Reza Sedaghat

Fault Emulation: Reconfigurable Hardware-Based
Fault Simulation Using Logic Emulation Systems
with Optimized Mapping

December 1999

? ?

? ?

Fault Emulation: Reconfigurable Hardware-Based Fault Simulation
Using Logic Emulation Systems with Optimized Mapping

Dem Fachbereich Elektrotechnik und Informationstechnik

der Universitdt Hannover

zur Erlangung des akademischen Grades

Doktor-Ingenieur

genehmigte Dissertation

von

Dipl.-Ing. Reza Sedaghat Maman

geboren am 9. Februar 1964 in Teheran

1999

1. Referent: Prof. Dr.-Ing. Erich Barke
2. Referent: Prof. Dr.-Ing. Joachim Mucha

Tag der Promotion: 08.12.1999

Acknowledgments

This work originated during my activity as a Research Assistant in the Institute of

Microelectronic Systems at the University of Hanover, Germany.

My thanks to my principle advisor Prof. Dr.-Ing. E. Barke for the opportunity to complete this
work as well as to Prof. Dr.-Ing. J. Mucha for serving as co-advisor and Prof. Dr.-Ing. P.
Pirsch for his chairmanship of the examination committee. In addition I would like to thank
Prof. Dr. rer. nat. D. Miiller, Institute of Computer Science, University of Hanover, who
looked at parts of this work and provided helpful comments and suggestions. My appreciation
to my former colleague Dipl.-Ing. Jorn Stohmann and to Dr.-Ing. Jiirgen Alt and Dr.-Ing. Jan
Otterstedt whose ideas during our many productive discussions contributed to the success of

this work.

My gratitude to my father-in-law, Prof. Dr. Ulrich Petersen, Harvard University,
Cambridge, USA. I have profited greatly from his academic and personal experiences and am
grateful to him for his invaluable help. I am indebted to my parents for accompanying me along
my journey. They have been a great source of strength for me. Finally, a special thanks to my
son Sam who always managed to amuse me at high-stress times and to my wife Valerie for her

endless patience and support. Without her I would not have been able to complete this work.

Hanover, December 1999

Reza Sedaghat

Abstract Reza Sedaghat Maman

Fault Emulation: Reconfigurable Hardware-Based Fault Simulation Using Logic Emulation
Systems with Optimized Mapping

Various approaches to test vector evaluation exist for ascertaining the effectiveness of a test vector
set for a specific fault model by computing the ratio between the number of faults detected by this
set and the number of modeled faults. The traditional approach to test vector evaluation is
software-based, utilizing programs to simulate the effects of the faults on circuit behavior. The
simplest method, serial fault simulation, simulates faulty circuits one at a time. In the recent past,
more advanced approaches to fault simulation have been proposed and can be categorized, in
general, as either parallel or concurrent. These differ from serial fault simulation in their effort to
minimize the number of simulation passes by processing faults or test vectors simultaneously.
However, the circuit elements must still be processed sequentially in order to simulate the complete
circuit. The fault simulation approach is becoming increasingly impractical nowadays, not only
because the runtime for simulating one test vector increases linearly to quadratically with the
number of circuit elements, but also because circuit complexity increases faster than computing
speed.

A new approach to fault simulation involves the use of a hardware logic emulator. Logic emulation
represents a new method of design validation utilizing a reprogrammable prototype of a digital
circuit. In contrast to fault simulation, all circuit elements can be emulated in parallel by the
emulation hardware. Therefore, emulation runtime is based solely on the number of faults, which of
course also depends on circuit size, and the number of test vectors. Emulation runtime increases
only linearly with circuit size making it possible to attain a speedup over software fault simulation.
With the goal of satisfying the requirements of rapid fault injection including fault activation,
emulator technology independence, optimal fault emulation runtime, minimal hardware overhead,
and optimized mapping into reconfigurable hardware, two approaches to fault emulation, FES/1
and FES/2, were developed and implemented. Both approaches use identical methods of fault
injection and fault activation in the FPGAs. However, FES/1 uses the so-called in-circuit mode of
the emulator, in which test generation and emulation analysis are made feasible through the
expansion of the logic emulator by additional hardware modules. FES/2, in contrast, operates in
emulator acceleration mode and does not require additional hardware for test vector evaluation.

An objective of hardware-based fault injection is the reduction of the FPGA overhead, which results
from the fault emulation mapping procedure. This method of fault injection includes mapping the
faulty circuit for an optimized partitioning, technology mapping, and placement and routing. The
Delta-Path algorithm was developed and utilized in the course of this research for the node
assignment optimization problem. The problem is described here as a quadratic assignment problem
and its solution using the Delta-path algorithm results in a reduction in FPGA overhead through an
improved usage of FPGA resources. In contrast to previously published fault emulation approaches,
FES/1 and FES/2 use additional logic functions for fault injection and decoders for fault activation.
Faster fault injection is feasible without reconfiguration of the emulator hardware and without
dependency on a specific logic emulator technology.

In addition, the dependability of a system can be evaluated using a logic emulator for hardware-
based fault injection. Real time fault injection into a target system hardware is an important
application of fault emulation for the evaluation of system behavior and involves fault injection into
the system for the identification of dependability deficiencies of the system, the observation of
system behavior with the given faults, as well as the determination of the degree of fault coverage.

Keywords: FPGA, Fault Injection, Fault Simulation

Abstract Reza Sedaghat Maman

Fault Emulation: Reconfigurable Hardware-Based Fault Simulation Using Logic
Emulation Systems with Optimized Mapping

Mehrere Methoden der Testmusterevaluierung existieren, welche die Effektivitit eines
Testmustersatzes fiir einen spezifischen Fehlermodell feststellen konnen, indem das Verhéltnis
zwischen der Anzahl der entdeckten Fehler und der Anzahl der modellierten Fehler berechnet
wird. Das traditionelle softwarebasierte Verfahren der Testmusterevaluierung setzt Programme
ein, die die Wirkung von Fehlern auf das Verhalten der Schaltung simulieren. Die einfachste
Methode, Serielle Fehlersimulation, simuliert Fehler einen nach dem anderen. In den letzten
Jahren wurden Methoden der Fehlersimulation vorgestellt, die im allgemeinen als "Parallel"
und "Concurrent" bezeichnet werden. Diese unterscheiden sich von serieller Fehlersimulation
indem versucht wird, die Anzahl der Simulationsabldufe durch eine gleichzeitige Bearbeitung
von Fehlern oder Testmustern zu minimieren. Um die komplette Schaltung simulieren zu
konnen, miissen aber die Schaltungselemente immer noch sequentiell bearbeitet werden.
Heutzutage werden Fehlersimulationsmethoden zunehmend unpraktisch, nicht nur weil die
Simulationslaufzeit mit der Anzahl der Schaltungselemente linear bis quadratisch steigt,
sondern auch weil die Schaltungskomplexitit schneller als die Rechengeschwindigkeit wéchst.

Logikemulation ist eine neue Methode der Designverifikation, die einen reprogrammierbaren
Prototypen einer digitalen Schaltung darstellt. Fehlersimulation mittels eines hardwarebasierten
Logikemulators (Fehleremulation) reprisentiert ein neues Verfahren der Schaltungsvalidierung.
Im Gegensatz zur softwarebasierten Fehlersimulation konnen mit Fehleremulation alle
Schaltungselemente in einem Emulationstakt durch die Emulationshardware berechnet werden.
Die Emulationslaufzeit ist lediglich abhéingig von der Anzahl der Fehler, welche natiirlich von
der Schaltungsgrofle und der Anzahl der Testmuster abhédngt. Die Emulationslaufzeit steigt nur
linear mit der Schaltungsgrole und ermoglicht daher ein Speed-up iiber softwarebasierte
Fehlersimulation. Zwei Verfahren der Fehleremulation, FES/1 und FES/2, wurden entwickelt
und implementiert, welche die Bedingungen der schnellen Fehlerinjektion, einschlieflich der
Fehleraktivierung, Unabhingigkeit von Emulatortechnologie, optimaler Fehleremulations-
laufzeit und minimalen Hardware-Overhead sowie optimierter Abbildung in rekonfigurierbarer
Hardware, erfiillen. FES/1 verwendet der sogenannten In-Circuit-Mode des Emulators, in der
Testgenerierung und Analyse der Emulationsergebnisse durch die Erweiterung des
Logikemulators mit zusétzlichen Hardwaremodulen erméglicht werden. FES/2 benutzt den
Emulator-Acceleration Mode, welcher keine zusitzliche Hardware fiir die Generierung und
Auswertung von Testmustern bendtigt. Die beiden Verfahren setzen identische Methoden der
Fehlerinjektion und Fehleraktivierung in den FPGAs ein.

Ein Ziel der hardwarebasierten Fehlerinjektion ist die Reduzierung des FPGA-Overheads, der
aus dem FES Verfahren resultiert. Hardwarebasierte Fehlerinjektion schliet die Abbildung der
fehlerhaften Schaltung fiir eine optimierte Partitionierung, Technologiemapping, Plazierung
und Routen ein. Das Delta-Path Algorithmus wurde im Laufe dieser Forschung fiir die
Zuordnung von Fehlerknoten der Schaltung in dem Fehleraktivator entwickelt und
implementiert. Das Problem wird in dieser Arbeit als ein quadratisches Zuordnungsproblem
beschrieben. Eine suboptimale Losung des Problems ist mit dem Delta-Path Algorithmus
moglich und fiihrt durch den optimierten Verbrauch von FPGA-Ressourcen zu einer
Reduzierung des FPGA-Overheads. Im Gegensatz zu fritheren veroffentlichten Verfahren der
Fehleremulation, setzten FES/1 und FES/2 zusitzliche Logikfunktionen fiir die Fehlerinjektion,
sowie Zeilen- und Spaltendekoder fiir die Fehleraktivierung ein. Schnellere Fehlerinjektion ist
moglich ohne Rekonfiguration der Emulatorhardware und ohne von einer spezifischen
Logikemulatortechnologie abhédngig zu sein.

Uber die Testvektorevaluierung hinaus bieten die in dieser Arbeit beschriebenen Verfahren
grof3e Vorteile bei der Beurteilung der Zuverlédssigkeit von Systemen. Diese kann mittels eines
Logikemulators fiir hardwarebasierte Fehlerinjektion evaluiert werden. Echtzeitfehlerinjektion
in eine Zielsystemhardware ist fiir die Evaluierung des Systemverhaltens einer wichtige Aspekt
der Fehleremulation, welcher Fehlerinjektion in ein System fiir die Identifizierung von
SystemzuverldBigkeitsdefiziten, sowie die Beobachtung des Systemverhaltens mit den
gegebenen Fehlern, und die Feststellung des Fehleriiberdeckungsgrades einschlief3t.

Schlagworter: FPGA, Fehlerinjektion, Fehlersimulation

Contents I
Contents

Notation INAeX......uuceueenuieniienenniininennenninennneesnensnnsssessssesssssssssssssssssssssssssssess I

List of Figures and Tables.........cuieueiiernieensnensnnisnecssnensenssneesnesnnes .. VI

1. INETOAUCLION cuuueeneeerneenneesnnenianesinessanesssnsssneessnssssnnsssnsssnssssnsssssssssssssssssassssassaes 1

2. Logic EMUIAtiON...ccciiiiiiiiiiiirsrsnneeiiiiccssssssnsssseeecssnns 4

2.1 Logic Validation TeChNIQUES.cccceiiiiiiiiiiiiiiiieeiiiieee e e 4

2.1.1 Logic SIMUIALIONceiiiiiiiiiiiiiiiiceeiie et 4

2.1.2 Formal VerifiCation...........ccouiiiuiiiiiiiiietiiiiiiieieee ettt e e et e e e e e e e 5

2.1.3 Logic EMUIAtIONccoiiiiiiiiiiiiiiiiciiiec e e 6

2.1.4 Design ProtOtyPIng........ueiiiiiiiieiiiiiiee ettt e 8

2.1.5 COMPATISON ..eeeiniiiiiieeiiiieee ettt ettt e et e e et e e e e e e e e eeesaannees 9

2.2 FPGA-based Logic Emulation Design FIOwccooociiiiiiiiiiiiniicic e 11

3. Fault SIMUIAtIONcouveeneeeiniininieniiniinnnientensiinneensaesssesssesssssssssssssesssssssssssssesssssssssssss 13

3.1 Fault MOEIS. ...ttt e e 13

3.2 Fault Redundancy, Equivalence, and Dominance............ccccoecuvveeeiiiieeenniieeeenniieeeeene 16

3.3 General Approach to Fault SImulationccoccviiiiiiiiiiiiiiiceceee 19

3.4 Fault Simulation TEChNIQUESccccuviiiiiiiiiiiiiiic e 20

3.5 TESt GENETALIONevieeeeeeeieiiiiiiiiit et ee e e ettt e e e e e e e ettt e e e e e e e st et e eeeeeeeeaabeaeeeeas 28

4. Fault EMUlationuueeieiniinniennninninnnienneninnninsenssesssissssessssssssssssssssssssssssssssssssssssssns 33

AT StAte OF The ATT....eeeiiiiiiiiiiiieee ettt e e e e et e e e e e e sireeeeeeeas 33

4.1.1 TIMOC APPIOACH......eiiiiiiiiiiiiiiiiie ettt e e 33

4.1.2 Fault Grading Methodcccciiiiiiiiiiiiic e 35

4.1.3 Serial Fault Emulation (SFE)ccooiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeevee e 37

4.1.4 KRONE ..ottt et et e s s 40

4.1.5 Objectives of this WOTKcoccuiiiiiiiiiiiiiic e 42

4.2 Fault Emulation System (FES)cccoiiiiiiiiieeeeee e 43

A2 1 FES/T ettt sttt 44

A.2.2 0 FES/2 ettt sttt 47

4.2.3 Fault INJECTION ..eeoueiiiiiiiiiiiiee ettt e e e s e e s e e 48

4.2.4 Fault ACHIVALIONceoiiiiiiiiiiiee e ettt e e e ettt e e e e e e e e s siibeeeeeeeeens 50

Contents I

4.2.5 CombinatioNal CITCUILSccerriuiiiieiiiiiieeinieeeeriieee et e e e e e seneeee e 52

4.2.6 Sequential CirCULLS........cuuriieiiiiiieeiiiiie ettt e et e et e e e e e e sereeeee e 53

5. Node ASSIZNIMENL .ccceeierriisrrssnnerreeecsssne 61
5.1 INErOAUCTION. ...ceiiiiiiiiiiiite et e et e st e e s e e s e e e e 61
5.2 Placement and Quadratic Assignment Problemscccoeciiiiiiiiiiiiiniiiiiceniieeeene 63
5.3 Fault Activator and Node ASSIZNMENT..........cccerruiiiiiiniiiieiiiiieeeeiieeee e eenieeee e 67
5.3.1 Partitioning of an Expanded Circuitccoovoiiieiiniiiiiiniiieeenieeee e 69

5.3.2 Technology Mapping of an Expanded Circuit............ccccceeeveiiiieinniieeenniineeeennnne 73

5.3.3 Placement and Routing of an Expanded Circuit............ccccoeevieeeiniiieenniieeeennnnne 74

5.4 Optimized NOde ASSIZNMENL.......ccorruiriiiriiiieeeeiiteeeeiieee e et e e e ee e e e e e s eneeeeeenaes 77
S4.1 AIZOTIRIMS. ...eiiiiiiiiii ettt 79
5.4.1.1Simulated ANNEAIINGc.vvviiiiiiiiiii e 80
SAT2ZMIN-CUL ittt et e e e e s 81
S5A4.1.3Delta-Path....ccc.viiiiiiiiiiiiiiicee e 83

6. EXperimental RESUILScccvveeeeiiiicisiisssssnneeccccsssssssssnsssssesssens 90
6.1 CLB-OVEThEadcccoiiiiiiiiiiiiiiiec et e e e e 90
6.2 Fault Emulation RUNIMEeeiiiiiiiiiiiiiicecceee e 95

7. Conclusion and Future WorkK........eeeenieeninecnnennennnneensnensnnnnsenssessssssesssesssessses 104

8. RELEICIICES .euueeereenereereenereereenereereresssssssassssessassssessassssossssssssssssssssssassssossansassons 107

Notation Index 111

Notation Index

CLB Configurable Logic Blocks
LUT Look-Up Table

PI primary input of a circuit

fd delay fault

) additional delay (delay fault)
Del delay

ADel slack

Ty nominal time

I transition fault

Vv test vector set

V1, V2,0 Vy test vectors

Bf(v) logical function of faulty circuit
B(v) logical function of fault-free circuit
F={f1, o oo [} set of faults

f fault

s-a-0 stuck-at- O fault

s-a-1 stuck-at-1 fault

Y fault coverage

val value of a signal

maskl, mask2

A

E

parallel fault simulation masks

number of gate calculations per simulation run

g gates are evaluatuation per second

sp seril fault emulation speed

GT gate

mjp, my, ..., My, PRTG feedback connections

P(a) polynomial function of a PRTG

Rf fault emulation runtime (Cheng&Dai)

Rt total runtime of fault emulation (Cheng&Dai)

Tyecons time required for reconfiguration of a BLP (SFE)

AN average number of test vectors necessary for fault detection
(SFE)

SP speed of SFE approach

FLO={floy, flo,, ..., flo,}
FI={fiy. fiy o fiy)

L
C

set of fault locations
set of Fault Injectors
control signal of the line in the Fault Activator

control signal of the column in the Fault Activator

Notation Index

v

N

in
Nous
EN
SF

A={Ay, .., A,)
Nf

i

J
t
g
I

r

n

A

Vnitial
IS

X

n

N (x,n)
Xlocal

Xglobal
d

k()

k(i) =[lk()",lk@)’]
Ik(j) = k()" lk(j)']
T

I1

Topt

MD={md;, md,, ..., md,}

SG= {sgy, 582, .-, 581}
LK={lky, lky, ..., lk,}
G(Upo.UnULE)

Uno

Un

Uy

E

data input of the Fault Injector
data output of the Fault Injector
control signal of the Fault Injector

control input of the Fault Injector to select the stuck-at fault
model

input data of the Fault Activator
number of faults

number of line decoders

number of column decoders

clock period

state variables of a sequential circuit
inputs of a sequential circuit

next clock period of a sequential circuit

function of dependency of the state variables E/*" on the
inputs /I’

test vector sequence

initial test vector

initial state of a sequential circuit

feasible point of a cost function

neighborhood of x

set of neighborhoods of x
local minimum of a cost function

global minimum of a cost function
distance of the locations of modules i and j
locations of module i

locations of module j
permutation

the set of permutations
optimized permutation
set of modules

set of signals

set of locations

extra node graph

set of /O nodes

set of extra nodes

set of instance nodes

set of edges

Notation Index

w(e)

ur> fi

Freq

RTFES/]
FE

FES/2
RT,,

P

avg
0

RTEr
RT;

RT o101

weight of an edge

cutsize

placement

switch block side i

capacity of the switch block side

number of nets on each side of a switch block

cost function of the node assignment problem.

node assignment

quadratic assignment problem
distance matrix

energy

Temperature

probability

partition of a graph

source nodes
set of predecessor node u
set of successor node u

subsets of U

number of successor nodes of v
delta path

set of delta paths

node u € A is assigned to a Fault Injector fi € lk

the emulation frequency
total fault emulation runtime for FES/1
total fault emulation runtime for FES/2

average number of test vectors necessary to detect a fault
number of test vectors

fault emulation runtime (FES)

good emulation runtime (FES)

total runtime of fault emulation (FES)

List of Figures and Tables VI

List of Figures and Tables

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

1.1
1.2
2.1
22
2.3
3.1
32
33
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

Y-diagram of digital circuit

Overview of fault simulation approaches

A typical logic emulator

Time frames

A typical design flow of FPGA-based emulation system
CMOS INVERTER at electrical and logic level
Stuck-at fault model

Modeling of bridging fault as wired-AND

Fault free (a) and faulty (b) signal delay

Undetectable fault

Redundancy

Equivalence fault collapsing

Fault coverage curve

Parallel fault simulation

Fault injection on signal &

Fault list propagation

Concurrent fault simulation

Fault propagation of f; to output p

Principle of two-valued Parallel Pattern Single Fault Propagation
Classification of test generation

Backward trace and forward trace along a sensitive path
Conceptual Linear Feedback Shift Register (LFSR)
Hardware realization of a LFSR as a pseudo-random test generator
Test generation of Fig. 3.18

Hardware fault simulator for an AND gate [Timo79]
Primitive serial fault emulation process [ChHu95]

Fault injection and activation of fault grading method [ChHu95]
SFE flowchart [BuRe96]

An example of FPGA reconfiguration [BuRe96]

Delay lines [Kron96]

FPE-cell [Kron96]

FES/1 flow diagram

Fault emulation hardware

Comparison hardware module

FES/2 flow diagram

List of Figures and Tables VI

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
5.1
5.2
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13

Fig 5.14

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

5.15
5.16
5.17

5.18

5.19
5.20
5.21
5.22
5.23
6.1
6.2
6.3

Stuck-at-0 Fault Injector

Stuck-at-1 Fault Injector

Stuck-at-0/1 Fault Injector

Fault Activator

Combinational circuit in a CLB

Fault Injector s-a-0 in a CLB

Generic schematic of sequential circuits

State transition graph

Initialization of storage element with 3- and 4-valued logic

Fault emulation for a sequential circuit

Mapping of the sequential circuit into an FPGA

Hardware initialization of individual storage elements

Local versus global optima

Wirelength estimation methods

An example of the placement problem

Model of a symmetrical FPGA

Node assignment model

Circuit without Fault Injectors (left) modeled as extra node graph
Circuit partitioning of expanded circuit

Circuit with Fault Injectors

Bipartition with optimized node assignment and cutsize ®=7
Bipartition with non-optimized node assignment and cutsize ®=9
Technology mapping of an expanded circuit

Placement of circuit with non-optimized node assignment in an FPGA
Placement of circuit with optimized node assignment in an FPGA
Optimized node assignment compared to random node assignment
Vertical and horizontal cut lines

Cut tree

Slice/Bisection procedure
Dividing of U into k subsets A, A,,..., A,

One-dimensional symbolic placement

Assignment of u to fi

Node assignment with Delta-Path algorithm

One-dimensional symbolic placement

Super node splitting

Comparison of node assignment runtime for different algorithms
Reduction of CLB number for s-a-0

Reduction of CLB number for s-a-1

List of Figures and Tables VI

Fig. 6.4 Runtimes of fault emulation FES/1 and FES/2 and Comsim

Fig. 6.5 Speedup of fault emulation FES/1 and FES/2 over fault simulation with
Comsim

Fig. 6.6 Simulated runtime of VED and calculated runtime of fault emulation FES/1

Fig. 6.7 Speedup of fault emulation FES/2 over fault simulation with VED

Fig. 7.1 Evaluation of system dependability using logic emulation

Table 4.1 Comparison of available hardware-based fault simulation approaches

Table 4.2 State transition table

Table 4.3 Emulation results for initial states (A) and (D)

Table 6.1 Comparison of node assignment results for stuck-at-0 faults

Table 6.2 Comparison of node assignment results for stuck-at-1 faults

Table 6.3 Logic emulation of circuit without Fault Injectors

Table 6.4 Fault emulation with stuck-at-0 Fault Injectors

Table 6.5 Fault emulation with stuck-at-1 Fault Injectors

Table 6.6 Comparison of fault emulation and Comsim

Table 6.7 Comparison of fault emulation FES/1 and VED

Table 6.8 FES/1 and FES/2 approaches based on the comparison of Table 4.1

Table 6.9 Overview of existing approaches

Introduction 1

1. Introduction

An essential part of modern electronic systems are Very Large Scale Integrated (VLSI)
circuits. These circuits contain between thousands and millions of transistors, diodes, and other
components such as resistors, capacitors, and interconnections within a very small area. The
design of such circuits is a complicated and time-consuming process. During the design
process an integrated circuit is modeled on different abstraction levels. These abstraction levels
represent the information necessary for the actual step in the design process. The "Top-Down"
design begins at a high level and precedes downwards to the next level where more detailed
information of the circuit is examined. The level of abstraction can be characterized by the type
of information processed, as shown in Fig. 1.1. A circuit design can generally be subdivided
into three main categories according to the view from which a circuit is considered. These
include the design with which the behavior of a circuit is observed, the design in which the

structure of a circuit is established, and the physical design (geometry).

System Level

Behavior Algorithmic Level Structure
Register

Transfer Level

Register Transfers
Boolean Equations
Differential Equations

Geometry

Fig. 1.1: Y-diagram of digital circuit

Starting with an idea about the design of the circuit, a behavioral description of the circuit is
written in a high-level language like VHDL [Waxm8&9] [Lips89] [Coel89]. The behavioral
specification is then converted into a register transfer level (RTL) description of the circuit
using a synthesis tool. After a register transfer level description has been obtained it is mapped
into logic equations. Typically, a structural register transfer level description is an

interconnection of predefined modules such as adders, multipliers, memory, etc. At logical

Introduction 2

level the design is represented by a combination of primitives, for example AND-, OR- , XOR-
gates, Flip-Flops etc. which are present in a library. The characteristics of these basic elements
are defined in the library and reproduce in a simplified form the characteristics of the target
technology. The behavioral aspects at the logical level of the circuit can be represented using
Boolean equations. The next step in the process is the production of a mask level description
or a layout of the circuit in a given technology. Module generators [OnLL89] can be used to
produce a layout for each module in the design. The modules or gates are placed and routed
using placement and routing tools [Leng90]. The mask level description is used to manufacture
the integrated circuit (IC). Since no manufacturing process can not guarantee 100% yield,
manufacturing defects are usually introduced during the manufacturing process. The actual
type of defect is technology dependent. The larger the circuit in terms of area, the higher the

probability of defects. Clearly, testing is crucial to the VLSI manufacturing process.

As described in Chapter 3, one application of fault simulation includes the simulation of a
circuit in the presence of faults. Faults are detected in a circuit by comparing the results of a
fault simulation to the results of a fault-free or good simulation using a test vector set.
Differing results indicate the detection of a fault. Hence, fault simulation is implemented for the
evaluation of a test vector set. Furthermore, fault simulators are also used to increase the
efficiency of programs used for test vector calculation [ScTr87]. Fault simulation is generally

divided into two approaches: software-based and hardware-based fault simulation.

Fault Simulation

Y v

Software Approaches Hardware Approaches
— Concurrent Fault Simulation + L *

. . . . Dedicated Hard
— Deductive Fault Simulation Logic Emulator Hardware Accelerator cdicated Hardware
— Parallel Fault Simulation }7 XP-100(ZYCAD)
— PPSFP Chang&Dai

Serial Fault Emulation (SFE)

Fault Emulation System (FES)

Fig. 1.2: Overview of fault simulation approaches

Due to the increasing complexity of integrated circuits as well as the competition-based
requirement for a shorter time-to-market of the product, software-based approaches can not
satisfy the present demand for fault simulation. A significant amount of time, anywhere from

minutes to days, is required by the simulation process of a complex circuit with millions of

Introduction 3

gates. Efforts have been made to shorten the necessary simulation time by developing
specialized simulation accelerators [Zyca94a], logic emulators [BuBa90], and the first
hardware-based fault simulator [Timo79]. In the past years various methods have been
presented for the generation of hardware-based faulty circuits, each with its own approach to
fault injection. A common feature of each of these methods is the execution of hardware-based
fault simulation at gate level and the modeling of faults using a stuck-at fault model. Different
techniques involving the use of a circular shift register or the reprogrammability of field

programmable gate arrays (FPGAs) are utilized for the activation of faults in the circuit.

Various logic validation techniques are presented in Chapter 2, followed by a discussion of
their advantages and disadvantages as well as the application of a logic emulator in the design
phase. Chapter 3 introduces the most widely used fault simulation and test vector generation
techniques and in addition, a hardware-based pseudo-random test vector generator utilized for

hardware-based fault simulation.

In Chapter 4 the requirements for a novel approach to hardware-based fault simulation using a
logic emulator (fault emulation) are described. A Fault Emulation System FES is presented,
characterized by rapid fault injection and fault activation through a Fault Activator. Chapter 5
presents procedures for mapping faulty circuits while focusing on optimal partitioning,
technology mapping, placement, and routing. A new algorithm for the optimized mapping of a
faulty circuit is detailed in Chapter 5. Chapter 6 presents and discusses the experimental results
of fault emulation FES in comparison to existing fault simulation and fault emulation
approaches. A discussion follows on the optimized mapping of faulty circuits into logic
emulators compared to existing algorithms such as simulated annealing. Chapter 7 concludes

this thesis and discusses future work in this area.

Logic Emulation 4

2 Logic Emulation
2.1 Logic Validation Techniques

A comparison between the specification and the implementation of a digital circuit design is
necessary in order to recognize design errors and to attain a correct implementation.
Generally, such a comparison is referred to as logic validation. Rather than using the final
version of a design, logic validation is usually carried out on more abstract levels of a
design, often utilizing a high-level description of the circuit's functionality. Validating such
high-level implementations is desirable for locating and correcting errors early, rather than
identifying errors at the end of the implementation procedure when the design has
developed more detail and complexity. Various logic validation methods are presented in
the following sections along with a discussion of their advantages and disadvantages. As
discussed in the final section of this chapter, the proper method of logic validation is not a
single technique, but rather a combination of techniques that takes advantage of the

different strengths of each validation technique.

2.1.1 Logic Simulation

Software simulation is perhaps the most widespread and effective method of logic
validation and is preferred mainly due to its ease of signal observability and controllability.
Software simulation is used to model and observe the functional behavior of a circuit
[RuSa89] [Brew77]. A unit-delay simulator disregards all electrical characteristics of a
circuit, with each gate requiring one time unit for each new input. The simulator examines
all input to the gates and then calculates the correct value for each output. The behavior of
the circuit can be observed by varying the values at the inputs. Other types of software
simulators may also be utilized, which allow for more detailed modeling of the circuit
[BARZ8&7][Spir85].

During the simulation process the software registers each signal value as well as changes to
these values and follows the changing values over time. This information is made available
to the user at all times. For various reasons the designer may want to alter the values of a
net during a simulation. This is easily done because the values have been stored in the
simulator. The designer may want to observe the behavior of a circuit in a specific

configuration, even though in the final hardware implementation it can be difficult to force

Logic Emulation 5

the circuit into this configuration. The user of a software simulator can simply instruct the
simulator to make the desired changes to the circuit and then study the resulting behavior.
Circuit changes carried out this early in the design process save effort and time that would
otherwise be spent later to locate and fix errors which are more complicated in the final

implementation.

The flexibility of software simulation described above also has major disadvantages. The
simulation process requires a significant amount of time to evaluate a complex circuit with
millions of gates, anywhere from minutes to days. Through the development of specialized
simulation accelerators [Zyca94a] [Zyca94b] [Zyca94c] the runtime required by simulation
has been reduced. However, software simulation with accelerators still requires more time
to execute than a hardware implementation of the circuit, even when factors such as
detailed timing are not considered. On the other hand, software simulation provides the
ability to experiment with the logic with the goal of gaining useful information about the

circuit and analyzing circuit behavior early in the design cycle.

2.1.2 Formal Verification

Formal verification is a proof for determining whether two circuit descriptions at different
abstraction levels are identical, as well as a technique for deciding whether a specific
behavior is implemented by a given circuit. For instance, when a designer specifies a circuit
by a high-level description formal verification techniques can examine both the specification
and implementation to determine whether their behavior is exactly the same [Evek91]. The
majority of formal verification methods, however, only verifies the logical function and not
the timing of the circuit. Circuits with up to ten thousand gates can be evaluated effectively
with formal verification techniques [Evek91], Currently existing formal verification
algorithms cannot handle a complex circuit with millions of gates. However, formal
verification techniques can be utilized when a complex circuit is divided into smaller
subcircuits, which after the verification of the individual subcircuits, form a complete
circuit. In this form, the possibility of failures still exists due to the interactions of

subcircuits.

2.1.3 Logic Emulation

A logic emulator is actually a reprogrammable compute engine that can be configured to
implement the function of a circuit [BrFr92a]. As with a prototype, this hardware
implementation is created in order to attain accurate evaluation results. In addition, design

errors can be located and isolated by observing and altering an emulation, similar to

Logic Emulation 6

software simulation. In many cases, however, a speed 103 to 100 faster than software
simulation [KhHu93] can be attained with logic emulators. A complex circuit can not be
mapped into a single programmable chip, thus an emulator consists of a multitude of
programmable components. The programmable hardware is generally constructed
hierarchically. Several of the programmable components and the corresponding routing
resources are present on a board typically having an emulation capacity of 250K gates.
Generally, an emulator contains several such boards interconnected through a
programmable backplane in order to facilitate communication between components on
different boards. Capacities of up to one or two million gates on one board can be reached.
For the emulation of a complete circuit, several emulators can be cascaded in order to attain
emulation systems with a capacity of several million gates. A logic emulator can contain
either standard-FPGAs [Quick96a] or specially developed Full Custom Chips [BuRe96]. In
general, logic emulation can be divided into two approaches involving Field Programmable

Gate Array (FPGA)-based and multiprocessor-based logic emulators.

The basis of the FPGAs, such as the XILINX FPGAs, are the configurable logic blocks
(CLBs). A CLB contains logic blocks for the representation of logical functions as well as
flip-flops for the realization of storage elements. Logical functions are organized as look-up
tables, consisting of SRAM memory. The connection between the look-up tables and
storage elements of a CLB is established using programmable multiplexers. An FPGA
consists of a regular array of programmable logic blocks (CLBs) as well as horizontal and
vertical routing channels between the CLBs. Figure 2.1 displays a typical FPGA-based logic
emulator [BuBa90] composed of emulation boards. A single emulation board is composed
of multiple FPGAs (Fig.2.1a), each of which contains a multitude of CLBs (Fig.2.1b) and
each CLB uses LUTs [BrFr92b] and flip-flops (Fig.2.1c¢).

Set/Reset |

|
LUT T P2
TR
LUT bR

Clock]

a) Emulator board b) FPGA c) CLB

Fig. 2.1: A typical logic emulator

Logic Emulation 7

In an FPGA-based logic emulator the conversion of the circuit description into a form that
is suitable for mapping to the logic emulator may take several or more hours. The emulator
software completely automates the mapping process. After the circuit is mapped to the

logic emulator, circuit functionality is completely implemented by the emulator.

A multiprocessor-based logic emulator operates with a dedicated architecture based on
parallel processing and is basically a parallel logic computer. The basic components of the
processors are also programmable logic blocks, which however are constructed
considerably simpler than CLBs of the FPGAs. The multiprocessor-based logic emulator is
composed of an array of custom multiprocessing ICs that operate collectively to emulate
complex logic circuits. Each processor emulates a small portion of the circuit by performing

a sequence of operations during every target system clock cycle.

During parallel processing the logical function (gates) are no longer mapped one-to-one
into the physical gates of the emulator. Rather, the design is divided into several time frames
and a logic block of the emulator emulates a different logical function in each time frame.
Before the design is mapped into the emulator each logical function is assigned to a specific
time frame. The value of the assigned logical function is calculated in each time frame.
Several time frames are grouped together. These groups are processed sequentially during

emulation.

time framel ‘ time frame 2 ‘ time frame 3 ‘
Dt e
| | Do |

‘\ CJ DOLLDf

D i i

Fig. 2.2: Time frames

Each logic block and its interconnection to other logic blocks must be reconfigured for
each time frame. Therefore, all program data of processor systems are loaded into the
internal memory before the emulation starts. At the beginning of each time frame the logic
blocks' look-up tables are configured with data of the internal memory. During a time
frame, a logic block requires not only the output values of the other blocks in the same time
frame, but usually also the results from the preceding time frames. The preliminary results
of a time frame must be stored into memory and made available to the appropriate logic
blocks' look-up tables when necessary. Thus, the logic blocks and their interconnections are
processed by dynamic programming, which is similar to the processing of a program in a

microprocessor.

Logic Emulation 8

The maximum number of time frames that can be processed in parallel is determined by the
longest combinational path within the design. A large number of time frames leads to a low
emulation frequency. Due to parallel processing, the emulation frequency is generally a
factor of two to three times lower than with FPGA-based emulators. Today, a
multiprocessor-based logic emulation system [Quick98] is capable of emulating circuits
with up to 20 million gates. Because the logic emulator can implement the functionality of
the complete circuit in parallel, the evaluation of millions of circuit cycles per second is

possible.

Logic emulation of a circuit can be executed in two modes: logic simulation acceleration
and in-circuit emulation. Applying the first mode to the mapped design, a vector set can be
evaluated at an emulation speed of several MHz and is up to 10 times faster than software
simulation. The second mode involves plugging the logic emulator into the target system.
The emulated chip operates as a prototype in the target system. The logic emulator is
inserted into the target environment to provide a more realistic evaluation of the system.
The debugging process now includes evaluating the circuit in its real environment. Such is
the case with the concurrent development of a custom ASIC and the circuit board, where
the ASIC will be later inserted. By connecting the emulated ASIC to the circuit board with

appropriate interfaces, the ASIC functionality can be evaluated in the board.

One restriction of the logic emulation procedure is that only the functional behavior of the
circuit can be emulated. The validation of circuit timing characteristics, which is an
important aspect of logic validation, is not possible. However, when combined with both
software simulation and prototyping, logic emulation plays an important role in the logic

validation process.

2.1.4 Design Prototyping

The process of developing a hardware implementation as a prototype of the circuit under
validation is referred to as prototyping. A prototype can be completed, for example, with
breadboarding and wire-wrap techniques (methods for wiring together standard
components to implement the circuit) or as a first silicon, i.e. the first series of chip
production. The prototype, evaluated under normal operating conditions, gives results that
are most accurate without regard to modeling, abstraction or any other factors involved
with software simulation [Micz87]. When the evaluation phase is completed, the prototype

can be sent to users to determine whether the circuit is appropriate for their needs in a real

Logic Emulation 9

target system. Another feature of prototypes is that the complete evaluation process runs

much faster than with software simulation, due to operation at or near target system speeds.

While a high level of accuracy and high-speed evaluation are certainly advantages of
prototyping, disadvantages must also be considered. The complete circuit must exist not
only as a concept or specification but also as a finished design before the prototype can be
constructed. For this reason, the implementation of a prototype for logic validation is only
meaningful rather late in the design process. Prototype manufacture can be a costly process
considering ASIC fabrication [Benn82] [NaBi88], as well as construction time involved.
Since it is difficult to make alterations to a prototype as many errors as possible should be
detected early in the design process in order to avoid incurring new costs for the

manufacture of multiple prototypes.

2.1.5 Comparison

Software simulation as described in Section 2.1.1 allows for levels of circuit evaluation that
are difficult to achieve with a prototype, where access to the internal states of the circuit is
almost impossible and their values can not be easily altered. With software simulation, the
values of the internal states are able to be displayed as well as altered, resulting in easily
observable circuit behavior. Because this is not usually possible with prototypes it becomes
relatively difficult to locate and isolate circuit errors. Although the production of prototypes
is relatively expensive and their use difficult, prototyping is the more accurate method of
logic validation. Today, evaluating a prototype as a first silicon is a necessary part of the
logic validation process, although it occurs relatively late in the design process. Locating

and correcting most circuit errors is handled by other validation techniques.

Logic emulation combines the flexibility of software simulation with the speed of design
prototyping. Measured against software simulation, higher execution speeds can be
achieved with emulation. However, software simulation is the better method for evaluating
circuit abstractions or a small amount of test vectors. The operational simplicity as well as
flexibility of the simulation overrides its negative performance results, e.g. long runtimes.
Simulation is usually not an issue in the area of software development for the target system
because simulation of a circuit can not be executed within an acceptable time period. When
compared to a prototype, an emulation is easier and faster to create; circuit behavior can
also be observed, controlled and modified better than with a prototype. Moreover, the
evaluation of the circuit is possible while running with hardware and software target

systems. Emulation is the more effective tool for the location and eventual detection of

Logic Emulation 10

system errors because it can be implemented earlier in the design process using a high-level
circuit specification, whereas a prototype can only be activated at the end of the design
phase. As with prototypes, it is possible to give an emulation to an end-user for evaluation
purposes before completion of the design process. Finally, emulation saves much of the time

and material that would otherwise be devoted to the manufacture of multiple prototypes.

Logic emulation as well as software simulation are not to be disregarded once a prototype
has been developed. For instance, when an error is detected in the prototype it is often
difficult this late in the design process to isolate the error in the circuit. An emulator can be
used to reproduce the error since it can execute nearly as many cycles as the prototype. The

emulator's observability can also be utilized to isolate the error.

In an ideal validation environment, the validation methodology would utilize the strengths
of each approach while combining multiple approaches to overcome individual weaknesses.
The design phase begins with the specification of the circuit to be designed. Next, software
simulation attempts a quick evaluation of the circuit and formal verification techniques are
added for the detection of errors in the specification. During this process, software
simulation detects the simple errors, further errors are detected by using a large quantity of
test vectors. At this point, emulation, rather than software simulation, becomes the better
validation method. Early in the design phase logic emulation provides a platform for parallel
software development for the target hardware. When designers determine that the design is
relatively fault-free, the time-consuming and costly manufacture of a prototype can
commence. The prototype is actually a fabrication of the circuit that can be analyzed in a
real operating environment. When failures have been detected by the prototype, emulation

as well as software simulation can be applied to isolate and remove the errors.

It can be concluded then, that when the benefits of software simulation, emulation, formal
verification, and prototyping are combined the result is an ideal validation methodology.
Software simulation is for designers particularly useful as a tool for the detection of errors
in small circuits. Emulation takes this one step further by enabling designers and end-users
to observe the entire system in operation. Formal verification techniques prove whether two
circuit descriptions are identical at different abstraction levels. The final check is provided
with prototyping, where real system behavior is not affected by errors caused by incorrect

modeling or abstractions.

Logic Emulation 11

2.2 FPGA-based Logic Emulation Design Flow

After the previous discussion of the advantages and disadvantages of the various
approaches to logic validation, this section focuses on mapping a circuit into an FPGA-
based logic emulator. Figure 2.3 illustrates the typical design flow of an FPGA system

including the three steps generally required for the preparation of a circuit for emulation.

Circuit
Description |
Partitioning,
Global Placement

and Routing

\%

Technology
Mapping

\/

FPGA Placement
and Routing

|) Programming

Unit

Fig. 2.3: A typical design flow of FPGA-based emulation system

Circuits are usually described in a hardware description language like Verilog or VHDL.
For instance, at gate level the logic is represented by primitives such as ANDs, ORs, flip-
flops etc. or at register transfer level (RTL) by adders, substractors, multipliers, counters
etc. The compilation process of converting a structural circuit description to FPGAs
includes partitioning, technology mapping, FPGA-system placement and routing, which
involves the placement and routing of single FPGAs in the logic emulator and FPGA
placement and routing. FPGA placement and routing are implemented in the same manner

with single FPGAs. The compilation process is explained in more detail in Chapter 5.

Partitioning is generally the first step in the mapping process and involves dividing the
circuit description into sections which then fit into the individual FPGAs of the logic
emulator. The tool that divides the logic into partitions is called a partitioner. Routing
between FPGAs must be accommodated within the board's routing topology. FPGA-system

placement, combined with the partitioning process, is a procedure which allocates partitions

Logic Emulation 12

to individual FPGAs in the logic emulator. The next step is FPGA-system routing, a method

for routing signals between partitions, i.e. FPGAs within the emulator.

After completion of the partitioning procedure technology mapping reorganizes the logic
for an optimal fit in the CLBs [HeRo094]. For the most part, smaller gates are brought
together to form larger functions for the best possible utilization of individual configurable
unit resources. In order to attain optimum results fanout gates may need to be split, logic

resynthesized, and functions duplicated.

The final steps in the mapping procedure include the placement and routing of each FPGA
in the system. Configuration files are then created and subsequently downloaded to the

FPGA system, providing a thorough realization of the circuit's desired functionality.

Fault Simulation 13

3. Fault Simulation

During the manufacturing process manufacturing defects are introduced since no
manufacturing process can guarantee 100% yield. The actual type of defect is technology
dependent. Types of defects common to various technologies are open interconnections, bulk
shorts, and missing transistors [TiBu83]. The larger the circuit in terms of area, the greater the

probability of defects.

Fault detection and fault diagnosis are two important aspects of testing. Fault detection detects
the presence of a fault, whereas the exact location of a fault is identified through fault
diagnosis. By applying test vectors to a circuit during the testing process the response of the
circuit can be compared to an expected response computed using logic simulation tools.
Differing results indicate an fault, the cause of which is referred to as a physical fault [TiBu83].
When dealing with digital circuits, physical faults can be categorized as logic or parametric
[TiBu83]. A logic fault can affect a change in the logic function of the circuit. By altering the
magnitude of a circuit parameter, parametric faults cause changes in the circuit, such as circuit
speed, current, or voltage levels. In this work, only logic fault detection is considered and will

be described in greater detail in the following sections.

3.1 Fault Models

Faults in digital circuits can generally be divided into two groups [Muth75]: design errors and
physical faults. It will be assumed here that design errors are no longer present in the circuit at
the end of the design process. Therefore, only physical faults will be considered in this section.
A physical fault can occur, for example, as a result of dust, contamination, or mask faults
during the production process. Effects of physical faults can take the form of static, dynamic,
or intermittent faults. Examples of static faults are defective connections between transistors or
defective transistors. A dynamic fault on the other hand is, for example, the dynamic coupling
between wires in the IC. Intermittent faults are those which do not occur permanently, such as
loose connections, voltage breakdowns, or temporary internal warming up of a specific area of
the IC.

Fault Modeling at Various Abstraction Levels
While the design of a circuit usually begins at the system level and ends at the mask level, the
procedure involved for fault modeling begins at the mask level and ends at the system level. Of

interest in the fault modeling process are the physical faults that occur in manufacturing and

Fault Simulation 14

lead to faulty electrical behavior. Because simulation is too complex and time consuming at the
lower levels, the faults are modeled at a higher level. When using a higher abstraction level of
the fault model some faults of the lower levels are combined, as illustrated by the example in
Fig. 3.1. Here an INVERTER is represented at the logic and electrical level. While the
INVERTER can be modeled at the electrical level with 16 stuck-at faults (described in next

section), at the logic level these faults can be reduced, i.e. combined to 4 stuck-at faults.

S-a-1/0

]

ﬂiﬂ

Fig. 3.1: CMOS INVERTER at electrical and logic level

Ag

/yoB o [0 S

With the goal of reducing the quantity of faults, many faults at the lower level are mapped to a
fault at a higher level. Limited accuracy results during the transition from a fault model at a
lower level to a model at a higher level (Fig. 3.1). A differentiation between the various faults
is not possible at the higher levels, hence the possibilities for exact fault location are restricted.
The more accurate the abstraction levels, the higher the magnitude of the circuit description.
Thus, the accuracy of a fault model is dependent on the abstraction level where the model is
defined. Due to this dependency, the complexity for fault simulation and test vector
calculation, which will be described in Sections 3.4 and 3.5, increases with the accuracy of the
fault model. A suitable compromise between accuracy and complexity is the stuck-at fault

model, defined at logic level, which was introduced in [Eldr59].

The effects of physical faults on the behavior of the modeled circuit can be represented as
logical faults [TiBu83]. By modeling physical faults as logical faults the fault analysis problem
becomes a logical rather than a physical problem. The complexity involved in the analysis of
the logical faults is reduced greatly since a logical fault can model many different physical
faults. Additionally, due to the technology independence of some logical fault models, it is
possible to apply the same fault model to various technologies [TiBu83]. The stuck-at fault
model models various types of physical faults at logic level. It is the first and most widely used
model and is also referred to as the standard or classical fault model. In a faulty circuit, it is

assumed that an input or output of a logical gate is always set to logical "1" for stuck-at-1 or

Fault Simulation 15

logical "0" for stuck-at-0. As illustrated in Fig. 3.2, for example, a stuck-at-1 fault is modeled
at input /; of the NAND gate. Therefore, input /; has the value "1" and causes at output O,
the faulty value "0" with the input vector (I;, 15)=(0, 1). The input vector (0, 1) is a test vector
for the stuck-at fault at 1;(s-a-1).

s-a-1

I §
D@ o1
12
Fig. 3.2: Stuck-at fault model

In addition to the classical stuck-at fault model, bridging faults [Mei74] as well as various
delay fault models are defined at logic level. Bridging faults result from shorts between two or
more signals in the circuit. The nodes involved in a short become equipotential, i.e. they all
have the same logic value. The characteristics of shorts between nodes at logic level for bipolar
technologies have been examined in [Mei74]. For example, shorts are simulated either as
"wired-AND" or "wired-OR". A bridging fault, then, can be modeled as a logical AND or OR
connection of the shorted wire, as shown in Fig. 3.3. These models are not valid however, for
CMOS technologies, where electrical resistance conditions resulting from the short-circuit
must be considered in order to determine the logical behavior in the presence of a bridging
fault [Wads71].

Bridging fault

1o . Bridging fault DO . ilg) a e
% \@ o 20 \@ g
Ool Oot
T Y

f

Fig. 3.3: Modeling of bridging fault as wired-AND

The stuck-at fault model can also be used to model other types of faults, such as delay faults f;
[AbBF90a]. A model of a delay fault can be applied to a single gate [Wund91a] or to paths
from the inputs to the outputs of the circuit [Wund91b]. It should be noted that these gates and
paths within the circuit must be described logically with timing characteristics. A gate- or path-
delay-fault can be an arbitrary deviation from the predefined timing for the gates and paths,
which is dependent on the applied technology, such as CMOS, TTL etc. A delay fault is
specified by a pair of input vectors (initialization and test vector) and a delay 0, and indicates

when an additional delay d exceeds the slack ADel of the sensitized path as shown in Fig. 3.4.

Fault Simulation 16

Slack ADel is defined as the difference between the nominal time 7, which is the signal value
steady-state, and the propagation delay Del of a signal along a path [HiSC82][Mahl95]. A
specific type of delay fault is the transition fault f,. A fault of this type can also be interpreted
as a delay fault f; of the magnitude & =oo . For this reason, the transition fault model can be

simulated with the same algorithms that are applied to delay faults.

Del ADel Del+0
>< © >
> | >

| t \
0 Ty 0 Ty
a) b)

Fig. 3.4: Fault free (a) and faulty (b) signal delay

In addition to stuck-at faults, bridging faults, and delay faults, a variety of other fault models
developed for various abstraction levels also exist, such as functional fault models [Haye72] at
the algorithmic or system level, stuck-open and stuck-on fault models [Wade71] [Haye72], and
hard and soft fault models [DuRa79] [Plic79] at the electrical level.

3.2 Fault Redundancy, Equivalence, and Dominance

An evaluation of the test vector set V containing the test vectors v;,v,,...,v,, is followed by a
comparison of the actual output response of the faulty circuit Bf{v) to the precomputed output
response of the fault-free circuit B(v). A fault is defined as being detectable if a test vector or a
test vector sequence exists for detecting the fault. In other words, a test vector v detects a fault
f if the function of the fault-free circuit B(v) differs from the function of the faulty circuit Bf(v)
with fault f. Assuming that a circuit has a single output, a test vector that detects a fault f
causes B(v)=0 and Bf(v)=1 or vice versa. Thus, all test vectors that detect f are represented by
the equation B(v)® Bf(v)=1.

When the behavior of the fault-free circuit B(v) and the faulty circuit Bf(v) is identical for all
possible test vectors, the injected fault is undetectable. In this case, there is no test vector for
the creation of a sensitized path, i.e. for the propagation of this fault to the primary output of
the circuit. The goal of test vector calculation (test generation) for a circuit is to create a

complete detection test vector set capable of detecting all detectable faults.

As illustrated in the following example, when an undetectable fault is present in the circuit, a

complete test vector set may be insufficient for detecting all detectable faults [Frie67]. Fig. 3.5

Fault Simulation 17

shows how the fault s-a-0 at net a is detected by (/;,15,13)=(1,1,0). This fault is no longer
detected by the test vector (1,1,0) if the undetected fault s-a-1 at the net b is also present.

a (s-a-0)
/
ol N
2ol i L
D o Ol
L=
B e A

undetectable s-a-1fault

Fig. 3.5: Undetectable fault

Fault Redundancy

A combinational circuit containing an undetectable fault is referred to as redundant because the
circuit can always be simplified by removing a subcircuit. For example, in Fig. 3.6 an s-a-1
fault is modeled in net c. In order to detect s-a-1 in net ¢, the inputs a and d of the OR gate
must be set to 0. No test vector exists, however, that would make this possible. In this
example, the net ¢ is permanently set to 1. Thus, the behavior of the circuit is identical to that
of an INVERTER, i.e. the circuit can be simplified or reduced to an INVERTER with input /3,

which results in net ¢ being redundant.

—
g
=

TRRRREeE

3o

_—Oo=0O=0O~=0

——o0o~~0OOg
_—-—-—- oo oD
COCOmmm =m0

o
|
o
=

Fig. 3.6 Redundancy

In practice, a complete test vector set cannot be generated for the detection of all faults in a
large combinational circuit even if no redundant faults are present in the circuit. This is due to
the fact that test generation for some faults may be too time-consuming and all existing test
generation tools are designed to interrupt the test generation process for a fault when it
becomes too time consuming, e.g. when fault detection becomes too costly. Therefore, an
undetectable fault can not be differentiated from a detectable fault that has not been detected

by an applied test vector set.

Fault Simulation 18

Fault Equivalence

A classical method for decreasing the quantity of modeled faults is the use of dominant
[McC171] and equivalent faults [ScMe72]. Two faults f; and f, are functionally equivalent
when the functional behavior of the faulty circuit Bf;(v) with f; is equal to the functional
behavior of the faulty circuit Bf,(v) with f5, i.e. Bf;(v)=Bf,(v) . The two faults f; and f, are
distinct when a test vector v is able to differentiate between them, i.e. Bf;(v)# Bf>(v). No test
vector however, can distinguish between two functionally equivalent faults. Faults which are
functionally equivalent can be separated from the set of all possible faults and grouped into
functional equivalence classes [McCl71][ScMe72]. Observing a single fault from each
equivalence class is sufficient for fault analysis. Equivalence fault collapsing refers to the
reduction of the set of faults to be analyzed based on their equivalence relations and is
illustrated in Fig. 3.7 for a NAND gate.

The NAND gate with the inputs /; and I, and the output O; has four fault equivalence classes
{1;(s-a-0), I5(s-a-0), O,(s-a-1)}, {I;(s-a-1)}, {Ix(s-a-1)}, {O;(s-a-0)} since each test vector
that is able to detect /;(s-a-0) can also detect /5(s-a-0) and O;(s-a-1) and vice versa.

Sa 10 o 1o sl S-a-1/0
1 1l
7] ‘Z:Z‘ DQYﬂ o1 V) /‘/‘ D@Z‘ o1
S-a-1/0 S-a-1

Fig. 3.7: Equivalence fault collapsing

Therefore, it is always sufficient to observe a single fault from each equivalence class. The n
input gates of NOT, NAND, NOR, AND, OR is n>1 and have 2(n+1) single stuck-at faults,
with s-a-1 and s-a-0 faults at the output and at all inputs. Using equivalence fault collapsing

the set of faults is reduced to only (n+2) faults for any » input gate.

Fault Dominance

Given that Vy, is the set of test vectors for detecting the fault f;, fault f, dominates fault f; if f,
and f; are functionally equivalent under Vp,. In other words, if f, dominates f;, a test vector v
that detects f;, on the primary outputs can also detect f, on the same outputs since the
functional behavior of the faulty circuit with f; is equal to the functional behavior of the faulty
circuit with f,. For purposes of fault detection, then, it is not necessary to consider the
dominating faults. Dominance fault collapsing can be defined as a reduction of the set of faults
to be analyzed based on dominance relations V,CVy,. For example in the NAND gate in Fig.
3.7, the stuck-at faults /5(s-a-1) and O;(s-a-0) can be detected with the test vector v (I;=1 and

Fault Simulation 19

1,=0). In this case, O(s-a-0) dominates /,(s-a-1). For other primitives such as an AND gate,
the output s-a-1 dominates any input to the gate s-a-1 just as the output s-a-0 for an OR gate
dominates any input s-a-0. Likewise, for NOR (NAND) gates the output s-a-0 (s-a-1) fault

dominates any input s-a-1 (s-a-0).

For complete fault collapsing using both dominance and equivalent fault collapsing it is
possible to considerably reduce the number of faults for an n input gate from 2(n+1) to (n+1)

faults.

3.3 General Approach to Fault Simulation

Fault simulation is the process of simulating a circuit in the presence of faults. Using a test
vector set V, faults are detected by comparing the fault simulation results to the results from a
fault-free simulation of the same circuit, i.e. good simulation. Fault simulation can be
implemented to evaluate test vector set V. Generally, the grade or quality of V is determined by
its fault coverage v, defined by the ratio of the number of faults detected by V to the number of
modeled faults.

_ number of detected faults
~ number of modeled faults 3.1

v

The typical fault coverage curve is depicted in Fig. 3.8 by the evaluation of a test vector set. A
linear slope is shown at the beginning of the fault simulation, which then ends in the area
between 70-80% of the maximum fault coverage (100%). This linear area of the curve usually
ends after just a small quantity of test vectors, with which the easily detectable faults are
detected. Faults which are difficult to detect are processed in the saturation area, where only a
few test vectors exist for the detection of these faults.

A

100[%]
Fault coverage

\/

Number of test vectors

Fig. 3.8: Fault coverage curve

Fault simulators are also used to increase the efficiency of programs used for test vector
calculation [ScTr87]. For each modeled fault a program for test vector calculation determines

a test vector or, for sequential circuits, a sequence of test vectors. Due to the complexity of

Fault Simulation 20

test generation, a single test vector or test vector sequence is calculated for the detection of a
fault and can be used with a fault simulator to detect further faults. The total runtime for test
generation is thereby greatly reduced. By evaluating randomly generated test vectors using a
fault simulator, easily detectable faults can be detected, which leads to a reduction in the fault
list before use of a test generator. Additionally, by combining the fault simulator with the test

generator the quantity of test vectors can be kept to a minimum.

Another classical use of fault simulators is fault diagnosis [AbBF90b], which determines which
faults are present by creating a fault dictionary with the help of a fault simulator. The fault
dictionary contains information about the faults detected by a test vector. In order to attain the
best possible results from the fault dictionary, each test vector must be evaluated for all faults.
Therefore, fault dropping, i.e. the removal of faults from the fault list as soon as they are

detected, cannot be applied to fault diagnosis.

3.4 Fault Simulation Techniques

For the fault simulation process both the compiler-driven and the table-driven approaches to
logic simulation can be applied. A simulator carrying out a compiled-code model is referred to
as a compiler-driven simulator or a compiled simulator. The compiled code can be produced,
for example, from a structural model, or from a functional model written in a conventional
programming language. A compiler-driven simulation has several advantages, such as the
simplicity of the applied simulation algorithm and low memory usage. The disadvantages
include the time-consuming compilation of the circuit into a processable code, which must
occur before the simulation. Compiler-driven simulation deals mainly with functional

verification rather than with the timing of the circuit.

A table-driven simulator interprets a model based on data structures that are generated, for
example, from a structural model. Table-driven simulation, as opposed to compiler-driven
simulation, allows for modeling the timing of the circuit as well as for a higher degree of
flexibility. Complicated data structures and larger memory usage are, however, both

consequences of this method of simulation.

The table-driven approach can usually be applied to event-driven simulation. Here, an
alteration in the value of a signal is referred to as an event. The input of a logic element is
activated by the presence of an event. The generation of new events resulting from changes in
the output values by the activated logic elements is referred to as event-driven simulation. In

order for events to be propagated along the interconnections among the logic elements of a

Fault Simulation 21

circuit, a structural model of the circuit is required by the event-driven simulator. Because of

this, event-driven simulation is usually table-driven.

Serial Fault Simulation

The simplest method of fault simulation is known as serial fault simulation. Using this method,
the simulation process is repeated for each fault. Serial fault simulation is based upon a
comparison between the simulation results attained from faulty circuits Bf{(v) and fault-free
circuits B(v). A disadvantage of serial fault simulation is that for a circuit with a set of faults F,
|F]+1 simulation runs must be executed, one fault-free run plus one for each fault. Fault
collapsing is a technique which can be applied to reduce the number of faults to be simulated
and 1s described in more detail in the previous section 3.2. In addition, fault dropping can be
used to remove faults from the fault list. For large circuits, however, serial fault simulation is
impractical due to the amount of computation required for the simulation runs and for the

comparisons of faulty and fault-free signal values.

Parallel Fault Simulation
Using the parallel fault simulation method [Sesh65], a fault-free circuit and a predetermined
quantity of faulty circuits are simulated simultaneously. The signal values of the fault-free

circuit and those of the corresponding faulty circuits are simulated in one or more words W.

As illustrated in Fig. 3.9, if a 2-valued logic and an 8-bit word is used each of the bits
contained in the word is associated with a signal value in different circuits. Bit 0 usually
symbolizes a signal value from the fault-free circuit. Given an AND gate with the inputs /; and
I,, a logical AND instruction is used between the words associated with /; and I,. The AND
gate can then be evaluated in parallel for the fault-free as well as for each of the 7 faulty

circuits.

Signal i

ﬁ\ ¢ A Value of fault-free circuit

Value of 7th faulty circuit Value of 1st faulty circuit
Fig. 3.9: Parallel fault simulation

The equation

—_— _J1 active fault 32
val = val - mask1;, + mask1, -mask?2, mask1,, = { 0 inactive fault (3-2)

Fault Simulation 22

represents the process of fault injection, where val is the value of an arbitrary signal. The
simulation process is carried out in parallel using two mask words that store the values mask1
and mask2 in the bit position associated with fault f. Maskl corresponds to a signal and
specifies if, and at which bit positions, faults are to be injected. The stuck-at fault values of
these faults are defined by mask2. A fault f on bit position i of mask2 can only then be detected
at a word of the signal val when the value on bit position i of valy;; differs from the value on
the first bit position in the same word (val;;), i.e. val;; @val;;=1 and if the fault f is active on

bit position i of maskl, i.e. maskl;;=1.

Fig. 3.10 shows an AND gate which is part of the circuit and the masks used for fault injection
on output h. Before evaluating £, fault injection is executed for inputs ¢ and d of the AND
gate. When the evaluation of signal & by h=c-d is completed, the effect of fault insertion on A

can be calculated by

h=h- masklm + maskl[h] -maskZ[h] (3.3)

110 Da Doe
120 g
| c JLD AN e nnnne
BO b D h 10|11
lD—‘ D 7‘ 7‘ ¢ ¢ LFaull—free circuit
e e

7 6 5 4 3 2 1 0
ofolof1]1]o]o0] maskl[h]/
EERNDERRES
‘ ‘ ‘ ‘ 1 ‘ 0 ‘ 0 ‘ 1 ‘ val (signal h after fault injection)
‘ ‘ ‘ ‘ 0 ‘ 0 ‘ 0 ‘ 1 ‘ ‘signalhbefore fault injection

Fig. 3.10: Fault injection on signal &

The signal for a 3-valued logic 1, 0, u (unknown logic value) is represented by two words w;
and w,, which are encoded. The values 1,0, and u are coded respectively as "1:=11" (w;=1,
wy=1), "0:=00" (w;=0, w,=0), and "u:=01" (w;=0, wp=1). Therefore, the equations y;=a; b,
and y,=ay b, are used rather than y= a-b when evaluating an AND gate with inputs a and b
and output y. Evaluation methods become more complex with an increase in the quantity of
logic values. Therefore, for a more than 3-valued logic parallel fault simulation becomes

impractical for large circuits.

Fault Simulation 23

Deductive Fault Simulation

Deductive fault simulation [GoVo71] is based on the algorithm that in order to observe faults
and their effect on a circuit, the simulation process is not repeated for a circuit which has
already been simulated. Instead of the calculation of many faulty circuits in parallel, all faults
are calculated in one simulation run. Using the deductive method of fault simulation the fault-
free circuit is simulated and the behavior of all faulty circuits is deduced. In practice, the
deduction of all faulty circuits depends on the amount of memory available for this purpose. A
data structure referred to as a fault list, F;, represents the fault effects and corresponds to each
signal i. During the simulation, F; is the set of all faults, which are responsible for changes in
the values of signal i in the fault-free circuit and the faulty circuit at the prevailing moment in

the simulation.

The computation of fault lists is the basic task in deductive simulation and involves the
calculation of the fault-free output value from the given fault-free input values, as well as the
calculation of the output fault list from the given fault lists of the inputs of the logic elements.
This procedure is referred to as fault-list propagation. In addition to the propagation of logic
events, representing alterations in signal values, list events resulting from additions or deletions

of faults from a fault list are also propagated by a deductive fault simulator.

F,= {rl, mg, n,, aO}

a=1
_ b=0 d=0 _
FB_ {mO’ nO’ pl ’bl} c=1 D FD_ {no, plabladl}

Fig. 3.11: Fault list propagation

llustrated above is an AND gate d with inputs a, b, and ¢ as well as the corresponding fault
lists (F , Fjg , F-). The input values are a=1, b=0, and c=1, therefore d=0. The value of d
changes for each fault which causes a change in the value of b, but which does not affect the

values of a and c. The faults in F; that are not in F, and F. are
F,= FBm(F_AUFC)U{dl}: Fy _(FAUFC)U{dl}

where F_A and F_C are the set of all faults not in F, and F.. The fault lists from Fig. 3.11
contain the following faults, with letters referring to nodes and an index representing the stuck-

at value.

FA:{’i’mO’nl} > FB:{mo’no’pl} > Fc:{nl’po}

The faults, added to the nodes a, b, and c, affect a change at the nodes from which the

following lists are generated:

Fault Simulation 24

FA:{’i’mO’nl’aO} > FB:{mO’HO’pI’bI} > FC={nl,p0,C0}

From these values it can be concluded that

F :{HO’pl’bl}

The faults n,, , p,;, and b, are propagated to the output of the logic element. Now d; must be
added to the fault list since these faults influence the value of d. It follows then for d that

F, = {n0’pl’bl’dl}

The deductive fault simulation algorithms require a huge memory capacity for simulation. A
further disadvantage is the propagation of list events, which occur even when additional input
to the circuit does not change the logical values at the logic element's inputs, i.e. when a fault is
added or removed from the fault list. Therefore, the propagation of list events results in many

long fault list computations.

Concurrent Fault Simulation

The most common fault simulator is the concurrent fault simulator [UlBa74]. Simulated are
only the specific logic elements in the faulty circuit which differ from the corresponding ones in
the fault-free circuit. These differences for every logic element in the fault-free circuit are

maintained in a concurrent fault list.

With concurrent fault simulation, a replication is produced for each fault in the circuit which
causes a faulty signal or its propagation through a logic element (gate). Here, the actual logic
elements as well as the replications are simulated. The basic idea of concurrent fault simulation
is that a simulation should only be executed at the gates or replications where the events occur.

The gate replications are represented in the concurrent fault list as follows: GT is a gate with n

inputs a/,...,a’ and the output c. Fr represents the set of faults which affect GT. During the

simulation of each fault f with a test vector, the gate GT has the values alf yenes anf

on its inputs
and ¢/ on its output. Additionally, f=0 refers to the fault-free gate. The concurrent fault list for

c consists of a list of entries in the form of

f;a]f,...,af;cf. (3.4)

n

In Fig. 3.12 output ¢ is contained in the concurrent fault list. The first replicated gate in th