5/12 Hz), 2.74 (1H, dd, J = 9.6/11.6 Hz), 2.84 (1H, dd, J = 2.4/17.4 Hz), 2.92-3.04 (1H, m), 3.28-3.39 (2H, m), 3.66 (1H, d, J = 9.7 Hz), 3.63-3.70 (1H, m), 3.78 (3H, s), 3.95 (1H, dtr, J = 13/5 Hz), 6.00 (1H, d, J = 6 Hz), 6.17 (1H, d, J = 6 Hz), 6.85 (2H, d, J = 9 Hz), 7.10 (2H, dd, J = 1/8.6 Hz), 7.15 (2H, d, J = 9 Hz), 7.22 (1H, tr, J = 7.4 Hz), 7.38 (2H, dd, J = 7.4/8.4 Hz) ppm

¹³C-NMR (100 MHz; CD₂Cl₂): $\delta = 15.24$ (q), 21.48 (tr), 22.50 (tr), 23.64 (tr), 23.77 (tr), 25.48 (tr), 25.45 (tr), 25.95 (tr), 29.10 (tr), 36.86 (tr), 43.78 (d), 45.43 (tr), 45.45 (d), 46.89 (d), 53.69 (d), 54.53 (d), 55.41 (d), 55.54 (q), 60.46 (s), 61.18 (s), 66.29 (s), 113.52 (d, 2x), 116.35 (s), 122.05 (d, 2x), 125.78 (d), 128.42 (d, 2x), 129.65 (d, 2x), 131.15 (s), 136.38 (s), 137.68 (d), 139.72 (d), 151.64 (s), 152.82 (s), 158.59 (C=O), 208.83 (C=O), 209.10 (C=O), 210.32 (C=O) ppm

MS-FAB: m/z (%) = 646 (MH⁺, 37), 645 (M⁺, 24), 644 (51), 515 (33), 489 (27), 406 (67), 386 (23), 312 (22), 291 (100)

Retroprodukt 60

$C_{24}H_{23}O_5N$ M = 405 g/mol

83 mg (129 µmol) Addukt **59** wurden in einer Pyrolyseapparatur bei $6 \cdot 10^{-2}$ mbar innerhalb von 10 min von RT auf 150 °C und weitere 3 min bei 150 °C - 170 °C erhitzt, verdampft und retrogespalten. Das Hydrindandien **2b** wurde durch ein auf 350 °C erhitztes Pyrolyserohr geleitet und schied sich in der Kühlfalle ab. Das im Pyrolysekolben verbliebene rotorange Öl wurde nach Abkühlen und Belüften der Apparatur mit Methylenchlorid eluiert. Das Lösungsmittel wurde am Rotationsverdampfer entfernt. Säulenchromatographische Reinigung (E/PE 4:1) lieferte das Retroprodukt **60** als rotes Öl.

Ausbeute: 37 mg (91 µmol; 71%)

IR (Golden Gate ATR): v = 3367 (w), 2948 (w), 1689 (s), 1633 (m), 1493 (m), 1183 (vs) cm⁻¹

¹**H-NMR (400 MHz; Aceton-d₆):** δ = 1.91 (2H, dtr, J = 12.4/6 Hz), 2.47 (2H, tr, J = 7 Hz), 2.52 (2H, dd, J = 7/9 Hz), 2.70-2.79 (4H, m), 3.08 (2H, tr, J = 7 Hz), 3.76 (2H, tr, J = 6 Hz), 3.49 (2H, s), 6.88 (1H, s), 7.01 (1H, s), 7.18-7.25 (3H, m), 7.36-7.43 (2H, m) ppm

¹³**C-NMR (100 MHz; Aceton-d₆):** δ = 23.34 (tr), 24.02 (tr), 24.67 (tr), 26.82 (tr), 28.72 (tr), 38.62 (tr), 39.15 (tr), 46.61 (tr), 122.35 (s), 122.59 (d, 2x), 122.69 (s), 122.80 (s), 124.35 (s),

125.11 (s), 126.00 (d), 130.04 (d, 2x), 135.24 (s), 144.32 (s), 144.99 (s), 152.53 (C=O), 153.05 (s), 209.71 (C=O) ppm

MS (200 °C): m/z (%) = 405 (M⁺, 100), 322 (11), 285 (37), 122 (18), 105 (25)

MS-Hochauflösung: berechnet: 405.157623

gefunden: 405.157318

Enaminaddukt 61

 $\begin{array}{l} C_{40}H_{43}O_5N\\ M=617 \ g/mol \end{array}$

Eine Lösung von 19 mg (48 μ mol) Cyclopentenonaddukt **45** und 11 mg (48 μ mol) Dien **54** in 0.8 ml abs. CH₂Cl₂ wurde in einen Teflonschlauch eingeschweißt und 5 d einem Druck von 14 kbar ausgesetzt. Anschließend wurde das Lösungsmittel entfernt und das Rohprodukt säulenchromatographisch (E/PE 1:1) gereinigt. Man erhielt das Addukt **61** als farbloses Öl.

Ausbeute: 23 mg (37 µmol; 78%)

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = -12.0^{\circ} (c = 0.25)$

IR (CHCl₃): v = 2928 (m), 1708 (s), 1614 (w), 1594 (w), 1516 (m), 1398 (m), 1250 (m), 1182 (m) cm⁻¹

¹**H-NMR (400 MHz; CD₂Cl₂):** $\delta = 0.46$ (1H, d, J = 13 Hz), 0.76 (3H, s), 1.19-1.39 (5H, m), 1.55-1.70 (2H, m), 1.79 (2H, d, J = 13 Hz), 1.91 (1H, dtr, J = 13/3.4 Hz), 2.03-2.20 (5H, m), 2.25-2.42 (3H, m), 2.59-2.71 (2H, m), 2.98 (1H, dd, J = 3/9.4 Hz), 3.07-3.21 (1H, m), 3.64 (1H, d, J = 9.4 Hz), 3.78 (3H, s), 4.12 (1H, d br, J = 13 Hz), 5.86 (1H, s br), 5.92 (1H, d, J = 14 Hz), 5.92 (1

6 Hz), 6.16 (1H, d, J = 6 Hz), 6.84 (2H, d, J = 9 Hz), 7.08 (2H, dd, J = 1/8.5 Hz), 7.13 (2H, d, J = 9 Hz), 7.20 (1H, tr, J = 7.5 Hz), 7.36 (2H, dtr, J = 1/7.5 Hz) ppm

NOE-Experiment (CD₂Cl₂): $2.98 (c) \Rightarrow$ 0.79 (a, 11%); 2.1 (f, 3%); 2.3 (d, 7%);(s. Abbildung 9)2.4 (g, 2%); 3.64 (b, 14%)

 $\begin{array}{rcl} 3.64 \ (b) & \Rightarrow & 0.79 \ (a, 12\%); \ 2.1 \ (f, 3\%); \ 2.98 \ (c, 10\%); \\ & & 3.07\text{-}3.21 \ (k, 1\%); \ 7.13 \ (Aromat, 20\%) \\ 5.92 \ (i) & \Rightarrow & 1.79 \ (3\%); \ 2.3 \ (d, 6\%); \ 2.35 \ (l, 1\%); \ 6.16 \\ & & (j, 11\%) \\ 6.16 \ (j) & \Rightarrow & 5.92 \ (i, 8\%); \ 7.13 \ (Aromat, 9\%) \end{array}$

¹³**C-NMR (100 MHz; CD₂Cl₂):** δ = 15.23 (q), 21.64 (tr), 23.50 (tr), 25.17 (tr), 25.29 (tr), 26.92 (tr), 27.72 (tr), 28.54 (tr), 30.17 (d), 37.70 (d), 44.70 (tr), 44.81 (d), 45.96 (d), 46.65 (d), 47.42 (d), 55.20 (q), 56.10 (d), 60.60 (s), 60.87 (s), 67.33 (s), 102.73 (d), 113.10 (d, 2x), 118.11 (s), 121.88 (d, 2x), 125.23 (d), 128.13 (d, 2x), 129.22 (d, 2x), 131.50 (s), 138.22 (d), 139.99 (d), 151.75 (s), 153.33 (s), 158.10 (C=O), 210.42 (C=O), 218.20 (C=O) ppm

MS-FAB: m/z (%) = 618 (MH⁺, 10), 617 (M⁺, 5), 460 (6), 447 (9), 391 (8), 378 (14), 307 (39), 289 (24), 240 (54), 154 (100), 136 (82)

Enaminaddukt 62

 $C_{40}H_{43}O_5N$ M = 617 g/mol

1) Eine Lösung von 79 mg (204 μ mol) Cyclopentenonaddukt **45** und 70 mg (306 μ mol; 1.5 eq) Dien **54** in 1.5 ml abs. CH₂Cl₂ wurde in einen Teflonschlauch eingeschweißt und 10 d einem Druck von 14 kbar ausgesetzt. Anschließend wurde das Lösungsmittel entfernt und der Rückstand säulenchromatographisch (E/PE 1:1) gereinigt. Man erhielt neben 50% Addukt **61** das isomerisierte Addukt **62** zu 24% als farbloses Öl .

Ausbeute: 29 mg (47 µmol; 24%)

2) 38 mg (62 μ mol) Addukt **61** wurden in 2 ml CHCl₃ gelöst und für 2 d bei RT gerührt. Das Lösungsmittel wurde am Rotationsverdampfer entfernt, und nach säulenchromatographischer Reinigung (E/PE 1:1) wurde das isomerisierte Addukt **62** als farbloses Öl isoliert.

Ausbeute: 35 mg (57 µmol; 92%)

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = -2.0^{\circ} (c = 0.10)$

IR (**CHCl**₃): $\nu = 2928$ (m), 1708 (s), 1613 (w), 1595 (w), 1516 (m), 1384 (s), 1251 (m), 1182 (s) cm⁻¹

¹**H-NMR** (**400 MHz**; **CD**₂**Cl**₂): $\delta = 0.48$ (1H, s br, J = 13 Hz), 0.79 (3H, s), 1.21-1.46 (6H, m), 1.58-1.71 (2H, m), 1.74-1.83 (2H, m), 1.88-1.97 (2H, m), 2.02-2.11 (2H, m), 2.12-2.24 (2H, m), 2.40 (1H, d br, J = 6 Hz), 2.53 (2H, s br), 2.73 (1H, d, J = 7.5 Hz), 2.90-3.00 (1H, m), 3.05 (1H, dd, J = 2.5/9 Hz), 3.54-3.61 (1H, m), 3.65 (1H, d, J = 9 Hz), 3.75-3.82 (1H, m), 3.80 (3H, s), 5.95 (1H, d, J = 6 Hz), 6.19 (1H, d, J = 6 Hz), 6.85 (2H, d, J = 9 Hz), 7.09 (2H, dd, J = 1/8.4 Hz), 7.15 (2H, d, J = 9 Hz), 7.21 (1H, tr, J = 7.4 Hz), 7.37 (2H, tr, J = 7.4 Hz) ppm

NOE-Experiment (CD ₂ Cl ₂):	0.79 (a)	\Rightarrow	3.05 (c, 3%); 3.65 (b, 2%)
(s. Abbildung 9)	2.40 (d)	\Rightarrow	1.6 (j, 5%); 1.8 (l, 3%); 2.15 (e, 3%); 3.05
			(c, 3%); 5.95 (h, 6%)
	2.73 (g)	\Rightarrow	2.02-2.11 (k, 9%); 2.2 (f, 6%)
	3.05 (c)	\Rightarrow	0.79 (a, 11%); 2.40 (d, 3%); 3.65 (b, 9%)
	3.65 (b)	\Rightarrow	0.79 (a, 12%); 3.05 (c, 12%); 7.15
			(CH ₃ O-Ph, 26%)
	5.95 (h)	\Rightarrow	1.8 (l, 4%); 2.40 (d, 4%); 6.19 (i, 8%)
	6.19 (i)	\Rightarrow	5.95 (h, 7%); 7.15 (CH ₃ O-Ph, 10%)

¹³C-NMR (100 MHz; CDCl₃): $\delta = 13.55$ (q), 21.52 (tr), 23.38 (tr), 23.56 (tr), 25.31 (tr), 26.72 (tr), 26.80 (tr), 27.79 (tr), 28.34 (tr), 38.82 (d), 40.47 (d), 44.09 (d), 44.72 (tr), 45.43 (tr), 46.49 (d), 49.40 (d), 55.15 (q), 55.87 (d), 60.64 (s), 60.78 (s), 67.66 (s), 113.24 (d, 2x), 117.59 (s), 121.57 (d, 2x), 125.42 (d), 127.94 (d, 2x), 129.32 (d, 2x), 131.09 (s), 134.03 (s), 137.92 (d), 140.41 (d), 151.10 (s), 152.86 (s), 157.92 (C=O), 210.05 (C=O), 218.07 (C=O) ppm

MS-FAB: m/z (%) = 618 (MH⁺, 12), 617 (M⁺, 11), 616 (10), 506 (7), 427 (7), 378 (14), 307 (18), 256 (13), 240 (100), 154 (73), 136 (62)

Enaminretroprodukte 63/64

 $\begin{array}{l} C_{23}H_{23}O_4N\\ M=377 \ g/mol \end{array}$

17 mg (28 μ mol) Addukt **61** wurden in einer Pyrolyseapparatur bei $1 \cdot 10^{-2}$ mbar innerhalb von 10 min von RT auf 170 °C erhitzt, verdampft und retrogespalten. Das Hydrindandien **2b** wurde durch ein auf 350 °C erhitztes Pyrolyserohr geleitet und schied sich in der Kühlfalle ab. Die im

Pyrolysekolben verbliebenen Retroprodukte **63/64** wurden nach Abkühlen und Belüften der Apparatur mit Methylenchlorid eluiert. Das Lösungsmittel wurde am Rotationsverdampfer entfernt. Säulenchromatographische Reinigung (E/PE 1:1) lieferte ein 2:1-Retroproduktgemisch **63/64** als gelbes Öl.

Gesamt-Ausbeute: 10 mg (27 µmol; 96%)

IR (CHCl₃): v = 3042 (w), 2932 (m), 1714 (vs), 1656(m), 1595 (w), 1494 (m), 1385 (s), 1189 (s) cm⁻¹

¹**H-NMR (400 MHz; CDCl₃):** $\delta = 3.38$ (1H, m_c), 3.55-3.63 (1H, m), 3.81-3.86 (1H, m), 4.16 (2H, dtr, J = 12.5/4.5 Hz), 6.11 (1H, dd. J = 2.5/10 Hz), 6.82 (1H, dd, J = 4.5/10 Hz), 7.07-7.12 (2H, m), 7.18-7.24 (1H, m), 7.33-7.40 (2H, m) ppm

MS (170 °C): m/z (%) = 377 (M⁺, 68), 309 (19), 284 (40), 255 (100), 242 (20), 214 (19), 160 (41)

MS-Hochauflösung: berechnet: 377.162708 gefunden: 377.162868

7-Ring-Addukt 65

 $C_{41}H_{45}O_5N$ M = 631 g/mol

Eine Lösung von 67 mg (173 μ mol) Cyclopentenonaddukt **45** und 63 mg (259 μ mol; 1.5 eq) Dien **55** in 1.5 ml abs. CH₂Cl₂ wurde in einen Teflonschlauch eingeschweißt und 22 d einem Druck von 14 kbar ausgesetzt. Anschließend wurde das Lösungsmittel entfernt und das Rohprodukt säulenchromatographisch (E/PE 1:1) gereinigt. Man erhielt das Addukt **65** als farblosen Feststoff.

Ausbeute: 122 mg (193 µmol; 74%)

IR (**Golden Gate ATR**): v = 2919 (m), 1704 (vs), 1613 (m), 1595 (m), 1514 (s), 1442 (m), 1397 (s), 1248 (s), 1200 (vs) cm⁻¹

¹**H-NMR** (**400 MHz**; **CDCl**₃): $\delta = 0.31-0.48$ (1H, m), 0.63 (2.1H, s), 0.72 (0.9H, s), 0.91-1.09 (2H, m), 1.11-1.19 (2H, m), 1.21-1.36 (3H, m), 1.37-1.53 (2H, m), 1.55-1.78 (3H, m), 1.79-1.98 (2H, m), 2.01-2.23 (5H, m), 2.32-2.49 (2H, m), 2.51-2.76 (2H, m), 2.93 (0.7H, d, J = 9 Hz), 3.01-3.10 (0.3H, m), 3.49 (0.7H, d, J = 9 Hz), 3.53-3.63 (0.3H, m), 3.77 (3H, s), 4.11 (0.7H, d_{br}, J = 14 Hz), 4.17-4.28 (0.3H, m), 5.76 (0.7H, d_{br}, J = 6 Hz), 5.86 (0.7H, m_c), 5.93 (0.3H, m_c), 5.99 (0.3H, m_c), 6.04 (1H, d_{br}, J = 6 Hz), 6.81 (2H, d, J = 9 Hz), 7.05-7.16 (4H, m), 7.19 (1H, tr, J = 7.5 Hz), 7.36 (2H, tr, J = 8 Hz) ppm

¹³C-NMR (100 MHz; CD₂Cl₂): $\delta = 15.31$ (q), 21.47 (tr), 22.66 (d), 23.46 (tr), 24.67 (tr), 25.57 (d), 27.28 (tr), 28.08 (d), 28.39 (tr), 29.50 (tr), 34.74 (tr), 37.74 (d), 38.84 (tr), 42.87 (d), 44.32 (d), 45.82 (tr), 49.52 (d), 50.37 (tr), 55.18 (q), 60.18 (s), 60.77 (s), 68.00 (s), 102.77 (d), 113.04 (d, 2x), 121.92 (d), 123.23 (d), 125.32 (d), 128.19 (d), 129.10 (d, 2x), 131.61 (s), 138.44 (d), 139.61 (d), 140.88 (s), 151.96 (s), 153.48 (s), 158.05 (C=O), 210.11 (C=O), 218.18 (C=O) ppm

MS-FAB: m/z (%) = 632 (MH⁺, 47), 631 (M⁺, 19), 427 (8), 392 (100), 307 (40)

Enaminretroprodukt 66

 $C_{24}H_{25}O_4N$ M = 391 g/mol

55 mg (87 µmol) Addukt **65** wurden in einer Pyrolyseapparatur bei $1 \cdot 10^{-2}$ mbar innerhalb von 10 min von RT auf 150 °C erhitzt, verdampft und retrogespalten. Das Hydrindandien **2b** wurde durch ein auf 350 °C erhitztes Pyrolyserohr geleitet und schied sich in der Kühlfalle ab. Das im Pyrolysekolben verbliebene Retroprodukt **66** wurde nach Abkühlen und Belüften der Apparatur mit Toluol eluiert. Das Lösungsmittel wurde am Rotationsverdampfer entfernt. Säulenchromatographische Reinigung (E/PE 1:1) lieferte ein mit Isomeren und Enolen verunreinigtes Retroprodukt **66** als gelbes Öl.

Gesamt-Ausbeute: 33 mg (84 µmol; 97%)

IR (CHCl₃): v = 3643 (w), 2927 (vs), 1716 (vs), 1598 (m), 1494 (m), 1457 (m), 1398 (s), 1293 (m), 1198 (m) cm⁻¹

¹**H-NMR (400 MHz; C₆D₆):** $\delta = 4.23$ (1H, d_{br}, J = 14 Hz), 5.83 (1H, dd, J = 1/10 Hz), 6.22 (1H, dd, J = 5/10 Hz) ppm

MS (150 °C): m/z (%) = 392 (MH⁺, 2), 391 (M⁺, 6), 362 (2), 298 (20), 270 (4), 205 (29), 149(100), 97 (13), 71 (14)

MS-Hochauflösung: berechnet: 391.178359

gefunden: 391.178528

Hydrolyseaddukt 67

 $C_{40}H_{45}O_6N$ M = 635 g/mol

74 mg (0.12 mmol) Addukt **62** wurden in 5 ml Dioxan gelöst und mit 2 ml 2 N wäßriger HCl versetzt. Nach 4 d bei RT wurde die Hydrolyse durch Zusatz von ges. NaHCO₃-Lsg. abgebrochen und die wäßrige Phase mit Ether extrahiert. Die vereinigten organischen Phasen wurden mit Wasser gewaschen und über MgSO₄ getrocknet. Säulenchromatographische Reinigung lieferte neben 27 mg (44 μ mol; 37%) zurückgewonnenem Edukt **62** das Hydrolyseprodukt **67** als farbloses Öl.

Ausbeute: 38 mg (60 µmol, 50%; umsatzbereinigt: 79%)

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = +27.8^{\circ} (c = 0.80)$

IR (Golden Gate ATR): v = 3367 (w), 2922 (s), 1732 (s), 1708 (s), 1613 (w), 1515 (m), 1488 (m), 1203 (vs) cm⁻¹

¹**H-NMR (400 MHz; CD₂Cl₂):** $\delta = 0.48$ (1H, d_{br}, J = 13 Hz), 0.77 (3H, s), 1.19-1.48 (4H, m), 1.50-1.72 (4H, m), 1.78-1.95 (5H, m), 2.00 (1H, tr, J = 14 Hz), 2.15-2.24 (3H, m), 2.26-2.44 (4H, m), 2.55 (1H, m_c), 3.07 (1H, dd, J = 2.5/9 Hz), 3.25 (2H, m_c), 3.65 (1H, d, J = 9 Hz), 3.79 (3H, s), 5.38 (1H, s_{br}), 5.97 (1H, d, J = 6 Hz), 6.20 (1H, d, J = 6 Hz), 6.85 (2H, d, J = 9 Hz), 7.10-7.16 (2H, m), 7.13 (2H, d, J = 9 Hz), 7.20 (1H, tr, J = 7.5 Hz), 7.36 (2H, tr, J = 8 Hz) ppm

¹³C-NMR (100 MHz; CD₂Cl₂): $\delta = 15.65$ (q), 21.94 (tr), 23.83 (tr), 25.69 (tr), 26.61 (tr), 26.83 (tr), 27.84 (tr), 28.83 (tr), 30.10 (tr), 38.56 (tr), 39.46 (d), 41.11 (d), 44.42 (d), 45.43 (tr), 46.73 (d), 46.90 (d), 48.88 (d), 55.55 (q), 56.29 (d), 61.06 (s), 61.12 (s), 67.94 (s), 113.46 (d, 2x), 122.15 (d, 2x), 125.55 (d), 128.47 (d, 2x), 129.60 (d, 2x), 131.71 (s), 138.42 (d), 140.74 (d), 151.76 (s), 154.99 (s), 158.48 (C=O), 210.04 (C=O), 211.47 (C=O), 219.09 (C=O) ppm

MS-FAB: m/z (%) = 636 (MH⁺, 7), 635 (M⁺, 6), 634 (7), 495 (8), 475 (18), 427 (13), 396 (100), 376 (19), 327 (8)

3-(3-Indolyl-)acrylsäure 69

¹**H-NMR (400 MHz; DMSO-d₆):** $\delta = 6.32$ (1H, d, J = 16 Hz), 7.19 (2H, m_c), 7.47 (1H, d, J = 7.5 Hz), 7.79-7.94 (3H, m), 11.71 (1H, s_{br}), 11.91 (1H, s_{br}) ppm

¹³C-NMR (100 MHz; DMSO-d₆): δ = 112.20 (s), 112.33 (d), 112.51 (d), 119.94 (d), 121.00 (d), 122.60 (d), 125.19 (s), 131.46 (d), 137.52 (s), 138.72 (d), 168.80 (C=O) ppm

3-(3-Indolyl-)acrylsäuremetylester 70

 $C_{12}H_{11}O_2N$ M = 201 g/mol

 $C_{11}H_9O_2N$

M = 187 g/mol

348 mg (1.86 mmol) 3-(3-Indolyl-)acrylsäure **69** wurden in 50 ml Ether/MeOH 1:1 gelöst und bei RT mit CH_2N_2 in Ether bis zur leichten Gelbfärbung der Lösung versetzt. Anschließend wurde das Lösungsmittel am Rotationsverdampfer entfernt. Der Methylester **70** wurde als farbloser Feststoff isoliert.

Ausbeute: 374 mg (1.86 mmol; 100%)

Schmelzpunkt: 148 °C

IR (**Golden Gate ATR**): v = 3366 (s), 3101 (w), 2952 (w), 1704 (s), 1624 (vs), 1570 (m), 1525 (m), 1425 (m), 1269 (s), 1173 (s) cm⁻¹

¹**H-NMR (400 MHz; CDCl₃):** δ = 3.82 (3H, s), 6.47 (1H, d, J = 16 Hz), 7.26 (2H, m_c), 7.39-7.43 (1H, m), 7.47 (1H, d, J = 3 Hz), 7.88-7.92 (1H, m), 7.93 (1H, d, J = 16 Hz), 8.74 (1H, s_{br}) ppm

¹³C-NMR (100 MHz; CDCl₃): $\delta = 51.44$ (q), 111.80 (d), 112.87 (d), 113.50 (s), 120.40 (d), 121.51 (d), 123.32 (d), 125.26 (s), 128.92 (d), 137.08 (s), 138.55 (d), 168.82 (C=O) ppm

MS (80 °C): m/z (%) = 201 (M⁺, 100), 170 (73), 143 (10), 115 (18)

MS-Hochauflösung: berechnet: 201.078979 gefunden: 201.079010

Indolylacrylsäureester 71

 $C_{14}H_{13}O_3N$ M = 243 g/mol

40 mg (0.20 mmol; 1 eq) Methylester **70** wurden in 6 ml abs. CH_2Cl_2 unter N_2 vorgelegt und bei RT mit 37 mg (0.3 mmol; 1.5 eq) DMAP sowie 28 µl (0.3 mmol; 1.5 eq) Acetanhydrid versetzt. Nach 3 h bei RT wurde mit 2 N wäßriger HCl gequencht. Die wäßrige Phase wurde mit CH_2Cl_2 extrahiert. Die vereinigten organischen Phasen wurden mit H_2O gewaschen, über MgSO₄ getrocknet und eingeengt. Nach säulenchromatographischer Reinigung (E/PE 1:1) wurde der geschützte 3-(3-Indolyl-)acrylsäuremetylester **71** als farbloser Feststoff isoliert.

Ausbeute: 47 mg (193 µmol; 97%)

Schmelzpunkt: 181 °C

IR (Golden Gate ATR): v = 3127 (w), 2950 (w), 1706 (vs), 1635 (s), 1603 (m), 1547 (m), 1447 (s), 1348 (s), 1217 (s), 1171 (vs) cm⁻¹

¹**H-NMR (400 MHz; CDCl₃):** $\delta = 2.64$ (3H, s), 3.82 (3H, s), 6.56 (1H, d, J = 16 Hz), 7.39 (2H, m_c), 7.64 (1H, s), 7.79 (1H, d, J = 16 Hz), 7.81 (1H, dd, J = 1/7 Hz), 8.46 (1H, d, J = 8 Hz) ppm

¹³**C-NMR (100 MHz; CDCl₃):** $\delta = 23.92$ (q), 51.67 (q), 116.86 (d), 117.92 (d), 118.24 (s), 120.08 (d), 124.47 (d), 126.08 (d), 127.63 (d), 127.74 (s), 136.06 (d), 136.58 (s), 167.57 (C=O), 168.29 (C=O) ppm

MS (80 °**C):** m/z (%) = 243 (M⁺, 49), 201 (100), 170 (90), 150 (12), 115 (17)

MS-Hochauflösung: berechnet: 243.089543

gefunden: 243.089661

Indolylacrylsäureaddukt 72

 $C_{37}H_{37}O_5N$ M = 575 g/mol

Eine Lösung von 20 mg (52 μ mol) Cyclopentenonaddukt **45** und 11 mg (57 μ mol; 1.1 eq) 3-(3-Indolyl-)acrylsäure **69** in 0.5 ml abs. CH₂Cl₂ und 0.1 ml abs. DMSO wurde in einen Teflonschlauch eingeschweißt und 7 d einem Druck von 14 kbar ausgesetzt. Anschließend wurde das Lösungsmittel entfernt und das Rohprodukt säulenchromatographisch (CH₂Cl₂/MeOH 20:1) gereinigt. Man erhielt das Indolylacrylsäureaddukt **72** als farbloses Öl.

Ausbeute: 12 mg (21 µmol; 40%)

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = -0.37^{\circ} (c = 4.30)$

IR (CHCl₃): v = 3457 (m), 2930 (m), 1740 (s), 1707 (s), 1614 (m), 1583 (w), 1516 (s), 1313 (m), 1250 (s), 1038 (m) cm⁻¹

¹**H-NMR (400 MHz; CDCl₃):** $\delta = 0.52$ (1H, d_{br}, J = 13 Hz), 0.78 (3H, s), 1.15-1.46 (5H, m), 1.60-1.92 (2H, m), 2.27-2.33 (2H, m), 2.57-2.67 (1H, m), 2.81-2.93 (2H, m), 3.02-3.20 (3H, m), 2.57-2.67 (1H, m), 2.81-2.93 (2H, m), 3.02-3.20 (3H, m), 3.20 (3H, m),

m), 3.73 (1H, d, J = 10 Hz), 3.75-3.82 (1H, m), 3.78 (3H, s), $3.92 (1H, d_{br}, J = 7.5 Hz)$, 5.96 (1H, d, J = 6 Hz), 6.22 (1H, d, J = 6 Hz), 6.86 (2H, d, J = 9 Hz), 7.05-7.20 (2H, m), 7.18 (2H, d, J = 9 Hz), 7.32 (1H, d, J = 8 Hz), 7.52 (1H, d, J = 8 Hz), $8.28 (1H, s_{br})$, $9.03 (1H, s_{br})$ ppm

MS-FAB: m/z (%) = 576 (MH⁺, 6), 575 (M⁺, 9), 460 (15), 391 (38), 307 (100), 289 (51), 240 (78)

Indolylacrylsäuremetylesteraddukt 73

 $C_{38}H_{39}O_5N$ M = 589 g/mol

1) Eine Lösung von 135 mg (348 μ mol) Cyclopentenonaddukt **45** und 77 mg (383 μ mol; 1.1 eq) 3-(3-Indolyl-)acrylsäuremetylester **70** in 4 ml abs. CH₂Cl₂ wurde in einen Teflonschlauch eingeschweißt und 14 d einem Druck von 14 kbar ausgesetzt. Anschließend wurde das Lösungsmittel entfernt und das Rohprodukt säulenchromatographisch (E/PE 1:1) gereinigt. Man erhielt das Indolylacrylsäuremetylesteraddukt **73** als farblosen Feststoff.

Ausbeute: 146 mg (248 µmol; 72%)

2) 5 mg (8.7 μ mol) Indolylacrylsäureaddukt **72** wurden in 2 ml Ether gelöst und bei RT mit CH₂N₂ in Ether bis zur Gelbfärbung der Lösung versetzt. Säulenchromatographische Reinigung (E/PE 1:1) lieferte das Indolylacrylsäuremetylesteraddukt **73** als farblosen Feststoff.

Ausbeute: 3 mg (5.1 µmol; 59%)

Drehwert (CHCl₃): $[\alpha]_{D}^{20} = -34.7^{\circ} (c = 0.30)$

IR (Golden Gate ATR): v = 3357 (m), 2929 (m), 1740 (s), 1721 (vs), 1706 (vs), 1612 (m), 1514 (s), 1248 (vs) cm⁻¹

¹**H-NMR** (400 MHz; CDCl₃): $\delta = 0.52$ (1H, d_{br}, J = 13 Hz), 0.78 (3H, s), 1.18-1.68 (5H, m), 1.79 (1H, m_c), 1.90-1.95 (1H, m), 2.12-2.19 (1H, m), 2.24 (1H, d, J = 5.8 Hz), 2.26-2.32 (1H, m), 2.57-2.67 (1H, m), 2.81 (1H, dd, J = 7/9.4 Hz), 2.84-2.93 (1H, m), 3.00-3.07 (1H, m), 3.09-3.18 (2H, m), 3.70 (1H, d_{br}, J = 9.4 Hz), 3.76 (3H, s), 3.80 (3H, s), 3.92 (1H, d_{br}, J = 8.3 Hz), 5.97 (1H, d, J = 6 Hz), 6.23 (1H, d, J = 6 Hz), 6.86 (2H, d, J = 9 Hz), 7.11 (1H, dtr, J = 1/8 Hz), 7.19 (1H, m_c), 7.19 (2H, d, J = 9 Hz), 7.33 (1H, d, J = 8 Hz), 7.51 (1H, d, J = 8 Hz), 8.22 (1H, s_{br}) ppm

¹**H-NMR (400 MHz; Pyridin-d**₅): $\delta = 0.48$ (1H, d, J = 13 Hz), 0.79 (3H, s), 1.02-1.21 (2H, m), 1.26-1.38 (2H, m), 1.44 (1H, d_{br}, J = 10.5 Hz), 1.78 (1H, m_c), 1.93 (1H, d, J = 13 Hz), 2.45-2.53 (3H, m), 2.74 (1H, dtr, J = 16/8 Hz), 3.08-3.21 (3H, m), 3.22-3.33 (2H, m), 3.67 (3H, s), 3.73 (3H, s), 4.03 (1H, d, J = 9.5 Hz), 4.11 (1H, d, J = 8 Hz), 5.96 (1H, d, J = 6 Hz), 6.34 (1H, d, J = 6 Hz), 7.04 (2H, d, J = 9 Hz), 7.27 (1H, dtr, J = 1/7 Hz), 7.32 (1H, dtr, J = 1/7 Hz), 7.39 (2H, d, J = 9 Hz), 7.66 (1H, d, J = 7 Hz), 7.74 (1H, d, J = 7 Hz), 12.19 (1H, s) ppm

¹³**C-NMR (100 MHz; Pyridin-d₅):** δ = 15.32 (q), 20.10 (tr), 21.64 (tr), 23.70 (tr), 25.96 (tr), 29.16 (tr), 37.59 (d), 41.33 (d), 42.35 (d), 44.58 (d), 44.63 (tr), 46.76 (d), 47.93 (d), 51.84 (q), 54.92 (d), 55.10 (q), 61.05 (s), 61.49 (s), 68.01 (s), 109.37 (s), 111.87 (d), 113.65 (d, 2x), 118.59 (d), 119.52 (d), 122.14 (d), 127.76 (s), 128.99 (d, 2x), 129.02 (s), 131.38 (s), 138.35 (s), 138.78 (d), 139.83 (d), 158.63 (s), 174.66 (C=O), 209.84 (C=O), 214.41 (C=O) ppm

MS-FAB: m/z (%) = 589 (M⁺, 41), 391 (65), 350 (48), 327 (48), 307 (100), 281 (86)

Indolesteraddukt 74

 $C_{40}H_{41}O_6N$ M = 631 g/mol

Eine Lösung von 40 mg (103 μ mol) Cyclopentenonaddukt **45** und 38 mg (156 μ mol; 1.5 eq) geschütztem 3-(3-Indolyl-)acrylsäuremetylester **71** in 1.5 ml abs. CH₂Cl₂ wurde in einen Teflonschlauch eingeschweißt und 28 d einem Druck von 14 kbar ausgesetzt. Anschließend wurde das Lösungsmittel entfernt und das Rohprodukt säulenchromatographisch (E/PE 1:1) gereinigt. Man erhielt das geschützte Indolylacrylsäuremetylesteraddukt **74** als hellgelbes Öl.

Ausbeute: 52 mg (82 µmol; 80%)

IR (Golden Gate ATR): v = 2918 (w), 1733 (s), 1704 (m), 1666 (s), 1603 (w), 1515 (s), 1463 (s), 1382 (vs), 1247 (vs) cm⁻¹

¹**H-NMR (400 MHz; CD₂Cl₂):** $\delta = 0.35$ (1H, d_{br}, J = 12.4 Hz), 0.63 (3H, s), 0.80-0.99 (1H, m), 1.01-1.16 (1H, m), 1.25-1.48 (3H, m), 1.60 (1H, s_{br}), 1.63-1.73 (2H, m), 1.78-1.84 (2H, m), 2.10 (1H, d_{br}, J = 9.3 Hz), [2.42 (1.2H, s_{br}), 2.53 (1.8H, s_{br})], 2.80-2.91 (2H, m), 3.26 (1H, s_{br}), 3.41-3.56 (2H, m), 3.76 (3H, s), 3.80 (3H, s_{br}), [3.78-3.83 (0.6H, m), 3.87-3.97 (0.4H, m)], [4.71 (0.4H, s_{br}), 4.84 (0.6H, sbr)], [5.62 (0.4H, sbr), 5.71 (0.6H, dbr, J = 5.5 Hz)], 6.07 (1H, d, J = 5.8 Hz), [6.68 (0.6H, s_{br}), 6.72 (0.4H, s_{br})], 6.81 (2H, d, J = 9 Hz), 7.07 (2H, d, J = 9 Hz), [7.29 (1.7H, s_{br}), 8.28 (0.3H, s_{br})], 7.52-7.60 (1H, m) ppm

MS-FAB: m/z (%) = 632 (MH⁺, 8), 631 (M⁺, 7), 392 (27), 307 (19), 240 (100), 154 (56), 137 (35)

Indolestercyclohexenon 75/76

 $C_{21}H_{19}O_4N$ M = 349 g/mol

14 mg (24 μ mol) Addukt **73** wurden in einer Pyrolyseapparatur bei 1·10⁻² mbar innerhalb von 15 min von RT auf 200 °C erhitzt, verdampft und retrogespalten. Das Hydrindandien **2b** wurde durch ein auf 350 °C erhitztes Pyrolyserohr geleitet und schied sich in der Kühlfalle ab. Das im Pyrolysekolben verbliebene Retroproduktgemisch **75/76** wurde nach Abkühlen und Belüften der Apparatur mit Methylenchlorid eluiert. Das Lösungsmittel wurde am Rotationsverdampfer entfernt. Säulenchromatographische Reinigung (Ether) lieferte das Retroprodukt **75** in einem 1:3.3-Gemisch mit einer Enolform **76** als gelbes Öl.

Gesamt-Ausbeute: 6 mg (17 µmol; 71%)

IR (**CHCl**₃): v = 3457 (m), 2927 (s), 1729 (vs), 1656 (m), 1602 (m), 1459 (m), 1232 (s) cm⁻¹ ¹**H-NMR (400 MHz; CDCl**₃): $\delta = 6.16$ (1H, d_{br}, J = 10 Hz), 6.49 (1H, dd, J = 2/10 Hz) ppm **MS (220** °**C**): m/z (%) = 350 (MH⁺, 36), 349 (M⁺, 64), 324 (56), 296 (74), 240 (52), 184 (100), 167 (52), 149 (98)

MS-Hochauflösung: berechnet: 349.131408 gefunden: 349.131409

trans-Benzochinonaddukt 77

 $C_{30}H_{36}O_4Si$ M = 488 g/mol

Eine Lösung von 200 mg (0.53 mmol) Siloxydien **8** und 63 mg (0.58 mmol; 1.1 eq) p-Benzochinon **39** in 20 ml abs. CH₂Cl₂ wurde bei RT 2 d gerührt. Anschließend wurde das Lösungsmittel entfernt und das Rohprodukt säulenchromatographisch (E/PE 1:5) gereinigt. Man erhielt ein nicht-trennbares Gemisch aus *trans*-Benzochinonaddukt **77** und *cis*-Benzochinon-addukt **37** im Verhältnis 1:1 als gelbes Öl.

Gesamt-Ausbeute: 196 mg (402 µmol; 76%)

¹**H-NMR** (**400 MHz; CDCl₃**) für **77:** δ = -0.19 (9H, s), 0.41 (1H, d_{br}, J = 13 Hz), 0.86 (3H, s), 1.00-1.10 (2H, m), 1.19-1.37 (2H, m), 1.46-1.65 (1H, m), 1.67-1.85 (2H, m), 3.02 (1H, dd, J = 2.8/5.4 Hz), 3.23-3.28 (1H, m), 3.40 (1H, dd, J = 2/8 Hz), 3.50 (1H, tr_{br}, J = 2.6 Hz), 3.76 (3H, s), 4.39 (1H, d, J = 2.6 Hz), 5.96 (1H, d, J = 6 Hz), 6.11 (1H, d, J = 6 Hz), 6.68 (1H, dd, J = 2/10 Hz), 6.74-6.81 (3H, m), 7.03-7.19 (2H, m) ppm

cis-Benzochinonaddukt 78

 $\begin{array}{l} C_{27}H_{28}O_4\\ \\ M=416 \text{ g/mol} \end{array}$

1) Eine Lösung von 106 mg (0.28 mmol) Siloxydien **8** und 33 mg (0.31 mmol; 1.1 eq) *p*-Benzochinon **39** in 15 ml abs. Toluol wurde bei RT 2 d gerührt. Anschließend wurde das Lösungsmittel entfernt. Zur Spaltung des Silylenolethers wurde der Rückstand in CH_2Cl_2 gelöst und mit Camphersulfonsäure-Monohydrat versetzt. Nach 10 min bei RT wurde mit ges. NaHCO₃-Lsg. neutralisiert und mit CH_2Cl_2 extrahiert. Die vereinigten organischen Phasen wurden mit ges. NaCl-Lsg. gewaschen, über MgSO₄ getrocknet und am Rotationsverdampfer eingeengt. Säulenchromatographische Reinigung (E/PE 1:1) lieferte das *cis*-Benzochinon-addukt **78** als gelbes Öl.

Ausbeute: 116 mg (0.28 mmol; 100%)

2) Eine Lösung von 106 mg (0.28 mmol) Siloxydien **8** und 33 mg (0.31 mmol; 1.1 eq) *p*-Benzochinon **39** in 15 ml abs. Toluol wurde bei RT 2 d gerührt. Anschließend wurde das Lösungsmittel entfernt. Zur Spaltung des Silylenolethers wurde der Rückstand in Aceton gelöst und mit Amberlyst 15 versetzt. Nach 10 min bei RT wurde filtriert und am Rotations-verdampfer eingeengt. Säulenchromatographische Reinigung (E/PE 1:1) lieferte das *cis*-Benzochinonaddukt **78** als gelbes Öl.

Ausbeute: 116 mg (0.28 mmol; 100%)

¹**H-NMR** (**400 MHz**; **CDCl**₃): $\delta = 0.52$ (1H, d, J = 13 Hz), 0.68 (3H, s), 0.82-0.91 (3H, m), 1.01-1.51 (1H, m), 1.25-1.33 (1H, m), 1.83 (2H, dtr, J = 4/13 Hz), 2.16 (1H, dd, J = 8/18 Hz), 2.78 (1H, ddd, J = 1.4/5/11 Hz), 2.92 (1H, dd, J = 10/11 Hz), 3.12 (1H, dd, J = 3/18 Hz), 3.43 (1H, ddd, J = 3/5/8 Hz), 3.55 (1H, d, J = 10 Hz), 3.78 (3H, s), 6.06 (1H, d, J = 6 Hz), 6.26 (1H, d, J = 6 Hz), 6.74 (1H, dd, J = 1.5/10 Hz), 6.84 (2H, d, J = 9 Hz), 6.86 (1H, d, J = 10 Hz), 7.11 (2H, d, J = 9 Hz) ppm

trans-Benzochinonaddukt 79

 $C_{27}H_{28}O_4$ M = 416 g/mol

Zur Spaltung des Silylenolethers wurden 100 mg (205 µmol) des nicht-trennbaren 1:1-Gemisches aus *trans*-Benzochinonaddukt **77** und *cis*-Benzochinonaddukt **37** in Aceton gelöst und mit Amberlyst 15 versetzt. Nach 10 min bei RT wurde filtriert und am Rotationsverdampfer eingeengt. Säulenchromatographische Reinigung (E/PE 1:1) lieferte ein nichttrennbares 1:1-Gemisch aus *trans*-Benzochinonaddukt **79** und *cis*-Benzochinonaddukt **78** als gelbes Öl.

Gesamt-Ausbeute: 85 mg (205 µmol; 100%)

¹**H-NMR** (**400 MHz**; **CDCl**₃) für 79: $\delta = 0.55$ (1H, d_{br}, J = 13 Hz), 0.92 (3H, s), 1.18-1.31 (3H, m), 1.35-1.45 (1H, m), 1.54-1.70 (3H, m), 1.80-1.90 (1H, m), 2.02 (1H, d_{br}, J = 14 Hz), 3.29 (1H, d, J = 20 Hz), 3.40 (1H, dd, J = 2/20 Hz), 3.80 (3H, s), 3.88 (1H, dd, J = 1.7/8.5 Hz), 3.94 (1H, d, J = 8.4 Hz), 5.95 (1H, d, J = 6 Hz), 6.10 (1H, d, J = 6 Hz), 6.46 (2H, ABq, J = 8.5 Hz), 6.90 (2H, d, J = 9 Hz), 7.39 (2H, d, J = 9 Hz) ppm

Siloxy-Monoketaladdukt 80

 $C_{32}H_{40}O_5Si$ M = 532 g/mol

Eine Lösung von 400 mg (1.05 mmol) Siloxydien **8** und 208 mg (1.37 mmol; 1.3 eq) Monoketal **9** in 1.5 ml abs. CH_2Cl_2 wurde in einen Teflonschlauch eingeschweißt und 4 d einem Druck von 14 kbar ausgesetzt. Die Reaktionslösung wurde am Rotationsverdampfer eingeengt. Säulenchromatographische Reinigung (E/PE 1:4) lieferte das Siloxy-Monoketaladdukt **80** als hellgelbes Öl.

Ausbeute: 553 mg (1.04 mmol; 99%)

Darstellung und spektroskopische Daten s. auch Lit.¹⁹

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = +138.8^{\circ} (c = 1.70)$

¹**H-NMR** (**400 MHz; CDCl₃**): $\delta = -0.21$ (9H, s), 0.37 (1H, d_{br}, J = 12.5 Hz), 0.75 (3H, s), 1.01-1.18 (2H, m), 1.20-1.36 (2H, m), 1.50 (1H, d_{br}, J = 13 Hz), 1.70-1.82 (2H, m), 1.88 (1H, ddd, J = 1/4.4/11 Hz), 1.96 (1H, ddd, J = 2/8.5/18 Hz), 2.27 (1H, d, J = 18 Hz), 2.81 (1H, dd, J = 4.5/7.7 Hz), 2.85 (1H, d, J = 11 Hz), 3.78 (3H, s), 4.00-4.20 (4H, m), 5.90 (1H, d, J = 6 Hz), 5.95 (1H, dd, J = 1/10 Hz), 6.12 (1H, d, J = 6 Hz), 6.56 (1H, d, J = 10 Hz), 6.78 (2H, d_{br}, J = 7.5 Hz), 7.17 (2H, m_c) ppm

Monoketalallylalkohol 81

 $C_{32}H_{42}O_5Si$ M = 534 g/mol

In einem ausgeheizten Zweihalskolben wurden unter Argon 300 mg (0.564 mmol) Si-Monoketaladdukt **80** in 50 ml abs. CH_2Cl_2 gelöst und bei -78 °C mit 1.69 ml (1.692 mmol; 3 eq) K-Selectrid-Lsg. (1 M in THF) versetzt. Es wurde 3 h bei -78 °C gerührt. Anschließend ließ man die Reaktionslösung innerhalb von 3.5 h auf -10 °C kommen. Zur Aufarbeitung wurde mit ges. NH₄Cl-Lsg. gequencht, mit Essigester extrahiert und mit Wasser gewaschen. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet und am Rotations-verdampfer eingeengt. Säulenchromatographische Reinigung (E/PE 1:1) des Rohproduktes lieferte das Addukt **81** als farbloses Öl.

Ausbeute: 301 mg (564 µmol; 100%)

Drehwert (CHCl₃): $[\alpha]_{D}^{20} = -18.0^{\circ} (c = 0.10)$

IR (Golden Gate ATR): v = 3495 (w), 2920 (m), 1687 (m), 1613 (m), 1514 (s), 1245 (vs) cm⁻¹

¹**H-NMR (400 MHz; CD₂Cl₂):** $\delta = -0.24$ (9H, s), 0.30 (1H, d_{br}, J = 13 Hz), 0.81 (3H, s), 1.25-1.35 (2H, m), 1.36-1.44 (2H, m), 1.54-1.61 (1H, m), 1.77 (1H, dtr, J = 4/13 Hz), 1.92 (1H, dd, J = 6/15 Hz), 2.23-2.34 (3H, m), 2.36 (1H, ddd, J = 1/7/15 Hz), 2.70 (1H, d, J = 11)

Hz), 3.75 (3H, s), 3.75 (1H, s_{br}), 3.92-4.04 (4H, m), 4.21-4.28 (1H, m), 5.81 (1H, dd, J = 1/10 Hz), 5.82 (1H, d, J = 6 Hz), 6.07-6.12 (1H, m), 6.09 (1H, d, J = 6 Hz), 6.77 (2H, d, J = 9 Hz), 7.19 (2H, d_{br}, J = 8 Hz) ppm

¹**H-NMR (400 MHz; C₆D₆):** $\delta = -0.03$ (9H, s), 0.62 (1H, d_{br}, J =13 Hz), 1.12 (3H, s), 1.28 (1H, trtr, J = 4/14 Hz), 1.37 (1H, m_c), 1.42-1.56 (2H, m), 1.61 (1H, dtr, J = 3/13 Hz), 1.72 (1H, d_{br}, J = 13 Hz), 1.92 (1H, d_{br}, J = 7 Hz), 2.04 (1H, dtr, J = 4/13 Hz), 2.18 (1H, dd, J = 7/16 Hz), 2.51 (1H, dtr, J = 7/7 Hz), 2.63-2.74 (2H, m), 3.08 (1H, d, J = 11 Hz), 3.39-3.54 (4H, m), 3.45 (3H, s), 4.16 (1H, s_{br}), 5.71 (1H, dd, J = 1/10 Hz), 5.83 (1H, d, J = 6 Hz), 6.05 (1H, ddd, J = 1/4/10 Hz), 6.26 (1H, d, J = 6 Hz), 6.93 (2H, d, J = 9 Hz), 7.50 (2H, s_{br}) ppm

NOE-Experiment (C ₆ D ₆):	3.08 (b) \Rightarrow	1.12 (a, 12%); 1.37 (f, 2%); 1.61 (2%);
(s. Abbildung 18)		1.92 (OH, 2%); 2.63 (i, 2%); 4.16 (c, 1%)
	$4.16 \text{ (c)} \Rightarrow$	1.37 (f, 11%); 1.92 (OH, 9%); 2.51 (g,
		8%); 2.70 (4%); 3.08 (b 1%); 6.05 (h,
		10%)
	5.83 (d) \Rightarrow	1.37 (f, 5%); 1.92 (OH, 2%); 2.70 (2%);
		6.26 (e, 9%)
	$6.26 (e) \Rightarrow $	5.83 (d, 8%); 7.50 (Aromat, 9%)

¹³**C-NMR (100 MHz; C₆D₆):** $\delta = 0.61$ (q, 3x), 16.81 (q), 21.89 (tr), 24.61 (tr), 26.91 (tr), 29.37 (tr), 31.22 (tr), 44.03 (d), 44.11 (d), 44.33 (d), 54.77 (q), 59.45 (s), 62.70 (s), 64.04 (tr), 65.68 (tr), 68.13 (s), 69.07 (d), 107.34 (s), 123.26 (s), 128.30 (d), 129.53 (d), 130.96 (s), 134.10 (d, 2x), 134.51 (d, 2x), 136.16 (d, 2x), 142.27 (s), 158.57 (s) ppm

MS (110 °C): m/z (%) = 534 (M⁺, 100), 516 (6), 489 (4), 403 (12), 240 (15), 105 (24)

MS-Hochauflösung: berechnet: 534.280153

gefunden: 534.278137

Cyclohexenonalkoholaddukt 82

 $C_{27}H_{30}O_4$ M = 418 g/mol

30 mg (56 µmol) Addukt **81** wurden in 3 ml Aceton gelöst und mit Amberlyst 15 versetzt. Es wurde 2 h bei RT (max. 20 °C !) gerührt. Nach Filtration der Suspension wurde das Lösungsmittel am Rotationsverdampfer entfernt und das Rohprodukt säulenchromatographisch (E) gereinigt. Das Addukt **82** wurde als farbloses Öl isoliert.

Ausbeute: 23 mg (56µmol; 100%)

Drehwert (CHCl₃): $[\alpha]_{D}^{20} = -113.2^{\circ} (c = 1.60)$

IR (Golden Gate ATR): v = 3392 (w), 2922 (m), 1671 (s), 1613 (m), 1514 (s), 1247 (vs), 1034 (s) cm⁻¹

¹**H-NMR** (**400 MHz**; **CDCl**₃): $\delta = 0.48$ (1H, d, J = 13 Hz), 0.78 (3H, s), 1.15-1.34 (2H, m), 1.42 (1H, d_{br}, J = 8 Hz), 1.68 (1H, d_{br}, J = 5 Hz), 1.82 (1H, dtr, J = 4/13 Hz), 1.93-2.07 (3H, m), 2.11 (1H, dd, J = 5/16.5 Hz), 2.42 (1H, m), 2.69-2.78 (2H, m), 2.82-2.89 (1H, m), 3.62-3.68 (2H, m), 3.79 (3H, s), 4.58 (1H, s_{br}), 6.06 (1H, d, J = 6 Hz), 6.07 (1H, dd, J = 1/10 Hz), 6.17 (1H, d, J = 6 Hz), 6.85 (2H, d, J = 9 Hz), 6.95 (1H, dd, J = 4/10 Hz), 7.23 (2H, d, J = 9 Hz) ppm

¹**H-NMR (400 MHz; C₆D₆):** $\delta = 0.47$ (1H, d, J = 13 Hz), 0.62 (3H, s), 0.89-1.40 (4H, m), 1.52-1.58 (1H, m), 1.69-1.92 (4H, m), 2.04 (1H, dd, J = 5/17 Hz), 2.46 (1H, m_c), 2.59 (1H, dd, J = 5/9 Hz), 2.93 (1H, dd, J = 8/17.4 Hz), 3.40 (3H, s), 3.60 (1H, d, J = 9 Hz), 3.90 (1H, s_{br}), 5.58 (1H, d, J = 6 Hz), 5.90 (1H, dd, J = 1.5/10 Hz), 6.07 (1H, d, J = 6 Hz), 6.31 (1H, dd, J = 4/10 Hz), 6.88 (2H, d, J = 9 Hz), 7.19 (2H, d, J = 9 Hz) ppm

¹³**C-NMR (100 MHz; C₆D₆):** $\delta = 15.76$ (q), 21.69 (tr), 24.10 (tr), 28.99 (tr), 30.19 (tr), 30.48 (d), 41.27 (tr), 45.01 (d), 45.35 (d), 54.00 (d), 54.77 (q), 60.92 (s), 61.51 (s), 65.90 (s), 69.56 (d), 113.46 (d), 128.33 (d), 128.40 (d), 129.15 (d), 130.90 (s), 138.79 (d), 139.03 (d), 158.73 (s), 198.90 (C=O), 208.75 (C=O) ppm

MS (190 °**C):** m/z (%) = 418 (M⁺, 0.2), 240 (100), 225 (16), 197 (11), 178 (6), 84 (18)

MS-Hochauflösung: berechnet: 418.214410

gefunden: 418.214600

Cyclohexenonalkohol 82b

 $\begin{array}{l} C_{10}H_{10}O_{3}\\\\ M=178 \ g/mol \end{array}$

237 mg (511 µmol) Addukt **81** wurden in 30 ml Aceton gelöst und mit 250 mg Amberlyst 15 versetzt. Nach 6 h bei RT betrug das Edukt **81**/Produkt **82**-Verhältnis ca. 1:1. Es wurden weitere 100 mg Amberlyst 15 hinzugefügt und noch 22 h gerührt, dabei stieg die Umgebungstemperatur auf ca. 30 °C an. Nach Filtration der Suspension wurde das Lösungsmittel am Rotationsverdampfer entfernt und das Rohprodukt säulenchromatographisch ($E \rightarrow EE$) gereinigt. Das Retroprodukt **82b** wurde zu 34% als hellgelbes Öl erhalten. Weiterhin wurden 4% Addukt **82** sowie 98% Hydrindandien **2b** isoliert.

Ausbeute: 31 mg (174 µmol; 34%) 82b

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = +112.5^{\circ} (c = 2.60)$

IR (Golden Gate ATR): v = 3403 (m, br), 2905 (w), 1714 (m), 1667 (vs, br), 1384 (s), 1226 (s, br) cm⁻¹

¹**H-NMR (400 MHz; CD₂Cl₂):** $\delta = 2.40$ (1H, dd, J = 5/17 Hz), 3.04 (1H, m_c), 3.14 (1H, ddd, J = 1/3/17 Hz), 3.38 (1H, d_{br}, J = 3 Hz), 3.45 (1H, m_c), 5.03 (1H, s_{br}), 5.95 (1H, dd, J = 2.6/10 Hz), 6.06 (1H, dd, J = 3/10 Hz), 6.83 (1H, ddd, J = 2/2/10 Hz), 7.18 (1H, ddd, J = 2/2/10 Hz) ppm

MS (110 °C): m/z (%) = 236 (21), 221 (17), 205 (4), 179 (MH⁺, 18), 178 (M⁺, 32), 160 (4), 149 (14), 95 (90), 84 (100)

MS-Hochauflösung: berechnet: 178.062994 gefunden: 178.063034

Enaminalkoholaddukt 83

 $C_{41}H_{45}O_6N$ M = 647 g/mol

Eine Lösung von 15 mg (36 μ mol) Addukt **82** und 10 mg (43 μ mol; 1.2 eq) Dien **54** in 2 ml abs. Toluol wurde in einen Teflonschlauch eingeschweißt und 14 d einem Druck von 14 kbar ausgesetzt. Anschließend wurde das Lösungsmittel entfernt und das Rohprodukt säulenchromatographisch (E/PE 2:1 \rightarrow 4:1) gereinigt. Man erhielt das Addukt **83** als farbloses Öl.

Ausbeute: 15 mg (24 µmol; 67%)

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = -8.0^{\circ} (c = 0.10)$

IR (Golden Gate ATR): v = 3449 (w), 2921 (s), 1703 (s, br), 1613 (w), 1515 (m), 1398 (m), 1248 (s), 1204 (s), 1033 (s) cm⁻¹

¹**H-NMR (400 MHz; CD₂Cl₂):** $\delta = 0.43$ (1H, d, J = 13 Hz), 0.79 (3H, s), 1.18-1.38 (3H, m), 1.39-1.47 (1H, m), 1.51-1.72 (3H, m), 1.79-1.96 (4H, m), 2.03 (1H, dd, J = 5/15 Hz), 2.17-

2.35 (4H, m), 2.41 (1H, s_{br}), 2.49-2.60 (2H, m), 2.72 (1H, d, J = 9 Hz), 2.98 (1H, dd, J = 13.5/15 Hz), 3.05 (1H, d, J = 11.5 Hz), 3.63 (1H, tr, J = 4.5 Hz), 3.79 (3H, s), 3.81 (1H, d, J = 9 Hz), 3.83 (1H, s), 4.31 (1H, d, J = 12.5 Hz), 5.64 (1H, m_c), 6.08 (2H, ABq, J = 6 Hz), 6.86 (2H, d, J = 9 Hz), 7.09 (2H, dd, J = 1/7.4 Hz), 7.20 (1H, trtr, J = 1/7.4 Hz), 7.24 (2H, d, J = 9 Hz), 7.36 (2H, m_c) ppm

NOE-Experiment (**CD**₂**Cl**₂): 2.72 (c) 0.79 (a, 10%); 1.6 (g, 2%); 2.41 (OH, \Rightarrow (s. Abbildung 19) 2%); 3.81 (b, 15%) 3.63 (e) 1.6 (g, 3%); 2.41 (OH, 8%); 2.55 (f, 6%); \Rightarrow 2.98 (10%) 3.81 (b) 0.79 (a, 2%); 1.5 (4%); 2.3 (i, 1%); 2.6 (h, \Rightarrow / 3.83 (d) 1%); 2.72 (c, 2%); 6.86 (CH₃O-Ph, 4%); / 3.79 (OCH₃); 7.24 (CH₃O-Ph, 5%)

¹³C-NMR (APT; 100 MHz; CD₂Cl₂): $\delta = 15.56$ (q), 21.65 (tr), 23.53 (tr), 25.38 (tr), 25.66 (tr), 26.13 (tr), 28.16 (tr), 29.76 (tr), 36.76 (d), 37.02 (d), 41.40 (tr), 41.87 (d), 46.11 (d), 46.35 (tr), 47.43 (d), 50.40 (d), 54.76 (d), 55.22 (q), 61.06 (s), 61.75 (s), 69.07 (s), 75.85 (d), 112.98 (d, 2x), 116.81 (d), 121.86 (d, 2x), 125.19 (d), 128.64 (d, 2x), 129.23 (d, 2x), 131.08 (s), 135.37 (s), 138.25 (d), 138.76 (d), 151.88 (s), 153.51 (s), 158.18 (C=O), 209.76 (C=O), 210.41 (C=O) ppm

MS-FAB: m/z (%) = 663 (4), 648 (MH⁺, 2), 647 (M⁺, 2), 460 (15), 427 (20), 391 (39), 307 (100), 289 (53), 240 (33)

Enamin-Alkohol 84

 $\begin{array}{l} C_{24}H_{25}O_5N\\ M=407 \ g/mol \end{array}$

12 mg (19 μ mol) Addukt **83** wurden in einer Pyrolyseapparatur bei $1.5 \cdot 10^{-2}$ mbar innerhalb von 10 min von RT auf 150 °C erhitzt, verdampft und retrogespalten. Das Hydrindandien **2b** wurde durch ein auf 350 °C erhitztes Pyrolyserohr geleitet und schied sich in der Kühlfalle ab. Das im Pyrolysekolben verbliebene Retroprodukt **84** wurde nach Abkühlen und Belüften der Apparatur mit Methylenchlorid eluiert. Das Lösungsmittel wurde am Rotationsver-dampfer entfernt. Säulenchromatographische Reinigung (E/PE 4:1 \rightarrow E) lieferte das Retro-produkt **84** als farbloses Öl.

Ausbeute: 8 mg (19 µmol; 100%)

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = -96.7^{\circ} (c = 0.30)$

IR (Golden Gate ATR): v = 3489 (w, br), 2921 (vs), 1694 (s, br), 1597 (w), 1494 (w), 1458 (m), 1390 (m), 1190 (s) cm⁻¹

¹**H-NMR** (400 MHz; CD₂Cl₂): $\delta = 1.57 \cdot 1.65$ (1H, m), 1.81 (1H, d_{br}, J = 18 Hz), 1.86-1.93 (2H, m), 1.94-2.02 (2H, m), 2.21 (1H, d, J = 4 Hz), 2.22-2.28 (1H, m), 2.30 (1H, dd, J = 5/17 Hz), 2.41 (1H, d_{br}, J = 18 Hz), 2.90 (1H, dd, J = 5.5/17 Hz), 2.94-3.05 (1H, m), 3.11 (1H, dtr, J = 5 Hz), 3.20 (1H, m_c), 3.26 (1H, s_{br}), 3.38 (1H, dtr, J = 12/5.5 Hz), 3.98 (1H, dtr, J = 13/5 Hz), 4.43 (1H, dtr, J = 9.4/4.4 Hz), 6.05 (1H, dd, J = 2.5/10 Hz), 6.98 (1H, dd, J = 3/10 Hz), 7.11 (2H, dd, J = 1/8.5 Hz), 7.23 (1H, trtr, J = 1/7.5 Hz), 7.39 (2H, tr_{br}, J = 8 Hz) ppm

¹³C-NMR (APT; 100 MHz; CD₂Cl₂): $\delta = 23.48$ (tr), 23.61 (tr), 26.22 (tr), 29.75 (tr), 30.14 (d), 38.09 (tr), 39.28 (d), 43.29 (d), 45.25 (tr), 46.05 (d), 67.52 (d), 117.67 (s), 121.85 (d, 2x), 125.47 (d), 129.33 (d, 2x), 131.46 (d), 134.12 (s), 145.51 (d), 151.34 (C=O), 182.65 (s), 196.94 (C=O), 210.09 (C=O) ppm

MS-FAB: m/z (%) = 408 (MH⁺, 52), 407 (M⁺, 93), 307 (32), 289 (22), 279 (26), 154 (100), 136 (68)

N-Formyltryptamin 94

 $C_{11}H_{12}ON_2$ M = 188 g/mol

10 g (62.5 mmol) Tryptamin **92** wurden in 200 ml Essigester gelöst (evtl. Filtrieren). Zu der gelb-orangen Lösung wurden bei RT 2.88 ml (75 mmol; 1.2 eq) Ameisensäure getropft. Der ausgefallene, leicht gelbliche Niederschlag an Tryptamin-Formiat-Salz **93** wurde abfiltriert, mit Essigester gewaschen und luftgetrocknet.

Ausbeute: 5.618 g (27.3 mmol; 44%) 93

2.717 g (13.19 mmol) Tryptamin-Formiat-Salz **93** wurden für 0.5 h bei 200 °C im Kugelrohr erhitzt. Dabei entstand das N-Formyltryptamin **94** als braun-gelbes Öl.

Ausbeute: 2.461 g (13.09 mmol; 99%) 94

Spektroskopische Daten s. Lit.⁵¹

Dihydronorharman 95

 $C_{11}H_{10}ON_2$ M = 170 g/mol

2.461 g (13.09 mmol) N-Formyltryptamin-Öl **94** wurden auf 0 °C gekühlt und mit 11 ml (118 mmol; 9 eq) POCl₃ versetzt. Durch vorsichtiges Erwärmen (aber nicht über 40 °C!) erhielt man eine einheitliche, braune Lösung. Es wurde 1.5 h bei RT gerührt und anschließend der ÜS POCl₃ am Rotationsverdampfer entfernt. Der rot-braune, ölige Rückstand wurde mit 170 ml Wasser verrührt, wobei eine grün/gelbe Suspension entstand, welche filtriert wurde. Das Filtrat

wurde mit 20 ml konz. NH₃ basisch gemacht, wobei eine gelb-orange Suspension entstand. Der hellorange Niederschlag wurde abfiltriert und aus 70 ml Ether umkristallisiert. Das Dihydronorharman **95** wurde als leicht gelblicher Feststoff isoliert.

Spektroskopische Daten s. Lit.⁵¹

Weitere Daten:

Ausbeute: 1.299 g (7.64 mmol; 58%)

IR (**Golden Gate ATR**): v = 3564 (m), 3411 (m), 3293 (m, br), 2971 (m), 1622 (m), 1452 (s), 1323 (vs), 1303 (vs) cm⁻¹

¹**H-NMR (400 MHz; CDCl₃):** $\delta = 2.53-3.05$ (3H, s_{br}), 3.70-4.02 (1H, s_{br}), 7.13 (1H, dtr, J = 1/8 Hz), 7.23 (1H, tr, J = 8 Hz), 7.27 (1H, tr, J = 8 Hz), 7.53 (1H, d_{br}, J = 7 Hz), 8.30 (1H, s_{br}), 8.78 (1H, s_{br}) ppm

MS (50 °C): m/z (%) = 171 (MH⁺, 9), 170 (M⁺, 75), 169 (100), 142 (10), 115 (10), 85 (5)

Dihydronorharman-Hydrochlorid 96

 $C_{11}H_{10}ON_2HCl$ M = 206.5

g/mol

Zu einer hellgelben Lösung von 100 mg (0.588 mmol) Dihydronorharman **95** in Essigester wurde bei RT ein Überschuß konz. HCl getropft. Dabei fiel ein zitronengelber Niederschlag aus. Das Lösungsmittel wurde am Rotationsverdampfer abgezogen. Anschließend wurde der feste Rückstand zur Entfernung des Überschuß an HCl 4x mit Toluol abgeraucht. Das HCl-Salz **96** wurde als bräunlich-gelber Feststoff isoliert.

Ausbeute: 113 mg (0.547 mmol; 93%)

Dihydronorharman-Trifluoracetat 97

 $C_{11}H_{10}ON_2CF_3CO_2H$ M =

284g/mol

Zu einer Lösung von 200 mg (1.177 mmol) Dihydronorharman **95** in CH₂Cl₂ wurde bei RT ein Überschuß Trifluoressigsäure getropft. Dabei färbte sich die zunächst hellgelbe Lösung rotorange. Das Lösungsmittel wurde am Rotationsverdampfer abgezogen. Der feste Rückstand wurde anschließend zur Entfernung des Überschuß an TFA 4x mit Toluol abgeraucht. Das TFA-Salz **97** wurde als gelb-oranger Feststoff isoliert.

Ausbeute: 287 mg (1.011 mmol; 87%)

α-exo-Addukt 98

 $\begin{array}{l} C_{32}H_{34}O_2N_2\\ M=478 \ g/mol \end{array}$

Eine Lösung von 20 mg (53 μ mol) Siloxydien **8** und 22 mg (79 μ mol; 1.5 eq) Dihydronorharman-Trifluoracetat **97** in 0.6 ml abs. CH₃CN/DMF 1:1 wurde unter Zusatz von 10% 2,5-Di-tert.Butyl-Pyridin **99** in einen Teflonschlauch eingeschweißt und 44 h einem Druck von 14 kbar ausgesetzt. Zur Spaltung des Silylenolethers wurde unter Zusatz von CSA[·]H₂O und Ether bei RT 30 min gerührt. Anschließend wurde die Reaktionslösung mit ges. NaHCO₃-Lsg. alkalisch gemacht. Die wäßrige Phase wurde mit CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen wurden mit Wasser gewaschen, über MgSO₄ getrocknet und am Rotationsverdampfer eingeengt. Nach säulenchromatographischer Reinigung (E/PE 1:1) erhielt man das Addukt **98** als hellgelbes Öl.

Ausbeute: 25 mg (52 µmol; 98%)

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = +4.4^{\circ} (c = 2.30)$

IR (**CHCl**₃): v = 3466 (vs, br), 2927 (vs), 1699(s), 1612 (m, br), 1516 (vs), 1463 (m), 1445 (m), 1380 (m), 1290 (m), 1249 (vs), 1181 (m), 1038 (m) cm⁻¹

¹**H-NMR (400 MHz; DMSO-d₆):** $\delta = 0.28$ (1H, d, J = 13 Hz), 0.73 (3H, s), 1.12-1.39 (3H, m), 1.50 (1H, dtr, J = 3.6/12.4 Hz), 1.62 (1H, d_{br}, J = 13 Hz), 1.80 (1H, dtr, J = 3.6/13 Hz), 2.16 (1H, d, J = 13 Hz), 2.43-2.57 (2H, m), 2.62-2.71 (1H, m), 2.72-2.81 (1H, m), 3.05 (1H, dtr, J = 12/6 Hz), 3.28-3.41 (1H, m), 3.74 (3H, s), 3.90 (2H, ABq, J = 8.3 Hz), 4.37 (1H, dd, J = 4.4/9.3 Hz), 6.09 (1H, d, J = 6 Hz), 6.19 (1H, d, J = 6 Hz), 6.85 (2H, d, J = 9 Hz), 6.95 (1H, dtr, J = 1/7 Hz), 7.02 (1H, dtr, J = 1/7 Hz), 7.18-7.25 (3H, m), 7.38 (1H, d, J = 7.6 Hz), 10.72 (1H, s) ppm

¹**H-NMR (400 MHz; CD₂Cl₂):** $\delta = 0.39$ (1H, d, J = 13 Hz), 0.77 (3H, s), 1.15-1.44 (3H, m), 1.51 (1H, dtr, J = 3.5/13 Hz), 1.68 (1H, d, J = 13 Hz), 1.87 (1H, dtr, J = 3.7/13 Hz), 2.22 (1H, d, J = 11 Hz), 2.51 (2H, d, J = 6.5 Hz), 2.77 (1H, dtr, J = 15/5.5 Hz), 2.87 (1H, dtr, J = 15/5 Hz), 3.11 (1H, dtr, J = 12.3/5.5 Hz), 3.42 (1H, ddd, J = 5/5.5/12.3 Hz), 3.67 (1H, d, J = 8.4 Hz), 3.76 (3H, s), 3.90 (1H, d, J = 8.4 Hz), 4.42 (1H, tr, J = 6.5 Hz), 6.16 (1H, d, J = 6 Hz), 6.18 (1H, d, J = 6 Hz), 6.83 (2H, d, J = 9 Hz), 7.02-7.10 (3H, m), 7.19 (2H, d, J = 9 Hz), 7.45 (1H, d, J = 7 Hz), 8.13 (1H, s) ppm

NOE-Experiment (CD ₂ Cl ₂):	3.67 (b)	\Rightarrow	0.77 (a, 11%); 2.51 (f, 2%); 3.90 (c,
10%); (s. Abbildung 20)			7.19 (Aromat, 24%)
	3.90(c)	\Rightarrow	0.77 (a. 12%): 1.15 (2%): 2.87 (i. 3%):

$$\begin{array}{rcl} 0 \ (c) & \Rightarrow & 0.77 \ (a, \ 12\%); \ 1.15 \ (2\%); \ 2.87 \ (j, \ 3\%); \\ & & 3.11 \ (i, \ 6\%); \ 3.42 \ (h, \ 2\%); \ 3.67 \ (b, \ 8\%); \end{array}$$

$$6.82 \text{ (Aromat, 1\%)}$$

$$4.42 \text{ (d)} \implies 2.51 \text{ (f, 5\%)}; 3.11 \text{ (i, 2\%)}; 6.17 \text{ (e, 9\%)};$$

$$8.13 \text{ (N-H, 2\%)}$$

$$6.17 \text{ (e)} \implies 1.87 \text{ (1\%)}; 2.22 \text{ (g, 1\%)}; 2.51 \text{ (f, 1\%)};$$

$$4.42 \text{ (d, 4\%)}; 7.19 \text{ (Aromat, 6\%)}$$

¹³C-NMR (100 MHz; CD₂Cl₂): $\delta = 15.51$ (q), 21.23 (tr), 21.51 (tr), 23.64 (tr), 26.44 (tr), 28.50 (tr), 44.08 (tr), 50.59 (tr), 52.22 (d), 53.58 (d), 55.17 (q), 60.74 (s), 62.54 (s), 68.14 (s), 69.34 (d), 108.59 (s), 111.11 (d), 113.07 (d, 2x), 117.93 (d), 119.24 (d), 121.45 (d), 127.06 (s), 128.48 (d, 2x), 130.83 (s), 134.67 (s), 136.32 (s), 138.12 (d), 139.87 (d), 158.25 (s), 209.84 (C=O) ppm

MS-FAB: m/z (%) = 479 (MH⁺, 11), 460 (M⁺, 7), 307 (60), 289 (28), 240 (30), 154 (100), 137 (66)

α-endo-Addukt 100

 $\begin{array}{l} C_{32}H_{34}O_2N_2\\ M=478 \ g/mol \end{array}$

Eine Lösung von 30 mg (79 μ mol; 1 eq) Siloxydien **8**, 13 mg (74 μ mol; 0.9 eq) Dihydronorharman **95** und 15 mg (74 μ mol; 0.9 eq) Dihydronorharman-Hydrochlorid **96** in 0.5 ml abs. DMSO und 0.5 ml abs. CH₂Cl₂ wurde in einen Teflonschlauch eingeschweißt und 7 d einem Druck von 14 kbar ausgesetzt. Zur Spaltung des Silylenolethers wurde unter Zusatz von 40 mg CSA[·]H₂O in CH₂Cl₂ bei RT 30 min gerührt. Anschließend wurde die Reaktions-lösung mit ges. NaHCO₃-Lsg. alkalisch gemacht. Die wäßrige Phase wurde mit CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen wurden mit Wasser gewaschen, über MgSO₄ getrocknet und am Rotationsverdampfer eingeengt. Nach säulenchromatographischer Reinigung (E/PE 1:1) erhielt man neben 53% α -exo-Addukt **98** 37% α -endo-Addukt **100** als hellgelbe Öle.

Ausbeute: 14 mg (29 µmol; 37%)

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = -8.0^{\circ} (c = 0.10)$

IR (**Golden Gate ATR**): v = 3340 (w), 2922 (m), 1697 (m), 1643 (w), 1613 (w), 1514 (s), 1453 (m, br), 1289 (w), 1247 (vs), 1179 (s) cm⁻¹

¹**H-NMR** (**400 MHz**; **CDCl**₃): $\delta = 0.48$ (1H, d, J = 12.5 Hz), 0.87 (3H, s), 1.16-1.46 (3H, m), 1.63 (2H, dtr, J = 3.5/12.7 Hz), 1.87 (1H, dtr, J = 3.5/12.6 Hz), 2.26-2.41 (2H, m), 2.58 (1H, dtr, J = 3.5/11.5 Hz), 2.71 (1H, dd, J = 15/1.4 Hz), 2.80 (1H, dd, J = 3.1/16.5 Hz), 2.89 (1H, m_c), 3.57 (1H, d, J = 8 Hz), 3.79 (1H, d, J = 8 Hz), 3.80 (3H, s), 4.00 (1H, d_{br}, J = 12 Hz), 6.06 (1H, d, J = 6 Hz), 6.20 (1H, d, J = 6 Hz), 6.88 (2H, d, J = 9 Hz), 7.05-7.15 (3H, m), 7.22 (2H, d, J = 9 Hz), 7.47 (1H, d, J = 7 Hz), 7.94 (1H, s_{br}) ppm

MS-FAB: m/z (%) = 479 (MH⁺, 19), 478 (M⁺, 6), 307 (6), 253 (7), 240 (100), 154 (38), 136 (36)

Indol[2,3- α]chinolizin-2-on 101

 $C_{15}H_{14}ON_2$ M = 238 g/mol

66 mg (138 μ mol) α -*exo*-Addukt **98** wurden in einer Pyrolyseapparatur bei 9·10⁻³ mbar innerhalb von 5 min von RT auf 150 °C und weitere 5 min bei 150 °C erhitzt, verdampft und retrogespalten. Das Hydrindandien **2b** wurde durch ein auf 350 °C erhitztes Pyrolyserohr geleitet und schied sich in der Kühlfalle ab. Das im Pyrolysekolben verbliebene Retroprodukt **101** wurde nach Abkühlen und Belüften der Apparatur mit Essigester eluiert. Das Lösungsmittel wurde am Rotationsverdampfer entfernt. Säulenchromatographische Reinigung (EE) lieferte das Retroprodukt **101** als hellgelbes Öl.

Ausbeute: 28 mg (118 µmol; 86%)

Drehwert (CHCl₃): $[\alpha]^{20}_{D} = +137.1^{\circ} (c = 2.3)$

IR (**Golden Gate ATR**): v = 3193 (w, br), 2920 (w), 1713 (w, br), 1621 (m, br), 1564 (vs, br), 1450 (s), 1376 (s), 1242 (s), 1171 (s), 724 (s, br) cm⁻¹

¹**H-NMR** (**400 MHz**; **CDCl**₃): $\delta = 2.64$ (1H, dd, J = 15.9/15.9 Hz), 2.92 (1H, dd, J = 4/15 Hz), 2.97-3.10 (2H, m), 3.54 (1H, ddd, 4/12/12 Hz), 3.74 (1H, dd, J = 4/12.5 Hz), 4.89 (1H, d_{br}, J = 15 Hz), 5.09 (1H, d, J = 7.4 Hz), 7.12 (1H, ddd, 1/7.8/7.8 Hz), 7.19 (1H, dtr, J = 1/8.2 Hz), 7.26 (1H, d_{br}, J = 7.4 Hz), 7.41 (1H, d, J = 8.2 Hz), 7.51 (1H, d, J = 7.8 Hz), 9.13 (1H, s) ppm

¹³**C-NMR (100 MHz; CDCl₃):** $\delta = 22.10$ (tr), 41.78 (tr), 50.84 (tr), 54.01 (d), 98.38 (d), 107.81 (s), 111.54 (d), 118.11 (d), 119.69 (d), 122.25 (d), 126.37 (s), 131.53 (s), 136.64 (s), 154.85 (d), 192.18 (C=O) ppm

MS (180 °**C):** m/z (%) = 238 (M⁺, 100), 209 (31), 156 (54), 129 (17), 122 (31), 105 (43), 81 (21), 69 (43)

MS-Hochauflösung: berechnet: 238.110613

gefunden: 238.110718

Retroprodukt 102

 $C_{15}H_{14}ON_2$ M = 238 g/mol

14 mg (29 μ mol) α -endo-Addukt **100** wurden in einer Pyrolyseapparatur bei 1.2·10⁻² mbar innerhalb von 5 min von RT auf 150 °C und weitere 5 min bei 150 °C erhitzt, verdampft und retrogespalten. Das Hydrindandien **2b** wurde durch ein auf 350 °C erhitztes Pyrolyserohr geleitet und schied sich in der Kühlfalle ab. Das im Pyrolysekolben verbliebene Retroprodukt **102** wurde nach Abkühlen und Belüften der Apparatur mit Essigester eluiert. Das Lösungsmittel wurde am Rotationsverdampfer entfernt. Säulenchromatographische Reinigung (EE) lieferte das Retroprodukt **102** als hellgelbes Öl.

Ausbeute: 4 mg (17 µmol; 59%)

Drehwert (CHCl₃): $[\alpha]_{D}^{20} = -136.7^{\circ} (c = 0.13)$

IR (**Golden Gate ATR**): v = 3180 (w, br), 2917 (w), 1727 (w, br), 1620 (m, br), 1564 (vs, br), 1451 (s), 1377 (s), 1242 (s), 1172 (s), 741 (s, br) cm⁻¹

¹**H-NMR** (**400 MHz; CDCl₃**): $\delta = 2.65$ (1H, dd, J = 16.3/16.3 Hz), 2.94 (1H, dd, J = 2.3/15 Hz), 2.99-3.10 (1H, m), 3.17 (1H, dd, J = 4.3/16.3 Hz), 3.60 (1H, dtr, J = 2.9/11.4 Hz), 3.81 (1H, dd, J = 4.5/12.3 Hz), 4.99 (1H, d_{br}, J = 17.3 Hz), 5.22 (1H, d, J = 6.8 Hz), 7.13 (1H, tr, J = 7.4 Hz), 7.20 (1H, tr, J = 7.2 Hz), 7.35 (1H, d_{br}, J = 6.8 Hz), 7.42 (1H, d, J = 8.2 Hz), 7.51 (1H, d, J = 7.5 Hz), 8.95 (1H,s) ppm

MS (160 °C): m/z (%) = 238 (M⁺, 100), 209 (28), 156 (47), 129 (12), 105 (30), 81 (12), 69 (6)

MS-Hochauflösung: berechnet: 238.110613

gefunden: 238.110321

3. Daten zur Röntgenstrukturanalyse des Indolylacrylsäuremethylesteraddukts 73

Kristalldaten

Empirical formula	$C_{38}H_{39}NO_5$	
Formula weight	589.70	
Crystal system	Orthorhombic	
Space group	P 2 ₁ 2 ₁ 2 ₁	
Unit cell dimensions	a = 9.1580(10) A	alpha = 90 deg.
	b = 16.123(2) A	beta = 90 deg.
	c = 20.245(3) A	gamma = 90 deg.
Volume	2989.3(7) A ³	
Z	4	
Calculated density	1.310 mg/m^3	
Absorption coefficient	0.086 mm^{-1}	
F(000)	1256 Electrons	
Crystal size	0.74 x 0.37 x 0.06 mm	

Daten zur Molekülstruktur

Bond lengths [A]

O(1)-C(15)	1.215(4)	C(12)-C(16)	1.501(4)
O(2)-C(16)	1.197(3)	C(12)-C(13)	1.547(4)
O(3)-C(29)	1.205(4)	C(13)-C(14)	1.540(4)
O(4)-C(29)	1.327(4)	C(13)-C(18)	1.541(4)
O(4)-C(30)	1.465(3)	C(14)-C(15)	1.482(4)
O(5)-C(34)	1.364(4)	C(16)-C(17)	1.534(4)
O(5)-C(37)	1.417(3)	C(17)-C(22)	1.474(4)
N(1)-C(23)	1.370(4)	C(17)-C(18)	1.552(4)
N(1)-C(22)	1.390(4)	C(18)-C(19)	1.530(4)
C(1)-C(38)	1.531(4)	C(19)-C(29)	1.505(4)
C(1)-C(2)	1.533(4)	C(19)-C(20)	1.514(4)
C(1)-C(6)	1.551(4)	C(20)-C(21)	1.480(4)
C(1)-C(9)	1.575(4)	C(21)-C(22)	1.340(4)
C(2)-C(3)	1.543(4)	C(21)-C(24)	1.415(4)
C(3)-C(4)	1.519(4)	C(23)-C(28)	1.377(4)
C(4)-C(5)	1.530(4)	C(23)-C(24)	1.406(4)
C(5)-C(6)	1.502(4)	C(24)-C(25)	1.390(4)
C(6)-C(7)	1.520(4)	C(25)-C(26)	1.371(4)
C(6)-C(11)	1.571(4)	C(26)-C(27)	1.389(4)
C(7)-C(8)	1.329(4)	C(27)-C(28)	1.375(4)
C(8)-C(9)	1.523(4)	C(31)-C(32)	1.382(4)
C(9)-C(31)	1.479(4)	C(31)-C(36)	1.383(4)
C(9)-C(10)	1.575(4)	C(32)-C(33)	1.388(4)
C(10)-C(15)	1.478(4)	C(33)-C(34)	1.370(4)
C(10)-C(11)	1.571(4)	C(34)-C(35)	1.358(4)
C(11)-C(12)	1.532(4)	C(35)-C(36)	1.382(4)

Bond angles [deg]

C(29)-O(4)-C(30)	116.8(3)	O(2)-C(16)-C(12)	127.2(3)
C(34)-O(5)-C(37)	117.2(3)	O(2)-C(16)-C(17)	123.2(3)
C(23)-N(1)-C(22)	109.3(3)	C(12)-C(16)-C(17)	109.5(3)
C(38)-C(1)-C(2)	107.6(2)	C(22)-C(17)-C(16)	112.0(3)
C(38)-C(1)-C(6)	116.3(3)	C(22)-C(17)-C(18)	110.2(3)
C(2)-C(1)-C(6)	109.8(3)	C(16)-C(17)-C(18)	104.4(3)
C(38)-C(1)-C(9)	112.4(3)	C(19)-C(18)-C(13)	116.7(3)
C(2)-C(1)-C(9)	116.1(3)	C(19)-C(18)-C(17)	112.9(3)
C(6)-C(1)-C(9)	94.6(2)	C(13)-C(18)-C(17)	103.4(3)
C(1)-C(2)-C(3)	110.8(3)	C(29)-C(19)-C(20)	115.6(3)
C(4)-C(3)-C(2)	110.6(3)	C(29)-C(19)-C(18)	111.6(3)
C(3)-C(4)-C(5)	112.4(3)	C(20)-C(19)-C(18)	113.3(3)
C(6)-C(5)-C(4)	110.2(3)	C(21)-C(20)-C(19)	109.1(3)
C(5)-C(6)-C(7)	117.4(3)	C(22)-C(21)-C(24)	108.7(3)
C(5)-C(6)-C(1)	113.7(3)	C(22)-C(21)-C(20)	121.9(3)
C(7)-C(6)-C(1)	100.4(3)	C(24)-C(21)-C(20)	129.4(3)
C(5)-C(6)-C(11)	117.7(3)	C(21)-C(22)-N(1)	108.3(3)
C(7)-C(6)-C(11)	103.6(3)	C(21)-C(22)-C(17)	128.3(3)
C(1)-C(6)-C(11)	101.5(3)	N(1)-C(22)-C(17)	123.3(3)
C(8)-C(7)-C(6)	108.3(3)	N(1)-C(23)-C(28)	130.1(4)
C(7)-C(8)-C(9)	108.8(3)	N(1)-C(23)-C(24)	106.9(3)
C(31)-C(9)-C(8)	118.0(3)	C(28)-C(23)-C(24)	122.9(3)
C(31)-C(9)-C(1)	116.3(3)	C(25)-C(24)-C(23)	117.8(3)
C(8)-C(9)-C(1)	99.4(3)	C(25)-C(24)-C(21)	135.4(4)
C(31)-C(9)-C(10)	118.2(3)	C(23)-C(24)-C(21)	106.8(3)
C(8)-C(9)-C(10)	102.4(2)	C(26)-C(25)-C(24)	119.7(3)
C(1)-C(9)-C(10)	99.3(2)	C(25)-C(26)-C(27)	121.0(3)
C(15)-C(10)-C(11)	114.1(2)	C(28)-C(27)-C(26)	121.1(3)
C(15)-C(10)-C(9)	115.9(3)	C(27)-C(28)-C(23)	117.4(3)
C(11)-C(10)-C(9)	104.9(3)	O(3)-C(29)-O(4)	122.6(4)
C(12)-C(11)-C(6)	117.1(3)	O(3)-C(29)-C(19)	125.2(4)
C(12)-C(11)-C(10)	113.2(3)	O(4)-C(29)-C(19)	112.2(3)
C(6)-C(11)-C(10)	101.8(2)	C(32)-C(31)-C(36)	116.4(3)
C(16)-C(12)-C(11)	110.8(3)	C(32)-C(31)-C(9)	124.1(3)
C(16)-C(12)-C(13)	101.5(3)	C(36)-C(31)-C(9)	119.5(3)
C(11)-C(12)-C(13)	112.0(3)	C(31)-C(32)-C(33)	121.2(3)
C(14)-C(13)-C(18)	116.8(3)	C(34)-C(33)-C(32)	120.9(3)
C(14)-C(13)-C(12)	113.4(3)	C(35)-C(34)-O(5)	125.3(3)
C(18)-C(13)-C(12)	103.5(3)	C(35)-C(34)-C(33)	118.8(3)
C(15)-C(14)-C(13)	114.8(3)	O(5)-C(34)-C(33)	115.8(3)
O(1)-C(15)-C(10)	122.7(3)	C(34)-C(35)-C(36)	120.3(3)
O(1)-C(15)-C(14)	120.5(3)	C(35)-C(36)-C(31)	122.4(3)
C(10)-C(15)-C(14)	116.7(3)		

Atom	Х	у	z U(eq)
O(1)	0.2105(3)	0.1986(2)	0.1776(1) 0.0692(8)
O(2)	0.5329(3)	-0.1299(2)	0.2349(1) 0.0727(8)
O(3)	0.2783(3)	0.1574(2)	0.4362(1) 0.0854(9)
O(4)	0.4906(3)	0.2210(2)	0.4203(1) 0.0663(7)
O(5)	-0.4582(2)	0.2399(2)	0.1123(1) 0.0673(8)
N(1)	0.7335(4)	-0.1273(2)	0.3564(2) 0.0465(10)
H(1)	0.7127(32)	-0.1675(18)	0.3432(15) 0.025(12)
C(1)	0.0222(3)	-0.0470(2)	0.1629(2) 0.0429(9)
C(2)	-0.0504(3)	-0.0915(2)	0.1046(1) 0.0534(10)
C(3)	-0.0245(4)	-0.1860(2)	0.1086(2) 0.0688(12)
C(4)	0.1379(4)	-0.2050(2)	0.1109(2) 0.0764(13)
C(5)	0.2148(4)	-0.1615(2)	0.1683(2) 0.0589(11)
C(6)	0.1866(3)	-0.0698(2)	0.1657(2) 0.0436(9)
C(7)	0.2427(4)	-0.0229(2)	0.1058(1) 0.0473(10)
C(8)	0.1636(3)	0.0457(2)	0.0989(2) 0.0478(10)
C(9)	0.0500(3)	0.0487(2)	0.1539(2) 0.0379(9)
C(10)	0.1465(3)	0.0651(2)	0.2169(1) 0.0401(9)
C(11)	0.2400(3)	-0.0158(2)	0.2256(2) 0.0393(9)
C(12)	0.4043(3)	0.0011(2)	0.2306(2) 0.0466(10)
C(13)	0.4388(3)	0.0720(2)	0.2797(2) 0.0497(10)
C(14)	0.3475(4)	0.1507(2)	0.2678(2) 0.0783(12)
C(15)	0.2331(4)	0.1425(2)	0.2164(2) 0.0502(10)
C(16)	0.4820(4)	-0.0707(2)	0.2621(2) 0.0484(9)
C(17)	0.4915(3)	-0.0569(2)	0.3370(2) 0.0432(9)
C(18)	0.4233(3)	0.0301(2)	0.3478(2) 0.0431(10)
C(19)	0.4894(4)	0.0761(2)	0.4068(2) 0.0488(9)
C(20)	0.6536(3)	0.0855(2)	0.4024(2) 0.0522(10)
C(21)	0.7197(4)	0.0035(2)	0.3889(2) 0.0414(9)
C(22)	0.6436(3)	-0.0581(2)	0.3607(2) 0.0380(9)
C(23)	0.8679(4)	-0.1086(2)	0.3822(1) 0.0395(9)
C(24)	0.8622(4)	-0.0254(2)	0.4029(2) 0.0387(9)
C(25)	0.9876(4)	0.0088(2)	0.4304(2) 0.0533(10)
C(26)	1.1110(4)	-0.0388(3)	0.4366(2) 0.0541(11)
C(27)	1.1136(4)	-0.1204(3)	0.4146(2) 0.0517(11)
C(28)	0.9918(4)	-0.1566(2)	0.3874(1) 0.0487(10)
C(29)	0.4062(4)	0.1542(3)	0.4225(2) 0.0553(11)
C(30)	0.4211(4)	0.3006(2)	0.4356(2) 0.0821(13)
C(31)	-0.0808(3)	0.1010(2)	0.1436(2) 0.0394(9)
C(32)	-0.1484(3)	0.1460(2)	0.1930(2) 0.0493(10)
C(33)	-0.2747(4)	0.1910(2)	0.1807(2) 0.0529(11)
C(34)	-0.3368(4)	0.1916(2)	0.1191(2) 0.0482(10)
C(35)	-0.2738(4)	0.1464(2)	0.0703(2) 0.0536(10)
C(36)	-0.1459(4)	0.1034(2)	0.0820(2) 0.0516(10)
C(37)	-0.5294(4)	0.2385(2)	0.0502(2) 0.097(2)
C(38)	-0.0677(3)	-0.0662(2)	0.2248(1) 0.0579(11)

Atomic coordinates and equivalent isotropic displacement parameters (A²)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Idealized hydrogen atom generation before cycle

Name	e x	У	Z	AFIX	d(X-H)	shift	Bonded to	Conformation determined by
H2	-0.0107	-0.0704	0.0635	23	0.970	0.000	C2	C1 C3
H3	-0.1545	-0.0804	0.1050	23	0.970	0.000	C2	C1 C3
H4	-0.0713	-0.2079	0.1478	23	0.970	0.000	C3	C4 C2
H5	-0.0678	-0.2127	0.0704	23	0.970	0.000	C3	C4 C2
H6	0.1825	-0.1877	0.0696	23	0.970	0.000	C4	C3 C5
H7	0.1515	-0.2645	0.1150	23	0.970	0.000	C4	C3 C5
H8	0.1794	-0.1837	0.2098	23	0.970	0.000	C5	C6 C4
H9	0.3190	-0.1718	0.1658	23	0.970	0.000	C5	C6 C4
H10	0.3193	-0.0393	0.0786	43	0.930	0.000	C7	C8 C6
H11	0.1755	0.0853	0.0660	43	0.930	0.000	C8	C7 C9
H12	0.0800	0.0683	0.2548	13	0.980	0.000	C10	C15 C11 C9
H13	0.2089	-0.0433	0.2665	13	0.980	0.000	C11	C12 C6 C10
H14	0.4455	0.0132	0.1870	13	0.980	0.000	C12	C16 C11 C13
H15	0.5418	0.0869	0.2740	13	0.980	0.000	C13	C14 C18 C12
H16	0.3011	0.1664	0.3091	23	0.970	0.000	C14	C15 C13
H17	0.4128	0.1954	0.2553	23	0.970	0.000	C14	C15 C13
H18	0.4339	-0.0991	0.3602	13	0.980	0.000	C17	C22 C16 C18
H19	0.3189	0.0226	0.3566	13	0.980	0.000	C18	C19 C13 C17
H20	0.4729	0.0396	0.4448	13	0.980	0.000	C19	C29 C20 C18
H21	0.6785	0.1240	0.3674	23	0.970	0.000	C20	C21 C19
H22	0.6914	0.1074	0.4437	23	0.970	0.000	C20	C21 C19
H23	0.9878	0.0637	0.4445	43	0.930	0.000	C25	C26 C24
H24	1.1941	-0.0160	0.4558	43	0.930	0.000	C26	C25 C27
H25	1.1993	-0.1510	0.4184	43	0.930	0.000	C27	C28 C26
H26	0.9930	-0.2114	0.3730	43	0.930	0.000	C28	C27 C23
H27	0.4921	0.3442	0.4326	33	0.960	0.000	C30	O4 H27
H28	0.3820	0.2989	0.4796	33	0.960	0.000	C30	O4 H27
H29	0.3436	0.3107	0.4047	33	0.960	0.000	C30	O4 H27
H30	-0.1086	0.1462	0.2353	43	0.930	0.000	C32	C31 C33
H31	-0.3178	0.2211	0.2147	43	0.930	0.000	C33	C34 C32
H32	-0.3169	0.1443	0.0287	43	0.930	0.000	C35	C34 C36
H33	-0.1020	0.0751	0.0473	43	0.930	0.000	C36	C35 C31
H34	-0.6127	0.2747	0.0514	33	0.960	0.000	C37	O5 H34
H35	-0.5608	0.1830	0.0405	33	0.960	0.000	C37	O5 H34
H36	-0.4631	0.2570	0.0165	33	0.960	0.000	C37	O5 H34
H37	-0.0247	-0.0391	0.2622	33	0.960	0.000	C38	C1 H37
H38	-0.0690	-0.1250	0.2321	33	0.960	0.000	C38	C1 H37
H39	-0.1658	-0.0466	0.2188	33	0.960	0.000	C38	C1 H37

III. Literaturverzeichnis

- 1 a) O. Diels, K. Alder, Justus Liebigs Ann. Chem. 1928, 460, 98 b) J. A. Norton, Chem. Rev. 1942, 31, 319 c) J. G. Martin, R. K. Hill, Chem. Rev. 1961, 61, 537 a) S. M. Weinreb, P. M. Scola, Chem. Rev. 1989, 89, 1525 2 b) M. Petrzilka, Synthesis 1981, 753 3 a) A. Ichihara, Synthesis 1987, 207 b) M.-C. Lasne, J.-L. Ripoll, Synthesis 1985, 121 a) J. O. Metzger, Nachr. Chem. Tech. Lab. 1994, 42, 690 4 b) E. Winterfeldt, GIT Labor-Fachzeitschrift 1991, 35, 179 5 a) B. M. Trost, Science 1991, 254, 1471 b) B. M. Trost, Angew. Chem. 1995, 107, 285 6 C. Borm, F. Nerenz, E. Winterfeldt, Advances in Asymmetric Synthesis, JAI Press Inc., 1997, Vol. 2, 1-53 7 W. Carruthers, Cycloaddition Reactions in Organic Synthesis, Pergamon Press, Oxford, 1990, 1-208 8 a) K. Matsumoto, A. Sera, Synthesis 1985, 999 b) G. Jenner, Tetrahedron 1997, 53, 2669 c) W. G. Dauben, J. Y. L. Lam, Z. R. Guo, J. Org. Chem. 1996, 61, 4816 9 E. Winterfeldt, Chem. Rev. 1993, 93, 827 a) U. Eder, G. Sauer, R. Wiechert, Angew. Chem. 1971, 83, 492 10 b) Z. G. Hajos, D. R. Parrisch, J. Org. Chem. 1974, 39, 1615 c) Z. G. Hajos, D. R. Parrisch, Organic Synthesis 1985, 63, 26 M. Beckmann, T. Meyer, F. Schulz, E. Winterfeldt, Chem. Ber. 1994, 127, 2505 11 12 a) E. Winterfeldt, Chem. Rev. 1993, 93, 827 b) B. Wegener, M. Hansen, E. Winterfeldt, Tetrahedron Asymm. 1993, 4, 345 c) C. Borm, D. Meibom, E. Winterfeldt, J. Chem. Soc. Chem. Commun. 1996, 887 13 a) J. Sauer, Angew. Chem. 1967, 79, 76
 - b) I. Fleming, *Grenzorbitale und Reaktionen organischer Verbindungen*, VCH, Weinheim, **1979**, 123
- 14 S. Danishefsky, T. Kitahara, J. Am. Chem. Soc. 1974, 7807
- 15 G. Klopmann, J. Am. Chem. Soc. 1968, 90, 223

- 16 L. Salem, J. Am. Chem. Soc. 1968, 90, 543
- 17 L. Salem, J. Am. Chem. Soc. 1968, 90, 553
- 18 S. Danishefsky, Acc. Chem. Res. 1981, 14, 400
- 19 E. Merten, *Dissertation*, Universität Hannover, **1995**
- 20 C. Borm, *Dissertation*, Universität Hannover, **1997**
- 21 a) P. Wipf, Y. Kim, P. C. Fritch, J. Org. Chem. 1993, 58, 7195
 - b) M. E. Wall, J. Nat. Prod. 1992, 55, 1561
 - c) E. G. Juagdan, R. Kalidindi, P. Scheuer, Tetrahedron 1997, 53, 521
 - d) J. J. Sims, G. H. Y. Lin, R. M. Wing, Tetrahedron Letters 1974, 39, 3487
 - e) G. M. König, A. D. Wright, J. Nat. Prod. 1997, 60, 967
- 22 H. Weinmann, *Dissertation*, Universität Hannover, **1995**
- 23 Y. Tamura, T. Yakura, J. Haruta, Y. Hita, J. Org. Chem. 1987, 52, 3927
- A. McKillop, L. McLaren, R. J. K. Taylor, R. J. Watson, N. Lewis, Synlett 1992, 201
- 25 M. Wolter, *Diplomarbeit*, Universität Hannover, **1998**
- a) A. Michael, J. Prakt. Chem. 1887, 36, 113
 b) E. D. Bergman, D. Gunsburg, R. Rappo, Org. React. 1959, 10, 179
- E. Winterfeldt, *Synthesis* **1975**, 617
- 28 W. H. Bunnelle, L. A. Meyer, J. Org. Chem. 1988, 53, 4038
- a) P. E. Eaton, W. H. Bunnelle, *Tetrahedron Letters* 1984, 25, 23
 b) P. E. Eaton, W. H. Bunnelle, *Can. J. Chem.* 1984, 62, 2612
- 30 a) K. H. Büchel, A. Conte, *Chem. Ber.* 1967, 100, 1248
 b) W. Groebel, *Chem. Ber.* 1960, 93, 284
- 31 C. A. Brown, J. Am. Chem. Soc. 1973, 95, 4100
- 32 C.-S. Chen, C. J. Sih, Angew. Chem. 1989, 101, 711
- a) U. Beifuss, H. Gehm, M. Tietze, in: Organosilicon Chemistry II From Molecules to Materials (Eds.: N. Auner, J. Weis), VCH, Weinheim, 1996, 219
 b) S. Ledderhose, U. Beifuss, in: Organosilicon Chemistry II From Molecules to Materials (Eds.: N. Auner, J. Weis), VCH, Weinheim, 1996, 225
 c) P. J. Casals, Bull. Soc. Chim. France 1963, 253
- a) K. C. Nicolaou, G.-Q. Shi, K. Namoto, F. Bernal, *Chem. Commun.* 1998, 1757
 b) J. D. Ha, C. H. Kang, K. A. Belmore, J. K. Cha, *J. Chem. Soc.* 1998, *63*, 3810
- a) R. A. Adamiak, J. Stawinski, *Tetrahedron Letters* 1977, 22, 1935
 b) J. D. Hobson, J. G. McCluskey, J. Chem. Soc. (C) 1967, 2015

- c) D. L. Flynn, R. E. Zelle, P. A. Grieco, J. Org. Chem. 1982, 48, 2424
- a) W. J. Scott, J. K. Stille, J. Am. Chem. Soc. 1986, 108, 3033
 b) A. M. Echavarren, J. K. Stille, J. Am. Chem. Soc. 1987, 109, 5478
 c) A. M. Echavarren, J. K. Stille, J. Am. Chem. Soc. 1988, 110, 4051
- a) T. Luker, H. Hiemstra, W. N. Speckamp, J. Org. Chem. 1997, 62, 8131
 b) C. J. Foti, D. L. Comins, J. Org. Chem. 1995, 60, 2656
- a) T. Luker, H. Hiemstra, W. N. Speckamp, J. Org. Chem. 1997, 62, 3592
 b) K. C. Nicolaou, G.-Q. Shi, J. L. Gunzer, P. Gärtner, Z. Yang, J. Am. Chem. Soc. 1997, 119, 5467
- a) T. Okita, M. Isobe, *Tetrahedron* 1995, 3737
 b) C. J. Foti, D. L. Comins, *J. Org. Chem.* 1995, 60, 2656
- 40 T. Luker, H. Hiemstra, W. N. Speckamp, *Tetrahedron Letters* 1996, 37, 8257
- 41 P. Bernabe, F. P. J. T. Rutjes, H. Hiemstra, W. N. Speckamp, *Tetrahedron Letters* 1996, 37, 3561
- 42 D. W. Old, J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc. 1998, 120, 9722
- 43 a) R. F. Borch, M. D. Bernstein, H. D. Durst, J. Am. Chem. Soc. 1971, 2897
- 44 a) J. A. Marshall, W. S. Johnson, *J. Org. Chem.* 1962, 28, 421
 b) G. W. Gribble, P. D. Lord, J. Skotnicki, S. E. Dietz, J. T. Eaton, J. L. Johnson, *J. Am. Chem. Soc.* 1974, 7812
- 45 Szantay, in Saxton (Hrsg.), Monoterpenoid Indole Alkaloids, Supp. Vol. 25, Heterocyclic Compounds, 478-480, 733-736
- 46 a) G. Höfle, W. Steglich, *Angew. Chem.* 1978, 90, 602
 b) E. F. Scriven, *Chem. Soc. Rev.* 1983, *12*, 129
- 47 a) J. K. Rasmussen, *Synthesis* 1977, 91
 b) Brownbridge, *Synthesis* 1983, *1*, 85
- 48 G. M. Coppola, *Synthesis* **1984**, 1021
- a) I. Kuwajima, E. Nakamura, *Acc. Chem. Res.* 1985, *18*, 181
 b) I. Kuwajima, E. Nakamura, *J. Am. Chem. Soc.* 1975, *97*, 3258
- a) W. G. Dauben, J. W. Ashmore, *Tetrahedron Letters* 1978, 4487
 b) T. H. Keller, L. Weiler, *Tetrahedron Letters* 1990, *31*, 6307
- 51 a) E. Späth, E. Lederer, *Chem. Ber.* 1930, *63*, 2102
 b) C. Schöpf, H. Steuer, *Annalen* 1947, *558*, 124
- 52 a) S. M. Weinreb, J. I. Levin, *Heterocycles* **1979**, *12*, 949

- b) J. F. Kerwin, Jr. u. S. Danishefsky, Tetrahedron Letters 1982, 23, 3739
- c) S. D. Larsen, P. A. Grieco, J. Am. Chem. Soc. 1985, 107, 1768
- 53 N. Whittaker, J. Chem. Soc. (C) 1969, 85
- 54 Fodor, Nagubandi, *Tetrahedron* **1980**, *36*, 1279
- 55 Brown, Kanner, J. Am. Chem. Soc. 1953, 75, 3865; 1966, 88, 986
- a) G. B. Kline, J. Am. Chem. Soc. 1959, 81, 2251
 b) H. Takayama, M. Kurihara, M. Kitajima, I. M. Said, N. Aimi, J. Org. Chem. 1999, 64, 1772
 c) Y. Langlois, A. Pouilhes, D. Genin, R. Z. Andriamialisoa, N. Langlois, *Tetrahedron* 1983, 39, 3755
- 57 H. Waldmann, *Synlett*, **1995**, 133
- 58 J.-Y. Laronze, J. Laronze, F. Wemba-Lenga, J. Levy, *Heterocycles* 1992, 34, 1101
- a) H. J. Monteiro, *The Alkaloids*, Vol. XI, Academic Press, New York, **1968**, 145
 b) C. Szantay, G. Blasko, K. Honty, L. Szabo, L. Töke, *Heterocycles* **1977**, *7*, 155
- 60 M. Kuehne, R. S. Muth, J. Org. Chem. 1991, 56, 2701
- 61 J. P. Vacca, *Tetahedron Letters* **1985**, *26*, 1277
- 62 W. Schuett, E. Herdtweck, F. Hahn, F. R. Kreissl, J. Organomet. Chem. 1993, 443
- 63 G. M. Sheldrick, E. Paulus, L. Vertesy, F. Hahn, *Structure of Ureido-Balhimycin Acta Crystallogr.* **1995**, 89
- 64 E. Merck, Anfärbereagenzien für Dünnschichtchromatographie, Darmstadt, **1970**
- 65 C. W. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923
- 66 J. Leonard, B. Lygo, G. Procter, *Praxis der Organischen Chemie Ein Handbuch*, VCH, Weinheim, **1996**
- 67 A. Hofer, Hochdrucktechnik GmbH, Mülheim an der Ruhr
- 68 G. Seybold, U. Jersak, Chem. Ber. 1977, 110, 1239
- 69 M. Beckmann, T. Meyer, F. Schulz, E. Winterfeldt, Chem. Ber. 1994, 2505
- 70 Y.-S. Wong, unveröffentlichte Ergebnisse, Universität Hannover, 1997
- a) M. Hansen, *Dissertation*, Universität Hannover, 1995
 b) G. Stork, R. L. Danheiser, *J. Org. Chem.* 1973, *38*, 1775

Lebenslauf

Persönliche Daten

Name:	Martina Wolter			
Geburtsdatum:	04.05.71			
Geburtsort:	Uelzen			
Familienstand:	ledig			
Schulausbildung				
1977 - 1981	Grundschule Wriedel			
1981 - 1983	Orientierungsstufe Ebstorf			
1983 - 1987	Gervasius-Realschule Ebstorf			
1987 - 1990	Lessing-Gymnasium Uelzen			
05/1990	Schulabschluß: Allgemeine Hochschulreife			
Berufsausbildung				
08/1990 - 06/1993	Ausbildung zur Chemielaborantin bei der Solvay Deutschland GmbH Hannover			
Berufstätigkeit				
07/1993 - 09/1993	Beschäftigung als Chemielaborantin bei der Kali-Chemie Pharma GmbH Hannover			
Hochschulausbildung				
10/1993	Immatrikulation für das Studienfach Chemie (Diplom) an der Universität Hannover			
09/1995	Vordiplomprüfung			
10/1997	Hauptdiplomprüfung			
11/1997 - 05/1998	Diplomarbeit unter der Leitung von Prof. Dr. Dr. h.c. E. Winterfeldt am Institut für Organische Chemie der Universität Hannover Thema: <i>Enantioselektive Anellierungsprozesse</i>			
05/1998 - 11/2000	Doktorarbeit unter der Leitung von Prof. Dr. Dr. h.c. E. Winterfeldt am Institut für Organische Chemie der Universität Hannover Thema: Synthese enantiomerenreiner Polycyclen an einem chiralen Templat			

Studienbegleitende Tätigkeiten

06/1998 - 07/1999	Praktikumsassistentin: Betreuung und Ausbildung von Studenten im organisch-chemischen Praktikum des Instituts für Organische Chemie der Universität Hannover
08/1999 - 09/2000	Wissenschaftliche Angestellte am Institut für Organische Chemie der Universität Hannover: Chemikalienbestellung und -verwaltung
Stipendium	
06/1998 - 07/1999	Stipendiatin im Graduiertenkolleg Chemische und technische Grundlagen der Naturstofftransformation der Universität Hannover
Zusätzliche Qualifika	tionen
1996	Erfolgreiche Teilnahme an den Biochemischen Praktika I und II des Zentrums für Biochemie an der Medizinischen Hochschule Hannover

01/1999 - 02/1999	Erfolgreiche Teilnahme am Kurs Allgemeine und systematische
	Pharmakologie und Toxikologie an der Medizinischen
	Hochschule Hannover