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Zusammenfassung

In dieser Dissertation wird eine Kompositionstheorie hierarchischer Spezifika-
tionen eingeführt, die unabhängig von der gewählten Logik ist. Hierarchische
Spezifikationen sind Strukturen, die logische Formeln durch partiell geordnete
Prioritätsstufen organisieren und die Spezifikation von allgemeinen Regeln mit
Ausnahmen (und Ausnahmen von Ausnahmen) mit prioritisierten Formeln (“De-
faults”) formalisieren.

Die Komposition von hierarchischen Spezifikationen wird durch kanonische Ope-
rationen in syntaktischen und semantischen Kategorien definiert.

Diese Arbeit generalisiert die klassische Komposition von Präsentationen (Goguen
und Burstall, 1989) und verleiht der syntaktischen Komposition von Hierarchi-
schen Spezifikationen (Braß, Lipeck und Ryan, 1991) eine semantische Seite.

Die folgenden Konzepte und Eigenschaften werden mit dieser Arbeit eingeführt.

• Minimale Semantik. Eine neue Semantik von Hierarchischen Spezifika-
tionen, die eine Hierarchie von Präferenzrelationen zwischen Modellen ist,
wird definiert. Es wird gezeigt, daß diese Semantik die minimale Semantik
ist, die bestimmte logische und kompositionelle Eigenschaften erfüllt.

• Galois-Dualität. Es wird eine Galois-Dualität (“Galois connection”) für
hierarchische Spezifikationen und deren Semantiken nachgewiesen. Die
Galois-Dualität ist eine bijektive Abbildung zwischen Theorien hierarchi-
scher Spezifikationen und deren Semantiken, die eine bijektive Abbildung
zwischen syntaktischen und semantischen Operationen impliziert. Dieses
ist die Grundlage der folgenden Kompositionstheorie.

• Kategorielle Konstruktionen. Es wird eine Kategorie (hieSpec) Hierar-
chischer Spezifikationen und eine entsprechende Kategorie ihrer Semantiken
(hiePref) definiert. Morphismen zwischen hierarchischen Spezifikationen
ergeben sich aus Morphismen zwischen den zugrundeliegenden Signaturen
und Morphismen zwischen den entsprechenden Prioritätsstrukturen.

Die Komposition hierarchischer Spezifikationen wird durch Colimiten in der
Kategorie hieSpec oder durch Limiten in der semantischen Kategorie hiePref

formalisiert. Es wird außerdem gezeigt, daß die Existenz von solchen kano-
nischen Konstruktionen auf Signaturen und Prioritätstrukturen die Exis-
tenz entsprechender Konstruktionen in hieSpec und hiePref impliziert.
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Abstract

The main contribution of this work has been the establishment of an institution
independent theory of composition of hierarchic specifications. Hierarchic speci-
fications consist of formulas (“defaults”) from an underlying logic (institution),
organized by priority levels (related by a partial order). These formulas can be
defeated when in contradiction with more reliable information (at more important
priority levels). Hierarchic specifications model structures with several levels of
overriding of general properties, such as those occurring in the specification of
classes and subclasses.

Composition of hierarchic specifications is formalized in the syntactic and seman-
tic levels by canonical operations in appropriate categories. This composition
generalizes the classical framework of institutions (Goguen and Burstall, 1989)
and defines the semantics of the syntactic composition of hierarchic specifications
(Braß, Lipeck, Ryan, 1991).

The following concepts and properties have been introduced in this thesis.

• Minimal Semantics. A new semantics for hierarchic specifications, a
hierarchy of preference relations, has been defined. This semantics is shown
to be the minimal semantics satisfying certain logical and compositional
conditions.

• Galois Connection. We have shown a Galois connection between hierar-
chic specifications and their semantics. It expresses the one to one mapping
between the theories of hierarchic specifications and their semantics. It im-
plies a one to one mapping between syntactic and semantic operations. It
is the basic mechanism of the theory of composition.

• Categorial Constructions. A category (hieSpec) of hierarchic specifica-
tions and a “mirror” category of their semantics (hiePref) have been defined.
Hierarchic specification morphisms consist of signature and priority struc-
ture morphisms.

Composition of hierarchic specifications is formalized by colimits in the
category hieSpec, or by limits in the semantic category hiePref.

Existence of these constructions (both in hieSpec and hiePref) is guaranteed
by existence of the corresponding signature and priority structure construc-
tions.
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Introduction

Variety and complexity of software systems led to the development of specification
languages and formal methods providing the conceptual tools for their rigorous
description1.

Variety of software systems implies variety of methods and models to describe
them. They can be analyzed as structures of interrelated entities (Entity Rela-
tionship model) or as programs manipulating abstract data types (Abstract Data
Type school). Static and dynamic aspects may be integrated and systems spec-
ified as communities of interacting objects (Object Orientation). Specification
can alternatively concentrate in the functionalities (Feature Orientation) that
such systems should provide.

Complexity of software systems demands that specification languages provide
structuring mechanisms: “Complexity is a fundamental problem in programming
methodology: large programs, and their large specifications, are very difficult to
produce, to understand, to get right, and to modify. A basic strategy for defeating
complexity is to break large systems into smaller pieces that can be understood
separately, and that when put back together give the original system”[44].

Classical Specification Theory

The theory of institutions from Goguen and Burstall ([46]) provides the formaliza-
tion of classical structuring operations. This theory (and its many developments)
constitutes an “abstract specification theory”2 and has influenced the design of
the languages Clear ([16]), OBJ ([39, 47]), Eqlog ([48]), FOOPS ([49]), Oblog
([86]), Gnome ([71]) and Troll ([58]).

The notion of an arbitrary logical system is formalized by an institution, using
abstract model theory3([3]). The basic idea motivating the institutional frame-
work is that specifications, i.e. rigorous descriptions of parts of a system, denote

1In spite of this, “unreliable software is the norm rather than the exception”[81].
2The term “abstract specification theory” is taken from [31].
3The semantic structure can be substituted by “syntactic” consequence: see the Π-

institutions from ([34, 36]).

1



2 INTRODUCTION

logical theories. Structuring operations denote canonical operations among those
theories. The formalization of a specification language consists in the choice of
the appropriate logic (institution) and the corresponding characterization of the
structuring operations.

The chosen paradigm dictates the choice of the underlying logic. For instance
temporal logic(s) are used to give semantics to object oriented specification lan-
guages ([83, 30, 31, 84, 82, 17, 80, 85]). The main contribution of the theory of
institutions is the fact that the compositional constructs are independent of the
underlying logic. The specification language Clear ([16]) can be used to build
large specifications from theories from any logical system.

Non-monotonic Specification Theory

The main concern of this thesis is to provide an abstract specification theory
that formalizes non-monotonic composition constructs, thus extending the insti-
tutional framework.

There are several reasons for using non-monotonic formalisms in (the semantics
of) specification languages.

The first is that actual systems, reasoning in the presence of incomplete infor-
mation, use such mechanisms: planning systems, diagnose systems and truth
maintenance systems, for instance.

The second is that non-monotonic logics provide the formalization of the way
actual systems store and process their information: the several database and
knowledge base completions modeling the fact that in such systems only positive
information is kept; the theory of belief revision setting the general rules for the
addition of new information (inconsistent with the previous knowledge state); the
frame rule modeling the minimal change of properties after the occurrence of an
action.

The third is that the specification process itself is non-monotonic since the revi-
sion of previous oversimplified descriptions of the universe of discourse may not
only add information but also contradict previously specified information.

And, finally, the fourth is that the specification process improves in modularity
and reusability if such mechanisms are available. Non-monotonic formalisms
give formal grounds to “the requirement to re-use specification modules as far
as possible, i.e. not only to include the same components in different contexts,
but also to prefer modification of given parts over new definitions. To reduce
development costs, software should be designed in a “differential” way - select
a module from the library, refine it by adding new functions, and modify it by
overriding some old ones”[12].
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The form of reasoning known as default reasoning is fruitful in formalizing the
non-monotonic aspects referred. Default reasoning is reasoning in the presence of
incomplete information: in the absence of evidence to the contrary, assume the
“default”. For instance we can assume (and specify) that, by default, a book (in
a library) can be lent. If, however, this book is a reserved book this conclusion
can be defeated by explicit information stating that reserved books cannot be
lent.

Defaults in this thesis are formulas organized by priority. A default with more
important priority overrides a conflicting default of less important priority: from
the point of view of the later the more important default is “evidence to the
contrary”. Axioms are formulas that cannot be overridden. Prioritized defaults
have been introduced in [14] and further studied in [7, 6, 75, 76]. Their impact
in specification is stated in [9, 12].

This structure of axioms and prioritized defaults (and the corresponding seman-
tics) has been used to model different database completions (see [8, 5]), the frame
rule (see [14, 11]) and the “taxonomic” structure of classes and subclasses (see
[75, 76, 77]). The operation of adding new information at a new most impor-
tant priority level (recall the specification of reserved books) is a belief revision
([43, 42]) operator (see [75]).

Axioms and prioritized defaults are the modularization units used in the theory
of composition developed in this work. This means that we want to formal-
ize specification languages that use default mechanisms and we take prioritized
defaults and axioms as the denotation of such a specification modules. Construc-
tions involving specification modules are interpreted as operations involving the
corresponding denotations4.

For instance the specification of reserved books is obtained from the module books
(reuses it). A new priority level is added, more important than those of books ,
with the formula stating that reserved books cannot be lent. All other properties
of book will hold for reserved books since they are not contradicted by the more
important formula. Only the difference between reserved books and books must
be stated. This construction is given by a canonical operation (see chapter 3)
involving the specification books and the “difference” between reserved books and
books . Chapter 4 provides further examples of specification constructions.

4This structure of axioms and prioritized defaults is called an hierarchic specification. There-
fore specification modules denote hierarchic specifications. This formulation is unfortunate in
this context. The rest of the thesis will no longer refer to specification modules, only to their
denotations, the hierarchic specifications.



4 INTRODUCTION

Purpose of the Thesis

A preliminary goal of this thesis is to investigate the properties of hierarchy
specifications, that consist of axioms and prioritized defaults from an arbitrary
logic (institution). The main contribution, however, is to provide an abstract
specification theory using hierarchic specifications as modularization units. This
framework defines the semantics of the syntactical composition of hierarchic spec-
ifications from [12] and is presented in chapter 3. It corresponds to formalize,
independently of the underlying logic, the structuring operations of hierarchic
specifications. These operations are formalized both on the syntactic and seman-
tic levels, and account for the modular construction of hierarchic specifications
by combining, reusing and modifying (with overriding) previously specified mod-
ules.

Outline of the Thesis

The core of this thesis is chapter 3 that contains the theory of composition of
hierarchic specifications.

Chapter 1 presents specifications, a special case of hierarchic specifications (with
one only priority level). Logical properties of specifications from arbitrary in-
stitutions are stated. The correspondence between specification operations and
semantic operations (a Galois connection) is shown. It is the basic mechanism
of the theory of composition. The Galois connection implies a notion of theory
that is characterized.

Chapter 2 has the same structure as chapter 1 and extends the concepts and
properties of specifications to hierarchic specifications. A new semantics of hi-
erarchic specifications is introduced, and the correspondence between hierarchic
specification operations and semantic operations is shown. The corresponding
notion of theory is characterized. Hierarchic specifications are shown to have the
same logical content as corresponding specifications under some conditions on
the underlying logic.

Chapter 3 is divided in two parts, the first dedicated to the theory of composition
of specifications and the second to the generalization of that theory to hierarchic
specifications. Composition of specifications and hierarchic specifications is for-
malized by canonical constructions on appropriate syntactic and semantic cate-
gories. The correspondence between semantic and syntactical constructions (for
specifications and hierarchic specifications) follows from the corresponding Galois
connections. These constructions are shown to exist under the condition that the
corresponding signature and priority structure constructions exist. Moreover it is
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shown that the adopted semantics of specifications and hierarchic specifications
are the minimal semantics assuring composition.

Chapter 4 illustrates the use of the composition operations in specification.

Prerequisites

Knowledge of both classical logic and non-monotonic logic is needed for the un-
derstanding of the thesis. In [63] the most important formalisms are carefully
introduced. The theory of institutions ([46]) uses some concepts from category
theory that may be found for instance in [51, 1].



Chapter 1

Defaults in Institutions

Default reasoning formalizes the ability to assume and use in reasoning a property
which is likely to be true but not certainly true. Such properties are expressed
by formulas, the so called “defaults”, in some underlying logic. Properties that
are known to be certain are expressed also by formulas in the same underlying
logic, the “axioms”.

Default reasoning has been originally defined on first order logic ([73]) and after
that applied to other formalisms. In particular “defaults” in temporal logic(s)
have been studied in the context of specifying dynamic systems ([89, 9, 61]). Also
significant are the connections between default reasoning and deontic logic in the
context of system specification ([68]).

Our purpose in this chapter is to investigate the use of defaults in an arbitrary
logical system, following the trend set in [12]. For that purpose we accept the
concept of institution ([45, 46]) as a convenient formalization of the notion of
“arbitrary monotonic logical system”. Our aim, therefore, is not to generalize
the notion of institution in order to encompass non-monotonic logics (as in [81])
but to add non-monotonic features to existing monotonic logics. Institutions are
covered in section 1.1.

The notion of specification (with “defaults”) and its preference semantics will be
parameterized in the underlying institution and defined in section 1.2. A Galois
connection is established implying that operations on specifications are mirrored
by corresponding operations on the semantics.

In section 1.3 we define extensions and different notions of consequence of a
specification. These are related to the preference semantics presented in section
1.2. Important properties of default reasoning in an arbitrary institution (for
example the existence of extensions) are investigated.

We conclude the chapter in section 1.4.

7



8 CHAPTER 1. DEFAULTS IN INSTITUTIONS

1.1 Institutions

In this section the definition of institution, a formalization of the notion of logical
system, due to Goguen and Burstall ([45, 46]) is presented. The notions of pre-
sentation, its semantics and theory , defined within an institution, are reviewed.
Furthermore the interplay between an arbitrary presentation and its semantics
(given by a Galois connection) is highlighted. A general notion of entailment is
defined, and it is remarked that institutions are monotonic with respect to entail-
ment. These concepts are illustrated by displaying the institution of propositional
logic.

1.1.1 Definition

Institutions are a formalization, proposed by Goguen and Burstall in [46], of the
general notion of a logical (monotonic) system. This formalization encompasses
the following logical systems: equational logic, (many-sorted) first order logic
(with or without equality), horn clause logic with equality, inequational logic,
infinitary equational logic (continuous algebras), modal and temporal logic(s),
intuitionistic logic, and the λ-calculus. The theory of institutions gives semantics
to the specification languages Clear ([16]) and OBJ ([39, 47]) and has also been
used in designing the programming languages Eqlog ([48]) and FOOPS ([49]).

Institutions provide a formal means to study composition of theories written in
a particular logic. This study will be generalized to specifications with defaults
in this thesis. Moreover the theory of institutions also provides formal account
of the relation between different logics (via institution morphisms).

We begin by motivating the definition of institution. For purposes of illustration
the institution of propositional logic will be analyzed in some detail in the sequel.
(For other institutions, including first order logic see [45].)

On the syntactic side it is recognized that within the same logic, while keeping
the connectives fixed, one may have different sets of symbols in mind. In propo-
sitional logic this amounts to decide which propositional symbols to use and in
first order logic to decide which predicate and function symbols to use. Each
choice of symbols is called a signature. Within the same logical system signa-
tures are related to each other by signature morphisms. An inclusion morphism,
for example, states that the target signature has more symbols that the source
one. Signatures and signature morphisms constitute a category (called Sign).

To a given signature one must be able to assign the corresponding set of formu-
las. Usually this is accomplished inductively by applying the (operators on sets of
formulas corresponding to the) connectives to the atomic formulas. This assign-
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ment of sets of formulas to signatures is abstracted by the functor Sen1 that also
accounts for the fact that relations between signatures result in relations between
the corresponding languages. For example signatures related by inclusion induce
languages related by inclusion.

Each signature has associated a corresponding category of interpretation struc-
tures. Interpretation structures are in propositional logic the assignments of truth
values to the propositional symbols from the signature and their morphisms are
trivial (see below). In first order logic interpretation structures are the algebras
that interpret the predicate and function symbols from the signature over a carrier
set (or carrier sets in the multi-sorted case). Morphisms of first order logic inter-
pretation structures are algebra homomorphisms respecting the interpretation of
function symbols and satisfaction of predicate symbols.

The assignment of signatures to the corresponding category of interpretation
structures is abstracted by the functor Mod2. To a signature morphism the func-
tor Mod associates a functor from the category of interpretation structures of
the target signature to the category of interpretation structures of the source
signature (note that the direction of the signature morphism is reversed in the
semantics). This provides a way to “reduce” interpretation structures of the tar-
get signature to interpretation structures of the source signature. In the case that
the signature morphism is an inclusion the “reduction” of an interpretation struc-
ture of the target signature is the “restriction” of its interpretation of symbols to
the (lesser) symbols of the source signature. Interpretation structure morphism-
s of the target signature are translated to interpretation structure morphisms
between the “reduced” interpretation structures.

Finally each formula from a given signature Σ is given meaning by stating the
interpretation structures from the same signature where that formula holds. This
corresponds to the usual “semantic definition of truth” from Tarski ([90]) and is
formalized by the relation �Σ. The relations �Σ for different signatures cooperate
in such way that when changing formulas from one signature to formulas from
another their meaning changes correspondingly. This condition is known as the
Satisfaction Condition.

The definition of institution follows. Note that Set is the category of sets and
functions, Cat the category3 of categories and functors between them (and Catop

1Formulas are in [46] referred to as sentences.
2Interpretation structures are in [46] referred to as models.
3The opposite of Cat is the codomain of the functor Mod : Sign → Catop that assigns to a

signature the category of its interpretation structures. In first order logic the interpretation
structures of some signature form a proper class, and its category is a proper category (not
a small category). Therefore, at least for first order logic Cat must be the “category of all
categories” and not the category of all small categories. The “category of all categories” is not a
category but a quasicategory (see [1]). There are no foundational problems with quasicategories
(see again [1]) and, for the constructions of this thesis, they may be seen as categories. We
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its opposite category). Given a category C, the class of its objects is denoted by
|C|.

Definition 1 An institution consists of

• a category Sign whose objects are called signatures,

• a functor Sen : Sign → Set that assigns to each signature the set of its
formulas,

• a functor Mod : Sign → Catop giving for each signature Σ a category whose
objects are called Σ-interpretation structures and whose morphisms are the
Σ-interpretation structure morphisms, and

• a relation �Σ ⊆ |Mod(Σ)|×Sen(Σ), called Σ-satisfaction such that for every
morphism φ : Σ1 → Σ2 the Satisfaction Condition

m2 �Σ2 Sen(φ)(f) iff Mod(φ)(m2) �Σ1 f

holds for each model m2 of |Mod(Σ2)| and each formula f of Sen(Σ1). �

The relations between the concepts constituting an institution are illustrated in
the following figure 1.1.

Sign

Mod

��~~
~~
~~
~~
~~
~~
~

Sen

��
??

??
??

??
??

??
?

Σ

φ
��

Catop Σ′ Set

Mod(Σ) |=Σ Sen(Σ)

Sen(φ)
��

Mod(Σ′)

Mod(φ)

OO

|=Σ′ Sen(Σ′)

Figure 1.1: Functors Mod and Sen

will not mention this distinction further, and note only that all “semantic categories” to be
introduced are quasicategories.
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1.1.2 Presentations and their Semantics

In order to build a formal picture of some Universe of Discourse the “specifier”
should organize it in parts, describe formally these parts in a logic considered
convenient to the problem at hand (and it may be the case that different parts
express themselves better in different logics) and put the formalizations together
to build the overall picture.

The parts of such a specification are classically formalized by a set of formulas, a
presentation, describing the (intended or actual) properties of such a part. These
formulas are written in an appropriate signature of the chosen logic. Here we
are concerned with presentations from a fixed but arbitrary institution, their
semantics and properties. The concepts here presented are a necessary kernel for
the generalization to specifications using defaults and their composition.

Remark 2 Throughout this section concepts are defined in the scope of

I = (SignI , SenI , ModI , {�IΣ, Σ ∈ |SignI |}),

a fixed but arbitrary institution.

Definition 3 A presentation (from the institution I) is a pair (Σ, A) where

• Σ ∈ |SignI | is a signature from I and

• A ⊆ SenI(Σ) is a set of formulas from Σ.

A Σ-presentation A is a presentation (Σ, A). �

The interpretation structures that satisfy all formulas in a given presentation are
said to satisfy the presentation and called models of the presentation.

Definition 4 Let A be a Σ-presentation.

• A Σ-interpretation structure m ∈ |ModI(Σ)| satisfies the Σ-presentation
A, written m �

I
Σ A iff for all s ∈ A, m �

I
Σ s.

• When m �
I
Σ A then m is said a to be model of the Σ-presentation A.

• A class M ⊆ |ModI(Σ)| of Σ-interpretation structures satisfies the Σ-
presentation A, written M �

I
Σ A iff for all m ∈ M, m �

I
Σ A. �
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1.1.3 Theories

The semantics of a presentation is the class of all its models4. The theory of a class
of interpretation structures is the set of formulas holding in each interpretation
structure of that class.

Definition 5

1. The function • assigns to a Σ-presentation A the class of all Σ-interpretation
structures that are models of A;

A• = {m : m ∈ ModI(Σ) and m �
I
Σ A}.

2. The function • assigns to a class M ⊆ |ModI(Σ)| of Σ-interpretation struc-
tures the set of all Σ-formulas that are satisfied in each interpretation struc-
ture from M;

M• = {f : f ∈ SenI(Σ) and for all m ∈ M, m �
I
Σ f}.

M• is called the theory of M. �

These two functions form a Galois connection5 (see [46]). This means that re-
lations between presentations (inclusion) are mirrored by relations between the
corresponding semantics (again inclusion, but in the opposite direction). More-
over operations among presentations (unions and intersections) are also mirrored
by operations among the corresponding semantics (unions are mapped to inter-
sections and intersections to unions). The reverse is also true: relations and
operations among classes of interpretation structures are also mirrored by rela-
tions and operations among the corresponding theories. The Galois connection
properties are fundamental for formalizing composition of presentations.

Theorem 6 Let A, A′ and An for n ∈ IN, be Σ-presentations and M,M′ and
Mn for n ∈ IN, be classes of Σ-interpretation structures. Then

1. A ⊆ A′ implies A• ⊇ A′•,

2. M ⊆ M′ implies M• ⊇ M′•,

3. A ⊆ A•• and

4In fact these models are structured by interpretation structure morphisms. But this addi-
tional information is not relevant to the problems dealt with here.

5A (contravariant) Galois connection ([1]) is a pair of functions g : A → B and f : B → A
that respect orderings on A and B: a ≤ f(b) iff b ≤ g(a). This is equivalent to b ≤ g(f(b)) and
a ≤ f(g(a)).
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4. M ⊆ M••.

These imply:

1. A• = A•••,

2. M• = M•••,

3. (
⋃

n An)• =
⋂

n A•
n,

4. (
⋃

n Mn)• =
⋂

n M
•
n,

5. (
⋂

n A•
n
•)• = (

⋃
n A•

n)•
•
,

6. (
⋂

n M
•
n
•)• = (

⋃
n M

•
n)•

•
.

Proof See [46]. Derived properties 4 and 6 above are obtained by formal similarity
with 3 and 5 respectively. X

The same class of interpretation structures is the semantics, in general, of differ-
ent presentations, and also the same presentation may be the theory of different
classes of interpretation structures, too. The relation between syntax and seman-
tics can, however, be made bijective by considering only closed presentations and
closed classes of interpretation structures.

Definition 7

• The closure of a Σ-presentation A is the Σ-presentation A•• (i.e. (A•)•) of
the Σ-formulas that hold in each Σ-interpretation structures that are models
of A. A Σ-presentation A is closed iff A = A••. A closed Σ-presentation
is also called a Σ-theory . The closure of a Σ-presentation is the Σ-theory
induced by that Σ-presentation.

• The closure of a class M of Σ-interpretation structures is the class M••

(i.e. (M•)•) of the Σ-interpretation structures that satisfy the Σ-formulas
satisfied in each Σ-interpretation structure from M. A class M of Σ-
interpretation structures is closed iff M = M••.

Clearly a presentation is closed iff it is the theory of some class of interpretation
structures and a class of interpretation structures is closed iff it is the class of
models of some (closed) presentation. �

The relation between closed presentations and closed classes of interpretation
structures is one to one. Also two closed presentations are related by inclusion
iff their semantics are related by inclusion (reversed).
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Lemma 8 Let A, A′ be closed Σ-presentations and M and M′ be closed classes
of Σ interpretation structures. Then

• A ⊆ A′ iff A• ⊇ A′•,

• M ⊆ M′ iff M• ⊇ M′•.

Proof Trivial from the Galois connection 6 above. X

Note that inclusion of presentations is not a convenient way of relating presenta-
tions. In fact there may be presentations, one having more information content
than the other (measured by inclusion of the respective classes of models) which
are not related by inclusion. Take, for example, the presentations {f} and {f∧f},
from some signature Σ from an institution where ∧ is a connective interpreted as
conjunction. Clearly they mean the same (have the same semantics) but are not
related by inclusion (since the formulas f and f ∧ f are different).

Presentations that have the same semantics should be seen as equivalent and
presentations should be related by their meaning and not by the specificity of the
formulas used to describe that meaning.

As seen above closed presentations and relations between them provide the needed
abstraction. This fact is emphasized in the following:

Lemma 9 Let A, A′ be Σ-presentations.

• Two presentations have the same semantics iff they have the same closure
(or induce the same theory); A• = A′• iff A•• = A′••,

• The theory induced by a presentation is the biggest (w.r.t. inclusion) pre-
sentation having the same semantics as the original one: if A• = A′• then
A′ ⊆ A••.

Proof Trivial from the Galois connection 6 above. X

1.1.4 Entailment and Monotonicity

A formula is entailed by a presentation (or is a consequence of the presentation)
if it holds in all models of that presentation, i.e. if it belongs to the corresponding
theory.

Definition 10 A Σ-formula f is entailed by a Σ-presentation A, written A �Σ f
iff f ∈ A••. �
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With this definition of entailment it is straightforward to check that institutions
are monotonic:

Theorem 11 Institutions are monotonic: given Σ-presentations A ⊆ A′, if A �Σ

f then A′
�Σ f .

Proof Straightforward from the definition of entailment and properties 1 and 2 from
the Galois connection. X

1.1.5 Propositional Logic

We illustrate the definition of institution by constructing the institution of propo-
sitional logic6, referred to by Π. This corresponds to defining the category ΠSign

of propositional signatures and signature morphisms, the functor ΠSen associ-
ating to a signature its language, the functor ΠMod associating to a signature
its category of propositional interpretation structures and, for each propositional
signature P , the propositional satisfaction relations �Π

P .

Signatures and signature morphisms are defined as follows.

Definition 12 A propositional logic signature P is a set (of propositional sym-
bols). A morphism of propositional signatures from P to P ′ is a function φ : P →
P ′.

Let ΠSign denote the category with propositional signatures as its objects, with
propositional morphisms as its morphisms and with the obvious identities and
composition7. �

We now proceed to define the functor ΠSen that sends signatures to the corre-
sponding language and signature morphisms to functions between the languages.
First we define the language associated with a propositional signature (we follow
[50] and [41]). This is generated from the set of atomic formulas (in this case the
set of propositional symbols, i.e. the signature), together with the falsum (⊥) by
the implication connective ⇒. An equivalent and more usual inductive definition
is:

Definition 13 Given a propositional signature P the set of its formulas ΠSen(P)
is inductively defined by:

• the falsum ⊥ ∈ ΠSen(P) and p ∈ ΠSen(P) for every propositional symbol
p ∈ P,

6Although we cannot trace a reference giving this same example we note that is is the
simplest case from those presented in [46].

7In fact this is the category Set of sets and functions.
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• whenever π1, π2 ∈ ΠSen(P) then (π1 ⇒ π2) ∈ ΠSen(P),

• a formula is in ΠSen(P) only if it is formed by the rules above. �

Note that the connectives (and parenthesis) are global to the institution: the
formulas of different signatures differ only in the propositional symbols they use,
not in the other logical symbols.

Each signature morphism φ : P → P ′ can be extended in a unique way to a
function between the sets ΠSen(P) and ΠSen(P ′) (see [41]).

Definition 14 Given a propositional signature morphism φ : P → P ′ the func-
tion φ̂ : ΠSen(P) → ΠSen(P ′) is inductively defined by:

• φ̂(⊥) = ⊥ and for p ∈ P, φ̂(p) = φ(p),

• φ̂((π1 ⇒ π2)) = (φ̂(π1) ⇒ φ̂(π2)) for π1, π2 ∈ ΠSen(P). �

The functor ΠSen : ΠSign → Set is now easily defined:

Definition 15 The functor ΠSen : ΠSign → Set sends a propositional signature
P to its language ΠSen(P) and a propositional signature morphism φ : P → P ′

to the function φ̂ : ΠSen(P) → ΠSen(P ′).

It is straightforward to check that ΠSen is indeed a functor. �

We now proceed to define the functor ΠMod that to a propositional signature
assigns the category of its interpretation structures and to a propositional signa-
ture morphism assigns a functor (in the reverse direction) between the categories
of interpretation structures of the domain and codomain signatures.

We begin by defining the interpretation structures of a propositional signature
and the corresponding category (of interpretation structures).

Definition 16 For P a propositional signature, a P-interpretation structure is
a truth assignment, i.e. a function τ : P → {true, false}.

There is a (trivial) propositional P-morphism between τ : P → {true, false} and
τ ′ : P → {true, false} iff τ = τ ′8.

Let ΠMod(P) denote the category with propositional P-interpretation structures
as objects and with propositional P-morphisms as morphisms. �

8Other possibility is to choose a function m : P → P as morphism m : τ → τ ′ satisfying the
condition that, for all p ∈ P if τ(p) = true then τ ′(m(p)) = true. This is closer to the morphism
condition for first order logic that is treated in [46]. The trivial identity morphisms simplify
our brief illustration of institutional concepts.
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Remark 17 Note that since the morphisms in ΠMod(P) are trivial (the identi-
ties only) this category can be identified with the class of its objects, namely the
class |ΠMod(P)| of P-interpretation structures. Also a functor F : ΠMod(P) →
ΠMod(P ′) is simply a function F : |ΠMod(P)| → |ΠMod(P ′)|. This will be
helpful in defining the functor ΠMod (see definition 18 below).

The reduct of a P ′-interpretation structure τ ′ : P ′ → {true, false}, w.r.t. a
propositional signature morphism φ : P → P ′ is a P-interpretation structure
τ : P → {true, false}. The reduct τ gives to a propositional symbol p from the
(lesser) signature P the interpretation given by τ ′ to the corresponding symbol
φ(p). Clearly τ = τ ′ ◦ φ.

Recalling remark 17 above, the functor ΠMod is defined as follows.

Definition 18 The functor ΠMod sends a propositional signature P to the class
|ΠMod(P)| of P-interpretation structures and sends each propositional signature
morphism φ : P → P ′ to the function ΠMod(φ) : |ΠMod(P ′)| → |ΠMod(P)|
defined by ΠMod(φ)(τ ′) = τ ′ ◦ φ that assigns to each P ′-interpretation structure
τ ′ its reduct τ ′ ◦ φ. �

We only have to define satisfaction to fully characterize the institution Π.

Definition 19 Given a propositional signature P the satisfaction relation �
Π
P is

defined as follows: τ �Π
P π, where τ is a propositional P-model and π a P-formula

iff τ�(π) = true where τ� is the unique extension of τ to P-formulas defined by
(see again [41]):

1. τ�(⊥) = false; τ�(p) = τ(p) for p ∈ P,

2. τ�((π1 ⇒ π2)) = false iff τ�(π2) = true and τ�(π2) = false. �

Theorem 20 The category ΠSign, the functors ΠSen and ΠMod and the propo-
sitional satisfaction relations �Π

P , for each propositional signature P , constitute
an institution.

Proof We need only to establish the satisfaction condition. Given the signature
morphism φ : P → P ′ and a P ′-model τ ′ we have to check that, for every formula
f ∈ ΠSen(P),

τ ′
�

Π
P ′ ΠSen(φ)(f) iff ΠMod(φ)(τ ′) �Π

P f

which is equivalent to τ ′
�

Π
P ′ φ̂(f) iff τ ′ ◦ φ �

Π
P f from definitions 18 of ΠMod and

15 of ΠSen. This in turn is equivalent (definition 19 of satisfaction) to τ ′�(φ̂(s)) =
true iff (τ ′ ◦ φ)�(s) = true. It is easy to check, from definitions 19 and 14 that (τ ′ ◦ φ)� =
τ ′� ◦ φ̂, which ends the proof. X
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We refrain from illustrating presentations and their models and the corresponding
Galois connection in the propositional institution. A final note on the notion of
entailment is worthwhile: it is equivalent to the notion of consequence (closure
for derivation) since this institution has as a complete set of inference rules.

1.2 Specifications

In this section we present the concepts and properties relevant to specifications
built from axioms and defaults of an arbitrary institution.

Default reasoning can be added to a given institution by adding defaults to its
presentations (on the syntactic side) and organizing the models of presentations
with preference relations induced by those defaults (on the semantic side). A
Galois connection can again be obtained for the resulting framework, express-
ing the interplay between constructions on specifications (i.e. presentations with
defaults) and their semantics.

1.2.1 Syntax and Semantics

A specification is a set of formulas corresponding to the facts or axioms of the
specification plus a set of formulas, the defaults that express properties which are
likely to be true but not certainly true. Both the axioms and the defaults are
written in the same language.

The formalism to be presented generalizes Poole-like defaults (see [70]) in that
axioms and defaults can be written in any institution. Poole defaults, also called
supernormal defaults ([6, 7]) or even true defaults can be seen as a special case
of defaults in the sense of default logic from Reiter ([73]), namely the defaults of
the form true : d/d.

The formalism is simple although quite powerful ([14]) and will be extended in
chapter 2 by introducing degrees of likeliness among the defaults. The resulting
formalism, taken from [12], is inspired in the priorities from [6, 7, 14] and Ordered
Theory Presentations from [74, 75].

A fundamental property of Poole-like defaults is that they can be assigned a
preferential semantics, expressing that some models of the facts (axioms) are
better than other since they satisfy more defaults. This preferential semantics has
its original motivation in the semantics of Circumscription ([67]), where first order
interpretation structures are related by inclusion of the carrier sets corresponding
to a predicate of abnormality . Preferential semantics has been proposed has a
basis to all non-monotonic formalisms ([88]). The semantics we present here is
very close to the one proposed by Stefan Brass in [6, 7]. We will see (in chapter
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3) that this semantics is particularly convenient for the study of composition of
specifications.

A small example is useful to introduce the relevant concepts9.

Example 21 Consider the specification BATMAN concerned with the flying
abilities of mammals, in particular bats and humans. Bats are known to fly
by default whereas humans are known not to fly by default. Non-exceptional
humans are able to dream. Nothing is known about the same ability for bats.
A particularly interesting individual is bm (Batman) which is known to be both
a bat and a human. This is modeled by the axiom Hum(bm) ∧ Bat(bm). The
formulas Bat(bm) ⇒ Fl(bm), Hum(bm) ⇒ ¬Fl(bm) and Hum(bm) ⇒ Dr(bm) are used
to express the default information relevant to bm. Clearly our choice of symbols is
the first order logic signature sg(BATMAN) = {{bm}0, {Bat, Hum, Fl, Dr}1}. The
previous axiom and defaults form the specification

BATMAN = (sg(BATMAN), ax(BATMAN), df(BATMAN)),

where

ax(BATMAN) = {Hum(bm) ∧ Bat(bm)}

and

df(BATMAN) = {Bat(bm) ⇒ Fl(bm), Hum(bm) ⇒ ¬Fl(bm), Hum(bm) ⇒ Dr(bm)}.

△

We now proceed to define specifications.

Remark 22 Recall that concepts are defined in the scope of

I = (SignI , SenI , ModI , {�IΣ, Σ ∈ |SignI |}),

a fixed but arbitrary institution.

Definition 23 A specification (from I) is a triple S = (Σ, A, D) where

• Σ ∈ |SignI | is a signature from I,

• A ⊆ SenI(Σ) is a set of formulas from Σ, the set of axioms from S and

• D ⊆ SenI(Σ) is a set of formulas from Σ, the set of defaults from S.

9We use first order logic to formalize the examples related to BATMAN.
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The projections sg(S) = Σ, ax(S) = A and df(S) = D assign to a specification S
its signature, its set of axioms and its set of defaults.

A Σ-specification (A, D) is a specification (Σ, A, D). �

The semantics of a specification is a relation on the models of its axioms, repre-
senting that some of these models are better than other since they satisfy more
of the defaults ([67, 88, 9]). This relation is a pre-order.

Definition 24 A pre-order (from I) is a triple R = (Σ,M,⊑) where

• Σ ∈ |SignI | is a signature from I,

• M ⊆ |ModI(Σ)| is a class of interpretation structures of the signature Σ,

• ⊑ ⊆ M×M is a reflexive and transitive relation among those interpretation
structures.

The projections sg(R) = Σ, |R| = M and rl(R) = ⊑ assign to a pre-order R
its signature, its class of interpretation structures and the relation among them,
respectively.

A Σ-pre-order (M,⊑) is a pre-order (Σ,M,⊑). �

The pre-order induced by a specification relates the models of the axioms by how
well they satisfy the defaults.

Definition 25 The pre-order induced by a specification S, denoted by S⋆ is the
pre-order with

• the same signature as S, sg(S⋆) = sg(S),

• the models of the axioms from S as class of interpretation structures, |S⋆| =
ax(S)• and

• the relation ⊑= rl(S⋆) ⊆ |S⋆| × |S⋆| among those models defined by

m ⊑ n iff for all d ∈ df(S), if m �
I
sg(P ) d then n �

I
sg(P ) d.

�

The preference relation associated with the specification BATMAN is displayed
in the following figure 1.2. Only the interpretation structures where the axiom
Hum(bm) ∧ Bat(bm) holds participate in the relation. Interpretation structures
satisfying precisely the same defaults are made equivalent by the preference rela-
tion corresponding to the specification BATMAN. The nodes ( label ) denote the
equivalence classes of the interpretation structures satisfying the sets of formulas
labeling them and the arrows (⇒) denote relations of preference among those
interpretation structures (reflexive pairs are not represented).
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{Fl(bm), Dr(bm)} {¬Fl(bm), Dr(bm)}

KS KS

{Fl(bm),¬Dr(bm)} {¬Fl(bm),¬Dr(bm)}

Figure 1.2: The preference relation associated with BATMAN

1.2.2 Theories

We have already seen how to obtain a pre-order from a specification. We are
now concerned with the opposite direction, that of assigning a specification to a
pre-order R. This specification will also be called the theory of the pre-order R.
Since our framework generalizes the classical case it is expected that the theory
of a pre-order R will have as axioms the formulas satisfied in all interpretation
structures participating in R.

For the new structure we introduce the concept of default implicit in a pre-order.
To motivate this concept note that any default d from a specification S satisfies
the property that for each (m1, m2) ∈ S⋆ if m1 � d then m2 � d (this is obvious
from the definition 25 of preference relation). An implicit default from S⋆ is
any formula that satisfies this property (clearly including the defaults from S as
defaults implicit in its preference relation). The set of implicit defaults from S⋆

is the biggest set of formulas that can be added to the set of defaults from S
without destroying any of the relations of preference displayed in S⋆.

Remark 26 There are formal similarities with the classical case: All axioms are
satisfied in the class of their models and the theory of this class is the set of such
formulas. Also this theory is the biggest set of formulas that can be added to
the original axioms without changing its semantics (any formula having the same
models is already in the theory).

In general a sentence d is an implicit default of a pre-order R if, whenever it
is satisfied by an interpretation structure m from R it is also satisfied by all
interpretation structures better (according to R) than m.

Definition 27 The set of defaults implicit in a Σ-pre-order R, denoted by R◦,
is the set of Σ-formulas

R◦ = {d ∈ SenI(Σ)) : for all m1, m2 ∈ |R| if m1 ⊑ m2 and m1 � d then m2 � d}

where ⊑ is rl(R). �
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We can now assign to a specification a pre-order and to a pre-order a specification.

Definition 28

• The function ⋆ assigns to a Σ-specification S its induced preference relation,
the Σ-pre-order S⋆,

• The function ⋆ assigns to a Σ-pre-order R the specification R⋆ = (|R|•,R◦).
The specification R⋆ is called the theory of R. �

The relation between these two operators takes again the form of a Galois con-
nection. It generalizes the Galois connection for the classical case (presented in
theorem 6).

Before presenting it we need to define inclusion, union and intersection of spec-
ifications and of pre-orders. Inclusion of specifications corresponds to inclusion
of sets of axioms and sets of defaults. Union corresponds to union of the sets of
axioms and the sets of defaults. Similarly for intersection. Inclusion of pre-orders
corresponds to inclusion of the classes of interpretation structures and inclusion
of the relations (i.e. inclusion of relations pairs). Intersection of pre-orders is
intersection of the classes of interpretation structures and of the relations. Note
that the union of transitive relations is not necessarily transitive. For this rea-
son union of pre-orders is union of the classes of interpretation structures and the
transitive closure of the union of the relations. In this way the union of pre-orders
is itself a pre-order.

Definition 29 The relation of inclusion (b) and the operations union (d) and
intersection (e) over Σ-specifications are defined as follows. Let S and S ′ be
Σ-specifications. Then

1. S b S ′ iff ax(S) ⊆ ax(S′) and df(S) ⊆ df(S ′),

2. SdS ′ = (ax(S) ∪ ax(S ′), df(S) ∪ df(S ′)),

3. SeS ′ = (ax(S) ∩ ax(S ′), df(S) ∩ df(S ′)).

The relation of inclusion (b) and the operations union (d) and intersection (e)
over Σ-pre-orders are defined similarly as follows. Recall that we take the tran-
sitive closure of the union of the argument relations in order to assure that the
resulting relation is reflexive and transitive.

Let R and R′ be Σ-pre-orders. Then

1. R b R′ iff |R| ⊆ |R′| and rl(R) ⊆ rl(R′),
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2. RdR′ = (|R| ∪ |R′|, rl(R) ∪ rl(R′)), where rl(R) ∪ rl(R′) is the transitive
closure of the relation rl(R) ∪ rl(R′),

3. ReR′ = (|R| ∩ |R′|, rl(R) ∩ rl(R′)). �

The Galois connection between specifications and pre-orders states that more
formulas imply less models (as known classically) and, what is new, that more
defaults imply less relations of preference among those models.

Moreover operations among specifications (unions or intersections of axioms and
defaults) are mirrored by corresponding operations among pre-orders (intersec-
tions and unions).

Theorem 30 Let S, S ′ and Sn, n ∈ N , be Σ-specifications and R,R′ and Rn, n ∈
N , be Σ-pre-orders (N is some set of indices). Then

1. S b S ′ implies S⋆
c S ′⋆,

2. R b R′ implies R⋆
c R′⋆,

3. S b S⋆⋆ and

4. R b R⋆⋆.

The following properties are implied from these.

(a) S⋆ = S⋆⋆⋆,

(b) R⋆ = R⋆⋆⋆,

(c) (dnSn)⋆ = enS
⋆
n,

(d) (dnRn)⋆ = enR
⋆
n,

(e) (enS
⋆
n

⋆)⋆ = (dnS
⋆
n

⋆)
⋆
,

(f) (enR
⋆
n

⋆)⋆ = (dnR
⋆
n)⋆⋆

.

Proof

1. Since ax(S) ⊆ ax(S′) it follows from the Galois connection for the classical case
that |S⋆| = ax(S)• ⊇ ax(S′)• = |S′⋆|.

We need now to prove that rl(S⋆) ⊇ rl(S′⋆). Take (m, n) ∈ rl(S′⋆). We show that
(m, n) ∈ rl(S′⋆). By definition of preference relation (definition 25) this means
that for each default d ∈ df(S′) if m � d then also n � d. Since the set of defaults
df(S) ⊆ df(S′) then clearly for each default d ∈ df(S) if m � d then n � d. But
this means (m, n) ∈ rl(S⋆).
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2. Since |R| ⊆ |R′| it follows again from the Galois connection for the classical case
that ax(R⋆) = |R|• ⊇ |R′|• = ax(R′⋆).

We need now to prove that R◦ ⊇ R′◦. Take a default d ∈ R′◦. We prove that
d ∈ R◦. By definition of implicit default (definition 27) d ∈ R◦ iff whenever
m � d for m ∈ |R| then for any m′ such that (m, m′) ∈ rl(R) also m′

� d.
Assume m � d for m ∈ |R| and consider m′ with (m, m′) ∈ rl(R). We show that
m′

� d. Since |R| ⊆ |R′| we know that m ∈ |R′| and since rl(R) ⊆ rl(R′) we also
know that (m, m′) ∈ rl(R′). But since d is an implicit default from R′ and m � d
then m′

� d.

3. ax(S) ⊆ ax(S⋆⋆) follows from the fact that ax(S⋆⋆) = |S⋆|• = ax(S)•
•

(see
definition 28) and ax(S) ⊆ ax(S)•

•
from the Galois connection for the classical

case.

What we have to check is that the defaults from S are defaults implicit in the
preference relation S⋆. That is for each d ∈ df(S) and any interpretation struc-
ture m ∈ |S⋆| = ax(S)• if m � d then every m′ with (m, m′) ∈ rl(S⋆) also satisfies
d. But it is obvious from definition 25 of preference relation induced by S that
m′ satisfies all defaults from S satisfied by m.

4. Note that |R⋆⋆| = ax(R⋆)• = |R|•• (from definitions 28). Clearly |R| ⊆ |R⋆⋆| =
|R|•• again from the Galois connection for the classical case.

We have to check that rl(R) ⊆ rl(R⋆⋆), i.e. that if (m, n) ∈ rl(R) then (m, n) ∈
rl(R⋆⋆). Take (m, n) ∈ rl(R). Both m, n ∈ |R⋆⋆| since m, n ∈ |R| and we know
from above that |R| ⊆ |R⋆⋆|.

From definition 25 of preference relation (m, n) ∈ rl(R⋆⋆) if all defaults from
R⋆ that are satisfied in m are also satisfied in n. The defaults from R⋆ are the
defaults implicit in R (see definition 28).

We have now to prove that given an implicit default d from R if m � d then n � d.
Assume m � d. But d is an implicit default from R precisely because whenever
it would hold in an interpretation structure m participating in R it would also
hold in all interpretation structures above m, according to R (see definition 27
of implicit default ). This is the case with n since (m, n) ∈ rl(R).

Now the derived ones. Note that if, for each n, Rn b R then dnRn b R where dnRn

is the transitive closure of the union of the relations in each Rn.

(a) [S⋆ = S⋆⋆⋆] Since S b S⋆⋆ (3 above) we have from 1 that S⋆
c S⋆⋆⋆. But letting

R = S⋆ we have from 4 that S⋆
b S⋆⋆⋆.

(b) [R⋆ = R⋆⋆⋆] mutatis mutandis as (a),

(c) [(dnSn)⋆ = enS⋆
n] Since Sn b dnSn for each n ∈ N one has from 1 that

S⋆
n c (dnSn)⋆ and also the intersection enS⋆

n c (dnSn)⋆.

For the other direction one has for each n ∈ N that S⋆
n c enS⋆

n and from 2,
S⋆

n
⋆
b (enS⋆

n)⋆. From 3 Sn b S⋆
n

⋆
b (enS⋆

n)⋆ and therefore dnSn b (enS⋆
n)⋆.



1.2. SPECIFICATIONS 25

Again from 1 we obtain (dnSn)⋆
c (enS⋆

n)⋆⋆
and since from 4 (enS⋆

n)⋆⋆
c enS⋆

n

we have finally (dnSn)⋆
c (enSn

⋆)⋆⋆
c enS⋆

n.

(d) [(dnRn
⋆) = enR

⋆
n] mutatis mutandis as (c),

(e) [(enS⋆
n

⋆)⋆ = (dnS⋆
n

⋆)
⋆
] Clearly enS⋆

n
⋆
b S⋆⋆

n for n ∈ N which implies, from 1,
(enS⋆

n
⋆)⋆

c S⋆
n

⋆⋆ and S⋆
n

⋆⋆ = S⋆
n (the latest equality is from (a) above). Therefore

(enS⋆
n

⋆)⋆
c dnS⋆

n and from 2 and then 1 (enS⋆
n

⋆)⋆⋆⋆
c (dnS⋆

n
⋆)

⋆
. Therefore, again

from property (a) above we have (enS⋆
n

⋆)⋆
c (dnS⋆

n
⋆)

⋆
.

For the other direction note that for n ∈ N , dnS⋆
n c S⋆

n and this implies,
with 2 above (dnS⋆

n
⋆) b S⋆

n
⋆. In this way (dnS⋆

n)⋆
b enS⋆

n
⋆. From 1 we have

(dnS⋆
n

⋆)
⋆
c (enS⋆

n
⋆)⋆.

(f) [(enR
⋆
n

⋆)⋆ = (dnR
⋆
n)⋆⋆

] mutatis mutandis as (e). X

The pre-orders that are the semantics of some specification are the ones closed for
the operators above. Closed specifications are in a one to one relation to closed
pre-orders.

Definition 31

• The closure of a Σ-specification S is the Σ-specification S⋆⋆ (i.e. (S⋆)⋆).
The closure S⋆⋆ is also called the theory of S.

A Σ-specification S is closed iff S = S⋆⋆.

• The closure of a Σ-pre-order R is the Σ-pre-order R⋆⋆ (i.e. (R⋆)⋆).

A Σ-pre-order R is closed iff R = R⋆⋆. A closed Σ-pre-order R is also
called a Σ-preference relation. �

The relation between closed specifications and closed pre-orders is one to one.
Moreover, semantic comparison of specifications (by inclusion of preference rela-
tion) is expressed at the syntactic level by inclusion of closed specifications.

Lemma 32 Let S, S′ be closed Σ-specifications and R,R′ be closed Σ-pre-orders.
Then

• S b S ′ iff S⋆
c S ′⋆,

• R b R′ iff R⋆
c R′⋆.

Proof Trivial from the Galois connection 30 above. X
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We emphasize that closed specifications are canonical among the specifications
having the same semantics: on one hand to equivalent specifications (having the
same semantics) corresponds the same closure. On the other hand this closure is
the biggest specification among equivalent ones.

Lemma 33

• Let S, S ′ be Σ-specifications. S and S ′ have the same semantics iff they
have the same theory: S⋆ = S ′⋆ iff S⋆⋆ = S ′⋆⋆

;

• Let S be a Σ-specification. S⋆⋆ is the biggest specification from among those
having the same semantics as S: given any Σ-specification S ′, if S⋆ = S ′⋆

then S ′
b S⋆⋆.

Proof Trivial from the Galois connection 30 above. X

Finally the Galois connection provides a way to compare preference relations on
the basis of the axioms and defaults inducing them.

Lemma 34 In order to establish whether S⋆⋆
b S ′⋆⋆ one has to check whether

each axiom from S is semantically entailed by the axioms from S ′ and whether
each default from S is an implicit default in S ′⋆.

Proof Straightforward from the Galois properties (theorem 30). X

Clearly to establish equality of the preference relations one has simply to apply
the lemma above in both directions.

1.2.3 Pre-orders and Preference Relations

Here we provide an alternative necessary and sufficient condition for pre-orders
to be induced by a specification. There are two main advantages in this char-
acterization. The first one is that it shows how to obtain a specification from a
pre-order satisfying the new condition. The second is that this condition can be
easily applied to alternative formalisms (see section 2.2.2 in chapter 2) to show
that they have the same expressive power as specifications.

The new condition arises easily by noting the following. The preference relation
associated with a specification S organizes the models of the axioms by satisfac-
tion of defaults. Therefore, the class of the models better than a given one m (call
it β(m)) is the class of models of the axioms satisfying additionally the defaults
satisfied by m. Note also that the set of interpretation structures better than
m′, for m′ as preferred as m coincides with β(m). This motivates the following
definitions.
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Definition 35 Let R be a Σ-pre-order and let m ⊑R m′ denote (m, m′) ∈ rl(R).
Interpretation structures m, m′ ∈ |R| such that m ⊑R m′ and m′ ⊑R m are said
to be equivalent according to R, written m ≡R m′. The equivalence class of m,
denoted by [m]R is [m]R = {m′ : m ≡R m′} the class of interpretation structures
equivalent to m. �

We now define the class of the models better than a given one m.

Definition 36 Let R be a Σ-pre-order. The class βR(m) of the interpretation
structures from |R| better than m is βR(m) = {m′ : m′ ∈ |R| and m ⊑R m′}.

Since equivalent interpretation structures m ≡R m′ have the same class βR(m) =
βR(m′) the set βR([m]R) is defined by βR([m]R) = βR(m). �

The set of defaults from a specification holding in one of its models is defined as
follows.

Definition 37 Let S be a Σ-specification, m a model of ax(S) and let df(S)(m) =
{d ∈ df(S) : m �Σ d} denote the set of defaults from S that hold in m.

Since in equivalent interpretation structures m ≡S⋆ m′ the same defaults from
S hold, the set of defaults holding in one equivalence class [m]S⋆ , denoted by
df(S)([m]S⋆) is defined by df(S)([m]S⋆) = df(S)(m). �

The class βS⋆(m) is is identified as follows.

Lemma 38 Let S be a Σ-specification and m a model of ax(S). Then the class
βS⋆(m) of models of ax(S) above m is the class of models of ax(S) ∪ df(S)(m):
βS⋆(m) = (ax(S) ∪ df(S)(m))•.

Proof

• Assume m′ ∈ βS⋆(m). This means that m′ ∈ |S⋆| = ax(S)• and m′ satisfies at
least the defaults from S satisfied by m (recall definition 25 of S⋆). In this way
m′

� ax(S) and m′
� df(S)(m).

• Assume now that m′
� ax(S) and m′

� df(S)(m). Then m′ ∈ |S⋆| = ax(S)• and
since m′ satisfies at least the defaults from S satisfied by m we have (m, m′) ∈
rl(S⋆) and m′ ∈ βS⋆(m). X

We are now concerned with the reverse direction: given a pre-order R we want
to find (when possible) a specification S having R as preference relation. If there
is a specification S such that S⋆ = R then, from the lemma 38 above each class



28 CHAPTER 1. DEFAULTS IN INSTITUTIONS

βR(m) is the class of models of the axioms from S and some defaults from S
(those defaults holding in m). Therefore we will look at the sets of formulas Pm

having βR(m) as class of models. Each such Pm (if it exists) should consist of
the looked for axioms and some of the looked for defaults. The union of all Pm

should include all defaults. We see in the following that it is not enough to find
such sets and care has to be taken when choosing them.

Example 39 Consider the preference relation associated with the specification
(∅, {p ∧ q}).

{p ∧ q}

KS

{¬(p ∧ q)}

Figure 1.3: The preference relation associated with (∅, {p ∧ q}).

We only have to identify with formulas two sets βR(m) corresponding to the
equivalence classes of the interpretation structures either not satisfying p ∧ q or
satisfying p ∧ q. The class βR(m) of the models above some m that does not
satisfy p ∧ q is the class of all interpretation structures. Choose for it the empty
set of formulas (that has βR(m) as models). The class βR(m) with m � p∧q is the
class of models of {p∧ q}, or equivalently the class of models of {p, q}. Therefore
we have two candidates for sets of defaults: ∅ ∪ {p∧ q} and ∅ ∪ {p, q}. The later
is not an appropriate choice since it induces a different preference relation:

{p, q}

{p,¬q}

2:lllllll
lllllll

{¬p, q}

dl RRRRRRR

RRRRRRR

{¬p,¬q)}

KS

dl RRRRR
RRRRR

2:lllll
lllll

Figure 1.4: The preference relation associated with (∅, {p, q}).

△

Given a pre-order R the axioms and defaults inducing it are found (if they exist)
in the following way: the set of axioms is a set having |R| as models. The set
of defaults is the union of the sets Pm having βR(m) as models. As discussed by
the previous example an additional condition must be imposed on the sets Pm.
It is presented in the following definition.
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Definition 40 Let R be a Σ-pre-order. A coverage of R is:

• a Σ-presentation P|R| such that P •
|R| = |R| (the models of P|R| are the

interpretation structures participating in R) and

• a Σ-presentation Pm for each m ∈ |R| such that P •
m = βR(m) (the models

of Pm are the interpretation structures better than m);

A coverage is said to be granular iff each Σ-presentation Pm satisfies the following
condition of granularity : given a formula d ∈ Pm and m′

� d then m′′
� d for any

m′′ bigger than m′ (i.e. (m′, m′′) ∈ rl(R)). �

Pre-orders having a granular coverage correspond to preference relations.

Theorem 41 A Σ-pre-order R is a preference relation iff it has a granular cov-
erage.

Proof

• Assume that the pre-order R is a preference relation, i.e. it is the preference
relation induced by some specification S: R = S⋆. Then, from lemma 38 above,
it has a coverage given by:

– P = ax(S) and

– Pm = ax(S) ∪ df(S)(m).

We have to check that this coverage is granular. Take a d ∈ Pm = ax(S) ∪
df(S)(m). Let m′ ⊑R m′′ for some m′ such that m′

� d. We have to see that
m′′

� d. If d ∈ df(S)(m) then d is a default from S and m′ ⊑R m′′ iff m′′ satisfies
at least the defaults satisfied by m′. The case d ∈ ax(S) is even simpler.

• Now for the other direction: Assume that (P|R|, {Pm, m ∈ |R|}) is a granular
coverage of R. We now see that S = (P|R|,∪m∈|R|Pm) is a specification inducing
R: R = S⋆. Clearly |R| = ax(S)• so we have to check that m′ ⊑R m′′ iff
m′ ⊑S⋆ m′′.

Assume m′ ⊑R m′′ with m′
� d for a d ∈ df(S) = ∪m∈|R|Pm. Therefore d ∈ Pm

for some m and from the coverage condition we conclude that m′′
� d. In this

way m′′ satisfies the defaults satisfied by m′ which means m′ ⊑S⋆ m′′.

Assume now that m′ ⊑S⋆ m′′. We have to show that m′ ⊑R m′′ or equivalently
that m′′ ∈ βR(m′) = P •

m′ . Since m′ ∈ βR(m′) = P •
m′ we have that m′

� Pm′ .
Since m′ ⊑S⋆ m′′ then m′ satisfies the defaults satisfied by m′, namely all formulas
in Pm′ ⊆ df(S). This means that m′′ ∈ P •

m′ = βR(m′). X

Remark 42 Recall that two equivalent models m, m′ have equal classes βR(m) =
βR(m′). In this way one has only to provide a Pm for each equivalence class.
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1.2.4 Special Cases

The alternative characterization of preference relations has the advantage of sug-
gesting which formulas can be taken as defaults to induce a given pre-order. These
are the formulas in the sets Pm having each class βR(m) as class of models. In
the case each set Pm being finite and the underlying logic having conjunctions the
condition of granularity in the definition 40 above need not be verified: one has
to take the conjunction of the formulas in Pm as the new defaults. Before stating
this property more formally we firstly define institutions having conjunctions.

Definition 43 An institution having conjunctions is a pair (I, cj) where I is
an institution and cj is a family of functions, indexed on the signatures of I
giving for any two formulas its conjunction: cj = {cjΣ : SenI(Σ) × SenI(Σ) →
SenI(Σ) | Σ ∈ |SignI |} such that for each Σ ∈ |SignI | and each interpretation
structure m ∈ ModI(Σ) the following holds for any two formulas f1, f2 ∈ SenI(Σ):

m �
I
Σ cjΣ(f1, f2) iff m �

I
Σ f1 and m �

I
Σ f2.

Given a finite sequence f1, ..., fn of Σ-formulas the expression cjΣ(f1, ..., fn) de-
notes the obvious extension of binary conjunction to the finite sequence f1, ..., fn.

�

We now see that the task of finding the defaults inducing a particular pre-order
is simplified if the underlying institution has conjunctions.

Lemma 44 Let R be a Σ-pre-order from an institution (I, cj) having conjunc-
tions. If

1. its base set is the class of models of some Σ-presentation P : |R| = P • and

2. for each m ∈ |R| the class βR(m) is the class of models of some finite
Σ-presentation Pm: βR(m) = P •

m,

then R has a granular coverage.

Proof For each model m take

1. P̂m = {cjΣ(f1, ..., fn), where f1, ..., fn is some enumeration of the formulas in Pm}
if Pm is not empty and

2. P̂m = Pm = ∅, otherwise.
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(P, {P̂m, m ∈ |R|}) is obviously a coverage. We now see that is is granular. Each
P̂m has at most one formula. The only non-trivial case is when P̂m has precisely one
formula, P̂m = {p̂m}.

Consider an interpretation structure m′ with m′
� p̂m and m′′ such that m′ ⊑R m′′.

We have to see that m′′
� p̂m. Now since m′

� p̂m we have that m′ ∈ {p̂m}• = P̂ •
m =

P •
m = βR(m), which means that m ⊑R m′. From transitivity of ⊑R we have m ⊑R m′′

which is equivalent to m′′ ∈ βR(m) = {p̂m}• and proves that m′′
� p̂m. X

We now illustrate the previous result.

Example 45 Consider again the specification BATMAN and its preference re-
lation displayed in figure 1.2. A coverage of this pre-order is the following:

• Clearly the interpretation structures participating in the preference relation
are the models of P = ax(BATMAN) = {Hum(bm) ∧ Bat(bm)},

• We have to provide four sets, one for each equivalence class:

– for the equivalence class labeled by {Fl(bm),¬Dr(bm)}, the class of
better models is the class of models of P1 = P ∪ {Fl(bm)},

– for the equivalence class labeled by {Fl(bm), Dr(bm)}, the class of better
models is the class of models of P2 = P ∪ {Fl(bm), Dr(bm)},

– for the equivalence class labeled by {¬Fl(bm),¬Dr(bm)}, the class of
better models is the class of models of P3 = P ∪ {¬Fl(bm)},

– for the equivalence class labeled by {¬Fl(bm), Dr(bm)} the class of bet-
ter models is the class of models of P4 = P ∪ {¬Fl(bm), Dr(bm)}.

The axioms and defaults inducing the preference of BATMAN can be rediscovered
using the method suggested by theorem 41 and lemma 44 above. The axioms
are those of BATMAN, namely {Hum(bm) ∧ Bat(bm)}. There are four defaults
corresponding to take the conjunctions of the sets above: {Fl(bm), Hum(bm) ∧
Bat(bm)}, {Fl(bm), Dr(bm), Hum(bm) ∧ Bat(bm)}, {¬Fl(bm), Hum(bm) ∧ Bat(bm)},
{¬Fl(bm), Dr(bm), Hum(bm) ∧ Bat(bm)}.

It is easy to check that the axiom Hum(bm) ∧ Bat(bm) is redundant. The follow-
ing simplified specification also induces the preference relation associated with
BATMAN:

BATMAN2 = (sg(BATMAN), ax(BATMAN), df(BATMAN2)),

where

df(BATMAN2) = {Fl(bm), Fl(bm) ∧ Dr(bm),¬Fl(bm),¬Fl(bm) ∧ Dr(bm)}.



32 CHAPTER 1. DEFAULTS IN INSTITUTIONS

We will see in section 1.2.5 below that this specification is indeed equivalent to
the specification BATMAN. △

Our next example is again a variation of BATMAN. We consider the case of
stating that the equivalence class in which bm flies and dreams should be consid-
ered better than any other. A specification is found having precisely the intended
pre-order as induced preference relation.

Example 46 The following figure displays a variation of the preference relation
associated with BATMAN where all interpretation structures are less preferred
then those where bm flies and dreams. (Relations resulting from transitivity are
omitted.)

{Fl(bm), Dr(bm)} ks {¬Fl(bm), Dr(bm)}

KS KS

{Fl(bm),¬Dr(bm)} {¬Fl(bm),¬Dr(bm)}

Figure 1.5: A variation of BATMAN.

Note that due to the new relations added to the preference of BATMAN the new
sets β(m) may include more interpretation structures.

The formulas characterizing each β(m) have to have the new interpretation struc-
tures as models. Therefore they correspond to disjunctions. The arguments of
these disjunctions are formulas characterizing the “old” β(m) (i.e. corresponding
to the preference of BATMAN).

A coverage of this pre-order is the following:

• The interpretation structures participating in the preference relation are
the models of P = ax(BATMAN) = {Hum(bm) ∧ Bat(bm)},

• We have to provide four sets, one for each equivalence class:

– for the equivalence class labeled by {Fl(bm),¬Dr(bm)}, the class of
better models is the class of models of P ′

1 = P ∪ {Fl(bm)}, as before

– for the equivalence class labeled by {Fl(bm), Dr(bm)}, the class of better
models is the class of models of P ′

2 = P ∪ {Fl(bm), Dr(bm)}, as before,

– for the equivalence class labeled by {¬Fl(bm),¬Dr(bm)}, the class of
better models is the class of models of P ′

3 = P ∪ {¬Fl(bm)∨ (Fl(bm)∧
Dr(bm))}, the “disjunction” of the previous P3 and P1,
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– for the equivalence class labeled by {¬Fl(bm), Dr(bm)} the class of bet-
ter models is the class of models of P ′

4 = P ∪ {Dr(bm)}, the “disjunc-
tion” of the previous P4 and P1.

Therefore from theorem 41 and lemma 44 above the following specification in-
duces the preference relation associated with this variation of BATMAN:

BATMAN3 = (sg(BATMAN), ax(BATMAN), df(BATMAN3)),

where

df(BATMAN3) = {Fl(bm), Fl(bm)∧Dr(bm),¬Fl(bm)∨ (Fl(bm)∧Dr(bm)), Dr(bm)}.

△

The example suggests the following: any pre-order bigger (having more relations)
than one preference relation S⋆ can also be expressed by a specification. The new
defaults will be disjunctions of the defaults in S.

We show that this is indeed the case if S is finite and the underlying institution
has conjunctions and disjunctions.

Definition 47 An institution having disjunctions is a pair (I, dj) where I is
an institution and dj is a family of functions, indexed on the signatures of I
giving for any two formulas its disjunction: dj = {djΣ : SenI(Σ) × SenI(Σ) →
SenI(Σ) | Σ ∈ |SignI |} such that for each Σ ∈ |SignI | and each interpretation
structure m ∈ ModI(Σ) the following holds for any two formulas f1, f2 ∈ SenI(Σ):

m �
I
Σ djΣ(f1, f2) iff m �

I
Σ f1 or m �

I
Σ f2.

Given a finite sequence f1, ..., fn of Σ-formulas the expression djΣ(f1, ..., fn) de-
notes the obvious extension of binary disjunction to the finite sequence f1, ..., fn.

An institution having disjunctions and conjunctions is a triple (I, cj, dj) where
(I, cj) is an institution having conjunctions and (I, dj) is an institution having
disjunctions. �

We now show that in such a case a pre-order bigger than a preference relation
induced by a finite specification is itself a preference relation.

Lemma 48 Let R be a Σ-pre-order and S a finite Σ-specification from an insti-
tution (I, cj, dj) having disjunctions and conjunctions. If

1. |R| = |S⋆| and
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2. rl(R) ⊇ rl(S⋆),

then R is a preference relation, i.e. R = S ′⋆. Moreover the specification S ′ has
the same axioms as S and the defaults from S ′ are implicit defaults in S⋆.

Proof What we need is to find a granular coverage for R using the specification S.
Clearly |R| is covered by ax(S) since |R| = |S⋆|. So the main part of the proof is
concerned in finding a coverage for βR(m) for m ∈ |R|. This is done in the following
way: consider the equivalence classes E(m) = {[m′]S⋆ : m′ ∈ βR(m)} induced by S⋆

in βR(m). Since S has a finite number of defaults also E(m) is finite. Now βR(m) =
∪[m′]∈E(m)βS⋆([m′]). To see this note that on one hand each m′′ ∈ βR(m) is in βS⋆([m′′])
and each n ∈ βS⋆([m′]), for [m′] ∈ E(m) is also in βR(m). This last assertion follows
from rl(R) ⊇ rl(S⋆).

We now provide a coverage for ∪[m′]∈E(m)βS⋆([m′]).

Recall that each βS⋆([m′]) is the class of models of the axioms from S plus the defaults
holding in m′, Pm′ = ax(S) ∪ df(S)([m′]).

Some of these Pm′ may be empty. In this case βR(m) = ∪[m′]∈E(m)βS⋆([m′]) is the class
of all interpretation structures of the signature Σ and therefore the class of models of
the empty set of Σ-formulas.

So now we assume that all Pm′ are not empty. Take the conjunction of this finite
set of formulas: p̂m′ = cjΣ(f1, ..., fn), where f1, ...fn is an enumeration of Pm′ =
ax(S) ∪ df(S)([m′]).

Since βR(m) is a union of βS⋆([m′]) it is the class of models of the disjunctions of the
p̂m′ . That is βR(m) is the class of models of the following formula: djΣ(p̂m1 , ..., p̂mn)
for some enumeration [m1], ..., [mn] of the equivalence classes [m′] ∈ E(m).

We have to check that this coverage is granular. This is however trivial since each
βR(m) is either the class of models of the empty set or the class of models of a single
formula. Such a coverage is always granular (recall the proof of lemma 44 above).

Finally we must establish that the pre-order R is induced by a specification S′ with
the same axioms as S such that the defaults from S′ are implicit defaults in S⋆. Now
S′ = (P,∪m′Pm′) by construction (see proof of the theorem 41) we have ax(S′) = ax(S).
To see that the defaults from S′ implicit in S⋆ note that S′⋆ = R ⊇ S⋆. From property
2 of the Galois connection in theorem 2 we obtain S′⋆⋆

⊆ S⋆⋆. But this implies that
the defaults implicit in S′⋆ (including the defaults from S′) are included in the defaults
implicit in S⋆. X

Corollary 49 In the propositional institution Π each Σ-pre-order with finite Σ
is induced by a propositional Σ-specification.

Proof Firstly given a Σ-pre-order with finite Σ its base set is the set of models of
the (big) disjunction of the conjunctions of the propositional symbols holding in each
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of its interpretation structures and the negations of those holding not (there is only a
finite number of them). Secondly consider the specification having that formula as only
axiom and the following defaults: all the propositional symbols and their negations.
This specification is finite.

It is straightforward to check that the preference relation induced by this specification
is the relation where two of those interpretation structures are related iff they are the
same. Any pre-order involving those interpretation structures, since it is reflexive, has
to have more relations than this. Now use the lemma above. X

1.2.5 Theories Revisited

Here we are concerned with the relation that the theory of a specification S has
with S itself. In particular we relate the axioms from S⋆⋆ with the axioms of S
and the defaults from S⋆⋆ with the defaults and axioms from S.

The axioms from S⋆⋆ are the formulas (classically) entailed by the set of axioms
from S. The defaults from S⋆⋆ are the defaults implicit in the preference relation
associated with S.

Lemma 50 The theory S⋆⋆ of a Σ-specification S is such that:

1. it has as axioms the formulas satisfied in each model of the axioms from S;
ax(S⋆⋆) = |S⋆|• = ax(S)• and

2. it has as defaults the defaults implicit in the preference relation induced by
S, df(S⋆⋆) = (S⋆)◦.

Proof Obvious from the definition 28 of the operators ⋆ and definition 25 of preference
relation S⋆. X

We now proceed to characterize the defaults from S⋆⋆. These are the defaults
implicit in the preference relation S⋆, i.e. the formulas d that hold in all interpre-
tation structures better than a given m whenever they hold in m.

It is straightforward that there are two types of defaults trivially implicit in S⋆:
the formulas that hold in all models of the axioms of S and those that hold in
none. In particular the tautologies and contradictions are implicit defaults of
every preference relation.

For the non-trivial ones consider for the purpose of motivation that the underlying
institution is first order logic and that d1 and d2 are defaults from a specification
S written in a signature of first order logic. Given any interpretation structure
m in the preference relation S⋆ induced by S, if m satisfies d1 or d2 or both then
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any interpretation structure better than m satisfies at least the defaults holding
in m and therefore will also satisfy d1 or d2 or both.

From these considerations it follows easily that any conjunction or disjunction
of defaults from S is a default implicit in S⋆. In general any formula that in
the context of the axioms from S has the same models as some “disjunction”
of “conjunctions” of the defaults from S is a default implicit in the preference
relation induced by S. And these are all implicit defaults in S⋆.

If the underlying institution has disjunctions and conjunctions and the specifica-
tion S is finite a formula d is an implicit default of S iff there is a formula

d′ = (d1
1 ∧ . . . ∧ d1

n1
) ∨ . . . ∨ (dk

1 ∧ . . . ∧ dk
nk

) with all di
j ∈ df(S)

such that\ax(S) ∧ d and\ax(S) ∧ d′ have exactly the same models (\ax(S) denotes
the conjunction of formulas in ax(S)).

The property of implicit default for arbitrary specifications (from an arbitrary in-
stitution) is characterized in the next theorem, using the semantical counterparts
of disjunctions and conjunctions: unions and intersections of classes of models.

Theorem 51 A Σ-formula d is an implicit default in the Σ-preference relation
S⋆ induced by a Σ-specification S iff there is a set ∆ ⊆ 2df(S) of subsets of the
set of defaults from S such that ax(S)• ∩ {d}• = ax(S)• ∩ (

⋃
D∈∆ D•). Moreover

if the set of defaults of S is finite then ∆ is finite and each set of defaults D ∈ ∆
is also finite.

Proof

1. Assume that there exists ∆ ⊆ 2df(S) and ax(S)• ∩ {d}• = ax(S)• ∩ (∪D∈∆D•).
We now see that d is an implicit default in S⋆. We have to prove that given
an interpretation structure m ∈ |S⋆| that satisfies d then any interpretation
structure above it according to S⋆ also satisfies d (see definition 27 of implicit
default). Clearly m ∈ ax(S)• ∩ {d}• since m � d and m ∈ |S⋆| = ax(S)•.
Therefore, by hypothesis m ∈ ∪D∈∆D• which means that for some D ∈ ∆, m
satisfies each default in D: m � D. Now recall that D ⊆ df(S). It is obvious,
by definition 25 of preference relation induced by a specification S, that any
m′ ∈ |S⋆| above m, i.e. such that (m, m′) ∈ rl(S⋆), satisfies at least the defaults
from S satisfied by m. In this way m′

� D and therefore m′ ∈ ∪D∈∆D•. Since
m′ ∈ |S⋆| = ax(S)• we have that m′ ∈ ax(S)• ∩ (∪D∈∆D•) = ax(S)• ∩{d}•. This
implies m′

� d and proves that d is an implicit default from S⋆.

2. Now assume that d is an implicit default from S⋆. We have to characterize the
class ax(S)• ∩ {d}• of models of both ax(S) and d. Since |S⋆| = ax(S)• this
is the class Sd = {m : m ∈ |S⋆| and m � d} of the interpretation structures
participating in S⋆ that satisfy d. Let m be an interpretation structure in Sd.
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Then m ∈ |S⋆| = ax(S)• and any interpretation structure m′ ∈ βS⋆(m) is also a
model of both ax(S) and d. That m′

� ax(S) is obvious from the definition 36 of
βS⋆(m) (since m′ ∈ |S⋆| = ax(S)•). That m′

� d follows from d being a default
implicit in S⋆: since d holds in m it holds in all m′ better than m.

Since each m ∈ βS⋆(m) it follows that Sd = ∪m∈Sd
βS⋆(m). Instead of indexing

this union on the models m of ax(S) that satisfy d we can index it in the corre-
sponding equivalence classes (induced by S⋆) since to equivalent interpretation
structures m1 and m2 corresponds the same βS⋆(m1) = βS⋆(m2). Let [Sd] denote
the set of equivalence classes induced by S⋆ in Sd, i.e. [Sd] = {[m] : m ∈ Sd}.
Then Sd = ∪[m]∈[Sd] βS⋆([m]). We now use lemma 38 that characterizes the
classes βS⋆([m]) to construct ∆. Since βS⋆([m]) = (ax(S) ∪ df(S)(m))• one has
Sd = ∪[m]∈[Sd](ax(S) ∪ df(S)(m))•. It is now clear that ∆ = {df(S)(m) : [m] ∈
[Sd]}.

3. Finally we have to show that when df(S) is finite the ∆ and each D ∈ ∆ are
finite. It is enough to check the construction of ∆ in the second part of the proof
above. Note that if df(S) is finite then S⋆ has a finite number of equivalence

classes (never more then 2#(df(S))) and therefore [Sd] and ∆ are finite. Moreover
each df(S)(m) ⊆ df(S) is finite. X

Note that when ∆ is empty one obtains ax(S)•∩{d}• = ∅. This means that those
formulas that do not hold in any model of the axioms are implicit defaults. Also
if ∆ has only one element, the class of models of the empty set of defaults, then
ax(S)• ∩ {d}• = ax(S)•. This means that the formulas holding in all models of
the axioms are also implicit defaults.

Moreover if we take S = S ′⋆⋆ we conclude in particular that any conjunction or
disjunction of defaults from S = S ′⋆⋆ is a default from S⋆⋆ = (S ′⋆⋆)

⋆⋆
= S ′⋆⋆ (this

last equality is a consequence of Galois properties in theorem 30). In other words
conjunctions or disjunctions (or conjunctions of disjunctions, etc ...) of implicit
defaults are also implicit defaults.

We now illustrate the previous result.

Example 52 Consider again the specification BATMAN. (Recall the preference
relation presented in figure 1.2).

The corresponding theory has as axioms the (classical) consequences of Hum(bm)∧
Bat(bm). For the implicit defaults we note firstly that any (classical) consequence
of the axioms is also an implicit default. Therefore Hum(bm) and Bat(bm) are
implicit defaults. But also the negations of the consequences of the axioms are
(vacuously) implicit defaults. In particular ¬Bat(bm) and ¬Hum(bm).

More interesting are the implicit defaults Fl(bm), ¬Fl(bm) and Dr(bm). In fact
Hum(bm) ∧ Bat(bm)) ∧ Fl(bm) is semantically equivalent (has the same models) to
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(Hum(bm) ∧ Bat(bm)) ∧ (Bat(bm) ⇒ Fl(bm)), where Bat(bm) ⇒ Fl(bm) is a default
from BATMAN. In this way Fl(bm) is a default implicit in BATMAN⋆.

The case of ¬Fl(bm) and Dr(bm) are similar: (Hum(bm) ∧ Bat(bm)) ∧ ¬Fl(bm)
is semantically equivalent to (Hum(bm) ∧ Bat(bm)) ∧ (Hum(bm) ⇒ ¬Fl(bm)) and
(Hum(bm)∧ Bat(bm))∧ Dr(bm) is semantically equivalent to (Hum(bm)∧ Bat(bm))∧
(Hum(bm) ⇒ Dr(bm).

Recall now the specification BATMAN2, presented in example 45. In order to
prove that it induces the same preference relation as BATMAN we can check
whether each default from BATMAN2 is an implicit default in BATMAN⋆ and
vice versa (since they have the same axioms, recall lemma 34).

Now this means that each default in

df(BATMAN2) = {Fl(bm), Fl(bm) ∧ Dr(bm),¬Fl(bm),¬Fl(bm) ∧ Dr(bm)}.

has to be an implicit default in BATMAN⋆. All of them have either already been
referred as being implicit defaults in BATMAN⋆ or are conjunctions of implicit
defaults in BATMAN⋆.

Finally it is interesting to note the following: The preference relation associated
with the variation BATMAN3 of BATMAN presented in example 46 has more
relations than the preference relation associated with BATMAN. Therefore it
will have less implicit defaults (Galois property 2 in theorem 30). Therefore the
defaults found to induce BATMAN3 have to be implicit defaults in the preference
of BATMAN (but not the other way round since these preferences are different!).

The defaults from BATMAN3 are:

df(BATMAN3) = {Fl(bm), Fl(bm)∧Dr(bm),¬Fl(bm)∨ (Fl(bm)∧Dr(bm)), Dr(bm)}.

Only ¬Fl(bm) ∨ (Fl(bm) ∧ Dr(bm)) hasn’t been referred. But it is the disjunction
of implicit defaults of the preference of BATMAN. △

1.3 Extensions

In the following we are concerned with comparing the semantics chosen for spec-
ifications (that of preference relations) to the standard consequences of a specifi-
cation (credulous and skeptical), derived from the extensions of a specification.

Moreover we investigate some important properties of such consequences and of
extensions in the general case of an arbitrary institution.
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1.3.1 Consequences

The preference relation induced by a specification displays the fact that some
models of the axioms are better than others because they satisfy more defaults.
The best models (organized in maximal equivalence classes) are the models of
the extensions of the specification.

Extensions are alternatively obtained from a specification S by extending the
information given in the axioms with the information given in the defaults in two
steps. First by extending maximally the axioms from S with defaults, preserving
consistency (if possible). Each such maximal set of axioms and defaults will be
called an extension presentation. An extension is the (classical) theory of an
extension presentation ([72, 70, 8]).

First of all we have to define a general notion of consistency.

Definition 53 A Σ-presentation P with no models is said to be inconsistent .
Otherwise it is said to be consistent . �

This definition of consistency is not akin to some logics like equational logic or
λ-calculus. In fact any presentation written in these logics, even the whole Σ-
language always has a model (the model with only one element serves for both
logics: all equations hold and all functions are the same function). Presentations
having the same models as the whole language are considered inconsistent. This
is not the case with the definition above. Note however that the more interesting
assumptions that some terms or functions should be taken as different cannot be
written in these logics. Some form of negation is needed and the resulting insti-
tution will have a notion of (in)consistency corresponding to the one in definition
53 above. In this way the concepts we explore in this section are only well defined
for those institutions where consistency corresponds to absence of models.

The definition of extension presentation follows.

Definition 54 Given a specification S, a sg(S)-presentation E is an extension
presentation of S iff

• if the presentation ax(S) is consistent then E is consistent and maximal
among the sg(S)-presentations E ′ such that ax(S) ⊆ E ′ ⊆ (ax(S) ∪ df(S))
i.e. if a consistent E ′ is such that E ⊆ E ′ ⊆ (ax(S) ∪ df(S)) then E ′ = E,

• if ax(S) is not consistent then E = ax(S) ∪ df(S).

An extension E = E•• of S is the theory of an extension presentation E of S. �

The following properties are obvious consequences of the definition of extension.
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Theorem 55

1. Consistency. An extension presentation E of a Σ-specification S is con-
sistent iff ax(S) is consistent.

2. Maximality. If E, E′ are extension presentations of a Σ-specification S
and E ⊆ E ′ then E = E ′;

3. Orthogonality. If E, E ′ are extension presentations of a Σ-specification S
and E 6= E ′ then E ∪ E ′ is inconsistent.

4. The previous properties also hold when E, E′ are extensions of a Σ-speci-
fication S.

Proof Cases 1 and 2 and their versions for extensions are trivial.

For 3 we have two possibilities: if ax(S) is inconsistent then any two extensions are the
same: the whole Σ-language. Assume therefore that ax(S) is consistent and so are also
E and E′. Since E and E′ are different their union strictly contains both. It cannot be
consistent since if it were E and E′ would not be maximal among the Σ-presentations
E′′ such that ax(S) ⊆ E′′ ⊆ (ax(S) ∪ df(S)).

To see that this property also holds when E and E′ are extensions of S note that
ax(S)∪ (E ∩ df(S)) and ax(S)∪ (E′ ∩ df(S)) are extension presentations whose closure
is E and E′ respectively. Moreover if E and E′ are consistent and different so are
ax(S) ∪ (E ∩ df(S)) and ax(S) ∪ (E′ ∩ df(S)). X

The next example illustrates the existence of more than one extension.

Example 56 In our example it is easy to see that we cannot add consistently
all defaults from BATMAN to the axiom Hum(bm) ∧ Bat(bm). In this way two
extensions are obtained, one where bm flies and another where he doesn’t. △

Whenever there corresponds more than one extension to a default theory presen-
tation we have to decide which formulas are to be accepted as its consequences.
The standard approaches are to take as consequences the formulas that hold in
either some ([72]) or all ([67, 88]) extensions.

The obvious definition of these consequence relations follows.

Definition 57 A sg(S)-formula f is a

• credulous consequence of a specification S, written S ⊢cr f , iff f belongs to
some extension of S, and a
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• skeptical consequence of a specification S, written S ⊢sk f , iff f belongs to
all extensions of S. �

Example 58 Recall the specification BATMAN from example 21. It is straight-
forward to check that one cannot add all defaults to the axioms preserving con-
sistency. Two extension presentations are obtained:

{Hum(bm) ∧ Bat(bm), Hum(bm) ⇒ Dr(bm), Bat(bm) ⇒ Fl(Batman)}

and

{Hum(bm) ∧ Bat(bm), Hum(bm) ⇒ Dr(bm), Hum(bm) ⇒ ¬Fl(Batman)}.

Therefore Dr(bm) is a skeptical and credulous consequence of the specification
BATMAN whereas Fl(bm) is only a credulous consequence of this specification.

△

1.3.2 Preference

The equivalence classes of the preference relation S⋆ correspond to classes of
such models of the axioms in S that satisfy precisely the same defaults from S.
The equivalence classes which are maximal are those whose models satisfy most
defaults. They are the classes of models of the extensions from S.

The preference relation S⋆ among interpretation structures induces a partial order
on the equivalence classes of S⋆ that will be technically useful in the following.
In general, the partial order [R] on equivalence classes induced by a pre-order R
is defined as follows.

Definition 59 Given a pre-order R its corresponding partial order [R] is the
pre-order10 [R] = (sg([R]), |[R]|, rl([R])) with

1. the same signature as R, sg([R]) = sg(R),

2. the equivalence classes from R as base set,

|[R]| = {[m]R : m ∈ |R|},

where [m]R is the equivalence class of m in R;

[m]R = {m′ : (m, m′) ∈ rl(R) and (m′, m) ∈ rl(R)}

and

10A partial order is an anti-reflexive pre-order.
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3. the relation between these elements being induced by R,

rl([R]) = {([m]R, [m′]R) : (m, m′) ∈ rl(R)}.

Since rl(R) is a pre-order it is straightforward to check that rl([R]) is indeed a
partial order. �

Maximal equivalence classes are defined in the obvious way:

Definition 60 Given a pre-order R an equivalence class [m]R ∈ |[R]| is said
maximal (in R or in [R]) iff given any other equivalence class [m′]R ∈ |[R]| with
([m]R, [m′]R) ∈ rl([R]) then [m]R = [m′]R. �

The extensions of a specification S can be recovered from its associated preference
relation. They correspond to maximal equivalence classes. When the specification
has no models it is technically convenient to consider that its associated preference
relation has a maximal equivalence class, the empty equivalence class.

Definition 61 The set of maximal equivalence classes of a pre-order R, denoted
by max(R) is defined as follows:

1. if |R| = ∅ then max(R) = {∅},

2. otherwise max(|R|) = {[m]R : [m]R ∈ [R] and [m]R is maximal in [R]}. �

Theorem 62 Let S be a specification. Then E is an extension of S iff E = M•,
where M ∈ max(S⋆) is a maximal equivalence class of the preference relation S⋆

associated with S.

Proof Assume ax(S) is inconsistent. Then the only extension of S is the whole sg(S)-
language. Also |S⋆| = ∅ and max(S⋆) = {∅}. Clearly the theory of the empty set of
sg(S)-interpretation structures is the only extension of S.

Now assume ax(S) is consistent.

• Assume also that [m] is a maximal equivalence class of S⋆. We have to prove
that [m]• is an extension. We now see that E = ax(S)∪df(S)(m) is an extension
presentation of S. Recall from lemma 38 that E• = βS⋆(m). And since [m] is a
maximal equivalence class of S⋆ the interpretation structures in βS⋆(m) are the
ones equivalent to m: E• = βS⋆(m) = [m].

Assume now that there exists a consistent E′ such that ax(S) ⊆ E ⊆ E′ ⊆
(ax(S) ∪ df(S)). We now see that E′ = E. Since E′ is consistent it has a model
m′. Clearly E′ ⊆ (ax(S) ∪ df(S)(m′)). This model m′ satisfies E since E ⊆ E′.
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Therefore m′ ∈ E• = βS⋆(m) = [m]. This implies that m′ satisfies precisely the
same defaults as m. In this way E′ ⊆ (ax(S)∪df(S)(m′)) = (ax(S)∪df(S)(m)) =
E and we conclude E′ = E. Therefore E is an extension presentation.

We have already seen that E• = [m]. This implies E•• = [m]•. That is [m]• is
an extension since E is an extension presentation.

• Assume now that E = E•• is an extension of S. We have to prove that E• is a
maximal equivalence class of S⋆.

Since ax(S) is consistent E is consistent and has a model. Let m be an arbitrary
model of E . We firstly see that ax(S) ∪ df(S)(m) is the extension presentation
E. Since m is a model of E clearly E ⊆ ax(S) ∪ df(S)(m). But since E is an
extension presentation and ax(S) ∪ df(S)(m) is consistent (it has the model m)
from maximality of extension presentations one has E = ax(S)∪df(S)(m). Since
this is true for an arbitrary model of E = E•• we conclude that all models of E
are equivalent since they satisfy precisely the same defaults from S. In this way
E = E•• = [m] where m is a model of E. We need only to confirm that [m]
is a maximal equivalence class. Since E = ax(S) ∪ df(S)(m) we conclude again
from lemma 38 that E• = βS⋆(m) = [m], i.e. only the interpretation structures
equivalent to m are preferable to m. This trivially implies that [m] is a maximal
equivalence class. X

The relation of skeptical and credulous consequence to maximal equivalence class-
es of S⋆ is straightforward from theorem 62 above.

Lemma 63 A sg(S)-formula f is a

• credulous consequence of a specification S iff there is a maximal equivalence
class M ∈ max(S⋆) with M � f (f holds in all m ∈ M), and a

• skeptical consequence of a specification S iff M � f for each maximal equiv-
alence class M ∈ max(S⋆).

Proof Straightforward from theorem 62 above. X

We now compare our conclusions in example 58 with the preference relation
associated with BATMAN.

Example 64 Recall again the specification BATMAN and its preference relation
displayed in figure 1.2. The two maximal equivalence classes are the models of
the two extension presentations from BATMAN:

{Hum(bm) ∧ Bat(bm), Hum(bm) ⇒ Dr(bm), Bat(bm) ⇒ Fl(Batman)}

and

{Hum(bm) ∧ Bat(bm), Hum(bm) ⇒ Dr(bm), Hum(bm) ⇒ ¬Fl(Batman)}.

Clearly Dr(bm) is both a skeptical and credulous consequence of BATMAN where-
as Fl(bm) is only a credulous consequence of this specification. △
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1.3.3 Compact Institutions

In this section we present important properties of extensions of specifications
written in institutions where the compactness property holds. The most impor-
tant property is that any specification has at least one extension. The credulous
consequence relation is semi-monotonic: the addition of further defaults to S
preserves the credulous consequences of S. The skeptical consequence relation
is cumulative: the skeptical consequences of S are invariant under addition of a
skeptical consequence of S (as an axiom or default) to S. Semi-monotonicity for
the first order logic setting was established in [73]11. Cumulativity is considered
an important property of (non-monotonic) consequence relations ([40, 64, 13]).

Definition 65 The compactness property is said to hold in an institution I iff
for each inconsistent Σ-presentation P from I there is a finite and inconsistent
Σ-presentation P ′ ⊆ P . �

The following property of institutions where the compactness property holds is
of fundamental importance: given a specification S the partial order [S⋆] induced
by its preference relation enjoys the property that above any equivalence class
there is a maximal one.

Lemma 66 Let I be an institution where the compactness property holds. given
a specification S from I with ax(S) consistent, let [m] be an arbitrary equivalence
class from S⋆. Then there is a maximal equivalence class [m↑] of [S⋆] such that
([m], [m↑]) ∈ rl([S⋆]).

Proof The proof uses Zorn’s lemma with the restriction of the partial order [S⋆] to
the set B([m]) = {[m′] : (m, m′) ∈ rl(S⋆)} of the equivalence classes above [m].

Let C be a chain in B([m]) and consider E = ∪[m′]∈C (ax(S) ∪ df(S)([m′])), the union
of the axioms from S with the defaults holding in each equivalence class in this chain.
We now see using compactness that E is consistent. If E is not consistent then there
is a finite subset E′ of E also inconsistent. Consider the finite set E′ ∩ df(S) of the
defaults from S that belong to E′. From construction of E is is clear that the defaults
in E′ ∩ df(S) belong to ∪[m′]∈D df(S)([m′]), where D is a finite subset of C. Since D is
finite and C a chain there will be a maximum [n] ∈ D. From the definition of preference
relation we have that the set of defaults holding in n includes the defaults holding in less
preferred interpretation structures. In this way df(S)([n]) ⊇ ∪[m′]∈D df(S)([m′]). This
implies (ax(S)∪df(S)([n])) ⊇ ax(S)∪(∪[m′]∈D df(S)([m′])) ⊇ E′. But ax(S)∪df(S)([n])
is consistent (has a model n) contradicting the assumption of E′ being inconsistent.

Since E = ∪[m′]∈C (ax(S)∪df(S)([m′])) is consistent it has a model µ. Clearly µ satisfies
the defaults satisfied in each equivalence class [m′] ∈ C. Therefore [µ] is an upper bound
of C. From Zorn’s lemma B([m]) has a maximal element [m↑].

11For normal default theories, that include only defaults of the form a : b/b.
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It is obvious that (m, m↑) ∈ rl(S⋆) from definition of B([m]). We only have to prove
that [m↑] is a maximal equivalence class of S⋆. This is also straightforward since the
equivalence class [m↑] is maximal in B([m]). X

The lemma above implies the following properties:

Theorem 67 Let I be an institution where the compactness property holds.
Then

1. Existence. Any specification has, at least, one extension.

2. Coverage. Given a specification S from I and D′ ⊆ df(S) if ax(S)∪D′ is
consistent, then there exists an extension of S containing D′.

3. Semi-monotonicity. Given specifications S, S ′ from I with ax(S) =
ax(S′) and df(S) ⊆ df(S ′) then for each extension presentation E of S
there is an extension presentation E ′ of S ′ such that E ⊆ E ′. This implies
that if S ⊢cr f then S ′ ⊢cr f .

4. Cumulativity. Let S be a specification from I and f be a skeptical conse-
quence of S, S ⊢sk f . Let S ′ be the specification with either ax(S ′) = ax(S)
and df(S ′) = df(S) ∪ {f} or ax(S′) = ax(S) ∪ {f} and df(S ′) = df(S). (I.e.
f is added either to the axioms or to the defaults.) Then E ′ is an extension
presentation of S ′ iff E ′ = E ∪ {f} where E is an extension presentation of
S. This implies that given any formula f ′, S ⊢sk f ′ iff S ′ ⊢sk f ′.

Proof

1. If ax(S) is inconsistent S has the whole sg(S)-language as extension. If ax(S) is
consistent take m ∈ ax(S)•. From lemma 66 there is a maximal equivalence class
[m↑] of S⋆ with (m, m↑) ∈ rl(S⋆), where [m] is the equivalence class of m. From
theorem 62 we have that [m↑]

•
is an extension of S.

2. Like the property before, if ax(S) ∪ D′ is consistent it has a model m and there
will be a maximal equivalence class [m↑] of S⋆ with (m, m↑) ∈ rl(S⋆). Since
(m, m↑) ∈ rl(S⋆) then any interpretation structure in m′ ∈ [m↑] is also preferred
to m. Therefore any such m′ satisfies D′ ⊆ df(S) since it satisfies at least the
defaults satisfied by m. In this way D′ ⊆ [m↑]

•
. Again from theorem 62 [m↑]

•
is

an extension of S.

3. If ax(S) = ax(S′) is inconsistent this property follows trivially. For the case of
a consistent ax(S) = ax(S′) the proof of semi-monotonicity uses the property 2
above: Notice that the extension presentation E consists of the axioms from S′

plus a set of defaults that is consistent with these axioms. Therefore E is con-
tained in an extension E ′ of S′. From this it follows trivially that E is contained
in the extension presentation corresponding to E ′.
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From definition of credulous consequence follows trivially that S ⊢cr f implies
S′ ⊢cr f .

4. The case of inconsistent ax(S) ⊆ ax(S′) is again trivial. For consistent ax(S) and
S′ with ax(S′) = ax(S) and df(S′) = df(S) ∪ {f}, we see firstly that, given an
extension presentation E of S then E ∪ {f} is an extension presentation of S′.
Since f is a skeptical consequence of S the set E ∪{f} is consistent. In fact E is
consistent (property of consistency in theorem 55) and f holds in any model of E
(in fact f holds in any model of some extension presentation of S). We now note
that it is not possible to add consistently any other default d′ from S′ to E∪{f}.
This d′ is also from S and consistency of E ∪ {f} ∪ {d′} implies consistency of
E ∪ {d′} contradicting maximality of E (an extension presentation of S).

Assume now that E′ is an extension of S′ and consider E′ \ {f}. This is a
consistent set of axioms from S and defaults from S. Therefore (property 2
above) there is an extension presentation E of S containing E′ \ {f}. From
above E ∪ {f} is an extension presentation of S′. Since E′ ⊆ E ∪ {f} it must be
(property of maximality in theorem 55) E′ = E ∪ {f}.

The case of S′ with ax(S′) = ax(S) ∪ {f} and df(S′) = df(S) is similar and
omitted.

Finally it is straightforward to conclude that the maximal models of the pref-
erence of S coincide with those of S′. In fact those are the models of some
extension presentation of S. Since they all satisfy f they are also the models
of some extension presentation of S′. Equality of the classes of maximal models
trivially implies equality of skeptical consequences. X

1.3.4 Selection Functions

The approaches using different levels of priority on defaults imply a selection of
extensions. In fact the extensions resulting from such formalisms are extensions
of the original specification without the priorities (certainly not the other way
round).

In this subsection our concern is to display the fact that (under certain conditions)
any selection of the extensions of a specification can equivalently be expressed by
another specification.

This means that given a specification and a selection of its extensions we can dis-
play another specification having precisely the selected extensions as extensions.

The idea is to construct from the preference relation associated with the orig-
inal specification another pre-order. The new pre-order will have less maximal
equivalence classes (the classes corresponding to the selected extensions) but will
use the same interpretation structures and more relations than the original one.
Using lemma 48 we can conclude that the constructed pre-order is induced by
some specification.
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We firstly define selection (on the semantic level). The only restriction we impose
is that such a selection should not be empty.

Definition 68 Given a specification S a selection of S is a non-empty set (of
maximal equivalence classes) M ⊆ max(S⋆). �

Lemma 69 Let S be a finite specification from an institution having conjunc-
tions and disjunctions and M a selection of S. Then there is a specification S ′

such that max(S ′⋆) = M. Moreover S ′ has the same axioms as S and all defaults
from S′ are defaults implicit in S⋆.

Proof From S⋆ construct an order by putting all interpretation structures in the re-
jected (i.e. not in M) maximal equivalence classes less preferred than any interpretation
structure in the selected maximal equivalence classes. Close this for transitivity. This
pre-order clearly has the same interpretation structures as S⋆, more relations and its
maximal equivalence classes are precisely those in M. Now use lemma 48. X

1.3.5 Extensions and Composition

We have seen that from the adopted semantics (preference relation) extensions
and consequences of a specification can be derived. The question we address here
is why do we need all that structure.

We could, in fact, choose as semantics of a specification its skeptical consequences,
or credulous or the set of all extensions. The reason the preference relation is
needed is that our framework has to be able to explain composition of specifica-
tions. Although this theory will only be presented in chapter 3 we can already
discuss why the alternatives based on extensions do not provide enough informa-
tion.

Composition of specifications has to allow for addition of axioms (generalizing
the classical case) and defaults to a given specification. A semantics able to
explain these operations has to be such that by adding the same axiom or default
to specifications having the same meaning (the same semantics) one obtains as
result specifications having the same meaning.

This is not the case in general with any semantics based on extensions as the
following example shows. Take two specifications ({d1}, {d2}) and (∅, {d1, d2})
with d1 and d2 mutually consistent (i.e. {d1, d2} is consistent). Both specifications
have one extension given by the extension presentation {d1, d2}. Therefore they
have the same meaning according to any notion of semantics based on extensions
(including any healthy selection function). However if the underlying logic has
negation they yield different results when adding the axiom ¬d1 (the first one
becomes inconsistent, the second one not).
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A similar situation occurs when the semantics is that of a preference relation that
is a strict partial order (see [7]). In such a semantics interpretation structures
are also compared on the basis of how well they satisfy the defaults, only that
equivalent interpretation structures are considered unrelated.

Consider now the specifications (∅, ∅) and (∅, {d1,¬d1}) where d1 is neither a
tautology nor a contradiction. To these specifications corresponds the same strict
partial order: the empty order. However if we add d1 as a default to both we
again obtain specifications having different strict partial order semantics. (The
strict partial order of the second specification remains unchanged but the one of
the first one not).

That the preference relation semantics presented in section 1.2.1 is appropriate
to explain composition of specifications is the subject of chapter 3.

1.4 Final Remarks

We have presented specifications and their semantics and have investigated rela-
tionships between them.

The preference semantics is quite known in the literature. We have adapted
the one from S. Braß ([7]) to a general institution and taken preferences to be
pre-orders. This formalization has the advantage of organizing equivalent inter-
pretation structures in equivalence classes. Our results concerning the expression
of pre-orders by specifications (sections 1.2.3 and 1.2.4) heavily depend on this
property. (In fact there are similar considerations in [7]. These are not, in this
respect, as fruitful as ours precisely because the relation of preference is not a
pre-order).

Also the characterization of extensions as the theories of maximal equivalence
classes (section 1.3.2) can only be expressed in this way in such a setting (see,
however, again [7] for a characterization with strict partial orderings).

The Galois connection between specifications and their preferences together with
the characterization of implicit defaults are the main results of this chapter.
Clearly they generalize the corresponding properties for the classical case (see
[46]) but are, in the setting of specifications with defaults, to our best knowledge,
new.



Chapter 2

Prioritized Defaults

The formalism presented in the previous chapter 1 is now extended by allowing
different degrees of “likeliness” or “priority” to be assigned to the defaults. More
likely defaults are to be assumed prior to less likely defaults. In the case of
conflicting defaults, those of higher likeliness should be assumed and those of
lesser likeliness disregarded.

The specification archetype that such a formalism best models is known as the
Specificity Principle ([75]). This is a consequence of identifying a structure of
classes in the Universe of Discourse. The properties of subclasses are generally
inherited from the properties of corresponding superclasses ([9, 12]). However,
specific properties of subclasses may be in contradiction with some of the gen-
eral ones. In this case the new specific properties should override the general
inherited ones. In this way the structure of the subclass relationship introduces a
corresponding structure of priority. Such structures of priority are formalized by
hierarchic specifications ([12]). In this chapter we investigate hierarchic speci-
fications, their semantics and logical properties. Furthermore the basic concepts
underlying composition are defined and studied.

Hierarchic specifications (written in an arbitrary institution) and the correspond-
ing lexicographic preference are defined in section 2.1. More structured semantics
are needed for explaining composition. The hierarchies of local, lexicographic
and differential preferences, introduced for this purpose, are compared. We take
the hierarchy of differential preferences as semantics of a hierarchic specification.
A Galois connection between hierarchic specifications and their semantics, ex-
plaining syntactic constructions via semantic operations, is established in section
2.3.

Section 2.2 deals with the lexicographic preference of specifications . This prefer-
ence has a semantic counterpart in the lexicographic combination of preferences
([78, 2]), presented in section 2.2.1. Under some conditions (including finiteness)
the lexicographic preference of a hierarchic specification can be equivalently ex-

49
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pressed by a (flat) specification. We show this in section 2.2.2.

Having defined the semantics for composition a Galois connection between hier-
archic specifications and the corresponding semantics is obtained and displayed
in section 2.3.1. This connection is fundamental in defining composition of hi-
erarchic specifications (see the next chapter 3) and, in particular, implies the
definition of the theory of a hierarchic specification. The relations between this
theory and the hierarchic specification inducing it are studied in section 2.3.2.

In section 2.4 we define extensions and notions of consequence of hierarchic spec-
ifications. These are derived from the lexicographic preference defined in section
2.1. Properties corresponding to those presented for specifications (such as the
existence of extensions; chapter 1, section 1.3) are generalized. The special case
of institutions where the compactness property holds is treated in section 2.5.
We show that in such an institution any hierarchic specification has, at least, one
extension.

We conclude the chapter in section 2.6.

2.1 Hierarchic Specifications

In this section we define hierarchic specifications and present the semantics need-
ed for the purpose of composition of such specifications. We note in section 2.1.2
that a semantics for composition has to have more information than the corre-
sponding lexicographic preference. The later, presented in section 2.1.1, displays
the global preference induced by the defaults from prioritized levels on the models
of the axioms. Subsection 2.1.2 is dedicated to present semantics for composi-
tion. These are the hierarchy of lexicographic preferences and the hierarchy of
differential preferences which are shown to be equivalent in section 2.1.4. A third
semantics, the hierarchy of local preferences is also presented.

In order to compare these semantics operators relating them are defined in section
2.1.3.

2.1.1 Syntax and Lexicographic Preference

The idea of assigning different priorities to defaults stems from Prioritized Cir-
cumscription from Lifschitz ([60]) and has been transported to Default Logic by
Brewka ([14]). A preferential semantics of supernormal defaults structured by pri-
orities has been given by Braß in [6, 7]. This preferential semantics corresponds
to the lexicographic preference (see below) of such a specification. A correspond-
ing concept, the lexicographic combination of (local) preferences (to be defined
in section 2.2.1) is the semantics used in the Ordered Theory Presentations from
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Ryan [74, 75]. The formalism we present here corresponds to the one in [12] and
inherits from both [6, 7] and [74, 75].

Hierarchic specifications display the relations of priority between sets of default-
s by means of priority levels, organized by a partial order. The overall effect
of these defaults taking their respective priorities into account is displayed in a
pre-order, the lexicographic preference. Hierarchic specifications and the corre-
sponding lexicographic preference are now defined and illustrated. We begin with
preliminary considerations.

Firstly we need to restrict the partial orders that provide priority levels for
hierarchic specifications to well-founded partial orders. The condition of well-
foundedness is of technical importance: it allows to prove properties of hierarchic
specifications by using well-founded induction (see [91]).

Definition 70 A well-founded relation is a pair (H,≺) with ≺ ⊆ H×H a binary
relation over the set H satisfying the additional condition that there are no infinite
descending chains . . . ≺ hi . . . ≺ h1 . . . ≺ h0. This condition is equivalent (see
[91]) to every non-empty subset H ′ of H having a minimal element, i.e. there is
h′ ∈ H ′ such that h ≺ h′ implies h 6∈ H ′.

A well-founded partial order is a partial order (H,¹) such that the corresponding
strict partial order (H,≺), defined by a ≺ b iff a ¹ b and a 6= b, is well-founded.
An element of H is said minimal according to ¹ iff it is minimal according to ≺.

�

The following notation for orders will be used throughout this chapter.

Notation 71

• Partial orders that organize priority levels are denoted by ¹. The corre-
sponding strict partial order is denoted by ≺. Similarly with the partial
order ⊆ (set inclusion) and ⊂ (set strict inclusion).

• Pre-orders organizing interpretation structures are denoted by ⊑, possibly
with indices: ⊑α

h .

The symbol @α
h denotes the corresponding strict relation defined by m @

α
h m′

iff m ⊑α
h m′ and m′ 6⊑α

h m. The symbol ≡α
h denotes the corresponding

equivalence relation defined by m ≡α
h m′ iff m ⊑α

h m′ and m′ ⊑α
h m.

• Given pre-orders ⊑α
h1

, ...,⊑α
hn

the pre-order denoted by ⊑α
{h1,...,hn}

with in-
dices {h1, ..., hn} is the intersection of the pre-orders ⊑α

h1
, ...,⊑α

hn
. In other

words m ⊑α
{h1,...,hn}

m′ iff m ⊑α
h1

m′ and ... and m ⊑α
hn

m′.

All notions defined are parameterized in a given institution.
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Remark 72 Recall that concepts are defined in the scope of

I = (SignI , SenI , ModI , {�IΣ, Σ ∈ |SignI |}),

a fixed but arbitrary institution.

A hierarchic specification consists of a set of axioms of a given signature plus sets
of defaults from the same signature. The priorities to be assigned to each such
set of defaults are given by a set of priority levels, organized by a partial order.

Note that the same formula may have different priorities (if it belongs to the sets
of formulas assigned to different priority levels). This situation occurs in the case
of a property that holds by default for all elements of a class, does not hold by
default for those of a subclass but holds again by default for the elements of a
subsubclass (the defaults formalizing this property are repeated for the elements
of the subsubclass since they also belong to the class). The flying abilities of
mammals, bats and newly-born bats are an example of such a situation.

Note also that the defaults of the subclass are (in general) more specific and
therefore more important than those of the class. In this way the direction of the
subclass relationship is contrary to the likeliness of the defaults. In our formal-
ization, and for this reason, the higher a priority level is the least important its
defaults are. That is, we choose hierarchic specifications to be formally similar
to actual structured specifications (in this we adopt a convention from [75]). The
disadvantage of having priority levels with reversed priority is, in our opinion,
outweighed by the facility in translating an actual specification to its correspond-
ing formalization (hierarchic specification).

We recall from [12] (with minor changes) the definition of hierarchic specification.

Definition 73 A hierarchic specification is a tuple S = (Σ, A, (H,¹), ∆) con-
sisting of:

• a signature Σ ∈ |SignI |,

• a set of axioms A ⊆ SenI(Σ),

• a well-founded partial order (H,¹) of priority, with non-empty set of pri-
ority levels H,

• a function ∆ assigning to each priority level h ∈ H a set of defaults ∆(h) ⊆
SenI(Σ).

The projections sg(S) = Σ, ax(S) = A and po(S) = (H,¹) assign to a specifi-
cation S its signature, its set of axioms and its priority partial order. Moreover
df(S, h) = ∆(h) assigns to S and level h ∈ H the defaults from S at that level.

�
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The following auxiliary definitions of defaults from a hierarchic specification hold-
ing in interpretation structures are useful.

Definition 74 Let S be a hierarchic specification, (H,¹) = po(S) its partial
order of priority, H ′ ⊆ H a set of priority levels from S and M ⊆ ax(S)• a class
of models of the axioms of S.

• the set df(S, H ′) = ∪h′∈H′ df(S, h′) is the union of the defaults from S from
levels h′ ∈ H ′,

• the set df(S, H ′)(M) = {d ∈ df(S, H ′) : M � d} is the set of defaults
from levels in H ′ satisfied by each interpretation structure m ∈ M . The
notations df(S, h)(M), df(S, H ′)(m) and df(S, h)(m) are used in the case of
H ′ or M (or both) being singletons,

• when all levels H from S are involved df(S) abbreviates df(S, H) and
df(S)(M) abbreviates df(S, H)(M). �

The following example of a hierarchic specification is useful. Note that we have
the Specificity Principle in mind: defaults of subclasses should be taken as being
of higher importance (lower priority) than the defaults of their superclasses.

Example 75 We reformulate the specification BATMAN noting that bats and
humans are mammals and concentrate in their flying abilities. Mammals, by
default, do not fly and this behavior is inherited by humans. These dream by
default. Bats, in spite of being mammals, do, by default, fly. We choose a set M
of constants to denote mammals, select a set B ⊆ M of constants to denote bats
and a set U ⊆ M to denote humans. Note that bm ∈ B ∩ U (Batman is a bat
and a human). Our choice of symbols is stated in the first order logic signature
sg(MAMMALS) having M as set of constants (identifying mammals) and the
following unary predicates: Bat, Hum, Fl, Dr. The set of axioms simply states that
all Bs are bats and all Us are humans:

ax(MAMMALS) = {Bat(b) : b ∈ B} ∪ {Hum(u) : u ∈ U}.

The defaults are organized as displayed in the following figure 2.1. Priority lev-
els are named Mammals, Bats, Humans, batman. The relation of priority between
these levels is apparent from the picture. We have batman ¹ Bats ¹ Mammals

and batman ¹ Humans ¹ Mammals. Recall that we follow the convention that
lower levels have higher likeliness or priority. To each level it is assigned a set of
formulas, the defaults having that level as priority level. They state that mam-
mals do not fly by default and this information should be inherited by humans.
These dream by default. Bats on the contrary fly by default and, being at a
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lower level, the corresponding defaults should override the corresponding ones
for mammals. The level batman has one default stating that bm does not dream1.

Mammals : {¬Fl(m) : m ∈ M}

Bats : {Fl(b) : b ∈ B}

33ffffffffffffffff
Humans : {Dr(u) : u ∈ U}

kkXXXXXXXXXXXXXXXX

batman : {¬Dr(bm)}

kkXXXXXXXXXXXXXXXX

33ffffffffffffffff

Figure 2.1: Batman Flies.

The intended overall effect of this specification is now outlined. Take a mammal
which is not a bat. Then it will not fly by default. If this mammal is a human it
will also dream by default. Mammals that are bats will fly by default since the
corresponding default Fl(b) is of lower priority than the corresponding default
¬Fl(b) stated at the level Mammals. Mammals that are bats and humans, will
fly and dream by default, with the one exception of bm: he does not dream by
default (too busy fighting against crime, possibly). △

As the previous example suggests the overall meaning of a hierarchic specification
has to give preference to the defaults of lower (better) priority levels. This is
achieved formally by assigning to a hierarchic specification a pre-order among the
models of its axioms that compares them according to how well they satisfy the
defaults. This is now meant in the sense that models are preferred because either
they satisfy more defaults or they strictly satisfy better defaults. The intended
preference organizes the models in a way reminiscent of the lexicographic ordering
of words in dictionaries (see Ryan [74, 75]). We define the lexicographic preference
induced by a hierarchic specification.

Definition 76 The lexicographic preference induced by a hierarchic specification
S, denoted by lex◦(S) is the pre-order with

• the same signature as S, sg(lex◦(S)) = sg(S),

• the models of the axioms from S as class of interpretation structures,
|lex◦(S)| = ax(S)• and

• the relation ⊑◦ = rl(lex◦(S)) ⊆ |lex◦(S)|× |lex◦(S)| among those models de-
fined by m⊑◦n iff for every priority level h ∈ H if df(S, h)(m) 6⊆ df(S, h)(n)
then there is h′ ≺ h with df(S, h′)(m) ⊂ df(S, h′)(n) (note that this last
inclusion is strict). �

1For this reason there is no logical relation, nor is it intended to be any, between this
specification and BATMAN.
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Proof We now show that ⊑◦ is a pre-order. Reflexivity is trivial so we proceed to
prove transitivity. Assume that m⊑◦n and n⊑◦o. Let h ∈ H be an arbitrary priority
levels and assume that df(S, h)(m) 6⊆ df(S, h)(o). We have to show that there is h′ ≺ h
with df(S, h′)(m) ⊂ df(S, h′)(o). There are two possibilities: either df(S, h)(m) ⊆
df(S, h)(n) or df(S, h)(m) 6⊆ df(S, h)(n).

1. (df(S, h)(m) 6⊆ df(S, h)(n)). In this case there is h1 ≺ h such that df(S, h1)(m) ⊂
df(S, h1)(n). Therefore the set {h1 ≺ h : df(S, h1)(m) ⊂ df(S, h1)(n)} is non-
empty and has a minimal element. Let h2 be such an minimal element. Then
df(S, h2)(m) ⊂ df(S, h2)(n). If df(S, h2)(n) ⊆ df(S, h2)(o) then df(S, h2)(m) ⊂
df(S, h2)(n) ⊆ df(S, h2)(o) implies that we may choose h′ = h2. Otherwise
there is h3 ≺ h2 with df(S, h2)(n) ⊂ df(S, h2)(o). Since h3 ≺ h2 and h2 is a
minimal level under h having df(S, h2)(m) ⊂ df(S, h2)(n) it is easy to check
that df(S, h3)(m) ⊆ df(S, h3)(n). Therefore df(S, h3)(m) ⊆ df(S, h3)(n) ⊂
df(S, h3)(o) and we may choose h′ = h3.

2. (df(S, h)(m) ⊆ df(S, h)(n)). Since df(S, h)(m) 6⊆ df(S, h)(o) also df(S, h)(n) 6⊆
df(S, h)(o) and there is h1 ≺ h such that df(S, h1)(n) ⊂ df(S, h1)(o). In the case
df(S, h1)(m) ⊆ df(S, h1)(n) ⊂ df(S, h1)(o) we may choose h′ = h1. Otherwise we
have df(S, h1)(m) 6⊆ df(S, h1)(n). The proof proceeds like the proof of the case
1 above. X

Example 77 Consider the hierarchic specification, written in propositional log-
ic, with an empty set of axioms and two defaults p, q, where p is considered of
lower priority than q. Its preference relation is displayed on the left of the fol-

• : {q}

◦ : {p}

OO

Figure 2.2: p lower than q

lowing figure 2.3 (some relations resulting from transitivity are not represented).
On the right is displayed the preference relation associated with the specification

{p, q} {p, q}

{p,¬q}

2:lllllll
lllllll

{¬p, q}

dl RRRRRRR

RRRRRRR
ks {p,¬q}

2:lllllll
lllllll

{¬p, q}

dl RRRRRRR

RRRRRRR

{¬p,¬q)}

dl RRRRR
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RRRRR

2:lllll
lllll

Figure 2.3: Preference of p, q related by priority (left) and not related (right)

having no axioms and the defaults p and q. The difference between both consists
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in the relation of preference between the models of {¬p, q} and those of {p,¬q}.
In fact these are unrelated when p and q are not ordered by priority, since they
satisfy different defaults. This is not the case when these defaults are ordered by
priority. The models of {p,¬q} are strictly better than the models {¬p, q} since
they satisfy the default p better than q.

The preference relation can be described as follows. Any model of p is better
than any model of ¬p. The default q is used to reorganize the interpretation
structures that are equally good at satisfying p: from among the models of p
those satisfying q are better than those not satisfying q. The same happens
among the interpretation structures not satisfying p. This is better illustrated by
redrawing the preference relation of p, q related by priority as follows.

{p, q}

{p,¬q}

KS

{¬p, q}

KS

{¬p,¬q}

KS

Figure 2.4: Preference of p, q related by priority

The name lexicographic ordering stems from the analogy between such orderings
and the lexicographic ordering of words in dictionaries (see ([2]). In this case
the position of letters in the word corresponds to priority. The order of words
is decided in the first position where the words differ, i.e. in the most important
priority level where they differ. The letters after that position are irrelevant: they
correspond to defaults of less priority. △

Remark 78 In the example the displayed relation of priority is not a partial
order: transitivity and reflexivity are not shown. In general, the “economical”
principle of stating only the needed priority relations should be followed, and
the partial order of hierarchic specifications should be derived from the specified
relations. This presents no formal difficulty. Any relation R “presents” a partial
order among the equivalence classes of its transitive and reflexive closure (see
definition 59). The hierarchic specification formalizing the actual specification
will have this partial order as priority structure. The set of defaults assigned to
each new level, a equivalence class of original levels, is the union of the defaults
in the original levels. In fact such an equivalence class means that the original
levels represent the same priority, which is the priority that should be assigned
to the formulas populating them.
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2.1.2 Semantics for Composition

The lexicographic preference just presented will be the main semantics for defin-
ing logical properties of a hierarchic specification (see section 2.4). However, it
has not enough information to account for composition of hierarchic specifica-
tions. This means that hierarchic specifications having the same lexicographic
preference do not, in general, behave in the same way with respect to composi-
tion. In particular the operation of adding defaults at a particular priority level,
even in the case of specifications with the same structure of priority, may result
in non-equivalent specifications. This difficulty is made explicit in the following
example.

Example 79 Consider now two hierarchic specifications from propositional logic
without axioms and one default, p. In the following figure are displayed the
priorities assigned to p by each of these two hierarchic specifications. It is straight-

• : ∅ • : {p}

◦ : {p}

OO

◦ : ∅

OO

Figure 2.5: p at different priority levels

forward to check that both have the same lexicographic preference, corresponding
to the specification with the only default p (and no axioms). However, when

• : ∅ • : {p}

◦ : {p,¬p}

OO

◦ : {¬p}

OO

Figure 2.6: ¬p added at the most important priority level

adding the new default ¬p to the bottom level (◦) one obtains two new hierarchic
specifications with different lexicographic semantics.

The lexicographic semantics of the specification on the left of figure 2.6 corre-
sponds to the two defaults {p,¬p} and that of the specification from the right
corresponds to ¬p alone (that overrides p). △

In the following we present three different possibilities of semantics, the hier-
archies of local, lexicographic and differential preferences. From any of these
semantics the lexicographic preference of the original specification can be derived
(see section 2.2.1). All of them correspond to pre-orders organized by priority
levels and will be compared in the next section 2.1.4. The hierarchy of local pref-
erences is obtained by viewing the sets of defaults at each level (plus the axioms)
as independent (flat) specifications. The corresponding preferences are assigned
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to the original priority levels. The second and third structured semantics, the hi-
erarchy of lexicographic preferences and the hierarchy of differential preferences
are equivalent (see section 2.1.4) and are taken as the semantics for composi-
tion. The hierarchy of lexicographic preferences is obtained by associating to
each priority level the lexicographic preference resulting from the interaction of
the defaults at that level with the ones at lower (more important) levels. The
hierarchy of differential preferences assigns to each level h the preference result-
ing from comparing interpretation structures with respect to the defaults at h
but restricting this comparison only to the interpretation structures that were
equivalent at lower levels. For simplicity sake we will use the hierarchy of differ-
ential preferences as semantics. All concepts can, however, be redefined for the
hierarchy of lexicographic preferences.

All these structured semantics are hierarchies of pre-orders, that we now define.
These organize given pre-orders over the same interpretation structures by prior-
ity.

Definition 80 A hierarchy of pre-orders is a tuple H = (Σ,M, (H,¹), Θ) con-
sisting of:

• a signature Σ ∈ |SignI |,

• a class of interpretation structures M ⊆ ModI(Σ),

• a well-founded partial order (H,¹) of priority, with non-empty set of pri-
ority levels H,

• a function Θ assigning to each priority level h ∈ H a reflexive and transitive
binary relation Θ(h) ⊆ M×M over the class of interpretation structures
M.

The projections sg(H) = Σ, |H| = M and po(H) = (H ¹) assign to a hierarchy
of pre-orders its signature, its base set of interpretation structures and its partial
order of priority. Moreover rl(H, h) = Θ(h) assigns to H and level h ∈ H the
pre-order from H at that level.

A Σ-hierarchy of pre-orders (M, (H,¹), Θ) is the hierarchy (Σ,M, (H,¹), Θ).
�

We now define the hierarchy of local preferences of a hierarchic specification. This
is the hierarchy of pre-orders obtained by assigning to each level h the preference
relation associated with the defaults from S at that level alone (and the axioms).

Definition 81 The hierarchy of local preferences induced by a hierarchic speci-
fication S, denoted by S⊙ is the hierarchy of pre-orders with:
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• the same signature as S, sg(S⊙) = sg(S),

• the models of the axioms from S as class of interpretation structures, |S⊙| =
ax(S)•,

• the same well-founded partial order (H ¹) as S, (H ¹) = po(S⊙) = po(S),

• the function ⊑⊙ that to each priority level h ∈ H assigns the relation ⊑⊙
h =

rl(S⊙, h) ⊆ |S⊙| × |S⊙| defined by m⊑⊙
h n iff df(S, h)(m) ⊆ df(S, h)(n).

Note that each relation ⊑⊙
h is the preference relation induced by the specification

(ax(S), df(S, h)) having as axioms the axioms from S and as defaults the defaults
from S at level h. For this reason each ⊑⊙

h is a pre-order. �

{p, q}
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Figure 2.7: Hierarchy of Local Preferences

The hierarchy of local preferences is illustrated in the following example. Note
that the defaults at each level are use to compare interpretation structures inde-
pendently from the defaults from other levels.

Example 82 Recall from example 77 the specification without axioms and the
following priority on the defaults p and q. The corresponding hierarchy of local

• : {q}

◦ : {p}

OO

preferences (figure 2.7) will have as class of interpretation structures all proposi-
tional interpretation structures (since the specification has no axioms).
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It consists furthermore of assigning the preference of p alone to the level ◦ and
the preference of q alone to the level •. Therefore in level ◦ the models of p have
preference and in level • those of q have preference. △

The previous semantics does not take into account the fact that defaults exist
in the context of defaults of other priority levels. This fact is corrected in the
hierarchy of lexicographic preferences. This hierarchy of pre-orders assigns to
each priority level the lexicographic preference associated with the defaults at
that level in the context of the defaults of lower (more important) levels.

Definition 83 The hierarchy of lexicographic preferences induced by a hierarchic
specification S, denoted by S⊕ is the hierarchy of pre-orders with:

• the same signature as S, sg(S⊕) = sg(S),

• the models of the axioms from S as class of interpretation structures, |S⊕| =
ax(S)•,

• the same well-founded partial order (H ¹) as S, (H ¹) = po(S⊕) = po(S),

• the function ⊑⊕ that to each priority level h ∈ H assigns the relation ⊑⊕
h =

rl(S⊕, h) ⊆ |S⊕| × |S⊕| defined by m⊑⊕
h n iff for every priority level h′ ¹ h

if df(S, h′)(m) 6⊆ df(S, h′)(n) then there is h′′ ≺ h′ with df(S, h′′)(m) ⊂
df(S, h′′)(n) (this last inclusion is strict).

Note that each ⊑⊕
h is the lexicographic preference of the substructure of S ob-

tained by restricting the priority levels to the set {h′ : h′ ¹ h}. This relation is
a pre-order (see definition 76). �

Example 84 We display the hierarchy of lexicographic preferences for the same
specification of the previous example 82 in figure 2.8.

It has as class of interpretation structures all propositional interpretation struc-
tures (since the specification has no axioms). It consists furthermore of assigning
the lexicographic preference of p alone to the level ◦ and the lexicographic pref-
erence of the whole specification (already displayed in example 77) to the level •.
The difference to the hierarchy of local preferences (shown in example 82) shows
up only in the level •.

In fact the lexicographic preference at the minimal level ◦ coincides with the
preference associated with the defaults at ◦ alone (since there are no levels under
◦). △
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Figure 2.8: Hierarchy of Lexicographic Preferences

The previous semantics focuses on the overall effect of the defaults at some level in
the context of the defaults at lower levels (and axioms). The next semantics, the
hierarchy of differential preferences, is equivalent (see next section 2.1.4) to the
hierarchy of lexicographic preferences, but displays the information of preference
in a different way. The hierarchy of differential preferences displays at level h
the preference induced by the defaults Dh in the interpretation structures that
were equivalent at better levels. In fact, the defaults Dh are only relevant to
compare interpretation structures that were equivalent at better hierarchy levels:
interpretation structures that were strictly related by preference (resp. unrelated)
at levels under h will remain strictly related by preference (resp. unrelated). This
formalization also implies a simple characterization of “defaults implicit” in a level
h (see the next example 86 and section 2.3.1).

Definition 85 The hierarchy of differential preferences of a hierarchic specifica-
tion S, denoted by S� is the hierarchy of pre-orders with:

• the same signature as S, sg(S�) = sg(S),

• the models of the axioms from S as class of interpretation structures, |S�| =
ax(S)• and

• the same well-founded partial order (H ¹) as S, (H ¹) = po(S�) = po(S),

• the function ⊑� that to each priority level h ∈ H assigns the relation
⊑�

h = rl(S�, h) ⊆ |S�| × |S�| defined by

m⊑�

h n iff df(S, h)(m) ⊆ df(S, h)(n) and df(S, h′)(m) = df(S, h′)(n)
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for every priority level h′ ≺ h.

It is straightforward to check that each ⊑�

h is a pre-order. �

We illustrate this semantics by comparing a hierarchy of differential preferences
with the corresponding hierarchy of lexicographic preferences.

Example 86 The previous example 84 is important in motivating the hierarchy
of differential preferences (in figure 2.9).
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Figure 2.9: Hierarchy of Differential Preferences

Consider now the question (to be fully solved in section 2.3.1) of finding the
“defaults implicit” at level • in the previous specification. This corresponds to
finding the formulas that can be added to the previous specification without
changing its meaning. We take as meaning of the specification the hierarchy of
lexicographic preferences already displayed in example 84. Clearly q should be
one of those formulas (since it is already a specified default). It is however, not
true in the lexicographic preference at level • that if m � q then any n better that
m will also satisfy q. (Since the models of {q,¬p} are less preferred than those
of {¬q, p}).

The condition of default implicit is obtained by restricting the interpretation
structures n to those preferred to m at level • and equivalent to m at levels
under •. But this is the same as stating that n is preferred to m according to
the differential preference at level •. In this way the condition of implicit default
becomes formally identical to definition 27 of chapter 1. The formal similarity
with the concepts from chapter 1 will be of advantage. Note that q is a default
implicit in the differential preference at level •. △
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In the following we display auxiliary results that relate equivalence and strict
preference of the differential and lexicographic preferences with satisfaction of
defaults. These results will be used when comparing these semantics.

Lemma 87 Let S be a hierarchic specification and (H,¹) = po(S) its partial
order of priority. Let ⊑⊕

h = rl(S⊕, h) and ⊑�

h = rl(S�, h) be the relations asso-
ciated respectively by the hierarchy of lexicographic preferences of S and by the
hierarchy of differential preferences of S to the level h ∈ H. Then:

1. m≡�

h n iff df(S, h′)(m) = df(S, h′)(n) for every h′ ¹ h,

2. m@�h n iff df(S, h)(m) ⊂ df(S, h)(n) and df(S, h′)(m) = df(S, h′)(n) for all
h′ ≺ h,

3. m≡⊕
h n iff df(S, h′)(m) = df(S, h′)(n) for every h′ ¹ h,

4. m@⊕
h n iff m⊑⊕

h n and there exists h′ ¹ h with df(S, h′)(m) ⊂ df(S, h′)(n)
and, for every h′′ ≺ h′ ¹ h, df(S, h′′)(m) ⊆ df(S, h′′)(n).

Proof The proofs of the first and second properties are straightforward since by
definition m⊑�h n iff df(S, h)(m) ⊆ df(S, h)(n) and df(S, h′)(m) = df(S, h′)(n) for all
h′ ≺ h.

The proofs of the third and fourth properties are by well-founded induction in the well-
founded partial order (H,¹). Both proofs need the following recursive definition of ⊑⊕

h :
m⊑⊕

h n iff for every priority level h′
1 ≺ h, m⊑⊕

h′
1
n and if df(S, h)(m) 6⊆ df(S, h)(n) then

there is h′ ≺ h with df(S, h′)(m) ⊂ df(S, h′)(n). The proof of this fact is straightfor-
ward. We omit it and only recall (from definition 83) that m⊑⊕

h n iff for every priority
level h′ ¹ h if df(S, h′)(m) 6⊆ df(S, h′)(n) then there is h′′ ≺ h′ with df(S, h′′)(m) ⊂
df(S, h′′)(n).

We begin with the proof of the third property.

• Let h be minimal in (H,¹). Since there is no h′ ¹ h except h itself one has m⊑⊕
h n

iff df(S, h)(m) ⊆ df(S, h)(n). Therefore m≡⊕
h n iff df(S, h)(m) = df(S, h)(n).

• Consider a non-minimal h.

⇒ Assume that m≡⊕
h n. Then m⊑⊕

h′
1
n and n⊑⊕

h′
1
m (see the recursive defi-

nition of ⊑⊕
h ) for every priority level h′ ≺ h. By induction hypothesis

for every priority level h′
1 ≺ h, df(S, h′

1)(m) = df(S, h′
1)(n). Therefore

df(S, h)(m) ⊆ df(S, h)(n) since m⊑⊕
h n and there is no level h′

1 ≺ h with
df(S, h′

1)(m) ⊂ df(S, h′
1)(n). In the same way we conclude df(S, h)(n) ⊆

df(S, h)(m). Therefore df(S, h′)(m) = df(S, h′)(n) for all h′ under h, in-
cluding h.
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⇐ Assume now that df(S, h′)(m) = df(S, h′)(n) for all h′ ¹ h. It is obvious
from definition of ⊑⊕

h that m⊑⊕
h n and n⊑⊕

h m. X

Now the proof of the fourth property.

• Let h be minimal in (H,¹). Recall from the proof above that for minimal
h, m⊑⊕

h n iff df(S, h)(m) ⊆ df(S, h)(n). Therefore m@⊕
h n iff df(S, h)(m) ⊂

df(S, h)(n). Take h′ to be h. The remaining property for every h′′ ≺ h′ = h
is vacuously true.

• Consider a non-minimal h.

⇒ Assume that m@⊕
h n. Then m⊑⊕

h n and from the recursive definition of ⊑⊕
h

also m⊑⊕
h1

n for every h1 ≺ h . Now there are two possibilities: either the

relation m⊑⊕
h1

n is strict for some h1 ≺ h or not:

∗ If m@⊕
h1

n for some h1 ≺ h we use the induction hypothesis for that
h1: there exists h′

1 ¹ h1 ≺ h with df(S, h′
1)(m) ⊂ df(S, h′

1)(n) and
df(S, h′′

1)(m) ⊆ df(S, h′′
1)(n) for every h′′

1 ≺ h′
1 ¹ h1 ≺ h. Choose

h′ = h′
1.

∗ Otherwise we have m≡⊕
h1

n for all h1 ≺ h. This implies df(S, h1)(m) =
df(S, h1)(n) for all h1 ≺ h. Therefore df(S, h)(m) ⊆ df(S, h)(n) since
m⊑⊕

h n and there is no h1 ≺ h with df(S, h1)(m) ⊂ df(S, h1)(n). This
inclusion has to be strict for otherwise we would also have n⊑⊕

h m. Now
choose h′ = h.

⇐ Now assume that m⊑⊕
h n and there exists h′ ¹ h with df(S, h′)(m) ⊂

df(S, h′)(n) and df(S, h′′)(m) ⊆ df(S, h′′)(n) for every h′′ ≺ h′ ¹ h. We
have to prove that m@⊕

h n, i.e. that n 6⊑⊕
h m. To establish this we will show

that n 6⊑⊕
h′m. In fact if h′ = h then obviously n 6⊑⊕

h m. If h′ ≺ h then also
n 6⊑⊕

h m: n⊑⊕
h m would imply from the recursive definition of ⊑⊕

h that n⊑⊕
h′m

for all h′ ≺ h.

We now show that n 6⊑⊕
h′m. In fact neither df(S, h′)(n) ⊆ df(S, h′)(m) nor

there is h′′ ≺ h′ with df(S, h′′)(n) ⊂ df(S, h′′)(m), since df(S, h′)(m) ⊂
df(S, h′)(n) and df(S, h′′)(m) ⊆ df(S, h′′)(n) for every h′′ ≺ h′. X

2.1.3 Combination Operators

In the next section 2.1.4 we compare the three structured semantics associated
with a hierarchic specification. For that purpose we define here operators �
and � that associate to a hierarchy of pre-orders a hierarchy of lexicographic
combinations and a hierarchy of differential combinations. Given a hierarchic
specification S the result of the operator � on any of the corresponding structured
semantics, S⊙, S⊕ or S� is the hierarchy of lexicographic preferences of S, S⊕.
Similarly the result of the operator � onany of S⊙, S⊕ or S� is the hierarchy of
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differential preferences of S, S�. This provides a way to convert the hierarchy
of lexicographic preferences to the hierarchy of differential preferences (and vice-
versa) and implies equivalence of these two semantics. There is no corresponding
operator for the hierarchy of local semantics. In fact different specifications with
different hierarchies of local preferences may have the same S⊕ and S� (see
example 95 below).

The operator � assigns to level h the overall effect of the pre-orders from the
argument hierarchy at level h and under h. This corresponds to the lexicographic
combination of those pre-orders and is the semantic operation corresponding to
the lexicographic preference of hierarchic specifications (see section 2.2.1). As
expected its definition is formally similar to that of lexicographic preference (see
definition 76). Two interpretation structures m, n are related at level h if, for
all h′ ¹ h (including h), whenever m and n are not related by the argument
pre-order at level h′ then there is a better level h′′ ≺ h′ where n is strictly related
to m. The following inductive definition states this relation equivalently.

Definition 88 The hierarchy of lexicographic combinations associated with a
hierarchy of pre-orders H, denoted by H� is the hierarchy of pre-orders with:

• the same signature as H, sg(H�) = sg(H),

• the same class of interpretation structures as H, |H�| = |H|,

• the same well-founded partial order (H,¹) as H, (H,¹) = po(H�) =
po(H),

• the function ⊑� that to each priority level h assigns the relation ⊑�

h =
rl(H�, h) ⊆ |H�| × |H�| inductively defined in the structure of the well
founded partial order as follows. Let ⊑�

h− = ∩{h′:h′≺h} ⊑
�

h′ denote the inter-
section of the lexicographic relations associated by H� to the levels strictly
under h and @�h− the corresponding strict relation. Let ⊑h denote the rela-
tion rl(H, h) assigned by H to the level h. Then

– m⊑�

h n iff m ⊑h n, if h is minimal in (H,¹);

– m⊑�

h n iff either m@�h−n or (m ⊑h n and m⊑�

h−n), otherwise. �

Proof The proof that each ⊑�h is a pre-order is by induction (in (H,¹)). Reflexivity
is trivial. Transitivity results from the fact that m⊑�h n iff either m@�

h−n or (m ⊑h

n and m≡�
h−n) and that @�

h− is transitive and ≡�
h−an equivalence (by the induction

hypothesis). X

The condition defining ⊑� can be equivalently rewritten in a way formally similar
to the definition of lexicographic preference.
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Lemma 89 Let H be a hierarchy of pre-orders, (H,¹) its partial order of priority
and for h ∈ H let ⊑h= rl(H, h) be the pre-order assigned by H to level h. Then
m⊑�

h n iff for every h′ ¹ h (including h) either m ⊑h′ n or there is h′′ ≺ h with
m @h′′ n.

Proof Omitted. X

The definition of the hierarchy of differential combinations is formally similar
to the hierarchy of differential preferences of a specification (see definition 85).
Interpretation structures are related at level h when they are related at that
level by the argument pre-order and, furthermore, are equivalent according to
the argument pre-orders at levels under h.

Definition 90 The hierarchy of differential combinations associated with a hi-
erarchy of pre-orders H, denoted by H� is the hierarchy of pre-orders with:

• the same signature as H, sg(H�) = sg(H),

• the same class of interpretation structures as H, |H�| = |H|,

• the same well-founded partial order (H,¹) as H, (H,¹) = po(H�) =
po(H),

• the function ⊑� that to each priority level h assigns the relation rl(H�, h) =
⊑�

h ⊆ |H�| × |H�| defined as follows. Let ⊑h′ denote the relation rl(H, h′)
associated by H to the level h′ and ≡h− the equivalence defined by m ≡h− n
iff for all h′ ≺ h, m ≡h′ n, that relates interpretation structures exactly
when they are equivalent according to all relations associated by H to the
levels strictly under h. Then m⊑�

h n iff m ⊑h n and m ≡h− n.

Note that each ⊑�

h is a pre-order since it is the intersection of pre-orders. �

We now proceed to study properties of the two operators � and �. For that
purpose the following auxiliary lemma characterizing equivalence classes of ⊑�

h

and ⊑�

h is useful.

Lemma 91 Let H be a hierarchy of pre-orders, (H,¹) = po(H) its partial order
of priority and h ∈ H an arbitrary priority level. Let ⊑h= rl(H, h), ⊑�

h =
rl(H�, h) and ⊑�

h = rl(H�, h) be the relations associated to level h by H, H� and
H�. Let ≡h, ≡

�

h and ≡�

h be the corresponding equivalence relations and ≡{h′:h′¹h}

the intersection of the equivalences ≡h′ , for h′ ¹ h (including h). Then:

m≡�

h n iff m ≡{h′:h′¹h} n iff m≡�

h n.
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Proof We show m≡�h n iff m ≡{h′:h′¹h} n and m≡�h n iff m ≡{h′:h′¹h} n.

• That m≡�h n iff m ≡{h′:h¹h} n follows easily from the definition 90 of ⊑�h : m⊑�h n
iff m ⊑h n and m ≡h− n, where h− is the set of priority levels strictly under h.
Therefore m≡�h n iff m ≡h n and m ≡h− n, which is simply m ≡{h′:h′¹h} n. X

• The proof of m≡�h n iff m ≡{h′:h′¹h} n is by induction on (H,¹):

– if h is minimal then m⊑�h n iff m ⊑h n (definition 88 of ⊑�h ) and m≡�h n iff
m ≡h n iff m ≡{h′:h′¹h} n since {h′ : h′ ¹ h} = {h}.

– otherwise recall from definition 88 that m⊑�h n iff either m@�
h−n or (m ⊑h n

and m⊑�
h−n). This implies m≡�h n iff m ≡h n and m≡�

h−n. Using the
induction hypothesis we have finally m≡�h n iff m ≡h n and m ≡h− n. X

The operators � and � are idempotent and form a bijection between hierarchies
of differential combinations and hierarchies of lexicographic combinations.

Theorem 92 Given a hierarchy of pre-orders H then

1. (H�)
�

= H�,

2. (H�)
�

= H�,

3. (H�)
�

= H� and

4. (H�)
�

= H�.

Proof The properties concerning signatures, interpretation structures and the par-
tial order of priority are straightforward. The result of any of the operators on H
is a hierarchy of pre-orders having the same signature sg(H) as H the same class of
interpretation structures |H| and the same partial order of priority (H,¹) = po(H).

Let ⊑h, ⊑�h and ⊑�h be the relations associated by H, H� and H� to level h, respectively.

Before anything recall from lemmas 91 and 91 that m≡�h n iff m≡�h n iff m ≡{h′:h¹h} n,
where ≡{h′:h¹h} is the intersection of the equivalences ≡h′ from levels h′ ¹ h (including
h).

Let ⊑��h , ⊑��h , ⊑��h and ⊑��h be the relations associated to level h by (H�)
�

, (H�)
�

,

(H�)
�

and (H�)
�

respectively. The remain of the proof is by well-founded induction
on (H,¹). (The different proofs are independent although presented simultaneously.)

• Assume h is minimal in (H,¹). Then

– ⊑��h is by definition 90 equal to ⊑�h (and this in turn equal to ⊑h),

– ⊑��h is by definition 88 equal to ⊑�h (and this in turn equal to ⊑h),



68 CHAPTER 2. PRIORITIZED DEFAULTS

– ⊑��h is again by definition 90 equal to ⊑�h which coincides with ⊑h and
with ⊑�h ,

– ⊑��h is again by definition 88 equal to ⊑�h which coincides with ⊑h and
with ⊑�h .

• Otherwise

– From definition 90 m ⊑��h n iff m⊑�h n and m≡�
h−n, where ≡�

h− is the
intersection of the equivalence relations ≡�h′ for h′ ≺ h.

Recall that ≡�
h− is the same as ≡h− (lemma 91).

In this way the condition defining m ⊑��h n translates to m ⊑h n and
m ≡h− n and m ≡h− n. This is the condition defining m⊑�h n.

– From definition 88 m ⊑��h n iff either m @
��

h− n or (m⊑�h n and m ⊑��
h− n),

where ⊑��
h− denotes the intersection of the relations ⊑��h′ for h′ ≺ h and

@
��

h− the corresponding strict relation. By the induction hypothesis this is
m ⊑��h n iff either m@�

h−n or (m⊑�h n and m⊑�
h−n). Recall that m⊑�h n iff

either m@�
h−n or (m ⊑h n and m⊑�

h−n) and substitute this above. After
some tautological manipulation one obtains that m ⊑��h n iff either m@�

h−n
or (m ⊑h n and m⊑�

h−n), i.e. m ⊑��h n iff m⊑�h n.

– Again from definition 90 m ⊑��h n iff m⊑�h n and m≡�
h−n (this means m≡�h′n

for all h′ ≺ h). Recalling the definition of m⊑�h n one obtains m ⊑��h n iff
m≡�

h−n and (either m@�
h−n or (m ⊑h n and m⊑�

h−n)). The conditions
m≡�

h−n and m@�
h−n are contradictory: one cannot have m, n simultane-

ously equivalent and strictly related according to the same relation. The
condition m≡�

h−n implies m⊑�
h−n. Therefore m ⊑��h n iff m≡�

h−n and
m ⊑h n. Recall now that m≡�

h−n iff m ≡h− n (lemma 91). Then we have
m ⊑��h n iff m ≡h− n and m ⊑h n iff m⊑�h n.

– From definition 88 one has m ⊑��h n iff either m @
��

h− n or (m⊑�h n and
m ⊑��

h− n), where ⊑��
h− denotes the intersection of the relations ⊑��h′ for

h′ ≺ h and @��
h− the corresponding strict relation.

By the induction hypothesis this translates to m ⊑��h n iff either m@�
h−n

or (m⊑�h n and m⊑�
h−n). Note that m@�

h−n or (m⊑�h n and m⊑�
h−n) is

equivalent to m@�
h−n or (m⊑�h n and m≡�

h−n).

The relation m⊑�h n is defined by m ⊑h n and m ≡h− n. Substituting
above we obtain m ⊑��h n iff either m@�

h−n or (m ⊑h n and m ≡h− n
and m≡�

h−n). Recall that m ≡h− n iff m≡�
h−n (lemma 91) and therefore

m ⊑��h n iff either m@�
h−n or (m ⊑h n and m≡�

h−n) iff m@�h n. X

2.1.4 Relations between Semantics

We now compare the three semantics of a specification S: the hierarchy of local
preferences S⊙, the hierarchy of lexicographic preferences S⊕ and the hierarchy of
differential preferences S�. The operators � and � are the key to this comparison:
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they assign to any of these semantics the hierarchy of lexicographic preferences
and the hierarchy of differential preferences respectively. We conclude that S⊕

and S� are equivalent since the operators � and � translate one into the oth-
er without loosing information. The hierarchy of local preferences S⊙ is not as
abstract as these two: specifications having different hierarchies of local prefer-
ences may have the same hierarchy of lexicographic preferences (and hierarchy of
differential preferences). The reverse is not true.

We begin by showing (as it is expected) that S⊕ coincides with the result of the
operation � on the hierarchy of local preferences of S. Similarly S� coincides
with the result of the operation � on S⊙.

Lemma 93 Let S be a hierarchic specification. Then

1. S� = (S⊙)
�

and

2. S⊕ = (S⊙)
�

.

Proof It is obvious that S⊕, S⊙, (S⊙)
�

have the same signature (that of S), and
(S⊙)

�

have the same class of interpretation structures (the models of the axioms in S)
and the same partial order (H,¹) = po(S). We have to show that for each level h ∈ H
interpretation structures m, n ∈ ax(S)• are related according to S⊕ iff they are related
according to S⊙� and m, n are related according to S� iff they are related according
to S⊙�. We begin with the proof of S� = (S⊙)

�

.

1. Let ⊑⊙
h denote the relation rl(S⊙, h) associated by S⊙ to the level h and ≡⊙

h− the
equivalence defined by m≡⊙

h−n iff for all h′ ≺ h, m≡⊙
h′n. The pre-order assigned

by (S⊙)
�

to level h is precisely defined by m⊑⊙
h n and m≡⊙

h−n (see definition 90).
It is obvious from definition 81 of S⊙ that m⊑⊙

h n iff df(S, h)(m) ⊆ df(S, h)(n) and
that m≡⊙

h−n iff df(S, h′)(m) = df(S, h′)(n) for all h′ ≺ h. The pre-order defined
by df(S, h)(m) ⊆ df(S, h)(n) and for all h′ ≺ h, df(S, h′)(m) = df(S, h′)(n) is the
one assigned to level h by S� (see definition 85). X

2. The proof of S⊕ = (S⊙)
�

is by well-founded induction in the structure of the well
founded partial order (H,¹). Let ⊑⊙

h = rl(S⊙, h) be the relation associated with
an arbitrary level h ∈ H by S⊙, ⊑⊕

h = rl(S⊕, h) be the relation associated with h

by S⊕ and ⊑⊙�
h = rl((S⊙)

�

, h) be the relation associated with h by (S⊙)
�

. Also
let ⊑⊙�

h− = ∩{h′:h′≺h} ⊑⊙�
h′ denote the intersection of the lexicographic relations

⊑⊙�
h′ of the levels strictly under h and ⊑⊙�

h− the corresponding strict relation.

We now prove that ⊑⊕
h = ⊑⊙�

h . Remember from the proof of lemma 87 that
⊑⊕

h can be recursively defined as follows:m⊑⊕
h n iff for every priority level h′ ≺ h,

m⊑⊕
h′n and if df(S, h)(m) 6⊆ df(S, h)(n) then there is h′ ≺ h with df(S, h′)(m) ⊂

df(S, h′)(n).

Note also that from definition 88 of � that m⊑⊙�
h n iff
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• m⊑⊙
h n if h is minimal,

• either m@⊙�
h− n or (m⊑⊙

h n and m⊑⊙�
h− n) if h is not minimal.

• Let h be minimal in (H,¹). Since there is no h′ ¹ h except h itself from
definition 83 of S⊕ we have m⊑⊕

h n iff df(S, h)(m) ⊆ df(S, h)(n). This
is equivalent to m⊑⊙

h n from definition 81 of local semantics and is also
equivalent to m⊑⊙�

h n from definition 88 above.

• For non-minimal h the induction hypothesis is ⊑⊕
h′ = ⊑⊙�

h′ for h′ strictly
under h.

⇒ Assume that m⊑⊕
h n, i.e, for every priority level h′ ≺ h, m⊑⊕

h′n and
if df(S, h)(m) 6⊆ df(S, h)(n) then there is h′ ≺ h with df(S, h′)(m) ⊂
df(S, h′)(n). There are two cases to check:

∗ df(S, h)(m) ⊆ df(S, h)(n). This is equivalent to m⊑⊙
h n by defini-

tion 81 of local hierarchic semantics. Therefore m⊑⊕
h n becomes

equivalent to: for every priority level h′ ≺ h, m⊑⊕
h′n and m⊑⊙

h n.
Using the induction hypothesis this is: for every priority level
h′ ≺ h, m⊑⊙�

h′ n and m⊑⊙
h n which in turn is equivalent to m⊑⊙�

h− n

and m⊑⊙
h n. This last condition implies m⊑⊙�

h n (see definition 88).

∗ df(S, h)(m) 6⊆ df(S, h)(n) and there is h′ ≺ h with df(S, h′)(m) ⊂
df(S, h′)(n). In this way the relation ⊑⊙

h′ associated by the local
hierarchic semantics to the level h′ strictly prefers n to m (since n
strictly satisfies more defaults). Recalling lemma 87 m, n cannot
be equivalent according to ⊑⊕

h′ = ⊑⊙�
h′ since n strictly satisfies

more defaults than m (and not the same). Moreover, in the same
way as the case above, m⊑⊙�

h− n. The two conditions imply that n

is strictly preferred to m according to ⊑⊙�
h− . This last condition

implies m⊑⊙�
h n (see definition 88).

⇐ Assume that m⊑⊙�
h n. This means that either m@⊙�

h− n or (m⊑⊙
h n and

m⊑⊙�
h− n). In both cases m⊑⊙�

h− n which implies from definition 88 of

� that m⊑⊙�
h′ n for all h′ ≺ h. By the induction hypothesis we have

m⊑⊕
h′n for all h′ ≺ h. Recalling the recursive definition of ⊑⊕

h we only
have to conclude in both cases that if df(S, h)(m) 6⊆ df(S, h)(n) then
there is h′ ≺ h with df(S, h′)(m) ⊂ df(S, h′)(n).

∗ Assume that m@⊙�
h− n. Then there is h′ ≺ h such that m@⊙�

h′ n.
Recalling lemma 87 this implies that there exists h′′ ¹ h′ ≺ h such
that df(S, h′′)(m) ⊂ df(S, h′′)(n).

∗ Assume that m⊑⊙
h n and m⊑⊙�

h− n. This means that df(S, h)(m) ⊆
df(S, h)(n). X

We conclude the comparison of the structured semantics in the following theorem.
It states that S⊕ and S� are equivalent semantics of S in the following sense.
Another specification S ′ has the same hierarchy of lexicographic preference as S
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iff it has the same hierarchy of differential preferences as S. Moreover specifica-
tions having the same hierarchy of local preferences have the same hierarchies of
lexicographic and differential preferences.

Theorem 94 Let S, S ′ be hierarchic specifications. Then

1. S⊕� = S� and S�� = S⊕,

2. S⊕ = S ′⊕ iff S� = S ′�.

3. If S⊙ = S ′⊙ then S⊕ = S ′⊕ and S� = S ′�

Proof Recall from lemma 93 that S⊕ = S⊙� and S� = S⊙�.

1. Therefore S⊕� = S⊙�� = S⊙�, i.e. S�. The last equality results from the
properties of the operators � and � presented in theorem 92. The proof that
S�� = S⊕ is formally identical to this one.

2. Trivial from the property above: if S⊕ = S′⊕ then S⊕� = S′⊕� which is equiv-
alent to S� = S′�. The other direction is formally identical to this one.

3. Obvious from the fact that that S⊕ = S⊙� and S� = S⊙�. X

We know from item 3 in the theorem above that specifications having the same
hierarchy of local preferences have the same hierarchy of lexicographic preferences
(and hierarchy of differential preferences). We now see, by means of an example,
the reverse is not true. In general specifications having the same hierarchy of
lexicographic preferences (and hierarchy of differential preferences) do not have
the same hierarchy of local preferences.

Example 95 Consider the two hierarchic specifications from propositional logic,
without axioms and with a single default with priorities as displayed:

• : ∅ • : {p}

◦ : {p}

OO

◦ : {p}

OO

Figure 2.10: p

It is straightforward to check that both specifications have the same hierarchy of
lexicographic preferences (and hierarchy of differential preferences). Intuitively
this means that adding a default from a lower level (better) to a higher level
does not change the meaning of the specification. However the two hierarchic
specifications have different hierarchies of local preferences. To see this note that
the preference associated with the default p (and no axioms) is different from the
preference associated with the specification with the empty sets of defaults and
axioms. △
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2.2 Lexicographic Preference Revisited

The lexicographic preference of a hierarchic specification S is the structure need-
ed to define the consequences of S (see section 2.4). We show that the structured
semantics of S contains enough information to derive this preference in section
2.2.1. In this way we are sure that the semantics chosen for composition, namely
the hierarchy of differential preferences of S, contains the needed logical infor-
mation about S. In section 2.2.2 we show that, under some conditions including
finiteness, a flat specification can be found with precisely the same lexicographic
preference as a given hierarchic specification S.

2.2.1 Structured Semantics

Our concern is now to show that the lexicographic preference of a specification
can be derived from any of the presented structured semantics. For that purpose
we define the lexicographic combination of pre-orders. This pre-order is the
semantic concept corresponding to the lexicographic preference of a specification.
It has been first proposed by Lifschitz in the context of circumscription ([60]) and
later generalized by Grosof ([52]) to any preferential logic. Andréka, Ryan and
Schobbens show in [2] that this combination of relations organized by priority is
canonical in the sense that it is the only combination of those relations satisfying
certain conditions.

Definition 96 The lexicographic combination of the pre-orders organized by pri-
ority in the hierarchy of pre-orders H, denoted by lex�(H) is the pre-order with:

1. the same signature as H, sg(lex�(H)) = sg(H),

2. the class of interpretation structures from H as class of interpretation struc-
tures, |lex�(H)| = |H| and

3. the relation ⊑� = rl(lex�(H)) ⊆ |lex�(H)| × |lex�(H)| defined as follows.
Let ⊑h denote the relation rl(H, h) assigned by H to the level h and let
(H,¹) = po(H) be the partial order of priority from H. Then m⊑�n iff for
every priority level h ∈ H either m ⊑h n or there is h′ ≺ h and m @h′ n. �

The lexicographic combination ⊑� (of pre-orders) is a pre-order. The proof of
this fact is formally identical to the proof of the corresponding property of each
of the lexicographic combinations from � (in definition 88).

We now see that the lexicographic combination of the (hierarchy of) local pref-
erences of S is precisely the lexicographic preference of S.
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Theorem 97 Let S be a hierarchic specification. Then the lexicographic pref-
erence of S is the lexicographic combination of the hierarchy of local preferences
associated with S: lex◦(S) = lex�(S⊙).

Proof It is obvious that lex◦(S) has the same signature and class of interpretation
structures as lex�(S⊙). Let (H,¹) = po(S⊙) be the partial order on the priority levels
from S⊙ (and S) and ⊑⊙

h = rl(S⊙, h) be the relation associated with an arbitrary level
h ∈ H by S⊙.

We have to show that models m, n ∈ ax(S)• are related according to lex◦(S) iff they
are related according to lex�(S⊙).

From definition 76 of lexicographic preference m, n ∈ ax(S)• are related according to
lex◦(S) when it is the case that for every level h, if df(S, h)(m) 6⊆ df(S, h)(n) then there
exists h′ ≺ h with df(S, h′)(m) ⊂ df(S, h′)(n).

From definition 81 of hierarchy of local preferences m⊑⊙
h n iff df(S, h)(m) ⊆ df(S, h)(n).

Therefore m, n ∈ ax(S)• are related according to lex◦(S) when it is the case that for
every level h, if m 6⊑⊙

h n then there exists h′ ≺ h with m@⊙
h n. This means precisely

(definition 96 of lexicographic combination) that m, n are related according to lex�(S⊙).
X

We now display the fact that lex◦(S) can also be derived from the hierarchy of
lexicographic preferences S⊕ (and the hierarchy of differential preferences S�).
Moreover the operation that yields lex◦(S) from S⊕ and from S� is precisely
the same that yields lex◦(S) from S⊙: it is the lexicographic combination of the
preferences in each of these hierarchies of pre-orders.

In order to show this we firstly express the lexicographic combination of the
pre-orders from a hierarchy H as the intersection of the lexicographic preferences
associated with H�, the hierarchy of lexicographic preferences associated with H.
In fact H� assigns to each priority level h the lexicographic combination associat-
ed with the substructure of the levels under h and h. Therefore the lexicographic
combination of H is the relation occurring at the existing or imagined “top”
(least important) level in H�. This is the intersection of all partial lexicographic
combinations occurring in H�.

Lemma 98 Let H be a hierarchy of pre-orders, H� its hierarchic lexicographic
semantics and (H,¹) = po(H) = po(H�) their partial order of priority. Then
the lexicographic combination of H, lex�(H) is lex�(H) = ∩(H�) where ∩(H�)
denotes the pre-order with:

• sg(∩(H�)) = sg(H),

• the class of interpretation structures from H as class of interpretation struc-
tures, |∩(H�)| = |H| and
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• the relation ⊑�

H = rl(∩(H�)) ⊆ |∩(H�)| × |∩(H�)| where ⊑�

H is the inter-
section of all the lexicographic preferences ⊑�

h , h ∈ H, from H�.

Moreover the lexicographic preference lex◦(S) of a hierarchic specification S is
lex◦(S) = ∩(S⊕) i.e. lex◦(S) is the intersection of the lexicographic preferences
occurring in S⊕, the hierarchy of lexicographic preferences associated with S.

Proof Equality of signatures and classes of interpretation structures from ∩(H�)
and lex�(H) are trivial. We have to show that given m, n ∈ |H| they are related
by ⊑� = rl(lex�(H)) iff they are related by ⊑�H . Let ⊑h= rl(H, h) be the relation
associated to H to level h.

We have noted in lemma 89 that m⊑�h n iff for every h′ ¹ h (including h) either m ⊑h′ n
or there is h′′ ≺ h with m @h′′ n. If m, n are related according to all ⊑�h , h ∈ H then
for all h′ ∈ H either m ⊑h′ n or there is h′′ ≺ h with m @h′′ n. The last condition
is the definition (definition 96) of m⊑�n. On the other hand if for all h′ ∈ H either
m ⊑h′ n or there is h′′ ≺ h with m @h′′ n then in particular this property holds for all
h′ ¹ h, for arbitrary h.

Finally we have to show that the lexicographic preference lex◦(S) of a hierarchic
specification S is lex◦(S) = ∩(S⊕). This is trivial recalling from theorem 97 that
lex◦(S) = lex�(S⊙). Therefore lex�(S⊙) = ∩(S⊙�). But we know from lemma 93 that
S⊙� is S⊕. X

We can now conclude that the lexicographic preference lex◦(S) of a hierarchic
specification S is the lexicographic combination of any of S⊙, S⊕ and S�.

Theorem 99 Let S be a hierarchic specification. Then:

lex◦(S) = lex�(S⊙) = lex�(S⊕) = lex�(S�).

Proof Note firstly that lex�(H) = lex�(H�) since (H�)
�

= H� from theorem 92 and

lex�(H�) = ∩(H�
�

) = ∩(H�) = lex�(H) from lemma 98.

Therefore lex�(S⊙) = lex�(S⊙�) = lex�(S⊕) recalling from lemma 93 that S⊕ = S⊙�.

Since S� = S⊙� (lemma 93) and from theorem 92 S�� = S⊙�� = S⊙� = S⊕ we
have lex�(S�) = lex�(S��) = lex�(S⊕). Finally recall that lex◦(S) = lex�(S⊙) from
theorem 97. X

We end this section with an example illustrating both the hierarchy of lexico-
graphic preferences of a specification S and the corresponding lexicographic pref-
erence. We recall (see the discussion in 2.1.2) that the more structured semantics
(hierarchies of lexicographic and differential preferences) are needed for compo-
sition of specifications. However, the logical content of a specification (its con-
sequences) is derived (see next section 2.4) from the corresponding lexicographic
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preference. This preference displays the best possible agreement of the defaults
in the specification given their priorities (see Andréka, Ryan and Schobbens [2]).
Lemma 98 tells us that we can find the lexicographic preference of S by con-
structing the lexicographic preferences of subparts of S: for each priority level h
one builds the lexicographic preference associated with the substructure of S ob-
tained by restricting S to the levels h and under h. The lexicographic preference
of S is the intersection of these preferences.

Example 100 We now illustrate a hierarchy of lexicographic preferences and
the corresponding lexicographic preference. We will simplify the specification

Mammals : {¬Fl(u),¬Fl(b),¬Fl(bm)}

Bats :

33gggggggggggggggggg
{Fl(b), Fl(bm)} Humans : {Dr(u), Dr(bm)}

llYYYYYYYYYYYYYYYYYYY

batman : {¬Dr(bm)}

kkWWWWWWWWWWWWWWWWWW

22eeeeeeeeeeeeeeeeeee

Figure 2.11: Some Mammals

MAMMALS (recall example 75) by considering only the following mammals: bm
(Batman), a typical bat b (not bm) and a typical human u (also not bm). The spec-
ification will have axioms ax(MAMMALS) = {Bat(bm), Bat(b), Hum(u), Hum(bm)},
stating that bm is both a human and a bat, b is a bat and u a human. The defaults
are organized by priority as displayed in figure 2.11.

We now assign to each priority level the corresponding lexicographic preference.
Note that the models participating in preference relations that follow are the
models of the axioms {Bat(bm), Bat(b), Hum(u), Hum(bm)}. This information is not
represented in the diagrams. We also do not represent reflexive pairs of equally
preferred interpretation structures and omit relations resulting from transitivity.

The lexicographic preference assigned to the level batman only has to consider
the default of that level, ¬Dr(bm). It is represented in the following diagram.
The models of the only default ¬Dr(bm) form an equivalence class. Interpretation
structures that do not satisfy ¬Dr(bm) are strictly less preferred than the former
(and also constitute an equivalence class).

¬Dr(bm)

Dr(bm)

KS

Figure 2.12: Lexicographic Preference at Level batman

The lexicographic preference assigned to the level Bats has to take into account
the defaults at that level and those at the level batman (under it).
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{Fl(bm), Fl(b)} ¬Dr(bm) {Dr(u)}

{¬Fl(bm), Fl(b)}

08hhhhh hhhhh

{Fl(bm),¬Fl(b)}

fn VVVVV
VVVVV

{¬Fl(bm),¬Fl(b)}

08hhhhh hhhhh
fn VVVVV
VVVVV

{¬Dr(u)}

KS

{Fl(bm), Fl(b)}

KS

Dr(bm) {Dr(u)}

KS

{¬Fl(bm), Fl(b)}

08hhhhh hhhhh

{Fl(bm),¬Fl(b)}

fn VVVVV
VVVVV

{¬Fl(bm),¬Fl(b)}

08hhhhh hhhhh
fn VVVVV
VVVVV

{¬Dr(u)}

KS

Figure 2.13: Lexicographic Preference at Levels Bats (left) and Humans (right)

Since ¬Dr(bm) is of lower (more important) priority the lexicographic preference
is obtained by refining with the defaults from level Bats the models that are
equally good at satisfying ¬Dr(bm). This means that the interpretation structures
in the equivalence class of the models of ¬Dr(bm) are now compared according
to satisfaction of the defaults Fl(b) and Fl(bm) (the defaults at level Bats). The
same for the models of Dr(bm). It is important to note that any model of ¬Dr(bm)
is preferred to any model of Dr(bm) since the former satisfy a “better” default.

A similar situation occurs with the preference to be associated with the level
Humans and the defaults Dr(u) and Dr(bm). Note that the default Dr(bm) has
been overridden: it has no effect. It should be used to refine the relation of
preference within the models of ¬Dr(bm) and to refine the relation of preference
within the models of Dr(bm). In the first case no model of ¬Dr(bm) satisfies Dr(bm)
so they cannot be separated by satisfaction of Dr(bm). In the second the models
of Dr(bm) already satisfy Dr(bm) so they remain equivalent.

Both preferences are represented in figure 2.13. Note that we omit the formulas
¬Dr(bm) and Dr(bm). All interpretation structures within the same outer box
labeled with ¬Dr(bm) or Dr(bm) satisfy ¬Dr(bm) or Dr(bm) and were equivalent at
lower levels.

Finally the preference at level Mammals has to consider all defaults under it. The
final preference is obtained by refining the preference relation associated with the
defaults at levels strictly under Mammals with the defaults at Mammals.

Before presenting this preference we display the preference corresponding to the
specification without the level Mammals. This preference, shown in figure 2.14, is
the intersection of the ones displayed up to now. (Since the preference at level
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batman is contained in those at levels Bats and Humans we do not have to consider
it).

{Fl(bm), Fl(b), Dr(u)} ¬Dr(bm)

{¬Fl(bm), Fl(b), Dr(u)}

.6fffffff fffffff

{Fl(bm),¬Fl(b), Dr(u)}

KS

{Fl(bm), Fl(b),¬Dr(u)}

hp XXXXXXX
XXXXXXX

{¬Fl(bm),¬Fl(b), Dr(u)}

.6fffffff fffffff
KS

{¬Fl(bm), Fl(b),¬Dr(u)}

hp XXXXXXX
XXXXXXX .6fffffff fffffff

{Fl(bm),¬Fl(b),¬Dr(u)}

hp XXXXXXX
XXXXXXX KS

{¬Fl(bm),¬Fl(b),¬Dr(u)}

hp XXXXXXX
XXXXXXX KS .6fffffff fffffff

{Fl(bm), Fl(b), Dr(u)}

KS

Dr(bm)

{¬Fl(bm), Fl(b), Dr(u)}

.6fffffff fffffff

{Fl(bm),¬Fl(b), Dr(u)}

KS

{Fl(bm), Fl(b),¬Dr(u)}

hp XXXXXXX
XXXXXXX

{¬Fl(bm),¬Fl(b), Dr(u)}

.6fffffff fffffff
KS

{¬Fl(bm), Fl(b),¬Dr(u)}

hp XXXXXXX
XXXXXXX .6fffffff fffffff

{Fl(bm),¬Fl(b),¬Dr(u)}

hp XXXXXXX
XXXXXXX KS

{¬Fl(bm),¬Fl(b),¬Dr(u)}

hp XXXXXXX
XXXXXXX KS .6fffffff fffffff

Figure 2.14: Intersection of the Preferences at Levels Bats and Humans

Note that this intersection corresponds to view the defaults Fl(b) and Fl(bm)
and Dr(u) and Dr(bm) from levels Bats and Humans as of the same priority, but of
higher priority than ¬Dr(bm). For the reasons already presented only the defaults
Fl(b), Fl(bm) and Dr(u) are “effective”.

The preference to be assigned to the level of Mammals is obtained by refining each
of the equivalence classes of the preference above with the defaults at Mammals.
These are ¬Fl(bm),¬Fl(b) and ¬Fl(u). The defaults ¬Fl(bm),¬Fl(b) have been
overridden and have no effect (any of the previous equivalence classes consists of
interpretation structures that cannot be separated by satisfaction of ¬Fl(bm) or
¬Fl(b)). Therefore the only “effective” default is ¬Fl(u).

The lexicographic preference associated with this version of the specification
MAMMALS is the intersection of the ones presented up to now. But, since
this specification has a “top” level (the level Mammals) that intersection coin-
cides with the preference associated with this level. Therefore the lexicographic
preference associated with MAMMALS is the one displayed in figure 2.15 (next
page). △
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Figure 2.15: Lexicographic Preference at Level Mammals
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2.2.2 Specifications

In this section we are concerned with expressing the lexicographic preference of
a hierarchic specification S with a (flat) specification.

Recalling the results in section 1.2.4 of chapter 1 this is possible when the un-
derlying institution has conjunctions and disjunctions and the pre-order to be
expressed has more relations than a known preference (induced by a finite speci-
fication). It is straightforward from definition 76 that the lexicographic preference
of S has more relations of preference than those induced by the flat specification
having as defaults all the defaults from S (not related by priority). Therefore in
such an institution the lexicographic semantics of a finite hierarchic specification
S can always be expressed as the preference relation induced by a specification.
In the following, we provide such a flat specification for a given finite hierarchic
specification S.

Definition 101 Let S be a Σ-hierarchic specification and (H,¹) = po(S) its
partial order of priority. The specification S is said to be finite when the set
ax(S) of its axioms, the set H of priority levels and, for each h ∈ H, the set
df(S, h) of the defaults from S at level h are finite. �

We now provide the specification “equivalent” to a hierarchic specification S
firstly by providing for each level h a specification equivalent to the lexicographic
preference associated with the substructure of S under level h. This corresponds
to give a specification that induces each preference from the hierarchy of lexico-
graphic preferences of S. The resulting specification corresponds to the union of
the partial specifications.

For this purpose we associate with each level h a set of flattening defaults. This
means that the (flat) specification having these defaults (and the axioms of the
specification) induces precisely the lexicographic preference of S at level h. These
flattening defaults can be motivated as follows. Let h be an arbitrary level. If h is
minimal its lexicographic preference coincides with the preference induced by the
defaults at h. These are the flattening defaults for this case. If h is not minimal
note that the global effect of the defaults of levels h′ ≺ h is already encoded in
the sets of flattening defaults for these levels. Let D be the union of those sets.
Then D contains the information for the levels h′ ≺ h and all defaults from D are
flattening defaults from level h. New defaults are introduced in this level by the
interplay between the defaults d at h and those at better levels. This interplay
can be described as follows. If a model m of the axioms satisfies d then another
n can be preferred to m even if n does not satisfy d. It has, however, to satisfy a
default d′ better than d (and m must not satisfy this d′). Furthermore the model
n has to satisfy all defaults from D satisfied by m, since this means precisely that
n is preferred to m at levels h′ ≺ h. Let D(m) ⊆ D be the set of these “better”
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defaults satisfied by m. We rewrite the previous considerations with “formulas”:
if m � d ∧ D(m) then n � D where D = (d ∧ D(m)) ∨ d′

1 ∨ d′
2 ∨ ... ∨ d′

n and
d′

1, d
′
2, ..., d

′
n are defaults better that d. That is d′

1, d
′
2, ..., d

′
n ∈ D. Since these

better defaults must not be satisfied by m we also have d′
1, d

′
2, ..., d

′
n 6∈ D(m).

Finally and for this reason we can rewrite m � d∧D(m) equivalently as m � D .
Therefore if m � D then n � D. This is the condition of D being a (flat) default
at level h and suggests that the formulas D = (d∧D(m))∨d′

1∨d′
2∨ ...∨d′

n for all
possible D(m) ⊆ D are the defaults accounting for the lexicographic preference
at level h.

Definition 102 Let S be a finite Σ-hierarchic specification of an institution
(I, cj, dj) having conjunctions and disjunctions. Let (H,¹) = po(S) be its partial
order of priority.

For conventional commodity, given a finite set D of Σ-formulas let cjΣ(D) (resp.
djΣ(D)) denote the conjunction (resp. disjunction) of some enumeration d1, ..., dn

of D. Moreover allow D to be empty in cjΣ(d, D) and djΣ(d, D). In this case
cjΣ(d, D) and djΣ(d, D) denote the Σ-formula d.

• The flattening defaults at level h are inductively defined as follows:

– if h is minimal then the flattening defaults at h coincide with the
defaults from S at that level: fldf(S, h) = df(S, h),

– otherwise fldf(S, h) = fldf(S, h−) ∪

{djΣ

(
cjΣ(d, D), djΣ(fldf(S, h−) \ D)

)
: d ∈ df(S, h), D ⊆ fldf(S, h−)},

where fldf(S, h−) = ∪{h′≺h}fldf(S, h′) denotes the union of the flatten-
ing defaults from level h′ strictly under h,

• Let flat(S, h) = (ax(S), fldf(S, h)) denote the specification having the ax-
ioms from S as axioms and the flattening defaults from level h as defaults.

• Let flat(S) = (ax(S),∪h∈Hfldf(S, h)) denote the specification having the
axioms from S as axioms and the union of the flattening defaults from all
levels from S as defaults. �

That these flattening defaults indeed induce the lexicographic preference of a
specification is formally stated in the next theorem.

Theorem 103 Let S be a finite hierarchic specification from an institution
(I, cj, dj) having conjunctions and disjunctions and (H,¹) = po(S) its partial
order of priority. Then (|S⊕|, rl(S⊕, h)), the lexicographic preference at level h
coincides with flat(S, h)⋆ the preference induced by the specification flat(S, h).
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Moreover lex◦(S) = flat(S)⋆, i.e. the lexicographic preference associated with S is
the preference associated with the specification flat(S).

Proof Recall the definition of the lexicographic preference at level h, ⊑⊕
h : m⊑⊕

h n iff
for every priority level h′ ¹ h if df(S, h′)(m) 6⊆ df(S, h′)(n) then there is h′′ ≺ h′ with
df(S, h′′)(m) ⊂ df(S, h′′)(n) (this last inclusion is strict). This implies the following
auxiliary results:

• m⊑⊕
h n iff m⊑⊕

h′n for h′ ≺ h and if df(S, h′)(m) 6⊆ df(S, h′)(n) then there is h′ ≺ h
with df(S, h′)(m) ⊂ df(S, h′)(n)

• if m⊑⊕
h n and df(S, h)(m) 6⊆ df(S, h)(n) then there is h′ ≺ h with m@

⊕
h′n (strict).

The first property is obvious and has been referred to in the proof of lemma 87. To
see the second assume that there no is h′ ≺ h with m@

⊕
h′n. Therefore m≡⊕

h′n for
all h′ ≺ h (since m⊑⊕

h′n and none of these is strict). From lemma 87 we have that
df(S, h′)(m) = df(S, h′)(n) for all h′ ≺ h. From this and df(S, h)(m) 6⊆ df(S, h)(n) we
conclude that m 6⊑⊕

h n, contradicting the hypothesis.

Let ⊑fl
h be the preference associated with flat(S, h) = (ax(S), fldf(S, h)), relating the

models of ax(S) as follows: m⊑fl
hn iff whenever m � d then n � d for d ∈ fldf(S, h). We

have to show that m⊑⊕
h n iff m⊑fl

hn. The proof is by well-founded induction in (H,¹).

• if h is minimal then m⊑⊕
h n iff df(S, h)(m) ⊆ df(S, h)(n). This is equivalent to

m⊑fl
hn since fldf(S, h) = df(S, h),

• if h is not minimal we use the induction hypothesis that ⊑⊕
h′ = ⊑fl

h′ for h′ ≺ h.

⇒ Assume that m⊑⊕
h n. This implies m⊑⊕

h′n for h′ ≺ h and from the induction

hypothesis m⊑fl
h′n. Therefore, for all d′ ∈ fldf(S, h−) if m � d′ then n � d′

since d′ ∈ fldf(S, h′) for some h′ ≺ h and m⊑fl
h′n.

The important case corresponds to verify this property for the newly in-
troduced defaults namely d′ = djΣ (cjΣ(d, D), djΣ(fldf(S, h−) \ D)) with d ∈
df(S, h) and D ⊆ fldf(S, h−).

Assume that m � d′. Then either m � cjΣ(d, D) or m � djΣ(fldf(S, h−)\D).

∗ If m � djΣ(fldf(S, h−)\D) this means that there is a d′′ ∈ fldf(S, h−)\D
satisfied by m. This d′′ ∈ fldf(S, h′′) for some h′′ ≺ h and therefore

also n � d′′ since m⊑fl
h′′n. From this n � djΣ(fldf(S, h−) \ D) and

n � d′ = djΣ (cjΣ(d, D), djΣ(fldf(S, h−) \ D)).

∗ Assume now that m � cjΣ(d, D). We conclude that n � d′′ for d′′ ∈
D ⊆ fldf(S, h−), for the same reasons as before. If n � d then n �

cjΣ(d, D) and n � d′ so we may assume that n 2 d. In this case
df(S, h)(m) 6⊆ df(S, h)(n). We now use the auxiliary result referred in
the beginning of the proof. Since m⊑⊕

h n there is h′ ≺ h with m@
⊕
h′n
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(strict). From the induction hypothesis also m@fl
h′n which implies that

there is d′′′ ∈ fldf(S, h′) with n � d′′′ and m 2 d′′′. In this way d′′′ 6∈ D.
Therefore n � djΣ(fldf(S, h−) \ D) and n � d′ as intended.

⇐ Assume now that m⊑fl
hn. Therefore m⊑fl

h′n for h′ ≺ h since the flattening
defaults from h′ are contained in those of h. Therefore m⊑⊕

h′n from the in-
duction hypothesis. Now we have to show that if df(S, h)(m) 6⊆ df(S, h)(n)
then there is h′ ≺ h with df(S, h′)(m) ⊂ df(S, h′)(n).

That df(S, h)(m) 6⊆ df(S, h)(n) means that there is a d′ ∈ df(S, h) such that
m � d′ and n 2 d′. Consider the set D = {d′′ : m � d′′ and d′′ ∈ fldf(S, h−)}.

Then m � cjΣ(d′, D) and also m � djΣ (cjΣ(d′, D), djΣ(fldf(S, h−) \ D)).

Since m⊑fl
hn and djΣ (cjΣ(d′, D), djΣ(fldf(S, h−) \ D)) is one of the flatten-

ing defaults at level h also n � djΣ (cjΣ(d′, D), djΣ(fldf(S, h−) \ D)). The
interpretation structure n, however, does not satisfy cjΣ(d′, D) since it does
not satisfy d′. Therefore n � djΣ(fldf(S, h−) \ D), which means that n � d′′

with d′′ ∈ fldf(S, h−). Since d′′ 6∈ D and D is the set of formulas from
fldf(S, h−) satisfied by m we have that m 2 d′′.

Now d′′ ∈ fldf(S, h′) for some h′ ≺ h and m⊑fl
h′n. This relation is strict

since n � d′′ and m 2 d′′. Therefore m@fl
h′n and m@⊕

h′n. From lemma 87
since m@⊕

h′n there is h′′ ≺ h′ with df(S, h′′)(m) ⊂ df(S, h′′)(n).

We have only to show that lex◦(S) is the preference of flat(S) = (ax(S),∪h∈Hfldf(S, h)).
We have seen in lemma 98 that the lexicographic preference lex◦(S) is the intersection
of the lexicographic preferences in each level h of S⊕. From the Galois connection for
specifications we have that this intersection corresponds to the preference of the union
of argument specifications:

flat(S)⋆ = (dh∈H(ax(S), fldf(S, h)))⋆ = eh∈H(ax(S), fldf(S, h))⋆

and this in turn is eh∈H(|S⊕|, rl(S⊕, h)) = lex◦(S). X

This translation is illustrated in the next example.

Example 104 We now illustrate the flat specification corresponding to the sim-
plified version of MAMMALS presented in example 100. The flat specification
FL-MAMMALS = flat(MAMMALS) corresponding to the hierarchic specifica-
tion MAMMALS will have as axioms the axioms of MAMMALS:

ax(FL-MAMMALS) = ax(MAMMALS) = {Bat(bm), Bat(b), Hum(u), Hum(bm)},

stating that bm is both a human and a bat, b is a bat and u a human. The
defaults of FL-MAMMALS are the flattening defaults from MAMMALS from
all levels. The flattening defaults at each level are now shown. Note that the
corresponding specifications induce the lexicographic preferences at each level.
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These preferences have been displayed in example 100. For the (minimal) level
batman the flattening defaults coincide with the defaults from MAMMALS at
batman. This is simply {¬Dr(bm)}. For the level Bats we have also ¬Dr(bm)
plus four other formulas corresponding to take d = Fl(b) or d = Fl(bm) and D
to be either D = {¬Dr(bm)} or D = ∅ in djΣ (cjΣ(d, D), djΣ({¬Dr(bm)} \ D)). The
flattening defaults at level Bats are:

1. ¬Dr(bm), included from level batman,

2. Fl(b) ∧ ¬Dr(bm) with d = Fl(b) and D = {¬Dr(bm)},

3. Fl(b) ∨ ¬Dr(bm) with d = Fl(b) and D = ∅,

4. Fl(bm) ∧ ¬Dr(bm) with d = Fl(bm) and D = {¬Dr(bm)},

5. Fl(bm) ∨ ¬Dr(bm) with d = Fl(bm) and D = ∅.

The level Humans is similar. The defaults are Dr(u) and Dr(bm). For d = Dr(u)
we have:

• Dr(u) ∧ ¬Dr(bm) with D = {¬Dr(bm)},

• Dr(u) ∨ ¬Dr(bm) with D = ∅.

For d = Dr(bm) the construction is formally similar. Note, however, that Dr(bm)
has been overridden and therefore should not contribute for the overall meaning
of the specification. This is in fact so since the two defaults obtained for this case
are false and true (and these are implicit in any specification; therefore we omit
them). The flattening defaults at level Humans are:

1. ¬Dr(bm), included from level batman,

2. Dr(u) ∧ ¬Dr(bm) with D = {¬Dr(bm)},

3. Dr(u) ∨ ¬Dr(bm) with D = ∅.

Finally in the level Mammals (and for the whole specification) any of the previous
defaults are flattening defaults. Let

underMammals = {¬Dr(bm), Fl(b) ∧ ¬Dr(bm), Fl(b) ∨ ¬Dr(bm),

Fl(bm) ∧ ¬Dr(bm), Fl(bm) ∨ ¬Dr(bm),

Dr(u) ∧ ¬Dr(bm), Dr(u) ∨ ¬Dr(bm)}.

be the set of such defaults. The new ones are obtained by substituting ¬Fl(u),
¬Fl(b) and ¬Fl(bm) for d. The possibilities for D are all subsets of underMammals.
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We simplify this task by noting the following. The cases where some X ∧
¬Dr(bm) ∈ D and some Y ∨ ¬Dr(bm) 6∈ D need not to be considered (X may
be true and Y may be false). In fact both the conjunctive term and the dis-
junctive term of each new flattening default will have ¬Dr(bm). In this way the
whole formula is equivalent to the disjunctive term. But this is a disjunction of
formulas in underMammals that are known to be already flattening defaults at
level Mammals. Therefore the new default is a default implicit from those and
need not be made explicit (i.e. with or without these disjunctions the preference
will be the same).

So we can concentrate in the sets D not satisfying the condition above. These
are the sets that either have no formula of the form X ∧ ¬Dr(bm) (the subsets of
∆1 = {Fl(b)∨¬Dr(bm), Fl(bm)∨¬Dr(bm), Dr(u)∨¬Dr(bm)}) or have all formulas
Y ∨ ¬Dr(bm) (the supersets of ∆1 ∪ {¬Dr(bm)}).

For the subsets of ∆1 and d = ¬Fl(u) we have, after simplifying:

1. ¬Fl(u) ∧ Fl(b) ∧ Fl(bm) ∧ Dr(u) ∨ ¬Dr(bm),

2. ¬Fl(u) ∧ Fl(b) ∧ Fl(bm) ∨ (Dr(u) ∨ ¬Dr(bm)),

3. ¬Fl(u) ∧ Fl(b) ∧ Dr(u) ∨ (Fl(bm) ∨ ¬Dr(bm)),

4. ¬Fl(u) ∧ Dr(u) ∧ Fl(bm) ∨ (Fl(b) ∨ ¬Dr(bm)),

5. ¬Fl(u) ∧ Fl(b) ∨ (Fl(bm) ∨ Dr(u) ∨ ¬Dr(bm)),

6. ¬Fl(u) ∧ Dr(u) ∨ (Fl(b) ∨ Fl(bm) ∨ ¬Dr(bm)),

7. ¬Fl(u) ∧ Fl(bm) ∨ (Dr(u) ∨ Fl(b) ∨ ¬Dr(bm)),

8. ¬Fl(u) ∨ (Fl(bm) ∨ Dr(u) ∨ Fl(b) ∨ ¬Dr(bm)).

The supersets of

∆1∪{¬Dr(bm)} = {Fl(b)∨¬Dr(bm), Fl(bm)∨¬Dr(bm), Dr(u)∨¬Dr(bm),¬Dr(bm)}

yield the following (simplified) flattening defaults. Note that the conjunction of
∆1 ∪ {¬Dr(bm)} is simply ¬Dr(bm).

1. (¬Fl(u)∧¬Dr(bm))∨(¬Dr(bm)∧Fl(b)∨¬Dr(bm)∧Fl(bm)∨¬Dr(bm)∧Dr(u)),

2. ¬Fl(u) ∧ ¬Dr(bm) ∧ Fl(b)) ∨ (¬Dr(bm) ∧ Fl(bm) ∨ ¬Dr(bm) ∧ Dr(u)),

3. (¬Fl(u) ∧ ¬Dr(bm) ∧ Fl(bm)) ∨ (¬Dr(bm) ∧ Fl(b) ∨ ¬Dr(bm) ∧ Dr(u)),

4. (¬Fl(u) ∧ ¬Dr(bm) ∧ Dr(u)) ∨ (¬Dr(bm) ∧ Fl(b) ∨ ¬Dr(bm) ∧ Fl(bm)),
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5. (¬Fl(u) ∧ ¬Dr(bm) ∧ Dr(u) ∧ Fl(b)) ∨ ¬Dr(bm) ∧ Fl(bm),

6. (¬Fl(u) ∧ ¬Dr(bm) ∧ Dr(u) ∧ Fl(bm)) ∨ ¬Dr(bm) ∧ Fl(b),

7. (¬Fl(u) ∧ ¬Dr(bm) ∧ Fl(b) ∧ Fl(bm)) ∨ ¬Dr(bm) ∧ Dr(u),

8. ¬Fl(u) ∧ ¬Dr(bm) ∧ Fl(b) ∧ Fl(bm) ∧ Dr(u).

The generating defaults for the cases ¬Fl(b) and ¬Fl(bm) are formally construct-
ed in a similar way. However, since both defaults have been overridden, they
should not contribute to the meaning of the specification. This is indeed so: each
of the flattening defaults for d = ¬Fl(b) or d = ¬Fl(bm) can be shown to be
defaults implicit in underMammals and therefore redundant. Take for example
the flattening default (¬Fl(b) ∧ ¬Dr(bm) ∧ Dr(u) ∧ Fl(bm)) ∨ ¬Dr(bm) ∧ Fl(b)
(formally identical to the 6th of the defaults for Fl(u)). We see that it is implic-
it in underMammals. Firstly (¬Dr(bm) ∧ Dr(u) ∧ Fl(bm)) ∨ ¬Dr(bm) ∧ Fl(b) is a
default implicit in underMammals since it is the disjunction of ¬Dr(bm) ∧ Fl(b)
with the conjunction of ¬Dr(bm) ∧ Dr(u) with ¬Dr(bm) ∧ Fl(bm). This default
¬Dr(bm)∧Dr(u)∧Fl(bm)∨¬Dr(bm)∧Fl(b) can be equivalently written as (¬Fl(b)∧
¬Dr(bm)∧ Dr(u)∧ Fl(bm)∨ Fl(b)∧¬Dr(bm)∧ Dr(u)∧ Fl(bm))∨¬Dr(bm)∧ Fl(b).
This in turn is equivalent to the flattening default (¬Fl(b) ∧ ¬Dr(bm) ∧ Dr(u) ∧
Fl(bm)) ∨ ¬Dr(bm) ∧ Fl(b). △

The translation presented in theorem 103 and illustrated in the example above
can surely be optimized and simplified. As we have seen some of the flattening
defaults are implicit in other and may be omitted. This includes the flattening
defaults introduced by overridden defaults. It is also expected that, in some
cases, the original specification can be divided in simpler “logically independent”
specifications thus originating simpler translations (since less defaults are involved
in each part). An example of this situation is the previous specification: the
axioms and defaults for u, b and bm do not interfere. Therefore the specification
of the simplified version of BATMAN can be divided in three, each having only
the axioms and defaults involving only u or only b or only bm. The flattening
defaults for each such case are:

1. {Dr(u),¬Fl(u) ∧ Dr(u),¬Fl(u) ∨ Dr(u)}, for u,

2. {Fl(b)}, for b,

3. {¬Dr(bm), Fl(bm) ∧ ¬Dr(bm), Fl(bm) ∨ ¬Dr(bm)}, for bm.

It is not difficult to check that the union of (the axioms) and these defaults is
equivalent (has the same preference) as the flat specification obtained above. This
means that the lexicographic preference of the whole specification is, in this case,
the intersection of the lexicographic preferences of these subspecifications. This
is in general not true.
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2.3 Theories

We define the theory of a hierarchic specification S by taking its hierarchy of
differential preferences as semantics in section 2.3.1. The relation of the theory
of S expressed in terms of the axioms and defaults of S itself is displayed in
section 2.3.2.

2.3.1 Definition and Galois Connection

The semantics of a hierarchic specification is its hierarchy of differential prefer-
ences. Each such preference displays the “effect” of the defaults at the corre-
sponding level h on the preference of interpretation structures made equivalent
by defaults of lower levels.

We are now concerned with assigning to a hierarchic specification its theory .
This is the hierarchic specification having at each level the biggest set of defaults
that can be added to a specification without changing its semantics (i.e. without
changing its hierarchy of differential preferences and, due to the equivalence be-
tween this semantics and the hierarchy of lexicographic preferences, also without
changing its hierarchy of lexicographic preferences).

The defaults that can be added at each level without changing the semantics of
a specification, i.e. the defaults implicit at each priority level h, are the defaults
that do not change the differential preference locally at that level (i.e. the defaults
implicit in the differential preference at level h in the sense of definition 27 in
chapter 1). The reason why the interaction of lower levels need not be taken into
account is that such interaction is already coded in the differential preference:
interpretation structures can only be related by preference if they were equivalent
at levels below.

We assign to a hierarchy of pre-orders (understood as a hierarchy of differential
preferences) a corresponding theory by building the biggest specification that in-
duces it. The operators assigning to a specification its hierarchy of differential
preferences and to a hierarchy of pre-orders its theory form again a Galois con-
nection and provide the means to compare specifications on the syntactic and
semantic levels. Moreover operations of hierarchic specifications have a corre-
sponding operation on the hierarchies of differential preferences. The reverse is
also true.

Definition 105 Let H be a Σ-hierarchy of pre-orders. The corresponding theory ,
denoted by H� is the Σ-hierarchic specification with:

• the same well-founded partial order (H,¹) as H, (H,¹) = po(H�) =
po(H),
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• the Σ-formulas satisfied by each interpretation structure from H as set of
axioms: ax(H�) = |H|•,

• the function ∆ defined by ∆(h) = (|H|, rl(H, h))◦ that to each priority level
h ∈ H assigns the set of the defaults implicit in the Σ-pre-order assigned
by H to the level h. �

Remark 106 Recall from definition 27 in chapter 1 that (|H|, rl(H, h))◦ is the
set {d ∈ SenI(Σ) : if m �

I
Σ d then n �

I
Σ d, for all m, n ∈ |H| with m ⊑h n} where

⊑h= rl(H, h).

Hierarchic specifications are related (by forward inclusion, see below) when one
results from the other by adding either axioms, defaults at some priority level
or even by adding further priority levels. This corresponds to inclusion of their
partial orders of priority, inclusion of sets of axioms and inclusion of the sets of
defaults in each priority level.

On the semantic level, as we know from the classical and flat cases, the relations
of inclusion are reversed. The hierarchies of differential preferences are related by
reversed inclusion of the classes of interpretation structures (which corresponds
to inclusion of sets of axioms) and reversed inclusion of the differential preferences
assigned to each level (and this corresponds to inclusion of the sets of defaults in
each level). Note that the inclusion of the partial orders of priority is not reversed
in the semantics: if S has more priority levels than S ′ then S� also has more
priority levels than S ′�. For this purpose we define two types of inclusion, with
inclusion of the partial order of priority either in the same or reversed direction
as the inclusion of the other entities.

Definition 107 Forward inclusion, backward inclusion and pointwise inclusion
are defined as follows.

1. Let S and S ′ be Σ-hierarchic specifications and po(S) = (H,¹) and po(S ′) =
(H ′,¹′) be the corresponding partial orders of priority. Then S and S ′ are

related by forward inclusion written S
�

b S ′ (or S ′ �
c S) iff:

• ax(S) ⊆ ax(S′),

• H ⊆ H ′ and ¹ ⊆ ¹′ (i.e. if h1 ¹ h2 then h1 ¹
′ h2) and

• df(S, h) ⊆ df(S′, h) for every h ∈ H.

2. If (H,¹) = (H ′,¹′) and S
�

b S ′ then S and S ′ are said to be related by
pointwise inclusion and this will be denoted by S b S ′ (or S ′

c S).
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3. Let H and H′ be Σ-hierarchies of pre-orders and po(H) = (H,¹) and
po(H′) = (H ′,¹′) be the corresponding partial orders of priority. Then H′

and H are related by backward inclusion written H′ �
b H (or H′ �

c H) iff:

• |H′| ⊆ |H|,

• H ′ ⊇ H and ¹′ ⊇ ¹ (i.e. if h1 ¹ h2 then h1 ¹
′ h2) and

• rl(H′, h) ⊆ rl(H, h) for every h ∈ H.

4. If (H,¹) = (H ′,¹′) and H′ �
b H then H′ and H are said to be related by

pointwise inclusion and this will be denoted by H′
b H (or H c H′).

Note that all these relations are partial orders. �

The operations of pointwise union and intersection generalize union and inter-
section to either hierarchic specifications and hierarchies of pre-orders. These
operations are only defined for hierarchic specifications (or hierarchies of pre-
orders) with the same partial order of priority.

Again care has to be taken with unions of pre-orders, since its result is not
necessarily a pre-order. For this reason pointwise union of hierarchies of pre-
orders assigns to level h the transitive closure of the union of the argument
pre-orders at that level.

Definition 108 The operations of pointwise union (d) and pointwise intersec-
tion (e) are defined as follows.

Let S and S ′ be Σ-hierarchic specifications with the same partial order of priority
(H,¹) = po(S) = po(S ′). Then

1. the pointwise union of S and S ′, SdS ′, is the Σ-hierarchic specification
with:

• the same partial order of priority as S and S′: po(SdS ′) = (H,¹),

• the union of the sets of axioms of S and S′ as a set of axioms:
ax(SdS ′) = ax(S) ∪ ax(S′) and

• the union of the sets of defaults at level h from S and S ′ as a set of
defaults at level h: df(SdS ′, h) = df(S, h) ∪ df(S ′, h) for h ∈ H.

2. the pointwise intersection of S and S ′, SeS ′, is the Σ-hierarchic specification
with:

• the same partial order of priority as S and S′: po(SeS ′) = (H,¹),

• the intersection of the sets of axioms of S and S′ as a set of axioms:
ax(SeS ′) = ax(S) ∩ ax(S′) and
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• the intersection of the sets of defaults at level h from S and S ′ as a
set of defaults at level h: df(SeS ′, h) = df(S, h) ∩ df(S ′, h) for h ∈ H.

Let H,H′ be Σ-hierarchies of pre-orders with the same partial order of priority
(H,¹) = po(H) = po(H′). Then

1. the pointwise union of H and H′, HdH′, is the Σ-hierarchy of pre-orders
with:

• the same partial order of priority as H and H′: po(HdH′) = (H,¹),

• the union of the sets interpretation structures of H and H′ as set of
interpretation structures: |HdH′| = |H| ∪ |H′| and

• the transitive closure union of the pre-orders at level h from H and H′

as pre-order at level h: rl(HdH′, h) = rl(H, h) ∪ rl(H′, h) for h ∈ H.

2. the pointwise intersection of H and H′, HeH′ is the Σ-hierarchy of pre-
orders with:

• the same partial order of priority as H and H′: po(HeH′) = (H,¹),

• the intersection of the sets interpretation structures of H and H′ as
set of interpretation structures: |HeH′| = |H| ∩ |H′| and

• the intersection of the pre-orders at level h from H and H′ as pre-order
at level h: rl(HeH′, h) = rl(H, h) ∩ rl(H′, h) for h ∈ H. �

We present in what follows the Galois connection between hierarchic specifications
and corresponding hierarchies of differential preferences. For that purpose we
have to restrict the hierarchies of pre-orders to those satisfying the following
additional property.

Definition 109 Let H be a hierarchy of pre-orders. H is said to be a hierarchy
of differential pre-orders iff H = H�. �

Remark 110 The hierarchy of differential preferences S� associated with a spec-
ification S is clearly a hierarchy of differential pre-orders. In fact S� = S⊙� and

therefore S�� = S⊙�� = S⊙� = S�.

The Galois connection states that to more axioms correspond less models and also
that to more defaults at a given level corresponds less relations in the differential
preference at that level. This implies that the operations of pointwise union and
intersection of hierarchic specifications have a corresponding semantic operation.

Note that the direction of the inclusion of partial orders is not reversed when
going from specifications to their semantics and vice versa. This is represented

by the direction of the arrow � in
�

b .
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Theorem 111 Let S, S ′ be Σ-hierarchic specifications and H,H′ be Σ-hierarchies
of differential pre-orders. Then

1. S
�

b S ′ implies S�
�

c S ′�,

2. H
�

c H′ implies H�
�

b H′�,

3. S b S�� and

4. H b H��.

The following properties are implied from these. Let Sn, n ∈ N be Σ-specifications
and Hn, n ∈ N be Σ-hierarchies of differential pre-orders with the same partial
order (N is some set of indexes). Then

(a) S� = S��
�

,

(b) H� = H��
�

,

(c) (dnSn)� = enS
�

n ,

(d) (dnHn)� = enH
�

n ,

(e) (enS
�

n
�)
�

= (dnS
�

n )�
�

,

(f) (enH
�

n
�)
�

= (dnH
�

n )�
�

.

Proof

1. (S
�

b S′ implies S�
�

c S′�). Since S and S� have the same partial order of
priority and the same holds for S′ and S′� the property of inclusion of the
partial orders of priority obviously holds.

The property relating sets of axioms and interpretation structures is now shown.

Since S
�

b S′ then ax(S) ⊆ ax(S′). Therefore |S�| = ax(S)• ⊇ ax(S′)• = |S′�|
from the Galois connection for the classical case (theorem 6).

The proof for the differential preferences is by well-founded induction in the
partial order of priority (H,¹) = po(S) of S. The following preliminary con-
siderations are relevant for both cases. Let ⊑�S,h be the differential preference

associated by S� to level h ∈ H and ⊑�S′,h be the differential preference asso-

ciated by S′� to the same level. Recall (definition 85) that m⊑�S,hn for models
m, n ∈ ax(S) iff n satisfies the same defaults of levels strictly under h in (H,¹)
as m and at least as much from level h, i.e. m⊑�S,hn iff df(S, h)(m) ⊆ df(S, h)(n)

and df(S, h1)(m) = df(S, h1)(n) for h1 ≺ h. This can be written as m⊑⊙
S,hn and

for h1 ≺ h, m≡�S,h1
n where m⊑⊙

S,hn is the condition df(S, h)(m) ⊆ df(S, h)(n)
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and m≡�S,h1
n expresses equivalence of m and n according to ⊑�S,h1

. Note final-

ly that ⊑⊙
S,h is the preference relation associated with the (flat) Σ-specification

(ax(S), df(S, h)) (recall definition 81 of S⊙ and definition 28 of ⋆ in chapter 1).
That is ⊑⊙

S,h = rl((ax(S), df(S, h))⋆). From the Galois connection for specifica-
tions (theorem 30) and since (ax(S), df(S, h)) b (ax(S′), df(S′, h)) we conclude
that ⊑⊙

S,h = rl((ax(S), df(S, h))⋆) ⊇ rl((ax(S′), df(S′, h))⋆) = ⊑⊙
S′,h.

• Assume h is minimal in (H,¹). Therefore ⊑�S,h is simply ⊑⊙
S,h. We also

know from the previous considerations that ⊑⊙
S,h ⊇ ⊑⊙

S′,h.

The level h does not have to be minimal in (H ′,¹′) = po(S′). For this
reason the relation from S′ at level h is given by m⊑�S′,hn iff m⊑⊙

S′,hn and

for h′
1 ≺′ h, m≡�

S′,h′
1
n. This implies ⊑�S′,h ⊆ ⊑⊙

S′,h. Therefore ⊑�S′,h ⊆

⊑⊙
S′,h ⊆ ⊑⊙

S,h = ⊑�S,h.

• Let h be non-minimal in (H,¹). Then m⊑�S,hn iff m⊑⊙
S,hn and for h1 ≺

h, m≡�S,h1
n. This is the same as ⊑�S,h = ⊑⊙

S,h ∩ (∩{h1≺h} ≡�S,h1
). We have

to compare ⊑�S,h with ⊑�S′,h = ⊑⊙
S′,h ∩ (∩{h′

1≺
′h} ≡�

S′,h′
1
) and we know that

⊑⊙
S′,h ⊆ ⊑⊙

S,h. Now the set {h′
1 ≺′ h} of the levels strictly under h according

to ¹′ can be divided into the set of levels strictly under h according to ¹
plus those that are strictly under h according to ¹′ but not according to ¹
(recall that H ⊆ H ′ and ¹ ⊆ ¹′). Therefore ∩{h′

1≺
′h} ≡�

S′,h′
1

can be divided

into (∩{h1≺h} ≡�S′,h1
) ∩ (∩{h′

1≺
′h;h′

1 6≺h} ≡�
S′,h′

1
).

From the induction hypothesis for each h1 ≺ h one has ⊑�S,h1
⊇ ⊑�S′,h1

which

implies ≡�S,h1
⊇ ≡�S′,h1

. Therefore ∩{h1≺h} ≡�S,h1
⊇ ∩{h1≺h} ≡�S′,h1

and this

implies ∩{h1≺h} ≡�S,h1
⊇ ∩{h′

1≺
′h} ≡�

S′,h′
1
. Since ⊑⊙

S′,h ⊂ ⊑⊙
S,h we conclude

⊑�S,h = ⊑⊙
S,h ∩ (∩{h1≺h} ≡�S,h1

) ⊇ ⊑⊙
S′,h ∩ (∩{h′

1≺
′h} ≡�

S′,h′
1
) as intended.

2. (H
�

c H′ implies H�
�

b H′�). Since H and H� have the same partial order of
priority and the same holds for H′ and H′� the property of inclusion of the partial
orders of priority trivially holds. The property relating classes of interpretation

structures and axioms follows from the following: since H
�

c H′ then |H| ⊇ |H′|.
This implies that ax(H�) = |H|• ⊆ |H′|• = ax(H′�) from the Galois connection
for the classical case (theorem 6).

Let (H,¹) = po(H) be the priority relation of H and h ∈ H an arbitrary priority
level. We have to show that df(H�, h) ⊆ df(H′�, h) for each h ∈ H.

Let Rh = (|H|, rl(H, h)) be the Σ-pre-order with the interpretation structures
from H as interpretation structures and having as relation the relation assigned
by H to level h. Let R′

h = (|H′|, rl(H′, h)) be the corresponding pre-order for H′

and level h. Then H
�

c H′ implies Rh c R′
h and from the Galois connection for

specifications (theorem 6) we have R•
h b R′•

h. This means in particular that the
defaults implicit in Rh are contained in those implicit in R′

h. But the defaults
implicit in Rh are precisely the defaults assigned to level h by H� and similarly
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the defaults implicit in R′
h are precisely the defaults assigned to level h by H′�.

Therefore df(H�, h) ⊆ df(H′�, h). (see definition 27 of defaults implicit in a
pre-order and definition 105 of H� and H′�).

3. (S b S��). Clearly S, S� and S�� have the same partial order of priority
(H,¹) = po(S).

Note that ax(S��) = |S�|• = ax(S)•
• ⊇ ax(S) where the last inclusion results

from the Galois connection for the classical case.

We have to show that the defaults assigned by S to level h are contained in the
defaults assigned by S�� to the same level.

Recall (from definition 105) that df(S��, h) are the defaults implicit in the pre-
order Rh = (|S�|, rl(S�, h)).

Recall furthermore that |S�| = ax(S)• and note that rl(S�, h) is the relation
⊑�S,h = ⊑⊙

S,h ∩ (∩{h1≺h}≡
�

S,h1
), where ⊑⊙

S,h is the relation defined by m⊑⊙
S,hn

iff df(S, h)(m) ⊆ df(S, h)(n) (n satisfies at least the defaults from S at level h
satisfied by m). Therefore Rh = (ax(S)•,⊑�S,h).

Consider now the (flat) Σ-specification Sh = (ax(S), df(S, h)) with the axioms
of S and the defaults of S at level h. Note that the preference associated with
Sh is the relation ⊑⊙

S,h. Therefore Rh b Sh
⋆ and from the Galois connection for

specifications Sh
⋆⋆
b Rh

⋆. Remember again from the Galois connection for the
classic case that the defaults from Sh are defaults of Sh

⋆⋆. Therefore df(S, h) are
defaults of Sh

⋆⋆
b Rh

⋆. That df(S, h) are defaults of Rh
⋆ is the same as stating

that df(S, h) ⊆ df(S��, h).

4. (H b H��). Clearly H, H� and H�� have the same partial order of priority
(H,¹) = po(H).

Note that |H��| = ax(H�)• = |H|•• ⊇ |H| where the last inclusion results from
the Galois connection for the classical case. Let ⊑h be the relation associated
by H to level h. The defaults implicit in (|H|,⊑h) are the formulas assigned
by H� to level h. That is df(H�, h) = (|H|,⊑h)◦. Let ⊑�⊙h be the preference
on |H| defined by m ⊑�⊙h n iff for every d ∈ df(H�, h) if m � d then n � d.
This is the relation of the pre-order (|H|,⊑h)⋆⋆

. From the Galois connection for
specifications we have ⊑h ⊆ ⊑�⊙h .

The relation ⊑��h assigned by H�� to level h is defined as follows: m ⊑��h n
iff df(H�, h)(m) ⊆ df(H�, h)(n) and df(H�, h′)(m) = df(H�, h′)(n) for every
h′ ≺ h. This is the same as m ⊑��h n iff m ⊑�⊙h n and m ≡�⊙h′ n for every
h′ ≺ h. The equivalence m ≡�⊙h′ n states that df(H�, h′)(m) = df(H�, h′)(n).
From lemma 87 this is also equivalent to m ≡��h′ n. Therefore the equivalence
m ≡�⊙h′ n for every h′ ≺ h can be replaced by m ≡��h′ n for every h′ ≺ h. In this
way m ⊑��h n iff m ⊑�⊙h n and m ≡��h′ n for every h′ ≺ h.

We now prove by well founded induction that ⊑h ⊆ ⊑��h .

• if h is minimal in (H,¹) then ⊑��h = ⊑�⊙h and we already know that ⊑h ⊆
⊑�⊙h = ⊑��h .
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• assume h is not minimal in (H,¹). From the induction hypothesis ⊑h′ ⊆
⊑��h′ for h′ ≺ h. This implies ≡h′ ⊆ ≡��h′ for h′ ≺ h.

Recall that m ⊑��h n iff m ⊑�⊙h n and m ≡��h′ n for every h′ ≺ h so we may
rewrite this as ⊑��h = ⊑�⊙h ∩ (∩h′≺h ≡��h′ ). Since ⊑h ⊆⊑�⊙h and ≡h′ ⊆≡��h′

we conclude that ⊑h ∩ (∩h′≺h ≡h′) ⊆ ⊑�⊙h ∩ (∩h′≺h ≡��h′ ) = ⊑��h .
Note finally that since H = H� it follows easily (definition 90 of H�) that
⊑h = ⊑h ∩ (∩h′≺h ≡h′). In this way ⊑h = ⊑h ∩ (∩h′≺h ≡h′) ⊆ ⊑��h as
intended.

The derived properties are proved formally as the corresponding properties for the
Galois connection for specifications (theorem 6). We note only that if, for each n,
Hn b H′ then dnHn b H′. This is relevant since dnHn has in each level the transitive
closure of the union of the relations assigned to that level by each Hn. X

As in the case of specifications some important properties are corollaries of the
Galois connection and rely on the bijective relation between theories and their
semantics. Theories are closed hierarchic specifications.

Definition 112

• The closure of a Σ-hierarchic specification S is the Σ-hierarchic specification
S�� (i.e. (S�)�). The closure S�� is also called the theory of S. A Σ-
hierarchic specification S is closed iff S = S��.

• The closure of a Σ-hierarchy of pre-orders H is the Σ-hierarchy of pre-orders
H�� (i.e. (H�)�). A Σ-hierarchy of pre-orders H is closed iff H = H��. �

The relation between closed hierarchic specifications and closed hierarchies of
differential pre-orders is one to one. Moreover, semantic comparison of hierarchic
specifications (by pointwise inclusion of the differential preferences) is expressed
at the syntactic level by inclusion of closed hierarchic specifications, i.e. theories.

Lemma 113 Let S, S ′ be closed Σ-hierarchic specifications and H,H′ be closed
Σ-hierarchies of pre-orders. Then

• S
�

b S ′ iff S�
�

c S ′�,

• H
�

b H′ iff H�
�

c H′�.

Proof Trivial from the Galois connection in theorem 111. X



94 CHAPTER 2. PRIORITIZED DEFAULTS

We emphasize that closed hierarchic specifications are canonical among the hi-
erarchic specifications having the same semantics: on one hand equivalent spec-
ifications (having the same semantics) also have the same theory. On the other
hand this theory is the biggest specification among equivalent ones.

Lemma 114

1. Let S and S ′ be Σ-hierarchic specifications. S and S ′ have the same se-
mantics iff they have the same theory: S� = S ′� iff S�� = S ′��;

2. Let S be a Σ-hierarchic specification. The theory S�� is the biggest speci-
fication from among those having the same semantics as S:

• S��
�

= S� and

• given any Σ-hierarchic specification S ′, if S� = S ′� then S ′
b S��.

Proof Trivial from the Galois connection in theorem 111. X

Notice that the fact that the theory of a specification S is the biggest among
those having the same semantics means also that the set of defaults at each level
from the theory of S is the biggest set of defaults that can be added to that level
without changing the semantics.

Note also that equality of theories means equality of hierarchies of differential
preferences (as stated above) and equality of hierarchies of lexicographic prefer-
ences. This is a simple consequence of the equivalence between the two semantics
(stated in theorem 94). For the same reason the theory of a specification can be
characterized as the biggest specification having the same hierarchy of lexico-
graphic preferences as the original specification.

Finally, semantical comparison of specifications can be expressed at the syntactic

level. In order to establish whether S��
�

b S ′�� one has to check inclusion of the
partial orders of priority, and whether each axiom from S is semantically entailed
by the axioms from S ′ and whether at each level h each default from S is an
implicit default in the differential preference at the same level h in S ′�. Recalling
that the theory of S ′ consists precisely of this information this is formalized as
follows.

Lemma 115 Let S and S ′ be Σ-hierarchic specifications. Then S�
�

c S ′� iff

S
�

b S ′��.

Proof Trivial from the Galois connection in theorem 111. X

Clearly to establish equality of the preference relations one simply has to apply
the lemma above in both directions.
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2.3.2 Theories Revisited

We are now concerned with relating the theory of a hierarchic specification S
with S itself. The axioms of the theory are the formulas semantically entailed by
the axioms of the specification. If the underlying logic has a sound and complete
proof system these are the consequences of ax(S). The partial orders of priority
coincide. The defaults of the theory of S at level h are the defaults implicit in
the differential preference of S at level h. It is our aim in the following to present
an alternative characterization of such defaults by using semantic entailment and
the axioms and defaults from S. Such a characterization gives a clearer account
of the defaults from the theory of S that, in some logics, can be automatically
checked (see remark 124 below).

Lemma 116 The theory S�� of a Σ-hierarchic specification S is such that:

1. has as axioms the formulas satisfied in each model (the consequences) of
the axioms from S; ax(S��) = |S�|• = ax(S)•• and

2. the same well-founded partial order (H ¹) as S, (H ¹) = po(S��) = po(S),

3. has as defaults at level h ∈ H the defaults implicit in the differential pref-
erence at level h, df(S��, h) = (ax(S)••, rl(S�, h))

◦
.

Proof Obvious from the definition 105 of theory of a hierarchy of pre-orders and the
definition 85 of hierarchy of differential preferences. X

In order to characterize the set of implicit defaults in level h we only have to be
able to express the corresponding differential preference as the preference of some
(flat) specification. In this case we know already (chapter 1, theorem 51) how to
relate the defaults with the flat specification.

A small example is useful to clarify these considerations.

Example 117 We recall again example 77 and the corresponding hierarchy of
differential preferences. It is the hierarchic specification presented again in figure
2.16.

• : {q}

◦ : {p}

OO

Figure 2.16: p lower than q

Its hierarchy of differential preferences is displayed in the figure 2.17:
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{p, q}

• {p,¬q}

2:lllllll
lllllll

{¬p, q}

{¬p,¬q)}

2:lllll
lllll

{p, q}

rz lll
lll

l
lll

lll
l

◦

OO

{p,¬q}

2:lllllll
lllllll

{¬p, q}ks

dl RRRRRRR

RRRRRRR

rz lll
lllll
ll

{¬p,¬q)}

dl RRRRR
RRRRR

2:lllll
lllll

Figure 2.17: Hierarchy of Differential Preferences

The theory of this hierarchic specification will have at level ◦ (the lowest and most
important) the defaults implicit in the corresponding differential preference. In
this case we know that the differential preference at level ◦ is simply the preference
relation induced by the flat specification (∅, {p}), having as axioms the axioms of
the specification and as defaults the defaults from the specification at this level.
This situation is already known from chapter 1. The defaults implicit in the
preference relation of (∅, {p}) are those that can be expressed as disjunctions of
conjunctions of the defaults in {p}, since the set of axioms is empty (in this case
the implicit defaults are the formulas semantically equivalent to one of true, false
and p). And these are the defaults assigned by the theory to the level ◦.

We concentrate now in the differential preference at level •. In this case we
cannot identify it immediately with the preference of some specification. This
differential preference relates interpretation structures that are equally good at
satisfying p by how they satisfy q.

However it is not difficult to see that the equivalence relation expressing that in-
terpretation structures are equally good at satisfying p is the preference induced
by p and ¬p. The differential preference at level • compares such interpreta-
tion structures also with respect to satisfaction of q. Therefore this differential
preference is the preference of the (flat) specification (∅, {p,¬p, q}).

Knowing this we can characterize all defaults implicit in the differential prefer-
ence at level •. These are the formulas that can be expressed as disjunctions of
conjunctions of the defaults in {p,¬p, q} (and are all semantically equivalent to
one of true, false, p, ¬p, q, p∧ q, ¬p∧ q, p∨ q, ¬p∨ q). And these are the defaults
assigned by the theory to the level •. △
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The previous example is an instance of the following general situation: the dif-
ferential preference at some level is induced by the flat specification having as
defaults not only the defaults at that level but also the defaults and negations
of these from lower levels. Therefore the defaults assigned by the theory of S to
a level h are the formulas corresponding to disjunctions of conjunctions (in the
context of the axioms) of the previous set: the union of the defaults from S at
level h with the defaults and negations of defaults of levels strictly under h.

Clearly an institution does not necessarily have all these connectives. It may,
however, have formulas with a corresponding meaning, i.e. whose models are
unions or intersections or complements of the models of other formulas. These,
when appropriate, have to be considered when defining implicit defaults.

The characterization of implicit defaults at some level h will be in terms of the
classes of models of the defaults at level h and under h. To be able to express
negations of formulas (and this technically simplifies matters) we will firstly ex-
hibit the characterization for institutions with negation.

Definition 118 An institution having negation is a pair (I, neg) where I is
an institution and neg is a family of functions, indexed on the signatures of I
giving for any formula over a signature its negation: neg = {negΣ : SenI(Σ) →
SenI(Σ) | Σ ∈ |SignI |} such that for each Σ ∈ |SignI | and each interpretation
structure m ∈ ModI(Σ) the following holds for any formula f ∈ SenI(Σ):

m �
I
Σ negΣ(f) iff m 2

I
Σ f.

�

Remark 119 Note in the definition above that what is demanded is a syntactic
way of expressing that “an interpretation structure does not satisfy a formula”.
This coincides with classical negation for propositional and first order logic. The
situation in modal logics is different and depends on the modal logic and al-
so on its formalization. We discuss briefly this question. Modal interpretation
structures (or modal models) occur in one of the following two forms: either
they are a structure W having a class of worlds, a visibility relation among them
and a function assigning to atomic formulas the classes of worlds satisfying them
([56, 50, 59, 15]), or they are pairs (W , w) where w is a distinguished world from
W ([19]). In the first case satisfaction of a formula in W is satisfaction of f in
each world w from W . In the second case (W , w) � f corresponds to satisfaction
only in the distinguished w. Both formalizations yield the same valid formulas
but they differ in the consequences of a theory presentation T (since the models
of T have different nature). Non-satisfiability of a formula f in the second for-
malization is expressed by negation: (W , w) 6� f iff (W , w) � ¬f . These modal
logics (give rise to institutions that) have negation in the sense of definition 118
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above. This is not the case with the first formalization and in general such modal
logics do not have negation in our sense. In fact W � ¬f expresses that ¬f holds
in all worlds from W whereas W 6� f means that f does not hold in some w from
W .

Non-satisfiability of f need not be expressed by the negation connective of these
modal logics. It is expressed by the formula ¬�f in the modal logic obtained
by demanding the visibility relation to be full (i.e. each world from W sees any
other; in this case the visibility relation is redundant and may be omitted). This
characterizes the modal logic S5 and corresponds to the view of Carnap ([18]) of
necessity as truth in all worlds. See also [19].

Non-satisfiability may also be expressed in temporal logics with both a past
(H) and future (G) necessity operator. The formula ¬HGf expresses non-
satisfiability under the (quite general) condition that given any two states s1

and s2 these lie both in the future of third state s3. Satisfaction of ¬HGf in s
means that there is a state in the past of s that sees a state in its future where
f does not hold. It is easy to check that under this assumption W � ¬HGf iff
W 6� f .

The previous considerations also apply to intuitionistic logic since it may be given
meaning by means of particular Kripke structures. If the first formalization is
followed ([38, 51]) we obtain an institution without negation. However, using the
formalization with a distinguished world, a negation connective can be introduced
that expresses precisely non-satisfiability of f in (W , w) (see [4])2.

We now define the set of generating defaults at level h, i.e. the defaults at h plus
the defaults and negations of them from levels strictly under h.

Definition 120 Let S be a Σ-hierarchic specification of an institution (I, neg)
having negation and (H,¹) = po(S) its partial order of priority. The set of gener-
ating defaults at level h denoted by gendf(S, h) is the union of the defaults at level
h and under h with the negations of the defaults strictly under h: gendf(S, h) =
df(S, h) ∪ df(S, h−) ∪ negΣ(df(S, h−)), where df(S, h−) is the set of defaults at
levels strictly under h and negΣ(df(S, h−)) = {negΣ(d) : d ∈ df(S, h−)}. �

The generating defaults are illustrated in the following example.

Example 121 Recall the (simplified version of the) specification MAMMALS
displayed in example 100. In the next diagram (figure 2.18) the generating de-
faults at each level are displayed. The set of generating defaults at level Mammals
is

M = {¬Fl(u),¬Fl(b), Fl(b),¬Fl(bm), Fl(bm), Dr(u),¬Dr(u), Dr(bm),¬Dr(bm)}
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Mammals : M

Bats : {Fl(b), Fl(bm), Dr(bm),¬Dr(bm)}

22eeeeeeeeeeeeeeeeeeeeee
Humans : {Dr(u), Dr(bm),¬Dr(bm)}

kkVVVVVVVVVVVVVVVV

batman : {¬Dr(bm)}

kkXXXXXXXXXXXXXXXX

44iiiiiiiiiiii

Figure 2.18: Generating Defaults in MAMMALS

△

We now show that the differential preference at level h in S� is the preference
induced by the flat specification with axioms the axioms of S and defaults the
generating defaults at level h.

Lemma 122 Let S be a Σ-hierarchic specification of an institution (I, neg) hav-
ing negation and (H,¹) = po(S) its partial order of priority. Denote by Sh the
(flat) Σ-specification Sh = (ax(S), gendf(S, h)), with axioms the axioms from S
and defaults the generating defaults at level h ∈ H. Then (|S�|, rl(S�, h)) = S⋆

h,
i.e. the pre-order corresponding to S� at level h is the preference relation of S⋆

h.

Proof Clearly |S�| = ax(S)• so we may concentrate in the preference. Let ⊑�h denote
the differential preference rl(S�, h) of S at level h and let ⊑gen(h) denote preference
associated with Sh, defined by m ⊑gen(h) n iff for every d ∈ gendf(S, h) if m � d then
n � d. We have to show that m⊑�h n iff m ⊑gen(h) n.

Since gendf(S, h) = df(S, h)∪ df(S, h−)∪ neg(df(S, h−)) the condition defining ⊑gen(h)

is the conjunction of the conditions for df(S, h), df(S, h−) and neg(df(S, h−)). The last
case is the only interesting one. It is: for every neg(d) ∈ neg(df(S, h−)) if m � neg(d)
then n � neg(d). This is equivalent to: for every d ∈ df(S, h−) if n � d then m � d
(note that n is reversed with m) by contraposition and the definition of satisfaction of
neg(d). This last condition is the same as df(S, h′)(n) ⊆ df(S, h′)(m) for every h′ ≺ h.
In this way m ⊑gen(h) n iff df(S, h)(m) ⊆ df(S, h)(n) and df(S, h′)(m) ⊆ df(S, h′)(n)
and df(S, h′)(n) ⊆ df(S, h′)(m) for every h′ ≺ h. This is equivalent to df(S, h)(m) ⊆
df(S, h)(n) and df(S, h′)(m) = df(S, h′)(n) for every h′ ≺ h. This condition is precisely
that defining m⊑�h n. X

Since the defaults in level h of S�� are precisely those implicit in (|S�|, rl(S�, h))
these correspond to disjunctions of conjunctions of the defaults in gendf(S, h) in
the context of the axioms from S.

2Thanks to Cristina Sernadas and José Carmo for their help clarifying the question.
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Theorem 123 Let S be a Σ-hierarchic specification of an institution (I, neg)
having negation and (H,¹) = po(S) its partial order of priority. The set of
defaults at level h ∈ H from the theory of S, df(S��, h) is the set of Σ-formulas
d satisfying the following property:

There is a set ∆ ⊆ 2gendf(S,h) of subsets of the set of generating defaults from S
at level h such that

ax(S)• ∩ {d}• = ax(S)• ∩ (∪D∈∆D•).

Moreover if the set of generating defaults of S is finite then ∆ is finite and each
set of defaults D ∈ ∆ is also finite.

Proof Trivial from lemma 122 above and from the characterization of defaults implicit
in a preference relation in theorem 51. X

Remark 124 The condition ax(S)• ∩ {d}• = ax(S)• ∩ (∪D∈∆D•) is the same
as stating that the “formulas” ax(S) ∧ d and ax(S) ∧ (∨D∈∆D) are semantically
equivalent (sets denote the conjunction of their member formulas). If S is finite
such formulas can be written in institutions having disjunction, conjunction and
negation (recall that ∆ ⊆ 2gendf(S,h)). The test of semantical equivalence can
be automated for those institutions that furthermore have a sound and complete
theorem prover. This corresponds to check whether ax(S)∧d ⊢ ax(S)∧ (∨D∈∆D)
and ax(S) ∧ (∨D∈∆D) ⊢ ax(S) ∧ d. We have, therefore, in such institutions
a procedure for deciding whether ax(S)• ∩ {d}• = ax(S)• ∩ (∪D∈∆D•). If the
underlying logic is decidable this procedure always halts. If the underlying logic
is semi-decidable this procedure halts if ax(S)• ∩ {d}• = ax(S)• ∩ (∪D∈∆D•).
The question of whether d is a default from the theory of S at level h can also
be automated. One has simply to generate all subsets ∆ ⊆ 2gendf(S,h) (recall
that S is assumed to be finite and so is gendf(S, h)) and apply to them the
previous procedure). If the underlying logic is decidable so is this question.
Semi-decidability is also maintained (in this case we have to test “in parallel” for
all ∆ ⊆ 2gendf(S,h) if ax(S)∧d and ax(S)∧ (∨D∈∆D) are semantically equivalent).

As we have seen in remark 119 not all institutions have the needed negation. We
proceed to generalize the characterization of the defaults from the theory of S to
any such institution. This is done as follows: if the institution I at hand does
not have negation we extend it to an institution Ĩ with negation. We then see
that the theory of S in I is the restriction of the theory of S in Ĩ to the formulas
(over the appropriate signature) from I.

Definition 125 Given an institution I = (SignI , SenI , ModI , {�IΣ: Σ ∈ |Sign|})
its extension by negation is the institution Ĩ consisting of
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• the same category SignI of signature as I,

• the functor SenĨ : SignI → Set that assigns to each signature Σ the set of
formulas SenI(Σ) ∪ ∼(SenI(Σ)), where ∼(SenI(Σ)) is the set {∼(f) : f ∈
SenI(Σ)} and ∼(f) is the concatenation of the connective of negation ∼
with “(”, f and “)”. The symbol ∼ is appropriately chosen so that SenI(Σ)
and ∼(SenI(Σ)) are disjoint. Furthermore given a signature morphism φ :

Σ1 → Σ2 its image by SenĨ is the function SenĨ(φ) = Φ̃ : (SenI(Σ1) ∪
∼(SenI(Σ1))) → (SenI(Σ2) ∪ ∼(SenI(Σ2))) defined by:

– Φ̃(f1) = Φ(f1) where Φ = SenI(φ) for f1 ∈ SenI(Σ1) and

– Φ̃(∼(f1)) = ∼(Φ(f1)) with Φ as above for ∼(f1) ∈ ∼(SenI(Σ1)),

• the same functor Mod : Sign → Catop as I,

• the relations �ÎΣ ⊆ |Mod(Σ)| × (SenI(Σ) ∪ ∼(SenI(Σ))), defined by

– m �
Î
Σ f iff m �

I
Σ f for f ∈ SenI(Σ) and

– m �
Î
Σ ∼(f) iff m 2

I
Σ f for ∼(f) ∈ ∼(SenI(Σ)). �

Proof We have to show that Ĩ is an institution. This means checking that SenĨ :
SignI → Set is a functor (which we omit for obvious) and the satisfaction condition.
This condition for f ∈ SenI(Σ) holds because of the satisfaction condition of the insti-
tution I. For ∼(f) ∈ ∼(SenI(Σ)) we proceed as follows. Given a signature morphism

φ : Σ1 → Σ2 let Φ = SenI(φ) and Φ̂ = SenĨ(φ). The satisfaction condition is now

m2 �
Ĩ
Σ2

Φ̂(∼(f)) iff ModI(φ)(m2) �
Ĩ
Σ1

∼(f).

On one hand m2 �
Ĩ
Σ2

Φ̂(∼(f)) is equivalent to m2 �
Ĩ
Σ2

∼(Φ(f)) and this to m2 2IΣ2

Φ(f). On the other hand ModI(φ)(m2) �
Ĩ
Σ1

∼(f) is equivalent to ModI(φ)(m2) 2
I
Σ1

f .

Therefore the satisfaction condition becomes m2 2
I
Σ2

Φ(f) iff ModI(φ)(m2) 2
I
Σ1

f . This
is the satisfaction condition for the institution I. X

We now see that we can use the extended institution to determine defaults from
the theory of S.

Theorem 126 Let S be a Σ-hierarchic specification of an institution I, and
(H,¹) = po(S) its partial order of priority. Let Ĩ be the institution that extends
I by negation. Then d ∈ SenI(Σ) is a default from h ∈ H from the theory of S
(evaluated in I) iff d is a default from h ∈ H from the theory of S evaluated in

Ĩ.
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Proof Firstly we remark that the institution I extended by negation is an institution
with negation. In fact (Ĩ, neg) is an institution with negation where neg = {negΣ :
SenI(Σ)∪∼(SenI(Σ)) → SenI(Σ)∪∼(SenI(Σ)) | Σ ∈ |SignI |} and each negΣ is defined
by

• negΣ(f) = ∼(f), f ∈ SenI(Σ) and

• negΣ(∼(f)) = f for ∼(f) ∈ ∼(SenI(Σ)).

Note that negΣ is injective.

We now proceed to see that S�, the hierarchy of differential preferences of S is precisely
the same when evaluated at I or Ĩ. To see this recall from lemma 93 that S� = S⊙�,
where S⊙ is the hierarchy of local preferences of S. One one hand |S⊙| is the class
of models of the axioms from S. These are formulas without the new connective ∼
so their satisfaction coincides in Ĩ and I and these two institutions have the same
interpretation structures. On the other hand the preferences associated by S⊙ to level
h compare these models by satisfaction of the defaults of S at level h. These defaults
also are not negated formulas and their satisfaction coincides again in both institutions.
In this way S⊙ is the same when evaluated in Ĩ or in I.

Identity of S⊙ implies identity of S� = S⊙� since the operator � depends only on the
pre-orders in the argument.

Having established that S has the same hierarchy of differential preferences in both
institutions we also conclude that the pre-order R = (|S�|, rl(S�, h)) is also the same
in both institutions. We now see that the defaults implicit in R in institution I are
precisely the defaults from SenI(Σ) that are implicit in R in the institution Ĩ.

Recall that d is a default implicit in R according to I iff d ∈ SenI(Σ) and for every
m, n ∈ |R| such that (m, n) ∈ rl(R) whenever m �

I
Σ d then n �

I
Σ d. Recalling that

satisfaction of formulas d ∈ SenI(Σ) coincides in I and Ĩ this condition is equivalent

to: d ∈ SenI(Σ) and for every m, n ∈ |R| such that (m, n) ∈ rl(R) whenever m �
Ĩ
Σ d

then n �ĨΣ d. This is the condition stating that d ∈ SenI(Σ) and d is an implicit default
in R according to Ĩ and therefore d ∈ SenI(Σ) is an implicit default in R according to
I iff d is an implicit default in R according to Ĩ.

Therefore d ∈ SenI(Σ) is an implicit default in R according to I iff d is an implicit
default in R according to Ĩ. The last assertion is equivalent to d ∈ SenI(Σ) is a default
from the theory of S in Ĩ at level h. X

Note that the set of defaults at level h from the theory of S when evaluated in
Ĩ does not coincide, in general, with the set of defaults from the theory of S,
at that level, when evaluated in I. This is because the institution Ĩ has more
formulas (in each signature) than I. In particular it has the newly introduced
negations. What the theorem above states is that the defaults of the theory of S
that are non-negated formulas coincide in both institutions. The next example
helps to clarify this question.
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Example 127 Consider now the specification of examples 77 and 127 now with
the difference that it is seen as a specification of propositional modal logic. We
have an empty set of axioms and two defaults p, q, propositional symbols, where
p is considered of lower priority than q.

• : {q}

◦ : {p}

OO

Figure 2.19: p lower than q

Its hierarchy of differential preferences is again displayed in the following diagram
2.20.

{p, q}

• {p,¬q}

2:lllllll
lllllll

{¬p, q}

{¬p,¬q)}

2:lllll
lllll

{p, q}

rz lll
lll

l
lll

lll
l

◦

OO

{p,¬q}

2:lllllll
lllllll

{¬p, q}ks

dl RRRRRRR

RRRRRRR

rz lll
lllll
ll

{¬p,¬q)}

dl RRRRR
RRRRR

2:lllll
lllll

Figure 2.20: Hierarchy of Differential Preferences

This is precisely the same figure as for the propositional case. The difference
is in the interpretation structures that are being compared: in this case modal
interpretation structures (before valuations). At this point we have to make clear
which modal interpretation structures we have in mind (recall remark 119). We
consider both cases:

1. Assume that interpretation structures are structures W comprising a class
of models, a visibility relation among them and an assignment of sets of
propositional symbols to models. Satisfaction in W is satisfaction in each
model from W . Assume moreover that the modal logic at hand has reflexive
visibility relations (modal logic T ). The theory of the previous specification
in this logic will have at level ◦ the defaults implicit in the differential
preference at level ◦. This corresponds to the preference relation induced
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by the flat specification (∅, {p}). We obtain again the formulas semantically
equivalent to one of true, false and p. Among these is also �p. In fact W � f
iff f holds in all models from W iff W � �f .

At level • we face the problem of expressing non-satisfiability of p. Since
in this logic there is no formula expressing this property we extend it with
negation. We conclude that the implicit defaults at this level are the formu-
las semantically equivalent to disjunctions of conjunctions of the defaults
in {p,∼(p), q} (in the extended institution). These are semantically equiv-
alent (in the modal logic T ) to one of true, false, p, ∼(p), q, p∧ q, ∼(p)∧ q,
p∨ q, ∼(p)∨ q. In our logic the formulas that can be expressed are a strict
subset of these, namely those semantically equivalent to one of true, false,
p, q, p∧ q, p∨ q. These include �f where f is any of the previous formulas.

The situation is different if the logic has negation. For example in linear
temporal logic with both a past (H) and future (G) necessity operator we
would obtain the formulas semantically equivalent to one of true, false, p,
¬HGp, q, p ∧ q, (¬HGp) ∧ q, p ∨ q, (¬HGp) ∨ q as the defaults implicit
in level • (see remark 119). The formula ¬HGp is semantically equivalent
(linear time) to ¬Hp ∨ ¬p ∨ ¬Gp that is simpler. It states that there is
a state either in the past, present or future (of the present state) where f
does not hold. In this way also ¬Hp ∨ ¬p ∨ ¬Gp is a default implicit in
level •. Note finally that both Hf and Gf are semantically equivalent to
f .

2. When the modal logic T (or other) is formalized by interpretation structures
with a distinguished world, the negation connective has the meaning of
non-satisfiability. Therefore the implicit defaults at level • are simply the
formulas semantically equivalent to one of true, false, p, ¬p, q, p∧ q, ¬p∧ q,
p∨ q, ¬p∨ q. The defaults implicit at level ◦ are the formulas semantically
equivalent to one of true, false and p. We note that it is no longer the case
that, in general, �f is semantically equivalent to f . △

Remark 128 Note that the construction of theorem 126 is not helpful in finding
an automatic method to determine whether a formula is a default from the theory
of a finite specification S. The procedure outlined in remark 124 applies to
institutions having conjunctions, disjunctions and negations and, furthermore a
sound and complete proof system (preferably decidable or semi-decidable). First
of all our construction of the extended institution does not add conjunctions or
disjunctions of the negated formulas with non-negated ones. Secondly and more
important there is no canonical way of building a proof system for the extended
institution.
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2.4 Extensions

The semantics assigned to a hierarchic specification S in section 2.3.1 includes
information for each priority level. We might want to use this information to
reason about S, for example by asking whether a certain formula is entailed
already at a certain priority level. However, the usual consequences of S do no
longer carry any information about the original structure of that specification.
One is usually interested in knowing whether a certain formula is a skeptical or
credulous consequence of S. These consequences (skeptical and credulous) are
defined and studied in the following section . They are derived from the (maximal
equivalence classes) of the lexicographic preference of S (see definition 76).

We define extension presentations and extensions in section 2.4.1 and credulous
and skeptical consequences in section 2.4.2. We note that the extensions of the
prioritized case correspond to a selection of the extensions for the flat case in
section 2.4.3. Some consequences of this fact are presented in section 2.4.4.

2.4.1 Definition

The extensions of a hierarchic specification are the classical theories of some ex-
tension presentation. Extension presentations correspond to maximal consistent
sets of axioms and defaults. The ordering on such sets is no longer inclusion,
as in the flat case, since the priority ordering has to be respected. We begin
by defining extensions and extension presentations on the semantic level, using
the lexicographic preference lex◦(S) of S. An alternative equivalent definition of
extension presentations using an ordering on sets of axioms and defaults will be
presented below.

We begin with the following auxiliary lemma.

Lemma 129 Let S be a hierarchic specification and let ⊑◦ = rl(lex◦(S)) be the
lexicographic preference of S. Moreover let ≡◦ and @

◦ be the corresponding
equivalence and strict relations. Let m, n ∈ |lex◦(S)|. Then:

1. m≡◦n iff df(S)(m) = df(S)(n),

2. m@◦n iff m⊑◦n and there exists h ∈ H with df(S, h)(m) ⊂ df(S, h)(n) and
for every h′ ≺ h, df(S, h′)(m) ⊆ df(S, h′)(n).

Proof The intended results are simple consequences of lemma 87 that presents a sim-
ilar result for each lexicographic preference in the hierarchy of lexicographic preferences
S⊕ and the fact that the lexicographic preference of S is the intersection of those rela-
tions (presented in lemma 98). X
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Extension presentations are the sets of axioms and defaults holding in some max-
imal equivalence class of lex◦(S). Their theories are the extensions.

Definition 130 Let S be a Σ-hierarchic specification and max(lex◦(S)) the set
of maximal equivalence classes of the lexicographic preference of S.

• a set E of Σ-formulas is an extension presentation of S iff E = ax(S) ∪
df(S)(M), where df(S)(M) is the set of defaults from S holding in all inter-
pretation structures of some maximal equivalence class M ∈ max(lex◦(S)),

• an extension E = E•• of S is the (classic) theory of some extension presen-
tation E of S. �

Recall from definition 61 that, if S is inconsistent (i.e. ax(S) is inconsistent),
max(lex◦(S)) contains one equivalence class, the empty equivalence class. There-
fore, for that case, there will be precisely one extension presentation of S, namely
ax(S) ∪ df(S), the union of the axioms with all defaults of S.

We show that an extension E is the set of formulas holding in some maximal
equivalence class of lex◦(S).

Lemma 131 A set E of Σ-formulas is an extension of a Σ-hierarchic specification
S iff E = M• where M is a maximal equivalence class of lex◦(S).

Proof We prove firstly that E• = M . If ax(S) is inconsistent the intended property
follows trivially. Therefore we may assume ax(S) consistent. In this case M = [m]. We
firstly note that given [m] ∈ max(lex◦(S)) then df(S)(m) = df(S)([m]), i.e. the defaults
from S satisfied by all models in [m] are those satisfied by m. This follows from the fact
that two models are equivalent w.r.t. lex◦(S) iff they satisfy precisely the same defaults
(lemma 129). Consider now a model m′ of the extension presentation E induced by [m]
(i.e. m � E = ax(S)∪df(S)([m])). Since m′

� E this model satisfies at least the defaults
satisfied by m. Therefore m⊑◦m′. From maximality of [m] it follows m′ ∈ [m]. This
shows that E• ⊆ [m]. The reverse inclusion is obvious from E = ax(S) ∪ df(S)([m]).
In this way E• = [m]. This ends the first part of the proof.

Finally assume that E is an extension of S. Then E = E•• where E = ax(S)∪df(S)(M)
is an extension presentation of S and M ∈ max(lex◦(S)). From the first part of the
proof E• = M and E = M•. On the other hand if E = M• with M ∈ max(lex◦(S))
then M = E• for E = ax(S) ∪ df(S)(M). Therefore E = E••. X

The extension presentations for the flat case (see definition 54) are the maximal
(w.r.t. inclusion) sets of axioms and defaults that are consistent if the axioms are
so. In the following we observe that the extension presentations in the hierarchic
case are also maximal sets of axioms and defaults, but according to a different
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relation. This relation is similar to the lexicographic ordering of corresponding
models and is motivated as follows. Consider two models m1 and m2 of the
axioms from a hierarchic specification S such that m1⊑

◦m2 (m2 is preferred to
m1 according to the lexicographic preference of S). Then the set E2 of axioms
and defaults from S holding in m2 is “preferred” to the set E1 of axioms and
defaults from S holding in m1. The lexicographic preference relating m1 and m2

can be rewritten in terms of the sets E1 and E2.

Definition 132 Let S be a hierarchic specification, (H,¹) its partial order of
priority and recall that df(S) is the set of all defaults (from any level) from S.
Let E1, E2 with ax(S) ⊆ E1, E2 ⊆ ax(S) ∪ df(S) be sets of axioms and defaults
from S. Then E1 ⊆

◦ E2 iff for every level h ∈ H if E1 ∩ df(h, S) 6⊆ E2 ∩ df(h, S)
then there is h′ ≺ h and E1 ∩ df(h′, S) ⊂ E2 ∩ df(h′, S).

This relation is a partial order. �

Proof Reflexivity is obvious. Transitivity is formally similar to the proof of the
corresponding property of lexicographic preference on interpretation structures (see
definition 76). Anti-symmetry is simple by well founded induction: assume that E1 ⊆◦

E2 and E2 ⊆◦ E1. If h is minimal then E1∩df(h, S) ⊆ E2∩df(h, S) and E2∩df(h, S) ⊆
E1 ∩ df(h, S). Therefore E2 ∩ df(h, S) = E1 ∩ df(h, S). The same conclusion holds for
non-minimal h, since, by the induction hypothesis, E2 ∩ df(h′, S) = E1 ∩ df(h′, S) and,
for this reason there can be no level h′ under h with E2 ∩ df(h′, S) ⊂ E1 ∩ df(h′, S) (or
vice versa). We conclude that, for all h ∈ H E2 ∩ df(h, S) = E1 ∩ df(h, S), implying
E1 = E2. X

The sets E that are maximal according to the ordering above are the extension
presentations of S.

Theorem 133 A set E with ax(S) ⊆ E ⊆ ax(S)∪ df(S) is an extension presen-
tation of the hierarchic specification S iff

• If ax(S) is consistent then E is consistent and maximal among the consistent
E ′ with ax(S) ⊆ E ′ ⊆ ax(S) ∪ df(S) (i.e. given a such a consistent E ′ if
E ⊆◦ E ′ then E = E ′),

• if ax(S) is not consistent then E = ax(S) ∪ df(S).

Proof Only the case of ax(S) consistent is non-trivial.

⇒ Assume that E is an extension presentation of S and there exists a consistent E′

such that E ⊆◦ E′ (and ax(S) ⊆ E′ ⊆ ax(S)∪df(S)). Let m be a model of E and
m′ a model of E′. Since m � E we have that [m] is maximal according to lex◦(S)
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and E = ax(S) ∪ df([m])(=)ax(S) ∪ df(S)(m). This implies that df(S, h)(m) =
E ∩ df(S, h) for each h. For m′ we have df(S, h)(m′) ⊇ E′ ∩ df(S, h) for each h.
From this and E ⊆◦ E′ it follows m⊑◦m′. Since E is an extension presentation
the equivalence class of m is maximal w.r.t. lex◦(S). Therefore m′ ∈ [m] and
ax(S)∪ df(S)(m′) = ax(S)∪ df(S)(m) = E (see lemma 129). Since E′ ⊆ ax(S)∪
df(S)(m′) = E we conclude E′ ⊆◦ E and therefore E′ = E.

⇐ Let E be consistent and maximal among the E′ with ax(S) ⊆ E′ ⊆ ax(S)∪df(S).
Let m be a model of E and consider E1 = ax(S)∪df(S)(m), the set of axioms plus
the defaults holding in m. Clearly E ⊆ E1 and therefore E ⊆◦ E1. Maximality of
E implies E1 = E. In this way any model of E satisfies (the axioms and) precisely
the same defaults from S. Therefore E• is an equivalence class of lex◦(S). We
now see that it is maximal. Consider any m′ with m⊑◦m′ where m is a model
of E. It is easy to check that E2 = ax(S)∪ df(S)m′ is such that E ⊆◦ E2. Again
by maximality of E we have that E2 = E and this implies m′ ∈ E• = [m] for
any m′ with m⊑◦m′. This means that E• = [m] is a maximal equivalence class
of lex◦(S). X

2.4.2 Consequences

The credulous and skeptical consequences of a specification S are defined in terms
of the extensions of S. The obvious definition of these relations follow.

Definition 134 A sg(S)-formula f is a

• credulous consequence of a hierarchic specification S, written S ⊢cr f , iff f
belongs to some extension of S, and a

• skeptical consequence of a hierarchic specification S, written S ⊢sk f , iff f
belongs to all extensions of S. �

2.4.3 Selection Function

Extension presentations of hierarchic specifications are maximal sets of defaults
(and axioms) that, furthermore, respect the relations of priority. Therefore they
are also extension presentations of the specification obtained by forgetting the
priority structure of the original hierarchic specification.

Lemma 135 Let E be an extension presentation of the Σ-hierarchic specification
S. Then E is an extension presentation of the Σ-specification (ax(S), df(S))
consisting of the axioms from S and the defaults from all levels from S. Moreover
if E is an extension of S then E is an extension of (ax(S), df(S)).
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Proof The property for the extensions of S follows trivially from the correspond-
ing property for extension presentations: Extensions are the theories of the extension
presentations (both in the hierarchic and in the flat case).

Assume ax(S) consistent (the other case is trivial). Let E be an extension presentation
of S and consider an E′ such that E ⊆ E′ and ax(S) ⊆ E′ ⊆ ax(S) ∪ df(S). Therefore
E ⊆◦ E′ and from theorem 133 it must be E = E′. We have proved that E is maximal
w.r.t. inclusion among such sets E′. This is the definition 54 of extension presentation
of (ax(S), df(S)). X

The other direction does not hold in general (see any of the examples involving
batman, e.g. example 75). In this way the priority ordering has the effect of
“selecting” some of the extensions of (ax(S), df(S)). This selection corresponds
to check (according to theorem 133) which of the extensions of (ax(S), df(S)) are
maximal according to ⊆◦. We will see in the next section 2.5.2 (theorem 139)
that, in the case of compact logics, it is enough to compare, according to ⊆◦, the
extensions of (ax(S), df(S)) among themselves.

2.4.4 Properties

The following properties of extensions and extension presentations are simple
consequences of the lemma 135 above and corresponding properties for specifica-
tions.

Theorem 136

1. Consistency. An extension presentation E of a Σ-hierarchic specification
S is consistent iff ax(S) is consistent.

2. Maximality. If E, E′ are extension presentations of a Σ-hierarchic speci-
fication S and E ⊆ E′ then E = E ′;

3. Orthogonality. If E, E ′ are extension presentations of a Σ-hierarchic spec-
ification S and E 6= E ′ then E ∪ E ′ is inconsistent.

4. The previous properties also hold when E, E′ are extensions of a Σ-speci-
fication S.

Proof Trivial from lemma 135 above since these properties hold for extension presen-
tations of specifications (see theorem 55). One has simply to see E and E′ as extension
presentations of (ax(S), df(S)). Similarly for the extensions of S. X
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2.5 Compact Institutions

In the following we are concerned with the properties of extensions in institu-
tions where the compactness property holds. In section 2.5.1 we show that any
hierarchic specification has at least one extension. Further properties of such
institutions are studied in sections 2.5.2 and 2.5.3.

2.5.1 Existence of Extensions

We have seen in section 1.3.3 that the preference relation associated with speci-
fications enjoys the property that, given a model of the axioms then there exists
a maximal equivalence class above it. This property implies existence of exten-
sions, coverage, semi-monotonicity and cumulativity (see theorem 67). The cor-
responding property for the lexicographic preference associated with a hierarchic
specification is now presented.

Lemma 137 Let I be an institution where the compactness property holds.
Given a hierarchic specification S from I with ax(S) consistent, let [m] be an
arbitrary equivalence class from the lexicographic preference lex◦(S) of S. Then
there is a maximal equivalence class [m↑] of [lex◦(S)] such that ([m], [m↑]) ∈
rl([lex◦(S)]).

Proof3 The proof uses Zorn’s lemma with the restriction of the partial order [lex◦(S)]
of the equivalence classes of the lexicographic preference lex◦(S) to the set B([m]) =
{[m′] : m⊑◦m′} of the equivalence classes above [m]. Let C be a chain in B([m]). We
have to exhibit a upper bound of C and we do this by displaying a presentation E
having as class of models the looked for upper bound. This presentation is defined as
follows: E = ax(S) ∪ D where

D = {d ∈ df(S) : ∃ [m1] ∈ C such that m1 � d and m′
1 � d

for all [m′
1] ∈ C such that m1⊑

◦m′
1}.

Note that given an equivalence class [m′] of the lexicographic preference of S then any
m′′ ∈ [m′] satisfies precisely the same defaults from S as m′. In this way each D above
is well-defined.

We now show that: 1) E is consistent and 2) the equivalence class of the models of E
is an upper bound of the chain C.

Assume that E is inconsistent. Then there is an inconsistent finite set F ⊆ E. Choose
for each d ∈ F ∩ D an interpretation structure m′

d with [m′
d] ∈ C such that m′

d � d

3With minor changes this proof is taken from [12], that proves the existence of a maximal
model (not a maximal equivalence class) of hierarchic specifications from compact institutions.
In [12] hierarchic specifications have finite priority structure. This restriction is dropped in the
proof we present here.
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(this m′
d exists by construction of D). Since F = {[m′

d] : d ∈ F ∩ D} is finite and
each equivalence class participates in the chain C there is a maximum [n] of F . By
definition of D and m′

d the interpretation structure n satisfies all d ∈ F ∩D. Moreover
n satisfies ax(S) since [n] ∈ C. Therefore n � F contradicting the hypothesis of F being
inconsistent.

We now prove that given z � E then [z] is an upper bound of C. For this purpose we
show that m′

1⊑
◦z for every [m′

1] ∈ C. This amounts to prove by well-founded induction
in the partial order of priority (H,¹) = po(S) that if df(S, h)(m′

1) 6⊆ df(S, h)(z) then
there is an h′ ≺ h with df(S, h′)(m′

1) ⊂ df(S, h′)(z), for every h ∈ H and every [m′
1] ∈ C.

Note firstly that z � ax(S) and, therefore, participates in lex◦(S). Furthermore, the
defaults from S at level h satisfied by z,df(S, h)(z), are contained in D ∩ df(S, h) since
z � D.

• if h is minimal then df(S, h)(m′
1)⊆df(S, h)(m′

2) for all m′
2 such that m′

1⊑
◦m′

2.
Therefore, recalling the definition of D above, df(S, h)(m′

1)⊆D⊆ df(S, h)(z).

• for non-minimal h assume that df(S, h)(m′
1) 6⊆ df(S, h)(z). We have to find

an h′ ≺ h such that df(S, h′)(m′
1) ⊂ df(S, h′)(z). The condition df(S, h)(m′

1)
6⊆df(S, h)(z) states that there exists a d ∈ df(S, h)(m′

1) such that d 6∈ df(S, h)(z).
In particular d 6∈ D. Therefore, from definition of D, there is [m′

2] ∈ C with
m′

1⊑
◦m′

2 and m′
2 6� d. But this implies df(S, h)(m′

1) 6⊆df(S, h)(m′
2) and, from lem-

ma 129 there is h′
1 ≺ h such that df(S, h′

1)(m
′
1)⊂df(S, h′

1)(m
′
2) and df(S, h′′

1)(m
′
1)

⊆ df(S, h′′
1)(m

′
2) for every h′′

1 ≺ h′
1. Now either df(S, h′

1)(m
′
2)⊆df(S, h′

1)(z) or
not:

– if df(S, h′
1)(m

′
2) ⊆ df(S, h′

1)(z) then

df(S, h′
1)(m

′
1)⊂df(S, h′

1)(z) since the set df(S, h′
1)(m

′
1) ⊂ df(S, h′

1)(m
′
2) ⊆

df(S, h′
1)(z). This case ends by choosing h′ = h′

1.

– If df(S, h′
1)(m

′
2) 6⊆df(S, h′

1)(z) then, by the induction hypothesis for h′
1, there

is h′′
1 ≺ h′

1 with df(S, h′′
1)(m

′
2)⊂df(S, h′′

1)(z). Recall that df(S, h′′
1)(m

′
1) ⊆

df(S, h′′
1)(m

′
2). Therefore df(S, h′′

1)(m
′
1) ⊂ df(S, h′′

1)(z) and we can choose
h′ = h′′

1. X

The previous lemma is mirrored at the syntactic level as we see in the following.

Lemma 138 Let S be a hierarchic specification with consistent ax(S) and E a
consistent set such that ax(S) ⊆ E ⊆ ax(S) ∪ df(S). Then there is an extension
presentation E ′ of S with E ⊆◦ E ′.

Proof Consider the equivalence class (w.r.t. the lexicographic preference of S) [m] of
a model m of E. Let [m↑] be a maximal equivalence class with m⊑◦m↑ (that exists from
the lemma 137 above). The set E′ = ax(S) ∪ df(S)([m↑]) is an extension presentation
of S (see definition 130). It is straightforward to check that E ⊆◦ E′. X



112 CHAPTER 2. PRIORITIZED DEFAULTS

2.5.2 Selection Function

A corollary of the previous result is that the extension presentations of S are
those extensions of the flat specification (ax(S), df(S)) that are maximal w.r.t.
⊆◦ when compared among themselves.

Theorem 139 An extension presentation E of (ax(S), df(S)) is an extension pre-
sentation of S iff there is no other extension presentation E ′ 6= E of (ax(S), df(S))
with E ⊆◦ E ′.

Proof Only the case of consistent ax(S) is non-trivial. The direct implication is
obvious from theorem 133: there is no E′ 6= E with E ⊆◦ E′. Assume now that E is
an extension presentation of (ax(S), df(S)) and there is no other extension presentation
E′ 6= E of (ax(S), df(S)) with E ⊆◦ E′. From lemma 138 above it exists an extension
presentation E′ of S with E ⊆◦ E′. This extension presentation E′ of S is also an
extension of (ax(S), df(S)). Therefore E = E′. X

2.5.3 Properties

The properties of existence of extensions and cumulativity of hierarchic specifi-
cations of compact logics can be concluded from lemma 137.

Theorem 140 Let I be an institution where the compactness property holds.
Then

1. Existence. Any specification has, at least, one extension.

2. Cumulativity. Let S be a specification from I and f be a skeptical con-
sequence of S, S ⊢sk f . Let S ′ be a hierarchic specification obtained from
S by adding f either to the axioms or to the defaults of S at some level.

Then E ′ is an extension presentation of S ′ iff E ′ = E ∪ {f} where E an
extension presentation of S. This implies that given any formula f ′, S ⊢sk f ′

iff S ′ ⊢sk f ′.

Proof

1. If ax(S) is inconsistent S has the whole sg(S)-language as extension. If ax(S)
is consistent take m ∈ ax(S)•. From lemma 137 there is a maximal equivalence
class [m↑] of lex◦(S) with (m, m↑) ∈ rl(lex◦(S)), where [m] is the equivalence class
of m. From definition 130 and lemma 131 we have that [m↑]

•
is an extension of

S,
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2. The case of inconsistent ax(S) ⊆ ax(S′) is trivial. We now see the case of
consistent ax(S) and S′ with ax(S′) = ax(S), df(S, h1) = df(S′, h1) ∪ {f} and
df(S, h) = df(S′, h) for each priority level h 6= h1. Firstly we show that giv-
en an extension presentation E of S then E ∪ {f} is an extension presentation
of S′. Note that E is also an extension presentation of the (flat) specification
(ax(S), df(S)) (lemma 135). Therefore, from cumulativity for flat specification-
s in theorem 67, E ∪ {f} is an extension presentation of (ax(S′), df(S′)). We
have to see that E ∪ {f} is maximal according to ⊆◦

S′ . Assume it is not. From
theorem 139 this means that there exists another extension presentation E′

1 of
(ax(S′), df(S′)) such that E∪{f} ⊆◦

S′ E′
1. But, again from cumulativity for (flat)

specifications this E′
1 is also E′

1 = E1 ∪ {f} with E1 6= E an extension presenta-
tion of (ax(S), df(S)). From E ∪ {f} ⊆◦

S′ E1 ∪ {f} we conclude E ⊆◦
S E1, with

E 6= E1, contradicting the fact that E is an extension presentation of S.

Let now E′ be an extension presentation of S′. Then E′ is an extension presen-
tation of the (flat) specification (ax(S′), df(S′)). Therefore E′ = E ∪ {f} where
E is an extension presentation of (ax(S), df(S)). We only have to show that E
is also an extension presentation of S. Assume it is not. Therefore there is an
extension presentation E1 6= E of (ax(S), df(S)) such that E ⊆◦

S E1 (theorem
139). This implies E ∪{f} ⊆◦

S′ E1 ∪{f}, with E ∪{f} 6= E1 ∪{f} contradicting
the hypothesis of E′ = E ∪ {f} being an extension presentation of S′.

We omit the proof for the case of consistent ax(S) and S′ with ax(S′) = ax(S) ∪
{f} and df(S′, h) = df(S, h) for any priority level h.

Finally it is straightforward to conclude that the maximal models of the lexico-
graphic preference of S coincide with those of S′. In fact those are the models
of some extension presentation of S. Since they all satisfy f they are also the
models of some extension presentation of S′. Equality of the classes of maximal
models trivially implies equality of skeptical consequences. X

The property of semi-monotonicity has to be rewritten to take the richer structure
of hierarchic specifications into account. Whereas in the flat case overriding was
only possible by the addition of new axioms, in the hierarchic case addition of new
defaults may override old ones. Overriding of defaults is, however, only possible
when the new defaults are assigned better priority than those to be overridden.
Therefore overriding is not possible if the new defaults are added to priority levels
that are not under some of the original ones. This includes a) addition of defaults
in the least important (maximal) priority levels; b) addition of defaults in new
priority levels without better priority than any of the original priority levels; and
any combination of these two mechanisms.

We now define the corresponding two relations between hierarchic specifications.

Definition 141 Let S be a Σ-hierarchic specification and (H,≺) = po(S) its
partial order of priority.
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• A level h ∈ H is said maximal (in (H,≺)) iff given any h′ ∈ H with h ≺ h′

then h′ = h,

• S is said weakly included in S ′ iff

– S b S ′,

– ax(S) = ax(S ′) and

– df(S, h) = df(S ′, h) for every non-maximal h ∈ H.

(S ′ = S except possibly at some maximal levels, where S ′ has more defaults
than S.)

• S is said disjointly included in S ′ iff

– S
�

b S ′,

– ax(S) = ax(S ′),

– df(S, h) = df(S ′, h) for every h ∈ H, where (H,¹) = po(S),

– for all h′ ∈ (H ′ \ H) there is no h ∈ H with h′ ¹′ h, where (H ′,¹′) =
po(S ′) and

– h1 ¹ h2 iff h1 ¹
′ h2 for every h1, h2 ∈ H

(S ′ coincides with S in the original priority levels and no new hierarchy
level is of better priority than any of the original ones). �

Theorem 142 Let S be a hierarchic specification of a compact institution that
is weakly included or disjointly included in S′. For each extension presentation
(resp. extension) E of S there is an extension presentation (resp. extension) E ′

of S ′ such that E ⊆ E ′.

Proof The proof for extensions is a simple consequence of that for extension presen-
tations.

• We begin with the case of S being weakly included in S′. Only the case of
consistent ax(S) = ax(S′) is non-trivial. Let E be an extension presentation of
S. Then E is consistent and there exists a (consistent) extension presentation
E′ of S′ with E ⊆◦

S′ E′ (from lemma 138 and the fact that ax(S′) ⊆ E ⊆
ax(S′) ∪ df(S′)). We compare E′′ = E′ ∩ df(S) with E according to ⊆◦

S and
conclude that E ⊆◦

S E′′. Therefore E = E′′ (E is an extension presentation of
S) and E′ ⊇ E′′ = E.

Let (H,¹) be the partial order of priority of S and S′ and h ∈ H. Since E ⊆◦
S′

E′ we know that either E ∩ df(h, S′) ⊆ E′ ∩ df(h, S′) or there is h′ ≺ h and
E∩df(h′, S′) ⊂ E′∩df(h′, S′). We now see that this is equivalent to E∩df(h, S) ⊆
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E′′∩df(h, S) or there is h′ ≺ h and E∩df(h′, S) ⊂ E′′∩df(h′, S), therefore showing
that E ⊆◦

S E′′.

The condition E ∩ df(h′, S′) ⊂ E′ ∩ df(h′, S′) involves an h′ that is not maximal.
In this case df(h′, S′) = df(h′, S) and this condition becomes E ∩ df(h′, S) ⊂
E′ ∩ df(h′, S). Moreover E′ ∩ df(h′, S) is the same as E′′ ∩ df(h′, S).

The condition E ∩ df(h, S′) ⊆ E′ ∩ df(h, S′) is equivalent to E ∩ df(h, S) ⊆
E′′ ∩ df(h, S), for non-maximal h, for similar reasons. If h is maximal note
that E ∩ df(h, S′) is the same as E ∩ df(h, S) since E consists only of defaults
from S. For the same reason E ∩ df(h, S) ⊆ E′ ∩ df(h, S′) iff E ∩ df(h, S) ⊆
E′ ∩ df(h, S′) ∩ df(S). The set E′ ∩ df(h, S′) ∩ df(S) is E′′ ∩ df(h, S).

• The case of S being disjointly included in S′ is similar. Let E be an extension
presentation of S (with consistent ax(S)) and E′ an extension presentation of
S′ with E ⊆◦

S′ E′. We see again that E ⊆◦
S E′′, where E′′ = E′ ∩ df(S).

Therefore E = E′′ and E′ ⊇ E′′ = E. Let (H,¹) be the partial order of priority
of S and (H ′,¹′) that of S′ and h ∈ H. Since E ⊆◦

S′ E′ we have that for
every h1 ∈ H ′ either E ∩ df(h1, S

′) ⊆ E′ ∩ df(h1, S
′) or there is h′

1 ≺′ h1 and
E∩df(h′

1, S
′) ⊂ E′∩df(h′

1, S
′). If h1 ∈ H then any h′

1 ≺′ h1 is also in H (no new
level is under any of the levels from S) and h′

1 ≺ h1 (the restriction of ≺′ to H
is ≺). Therefore for every h ∈ H either E ∩ df(h, S) ⊆ E′ ∩ df(h, S) or there is
h′ ≺ h and E ∩ df(h′, S) ⊂ E′ ∩ df(h′, S). The remaining proof is like the case of
non-maximal h as before, recording that df(h, S′) = df(h, S) for every h ∈ H. X

We remark that the property of semi-monotonicity displayed in the theorem above
also holds when S ′ is obtained from S by some combination of weak and disjoint
inclusions.

2.6 Final Remarks

Hierarchic specifications were introduced in [12] and generalize ordered theory
presentations from [74, 75, 76] and prioritized defaults from [7, 6]. Their lexico-
graphic preference is the semantics of ordered theory presentations and prioritized
defaults. For these reasons the definitions and properties of extensions presented
in sections 2.1.1, 2.4 and 2.5 either repeat or slightly generalize corresponding
definitions and properties (see [12, 7, 6, 75, 78]). The characterization of the
selection function choosing from the extensions of the flat specification those of
the hierarchic specification, presented in section 2.4.3 and 2.5.2 is, however, new.
The same happens with the translation of a hierarchic specification into a flat
one (section 2.2.2) with same lexicographic preference.

The most important contribution of this chapter is the identification and com-
parison of structured semantics needed for composition, the definition of theory
of a hierarchic specification and the interplay between syntactic and semantic
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inclusion. These concepts have been introduced and investigated in sections 2.1
and 2.3. They generalize corresponding concepts for flat specifications and are
the foundations of the theory of composition of hierarchic specifications presented
in the next chapter.



Chapter 3

Composition

In the previous chapters 1 and 2 we have provided specifications and hierarchic
specifications with a notion of theory. This notion corresponds to an abstraction
of the particular way such specifications are written since it declares equivalent
the specifications having the same theory (or equivalently the same semantics).
Moreover a notion of inclusion (of meaning) between specifications (defined by
inclusion of theories) has also been defined.

We extend these notions in this chapter to account for composition of specifica-
tions. Special care is taken in order that the syntactical concepts and operations
defined have a corresponding semantics. The formalizations generalize the classi-
cal theory of composition of presentations ([46]) to specifications and hierarchic
specifications and are inspired by the formalization of composition of hierarchic
specifications presented in [12] .

To the notion of equivalence of specifications is added a notion of independence
of representation. This corresponds to identify as equivalent specifications that
only differ because they have been written with different symbols. In this way
S1 = (∅, {p}) has the same meaning as S2 = (∅, {q}) since what is true of S1

can be translated to a true proposition of S2 by replacing p by q and vice versa.
A more intuitive example is the use of the predicates Pacifist and Pazifist by
specifiers of different languages but modeling the same universe of discourse.
Independence of representation is formalized by the notion of isomorphism in the
categories Spec of specifications or hieSpec of hierarchic specifications. In the
first case only renaming of (signature) symbols in formulas is considered. In the
second renaming of priority level names is also taken into account.

Moreover this chapter addresses composition of specifications and hierarchic spec-
ifications understood as the addition of syntactical entities such as axioms, de-
faults, priority levels and relations between them. This composition is formalized
by canonical constructions in the category Spec of specifications or hieSpec of hi-
erarchic specifications. In the first case the constructions depend on the existence

117
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of signature symbols that are used in the axioms and defaults of the specifica-
tions result (i.e. they depend on the constructions of the underlying category
Sign of signatures). In the second case, where the priority structure has to be
taken into account, the constructions depend furthermore on the existence of a
priority structure that expresses the combination of the priority structures of the
hierarchic specifications involved.

The categories of specifications and hierarchic specifications are mirrored on the
semantic side by semantic categories (Pref and hiePref). The semantics of the
composition of specifications is obtained from the semantics of the parameter
specifications by canonical constructions in these categories.

The chapter is organized as follows. In section 3.1 the concepts related to compo-
sition of specifications are presented. These include the category Spec of specifi-
cations and its semantical counterpart, the category Pref of preference relations.
The one to one relation between syntactical and semantical constructions is pre-
sented. The existence of such constructions is also studied.

In section 3.2 the previous concepts are generalized to hierarchic specifications.
This corresponds to add the priority structure and corresponding operations to
the categories Spec and Pref, obtaining the categories hieSpec and hiePref.

We see (in 3.1.4 and 3.2.5) that isomorphic specifications or isomorphic hierar-
chic specifications have (up to a renaming of signature symbols) the same con-
sequences. Since the semantics adopted to formalize composition possesses more
structure than these consequences (as opposed to the classical case) we show (in
3.1.6 and 3.2.7) that the additional structure is the minimal one that assures a
formal description of the intended forms of composition.

A general direction for the formalization of other composition forms is sketched
in section 3.2.8. In section 3.3 we conclude the chapter.

3.1 Specifications

The concepts of theory and inclusion of specifications, presented in the previous
chapters, are the basis of the theory of composition of specifications. Compo-
sition of specifications is formalized on the syntactical side by colimits in the
category Spec of specifications (section 3.1.1). Composition of specifications is
also interpreted on the semantic side by limits in the category Pref of preference
relations (section 3.1.2). The correspondence between the two formalizations is
displayed in section 3.1.3. That isomorphic specifications have the same logical
content is shown in section 3.1.4. In section 3.1.5 we show that composition of
specifications is always defined provided that a rich enough signature is available
(i.e. the category Spec is cocomplete whenever the underlying category of signa-
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tures is cocomplete). Finally in section 3.1.6 we see that the chosen semantics is
canonical among other semantics for composition.

3.1.1 Category of Specifications

In this section we introduce the category Spec with specifications as objects.
Specifications are compared via the respective theories. These are related by
axiom and default preserving signature morphisms. This means that the trans-
lation to the codomain signature of the axioms and defaults from the (theory of
the) domain specification are axioms and defaults of the theory of the codomain
specification.

The translation of a specification to another signature, given a signature mor-
phism, is defined as follows:

Definition 143 Let S1 be a Σ1-specification and σ : Σ1 → Σ2 a signature mor-
phism. Recall that Sen(σ) : Sen(Σ1) → Sen(Σ2) is a Set function sending each
formula from the language Sen(Σ1) to a formula in the language Sen(Σ2). We
will denote the function Sen(σ) by σ̂. The Σ2-specification σ̂(S1) with axioms
σ̂(ax(S1)) = {σ̂(a), a ∈ ax(S1)} and defaults σ̂(df(S1)) = {σ̂(d), d ∈ df(S1)}, is
the translation of S1 into Σ2, given σ : Σ1 → Σ2. �

The definition of the category Spec follows.

Definition 144 The category Spec of specifications consists of:

• Objects: All specifications,

• Morphisms: A specification morphism σ : S1 → S2 from the Σ1-specif-
ication S1 to the Σ2-specification S2 is a signature morphism σ : Σ1 → Σ2

such that σ̂(S⋆⋆
1 ) b S⋆⋆

2 . �

Proof It is straightforward to check that Spec is indeed a category. This follows
from the fact that the translation of the composition of signature morphisms is the
composition of the translations: \σ2 · σ1 = σ̂2 ◦ σ̂1 (· is composition in Sign and ◦ in Set).
This property is a consequence of Sen being a functor (see definition 1 of institution).

X

The morphism condition presented above can be equivalently rewritten by stating
that the translation of S1 (not S⋆⋆

1 ) w.r.t. σ : Σ1 → Σ2 has to be included (b)
in the theory of S2. In other words, the image by σ : Σ1 → Σ2 of the axioms
from the domain specification are “implicit” axioms of the codomain specification
(and this is the classical condition - see [46]) and the image by σ : Σ1 → Σ2 of
the defaults from the domain specification are implicit defaults of the codomain
specification. This is stated formally in the following Presentation Lemma.
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Lemma 145 Let S1 be a Σ1-specification, S2 a Σ2-specification and σ : Σ1 → Σ2

a signature morphism. Then

σ̂(S⋆⋆
1 ) b S⋆⋆

2 iff σ̂(S1) b S⋆⋆
2 .

Proof The “if” part is trivial: σ̂(S1) b σ̂(S⋆⋆
1 ) since S1 b S⋆⋆

1 . The “only if” part is
proved as follows. Since σ̂(S1) b S⋆⋆

2 then σ̂(S1)
⋆⋆
b S⋆⋆

2 (recall that S2
⋆⋆⋆⋆ = S⋆⋆

2 ).
Moreover (this we prove below) σ̂(S⋆⋆

1 )⋆⋆ = σ̂(S1)
⋆⋆. Therefore σ̂(S⋆⋆

1 ) b σ̂(S⋆⋆
1 )⋆⋆ =

σ̂(S1)
⋆⋆
b S⋆⋆

2 .

To show that σ̂(S⋆⋆
1 )⋆⋆ = σ̂(S1)

⋆⋆ we need the following fact: if S⋆ = S′⋆ then σ̂(S)⋆ =
σ̂(S′)⋆. From this and since S⋆⋆

1 and S1 have the same preference we conclude that
σ̂(S⋆⋆

1 ) and σ̂(S1) also have the same preference and therefore the same theory. I.e.
σ̂(S⋆⋆

1 )⋆⋆ = σ̂(S1)
⋆⋆ as wanted.

That σ̂(S)⋆ = σ̂(S′)⋆ if S⋆ = S′⋆ is a simple consequence of the satisfaction condition.

• We begin by showing that σ̂(S) and σ̂(S′) have the same models. Assume they do
not. Then there is a model m of ax(σ̂(S)) that is not a model of ax(σ̂(S′)) (or vice
versa). I.e. m � ax(σ̂(S′)) and there is a σ̂(a′) ∈ σ̂(ax(S′)) such that m 2 σ̂(a′).
By the satisfaction condition the reduct1 of m w.r.t. σ satisfies ax(S) and does
not satisfy a′ ∈ ax(S′), contradicting the hypothesis S⋆ = S′⋆ (in particular that
they have the same models).

• Assume now that σ̂(S) and σ̂(S′) have the same models but different preference
relations. Then there are models m, n of σ̂(S) and σ̂(S′) such that m ⊑ n but
m 6⊑′ n (or vice versa). This means that all defaults from df(σ̂(S)) that are
satisfied by m are also satisfied by n but there is a default σ̂(d′) ∈ σ̂(df(S′)) that
is satisfied by m and not by n. Again from the satisfaction condition we conclude
that the reducts of m and n are related according to S but not according to S′,
contradicting the hypothesis S⋆ = S′⋆. X

We end this section by remarking that isomorphic specifications have, up to a
renaming of vocabulary, the same theory.

Lemma 146 Let σ : sg(S1) → sg(S2) be a signature isomorphism. Then σ :
S1 → S2 is a Spec-isomorphism iff σ̂(S⋆⋆

1 ) = S⋆⋆
2 .

Proof Let σ : sg(S2) → sg(S1) be the inverse isomorphism of σ : sg(S1) → sg(S2).
Since Sen is a functor to Set then σ̂ is a Set isomorphism with inverse σ̂ = σ̂−1.

• Assume that σ : S1 → S2 is a Spec-isomorphism. Then σ̂(S⋆⋆
1 ) b S⋆⋆

2 . Moreover
σ : S2 → S1 is also an isomorphism and σ̂(S⋆⋆

2 ) b S⋆⋆
1 . This implies S⋆⋆

2 =
σ̂(σ̂(S⋆⋆

2 )) b σ̂(S⋆⋆
1 ).

1The reduct of m w.r.t. σ is the interpretation structure Mod(σ)(m2) (see section 1.1).
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• Assume that σ̂(S⋆⋆
1 ) = S⋆⋆

2 . We only have to check that σ : S1 → S2 and σ :
S2 → S1 are Spec-morphisms (the property of isomorphism follows trivially from
the corresponding property in Sign). Clearly σ : S1 → S2 is a Spec-morphism.
Moreover σ̂(S⋆⋆

1 ) = S⋆⋆
2 implies S⋆⋆

1 = σ̂(σ̂(S⋆⋆
1 )) = σ̂(S⋆⋆

2 ) and this in turn that
σ : S2 → S1 is also a Spec-morphism. X

3.1.2 Category of Pre-orders

In this subsection we introduce the semantical counterpart of the syntactical con-
cepts just presented. The semantics of a specification is its associated preference
relation2.

We introduce the category PreOrder of Σ-pre-orders. Its morphisms are the se-
mantical counterpart of the morphisms in Spec and correspond to inclusion both
of the classes of interpretation structures and of the relations (of preference)
among them. Recall from section 1.2.2 that addition of axioms corresponds to
lessening of models and addition of defaults to lessening of relations of preference
among those models. Moreover, the translation of axioms and defaults induced
by signature morphisms has also a semantic expression in the notion of reduct of
a pre-order (that “translates” a pre-order among interpretation structures of one
signature to a pre-order of another signature).

Furthermore we identify the full subcategory Pref of PreOrder with objects the
Σ-pre-orders that are the preference relations of some Σ-specification. The cat-
egory Pref mirrors the category of specifications: the co-constructions in Spec

are mapped to constructions in Pref. This map assigns to each operation of
composition of specifications its semantic expression as an operation between the
semantics of those specifications. The reverse is also true.

We begin by introducing the preliminary notion of reduct of a relation w.r.t. a
signature morphism.

Definition 147 Recall that, given a signature morphism σ : Σ1 → Σ2 and an
interpretation structure m2 ∈ Mod(Σ2) the reduct of m2 w.r.t. σ : Σ1 → Σ2

is the Σ1-interpretation structure Mod(σ)(m2). The reduct Mod(σ)(m2) will be
denoted by σ̌(m2).

Furthermore, given a Σ2-pre-order R = (|R|,⊑) the reduct relation σ̌(R) is the
pair

(σ̌(|R|), σ̌(⊑))

2The classical semantics of the presentation AΣ is the full subcategory Mod(AΣ) of Mod(Σ)
of the Σ-interpretation structures that are also models of AΣ. This structure displays the rela-
tionships between interpretation structures and may additionally be assigned to a specification.
It will not, however, be of interest to us here since we are only concerned with the relationship
of preference.
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where σ̌(|R|) is the class {σ̌(m) : m ∈ |R|} of the reducts of the interpretation
structures participating in R and ⊑̌ = σ̌(⊑) is the smallest pre-order3 among
those interpretation structures that satisfies

σ̌(m2) ⊑̌ σ̌(n2) if m2 ⊑ n2,

that relates the reducts of the Σ2-interpretation structures from |R| if they were
related by R. �

We now define the category of Σ-pre-orders. The morphism condition on the
model part is the classical one, inclusion of classes of interpretation structures.
On the relation part it is inclusion of relation pairs.

Definition 148 The category PreOrder of Σ-pre-orders consists of:

• Objects: All pre-orders,

• Morphisms: A pre-order morphism4 ←
σ : R′ → R from the Σ2-pre-order

R′ to the Σ1-pre-order R is a signature morphism σ : Σ1 → Σ2 such that
σ̌(R′) b R i.e. the reduct of every interpretation structure in |R′| is in |R|
and whenever two interpretation structures are related by R′ their reducts
are related by R.

Proof It is straightforward to check that PreOrder is indeed a category. This follows
from the fact that the reduct w.r.t. σ2 · σ1 is given by the composition σ̌1 ◦ σ̌2 of the
reducts w.r.t. σ2 and σ1 (σ̌ is the functor Mod(σ), · is composition in Sign and ◦ is
composition of functors)5. This identity follows from the functor property of Mod (see
definition 1 of institution). X �

We are mainly concerned with the pre-orders that are preferences of some specifi-
cation. Recall that a Σ-preference relation is a Σ-pre-order that is the preference
relation of some Σ-specification. From the Galois connection in theorem 30 it
follows easily that a Σ-pre-order R is a Σ-preference relation iff R = R⋆⋆. In this
way the category of Σ-preference relation is defined as follows.

Definition 149 The category Pref is the full subcategory of PreOrder with ob-
jects the Σ-pre-orders R such that R = R⋆⋆. �

3The smallest relation that satisfies σ̌(m2) ⊑̌ σ̌(n2) if m2 ⊑ n2, is not, in general, a Σ1-
pre-order, since it may fail to be transitive. The reduct pre-order σ̌(R) is the transitive closure
of this relation.

4Note that to a morphism σ : S1 → S2 of specifications there corresponds a PreOrder

morphism
←

σ : S⋆

2
→ S⋆

1
, in the reverse direction, as emphasized by the notation

←

σ .
5Recall that we are not concerned with the category structure of interpretation structures.

In this way Mod(σ) can alternatively be seen as a function between classes of interpretation
structures.
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We expect two preference relations to be isomorphic when one results from the
other by replacing the interpretation structures by their corresponding reducts.
This is not completely true: if

←
σ : R′ → R is an isomorphism then it is not

necessarily the case that σ̌(R′) = R. In fact not all interpretation structures
participating in R are reducts of interpretation structures participating in R′.
However, these additional models do not add any extra information and σ̌(R′)
and R are equivalent in a sense that we define below.

Definition 150

• The Σ-interpretation structures m and m′ are said Σ-equivalent , written
m ≈ m′ if m and m′ cannot be distinguished by Σ-formulas, i.e. m � f iff
m′

� f , for all f ∈ Sen(Σ).

• The Σ-pre-orders R and R′ are said Σ-equivalent , written R ≈ R′ iff R b̃ R′

and R′
b̃ R where R b̃ R′ iff

– for every m ∈ |R| there is m′ ∈ |R′| with m′ ≈ m and

– for every (m, n) ∈ rl(R) there is (m′, n′) ∈ rl(R′) with m′ ≈ m and
n′ ≈ n.

Proof It is trivial to check that each ≈ is an equivalence relation. X �

The intended characterization of isomorphism in Pref follows.

Lemma 151 Let σ : sg(S⋆
1) → sg(S⋆

2) be a signature isomorphism. Then the

Pref-morphism
←
σ : S⋆

2 → S⋆
1 is a Pref-isomorphism iff σ̌(S⋆

2) ≈ S⋆
1 .

Proof

• Assume that
←
σ : S⋆

2 → S⋆
1 is a Pref-isomorphism and let

←
σ : S⋆

1 → S⋆
2 be its inverse

isomorphism. The morphism condition for
←
σ : S⋆

2 → S⋆
1 is σ̌(S⋆

2) b S⋆
1 . Therefore

σ̌(S⋆
2) b̃ S⋆

1 . We have to check that S⋆
1 b̃ σ̌(S⋆

2).

– Let m ∈ |S⋆
1 |. We see that m ≈ σ̌(σ̌(m)). Moreover σ̌(σ̌(m)) ∈ |σ̌(S⋆

2)|

since σ̌(m) ∈ |S⋆
2 |: this is the morphism condition for

←
σ : S⋆

1 → S⋆
2 .

To see that m ≈ σ̌(σ̌(m)) recall that σ̂ is a Set isomorphism with inverse
σ̂ = σ̂−1. Therefore, given a Σ1-formula f we have f = σ̂−1(σ̂(f)). From
the satisfaction condition it follows that m �Σ1 f iff σ̌(m) �Σ2 σ̂(f) iff
σ̌(σ̌(m)) �Σ1 f . In this way m ≈ σ̌(σ̌(m)).
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– Let now m ⊑1 n (where ⊑1 is rl(S⋆
1)). We see that σ̌(σ̌(m)) ⊑1 σ̌(σ̌(n)).

This is obviously the case since σ̌(σ̌(m)) satisfies precisely the same formulas
as m and, therefore, is equivalent according to S⋆

1 to m (it satisfies precisely
the same defaults as m). The same holds for n and σ̌(σ̌(n)). In this way
m ≡1 σ̌(σ̌(m)) ⊑1 n ≡1 σ̌(σ̌(n)).

• Assume that S⋆
1 ≈ σ̌(S⋆

2). We only have to show that
←
σ : S⋆

2 → S⋆
1 and

←
σ : S⋆

1 → S⋆
2

are morphisms since the isomorphism property follows from the corresponding
property for σ and σ in Sign. This amounts to show that σ̌(S⋆

2) b S⋆
1 and

σ̌(S⋆
1) b S⋆

2 .

– From σ̌(S⋆
2) b̃ S⋆

1 we conclude σ̌(S⋆
2) b S⋆

1 : given m ∈ |σ̌(S⋆
2)| there is

m′ ≈ m and m′ ∈ |S⋆
1 |. But since m′ ≈ m then m′ satisfies the axioms from

S1 iff m does. From this it follows that if m′ ∈ |S⋆
1 | then also m ∈ |S⋆

1 |.
This shows |σ̌(S⋆

2)| ⊆ |S⋆
1 |. The proof for the relation pairs is similar.

– From S⋆
1 b̃ σ̌(S⋆

2) we conclude (we omit trivial details) that σ̌(S⋆
1) b̃

σ̌(σ̌(S⋆
2)). It is also trivial to establish that σ̌(σ̌(S⋆

2)) b̃ S⋆
2 . Therefore

σ̌(S⋆
1) b̃ S⋆

2 . From this it follows σ̌(S⋆
1) b S⋆

2 as before. X

3.1.3 Syntax and Semantics

The relationship between syntax and semantics is made explicit by the functors
Sem : Spec → Prefop that to a specification associates its preference relation and
Syn : Prefop → Spec that to a preference relation associates the corresponding
theory. Canonical properties of these functors allow to conclude that the colimits
in the category of specifications correspond to limits in the category of preference
relations and that the limits in Pref correspond to colimits in Spec.

The property of functor for Syn and Sem relies in the correspondence between the
morphism condition for Spec and PreOrder (and also Pref) that we make explicit
in the following lemma.

Lemma 152 There is a Spec morphism σ : S1 → S2 iff there is a PreOrder

morphism
←
σ : S⋆

2 → S⋆
1 .

Proof We have to show that σ̂(S⋆⋆
1 ) b S⋆⋆

2 iff σ̌(S⋆
2) b S⋆

1 .

• Assume that σ̂(S⋆⋆
1 ) b S⋆⋆

2 . This is equivalent (lemma 145 above) to σ̂(S1) b S⋆⋆
2 .

From the Galois connection in theorem 30 we have σ̂(S1)
⋆
c S⋆⋆

2
⋆ = S⋆

2 . From
σ̂(S1)

⋆
c S⋆

2 we conclude σ̌(σ̂(S1)
⋆) c σ̌(S⋆

2). To conclude S⋆
1 c σ̌(S⋆

2) we have
to show that S⋆

1 c σ̌(σ̂(S1)
⋆).

– Consider an interpretation structure m′ participating in σ̌(σ̂(S1)
⋆). Then

m′ = σ̌(m) is the reduct of some interpretation structure m participating
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in σ̂(S1)
⋆. This, in turn, is a model of the axioms in σ̂(S1). Therefore m �

σ̂(ax(S1)). From the satisfaction condition we conclude that m′
� ax(S1)

(m′ = σ̌(m)), i.e. m′ ∈ |S⋆
1 |. This shows that |σ̌(σ̂(S1)

⋆)| ⊆ |S⋆
1 |.

– Assume now that m′ ⊑′ n′ according to σ̌(σ̂(S1)
⋆). We have to show that

m′ and n′ are also related according to S⋆
1 . Since m′ ⊑′ n′ according to

σ̌(σ̂(S1)
⋆) then m′ = σ̌(m) and n′ = σ̌(n) and either m ⊑ n according to

σ̂(S1)
⋆ or m′ ⊑′ n′ results from the transitive closure of such pairs (see

definition 147 of reduct pre-order).

∗ Assume that m′ = σ̌(m) and n′ = σ̌(n) and m ⊑ n according to
σ̂(S1)

⋆. That m ⊑ n means that the defaults from σ̂(S1) satisfied by
m are also satisfied by n: given σ̂(d) ∈ σ̂(df(S1)) if m � σ̂(d) then also
n � σ̂(d). Again from the satisfaction condition this implies that the
defaults from S1 satisfied by m′ = σ̌(m) are also satisfied by n′ = σ̌(n).
Therefore m′ and n′ are related according to S⋆

1 .

∗ The pairs m′ ⊑′ n′ that result from the transitive closure of the ones
above must also be in S⋆

1 , since S⋆
1 is a pre-order and contains the

transitive closure of any of its subparts.

This shows that rl(σ̌(σ̂(S1)
⋆)) ⊆ rl(S⋆

1). Therefore σ̌(σ̂(S1)
⋆) b S⋆

1 as in-
tended.

• Assume now that σ̌(S⋆
2) b S⋆

1 . Then σ̌(S⋆
2)⋆

c S⋆⋆
1 and σ̂(σ̌(S⋆

2)⋆) c σ̂(S⋆⋆
1 ). We

have to show that S⋆⋆
2 c σ̂(σ̌(S⋆

2)⋆) to conclude S⋆⋆
2 c σ̂(S⋆⋆

1 ).

To show S⋆⋆
2 c σ̂(σ̌(S2

⋆)⋆) we see that every axiom (resp. default) from σ̂(σ̌(S⋆
2)⋆)

is an axiom (resp. default) from S⋆⋆
2 .

– Let σ̂(a) be an axiom from σ̂(σ̌(S⋆
2)⋆). This means that a is an axiom from

σ̌(S⋆
2)⋆, i.e. a holds in all interpretation structures participating in σ̌(S⋆

2).
These are the reducts of the interpretation structures from S⋆

2 . From the
satisfaction condition σ̂(a) holds in all interpretation structures from S⋆

2 .
Therefore σ̂(a) is an axiom from the theory of S2, S⋆⋆

2 .

– Let now σ̂(d) be a default from σ̂(σ̌(S⋆
2)⋆). Then d is a default from σ̌(S⋆

2)⋆.
This means that given interpretation structures m′, n′ from |σ̌(S⋆

2)| with
m′ ⊑′ n′ according to σ̌(S⋆

2), if m′
� d then n′

� d. Consider now interpre-
tation structures m, n from S⋆

2 and assume that m ⊑ n according to S⋆
2 and

that m � σ̂(d). Then, from the satisfaction condition, σ̌(m) � d and from
the definition of pre-order reduct σ̌(m) ⊑′ σ̌(n). Therefore σ̌(n) � d. Again
from the satisfaction condition n satisfies σ̂(d). This shows that σ̂(d) is an
implicit default from S⋆

2 , i.e. σ̂(d) is a default from the theory of S2, S⋆⋆
2 .X

The definition of the functors Sem : Spec → Prefop and Syn : Prefop → Spec

follows.
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Definition 153

• The functor Sem : Spec → Prefop associates to each specification S its
preference relation S⋆ and to each Spec morphism σ : S1 → S2 the Pref

morphism
←
σ : S⋆

2 → S⋆
1 .

• The functor Syn : Prefop → Spec associates to each preference relation S⋆

its theory S⋆⋆ and to each Pref morphism
←
σ : S⋆

2 → S⋆
1 the Spec morphism

σ : S⋆⋆
1 → S⋆⋆

2 .

Proof That Sem and Syn are functors is a trivial consequence of lemma 152 above.
X �

Composition of specifications is formalized by colimits of diagrams in the category
Spec. The following figure 3.1 illustrates such a diagram, relating two specifica-
tions, BATS and HUMANS. Its colimit is the union of these specifications, as it
is explained in example 162 below.

BATS+HUMANS

BATS

33ggggg
HUMANS

llX X X X

(Σ, ∅, ∅)

kkWWWWWWWWWWW
33fffffffffff

Figure 3.1: Composition of BATS and HUMANS

Each such construction has a semantic counterpart in a limit in the category
Pref. The functor Sem sends each colimit in Spec to its corresponding limit in
Pref. The functor Syn sends each limit in Pref to a colimit in Spec, thus asso-
ciating to a composition of preference relations its corresponding composition of
specifications. Clearly the existence of syntactical constructions is equivalent to
the existence of semantical constructions. Before stating formally this correspon-
dence we need to recall the associated definitions of diagram, colimits, limits,
cocompleteness and completeness.

Definition 154 The notions herein defined can be found in any book on category
theory. We use [1] and [51].

• A diagram in a category C is a graph homomorphism D : S → C. The
graph S is the “shape” of the diagram. The diagram D assigns to each
node in |S| an object from |C| and to each arrow in Arr(S) a morphism
from Mor(C).

When |S| and Arr(S) are sets the diagram is said small . We will be con-
cerned only with small diagrams.
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• A cocone for a diagram D : S → C is an object v ∈ |C| and morphisms from
each object in the diagram to v. Denoting the object assigned by D to the
node i ∈ |S| by oi then a cocone for D is the family {v, mi : oi → v, i ∈ |S|}.

• The cocone {v, mi : oi → v, i ∈ |S|} is said commutative when is compatible
with the morphisms in the diagram: given any morphism m : oi → oj in D
then mi = mj ◦m (m : oi → oj is the morphism assigned by D to the arrow
a : i → j ∈ Arr(S) from S).

• A colimit of D is a commutative cocone {v, mi : oi → v, i ∈ |S|} for D
that is canonical among the commutative cocones for D: given another
commutative cocone {v′, m′

i : oi → v′, i ∈ |S|} for D then there exists a
unique morphism u : v → v′ such that m′

i = u ◦ mi for all i ∈ |S|.

• The notions of cone and limit are dual and omitted.

• A category having all colimits (resp. limits) of small diagrams is said co-
complete (resp. complete). �

The following figure shows a cocone for a diagram D.

v

i
a
// j D

// oi
m

//

mi

>>}}}}}}}
oj

mj

``AAAAAAA

Figure 3.2: Cocone for D

And the next one illustrates the definition of colimit of the previous diagram.

v u
//______________ v′

oi
m

//

mi

__@@@@@@@@ =

m′
i

44jjjjjjjjjjjjjjjjjjjj oj

=

mj

jjTTTTTTTTTTTTTTTTTTTT m′
j

>>}}}}}}}

Figure 3.3: The commutative cocone on the left is a colimit for D

Theorem 155 The image by Syn of a limit in Pref is a colimit in Spec and the
image by Sem of a colimit in Spec is a limit in Pref.

Moreover the category Spec is cocomplete iff Pref is complete.
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Proof Preservation of constructions follows trivially from lemma 152 above. That
if Spec is cocomplete then Pref is complete is also trivial: one only has to note that
the image of a diagram D in Pref by Sem ◦ Syn is again D (i.e. Sem ◦ Syn ◦ D = D).
Therefore the limit of D is the image by Sem of the existing colimit of the diagram
Syn ◦D. The other direction is similar with the difference that the image by Syn ◦ Sem

of a diagram D in Spec is not D itself, but an isomorphic copy (since S and S⋆⋆ are
isomorphic in Spec). X

Remark 156 A trivial corollary of the theorem above is that two specifications
are isomorphic iff their preferences are isomorphic. Note that S2 is isomorphic
to S1 iff it is the colimit of the diagram having S1 as only object. Also S⋆

2 is
isomorphic to S⋆

1 iff it is the limit of the diagram containing only S⋆
1 .

3.1.4 Isomorphism and Extensions

Two isomorphic specifications S1 and S2 are indistinguishable in the category
Spec. This means that these specifications have, up to a change of vocabulary,
the same information. In fact they have isomorphic preferences, i.e. they have the
same meaning. A consequence of this fact is that two isomorphic specifications
have, up to a change of vocabulary, the same extensions, and in particular the
same credulous or skeptical consequences. We formalize these considerations in
the following theorem.

Theorem 157 Let σ : S1 → S2 be an isomorphism in the category Spec. Then
E1 is an extension of S1 iff σ̂(E1) is an extension of S2.

Proof Let σ : S2 → S1 be the inverse isomorphism of σ : S1 → S2. Recall that σ̂ is a
Set isomorphism with inverse σ̂ = σ̂−1.

We see below that given an isomorphism σ : S1 → S2 and an extension E1 of S1

there is an extension E2 of S2 such that σ̂(E1) ⊆ E2. Also, since σ : S2 → S1 is
again an isomorphism, given an extension E2 of S2 there is an extension E ′

1 of S1 with
σ̂(E2) = σ̂−1(E2) ⊆ E ′

1.

• From σ̂−1(E2) ⊆ E ′
1 we conclude σ̂(σ̂−1(E2)) = E2 ⊆ σ̂(E ′

1). And σ̂(E ′
1) ⊆ E ′

2 for
some extension E ′

2 of S2. In this way E2 ⊆ σ̂(E ′
1) ⊆ E ′

2. From theorem 55, the
two extensions E2 and E ′

2 must be the same. We conclude that E2 = σ̂(E ′
1) = E ′

2.

• We have shown that σ̂(E ′
1) is an extension of S2 when E ′

1 is an extension of S1.
Let now E2 be an extension of S2. Using this same result for σ : S2 → S1, σ̂−1(E2)
is an extension of S1. Call it E1 and note that E2 = σ̂(E1). This ends the proof.

We have finally to show that given an isomorphism σ : S1 → S2 and an extension E1

of S1 there is an extension E2 of S2 such that σ̂(E1) ⊆ E2. Note that since S1 and S2

are isomorphic also S⋆
1 and S⋆

2 are so. Therefore σ̌(S⋆
2) b S⋆

1 and σ̌(S⋆
1) b S⋆

2 .
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• If S1 is inconsistent then S⋆
1 is the empty preference relation. Since σ̌(S⋆

1) c S⋆
2

we conclude that S⋆
2 must be the empty preference relation, i.e. S2 is also incon-

sistent. The only extension E2 of S2 is the whole language of the signature of S2.
Trivially σ̂(E1) ⊆ E2.

• Assume that S1 is consistent and let m1 be a model of the consistent extension
E1. Then m1 is maximal in S⋆

1 and E1 is the theory of the equivalence class [m1]1
(theorem 62).

– We see firstly that σ̌(m1) is maximal in S⋆
2 . Consider any m2 with σ̌(m1) ⊑2

m2. We want to conclude that σ̌(m1) ≡2 m2. In fact, from σ̌(S⋆
2) b S⋆

1 ,
we have σ̌(σ̌(m1)) ⊑1 σ̌(m2). We have seen in lemma 151 that σ̌(σ̌(m1))
satisfies precisely the same Σ1-formulas as m1. Therefore m1 is equivalent
to σ̌(σ̌(m1)). Moreover m1 ≡1 σ̌(σ̌(m1)) ⊑1 σ̌(m2) and m1 is maximal.
This implies that σ̌(m2) is also equivalent to m1. From σ̌(m2) ≡1 m1 and
σ̌(S⋆

1) b S⋆
2 we conclude σ̌(σ̌(m2)) ≡2 σ̌(m1). As before m2 satisfies pre-

cisely the same Σ2-formulas as σ̌(σ̌(m2)) which implies m2 ≡2 σ̌(σ̌(m2)) ≡2

σ̌(m1) as intended.

– The formulas holding in the equivalence class [σ̌(m1)]2 constitute an ex-
tension E2 = [σ̌(m)]

•
2 of S2 (theorem 62). We now see that σ̂(E1) ⊆ E2.

This amounts to show that any m′
2 ≡2 σ̌(m1) is a model of σ̂(E1). From

m′
2 ≡2 σ̌(m1) and σ̌(S⋆

2) ⊆ S⋆
1 we have σ̌(m′

2) ≡1 σ̌(σ̌(m1)) ≡1 m1. In this
way σ̌(m′

2) belongs to the equivalence class [m1]1 and models E1. From the
satisfaction condition we conclude that m′

2 � σ̂(E1) as intended. X

We illustrate the concepts presented in the previous sections by means of a simple
example.

Example 158 Consider a specification NIXON of the well known Nixon Di-
amond example (see, for example, [63]). Nixon is known to be a Republi-
can and a Quaker. This is modeled by the axiom Rep(Nx) ∧ Quak(Nx), where
Nx is the constant symbol identifying Nixon. Republicans are by default non-
pacifists whereas Quakers are by default pacifists. This corresponds to the de-
faults Quak(Nx) ⇒ Pax(Nx) and Rep(Nx) ⇒ ¬Pax(Nx).

In this way our choice of symbols is the first order logic signature sg(NIXON)
with the set of constant symbols {Nx} and {Quak, Rep, Pax} as set of predicate
symbols.

Compare this specification with a simpler version of BATMAN (example 21)
having as axioms Hum(bm)∧Bat(bm) (bm (Batman) is known to be both a bat and
a human) and the defaults Bat(bm) ⇒ Fl(bm), Hum(bm) ⇒ ¬Fl(bm).

The two specifications have the same form. One expects the conclusions of one
of them to be translated to the other. We now see how this impression can be
formalized with the concepts presented above.
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Firstly we can establish a signature morphism σ : sg(NIXON) → sg(BATMAN)
from sg(NIXON) to sg(BATMAN) by assigning to the constant symbol Nx the
constant symbol bm and to the predicate symbols Quak, Rep, Pax the predicate
symbols Bat, Hum and Fl respectively. This signature morphism is clearly a bijec-
tion. Moreover this signature morphism translates the axiom Rep(Nx)∧Quak(Nx)
to the formula Hum(bm) ∧ Bat(bm) and the defaults Quak(Nx) ⇒ Pax(Nx) and
Rep(Nx) ⇒ ¬Pax(Nx) to Bat(bm) ⇒ Fl(bm) and Hum(bm) ⇒ ¬Fl(bm) respective-
ly. Clearly this signature morphism is a morphism between both specifications.
Moreover the inverse signature morphism is also a specification morphism. In
this way the two specifications are isomorphic in the category of first order spec-
ifications.

We are now concerned in displaying the impact of this fact on the conclusions
of both specifications. We expect that we can translate the consequences of one
into consequences of the other since they only differ in the choice of vocabulary,
but have the same logical content. For this purpose we turn to the semantics of
both specifications. The corresponding preference relations are also isomorphic
in the category of first order preference relations. The preference relation of
BATMAN compares the models of Hum(bm) ∧ Bat(bm) according to its defaults.
The reducts of these models are interpretation structures participating in the
preference relation of NIXON. These are models of Rep(Nx) ∧ Quak(Nx).

It is not difficult to see that the preference of NIXON coincides with the reduct
of the preference of BATMAN. The later consists of two unrelated equivalence
classes: that of the models of Fl(bm) and that of the models of ¬Fl(bm). The
reducts of the models of Fl(bm) are the models of Pax(Nx). Since the models of
Fl(bm) are equivalent so are the models of Pax(Nx). Similarly with the models
of ¬Fl(bm) and ¬Pax(Nx). In this way, as expected, the preference of NIXON
consist of the two equivalence classes of the models of Pax(Nx) and ¬Pax(Nx).

From lemma 157 we know that the extensions of BATMAN are obtained from
those of NIXON by changing the signature symbols (and vice versa). Since Bat-
man credulously flies we conclude that Nixon is credulously a pacifist. Skeptically
we can not conclude neither that Nixon is a pacifist nor that Batman flies. △

3.1.5 Existence of Constructions

Colimits of diagrams in the category of specifications express combinations of the
parameter specifications, related to each other as described by the corresponding
diagram. The existence of a colimit states that there exists a specification which
expresses the result of combining the parameter specifications in this particular
way.

We now see that the existence of colimits in Spec depends only on the existence
of a colimit signature. In this way any form of combination of specifications
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has a result, as long as there is a signature rich enough to express the result
specification. The resulting specification is the smallest one preserving the axioms
and defaults of the parameter specifications.

Theorem 159 The category Spec is cocomplete if the underlying category Sign

of signatures is so.

Proof Recall the definition of diagram, cocone and colimit in 154. The colimit of
a (small) diagram D : S → Spec is obtained by lifting the colimit in Sign of the
corresponding diagram F ◦ D : S → Sign where F is the forgetful functor sending
Spec to the underlying category of signatures. The functor F sends each specification
S to its signature sg(S) and each morphism σ : S → S′ to the signature morphism
σ : sg(S) → sg(S′).

We will denote the specification assigned by D to the node i ∈ |S| by Si. Its signature
will be Σi. In this way Σi is the signature assigned by the diagram F ◦ D to the node
i ∈ |S|.

Let CSign = {σi : Σi → Σ⊕, i in |S|} be the cocone colimit of F ◦D (in Sign). We have

to provide the specification S⊕ of the colimit signature Σ⊕ such that CSpec = {σi :

Si → S⊕, i in |S|} is a colimit in Spec.

Choose for S⊕ the union di∈|S|σ̂i(Si), i.e. ax(S⊕) is the union
⋃

i∈|S| σ̂i(ax(Si)) of the
σi-translations of the axioms of the parameter specifications and df(S⊕) is the union⋃

i∈|S| σ̂i(df(Si)) of the translations of their defaults.

In this way S⊕ is the smallest (w.r.t. b) specification such that each σi : Si → S⊕ is
a Spec-morphism. Moreover CSpec is a commutative cocone (for D) since CSign is a
commutative cocone (for F ◦ D).

The property of colimit for CSpec follows from the corresponding property for CSign. We
have to check that, given another commutative cocone C′

Spec = {νi : Si → S′, i in |S|}

for D there is a unique morphism µ : S⊕ → S′ such that νi = µ · σi, for all i in |S|.

From the commutative cocone C′
Spec we obtain the commutative cocone C′

Sign = {νi :

Σi → sg(S′), i in |S|} for F ◦D. Since Sign is cocomplete there exists a unique signature
morphism µ : Σ⊕ → Σ′ such that νi = µ · σi, for all i in |S|. We only have to
show that this signature morphism is also a Spec morphism, i.e. that µ̂(S⊕) b S′⋆⋆.
Since νi = µ · σi we have ν̂i(Si) = µ̂(σ̂i(Si)). The morphism condition for each Si is
ν̂i(Si) = µ̂(σ̂i(Si)) b S′⋆⋆. This clearly implies µ̂(S⊕) b S′⋆⋆ since S⊕ = di∈|S|σ̂i(Si).

X

As seen above colimits in Spec correspond to “unions” of axioms and defaults.
Their semantic counterpart, limits in Pref correspond to “intersections”, both of
the classes of models and the preference relations. Existence of constructions in
PreOrder (and Pref) is assured from theorems 155 and 159 and is stated in the
next theorem. Its (extra) proof displays the limits in PreOrder (and Pref).
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Theorem 160 The categories PreOrder and Pref are complete if the underlying
category Sign of signatures is cocomplete.

Proof The limit of a (small) diagram D : S → PreOrder is obtained by lifting the
colimit of the diagram G ◦ D : S → Sign where G is the forgetful functor sending
PreOrder to the underlying category of signatures. The functor G sends each pre-order
R to its signature Σ = sg(R) and each PreOrder-morphism

←
σ : R → R′ to the signature

morphism σ : sg(R′) → sg(R) (note the contravariance).

We will denote the pre-order assigned by D to the node i ∈ |S| by Ri. Its signature
will be Σi. In this way Σi is the signature assigned by the diagram G ◦ D to the node
i ∈ |S|.

Let CSign = {σi : Σi → Σ⊕, i ∈ |S|} be the cocone colimit of G◦D (in Sign). We have to

provide the pre-order R⊗ among the interpretation structures of the colimit signature
Σ⊕ such that LPreOrder = {

←
σ i: R⊗ → Ri, i ∈ |S|} is a limit in PreOrder.

The interpretation structures participating in R⊗ are the Σ⊕-interpretation structures
whose reducts w.r.t. each σi participate in the parameter pre-order Ri. That is |R⊗| =
{m ∈ |Mod(Σ⊕)| : σ̌i(m) ∈ |Ri|, for all i ∈ |S|}. Two interpretation structures are
related by R⊗ iff their reducts w.r.t. σi are related in each parameter pre-order Ri.
That is m ⊑⊗ n iff σ̌(m) ⊑i σ̌(n) for all i ∈ |S| (⊑⊗ is rl(R⊗) and ⊑i is rl(Ri)). It is
trivial to check that R⊗ is a pre-order. It is also the biggest Σ⊕-pre-order such that
each

←
σ i: R⊗ → Ri is a PreOrder morphism. Moreover LPreOrder is a commutative cone

(for D) since CSign is a commutative cocone for G ◦ D.

The property of limit for LPreOrder follows from the corresponding property of colimit

for CSign. Let L′
PreOrder = {

←
ν i: R′ → Ri, i ∈ |S|} be a commutative cone for D. We

need to provide a unique
←
µ : R′ → R⊗ such that

←
νi=

←
σi ·

←
µ , for all i in |S|. From the

commutative cone L′
PreOrder for D we obtain the commutative cocone C′

Sign = {νi :

Σi → sg(R′), i ∈ |S|} for G ◦ D. Since Sign is cocomplete there is a unique signature
morphism µ : Σ⊕ → sg(R′) such that νi = µ · σi, for all i in |S|. We only have to show

that
←
µ : R′ → R⊗ is a PreOrder-morphism. This amounts to show µ̌(R′) b R⊗.

• Let m′ be an interpretation structure from |R′|. We want to check that µ̌(m′) ∈
|R⊗|, i.e. that σ̌i(µ̌(m′)) ∈ |Ri|, for all i ∈ |S|. Now σ̌i(µ̌(m′)) = ν̌i(m

′) since

νi = µ · σi. And ν̌i(m
′) ∈ |Ri|, since each

←
ν i: R′ → Ri is a PreOrder-morphism.

In this way µ̌(|R′|) ⊆ |R⊗|.

• Let now m′ ⊑′ n′ where ⊑′ is rl(R′). We want to show that µ̌(m′) ⊑⊗ µ̌(m′), i.e.
that, for all i ∈ |S|, σ̌(µ̌(m′)) ⊑i σ̌(µ̌(n′)). This is equivalent to ν̌i(m

′) ⊑i ν̌i(m)

and holds since ν̌i(rl(R
′)) ⊆ rl(Ri), i ∈ |S| (each

←
ν i: R′ → Ri is a PreOrder-

morphism). Therefore µ̌(rl(R′)) ⊆ rl(R⊗). This ends the proof of completeness
of PreOrder.

Limits in Pref are calculated in the same way. We have only to check that R⊗ is the
preference of some specification S⊕ whenever each Ri is the preference of some Si. This
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is established as in the proof of theorem 155: limits in Pref are the image by Sem of
colimits in Spec. X

We now illustrate the constructions above for the case when all specifications
share the same signature. In this case colimits are unions of axioms and defaults.

Example 161 Let ∅ denote the Σ-specification with an empty set of axioms and
defaults. Let S1 and S2 be Σ-specifications and let ∅ → S1 and ∅ → S2 denote
the morphisms corresponding to the identity signature morphism from Σ to Σ.
Then the (vertex of the) pushout of the diagram S1 ← ∅ → S2 is the specification
S1dS2 having as axioms the union of the axioms from S1 and S2 and as defaults
the union of the defaults from S1 and S2. This is illustrated by the following
figure.

S1dS2

S1

66nnn
S2

hhP P P

∅

hhPPPPPPPP

66nnnnnnnn

Figure 3.4: Union as a Colimit

Note that, from theorem 155 the previous diagram can be redrawn at the semantic
level by changing the specifications to their preference relations and reverting the
morphisms. The preference relation associated with S1dS2 will be the limit of
the new diagram. This preference relation is S⋆

1eS
⋆
2 , the intersection, both on

the classes of models and the classes of relation pairs of the preference relations
associated with and S1 and S2. △

More generally, when a default theory presentation is the domain of several mor-
phisms it states what symbols, axioms and defaults are shared by the codomain
specifications. We use this fact to get the properties of bm (Batman) from the
properties of bats and humans in the following example.

Example 162 Consider the specifications BATS and HUMANS. The specifica-
tion BATS consists of the axioms Bat(b) and the defaults Bat(b) ⇒ Fl(b) for b
in a designated set of constant symbols identifying bats. The specification HU-
MANS is similar and ascertains that humans usually dream and do not fly, where
humans are identified in a set of constant symbols. We now compose these two
specifications by stating that the predicate Fl is the same in both specifications
and that there is a particular being that is a bat and a human. The result is the
colimit of the diagram BATS ← (Σ, ∅, ∅) → HUMANS where the signature Σ
consists of the predicate symbol Fl and the constant symbol bm. The signature
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morphism (Σ, ∅, ∅) → HUMANS assigns to the predicate symbol Fl the predicate
symbol Fl from the specification HUMANS and to the constant symbol bm its
identifying symbol as an human. The signature morphism (Σ, ∅, ∅) → BATS is
defined in a similar way. The following diagram illustrates this composition.

BATS+HUMANS

BATS

33ggggg
HUMANS

llX X X X

(Σ, ∅, ∅)

kkWWWWWWWWWWW
33fffffffffff

Figure 3.5: Composition of BATS and HUMANS

Note that in BATS+HUMANS there will be a special constant symbol, call it bm
that is a bat (Bat(bm)) and a human (Hum(bm))), and that, by default, flies and
does not fly and dreams. △

3.1.6 Canonicity of the Semantics

In the previous sections we have displayed a formalization of composition of spec-
ifications and the corresponding semantical account: to each syntactic construc-
tion given by a colimit in Spec (a composition of the argument specifications)
there corresponds a semantic construction given by a limit in Pref.

We see in this section that (under some conditions) the preference semantics is
the minimal one that interprets composition of specifications.

To prove this we proceed by identifying two requirements on semantics of spec-
ifications. The first is logical compatibility : specifications having different conse-
quences should have different semantics. The second is the ability of interpreting
composition of specifications, in particular the operation of union.

Finally we see that the preference semantics is minimal among the semantics sat-
isfying these two criteria. This result is only proved for semantics of specifications
from compact institutions having negation.

We begin with the (rather general) definition of semantics of Σ-specifications.

Definition 163 A semantics of Σ-specifications is a function [[]] with the set of
all Σ-specifications as domain. �

Clearly some of these “semantics” have to be rejected. For example the function
that assigns to all specifications the same semantics cannot be accepted as a
proper semantics. The requirement of logical compatibility, that we now present,
rejects such unreasonable cases.
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Logical compatibility is a consequence of imposing that the consequences of a
specification may be derived from the corresponding semantics. In particular
this implies that specifications having different consequences must have different
semantics.

Since there are (at least) two common types of consequence of a specification, the
skeptical and the credulous consequences, there are also two different notions of
logical compatibility: logical compatibility w.r.t. the skeptical consequences and
logical compatibility w.r.t. the credulous consequences.

Definition 164 Let [[]] be a semantics of Σ-specifications. The semantics [[]] is
said to be

• logically compatible with the skeptical consequences iff whenever the skepti-
cal consequences of two Σ-specifications S1 and S2 differ then also [[S1]] 6=
[[S2]] and

• logically compatible with the credulous consequences iff whenever the credu-
lous consequences of two Σ-specifications S1 and S2 differ then also [[S1]] 6=
[[S2]]. �

The preference semantics is logically compatible with both the skeptical and the
credulous consequences. Other (reasonable) examples of semantics are logically
compatible with at least one of these consequences: the credulous consequences
of S, seen as the semantics of S, is trivially compatible with the credulous con-
sequences. Similarly with the skeptical consequences (or the class of maximal
models) of S. The semantics obtained by assigning to S the set of extensions
of S (or the set of maximal equivalence classes of S) is compatible with both
consequence types.

Logical compatibility is an expected property of any semantics of specifications.
The second requirement, that we now formalize, is stronger. We require from such
a semantics that it interprets the operation d. This means that the semantics of
S1dS2 should be given by an operation having as arguments the semantics of S1

and S2 only6. More formally:

Definition 165 Let [[]] be a semantics of Σ-specifications with codomain C. The
semantics [[]] is said to interpret d if there exists an operation O : C ×C → C such
that

[[S1dS2]] = O([[S1]], [[S2]]),

for any Σ-specifications S1 and S2. �

6In other words: the semantics of specifications is denotational with respect to d.
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The preference semantics interprets the operation d since the preference seman-
tics of S1dS2 is S⋆

1eS⋆
2 (see the Galois connection in theorem 30). None of the

alternative semantics presented so far has this property.

Example 166 Take for [[S]] the class of maximal models of S (or equivalently
the skeptical consequences of S). We show that this semantics does not interpret
d. Consider the first order logic specifications S1 = (∅, ∅), S ′

1 = (∅, {f,¬f}) and
S2 = (∅, {f}), where f is not a tautology. Note that the maximal models of S1

and S ′
1 coincide. Therefore [[S1]] = [[S ′

1]]. Assume, by absurd, that this semantics
interprets d. Then [[S1dS2]] = O([[S1]], [[S2]]) = O([[S ′

1]], [[S2]]) = [[S ′
1dS2]]. Since

S2 = S1dS2 and S ′
1 = S ′

1dS2 we conclude [[S ′
1]] = [[S2]]. But this is not true since

the maximal models of S2 (the models of f) are not the maximal models of S ′
1

(these are all Σ-interpretation structures).

This example also shows that the alternative semantics corresponding to the
credulous consequences, or to the set of extensions do not, in the same way,
interpret d. △

We know that the preference semantics interprets d and is logically compatible
with both types of consequence. We see now that it is the minimal semantics
with these properties. In fact we show more: any semantics that is logically
compatible with at least one of the types of consequence and interprets d has
more structure than the preference semantics.

The following definition is of convenience.

Definition 167 A semantics [[]] of Σ-specifications is said a proper compositional
semantics iff it interprets d and is compatible with the skeptical or with the
credulous consequences. �

Finally we have to formalize the relation “[[]] has more structure than [[]]′”. This
is motivated as follows. Take the set of extensions of S as its semantics. This
semantics has more structure than the semantics corresponding to assigning to
S its credulous or skeptical consequences. In fact the credulous and the skeptical
consequences can be derived from the set of extensions of S (and not the other way
around). Therefore the set of extensions has more structure (more information)
than these consequences. Similarly the preference of S has more structure than
the set of extensions of S (and again more structure that the skeptical or credulous
consequences.) Note that two specifications having the same preference have the
same set of extensions. And two specifications having the same sets of extensions
have the same credulous and skeptical consequence. This is the property we
choose for comparing semantics.
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Definition 168 Let [[]] and [[]]′ be two semantics of Σ-specifications. The relation
[[]] 3 [[]]′, read “[[]] has more structure than [[]]′” is defined as follows: [[]] 3 [[]]′ iff,
given any Σ-specifications S1 and S2, whenever [[S1]] = [[S2]] then also [[S1]]

′ =
[[S2]]

′. �

Any semantics logically compatible with the skeptical consequences has more
structure than these consequences (seen as semantics). In fact the two propo-
sitions are equivalent (see definition 164). The same holds for the credulous
consequences. Therefore a proper compositional semantics has more structure
than the skeptical or than the credulous consequences.

We now show that the preference semantics is the one having less structure from
among the proper compositional semantics. Note again that this result is only
proved for semantics of specifications from compact institutions having negation
(see definitions 65 and 118 and also remark 119).

Theorem 169 Let Σ be a signature of a compact institution (I, neg) having
negation. The preference semantics is the least (w.r.t. 3) proper compositional
semantics of these Σ-specifications.

Proof We have to show that, given a proper compositional semantics [[]] of Σ-specif-
ications and Σ-specifications S1 and S2 if [[S1]] = [[S2]] then S⋆

1 = S⋆
2 . The structure

of the proof is the following: Assume that S⋆
1 6= S⋆

2 and add (d) to both S1 and S2

the same (well chosen) specification S3, thus obtaining specifications S′
1 and S′

2. Since
[[]] interprets d we have that [[S1]] = [[S2]] implies [[S′

1]] = [[S′
2]]. Therefore, either the

credulous or skeptical consequences of S′
1 and S′

2 must coincide. We conclude that this
is not the case.

• We begin by showing that |S⋆
1 | = |S⋆

2 | if [[S1]] = [[S2]]. Assume |S⋆
1 | 6= |S⋆

2 |. Then
there is an interpretation structure m such that m ∈ |S⋆

1 | and m 6∈ |S⋆
2 | (or vice

versa). This means that m is a model of the axioms from S1 and it is not a model
of the axioms from S2. Let a2 ∈ ax(S2) be an axiom from S2 not satisfied by m.
Then m satisfies ¬a2 (¬a2 abbreviates negΣ(a2)).

Consider the specifications S′
1 = S1d({¬a2}, ∅) and S′

2 = S2d({¬a2}, ∅). We now
see that S′

1 and S′
2 have different credulous and different skeptical consequences.

Note that S′
2 is inconsistent (both a2 and ¬a2 are axioms) whereas S′

1 is not
(m is a model of the axioms from S1 and also of ¬a2). Since S′

2 is inconsistent
it only has one extension and its skeptical and credulous consequences are the
whole Σ-language. In particular both a2 and ¬a2 are credulous and skeptical
consequences of S′

2. On the other hand S′
1 is consistent and so are its extensions.

Moreover each such extension contains the axioms, in particular ¬a2. Therefore
no extension contains a2. In this way a2 is neither a credulous nor a skeptical
consequence of S′

1.
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• Assume now that [[S1]] = [[S2]] and |S⋆
1 | = |S⋆

2 | but ⊑1 6= ⊑2 (i.e. rl(S⋆
1) 6= rl(S⋆

2)).
This means that there exist m, n ∈ |S⋆

1 | with m ⊑1 n but m 6⊑2 n (or vice versa).
The interpretation structure n satisfies all defaults from S1 that m satisfies and
there is a default d2 from S2 satisfied by m and not by n. Note also that both
specifications are consistent since |S⋆

1 | = |S⋆
2 | 6= ∅.

Consider now the sets D1(m) = df(S1)(m) of the defaults from S1 satisfied by
m and D1(n) = {¬d1 : n 2 d1 and d1 ∈ df(S1)} of the negations of the defaults
from S1 not satisfied by n. Let S3 = (D1(m)∪D1(n), {¬d2}) be the specification
having the union of D1(m) and D1(n) as axioms and ¬d2 as single default.
Let S′

1 = S1dS3 and S′
2 = S2dS3. We now proceed to show that, although

[[S′
1]] = [[S′

2]], their skeptical and credulous consequences differ.

Note firstly that both m and n belong to |S′
1
⋆| = |S′

2
⋆|. In fact both are models of

ax(S1) and ax(S2) (since m, n ∈ |S⋆
1 | = |S⋆

2 |) and moreover they are also models
of D1(m) and D1(n). In this way both S′

1 and S′
2 are consistent and so are their

extensions.

We now see that d2 is a credulous consequence of S′
2 and also that ¬d2 is not

a skeptical consequence of S′
2. Since m � d2 and m is a model of the axioms

of S′
2 we conclude that ax(S′

2) ∪ {d2} is consistent. Since d2 ∈ df(S2) ⊆ df(S′
2)

we know from coverage in theorem 67 that there is a consistent extension of S′
2

containing d2. This implies that d2 is a credulous consequence of S′
2 and also that

¬d2 is not a skeptical consequence of S′
2. We see below that ¬d2 is a skeptical

(and credulous) consequence of S′
1 and that d2 is not a credulous consequence of

S′
1. In this way S′

1 and S′
2 have different credulous consequences and different

skeptical consequences, contradicting the hypothesis.

We now have to see that ¬d2 is a skeptical consequence of S′
1 and that d2 is not

a credulous consequence of S′
1.

The preference relation of S′
1 is obtained from that of S1 by further comparing

the interpretation structures according to ¬d2 and restricting the result to the
models of the axioms of S1 that are also models of D1(m, n). Recall that both
m and n participate in S′

1
⋆. Moreover m ⊑′

1 n since the new default ¬d2 is
satisfied by n (and not by m). Any other interpretation structure m′ from S′

1
⋆

is such that m ⊑′
1 m′ ⊑′

1 n. In fact m′ satisfies at least the same defaults from
S′

1 as m since m′ is a model of D1(m) and m does not satisfy ¬d2. And m′ does
not satisfy more defaults than n since m′ is a model of D1(n) and n satisfies
the new default ¬d2. This implies that n is maximal in S′

1
⋆ and its equivalence

class is the only maximal equivalence class of S′
1
⋆. In this way S′

1
⋆ has only one

extension, namely E ′
1 = ([n]′1)

•. Both the credulous and skeptical consequences
of S′

1 coincide with E ′
1. Note that ¬d2 is in E ′

1 since the interpretation structures
equivalent to n must satisfy precisely the same defaults from S′

1 as n, in particular
¬d2. Therefore ¬d2 is both a skeptical and credulous consequence of S′

1. And d2

is neither a credulous or skeptical consequence of S′
1. X
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3.2 Hierarchic Specifications

The properties of the composition of hierarchic specifications generalize corre-
sponding properties of composition of specifications. The added expressiveness
is given by composition of the partial orders of priority. This is presented in
the next section 3.2.1. Other concepts and properties are presented in a form
structurally similar to section 3.1. Composition of specifications is formalized on
the syntactical side by colimits in the category hieSpec of hierarchic specifications
(section 3.2.2). This category is mirrored on the semantic side by the category
hiePref of hierarchies of differential preferences (section 3.2.3). The relation be-
tween both formalizations is presented in section 3.2.4. We see in section 3.2.5
that isomorphic hierarchic specifications have the same logical meaning. In sec-
tion 3.2.6 we study the existence of constructions that formalize composition of
hierarchic specifications. In section 3.2.7 we show that the hierarchy of differen-
tial preferences is the least semantics of hierarchic specifications that supports
composition of hierarchic specifications.

3.2.1 Category of Partial Orders

The additional compositional expressiveness available for hierarchic specifications
results from composition of the respective partial orders of priority. Composi-
tion of partial orders is formalized by colimits in the category StPart. In this
category we restrict the partial order morphisms to those that strictly respect
the orderings. This means that levels that are strictly related by priority will
remain strictly related by priority. This formalization models the construction
of a specification by adding to it more relations between (possibly more) priority
levels (and axioms and defaults) and rejects the possibility of identifying levels
strictly related by priority. However, unrelated levels may be identified (since
this identification is represented by the union of their defaults).

Definition 170 The category StPart of partial orders consists of:

• Objects: Partial orders

• Morphisms: A (strict) partial order morphism φ : (H,¹) → (H ′,¹′) is a
function φ : H → H ′ that respects ≺ (the strict relation corresponding to
¹): if h1 ≺ h2 then φ(h1) ≺

′ φ(h1). �

The category StPart is not cocomplete as opposed to the category Part of partial
orders and partial order morphisms. It is however easy to check that the colimits
in StPart, when they exist, coincide with the corresponding colimits in Part.
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The colimits ruled out in StPart correspond to combinations of partial orders
whose result is obtained by identifying levels related in the argument partial
orders (see below for an example of this situation). These combinations of partial
orders are not considered meaningful in the formalism presented in the next
sections.

Example 171 Consider the priority orderings sketched in the following picture
and the (trivially strict) morphisms i sending • to • and j sending • to ◦.

• i
// •

j
// ◦

OO

Figure 3.6: Forbidden Composition

The colimit of this diagram in Part (the co-equalizer of the two morphisms)
identifies ◦ and •. Therefore it cannot be a colimit in StPart. △

In the following two examples (see also example 191) we assume that the relations
to be composed have a minimum and a maximum (priority level). These examples
are inspired in the formalism presented in [2]. There, the authors define and
algebra based on two operations on relations: “But” and ”On The Other Hand”.
The terms build with these operations denote preference relations. “R1 But R2”

•

GFED@ABCR1

>>||| GFED@ABCR2

``BBB

◦

>>|||
`B̀BB

• •

GFED@ABCR1

OO

GFED@ABCR2

OO

◦

OO

◦

OO

•
w

f1

[[77777777777777777 G

f2

CC�����������������

◦�
f1

aaDDDDDDDDDDDDD :
f2

==zzzzzzzzzzzzz

Figure 3.7: R1 On The Other Hand R2

is understood as “R1 is less important than R2” and denotes the lexicographic
combination of both, assigning more importance to R2. “R1 On The Other Hand
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R2” is read “R1 is as important as R2”, and denotes again the lexicographic
combination of both, seen as equally important (in this case the lexicographic
combination coincides with the intersection).

As the authors show, it is not difficult to express a hierarchy of pre-orders in
terms of these operations. The corresponding term denotes the lexicographic
combination of all those pre-orders.

These operations are represented in our formalism by explicitly putting one hi-
erarchic specification above or to the side of the other. The same operations can
be defined on the semantic side (by combining their hierarchies of differential
preferences in the same way).

For that purpose it is only necessary to exhibit the corresponding operations on
the priority structure. This is shown in the next two examples.

•

GFED@ABCR1

OO

}

OO

GFED@ABCR2

OO

◦

OO

• •

GFED@ABCR1

OO

GFED@ABCR2

OO

◦

OO

◦

OO

}
�f1

ddHHHHHHHH L

f2

FF����������������

Figure 3.8: R1 But R2

Example 172 The operation “On The Other Hand” corresponds to combine
the partial orders R1 and R2 in “parallel”, i.e. each is equally important. This is
simply the “coproduct” of R1 and R2 (with the identification of the minima and
maxima). The diagram and the vertex of its colimit are shown in figure 3.7. △

Example 173 In this example the minimum of R1 is identified with the maxi-
mum of R2. In this way the resulting partial order will have the levels R1 above
those of R2 (“R1 But R2”). The diagram and the vertex of its colimit are shown
in figure 3.8. △
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3.2.2 Category of Hierarchic Specifications

In this section we introduce the category hieSpec with hierarchic specifications as
objects. Hierarchic specifications are compared via the respective theories. The-
ories of different signatures and different partial orders of priority are related by
signature and partial order morphisms that preserve the axioms and the defaults
from corresponding priority levels. The category hieSpec extends the possible
constructions of Spec by adding to specifications a priority structure7.

We firstly need to translate a hierarchic specification to another with a different
signature and a different partial order of priority. Such translation is induced
both by a signature and a partial order morphism. The formulas in the original
hierarchic specification are translated by the signature morphism. The trans-
lations of the axioms will be the new axioms. The translations of the defaults
at each level h will be the defaults at the new priority level image of h. When
different levels have the same image the union of the translations of their defaults
is taken. This also covers the case of those new h′ which are not the image of
some h. They are assigned the empty set of defaults.

Definition 174 Let S1 be a Σ1-hierarchic specification and (H1,¹1) = po(S1) its
partial order of priority. Let φ : (H1,¹1) → (H2,¹2) be a partial order morphism
and σ : Σ1 → Σ2 a signature morphism. Recall that σ̂ : Sen(Σ1) → Sen(Σ2)
assigns to each Σ1-formula a Σ2-formula. In definition 143 σ̂ is extended to sets
of formulas (and specifications). The translation τ̂σ

φ (S1) of S1 with respect to
both φ and σ is the Σ2-hierarchic specification with:

• ax(τ̂σ
φ (S1)) = σ̂(ax(S1)), the image by σ̂ of the axioms of S1 as axioms,

• the partial order (H2,¹2) codomain of φ as partial order of priority and

• for each h2 ∈ H2 the set df(τ̂σ
φ (S1), h2) =

⋃
{h1:φ(h1)=h2} σ̂(df(S1, h1)), the

union of the images by σ̂ of the defaults from S1 at the levels h1 such that
φ(h1) = h2 (note that df(τ̂σ

φ (S1), h2) is empty if h2 there is no h1 such that
φ(h1) = h2).

It will also be technically convenient to see the translation τ̂σ
φ as consisting of the

composition of two operations, the signature translation of axioms and defaults
and the priority translation:

• the operation σ̂ assigns to a hierarchic specification S1 the hierarchic specifi-
cation σ̂(S1) with axioms σ̂(ax(S1)), the same partial order of priority as S1

7The category Spec is the special case of hieSpec obtained by restricting the hierarchic
specifications to those with one only priority level (i.e. Spec is isomorphic to the full subcategory
of hieSpec obtained by considering only those hierarchic specifications).
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and, for each level h ∈ po(σ̂(S1)) = po(S1) the set of defaults σ̂(df(S1, h))
and

• the operation φ that assigns to S1 the hierarchic specification φ(S1) with
the same axioms as S1, the partial order (H2,¹2) codomain of φ as partial
order of priority and for each h2 ∈ H2 the union

⋃
{h1:φ(h1)=h2} df(S1, h1) of

the defaults from S1 at the levels h1 ∈ po(S1) such that φ(h1) = h2.

With these definitions we have τ̂σ
φ (S1) = φ(σ̂(S1)). �

The definition of the category hieSpec follows.

Definition 175 The category hieSpec of hierarchic specifications consists of:

• Objects: All hierarchic specifications,

• Morphisms: A hierarchic specification morphism (σ, φ) : S1 → S2 from
the Σ1-hierarchic specification S1 to the Σ2-hierarchic specification S2 is:

– a signature morphism σ : Σ1 → Σ2 from the signature of S1 to that of
S2 and

– a strict partial order morphism φ : po(S1) → po(S2) from the partial
order of priority of S1 to that of S2,

such that

– σ̂(ax(S��1 )) ⊆ ax(S��2 ) and

– σ̂(df(S��1 , h)) ⊆ df(S��2 , φ(h)) for each level h ∈ po(S1).

The morphism condition can be equivalently written τ̂σ
φ (S��1 ) b S��2 .

Proof It is straightforward to check that hieSpec is indeed a category. Composition
results from the identity τ̂σ2·σ1

φ2◦φ1
(S) = τ̂σ2

φ2
(τ̂σ1

φ1
(S)) for any Σ1-specification S with ap-

propriate partial order of priority. X �

We show in the following the Presentation Lemma for hierarchic specifications.
The condition τ̂σ

φ (S��1 ) b S��2 can be replaced by τ̂σ
φ (S1) b S��2 . Therefore to

check the morphism condition we have only to check whether the translations of
the axioms from S1 are semantically entailed by the axioms of S2 and whether
the translations of the defaults from each level h1 in S1 are implicit defaults from
S2 in the level φ(h1).
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Lemma 176 Let S1 be a Σ1-hierarchic specification, S2 a Σ2-hierarchic speci-
fication σ : Σ1 → Σ2 a signature morphism and φ : po(S1) → po(S2) a strict
partial order morphism. Then the hieSpec-morphism condition τ̂σ

φ (S��1 ) b S��2

is equivalent to τ̂σ
φ (S1) b S��2 .

Proof

• The if part is trivial: since S1 b S��1 then τ̂σ
φ (S1) b τ̂σ

φ (S��1 ) b S��2 .

• The other direction is similar to the corresponding proof for specifications (lem-
ma 145). We see below that τ̂σ

φ (S��1 )
��

= τ̂σ
φ (S1)

��. This equality implies

τ̂σ
φ (S��1 ) b τ̂σ

φ (S��1 )
��

= τ̂σ
φ (S1)

��

b S��2 , since τ̂σ
φ (S1) b S��2 .

– To see that τ̂σ
φ (S��1 )

��

= τ̂σ
φ (S1)

�� we show that if two hierarchic speci-

fications have the same semantics so have their translations: if S� = S′�

then τ̂σ
φ (S)� = τ̂σ

φ (S′)�. Since S��1 and S1 have the same semantics, we

conclude that τ̂σ
φ (S��1 ) has the same semantics, and therefore the same

theory as τ̂σ
φ (S1). I.e. τ̂σ

φ (S��1 )
��

= τ̂σ
φ (S1)

�� as wanted.

– We only have to show that if S� = S′� then τ̂σ
φ (S)� = τ̂σ

φ (S′)�. Recall from
definition 174 that τ̂σ

φ (S) = φ(σ̂(S)). We see that both operations preserve

the semantics: If S� = S′� then σ̂(S)� = σ̂(S′)� and also φ(σ̂(S))� =
φ(σ̂(S′))�.

∗ It is straightforward to see that σ̂(S)� = σ̂(S′)� if S� = S′�. The proof
is by induction on the partial order of priority of S (or S′) and formally
similar to the proof of the presentation lemma 145 for specifications.

∗ To show that φ(S1)
� = φ(S2)

� if S�1 = S�2 we firstly note that
|φ(S1)

�| = |S�1 | = |S�2 | = |φ(S2)
�|. It is not difficult to show that

φ(S1)
� has in the level h2 the intersection of the preferences from S�1

from the levels h1 ∈ φ−1(h2). Recalling that S�1 = S�2 this coincides
with the intersection of the preferences from S�2 from the same levels
h1 ∈ φ−1(h2). This intersection is the preference assigned by φ(S2)

�

to the level h2. We conclude that φ(S2)
� coincides with φ(S1)

� in each
level h2. X

Finally we see that isomorphic hierarchic specifications are obtained by renaming
both the signature symbols and the priority levels. (We state only the non-trivial
implication).

Lemma 177 Let σ : sg(S1) → sg(S2) be a signature isomorphism and φ :
po(S1) → po(S2) a partial order isomorphism. Then (σ, φ) : S1 → S2 is a
hieSpec-isomorphism iff τ̂σ

φ (S��1 ) = S��2 .
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Proof Let σ̄ : sg(S2) → sg(S1) be the inverse isomorphism of σ : sg(S1) → sg(S2)
and φ̄ : po(S1) → po(S2) be the inverse isomorphism of φ : po(S2) → po(S1). Recall
(proof of lemma 146) that σ̂ and ˆ̄σ are inverse functions (on formulas). Also φ and φ̄
are inverse functions (on priority levels). This implies that τ̂σ

φ and τ̂ σ̄
φ̄

are also inverse

functions (on hierarchic specifications). Using this fact the rest of the proof is trivial
(formally like the proof of lemma 146). X

3.2.3 Category of Hierarchies of Pre-orders

The category of hierarchies of pre-orders hiePre is introduced in the following.
Also the category hiePref whose objects are the differential semantics of some hi-
erarchic specification. In the same way as with specifications the category hiePref

mirrors the category hieSpec of hierarchic specifications. Its morphisms are the
semantical counterpart of the hierarchic specification morphisms and correspond
to the inclusion of the classes of interpretation structures and of the (differential)
relations in each priority level. The category hiePre (resp. hiePref) extends the
constructions of PreOrder (resp. Pref) with the additional priority structure8.

The first concept to introduce is the translation of a hierarchy of pre-orders to
another signature and to another priority structure. Such translation is induced
by corresponding signature and partial order morphisms and goes in the opposite
direction.

As with specifications the interpretation structures are mapped to their reducts.
Relation are mapped to their reduct relations. The priority structure is deal with
in the following way: each level h is assigned the reduct of the pre-order at φ(h).

Definition 178 Let H2 be a Σ2-hierarchy of pre-orders and (H2,¹2) = po(H2)
its partial order of priority. Let φ : (H1,¹1) → (H2,¹2) be a partial order
morphism and σ : Σ1 → Σ2 a signature morphism. Recall that σ̌ : Mod(Σ2) →
Mod(Σ1) assigns to each Σ2-interpretation structure a Σ1-interpretation structure
(its reduct). In definition 147 σ̌ is extended to classes of interpretation structures
and to pre-orders.

The reduct hierarchy of pre-orders τ̌σ
φ (H2) of the hierarchy of pre-orders H2 with

respect to both φ and σ is the Σ1-hierarchy of pre-orders with:

• |τ̌σ
φ (H2)| = σ̌(|H2|), the class of reducts of the interpretation structures

from H2 as class of interpretation structures,

• the partial order (H1,¹1) domain of φ as partial order of priority and

8As with specifications and hierarchic specifications PreOrder is (isomorphic to) the full
subcategory of hiePref of the hierarchies of pre-orders with one only priority level. The same
holds for Pref and hiePref.
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• for each h1 ∈ H1 the pre-order rl(τ̌σ
φ (H2), h1) = σ̌(rl(H2, φ(h1))), the reduct

of the pre-order from H2 at the level φ(h1). �

The definition of the category hiePre of hierarchies of pre-orders follows.

Definition 179 The category hiePre of Σ-hierarchies of pre-orders consists of:

• Objects: All hierarchies of pre-orders,

• Morphisms: A morphism
←−

(σ, φ) : H2 → H1 from the Σ2-hierarchy of
pre-orders H2 to the Σ1-hierarchy of pre-orders H1 is

– a signature morphism σ : Σ1 → Σ2 from the signature of H1 to that
of H2

– and a partial order morphism φ : po(H1) → po(H2) from the partial
order of H1 to that of H2

such that

– σ̌(|H2|) ⊆ |H1|, i.e. the reducts of the interpretation structures par-
ticipating in H2 are interpretation structures participating in H1 and

– σ̌(rl(H2, φ(h1))) ⊆ rl(H1, h1) for every h1 ∈ |po(H1)|, i.e. whenever
two interpretation structures are related by the pre-order from H2 at
level φ(h1) their reducts are related by the pre-order from H1 at the
level h1. Note that this implies the reducts to be related in all pre-
orders from levels h′

1 with φ(h′
1) = φ(h1).

The morphism condition can equivalently be written τ̌σ
φ (H2) b H1.

Proof Composition results from the identity τ̌σ2·σ1
φ2◦φ1

(H3) = τ̌σ1
φ1

(τ̌σ2
φ2

(H3)) for any hi-
erarchy of pre-orders H3 in the domain of τ̌σ2·σ1

φ2◦φ1
. X �

The category of those hierarchies of pre-orders that are the differential semantics
of some specification is defined as expected.

Definition 180 The category hiePref is the full subcategory of hiePre with ob-
jects the Σ-hierarchies of pre-orders H such that H = H��. �

We see in the following that isomorphic hierarchies of differential preferences are
“pointwise equivalent” in the sense that the differential preferences at the same
level h are equivalent (≈, recall definition 150).
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Definition 181 Let H and H′ be Σ-hierarchies of pre-orders with the same
partial order of priority (H,¹) = po(H) = po(H′). The hierarchies of pre-orders
H and H′ are said equivalent , written H ≈ H′ iff

• |H| ≈ |H′| and

• ⊑h ≈ ⊑′
h for each h ∈ H where ⊑h and ⊑′

h are the pre-orders rl(H, h) and
rl(H′, h) assigned by H and H′ to the level h. �

The intended characterization of isomorphism in hiePref follows.

Lemma 182 Let σ : sg(S�1 ) → sg(S�2 ) be a signature isomorphism and let φ :

po(S�1 ) → po(S�2 ) be a strict partial order isomorphism. Then
←−

(σ, φ) : S�2 → S�1
is a hiePref-isomorphism iff τ̌σ

φ (S�2 ) ≈ S�1 .

Proof By induction on the partial order of priority po(S�1 ) = po(τ̌σ
φ (S�2 )) and formally

similar to the proof of the corresponding property for preference relations (in lemma
151). X

3.2.4 Syntax and Semantics

The categories hieSpec of hierarchic specifications and hiePref of their hierarchies
of differential preferences formalize the syntactical and semantical expression of
the same constructions. We see that syntactical morphisms and (co)constructions
can be translated to semantical morphisms and constructions. The reverse is also
true. This translation is given by the functors hieSem : hieSpec → hiePrefop and
hieSyn : hiePrefop → hieSpec.

Lemma 183 There is a hieSpec morphism (σ, φ) : S1 → S2 iff there is a hiePre

(or equivalently a hiePref) morphism
←−

(σ, φ) : S�2 → S�1 .

Proof We must show that τ̂σ
φ (S��1 ) b S��2 iff τ̌σ

φ (S�2 ) b S�1 . From the presentation

lemma in 176 we can equivalently show that τ̂σ
φ (S1) b S��2 iff τ̌σ

φ (S�2 ) b S�1 .

The condition on the axiom-interpretation structure part is the classical one and has
been shown in lemma 152 (for specifications). Therefore ax(τ̂σ

φ (S��1 )) ⊆ ax(S��2 ) iff

ax(τ̂σ
φ (S1)) ⊆ ax(S��2 ) iff |τ̌σ

φ (S�2 )| ⊆ |S�1 |.

Let (H1,¹1) = po(S1) = po(S��1 ) be the partial order of priority of S1 and S��1 and
(H2,¹2) = po(S2) = po(S��2 ) be the partial order of priority of S2 and S��2 .

• Assume that τ̂σ
φ (S��1 ) b S��2 . This is equivalent to τ̂σ

φ (S1) b S��2 . Recall that

the differential preference ⊑�S1,h1
of S1 at level h1 ∈ H1 is the intersection of the
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equivalence ≡�
S1,h−

1

of the levels under h1 with the preference ⊑⊙
S1,h1

induced by

the defaults in h1. Let ⊑�
S2,φ(h1) be the differential semantics from S2 at level

φ(h1). We must show ⊑�S1,h1
⊇ σ̌(⊑�

S2,φ(h1)).

We see firstly that ⊑⊙
S1,h1

⊇ σ̌(⊑�
S2,φ(h1)). This is proved as follows: ⊑⊙

S1,h1
is the

preference of sh1 = (ax(S1), df(S1, h1)). The defaults from the theory of S2 at
φ(h1) are the defaults implicit in ⊑�

S2,φ(h1). Therefore ⊑�
S2,φ(h1) is contained (Ga-

lois connection 30) in the preference ⊑s′
φ(h1)

of s′φ(h1) = (ax(S��2 ), df(S��2 , φ(h1))).

From τ̂σ
φ (S1) b S��2 we have σ̂(sh1) b s′φ(h1) and from lemma 152 this im-

plies sh1 c σ̌(s′φ(h1)). On the relation part this is ⊑⊙
S1,h1

⊇ σ̌(⊑s′
φ(h1)

). Finally

⊑⊙
S1,h1

⊇ σ̌(⊑s′
φ(h1)

) ⊇ σ̌(⊑�
S2,φ(h1)).

We now proceed by induction in the priority structure of S1.

– Assume h1 is minimal. Then ⊑�S1,h1
coincides with ⊑⊙

S1,h1
⊇ σ̌(⊑�

S2,φ(h1)).

– Assume now that h1 is not minimal. Then ⊑�S1,h1
is the intersection of

≡�
S1,h−

1

and ⊑⊙
S1,h1

. We already know ⊑⊙
S1,h1

⊇ σ̌(⊑�
S2,φ(h1)) so we have

to check that ≡�
S1,h−

1

⊇ σ̌(⊑�
S2,φ(h1)). This is straightforward from the in-

duction hypothesis for h′
1 ≺1 h1. Firstly note that φ(h′

1) ≺2 φ(h1) and
therefore φ(h−

1 ) ⊆ φ(h1)
− (the images of the levels under h1 are levels un-

der φ(h1)). Since ⊑�
S1,h′

1
⊇ σ̌(⊑�

S2,φ(h′
1)) we obtain ≡�

S1,h−

1

⊇ σ̌(≡�
S2,φ(h−

1 )
) ⊇

σ̌(≡�
S2,φ(h1)−) ⊇ σ̌(⊑�

S2,φ(h1)).

• Assume that τ̌σ
φ (S�2 ) b S�1 . This means that for each level h1 ∈ H1 the inclusion

⊑�S1,h1
⊇ σ̌(⊑�

S2,φ(h1)) holds. From definition 105 the defaults df(S�1 , h1) are the

defaults implicit in the pre-order R1
h1

= (|S�1 |,⊑
�

S1,h1
). The defaults df(S�2 , φ(h1))

are the defaults implicit in R2
φ(h1) = (|S�2 |,⊑

�

S2,φ(h1)). We now see that given a

default d1 implicit in R1
h1

then σ̂(d1) is a default implicit in R2
φ(h1). Assume it

is not. Then there are interpretation structures m2⊑
�

S2,φ(h1)n2 with m2 � σ̂(d1)

and n2 2 σ̂(d1). From the satisfaction condition the reduct σ̌(m2) of m2 satisfies
d1 and the reduct σ̌(n2) of n2 does not. From ⊑�S1,h1

⊇ σ̌(⊑�
S2,φ(h1)) we have

σ̌(m2) ⊑�S1,h1
σ̌(n2) contradicting the hypothesis of d1 being an implicit default

in R1
h1

.

We have seen that df(S�1 , h1) ⊆ σ̂(df(S�2 , φ(h1))) and therefore τ̂σ
φ (S��1 ) b S��2 .

X

The syntactic and semantic categories (and also their constructions) are related
by the functors hieSem : hieSpec → hiePrefop and hieSyn : hiePrefop → hieSpec.
Their definition follows.
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Definition 184

• The functor hieSem : hieSpec → hiePrefop associates to each hierarchic spec-
ification S its hierarchy of differential preferences S� and to each hieSpec

morphism (σ, φ) : S1 → S2 the hiePref morphism
←−

(σ, φ) : S�2 → S�1 .

• The functor hieSyn : hiePrefop → hieSpec associates to each hierarchy of
differential preferences S� its theory S�� and to each hiePref morphism
←−

(σ, φ) : S�2 → S�1 the hieSpec morphism (σ, φ) : S��1 → S ′��
2 .

Proof That hieSem and hieSyn are functors is a trivial consequence of lemma 183
above. X �

The semantics of the composition of hierarchic specifications is obtained by com-
bining the semantics of the argument specifications. That is to each colimit of a
diagram D in hieSpec there corresponds a limit in hiePref involving the semantics
of the hierarchic specifications in D. The limit of the image of D via hieSem.
The reverse is also true. In this way it is possible to define on the semantics side
a composition of hierarchic specifications and then check what is its syntactical
expression (in particular the resulting hierarchic specification).

Theorem 185 The image by hieSyn of a limit in hiePref is a colimit in hieSpec
and the image by hieSem of a colimit in hieSpec is a limit in hiePref.

Proof Preservation of constructions follows trivially from lemma 183 above. The
proof is formally identical with the proof of theorem 155. X

3.2.5 Isomorphism and Extensions

Isomorphic hierarchic specifications have theories that are related by a renaming
of both the signature and priority symbols. In this way isomorphic specifications
have, up to such a renaming, the same meaning. This implies, in particular, that
their credulous and skeptical consequences are related by such a renaming (of
signature symbols).

Theorem 186 Let (σ, φ) : S1 → S2 be an isomorphism in the category hieSpec.
Then E1 is an extension of S1 iff σ̂(E1) is an extension of S2.

Proof Omitted. We note only that
←−

(σ, φ) : S�2 → S�1 is a hiePref-isomorphism and
therefore τ̌σ

φ (S�2 ) ≈ S�1 . This implies that S�2 and S�1 have isomorphic (in PreOrder)

lexicographic combinations: σ̌(lex�(S�2 )) ≈ lex�(S�1 ). These lexicographic combina-
tions are the lexicographic preferences of the original specifications. X
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3.2.6 Existence of Constructions

The category StPart of partial orders is not cocomplete. Therefore, hieSpec does
not have all colimits and hiePref does not have all limits. However, when the
underlying category Sign of signatures is cocomplete, that is the only reason why
such constructions may not exist. In this case all colimits of (small) diagrams
exist in hieSpec provided that the corresponding combination of partial orders
exists. The same is true for the limits in hiePref.

The following definitions of the forgetful functors sending a hierarchic specifica-
tion or a hierarchy of pre-orders to their partial order of priority follows are of
convenience.

Definition 187

• The forgetful functor P : hieSpec → StPart sends each hierarchic specifi-
cation S to its partial order of priority po(S) and each hieSpec morphism
(σ, φ) : S → S ′ to the strict partial order morphism φ : po(S) → po(S ′).

• The forgetful functor Q : hiePre → StPart sends each hierarchy of pre-
orders H to its partial order of priority po(H) and each hiePre morphism
←−

(σ, φ) : H′ → H to the strict partial order morphism φ : po(H) → po(H′).
�

Existence of colimits in hieSpec is presented in the following theorem.

Theorem 188 Let D be a diagram in hieSpec. Then D has a colimit in hieSpec if
the category Sign of signatures is cocomplete and the diagram P(D) has a colimit
in StPart (i.e. the composition of the corresponding partial orders of priority is
defined).

Proof Similar to the proof of theorem 159. The colimit of a (small) diagram D : S →
hieSpec is obtained by lifting two colimits: the colimit in Sign of the corresponding
diagram of signatures F ◦ D : S → Sign where F is the forgetful functor sending Spec

to the underlying category of signatures and the colimit of the corresponding diagram
of partial orders P ◦ D : S → StPart.

Let Si be the specification assigned by D to the node i ∈ |S|. Let Σi be its signature
and Ri its partial order. Then the diagram F ◦ D assigns to the node i ∈ |S| the
signature Σi. And the diagram P ◦ D assigns Ri to the node i ∈ |S|.

Let CSign = {σi : Σi → Σ⊕, i in |S|} be the cocone colimit of F ◦ D (in Sign) and let

CStPart = {φi : Ri → R⊕, i in |S|} be the cocone colimit of P ◦ D (in StPart).
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We have to provide the hierarchic specification S⊕ of the colimit signature Σ⊕ and
with partial order of priority R⊕ such that ChieSpec = {(σi, φi) : Si → S⊕, i in |S|} is
a colimit in hieSpec.

Choose (as for specifications) for ax(S⊕) the union
⋃

i∈|S| σ̂i(ax(Si)) of the σi-trans-
lations of the axioms of the parameter specifications. For defaults consider firstly a
priority level h⊕ from R⊕. This level represents all those levels from each hierarchic
specification Si having h⊕ as image under the corresponding φi. Therefore the defaults

assigned to h⊕ are df(S⊕, h⊕) =
⋃

i∈|S| σ̂i

(
∪

hi∈φ−1
i

(h⊕)df(Si, hi)
)
.

An equivalent (but shorter) definition of S⊕ is S⊕ = di∈|S|τ̂
σi

φi
(Si). In this way S⊕ is

the smallest (w.r.t. b ) hierarchic specification such that each (σi, φi) : Si → S⊕ is a
hieSpec-morphism.

Moreover ChieSpec is a commutative cocone (for D) since CSign is a commutative cocone
for F ◦ D and CStPart is a commutative cocone for P ◦ D.

The property of colimit for ChieSpec follows from the corresponding properties for CSign
and CStPart. We have to check that, given another commutative cocone C′

hieSpec =

{(νi, ψi) : Si → S′, i in |S|} for D there is a unique morphism (µ, χ) : S⊕ → S′ such
that (νi, ψi) = (µ, χ) } (σi, φi) for all i in |S| (composition } in hieSpec is pairwise
composition).

From the commutative cocone C′
Spec we obtain the commutative cocones C′

Sign = {νi :

Σi → sg(S′), i in |S|} for F ◦ D and C′
StPart = {ψi : Ri → po(S′), i in |S|} for P ◦ D.

Since Sign is cocomplete there exists a unique signature morphism µ : Σ⊕ → Σ′ such
that νi = µ ◦ σi, for all i in |S|.

Since we assume that there is a colimit in StPart of P ◦ D then there exists a unique
partial order morphism χ : R⊕ → R′ such that ψi = χ · φi, for all i in |S|.

We only have to show that (µ, χ) is also a hieSpec morphism, i.e. that τ̂µ
χ (S⊕) b S′��.

Since νi = µ◦σi and ψi = χ·φi we have τ̂νi

ψi
(Si) = τ̂µ

χ (τ̂σi

φi
(Si)). The morphism condition

for each Si is τ̂νi

ψi
(Si) = τ̂µ

χ (τ̂σi

φi
(Si)) b S′��. This clearly implies τ̂µ

χ (S⊕) b S′�� since

S⊕ = di∈|S|τ̂
σi

φi
(Si). X

Existence of limits in hiePre and hiePref is assured by theorems 185 and 188. This
property is presented formally in the next theorem. Its (extra) proof displays the
construction of limits in hiePre and hiePref.

Theorem 189 Let D be a diagram in hiePre or hiePref. Then D has a limit
in hiePre (resp. hiePref) if the category Sign of signatures is cocomplete and the
diagram Q(D) has a colimit in StPart (i.e. the composition of the corresponding
partial orders of priority is defined).

Proof Similar to the proof of theorem 160. The limit of a (small) diagram D : S →
hiePre is obtained by lifting two colimits: that of the diagram G ◦ D : S → Sign where
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G is the forgetful functor sending hiePre to the underlying category of signatures and
the colimit of the corresponding diagram of partial orders Q ◦ D : S → StPart.

Let Hi be the hierarchy of pre-orders assigned by D to the node i ∈ |S|. Let Σi be its
signature and Ri its partial order of priority. In this way Σi is the signature assigned
by the diagram G ◦ D to the node i ∈ |S| and Ri is the partial order assigned by
Q ◦ D : S → StPart to i.

Let CSign = {σi : Σi → Σ⊕, i in |S|} be the cocone colimit of G ◦ D (in Sign) and let

CStPart = {φi : Ri → R⊕, i in |S|} be the cocone colimit of Q ◦ D (in StPart).

We have to provide the hierarchy of pre-orders H⊗ among the interpretation structures
of the colimit signature Σ⊕ and with partial order of priority R⊕ such that LhiePre =

{
←−

(σi, φi) : H⊗ → Hi, i ∈ |S|} is a limit in hiePre.

The interpretation structures participating in H⊗ are the Σ⊕-interpretation structures
whose reducts w.r.t. each σi participate in Hi. That is |H⊗| = {m ∈ |Mod(Σ⊕)| :
σ̌i(m) ∈ |Hi|, for all i ∈ |S|}. Let now h⊕ be a level from R⊕. Two interpretation
structures are related by H⊗ in level h⊕ iff their reducts w.r.t. σi are related in the
pre-orders from Hi at levels hi such that φi(hi) = h⊕.

That is m ⊑h⊕

⊗ n iff σ̌(m) ⊑hi

i σ̌(n) for all hi such that φi(hi) = h⊕ and for all i ∈ |S|

(⊑h⊕

⊗ is rl(H⊗, h⊕) and ⊑i is rl(Hi, hi)).

It is trivial to check that each ⊑h⊕

⊗ is a pre-order. The hierarchy of pre-orders H⊗

is also the biggest Σ⊕-hierarchy of pre-orders such that each
←−

(σi, φi) : H⊗ → Hi is a
hiePre morphism. The property of limit for LPreOrder follows from the corresponding
property of colimit for CSign and CStPart. We omit this proof (it is similar to the proof
of the corresponding theorem 160 for specifications).

Limits in hiePref are calculated in the same way. We have only to check that H⊗ is
the hierarchy of differential preferences of some hierarchic specification S⊕ whenever
each Hi is the hierarchy of differential preferences of some Si. This holds since limits
in hiePref are the image by hieSem of colimits in hieSpec (theorem 185). X

We end this section with two examples of combination of hierarchic specifications.
Firstly we see that the union of hierarchic specifications (with same partial order
of priority) is expressed by a canonical construction (a pushout).

Example 190 Let R∅ denote the Σ-hierarchic specification with R as priority
structure, an empty set of axioms and an empty set of defaults in each level
h ∈ |R|. Let S1 and S2 be Σ-hierarchic specifications both with R as partial
order of priority. Let (iΣ, iR) : R∅ → S1 and (iΣ, iR) : R∅ → S2 denote the
hieSpec morphisms consisting of the identity signature morphism from Σ to Σ
and the identity partial order morphism from R to R. Then the (vertex of the)
pushout of the diagram

S1
(iΣ,iR)
← R∅

(iΣ,iR)
→ S2
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is the specification S1dS2 having as axioms the union of the axioms from S1 and
S2 and in each level h the union of from S1 and S2 at that level. This is illustrated
by the following figure.

S1dS2

S1

66nnn
S2

hhP P P

R∅
(iΣ,iR)

hhPPPPPPPP (iΣ,iR)

66nnnnnnnn

Figure 3.9: Union as a Colimit

Note finally that, from theorem 185, the previous diagram can be redrawn at the
semantic level by changing the specifications to their hierarchies of differential
preferences and reverting the morphisms. The hierarchy of differential preferences
associated with S1dS2 will be the (vertex of the) limit of the new diagram. It
is S�1 eS�2 , the pointwise intersection of the hierarchies of differential preferences
associated with S1 and S2. △

We have already seen in examples 173 and 172 two types of combinations of
partial orders. In the next example we illustrate how a new priority level can be
added in between existing priority levels. (Since the combination of signatures has
been illustrated for specifications we concentrate in the combination of priority
levels).

Example 191 Recall the hierarchic specification MAMMALS from example 75
and consider now that we have constructed only the portion of this specification
concerned with mammals, bats and Batman (see figure 3.10). The diagram stat-

Mammals : {¬Fl(m) : m ∈ M}

Bats : {Fl(b) : b ∈ B}

33ffffffffffffffff
Humans : {Dr(u) : u ∈ U}

kkVVVVVVVVVVVVVV

batman : {¬Dr(bm)}

kkXXXXXXXXXXXXXXXX

33hhhhhhhhhhhhhh

Figure 3.10: MAMMALS

ing how to construct the original specification, i.e. stating that the level Humans
and its defaults should be added in between batman and Mammals is displayed in
the following figure 3.11.

The colimit of this diagram is the specification MAMMALS already displayed.
Note that the hierarchic specifications within boxes state that the level µ is
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Mammals : {¬Fl(m): m ∈ M}

Bats :

OO

{Fl(b): b ∈ B} Humans : {Dr(u): u ∈ U}

batman :

OO

{¬Dr(bm)}

ν : ∅

[[7777777777777777777
// ν : ∅

µ : ∅

OO

µ : ∅oo

OO

β : ∅

ZZ5555555555555555555
// β : ∅

OO

Figure 3.11: Diagram of MAMMALS

between ν and β. And µ should be identified with Humans and β and ν with
batman and Mammals respectively. △

3.2.7 Canonicity of the Semantics

In this section we see that the semantics of hierarchic specifications is minimal
among other alternative semantics that can express composition of such specifi-
cations. We mean now the addition of syntactical entities such as axioms and
defaults and also of priority levels and new relations between them.

The priority structure introduces further restrictions on the allowed semantics of
hierarchic specifications. Firstly we impose that hierarchic specifications having
the same semantics must have the same partial order of priority. And secondly
(see below in definition 193) such semantics must interpret the addition of further
relations between existing priority levels. Other concepts are similar to those
introduced in section 3.1.6. Note that the operation d is now (definition 108)
pointwise union, i.e. union of axioms and, for each level h, union of defaults at
that level.

Definition 192 A semantics of Σ-hierarchic specifications is a function [[]] with
the set of all Σ-hierarchic specifications as domain, such that if [[S1]] = [[S2]] then
po(S1) = po(S2) for any two Σ-hierarchic specifications S1 and S2. �

We also demand that this semantics is well defined for operations on the prior-
ity structure. In particular we are concerned with the identification of further
relations of priority between existing unrelated levels. This corresponds to the
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operations that, given a partial order of priority R result in a partial order of
priority R′ with more relations among the same levels: R b R′ and |R| = |R′|.
The effect of such an operation on a hierarchic specification S with R as partial
order of priority is the specification S′ having R′ as partial order of priority.

Definition 193 Let S be a Σ-hierarchic specification with R = po(S) as partial
order of priority. Let R′ be a partial order with R b R′ and |R| = |R′|. Let
i : |R| → |R′| be the identity function (from |R| to |R′| = |R|) and note that
i : R → R′ is a strict partial order morphism. Recall from definition 174 that
iR′(S) is the Σ-hierarchic specification with R′ as partial order of priority, the
same axioms as S and, at each level h, the same defaults as S at that level (i.e.
only the priority structure changes).

The semantics [[]] is said to be well defined under addition of priority relations iff
[[iR′(S1)]] = [[iR′(S2)]] whenever [[S1]] = [[S2]], for every Σ-hierarchic specifications
S1 and S2 with R as partial order of priority and any partial order R′ such that
R b R′ and |R| = |R′|. �

The motivation for the definition above is that it is possible to derive the seman-
tics of iR′(S) from the semantics of S. In other words the semantics of S alone
has enough information to account for the addition of further priority relation-
s among the levels present in S. A special case of such operations, that is of
technical importance is the minimization of a level h from S. This minimization
corresponds to make h as important as possible. The level h cannot be made
more important than another level h′ under h, since such levels have been speci-
fied as being more important than h itself. But it can be made more important
than the levels previously unrelated to h. Minimization w.r.t. h is the addition
of relations of priority stating that h is better (under) the levels h′′ previously
unrelated to h. The levels h′ under h will also be better than such h′′. In figure
3.12 we display a priority structure (left) and its minimization w.r.t. the level 1
(right). The level 1 remains less important than 0 but becomes more important
than 2′.
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Figure 3.12: Minimization

Definition 194 Let S be a Σ-hierarchic specification with (H,¹) = po(S) as
partial order of priority. Let h ∈ H and R′ = (H ′,¹′) be the partial order with
H = H ′ and h1 ¹′ h2 iff h1 ¹ h2 or h1 ¹ h and h2 6¹ h. The minimization of S
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w.r.t. h is the Σ-hierarchic specification min(S)(h) = iR′(S) having R′ as partial
order of priority.

Proof We omit the proof that R′ is indeed a partial order. X �

Finally the semantics of hierarchic specifications satisfying the appropriate con-
ditions presented above are, in this context, also named proper compositional
semantics.

Definition 195 A semantics [[]] of Σ-hierarchic specifications is said a proper
compositional semantics iff

• it is compatible either with the skeptical or with the credulous conse-
quences,

• interprets d and

• is well defined under addition of priority relations. �

The hierarchy of differential preferences is a proper compositional semantics. In
fact it supports much more operations than those referred.

The reason for choosing only these operations and not more is the following: we
see that any semantics providing them must have more structure than the hier-
archy of differential preferences. Any semantics providing an interesting theory
of composition should provide these operations. Therefore it has more structure
than the chosen semantics. This justifies the choice of the hierarchy of differential
preferences as the semantics for composition.

That the hierarchy of differential preferences is the least proper compositional
semantics of hierarchic specifications is presented in the following theorem.

As for specifications this property is established only for semantics of hierarchic
specifications from compact institutions having negation (see definitions 65 and
118 and also remark 119).

Theorem 196 Let Σ be a signature of a compact institution (I, neg) having
negation. The hierarchy of differential preferences is the least (w.r.t. 3) proper
compositional semantics of the Σ-hierarchic specifications.
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Proof

• Firstly we must check that the hierarchy of differential preferences is a proper
compositional semantics. Clearly it is compatible with either the skeptical or
credulous consequences. In fact it is compatible with both since these conse-
quences are derived from the lexicographic preference of a specification S (see
definition 134 and lemma 131). The lexicographic preference can be derived from
S�: it is the lexicographic combination of S� (see theorem 99).

Moreover it interprets d. See the Galois connection presented in 111. The oper-
ation interpreting d is the intersection e of the hierarchies of differential prefer-
ences.

And it is well defined for addition of priority levels. This amounts to show that
iR′(S1)

� = iR′(S2)
� whenever S�1 = S�2 . We have seen in the proof of the

presentation lemma 176 that φ(S1)
� = φ(S2)

� whenever S�1 = S�2 for any strict
partial order morphism φ.

• Furthermore we must show that given a proper compositional semantics [[]] of Σ-
hierarchic specifications and Σ-hierarchic specifications S1 and S2 if [[S1]] = [[S2]]
then S�1 = S�2 . This is equivalent to show the equality S⊕

1 = S⊕
2 of the hierar-

chies of lexicographic preferences due to the equivalence between both semantics
presented in theorem 94.

An important preliminary result is that if [[S1]] = [[S2]] then S1 and S2 must have
the same lexicographic preference lex◦(S1) = lex◦(S2). We omit this proof that is
similar to the proof of theorem 169 (canonicity of the preference semantics) and
uses addition (d) of axioms and defaults.

Using this fact the structure of the proof is as follows. We assume that S⊕
1 6=

S⊕
2 and construct from S1 and S2, using d and minimization, the hierarchic

specifications S′′
1 and S′′

2 . Since [[S1]] = [[S2]] then also [[S′′
1 ]] = [[S′′

2 ]] which implies
lex◦(S′′

1 ) = lex◦(S′′
2 ). However, we see that S′′

1 and S′′
2 have different lexicographic

preferences. This implies S⊕
1 = S⊕

2 as intended.

Let h be a priority level where S⊕
1 and S⊕

2 differ. This means that ⊑⊕
S1,h 6= ⊑⊕

S2,h

where ⊑⊕
S1,h and ⊑⊕

S2,h are the lexicographic preferences from S⊕
1 and S⊕

2 at that

level. Therefore there are m ⊑⊕
S1,h n and m 6⊑⊕

S2,h n (or vice versa). It is important

for the rest of the proof that the relation m ⊑⊕
S1,h n is strict. If it is let S′

1 = S1

and S′
2 = S2. If not then we construct S′

1 and S′
2 as follows: since m 6⊑⊕

S2,h n
there is a default d2 from a level h′ ¹ h in S2 with m � d2 and n 2 d2. Add this
default d2 to the level h in both hierarchic specifications thus obtaining S′

1 and
S′

2 (using d with the hierarchic specification having d2 as only default in that
level and empty sets of defaults in other levels). These hierarchic specifications
still differ at level h. We have now m 6⊑⊕

S′
2,h

n as before and m @
⊕
S′

1,h
n (strict) as

wanted. We want now that these relations are carried to the overall lexicographic
preference.

From S′
1 and S′

2 obtain the hierarchic specifications S′′
1 = min(S′

1)(h) and S′′
2 =

min(S′
2)(h) by minimizing h.
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We now see that the overall lexicographic preferences of S′′
1 and S′′

2 differ. In fact
the lexicographic preference is obtained by intersecting the local lexicographic
preferences. Since S′′

1 and S′′
2 are obtained by minimization w.r.t. h this corre-

sponds to consider the level h, the levels under h and those above h.

– It is easy to check that the lexicographic preference at level h does not
change by minimization since the priority structure of the levels under h is
not modified. In this way ⊑⊕

S′
1,h

= ⊑⊕
S′′

1 ,h
and ⊑⊕

S′
2,h

= ⊑⊕
S′′

2 ,h
.

– The levels under h can be omitted in the intersection since their lexico-
graphic preferences contain the lexicographic preference at h.

– In the lexicographic preferences at the levels k above h we have m @
⊕
S′′

1 ,k
n

and m 6⊑⊕
S′′

2 ,k
n since interpretation structures that are unrelated (resp.

strictly related) at a certain level remain unrelated (resp. strictly related)
at levels above.

It is straightforward to conclude that the lexicographic preference ⊑⊕
S′′

1
of S′′

1

will have m @
⊕
S′′

1
n whereas that from S′′

1 will have m 6⊑⊕
S′′

2
n. We conclude

lex◦(S′′
1 ) 6= lex◦(S′′

2 ) as wanted. X

3.2.8 Other Composition Forms

Composition of (hierarchic) specifications is understood in the previous formal-
izations as the addition of syntactical entities such as axioms, defaults, priority
levels and relations between them.

This provides the most general framework for the identification of composition
operations. Indeed the specification result must be constructed by adding such
syntactical entities to the parameter specifications.

This does not mean, however, that the composition forms between specifications
must correspond to colimits in the complete categories Spec or hieSpec. In the
following we refer some examples of composition forms that are formalized by
colimits in subcategories of either Spec or hieSpec.

A first motivation is the following. The formalism adopted is defeasible in the
sense that previous conclusions may be rejected when new information is added.
This is important when modeling certain patterns of reasoning (see [63]) or, closer
to specification issues, when putting together data bases with inconsistent data,
in modeling the frame rule or the closed world assumption ([8]), the specificity
principle ([74, 76]) or simply inheritance with overriding ([9, 12]). However it
is also important that the specifier has the means to state that certain parts of
the specification (possibly build with constructions allowing for defeasibility) are
stable, in the sense that their conclusions can no longer be contradicted. One
possibility to achieve this is to identify such parts of the specification with their
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skeptical consequences (see [10]). The same goal can be achieved by stating
that, when composing such parts of the specification, the skeptical consequences
should be preserved. In this way we are looking for the smallest specification
build from the parameter specifications that furthermore preserves the skeptical
consequences of such parameter specifications.

The formalization of such an operation is simple. Instead of taking Spec or hieSpec

one needs to consider the categories Spec + Skept or hieSpec + Skept obtained by
restricting the morphisms in Spec or hieSpec to those that preserve the skeptical
consequences. Colimits in these categories are now the smallest specifications that
include the axioms and defaults (and possibly priority structure) of the parameter
specifications and that, furthermore, respect the new morphism condition, i.e.
preserve the skeptical consequences of the parameter specifications. The semantic
counterpart of the new categories is also easy to obtain (inclusion of maximal
models).

This idea can easily be generalized. The formalization of a new general form of
composition corresponds to taking colimits in appropriate subcategories of Spec

or hieSpec. These subcategories are obtaining by further restricting the morphism
condition with the intended preservation property.

Another example relevant for specification is the following. It is often the case
that, although using a defeasible formalism, one would like to be as close to the
classical case as possible. This is the case, for example when the defaults are of
a very restricted nature, and are used for imposing some global properties such
as the frame rule. It is known that the composition of specifications having only
one extension does not yield necessarily specifications with that property. But
we may propose a new form of composition by imposing this property. The first
solution is to restrict the category of specifications to those that only have one
extension. Another possibility is to impose the additional morphism condition
that the number of extensions should not augment (if the arguments have one
only extension so will the result). The corresponding semantic condition is again
easy to find (on the number of maximal equivalence classes). Composition in
this case corresponds to the smallest specification having the axioms, defaults
(and possibly priority structure) of the parameters and, furthermore, only one
extension.

The general rule for the definition of new forms of composition has to be checked
in each case. It is not necessarily the case that the corresponding colimits exist.
Usually it is simpler to check the existence of such constructions at the semantic
level. This corresponds to finding the biggest pre-order (or hierarchy of pre-
orders) satisfying the new conditions. After a semantic solution is found (if at
all) one must find a specification having this solution as semantics. The best can-
didate is the theory of this pre-order, since it is the specification whose semantics
is closer to the given pre-order. Finally and also important is to check whether
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there is a finite way of expressing such specification (see [25] for a treatment of
the condition of preservation of skeptical consequences).

3.3 Final Remarks

This chapter has generalized the classical theory of composition of presentations
to specifications and hierarchic specifications. Composition is formalized both on
the syntactic side and on the semantic side and consists of the addition of syntac-
tical entities (axioms, defaults, priority levels and relations between these). The
semantical characterization of such constructions assures that they are abstract,
i.e. that they depend only on the meaning of the specifications involved, and not
on the particular way these are written. Further independence of representation
is obtained by the notion of isomorphism. Composition does not depend on the
choice of signature symbols and priority level names (since categorial construc-
tions are defined up to isomorphism). Moreover, it is often the case that general
forms of composition are defined on the semantic level. The framework provides
the means to exhibit the corresponding syntactical expression (see section 3.2.8).

We saw also that the semantics adopted have precisely the structure needed to
formalize these forms of composition. The proof of this fact (and the techniques
used to prove it) are to our best knowledge, new.

This general framework can be extended to account for still other forms of com-
position as sketched in section 3.2.8. The concepts here presented are inspired
in the composition for the classical case (see [46]) and driven by [12] where the
concepts of syntactical composition are put forward. The semantic account is, to
our best knowledge, new.



Chapter 4

Use of Defaults in Specification

This chapter illustrates the use of hierarchic specifications and their composition
operations in specification. The concepts presented in this chapter have been in-
troduced elsewhere, and correspond to the application of the “abstract specifica-
tion theory” to object oriented systems modeled with temporal logic and defaults.
The references that most directly influenced this chapter are [31, 11, 84, 61].

Firstly an institution, inspired in the Object Specification Logic from [85] is de-
fined (in section 4.2). This logic serves as the base formalism for the specification
of object oriented systems. Questions specific to the use of axioms and defaults
(with priorities) to specify classes (of objects) are discussed in section 4.3. Their
application in a simple example is presented in section 4.4.

Operations combining specifications are divided in two types: those enlarging the
structure of the specification that are formalized with the concepts introduced in
chapter 3 and those simplifying it. In this way the specification process evolves by
composition of specification parts and is punctuated by simplifications of struc-
ture such as priority abstraction, and cristalization. This later operation assigns
to a specification a set of axioms that has the original intended models as only
models. Its importance results from the recognition that many of the properties
specified with the use of defaults represent absence of information at specification
time. This information will be available at the end of the specification process.
At that point the specification can be cristalized. The use and definition of these
operations is presented in section 4.1. They are illustrated in section 4.5. That
defaults are also needed at run time is illustrated in section 4.6. In section 4.7
we conclude the chapter.

161
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4.1 Operations on Specifications

The basic parts of a specification are defined by the use of axioms and priori-
tized defaults of a convenient institution, like the one presented in section 4.2.
These basic parts are them combined in order to define larger and more complex
specifications. In this section we concentrate in these institution independent
operations. A first set of operations has been formalized in chapter 3. These
are the colimits in the category Spec or hieSpec and build specifications from
smaller parts by addition of formulas, either axioms or defaults, possibly adding
or organizing priority levels.

This set of operations that augment the structure of the specification is comple-
mented with operations that simplify that structure, still keeping their logical
meaning. These operations are priority abstraction and cristalization. Priori-
ty abstraction should be used when further operations do not refer the internal
structure of the abstracted specification, but may still defeat it. Cristalization,
on the contrary, transforms a specification in a classical presentation, keeping
the skeptical consequences. This operation should be used at a later stage in the
specification.

The use of composition operations in specification is briefly referred in section
4.1.1. Priority abstraction and cristalization are referred in section 4.1.2. Cristal-
ization is defined in this section.

4.1.1 Composition

The composition operations have been used in the classical context to formalize
concepts such as communication and aggregation ([31]), inheritance ([9, 21, 22,
61]), parametric specifications ([16]) and reification ([30]), among other.

Colimits in Spec or hieSpec generalize the classical composition with the addition
of defaults and priorities among them. This means that the classical operations
may be generalized to this more expressive framework. For example the for-
malization of communication presented in section 4.5.4 is a trivial adaptation of
[31].

Inheritance corresponds to the construction of a new specification (usually of
a class, see section 4.5.1) by the (re)use of some previously defined specifica-
tion. The classical composition operations can only formalize a monotonic form
of inheritance, where more properties are added to the original specification.
However, the possibility of redefining parts of the original specification improves
modularity and reusability ([11, 61]) and is formalized by overriding of properties
in [74, 12, 75, 11, 61]. In this way some of the properties of a class may no longer
hold for a subclass.



4.1. OPERATIONS ON SPECIFICATIONS 163

The framework presented in chapter 3 allows for the definition of a form of inheri-
tance where some parts of the original specification are kept and other overridden.
This possibility is named inheritance with selective overriding and correspond-
s to a hierarchic specification morphism between the original and the resulting
specifications. An example of this construction is presented in section 4.5.1.

4.1.2 Simplification of Structure

The operations of priority abstraction and cristalization are defined in the follow-
ing. Priority abstraction assigns to a hierarchic specification an equivalent one
with only axioms and a level of defaults. Cristalization assigns to a specification
the set of axioms that have the original skeptical consequences as consequences.
This later operation is defined below.

Of less importance, but still useful, are the simplifications that consist in removing
from the specification defaults that are redundant (i.e. implicit). Care has to be
taken with this process since redundant defaults may also be useful, in the sense
that they correspond to lemmas, i.e. they may fasten the derivation process.
These simplifications use the characterization of implicit defaults presented in
theorems 51 and 123.

Priority Abstraction

Priority abstraction consists in forgetting the structure of a specification and
providing an equivalent one with only one level of defaults. This is formalized by
the operation flat(S) presented in section 2.2.2. Recall that S must be finite and
the underlying institution must have disjunctions and conjunctions.

Priority abstraction is important when combining large specifications, still obtain-
ing a manageable specification. The abstractions of the argument specifications
can be taken as the basis for composition, instead of their detailed descriptions.
Inheritance with selective overriding may again be used at this stage until fur-
ther priority abstraction is needed. The use of priority abstraction is illustrated
in section 4.5.2.

On the Need of Cristalization

A specification is a rigorous description of the potential behavior of a system.
Such a system may use some defeasible mechanism and the corresponding spec-
ification must describe it. For example databases can be seen as theories that
evolve by revising previous beliefs (imposed by the closed world assumption).
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However, the use of defaults at specification time is not a consequence of the need
of some defeasible mechanism in the final system. In particular the specification
of systems that do not use any defeasibility mechanism may itself use defaults.
These formalize absence of specification information. They express properties
that may be overridden at other points in the specification.

Such properties, however, can be expressed as axioms when all specification infor-
mation is available. This corresponds to apply to some part of the specification
a cristalization operation. This operation yields a specification where the inter-
actions between defaults have been computed and the global effects expressed as
axioms. Operations of cristalization are illustrated in sections 4.5.3 and 4.5.7.

Definition of Cristalization

Cristalization consists in assigning to a specification a corresponding presentation
(axioms) having the same skeptical consequences.

We define this operation for flat finite specifications of compact institutions hav-
ing disjunctions. The corresponding operation for a hierarchic specification is
obtained by the cristalization of flat(S).

Firstly we define the operation that assigns to a flat specification S another spec-
ification OneExt(S) having the same axioms as S but only one extension. The
union of the axioms and defaults from OneExt(S) is the intended cristalization of
S. The operation OneExt(S) is interesting in itself since it approximates the clas-
sical case with the advantage of further overriding of defaults being still possible.

The specification OneExt(S) is defined only for finite specifications of compact
institutions having disjunction as follows.

Definition 197 Let S be a finite Σ-specification of a compact institution (I, dj)
having disjunctions. Let ∆̌ denote the disjunction djΣ(∆) of the formulas in the
set ∆. Then OneExt(S) is the specification with

• ax(OneExt(S)) = ax(S), the same axioms as S and

• df(OneExt(S)) = {∆̌ : ∆ ⊆ df(S) and ∆̌ is a skeptical consequence of S},
the disjunctions of the original defaults from S, that are skeptical conse-
quences of S as defaults. �

Note that the defaults of OneExt(S) are obtained by constructing all subsets of
df(S) and then checking skeptical consequence of S. Alternatively, if the set of
extension presentations of S is available each set ∆ is obtained by picking one
default from each such extension presentation.

The intended properties of OneExt(S) are stated in the following lemma.
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Lemma 198 Let S be a finite Σ-specification of a compact institution (I, dj)
having disjunctions. Then OneExt(S) has only one extension and the skeptical
consequences of S coincide with those of OneExt(S).

Proof If S is inconsistent so is OneExt(S). Both have one only extension and both
have the whole Σ-language as skeptical consequences.

If S is consistent so are its skeptical consequences. In particular the union E =
ax(OneExt(S)) ∪ df(OneExt(S)) is consistent. It is obvious that E is the only exten-
sion presentation of OneExt(S).

We have to show that the skeptical consequences of S coincide with those of OneExt(S).
The skeptical consequences of OneExt(S), skept(OneExt(S)) are the consequences of its
only extension presentation E. Since E ⊆ skept(S) it follows trivially that

skept(OneExt(S)) = E•• ⊆ skept(S)•• = skept(S).

The other inclusion is proved as follows. We see that any model m of E is maximal
according to S. Therefore E• ⊆ max(S) and E•• ⊇ max(S)• = skept(S), which ends
the proof.

Consider a model m of E. In the preference of S there is a maximal model m′ with
m ⊑ m′ (lemma 66). Let d ∈ df(S) and assume that m′

� d. We see that m also satisfies
d and is, therefore equivalent to m′ and also maximal. Let [m′] be the (maximal)
equivalence class of m′ and choose for each maximal equivalence class [m′

1], ..., [m
′
n]

different from [m′] a default d′i that is satisfied by m′
i and not by m′ (this is possible

since m′ and m′
i are unrelated and therefore must satisfy different defaults). Note that

since S is finite there is also a finite number of such maximal equivalence classes (as
many as extension presentations). The disjunction d ∨ ’.1 ∨ ... ∨ d′n of the previous
formulas is a skeptical consequence of S since it holds in all its maximal equivalence
classes. Therefore d∨d′1∨ ...∨d′n ∈ E and m � d∨d′1∨ ...∨d′n. Since m′ does not satisfy
any of the d′i and m ⊑ m′ then also m does not satisfy any of the d′i . We conclude
from m � d ∨ d′1 ∨ ... ∨ d′n that m � d. In this way m is equivalent to m′. X

The cristalization of S is defined simply as the union of the axioms and defaults
from OneExt(S).

Definition 199 Let S be a finite Σ-specification of a compact institution (I, dj)
having disjunctions. The cristalization of S is the presentation Axiomatize(S) =
ax(OneExt(S)) ∪ df(OneExt(S)) having as (classical) consequences the skeptical
consequences of S.

Proof That the consequences of Axiomatize(S) are the skeptical consequences of S
has been shown in the proof of the lemma 198 above. X �

An alternative definition of Axiomatize(S) may be found in [10].
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4.2 The Underlying Logic

The underlying logic is linear temporal logic (propositional) with future and
past operators ([85]). Each trajectory begins with a start state. This means that
states are named by the natural numbers (IN0) and not by the integers (no infinite
past). As in [31, 85] propositional symbols are of two kinds. Those representing
observations of the behavior of an object, the attributes and those representing
occurrence or enabling of actions. Occurrence of actions is separated from their
enabling for methodological reasons. This procedure separates the specification of
an action in the specification of the conditions in which it may occur (enabling)
from the effects that its occurrence may have (see section 4.4 for examples).
Enabling is a non trivial concept in temporal logic with multilinear time ([33]).

The institution corresponding to this logic is briefly described below by defining
the signatures and language and the interpretation structures and satisfaction.

4.2.1 Syntax

Signatures and their language are defined as follows.

Definition 200 A signature Σ is a pair (Σact, Σobs) where Σact is the set of action
symbols and Σobs is the set of observation symbols (or attributes).

The set of propositional symbols PΣ from the signature Σ is the set Σobs ∪
{✸a,Oa; a ∈ Σact} of the observation symbols and the enabling and occurrence
of the action symbols.

The set LΣ of Σ-formulas is inductively generated as expected. The formula ∗
represents (holds only in) the initial state that corresponds to the creation of the
whole system. The connective U is until and S is since.

• PΣ ⊆ LΣ,

• ∗ ∈ LΣ,

• ¬f ∈ LΣ if f ∈ LΣ,

• f ⇒ f ′, fUf ′ and fSf ′ belong to LΣ if f and f ′ do.

Other connectives such as ∧, ∨, true and false are defined as the usual abbrevi-
ations. Also Ff abbreviates true Uf (sometime in the future), Pf abbreviates
true Sf (sometime in the past), Gf abbreviates ¬F¬f (always in the future), Hf
abbreviates ¬P¬f (always in the past), Xf abbreviates falseUf (next) and Yf
abbreviates falseSf (previous). �
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Attributes (and also actions) will often be represented with “parameters” as in
o(u). In fact these are here “user friendly” propositional symbols.

4.2.2 Semantics

The semantics of the linear temporal logic consists of anchored models that are
defined as follows.

Definition 201 A (linear) frame is the set IN0 of natural numbers (with the
< ordering as visibility relation). A PΣ-model (or life-cycle) M is a function
M : IN0 → 2PΣ assigning to each time point n ∈ IN0 a set of propositional
symbols (that hold in n). An anchored PΣ-model is a pair (M, n) where M is a
PΣ-model and n ∈ IN0. �

Truth of a formula at point n in a model M is defined in the construction of
formulas as expected:

• M �n p iff p ∈ M(n) for p ∈ PΣ,

• M �n ∗ iff n = 0,

• M �n ¬f iff M 2n f ,

• M �n f ⇒ f ′ iff either M 2n f or M �n f ′,

• M �n fUf ′ iff there exists t > n such that M �t f ′ and M �s f for all s
such that n < s < t,

• M �n fSf ′ iff there exists t < n such that M �t f ′ and M �s f for all s
such that t < s < n.

Satisfaction of a formula in the anchored model (life-cycle) (M, n) represented
by (M, n) � f is truth of f in n ∈ IN0.

Remark 202 As noted in remark 119 this institution has negation and the nega-
tion of f is ¬f . It also has the obvious disjunctions and conjunctions.

4.2.3 Built in Axioms

Similar versions of this logic presented in [31, 85] restrict the life cycles to those
satisfying certain conditions related with the paradigm of object orientation.
These conditions are imposed by appropriate axioms in sections 4.3 and 4.4.
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4.2.4 Decidability

The linear temporal logic presented is decidable (see [28]).

4.3 Classes

Objects are grouped into classes when they have the same archetypical behavior.
The specification of a class is the specification of that archetypical behavior, i.e.
of the template of the class.

The objects populating a class are distinguished by some identification mecha-
nism. This is usually a data type. We will simply assume that an appropriate set
of object names is available (see also section 4.5.5).

The specification of the template of the class consists in the specification of its
behavior, i.e. the conditions regulating the occurrence of local actions (or local
methods), plus the effects of the occurrence of those actions in the local attributes.

In this section we concentrate in the conditions that are general to the specifica-
tion of (the template of) any class. These are imposed by adding corresponding
axioms or defaults to the specification of each class. Differences to the standard
use of occurrence of actions are referred in section 4.3.1. The relation between
enabling and occurrence of actions is displayed in section 4.3.2. In section 4.3.3
the (technically useful) parameterless actions are introduced. In section 4.3.4
the conditions regulating creation and destruction of objects are presented. The
locality axioms (that local attributes may only be changed by local actions) and
their relation to the frame rule are referred in section 4.3.5. The specification of
sequential (non-concurrent) objects is presented in section 4.3.7. In section 4.3.8
“(re)active” objects are introduced. Some methodological considerations on the
specification of enabling of actions are presented in section 4.3.6.

4.3.1 Past, Present and Future

Contrary to usual specification style ([31, 85]) we prefer to interpret the change
in the value of an attributes as simultaneous with the occurrence of the action
that changes it. This means that to specify that the occurrence of action a causes
attribute o to become true the formula Oa ⇒ o is taken, instead of Oa ⇒ Xo.
Our motivation for this “time shift” and the alternative specification style is the
following. The effect of an action happens somewhere between the beginning of
the occurrence of an action and its conclusion. When actions are modeled as
timeless their effects are simultaneous with their occurrence (somewhere between
the coinciding beginning and conclusion). There is no technical reason for using
this style.
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4.3.2 Occurrence and Enabling

Actions can only occur if they were enabled. This is formalized by an axiom of
the form Oa ⇒ Y✸a, for each action a.

4.3.3 Parameterless Actions

An action a(x) codes a potentially infinite number of actions. For example the
action file◦birth(u) (specified below in section 4.4.4) corresponds to the creation
of a file by an user an u. This action will be “copied” resulting in several actions
file◦birth(u1), ..., file◦birth(un), one for each user (section 4.5.5). It is convenient
to add to each action with parameters a corresponding parameterless action a()
with the meaning that an occurrence of a() corresponds to an occurrence of at
least one of the a(x).

This meaning is imposed as follows: the axioms ✸a(x) ⇒ ✸a() and Oa(x) ⇒ Oa()
impose that enabling (resp. occurrence) of a(x) implies enabling (resp. occur-
rence) of a(). In order to impose that these are the only circumstances where a()
should be enabled or occur the defaults ¬✸a() and ¬Oa() are added.

4.3.4 Creation and Destruction

The rules regulating creation and destruction of objects are the following: objects
can only be created if they do not exist. And can only be destructed if they
exist. No method (except creation) of an object can be invoked if the object
does not exist. Axioms of the form ✸birth() ⇒ ¬exists, ✸death() ⇒ exists and
✸a() ⇒ exists formalize these restrictions. Each object has a birth() and a death()
actions and an attribute exists.

4.3.5 Locality and the Frame Rule

Common to all objects (from all classes) is the requirement that they behave
according to the paradigm of object orientation. In particular we assume that
the properties of individual objects can only be changed by local methods (i.e.
local actions). This requirement can be coded by the axioms (Yo 6⇔ o) ⇒
(Oa1() ∨ ... ∨ Oan()), for each attribute o, where a1(), ..., an() are all local actions
without parameters. In this way we impose that o changes because one of these
actions occurred. (Recall that if the action that occurred is a1() this means that
some of the a1(x) occurred.)

Although these axioms impose the locality principle they still allow unwanted
changes of the values of the attributes. In fact not all of those actions act upon
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all attributes. We would like to add an axiom stating that the value of each
attribute can only change by the occurrence of those local actions that explicitly
change that attribute. A convenient way of specifying this condition is to add a
priority level “frame” with the defaults expressing the frame rule: the values of
the attributes persist unless explicitly stated otherwise. These defaults are of the
form Yo ⇔ o. The specification of the actions that actually change the attribute
will override this default.

4.3.6 Default Enabling Conditions

Default enabling conditions are the conditions determining whether the action
may or may not occur in those situations that are not covered by the rest of
the specification (i.e. unthought of). The enabling conditions of a potentially de-
structive action (such as death) should be specified by declaring that, by default,
the action is not enabled. And, at a second stage, explicitly declare in which
situations it is enabled.

The opposite style, of declaring an action as enabled by default and then explicitly
stating in which situations is not enabled, is also possible but should be reserved
for actions whose occurrence is not destructive.

It is worthwhile noting that both styles may be used in the description of an
action, organized in levels of less and less generality, independently of the actual
specification. For example the description of the UNIX“rm” command (remove)
is that ”rm” removes files. The description is complemented by the conditions in
which that is possible. A safe implementation of the same command should be
contrary to its description.

4.3.7 Sequentiality

Actions (possibly from different objects) may occur in concurrency and their
occurrence may be simultaneous. It is often considered that “atomic” objects
behave sequentially and that concurrency is the result of their composite behavior
([27]). Sequentiality of atomic objects may be imposed by stating that their
actions do not occur simultaneously. This corresponds to add the axioms Oa1() ⇒
¬Oa2() for each pair of different local actions without parameters a1() and a2().
These axioms, however, still allow the simultaneous occurrence of the same action
with different parameters. I.e. a1(x) may occur simultaneously with a1(y). This
may be intended: for example a file may be read by different users at the same
time. But the same file cannot be written by different users at the same time.
In the last case a semaphore mechanism must be implemented. The abstract
conditions imposing the intended sequentiality must be stated when composing
the atomic object (classes) involved.
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One interesting possibility is to state that, when composing classes, the result
specification should be as sequential as possible. This means that only the ac-
tions that must occur simultaneously do occur simultaneously. This maximal
sequentiality is imposed by the defaults Oa1 ⇒ ¬Oa2, for any pair of actions from
different object classes.

4.3.8 Liveness

Some objects have initiative in the sense that under some circumstances they
are the cause of the occurrence of some of their actions. Objects with initiative
([20]) may correspond to real objects (outside the system) that interact with it.
Initiative is also expected from the system for example when responding to a
request ([69]). This behavior can be modeled by formulas of the form c ∧ ✸a ⇒
FOa meaning that a will occur if its is enabled and some extra condition c holds.
The use of these formulas as axioms may easily lead to inconsistency in the
presence of communication. Even if locally c ∧ ✸a ⇒ FOa holds it may cease to
hold when the action a is involved in some form of communication with another
action a′ from a different object. If some condition prevents a′ to occur also a
will not occur contradicting c ∧ ✸a ⇒ FOa.

Inconsistency is prevented by the use of the formulas c ∧ ✸a ⇒ FOa as defaults.

4.4 Files and Users

The example specification concerns the interaction between users and files (of
the operating system UNIX). The class File (and the class User) are specified by
stating the template of each class, i.e. the behavior of an arbitrary member of
the class. The signatures of File and User are presented in section 4.4.1. The
specification of File includes the rules governing access of local actions to local
attributes. These are presented in section 4.4.2. The specification of some actions
of File is presented in sections 4.4.4, 4.4.5 and 4.4.6. These are divided in the
specification of conditions common to all actions, the enabling conditions and the
effects of actions upon attributes.

4.4.1 Signatures

We proceed by stating the signatures both of the template of File and of User.
In this example we are mainly concerned with creation and destruction of files
by users, taking the permissions of the file into account. Each file acts as a “file
controller” and controls this interaction.
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Files are acted upon by users. This interaction corresponds to sharing of corre-
sponding actions. For this reason the template File refers to an arbitrary user
and the template of User refers to an arbitrary file. For example the action
file◦birth(u) of File refers to the creation of this file by user u. When composing
the specification of a file with the specifications of several users there will be an
action file◦birth(u) for each such user. The notation f.file◦birth(u) refers to the
action file◦birth(u) of the file f and it will be used when several files are available.

Since actions with parameters such as file◦birth(u) code a potentially infinite num-
ber of actions it is convenient to introduce a parameterless action representing the
occurrence of any of those actions. For example file◦birth() is the parameterless
action corresponding to file◦birth(u). The axiom Ofile◦birth(u) ⇒ Ofile◦birth()
imposes the intended meaning of file◦birth(). There are several situations where
this device is needed, for example in writing the locality rule. In the follow-
ing signatures we assume that to each action with parameters is associated a
parameterless one. The later are not explicit referred.

File

The signature stating the symbols relevant for the template of File is the following.
We consider the following set of actions:

• file◦birth(u), user u creating this file,

• file◦death(u), user u deleting this file,

• chowner(u, v1), . . . , chowner(u, vn), user u setting the owner of this file to vi,

• user u changing the owner permissions of this file:

– chmod◦R◦owner(u),

– chmod◦not◦R◦owner(u),

– chmod◦W◦owner(u),

– chmod◦not◦W◦owner(u),

• user u changing the all (world) permissions of this file:

– chmod◦R◦all(u),

– chmod◦not◦R◦all(u),

– chmod◦W◦all(u),

– chmod◦not◦W◦all(u).

And the following set of properties (attributes):
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• exists, a predicate stating whether the file exists or has not been created yet,

• read◦all, stating that the file is readable by any user,

• write◦all, stating that the file is writable by any user,

• read◦owner, stating that the file is readable by its owner,

• write◦owner, stating that the file is writable by its owner,

• owner(u), true iff u is the owner of the file.

User

Users are created and destructed (by the operating system). They interact with files
by creating them, deleting them, and changing their permissions. The actions of User

are:

• user◦birth, creates this user,

• user◦death, deletes this user,

• file◦birth(f), this user creates file f ,

• exec◦file◦birth(f), this user creates the executable file f (see section 4.5.1),

• file◦death(f), this user deletes file f ,

• chowner(f, v1), . . . , chowner(f, vn), this user changes the owner of the file f to vi,

• this user changes the owner permissions of f :

– chmod◦R◦owner(f),

– chmod◦W◦owner(f),

– chmod◦W◦owner(f),

– chmod◦not◦W◦owner(f),

• this user changes the all (world) permissions of f :

– chmod◦R◦all(f),

– chmod◦not◦R◦all(f),

– chmod◦W◦all(f),

– chmod◦not◦W◦all(f).

The only attribute of User is:

• exists, a predicate stating whether the user exists or has not been created yet.
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4.4.2 Locality

The axioms and defaults imposing the locality rule for the class File are now presented
(other restrictions are presented when specifying each action). The axioms state that
each attribute may only change value upon occurrence of one of the local actions. The
frame rule, that the values of the attributes persist (unless explicitly stated otherwise
later in the specification) is expressed by defaults. The corresponding axioms and
defaults for the class User are formally similar and omitted.

Axioms

The locality axiom for read◦all is the following.

(Yread◦all 6⇔ read◦all) ⇒ (Ofile◦birth() ∨

Ofile◦death() ∨

Ochmod◦R◦owner() ∨

Ochmod◦not◦R◦owner() ∨

Ochmod◦W◦owner() ∨

Ochmod◦not◦W◦owner() ∨

Ochmod◦R◦all() ∨

Ochmod◦not◦R◦all() ∨

Ochmod◦W◦all() ∨

Ochmod◦not◦W◦all()).

For the other attributes (write◦all, read◦owner and owner(u)) the axioms are similar.
The attribute exists is an exception. The creation and destruction rules (see section
4.3.4) allow this attribute to be changed only by the creation and destruction actions:
(Yexists 6⇔ exists) ⇒ (Ofile◦birth() ∨ Ofile◦death()).

Defaults

The defaults expressing the frame rule are the following:

• Yexists ⇔ exists,

• Yread◦all ⇔ read◦all,

• Ywrite◦all ⇔ write◦all,

• Yread◦owner ⇔ read◦owner and

• Yowner(u) ⇔ owner(u).
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The following hierarchic specification represents the restrictions imposed by the locality
principle and the frame rule.

Axioms are presented in boxes and the priority structure with corresponding defaults
in dashed boxes.

frame : {Yread◦all ⇔ read◦all,Ywrite◦all ⇔ write◦all, ...}

{(Yread◦all 6⇔ read◦all) ⇒ (Ofile◦birth() ∨ ... ∨ Ofile◦death()),

(Ywrite◦all 6⇔ write◦all) ⇒ (Ofile◦birth() ∨ ... ∨ Ofile◦death()), ...}

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
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Figure 4.1: Locality and the Frame Rule

4.4.3 Sequentiality

The axioms imposing sequentiality of an arbitrary file state that the occurrence of an
action implies that none of the other occur. For the occurrence of file◦birth() we must
specify

Ofile◦birth() ⇒ ¬(Ofile◦death() ∨

Ochmod◦R◦owner() ∨

Ochmod◦not◦R◦owner() ∨

Ochmod◦W◦owner() ∨

Ochmod◦not◦W◦owner() ∨

Ochmod◦R◦all() ∨

Ochmod◦not◦R◦all() ∨

Ochmod◦W◦all() ∨

Ochmod◦not◦W◦all()).

Similar axioms respecting the occurrence of the other actions must be added.
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4.4.4 Creation

Creation corresponds to the specification of the actions file◦birth(u) and file◦birth() of
File.

Enabling and Occurrence

The axioms imposing the relation between enabling and occurrence:

{Ofile◦birth(u) ⇒ Y✸file◦birth(u),

Ofile◦birth() ⇒ Y✸file◦birth()}

Figure 4.2: Enabling and Occurrence

Parameterless actions

The next axiom regulates the relation between enabling of file◦birth(u) and file◦birth():

• ✸file◦birth(u) ⇒ ✸file◦birth().

In this way file◦birth() is enabled when any of the file◦birth(u) are enabled.

Further enabling conditions for file◦birth() are derived from those of file◦birth(u). The
action file◦birth() should be enabled whenever any file◦birth(u) is. But this is the
only situation where it should be enabled. This can be achieved by adding a further
default ¬✸file◦birth() of less priority than any occurring in the conditions defining the
enabling of file◦birth(u). In this way file◦birth() will not be enabled unless explicitly
stated otherwise. And it is explicitly stated that it is enabled whenever file◦birth(u)
is. The formulas related with enabling of file◦birth() are summarized in the following
hierarchic specification (figure 4.3). Note that this specification will be composed with
the one corresponding to the enabling conditions of file◦birth(u) (see below).

Occurrence of file◦birth() is formally similar to its enabling. The action file◦birth()
should occur iff any file◦birth(u) occurs. The if condition is imposed by the axiom

• Ofile◦birth(u) ⇒ Ofile◦birth().

The only if condition is imposed by the default ¬Ofile◦birth(). These considerations
are displayed in the hierarchic specification in figure 4.4. The relation between other
parameterless actions and the corresponding actions is similar to the previous consid-
erations. It will be omitted in the following.
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✸
′ : {¬✸file◦birth()}

{✸file◦birth(u) ⇒ ✸file◦birth()}
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Figure 4.3: Enabling of file◦birth()

O
′ : {¬Ofile◦birth()}

{Ofile◦birth(u) ⇒ Ofile◦birth()}
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Figure 4.4: Occurrence of file◦birth()

Enabling

The next step is the specification of the enabling conditions for the actions file◦birth(u)
and file◦birth(). A restriction in the enabling conditions for file◦birth(u) has already
been referred in section 4.3.4. This action may only happen if the file it refers does not
exist. This is formalized by the axiom ✸file◦birth(u) ⇒ ¬exists. Further restrictions
should be added at this point. We consider this action benignous (see the discussion
in 4.3.6) and therefore we assume that there are no further restrictions. This action is
enabled in all situations not covered by ✸file◦birth(u) ⇒ ¬exists. For this reason we
add the default ✸file◦birth(u). The enabling conditions for file◦birth() are derived from
those of file◦birth(u) and have already been presented.

✸ : {✸file◦birth(u)}

{✸file◦birth(u) ⇒ ¬exists}
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Figure 4.5: Enabling of file◦birth()
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Effects

The effect of the file◦birth(u) and file◦birth() action is the initialization of the attributes
of the file. Initialization of each object corresponds to state the values of its attributes at
the time the object is created. This initialization, together with the locality restrictions
guarantees that the attributes, after the creation of the object, will have a value that
depends only in the past occurrence of actions. The first attribute to be set is exists:
Ofile◦birth(u) ⇒ exists. We begin with the initialization of the attributes of File

by considering the predicate owner(u). If u has created the file then it is its owner.
Otherwise is not. This can be formalized by stating that by default u is not the owner
of the file: Ofile◦birth() ⇒ ¬owner(u). But the more important default Ofile◦birth(u) ⇒
owner(u) overrides the previous one if u has created the file.

The other predicates are initialized as follows: the file is readable and writable for
its owner, readable by all and not writable by all. This corresponds to the de-
faults Ofile◦birth() ⇒ read◦all, Ofile◦birth() ⇒ ¬write◦all, Ofile◦birth() ⇒ read◦owner,
Ofile◦birth() ⇒ write◦owner.

It is important, at this stage, that these are defaults since special files (exceptions) may
be created with different permissions. This will be stated in the specification of such
subclasses of File (see section 4.5.1). The previous initialization holds unless explicitly
stated otherwise, somewhere else in the specification.

O1 : {Ofile◦birth() ⇒ ¬owner(u)}

O : {Ofile◦birth(u) ⇒ read◦all, ...}

O0 :

OO

{Ofile◦birth(u) ⇒ owner(u)}

{Ofile◦birth(u) ⇒ exists}
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Figure 4.6: Occurrence of file◦birth(u)

Composition

The specification of the actions file◦birth() and file◦birth(u) is obtained by composing
the previous parts of the specification. The diagram corresponding to this composition
is displayed in figure 4.7. There are two restrictions to be respected. The first respects
the relation between the enabling conditions of file◦birth() and file◦birth(u). In the
final specification the default ¬✸file◦birth() must be above (less important) than those
defining the enabling of file◦birth(u).



4.4. FILES AND USERS 179

The second is global to all actions: in the final specification of the File the defaults
imposing the frame rule must be above (less important) than those defining the effects

of each action. For this purpose we introduce a priority level frame , without defaults,
that will be used in the final composition to receive the frame defaults.

The structure of the specification of the file◦birth(u) and file◦birth() actions is the
following. The ⇒ arrows represent priority relations imposed by this composition

✸
′ O1 +3 frame

✸
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Figure 4.7: file◦birth(u) and file◦birth()

(recall chapter 3, namely section 3.2.1). The → arrows were present already.

4.4.5 Destruction

Corresponds to specify the action file◦death(u) of File.

Enabling and Occurrence

The meaning of enabling is stated by the axiom:

• Ofile◦death(u) ⇒ Y✸file◦death(u) .

Enabling

Destruction actions are only enabled if the object they refer to is alive. This is for-
malized by the axiom ✸file◦death(u) ⇒ exists. Further enabling conditions are spec-
ified as follows. Since this action is pernicious it will not be enabled by default.
This is expressed by the formula ¬✸file◦death(u). At a more important level, we
specify that it is enabled if the attribute write◦all, that allows the file to be writ-
ten by any user is true: write◦all ⇒ ✸file◦death(u). Still at a more important level
we specify that the owner can delete the file when the attribute write◦owner is true:
owner(u) ∧ write◦owner ⇒ ✸file◦death(u). Finally the superuser can delete the file:
✸file◦death(root). These conditions are represented in the following hierarchic specifi-
cation displayed in figure 4.8.
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✸3 : {¬✸file◦death(u)}

✸2 :

OO

{write◦all ⇒ ✸file◦death(u)}

✸1 :

OO

{write◦owner(u) ⇒ ✸file◦death(u)}

✸0 :

OO

{✸file◦death(root)}

{✸file◦death(u) ⇒ exists}
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Figure 4.8: Enabling of file◦death(u)

Effects

The destruction actions have only one effect: the destruction of the object. The en-
abling conditions have been carefully written so that this action can only occur in the
previously referred circumstances. In these circumstances the occurrence of the action
should delete it. This is formalized by the axiom Ofile◦death(u) ⇒ ¬exists. (There may
be files that can never be deleted. To cover such cases we may either specify the formula
Ofile◦death(u) ⇒ ¬exists as a default (to be overridden) or override the specification of
the enabling conditions of the file◦death(u) action and not allow this action ever to be
enabled).

Composition

The overall specification of the file◦death(u) and file◦death() actions is obtained by
composing their parts in a way similar to the file◦birth(u) and file◦birth() actions.

4.4.6 More Actions

The specification of other actions is similar to those already presented. We consider
still another example, namely the actions chowner(u, v), for v is the set of user names.
All these actions have the same form. We define chowner(u, v) for arbitrary v.

Enabling and Occurrence

The specification includes the following axiom due to the meaning of enabling:

• Ochowner(u, v) ⇒ Y✸chowner(u, v).
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Enabling

The first condition is global to all actions (except creation actions): no action is enabled
when the corresponding object does not exist. For each v this is formalized by the axiom
✸chowner(u, v) ⇒ exists. Other conditions are the following: only the owner of the file
or the superuser (root) are allowed to change the owner of the file. This is achieved
by stating that, by default this action is not enabled: ¬✸chowner(u, v). At the owner
level we state that the owner may chowner(u, v): owner(u) ⇒ ✸chowner(u, v). And at
the root level we state the corresponding property of root: ✸chowner(root, v).

✸3 : {¬✸chowner(u, v)}

✸1 :

OO

{owner(u) ⇒ ✸chowner(u, v)}

✸0 :

OO

{✸chowner(root, v)}

{✸chowner(u, v) ⇒ exists}

Figure 4.9: Enabling of chowner(u, v)

Effects

The occurrence of chowner(u, v) changes the owner of the file to v. This corresponds
to set the former owner(u′) to false and to set owner(v) to true. The first effect is
achieved by the default Ochowner(v) ⇒ ¬owner(u) where chowner(v) is the parameter-
less action corresponding to chowner(u, v). The second by the more important default
Ochowner(u, v) ⇒ owner(v).

O1 : {Ochowner(v) ⇒ ¬owner(u)}

O0 :

OO

{Ochowner(u, v) ⇒ owner(v)}
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Figure 4.10: Effects of chowner(u, v)
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Composition

We omit the composition yielding the specification of the chowner(u, v) and chowner(v)
actions.

4.4.7 Overall Specification

The specification of an arbitrary file is obtained by putting together the smaller specifi-
cations of its actions, possibly identifying priority levels. The locality and sequentiality
axioms and the defaults of the frame rule must also be included. The following diagram
represents the parts to be composed. The diagram on the signature part is omitted (we
are assuming that all actions are written in the same signature, that of File). Moreover
we identify only the level of the frame rule, although other priority levels could be
identified. For example all enabling conditions (resp. all effects) could be identified.

...

frame frame frame ...

...

frame
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Figure 4.11: Template of File

4.5 More Files and Users

The class File is in this section (re)used for further specification. This includes the
definition of a subclass in section 4.5.1 and a redefinition of the class File taking the
new subclass into account. Communication of files and users by action sharing is
illustrated in sections 4.5.4 and 4.5.5. Restrictions to concurrency are added in section
4.5.6. The operation of cristalization is used in sections 4.5.3 and 4.5.7.

4.5.1 Executable Files

Consider the subclass Exec◦File of file constituted by those files that are executable.
These files are created by compilation processes, for example. We consider that an
Exec◦File has an additional action exec(u) representing the execution of the file by user
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u (the specification of this action is omitted). Furthermore these files have another
predicate stating that they are executable. They may be executable by the owner
of the file or by an arbitrary user. The specification of the create command is now
different. At creation time the files should be executable by the owner and by all.
Furthermore it should not be writable by the owner (thus overriding the specification
of File). This corresponds to change the specification of the effects of the create action
by adding the new defaults at the right levels. The new defaults (only) are shown in
the next figure.

O
′ : {Ofile◦birth(u) ⇒ exec◦all, file◦birth(u) ⇒ exec◦owner}

O
′′ : {Ofile◦birth(u) ⇒ ¬write◦owner}

∅

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figure 4.12: Defaults to be added to file◦birth(u)

Note that two new attributes are referred: exec◦all and exec◦owner. The new specifi-
cation of the effects of create command is obtained by composition of the specification
above with the original specification of Ofile◦birth(u). This corresponds to augment the
signature with the new symbols exec(u) (and exec()), exec◦all and exec◦owner and to

identify the corresponding priority levels. This means that O
′ is identified with O

and O
′′ is a new level of higher importance than O (since the initialization of the

write◦owner attribute must be overridden). The following figure depicts the diagram
imposing these relations (the operation on the signatures is omitted).

The final specification of Exec◦File is obtained as in section 4.4.7, including the speci-
fication of the action exec(u).

4.5.2 Classes and Subclasses

The specification of Exec◦File above raises the question of redefining the class File, since
it should represent an arbitrary file, whether executable or not. A possible solution
is the following. The new specification is obtained by composing the old specification
of File with that of Exec◦File, and identifying the logical symbols that are common to
both. Since the file◦birth(u) action has been redefined this symbol should not be iden-
tified. In this way we obtain two actions file◦birth(u) (and two actions file◦birth()) one
applying to executable files and the other to other files. In general each redefined action
should have two versions. The new specification will have the attributes from File plus
exec◦all and exec◦owner. And the actions from File plus exec(u) and exec◦file◦birth(u)
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Figure 4.13: Action file◦birth(u) of Exec◦File

(the file◦birth(u) action of executable files). In order to distinguish between files and
executable files a new attribute executable is added. The creation action file◦birth(u)
of Exec◦File sets this attribute to true and the action file◦birth(u) of File sets it to false.
The action exec(u) that is particular to an Exec◦File can only be enabled if executable

holds (✸exec(u) ⇒ executable). There is no need to impose any condition on attributes
specific to executable files. They can be accessed only by specific actions that are
enabled only if the file is executable.

When combining the specifications of File and Exec◦File their internal priority structure
is no longer relevant. This was not the case when producing the specification Exec◦File

from File. But, assuming that no further subclasses are needed, the internal structure
can be forgotten since future operations will not deal with the internal priority levels.
Therefore we may transform the specifications of File and Exec◦File to flat equivalent
ones. These have the same logical meaning as the original specifications (see sections
4.1.2 and 2.2.2). Moreover, the defaults of each specification have equal importance
and no strict priority relation between them should be imposed. The final specification
should consist of the union of these flat specifications. This union is obtained by com-
bining the flat specifications in the category Spec of (flat) specifications. (Alternatively
the flat specifications may be seen as hierarchic specifications with only one priority
level. This particular composition corresponds to the identification of all single priority
levels from different specifications.)

Since we compose the flat specifications in Spec only the signature morphisms must be
provided. To represent this composition as the colimit of an appropriate diagram the
following specifications must be introduced. Firstly a specification S∩ stating which
logical symbols are common to the flat versions of File and Exec◦File. This specification
is only the common signature and has no axioms and no defaults. Its signature is

Σ∩ = ({file◦death(u), file◦death(), chowner(u, v), chowner(v), ...},

{exists, read◦all, ...}).

The new attribute executable is introduced by another trivial specification having only
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this symbol and no axioms and defaults. The effects of the file◦birth(u) (from File)
command on executable are written in a third specification S′ with signature

ΣS′ = ({executable}, {file◦birth(u)}).

This specification includes the axiom Ofile◦birth(u) ⇒ ¬executable. And the effects of
the action file◦birth(u) (from Exec◦File) on executable plus the enabling conditions for
exec(u) are again written on a separate specification S′′, with signature

ΣS′′ = ({executable}, {file◦birth(u), exec(u)}).

The axioms Ofile◦birth(u) ⇒ executable and ✸exec(u) ⇒ executable impose the intended
conditions. The following diagram represents the inclusions between the signatures. Its
colimit is the signature of the new version of File.

ΣFile ΣExec◦File

Σ∩
6 V

iiSSSSSSSSS '
�

44iiiiiiiii

ΣS′

�
?

OO

({executable}, ∅)?
_oo �

�

// ΣS′′

?
�

OO

Figure 4.14: Composition of Signatures

The diagram on specifications is obtained by substituting the signatures by their cor-
responding specifications and noting that the inclusions are Spec morphisms.

4.5.3 Cristalization

In the previous construction of specifications several examples of properties have been
expressed as defaults since they might be overridden at other points in the specification.
This overriding may be introduced by different specification operations. However,
when all of those possible conflicts are explicitly or implicitly written down it may
be convenient to compute them into axioms.

An example of this situation is the specification of the locality condition for actions. At
some point of the specification process the actions that actually change each attribute
will be apparent and we will want to automatically produce the corresponding axiom.

For example the attribute read◦all can only be changed by the actions from File. But in
fact the only that change it are chmod◦R◦all(u), chmod◦not◦R◦all(u) and the creation of
either of a file or of an executable file. In this way the formula Yread◦all 6⇔ read◦all ⇒
(Oexec◦file◦birth(u)∨Ofile◦birth(u)∨Ochmod◦R◦all(u)∨Ochmod◦not◦R◦all(u)) is a skep-
tical consequence of the new specification of File and may be added as an axiom to it.
Similar axioms may, at this stage, be introduced for the other attributes.

4.5.4 Communication by Action Sharing

The class User corresponds to the interface actions available to an arbitrary user. The
specification of this class consists of the locality and sequentiality axioms, plus the
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global conditions regulating creation and destruction and the relations between the
parameterless actions with their respective actions with parameters. The intended
behavior of an arbitrary user is obtained by action sharing. This means that the
actions of an user are identified with corresponding actions of an arbitrary file. The
enabling conditions have been specified in the template of File. In this way each file
controls the interaction with an arbitrary user and no further conditions need to be
specified.

The interaction of an arbitrary user with an arbitrary file corresponds to the identifi-
cation of corresponding actions from User and File. This communication mechanism is
known as (action) sharing . Its categorial expression is simply the (signature) identifica-
tion of the actions participating in the action sharing. I.e. the actions that participate
in sharing are simply the same action in the result specification. The sharing of the
actions chmod◦R◦all(f) from User and chmod◦R◦all(u) from File is depicted in the
following figure.

chmod◦R◦all(u) ∈ ΣFile chmod◦R◦all(f) ∈ ΣUser

chmod◦R◦all
�

kkXXXXXXX & 33fffffff

Figure 4.15: Action Sharing

The parameterless actions are not identified. The user action chmod◦R◦all() corre-
sponds to this user changing the permissions of several files and the chmod◦R◦all()
action from a file corresponds to its permissions being changed by several users.

The specification User||File of an arbitrary user communicating with an arbitrary file
is obtained by the colimit of the following diagram. We are again assuming that these

File User

Σshare

3 S

eeKKK +
�
88rrr

Figure 4.16: User||File

specifications are now flat. The specification Σshare has no axioms and no defaults and
consists of the actions that must be shared in the specifications User and File. The
resulting specification will have, inter alia:

• the attributes f.exists and u.exists, two copies of the predicate exists, one of the
arbitrary user and the other of the arbitrary file;

• the shared actions (f ||u).file◦birth corresponding to f.file◦birth(u)||u.file◦birth(f)
(user u creating file f) and (f ||u).exec◦file◦birth corresponding to
f.exec◦file◦birth(u)||u.exec◦file◦birth(f) (user u creating executable file f);

• and the non shared actions u.user◦birth, u.user◦death, the creation and destruc-
tion of an user and the parameterless actions from both class. For example
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f.file◦birth() that corresponds (see below in section 4.5.7) to several users creat-
ing the file.

The axioms and defaults from User and File belong to the specification User||File. The
enabling conditions and effects of the shared actions are now the union of the corre-
sponding conditions for the actions participating in the sharing.

4.5.5 Multiplying Files and Users

The behavior of an actual file will be the result of its interaction with all users. The
diagram displaying the signature relations is the following:

ΣFile||User ΣFile||User ... ΣFile||User

Σ∩

3 S

eeKKKKKKKKK
?
�

OO

.
�

==||||||||) 	

66mmmmmmmmmmmm

Figure 4.17: Signature of several users interacting with the same file

The signature Σ∩ consists of the symbols of the File||User that are common to the
interaction of this file with other users. These are all attributes from File except
owner(u) and all parameterless actions from File. In this way we have one f.exists
attribute from File and several copies of f.owner(u). The later can be referred to as
f.owner(u1), ..., f.owner(un), one for each User in the diagram. The symbols from User

have not been identified. In particular there will be several copies of the user exists pred-
icate. These may be referred to by u1.exists, ..., un.exists. The action (f ||u).file◦birth is
the sharing of f.file◦birth(u) from File with the action u.file◦birth(f) from User. In the
resulting specification there will be several of these actions, namely (f ||u1).file◦birth, ...,
(f ||un).file◦birth, representing the different users creating the same file. Finally there is
one only action f.file◦birth() (due to identification). This corresponds to several users
creating the file. The diagram yielding the intended composition (of a file with sever-
al users) is the following. The specification Σ∩ consists only of the signature and an

File||User File||User ... File||User

Σ∩
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Figure 4.18: Several users interacting with the same file

empty set of axioms and defaults. The axioms and defaults from each User||File belong
to the final specification.
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4.5.6 Concurrency

The conditions regulating the concurrent behavior of users can only be included at this
stage. Although the interaction of an user with a file is sequential (see section 4.4.3 )
this is no longer the case when several users interact with the same file. In particular
there is, up to now, no restriction on the simultaneous occurrence of any of the actions
from the file. For example, different users may create the same file simultaneously.
This leads to several alternative possibilities of the values of the attributes from the
file, after creation since each such creation imposes different values to some of the
attributes. If the effects of the file◦birth(u) action had been stated as axioms this
would be an inconsistent situation. But still we prefer to impose the condition that
only one of such actions may occur at the same time. This corresponds to add the axiom
O(f ||u).file◦birth ⇔ ¬O(f ||u′).file◦birth, for each two different actions (f ||u).file◦birth

and (f ||u′).file◦birth. Similar conditions for other actions should be also stated.

4.5.7 Cristalization Again

The properties that may be overridden by composition may only be transformed into
axioms at this point in the specification. We illustrate the enabling conditions of
f.file◦birth(), the parameterless action whose occurrence represents the occurrence of
some of the actions f.file◦birth(u). These enabling conditions have been defined in
section 4.4.4 in terms of the enabling conditions of f.file◦birth(u). The specification
File is taken here in its flat version. The axioms and (flattened) defaults from File

corresponding to enabling of f.file◦birth() and f.file◦birth(u) are the following:

Defaults: {✸f.file◦birth(u),

✸f.file◦birth() ⇒ ✸f.file◦birth(u)};

Axioms: {✸f.file◦birth(u) ⇒ ✸f.file◦birth(),

✸f.file◦birth(u) ⇒ ¬f.exists}.

In User||File the action f.file◦birth(u) is identified with u.file◦birth(f). The previous
conditions are rewritten by changing f.file◦birth(u) to (f ||u).file◦birth(u). Finally, when
several users are introduced the previous axioms and defaults are copied into the final
specification. The relevant axioms and defaults become:

Defaults:
{✸(f ||u1).file◦birth, ...,✸(f ||un).file◦birth,
✸f.file◦birth() ⇒ ✸(f ||u1).file◦birth, ...,✸f.file◦birth() ⇒ ✸(f ||un)file◦birth};

Axioms:
{✸(f ||u1).file◦birth ⇒ ✸f.file◦birth(), ...,✸(f ||un)file◦birth ⇒ ✸f.file◦birth(),
✸(f ||u1).file◦birth ⇒ ¬f.exists, ...,✸(f ||un).file◦birth ⇒ ¬f.exists}.

Since no more conditions on the enabling of these actions will be introduced these
may be rewritten with axioms. That is the “best” models of the previous part of the
specification will be the only models. The corresponding formulas may be automatically
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generated (see [10] and section 4.1.2). We note that each action (f ||u).file◦birth is
enabled unless explicitly stated otherwise (by the axiom ✸(f ||u).file◦birth ⇒ ¬f.exists).
Therefore (f ||u).file◦birth is enabled iff ¬f.exists. And ✸(f ||u).file◦birth ⇔ ¬f.exists is
a skeptical consequence of the specification. Moreover also ✸f.file◦birth() ⇔ ¬f.existsis
a skeptical consequence of the specification. The previous axioms and defaults can be
substituted by the axioms:

{✸(f ||u1).file◦birth ⇔ ¬f.exists,

...

✸(f ||un).file◦birth ⇔ ¬f.exists,

✸f.file◦birth() ⇔ ¬f.exists}

4.6 Animating the Specification

The previous (cristalized) specification has as models all such (anchored) life-cycles that
respect the properties imposed. These life-cycles correspond to all potential behavior
of a system having object oriented files and users. The specification itself may be
animated in order to simulate such a system. The system evolves by the occurrence of
(enabled) actions that cause global time to increase. The animator includes a global
clock and consists of adding to the specification the formulas stating which actions just
occurred (if enabled). This is formalized by axioms of the form Yn∗ ⇒ (✸a ⇒ Oa)
(note that several actions may occur simultaneously). The formula Yn∗ holds at time
n after the birth of the system.

The models of the (evolving) specification include the life-cycles satisfying the occur-
rence of the explicitly stated actions. Among these life-cycles there will be some where
more than the explicitly referred actions have occurred. The occurrence of extra ac-
tions may either be a consequence of the occurrence of the explicitly stated actions (if
involved in communication with the former) or not. This last situation is unintended:
the animator should represent the system resulting from the occurrence of the explicitly
referred actions and no other.

This is a form of the closed world assumption for occurrence of actions since it states
that no action occurs unless explicitly stated otherwise. As expected this situation may
be formalized by additional inclusion of the defaults:

Yn∗ ⇒ (¬Oa′),

for all actions a′.

The animator just outlined corresponds to a system having a well defined past, char-
acterized by the actions that have occurred. The future, however, remains open.
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4.7 Final Remarks

The specification of files and users presented in this chapter illustrates the use of hier-
archic specifications and their operations in specification.

The underlying logic used to describe properties of object oriented systems has been
a linear temporal logic (“a la” OSL [85]). Some such properties have been expressed
with the help of prioritized defaults.

Specification constructs such as inheritance, aggregation and communication have been
described by canonical operations on hierarchic specifications.

The need to simplify structure has been noted and two operations provided that are
useful for that purpose: priority abstraction and cristalization.

It is important to note that an actual specification language should allow the specifier to
concentrate in the definition of the problem at hand. For that purpose the mechanisms
identified as global, such as the locality principle and the frame rule should be built
in the (denotation of) the specification language. Also the fundamental composition
operations should be identified.

The previous example serves the purpose of illustrating some such constructions. It
does not identify all standard features and operations of such a specification language.
More research is needed on this subject (see [11, 61] for additional contributions).



Chapter 5

Final Remarks

The main contribution of this work has been the establishment of an institution in-
dependent theory of composition of specifications and hierarchic specifications. Com-
position is formalized on the syntactic and semantic levels by canonical operations on
appropriate categories.

The semantical characterization of composition guarantees that it depends only on the
meaning of the specifications involved, and not on the particular way these are writ-
ten. Further independence of representation is obtained by the notion of isomorphism.
Composition does not depend on the choice of signature symbols and priority level
names (since categorial constructions are defined up to isomorphism).

There are other advantages of the semantical characterization. Firstly it is often simpler
to define constructions on the semantic level. These can be translated to their syn-
tactic expression due to the connection between the semantic and syntactic categories
involved.

Another, and perhaps more important advantage is to use such semantics as the basis
of verification tools, proving important properties of specifications, such as the different
types of consequence. The priority structure provides extra information. For instance
one may be interested in knowing in which level a property is overridden. A brief
exposition of our work in this direction is presented in section 5.2.

The theory of composition is summarized in section 5.1. Future research direction-
s, either identifying new constructions and properties of the formalism presented, or
extending it are presented in section 5.2.

5.1 Summary

Many different logics are relevant for knowledge representation, depending on the dif-
ferent properties to be modeled. The most important are certainly first order logic and
propositional logic, used to formalize databases and knowledge bases. Evolving systems
require dynamic, temporal and action logics ([65, 57, 35, 66, 32, 80, 85]). Distributed
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systems and systems with autonomous agents may require multi-modal deontic logics
and multi-modal logics of belief and knowledge ([55, 68]).

The need to override or revise properties expressed in such logics ([74, 12, 9, 11, 77, 61])
requires that a defeasibility mechanism is added to them.

The first concern of this thesis has been, following [12, 9], to provide to an arbitrary
(classical) logic such a defeasibility mechanism. This is formalized on the syntactic level
by assigning to the formulas of the underlying institution different levels of reliability
(different priority levels). On the semantic side the models of the underlying institution
are organized in preference relations or hierarchies of preference relations.

Languages for the specification of such systems (using the added expressive power)
should provide compositional constructs for supporting the modular construction of
specifications from smaller specifications ([16, 45, 34, 37, 87, 26, 31, 36, 21, 82]).

This has been the second (and more important) concern of this thesis. An institution
independent theory of composition of specifications and hierarchic specifications has
been defined. It generalizes the classical theory of composition of presentations, put
forward in [45] and gives a semantic account of the composition of hierarchic specifica-
tions from [12]. Composition of specifications is understood as building specifications
by putting together axioms, defaults and priority levels from the parameter specifica-
tions. Composition of specifications is formalized by appropriate categories both on
the syntactic and on the semantic levels. In this way composition is not sensitive to the
particular way specifications are written, only to their meaning. The main concepts
and results associated with this theory are presented below.

Composition operations augment the complexity of the priority structure of the spec-
ification. The opposite direction, that of simplifying priority structure has also been
considered and a corresponding operation defined. A further operation, associating
with a specification a classical presentation having the same skeptical consequences
has been defined. It is important at later stages in the specification process, when all
overriding interactions due to incomplete specification information can be computed.

The appropriateness of this formalism has been tested in chapter 4. In the same
line of [87, 12, 9, 31, 21, 11, 61, 82] the constructions of inheritance, aggregation and
communication of objects are formalized by colimits in the categories of specifications
and hierarchic specifications (from linear temporal logic).

Program

The steps taken to establish the institution independent theory of composition are
summarized in the following. These correspond to the definition of a semantics that
interprets composition; the characterization of the syntactical counterpart of the se-
mantics, the theories; the correspondence between the syntactical relation of inclusion
with its semantic counterpart; and finally the establishment of the categories of (hier-
archic) specifications and of their semantics, possessing appropriate constructions.
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Semantics

Crucial to the theory of composition is the notion of semantics of a specification written
in an arbitrary institution. This notion abstracts from the particular way specification-
s are written: specifications with the same semantics have the same logical meaning.
Moreover, specifications with the same semantics behave equivalently w.r.t. composi-
tion.

Theorems 169 and 196 show that the adopted semantics of specifications and hierarchic
specifications satisfy these requirements minimally .

The preference semantics of specifications is standard. But composition of hierarchic
specifications requires more structure. This extra structure is expressed in the hi-
erarchy of differential preferences (definition 85) or, equivalently, in the hierarchy of
lexicographic preferences (definition 83).

Theories

The theory of a (hierarchic) specification S is a canonical (hierarchic) specification with
the same semantics as S. It is the (hierarchic) specification with the same semantics
as S with most axioms and defaults: see lemmas 33 for specifications and 114 for
hierarchic specifications.

The theory of a specifications S has as axioms the consequences of the axioms of S
and as defaults the defaults implicit in S. The situation for hierarchic specifications is
similar. In this case defaults implicit in each priority levels must be considered. The
characterization of implicit defaults has been presented in theorems 51 and 123.

Galois Connection

Inclusion of (hierarchic) specifications has an abstract expression in reversed inclusion of
their semantics, or equivalently in inclusion of their theories. This property is presented
in theorem 6 for specifications and in theorem 111 for hierarchic specifications. It
implies that the union of (hierarchic) specifications is mirrored at the semantic level
by intersection of their semantics. These are the basic requirements of the theory of
composition.

Compositionality

Composition of specifications and hierarchic specifications is formalized by colimits of
appropriate diagrams in the categories Spec and hieSpec of specifications and hierarchic
specifications. Existence of such constructions is displayed in theorems 159 and 188.

The composition operations are interpreted as semantic operations in the mirror cat-
egories Pref and hiePref (by corresponding limits). This correspondence between syn-
tactic and semantic operations is stated in theorems 155 and 185.
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5.2 Further Work

In this section some important topics of future research are presented. These are: the
generalization of the framework to Default Logic; the generalization of composition to
specifications using default rules and the study and definition of further composition
constructions. Furthermore, we refer an uniform language for describing and verifying
properties of specifications and discuss the design of specification languages.

Other Default Formalisms

Composition of specifications should be generalized to Default Logic (and possibly to
similar formalisms such as Cumulative Default Logic ([13]) and ÃLukaszewicz’s version
of Default Logic ([62])).

The research direction leading to such formalisms should follow the steps referred above.
The starting point, that of finding a semantics that explains composition, is the most
important. The semantics of Default Logic presented in [29] has formal similarities
with the preference semantics of specifications. It compares classes of models, (instead
of models) of the axioms of the specification. This formal similarity should be helpful
in generalizing this framework to Default Logic.

Instantiation Mechanisms

The framework presented can be extended by including default rules (also called default
schemas) as specification instruments. Default schemas correspond to sets of defaults.
For example the open default Fl(x) should be seen as the set of its instances {Fl(b), b ∈
B}. Similar machinery is needed for other formalisms ([9, 12, 75, 76, 11]).

In [24] we formalize default rules by means of instantiation mechanisms that assign
to each formula the corresponding set of its instances. Composition of specifications
using default rules can be reduced to composition of their instantiated versions. The
generalization to hierarchic specifications is expected to be straightforward.

More Canonical Operations

The categories hieSpec and hiePref formalize the composition operations that add more
priority structure to the parameter specifications. We have seen in chapter 4 that the
opposite direction, that of simplifying the structure of a specification is also important.
It is interesting to seek a formalism that is able to explain such operations in a canonical
way.

A promising proposal is to relate hierarchic specifications via their hierarchies of lex-
icographic preferences (not differential) in a way formally identical with the category
hiePref. Since the notion of semantics is the same (up to equivalence) there will be no
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difference in the notions of isomorphism and theory. The difference will be in the way
hierarchic specifications become related: by inclusion of the hierarchies of lexicographic
preferences. In particular, in this setting, the operations flat(S) and Axiomatize(S),
abstracting a hierarchic specification S to a specification or to a presentation make
“canonical” sense. There is a morphism from S to either flat(S) or Axiomatize(S).

Composition and Monotonicity

Excluding the classical projection of the formalism presented no logical property is, in
general, preserved by composition. In fact any skeptical or credulous consequence of a
(hierarchic) specification can be defeated by adding to it an appropriate axiom1.

However, preservation of logical properties is important since it allows to conclude a
property of a complex system from a property of a simpler part of it.

We have discussed in section 3.2.8 the possibility of imposing some of these properties
by appropriate (new) composition forms. An extreme example of this is to identi-
fy the parameter specifications with their skeptical consequences (see the operation
Axiomatize(S) in section 199) and compose them classically. This corresponds to de-
cide that these specifications are “stable” and cannot be subject to further overriding.
Another form of composition, preserving the skeptical consequences but still allowing
for future overriding is defined in [25]. Further identification of such forms of compo-
sition and their impact on specification must be proceeded.

A second direction is the identification of conditions guaranteeing preservation of (some)
properties. For example it is expected that the overriding of properties in a localized
part of the specification cannot affect the properties of unrelated parts of it.

Moreover, the addition of new information to a specification does not necessarily im-
ply overriding of logical properties. Cumulativity (theorems 67 and 140) and Semi-
monotonicity (theorems 67 and 142) are examples of this fact (for compact institutions).
But more research is needed to recognize other important cases.

Parametric Specifications

Feature orientation emerged recently as an alternative specification paradigm ([54]).
It consists in centering specification in the features the entities to be specified must
make available. The specification of new entities may reuse other by adding to it new
features or revising other.

Features are formalized by parametric specifications (in the classical context: see [53]).
The expressive power added by the use of parametric specifications with defaults and
its appropriateness to model feature orientation is an important direction of future
research.

1If the logic has some way of representing the negation of the original consequence.
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Meta Language and Verification

In [23] we presented a meta-language that uniformly describes properties of a specifica-
tion (written in propositional logic). These include the properties of d being a implicit
default of S and classical, skeptical and credulous consequence of S. The meta-language
is the language of modal logic describing the properties of the preference relation of
S, seen as a modal (S4) frame. The previous properties hold for a formula f iff the
corresponding meta-formula holds in the preference relation of S.

A procedure to determine truth of such formulas in the preference relation of S in terms
of consistency and entailment of the axioms of S has also been presented. (Decidability
of deciding truth of this formulas can only be guaranteed if the underlying logic is
decidable.)

The generalization of the meta-language and of this procedure to arbitrary institutions
is expected to be straightforward.

The extension of the meta-language to describe properties of hierarchic specifications
should use a multi-modal logic, where the modal formulas are interpreted in the hi-
erarchy of lexicographic preferences. Each lexicographic preference from each level h
should have a corresponding modal operator ✷h. In this way the properties of im-
plicit default and credulous and skeptical consequence in a level h from S would be
expressed by truth of meta-formulas in the hierarchy of lexicographic preferences of
S. The meta-language and corresponding procedure for truth of meta-formulas for the
hierarchic case are topics of future research.

Specification Languages

The framework presented provides the formalization of specification languages (with
composition constructs) that use defaults. One long term goal of this work is to design
a specification language, for communities of concurrent objects, in the style of Gnome
([71]). There are two main concerns when defining the primitives of such a language.

• Identification and definition of built-in logical constraints. These are con-
ditions, such as locality and sequentiality of atomic objects that every specifica-
tion must satisfy. The specifier(s) should concentrate on the particular Universe
of Discourse he/she is describing: the global conditions and general specification
patterns should be provided by the specification language. These are formalized
by axioms and prioritized defaults.

• Identification and definition of composition operations. These are oper-
ations such as aggregation, inheritance with selective overriding, communication
and parameterization that build specifications from other specification modules.
These are formalized by colimits either in the category Spec or hieSpec. Addi-
tionally the abstraction operations of hierarchic specifications to specifications
or to classical presentations should be provided.
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Moreover, the specification facilities described should be organized in a workbench,
providing the verification of properties of the specification. This corresponds to the
computation of the truth of meta-formulas (referred above).

The automatic generation of the relevant specification constructs should also be pro-
vided. This corresponds to the computation of colimits and may be implemented with
techniques similar to those presented in [79].
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[2] H. Andréka, M. Ryan, and P.-Y. Schobbens. Operators and laws for combining
preference relations. In R. J. Wieringa and R. Feenstra, editors, IS-CORE’94 -
Selected papers, pages 191–206. World Scientific Publishers, 1995.

[3] J. Barwise and S. Feferman, editors. Model Theoretic Logics. Springer, New York,
1985.

[4] J. L. Bell and M. Machover. A Course in Mathematical Logic. North-Holland,
1977.

[5] S. Braß. Beginnings of a theory of general database completions. In Serge Abite-
boul and Paris C. Kanellakis, editors, Third International Conference on Database
Theory (ICDT’90), number 470 in LNCS, pages 349–363. Springer, 1990.

[6] S. Braß. Deduction with supernormal defaults. In P. Schmitt G. Brewka, K. Jan-
tke, editor, Nonmonotonic and Inductive Logic - Second International Workshop,
1991, pages 153–174, Berlin, 1992. Springer.

[7] S. Braß. Defaults in Deduktiven Datenbanken. PhD thesis, University of Hannover,
1992.

[8] S. Braß and U. W. Lipeck. Specifying closed world assumptions for logic databases.
In János Demetrovics and Bernhard Thalheim, editors, 2nd Symp. on Mathemat-
ical Fundamentals of Database Syst. (MFDBS’89), number 364 in LNCS, pages
68–84. Springer, 1989.

[9] S. Braß and U. W. Lipeck. Semantics of inheritance in logical object specifications.
In Claude Delobel, Michael Kifer, and Yoshifumi Masunaga, editors, Deductive
and Object-Oriented Databases, 2nd Int. Conf. (DOOD’91), number 566 in LNCS,
pages 411–430. Springer, 1991.

[10] S. Braß and U. W. Lipeck. Bottom-up query evaluation with partially ordered
defaults. In Stefano Ceri, Katsumi Tanaka, and Shalom Tsur, editors, Deductive
and Object-Oriented Databases, Third Int. Conf., (DOOD’93), number 760 in
LNCS, pages 253–266. Springer, 1993.

199



200 BIBLIOGRAPHY

[11] S. Braß, U. W. Lipeck, and P. Resende. Specification of object behaviour with
defaults. In U. W. Lipeck and G. Koschorreck, editors, Proc. of the Int. Workshop
on Information Systems — Correctness and Reusability (ISCORE’93), Informatik-
Bericht 01/93, Universität Hannover, pages 155–177, 1993.

[12] S. Braß, M. Ryan, and U. W. Lipeck. Hierarchical defaults in specifications.
In G. Saake and A. Sernadas, editors, Information Systems — Correctness and
Reusability, Workshop IS-CORE ’91, number 91-03 in Informatik-Bericht, pages
179–201. TU Braunschweig, 1991.

[13] G. Brewka. Cumulative default logic: In defense of nonmonotonic inference rules.
Artificial Intelligence, 50:183–205, 1991.

[14] G. Brewka. Nonmonotonic Reasoning: Logical Foundations of Commonsense.
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge, 1991.

[15] R. Bull and K. Segerberg. Basic modal logic. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, volume II, chapter 1, pages 1–88. Kluver
Academic Publishers, 1984.

[16] R. M. Burstall and J. A. Goguen. Putting theories toghether to make specifica-
tions. In Raj Reddy, editor, Proceedings of the 5th International Joint Conference
on Artificial Intelligence (IJCAI), pages 1045–1058, Cincinnati, Ohio, 1977. De-
partment of Computer Science, Carnegie-Mellon University.

[17] C. Caleiro. On the relationship between operational and denotational semantics of
temporal logic specification of object behaviour. In R. J. Wieringa and R. Feenstra,
editors, IS-CORE’94 - Selected papers, pages 69–83. World Scientific Publishers,
1995.

[18] R. Carnap. Meaning and Necessity. University of Chicago Press, Chicago, Illinois,
1956.

[19] B. F. Chellas. Modal logic, An Introduction. Cambridge University Press, 1980.

[20] J. F. Costa and A. Sernadas. Progress assumption in concurrent systems. Formal
Aspects of Computing, 7(1):18–36, 1995. Available as Research Report since 1993.

[21] J. F. Costa, A. Sernadas, and C. Sernadas. Data encapsulation and modularity:
Three views of inheritance. In A. Borzyszkowski and S. Sokolowski, editors, Math-
ematical Foundations of Computer Science 93, pages 382–391. Springer, 1993.

[22] J. F. Costa, A. Sernadas, and C. Sernadas. Object inheritance beyond subtyping.
Acta Informatica, 31:5–26, 1994.
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Técnica de Lisboa (Master-Studium der Elektrotechnik an der
Technischen Universität Lissabon)

seit 1992 Promotion an der Universität Hannover

Berufstätigkeit: wissenschaftlicher Mitarbeiter an der Technischen Universität
Lissabon

207



208 LEBENSLAUF

Lehrtätigkeit an der Abteilung Mathematik der

Technischen Universität Lissabon2

Von 1987 bis 1989:
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