
DRUM–II: Efficient Model–based Diagnosis of
Technical Systems

Vom Fachbereich Elektrotechnik und Informationstechnik
der Universität Hannover

zur Erlangung des akademischen Grades

Doktor–Ingenieur genehmigte

Dissertation

von

Dipl.-Inform. Peter Fröhlich
geboren am 12. Februar 1970 in Würselen

1998

1. Referent: Prof. Dr. techn. Wolfgang Nejdl
2. Referent: Prof. Dr.-Ing. Claus-E. Liedtke

Tag der Promotion: 23. April 1998

Abstract

Diagnosis is one of the central application areas of artificial intelligence. The compu-
tation of diagnoses for complex technical systems which consist of several thousand
components and exist in many different configurations is a grand challenge. For such
systems it is usually impossible to directly deduce diagnoses from observed symptoms
using empirical knowledge. Instead, the model–based approach to diagnosis uses a
model of the system to simulate the system behaviour given a set of faulty components.
The diagnoses are obtained by comparing the simulation results with the observed be-
haviour of the system.

Since the second half of the 1980’s several model–based diagnosis systems have
been developed. However, the flexibility of current systems is limited, because they
are based on restricted diagnosis definitions and they lack support for reasoning tasks
related to diagnosis like temporal prediction. Furthermore, current diagnosis engines
are often not sufficiently efficient for the diagnosis of complex systems, especially
because of their exponential memory requirements.

In this thesis we describe the new model–based diagnosis system DRUM–II. This
system achieves increased flexibility by embedding diagnosis in a general logical
framework. It computes diagnoses efficiently by exploiting the structure of the sys-
tem model, so that large systems with complex internal structure can be solved.

We start by developing a novel formalization of model–based diagnosis based on
circumscription, a widely used non–monotonic logic. The use of a general circum-
scription approach makes DRUM–II more flexible than previous diagnosis engines.
DRUM–II handles a broad spectrum of diagnosis definitions as well as other forms
of non–monotonic reasoning like temporal reasoning. The implementation of circum-
scription in DRUM–II is based on a new sound and complete search algorithm.

Since model–based diagnosis requires a large number of simulations of the system
under similar assumptions, diagnosis engines need techniques to avoid unnecessary re-
computations. Previous diagnosis engines which are often based on truth maintainance
techniques dynamically record information during the search for diagnoses. In con-
trast to previous systems DRUM–II uses only static precompiled information about
the structure of the system to focus the computation of the diagnoses. The space re-
quired for this precompiled information is quadratic in the size of the system under
consideration, while the dynamic data structures of previous systems require expo-
nential space. We have measured the running times of DRUM–II on the widely used

i

ii

ISCAS-85 benchmark circuits. It turns out that DRUM–II shows better performance
than previous systems on all circuits for nearly all test vectors.

We demonstrate the use of DRUM–II for alarm correlation in cellular networks.
This application is a challenging modeling problem, which can only be solved com-
pletely by applying the powerful spectrum diagnosis concept. We show how the com-
putation of spectrum diagnoses is reduced to circumscription by a new iterative algo-
rithm in DRUM–II.

Finally, we consider the process aspect of diagnosis. The computation of diagnoses
is a dynamical process during which models on different abstraction levels as well as
different simplyfying assumptions are used and measurements are carried out. We
define the first declarative modeling language which allows to describe application–
specific diagnostic processes. Furthermore we provide an algorithm which executes
the process specifications and show it application to a process for hierarchical circuit
diagnosis.

Zusammenfassung

Diagnose ist eine der Hauptanwendungen der künstlichen Intelligenz. Die automa-
tische Berechnung von Diagnosen für komplexe technische Systeme, die aus einer
großen Zahl von Komponenten bestehen und in vielen unterschiedlichen Konfigura-
tion existieren, stellt eine große Herausforderung dar. In der Regel ist es bei diesen
Systemen nicht möglich, durch Anwendung empirischen Wissens direkt von den
beobachteten Fehlersymptomen auf die Fehlerursachen zu schließen. Stattdessen wird
in der Modellbasierten Diagnose ein Simulationsmodell des zu untersuchenden Sys-
tems verwendet, das es erlaubt, das Systemverhalten unter Annahme einer Menge von
fehlerhaften Komponenten zu simulieren. Die Diagnosen werden dann durch Vergle-
ich von Simulationsergebnis und beobachtetem Fehlverhalten ermittelt.

Seit der zweiten Hälfte der 80er Jahre wurden mehrere modellbasierte Di-
agnosesysteme entwickelt. Bisherige Systeme weisen allerdings meist eine
eingeschränkte Flexibilität auf, da sie einen eingeschränkten Diagnosebegriff imple-
mentieren und der Diagnose verwandte Aufgaben, wie z.B. zeitliche Vorhersagen,
nicht unterstützen. Außerdem ist die Effizienz bisheriger Systeme für die Diagnose
komplexer technischer Systeme oft nicht ausreichend, insbesondere aufgrund ihres
exponentiellen Speicherplatzbedarfs.

In dieser Dissertation wird das neue modellbasierte Diagnosesystem DRUM–
II vorgestellt. Dieses System weist aufgrund der Einbettung des Diagnosebegriffs
in einen allgemeinen logischen Rahmen eine hohe Flexibilität auf. Darüberhinaus
ermöglicht es durch Ausnutzung der Struktur des untersuchten Systems die effiziente
Berechnung von Diagnosen und somit die Behandlung großer, strukturell komplexer
Systeme.

Zunächst entwickeln wir eine Formalisierung der Modellbasierten Diagnose unter
Verwendung der Zirkumskription, einer weit verbreiteten nicht–monotonen Logik.
Durch die Verwendung eines allgemeinen Zirkumskriptionsansatzes ist DRUM–II
flexibler als bisherige Diagnosesysteme. DRUM–II stellt ein breites Spektrum von
Diagnosedefinitionen zur Verfügung und unterstützt darüberhinaus allgemeines nicht–
monotones Schlußfolgern, z.B. temporales Schlußfolgern. Die Implementierung der
Zirkumskription in DRUM–II basiert auf einem neuen korrekten und vollständigen
Suchalgorithmus.

Da die Berechnung von Diagnosen eine große Anzahl von Simulationen des Sys-
tems unter ähnlichen Annahmen erfordert, werden in Diagnosemaschinen Techniken

iii

iv

zur Vermeidung von Mehrfachberechnungen eingesetzt. Bisherige Diagnosemaschi-
nen, die meistens auf Truth Maintainance Techniken basieren, zeichnen während der
Berechnung der Diagnosen dynamisch Informationen auf. Im Gegensatz zu diesen
Systemen verwendet DRUM–II zur Fokussierung ausschließlich statisches vorkom-
piliertes Wissen über die Struktur des Systems. Der Platzbedarf dieser vorkom-
pilierten Information ist quadratisch in der Größe des untersuchten Systems, während
die in bisherigen Systemen verwendeten Datenstrukturen exponentiellen Platzbedarf
aufweisen. Bei Laufzeitmessungen auf Basis der verbreiteten ISCAS–85 Benchmark–
Schaltkreise zeigt DRUM–II bei der Diagnose aller Schaltkreise für fast alle Testvek-
toren höhere Effizienz als bisherige Systeme.

Wir demonstrieren den Einsatz von DRUM–II für die Alarmkorrelation in Mobil-
funknetzen. Diese Anwendung stellt ein schwieriges Modellierungsproblem dar, das
nur durch Verwendung eines ausdrucksstarken Diagnosekonzeptes, der Spektrum Di-
agnosen, vollständig zu lösen ist. Wir zeigen, wie Spektrum Diagnosen in DRUM–II
durch einen neuen iterativen Algorithmus auf die Zirkumskription zurückgeführt wer-
den.

Schließlich betrachten wir den Prozeßaspekt der Diagnose. Die Berechnung
von Diagnosen ist ein dynamischer Prozeß, in dessen Verlauf unterschiedlich ab-
strakte Systemmodelle und vereinfachende Annahmen verwendet sowie Messungen
durchgeführt werden. Wir definieren die erste deklarative Modellierungssprache, die
es erlaubt, anwendungsspezifische Diagnoseprozesse zu beschreiben. Darüberhinaus
geben wir einen Algorithmus zur Auswertung dieser Prozeßspezifikationen an und
demonstrieren seine Anwendung am Beispiel der hierarchischen Schaltkreisdiagnose.

v

Keywords

Diagnosis, Non-monotonic Reasoning, Artificial Intelligence

Schlagworte

Diagnose, Nicht-monotones Schlußfolgern, Künstliche Intelligenz

vi

Contents

Abstract i

Zusammenfassung iii

Keywords v

Schlagworte v

Abbreviations xi

1 Introduction 1

1.1 Problems Addressed in this Thesis 2
1.2 Solutions Presented in this Thesis 3
1.3 Structure of this Thesis . 5

2 Model–Based Diagnosis 7

2.1 Basic Concepts . 7
2.1.1 Consistency–Based Diagnosis 8
2.1.2 Kernel Diagnoses . 10
2.1.3 Reducing the Number of Diagnoses 11

2.2 Computing Diagnoses . 12
2.3 A Spectrum of Diagnosis Definitions 15
2.4 On the Role of Abductive Diagnosis 17
2.5 Discussion . 20

3 The DRUM-II Framework 21

3.1 Introduction . 22
3.2 The Model–based Approach . 23

3.2.1 Definition of Minimal Models 23
3.2.2 Computing Minimal Models 24
3.2.3 Deciding Entailment under Circumscription 25

3.3 Variants of Circumscription . 27
3.3.1 Keeping the extensions of certain predicates fixed 27
3.3.2 Prioritized Circumscription 27

vii

viii CONTENTS

3.4 Algorithms for Revision and Filtering 31
3.4.1 The Language . 31
3.4.2 Repairing Inconsistent Models 33
3.4.3 Revision Algorithm . 34
3.4.4 Properties of the Algorithm 35
3.4.5 An Iterative Deepening Algorithm 38
3.4.6 Filtering Algorithm . 40

3.5 Non–monotonic Reasoning Applications 42
3.5.1 PMON–Circumscription . 42
3.5.2 Baker’s Formalism . 44
3.5.3 Kartha’s Extension . 45
3.5.4 Nixon’s Diamond . 47
3.5.5 Running Times . 48

3.6 Implementing Diagnosis with DRUM-II 49
3.6.1 Consistency–Based Diagnosis with DRUM-II 49
3.6.2 Computing Spectrum Diagnoses with DRUM–II 50

3.7 Discussion . 56

4 Circuit–Diagnosis with DRUM–II 57

4.1 Diagnosing Digital Circuits at Gate Level 57
4.1.1 System Description . 58
4.1.2 Generating the Initial Model 60
4.1.3 Computing Diagnoses . 61
4.1.4 Identifying Unnecessary Computations 64

4.2 Exploiting Structural Independence 67
4.2.1 Independence of Literals . 68
4.2.2 Application to Diagnosis . 68

4.3 Combinatorial Benchmark Circuits 69
4.3.1 Why are these Problems so difficult? 70
4.3.2 Experimental Results . 71

4.4 Discussion . 73

5 Model–Based Alarm Correlation 75

5.1 Introduction . 75
5.2 Application Area . 76
5.3 Problem and Previous Solutions . 78

5.3.1 Generation of Alarms . 78
5.3.2 Previous Solutions . 79

5.4 A Consistency–Based Model . 81
5.4.1 Overview of the Necessary Model 81
5.4.2 Specific Model . 82
5.4.3 Results . 86
5.4.4 Some Case Studies . 87

CONTENTS ix

5.5 An Improved System Description . 88
5.5.1 Limitations of the Consistency–Based Model 88
5.5.2 System Description . 89
5.5.3 Computing Diagnoses . 91

5.6 Discussion . 94

6 Tableaux for Diagnosis 97

6.1 Introduction . 97
6.2 Hyper Tableaux Calculus . 98
6.3 Lessons from DRUM–II . 102
6.4 Formalizing the Diagnosis Task . 104

6.4.1 Initial Interpretations via Cuts 104
6.4.2 Initial Interpretations via Renaming 105

6.5 Implementation and Experiments . 107
6.6 Discussion . 110

7 Strategies for Diagnosis 111

7.1 Introduction . 111
7.2 Working Hypotheses . 112
7.3 A Formal Language for Strategies 114

7.3.1 Preliminary Considerations 114
7.3.2 The Meta Language . 114
7.3.3 Syntax of the language . 116
7.3.4 Representation of a Diagnostic Process 116
7.3.5 Designing Strategies . 117
7.3.6 Consistency of Transition Systems 118
7.3.7 Results of the Diagnostic Process 122

7.4 A Strategy Knowledge Base for Circuit Diagnosis 123
7.5 Operational Semantics . 126

7.5.1 Combining Strategies . 128
7.6 An Example . 131
7.7 Relation to other Formalisms . 133
7.8 Discussion . 133

8 Conclusion 135

8.1 Contributions . 135
8.2 Future Work . 137

x CONTENTS

Abbreviations

ATMS Assumption–based Truth Maintainance System
BSC Base Station Controller
BTS Base Station Transceiver
CC Cross Connect System
CL Cable Link
DECT Digital European Cordless Telecommunications
DRUM Dynamic Revision and Update Machine
GSM Global System for Mobile Telecommunication
ISCAS International Symposium on Circuits and Systems
NIHIL New Implementation of Hyper in Lisp
ML Microwave Link
MS Mobile Station
O & M Operation and Maintenance
OMC Operation and Maintenance Centre
OSS Operation Support System
SDH Synchronous Digital Hierarchy

xi

Chapter 1

Introduction

Diagnosis is one of the central application areas of artificial intelligence. The first
diagnostic expert systems developed in the seventies focused mainly on medical di-
agnosis [BS84, WKA78, Pop82]. Their knowledge bases consisted of empirical rules
which deduced diagnoses from symptoms. It was however a hard task to acquire and
maintain the large amount of empirical knowledge necessary. Semantical weaknesses
of early knowledge representation formalisms added to these problems.

Research in the field of model–based diagnosis has initiated the development of a
new generation of diagnostic systems. These systems use declarative logical models
to simulate the behavior of an artifact and compute diagnosis by comparing the pre-
dictions of this simulation with the actual observed behavior. The complex technical
systems, which we encounter today in all areas of everyday life pose challenging ap-
plications for these diagnosers. Large technical systems are developed in organized
processes and their function is usually documented formally. Model–based diagnosers
can exploit these formal descriptions for the simulation of the system’s behavior. In
this way model–based diagnosis overcomes both the knowledge engineering problems
and the semantical problems of rule–based expert systems. They have been success-
fully used in numerous different application areas.

The diagnosis of digital circuits on the gate level has been used as a proof of con-
cept application since the beginning of work on model–based diagnosis [DH88, Rei87,
dKW87]. Later, larger combinatorial circuits have served as a means for comparing
the efficiency of diagnostic systems [dK91, RdKS93, FN97]. Recent real–world ap-
plication of model–based diagnosis of circuits include the diagnosis of VHDL designs
[FSW95] as well as the diagnosis of antilock breaking systems in cars [SMS95].

Within the RACE 2 project [SPBL95, dS95] model–based diagnosis was applied
to telecommunication networks. The topic of this project was to support on-line
maintenance of a network consisting of components from different vendors. Model–
based diagnosis has been used successfully in a real time expert system for diag-
nosing the power distribution network of the Public Utilities Board of Singapore
[BNSS93, PN93].

Model–based techniques have also been exploited in medical diagnosis. Gamper

1

2 CHAPTER 1. INTRODUCTION

and Nejdl [GN97] have used model–based reasoning for the diagnosis of Hepatitis
B. Other medical applications of model-based diagnosis include the IDUN system for
physiology [Dow92, Dow93], and the KARDIO system [BML89] for model–based
interpretation of electrocardiograms.

Perhaps the most exciting recent application of model–based diagnosis is the Liv-
ingstone system [WN96b] which will be on board of NASA’s first New Millenium
spacecraft heading for Saturn in 1998. Livingstone uses a single system description
in propositional logic for several reasoning tasks, like fault detection, recovery, re-
configuration and tracking of planner goals. In the New Millennium spacecraft the
model–based engine is part of an integrated autonomous architecture, consisting of a
planner, which generates abstract plans for achieving high–level goals, an executive,
which translates these plans into low–level space craft commands and the model–based
diagnosis and reconfiguration component, which tracks the spacecraft’s state and pro-
poses the necessary reconfiguration steps.

In [WN96a] Williams and Nayak point out a huge potential potential for model–
based systems due to the advent of large autonomous technical systems like chemical
plant control systems, building energy systems, autonomous space probes and recon-
figurable traffic control systems.

To make model–based diagnosis useful for these complex time–critical applica-
tions model–based diagnosis engines must meet the following requirements:

Flexibility: As we pointed out in the spacecraft application, the model–based reason-
ing engine must be capable of solving many different reasoning tasks based on
a uniform description of the system. Thus, a specialized diagnoser is less useful
for future applications than a general–purpose reasoner, which can solve a broad
range of problems.

Efficiency: Successful model–based engines must be efficient regarding both time
and space complexity. Short response times are important because many realis-
tic applications demand reaction in real time. Moreover, diagnosers should be
efficient with regards to memory requirements to make them useful for on-board
diagnosis.

1.1 Problems Addressed in this Thesis

The central goal of this thesis is to develop a flexible and efficient implementation of
model–based diagnosis.

Flexibility means on the one hand that a wide range of diagnostic definitions has
to be covered. On the other hand, diagnosis is not the only task, which has to be
supported by a model–based reasoning system. Therefore, other forms of reasoning,
like temporal reasoning or abductive reasoning should be possible with the engine.

1.2. SOLUTIONS PRESENTED IN THIS THESIS 3

Problem 1. Can we integrate a sufficiently general diagnostic concept in a general
framework for reasoning?

In most AI formalisms there is a tradeoff between expressiveness and efficiency.
Thus, the reasoning framework must be carefully selected to allow for efficient al-
gorithms. Specialized systems will only be replaced by more general approaches in
practice, if the running time of the general system is competitive.

Problem 2. Can we provide an implementation for our reasoner which is competi-
tive with specialized diagnostic systems?

Often it is not enough to have an efficient reasoner. For example, there will often
exist multiple explanations for the symptoms observed. Measurements are neccessary
to discriminate among competing explanations. Furthermore, there are often different
models for one device. In electronics structural, physical and functional models are
used on each level of abstraction. A diagnostic system should dynamically decide,
which model is best suited for the current situation. Struss [Str92] has pointed out
that diagnosis is a dynamical process during which assumptions/models change and
actions have to be taken. While the system models used in model–based diagnosis are
already declarative, there is great need for declarative descriptions of the diagnostic
process.

Problem 3. Can we declaratively specify diagnostic processes, so that the diagnostic
system can exploit them efficiently?

A solution to this problem directly contributes to the flexibility and the efficiency
of the diagnostic system, because the dynamical choice of assumptions and models in-
creases its flexibility and the use of simplifications and abstractions reduces its running
time.

1.2 Solutions Presented in this Thesis

The DRUM–system [Ned93, NG94], the predecessor of DRUM–II, was based on min-
imal change semantics [Win88, CW91, CW94], which is not fully coherent with the
semantics of model–based diagnosis. Due to this semantical problem, DRUM had to
use a redundant algorithm, whose performance degraded quickly on large problems.

The first contribution of this thesis is the identification of a logical framework,
which directly supports the model–based diagnosis semantics. Several authors have
recently chosen monotonic propositional logics as the foundation of their reasoners
[WN96b, Lar92, KS96]. Most diagnostic definitions however include some kind of
minimization, which is not expressible in monotonic logics. Therefore, we chose
circumscription [McC80, McC86], a widely used non–monotonic formalism, as the

4 CHAPTER 1. INTRODUCTION

logical basis of the DRUM–II system. We will show how all relevant diagnostic defi-
nitions can be implemented using circumscriptive reasoning. Since circumscription is
also the foundation of many formalisms for temporal reasoning, DRUM–II is capable
of solving a broader range of reasoning tasks than previous diagnosis engines.

Since its first definition [McC80] several different implementations of circumscrip-
tion have been proposed [Lif85, Gin89, Prz89]. Most implementations reduce the cir-
cumscriptive reasoning to monotonic logics using symbolic manipulations, which are
only applicable to theories with certain structural properties. We present a complete
implementation of propositional circumscription based on a simple local search proce-
dure. It turns out that the efficiency of our general implementation of circumscription
is already sufficient to solve realistic diagnosis problems.

If a technical system is working properly, its output should be a function of its
inputs and its environmental parameters. The logical model of this correct behavior
is usually a horn theory. We define a technique for automatically exploiting structural
information in horn theories, and integrate it into the DRUM–II algorithm. This opti-
mized version of DRUM–II is more efficient than all previous model–based diagnosers
in nearly all cases on a widely used benchmark suites of circuit diagnosis problems.
Thus, on horn theories we have succeeded in providing a general system for circum-
scriptive reasoning which handles diagnosis problems more efficiently than specialized
diagnosis systems.

While digital circuits are relatively easy to describe in logic, the diagnosis of a
cellular network posed a difficult modeling problem. We will show that the widely
used consistency–based diagnosis approach is not suitable for this application, because
it leads to counter–intuitive models. Through the use of a more general diagnostic
concept (spectrum diagnoses) in DRUM–II, we are able to provide a declarative model
of this domain.

Propositional circumscription is well suited as a general framework for diagnosis.
However, several different reasoning mechanisms with a different focus are used in
other areas of AI. To exploit the techniques used in DRUM–II for a wider range of
systems, we identify the main ideas underlying the efficiency of DRUM–II and study
their integration in a reasoner with different technology. The result is a tableaux–based
theorem prover (NIHIL), which is able to solve realistic diagnosis problems. Thus, we
combine the expressive power of a first–order logic tableaux calculus with the efficient
model–based reasoning techniques in DRUM–II.

Two ingredients are necessary for efficient and flexible diagnosis: the diagnosis
system, which interprets the system models and a description of the diagnosis process,
which defines suitable system models and actions for the current situation. Although
some authors have addressed the problem of integrating process support in diagnostic
systems [Str92, BD94] most previous solutions have encoded the diagnostic process
in the implementation of the reasoner. In this thesis we present a language for defining
the diagnostic process as declaratively as the system description itself. We provide
algorithms for efficiently exploiting these process descriptions and give guidelines for
designing diagnostic processes.

1.3. STRUCTURE OF THIS THESIS 5

1.3 Structure of this Thesis

Chapter 2 discusses diagnosis concepts used in model–based diagnosis and their rela-
tionships. It also introduces the main ideas underlying the implementations of previous
diagnosis engines.

In chapter 3 we introduce the DRUM–II system. First, we describe how DRUM–II
implements different variants of propositional circumscription. We demonstrate the
use of this implementation by solving some recent temporal reasoning applications.
Then, we show how a wide range of diagnosis concepts is handled by DRUM–II.

In chapter 4 we study the diagnosis of combinatorial circuits. We show how circuits
can be declaratively described in logics and we compute diagnoses with DRUM–II.
Then, we introduce a more efficient version of DRUM–II which exploits the structure
of the device under consideration. Finally, we compare the running time of DRUM–
II to the running times of previous systems using the ISCAS–85 benchmark suite of
combinatorial circuits.

Chapter 5 describes the use of DRUM–II for alarm correlation in cellular networks.
Different logical descriptions of a cellular network are developed. The performance of
the system on noisy data is assessed.

Chapter 6 shows that the techniques from DRUM–II are also useful for reason-
ers with different technology. The integration of techniques from DRUM–II into a
tableaux–based theorem prover yields a very expressive diagnosis system.

Finally, in chapter 7 we define a language for describing diagnostic processes. We
use this language to set up a catalogue of diagnostic strategies for circuit diagnosis. We
introduce an efficient algorithm for evaluating these process specifications and evaluate
it on a hierarchical circuit problem.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Model–Based Diagnosis

Early diagnostic expert systems depended largely on a domain expert, whose knowl-
edge about inferring diagnoses from symptoms was expressed by heuristic rules. In
contrast to this heuristic approach model–based diagnosis systems compute diagnoses
by simulating the behavior of a device and comparing the prediction with the observed
behavior. Reiter’s seminal paper [Rei87] was the motivation for a broad variety of
works on model-based diagnosis, both on the theoretical foundations as well as on
efficient algorithms.

While the expressiveness and flexibility of model-based diagnosis is superior to
previous approaches, early systems suffered from efficiency problems. Model–based
reasoning systems have to partially simulate the device under consideration several
times under slightly changing assumptions about the faulty components. We will dis-
cuss the most influential model–based diagnosers and their techniques for efficient
reasoning.

In the theory of diagnosis several notions of explanation have been studied. While
Reiter’s definition regards a diagnosis as a set of assumptions consistent with the ob-
servations, the abductive diagnosis approach postulates that diagnoses must entail the
observations logically. Console and Torasso have defined a spectrum of diagnostic
definitions, whose extremes are Reiter’s consistency–based diagnosis and abductive
diagnosis. The DRUM-II system implements this complete spectrum of definitions to
provide a flexible diagnosis concept.

We will conclude this chapter with a critical examination of Console and Torasso’s
statements about the relationship between abductive and consistency–based reasoning.

2.1 Basic Concepts

In model-based diagnosis a model of the device under consideration is used to predict
its behavior. Since the goal of model-based diagnosis is to identify faulty components,
this model must explicitly take into account the components of the device and their
modes (i.e. if they are working properly or they are faulty). In the logical approach

7

8 CHAPTER 2. MODEL–BASED DIAGNOSIS

to diagnosis the device is described by a set of logical axioms SD, called the system
description. To avoid confusion, we will always use the term system description for
the model of the device. The term model will from now on only be used in the logical
sense, i.e. to denote an interpretation of a set of formulas.

Comp is a set of constants denoting the components of the device. We distinguish at
least two modes for each component: A component c2Comp can be working properly,
which is denoted by the proposition Ok(c), or it can be faulty, which is denoted by
Ab(c). A set of propositions Obs encodes the observed behavior of the system. A
diagnosis problem arises, if the observation is inconsistent with the assumption that all
components are working properly, i.e. SD[fOk(c)jc 2Compg[Obs j=?.

2.1.1 Consistency–Based Diagnosis

A diagnosis identifies a set of faulty components, so that logical consistency is re-
stored.

Definition 2.1 Diagnosis

A Diagnosis of SD[Obs is a set ∆ �Comp with the property:

SD[Obs[fAb(c)jc2 ∆g[f:Ab(c)jc 2Compn∆g 6j=?

Reiter’s original definition of diagnosis appeals to the principle of parsimony: Only
a minimal set of components is assumed abnormal. We will follow [dMR92] and refer
to this concept as minimal diagnosis.

Definition 2.2 Minimal Diagnosis

A diagnosis ∆ of SD[Obs is called a Minimal Diagnosis is there is no diagnosis ∆0 of

SD[Obs, such that ∆0 � ∆.

1

1

Inv1

1
Inv2

Or1

Figure 2.1: A simple digital circuit

Example 2.3 Consider the simple digital circuit in figure 2.1 consisting of an or–gate
(Or1) and two inverters (Inv1 and Inv2). The system description SD is given by the
following formulas.

2.1. BASIC CONCEPTS 9

(R1) 8c Type(c;Or)^:Ab(c)
! (High(c;O)$ High(c; I1)_High(c; I2))

(R2) 8c Type(c; Inv)^:Ab(c)! (High(c;O)$:High(c; I))
(R3) 8c1; p1;c2; p2 Conn(c1; p2;c2; p2)! (High(c1; p1)$High(c2; p2))

(F1�F3) Type(Or1;Or); Type(Inv1; Inv); Type(Inv2; Inv)
(F4�F5) Conn(Inv1;O;Or1; I1); Conn(Inv2;O;Or1; I2)

In this system description we have separated general knowledge about the compo-
nents involved (R1, R2, and R3) from the knowledge about the topology of the actual
device (F1, : : :, F5). This separation is typical for model–based diagnosis and keeps
system descriptions maintainable. The first rule R1 describes the behavior of a com-
ponent c, which is an Or-gate (Type(c;Or)). If an Or-gate is behaving according to its
specification, the output has high voltage, if and only if one of its inputs has high volt-
age. R2 denotes that a correctly functioning inverter inverts its input value. R3 states
that two connected ports have the same voltage. The facts F1, F2, and F3 introduce the
components of the given circuit while the facts F4 and F5 describe their connections.
We observe that both inputs of the circuit have low voltage and the output also has low
voltage.

Obs = f:High(Inv1; I);:High(Inv2; I);:High(Or1;O)g

Under these observations two minimal diagnoses exist:

∆1 = fAb(Or1)g
∆2 = fAb(Inv1);Ab(Inv2)g

The low voltage at the output of the or-gate can only be explained if either the or-
gate itself is behaving abnormally or both of its inputs are low and thus both inverters
are faulty. Of course, fAb(Or1);Ab(Inv1);Ab(Inv2)g is also a diagnosis but it is not
minimal and therefore not considered by Reiter’s definition. #

From definition 2.1 it is obvious that computing diagnoses requires deciding sat-
isfiability for the language used. Thus, using full first–order logic as the underlying
language will inevitably lead to an incomplete diagnosis algorithm. We therefore use
a restricted language throughout this book, which does not include function symbols.
This language is formally defined in section 3.4.1.

One motivation for computing only the minimal diagnoses is that minimal diag-
noses are often sufficient to characterize the space of all diagnoses: Usually, every
superset of a minimal diagnosis is also a diagnosis. De Kleer, Mackworth and Reiter
have critically examined this intuition in [dMR92] and qualified it as summarized in
the following theorem.

10 CHAPTER 2. MODEL–BASED DIAGNOSIS

Theorem 2.4 Let (SD;Comp;Obs) be a representation of a diagnosis problem, such

that Ab occurs only positively in the clause form of SD.

For every set of ∆ components: If ∆� ∆0 for a minimal diagnosis ∆0, then ∆ is itself

a diagnosis.

Extending our previous example we can easily construct a case where a superset
of a diagnosis is not itself a diagnosis.

Example 2.5 Let us extend the system description from example 2.3 by

R4 : 8c Type(c;Or)^Ab(c)! High(c;O)

The clause corresponding to this formula is f:Type(c;Or);:Ab(c);High(c;O)g,
in which Ab occurs negatively so that the preconditions of theorem 2.4 are not sat-
isfied. In fact, for the observation from example 2.3 we obtain only one diagnosis
∆2 = fAb(Inv1);Ab(Inv2)g. Comp� ∆2 is no diagnosis. #

2.1.2 Kernel Diagnoses

In diagnosis vocabulary a formula like R4 in above example, which describes the be-
havior of a faulty component, is called a fault model. De Kleer, Mackworth and Reiter
have coined the concept of a kernel diagnosis [dMR92] to characterize the diagnosis
space in the presence of fault models. They define a diagnosis as a conjunction of
Ab-literals (positive or negative), which is consistent with SD and Obs.

Definition 2.6 Diagnosis (following [dMR92])

A conjunction D of Ab-literals is a Diagnosis of (SD;Comp;Obs), iff

SD[Obs[D 6j=?

While Reiter has used set inclusion as minimality criterion, de Kleer, Mackworth,
and Reiter use the concept of Covering.

Definition 2.7 covers

A conjunction C of literals covers a conjunction D of literals, iff every literal in C

occurs in D.

A Partial Diagnosis helps characterizing the space of all diagnoses, because all
conjunctions of Ab-literals, which cover it, are diagnoses.

Definition 2.8 Partial Diagnosis

A Partial Diagnosis is a diagnosis, such that all conjunctions of Ab-literals covered by

it are diagnoses.

2.1. BASIC CONCEPTS 11

The partial diagnoses which are minimal wrt. covering are called Kernel Diag-

noses.

Definition 2.9 Kernel Diagnosis

A Partial Diagnosis is called a Kernel Diagnosis, if no other diagnosis covers it.

Although kernel diagnoses thoroughly characterize the space of all diagnoses this
concept had no strong influence on diagnostic systems. The reason is that computing
kernel diagnoses is a very expensive task and the set of all kernel diagnoses is too large
for complex devices.

2.1.3 Reducing the Number of Diagnoses

For large systems even the set of all minimal diagnosis is too big to allow efficient com-
putation. Furthermore, the user of a diagnostic system wants a small set of diagnoses,
which directs him to the faulty components. In this section we discuss diagnosis con-
cepts which omit less likely minimal diagnoses. The best way to discriminate among
diagnoses is to execute measurements [dKW87, dK90b]. However, measurements re-
quire taking possibly costly actions in the real world.

A widely used approach to discriminate further among the minimal diagnoses is
to rank them according to their prior probability. Assuming statistical independence
among the possible failures of a system (which may be a too strong assumption for
some domains), the prior probability that a given diagnosis is correct is ([dK90b])

P(∆) = ∏
c2∆

pc � ∏
c2Compn∆

(1� pc); (2.1)

where pc is the probability, that component c fails.

Definition 2.10 Maximally Probable Diagnosis

For a diagnosis ∆ let P(∆) be defined by equation 2.1. A diagnosis ∆ is called a

Maximally Probable Diagnosis, iff there is no diagnosis ∆0 such that P(∆0)> P(∆).

If all probabilities pc are equal (or assumed to be equal due to lack of information),
i.e. pc = p for all c 2Comp we have

P(∆) = pj∆j � (1� p)jCompj�j∆j (2.2)

In this case, the probability of a diagnosis depends only on its cardinality and we
can rank the diagnoses simply by their cardinality.

Definition 2.11 Minimal Cardinality Diagnosis

For a diagnosis ∆ let j∆j denote the number of components in ∆.

A diagnosis ∆ is called minimal cardinality diagnosis, iff there is no diagnosis ∆0

so that j∆0j< j∆j.

12 CHAPTER 2. MODEL–BASED DIAGNOSIS

Restrictions on the cardinality of diagnoses are very common. Many (non–model–
based) diagnosis systems have implicit restrictions on the cardinality of diagnoses:
Often they can only compute single fault diagnoses, i.e. diagnoses with cardinality 1.

2.2 Computing Diagnoses

An obvious way to compute diagnoses following definition 2.2 is to enumerate diag-
nosis candidates ∆ (i.e. sets of components considered faulty) and check if SD[Obs[
f:Ab(c)jc 2Compn∆g[fAb(c)jc2 ∆g is logically consistent. If so, ∆ is a diagnosis.

Reiter’s Framework. Reiter motivates his diagnosis algorithm [Rei87] by the state-
ment that a generate and test approach is too inefficient for computing diagnoses with
large cardinality because a large number of candidates has to be checked. Instead of
enumerating candidates Reiter takes up an idea proposed by de Kleer [dK76] and uses
conflict recognition as a preliminary stage to candidate generation.

Definition 2.12 Conflict Set.

A Conflict Set for (SD;Comp;Obs) is a set fc1; : : : ;cng �Comp such that

SD[Obs[f:Ab(c1); : : : ;:Ab(cn)g j=?

Conflict sets can be generated using a theorem prover by computing a refutation for
SD[Obs[f:Ab(c)jc 2Compg. Every set of Ab-literals used in such a refutation is a
conflict (set). A candidate has to take every conflict into account. This is formalized
by the notion of a Hitting Set.

Definition 2.13 Hitting Set

A Hitting Set for a collection C of sets is a set H �
S

S2C
S such that H \S 6= /0 for every

S 2 C .

A hitting set is called minimal, if it is the smallest set with the above property.

Reiter proves that the minimal diagnoses correspond to the minimal hitting sets of
the set of conflicts. To compute hitting sets systematically, Reiter uses a data structure
called hitting set tree. In a hitting set tree internal nodes are labeled by conflicts.
For every component in the conflict, an outgoing edge labeled with this component is
added to the node as shown in figure 2.2. The hitting sets correspond to the sets of edge
labels on a path. A branch is extended as long as there is a conflict not yet covered by
the set of literals on the branch.

Since only the minimal hitting sets correspond to minimal diagnoses, Reiter pro-
poses techniques for eliminating nodes from the HS-tree, which provably do not lead
to minimal hitting sets. All nodes, which correspond to a superset of an already found
hitting set are eliminated. Reiter defined an additional optimization concerning the

2.2. COMPUTING DIAGNOSES 13

{1, 2, 3}

1
2

3

{2, 4, 5}

2 5
4

{2, 4, 5}

{1, 2, 5}

2
4

5

5
2

1

✓

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓

Figure 2.2: Hitting Set Tree for ff1;2;3g;f2;4;5g;f1;2;5gg. The branches
(1;2);(3;2);(3;4;1);(3;4;2); and (3;4;5) correspond to non–minimal hitting set and
could be pruned.

nodes labeled by non-minimal conflicts. This technique however contained an error
which was later corrected in the HS-DAG algorithm by Greiner, Smith, and Wilkerson
in [GSW89].

It should be noted that the techniques in the HS-tree/HS-DAG lead to a consider-
able overhead due to the large number of costly subset checks involved. We know of
no experimental or theoretical evaluation of the benefits of these methods. Moreover,
it is sometimes seen as an advantage of Reiter’s algorithm, that non-minimal conflicts
can be used [GSW89]. Since however a relatively complex algorithm is needed for
deleting them from the HS–DAG (again using a large number of subset checks), this
advantage is questionable.

GDE. In their GDE system [dKW87] de Kleer and Williams also divide the compu-
tation of diagnoses into the phases conflict generation and candidate generation. The
candidate generator in GDE maintains the set of currently minimal candidates and up-
dates it accordingly for each new minimal conflict. In contrast to Reiter, who makes
only some general statements on conflict generation, de Kleer and Williams carefully
design an efficient conflict recognition algorithm. This algorithm is based on the notion
of an Environment. An environment is a set of components considered OK. The sys-
tem description together with an environment causes a set of predictions. If any of the
predictions contradicts the observations, the environment is a conflict. GDE finds all
minimal conflicts by systematically enumerating environments starting with the empty
environment and moving up the subset/superset lattice of components successively.

Since most values do not depend on the complete environment but rather only on
a subset thereof, a large number of predictions (and thus inference operations) would
be repeated for the different environments, if a straightforward inference architecture
were used. De Kleer and Williams therefore use truth maintenance techniques to avoid

14 CHAPTER 2. MODEL–BASED DIAGNOSIS

such recomputations. With each value a minimal supporting environment is stored.
The value can be assumed in every environment which includes its supporting envi-
ronment as a subset.

Sherlock. The original GDE was limited to descriptions of the correct behavior only.
In [dKW89] de Kleer and Williams introduced fault models into GDE and called the
resulting system Sherlock. They found that the additional combinatorics of using fault
models made the system too inefficient to solve even small problems. To deal with
this complexity de Kleer and Williams abandon the idea of computing all minimal
diagnoses and introduce the notion of Leading Diagnoses. Leading diagnoses are the
most probable diagnoses of the system. Heuristic criteria define the probability up to
which a diagnosis is considered a leading diagnosis. The set of leading diagnoses is
usually small (e.g. five diagnoses).

AAAI91. The ideas and algorithms concerning the computation of diagnoses pre-
sented so far were either of theoretical nature [Rei87] or checked only on small ex-
amples [dKW87], [dKW89]. When de Kleer started working on large combinato-
rial benchmark circuits [Isc85] and large circuits consisting of cascaded elements he
found that both GDE and Sherlock were too inefficient to handle large examples. In
[dK91] de Kleer shows that all three phases of computation (prediction, conflict gen-
eration, candidate generation) in GDE and Sherlock exhibit combinatorial explosion.
De Kleer’s next diagnosis engine reduces the combinatorial explosion by focusing the
diagnosis engine on the leading diagnoses. On the one hand this is achieved by incor-
porating the estimation of probabilities into an incremental candidate generator, which
returns only the single most probable candidate not considered so far. On the other
hand the truth maintenance system used in GDE and Sherlock (ATMS) is replaced
by a more efficient technology (HTMS) which reduces the combinatorial explosion of
conflicts and predictions.

IMPLODE. Even the system from [dK91] did not solve all combinatorial bench-
mark circuits from the ISCAS-85 suite. In [RdKS93] Raiman, de Kleer and Saraswat
introduce the IMPLODE system, which reduces the number of environments and con-
flicts drastically by exploiting the concept of criticality. The Critical Environment for a
literal l is the intersection of all environments, under which l is entailed. Let us denote
the critical environment for a literal l by CE(l). The basic idea behind critical reason-

ing is the (unsound) abstraction
�V

x2CE(l) x
�
! l. When this abstraction is applicable,

it focuses the reasoning dramatically, because all the alternative environments, under
which l is entailed, do not have to be considered.

Example 2.14 Let us assume that the atom High(C5;O) is entailed under the minimal
environments fOk(C1);Ok(C2)g and fOk(C1);Ok(C4)g. The critical environment for

2.3. A SPECTRUM OF DIAGNOSIS DEFINITIONS 15

High(C5;O) is the intersection of these environments, i.e. fOk(C1)g. The abstraction
Ok(C1)! High(C5;O) is introduced. #

Although the abstractions computed in critical reasoning are unsound in general,
Raiman, de Kleer and Saraswat show that they are valid under certain conditions.
For example, if we are interested in single faults, the above abstraction is consis-
tent: If C1 is assumed abnormal, High(C5;O) will not be assumed. If any other
component is considered abnormal, then either the environment fOk(C1);Ok(C4)g
or fOk(C1);Ok(C2)g remains intact and the value can be deduced. Set covering tech-
niques, which however have not been considered in depth in [RdKS93] can be used to
generalize the applicability of these abstractions in a multiple fault scenario.

2.3 A Spectrum of Diagnosis Definitions

Diagnosis following definition 2.1 is often referred to as consistency-based diagnosis.
This is a natural concept, if the system description only describes the correct behavior
of the components. If we additionally have fault models, we may want a stronger
diagnosis concept, which does not only postulate consistency but explanation (in the
sense of logical entailment) of the observed misbehavior. To formalize such a stronger
notion of diagnosis, let us first introduce some additional notation. From now on,
we assume that each component c has one correct mode Ok and several fault modes
Fmc1; : : :Fmcnc . By Mode(c;m) we denote that component c is in mode m. We define

8c (Ok(c)$Mode(c;Ok))
8c (Ab(c)$9m (Mode(c;m)^m 6= Ok))

so that we can still use our previous definitions. Furthermore we postulate, that
every component is in exactly one mode at a given time point, i.e.

8c9m (Mode(c;m)^8m0 (m0 6= m!:Mode(c;m0))

Further we partition the observations Obs into a set ObsIn of parameters (input
observations) and a set ObsOut of output observations, such that Obs = ObsIn[̇ObsOut .
In the presence of multiple fault modes, a diagnosis can no longer be denoted as a set
of components. We now need the concept of a Mode Assignment.

Definition 2.15 Mode Assignment.

A set D of atoms is called a Mode Assignment, iff

1. D contains exactly one atom of the form Mode(c;m) for every component c 2
Comp and

2. D contains no other atoms.

16 CHAPTER 2. MODEL–BASED DIAGNOSIS

When working with mode assignments, we still want to minimize abnormality.
Therefore, we introduce an ordering �Ab on the mode assignments, similar to the
ordering on models.

Definition 2.16 �Ab

For mode assignments D1 and D2 we define

D1 �
Ab D2, iff fcjMode(c;Ab) 2 D1g � fcjMode(c;Ab) 2 D2g

An Abductive Diagnosis is a mode assignment consistent with system description
and observations, which entails all output observations.

Definition 2.17 Abductive Diagnosis.

Let (SD;Comp;Obs = ObsIn[̇ObsOut) be a diagnostic problem. A mode assignment

M is called an Abductive Diagnosis, iff

1. SD[Obs[M 6j=? and

2. SD[ObsIn[M j= ObsOut

In [CT91] Console and Torasso point out that a spectrum of diagnostic definitions
exists between the extremes consistency–based diagnosis and abductive diagnosis. The
definitions in the spectrum differ in the size of the subset Obs+ � ObsOut of observa-
tions, which have to be explained. The extremes are Obs+ = /0 for consistency–based
diagnosis and Obs+ = ObsOut for abductive diagnosis1. Following Console we can
provide a general definition of a diagnosis problem which includes the specification of
Obs+ and a diagnosis concept which covers the whole spectrum.

Definition 2.18 Diagnosis Problem, Spectrum Diagnosis.

A Diagnosis Problem is given by (SD;Comp;Obs = ObsIn[̇ObsOut ;Obs+) where

Obs+ � ObsOut .

A mode assignment M is a Spectrum Diagnosis, iff

1. SD[Obs[M 6j=? and

2. SD[ObsIn[M j= Obs+

By implementing spectrum diagnosis, the DRUM–II system covers a broad range
of diagnostic definitions and applications. Additionally, DRUM–II allows to restrict
the set of all minimal spectrum diagnoses further by cardinality or probability as dis-
cussed in section 2.1.3.

1Console defines another dimension of the spectrum by dividing the observations into normal and
abnormal observations

2.4. ON THE ROLE OF ABDUCTIVE DIAGNOSIS 17

2.4 On the Role of Abductive Diagnosis

Console, Theseider Dupré and Torasso have formally studied the relationship between
abductive and consistency–based reasoning in [CDT91]. They show that abductive
explanations are strictly equivalent to the models of the completed (via predicate com-
pletion) theory. With a more informal and domain–oriented argumentation, Console
and Torasso present similar equivalences between abductive and consistency–based
diagnosis in [CT91].

We however argue that the completions presented in [CT91] and [CDT91] are often
not applicable to system descriptions of technical devices. Complex technical systems
usually consist of a large number of standard components connected in a network
structure. The system description usually formalizes propagation of certain properties
through this component network. Examples are the water pressure in a system of
pipes and valves, the current in a switching network, or the presence of messages in a
communication network. To model such propagations we often use rule–like axioms.
In a communication network, the propagation of a message through the network can
be formalized by a predicate P(x;y), denoting that the message sent by component y

has reached component x.

8x8y8z P(x;x)^ (P(x;z)^Conn(x;y)! P(y;z)) (2.3)

The above axiom describes the propagation of status messages through a network:
Each component sends a status message (P(x;x)), and each component forwards sta-
tus messages to the connected components. In our telecommunication application in
chapter 5, we use similar but more complex axioms to describe the forwarding of sta-
tus messages through the network. It is interesting to see that already the simple axiom
in formula 2.3 cannot be completed in first order logic. To see this, note that the com-
pletion of axiom 2.3 is exactly the transitive closure Conn� of the relation Conn: A
component x forwards a status message to all components directly or indirectly con-
nected to it. Thus, we have Conn�(x;y), P(y;x), i.e. the component x is connected
to the component y, iff y has received the status signal of x. However, the transitive
closure cannot be formalized in first–order logic.

Proposition 2.19 The transitive closure cannot be formalized by a set of first–order

formulas.

Proof: For this proof we will denote interpretations as pairs (M;β), consisting of a
frame M and an assignment β. We will show that there is no first order theory T such
that MOD(T) (the set of all models of T) has the property:

For every M 2MOD(T): MjR�j is the transitive closure of MjRj2.

2R� is treated as a predicate constant

18 CHAPTER 2. MODEL–BASED DIAGNOSIS

The proof is by contradiction. Suppose T is such a theory. Let us define a set of
frames fMnjn 2 Ng. The domain of Mk is the set f1; : : : ;kg. Further we define

MkjRj := f(i; i+1)j1� i < kg
MkjR�j := f(i; j)j1� i < j � kg

Then, obviously MkjR�j is the transitive closure of MkjRj. Let

φk := x 6= y^R�(x;y)^:(9x1 : : :9xk x1 = x^ xk = y^R(x1;x2)^ : : :^R(xk�1;xk)).

The formula φk expresses that R� holds for x and y but y is not reached by k times
following the relation R. Let

T 0 := T [fφkjk � 2g.

We will show that T 0 is satisfiable by exploiting the compactness theorem of first
order logic. Thus, we have to show that every finite subset T� of T 0 is satisfiable. For
a given finite subset T� there is a largest number j such that φ j is contained in T�
(otherwise T� would be infinite). For this j we have T� � T [fφkj2� k � jg| {z }

T j

.

The interpretation (M j+1;β) with β(x) = 1 and β(y) = j+1 is obviously a model
of T j because M j+1 interprets R� as the transitive closure of R and j+1 applications
of R are needed to get from 1 to j+ 1, so that all φk for 2 � k � j are satisfied. Thus
T j has a model, which is also a model of T�, because T� � T j.

Since every finite subset of T 0 has a model, by compactness theorem, we infer
that T 0 itself has a model. However, this model does obviously not interpret R� as the
transitive closure of R, because for some x;y we have R�(x;y) but y cannot be reached
from x by finitely many applications of R. Since this model of T 0 is also a model of T

(because T � T 0), we have found a contradiction to the assumption that all models of
T interpret R� as the transitive closure of R.

Q.E.D.
The reduction of our propagation problem to the well–known result for the transi-

tive closure was only possible, because P has two arguments, one of which identifies
the sender of the message. However, we can generalize our result further. Consider
the following propagation axiom:

8x8y (CP(x)! P(x))^ (P(x)^Conn(x;y)! P(y)):

This is in some sense the simplest possible form of propagation. A property is
present at x if x is the creator or cause of the property P (CP(x)). Furthermore, proper-
ties are propagated over connections.

We can modify the proof of proposition 2.19 to show that even this simple type of
propagation cannot be described in first–order logic.

2.4. ON THE ROLE OF ABDUCTIVE DIAGNOSIS 19

Proposition 2.20 The completion of formula 2.4 cannot be formalized by a set of first–

order formulas.

Proof: We will show that there is no first order theory T such that MOD(T) has the
property:

(�)

�
For every M 2 MOD(T): x is in MjPj, iff x is in MjCPj or there exists an y such
that y is in MjCPj and (y;x) is in the transitive closure of MjConnj.

The proof is by contradiction. Suppose T is such a theory. Let us define a set of
frames fMnjn 2 Ng. The domain of Mk is the set f1; : : : ;kg. Further we define

MkjPj := f1; : : : ;kg
MkjCPj := f1g

MkjConnj := f(i; i+1)j1� i < kg

Then, obviously Mk satisfies (�). Now let

φk := P(x)^:(9x1 : : :9xk CP(x1)^ xk = x^R(x1;x2)^ : : :^R(xk�1;xk)).

The formula φk expresses that P holds for x but x is not reached by k times following
the relation R from a point, where CP holds. Let

T 0 := T [fφkjk � 2g.

Again, we have to show that every finite subset T� of T 0 is satisfiable. For a given
finite subset T� there is a largest number j such that φ j is contained in T�. For this j

we have T� � T [fφkj2 � k � jg| {z }
T j

.

The interpretation (M j+1;β) with β(x) = j + 1 and is obviously a model of T j

because the frame M j+1 satisfies (�) and j+ 1 applications of R are needed to get
from 1 to j+1, so that all φk for 2 � k � j are satisfied. Thus T j has a model, which
is also a model of T�, because T� � T j.

Since every finite subset of T 0 has a model, by compactness theorem, we infer that
T 0 itself has a model. However, this model does not satisfy (�), because for some
x, P(x) holds, but it is not connected to a point where CP(x) holds. Since this model
of T 0 is also a model of T (because T � T 0), we have found a contradiction to the
assumption that all models of T satisfy (�).

Q.E.D.
We conclude that abduction cannot be substituted by first–order deduction in the di-

agnosis of systems with a network structure. Thus, we need either higher–order logic,
non–monotonic logic or an implementation of abduction for the reasoning. Due to the
lack of practical reasoning methods for higher order logics, this alternative seems to be
inadequate. In this thesis we therefore exploit the other alternatives, non–monotonic
logics and the direct implementation of abduction.

20 CHAPTER 2. MODEL–BASED DIAGNOSIS

2.5 Discussion

Model–based diagnosis allows to exploit declarative logical system descriptions for
the diagnosis task. Most work has focused on consistency–based diagnosis and its
variants. Several years of research were necessary to create consistency based diagno-
sis engines with satisfactory performance. Most of these systems are based on conflict
detection and candidate generation. Because of the continuing efficiency problems
of conflict–based engines, Reiter’s initial claim, that combinatorial explosion of the
running time can be avoided by conflict generation techniques, seems questionable.
It is therefore worthwhile studying alternative algorithms, as used by the DRUM–II
system.

Console and Torasso have extended the model–based diagnosis paradigm by intro-
ducing a spectrum of diagnostic definitions. The have shown how to reduce the defini-
tions in their spectrum to consistency–based reasoning. However, we have shown that
these reductions, which work well for some examples, do not apply to the diagnosis of
systems with network structure described in first order logic.

The following chapters of this thesis are concerned with an alternative efficient
implementation of model–based diagnosis which is able to handle the whole spectrum
of diagnostic definitions for the diagnosis of large systems with network structure.

Chapter 3

The DRUM-II Framework

As we discussed in the section 2.2 most previous systems for model–based diagnosis
are based on conflict recognition and candidate generation. Despite their application–
specific algorithms, they suffer from combinatorial explosion of internal data structures
during the computation of diagnoses. Thus, it is worthwhile to consider alternatives to
the conflict–based algorithms motivated in Reiter’s work. Furthermore, there is a trend
in recent logic–based AI research to move away from specialized logics/algorithms
and solve problems using general logical inference engines instead. Examples for this
development are the trend to solve planning/scheduling problems by reducing them
to propositional logic [KS96] and the reduction of test pattern generation problems to
propositional logic [Lar92].

DRUM–II also uses a generic logical engine to compute diagnoses. However, the
underlying logics has to be more expressive than propositional logic, because most di-
agnosis concepts appeal to the principle of parsimony: We want to assume only a mini-
mal set of faulty components. To account for the principle of parsimony the underlying
logic has to include a means of minimizing the extension of the Ab–predicate. Several
non–monotonic logics have been proposed for this purpose [Rei80, McC80]. We have
chosen Circumscription, because its semantics corresponds directly to model–based
diagnosis and it is the basis of many temporal reasoning formalisms.

We show that consistency–based diagnosis corresponds directly to the computation
of the minimal models which characterize the circumscription semantically. The more
expressive spectrum diagnosis concept is implemented by iterating minimal model
computation (for the consistency–based part) and deciding entailment (for the abduc-
tive part). Both tasks are solved with our implementation of circumscription. By
implementing circumscription efficiently DRUM–II provides on the one hand a very
efficient system for model–based diagnosis and on the other a flexible framework for
non–monotonic reasoning in general. This chapter extends and generalizes our previ-
ous results in [FN96a, FN96b].

21

22 CHAPTER 3. THE DRUM-II FRAMEWORK

3.1 Introduction

Circumscription [McC80, McC86] is one of the most popular formalisms for non–
monotonic reasoning. It is used to provide a semantics and reasoning method for
statements like the following:

Normally, basket ball players are tall.

We can try to formalize this statement in first order logic by the sentence

8x BasketBallPlayer(x)^:Ab(Height;x)! Tall(x):

This sentence reads: A basketball player, who is not abnormal with respect to his
height, is tall. However, monotonic logic does not capture the intended meaning of
this sentence very well. Suppose, we know that Tom is a basketball player. Then,
monotonic logic would not allow us to conclude that Tom is tall, because he could also
be abnormal regarding size. Our intention is however: If we are not forced to assume
that Tom is abnormal wrt. height, we assume that he is tall.

Circumscription helps in this situation by minimizing the extension of certain pred-
icates, like the predicate Ab in the above example. Formally, the circumscription of a

theory T in a predicate P adds a second order sentence (called circumscription axiom)
to T , which postulates that the extension of P is minimal, i.e. no superfluous atoms
P(x) will be assumed. If we circumscribe the theory

T : 8x BasketBallPlayer(x)^:Ab(Height;x)! Tall(x):
BasketBallPlayer(Tom)

in the predicate Ab, we can infer that Tom is tall, because is it consistent to assume
that he is not abnormal regarding height. To decide, if a formula ϕ follows from the
theory T circumscribed in a predicate P, most approaches compute the circumscription
axiom and (if possible) reduce it to a first order sentence [Lif85]. Then monotonic logic
is used to do the proof. Unfortunately, in many cases the circumscription axiom cannot
be reduced to a first order sentence. Since there are no efficient reasoning methods for
second order logic in general, the scope of this reduction method is limited.

Therefore, some authors have investigated the so–called semantical characteriza-
tion of circumscription. This approach defines the semantics of circumscription by
minimality criteria for models. This characterization has been used by Ginsberg to
create an ATMS–based circumscriptive theorem prover [Gin89].

In this chapter we present a more direct approach for exploiting this characteriza-
tion, which uses model–based reasoning techniques to compute minimal models of a
given theory. By dividing the minimal models into equivalence classes we only need
to compute a representative subset of the minimal models. These few models are then
used by a filtering function to decide, if a given formula ϕ follows from the circum-
scription. The proof is done by showing that there is no minimal model, in which :ϕ

3.2. THE MODEL–BASED APPROACH 23

holds. This refutation method was already used by Przymusinski [Prz89], whose query
answering method is based on resolution.

We provide efficient algorithms for our approach which make use of the model–
based reasoning techniques introduced by Chou and Winslett [CW94]. We show that
these algorithms are sound and complete for fixed–domain theories [Luk90]. Our ap-
proach avoids problems with the symbolic manipulation and reduction of the circum-
scription axiom and provides an efficient way to handle current applications. We un-
derline this by implementing current formalisms for reasoning about action and change
using our system.

3.2 The Model–based Approach

3.2.1 Definition of Minimal Models

For a model M and a predicate symbol K we write MjKj to denote the extension of
K in M. In [McC86], McCarthy defines Formula Circumscription, which allows the
extensions of certain predicates to vary during minimization. We will first consider the
special case of circumscribing a theory T in a tuple P̄ of predicates, while varying the
extensions of all other predicates and generalize this to other variants of circumscrip-
tion in section 3.3. The semantics for this case of circumscription (usually referred to
as parallel circumscription) can be characterized by the <P̄ minimal models of T .

Definition 3.1 Let P̄= (P1; : : : ;Pn) be a tuple of predicates. Let M1 and M2 be models.

M1 �
P̄ M2, iff

1. M1 and M2 have the same domain and agree in the interpretation of the constant

symbols.

2. For all i 2 f1; : : : ;ng: M1jPij � M2jPij.

A model M is called a <P̄–minimal model of the theory T , iff there is no model M0

of T , such that M0 <P̄ M. We will denote the set of <P̄–minimal models of T by

MODP̄(T).

MODP̄(T) := fMjM j= T ^ (6 9M0 : M0 <P̄ M^M0 j= T)g

The following theorem found by Lifschitz [Lif85] shows the connection between
circumscription and the set of <P̄–minimal models.

Theorem 3.2 The formula ϕ follows from the circumscription of T in P̄, while vary-

ing all other predicates, iff ϕ holds in all <P̄–minimal models of T .

Thus, if we knew all <P̄–minimal models of a given theory, we could answer
queries concerning the circumscribed theory just by looking at the models. However,
computing and storing all <P̄–minimal models is usually very inefficient. We will de-
scribe a method for answering queries which needs only a few models, by introducing
an equivalence relation on models.

24 CHAPTER 3. THE DRUM-II FRAMEWORK

3.2.2 Computing Minimal Models

Two models are defined to be equivalent wrt. P̄, if the extensions of all predicate con-
stants in P̄ are the same in both models.

Definition 3.3 Let P̄ = (P1; : : : ;Pn) be a tuple of predicate constants. Two models

M and M0 are P̄–equivalent (denoted by M �P̄ M0), iff for all i 2 f1; : : : ;ng: MjPij =

M0jPij. By [M], we denote the set of all models P̄–equivalent to M, i.e. [M] = fM0jM�P̄

M0g. For a set M of models we define M =�P̄ := f[M]jM 2M g.

Each equivalence class is represented by (stored as) some model M̃ 2 [M]. Thus

we work on finite sets of models representing MODP̄(T)=�P̄.

Definition 3.4 A set M of models is a Transversal of MODP̄(T)=�P̄, iff it contains

exactly one model out of every equivalence class in MODP̄(T)=�P̄.

Now consider a (possibly empty) set T of formulas for which we have a transversal
M of the <P̄–minimal models. We want to add new knowledge U to the theory T and
thus obtain a transversal of the <P̄–minimal models of T [U. We call a function,
which computes this new transversal, a Revision Function.

Definition 3.5 Consider a first order language L , where IL is the set of all finite

interpretations. Let C be a class of theories in L . Let fP̄ be a function, which takes

a theory, a set of models and a second theory as parameters and produces a set of

models: fP̄ : C �2IL �C ! 2IL .

fP̄ is called a Revision Function for C , iff for all T ;U 2 C and all transversals

M � IL of MODP̄(T)=�P̄:

fP̄(T ;M ;U) is a transversal of MODP̄(T [U)=�P̄.

In section 3.4 we will introduce an efficient revision function RevP̄ and show its
completeness for a large class of theories. The rest of this section is dedicated to
the question how to use a revision function to comute minimal models and decide
entailment under circumscription. Our first observation is that we can use the revision
function directly to compute a transversal of the minimal models by executing the
revision RevP̄(/0;f /0g;T). This method will be used in the PMON example (see section
3.5.1). In other applications we want to compute minimal models in multiple steps.
That is, we already have a transversal M of the minimal models for a part T0 of the
theory and we use RevP̄(T0;M ;T1) to compute the minimal models of T0[T1. One
reason for doing so can be the appearance of new knowledge. In this case we want to
reuse the minimal models of the old theory to compute the new minimal models.

Another reason for computing minimal models in several steps is efficiency. In
reasoning about action and change we can for example use standard model generation
techniques to create a model of the static world, without regarding the action axioms.
Then we revise this model with the action axioms. This technique is shown in section

3.2. THE MODEL–BASED APPROACH 25

3.5.2 using Baker’s approach to non–monotonic reasoning. The most challenging ap-
plication of our circumscription algorithm is the model–based diagnosis of technical
systems. Solving diagnosis applications (see chapters 4 and 5), we have found that
computing minimal models in several steps can focus and thereby speed up computa-
tion dramatically.

3.2.3 Deciding Entailment under Circumscription

Until now, we defined a method for computing the equivalence classes of the minimal
models of a theory T . These equivalence classes can be used to decide entailment
under circumscription. The decision procedure is an application of theorem 3.2 by
Lifschitz. Before we describe the general decision procedure, note that answering
queries concerning predicates in P̄ is now trivial, since a transversal of the <P̄–minimal
models contains a model for each minimal combination of extensions of the predicates
in P̄.

Proposition 3.6 Let P̄ = (P1; : : : ;Pn) a tuple of predicate constants, Pi (i2 f1; : : : ;ng)

a predicate constant of arity ri, and M a transversal of MODP̄(T)=�P̄. An atom

Pi(x1; : : : ;xri
) follows from the circumscription of T in P̄ varying all other predicates,

iff 8M 2 M : M j= Pi(x1; : : : ;xri
).

To prove that an arbitrary formula ϕ is entailed by the circumscription of T in P̄, we
show that :ϕ does not hold in any <P̄–minimal model of T . Our method for deciding
entailment makes use of a Filtering Function. We can filter a set of equivalence classes
with a formula ϕ by eliminating all equivalence classes, which do not contain a model
of ϕ.

Definition 3.7 Consider a language L and a class of theories C in L . Let T be a

theory, ϕ a formula and M a set of models.

ΠP̄(T ;M ;ϕ) := f[M]jM 2 M ^9N 2 [M] : N j= ϕg

A function fP̄ : C �2IL �L ! 2IL is called a Filtering Function for C , iff for all T 2 C ,

ϕ 2 L (such that T [fϕg 2 C) and for every transversal M of MODP̄(T)=�P̄:

fP̄(T ;M ;ϕ) is a transversal of ΠP̄(T ;M;ϕ).

A filtering function FilterP̄ will be defined in section 3.4.6 as a simplified version
of the revision function RevP̄. Using the filtering function, we can decide whether an
arbitrary formula ϕ follows from the circumscription by first computing a transversal
of the minimal models and then filtering with :ϕ. If no equivalence class remains
after the filtering, there is by definition no minimal model, in which :ϕ holds. Thus,
ϕ follows from the circumscription by theorem 3.2.

26 CHAPTER 3. THE DRUM-II FRAMEWORK

Theorem 3.8 Let fP̄ be a filtering function for a class C of theories. Let T 2 C be a

theory, M a transversal of MODP̄(T)=�P̄ and ϕ a formula such that T [fϕg 2 C .

ϕ follows from the circumscription of T in P̄ while varying all other predicates, iff

fP̄(T ;M ;:ϕ) = /0.

Proof:

”)” If ϕ follows from the circumscription, by theorem 3.2 ϕ holds in all <P̄–minimal
models. We show that ΠP̄(T ;M ;:ϕ) = /0, which entails fP̄(T ;M ;:ϕ) = /0.

Each M 2M is a<P̄–minimal model. Thus, every N 2 [M] is also a <P̄–minimal

model. Since ϕ holds in all <P̄–minimal models, we conclude

8M 2M : 8N 2 [M] : N j= ϕ
) 8M 2M : 6 9N 2 [M] : N j= :ϕ
) f[M]jM 2M ^9N 2 [M] : N j= :ϕg= /0
, ΠP̄(T ;M ;:ϕ) = /0

”(” fP̄(T ;M ;:ϕ) = /0 is given. Since fP̄(T ;M ;:ϕ) is a transversal of
ΠP̄(T ;M ;:ϕ) by definition 3.7, we conclude that

ΠP̄(T ;M ;:ϕ) = /0
) f[M]jM 2M ^9N 2 [M] : M j= :ϕg= /0g
) 8M 2M : 8N 2 [M] : N 6j= :ϕ

If we define Models := fM0j9M 2M : M0 2 [M]g, we can write this as

8M 2Models : M 6j= :ϕ

From the fact that M is a transversal of MODP̄(T)=�P̄, we can conclude that

Models contains all <P̄–minimal models, and thus MODP̄(T) = Models. Thus
we have

8M 2MODP̄(T) : M 6j= :ϕ

We can now apply theorem 3.2 and conclude that ϕ follows from the circum-
scription. Q.E.D.

Some methods for reasoning about action and change [San94, Kar94] first mini-
mize a certain predicate in a part of the theory (usually the domain axioms) and then
filter the resulting models using another part of the theory (usually the observations).
This can be formalized in our approach by applying the filtering operation twice. The
first filtering uses the observations to prune the inappropriate models from the set of
minimal models. To prove a query ϕ, a second filtering step with :ϕ is used. See
sections 3.5.1 and 3.5.2 for examples.

3.3. VARIANTS OF CIRCUMSCRIPTION 27

3.3 Variants of Circumscription

3.3.1 Keeping the extensions of certain predicates fixed

Up to now we have assumed that all predicates (except the minimized ones) vary dur-
ing the minimization. Fixed predicates can be replaced by varying predicates using de
Kleer’s method [dK90a]: Instead of holding predicate Q fixed during the minimization
of P, we define Q0(~x)� :Q(~x), and then minimize P;Q and Q0 in parallel.

3.3.2 Prioritized Circumscription

Prioritized Circumscription can be directly handled in our approach by multiple re-
visions. The semantical characterization of prioritized circumscription builds on the
relation �P̄1>:::>P̄n (compare [Lif86]).

Definition 3.9 Let M1;M2 be models and P̄1; : : : ; P̄n tuples of predicate constants.

M1 �
P̄1>:::>P̄n M2, iff

1. M1 and M2 have the same domain and agree in the interpretation of the constant

symbols.

2. There is a k 2 f0; : : : ;ng, such that

(a) M1 �
P̄i M2 for i 2 f1; : : : ;kg and

(b) M1 <
P̄k M2

We write M <P̄1>:::>P̄n N, iff M �P̄1>:::>P̄n N and not N �P̄1>:::>P̄n M.

A model M is called a �P̄1>:::>P̄n–minimal model of the theory T , iff there is
no model N of T , such that N <P̄1>:::>P̄n M. We will denote the set of <P̄1>:::>P̄n–
minimal models of T by MODP̄1>:::>P̄n(T). Lifschitz has shown in [Lif86] that

MODP̄1>:::>P̄n(T) is exactly the set of models of the corresponding prioritized cir-
cumscription of T

Theorem 3.10 Let T be a theory and P̄1; : : : ; P̄n set of predicate constants.

MODP̄1>:::>P̄n(T) is the set of models of the prioritized circumscription of T in

P̄1 > :: : > P̄n, while varying all other predicates.

From the definition of the logical entailment operator we can conclude, that a for-
mula ϕ follows from the prioritized circumscription of T in P̄1 > :: : > P̄n, iff ϕ holds
in all models in MODP̄1>:::>P̄n(T). As in the case of the parallel circumscription we
do not want to store all these models. Therefore, we compute only one model for any
combination of minimal extensions of the predicates in P̄1; : : : ; P̄n.

28 CHAPTER 3. THE DRUM-II FRAMEWORK

Definition 3.11 Let fP̄1; : : : ; P̄kg be a set of tuples of predicate constants. For models

M;N we define M �fP̄1;:::;P̄kg N, iff M �P̄i N for all i 2 f1; : : : ;kg.

To answer queries concerning the prioritized circumscription we compute a
transversal of the <P̄1>:::>P̄n–minimal models with respect to the equivalence relation
�P̄1;:::;P̄n. Fortunately, we can compute this transversal by iterating a revision operator.

Definition 3.12 fP̄1>:::>P̄n
.

Let P̄1; : : : ; P̄n be tuples of predicate constants, where P̄i = (Pi1; : : :Pimi
). Let T be a

theory and U a new information (also a theory). Let T 0 := T [U. Let M0 be a

transversal of MODP̄1(T) and

M1 := fP̄1
(T ;M0;U) (3.1)

For i 2 f1; : : : ;n�1g we define

T 0i+1
Base := “All formulas in T 0 not containing predicates from P̄i+1” (3.2)

The new information T 0i+1
New (M) contains all formulas in T 0, in which predicates

from P̄i+1 occur; furthermore it contains the extensions of the already minimized tuples

of predicates (P̄1; : : : ; P̄i).

T 0i+1
New (M) := T 0nT 0i+1

Base [
[

1� j�i

[

1�k�mi

fPjk(~x)j~x 2 MjPjkjg

[f:Pjk(~x)j~x 62 MjPjk jg (3.3)

For a tuple of predicate constants P̄ = (P1; : : : ;Pm) we define Del(M; P̄) as the

model which agrees with M on all predicates except those in P̄ and interprets all pred-

icate constants in P̄ as the empty predicate.

Del(M; P̄) := Mn(
[

1�k�m

fPk(~x)j~x 2 MjPkjg) (3.4)

We now define fP̄1>:::>P̄n
by a sequence of revisions:

Mi+1 :=
[

M2Mi

fP̄i+1
(T 0i+1

Base ;fDel(M; P̄i+1)g;T
0i+1

New (M)) (3.5)

fP̄1>:::>P̄n
(T ;M0;U) := Mn (3.6)

We will now show that fP̄1>:::>P̄n
returns a transversal of the �P̄1>:::>P̄n–minimal

models. First, note that the preconditions for applying the revision operator are satis-
fied in the above definition.

3.3. VARIANTS OF CIRCUMSCRIPTION 29

Lemma 3.13 In definition 3.12 the preconditions for applying the revision operator

(defined in equation 3.5) are satisfied, i.e. if M 2Mi then Del(M; P̄i+1) is a transversal

of MODP̄i+1(T 0i+1
Base)=�

P̄i+1 .

Proof: By induction on the number n of subsequent revisions we show that

1. For n � 1: fP̄n
is applied to a theory T and a set M of models (and a new

information ϕ), such that M is a transversal of MODP̄n(T) and

2. every model M 2 Mn is a model of T 0.

n = 1: In the equation 3.1 the preconditions for applying the revision function fP̄1
are

satisfied because we assume that M0 is a transversal of MODP̄1(T). Thus, each
M 2M1 is a model of T 0.

n! n+1: We show that fDel(M; P̄n+1)g is a transversal of MODP̄n+1(T 0i+1
Base)=�

P̄n+1

for every M 2 Mn. By induction assumption, each M 2 Mn is a model of T 0.
M is also a model of T 0n+1

Base because T 0n+1
Base � T 0 and T 0 is consistent. Since

T 0n+1
Base does not contain predicates from P̄n+1, Del(M; P̄n+1) is also a model of

T 0n+1
Base . Furthermore it is a representative of the only�P̄n+1–minimal model class

(namely the one which interprets all predicates in P̄n+1 as the empty predicate).
In summary, fDel(M; P̄n+1)g is a transversal of MODP̄n+1(T 0i+1

Base)=�
P̄n+1 .

Next, we show that Mn+1 contains only models of T 0: Following the definition
of a revision function (3.5) each M 2 Mn+1 is a model of the theory together
with the new information. For n > 1 this means that Mn+1 contains only models
of T 0n+1

Base [T 0n+1
New (M0) for M0 2 Mn. We have

T 0n+1
Base [T 0n+1

New (M0) = T 0[
S

1� j�n

S
1�k�m j

fPjk(~x)j~x 2M0jPjk jg

[f:Pjk(~x)j~x 62 M0jPjk jg
(3.7)

The righthand side of this equation is satisfied by M0, because M0 is a model
of T 0 (this follows from the induction assumption, because M0 2 Mn) and M0

satisfies the conjunction of literals, which encodes only the extensions of certain
predicates in M0. Thus, Mn+1 contains only models of consistent supersets of
T 0, which are in particular models of T 0.

Q.E.D.
Now we can prove the correctness of fP̄1>:::>P̄n

.

Theorem 3.14 Let T ;U be theories, P̄1; : : : ; P̄n tuples of predicate constants, and

M0 a transversal of MODP̄1(T). Then, fP̄1>:::>P̄n
(T ;M0;U) is a transversal of

MODP̄1>:::>P̄n(T [U)=�P̄1;:::;P̄n

30 CHAPTER 3. THE DRUM-II FRAMEWORK

Proof: We show by induction on the number i of predicate tuples: fP̄1>:::>P̄i
(T ;M0;U)

is a transversal of MODP̄1>:::>P̄i(T [U)=�P̄1;:::;P̄i.

i = 1: Since M0 is a transversal of MODP̄1(T) and fP̄1
is a revision function, definition

3.5 tells us that fP̄1
(T ;M0;U) is a transversal of MODP̄1(T [U).

i! i+1: a) Let us first show that fP̄1;:::;P̄i+1
(T ;M0;U) contains a representative

for every �P̄1;:::;P̄i+1–minimal model Mmin of T [U. Note, that Mmin is also
�P̄1;:::;P̄i–minimal (see definition 3.9). By induction assumption, there is a rep-
resentative of Mmin’s �fP̄1;:::;P̄ig–equivalence class in Mi, i.e. there is a model
M�

min, such that Mmin �
fP̄1;:::;P̄ig M�

min.

Now we consider

M := fP̄i+1
(T 0i+1

Base ;fDel(M�
min; P̄i+1)g;T

0i+1
New (M�

min)): (3.8)

Obviously, M � Mi+1, because M�
min 2Mi (see the definition of Mi+1 in equa-

tion 3.5). Because of lemma 3.13 we know that the conditions for applying
fP̄i+1

are satisfied in equation 3.8 and thus by definition 3.9 we conclude that M

is a transversal of MODP̄i+1(T 0i+1
New (M�

min)[T 0i+1
Base). The axioms in T 0i+1

New make
sure that every model in M agrees with M�

min in the extensions of the predicates
from P̄1; : : : ; P̄n. Furthermore, all models in M are models of T [U = T 0 �
T 0i+1

New (M�
min)[T 0i+1

Base . In summary, M is a transversal of the P̄i+1–minimal
models out of all models which agree with M�

min on P̄1; : : : ; P̄i and are models

of T . Since Mmin is a �P̄1>:::>P̄i–minimal model of T , it is represented in this
transversal, thus there is an M 2M , such that M �fP̄1;:::;P̄i+1g Mmin. This shows
that every �P̄1;:::;P̄i+1–minimal model is represented in fP̄1>:::>P̄i+1

(T ;M0;U).

b) Now we will show that fP̄1;:::;P̄i+1
(T ;M0;U) contains only�P̄1;:::;P̄i+1–minimal

models of T [U. Our previous considerations under a) have shown that the
models in equation 3.8 are �P̄i+1–minimal within the models of T [U, which
agree with M�

min 2 Mi in the extensions of the predicates from P̄1; : : : ; P̄i. Thus,

they are�P̄1;:::;P̄i+1–minimal. Since all models in fP̄1>:::>P̄i+1
(T ;M0;U) are com-

puted as in equation 3.8, we conclude that fP̄1>:::>P̄i+1
(T ;M0;U) contains only

�P̄1;:::;P̄i+1–minimal models of T [U.

Together, a) and b) show that fP̄1>:::>P̄i+1
(T ;M0;U) is a set of �P̄1;:::;P̄i+1–

minimal models of T [U, which contains a representative of every class of
�P̄1;:::;P̄i+1–models of T [U. Thus, fP̄1>:::>P̄i+1

(T ;M0;U) is a transversal of

MODP̄1>:::>P̄n(T [U)=�P̄1;:::;P̄n. Q.E.D.

As in the case of the parallel circumscription, we use the filtering operator for
deciding queries concerning the prioritized circumscription. The extensions of all pre-
viously minimized predicates are considered part of the theory. We use the following
notation:

3.4. ALGORITHMS FOR REVISION AND FILTERING 31

Definition 3.15 ffP̄1;:::;P̄ng

Let fP̄ be a filtering function. Let P̄1 = (P11; : : : ;P1m1), : : :, P̄n = (Pn1; : : : ;Pnmn) be

tuples of predicate constants. Let

Q̄ := (P11; : : : ;P1m1; : : : ;Pn1; : : :Pnmn)

Let T be a theory, M as set of models and ϕ a formula. We define

ffP̄1;:::;P̄ng(T ;M ;ϕ) := fQ̄(T ;M ;ϕ)

We can decide, if a formula ϕ follows from the prioritized circumscription by fil-
tering a transversal of the corresponding minimal models with :ϕ.

Theorem 3.16 Let P̄1; : : : ; P̄n be tuples of predicate constants. Let fP̄ be a filter-

ing function for a class C of theories. Let T 2 C be a theory, M a transversal of

MODP̄1>:::>P̄n(T)=�fP̄1;:::;P̄ng, and ϕ a formula, such that T [fϕg 2 C .

ϕ follows from the circumscription of T in P̄1 > :: : > P̄n, iff

ffP̄1;:::;P̄ng(T ;M ;:ϕ) = /0.

Proof Sketch: The proof proceeds in analogy to the proof of theorem 3.8.
ffP̄1;:::;P̄ng(T ;M ;ϕ) = /0 means that :ϕ holds in no �P̄1>:::>P̄n–minimal model. Thus,

ϕ holds in all�P̄1>:::>P̄n–minimal models and thus ϕ follows from the circumscription.
Q.E.D.

3.4 Algorithms for Revision and Filtering

In the previous section we have reduced fixed predicates and prioritized circumscrip-
tion to the base case of parallel circumscription of a theory in a tuple P̄ of predicate
constants while varying all predicates not in P̄. We will now describe algorithms for
the basic revision and filtering functions implementing this case of circumscription.
These algorithms will work on a subset of first order logic, the fixed–domain theo-
ries. The material in this section was inspired by the work of Chou and Winslett on
implementing model–based belief revision [CW94].

3.4.1 The Language

Two limitations are inherent in the model–based paradigm. (1) We can not handle infi-
nite models. (2) We cannot handle infinitely many models. Both problems are avoided,
if we limit ourselves to languages without function symbols and theories which include
the unique name assumption and the domain closure assumption. Such theories are
called Fixed–Domain Theories. In fixed–domain theories all models are isomorphic
to Herbrand models [Luk90], thus it is sufficient to consider only the minimal Her-
brand models in theorem 3.2, when using fixed–domain theories. Our algorithms can

32 CHAPTER 3. THE DRUM-II FRAMEWORK

be used to handle two extensions of fixed–domain theories: functions symbols with
Herbrand interpretation and infinite sorts. When using infinite sorts, we have to make
sure that existential quantifiers only range over finite intervals, otherwise limitation (2)
would be violated. The extensions are useful for reasoning with situation calculus and
formalizing infinite integer time.

Every fixed domain theory can be represented in Clause Form.

Definition 3.17 Clause Form. A Clause is a disjunction of literals C = L1 _ : : :_Ln.

Every variable in C is implicitly quantified.

A theory S is in Clause Form, iff it is represented by a set of clauses S =
fC1; : : : ;Cmg.

However, the usual transformation of a first order formula into clause form [Luk90]
is not useful, because it introduces function symbols (skolem functions) into the theory
during the elimination of existential quantifiers. Instead of using this transformation,
we first transform each formula into Prenex Conjunctive Normal Form [Luk90]. Then,
we eliminate the existential quantifiers through instantiation.

Definition 3.18 Prenex Conjunctive Normal Form [Luk90]. A formula F is in Prenex
Conjunctive Normal Form, iff

F = Q1x1 : : :Qnxn

m̂

i=1

ki_

j=1

Li j

!
, where

Qi 2 f9;8g for all i 2 f1; : : : ;ng, x1; : : : ;xn are distinct variables occurring in
mV

i=1

kiW
j=1

Li j, and Li j are literals for i 2 f1; : : : ;mg and j 2 f1; : : : ;kig.

Algorithm 3.19 Conversion of a Fixed Domain Theory into Clause Form. Let T =
fF1; : : : ;Fng be a fixed domain theory. Let fc1; : : : ;ctg be the set of all constants oc-

curring in T . For every formula F 2 T do the following:

1. Transform F into prenex conjunctive normal form. Call the resulting formula

F1.

2. Instantiate every existential quantifier in F1 by replacing 9xϕ withW
c2fc1;:::;ctgϕ[x=c]. Call the resulting formula F2.

3. Distribute the universal quantifiers in F2 over the conjunctions and denote the

result by a set of clauses.

From now on, we assume that all fixed domain theories used as input to our algo-
rithms are given in clause form.

3.4. ALGORITHMS FOR REVISION AND FILTERING 33

3.4.2 Repairing Inconsistent Models

Consider a given model M0 of a theory S . We want to augment S by the new infor-
mation (set of clauses) U giving an extended theory S 0 = S [U. Consider the theory
S = fa ! c_ d;d ! :eg, in clause form ff:a;c;dg;f:d;:egg together with the
model M0 = feg and the new information U = ffagg.

?

�
�

�
�+

Q
Q
Q
Qs

?

a

M1 = fa;eg

M0 = feg

a! c_d is violated

M2 = fa;c;eg o.k. M3 = fa;d;eg d !:e is violated

c d

:e

M4 = fa;dg o.k.

Since M0 does not contain the new unit clause a, we insert a into the model, giving
a new model M1. M1 contradicts the axiom a ! c_ d. We can change it in two
ways in order to make it satisfy the axiom again: Either we assume c or d, because
these are the other literals in the corresponding clause, which can make it true again.
While assuming c creates a consistent model (M2) of S 0, assuming d violates the axiom
d !:e. Thus, we have to delete e in order to obtain the consistent model M4.

To formalize the iterative model repair algorithm motivated in the above example,
we need the concept of Committed Literals. The positive and negative ground literals,
which have been inverted in model Mi compared to the initial model M0 are called
committed literals Comm(Mi).

Definition 3.20

Comm(Mi) := fljl is a ground literal and Mi j= l and M0 6j= lg

In our example Comm(M3) = fa;dg. To avoid cycles in the model repair algo-
rithm, a committed literal is not considered for inversion again. We consider a literal
for inversion, if it occurs in a violated clause and neither the literal itself nor its negative
counterpart are committed. Such a literal is called a Flipping.

Definition 3.21 Let Mi be a model and l a ground literal. l is called a Flipping, iff

1. There exists a clause C in S and a substitution σ such that l 2Cσ and Mi 6j=Cσ
and

2. :l 62 Comm(Mi).

Obviously, if there is no flipping for a model Mi, it cannot be repaired without
changing already committed literals, and thus the current branch in the search tree of
the repair algorithm contains no model of S 0. We can specify a stronger criterion for
detecting that Mi can no longer be repaired.

34 CHAPTER 3. THE DRUM-II FRAMEWORK

Lemma 3.22 If there exist a clause C 2 S 0 and a substitution σ, such that Mi 6j= Cσ
and no literal l 2Cσ is a flipping then there is no model M of S 0, such that Comm(M)�
Comm(Mi).

Proof: If Mi 6j=Cσ, and no literal l 2Cσ is a flipping, then for each literal l 2Cσ, :l

must be in Comm(Mi). Now, consider a model M, such that Comm(M)�Comm(Mi).
Then, trivially, for each literal l 2Cσ, :l is also in Comm(M). Thus, M 6j=Cσ (because
the negations of all literals in Cσ are true in M) and consequently M 6j= S 0, because C

is in S 0. Q.E.D.
In each repair step, our algorithm considers all possible flippings. A branch in the

algorithm’s search tree is terminated if either a consistent model is found, or the branch
provably contains no solution.

Definition 3.23 Let S be a theory and M an interpretation.

1. If M j= S : Step(S ;M) := /0.

2. If M 6j= S :

(a) If there exists a clause C 2 S and a substitution σ such that M 6j= Cσ and

no literal within Cσ is a flipping: Step(S ;M) := f /0g.

(b) Otherwise,

Step(S ;M) := fM0jM0 is obtained from M by inverting the

truth value of a flipping lg

Case 2(a) corresponds to an inconsistency, which can no longer be repaired, be-
cause all literals in the violated clause are already committed.

3.4.3 Revision Algorithm

Now we are ready to present an algorithm RevP̄, which is a revision function for fixed–
domain theories. This algorithm applies a sequence of repair steps to every model
M 2 M and discards the non-minimal models. By executing the repair steps in a best–
first order it limits the generation of non–minimal models.

To repair a model M the algorithm RevP̄ iteratively applies the Step–function. It
maintains a set WM of inconsistent models and a set Solutions of consistent models.
Initially WM = fMg and Solutions = /0. The algorithm now selects a <P̄–minimal
inconsistent model M̂ from WM, i.e. M̂ has the property that there is no M0 2 WM[
Solutions so that M0 <P̄ M̂. Then, M̂ is deleted from WM and Step(S ;M̂) is computed.

If Step(S ;M̂) = /0 then M̂ is consistent, i.e. M̂ j= S . The model M̂ is inserted
into the solutions set and can be used to delete non–minimal models from WM: All
models, in which the extensions of the predicates in P̄ are equivalent to or larger than
in M̂ can be deleted, because we want to obtain only one solution out of each minimal

3.4. ALGORITHMS FOR REVISION AND FILTERING 35

�P̄-class. If N := Step(S ;M̂) 6= /0, then the models from N are inserted into WM.
If Step(S ;M̂) = f /0g, no further repair step can be applied to the inconsistent model
M̂ and it is discarded. The revision of M is finished, if WM = /0. This algorithm
(RepairModel) has to be applied to every model in the set of initial models M . Finally,
another <P̄–minimality check is performed on the result models from the individual
revisions.

Algorithm 3.24 RevP̄(S ;M;U)

FUNCTION RevP̄(S ;M ;U)
Solutions := /0;
S 0 := S [U;
FOR EACH M 2 M DO

Solutions := Solutions[RepairModel(S 0;M);
FOR EACH S 2 Solutions DO

IF 9S0 2 SolutionsnS : S0 <P̄ S THEN
Solutions := SolutionsnS;

RETURN Solutions;

FUNCTION RepairModel(S ;M)
WM := fMg; Solutions := /0;
WHILE WM 6= /0 DO

Select a <P̄–minimal model M̂ from WM;
WM := WMnfM̂g;
N := Step(S ;M̂);
IF N = /0 THEN

IF 6 9M 2 Solutions : M <P̄ M̂ THEN
Solutions := Solutions[M̂;

(*) WM := WMnfM 2 WM : M̂ <P̄ M_ M̂ �P̄ Mg;
ELSE IF N 6= f /0g THEN WM := WM[N ;
ELSE Discard M̂

RETURN Solutions;

3.4.4 Properties of the Algorithm

In this section we will develop soundness and completeness results for the revision
function RevP̄. Our goal is to show that RevP̄ is a revision function for fixed domain
theories. We first have to prove the following properties:

Termination: The algorithm always terminates for fixed–domain theories.

Correctness: All models returned by the algorithm are minimal models of the theory
together with the new literal.

36 CHAPTER 3. THE DRUM-II FRAMEWORK

Completeness: The algorithm outputs one model from each �P̄–equivalence class.

For fixed–domain theories we can show termination of algorithm 3.24 by proving
that Step can only derive a finite number of successor models from a given model M.

Proposition 3.25 Algorithm 3.24 terminates for fixed domain theories.

Proof: Since the given transversal M contains only finitely many models,
RepairModel is only called finitely often and it is sufficient to show that RepairModel

terminates for every fixed domain theory. RepairModel uses the set WM, which ini-
tially only contains one model M. Every model occurring in WM is obtained by itera-
tive application of Step, starting with M. We show that only finitely many models can
be generated in this fashion. We define a graph G = hV;Ei as follows:

V : is the set of all models derivable by iterative application of Step to M.

E: (Mi;M j) 2 E, iff M j 2 Step(S ;Mi).

First we show that this graph is really a tree as depicted in the following figure:

M11 M12 : : :M1n1

M1

�
�

��

�
�
��

@
@
@@

M
�������

�
�
��

HHHHHHH
M2 : : : Mn

A tree is a connected graph without cycles. Obviously, G is connected, be-
cause we explicitly consider only those models as nodes, which can be derived us-
ing Step. We prove by contradiction that there is no cycle in G: Consider a cycle
Mi;Mi+1; : : : ;Mi+r;Mi in G. We know that Step always adds new committed literals.
Thus, Comm(M j)�Comm(M j+1) for every model in the cycle. Transitivity of � tells
us that Mi �Mi+r. Since we assumed a cycle we also conclude Mi+r �Mi, which is a
contradiction.

Leaves of the tree G are consistent nodes (Step(Mx) = /0) or nodes which can-
not be repaired because all literals, which could be changed are already committed
(Step(Mx) = f /0g). We show that this tree is finite by proving that every branch is finite
and every node has finite arity.

1. Every application of Step commits the truth value of some literals, conse-
quently the set of of committed literals grows monotonically (N 2 Step(S ;M))
Comm(N)�Comm(M)). Since the number of ground literals is finite in a fixed–
domain theory, every branch must finally lead to a consistent node, or a node
which cannot be repaired. Thus, every branch is finite.

3.4. ALGORITHMS FOR REVISION AND FILTERING 37

2. The number of ground literals (and thus flippings) is finite in a fixed domain
theory. Thus, every node has finite arity.

The number of models generated by Step is finite. The models at the end of each
finite branch are either stored as solutions or discarded. So, the termination condition
of the WHILE–loop becomes true after finite time and RepairModel terminates. Q.E.D.

Our next result shows that all models generated by the algorithm are minimal mod-
els of S . This result follows easily from the definitions.

Proposition 3.26 Let S ;U be fixed–domain theories and M a transversal of

MODP̄(S)=�P̄. Then RevP̄(S ;M ;U)� MODP̄(S [U).

Proof: Every model M returned by RepairModel is a model of S [U, as for each
such model Step(S [U;M) = /0. The non–minimal models possibly generated by
RepairModel are discarded in the loop at the end of RevP̄(S ;M ;U). Q.E.D.

To simplify the following completeness proof, let us first show that the pruning
step (marked by (*) in algorithm 3.24) never entirely deletes a minimal equivalence
class.

Lemma 3.27 The pruning steps are correct, i.e. no �P̄–equivalence class of a <P̄–

minimal model of S [U is deleted entirely.

Proof: If M is pruned, then there exists M0 2 WM, such that either (1) M0 <P̄ M or
(2) M0 �P̄ M. In case (1), M is not a minimal model of S [U, in case (2) we have
[M] = [M0], thus M0 is still representing the equivalence class of M, and M can be
deleted. Q.E.D.

Having shown the correctness of the pruning steps, we will not consider them in the
following completeness proof. For the completeness of the algorithm it is crucial that
the repair steps are exhaustive in the sense that the branches generated by Step account
for any every consistent model of S [U. This is formalized in the next lemma.

Lemma 3.28 (Case Splitting Property) Let M be a model of S and M0 an interpreta-

tion which is no model of S . If M j= Comm(M0) then there exists an N 2 Step(S ;M0),
such that M j= Comm(N).

Proof: We assumed M0 6j= S : Thus, there is a clause C 2 S and a substitution σ,
such that Cσ is ground and M0 6j= Cσ (otherwise M0 would be a model). Since M is a
model of S it has to differ from M0 in at least one ground literal occuring in Cσ. This
literal l is not committed in M0 since M and M0 agree on all committed literals of M0,
consequently l is a flipping and the model created by flipping l in M0 is in Step(S ;M0).
Q.E.D.

Using the case splitting property, we can now show the completeness of our algo-
rithm for fixed–domain theories.

38 CHAPTER 3. THE DRUM-II FRAMEWORK

Proposition 3.29 Let S ;U be fixed–domain theories and M a transversal of

MODP̄(S)=�P̄. Then for every M 2 MODP̄(S) there exists N 2 RevP̄(S ;M ;U), such

that M �P̄ N.

Proof: Since M is a <P̄–minimal model of S [U, there exists a <P̄–minimal model
N of S , such that N �P̄ M (Note, that M is in particular a model of S . Either there
is a model with a smaller extension of the predicates in P̄ than M or M itself is a
minimal model of S). Since M is a transversal of MODP̄(S)=�P̄ there is a model N0

in M , such that N0 �P̄ N. Consider the revision tree of such an N0. In the beginning
Comm(N0) = /0 thus M j= Comm(N0). Because of the case splitting property there is a
path N(0) := N0;N(1);N(2); : : : such that

1. N(i+1) 2 Step(S ;N(i)).

2. 8i : M j= Comm(N(i)).

On this path the set of committed literals grows. In every step some literals from M

are added. So we know that there is a consistent model on this path (because M is
consistent and will finally occur on the path). We also know that there is no consistent
model of S [fϕg with smaller extensions of the predicates in P̄ than M. We can

conclude that there finally is a consistent a model N(r) on the path with N(r) �P̄ M.
Q.E.D.

Propositions 3.26 and 3.29 together with the observation that at most one represen-
tative is computed for every equivalence class show that RevP̄ computes a transversal
of the minimal models and consequently is a revision function for fixed domain theo-
ries.

Theorem 3.30 RevP̄ is a revision function for fixed–domain theories.

Algorithm 3.24 also computes minimal Herbrand models in the presence of func-
tions symbols and infinite sorts. When we convert it from a best first to a breadth
first algorithm by changing the management of the node list WM we can show that it
always finds a set of finite minimal Herbrand models, if it exists. There are two direc-
tions for further research: (1) extending the implementation by function symbols with
more general interpretation using the ideas from [CW94], (2) to further investigate the
connection between Herbrand models of theories with infinite sorts to circumscription.
The correspondence is less obvious then in the case of fixed–domain theories, because
DCA and UNA are not expressible as first order sentences in such theories.

3.4.5 An Iterative Deepening Algorithm

The function RepairModel in algorithm 3.24 implements a best first search for mini-
mal models. Although this is a very natural solution, it has some efficiency drawbacks.

3.4. ALGORITHMS FOR REVISION AND FILTERING 39

� Models have to be compared using a time–consuming subset–check on the ex-
tensions of the predicates in P̄ to find a <P̄–minimal model.

� The list of models has bad locality. Models have to be selected/inserted at any
place in the list,

Both disadvantages are avoided without affecting the semantics by using the fol-
lowing iterative deepening algorithm. With each model M we associate a value c(M)
which is the number of atoms for the predicates in P̄ contained in M:

Definition 3.31 c(M)
Let P̄ = (P1; : : : ;Pn) be a tuple of predicate constants.

c(M) = ∑
1�i�n

jMjPijj;

where jMjPijj denotes the number of elements in the extension of Pi in M.

For this algorithm the model set is organized as a stack with the usual operations
Push and Pop. A stack has a better locality than the list of models used in the best–first
algorithm, because all operations only affect its first element. When using a stack,
we can implement the push and pop operations without really copying the models.
However, since its top element is just some arbitrary model, we must implement other
mechanisms to avoid the generation of non–minimal models. The iterative deepening
algorithm first defines an initial upper bound Cutoff = 0 on c(M). If a partially repaired
model M has c(M)> Cutoff it is deleted, but a flag is set to indicate the deletion. The
algorithm computes all consistent models with c(M) = 1 and then sets Cutoff to the
smallest c(M) of a model M which was deleted. The algorithm proceeds until no model
is deleted because of the cutoff–value. Algorithm 3.32 summarizes the procedure. For
some applications (like diagnosis) it is useful to restrict c(M) by some absolute bound
(see chapter 2) and discard all models M completely which have a greater c(M).

Algorithm 3.32 ID Repair Model

FUNCTION ID Repair Model(S, M)
Solutions := /0;
Cutoff := 0;
Next Cutoff := 0;
WHILE Next Cutoff > Cutoff DO

Models := /0;
Models:Push(M);
Cutoff := Next Cutoff;
WHILE Models 6= /0 DO

Models:Pop(M̂);
N := Step(S ;M̂);

40 CHAPTER 3. THE DRUM-II FRAMEWORK

IF N = /0 THEN
IF 6 9M 2 Solutions : M �P̄ M̂ THEN

Solutions := Solutions[fM̂g;
END IF;

ELSE IF N 6= f /0g THEN
FOR ALL M 2 N DO

IF c(M)> Cutoff then
Discard M;
Set Next Cutoff to the smallest

value c(M) in a discarded model so far;
ELSE Models:Push(M);
END IF;

END FOR;
END IF;

END WHILE;
END WHILE;
RETURN Solutions;

3.4.6 Filtering Algorithm

For the filtering we use the same Step–repair function as for the revision. Instead of
minimizing the extensions of the predicates in P̄, we now hold the previously mini-
mized extensions of the predicates in P̄ fixed, by encoding them as part of the theory.

The filtering algorithm tries to find one model for every equivalence class in M .
Equivalence classes are filtered out, when no consistent model is found. In the al-
gorithm this corresponds to the last ELSE–statement, which denotes that a model is
discarded if it is inconsistent and there are no further repair steps applicable, because
in at least one inconsistency all literals are committed.

Algorithm 3.33 FilterP̄(S ;M;ϕ)

FUNCTION FilterP̄(S ;M ;ϕ)
Solutions := /0;
FOR EACH M 2 M DO

S 0 := S [fϕg[
S

1�i�n

S

~x:Mj=Pi(~x)
Pi(~x)[

S

~x:M 6j=Pi(~x)
:Pi(~x)

!
;

Solutions := Solutions[RepairModel0(S 0;M);
RETURN Solutions;

FUNCTION RepairModel0(S 0;M)
WM := fMg; S := /0;
WHILE WM 6= /0 DO

Select a model M̂ from WM;

3.4. ALGORITHMS FOR REVISION AND FILTERING 41

WM := WMnfM̂g;
N := Step(S 0[fLg;M̂);
IF N = /0 THEN S := fM̂g; WM := /0;
ELSE IF N 6= f /0g THEN WM := WM[N ;
ELSE Discard M̂;

RETURN S;

As for the revision algorithm we have to show termination, correctness and com-
pleteness. We can reuse some of the proofs for the revision algorithm in order to show
these properties.

Proposition 3.34 Algorithm 3.33 terminates for every fixed domain theory S .

Proof: From Proposition 3.25 we know that the set of models derivable from the
initial model M̂ is finite. Since the number of committed literals in these models grows
monotonically, iterative application of Step will lead to models which either contain
an inconsistency which consists only of committed literals (last ELSE–case) or to a
consistent model (first IF–case). Q.E.D.

Before we formulate the completeness result for the filtering algorithm, note that
filtering does not include a minimization, i.e. we do not want to compute the minimal
models of S [fϕg but rather check, if a minimal model of S exists, which is a model
of ϕ.

Proposition 3.35 Let S be a fixed–domain theory, ϕ a formula such that S [fϕg is a

fixed-domain theory, and M a transversal of MODP̄(S)=�P̄. Then FilterP̄(S ;M ;ϕ)�

MODP̄(S).

Proof: Every model M returned by RepairModel0 satisfies Step(S[fϕg;M)= /0. Thus,
it is a model of S [fϕg and in particular a model of S . M is minimal, because it has
the same extension of the predicates in P̄ as the minimal model, from which it was
derived. Q.E.D.

Proposition 3.36 Let S be a fixed–domain theory, ϕ a formula such that S [fϕg is

a fixed-domain theory, and M a transversal of MODP̄(S)=�P̄. Then for every M 2

MODP̄(S), such that M j= ϕ, there exists N 2 FilterP̄(S ;M ;ϕ), such that M �P̄ N.

Proof: Since M is a <P̄–minimal model of S , there exists a model N 2 M such that
N �P̄ M. Consider the revision tree of such an N0. Analogous to the proof of propo-
sition 3.29 we can use the case splitting property to show that there is a path leading
finally to M on which we encounter M or another consistent model appearing earlier on
the path. Since we fixed the extension of the predicates in P̄ during filtering, we know
that the model N(r) we find will be in the same �P̄–equivalence class as M. Q.E.D.

Let us summarize: From proposition 3.35 we know that all models returned by
FilterP̄ are minimal models of S , which make ϕ true. Moreover, proposition 3.36 tells

us that FilterP̄ find a model for each �P̄–equivalence class. Thus, FilterP̄ computes a
transversal of the remaining equivalence classes and we conclude:

42 CHAPTER 3. THE DRUM-II FRAMEWORK

Theorem 3.37 FilterP̄ is a filtering function for fixed–domain theories.

In section 3.3 we have reduced circumscription with fixed predicates and priori-
tized circumscription to parallel circumscription with varying predicates. In this sec-
tion we have defined algorithms for parallel circumscription with varying predicates.
Together, both steps provide a powerful computation framework for many variants of
circumscription. Before we move on to the formalization of diagnostic concepts within
this framework, we study proof–of–concept applications from the non–monotonic rea-
soning domain.

3.5 Non–monotonic Reasoning Applications

To demonstrate the flexibility of DRUM–II, we apply it to some problems from the
“reasoning about action and change” domain. Reasoning about action and change is a
research area within the temporal reasoning field, where non–monotonic reasoning is
used to infer intuitively correct conclusions from logical axiom formalizing the effects
of actions. Many formalisms have been proposed in this area. We implement both
Sandewall’s and Baker’s approaches to reasoning about action and change and Kartha’s
[Kar94] extension to Baker’s approach.

Furthermore, we solve two formalizations of “Nixon’s diamond” [Gin89, WS97], a
well–known non–monotonic reasoning problem. The efficiency of our implementation
is discussed in section 3.5.5.

3.5.1 PMON–Circumscription

In this section we show how to implement Sandewall’s approach to reasoning about
action and change [San94]. We use PMON–circumscription (recently discussed by
Doherty [Doh94]). This example underlines the importance of reasoning with equiva-
lence classes and the efficient use of fixed predicates. We will use the Russian Turkey
Shoot Scenario: There are two fluents, a (alive) and l (loaded) and three actions, Load,
Spin (spinning the guns chamber) and Fire. The gun was loaded between the time
points 1 and 2, the spinning action was performed between 3 and 4 and the gun was
fired between 5 and 6.

In Sandewall’s framework the effect of actions is described by Reassignment For-

mulas, e.g. the loading action is described by [1;2]l := T which means that the fluent
l is assigned the value true during [1;2]. Reassignment formulas can include a con-
dition. The firing action is described by the formula [5]l ! [5;6](:a := T ^:l := T)
denoting that a and l are false after the shooting if the gun was loaded at time 5. Before
reasoning, the reassignment formulas are transformed into first order logic. Two pred-
icates are used: Holds(t; f), (fluent f holds at time t) and Occlude(t; f) (fluent f may
change its value at time point t as effect of an action). PMON–Circumscription first
minimizes Occlude while holding Holds fixed. Then the resulting models are filtered

3.5. NON–MONOTONIC REASONING APPLICATIONS 43

with the observations and the nochange axiom, which states that a fluent f can only
change its value at time t, if Occlude(t; f) holds1.

NCP : 8 f ; t Holds(t; f)�Holds(t+1; f)! Occlude(t +1; f)

This reasoning pattern can be directly simulated in our approach. However, fixing
the whole extension of Holds leads to a large amount of incomparable models. We
extend the transformation to first order logic by generating a literal Precond(I) for each
conditional reassignment formula. The truth value of Precond(I) is coupled with the
truth value of the condition in the reassignment formula. In our example we generate
such a literal for the Fire–action: Precond(1) � Holds(5; l). We obtain the correct
results by holding Precond fixed instead of Holds. The translation yields theory SCD:

9t(1� t < 2)^8t 0(t < t 0 � 2! Holds(t 0; l))
^8t 0(1 < t 0 � 2! Occlude(t 0; l))

9t(3� t < 4)^8t 0(t < t 0 � 4! (Holds(t 0; l)_:Holds(t 0; l)))
^8t 0(3 < t 0 � 4! Occlude(t 0; l))

Holds(5; l)! ((9t:5� t < 6^8t 0(t � t 0 < 6!:Holds(t 0;a)))
^8t 0(5 < t 0 � 6!Occlude(t 0;a))^
(9t:5� t < 6^8t 0(t � t 0 < 6!:Holds(t 0; l)))
^8t 0(5 < t 0 � 6!Occlude(t 0; l)))

Precond(1)� Holds(5; l)
Precond(1)� :Precond0(1)

We first compute Rev(Occlude;Precond;Precond0)(/0;f /0g;SCD) and obtain two result
models:

M1 : fHolds(2; l);Occlude(2; l);Occlude(4; l);Precond0(1)g
M2 : fHolds(2; l);Holds(5; l);Occlude(2; l);Occlude(4; l);

Occlude(6;a);Occlude(6; l);Precond(1)g

By treating Precond as fixed, we have obtained one model, in which the gun is
loaded at time 5 and one, in which it is not loaded. These two models are repre-
sentatives of two large equivalence classes of models, whose members differ in the
extensions of Holds. Our equivalence class approach avoids storing all these mod-
els. The next reasoning step is filtering with the observations and the nochange axiom.
We compute Filter(Occlude;Precond;Precond0)(SCD;fM1;M2g;

V

o2Obs

o^NCP). Both equiv-

alence classes survive the filtering. The remaining representatives are shown below:

M3:

M4:

a
l

a
l

0 1 2 3 4 5 6 7
-

1� denotes the exclusive disjunction

44 CHAPTER 3. THE DRUM-II FRAMEWORK

The two equivalence classes now only contain the two intended chronicle
completions. If we ask whether the turkey is dead at time 6 by executing
Filter(Occlude;Precond;Precond0)(SCD[Obs[fNCPg;fM3;M4g;:Holds(6;a)), model M4

remains. As intended, the query cannot be proved and the system remains unspecific
about the question, whether the turkey stays alive. On the other hand, if we ask whether
the gun is unloaded at time 6, the system successfully proves this query (both models
M3 and M4 are eliminated through filtering with Holds(6; l)).

3.5.2 Baker’s Formalism

Baker proposed an approach for non–monotonic reasoning in the situation calculus
[Bak91]. He extends previous approaches by introducing an existence of situations
axiom, which guarantees the existence of a situation for every consistent combination
of truth values of the fluents. Additionally Baker varies the Result–function instead
of Holds. We implement Baker’s approach using a language with three sorts: A for
actions, F for fluents and S := 2F for situations, which are characterized by the fluents
that hold. The usual Result–function of the situation calculus is replaced by a predicate
Result, for which we postulate that it is functional by

8a8s9s0(Result(a;s;s0)^8s00(Result(a;s;s00)! s0 = s00))

Consider the Yale Shooting Problem with fluents a (Alive) and l (Loaded) and the
actions W (Wait) and S (Shoot). We start reasoning in a trivial model M0 of the domain
axioms without the description of the actions, i.e. in a completely inert world, where
the actions lead to no change in the truth values of the fluents:

w, s w, s w, s

{} {a} {l} {a,l}

w, s

No abnormality has to be assumed because all fluents are allowed to per-
sist. Now we revise this model with the axiom ACT of the shoot action
(RevAb(SnfACTg;M0;fACTg)). This axiom states that the turkey is dead and the gun
is unloaded after shooting with a loaded gun.

ACT : 8s (Holds(a;s)^Holds(l;s)^Result(S;s;s0))
! (:Holds(a;s0)^:Holds(l;s0))

The following model M1 is detected to be the minimal one.

3.5. NON–MONOTONIC REASONING APPLICATIONS 45

w, s w, s

{} {a} {l} {a,l}

ww

s
s

Now we prove that the turkey is dead, when we start with a loaded gun and a living
turkey then wait and then shoot.

ϕ : Result(W;fa; lg;s1)^Result(S;s1;s2)!:Holds(a;s2)

We prove this by FilterAb(S ;fM1g;:ϕ), which returns /0.

3.5.3 Kartha’s Extension

Kartha [Kar94] recently reported that Baker’s circumscription method is problematic
in the presence of non–deterministic actions. He proposed to exclude the observations
from the minimization in order to obtain the expected results. We will use our method
to solve his two–buses example: A passenger has to buy a ticket before he can take a
bus. After buying the ticket, he waits at the bus stop and gets on the first bus which
arrives. This can be either the red or the yellow bus. The problem is described using
the fluents H (has ticket), R (on red bus) and Y (on yellow bus) and the actions B (buy
a ticket) and G (get on bus). A group C of axioms describes the dependencies among
the fluents:

C : 8s:(Holds(R;s)^Holds(Y;s))
8s(Holds(R;s)! Holds(H;s))
8s(Holds(Y;s)! Holds(H;s))

Another group E of axioms describes the effect of the actions. Buying a ticket
makes the fluent H true. Getting on the bus takes the passenger either on the red or
the yellow bus, if he has a ticket. Note, that we again replace the Result–function by a
functional predicate.

E : 8s8s0:Holds(H;s)^Result(B;s;s0)!Holds(H;s0)
8s8s0Holds(H;s)^:Holds(R;s)^:Holds(Y;s)^Result(G;s;s0)!

Holds(R;s0)_Holds(Y;s0)

Additionally we have observed that buying a ticket and getting on a bus takes
passengers on the red bus.

O : 9s08s18s2:Holds(H;s0)^Result(B;s0;s)^Result(G;s;s0)^Holds(R;s0)

46 CHAPTER 3. THE DRUM-II FRAMEWORK

Since Result is functional, we can use either existential or universal quantification
for the variables s and s0 in the above sentence. Finally we use the usual frame axiom,
adapted to our relational version of the Result–function.

F : 8 f8a8s8s0(:Ab(f ;a;s)^Result(a;s;s0)! (Holds(f ;s)� Holds(f ;s0)))

Again, we use a sort A for the actions, a sort F for the fluents and S = 2F for
the situations. However this time not all fluent combinations are consistent with the
axioms. A predicate Absit is used to denote that a fluent combination is abnormal
in the sense that it contradicts the axioms. We can express that all consistent fluent
combinations exist, by the axiom Abs.

Abs : 8s(:Absit(s)!
V
f2s

Holds(f ;s))

Now we circumscribe Absit in the part of the theory, which makes statements
about valid fluent combinations by executing RevAbsit(/0;f /0g;C[fAbsg). The resulting
model yields the following correct extension of Absit:

fAbsit(fH;R;Yg);Absit(fRg);Absit(fR;Yg);Absit(fYg)g

If we minimize Absit in a larger part of the theory (following Kartha, we must
however exclude the observations), by executing RevP(/0;f /0g;C[E [fFg[fAbsg),
our approach also returns one model with the correct extension. Here, the equivalence
classes come into play again: We obtain one model with an arbitrary extension of
Result and Ab representing a large class of models, where all models agree in the
extension of Absit.

Now that we have found the consistent fluent combinations we proceed to the main
problem, namely the computation of the correct models for the two buses problem.
As for the yale shooting we again use a model of the static world as initial model and
revise this model with the action axioms. The initial model M0 is depicted below:

{} {H}

B, G B, G B, G B, G

{H, Y}{H, R}

This model is now revised with the action axioms E by RevAb(C [fFg [
fAbsg;fM0g;E). To avoid unintended models, we must first exclude the observations
from the minimization. The system returns the following two models: One, in which
the passenger takes the red bus and one in which he takes the yellow bus.

3.5. NON–MONOTONIC REASONING APPLICATIONS 47

{} {H}

B, G

{H, Y}{H, R}

B

G

{} {H}

B, G B, G

{H, Y}{H, R}

B

G B

G

B B, G

G

Note, that the two models obtained are not �Ab–equivalent, because in one model
getting on the bus is abnormal wrt. the fluent Y and in the other this action is abnormal
wrt. the fluent R. After the minimization of Ab we now have to filter using the obser-
vation O, by executing FilterAb(C[E [fFg[fAbsg;fM1;M2g;O), which eliminates
the model where G takes the passenger on the yellow bus.

3.5.4 Nixon’s Diamond

Consider the following proof of concept example originally proposed by Reiter [RC81]
and used by Ginsberg [Gin89]: US–President Nixon was both a republican and a
quaker. Normally, republicans are hawks and quakers are no hawks. This is formalized
by

S : 8x:Republican(x)^:Ab(Political;x)! Hawk(x)
8x:Quaker(x)^:Ab(Religious;x)!:Hawk(x)

Obs : Republican(Nixon)
Quaker(Nixon)

First we compute the minimal models using RevAb(/0;f /0g;S [Obs) and receive the
two result models:

M1 : fAb(Political;Nixon);Republican(Nixon);Quaker(Nixon)g
M2 : fAb(Religious;Nixon);Hawk(Nixon);Republican(Nixon);

Quaker(Nixon)g

Now we ask the system, if Nixon was a hawk by filtering with :Hawk(Nixon).
Model M1 remains, indicating that this query cannot be proved.

Nixon’s diamond has also been used as a proof of concept problem for prioritized
circumscription in [WS97]. Instead of one Ab–predicate two different predicates are

48 CHAPTER 3. THE DRUM-II FRAMEWORK

used: Ab1(x) denotes that x is politically abnormal, Ab2(x) denotes that x is religiously
abnormal.

SP : 8x Republican(x)^:Ab1(x)!Hawk(x)
8x Quaker(x)^:Ab2(x)!:Hawk(x)

Our algorithm for circumscribing SP in Ab1 > Ab2 first minimizes Ab1 (compare
definition 3.12). The revision is RevAb1(/0;f /0g;SP[Obs). The result is the model

M : fAb2(Nixon);Hawk(Nixon);Republican(Nixon);Quaker(Nixon)g:

Following definition 3.12 we must now minimize Ab2, while holding the previ-
ously minimized extension of Ab1 fixed. Thus, we compute

RevAb2(f8x Republican(x)^:Ab1(x)! Hawk(x)g;
fMg
f:Ab1(Nixon);8x Quaker(x)^:Ab2(x)!:Hawk(x)g)

Again, the result is the same model M, as obtained from the first revision.
If we ask the system if Nixon was a hawk by executing Filter(Ab1;Ab2)(SP [
Obs;fMg;:Hawk(Nixon)), the result is /0. Thus, Hawk(Nixon) is proved. By as-
signing a higher priority to the minimization of political abnormality, we have given
preference to the first rule, so that Hawk(Nixon) can be inferred.

3.5.5 Running Times

The algorithms presented in this paper have been implemented in PROLOG. The
following table shows the runtimes for the examples described above on a SPARC–
Station 4.

Example Runtime: Revision Filtering Total
PMON-Circumscription 0.14s 0.32s 0.46s
Yale Shooting (Baker) 0.23s 0.08s 0.34s
Absit-Minimization (Kartha) 3.28s – 3.28s
Two Buses (Kartha) 0.29s 0.04s 0.33s
Nixon’s Diamond 0.03s 0.01s 0.04s
Nixon’s Diamond (Ab1, Ab2) 0.05s 0.02s 0.07s

In most examples the filtering step is executed much faster than the revision, be-
cause usually only few facts can be altered in the models without affecting the ex-
tension of the minimized predicate (which is not changed during filtering, see section
3.4.6). The PMON–example is an exception, because the equivalence classes of the
minimal models are very large.

All examples except the Absit–minimization are solved in less than 0.5s. The
longer runtime of the Absit–example is due to the structure of the axiom group C,
which introduces a large amount of non–determinism into the revision. In this ex-
ample we obtain a revision tree with many branches, which all consist of few repair
steps.

3.6. IMPLEMENTING DIAGNOSIS WITH DRUM-II 49

3.6 Implementing Diagnosis with DRUM-II

In contrast to previous systems for model–based diagnosis which rely on techniques
specific to diagnosis, DRUM-II handles diagnosis as a special case of circumscription.
We will now relate the diagnosis definition from chapter 2 to the reasoning techniques
presented previously in the current chapter.

3.6.1 Consistency–Based Diagnosis with DRUM-II

Let us begin by establishing the connection between minimal consistency–based diag-
nosis and minimal model computation. As specified by definition 2.2 minimal diag-
noses are minimal sets of Ab–atoms ∆, so that

SD[Obs[fAb(c)jc2 ∆g[f:Ab(c)jc 2Compn∆g (3.9)

is consistent. We want to characterize the same concept using models: If the theory
specified in formula 3.9 is consistent, it has a model M. M has to interpret Ab exactly as
specified by fAb(c)jc 2 ∆g[f:Ab(c)jc 2Compn∆g, thus MjAbj= ∆. Consequently,
for each minimal diagnosis of SD[Obs there exists a minimal model M of SD[Obs,
such that MjAbj = ∆. However it can be that several minimal models correspond to
one diagnosis.

Example 3.38

Consider a system component C (an integrated digital circuit) with two output ports X

and Y .

I1

I2

I3

C
X

Y

Suppose the system description predicts the values X = 1 and Y = 0, given the
current values of I1; I2 and I3. If we observe Y = 1, we have to assume that C is faulty.
Since C is behaving abnormally (and no fault model has been specified for C), we
cannot predict the value of X . Thus we have the following two �Ab–minimal models
corresponding to the minimal diagnosis fCg: M1 = fValue(X ;0);Value(Y;1);Ab(C)g
and M2 = fValue(X ;1);Value(Y;1);Ab(C)g. #

We can show that the minimal diagnoses directly correspond to the �Ab-
equivalence classes of the �Ab–minimal models.

Theorem 3.39 Let M be a transversal of MODAb(SD [Obs)=�Ab. Then D :=
fMjAbj jM 2 M 0g is the set of all minimal diagnoses of (SD;Comp;Obs).

50 CHAPTER 3. THE DRUM-II FRAMEWORK

Proof: First we show that every ∆ 2 D is indeed a minimal diagnosis of
(SD;Comp;Obs). Since ∆ 2 D , there exists a �Ab–minimal model M of SD[Obs,
so that MjAbj = ∆. This M is also a model of SD [Obs [fAb(c)jc 2 MjAbjg [
f:Ab(c)jc2CompnMjAbjg. Since ∆ = MjAbj we can write this theory as SD[Obs[
fAb(c)jc 2 ∆g[f:Ab(c)jc 2Compn∆g. Since M is a model of this theory, the theory
is logically consistent and thus ∆ is a diagnosis.

We can prove by contradiction, that ∆ is also minimal. Assume a diagnosis ∆0

exists, so that ∆0 � ∆. Then SD[Obs[fAb(c)jc 2 ∆0g[f:Ab(c)jc 2 Compn∆0g is
consistent. Let M0 be a model of this theory. Then, M is also a model of SD[Obs.
Furthermore, we know that MjAbj = ∆02. Consequently, M0 is a model of SD[Obs

with M0jAbj � MjAbj. This contradicts the assumption that M is a minimal model of
SD[Obs.

Now we show that every minimal diagnosis ∆ is contained in D . If ∆ is a minimal
diagnosis, then SD[Obs[fAb(c)jc 2 ∆g[f:Ab(c)jc 2 Compn∆g is logically con-
sistent and thus has at least one model M. Let us finally prove by contradiction, that M

is�Ab–minimal. Assume, that a model M0 of SD[Obs exists, so that M0 �Ab M. M0 is
also a model of SD[Obs[fAb(c)jc2M0jAbjg[f:Ab(c)jc2CompnM0jAbjg. Thus,
M0jAbj is a diagnosis3 so that M0jAbj � MjAbj= ∆. This contradicts our assumption
that ∆ is a minimal diagnosis. Q.E.D.

While previous results on the relation of diagnosis and circumscription [BC94,
Rai90] focus on formalizing stronger forms of explanation (than provided by
consistency–based diagnosis), this theorem establishes an interesting connection be-
tween consistency–based diagnosis and circumscription, because M is the set of all
models obtained by circumscribing SD[OBS in Ab, while varying all other predi-
cates.

3.6.2 Computing Spectrum Diagnoses with DRUM–II

The definition of a spectrum diagnosis (definition 2.18) adds an abductive element
to the consistency–based definition used in the previous sections of this chapter. If
multiple fault models are used, detailed information about the fault models must now
be contained in every diagnosis.

Example 3.40 As a minimal example of the need for detailed information about the
fault models consider an inverter gate with the fault models stuck–at–0 (S0) and stuck-
at-1 (S1) and the following system description:

SD : Ok(Inv)! (High(Inv;O),:High(Inv; I)) (3.10)

2Note however, that this is not a logical consequence. The model could contain an atom Ab(x) so
that x 62 Comp. However, it is an implicit assumption throughout the diagnosis literature, that Ab has
only components as arguments

3Assuming again, that Ab has only components as arguments

3.6. IMPLEMENTING DIAGNOSIS WITH DRUM-II 51

Mode(Inv;S0)!:High(Inv;O) (3.11)

Mode(Inv;S1)! High(Inv;O) (3.12)

8c (Ab(c),9m Mode(c;m)^m 6= Ok) (3.13)

Axiom 3.10 denotes that the voltage at the output of a correctly working inverter is
the negation of the voltage at the input. Axioms 3.11 and 3.12 define the fault models:
stuck-at-1 means high voltage at the output while stuck-at-0 means low voltage at the
output. Axiom 3.13 denotes that abnormality is equivalent to a mode other than Ok. It
was motivated in section 2.3. Suppose we observe low voltage both at the input and at
the output and we want the system to explain the low voltage at the output:

ObsIn : :High(Inv; I)
ObsOut : :High(Inv;O)

Obs+ : :High(Inv;O)

The diagnosis (à la Reiter) fAb(Inv)g is not sufficient to explain the output, be-
cause the inverter could be either in mode S0 or S1 and only one of them explains the
observation. The mode assignment fMode(Inv;S0)g is however sufficient to logically
explain the observation, because the low voltage can be inferred using axiom 3.11.

Thus we need to compute all minimal mode assignments. Remember, that we de-
fine 8c (Ab(c)� 9m (Mode(c;m)^m 6= Ok)) when working with mode assignments,
so that we can still minimize the Ab-predicate. We now first minimize the Ab–predicate
and afterwards maintain every consistent extension of the Mode–predicate by minimiz-
ing Mode and its negation Mode in parallel as described in section 3.3.1.

Definition 3.41 MAmin

Let (SD;Comp;Obs = Obsin[̇ObsOut ;Obs+) be a diagnosis problem and M a model

for SD[ObsIn.

MAmin(SD;M;Obs) := RevAb>(Mode;Mode)(SD;M;Obs)

where Mode(c;m),:Mode(c;m).

The mode assignment corresponding to a model M is the set of all Mode–atoms
true in M. It is denoted by MA(M).

Definition 3.42 MA(M).
Let M be a model.

MA(M) := fMode(c;m)jMode(c;m) 2 Mg

The following proposition shows that MAmin actually computes a model for each
minimal mode assignment.

52 CHAPTER 3. THE DRUM-II FRAMEWORK

Proposition 3.43 Let (SD;Comp;Obs = Obsin[̇ObsOut ;Obs+) be a diagnosis prob-

lem and M a model for SD[ObsIn. Let MA be the set of all minimal mode assignments

D such that SD[Obs[D is consistent.

Then, for each minimal mode assignment D, there is a model M 2
MAmin(SD;fMg;Obs), such that D = MA(M).

Proof Sketch: MAmin(SD;M;Obs) = RevAb>(Mode;Mode)(SD;M;Obs) yields a

transversal of MODAb>(Mode;Mode)(SD[Obs). This transversal contains a model for
every minimal extension of Ab and every extension of Mode. If now D is a minimal
mode assignment, it corresponds to a model MD with a minimal extension of Ab. Since
the extension of Ab is minimal in MD, we know that there is a suitable model M in the
transversal, which agrees with MD in the extensions of Ab and Mode. Q.E.D.

Although MAmin is the set of all minimal mode assignments, it does not yet contain
all spectrum diagnoses. The following example shows that there are minimal spectrum
diagnoses, which do not correspond to �Ab–minimal models of SD[Obs.

Example 3.44 Consider a computer network consisting of three computers A, B, and
C. Computer A sends a message to both B and C using an unreliable protocol. Com-
puter B is connected to a status lamp, which is lit if B is faulty.

A
HHHHj

C

B

��
��*

M2

M1
�

��
��@@

L

The system description SD consists of the following formulas:

8c18m8c2 Sent(c1;m;c2)^Mode(c2;Ok)! Recd(c2;m) (3.14)

Mode(A;Ok)! (Sent(A;M1;B)^Sent(A;M2;C)) (3.15)

Mode(B;Ab)! Lit(L) (3.16)

Formula 3.14 denotes that a message m sent from a computer c1 to a computer c2

will arrive at c2 unless c2 is faulty. Formula 3.15 states that A sends messages to B and
C if it is working properly. Formula 3.16 denotes that lamp L is lit upon failure of B.
Let us assume that the message neither arrived at B nor at C and that the lamp L is lit:

Obs := ObsOut := f:Recd(B;M1);:Recd(C;M2);Lit(L)g (3.17)

We want the system to explain that L is lit:

Obs+ := fLit(L)g (3.18)

3.6. IMPLEMENTING DIAGNOSIS WITH DRUM-II 53

There are two �Ab–minimal models of SD[Obs, namely

M1 : fSent(A;M1;B);Sent(A;M2;B);Lit(B);Mode(A;Ok);

Mode(B;Ab);Mode(C;Ab);Ok(A);Ab(B);Ab(C)g (3.19)

M2 : fMode(A;Ab);Mode(B;Ok);Mode(C;Ok);

Ab(A);Ok(B);Ok(C);Lit(L)g (3.20)

Model M2 shows that computing minimal models provides only a weak form of
explanation. The lamp L is lit but there is no explanation for this in the model.
Following Console and Torasso [CT91] one can say, that the mode assignment
fMode(A;Ab);Mode(B;Ok);Mode(C;Ok)g corresponding to the model M2 assumes
an anonymous cause for the lamp’s being lit, which is not modeled in SD. Let us now
check if the minimal models M1 and M2 correspond to spectrum diagnoses. Since both
models are consistent with SD[Obs, we only have to check, whether Obs+ is entailed.
M1 j= Obs+, since Mode(B;Ab) 2 M1 and Mode(B;Ab) j= Lit(L). Thus, M1 corre-
sponds to the spectrum diagnosis D1 = fMode(A;Ok);Mode(B;Ab);Mode(C;Ab)g.

The second model does not entail Obs+, since the only possible explanation
Mode(B;Ab) is missing. There is however a second minimal spectrum diagnosis
∆2 = fMode(A;Ab);Mode(B;Ab);Mode(C;Ok)g corresponding to the model M3 =
(M2nfMode(B;Ok)g)[fMode(B;Ab);Ab(B)g, which is obviously not �Ab–minimal,
because M3jAbj � M2jAbj. #

This example has demonstrated that spectrum diagnoses do not directly correspond
to minimal models. The reason is that a non–minimal model may be necessary to ex-
plain (i.e. logically entail) the observations Obs+ in the abductive part of the diagnosis
definition. In general, the presence of a set of observations Obs+ which have to be ab-
ductively explained makes computing diagnoses much harder. On purely consistency–
based problems the search for diagnoses is guided by the observations: DRUM–II
inserts the observations into a model of the correctly functioning system. It restores
consistency by applying local changes to the model until consistency is restored. Dur-
ing this repair process DRUM–II only considers a small subset of the components as
diagnoses. In abduction problems the observations have to be logically entailed. They
cannot be inserted into the models to guide the search.

The definition of a spectrum diagnosis comprises a consistency–based part (the sys-
tem description has to be consistent with all observations) and an abductive part (the
observations in Obs+ have to be entailed). Since DRUM–II implements consistency–
based reasoning very efficiently our algorithm for computing minimal spectrum di-
agnosis first searches for minimal consistency–based diagnoses. For each minimal
diagnosis it checks, if the observations in Obs+ are entailed. The diagnoses which
entail Obs+ are minimal spectrum diagnoses.

Additionally, there may be supersets of minimal consistency–based diagnoses,
which are minimal spectrum diagnoses. We can find these by modifying the system

54 CHAPTER 3. THE DRUM-II FRAMEWORK

Algorithm 3.45 Compute all Minimal Spectrum Diagnoses

FUNCTION Spectrum(SD, Comp, Obs = ObsIn[̇ObsOut, Obs+)
Diags := /0;
REPEAT

D := ‘‘All minimal mode assignments D

s.th. SD[Obs[D 6j=?’’;
DMin := fD 2 Dj 6 9D0 2 Diags : D0 �Ab Dg;
DMin

j= := fD 2 DjSD[ObsIn[D j= Obs+g;

DMin
6j= := DMinnDMin

j= ;

Diags := Diags[DMin
j= ;

SD := SD[
S

D2DMin
6j=

(
W

c2Comp:Mode(c;Ok)2D

Ab(c)

)
;

UNTIL DMin
6j= = /0;

RETURN Diags;

description. Consider a system with components Comp = fA;B;C;D;Eg and a �Ab–
minimal mode assignment fMode(A;Ab), Mode(B;Ab), Mode(C;Ok), Mode(D;Ok),
Mode(E;Ok)g, which is not a spectrum diagnosis. Now possibly a superset of this
diagnosis is a minimal spectrum diagnosis. We can turn these supersets into mini-
mal mode assignments by extending the system description: SD0 := SD[fAb(C)_
Ab(D)_ Ab(E)g. The new sentence is formally a conflict. It makes the diagno-
sis fMode(A;Ab);Mode(B;Ab);Mode(C;Ok);Mode(D;Ok);Mode(E;Ok)g inconsis-
tent, because this diagnosis entails :Ab(C)^:Ab(D)^:Ab(E) which is the negation
of the new sentence Ab(C)_Ab(D)_Ab(E) in SD0. The algorithm iterates the exten-
sion of SD and computation of diagnoses until no new minimal diagnoses not entailing
Obs+ are found. This basic algorithm is summarized in algorithm 3.45.

Algorithm 3.45 computes all diagnoses of the new system description in every
iteration. Now consider the implementation of this algorithm using the DRUM–II
functions MAmin and Filter (algorithm 3.46). In this implementation we compute
diagnoses more selectively. The algorithm works as follows: First, it computes all
minimal mode assignments for the system description together with the observations.
It partitions the mode assignments into a set M Min

j= of mode assignments, which entail

the observations in Obs+ and a set M Min
6j= of mode assignments, which do not entail the

observations in Obs+. The mode assignments corresponding to the models in M Min
j=

are added to the set of diagnoses (Diags). As we motivated in example 3.44, models
assuming more abnormality than those in M Min

6j= can still correspond to minimal spec-

trum diagnoses. Therefore, a clause set New is added to the system description, which
makes sure, that none of the models in M Min

6j= is a model of SD[New, so that mod-

3.6. IMPLEMENTING DIAGNOSIS WITH DRUM-II 55

Algorithm 3.46 Compute all Minimal Spectrum Diagnoses with DRUM–II

FUNCTION Spectrum’(SD, Comp, Obs = ObsIn[̇ObsOut, Obs+, M)
Diags := /0;
M Min := MAmin(SD[ObsIn;fMg;ObsOut);
REPEAT

M Min
j= := fM 2 M Minj

FilterMode(SD[ObsIn;fMg;ff
W

o2Obs+
:ogg) = /0g;

M Min
6j= := M MinnM Min

j= ;

Diags := Diags[
S

M2M Min
j=

MA(M);

IF M Min
6j= 6= /0 THEN

New :=

(
f

W

c2Comp:Mode(c;Ok)2MA(M)
Ab(c)gjM 2 M Min

6j=

)
;

AbM := fAb(c)jc 2Comp and Mode(c;Ok) 62 Mg;
M :=

S

M2M Min
6j=

MAmin(SD[Obs[AbM;fMg;New);

M Min := fM 2 M j 6 9D 2 Diags : D �Ab MA(M)g;
SD := SD[New;

END IF;
UNTIL M Min

6j= = /0;

RETURN Diags;

els with more abnormality are considered in the next iteration. However, in this next
iteration the optimized algorithm only revises the models from MMin

6j= , in contrast to al-

gorithm 3.45, which recomputes all minimal mode assignments. The REPEAT-UNTIL
loop terminates, when no new minimal mode assignments are found. In practice, we
can define an upper bound on the number of faults in a diagnosis to speed up compu-
tation.

A formal detail of algorithm 3.46 is the set AbM. It is needed, because the revi-
sion function used in the definition of MAMin is only defined, if the set of models in
the second parameter is a transversal of the minimal models of the theory in the first
parameter (compare definition 3.5). This precondition is trivially satisfied, because we
added the set AbM , consisting of all the abnormals in M, to the theory for this revision.

56 CHAPTER 3. THE DRUM-II FRAMEWORK

3.7 Discussion

The first DRUM system [Ned93, NG94] was strongly influenced by the ideas of Chou
and Winslett’s model–based belief revision system IMMORTAL [CW94]. DRUM
used optimized versions of the minimal change algorithms by Chou and Winslett and
applied an additional minimization step to obtain only minimal extensions of the Ab-
predicate.

As we have described in this chapter, DRUM–II replaces the minimal change se-
mantics completely by the semantic approach to circumscription. It provides a very
general implementation of circumscription for fixed domain theories, covering parallel
and prioritized circumscription, fixed and variable predicates. Our implementations of
spectrum diagnosis and several formalism from non–monotonic reasoning show that
this expressive power is needed to handle current AI formalisms.

Furthermore, the search for models is much more efficient in DRUM–II than in
DRUM and IMMORTAL. The use of an iterative deepening algorithm increases the
efficiency of DRUM–II dramatically, because it avoids unnecessary copying of mod-
els. Furthermore, DRUM–II uses a simpler definition of a flipping than both DRUM
and IMMORTAL: While the previous systems use hitting sets over the set of violated
clauses as flippings, DRUM–II uses only single literals. Our critical examination of
hitting sets as flippings [NF96] has shown that they lead to an unnecessary combina-
torial explosion of the number of flippings in many situations.

Chapter 4

Circuit–Diagnosis with DRUM–II

The diagnosis of digital circuits is the classical application of consistency–based diag-
nosis. Circuits have been studied in the very first papers as proof of concept problems.
However, it took several years of research before efficient variants of ATMS–based di-
agnosers were capable of solving large combinatorial circuits [dK91, RdKS93]. A set
of combinatorial circuits distributed at the 1985 symposium on circuits and systems
[Isc85] has served different researchers as a benchmark for evaluating the efficiency of
diagnostic systems.

We start this chapter with an overview of circuit modeling and diagnosis in
DRUM–II using a parity checker as the running example. We identify potential for
optimization in the basic DRUM–II algorithm presented in the previous chapter. Then,
we extend our work in [NF96, FN97] and introduce a variant of the algorithm, which
focuses the search for diagnoses by exploiting the structure of the device under consid-
eration. In contrast to ATMS–based systems, which record information during search,
our algorithm exploits precompiled information. While dependency–recording at run-
time leads to combinatorial explosion of the data–structures used, the size of the pre-
compiled information used by the optimized DRUM–II engine is only quadratic in the
size of the device.

After introducing the optimized algorithm we provide a characterization of the
abovementioned benchmark circuits. In particular, we discuss why the reconvergent
fanout of these circuits makes them hard to solve for model–based diagnosis engines.
Finally, we present the running times of the optimized DRUM–II on these benchmark
examples and compare them to other recent results. It turns out that DRUM–II per-
forms much better than all previous systems on nearly all examples.

4.1 Diagnosing Digital Circuits at Gate Level

To provide an overview of circuit diagnosis in DRUM–II we will consider the diagno-
sis of a 9–bit parity checker taken from the Texas Instruments SN74LS280 chip. This
circuit was already considered in [Out93]. We will start this section by discussing the

57

58 CHAPTER 4. CIRCUIT–DIAGNOSIS WITH DRUM–II

1

1

1

1

1

1

&

&

&

&

1

Inv1

Inv2

Inv3

Inv4

Inv5

Inv6

And1

And2

And3

And4

Nor1

Figure 4.1: A 3-bit Parity Checker

system description and execution trace of DRUM–II for the smaller three bit parity
checker shown in figure 4.1 (which is part of the 9–bit parity checker) and move to the
full 9–bit circuit later for the discussion of multiple faults and efficiency.

4.1.1 System Description

The system description of the circuit is mainly based on the following predicates:

Val(c; p;v) denotes that the value of port p of component c has the value v. In digital
circuits we use the values 0 (low voltage) and 1 (high voltage) and name the
ports O (output of a component) and Ik (k-th input of a component).

Conn(c1; p1;c2; p2) denotes that the port p1 of a component c1 is connected to the port
p2 of a component c2.

Type(c; t) denotes that c is a component of type t. In the parity checker the component
types are Inv (Inverter), And3 (And–Gate with 3 inputs) and Nor4 (Nor–Gate
with 4 inputs).

TypePort(t; p) denotes that components of type t have a port called p. For example,
for an inverter the facts TypePort(Inv; I1) and TypePort(Inv;O) are true.

Now let us consider the axioms of the system description. Formula 4.1 denotes that
the value of a port p1 of a component c1 has the same value as port p2 of component
c2, if these ports are connected.

8c18c28p18p28v

Conn(c1; p1;c2; p2)! (Val(c1; p1;v)$Val(c2; p2;v))
(4.1)

Next, we discuss the axioms for the different component types. The behavior of an
inverter is described by formulas 4.2 and 4.3. If the inverter is working according to
its specification (:Ab(c)) the output is the logical negation of the input.

4.1. DIAGNOSING DIGITAL CIRCUITS AT GATE LEVEL 59

8c (Type(c; Inv)^:Ab(c))! (Val(c; I1;0)!Val(c;O;1)) (4.2)

8c (Type(c; Inv)^:Ab(c))! (Val(c; I1;1)!Val(c;O;0)) (4.3)

Similarly, axioms 4.4 and 4.5 describe the correct behavior of an and–gate with
three inputs. If the value of all three inputs is 1, the output is also 1. If one of the
inputs is 0, the output is 0.

8c (Type(c;And3)^:Ab(c))!
((Val(c; I1;1)^Val(c; I2;1)^Val(c; I3;1))!Val(c;O;1))

(4.4)

8c (Type(c;And3)^:Ab(c))!
((Val(c; I1;0)_Val(c; I2;0)_Val(c; I3;0)!Val(c;O;0))

(4.5)

The behavior of a nor–gate is formalized by axioms 4.6 and 4.7, which state that
its output is 1, if all inputs are 0, and otherwise the output is 0.

8c (Type(c;Nor4)^:Ab(c))!
((Val(c; I1;0)^Val(c; I2;0)^Val(c; I3;0)^Val(c; I4;0))!Val(c;O;1))

(4.6)

8c (Type(c;Nor4)^:Ab(c))!
((Val(c; I1;1)_Val(c; I2;1)_Val(c; I3;1)_Val(c; I4;1))!Val(c;O;1))

(4.7)

We need one additional axiom for the computation of diagnoses (formula 4.8),
which states that every port in the circuit must have a value of 1 or 0. This axiom
would however decrease the efficiency of the initial model generation. Postulating that
every port has a value, it would force DRUM–II to assume arbitrary values for every
port of the circuit at the beginning of the model generation, which would lead to a
large number of inconsistent models. Therefore the axiom is qualified by a proposition
DiagnosisPhase, which is false during model generation and true during diagnosis.

DiagnosisPhase! (8c8t8p (Type(c; t)^TypePort(t; p))!
((Val(c; p;1)$:Val(c; p;0))))

(4.8)

The above axioms can be used for any circuit involving these components and are
independent of the particular structure of circuit under consideration. The structure of
the given circuit is modeled separately by a set of facts. First we need facts describing
the types of the gates.

Type(Inv1; Inv): Type(Inv2; Inv): Type(Inv3; Inv): Type(Inv4; Inv):
Type(Inv5; Inv): Type(Inv6; Inv): Type(And1;And3): Type(And2;And3):
Type(And3;And3): Type(And4;And3): Type(Nor1;Nor4):

For axiom 4.8 we also need facts describing the ports of the component types used.

60 CHAPTER 4. CIRCUIT–DIAGNOSIS WITH DRUM–II

TypePort(Inv; I1): TypePort(Inv;O):
TypePort(And3; I1): TypePort(And3; I2): TypePort(And3; I3):
TypePort(And3;O):
TypePort(Nor4; I1): TypePort(Nor4; I2): TypePort(Nor4; I3):
TypePort(Nor4; I4): TypePort(Nor4;O):

Finally, we need a set of facts describing the connections among the components.

Conn(Inv1;O; Inv4; I1): Conn(Inv1;O;And2; I1): Conn(Inv1;O;And3; I2):
Conn(Inv2;O;And1; I1): Conn(Inv2;O; Inv5; I1): Conn(Inv2;O;And3; I1):
Conn(Inv3;O;And1; I2): Conn(Inv3;O;And2; I2): Conn(Inv3;O; Inv6; I1):

Conn(Inv4;O;And1; I3): Conn(Inv4;O;And4; I3):
Conn(Inv5;O;And2; I3): Conn(Inv5;O;And4; I2):
Conn(Inv6;O;And3; I3): Conn(Inv6;O;And4; I1):

Conn(And1;O;Nor1; I1): Conn(And2;O;Nor1; I2):
Conn(And3;O;Nor1; I3): Conn(And4;O;Nor1; I4):

4.1.2 Generating the Initial Model

DRUM–II uses the system description consisting of the above axioms and facts both
for the computation of the initial model of the correctly functioning device and for
the diagnosis. In the model generation phase, the values are subsequently propagated
through the circuit. The number of steps needed by DRUM–II for this propagation is
equal to the number of ports, for which values are computed. Thus, there is no need
for a specialized simulator here. Let us assume that the input of the first inverter is 1
and the inputs of Inv2 and Inv3 are both 0.

ObsIn := fVal(Inv1; I1;1);Val(Inv2; I1;0);Val(Inv3; I1;0)g

Following chapter 3, we can now generate the initial model by executing the revi-
sion RevAb(SD; /0;ObsIn). Let us study a part of the trace of this revision.

Iterative Deepening at Level 0

|| Level: 1
|| Step: [val(inv1, i1, 1), val(inv2, i1, 0),

val(inv3, i1, 0)]

DRUM–II starts by announcing that it will set the size of the diagnoses to � 0
(compare with algorithm 3.32). Thus, it first tries to find a model of the system de-
scription without assuming faults. The output Level: 1 means that DRUM–II is

4.1. DIAGNOSING DIGITAL CIRCUITS AT GATE LEVEL 61

making the first change to the model, i.e. Level is the current depth of the search tree.
DRUM–II inserts the input observations into the model. After Step: it outputs the
literals it is going to flip.

|| Level: 2
|| Step: [val(inv1, o, 0)]

The insertion of the input observations has lead to a violation of axiom 4.3: The
model contains the fact Val(Inv1; I1;1), the inverter Inv1 is not considered faulty, but
no output value is assumed. To restore consistency, the value of the output of Inv2 is
set to 0 in step 2. However, the output of the inverter Inv1 is connected to the input of
the inverter Inv4. Consequently, DRUM–II concludes in step 3 that the input of Inv4
has the value 0.

|| Level: 3
|| Step: [val(inv4, i1, 0)]

In this way, values are propagated through the circuit.

|| Level: 4
|| Step: [val(inv4, o, 1)]
|| Level: 5
|| Step: [val(and1, i3, 1)]
|| Level: 6
|| Step: [val(and4, i3, 1)]
...

After 33 such steps the solution is found, because no further inconsistency arises.
The model found by DRUM–II is shown in figure 4.2. This model correctly predicts
an output of 0 for the parity checker, which is correct because of the odd parity of the
input pattern.

4.1.3 Computing Diagnoses

Now, suppose we observe the value 1 at the output of the parity checker. We
can compute the diagnoses for this symptom by executing the revision RevAb(SD[
ObsIn;M0;fVal(Nor1;O;1)g), where M0 is the initial model depicted in figure 4.2.

DRUM–II starts the diagnosis trying to find a model with 0 Ab–facts. Obviously,
this is not possible because the output observations contradict the input observations.
DRUM–II detects this after 49 flippings and sets the diagnosis size to 1.

Iterative Deepening at Level 1

|| Level: 1
|| Step: [diagnosis_phase(t), val(nor1, o, 1)]

62 CHAPTER 4. CIRCUIT–DIAGNOSIS WITH DRUM–II

1

1

1

1

1

1

&

&

&

&

1

Inv1

Inv2

Inv3

Inv4

Inv5

Inv6

And1

And2

And3

And4

Nor1

1

0

0

0

1

1

1

0

0

1

1

0

1

1
0

0
0

0
1

0

1

0

1
0

0

0

1

1

1
0
0
0

0

Figure 4.2: Initial model for the 3 Bit Parity Checker

In the first revision step shown above two atoms are integrated into the model:
the output observation Val(Nor1;O;1) and the previously mentioned proposition
DiagnosisPhase, which forces each port to assume either the value 0 or 1 but not
both.

In contrast to the model generation phase, where values were propagated from the
inputs to the outputs of the circuit, the incorporation of a symptom at the outputs leads
to propagation of changes from the outputs to the inputs.

|| Level: 2
|| Step: [not(val(nor1, o, 0))]

Due to the axiom 4.8 every propagation consists of two flippings. In steps 1 and 2
the output value of the nor–gate was inverted. Step 1 inserted the new value 1 for this
port. Step 2 deleted the value 0 for the same port, because after axiom 4.8 a port can
have at most one value at a time.

|| Level: 3
|| Step: [not(val(nor1, i1, 1))]
|| Level: 4
|| Step: [val(nor1, i1, 0)]

The explanation for flippings 3 and 4 is similar: Since the output of the nor–gate
was changed to 1 in step 1 it is now inconsistent that the first input has value 1. Thus,
this input value deleted from the model in step 3. Again, axiom 4.8 comes into play; it
postulates that the first input of the nor–gate must have some value and therefore 0 is
assumed. At this point, recall that DRUM–II avoids cycles during search by inverting
the truth value of a literal at most once on each branch of the search tree. Therefore,
DRUM–II does not consider satisfying axiom 4.8 by assuming Val(Nor1; I1;1) again.

The next propagation steps follow the pattern described above. Changes are sub-
sequently propagated in the direction of the inputs.

4.1. DIAGNOSING DIGITAL CIRCUITS AT GATE LEVEL 63

|| Level: 5
|| Step: [val(and1, o, 0)]
|| Level: 6
|| Step: [not(val(and1, o, 1))]
|| Level: 7
|| Step: [not(val(and1, i2, 1))]
|| Level: 8
|| Step: [val(and1, i2, 0)]
|| Level: 9
|| Step: [val(inv3, o, 0)]
|| Level: 10
|| Step: [not(val(inv3, o, 1))]
|| Level: 11
|| Step: [not(val(and2, i2, 1))]
|| Level: 12
|| Step: [val(and2, i2, 0)]
|| Level: 13
|| Step: [not(val(inv6, i1, 1))]
|| Level: 14
|| Step: [val(inv6, i1, 0)]
|| Level: 15
|| Step: [val(inv6, o, 1)]
|| Level: 16
|| Step: [not(val(inv6, o, 0))]
|| Level: 17
|| Step: [not(val(and3, i3, 0))]
|| Level: 18
|| Step: [val(and3, i3, 1)]
|| Level: 19
|| Step: [not(val(and4, i1, 0))]
|| Level: 20
|| Step: [val(and4, i1, 1)]
Assuming Abs[ab(inv3)]([]) after 70 Flippings
|| Level: 21
|| Step: [ab(inv3)]
... Solution (after 71 Flippings)

Saving Model 2

On level 9 and 10 in the above trace DRUM–II changed the output value of the
inverter Inv3 from 1 to 0. After repairing some other inconsistencies in the steps 11
to 20 DRUM–II reconsiders this inverter. However, further propagation of changes is
impossible because the input value of Inv3 is an observation. The only way to restore
consistency is assuming that the inverter is behaving abnormally, because both its input
and output are 0. The first diagnosis is found and indicated by the output Solution.

DRUM–II tries to find further solutions by backtracking. The propagation de-

64 CHAPTER 4. CIRCUIT–DIAGNOSIS WITH DRUM–II

scribed above has created many choice points for backtracking. This is because all the
component axioms have an Ab–literal in their precondition. Thus, they can be satisfied
either by the propagation of values or by assuming that the component is abnormal.

Assuming Abs[ab(inv6)]([]) after 71 Flippings
|| Level: 15
|| Step: [ab(inv6)]
Assuming Abs[ab(inv3)]([ab(inv6)]) after 72 Flippings

Backtracking leads DRUM–II to assume that inverter Inv6 is faulty. However this
assumption does not resolve the violation of the correct behavior of Inv3 whose input
and output both have the value 0. Thus, DRUM–II must assume an additional fault at
Inv3. Assuming these two faults is however not possible because the size of the diag-
nosis is restricted to 1 in this example. Therefore, DRUM–II terminates this branch of
the search tree and backtracks.

|| Level: 7
|| Step: [st_not(val(and1, i3, 1))]
|| Level: 8
|| Step: [val(and1, i3, 0)]
|| Level: 9
|| Step: [val(inv4, o, 0)]
|| Level: 10
|| Step: [st_not(val(inv4, o, 1))]
...
|| Step: [ab(nor1)]
... Solution (after 108 Flippings)

Saving Model 7
rev_state([7, 6, 5, 4, 3, 2], [val(inv1, i, 1),
val(inv2, i, 0), val(inv3, i, 0), diagnosis_phase(t),
val(nor1, o, 1)])
ab(nor1). with Rank: 1
ab(and1). with Rank: 1
ab(inv2). with Rank: 1
ab(inv4). with Rank: 1
ab(inv1). with Rank: 1
ab(inv3). with Rank: 1

After a total of 108 revision steps DRUM–II has identified all 6 single fault diag-
noses for the given scenario. It saves the corresponding models (models 2 to 7) for
further revision (output rev_state in the above trace).

4.1.4 Identifying Unnecessary Computations

The 9 bit parity checker shown in figure 4.3 is already relatively hard to solve for
model–based diagnosers because of its reconvergent fanout: Every component influ-
ences most of the values in the circuit, so that there is a large number of different

4.1. DIAGNOSING DIGITAL CIRCUITS AT GATE LEVEL 65

1

1

1

1

1

1

&

&

&

&

1

1

1

1

1

1

1

&

&

&

&

1

1

1

1

1

1

1

1

1

1

&

&

&

&

1

&

&

&

&

1

&

&

&

&

1

And1

Inv12

Inv7

Inv8

Inv9

Inv10

Inv11
Nor2

Inv13

Inv14

Inv15

Inv16

Inv17

Inv18

And5

And6

And7

And8

And9

And10

And11

And12

Nor3

Inv1

Inv2

Inv3

Inv4

Inv5

Inv6

Inv19

Inv20

Inv21

And18

And13

And17

And14

And15

And16

And19

And20

And2

And3

And4

Nor1

Nor5

ODD

Nor4

EVEN

Figure 4.3: A 9-bit Parity Checker

66 CHAPTER 4. CIRCUIT–DIAGNOSIS WITH DRUM–II

1

1

1

1

1

1

&

&

&

&

1

1

1

1

1

1

1

&

&

&

&

1

1

1

1

1

1

1

1

1

1

&

&

&

&

1

&

&

&

&

1

&

&

&

&

1

And1

Inv12

Inv7

Inv8

Inv9

Inv10

Inv11
Nor2

Inv13

Inv14

Inv15

Inv16

Inv17

Inv18

And5

And6

And7

And8

And9

And10

And11

And12

Nor3

Inv1

Inv2

Inv3

Inv4

Inv5

Inv6

Inv19

Inv20

Inv21

And18

And13

And17

And14

And15

And16

And19

And20

And2

And3

And4

Nor1

[1]

[1]

[1]

[1]

[1]

[1]

[1]

[1]

[1]

Nor5

ODD
[1]

Nor4

[1]
EVEN

= possible Diagnosis

should be 0

Figure 4.4: A Scenario together with all Single Fault Diagnoses

propagation paths which have to be considered. We will show why the performance of
DRUM–II degrades quickly, when we move to the 9 bit circuit. Having identified the
unnecessary computation carried out by the basic DRUM–II algorithm we will present
an optimized version which solves large circuits very efficiently.

Let us point out that due to the modularity of model–based diagnosis, the system
description of the 9 bit parity checker contains exactly the same axioms as the one for
the 3 bit parity checker shown above. Only the sets of facts for the predicates Type

and Conn are adapted to the different topology.

In the scenario from figure 4.4, we have computed all diagnoses of the sizes 1 to 4
using DRUM–II. Table 4.1 summarizes the results. The first column shows the limit
on the diagnosis size with which DRUM–II was started. The second column gives the
total number of diagnoses of the size specified in column 1. Finally, the third column
gives the number of revision steps (i.e. flippings) executed during the computation of
diagnoses.

These running times of the basic DRUM–II algorithm are not yet sufficient to di-

4.2. EXPLOITING STRUCTURAL INDEPENDENCE 67

Diagnosis Size Number of Diagnoses Steps
0 0 616

� 1 5 4955
� 2 53 14145
� 3 245 41527
� 4 757 69229

Table 4.1: Running times of DRUM–II on the 9 bit parity checker

agnose large circuits efficiently. For example, the basic DRUM–II algorithm needs
30,22s to find all single fault diagnosis for the c499 circuit, which consists of 202
components. An examination of the traces produced by DRUM–II (for the 9 bit parity
checker) reveals that it follows some propagation paths which can obviously not lead
to diagnoses, given the structure of the circuit. Consider the following fragment from
the trace of DRUM–II with a maximal diagnosis size of 1.

Assuming Abs[ab(and15)]([]) after 1243 Flippings
|| Level: 45
|| Step: [ab(and15)]
|| Level: 46
|| Step: [st_not(val(and17, i3, 0))]

Regardless of what happened in the previous 1243 flippings, these flippings on
level 45 and 46 can never lead to a single fault diagnosis. The reason lies in the
structure of the circuit (compare with figure 4.4): The output of And15 is not connected
(directly or via intermediate components) to any of the inputs of And17. Consequently,
if we change the value of And17’s third input, this change cannot be explained by a
fault of And15. To find a consistent model, an additional fault has to be assumed.

Therefore, it is correct to consider the step on level 46 as a contradiction and ter-
minate this propagation path. This simple optimization speeds up DRUM–II dramat-
ically on large circuits. In the next section, we will formalize the idea just presented
and prove its correctness.

4.2 Exploiting Structural Independence

We will now develop a theory of dependencies between literals in sets of horn clauses
and apply it to diagnosis. The results presented below are applicable to all system de-
scriptions, where the correct model can be formalized by propositional horn clauses.
We do not assume that the whole system description horn since some clauses are typi-
cally not horn, e.g. relations among fault models like 8c Ok(c)$:Ab(c).

68 CHAPTER 4. CIRCUIT–DIAGNOSIS WITH DRUM–II

4.2.1 Independence of Literals

Let us consider a set of Horn Clauses S . Let fa1; : : : ;ang be the set of atoms occurring
in S . We say that a j depends directly on ai, if there is a clause containing a j and :ai.

Definition 4.1 a j depends directly on ai, denoted by ai !
1 a j, iff there is a clause

C 2 S with fa j;:aig �C.

We define the transitive closure of the direct dependency relation !1 and call it
!+ (depends on).

Definition 4.2 The relation !+ is defined inductively by

1. If ai !
1 a j, then ai !

+ a j.

2. If ai !
1 ak and ak !

+ al , then ai !
+ al.

We say that a j depends on ai, iff ai !
+ a j.

We want to study the effect of certain atoms on the other atoms of the theory. In
particular, we want to see which changes are caused by assuming different sets A;B of
atoms. If we know that an atom a was entailed by S [A (i.e. S [A j= a), we want to
know if a is still entailed if we assume the set of atoms B instead.

Proposition 4.3 Let A and B be sets of atoms such that S [A 6j= ? and S [B 6j= ?.

Let a be an atom. If S [A j= a and there is no b 2 Diff (A;B) such that b !+ a, then

S [B j= a.

Proof Sketch: The positive literal a follows from S[A, iff it holds in the minimal
model of S[A. This minimal model coincides with the minimal model of S+ [A

(S+ consists of those clauses of S , which contain a positive literal). Thus, S+[A j=
a. Thus, there is a proof for a, only based on the clauses in S+. If we delete all
unnecessary steps from this proof, only those steps remain, which derive a itself or
literals on which a depends. This proof remains possible, if we replace A by B since we
assume that A and B do not disagree on atoms, on which a depends. Thus, S+[B j= a

and, since S [B is consistent, we conclude S [B j= a. Q.E.D.
The knowledge from the above proposition can be used to focus the search for

diagnoses.

4.2.2 Application to Diagnosis

In diagnosis, the horn clauses S are given by the system description SD. The following
proposition is a special case of proposition 4.3.

4.3. COMBINATORIAL BENCHMARK CIRCUITS 69

Proposition 4.4 Let SD be a system description, OBS = OBSin[̇OBSout an observa-

tion, a an atom and ∆ a candidate (a set of components considered faulty).

If SD[OBSin[fOk(c)jc 2Compg j= a and for all c 2 ∆ : Ok(c) 6!+ a, then SD[
fOk(c)jc 2 COMPn∆g[OBS j= a.

To proof this proposition, we must assume, that the observations OBSout are really
the outputs of the device, i.e. no further atom depends on the output observations.
The above proposition allows us to delete any model, which contains changes not
influenced by the current candidate.

Corollary 4.5 Let M be a model and a 2 M an atom occurring negatively in

Comm(Mi). Let ∆ be a candidate. If for all c 2 ∆ : Ok(c) 6!+ a then M 6j= SD[
OBS[fOk(c)jc 2 COMPn∆g and thus model M can be deleted.

The method described above enables DRUM–II to eliminate a large number of can-
didates, which do not influence all abnormal outputs of the device as well as a large
number of models which contain changes not influenced by the current candidate. The
relation !+ needs only to be computed once for each system description. We com-
pute !+ when the system description changes and store it in a (bit-) matrix, which is
loaded into memory by the DRUM-II engine. The space complexity as well as the time
complexity for computing the matrix is quadratic in the number of clauses of the under-
lying system description. A few comparisons with ATMS technology are worthwhile.
First, while an ATMS computes actual dependencies of propositions at runtime, our
approach computes possible dependencies at compile time. Second, as these possible
dependencies are correct for each truth value of the input propositions, they obviously
cannot exploit specific values of input propositions. An ATMS-environment is there-
fore more specific than our dependency set, and can exploit specific input values of
the circuit. On the other hand, it seems impossible to precompile ATMS-dependencies
since they depend on the actual test vector used. Third, as ATMSs usually store en-
vironments as bit vectors, the storage requirement for one environment is the same as
for one of our dependency sets. Fourth, while a proposition usually can be deduced
in different ways, and the ATMS therefore has to store more than one environment for
these propositions, we have exactly one dependency set for each proposition, which
avoids any explosion of these dependency sets. An interesting issue for further explo-
ration would be to use our possible dependencies in an ATMS instead of the specific
justifications computed by the ATMS at run-time in order to speed up ATMS-based
diagnosis systems.

4.3 Combinatorial Benchmark Circuits

The ISCAS–85 benchmark suite contains combinatorial circuits with 160 to 3512 com-
ponents. In recent years it has been regarded as a challenge for diagnostic engines in
several papers [dK91, RdKS93, NF96, WN97] due to the size of the problems and

70 CHAPTER 4. CIRCUIT–DIAGNOSIS WITH DRUM–II

their inherent complexity. Before we discuss the performance of DRUM–II on these
problems and compare it to previous results, we provide a characterization of the kind
of complexity present in these problems and discuss why some of these circuits are
hard to solve.

4.3.1 Why are these Problems so difficult?

d
aV

in
ci

V
1
.4

.2

c4557gat

c4781gat

c4912gat

c4965gat

c5080gat

c5139gat

c5266gat

c5324gat

c5438gat

c5498gat

c5628gat

c5685gat

c5796gat

c5849gat

c5945gat

c5981gat

c6044gat

c6073gat

c6118gat

c6130gat

c6165gat

c6170gat

c6161gat

c6167gat

c6176gat

c6180gat

c6171gat

c6177gat

c6186gat

c6190gat

c6181gat

c6187gat

c6196gat

c6200gat

c6191gat

c6197gat

c6206gat

c6210gat

c6201gat

c6207gat

c6216gat

c6220gat

c6211gat

c6217gat

c6226gat

c6230gat

c6221gat

c6227gat

c6236gat

c6240gat

c6231gat

c6237gat

c6246gat

c6250gat

c6241gat

c6247gat

c6256gat

c6260gat

c6251gat

c6257gat

c6266gat

c6270gat

c6261gat

c6267gat

c6276gat

c6280gat

c6271gat

c6277gat

c6286gat

c6288gat

c6281gat

c6287gat c6285gat

c6275gat

c6265gat

c6255gat

c6245gat

c6235gat

c6225gat

c6215gat

c6205gat

c6195gat

c6185gat

c6175gat

c6166gat

c6097gat

c6119gat

c6014gat

c6046gat

c6102gat

c6120gat

c6076gat

c6101gat

c6045gat

c5898gat

c5946gat

c5743gat

c5798gat

c5903gat

c5947gat

c6018gat

c6049gat

c5984gat

c6020gat

c6081gat

c6103gat

c6052gat

c6080gat

c6019gat

c5852gat

c5902gat

c5797gat

c5560gat

c5629gat

c5383gat

c5440gat

c5565gat

c5630gat

c5747gat

c5801gat

c5688gat

c5749gat

c5857gat

c5904gat

c5988gat

c6023gat

c5950gat

c5990gat

c6057gat

c6082gat

c6026gat

c6056gat

c5989gat

c5804gat

c5856gat

c5748gat

c5501gat

c5564gat

c5439gat

c5200gat

c5267gat

c5026gat

c5082gat

c5205gat

c5268gat

c5387gat

c5443gat

c5327gat

c5389gat

c5506gat

c5566gat

c5692gat

c5752gat

c5633gat

c5694gat

c5809gat

c5858gat

c5954gat

c5993gat

c5907gat

c5956gat

c6031gat

c6058gat

c5996gat

c6030gat

c5955gat

c5755gat

c5808gat

c5693gat

c5446gat

c5505gat

c5388gat

c5142gat

c5204gat

c5081gat

c4845gat

c4911gat

c4612gat

c4668gat

c4779gat

c4842gat

c4963gat

c5023gat

c5134gat

c5197gat

c5322gat

c5380gat

c5493gat

c5557gat

c5683gat

c5740gat

c5844gat

c5895gat

c5979gat

c6011gat

c6068gat

c6094gat

c6128gat

c6135gat

c6155gat

c6160gat

c6151gat

c6157gat c6156gat

c6114gat

c6129gat

c6040gat

c6070gat c6069gat

c5941gat

c5980gat

c5792gat

c5846gat c5845gat

c5624gat

c5684gat

c5434gat

c5495gat c5494gat

c5262gat

c5323gat

c5076gat

c5136gat c5135gat

c4907gat

c4964gat

c4721gat

c4780gat

c4611gat

Figure 4.5: A Small Subgraph of the c6288 Circuit

For satisfiability and constraint satisfaction benchmarks consisting of random prob-
lems are widely used. Random problems are often characterized by a set of parameters
hn;m; p1; p2i [SD96], where n is the number of variables, m is the number of possible
values per variable, p1 is the constraint density (the probability that a constraint ex-
ists between two variables) and p2 is the constraint tightness (the probability that two

4.3. COMBINATORIAL BENCHMARK CIRCUITS 71

variables related by a constraint have incompatible values). The constraint tightness is
not applicable to the circuits because the constraints (clauses) are not all binary. Other
parameters for the ISCAS circuits are given in table 4.2. The estimated constraint den-
sity of the problems decreases when problem size increases1. This suggests that the
problems are hard in a dimension not yet captured by random problems or at least by
their usual numerical characterization. Figure 4.5 shows the graph structure of a small
part of the c6288 circuit (all successors of a particular component). We can observe the
phenomenon of reconvergent fanout, which was already noted by de Kleer [RdKS93]:
Although a value occurs only in a small number of constraints, there are long chains
of constraints, through which nearly all variables in the graph are finally related. For
an algorithm this means that it is easy to find a locally consistent solution but after a
long computation it will eventually turn out that the solution is not globally consis-
tent. Consequently, the circuits are not easily solvable by brute force search alone and
focusing is necessary. Moreover, there is a large number of long propagation paths
making straightforward dependency recording algorithms run out of memory.

Circuit Gates n m p1

c499 202 894 2 0.02
c880 383 1615 2 0.008
c1355 546 2238 2 0.007
c2670 1193 4928 2 0.002
c3540 1669 6377 2 0.002
c5315 2307 9356 2 0.002
c6288 2406 9696 2 0.002
c7552 3512 13582 2 0.001

Table 4.2: Statistical Parameters of the Circuits

4.3.2 Experimental Results

In this section we include experimental results for DRUM–II on the benchmark cir-
cuits. We have run 5 test vectors for each circuit. The running time is given in table
4.3. The times given are elapsed times in seconds on a lightly loaded SUN Ultra-
1/170. They do not include model setup time, which is, however, very short (using a
domain-specific forward chainer for generating the initial model).

Note, that the timing results show a large variation depending on the test vector
used. This effect is striking with respect to the c6288. A reason for this is the different
number of components which can explain the abnormal observation. Table 4.4 shows
the number of propositions (possibly) influencing the abnormal observation for the

1Due to the special structure of the system description the actual constraint density is even lower
than these estimates

72 CHAPTER 4. CIRCUIT–DIAGNOSIS WITH DRUM–II

Circuit Running Time (sec)
t1 t2 t3 t4 t5

c499 0.013 0.036 0.040 0.036 0.013
c880 0.023 0.003 0.028 0.027 0.004
c1355 0.047 0.047 0.046 1.255 0.040
c2670 0.061 0.083 0.222 0.077 0.226
c3540 0.236 0.050 0.750 0.143 1.586
c5315 0.025 0.131 0.051 0.080 0.019
c6288 89.517 0.562 23.788 160.623 0.221
c7552 0.056 2.093 1.598 0.126 2.261

Table 4.3: Running Times of DRUM–II for 5 test vectors

different test vectors of the c6288. In the difficult cases t1 and t4 nearly the whole
circuit influences the abnormal observation. We expect a large variation in running
time for ATMS-based systems, too, though no such results have been published so far.

Circuit t1 t2 t3 t4 t5
c6288 6316 795 2545 5804 375

Table 4.4: Propositions influencing the Abnormal Observation

Circuit DRUM-II de Kleer IMPLODE Williams
Median AAAI91 IJCAI–93 DX–96

c499 0.036 7.9 0.4 4.5
c880 0.023 6.2 0.8 4.0
c1355 0.047 242 1.4 12.3
c2670 0.083 33 3 28.8
c3540 0.236 1545 6 113.3
c5315 0.051 1215 7 61.2
c6288 23.788 – 8 –
c7552 1.598 1028 14 61.5

Table 4.5: Comparison of Running Times

In table 4.5 we compare the median running time of DRUM–II to previous results
from the literature. DRUM–II is always the fastest system except for the c6288 where
IMPLODE is faster. Since however the test vector used is not given in [RdKS93]
it is not clear, whether IMPLODE’s critical reasoning techniques provide still better
focusing on the special structure of the c6288 for all test vectors.

4.4. DISCUSSION 73

4.4 Discussion

In this chapter we have discussed the modeling, simulation (i.e. model generation) and
diagnosis of digital circuits with DRUM–II. We have shown that the efficiency of the
DRUM–II algorithm can be increased dramatically by exploiting the structure of the
device under consideration. While the unfocused DRUM–II needs 30 seconds for the
diagnosis of a 200 gate circuit, the focused variant diagnoses circuits with up to 3500
components in a few seconds. On the circuits from the ISCAS–85 benchmark suite,
which have a reconvergent structure and are therefore hard to solve for model–based
reasoners, DRUM–II is more efficient than all systems reported in the literature.

74 CHAPTER 4. CIRCUIT–DIAGNOSIS WITH DRUM–II

Chapter 5

Model–Based Alarm Correlation with

DRUM–II

In the diagnosis literature, it is often implicitly assumed that technical applications are
best solved with consistency–based diagnosis, while abductive diagnosis is best suited
for medical applications. In this chapter we discuss the application of DRUM–II to
alarm correlation in cellular networks. It turns out that abduction is necessary to allow
the use of an elegant model for this technical domain.

After giving an overview of the application domain, we will describe a
consistency–based model implemented on top of DRUM–II. We assess the correctness
of this model and the performance of its implementation using a library of representa-
tive test cases. Although the consistency–based model shows good performance, it is
unnecessarily complex and only correct for networks with tree topology. We show that
these drawbacks are due to weaknesses of the consistency–based approach to diagno-
sis. Then, we introduce an improved model using spectrum diagnosis, which is more
intuitive and suitable for redundant topologies. We show that this model is efficiently
evaluated by the spectrum diagnosis algorithm in DRUM–II. Preliminary results on
the topics of this chapter have been described in [FNJW97]. In [WTJ+97] we discuss
alternative solutions to the alarm correlation problem.

5.1 Introduction

The growth of current cellular phone networks leads to an increase of administration
costs within the terrestrial network required for relaying data and voice information.
While most components within this net are semi-intelligent and send alarm messages
when errors occur, the abstraction level of these alarm messages is usually too low,
leading to a great number of alarms for any single cause. To avoid overloading the
operators of these networks, alarm correlation systems are required which filter and
condense the incoming alarms to meaningful high-level alarms and diagnoses. To
mirror the dynamic nature of cellular phone networks, such an alarm correlation sys-

75

76 CHAPTER 5. MODEL–BASED ALARM CORRELATION

tem should be easily reconfigurable for different topologies and extensions of net-
work structure as well as for new and additional network elements. Moreover, missing
alarms have to be tolerated without affecting the working of the system.

We give an overview over the problem and over previous solutions, and then de-
scribe an alarm correlation system based on a model–based approach. Our model
describes the alarm behavior of the network elements, alarm propagation over these
elements and the topology of the system. Reconfiguration of the network requires ei-
ther simple updating of topology information or inclusion of additional components.
Knowledge about new types of network elements can be easily integrated into the
knowledge base.

5.2 Application Area

Mobile networks are growing rapidly. Satellite networks are used to reach subscribers
around the world and are mainly used for locations where radio or cable coverage is
difficult to achieve. Mobile radio networks were designed to interconnect land based
vehicles to the terrestrial telephone networks. These networks mainly provide outdoor
coverage, like the paneuropean digital GSM networks. Indoor mobility is achieved by
extensions of cordless telephony using the digital DECT technology.

Alarm handling systems enable the network operator to run the network with min-
imal operating costs. The goal is to collect and interpret alarm messages and failure
indications from the network elements without human intervention. The network has
to adapt to most failures without additional user influence and support repair actions
by supplying the relevant data to the technicians.

In large networks, like the current GSM networks, the alarm vectors supplied by
the network elements tend to flood the workstations of the operators especially in criti-
cal situations like the passage of a thunderstorm front. Heavy rain affects the operation
of microwave links and the electro magnetic power of lightning activates the protection
switches used to safeguard the electronic equipment. Performance of the mobile net-
work is degraded heavily in such situations and operators have difficulties interpreting
the shower of important and less important messages from the network.

Mobile networks can be divided into three parts (see fig.5.1): the mobile station
(MS), the access network with the base station transceivers (BTS) consisting of an-
tennas, radio transceivers, cross connect systems (CC) and microwave (ML) or cable
links (CL) and the base station controller (BSC), and the switched network, which is
connected to the access network by the BSCs. The BSC provides the radio resource
management, which serves the control and selection of appropriate radio channels to
interconnect the MS and the switched network. The switched network interconnects
the MS to the communication partner, which might be another MS or an ISDN sub-
scriber.

Fig.5.2 show the structure of the alarm paths from the network elements (BTS,
ML, CL, BSC) to the operation support system (OSS). The OSS hosts the operators

5.2. APPLICATION AREA 77

Figure 5.1: Structure of the GSM network

and performs all data processing necessary to filter, condense and interpret the alarm
messages. The logical structure of the alarm network is shown in fig.5.2. The physical
structure is different, but not relevant for our purpose. The alarms can be transmitted
via the transmission network, the microwave or cable links, or via a specialized net-
work, the X.25 network. The X.25 network is physically separated from the transmis-
sion network. The advantage of this separation is that a failure in the mobile network
does not influence the alarm propagation. The disadvantage is the additional cost. Es-
pecially in the network elements located downwards from the BSC, communication
and message paths are often combined to save costs.

Figure 5.2: Alarm Network

A mediation device, which is located either in the network element, in the BSC
or the OSS adapts the proprietary interfaces of the different vendors to the standard
interfaces of the OSS. This mediation device can perform filtering and condensation
functions of incoming messages. As the exact specification of this function is usually
not known, the interpretation of alarm messages is further complicated.

78 CHAPTER 5. MODEL–BASED ALARM CORRELATION

5.3 Problem and Previous Solutions

5.3.1 Generation of Alarms

Due to fast and cost-efficient installation of links in base station subsystems, new oper-
ating companies realize most of their connections in the Base Station Subsystem (BSS)
with microwave links. Other links are established with leased lines. The resulting net-
work topology is a tree structure, where the traffic to several base station transceivers is
distributed over a chain of microwaves and leased lines. Figure 5.3 shows an example.
Cross–Connects are not displayed in figure 5.3 because we treat them, once initialized,
as fixed and transparent connections. There is only one transmission path from a BTS
to the related BSC.

Figure 5.3: Configuration of a Base Station Subsystem

Alarm messages of BSC and BTS indicating link faults can be classified into three
groups:

PCM-alarms: Alarms announcing problems with transmission on
links. These alarms belong to failures in the physical layer of the
Open System Interconnection (OSI) reference model (LOSS OF SIGNAL,
AIS RECEIVED, LOSS OF FRAME ALIGNMENT, BIT ERROR RATE >1E-3,
FAREND ALARM 1, PCM FAILURE etc.)

Radio Resource alarms: Messages about failures in the management level of the ra-
dio resource ((Broadcast Channel) BCCH MISSING, AVAILABLE TRAFFIC (chan-
nel ratio below threshold)).

5.3. PROBLEM AND PREVIOUS SOLUTIONS 79

Figure 5.4: Correlation tool in the OSS

Alarms belonging to signaling- and O&M-connections: OSI-layer two and
upper layers (FAILURE IN D-CHANNEL ACTIVATION, LAPD LINK FAILURE,
BTS OMU LINK FAILURE).

Performance of microwave systems is weather dependent. Dense fog, heavy rain or
snow can increase the bit error rate resulting in a connection breakdown. Such a break-
down of a physical connection interrupts voice connections as well as connections of
control messages. As a consequence, up to 100 alarms are generated and transmitted
to the OMC for a single failure. The operators in the OSS face several problems. First,
a lot of alarms are forwarded to the OSS and have to be handled by the staff. More
important alarms have to be separated from less important ones. The identification
of the original failure is necessary as no alarms are available to directly indicate this
failure. Operators are under stress, and reaction time to faults increases. Important
alarms are misinterpreted or overlooked. Observations in the OSS have shown that
alarm patterns belonging to the same fault do not match exactly as the original alarm
patterns are disturbed by noise. This noise can result from other faulty or fluttering
devices or delays in the transmission of alarms to the OSS. Prefiltering mechanisms in
mediation devices and overload (e.g. in the transmitting system or mediation device)
can also generate noise. A tool supporting the operating staff in the task of alarm- and
fault-management is necessary to speed up reaction time to faults. This tool has to
condense alarms, correlate them and precisely diagnose initial causes to achieve better
quality of service. It is connected to the network management platform in the OSS, as
show in Fig. 5.4.

5.3.2 Previous Solutions

A Coding Approach

In the coding approach [Yea96] each link-failure in the managed network is repre-
sented by an alarm vector. The binary alarm vector contains 1’s for generated alarms

80 CHAPTER 5. MODEL–BASED ALARM CORRELATION

and 0’s otherwise. The alarm vectors for all links are collected in a codebook. At
runtime the actual alarm vector is compared to the vectors in the codebook by calcu-
lating the Hamming-distance. The fault with the smallest Hamming-distance to the
current alarm vector is assumed to be the cause of the observed failure. The coding
approach speeds up alarm correlation compared to the usual rule–based approaches.
However, for large networks or multiple faults the codebooks produced can be huge
and the codebooks have to be regenerated after each topology change.

Rule Based Alarm Correlation

Approaches to rule based alarm correlation are known from the literature. In [Bea93]
an expert system for a transport network is shown. [MT95] describes an intelligent
filter for a SDH-network. Problems of rule based approaches are the evaluation of
rules and real time-diagnosis.

Alarm Correlation Using Element Hierarchies

The IMPACT system described in [JW93] uses a hierarchy of network element types
as well as a network configuration model and message classes, which make it more
configurable and modular than other previous systems. However, correlation of alarms
is still done using heuristic rules, no explicit description of alarm behavior and alarm
propagation is used.

A Model–Based Approach to Network Maintenance

The goal of the AIM system developed within the RACE project AIM [KNH91] is
the maintenance of telecommunication networks, for example broadband ISDN net-
works. The system shows the typical characteristics of a model–based system, using
an explicit model of the telecommunication network as well as a model of its behav-
ior. It therefore exhibits the advantages of model–based systems discussed in the next
section, including easy maintenance, reconfiguration and extension. Being developed
six years ago, however, the techniques used (based on a simple ATMS system) do not
scale up well for large networks. Also, the network diagnosed consists of rather unin-
telligent network elements, which do not have the ability to diagnose local faults and
generate alarms for such faults.

The RACE 2 project [SPBL95, dS95] also applied model–based techniques to the
diagnosis and maintenance of a telecommunication network. The goal of this project
was to support the on–line maintenance of heterogeneous networks. In contrast to the
current work, this project focused on telecommunication networks with cable links.

5.4. A CONSISTENCY–BASED MODEL 81

5.4 A Consistency–Based Model

5.4.1 Overview of the Necessary Model

As discussed before, model–based diagnosis needs a model SD of the behavior of the
system to simulate correct and/or faulty behavior and compare its results with the ob-
servations OBS. The set of components COMP considered interesting are the network
elements which can be faulty. The observations we evaluate are alarm messages re-
ceived / generated at the base station controller. We therefore have to model the alarm
behavior as well as the propagation of alarms over network elements and connections
between them to explain the existence or non-existence of alarm messages. This model
has to be modular, i.e. basically describing behavior and propagation information for
each type of network element. Additionally, topology information is included as a set
of facts. In this way, new network elements can be easily added by just changing /
extending the facts representing the topology information. New types of network el-
ements (with possibly different alarm behavior) can be added by adding a description
of the appropriate type together with a description of its alarm behavior.

We model base station transceivers, base station controllers and microwave links as
basic network elements, which are connected by a tree–structured network. Data and
alarm messages are sent through these elements and connections between them. In our
current model, only microwave links may be assumed to be faulty, as this is the most
interesting fault in these networks and is not handled by the current fault management
software. A diagnosis therefore consists of one or more microwave links (considered
faulty). Other faults, e.g. of base station transceivers can be (and actually are) han-
dled by a simple alarm evaluation system, which can use a one-to-one correspondence
between alarm messages generated for these faults and faulty network elements. The
model–based alarm correlation system is used for those more complicated cases, when
there is no one-to-one correspondence.

From the six alarm messages related to the base station controller and ten alarm
messages related to the base transceiver station we only use five of the latter ones, as
the alarms are quite redundant. Moreover, a detailed model for these alarms (involving
the protocols on level 1, 2 and above) is not necessary. It is sufficient to divide these
alarm messages into two classes, farend and bts failure messages.

farend alarms are generated by a component if the components connected to this
component on the down side (further away from the BSC) are not reachable any more.
bts failure messages for a component are generated if this component is not reachable
from a BSC. bts failure messages are generated directly in the BSC, when it detects
(using the existence or non-existence of signals from the level 1 protocol) that the
base station transceivers are not reachable. As an abstract model, we assume that
periodical alive messages are sent by each component to the BSC. If the path from BSC
to component is disrupted by a faulty component, these messages cannot be delivered
to the BSC and the BSC generates the appropriate alarm message. Notice, that such
a description of the alarm behavior does not necessitate a detailed description of the

82 CHAPTER 5. MODEL–BASED ALARM CORRELATION

underlying protocols.
Propagation over connections and base station transceivers is trivial, as we assume

these to be correct all the time. The difficult network elements are the microwave
links. Let us look at the relevant two cases in detail using two examples. First, we get a
bts failure alarm for BTS20. This indicates that BTS20 is not reachable from the BSC.
As poll messages can be lost only between the BSC and the BTS, and only a faulty
microwave link can explain message loss, the three micro wave links between BSC and
BTS20 are possible diagnoses. The following picture shows the model assuming the
second microwave link to be faulty. In this case we predict poll messages for each BTS
located downstream the faulty microwave link, i.e. BTS19, BTS20 and BTS21. We
check the additional predictions for each diagnosis candidate to distinguish between
the possible diagnoses.

BSC
??

BTS17 BTS18

BTS19 BTS20 BTS21

ML16

ML17

ML18 ML19 ML20

The corresponding alarm rule can be phrased like this:

If we have a bts failure alarm message for network element BTSi

Then

the BSC has not received the alive message from component BTSi

On the other hand, assume we get a farend alarm from BTS20. This farend alarm
tells us, that the components located downstream of BTS20 are not reachable. Using
this observation, we can conclude that the faulty microwave link is located downstream
of BTS20, in this case narrowing the set of diagnosis candidates to one.

BSC
?

BTS17 BTS18

BTS19 BTS20 BTS21

ML16

ML17

ML18 ML19 ML20

The corresponding alarm rule can be phrased like this:

If we get an farend alarm from component BTSi

Then

component BTSi has sent a farend signal to the BSC
and this signal has not been discarded on the way to the BSC

5.4.2 Specific Model

The following set of formulas expresses these informal specifications. We use low-
ercase names for variables, uppercase names for constants and capitalized names for
predicates.

5.4. A CONSISTENCY–BASED MODEL 83

First, we specify the signals used as well as their class (BTS FAILURE) alarm or
FAREND alarm. The ALIVE signal is not an alarm, but a status signal from the base
station transceivers.

Class(BTS OMU LINK FAIL;BTS FAILURE SIGNAL):
Class(BCCH MISSING;BTS FAILURE SIGNAL):
Class(AVAILABLE TRAFFIC;BTS FAILURE SIGNAL):
Class(LAPD LINK FAILURE;BTS FAILURE SIGNAL):
Class(FAREND ALARM 1;FAREND SIGNAL):
Class(ALIVE;STATUS SIGNAL):

Similarly, a set of facts describes the network elements and their types.

Type(ML1;ML):Type(ML2;ML):Type(ML3;ML):
Type(ML4;ML):Type(ML5;ML):
: : :
Type(BTS1;BTS):Type(BTS2;BTS):Type(BTS3;BTS):
Type(BTS4;BTS):Type(BTS5;BTS):
: : :

The topology is described by a set of connection facts. We denote the upstream
port of each network element by UP, i.e. the port directed towards the BSC, and the
opposite, downstream port by DOWN. For example, Conn(ML16;UP;BSC;DOWN)
means that the UP port of ML16 is connected to the DOWN port of the BSC). When
the topology of the network is changed, only this set of connection facts and the type
facts described above have to be changed.

Conn(ML16;UP;BSC;DOWN): Conn(BTS17;UP;ML16;DOWN):
Conn(ML18;UP;ML16;DOWN): Conn(ML17;UP;BTS17;DOWN):
Conn(BTS18;UP;ML17;DOWN): : : :

The following formulas describes the alarm behavior as well as the alarm propa-
gation. First, we describe the abstraction from specific bts failure alarms for a net-
work element to an abstract observation, that (at least one) bts failure alarm mes-
sage has been received / generated for a specific network element. The predicate
Alarm(sender;PCM FAILURE) represents the observation, that the alarm message
PCM FAILURE has been received / generated for the network element sender, where
sender can be any network element of type BTS.

8sender

Type(sender;BTS)!
(Bts Failure Alarm(sender)�
Alarm(sender;BTS OMU LINK FAIL)_
Alarm(sender;BCCH MISSING)_
Alarm(sender;AVAILABLE TRAFFIC)_
Alarm(sender;LAPD LINK FAILURE))

(5.1)

84 CHAPTER 5. MODEL–BASED ALARM CORRELATION

We assume that each base station transceiver sends an alive message and this mes-
sage is present at its UP-port. The fact Signal(ne1;UP;ne2;ALIVE) means, that the
signal ALIVE sent from network element ne2 is present at the port UP of network
element ne1.

8sender

Type(sender;BTS)! Signal(sender;UP;sender;ALIVE)
(5.2)

If we have observed a bts failure alarm from a given network element, we can
infer that no alive signal for this network element has been received at the base station
controller BSC.

8sender

Type(sender;BTS)^Bts Failure Alarm(sender)!
:Signal(BSC;DOWN;sender;ALIVE)

(5.3)

If a farend alarm from a network element has been observed, then that element has
sent this farend alarm and it has not been discarded on the way from the sender to the
base station controller.

8signal;sender

Class(signal;FAREND SIGNAL)^Type(sender;BTS)^
Alarm(sender;signal)!
Signal(sender;UP;sender;signal)^:Signal Discarded(sender)

(5.4)

Signals are propagated over connections (into the direction of the base station con-
troller).

8signal;sender;ne1;ne2

Type(sender;BTS)^
(Class(signal;FAREND SIGNAL)_ Class(signal;STATUS SIGNAL))^
Conn(ne1;UP;ne2;DOWN)^
Signal(ne1;UP;sender;signal)!
Signal(ne2;DOWN;sender;signal)

(5.5)

Signals are also propagated over base stations (into the direction of the base station
controller).

8ne;sender

type(ne;BTS)^ type(sender;BTS)^ne 6= sender^
(Class(signal;FAREND SIGNAL)_Class(signal;STATUS SIGNAL))^
Signal(ne;DOWN;sender;signal)!
Signal(ne;UP;sender;signal)

(5.6)

5.4. A CONSISTENCY–BASED MODEL 85

OMC
BTS17ML16

BSC

Database
(limits #Alarms/s)

lost
messages

generates poll-Signal
for components without

alive signal

...

...

Further BTSs

Figure 5.5: Transmission of alarms from BSC to OMC

Signals are also propagated over microwave links. If the microwave link is working
correctly, it propagates a signal just like a connection or a base station transceiver. If
the microwave link is defect, the signal is discarded.

8ne;sender

Type(ne;ML)^Type(sender;BTS)^
(Class(signal;STATUS SIGNAL)_Class(signal;FAREND SIGNAL))^
:Ab(ne)^Signal(ne;DOWN;sender;signal)!
Signal(ne;UP;sender;signal)

(5.7)

8ne;sender

Type(ne;ML)^Type(sender;BS)^
(Class(signal;STATUS SIGNAL)_Class(signal;FAREND SIGNAL))^
Ab(ne)^Signal(ne;DOWN;sender;signal)!
Signal Discarded(sender)

(5.8)

Finally, if a signal is discarded, a bts failure alarm is generated.

8sender

Type(sender;BS)^Signal Discarded(sender)! Bts Failure Alarm(sender)
(5.9)

A further enhancement of this specification of alarm behavior concerns the predic-
tions of each candidate model. In the model described so far all effects are determin-
istic. The model specifies for example, that we have to observe a bts failure alarm for
each component below a faulty microwave link. These predictions are not totally ac-
curate, as filtering mechanisms within the network drop some alarm messages. More-
over, as shown in figure 5.5 some alarms are lost during alarm bursts due to the limited
number of alarms, which the OMC database can record in a given time interval. We
can easily extend our model to include the possibility of such lost alarms by assigning
a probability to such events1. This allows us to tolerate lost alarms, as long as we

1An exact model of these processes would be very complex

86 CHAPTER 5. MODEL–BASED ALARM CORRELATION

have enough other messages indicating the faulty component. If too many alarms are
dropped (meaning that we decrease the amount of evaluable alarm messages), more
diagnosis candidates will be produced.

In our system description, we model the loss of an alarm message as a fault. The
predicate Ab(Transmission;Message) is true, if the alarm message Message is lost.
We extend axiom 5.9 by the possibility that the alarm message is lost.

8sender

Type(sender;BS)^Signal Discarded(sender)!
Bts Failure Alarm(sender)_Ab(Transmission;Bts Failure Alarm(sender))

(5.10)

5.4.3 Results

In this section we report the performance of our model–based approach on a library of
32 representative alarm cases.

The following cases represent a wide range of alarm patterns for the subnetwork
shown in the previous examples (BTS17 to BTS21). Table 5.1 is organized as follows:
The first column shows the number of the test case, the second shows the reason for
the alarm, i.e. the faulty microwave link. The third row shows the diagnosis proposed
by DRUM–2, i.e. the maximally probable diagnosis. In row five the total a priori prob-
ability of the proposed diagnosis is shown. The next row contains the other minimal
diagnoses, if present. Row 7 shows the relative probabilities of the most probable di-
agnosis compared to the runner up, e.g. 10:1 means that the proposed diagnosis is ten
times as likely as the best competitor. Finally, the classification, i.e. correctness of the
proposed diagnosis is denoted.

Due to the heavy traffic caused by defects of microwave links (alarm bursts), the
probability of suppressed or lost bts failure alarms is rather high. For the test cases we
assumed a probability of 0.1 of lost alarm messages and 0.01 for a faulty microwave
link. The probabilities are much lower in reality, but for the purpose of diagnosis the
exact values do not matter. The probabilities are needed only to discriminate between
more plausible diagnoses (assuming less lost messages and faulty microwave links)
and less plausible diagnoses.

In all test cases except one the system identifies the correct diagnosis, either as the
single plausible diagnosis, or as the most probable diagnosis. We comment on the only
exception in the next section.

The running time of our prototype is also very encouraging. Table 5.2 shows the
typical running time of our system for one test case. In the first row we show the
time for the subnetwork used above. The second row shows the running time on the
complete network of a large German city. All times were measured on a SUN Ultra 1
workstation.

5.4. A CONSISTENCY–BASED MODEL 87

5.4.4 Some Case Studies

Let us now examine three of our test cases in more detail to discuss the scope of our
current approach. The first example obeys our first deterministic model as well as the
probabilistic approach:

BSC
BTS17 BTS18

BTS19 BTS20 BTS21

BTS Failure BTS Failure

BTS Failure BTS Failure BTS Failure

ML16

ML17

ML18 ML19 ML20

In this example microwave link ML18 is faulty and error messages are generated
for all base transceiver stations located downstream. Since none of these messages is
lost, the intended diagnosis fAb(ML18)g is found by both the deterministic and the
probabilistic model. In the next example the message from BTS21 is lost:

BSC
BTS17 BTS18

BTS19 BTS20 BTS21

BTS Failure

ML16

ML17

ML18 ML19 ML20

This case is still handled correctly by the probabilistic model, which yields the
intended diagnosis

∆1 = fAb(ML19);Ab(Transmission;Bts Failure Alarm(BTS21)g

because the other minimal diagnoses

∆2 = fAb(ML18);Ab(Transmission;Bts Failure Alarm(BTS19));
Ab(Transmission;Bts Failure Alarm(BTS21))g

and

∆3 = fAb(ML1);Ab(Transmission;Bts Failure Alarm(BTS17));
Ab(Transmission;Bts Failure Alarm(BTS18));
Ab(Transmission;Bts Failure Alarm(BTS19));
Ab(Transmission;Bts Failure Alarm(BTS21))g

are less likely (since they assume more lost messages). Using the most probable
diagnosis approach our system is able to handle 31 out of 32 alarm cases correctly.
In the following case it produces no diagnosis, since all relevant alarm messages were
lost or suppressed.

BSC
BTS17 BTS18

BTS19 BTS20 BTS21

ML16

ML17

ML18 ML19 ML20

This exceptional case could be solved by integrating rules for additional BSC–
specific signals into our model, which are however only present if the first BTS con-
nected to the BSC is faulty.

88 CHAPTER 5. MODEL–BASED ALARM CORRELATION

5.5 An Improved System Description based on Spec-

trum Diagnoses

The consistency–based model discussed in the previous section has the advantage that
it can be evaluated using every consistency-based diagnosis engine. However, by ex-
ploiting the expressiveness of DRUM–II, in particular our implementation of spectrum
diagnoses (see section 3.6.2) we can define a model, which is both more general and
more intuitive.

5.5.1 Limitations of the Consistency–Based Model

Before we introduce the improved model based on spectrum diagnoses, let us first
point out the limitations of using purely consistency-based models. Consider the way
we exploit farend–alarms: If a farend–alarm is received from a component, say BTS20,
we know that all microwave links between BTS20 and the BSC must be working,
because otherwise the signal would not have been transmitted.

BSC
?

BTS17 BTS18

BTS19 BTS20 BTS21

ML16

ML17

ML18 ML19 ML20

Farend-Alarm
received

✔

✔ ✔

?

Unfortunately, an intuitive knowledge base does not lead to this conclusion when
consistency–based reasoning is applied. Suppose we only use the rule

8ne;sender

Type(ne;ML)^Type(sender;BTS)^
(Class(signal;STATUS SIGNAL)_Class(signal;FAREND SIGNAL))^
:Ab(ne)^Signal(ne;DOWN;sender;signal)!
Signal(ne;UP;sender;signal)

(5.11)

for describing the behavior of microwave links, which states that correctly func-
tioning microwave links propagate signals. Then the following scenario would be
consistent:

BSC
?

BTS17 BTS18

BTS19 BTS20 BTS21

ML16

ML17

ML18 ML19 ML20
✔

✔

?

In this counter–intuitive scenario the farend–alarm is lost at the faulty microwave
link ML18, but for some reason it reappears at the upstream port of the microwave
link ML16. Obviously, this scenario cannot be avoided by adding a fault model for

5.5. AN IMPROVED SYSTEM DESCRIPTION 89

microwave links, because the alarm reappears at the upstream port of a correct mi-
crowave link. We could forbid such additional alarms by explicitly postulating that a
signal can only appear at the upstream port of a microwave link, if it was present at
one of its downstream ports:

8ne1;sender;signal

Type(ne1;ML)^Type(sender;BTS)^Signal(ne1;UP;sender;signal)!
(9ne2 (Conn(ne2;UP;ne1;DOWN)^Signal(ne2;UP;sender;signal)))

(5.12)

But this artificial rule ruins the efficiency of the system. If a signal is observed
somewhere in the network the system non–deterministically has to guess where it came
from, to satisfy this rule.

In our system description from the previous section we avoided both the unintuitive
scenarios and the computation overhead of the above rule by the Signal Discarded–
mechanism. However it is easy to see that this mechanism only works for a tree topol-
ogy. Suppose there are two parallel transmission paths for a message. If one of these
is not working due to a microwave link failure the system description predicts that
the message is discarded. This is however wrong, since it can be transmitted over the
correct parallel transmission path. When networks with redundant message paths are
considered, a more general solution is needed.

The disadvantages of all consistency–based solutions to the interpretation of
farend–alarms indicate, that consistency–based reasoning is too weak to solve this
problem elegantly. On the contrary, if we postulate that received farend–alarms are ex-
plained abductively, we can use the simple rule 5.11 and no counter–intuitive scenarios
will appear. The reason is, that the counter–intuitive scenarios are consistent with the
alarm, but they do not explain how the alarm was transmitted.

5.5.2 System Description

We can use a very simple and intuitive model if we explain the farend–alarms abduc-
tively and use consistency–based reasoning for the bts failure alarms.

First we use the same rule as in the old model to denote that a Bts Failure Alarm

is present if one of the poll–alarms has been observed.

8sender

Type(sender;BTS)!
(Bts Failure Alarm(sender)�
Alarm(sender;BTS OMU LINK FAIL)_
Alarm(sender;BCCH MISSING)_
Alarm(sender;AVAILABLE TRAFFIC)_
Alarm(sender;LAPD LINK FAILURE))

(5.13)

Also, we assume that all components generate ALIV E–messages.

90 CHAPTER 5. MODEL–BASED ALARM CORRELATION

8sender

Type(sender;BTS)! Signal(sender;UP;sender;ALIVE)
(5.14)

If the BSC receives an alive–message from a component, it does not generate an
alarm for this component.

8sender

Type(sender;BTS)^Signal(BSC;DOWN;sender;ALIVE)!
(:Bts Failure Alarm(sender)^
:Ab(Transmission;Bts Failure Alarm(sender)))

(5.15)

A bts failure alarm is displayed for a component sender if the BSC has not re-
ceived an alive message from sender and if the bts failure alarm was not lost during
transmission from BSC to OMC (:Ab(Transmission;Bts Failure Alarm(sender))).

8sender

Type(sender;BTS)^:Signal(BSC;DOWN;sender;ALIVE)^
:Ab(Transmission;Bts Failure Alarm(sender))!
Bts Failure Alarm(sender)

(5.16)

On the other hand, if the alarm message gets lost during transmission to the OMC,
no alarm is generated.

8sender

Type(sender;BTS)^Ab(Transmission;Bts Failure Alarm(sender))!
:Bts Failure Alarm(sender)

(5.17)

Farend alarms are displayed, if they are received by the BSC and they do not get
lost during the transmission to the OMC.

8sender

Signal(BSC;DOWN;sender;BCF BIE FAREND)^
:Ab(Transmission;Far End Alarm(sender))!
Alarm(sender;BCF BIE FAREND)

(5.18)

The generation of farend alarms is now very simple. A component generates a
farend–alarm, if its downstream port is connected to a faulty microwave link.

8ne1;ne2
Type(ne1;ML)^Type(ne2;BTS)^Conn(ne1;UP;ne2;DOWN)^
Ab(ne1)! Signal(ne2;UP;ne2;BCF BIE FAREND)

(5.19)

5.5. AN IMPROVED SYSTEM DESCRIPTION 91

Now we come to the propagation axioms. As in the consistency–based model, we
assume that the connections (cable links) never fail. Thus, if a signal arrives at the
downstream side of a connection it is propagated to the upstream side.

8signal;sender;ne1;ne2

Type(sender;BTS)^
(Class(signal;FAREND SIGNAL)_ Class(signal;STATUS SIGNAL))^
Conn(ne1;UP;ne2;DOWN)^
Signal(ne1;UP;sender;signal)!
Signal(ne2;DOWN;sender;signal)

(5.20)

Moreover, base transceiver stations propagate signals in the direction of the base
station controller.

8ne;sender

type(ne;BTS)^ type(sender;BTS)^ne 6= sender^
(Class(signal;FAREND SIGNAL)_Class(signal;STATUS SIGNAL))^
Signal(ne;DOWN;sender;signal)!
Signal(ne;UP;sender;signal)

(5.21)

Finally, signals are also propagated over microwave links. We only specify that a
correctly functioning microwave link will forward a signal in the direction of the base
station controller.

8ne;sender

Type(ne;ML)^Type(sender;BTS)^
(Class(signal;STATUS SIGNAL)_Class(signal;FAREND SIGNAL))^
:Ab(ne)^Signal(ne;DOWN;sender;signal)!
Signal(ne;UP;sender;signal)

(5.22)

Due to the greater discrimination power of spectrum diagnosis, no further informa-
tion - like a fault model for microwave links - is needed.

5.5.3 Computing Diagnoses

Before computing spectrum diagnoses one has to decide, which part of the observa-
tions should be entailed logically. We want to logically entail the subset of the obser-
vations, which is due to messages arriving at the base station controller. Thus, we have
to explain far end alarms, which are caused by farend messages arriving at the base
station controller.

The reason why we want the system to explain farend messages abductively is
that we cannot prevent the assumption of unnecessary alive messages by consistency–
based reasoning (see section 5.5.1). For the same reason we want the system to explain
the absence of bts failure messages, too.

92 CHAPTER 5. MODEL–BASED ALARM CORRELATION

BSC
BTS17 BTS18

BTS19 BTS20 BTS21

ML16

ML17

ML18 ML19 ML20

In the above scenario we would expect bts failure alarms from all base transceiver
stations. Suppose, the alarm from BTS18 got lost during transmission to the OMC.
In our new system description, it is consistent that the alive message from BTS18 has
arrived at the BSC although ML16 is not working and thus no alarm message was
generated. However, if we force the system to explain the absence of the bts failure
alarm, it can no longer assume that the alive message has arrived, because there is
no causal explanation for its presence. Thus, the system must assume that the alive
message did not arrive, and an alarm was generated in the BSC which was lost during
the transmission to the OMC. This is our preferred explanation and we will see later
in this section that it enables discrimination among several competing diagnoses. To
summarize, we have:

Obs+ = fAlarm(c;BCF BIE FAREND)j
Alarm(c;BCF BIE FAREND) 2 Obsg

[f:Bts Failure Alarm(c)j no poll alarm for c is contained in Obsg

We will now show the steps executed during the computation of spectrum diag-
noses using an example we already solved using the consistency–based model in sec-
tion 5.4.4.

BSC
BTS17 BTS18

BTS19 BTS20 BTS21

BTS Failure

ML16

ML17

ML18 ML19 ML20

The observations in this example are

Obs := fAlarm(BTS19;BCF BIE FAREND);
Alarm(BTS20;BCCH MISSING);
:Bts Failure Alarm(BTS17);:Bts Failure Alarm(BTS18);
:Bts Failure Alarm(BTS19);:Bts Failure Alarm(BTS20);g

Obs+ := ObsnfAlarm(BTS20;BCCH MISSING)g

Let us now study the computation of spectrum diagnosis with algorithm 3.46. We
start with a consistent model M of the network. In this model we have observed no
alarms and all base transceiver station have sent alive messages, which have arrived at
the base station controller. Now we revise this model with the observations Obs. We
obtain three models:

5.5. AN IMPROVED SYSTEM DESCRIPTION 93

M1 := fAb(ML16);Alarm(BTS20;BCCH MISSING);
Alarm(BTS19;BCF BIE FAREND);
Signal(BSC1;DOWN;BTS17;ALIVE);
Signal(BSC1;DOWN;BTS18;ALIVE);
Signal(BSC1;DOWN;BTS19;ALIVE);
Signal(BSC1;DOWN;BTS21;ALIVE); : : :g

M2 := fAb(ML18);Alarm(BTS20;BCCH MISSING);
Alarm(BTS19;BCF BIE FAREND);
Signal(BSC1;DOWN;BTS17;ALIVE);
Signal(BSC1;DOWN;BTS18;ALIVE);
Signal(BSC1;DOWN;BTS19;ALIVE);
Signal(BSC1;DOWN;BTS21;ALIVE); : : :g

M3 := fAb(ML19);Alarm(BTS20;BCCH MISSING);
Alarm(BTS19;BCF BIE FAREND);
Signal(BSC1;DOWN;BTS17;ALIVE);
Signal(BSC1;DOWN;BTS18;ALIVE);
Signal(BSC1;DOWN;BTS19;ALIVE);
Signal(BSC1;DOWN;BTS21;ALIVE); : : :g

All three models are eliminated in the following filtering step, because they all
assume, that alive message have reached the base station controller although there
was a faulty microwave link on the path, e.g. in all three models the alarm from BTS21
should not have reached the base station controller. Algorithm 3.46 now adds formulas
to the system description, which rule out these three models.

SD0 := SD

[

8>>>><
>>>>:

W

Type(c;ML)
c 6= ML16

Ab(c)_
W

Type(c;BT S)
Msg 2 fBts Failure Alarm(c);

Far End Alarm(c)g

Ab(Transmission;Msg)

9>>>>=
>>>>;

[

8>>>><
>>>>:

W

Type(c;ML)
c 6= ML18

Ab(c)_
W

Type(c;BT S)
Msg 2 fBts Failure Alarm(c);

Far End Alarm(c)g

Ab(Transmission;Msg)

9>>>>=
>>>>;

[

8>>>><
>>>>:

W

Type(c;ML)
c 6= ML19

Ab(c)_
W

Type(c;BT S)
Msg 2 fBts Failure Alarm(c);

Far End Alarm(c)g

Ab(Transmission;Msg)

9>>>>=
>>>>;

94 CHAPTER 5. MODEL–BASED ALARM CORRELATION

Note, that lost alarm messages also count as failures, thus they are taken into ac-
count in the above addition of conflicts to the system description. The next consistency
based diagnosis step with the new system description yields 16 diagnoses. Of these 16
diagnoses only one remains after the subsequent filtering step:

M := fAb(ML19);Alarm(BTS20;BCCH MISSING);
Alarm(BTS19;BCF BIE FAREND);
Ab(Transmission;Bts Failure Alarm(BTS21));
Signal(BSC1;DOWN;BTS17;ALIVE);
Signal(BSC1;DOWN;BTS18;ALIVE);
Signal(BSC1;DOWN;BTS19;ALIVE); : : :g

This model corresponds to the single most probable spectrum diagnosis. All alive
messages at the base station controller are explained. The lost alive message from
BTS21 is explained by the atom Ab(Transmission;Bts Failure Alarm(BTS21)). Al-
though the system has to consider more diagnoses than in the consistency–based case
the running time is still short, because the model is much simpler and thus each revi-
sion consists of very few steps. In the example above the overall running time for all
diagnostic steps is 1.5s.

5.6 Discussion

In cellular phone networks faults of microwave links are likely to cause alarm showers,
which put the system operator to a hard test. Alarm correlation tools are needed, which
support the operators by identifying the cause of a large number of alarm messages.

In this chapter have presented the first fully model–based and scalable approach
to alarm correlation, which is solely based on simulation of the alarm propagation
behavior of the network. The main features of our solution are: (1) A very small and
maintainable system description, that separates structural from behavioral components
and thus makes changes of the network topology easy. (2) A propagation model which
allows to correctly diagnose unforeseen errors as well as multiple faults. (3) Failure
probability estimates, which lead to correct diagnoses even on noisy data, where alarm
messages have been lost or suppressed.

In comparison to the circuit diagnosis problem we have studied in chapter 4 it is
interesting to see that modeling the network is much more difficult and an elegant
solution is only possible by the use of advanced diagnostic concepts. In our view
this is due to the fact that the circuit description is fully deterministic while a natural
description of the network describes only what happens to the different signals and
does not provide a model of the microwave links as a function of all their parameters
and inputs.

Due to its high accuracy and short running time our prototype is already suitable
to assist the operator in real time.

5.6. DISCUSSION 95

No. Fault Diagnosis a priori Competitors Relative Class.
Probability Probability

1 ML16 ML16 10�2 – n.a. OK
2 ML16 ML16 10�2 – n.a. OK
3 ML16 ML16 10�2 – n.a. OK
4 ML16 ML16 10�3 – n.a. OK
5 ML16 ML16 10�3 – n.a. OK

6 ML16 ML16 10�4 – n.a. OK
7 ML16 ML16 10�3 – n.a. OK
8 ML16 – – – – BAD
9 ML17 ML17 10�2 ML16 10000 : 1 OK

10 ML17 ML17 10�2 ML16 10000 : 1 OK

11 ML17 ML17 10�2 ML16 10000 : 1 OK
12 ML17 ML17 10�2 ML16 10000 : 1 OK
13 ML17 ML17 10�2 ML16 10000 : 1 OK
14 ML18 ML18 10�4 ML16 100 : 1 OK
15 ML18 ML18 10�4 ML16 100 : 1 OK

16 ML18 ML18 10�4 ML16 100 : 1 OK
17 ML18 ML18 10�4 ML16 100 : 1 OK
18 ML18 ML18 10�2 ML16 100 : 1 OK
19 ML18 ML18 10�2 ML16 100 : 1 OK
20 ML19 ML19 10�3 ML18, ML16 10 : 1 OK

21 ML19 ML19 10�3 – n.a. OK
22 ML19 ML19 10�3 ML18, ML16 10 : 1 OK
23 ML19 ML19 10�3 ML18, ML16 10 : 1 OK
24 ML19 ML19 10�3 ML18, ML16 10 : 1 OK
25 ML19 ML19 10�2 ML18, ML16 10 : 1 OK

26 ML19 ML19 10�2 ML18, ML16 10 : 1 OK
27 ML19 ML19 10�2 ML18, ML16 10 : 1 OK
28 ML20 ML20 10�3 ML19, ML18 10 : 1 OK
29 ML20 ML20 10�3 ML19, ML18 10 : 1 OK
30 ML20 ML20 10�3 ML19, ML18 10 : 1 OK

31 ML20 ML20 10�3 ML19, ML18 10 : 1 OK
32 ML20 ML20 10�3 ML19, ML18 10 : 1 OK

Table 5.1: Results of our system on a set of test cases

Network Number of BTSs Number of MLs Time

One Subnetwork 5 5 0.8s
A City Network 22 20 2.5s

Table 5.2: Running time of our system

96 CHAPTER 5. MODEL–BASED ALARM CORRELATION

Chapter 6

Tableaux for Diagnosis

The DRUM–II algorithm computes diagnoses by starting with a model of the correct
behavior of an artifact and incrementally changing this model to reflect the symptoms
observed. The use of a correct initial model is a key element of the DRUM–II algo-
rithm because it focuses the search for diagnoses. In the following we will demonstrate
that initial models can also be exploited using a standard theorem prover. The use of
an initial model makes the tableau prover NIHIL capable of solving realistic diagnosis
problems without further optimizations.

This chapter, which builds upon our previous work in [BFFN97a] and [BFFN97b],
starts with a summary of the hyper tableau calculus, the formalism underlying NI-
HIL. Next, we discuss the benefits of using initial models. We will then define two
approaches for integrating initial models into the hyper tableau calculus. Finally, we
apply the focused theorem prover to the ISCAS–85 benchmark circuits.

6.1 Introduction

We will show how to integrate the idea to use initial models from our DRUM–II system
into an implementation of the hyper tableaux calculus presented in [BFN96]. We refer
to the result as Semantic Hyper Tableaux. The resulting system is comparable in ef-
ficiency to specialized systems for model–based diagnosis, although it currently lacks
the ability of DRUM–II to exploit static dependencies. We know of no other general
purpose theorem prover which has been used to solve large diagnosis problems.

The use of semantics within theorem proving procedures has been proposed before.
There is the well-known concept of semantic resolution ([CL73]) and, more recently,
there are approaches by Plaisted ([CP94] and Ganzinger ([GMW96]). Plaisted is argu-
ing strongly for the need of giving semantic information for controlling the generation
of clauses in his instance-based proof procedures, like hyper-linking. Ganzinger and
his co-workers are presenting an approach where orderings are used to construct mod-
els of clause sets. Indeed, they even relate their approach to SATCHMO-like theorem
proving, which is an instance of the hyper tableau calculus. However, the semantics

97

98 CHAPTER 6. TABLEAUX FOR DIAGNOSIS

has to be given by orderings or alternatively, by Horn subsets of the set of clauses.
In cases where the initially given semantics is not compatible with orderings or is not
expressible by Horn subsets it is unclear how to proceed. We will show, that in the case
of diagnosis an initial semantics, which is naturally given by a model of the correct be-
havior of the device under consideration, can improve performance significantly. Our
proof procedure does not impose any restrictions on these initial models.

6.2 Hyper Tableaux Calculus

In [BFN96] Baumgartner, Furbach and Niemelä introduced a variant of clausal normal
form tableaux called “hyper tableaux”. Hyper tableaux keep many desirable features of
analytic tableaux (structure of proofs, reading off models in special cases) while taking
advantage of central ideas from (positive) hyper resolution. We refer the reader to
[BFN96] for a detailed discussion. In order to make the present chapter self-contained
we will recall a simplified ground version of the calculus.

From now on S always denotes a finite ground clause set, and Σ denotes its signa-
ture, i.e. the set of all predicate symbols occurring in it. A (clausal) tableau T for a
clause set S is an ordered tree t where the nodes are labeled with literals and in which,
for every successor sequence N1; : : : ;Nn in t labeled with literals K1; : : : ;Kn, respec-
tively, there is a clause fK1; : : : ;Kng 2 S . In the following we will often identify nodes
by their labels.

A Branch of a tableau T is a sequence N0; : : : ;Nn (n� 0) of literals labeling nodes
in T such that N0 is the root of T , Ni is the immediate predecessor of Ni+1 for 0 �
i < n, and Nn is a leaf of T . A branch b = N0; : : : ;Nn is called regular iff Ni 6= N j for
1 � i; j � n and i 6= j, otherwise it is called irregular. A tableau is regular iff every
of its branches is regular, otherwise it is irregular. The set of branch literals of b is
lit(b) = fN1; : : : ;Nng. We find it convenient to use a branch in place where a literal
set is required, and mean its branch literals. For instance, we will write expressions
like A 2 b instead of A 2 lit(b). In order to memorize the fact that a branch contains a
contradiction, we allow to label a branch as either open or closed. A tableau is closed

if each of its branches is closed, otherwise it is open. A selection function is a total
function f which maps an open tableau to one of its open branches. If f (T) = b we
also say that b is selected in T by f . Fortunately, there is no restriction on which
selection function to use. For instance, one can use a selection function which always
selects the “leftmost” branch.

Definition 6.1 Hyper tableau

A literal set is called inconsistent iff it contains a pair of complementary literals,

otherwise it is called consistent. Hyper tableaux for a clause set S and a selection

function f are inductively defined as follows:

Initialization step: The empty tree, consisting of the root node only, is a hyper tableau

for S . Its single branch is marked as “open”.

6.2. HYPER TABLEAUX CALCULUS 99

Hyper extension step: If

1. T is an open hyper tableau for S , f (T) = b (i.e. b is the open branch selected in

T by f), and

2. C = A1; : : : ;Am B1; : : : ;Bn is a clause from S (m� 0, n� 0), called extending
clause in this context, and

3. fB1; : : : ;Bng � b (referred to as hyper condition)

then the tree T 0 is a hyper tableau for S , where T 0 is obtained from T by extension of
b by C: replace b in T by the new branches

(b;A1) : : : ;(b;Am);(b;:B1) : : : ;(b;:Bn)

and then mark every inconsistent new branch as “closed”, and the other new branches

as “open”.

We will write the fact that T 0 can be obtained from T by a hyper extension in the

way defined as T `b;C T 0, and say that C is applicable to b (or T).

We say that a branch b is finished iff it is either closed, or else whenever C is

applicable to b, then extension of b by C yields some irregular new branch.

The hyper condition of an extension expresses that all body literals have to be satisfied
by the branch to be extended. This similarity to hyper resolution [Rob65] coined the
name “hyper tableaux”. From now on we only consider regular hyper tableaux. This
restriction guarantees that for finite (ground) clause sets no branch can be extended
infinitely often. This property is essential for the termination of the proof procedure.

Definition 6.2 Branch Semantics

For a set of propositions Σ we represent an interpretation I as the set fA 2 Σj I(A) =
trueg. Minimality of interpretations is defined via set–inclusion.

Let b be a consistent branch within a tableau. The branch b is mapped to the

interpretation [[b]]Σ := lib(b)+, where lit(b)+ := fA 2 lit(b)jA is a positive literalg.
Usually we write [[b]] instead of [[b]]Σ and let Σ be given by the context.

A hyper tableaux derivation is a sequence of tableaux, constructed by extension
steps.

Definition 6.3 Hyper Tableaux Derivation

Let S be a finite clause set, called the set of input clauses, and let f be a selection

function. A (possible infinite) sequence T1; : : : ;Tn; : : : of hyper tableaux for S is called

a hyper tableaux derivation from S (or simply derivation) iff T1 is obtained by an

initialization step, and for i > 1, Ti�1 `bi�1;Ci�1
Ti for some clause Ci�1 2 S . This is

also written as T1 `b1;C1 T2 � � �Tn `bn;Cn
Tn+1 � � � : A hyper derivation is called regular

iff every tableau in the derivation is regular, otherwise it is irregular. A hyper tableaux

derivation is called a hyper tableaux refutation if it contains a closed tableau.

A regular, finite hyper tableaux derivation from S of the given form is fair iff it is a

refutation or otherwise some open branch in the concluding tableau Tn is finished.

100 CHAPTER 6. TABLEAUX FOR DIAGNOSIS

The restriction to regular derivations is essential to guarantee that only finite deriva-
tions are possible. This holds immediately, because by König’s Lemma infinite deriva-
tions are only possible if at least one branch is extended infinitely often. This however
is impossible with a finite Σ (which we always assume finite, due to finite S) and the
restriction to have at most one occurrence of a literal in a branch.

For fair derivations, which end in a tableau with finished open branch b, the central
property is that [[b]] is a model for the given clause set S . In other words, completeness
holds. This is an instance of a more general result in [BFN96]. To apply hyper tableaux
to the diagnosis task we additionally need the following completeness result.

Theorem 6.4 Model Completeness of Hyper Tableaux.

Let T be a hyper tableau for S , such that every open branch is finished. Then, for

every minimal model I of S there is an open branch b in T such that I = [[b]].

Proof: If no minimal model for S exists, then the theorem trivially holds. Otherwise,
let I be a minimal model for S . In a first step we show that there is an open branch b

such that I � [[b]]. It trivially holds that

S[I[Ī is satisfiable; (6.1)

where Ī := ΣnI, and for a set M: :M := f:AjA 2 Mg. Because of the minimality
of I we can show that 6.1 is equivalent to S [:Ī j= I. This holds, iff

S [:Ī[f
_

A2I

:Ag is unsatisfiable. (6.2)

Hence, by refutational completeness of hyper tableaux there is a closed hyper
tableau T 0 for this clause set. Further, by 6.1, the subset S [:Ī is satisfiable. Hence,
for the construction of T 0 the clause

W
A2I:A must be used for an extension step, say at

branch b. But, by definition of the hyper extension step this is possible only if the com-
plementary literals are on branch b, i.e. I � lit(b)+. We can omit from T 0 all extension
steps with

W
A2I:A, as well as all extension steps with negative unit clauses :Ī. The

result is an open hyper tableau for S alone. Now, either the branch b is finished, and
the theorem is proved, or otherwise T can be repeatedly extended so that at least one
open finished branch b00 with lit(b)� lit(b00) comes up. Reason: otherwise every such
extension b00 of b would be closed, meaning that we could find a closed hyper tableau
for S [:Ī alone, which by soundness of hyper tableau contradicts the satisfiability of
S [:Ī. Thus, b00 is the desired branch with I � [[b00]]. This concludes the first step of
the proof.

Next, we show that for some branch b in T with I � [[b]] we even have I = [[b]].
Suppose, to the contrary, for every branch b with I � [[b]] we have I � [[b]]. That is,
every such branch b contains a literal A with A 62 I. But then A 2 Ī. Hence b can be
closed with :A 2 :Ī. If this is done for every such branch b, we can find a closed
hyper tableaux for S [:Ī alone, which, by soundness of hyper tableaux contradicts
the satisfiability of S [:Ī. Hence, I = [[b]] for some branch b in T . Q.E.D.

6.2. HYPER TABLEAUX CALCULUS 101

Before we discuss the integration of the initial model technique into hyper tableaux,
let us study a derivation for a small circuit diagnosis problem.

=1

[0]

[0]

[0]

1

1

Inv2

Inv1

Or1

Figure 6.1: A Simple Fault Scenario

Example 6.5 Hyper Tableau Derivation

We will use the circuit in figure 6.1 as our running example. It can be described by

the following clause set.

Or1 : High(Or1;O)! High(Or1; I1)_High(Or1; I2)_Ab(Or1)1

High(Or1; I1)! High(Or1;O1)_Ab(Or1)
High(Or1; I2)! High(Or1;O1)_Ab(Or1)

Inv1 : High(Inv1; I)^High(Inv1;O)! Ab(Inv1)
High(Inv1; I)_High(Inv1;O)_Ab(Inv1)

Inv2 : High(Inv2; I)^High(Inv2;O)! Ab(Inv2)
High(Inv2; I)_High(Inv2;O)_Ab(Inv2)

Conn1 : High(Inv1;O)! High(Or1; I1)
High(Or1; I1)! High(Inv1;O)

Conn2 : High(Inv2;O)! High(Or1; I2)
High(Or1; I2)! High(Inv2;O)

ObsIn : High(Inv1; I)
High(Inv2; I)

ObsOut : High(Or1;O)
High(Inv1; I)
High(Inv2; I)

Given the input observation ObsIn the above clause set predicts the following

model for the correctly functioning circuit.

I0 = f High(Inv1;O);High(Inv2;O);
High(Or1; I1);High(Or1; I2);High(Or1;O)g

This model will later serve as the initial interpretation. Figure 6.2 contains a hyper

tableaux derivation.

102 CHAPTER 6. TABLEAUX FOR DIAGNOSIS

High(Or1; I1)

Ab(Or1) High(Or1;O)

Ab(Inv2) High(Inv2; I) High(Inv2;O)

High(Or1; I2)

*

*

*

Ab(Inv1) High(Inv1; I) High(Inv1;O)

Figure 6.2: Hyper derivation.

In principle it is sufficient to compute models in order to solve the diagnosis task.
In the derivation from figure 6.2 there are three open branches, each corresponding to
a partial model. The rightmost branch is highlighted, because this model depicts an
interesting aspect: remember, that a subset of the clauses stems from the description of
the system under investigation. SD := fOr1; Inv1; Inv2;Conn1;Conn2g is the system
description. The highlighted model can be understood as an attempt to construct a
model for the whole clause set, without assuming unnecessary Ab-predicates. Only for
making the clauses from Or1 true it is necessary to include Ab(Or1) into the model,
because High(Or1;O) cannot be assumed, since this contradicts the observation.

In order to guide the generation of models it is straightforward to use the knowledge
of the clause set, i.e. to start with a model of the correct behavior of the device SD and
to revise this assumption only if really necessary. This idea of a “semantically guided”
model generation is a central idea of the DRUM–II system.

6.3 Lessons from DRUM–II

In order to make the generation of models efficient enough for problems of realis-
tic size like the ISCAS–85 benchmark circuits, we exploit the “semantically guided”
model generation of the DRUM-II system. As we already discussed in chapter 3 the ba-
sic idea of DRUM–II is to start with a model of the correct behavior of the device under
consideration, i.e. with an interpretation I0, such that I0 j= SD[f:Ab(c)jc 2Compg.
Then the system description SD is augmented by an observation of abnormal behavior
Obs, such that the assumption that all components are working correctly is no longer
valid. Thus, I0 is no model of SD[Obs, however it is used to guide the search for
models of SD[Obs.

Consider the circuit from figure 6.3, which is an extension of our running example
in figure 6.1. We observe that the output of the or–gate Or1 is wrong. The DRUM–II

6.3. LESSONS FROM DRUM–II 103

=

=

=

[0]
1

Inv0

[0]
1

[0]
1

Inv2

[0]
1

1

1
[0]

Or1

1

Inv1

Inv3

Or0

Or2

[1]

[1]

Figure 6.3: An example for the focusing effect of the initial model

algorithm starts diagnosis with a model of the correct behavior.

M := fHigh(Inv0;O);High(Inv1;O);High(Inv2;O);High(Inv3;O);
High(Or0; I1);High(Or0; I2);High(Or0;O);
High(Or1; I1);High(Or1; I2);High(Or1;O);
High(Or2; I1);High(Or2; I2);High(Or2;O)g

Then it inserts the output observations into this model. The symptom
:High(Or1;O), i.e. the low voltage observed at the output of the gate Or1 contradicts
the correct behavior of the or–gate, in particular the following two clauses (compare
with example 6.5):

High(Or1; I1)! Ab(Or1)_High(Or1;O) and
High(Or1; I2)! Ab(Or1)_High(Or1;O)

Assuming Ab(Or1) makes both clauses consistent again, yielding the diagno-
sis fAb(Or1)g. The second possibility is to change the outputs of both inverters.
Since the inputs of the inverters are observations, this can only be achieved by as-
suming that both inverters are abnormal. This yields the second minimal diagnosis
fAb(Inv1);Ab(Inv2)g.

DRUM–II has never considers any of the components Inv0, Or0, Inv3, or Or2
during the search for diagnoses. This is the effect of the initial model. Since the
observations did not conflict with the values assumed for the components in the correct
model, DRUM–II never considered changing these values.

104 CHAPTER 6. TABLEAUX FOR DIAGNOSIS

Note, that the benefit gained by using an initial model is more than saving the com-
putation of the expected output values of the additional components. The computation
of the initial model is just one deterministic simulation of the circuit under the as-
sumption that all components are working. It is obvious that an uninformed procedure
would have to explore several useless alternatives during the search for models, i.e.
assume that Inv0, Or0, Inv3, or Or2 are faulty. In fact, it has been shown in [NG94]
that the use of an initial model leads to a constant diagnosis time for a sequence of n

full adders, whereas the diagnosis time of uninformed algorithms is quadratic in n.

6.4 Formalizing the Diagnosis Task with Semantic Hy-

per Tableaux

In this section we discuss how to incorporate initial interpretations into the calculus.
Our first technique by cuts should be understood as the semantics of the approach;

an efficient implementation by a compilation technique is presented afterwards.

6.4.1 Initial Interpretations via Cuts

The use of an initial interpretation can be approximated in the hyper tableau calculus
by the introduction of an additional inference rule, the atomic cut rule.

Definition 6.6 The inference rule Atomic cut (with atom A) is given by: if T is an

open hyper tableau for S , f (T) = b (i.e. b is selected in T by f) where b is an open

branch, then the literal tree T 0 is a hyper tableau for S , where T 0 is obtained from T

by extension of b by A_:A (cf. Def. 6.1).

Note that in regular tableaux it cannot occur that a cut with atom A is applied, if
either A or :A is contained on the branch. As a consequence it is impossible to use the
“same cut” twice on a branch.

We approximate initial interpretations by applying atomic cuts at the beginning of
each hyper tableau:

Definition 6.7 An initial tableau for an interpretation I0 is given by a regular tableau

which is constructed by a applying atomic cuts with atoms from I0 as long as possible.

The branches of an initial tableau for an interpretation I0 obviously consist of all
interpretations with atoms from I0. A part of the initial tableau for the initial inter-
pretation I0 given at the end of example 6.5 is depicted in Figure 6.4.1. Note that the
highlighted branch corresponds to the highlighted part in Figure 6.2. If this branch
is extended in successive hyper extension steps, the diagnosis Ab(Or1), which was
contained in the model from Figure 6.2 can be derived as well.

Note that the cuts introduce negative literals into a branch. The Definition 6.2 of the
branch semantics applies to the calculus with cut as well: the interpretation associated

6.4. FORMALIZING THE DIAGNOSIS TASK 105

High(Inv1;0)

High(Inv2;0) :High(Inv2;0)

:High(Or1;0)High(Or1;0)

High(Or1; I1) :High(Or1; I1)

:High(Inv1;0)

Figure 6.4: Initial tableau.

with a branch assigns true to an atom if it occurs positive on the branch, and a negated
atom is interpreted as false, just as all atoms which are not on the branch.

In the following we take an initial tableau as the initialization step of a hyper
tableaux construction. Since this initial tableau represents semantics, we call tableaux
from such a derivation semantic hyper tableaux.

Definition 6.8 Semantic Hyper Tableau – SHT

A semantic hyper tableau for I0 and S is a hyper tableau which is generated according

to Definition 6.1, except that the empty tableau in the initialization step is replaced by

an initial tableau for I0.

It is easy to derive an open tableau starting from the initial tableau for I0 in Fig-
ure 6.4.1, such that it contains the model from Figure 6.2. The model completeness of
semantic hyper tableaux follows directly from theorem 6.4.

Theorem 6.9 Model Completeness of SHT

Let T be a semantic hyper tableaux for a set of clauses S and an interpretation I0, such

that every open branch is finished. Then, for every minimal model I of S there is an

open branch b in T such that I = [[b]].

6.4.2 Initial Interpretations via Renaming

The “semantical” account for initial interpretations defined in the previous section is
not suitable for solving realistic examples. This is because all the 2n� 1 possible
deviations from the initial interpretation will have to be investigated. In this section
we introduce a compilation technique which implements the deviation from the initial
interpretation only by need.

Assume we have an initial interpretation I0 = fag and a clause set which contains
b and c a^b. By the only applicable atomic cut we get the initial tableau with
two branches, namely fag and f:ag. The first branch can be extended twice by an
hyper extension step, yielding fa;b;cg. The second branch can be extended towards
f:a;bg. No more extension step is applicable to this tableau. Let Tcut be this tableau.

106 CHAPTER 6. TABLEAUX FOR DIAGNOSIS

Let us now transform the clause set with respect to I0, such that every atom from
I0 occuring in a clause is shifted to the other side of the symbol and complemented.
In our example we get the clause c_:a b; the fact b remains, because b is not in
I0. Using b we construct a tableau consisting of the single branch fbg, which can be
extended in an successive hyper extension step by using the renamed clause. We get
a tableau consisting of two branches fb;cg and fb;:ag. Let T be that tableau. Now,
let us interpret a branch in T as usual, except that we set an atom from I0 to true if
its negation is not contained in the branch. Under this interpretation the branch fb;cg
in T corresponds to the usual interpretation of fa;b;cg in Tcut . Likewise, the second
branch fb;:ag in Tcut corresponds to the second model in T .

Note that by this renaming we get tableaux where atoms from I0 occur only nega-

tively on open branches; such cases just mean deviations from Io. In contrast to the cut
approach, these deviations are now brought into the tableau by need.

The following definition introduces this idea formally. Since we want to avoid
unnecessary changes to the hyper calculus, a new predicate name neg A instead of :A

will be used.

Definition 6.10 I-transformation

Let C = L1_ : : :_Ln be a clause and I be a set of atoms. The I-transformation of C is

the clause obtained from C by replacing every positive literal A with A 2 I by :neg A,

and by replacing every negative literal :A with A 2 I by neg A. The I-transformation
of S , written as S I, is defined as the I-transformation of every clause in S .

It is easy to see that every I-transformation preserves the models of a clause set, in
the sense that every model for the non-transformed clause set constitutes a model for
the transformed clause set by setting neg A to true iff A is false, for every A 2 I, and
keeping the truth values for atoms outside of I. More formally we have:

Proposition 6.11 Model Preservation of I-transformation

For every model J for S : J j= S iff renameI(J) j= S I , where renameI(J)(neg A) = J(A)
iff A 2 I, and else renameI(J)(A) = J(A).

As explained informally above, the branch semantics of tableaux derived from a
renamed, i.e. I-transformed clause set, is changed to assign true to every atom from I,
unless its negation is on the branch. This is a formal definition:

[[b]]I = (I nfAjneg A 2 lit(b)g)[
(lit(b)nfneg Ajneg A 2 lit(b)g)

The connection of semantic hyper tableaux to hyper tableaux and renaming is given
by the next theorem.

Theorem 6.12 Let T be a semantic hyper tableau for a clause set S and an initial

model I where every open branch is finished; let T I be a hyper tableau for the I-

transformation of S where every open branch is finished. Then, for every open branch

bI in T I there is an open branch b in T such [[bI]]I = [[b]]. The converse does not hold.

6.5. IMPLEMENTATION AND EXPERIMENTS 107

The theorem tells us that with the renamed clause set we compute some deviation
of the initial interpretation. The value of the theorem comes from the fact that the
converse does not hold in general. That is, not every possible deviation is examined by
naive enumeration of all combinations.

In order to see that the converse does not hold, take e.g. S = fa g and I0 = fbg.
There is only one semantic hyper tableau of the stated form, namely the one with the
two branches fb;ag and f:b;ag. On the other side, the I0-transformation leaves S

untouched, and thus the only hyper tableau for S consists of the single branch fag
with semantics [[fag]]I0 = fa;bg. However, the semantics of the branch f:b;ag in the
former tableau is different.

6.5 Implementation and Experiments

We have implemented a proof procedure for the hyper tableaux calculus of [BFN96],
modified it slightly for our diagnosis task, and applied it to some benchmark examples
from the diagnosis literature.

The Basic Proof Procedure. A basic proof procedure for the plain hyper tableaux
calculus for the propositional case is very simple, and coincides with e.g. SATCHMO
[MB88]. Initially, let T be a tableau consisting of the root node only. In general, let T

be the tableau constructed so far. Main loop: if T is closed, stop with “unsatisfiable”.
Otherwise select an open branch b from T (branch selection) which is not labeled
as “finished” and select a clause H B (extension clause selection) from the input
clause set such that B� b (applicability) and H\b 6= fg (regularity check). If no such
clause exists, b is labeled as “finished” and [[b]] is a model for the input clause set. In
particular, the set of literals on b with predicate symbol Ab (simply called Ab-literals)
constitutes a (not necessarily minimal) diagnosis. If every open branch is labeled as
“finished” then stop, otherwise enter the main loop again.

In the diagnosis task it is often demanded to compute every (minimal) diagnosis.
Hence the proof procedure does not stop after the first open branch is found, but only
marks it as “finished” and enters the main loop again. Consequently, the “branch selec-
tion function” is not of real significance because every unfinished open branch will be
selected eventually. However, the “extension clause selection” is an issue. A standard
heuristic for tableau procedures is to select clauses first which avoid branching. For
our diagnosis experiments, however, a clause selection function, which prefers clauses
with some body literal being equal to the leaf of the branch to be extended, turned out
to be superior.

For further improvements of the proof procedure, such as factorization and level

cut see [BFN96].

Adaption for the Diagnosis Task. Recall that our diagnosis task requires to bias the
proof search in two ways: incorporation of the initial interpretation, and implementing

108 CHAPTER 6. TABLEAUX FOR DIAGNOSIS

the n-faults assumption. While the former is treated by renaming predicates in the
input clause set (Section 6.4), the latter is dealt with by the following new inference
rule: “any branch containing n+ 1 (due to regularity necessarily pairwise different)
Ab-literals is closed immediately”. Notice that this inference rule has the same effect

as if the

�
jCompj
n+1

�
clauses ab(C1); : : : ;ab(Cn+1) (for Ci 2Comp, Ci 6=C j, where

1 � i; j � n+ 1 and i 6= j) specifying the n-faults assumption would be added to the
input clause set. Since even for the smallest example (c499) and the 1-fault assumption
the clause set would blow up from 1600 to 60000 clauses, the inference rule solution
is mandatory.

n-fault Assumption and Computing Minimal Diagnoses. When computing diag-
noses under the n-faults assumption the following minimality properties are evidently
of interest: first, every diagnosis should be computed only once; second, every com-
puted diagnosis should be minimal (Def. 2.1), i.e. if ∆ is a diagnosis then no proper
subset is a diagnosis.

We describe how both properties can be achieved by a combined iterative deep-
ening/lemma technique, comparable to the iterative deepening algorithm 3.32. It can
be implemented by a simple outer loop around the proof procedure. The outer loop
includes a counter N = 0;1;2; : : :, which stands for the cardinality of the diagnosis
computed in the inner loop. The invariant for the outer loop is the following: all mini-

mal diagnoses with cardinality�N�1 have been computed, say it is the set ∆N�1, and

every such diagnosis fAb(C1); : : : ;Ab(Cn)g 2 ∆N�1 has been added to the input clause

set as a lemma clause:Ab(C1)_ : : :_:Ab(Cn). Before entering the proof procedure in
the inner loop we set ∆N := ∆N�1, and the proof procedure is slightly modified accord-
ing to the following rule: whenever a finished open branch b is derived, the Ab-literals
on b are collected as new diagnosis ∆. Then we extend ∆N := ∆N [f∆g and add ∆ as
a lemma clause

W
L2∆:L to the input clause set. No more modifications are necessary.

Notice that the lemma clauses are purely negative clauses and hence can be used
to close a branch. Since we give preference to negative clauses both minimality issues
addressed above are accounted for, and hence the invariant follows. Reason: first, it
is impossible to compute the same diagnosis more than once, because as soon as a
diagnosis is computed the first time, it is turned into a (negative) lemma clause which
will be used to immediately close all branches containing the same diagnosis. Second,
we compute only minimal diagnoses as an immediate consequence of the iterative
deepening over N: any branch containing a non-minimal diagnosis would have been
closed by a lemma clause stemming from a diagnosis with strictly smaller cardinality,
which must be contained in the input clause set due to the invariant for some value
< N.

Although this procedure for computing minimal diagnoses under the n-fault as-
sumption is simple, it has some nice properties. First, it can be implemented easily by
slight modifications to the basic hyper tableau proof procedure. Second, in the hyper

6.5. IMPLEMENTATION AND EXPERIMENTS 109

Name # Gates # Clauses # Diagnosis Time # Steps

C499 202 1685 2 5 3015
C880 383 2776 19 2 161
C1355 546 3839 5 47 24699
C2670 1193 8260 31 6 533
C3540 1669 10658 3 10853 1473572
C5315 2307 16122 5 13 3071

Figure 6.5: ISCAS’85 Circuits and NIHIL results.

tableau proof procedure we look at one branch at a time, which gives a polynomial
upper bound for the memory requirements of the tableau currently constructed. Ad-
mittedly, there are possibly exponentially many minimal diagnosis wrt. jCompj, but
we assume that those will be kept anyway. Further, it is important to notice that we
compute minimal models only wrt. the extension of the Ab-predicate, but not of mini-
mal models wrt. all predicates. Since jCompj is usually much smaller than the number
of atoms in the translation (SD;Comp;Obs) to propositional logic, computing minimal
models wrt. all predicates would usually require considerably more memory (such an
approach to minimal model reasoning was proposed in [BY96]).

Implementation. Our prover is called NIHIL (New Implementation of Hyper in
Lisp) and is a re-implementation in SCHEME of a former Prolog implementation.
Because the SCHEME code is compiled to C, the basic performance is quite good.
Obviously, since NIHIL is a first-order prover and the data structures are arranged for
this case, there is a significant overhead when dealing with propositional formulas.

Experiments. For our experiments we ran parts of the ISCAS-85 benchmarks
[Isc85] from the diagnosis literature. This benchmark suite consists of combinato-
rial circuits from 160 to 3512 components. Table 6.5 describes the characteristics of
the circuits we used. NIHIL was set up as described above. The abovementioned
optimizations factorization and level cut were tried, but had no influence on these ex-
amples.

The results are summarized in Table 6.5. # Clauses is the number of input clauses
stemming from the problem description. Time denotes proof time proper in seconds,
and thus excludes time for reading the problem and setup (which is less than about 10
seconds in any case). The times were taken on a SparcStation 20. # Steps denotes the
number of hyper extension steps to obtain the final tableau, and # Diag denotes the
number of single fault diagnoses. We emphasize that the results refer to the clause sets
with renamed predicates according to Section 6.4. Without renaming, and thus taking
advantage of the initial interpretation, only the c499 was solvable (in 174 seconds); all

110 CHAPTER 6. TABLEAUX FOR DIAGNOSIS

other examples could not be solved within 2 hours, whatever flag settings/heuristic we
tried.

6.6 Discussion

In this chapter we analyzed the relationship between logic-based diagnostic reasoning
and tableaux based theorem proving. We showed how to implement diagnostic rea-
soning efficiently using a hyper tableaux based theorem prover. We identified the use
of an initial model as one of the central techniques in the diagnostic reasoning engine
DRUM–II and showed how to apply this technique within a hyper tableaux calculus.
The resulting theorem prover NIHIL is capable of diagnosing large benchmark circuits
from the diagnosis literature. There are some open theoretical questions, e.g. we have
to prove formally that by renaming we again get a model complete calculus and it
would be interesting to characterize the computed models more exactly.

Chapter 7

Strategies for Diagnosis

In the previous chapters we have introduced an efficient diagnostic engine and eval-
uated it in several applications. The current chapter, which is based on our previous
results described in [FNS94, NFS95, FNS, FNS96, FNS98] is dedicated to the process
aspect of diagnosis. In practice, diagnosis is a dynamic process consisting of several
diagnosis steps under changing assumptions; actions have to be performed during this
process. Usually a symptom alone will not lead to a unique diagnosis. Measurements
are needed to discriminate among competing hypotheses. Furthermore, there are of-
ten different system descriptions for one device. For example, electronic devices are
modeled at several levels of detail. Each abstraction level can be regarded from the
structural, physical or functional viewpoint.

In previous approaches to process support for model–based diagnosis different
strategies and assumptions for this diagnostic process were encoded in the implementa-
tion of the diagnostic system. This solution is however not very flexible. Furthermore,
it contradicts the separation of knowledge base and problem solving component. In
this chapter we present a language for defining the diagnostic process as declaratively
as the system description itself. We provide algorithms for efficiently exploiting these
process descriptions and give guidelines for designing diagnostic processes.

7.1 Introduction

For the diagnosis of complex systems it is not sufficient to have only one static system
model for which the minimal diagnoses are computed. In order to handle the com-
plexity of diagnosis we have to see diagnosis as a dynamic process which is controlled
by diagnosis assumptions. Struss [Str92] gave the first formalization of diagnosis as a
process and made the diagnosis assumptions explicit by introducing the concept of a
working hypothesis.

In the same spirit Boettcher and Dressler ([BD93], [BD94]) developed a cata-
logue of diagnosis strategies. Furthermore they provided an intuitive semantics and an
ATMS–based implementation for these strategies. The disadvantage of their approach

111

112 CHAPTER 7. STRATEGIES FOR DIAGNOSIS

is that they use a static set of strategies which is coded into the diagnosis algorithm.
Missing a declarative semantics for these diagnosis strategies independent of a particu-
lar implementation makes the definition of new or application–specific strategies more
difficult than it should be.

In this chapter we extend their approach by introducing a formal meta–language
for the definition of diagnosis strategies. This language makes strategies explicit and
allows to define strategies specific to an application similar to defining system mod-
els. So our framework extends model–based diagnosis in the sense that not only the
behavior of the system but also the strategic knowledge about the system model is
represented explicitly.

We a design method and an operational semantics to efficiently handle diagnosis
strategies. Within our framework we identify the class of one–step rule–like strategies,
which is universal in the sense that it is expressive enough to describe every possi-
ble diagnostic process. Besides proving this theoretical result we demonstrate that
all strategies needed in practice for our application domain can be denoted elegantly
by one–step–strategies. Even preference concepts which have been modeled sepa-
rately up to now [DS92, DPN94, FNS94] are modeled as one-step strategies. We show
how to develop a strategic knowledge base for a specific application. Then we define
an operational semantics which efficiently performs the diagnostic process using the
strategies provided. In the course of the chapter we will discuss both deterministic
and non–deterministic strategies for hierarchical circuit diagnosis. A major advantage
of our method is that the strategies can be designed independently of each other, so
that the strategic knowledge base can be easily extended without the need to rewrite
existing strategies.

7.2 Working Hypotheses

We consider a system described by a set of formulas SD in a language L . L is a
first order language with equality. For simplicity we postulate that L contains no
function symbols with variable interpretation. Functions with standard interpretation
like mathematical operators etc. are allowed. By ATOMS we denote the set of atoms
of L . Our theory does not depend on a particular diagnosis definition. We encapsulate
the underlying diagnosis concept by a function diags, which maps a theory T to a set
of diagnoses D:

diag(T) :=

8>><
>>:

/0; if T is contradictory

a set of diagnoses
D = fD1; : : :Dng,

otherwise

This general definition allows for a wide range of diagnosis concepts like minimal
diagnoses [Rei87], most probable diagnoses [dKW87], preferred diagnoses [DPN94]
and others.

7.2. WORKING HYPOTHESES 113

In [Str92] Struss introduced the concept of working hypotheses into model–based
diagnosis in order to make diagnostic assumptions explicit. The diagnostic assump-
tions are necessary in the diagnostic process for evaluating hierarchies, using simpli-
fied behavioral models, focusing on a particular kind of diagnoses, etc.

Definition 7.1 Working Hypothesis

Let WHYP � ATOMS(L) be a defined set of atoms. Then each ground atom wh 2
WHYP is called a Working Hypothesis.

Working Hypotheses can be used to represent multiple models of the system within
one system description as is shown by the following example.

Example 7.2 Use of Working Hypotheses

C1 C2

C3

C

A component C consists of the subcomponents C1; : : : ;C3. The working hypothesis

re f ine(C) can be used to switch between the abstract model of C and the detailed

model of C (in which its subcomponentsC1; : : :C3 are visible). In the system description

SD for some device containingC the behavior of C is modeled depending on re f ine(C):

:re f ine(C) ! Rules for the abstract model of C

re f ine(C) ! Rules for the detailed model of C

Now if we want to compute the diagnoses for the system based on the detailed

model of C we add re f ine(C) to the system description, i.e. we compute diag(SD[
OBS[fre f ine(C)g).

In general, to compute the diagnoses under a set of working hypotheses s we add s

to the system description. Additionally we add f:whjwh 2WHYPnsg, i.e. we make
sure that s is exactly the set of working hypotheses which are true in the system model.

Definition 7.3 Diagnosis under a Set s of Working Hypotheses

Consider a system described by (SD;OBS) and a set of Working Hypotheses s. Let

s̄ = WHYPns. Then the set of diagnoses under working hypotheses s, called diags is

defined as follows:

diags(SD[OBS) := fD[s j s 2 diag(SD[OBS[s[f:whjwh 2 s̄g)

We include the set s itself in the diagnosis, so that it is obvious from the diagnoses
to which system model they belong. So diags provides a valid diagnosis concept as
SD[OBS[diags(SD[OBS) is consistent.

Working hypotheses are an important concept for making the current diagnosis
assumptions explicit. But the selection of suitable working hypotheses for a given
situation is implicit in current diagnosis systems. In the next section we introduce
a language that makes the knowledge for selecting the right hypotheses explicit and
thus provides a flexible and declarative way of specifying strategic knowledge for the
diagnostic process.

114 CHAPTER 7. STRATEGIES FOR DIAGNOSIS

7.3 A Formal Language for Strategies

7.3.1 Preliminary Considerations

Diagnosis strategies control the diagnostic process by specifying which diagnosis as-
sumptions should be used in a given situation. The state of the diagnostic process
manifests itself in the current set of possible diagnoses. Therefore the specification of
a diagnosis strategy consists of two parts:

� A property of the current set of diagnoses, characterizing a certain situation that
can occur during the diagnostic process.

� An assumption or action (modeled by a working hypothesis) that is suitable for
handling that situation

Example 7.4 Diagnosis Strategy

Consider an abstract component C as described in example 7.2. By default, we only

use the abstract model of this component for diagnosis, i.e. :re f ine(C) is used as

working hypothesis. The detailed model is only used when C is identified as faulty.

This can be captured by the following rule:

If an abstract component C occurs in all diagnoses, activate a more de-

tailed model for C making its subcomponents visible

In order to check if a given strategy should be applied we have to evaluate a con-
dition on the current set of diagnoses. Such a condition can obviously not be modeled
as part of the system description. So Boettcher and Dressler implement the check of
these conditions as part of the diagnosis system.

However the only flexible way of evaluating these conditions is by introducing a
meta–level in the diagnosis system as shown in figure 7.1. The strategies are defined
on the meta level and they are evaluated using the knowledge obtained so far during
the diagnostic process which is represented by the current possible diagnoses. The
diagnoses diags(SD[OBS) and the corresponding logical models are the information
on which the decisions on the meta–level are based.

7.3.2 The Meta Language

The language LStrat for defining diagnosis strategies defines modal logic operators
specifying properties of the current diagnoses as well as for proposing working hy-
potheses. Before we give a formal definition of the language we motivate the need for
these modal operators informally.

7.3. A FORMAL LANGUAGE FOR STRATEGIES 115

diagnosis system physical device

meta–level

diagnosis strategies

?

�
�

actions

observations
object–layer

SD[OBS[W HYP

-

diagnoses

+models

hypo–

theses

 @@

�

��m

�

��m

Figure 7.1: Diagnosis System with a Meta Level

Modal Operators for Characterizing the Current State of the Diagnostic Process:

As already stated the preconditions for the application of diagnosis strategies are state-
ments about the current set of possible diagnoses. The atomic statements in these
conditions are:

� a property p(x) is true in all possible diagnoses, or

� a property p(x) is true in at least one possible diagnosis.

These statements can be formalized using the usual S5 modal operators (� for knowl-
edge, � for belief):

�p: p is true in all diagnoses of SD[OBS[A.

�p: p is true in at least one diagnosis of SD[OBS[A.

Modal Operators for Proposing Working Hypotheses

Strategy formulas specify which working hypotheses should be assumed in a given
situation. This is achieved by the following (informally described) modal operators:

��wh: wh is a necessary working hypotheses in the current situation, i.e. the diag-
nostic process cannot be continued without assuming wh.

��wh: wh is a possible (allowed) working hypotheses in the current situation.

We define a formal semantics for this language. In section 7.5 we define an al-
gorithm, which constructs models of our formulas (denoting strategies) with certain
desirable properties. Thus, we will use the semantics for model checking and model
generation.

116 CHAPTER 7. STRATEGIES FOR DIAGNOSIS

7.3.3 Syntax of the language

In general, the syntax is defined inductively as follows:

Definition 7.5 LStrat–Formula

Let L be a first-order language with equality.

1. L 2 L is a LStrat–Formula.

2. Let F;G be LStrat–Formulas and v;v1;v2 variables, then �F and �F, �F and

�F , :F and F ^G, v1 = v2, 8v : F are LStrat–Formulas.

3. Nothing else is an LStrat–Formula.

Note that LStrat has the same predicate symbols and constants as the system de-
scription language L . The variables denote objects of L . This will be ensured in the
formal semantics presented in the next section. The model-theoretic semantics will be
given for the full language. In practice, we use a subset of the language LStrat , which
can be efficiently handled by algorithms. It turned out that rule-like strategies are best
suited to express intuition: Based on properties of the current state of the diagnostic
process the strategies propose new working hypotheses. Such strategies are restricted
LStrat–formulas which can be written as a rules C !H where C characterizes the cur-
rent diagnostic state and H the immediate successor states. The head H has one level
of modalities � and�, the body C has none. Such One-Step Strategies are rules where
the body has depth 0 and the head depth 1 wrt. to the bold modalities. Since we
deal only with one-step strategies in this chapter we simply call them strategies and
explicitly refer to LStrat–formulas, when we need the full language.

Definition 7.6 Depth

If L 2 L , then �L and �L are formulas of depth 0. Let F;G be both formulas of depth

n, then �F, �F, :F, F ^G, F _G are formulas of depth n, �F and �F are formulas

of depth n+1.

Definition 7.7 One–Step Strategy

A One–step Strategy (in this chapter simply called Strategy) is a formula of the form

C ! H, where C is a formula of depth 0 and H is a formula of depth 1.

7.3.4 Representation of a Diagnostic Process

The aim of strategies is to control the diagnostic process by proposing suitable working
hypotheses. The diagnostic process itself can be non–deterministic, because more than
one set of hypotheses can be proposed for a given situation. The State of the diagnostic
process is characterized by the current set of working hypotheses. For representing
diagnostic processes we use the notion of a State Transition System:

7.3. A FORMAL LANGUAGE FOR STRATEGIES 117

Definition 7.8 State Transition System

Let S be a finite set of states, t 2 S an initial state and!� S�S a transition relation.

Then (S;!; t) is called a State Transition System. We assume S � 2WHYP.

Consider the following diagnostic process. We start the diagnosis with a simple
description of a device (SD0) and the single–fault–assumption.1 It turns out that no
single–fault diagnosis exists, thus we allow the assumption of double faults. Again
no diagnoses are found. Now we consider the simple description of the device too
abstract and we propose the activation of one of the more detailed descriptions SD1 or
SD2. In both of these system descriptions we would find single–fault diagnoses.

{df}

{}

{force_SD1}

{force_SD2} The transition system for representing this process has
the states /0 (initial state, no working hypotheses), d f

(then allow double faults), force SD1 and force SD2 (se-
lect one of the more detailed system descriptions).

7.3.5 Designing Strategies

The diagnostic process is represented by a transition system. We use strategies to
influence the shape of this transition system. Let us first show how to define strategies
in order to obtain a certain transition system.

Deterministic Strategies.

Often we want to assume one specific hypothesis in a given situation. For example,
if we have found that a component C is definitely faulty, we activate the refined de-
scription for it to see which of its subcomponents caused the fault. We need a strategy
which proposes a state transition leading to a state in which refine(C) holds:

�ab(C)! ��refine(C)^��refine(C)
not refine(C)

refine(C)

The formula describes exactly the transition system wrt. the hypothesis refine(C).
Other strategies specify transition systems wrt. other hypotheses. These partial transi-
tion systems are then combined by the algorithm which computes the diagnostic pro-
cess. The �–operator is necessary in this formula. If we had only used the �–operator
in the conclusion of this formula, the formula would have been satisfied also if there
were no successor of the current state. The quantification over ”all successor states”
would then be trivially satisfied.

1In section 7.4 we show how theses assumptions can be modeled by strategies.

118 CHAPTER 7. STRATEGIES FOR DIAGNOSIS

Non–Deterministic Strategies.

Sometimes there are several possibilities for continuing the diagnostic process in a
given situation. Again we can first develop a transition system and then describe it by
a strategy.

�implausible!
��force M1^��force M2

^�(�force M1 6$�force M2) |= implausible

force_SD1 force_SD2

In this strategy implausible is a predicate in the system description, which indicates
that there is no plausible diagnosis under the current system description.

Example 7.9 Implausible

A diagnosis may be implausible if it contains triple faults including incomplete faults.

There are triple faults if three distinct components X ;Y;Z are abnormal and at least

one of them is in an unknown fault mode. We denote the fault mode M of a component

C by fm(C;M).

8X ;Y;Z : ab(X)^ab(Y)^ab(Z)^
X 6= Y ^X 6= Z^Y 6= Z^
(fm(X ;unknown)_ fm(Y;unknown)_ fm(Z;unknown))

! implausible

The strategy for the choice of system description proposes two possibilities for
continuing the diagnostic process: Either use SD1 or use SD2 but do not use both
descriptions at the same time. We will give a more specific account on the selection of
an appropriate system description in section 7.4.

The above design method allows to define strategies independently without hav-
ing to care about interference between different strategies. We will use it to define
a complete set of strategies for circuit diagnosis (section 7.4) and describe how the
independence can be preserved during the diagnostic process (section 7.5).

7.3.6 Consistency of Transition Systems

In order to check if the decisions made during the diagnostic process are consistent
with the given diagnosis problem, we define how strategies can be interpreted as state-
ments describing the diagnostic process. First, we define logical structures which pro-
vide the interpretation for the strategies.

Definition 7.10 LStrat–Model

A model for LStrat is a structure M = hW;D;!1;!2; Ii, where W is a set of individuals

(called worlds), D is a domain of individuals, !1 and !2 are accessibility relations

on the worlds, i.e. subsets of W �W, and I is an interpretation function.

7.3. A FORMAL LANGUAGE FOR STRATEGIES 119

I provides the interpretation for predicates and ground terms (in our case all ground
terms are constants). The values of the variables are given by an assignment:

Definition 7.11 Assignment

Given a domain D an Assignment is a mapping from the set of variables into D. By

α(xjd) we denote the assignment that maps variable x to an element d 2D and is defined

in the same way as α on the other variables.

The semantics of an LStrat–Model is defined as follows:

Definition 7.12 Semantics of LStrat

Let M = (W;D;!1;!2; I) be an LStrat–model, F;G LStrat–Formulas, α an assignment

and w 2W . Let

Val(t;α;w) :=

�
α(t); iff t is a variable

I(w; t); iff t is a constant

Then
M j=w;α P(t1; : : :tn) iff (Val(t1;α;w); : : :Val(tn;α;w))

2 I(w;P)
M j=w;α t1 = t2 iff Val(t1;α;w) =Val(t2;α;w)
M j=w;α F ^G iff M j=w;α F and M j=w;α G

M j=w;α :F iff M 6j=w;α F

M j=w;α �F iff f.a. w0 2W s.th. w !1 w0: M j=w0;α F

M j=w;α �F iff ex. w0 2W s.th. w!1 w0 and M j=w0;α F

M j=w;α �F iff f.a. w0 2W s.th. w !2 w0: M j=w0;α F

M j=w;α �F iff ex. w0 2W s.t. w !2 w0 and M j=w0;α F

M j=w;α 8x:F iff f.a. d 2 D : M j=w;α(xjd)
F

We will use the following abbreviations:

M j=w F iff M j=w;α F for every assignment α.

M j= F iff M j=w F for every w 2W

The connection between the state transition relation and the LStrat–model is estab-
lished in the following way: The possible diagnoses are interpreted as possible worlds,
where all the diagnoses under one set of working hypotheses are connected wrt. the
�–operator (relation !2). The accessibility relation for the�–Operator (relation !1)
is given by the state transition relation !, i.e. diagnoses under different working
hypotheses are connected by !1 iff the underlying sets of working hypotheses are
connected by !.

Definition 7.13 Induced LStrat–Model M(S;!;t)

Let (S;!; t) be a state transition system. For s 2 S let Ds = diags(SD[OBS) be the

diagnoses under s. We distinguish two cases:

120 CHAPTER 7. STRATEGIES FOR DIAGNOSIS

(s’’,1)

(s’’,2)

(s’’,3)

s’’

s’

s
s’’

s’

s

Figure 7.2: Example of the two accessibility relations

1. If Ds 6= /0, then let ms be the number of models obtained from the system descrip-

tion, the observations and the diagnoses in Ds and let fM(s;1); : : : ;M(s;ms)g be

the corresponding set of Herbrand models.

2. If Ds = /0, then let ms = 1 and M(s;1) be the Herbrand model defined by M(s;1) =
s[fab(SD)g

The Induced LStrat–Model M(S;!;t) is defined as

M(S;!;t) = hW 0;D0;!0
1;!

0
2; I

0i, where

W 0 = f(s; i) j s 2 S; i 2 f1; : : : ;msgg
D0 is the set of constants in L

!0
1 = f((s; i);(s0; j))js ! s0;1 � i � ms;1 � j � ms0g

!0
2 = f((s; i);(s; j)) j s 2 S; i; j 2 f1; : : : ;msgg

I0((s; i);P) = f~x 2 fD0njP(~x) 2 M(s;i)g for a predicate symbole P of

arity n

I0((s; i);a) = a, for a constant a in L .

Definition 7.14

Let F be an LStrat–Formula and (S;!; t) a transition system with induced model

M(S;!;t) and s 2 S. We write (S;!; t) j=s F iff M(S;!;t) j=(s;i) F.

The induced model needs some explanation. The worlds W 0 are a set of references
to models which are either obtained from diagnoses of the system description and
observations under a set of working hypothesis or given by M(s;1) = s[fab(SD)g in
case there are no diagnoses. There are two transition relations. The first one, !0

1, is
inherited from the given state transition system (S;!; t) . For each transition s ! s0

from a set of working hypotheses s to another one s0 there are transitions (s; i)!0
1 (s

0; j)
where i and j are needed to identify the corresponding models M(s;i) and M(s0; j). The
second transition relation connects all models obtained under the same set of working
hypotheses.

Example 7.15 Induced Model

The transition system on the left of Figure 1 induces the model on the right. For

each set s of working hypotheses a set of models is obtained. The relation !0
2 which is

7.3. A FORMAL LANGUAGE FOR STRATEGIES 121

shown in bold arcs connects all models obtained under a set s of working hypotheses.

The relation ! on the left induces the transitions !0
1 on the right.

To understand the declarative semantics, consider a given transition system (S;!
; t). We check whether this transition system is a valid solution to the diagnostic prob-
lem given by SD[OBS and a set of strategies F . We call a transition system consistent,
iff all its states satisfy all formulas from F . Intuitively, the way the diagnostic process
proceeds is consistent with what the strategies propose.

Definition 7.16 Consistent

A transition system (S;!; t) is consistent with a set F of strategies, iff for all formulas

F 2 F and all s 2 S we have (S;!; t) j=s F.

An important step to compute a consistent transition system is given by the next
proposition. For the modalities � and � consider first a formula L 2 L without modal
operators. A state s satisfies �L if there is a diagnosis corresponding to state s under
which L holds, and a state satisfies �L, if L holds under all diagnoses in state s. Addi-
tionally, we consider the case when there are no diagnoses, because the inconsistency
of certain assumptions with the current situation should not lead to termination of the
diagnostic process but rather to a change of assumptions. The absence of diagnoses
under a given set of literals is indicated by the literal ab(SD), intuitively indicating that
the system description is not suited for the current set of assumptions.

For the modalities � and � let F be a strategy formula. The semantics for the
operators �F and �F is given by the transitions. A state s satisfies �F , if the formula
F holds in all successor states. Similarly, a state satisfies �F , if the formula F holds
in at least one successor state.

Proposition 7.17 Let (S;!; t) be a transition system, s 2 S, and Ds be the diagnoses

under s. Let L 2 L be a first order formula and F a strategy, then

(S;!; t) j=s �L, iff Ds 6= /0 and there is a diagnosis D 2 Ds such

that the model for SD[OBS[s[:s̄[D en-

tails L

or Ds = /0 and the model for s[:s̄[fab(SD)g
entails L

(S;!; t) j=s �L, iff Ds 6= /0 and for all D 2 Ds: SD[OBS[s[
:s̄[D entails L

or Ds = /0 and s[:s̄[fab(SD)g entails L.

(S;!; t) j=s �F, iff ex. s0 2 S such that s ! s0 and (S;!; t) j=s0

F.

(S;!; t) j=s �F, iff f.a. s0 2 S: from s ! s0 follows (S;!; t) j=s0

F.

Proof:

122 CHAPTER 7. STRATEGIES FOR DIAGNOSIS

1. We show that (S;!; t) j=s �L iff D 6= /0 and there is a diagnosis D 2 Ds such
that the model for SD[OBS[s[:s̄[D entails L or D = /0 and the model for
s[:s̄[fab(SD)g entails L.

Before we start the proof we need a lemma

Lemma 7.18 Let L 2 L . Then M(S;!;t) j=(s; j) L iff M(s; j) j=L L.

By definition 7.14 (S;!; t) j=s �L iff M(S;!;t) j=(s;i) �L. By definition 7.12
this is equivalent to 9w0 s.th. (s; i)!0

2 w0 and M(S;!;t) j=w0 L. By definition
7.13 there is 1 � j � ms s.th. (s; i)!0

2 (s; j) and M(S;!;t) j=(s; j) L and by the
lemma above we have M(s; j) j=L L which means by the definition of M(s; j) in
definition 7.13 that D 6= /0 and there is a diagnosis D 2 Ds such that the model
for SD[OBS[s[:s̄[D entails L or D = /0 and the model for s[:s̄[fab(SD)g
entails L.

2. The proof for �L is similar.

3. To prove (S;!; t) j=s �F iff ex. s0 2 S such that s ! s0 and (S;!; t) j=s0 F we
proceed as above and apply definition 7.14, 7.12, and 7.13.

4. The proof for �F is similar. Q.E.D.

7.3.7 Results of the Diagnostic Process

The aim of the diagnostic process could be to identify one unique diagnosis. In general
this would be a too restrictive criterion for terminating the diagnostic process because
we might not have enough knowledge to discriminate among all the diagnoses. So we
define that the diagnostic process terminates in a state where we assumed exactly all
possible and necessary hypotheses.
This corresponds to a loop in the transition system as de-
picted on the right. If such a state yields diagnoses we can-
not reach a more preferred state by applying another strat-
egy.

s

Definition 7.19 Stable State

Let s be a state in the consistent state transition system (S;!; t) and F a set of strategy

formulas. The state s is stable wrt. (S;!; t), iff

1. diags(SD;OBS) 6= /0

2. s = fwh j (S;!; t) j=s ��wh^��whg

It is called weakly stable, if s� fwh j (S;!; t) j=s ��wh^��whg

The first condition states that SD[OBS[s is consistent and the second condition
is a fixpoint condition: s is already the set of all possible and necessary working hy-
potheses. The result of the diagnostic process is given by the diagnoses corresponding
to the stable states and weakly stable states, respectively.

7.4. A STRATEGY KNOWLEDGE BASE FOR CIRCUIT DIAGNOSIS 123

7.4 A Strategy Knowledge Base for Circuit Diagnosis

In this section we apply the strategy language to the diagnosis of digital circuits. We
model strategies such as the choice among multiple system descriptions, structural
refinement, measurements, and preferences. In section 7.6 we use them to diagnose
the voter circuit from [Isc85].

Multiple Views.

Multiple views allow to describe the diagnosed systems emphasizing different as-
pects. For circuit diagnosis it is often important to consider a physical view beside
a functional one, because the physical view additionally takes the layout into account
[Dav84]. We want to employ the functional view by default and the physical view only
if we do not obtain good diagnoses.

Strategy (1) tells us how to choose between the views using the hypotheses
force physical and force functional. The predicate implausible, which in our example
holds if no single or double fault diagnosis exists, indicates that the other view should
be activated. To avoid more than one activation it is also checked that force functional

does not yet hold. Once the body of the strategy is satisfied we have to make sure
that the diagnostic process continues in two directions with the functional and the
physical view, respectively, as active model. Thus, we adopt either force functional

or force physical. Once the selection of the view has taken place both hypotheses are
kept by monotonic addition of working hypotheses (2;3).

�functional^�implausible^�:force functional!
��force functional^��force physical^
��(force functional$:force physical) (1)

�force physical! ��force physical^��force physical (2)
�force functional! ��force functional^��force functional (3)

In the system description we model the connection between the working hypothe-
ses force physical and force functional and the literals physical and functional, which
select the appropriate system description. The functional view is used by default when
no hypothesis is active:

:force functional^:force physical! functional

force functional! functional; force physical! physical

Structural Refinement.

Many authors address the use of hierarchies to reduce the complexity of diagnosis
problems [Dav84, Ham91, Gen84, Moz91, BD94]. In particular, Böttcher and Dressler
introduce the strategy of structural refinement which states that an abstract description
of a component is refined only if it is uniquely identified as defective [BD94]. Only if

124 CHAPTER 7. STRATEGIES FOR DIAGNOSIS

all diagnoses contain a component C, it is possible and necessary to activate a detailed
description of C:

8C:(�ab(C)^ refineable(C))_�refine(C)!
��refine(C)^��refine(C) (4)

In the system description the rules of the abstract description are active when
refine(C) is false and the rules of the detailed description are activated if refine(C)
is true. This variant of using hierarchies is very efficient since the refinement of the
system description is postponed until the erroneous components are identified.

Preference Relations among Diagnoses.

Preferences state that diagnoses with certain properties are better than others with other
properties [DS92, DPN94, FNS94]. Frequently used preferences are for example the
single fault assumption or ”physical negation” [SD89], i.e. the assumption that the
known fault models of the components are complete. To use preferences efficiently,
the preferred property is activated by default and is relaxed only if there are no diag-
noses which have the intended property. We can use ab(SD) to detect if there are any
diagnoses. ab(SD) holds iff diags(SD[OBS) = /0 (see sec. 7.3.6).

df, fm_inc

sf

df fm_inc

The preference relation on the left states that by default we
are only interested in single faults (sf). If there are no di-
agnoses under the single–fault assumption we allow either
diagnoses with double faults (df) or incompleteness of the
fault models (fm inc). If there are still no diagnoses un-
der one of these relaxed hypotheses, we allow double fault
diagnoses and incompleteness of fault models at the same
time.

Example 7.20 sf and df

A working hypothesis nf (for n-faults) restricts the cardinality of diagnoses. In the

system description it is used as a precondition in a formula which restricts the number

of faults (ab–literals). For single and double faults we have, for example

8C1;C2 : sf^ab(C1)^ab(C2)!C1 =C2

8C1;C2;C3 : df^ab(C1)^ab(C2)^ab(C3)!
C1 =C2_C1 =C3_C2 =C3

Proposition 7.21 n–faults

Single- and double–fault assumption can be generalized to n–faults.

8C1; : : : ;Cn+1 : nf^
n+1̂

i=1

ab(Ci)!
n+1_

i; j=1; i 6= j

Ci =C j

If SD contains the above formula and nf 2 s for some n, then for any diagnosis

D2 diags(SD[OBS) there are no more than n distinct components Ci s.th. ab(Ci)2D.

7.4. A STRATEGY KNOWLEDGE BASE FOR CIRCUIT DIAGNOSIS 125

Proof: We show that any diagnosis under the n-fault assumption nf does not contain
more than n components. Let Ds = diags(SD[OBS). Assume nf 2 s and D 2Ds s.th.
jDj > n. Then there are at least n+ 1 distinct components Ci s.th. ab(Ci) 2 D. Thus
the lefthand side of the formula

8C1; : : : ;Cn+1 : nf^
n+1̂

i=1

ab(Ci)!
n+1_

i; j=1; i 6= j

Ci =C j

is satisfied. To be consistent the right-hand side has to be satisfied as well, i.e.
at least two components are equal. This is contradictory to choosing n+ 1 distinct
components. Q.E.D.

The system description captures the default assumption of single faults by the rule
:d f ^:tf ! sf. The strategy of relaxing the single-fault property (5) checks if no
diagnoses exist (using ab(SD)) and if neither d f nor fm inc hold. In this case it is
possible to adopt either fm inc or d f , but not both at the same time. Finally, double
faults together with the assumption of incomplete fault models are allowed only if
there are no double fault diagnoses and no single–fault diagnoses with incomplete
fault modes (6).

�ab(SD)^�:d f ^�:fm inc!
��fm inc^��d f ^�(�d f 6$ fm inc) (5)

�ab(SD)^ (�d f _�fm inc)!
��(d f ^ fm inc)^��(d f ^ fm inc) (6)

These strategies show the desired behavior discussed and implemented in [FNS94].
First, the diagnosis system tries to find diagnoses under the most preferred set of prop-
erties (in our case diagnoses with only single faults). Only if this is not possible (i.e.
ab(SD)) is true), these properties are exchanged with the next most preferred set of
properties (in our case either double faults or the assumption of “fault mode incom-
plete”) and so on. With respect to other strategies the preference properties are not
monotonic: Whenever a diagnosis strategy not related to these preferences is executed
(e.g. refinement, multiple views, etc.), diagnosis in this changed state again starts by
trying to find diagnoses corresponding to the most preferred set of properties.

Measurements.

De Kleer, Raiman and Shirley view diagnosis as an incremental task involving the
three phases of generating explanations, choosing actions differentiating among them
and performing these actions [dKRS91]. Our framework allows to incorporate these
phases into the diagnostic process. Strategy (7) proposes a point X of the circuit for
measurement if there are two diagnoses predicting different values for X . As measure-
ments are expensive, we want to apply the strategy only if all refinements are already
done which is checked in the first line.

126 CHAPTER 7. STRATEGIES FOR DIAGNOSIS

8C:(�refineable(C)^�ab(C)!�refine(C))^
8X :�point(X)^�val(X ;0)^�val(X ;1)!

��propose(X)^��propose(X) (7)

The second phase of choosing the right action is carried out by procedural attach-
ment in the system description. The (procedural) predicate best meas(X) is true for
a measurement point X , which is optimal according to some specification (for exam-
ple minimum entropy). It only needs to be evaluated for the measurement points X

proposed by strategy (8).

8X :�propose(X)^�best meas(X)!
��measure(X)^��measure(X) (8)

In the system description the hypothesis measure(X) causes the specific measure-
ment of X to be executed, which is also done by procedural attachment. The mod-
ification of the system description due to the insertion of the measured value has to
be reflected by a change of the diagnostic state. This is achieved by using the hy-
pothesis measure(X) in a monotonic way (9). Another weak monotonicity axiom is
used for propose which is active until the next consistent state is reached in which the
measurement is carried out, i.e. as long as ab(SD) holds (10).

8X :�measure(X)! ��measure(X)^��measure(X) (9)
8X :�ab(SD)^�propose(X)!

��propose(X)^��propose(X) (10)

7.5 Operational Semantics

The strategies presented in this chapter have been designed by describing transition
systems. These strategies have the important property that they are satisfied by exactly
one transition system. Thus, the meaning of these strategies is completely determined
by the semantics of the strategy language. Now the question arises, whether every
transition system can be defined by a strategy. The answer is positive. We will define
the Characteristic Formula of a transition system in this section. All the strategies
in this chapter are equivalent to characteristic formulas. We further present a method
which combines the transition systems defined by a set of strategies. Our method will
have the property that it maximizes the chance that a consistent diagnostic process is
found. Finally, the method is exploited by a simple iterative algorithm.

Given a transition system (S;!; t) , we can systematically define a formula, which
completely characterizes (S;!; t) :

Definition 7.22 Characteristic Formula

Let (S;!; t) be a transition system, WHYP a set of working hypotheses and s 2 S.

Then Gs is called State Formula of s, Fs is called Characteristic Formula of s and Ft is

called Characteristic Formula of (S;!; t) , where

7.5. OPERATIONAL SEMANTICS 127

Gs = �
V
fwh j wh 2 sg[f:wh j wh 2 (

S
S)nsg

Fs = Gs^
V

s!s0
�Fs0 ^�

W

s!s0
Fs0

Lemma 7.23 Let (S;!; /0) be a transition system and s;s0 2 S then (S;!; /0) j=s Gs0 iff

s = s0.

Proof: (Application of the definition of j=s and Gs.
) Assume s 6= s0. Then there is a working hypothesis wh such that without loss of
generality wh 2 s0 but wh 62 s. From the premise (S;!; /0) j=s0 Gs we can conclude
(S;!; /0) j=s0 �:wh and (S;!; /0) 6j=s0 �wh since wh 62 s. But by definition of j=s0 we
have also (S;!; /0) j=s0 �wh since wh 2 s0. A contradiction. Q.E.D.

Note that the last conclusion requires that a working hypothesis is only derivable
iff it is contained in the state which is guaranteed by adding working hypotheses and
the negated complements.

The above lemma states that the state formula Gs holds only at state s and is false
at any other state. Thus, the first conjunct Gs of the formula Fs fully characterizes the
current state s, the second conjunct manifests the existence of the successor states and
the third conjunct states that there are no other successors.

Example 7.24 For the strategy structural refinement in section 7.4, the head of the

strategy is a characteristic formula for the transition system with the only transition

from the empty set to the state frefine(C)g.

In general, all the strategy heads in this chapter are equivalent to characteristic
formulas. The following theorem shows that we can uniquely characterize a given
transition system by a set of strategies.

Theorem 7.25 Given a transition system (S;!; /0), then there is a set F of one-step

strategies, such that (S0;!0; /0) j= F iff (S0;!0; /0) = (S;!; /0).

Proof: The set F of one-step strategies is defined by transition formulas that express
that if we are in state s, where Gs holds then the successors’ state formulas hold possi-
bly and their disjunction holds necessarily. The case that the state s has no successors
is captured by the formula �false:

Definition 7.26 Let (S;!; /0) be a transition system and Gs the state formula for a

state s 2 S. Then

Gs !
V

s!s0
�Gs0 ^�

W

s!s0
Gs0 if there is s00 such that s! s00

Gs !�false else

is called Transition Formula of s.

128 CHAPTER 7. STRATEGIES FOR DIAGNOSIS

Remark: Transition formulas of states with successors are one-step strategies. The
heads are characteristic formulas.

Now we can turn to the proof of the theorem. Let (S;!; /0) be a transition system
and let F be the set of transition formulas of the states S.

(We have to show that (S;!; /0) j= F . Let s 2 S and Fs 2 F . We show that for
all states s0 2 S we have (S;!; /0) j=s0 Fs by examining the cases s 6= s0 and s = s0. In
case s0 6= s we know by lemma 7.23 that (S;!; /0) 6j=s0 Gs and thus (S;!; /0) j=s0 Fs.
In case s0 = s we know by lemma 7.23 that (S;!; /0) j=s0 Gs so that it is left to prove
that (S;!; /0) j=s0

V

s!s00
�Gs00 ^�

W

s!s00
Gs00 in case 9s00 : s! s00 and (S;!; /0) j=s0 �false

otherwise. The latter formulas hold by definition of � and �.

) The proof is by contradiction. Assume that (S0;!0; /0) j= F and (S0;!0; /0) 6= (S;!
; /0). We have /0 2 S and starting with /0 all states of S are “traversed” by the transition
formulas F . Since also /0 2 S0 and (S0;!0; /0) j= F we can conclude that S0 � S. Now
assume s 2 S0\S and s00 2 S0nS such that s! s00. Since s00 62 S we have (S0;!0; /0) 6j=s00W

s!s0
Gs0 . As s! s00 we conclude (S0;!0; /0) 6j=s �

W

s!s0
Gs0 . From this and the fact that

(S0;!0; /0) j=s Gs we conclude (S0;!0; /0) 6j=s Fs in contradiction to the assumption.
Q.E.D.

We conclude that one-step strategies are the “smallest” language that captures all
possible transition systems, because we need at least one level of � and �–Modalities
to describe transitions and we have now shown that one level is also sufficient to de-
scribe a given transition system.

7.5.1 Combining Strategies

When we consider more than one strategy formula we have to solve the problem of
combining the proposed transitions. Suppose we have two strategy formulas C1 ! H1

and C2 ! H2 and the current state of the process satisfies both C1 and C2. How do we
combine the transitions proposed by H1 and H2?

Example 7.27 Recall the strategies (5) of preferring single fault diagnoses over dou-

ble faults and incomplete fault modes and the strategy (1) of activating the physical

view. Assume the bodies of (5) and (1) are satisfied in the current state and we have

to perform transitions to satisfy the heads ��fm inc^��df^�(�df 6$ fm inc) and

��force functional ^ ��force physical ^��(force functional $:force physical),
respectively. There are several transition systems satisfying the conjunct of these two

heads:

7.5. OPERATIONAL SEMANTICS 129

?

force_functional fm_inc dfforce_physical

dffm_inc

force_physicalforce_functional

force_functional force_functional force_physical force_physical

dfdf

A

B

fm_inc fm_inc

Solution B is not desired as it includes only two of four possible combinations of

the working hypotheses.

Formally, the independence of two strategies proposing working hypotheses wh1

and wh2 means that looking at a state in which wh1 is active, we cannot derive the truth
value of wh2 in that state.

Definition 7.28 Independence of Strategies

Let F be a set of strategies. Let (S;!; t) be a consistent transition system wrt. F.

The state s 2 S satisfies Independence of Strategies, iff there is no transition system

(S1;!1; t1) consistent with F such that

1. for all working hypotheses wh1;wh2 2 S [:S such that (S1;!1; t1) j=s

��wh1 ! wh2 we have (S;!; t) j=s ��wh1 ! wh2

2. there are working hypotheses wh1;wh2 2 S [:S such that (S;!; t) j=s

��wh1 ! wh2 but (S1;!1; t1) 6j=s ��wh1 ! wh2

The transition system (S;!; t) satisfies independence of strategies iff every state
s 2 S satisfies independence of strategies. Treating strategies as independent has sev-
eral advantages: When writing down strategies we explicitly specify dependencies
among certain hypotheses. Independence to other hypotheses need not to be specified.
This is important in a case where a strategy formula is added to a large set of existing
formulas. Furthermore, assuming independence maximizes our chance to find a solu-
tion in the case of non–determinism. If this transition system does not lead to a stable
state, there will be no other transition system leading to a consistent state.

In the following we will show that there is only one transition system that satisfies
independence of strategies for a given set of strategies. Thus, the semantics is com-
pletely specified and can be computed efficiently. In order to combine the transition
systems defined by the heads of two strategies while preserving independence, we sim-
ply combine the successor states in all possible ways. We call this operation the State

Product.

Definition 7.29 State Product

Given two sets of states S1 and S2 the State Product S1
S2 is defined as fs1[s2 j s1 2
S1;s2 2 S2g.

130 CHAPTER 7. STRATEGIES FOR DIAGNOSIS

When constructing the successor transitions for a given state during the diagnostic
process, we instantiate the strategies (quantification over components) and collect the
heads Hi of the strategies Ci ! Hi, whose conditions Ci are satisfied. We construct
the transition systems corresponding to the heads fHig. Then we combine them by
applying the following theorem:

Theorem 7.30 Let H1;H2; : : : ;Hn be characteristic formulas of depth 1 which have

no working hypotheses in common and let (S1;!1; t1) ;(S2;!2; t2) ; : : : ;(Sn;!n; tn)
be the corresponding transition systems. The following transition system (S;!; t)
satisfies independence of strategies:

S = /0[
nO

i=1

(Sinf /0g); != f(/0;s) j s 2 Sg; t = /0

Proof: The proof proceeds in three steps: 1. (S;!; t) satisfies the conjunction of all
Hi. 2. all transition systems that possibly satisfy the conjunction of all Hi consist of
subsets of S. 3. None of these candidates actually satisfies independence of strategies,
so (S;!; t) in turn does.

Ad 1. In order to show that (S;!; t) j= Hi for 1 � i � n it is sufficient to prove
that (S;!; t) j= /0

V
/0!is

�Fs ^�
W

/0!is

Fs, where Fs = �
V
fwh j wh 2 sg[f:wh j wh 2

(
S

Si)nsg.
To prove that the two conjuncts hold the definition of the state product is essential.

Intuitively, the first conjunct holds as every state in Si is a subset of at least one state in
S. For the second conjunct we argue the other way around: it holds as every state in S

is a superset of at least one state in Si.

Ad 2. As Hi is characteristic and has depth 1 it consists of subformulas �
W

/0!is

Fs.

Thus
nV

i=1
Hi contains

nV
i=1
�
W

/0!is

Fs which is equivalent to �
nV

i=1

W
/0!is

Fs. As the formulas

Fs do not have any working hypotheses in common the latter expression is in mini-
mal CNF. The equivalent DNF corresponds one-to-one to the state product. So the
conjunction of Hi can only be satisfied by a subset of the state product.

Ad 3. We show that the first condition for independence of strategies is violated.
Let (S1;!1; t1) such that S1 � S,!1�! and t1 = t. Then (S;!; t) j=s��wh1 !wh2

for all wh1;wh2 2 S[:S implies (S1;!1; t1) j=s ��wh1 ! wh2 since S1 � S. Q.E.D.
The theorem 7.30 describes how to compute the successor states of a given state

under the assumption of independent strategies. Iterative application of this theorem
yields a straightforward method for computing a transition system satisfying a given
set of strategies. In a given state s starting with /0 we have to execute the following
steps:

1. Compute the diagnoses and corresponding system models under state s.

7.6. AN EXAMPLE 131

or_abbc

and_vote_ab

nor_equ_ab0

or0_sel

andA0_sel andB0_sel

andA andB

notA notB

not0_sel

vote_bc

sel0

equ_ab2 equ_ab3

vote_ab

equ_ab1

sel3sel2sel1

sel

a b c

Figure 7.3: Voter

2. Instantiate the body of the strategies using the current diagnoses/models. Collect
the heads of the satisfied strategies.

3. Construct a transition system for each head.

4. Combine the resulting transition systems using state product.

The method must be recursively applied to every generated state.

7.6 An Example

A voter (see Figure 7.3) has three 4-bit-inputs a;b;c. It outputs b if (a = b)_ (b =
c) and otherwise c. The equality check is realized by the components vote ab and
vote bc. Both are composed of an and-gate and 4 comparators equ xy, which serve as
inputs for the and-gate. A comparator equ xy compares 2 bits by realizing the boolean
function xȳ _̄ x̄y and thus consists of 2 not- and 2 and-gates and a nor-gate. The select
component in turn contains 4 one-bit-selectors seli which are controlled by the or-gate
or abbc sel. If it is high, selector seli lets bi pass, otherwise ci. This is realized by 2
and-gates, an or- and a not-gate.

In the process depicted in Figure 7.4 the three input words are all 0000 and the
output is observed to be 1111. The top level diagnosis uniquely identifies sel as ab-
normal (1), but the following refinement does not lead to any diagnoses (2). So the
single-fault-assumption is relaxed and two successor states are created, allowing dou-
ble faults and incomplete fault models, respectively. With incomplete fault modes

132 CHAPTER 7. STRATEGIES FOR DIAGNOSIS

1

2

3

7 8

9

{fm_inc,strong_refine(sel)}

{{ab(or_abbc_sel)},{ab(vote_ab)},{ab(vote_bc)}}
4

12

6 {df,fm_inc,force_physical,strong_refine(sel)}

{{ab(and_chip)},{ab(nor_chip)},{ab(not_chip)},{ab(or_chip)}}

11

10

{fm_inc,force_functional,strong_refine(sel)}

{{ab(or_abbc_sel)},{ab(vote_ab)},{ab(vote_bc)}}

{df,force_functional,strong_refine(sel)}

{}

{force_physical,strong_refine(sel),

propose_measure(),...propose_measure()}

{force_physical,strong_refine(sel),measure(out(or2,or_abbc_sel,1))}

{{ab(and_chip)}}

{force_physical,strong_refine(sel)}

{{ab(and_chip)},{ab(or_chip)}}

{force_functional,strong_refine(sel)}

{}

5
{df,fm_inc,force_functional,strong_refine(sel)}

{{ab(or_abbc_sel)},{ab(vote_ab)},{ab(vote_bc)}}

{df,strong_refine(sel)}

{}

{strong_refine(sel)}

{}

{}

{{ab(sel)}}

{{ab(and_chip)},{ab(or_chip)}}

Figure 7.4: A diagnostic process.

some diagnoses are found (4). Since the hypothesis of incomplete fault modes is not
monotonic, we have to drop it again. The consequence is a loop between two states, in
which only the state with incomplete fault modes is consistent. By definition 7.19 we
have reached a weakly stable state. The search for double faults (3) in the other branch
is not successful. Two strategies apply in this situation. In all successor states we have
to allow incompleteness of fault models in addition to double faults (section 7.4). Fur-
thermore, we have to branch between physical and functional view as proposed by the
multiple views strategy (section 7.4). Two successor states are generated:

� With double faults and incomplete fault modes three diagnoses are found (5).
The search for more preferred diagnoses first leads to no diagnoses (7). Allowing
double faults does not help (11), while dropping the completeness of fault modes
assumption yields three single faults (9), so that this state is again weakly stable.

� Beside the computations in the functional view, we obtain diagnoses of the phys-
ical view (6). With double faults and incomplete fault modes allowed, five diag-
noses are consistent with the observation. Thus, in the next step the preferences
are relaxed and and chip and or chip are valid diagnoses in the physical view
(8). In order to discriminate among those two diagnoses several measurements
are proposed (10). Among them the point or abbc sel is chosen and finally the
state fforce physical, strong refine(sel), measure(out(or2; or abbc sel;1))g is
stable.

7.7. RELATION TO OTHER FORMALISMS 133

7.7 Relation to other Formalisms

Let us reconsider the way we use modal logic in our operational semantics. Starting
from a given state with no working hypotheses active we construct the S5-worlds for
this state. These worlds are given by the diagnosis semantics. Based on the truth
values of the formulas in this world a specialized algorithm computes transitions (with
certain properties) to the following process states. By iterating this algorithm we obtain
a transition system. Thus, besides providing a formal framework we use modal logic
mainly for model generation. In this sense, our work is more motivated by dynamic
logics [Eme90] where model checking and generation are main issues than by classical
modal logic.

Furthermore, modal deduction [ndCH95] is computationally very complex. Diag-
nosis strategies are means of speeding up diagnosis by proposing suitable assumptions.
So, performing modal deduction during the diagnosis process would slow down com-
putation. Our model generation algorithm is restricted to the given problem because
it exploits the problem structure and therefore is quite efficient. A modal deduction
system might still be useful here, it could be used to check if a given set of strategies is
consistent, independent of a diagnostic problem. However, such a system is currently
outside the scope of this work.

Another possible formalism for our framework is metaprogramming. Metapro-
gramming is suitable for implementation rather than for providing a formal back-
ground. In fact, a former version [DNPS95] of our formalization and the current one
have been implemented on top of the non-monotonic reasoning system REVISE us-
ing meta–logic programming with a demo-predicate for both, provability under well-
founded semantics and abduction of conflicts [DNPS95].

7.8 Discussion

To cope with large-scale systems the theory of model-based diagnosis has been ex-
tended to include concepts such as multiple views [Dav84, Ham91], hierarchies
[Dav84, Ham91, Gen84, Moz91, BD94], preferences [DPN94, FNS94] and measure-
ments [dKRS91]. Struss introduced the idea of diagnosis as process [Str92], further
developed by Böttcher and Dressler [BD93, BD94]. We formalized it by defining a
meta-language that allows to describe the process declaratively. In this chapter we fo-
cused on two important issues. First, we showed how to design strategies to cover the
concepts mentioned above. Second, we developed an operational semantics and an al-
gorithm that processes these strategies and efficiently computes the diagnostic process.
We identified generic one-step strategies to deal with monotonic and non-monotonic
working hypotheses as well as deterministic and non-deterministic strategies. In par-
ticular, the combination of non-monotonic working hypotheses and non-determinism
allowed us to express preferences which usually have to be treated in a separate frame-
work [DPN94, FNS94]. We showed how to use multiple views and how to employ

134 CHAPTER 7. STRATEGIES FOR DIAGNOSIS

hierarchies by the strategy of structural refinement. We integrated measurement strate-
gies using procedural attachment. Beside the practical motivation of one-step strate-
gies we proved that one-step strategies are universal, i.e. every diagnostic process can
be fully characterized by a set of one-step strategies. Furthermore, we defined char-
acteristic formulas and independence of strategies which lead to an efficient algorithm
that covers the whole variety of strategies. The design and evaluation of these strate-
gies was evaluated in the domain of digital circuits using the voter circuit from [Isc85].

Chapter 8

Conclusion

In this thesis we have described an efficient engine for model–based diagnosis, based
on a very general framework for non–monotonic reasoning. We have evaluated this
engine using two technical diagnosis applications: The diagnosis of combinatorial
circuits and the diagnosis of cellular networks. We have complemented our efficient
algorithms with a declarative modeling language for the diagnosis process.

8.1 Contributions

We have reviewed several diagnostic concepts from the model–based diagnosis litera-
ture to find a suitable diagnosis definition. Because of its flexibility, we chose spectrum
diagnosis, i.e. the diagnosis definition by Console and Torasso [CT91], complemented
by different minimality concepts. Spectrum diagnoses consist of a consistency–based
and an abductive part. We critically examined the claim made by Console and Torasso,
that abductive diagnoses can be replaced by consistency–based diagnosis. Our result is
that their statement does not hold for systems with a network structure, which are ubiq-
uitous in technical diagnosis. Thus, we found that a flexible diagnoser must implement
both consistency–based and abductive diagnosis.

Instead of a direct implementation of the diagnostic concepts using dedicated
conflict–based algorithms, we chose to embed diagnosis in a general framework for
non–monotonic reasoning, thereby increasing the expressiveness and flexibility of our
implementation. By reducing consistency–based and abductive diagnosis to circum-
scription, we established a different view on the relationship between diagnosis and
circumscription. Instead of using circumscription to define the semantics of new diag-
nostic concepts [BC94, Rai90], we use circumscription to reconstruct and efficiently
implement widely used diagnostic definitions.

The basis of our framework for non–monotonic reasoning is a novel implemen-
tation of circumscription for fixed domain theories. In contrast to previous imple-
mentations, which focused on a restricted variant of circumscription (like [Gin89]) or
demanded certain structural properties of the underlying theories (like [Lif85]) our al-

135

136 CHAPTER 8. CONCLUSION

gorithms handle prioritized and parallel circumscription, using both varying and fixed
predicates on all fixed domain theories.

Two technical diagnosis applications have been solved using the resulting DRUM–
II system: The diagnosis of combinatorial circuits and the alarm correlation in cellular
networks.

Due to their size and complicated internal structure, combinatorial circuits are re-
garded as a good benchmark for model–based diagnosis engines. The study of the
redundant computation steps of DRUM–II on this application has motivated the ex-
tension of the basic DRUM–II algorithm by an additional focusing technique. The
optimized DRUM–II algorithm exploits precompiled information on the structure of
the device under consideration. The size of this precompiled information is quadratic
in the size of the system description. Since the optimized DRUM–II algorithm does not
record any further information during the search for models, its memory requirements
are more predictable than those of most ATMS–based reasoners, whose data structures
exhibit combinatorial explosion during search. Our experiments have shown that the
optimized DRUM–II system is much more efficient than all previous systems in nearly
all cases on the ISCAS–85 benchmark suite of combinatorial circuits.

While the diagnosis of combinatorial circuits mainly posed an efficiency problem,
the alarm correlation in cellular networks was a challenging modeling problem. Our
solution is to our knowledge the first fully model–based approach to alarm correlation
in cellular networks. Its advantages are: robustness against topology reconfigurations,
good performance on noisy data, as well as the ability to diagnose multiple faults.
Despite these advantages our consistency–based system description was restricted to
tree–structured networks. Therefore we have developed a similar system description
based on spectrum diagnosis, which shares the advantages of the consistency–based
description, but is furthermore correct for any topology. Thus, in this application the
greater flexibility of the DRUM–II inference mechanism compared to previous engines
has enabled us to provide a more general system description.

In many applications of DRUM and DRUM–II it has proved useful to compute
diagnoses in two steps: First, a model of the correct behavior given the input values
of the system is computed. Then, this model is updated with the observed symptoms.
This incremental procedure is one of the key concepts in DRUM–II. We have shown
that this idea can be successfully integrated in reasoners based on different technology.
The integration of our two step approach into a theorem prover has made the resulting
system (NIHIL) capable of solving diagnosis problems with reasonable efficiency.

We have complemented our efficient diagnosis algorithms in DRUM–II with a
declarative language and an efficient algorithm for exploiting diagnosis strategies. Di-
agnosis strategies, which characterize the diagnostic process are usually encoded as
part of the diagnosis engine. Our bimodal language for strategies allows to describe
the process in the same declarative fashion as the system description describes the
device under consideration.

8.2. FUTURE WORK 137

8.2 Future Work

The work presented in this thesis should be extended in two main directions: First, the
DRUM–II engine should be integrated in an autonomous logical agent, which is able
to solve diagnosis tasks in a distributed environment. Second, further applications of
DRUM–II should be investigated.

We have started addressing the issues of model–based diagnosis in a distributed
environment in [FN96c, FdAMNS97]. In the environment of a spatially distributed
system, agents must communicate with each other to find a globally consistent system
diagnosis. Furthermore, an autonomous diagnosis agent should be capable of handling
monitoring and control tasks. To meet these requirements, DRUM–II can be extended
by perception and action mechanisms. To react to changes in the environment in real
time, a reactive rule mechanism is needed.

The extension of DRUM–II to an autonomous agent would permit to use DRUM–II
as a distributed diagnosis agent for telecommunication networks, communicating with
other agents according to the ITU TMN standard. Introducing distributed diagnosis
agents in large telecommunication networks could reduce the message traffic in case
of errors.

Another interesting application area for DRUM–II is the diagnosis of bridge faults
in digital circuits. Bridge faults are very common in modern CMOS circuits [CLFL95].
They can be handled through explicit modeling [Böt95]. Another interesting approach
to bridge fault diagnosis [CLFL95, LLC96] is the reduction of bridge faults to combi-
nations of stuck–at faults. It is an interesting future application to solve these complex,
multiple fault scenarios with DRUM–II.

Finally, the temporal reasoning capabilities of DRUM–II can be exploited in tem-
poral diagnosis applications. Within the telecommunication domain the detection and
diagnosis of trends concerning network traffic or the bit error rate of microwave links
are promising application areas.

138 CHAPTER 8. CONCLUSION

Bibliography

[Bak91] A. B. Baker. Nonmonotonic reasoning in the framework of the situation
calculus. Artificial Intelligence, 49:5–23, 1991.

[BC94] Philippe Besnard and Marie-Odile Cordier. Explanatory diagnoses and
their characterization by circumscription. Annals of Mathematics and

Artificial Intelligence, 11:75–96, 1994.

[BD93] Claudia Böttcher and Oskar Dressler. Diagnosis process dynamics:
Holding the diagnostic trackhound in leash. In Proceedings of the In-

ternational Joint Conference on Artificial Intelligence, volume 2, pages
1460–1471. Morgan Kaufmann Publishers, Inc., 1993.

[BD94] Claudia Böttcher and Oskar Dressler. A framework for controlling
model-based diagnosis systems with multiple actions. Annals of Math-

ematics and Artificial Intelligence, special Issue on Model-based Diag-

nosis, 11(1–4), 1994.

[Bea93] Simona Brugnosi and Roberto Manione et al. An expert system for
real time fault diagnosis of the italian telecommunications network. In
Integrated Network Management III. Elsevier North Holland, 1993.

[BFFN97a] Peter Baumgartner, Peter Fröhlich, Ulrich Furbach, and Wolfgang Ne-
jdl. Tableaux for diagnosis applications. In International Confer-

ence on Analytic Tableaux and Related Methods (Springer LNAI 1227),
Pont-a-Mousson, May 1997.

[BFFN97b] Peter Baumgartner, Peter Fröhlich, Ulrich Furbach, and Wolfgang Ne-
jdl. Semantically guided theorem proving for diagnostic applications.
In Proceedings of the Fifteenth International Joint Conference on Arti-

ficial Intelligence (IJCAI-97), Nagoya, Japan, August 1997.

[BFN96] P. Baumgartner, U. Furbach, and I. Niemelä. Hyper tableaux. In Euro-

pean Workshop on Logic in AI (JELIA 96), LNAI 1126. Springer, 1996.

[BML89] I. Bratko, I. Mozetič, and N. Lavrač. KARDIO: A Study in Deep and

Qualitative Knowledge for Expert Systems. MIT Press, Cambridge,
MA, 1989.

139

140 BIBLIOGRAPHY

[BNSS93] Thomas Brunner, Wolfgang Nejdl, Harald Schwarzjirg, and Monika
Sturm. Online expert system for power system diagnosis and restora-
tion. Intelligent Systems Engineering, pages 15–24, Spring 1993.

[Böt95] Claudia Böttcher. No Faults in Structure? - How to Diagnose Hidden
Interactions. In Proceedings of the 14th International Joint Conference

on Artificial Intelligence, pages 1728–1734, Montréal, Canada, August
1995. Morgan Kaufmann Publishers, Inc.

[BS84] Bruce G. Buchanan and Edward H. Shortliffe, editors. Rule-Based Ex-

pert System - The MYCIN Experiments of the Stanford Heuristic Pro-

gramming Project. Addison-Wesley Publishing Company, 1984.

[BY96] F. Bry and A. Yahya. Minimal Model Generation with Positive Unit
Hyper–Resolution Tableaux. In P. Moscato, U. Moscato, D. Mundici,
and M. Ornaghi, editors, Theorem Proving with Analytic Tableaux and

Related Methods, LNAI 1071, pages 143–159. Springer, 1996.

[CDT91] Luca Console, Daniele Theseider Dupré, and Pietro Torasso. On the
relationship between abduction and deduction. Journal of Logic and

Computation, 1(5):661–690, 1991.

[CL73] C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theo-

rem Proving. Academic Press, 1973.

[CLFL95] B. Chess, D. B. Lavo, F. J. Ferguson, and T. Larrabee. Diagnosis of
Realistic Bridging Faults with Single Stuck–at Information. In Pro-

ceedings of the International Conference on Computer-Aided Design,
pages 185–192, 1995.

[CP94] H. Chu and D. Plaisted. Semantically Guided First–Order Theorem
Proving using Hyper–Linking. In Automated Deduction - CADE 12,

LNAI 814, pages 192–206, Nancy, France, June 1994. Springer.

[CT91] Luca Console and Pietro Torasso. A spectrum of logical definitions
of model-based diagnosis. Computational Intelligence, 7(3):133–141,
1991. Also in [HCd92].

[CW91] Timothy S-C Chou and Marianne Winslett. Immortal: A model-based
belief revision system. In Proceedings of the International Conference

on Principles of Knowledge Representation and Reasoning, pages 99–
110, Cambridge, April 1991. Morgan Kaufmann Publishers, Inc.

[CW94] T. S-C. Chou and M. Winslett. A model–based belief revision system.
Journal of Automated Reasoning, 12:157–208, 1994.

BIBLIOGRAPHY 141

[Dav84] Randall Davis. Diagnostic reasoning based on structure and behaviour.
Artificial Intelligence, 24:347–410, 1984.

[DH88] Randall Davis and Walter Hamscher. Model-based reasoning: Trou-
bleshooting. In Exploring Artificial Intelligence, chapter 8, pages 297–
346. Morgan Kaufmann Publishers, Inc., 1988.

[dK76] Johan de Kleer. Local methods for localizing faults in electronic cir-
cuits. Technical Report AI Memo 394, MIT, Cambridge, MA, 1976.

[dK90a] J. de Kleer. Eliminating the fixed predicates from a circumscription.
Artificial Intelligence, 39(3):391–398, 1990.

[dK90b] Johan de Kleer. Using crude probability estimates to guide diagnosis.
Artificial Intelligence, 45:381–391, 1990.

[dK91] Johan de Kleer. Focusing on probable diagnoses. In Proceedings of the

National Conference on Artificial Intelligence (AAAI), pages 842–848,
Anaheim, July 1991. Morgan Kaufmann Publishers, Inc.

[dKRS91] Johan de Kleer, Olivier Raiman, and Mark Shirley. One step lookahead
is pretty good. In Second International Workshop on the Principles of

Diagnosis, Milano, Italy, October 1991.

[dKW87] Johan de Kleer and Brian C. Williams. Diagnosing multiple faults.
Artificial Intelligence, 32:97–130, 1987.

[dKW89] Johan de Kleer and Brian C. Williams. Diagnosis with behavioral
modes. In Proceedings of the International Joint Conference on Ar-

tificial Intelligence, pages 1324–1330, Detroit, August 1989. Morgan
Kaufmann Publishers, Inc.

[dMR92] J. de Kleer, A. Mackworth, and R. Reiter. Characterizing diagnoses
and systems. Artificial Intelligence, 56(2–3):197–222, 1992. Also in
[HCd92].

[DNPS95] C. V. Damásio, W. Nejdl, L. Pereira, and M. Schroeder. Model-based
diagnosis preferences and strategies representation with meta logic pro-
gramming. In Krzysztof R. Apt and Franco Turini, editors, Meta-logics

and Logic Programming, chapter 11, pages 269–311. The MIT Press,
1995.

[Doh94] P. Doherty. Reasoning about action and change using occlusion. In Pro-

ceedings of the 11th European Conference on Artificial Intelligence,
pages 401–405, 1994.

142 BIBLIOGRAPHY

[Dow92] Keith L. Downing. Consistency-based diagnosis in physiological do-
mains. In Proceedings of the National Conference on Artificial Intelli-

gence (AAAI), pages 558–563, San Jose, California, July 1992.

[Dow93] Keith L. Downing. Physiological applications of consistency-based di-
agnosis. Artificial Intelligence in Medicine, 5(1):9–30, 1993.

[DPN94] Carlos Viegas Damásio, Luı́s Moniz Pereira, and Wolfgang Nejdl. Re-
vise: An extended logic programming system for revising knowledge
bases. In Proceedings of the International Conference on Principles

of Knowledge Representation and Reasoning, pages 607–618, Bonn,
Germany, May 1994. Morgan Kaufmann Publishers, Inc.

[DS92] O. Dressler and P. Struss. Back to defaults: Characterizing and com-
puting diagnoses as coherent assumption sets. In Proceedings of the

10th European Conference on Artificial Intelligence, pages 719–723,
1992.

[dS95] Luis da Silva. Final report on gema demonstrator. Technical report,
CET/Portugal Telecom, Aveiro, Portugal, 1995.

[Eme90] E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, chap-
ter 16. Elsevier, Amsterdam, New York, 1990.

[FdAMNS97] Peter Fröhlich, Iara de Almeida Móra, Wolfgang Nejdl, and Michael
Schroeder. Diagnostic agents for distributed systems. In 4th ModelAge

Workshop – Formal Models Of Agents, 1997.

[FN96a] Peter Fröhlich and Wolfgang Nejdl. A model–based reasoning ap-
proach to circumscription. In Proceedings of the 12th European Con-

ference on Artificial Intelligence, 1996.

[FN96b] Peter Fröhlich and Wolfgang Nejdl. A model–based reasoning ap-
proach to circumscription – extended version. In Sixth International

Workshop on Nonmonotonic Reasoning, 1996.

[FN96c] Peter Fröhlich and Wolfgang Nejdl. Resolving conflicts in distributed
diagnosis. In ECAI Workshop on Modelling Conflicts in AI, 1996.

[FN97] Peter Fröhlich and Wolfgang Nejdl. A static model-based engine for
model-based reasoning. In Proceedings of the Fifteenth International

Joint Conference on Artificial Intelligence (IJCAI-97), Nagoya, Japan,
August 1997.

BIBLIOGRAPHY 143

[FNJW97] Peter Fröhlich, Wolfgang Nejdl, Klaus Jobmann, and Hermann Wi-
etgrefe. Model-based alarm correlation in cellular phone networks.
In Fifth International Symposium on Modeling, Analysis and Simula-

tion of Computer and Telecommunication Systems (MASCOTS), Jan-
uary 1997.

[FNS] Peter Fröhlich, Wolfgang Nejdl, and Michael Schroeder. Using modal
logic to define strategies in model-based diagnosis. Workshop on
Model Theory and Complexity, Sevilla, 1995.

[FNS94] Peter Fröhlich, Wolfgang Nejdl, and Michael Schröder. A formal se-
mantics for preferences and strategies in model-based diagnosis. In
5th International Workshop on Principles of Diagnosis (DX-94), pages
106–113, New Paltz, NY, October 1994.

[FNS96] Peter Fröhlich, Wolfgang Nejdl, and Michael Schroeder. Design and
implementation of diagnostic strategies using modal logic. In JELIA’96

– European Workshop on Logic in AI (LNAI 1126). Springer-Verlag,
1996.

[FNS98] Peter Fröhlich, Wolfgang Nejdl, and Michael Schroeder. Strategies in
model-based diagnosis. Journal of Automated Reasoning, 20(1 and
2):81–105, April 1998.

[FSW95] G. Friedrich, M. Stumptner, and F. Wotawa. Model–Based Diagnosis
of Hardware Designs. In W. Nejdl, editor, Sixth International Workshop

on Principles of Diagnosis (DX–95), Goslar, Germany, 1995.

[Gen84] M. R. Genesereth. The use of design descriptions in automated diag-
nosis. Artificial Intelligence, 24:411–436, 1984.

[Gin89] M. L. Ginsberg. A circumscriptive theorem prover. Artificial Intelli-

gence, 39:209–230, 1989.

[GMW96] H. Ganzinger, C. Meyer, and C. Weidenbach. Soft typing for ordered
resolution. Unpublished, 1996.

[GN97] Johann Gamper and Wolfgang Nejdl. Abstract temporal diagnosis in
medical domains. Artificial Intelligence in Medicine, 1997. to appear.

[GSW89] Russell Greiner, Barbara A. Smith, and Ralph W. Wilkerson. A correc-
tion to the algorithm in Reiter’s theory of diagnosis. Artificial Intelli-

gence, 41(1):79–88, 1989.

[Ham91] Walter C. Hamscher. Modeling digital circuits for troubleshooting. Ar-

tificial Intelligence, 51(1-3):223–271, October 1991.

144 BIBLIOGRAPHY

[HCd92] W. Hamscher, L. Console, and J. de Kleer. Readings in Model-Based

Diagnosis. Morgan Kaufmann, 1992.

[Isc85] The ISCAS-85 Benchmarks. http://www.cbl.ncsu.edu/www/
CBL Docs/iscas85.html, 1985.

[JW93] Gabriel Jakobson and Mark D. Weissmann. Alarm correlation. IEEE

Network, November 1993.

[Kar94] G. N. Kartha. Two counterexamples related to baker’s approach to the
frame problem. Artificial Intelligence, 69:379–391, 1994.

[KNH91] Walter Kehl, Mark Newstead, and Heiner Hopfmüller. A model-based
reasoning system for the maintenance of telecommunication networks.
In Proceedings of the International Workshop on Expert Systems and

Their Applications, May 1991.

[KS96] H. Kautz and B. Selman. Pushing the Envelope: Planning, Proposi-
tional Logic, and Stochastic Search. In Proceedings of the National

Conference on Artificial Intelligence (AAAI), Portland, Oregon, 1996.
AAAI Press.

[Lar92] T. Larrabee. Test Pattern Generation Using Boolean Satisfiability.
IEEE Transactions on Computer–Aided Design, pages 4–15, jan 1992.

[Lif85] V. Lifschitz. Computing circumscription. In Proc. of the Intl. Conf. on

Artificial Intelligence, pages 121–127, Los Angeles, August 1985.

[Lif86] V. Lifschitz. On the Satisfiability of Circumscription. Artificial Intelli-

gence, 28:17–27, 1986.

[LLC96] D.B. Lavo, T. Larrabee, and B. Chess. Beyond the Byzantine Generals:
Unexpected Behaviour and Bridging Fault Diagnosis. In Proceedings

of the International Test Conference, pages 611–619, October 1996.

[Luk90] W. Lukaszewicz. Non–monotonic reasoning: formalization of com-

monsense reasoning. Ellis Horwood, 1990.

[MB88] Rainer Manthey and Francois Bry. Satchmo: A theorem prover imple-
mented in Prolog. In Proceedings of the International Conference on

Automated Deduction, Argonne, Illinois, May 1988. Springer-Verlag.

[McC80] J. McCarthy. Circumscription - a form of non–monotonic reasoning.
Artificial Intelligence, 13:27–39, 1980.

[McC86] J. McCarthy. Applications of circumscription to formalizing common-
sense knowledge. Artificial Intelligence, 28:89–118, 1986.

BIBLIOGRAPHY 145

[Moz91] Igor Mozetič. Hierarchical model-based diagnosis. International Jour-

nal of Man-Machine Studies, 35:329–362, 1991.

[MT95] Marita Möller and Stefan Tretter. Event correlation in network man-
agement systems. In Proceedings of the 15th International Switching

Symposium, volume 2, Berlin, 1995.

[ndCH95] Luis Fari nas dec Cerro and Andreas Herzig. Modal deduction with
applications in epistemic and temporal logics. In C.J. Hogger Dov
M. Gabbay and J.A. Robinson, editors, The Handbook of Logic in Arti-

ficial Intelligence and Logic Programming, volume 4, pages 499–594.
Oxford Science Publications, 1995.

[Ned93] Bernhard Nedizavec. Implementierung von Belief Revision. Master’s
thesis, TU Wien, 1993. Prof. Wolfgang Nejdl.

[NF96] Wolfgang Nejdl and Peter Fröhlich. Minimal model semantics for di-
agnosis – techniques and first benchmarks. In Seventh International

Workshop on Principles of Diagnosis, Val Morin, Canada, October
1996.

[NFS95] Wolfgang Nejdl, Peter Fröhlich, and Michael Schroeder. A formal
framework for representing diagnosis strategies in model–based diag-
nosis systems. In Proceedings of the 14th International Joint Confer-

ence on Artificial Intelligence, pages 1721–1727, Montréal, Canada,
August 1995. Morgan Kaufmann Publishers, Inc.

[NG94] Wolfgang Nejdl and Brigitte Giefer. DRUM:Reasoning without con-
flicts and justifications. Technical report, RWTH Aachen, May 1994.
Submitted for publication.

[Out93] Dirk-Jan Out. Strategies for Efficient Model–Based Troubleshooting.
PhD thesis, Universiteit Twente, 1993.

[PN93] Monika Pfau and Wolfgang Nejdl. Integrating model-based and heuris-
tic features in a realtime expert system for power distribution networks.
IEEE Expert, pages 12–18, August 1993.

[Pop82] H. E. Pople. Heuristic Methods for Imposing Structure in Ill–Structured
Problems: The Structuring of Medical Diagnosis. In P. Szolovits, ed-
itor, Artificial Intelligence in Medicine, Boulder, CO, 1982. Westview
Press.

[Prz89] Teodor C. Przymusinki. An algorithm to compute circumscription. Ar-

tificial Intelligence, 38:49–73, 1989.

146 BIBLIOGRAPHY

[Rai90] Olivier Raiman. Circumscribing diagnosis engines: Exploiting the alibi
principle to avoid blind search. In Proceedings of the International

Workshop on Expert Systems in Engineering, Vienna, September 1990.
Springer-Verlag. Lecture Notes in AI.

[RC81] R. Reiter and G. Criscuolo. On interacting defaults. In Proceedings

of the International Joint Conference on Artificial Intelligence, pages
270–276, 1981.

[RdKS93] Olivier Raiman, Johan de Kleer, and Vijay Saraswat. Critical reason-
ing. In Proceedings of the International Joint Conference on Artificial

Intelligence, pages 18–23, Chambery, August 1993.

[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1–2),
1980.

[Rei87] Raymond Reiter. A theory of diagnosis from first principles. Artificial

Intelligence, 32:57–95, 1987.

[Rob65] J. A. Robinson. Automated deduction with hyper–resolution. Internat.

J. Comput. Math., 1:227–234, 1965.

[San94] E. Sandewall. Features and Fluents. The representation of Knowledge

about Dynamical Systems. Volume I. Oxford University Press, 1994.

[SD89] Peter Struss and Oskar Dressler. Physical negation — Integrating fault
models into the general diagnostic engine. In Proceedings of the Inter-

national Joint Conference on Artificial Intelligence, pages 1318–1323,
Detroit, August 1989. Morgan Kaufmann Publishers, Inc.

[SD96] Barbara M. Smith and Martin E. Dyer. Locating the phase transition in
binary constraint satisfaction problems. Artificial Intelligence, 81:155–
181, 1996.

[SMS95] P. Struss, A. Malik, and M. Sachenbacher. Qualitative Modeling is the
Key. In W. Nejdl, editor, Sixth International Workshop on Principles

of Diagnosis (DX–95), Goslar, Germany, 1995.

[SPBL95] Kelvyn Scrupps, Dominic Pang, John Bigham, and Mike Laughton. Fi-
nal report on gema evaluation and enhancement of gms tools and tech-
nology. Technical report, Queen Mary and Westfield College, London,
UK, 1995.

[Str92] Peter Struss. Diagnosis as a process. In W. Hamscher, L. Console,
and J. de Kleer, editors, Readings in Model-Based Diagnosis, pages
408–418. Morgan Kaufmann Publishers, Inc., 1992.

BIBLIOGRAPHY 147

[Win88] Marianne Winslett. Reasoning about action using a possible models
approach. In Proceedings of the National Conference on Artificial In-

telligence (AAAI), pages 89–93, Saint Paul, Minnesota, August 1988.

[WKA78] S. M. Weiss, C. A. Kulikowski, and S. Amarel. A Model–Based
Method for Computer-Aided Medical Decision–Making. Artificial In-

telligence, 11:145–172, 1978.

[WN96a] B. C. Williams and P. P. Nayak. Immobile Robots: AI in the New
Millennium. AI Magazine, 1996. Fall Issue.

[WN96b] Brian C. Williams and Pandurang Nayak. A model–based approach to
reactive self–configuring systems. In Thirteenth National Conference

on Artificial Intelligence (AAAI–96), Portland, Oregon, 1996.

[WN97] Brian C. Williams and Pandurang Nayak. A model–based approach to
reactive self–configuring systems. In 7th International Workshop on

Principles of Diagnosis, Val Morin, Canada, 1997.

[WS97] T. Wakaki and K. Satoh. Compiling Prioritized Circumscription into
Extended Logic Programs. In Proceedings of the Fifteenth Interna-

tional Joint Conference on Artificial Intelligence (IJCAI-97), Nagoya,
Japan, August 1997.

[WTJ+97] Hermann Wietgrefe, Klaus-Dieter Tuchs, Klaus Jobmann, Guido Carls,
Peter Fröhlich, Wolfgang Nejdl, and Sebastian Steinfeld. Using neural
networks for alarm correlation in cellular phone networks. In Proceed-

ings of the International Workshop on Applications of Neural Networks

in Telecommunications, 1997.

[Yea96] Shaula Yemini and Shmuel Klinger et al. High speed and robust event
correlation. IEEE Communications Magazine, May 1996.

Lebenslauf

Name: Peter Fröhlich

Geburtsdatum: 12.2.1970

Schulausbildung

1976–1980 Kath. Grundschule Würselen

1980–1989 Heilig–Geist–Gymnasium Würselen

am 18.5.1989 Abitur

Wehrdienst

1989–1990 Zivildienst in Würselen

Studium

1990–1995 Studium der Informatik mit Nebenfach Wirtschaftswissenschaf-
ten an der RWTH Aachen

Diplomarbeit zum Thema Modellierung des Diagnoseprozesses

in modellbasierten Systemen, Note: Sehr Gut

am 4.7.1995 Diplom mit der Gesamtnote: Mit Auszeichnung

Beruflicher Werdegang

1991–1994 Tätigkeit als freier Mitarbeiter bei debis Systemhaus GEI in
Aachen

seit 1995 Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Rech-
nergestützte Wissensverarbeitung der Universität Hannover

Anfertigung der vorliegenden Dissertation unter Betreuung von
Prof. Nejdl

	Abstract
	Zusammenfassung
	Keywords
	Schlagworte
	Contents
	Abbreviations
	Chapter 1 Introduction
	1.1 Problems Addressed in this Thesis
	1.2 Solutions Presented in this Thesis
	1.3 Structure of this Thesis

	Chapter 2 Model–Based Diagnosis
	2.1 Basic Concepts
	2.1.1 Consistency–Based Diagnosis
	2.1.2 Kernel Diagnoses
	2.1.3 Reducing the Number of Diagnoses

	2.2 Computing Diagnoses
	2.3 A Spectrum of Diagnosis Definitions
	2.4 On the Role of Abductive Diagnosis
	2.5 Discussion

	Chapter 3 The DRUM-II Framework
	3.1 Introduction
	3.2 The Model–based Approach
	3.2.1 Definition of Minimal Models
	3.2.2 Computing Minimal Models
	3.2.3 Deciding Entailment under Circumscription

	3.3 Variants of Circumscription
	3.3.1 Keeping the extensions of certain predicates fixed
	3.3.2 Prioritized Circumscription

	3.4 Algorithms for Revision and Filtering
	3.4.1 The Language
	3.4.2 Repairing Inconsistent Models
	3.4.3 Revision Algorithm
	3.4.4 Properties of the Algorithm
	3.4.5 An Iterative Deepening Algorithm
	3.4.6 Filtering Algorithm

	3.5 Non–monotonic Reasoning Applications
	3.5.1 PMON–Circumscription
	3.5.2 Baker’s Formalism
	3.5.3 Kartha’s Extension
	3.5.4 Nixon’s Diamond
	3.5.5 Running Times

	3.6 Implementing Diagnosis with DRUM-II
	3.6.1 Consistency–Based Diagnosis with DRUM-II
	3.6.2 Computing Spectrum Diagnoses with DRUM–II

	3.7 Discussion

	Chapter 4 Circuit–Diagnosis with DRUM–II
	4.1 Diagnosing Digital Circuits at Gate Level
	4.1.1 System Description
	4.1.2 Generating the Initial Model
	4.1.3 Computing Diagnoses
	4.1.4 Identifying Unnecessary Computations

	4.2 Exploiting Structural Independence
	4.2.1 Independence of Literals
	4.2.2 Application to Diagnosis

	4.3 Combinatorial Benchmark Circuits
	4.3.1 Why are these Problems so difficult?
	4.3.2 Experimental Results

	4.4 Discussion

	Chapter 5 Model–Based Alarm Correlation with DRUM-II
	5.1 Introduction
	5.2 Application Area
	5.3 Problem and Previous Solutions
	5.3.1 Generation of Alarms
	5.3.2 Previous Solutions

	5.4 A Consistency–Based Model
	5.4.1 Overview of the Necessary Model
	5.4.2 Specific Model
	5.4.3 Results
	5.4.4 Some Case Studies

	5.5 An Improved System Description based on Spectrum Diagnoses
	5.5.1 Limitations of the Consistency–Based Model
	5.5.2 System Description
	5.5.3 Computing Diagnoses

	5.6 Discussion

	Chapter 6 Tableaux for Diagnosis
	6.1 Introduction
	6.2 Hyper Tableaux Calculus
	6.3 Lessons from DRUM–II
	6.4 Formalizing the Diagnosis Task with Semantic Hyper Tableaux
	6.4.1 Initial Interpretations via Cuts
	6.4.2 Initial Interpretations via Renaming

	6.5 Implementation and Experiments
	6.6 Discussion

	Chapter 7 Strategies for Diagnosis
	7.1 Introduction
	7.2 Working Hypotheses
	7.3 A Formal Language for Strategies
	7.3.1 Preliminary Considerations
	7.3.2 The Meta Language
	7.3.3 Syntax of the language
	7.3.4 Representation of a Diagnostic Process
	7.3.5 Designing Strategies
	7.3.6 Consistency of Transition Systems
	7.3.7 Results of the Diagnostic Process

	7.4 A Strategy Knowledge Base for Circuit Diagnosis
	7.5 Operational Semantics
	7.5.1 Combining Strategies

	7.6 An Example
	7.7 Relation to other Formalisms
	7.8 Discussion

	Chapter 8 Conclusion
	8.1 Contributions
	8.2 Future Work

	Bibliography
	Lebenslauf

