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Preface

This class is designed for students and peers who had basic classes in calculus, introduction to
numerical methods, differential equations, and finite element discretizations.

The goal is to give an introduction to numerical modeling of multiphysics problems. These are
nonstationary, nonlinear, coupled partial differential equations.

This class is organized into five parts:

Modeling fluid flows and solid mechanics
Variational formulations and coupling techniques
Discretization in time and space

Nonlinear and linear solution

Numerical simulations and further extensions.

Philosophy of this class: Mixture of very basic techniques that are immediately applied to
‘complicated” practical and/or current research problems.

Thomas Wick
(IIT Indore, Feb 2020)



Preliminaries



Schedule

Class 1: Feb 11: 2pm - 3pm

Class 2: Feb 11: 3.15pm - 4.15pm
Class 3: Feb 12: 10am - 11am
Class 4: Feb 12: 11.15am - 12.15pm
Class 5: Feb 12: 2pm - 3pm
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What are multiphysics problems?

Multiple physical phenomena interact with each other: for instance solids, fluids,
temperature variations, chemical reactions, and so forth

At least two PDEs (partial differential equations) are involved

These may have different physical conservation properties: mass, momentum, angular
momentum, energy

Information between different PDEs may be exchanged via coefficients, nonlinear coupling
terms, right-hand sides, or interfaces



Why are multiphysics problems challenging?
In other words: why are they interesting to be investigated?

“True’ multiphysics problems are nonlinear and nonstationary and require extensive
developments for the design of reliable algorithms

The implementation and software development of such algorithms is tedious; debugging of
code takes time! Two examples:

¢ Decision whether to couple all equations (monolithic) or solve in an iterative fashion
(staggered)

* Most of the computational cost goes into the linear solver. Developing preconditioners is
tedious

The numerical analysis of such algorithms is tedious!
The mathematical analysis of coupled problems is tedious!

Emphasis in all the previous developements should be on physics-based discretizations,
which maintain as best as possible conservation properties after discretization



Challenges in FSI (fluid-structure interaction) as an example

Dealing and coupling of different classes of partial differential equations (PDEs): elliptic,
parabolic, hyperbolic that require different tools for both the mathematical analysis and
numerical modeling (classes 1-4);

Combining different coordinate systems: Eulerian and Lagrangian (class 1);
Nonlinearities in various equations and nonlinear coupling terms (class 2);

Multidomain character with interface coupling conditions (class 2);

ﬁf : fluid domain (o Ty

Qs : solid domain \/—\
T; : interface A

Moving interface T; requires accurate discretizations and sufficient mathematical regularity
(class 2);

Designing accurate, robust and efficient numerical methods (monolithic, staggered,
semi-explicit, ...) (classes 3-4);

Modeling and coupling to other physical phenomena resulting often in multiscale
multiphysics problems (class 5).




Examples I - IV (multiphysics problems)

Valve dynamics/Flapping:
fluids, elasticity

Solid growth and clogging:
fluids, elasticity, solid growth,
contact, chemical reactions

fluids, chemical reactions with
dissolution and precipitation

Reactive flow in thin channels: M }g@

Wall stress minimization:
fluids, elasticity, optimization




Example V: Multiscale multiphysics in time and space !

* Porous media: geomechanics interacting with Darcy flow: multiphysics
* Fractures (possibly growing) are located inside the porous medium

 Fractures are localized: multiscale in space. Flow through fracture faster than in
surrounding medium: multiscale in time

Figure: Fractures are localized phenomena in a 3d large-field porous medium.

TWick/ Singh/Wheeler; 2015, SPE Journal




Scientific computing /computational science

Problem
(Astronomy, chemistry, physics,

finance, biology, medicine)

Model
(ODE, PDE)

Theory
Discretization Well-posedness
(FD, FE, FV) Existence

Uniqueness

Adaptivity
(model, mesh)

Simulation
—_—

Analysis

of results

Figure: The third pillar of science between theory and experiments: scientific computing.
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2 Modeling fluid flows and solid mechanics (class 1)
Preliminaries in notation and calculus (OPTIONAL)
Brief introduction to continuum mechanics
Balance principles for modeling fluid flows and solid mechanics



Notation of functions

* A point in RY is denoted by
x=(x1,...,%4)-

* The variable for ‘time’ is denoted by ¢.
¢ The euclidian scalar product is denoted by (x,y) = x -y = Y%, x;y;.
¢ In these classes, functions are often denoted by
1= u(x)
if they only depend on the spatial variable x = (x1,...,%;).
¢ If they depend on time and space, they are denoted by
u = u(t,x).

¢ Usually in physics or engineering vector-valued and tensor-valued quantities are denoted in
bold font size or with the help of arrows. Unfortunately in mathematics, this notation is
only sometimes adopted. We continue this crime and do not distinguish scalar, vector, and
tensor-valued functions. Thus for points in R® we write:

x:i=(xyz)=x=1%.
Similar for functions from a space u : R3 DU — R3:

= (Uy, Uy, 1) = u =1l



Domains

Let O C R%,d € {2,3} be a bounded domain with boundary dQ). We generally assume the
boundary to be Lipschitzian 2

The outer unit normal vector to 0Q) is denoted by 7.

We denote by Q := Q(t) C R4, d = 2,3, the domain of the fluid-structure interaction
problem. This domain consists of two time-dependent subdomains O (¢) and Qs (t). The
interface between both domain is denoted by T';(f) = 9Q(¢) N 9O (¢).

The initial (or later reference) domains are denoted by ﬁf and O, respectively, with the
interface fl- = 8ﬁf N 90

Furthermore, we denote the outer boundary by N=T= fD U fN where fD and fN denote
Dirichlet and Neumann boundaries, respectively.

For the convenience of the reader and when we expect no confusion, we omit the explicit
time-dependence and we use () := Q(t) to indicate time-dependent domains. Throughout
these notes, we indicate with ‘f” and ‘s’ suffixes, fluid and structure related terms,
respectively.

The time interval is denoted by I := (0, T) with T > 0 being the end time value.

2Precise definitions in Grisvard, 1985; Adams, 1975

Thomas Wick (LUH) Numerical modeling of multiphysics problems



Divergence theorem and integration by parts

Proposition (Gauss’ divergence theorem / Gauss-Green theorem)
Let Q C R be bounded and open, and let 9Q) of class C'. Let f € C'(Q). Then,

/ndivfdx:/mf-nds.

The outer normal of dQ) is given by n.

Proposition (Partial integration)
Letf,g € C1(Q). Then,

/Qaifgdxz—/nfaigdx—i—/aofgn,-ds fori=1,...,n.

Proof.
Apply Gauss’ divergence theorem component wise.



Substitution rule / transformation theorem

Theorem (Integration by substitution / Transformation theorem)

Let O C RN be open. Let T be a diffeomorphism in RN. Let 1 < p < +co. Then f € LP(T(Q))) if and only
iff o T € LP(Q) and we have

dx= [ foT|det(VT)|d.
Jriy 2= [ o Tlaet(V )
Moreover, if f € W (T(Q)) if and only if f o T € W' (Q) and we have

(Vf)oT = ((VT) " HIV(foT).



Chain rule

Definition
Let the functions g : (a,b) — R"*! and f : R"*! — R and its composition i = f o g € R be given
and specifically g(t,x) := (t,x) := (t,x1,%2,...,%n):

D) = Lf(g(t,2)) = L)

= Z Of(g(x)) - gk
k=0

n
=Y Of(tx1,...,Xn) - Osx, wherexg =t

n
= Oif - Ot + Zka(t,xl,...,x,,)~8txk
k=1

=0f + Vf - (dpx1, -+, dpxn)"
=0of +Vf- o

For instance n = 3 and time ¢, this means that we deal with a four-dimensional continuum

(t,x,y,2).



Gradient, divergence, trace, Laplace
Well-known in physics, it is convenient to work with the nabla-operator to define derivative
expressions. The gradient of a single-valued function v : R"” — IR reads:

E)lv
Vo =
)
The gradient of a vector-valued function v : R* — IR™ is called Jacobian matrix and reads:
31‘01 coo anl
Vo=

10y ... OpUp

The divergence is defined for vector-valued functions v : R” — R":

41
n
divo:=V-0:=V-[ | =) v
) k=1
Un
The divergence for a tensor o € R"*" is defined as:
1 30'1']'

Vo= (j:1 aTCj)gign'



Gradient, divergence, trace, Laplace

The trace of a matrix A € R"*" is defined as

n
tr(A) = Z aj.
i=1

Definition (Laplace operator)
The Laplace operator of a two-times continuously differentiable scalar-valued function

u: R" — R is defined as
n

Au = Z Bkku.
k=1

Definition
For a vector-valued function u : R” — R™, we define the Laplace operator component-wise as

1y Yi—1 Okkti1

Um 22:1 OxkUm



Sobolev spaces
Let X CRY,d=2,3bea time-independent domain. For instance, we later use X := ﬁf or

X := ;. We indicate by L (X),1 < p < co the standard Lebesgue space that consists of
measurable functions #, which are Lebesgue-integrable to the p-th power. The set L# (X) forms a
Banach space with the norm ||| (x)-

1
4
o = ([ P ax)’, 1<p <o
[l1ll o (x) = ess sup [u(x)].
We obtain the Hilbert space L?(X) for p = 2, equipped with the inner product
(u,0)12(x) = /X u(x)o(x) dx.
The Sobolev space W™ (X),m € IN,1 < p < oo is the space of functions in L?(X) that have

distributional derivatives of order up to m, which belong to L (X). This space is equipped with
the norm

P
lllyms ) o= (|Z< |D“u||'zp<x)> , 1<p<o,

—— 14
[l wmeo () = E\\?ﬂ”D 1| oo (x)-



Sobolev spaces

The symbol & = (a1, ...,44) € N denotes a multi-index with the properties

o Dt
al =) aj, = .
]; Y oxyl - oxy
For p = 2, H"(X) := W™?2(X) is a Hilbert space equipped with the norm with the inner product

(,0)m(x) == Y, (D", D"0)p2(x),

|a|<m

and the norm || - |[gm(x)-



Derivatives in function spaces

Definition (Directional derivative)

Let f be a mapping from X to Y. Leta € X and éa € X and ¢ € R. The derivative f'(a) of f is
computed as action on vectors of X, i.e.,

f'(a)da = lﬂw = %f(u +&da)|e—g € Y.

The element ' (a)da € Y is called the directional derivative of the function f into the direction of
the vector da € X ata € X.

Definition (Gateaux derivative)

If the directional derivative exists for all directions da, then f(a) is called Gateaux derivative.

Definition (Fréchet derivative)

A mapping f : O C X — Y (Q open) is called Fréchet differentiable at a point a € () if there exists
an element f’(a) of the space L(X, Y) such that

fla+h) =f(a) +f (@h+o(h),

with o(h) = ||h|le(h) with limy, o e(h) = 0in Y. Then, the element f’(a) € L(X, Y) is called the
Fréchet derivative at a € Q). The Fréchet derivative is necessarily unique and does imply that f is
continuous ata € Q).

Thomas Wick (LUH) Numerical modeling of multiphysics problems
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Kinematics with Eulerian and Lagrangian coordinate systems
Definition (Domains)
We denote:
o (): the reference/undeformed configuration;

* Q(t): the current/deformed configuration.

Furthermore, Q)(¢ = 0) is the so-called initial configuration. Often, () := Q)(¢ = 0). Moreover, in

these notes we abbreviate Q) := Q(¢).

Figure: Domains: Qand Q.

The reasoning to work with two coordinate systems is that
* solids/elasticity are usually described in the Lagrangian system O;

¢ fluids (i.e., Navier-Stokes) are usually described in Eulerian coordinates ().




Deformations

Definition (Deformation field)
A deformation of () is a smooth, one-to-one (i.e., injective), orientation-preserving mapping
T:0—Q with (£%) — (t,x) = (T(£3)).

This mapping associates each point & € Q) (of a reference domain) to a new position x € Q (of the
physical domain). Consequently, with the help of the deformation, T, we can represent the
deformed configuration as Q = T(Q)).

Figure: Definition of the deformation T.




Displacements

Definition (Material /Lagrangian description of the displacement field)

s (6%) = (%) = x(,7) —

It relates a particle’s position in the reference configuration X to its corresponding position in the
current configuration x at time ¢. ¢

Definition (Spatial/Eulerian description of the displacement field)

u(t,x) = x — x(x,t).

We recall that also x = T(t,%). o

aft, o) = ult.z) \

Figure: Descriptions of displacements: Going from the origin via Q) means & + it = x. Going from the origin
via () leads tox —u = %.




Time derivatives (I)

Definition (Total/Material time derivative of a Lagrangian field)

’%f(t,fc) = af (L, ).

The material time derivative measures the rate at which f changes in time but following the path
line of this article. This means we measure the rate-change in time of exactly the same particle at
all times.

Definition (Spatial time derivative of an Eulerian field)

The local time derivative of an Eulerian field is defined as

of (t,x).

The current position x is held fixed while measuring the rate at which f changes in time at this
fixed point. This means, at each time, f represents a new particle at x. The spatial time derivative
is also known to be the local time derivative.



Time derivatives (II)

Proposition (Total/Material time derivative of an Eulerian field)
Let f(t,x) : R"™ — Rand x := (x1,...,%y_1) € R"L. Then,

d%f(t,x) = d%f(t, T(t,%))

= 3f (t,x) + Vf(tx) - 9T(t, %)
= 9f (t,x) + Vf(t,x) - Ox(t, %)
= 9f (t,x) + Vf(tx) - v(t x).
The material derivative at a fixed material point % describes the change of an Eulerian variable f that is at

time t at point x and travels with the velocity v(t, x). Here, the first term prescribes the local change whereas
the second term, the convective part, is due to the movement of the particle through the domain.

Proof.
Follows immediately from the chain rule on page 19. O



Movements of particles in Lagrangian and Eulerian coordinates
Q = Position x1
O =Particle p;
© =Particle p,

Lagrangian: physical domain Q(t") ] Q)
Ty T
Lagrangian: reference domain a [+] o a
Eulerian: stand at x; Q") (¢} (@) Q)
observe only points p1,pa, ...
passing exactly in x;
o
Eulerian/Lagrangian: stand at x; Q") ] o] Q)
observe piat all times




Deformation gradient (I)

A

T defovmmalion (fd)

F- deformabion ssdiont
di= Fdi  Avamspod 4 o makerl
Vedov d5 n L1 to
JX " n

Ca

Figure: Transport of materials vectors, transformation T, and deformation gradient F.

* The key purpose of the deformation gradient F is to link dx and d&



Deformation gradient (II)

Definition (Deformation gradient IA-")

For x := x(t,%) = T(t,fc) = X + 11, it holds for infinitesimal deformations:
dx =F-dz,

with F = @x, ie, IA:,v]v = gi’ . Using the relationship x = % + iI, we therefore obtain
j

=1+Va

In compact form:



Transforming spatial derivatives

Proposition
Let f(t,x) : Q — R" be an Eulerian function and let f(£,%) : © — R" a corresponding Lagrangian
function. To compute the Eulerian spatial derivative we have the relation:

Vf = VfE.

The inverse F~1 exists due to the assumptions on T.

Proof.

Chain rule:
Z oT(t,%)

Vf = Vi(t,2) = VI T(R)) = ;a,- F(£T( %)) - ab VfE.

Since F is invertible due to the assumptions on T the assertion follows.



Strain tensor

Definition (Green-Lagrange strain tensor E)

1.~ - 1~ - 1
5C-D = FF-I=
which is symmetric and positive definite for all ¥ € Q) since C and of course, I has these properties,
too. ¢

E= (Va+Val +Vi-vaT),

Definition (Linearized Green-Lagrange strain tensor flin)

(Vir+ val).
i

In words:
Strain is a measure of a deformation T representing the displacement il between particles in a
body relative to a reference length.



Reynolds’ transport theorem
Hypothesis
Let us assume:
e (t,%) — x(t, &) is continuously differentiable;
e Forallt >ty the mapping % — x(t, %) is invertible;

o Orientation-preservation: the Jacobi determinant is always positive; namely | = det(F) > 0.

Proposition (Reynolds’ transport theorem)

As before, let Q) := Q)(t) be a time-dependent domain and (t,%) — x(t,%) be given and assume Hypothesis
1. Furthermore, let the functions (t,x) — d¢x(t, &) and (t,x) — f(t,x) be continuously differentiable.
Then, it holds

& [sena= [ [Ere0+£607 o6,0] b
= /Q [Pif (t,x) + V - (f(t,x) - o(t, x))] dx.

Proof.

Sketch: transform to Q). Interchange differentiation and integration and apply then again the chain
rule. Finally, transform back to ). O

Thomas Wick (LUH) Numerical modeling of multiphysics problems 36
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Balance principles

The equations in continuum mechanics are based on fundamental physical principles:
¢ Mass
* Momentum
¢ Angular momentum
¢ Energy

These laws are formulated in Eulerian coordinates in the following.



Conservation of mass

Definition (Conservation of mass)

d
pr /Q p(t,x)dx = 0.
Applying Reynolds’ transport theorem, we obtain the integral formulation

| Bre(t%) + V- (p(t, 000(t, )] dx = 0
and if this holds for any subdomain of () and the integrand is sufficiently smooth, we obtain:
3ip(t,x) + V - (p(t,x)o(t,x)) = 0

Remark:
When changes in density are time-independent, we have

V- (pv) =0.
If the density is also spatially constant, we obtain
V.ou=0.

This is in fact the continuity condition for incompressible fluid flows; namely the density is
constant.



Conservation of momentum

Newton’s second law states:

d
pr (mv) =F,

where F is the force that acts on the mass.

In continuum mechanics Newton'’s second law reads:

d
ﬁ/ﬂpvdx—/npfder/mgds.

Employing again Reynolds’ transport theorem yields:
) V- (ovo)] dx = [ pfdx+ [ gds.
J i)+ V- (o) dx = [ prax+ [ gas
Compact form (using Cauchy’s theorem for g with g = o - n):
/Q(patv +pv-Vo—(V-0)—pf)dx.

For smooth functions p, v, o and arbitray (), we obtain the differential form:

porv+p(v-V)o—V -0 = pf.



A constitutive law for fluids

Viscous flow with inner friction:
Definition
o= —pl+ (Vo + vol) + AfV -0,

where p is the hydrostatic pressure and where A¢ > 0 and s > 0 are volume and shear viscosity,
respectively.

* Fluids with such stress tensors are called Newtonian fluids.

¢ Inner friction means that particles with different velocities interact on the mirco-scale with
each other; namely velocity variations do cause friction.

* For incompressible flow, the last term vanishes:
AV vl =0

because of mass conservation V - v = 0.



Incompressible Navier-Stokes (fluid flow; Eulerian coordinates)

Isothermal, incompressible, viscous fluid flow is described by the (nonlinear) Navier-Stokes
equations.

Formulation (Navier-Stokes equations)
Find vector-valued velocities v : Q x I — R® and a scalar-valued pressurep : Q x [ — R:
9w+ p(v-V)o—V -0 =pf,
V.-v=0,

where
o= —pl+ pu(Vo+ vol).

Here, ys = pyv is the dynamic viscosity, whereas v is the so-called kinematic viscosity. Initial and boundary
conditions are added later.



Elastic deformations (solids; Lagrangian coordinates)

Definition (Second Piola-Kirchhoff stress tensor)

£=Fl=JF1aFT

¢ We recall the conservation of momentum:
d 2 PN
2 Aaﬁdfc:/ 5 dfc+/ B ds.
a /ﬁp ' AR N

* Here, the density p and the volume force f are related to the reference configuration. Further
calculation (using Gauss’ divergence theorem and Reynolds transport theorem) yields

/ﬁ(pa?—ﬁﬁi) d&:/ﬁpfdfc.

* We notice that the convective term in Reynolds’ theorem vanishes since we work in a
Lagrangian setting.



Elastic deformations (solids; Lagrangian coordinates)

For sufficiently smooth functions and since (43) holds for each subdomain of Q), we can write the
differential form of the elasto-dynamics equations:

Formulation (Solid equation)
Find 1 : Q x I — R such that

plus boundary and initial conditions; later more.



A constitutive law: Saint Venant-Kirchhoff-Material

Definition (Saint Venant-Kirchhoff-Material (STVK) / a large displacement-small
strain model)

For an isotropic, homogeneous material for which its reference configuration is a natural state;
namely 5 (0) = 0, we obtain

S := Ss(01) = 2uE + Atr(E),
with the positive Lamé constants # and A. In particular, the STVK material is only useful in a
neighborhood of the reference configuration C ~ I with small strains E. We finally mention that

the equal sign is (strictly speaking) only an approximation in which higher order terms of E have
been neglected.



Prototype configuration

Figure: Definitions of domains and boundaries.




Summary and outlook

Notation, continuum mechanics, modeling fluids and solids v*

Classifications and deriving a variational formulation
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3 Variational formulations and coupling techniques (class 2)
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Final variational forms for fluid-structure interaction



Situation

* We have now modeled fluid flows and elastic deformations
* To this end, we have obtained PDEs in the so-called strong form
¢ The goal is to apply variational principles:

Weak form

Ll

Galerkin methods (namely finite elements)? for the computer implementation

* Such Galerkin methods are also often used in the mathematical analysis

1

Goal of class 2: how do we obtain such variational formulations for
multiphysics/fluid-structure interaction?

3For an introduction to Galerkin finite elements, I refer to my lecture notes (page 5 of this presentation) on
Numerical methods for PDEs https://doi.org/10.15488/9248 or the references cited therein.
~ ThomasWick(LUH)  Numerical modeling of multiphysics problems 5


https://doi.org/10.15488/9248

Deriving variational forms: two-step procedure

Deriving a variational form:
* Step 1: Design a function space V that also includes the correct boundary conditions.

* Step 2: Multiply the strong form (D) with a test function from V and integrate.

Remark

The second operation ‘weakens’ the derivative information (therefore the name weak form) because rather
evaluating 2nd order derivatives, we only need to evaluate a 1st order (weak) derivative on the trial function
and another 1st order (weak) derivative on the test function.



Example: Poisson problem

0 1

¢ Given Poisson (1D) with homogeneous Dirichlet ‘ ‘

conditions: Find u : O = (0,1) — R such that 0 “ i
—u"=f inQ Figure: Poisson problem in 1D: The
u=0 onoQ. clothesline problem: a uniform
* Step 1: Take space force f = —1 acts on a 1D line

yielding a displacement u(x).
V= {v| v € C[0,1],7" is pc. cont. and bound. on [0,1],v(0) = v(1) = 0}
* We now address Step 2:
" =f
=~ [wpix= [ fd [ueac— [ aupds = [ fpd
/Ou(px chpx :>Qucpx Lo nu ds chpx
—_———

=0, because ¢=0 on 902

:>/Ou/¢’dx:/0f(pdx.

¢ To summarize, we have the following variational formulation:

/nu'qj’dx:/of(pdx



Usual abstract notation

Formulation (Variational Poisson problem on the continuous level)

Find u € V such that
a(u,¢) =1(¢) VYpev,
with
a(u,¢) = (,¢') 1= [ gl d
1¢) = (f9) = [ fpx.

The unknown function u is called the trial function whereas ¢ is the so-called test function.



On the abstract notation

We just have had: Find u € V such that

au,9) =1(p) Vg e V.

Herea(u, ¢) : V x V — Ris a bilinear form and /(¢) € V* is a linear form (linear
functional).

For nonlinear problems, the solution variable u € V is nonlinear while the test function is
still linear. Here we use the notation: Find u € V such that

a(u)(e) =1(9p) VoeV.
Here, a(u)(¢) is a so-called semi-linear form.

For (linear) PDE systems, my notation is: Find U € X such that
A(U¥) =F(¥) V¥eX

For nonlinear PDE systems, my notation is: Find U € X such that
AU)(Y)=F(¥) VY¥eX

This last notation is thus used for multiphysics PDEs as in this winter school.
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Classifications

Dependent variables (x,y,z, ¢, ...); if only one, then ODE, otherwise PDE
Do we deal with steady-state or time-dependent PDEs?

Governing physical conservation properties (diffusion, transport, waves, ...
Order of a PDE (in time, space, or both)
Single equations and PDE systems
Nonlinear problems:

¢ Nonlinearity in the PDE

¢ The function set is not a vector space yielding a variational inequality
Coupled problems and coupled PDE systems:

¢ entering model or material parameters,

¢ linear or nonlinear coupling terms,

¢ right-hand sides,

¢ interfaces.



1

Examples

Findu:Q — R:
—Au+ut=f
Properties: nonlinear (semilinear), stationary, scalar-valued.

Findv:Q — R"'andp: Q — R

E)ﬂz-i—(zrV)U—%AU—i—Vp:f, V-v=0

with Re being the Reynolds’ number. Properties: semilinear, .... For Re — oo we obtain the
Euler equations. Properties: nonlinear (quasilinear), nonstationary, vector-valued, PDE
system.

Findu:Q —Rand¢: Q=+ R
=V (a(9)Vu) =f,
a()|Vul? —Ap =g

Properties: nonlinear, coupled problem via coefficients, stationary. Equations become linear
when solution variables are fixed in the other equation.



Examples

4 Findu:Q —-Randgp: Q=R

—Au :f((P)r
|Vul* — Ap = g(u)

Properties: nonlinear, coupled problem via right hand sides, stationary. Equations become
linear when solution variables are fixed in the other equation.

5 LetOpand Qo withQi N =0and O N =Tand O U, = Q. Findu; : Q) — R
and uy : () — R:
—Au1 =f1 in Ql,
—Auz =f2 in 02,
up =uy onl,

anul = anuz onT.

Properties: linear, coupled problem via interface conditions, stationary.



Hints for developing numerical methods for ‘complicated’

equations
In case you are given a nonlinear IBVP (initial-boundary value problem) and want to start
developing numerical methods for this specific PDE, it is often much easier to start with
appropriate simplifications in order to build and analyze step-by-step your final method. Let us
say you are given the nonlinear time-dependent PDE

Vudru +u-Vu— (Au)? =f
Then, you could tackle the problem as follows:
1 Consider the linear equation:
u—Au=f
which is nothing else than the wave equation.
2 Add a slight nonlinearity to make the problem semi-linear:
utu-Vu—Au=f
3 Add Vu such that the problem becomes quasi-linear:
Vudtutu-Vu—Au=f
4 Make the problem fully nonlinear by considering (Au)?:
Vud?u+u-Vu— (du)* =f.

In each step, make sure that the corresponding numerical solution makes sense and that your
developments so far are correct. If yes, proceed to the next step.



Remark for double-checking proofs and debugging codes

Remark

The contrary to the previous example works as well and should be kept in mind! If you have implemented
the full nonlinear PDE and recognize a difficulty, you can reduce the PDE term by term and make it step by
step simpler. The same procedure holds true for the mathematical analysis.
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Situation in terms of coordinate systems

From Class 1, we know that fluids = Eulerian and solids = Lagrangian. Now:

| Fluids | Solids | Remarks |
Eulerian Lagrangian | Natural systems
Lagrangian-type | Lagrangian | Resultingin ALE
Eulerian Eulerian Fully Eulerian (fixed mesh)
Lagrangian Eulerian Unusual; not seen so far

Frameworks (most important):

Immersed boundary method*

Fictious domain method®

ALE - arbitrary Lagrangian-Eulerian®
Deforming-spatial-domain/stabilized space-time 7
Fixed-mesh ALE®

Fully Eulerian’

4Peskin, 2002; Heltai/Costanzo, 2010
5Glowinski, 1994
6Hughes/Liu/Zimmermann, 1981; Donea/Giuliani/Halleux, 1982; Formaggia/Nobile, 1999
7Tezduyar /Sathe/Stein, 2006
8Codina/Houzeaux/Coppola-Owen /Baiges, 2009
9Durme, 2006; Richter /Wick, 2010; Frei, 2016
~ ThomasWick(LUH)  Numerical modeling of multiphysics problems @



Partitioned versus monolithic

Fluid Fluid Fluid
Structure Structure Structure
tn— 1 tn tn+1
Fluid Fluid Fluid
Structure Structure Structure
= 1 7 tn+1



Interface-capturing versus interface-tracking
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Figure: Left: the mesh is fixed and the interface must be captured. Right: interface-tracking in which the
interface is located on mesh edges.

¢ Interface-tracking may suffer from mesh degeneration, and has problems in contact
mechanics, but has a higher accuracy on the interface

* Interface-capturing allows for topology changes and large deformations, but suffers in
general from less accurate interface representations.

— Variations and improvements of both methodologies are subject to current research in many
groups.



The concept of variational-monolithic ALEg,

¢ ALE is an interface-tracking approach
Rough idea of ALE and its definition using the concepts from continuum mechanics:

Definition

ALE is an intermediate state in which the fluid domain is moved according to the solid. This
requires a mapping between the deformed state and a reference configuration. However, this is
exactly how we worked in Class 1 to introduce the concepts of continuum mechanics. In the
following we are going to use /A := T and recapitulate all definitions we already have had so far.

[9) Q(t)

|

Figure: Defining the ALE transformation.




The ALE transformation

Definition
The ALE mapping is defined in terms of the fluid mesh displacement ftf such that
A1) Qp x I = Qp,  with A(3,t) = & + i (%, 1).

It is specified through the deformation gradient and its determinant
E:=VA=1+Va, J:=det).

Furthermore, function values in Eulerian and Lagrangian coordinates are identified by
up(x) =t (%), withx = A(%,1).

The mesh Velocit}ll is defined by @ := 9;.A. The mesh velocity is numerically realized as

w=0A="2 kf , where the fluid mesh displacements are computed with the help of an
additional PDE.
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Two ALE realizations
Definition
Fluid-structure interaction in ALE coordinates can be realized in two ways:

* ALEg, (explicit mesh moving): the fluid equations are computed on the deformed
configuration () and the mesh is moved explicitely.

* ALEg (implicit mesh moving): all fluid equations are transformed onto the fixed reference
configuration 0 and the mesh movement is ‘hidden’ in the transformations F and J.

In my work, I prefer this second possibility; namely ALEg,.

¢ In practice the ALE transformation is most often realized by solving an additional PDE
(sometimes called mesh motion PDE)

* This auxiliary PDE will move the fluid mesh according to the structural displacements on
the interface ﬁ- where )y and () touch

— Geometric coupling condition: fif = {is
* A simple example for the auxiliary PDE is
—Afly =0 in Q)
iy =15 on IA",v

fig =0 onT;\a0y.
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The ALE time derivative (I)

In a Lagrangian setting, the total and the partial derivatives coincide:
d, . o
d—tf(x, t) = of (%, 1).
In an Eulerian framework, we find the following standard relation between the material

time-derivative (the total time derivative) % f and the partial time derivative df:

2 o) =055 + 2o,

where the additional term v - Vf is referred to as a transport term.

This definition is exactly the same as we have had before on page 30.



The ALE time derivative (II)

Definition (ALE time derivative)

The ALE time derivative is defined as

oif (x,1) 1= 0| 4f (%, 1) = 9yf (x, ) +w - Vf,

where the transport term appears due to the motion of the computational domain. Moreover (see
additionally Figure 11 on page 70):

* Ina Lagrangian description, we have w = v, i.e., the domain Q(¢) is moving with the fluid
velocity v;

* Ina fixed Eulerian setting, it holds w = 0, i.e., the domain Q)(¢) is fixed;

* In ALE, we have 0 < w < v. Later we will see that v = w at the FSI-interface f,— and a bit
away, we have 0 < w < v, while far away w = 0 (the mesh is not moving anymore). Thus, in
ALE, depending on the location in the domain, we use both Eulerian and Lagrangian
frameworks with a smooth transition between them.
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Illustrations

Intermediate sub-domain where mesh moves with 0<w<v.

0.40 T
0.30
0.20
0.10

NN

Eulerian-type sub-domain where mesh does not move, i.e., v=0.

Figure: Explanation of the ALE-approach with the help of snapshots at two different times of a
FSI-simulation: consequences of the mesh velocity w on the domain (mesh) movement. In regions where
w = 0 the domain does not move and is fixed. The solid and the interface fi both move with w = v. In
between (green arrows) the domain moves with 0 < w < v.
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Preparatory example

Before we attack fluid-structure interaction, we illustrate variational-monolithic coupling
again with a simple example.

Letu; : (O — Rand up : ) — R. Consider two Poisson-type problems:
7Au1 = fl in Ql
u = 0 on 301 \ T
—Auz =f2 in 02
uy =0 ondp\T.
We need to impose two interface conditions on I':
Uy = Uy Kinematic condition,

O U1 = Oy U Dynamic condition.

Question: How does a variational form using variational-monolithic coupling look like?



Step 1: design function space

Define
X={veH(Q) vy =v,0onT, vy =00nd \T, v =0on Y \ T}
Here, Q) := O U)y.
Here, the function v is defined over the entire domain ), with
U1 = v|01/ U2 = v|02

The kinematic coupling condition is built into X.

And the Dirichlet boundary conditions are build into X as well.



Step 2: Variational formulation
Proposition

Find U = (uq,up) € X such that
A(UY) =F(¥) V¥eX,

where ¥ = (@1, 92) € Xand F(Y) := (f1, ¢1) + (f2, ¢2) and
A(U,Y) == Aq(u1, ¢1) + Az (uz, ¢2)

with
At (u1, 1) = (Vur, Vor), Ax(uz, 92) = (Vuz, Ver).

Proof.
It holds after partial integration of the strong forms:

A (1, 1) + /ranulq)l ds, Ax(uz, ¢2) + /r Ontlp ¢p ds.
We sum-up:
A1 (u1, 91) + /ranulq)l ds + Az (uz, @2) + /ranuz(pz ds
= A1 (u1, ¢1) + Az(uz, ¢2) + /r(a,,ulfpl + Ontp ) ds.

cont. next slide ... O



Proof, Part II

Proof continued from previous slide.

... We argue that ¥ = (@1, ¢2) € X. In particular, therein ¢; = ¢, on T’ (kinemetic condition!). Also
we use the fact that ny = —ny. Then:

/r(anl U1 1 + OnyUp 1) , ds = /r(anlul + Oy tp) @1 ds
Our second coupling condition 9y, #1 + 9y, iz = 0 comes into play now and therefore the integral
on I' vanishes:

/F(anlul + Oy thp) @1 ds = 0.

Therefore, the sum of both semi-linear forms does not contain any terms on the interface I' and
consequently, we have
A(UY) = A1 (u1, ¢1) + Az (1, 92).

* The last four slides are crucially important to understand variational monolithic coupling!

¢ In the variational form, we do not see anymore the dynamic condition, because it is exactly
fulfilled on the variational level, and therefore vanishes explicitly. But implicitly it is of
course present!

Thomas Wick (LUH) Numerical modeling of multiphysics problems
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Recalling the equations from Class 1 (fluids)
¢ Incompressible, isothermal Navier-Stokes equations:
pr0tvf + pr (vf - V)vy — 2div(ppveD(vf)) + Vpr = pf, inQp, t €1,
divey =0, inQy tel
¢ The initial conditions are prescribed as
v(0) =19 InQx{t=0}.

¢ Dirichlet conditions are prescribed on no-slip boundaries and inflow boundaries:
v =0, onlyy,
vy =0 onlyp.

No-slip boundaries might be rigid walls for example in modelling channel flow. We also
notice that such a Dirichlet condition is seen in the velocity domain on the interface I'; in the
case of a fluid-structure interaction setting, i.e.,

v =vs onl;.
¢ The second natural type are Neumann boundary conditions (applied stresses):
omg =h onlyy C 0,
with a given vector-valued function 1 = h(x, t).



Recalling the equations from Class 1 (solids)

* For (nonlinear) elasto-dynamics, we have: Find vector-valued displacements 2 : Q) — R
such that R . R
092015 — div(FE) = pf, inQs, tel,
with £ 1 SSTVEK,

* Initial conditions:

* As for the fluid equations, we prescribe Dirichlet boundary conditions (fixing the
displacements):
s =¢ onT,p CaQ,
where § is a given function.
* We can also employ Neumann boundary condition (surface stresses):
i, = 7351?’Tﬁ5 =h on /fs,N C aﬁs,

in which  is a given vector-valued function. Such a condition is seen from the structure side
on the interface in case of a fluid-structure interaction problem, i.e.,

Eh, = ffrff-*Tﬁf onT;.



Variational forms for FSI

We now apply the previous concepts to FSI
Design function spaces
Multiply each equation with a test function and integrate

Little (big!) problem: fluid flows and solid mechanics are defined in different coordinate
systems (class 1)

Use therefore ALE approach: rewrite fluid equations into a Lagrangian-type system



Function spaces

Definition (Spaces for fluid-structure interaction)
We set:

Specifically, we introduce the trial and the test space of the velocity variables (recall that the
velocity is d-dimensional) in the fluid domain,

V](‘),f; = {@f € [Htl)(ﬁf)]d 3 f)f = 05 on f,}

Moreover, we introduce the trial and the test spaces for the mesh movement using ALE in the
fluid domain,

V/?,ﬁ = {ﬁf S [Htl)(ﬁf)]d 5 ﬁf = ils on fi},

Vfoﬁ’ff = {§r € [H}(O))? : g = ¢ on T; C 20X}



Navier-Stokes in ALE coordinates

e Using ALE, rewrite flow equations into a Lagrangian-type system
* Formulate everything in the reference configuration using the transformation theorem (see

page 18), i.e.,

/Qfdx:/ﬁffdfc, with J=detf, E=1I+$n

Formulation (ALEf, fluid problem)

Find {oy, pf} € {ﬁfD 4 V})} X I:}’ such that the initial data 07(0) = A}) are satisfied, and for almost all time
steps t € I holds:

pr(Jorey, §%), +0p(JE (0 — @) - Vo, §° )o, + (JoE T, V° )o,
_Ugfp nfrlp >fle - (]U]P nfrlp >A. - Pf(]ff/ )A = 0/
(div (JF 2y, e, =

forall §° € Vfo and P € LY, and with the transformed Cauchy stress tensor

\
\./

0 = —pyl + 2ppD(0y) = —pyl + 2050y (VO +F



Coupling conditions on interface I';
¢ Kinematic coupling condition (physics):
o =9 on I
* Dynamic coupling condition (physics):
f?TfIA-“’Tﬁf —TSh,=0 onT;

¢ Geometric coupling condition:

Solid

FSi, = J6;F Tiy on T

Fl

v

vp=wv,only I MMPDE up = u, on I

I~ Fluid

Figure: Illustration of the three coupling conditions on I'; (respectively its corresponding definition on the

fixed T;): vy is required to solve the fluid system, FZsits is required for the solid system, and y is necessary
for the MMPDE (mesh motion PDE).



Variational-monolithic coupling

¢ The continuity of flow conditions,
Uf = Us,
and the geometric coupling
uf = Ug,
are incorporated directly in the Sobolev spaces as usually done for Dirichlet conditions:

ng/f; = {f}f S H(lj( f) 8 @f = Us onl’i},

VP, = {iiy € Hy(Qy) : iy = i, on T}

¢ In variational-monolithic coupling, Neumann-like interface conditions, like the continuity
of normal stresses are fulfilled exactly (see page 75) in a weak sense on the continuous level:

(JoF iy, ¢) — (Fhs, ) =0 Vg € V7,
e They are realized through interface integrals (but actually disappear in the later models

because of their continuity in the weak (variational) sense), provided that ¢y = ¢s on ﬁ- (see
again the proof on page 75), as it is guaranteed with the space V})v here.



Collecting all pieces

In order to derive the weak form a the FSI model, we now put our different pieces together:

Definition (Collecting all pieces for variational-monolithic FSI in ALE,)

To build the FSI model, we use:
* Fluid momentum and mass conservation: the weak form of Navier-Stokes in ALEy,
* Solid momentum in mixed form: the weak form of elasticity

* Fluid mesh motion for realizing the ALE transformation: the weak form (Gnesh, @lf}“) o of

one of the second-order mesh motion PDEs with Gyesp 1= a@ﬁf, « > 0, or alternatively a
fourth-order mesh motion PDE



Variational-monolithic ALE fluid-structure interaction

Formulation (Variational-monolithic ALE fluid-structure interaction in ()

Find vector-valued velocities, vector-valued displucements and a scalar-valued fluid pressure, i.e.,
U= {07, 05, i, 05, pr} € X = {f;fD + 179 25} % Ls x {u 4 VO 2t x {00 + V0% x L, such that o¢(0) = 19, 95(0) = 27,
i (0) = ﬁ}), and 5(0) = 1 are satisfied, andfor almost all tlmes t € I holds:

‘ M) = (oy0rty, )5, + B 6 = 0905, 8, + 0T, 90,
Fluid momentum SATa T 20 -
+(pf1/f J(E- van VBT, >r =0 V¢§°e 5%
Solid momentum, v-equation { = (0s9:05, 97, + (ES, V§© ), + (Zo(05), @lﬁv)ﬁs =0 V¢ e VY,
Fluid mesh motion {As( )($"*) = @onesn, V" Jo, =0 vt e ‘7}) T

Solid momentum, u-equation {A4(U)(1p“) = ps<a,a5 —05, ") =0 Ve Ls,
)

Fluid mass conservation {As (@) := (div (JF 1o o), l/J”) =0 V¥ e ﬁ]?.

® The green terms represents the respective terms in the ‘standard’ coordinate systems
True for all solid equations, because they remain in Lagrangian coordinates

The fluid has been transformed from Q to €) using the ALE technology.

The red terms are novel due to the ALE transformations.

L] \L J/

¢ The blue term is a Neumann condition on the outflow boundary in channel flow, which corrects the outflow
profile. Better known as part of the do-nothing condition.”

10 Heywood/Rannacher/Turek, 1996
~ ThomasWick(LUH)  Numerical modeling of multiphysics problems g



Compact abstract semi-linear form

Consequently, we can write in short form:

Formulation (Semi-linear form on the time-continuous, space—continuous level)

Find U € )A(OD such that 07 (0) = vf, 05(0) = 99, 27 (0) = uf, and 115(0) = #19 are satisfied, and for almost
all time steps t € I holds:

A)(¥)=0 v¥eX
with ¥ = {7, 92, ¢, 9, 1[3}7} and X = V}’v xLex V0 o x V0 x ﬁ}’ and

fir;

A)(Y) := Ay (T) (§7) + A2 (1) (§7) + As (W) () + Aa (W) (") + A5 (TD) (97).



Summary and outlook

Variational formulation of FSI v/

Discretization



Class 3



4 Discretization in time and space (class 3)
Temporal discretization
Spatial discretization
Adaptivity



Paradigm of numerical modeling and discretization

¢ All the previous types of different equations we have seen before have different physical
properties and these properties on the continuous PDE level should be maintained as
well as possible after numerical discretization.

¢ Thus it is extremely important to understand the properties of a differential equation (at
least to some extend) on the continuous level (ODE/PDE theory) in order to be able to
derive and analyze appropriate algorithmic schemes.

Example

The wave equation (thus the elastodynamic solid equations) satisfy energy conservation on the
continuous level. Think of the harmonic oscillator that would never stop if there were no air
friction. Thus neglecting physical friction in the PDE equations, also the numerical simulation
should not yield any damping on the harmonic oscillator and make it to stop.



Philosophy of discretization

* We explain the following steps in terms of a monolithic scheme (all equations are solved
all-at-once)

¢ Formulation as a common semi-linear form that represents the variational (weak form;
principle of virtual work) formulation:

Formulation

Let U be the unknown solution containing all solution variables, here U = (u, v, p), while setting

u = g +us and v = vy + vs. As before, let X be the common function space. The task is: Find U € X such
that

AU)(Y) =0 VY¥eX
Omitting the hats”here.

¢ Four solution steps:

1 (Adaptive) discretization in time;
2 (Adaptive) discretization in space;
3 (Adaptive) nonlinear iteration: Newton’s method;

4 (Adaptive) solution of inner linear systems.



Temporal discretization for a parabolic equation: One-Step-0
* Explanation in terms of a parabolic problem (the heat equation):
ou—Au=f,
be given.

¢ Time discretization using finite differences yields: Find u := u":

u—ut1
— —0du—(1- 0)Au" L = 0f + (1-6)f"1,
where k = t, — t,_1 and with 6 € [0,1] with 0 < 6 < 0.5 (explicit) and 0.5 < 6 < 1 (implicit

schemes).
* Re-arranging terms yields:

u—yn1
—— —fu= (1—0)Au" "t +0f + (1 —0)" 1,

where k = " — "1 is the time step size.
* Well-known choices for 6:

6 =0 Explicit Euler
6 = 0.5 Crank-Nicolson (Trapezoidal rule)
6 =1 Implicit Euler



One-Step-0
Formulation (One-Step-60 for PDE multiphysics)
Given ("1, F", and F*~1, we seek (I" = {of, o, 02,0y, p}} € X0 by employing One-step-0 splitting in

exactly the same way

Ar(t")(¥) +0Ap (U") (%) + A (U") (%)

= —(1-0)A(0")(¥) +6F" () + (1 - O)F" ' (¥)

Examples:

* Heat equation from before:

u—u"1
Ar(") () = (——¥)
Ap(u™) () = (Vu, V)
F'(y) = (£, 9)

¢ Example for an implicit term: for instance pressure term in Navier-Stokes equations:
Ai((©p) ) = (=pL Vy)

¢ The entire FSI system can be classified into these terms and consequently fully
time-discretized.

¢ It remains the question how to choose 6?



Temporal discretization: A-stable schemes

From the model problem
Y () =y(t), ylto) =yo, A €C,
we know the solution y(t) = yo exp(At). For t — co the solution is characterized by the sign of
Re A:
ReA <0 = |y(t)| = |yo|exp(ReA) — 0,
ReA=0 = |y(t)] = [yo| exp(ReA) = [yol,
ReA >0 = |y(t)| = |yolexp(ReA) — co.

For a good numerical scheme, the first case is particularly interesting whether such a scheme can
produce a bounded discrete solution when the continuous solution has this property.

Definition (A-stability)

Let {y, }» the sequence of solutions of a difference method for solving the ODE model problem.
Then, this method is A-stable if for arbitrary A € C~ = {1 : Re(A) < 0} the approximate solutions
are bounded (or even contractive) for arbitrary, but fixed, step size k. That is to say:

[Yar1| < |yn|l < oo forn=1,2,3,...



Temporal discretization: A-stable schemes (cont’d)

* For A = —10, we define R(z) = 1 + z where z = Ak, we have the stability interval for the
forward Euler scheme (0 = 0) (not A-stable!!):

1+z]<1 = |1-10k <1
Thus, we need to choose a k that fulfills the previous relation.

* The backward Euler scheme (6 = 1) and the Crank-Nicolson scheme (0 = 0.5) are A-stable
though and do not require a time step restriction 1!

* Example:
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Figure: Example: Blow-up, constant zig-zag non-convergence, and convergence of the forward Euler
method.

11Exceptions for 6 = 0.5 are known; see Rannacher 1986 and below page 97.




Refinements of A-stability (I)

A-stability:
R(z)| <1, z<0

This ensures that the discrete solution remains bounded.

Strict A-stability:
R(z)| <1—ck, z< -1

The discrete solution is bounded for inhomogeneous right hand sides or irrugular initial
data.

Strong A-stability:
R(z)| <x<1 z<-1

Damping of high-frequency errors and robust against local errors.

Numerical dissipation. For physical oscillations (e.g., wave equation; our solid equation in
fact), the numerically introduced dissipation should be as small as possible. This means:

R(+i) ~ 1.



Refinements of A-stability (II)

e Itis clear that only implicit schemes can be A-stable and is well-known from lectures for
numerical methods for ordinary differential equations.

¢ For the implicit Euler scheme, it holds in z = —i:

* We nicely see that the damping in the implicit Euler scheme is too strong and will damp out
physical oscillations. Therefore, this scheme is not suited for wave equations.

¢ Now, let us consider the Crank-Nicolson scheme:

141
lim + 32

z%ool_%z

=-1 = [R(-)|= |

1+1

¢ Thus, physical oscillations can be perfectly represented. However, any small disturbances
(e.g., even round-off errors), can lead to a blow-up of the solution.

* One possibility is a k-shift towards the implicit side:
0 =05+k, fork < 0.5 (characteristic time step size)

This scheme is strictly A-stable and still of second order as proven by Rannacher in 1986.



[lustration of physical oscillations versus numerical instabilities
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Figure: Fluid flow (Navier-Stokes) interacts with an elastic beam. Due to a non-symmetry of the cylinder,
the beam starts oscillating. These oscillations are physical!

* Observe the tip of the elastic beam! — T
800 | angent CN (vw)
Secant CN shifted (v)

— Physical oscillations! Shown in red color o

for a ‘good” numerical scheme.

400 |-

Drag
é

* The grey numerical scheme exhibits at
some time around f ~ 10
micro-oscillations which are due to
numerical instabilites. Finally the grey 200 |- 1
numerical scheme has a blow-up and ; . p 5 o T
yields garbage solutions. Time

200




On the other hand, the backward Euler scheme 6 = 1 ...

... is too dissipative and suppresses the physical oscillations:
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Figure: Comparison of the uy, displacement using the backward Euler scheme (left) and the shifted
Crank-Nicolson scheme (right). These findings show that it is important to choose the ‘correct’
time-stepping scheme. For nonstationary flow, the backward Euler scheme is too dissipative and is not able
to compute oscillatory flow as the shifted CN scheme does.
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Spatial discretization based on finite elements

Disclaimer: An introduction to finite elements is a one-semester class. Here, we only introduce
very little and refer to the lecture notes mentioned on page 5 (T. Wick; Numerical methods for
PDEs, 2020).

Definition
A finite element is a triple (K, Pg,X) where
* Kis an element, i.e., a geometric object (in 1D an interval);
* Pi(K) is a finite dimensional linear space of polynomials defined on K;

* X, not introduced so far, is a set of degrees of freedom (DoF), e.g., the values of the
polynomial at the vertices of K.

These three ingredients yield a uniquely determined polynomial on an element K.

i

Tlustration of finite elements in 1D. The ele- Gi1 & Gin
q 1— A A A

ments are K; = [x;,x;11]. The polynomials are VANEVAN

linear functions (so-called hat functions since the /N

look like a hat). The DoFs are points x;, X1 / / \\

where the linear function is fixed and therefore 7\ \\

uniquely defined. / / % V‘

Ti- T Tip1
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Finite elements in 2D on quadrilaterals

Let K be an element with four vertices a’,i = 1,...4 and the sides parallel to the coordinate axes in
R2.

Definition (A basis of Q; (bilinear polynomials))
A basis of the space Q; (K) on an element K is given by
Q1= Qi(K) = {¢1,¢2, ¢3, 94}
with the basis functions
P1=1 =3, ¢3=2x2, ¢4=x1%.

The dimension is dim(Q;) = 4. Clearly, any function from Q; can be represented through the
linear combination:
p(x) = a1 + a0z + ao1P3 + a1194.

Proposition

A Q function is uniquely determined by the values of the nodal points a'.



Bilinear and biquadatric elements

Figure: Q; (bilinear) and Q, (biquadratic) elements on a quadrilateral in 2D.

* Shape-regular meshes.

* A mesh consists of quadrilateral /hexadydra cells K. They perform a non-overlapping cover
qf the cgmputation domain () ¢ RY, d = 2,3. The corresponding mesh is given by
Tn = {K}.

* The discretization parameter is denoted by /i and is a cell-wise constant that is given by the
diameter fi;, of the cell K.

Thomas Wick (LUH) Numerical modeling of multiphysics problems
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On the spatial stability: the inf-sup condition

¢ For spatial stability, the velocity space must be sufficiently bigger than the pressure space

* This is known as inf-sup condition'? and must be satisfied on the continuous and the
discrete level

* On the discrete level, the results can be for instance the Taylor-Hood element Q$ /Qf or the
Q5/ P’ft element.

¢ In case equal-order elements are used, pressure stabilization must be employed

12Gijrault/Raviart, Finite Element method for the Navier-Stokes equations, 1986



On the spatial stability: the inf-sup condition

1.0 1.5 2.0

Figure: Fluid flow in channel with a hole: Illustration of the violation of the inf-sup condition using the
unstable Qf /Qf discretization: the pressure field oscillates (top left) whereas the corresponding velocity
field (top right) is ‘more or less’ okay in the picture norm. On the bottom, the inf-sup stable Taylor-Hood
element Q5 /Qf results in a smooth pressure field (bottom left). The corresponding flow field is shown at
bottom right. (As footnote: The picture norm does only provide a rough idea of a sitation. It is neither a proof nor
computational evidence nor evidence of numerical convergence or rigorous correctness of a result!)
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Why? How? What?!3
Why?

* Allowing for flexible algorithms, efficient evaluations of solutions or parts of solutions

* Done by relatively low computational cost

* More important than ever because of big data, multiphysics applications, many unknowns
How?

¢ Goal-oriented algorithms

* Approach motivated from optimization (Lagrange formalism)

* Adjoint equations

¢ Combining with parallel computing
What?

* A posteriori error estimates

¢ Differential equations: temporal and spatial mesh adaptivity; choosing non-uniform time
step sizes and spatial meshes for reducing discretization errors

* Controlling stopping criteria in the iterative linear and nonlinear solvers

¢ Controlling model errors

13Goldenstein/ Wick; 2020, see page 5 for the full reference
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Examples: spatial mesh adaptivity

* The following is for the spatial discretization error Uj,. The temporal discretization error U}
could have been considered as well.

* Opverall goal: reduction of computational cost, while computing ‘something’ with sufficient
accuracy.

* This ‘something’ can be the solution itself, the interface in multiphysics problems, or a
certain technical quantity of interest (e.g., drag/lift in flow problems).

* How and where to refine the mesh?
— an error estimator 7 will tell us.
* A general way to express such wishes is in terms of goal functionals J(U)
* Example: Drag coefficient for fluid flow (Navier-Stokes): J({) = frx_ 0y - ney ds, where 0y is

the fluid’s Cauchy stress tensor (class 1), n the normal vector, and e; the unit vector in
x — direction.

Figure: Meshes on level 0, level 0 and 1, level 0,1,2. Refinining only the regions where ‘something’ happens
which is indicated by an error estimator 7.




Example: spatial mesh adaptivity

Definition (Error estimator)

To estimate the iterative or discretization error, we work with an error estimator #. This error
estimator is usually based on a posteriori error estimates.

We now have
JU) = J(Uy) ~ 1
A key question is whether 7 has "something" to do with the true error:
1 Robustness/reliability: [J(U) — J(Uj)| < c2 17, where ¢; > 0
2 Efficiency: c; 7 < |[J(U) — J(Uy)|, where ¢; > 0
This yields:
Definition (Effectivity index)
Lg == U(LI)I]W’ for which asymptotically, we hope for I,z — 1.

Adaptive scheme:
1 Solve the problem: U},
2 Estimate error with i
3 Mark regions of domain with high error indicators

4 Adapt the mesh (FEM) or solution algorithm
~ ThomasWick(LUH)  Numerical modeling of multiphysics problems 109



The adjoint, our friend

* So far we had a goal functional J(-) as well as a Task (PDE, ODE)

A(U) =b Problem on continuous level
Ap(Uy) = by, Discretized problem in space and time

* We derive now an estimator # that uses Uj, and an additional adjoint equation that
measures the sensitivity w.r.t. J(Uj)

* To this end, we formulate the optimization problem
min [J(U) - J(Uy)] st AU)=b

* One possiblity to solve such constraint optimization problems is to introduce a Lagrange
multiplier such that we can define the Lagrangian L : V x V — R:

LU, 2) = (J(U) = J(Un)) = (A(U) = b)Z
where U is the primal variable and Z the Lagrange multiplier (or adjoint variable).

* The idea is now to compute stationary points as functions of U and Z. These are always
saddle points of L(U, Z).



Application to variational formulations

¢ Given
min(J(U) —J(Up)) st A(U)(E) = F(¥).

* We use the solution approach: Find U,Z € V :
L(U,2) = (J(U) — J(Uy)) — A(U)(2) + F(Z)
* A necessary condition for a minimum is
L'=0
¢ It follows for the (Fréchet) derivatives
Lu(U,2) =] (U)(9) —A'(U,Z)(g) =0
Ly(U,Z) = —A'(U,Z)(¥) + F(¥) = 0

* Yielding for the adjoint and primal problems

FindZeV: AUZ)(®)=]U)(®) ®cV
FindU e V:A'"(U,Z)(Y)=F(¥) YeV.



A first error estimator
* Set® =e = U — Uy Then:
J(e) = A(e,Z) = A(U— Uy, Z) = A(U,Z) — AU}, Z) + R®
* A computable error estimator reads:
n:=AUZ)— AUy, Z) =F(z) — A(Uy, Z)
* Until now U and Z are unknown and we cannot evaluate 77. We will now derive these
unknowns.
i) The "solution" to the unknown u is more or less easy. We have already
1 =FZ) - AUy, 2)
where F and U}, are known.
ii) The only unknown is now Z where the solution is tricky. Just approximating Z € V by
Zy, € Vj, will yield a bad error estimator. The trick ist to use the Galerkin orthogonality and
plug-in Z;: A(U — Uy, Z;) = 0. Then:
n=FZ-2)— AUy, Z - Zp)
Still Z is unknown. Simply using Z := Z;, would yield Z;, — Z;, = 0. Thus, we must use a
higher-order solution, for instance with higher-order interpolation or a higher-order finite
element: Z := Z,gz). Then:

n=FZ? - 2) - AU, 2 ~ ;)

*  With a bit more work, this error estimator can be extended to control also linear and
nonlinear iteration errors #
14Meidner/Vihharev/ Rannacher, 2009; Vihharev /Rannacher, 2013
~ ThomasWick(LUH)  Numerical modeling of multiphysics problems 1




A simplified error estimator for multiphysics

* We finally obtain:

Proposition

The goal functional error between U and U}, can be approximated via

J(W) = J(Us) = = F(Z7 - inZ®) - AUy, 27 - ,2?),

where F(-) is a possible right hand side and A(-)(-) is nothing else than the FSI-semi-linear form from page

86.

¢ What does this mean for multiphysics (i.e., FSI)?

1

2

We know A(U)(¥) and can solve it as before

Need to solve second problem, the adjoint: Find Z(?) such that A’ ({1, 2))(¥) = J' (1) (¥) for
Y e )A(""l, r + 1 indicates that we must use a higher order.

Plug-in both solutions into the error estimator 7.

Localize 1 to obtain indicators on each mesh element

Refine the mesh



Final comments to goal-oriented adjoint-based error estimation
Pros

* Adjoint-based error estimation allows to measure precisely at a low computational cost

specific functionals of interest J(U) and not only general error norms of the form ||U — Uy ||
* The developed adjoint equation is the same as used in gradient-based optimization!®
¢ The adjoint is always a linear equation.

* Can be extended to fully adaptive schemes in which discretization, linear and nonlinear
iteration errors can be controlled 1

* Can we further utilized for multigoal-oriented error estimation
(attractive in multiphysics!) 7

Prize to pay:
* We must compute a second solution Z € V.
¢ For time-dependent problems, the adjoint is running backwards in time.

¢ For nonlinear primal problems, the primal solution must be stored since it enters the adjoint
solution.

* From the theoretical point of view, we cannot proof convergence of the adaptive scheme for
general goal functionals.

15Becker, 2004; Becker/Meidner/ Vexler, 2007
16Meidner/Rannacher/Vihharev, 2009; Rannacher/Vihharev, 2013
17Endtmayer/Langer/Wick, 2017-2020
~ ThomasWick(LUH)  Numerical modeling of multiphysics problems 11



General comments to programming code verification

Three steps (with increasing level of difficulty) after having constructed an a posteriori error
estimator 7 that can be localized and used for local mesh adaptivity. These steps hold true for
classical norm-based error-estimation ||U — Uy || or goal-oriented error estimation J(U) — J(Uy,).

1 Does the solution make sense?

¢ If possible test your code with an acknowledged benchmark configuration and verify whether
J(Uy,) matches the benchmark values in a given range and on a sequence of at least three
meshes. This first step can be performed with uniform and adaptive mesh refinement. In
time-dependent problems, please compute at least with three different time step sizes.

¢ If no benchmark configuration available, study a simple, prototype configuration and observe
whether the solution makes sense.

2 Do the true error J(U) — J(Uj,) and the error estimator # descrease under mesh refinement?

* Compute J(U) either on a uniformly-refined super-fine mesh or even analytically (i.e., a
manufactured solution). Compute the error J(U) — J(Uy) and observe whether the error is
decreasing.

¢ If a priori estimates are available, see if the orders of convergence are as expected. But be
careful, often goal functionals are nonlinear, for which rigorous a priori error estimates are not
available.

3 Compare 17 and J(U) — J(Uy) in terms of the effectivity index I,y. Do we asymptotically
obtain something around Ieﬁ ~ 1? For nonlinear problems, one easily observes
05 < Ieﬁr < 10, which might be still okay depending on the problem.
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Outlook to the next class

Numerical modeling including discretization in time, space and adpative methods v*

~

Solution of the finite-dimensional discrete FSI systems A(U}') (¥,,) = 0



Class 4



5 Nonlinear and linear solution (class 4)
Nonlinear solution
Linear solution



What do we have?

¢ In Class 3, we obtained the temporal and spatially discretized nonlinear form:
AR (¥r) =0
* We may also have a right hand side. Then:

Ay (%) = F(En).
¢ In detail:
Problem
Find U} = {01, 0, 2, 0%, ), } € X, where
XE,D = {@?h + Vo,z‘;,h} x Lo x {ﬁf?h + Wah} X {ﬁs[,)h + Vg,h} X ﬁ]g’h,for alln =1,2,...,N such that
A (8) =E(F1) VL € X,

with ¥, = {lﬁﬁh, 1/3;;,/ lpﬁh, 1/3;‘,;,: Iﬁﬁh} and jzh = V}J,f;,h % i‘s,h x V0

. o
~ X X °
faLn Vg,h fh



Principle idea

 All this is nothing else than a ‘simple’ root-finding problem

e Here: N
AT ($n) —F(¥n) =0

* Recall classes to the introduction to numerical methods:
Formulation (Root-finding problem)
Letf : R — R. The task is to find x € R such that

f(x) =0.

* Generate sequence of iterates (x;)rer and hopefully reach at some point
[f(xx)| < TOL, where TOL is small, e.g., TOL = 10~ 1°.

¢ The key question is now how to construct this sequence? Options are (among others):

1 Fixed-point schemes: Picard iterations, gradient descent

2 Newton, quasi-Newton



Newton

Let us assume that we are at x;
and can evaluate f(xy).

Now we want to compute this
next iterate xy, 1 with the
unknown value f (x11).

Taylor expansion gives us:
Flrian) = £ () +f (30 (okrr = 21k) +0(xkce1 — 1)

We assume that f(x41) = 0 (or

very close to zero f(x41) =~ 0).

Then, x4 is the sought root and
neglecting the higher-order terms
we obtain:

0 = f(xi) +f (o) (g1 — 2%%)-

X1 X0

Figure: Geometrical interpretation of Newton’s method.



Newton scheme

¢ Newton scheme, 1st version:

xk+1:xk—j:,((3;';)), k=0,1,2,.... 1)

This iteration is possible as long as f’(xx) # 0
* Second version: We see that Newton’s method can be written a bit more general as
Xk+1 = xk+dk, k=0,1,2,...,

where the search direction is

dk — _f (xk) .
f(x)
¢ The iteration (1) terminates if a stopping criterion
X1 — X
|k+|1x7k|k| <TOL, or |xg41 —x| <TOL,
or

%33‘ < TOL  or [f(x¢41)] < TOL

is fulfilled.

* Relative stopping criteria (left ones) are in general recommended.



Newton as defect-correction

Definition (Newton’s method as defect-correction scheme)
Compute 0x from defect problem, then correct solution to xj1:

flx)ox =dy,  di:=y—f(x),
X1 =X +0x, k=0,1,2,....

The iteration is finished with the same stopping criterion as for the classical scheme. To compute
the update 6x we need to invert f/ (xx):

0x = (f'(x¢)) .

This step seems trivial but is the most critical one if we deal with problems in IR” with 7 > 1 or in
function spaces. Because here, the derivative becomes a matrix. Therefore, the problem results in
solving a linear equation system of the type Adéx = b and computing the inverse matrix A~! is an
expensive operation.



Going from R to Banach spaces
* Newton-Raphson (1D), find x € R via iterating k = 0,1,2, ... such that x; ~ x via:
Finddx € R:  f'(x)éx = —f(xx),
Update: X1 = X + 0x.
* Newton in R", find x € R" via iterating k = 0,1, 2, ... such that x; ~ x via:
Find 0x € R":  F'(x;)6x = —F(xy),
Update: X1 = X + 0x.
Here we need to solve a linear equation system to compute the update dx € R".
* Banach spaces, find u € V, with dim(V) = oo, via iterating k = 0,1,2, ... such that u; ~ u via:
Finddu € V: F(u)éu = —F(uy),
Update: U1 = U + Ou.

Such a problem needs to be discretized and results again in solving a linear equation system
in the defect step.

* Banach spaces, applied to variational formulations, find U € X, with dim(V) = oo, via
iterating k = 0,1, 2, ... such that Uy ~ U via:

FindsU € V:  A/(Uy)(5U,¥) = —A(U) (),
Update: Ui = Ui +6U.

As before, the infinite-dimensional problem is discretized resulting in solving a linear
equation system in the defect step.



Back to FSI ...

* After temporal and spatial discretization, at each nonlinear iteration step, a linear equation
system needs to be solved (without any hats):

Formulation

Find Uj € X, such that
A(UL)(Yn) =0 V¥, =X,

Formulation (Newton as defect-correction scheme)
For the iteration steps m = 0,1,2, . .., the Newton update SU;} € Xj, is computed by solving:

A,(ug,m)(éuh/‘yh) = 7A(ug,m)(lyh) VY € Vi x Wy,

]ril,m+1 = Z,m + woly,

with a line search parameter w € (0,1].

Remark

The derivative A'(Uy,y, ) (0Uy, §) is the so-called Jacobian. This operator is obtained by computing the
directional derivatives of A(Uy,y, ) (¥). Details are omitted for the convenience of all of us. Details can be
found in the literature mentioned on page 5.

Thomas Wick (LUH) Numerical modeling of multiphysics problems
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Motivation: work amount in terms of arithmetic operations

Table: Operations for solving AU = B with A € R"*" being large, sparse, and s.p.d.!8

| Scheme [d=2]d=3]

Gauss (direct) nd n®

Banded-Gauss (direct) | n? n’/3
Jacobi (iterative) n? n®/3
Gauss-Seidel (iterative) | n? n5/3
CcG n3/2 nt/3
SOR with opt. w n3/2 | w3
Multigrid n n

* Often, n > 10* up to 108 (keep in mind that such systems have to be solved at each time
point ¢, and for 0 < m < M the end time index M might be big itself, e.g., M = 1000)

* This means, we need to opt for iterative or even multigrid schemes
* However they are more difficult to implement!

* For FSI in the following, we propose a mixture of iterative solvers and multigrid.

18Here the index 1 should not be misunderstood with the time point t,! Both n are different!



Parallel solution of FSI: linear system
* Recall: we are sitting at time step ¢,,. To solve for UZ“ at t,+1 we utilize Newton’s method
* At each Newton step (Index m), we have

AUy ) (60U, ¥y) = —A(UG ) (Fy)

=AU =B

Thus:
AdéU = B.

¢ Up to 10° unknowns, direct solvers work still okay in two-dimensional spatial settings

e For either more unknowns and also for smaller-sized 3D (Q) € R3) problems, we, however,
want (must!) employ an iterative method with multigrid preconditioning because of the
computational cost

¢ FSI problem is non-symmetric, therefore GMRES (generalized minimal residual) is a
classical choice.

* However, condition number is bad (material and discretization parameters) with x(A) > 1.
Therefore, iterative solvers without preconditioning will practically not work!

— Construct preconditioner matrix P such that
P'ASU=P'B

with P~1 2 A~1 such that condition number of P~1A = I (close to identity matrix).



More details on the FSI matrix

* InFSI, 3 x 3 block system:

M Cus O
A= |Csm S Csf ’
Cn Cs F

recalling that we have the principal problems (M) mesh motion, (F) fluid, (S) solid.

* In more detail, for a good preconditioner, we need to consider the coupling terms on the
interface I, here denoted by I:

(MO0 MY 1
0 I
SO0 s SO0 S
Mo sl shemt sl st
A= 10) 8513((2) HSZ%I 11 81(]1%(? HSZ%I 11 10 1
Bfm Svu Bfm + Svu va va +F o0 F [z F op
0 0 I 0 0
00 Ol Ol 00 Q)
Bpe 0 By, T 0 FRO Fo
| By 0 B}, Fro 0 Fpoo0 ]



LDU factorization for constructing a preconditioner

Construct now preconditioner P~

Simplified LDU block factorization:

Of fmM o o] |I
Ar Ol o s of |
1 0

0o 0 X

o — o

where we neglect the coupling term Cgy,.

Co

73

M
I
0

~u o

We have C}S =Cx — % and X = F — % and the fluid Schur complement

X=F-Ci8 ' Cp=F —(Cp — Chu M~ Cuis) S Cyp.

Having such a decomposition, it is easy to compute the action of the inverse. In Krylov
subspace methods we only need to know the action of matrix-vector multiplications, here

P~! on the residual part r

From linear algebra we know that P~y = U 'L~y with P = LU from above.



An FSI preconditioner 2°

¢ Consecutively solving with L and U yields the following result:

* Algorithm: Evaluation of P~!r (matrix-vector multiplications):
1 Solve x, = M lry,
2 Solvexs = S lrg
3 Solve xy = F 1 (rf — Cpyxm — Cpsxs)
4 Update x; = xs — S~ 'Cyxs
5 Update X, = X — M Cpsxs

¢ Parallelization using MPI

¢ It remains to discuss the solutions of the subproblems M1 S Yand F 1.

1 For M~! we apply AMG!® V-cycles with Gauss-Seidel smoother

2 For F~1: classical Schur complement approch for Navier-Stokes as a preconditioner inside
GMRES. The block subproblems therein are solved again with GMRES and AMG
preconditioning

3 For S, we have two components us and vs and a full two-by-two block system. Again we
derive a Schur complement as preconditioner within a GMRES iteration.

19 AMG from Trilinos
yodlbauer/Wick, Chapter 6 in FSI Ricam book, 2017
~ ThomasWick(LUH)  Numerical modeling of multiphysics problems 3



Summary of linear solution of FSI

At each Newton step 1, solve linear system AéU = B
Solution achieved with iterative solver GMRES

Use preconditioner P~! using Schur complements
Inside P~! we need to approximate M1, =1, 571

These inverses are ‘solved’ themselves using GMRES method with, again, Schur
complements for 1, S~1. Therein, AMG solvers are used to approximate further inverses

For M1, we also use a AMG method



The limits of today’s simulation power

Consider the simple example of an aircraft with Reynolds number 108. A direct numerical
simulation (DNS) that captures the smallest scales of order O(Re®/4), would lead to a mesh with
10'® mesh points. This is simply infeasible with today’s supercomputers 2!. Consequently, we
have to find approximations with less computational cost.

— Model order reduction
— Adaptive methods

— Parallel computations

21 Sagout, 2006. This note is inspired by a talk given by Johan Jansson at IWH Heidelberg, Nov 2014.



Summary and outlook

Nonlinear solvers and linear solution using GMRES with Schur complements with multigrid
preconditiong v/

FSI program, software, simulations, further applications



Class 5



6 Numerical simulations and further extensions (class 5)
FSI program and software
Benchmarks, simulations, applications



FSI program and algorithmic steps?

Algorithm 2 FSI program.

: Define problem parameters (At, §, material parameters, ...)

: Create mesh

: Assign degrees of freedom

: Set-up constraints (hanging nodes, homogeneous boundary conditions, interface
coupling)

. Initialize sparsity pattern, Jacobian A and vectors for the right-hand-side 7, solu-
tion U, newton update §U and previous solution U_;

B oW o=

w

6:
7:t:=0
8: Initial guess for current and previous solution U/ := 0, U_ := 0
9:

10: while t <7 do

11: Apply initial conditions of time ¢ to U

12: while not converged do

13: Assemble r

14: (if necessary): assemble Jacobian A

15: Solve AU =1

16: Update U := U + 6U

17: end while

18: Optional:

19: - evaluate functionals (drag, lift, displacement, ...)
20: - output results for current time-step

215 ti=t+At

22: Uy =U

23: end while

2jodlbauer/Wick; FSI RICAM book, Chapter 6, 2017



Software

Open-source C++ programming codes
deal.II: differential equations analysis library, www.dealii.org

DOpElib: Differential and optimization environment library, www.dopelib.net

22 deal. Il

deal .II step-multiphysics template (ANS, Vol. 1, 2013, pp. 1-19)
Link to ANS materials

An ALE-FSI implementation with the methods learned in these classes can be found there.
Therein, FSI benchmarks are computed, see Topic 1 below.

Similar implementation of ALE-FSI can be found in DOpElib
dopelib/Examples/PDE/InstatPDE/Example2


www.dealii.org
www.dopelib.net
https://journals.ub.uni-heidelberg.de/index.php/ans/issue/view/1244
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Simulations and current research

2011: Benchmarking FSI codes: FSI benchmarks from Hron/Turek 2006

2018: with L. Failer: Adaptive Time-Step Control for Nonlinear Fluid-Structure Interaction
Jep)

2018: with D. Jodlbauer and U. Langer: Parallel solution of FSI (in revision)
2016 (with S. Frei and T. Richter): FSI with growth, contact, and chemical reactions (JCP)

2013 (with T. Richter) and 2019 (with W. Wollner): Optimal control and optimal design for
FSI
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FSI benchmarks from Hron/Turek; 2006 23 24
e For all details, we refer to Chapter 12 (Simulations) in the LUH-FSI notes (*.pdf)

Figure: Results in the deformed configuration Q(¢): FSI 2 test case: mesh (left) and velocity profile in
vertical direction (right) at time t = 16.14s.

Figure: The current (physical) domain Q)(t) of the ALE-FSI problem is displayed in the left figure. However,
the computations are actually done in the fixed reference domain o} (right).

2Hron/Turek, 2006
24my computations: Wick, Comp. Struct., 2011



http://www.thomaswick.org/links/lecture_notes_FSI_Nov_28_2019.pdf

Results

Table: Results for the FSI 2 benchmark with the biharmonic mesh motion model and second type of
boundary conditions. The mean value and amplitude are given for the four quantities of interest:

iy, tty[m], Fp, FL[N]. The frequencies f; [s~!] and f[s~!] of 1, and 1, vary in a range of 3.83 — 3.88 (ref. 3.86)
and 1.92 — 1.94 (ref. 1.93), respectively.

DoF  ks] ue(A)[x107°] 1, (A)[x1077] p FL
27744  3.0e-3  —13.63+11.80 127 £78.72 207.22+7113  —0.57 +230.6
27744  2.0e-3 —13.72+11.84 1.26 +78.38 208.12+71.18  —0.30 +232.6
27744  1.0e-3  —13.74+11.85 1.28 £78.48 20946 +£71.43  —0.06 +231.7
27744  0.5e-3  —13.66 +11.81 1.28 +78.32 208.96 £71.60  —0.06 4 238.2
42024  3.0e-3  —13.34 +£11.57 1.40 +77.08 204.81 + 68.54 0.79 £221.5
42024  2.0e-3 —13.36+11.55 1.28£77.18 205.61 + 68.67 0.51 +£223.0
42024  1.0e-3  —13.38 £11.58 1.31£77.44 206.11 £ 68.26 0.62 +221.2
42024 0.5e-3  —13.27 +£11.52 1.23 +77.25 207.05 + 68.87 0.30 £ 230.6
72696  3.0e-3  —14.43 +£12.46 1.354+80.71 212.50 + 76.40 0.18 £234.6
72696  2.0e-3 —14.49+12.44 1.19 £ 80.66 213.49 £76.39 0.13+235.7
72696  1.0e-3  —14.49 £12.46 1.16 +80.63 213.39 £75.25 0.23 £234.2
72696  0.5e-3  —14.40 +£12.39 1.25 4+ 80.55 213.55 + 76.06 0.30 £ 240.2

(ref.) 0.5e-3 —14.85+12.70 1.30 +81.70 215.06 + 77.65 0.61 £237.8

¢ To validate programming code with purely computational methods, it is necessary to
compute for at least three spatial meshes (DoFs) and three time step sizes k.

* Why? This will show computational qualitative convergence and a provides indications to
the accuracy and robustness of the proposed method.
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Failer /Wick (JCP, 2018): Adaptive time step control®

Problem statement and goals:

* We want to compute a given (physical) quantity of interest J(U) with a certain accuracy at
low computational cost.

* As before: J(U) can be a point value, deformation, drag, lift, temperature evaluation etc. but
not necessarily in the entire domain!

* Formulate an adjoint problem (Class 3, Adaptivity), still linear, but backward running in
time (expensive!) to determine (local) sensitivity measures to determine J(U) respect to the
given PDE

Adjoints are expensive, but they do have advantages in error estimation:

= A robust, time-adaptive, procedure to calculate functionals of interest with sufficient
accuracy allowing for the automated adjustment of time step sizes where necessary.

= A (global) error estimator and not only an error indicator. Therefore, we obtain a guess 1
about the unknown true error J(U) — J(Uy). Consequently, we know to which accuracy we
have computed a certain physical quantity without knowing its exact (analytical) value

J().

25Failer/Wick, JCP, 2018
~ ThomasWick(UH)  Numerical modeling of multiphysics problems 15



Adaptive time step control
* Code verification: test code with the help of a manufactured solution (rarely possible!) or
with a computationally-obtained referenced solution U,,s =: U.

¢ In this work: up to 1444 384 time steps are used to obtain a numerically-obtained U; wall
clock time > 31 days (serial computation in time and space)

* Check by computing the effectivity index (now w.r.t. temporal error):

I p— 17
4 W) - J(Uy)

where 7 is a computable error estimator and J(U) — J(Uy) is the true error for some known
‘exact’ solution U.

* The error estimator reads?® for M time intervals:
. 1@ _ 0 @ _ 0
7= Zlqm =t 5 (FZP -2 - A, 22 - Z0)) +...
=

where we recognize some terms from page 113.

* Once error estimator have been validated with I5 they can be - hopefully - applied to more
complicated problems, where no ‘exact’ (manufactured/analytical) solution is known
anymore.

26Failer/Wick, JCP, 2018
~ ThomasWick(UH)  Numerical modeling of multiphysics problems 14



Adaptive time step control

* Numerical test: FSI-2 benchmark (Hron/Turek, 2006)

* Elastic beam immersed in a fluid (Navier-Stokes)

—

N

¢ Computation of effectivity indices:

M 1128 1452 2322 1176 5540 10518
(W) 2896 10 3048 10° 311710 3130 10° 312910 3129 10°
J(Uin) = J(Unf ) 23-102 8.1-10! 12-10" 7.0-1071 7.4-1071 46-107"
Ly 1.01 101 1.00 097 1.02 104

Table: Effectivity indices L5 for DWR time discretization error estimator with respect to J(U) on

adaptively refined time grids.
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Jodlbauer/Langer/Wick: Parallel solution of FSI 2/

* Goal: develop a parallel (MPI) solver for nonstationary, nonlinear FSI
* Need Newton’s method

* Need iterative linear solver

* Need preconditioner

— See class 4

ZJodlbauer/Langer/Wick, NME, 2019
~ ThomasWick(WUH)  Numerical modeling of multiphysics problems 19



Parallel solution of FSI: 3D obstacle in a fluid

Figure: Graphical illustration of the geometry. The elastic obstacle is displayed in dark color.




Parallel solution of FSI: scalability

10000

Total —+—
Fluid ——

3 Solid
IR Mesh
i O(1/n)
==

) O(1/v/n)
g 100 ¢

p i —3—

ol —_ .
1
L - o - 256
CPUs

Figure: Strong scalability using the preconditioned GMRES for approximately 14 - 10° dofs (r = 4) in 34 .
Average time given in seconds for the solution of one linear system.

* Specifically, for 16 cores, the total CPU time to solve the linear problem with 14 - 10° dofs at
a single time step is 2605 seconds, i.e., 43 minutes.

* On 256 cores, the computational cost decreases to 431 seconds, i.e., 7.2 minutes.

* Reduction by 84% of the computational time.
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Frei/Richter/Wick (JCP, 2016): Mechano-chemical FSI with solid

contact 28

* Contact of solids (current topic! - several groups are working on these type of problems).
* Multiscale multiphysics problem:

* Multiscale: Different temporal time scales: two-scale approach

¢ Multiphysics: FSI couples with solid growth and a ODE on the interface for chemical reactions

s 8
15
I~ 707 " “Transport of Monocytes =~
—— b
o0 Transendothelial migration
(@) Q and differentiation 2
S @ i — 00 I, S(t) . Growth S P
Formation of foam cells @ S e .

Figure: Configuration of the domain and mechanism of plaque formation. Left: Domain in reference
configuration split into fluid part  and solid $ divided by the interface [’;. Right: Domain in the current
(Eulerian) description with plaque formation and narrowing of the vessel.

28Frei/Richter/Wick, JCP, 2016
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Multiple scales in time

Short scale: heart does beat once in about every [1]s;
Long scale: plaque growth takes place in a time span of months, i.e. [> 1000000]s

a numerical simulation will not be able to resolve each detail while following the long-term
process

consider an averaged flow problem and focus on the long-scale dynamics

to incorporate effects of the short-scale dynamics, we compute effective wall stresses with
the help of isolated small-scale simulations

Accurate handling of the different time-scales is an open problem.



Solution algorithms: Long-scale/short-scale

Initialize ?° = 0,7° = 0,¢® = 0 and the vessel-width w® = 2. Set time-step k; = [1]day = [86400]s. Iterate forn = 1,2,...:

1.a)

1b

2.b

2.c

Solve quasi-stationary long-scale problem:
{7 Y {3 p")

Compute the vessel width in the point A(7,)
W" =2 =20, (A(Ta), Tn)
Set 750 = 3", i1*¥ = ii" and solve the short-scale problem in I, = [[t,]days, [t ]days + [1]s)
{8°0,°0, 1 @y s (T, @, p Y, m=1,...,Ns
Compute average wall stress in main stream direction

Ne
Ohs = 3 L | lop@™m i@l do
s m=1"Ti

Update the foam cell concentration
= ko (1+ 0y /7) !




Long-scale problem: clogging - the limits of ALE

Channel width over time in cm Vorticity over time in cm?/s?

2 ' ' ' Euler — 1 ' Buler —
ALE —— | 60 ALE —— -

Figure: Channel width and vorticity for a long-scale simulation with reduced inflow velocity. The inflow
velocity goes to zero when the channel closes. This makes the complete closure of the channel possible.

Figure: Fully Eulerian deformation when the channel is completely closed at T = [55.8]days. The standard
classical ALE technique cannot close the channel!
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Wollner /Wick (2019-2020): FSI with optimization 2’

* Drag minimization, while controlling Lamé coefficient in the valves

* The cost functional is given by:
A - o 2
J(g,U) = F(Topt, T) + 519 — gl

where T is the end time value

* Here, F(-) is the drag functional defined as
l"opt, / (f -11) -er ds

where  is the unit normal vector pointing outward of the domain ) and e; the first unit
vector in R?.

¢ The boundary part, where the drag is evaluated is

fopt::{Zngs;yZO}.

29Wick /Wollner, arXiv 1910.03424, 2019
~ ThomasWick(UH)  Numerical modeling of multiphysics problems 158



Gradient method

Algorithm (Gradient method)
Let q° € IRP be an initial guess, and pick parameters v € (0,1/2) and B € (0,1). Fork=0,1,... until

V4
1
2

3

4

J(d")|lg < TOL iterate

Solve the (nonlinear) primal FSI problem to obtain Ulj, € }A(;I:’ using Newton’s method from Class 4
Solve a (linear) adjoint problem (similar to Class 3, subsection Adaptivity) to obtain Z;, € }A(PI:’ 5
Compute the gradient V J () using (2) from below.
Find the largest | € {0,1,...} such that (Armijo-rule)

J(d = pVI ) < Td) - vBIvT @)
holds and set By = B.

Update
¢ =g~ BVI ().

(VI(9),0q) = d(qf U)sg  VoqeR: )



Configuration and mesh

QOQOOO0 kKKK
ONHBOKOONKOG

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Figure: The mesh for the flapping membranes example at the initial time step. All geometric values are
given in cm. The solid boundaries are colored in dark green. The flaps are located at 1.9788 cm < x < 2.0cm.

* Configuration very challenging because of small meshes of the elastic flaps
= Will degenerate ALE transformation!

= Good mesh motion model PDE required! Here biharmonic model A%u = 0.



Performance of optimization algorithms

Table: Optimization results for the flapping membrane example with « = 1 and g; = 5 - 10°. The initial
Residual in gg = 2- 107 is [V T (¢°)| = 1.686 - 107

Gradient method BEGS method \
K 3

S N T o
0 1.265-10%  2.107 1.0000-1070 | 1.265-10" 2.107 1.0000 - 10~°
1 1.9517-10'2  3.13665-10° 1.2422-10"! | 1.952-10'2 3.13665-10° 1.242-10"1
2 3.0118-100 523147-10° 1.5432-1072 | 8.346-10> 5-10° <101
3 4.6476-108  4.97125-10° 1.9170-103
4 7.1728-10°  5.00357-10° 2.3813-10~*
5 1.1151-105  4.99956-10° 2.9582-107°
6 2.5424-10°  5.00006-10°  3.6747-10°
7 8.6090-10%  4.99999 -10°  4.5649 -10~7
8 8.3495-102  5-10° 5.6707 -10~8

* BFGS = Broyden-Fletcher-Goldfarb-Shanno®® (quasi-Newton method in which the Newton
matrix is approximated through lower-order terms)

30gee e.g., Nocedal /Wright; Numerical optimization, 2006



Optimal flow field

1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

Figure: Flow field in the optimal controlled state.
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Fluid-structure interaction: Book on latest results

DE GRUYTER
G

|

* 2016 Conference with Winter school am St o, Bt ol Thomas R Thomas Wik Hudons
RICAM Linz (Organizers: Stefan Frei, FLUID-STRUCTURE

Béarbel Holm (geb. Janssen), Thomas NTER

Richter, Thomas Wick, Huidong Yang)

* Nov 2017: Buch (eds. S. Frei et al.):
‘Fluid-Structure Interaction: Modeling,
Adaptive Discretisations and Solvers’
Radon Series on Computational and
Applied Mathematics 20, de Gruyter

¢ Also in 2017, the following book
appeared: T. Richter, Fluid-structure
interactions: models, analysis, and finite
elements, Springer, 2017

degruyter.com
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Conclusions

v Brief introduction to continuum mechanics

v'"Modeling of fluids and solids

v Variational formulations of coupled PDEs

v'Numerical modeling of nonstationary, nonlinear, coupled PDEs (FSI)
v'Relationships to ‘simpler” equations to establish understanding

v'Benchmarking, simulations, applications, and optimization



Almost done ...




Some open questions and ongoing ideas

Rigorous benchmarking of 3D fluid-structure interaction
Parallel space-time goal-oriented adaptive fluid-structure interaction

Efficient algorithms for fluid-structure interaction optimization and uncertainty
quantification (optimal control, inverse problems, optimal design, parameter estimation)

Coupling fluid-structure interaction to other equations and/or physical phenomena such as
chemical reactions, heat diffusion, ...
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The End
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Thanks a lot to the organizers, Kapil Ahuja,
for establishing this winter school, and
Rajendra Choudhary for general help at all times.

Questions?
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