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Abstract (Schlagworte: multipler Kontrasttest, multivariate t—Verteilung, Ordnungsrestriktion)

Haufig stellt sich die Frage nach statistisch signifikanten monotonen Wirkungsverldufen
quantitativer EinfluBgroBen. Weist ein bestimmtes Herbizid mit ansteigender Dosis eine ver-
besserte Wirkung im Vergleich zu einer Kontrollgruppe auf? Treten bei jungen Kulturpflan-
zen mit abfallender Temperaturbehandlung signifikant hdufiger Anomalien auf? Fragestellun-
gen dieser Art bilden den Schwerpunkt der vorliegenden Dissertation. Im Gegensatz zur her-
kommlichen Varianzanalyse wird hier ein monotones Wirkungsprofil vorausgesetzt, um von
dieser Annahme ausgehend michtigere Tests zu entwickeln. Wie in der Dissertation hervor-
gehoben wird, bergen jedoch die klassischen Trendtests von Bartholomew, Williams und
Marcus z.T. erhebliche Nachteile. Darunter fillt die ungeldste Problematik der numerischen
Verfiigbarkeit unter der Null- oder Alternativhypothese, inbes. im wichtigen unbalanciertem
Fall. Ferner fiihrt die unzureichende Kenntnisnahme der Fallzahlaufteilung in den Varianz-
schitzern bel Williams und Marcus zu einem unbefriedigenden Giiteverhalten. Diese und
weitere Nachteile schrinken die Anwendung der drei klassischen Trendtests somit stark ein.

Das Ziel der Dissertation besteht darin, mittels dem Konzept der multiplen Kontrasttests die
Problematiken zumindestens teilweise zu entschirfen. Hierbei wird das Maximum iiber meh-
rere einzelne Kontrasttests (standardisierte Linearkombinationen der Mittelwerte) betrachtet.
Ein einzelner Kontrast ist auf Grund seiner Definition fiir eine bestimmte Wirkungskurve sehr
michtig, reagiert aber empfindlich auf Abweichungen derselbigen. Der Maximumtest hinge-
gen wihlt die beste Teststatistik aus und ist demnach weniger anfillig gegeniiber unterschied-
lichen Dosis-Wirkungs-Verldufen. Darauf basierend wird der Williamstest in die Theorie der
multiplen Kontraste eingebettet. Eine ausfiihrliche Behandlung der zugrunde liegenden multi-
variaten t—Verteilung ermdglicht seine uneingeschrinkte Anwendung. Quantile und p-Werte
sind auch im Unbalancierten einfach zu berechnen. Ein verdnderter Varianzschitzer nimmt
die Fallzahlaufteilung besser zur Kenntnis und auf Grund der Konstruktion der multiplen
Kontraste hiangt die Giite des neuen Tests weniger stark von der Wirkungsfunktion ab.

Dariiber hinaus wird auch der Marcustest auf multiple Kontraste verallgemeinert. Ausgehend
von einer vollstindigen Aufteilung des Alternativraumes bildet ein dritter Zugang das Maxi-
mum {iber lokal giiteoptimaler Einzelkontraste (isotonischer Kontrast). In einer ausfiihrlichen
Giitestudie werden diese Tests mit den originalen Trendtests verglichen. Die Herleitung weite-
rer theoretischer und numerischer Resultate ermdglichen insbes. eine geschlossene Darstel-
lung der Giiteformel zur iterativen Fallzahlbestimmung und weiterfithrenden post-hoc Ana-
lyse. Die dazu benoétigte nichtzentrale multivariate #-Verteilung ist nun anlog zur oben er-
wihnten zentralen Form ohne Beschrinkung der Korrelationsstruktur verfiigbar. Ein weiteres
Ergebnis reduziert die effektive Dimension eines beliebigen multiplen Kontrasts auf die An-
zahl der zu untersuchenden Gruppen, was zu erheblich vereinfachten Auswertungen fiihrt.

AbschlieBend wird vor allem praxisorientierten Fragestellungen nachgegangen. Die bisherigen
Ergebnisse fiir normalverteilte Daten werden vollstindig auf den dichotomen Fall {ibertragen.
Die sich ergebenden Asymptotiken erfordern insbes. die Untersuchung der multivariaten
Normalverteilung, welche nun im allgemeinen Fall zur Verfiigung steht. Die Betrachtung spe-
zieller Aspekte binomialen Testens (Kontinuitdtskorrektur, gepoolte/ungepoolte Versionen,
exakte bedingte und unbedingte Verteilungen) erweitern die Anwendungsmoglichkeiten. Fer-
ner werden Ansdtze zur Bestimmung ausgewdhlter Parameter vorgestellt (z.B. die Bestim-
mung einer minimalen effektiven Dosis). Weitere Anwendungsmoglichkeiten werden kurz
angerissen (nichtparametrische Analyse, Konfidenzintervalle, hoherfaktorielle Anlagen, etc).
SAS/IML und FORTRAN Programme sind erstellt worden und im Anhang dokumentiert.



Abstract (Keywords: multiple contrast test, multivariate t—distribution, order restricted inference)

Frequently the question arises whether given dose-response shapes of quantitative variables
show any statistically significant effect. Does the efficacy of a certain herbicide indeed
improves with increasing doses when compared to a control group? Has the temperature a
significant influence on the occurrence of anomalies in young kohlrabi plants? These and
similar questions are analysed in the present thesis. In contrast to the usual analysis of
variance one assumes a monotonous dose-response profile. Based on this assumption new
tests are developed, which show an improved power behaviour. However, as it is seen in more
detail in the thesis, the classical trend tests of Bartholomew, Williams and Marcus bear a
series of disadvantages. Among other issues these involve the unsolved problem of evaluating
the distribution functions under the null and the alternative hypotheses, in particular in the
important case of unequal replications. Moreover, the test statistics of Williams and Marcus
do not take the sample size allocation sufficiently into account. These and other disadvantages
restrict seriously the application of the three classical trend tests for practical purposes.

The aim of the thesis is to overcome at least partially these problems by applying the concept
of multiple contrast tests. Here, the maximum is taken over several single contrast test
statistics (standardised linear combinations of the means). Due to its definition a single
contrast test is very powerful for a fixed dose-response curve. But already for small departures
from it the test may bear a poor power behaviour. The above mentioned maximum test,
however, chooses the best test statistic and is therefore more robust against varying dose-
response functions. Hence, Williams original test is embedded in the theory of multiple
contrast tests. An intensive discussion of the underlying multivariate —distribution enables an
unrestricted use of the new test. Quantiles and p-values are easily calculated in unbalanced
set-ups. A modified variance estimator takes the sample size allocation better into account.
Due to the construction of multiple contrast tests the power of the new test depends less on the
dose-response shape.

Moreover, Marcus original test is generalised similarly. A third new contrast definition is pro-
vided by decomposing the alternative space in the smallest possible sub-hypotheses and taking
subsequently the maximum over the locally optimal single contrasts (isotonic contrast). In a
detailed power study the performances of these multiple contrast tests are compared with the
original trend tests. The derivation of further theoretical and numerical results enables the rep-
resentation of a power formula in a closed form for iterative sample size determination and for
further leading post-hoc analysis. Similarly to the above mentioned central case the arising
non-central multivariate 7—distribution is now available without restriction of the correlation
structure. A further result reduces the effective dimensionality of arbitrary multiple contrasts
to the total number of treatments under investigation, leading to clearly simplified evaluations.

Finally, further important practical problems are investigated. The results obtained so far for
normal variates are generalised to the dichotomous case. The arising asymptotics demand in
particular the investigation of the multivariate normal distribution. Its evaluation is now avail-
able in the general unrestricted case. The consideration of special aspects of binomial testing
(continuity correction, pooled/unpooled versions, exact conditional/unconditional distribu-
tions) extends the range of applications. Furthermore, approaches for the determination of cer-
tain parameters in dose finding studies are presented (e.g. the minimum dose with maximum
effect or the minimum effective dose). Further applications are sketched briefly (nonpara-
metric analyses, confidence intervals, higher factorial layouts, etc.). SAS/IML and FORTRAN
programs have been written for most applications and are enclosed with the thesis.
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In Saloniki kenn ich einen, der mich liest,
und auch in Bad Nauheim — das sind schon zwei.

Giinter Eich, Zuversicht

Introduction

In many research areas the objective of an experiment is to test whether the efficacy of a new
treatment or drug is improved with respect to a certain control group. A natural way of
conducting these kind of tests is to consider several treatment levels of the new compound,
drug, fertiliser, herbicide, ... and compare them with a reference group, which response is
assumed to be known due to prior knowledge of its behaviour. Such a reference group can be
for example a negative control group without any administration or of a vehicle only. In these
cases the goal of the user would be to find out whether the new developed treatment shows
any (statistically) significant response at all. By choosing the reference to be a well known
standard application, the aim differs. Here the scientists wants to investigate whether the new

treatment is not only better than a negative control but even better than the standard.

Formalising the introduced terms above, we denote by C- a negative and by C+ a positive

control group. Additionally, D,, ..., D, stand for k treatment or dose levels. Therefore, the
first situation mentioned consists of an analysis of the design [C—, D, ..., Dk]. In the second
case the design [D, s..o. D, C +] would have been chosen instead. The number & is usually
small due to practical reasons, frequently k € {2, 3, 4}. More complex designs, i.e. including

more than one reference group, are possible, but will not be considered throughout this thesis.
For applications when using C- and C+ simultaneously, the reader is referred to Hothorn

(1995) and Bauer et al. (1998).

The classical statistical approach to analyse such (k + 1) —sample situations in the randomised
one-way layout is the analysis of variance (ANOVA). However, both the F-test of the
ANOVA and corresponding nonparametric test procedures are only able to detect any

difference among the investigated samples. But frequently the user is more interested in



specific results rather than in such general assessments. For example, one might be interested
in analysing the dose-response dependence of the data. In these cases the goal is to detect a
global trend. Therefore, more information is required than usually established by the classical

tests.

To illustrate these ideas consider the data provided by Banno and Yamagami (1989) as an
example. They studied the conversion efficiency of ingested food (E.C.1.) of the wood-feeding
insect Eupromus ruber at five larva stages (third to seventh instar) and an adult stage. The

endpoint was calculated as

E.C.L=100x% dry weight of a larva or an adult

dry weight of wood consumed

for each individual larva and adult. The following table summarises the main statistical
quantities. Here, the groups 1, ..., 5 correspond to the seventh through third instar and the

index 0’ is associated with the adult stage. The present design is of the form [DO, oo DS],

even if the adult stage can not be regarded as a ’control’ in the classical sense.

Stage i 0 1 2 3 4 5
Mean 1.669 1.923 2.009 2.129 2411 2.415
Std. dev. 0.5316 0.4079 0.922 0.8452 0.7974 1.184

Sample size 21 10 15 17 21 4

The main question of interest, from the authors point of view, was to investigate whether the
E.C.I. decreased monotonously over all development stages. Does a larva from a lower
development stage has a significant higher E.C.I. regarding to those of a higher development
stage, up to the adult form? Assume that a statistical significant dose-response relationship
(i.e. different from constant) has been detected. A further question of interest could be the
identification of the highest development stage among the larvae, which still yields a
significant difference to the adult stage. This problem is closely related to the estimation of a

minimum effective dose (MED) in clinical and pre-clinical trials and to the whole theory of



trend tests in general. From the biologist point of view, looking at the data, these questions
might have only one answer. Nevertheless, a statistical analysis should be conducted to assure

the evidence of a possible trend with respect to the development stages.

Some further selected examples from the literature underline the importance and the broad
field of applications of detecting significant trends among several treatments. Consider the
data provided in the table below as a next example (Saville and Wood, 1991, p. 141). They
refer to a field experiment, which was conducted to determine how the grain yield of spring
sown malting barley was affected by different seeding rates. A randomised one-way layout
was chosen with the five treatments representing the five seeding rates 50 kg/ha through 150
kg/ha. Each of the six replicates were harvested from plots of size 40 m by 1.25 m. In the light
of above considerations we first notice that no negative control is present. Otherwise a control
group with seeding rate 0 kg/ha would have been included in the trial. As the description of
the data does not clarify whether a standard seeding was included, we do not assume the

existence of C+ as well. Therefore the present design is of the pattern [D1 ,D,, ..., DS]. The

main question which naturally arises in this context is, whether the grain yield increased with

increasing seeding rate.

Seeding rate  Grain yield Mean Std. dev.
50 kg/ha 25.4 22.4 25.2 24.4 24.2 22.0 23.93 1.42
75 kg/ha 26.2 26.2 25.2 26.4 25.0 27.8 26.13 1.00
100 kg/ha 27.6 27.6 26.0 25.8 26.2 25.8 26.50 0.86
125 kg/ha 27.6 28.2 26.8 26.6 28.0 27.8 27.50 0.65
150 kg/ha 27.2 28.2 26.8 25.6 27.2 27.6 27.10 0.87

Petersen (1985) described an experiment in order to assess whether the addition of particular
enzymes retarded the separation of frozen orange juice shortly after the addition of water to
the frozen concentrate. The experiment reported consisted of a control with no treatment at all
and four levels of a certain enzyme (1, 2, 3 and 4 ppm). Conducting four replications in a
completely randomised design the arithmetic means 6.68, 29.15, 36.28, 43.89 and 49.12 were

obtained (time to separation in minutes). Does the presence of the enzyme retard separation as



compared to its absence? Is there any differential effect of the level of added enzyme? One
further experiment provided by Saville and Wood (1991, p. 529) was carried out to determine
the effect of the weedkiller oxadiazon on the early development of peach seedlings. In a
typical randomised design consisting of a control, half dose, single dose and triple dose with
unequal replications (6, 6, 5 and 3, respectively) the resulting heights of the seedlings are
shown in the table below. Does the herbicide oxadiazon indeed influence the development of
the seedlings? And if so, which would be the statistically significant smallest dose with such

an effect?

Treatment (kg/ha) Height of seedlings (cm)

0 79 76 57 105 81 71
0.375 71 34 35 78 79 59
0.75 63 60 61 68 44

2.25 11 23 16

Further examples can be found in many other textbooks and articles. In the course of the
present thesis we will encounter a number of additional material which demonstrates the wide

range of application of trend tests.

To investigate the statistical problems sketched above a new class of tests has been introduced
in the literature in the past 40 to 50 years. A variety of trend tests were proposed, many of
them with satisfactory power results for specific constellations. But one main disadvantage of
this whole approach is that no uniformly most powerful test is at hand. All of the trend tests
presented later in this thesis depend, sometimes stronger, sometimes weaker, on the
underlying dose-response shape (see also Neuhduser, 1996). Therefore, the research for
powerful trend tests (yet easy to conduct) is still ongoing. One approach within this wide
range of analyses is the likelihood ratio test under total order restriction (LRT) according to
Bartholomew (1959, 1961). Even if no uniformly best test exists, the LRT has a reasonable
power performance and is conjectured to provide the highest 'average' power among the
present trend tests. However, the LRT lacks a wide use for practical applications. Several

articles discuss this contradiction in view of the fact of its superior power behaviour, see for



example Tang and Lin (1997) or Agresti and Coull (1998). As we will see in the sequel, the
LRT is regarded to behave less robust against certain types of violations of its assumptions,
such as variance heterogeneity and non-normality. Apart from this, one crucial drawback lies
in the difficulty to evaluate the null distribution. Long time the use of the LRT was restricted
to strictly balanced designs, an assumption which is frequently violated in practice. The
generalisation to unbalanced set-ups got only possible with modern computer skills and new

statistical techniques.

Because of such practical problems when implementing the LRT, many researchers tried to
develop alternative testing procedures. One important approach is due to Williams (1971,
1972). Since its publication it has frequently been used in both medical and non-medical
applications. Introduced originally for normal distributed data only, several generalisations to
dichotomous and nonparametric set-ups and higher factorial layouts permit a wide range of
applications. Shirley (1996, p. 26) emphasised accurately in her literature review of trend tests

the distinguishing features, that

“generally, Williams’ t —test is favoured in the literature because of its robustness to non-
normality, lack of balance, and non-monotonicity of dose-response. Bartholomew’s test comes

a close second because of its superior power overall. “

It becomes clear that Williams’ test is regarded as having good robust characteristics against
several types of violations of its assumptions. In particular, as Shirley (1996) points out again
in the sequel of her paper, Bartholomew’s test is less robust than Williams’ version. On the
other hand, it is well recognised that the 7 — test has on average a lower power than the LRT.
Common to both tests, however, are their complicated distributions under the null hypothesis.
No general method is available to compute quantiles quick and accurately for Williams’ test in
the general unbalanced case. This restricts the use of the f —test to strictly balanced
situations, although it is robust against smaller departures of the required balance. However, it
has been shown (Bretz and Hothorn, 1999) that Williams’ test maintains less and less a pre-

determined o —level as the degree of imbalance increases.



Many other trend tests were proposed in the literature. Based on the insights sketched above,
the search for new trend tests is conducted from one point of view only. The general goal is to

combine the following main features:

e 9¢o0od power behaviour comparable to the LRT throughout the alternative space;

e easy numerical implementation of the test statistics, a problem of particular importance,
for the multivariate nature of comparing several treatments makes an easy handling
difficult;

® robustness against specific violations of the assumptions in the sense Hothorn (1989)

has shown for Williams’ test.

The present thesis should be considered in this context of developing new procedures for
statistical inferences under order restriction. The aim of this thesis is to fill the gap between
the approaches of Williams and Bartholomew. Starting from Williams’ 7 — test the attempt is
made to derive new, improved test statistics. This is done by applying the basic concept of
Williams to the class of multiple contrast tests (MCTs) according to Mukerjee et al. (1986,
1987). The resulting test combines several advantages of the involved approaches and can be
applied to the general case of unequal sample sizes without further restrictions. Improvements
on the numerical methods available so far result in fast evaluations of the corresponding null
hypothesis. Simulation results suggest that the power behaviour of the new approach is close
to that of the LRT under a variety of conditions. Generalisations to nonparametric and
dichotomous set-ups, as well as robustifications against outliers and applications to higher
factorial experiments are possible and straight forward. In this sense the spirit of the present

thesis is well described by McDermott (1998) in his abstract:

“The likelihood ratio test for equality of order-constrained means is known to have power
characteristics that are generally superior to those of competing procedures. Difficulties in
implementing this test have led to the development of alternative approaches, such as tests

based on single and multiple contrasts.



The thesis is roughly outlined as follows. Chapter 1 presents an overview of the most
important procedures in the parametric case of normal data for testing on equality of several
means under total order restriction. Emphasis is given on Williams’ 7 — test, the LRT of
Bartholomew, Marcus’ (1976) modified ¢ — test and single and multiple contrast tests. Other
methods are briefly mentioned and their links to existing tests are established. Further on,
general notations and basic concepts important for the reading of Chapter 3 through 7 are
introduced. The example of comparing the conversion efficiency among several larva stages
of Eupromus ruber is analysed in detail and provides additional motivation for improving

Williams' test.

As already pointed out, the null distributions of multivariate tests considered in the present
context are in general difficult to compute. When developing the ideas of multiple contrast
tests further in Chapter 3 through 7 we need the ability of computing both the multivariate
normal and multivariate ¢-distribution under several aspects. Chapter 2 provides a discussion
in depth of this topic. Theoretical results, as far as required, are cited or proven. Numerical
algorithms for the calculation of both multivariate distribution functions are introduced, which
can be applied to a variety of different problems and situations. This chapter provides the
theoretical and numerical fundamentals for the remaining thesis. Important developments are
achieved in evaluating the null distributions of the LRT and MCTs in the general unbalanced

set-up.

In Chapter 3 we will focus on appropriate choices of contrast sets. The problem of the
empirical determination of contrast coefficients is discussed. Based on the approaches of
Williams, Marcus and Bartholomew, three attempts of new definitions are made. An useful

result for possible high dimensionality problems in connection with MCTs is derived.

With these new formulated test statistics we provide an extensive power study for normal
distributed data in Chapter 4. A power function in closed form for arbitrary multiple contrast
tests is derived and optimal sample size determination is discussed. We compare the three
mentioned MCTs with the corresponding original versions for a variety of scenarios,
including different total sample sizes, variable sample size allocations within the groups and

the influence of the choice of a predefined & among other aspects.



In Chapter 5 generalisations to the binomial case are given. We establish asymptotic power
and sample size functions in closed form for single and multiple contrasts. Alternative
methods are discussed where the derivation fails to succeed. Further on, we generalise the
concept of dichotomous contrast tests developed so far. Among other topics we introduce a
continuity correction and discuss its appropriate definition. We compare pooled with
unpooled asymptotic versions and develop the ideas of Neuhduser (1996) further by providing
conditional and unconditional exact MCTs. Brief power and size comparisons are given for
each topic. Finally, an example analysed in detail illustrates and summarises the main ideas of

the chapter.

We will focus on the important point of estimating the MED in Chapter 6. Instead of testing
the global null hypothesis only, we sequentially conduct several tests according to the closure
principle of Marcus et al. (1976). Further assumptions of monotonicity and restricted
comparisons to the control lead to simple testing procedures, where at each step a conditional
testing at full size « is allowed. An outlook on other dose estimations, such as the maximum

effective dose, is given.

In the final Chapter 7 we summarise our results and try to provide advises to the practitioner
as far as possible. Afterwards, further applications are investigated briefly. These include a
short discussion about other order restrictions than the simple ordering. Additionally, the
cases of non-parametric analysis and variance heterogeneity are considered among other

topics.

Appendix A contains the balanced contrast sets of the proposed tests in Chapter 3 up to
dimension six. Appendix B includes some of the algorithms used throughout the thesis. Most
of them will refer to Chapter 2. Because of the widespread use of the statistical computation
package SAS in statistics and its applications, most of the algorithms presented and
calculations provided were implemented in SAS, version 6.12. The use of other software is

mentioned at the respective passages.



1. Survey of trend tests for normal means

In this chapter the most important procedures from literature for testing the equality of several
means under total order restriction will be reviewed. But before doing this we introduce some
basic notations in the first section, which will be valid for the whole thesis. Afterwards we
review briefly the theoretical aspects of maximum likelihood estimation under total order
restriction. The results stated here are fundamental for the understanding of the presented
trend tests in Section 1.3. These are the procedures due to Williams (1971), Marcus (1976)
and Bartholomew (1961), which are all based on the principle of maximum likelihood
estimation. Finally, a different approach due to Mukerjee et al. (1987), the multiple contrast
test, 1s also discussed in this section. Common to all these four approaches is their importance
in the course of this thesis. In the last Section 1.4. we touch briefly on other procedures and try

to demonstrate their relationships to the preceding trend tests discussed in Section 1.3.

1.1. General notations

Suppose the following randomised fixed effect one-way layout model

X, =M1, +€&, i=0,1...,k j=1..,n,

with one control group and k treatment or dose levels, labelled by 0, 1, 2, ..., k, respectively.

Let {X U} be the sample values, identically and independently normal distributed with the
y

unknown means f,, i,, ..., ;, and common variance ¢°, i.e. X, ~ N(,ul., 0'2). The variable

n; denotes the sample size of the i group. For most parts of this thesis we therefore impose
no restrictions on the sample sizes, but assume that the unknown variances are equal between

the treatment groups. We denote further the sample mean 2 /, X; / n, by X, fori=0,1,..., k

and by s* = Z:‘)Z’:# the pooled variance estimator with v = Zin[ —(k+ 1) degrees of

freedom. Our goal is to test the null hypothesis of no effect between the k + 1 dose groups



Hyply =1, =...= lU. (1.1)

When applying the classical ANOVA, the alternative is generally formulated as
H\:3i,j pu, EUIFE], 0] E {O, 1,..., k}. The F-test therefore states only differences of
any two treatment groups and allows no further conclusions about their identification. This is
clearly not an appropriate way of testing in our situation. The first modification is therefore to
consider comparisons to the control only. The corresponding (two-sided) alternative would
then be stated as H: i u, # 1, i € {1, 2, ..., k}. For such situations the tests according to
Dunnett (1955, 1964) in the parametric case and to Steel (1959) in the non-parametric case are
standard. But again this alternative is not suitable to the present interesting context, because
we assume a relationship among the means u; to hold. If there is any difference between the
treatment levels, we assume the response to increase (or decrease) monotonically with respect
to increasing levels. In the first example given in the Introduction it is natural to assume that
for higher development stages the conversion efficiencys, if at all, decreases. We therefore take
such monotonic dose-response dependencies into account and restrict the alternative space

again by formulating the one-sided hypothesis

Hy:py<pu <SS, 1y <pM,. (1.2)

This means that the x,’s are (not necessarily strictly) ordered with respect to ’<’. If H, is
rejected, then we conclude due to our prior knowledge that a global trend over all included
k +1 groups indeed exists. Without loss of generality we limit the analysis on increasing dose-
response functions. Situations with decreasing responses are reduced to above constellations
by reverting the signs of the data. Furthermore, we consider only one-sided alternatives
throughout this thesis. Generalisations to two-sided cases are possible and mostly straight

forward.

The following important remark seems to be appropriate at this stage. It should be noted that

the incorporation of the two assumptions

e comparison to the control, only,

e monotone restriction of the alternative,
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must be seen in the context of searching for better tests in terms of power. The inclusion of
prior information as done above leads to more powerful tests in comparison to those which do
not take the ordering of the means into account. Tests for trend are therefore recommended
here. However, caution is advisable, if the practitioner is not sure, whether this kind of
underlying dose-response shape really holds. Bauer (1997) showed that already small
departures from the assumed alternative may lead to inappropriate results if trend tests, such
as those presented below, are used. They are then not useful in the sense that they do not
control the probability of incorrectly declaring a dose to be effective when in fact it is not
effective. Irrespective which trend test is going to be conducted, the decision for its use should
always be done under this aspect and the context of the application should be analysed
carefully before looking at the data. Generalisations to situations, in which a possible
downturn at high doses can not be excluded a-priori, are handled by Simpson and Margolin

(1990) and Pan and Wolfe (1996) among others, but will not be analysed here.

1.2. Maximum likelihood estimators under total order restriction

The problem is to investigate independent random samples from k +1 normal populations
with means g, i, ..., i, and common variance ¢~. Recall the null hypothesis (1.1) of no
effect and that we restricted the alternative to (1.2) for our applications. The aim is now to
derive the maximum likelihood estimator (MLE) of the population mean vector
w= 1y, 1y, ..., ,uk) under both hypotheses. This was first done by Brunk (1955) under
rather general aspects. The description here, however, follows more closely the representation
of Robertson et al. (1988, p. 6). The derivations presented below are fundamental for the tests
of Williams (1971), Marcus (1976) and Bartholomew (1961), as all three use these estimates

in their proposed statistics.

First note that the corresponding likelihood function is given by

11



1 1 &
L(X, X,,.... X, |u, 0')=( - )N -exp{——z
O~N 2Tl i

where N = 2,» n, is the total sample size and X, = ( X X mi) the data vector of the i

group. To obtain the MLE under H,, take the logarithm of L

;

N 1 & 2
1ogL=—710g(2;z)—Nlog(a)—ggj I(X,.j - ;) (1.3)

(log L

and set its partial derivative - =0 (notice that under H, u,=... =, = u). This yields

the well known result

k k
(X, —u) = (Xy—u+ X, —p+ ...+ X, — )= Y n(X, - ) =0.

i=0 j=1 i=0 i=0

This means that the vector X = ()7 0 X Lo eens X k) is the unrestricted MLE of u.

We now direct the attention towards the MLE under the restricted alternative. Looking at the
log-likelihood function (1.3) above we notice that the MLE subject to g, < g, <...<u, is

given by the minimisation of

i=0 j=I1 i=0 0 i=0
k% 2 & — 2

:z(; 1(XJ_Xi) +Z(;n(Xl—,Ltl)
=0 j= i=
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Because in the last equation the first term does not depend on u the restricted MLE

it =iy, ft,, ..., i1, ) minimises

k

Yo (X, -u) (1.4)

i=0

with respect to p,<pu,<..<pu,. Before we continue searching for an explicit

representation of iz we give the following definitions.

Definition 1.1.: Let X ={x,, x,,..., x,} be a finite set with the simple (or total) order

X, <x,<...<x,. A function f on X is called isotonic subject to the given ordering if

f(xo)Sf(x,)S... Sf(xk).

Definition 1.2.: Let g be defined on a finite set X = {xo, Xy eens xk}. A function g* on X is

called an isotonic regression of g with weights w =(w,, w,, ..., w,) subject to the simple
ordering x, <x, <...<x, under the L,—norm, if g* is isotonic and minimises

erx [ g(x)-f (x)]zw(x) in the class of all isotonic functions fon X.

Lemma 1.1.: With above notations the restricted MLE of k +1 normal means with respect to

Mo Sy S .. <, is given by the isotonic regression f of X =(X,, X,,..., X, ) and
weights (ny, n,, ..., n,).
Proof: Define in above derivation the k+1 treatment groups by D,, D,,..., D, and

X ={D,,D,,.... D,}. Let further g(D,)=X, and w(D,)=n, for i=0,1,...,k. The

assertion follows directly for g* = it from Definition 1.2. and above calculations

We therefore have managed to reduce the calculation of the MLE for ordered means to the
problem of solving the minimisation problem (1.4). With Lemma 1.1. we conclude further
that this is equivalent to determine the isotonic regression in the sense of Definition 1.2.
Starting with this intermediate result we proceed forward and make use of various algorithms

available for the computation of g *, i.e. /.
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The pool-adjacent-violator algorithm (PAVA) according to Ayer et al. (1955) is the most
widely used algorithm to compute the isotonic regression. In the context of searching for
restricted MLEs the process can be described as follows. First look, whether
)70 < Y, <..< )?k. If it is the case then set ,[tl. = )71., i=0,1,..., k, and the procedure finishes

with it = ()7 0o X k) being the sought restricted MLE. Otherwise there is at least one i, so

that X, > X,. Replace X,_, and X, by the single mean

From now on repeat these steps by treating X i-1; as a single mean with corresponding weight

w,_,; =n,_, +n, until the remaining amalgamated means are completely ordered. At the last

1

stage the mean X,_, . isreplaced by j+1 means [I,_;, ..., it,_, jI; with the same value as

i i—j°

the amalgamated mean. This provides the restricted MLE, which consists of the final vector of

k+1means 1= (L, [, ..., [L,).

With above algorithm we are finally able to calculate fairly simple the restricted MLE with
respect to the total order. The implementation of the algorithm is straight forward and the
computations conducted quickly. Though we still have no closed formula for the f,’s yet. The
next lemma solves this disadvantage by going one step further. It is based on the max-min
formulas for isotonic regression, compare e.g. Robertson et al. (1988, p. 23). But the
equivalence between the following analytical expression and the PAVA described so far can
be seen directly when writing the maximum and minimum terms out in full. With this last link

we are now able to state
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Lemma 1.2.: For given weights n,, n, ..., n, and normal means (,, 4,, ..., i, the maximum

likelihood estimates /1, subject to the simple order restriction (1.2) are given by

[t = max min <" , (1.5)

0<usi isv<k A

where Yl = ZiXU/n,. are the sample means fori =0, 1, ..., k.

A purely analytical proof of the fundamental theorem that the amalgamated means are the
solution to the isotonic regression problem is given in Cheng (1995). In the Appendix a SAS
implementation of these max-min formulas is provided. The rather theoretical results obtained

so far are best illustrated by applying Lemma 1.2. and the PAV A to an example.

Example 1.1.: Barlow et al. (1972, p. 18) report the number g(x,.) of days to freezing for Lake
Mendota/USA, which were collected to study local environmental influences. Note the
missing randomisation of the underlying experiment and that the example is therefore
inadequate for statistical purposes. Nevertheless we use this data set as an appropriate

example to explain the principle of restricted MLEs. The measurements were done each

Year 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
X; 1 2 3 4 5 6 7 8 9 10 11 12
g(x) 25 13 2 15 14 21 9 33 25 15 21 25

Step 1 o o
Weight 3 2 2 3 1 1

Mean 40/3 =13.33 2912=145 302=15 73/3 =24.33 21 25
Step2 —
Weight 3 2 2 4 1
Mean 13.33 14.5 15 94/4 =23.5 25

Table 1.1. Days to freezing for Lake Mendota/USA.
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year from 23 November on for a total period of 111 years beginning in 1855. As
considering the data for the purpose of illustration only we restrict the evaluation to the
first 12 years, given in Table 1.1. The variable x; stands for the corresponding measured
year 1854 + x,. Because the investigations were conducted to detect a possible warming
trend over the years, the simple order is defined as increasing values for g(xl.) with
progressing years. Having a first look on the data one immediately notices that they are not
completely ordered. We assign each year the starting weight w, =1, i=1,2,...,12.

Already for the first two years g(x,)=25>13=g(x,), i.e. the ordering is violated. We

therefore replace both by the average value g(xm):%z 19 and assign it the new

weight w, =1+1=2. As g(xm) =19>2= g(x,), the monotonicity is violated again and

we replace both means by g(x,,m):M: 13.33. After pooling every decreasing sub-

2+1
sequence the middle part of Table 1.1. is yielded. It contains all amalgamated means at this
first stage and the corresponding weights. In the second pass through the data we compare
the remaining means and pool them, if necessary. We note, for example, that

g(x&g,lo) =24.33>21=g(x,,) and therefore violates the simple ordering. Averaging both

yields the new mean g(x8,9,10,11)=23.5 with the total weight wg,,,,, =3+1=4 and we

replace the preceding means by the single new calculated one. The lower part of Table 1.1.
illustrates this last step and presents the completely ordered amalgamated means. Finally,
the values in the original data set are replaced by the new means according to their weights
to obtain the restricted MLE i = (13.33, 13.33, 13.33, 14.5, 14.5, 15, 15, 23.5, 23.5, 23.5,
23.5, 25) for this example.

Before we leave this section the reader is referred to the books of Barlow et al. (1972, Chapter

1 & 2) and Robertson et al. (1988, Chapter 1) for a deeper approach and understanding of this

subject. They contain not only the missing proofs omitted here, but they introduce the isotonic

regression from a generalised point of view. As a matter of fact, we keep focusing on the

simple order, as this was the starting point of our considerations and remains being our main

purpose.
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1.3. The trend tests according to Williams, Marcus, Bartholomew and

multiple contrast tests

1.3.1. Williams’ 7 — test

The starting point of all considerations in this thesis is the trend test according to Williams
(1971, 1972). In his first paper, Williams introduced the new test statistic for normally
distributed data in the balanced set-up and provided critical values (upper 1% and 5% points)
for different number of treatment groups and varying degrees of freedom. In the follow-up
paper Williams generalised his test to situations of unequal replications and discussed their

optimal allocation for a fixed total number of experimental units.

The test statistic is given in the general set-up by the pairwise ¢-type statistic

= H =Xy (1.6)

and is easily implemented numerically. Here, s° and v are the usual variance estimator and
degrees of freedom given in Section 1.1. The MLE £, is obtained by using Lemma 1.2. or
applying the PAVA from Section 1.2., but with the difference of excluding the control group
from the amalgamation process. Note that in his first paper, Williams included X, both in the
description of the procedure and in the given numerical example. But when deriving the null
distribution in order to determine the critical values, the control group was excluded.
Similarly, YO is omitted throughout in his follow-up paper (1972). Tamhane et al. (1996)

noticed to this topic:
“Actually, both ways of calculating the isotonic estimates lead to identical estimates i* of the

MED as well as identical t—tests for testing it. Hence, it does not matter which way they are

calculated.*
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Based on theses facts we therefore continue by excluding X, from the pooling procedure.
However, one main disadvantage of the 7 —test is the arising null distribution, which is
difficult to compute, especially for unequal replications. For the balanced case upper critical
points for several combinations of ¢, k and v are tabulated (e.g. Williams, 1971). For the
partial balanced case, i.e. equal number n of observations in the treatment groups
(ny#n,=n,=...=n, =n), Williams (1972) derived an empirical approximation, based on

the values of the balanced set-up,

f (W)=, (1) =107 A(1- 1), (17)

Here, w = n,/n denotes the ratio between the number of replicates in the control group and the
remaining groups. The factor £ is extrapolated from accurate values and depends on k and V.

Finally, for w=1 the relationship 7, (1)=17,, leads to the balanced quantiles. In the

meantime, Williams’ procedure is available in SAS (SAS Institute Inc., 1997, p. 987) for the

balanced case by the call
PROBMC ('Williams',quantile,probability,V,k); (1.8)

In this statement either ‘quantile’ or ‘probability’ has to be defined, while the other value has
to be set as missing ‘.. Up to k=15 both quantiles and p-values are calculated fast and
accurately, but for higher dimensions the computation is very expensive and slow. For the
general case of unequal sample sizes, however, the evaluation of Williams’ distribution still

seems to be a challenging task, as no algorithm for its computation is available.

Several approaches for generalising Williams’ original statistic to other situations have been
published in the literature and a small overview is given in the following. For the general non-
parametric set-up Shirley (1977) extended the 7 — procedure via ranking over all groups using
the asymptotic version of the original test (infinite degrees of freedom). Next Williams (1986)
suggested a slight modification of her method in order to improve the power (using the subset-
ranking method instead of the k-ranking). House (1986) provided a non-parametric version for

randomised block designs based on Friedman-type ranks.
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For the dichotomous case Williams (1988) himself extended his procedure and proposed a
conditional exact test based on the multivariate hypergeometric distribution under the null
hypothesis. Mount (1999) modified the 7 —statistic for binomial parameters for comparing
two doses to a control (k = 2). He derived an asymptotic distribution close to, but not the same

as, a standard normal distribution.

A robustness study was carried out by Hothorn (1989) on the behaviour of both Williams” and
Shirley’s tests under violation of the normality assumption, variance heterogeneity, non-
monotonous dose-response shapes and unequal group sizes. Tsai and Chen (1995) proposed a
robustified statistic by using robust estimates (M- and trimmed estimators) instead of the
arithmetic means X,. The new procedures are supposed to be robust against outliers and

deviations from normality.

1.3.2. Marcus’ 1 ™ — test

Williams (1971) already proposed a modified version of (1.6) by replacing X, by f,, where
[L, is obtained by using Lemma 1.2. Marcus (1976) succeeded then in deriving the exact null

distribution of the new statistic

-mod _ M —Hy
l‘knj:: N ek (1.9)
S\ g
But as “... the computation of exact o —quantiles ... requires k-variate numerical integration

. we computed only the 5% and 1% quantiles for k = 3 and 4. The derivation of an
algorithm for calculating quantiles or p-values for general k has not been solved until Hayter
et al. (1999a). They managed to decompose the involved k—variate integral into a series of
nested lower order integrals by using a Markov property of the arising random variables.
Recursive integration techniques can then be applied.

From now on we will call ¢

mod

Marcus’ test. In the literature it is also referred to as the
modified Williams or the isotonic range statistic. Critical values of this statistic are given in
Hayter et al. (1999a) for several constellations of & and degrees of freedom. Already Marcus

ZT mod

(1976) conducted a power simulation study and compared both 7 — and —procedures for

19



several parameter configurations. She found out that 7 has a higher power for dose-response

shapes of the type u,<u,=...=pu, (concave profiles), whereas ¢

mod

is better for

mod

MHo=M, = ... U,_ <M, (convex profiles). Overall her data suggest that on average ™ is
slightly better than ¢ . Cohen and Sackrowitz (1992) showed that Marcus’ method is

inadmissible and proposed a better test for k = 2 by using the total sum of errors instead of s°.
1.3.3. Likelihood ratio test

The likelihood ratio test (LRT) for homogeneity of normal means under total order restriction

was first introduced by Bartholomew (1959). With the variance o known, Bartholomew’s

o e . — k ~ —\2 — k — X
test statistic is ¢, :z,-:oni<ﬂi_x) /0'2, where X:z nAXi/N is the overall mean

i=0 L
estimator and /1, are the MLEs according to Lemma 1.2. In the following we will focus us,
however, on the in practice more important case of an unknown common variance, estimated
by the mean square error s* with v= N —k —1 degrees of freedom. Bartholomew then showed

that the LRT is based upon the statistic

k . k .
. Zni(:&i_x)z Zni(:&i_x)z
E=—F° -= = — (1.10)
2 (XU—)?) Zni(ﬁi—X) + ni(ﬂi—Xi) +us”

k
i=0 j=1 i=0 i=0

=

The E; involves the ratio of the between groups sum of squares zlioni(ﬁi -X )2 after

amalgamation and the total sum of squares. It can therefore be interpreted as an ANOVA—-F—
test analogue under total order restriction. Bartholomew (1961) already succeeded in deriving
the null distribution of E;. But quoting the main results we will again follow the

representation of Robertson et al. (1988, pp. 68).
Recalling Definition 1.2. of an isotonic regression we first introduce the level probabilities

which repeatedly arise later on. We call those subsets, where the quantities arising in (1.5) are

constant, level sets.
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Definition 1.3.: Let ue H, and w =(n,, n,, ..., n,). Further, let ¥, ¥, ..., ¥, be independent
random variables, ¥ ~ N (,ui, 0'2). Further on, we set M the number of level sets in Y*, the

isotonic regression of Y = (YO, Y, ..., Yk) Then we call the quantities

level probabilities. The level probability P(l, k +1; w) is therefore the probability that the

isotonic regression function Y* takes exactly / distinct values. By definition it follows that

P k+ L w)=1.

=1

The following fundamental lemma shows that the null distribution of E; can be stated as a

weighted sum of F—probabilities.

Lemma 1.3.: Letue H and ¢ € R. Then

T S w N-Il ¢
P(E}2c)=) P(l, k+1; w)P(B,,,’N,l Zc) => P(l, k+1; w)P(F > )

1=1 =2

where F, |, is a random variable following a F—distribution with v, and v, degrees of

freedom and B, , is a beta—variable with parameters a and b.

Proof: See for example Robertson et al. (1988, pp. 70).

With Lemma 1.3. we have the general form of the null distribution of E;, but to make use of
this result the values of the level probabilities P(l, k+1; w) have to be obtained. These
probabilities involve the evaluation of multidimensional integrals. The arising numerical
difficulties are one main reason for the restricted use of the LRT throughout the literature. In
fact, there are several possibilities in calculating these integrals, but we postpone their
representation to Chapter 2. A SAS/IML program is presented there, which computes for
arbitrary weights w the required values in few seconds at an accuracy of more than 107 up to

k=11.
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In the passages above we have introduced the statistic of the LRT and have given a basic
notion of its null distribution. As already mentioned in the Introduction, the LRT is supposed
to have good ‘average’ power throughout the alternative space Hy. This has been shown by
several power simulation studies (see for example Marcus, 1976 and Turnbull et al., 1987).
However, the LRT has been regarded for a long time as difficult to implement and therefore a
great variety of simplifying approximations to the LRT exists. Leaving the concrete numerical
evaluation for Chapter 2 we finish this subsection with some recent developments in the
literature on the LRT. For a broad overview up to 1988 the reader is referred to Robertson et

al. (1988, Chapter 3).

It can be shown that the alternative parameter space of the classical LRT is a pointed
polyhedral cone and that the null hypothesis is a linear subspace contained in the boundary of
the cone. Making use of an idea dating back to Pincus (1975), Akkerboom (1990) and
Conaway et al. (1991) independently used a ‘circular likelihood ratio test” (CLRT) and found
that the power of the CLRT was close to that of the classical LRT. Moreover, because of its
simpler geometric nature, its use is supposed to be easier to handle in both balanced and
unbalanced situations. Recently, Tang and Lin (1997) developed an ‘approximate likelihood
ratio test” (ALR), which is based on an orthant alternative cone and has according to their
results good power properties as well. Hu (1998) presented an exact algorithm for projecting a
vector onto a polyhedral cone in relatively low dimensions. Finally, Wright (1988) introduced
a modified likelihood ratio test (MLRT) by using the usual mean square error instead of the
total variance. He derived the null distribution of the new test (which is similar to the original
LRT) and showed the asymptotic equivalence between them. A simulation study suggested

that the MLRT is more robust against violations of the hypothesised orderings.

1.3.4. Multiple contrast test

The concept of multiple contrast tests (MCTs) will be very important in the course of this
thesis. Therefore much attention is given to its introduction. It was first described by Mukerjee
et al. (1986, 1987). Older articles exist which mention or deal with MCTs, but none of them
introduced them thoroughly (see for example Dwass, 1960, Dunn and Massey, 1965, Knoke,
1976, and Mehta et al., 1984). The main reason in developing such a new test was to have a

test with similar power behaviour as the LRT though still easy to use.
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From the geometric starting point, which led Mukerjee et al. (1987) to the new test, the MCT
“... is associated with a set of vectors that are ’strategically’ located within the alternative
region.* The aim of this approach is therefore to cover most parts of the alternative space by
choosing some selected vectors within this space and conduct the MCT with respect to this
grid. However, we leave these geometrical considerations and introduce the statistic rather
analytically. Recalling the notation of Subsection 1.1. we test the null hypothesis (1.1) of no

difference by defining the standardised statistic of a single contrast test (SCT) as

zklci)?i

T5€ =40 ~¢ . (1.11)

2 1%
X E
2
i=0 T

Formulating the statistic 7°¢ as a quotient of a standard normal variable and an independent
chi variable with parameter v, it follows by definition that 7°C is univariate central -

distributed with v degrees of freedom. The weights ¢, denote the contrast coefficients under

the sub-condition Zci =0. Besides this limitation, the choice of the ¢;’s is free and

numerous proposals concerning their (optimal?) choice have been published. Nevertheless,
this problem has not been solved satisfactorily in the literature and is still an open question of
research. We leave this issue for Chapter 3, where a detailed review and discussion follows.
Instead, we illustrate the consequences, when choosing a poor set of contrast coefficients and

no prior information on the underlying dose-response shape is available.

Example 1.2.: Suppose that we compare k = 3 doses of a compound to a negative control.
Further on we investigate the two contrast vectors ¢, =(—1, -1, =1, 3) and ¢, =(-3, 1, 1, 1).
We analyse the power of the resulting SCTs 7,°° and T;’° for two different dose-response
shapes: (O, J, 0, 5) and (O, 0, 0, 5), where § denotes the shift parameter. In the first case
(concave profile) the lowest dose has already an effect of size J in comparison to C—,
whereas the remaining doses have no additional influence. In the other case (convex

profile) only the highest dose has an effect (of size ) with respect to C—, but the two low

doses have no increased effect at all.
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Figure 1.1. Power comparison of 7;* (dotted line) and 7, (solid line), balanced case with sample size

allocation (10, 10, 10, 10), o= 0.05, k =3 for (a) & = (0, 8, 8, §) and (b) 1 =(0,0, 0, 5).

The power function follows a non-central univariate r—distribution. For the representation
of the noncentrality parameter we refer to Chapter 4. From Figure 1.1. it becomes clear,
how much SCTs may depend in terms of power on the underlying dose-response shape.
The effect of the contrast coefficients in 7;° is that they pool the lower treatment groups
and compare the resulting average value with that of the highest dose. This is meaningful
when the effects of the pooled treatments are similar and therefore 7;°° behaves well for
convex profiles. For concave shapes, however, the pooling of groups with different effect
sizes has a negative influence on the test statistic and therefore the power decreases

markedly, resulting in a loss up to 60%. Similar arguments hold for 7;*, too.

From Example 1.2. the strong shape-dependence of SCTs becomes evident. The crucial point

now is that these shapes are in general unknown a-priori — a situation of frequent occurrence

in

real data examples. Ignoring this important fact is common practice but can not be

accepted. The problem of a-priori unknown shapes even increases in at least two cases:

e testing sub-hypotheses by using the closure principle (see Chapter 6 for an application);

® investigation of stratified designs because of varying strata specific shapes.

It seems highly unreasonable to assume that the same dose-response shape holds for all sub-

hypotheses, respective for all strata.
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The approach of the MCTs overcomes, at least partially, this disadvantage. As pointed out in
the quotation above, it seeks to locate several ‘grid-vectors’, i.e. contrast vectors, as good as
possible in the alternative space. The resulting test statistic builds just the maximum over g of

such single contrasts defined in (1.11):

T =max{T*, ..., T*}. (1.12)

As the distribution of {z, i X,y onns zi C,i X, i} is multivariate normal, the joint distribution of
the 7°“'s will by definition (see Section 2.2. for further details) be a central g—variate 7—
distribution with v degrees of freedom and correlation matrix R = {pl,m}] , lLbm=1,...,q.

The entries of R consist of the correlation between each two of the g contrast vectors and are

computed according to the following

Lemma 14.: For two SCTs 7 and T’ as defined in (1.11) the correlation

p= Corr(T,SC, TZSC) under H is given by

k
~061i%2i /”

p= ' (1.13)

\/(Z cn/m )(Z_ Cz,/n)

Proof: By Definition 2.3. of the multivariate 7—distribution it is sufficient to consider the

correlation of the bivariate normal vector (X, Y) (Z c; X, Zczl)? i). Under H, we get:

1]
l
M
A
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2
— o
= zcliCZi e
i=0

Cov(X,Y)
Var(X)Var(Y)

\/ Var(X)Var(Y) = 0'2\/ (220%)(210%) into account.

Because of p=Corr(X,Y)= above assertion follows directly when taking

Example 1.3.: One example of MCTs is the parametric many-to-one test of Dunnett (1955),
already introduced in Subsection 1.1. In this set-up several, say k, treatment groups are
compared to a control. Dunnett’s test statistic takes the maximum over the k pairwise t—

tests treatment versus control. In our notation this leads to the k X (k + 1) contrast matrix

-1 100 ... 0
-1 010 ..0

t
C=(c,....c,) =
-1 000 ... 1
The matrix contains g =k contrast vectors and each of them contrasts the standard with

one treatment group. The correlation between two arbitrary contrasts is according to (1.13)

given by

710 _ n n, _
Pim = \/(LJFL)(#FL) _\/nOJ:n, \/n0+nm, I,m=1,..., k. (1.14)

Up to now we have introduced the concept of MCTs and gave a brief geometric insight of the
test statistic. Furthermore we could easily state the null distribution, but did not discuss the
remaining problem yet, how to evaluate the multivariate t—distribution numerically. Similarly
to the LRT, the null distribution involves the calculation of multidimensional integrals — a
challenging task and until very recently not solved in the literature for arbitrary correlation
matrices R. Again, we leave this numerical issue for Chapter 2, where several computational
algorithms are presented together with an overview of the required properties of the multi-z-

distribution. However, we can not go further without stating the following
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Remark 1.1.: To avoid misunderstandings, it is important to notice that for evaluating general
MCTs we seek for a computational method to calculate multivariate t—probabilities for
arbitrary correlation matrices R. Frequently, some k—sample tests have a multi-z-
distribution with a very special correlation structure. In these cases the high dimensionality
can be reduced to lower order integrals and the evaluation gets much simpler. Dunnett’s
test of Example 1.3. is such an example. Here, the so-called product correlation structure is

valid, i.e. 3J4,,4,:p,,, =44, Vi,m. Based on equation (1.14) for Dunnett’s test

A, =4/ 1is yielded. Unfortunately a similar relationship has not been found yet for

n0+nl
arbitrary MCTs and therefore the need for a general computation method, provided in

Chapter 2.

Remark 1.2.: Another way of defining contrast test statistics is to include the sample sizes in

the numerator

TSC z, Onlch

S\ D G

with the contrast ensuring equation 2 _,/4¢; =0 and the ¢'s ordered as ¢, < ... <¢;. This

form is frequently used in the literature, too (see for example Marcus and Peritz, 1976, and
Miwa et al., 1999). However, pattern (1.11) turns out to be more flexible for our purposes

and we therefore continue using this representation.

An important tool to be used frequently in the course of the thesis is the following property. It

states that contrast tests are closed under multiplication by a positive scalar.

Lemma 1.5.: Let ¢, and ¢, = Ac, be given contrast vectors, 0 < A € R. Denote by 7;° and T,

the corresponding single contrast tests. Then 7;° = T;°° holds.

k _
zl o2 %Ki 12[ o"' i _Tsc
NSNS

Proof: The assertion follows directly from 7,°° =
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Multiple contrasts form a very useful class of tests, which covers many different test statistics
in the k—sample situation. Somerville (1997, 1999) provides a list of several multiple
comparison procedures (not necessarily designed for order restricted testing), which can be
formulated as MCTs. Among other tests we quote the many-to-one approach of Dunnett
(1955, 1964), Tukey’s (1953) all-pair comparison and Hsu’s (1984) multiple comparison with
the best. Moreover, as we are going to see, all of the trend tests, which are reviewed briefly in

the subsequent Section 1.4., can be written as MCTs, too.

Recall from the Introduction that the main purpose of the present thesis is the development of
Williams’ test to unbalanced and other situations. One way to do this is to try to define an
appropriate contrast definition and to use the theoretical and numerical results regarding the
multivariate r—distribution. This is done in Chapter 3, together with a generalisation of
Marcus’ test to multiple contrasts and a new proposed contrast definition, which bases rather
on analytical than empirical reasons. Even the LRT presented in Subsection 1.3.3. can be

regarded as a MCT according to Robertson et al. (1988, p. 189):

“..it can be shown that the LRT statistic may be expressed as the maximum of an infinite

number of contrast statistics.

This has first been shown in the case of known variances by Marcus and Peritz (1976). Miwa
et al. (1999) stated the equivalence between the MLRT of Wright (1988) and the maximum
over all ordered contrasts stated in Remark 1.2. Another view on the relationship between the

LRT and contrast tests has first been pointed out by Hogg (1965):

Lemma 1.6.: Let /, be the amalgamated means according to equation (1.5), X the overall
mean and the variance ¢ known. Then the adaptive single contrast test with coefficients

¢, =1, — X is the same as 7;, where i =0, 1, ..., k.

Proof: Because of 2;;0 nil, / N = 2;;0 nX. / N = X we have by replacing appropriately

k

Son(it - X)X, = Yt - NX* = Y, - X) = 7.

i=0 i=0 i=0
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Finalising, the importance of MCTs can not be underestimated in the context of multiple
comparisons. They form a certain unifying class of tests, where many multiple tests (and most
of the frequently used one) are contained. We quote again Robertson et al. (1988, p. 189), who

wrote with special focus on order restricted testing:

“While some of the ad hoc tests in the literature are such multiple contrast tests, they do not
seem to have been developed from this point of view. The question of which MCTs are optimal

is an important and challenging open problem in order restricted inference.
1.3.5 Example

To illustrate the above presented methods for detecting trends we analyse the first example
given in the Introduction. We apply the approaches of Williams, Marcus and the LRT. In
contrast, we do not cover the MCTs here but leave them for Chapter 3, where a detailed
discussion concerning an appropriate choice of contrast coefficients follows. The same
example will be caught up there again and the obtained results there will be compared to those

given below.

Example 1.4.: Remember the study of Banno and Yamagami (1989), who investigated the
conversion efficiency of ingested food (E.C.1.) of Eupromus ruber larvae. The descriptive
statistics were given in the Introduction and we want to investigate, whether the E.C.I.
decreased monotonous with respect to the development stages. From the quantities given
before we calculate the mean square error s* =0578 and V=382 degrees of freedom.
Variance homogeneity is supposed to hold, though the data show some departure from this
assumption. Moreover, we also regard the independence condition as given for we assume

that no larva was investigated twice in different development stages.

Williams’ test

Because the MLEs /i, are the same as the arithmetic means X, the test statistic is straight

forward to compute:

_ i -X, 2415-1669

feo = =
5.82 1 1 11
Sw ta 076y +7

=1.799.
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The problem arises upon an interpretation of this quantity. Williams (1971) provided
critical points for the balanced case only, as the SAS-call (1.8) does. As no approach for
calculating p-values in unbalanced settings seems to exist, two working solutions might be
adequate. First one can use the null distribution from the balanced set-up in the hope that
the resulting error gets not too large. Applying the call (1.8) one computes p=0.0479,
signalising a weak significant trend. One would reject the null hypothesis of no
(decreasing) effect. On the other hand, one can try to simulate the p-value. In order to
estimate the corresponding p-value a SAS-program is provided in the Appendix, which
simulates under the null hypothesis the distribution of Williams’ test statistic and
determines the fractile of the observed test statistic among the ordered simulated ones.
Applying this program on the present data set, we get for 9999 simulation runs the p-value
0.0373, a little smaller than the ‘exact’ balanced value. But how far can we trust this value?
We calculated the estimates for 50 different seeds and observed that the values varied from

0.0352 to 0.0426. From these results two conclusions can be drawn.

e The approximation of set-ups with unequal replications by use of balanced quantiles or
p-values should be avoided. No error bound exists and the error committed can be fairly
large. Bretz and Hothorn (1999) have shown in a simulation study that such an approach
does not control ¢, exceeding the pre-assigned 5%—level sometimes by more than 20%.

® The use of simulated quantiles or p-values at least reduces the 95%—coverage interval of
the true value to a width of less than 2% (9999 simulation runs). But such a result is still
not satisfying. Moreover, the simulation takes a long time and further analysis based on

such estimates get rapidly prohibitive in terms of time required.

We now make an experiment by inverting the last two group sizes and keeping the
remaining parameters constant, i.e. we analyse the same data set for X, s*, v and the MLE
,[zi's unchanged, but with n = (21, 10, 15,17, 4, 21). Calculating now the statistic we get
3.18 and a corresponding p =0.0011 (balanced set-up) respectively p =0.0017 (simulated
unbalanced case). This means that a mere switch of two neighbouring sample sizes leads to
totally different results. Starting from a p-value close to 5% we have now a p-value of 0.2%

for the same data set. This is due to the 1/, in the denominator of 7, ,. This leads us to the

conclusion that the test statistic does not incorporate sufficiently the sample size allocation

and therefore the whole approach needs to be improved for general unbalanced set-ups.



Marcus’ test

One computes the same value f:‘z"sd =1.799 for the test statistic as in the case of Williams.

Using the program B.1.3 we get the p-value 0.0481. Similar to the Williams' program in
the unbalanced case, it estimates the p-values by use of a simulation procedure. Again we
have only a weak evidence for a trend in the data. Please note that the uncertainty induced
by the simulation leads to the problem that with a different seed set a-priori the estimated
p-value could lie well above 0.05. This means that the final decision (rejection or not of the
null hypothesis) in this real data example would depend directly on the pre-assigned value
of the seed. Moreover, the experiment conducted for Williams’ test by inverting the sample

sizes leads to similar results here.

Likelihood ratio test

k
Z”i(i‘i_y)z
Ei=1 Bep: ~ 6.6078 6.(?07882 057 1224
(i -X)V + S AT : +U+02-U.
;n,(ﬂ, ) ;),”,(ﬂ, ) +vs

The corresponding p-value is computed as 0.00393 and shows a rather strong evidence for
a significant trend. When comparing this p with the p-values of Williams or Marcus (close
to 0.05) a clear difference in terms of power seems to exist. But this is only true in parts,
for, as we have seen, Williams’ test improves considerably when making a minor switch of

group sizes. In this case the p-value around 0.2% lies close to that of the LRT.

We briefly describe two non-trend tests and compare their behaviour to those mentioned

before. According to Example 1.3. we calculate Dunnett’s test statistic

X — o | 2411-1669
1<i<k s\/%q-i 0.76\/ﬁ+i

=3.16.
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The corresponding p-value is 0.0052, which is only a little inferior to that of the LRT or
Williams’ approach for the modified data set (in which case 7, would not change much).
Bretz and Hothorn (1999) compared the power behaviour of 7, and 7, , for a variety of
conditions. They found out that Dunnett’s test has less power in most of the cases
investigated, but in fact the absolute differences were not too big. All in all ¢, behaved

well, especially for strong imbalances, as it is the case of the present data example.

When conducting the usual ANOVA-F-test, which is also performed without using the

monotonicity assumption, we compute

The resulting p-value 0.0535 illustrates the possible sharper inferences when taking the

prior information of the ordering of the means into account.

1.4. Overview of other trend tests

After the detailed introduction of the four tests mainly used throughout the thesis we shall

have a brief review of other trend tests proposed in the literature.

A maximum test based on a complete class characterisation of tests for multidimensional one-
sided alternatives (see for example Hirotsu, 1982) has been introduced by Hirotsu (1979,
1997). The approach includes simultaneous tests for the slippage alternatives

H:‘(j):,uoz...=,uj<,uj+1 =...=4,, j=0,1,..., k=1, which form a subregion of our
alternative space (1.2). The max ¢t method is given as the maximum component of

k+1

(D, Dkﬂ)f]D,iHZ‘l[Y— EO(Y)], where X =diag(s’/n;) is the non-singular covariance
matrix and Dy, =(d;) a kx(k+1) matrix with d; =—1if j—i=0, d; =1if j—i=1,and 0

otherwise. Considering that
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1 k=1 k-1 =2 ... =2

t -l
C= (Dk+1Dk+1) D, = m

we get the immediate representation of the max ¢ method as a MCT defined by the contrast
matrix C. Hirotsu et al. (1992) succeeded in representing the null distribution as a series of
nested lower order integrals by making use of some Markov properties of arising random

variables.

Another approach is due to Tukey et al. (1985). It was further successfully used by Capizzi et
al. (1992) and Antonello et al. (1993). The method consists of a test on slope in a linearised
dose-response regression model. It considers a small set of candidate dose scalings, all of
them highly correlated. In the original approach a p-value is computed for each of the
proposed scalings using the pooled within error variance s*. The global p-value is then
reported as the minimum p-value of the candidate set. Three different scalings were proposed
to define appropriate dose scores: arithmetic (use of actual concentrations C—, D,, ..., D,),
ordinal (equal step scaling O, 1, ..., k) and arithmetic-logarithmic (logarithms of the actual
doses). However, Mehta et al. (1984) have already stated the equivalence between this

approach and the contrast tests.

Mudholkar and McDermott (1989) decomposed the parameter space into k nested problems of
testing. The idea is to combine then the associated k independent p-values and to provide a
test for the overall null hypothesis H,,. Depending on the particular constraints and dose-
response shapes, different combination statistics might be used. Basically, the k proposed test

statistics reduce to k SCTs with contrast coefficients of the form

-1, j=0,1,...,i—-1
c. =< I, j=i , i=1,..., k.

0, else

The application of Tippett’s minimum method is equivalent to orthogonal contrast tests and

the use of Liptak’s criterion leads to the SCT proposed by Abelson and Tukey (1963).
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McDermott and Mudholkar (1993) generalised their approach to settings with unknown
variances. It can be shown that their method approximates the restricted parameter space (a
polyhedral cone) by an orthant which is somewhat larger. Recently, McDermott (1999) used
these geometrical concepts to improve the original statistic by rotating the orthant so that it

has the same center as the original polyhedral cone.

For testing against the simple order alternative (1.2) Hayter (1990) proposed the one-sided
studentised range test (OSRT)

X,-X,
max .

Osi<jsk g /L + L
n; n;

in the general unbalanced case. This test statistic is similar to that of the studentised range test
of Tukey (1953) and it can be regarded as the maximum over all one-sided studentised

pairwise comparisons X j versus X.. The OSRT is nothing but a special MCT. For example,

for k = 2 the contrast test would be defined by

-1 0 1
C=(c,¢c,¢)=|-1 1 0.
0 -1 1

Hayter (1990) discussed also the development of simultaneous one-sided confidence intervals
and the calculation of associated critical points (without using the multivariate 7-distribution,
however, and only for the balanced case up to k = 8). Cohen and Sackrowitz (1992, p. 1142)
noticed that the OSRT is inadmissible for all . They proposed a better test for k = 2 and

showed via a simulation study that the "amount of improvement is substantial."

Recent reviews of trend tests are provided by Shirley (1996) and Chuang-Stein and Agresti
(1997). For additional discussion on order restricted inference the reader is referred to Cohen
and Sackrowitz (1992, 1993), Silvapulle and Silvapulle (1995), Lee (1996), Miwa and Hayter
(1999) and Hayter et al. (1999b).
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2. Multivariate normal and 7—distribution

In this chapter we will give a detailed survey of existing and new approaches to calculate both
multivariate normal and 7—probabilities over rectangular regions. The coming pages will be
fundamental for the evaluation of the test statistics considered throughout the thesis, as most
of them are based on these multivariate distributions. The chapter is divided into two sections.
First we introduce a multivariate generalisation of the normal distribution and give some basic
properties required for the remaining thesis. In Subsection 2.1.2. we describe three different
approaches of computing the cumulative distribution function. A particular application on
calculating the level probabilities required for the LRT is given in Subsection 2.1.3. In the
second section we treat the multivariate r—distribution similarly. After its definition we derive
the density function and focus then on the main problem of evaluating the distribution

function. New approaches are given and compared to existing solutions in the literature.

2.1. Multivariate normal distribution

2.1.1. Definition and basic properties

The multivariate normal (mvn) distribution plays a central role in statistical applications and
moreover in this thesis. One main application is given through MCTs for dichotomous data. In
Chapter 5 we will prove their asymptotic normality and shall use extensively the results
obtained in the following. Next, the evaluation of the null distribution of Bartholomew’s LRT
requires mvn probabilities of a particular form. Further we will see later that the computation
of the multivariate r—distribution can be reduced mainly to that of the mvn distribution, a fact
we are going to use extensively when deriving a power expression for MCTs in Chapter 4.
The mvn distribution has been discussed frequently in the literature and we refer to Johnson
and Kotz (1972) and Tong (1990) for a detailed discussion. Fang and Zhang (1990) consider
the mvn distribution from a generalised view of elliptically countered distributions to which it
belongs. The following introduction of the mvn distribution and proofs of the subsequent

properties are mainly due to these books.
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Definition 2.1.: Let z denote a random vector of dimension n with i.i.d. components {Z, } and

Z ~N(0,1),i=1,...,n.If a(gx1)-random vector x can be expressed as

d
x=u+Cz, (2.1)

where  is a constant (g x 1)—vector, C a (g xn)-matrix with rank n< ¢ and CC' = X, we
write x ~ N (4, ~) and say that x is distributed according to the q—variate normal
distribution. Further, by this definition, we can write z ~ N,(0, I,) and say that z is

standard normal distributed of dimension n, where I, denotes the n—dimensional unit

matrix.

This definition was preferred by Tong (1990, p. 28) because of its convenient use for later

purposes. In particular it applies to both singular and non-singular cases according to

Remark 2.1.: The g—dimensional random variable x of Definition 2.1. is said to have a non-

singular mvn distribution, if g = n and |Z| > 0. Otherwise,

Z| =0 and we call it a singular

g—variate normal distribution. (Later we will see that 2’ is the covariance matrix of x and

therefore 2 is either positive definite or semi-definite.)
Next we give two important facts.

Lemma 2.1.: Assume x ~ N_(u, X).

a) Suppose y =d + Bx, where B is a (I X g)—matrix and d a (I x 1)—vector. Then
y~N,(Bu+d, BIB'). (2.2)

b) Consider the partition

. X
x:(xl),/,lZ(ﬂljandZ':( 11 12} (2.3)
X, M, 2, 2y,
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where x;: nx1, g,:nxland 2, ;: nXn, n<q. Then

X, ~ Nn(lul’ 211) and X, ~ Nq—n(;uz» 222)'

d d
Proof: According to the assumption we have x = + Cz. Therefore y :(B,u +d )+ BCz, ie.
y~N ,(B,u +d, BCC ’B’) and assertion a) follows. Part b) follows directly by applying
result a) if we let B =(I,]|0) with 0: nx(q —n) respectively B = (0||Iq_n) with 0: nxn and
|| denoting the horizontal matrix concatenation operator.
Property a) describes the closure of the mvn distribution under linear transformations and
linear combination of random variables. The second property shows that any marginal
distribution of a mvn distribution is again normal. But the converse is not true in general.
Tong (1990, p. 29), for example, gives a counterexample by considering two univariate
normal variables, which joint distribution is not bivariate normal. The next lemma establishes

a characterisation of the mvn distribution by means of the characteristic function (c.f.).

Lemma 2.2.: x ~ N, (,u, Z) holds if and only if its characteristic function is of the form
o ()= teR".

Proof: Since the c.f. of a univariate N(0, 1) variable is ™2, the c.f. of z ~ N, (0, 1,) is

¢.(t)= e (teR" ) The result then follows from
¢x (t) — Eeit’x — Eeit’(ﬂ+Cz) — eit/ﬂEeit/Cz _ eit’/lf%tfﬂ‘ .

In particular this lemma shows that the mvn distribution N, (/,l, 2) is uniquely determined by

M and X'. The density of the distribution introduced so far is given by

Lemma 2.3.: Assume x ~ N, (i, %),

2 | # (. Then the density of x is
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N exp(—21(x—u) 27" (x = u)).
f,(x)= o I p(—1(x—u) T (x - )

Proof: Take a (¢xg)—matrix C in Definition 2.1. with z ~ Nq(0, Iq). Since X =CC" is

non-singular, X' exists. Because of the independence of the marginal univariate densities,

the joint density of z = (Z, yeens Zq) is

— : .z -q/2 -1z'z

f&)=]1gze"" =) " e
i=1

1

8

For the transformation z =C _l(x - ,u) we get with the transformation theorem of densities

and the corresponding Jacobian |Z|_1/ > the density function of x as

—;ex —Lx—p)(C) C\(x=p)).
f,,(x)—(zﬁ); = p(-1(x-u)(C)C ' (x-p))

-1

The result is established due to X' =CC" respectively 2" =(CC') =(C _l)tC -

Remark 2.2.: If |Z | =0, 2" does not exist and therefore Lemma 2.3. does not hold any more.

But in such cases a further transformation with a (n X q)—matrix T exists, so that
Tx ~ N, (Tu, T2T").

x is then singular mvn distributed and the probability mass of x is concentrated on a n—
dimensional subspace. An application of this fact is given in Theorem 3.1. In general,
however, we will restrict ourselves from now on to the non-singular case, if not stated

otherwise.



o o
Example 2.1.: Consider the bivariate case for ¢ = 2 and let Zz( " '2) and
0-21 0-22

O 011

P=Tonion ~ Jomvon:

Since |2]=0,,0,,(1-p°), the inverse T~ exists iff |p|<1. With

Tla—1 ) 2 “Von92P1 one obtains for the joint density of x = (X, X, )’
onon(l-0’) | - 0,10 pP On

f(x)z—l exps — ! X —H 2
0 prlordedi " 20-7)|\ Vo

2
_zp[Xl_:ul)[Xz_ﬂ2)+[xz_ﬂ2)
VO VOx» VO 2
u —2puy +v? }

e e"p{ 2(1-7)

1—H 2= Hy

where u :XT and v = )i/a* . In the case of |p| =

=0 and applying Remark 2.2. one

sees that the probability mass is concentrated on a straight line. Figures, illustrating f, (x)
for ¢ =0 and different values of the correlation p, are given in the Plate. The graphs were

drawn by invoking Mathematica (1996) with calls similar to

Plot3D[Exp[ (-u*2+2uvp-v*2) /(2 (1-p*2))]/ (2PiSart[1-p"2]), {u, -3, 3}, {v, -3, 3},
PlotRange -> All, PlotPoints -> 40, ViewPoint -> {1., 1., .5}, Mesh ->False, Boxed -> False,
Axes -> {True, True, False}, PlotLabel -> StyleForm["p = -0.6", "Section"]]

Show[ContourGraphics[%], PlotLabel -> StyleForm["p = -0.6", "Section"],

ContourShading -> False, Contours -> 10]

The following result finally establishes the fact that Definition 2.1. is consistent as noticed in

Remark 2.1. We verify that if x has the density function f, (x), the mean vector and the

covariance matrix of x are indeed ¢ and X', respectively.
Lemma 2.4.: Assume x ~ N (z, ). Then E(x)=u and Cov(x)=ZX.

Proof: By equation (2.1), E(z)=0 and Cov(z)=1, The result follows from
E(x)=p+E(Cz)=u and Cov(x)=C Cov(z)C' =CC' =
39



With the introduction of the mvn distribution being complete now we state subsequently some
additional results and characterisations. Most of them can be found in several textbooks, such
as the references given above. All of the properties presented now will be used in the course
of this thesis and are therefore summarised at this place. First we notice an important closure

property of linear combinations of the components of x in

Lemma 2.5.: A random vector x = (X reees X g )l is g—variate normal distributed if and only if

the distribution of ¢’x is (univariate) N (c' U, c’&)—distributed for all real ¢ = (c, seees €, )l.

Proof: Obviously, if x ~ N . (,u, Z), then ¢'x is a univariate N (c’,u, c’Zc)—variable for all

c. Conversely, assume that ¢'x is univariate normal distributed for ¢ €R?. Then the c.f. of

c'x

q L
i, (f) = Eexp(itz CiX,') _ e

i=1

holds for all # € R. Taking ¢ = 1, one obtains the c.f. of x as a function in ¢

¢x (C) — eic’,u—%c/& ,

which is nothing but the c.f. of a mvn variable with mean ¢ and covariance matrix 2. By

Lemma 2.2. the result is proven.

In general, uncorrelated random variables are not necessarily independent. The following

lemma, however, states that those two conditions are equivalent in the mvn case.
Lemma 2.6.: Consider the partition (2.3). Then x, and x, are independent iff 2', =0.

Proof: Let ¢, (t) denote the c.f. of x. Applying Lemma 2.2. one obtains the equivalence

transformations
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2,=0 & Xt'=t2 t+6,2,,t,
= ¢x (t) = ¢x, (tl) ¢x2 (tZ)

t
forall ¢, =(t,,....,1,) e R" and ¢, = (tm, s tq) e R"™". Since x, and x, are independent

iff their joint c.f. is the product of the marginal c.f., the proof is complete.
Next, we just state the conditional distribution of a mvn variable, to be used later on.

Lemma 2.7.: Partition x in the fashion of (2.3). Then for n < ¢ the conditional distribution of
x, given x, is N,(u4,,2,,), where p,=p+2,2,(x,—u,) and
2h.=2 +2122;21221-

Proof: For example Tong (1990, pp. 33).

The following assertion will be helpful for calculating tail probabilities in the next section. It

says that for a g—dimensional random vector, whose components are i.i. N (O, 1)—distributed,

its direction is of uniform distribution on the surface S of the unit hypersphere. Utilising this

fact one has a simple method to generate uniform random vectors on S.

Lemma 28.: Let z=(Z....Z). Z iid. N(0,1)—distributed, i=1,...,q. Set

rr=z'z= le + ... +Z:. Then the direction 7= (%, ey é) is distributed uniformly on

s={qXr =1},

Proof: The density function of z is given by f,(z)= (2ﬂ')7q/ ?¢ %% Replacing the Cartesian
coordinates by the polar coordinates y = (l//l, s W r) and making use of the

transformation theorem for densities the density function of the random vector i can be

obtained as

h(l/ll, Vs r) _ (275)7‘1/26#2/23’(1//),

41



where the Jacobian is given by g(l//) =r""cos” y, ... cosy 4,2+ As the density function

is decomposed into a product of uniform functions of the individual coordinates, the

assertion follows.

Finally, we proof the following short

Lemma 2.9.: Let x =(X1, s Xq)[ and y=—x, x ~ Nq(O, Z). Then xiy.

Proof: As y =—I x, one obtains by applying (2.2) y ~ N, (0, —IqZ(—Iq)’) = Nq(o, Z).

2.1.2. Computation of multivariate normal probabilities

We have introduced in the last subsection the mvn distribution and several of its main

properties to be used in the later course. In contrast, we now focus on the rather practical

problem of evaluating the arising cumulative distribution function. Before proceeding further,

some terminology is given in

Definition 2.2.: Let x ~ N, (u, ) according to Definition 2.1., ¢ be the mean vector and X
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the covariance matrix of the g—dimensional random variable x with |Z| > 0. Regarding to
Lemma 2.3. let further the density be given by f, (x) We then write for the corresponding

multivariate cumulative normal distribution function

D, = (a by X)=
=P, (a Sbe):P(al <X,<b,...,a, <X qu):

:j} ,,,ij(x)qu...dX,. (2.4)

q

If @, = —e and b, =0 Vi, we call this special case orthant probability and denote it P, .



Remark 2.3.: Let Zz(aij)” be the covariance matrix and Rz(pij) :(—\/;\1/7) the
—_— e i Vi ij

ij ij

associated correlation matrix. Because of

Pﬂ,;(ﬂ;{ai <X, Sb,.}) = %’R(ﬂ?_]{ai—:i <Y < b—:})

i i

Xi—H;

o

loss of generalisation. Instead of equation (2.4) we therefore investigate ® q(a, b; 0, R) on

where Y, = (i=1,..., q), we usually consider only the case £ =0 and Z'= R without

the following pages, which is often easier to handle. We call this the studentised mvn

distribution function.

The problem of evaluating @, accurately and within an acceptable time limit has been

addressed to since the arise of the mvn distribution in the statistical literature in the middle of
the last century. Especially since the 1940’s, in connection with the new computer systems,
plenty of theoretical accurate or simulation-based approaches have been proposed. For some
particular cases, satisfactory solutions are at hand. For smaller dimensions, such as g =1 or ¢
= 2, there is reliable and efficient software available, but in the case of g = 3 still no adequate
general solution exists. For R satisfying special structures, dimension reducing methods might
be applied (see for example the product correlation structure of Remark 1.1.). When choosing
the integration limits appropriately, other shortcuts might work (the orthant probabilities are

such an example). But for this thesis we require a general methodology to compute @, which

imposes no restrictions on R, ¢ and a or b. Broad literature reviews on this subject have been
given by Gupta (1963a, b) and Martynov (1981). More recent developments are summarised
by Bretz (1999). In the following we will present three approaches proposed in the literature.
They were chosen according to the requirements encountered in the course of the present

thesis.
2.1.2.1. Approximation of Solow

Later we will be faced frequently with the problem of computing @, (b; 0, R) for the equi-
percentage point b= (b, ..., b) and a =(—o», ..., —ec). When computing quantiles or p-values

of the MCT statistics, only upper equicoordinate integration bounds are required due to the
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maximum-type statistic. And because of one-sided testing we restrict the attention to the

lower bound set as — oo.

Solow (1990) described a simple way for approximating ch(b; 0, R) from univariate and
bivariate marginal probabilities. The method is based on decomposing @, (b) into a product of

conditional probabilities and approximates each term in the product using conditional

expectations introduced in Lemma 2.7. First we define the indicator function
1,(b) = I(X,<D)

with the expectation E (I i(b)) =@,(b) fori =1, ..., g. Then the equations

P(X,<b|X,<b,..., X, <b)=

=P(X,<b, X, <D)[[E(1, =1, ... 1, =1) (2.5)
j=3
hold. Finally, we approximate the factors of the second term in equation (2.5) with
E(1)+ 5,20 (1-E(L), ... 1= E(1,,)) (2.6)

where X, =cov(I,, I,)=E(I,1)-E(I,)E(1)). i=1,....j-1, and X, =cov(l,. )=
=E(I,1,)-E(I,)E(1,), 1<i,1<j-1 Note that E(I,I,) is a bivariate marginal probability
and E(I,)E(I,) the product of two univariate ones. The use of (2.6) as an approximation of
(2.5) is analogous to the formula E(x,|x, = x,)=,, = 4, + £ ,X,3(x, - 4£,) in Lemma 2.7,

Comparisons to other methods and further notes regarding the procedure of Solow are given

in the concluding Subsection 2.1.2.4.
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2.1.2.2. Transformations of Genz

Genz (1992) succeeded in transforming the original multiple integral (2.4) into one over the
(q - 1) —dimensional hypercube. This has the advantage that possible integration bounds of the
type —eo or +oo are avoided during the calculation. Moreover, efficient standard numerical
multiple integration algorithms may be applied in this setting. We next proof the main result
in a slightly different form than originally given by Genz (1992). The same one-sided set-up

already introduced before is considered again.

Theorem 2.1.: Let a=(-c,...,—)eR’, b= (bl, s bq) eR? arbitrary and

@, (b)= P, (a, b; 0, R) of Definition 2.2. and Remark 2.3. be given. Further, denote by
R =CC' the Cholesky decomposition, where C = (cu) is a lower triangular matrix. Then

)

for g >1

ch(b):elj e,(w) j[ jeq(w) dw, (2.7)

i—1
where e, =@,(b/c,) and el.:Q[[bi—ch.j@l'(ej(w)-Wj)]/cﬁ] for i=2,...,q and

w:(Wl, ...,Wq_l)e[Rq_l.

Proof: Consider the original integral @, (b). Three substitutions shall be considered in the

following. Denote by x = Cy the first substitution. Because of xR'x = thtC'tC'le =y'y
and dx = |C|dy = |R|“dy one gets in the first step

, ’ ’
bl y2 b2 2 b‘I
1 2

diq(b)zw'[ e’ J e’ ... I e dy

—o0 —o0 —co

with b/ = (bl. - ZH c,Y ) / ¢; - Making use of the second transformation ¥, = @'(Z,) yields

j=1 §7J
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i—1
Here, ¢, =¢,(Z,,...,Z,_,) = @1([19,. —Zc[.j@l'(Zj)]/cﬁ]. In the final step, let Z, = ¢W, and
=1

(2.7) follows directly from the last equation.

With the problem of evaluating @, (b) reduced to the equivalent form (2.7) the task is now to

compute this new multiple integral. Several standard numerical integration techniques might
be applied at this point. Originally, Genz (1992) proposed using a crude Monte Carlo method
and a subregion adaptive method. Next, Beckers and Haegemans (1992) successfully
implemented lattice rules for integrating (2.7). Genz (1993) compared all these methods,
including a randomised lattice rule algorithm and other integration techniques due to Deak
(1990). According to his results, the randomised lattice rules behave best for moderate
dimension and accuracy. Unfortunately, no further description of the method investigated was
given in the paper. Therefore, an independent algorithmic implementation using the lattice

rule approach is given below.

The algorithm refers strongly to the approach for the multivariate t—distribution which will be
proposed in Subsection 2.2.2.2. For this reason the reader is referred to there for a short
theoretical background and references of the underlying methods. Only a very brief discussion
is given here. The algorithm proposed consists mainly of a simulated evaluation of the integral
(2.7). But instead of evaluating it at random points throughout the unit hypercube, sequences
of nodes z "better than random" are used. Despite the self-explaining input parameters g, R
and b the € is an user-specified error bound. The practitioner is therefore able to control the
error committed via the simulated standard error. The whole evaluation is repeated several
times, until this value falls below the pre-determined threshold €. The output parameters
Intval, ErrEst and Np, denote the estimate of the sought probability, the error estimate
described previously and the number of evaluations, respectively. The factor ¥ is the Monte

Carlo confidence bound for the simulated standard error.
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1. INPUT ¢, V,R, b, ¢
2. Compute lower triangular Cholesky factor C for R.
3. Initialise N=10,n=0, ¢, = @,(b, /c,)), fi=eu.
4. REPEAT
a) Setn=n+ 1, Intval =0, Varsum = 0.
b) FORI/=1,2,..,N
1) Set Latsum = 0.
i1) Generate uniform random Wy, ..., W, € [0, 1].

ii)FORj=1,2, ..., pu

END FOR
e Set Latsum = Latsum + (f, — Latsum)/j.
END FOR
iv)Set Varsum = Varsum + (I — 1)(Latsum —Intval)z/l,
Intval = Intval + (Latsum — Intval)/l.
END FOR

c) Set ErrEst = }/\/Varsum/ (N(N -1)).

UNTIL ErrEst < €.
5. OUTPUT Intval, ErrEst, Np,.

2.1.2.3. Calculation of orthant probabilities

We now draw our attention on computing the orthant probabilities P, introduced in Definition

2.2. The motivation for this will get clear in Subsection 2.1.3., where we reduce the problem
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of calculating the level probabilities on that discussed in the following. Because of Lemma

2.9. we have immediately

=)

= [ 1 a) ae=J ) ax

0

Historically, the latter form was the preferred one throughout the literature, but we keep on

analysing the originally defined F,. One main result is due to David (1953):

Lemma 2.10.: Consider the event E;: " X, <0", i=1,..., g. Then for g odd

pq:P(OEl.):% 1—ZP(E,.)+ZP(EimEj)—...+ D P[{LO E,-J,

i<j {i<...<igy}

where {i,, ...,i(r,}c{l, e, q}.

Proof: The theorem of Boole gives

P(LiJE,.): > P(E)-Y P(ENE,)+... +(—1)q_1P[OEij.

i i<j

Because of the symmetry of the mvn distribution mentioned in Lemma 2.9. we have also

P[UEle—P(ﬂEf]zl—P[ﬂEl).
Hence, the assertion follows by combining both equations.
This result shows that all odd g—variate orthant probabilities can be expressed as a linear
combination of some lower order orthant probabilities. In the case of g even and applying

above way of derivation one obtains only the identity. Therefore, efforts can be focused on

determining P, just for g even. For small g simple closed expressions are available (see for
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example Robertson et al., 1988, p. 75), but for arbitrary g no general solution exists up to now.
In the following a method is therefore provided, which solely calculates the required multiple
integrals for g even of practical importance (i.e. up to g = 10). For the remaining integrals
above lemma is applied. By using the c.f. and Parseval’s theorem Childs (1967) succeeded to

show

Theorem 2.2.: Let t€R’. For g=2k define I"(Z):;J.WHII Lo gt, where

(-27) i=1 4

2=2 = (o;,.)“ is a covariance matrix of g variates. Then
Sy

p= L isinf‘(p“)Jr y__L i 12-1'(R("""""”))
2k 92k 22k—17[i<j:] ij = 22k=] 7 e 5

Tiyeensly; . . L. .th .th
where R denotes a submatrix consisting of the 7", ..., zztj rows and columns of R.

Proof: See Childs (1967).

Sun (1988a) developed these representations further and obtained the following recursive

relationship among the 77’s.

Lemma 2.11.: With the notation of Theorem 2.2. define Z’:(O'f)” with o, =1/1*,
ij

i

0, =0,= O'U/ 0, and o} =0, otherwise. Further on, for each fixed i=2,3,..., ¢q
partition X’ in a similar fashion to (2.3), but replacing o, by o). With

2 =2, -X3X'2], and I’(Z,)=sin"'(p,,) the relation

=y N 1°(20 ) dt (2.8)

holds for g =2k and k> 1.

Proof: See Sun (1988a, pp. 3916).
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Together with Theorem 2.2. a repeated application of (2.8) yields the final result that P, can

be represented as a linear combination of several multiple integrals of order at most £ —1. This

reduction of the dimension by factor 2 has clear time advantages over concurring procedures.
Sun (1988a) has established the explicit formula for ¢ =4 and g = 6. In two subsequent papers
(Sun, 1988b; Sun and Asano, 1989) these expressions were extended for higher dimensions
up to g =10. Computational comparisons in these articles suggest a good behaviour in terms

of accuracy and time required. Note that the problems of integrating - in Theorem 2.2. are

avoided with the recursion technique used in the subsequent Lemma 2.11.

2.1.2.4. Conclusions

In the preceding subsections we have introduced three approaches of computing mvn
probabilities, which differ from each other in their goals and their behaviour. The approach of
Solow (1990) can only be conducted for the computation of equipercentage points.
Generalisations to arbitrary rectangular integration regions and approximations using tri- and
quadrivariate integrals resulting in higher accuracy are introduced by Joe (1995). The main
virtue of this method, however, lies in its speed and its easy implementation, for it

approximates @, solely by uni- and bivariate integrals. An adaptation to the multivariate 7—

case in the next section shows that even for high dimensions, ¢ =50 say, the computation is a
task of a few seconds only. One further major advantage is its applicability to other
multivariate distributions, provided the ability of computing uni- and bivariate probabilities is
given. On the other side, the missing error control is a severe drawback, even if comparison
results reported in Solow (1990) and in the next section suggest that the method works well.
This approach is recommended for situations requiring a high number of repeated evaluations
of mvn probabilities and where a final accuracy of 0.01 or 0.001 is sufficient (for example

simulation studies or bootstrap tests).

The transformations of Genz to the unit hypercube have the advantage that standard
integration methods can be applied. Many approaches in the numerical literature have been
published. Exact methods are still computational not feasible, but the randomised lattice rules
proposed here seem to behave well among the present methods. With this algorithm at hand

we have an efficient and moderately fast tool to compute the desired probabilities for arbitrary
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upper integration bound. Making use of the error bound € one has further the possibility to set
a-priori a limit to the error committed and the outcome gets more reliable. By imposing no
restrictions on R, g and b, this program is flexible to evaluate every kind of mvn probabilities
over rectangular regions. Therefore, this approach is the most general of the three methods
presented. Because of its similarity to the approach for the multi #—distribution, time and
accuracy conclusions might be drawn from the comparisons summarised in Tables 2.2. and

2.3.

Finally, the methods of Childs and Sun lead to fast and accurate algorithms for computing
orthant probabilities. Implementations in SAS require only few seconds to calculate a 10— or
11-dimensional integral with an accuracy of at least 107'. Generalisations to higher
dimensions are theoretically possible with above results, but practically the considered
dimensions are sufficient. Application of the results to other types of integration regions

seems to be troublesome and has not been investigated so far in the literature.

SAS/IML-implementations of all three methods has been conducted and their codes are
provided in the Appendix. Calculation of mvn quantiles can be done similar to the procedures
introduced in Subsection 2.2.2.3. and will not be repeated here. For further considerations of
the computation of mvn probabilities the reader is referred to the homepage of Genz, which
contains many additional algorithms in FORTRAN and further links. The source codes are

available from the website with URL http://www.sci.wsu.edu/math/faculty/genz/homepage.

2.1.3. Calculation of level probabilities

Recall the null distribution of the LRT under total order restriction stated in Lemma 1.3. It
involves a weighted sum of univariate F—probabilities and the so-called level probabilities.
We already mentioned there that the computation of the latter one requires multivariate
integration techniques. Attention is now drawn on this aspect. At first a general recursive
formula for their calculation is provided in the next lemma. Let k + 1 be the total number of
treatment groups to be investigated. Recall from Definition 1.3. the level probabilities

P(l, k+1; w)= P(M =1) and the notation used there.
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Lemma 2.12.: For fixed [/, denote by L, the set of all partitions of an index set

1={0,1,..., k} into [ level sets. For @# Ac I set W, = ZieA w; and #(A)=card(A).
Further on, for Az{il, by onns ij} with 0<i <..<i;<k and j=#(A), set

w(A)=(w,, ..., w, ). Thenfor [=2,3, ..., k+1

P(Lk+Lw)= Y P(LLEW,, ... W, )[TP(L #(B,): w(B,)).

{Bion Bl i=1

Note that P(l, LW, ..., WB,) denotes the probability of / level sets and P(l, #(B,); w(Bl.))

l

stands for the probability of one level set under the given order restriction and weights.
Proof: For example Robertson et al. (1988, p. 77).

This lemma shows that the computation of P(l ,k+1; w) can be basically reduced on repeated
evaluations of probabilities P(l, l; ) That is, we must be able to calculate
P(X,<X,<...<X,) and the following result establishes the connection to the orthant

probabilities considered on the preceding pages.

Lemma 2.13.: Let X, X, ..., X, be independent normal variables with common mean zero
and variances w,', w,", ..., w,'. Denote further the orthant probability of dimension k by
P, . Then

P(X,<X <..<X,)=P,.
Proof: Consider the transformation Y =X,-X,, for i=1,...,k. Then

P(X,<X <..<X,)=PY>0,....Y,>0) and Y =(Y,, ..., ¥,) has a mvn distribution

with  correlation  matrix of the following tridiagonal form (Pﬁ =1):
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1

Piin = P = —((‘#)2, i=1,..., k=1, and p, =0 otherwise. The last fact follows

Wiz +w; ) (Wi + W)

-1 1 0 0 0
. 0 -1 1 ..
also from Lemma 1.4. when choosing C =| . . . . .|and w, =n,.
0 0 O -1 1

With the last step proven and considering the work of the previous subsections we are now
able to compute directly the required level probabilities and hence the null distribution of the
LRT. A SAS/IML-implementation for calculating p-values of the LRT under order restriction
is given in the Appendix. It is based on the orthant probabilities given before and therefore
computes in at most a few seconds the result accurately up to 9 decimal digits. The
computation of the recurrence relation in Lemma 2.12. is adapted from an algorithm of Seidel
(1999). If k > 11 (though unlikely to occur in practice), one should replace the module for
calculating the particular orthant probabilities by the randomised lattice rule approach. We are
therefore able to calculate the LRT for arbitrary number of treatment groups and any sample

size constellations.

Great effort to solve the computation of the level probabilities has been paid over the last four

decades. For equal weights w:(w, . w) solutions have already been provided in the

original articles of Bartholomew. In the general unbalanced case, however, only
approximations have been published (see Robertson et al., Chapter 3, for a broad overview up
to 1988). More recently, Shi and Meng (1991) proposed a bootstrap version, because "when
the number of groups is more than four, it is difficult to compute the critical value." Qian
(1994) proposed two simulation-based techniques to handle the J’—distribution. A SAS-
program for evaluating the LRT has been published by Brunden (1995), but unfortunately it
deals with the unbalanced case up to kK = 3 only. One major development has recently been

succeeded by Hayter and Liu (1996). They managed to decompose P(X0 <X, <..<X k)

into a series of nested integrals of lower dimensions. Miwa et al. (1999) applied this technique
on the case of the LRT and the modified version according to Wright (1988). Quoting from

n

their article: "... takes about fourteen seconds to compute for the comparison of k = 10
treatments." With this methodology, a further promising way of evaluating the LRT beside the

above developed one, seems to be found.
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2.2. Multivariate r—distribution

IfZisa N (0, 1) —variable and independent from S, where v§ ’~ ;(f,, then the random variable

t=Z7/S is known as Student’s r—variable with v degrees of freedom. A multivariate
generalisation of it is defined below and studied in this section. We proceed in an analogous
way as for the mvn distribution. First the density function of the new introduced distribution is
derived and some basic properties are given. Afterwards a detailed discussion about the
computation of the arising cumulative distribution function follows. New methods are
proposed to evaluate multivariate z-probabilities and are found to behave well in a comparison
study with other proposals in the literature. Together with the derivations in the following
chapters we will be able to calculate p-values, quantiles and power values for any multiple
contrast within reasonable time. Both SAS and FORTRAN implementations provide the

numerical availability of these techniques.

2.2.1. Definition and basic properties

The multivariate t—distribution (mv?) plays a key role in this thesis. In the normal set-up all
multiple contrast tests are distributed according to the mvs—distribution. Moreover, we have
seen in the first chapter that many established multiple comparison procedures in the literature
can be regarded as MCTs. The extensions of the approaches of Williams and Marcus
proposed in the next chapter are based on MCTs. The handling of the mvz—distribution is
therefore fundamental for the present work, in particular the computation of mvz—probabilities
for arbitrary rectangular regions, imposing no restrictions on other parameters involved. In the
following, some main results are established. The mvs—distribution is much less described in
the textbooks as it is the case for the mvn—distribution. Brief discussions of it are contained in
Johnson and Kotz (1972, Chapter 37) and Tong (1990, Chapter 9). The introduction given

here follows partly their representations.
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Definition 2.3.: Let x = (X Y. ¢ q) ~N, (,u, R). Furthermore, let .S be an univariate random

variable and independent of x, where vS* ~ y>. We then call

tz(n,...,g)’z(ﬁ,...,%) (2.9)

a multivariate t—variable. For u =40 its distribution is called a central q—variate t—

distribution with correlation matrix R and v degrees of freedom and we write ¢ ~ ¢ q(v, R).

Otherwise, (2.9) is called a non-central q—variate t—distribution with the non-centrality

parameter i, denoted by £ ~ ¢ . ﬂ(v, R). If v=1, the resulting distribution is also known as

multivariate Cauchy.

It becomes clear from the definition that the mvz—distribution depends solely on R and v.
Moreover, we see immediately that the distribution of ¢ is non-singular iff R is positive
definite. The following remark notes the non-uniqueness of the multivariate generalisation of
a Student’s t—variable. For the sake of simplicity we deal from now on with the central case

only, unless stated otherwise.

Remark 2.4.: One should keep in mind that there are other possibilities published in the
literature of generalising an univariate ¢t. They were derived for theoretical or applied
purposes and concern both central and non-central cases. The definition proposed here,
however, is widely used and satisfies our requirements in the later course. For additional
issues on this topic the reader is referred to Miller (1968) beside the references given

above.
The next lemma establishes the density function of the mvs—distribution. It is fundamental for

the relationship between both the mvn and the mvs—distribution. The result was first derived

by Cornish (1954) and, independently, by Dunnett and Sobel (1954).
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Lemma 2.14.: For |R| > ( the density function of ¢ from Definition 2.3. is given by
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(e s
g,(t; V. R)= ( 2) (1+lt’R_1t) , teR”.
(ve) FNIRIS Y

Proof: Because |R|>O, R’ :(cl.j)“ exists and the following steps are valid. From the
ij

. t . . . . . . . . .
independence of (x, ) 2) one obtains their joint distribution immediately as

Here h(y; v)= 7 F'(V/Z) y"*'e "* is the density of an univariate y’—variable, f,(x:0, R) is

given in Lemma 2.3. and 7 ()c):‘[je*’z‘)“1 dt denotes the gamma function. Setting

K :[(wz)g]" (%) |R|] and conducting a two-fold substitution the following

transformations of the cumulative distribution function are yielded:

(r<
:KIJi = i eXp{——[ZXXc +vSZJ}
:Ki £ VZV szexp{——[ZttcS +18 ]} dt d(v§ (H=1+1Y 11 c,)

2 2
= KJT Vs expl- M d(v8*)dt = (k= HS*/2)
_ Kj T v (2x) 2 o dredt =
o 27 WvH)?
. - =
= KJKqT"e"‘ dx J VIH, 2° 2 ——dt =
) 227 vy 'HH™



As one would expect from the univariate case, the mvz—distribution converges for increasing
degrees of freedom to the mvn distribution. This basic fact together with two resulting

conclusions are summarised in the following statements.

Lemma 2.15.: Let g (; v, R) and f,(x; 0, R) be the density functions of a mvz—variable and

a mvn variable, respectively. Then

limg (¢; v, R)=f,(¢; 0, R) Vit eR’.

V—oo

- v)/2 tp—1
Proof: Because of e = lim(1+ﬁ)p one obtains (1+1¢'R7't) W2 _vom g B2 s we
p—reo
only have to show (V”)LFI/(Z(Z:/)Z/ ;)R\'/Z i (Zﬂ)qéw/z. For g even this follows for

INx+1)=xI"(x), x>0, from

AELS UL | EL
V‘//ZF( 02) = Vq/zr( v/2) 04/2 *

Similarly, for g odd the result follows from ﬁf((z)) il |
Corollary: For x ~ N (0, R) and t ~ ¢ (v, R)
lim P(t € A)= P(x € A)

holds for A c R? Borel-c—algebra.

Proof: Direct application of the dominated convergence theorem on above lemma.
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Corollary: With ¢ ~ 7, (v, R) and x ~ N_(0, R) define the equicoordinate quantiles ¢, , and

¢, for eo, 1 (ﬂ {r<ec, )za,and P(ﬂiqzl{Xl. Sca})za. Then

lim Cpoy=C

V—oo

o

Proof: Since the L.H.S. describes just the univariate probabilities P(maxT <c, ) and

1<i<q

P(max X. <c ) respectively, the corollary follows from above assertions.
1<i<q

As last property to be considered at this place we get by routine calculation the moments of

the mvr—distribution, summarised in

Lemma 2.16.: Let# ~ 17, ﬂ(v, R). Then the following assertions are valid:

a) E(t)=u for v>1;

b) E[(t—,u)(t—,u)[]ZVTVzR for v>2;

R(t-u)]=—L  forv>2.

v=-2

t

©) E[(t-p)

In particular, this result ensures that the mean vector and the correlation matrix of ¢ are indeed

M and R, respectively, as stated in Definition 2.3. Moreover, one notices from

g(u)= (Vfﬂ()(—r)/(1+ u/ ) , that the mvt also belongs to the class of elliptical countered

distributions for u = (¢ — u)' R™'(¢ — 1) (the density is the same for all # that have the same R’
distance from x4, and thus the distribution is ellipsoidally symmetric about ). Many general
results can therefore be adopted straight forward (regarding closure under linear

transformations, conditional and marginal distributions, etc.). We refer to the books of Tong

(1990) and Fang and Zhang (1990) for further reading.
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2.2.2. Computation of multivariate —probabilities
After introducing the mvz—distribution we now focus on the important point of computing the
arising distribution function. Although we have dealt with it several times on the preceding

pages, we catch up defining it properly in

Definition 2.4.: Let ¢ ~7 (v, R) according to Definition 2.3., where R is the correlation

matrix of the g—dimensional random variable ¢ with |R| > 0. Regarding to Lemma 2.14. let
further the density be given by g, (t) We then write for the corresponding multivariate

cumulative t—distribution function

T(a.b)=T,(a.b: v, R)=
=P, gla<t<b)=P(a,<T,<b,...,a,<T,<b, )=

= ]_'(qu ]l]% ljf (1+ttlf/lt) ’ dt. (2.10)

TN (va) IR i

One major result in this context follows directly from the representation of the density

function as the product of the two independent densities f,(¢) and A(y). It has been first

published as an own result by Dunnett (1955). The following lemma says that every g—variate
t—integral can be reduced to an inner g—variate normal integral combined with an outer chi

integral.

Lemma 2.17.: Let Y;(a,b) and @ . (a,b) be the distribution functions of the mvs— and the mvn

distribution, respectively. Denoting the chi density A’(y; V) = 7+ y"’le”z/ > the relation

T2 ()

y'! e_é diq(ay/\/;,by/\/;;o,R) dy 2.11)

P
—_
S
S
—
Il
<
—
S ey §

is valid.
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Thus, by computing mvs—probabilities one could restrict to the approaches provided for the
mvn distribution. This has actually been done frequently in the literature and it might be one
reason for the low number of articles concerning a direct calculation. However, this method
requires the evaluation of an additional integral and we therefore restrict ourselves to

methodologies which approximate (2.10) directly.

Until recently a direct evaluation of the multiple integral for arbitrary correlation matrices
was considered computationally infeasible. Referring to certain unbalanced designs, Hochberg
and Tamhane (1987) noted with focus on the arbitrary correlation structure that "even a
computer program to calculate these critical points would be prohibitively costly to run for
moderate to large k ...". Similarly, quoting Hsu (1996), "... the computation ... too slow for
interactive data analysis except for ... (k £ 3)." Wang and Kennedy (1997) used interval
analysis by applying the multivariate Taylor expansion to the density. But even low accuracy
results required calculation times that were too large for practical purposes. Next, as in the
case of the mvn distribution, the mvrs—distribution also reduces to a series of lower order
integrals if R has a special structure (for example the product correlation structure). But since
this approach is limited to some restricted problems, we can not use this procedure for the

more general problems considered here. In this context Hsu (1992) proposed to approximate a

given arbitrary correlation matrix R by the ‘closest’ R, which satisfies the structural
condition. This can be done by use of factor analytic methods (Hsu, 1992) or by linear
programming techniques (Hsu and Nelson, 1998). Finally, Edwards and Berry (1987)
introduced crude Monte Carlo for equation (2.10) in order to calculate critical constants for
different multiple comparison procedures. Overviews, always strongly related with the mvn
distribution, has been provided by Gupta (1963a, b) and Martynov (1981). Bretz (1999) also
contains more recent developments. In the following we will present two approaches in more
detail. Problems of evaluating (2.10) and computing the corresponding equicoordinate
integration bounds for given probability values 1—« will both be investigated in the following

three subsections. Numerical comparisons and conclusions are given in Subsection 2.2.2.4.
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2.2.2.1. The methodologies of Somerville

In a series of papers Somerville and Wang (1994) and Somerville (1997, 1998, 1999)
proposed two different approaches of computing both mvn and mvz—probabilities. Here, we
refer to the mvr—case only and describe the methodologies briefly. It is worth emphasising that
these approaches are more general than actually required for the multiple integral given in
Definition 2.4. They were designed for computing probability contents of general convex

regions A, — R? instead of simple rectangular regions only.

Let ¢t ~ tq(v, R). With the Cholesky decomposition R =CC' the transformation ¢ =Cy leads
to independent spherically symmetric t—variates. The first strategy proposed by Somerville
chooses unit random directions d = (dl, . d q) € R7. At each simulation step distances r from
the origin to the boundary of A, along the direction d are obtained. P(F < rz/ q) is then an

unbiased estimate of the integral value, where r°/q =d'd/q is an univariate F,, —variable.

These Monte Carlo evaluations are repeated until the average of estimates achieves a pre-

specified standard error (Somerville and Wang, 1994).

The second, modified, proposal replaces the calculation of above F—probabilities by a binning
procedure and a subsequent numerical quadrature. Denote by r* the minimum distance from

the origin to the boundary of A . The empirical cumulative distribution function and
frequency function H(r) and h(r) are determined for distances r>r* for repeated random

directions d € R?. The probability content of A, is yielded by the sum of the volume of the

(¢ —1)—dimensional hypersphere of radius r* and the integral jt(l—H(r))h(r)dr. Hence,

Monte Carlo evaluations are used to estimate H(r) and h(r). The resulting one-dimensional

integral is calculated by applying standard numerical quadrature routines (Somerville, 1998).

The second approach is thought to behave especially well for computing critical values of

multiple testing procedures, because h(r) has to be obtained only once when applying an

iterative procedure. Computation time of subsequent iterations involve therefore only the

quadrature process. However, one disadvantage is the requirement 0 € A . Otherwise, the

present method does not work and an acceptance rejection algorithm is conducted.
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2.2.2.2. Transformations of Genz

In

of

analogy to the mvn case in Subsection 2.1.2.2. Genz and Bretz (1999) established a series

substitutions, which reduce the original integral (2.10) to one over the (¢ — 1)—dimensional

unit hypercube. In this form several numerical procedures can be used for the final evaluation,

and some of these procedures are presented as algorithms afterwards. But before introducing

their result, two helpful lemmas for the main proof will be given briefly.

Lemma 2.18.: For v>0,geN and y =(y1, s yq)t eR”
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Proof: The proof is done by induction over g. The algebraic transformations

(142102 ) = 1t ety ey o =g tlttlnd) g g
1

Voyky?: ey v v( vyl ) v( v+y,2)

yield the assertion for the induction begin ¢ =2. For the general induction step ¢ — g +1
we assume the assertion to be true for g. Then we have to show the validity for g+1. To

start with, we set s, =y, + ... +y; for s,=0,i=1, ..., g+1. Hence,

TT5 () = (1)1 255 ) =

_1+ +q+lsq+sq_q+lsz

v+ Sq v v+ Sq

— SLI(VH ) ( Sq+1~ 5 )W’( Sq+1 75, )S
=1+ ( ’q)v
s lsmrmslves)

(vis,)v

=1+ =1+

and the assertion follows.



(3
———  Then
1"(%)1 (v)?

q-1
@ TT' v _H )
KV H/':O vtj T KV+j *
. =

Lemma 2.19.: For v>0, ge N set K" =

Proof: The assertion follows from

| q-1 v+ j
q-1 v+ j i O q-1 v+ j F(Tj) —
Jj= 7=
_ e M)
B \/ﬁ rveie

For the result of Genz and Bretz (1999) assume now that in equation (2.10) for each i at least
a; or b; is finite, because otherwise an appropriate transformation reduces the dimension of the

problem by integrating the i™ variable explicitly. Then the following general result is valid.

Theorem 2.3.: Let a=(a1, s aq)e[Rq and b=(b1, ...,bq)e[Rq arbitrary and 7, (a,b) of

Definition 2.4 be given. Further, denote by R =CC" the Cholesky decomposition of R,

where C = (cu) is a lower triangular matrix. Then for g > 1
ij

Tq(a,b):H j f(w)dw, (2.12)

q—1integrals

where f(w):(el—dl)-...-(eq—dq). Further on, e =1,(b/c,) and for i=1,...,q—1,

_ i Vi |
€= tv+i((bi+l _ijl Ci+1,ij) V+zz’j:]yj2 /Ci+1,i+1) where ¥, = tvﬂ'—l(di +

and w = (W] yeens W(H) € R”". The d,’s are defined correspondingly for the lower bound a.
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Proof: Consider the original multiple integral (2.10). In the following we shall describe

four substitutions in order to transform it to the representation (2.12). If we let ¢ = Cy, then

()
1"(%)1 (v)?

f'R't =y'C'C'C'Cy =y'y and dt = |C|dy = |R| “dy. Hence, for K'” = we obtain

v+ q

T (a,b)= K(’”TT j( ] dy,

aj aj

with a = (a,. —Zi,_ c.Y, ) / ¢, and b/ = (b,. - 2:1 cUYJ.) /C,-,-~ We now split the integrand into a

/]

product of ¢ factors by use of

At this stage each of the Y;’s can be substituted using ¥ = U, Vﬁi]y’z . Beginning with i = ¢
the g-fold substitution results in
; N )
1 2 q U 2
T(ab)=K" |-t I B Jlie——| du=
v+l v+2 v+g—1 i v 5 v+g—1

v+l ~ vtq

by 2\ 2 b, U2 2
=k | (1+U—1J KD {1+—Q] du,
v v+qg—1

a

q-1 ~ i
where K(‘”J 0T = K&)J follows from Lemma 2.19., and 4, =a/ l#’,lﬂ and
=it

A

b, =b/ ";—’]lyz are the new integration limits. For the last steps we set U, =t,!. (Z),
J=10



u e
where 7 ()= K [(1+<) * ds denotes the univariate r-distribution with v degrees of
v v v g

—co

v+i—1 v+i—1

freedom. Using dZ, = K" (1 +-U )7TdU . equation (2.10) becomes

€ &

T(ab)=] | ...e_fdz:

- (el—d,)j (e,~d,) ... j (eq—dq)j dw =

=_i j f(w) aw,

;ﬁf—/
g—1 integrals

© — —

where d, =1, ,(a,), ei:twl.f,(l;l.) and Z =d,+W/(e,—d;). With the sequence of

transformations described here the assertion follows for f(w)=(e, —d,)- ... -(e ,—d q).

On the following pages we present three numerical algorithms that use equation (2.12) to
estimate Tq(a,b) for a given error requirement €. All of them were considered by Genz and
Bretz (1999). For the last algorithm, a lattice rule algorithm, the theoretical research is still
ongoing. The other two algorithms are an acceptance-rejection sampling and a crude Monte
Carlo algorithm. These methods are simpler and well known to be reliable. Other Monte Carlo
techniques could be applied but will not be analysed here. Deak (1990) gives a good overview

with application to the multinormal case.

This procedure generates g-dimensional uniform random vectors wy, ..., wy and estimates

Tq(a,b) using

_ 1 X
T,z(a,b) :_Zg(cyl)’
N5
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I, a,<x <b B iy
and Y, =1¢,,, ,(W,) ~~, i=1,.,¢q [=1,.,N. To

v+i-1  ?

with g(x) = {

0, otherwise

control the simulated error we make use of the usual error estimate of the means

o = S _ Z(g_iR)z
e N N(N-1) =

Furthermore, we denote by y the Monte Carlo confidence factor for the standard error. If, for
example, ¥ = 3, we then expect the actual error of T,, to be less than the error bound € in

99.7% of the cases. Next, a corresponding algorithm implementing this procedure is given.

1. INPUT ¢,v,V.R,a,b,e.

Compute lower triangular Cholesky factor C for R.
Initialise N = 0, Intval = 0, Varsum = 0.

REPEAT

Sl

a) Generate uniform random Wy, ..., W, € [0, 1].
b) Setf=1.
c) FOR i=1,2,..4q

i—1 2
viYmY
v+i—-1 °

SetY =t _ (W)

v+i—1

IF 2221 ¢;¥; <a;, OR Zi/,:ICUYj >b, THEN go to step d).

END FOR
Go to step e).
d) Setf=0.
e) Set N=N+1,
Varsum = Varsum + (N — 1)(f — Intval)z/N,
Intval = Intval + (f — Intval)/N,

ErrEst = y[Varsum/ (N (N —1)).

UNTIL ErrEst < €.
5. OUTPUT Intval, ErrEst, N.
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The acceptance-rejection method is widely used and may be the most intuitive way to deal
with equation (2.12). Deak (1990), however, showed that among the various Monte Carlo
methods it is the one with the worst efficiency and therefore other approaches to evaluate

T (a.b) are needed.

Monte Carlo method

For estimating (2.12) by the crude Monte Carlo method we let wy, ..., wy be uniformly and

independently distributed on [0, 1 ]q'l. Then the random variables f (wl), =1, ..., N, are

independent and their expected value is E [ f (w)] = jol jol f(w)aw =T, (a,b). Consequently

the arithmetic average
_ 1 &
Tyc(a,b) = NZf(w,) (2.13)
=1

is an unbiased estimator of the integral T, (a.b).

1. INPUTa, b, w, v, C.
2. Initialise d, =1 ,(a,/c,,), e, =t,(b/c,)), fi =e1—d..
3.FORi=1,2,..,q-1

= Yvi-l ’

i -
_ _ V+i
di+1 = twi((aiﬂ 2;:1 Ci+1,_/1/_/) vrsi_ Y2 /Ci+1,i+1),
i -
_ _ Vi
€= fy+i((bi+1 2j=1 Ci+1,ij) vasi_ Y2 /Ci+1,i+1),

ﬁ'+l = (ei+l _di+l)fi-
END FOR
4. OUTPUT f(w)=f,.

Set ¥, =1,,,,(d, +W(e,~d, )=
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The Monte Carlo and lattice rule algorithms to be described in this subsection both require the
evaluation of f(w) for particular values of w, so we provide above an algorithm for f(w) that
will be used by both of the numerical integration algorithms. In the algorithm given on the
previous page note that the initialisations of d, and e, are required only for the first evaluation
of f (w) (assuming a, b, v, and C are fixed for a particular integral), and we would avoid
wasteful computation of 7-values by setting d; = 0 or e; = 1 if a; = -0 or b; = oo, respectively. In

the following we give the algorithm when applying crude Monte Carlo on equation (2.12).

1. INPUT ¢,v,V,R,a,b,¢.

2. Compute lower triangular Cholesky factor C for R.
3. Initialise N = 0, Intval = 0, Varsum = 0.
4. REPEAT

a) Generate uniform random Wy, ..., W, € [0, 1].

b) Evaluate f; = f(w).

c) Set N=N+1,
Varsum = Varsum + (N — 1)(f, — Intval)Z/N,
Intval = Intval + (f; — Intval)/N,

ErrEst = y+[Varsum/ (N (N —1)).

UNTIL ErrEst < €.
5. OUTPUT Intval, ErrEst, N.

Randomised lattice rule method

As seen from the central limit theorem, the Monte Carlo integration yields a probabilistic error
bound in O(N l/’) (note that the order of magnitude does not depend on ¢). This means halving
the error requires quadrupling the number of sample points. However, Quasi-Monte Carlo
integration methods use sequences of nodes that are designed to be more uniform than
random, while still using an integration formula with equal weights similar to (2.13).

Niederreiter (1992) and others showed that under suitable conditions a deterministic error
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bound is given by O(N 'log?'N). In the sequel we will make use of one approach out of this

broad class, the so-called randomised lattice rule (Joe, 1990; Sloan and Joe, 1994, p. 170)

]. (2.14)

Here, N is the simulation size, usually being very small (e.g. 10 - 20), p corresponds to the
fineness of the lattice and z € R%" denotes the strategically chosen lattice vector. Braces
around vectors indicate that each component has to be replaced by its fractional part. Finally,

. -1 . . = .
Wi, ..., wy denote again [0, 11*" —uniform random vectors. The error estimate for 7, is

o Z(TL,I _7_1)2

h N(N-1)

For more details concerning lattice rules in general and the approach used here the reader is

referred to the book of Sloan and Joe (1994).

The algorithm listed below consists basically of two loops. The [-loop stands for the outer sum
in equation (2.14), and j is the variable of the inner sum. This is repeated several times until a
pre-assigned error level € is reached. At each step the counting variable n is incremented by 1

and the number of lattice points p = p, is increased in dependence on n.

The best choice of z is still an open research question. Several proposals have been published

in the literature, the most common of which is to choose z of the form
z(h):(l, h, h* mod p, L hi? rnodp), IShSLp/ZJ, proposed by Korobov (1960). This

leaves us with the problem of how to choose /4. The method we used minimises

s

with F (x) = F(x)/4 + % and F(x) = 1 + 21°(x" - x + 1/6), x € [0, 1] (see Sloan and Joe, 1994,
p. 173). FORTRAN and SAS/IML implementations of (2.15) are provided in the Appendix.

Fop=

S =
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The calculation of z or & can be done independently from the actual program. Therefore,
lattice rule implementations contain only a matrix consisting of appropriate values for /4 up to

a certain maximum dimension.

1. INPUT ¢q,v,V.R,a,b,e.
2. Compute lower triangular Cholesky factor C for R.
3. Initialise N =10, n = 0.
4. REPEAT
a) Setn=n+1, Intval =0, Varsum = 0.
b) FOR/=1,2,...N
1) Set Latsum = 0.
ii) Generate uniform random Wy, ..., W,; € [0, 1].
iiFORj=1,2, ..., p,
e Setw :‘2{w+p%z}—1‘.
e Evaluate f; = f(w).
e Set Latsum = Latsum + (f, — Latsum)/j.
END FOR
iv)Set Varsum = Varsum + (I — 1)(Latsum —Intval)z/l,
Intval = Intval + (Latsum — Intval)/l.
END FOR

c) Set ErrEst = }/\/Varsum/ (N(N -1)).

UNTIL ErrEst < €.
5. OUTPUT Intval, ErrEst, Np,.

2.2.2.3. Computation of equicoordinate quantiles

In order to illustrate the use of the transformation method presented in the preceding
subsection for evaluating multivariate t-probabilities, we consider one important application,
the computation of critical values for multiple comparison procedures (see, for example,

Edwards and Berry, 1987, or Hsu and Nelson, 1998). We will encounter this problem at least
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twice during the course of the present work. On the one side, we require their calculation for
the power expression of MCTs derived in Chapter 4. Next, we need the critical values for
computing simultaneous confidence intervals as proposed in Chapter 7. With these problem:s,
we are given a desired confidence level & and we need to determine an upper limit vector ¢ =

(t, ..., 1) € RY so that T (—oo,t) =1—«. We will illustrate the use of the algorithms with the

Dunnett contrast defined in Example 1.3. For k = 3 we obtain ¢ = 3 and a correlation matrix R

given by

1 0.3636 0.3636
R =| 03636 1 0.3636
0.3636 0.3636 1

for the sample size allocation (14, 8, 8, 8). If we want to apply our algorithms on this problem,
we need to combine our algorithms with an iterated-nonlinear-equation-solving algorithm. We

let h(t)=T,(—eo,t)—1+ 0, so that we need to find ¢ such that h(¢)=0. At this point different

root finding methods may be applied and we have successfully used various modified secant
algorithms for this problem. The results given below were produced by the Pegasus method
(see Ralston and Rabinowitz, 1978, p. 341). Using this algorithm we need a starting interval
[6’, b”] which contains our desired solution ¢, where " = (b, ..., b’) and b” =(b", ..., b”). At
each stage an estimated ¢ is computed, along with h(t), and a new interval is produced. In
order to simplify the start of the algorithm we used b’ = —4 and b” =4, assuming h(b’) = o1
and h(b”): o. Table 2.1. shows the behaviour of our randomised lattice rule algorithm

(e, =0.001, ¥ = 3) combined with the Pegasus method with termination if (b" —b"

<00l=¢,
in each of the ¢ components, for & = 0.05. The final 7 value was t = 2.1664, apparently correct

to at least four digits, and this required a total of 22144 f (w)—values.

A commonly used algorithm for the confidence interval problem is a type of rejection
algorithm (see Edwards and Berry, 1987), which we will call %-rejection. The basic idea is to

generate a large number, say N, of random vectors x, ~ T(.,.) for given R and v. For each x,

let , = max(x, ). Then sort the 7,’s and let =1, where r=(N +1)(1-). The result is that

I<i<q
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Step i a, t, b, h(t,) Number of
f (w) values

1 —4.0000 3.6000 4.0000 0.0485 2768
2 —4.0000 2.9045 3.6000 0.0409 2768
3 —4.0000 1.9709 2.9045 —0.0244 2768
4 1.9709 2.3196 2.9045 0.0140 2768
5 1.9709 2.1924 2.3196 0.0027 2768
6 1.9709 2.1669 2.1924 0.0001 2768
7 1.9709 2.1664 2.1669 0.0000 2768
8 1.9709 2.1664 2.1664 0.0000 2768
final 2.1664 2.1664 2.1664 22144

Table 2.1. Iteration steps for the Pegasus method using the lattice rule algorithm (&, = 0.01).

after sorting we reject (1—0{)% of the (smallest) #,’s and pick the smallest one left as an

estimator for 7. Several refinements to this basic algorithm have been suggested (see Hsu and
Nelson, 1990, 1998, for discussion and further references), but we have found that rejection
type algorithms are generally not very efficient for computing multivariate z-probabilities, and
it is beyond the scope of this work to provide a detailed comparison between our algorithms
and %-rejection algorithms for this problem. However, we will describe how our algorithms
could be used for %-rejection, too. The x, vectors needed for %-rejection are typically
generated using a combination of multivariate normal and chi variables, but our
transformations can also be used to generate x, vectors with correct distribution. The
acceptance-rejection algorithm given in the last subsection can be easily modified to provide a
simple %-rejection algorithm. Using this algorithm with N = 22139, so that r = (N + 1)(1 — o)

= 21033, we found 7 =2.1725. A standard 99% confidence interval obtained using a normal

approximation to the binomial distribution is given by [t( t ] = [2.1523, 2.1931].

20995)* “(21072)
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1. INPUT N, a, Vv, R.
2. Compute lower triangular Cholesky factor C for R.
3.FOR[=1,2,..,N
a) Generate uniform random Wy, ..., W, € [0, 1].
b) FOR i=1,2,..,¢

i1 12
v+2j:I Y;
v+i-1 ?

Set ¥ =1, (W)

L

i
Xy _Zj:ICiJ'YJ"

END FOR
c) Sett, = rllsliaslf]((Xh).

4. Sort the 1,’s.

5. OUTPUT t =1, r=(N +1)(1-a).

2.2.2.4. Numerical comparisons and conclusions

We finish this chapter by providing a few numerical comparisons of the new techniques
introduced above with the emphasis given on the mvr—distribution. In particular, on the

preceding pages we managed to solve the following two problems:

(A) computation of T,(a, b; 0, R);
(B) for given o find ¢ = (1, ..., t) € RY, so that Ty(—eo, b; 0, R) = 1 — c.

In Chapter 4 we will additionally be confronted with the problem of

(C) evaluating T,(a, b; u, R),

the cumulative distribution function of the mon—central mvs—distribution. But we leave this

topic for further investigations in Chapter 4 and summarise briefly the results obtained so far

for (A) and (B).
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For the solution of (A) a series of transformation led to the evaluation of a continuous
function over the unit hypercube. Three standard numerical algorithms have been applied, to

be precise

® an acceptance-rejection method (AR),
e a crude Monte Carlo version (MC), and

¢ an implementation of the randomised lattice rules (LR).

SAS/IML programs of all three approaches are available in the Appendix. The AR and the
MC versions given there run for arbitrary dimensions ¢, the LR implementation is restricted to
q = 32. For higher dimensions required, the user is requested to run B.2.5 or B.2.6 by himself.
Thus, one may obtain the required generating values of /4 and include them in the original LR
program. In order to give an idea of their behaviour all three algorithms were used for the
following brief comparison to other approaches published in the literature. The other
methodologies considered are both approaches of Somerville (mvi and mvib according to the
representation given in Subsection 2.2.2.1.) and an adaptation of the Solow method to the
mvz—case by use of equation (2.11), i.e. the reduction of the mvr—distribution to the mvn
distribution. Because of the characteristics of the Solow procedure (c.f. Subsection 2.1.2.1.),
only equicoordinate upper integration bounds were considered. Tables 2.2. and 2.3. give the
average results of 100 runs with randomly generated correlation matrices R and integration

bounds b according to Marsaglia and Olkin (1984).

The first table was obtained for equicorrelated R’s (i.e. p;; = p Vi #J), because a benchmark is
then given by the reduction method of Dunnett (1955) (trivially the product correlation
structure holds in such cases, see also Remark 1.1.). For an error level set as € = 0.001 the
three entries of each cell shows the average error, the maximum error and the average time
required for each integral on a P200. It becomes clear that the lattice rule implementation is
better than the competitors for both time and accuracy considerations. For example, less than
10 seconds are required to calculate a seven-dimensional mvz—integral in SAS/IML for an
actual accuracy of about four digits in the equicorrelated case. The Solow procedure is also
very fast but it lacks reliability for increasing dimensions g. Both methodologies of Somerville

compare well with the AR and MC methods, but are still somewhat slower than the LRs.
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q AR MC LR Solow mvi mvib

.0008 0003 0000 0005 0004 0005

3 .0032 .0009 .0000 .0010 .0013 .0025
104.11 80.13 2.32 1.06 60.76 111.31

.0008 0003 0000 .0008 0004 0004

4 .0041 .0010 .0001 .0023 .0018 .0017
115.83 110.40 3.41 2.11 71.27 127.80

0007 0002 0000 0013 0004 0005

5 .0046 .0010 .0002 .0034 .0020 .0036
125.32 171.60 4.55 3.39 73.86 128.55

.0008 0002 0000 .0019 0004 0004

7 .0043 .0013 .0005 .0069 .0019 .0017
150.32 252.52 8.04 6.97 87.47 149.78

0007 0002 0001 0022 0005 0005

10 .0041 .0021 .0006 0114 .0021 .0036
176.57 321.40 12.02 14.98 111.56 171.64

Table 2.2. Average values of T,(=o, b; 0, R) over 100 random runs, equicorrelated R. Top entry: average

error; middle: max error; below: average time in seconds; € = 0.001 (P200, SAS/IML).

The results do not change much when considering the general case of arbitrary R’s, which also
included ill conditioned ones with absolute correlation entries close to 1. As a ‘benchmark’ we
considered an implementation of lattice rules with € = 0.0001. The LR algorithms is still the
fastest, even if its superiority vanishes for higher dimensions. We would require for example
less than a minute to calculate a seven dimensional integral with an actual error clearly less
than 107. However, this is in accordance with recent research results. They show that in
general the time advantages for Quasi—-Monte Carlo methods are especially attractive for
lower to moderate dimensions for a moderate accuracy demanded a-priori. But quoting Berger
(1991), "... for statistical problems ... two significant digit accuracy typically suffices, and
only rarely more than three ... needed." we feel confident to having achieved these goals for
the present problem of computing mvz—probabilities at least up to dimension 10 within SAS

and at least ¢ = 20 within FORTRAN.
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q AR MC LR Solow mvi mvib

.0009 0003 0001 0013 0005 0005

3 .0036 .0012 .0006 .0097 .0023 .0029
103.69 103.81 2.64 1.05 68.98 131.30

.0010 0003 0001 .0020 0004 0004

4 .0035 .0018 .0007 .0099 .0018 .0027
123.32 165.51 7.92 2.07 79.66 152.52

.0008 0003 0002 0024 0004 0004

5 .0043 .0022 .0009 .0101 .0017 .0032
119.19 192.03 18.08 3.13 81.18 137.96

.0008 0003 0002 0042 0004 0005

7 .0039 .0017 .0012 0169 .0018 .0029
150.37 298.12 59.16 7.16 102.27 168.42

0007 0003 0002 0077 0004 0006

10 .0034 .0015 .0018 0257 .0018 .0036
165.33 420.59 123.96 15.34 114.39 183.59

Table 2.3. Average values of T,(—c, b; 0, R) over 100 random runs, arbitrary R. Top entry: average error;

middle: max error; below: average time in seconds; € = 0.001 (P200, SAS/IML).

Generalisations to the mvn case hold on. Applying the AR, MC and LR methodologies on the
transformed integral (2.7) leads to efficient implementations. Because of its superiority
demonstrated in the mvt—case, only the algorithm of the lattice rules has been provided
previously in Subsection 2.1.2.2. Generalisations for the AR and MC methods are, however,
straight forward. As a final comment, recall that Somervilles approaches were designed for
general convex regions, with emphasis given on a fast and accurate computation of critical
values in the special case of mvib. Above comparisons should therefore always be considered
under this point of view. Lemma 2.8. has been successfully implemented for the generation of

unit directions in the g—space.
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For above stated problem (B) of calculating quantiles two different types of approaches have
been considered. Computational results suggest that the %-rejection method is not as
effective as the use of different root finding methods combined with the lattice rules. In

particular, we investigated for the latter case among other methodologies

e the bisection method,
® the secant method,
¢ regula falsi, and

e several modified secant methods.

For typical values of o investigated (0.05, 0.1, ...) both the regula falsi and the original secant
method behaved worse than the modified versions. The bisection method, though simple and
intuitive, yielded surprisingly good results and because of its easy implementation it might be
regarded further on. SAS/IML algorithms are given in the Appendix (B.2.10 - B.2.13). The
modified secant method provided here is due to Ridders (1979), see also Press et al. (1992, pp.
347). It assumes an exponential increase (or decrease) of the function considered on the
bracketed interval. Therefore, this method seems to be suitable for our requirements, when o

takes the usual values around 0.05.

Finally, we refer again to the homepage of Genz. Beside the three algorithms introduced
above it also contains several other FORTRAN implementations to calculate mvz—
probabilities, such as a subregion adaptive method and an adaptation of Deak’s method similar
to the multi-normal case. The website is available under the URL http://www.sci.wsu.edu/

math/faculty/genz/homepage.

77



p = -0.99 p = -0.99

&
N
iR
o
=
S

&
S
i
o
=
N

&
N
iR
o
=
S

&
S
i
o
=
N

Surface and contour plots of the standardised bivariate normal density function.
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3. Choice of appropriate contrast coefficients

In Subsection 1.3.4. we introduced in detail the approach of contrast tests for both single and
multiple versions. Further we have provided in Section 2.2. the theoretical and numerical
basics for handling both SCTs and MCTs under H,. We now focus our attention on the last
remaining open problem - choosing the contrast coefficients appropriately. In Section 3.1. we
give a brief survey of existing definitions. In Section 3.2. and 3.3. we will extend both
Williams’ and Marcus’ tests to general unbalanced settings by applying the concept of MCTs,
1.e. we are going to establish associated contrast sets for the original test statistics. Effort is
made to overcome in this way the problems mentioned in Example 1.4. In Section 3.4. a new
attempt of defining a contrast matrix is made, trying to overcome at least partially the rather
empirical derivations of contrasts so far. The technique of MCTs is illustrated by the example
of Chapter 1. The results are compared to previous calculations done for other trend tests. In
the final section we proof an useful result for the evaluation of MCTs. It states that each MCT
can be evaluated by an at most k-dimensional multivariate z-distribution, regardless of the

number of contrasts actually used for defining the MCT.

3.1. Review of contrast definitions

The literature concerning contrast tests (mainly SCTs) is vast and therefore only a small
outlook can be given here. For further reading we refer to Tamhane et al. (1996) and Hothorn
and Hauschke (1998) and the references therein. Table 3.1. summarises the main contrasts
discussed in the following, providing examples for the case k = 3. Before actually starting
with the survey, we draw the attention on one main interpretation of contrasts. In the linear

combination Zi ¢, X, the way of comparing the means is totally defined by the contrast

coefficients c,. Choosing for example the pairwise contrast

c =(cl, Gy, G5, c4)=(0, -1, 1, O)
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one would compare (‘contrast’) the means of group 2 and 3 through X, — X,. Therefore, one
can roughly say that the kind of comparison among the means is 'mapped’ onto the contrast

vectors. This is an important aspect to consider in the following attempts of contrast choices.

Lewis and Mouw (1978) and more recently Saville and Wood (1991) discussed some classes
of contrasts typically used in a post-hoc analysis after conducting an ANOVA. In such cases
the practitioner is interested in comparing the average of the population means of certain
classes or factors with each other. In the context of order restriction illustrative examples are
given by Bailey (1998). He suggested several strategies to compare k doses to a control. In the
first case he uses several step contrasts, which take the information from all treatment groups

into account and compare the associated pooled averages of neighbouring doses:

( -k, L1 1)
(—k=1, —k—=1, 2, ... 2)

: D ; (3.1a)
(-1, =L =1, .. k),

where we call the first and the last contrasts reverse Helmert respectively Helmert contrast.

Next, a set of Helmert contrasts of different dimensionalities are proposed:

(-1, -1, ... -1 k)
-1, -1 ... k-1, 0
( . : ) (3.1b)
(-, 1L .. 0, 0).

In contrast to (3.1a) this set does not use the information of all treatment groups, as is the case

of

( -k, —k+2, ... k=2, k)
(—k+1, —k+3, ... k-1, 0)

: : T (3.1¢)
( -1, I, .. 0, 0).
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These contrasts are called linear contrasts, again for varying number of treatment groups.
Performing a SCT with such a contrast definition is equivalent to test on slope in a linearised
regression model (see Subsection 1.4.). Finally, simple pairwise testing of adjacent groups in

the treatment ordering is also proposed (Bailey, 1998):

(0, 0, 0, -1, 1)
0, 0, -, 1, 0
( : ) (3.1d)
(-1, 1, 0, 0, 0)

Using any of these four strategies, one always conducts the first SCT in order to determine
whether the highest treatment group has an effect at all with respect to the other groups.
Conditioned on the significance of this test one would perform the next SCT, if the global null
hypothesis has been rejected before. These examples illustrate, how several contrasts are
combined to a stepwise testing procedure, which leads to the estimation of a minimum
effective dose, to be discussed in more detail in Chapter 6. Numerical examples in Bailey
(1998) suggest that (3.1a) is a good choice among the four proposed sets. Interestingly, all of
these sets have already been used before to form MCTs. Just taking the maximum over all
SCTs from (3.1a) leads to the global test of Hirotsu (1979, 1997; cf. Subsection 1.4). The set
(3.1b) is equivalent to the decomposition method of McDermott and Mudholkar (1993), when
applying Tippett’s minimum. The similarity between (3.1c) and the usual regression has
already been noticed. And finally, performing simultaneous comparison of all SCTs in (3.1d)
has already been proposed by Lee and Spurrier (1995). None of these original approaches

cited uses the multivariate ¢-distribution in the general unbalanced case.

Another class of weights frequently used are the polynomial contrasts. They include tests on
dose-response relationships according to certain response models. The linear SCT considered
above tests on linear relationships, the quadratic contrasts a quadratic fit, and so on (see for

example Saville and Wood, 1991).
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Contrast type Example Reference

Helmert contrast (-1, -1,-13) Ruberg (1989)

Reverse Helmert contrast (—3, 1, 1, 1) Fligner and Wolfe (1982)
Pairwise contrast (—1, 0,1, O) Saville and Wood (1991)
Linear contrast (-3,-1,1,3) Saville and Wood (1991)
Maximin contrast (-087,-0.13, 013, 087)  Abelson and Tukey (1963)
Linear—2—4 contrast (-12,-2,2,12) Abelson and Tukey (1963)
Jonkheere-analogon contrast (—1, -0.67,-0.17, 1.83) Neuhiuser (1996)

Table 3.1. Some single contrast definitions, examples given for k = 3.

If no certain types of comparisons among the means are determined in advance of an
experiment, however, the contrast definitions considered so far and others proposed in the
literature are rather empirically or strongly model-dependent (linear, quadratic, ... response
shape, number of efficient dose steps, ...). Additionally, most of them were introduced for
balanced set-ups only and fail even for moderate imbalances. Addressing these problems,
Abelson and Tukey (1963) proposed a SCT based on theoretical considerations (maximin

contrast). Using geometrical arguments, they established fori =0, 1, ...,k the coefficients

cl.:\/i-(l—ﬁ)—\/(ﬁl)-(l—;ill), (3.2)

which maximise the minimum correlation p between ¢ and 4 in the balanced case.

Schaafsma and Smid (1966) showed that the choice of above ¢;'s leads exactly to the most
stringent somewhere most powerful SCT, 1.e. that test based on a linear combination of the
means, which minimises the maximum shortcoming over the whole alternative out of the class
of tests, which are most powerful for at least one simple hypothesis inH,. Applying the
techniques provided in Schaafsma and Smid (1966), it is possible to generalise (3.2) to the

less restricted case of unequal sample sizes (Mukerjee et al., 1987, p. 903).

It is evident that SCTs will be very powerful if we have some prior information about the

approximate location of x# within H,. If we knew the ,'s, one could choose the c;'s to make
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p equal or close to the maximum value +1. If, for example, we expect in advance only one

effective dose step, then the test provided in (3.1a) would be very powerful for testing
k
H, :UH/"(I’)’ H:‘(l‘): MBop=...=fi <H;=...=Hy.
i=1

On the other hand, adapting the coefficients ¢, with respect to the observed values {XU}”

g

leads exactly to the likelihood ratio test, as stated in Lemma 1.6.

In Subsection 1.3.4. we have already seen the strong shape dependence of SCTs in terms of
power. To overcome this disadvantage, MCTs have been proposed. They have been
investigated in the literature since Dwass (1960) and Dunn and Massey (1965). In fact, many
multiple comparison procedures may be regarded as specific MCTs (cf. Section 1.4. and also
the examples earlier in this section). On the other side, several ad hoc multiple contrast
definitions have been published, see for example Hothorn et al. (1997) and Westfall (1997).
They are based on more or less arbitrary combinations of SCTs, as those provided in Table
3.1. Sugiura (1994) applies Bayesian decision theory on MCTs and derives an approximate
multiple contrast Bayes test based on uniform priors under the slippage alternative H’,. The
resulting coefficients are the same as those of (3.1a) up to a normalisation factor. But because
of numerical difficulties in implementing the MCTs, significantly less has been published
about MCTs than about SCTs. One way of overcoming these numerical problems is to define
adequate contrasts, which are mutually orthogonal (Mukerjee et al., 1986, 1987). This makes
the correlation matrix R be of diagonal pattern and breaks down the dimensionality problem.
On the other side, requiring p =0 for each combination of two contrasts leads to a somewhat

restricted use of MCTs. The set given in (3.1b) is one example of such orthogonal contrasts.
3.2. A Williams-type multiple contrast test

We will now establish the missing link between Williams’ 7 — test and MCTs, so that we can
use Williams’ approach in less restricted settings than the original approach. Before we define

the extended Williams’ test, we give the following
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Lemma 3.1.: Let 7 be the test statistic (1.6) and X = (YO, X, ..., Yk)t. Set

Then

-1 0 0 1
_ M1 S
C = 1 0 . My 1y, gy
-1 01 M1 "k
N+t M+t Aty
M, —X,=maxCX.

(3.3)

Proof: Setting i = k in the representation (1.5) of the amalgamated means and remembering

that the control group is not included in the amalgamation process (p. 17) we get

k
[, = max Zn.X./
Hy 1<u<k 7o
=max{

= max

Therefore we have

Jj=u

k
an =
j=u

X, +n, X, +...+n. X,

n+n,+...+n, n,_,+n,
0 0 1 X,
M1 "k v
0 Ty T Ty T X2
m M1 L3 v
.y .y .y Xk
0 0 1 \(X,
M1 "k v
0 [ Myt X2
m Mt L v
Ay et ety Xk
-1 0 0 1
_ -1 L3
= max 1 0 My 1y Ty T
-1 m -1 T
nyt..otny nyt..otny nt Ay
= maxCX.

9 s

B 3

S| |

—_

>
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Definition 3.1.: We call a MCT with the contrast matrix C from Lemma 3.1. a Williams-type

multiple contrast or, shorter, Williams contrast.

The maximum contrast above consists of comparisons of the negative control with the
weighted average over the last j treatment groups, j = 1, ..., k, respectively. In total we have
q = k single contrasts, which by joining form the set (1.12) of a MCT. This representation is
an exact analogue of Williams’ approach, and unites two important aspects. On the one side it
takes the order restriction of the means into account through the contrast definition following
the isotonic estimates (1.5). Due to existing theoretical results about the distribution of MCTs
and their handling by virtue of the algorithms presented in Chapter 2 we have on the other
hand a powerful and flexible tool to deal with the unbalanced case without limitations. Note
that Williams’ ¢ —test is not identical to our proposed MCT because of different variance
estimators. We adopted the completely studentised statistic by making use of the usual mean
square error. Williams (1971, 1972), in contrast, took the denominator from the usual 7—test
and we are going to explain the behaviour differences in terms of power in Section 4.2. A list

of Williams contrasts up to k = 6 in the balanced case is given in the Appendix.

Robertson et al. (1988, p. 190) were the first, who noted the possibility of defining a
Williams-type multiple contrast. But they mentioned the balanced case only, without going
into depth or considering its actual computation. To our knowledge, the next article
concerning this topic was published by Yoshimura et al. (1997). They first stated the
Williams-type multiple contrast test for k = 3 in the balanced case, but they continued using
the old denominator of ¢ . Generalising to the unbalanced set-up they proposed an extended
Williams method, which differs again from our approach by a different variance estimator. In
both cases their maximum statistics are no longer multiple contrast tests. Both procedures
were evaluated approximately by use of a resampling approach via the SAS-procedure PROC

MULTTEST (SAS Institute Inc., 1997, p. 777).

Before we leave this section we state the interesting
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Remark 3.1.: Assume that we include the negative control in the amalgamation process, in
contrast to Williams’ original approach. Then it is straight forward to see by use of Lemma
1.5. and the dimension reduction technique of Section 3.6. that the relation
[, — X, =maxCX still holds. This means that the empirical conclusion of Tamhane et al.
(1996) could be derived analytically when using the contrast representation and it makes no

difference whether to include or not the control group.

3.3. A Marcus-type multiple contrast test

mod

Similarly to the last section we introduce now a method for representing Marcus’ ¢t ™ —test as
a MCT. We first give an analogous
Lemma 3.2.: Let 7™ be the test statistic (1.9) and X = (YO, X, ..., X, )l. Then the relation
L nX +..+nX X, +..+nX
I, — ft, = max{0, max{—— 2k T N (3.4
Osi<j<k n.+..+n, n,+...+n,

holds.

Proof: Setting i = k respectively i = 0 in equation (1.5) of the amalgamated means we get

the representations

k k
L =max2n.X. Zn.:
Hy 0susk 4 J .// j
u

J=u J=

9 seey ) k

nX.+nX,+...+n X n X, +n X, —
:max{ 0“*0 1 1 k k k—1 k—1 k k X}
ny+n+...+n, n,_, +n,

and
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<
<

Osvsk £ 7 perd J
= nX,+nX, nX. +nX +...+n X
= min XO, 0“*0 1 1’“., 0“*0 14*1 k“*k .
n, +n, ny+n +...+n,
Therefore,
N N anj+---+nka n0X0+...+niX[ _
M — Hy = max - -
0sigsk|ong 4L ny+ ... +n,

nX . +..+n X nX,+ ... +n X,
= max{0, max{—— et 0o —
0<i< j<k nj+...+nk ny+...+n

We therefore succeeded in representing the statistic fz, — [, as a simple maximum term and a
natural way of applying the MCT principle on Marcus’ approach is now to identify each
element of (3.4) as a contrast. Unfortunately, a closed form expression for the resulting

contrast matrix C is not available. In the Appendix A.2. the contrasts are given up to k = 6.

Definition 3.2.: Using the contrast matrix defined through (3.4) we call the associated MCT

Marcus-type multiple contrast or, shorter, Marcus contrast.

Let us compare briefly the coefficients of the Williams and the Marcus contrast for kK = 3 in

the balanced case:

-1 0 0 1

-1 0o L 1t

-10 0 1 >

-1 1 11

-1 0 3 5| respectively | | _i 8 ;
-1 1 11 2 2

L 4o b

-1 -1 I 1

Following (3.4) it becomes clear that the Williams single contrasts are all contained in Marcus
contrasts (first through third). These are suitable for concave dose-response shapes, as the
higher dose groups are being pooled and compared to C—. When looking further at Marcus

contrast, we note two single contrasts (fourth and fifth), which seem to be appropriate for
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detecting convex shapes, as they take the average over the lower treatments. We therefore
could explain analytically the empirical results published in the literature that Williams’ test is
suitable for concave shapes, whereas Marcus’ test behaves much better for convex profiles

(see for example Marcus, 1976). Even if ¢

mod

is not identical with the above proposed MCT
(different variance estimators, same argumentation as in the case of 7 ), with the results of
Chapter 2 we have a flexible tool to handle Marcus’ test in more general situations. Note, that
because of its particular construction Williams’ test has sometimes be regarded in the literature
as a ‘many-to-one test under order restriction’. No other trend test bears this distinguishing

feature of comparing the higher treatments solely to a certain control group.

In her original article, Marcus (1976, p. 178) already discussed briefly the exact distribution of
1™ and worked with a representation similar to that of Lemma 3.2. for small values of k.

Yoshimura et al. (1997) gave the contrast representation for k = 4 without any derivation and
they continued using the original variance estimator s\/% . The evaluation of this test statistic
was conducted by applying a resampling approach. Recently, Hayter et al. (1999a) derived
independently a very similar expression to (3.4), restricted to the balanced case only. In the
later course of the article they took over the variance estimator of Marcus. As this test
statistics is no longer multivariate 7-distributed, they established a very different method to

evaluate the null distribution exactly.
Remark 3.2.: Analogously to Remark 3.1. we conclude that it makes no difference whether
the amalgamation process is carried out by excluding the control or not.

3.4. A new multiple contrast definition

In this section we propose a new approach of defining the contrast matrix C. The reason for
doing so is that from our point of view most contrast definitions are more or less empirical.

The proposals may be classified according to their development reasons:
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e comparison of certain pre-determined classes or factors (Saville and Woods, 1991);

® representation of established multiple comparison procedures as MCTs (such as the
approaches of Williams, 1971; Marcus, 1976; Hirotsu, 1979);

e ad hoc definitions of MCTs (Hothorn et al., 1997; Westfall, 1997);

e contrast tests based on certain optimisation criterions (Abelson and Tukey, 1963;

Schaafsma and Smid, 1966).

For MCTs under total order restriction nothing has been published what would belong to the

last category. In the following, an attempt is made to fill this gap. The main idea can be

structured in the four steps:

1) decomposition of H , into appropriate sub-hypotheses;
2) search for the maximin contrast for each sub-hypotheses;
3) adjustment for imbalances;

4) building the maximum over the resulting 2* —1 single contrasts.

We shall illustrate the derivation for k = 3. We first decompose H,: t, < i, < f, < i, in all

possible scenarios as

;
H,=/J H,.

i=1

with
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H .yl =y =, < i,
H o)y <My = 1y = [y,
H iy = ly < 1y = Hs,
H o < Hy =y < ps, (3.5)
HA(S):y0 <U < Uy < Uy,
H gl = 1y < fy < py,
HAm:ﬂ0 < U <y = [y



Consequently, H, has been decomposed into the smallest’ possible sub-hypotheses. With its

total number given by 2" —1 (= 7 for k = 3) this approach will finally result in a (2" —1)—

dimensional contrast. Note that no H A can be decomposed further. Every true (but
unknown) relation among the x;’s will fall in exactly one of these sub-alternatives (as far as

the general constraint H , holds).

After the successful partition we are left with the question: which are suitable choices of

contrasts for each sub-alternative? Clearly, a linear contrast would be a good choice for H AGS)?
but a bad one for H,, or H,,, (convex and concave dose-response shapes, respectively). We

will apply the ideas of Abelson and Tukey (1963) on our special case here. They derived a
general methodology for finding the ‘best’ contrast, given any particular set of inequalities on
the u,’s. We have seven of such sets of inequalities and we determine with the methods of
Abelson and Tukey for each set that contrast which maximises the minimum correlation
between # and ¢ under the corresponding constraint, or, equivalently, which maximises the
minimum power. Note that the maximin contrast given in (3.2) is not suitable here, as it was
developed for the global alternative H ,. In contrast, we are seeking for 2* —1 contrasts, which
are locally optimal for each subspace of H,. For a better understanding and more details of
the techniques used below the reader is referred to the article of Abelson and Tukey and the

terminology therein.

To illustrate the determination of suitable set of contrasts we explain the approach in detail for

H,,. Let the constraint given be

HA(4):IUO SHy=Hy < s (3.6)

The boundaries of its subspace are given by matching inequalities, corner patterns and so-

called corner vectors as follows:

Inequality Corner pattern Corner vector SSD
Mo < U, Mo <, = [y, = U (0,1,1,1) 3/4
My < Hy Ho =M= Hy <l (0, 0, 0, 1) 3/4
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The sum of squares of deviations (SSD) 2,- (4, — 1) gives the squared length of the (u —z)—

vectors, where 1 = Zi 7 / (k +1). This helps us determining the maximin contrast by solving

(s) ot +e,+c,=0
(a) c e, e, =
(b) cy =

where (s) is the contrast ensuring equation. Because of (3.6) and the additional condition

¢, =c, we get by successive substitution the solution (—0.866, 0, 0, 0.866). As this contrast

clearly satisfies both inequalities, it is the desired maximin contrast under the constraint (3.6).

When repeating above steps for each sub-hypothesis given under (3.5), the following set of

contrasts is yielded:

c,= (-02887, —02887, —02887, 0866),
c,= (-0866, 02887, 02887, 02887),
c,= (-0 05, 05, 05),
c,= (- 0866 0, 0, 0.866), (3.7)
c,= (-0866, —0134, 0134,  0866),
c,= (-0. ~05, 0134,  0866),
= (- 0866 ~0134, 05, 05).

Each of them maximises the minimum correlation between 4 and ¢ under the corresponding

restriction and is optimal in this sense. The next step involves the adjustment for possible

imbalances. This is done by multiplying the contrasts of (3.7) with the associated sample size

and subsequent centring so that the componentwise sum of the contrast remains 0, i.e. we set

¢; =nc; —Zn, /k+1 J=0, . ki=1...,2"~1
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Finally the new proposed MCT is obtained by taking the maximum over the arising number of

single contrasts. Note that for n,=n, j= 0,...,k, c; =nc; — nzl c; / (k +1) = nc; and

therefore according to Lemma 1.5. the test statistic does not change. Other criteria of
including unbalancedness could be applied and we refer to the example given in Section 3.5.

for a more detailed discussion.

The whole procedure sketched above can be generalised straight forward to an arbitrary
number of treatments k. Unfortunately, a closed form expression is not available but the
contrast definitions are given up to k = 6 for the balanced case in the Appendix A.3. A
SAS/IML program, which outputs these matrices for arbitrary & in the general unbalanced set-
up is given in Appendix B.3.3. But before we proceed to the examples in the next section, we

try to establish a link between the proposed MCT and the amalgamation procedure with

Remark 3.3.: Recall the amalgamation process discussed in Section 1.2. The max-min
formula given there pools the means of two adjacent groups if and only if the pre-
determined ordering is violated. One can then show easily that for k + 1 treatment groups to
be compared under total order restriction exactly 2* —1 different outcomes are possible in
the alternative (not counting for the 2 —th possibility, which occurs only when all means
are amalgamated to a common average value). These 2 —1 cases match uniquely to our

decomposition (3.5) of the alternative space. Remember, that Williams’ and Marcus’

k+1

approaches consider only k respectively { R

J such situations. Therefore, one other reason
for introducing Definition 3.3. is the search for a MCT that takes all 2" —1 possible
situations into account, which arise from the amalgamation process (see also Seidel (1999)
for a brief discussion on this subject).

With this relation in mind we therefore are now able to state in accordance with Seidel (1999)

Definition 3.3.: Applying the procedure illustrated above we define the associated MCT as an

isotonic contrast.
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3.5. Example

We now come back to the example already analysed in Subsection 1.3.5. for the LRT and the
original approaches of Williams and Marcus. The three new proposals of MCTs are compared
to the three established tests, illustrating their use and evaluation. The p-values stated below

were obtained by applying program B.2.9 in the Appendix with the error bound € = 0.0001.

Example 3.1.: Let us return to the example from the Introduction of comparing the E.C.1
values of five different larva development stages and an adult form under the order
restriction (1.2). The associated contrast matrices for the present imbalance

n=(21, 10, 15, 17, 21, 4) and k =5 are approximately

Williams contrast Marcus contrast Isotonic contrast
-1 15 22 25 31 06 -189 12 -79 -116 -189 56
-1 0 26 3 37 07 544 -226 37 -428 1275 293
—68 =32 263 37 07| | 449 -131 -275 -333 665 523
-0 0 4 5 83 -—381 -585 721 885 191
-68 =32 0 4 5 1 . . . . . .
—46 =22 =33 4 5 -116 =522 -5 174 1268 286
-1 0 0 0 84 .16
-106 —427 45 127 658 516
—68 =32 0 0 84 .16
_i g g 82 1(1) 46 2 33 0 84 16 —18 298 389 426 499 189
oo o sy i —aa —m s a6 -166 259 259 259 259 624
SN -178 55 14 —02 1348 366
10 26 3 37 07 -0 0 0 0 1 . , . : . .
-1 15 22 25 31 06) |—68 -32 0 0 0 1 : : : : : :
—46 =22 =33 0 0 1 -183 -15 -14 786 949 255
-33 -16 =24 =27 0 1 -17 =24 113 483 545 583
-25 —12 -18 -2 -25 1 -18 -125 12 236 1329 348
-171 =3 107 331 72 577

Note that all three of them are already adjusted for the unequal sample size allocation.
Conducting the Williams contrast we get a p-value of 0.0028. Comparing it with the value
of the original 7 (p = 0.0373) we have a significant improvement. Remember that the
extended contrast method proposed is not identical to the original approach because of the
use of different variance estimators. But we observe that the new version takes the sample

size allocation better into account, as its variance estimator is not restricted to n, and n,
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only. If we switch the last two group sample sizes, no stronger effect can be observed (p =
0.0019), in contrast to r (p = 0.0017; remember the discussion in Example 1.4.).
Performing the extension of Marcus’ method we obtain a p-value of 0.0042 and a similar
argumentation as before holds. Focus now the attention on the isotonic contrast. If we
compute the p-value for the sample size corrected contrast given above one obtains 0.0036,
which is similar to the p-values of the other trend tests. But performing the same test
without this adjustment p is only 0.0132. Unfortunately, this kind of sample size
adjustment is rarely mentioned in the literature, but this example shows the importance of

applying the contrast principle correctly.

Other possibilities of adjusting the isotonic MCT for imbalances may be considered. For
example, one could imagine each SCT as a pooled two-sample test, where each sample is
divided into several (at least 1 but at most k) treatment groups. Williams’ and Marcus’ MCT
are two examples for this approach. In the discussion of Williams® MCT following
Definition 3.2. we already observed that the high doses are pooled subsequently and
compared to C —. This approach results in pooled two-sample tests C— versus high doses.
The weights for combining the higher doses are determined according to the underlying
sample size allocation. In the balanced case, for example, each dose would be assigned the
same weight, as done in the discussion on p. 86. Marcus’ MCT can be interpreted similarly.
Applying this methodology to the proposed isotonic contrast one obtains p = 0.0032. This
value lies close to the 0.0036 yielded before. We therefore conclude that both adjustments
for imbalances achieved the goal, but they do not differ very much when compared to each
other. Hence, for the remaining parts of the thesis we do not investigate the differences
between the individual sample size adjustments. Instead, for the sake of convenience, we

focus solely on the first proposed method.

Williams’ Marcus® LRT Williams  Marcus Isotonic  Dunnett F—test

7 Fmod contrast  contrast contrast

p-value 0.0373  0.0481 0.0039 0.0028 0.0042 0.0036 0.0052  0.0535
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The table above summarises the p-values of all tests performed for the present example.

The following conclusions may be drawn:

e Williams’ and Marcus’ original tests are not suitable in unbalanced settings because of
their chosen variance estimator. Moreover, their distribution functions under H, are still
not feasible in such situations, simulation-based p-values are the state of art.

e The LRT behaves well but is not a clear best as one could expect before. One main

problem is its unknown behaviour under H, for general set-ups.

e All three proposed contrast tests behave similarly to each other and to the LRT.
However, the power study in Chapter 4 will yield the result that the Williams contrast
seems to have an inferior ’average’ power.

e Dunnett’s test yielded a surprisingly good p-value. In most of the cases, its power will lie
behind that of the MCTs and the LRT, but it is a fairly simple and easy to evaluate
candidate.

e The F—test, which takes no order restriction at all or even the many-to-one design into

account, behaves poor and should not be used.

3.6. Reduction of the dimensionality of multiple contrast tests

In the preceding sections several MCTs have been proposed, some of them requiring the
ability of evaluating high dimensional integrals. This is not always possible, primarily because
of time limitation for an appropriate accuracy. Therefore we require a method which reduces
the problem of the dimensionality. One technique widely used is the reduction onto a two
dimensional integral if the correlation matrix R possesses a certain structure, for example the

product correlation structure of Remark 1.1. Hayter (1989) provides a method for the special

k+1

case of Tukey’s all pair contrasts, reducing the original [ )

]—dimensional integral onto one

over k dimensions. Somerville (1997, 1999) overcomes the whole problem by choosing a
different approach at all. He finds for each random direction the minimum distance from the
origin to a boundary. As the boundaries are defined on the k£ + 1 means, the dimension of his

methodology is automatically restricted by k.
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In the sequel we will proof a more general result, which shows that each MCT consisting of
q = k single contrasts can be reduced to the computation of an at most k-variate ¢-distribution.

An example illustrates the theoretical result and the gain of time required for the computation.

To simplify the representation, we omit the index 0’ in the next two results. First we establish

a lemma which will be used for our main result in this section.

Lemma 3.3.: Let C=(c;) =(c,. ..., cq)t be a given contrast matrix with rank k —1, where it is
ij

assumed that k —1<¢q,i=1,...,q, j=1,..., k. Let further fori=1, ..., ¢, j=1,..., k,

* . . . . *
0 . : k-1
oxo# i< ik, A 0
G=|. e, G=150 P2PITE g T
: 0 O 0, else, B I,
qxq
q—k+1
0O ... ... 0
so that
TC =G. (3.8)
1 0 ... 0
E . :
Here, A=/ 0 is a lower triangular (k —1)x (k —1)-matrix, I__., the (¢ —k +1)—
O |

dimensional unit matrix and B a (q—k+1)x(k —1)—matrix. Then it follows that the

matrices T and G exist and are uniquely determined.

Proof: Without loss of generalisation we assume c,, ...,¢,_, to be linearly independent

(otherwise we exchange the corresponding rows).

Equation (3.8) is equivalent to
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q
85 = 2. 1uCy-
I=1
According to our assumption of T'and G we therefore have

q . .
Zl:]tﬂcy, i<j,
q . . .
g = leltﬂcli, i=], i=1, ..., k,
0, else.

Because of 1, =1, Vi=1, ..., q, we getfori=1

1
g1j=2t1,c,j:tnclj=clj, j=1,..., k.
=1

Fori=2,..., k—1 we have

0, j=1...,i—1,
8> J2I.

i i—1
85 = D1y = D 1uC; + ¢ :{
=1 =1

According to the assumptions the resulting system of linear equations

~

Cx=b

. . t ~
has an unique solution x:(til,...,t“_l), where C =

Cio1

b= _(Cm oo C,',,'_l)[- Substituting x in (3.9) yields a unique solution for g, ...

Fori=k, ..., g we get in accordance to our assumption of 7'

i k i—1 k
8 = Ztﬂc,}. = Ztl.,c,j + Ztl.,c,j +1,0, = Ztl.,c,j +¢; =0, j=1...
=1 =1 =1

I=k+1
=0

Ci—l,i—l

> 8ik -

(3.9)

and



Again a unique solution of C’x’=d" is yielded for x'=(t,,...,t,), where

t
¢y .. Oy

C'=|: | and b'=—(c,,...,c,) . With this final step we determined the

Coi - Cu

remaining entries of 7" and the lemma is proven.

The interpretation of the preceding lemma is based on the following fact. If

CX ~ Nq(O, CZC’), we get according to Lemma 2.1. TCX =GX ~ NH(O,GZG’), where
: 0 . : .
GG’ is of the form (00} i.e. only the upper (k —1)x(k —1) submatrix contains non-zero

elements. With this result the first step has been taken to decrease the dimensionality problem.
What has been left open is the question, how the integration region changes when applying the

transformation 7. The answer is given in

Theorem 3.1.: Let 7Y€ = max{TISC, o quc} be a MCT, where T,* :% are the single

contrast test statistics. Denote by € =(c;) =(c,, ..., cq)t the g X k contrast matrix, g >k —1
ij

and rank(C) =k —1. Then the corresponding distribution function can be expressed as a

(k —1)—variate central r-distribution.

Proof: Without loss of generalisation we assume c,, ..., ¢,_, to be linearly independent. If
q = k —1, there is nothing to show. Therefore, assume g > k —1. With T from Lemma 3.3.

set

r=1I-T,
T = (i'l, oo i‘; )[. From the definition of the matrix G from Lemma 3.3. we get immediately

k=min{l=1,....,q: g, =0Vj=1,.... k}.
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98

If we set further
m:m(l)zmax{jzl, N ?,] ¢0}<k,

then we have because of the construction of T for [ =k, ..., ¢ and d ,=¢,2c,

where the dot "." denotes the index, for which the matrix multiplication is defined.
Therefore, we managed to represent each 7,°, T, ..., YZISC as a linear combination of at

most k —1< ¢ single contrast test statistics with the weighting coefficients 7,. As we seek a

simplified representation of P(TISC <c, ..., TqSC < c), we use the above facts and get the

following equivalence:

m

S
T<c & \/Z <c
ed, - Emcf

L

SC
< I, <

Each of the contrasts 7,°°, T.3, ..., T, is fully described by the first k single contrasts. The

sought probability term reduces therefore to an integral of dimension k—1 and the new
integration bounds are the minimum over all conditioning equations on each random

: Ne sC Ne
variable 7", I, ..., T, .



The following example will illustrate the techniques used so far.

Example 3.2.: Consider the Marcus contrast (g = 6)

SEEER S
1 _1 1 1
2 2 2 2
1 _1 0 1
|72 2
¢= 1 _1 _1
3 3 3
-1 0 0 1
04
in the balanced case n =(10, 10, 10, 10) with X' = diag(s;, 5, & ) and k =3 (returning

to the usual definition of k). According to Lemma 3.3. and the construction method

contained in its proof we obtain

1 0 0:0 00 -1 1 1 3
-1 1 0 0 00 0 -2 1 4
0 -1 0 00 ] 0o 0 -1 1
T=| P respectively G =
0 5 -5100 0O 0 0 O
-3 1 -1:0 10 0O 0 0 O
-3 -1 0.0 01 0 0 0 0
% 0 0 0 0 O
0O 5 0 00O
) , [0 0 5 0 0 O
One checks equation (3.8) TC =G and that G2G' = . The lower left
0 0 0 00O
0 0 0 00O
0 0 0 00O

block matrix of T therefore provides the weighting coefficients for the linear combinations
obtained in the sequel. If we compute (dl, nd q) = (%, 155350 15 105 2—30) the following

conditioning inequalities for the boundaries are yielded:
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SC SC Ne
17" <c¢, T," <c, ;" <gc,

i LD LT RN R e (@)
i, N

ESCSC PN 7;sc

T5<c & T°<

R Y N S

C\/d_e_zl T/SC\/ij cya 3 \/;TSC (c)
tsz\/— \/;

T<c & T<

Finally, our original problem can be formulated as the three-dimensional integral

SC SC _ Ne Ne SC
P(T° <c, ... T <c)= P(T'° <u,, T, <u,, ° <uy),

where u, =c, u, = min{c, RHS of (c)} and u, = min{c, RHS of (@), RHS of (b)} Instead
of evaluating the original six-variate ¢-distribution, the above derivation shows that it is
sufficient to compute a three-dimensional one with upper integration bound (u,, u,, u;).
Evidently the gain of time gets rather large for increasing k. Computing above example for
¢ =1 on a Celeron 333 with a modified version of program B.2.9 one computes the original
integral in about 30 seconds (£=0.001) respectively 30 minutes (£=0.0001). The
trivariate integral however is done in 2 respectively 5 seconds. Therefore, high numbers k
of treatment groups should be no obstacle to conduct MCTs, as the evaluation requires at
most a k-variate integral, irrespective, which contrast sets are used (Marcus, isotonic, ...).
And the numerical comparisons in Chapter 2 have shown that the multivariate -
distribution can be used up to k =10 without severe time limitation for an £=0.001 or even
£=0.0001 in SAS/IML. Recently, Genz and Kwong (1999) have derived independently a
similar method for computing singular multivariate normal probabilities without

restrictions concerning R, k and integration bounds.
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4. Power comparison for normal data

In the following we compare in extensive the new derived MCTs of the preceding chapter
with the original approaches of Williams, Marcus and the LRT of Bartolomew under a variety
of conditions. Before this is done in Section 4.2., however, we first establish a closed form
expression of the power function for arbitrary MCTs. This provides us a great advantage when
working with MCTs, as no power formulas for the other tests considered here are available for
general dimension k. We will have a look at the numerical aspects of evaluating the arising
multivariate non-central 7-distribution. Further, we shall discuss briefly the important practical
issue of sample size determination for the design of experiments. In the final Section 4.3. we

summarise the results obtained in 4.2. and give some conclusions to the practitioner.

4.1. Power expression of multiple contrast tests

Recall the notation given in Section 1.1. and in the introductory Subsection 1.3.4. of MCTs.
We now examine the behaviour of MCTs in the alternative space. The following main result
due to Genz and Bretz (1999) holds.

Theorem 4.1.: Let 7Y€ = max{TISC, s Y;SC} be a MCT, where T,° = \/c% are the single

contrast test statistics. Denote by € =(c;) =(c,.....c q)t the g X (k +1) contrast matrix. Under
y

the alternative T"° can be expressed according to a g—variate non-central r—distribution

k
with the noncentrality parameter 5:(2‘)—6"’) , vV degrees of freedom and the
y p szf:ocﬁ/’l[ lSlSq g

correlation matrix R given by Lemma 1.4.

Proof: We consider the behaviour under H, by examining the power definition

P(TMC > t| H A). Then the following steps are valid.
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Power = P(T" 2t|H,)=

= P| max

_&i=0 BT >
Isl<q ko,
s Z c,/n
i=0 1 l

k
Cl
= |- p| iz i 10"” <t|H, |=
S V i=0 Cll i S V i=0 ql 1
>hoeu(Xi—u;) Sk ol Thocu (Xi—#;) Shocgtti
=1=-P 0_\/24#1 /n; 0\/25(:0“12,‘/",‘ <t A A J\/Z'{(:chi/”i J\/ZLOCZ" i <t (41)
slo slo

The assertion now follows from the representation (4.1) and one has only to show that the

entries of R under H , are indeed the same as under H,. This is proven in the next Lemma.

Lemma 4.2.: For two SCTs 7 and T as defined in (1.11) the correlation

p= Corr(TSC TSC) under H , is given by

_ zk C,;Cy; I
WSt n)Eeein)

Proof: By definition of the multivariate t—distribution it is sufficient to consider the

correlation of (X, Y)= (Z c; X, Zczl l) ~ N,(#, X). Then the covariance is given by

Cov(X,Y)= E(X-EX)Y-EY)=

(
( c, X, — EZch l))(ZczlY (ZCZl.Y[))z
E(X X, = Xeut L eaX, = Yot )=
:Z;Cn‘czj (Xi—u (X, —u,) =
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:icliczlE((Z—ﬂi)z)+ 2](: €6y E((Z—,U,-)(Yj—ﬂj)) =

i=0 i, j=1, i# j

=0 under the independence of X; and X ;

Cov(X,Y)
Var(X)Var(Y)

\/ Var(X)Var(Y) =0’ \/ (2[];0 Cn—‘z)(z[kzo %) into account.

Because of p=Corr(X Y )= above assertion follows directly when taking

With these results we are therefore able to calculate the power of an arbitrary MCT by a
closed form expression. Examples of their evaluation are given in the power study of the next
section. Instead, we focus now our attention on the numerical evaluation of (4.1), which
involves the computation of multiple integrals belonging to the multivariate non-central 7—
distribution similar to the still unsolved problem (C) of Subsection 2.2.2.4. Let us denote the

corresponding multivariate distribution function by Tj. (—0,t), where a; = -0 VI. In
equation (4.1) ¢=(¢,...,t) stands for the (1—¢)—equipercentage point of the central g—

variate ¢t—distribution, so that 7'(—e,#) =1- ¢, where o is the pre-specified type-I-error. We

now make use of the relationship

P(t, <b)=Pr(U <by,/\v-9).

Here U and y, are independent random variables distributed as standardised g-variate normal
and chi with v degrees of freedom, ¢, =¢,(5) =(U + ) / ( X / \/;) This leads to the explicit

representation of the non-central g—variate r—distribution function 7y , ,(—,b) by
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P(t,<b)=—— Tx"’l ei% d%(bx/«/?—é‘;O,R)dx, 4.2)
0

where @, () is the g—variate normal integral with expectation 0, correlation matrix R and

upper integration bound bx/ Jv=6. A correct evaluation of the probability term in equation
(4.1) therefore consists of the following numerical problems. First we need the ability of
computing the non-central g—variate 7—distribution function T , ,(—o,b). This can be done by
using the transformation indicated in equation (4.2). For the evaluation of the arising g-variate
standard normal distribution @ q() several methods can be applied. We refer to the results
obtained in Section 2.1. for this problem. The remaining single integral can be computed by
using standard univariate integration techniques. Finally, we need to compute the critical
value ¢ in equation (4.1). The vector is the implicit solution of h(t) =0, where
h(t) =T(—oo,t)—1+ . Therefore, the computation reduces to the problem discussed in
Subsection 2.2.2.3. and the methods stated there can be applied. The evaluation of h(t), on the
other hand, requires the computation of T(a,b), what can be done by using the algorithms

provided in Section 2.2.2.2.

One main objective in practical design studies is the determination of the required sample size
for a specific experiment. For given values of «, S, effect vector u =(,uo, . ,uk) and a
known or estimated (from preceding pilot studies, for example) variance ¢ one needs to
compute that sample size n, which satisfies all these conditions. When using MCTs this
problem can be solved by using above power expression iteratively. Because of the
multivariate nature of the distribution (the inverse function of T(a,b) is not unique), closed
form expressions for sample size determination do not exist. An iterative procedure, however,
works always satisfactorily. In a sequential manner one calculates the power according to (4.1)
for different sample size vectors n and increases or decreases the sample sizes in accordance
with the resulting power values. If the power value lies below the pre-determined threshold,
1— [ say, the sample size is enlarged by a certain amount. Otherwise, the power value lies
above 1— £ and one reduces n in order to find the minimum sample size constellation, which

still yields a power above 1— /3.
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4.2. Power study

It is impossible to compare the tests of interest from one point of view only. The six tests to be
considered further include the approaches of Williams, Marcus and Bartholomew as well as
the corresponding MCTs (Williams, Marcus and isotonic). We will investigate them by
considering several aspects, for example the influence of the total sample size, the allocation
of the sample sizes within the groups, degree of imbalance, the choice of a predefined o, the
a-priori unknown dose-response relationship or the number of treatment groups among several
other topics. This is done in Figures 4.1. through 4.4. In Figures 4.5. through 4.8. we will
additionally investigate specific types of violations of the assumption, such as non-normal
data, non-monotonic dose-response shapes and variance heterogeneity. Two further
comparisons, Figure 4.9. and Table 4.1. give a deeper insight into the performance of the tests.
This comparison study should be understood as an outlook, only. Because of the great number
of influencing parameters no claim on completeness is made. Further on, one may argue that
some of the situations analysed in the following are of minor practical importance, for

example sample size allocations of the form n=(2, 18, 18, 2). But we want to give an

overview as broad as possible within the restricted space of this thesis. And sometimes there
are in fact real data sets following such ‘pathological’ patterns, as it is the example of the

insect Eupromus ruber in the Introduction with the sample size varying between 4 and 21.

The following power study was conducted using the SAS-algorithms provided in the
preceding chapters. The concrete constellation of the parameters is given in the legend of
each figure. The power values of the MCTs are exact up to at least two significant digits
(Solow procedure; Figs. 4.3. through 4.5. and 4.7. and 4.8.) or four digits (lattice rule
implementation; Fig. 4.9. and Table 4.1.). They were achieved by virtue of Theorem 4.1. and
the discussion afterwards. All other results (power and size) were obtained by simulation
techniques with 10,000 runs each. The generation of the normal random samples was

conducted with the SAS- function RANNOR. Because of the binomial nature of the outcomes

the expected magnitude of the error due to simulation is estimated by the asymptotic two-

sided 95%-confidence interval
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| =196 505t 1965558 |

For example, for the size estimation p = 0.05 one expects the estimate to lie within
[0.0457; 0.0543]. For the determination of quantiles exact values were available for Williams’
t —test (balanced case), the LRT and all MCTs. Otherwise, 9,999 simulation runs were

additionally conducted to obtain an estimate for them (Marcus’ test, unbalanced 7 —test).

First we shall examine the performance of all six tests under the null distribution for normal
distributed data. Figure 4.1. shows the size estimation for three levels of o (0.01, 0.05 and 0.1)
in both balanced and unbalanced set-ups. On the abscise the sample size n, of the control
group is given, whereas the boxes inside the Figure indicate the sample size allocation
n:(no,nl, nz,n3) belonging to it. All curves lie well below the corresponding upper
confidence bounds for the simulation (bold straight lines). One concludes therefore that all
tests in fact maintain the o—level. Williams’ test tends even to be a little conservative for

higher values of .

014 £ —coemm ] 1g2218 ) ] 812128 | _________ —— Williams _
164416 614146 —=— Marcus
1466 14 416164 LRT
128812 218182 Williams contrast
012 +-———————————— — ottt oo = —*— Marcus contrast |-
—e—Isotonic contrast

Estimation of size

N e e i

Sample size of control group
Figure 4.1. Estimation of size, unbalanced case with sample size allocation given in the Figure, k = 3, total

sample size = 40 for = 0.01, 0.05 and 0.1.
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1.4

Ratio of size estimate to nominal size

[ R il
04+ -] ——Villiams | ____
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LRT
Williams contrast
02 +---—-—-—-—-—-4 —*—Marcus contrast - - - - - - - - - - - - - -
—e—[sotonic contrast
0 f f f f f f f f f f f f f f f f f f

0.01 0.02 0.03 0.04 005 0.06 007 0.08 009 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

Nominal size

Figure 4.2. Estimation of size, unbalanced with sample size allocation (14, 10, 10, 6), k = 3 for (a) absolute

deviations, and (b) ratio to nominal size.
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To further investigate empirically the conservative nature of Williams test, we estimated
different sizes by simulation. Figure 4.2. shows clearly that the ¢ —test in fact maintains its

size 20% below the nominal size over the whole range investigated (0.0IS(ZSO.Z). In
contrast, all other tests keep the ratio &/« at the constant ratio 1 and hence maintain the

nominal size fairly well. Figure 4.2.(a) shows the absolute deviations of & from « and one

notices the consequences for higher values of «.

Figure 4.3. investigates the power of the tests for different dose-response shapes in the
balanced situation. In the concave case (a) (the first efficient dose step occurs at low doses)
both Williams’ test and Williams MCT are uniformly better than the other tests. But with
increasing departures from this shape the power gains vanish and become negligible around a
linear shape (b). In the other extreme, convex profile of the y,’s (the first efficient dose step
occurs at high doses), both tests are inferior to the other ones. This behaviour is indeed
consistent with the discussion following Definition 3.2. (p. 86) and the case of contrasts
specifically designed for concave profiles. Moreover, one can demonstrate the power
differences between Williams and the corresponding MCT analytically. Imagine the situation

for k = 3. Then the isotonic estimate , just builds the maximum over

2

mX,+n, X, +n; X5 n, X, +n;X; e
n,+n, +n, T ony+ny 3

Calculating the variances of each term gives

{ o’ o’ 0'2}
n+n,+n, n,+n, n,

Williams did not take this fact into consideration for his statistic 7 . He just included the worst

case, which is here ¢’ / n, (yielding the maximum value of the three terms, resulting in the
smallest value of the whole statistics). This approach has the drawback of an increased
conservativeness, which could be demonstrated in the simulations. In the convex case this
approach does not change the overall result, because the (fixed) choice of the variance is then
correct. But for concave profiles the adequate choice results in higher test statistics, thus lea-

ding to more power. The simplification of the test statistics is possible only in cost of power.
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Power

0.4

0.3

0.2

0.1
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0.1

—&— Williams
—=— Marcus

LRT

Williams contrast
—*— Marcus contrast

—e— Isotonic contrast

Group sample size
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—— Williams
—=— Marcus

Williams contrast
—*— Marcus contrast

—e— [sotonic contrast

3 6 9 12 15 18 21 24 27 30

Group sample size

Figure 4.3. Power comparison, balanced case, o0 = 0.05, k = 3 for (a) concave profile u = (0, 1,1, 1), (b) linear

profile 12 = (0,4, 2, 1) and (c) convex profile x = (0,0, 0, 1).

> 39 3
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Figure 4.3. (continued)

Next we consider in Figure 4.4. the unbalanced situation. The results are complex and have to
be differentiated with respect to dose-response shapes and whether the control group has more

sampling units (no > nl.) or less (nl. > no) than the remaining dose groups. Williams” MCT is

best for all sample size allocations investigated in the concave case (a). The power advantages
diminish for non-concave shapes (b) and (c). Marcus original test behaves poor in (a) for
n, >n. (up to 40% power loss), but is reasonable for n, <n,. For the step profile (b) it is

uniformly dominated by the LRT and both Marcus’ and isotonic MCT. For convex profiles

mod :

(d), however, Marcus’ t ™ is much better than Williams’ version for all sample size situations.
In general, the LRT and both Marcus’ and the isotonic MCT seem to be least dependent on
shape and sample size allocation. All three tests perform similar, if not identical, in terms of
power. For strong concave profiles they are beaten by Williams’ MCT, but they behave best
for the step (b) and linear (c) shapes. Finally, for convex curves and n, <n, they yield a power

gain of over 40% with respect to the other procedures.

110



@ 1810102
1610104
[ I 1410106 |~
1210108
10101010
0.8 F-- - T T e e 8101012 | |
6101014
ol NS 4101016 |_ |
2101018

0.6 T ————f NN

R R T R e hhh

Power

R et et e e e e

U B ——Williams |77 T T oo T oo oottt o oo )
—=— Marcus
P LRT |
Williams contrast
—*— Marcus contrast
01 +---------4 —e—Isotonicconfrast |- - ------—- - - - - - - - - - - - - - - - - - - - - - - -
0 f f f f f f f
18 16 14 12 10 8 6 4 2
Sample size of control group
1

Power

03 4+-——----——~ ——Williams |------- -
—=— Marcus
LRT
[ Rl I

Williams contrast
—*— Marcus contrast

01 4o —e—Isotonic contrast

18 16 14 12 10 8 6 4 2

Sample size of control group
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40, o = 0.05, k = 3 for (a) concave profile, (= (0, 1,1, 1), (b) step profile, u = (0, 0,1, l) , (c) linear profile,

#=(0,4,2,1) and (d) convex profile, 2 = (0, 0, 0, 1).
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Figure 4.5. investigates a series of situations and shapes different from the usually analysed

ones in the literature. Typical violations of the monotonicity assumption (1.2) are sketched in

(a) U-shape at low doses, and
(b) down-turn at high doses. Case
(c) reflects a typical S-shaped response, a pattern different from strict linear and convex,

(d) investigates a saturation-type pattern.

The situations were investigated for partial balanced cases n,=mn;,, where

n.=n Vi=1,..., k. The multiplier m denotes the ratio of sample size between control and

dose group. The motivation for these special sample size allocations arises from the Jk —rule
(e.g. Hochberg and Tamhane, 1987, p. 168), first established by Dunnett (1955) in the many-
to-one context. No such rules were derived in the literature for the present trend situations.

However, Williams (1972, p. 523) concluded for his test that "... the optimum value ... varies

for different cases but generally lies between 1.1 Jk and 7.4vk ." In fact we can conclude the
validity of this conjecture for the other trend tests as well from Figure 4.5.(c) (the only figure,
which assures the monotonicity assumption). The optimum value indeed seems to lie within
the range given by Williams (1972). On the other side, the curves are very flat and the power
differences are marginal over a broad range of values for m. For the non-monotonous
situations considered in a), b) and d) such general assessments regarding optimum sample size

allocations does not hold any more.

All in all the tests crystallised above (LRT, Marcus and isotonic MCT) perform again similar
to each other and are better than the other tests. They are less shape dependent and are
therefore more robust against such specific dose-response patterns. Only in the last situation
Williams” MCT is competitive, yielding power values which lie sometimes more than 5%
above the values of the three distinguished tests. This performance is well explained by the

approximate underlying concave dose response shape.
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the Figure, k = 3, total sample size = 40 for o = 0.01, 0.05 and 0.1.

Next we look at the behaviour of the tests for non-normal data, though possessing equal

variances. The contaminated normal distribution pN (0, 1)+(1— p)N (0, 0'2) is examined in

Figures 4.6 and 4.7. for p = 0.8 and o~ = 10. The size estimates for different imbalances of
the six tests are given in Figure 4.6. in the same sample size set-up of Figure 4.1. All tests
maintain the size surprisingly well. The LRT is somewhat more liberal than Williams’ test, as
already noticed in the Introduction. While the size estimates of the LRT lie eight times above
the respective upper confidence intervals for the nominal sizes (bold lines), this is only in
three times the case for Williams’ 7 . Analogously, Williams’ MCT is less liberal than the
other two MCTs, in particular Marcus’ contrast. Similar results were also obtained for other
values of ¢” (20 and 30) and other types of underlying non-normal distributuins (Cauchy, chi,

lognormal, ...).
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Figure 4.7. Power comparison, contaminated normal data, unbalanced case with the sample size allocation

(14,10, 10,6), & = 0.05, k = 3 for (a) concave profile, 1 = (0, 6, 6, 6), (b) linear profile, # =(0,%, 22, 6) and

(c) convex profile, u = (0, 0, 0, 0).
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Figure 4.7. (continued)

For the sample size allocation (14, 10, 10, 6) Figure 4.7. plots the power values in dependence
of the shift parameter 8 = 1, — u,, assuming the underlying contaminated normal distribution
described above. Similar results as obtained before in the normal case hold again. Williams’
MCT performs best for concave (a) through linear (b) profiles. In the convex case Marcus’
1™ behaves well. Other types of non-normal distributions have been investigated, too. But
the performance of the power curves in relation to each other did not change dramatically and
further results are not reported here. As seen before, Williams’ ¢ behaves best when
considering the size performances, but on the other side its power values lie well below the

other curves. In the convex case (c) only Williams’ MCT performs worse.
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Variance heterogeneity is common in practice. We therefore investigated this special violation
of the assumption for the tests considered so far in Figure 4.8. We analysed the frequent case
of increasing variance with respect to increasing doses or treatments. For n, =12 or 15 the
approach of Williams beats the LRT by approximately 10% in the concave case. In the convex
case, however, Williams 7 loses only up to 6 or 7%. This is an evidence for the statements
given in the Introduction, which say that Williams’ test is considered to be more robust against
variance heterogeneity than the LRT. Unfortunately, Williams’ MCT does not share this
virtue. In the concave case it outperforms by far the LRT (over 15% power differences), but

lies significantly below the LRT in the convex case.
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Figure 4.9. represents a different view of comparing the power of the six tests. It demonstrates
more clearly for k = 2 the behaviour of the tests in the balanced case for different underlying
dose-response shapes. The power values are given with respect to A, which is the angle u
makes with the ray on which x, = x, < x,. The restriction ¢ € H, is equivalent to 0°< < 60°
(e.g. Robertson et al., 1988, p. 91). For example, [ =0° represents the case i, = u, < i,
[ =30° denotes u,—p,=u,—p, >0 and [=60° stands for the concave profile

My < U, = U,. For Figure 4.9. A= \/Z,];o”i (,ui —ﬁ)z =2 has been chosen, which is a measure

for the distance from 4 to H,. The pair (ﬂ, A) can be thought of more formally as the
equivalent polar coordinates of a point in H,. Marcus’ original test behaves very good,
independently from the investigated sample size in either (a) or (b). Williams’ 7 -test, and even
more distinct the MCT version, perform good for concave profiles (/= 40° through 60°), but
behave worse for underlying convex shapes (i.e. f=0° through 20°). The LRT and Marcus'
MCT are again very similar to each other. Their main characteristics is their relative shape
independence, as their power curves are more flat than the other tests, while maintaining a
high average power. Note that for k = 2 the definitions of the isotonic and Marcus' MCT are
identical in the balanced case. Finally, one could assess empirically a symmetric power
performance for both distinguished MCTs similar to the LRT. This behaviour leads to a

meaningful comparison of maximum and minimum power values in Table 4.1.

As a final comparison Table 4.1. presents power values for selected points in the alternative
space. According to Robertson et al. (1988, p. 94), the minimum power of the LRT over H,
for a fixed 4>0 is believed to occur at g, <, =...=4, and gy=p,=...=U, < M,.
(note the symmetry of the LRT around f=30° in Figure 4.9.). On the other side, the
maximum power is believed to occur at g, —p,=p,— M, =...=p, — U, ,>0. These
conjectures has been proven for k = 2, but no general methodology seems to be available for
arbitrary k. Table 4.1. compares the power at these selected points for different values of A4,
whereas for the minimum case only the convex shape is considered. The power of the MCTs
were calculated with an accuracy of €=1x 10™. The values of the other tests, however, were
obtained by simulation (10,000 runs), resulting in an accuracy of about 1x107>. Both the
isotonic and the Marcus MCT are very similar, differing at most from the third digit on. This
is indeed consistent with our conclusions from the previous Figures. Further, the LRT is better

than both MCTs for all points considered. But the differences get never larger than 2%.
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Furthermore, the differences between the maximum and minimum values are always smaller
than 8% for a given 4. These 8% are therefore an upper bound of the maximum power loss
due to unfavourable shapes and strengthens our conclusion that the power of the LRT (and

hence both the isotonic and Marcus’ MCT) is fairly stable over H,, at least in the balanced

case.
v =20 (n;=06) v=40(n;=11)
(minimum) (maximum) (minimum) (maximum)
A=1
Williams 0.1774 0.2308 0.1839 0.237
Marcus 0.1994 0.23 0.2156 0.2474
LRT 0.1921 0.2287 0.197 0.2343
Williams contrast 0.1535 0.2203 0.1571 0.2266
Marcus contrast 0.188 0.2191 0.1947 0.2274
Isotonic contrast 0.1881 0.2197 0.195 0.2281
A=2
Williams 0.4366 0.5647 0.454 0.5875
Marcus 0.4951 0.5573 0.5142 0.5763
LRT 0.4912 0.5651 0.5214 0.5852
Williams contrast 0.3826 0.547 0.395 0.5641
Marcus contrast 0.4888 0.5432 0.5098 0.5661
Isotonic contrast 0.4886 0.5456 0.5095 0.5685
A=3
Williams 0.7381 0.8647 0.7507 0.8726
Marcus 0.8153 0.8591 0.8306 0.8732
LRT 0.8157 0.8658 0.8272 0.8725
Williams contrast 0.6785 0.8451 0.6965 0.8605
Marcus contrast 0.8077 0.8418 0.8291 0.8624
Isotonic contrast 0.8071 0.8442 0.8288 0.8645

Table 4.1. Comparison of power values at selected points in H, (balanced case, k = 3).
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4.3. Conclusions

From the computations done we emphasise again the well known fact that there is no
uniformly most powerful test among the class of trend tests. No test could be recommended in
the sense of achieving the best power over the whole alternative. If prior information
regarding the dose-response shape is available, powerful single contrast tests can be defined
and conducted (see also Section 3.1., pp. 81, for a short discussion). In the general case,
however, the various trend tests have to be compared with regard to a certain meaningful
power measure. One of those few adequate methodologies would be to compute both the
maximum and minimum over the alternative space. Unfortunately, corresponding expressions
are not available yet for MCTs and the LRT for k£ > 2 — not to mention Williams” and Marcus’

approaches. Table 4.1. was a first attempt in this direction.

In order to give the practitioner in spite of that some recommendations and conclusions from
the conducted power study we refer to the more empirical ‘average power’. As no rigid
comparison methods are available, we try to find those tests, which are least dependent on
shape and sample size allocation, hence maintaining a stable power at an acceptable level
throughout H,. As already noted elsewhere in the literature, too, the LRT of Bartolomew
fulfils these conditions better than the competing methods. But, as we could see from the
preceding Figures, both Marcus’ and the isotonic MCT perform very similar when compared
to the LRT. In many situations they even lead to practically identical power values. They
approximate the LRT so well, that the resulting losses do not exceed 5% throughout the whole
alternative space. Williams’ original ¢ —test and the corresponding MCT perform especially

well for concave profiles. But both get worse for convex profiles. Marcus’ ¢

mod

—test seems to
compete well with the LRT in balanced cases (especially for k = 2, as seen from Figure 4.9.),
but in unbalanced situations it may perform poor with up to 40% power difference in some
cases. Similar to Williams’ ¢ , it does not incorporate the sample size allocation appropriately
and can therefore not be recommended for general imbalances (see also the discussion in

Example 1.4.).
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For non-normal data and variance heterogeneity the LRT is somewhat more liberal than the
approaches of Marcus and Williams. The size behaviour of MCTs seems to depend also on
the present contrast definition. We could conclude in terms of power that all tests are more or
less robust against violations of the assumptions (including non-monotonicity of the means).
However, further comparisons are required to establish the robustness limits for the particular

tests.
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5. Power comparison for binomial data

Variables with only two outcomes, i.e. ,.finding/no finding* or ,effect/no effect” occur
frequently in both biological and non-biological studies. As an example, we will discuss later
in more detail the influence of germinal temperature on the occurrence of anomalies in young
kohlrabi plants (Habegger and Wiebe, 1985). In this experiment the number of responders, 1.e.
those plants showing an abnormality, is determined for each temperature treatment. The
experimental question is whether temperature has an significant influence, provided that
temperature decrease leads, if at all, to an increase of anomaly among kohlrabi plants (see

Subsection 5.3.4. for the data).

Mead et al. (1993, p. 288) report an experiment in order to determine the presence or absence
of Agrostis tenuis upon the effect of burned heathland. Denoting treatments A through D in
accordance with the time past since the last burning (4, 3, 2 and 1 year(s), respectively), the
following numbers of quadrants (from 100 samples each) containing Agrostis tenuis were
obtained: 44, 36, 40 and 28 for A through D. Does the frequency of occurrence of Agrostis

tenuis vary monotonously from area to area?

Furthermore, continuos endpoints are sometimes dichotomised at an a-priori determined cut-
point into responder and non-responder. This approach overcomes difficulties with violation
of assumptions for the distribution or variance. Moreover, healing rates are easier to
understand by physicians than p-values. Suissa and Blais (1995, p. 247), for example,
conclude that "... frequently focuses on the proportion of subjects who fall below or above a
clinically relevant cut-off value ... The customary approach to analyse such data is to
dichotomise the continuous outcome measure and use statistical techniques based on binary

data ...". See Sankey and Weissfeld (1998) for a recent discussion on this subject.

In Section 5.1. we introduce some new notations and concepts for this chapter. Moreover, a
short survey of the most frequently used binomial trend tests is given. Multiple contrast tests
are introduced in the present framework. Next we derive in Section 5.2. asymptotic power
formulas in closed form for contrast tests. We discuss further the important aspect of sample

size determination and provide a closed form expression in the single contrast case. In Section
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5.3. a series of generalisations is analysed regarding the performance under the alternative
(continuity correction, pooled versus unpooled versions, exact conditional and unconditional
tests). Brief power comparisons are conducted in the corresponding subsections. Finally, the
above mentioned example of anomalies among kohlrabi is analysed in Subsection 5.3.4., with

special focus on the effects of the suggestions given in the subsections before.

5.1. Notations

When comparing several independent binomial properties, the results are usually summarised

as shown in Table 5.1. Hence, r;, is the observed value of the binomial random variable

R, ~ Bin(nl., fci), i=0,1,..., k,and 7, is the probability of response at dose level d..

Dose level d, d, d, x
Number of responders I r I R
Number at risk n, n, n, N

Table 5.1. Summarising results of an experiment involving the comparison of proportions.

The hypotheses of interest are formulated equivalently to (1.1) and (1.2). The goal is to test

H:yny=r,=...=7x, (5.1)

against the one-sided alternative

H,nm,<rm <...<7m,, 7, <7T,. (5.2)

The trend test most frequently used in the literature is that according to Cochran (1954) and

Armitage (1955), termed CA hereafter. Furthermore, it is also recommended by several

national and international guidelines for detecting a (linear) trend in proportions (e.g. National
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Archives and Record Service, 1985). Assuming the widely employed linear logistic model
log(l%i) =a+bd,, Tarone and Gart (1980) succeeded in demonstrating the equivalence of the
CA to the score test for testing H,: b =0 against H: b > 0 derived from the partial derivatives
of the log-likelihood function (so-called C(a)—test). Furthermore, Tarone and Gart (1980)

have shown that the CA is uniformly optimal under the logistic law and it is asymptotically

efficient for all monotone alternatives. The test statistic is defined as

T =Y rd,. (5.3)

Under H, one obtains the conditional mean of T for given R as E(T'| R)=7), nd,,
where the common success rate & is estimated by p=R/N. Setting
T =T*-E(T®| R)=) r(d,~d), d= nd,/N, an approximate test based on the

asymptotic standard normal distribution is

ca
T

T — ,
V(T“| R)

a

where V(T| R) = z(1- 7[)[2 n(d, - d)z]. This form is due to Nam (1987). The advantage is

its easy and intuitive derivation. However, in practice (see, for example, Portier and Hoel,
1984) usually the form given next is employed. In the following we will work mainly with this

representation.
Lemma 5.1.: With the notation given above 7™ can also be written as

o 2(”1 _%R)di N
T = / . (5.4)
\/ 2\ R(N-R

i

i

Proof: The following algebraic transformations yield immediately the assertion:
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The CA, however, bears several disadvantages. The dose scores d; (d, < ... <d, ) are fixed in

n;d;
N

i J

advance. One critical point is their choice, because they influence the power markedly.
Armitage (1955) and Graubard and Korn (1987) recommended equally spaced scores if no
information on the shape of the dose-response is known a-priori. Williams (1988, p. 424)
proposed a modification using the maximum of extreme score functions, which is relatively
robust against varying dose-response shapes. Moreover, the CA-test is a test on slope in a
linearised regression model. The linearity assumption, however, is highly unrealistic in
practice. Hoel and Portier (1994), for example, analysed the data of 315 chemicals obtained
from the National Toxicology Program and stated that "tumour site data were more often
consistent with a quadratic than a linear response ...". In Chapter 4 we have already observed
the impact of varying dose response shapes on the power of a specific test. Shapes may differ
from convex through concave, and even down-turns at high doses occur sometimes. The
behaviour of the CA-test, when slightly deviating from its linearity assumption, is sketched in
the following artificial example. Let k = 3, n; = n = 150 and the incidences be (0.01, 0.02,
0.03, 0.04). Conducting the CA-test (5.4) with equidistant scores leads to a p-value of 0.0393.
A small change in this perfectly linear relationship by increasing the second rate to 0.03, i.e.
considering the non-linear shape (0.01, 0.03, 0.03, 0.04), results in p = 0.0753. Therefore, the
null hypothesis could not be rejected any more. Increasing the effect resulted in even worse p-

values.
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In order to overcome the problems of shape dependence at least partially, different approaches
have been proposed. Based on Bartholomew (1959), a likelihood ratio test has been
introduced by Barlow et al. (1972) and Oluyede (1994). Collings et al. (1981, p. 785-791)
extensively compared the CA to the isotonic test for balanced set-ups and concluded that "the
isotonic test holds little advantage over the regression test." Agresti and Coull (1998)
compared in this context the power differences between general order restricted inference and
the use of linear logit models for binary responses. They got mixed results, but all in all their
data seem to suggest an improved performance of the ordinary trend tests. Recently, Hirji and
Tang (1998) screened several trend tests for binary data. They compared the size, power and
the shape of the power function of nine two-sided exact, mid-p and asymptotic trend tests. We
will refer several times to this study in the course of this chapter. For an overview of robust
trend tests for binomial data, as they are required to incorporate historical control data, we

refer to Smythe et al. (1987) and the references therein.

In the framework of this thesis we apply the concept of MCTs developed in the preceding
chapters on the present situation. Dichotomous contrasts have already been investigated since
Knoke (1976). But most of these articles deal only with the Dunnett contrast, see Koch (1996)
for a recent overview of dichotomous unrestricted many-to-one comparisons. Robertson et al.
(1988) mentioned general contrast tests for dichotomous data, but they referred only to the
results for normal variates. Neuhduser and Hothorn (1997, 1998) published several
possibilities of defining such contrast tests. The aim of this chapter is therefore to investigate

further this class of tests under a variety of aspects.

With the notation of Table 5.1. we denote the individual outcome of such an experiment by

x;, i=0,1,...,k, j=1,...,n. The x; ~ Bin(1, 7,) are Bernoulli distributed with expectation
E (xl.j) =, and variance V(xl.j) =,(1-x,). Therefore, r = Z'::lxu . Define further the
empirical group estimates p, = Zj X; / n,=r./n. of x,. To test now the null hypothesis (5.1)

against the alternative (5.2) consider the (single) contrast test

T%¢ =§k:cl.pl. =2k:&rl. (5.5)
i=0 n

i=0 "%
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with the contrast ensuring equation 2,- ¢, =0. Consequently, the expectation of (5.5) under
H,is E(T*C)=7 < E(r;)=7 c,=0. The variance under H, is V(T°°)=z(1-7)Y ¢ /n..

According to Neuhduser (1996) the asymptotic test statistics

G
o TEeEr) 2"

’ \/V(TSC) ) \/p(l—p)ii c’/n.

(5.6)

is standard normal distributed for large N under H,. Hence, in the same way as in the case of

normal variates, we define the MCT's

T =max{;*, ..., T} (5.7)
respectively
7Y =max{T*, ... T }. (5.8)

Again, the MCTs are supposed to lead to test statistics which depend less on the underlying
dose-response shapes. As a heuristic reason one can imagine that several kinds of dose-
response pattern are mapped onto appropriate single contrast vectors. The maximum over
them takes therefore the best single test statistic. The following theorem establishes the

asymptotic behaviour of 7" under the null hypothesis. It says that the joint distribution of

{Tff,. TSC} follows a g—variate normal distribution with expectation vector 0 and a

N b
correlation matrix R to be established in a closed form expression in the lemma following

afterwards.

Theorem S.1.: Let {TSC . TSC} be given and let C denote the corresponding contrast

lLLa® "% “q,a

matrix. Then the joint distribution of the single contrasts can be expressed asymptotically

through the g—variate normal distribution N, (Cﬂ', cic ’), where X = diag(@).

n
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Proof: According to Baringhaus (1998) we assume without loss of generalisation n, =n.

We have first to show that the vector

Po 1zf.x°-" 1
p=|: =

n n
Dy 2 IRl X

xoj

is asymptotically mvn distributed. With respect to Lemma 2.5. it is sufficient to show that
t k . . . . . . t k+1
t'p=7 _ p is asymptotically univariate normal distributed V#=(z,,...,7,) e R*".

One calculates

k n

k n k n
ttp:ztipi:zti x,.j/n: tixij/n: WE
i=1 j 1

i=0 =1 j=1

j=li=

k
where y, = Ztl.xij /n Consequently, the expectation and the variance of y; are given by

i=1

E[yj]zE[itixij/n}zzitiE[xij]/ =Ziti7£i/n=:aj/n=:a/n Vj,and
V[yj]=V{itix,j/n}= zﬁAt,,zV[xij]/n2 = Zitfﬂ'i(l—fcl.)/nz =0’ =10" <+ V.

Now, the y; are 1.1.d. with finite variance and the central limit theorem yields

1 n

[ y; —na/n] i N(0, 1).

ovn |z

Therefore, t'p is asymptotically univariate N(a,naz):N(t’ir, Y x(1-7) /n)

i

distributed and we get with the above mentioned Lemma 2.5. the intermediate result
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1 .
p~Ney| 7 — - = N, (7 2).
n
0 ﬂk(l_ﬂ.k)

The assertion of the Theorem is proven in a final step based on Lemma 2.1.:

7o(1-7,) 0
C .
Cp~N,|Cr,— g C'|=N,(Cx, cxC).
" 0 r,(1-7,)

Lemma 5.2.: The correlation under H, between two single contrasts 7. and 7, from

Theorem 5.1. with the contrast vectors ¢, and ¢ (1 <i, j< q) is given by

P = Z; CuCy /nl |
\/(2,05/n, )( zcjz'l/”/)

(5.9)

Proof: The assertion follows directly from the last line of the proof to Theorem 5.1. and
remembering that under H, 7,=7m, =...=m,. As we use the pooled estimator p = R/N

the assertion follows.

Remark S.1.: Note, that at present we are working with the pooled estimate p only. The
asymptotic test statistics defined in (5.6) and (5.8) were introduced in the way they usually
appear in the literature. Hence, we call those asymptotic contrast tests, which bear the
pooled estimate p in the variance term, pooled contrast tests. In Subsection 5.3.2. we shall
introduce a new class of dichotomous MCTs by considering the p,’s instead, consequently
named unpooled contrast tests. In such cases one should use another representation of the
correlation matrix R instead of (5.9). We refer to the corresponding subsection for further

details.
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5.2. Power expression of multiple contrast tests

Similarly to Subsection 4.1. we derive a power expression in closed form for asymptotic
MCTs. We divide the representation in single and multiple contrasts because of an easier
introduction of the results. We first establish the power formula in the case of SCTs for given
type—I—error o, sample size and dose-response shape. A similar expression for the CA has

been derived by Nam (1987).

Theorem 5.2.: Let 7°° be a binomial asymptotic SCT. Denote by ¢, the lx(k +1) contrast

vector. For 77 = 2,- nr, / N the asymptotic power of T° is then given by

Zlfa\/”(l—”)z,»cf/”i _Ziciﬂ:i
\/zi”i(l_ﬂ-i)ciz/ni

1-f=1-®

, (5.10)

where z,_,, is the (1— &)—quantile of the standard normal distribution @.

Proof: Considering the behaviour of 7°¢ underH ,,

follows, where the indices denote whether the expectation or variance is obtained under H ,

or H,. The expectation and variance of 7°¢ under the alternative are given by
E(T)=) cm and V,(T*)=3 ¢ 7°%) The power is defined as the probability of

L n;

correctly rejecting the null hypothesis. Then the following transformations are valid:

power =1-f3= P(Y;SC > ZHI‘HA)
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Qe — EA(TaSC)
VA(ESC)

Zl—a\/ﬂ-(l —”)Ziciz/”i _zi G,
\/Ziﬂ'i(l—izi)cf/ni

& 1-B=1-0

= 1-=1-9

Lemma 5.3.: Denote by |_xJ the greatest integer smaller than x. For n, € N and with the same
notation of Theorem 5.2. the following two assertions hold in order to determine the
required sample size when conducting a single contrast test.

a) For s, =n,/n,,i=0, ..., k, fixed a-priori,

(Zl—a \/7[(1 - ”)Zi ¢t + Zl—ﬁ\/zl' i (1 B ﬂ-")cizti )2

n, = +1. (5.11)
(Zi Ciﬂ-i)
b) In the balanced case n, =n Vi,
() Y ) YA (e vy
n, = : — +1. (5.12)

(2,» cl.ﬂ'i)

Proof: Applying the inverse function @' on equation (5.10) and subsequent rearranging

yield ' ¢z, = zl_a\/ﬂ(l—ﬂ')zi c?/n, +Z1—ﬁ\/z,~ 7.(1-=7,)c’ /n;. Substituting #, =n,/n,

assertion a) follows. Part b) follows from a) for¢#, =1 Vi.

The importance of the last lemma lies in the fact that starting from (5.10) we were able to
derive a closed form expression for the determination of a reasonable asymptotic sample size
when conducting SCTs. Equation (5.11) yields the minimum sample size of the control group
required to detect a significant relevant monotonous dose-response relationship for given «,
and relationships #,. An approximate sample size of the i™ group is immediately found by
n, =n,/t,, where the relationship 7, is determined in advance. This constellation might be

relevant, for example, when one selects according to the well-known recommendation
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1, :ni\/z . In this case, the n;, are chosen to be equal for i = 1, ..., k, and n, to be higher,
corresponding proportionally to the number of treatment levels. This optimality rule for
sample size allocation in the many-to-one design was published in the normal set-up by
Dunnett (1955). No such investigation for dichotomous data, however, was found. In the
balanced case the sample size determination (5.12) follows from the preceding expression by

setting ¢, =1.

Note that in the univariate case, i.e. considering SCTs or the CA, the resulting power and
sample size formulas are easy to evaluate as only the univariate standard normal distribution is
required beside some simple arithmetic operations. Such calculations can therefore be
conducted by use of any statistical software package. Things change, when focusing now on
MCTs. This is due to their multivariate nature. By virtue of Theorem 5.1. we trace the
calculations back to the mvn distribution discussed in extensive in Chapter 2. First we provide

an analogous result to Theorem 5.2. for MCTs.

Theorem 5.3.: Let 7"¢ :max{TSC TSC} be a binomial asymptotic MCT. Denote by

l,a®>***° “q,a

C=(c;) =(c,.....c,) the g x(k+1) contrast matrix. Let further e = (EATff), s EA(qui))

ij

and V:(Vla cees V,,):(\/VA(TSC), cees \/VA(Y;Si)) be the vectorially summarised

1,a

expectations and variances of the SCTs as given above. Then the power of T is given by
1-B=1-®,((z,, ,—e)diag(+, ..., ) 0, R),

where z,, , = (zq,lfa, e zq,lfa) stands for the g-variate normal (1—¢)—equipercentage

point and the elements of R are given by

Z»C/icmi ”[(;ﬂi)
d ’ 1<l,m<q. (5.13)

SR )

136



Proof: From Theorem 5.1. we know that the joint distribution of {TSC . TSC} can be

l,a®>***% 7q,a
expressed through N, (C z, C2C ’) for large sample sizes. The representation of R follows

from equation (5.9). With the notations given so far the power of a MCT can be expressed

according to

== PT 2z, )
= P(rlrsllag[({T,Sac} 22, 1 HA)

=1- P(maX{T,ff} <Zy1-a

1<i<q

)

_ SC SC
= 1—P(Tw <Zyi g AN ANT <zq,1,a‘HA)

=1=-P TISS _EA(T"SS) < Ll _EA(TI»SS) TS,C _EA(T:%) 2, —E, Tsi)

A LA < I
JVa(T5) Val(7%) VA(T5) VL (T5)

=1- ch((zqvl_a —e)diag(ﬁ, e i), 0, R).

For the sample size determination an analogous way of deriving an approximate formula as in
the univariate case fails to succeed. This lies in the multivariate nature of the problem and the

non-uniqueness of d);l for g >1. However, if a closed formula can not be presented here,

iterative methods similar to the ones presented on page 104 will work good as well. The idea
behind this approach is that the power expression (5.13) increases monotonously with N.
Therefore, with a given starting sample size allocation n =(n0, oo n,() one calculates the
corresponding power and decides upon the result, whether a higher sample size is required or
not. This procedure can be repeated subsequently, until a fixed threshold value 1-/f is

reached.

We summarise briefly the results obtained so far. We successfully extended the technique of
building the maximum over several contrasts to dichotomous data. Corresponding test
statistics have been introduced and power formulas established in closed form. The natural
progress would be to compare the behaviour of MCTs to other trend tests, for example the CA

or a binary LRT. However, we do not carry out such comparisons for two reasons. First, the
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isotonic trend test mentioned earlier is much less applied on binary data than in the case of
normal data. The CA is definitive the method of choice. But its test statistic is more or less
equivalent to single contrasts as it can be deducted by comparing (5.4) and (5.6). In balanced

cases, for example, the choices of d = (O, 1, 2, 3) and ¢ = (—3, -1,1, 3) lead to exactly the

same test statistics. This means that the CA is in fact a single contrast, in the balanced case a
linear one. Therefore, there is no need to compare CA to MCTs on its own. Furthermore,
power comparison similar to Chapter 4 leads to very similar curves and conclusion. An
extensive power study has been conducted but the results from the case of normal variates just
repeat. We therefore conclude similarly to Robertson et al. (1988, p. 168) that "... the results
... will apply approximately if the normal variates are replaced by proportions." Referring to
the conclusions given in Section 4.3. we advance in the next sections by trying to illustrate a
series of important issues regarding dichotomous testing by focusing only on Marcus’ contrast
test. A SAS/IML-implementation of the power formulas in the univariate case (5.10) and in

the multivariate case (5.13) is contained in the Appendix.

5.3. Introduction of new contrast tests

In a series of brief notes we introduce in the following some generalisations to the common
form (5.5) and (5.6) of dichotomous contrast tests. Short comparisons among the several

proposed methods are included in each subsection.

5.3.1. Continuity correction

In Section 5.1. we approximated the unknown exact distributions of the CA (5.3) and the
contrast test (5.5) using the standard normal distribution. To account for the fact that a discrete
distribution is approximated by a continuos function, it is traditional to include a continuity
correction (c.c. in the following). The introduction of such c.c.’s, however, is not unique. The
exact value of the c.c. should depend on the discreteness of the approximated distribution. If,
for example, the discrete outcomes are 1, 2, 3, ... one would expect a c.c. of 0.5 to behave
adequately. Otherwise, for the discrete values 4, 8, 12, ... a c.c. of 2 would perhaps be more

appropriate.
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For a discussion in depth within the common 2Xx2-—design we refer to Andrés and Mato
(1996) and the references therein. They examined a total of 20 different methods for
incorporating a c.c. and compared their performances — but without obtaining a reasonable
solution. In multi-sample designs, such as investigated in the present thesis, the choice of a
'best' correction is even more difficult. The present section is therefore not thought as an
detailed analysis on this subject. In contrast, it should be made clear that sometimes a c.c.
might be required in real data situations. The practitioner should always be aware, whether to
include or not to include a c.c. A working solution is applied to MCTs and some numerical

results will show the reliability of the method within the situations investigated.

Consider the modified single contrast

1
sc n;

where A/2 denotes the c.c. The aim is to find an appropriate value 4 > 0 for the possible
outcomes of the original test statistic Zl;—rl . Unfortunately, when the dose scores of the CA

are not equally spaced, an adequate c.c. for all outcomes is missing. Consequently, Thomas et
al. (1977) proposed to consider for the CA both the minimum and maximum interval between
adjacent doses and therefore to provide lower and upper bounds. Applying their methods on

contrast tests, we get the following possible c.c.s:

(ccl) 4, = max{&—ﬁ};

I<i<k ni n.

(cc2) 4, = min{i—&}

I<i<k
S

Furthermore, we additionally investigate

S S

Z[ n; Ny

(cc3) 4, = T,
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which computes the arithmetic average over all adjacent intervals. The idea is to compensate
possible exaggerated effects due to considering only the maximum or minimum in (ccl) and

(cc2).

Figure 5.1. provides the size behaviour of Marcus’ MCT including above three c.c.’s for two
different risk levels. The values were obtained by performing a simulation study with 9,999
runs. At first it should be mentioned that the uncorrected MCT and the version cc2 including
the minimum correction lead to the same test statistics because the maximum contrast always
contains a pair of identical neighbouring contrast coefficients (recall the definition of Marcus’
MCT in Section 3.3.). Therefore, both curves lie above each other. For the cases where n, > n,
the MCT does not maintain the o—level of 5%. The actual size increases up to 10%. In the
second part (b) rule ccl performs clearly best, but gets too conservative in (a), especially if
n, <n;. Here, cc3 seems to behave better. It maintains the size and is still a little less
conservative than the ccl. In situation (b), however, it also has its problems. Concluding, one
can say that the size behaviour depends in a complicated fashion on several factors, not only
on the total sample size, but also on its allocation, the risk 7, the o—level and so on. From
these two single figures one can already imagine, how difficult it is to obtain an adequate c.c.

for all scenarios.

The power performance is illustrated in Figure 5.2. The power values were calculated
analogously to Theorem 5.3. (the formulas generalise in a straight forward manner) and the
SAS program provided in Appendix B.5.1 can be used for the calculations. Clearly, the
uncorrected version yields the highest power together with rule cc2 (which in these cases
again lead to identical test statistics). Rules cc3 and cc2 have a uniform lower power what is

consistent with their improved size behaviour.

Other c.c.’s than the ones introduced above exist. Westfall and Lin (1988), for example,
proposed to minimise a weighted function of the deviations of the approximating p-values

from the exact permutation p-values for small totals Zirl.. Next, one should employ the

obtained estimate of the c.c. for the present data set with larger totals. However, this approach
also represents a rather empirical method for estimating a reliable c.c. The search gets even
more complicated by taking two further parameters into account (the weight function to be

used and the total 2,- r).
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Figure 5.1. Estimation of size of Marcus’ contrast test for several continuity corrections, unbalanced case with

sample size allocation given in (a), k = 3, total sample size = 200, a = 0.05 for (a) 7 =0.01 and (b) 7 =0.1.
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Figure 5.2. Power comparison of Marcus’ contrast test for several continuity corrections, unbalanced case with

sample size allocation given in the Figure, k = 3, total sample size = 200, & = 0.05 for the convex profile

7= (005, 005, 005, 02).

From above discussion the following conclusions are drawn. At first, one should always have
in ones mind that no optimal c.c. in the multi-sample design exists. The test statistics might
get too conservative for a series of situations or they do not maintain the size in other cases.
According to one’s expectation, the power decreases with respect to increasing c.c. But the
power differences are sometimes rather high. In Figure 5.2. we could observe differences up
to 10% in the usual balanced case. Rules ccl and cc3 seem to be more adequate than cc2 to
control the size o.. Combining these results with the power values, rule cc3 might be the
method of choice. It is not as conservative as ccl, but maintains the size much better than cc2
or even the uncorrected test. But the practitioner should always be aware whether a continuity
correction is really needed. Especially in balanced or nearly balanced situations such adjust-
ments might not be required and they decrease the power significantly. Continuity corrections
should therefore always ... be invoked with caution’ (Hirji and Tang, 1998, p. 958). One im-
portant result, which Andrés and Mato (1996) obtained from their study and which continues
to hold for the present multi-sample situation, is that the performance of c.c. does not depend

on the total sample size but rather on its allocation and the relationship among the risks.
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5.3.2. Unpooled version

Similarly to the case of normal variates the introduction of an adequate variance estimator is
not unique either when conducting asymptotic dichotomous tests. In equation (5.6) we
proposed the use of a pooled variance estimator, i.e. we considered p=R/N. Other
possibilities, however, exist. Koch (1996) reviewed several binomial many-to-one procedures
and compared their performances (in particular the size behaviour) extensively. Bristol (1993)
introduced power expressions in closed form in the same set-up for several Dunnett-versions:
pooling over all groups, no pooling at all, pairwise pooling and an arcsine transformation. A
subset pooling makes no sense in the framework of trend tests and the arcsine transformation
is known to perform well for high sample sizes only (Koch, 1996). Therefore, we restrict our

attention to the unpooled version by extending the results of Bristol (1993) to general MCTs.

In analogy to (5.6) we define the asymptotic unpooled single contrast

o

L

}';.

N

T = Z .
’ \/Z[pi l_pi)ciz/ni

i

From now on T”° denotes the pooled contrast and former 7°°. Consequently, 7"“'“ denotes
the asymptotic MCT, which takes the maximum over g unpooled SCTs. Then we can derive a
closed form expression for the power exactly in the same way as done in Theorem 5.2., i.e. we

determine the probability of correctly rejecting the null hypothesis.

Theorem 5.4.: Let 7' :max{T”SC . T”SC} be a binomial asymptotic unpooled MCT.

l,a *>°***° 7q,a

Denote by C=(c,) =(c,,....c,) the gx(k+1) contrast matrix and = | —=%% __ .
y (L’./)ij (c] cq) q ( ) ( (1= )ci o 15i<q

Then the asymptotic power of 7" is given by
1-B=1-®,(z,, ,~5: 0. R).

where z,, , = (Zq,l—a’ s zq,l_a) stands for the g-variate normal (1—¢)—equipercentage
point and the elements of R are given by equation (5.13).
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Proof: Similarly to Theorem 5.1. one obtains that the joint distribution of {Tlf‘ic, T”SC}

RN
can be expressed through N q(Cﬂ', CZC’) for large sample sizes. Furthermore, the

representation of R follows from equation (5.9). Finally, the power can be expressed

according to

- pe A )

_ uSC
= P(maX{T,,a }2 2y 1ea

I<i<q

n)-
n)-

=1=P(T5 <z, J=l.q|H,)=

=1- P(max{T,f’ﬁc} <Zy1a

1<i<q

~1-P Zcﬁpi < Zq,l—a\/zi fci(l—fci)cfi/ni, i=l...q

, Jj=L...,q|=

=1-P zicﬁpi _Z,-Cji”i <z, - zicﬁfci
\/zi m(1=m)c5 /n, n \/Z, z(1-7)c /n,

-0, R).

=1-9,(z,,,
We next investigate briefly the performance of the new class both under H, and H,. For an
easier comparison to previous results, similar constellations already analysed in the preceding
subsection has been chosen again. Figure 5.3. illustrates for the same unbalanced situations
and background risk 7 as in Figure 5.1. the size behaviour of Marcus’ MCT. Again, continuity
corrections are straight forward included in above definition and power expression of 7.
For the same c.c.’s proposed in Subsection 5.3.1. we get the following results. For small
values of 7 both the maximum and the average rules are very conservative with an actual size
well below 2%. On the other hand, the uncorrected version and the minimum correction lead
again to identical results (see the discussion on page 140). Both do not control o for stronger
imbalances when n, <n,. Things change when T increases. All tests perform worse with
increasing imbalances for situations of n, < n;. The actual sizes can reach values up to 40% (!)
for extreme imbalances. No control of the o-level is given any more. The maximum c.c. with
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Figure 5.3. Estimation of size of Marcus’ unpooled contrast test for several continuity corrections, unbalanced

case with sample size allocation given in (a), k = 3, total sample size = 200, o = 0.05 for (a) 7 =0.01 and (b)

7=01.
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0r=26% even performs best’. This behaviour is in fact consistent with simulations in the
literature for similar problems. Koch (1996), for example, obtained similar size excesses for

an unpooled Dunnett version investigated in detail.

Even if we could conclude from Figure 5.3. that 7"/ is not an level-a test any more, we
provide for the sake of completeness some power comparisons for the sample size allocations
investigated so far (Figure 5.4.). The power advantages of the unpooled versions over the
pooled tests are not as big as one could expect from the previous size behaviour. In fact, for

situations with n, >n, T" tends to be more powerful than 7" for all c.c.’s investigated. In

uMC
1,

balanced situations or if n, <n,, are clearly better, with power differences up to 15% for

the respective c.c.’s.
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Figure 5.4. Power comparison of Marcus’ unpooled contrast test for several continuity corrections, unbalanced

case with sample size allocation given in the Figure 5.3., k = 3, total sample size = 200, o = 0.05 for the linear

profile 7z =(0.05, 0.1, 0.15, 0.2).
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From above considerations we can only give the recommendation to avoid unpooled MCTs, if
either strong imbalances occur (in particular if n, <<n.), or the background risk is very high.
Moreover, the power advantages are not that high that one could ignore the poor size
behaviour. Otherwise T might be conducted with caution, i.e. in balanced situation or
n, >n,, if 7 is not too large. Again, as in the case of T” MC " one should always be aware,

whether to use a c.c. or not.
5.3.3. Exact conditional and unconditional versions

From the preceding two subsections we could conclude that asymptotic tests do not control
the pre-determined o-level for all set-ups. In particular for situations of small sample sizes (a
problem of frequent occurrence in practice) and strong imbalances (again of practical
importance due to possible mortality effect in high dose groups or due to allocation according
to the /k —rule) the asymptotic versions, both pooled and unpooled, failed to succeed.

Continuity corrections have seen to yield limited improvements only.

In this subsection we shall analyse exact MCTs, which make use of the underlying exact
permutational distribution of the present data set. Such tests perform in particular well in
small sample situations and fill therefore the gap left by the asymptotic counterparts. In the
following we extend the results of Neuhduser (1996) who in turn applied successfully the
ideas of Williams (1988) and Storer and Kim (1990) on contrast tests and the underlying

multi-sample situation.

We first consider the case of conditioning on the total sum of responses R = Zi r,. Williams

(1988) proposed an algorithm to calculate exact significance probabilities based on the

multivariate hypergeometric distribution. The exact conditional p-value is then given by
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where I, = {r =(rys ..., ) =0, 1,..., min(n,, R), 2 r= R} denotes the total sample space

1

and ¢, is the observed test statistic.

Another possibility of conducting exact tests is not to condition on a fixed total of responses.
Instead, R is regarded as a random variable what leads to a larger sample space and less
discrete underlying test statistics. Improved size and power performances therefore hold.
However, the debate which methodology would be more appropriate (conditional or
unconditional approach) does not fall in the scope of the thesis and we refer to the references

given in Andrés and Mato (1996).

Koch (1996) successfully extended the procedure of Storer and Kim (1990) on situations of
comparing several groups. Their original method determines in the classical 2 x2-design the

fotn

distribution of the test statistic using the MLE p = under H:

ny+n;

P(l‘ = (I"O, rl)|H0) — [l’lo] [nl) pr0+r] (1 _ p)noﬁ’ﬂ]*rofrl .

h

Generalising the resulting approximate unconditional test to multiple sample situations, one

obtains for the significance level

P(Tz1|H)= Y Hf_o( i)pr,(l_p)n,ri

{r erl, T(r)ZtU}
where F:{r:(}’o, cees rk): r :0, 1, ey ni}:U::OFR.

To compare both exact procedures, we conducted a size and power simulation study. Several
situations were investigated, from which we report the most important results. Exact power
evaluations are only possible for the conditional test and are still numerical awkward (Tang et
al., 1995; Mehta et al., 1998; Corcoran et al., 1998). Therefore we restricted ourselves to a
simulation study with 1,000 simulation evaluations each. Table 5.2. presents the values

calculated for the profiles 7 =(0.05, 0.05, 0.05,005) and z=(005,01,0.1502). In

accordance with above discussions only Marcus' MCT has been included in the results which
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Sample size ~ Asymptotic Conditional Unconditional

ni TpMC TpMC TMC TpMC TMC

5 0.157 0.054 0.050 0.095 0.050
(0.014) (0.001) (0.001) (0.001) (0.012)

10 0.236 0.174 0.185 0.183 0.186
(0.037) (0.006) (0.007) (0.007) (0.020)

15 0.312 0.308 0.294 0.309 0.274
(0.044) (0.017) (0.015) (0.013) (0.035)

20 0.384 0.382 0.359 0.385 0.390
(0.053) (0.024) (0.022) (0.020) (0.035)

25 0.451 0.432 0.445 0.438 0.447
(0.059) (0.030) (0.029) (0.029) (0.039)

Table 5.2. Power (and size) of Marcus’ MCT fork = 3, balanced case, & =5% .

0.5

0.45 | -

04 +

0.35

—— Asymptotic

—=— Conditional (pooled)

Conditional (no standardisation)

Unconditional (pooled)

—— Unconditional (no standardisation)

Figure 5.5. Graphical illustration of Table 5.2.

Group sample size
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Sample size ~ Asymptotic Conditional Unconditional

n, TrMC TMC TMC TPMC TmC
25555 0.368 0.235 0.213 0.277 0.225
(0.081) (0.014) (0.010) (0.029) (0.017)

30101010 0.426 0.390 0.339 0.401 0.347
(0.095) (0.037) (0.027) (0.047) (0.034)

35151515 0.485 0.442 0.450 0.469 0.440
(0.095) (0.037) (0.032) (0.037) (0.032)

402020 20 0.541 0.537 0.493 0.550 0.509
(0.081) (0.029) (0.021) (0.035) (0.028)

Table 5.3. Power (and size) of Marcus’ MCT fork = 3, unbalanced case, & =5% .

are graphically shown in Figure 5.5. We applied above formulas on both standardised (5.7)
and non-standardised (5.8) pooled statistics for both conditional and unconditional approach,
respectively. No continuity corrections at all were considered. Unpooled versions were
originally included as well but performed less powerful in our studies. Their results are

therefore omitted here.

It comes clearly out that the asymptotic uncorrected test performs best in terms of power.
Especially for small sample sizes it yields the highest power values whereas all exact tests
show a poor power behaviour for n, = 5 or 10. With increasing sample sizes however, the
differences diminish and the exact tests are as good as the asymptotic ones. The other side of
the coin is to investigate the respective size performances. In fact the asymptotic test holds the
size fairly well, in particular for smaller sample sizes. Only for n, = 25 the test gets slightly
liberal. However, these are very special results, which hold in the balanced case. As seen from
Table 5.3. the size behaviour becomes critical if imbalances occur. The uncorrected
asymptotic test clearly fails to maintain the nominal 5%-level. Nevertheless, these results
demonstrate that uncorrected asymptotic tests might work well in the balanced case (even for
n, =5). The exact versions are all very conservative with an actual size less than 4% in most
of the cases. Moreover, they are up to now computationally not feasible, limiting their

application in fact to small sample designs.
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Other possible definitions instead of the conventional p = Pr(TZ to) exist in the context of
permutation tests. All of them are motivated by the conservativeness of the exact tests and try
to alleviate this problem. On the other side, the a—level is possibly not guaranteed any more,
although this property is one major reason for the application of exact tests. One well-known
p-value adjustment is the mid—p concept of Lancaster (1961) given by
p=P(T>1,)+1P(T=1t,). More recently, Chen et al. (1997) introduced another less
conservatived method of calculating p by excluding some permutations whose probabilities of
occurrence are greater than the probability of the observed outcome. For a general up to date

review of randomisation procedures we refer to Seidel (1999).

5.3.4. Example

Recall the example (p. 126) of investigating the influence of germinal temperature on the
occurrence of anomalies in young kohlrabi plants (Habegger and Wiebe, 1985). Table 5.4.
summarises the data obtained from the randomised one-way layout for 6 temperature

treatments, where 16° is regarded as the control group (standard treatment).

Temperature 16° 14° 11° 8° 5° 2° X

Number of plants 3 3 9 10 14 12 51
bearing anomalies

Number at risk 100 100 100 100 100 100 600

D; 0.03 0.03 0.09 0.10 0.14 0.12 0.085

Table 5.4. Summarising results of occurrence of anomalies in young kohlrabi plants.

We want to analyse, whether a statistical significant trend with respect to decreasing
temperature treatments exists. At first we conduct the pooled and unpooled asymptotic
Marcus MCT, both with including different continuity corrections. The following table

summarises the test statistics together with the respective p-value.
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Test Pooled asymptotic test Unpooled asymptotic test

C.c. noc.c. minc.c. avec.c. maxc.c.| noc.c. minc.c. avec.c. max cC.C.

Statistic | 3.5857  3.5857  3.5499  3.496 | 4.1553 4.1553 4.1175 3.9664
P-value | 0.0011 0.0011 0.0013 0.0016 | 0.0001  0.0001 0.0002 0.0003

Clearly, the uncorrected tests yield the highest test statistics and hence the lowest p-values.
The minimum c.c. does not change the statistic and lead to the same p-values. The unpooled
version are slightly better, but all p-values are so small that the null hypothesis can be rejected
without hesitation. Conducting conditional exact tests for the different versions introduced
above results in similar p-values to those given for T“¥“. The conduction of unconditional

tests were impossible because of the high total sample size of 600.
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6. Estimation of the minimum effective dose

We now focus on the problem of estimating the smallest dose that produces a response
significantly different from the control (minimum effective dose, abbreviated MED hereafter).
This goal can be achieved within the closure test principle of Marcus et al. (1976). Proceeding
from the two main assumptions, comparison to a control and monotone dose-response
relationship, it can be shown (e.g. Hothorn et al., 1997) that the identification of the MED
consists of a series of inferences in a specified order. Failure of achieving the desired
inference at any step renders subsequent comparisons unnecessary. In dose-response studies,
for example, it is desirable for a method to not declare a lower dose efficacious if this could be
done for a higher dose. Following this goal, we achieve this procedure by answering the
question “4, > 11, in a stepwise fashion, continuing only while the answer is affirmative. As
the closure principle imposes no restriction on the choice of the tests used, all approaches
considered above fit into this context and will be applied on an example in this chapter. For
more details on this topic we refer to the recent articles of Rom et al. (1994), Tamhane et al.
(1996), Bauer (1997), Amaratunga and Ge (1998), Sidik and Morris (1999), Dunnett and
Tamhane (1998) and with particular attention on efficacy and safety of compounds Ruberg
(1995).

The closure test principle according to Marcus et al. (1976) is a widely used method for

combining several statistical statements and simultaneously controlling the arising global
error. Starting from the finite set of hypotheses {H,‘ iel, I= {1, oo p}} to be investigated it

forms the closure of this family by taking all possible non-empty intersections

Hg = ﬂies H,, VS c I.1If an o-level test for each hypothesis Hy is available, then the closed

testing procedure rejects any hypothesis Hy if and only if every Hr is rejected by its associated
o-level test for all 7 © §. This procedure is proven to hold the global error o (see Hochberg
and Tamhane (1987, pp. 54) for the proof and a further comprehensive overview on this
subject). Two main advantages characterise this procedure. On the one hand it leaves the
choice of the individual tests entirely free and one can chose the appropriate test procedure for
the analyse of a designated hypothesis. Even the change of individual test procedures within

the closure test is allowed. Second, under all multiple test it is that one which yields the
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highest power and therefore provides the highest statistical information (Horn and Vollandt,

1995, p. 19). However, an overblown set of hypotheses to be tested may reduce its efficacy.

Applying these theoretical results under the consideration of the two additional assumptions
comparison to a control and monotone dose-response assumption we get the following
systematic for the realisation (Hothorn et al., 1997). The set of null hypotheses to be tested is

defined as

Hypr Mo =1y = ... = I (6.1)

Versus

H o Mo Sy S Sy S g g < s kzi=1. (6.2)

Then the sequence

will be tested hierarchically at the conditional level o = 5% until a null hypothesis fails to be

rejected. In other words, the procedure begins with testing Hy,), the simultaneous comparison

of all treatment groups with the negative control (the question whether a global trend exists or
not). If there is no indication for a trend the null hypothesis will not be rejected and the

procedures stops. Otherwise H, is investigated. This process holds on until a null

k=1)
hypothesis is not rejected any more or the sequence above comes to the end, in which case all
treatment groups are considered to be different from the negative control. The first to derive
this sequential procedure for order restricted inferences was Williams himself (1971, 1972),
who applied this methodology on his own new developed test. But he did not generalise his

approach in the sense of the results established later by Marcus et al. (1976).

A general testing procedure to estimate a MED based on these considerations is given in the

following algorithm. The 7.’s stand for the adequate trend tests for [C— =D,, D, ..., D.] at

4

stage i.

154



1. INPUT o, &, T..

2. Initialise i = k, crit = 0.

3. REPEAT
a) Evaluate p= p(T)=p- value of 7,.
b) IF p > oo THEN crit = 1.

ELSEi=i-1.

UNTIL (i <1 ORcrit=1).

4. Set MED =i + 1.

5. OUTPUT MED, p.

If the procedure fails to detect a significance at the first step, MED is virtually set as k + 1.
This means that no true MED has been found, i.e. no monotonous dose-response relationship
is considered to hold. Otherwise the algorithm outputs the estimate of the MED together with

the corresponding p-value calculated.

As an illustration of the procedure we apply the six trend tests considered in Chapter 4.
Consider the data in Table 6.1., taken from Ruberg (1995). The example is chosen from an
experiment involving the comparison of nine active dose groups against a negative control
(vehicle group) with six animals per group. Because the dose-response curve follows a
sigmoidale course (see Figure 6.1.), several dose-response shapes will appear during the
process of identifying the MED. This example is therefore very illustrative to investigate the
behaviour of the several procedures in dependency of convex, concave and other profiles. In
Table 6.1. the test statistics (upper entry) and the respective p-values (lower entry) are given
for Williams’ and Marcus' original tests, the LRT and all three multiple contrast tests

considered so far.
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Figure 6.1. Example dose-response data represented through mean + standard deviation (Ruberg, 1995).

The p-values were obtained as follows. Because of the present balanced design (nl. = 6), the

SAS-call (1.8) was used for Williams’ 7 . The conduction of Marcus’ original test required

9,999 simulation runs. The p-values of the LRT were obtained making use of the SAS/IML

algorithm B.2.4 in the Appendix (which is based on the method of Sun, see Subsection

2.1.2.3.). For the MCTs the lattice rule implementation of Genz and Bretz (1999) was used

instead (see Subsection 2.2.2.2. and the corresponding implementation B.2.9; € = 0.001). Note

that computing the p-values for the isotonic contrast for high values of k can be very tedious

without an dimensionality reduction as presented in Section 3.6., even if the Solow procedure

is conducted.

As we assume a common variance, one calculates s> = 60.078. Furthermore, applying Lemma

1.2. one obtains for the restricted estimates
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Dose Mean  Williams® Marcus’ LRT Williams  Marcus  Isotonic
(mg/kg)  Std. dev. r ¢ mod contrast  contrast  contrast
4.5 76.2 11.3295 11.5083  0.9012 13.815 20.8937  21.0361
7.9 <0.0001  0.0001 <0.0001 <0.0001 <0.0001 <0.0001
4 73.5 10.7857  10.9645  0.8950 13.2098  19.0921  19.2691
4.5 <0.0001  0.0001 <0.0001 <0.0001 <0.0001 <0.0001
3.5 73.4 10.7857  10.9645  0.8856 12.4887  16.9405  17.2627
7.6 <0.0001  0.0001 <0.0001 <0.0001 <0.0001 <0.0001
3 74.4 10.7857  10.9645  0.8603 10.9273  14.2842  14.0582
14.6 <0.0001  0.0001 <0.0001 <0.0001 <0.0001 <0.0001
2.5 57.9 7.2402 7.4189 0.7316 7.2402 8.9614 8.8126
9.9 <0.0001  0.0001 <0.0001 <0.0001 <0.0001 <0.0001
2 405 33519 35307 04212 33519 40769  4.1953
10.5 0.0008 0.0006 0.0005 0.0017 0.0004 0.0002
1.5 334 1.7653 1.9441 0.2002 1.7653 2.2449 2.2273
23 0.0511 0.0494 0.0455 0.069 0.0418 0.0435
1 27.7 0.4916 0.6704 0.0381 0.4916 0.7741 0.7741
3.3 0.3752 0.5056 0.3434 0.3862 0.3442 0.3442
0.5 23.9 —0.3575 0 0 -0.3575 -0.3575 —-0.3575
4 0.6389 1.0000 1.0000 0.6389 0.6389 0.6389
0 25.5 % % % % % %
2.6

Table 6.1. Estimation of the minimum effective dose: data and summary statistics for different multiple

procedures; upper entry: test statistic, lower entry: p-value.

According to Williams (1971, 1972) one computes £ only once and use these estimates for all

subsequent steps of the sequential procedure. We applied this approach also for Marcus

s leod )

The analogous way of calculation for the MCTs is to maintain all dose groups in the contrast

matrices. At lower steps i, where only the first i + 1 dose groups should actually be

considered, the remaining last k — i contrast coefficients are set as 0’. In contrast, when

conducting the LRT the isotonic estimates were evaluated anew at each step.
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Because the response in the high doses is very strong, no test has problems to declare them
significant. But focusing the attention to the dose 1.5 mg/kg, we notice that by reason of the
convex shape for the last 3 + 1 doses, Williams’ test as well as the Williams-type multiple
contrast do not reject the null hypothesis (p-values 0.0511 and 0.069, respectively). Therefore
they declare the dose D = 2.0 mg/kg to be the MED. The other four tests, in contrast, perform
better, achieving an improved MED-estimation. But caution has to be taken upon the result
for Marcus' ™. The resulting p-value 0.0494 has to be interpreted with great care because of
the simulation evaluation conducted. Using a different seed for the random number generator
other p-values will be obtained. Certainly, a series of values will lie above the 0.05-limit (in
which case the null hypothesis would not be rejected). Therefore, similar to Example 1.4. we
are again confronted with the situation that our final decision upon rejecting or not the null

hypothesis is directly determined through the arbitrary definition of the seed.

So far we considered only the minimum dose, which shows a significant response increase
with respect to a control group under the total order assumption. However, other relevant
doses or treatments could also be of interest for the practitioner. A vast literature exists for
estimating such doses, for example the maximum dose, which is still equivalent to the control
group (MEQD), the no-observed-adverse-effect-level (NOAEL), the highest efficient dose
step (HEDS) or the maximum tolerated dose (MTD). All of these problems can be analysed
by use of appropriate multiple contrast tests (not necessarily under the total order restriction,

see also p. 28).

Instead we focus now briefly on a further dose, called the maximum effective dose.
Remmenga et al. (1997) define it as "... the dose above which no significant improvement in
efficacy is obtained.". In other words, one tries to estimate the smallest dose, which still shows
a maximum effect. For our example in Figure 6.1. we would clearly point D = 3.0 mg/kg out.
Using the example above we show how the methodology developed so far can be varied in
order to apply it to different settings and problems of interest. For this we define the following
procedure to obtain the estimate. Instead of comparing several treatments to C—, we invert the
problem and compare the treatments to the maximum dose. As the monotonicity assumption
is still supposed to hold, the trend tests considered in this thesis can again be applied. The only
difference is that one now tests on a decreasing response with respect to the maximum dose.

Furthermore, we state analogously to (6.1) and (6.2) the hypotheses
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H(;(i): M=M= = H, (6.3)

VErsus

Hyp 2 2 2 g 2 U J >, 0Si<k—10 (64)

Afterwards a similar sequential procedure as conducted for the MED is applied. The sequence

H . Hy, ..., H] H ) will be tested hierarchically until a null hypothesis fails to be

(0)> Hoqy> (k-2)° Ho(k-1

rejected. First, H(;(O) is tested, the simultaneous comparison of all lower groups with the

highest dose group (the question whether a global trend exists or not). If there is an indication

for a decreasing trend, H(;(l) is investigated. Otherwise the procedure stops and no maximum

effective dose exists (the procedure failed to show an overall trend). This process holds on
until a null hypothesis is not rejected any more or the sequence above comes to the end. In the
latter case, all treatment groups are considered to be different from the maximum dose Dy and
the sought maximum efficient dose is set as Dy itself. Otherwise, the first not rejected dose is
set as the desired maximum efficient dose. For an illustration of this procedure the associated
test statistics and p-values of above example are summarised in Table 6.2. It transpires that all
tests clearly distinguish D = 3 mg/kg to be the estimate of the desired maximum effective

dose.

Before leaving this chapter it should be noticed that the trend test approach is not the only
possible way of estimating a maximum effective dose. In fact it is often required to control the
second type error in such situations (consumers risk). In these cases it would be adequate to
follow a stepwise procedure (beginning at Dy), where at each stage an intersection union test is
conducted. At each step both a significant difference to the control (either trend test under
order restriction or pairwise testing without order restriction) and a two-sided equivalence to
the higher doses have to be established by rejecting the corresponding null hypotheses. The
smallest dose, for which this condition is satisfied as well as for all higher doses, is estimated
to be the sought maximum effective dose. Because this methodology lies beyond the scope of
this thesis we do not consider it further. Instead we refer to Bauer et al. (1998) and Hothorn
and Hauschke (1999) for a deeper discussion on this subject (use of the intersection union test
and the principle of equivalence testing in dose finding studies, respectively).
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Dose Williams’ ¢ Marcus’ LRT Williams Marcus Isotonic

(mg/kg) ¢ med contrast contrast contrast
0 11.5083 11.5083 0.9012 13.8210 20.8937 21.0361
<0.0001 0.0001 <0.0001 <0.0001 <0.0001 <0.0001

0.5 11.5083 11.5083 0.8959 13.1003 19.2177 19.3073
<0.0001 0.0001 <0.0001 <0.0001 <0.0001 <0.0001

1 10.8379 10.8379 0.8785 11.7791 16.7612 16.7322
<0.0001 0.0001 <0.0001 <0.0001 <0.0001 <0.0001

1.5 9.5642 9.5642 0.8448 10.1277 13.6568 13.7009
<0.0001 0.0001 <0.0001 <0.0001 <0.0001 <0.0001

2 7.9776 7.9776 0.7688 7.9776 9.5751 9.9665
<0.0001 0.0001 <0.0001 <0.0001 <0.0001 <0.0001

2.5 4.0893 4.0893 0.4689 4.0893 4.6568 4.6568
0.0001 0.0001 0.0002 0.0001 0.0001 0.0001

3 0.5438 0.5438 0.0216 0.6659 0.6659 0.6659
0.3756 0.5878 0.4634 0.3511 0.4711 0.4719

Table 6.2. Estimation of the maximum efficient dose: data and summary statistics for different multiple

procedures; upper entry: test statistic, lower entry: p-value.
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7. Summary and complements

This thesis has been inspired by the particular problem of assessing monotone dose-response
relationships. This problem is frequently encountered in practice in the context of actively
proofing a significant monotonous dependence of the response on increasing doses or

treatments.

One of the most popular statistical approaches in this context is the trend test of Williams
(1971, 1972). However, several disadvantages are inherent to this procedure and the research
for its improvement led to the present work. In the course of the thesis we could observe

several main features, which severely restrict the use of Williams’7 .

e The null distribution is difficult to compute, especially in the general unbalanced set-up.
Quantiles and p-values are hardly available apart from the balanced case.

® As seen from Example 1.4. (pp. 29) the test statistic  does not incorporate sufficiently
possible unequal replications. Due to its variance estimator, ¢ is very sensitive against
different allocations of sample sizes.

e Moreover, ¢ has been shown to behave sometimes poor with regard to both size and
power. Figure 4.2. demonstrated the conservative nature of ¢, while the power study
revealed a stronger dependence of Williams’ test on the underlying dose-response shape

than it is the case of its competitors.

Therefore, the aim of the thesis was to improve and extend Williams’ f with respect to these
restrictions. The method of choice in the present work was the application of the principle of
multiple contrast tests. In fact, much research work has been paid for their development.
Chapter 2 was devoted to their numerical availability and the computation of multivariate
normal and /—probabilities. Results obtained there are essential for both theory and application
of MCTs. By virtue of Sections 2.1. and 2.2. we are now able to evaluate MCTs under both
H, and H, — a distinguishing feature when compared to competing trend tests, where exact
power calculations are available at most for small values of k. Consequently, power
expressions in closed form of MCTs were derived for normal and dichotomous data. Their

derivation is essential when conducting a post-hoc analysis, or, even more important, for
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design and statistical planning of experiments. Sample size determinations are implicitly

solved by virtue of these power formulas.

In Chapter 3 a solution for extending Williams’ ¢ to general unbalanced settings was
proposed. By incorporating the ideas of Williams into an adequate definition of a contrast
matrix, we succeeded in improving the 7 —test in the sense of above discussion. Due to a
different variance estimator we managed to overcome the power and size deficits of the
original approach. But beside from extending Williams’ test, attention has been given towards
the derivation of two further MCTs under total order restriction. First we extended in analogy
to ¢ the modified Williams test described by Marcus (1976). Next we provided an isotonic
contrast, which owns two main characteristics. On the one hand, the methodology of Abelson
and Tukey (1963) was applied for each of the arising 2“~1 contrasts, resulting in locally’
optimal single contrasts. On the other side, a link was established to the well-known
maximum likelihood estimators under order restriction by decomposing the global null
hypothesis into smaller subsets, which correspond uniquely to the possible outcomes of the

max-min formula (1.5). Particular applications for a further enhanced use of these MCTs were

introduced in Chapters 5 and 6.

In Section 4.2. an extensive power and size study was conducted to compare the different
trend tests which emerged in the course of the thesis. The likelihood ratio test of Bartholomew
(1959, 1961) is well-known to yield the highest ’average’ power among the trend tests
available at present. This was also one of the main conclusions from the power study (see
Section 4.3. for a brief discussion of the results). But despite this main advantage the LRT
seems nevertheless to be of restricted use in practice. Several reasons may help to explain this
phenomena. Agresti and Coull (1998, p. 148), for example, state that "the area would be well-
served by an applied version of the fine theoretical text book of Robertson et al. (1988)."
Similarly, Tang and Lin (1997) observed that "although the development of the LRT seems
quite complete, many practitioners might find the amount of details excessive." Moreover, the
null distribution of the LRT was regarded long time computationally infeasible, especially in
unbalanced settings. Up to now, many articles are published under this assumption and
provide alternative methods for analysing trend situations (see for example Tang and Lin,
1997, Hothorn et al., 1997, Bailey, 1998, and McDermott, 1999). However, one major

conclusion of the thesis is to reinforce that numerical methods for evaluating orthant
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probabilities (and hence level probabilities) indeed exist. Based on the formulas of Sun
(1988a, b) slightly extended and improved SAS/IML programs were provided in Subsections
2.1.2.3. and 2.1.3. Together with the randomised lattice rules introduced in Section 2.1.2.2.
the practitioner is able to conduct the LRT under total order restriction without any restriction

of the number of groups.

But from all these investigations new problems and questions come up. With Marcus’ and the
1sotonic MCT two further competing contrast definitions were found, which perform better in
the power study than Williams’ approach, i.e. they depend less on the underlying dose-
response shape while achieving reasonable good power values. In fact they even behaved
practically identical to the benchmark LRT in many situations. The question naturally arises
for a deeper comparison between the LRT and MCTs. Which of these two approaches should

be preferred for analysing a real data situation?

As mentioned before, the LRT has the strong advantage of good power properties. Moreover,
due to the books of Barlow et al. (1972) and Robertson et al. (1988) and many further articles
in the literature the LRT is thoroughly investigated from a theoretical point of view. But as
seen from the study in Chapter 4 the power advantages of the LRT are not as big as one could
expect. The power differences are rarely greater than 1 or 2%, when compared to Marcus’ or
the isotonic contrast. Furthermore, the LRT has seen to be slightly more liberal than its
competitors, in particular Williams original test, in the presence of strong violations of the
classical ANOVA-assumptions (non-normal data, variance heterogeneity). Common to both
approaches (LRT and MCTs) is their simple generalisation to other experimental set-ups
(non-parametric analysis, higher factorial layouts, ...; see also the discussion provided below).
This distinguishes both approaches from many other trend tests, which are still only available
for the analysis of special settings. Whereas the LRT has a theoretical and mathematical
sounded background, the MCT, on the other side, has the claim of being a somewhat unified
approach among multiple tests, not necessarily under total order restriction. We have seen that
most of the trend tests published are actually multiple contrast tests, which include the
approaches of Hirotsu, Hayter, McDermott, Williams and Marcus. Therefore, the results
obtained for arbitrary MCTs in the thesis are valid for all of these tests. In particular, we are
able to evaluate these tests under both H, and H,. This is a further major advantage of MCTs

when compared to the LRT. For the latter test, power expressions in closed form are only
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available for k = 2 or k = 3. Therefore, sample size determination and design of experiments
can not be carried out with the LRT. Next, the construction of simultaneous confidence
intervals for the LRT is still a question of research. Robertson et al. (1988) devoted only two
pages on this important subject. In the case of MCTs, however, one-sided intervals for linear

combinations of normal means with coverage probability 1 — o are easily available with

where 7, , . is the corresponding g—variate r—quantile with v degrees of freedom and

correlation matrix R (see Subsection 2.2.2.3.). One further main advantage of MCTs over the
LRT involves their numerical availability. Unfortunately most of the tests introduced and
developed in the course of the thesis are not implemented at present in the statistical software
packages (with exception of the balanced Williams). Algorithmic implementations, such as
presented here for both the LRT and the MCTs, are hardly available to the practitioner and
moreover difficult to understand. Hence, for a numerical method to be accepted by the
practitioner it has to be widely available, easy to use and has to provide an intuitive insight.

The SAS-procedure PROC MULTTEST (SAS Institute Inc., 1997, p. 777) meets all these

requirements. The contrast statements within the procedure call allows the practitioner an easy

DATA seeding;
INPUT yield rate e@@;

CARDS;

25.4 50 22.4 50 25.2 50 24.4 50 24.2 50 22 50
26.2 75 26.2 75 25.2 75 26.4 75 25 75 27.8 75
27.6 100 27.6 100 26 100 25.8 100 26.2 100 25.8 100
27.6 125 28.2 125 26.8 125 26.6 125 28 125 27.8 125

27.2 150 28.2 150 26.8 150 25.6 150 27.2 150 27.6 150

3

PROC MULTTEST BOOT N=10000;

CLASS rate;

TEST MEAN (yield/UPPERTAILED);

CONTRAST '1' -1 0 0 0 1;
CONTRAST '2' -1 0 0 .5 .5;
CONTRAST '8! -1 0 .3333 .3333 .3333;
CONTRAST '4' -1 .25 .25 .25 .25;
CONTRAST 'S5 -.5 -.5 0 0 1;
CONTRAST '6' -.3333 -.3333 -.3333 0 1;
CONTRAST '7! -.25 -.25 -.25 -.25 1;
CONTRAST '8 -1 -1 0 1 1;
CONTRAST '9' -.5 -.5 .3333 .3333 .3333;
CONTRAST '10' -.3333 -.3333 -.3333 .5 .5;

RUN;
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MULTTEST PROCEDURE

Test for continuous variables: Mean t-test
Tails for continuous tests: Upper-tailed
Strata adjustment? No

P-value adjustments: Bootstrap
Center continuous variables? Yes

Number of resamples: 10000

Seed: 69986

MULTTEST COEFFICIENTS

Class
Contrast 50 75 100 125 150
1 -1.00000 0.00000 0.00000 0.00000 1.00000
2 -1.00000 0.00000 0.00000 0.50000 0.50000
3 -1.00000 0.00000 0.33330 0.33330 0.33330
4 -1.00000 0.25000 0.25000 0.25000 0.25000
5 -0.50000 -0.50000 0.00000 0.00000 1.00000
6 -0.33330 -0.33330 -0.33330 0.00000 1.00000
7 -0.25000 -0.25000 -0.25000 -0.25000 1.00000
8 -1.00000 -1.00000 0.00000 1.00000 1.00000
9 -0.50000 -0.50000 0.33330 0.33330 0.33330
10 -0.33330 -0.33330 -0.33330 0.50000 0.50000
MULTTEST TABLES
Class
Variable Statistic 50 75 100 125 150
YIELD Mean 23.9333 26.1333 26.5000 27.5000 27.1000
Std Dev 1.4236 1.0013 0.8649 0.6542 0.8741
N 6.0000 6.0000 6.0000 6.0000 6.0000
Contrast Raw_p Boot_p
1 0.0001 0.0001
2 0.0001 0.0001
3 0.0001 0.0001
4 0.0001 0.0001
5 0.0002 0.0009
6 0.0013 0.0055
7 0.0126 0.0428
8 0.0001 0.0001
9 0.0001 0.0001
10 0.0001 0.0003

and flexible use of multiple contrasts, which are than approximated by a bootstrap or
permutation method. The algorithm above illustrates the convenient use by analysing the

seeding rate example of the Introduction. An uppertailed bootstrap test is conducted with
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10,000 bootstrap replications. The contrast statements involve the definition of Marcus

’

contrast test (g = k(k + 1) / 2 =10 single contrasts). The results are calculated quickly and are

summarised below the algorithm. The final p-value is then the minimum value (0.0001)

among the g = 10 adjusted bootstrap p-values towards the end of the output (marked bold for

purposes of illustration here).

It is always difficult to summarise such a broad choice of subjects as investigated in this

thesis. It becomes even more complicated if one is requested to provide recommendations to

the practitioner. Nevertheless, the attempt is made in the following, although we are conscious

of the inherent superficiality and shortcoming of detailed results.
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One should conduct a trend test only if one is sure upon the monotonicity assumption.
Otherwise the results are not reliable and difficult to interpret.

In general, the one-sided Dunnett-test is a good alternative to trend tests. It does not
loose too much power under H,, but it makes no monotonicity assumption and is
therefore robust against violations of the monotonicity.

Among the present trend tests no uniformly most powerful test exists. None of the
introduced tests above can therefore be recommended to achieve the best power over the
whole alternative space.

The LRT seems to be that one with the highest average power.

However, MCTs (especially those according to Marcus and the isotonic MCT)
approximate the LRT very well, resulting in a power loss not greater than 1 or 2% over
most parts of the alternative space. In many cases, MCTs perform identically to the
LRT.

Williams original test behaves especially good for concave profiles. But, as seen from
the data example, it takes the sample size allocation not correctly into account.

For non-normal data and variance heterogeneity the LRT is somewhat liberal. Williams
t behaves best in such situations, MCTs depend on the contrast choice.

Our final recommendation is to use MCTs, because their power loss is negligible in
comparison to the LRT and they are easier to handle under a variety of aspects
(confidence intervals, numerical implementation, power expression, generalisation to

other set-ups).



The question arises upon further generalisations of MCTs. A few lines above we have already
introduced for another reason a bootstrap MCT. Certainly, a bootstrap MCT 1is not only
interesting because of its convenient use when applying SAS. If the underlying distribution is
unknown, bootstrap methods are one applicable approach for analysing the observed data. For
further reading we refer to standard text books, e.g. Davison and Hinkley (1997). For a short
investigation of the performances, selected power values from Table 4.1. are compared with
the corresponding simulated power of bootstrap MCTs. A SAS/IML program of Seidel (1999)
has been used for these purposes, where the data are bootstrapped from the pooled sample,
while assuming variance homogeneity. The simulations were conducted with standardised

normal data generated by the SAS call RANNOR. The data in Table 7.1. (columns 4 and 5)

suggest that the empirical bootstrap distribution indeed approximates the real one fairly well

and the power values differ only negligible on the second or third significant digit.

MCTs with mean bootstrap MCTs with ~ bootstrap MCTs with
square error mean square error total sum of error

minimum  maximum minimum  maximum — minimum — maximum

Williams 0.4366 0.5647 0.4282 0.5528 0.4168 0.5556
Marcus 0.4951 0.5573 0.498 0.5534 0.4996 0.5654
LRT 0.4912 0.5651 0.491 0.5634 0.491 0.5634

Williams contrast 0.3826 0.547 0.3774 0.541 0.3578 0.5438
Marcus contrast 0.4888 0.5432 0.486 0.5384 0.4916 0.5564
Isotonic contrast 0.4886 0.5456 0.486 0.54 0.4904 0.5576

Table 7.1. Comparison of power values for different trend tests, v = 20 (n; = 6), A =2, bootstrap tests with

5,000 % 5,000 replications (simulation X bootstrap replications).

Attention has been drawn several times in the course of this thesis that Cohen and Sackrowitz
(1992, 1993) succeeded in improving several multiple tests by taking the total sum of errors
instead of the usual mean square error. In particular, they have shown that studentised tests
are inadmissible under specific order restrictions, i.e. they can be improved uniformly
throughout the alternative by an appropriate test. However, improved tests were provided for

some restricted examples and values of k only. In the light of their considerations, we included
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the modified tests statistics in Table 7.1. Their power values were yielded with the same SAS-

program cited above. The tests statistics under investigation were obtained by substituting the
2 D k n; —\2 k
usual s° through the total sum of errors o = Zizo 2,-:1 (X =X ) / (2,-=o n, — 1). Only the

LRT has been left unchanged. It transpires from Table 7.1. that the differences, if any, are
marginal. Due to the uncertainty inherent to the simulation approach, no final conclusion can

be made upon 5,000 x 5,000 replications.

Up to now we have focused ourselves on situations under the simple (i.e. total) order

assumption

Hy:flyg SH S Sy fy <

However, other order restrictions are possible and frequently investigated in the literature. We
cite a few further orderings which are closely related to above H,. Gromping (1996)

investigated in detail the incremental ordering
Hi oy <M, <...<pu,

and proposed a test based on the comparison of adjacent doses within the intersection union
principle (the null hypothesis is rejected only if the maximum p-value is smaller than the level
«). Obviously, an adequate MCT would be defined by taking the minimum of ¢ = k adjacent
pairwise contrasts. The whole theory developed in this thesis could be applied, including
power expression, confidence intervals, numerical availability, etc. Next, we encountered

already twice the slippage alternative

Hppy=...=4,<p,,=...=f, 0<i<k-1,
of exactly one shift in the response function. As seen, the approaches of Hirotsu (1979) and
Sugiura (1994) belong to the class of MCTs, too. One further well-known order restriction 1s

the classical many-to-one approach

H iy, < u,.
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The most frequently used test for this set-up seems to be that of Dunnett (1955, 1964), which
again is a MCT with a special contrast matrix. In this way many other restrictions of the
alternative in the general k—sample problem can be found in the literature and one can imagine
that for each situation adequate MCT's might be defined. Thus, the results of the present thesis
are not only valid for the investigated total order, but generalise to other situations (see
Robertson et al., 1988, or Hettmansperger and Norton, 1987, for further examples of order

restrictions).

Further applications of MCTs are given in the area of non-parametric analysis. Bootstrap
methods have already been mentioned briefly. Moreover, Seidel (1999) provides a detailed
discussion of rank transformed statistics, including MCTs. Due to the multivariate central
limit theorem the multivariate normal distribution holds asymptotically and the results
achieved in Section 2.1. are fundamental for an enhanced use of rank transformed MCTs.
Future research will also involve the inclusion of variance heterogeneity in MCTs. Several ad-
hoc methods have already been proposed (see Grimes and Federer, 1984, Meng et al., 1993,
and Bailey, 1998). But a systematic approach is still missing. Further applications are also
expected to occur for higher factorial layouts. The present thesis has been devoted exclusively
to the one-way layout. Seidel (1999) investigates also randomised block designs and general

two-way layouts.

As a final conclusion we reinforce that the first steps for an enhanced application of MCTs

were done, but much future research work is waiting to be conducted.
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Appendix A

The following pages contain the contrast coefficients in the balanced case of the three multiple
contrast tests defined in the course of Chapter 3 (Sections 2 through 4). In the case of equal
replications the sample size has no influence on the contrast definitions. The matrices were

generated with programs B.3.1. through B.3.3. from Appendix B.

A.1. Contrast coefficients of Williams’ MCT according to Definition 3.1., balanced case

k=1
CcMm
-1 1
k=2
CcMm
-1 0 1
-1 0.5 0.5
k=3
CcMm
-1 0 0 1
-1 0 0.5 0.5
-1 0.3333333 0.3333333 0.3333333
k=4
CcMm
-1 0 0 0 1
-1 0 0 0.5 0.5
-1 0 0.3333333 0.3333333 0.3333333
-1 0.25 0.25 0.25 0.25
k=5
CM
-1 0 0 0 0 1
-1 0 0 0 0.5 0.5
-1 0 0 0.3333333 0.3333333 0.3333333
-1 0 0.25 0.25 0.25 0.25
-1 0.2 0.2 0.2 0.2 0.2
k=6
CM
-1 0 0 0 0 0 1
-1 0 0 0 0 0.5 0.5
-1 0 0 0 0.3333333 0.3333333 0.3333333
-1 0 0 0.25 0.25 0.25 0.25
-1 0 0.2 0.2 0.2 0.2 0.2

-1 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667
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A.2. Contrast coefficients of Marcus’ MCT according to Definition 3.2., balanced case

k=1
CM
-1 1
k=2
CM
-1 0.5 0.5
-1 0 1
-0.5 -0.5 1
k=3
CM
-1 0.3333333 0.3333333 0.3333333
-1 0 0.5 0.5
-0.5 -0.5 0.5 0.5
-1 0 0 1
-0.5 -0.5 0 1
-0.333333 -0.333333 -0.333333 1
k=4
CM
-1 0.25 0.25 0.25 0.25
-1 0 0.3333333 0.3333333 0.3333333
-0.5 -0.5 0.3333333 0.3333333 0.3333333
-1 0 0 0.5 0.5
-0.5 -0.5 0 0.5 0.5
-0.333333 -0.333333 -0.333333 0.5 0.5
-1 0 0 0 1
-0.5 -0.5 0 0 1
-0.333333 -0.333333 -0.333333 0 1
-0.25 -0.25 -0.25 -0.25 1
k=5
CMm
-1 0.2 0.2 0.2 0.2 0.2
-1 0 0.25 0.25 0.25 0.25
-0.5 -0.5 0.25 0.25 0.25 0.25
-1 0 0 0.3333333 0.3333333 0.3333333
-0.5 -0.5 0 0.3333333 0.3333333 0.3333333
-0.333333 -0.333333 -0.333333 0.3333333 0.3333333 0.3333333
-1 0 0 0 0.5 0.5
-0.5 -0.5 0 0 0.5 0.5
-0.333333 -0.333333 -0.333333 0 0.5 0.5
-0.25 -0.25 -0.25 -0.25 0.5 0.5
-1 0 0 0 0 1
-0.5 -0.5 0 0 0 1
-0.333333 -0.333333 -0.333333 0 0 1
-0.25 -0.25 -0.25 -0.25 0 1
-0.2 -0.2 -0.2 -0.2 -0.2 1
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CMm
-1 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667
-1 0 0.2 0.2 0.2 0.2 0.2
-0.5 -0.5 0.2 0.2 0.2 0.2 0.2
-1 0 0 0.25 0.25 0.25 0.25
-0.5 -0.5 0 0.25 0.25 0.25 0.25
-0.333333 -0.333333 -0.333333 0.25 0.25 0.25 0.25
-1 0 0 0 0.3333333 0.3333333 0.3333333
-0.5 -0.5 0 0 0.3333333 0.3333333 0.3333333
-0.333333 -0.333333 -0.333333 0 0.3333333 0.3333333 0.3333333
-0.25 -0.25 -0.25 -0.25 0.3333333 0.3333333 0.3333333
-1 0 0 0 0 0.5 0.5
-0.5 -0.5 0 0 0 0.5 0.5
-0.333333 -0.333333 -0.333333 0 0 0.5 0.5
-0.25 -0.25 -0.25 -0.25 0 0.5 0.5
-0.2 -0.2 -0.2 -0.2 -0.2 0.5 0.5
-1 0 0 0 0 0 1
-0.5 -0.5 0 0 0 0 1
-0.333333 -0.333333 -0.333333 0 0 0 1
-0.25 -0.25 -0.25 -0.25 0 0 1
-0.2 -0.2 -0.2 -0.2 -0.2 0 1
-0.166667 -0.166667 -0.166667 -0.166667 -0.166667 -0.166667 1

A.3. Contrast coefficients of the isotonic MCT according to Definition 3.3., balanced case

k=1
CM
-7.071068 7.0710678
k=2
CM
-4.082483 -4.082483 8.1649658
-8.164966 4.0824829 4.0824829
-8.164966 0 8.1649658
k=3
CM
-2.886751 -2.886751 -2.886751 8.660254
-5 -5 5 5
-5 -5 1.339746 8.660254
-8.660254 2.8867513 2.8867513 2.8867513
-8.660254 0 0 8.660254
-8.660254 -1.339746 5 5

-8.660254 -1.339746 1.339746 8.660254
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-1

-2,
-2,
-4,
-4,
-4,
-4,
-5.
-5.
-5.
-5.
-5.
-5.
-5.
-5.
-9.
-9.
-9.
-9.
-9.
-9.
-9.
-9.
-9.
-9.
-9.
-9.
-9.
-9.
-9.
-9.

CM
-2.236068 -2.236068 -2.236068 -2.236068 8.9442719
-3.651484 -3.651484 -3.651484 5.4772256 5.4772256
-3.651484 -3.651484 -3.651484 2.0101792 8.9442719
-5.477226 -5.477226 3.6514837 3.6514837 3.6514837
-5.477226 -5.477226 1.0050896 1.0050896 8.9442719
-5.477226 -5.477226 0 5.4772256 5.4772256
-5.477226 -5.477226 0 2.0101792 8.9442719
-8.944272 2.236068 2.236068 2.236068 2.236068
-8.944272 -2,22E-16 -2.22E-16 -2.22E-16 8.9442719
-8.944272 -1.00509 -1.00509 5.4772256 5.4772256
-8.944272 -1.00509 -1.00509 2.0101792 8.9442719
-8.944272 -2.010179 3.6514837 3.6514837 3.6514837
-8.944272 -2.010179 1.0050896 1.0050896 8.9442719
-8.944272 -2.010179 0 5.4772256 5.4772256
-8.944272 -2.010179 0 2.0101792 8.9442719
CM
.825742 -1.825742 -1.825742 -1.825742 -1.825742 9.1287093
886751 -2.886751 -2.886751 -2.886751 5.7735027 5.7735027
886751 -2.886751 -2.886751 -2.886751 2.4182961 9.1287093
082483 -4.082483 -4.082483 4.0824829 4.0824829 4.0824829
082483 -4.082483 -4.082483 1.5593697 1.5593697 9.1287093
082483 -4.082483 -4.082483 0.7004433 5.7735027 5.7735027
082483 -4.082483 -4.082483 0.7004433 2.4182961 9.1287093
773503 -5.773503 2.8867513 2.8867513 2.8867513 2.8867513
773503 -5.773503 0.8060987 0.8060987 0.8060987 9.1287093
773503 -5.773503 0 0 5.7735027 5.7735027
773503 -5.773503 0 0 2.4182961 9.1287093
773503 -5.773503 -0.700443 4.0824829 4.0824829 4.0824829
773503 -5.773503 -0.700443 1.5593697 1.5593697 9.1287093
773503 -5.773503 -0.700443 0.7004433 5.7735027 5.7735027
773503 -5.773503 -0.700443 0.7004433 2.4182961 9.1287093
128709 1.8257419 1.8257419 1.8257419 1.8257419 1.8257419
128709 0 0 0 0 9.1287093
128709 -0.806099 -0.806099 -0.806099 5.7735027 5.7735027
128709 -0.806099 -0.806099 -0.806099 2.4182961 9.1287093
128709 -1.55937 -1.55937 4.0824829 4.0824829 4.0824829
128709 -1.55937 -1.55937 1.5593697 1.5593697 9.1287093
128709 -1.55937 -1.55937 0.7004433 5.7735027 5.7735027
128709 -1.55937 -1.55937 0.7004433 2.4182961 9.1287093
128709 -2.418296 2.8867513 2.8867513 2.8867513 2.8867513
128709 -2.418296 0.8060987 0.8060987 0.8060987 9.1287093
128709 -2.418296 0 0 5.7735027 5.7735027
128709 -2.418296 0 0 2.4182961 9.1287093
128709 -2.418296 -0.700443 4.0824829 4.0824829 4.0824829
128709 -2.418296 -0.700443 1.5593697 1.5593697 9.1287093
128709 -2.418296 -0.700443 0.7004433 5.7735027 5.7735027
128709 -2.418296 -0.700443 0.7004433 2.4182961 9.1287093
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364358
364358
976143
976143
976143
976143
976143
976143
976143
976143
976143
976143
976143
976143
976143
976143
976143
976143

1.5430335

-1.
-0.
-0.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-2.
-2.
-2.
-2.
-2.
-2.
-2.
-2.
-2.
-2.
-2.
-2.
-2.
-2.
-2.
-2.

59E-16
673521
673521
278291
278291
278291
278291
917436
917436
917436
917436
917436
917436
917436
917436
694085
694085
694085
694085
694085
694085
694085
694085
694085
694085
694085
694085
694085
694085
694085
694085

-1.
-2.
-2.
-3.
-3.
-3.
-3.
-4,
-4,
-4,
-4
-4,
-4,
-4,
-4,

543033
390457
390457
273268
273268
273268
273268
364358
364358
364358

.364358

364358
364358
364358
364358

2.3904572
0.6735213

-0.
-0.
-0.
-0.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.

0

0
570394
570394
570394
570394
140787
140787
140787
140787
140787
140787
140787
140787

1.5430335

-1.
-0.
-0.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.

59E-16
673521
673521
278291
278291
278291
278291
917436
917436
917436
917436
917436
917436
917436
917436

2.3904572
0.6735213

-0.
-0.
-0.
-0.
-1
-1
-1
-1
-1
-1
-1
-1

0
0
570394
570394
570394
570394

.140787
.140787
.140787
.140787
.140787
.140787
.140787
.140787

-0
-0
-0
-0

3
1
0
0
3.
3
3
3
1

-1
-0
-0
-1
-1

-0
-0
-0
-0

3
1
0
0
3.
3
3
3

.543033
.390457
.390457
.273268
.273268
.273268
.273268

.2732684
.2782908
.5703937
.5703937
.379E-16
.379E-16
.379E-16
.379E-16
.3904572
.6735213

0
0
.570394
.570394
.570394
.570394

.2732684
.2782908
.5703937
.5703937

172E-16

.172E-16
.172E-16
.172E-16
.5430335

.59E-16
.673521
.673521
.278291
.278291
.278291
.278291

.2732684
.2782908
.5703937
.5703937
.172E-16
.172E-16
.172E-16
.172E-16
.3904572
.6735213

0
0
.570394
.570394
.570394
.570394

.2732684
.2782908
.5703937
.5703937

172E-16

.172E-16
.172E-16
.172E-16

-1.543033 -1.543033
-2.390457 5.976143
-2.390457 2.6940851

4.3643578 4.3643578
1.9174362 1.9174362
1.1407873 5.976143
1.1407873 2.6940851
3.2732684 3.2732684
1.2782908 1.2782908
0.5703937 5.976143
0.
4
1
1
1
2
0

5703937 2.6940851

.3643578 4.3643578
.9174362 1.9174362
.1407873 5.976143
.1407873 2.6940851
.3904572 2.3904572
.6735213 0.6735213

0 5.976143
0 2.6940851

4.3643578 4.3643578
1.9174362 1.9174362
1.1407873 5.976143
1.1407873 2.6940851
3.2732684 3.2732684
1.2782908 1.2782908
0.
0
4
1
1
1
1

5703937 5.976143

.5703937 2.6940851
.3643578 4.3643578
.9174362 1.9174362
.1407873 5.976143
.1407873 2.6940851
.5430335 1.5430335

-1.59E-16 -1.59E-16

-0.673521

5.976143

-0.673521 2.6940851
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4.3643578 4.3643578
1.9174362 1.9174362
1.1407873 5.976143
1.1407873 2.6940851
3.2732684 3.2732684
1.2782908 1.2782908
0.5703937 5.976143
0.
4
1
1
1
2
0

5703937 2.6940851

.3643578 4.3643578
.9174362 1.9174362
.1407873 5.976143
.1407873 2.6940851
.3904572 2.3904572
.6735213 0.6735213

0 5.976143
0 2.6940851

.3643578 4.3643578
.9174362 1.9174362
.1407873 5.976143
.1407873 2.6940851
.2732684 3.2732684
.2782908 1.2782908
.5703937 5.976143
.5703937 2.6940851
.3643578 4.3643578
.9174362 1.9174362
.1407873 5.976143
.1407873 2.6940851

9.258201
5.976143
9.258201
4.3643578
9.258201
5.976143
9.258201
3.2732684
9.258201
5.976143
9.258201
4.3643578
9.258201
5.976143
9.258201
2.3904572
9.258201
5.976143
9.258201
4.3643578
9.258201
5.976143
9.258201
3.2732684
9.258201
5.976143
9.258201
4.3643578
9.258201
5.976143
9.258201
1.5430335
9.258201
5.976143
9.258201
4.3643578
9.258201
5.976143
9.258201
3.2732684
9.258201
5.976143
9.258201
4.3643578
9.258201
5.976143
9.258201
2.3904572
9.258201
5.976143
9.258201
4.3643578
9.258201
5.976143
9.258201
3.2732684
9.258201
5.976143
9.258201
4.3643578
9.258201
5.976143
9.258201
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Appendix B

This appendix contains the codes and numerical implementations of many procedures used

throughout the thesis. Most of the programs are provided in SAS/IML. Doubtless more

efficient programming techniques in terms of computer time could have been used, but only at

the expense of effort and research. For the sake of convenience the representations on the

subsequent pages are provided instead, which are easier to understand and to follow. The

listings contain material from the whole thesis. In particular, the following programs were

included.

B.1.1.
B.1.2.
B.1.3.
B.2.1.
B.2.2.
B.2.3.
B.24.
B.2.5.
B.2.6.
B.2.7.
B.2.8.
B.2.9.

B.2.10.
B.2.11.
B.2.12.
B.2.13.

B.3.1.
B.3.2.
B.3.3.
B.4.1.
B.5.1.
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SAS/IML module for calculating the MLE acc. to equation (1.5)

SAS/IML module for simulating p-values of Williams’ trend test

SAS/IML module for simulating p-values of Marcus’ trend test

SAS/IML module for calculating mvn probabilities acc. to Solow (1990)
SAS/IML module for calculating mvn probabilities acc. to Genz (1992, 1993)
SAS/IML module for calculating orthant probabilities acc. to Sun (1988a, b)
SAS/IML module for calculating p-values of the LRT under simple order
SAS/IML module for calculating generators of good lattice vectors acc. to (2.15)
FORTRAN program for calculating generators of good lattice vectors acc. (2.15)
SAS/IML module for calculating mvt—probabilities (acceptance-rejection)
SAS/IML module for calculating mvz—probabilities (Monte Carlo method)
SAS/IML module for calculating mvz—probabilities (randomised lattice rule)
SAS/IML module for calculating mvs—quantiles using the bisection method
SAS/IML module for calculating mvz—quantiles using the regula falsi

SAS/IML module for calculating mvs—quantiles using the seacnt method
SAS/IML module for calculating mvz—quantiles acc. to Ridders (1979)
SAS/IML module for computing the entries of Williams® MCT acc. to Def. 3.1.
SAS/IML module for computing the entries of Marcus’ MCT acc. to Def. 3.2.
SAS/IML module for computing the entries of the isotonic MCT acc. to Def. 3.3.
SAS/IML module for computing the power of arbitrary MCTs for normal means

SAS/IML module for computing the power of arbitrary MCTs for binomial data



The representation of the algorithms is divided into several parts. First, a short list contains
the input and output variables. Moreover, information is given on the required design of the
input variables (whether they are input as scalars, vectors or matrices). Afterwards, the
algorithm itself follows, sometimes accompanied by explaining comments. An example call
illustrates the use of each program, with the output given below. To avoid repeated
descriptions of certain program parts which are required at several places, a modular
representation of the programs has been chosen. Therefore, the given programs are not always

sufficient on its own. Instead, additional modules described before are required to be included.

The practitioner should be able to apply the modules on his own. In fact, in most cases it is

sufficient to include the statements

PROC IML;

and

QUIT;

at the beginning and to the end of each program. Sometimes additional modules are required

and the user is requested to include them by himself from the preceding algorithms.

The programs were written and tested under Windows NT 4.0 using Release 6.12 of the SAS
System. Therefore, the modules refer especially to this context. However, users should be able
to replicate these activities on other computer and operating systems as well. Nuances of the
SAS System peculiar to a particular operating system are covered in the SAS Companion
manuals. If online help is available, these nuances also appear in the Table of Contents

section, also titled ‘SAS Companion for ...".
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B.1.1. SAS/IML module for calculating the maximum likelihood estimators according to

equation (1.5)

/*************************************************************************/

/* Module for calculation of MLE according to (1.5) */
/* */
/* Input: x = mean vector (row vector) */
/* n = sample size vector (row vector) */
/* */
/* Output: m = MLE */
/* */

/*************************************************************************/

/* If trend is downward, just revert the sign of x */

start MLE(x,n);
k=ncol(x);
J(,k,0) ;5
a=j(1,k,.);

j(1,k,.)

3

do i=1 to k;
do u=1 to i;
do v=i to k;
afv]=sum(x[u:v]#n[u:v])/sum(nfu:v]);
end;
cl[u]=min(a);
a=j(1,k,.);
end;
m[i]=max(c);
c=j(1,k,.);
end;
return(m);
finish;

/* Example call */

x={25 138 2 15 14 21 9 33 25 15 21 25};
n={1 1 1 1 1 1 11 1 1 1 1};

m=MLE (x,n);
print m [format=5.2];
/* Output */

M
13.33 13.33 13.33 14.50 14.50 15.00 15.00 23.50 23.50 23.50 23.50 25.00
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B.1.2. SAS/IML module for simulating p-values of Williams’ trend test

/*************************************************************************/

/* Module for calculation of p_values of Williams' trend test

/*
/*
/*
/*
/*
/*
/*
/*
/*

Input: data = data matrix (treatment * replications)
n = sample size vector (row vector)
simanz = simulation number (scalar)

Output: p_value p_value of test

Required modules: MLE

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/*************************************************************************/

/* Module 'will_unb' is the main module, module 'simul' conducts the simulation */

st

art will_unb(data,n);

k=ncol(n);

nu=sum(n)-K;

x=j(1,k,0);

do i=1 to k;
x[i]=sum(data[i,1:n[i]])/n[1i];

end;

m=MLE (x,n);

s=0;
do i=1 to k;
s=s+sum( (data[i,1:n[i]]-x[1])##2);
end;
s=s/nu;

t_obs=(m[k]-x[1])/sqrt(s/n[1]+s/n[K]);
p=simul(n,t_obs);
return(p);

finish;

st

art simul(n,t_obs) global(simanz);
k=ncol(n);

nu=sum(n)-K;
maxn=max(n);
mu=j(1,k,0);
count=0;

do index1=1 to simanz;
data=rannor(j(k,maxn,141071))+repeat(t(mu),1,maxn);

x=j(1,k,0);

do i=1 to k;
x[i]=sum(data[i,1:n[i]])/n[1i];

end;

m=MLE (x,n);

s=0;
do i=1 to k;
s=s+sum( (data[i,1:n[i]]-x[1])##2);
end;
s=s/nu;

t=(m[K]-x[1])/sqrt(s/n[1]+s/n[Kk]);
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if t_obs>t then count=count+1;
end;

p=1-count/(simanz+1);

return(p);
finish;

/* Example call */

data={25.4 22.4 25.2 24.4 24.2 22.0,
26.2 26.2 25.2 26.4 25.0 27.8,
27.6 27.6 26.0 25.8 26.2 25.8,
27.6 28.2 26.8 26.6 28.0 27.8,
27.2 28.2 26.8 25.6 27.2 27.6};

n={6 6 6 6 6};
simanz=9999;

p_value=will_unb(data,n);
print p_value [format=6.4];
/* Output */

P_VALUE
0.0000

188



B.1.3. SAS/IML module for simulating p-values of Marcus’ trend test

/*************************************************************************/

/* Module for calculation of p_values of Marcus' trend test

/*
/*
/*
/*
/*
/*
/*
/*
/*

Input: data = data matrix (treatment * replications)
n = sample size vector (row vector)
simanz = simulation number (scalar)

Output: p_value = p_value of test

Required modules: MLE

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/*************************************************************************/

/* Module 'marc_unb' is the main module, module 'simul' conducts the simulation */

st

fi

st

art marc_unb(data,n);

k=ncol(n);

nu=sum(n)-K;

x=j(1,k,0);

do i=1 to k;
x[1i]=sum(data[i,1:n[i]])/n[1i];

end;

m=MLE (x,n);

s=0;
do i=1 to k;
s=s+sum( (data[i,1:n[i]]-x[1])##2);
end;
s=s/nu;

t_obs=(m[k]-m[1])/sqrt(s/n[1]+s/n[K]);
p=simul(n,t_obs);

return(p);

nish;

art simul(n,t_obs) global(simanz);
k=ncol(n);

nu=sum(n)-K;
maxn=max(n);
mu=j(1,k,0);
count=0;

do index1=1 to simanz;
data=rannor(j(k,maxn,141071))+repeat(t(mu),1,maxn);

x=j (1,k,0);

do i=1 to k;
x[i]=sum(data[i,1:n[1]])/n[1i];

end;

m=MLE(x,n);

s=0;
do i=1 to k;
s=s+sum( (data[i,1:n[1]]-X[1])##2);
end;
s=s/nu;

t=(m[k]-m[1])/sqrt(s/n[1]+s/n[k]);
if t_obs>t then count=count+1;
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end;
p=1-count/(simanz+1);

return(p);
finish;

/* Example call */

data={25.4 22.4 25.2 24.4 24.2 22.0,
26.2 26.2 25.2 26.4 25.0 27.8,
27.6 27.6 26.0 25.8 26.2 25.8,
27.6 28.2 26.8 26.6 28.0 27.8,
27.2 28.2 26.8 25.6 27.2 27.6};

n={6 6 6 6 6};
simanz=9999;

p_value=marc_unb(data,n);
print p_value [format=6.4];
/* Output */

P_VALUE
0.0000
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B.2.1. SAS/IML module for calculating multivariate normal probabilities according to

Solow (1990) for arbitrary dimension

/*************************************************************************/

/* Module for calculation of mvn probabilities according to Solow */
/* */
/* Input: =z = upper integration bound (scalar) */
/* R = correlation matrix */
/* */
/* Output: x = probability */
/* */

/*************************************************************************/

/* The program here is restricted to one-sided upper equicoordinate mvn probabilities */

start solow(z,R);
dim=ncol(R);
D=probbnrm(z,z,round(R,1E-09))-probnorm(z)**2;
sumi=1;
do i=1 to dim-1;
b=inv(D[i+1:dim,i+1:dim]+I(dim-1)*1E-09)*D[i,i+1:dim]";
sumj=sum(b[1:dim-1]#(1-probnorm(z)));
sumi=sumi# (probnorm(z)+sumj);
end;
return(sumi#probnorm(z));
finish;

/* Example call */

R={ 1 0.7071068 0 0,
0.7071068 1 0.5 0,
0 0.5 1 0.3333333,
0 0 0.3333333 1};
z=1;

x=solow(z,r);
print x [format=6.4];

/* Output */

X
0.5783

191



B.2.2. SAS/IML module for calculating multivariate normal probabilities according to

Genz (1992, 1993) for arbitrary upper integration bounds and dimension ¢ < 33

/*************************************************************************/

/* Module for calculation of mvn probabilities according to Genz */
/* */
/* Input: z = upper integration bound (row vector) */
/* R = correlation matrix */
/* eps = accuracy */
/* */
/* Output: prob = probability */
/* error = simulated standard error */
/* */

/*************************************************************************/

/* The program here is restricted to one-sided upper mvn probabilities */

start mvn(R,b,eps);
gq=ncol(b);
c=t(root(r))+1E-12;

y=i(1,9,0);

e=y;
e[1]=probnorm(b[1]/c[1,1]);
n=10;

vec=0:q9-2;

p_vector={157 313 619 1249 2503 5003 10007 20011} ;

mat={ 1 1 1 1 1 1 1 1,
46 119 239 512 672 1850 3822 6103,
46 93 178 136 652 1476 2325 2894,
17 51 783 197 792 792 1206 8455,
18 51 104 165 792 380 1927 3629,
18 80 102 175 253 162 2286 1752,
11 70 161 303 306 363 343 1920,
11 70 161 155 153 137 378 652,

11 93 106 18 288 186 81 146,
3 62 57 27 288 186 182 156,
3 15 57 27 29 33 76 136,
3 15 36 24 128 36 21 44,
4 19 22 24 64 38 21 31,
30 15 22 24 16 36 21 161,
31 9 22 24 16 48 20 161,
31 9 22 14 16 48 21 11,
6 20 6 14 16 12 21 11,
6 9 6 14 64 12 11 18,
3 9 6 14 16 12 11 18,
3 9 6 8 16 6 11 18,
3 16 6 8 16 6 7 13,
3 16 6 8 16 6 7 22,
3 16 6 8 16 6 7 13,
3 16 6 8 8 6 7 13,
3 16 6 8 8 6 4 13,
3 16 6 8 8 5 4 16,
3 16 4 3 8 5 4 186,
3 4 4 3 8 4 4 13,
3 4 4 3 8 4 4 13,
3 4 4 3 8 4 4 8,
3 4 4 3 8 4 4 8};
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do until(n>50 | error<eps);
index=1;
do until(index=9 | error<eps);
p=p_vector[index];
h=mat[q-1,index];
z=mod(j (1,9-1,h)##vec,p);

intval=0;
varsum=0;

do 1=1 to n;
latsum=0;
rr=ranuni(j(1,q-1,141071));

do j=1 to p;

w=abs (2*mod (rr+j#z/p,1)-1);
do i=2 to q;

y[i-1]=probit(w[i-1]#e[i-1]+1E-12);

e[i]=probnorm((b[i]-sum(c[i,1:i-1]*y[1:i-1]))/c[i,1i]);
end;

f=e[#];
latsum=latsum+(f-latsum)/j;
end;

varsum=varsum+(1l-1)*(latsum-intval)**2/1;
intval=intval+(latsum-intval)/1l;
end;

error=3*sqrt(varsum/(n*(n-1)));
index=index+1;
end;

n=n+2;

end;

prob=intval;

print prob [format=6.4] error [format=6.4];
finish;

/* Example call */

R={ 1 0.7071068 0 0,
0.7071068 1 0.5 0,
0 0.5 1 0.3333333,
0 0 0.3333333 1};
z={1 11 1};
eps=0.0001;

run mvn(R,z,eps);

/* Output */

PROB ERROR
0.5831 0.0000
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B.2.3. SAS/IML module for calculating orthant probabilities according to Sun (1988a,

b) for dimension ¢ < 12

/*************************************************************************/

/* Module for calculation of orthant probabilities according to Sun */
/* */
/* Input: corr = entries of diagonal line adjacent to the main diagonal */
/* of the correlation matrix (row vector) */
/* */
/* Output: prob = probability */
/* */

/*************************************************************************/

/* Calculation of orthant probabilities with Jacobi correlation matrix */

start orthant(corr);
n=ncol(corr)+1;
r=corr;

coef=j(1,7,.);
pai=3.141592653589793238;

do i=1 to int(n/2)+1;
coef[i]=1/(2**(n-1i+1)*pai**(i-1));
end;

if n=1 then pr=coef[1];
else if n=2 then pr=coef[1]+coef[2]*arsin(r[1]);

else if n=3 then pr=coef[1]+coef[2]*(arsin(r[1])+arsin(r[2]));
else if n=4 then pr=coef[1]+coef[2]*sasin(r,4) +coef[3]*fint(r,4);
else if n=5 then pr=coef[1]+coef[2]*sasin(r,5) +coef[3]*si4(r,5);
else if n=6 then pr=coef[1]+coef[2]*sasin(r,6) +coef[3]*si4(r,6)

+coef[4]*fint(r,6);
else if n=7 then pr=coef[1]+coef[2]*sasin(r,7) +coef[3]*si4(r,7)
+coef[4]*si6(r,7);
else if n=8 then pr=coef[1]+coef[2]*sasin(r,8) +coef[3]*si4(r,8)
+coef[4]*si6(r,8) +coef[5]*fint(r,8);
else if n=9 then pr=coef[1]+coef[2]*sasin(r,9) +coef[3]*si4(r,9)
+coef[4]*si6(r,9) +coef[5]*si8(r,9);
else if n=10 then pr=coef[1]+coef[2]*sasin(r,10)+coef[3]*si4(r,10)
+coef[4]*si6(r,10)+coef[5]*si8(r,10)+coef[6]*fint(r,10);
else if n=11 then pr=coef[1]+coef[2]*sasin(r,11)+coef[3]*si4(r,11)
t+coef[4]*si6(r,11)+coef[5]*si8(r,11)+coef[6]*si10(r,11);

return(pr);
finish;

start sasin(r,n);
sasin=0;
do i=1 to n-1;
sasin=sasin+tarsin(r[i]);
end;
return(sasin);
finish;

start si4(r,n);
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$14=0;

ri=dis(r,8,3,n-3);

do i=1 to n-3;
p=tran(ri,8,3,i);
si4=si4+fint(p,4);

end;

do i=1 to n-4;
sum=0;
do j=i+3 to n-1;

sum=sum+arsin(r[jl);

end;
si4=si4+arsin(r[i])*sum;

end;

return(si4);

finish;

start si6(r,n);
$16=0;
ri=dis(r,8,3,n-3);
r2=dis(r,6,5,n-5);
do i=1 to n-5;
p=tran(r2,6,5,i);
si6=si6+fint(p,6);
end;
do i=1 to n-6;
sum=0;
do j=i+5 to n-1;
sum=sum+arsin(r[j]);
end;
p=tran(r1,8,3,1i);
si6=si6+fint(p,4)*sum;
end;
do i=4 to n-3;
sum=0;
do j=1 to i-3;
sum=sum+arsin(r[j]);
end;
p=tran(r1,8,3,i);
si6=si6+fint(p,4)*sum;
end;
do i=1 to n-7;
sum=0;
do j=i+3 to n-4;
sumi1=0;
do k=j+3 to n-1;
sumi=sumi+arsin(r[k]);
end;
sum=sum+arsin(r[j])*sumi;
end;
si6é=si6+arsin(r[i])*sum;
end;
return(si6);
finish;

start si8(r,n);
$18=0;
ri=dis(r,8,3,n-3);
r2=dis(r,6,5,n-5);
r3=dis(r,4,7,n-7);

do i=1 to n-7;
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p=tran(r3,4,7,i);
si8=si8+fint(p,8);
end;
do i=1 to n-8;
sum=0;
do j=i+7 to n-1;
sum=sum+arsin(r[jl);
end;
p=tran(r2,6,5,i);
si8=si8+fint(p,6)*sum;
end;
do i=4 to n-5;
sum=0;
do j=1 to i-3;
sum=sum+arsin(r[jl);
end;
p=tran(r2,6,5,i);
si8=si8+fint(p,6)*sum;
end;
do i=1 to n-8;
sum=0;
do j=i+5 to n-3;
p=tran(r1,8,3,j);
sum=sum+fint(p,4);
end;
p=tran(ri,8,3,1);
si8=si8+fint(p,4)*sum;

end;

do i=1 to n-9;
sum=0;
do j=i+5 to n-4;

sumi1=0;
do k=j+3 to n-1;
sumi=sumi+arsin(r[k]);
end;
sum=sum+arsin(r[j])*sumi;
end;
p=tran(r1,8,3,1);
si8=si8+fint(p,4)*sum;
end;
do i=7 to n-3;
sum=0;
do j=1 to i-6;
sum1=0;
do k=j+3 to i-3;
sumi=sumi+arsin(r[k]);
end;
sum=sum+arsin(r[j])*sumi;
end;
p=tran(r1,8,3,1);
si8=si8+fint(p,4)*sum;
end;
sum=0;
do i=9 to n-1;
sum=sum+arsin(r[i]);
end;
p=tran(r1,8,3,4);
si8=si8+arsin(r[1])*fint(p,4)*sum;
if n>10 then do;
sum=0;
do i=1 to n-9;
sum=sum+arsin(r[i]);
end;
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p=tran(ri1,8,3,5);
si8=si8+arsin(r[10])*fint(p,4)*sum;
si8=si8+arsin(r[1])*arsin(r[4])*arsin(r[7])*arsin(r[10]);
end;
return(si8);
finish;

start si10(r,n);

$110=0;

ri=dis(r,8,3,n-3);
r2=dis(r,6,5,n-5);
r3=dis(r,4,7,n-7);
r4=dis(r,2,9,n-9);

do i=1 to n-9;
p=tran(r4,2,9,1i);
si10=si10+fint(p,10);

end;

p=tran(r3,4,7,4);

gq=tran(r3,4,7,1

si10=si10+arsin
p=tran(ri1,8,3,1

)
)
(r[1])*fint(p,8)+arsin(r[10])*fint(q,8);
)5
gq=tran(r2,6,5,6);
si10=si10+fint(p,4)*fint(q,6);
p=tran(ri1,8,3,8);
gq=tran(r2,6,5,1)
si10=si10+fint(p
return(si10);
finish;

3

4)*fint(q,6);

start fint( );
=j (1,19,
=j(1, 11

=j(1 )

=j(1, 20 s

gl i(2,12,.);

iint=12;

g1={-0.981560634246719251 -0.904117256370474857 -0.769902674194304687
-0.587317954286617447 -0.367831498998180194 -0.125233408511463915,
0.0471753363865118272 0.106939325995318431 0.160078328543346226
0.203167426723065922 0.233492536538354809 0.249147045813402785};

do i=1 to iint/2;
g1[1,1]1=0.5*(g1[1,1]+1);
gl[1,iint+1-1]1=0.5%(-g1[1,i]+1);
g1[2,1]=0.5*g1[2,1];
gl[2,iint+1-i]=¢gl[2,1];

end;

i=1;

do j=1 to m+m-3 by 2;
pLil=1;
plit1]=r[i];
i=i+1;

end;

prmm-1]=1;

sumi1=0;
k1=0;
krit=0;
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do until(ki1=iint | krit=1);
k1=k1+1;
if m<=8 then do;
do j=1 to 15;
aljl=plil;
end;
end;
else do;
ta=1-(p[2]*gl[1,k1])**2;
a[1]=ta-p[4]*p[4];
do j=2 to 18 by 2;
aljl=pl[j+2]*ta;

al[j+1]=ta;
end;
end;
sum2=0;
k2=0;
do until(k2=iint | krit=1);
k2=k2+1;
if m<=6 then do;
do j=1 to 11;
blil=plil;
end;
end;
else do;

ub=a[1]*a[3]-(a[2]*gl[1,k2])**2;
ubi=a[5]*ub;
b[1]=ub1-a[1]*a[4]*a[4];
do j=2 to 10 by 2;
blj]=a[j+2]*ub;
b[j+1]=ub1;
end;
end;

sum3=0;
k3=0;
do until(k3=iint | krit=1);
k3=k3+1;
if m=4 then do;
do j=1 to 7;
cljl=plil;
end;
end;
else do;
ve=b[1]*b[3]-(b[2]*gl[1,k3])**2;
vci=b[5]*vc;
c[1]=vc1-b[1]*b[4]*b[4];
do j=2 to 6 by 2;
cljl=b[j+2]*vc;
c[j+1]=vecl;
end;
end;

sum4=0;

do k4=1 to iint;
wd=c[1]*c[3]- (c[2]*g1l[1,k4])**2;
if wd<0 then wd=1E-09;
wdi=c[5]*wd;
di1=wd1-c[1]*c[4]*c[4];
d12=c[6]*wd;
d22=wd1;
yyy=d11*d22;
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if yyy<0 then yyy=1E-09;
xxx=d12/sqrt(yyy);
if xxx<-1 then xxx=-1+1E-09;
sum4=sum4+gl[2,k4]/sqrt(wd)*arsin(xxx);
end;
sum4=c[2]*sum4;
if m"=4 then sum3=sum3+gl[2,k3]/sqrt(vc)*sum4;
else krit=1;
end;
if m*=4 then do;
sum3=b[2]*sum3;
if m"=6 then sum2=sum2+gl[2,k2]/sqrt(ub)*sum3;
else krit=1;
end;
end;
if (m"=4 & m"=6) then do;
sum2=a[2]*sum2;
if m"=8 then sumi=sumi+gl[2,k1]/sqrt(ta)*sum2;
else krit=1;
end;
end;

if m=4 then return(sum4);

else if m=6 then return(sum3);

else if m=8 then return(sum2);

else return(p[2]*suml);
finish;

start dis(r,m,n,k);
re=j(k,n,.);
do i=1 to k;
do j=1 to n;
re[i,jl=r[i-1+j];
end;
end;
return(rr);
finish;

start tran(rr,m,n,k);
r=j(1,n,.);
do i=1 to n;
r(il=rr[k,1i];
end;
return(r);
finish;

/* Example call */
corr={0.7071068 0.5 0.3333333};
prob=orthant(corr);

print prob [format=6.4];

/* Output */

PROB
0.1364

199



B.2.4. SAS/IML module for calculating p-values of the likelihood ratio test under simple
order according to Bartholomew (1959, 1961) without restriction of the number &

of treatment groups and sample size allocation

/*************************************************************************/

/* Module for calculation of p_values of LRT under simple order */
/* */
/* Input: xbar = group means (row vector) */
/* n = sample size vector (row vector) */
/* s = variance (scalar) */
/* */
/* Output: p_value = p_value of test */
/* */
/* Required modules: MLE */
/* Sun or Genz_mvn */
/* */

/*************************************************************************/

/* Module 'plkwunba' calculates the level probabilities according to
Lemma 2.12.; code adapted from Seidel (1999);
module 'LRT' calculates p-values */

start plkwunba(gewicht,p lkw);
k=ncol(gewicht);
p_1_k=j(k-1,k-1,1);
p_1_k[2,]=j(1,k-1,0.5);
p_lkw=j(k,1,0);

do t=3 to k;
do i=2 to t;
mengen=0;
anz=erzall(t,i, mengen);
nrowmen=nrow(mengen) ;

if t<k then index=j(nrowmen,t,1)||j(nrowmen,k-t,0);
else index=j(nrowmen,k,1);

if i>1 then do;
do s=1 to nrowmen;
gew=j(1,1,0); top=0;
prod=1;
do u=1 to i;
gew[u]=sum(gewicht[top+1:top+tmengen[s,ul]);
if mengen[s,u]=2 then prod=prod*0.5;
else if mengen[s,u]>2 then prod=prod*p_1 _k[mengen[s,u],top+1];
top=top+mengen([s,u];
end;
if i=2 then z=0.5;
else z=orthant(i,gew);
if s=1 then y=z;
else y=y//z;

if t<k then p_1_k[t,1]=p_1_k[t,1]-z*prod;
else p_lkw[i]=p_lkw[i]+z*prod;
end;
end;

gewi=gewicht[,1:Kk];
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do j=2 to k-t+1;
index=j (nrowmen,1,0) | |index[,1:k-1];
gewi=gewi[,2:ncol(gewi)];
mengeni=mengen| |index;
if i>1 then do;
do s=1 to nrowmen;
gew=j(1,1,0);
top=0;
prod=1;
do u=1 to ij;
gew[u]=sum(gewi[top+1:top+mengen[s,ul]);
if mengen[s,u]=2 then prod=prod*0.5;
else if mengen[s,u]>2 then
prod=prod*p_1_k[mengen[s,u],top+j-1+1];
top=top+mengen[s,ul;
end;
if i=2 then z=0.5;
else z=orthant(i,gew);
if s=1 then y=z;
else y=y//z;
p_1_k[t,j1=p_1_k[t,j]-z*prod;
end;
end;
end;
end;
end;
finish;

start erzall(n,k,mengen);
feld1=j(1,k,0);
first=0;
mtc1=0;
t=0;
h=0;
do while(mtc1<2);
i=nexcom2(n, k, feld1, mtci,t,h);
if all(feld1) then
if first=0 then do;
mengen=feld1;
first=1;
end;
else mengen=mengen//feldl;
end;
return(nrow(mengen));
finish;

start nexcom2(n_ges, c, feld, mtc, t, h);
if (mtc=0) then do;
feld[1]=n_ges;
if(c>1)then do i=2 to c;
feld[1]=0;
end;
t=n_ges;
h=0;
end;
else goto marke2;

markeil: if (feld[c]=n_ges) then mtc=2;

else mtc=1;
return(1);
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marke2: if (t>1)then h=0;
h=h+1;
t=feld[h];
feld[h]=0;
feld[1]=t-1;
feld[h+1]=feld[h+1]+1;
goto marke1l;

finish;

start LRT(x,s,n);
k=ncol(n);
nu=sum(n)-K;
m=MLE (x,n);
xquer=sum(x#n/n[+]);

x1=sum(n#(m-xquer)##2);
X2=sum(n#(m-x)##2) ;
t=x1/(x1+x2+nu*s);
run plkwunba(n,p_1lkw);

p=0;
do i=2 to k;
p=p+p_lkw[i]*(1-probf(t*(sum(n)-1)/((i-1)*(1-t)),i-1,sum(n)-1));
end;
return(p);
finish;

/* Example call */

n={6 6 6 6};

xbar={-76.2 -73.5 -73.4 -74.4},;
$=60.078;

p_value=LRT(xbar,s,n);
print p_value [format=6.4];

/* Output */

P_VALUE
0.4634
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B.2.5. SAS/IML module for calculating generators of good lattice vectors according to

the minimisation rule (2.15)

/*************************************************************************/

/* Module for computing good lattice vectors of randomised lattice rules */

/* */
/* Input: p_vector = fineness of lattice (row vector) */
/* dim = dimension of distribution function (scalar) */
/* */
/* Output: p = particular finess of lattice */
/* q = particular dimension */
/* h = generator of good lattice vector */
/* */

/*************************************************************************/

/* Calculation conducted according to equation (2.15) */

start lattvec(p_vector,dim);
do g=2 to dim;
do index=1 to ncol(p_vector);
p=p_vector[index];
numb=int(p/4)+1; numbi=int(p/2)+1;
help=int(sqrt(p)); a=j(1,numb,.);
a[1:help]=1:help; t=help;
do j=help+1 to numbi;
i=t+1;
do until(krit=1 | krit=0);
i=i-1;
if i=1 then krit=0;
else krit=mod(j#a[i],p);
if krit=p-1 then krit=1;
end;
if krit=0 then do;
t=t+1; a[t]=j;
end;
end;
vec=0:q9-2; krit=10;
do i=1 to numb;
sum=0;
z=mod(j(1,q—1,a[i])##vec,p);
do j=0 to p-1;
zz=mod (z#j/p,1);
f2=1+19.7392* (zz##2-22+1/6);
fan=f2/2##2+0.75;
sum=sum+f2n[#];
end;
sum=sum/p;
if sum<krit then do;
krit=sum; val=a[i];
end;
end;
z=mod(j(1,q9-1,val)##vec,p); h=z;
print q p h;
end;
end;
finish;

/* Example call */

p_vector={157 313 619 1249 2503 5003 10007 20011 40009 80021}; dim=21;
run lattvec(p_vector,dim);
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B.2.6. FORTRAN program for calculating generators of good lattice vectors according

to the minimisation rule (2.15)

c Module for computing good lattice vectors of randomised lattice rules.
C
C Input: p_vector = fineness of lattice
c dim = dimension of distribution function
c
c Output: ¢ = particular dimension
C val = generator of good lattice vector
c kriti = minimum value according to (2.15)
c
c The output is stored in 'gcalc.out'. To execute the program this file must exist prior
c to running the program. Calculation conducted according to equation (2.15).
real*8,dimension(:),allocatable::a,vec,z,zz,f2,f2n
real*8 p_vector(9),fff,sum,val,krit1,xxx,pp,p,one
integer numb,numbi,help,t,i,qq,krit
character(len=8)date
character(len=10)time
data p_vector/157,313,619,1249,2503,5003,10007,20011,40009/
dim=31
Open(8,file='qcalc.out')
call date_and_time(date,time)
write(8,*)'date and time ',date,time
do g=2,dim
one=1.
do index=1,3
write (6,*) q,index
p=p_vector(index)
numb=1int (p/4)+1
numb1=int(p/2)+1
help=int(sqrt(p))
allocate(a(numb))
do j=1,help
a(j)=i
enddo
t=help
do j=help+1,numbi
i=t+1
do
i=i-1
if (i.1t.2) then
krit=0
else
c krit=int(j*a(i))-(int((j*a(i))/p)*p)
krit=mod(j*a(i),p)
end if

if (krit.eq.p-1) krit=1

if ((krit.eq.0).or.(krit.eq.1)) exit
enddo
if (krit.eq.0) then

t=t+1;

a(t)=j;
endif
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enddo

pp=p
q9=q-1
allocate(vec(qq))
do j=1,q9-1
vec(j)=j-1
enddo
krit1=10000000.
do i=1,numb

sum=0.
allocate(z(qq))
allocate(zz(qq))
allocate(f2(qq))
allocate(f2n(qq))
do j=1,q9-1
z(j)=dmod(a(i)**vec(j),pp)

enddo;
do j=0,p-1

fff=1.

do jj=1,q9-1

zz(jj)=dmod(z(jj)*j/p,one)
XXx=1+19.7392* ((zz(jj)**2)-zz(jj)+(1./6.))
f2(jj)=xxx
f2n(jj)=f2(jj)/2.**2+0.75
fff=fff*f2n(jj)

enddo

sum=sum+fff

enddo

sum=sum/p

if (sum.lt.krit1) then
krit1=sum
val=a(1i)

endif

deallocate(z,zz,f2,f2n)
enddo
allocate(z(qq))
do j=1,q9-1

z(j)=dmod(val**vec(j),pp)

enddo;
write (8,*) val,krit1
deallocate(a,vec,z)

enddo

call date_and_time(date,time)
write(8,*)'date and time ',date,time,q

enddo
end
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B.2.7. SAS/IML module for calculating multivariate /—probabilities according to Genz

and Bretz (1999) for arbitrary upper integration bounds (acceptance-rejection)

/*************************************************************************/

/* Module for calculation of mvt probabilities according to Genz */
/* (acceptance-rejection algorithm) */
/* */
/* Input: z = upper integration bound (row vector) */
/* R = correlation matrix */
/* df = degrees of freedom (scalar) */
/* eps = accuracy (scalar) */
/* n_max = maximum number of simulations (scalar) */
/* */
/* Output: prob = probability */
/* error = simulated standard error */
/* */

/*************************************************************************/

/* The program here is restricted to one-sided upper mvt probabilities */

start mvt_ar(df,b,r,eps,n_max);
n=ncol(b);
c=t(root(R));
index=0; intval=0; varsum=0;
y=j(1,n,0);
do until(error<eps | index=n_max);
w=ranuni(j(1,n,141071));
f=1;
y[1]=tinv(w[1],df);
if c[1,1]*y[1]>b[1] then f=0;
else do;
do i=2 to n;
y[il=tinv(w[i],df+i-1)*sqrt((df+sum(y[1:1i-1]##2))/(df+i-1));
if sum(c[i,1:1i]#t(y[1:1]))>b[i] then do;
i=n; f=0;
end;
end;
end;
index=index+1;
varsum=varsum+(index-1)*(f-intval)**2/index;
intval=intval+(f-intval)/index;
if index<100 then error=1;
else error=3*sqrt(varsum/(index* (index-1)));
end;
prob=intval;
print prob [format=6.4] error [format=6.4];
finish;

/* Example call */

R={ 1 5 .5 .9,
.5 1 -.5 .5,
.5 -.5 1 .5,

.9 .5 .5 1};
z={1 1 1 1}; eps=0.001; n_max=10000; df=50;
run mvt_ar(df,z,r,eps,n_max);

/* Output */

PROB ERROR
0.6279 0.0145
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B.2.8. SAS/IML module for calculating multivariate /—probabilities according to Genz
and Bretz (1999) for arbitrary upper integration bounds (Monte Carlo method)

/*************************************************************************/

/* Module for calculation of mvt probabilities according to Genz */
/* (Monte Carlo algorithm) */
/* */
/* Input: z = upper integration bound (row vector) */
/* R = correlation matrix */
/* df = degrees of freedom (scalar) */
/* eps = accuracy (scalar) */
/* n_max = maximum number of simulations (scalar) */
/* */
/* Output: prob = probability */
/* error = simulated standard error */
/* */

/*************************************************************************/

/* The program here is restricted to one-sided upper mvt probabilities */

start mvt_mc(df,b,r,eps,n_max);
n=ncol(b);
c=t(root(r))+1E-12;
index=0;
intval=0;
varsum=0;
f=j(1,n,0); y=f;
f[1]=probt(b[1]/c[1,1],df);
e=f;
do until(error<eps | index=n_max);
w=ranuni(j(1,n,141071));
y[1]=tinv(w[1]*e[1],df);
do i=2 to n;
e[i]=probt((b[i]-sum(c[i,1:i-1]*y[1:1-1]))
*sqrt((df+i-1)/(df+sum(y[1:i-11##2)))/c[i,i],df+i-1);
fli]=e[i]*f[i-1];
y[il=tinv(w[i]*e[i]+1E-12,df+i-1)*sqrt((df+sum(y[1:i-1]1##2))/(df+i-1));
end;
index=index+1;
varsum=varsum+(index-1)*(f[n]-intval)**2/index;
intval=intval+(f[n]-intval)/index;
if index<100 then error=1;
else error=3*sqrt(varsum/(index* (index-1)));
end;
prob=intval;
print prob [format=6.4] error [format=6.4];
finish;

/* Example call */

R={ 1 5 .5 .9,
.5 1 -.5 .5,
.5 -.5 1 .5,

.9 .5 .5 1};
z={1 1 1 1}; eps=0.001; n_max=10000; df=50;
run mvt_mc(df,z,r,eps,n_max);

/* Output */

PROB ERROR
0.6249 0.0080
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B.2.9. SAS/IML module for calculating multivariate /—probabilities according to Genz
and Bretz (1999) for arbitrary upper integration bounds and dimension ¢ < 33

(randomised lattice rules)

/*************************************************************************/

/* Module for calculation of mvt probabilities according to Genz */
/* (randomised lattice rule algorithm) */
/* */
/* Input: z = upper integration bound (row vector) */
/* R = correlation matrix */
/* df = degrees of freedom (scalar) */
/* eps = accuracy (scalar) */
/* */
/* Output: prob = probability */
/* error = simulated standard error */
/* */

/*************************************************************************/

/* The program here is restricted to one-sided upper mvt probabilities */

start mvt_1r(df,b,r,eps);

g=ncol(b);

c=t(root(r))+1E-12;

y=i(1,9-1,0);

e=j(1,q,0);

e[1]=probt(b[1]/c[1,1],df);

n=10;

vec=0:q9-2;

p_vector={157 313 619 1249 2503 5003 10007 20011};

mat={ 1 1 1 1 1 1 1 1,
46 119 239 512 672 1850 3822 6103,
46 93 178 136 652 1476 2325 2894,
17 51 73 197 792 792 1206 8455,
18 51 104 165 792 380 1927 3629,
18 80 102 175 253 162 2286 1752,
11 70 161 303 306 363 343 1920,
11 70 161 155 153 137 378 652,
11 93 106 18 288 186 81 146,
36 62 57 27 288 186 182 156,
36 15 57 27 29 33 76 136,
36 15 36 24 128 36 21 44,
4 19 22 24 64 38 21 31,
30 15 22 24 16 36 21 161,
31 9 22 24 16 48 20 161,

31 9 22 14 16 48 21 11,
6 20 6 14 16 12 21 11,
6 9 6 14 64 12 11 13,
3 9 6 14 16 12 11 13,
3 9 6 8 16 6 11 13,
3 16 6 8 16 6 7 13,
3 16 6 8 16 6 7 22,
3 16 6 8 16 6 7 13,
3 16 6 8 8 6 7 13,
3 16 6 8 8 6 4 13,
3 16 6 8 8 5 4 16,
3 16 4 3 8 5 4 1,
3 4 4 3 8 4 4 13,
3 4 4 3 8 4 4 13,
3 4 4 3 8 4 4 8,
3 4 4 3 8 4 4 8};
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do until(n>50 | error<eps);
index=1;
do until(index=9 | error<eps);
p=p_vector[index];
h=mat[q-1,index];
z=mod(j (1,9-1,h)##vec,p);

intval=0;
varsum=0;

do 1=1 to n;
latsum=0;
rr=ranuni(j(1,q-1,141071));

do j=1 to p;
w=abs (2*mod (rr+j#z/p,1)-1);
yl1]=tinv(w[1]*e[1],df);

do i=2 to g-1;
e[i]=probt((b[i]-sum(c[i,1:i-1]*y[1:1-1]))*sqrt((df+i-1)/
(df+sum(y[1:1-1]##2)))/c[1,1],df+i-1)+1E-12;
y[il=tinv(w[i]*e[i],df+i-1)
*sqrt((df+sum(y[1:i-11##2))/ (df+i-1));
end;

e[q]l=probt((b[q]-sum(c[q,1:q-1]1*y[1:q-1]))*sqrt((df+q-1)/
(df+sum(y[1:q-1]1##2)))/c[q,q],df+q-1)+1E-12;
f=e[#];
latsum=latsum+(f-latsum)/j;
end;

varsum=varsum+(l-1)*(latsum-intval)**2/1;
intval=intval+(latsum-intval)/1l;
end;

error=3*sqrt(varsum/(n*(n-1)));
index=index+1;
end;
n=n+2;
end;
prob=intval;
print prob [format=6.4] error [format=6.4];
finish;

/* Example call */

df=50;

R={ 1 .5 .5 .9,
5 1-.5 .5,
5 -.5 1 .5,
.9 .5 .5 1};

z={1 11 1};

eps=0.001;

run mvt_lr(df,z,r,eps);

/* Output */

PROB ERROR
0.6222 0.0008
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B.2.10. SAS/IML module for calculating multivariate /—quantiles using the bisection
method

/*************************************************************************/

/* Module for calculation of mvt quantiles (bisection method) */
/* */
/* Input: x1 = lower bound of bracket containing the root (scalar) */
/* X2 = upper bound of bracket containing the root (scalar) */
/* R = correlation matrix */
/* df = degrees of freedom (scalar) */
/* epsi = accuracy of mvt-procedure (scalar) */
/* eps2 = accuracy of root finding procedure (scalar) */
/* quantile = pre-determined probability (scalar) */
/* */
/* Output: quan = quantile */
/* prob = probability */
/* diff = difference of last two calculated quantiles */
/* index = muber of iterations */
/* */
/* Required modules: mvt_AR, mvt_MC or mvt_LR */
/* */

/*************************************************************************/

/* The program can also be used for mvn probabilities */

start bisec(x1,x2,epsi1,eps2,R,df,alpha);
f=-1;
quan=1;
index=0;

do until(abs(diff)<eps2);
if >0 then do;
diff=x2-quan;
Xx2=quan;
end;
else do;
diff=x1-quan;
x1=quan;
end;
quan=(x1+x2)/2;
prob=mvt(df,quan,r,epsi);
f=prob-alpha;
index=index+1;
end;
print quan [format=6.4] prob [format=6.4] diff [format=6.4] index;
finish;

/* Example call using mvt_LR */

R={ 1 0.4403855 0.8257228,
0.4403855 1 0.3636364,
0.8257228 0.3636364 1};

df=34; quantile=0.95;

x1=0; x2=5;

eps1=0.0001; eps2=0.0001;

run bisec(x1,x2,epsi,eps2,R,df,quantile);

/* Output */

QUAN PROB DIFF INDEX
2.1021 0.9500 -.0001 17
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B.2.11. SAS/IML module for calculating multivariate t—quantiles using the regula falsi

/*************************************************************************/

/* Module for calculation of mvt quantiles (regula falsi) */
/* */
/* Input: x1 = lower bound of bracket containing the root (scalar) */
/* X2 = upper bound of bracket containing the root (scalar) */
/* R = correlation matrix */
/* df = degrees of freedom (scalar) */
/* epsi = accuracy of mvt-procedure (scalar) */
/* eps2 = accuracy of root finding procedure (scalar) */
/* quantile = pre-determined probability (scalar) */
/* */
/* Output: quan = quantile */
/* prob = probability */
/* diff = difference of last two calculated quantiles */
/* index = muber of iterations */
/* */
/* Required modules: mvt_AR, mvt_MC or mvt_LR */
/* */

/*************************************************************************/

/* The program can also be used for mvn probabilities */

start regfalsi(x1,x2,epsi1,eps2,R,df,alpha);
f1=mvt(df,x1,r,epsi)-alpha;
f2=mvt(df,x2,r,epsi)-alpha;
index=0;
do until(abs(diff)<eps2);
dx=x2-x1;
quan=x1+f1*dx/(f1-f2);
f=mvt(df,quan,r,epsi)-alpha;
if f<0 then do;
diff=x1-quan;
x1=quan;
f1=F;
end;
else do;
diff=x2-quan;
Xx2=quan;
f2=f;
end;
index=index+1;
end;
prob=f+alpha;
print quan [format=6.4] prob [format=6.4] diff [format=6.4] index;
finish;

/* Example call using mvt_LR */

R={ 1 0.4403855 0.8257228,
0.4403855 1 0.3636364,
0.8257228 0.3636364 1};
df=34; quantile=0.95;
x1=0; x2=5;
eps1=0.0001; eps2=0.0001;
run regfalsi(x1,x2,eps1,eps2,R,df,quantile);

/* Output */

QUAN PROB  DIFF INDEX
2.1024 0.9500 0.0001 31
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B.2.12. SAS/IML module for calculating multivariate f—quantiles using the seacnt
method

/*************************************************************************/

/* Module for calculation of mvt quantiles (secant method) */
/* */
/* Input: x1 = lower bound of bracket containing the root (scalar) */
/* X2 = upper bound of bracket containing the root (scalar) */
/* R = correlation matrix */
/* df = degrees of freedom (scalar) */
/* epsi = accuracy of mvt-procedure (scalar) */
/* eps2 = accuracy of root finding procedure (scalar) */
/* quantile = pre-determined probability (scalar) */
/* */
/* Output: quan = quantile */
/* prob = probability */
/* diff = difference of last two calculated quantiles */
/* index = muber of iterations */
/* */
/* Required modules: mvt_AR, mvt_MC or mvt_LR */
/* */

/*************************************************************************/

/* The program can also be used for mvn probabilities */

start secant(x1,x2,epsi,eps2,R,df,alpha);
quan=x2;
f1=mvt(df,x1,r,epsi)-alpha;
f=mvt(df,x2,r,eps1)-alpha;
index=0;

do until(abs(dx)<eps2); print quan f f1;
dx=(x1-quan)*f/(f-f1+1E-12);
x1=quan;
f1=F;
quan=quan+dx;

f=mvt(df,quan,r,epsi)-alpha;
index=index+1;
end;
prob=f+alpha;
print quan [format=6.4] prob [format=6.4] diff [format=6.4] index;
finish;

/* Example call using mvt_LR */

R={ 1 0.4403855 0.8257228,
0.4403855 1 0.3636364,
0.8257228 0.3636364 1};

df=34;

x1=0;

x2=5;

eps1=0.0001;

eps2=0.0001;

quantile=0.95;

run secant(x1,x2,eps1,eps2,R,df,quantile);
/* Output */

Not convergent
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B.2.13. SAS/IML module for calculating multivariate f—quantiles using the method
according to Ridders (1979)

/*************************************************************************/

/* Module for calculation of mvt quantiles (Ridders method) */
/* */
/* Input: x1 = lower bound of bracket containing the root (scalar) */
/* X2 = upper bound of bracket containing the root (scalar) */
/* R = correlation matrix */
/* df = degrees of freedom (scalar) */
/* epsi = accuracy of mvt-procedure (scalar) */
/* eps2 = accuracy of root finding procedure (scalar) */
/* quantile = pre-determined probability (scalar) */
/* */
/* Output: quan = quantile */
/* prob = probability */
/* diff = difference of last two calculated quantiles */
/* index = muber of iterations */
/* */
/* Required modules: mvt_AR, mvt_MC or mvt_LR */
/* */

/*************************************************************************/

/* The program can also be used for mvn probabilities */

start ridders(x1,x2,epsi1,eps2,R,df,alpha);
f1=mvt(df,x1,r,epsi)-alpha;
f2=mvt(df,x2,r,epsi)-alpha;

quan_old=8;
index=0;

do until(abs(diff)<eps2);
x=(x1+x2)/2;
f=mvt(df,x,r,eps1)-alpha;

wurz=sqrt(f*f-f1*f2);
quan=x+(x-x1)*sign(f1-f2)*f/wurz;
fquan=mvt (df,quan,r,eps1)-alpha;
diff=quan-quan_old;
quan_old=quan;

if f*fquan<0 then do;
X1=X;
f1=F;
X2=quan;
f2=fquan;
end;
else do;
if f1*fquan<0 then do;
X2=quan;
f2=fquan;
end;
else do;
if f2*fquan<0 then do;
x1=quan;
fi1=fquan;
end;
end;
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end;

index=index+1;
end;

prob=fquan+alpha;

print quan [format=6.4] prob [format=6.4] diff [format=6.4]

finish;

/* Example call using mvt_LR */

R={ 1 0.4403855 0.8257228,
0.4403855 1 0.3636364,
0.8257228 0.3636364 1};

df=34;

x1=0;

x2=5;

eps1=0.0001;

eps2=0.0001;

quantile=0.95;

run ridders(x1,x2,epsi,eps2,R,df,quantile);

/* Output */

QUAN PROB DIFF INDEX
2.1022 0.9500 0.0000 4
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B.3.1. SAS/IML module for computing the entries of Williams’ MCT according to

Definition 3.1.

/*************************************************************************/

/* Module for computing the contrast matrix of Williams' MCT */
/* */
/* Input: n = sample size (row vector) */
/* */
/* Output: cm = contrast matrix */
/* */

/*************************************************************************/

/* The program calculates the coefficients adjusted for sample size
allocation and for arbitrary number of treatment groups */

start will_con(n);
k1=ncol(n)-1;

c=j(1,k1,.);
cm=j (k1,k1,0);
cm=j (k1,1,-1)]||cm;

do i=1 to ki;
x=sum(n[k1-i+2:k1+1]);
do j=1 to i;
cm[i,k1-j+2]=n[k1-j+2]/x;
end;
end;

return(cm);
finish;

/* Example call */
n={10 10 10 10};

cm=will_con(n);
print cm;

/* Output */

CMm
-1 0 0 1
-1 0 0.5 0.5

-1 0.3333333 0.3333333 0.3333333
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B.3.2. SAS/IML module for computing the entries of Marcus’ MCT according to
Definition 3.2.

/*************************************************************************/

/* Module for computing the contrast matrix of Marcus' MCT */
/* */
/* Input: n = sample size (row vector) */
/* */
/* Output: cm = contrast matrix */
/* */

/*************************************************************************/

/* The program calculates the coefficients adjusted for sample size
allocation and for arbitrary number of treatment groups */

start marc_con(n);
k=ncol(n);

cmi=j(k-1,k,0);
cm2=cm1;

do i=1 to k-1;
cmi[i,i+1:k]=t(n[i+1:K]/sum(n[i+1:K]));
end;

do i=1 to k-1;
cm2[i,1:i]=t(n[1:1]/sum(n[1:1]));
end;

row=k*(k-1)/2;
cm=j (row,k,0);

index=1;
do i=1 to k-1;
do j=1 to i;

cm[index,]=cm1[i,]-cm2[],];
index=index+1;
end;
end;

return(cm);
finish;
/* Example call */
n={10 10 10 10};

cm=marc_con(n);
print cm;

/* Output */

CMm
-1 0.3333333 0.3333333 0.3333333
-1 0 0.5 0.5
-0.5 -0.5 0.5 0.5
-1 0 0 1
-0.5 -0.5 0 1
-0.333333 -0.333333 -0.333333 1
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B.3.3. SAS/IML module for computing the entries of the isotonic MCT according to

Definition 3.3.

/*************************************************************************/

/*
/*
/*
/*
/*
/*

Module for computing the contrast matrix of the isotonic MCT
Input: n = sample size (row vector)
Output: cm = contrast matrix

*/
*/
*/
*/
*/
*/

/*************************************************************************/

/* The program calculates the coefficients adjusted for sample size

st

fi

st

allocation and for arbitrary number of treatment groups

art schnitt(vec,stelle);
col=ncol(vec);
if stelle=col then neu=vec[,1:col-1];
else do;
neu=vec[,1:col-1];
neu[stelle:col-1]=vec[,stelle+1:col];
end;
return(neu);
nish;

art iso_con(n);
k=ncol(n)-1;
anz=2##Kk;
cm=j (2##k-1,k+1,.);
mat=j(anz,k,0);
mat[2,k]=1;
do i=2 to k;
mat[2## (1-1)+1:2##1,k-1+1]=j (2##(1i-1),1,1);
mat[2## (1-1)+1:2##1,k-1+2:k]=mat[1:2##(1-1),k-1+2:K];
end;
mat=mat[2:2##k,];
row=nrow(mat) ;
do i=1 to row;
y=mat[i,];
x=j(1,k,1);
krit=0;
i=1;
do until(krit=1);
if y[j]=0 then do;
if y[il=y[i+1] then do;
y=schnitt(y,j+1);
x=schnitt(x,j+1);
x[j1=x[j1+1;
end;
else j=j+1;
end;
else j=j+1;
if j>=ncol(y) then krit=1;
end;

do j=1 to ncol(y);
if y[j1=0 then Xx[j]=x[]]+1;
end;
i=1;
do while(j<(ncol(y)-1));
if y[j]=0 then do;
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1=j+1;
do until(y[1l]=0 | 1>=ncol(y));
1=1+1;
end;
if y[1]=0 then do;
y=schnitt(y,j+1);
x=schnitt(x,j+1);
end;
end;
J=i+;
end;

if i=row then do;
y=y|1{1};
x=x|[{1};
end;
s=mat[i,+];
submat=I(s+1);
do j=1 to s;
do jj=j+1 to s+1;
submat[j,jjl=1;
end;
end;
ssd=j(1,s+1,0);
do j=2 to s+1;
ssd[j]=sqrt(sum(((submat[j,]-sum(submat[j,]#x)/x[+])##2)#x));
end;
c=j(1,s+1,ssd[s+1]);
do j=s to 1 by -1;
cljl=ssd[j]-sum(c[j+1:s+1]);
end;
contrast=c;
cm[i,1:x[1]]=contrast[1]/x[1];
do j=2 to ncol(y);
cm[i,sum(x[1:j-1])+1:sum(x[1:j])]=contrast[j]/x[]];
end;
end;

do i=1 to row;
do j=1 to k+1;
if abs(cm[i,j])<1E-10 then cm[i,]j]=0;
end;
em[i,]=n#cm[i,]-cm[i,]*t(n)/ (k+1);
end;
return(cm);
finish;
/* Example call */
n={10 10 10 10};
cm=iso_con(n);

print cm;

/* Output */

CMm
-2.886751 -2.886751 -2.886751 8.660254
-5 -5 5 5
-5 -5 1.339746 8.660254
-8.660254 2.8867513 2.8867513 2.8867513
-8.660254 0 0 8.660254
-8.660254 -1.339746 5 5

-8.660254 -1.339746 1.339746 8.660254
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B.4.1. SAS/IML module for computing the power for arbitrary multiple contrasts for

normal means according to equation (7.2) (1 <¢q < 33)

/*************************************************************************/

/* Module for calculation of power of MCTs for normal means */
/* */
/* Input: mu = expected means (row vector) */
/* cm = contrast matrix */
/* s = variance */
/* n = sample size */
/* epsi = accuracy of mvt-procedure (scalar) */
/* eps2 = accuracy of root finding procedure (scalar) */
/* probab = 1 - «a */
/* */
/* Output: power = power value */
/* */
/* Required modules: mvt_AR, mvt_MC or mvt_LR */
/* Genz_mvn */
/* bisec, regfalsi, secant or Ridders */
/* */

/*************************************************************************/

/* The program is designed for contrast matrices with less than 33 contrasts */

start corr(cm,sampsize) global(q,r,df,var);
g=nrow(cm);
df=sum(sampsize)-ncol(sampsize);
rr=j(q,9,0);
var=j(1,d,.);

do i=1 to qg-1;
do j=i+1 to q;
rr[i,jl=sum(cm[i,]#cm[]j,]/sampsize)/
sqrt(sum(cm[i, |##2/sampsize)*sum(cm[],]##2/sampsize));
end;
end;

r=rr+rr’+I(q);

do i=1 to q;
var[i]=sum(CM[1i,]##2/sampsize);
end;
finish;

start nu(x) global(eps3,quan,df,nc,r);
g=(x#quan/sqrt(df)-nc);
qwer=mvn(g,eps3,r);
return(qwer#x## (df-1)#exp(-x#x/2));
finish;

start powermct(mu,cm,s,n,probab,epsi,eps2) global(q,r,df,var, eps3,quan,nc);
eps3=epsi;
aa=1E-07] | .p;
run corr(cm,n);
quan=quantile(probab,eps3,eps2,r,df);
nc=cm*mu’ /sqrt(s*var’);
call quad(power,"nu",aa) eps=1E-06;
power=1-power#(1/2)##(df/2-1) /gamma(df/2);
return(power);
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finish;
/* Example call */

mu={0 .3333 .6667 1};

cm={-1 0 0 1,
-1 0 .5 .5,
-1 .3333 .3333 .3333};

s=1;

n={14 8 8 8};

probab=0.95;

eps1=0.001;

eps2=0.001;

powermct=powermct (mu,cm,s,n,probab,epst,eps2);
print powermct [format=6.4];

/* Output */

POWER
0.7156
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B.5.1. SAS/IML module for computing the power for arbitrary multiple contrasts for
binomial data (1 < ¢ < 33)

/*************************************************************************/

/* Module for calculation of power of MCTs for binomial data */
/* */
/* Input: mu = expected means (row vector) */
/* cm = contrast matrix */
/* n = sample size */
/* alpha = type-I-error */
/* */
/* Output: powlabel = row vector containing the labels */
/* pow = power value */
/* */
/* Required modules: Genz_mvn */
/* Solow */
/* bisec, regfalsi, secant or Ridders */
/* */

/*************************************************************************/

/* In contrast to program B.4.1 the Solow procedure was also included (for the
calculation of quantiles) and therefore no error bounds 'eps' are passed;
alternatively the Genz_mvn module can be used with some some smaller modifications.

The program calculates the power for the following tests:

MCT_PO: pooled multiple contrast, no continuity correction

MCT_P1: pooled multiple contrast, minimum continuity correction (cc2)

MCT_P2: pooled multiple contrast, average continuity correction (cc3)

MCT_P3: pooled multiple contrast, maximum continuity correction (cc1)

MCT_UO: unpooled multiple contrast, no continuity correction

MCT_U1: unpooled multiple contrast, minimum continuity correction (cc2)

MCT_U2: unpooled multiple contrast, average continuity correction (cc3)

MCT_U3: unpooled multiple contrast, maximum continuity correction (cc1) */

start powbino(n,profile,alpha,cm);

kk=ncol(n)-1;
quan=1-alpha;

k=nrow(cm) ;
pp=sum(n#profile)/sum(n);

RR=j (k,k,0);

do i=1 to k-1;
do j=i+1 to k;

RR[i,j]=sum(CM[i,]#CM[]j,]/N)/sqrt(sum(CM[i, ]##2/N)*sum(CM[], ]##2/N));

end;

end;

R_0=RR+RR +I(K);

run quantil(k,quan,r_0);

aa=cm;
zwresi=profile#(1-profile)/n;
sigma=diag(zwres1);
zwres2=aa*sigma*t(aa);
zwres3=diag(sqrt(1/vecdiag(zwres2)));
r=zwres3*zwres2*zwres3;
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pow=powcalc(r,k,kk,cm,n,pp,profile);
powlabel={mct_pO mct_p1 mct_p2 mct_p3 mct_u0 mct_ul mct_u2 mct_u3};

print powlabel pow [format=6.4];
finish;

start powcalc(r,k,kk,cm,n,pp,profile) global(power);

help1=j (k,kk+1,.);

do i=1 to k;
help1[i,]=cm[i,]/n;

end;

help2=help1[,2:kk+1]||j(k,1,.);

help3=abs(helpi-help2);

delta0=0;

deltail=help3[,><]/2;

delta2=help3[,+]/(2*kk);

delta3=help3[,<>]/2;

delta=deltaO;

x=sqrt (pp#(1-pp)#cm##2*t(1/n));
xx1=(cm*t(profile)-delta)/x;

xx2=sqrt (cm##2#profile# (1-profile)*t(1/n))/x;
run multinor(k,xx1,xx2,r);

poweri=power;

delta=deltail;

x=sqrt (pp#(1-pp)#cm##2*t(1/n));
xx1=(cm*t(profile)-delta)/x;

xx2=sqrt (cm##2#profile# (1-profile)*t(1/n))/x;
run multinor(k,xx1,xx2,r);

power2=power;

delta=delta?2;

x=sqrt (pp#(1-pp)#cm##2*t(1/n));
xx1=(cm*t(profile)-delta)/x;

xx2=sqrt (cm##2#profile#(1-profile)*t(1/n))/x;
run multinor(k,xx1,xx2,r);

power3=power;

delta=delta3;

x=sqrt(pp#(1-pp)#cm##2*t(1/n));

xx1=(cm*t (profile)-delta)/x;

xx2=sqrt (cm##2#profile#(1-profile)*t(1/n))/x;
run  multinor(k,xx1,xx2,r);

power4=power;

delta=delta0;

x=sqrt (cm##2#profile# (1-profile)*t(1/n));
xx1=(cm*t(profile)-delta)/x;

xx2=1;

run  multinor(k,xx1,xx2,r);

power5=power;

delta=deltail;

x=sqrt (cm##2#profile# (1-profile)*t(1/n));
xx1=(cm*t (profile)-delta)/x;

xx2=1;

run  multinor(k,xx1,xx2,r);

poweré=power;
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delta=delta?2;

x=sqrt (cm##2#profile# (1-profile)*t(1/n));
xx1=(cm*t(profile)-delta)/x;

xx2=1;

run multinor(k,xx1,xx2,r);

power7=power;

delta=delta3;

x=sqrt (cm##2#profile# (1-profile)*t(1/n));
xx1=(cm*t(profile)-delta)/x;

xx2=1;

run multinor(k,xx1,xx2,r);

power8=power;

pow=j(1,8,.);

pow[1]=poweri;
pow[2]=power2;
pow[3]=power3;
pow[4]=power4;
pow[5]=power5;
pow[6]=power6;
pow[7]=power7;
pow[8]=powers8;

return(pow) ;

finish;

/* Example call */

n={90 50 50 10};

mu={.05 .1 .15 .2};

alpha=0.05;

cm={-1 0 0 1,
-1 0 .5 .5,
-1 .3333 .3333 .3333};

run powbino(n,mu,alpha,cm);

/* Output */

POWLABEL

MCT_PO MCT_P1 MCT_P2 MCT_P3 MCT_UO MCT_U1 MCT_U2

POW

MCT_U3

0.6292 0.6193 0.5740 0.5210 0.5319 0.5252 0.4752 0.4263
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