
Adaptive Hyperbooks:

Adaptation for

Project-Based Learning

Resources

Vom Fachbereich Mathematik und Informatik der Universität Hannover

zur Erlangung des Grades

Doktor der Naturwissenschaften

Dr. rer. nat.

genehmigte Dissertation

von

Dipl.-Math. Nicola Henze

geboren am 25. November 1968 in Hannover

2000

Referent: Prof. Dr. W. Nejdl

Korreferent: Prof. Dr. U. Lipeck

Tag der Promotion: 28. April 2000

Datum der Veröffentlichung: Mai 2000

Contents

1 Introduction 8

2 Adaptive Hypermedia Systems 10

2.1 Hypertext and Hypermedia . 10

2.2 Adaptive Hypermedia Systems . 11

2.3 User Modeling in Adaptive Hypermedia Systems 12

2.3.1 User Models . 12

2.3.2 Characteristics of the User 13

2.3.3 Methods and Techniques for Adaptation 14

2.4 Examples of Adaptive Hypermedia Systems 16

2.4.1 ELM-ART . 16

2.4.2 INTERBOOK . 17

2.4.3 PT . 18

2.4.4 PUSH . 18

2.4.5 AVANTI . 19

2.4.6 AHA . 19

2.4.7 OLAE, POLA . 19

2.4.8 Plan Recognition in a Multi User Dungeon 19

2.4.9 POKS . 20

2.4.10 EPI-UMOD . 20

2.4.11 HYDRIVE . 20

2.4.12 KBS Hyperbook System . 20

2.5 Discussion . 21

3 Teaching 24

3.1 Specific Situation in Distance Learning 24

3.2 Constructivism as a Theory of Knowledge 25

CONTENTS 4

3.2.1 Constructivism and Teaching 26

3.3 Implementing Constructivist Teaching Concepts in a CS1 Course . . 27

3.3.1 Project-Based Learning . 27

3.4 Excursion: The KBS Virtual Classroom Project 28

3.5 Discussion: Requirements for enabling project-based learning 30

4 The KBS Hyperbook System 31

4.1 Definition of Hyperbooks . 31

4.2 Conceptual Modeling for Adaptive Hyperbooks 32

4.2.1 Modeling courses and lectures 34

4.2.2 Modeling Different Information Resources 35

4.2.3 Modeling the index . 37

4.2.4 Modeling Portfolios . 37

4.3 System Architecture . 40

5 Adaptation Component of the KBS Hyperbook System 44

5.1 Modeling the Knowledge Domain . 45

5.1.1 Knowledge Items . 45

5.1.2 Describing the Knowledge Domain 45

5.2 Modeling the User’s Knowledge . 46

5.3 Indexing Information: HTML pages, Examples, Projects 47

5.3.1 Indexing HTML pages . 47

5.3.2 Indexing Chapters, Areas, etc. 48

5.3.3 Indexing Portfolios . 48

5.3.4 Indexing Examples and Projects 48

5.3.5 Update: Observations about Users 49

5.3.6 Indexing Constraints . 49

5.4 Discussion . 49

6 Bayesian Network Engine: Calculating Probabilities 51

6.1 The Bayesian Network Graph . 52

6.1.1 Dependencies of the KI . 52

6.1.2 YACF: Yet Another Clustering Formalism 54

6.2 Finding Conditional Probability Tables 62

6.3 Advantages of using a BN . 63

6.4 Interpreting the Conclusions of the Bayesian Network 64

CONTENTS 5

6.5 The Bayesian Network of the CS1 Hyperbook 65

7 Enabled Adaptation 66

7.1 Link Annotation . 66

7.1.1 Calculating the Educational State of a Link 67

7.2 Access to Relevant Information: Trails and Information Index 67

7.2.1 Generating a Learning Sequence 68

7.2.2 Generating a Glossary . 68

7.2.3 Generating an Information Index 69

7.3 Direct Guidance . 70

7.4 Goal Based Learning . 70

7.5 Project Based Learning . 70

7.5.1 Matching: How good fits a project to a student’s goal? 71

7.5.2 Fitness: How about those parts of a selected project that do
not belong to the student’s current goal? 72

7.6 Integrating Portfolios . 72

7.7 Project-Based Updating . 74

8 Conclusion 76

9 Outlook 78

A Complete List of the Knowledge Items for the CS1 Hyperbook 79

Summary

Recently, hypermedia systems have become more and more popular
as tools for user driven access to information. Adaptive hypermedia
systems bring together ideas from hypermedia systems and intelligent
tutoring systems, and enable personalized access to information. The
KBS hyperbook system is a framework for modeling, organizing and
maintaining such adaptive hypermedia systems.

This thesis describes the concept and realization of the adaptation
component of the KBS hyperbook system. The adaptation component
guides the student through the information space by showing next rea-
sonable learning steps, by selecting projects, generating and proposing
reading sequences, annotating the educational state of information, and
by selecting useful information, based on a user’s actual goal and know-
ledge.

Learning with hypermedia systems usually takes place in distance learn-
ing scenarios. To enable active learning, the KBS hyperbook system
follows a constructivist pedagogic approach, building on project-based
learning, group work, and discussion. A special focus of the adaptation
component is therefore the support of project-based learning and the
integration of projects in the curriculum of the user’s work with the
hyperbook.

The adaptation component uses an indexing concept for describing the
content of the various information resources. This indexing concept is
also taken as a base for constructing a model of the application domain.
A Bayesian inference mechanism calculates estimations about the user’s
knowledge on top of this domain model.

With the aid of the described adaptation component, intelligent user
support can be enabled in hypermedia systems. Furthermore, the sys-
tem can serve as a development and experimentation framework for
further research in the KBS hyperbook system, and in the area of
educational and adaptive hypermedia systems.

Keywords: adaptive hypermedia systems, user modeling, construc-
tivism

Zusammenfassung

Dem Einsatz von Hypermedia-Systemen als Werkzeuge zum be-
nutzergesteuerten Informationszugriff kommt in letzter Zeit wach-
sende Aufmerksamkeit zu. Adaptive Hypermedia-Systeme vereinigen
wesentliche Ideen aus den Gebieten der Hypermedia-Systeme und der
Intelligenten Tutoriellen Systeme und ermöglichen personalisierten In-
formationszugriff. Das KBS Hyperbook System ist eine Umgebung zur
Modellierung, Erstellung und Verwaltung derartiger Systeme.

Diese Arbeit beschreibt Konzept und Realisierung der Adaptionskom-
ponente des KBS Hyperbook Systems. Die Adapationskomponente
führt oder begleitet den Studierenden durch die Informationsvielfalt,
indem sie gemäß seinem Kenntnisstand und seiner Ziele vernünftige
Lernschritte aufzeigt, geeignete Übungsprojekte ermittelt, eine günstige
Lesereihenfolge vorschlägt und auf relevante Informationen verweist.

Zur Unterstützung aktiven Lernens folgt das KBS Hyperbook System
einem konstruktivistischen Ansatz, der auf projektbasiertem Lernen,
Gruppenarbeit und Diskussion aufbaut. Die Adaptionskomponente un-
terstützt dabei vor allem projektbasiertes Lernen und die Integration
von Projekten in den Lernweg des Studierenden.

Zur Beschreibung der Inhalte verschiedenartiger Informationsquellen
verwendet die Adaptionskomponente ein Indizierungskonzept, das
auch die Grundlage für die Konstruktion eines Modells der Anwen-
dungsdomäne ist. Innerhalb dieser Domäne schätzt ein Bayesscher
Schlußmechanismus das Wissen des Studierenden ab.

Es zeigt sich, daß die dargestellte Adaptionskomponente eine intel-
ligente Anwenderunterstützung in Hypermedia-Systemen ermöglicht.
Überdies kann das System als Entwicklungs- und Experimentier-
Plattform für weitergehende Forschungen auf dem Gebiet der Lern-
systeme und der adaptiven Hypermedia-Systeme dienen.

Schlagworte: Adaptive Hypermedia Systeme, Benutzermodellierung,
Konstruktivismus

Chapter 1

Introduction

Books, or, in former times, papyrus, leather, or slabs [27], have been the favourite
holder of information since the invention of writing. The advantages of collecting
information in books are various: information is grouped together, and often there
is a red thread from the beginning to the end.

You can learn by reading a book. Or by discussing with a human. The main differ-
ence in these scenarios is, that a human partner will take the special learner into
account and will adapt the learning speed and the depth of information to the vis–
à–vis. A conventional book cannot adapt itself to the particular needs of its readers
– written and printed once, it remains static. If we think of books that are personally
written for us, we can suppose lots of useful ideas. For example, the books should
not be boring by telling us things we already know or we are not interested in. Think
of textbooks, which demonstrate difficult topics by giving examples related to our
favourite hobbies. Think of textbooks which give a solid foundation of some topic
and refer always – even after years – to the actual research in this area. Imagine a
textbook which draws attention to itself if it has new and relevant information for
you and provides explanations tailored to your actual knowledge state.

Since the emergence of the World Wide Web (WWW) in 1991 [4], the value of in-
formation has got a new dimension. Nowadays, millions of computers are connected
via the internet, humans can collect information from nearly anywhere in the world.

This enormous amount of information is also a chance for experience and learning.
But effectively selecting information from the internet is still a hot research topic
as the effectiveness of search machines increase with the precision of the query. The
information contained in the internet is often useless for exploring or learning, as
learners need guidance to build up a mental model of the area they are working on
before being able to make sufficiently exact queries.

It would be very helpful to have different textbooks for different types of learners,
for students with different interests and different initial knowledge on the topic.
To make a step in this direction, adaptive hyperbooks personalize the content of
hyperbooks to the particular needs of users. They give users the ability to define
their own learning goals, propose next reasonable learning steps to take, support
project-based learning, give alternative views, and they can be extended by docu-
ments written by the learners. Adaptive hyperbooks are information repositories for
accessing distributed information. Implemented as internet applications, they can
integrate documents located anywhere in the web – and adapt these documents to
the learner’s goals and knowledge.

9

Promising approaches in research come from the area of adaptive hypermedia sys-
tems [6]. Adaptive hypermedia systems combine hypermedia systems with intelli-
gent tutoring systems to adapt the systems to the particular users.

This work is a step towards intelligent textbooks. We propose concept and realiza-
tion of an adaptation component for an open, adaptive hypermedia system which,
on the one hand, implements advanced teaching strategies, and, on the other hand,
enables integration and adaptation of learning material found in the WWW.

The first chapters outline the scope of this work focussing on adaptive hypermedia
systems (chapter 2) and their applications for learning (chapter 3). At the end of
chapter 3, we propose a list of requirements that should be fulfilled by adaptive hy-
perbooks used for education. Since we are interested in building open hypermedia
systems on the WWW, it follows that the adaptation of hyperbooks must be suf-
ficiently general for integrating and adapting arbitrary material from the internet.
The general functionality of the KBS hyperbook system and its modeling approach
is proposed in chapter 4.

The following three chapters describe the adaptation component in detail: chapter
5 introduces the main ideas of the adaptation approach. The indexing concept
underlying the approach is discussed, its use is demonstrated, and the applicability
is shown. The use of the index is twofold. First, it classifies content of information.
Second, the index serves as a base for describing the application domain and thus
for describing knowledge. For making inferences about the user’s knowledge and
for updating the hyperbook due to the user’s changing knowledge state, we use a
Bayesian inference mechanism. For improving performance of Bayesian inference we
propose a clustering algorithm tailored to our application domain (chapter 6). The
adaptation functionalities enabled by our general approach are described in chapter
7. Conclusion and outlook on further work accomplish the thesis.

Chapter 2

Adaptive Hypermedia
Systems

”When the user is building a trail, he names it, inserts the name in
his code book, and taps it out on his keyboard ... Several years later ..
Tapping a few keys projects the head of the trail. A lever runs through
it at will, stopping at interesting items, going off on side excursions”

Vannevar Bush, 1945 [11]

2.1 Hypertext and Hypermedia

Vannevar Bush’s visionary ideas of a kind of mechanized private archive and book
collection which allows quick access to its content is often seen as the first step
towards the idea of hypertext [90]. The ideas of Vannevar Bush describe a personal
archive in which associative connections between documents are possible.

In the AUGMENT project 1962, Douglas Engelbart [26] developed tools for enhanc-
ing the efficiency of work. The term hypertext was invented 1965 by Ted Nelson [87]
in context with the XANADU project. Ted Nelson envised a world wide ”docuvers”
whose users would reuse material, adding links and annotations.

For the scope of this thesis, we will give a very general definition of hypertext [96].
Discussions on the definitions of hypertext can be found for example in [19, 37, 40,
77].

Definition 1 (Hypertext) A set of nodes of text which are connected by links.
Each node contains some amount of information (text) and a number of links to
other nodes.

Definition 2 (Hypermedia) Extension of hypertext which makes use of multiple
forms of media, such as text, video, audio, graphics, etc.

The terms hypertext and hypermedia are often synonymous [77]. In this thesis, we
will prefer the term hypermedia.

2.2 Adaptive Hypermedia Systems 11

Tools for designing and accessing hypermedia documents are called hypermedia
systems.

2.2 Adaptive Hypermedia Systems

An adaptive hypermedia system enlarges the functionality of a hypermedia system.
The aim of these systems is to personalize hypermedia systems to the individual
users. Thus, each user has an individual view and individual navigational possibili-
ties for working with the hypermedia system.

An adaptive hypermedia system combines ideas from hypermedia systems and ideas
from intelligent tutoring systems. It belongs to the group of user adaptive systems,
which are, for example, user adaptive interfaces or user model based interfaces. For
a discussion about adaptive hypermedia systems in the context of user adaptive
systems we refer to [62].

Adaptive hypermedia systems use a model of the user to collect information about
his knowledge, goals, experience, etc., to adapt the content and the navigational
structure. Let us have a look at an example. For a user with little knowledge it
might be useful to read more introductory information before going into detail.
However, the same information would not be so interesting for an expert. Here, the
choice of the right information at the right time is the task of the user model. To
give another example, a tourist information system should consider the abilities and
disabilities of its users. If a handicapped user requires the opening hours of the city
hall, the system’s return should also contain hints to the next parking possibility
for handicapped people or to the next public transport station, information about
the entrance, etc. (see for example [72, 29, 88, 103]).

Adaptation of hypermedia systems is also an attempt to overcome the ”lost in
hyperspace problem” (for a discussion, see for example [77]). The user’s goals and
knowledge can be used for limiting the number of available links in a hypermedia
system.

For a definition of adaptive hypermedia systems, we follow the proposal of P.
Brusilovsky [6].

Definition 3 (Adaptive hypermedia system) ”By adaptive hypermedia sys-
tems we mean all hypertext and hypermedia systems which reflect some features
of the user in the user model and apply this model to adapt various visible aspects
of the system to the user.”

The support of adaptive methods in hypermedia systems is advantageous if there is
one common system which serves many users with different goals, knowledge, and
experience, and if the underlying hyperspace is relatively large [6].

Typical applications of adaptive hypermedia systems are educational hypermedia
systems where the user or student has a certain learning goal (which also might
be an overall learning goal). In these systems, the focus is on the knowledge of the
students, which might vary enormously. The knowledge state changes during the
work with the system. Thus, a correct modeling of changing knowledge, a proper
updating, and the ability to make the right conclusions on base of the updated
knowledge estimations are the critical part in an educational hypermedia system.

Other applications are online information systems, or, more particular, online help
systems. Online information systems are, for example, electronic encyclopediae,

2.3 User Modeling in Adaptive Hypermedia Systems 12

Adaptation Component

requests
of the
user

data
about
user

Hypermedia System

User Model

get current knowledgeupdate

adaptation
results

Figure 2.1: Schematic view on adaptive hypermedia systems

document stores, or tourist guides. To select the right information for users with
different background or knowledge, these systems also need a model of the user’s
knowledge. Also the context in which the user requires information from the system
is important here: for a quick reference, for elaborating a presentation, or for re-
freshing knowledge? Online help systems take particular system environments into
account, for example the location from which they have been launched (context
sensitive help systems).

For limiting navigational possibilities, adaptive hypermedia systems can be com-
bined with information retrieval [64] in information retrieval hypermedia systems.
Links in such systems are not designed by the author of the system but are based
on similarities: a link between two documents is provided if both documents satisfy
some similarity condition.

2.3 User Modeling in Adaptive Hypermedia Sys-
tems

An adaptive hypermedia system collects information about users. On base of these
individual characteristics, it adapts its content and navigational possibilities to the
particular user (see figure 2.1).

This section describes general approaches for building user models (section 2.3.1),
and several user characteristics (section 2.3.2).

2.3.1 User Models

A user model stores information about the individual user. For a discussion about
user modeling, see for example [71, 66]. We can distinguish two main types of user
modeling techniques: overlay modeling and stereotype user modeling.

2.3 User Modeling in Adaptive Hypermedia Systems 13

Overlay Modeling

By overlay modeling [38], the user’s state of knowledge is described as a subset of
the expert’s knowledge of the domain, hence the term “overlay”. Student’s lack of
knowledge is derived by comparing it to the expert’s knowledge.

The critical part of overlay modeling is to find the initial knowledge estimation. The
number of observations for estimating the knowledge sufficiently must be small.
In addition, a student’s misconceptions of some knowledge concepts can not be
modeled.

Stereotype User Modeling

A stereotype user modeling approach [99] classifies users into stereotypes. Users
belonging to a certain class are assumed to have the same characteristics. Stereotype
classification can be done for each adaptation feature.

When using stereotype user modeling, the following problem can occur: the stereo-
types might be so specialized that they become obsolete (since they consist of at
most one user), or a user cannot be classified at all.

2.3.2 Characteristics of the User

Adaptive hypermedia systems need data for making assumptions about the user.
Brusilovsky [6] identified five features which are taken into account by existing hy-
permedia systems: user’s knowledge, goals, preferences, background, and experience.
We claim that also the learning speed should be taken into account.

User’s Knowledge

In currently existing adaptive hypermedia systems, the knowledge of the user is the
most important information for adaptation. Especially in educational systems, the
changing of the knowledge state of a user is a critical part for adaptation. The system
always has to update its estimation about the user’s knowledge, and the adaptation
component has to use the actual knowledge state for making its adaptation steps.

User’s Goals

Goals of a user depend on his current work with the hypermedia system. Using the
system as a reference book requires different adaptation than a more overall learning
goal. In educational hypermedia systems, we can distinguish two different types of
goals. On the one hand, we have the overall learning goal which stretches over the
sessions of the user with the system, on the other hand, we have the problem solving
task which might vary during a session.

User’s Preferences

Users of adaptive hypermedia systems have different preferences, for example for
font types, pictures, or examples. These are characteristics which could not be
estimated by the system without any input from the users. Systems which reflect

2.3 User Modeling in Adaptive Hypermedia Systems 14

the different kinds of preferences let their users tune these features. One can assume
that preferences are not subject of rapid change.

User’s Background

By a user’s background we mean all experiences and knowledge of a user which
are not topic of the adaptive hypermedia system itself. For example, programming
experience in the language Prolog could belong to the background of a user in a
hypermedia system about learning Java.

User’s Experience

This characteristic is concerned with the hypertext experience of the user. If the user
has worked with a hypermedia system before, has he also worked with an adaptive
hypermedia system?

User’s learning speed

To my opinion this is also an important user characteristic for educational hyperme-
dia systems and should be reflected. Users with different learning preferences and
different learning speed should be supported sufficiently.

2.3.3 Methods and Techniques for Adaptation

As we have seen in section 2.1, hypermedia consists of documents which are con-
nected by links. Thus, there are generally two aspects which can be adapted to the
users:

• the content (content level adaptation), and

• the links (link level adaptation).

Content Level Adaptation

By adapting the content for a user, the document’s content is tailored to the needs
of the user, for example by hiding too specialized information or by inserting some
additional explanations.

According to [6], we can identify the following methods for content level adaptation:

additional explanations Only those parts of a document are displayed to a user
which fit to his knowledge or goal.

prerequisite explanations Here the user model checks the prerequisites neces-
sary to understand the content of the page. If the user lacks to know some
prerequisites, the corresponding information is integrated in the page.

comparative explanations The idea of comparative explanations is to explain
new topics by stressing their relations to known topics.

2.3 User Modeling in Adaptive Hypermedia Systems 15

explanation variants By providing different explanations for some parts of a
document, those explanations can be selected which are most suited for the
user. This extends the method of prerequisite explanations.

sorting The different parts of a document are sorted according to their relevance
for the user.

The following techniques are used for implementing the above stated adaptation
methods [6].

conditional text Every kind of information about a knowledge concept is bro-
ken into text parts. For each of these text parts, the required knowledge for
displaying it to the user is defined.

stretch text Some keywords of a document can be replaced by longer descriptions
if the user’s actual knowledge requires that.

page or page fragment variants Here, different variants of whole pages or parts
of them are stored.

frame based technique This technique stores page and fragment variants into
concept frames. Each frame has some slots which present the page or page
fragments in a special order. Certain rules decide which slot is presented to
the user.

Content level adaptation requires sophisticated techniques for improved presenta-
tion. The current systems using content level adaptation do so by enriching their
documents with meta information about prerequisite or required knowledge, out-
come, etc. The documents or fragments contained in these systems have to be
written more than once in order to obtain the different explanations.

Link Level Adaptation

By using link level adaptation, the user’s possibilities to navigate through the hy-
permedia system are personalized.

The following methods show examples for adaptive navigation support.

direct guidance Guide the user sequentially through the hypermedia system. The
following two methods can be distinguished:

next best Provide a next-button to navigate through the hypertext.

page sequencing or trails Generate a reading sequence through the entire
hypermedia system or through some part of it.

adaptive sorting Sort the links of a document due to their relevance for the user.

similarity sorting, prerequisite knowledge The ”relevance” of a link to
the user is based on the systems assumptions about the user. Some sys-
tems sort links depending on their similarity to the present page. Or by
ordering them according to the required prerequisite knowledge.

adaptive hiding Limit the navigational possibilities by hiding links to irrelevant
information. Hiding of links can be realized by making them unavailable or
invisible.

2.4 Examples of Adaptive Hypermedia Systems 16

link annotation Annotate the links to give the user hints to the content of the
pages they point to. The annotation might be text, coloring, an icon, or dim-
ming.

traffic light metaphor The traffic light metaphor is the most popular
method for link annotation. Here the educational state of a link is esti-
mated by the system due to the user’s actual knowledge state. The link
pointing to the page is then annotated by a colored ball. A red ball in
front of a link indicates that the user lacks some knowledge for under-
standing the pages; thus the page is not recommended for reading. A
yellow ball indicates links to pages that are not recommended for read-
ing; this recommendation is less strict than in case of a red ball. A green
ball is in front of links which lead to recommended pages. Grey balls give
the hint that the content of the corresponding page is already known to
the user. Variants in the coloring exist.

traffic lights and hiding A mix of traffic light metaphor and adaptive hid-
ing is also used in some systems. For an evaluation about adaptive hiding
and adaptive navigation we refer to [108].

map annotation Here, graphical overviews or maps are adapted with some of the
above mentioned methods.

Techniques for link level adaptation are for example discussed in [6] and depend on
the specific system. Here the system’s assumptions about the user play an important
role to decide what and how to adapt.

Link level adaptation restricts the number of links and thus the number of naviga-
tional possibilities. It is useful to prevent the user from ”getting lost in hyperspace”.
As in the case of content level adaptation, a description of the content of the doc-
uments is required for implementing the adaptation tasks.

2.4 Examples of Adaptive Hypermedia Systems

2.4.1 ELM-ART

The ELM-ART system [9] and its successors ELM-ART II [118] and INTERBOOK
[10] are some of the first adaptive hypermedia systems which were used in the
WWW. They are based on an the stand alone system ELM-PE [116], an introduc-
tory course to programming in Lisp. The authors use an episodic learner model [117]
(ELM) for diagnosing complete and incomplete problem solutions. The episodic
learner model stores knowledge about the user in terms of a collection of episodes.
These episodes are comparable to cases in case-based learning [104]. To construct
the learner model, the programming code produced by a learner is analyzed in terms
of the domain knowledge on the one hand and a task description on the other hand.
This cognitive diagnosis results in a derivation tree of concepts and rules the learner
might have used.

In ELM-ART, concepts are related to each other by their prerequisites and out-
comes. Thus, a conceptual network is constructed. Observations about the user are
made by monitoring the visited pages: the concept corresponding to a visited page
is marked in the conceptual network as known. For annotating the links, the authors
use the traffic light metaphor. A red ball indicates pages which contain information
for which the user lacks some knowledge, a green ball indicates suggested links, etc.

2.4 Examples of Adaptive Hypermedia Systems 17

ELM-ART also contains interactive examples, which can be translated with a Lisp
compiler via the web.

ELM-ART II was developed for translating normal textbooks into electronic text-
books. ELM-ART II improves the knowledge representation of ELM-ART. The
conceptual network is hierarchically organized into lessons, sections, subsections
and terminal pages. Each unit in the conceptual network has a slot with the text
for the page and the information for relating this page to other units. Static slots
contain prerequisite concepts, related concepts, and outcome. Terminal pages con-
tain test slots. Problem pages have a specific slot for storing a description of the
programming problem. The individual learner model stores visited pages, solved
tests, and solved programming problems by marking the corresponding concepts in
the conceptual model as ”known”.

Direct guidance is provided by a ”next best” button, help is proposed by finding the
most relevant example from the individual learning history, based on a diagnosis of
the programming code of the learners solutions.

The systems are able to make inferences about the users knowledge based on the
marked concepts in the conceptual model. All prerequisites of the known concepts
are also marked recursively as known.

2.4.2 INTERBOOK

In the INTERBOOK project [10], electronic textbooks are created on the base of a
hierarchically structured MS-Word file. Several steps such as creating a list of do-
main concepts, structuring and annotating the pages with outcome and prerequisite
knowledge, translation to HTML and parsing the information into a Lisp structure
have to be done to obtain an INTERBOOK.

INTERBOOK uses both a domain and a user model. The glossary and the textbook
are based on the domain model. The glossary is a visualized domain network. The
structure of the glossary resembles the didactical structure of the domain knowledge.
Each glossary item corresponds to one of the domain concepts. In addition, each
glossary entry provides links to all book sections which use this concept.

Each textbook unit is indexed with some domain model concepts. These concepts
have different roles. Some of the concepts describe the outcome knowledge which a
user has after reading the page, and others the prerequisite or income knowledge
which is necessary to read the page.

INTERBOOK supports adaptive annotation of links by using the traffic light
metaphor. It implements a prerequisite based help by presenting an annotated list
of pages that contain prerequisite information.

Page sequencing is done in three steps. First, the system computes overall scores for
the supposed state of knowledge for each concept. Based on these scores the system
decides whether a concept is already well-learned or not. Second, the system decides
which pages contain suggested teaching operations or which have missing prerequi-
sites. Links to concepts and sections of different educational states are annotated by
different icons. Third, the system selects the most optimal page among all available
pages that introduce unknown concepts and that are missing no prerequisites. To
all pages, a certain priority for presentation is assigned, based on a default value
and modified according to the state of knowledge of the required and introduced
concepts.

2.4 Examples of Adaptive Hypermedia Systems 18

INTERBOOK: Adaptive Interfaces

An approach to implement a user adaptive interface for the INTERBOOK project
(section 2.4.2) is described in [8]. A domain model and a student model are used
for representation. Each interface feature is treated as a domain concept, and each
hint as a learning unit. By applying a task sequencing algorithm similar to the one
mentioned above, a sequence of interface features to be learned and a sequence of
hints which will be presented to the user are generated.

2.4.3 PT

PT (personalized text system) is a textbook for learning the programming language
C [68, 67]. It uses a conventional book about C as a base for generating the hy-
permedia system. The course which was supported with PT is a C programming
course for Pascal programmers.

PT uses a stereotypical user model of the target audience (Pascal programmers)
together with an individual model. The stereotype provides certain values for the
knowledge components, thus initializes the user model. In the individual model, the
knowledge values of the individual user are stored during their work with PT.

For enabling adaptation, PT uses similarities between Pascal and C for presenting
information to the users. Preprocessor commands are added into a raw HTML page,
e.g. #define PASCAL 3, #define active-learner 1, #if PASCAL > 2, etc., from
the user model. The if preprocessor commands in the raw HTML page are used
to control which parts of the page are passed to the user. The same preprocessor
technique is used for the selection of links.

2.4.4 PUSH

The PUSH project (plan- and user sensitive help) aims to develop and test intelligent
help solutions to information seeking tasks [58]. A user can enter questions or follow-
up questions, or navigate through the graphical presentation of the application
domain. If a user has posed a question, he can manipulate the system’s answer by
opening and closing subsections, by manipulating the graphics or by clicking on
follow-up questions.

The knowledge of the application domain is modeled in a isA-hierarchy. The idea
of the system is to provide questions a user might have while reading a document.
These questions are concerned with related concepts and knowledge. As the combi-
natorial construction of all possible questions based on a concept and its relations
in the isA hierarchy is too complex and will probably contain too much informa-
tion, the set of possible questions is limited by the concepts contained on a page
and the follow-up questions to this concept. The system’s implementation is a rule-
based approach for queries. As a user verifies each of his tasks by selecting some of
the proposed links, the system obtains almost secure information about the user’s
knowledge.

2.4 Examples of Adaptive Hypermedia Systems 19

2.4.5 AVANTI

The aim of the project AVANTI [29, 72] is to develop and evaluate an information
system about a metropolitan area for a variety of users with different needs, for
example tourists, citizens, travel agency clerks, or users with disabilities.

Sources of information about the users are an initial interview and certain user ac-
tions, for example requests for explanations of a technical term. Stereotypes contain
assumptions for classes of users. Assumptions from the stereotypes and information
about the individual user are used for drawing inferences about the particular user.
The results are stored in refined assumptions about the user and serve for better
classifying him into one of the stereotypes.

2.4.6 AHA

A free web-course about Hypermedia Structures and Systems [18, 12] is implemented
in the AHA system. AHA (Adaptive Hypermedia Architecture) can be used to
generate conditional text, and to adapt the link structure by link removal, link
hiding and link annotation. Preprocessor commands in the HTML pages are used by
CGI-scripts to filter content fragments of a page and thus enable content adaptation.
The same preprocessor technique is used for link adaptation.

2.4.7 OLAE, POLA

OLAE [79] aims to a differentiated and reliable assessment of a student’s knowledge
in a subdomain of physics. A Bayesian network [92] is constructed for each prob-
lem the user is working on. This Bayesian network reflects, among other things,
the likelihood that the user would type in particular equations if he would know
the corresponding rules. Thus the systems uses a retrospective diagnosis, called
knowledge tracing. POLA [15] is designed for performing model tracing: It can be
invoked repeatedly during the problem solving process. POLA constructs the un-
derlying Bayesian network incrementally by adding nodes each time the student
performs an observable action.

2.4.8 Plan Recognition in a Multi User Dungeon

The aim of this system [1] is to determine as early as possible which quest a player is
attempting in a multi user dungeon (MUD), and to predict which action a player will
perform in the next move. Therefore the authors employ keyhole plan recognition,
which makes information available to the plan recognizer from non-interactive and
often incomplete observations about a user – ”as looking into a room through a
keyhole”.

The system first must learn which actions and positions or sequences of actions
and positions tend to lead to a particular quest. This information is modeled in a
dynamic Bayesian network [17]. During the testing phase, the dynamic Bayesian
network is used to predict the player’s quest, next action, and next location.

2.4 Examples of Adaptive Hypermedia Systems 20

2.4.9 POKS

POKS [22] is based on a cognitive theory of knowledge structures. It builds a network
of implications on knowledge units from a small sample of user data sets, and it
uses this induced network to assess the knowledge state with a limited number of
observations or questions. The application area is the adapted construction of user
interfaces. An overlay model is present.

2.4.10 EPI-UMOD

EPI-UMOD [100] implements a stereotype user model based on Bayesian networks.
It uses a separate Bayesian network for each stereotype in which special condi-
tional dependencies between knowledge items are implemented. Each attribute in
the stereotype represents the statement that the user knows a particular concept.

2.4.11 HYDRIVE

In HYDRIVE [82] the functionality of the hydraulics systems of an F15 aircraft is
taught to technicians and pilots. It focusses on system understanding and trouble
shooting strategies rather than on an optimizing action to take at a given point
in a problem. The authors use a hierarchical model of the necessary capabilities of
the learners and construct a Bayesian network for the entire application scenario.
However, this Bayesian network is updated only partially.

2.4.12 KBS Hyperbook System

The aim of the KBS hyperbook system [51, 54] is to build a framework for designing
and maintaining open, adaptive hypermedia systems in the internet. It implements
project-based learning [104].

In KBS, concepts are related to each other on the base of a conceptual model of the
hyperbook. Observations about users are made when a user has performed some
project of the hyperbook’s project library.

Each hyperbook unit is indexed with some knowledge concepts. A separate know-
ledge model is constructed, containing the knowledge concepts of the application
domain and their learning dependencies. Thus, the hypertext documents itself do
not contain any prerequisite or outcome information.

A glossary containing the concepts of the knowledge model is generated. For each
glossary item, links to examples, to hyperbook units, and to pages from other elec-
tronic books available on the WWW are generated.

KBS uses the traffic light metaphor (see section 2.3.3) for adaptive annotation. A
page sequencing algorithm generates reading sequences according to the user’s goals
and knowledge. For helping the user to find his way through the hyperbook, the
system also generates a next learning step for the user by comparing his actual
knowledge state with knowledge he should have after finishing the book.

KBS supports explicitly goal-based learning. Users can define their own learning
goals or can request the next learning goal from the system. For each of these goals, a
reading sequence containing necessary knowledge (prerequisite and actual necessary
knowledge) for reaching the goal is generated. In addition, suitable projects are

2.5 Discussion 21

selected and an information index is presented which contains both documents from
the hyperbook itself and documents located anywhere in the internet.

The selection of suitable projects is based on algorithms which reflect both, the
prerequisite knowledge necessary to perform the project, and how well the project
matches to the user’s actual learning goal.

KBS also adapts to the different learning speeds of the users by supporting this
kind of goal oriented learning. Users can define how much and what to learn next.
If the system observes a user mastering an advanced project sufficiently well then it
updates its estimation about this user in relation to the mastered topics as well as
to prerequisite knowledge concepts. Thus the user can go on with further, advanced
topics. If the system observes that a user is not quite familiar with some topic,
it proposes similar examples or projects, which contain only a few amount of new
information.

The implementation technique used in KBS is a Bayesian network which operates
on the complete model of the application domain. Whenever observations about a
particular user are made, they are propagated through the entire network.

A focus of KBS is the extendibility of the system in respect to the World Wide Web.
To create open adaptive hypermedia systems, the indexing approach chosen in KBS
allows to treat each information unit equally independent of its origin. Thus, HTML
pages from the World Wide Web can be integrated in the same way as documents
stored in the hyperbook’s library.

2.5 Discussion

In the following we will compare the KBS hyperbook system to other hyperbook-like
approaches.

The approach chosen in PUSH is designed for a different scenario compared to KBS.
In addition, PUSH binds adaptation information on the documents themselves, thus
its authors use very different implementation strategies.

The application in the AVANTI project is also different compared to hyperbook-
like approaches. Since the application domain (information systems) is very different
from educational hypermedia systems, the techniques used here are almost incom-
parable.

The approach chosen in OLAE / POLA focusses on problem solving support. The
use of the Bayesian networks in POLA is different to their use in the KBS hyper-
book system, since POLA uses smaller networks and employs them for recognizing
problem solving strategies rather than for knowledge estimation. The same holds
for EPI-UMOD and HYDRIVE. EPI-UMOD uses one Bayesian network for a class
of users, while KBS uses one for each user. As HYDRIVE only updates parts of the
Bayesian network, different techniques are used there, too.

The application of Bayesian networks for plan recognition is also a very interesting
approach. But here, the application – learning the system – is also different. Dy-
namic Bayesian networks are also used in [103]. As we implement goal-driven learn-
ing, we have no time critical tasks (time-critical in the sense of dynamic Bayesian
networks). A comprehensive review of current work in using uncertainty manage-
ment techniques in user modeling is given in [61]. The size and purpose of the
Bayesian network used in KBS differs from other approaches using Bayesian net-

2.5 Discussion 22

characteristics
of the user

know-
ledge

goals prefe-
rences ground

back- expe-
rience

learning
speed

AHA

ELM-ART

INTERBOOK

KBS

PT

X

X

X

X

X

X

X

X

X

X

X (X)

Figure 2.2: Characteristics of a user taken into account by the five hyperbook-like
approaches

page se-
quencing

ad. nav.
support

user ob-
servation

goal
support

example
support

open-
ness

course
page,

course
page,

direct
feedback

tests,
readpages

tests,
readpages

tests,
readpages

project
supportsupport

navigation

KBS

PT

ELM-ART

AHA

INTERBOOK

course

annotation

annotation

annotation

hiding

hiding

tests

user def.,
proposed

user
defined

page
knowledge,

goals WWW

section

section

section

section

Figure 2.3: Methods for link level adaptation in the five hyperbook-like approaches

works. KBS is the only system which uses a Bayesian network for modeling and
propagating the whole knowledge domain (see section 6).

The most comparable approaches to KBS are AHA, ELM-ART II, INTERBOOK,
and PT. Therefore we will compare these systems due to the identified criteria
proposed in section 2.3. Figure 2.2 shows the characteristics of a user which are
taken into account by these five hyperbook-like approaches.

None of them uses the background as information source, as it is done for example
in EPI-UMOD or the ANATOM- Tutor [2]. PT assumes, that all users of the system
have the same background. Thus it is a general assumption rather than a background
characteristic. Content-level adaptation is not done by any of the five hyperbook-
like systems. From the above stated examples, only EPI-UMOD uses content level
adaptation.

The methods used for navigation support can be seen in figure 2.3.

The approaches in INTERBOOK and ELM-ART II are by means of their concept
and idea very similar to KBS. The adaptation features, like link adaptation, goals,
page sequencing, are present in each of the three systems. However, the implemen-
tation strategies to obtain these functionalities vary.

Comparing INTERBOOK with KBS, we see a difference in the domain description.
INTERBOOK uses a conceptual network of the domain, while KBS uses both con-
ceptual model and knowledge model. Therefore the introduction of slots as used
in INTERBOOK is not necessary in KBS, as assumptions about prerequisite and

2.5 Discussion 23

outcome knowledge are made on base of the knowledge model. The algorithm for
page sequencing proposed by INTERBOOK neglects the connections of the pages.
Pages are selected if they are recommended to visit and it is not explicitly taken into
account if they also fit to the previously read page. The page sequencing algorithm
in KBS generates a sequence of pages that reflects a didactical ordering, since it is
aware of a wider context (learning goal or information request).

The example selection in KBS is done for each page contained in the hypermedia
system. The example and project libraries of a hyperbook are checked for examples
illustrating the content of the actual page. INTERBOOK or ELM-ART II choose
examples based on the chapter-section-subsection hierarchy.

The preprocessor techniques used in PT and AHA differ from the KBS implemen-
tation, too. However, navigational help strategies are comparable.

We can see, that the indexing concept underlying the KBS is more general than the
techniques in the other hyperbook like approaches, since it separates documents
from didactical information or reading orders. This enables the KBS system to
integrate information from arbitrary origins, because the documents have not be
adjusted to the other, existing documents. In addition, KBS is able to select and
propose projects and supports the learners work with these projects.

Chapter 3

Teaching

Since hyperbooks are web applications, they are typically used in distance learn-
ing scenarios, where a learner uses the information from the hyperbook on his own.
Thus, it is important to think about useful teaching strategies to encourage a learner
to learn actively and not only to read or ”consume” passively the information. For
this purpose, we emphasize constructivist learning strategies, for example by inte-
grating problems or ”real world tasks” in the curriculum of the hyperbooks, and by
structuring the hyperbook based on projects and their relationship to information
pages. Learners can reach learning goals or can receive answers to information re-
quests while working on these problems, which introduce, explain and show the use
of the learning items.

3.1 Specific Situation in Distance Learning

Computational learning environments benefit from a strong background in educa-
tional theory. Simply reproducing conventional teaching and learning concepts in
a computational environment does not utilize these new technologies. Educational
models, which show particularly interesting features for many parts of academic
education are constructivist models of learning and teaching (see also the discussion
of the relationship between such models and the field of instructional technology in
[23]).

Virtual learning environments, if designed properly, will provide the functionality to
support improved concepts in education theory which are difficult to realize without
the help of new communication- and networking technologies.

Critical elements in the design of constructivist learning environments are the spe-
cification and integration of authentic and complex activities during the learning
process [57].

In a constructivist environment students are encouraged to solve problems which
could also occur in the real world. The learning environment simulates the context
of the problems, on which the students perform these authentic activities: they have
to decide how to structure and solve the problem, collect background information,
develop solution strategies, etc. Authentic activities shift the responsibility for both
selecting and performing tasks from the teacher to the learner. Students therefore
use the course material actively and gain deeper insight. A project-based approach
can be chosen to implement this constructivist learning model: the global project

3.2 Constructivism as a Theory of Knowledge 25

context stimulates the learning activity while the responsibility of the students to
find a suitable solution strategy on their own leads to activities which increase the
students’ problem solving competence. The environment for such projects has to
provide references, case-studies, background, and related information as well as a
working environment for software projects carried out by the students parallel to
the lecture. This environment has to reflect the user’s knowledge and state of his
work to present only appropriate information.

The teacher’s role is to coach the student’s work and to teach them the initial
concepts necessary for their task.

Real-world examples are characterized by the complex context in which they arise:
few applications of techniques and concepts occur in the simplified forms used for
highly abstracted exercise problems often presented to learners (see also the dis-
cussion in [23]). While abstraction is of course necessary and small exercises can
be used to discuss specific issues, project-based learning has to be used to rebuild
real-world complexity. The global project context determines the learners perspec-
tive on a given task, while subtasks in a smaller context provide guidance of the
learning process.

The ability to develop multiple and alternative perspectives on a problem is also
a central skill for performing tasks in an authentic activity. Collaborative learning
promotes the exchange and reflection on different views. As project work is often
done in teams, learners can train their capabilities for team-work and collaboration.

3.2 Constructivism as a Theory of Knowledge

Within the last 10 years, constructivism as a philosophical, epistemological and
pedagogical approach has found a great deal of attention. While several authors
have concentrated on various aspects of this approach, one of the most influential
authors is Ernst von Glasersfeld, who discussed radical constructivism as a theory of
knowledge and cognition (e.g. in [114]) and its applications for teaching (e.g. [113]).
In [114], he defined constructivism by the following principles:

• Knowledge is not passively received, neither by sensing nor by communicating,
but is actively built up by the cognizing subject.

• The function of cognition is adaptive, and tries to increase fitness or viability.
It serves the organization of the experiential world of the subject, not the
discovery of ontological reality.

As this characterization is rather oriented towards the knowledge construction of
one subject (not explicitly taking into account more social aspects of knowledge con-
struction), various researchers have suggested a more context and socially oriented
view of constructivism (see for example the discussion in [14]). A less ambitious
definition just acknowledges that learners (including scientists) must construct and
reconstruct their own meaning for ideas about how the world works ([39]), concen-
trating just on the first principle of Glasersfeld definition. Even so, this still leads
to a change in the role of the teacher, where (as discussed in [94]) the teacher needs
to create situations, where the student can work on useful problems, where the
teacher provides counter-examples compelling reflection and reconsideration of so-
lutions, and where the teacher is acting as mentor stimulating initiative and research
rather than being a lecturer who transmits ready-made solutions.

In the next chapter we will review a few approaches taken by researchers and educa-
tors following a constructivist approach and then proceed to show how conceptual

3.2 Constructivism as a Theory of Knowledge 26

modeling helps to implement our didactic goals based on such an approach in an
introductory computer science course.

3.2.1 Constructivism and Teaching

In [113], Glasersfeld sees constructivist pedagogy as a counterpart to behavioristic
pedagogy, and stresses the importance of teaching (which aims at the generation of
understanding) versus pure training for performance (often geared at perfectly solv-
ing textbook problems). Knowing as an adaptive activity leads to a set of successful
or viable concepts, models, and theories relative to a context of goals and purposes.
Learning requires self-regulation and the building of conceptual structures through
reflection and abstraction, problems are not solved by the retrieval of memorized
“right”answers.

In the introduction of [112], Glasersfeld also stresses the need to understand the
students’ thinking and to encourage them to reflect on their models as a means to
improve them (e.g. by verbalizing it). Social interaction is an important stimulus
for this reflection as well as for motivating knowledge construction and adaptation.

Constructivist concepts discussed in the papers from [112] include problem-oriented
and inquiry-oriented learning and discussion, thought protocols to obtain insight
into student’s mathematical thinking, the necessity of contradictions for further
construction (whose awareness is depending on the previous knowledge), the im-
portance of student models, learning as cognitive restructuring, teaching through
problem solving, whole class interactions and small group interactions, curiosity,
and reflection.

Papert and his colleagues [91, 65, 98], who use the term constructionism to stress
learning as a (social) design activity, based on computer science and computer
use for learning. Similar to others, they stress that students construct new know-
ledge with particular effectiveness when they are engaged in personally meaningful
products. The goals of the teacher are to engage the learner in active participation,
problem solving, interdisciplinary work, reflection, and discussion. They also stress
the intrinsic motivation resulting from the learners choosing their own projects, and
an open learning community with mentors and students. Though the members of
the group focus mainly on the learning of children, the principles of their approach
are applicable to student and professional learners as well.

The social and knowledge sharing aspect is stressed in another long running project,
the CSILE project (computer supported intentional learning environments [73])
and its successor Knowledge Forum (see e.g. [102, 73, 55]), which aims for a net-
worked, collaborative learning environment designed to support a classroom-based
knowledge-building community and collaborative knowledge building (modeled af-
ter scientific work in a research team). It provides a communal database, which
stores notes, annotations and discussion items and links them together in a network
of nodes (visualized as a knowledge map). It focuses on intentional learning , where
learners strive to expand their knowledge collectively.

3.3 Implementing Constructivist Teaching Concepts in a CS1 Course 27

3.3 Implementing Constructivist Teaching Con-
cepts in a CS1 Course

Based especially on the ideas of learning as design activity (as advocated by Papert
and his colleagues [91, 65, 98]) and learning as an intentional activity involving
knowledge-building and discussion (as in CSILE [102, 73, 55]), we focus in our CS1
course on the following two issues:

• integrating goal-oriented learning and projects (authored by lecturers
and students) into our course materials, and

• connecting student projects with the rest of the course material show-
ing which CS1 concepts have been applied (and thus learned) to which
part of the project.

The conceptual model (see section 4.2) of our hyperbook concentrates on this
problem-oriented and inquiry-oriented aspect, and explicitly models the relevant as-
pects to support a goal-directed and inquiry-oriented learning style. Students need
to know which materials are necessary for specific projects, and can use personalized
learning sequences and information indexes to retrieve the required information and
hyperbook pages.

Goal orientation is an important aspect of our educational hyperbooks. Since we do
not want to determine the learning path of a student or a student group from the
beginning to the end, the students are free to define their own learning goals and
their own learning sequence. In each step they can ask the hyperbook for relevant
material, teaching sequences and hints for practice examples and projects. If they
need advice to find their own learning path then they can ask the hyperbook for
the next suitable learning goal.

3.3.1 Project-Based Learning

Constructivist learning models and project-based learning can be supported by
different approaches and can be viewed from different perspectives. We will sketch
some of these, starting from the concepts discussed in [104] as well as from their
learning principles.

Simulation-Based Learning By Doing: Acquisition of knowledge is guided by goals
or projects actively pursued by the students. Knowledge and techniques are learned
and used to fulfill specific tasks which are needed to reach the project goals. Teachers
have to give help when needed. To support learning by doing, simulations of all kinds
of tasks can be built.

Incidental Learning: Projects and goals of a course have to be selected by the teacher
in such a way that skills and knowledge needed to pursue these goals correspond to
the (conventional) course content. Obviously, in a task oriented learning environ-
ment not only a single set of techniques leads to project success. Hence, although the
base set of knowledge and skills that will be learnt is set, students can individually
control their learning, depending on their previous knowledge and their individual
preferences.

Learning by Reflection: Students are encouraged to reflect on given problems and
on different solutions found by themselves or other student groups. Continuous
discussion of teachers and students leads to original solutions and new insights.

3.4 Excursion: The KBS Virtual Classroom Project 28

Case-Based Teaching: Presentation of knowledge by the teaching staff depends to a
certain extent on the progress students make in solving the given problems. Support
is oriented mainly around cases with attached related knowledge, facts and problem
solving methods. These cases can be continuously added to the knowledge base of
the learning environment and represent an increasing knowledge and support base
for the students.

Learning by Exploring: Communication between teachers and students is the main
part in this approach. Topics of the course are discussed in study groups or with
the teacher. Small learning units contain the needed knowledge. Learning units
are presented in the knowledge base which is extended by students and teachers.
Students are engaged to study and to find out facts, skills, and research results on
their own.

3.4 Excursion: The KBS Virtual Classroom
Project

Within the KBS virtual classroom project [48], we have been working on a virtual
learning environment based on internet and the World Wide Web since 1996. One
main goal for this project has always been to utilize the full power of these tech-
niques to innovate teaching and learning in our courses, instead of just transplanting
ordinary lectures onto the internet.

The KBS virtual classroom project provides the environment for using adaptive
hyperbooks for university teaching. It has been evaluated [44, 49, 45]. The results
from the evaluations were directly used by every subsequent implementation of both
the learning environment and the KBS hyperbook system.

Availability of the Working Environment

In order to make the working environment continuously available, access to all
parts of the working environment (including all information and software tools) is
enabled via the internet. Access to the internet for students is either from campus
computers, via phone lines and terminal servers (administrated by the university
computing center and the students themselves), as well as via internet providers.

Most tools are available for all current operating systems, so students can use them
locally at every computer they have access to, including of course their home com-
puters. If license restrictions make this impossible (as in the case of a large software
engineering tool), at least anytime access over the internet is available (currently
with X11 interface). Locally used tools are always internet-based, so access to cen-
tral servers, repository, and communication facilities is always possible. Most of the
online information is also downloadable for offline use.

Project-Based Learning

Courses supported by the KBS virtual classroom environment use projects, tailored
specifically to the course contents. As an example, the CS1 course for undergrad-
uates consists of one large programming project which stretches over the whole
semester, the software engineering course focussses on one larger project spanning
two semesters.

3.4 Excursion: The KBS Virtual Classroom Project 29

All project results (programs, documentation, project work) are presented on the
World Wide Web, where they are available for other groups as well as for students
in future semesters. This motivates students to not only solve larger real-world
problems, but also elaborate them in a way suitable for external presentation.

Team-Oriented Learning and Mentoring

Project-based learning is done in groups of two to four students. Groups are formed
at the beginning of each semester. Students in such a group work on a common
project and present their results together. Collaborative learning and working is
encouraged. For each group we assign a personal mentor, which can either be a
graduate student, a Ph.D. student, or the professor. This mentor is available per-
sonally at specific hours during the weeks, or anytime by electronic communication
facilities. Group meetings and discussions are possible in personal or electronic form.

Electronic Communication Facilities

Each student group has a group communication center , which includes e-mail lists
to all students within this group (plus another one including the group mentor), a
communication room on the WWW (read and write access restricted to members of
the group), and a presentation room on the WWW (which is readable by everyone).

Each course includes three discussion groups (implemented as newsgroups), one
for official (announcements), one for general discussion and questions as well as
course oriented exercises plus student answers (discussion forum), and one for free
communication not directly related to the course (cyber cafe). The announcements
and discussion forum are also automatically archived, indexed and made available
over the WWW. Synchronous communication at present can take place over a text
based chat tool, the KBS online chat forum.

All facilities are available on many operating systems, and on computers connected
to the internet anyway.

Network Environment

A server located at our institute serves as the central repository for all course-
related material like lecture slides, tutorials, web pages, hyperbook, programs, etc.
All central repositories (WWW communication and presentation area, etc.) are also
stored at the institute’s server. A variety of working environments for accessing the
data is supported: Classically working on a client at the institute and accessing
the data through Ethernet/NFS; accessing data from one’s home PC via a modem
connection to a dedicated machine in our network; accessing data from the univer-
sity computer pool or from the (student’s) home PC connecting via modem to a
dedicated student server, which is configured to support a large number of parallel
modem and ISDN connections.

3.5 Discussion: Requirements for enabling project-based learning 30

3.5 Discussion: Requirements for enabling
project-based learning

It is a central requirement of a constructivist teaching approach to keep the hyper-
book as maintainable and extendible as possible. A maintainable structure allows
to integrate the students’ results seamlessly and to keep the theoretical course ma-
terials up to date with minimum effort. The implementation of such a sophisticated
conceptual backbone requires rigorous modeling. We propose a conceptual modeling
approach for hyperbooks (see section 4.2) which explicitly represents all aspects of
the hyperbook application domain, and access to information.

For integrating student projects into the hyperbook, we use the idea of portfolios as
discussed in section 4.2.4. The students demonstrate in the portfolio which concepts
they have used in their course project.

Another important requirement is the information presentation in a project-based
learning approach. Since the students are supposed to work on their course projects
or on smaller projects or examples contained in the hyperbook, they require infor-
mation and background knowledge. Therefore it is a task of the hyperbook to select
and present suitable information to a user.

Since the students are working with the hyperbook in the internet, the integration of
useful information present in the internet into the learning material is near at hand.
The hyperbook should serve as an up-to-date information repository. By selecting
and annotating the information according to the student’s goals and knowledge it
should support their project work. In addition, reading sequences must be generated.
They lead the student – based on his actual knowledge – towards the requested
information, including necessary prerequisites he actually lacks to know.

Since working on a larger project requires the definition of subprojects or subtasks
which have to be solved first, the hyperbook must support goal-based learning. A
user must be able to define learning goals on his own. Moreover the system must
be able to generate appropriate learning goals and learning steps for the user.

To reach such a (proposed or self defined) learning goal, the system should be
able to find relevant projects and examples related to the goal. Therefore, selecting
algorithms have to be found. They should present the most suitable projects to the
user which match to his current learning goal and consider his actual knowledge.

The KBS hyperbook system implements the above stated requirements. In chapter 4
we describe the functionality of the KBS hyperbooks system, its modeling approach
focussing on conceptual modeling, integration of projects and portfolios, and the
openness of the system for integrating material located anywhere in the WWW.

Chapter 5 and 6 describe the concept and realization of the adaptation component
for the KBS hyperbook system in detail. In chapter 7 the adaptation in the KBS
hyperbook system is shown.

Chapter 4

The KBS Hyperbook System

The KBS hyperbook system is a tool for modeling, organizing and maintaining
adaptive, open hypermedia systems on the WWW. Open in this context means that
these hypermedia systems are able to integrate distributed information. The sys-
tem has been developed at the Institut für Rechnergestützte Wissensverarbeitung,
University of Hannover, whose English name ”Knowledge Based Systems Group”
(KBS), gave the name for the project.

Adaptive hyperbooks personalize information according to the user’s needs and
knowledge. Typical applications of these books are educational hypermedia systems,
where the system models some course, guides the student through the course and
its learning material, and supports the student’s access to useful information. The
project-based teaching approach we have chosen for creating adaptive hyperbooks
for education is described in chapter 3.

This chapter starts with a definition of adaptive hyperbooks and an overview of
the modeling approach we apply in the KBS hyperbook system. We will describe
how we use a conceptual model for modeling course and instruction material in the
hyperbook system by the example of the CS1 (Computer Science 1) course, which is
an introductory course to programming in Java, given for undergraduate students of
electrical engineering and computer science. We show the way we integrate student
projects into the hyperbook based on the idea of portfolios.

4.1 Definition of Hyperbooks

Since the emergence of the World Wide Web, the concept of hypertext has become
a main representation and presentation format for a variety of applications. Quite
prominent among them are hypertext books or hyperbooks, which are characterized
as “a grouping of electronic texts which can be considered as an entity”[69]. In
most cases, these hyperbooks still retain the conventional book structure, and are
partitioned into (sub-) documents called chapters, sections, subsections, or appen-
dices [83]. This definition includes electronic books, which can be characterized as
”existing books meant to be read on a computer screen” [59].

Starting from this simple definition, transfer of printed books into electronic form
has emerged as a wide research area [97]. Some of these projects deal with a broad
variety of printed books which are translated to data formats such as plain text,
ASCII derivates, or the acrobat reader format; the table of contents being trans-

4.2 Conceptual Modeling for Adaptive Hyperbooks 32

lated to a hypertext interface to the book [5]. More sophisticated approaches re-edit
existing printed books by adding pictures, remarks, and annotations as hypertext
links [111]. Or they start from a specialized hypertext system and build up networks
of documents in a way not possible in printed versions, such as Dickens Web [75]
which is based upon the INTERMEDIA system [74] and the applications realized
with the ATHENA system [56]. Research has also been done on the design of spe-
cialized hardware for these electronic books such as organizers, portable PCs, and
electronic book readers [105].

We focus on a definition of hypertext books with particular emphasis on structure,
semantic contents, and corresponding functionality of such a book, and use the term
adaptive hyperbook to distinguish them from other variants of hypertext books.

Definition 4 (Adaptive Hyperbook) An adaptive hyperbook is an
information repository which integrates and personalizes a set of dis-
tributed information using explicit conceptual models.

Research on the development of hyperbooks has focused on the educational sector,
where hypertext technologies are used to implement learning environments [81, 68,
10, 19, 25, 110, 51, 54] and intelligent tutors [7, 9]. These systems provide the
contents which have been covered so far in normal text books, and integrate them
into a hypertext system which guides the users during their learning processes.

4.2 Conceptual Modeling for Adaptive Hyper-
books

Structuring concepts in domain ontologies has been an important activity for
example in natural language processing ([28, 78, 70]) and information retrieval
([42, 80, 3]). It is related to work in terminological research (for a comparison see
e.g. [36]).

The KBS hyperbook system structures and displays hypertext materials based on
conceptual models. We are using ontologies in the wider sense discussed in [41],
including conceptual models, representation ontologies, task ontologies, etc., and
not just taxonomic domain ontologies, though these domain ontologies also play a
role in our hyperbook system, when we want to structure our hyperbook based on
its contents. To avoid misunderstandings, we use the term conceptual models.

This section describes the conceptual model, which models courses, different kinds of
materials (such as projects, examples, portfolios, HTML pages), and the integration
of information from the World Wide Web, see figure 4.1. As an example we show the
integration of the Sun Java tutorial [13] into the hyperbook. The Sun Java tutorial
is free available on the internet and thus very suited for being integrated into the
learning material of the CS1 hyperbook.

For the declarative representation of the hyperbook data models we use a dialect of
the object oriented conceptual modeling language Telos [84], which is implemented
in the ConceptBase system [63]. This language combines object oriented concepts

4.2 Conceptual Modeling for Adaptive Hyperbooks 33

kn
o

w
le

d
g

e
it

em
s

S
u

n
 J

av
a

g
en

er
at

ed

tr
ai

l

re
le

va
nt

 e
xa

m
pl

es
 /

re
le

va
nt

 in
fo

rm
at

io
n

in
fo

rm
at

io
n

re
le

va
nt

 in
fo

rm
at

io
n

re
le

va
nt

 e
xa

m
pl

es
 /

re
le

va
nt

 in
fo

rm
at

io
n

re
le

va
nt

 in
fo

rm
at

io
n

ill
us

tr
at

ed
 b

y

p
ro

je
ct

ex
am

p
le

 /

g
ro

u
p

st
u

d
en

t

re
le

va
nt

m
en

te
d

inis
 d

oc
u-

L
eg

en
d:

:

E
R

 m
od

el
in

g
co

ns
tr

uc
ts

re
la

tio
ns

,
,

:
dy

na
m

ic
al

ly
 g

en
er

at
ed

:

st
at

ic
 r

el
at

io
ns

co
u

rs
e

g
lo

ss
ar

y

ar
ea

st
u

d
en

t
p

ro
je

ct
s

fo
rm

er

p
ro

je
ct

s
ac

tu
al

p
ro

je
ct

s

le
ct

u
re

g
o

al

g
o

al

u
se

rd
ef

.

co
u

rs
e

g
ro

u
p

p
o

rt
fo

lio

te
xt

 u
n

it

tu
to

ri
al

g
o

al

h
yp

er
b

o
o

k
u

n
it

Figure 4.1: Conceptual model of the CS1 hyperbook

4.2 Conceptual Modeling for Adaptive Hyperbooks 34

knowledge items

Sun Java

generated

trail

relevant examples /
relevant information

information relevant information
relevant examples /

relevant information
relevant information

illustrated by

project
example /

group
student

relevantmented
in

is docu-

Legend:
: ER modeling constructs

relations

, ,

: dynamically generated
: static relations

course

glossary

area

student projects

former
projects

actual
projects

lecture

goal

goal
userdef.

course group

portfolio

text unit

tutorial

goal

hyperbook unit

Figure 4.2: Conceptual model of the CS1 hyperbook, course related modeling is
highlighted

with deductive rules and constraints. Due to its representational power, Telos is
suitable for meta modeling, i.e. for describing domain-specific modeling languages
(e.g. [89]). This allows us to research on meta modeling for the KBS hyperbook
system [85, 86] using e.g. ideas and concepts of the Resource Description Framework
[115] (RDF).

4.2.1 Modeling courses and lectures

Central for this part of our conceptual model (see the highlighted concepts in figure
4.2) is the entity course which represents a real course given at some university or
at other institutions. Each course consists of several lectures .

The course has a relation to the course group (figure 4.2). A course group inte-
grates different courses on the same topic. Take, for example, the CS1 course. In
winter semester 1999 / 2000, the Institut für Rechnergestützte Wissensverarbeitung
at the University of Hannover held this course for undergraduate students of elec-
trical engineering and technical computer science. A similar course, with support of
that institute, is given at the Europäische Akademie Bozen. Both CS1 courses are
modeled as courses, and belong to the course group ”CS1”.

Each course has its glossary (for the generation of the glossary entries, see section
7.2.2) and a number of areas which structure the application domain (see section
5.3.2).

The embedding of project and portfolios in the learning material is an important
part of our teaching concept (see section 3.5). To model the integration, each course
is related to projects (figure 4.2). These projects can be the actual projects of the
course on which the students work. Or they can be former projects , which give ex-
amples of projects performed by students of past courses and contain the portfolios
(see section 4.2.4) of them.

4.2 Conceptual Modeling for Adaptive Hyperbooks 35

Figure 4.3: Example for a course modeled in the KBS hyperbook system

To support goal-oriented learning, students can define their own learning goals (user
defined goals) or can request new reasonable goals from the hyperbook (generated
goals). For the selection and the support of goals, see sections 7.3 and 7.4.

Figure 4.3 gives an example of the CS1 course given in winter semester 1999 / 2000.
Each above mentioned relation from a course to other concepts is displayed as a
link in the left frame. Specific lectures of this course can be seen, current student
projects, the areas of the domain of this course, examples of former projects, the
reference to the next reasonable learning goal, and the reference to the lecture group.

4.2.2 Modeling Different Information Resources

Each lecture consists of a sequence of text units which are used by the teacher during
the lecture (see highlighted concept in figure 4.4). A text unit can be a hyperbook
unit, thus an information page belonging to the hyperbook’s library. Or it can be
an example showing the use of some concept. As the KBS hyperbook system allows
to integrate information located anywhere in the WWW, these text units can also
be information pages in the WWW, for example pages in the Sun Java tutorial.

From each types of these text units, links to related information are generated (see
section 7.2.3). For example, from a hyperbook unit, links to relevant examples are
generated, and links to relevant Sun tutorial pages, which give alternative descrip-
tions of these concepts. In figure 4.5, we see on the right hand side the HTML page
about methods from the hyperbook library. The use of methods can be studied in
the example of the student group ”BugFix” (uppermost link on the left hand side),
and the Sun Java tutorial contributes many links to relevant information pages. As

4.2 Conceptual Modeling for Adaptive Hyperbooks 36

knowledge items

Sun Java

generated

trail

relevant examples /
relevant information

information relevant information
relevant examples /

relevant information
relevant information

illustrated by

project
example /

group
student

relevantmented
in

is docu-

Legend:
: ER modeling constructs

relations

, ,

: dynamically generated
: static relations

course

glossary

area

student projects

former
projects

actual
projects

lecture

goal

goal
userdef.

course group

portfolio

text unit

tutorial

goal

hyperbook unit

Figure 4.4: Conceptual model of the CS1 hyperbook, modeling of different informa-
tion resources is highlighted

Figure 4.5: Hyperbook unit “Methoden” with links to examples, Sun Java tutorial
pages and to the two lectures where it occurs.

the hyperbook unit ”Methoden” is contained in a lecture, we also find a link to this
lecture.

4.2 Conceptual Modeling for Adaptive Hyperbooks 37

Figure 4.6: Example of the integration of Sun Java tutorial pages in the KBS hy-
perbook system

In figure 4.6, we see the integration of a Sun Java tutorial page into the hyperbook.
The page itself is displayed in the same manner as it would origin from the hyper-
book library. We stream such pages without any modifications into the hyperbook.
Thus, links contained on the page remain valid. If a user clicks on such a link, the
corresponding page will be displayed in the same way. The links on the left hand
side will remain unchanged. For this Sun tutorial page, a link to an example as well
as to a hyperbook unit is generated.

4.2.3 Modeling the index

To relate the different types of text units, to support student’s goals, or to provide
guidance, thus for enabling the different adaptation features of the KBS hyperbook
system, we have introduced an indexing concept, which will be explained in detail
in chapter 5. In the conceptual model, we see the index concepts, which are called
knowledge items, and their relations to the glossary, areas, portfolios, goals, and
text units (see highlighted concepts in figure 4.7). Each of these concepts is indexed
with a set of such knowledge items.

4.2.4 Modeling Portfolios

In order to support project-based learning as described in section 3.5, our conceptual
model contains the concept portfolio (see figure 4.8). As discussed in [24], assessment

4.2 Conceptual Modeling for Adaptive Hyperbooks 38

knowledge items

Sun Java

generated

trail

relevant examples /
relevant information

information relevant information
relevant examples /

relevant information
relevant information

illustrated by

project
example /

group
student

relevantmented
in

is docu-

Legend:
: ER modeling constructs

relations

, ,

: dynamically generated
: static relations

course

glossary

area

student projects

former
projects

actual
projects

lecture

goal

goal
userdef.

course group

portfolio

text unit

tutorial

goal

hyperbook unit

Figure 4.7: Conceptual Model of the CS1 hyperbook with emphasized index strategy

knowledge items

Sun Java

generated

trail

relevant examples /
relevant information

information relevant information
relevant examples /

relevant information
relevant information

illustrated by

project
example /

group
student

relevantmented
in

is docu-

Legend:
: ER modeling constructs

relations

, ,

: dynamically generated
: static relations

course

glossary

area

student projects

former
projects

actual
projects

lecture

goal

goal
userdef.

course group

portfolio

text unit

tutorial

goal

hyperbook unit

Figure 4.8: Conceptual Model of the CS1 hyperbook, modeling of portfolios is em-
phasized

based on portfolios realizes the the idea that project results can be used to represent
and to assess which concepts a student has successfully applied or learned.

We model a portfolio as a part-whole hierarchy representing the different parts of
each student project. In figure 4.9 we see this hierarchy, which enlarges the concep-
tual model (section 4.2). This hierarchy mirrors the simplified software modeling
process we use in our CS1 course. Important parts are the specification written by
the students, an object oriented design proposal consisting of several subdocuments,
documenting the implementation, and the program code itself. The program code is

4.2 Conceptual Modeling for Adaptive Hyperbooks 39

static design

scenarios

interactions

dynamic design

diagram

classes

attributes

relations

project
assignment

portfolio

specification design program
fragments program

student group

Figure 4.9: Schematic view of the portfolio part-whole hierarchy

broken down into different program fragments, each showing the use of some specific
concept of the application domain.

To help the students defining their own portfolios, we propose a list of concepts,
containing topics of the Java domain. There are some concepts which are mandatory
for their portfolios (for example the scenarios and interactions from the dynamic
design of their project), and a lot of other optional concepts. Thus, the students can
choose some of these optional concepts for representing their work in the portfolio
individually.

A part of portfolio concepts can be seen in the following list. Concepts marked with
an asterisk must be contained in a student’s portfolio, other concepts are optional.
Each concept in the list is indexed by exactly one knowledge item so that we can
easily integrate the portfolio concepts of the student group in the hyperbook.

object oriented design

*specification

static design

*classes

*attributes

*relations

*object oriented diagram

dynamic design

*interactions

*interaction diagram

*scenarios

java applet

*applet methods

HTML tag

..

user interface

event model

*event source

4.3 System Architecture 40

*event listener

adapter

*events

action event

text event

item event

adjustment event

*AWT classes

panel

frame

..

..

In the conceptual model of the hyperbook (figure 4.8), we group the portfolio con-
cepts of a student group according to the area concepts. As an area consists of
several knowledge items, we are able to integrate the portfolios of the students by
using the index of each of the portfolio concepts. Thus, we define both the basic
structure of student projects as well as their connection to the remainder of the
course material.

Figure 4.10 shows the portfolio of a student group called ”Bleifuss” which has
implemented a car racing game in Java.

Clearly, an important part of a portfolio is also the self presentation of the students
who have worked it out. Therefore the student’s homepages are also integrated in
the hyperbook (see relation between the concepts student group and portfolio in
figure 4.8). Figure 4.11 shows as an example the homepage of the student group
”Spacemen” which worked out a portfolio in a CS1 course.

4.3 System Architecture

The KBS hyperbook system is implemented entirely in Java. A servlet residing in the
Java Web Server (see fig. 4.12) represents the whole system. The student browses the
hyperbook with any HTML browser capable of handling frames, while all necessary
processing is done on the server side. Some of the presentation functionalities, such
as trails (see section 7.2), are also realized by Java client applets.

The user navigates the hyperbook by activating links. These links, however, do
not represent static HTML pages. Whenever a hyperlink is activated the name of
the corresponding domain object plus the name of the user are passed to the Java
servlet residing on the server. This page composition program queries the data base
for the URL of the page representing the domain object and for the domain object’s
navigational possibilities. From this information it constructs a user specific page,
and displays it in the user’s WWW browser.

On server side, different components resolve the users’ requests. In the following,
we will describe the functionality of these components.

Storage Module

Base of the KBS hyperbook system is the storage module. It contains the data of
the specific hyperbook, e.g. the instances of the concepts from the conceptual model

4.3 System Architecture 41

Figure 4.10: Portfolio of the student group ”Bleifuss”

Figure 4.11: Homepage of the student group ”Spacemen”.

4.3 System Architecture 42

Resolving
requests

Generate
individually
hyperbook page

Adaptation II
educational
state of relations

Intra /

Internet

Adaptation I
dynamically
generated
relations

Adapta-
tion
Module

Visualisation Module

Navigation Module

Hyperbook Servlet

WWW Server (Java Web Server)

Storage Module

Browser

Figure 4.12: Schematic view of the implementation of the hyperbook system

of the hyperbook in question and implements a query interface. Thus it serves as a
data repository and is called by the other modules.

Navigation Module

The navigation module describes the navigational possibilities of the hyperbook. It
uses the relations defined in the conceptual model to generate navigational con-
structs for reading, viewing and navigating the resulting hyperbook. All relations
in the conceptual model correspond to navigational constructs, which are displayed
in a hyperbook page as hypertext links. Thus, modifications and extensions in the
conceptual model are automatically translated to the navigational structure of the
hyperbook.

Adaptation module

The navigation module calls the adaptation module for adapting the hyperbook to
a particular user. The adaptation module dynamically generates relations (dotted
lines in figure 4.1), trails, next learning steps, and annotates the link structure with
the traffic light metaphor.

The adaptation module asks the storage module for the type of the actual concept.
If a text unit should be adapted, dynamically generated relations to examples and
other information, e.g. to the Sun Java tutorial or to the hyperbook library (see
section 7.2.3), are returned. For the adaptation of instances of the course concept,
a next reasonable learning goal according to the user’s knowledge is generated (sec-
tion 7.3), and the navigation module receives a corresponding relation. If a student
defines a learning goal on himself or requests a next learning goal from the hyper-
book system, text units containing useful information for this particular project

4.3 System Architecture 43

are selected (section 7.2). In addition, a learning sequence containing information
necessary for reaching the learning goal is generated (section 7.5), and projects are
selected from the project library (section 7.5).

After having collected both static and dynamic relations, the navigation module
asks the adaptation module for the educational state of all the relations of the
particular page.

Visualization Module

The visualization module then takes the information about all relations, static and
dynamically relations plus their actual educational state, for displaying them as
annotated hypertext links on the left hand side of a hyperbook, while the Web
page itself is displayed on the right hand side of the hyperbook. There is only one
exception: access to the next reasonable hyperbook page, which guides a user to
the whole hyperbook, is not displayed as a link in the left frame but is symbolized
by the dog’s ear on bottom of the right hand side. The arrow on the bottom of the
left hand side brings the user back to the current course he is working on.

Chapter 5

Adaptation Component of
the KBS Hyperbook System

One of the main goals of student modeling in educational hypermedia is student
guidance [6]. Students have learning goals and previous knowledge which should
be reflected by the hyperbook for adapting the content or the link structure of the
hyperdocument. For our KBS hyperbook system we follow a constructivist peda-
gogic approach, building on project based learning, group work, and discussions
(see chapter 3) [48]. Such a project-based learning environment leads to particular
requirements for adaptation, in order to adapt the project resources presented in a
set of hypermedia documents to the student’s goals (for a specific project) and to
the student’s knowledge. It has to support the student learner by implementing the
following adaptation functionality:

• Adaptive Information Resources: give the students appropriate information
while performing their projects, by annotating necessary project resources
depending on current student knowledge.

• Adaptive Navigational Structure: annotate the navigational structure in or-
der to give the student additional information about appropriate material to
explore or to learn next.

• Adaptive Trail Generation: provide guidance by generating a sequential trail
through some part of the hyperbook, depending on the student’s goals.

• Adaptive Project Selection: provide suitable projects depending on the stu-
dent’s goals and knowledge.

• Adaptive Goal Selection: propose suitable learning goals depending on the
particular student’s knowledge.

In this chapter we will describe the concept and realization of the adaptation com-
ponent for KBS hyperbooks.

This student modeling component has to fulfill various tasks. On the one hand it
has to enable the above stated adaptation functionality. On the other hand, it has
to enable further adaptation functionality which depends on the openness of the
KBS hyperbook approach: Information resources located anywhere in the WWW
should be included in the curriculum of the student’s work with the hyperbook,
explanations and examples can origin from the hyperbook’s libraries or from any
other location in the WWW.

5.1 Modeling the Knowledge Domain 45

5.1 Modeling the Knowledge Domain

5.1.1 Knowledge Items

The connection between the KBS hyperbook system and the user modeling compo-
nent is based on indexing any kind of information resources (HTML pages of the
hyperbook, projects, examples, web pages, etc.) in the hyperbook. The index con-
cepts are called knowledge items(KI). Knowledge items are similar to the domain
model concepts used in [8] or the knowledge units in [22].

Example 1 Knowledge items (KI) in the CS1 hyperbook are, for example, if,
while, classes, datagram socket, run method, etc. A KImay also be compound
like control structures, which is a supertopic of while.

We put a partial order on the set of KI s to represent learning dependencies. KI1

< KI2 denotes the fact that KI1 has to be learned before KI2, because understand-
ing KI1 is a prerequisite for understanding KI2. For example, to understand the
KI control structures, it is necessary to know about the KI s branching and
looping, thus

looping < control structures and branching< control structures.

5.1.2 Describing the Knowledge Domain

To identify relevant knowledge items of the application domain of a hyperbook, we
first specify the main knowledge items of the book. This can be done in different
ways, depending on the application domain. For example, the hyperbook for our
course ”Introduction to Java Programming” contains the following main KI s, which
we have related to the ACM Computing Classification System (1998 version)1:

• Language Constructs and Features (D.3.3)

1. classes and objects (D.3.3)

2. methods (D.3.3 – Procedures, functions and subroutines)

3. inheritance (D.3.3)

4. interfaces (D.3.3 – Polymorphism resp. D.2.2 Design Tools and Tech-
niques – Modules and Interfaces)

5. data types and operators (D.3.3 – Data types and structures resp.
subtopics from E.1 Data structures)

6. control structures (D.3.3)

7. concurrent programming structures (D.3.3)

8. error handling and recovery (D.2.5 Testing and Debugging – Error
handling and recovery)2

9. java windowing system (H.5.2 User Interfaces – Windowing Systems)

10. java networking constructs (C.2.5 Local and Wide-Area Networks –
Internet)

11. algorithms (D.3.3. Recursion resp. E.5 Files – Searching/Sorting)

12. input output (D.3.3)

1http://www.acm.org/class/1998/ccs98.html
2would better be classified in D.3.3

5.2 Modeling the User’s Knowledge 46

13. java applets (related to D.3.3 and D.3.4 Processors – Run-time envi-
ronment)

14. java applications (related to D.3.3 – Procedures, functions and sub-
routines)3

• Additional Java specific topics

15. java api (D.2.2 Software Libraries and D.3.3 Modules, packages)

16. programming environment (subtopics from D.2.3 Coding Tools and
D.3.4 Processors)

• Introductory software engineering concepts

17. object oriented design methods (D.2.2)

Each of these KI s is accompanied with a set of knowledge items describing the as-
pects of a topic more precisely. For example, control structures has the subtopics
branching, looping, return statement, exit statement, execution block. The
KI branching itself has the subtopics if and switch.

The resulting set of 289 knowledge items can be seen in appendix A.

5.2 Modeling the User’s Knowledge

The knowledge of a user is modeled as a knowledge vector (KV). Each component
of the vector is a conditional probability, describing the system’s estimation that
a user U has knowledge about a topic KI , on the base of all observations E the
system has about U :

Definition 5 (Knowledge Vector) ~KV :

~KV (U) = (P (KI1|E), P (KI2|E), . . . , P (KIn|E)) ,

where KI1, . . . ,KI n are the knowledge items of the application domain and E denotes
the evidence the system monitors about U ’s work with the hyperbook.

Observations about the student’s work with the hyperbook are stored for each KI .
Each observation expresses the grade of knowledge the user has on a KI . We use
four grades:

A student can have

• ”expert’s knowledge” on a KI
rating E: excellent,

• ”advanced knowledge”
rating F: with some difficulties but mainly excellent,

• ”beginner’s knowledge”
rating A: with many difficulties – seems not to master the concept,
or

• ”novice’s knowledge”
rating N: not ready for this concept yet.

3thematically related to Methods, Classes and objects, and to Data types and operators

5.3 Indexing Information: HTML pages, Examples, Projects 47

Thus, the KI s are, on the one hand, concepts describing the application domain of
a book, on the other hand , they are random variables with the four discrete values
E, F, A and N, coding knowledge grades.

The evidence we obtain about the student’s work with the hyperbook changes with
the time. Normally, the student’s knowledge increases while working with the hy-
perbook, although lack of knowledge is equally taken as evidence. Since every kind
of observation about a student is collected as evidence, the knowledge vector gives
– at each time – a snapshot of the student’s current knowledge.

5.3 Indexing Information: HTML pages, Exam-
ples, Projects

In this section, we will see how to index various information resources.

Each information resource is indexed by some set of knowledge items describing
the content of the resource. These resources can be general HTML pages, examples,
projects, etc. The origin of an information resource is not relevant for indexing, only
the content defines the index.

Definition 6 (Content Map) Let S 6= ∅ be the set of all KI s, and let H be a set
of HTML pages. Then

I : H → P(S)\{∅} (5.1)

is the content map, which gives for each information resource in H the index of this
resource, e.g. the set of KI s describing its content.

To identify the index of an information resource we can scan the text for keywords
or phrases. Actually, the indexing is done by the author of an information resource
by hand.

5.3.1 Indexing HTML pages

An HTML page is indexed by those KI s which describe the content of the page.
There is no difference in indexing information resources belonging to the hyperbook
itself and in indexing information resources belonging to some server anywhere in
the web. Only the content of this HTML page is relevant for indexing.

Indexing introductory pages

In general, each KI of the knowledge model can be used for indexing. There are some
introductory concepts in the set of knowledge items, each beginning with the phrase
what is* (or what are*). These concepts are useful for describing entry points to
more detailed information. Authors often prefer to give a short overview about a
topic before going into a detailed description. Furthermore, this new convention
enables the system to generate a glossary, as can be seen in section 7.2.2.

5.3 Indexing Information: HTML pages, Examples, Projects 48

Example 2 To explain applet programming in Java, an author starts with a de-
scription of stand alone programs which can be distributed over the WWW. This
information resource H does not contain information about actually writing Java
applets, but useful information for understanding the idea of applets. The index
of this page contains only one KI : The what is-KI of the KI java applets. For
example, in the CS1 hyperbook, I(H) ={what are applets} for this resource H.

Indexing detailed information

If an information resource contains a detailed description of a topic, the correspond-
ing KI from the knowledge model is used for indexing.

Example 3 An information resource H describing the use of the main method of
some Java application will be indexed by the KI public static void main. If this
page also contains information about reading command line parameters, the index
will contain the KI s public static void main and input parameter.

The hierarchy of the knowledge items can be used for abbreviating the indexing
process.

Example 4 If a page H contains basic information about applications
then its index I(H) may consist of system out println, input parameter,
public static void main, executable. As can be seen in the complete list of
all KI s (appendix A), the above mentioned KI s are exactly the subtopics of the
KI java application. To avoid unnecessary work for indexing, the author can
also use the KI java application for indexing the content of this particular page:
I(H) ={java application}.

5.3.2 Indexing Chapters, Areas, etc.

In the KBS hyperbook system we are using the concept of areas to partition the
application domain (see section 4.2). For example, the concepts of the ACM classi-
fication (see section 5.1.2) are used as area concepts for the CS1 hyperbook. These
area pages would need two different index sets. One for describing their range as
an area. And another one for indexing their content. To simplify the indexing step
and to avoid the use of two different index sets, we ask the authors of such pages
to index them with all relevant KI s of this chapter or area, while the first item in
the index is the what is-KI describing the content of the actual page.

5.3.3 Indexing Portfolios

A portfolio concept is indexed by the KI which describe the particular content of
this portfolio page (see section 4.2.4).

5.3.4 Indexing Examples and Projects

The indexing of examples and projects is similar to indexing arbitrary hyperbook
pages: Each topic explained in the example is indexed by the corresponding KI s,

5.4 Discussion 49

higher level KI s can be used as well. To emphasize specific topics as very important
or very good explained in an example, the author of a project can provide weights
with each KI indexing the project. Such a weight is the percentage of a KI in this
particular project.

Example 5 The ”threads in applets” project shows the use of threads for loading
data in applets. It is indexed by the KI s java applet (30 %) and single thread

(70 %).

5.3.5 Update: Observations about Users

Several systems detect the fact that the student reads some information to update
the estimate of his knowledge (e.g. [8]). Some of them also include reading time or the
sequence of read pages to enhance this estimation. While this is a viable approach, it
has the disadvantage that it is difficult to measure the knowledge a student gains by
“reading” an HTML page [6]. In the current state of our development, we decided to
take into account neither the information about visited pages nor the student’s path
through the hypertext. Instead we use only the projects for updating the system.
This is motivated by the teaching approach for our hyperbooks, see section 3.5. For
motivating the students to explore the learning material by doing some projects,
the hyperbook is only updated whenever we have some results about a student’s
performance in a project.

The updating can happen in two ways: Either we ask the student for direct feedback
after working on a project. The student then judges his own performance by selecting
one of the categories “topic was easy – I mastered it effortless”, “topic was okay
– but some problems were arising”, “topic was hard – I had a few ideas but could
not get the thing right” and “no idea about this topic at all”. These four categories
correspond to the grades of knowledge a user has on a KI (see section 5.2). The
second way is to ask some experts for judging the student’s project performance.

5.3.6 Indexing Constraints

For obtaining a correct indexing of the hyperbook (see section 5.3), the index set has
to obey the following constraint, which is motivated by the project-based learning
approach (see section 3) underlying our hyperbooks. As we have seen in section
5.3.5, we only use the performance of students in projects as indicators for their
learning progresses. Thus, projects are the only source for updating the hyperbook.
This requires that each KImust be contained in an index set of some project:

∀ KI : ∃ Project P with KI ∈ I(P) .

5.4 Discussion

In section 5.3 we have seen how to use knowledge items for indexing all kinds of
information, belonging to the hyperbook, or located anywhere in the WWW. The
use of an indexing concept in student and user modeling in this way is new. Most

5.4 Discussion 50

approaches model dependencies like prerequisites or outcomes directly with the
information resources themselves.

We separate knowledge and information, as we model learning dependencies solely
on the set of KI s of a hyperbook. The connection between the student modeling
component and the hyperbook system is the content map (see definition 6), which
maps each information resource to a set of KI s.

This separation is advantageous in many aspects. As the KBS hyperbook system
allows different authors to write parts of a book, they become independent from the
work of others: They can write (and index) their information entries without caring
about the other content of the hyperbook. The KBS hyperbook system is an open
hypermedia system, allowing to include information resources located anywhere in
the WWW. As all information resources are equal in the sense that they only need to
be indexed for being integrated in a particular hyperbook, this openness is enabled
by the indexing concept, too. In addition, as we will see in chapter 7, all kinds of
information resources from arbitrary origins are fully integrated and adapted to the
student’s needs: We can propose programming examples in the WWW, generate
reading sequences which contain material of the hyperbook library and the WWW,
calculate the educational state of HTML pages in the WWW according to the
student’s actual knowledge state, etc.

Clearly, the use of a separate knowledge model makes the hyperbook system robust
against changes. If we add additional information pages or change contents, we
only have to (re-)index these pages accordingly. No further work has to be spent on
updating other material, as it would be necessary if knowledge, and thus reading or
learning dependencies, would have been coded in the material itself.

The chosen way of implementation enables us to apply different inference mecha-
nisms to the student modeling component. The inference technique we currently
use for the KBS hyperbook systems is Bayesian inference (see chapter 6).

The adaptation component has the following features:

• robust against changes,

• different information origins (hyperbook, electronic books, arbi-
trary information resources in the WWW),

• multiple authors of a hyperbook, which may work independently,

• only one student modeling component serving for an arbitrary de-
pendency engine.

Chapter 6

Bayesian Network Engine:
Calculating Probabilities

So far, we have seen how to use knowledge items for describing the knowledge
domain, for describing a student’s knowledge, and for indexing different kinds of
information resources.

Using probabilities for giving an estimation about a student’s knowledge is a very
intuitive approach. We give an estimation about the student’s knowledge on topic X
by calculating the conditional probability that X is known to this student under the
condition ”evidence”, where evidence is the previously detected information about
this student (section 5.2).

As we already used conditional probabilities for describing the student’s knowledge,
it is obvious to look for inferring mechanisms which allow us to handle networks
with dependent random variables.

Bayesian networks (BN) are useful tools for inferring in graphs with dependent
vertices. We use such a BN to calculate a probability distribution for each KI , thus
for calculating the knowledge vector of our users.

Definition 7 (Bayesian network (BN)) A Bayesian network is a directed,
acyclic graph with the following properties:

• Each vertex in the graph represents a random variable.

• There is an edge from X to Y 6= X, whenever Y is dependent of X.

• Each vertex is labeled with a conditional probability table (CPT) that quantifies
the effect of its parents. The outneighbours of some vertex are called children,
the inneighbours are called parents. A vertex without outneighbours is called
root.

To construct a Bayesian network which calculates the probability distribution for
each KI of a hyperbook for a particular user, there are two main steps to take: First,
generating some acyclic graph which contains the knowledge items as vertices and
the learning dependencies between them as edges (see section 6.1). Second, defining
probability tables for all vertices (see section 6.2).

6.1 The Bayesian Network Graph 52

6.1 The Bayesian Network Graph

6.1.1 Dependencies of the KI

With the partial order defined in section 5.1, we construct some dependency graph
for the KI s of a hyperbook. Therefore we first look at the main KI s of the
hyperbook which describe the areas of the application domain. In the case of the
CS1 hyperbook, these are the KI s of the ACM classification (section 5.1.2).

The dependency graph is the neighbouring graph of the partial ordering < of the
set of KI s, i.e. there is an edge from X to Y if Y < X and there exists no Z with
Y < Z < X . The subgraph of the dependency graph of the CS1 hyperbook which
contains only the main KI s, can be seen in figure 6.1.

algorithms

input_output

software_engineering

interfaces

error_handling_and_recovery

inheritance

java_windowing_system

java_application

control_structures
java_api

concurrent_programming

classes_and_objects

data_types_and_operators

java_applet

programming_environment

methods
networking

Figure 6.1: Dependency graph of the KI s of the ACM classification

As each KI from the ACM classification has a set of KI s describing it in more
detail (section 5.1.2), we construct for each of those main KI s the dependency
graph containing the KI together with its subconcepts. In the sequel we assume
that these graphs are rooted trees, having the main concept as its root. The root
tree containing the KI classes and objects and its subtopics is given in figure
6.2.

The dependency graph of the KI s of the ACM classification together with the
rooted trees of each KI is the basic graph for our Bayesian network.

To further structure this basic graph, we categorize the main KI s into three level
according to the following aspects: The first level contains the simple topics, which
require no prerequisite knowledge for understanding. The second level contains ad-
vanced topics which require knowledge about some of the level 1 concepts. Finally,
the third level is the level of the compound topics which can only be understood by
knowing some first- or second-level topics. We assume in the sequel that distinct
main KI s within the same level are not related, i.e. independent random variables.
The second level is further divided into two parts: one that is necessary to under-
stand some of the third-level concepts (level 2 in figure 6.3) and another part that is
not required by any third-level concept (level 2’ in figure 6.3). Optional topics can

6.1 The Bayesian Network Graph 53

import_declaration

classmodifier

constructors

variable_declaration

variable
constants

class_body

what_is_classes_and_objects

classes_and_objects

class_declaration

class_instantiation

what_is_packages

package_declaration
life_time_of_objects

packages

Figure 6.2: Rooted tree of the ACM classification KI classes and objects

level 3

level 2’

level 1

level 2

Figure 6.3: Schematic model of a Bayesian network underlying the user model

only occur in level 2’ and level 3. If we want to use optional topics, these topics are
not contained in a user’s knowledge vector as the user can also read the hyperbook
by skipping them.

For the CS1 hyperbook, the sectioning into level is the following:

• Level 1 consists of the topics classes and objects, methods,
data types and operators, programming environment, and
object oriented concepts in software engineering.

• Level 2’ consists of the topics input output, java application, and
object oriented design methods.

• Level 2 contains control structures, interfaces, inheritance,
java applet, java api.

6.1 The Bayesian Network Graph 54

the clustering method

Bayesian Network after applying Bayesian Network
 with cycle

A

D

CB

A

B C

D

Figure 6.4: Example for eliminating a not continuously directed cycle with clustering

• Level 3 java windowing system, error handling and recovery,
concurrent programming structures, java networking constructs,
algorithms.

6.1.2 YACF: Yet Another Clustering Formalism

For our concerns, we construct a Bayesian network with random variables which
give a probability distribution for calculating the knowledge of a user.

As we have already seen in section 5.2, we are using random variables with four
discrete values. Recall that they have all the same range {E, F, A, N} of size 4.
Thus, we assume that all random variables have the same number of discrete values.
This is only a matter of simplification. Of course we can also have random variables
with different values; the following considerations and theorems remain true.

Exact inference in Bayesian networks is known to be NP-hard [16]. A general
Bayesian network can represent any propositional logic problem (if all probabili-
ties are 1 or 0), and propositional logic problems are known to be NP-hard [101].

Linear time algorithms exist for Bayesian networks which have no cycles in the
underlying undirected graph. There are several methods how to deal with such
not continuously directed cycles: clustering, conditioning and stochastic simulation
algorithms.

Clustering algorithms glue two or more nodes together to avoid not continu-
ously directed cycles (see for example [76, 21]). An example for a clustering method
can be seen in figure 6.4. Here, the variables B and C are clustered to one single
node BC. The range of BC is the cross product of the ranges of B and of C. To
query B or C, one has to average over the values of the other variable in the cluster
node.

Finding the right cluster nodes is the important part of clustering. Since the con-
ditional probability tables for the cluster nodes contain the cross product of the
range of their clustered variables, the number of required calculations for querying
the network may increase exponentially [101].

In case of our previously constructed BN, we have a graph containing lots of not con-
tinuously directed cycles, as can be seen in figure 6.3. Attempts to apply clustering
to this BN led to networks with a large number of cluster nodes. It was necessary to

6.1 The Bayesian Network Graph 55

B C

D

.

A4 4A

CB

D

A1 A1

Bayesian Network
 with cycle

Bayesian Network after applying the
conditioning method

A

B C

D

Figure 6.5: Example for eliminating a not continuously directed cycle with condi-
tioning

cluster nodes more than twice, thus querying the KI s in the so constructed network
became also dependent on the number of average calculations.

Conditioning methods transform the network into several simpler networks (see
for example [60, 20]). Each of these networks contains one or more of the random
variables instantiated to one of their values. For example, in figure 6.5, A is a random
variable with four discrete values, and the conditioning method leads to four new
networks, in which the variable A is instantiated to one of it’s four values.

As the number of networks in the conditioning method increases exponentially with
the number of instantiated variables and their values, this approach is disadvanta-
geous for our application, as we have to propagate a large number of so constructed
Bayesian networks.

Stochastic simulation methods run repeatedly simulations of the network for
calculating approximations of the exact evaluation (see for example [106, 43]. Even
with using likelihood weighting [35, 106], the performance is problematic. In the
CPSC project [95], for example, a BN with 448 nodes and 906 links needs around
35 minutes for calculating accurate values. The network of our CS1 hyperbook
contains 289 nodes, so answers in realtime were not possible with this approach.
Hence we decided to investigate on a solution tailored to our application domain.

For a discussion on the advantages of probabilistic reasoning compared to fuzzy
logic methods or rule-based reasoning in artificial intelligence see [92, 109, 93, 107].

We developed a special clustering formalism which enables us to generate a directed
graph without cycles in the underlying undirected graph (see section 6.1.2). The
algorithm we are then able to apply for Bayesian inference in this generated graph
is an exact inferring algorithm [101]. We have reimplemented this algorithm in Java.
It needs in average 1/5 seconds on a Sparc 10 machine to query a node.

The YACF clustering formalism introduces a new, additional cluster node while
nearly all other nodes remain unchanged, only the conditional probability tables of
the child vertices of the cluster had to be modified.

This additional cluster node takes the information of the parent nodes and passes
it to the child nodes, as can be seen in figure 6.6. Thereby, the not continuously
directed cycles in the dependencies between parents and children are deleted. The
cluster node distribute the evidence from its parents directly to its children while

6.1 The Bayesian Network Graph 56

.

.
.

.

nodes of level 2’

nodes of level 3

nodes of level 2

basic concepts (nodes of level 1)

cluster 2

cluster 1

Figure 6.6: Graph after applying the YACF clustering twice

evidence in child nodes which is propagated to the parent nodes is very poor. This
is the kind of updating we need for our BN. For example, the observation that a
student masters the KI control structures does not say anything secure about
his knowledge about algorithms or event model. But if we see the student im-
plementing a search algorithm, we can say with high probability that he knows
how to control the program flow. Therefore we are mainly interested in carrying
information from parents to child nodes.

To construct a YACF cluster which distributes information from parents to children
(see figure 6.7), we define this node as a random variable whose range is the sum
of the ranges of all child nodes. By doing this, we have exactly one part of the
range of the cluster variable which holds for a particular child node. Hence each
child has to listen only to that part of the cluster variable’s range which holds
information for it. For example, we observe a user knowing a KI X1 with grade
expert’s knowledge (E) and a KI X2 with grade beginner’s knowledge (A), and
both X1, X2 are parents of a KI Y . The information we pass to the child Y is then
the best grade of knowledge the user has in all parent variables. In the example, the
grade of knowledge we distribute to Y is E.

The following definitions show, how we construct the conditional probability tables
for such a cluster node and its children. Theorem 6.1 shows that the children of a
cluster vertex depend on their original parents, thus with the YACF clustering we
found a formalism which serves for our purposes.

Definition 8 (Cond. Probability Table (CPT) for a YACF-Cluster Node)
Let X1, . . . , XN , Y1, . . . , YM random variables. Each Yi, i ∈ {1, . . . ,M} is depen-
dent from at least one Xk, k ∈ {1, . . . ,M}. The conditional probability table of the

cluster node H is a
∏N
l=1 |R(Xl)| ×

∑M
i=1 |R(Yi)| matrix, where R(X) denotes the

range of a discrete random variable X. Let 1Yi, . . . , LYi denote the part of the
range of H which carries information for node Yi. Then

P (H = kYi|(X1, . . . , XN) = (x1, . . . , xn)) ={
1
M , if k = best grade (xl|l ∈ {1, . . . , n} ∧ Y,Xl dependent)
0 , else

6.1 The Bayesian Network Graph 57

parent nodes

child nodes

parent nodes

child nodes

cluster node

X4

Y1 Y2 Y3Y1Y3Y2

X2 X1 X3 X4 X1 X2 X3

Figure 6.7: The role of a YACF cluster node

X1 . . . XK XN

.

.

.

.

.

.

.

. . .

.

.

.

.

.

.

.

.

.

.

.

range of H which holds
evidence for node Y1 evidence for node YM

range of H which holds

.

.

.

1/M 0 0 0 1/M 0 0 0

0 1/M 0 0 1/M 0 0 0

1/M 0 0 0 0 0 0 1/M

P(H=E_YM|..) P(H=N_YM|..)P(H=N_Y1|..)P(H=E_Y1|..)

X1=E, ... XK=E, ... XN=E

X1=F, ... XK=N, ... XN=E

X1=N, ... XK=E, ... XN=N

Figure 6.8: CPT of a YACF-Cluster node with N parents and M children.

where best grade returns a maximum value of the random variables, e.g. in our
interpretation, the best grade of knowledge we observe in all the parent variables Y
depends on.

Note: the random variable of the cluster node has as many values as the sum of all
values of the children of the cluster. Figure 6.8 gives an example for a CPT of a
cluster node.

The probability table assigned to a child node of a cluster node consists of two
parts: a ”blueprint” table for those values of the random variable ”cluster node”
which correspond to this particular child node, and an equal distribution for all
other values. An example of such a CPT for four-value discrete random variables
can be see in figure 6.9.

Definition 9 (CPT for child nodes of a YACF Cluster Node) Let
X1, . . . , XN , Y be random variables, Y is dependent from at least one
Xk, k ∈ {1, . . . ,M}. Let R(Y) be the range of Y and let {1Y, . . . , LY } de-
note the part of the range of H that holds the information for Y . Then the CPT of
a YACF cluster node H with parents X1, . . . , XN and child Y is defined as follows:

P (Y |H = h) =

{ (
1

|R(Y)| , . . . ,
1

|R(Y)|

)
, if h /∈ {1Y, . . . , LY }

P (Y |X = h) , else

6.1 The Bayesian Network Graph 58

range of H
holding
evidence
for Y

...
...

... ...

i

i

i

n

i+1

Cluster Node (H) P(Y=E | H=...) P(Y=F | H =...) P(Y=A | H=...) P(Y=N | H = ...)

0
0.2
0.6

0.2

...

0.20
0.2
0.8

0

0.2
0.6

0

0.250.25

0.25 ...

0.25

... 0.25

0

0.25

0
0.2
0.8

0.25

0.25 ...

0.25 0.25 0.25

0.25

H = E
H = A

H = F
H = N

H = N

H = E1

i-1

i

H = E

H = N

Figure 6.9: Conditional probability table for child node Y of cluster node H

Theorem 1 (Cluster nodes serve as probability distributors) Let
X1, . . . , XN the parents of a cluster node H and Y1, . . . , YM the children of
H. Let Ij := {i ∈ {1, . . . ,M} : P (Yi|Xj) 6= P (Yi)} , j ∈ {1, . . . , N}.
Then

P

(
Y |

N∧

i=1

Xi

)
!
= P

Y |

N∧

i=1

i∈I(Y)

Xi

 (6.1)

where
I (Y) = {l : Y,Xl are dependent}

Proof: Let WH be the range of H and let {1Yi, . . . , LYi} denote the part of the
range of H that holds the evidence for Yi.

Let ~WX i,i/∈I(Y) the be range of those Xi, from which Y is conditional independent:

~WXi,i/∈I(Y) := ~WXi1 × . . .× ~WXik , il ∈ {1, . . . ,M}\I(Y)

First we handle the left side of the stated equation:

P

(
Y |

N∧

i=1

Xi

)
=

∑

h∈WH

P

(
Y,

N∧

i=1

Xi, H = h

)
· 1

P
(∧N

i=1Xi

)

=
∑

h∈WH

P

(
Y |

N∧

i=1

Xi, H = h

)
· P
(
H = h|

N∧

i=1

Xi

)

cond.
independent

=
∑

h∈WH

P (Y |H = h) · P
(
H = h|

N∧

i=1

Xi

)

=

LY1∑

h=1Y1

P (Y |H = h) · P
(
H = h|

N∧

i=1

Xi

)

6.1 The Bayesian Network Graph 59

+

LY2∑

h=1Y2

P (Y |H = h) · P
(
H = h|

N∧

i=1

Xi

)
+ . . .

+

LYM∑

h=1YM

P (Y |H = h) · P
(
H = h|

N∧

i=1

Xi

)

If Yi 6= Y , we obtain

LYi∑

h=1Yi

P (Y |H = h)︸ ︷︷ ︸
= 1
L∀h

P

(
H = h|

N∧

i=1

Xi

)

︸ ︷︷ ︸
= 1
N

for exactly one h(Y)∈{1Yi,...,LYi},
=0 in all other cases

=
1

L ·N (6.2)

In case of Yi = Y , we have

LY∑

h=1Y

P (Y |H = h) P

(
H = h|

N∧

i=1

Xi

)

︸ ︷︷ ︸
= 1
N

for exactly one h(Y)∈{1Y,...,LY },
=0 in all other cases

=
1

N
· P (Y |H = h (Y)) (6.3)

With 6.2 and 6.3 the left hand side of equation 6.1 yields to:

P

(
Y |

N∧

i=1

Xi

)
= (M − 1) · 1

L ·N +
1

N
· P (Y |H = h (Y)) (6.4)

Now we handle the right hand side of equation 6.1:

P

Y |

N∧

i=1

i∈I(Y)

Xi

 =

∑

h∈WH

P (Y |H = h) · P

H = h|

N∧

i=1

i∈I(Y)

Xi

=
∑

h∈WH

P (Y |H = h)

·
∑

~w∈ ~WXi
i/∈I(Y)

P

H = h|

N∧

i=1

i∈I(Y)

Xi ∧
N∧

i=1

i/∈I(Y)

Xi = ~w

· P

N∧

i=1

i/∈I(Y)

Xi = ~w|
N∧

i=1

i∈I(Y)

Xi

︸ ︷︷ ︸
= 1

LN−I

6.1 The Bayesian Network Graph 60

=
LY 1∑

h=1Y 1

P (Y |H = h) ·
∑

~w∈ ~WXi
i/∈I

P

H = h|

N∧

i=1

i∈I(Y)

Xi ∧
N∧

i=1

i/∈I(Y)

Xi = ~w

 ·

1

LN−I

+ . . .

+
LYM∑

h=1YM

P (Y |H = h) ·
∑

~w∈ ~WXi
i/∈I

P

H = h|

N∧

i=1

i∈I(Y)

Xi ∧
N∧

i=1

i/∈I(Y)

Xi = ~w

 ·

1

LN−I

In case of Yi 6= Y , we have

LY i∑

h=1Y i

P (Y |H = h)︸ ︷︷ ︸
= 1
L∀h

·
∑

~w∈ ~WXi
i/∈I

P

H = h|

N∧

i=1

i∈I(Y)

Xi ∧
N∧

i=1

i/∈I(Y)

Xi = ~w

 ·

1

LN−I

∑
changed

=
∑

~w∈ ~WXi
i/∈I

LY i∑

h=1Y i

1

L
· P

H = h|

N∧

i=1

i∈I(Y)

Xi ∧
N∧

i=1

i/∈I(Y)

Xi = ~w

︸ ︷︷ ︸
= 1
N

for exactly one h(Yi)∈{1Yi,...,LYi},
=0 in all other cases

· 1

LN−I

=
∑

~w∈ ~WXi
i/∈I

1

L
· 1

N
· 1

LN−I

=
1

L ·N ·
1

LN−I
·

∑

~w∈ ~WXi
i/∈I

1

︸ ︷︷ ︸
~w has N−I components,

L possible values per component→LN−I terms

=
1

L ·N ·
1

LN−I
· LN−I

=
1

L ·N (6.5)

In case of Yi = Y , we have

LY∑

h=1Y

P (Y |H = h) ·
∑

~w∈ ~WXi
i/∈I

P

H = h|

N∧

i=1

i∈I(Y)

Xi ∧
N∧

i=1

i/∈I(Y)

Xi = ~w

 ·

1

LN−I

∑
changed

=
∑

~w∈ ~WXi
i/∈I

LY∑

h=1Y

P (Y |H = h) ·

P

H = h|

N∧

i=1

i∈I(Y)

Xi ∧
N∧

i=1

i/∈I(Y)

Xi = ~w

 ·

1

LN−I

=
∑

~w∈ ~WXi
i/∈I

LY∑

h=1Y

P (Y |H = h) ·

6.1 The Bayesian Network Graph 61

P

H = h|

N∧

i=1

i∈I(Y)

Xi

︸ ︷︷ ︸
= 1
N

for exactly one h(Y)∈{1Y,...,LY }
=0 in all other cases

· 1

LN−I

=
∑

~w∈ ~WXi
i/∈I

P (Y |H = h(Y)) · 1

N
· 1

LN−I

=
1

N
· 1

LN−I
· P (Y |H = h(Y)) ·

∑

~w∈ ~WXi
i/∈I

1

︸ ︷︷ ︸
=LN−I

=
1

N
· P (Y |H = h(Y)) (6.6)

With 6.5 and 6.6 we obtain for the right hand side of the stated equation:

P

Y |

N∧

i=1

i∈I(Y)

Xi

 = (M − 1) · 1

L ·N +
1

N
· P (Y |H = h(Y)) (6.7)

If we compare 6.4 and 6.7, we obtain the stated equation. q.e.d.

Corollary 1 Let Xi, Yj , i ∈ {1, . . . , N}, j ∈ {1, . . . ,M} be two independent random
variables of the BN. Let Yj be a child node of Xi via the cluster node H of theorem
6.1. Then

P (Yj |Xi) = P (Yj)

Proof: With Theorem 6.1 we obtain:

P (Yj |Xi)

total prob.
formula=

∑

~X=X1×...Xi−1×Xi+1×...×XN

P
(
Yj |Xi ∧ ~X = ~x

)
· P
(
~X = ~x|Xi

)

Theorem 6.1
=

∑

~X=X1×...Xi−1×Xi+1×...×XN

P
(
Yj | ~X = ~x

)
· P (~X = ~x)

cond. prob.
=

∑

~X=X1×...Xi−1×Xi+1×...×XN

P
(
Yj ∧ ~X = ~x

)

total prob.
formula= P (Yi).

This shows that P (A|Y) is the sum of all conditional probabilities of those nodes
that influence A. If no Xi carries new evidence (that is the case when all the evidence
propagated in the BN is Y), the value of P (A|Y) equals the old value P (A).

6.2 Finding Conditional Probability Tables 62

If we apply the YACF clustering formalism twice, we obtain a directed graph with-
out cycles in the underlying directed graph (see figure 6.6). Here, we used a YACF
cluster node for eliminating not continuously directed cycles between level 3 and 2
concepts and another one for eliminating not continuously directed cycles between
level 2 and level 1 concepts. Thus we are ready with step one of the construction of
our Bayesian network.

6.2 Finding Conditional Probability Tables

After generating the directed acyclic graph out of the dependency graph, we have
to add for each node of the graph a probability table containing the conditional
probabilities a child node has with respect to his parent node.

P(quicksort=E|.) P(quicksort=F|.) P{quicksort=A|.) P{quicksort=N|.)

E

F

A

N

sorting

0.8

0.2

0

0

0

0

0.2

0.6

0.2 0

0.2

0.2 0.8

0.2

0

0.6

Figure 6.10: conditional probability table for the node quicksort, which is depen-
dent on the node sorting

We provide some ”blueprint” tables that express how strong a dependency between
a parent node and a child node is. We assume for example, that a user familiar with
sorting will know the quick sort algorithm. Thus the conditional probability
table of the node quick sort reflects this kind of dependency by assuming an
expert (advanced, beginner, novice) in the parent node sorting to be – with high
probability – an expert (advanced, beginner, novice respectively) in the child node
quick sort. To find such a conditional probability table, we investigated several
distributions. Our result can be seen in figure 6.10. In a similar way we found
conditional probability tables for weaker dependencies, for example between the
child node gridbag layout manager (the most complicated layout manager in Java
1.1x) and the parent node layout manager (see figure 6.11) and for the root nodes
of the BN (see figure 6.12).

layout_manager P(gridbag=E|.) P(gridbag=F|.) P(gridbag=A|.) P(gridbag=N|.)

E

F

A

N

0.34

0.33

0.22

0.16 0.11

0.220.240.36

0.24

0.24

0.16

0.36

0.24 0.34

0.33

0.11

Figure 6.11: ”weak” conditional probability table for the node
gridbag layout manager, which is dependent on the node layout manager

6.3 Advantages of using a BN 63

algorithms P(algorithms=E) P(algorithms=F) P(algorithms=A) P(algorithms=N)

0.010.01 0.1 0.88

Figure 6.12: Conditional probability table for root nodes

For example, in the CS1 hyperbook, knowledge about control structures is related
to knowledge about algorithms (if we observe a user knowing how to implement
an algorithm, he will probably have used some operations to control the execution
of the program), but nothing can be said if we see a user doing well in building a
graphical interface. He might have used some control structures, but not necessarily.

This finishes step two from the construction process of the Bayesian network.

6.3 Advantages of using a BN

Bayesian networks are very useful in user modeling since they enable us to manage
uncertainty in our observations and their conclusions. For making observations, we
currently use four values but more values and thus finer grades for distinguishing
knowledge are possible as well. For making conclusions, we estimate the conditional
probability that a student knowing a KI1 with grade expert will now a KI2 with
grade expert, advanced, beginner or novice. The Bayesian community states that
conditional probabilities are relatively easy to estimate. They go as far as to interpret
a conditional probability P (A|K) as ”a persons subjective belief in A given a body
of knowledge K that may include that person’s [particular] assumptions” [93].

Another advantage of using a BN is that we can make inferences on top of the com-
plete knowledge model of the application domain. This knowledge model contains
all necessary prerequisites for a particular knowledge item, models dependencies
among knowledge items, and is able to infer, for example, that prerequisite know-
ledge of a KI has already been acquired by a user if the KI itself is understood by
the user.

By using a BN, it is possible to use observations about the user’s work with the
hyperbook and with the hyperbook projects to update the system’s estimate of the
user’s knowledge in the way our application requires it. For example, if the system’s
estimate of the user’s knowledge is too pessimistic, and the user solves an advanced
project which the hyperbook had thought to be too difficult for him, the system can
use this observation to update its estimate, based on the successful completion of
the project unit and the indexing of project units by knowledge items. On the other
hand, if we observe an advanced user failing to understand some simple concepts,
then the BN can selectively change its estimate of this user with respect to these
concepts, without classifying him as a complete beginner, and can suggest specific
project units for learning these concepts.

Another advantage of using BNs is the managing of uncertainty in our observations.
We can use every degree of information about the user’s knowledge, not only failed
/ not failed.

6.4 Interpreting the Conclusions of the Bayesian Network 64

E F A N

E F A N

E F A N

E F A N

E F A N

E F A N

E F A NE F A N

E F A N

E F A N

probability distribution
of a continuous random variable

probability distribution
of a discrete random variable

Interpretation for the adaptation
of semantic information units

concept is partly_known by the user

concept is excellently_known by the user

concept is well_known by the user

concept is known by the user

legend: ,

,

concept is not_known by the user

E="expert knowledge", F="advanced knowledge" A="beginner knowledge", N="newcomer knowledge"

Figure 6.13: Interpretation of the probability distributions given by the Bayesian
network

6.4 Interpreting the Conclusions of the Bayesian
Network

After having found an inferring mechanism for the knowledge model, we have to
interpret the results of the calculation: how can we classify a user’s knowledge as
”expert” or as ”beginner”? Compared to a continuous variable, we look for the
maximum of the distribution, see figure 6.13. A knowledge item K is for example
“well known” to a user if

P (K = E) + P (K = F) ≥
P (K = A) + P (K = N),

and it is “excellently known” by the user, if

P (K = E) ≥ P (K = F) +

P (K = A) + P (K = N).

6.5 The Bayesian Network of the CS1 Hyperbook 65

6.5 The Bayesian Network of the CS1 Hyperbook

So far, we have constructed an acyclic graph on the base of the set of KI s and
their learning dependencies (see section 6.1), and have defined suitable conditional
probability tables for all kinds of vertices in this graph (see section 6.2).

A part of the Bayesian network of the CS1 hyperbook can be seen in figure 6.14.
This Bayesian network contains about 291 nodes. The figure shows the system’s
estimation about the knowledge of a new user who has no a priori knowledge about
the topics concerned with Java. Probabilities assigned to the vertices algorithms,
searching, etc. can also be seen in this snapshot.

Figure 6.14: Part of the Bayesian network for a CS1 hyperbook

Chapter 7

Enabled Adaptation

In this chapter, we describe the facilities of the adaptation component, which are
enabled by the indexing and knowledge estimation approach proposed in the last
two chapters.

To solve the following adaptation tasks, the content map (see definition 6) has to be
refined. As authors can use arbitrary knowledge items for indexing, we have to find
those dependencies in the knowledge model, which are implicitly given in the index.
For example, if an author uses a KI that is not a leaf in the Bayesian network,
then this KI and its children form the index.

Thus, for refining the content map, all index concepts are completed recursively
with all of their child concepts. This completion does not affect the levels, only
children belonging to the same ACM classification topics (see section 5.1.2) as their
parents are added to the index, as can be seen in figure 7.1.

7.1 Link Annotation

Annotation of links is very useful if a user wants to browse through the hyperbook.
Links can be enriched by additional information: a heading, a short abstract of the
concept it links to and a hint indicating the educational state of this link. Heading

: Index concepts given by the author of an

adding child concepts

: Index concepts of the same resource after

 information resource

Figure 7.1: Example for the completion of an index set.

7.2 Access to Relevant Information: Trails and Information Index 67

and short abstract of a page belong to the meta description of an information re-
source and are displayed by the KBS hyperbook system whenever a link is generated
(see chapter section 4.3). For calculating the relevance of information for a student
according to his actual knowledge state, we use a simple traffic light metaphor (see
section 2.3.3) for annotation: Links are marked as ready for reading (green ball in
front of a link), not ready for reading (red ball) or already known (grey ball) to
help the user selecting appropriate information units.

7.1.1 Calculating the Educational State of a Link

The ready for reading-function calculates for different types of information re-
sources the educational state of this information for a specific user and his current
knowledge.

The following definitions are used by the ready for reading function:

A KI is child known, if it is known, well known, or excellently known, a KI is
parent known, if it is well known or excellently known (see section 6.4).

For calculating the educational state of a HTML page H , we look at the index of
this page. A page is recommended for reading, if all child concepts of all KI s of the
index are ”child known”:

H is ready for reading for a student, if

∀K ∈ I(H) : (∀C,C child of K : C is child known)

The ready for reading function also checks for those children which are, depending
on the three level approach of the Bayesian network, separated from their original
parent concepts by the cluster nodes.

H is already known to a student, if

∀K ∈ I(H) : (∀P, P parent of K : P is parent known)

If H is neither ready for reading nor already known, H is not recommended for
reading yet.

These functions are the same for either information resource. Glossary concepts,
example pages, HTML pages in the WWW, HTML pages of the hyperbook itself,
etc.

7.2 Access to Relevant Information: Trails and In-
formation Index

A student often needs information about specific topics, but lacks prerequisite know-
ledge for understanding them. For example, a student wants to work on a project
about algorithms but does not understand control structures or methods; in
this case it would not help to start reading the information unit about algorithms.
To support the student, the system compares his actual knowledge with the know-
ledge required to understand the topic in question. If the student lacks some prere-
quisites, the system generates a sequence of information units – a trail – that guides
his learning towards the selected topic.

7.2 Access to Relevant Information: Trails and Information Index 68

Figure 7.2: The project “synchronizing threads” is presented to a beginner.

7.2.1 Generating a Learning Sequence

Generating such a trail is implemented by a depth-first-traversal algorithm which
checks the system’s estimation of the student’s knowledge of those KI s that are
prerequisites for the actual goal. The algorithm checks whether all prerequisite
knowledge is sufficiently known by the student. If not, the corresponding information
units of the hyperbook are marked. Afterwards, a sequence of all marked units is
generated which guides the student consistently through the topics up to the selected
ones.

Learning Sequences are generated, if a user

• selects a goal, or

• enters a project or example.

Figure 7.2 shows the project “synchronizing threads” which is presented to a be-
ginner. The trail leading to the required information is therefore very detailed.

7.2.2 Generating a Glossary

Each hyperbook has a glossary which is generated from the knowledge model. A
KI is used as a glossary item, if this KI is a what is*- KI (section 5.3.1) or if it is
a leaf node in the Bayesian network.

The glossary of the CS1 hyperbook can be seen in figure 7.3

7.2 Access to Relevant Information: Trails and Information Index 69

Figure 7.3: The glossary of the CS1 hyperbook

7.2.3 Generating an Information Index

The hyperbook also provides direct access to information needed for the actual
task (information goal or project) of a student. Relevant information is selected on
base of the index concepts of the actual task. Access to the information is given
by a sorted index. Each link in this index is annotated according to the student’s
knowledge, using the traffic light metaphor (see section 7.1).

A list of related or relevant information is generated if the student

• reads a glossary item: propose relevant examples, information of
the Sun Java tutorial and information in the hyperbook,

• reads a page of the hyperbook: propose relevant examples and links
to the Sun Java tutorial,

• reads a Sun Java tutorial pages: if we display a resource from the
WWW, we provide links to relevant examples and to the corre-
sponding information in the hyperbook itself,

• studies examples: generate access to relevant hyperbook pages and
Sun Java tutorial pages.

In figure 7.2, we can see the information index belonging to project “synchronizing
threads”. The index contains the knowledge which is used in the project. Prerequi-

7.3 Direct Guidance 70

site knowledge required for working on the example is contained in the accompany-
ing trail.

7.3 Direct Guidance

If a student wants more guidance during the learning with the hyperbook he may
ask the hyperbook for the next reasonable learning step. This request is answered
by determining a suitable learning goal, depending on his current knowledge. Based
on this goal, the hyperbook can propose a suitable project, a set of HTML pages
with relevant information, and a trail leading to that goal. A goal is defined as a set
of knowledge items. To determine the next suitable learning goal, a sequential trail
covering the whole hyperbook is calculated. For each item of this trail the system’s
estimation about the student’s knowledge is checked. If the student fails to know
some knowledge item then it is proposed as the subsequent suitable goal.

Guide a student’s learning process by

• proposing reasonable learning goals, including links to suitable
projects and a learning sequence,

• proposing the next page to read, and

• generating reading sequences for projects or user defined goals.

7.4 Goal Based Learning

Sometimes, a reader of a hyperbook has a certain goal. Maybe he requires specific
information, searches for examples illustrating a certain topic, or wants to learn
a special part of the hyperbook. He can inform the hyperbook directly about his
current goals by selecting some of the knowledge items out of a list, as can be seen
in figure 7.4. The hyperbook takes these user defined goals and selects examples,
which explain the concepts of this goal, gives access to relevant information, and
generates a reading sequence containing the information to reach the goal.

7.5 Project Based Learning

In order to select suitable projects for a student, the hyperbook contains a project
library. Each project is indexed by the KI s that have to be understood in order to
successfully accomplish the project. Since we use a Bayesian network for modeling
of the student’s knowledge [51], we do not have to include prerequisite knowledge
items, because they are already taken care of by the dependency structure modeled
in the BN.

A project is useful for a student in his current knowledge state and his situation,
if

• theKI s comprising the student’s goal are sufficiently contained in this project,
and

7.5 Project Based Learning 71

Figure 7.4: A user defines a learning goal

• all KI s which are not part of the student’s goal but necessary for the project,
are understood well enough.

These requirements determine the selection criteria for finding an appropriate
project for a student that simultaneously helps the student to achieve his learning
goal and reflects his current knowledge state. They are implemented by two algo-
rithms [51]: The first one calculates how good a project matches the goal of a user
(project-goal-distance). The second one determines whether the actual knowledge
of a user is sufficient for performing the suggested project without too many diffi-
culties (fitness). For example, a student who is interested in learning simple control
structures in Java will have difficulties with a project that uses control structures
to build a graphical user interface provided that he has only beginner’s knowledge
about graphical user interfaces.

The hyperbook selects the projects by comparing the weighted sums of these two
measures. The weights allow us to emphasize either one of the aspects matching
and fitness.

7.5.1 Matching: How good fits a project to a student’s goal?

We implemented a distance function that calculates the project–goal distance be-
tween a project P and the actual goal G, based on the KI s contained in the goal
and their relevance in the project.

Each KI contained in the goal is assumed to have a relevance of 100. The relevance
of a KI for a project is defined by its percentage in relation to the whole project.
A short distance means that this KI is very important for performing the project,

7.6 Integrating Portfolios 72

while a large value represents the fact that the KI is not very relevant for the project.
For every KI of the goal G that is not contained in the project, this distance is set
to a maximum value of 100. Thus, for all KI ∈ G, we have

distance (KI, P) =

{
|100−relevance(KI, P)| , if KI ∈ P

100 , other cases
,

where relevance(KI, P) is a percental distribution on the index of the project which
has to be defined by the project’s author (see section 5.3.4).

The project-goal-distance for a project and a given goal is then calculated as the
mean value of all these distances:

project-goal-distance(G,P) =

∑

KI∈G
distance(KI, P)

|G| . (7.1)

7.5.2 Fitness: How about those parts of a selected project
that do not belong to the student’s current goal?

The second algorithm determines the fitness of a user U for a project. To determine
this fitness we evaluate the knowledge of the user concerning those parts of the
project that do not belong to the user’s goal G. This enables us to select projects
that are based on prerequisites already known by the user, and thus lead him as
fast as possible to his goal.

fitness(G,P,U) =

∑

KI∈I(P)\G
knowledge(KI,U)

|I(P)\G| . (7.2)

Recall that I(P) denotes the index of the project. The function knowledge(KI , U)
is the system’s estimation of the user’s knowledge with respect to this KI :

knowledge(KI,U) =

(
P (KI = E) · 1 + P (KI = F) · 2

3
+ P (KI = A) · 1

3

)
· 100.

For example, assume that a student has defined a learning goal containing Java
applets and animation. The evaluation of the matching algorithm (column “D”),
the fitness algorithms (column “F”), and the resulting ordered list (column “No.”)
of useful projects can be seen in figure 7.5.

The presentation of the selected projects for the learning goal “Java applet and
animation” is shown in figure 7.6.

7.6 Integrating Portfolios

If we observe that a student has studied some portfolio, we integrate links to parts
of this specific portfolio whenever it is useful. For example, if the student reads in
the glossary he finds links to the relevant part in this portfolio.

7.6 Integrating Portfolios 73

Figure 7.5: Evaluation of the matching and fitness algorithms for generating a sorted
list of projects for reaching the learning goal “Java applets and animation”.

Figure 7.6: Presenting useful projects for reaching the learning goal “Java applets
and animation” with an accompanying trail.

7.7 Project-Based Updating 74

Figure 7.7: Reference to a portfolio

For example, a student has studied the portfolio of the student group “Duck”. Then
links to relevant parts of the portfolio are generated and presented to the student.
This can be seen in figure 7.7, where the glossary item sorting has a relation to
the corresponding part in the portfolio of “Duck”.

7.7 Project-Based Updating

Figure 7.8 shows a student’s self judgement after he has worked on a project. The
project is concerned with foundations of the object oriented programming paradigm.
This student judges his knowledge on e.g. classes or objects expertly but does
not feel familiar with inheritance yet.

7.7 Project-Based Updating 75

Figure 7.8: Self judgement of a student

Chapter 8

Conclusion

In this work, I have described the concept and realization of the adaptation com-
ponent for the KBS hyperbook system.

Adaptive hypermedia systems can advantageously be used in education, especially
in distance learning. Characteristics of existing adaptive hypermedia systems have
been identified to compare and classify the KBS hyperbook system and its adapta-
tion component accordingly.

Based on constructivist learning approaches, I have identified the requirements for
building educational applications which benefit from improved teaching strategies. I
have shown the advantages of project-based learning and have derived requirements
for implementing project-based learning in web-applications.

The general functionality of the KBS hyperbook system with its focus on project-
based learning in the internet has been proposed. The use of conceptual models for
structuring lectures, courses and information materials has been demonstrated. In
addition, the conceptual model has been used for modeling projects and student’s
portfolios. It is thus an information repository which can be extended by both teach-
ers and learners. The requirements of the adaptation component are also modeled
in the conceptual model. I have shown how to index various information units and
derived the adaptation functionality in the conceptual model. The general indexing
approach underlying the adaptation component enables the KBS hyperbook system
to integrate and adapt even distributed information resources. This has been ex-
emplary shown by the integration of the Sun Java tutorial into a hyperbook about
programming in Java.

The main part of this thesis is the description of the concept of the adaptation
component and its implementation on top of a Bayesian inference mechanism.

In chapter 5, I have described the indexing approach in detail. I have shown, how
to structure the index concepts in order to construct a domain knowledge model.
The user model, which consists of estimations of the user’s knowledge in respect to
each concepts in the knowledge model, has been proposed. The resulting adapta-
tion component is robust against changes in the hyperbook: pages can be updated,
course information can be changed, etc. In addition, arbitrary information material
can be integrated and adapted, and multiple authors can work independently on a
hyperbook.

For making inferences about the user’s knowledge, I have reimplemented the do-
main knowledge model from chapter 5 as a Bayesian network. The construction

77

steps for obtaining such a Bayesian network containing the whole domain knowledge
have been described in detail. In order to improve performance of propagating the
network, a specialized clustering algorithm has been developed (chapter 6). This
YACF-clustering algorithm is tailored to the requirements of our application and
enables us to use a Bayesian network which contains the entire domain knowledge.
This allows the adaptation component to quickly update its estimation about the
user’s current knowledge state on base of only few observations. Tricky in the gen-
eration of the Bayesian network is, that from observations about the knowledge of
advanced topics the knowledge of all prerequisites can be derived. But the lack of
knowledge of easy topics decreases the knowledge of advanced topics only moderate.

The way the proposed adaptation component serves hyperbooks to personalize their
content and navigational structure has been shown in chapter 7. Hyperbooks can
guide their users by generating reading sequences for them, can show next reasonable
learning steps to take and propose learning goals. They let their users define learning
goals on themselves, give hints to valuable examples, select projects which serve
for reaching learning goals or answer information requests, and can select useful
information located anywhere in the WWW.

The adaptation component and the KBS hyperbook systems have been presented
on various workshops and conferences [33, 31, 32, 34, 47, 48, 50, 30, 49, 51, 54,
52, 53, 46, 45] by the author together with her colleagues from the Institut für
Rechnergestützte Wissensverarbeitung at the University of Hannover.

The examples of hyperbooks presented in this work can be tested via the URL
http://www.kbs.uni-hannover.de/hyperbook/ .

Chapter 9

Outlook

Further work may be concerned with enlarging the indexing functionality of the KBS
hyperbook system. At current state, authors have to index their pages themselves.
This tasks needs to be supported, semi-automatically, or, at best, automatically.

Therefore I propose to employ information retrieval methods for determining the
index of an information resource.

In addition, adaptive hyperbooks should be made more flexible for serving as infor-
mation repositories even if users have finished their learning. Therefore, the descrip-
tion of the domain knowledge – and thus the index – will be a critical part. The
domain knowledge has to be enlarged according to new developments but should,
on the other hand, reflect observations about the user’s formerly gained knowledge.
The idea of exchangeable user models on base of user controlled interfaces can be a
step in this direction.

Other interesting extensions would be the modeling of an author’s work with a
hyperbook, e.g. by supporting the construction of courses and the selection of course
materials and examples, including the proposal of material found in the internet,
and the visualization of the adaptation component, its estimations and conclusions.

Appendix A

Complete List of the
Knowledge Items for the CS1
Hyperbook

classes_and_objects

what_are_classes_and_objects

class_declaration

class_modifier

class_body

variable

constants

variable_declaration

packages

what_are_packages

package_declaration

import_declaration

class_instantiation

life_time_of_objects

constructors

methods

what_are_methods

method_modifier

method_parameter

actual_parameter

fill_ins

returnvalue

function

procedure

method_declaration

inheritance

interfaces

what_are_interfaces

interface_implementation

80

interface_declaration

multiple_inheritance

extends_keyword

data_types_and_operators

what_are_types_and_operators

primitive_types

what_are_primitive_types

class_boolean

boolean

class_integer

int

class_short

short

class_long

long

class_character

char

class_float

float

class_double

double

class_string

class_stringbuffer

class_system

casting

reference_types

what_are_reference_types

object

array

write_data_into_an_array

array_declaration

read_data_out_of_an_array

multidimensional_arrays

operators

what_are_operators

boolean_operators

numerical_operators

coding_of_numbers

operators_for_comparison

the_numerical_operators

statements

assigning_values

expression

identifier

control_structures

what_are_control_structures

branching

if

switch

looping

for

while

81

do_while

return

exit

block

concurrent_programming_structures

what_is_concurrent_programming

single_thread

what_is_a_single_thread

start_and_run

stop

sleep

multiple_threads

what_are_multiple_threads

synchronization

what_is_synchronization

deadlock

monitor

wait

notifyall

priority

error_handling_and_recovery

what_is_security

error_handling

what_is_error_handling

security_manager

security_of_applets

what_are_security_aspects_for_applets

possibilities_of_applets

restrictions

general_exceptions

what_are_general_exceptions

errors

what_are_errors

virtual_machine_error

exceptions

what_are_exceptions

try_catch

exception_handling

what_is_exception_handling

giving_exceptions_to_the_caller

separating_exceptions

grouping_of_exceptions

java_exception_hierarchy

io_exception

java_virtual_machine

what_is_the_java_virtual_machine

instruction_set_of_the_jvm

object_oriented_concepts_of_the_jvm

startup_of_the_jvm

threadhandling_in_the_jvm

java_windowing_system

82

what_are_the_awt_and_gui

awt_events

what_are_awt_events

events

what_are_events

action_event

text_event

item_event

adjustment_event

components

container

window

focus

key_event

paint

mouse_event

event_model

what_is_the_event_model

eventsource

listener

adapter

standard_events

user_defined_events

event_model_jdk_1_02

event_model_jdk_1_1

graphical_user_interface

what_is_a_graphical_user_interface

elements

layout_manager

what_is_a_layout_manager

flow_layout

border_layout

grid_layout

gridbag_layout

card_layout

guicontainer

panel

frame

filedialog

graphics

what_are_graphics

manipulating_graphics

what_is_manipulation_of_graphics

flashing

animation

manipulation

java_networking_constructs

what_is_networking

url_connection

manipulating_urls

sockets

what_are_sockets

serversocket

83

datagramsocket

multicastsocket

datagram

algorithms

what_are_algorithms

sorting

what_is_sorting

costs_of_bubble_sort

bubble_sort_algorithm

costs_of_quicksort

quicksort_algorithm

searching

what_is_searching

costs_of_binary_search

binary_search

costs_of_linear_search

linear_search

recursion

input_and_output

what_is_input_output_and_file_handling

sequential_access_file

random_access_file

serialization

streams

print

java_applets

what_are_applets

appletmethods

life_cycle

html_tag

appletviewer

java_applications

system_out_println

input_parameter

public_static_void_main_method

executable

java_api

java_util_package

what_is_the_java_util_package

enumeration

vector

stack

hashtable

java_lang_package

what_is_the_java_lang_package

math

exception

thread

java_api

84

programming_environment

what_is_the_programming_environment

editor

file

text_file

binary_file

executable_file

jar_archive

java_interpreter

bytecode

interpreter

java_compiler

compiler

program

programming

what_is_programming

programming_in_java

garbage_collector

keywords

object_oriented_design_methods

object_orientation

what_is_object_orientation

oo_class

oo_object

oo_message

oo_inheritance

software_engineering

what_is_se

se_process

what_is_the_se_process

se_phases

simplified_se_process

what_is_the_simplified_se_process

se_specification

what_is_a_specification

se_subject_method

se_analyzing_method

se_generating_a_specification

requirements_specifiaction

se_analysis_and_design

what_is_analysis_and_design

se_static_analysis_and_design

what_is_static_analysis_and_design

se_object_oriented_diagram

se_classes

se_attributes

se_inheritance

se_relations

se_dynamical_analysis_and_design

what_is_dynamical_analysis_and_design

se_interaction_diagram

se_scenarios

85

se_interactions

implementation

testing

Thus we have 289 knowledge items describing the application domain of the hyper-
book. Two cluster nodes (see section 6) are used for generating the graph for the
Bayesian Network, which therefore consists of 291 vertices.

List of Figures

2.1 Schematic view on adaptive hypermedia systems 12

2.2 Characteristics of a user taken into account by the five hyperbook-like
approaches . 22

2.3 Methods for link level adaptation in the five hyperbook-like approaches 22

4.1 Conceptual model of the CS1 hyperbook 33

4.2 Conceptual model of the CS1 hyperbook, course related modeling is
highlighted . 34

4.3 Example for a course modeled in the KBS hyperbook system 35

4.4 Conceptual model of the CS1 hyperbook, modeling of different infor-
mation resources is highlighted . 36

4.5 Hyperbook unit “Methoden” with links to examples, Sun Java tuto-
rial pages and to the two lectures where it occurs. 36

4.6 Example of the integration of Sun Java tutorial pages in the KBS
hyperbook system . 37

4.7 Conceptual Model of the CS1 hyperbook with emphasized index
strategy . 38

4.8 Conceptual Model of the CS1 hyperbook, modeling of portfolios is
emphasized . 38

4.9 Schematic view of the portfolio part-whole hierarchy 39

4.10 Portfolio of the student group ”Bleifuss” 41

4.11 Homepage of the student group ”Spacemen”. 41

4.12 Schematic view of the implementation of the hyperbook system . . . 42

6.1 Dependency graph of the KI s of the ACM classification 52

6.2 Rooted tree of the ACM classification KI classes and objects . . 53

6.3 Schematic model of a Bayesian network underlying the user model . 53

6.4 Example for eliminating a not continuously directed cycle with clus-
tering . 54

6.5 Example for eliminating a not continuously directed cycle with con-
ditioning . 55

LIST OF FIGURES 87

6.6 Graph after applying the YACF clustering twice 56

6.7 The role of a YACF cluster node . 57

6.8 CPT of a YACF-Cluster node with N parents and M children. 57

6.9 Conditional probability table for child node Y of cluster node H . . 58

6.10 conditional probability table for the node quicksort, which is de-
pendent on the node sorting . 62

6.11 ”weak” conditional probability table for the node
gridbag layout manager, which is dependent on the node
layout manager . 62

6.12 Conditional probability table for root nodes 63

6.13 Interpretation of the probability distributions given by the Bayesian
network . 64

6.14 Part of the Bayesian network for a CS1 hyperbook 65

7.1 Example for the completion of an index set. 66

7.2 The project “synchronizing threads” is presented to a beginner. . . . 68

7.3 The glossary of the CS1 hyperbook 69

7.4 A user defines a learning goal . 71

7.5 Evaluation of the matching and fitness algorithms for generating a
sorted list of projects for reaching the learning goal “Java applets
and animation”. 73

7.6 Presenting useful projects for reaching the learning goal “Java applets
and animation” with an accompanying trail. 73

7.7 Reference to a portfolio . 74

7.8 Self judgement of a student . 75

Bibliography

[1] Albrecht, D., Zukerman, I., Nicholson, A., and Bud, A. Towards a
Bayesian model for keyhole plan recognition in large domains. In Proceedings
of the Sixth International Conference on User Modeling, UM97 (Sardinia,
Italy, 1997).

[2] Beaumont, J. User modelling in the interactive anatomy tutoring system
ANATOM-Tutor. User Modeling and User Adapted Interaction 4(1) (1994),
21–45.

[3] Ben-Ari, M. Constructivism in computer science education. In Proceed-
ings of the Twenty-ninth SIGCSE Technical Symposium on Computer Sciene
Education (Atlanta, Georgia, February 1998), ACM Press.

[4] Berners-Lee, T. World Wide Web: An illustrated seminar. Held as an On-
line Seminar in 1991. http://www.w3.org/pub/WWW/Talks/General.html.

[5] Bibliomania: The Network Library, 1997. http://www.bibliomania.com/.

[6] Brusilovsky, P. Methods and techniques of adaptive hypermedia. User
Modeling and User Adapted Interaction 6, 2-3 (1996), 87–129.

[7] Brusilovsky, P., and Pesin, L. ISIS-Tutor: An intelligent learning en-
vironment for CDS/ISIS users. In Proc. of the interdisciplinary workshop
on complex learning in computer environments CLCE’94 (Joensuu, Finland,
1994).

[8] Brusilovsky, P., and Schwarz, E. User as student: Towards an adaptive
interface for advanced web-based applications. In Proceedings of the Sixth
International Conference on User Modeling, UM97 (Sardinia, Italy, 1997).

[9] Brusilovsky, P., Schwarz, E., and Weber, G. ELM-ART: An intel-
ligent tutoring system on world wide web. In Intelligent Tutoring Systems
(Lecture Notes in Computer Science, Vol. 1086) (Berlin, 1996), C. Frasson,
G. Gauthier, and A. Lesgold, Eds., Springer, pp. 261–269.

[10] Brusilovsky, P., Schwarz, E., and Weber, G. A tool for developing
adaptive electronic textbooks on WWW. In Proceedings of WebNet’96 - World
Conference of the Web Society (Boston, MA, USA, June 1996).

[11] Bush, V. As we may think. The Atlantic Monthly 176 (1945), 101–108.

[12] Calvi, L., and de Bra, P. Improving the usability of hypertext course-
ware through adaptive linking. In The Eighth ACM International Hypertext
Conference (Southampton, UK, April 1997).

BIBLIOGRAPHY 89

[13] Campione, M., and Wallrath, K. The Java Tutorial, 2nd ed. Addison
Wesley, 1999. http://www.javasoft.com/docs/books/tutorial/index.html.

[14] Cobern, W. W. Contextual constructivism: The impact of culture on the
learning and teaching of science. In The Practice of Constructivism in Science
Education, K. Tobin, Ed. Lawrence Erlbaum Associates, 1993.

[15] Conati, C., Gertner, A. S., VanLehn, K., and Druzdzel, M. J. On-
line student modeling for coached problem solving using bayesian networks.
In Proceedings of the Sixth International Conference on User Modeling, UM97
(Sardinia, Italy, 1997).

[16] Cooper, G. The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence 42 (1990), 393–405.

[17] Dagum, P., Galper, A., and Horvitz, E. Dynamic network models for
forecasting. In Eighth Conference on Uncertainty in Artificial Intelligence
(San Mateo, 1992), Morgan Kaufmann Publishers, Inc., pp. 41–48.

[18] de Bra, P. Teaching hypertext and hypermedia through the web. In Proceed-
ings of WebNet 96 World Conference (San Francisco, USA, October 1996).

[19] de Bra, P. Hypermedia structures and systems: Online Course at Eindhoven
University of Technology, 1997. http://wwwis.win.tue.nl/2L690/.

[20] Dechter, R. Enhancement schemes for constraint processing: Backjumping,
learning and cutset decomposition. Artificial Intelligence 41 (1989), 273–312.

[21] Dechter, R., and Pearl, J. Tree clustering for constraint networks. Ar-
tificial Intelligence 38 (1989), 353–366.

[22] Desmarais, M. C., and Maluf, A. User-expertise modeling with empir-
ically derived probabilistic implication networks. User Modeling and User
Adapted Interaction 5 (1996), 283–315.

[23] Duffy, T., and Jonassen, D., Eds. Constructivism and the Technology of
Instruction. Lawrence Erlbaum Associates, 1992.

[24] Duschl, R. A., and Gitomer, D. H. Epistemological perspectives on
conceptual change: Implications for educational practice. Journal of Research
in Science Teaching 26, 9 (1991), 839–858.

[25] Eklund, J. Knowledge-based navigation support in hypermedia courseware
using WEST. Australian Educational Computing 11, 2 (1996).

[26] Engelbart, D. The augmented knowledge workshop. In A History of Per-
sonal Workstations, A. Goldberg, Ed. Addison Wesley, 1988.

[27] Faulmann, C. Illustrierte Geschichte der Schrift. Augustus Verlag, 1980.
Originally published in 1880.

[28] Fellbaum, C. WordNet: An Electronic Lexical Database. The MIT Press,
1998.

[29] Fink, J., Kobsa, A., and Schreck, J. Personalized hypermedia informa-
tion provision through adaptive and adaptable systems features: User mod-
eling, privacy and security issues. In Intelligence in Services and Networks:
Technology for Cooperative Competition, A. Mullery, M. Besson, M. Campo-
largo, R. Gobbi, and R. Reed, Eds. Springer-Verlag, 1997, pp. 459–467.

BIBLIOGRAPHY 90

[30] Franosch, H., Henze, N., Nejdl, W., and Wolpers, M. How to use
a hyperbook model for developing hypertext books. In Second International
Workshop on Knowledge Representation for Interactive Multimedia Systems:
Research and Experience KRIMS II (Trient, Italy, 1998).

[31] Fröhlich, P., Henze, N., and Nejdl, W. Conceptual modeling for edu-
cational hyperbooks. In The 4th International Conference on Multimedia
Modelling (Singapore, Nov. 1997).

[32] Fröhlich, P., Henze, N., and Nejdl, W. Meta-modeling for hypermedia
design. In Proc. of Second IEEE Metadata Conference (Maryland, Sept. 1997).

[33] Fröhlich, P., Henze, N., and Nejdl, W. Virtual institutes and virtual
classrooms: How to enhance teaching and mentoring productivity. In European
Conference on Virtual Enterprises and Networked Solutions (Paderborn, Apr.
1997).

[34] Fröhlich, P., Henze, N., and Nejdl, W. Hyperbook data modeling. In
International Conference On Electronic Publishing, Document Manipulation
and Typography (Saint Malo, France, Apr. 1998).

[35] Fung, R., and Chang, K. Weighting and integrating evidence for stochas-
tic simulation in Bayesian networks. In Fifth Conference on Uncertainty in
Artificial Intelligence (Windsor, USA, 1988), Morgan Kaufmann.

[36] Gamper, J., Nejdl, W., and Wolpers, M. Combining ontologies and
terminologies in information systems. In Proc. 5th International Congress on
Terminology and Knowledge Engineering (Innsbruck, Austria, 1999).

[37] Gloor, P. Elements of Hypermedia Design. Birkhäuser, 1997.

[38] Goldstein, I. The genetic graph: A represenation for the evolution of proce-
dural knowledge. In Intelligent Tutoring Systems, D. Sleeman and J.S.Brown,
Eds. Academic Press, 1982.

[39] Good, R. G., Wandersee, J. H., and Julien, J. S. Cautionary notes on
the appeal of the new “ism” (constructivism) in science education. In The
Practice of Constructivism in Science Education, K. Tobin, Ed. Lawrence
Erlbaum Associates, 1993.

[40] Grønbæk, K., and Trigg, R. H. From Web to Workplace: Designing Open
Hypermedia Systems. The MIT Press, 1999.

[41] Guarino, N. Formal ontology and information systems. In Formal Ontology
in Information Systems, N. Guarino, Ed. IOS Press, 1998.

[42] Guarino, N., Masolo, C., and Vetere, G. Ontoseek: Using large linguis-
tic ontologies for gathering information resources from the web. Tech. Rep.
LADSEB-CNR 01/98, National Research Council, LADSEB-CNR, Padova,
1998.

[43] Henrion, M. Propagation of uncertainty in Bayesian networks by probabi-
listic logic sampling. In Uncertainty in Artificial Intelligence, vol. 2. Elvesier,
1988, pp. 149–163.

[44] Henze, N. Auswertung der Befragung der Teilnehmer der Vorlesung
Grundzüge der Informatik. Tech. rep., University of Hannover, Feb. 1997.

BIBLIOGRAPHY 91

[45] Henze, N. Evaluation zur Vorlesung Grundzüge der Informatik WS 98 / 99.
Tech. rep., University of Hannover, Oct. 1999.

[46] Henze, N., Naceur, K., Nejdl, W., and Wolpers, M. Adaptive hyper-
books for constructivist teaching. KI-Themenheft 4 (1999).

[47] Henze, N., and Nejdl, W. Eine internet-basierte virtuelle Lernumgebung.
Hannover UNI INTERN 24, 1 (1997).

[48] Henze, N., and Nejdl, W. A web-based learning environment: Applying
constructivist teaching concepts in virtual learning environments. In IFIP 3.3
and 3.6 Joint Working Conference: The Virtual Campus: Trends for Higher
Education and Training (Madrid, Nov. 1997).

[49] Henze, N., and Nejdl, W. Constructivism in computer science educa-
tion: Evaluating a teleteaching environment for project oriented learning. In
Workshop on Interactive Computer Aided Learning - Concepts and Applica-
tions (Villach, Österreich, Oct. 1998).

[50] Henze, N., and Nejdl, W. Das KBS Virtual Classroom Projekt:
Informatik-Ausbildung über das Internet. In Informatik und Ausbildung
(1998), V. Claus, Ed., Springer Verlag.

[51] Henze, N., and Nejdl, W. Adaptivity in the KBS hyperbook system.
In 2nd Workshop on Adaptive Systems and User Modeling on the WWW
(Toronto, Canada, May 1999).

[52] Henze, N., and Nejdl, W. Bayesian modeling for adaptive hypermedia
systems. In ABIS 99, 7. GI-Workshop Adaptivität und Benutzermodellierung
in interaktiven Softwaresystemen (Magdeburg, Sept. 1999).

[53] Henze, N., and Nejdl, W. Student modeling in an active learning environ-
ment using Bayesian networks. In Proceedings of the Seventh International
Conference on User Modeling, UM99 (Banff, Canada, 1999).

[54] Henze, N., Nejdl, W., and Wolpers, M. Modeling constructivist teach-
ing functionality and structure in the KBS hyperbook system. In CSCL’99:
Computer Supported Collaborative Learning (Standford, USA, Dec. 1999).
Also appeared as a preliminary version at AIED99 Workshop on Ontologies
for Intelligent Educational Systems, July 1999, Le Mans, France.

[55] Hewitt, J., and Scardamalia, M. Design principles for the support of dis-
tributed processes. In Symposium on Distributed Cognition: Theoretical and
Practical Contributions, at the Annual Meeting of the American Educational
Research Association (New York, April 1996).

[56] Hodges, M. E., and Sasnett, R. M., Eds. Multimedia Computing: Case
Studies from MIT Project ATHENA. Addison-Wesley, 1993.

[57] Honebein, P. C., Duffy, T. M., and Fishman, B. J. Constructivism
and the design of learning enivronments: Context and authentic activities
for learning. In NATO Advanced Workshop on the Design of Constructivist
Learning Environments (1991).

[58] Höök, K., Karlgren, J., Waern, A., Dahlbäck, N., Jansson, C.,
Karlgren, K., and Lemaire, B. A glass box approach to adaptive hyper-
media. User Modeling and User Adapted Interaction 6, 2-3 (1996), 157–184.

BIBLIOGRAPHY 92

[59] Horton, W. Designing and Writing Online Documentation. John Wiley &
Sons, Inc., 1994.

[60] Horvitz, E., Suermondt, H., and Cooper, G. Bounded conditioning:
Flexible inference for dexisions under scare resources. In Fifth Conference on
Uncertainty in Artificial Intelligence (Windsor, USA, 1989).

[61] Jameson, A. Numerical uncertainty management in user and student mo-
deling: An overview of systems and issues. User Modeling and User Adapted
Interaction 5(3/4) (1996), 193–251.

[62] Jameson, A. What can the rest of us learn from research on adaptive hy-
permedia - and vice versa? Tech. rep., University of Saarbrücken, 1999.

[63] Jarke, M., Gallersdörfer, R., Jeusfeld, M., Staudt, M., and
Eherer, S. Conceptbase - a deductive object base for meta data manage-
ment. Journal on Intelligent Information Systems 4, 2 (1995), 167 – 192.

[64] Jones, K. S., and Willet, P., Eds. Readings in Information Retrieval.
Morgan Kaufmann, 1997.

[65] Kafai, Y., and Resnick, M., Eds. Constructionism in Practice: Designing,
Thinking, and Learning in a Digital World. Lawrence Erlbaum Associates,
1996.

[66] Kass, R. Student modeling in intelligent tutoring systems - implications for
user modeling. In User Models in Dialog Systems, A. Kobsa and W. Wahlster,
Eds. Springer, 1989.

[67] Kay, J., and Kummerfeld, B. User Models for Customized Hyper-
text. In Intelligent hypertext: Advanced Techniques for the World Wide Web,
C. Nicholas and J. Mayfield, Eds., LNCS Vol. 1326. Springer, 1997.

[68] Kay, J., and Kummerfeld, R. An individualised course for the C program-
ming language. In Proc. of the 2nd International World Wide Web Conference
(Chicago, USA, Oktober 1994).

[69] Keep, C., and McLaughlin, T. The Electronic
Labyrinth. Tech. rep., The Electronic Labyrinth, 1997.
http://jefferson.village.virginia.edu/elab/hfl0038.html.

[70] Knight, K., and Luk, S. K. Building a large-scale knowledge base for ma-
chine translation. In Proceedings of the 12th National Conference on Artificial
Intelligence (AAAI’94) (Seattle, Washington, Aug. 1994), vol. 1, pp. 773–778.

[71] Kobsa, A. User modeling: Recent work, prospects and hazards. In
Adaptive User Interfaces: Principles and Practice, M. Schneider-Hufschmidt,
T. Kühme, and U. Malinowski, Eds. Elvesier, 1993.

[72] Kobsa, A., and Pohl, W. The user modeling shell system BGP-MS. Tech.
rep., University of Konstanz, 1995.

[73] Lamon, M., Chan, C., Scardamalia, M., Burtis, P. J., and Brett,
C. Beliefs about learning and constructive processes in reading: Effects of
a computer supported intentional learning environment (CSILE). In Annual
Meeting of the Americal Educational Research Association (Atlanta, April
1993).

BIBLIOGRAPHY 93

[74] Landow, G. P. Course assignments using hypertext: The example of IN-
TERMEDIA. Journal of Research on Computing in Education 21, 3 (1989),
349–363.

[75] Landow, G. P., and Kahn, P. Where’s the hypertext? The Dickens web
as a system-independent hypertext. In Proceedings of the 4th ACM ECHT
Conference on Hypertext (Milano, Italy, Dec. 1992), ACM, pp. 149–160.

[76] Lauritzen, S., and Spielgelhalter, D. Local computations with proba-
bilities on graphical structures and their application to expert systems. Jour-
nal of the Royal Statistical Society B 50, 2 (1988), 157–224.

[77] Lowe, D., and Hall, W. Hypermedia and the Web. J. Wiley and Sons,
1999.

[78] Mahesh, K., and Nirenburg, S. A situated ontology for practical NLP. In
Proceedings of the IJCAI-95 Workshop on Basic Ontological Issues in Know-
ledge Sharing (Montreal, Canada, Aug. 1995).

[79] Martin, J., and VanLehn, J. OLAE: Progress toward a multi-activity,
Bayesian student modeler. In Proceedings of Artificial intelligence in education
AIED (Edinburgh, Scottland, 1993), pp. 441–417.

[80] McGuinness, D. L. Ontological issues for knowledge-enhanced search. In
Proceedings of the First International Conference on Formal Ontology in In-
formation Systems (Trento, Italy, June 1998), N. Guarino, Ed., IOS Press,
pp. 302–316.

[81] Milosavljevic, M., Tulloch, A., and Dale, R. Text generation in a
dynamic hypertext environment. In Proceedings of the 19th Australian Com-
puter Science Conference (Melbourne, Australia, January 31 - February 2
1996).

[82] Mislevy, R., and Gitomer, D. The role of probability-based inference in
an intelligent tutoring system. User Modeling and User-Adapted Interaction
5 (1996), 253–282.

[83] Müller, P. Writing hypertext books. Tech. rep., FU Berlin, 1995.
http://www.inf.fu-berlin.de/tec/Mosaic/HTB/.

[84] Mylopoulos, J., Borgida, A., Jarke, M., and Koubarakis, M. Telos:
A language for representing knowledge about information systems. ACM
Transactions on Information Systems 8, 4 (1990).

[85] Nejdl, W., and Wolpers, M. KBS Hyperbook – a data-driven information
system on the web. In Eighth International World Wide Web Conference
(Toronto, Canada, May 1999).

[86] Nejdl, W., Wolpers, M., and Capelle, C. The RDF Schema Specifica-
tion Revisited. In Workshop Modellierung 2000 (St. Goar, Germany, 2000).

[87] Nelson, T. Replacing the printed word: A complete literary system. In Proc.
IFIP Congress (Netherlands, 1980), S. Lavington, Ed., pp. 1013–1023.

[88] Nielsen, J. Multimedia, Hypertext und Internet: Grundlagen und Praxis des
elektronischen Publizierens. Vieweg, 1995.

[89] Nissen, H., Jeusfeld, M., Jarke, M., Zemanek, G., and Huber, H. Re-
quirements analysis from multiple perspectives: Experiences with conceptual
modeling technology. IEEE Software 13, 2 (1996).

BIBLIOGRAPHY 94

[90] Nyce, J., and Kahn, P. A Machine for the Mind: Vannevar Bush’s
Memex. In From Memex to Hypertext: Vannevar Bush and the Mind’s Ma-
chine, J. Nyce and P. Kahn, Eds. Academic Press, Inc., 1991.

[91] Papert, S. The Children’s Machine - Rethinking School in the Age of the
Computer. Basic Books, New York, 1993.

[92] Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgen Kaufmann Publishers, Inc., 1988.

[93] Pearl, J. Bayesian decision methods. In Readings in Uncertain Reasoning,
G. Shafer and J. Pearl, Eds. Morgan Kaufmann, 1990.

[94] Piaget, J. To Understand is to Invent. Viking, 1973.

[95] Pradhan, M., Provan, G., Middeton, B., and Henrion, M. Know-
ledge engineering for large belief networks. In International Conference on
Uncertainty in Artificial Intelligence (San Francisco, USA, 1994).

[96] Rada, R. Interactive Media. Springer, 1995.

[97] Renoult, D. The digital collections of the bibliotheque nationale de france:
An experiment on internet. In IEEE International Conference on the Ad-
vances in Digital Libraries (Washington, USA, 1997).

[98] Resnick, M., and Rusk, N. The computer clubhouse: Preparing for life in
a digital world. IBM Systems Journal 35, 3-4 (1996), 431–440.

[99] Rich, E. User modeling via stereotypes. Cognitive Science 3 (1978), 329–354.

[100] Rosis, F. D., Pizzutilo, S., Russo, A., Berry, D. C., and Molina,
F. J. Modeling the user knowledge by belief networks. User Modeling and
User Adapted Interaction 2 (1992), 367–388.

[101] Russell, S., and Norvig, P. Artificial Intelligence: A Modern Approach.
Prentice Hall, 1995.

[102] Scardamalia, M., and Bereiter, C. Technologies for the knowledge-
building discourse. Commun. ACM 36, 5 (1993), 37–41.

[103] Schäfer, R., and Weyrath, T. Assessing temporally variable user proper-
ties with dynamic Bayesian networks. In Proceedings of the Sixth International
Conference on User Modeling, UM97 (Sardinia, Italy, 1997).

[104] Schank, R., and Cleary, C. Engines for Education. Lawrence Erlbaum
Associates, 1994.

[105] Sebas: Sony electronic book reader, 1997.
http://jefferson.village.virginia.edu/elab/hfl0014.html.

[106] Shachter, R., and Peot, M. Simulation approaches to general proba-
bilistic inference on belief networks. In Fifth Conference on Uncertainty in
Artificial Intelligence (Windsor, USA, 1989).

[107] Shafer, G., and Pearl, J., Eds. Readings in Uncertain Reasoning. Morgan
Kaufmann Publishers, Inc., 1990.

[108] Specht, M. Empirical evaluation of adaptive annotation in hypermedia. In
ED-Media and ED-Telekom (Freiburg, Germany, 1998).

BIBLIOGRAPHY 95

[109] Spiegelhalter, D. A unified approach to imprecision and sensitivity of
beliefs in expert systems. In Artificial intelligence and statistics. Elvesier,
1989, pp. 47–68.

[110] Steinacker, A., Seeberg, C., Reichenbacher, K., Fischer, S., and
Steinmetz, R. Dynamically generated tables of contents as guided tours in
aadaptive hypermedia systems. In Proceedings of the ED-Media Conference
(Seattle, USA, 1999).

[111] The on-line books page, 1997. http://www.cs.cmu.edu/books.html.

[112] von Glasersfeld, E. Radical Constructivism in Mathematics Education.
Kluwer, 1991.

[113] von Glasersfeld, E. A constructivist approach to teaching. In Construc-
tivism in Education, L. P. Steffe and J. Gale, Eds. Lawrence Erlbaum Asso-
ciates, 1995.

[114] von Glasersfeld, E. Radikaler Konstruktivismus. Ideen, Ergebnisse, Prob-
leme. Suhrkamp, Frankfurt, 1996. Originally appeared as: Radical Construc-
tivism. A Way of Knowing and Learning, 1995.

[115] W3C Working Group. W3C resource description framework.
http://www.w3.org/TR/PR-rdf-schema/, Oct. 1998.

[116] Weber, G. Episodic learner modeling. Cognitive Science 20 (1996).

[117] Weber, G., and Möllenberg, A. ELM programming environment: A tu-
toring system for lisp beginners. In Cognition and Computer Programming,
K. Wender, F. Schmalhofer, and H.-D. Böcker, Eds. Ablex Publishing Corpo-
ration, 1995.

[118] Weber, G., and Specht, M. User modeling and adaptive navigation sup-
port in WWW-based tutoring systems. In Proceedings of the Sixth Interna-
tional Conference on User Modeling, UM97 (Sardinia, Italy, 1997).

Lebenslauf

Nicola Henze

Geboren:

25. November 1968 in Hannover, Deutschland

Wissenschaftlicher Werdegang:

Mai 1988 Abitur an der St. Ursula Schule Hannover
Okt. 88 - Feb. 95 Studium der Mathematik mit Nebenfach Informatik, Uni-

versität Hannover
28. Februar 1995 Diplom in Mathematik
Aug. 95 - Sep. 96 Wissenschaftliche Mitarbeiterin am Lehrstuhl und Seminar für

ABWL, Organisation und Wirtschaftsinformatik,
Universität Mannheim

Seit Oktober 96 Wissenschaftliche Mitarbeiterin am Institut für Technische
Informatik, Abteilung Rechnergestützte Wissensverarbeitung,
Universität Hannover

28. April 2000 Promotion

