

Bereitgestellt durch Technische Informationsbibliothek (TIB) Hannover.

Technische Informationsbibliothek (TIB)
Welfengarten 1 B, 30167 Hannover
Postfach 6080, 30060 Hannover
Web: https://www.tib.eu/de/

Lizenziert unter Creative Commons Namensnennung 3.0 Deutschland.

https://www.tib.eu/de/

Team Logic
Axioms, Expressiveness, Complexity

Von der Fakultät für Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte

Dissertation

von Herrn

M.Sc. Martin Lück

geboren am 15.12.1988 in Güstrow

Hannover

2020

Referent: Prof. Heribert Vollmer, Leibniz Universität Hannover

Korreferenten: Prof. Lauri Hella, Universität Tampere (FI)
Prof. Juha Kontinen, Universität Helsinki (FI)

Tag der Promotion: 09.01.2020

Acknowledgments

First of all, I wish to sincerely thank my supervisor, Professor Heribert Vollmer. I am
indebted to him for granting me both the trust and liberty to pursue my own ideas in
my area of research, as well as the time to develop these over the years and finally write
this thesis. Also, I thank him for his deep, motivating and inspiring lectures that drew
me to the field of theoretical computer science from the beginning of my studies.

Next, I am thankful to my Finnish colleagues from the logic groups of Helsinki and
Tampere for the enjoyable work together, for their hospitality and for many fruitful
discussions. In particular, I want to thank Juha Kontinen, Miika Hannula, Jonni Virtema,
Lauri Hella, and Miikka Vilander. I am especially grateful to Professor Juha Kontinen
and Professor Lauri Hella for their advice and for agreeing to review this thesis on our
hike at the Dagstuhl seminar on Logics for Dependence and Independence.

Also, I thank my fellow students and now-colleagues from Hannover, Anselm Haak,
Fabian Müller and Maurice Chandoo for many nice discussions, as well as Arne Meier,
Irina Schindler, Yasir Mahmood, Timon Barlag and Rahel Becker from the Institute for
Theoretical Computer Science.

Finally, I want to thank my sister Maren and my girlfriend Lisa for their unbreakable
support and their patience in often challenging times.

vi

Zusammenfassung

Im letzten Jahrzehnt wurde die Teamsemantik kontinuierlich zu einem vielseitigen und
mächtigen Rahmen entwickelt, um Begriffe wie Abhängigkeit und Unabhängigkeit mit
den Mitteln formaler Logik beschreiben zu können. Bisher lag der Fokus dabei auf der
Vielzahl nichtklassischer Atome, die Beziehungen zwischen einzelnen semantischen
Einheiten beschreiben, wozu neben dem bekannten Abhängigkeitsatom auch Atome
der Unabhängigkeit, des Ein- oder Ausschlusses, der Nichtleerheit sowie verschiedene
Zählatome gehören.

Das Ziel dieser Arbeit ist hingegen, die Natur der Teamsemantik auch und gerade
ohne solche Atome zu untersuchen. Im ersten Teil beschäftigen wir uns dafür mit
grundlegenden Fragen, wie etwa: Wann genau ist eine Logik eine teamsemantische
Erweiterung einer klassischen Logik? Welche Freiheitsgrade gibt es beim Definieren
einer solchen Erweiterung? Hierfür analysieren wir existierende Teamlogiken und
zeigen mögliche Ansätze zur formalen Beantwortung dieser Fragen auf.

Im Rest der Arbeit betrachten wir mit der Aussagenteamlogik PL(∼), der Modalteam-
logik ML(∼) und der Prädikatenteamlogik FO(∼) drei konkrete Teamlogiken ohne nicht-
klassische Atome, die aber unter den Boole’schen Verknüpfungen abgeschlossen sind.
Wir untersuchen sie hinsichtlich dreier zentraler Fragestellungen aus dem Bereich der
mathematischen Logik, nämlich Ausdrucksstärke, Berechnungskomplexität und Axio-
matisierbarkeit. Dabei verwenden wir auch abstrakte Resultate aus dem ersten Teil.

Ein wichtiger Teil der Arbeit ist das Ergebnis, dass ML(∼) nichtelementare Komplexität
besitzt. Für den Beweis übertragen wir Begriffe aus der Modelltheorie auf die Teamlogik
und konstruieren einen Schwerebeweis in mehreren Schritten, wobei wir als Zwischen-
resultate festhalten, dass Eigenschaften wie Bisimilarität und Kanonizität in ML(∼) auf
gewisse Weise effizient definierbar sind. Durch Übertragung der Filtrationsmethode auf
Teamsemantik findenwir anschließend jedoch auch elementar entscheidbare Fragmente.

Danach wird FO(∼) bezüglich Komplexitätsfragen betrachtet, wobei sich das Zwei-
Variablen-Fragment wie im klassischen Fall als entscheidbar herausstellt, ebenso wie
das Guarded Fragment GF(∼), das wir analog zum klassischen Fragment GF einführen.
Des Weiteren wird im Bereich der Modelltheorie eine Variante des Ultraproduktsatzes
von Łoś bewiesen, aus dem beispielsweise auch der Kompaktheitssatz für FO(∼) folgt.

Zuletzt entwickeln wir ein modulares Beweissystem für die genannten Logiken PL(∼),
ML(∼) und FO(∼). Wir zeigen insbesondere, dass sich die besondere Disjunktion der
Teamlogik wie ein modaler Operator axiomatisieren lässt. Für die Vollständigkeit des
Systems spielt auch die Widerlegungsvollständigkeit auf der Ebene der Literale eine
wichtige Rolle, die für Teamlogiken im Gegensatz zu klassischer Logik nicht trivial
gegeben ist. Eswerden zweiMöglichkeiten vorgestellt, wie sie für obige Logiken dennoch
erreicht werden kann.

Schlagworte: Team-Semantik; Axiome; Ausdrucksstärke; Komplexität

2010 MSC: 03B45; 03B60; 03B70; 03C20; 68Q15; 68Q17

vii

Abstract

In the last decade, team semantics has been continuously developed into a flexible and
powerful framework to describe concepts of dependence and independence by means of
formal logic. Until now, researchmostly focused on themanifold non-classical atoms that
express relationships between the semantical units. Besides the prominent dependence
atom, among these there also are atoms of independence, inclusion, exclusion, non-
emptiness as well as various counting atoms.

The aim of this thesis is instead to study the nature of team semantics on its own and
especially without such atoms. In the first part, we consider basic questions, such as:
What makes a logic a team-semantical extension of a classical logic? Which degrees
of freedom exist when defining such an extension? For this, we analyze existing team
logics and point out possible approaches to answer these questions formally.

In the remainder of the thesis, we study propositional team logic PL(∼), modal team logic
ML(∼) and first-order team logic FO(∼), which are three concrete team logics without
non-classical atoms, yet which are closed under the Boolean operations. We investigate
three central questions from the area of mathematical logic, that is, expressive power,
computational complexity, and axiomatizability. For this, we also utilize abstract results
from the first part.

An important part of the thesis is the result that ML(∼) has non-elementary complexity.
For the proof, we generalize concepts of model theory to team logic and in several steps
construct a hardness proof, with key steps such as showing that bisimilarity and canonic-
ity are, in a certain sense, efficiently definable in ML(∼). That being said, by transferring
the well-known filtration method to team semantics, we also find elementarily decidable
fragments.

Afterwards, the complexity aspects of FO(∼) are studied. Its two-variable fragment
turns out to be decidable as in the classical case, and likewise for the Guarded Fragment
GF(∼) that we introduce analogously to the classical fragment GF. Furthermore, as a
model-theoretic result, we prove a variant of Łoś’s ultraproduct theorem, which entails,
for example, the compactness theorem for FO(∼).

Finally, we develop a modular proof system for the mentioned logics PL(∼), ML(∼)
and FO(∼). In particular, we show that the special disjunction of team logic can be
axiomatized like a modal operator. In order to prove that this system is complete, the
refutation completeness on the level of literals plays a crucial role, which, in contrast
to classical logics, does not trivially hold for team logics. We present two methods to
achieve this property for the above logics nonetheless.

Keywords: Team semantics; axioms; expressiveness; complexity

2010 MSC: 03B45; 03B60; 03B70; 03C20; 68Q15; 68Q17

viii

Contents

1 Introduction 1
1.1 Team logic . 2
1.2 Contributions . 6
1.3 Further notes . 11

2 Preliminaries 12
2.1 Complexity theory . 12
2.2 Team logic . 15

3 Abstract team logic 29
3.1 Basic definitions . 29
3.2 Teamification . 37
3.3 Operators . 43
3.4 Transversals . 51
3.5 Relaxations . 53
3.6 Strict and lax standard transversals . 57
3.7 Quasi-flatness . 59
3.8 Outlook: Linear Temporal Logic . 73
3.9 Summary and outlook . 76

4 The complexity of modal team logic 78
4.1 Types and canonical models . 78
4.2 Scopes and subteam quantifiers . 82
4.3 Implementing bisimulation . 85
4.4 Enforcing a canonical model . 87
4.5 Defining an order on types . 91
4.6 Encoding non-elementary computations . 97
4.7 Hardness under strict semantics . 109
4.8 Hardness on restricted frame classes . 110
4.9 Filtration in team semantics . 113
4.10 Summary and outlook . 119

5 First-order team logic 122
5.1 Upper bounds for satisfiability and validity 122
5.2 A standard translation for team semantics 133
5.3 Łoś’s theorem for team semantics . 139
5.4 Summary and outlook . 145

Contents

6 An axiomatization of team logic 148
6.1 Introduction . 148
6.2 Axioms of the Boolean connectives . 151
6.3 Operator elimination . 159
6.4 A remark on the empty team . 171
6.5 Summary and outlook . 173

7 Conclusion 177

Bibliography 179

Appendix 190

Index 200

Curriculum Vitae 203

List of publications 204

x

List of Tables and Figures

2.1 Complexity of satisfiability and validity of propositional and modal team
logics . 26

2.2 Complexity of model checking of propositional and modal team logics . 27

3.1 Transversals . 54
3.2 Teamification of an operator4 . 60
3.3 Teamification of common connectives . 61
3.4 Teamification of Boolean connectives . 61
3.5 Teamification of modal and first-order quantifiers 62
3.6 Teamification of temporal operators F and G 75

4.1 Reduction roadmap for ML(∼) . 79
4.2 Subteam selection in a scope . 83
4.3 Example of how bisimilarity is expressed in ML(∼) 85
4.4 Visualization of the 3-staircase for Φ = ∅ . 88
4.5 Example of how order is expressed in ML(∼) 93

5.1 Distributive laws for FO(∼) . 123
5.2 Distributive laws for GF(∼) . 129
5.3 Inclusion diagram of fragments of first-order team logic 137
5.4 The complexity of fragments of first-order team logic 137

6.1 Axiomatization of PL(∼),ML(∼) and FO(∼). 148
6.2 Hilbert-style axiomatizations of PL, ML and FO. 150
6.3 The system L, lifted propositional axioms 151
6.4 Example derivation in L . 152
6.5 The system S, splitting axioms . 160
6.6 Example derivation: Transitivity of dependence 162
6.7 Useful theorems of HPLLS . 163
6.8 The system M, modal axioms . 166
6.9 Useful theorems of HMLLSM . 168
6.10 The system Q, quantifier axioms . 169
6.11 Overview of the systems L, U, S, M, and Q 176

1 Introduction

Logic as a formalization of reasoning goes back to the ancient Greek philosophers. Their
syllogisms are a special form of deductive arguments. Consider this classical example:

Socrates is a human.
All humans are mortal.

∴ Socrates is mortal.

If one believes that both premises are true, that is, that Socrates is a human and that
all humans are mortal, then one should also believe that the conclusion is true, that is,
Socrates is mortal. On the other hand, not all such arrangements of statements conform
to valid reasoning:

Every hippo is a mammal.
Some mammals lay eggs.

∴ Some hippos lay eggs.

Although both premises are true, the conclusion is not. We call such reasoning
unsound. One task of a logician is to model sound deductive rules and collect these in a
logical system, also called axiom system, formal system or simply logic. In modern first-order
predicate logic, the above examples could be written as formulas like

ϕ =
(
Human(Socrates)∧ ∀x(Human(x)→ Mortal(x))

)
→ Mortal(Socrates)

and

ψ =
(
∀x(Hippo(x)→ Mammal(x))∧ ∃y(Mammal(y)∧ LaysEggs(y))

)
→ ∃z(Hippo(z)∧ LaysEggs(z)).

We agree on ϕ as being true, and on ψ as false. The concept of truth and falsity is
determined by semantics, which roughly speaking is a set of instructions on how to
assign a meaning to each formula. In modern logic, valid inferences are often given only
implicitly by means of a semantics, which then poses the question of an axiomatization, a
description of the logic as a set of valid derivation rules, or axioms.

In this thesis we consider so-called team semantics. In a nutshell, team semantics
was introduced in order to equip logics of imperfect information with a compositional
semantics. Briefly, a semantics is compositional if the meaning of a complex formula
is solely determined by the meaning of its constituents. The modern formulation of

1

1 Introduction

this principle is often accredited to Frege [34] (cf. [75]) and Boole [11], although it is
not undisputed in philosophy and linguistics (cf., e.g., [120]). Compositionality often
is a desirable property of formal logic, for example it comes with the principle of full
abstraction, which states that replacing a constituent by an equivalent one cannot change
the meaning of the overall formula. For our example, this means that

Σωκράτης είναι άνθρωπος.
Minden ember halandó.

∴ Sokrates on kuolevainen.

is a valid deduction, as we only replaced statements by equivalent ones.

Today, the fields of mathematics and computer science are unimaginable without
formal logic. During the 19th and 20th century, logic was extensively developed and
ultimately became the foundation of modern mathematics. In computer science, logic
is ubiquitous in fields like digital systems, programming, software verification and
artificial intelligence.

As established independently by Church [15] and Turing [134], there is no algorithm
for the Entscheidungsproblem (decision problem) of first-order logic, the problem of
computing whether a given formula is true or false. Driven by this groundbreaking
result, logicians have studied numerous logical systems for decades and compared their
expressive power (which properties can be expressed in a logic?) and algorithmic complexity
(how difficult is its decision problem?). In this thesis, we will classify several logics with
team semantics with respect to these questions, and also present axiomatizations for
them.

1.1 Team logic

1.1.1 History of team semantics

The first appearance of team semantics has to be accredited to Wilfrid Hodges [70, 71]
and his work on logics of imperfect information.

In logic and linguistics, there have been a number of attempts to formally capture
the notions of dependence and independence that occur in natural language, science or
statistics. One early approach are partially ordered quantifiers, or branching quantifiers, by
Henkin [63, 92]. Branching quantifiers allow formulas such as for example

∃x
{
∀y ∃z
∀w∃u

}
∀v ϕ(x, y, z,w, u, v)

which means “there is an x such that for all y there is a z, and for all w there is a u, such
that then for all v the statement ϕ holds.” In particular, the value of zmust be chosen
depending only on the value of y, and likewise for u andw (this can be formally defined
via Skolem functions). Jaakko Hintikka [65] stressed the importance and naturality of
branching quantifiers in language, and proposed a formal semantics borrowed from the

2

1 Introduction

mathematical area of game theory. Authors such as Barwise [7] noted that branching
quantifiers are not compositional in Frege’s sense (cf. [76]). Indeed, there is no way to
interpret the above formula classically by removing one quantifier at a time.

As an alternative to partially ordered quantifiers, Hintikka and Sandu [68] proposed
“slashed” quantifiers (∃x/∀y1, . . . , ∀yn), meaning “there exists an x independent of the
choice of y1, . . . , yn.” They called their resulting logic independence-friendly logic (IF), in
which the order of syntactic elements nicely corresponds to that of the players’ moves
in the game-theoretic semantics. A quantifier (∃x/∀y1, . . . , ∀yn) hereby corresponds to
a move where the player picks x without knowing the values of the yi. Accordingly,
IF-formulas are interpreted as games of imperfect information. Our example can be
expressed in IF as

(∃x)(∀y)(∃z)(∀w)(∃u/∀y)(∀v)ϕ(x, y, z,w, u, v)

with z quantified as usual. Note that, as z appears outside the scope of ∀w, it is already
independent of w it by default.

Barwise, Hintikka and Sandu posed the challenge to find a compositional semantics
for logics of this kind. As a response, Hodges [70, 71] proposed his trump semantics
based on Hintikka’s game-theoretic semantics. The gist of it are objects called trumps,
which are collections of deals (read: first-order assignments1) that render a formula true
in a uniform way. For example, in N, the set T = {x 7→ 2, x 7→ 3} is a trump of the formula
x > 1, but T ′ = {x 7→ 1} is not. Adding imperfect information to the picture, T is not a
trump of (∃y/∀x) (x = y), since there is no way to uniformly pick a y independently of x
such that x = y throughout T . But T ′ is a trump of the formula, because the question of
dependence does not manifest over single assignments.

Jouko Väänänen [135] introduced dependence logic FO(dep) as a new approach to for-
malize (in-)dependence in first-order logic. Instead of the cumbersome slashed opera-
tors, he added a new atomic formula called dependence atom, written dep(t1, . . . , tn; tn+1),
which states that the value of the term tn+1 depends on the values of the terms t1, . . . , tn
(and on nothing else). For n = 0, then dep(t) means that t is constant. For instance, T ′

satisfies dep(x), but T does not. In dependence logic, our example formula becomes

∃x∀y ∃z ∀w∃u ∀v
(
ϕ(x, y, z,w, u, v)∧ dep(x,w;u)

)
.

With the atom dep(x,w;u) we state that u depends only on x and w, which is the same
as to say that it is independent of everything else, in particular y and z.

Väänänen appealed to the intuition of assignments as “agents” acting together in a
“team”, and thereby coined the name of this semantics. Just like IF, dependence logic
suffers from flaws inherent to imperfect information, such as the failure of the law of
excluded middle. In the team {x 7→ 1, x 7→ 2}, neither x 6= 1 nor x = 1 are true, because
the first assignment violates x 6= 1 and the second one violates x = 1. The empty team

1The syntax of IF also provides constructs such as ϕ (∨/∀x)ψ, in which the player chooses a disjunct
independently of x, and similarly for conjunction. Accordingly, deals in trump semantics also determine
the choice at such connectives. We omit this detail here.

3

1 Introduction

∅, on the other hand, satisfies every FO(dep)-formula, including x 6= 1 and x = 1. This
phenomenon is referred to as the empty team property. Such peculiarities of the semantics
have led to the study of a plethora of variants and extensions of dependence logic.

1.1.2 Logics of dependence and independence

Väänänen’s approach has turned out as a powerful and flexible foundation for logics
of dependence and independence. In the spirit of the dependence atom, Grädel and
Väänänen [49] proposed the independence atom~t ⊥ ~t

′ which states that the values of~t are
independent of those of ~t ′ (in the sense that every value of ~t together with every value
of ~t ′ occurs in some assignment in the team). Galliani [37] introduced inclusion atoms
~t ⊆ ~t

′ (every value of~tmust occur in the team as a value of~t ′) and exclusion atoms~t | ~t ′

(the values of ~t and ~t
′ are disjoint). The logics resulting from adding the respective

atoms are called FO(⊥), FO(⊆), and so on. Too many other non-classical atoms to list
them all have been studied, such as non-dependence 6=(~t;~t ′) [123], non-emptiness ne [142],
totality all [1, 41], and others concerning the cardinality of teams [41, 46].

Team semantics has proliferated into several other logical systems such as propo-
sitional, modal, or temporal logic. Here, seminal work is due to Yang [142], Väänä-
nen [136] and Krebs et al. [90]. Numerous papers have appeared concerning the
expressive power and computational complexity of all combinations of the above logics
with the different non-classical atoms. We will list only some of them (e.g., in Tables 2.1
and 5.4). Common to all of the results is that team logics may have vastly higher com-
plexity than their classical counterparts. For example, FO(dep) is not axiomatizable and
its decision problem is non-arithmetical [135]. In this thesis, we will mostly focus on
decidable team logics, but even those have non-elementary complexity (Chapters 4
and 5).

In proposition-based logics, which do not have terms, non-classical atoms work
differently. Namely, they are truth-functional. For instance, the dependence atom is of the
form dep(ϕ1, . . . , ϕn;ϕn+1), with the ϕi being formulas, not terms, and the atom does
only make statements about their truth values; in this case the truth of ϕn+1 should
only depend on the truth of ϕ1, . . . , ϕn.

We give two simple examples for practical applications in cryptography (for more
sophisticated ones, see [83]). The atom dep(p1, . . . , pn;padmin) specifies that whether
or not a user has administrator permissions depends on some “password” encoded by
propositions p1 · · ·pn. By this, we can stipulate in a specification, without revealing the
values of the pi, that there is such a function determining padmin. As another example,
with the independence atom c1 · · · cm ⊥ k1 · · · kn we can express that a ciphertext space
is independent from the key space, i.e., every key k1 · · · kn can produce every ciphertext
c1 · · · cm, and one cannot deduce information about one from the other.

1.1.3 Negation

When Hintikka [64, 66] introduced the Boolean negation (which we write as ∼) to the
IF-setting, he restricted it to be applied to whole sentences. The reason for this lies

4

1 Introduction

in the game-theoretical semantics, where truth is defined via winning strategies. The
sentence ∼ϕmeans “there is no winning strategy forϕ”, and as such it makes little sense
to place ∼ in front of the constituents of ϕ, which due to the lack of compositionality
have no meaning on their own. Compare this with ¬, which in the game semantics
is defined as the players switching roles, and which consequently can be placed in
formulas arbitrarily.

Väänänen [135] embraced Boolean negation as a proper connective in his Team Logic
TL, in our notation written FO(dep, ∼). The Boolean negation ∼ satisfies the law of
excluded middle, and allows to overcome the empty team property such that formulas
can be genuinely unsatisfiable. Furthermore, it restores the duality of satisfiability and
validity, which are not necessarily dual criteria in team logic, and allows a deduction
theorem for team logic (cf. Chapter 6).

Negation was introduced to propositional team logic by Hannula et al. [53] and Yang
and Väänänen [144], to modal team logic by Müller [119] and Kontinen et al. [82],
and to temporal team logic by Krebs et al. [91]. With arbitrary negation, both the
complexity and the expressiveness of the logic increase tremendously. For example,
the Boolean disjunction (6) becomes easily expressible, whereas in ordinary team
logics it is not. Propositional team logic PL(∼) and modal team logic ML(∼), which are
PL and ML in team semantics with ∼ added, become expressively complete for their
respective semantics [82, 144]. Unlike for modal logic ML, the complexity of ML(∼)
is non-elementary, and for so-called synchronous team-semantical LTL, the decision
problem even becomes equivalent to third-order arithmetic [103].

With negation, the truth-functional non-classical atoms are definable in terms of other
connectives. In a recent joint work with Miikka Vilander [108], we showed that they are
in fact uniformly definable via formulas of polynomial size. Consequently, large parts
of this thesis regarding team logic without non-classical atoms easily carry over to the
respective extension by such atoms, e.g., in questions of complexity and succinctness.

1.1.4 Applications

We briefly present a few of the practical applications of team semantics in the literature,
which are all based on different interpretations of teams. For each area, we also refer
the reader to some seminal publications.

Statistics. A team can be seen as a set of (possible or actual) outcomes of a random
experiment. From this point of view, Durand et al. [27] defined a probabilistic team as a
team equippedwith a distribution determining the probability of each of its members. A
similar notion is that of a measure team [72, 73]. Clearly, dependence and independence
are of utmost importance in statistics, and with team logic there is a powerful system
to express these connections syntactically. In the same vein, Hyttinen et al. [72, 73]
introduced a variant of team logic called quantum team logic to support a logical analysis
of quantum theory, and presented an axiomatization of it.

5

1 Introduction

Database theory. The most intuitive interpretation of a team is perhaps that of a
database table consisting of rows, where each row (assignment) maps columns (vari-
ables) to values. Often, rows in a database table can appear duplicated. Hence, tables
are modeled as bags, i.e., multisets, and a corresponding bag semantics has been intro-
duced to team logic [26]. Moreover, a database usually contains multiple tables, and
team semantics was generalized accordingly to polyteam semantics in which a family of
teams is considered simultaneously, one representing each table in the database [54].
Dependency notions are a crucial part of database theory, and dependence logic and its
variants seem ideal as a logical approach. Indeed, dependence atoms are long-known
under the name functional dependencies, which have been axiomatized by Armstrong [6]
(cf. Abramsky et al. [1]). Likewise, the independence atom expresses a property known
as multivalued dependency [57] in database theory, and the inclusion atom essentially is a
foreign key constraint [57].

Epistemic, doxastic and inquisitive interpretations. A team can also be interpreted
as a set of possible worlds, or of possible states of reality. This setting is related to the
probabilistic one in the sense that it reasons about uncertainty, but also supports, for
example, modeling belief and belief updates [40]. The interpretation is that a classical
formula α is deemed true only if it holds in every possible reality, that is, in each
assignment of the team. For example, epistemically, the formula p∨ ¬pmeans “I know
that p is true or false”, which is true. But it is not the same as p6 ¬p, which means “I
know that p or I know that not p”, or more succinctly, “I know whether p holds.” The
latter is false in the team {p 7→ 0, p 7→ 1}, where either value of p is deemed possible.
Then again, p6 ∼pmeans “Either I know that p or I don’t”, which is true.

Another related logic is inquisitive logic, which allows to formalize questions [16].
There, we read p6¬p as “is p true?”. That p is either true or false is expressed by p∨¬p,
but as this does not settle the question of which one is the case, we have p∨¬p 2 p6¬p.
In team semantics, it thus becomes possible to formalize information exchange between
agents.

1.2 Contributions

This thesis can be divided into two parts. The first part consists of Chapter 3, in which
we study team logic from a novel abstract perspective. The second part consists of
Chapters 4 to 6, where we consider propositional, modal and first-order team logic.
We investigate central open questions and present results concerning their expressive
power, computational complexity and axiomatizability.

In what follows, we elaborate on both parts in more detail.

1.2.1 Abstract team logic

In Chapter 3, we introduce the concept of abstract connectives and study team semantics
in an algebraic setting. While past research in the area mostly focused on a particular

6

1 Introduction

flavor (like propositional, modal, or first-order) of team logic, combined with only one
or two non-classical atoms, we instead study such logics in a uniform approach. We
classify the common variants of team logic and identify similar features among them,
and propose a formal framework that covers the existing formalisms. This approach
has several benefits.

Firstly, we are able to prove recurring results abstractly instead of being tied to a
specific logic. This does apply not only to well-known properties such as flatness, but
also to a new result proved in this thesis we call the collapse theorem. It states that, under
certain assumptions, every formula is equivalent to a Boolean combination of classical
formulas, and as such is a cornerstone in the expressiveness part of this thesis.

Secondly, classical logic often admits multiple team-logical generalizations, such as
lax and strict semantics [37], or synchronous and asynchronous temporal semantics [91].
When a logician devises a new team semantics based on an existing logic, he or she
might wish that the resulting logic is well-behaved and tractable. From this point of view,
logics such as PL(∼), ML(∼) and FO(∼) have nice and in fact nearly identical semantics, so
it seems there are conventions on which authors have silently agreed. In this light, our
framework provides some orientation on how to “teamify” a given classical connective.

Thirdly, the abstract approach puts us in the position to consider team logic from
a more philosophical perspective. We can ask questions such as, what does it mean
for a logic to be a team-semantical extension of a given classical formalism? Is a team
semantics necessarily based on a classical logic?

Previous research. Algebraization, the formulation of semantics in terms of universal
algebra, is a whole area of logic (see, e.g., Andréka et al. [5]), and has been pursued
also for independence-friendly logic. Hintikka [67] argued that the propositional part
of (extended) IF, that is, its restriction to the operations ∧,∨,¬ and ∼, gives rise to a
closure algebra, which are a special case of a Boolean algebra with operators (bao). Later,
Mann [111] proposed an algebraization of full IF. Also, an early paper by Abramsky
and Väänänen [2] suggests that Hodges’s semantics naturally results as an instance of a
more general algebraic system that combines intuitionistic and linear logic.

Althoughwe employ algebraic notations, we do not pursue a full algebraic description
of a single logic. Instead, we utilize universal algebra as a framework to define arbitrary
connectives in, and to prove results on these abstract grounds that are common to all
team logics. For this reason, our efforts have to be understood as orthogonal to existing
results in the area of algebraic logic.

Results and organization. After some basic definitions (Section 3.1), in Section 3.2
we define the central concept of teamification, which is a relation between a “classical”
connective4 and its “team-counterpart” ∇. Roughly speaking, it means that the power
set operation ℘ acts as a homomorphism between the algebras spanned by 4 and ∇. It
turns out that this is a natural concept that covers virtually all team-logical connectives,
and has a number of interesting implications.

In the area of universal algebra, Boolean algebras with operators (baos) are prevalent.

7

1 Introduction

They provide an abstract framework for modal logic and its variants and offer a rich
model theory, such as the famous Jónsson-Tarski Representation Theorem [77], which in
a sense is the modal extension of Stone’s Representation Theorem [138]. In Section 3.3,
we lay the foundations for applications to team logic by showing that many team-logical
connectives are in fact operators in this sense.

The most prominent operator is the diamond ♦ of standard modal logic. Interestingly,
in team logic, operators also cover pairs like ∧/∨, ♦/� and ∃/∀ which classically are
duals of each other. In this light, we introduce the notion of weak duality between pairs of
operators, which is a concept that does not exist in classical semantics. We also provide
two characterizations of weak duality.

In Section 3.4, we study an important subclass of operators we call transversals. Intu-
itively, a transversal is an operator with the restriction that the “successor teams” of a
team T are completely determined by the successors of the elements of T . Not only is
this a well-behaved class of operators with nice properties, in fact this concept is again
natural and ubiquitous among existing team-logical connectives.

Afterwards, in Section 3.5, we continue to formalize another recurring pattern, namely
the concept of strict and lax operators. We present a general definition that again covers
the existing connectives.

Next, in Section 3.6, we show that all connectives of propositional, modal and first-
order team logic but ¬ and ∼ fall into a subclass we call standard transversals. We propose
this class as a canonical “teamification” of connectives. In combination with our defini-
tion of laxness, we prove the main theorem of this chapter, the collapse theorem. As
mentioned before, it states that every formula is equivalent to a Boolean combination
of flat formulas. This has in fact been shown for propositional [144], modal [82] and
first-order logic [38] in lax semantics by means of different methods, but it seems that
this connection was never noticed or stated explicitly. We generalize this fact and prove
it solely based on the assumption that all involved connectives besides ¬ and ∼ are lax
standard transversals.

We conclude the chapter with an outlook (Section 3.8) on how these definitions
can lead to well-behaved team semantics of temporal logic, and with some remarks
(Section 3.9) on future research possibilities.

1.2.2 Propositional, modal, and first-order team logic

The second part of this thesis focuses on three concrete team logics, namely propositional
team logic PL(∼), modal team logic ML(∼), and finally first-order team logic FO(∼). Moreover,
propositional team logic also comes in a quantified variant, QPL(∼), which is the team
analog to the well-known quantified Boolean formulas.

The above logics do not possess any non-classical atoms (so FO(∼) is not the same as
Väänänen’s TL = FO(dep, ∼)), and at first sight seem to be no proper team logics and
pointless to study. We give several justifications to consider them nevertheless.

First of all, truth-functional atoms like dep(ϕ1, . . . , ϕn;ϕn+1) can be expressed in
these logics. As indicated earlier, these atoms can be translated to formulas over ∧,
∨ and ∼, and indeed efficiently so [108], which includes the atoms of dependence,

8

1 Introduction

independence, inclusion, exclusion and anonymity. Our translation in [108] crucially
relies on negated disjunctions ∨, and indeed in the same paper, we showed that the
translation is necessarily exponential if ∨ may only occur positively.

In first-order logic, we can distinguish between truth-functional atoms like dep(ϕ;ψ)
and proper dependence atoms like dep(x;y)which range over individuals, and similarly
for independence atoms, inclusion atoms and so on. In the inquisitive interpretation,
dep(x)∧R(x) corresponds to the question “which x satisfies R?” (with perhaps infinitely
many possible answers), whereas dep(ϕ) means “is ϕ true?”. Essentially, any matter
with only finitely many choices can already be expressed in FO(∼).

From the proof-theoretic perspective, it is actually easier to study, say, ML(∼) than
all the separate fragments of modal dependence logic, modal inclusion logic etc. inde-
pendently. This is because standard tools like the deduction theorem become available
if the negation is present, but also because connectives such as ∨ and ♦ are easier to
axiomatize in the form of their universally quantifying dual connectives.

Finally, our results on these logics also yield new complete problems for rarely studied
complexity classes.

Previous research. We provide some background on the logics PL(∼), QPL(∼), ML(∼)
and FO(∼); a formal introduction can be found in Chapter 2. For PL(∼) and QPL(∼), the
computational complexity of their central decision problems of satisfiability and validity
is settled as ATime-Alt(exp,poly)-complete [53, 56].

For ML(∼), while its model checking problem is known to be PSpace-complete [119],
the satisfiability problem was only known to be ATime-Alt(exp,poly)-hard, as it con-
tains PL(∼) as a fragment. The exact complexity of the satisfiability and validity problems
of ML(∼) was a major open question [28, 58, 82, 119].1 It is resolved in Chapter 4 as
completeness for the non-elementary class Tower(poly), which corresponds to runtime
that is a tower of stacked exponentials of polynomial height.

The logic FO(∼) has not yet been addressed much in questions of computational
complexity. We show that its complexity coincides with that of FO, i.e., its decision
problem is Σ01-complete. Furthermore, we also continue a line of previous research on
decidable fragments. In a series of papers, Kontinen et al. [79, 80, 81] showed that the
satisfiability problem of the two-variable fragments of FO(dep), FO(⊥) and FO(⊆) are
all elementarily decidable. However, their method relies on a translation to existential
second-order logic, and thus fails if arbitrary negation is allowed. In Chapter 5, we
show by a different approach that the two-variable fragment of FO(∼) is decidable, albeit
non-elementary, and similarly its guarded fragment GF(∼) which we introduce in this
thesis.

Concerning the expressiveness of PL(∼), ML(∼) and FO(∼), the most relevant existing
results are the following. Kontinen et al. [82] characterized the ML(∼)-definable proper-

1Hella et al. [58] already observed that a non-elementary bound for ML(∼) could be achieved via a
notion of “team-bisimulation and Hintikka-types”, which presumably means proving a finite model
property for some fixed non-elementary size bound and then using a brute force algorithm. The algorithm
presented here is not so much different.

9

1 Introduction

ties as those that are invariant under k-team-bisimulation for some k. One implication
of this is that ML(∼) is equivalent to the Boolean closure of ML. Galliani [38] proved
that the expressiveness of FO(∼) coincides with that of FO when restricted to sentences.
For his result, he proved that FO(∼)-formulas can be written as Boolean combinations of
flat formulas as well; using the fact that ∼ and ¬ are equivalent (over non-empty teams)
when applied to sentences, one can transform FO(∼)-sentences into pure FO. For PL(∼),
a similar normal form was established by Yang and Väänänen [144], when they proved
that PL(∼) is expressively complete.

These normal forms also follow from our collapse theorem in Chapter 3, and they also
play a major role in the computational complexity (Chapter 5) and the axiomatizations
of the respective logics (Chapter 6).

For certain fragments of the above logics, axiom systems have been proposed. Sano
and Virtema [124] and Yang [141] presented complete systems for propositional and
modal dependence logic, as well as Yang and Väänänen [143] for propositional depen-
dence logic, and for a fragment of propositional team logic [144]. In the first-order case,
it is well-known that Väänänen’s dependence logic FO(dep) and team logic FO(dep, ∼)
are not axiomatizable [135]. However, partial axiomatizations have been found, such
as for all FO-formulas entailed by a set of FO(dep)-formulas [78, 86], or for isolated
independence or inclusion atoms [52]. Recently, Kontinen and Yang [89] proposed a
novel first-order team logic called FOT, whose expressive power coincides with FO in
an analog way as FO(dep) does with existential second-order logic SO(∃), and proved
that it is axiomatizable.

Yet, common to all these proof systems is that they do not support the Boolean
negation ∼, and the full logics PL(∼), ML(∼) and FO(∼) have previously resisted any
attempt of axiomatization.

Contributions. In Chapter 4, we prove that the satisfiability and validity problem
of ML(∼) are complete for Tower(poly), which to the author’s best knowledge is the
first result of a team logic that is decidable but not elementary. We also show that
the fragments MLk(∼) of bounded modal depth k are complete for classes we call
ATime-Alt(expk+1,poly). Key to this approach are canonical models, which are a stan-
dard tool in modal logics. In Section 4.1, we adapt this notion to team semantics, and
prove that such models exist for ML(∼). Afterwards, we proceed with the lower bounds.
In Section 4.2 to 4.4, we show that ML(∼) can, in a certain sense, efficiently enforce canoni-
cal models. In Section 4.5 and 4.6, we encode computations of non-elementary length
into such large models. Moreover, we also generalize the result to strict semantics
(Section 4.7) and to the common frame classes of modal logic (Section 4.8). Finally, in
Section 4.9, we adapt the well-known filtration method to modal team logic and by this
obtain a non-trivial fragment of ML(∼) that has only elementary complexity.

In Chapter 5, we focus on FO(∼). By application of the collapse theorem, we obtain
results on the complexity of its model checking, validity and satisfiability problem in
Section 5.1. Furthermore, we study its two-variable fragment FO2(∼) and introduce a
new fragment called guarded team logic GF(∼). In analogy to the classical fragments FO2

10

1 Introduction

and GF of FO, we prove that both FO2(∼) and GF(∼) are decidable. Next, in Section 5.2,
we show that well-known standard translation from ML to FO can be generalized to
team semantics with minor adaptations. Lastly, in Section 5.3, we study FO(∼) from
the perspective of model theory and prove a variant of Łoś’s ultraproduct theorem.
Roughly speaking, it states that a structure and its ultrapower satisfy the same first-
order formulas. We adapt this to team logic, and for this introduce a suitable notion
of ultraproducts of teams. As an implication of this, we conclude that the compactness
theorem does not hold only for FO(∼), but also for certain extensions of it by non-classical
atoms.

Finally, in Chapter 6, we present a modular proof system for team logic, which
we subsequently adapt to PL(∼), ML(∼) and FO(∼). First, we axiomatize the Boolean
operators in Section 6.2, and proceedwith the other operators in Section 6.3. We conclude
with some remarks on the empty team (Section 6.4) and compare our approach with
the existing axiomatizations of fragments of team logics and its fragments (Section 6.5).

1.3 Further notes

Prerequisites. The reader is assumed to be familiarwith elementary logic. In particular,
basic knowledge on propositional logic, modal logic and first-order logic in the usual
Kripke and Tarski semantics is helpful throughout the thesis. Moreover, basic complexity
theory is required for Chapters 4 and 5. We refer the reader to standard textbooks on
logic [10, 31] and complexity theory [130].

No previous knowledge on team logic is required, and we formally introduce it in
Chapter 2. We also define novel complexity classes considered in this thesis, and agree
on some mathematical standard notation.

Publications. Chapter 3 has not been published previously. Chapter 4 up to Section 4.6
is based on a conference publication [101], with Sections 4.7 and 4.8 added in an extended
journal article [102]. The final Section 4.9 appeared as a single paper [105].

Most of Chapter 5 is based on a single conference publication [104], but the part on
model theory (Section 5.3) is new, as well as our proof for the complexity of FO(∼).
Moreover, the team-semantical guarded fragment GF(∼) is introduced in this thesis for
the first time.

Finally, Chapter 6 is based on a journal article [100] which again extends a preliminary
conference publication [99]. As part of this thesis, it was completely rewritten, and
many proofs have been significantly shortened and simplified. This applies both to the
derivations in the appendix and to proofs on the meta-level, for instance the necessary
compactness theorem is a corollary of the ultraproduct theorem (Section 5.3), whereas it
required a different proof in the original paper [100]. We also now take the connectives
∧, ∨, ♦ and ∃ as primitives instead of their duals _, (,4 and !, and hence simplify the
notation and follow conventions in the literature more consistently.

11

2 Preliminaries
In this chapter, we agree on some standard notation, and in Section 2.1 lay the ground
for the complexity theoretical aspects of this thesis. Afterwards, we provide a formal
background on team logic in Section 2.2.

The set of non-negative integers {0, 1, 2, . . .} is denoted by ω or N. We write [n] for
the range {1, . . . , n}, and |X| for the cardinality of the set X. A set with one element
is called singleton. The set of all finite sequences of elements of X, or words, is X∗. If
x = x1 · · · xn is a word, then |x| := n also denotes the length of x. If Y, Y ′ ⊆ X∗, then
Y ◦ Y ′ := {ww ′ | w ∈ Y,w ′ ∈ Y ′}.

The power set of X is written ℘(X) or ℘X. The set ℘+(X) := ℘(X) \ {∅} is the set of all
non-empty subsets of X, ℘1(X) := {{x} | x ∈ X} is the set of all singleton subsets of X, and
℘<ω(X) is the set of all finite subsets of X.

The domain of a function f is denoted by dom f. If X ⊆ dom f, then f�X is the restriction
of f to the domain X. The inverse of a function f : X→ Y is the function f−1 : Y → ℘Xwith
f−1(y) = {x ∈ X | f(x) = y}.

Let (Xi)i∈I be a family of sets. A choice function for (Xi)i∈I is a function f : I→
⋃
i∈I Xi

such that f(i) ∈ Xi for all i ∈ I. The set of all choice functions for (Xi)i∈I is denoted
by
∏
i∈I Xi, that is,

∏
i∈I Xi := {f : I →

⋃
i∈I Xi | ∀i ∈ I : f(i) ∈ Xi}. For example, if

I = [n], then a choice function is just an n-tuple in the Cartesian product X1 × · · · × Xn.
Throughout this thesis, we assume the axiom of choice, which is equivalent to the
statement that

∏
i∈I Xi is non-empty iff Xi is non-empty for all i ∈ I.

2.1 Complexity theory

We assume that the reader is familiar with basic complexity theoretic concepts such
as Turing machines, (un-)decidability, O-notation, time and space complexity, non-
determinism, reductions, hardness and completeness. For an introduction to these
topics, the reader is referred to standard literature [130].

Recall that a reduction from a problem A ⊆ Σ∗ to a problem B ⊆ ∆∗ is a computable
function f : Σ∗ → ∆∗ such that x ∈ A⇔ f(x) ∈ B for all x ∈ Σ∗. We write A 6 B if there is
some reduction from A to B. If the function f is additionally computable in time nO(1),
then it is called polynomial time reduction, and we write A 6P

m B if A is polynomial time
reducible to B. Similarly, if f is computable in space O (logn), then it is called logspace
reduction and we write A 6log

m B. A problem B is hard for a complexity class C with
respect to a type of reduction ≺ if A ∈ C implies A ≺ B, and complete for C if B is hard
for C and B ∈ C. If nothing else is stated, hardness and completeness in this thesis are
w. r. t. 6log

m .

12

2 Preliminaries

Turing machines. We briefly remind the reader of some basic definitions. A (single-
tape) Turing machine is a tupleM = (Q,Σ, Γ, δ, q0, [) with the usual components, that
is, a state set Q, an input alphabet Σ, a tape alphabet Γ ⊇ Σ, a transition relation δ ⊆
Q×Γ×Q×Γ×{L, R,N}, an initial state q0 ∈ Q and a blank symbol [∈ Γ \Σ. A configuration
ofM is a string C ∈ Γ∗ ◦(Q×Γ)◦Γ∗, with the successor relation C `M C ′ defined as usual.
M is called deterministic if every configuration has at most one successor configuration.

For the special type of alternating Turing machines, we follow Chandra et al. [13] (see
also Sipser [130, Ch. 10.3]).

A (single-tape) alternating Turing machine is a tupleM = (Q,Σ, Γ, δ, q0, [, g) where
(Q,Σ, Γ, δ, q0, [) is a Turing machine and g : Q→ {∃, ∀, acc, rej}. Suppose that configura-
tions ofM do not form a loop w. r. t. `M.

We define the sets Q∃, Q∀, Qacc, Qrej by Qi = {q ∈ Q | g(q) = i} and call these the
existential, universal, accepting and rejecting states ofM, respectively. Let C = w(q, a)v

be a configuration, where w, v ∈ Γ∗, a ∈ Γ and q ∈ Q. Then C is accepting if q /∈ Qrej
and additionally one of the following holds: Either q ∈ Qacc, or q ∈ Q∃ and there is an
accepting successor configuration C ′ of C, or q ∈ Q∀ and all successor configurations C ′

of C are accepting. An input x = x1 · · · xn ∈ Σ∗ is accepted byM if the initial configuration
(q0, x1)x2 · · · xn is accepting. A non-deterministic Turing machine is an alternating Turing
machine where g(q) 6= ∀ for all q ∈ Q.

A Turing machine M runs in time t : N → N if for every n and every input x with
|x| = n every computation path from the initial configuration on x reaches an accepting
or rejecting state after at most t(n) steps. M runs in space s(n) if every reachable config-
uration has length at most s(n), and with a(n) alternations if on every computation path
there are at most a(n) transitions from an existential to a universal state or vice versa.

For a function f : N → N, the complexity classes Time(f) and Space(f) contain all
decision problems that are decidable by some deterministic Turing machine in time
resp. space O (f). The classes NTime(f) and NSpace(f) resp. ATime(f) and ASpace(f)
are defined analogously via non-deterministic resp. alternating machines. Finally,
ATime-Alt (f, g) contains the problems decidable by an alternating machine that si-
multaneously runs in time O (f(n)) and with g(n) alternations.

IfF is a set of functions (such asnO(1) = {n,n2, n3, . . .}), then Time(F) :=
⋃
f∈F Time(f),

and similarly for the other classes. Some prominent complexity classes are the following:

L := Space (logn) PSpace := Space
(
nO(1)

)
P := Time

(
nO(1)

)
ExpTime := Time

(
2n

O(1)
)

NP := NTime
(
nO(1)

)
NExpTime := NTime

(
2n

O(1)
)

AP := ATime
(
nO(1)

)
2ExpTime := Time

(
22
nO(1)

)
By Chandra et al. [13], AP = PSpace. In particular, the above classes are ordered by

13

2 Preliminaries

inclusion as follows:

L ⊆ P ⊆ NP ⊆ AP = PSpace ⊆ ExpTime ⊆ NExpTime ⊆ 2ExpTime.

(Non-)Elementary complexity. For this thesis, we require several other complexity
classes. Let exp0(n) := n and expk+1(n) := 2expk(n). A function f : N → N (resp. a
problem A) is elementary if it is computable (decidable) in time O (expk(n)) for some
fixed k ∈ N, otherwise it is non-elementary.

Definition 2.1. Elementary := Time(expO(1)(n)).

Hence the elementary problems are precisely those decidable by a deterministic
Turing machine in time f(n) for some elementary function f : N→ N.

Definition 2.2. Let k > 0. Then

ATime-Alt(expk,poly) := ATime-Alt
(

expk
(
nO(1)

)
,O
(
nO(1)

))
.

In other words, this class contains the problems decidable by an alternating Turing
machine with at most p(n) alternations and runtime at most expk(p(n)), for some
polynomial p. Note that for k = 0 this class coincides with AP = PSpace. For k = 1, k is
often omitted, so that this class is also known as ATime-Alt(exp,poly) [56].

Some decision problems we consider are decidable, but not elementary. We can locate
them in the following class, proposed by Schmitz [125]:

Definition 2.3.

Tower :=
⋃

f : N→N
f elementary

Time(expf(n)(1)).

A suitable type of reduction for this class is the elementary reduction. An elementary
reduction from A to B is an elementary function f such that x ∈ A⇔ f(x) ∈ B. We write
A 6elem

m B if there exists an elementary reduction from A to B.

Proposition 2.4 ([125]). Tower is closed under 6elem
m .

For our purposes, however, already a weaker complexity class is sufficient.

Definition 2.5. Tower(poly) := Time
(

expnO(1)(1)
)
.

Hence Tower(poly) is the class of problems decidable by a deterministic Turing
machine in time expp(n)(1) for some polynomial p. The reader may verify that both
ATime-Alt(expk,poly) and Tower(poly) are closed under 6P

m and 6log
m .

There are several problems in Tower that also have non-elementary lower bounds
(cf. Schmitz [125] and the survey of Meyer [114]). To name a few, these include the
satisfiability problem of separated first-order logic [133, 140], the equivalence problem

14

2 Preliminaries

for star-free regular expressions [132], the first-order theory of finite trees [17], the
theory of weak monadic second-order logic with one successor [115, 121], or, more
recently, the satisfiability problem of modal separation logic [23]. It is not hard to check
that all these listed problems are in fact in Tower(poly).1 For the latter two, indeed
also Tower-hardness under 6elem

m is claimed [23], which trivially implies Tower(poly)-
hardness and thus completeness. Yet, we have to be careful: In a sense, 6elem

m is too
“coarse” as a reduction for Tower(poly), which can be seen by the argument below. For
this reason, we only use 6P

m and 6log
m as reductions in this thesis.

Proposition 2.6. Tower(poly) is not closed under 6elem
m .

Proof. We claim that every 6elem
m -hard set for Tower(poly) is also 6elem

m -hard for Tower.
This proves the proposition as follows. Assume that Tower(poly) is closed under 6elem

m ,
and let A be any Tower(poly)-hard problem (such A exists; see also Theorem 4.32 in
this thesis). In combination with our claim this would imply Tower ⊆ Tower(poly),
contradiction to the time hierarchy theorem (see, e.g., Sipser [130, Cor. 9.11]).

Now we prove the claim, so assume A is 6elem
m -hard for Tower(poly). We have to

show that it is also Tower-hard, so let B ∈ Tower be arbitrary. We show B 6elem
m A.

B is decidable in time expr(n)(1) for some elementary r. Define the set

C := {x#0r(|x|) | x ∈ B},

where 0r(|x|) is a string of r(|x|) zeroes. First, we show that C ∈ Tower(poly). Consider
the algorithm that first checks that the input z is of the form x#0 · · · 0, computes r(|x|)
in elementary time, and checks whether z = x#0r(|x|). These steps take time that is
elementary in |z|. Then the algorithm verifies that x ∈ B, which takes time expr(|x|)(1) 6
exp|z|(1). Hence C ∈ Tower(poly).

By assumption, C 6elem
m A via an elementary reduction f. But clearly also B 6elem

m C

by the elementary reduction g : x 7→ x#0r(|x|). As a consequence, the function h := f ◦ g
is a reduction from B to A. Now h is computable in time expk1(expk2(n)) = expk1+k2(n)
for fixed k1, k2 > 0 depending on f and g, and hence again elementary.

In this thesis, we present several problems that are 6log
m -complete for Tower(poly),

which to the best knowledge of the author is the first explicit completeness result for
this class under an “efficient” reduction.

2.2 Team logic

We proceed with the formal definition of propositional, modal and first-order team
logic, and mention existing results regarding their computational complexity.

The syntax of team logics usually coincides with that of classical logic, with the
exception of non-classical atoms of dependency and the Boolean negation ∼. In this thesis,

1Rabin [121] erroneously claims an elementary upper bound; this is observed and corrected by
Meyer [115].

15

2 Preliminaries

we use Greek letters ϕ,ψ, θ, . . . for formulas, Latin letters x, y, z,w, . . . for variables and
t, u, . . . for terms. Atomic propositions are written p, q, r, Furthermore, α,β, γ, . . .
are reserved for classical formulas and ϕ,ψ, θ, . . . for arbitrary team-logical formulas.

A fragment L ′ of a logic L is a logic with the same semantics, but with only a subset
of formulas available. In other words, it is a syntactic restriction of L.

Given a formula ϕ, we let |ϕ| denote the size or length of the formula ϕ over some
suitable encoding. In this thesis, every atomic formula is counted as having length one.
The set sub(ϕ) is the set of all subformulas defined by the usual recursion.

2.2.1 First-order logic

Classical first-order logic. A vocabulary or first-order language σ is a (possibly infinite)
set of function symbols f and relation symbols or predicates P, each with finite, non-
negative arity ar(f) and ar(P), respectively. We also assume a countably infinite set
Var = {x1, x2, . . .} of first-order variables. The set of σ-terms is defined in the standard way
by composition of function symbols and variables. A vocabulary σ is called relational
if it contains no function symbols. If t is a σ-term, then Var(t) is the set of variables
occurring in t.

Formulas of classical first-order logic σ-FO are given by the grammar

α ::= P~t | t1 = t2 | > | ⊥ | ¬α | α∧ α | α∨ α | ∃xα | ∀xα,

where P ∈ σ is a predicate, x ∈ Var, ~t = (t1, . . . , tar(P)) and t1, t2, . . . are σ-terms.
We use the usual abbreviations α → β := ¬α ∨ β and α ↔ β := (α → β) ∧ (β → α).

If ~t = (t1, . . . , tn) and ~u = (u1, . . . , un) are tuples of terms, then we use the shorthand
~t = ~u for the formula

∧n
i=1 ti = ui.

If α is a formula, then Fr(α) and Var(α) denote the set of free resp. of all variables in
α, defined in the standard way. A sentence is a formula with no free variables.

First-order logic σ-FO is evaluated in σ-structures, which are pairs A = (A,σA), where
A is a non-empty set called domain of A, often written |A|, and σA maps each symbol
S ∈ σ to a function resp. relation SA of suitable arity that interprets S, i.e., fA : Ar → A

for an r-ary function symbol f, and PA ⊆ Ar for an r-ary predicate P. We often identify
a structure A and its domain if the meaning is clear.

Let X ⊆ Var. A function s : X → A is called an assignment. If s : X → A and dom s ⊇
Var(t), then t〈A, s〉 is the usual evaluation of the term t inA under the assignment s. That
is, if t = x is a variable, then t〈A, s〉 = s(x), and if t = f(t1, . . . , tn) for a function symbol f
and terms t1, . . . , tn, then t〈A, s〉 = fA(t1〈A, s〉, . . . , tn〈A, s〉). For tuples ~t = (t1, . . . , tn),
we define ~t〈A, s〉 as (t1〈A, s〉, . . . , tn〈A, s〉).

If s : X→ A and x ∈ Var, then sxa : X ∪ {x}→ A is the updated assignment that sends x
to a and all y ∈ X \ {x} to s(y).

We will often suppress the vocabulary σ in the notation if it does not matter. Next,

16

2 Preliminaries

we define the classical satisfaction relation (A, s) � α, known as Tarski semantics.

(A, s) � P~t ⇔ ~t〈A, s〉 ∈ PA,
(A, s) � t1 = t2 ⇔ t1〈A, s〉 = t2〈A, s〉,
(A, s) � ¬α ⇔ (A, s) 2 α,
(A, s) � > always,
(A, s) � ⊥ never,
(A, s) � α∧ β ⇔ (A, s) � α and (A, s) � β,
(A, s) � α∨ β ⇔ (A, s) � α or (A, s) � β,
(A, s) � ∃xα ⇔ (A, sxa) � α for some a ∈ A,
(A, s) � ∀xα ⇔ (A, sxa) � α for all a ∈ A.

A model of a σ-formula α is a pair (A, s) such that (A, s) � α. If the assignment s does
not matter, i.e., if α is a sentence, we sometimes simply call A a model of α.

First-order team logic. Next, we introduce team semantics and first-order team logic
σ-FO(∼). The set of σ-FO(∼)-formulas (or simply σ-formulas) is given by the grammar

ϕ ::= P~t | ¬P~t | t1 = t2 | ¬t1 = t2 | > | ⊥ | ∼ϕ | ϕ∧ϕ | ϕ∨ϕ | ∃xϕ | ∀xϕ,

where P ∈ σ is a predicate, ~t = (t1, . . . , tar(P)), x ∈ Var and t1, t2, . . . are σ-terms. Note
that ¬ now can only occur at the level of literals, that is, the ∼-free fragment of σ-FO(∼)

consists precisely of all σ-FO-formulas in negation normal form.1

Definition 2.7. Let X ⊆ Var. A team inAwith domain X is a set T of assignments s : X→ A.

If T is a team with domain X ⊇ Y, then its restriction to Y is T�Y := {s�Y | s ∈ T }. If t
is a term and T is a team with domain X ⊇ Var(t), then t〈A, T〉 := {t〈A, s〉 | s ∈ T }, and
~t〈A, T〉 := {~t〈A, s〉 | s ∈ T }. If A is understood, we write only, e.g., t〈s〉 or t〈T〉.

Like Tarski semantics, the compositional nature of team semantics is based on as-
signment updates. If T is a team in A with domain X, then f : T → ℘+(A) is called
a supplementing function of T . It extends (or modifies) T to the supplementing team
Txf := { sxa | s ∈ T, a ∈ f(s) } with domain X ∪ {x}. If f(s) = A is constant, we write TxA for
Txf . If f(s) = |A|, then f is also called duplicating function and TxA is the duplicating team.

A pair (A, T) is admissible for a σ-formula ϕ if A is a σ-structure and T is a team with
domain X for some X ⊇ Fr(ϕ). We evaluate σ-FO(∼)-formulas ϕ on (A, T) as follows,
where t1, t2 are terms, ~t is a tuple of terms, P ∈ σ is a predicate, and x ∈ Var:

(A, T) � P~t ⇔ ∀s ∈ T : ~t〈A, s〉 ∈ PA, or equivalently, ~t〈A, T〉 ⊆ PA,
(A, T) � ¬P~t ⇔ ∀s ∈ T : ~t〈A, s〉 /∈ PA, or equivalently, ~t〈A, T〉 ∩ PA = ∅,

1For logics with ∼, Väänänen [135] originally employed the symbols ! for ∀ and � for ∨, so that ∀ could
denote the ∼-dual of ∃, and ∨ the Boolean disjunction. However, we follow the notation of Galliani [38]
instead in order to simplify statements such as the flatness property (see below).

17

2 Preliminaries

(A, T) � t1 = t2 ⇔ ∀s ∈ T : t1〈A, s〉 = t2〈A, s〉,
(A, T) � ¬t1 = t2 ⇔ ∀s ∈ T : t1〈A, s〉 6= t2〈A, s〉,
(A, T) � > always,
(A, T) � ⊥ ⇔ T = ∅,
(A, T) � ∼ψ ⇔ (A, T) 2 ψ,
(A, T) � ψ∧ θ ⇔ (A, T) � ψ and (A, T) � θ,
(A, T) � ψ∨ θ ⇔ ∃S,U ⊆ T such that T = S ∪U, (A, S) � ψ, and (A, U) � θ,
(A, T) � ∃xψ ⇔ (A, Txf) � ψ for some f : T → ℘+(A),
(A, T) � ∀xψ ⇔ (A, TxA) � ψ.

As abbreviations, we use the Boolean disjunction ϕ6ψ := ∼(∼ϕ∧∼ψ), the non-emptiness
atom ne := ∼⊥, and strong absurdity ⊥⊥ := ∼>. Sometimes also the duals ϕ � ψ :=

∼(∼ϕ∨ ∼ψ),4ϕ := ∼♦∼ϕ and !xϕ := ∼∃x ∼ϕ are used.
A model of a formula ϕ is a pair (A, T) such that (A, T) � ϕ. We say that ϕ entails ψ,

in symbols ϕ � ψ, if (A, T) � ϕ implies (A, T) � ψ for all (A, T) that are admissible for
both ϕ and ψ. If ϕ � ψ and ψ � ϕ, then ϕ and ψ are said to be equivalent, in symbols
ϕ ≡ ψ. A formula ϕ is satisfiable if it has at least one model, and ϕ is valid if every (A, T)

admissible for ϕ is a model of ϕ.

Basic properties. If ϕ,ψ, θ are formulas, then ϕ[ψ/θ] is the formula obtained from ϕ

by replacing every occurrence of the subformula ψ by θ (but no occurrences that appear
newly as part of θ). Formally, ϕ[ψ/θ] := θ if ϕ = ψ, and otherwise

ϕ[ψ/θ] :=



ϕ if ϕ is atomic,
∼(ϕ ′[ψ/θ]) if ϕ = ∼ϕ ′,
¬(ϕ ′[ψ/θ]) if ϕ = ¬ϕ ′,
ϕ1[ψ/θ] ◦ϕ2[ψ/θ] if ϕ = ϕ1 ◦ϕ2 and ◦ ∈ {∧,∨},
ax (ϕ ′[ψ/θ]) if ϕ = axϕ ′ and a ∈ {∃, ∀}, x ∈ Var.

Team semantics satisfies the full abstraction principle:

Proposition 2.8 ([135]). Let ϕ,ψ, θ be FO(∼)-formulas. If ψ ≡ θ, then ϕ ≡ ϕ[ψ/θ].

Classical formulas have the flatness property.1

Definition 2.9 (Flatness). A FO(∼)-formula ϕ is flat if, for all admissible (A, T), it holds
that (A, T) � ϕ if and only if (A, {s}) � ϕ for all s ∈ T .

Proposition 2.10 ([135]). Every FO-formula is flat. Moreover, if α ∈ FO, then (A, T) � α if
and only if (A, s) � α (i.e., in Tarski semantics) for all s ∈ T .

1The term first appeared with Hodges [70], who defined ↓ϕ as the flattening of the formula ϕ. In his
notation, flat formulas ϕ are precisely those where ϕ ≡ ↓ϕ.

18

2 Preliminaries

A σ-formula ϕ is downward closed (resp. upward closed) if for every σ-structure A and
teams S ⊆ T (resp. S ⊇ T) it holds that (A, T) � ϕ implies (A, S) � ϕ. It is union closed if
for every σ-structure A and set T of teams in A it holds that ∀T ∈ T : (A, T) � ϕ implies
(A,
⋃
T) � ϕ. It has the empty team property if (A, ∅) � ϕ for every σ-structure A.

Proposition 2.11 ([135]). Every FO-formula is downward closed, union closed and has the
empty team property.

Observe that union closure implies the empty team property, and that flatness is
equivalent to combined downward and union closure. Also, a formula ϕ is downward
closed (upward closed) if and only if ∼ϕ is upward closed (downward closed).

Negation. It is useful to add the classical negation operator ¬ as a primitive connective
to team logic. Most authors allow ¬ only in front of atoms, with ¬α defined merely as an
abbreviation for the formula resulting from pushing ¬ inwards to the atomic level using
the classical equivalences ¬(α∧ β) ≡ ¬α∨ ¬β, ¬(α∨ β) ≡ ¬α∧ ¬β, ¬> ≡ ⊥, ¬⊥ ≡ >,
¬∃xα ≡ ∀x¬α, and ¬∀xα ≡ ∃x¬α (cf., e.g., [85, 135]).

Originally, Hodges [70, 71] included ¬ in his semantics as the combination of two
operators called “game negation” and “flattening”. The definition of ¬ in his terms is
the following.

(A, T) � ¬ϕ ⇔ ∀s ∈ T : (A, {s}) 2 ϕ. (?)

This definition has also been used by Yang et al. [74, 141, 144] for the purpose of defining
uniform substitution inside formulas such as ¬p, as well as by Kuusisto [93] for his double
team semantics.

With ¬ as a primitive defined as in (?), we avoid the limitation of formulas to nega-
tion normal form. It is easy to prove that this does not change the semantics [141].
Alternatively, ¬ϕ is definable as an abbreviation:

¬ϕ ≡ ∼
(
>∨ (ne∧ ∼(>∨ (ne∧ ∼ϕ)))

)
This formula states that every non-empty subteam contains a non-empty subteam
satisfying ∼ϕ, which is precisely the case if every singleton satisfies ∼ϕ. (A formal proof
for this is given as part of Section 4.2.2). Consequently, we can assume ¬ as part of the
syntax whenever it is convenient to do so.

The following abbreviation by Galliani [41] and Kontinen and Nurmi [84] is useful
as well. For α ∈ FO and ϕ ∈ FO(∼), define α ↪→ ϕ := ¬α∨ (α∧ϕ), and if T is a team in
A, then we call Tα := { s ∈ T | (A, {s}) � α } the team T conditioned to α.

Proposition 2.12. (A, T) � α ↪→ ϕ if and only if (A, Tα) � ϕ.

Proof. Clear. See also Galliani [41, Lem. 16].

Non-classical atoms. We proceed with the common non-classical atoms for team
semantics. In what follows, let ~t, ~u,~v be tuples of terms.

19

2 Preliminaries

The dependence atom dep(~t; ~u) is due to Väänänen [135]. Grädel and Väänänen [49]
introduced the independence atom ~t ⊥~u ~v. Finally, Galliani [37] defined1 the inclusion
atom ~t ⊆ ~u and exclusion atom ~t | ~u, where ~t and ~u are tuples of equal length. The
semantics of these atoms is as follows.

(A, T) � dep(~t; ~u) ⇔ ∀s, s ′ ∈ T : (~t〈s〉 = ~t〈s ′〉 ⇒ ~u〈s〉 = ~u〈s ′〉),
(A, T) � ~u ⊥~t ~v ⇔ ∀s, s ′ ∈ T :

(
~t〈s〉 = ~t〈s ′〉 ⇒

∃s ′′ ∈ T : ~t~u〈s〉 = ~t~u〈s ′′〉 and ~v〈s ′〉 = ~v〈s ′′〉
)
,

(A, T) � ~t ⊆ ~u ⇔ ∀s ∈ T : ∃s ′ ∈ T : ~t〈s〉 = ~u〈s ′〉,
(A, T) � ~t | ~u ⇔ ∀s, s ′ ∈ T : ~t〈s〉 6= ~u〈s ′〉.

The atom dep(~t; ~u) is also known as =(~t; ~u) in the literature. For a single term u, the
atom dep(u) is called constancy atom, as it means that u is constant (since it depends on
nothing).

The extension of FO by the respective class of atoms is called dependence logic FO(dep),
independence logic FO(⊥), inclusion logic FO(⊆) and exclusion logic FO(|). The logics
FO(dep, ∼), FO(⊥, ∼) and so on extend FO(∼) analogously.

A desirable property of logic is locality, which means that the truth of a formula
depends only on the assignments to its free variables.

Definition 2.13. A formula ϕ is local if (A, T) � ϕ ⇔ (A, T�Fr(ϕ)) for all admissible
(A, T). We say that a logic is local if all its formulas are.

Proposition 2.14 ([37, 49, 135]). Let D ∈ {dep,⊥,⊆, | }. Then FO(D, ∼) is local.

Proof. Easily proven by induction on the formula ϕ (cf. [135, Lem. 3.27], [37, Thm.
2.2]). The base case of atomic formulas and the inductive step for each connective work
as in Galliani’s proof [37, Thm. 4.22], to which the ∼-case can be added in the obvious
way.

Proposition 2.15 ([37, 135]). FO(dep) and FO(|) are downward closed and have the empty
team property, but are not union closed. FO(⊆) is union closed and has the empty team property,
but is not downward closed. FO(⊥) has the empty team property, but is neither downward closed
nor union closed.

We also follow the notation of Kontinen et al. [82] and use the formula Eα, for α ∈ FO,
which states that some assignment in the current team satisfies α. It can be defined as
∼¬α or as >∨ (ne∧ α).

Lax and strict semantics. Galliani [37] noticed that there are formalisms under which
locality fails, notably for so-called strict semantics, as opposed to lax semantics. While
these originally were two alternative semantics for certain connectives, in this thesis, we
introduce them as separate syntactic elements, namely strict splitting ∨̇ and the strict

1Although he claims that the notation is due to Grädel.

20

2 Preliminaries

existential quantifier ∃̇, as opposed to the lax operators ∨ and ∃ introduced before. Their
definition is (with the lax connectives restated to compare):

(A, T) � ψ ∨̇ θ⇔ ∃S,U ⊆ T such that T = S ∪U, S ∩U = ∅, and
(A, S) � ψ and (A, U) � θ,

(A, T) � ψ∨ θ⇔ ∃S,U ⊆ T such that T = S ∪U, (A, S) � ψ and (A, U) � θ,
(A, T) � ∃̇xϕ ⇔ (A, Txf) � ϕ for some f : T → ℘1(A),
(A, T) � ∃xϕ ⇔ (A, Txf) � ϕ for some f : T → ℘+(A).

For ∨̇, the condition S ∩U = ∅ is new, and for ∃̇, only ℘+ was changed to ℘1.
In Väänänen’s original definition [135], there was no distinction between lax and strict

semantics. This is because for dependence logic, and in general for downward closed
logics, both are equivalent. This also applies to downward closed FO(∼)-formulas:

Proposition 2.16. Let ϕ,ψ ∈ FO(∼) such that ϕ is downward closed. Then ϕ∨ψ ≡ ϕ ∨̇ψ

and ∃xϕ ≡ ∃̇xϕ.

Proof. Clearly ϕ ∨̇ ψ entails ϕ ∨ ψ and ∃̇xϕ entails ∃xϕ by definition. If conversely
(A, T) � ϕ∨ψ via subteams S,U ⊆ T such that S∪U = T , (A, S) � ϕ and (A, U) � ψ, then
we instead split T into the subteams T \U and U. Since T \U ⊆ S and ϕ is downward
closed, this proves (A, T) � ϕ ∨̇ψ.

Likewise, suppose (A, T) � ∃xϕ via some supplementing function f : T → ℘+(A). By
the axiom of choice, there also is some function f ′ : T → ℘1(A). Then Txf ′ ⊆ Txf . By
downward closure, we obtain (A, Txf ′) � ϕ, so (A, T) � ∃̇xϕ is witnessed by f ′.

In this thesis, where we assume negation ∼ as part of the logic, the distinction between
strict and lax semantics becomes apparent already for simple formulas such as E>∨E> 6≡
E> ∨̇ E>, where the former defines non-emptiness, but the latter means that the team
contains at least two assignments. If nothing else is stated, the notation FO(· · ·) will
always refer to lax connectives and not include ∨̇ and ∃̇.

Decision problems. Let us define the central decision problems of logic in the setting
of team semantics.

Definition 2.17. Let Ψ be a set of formulas. The satisfiability problem of Ψ is the set

SAT(Ψ) := {ϕ ∈ Ψ | ϕ is satisfiable}.

Definition 2.18. Let Ψ be a set of formulas. The validity problem of Ψ is the set

VAL(Ψ) := {ϕ ∈ Ψ | ϕ is valid}.

Definition 2.19. Let Ψ be a set of formulas. The model checking problem of Ψ is the set

MC(Ψ) := {(A, T, ϕ) | ϕ ∈ Ψ, (A, T) admissible for ϕ, and (A, T) � ϕ}.

21

2 Preliminaries

Note that the satisfiability problem becomes trivial for logics with the empty team
property. For this reason, in the literature on team semantics, the empty team is usually
excluded from the definition of satisfiability [37, 49, 135]. However, since we have ne,
both problems are equally hard: A formula ϕ is satisfiable iff >∨ϕ is satisfied in some
non-empty team, and conversely ϕ is satisfied in some non-empty team iff ne ∧ ϕ is
satisfiable at all.

Galliani [37], Grädel and Väänänen [49], and Väänänen [135] showed that sentences
of inclusion, exclusion, independence and dependence logic all have the same expressive
power, namely that of existential second-order logic sentences, and that there are effective
translations in both directions.

The classes Σ2 and Π2 are the second level of the Lévy hierarchy [95].

Theorem 2.20 ([37, 49, 135]). Let D ∈ {dep,⊥,⊆, | }. Then the satisfiability problem of
FO(D) restricted to non-empty teams is Π01-complete, and the satisfiability problem of FO(D, ∼)
is Σ2-complete. The validity problem of both FO(D) and FO(D, ∼) is Π2-complete.

Theorem 2.21 ([44]). For any D ∈ {dep,⊥,⊆, | }, the model checking problem of FO(D) is
NExpTime-complete.

2.2.2 Modal logic

Classical modal logic. Fix a countably infinite set Prop := {p, q, r, . . .} of propositional
variables. Formulas of modal logic ML are built by the grammar

α ::= p | > | ⊥ | ¬α | α∧ α | α∨ α | ♦α | �α (p ∈ Prop).

The set of propositional variables occurring in a formula α is Prop(α). Next, we briefly
recall classical Kripke semantics. Let Φ ⊆ Prop be finite. A Kripke structure (over Φ) is
a tuple K = (W,R, V), where W is a set of worlds or points, (W,R) is a directed graph
called frame of K, and V : Φ → ℘W is the valuation. Occasionally, by slight abuse of
notation, we use the inverse mapping V−1 : W → ℘Φ. A pointed structure (over Φ) is a
pair (K, w)whereK = (W,R, V) is a Kripke structure (overΦ) andw ∈W. ML-formulas
are evaluated in Kripke semantics, where p ∈ Prop and (K, w) is a pointed structure:

(K, w) � p ⇔ w ∈ V(p),
(K, w) � > always,
(K, w) � ⊥ never,
(K, w) � ¬α ⇔ (K, w) 2 α,
(K, w) � α∧ β⇔ (K, w) � α and (K, w) � β,
(K, w) � α∨ β⇔ (K, w) � α or (K, w) � β,
(K, w) � ♦α ⇔ ∃v ∈W : Rwv and (K, v) � α,
(K, w) � �α ⇔ ∀v ∈W : if Rwv, then (K, v) � α.

We sometimes omit K and write only w � α.

22

2 Preliminaries

Modal team logic. Formulas of modal team logic ML(∼) are defined by the grammar

ϕ ::= p | ¬p | > | ⊥ | ∼ϕ | ϕ∧ϕ | ϕ∨ϕ | ♦ϕ | �ϕ,

where again p ∈ Prop. The semantics of ML(∼) is defined on pairs (K, T) called structure
with team (over Φ), where K = (W,R, V) is a Kripke structure (over Φ) and T ⊆ W is
called team in K. A structure with team (K, T) is admissible for a formula ϕ if K is a
Kripke structure over Φ for some Φ ⊇ Prop(ϕ).

The image of a team T is RT := {v | w ∈ T, (w, v) ∈ R}. For w ∈ W, we simply write
Rw instead of R{w}. Sometimes we use the “iterated” image, defined by R0T := T and
Ri+1T := RRiT . An R-successor team (or simply successor team) of T is a team S such that
S ⊆ RT and T ⊆ R−1S, where R−1 := {(v,w) | (w, v) ∈ R}. Intuitively, S is formed by
picking at least one R-successor of every world in T , which means that every w ∈ T has
a successor in S, and every v ∈ S has a predecessor in T . Equivalently, S is a successor
team of T if and only if S =

⋃
w∈T f(w) for some f ∈

∏
w∈T ℘

+(Rw). The evaluation of
ML(∼)-formulas is now as follows, where (K, T) is an admissible pair and p ∈ Prop:

(K, T) � p ⇔ ∀w ∈ T : (K, w) � p, or equivalently, T ⊆ V(p),
(K, T) � ¬p ⇔ ∀w ∈ T : (K, w) 2 p, or equivalently, T ∩ V(p) = ∅,
(K, T) � > always,
(K, T) � ⊥ ⇔ T = ∅,
(K, T) � ∼ψ ⇔ (K, T) 2 ψ,
(K, T) � ψ∧ θ⇔ (K, T) � ψ and (K, T) � θ,
(K, T) � ψ∨ θ⇔ ∃S,U ⊆ T such that T = S ∪U, (K, S) � ψ, and (K, U) � θ,
(K, T) � ♦ψ ⇔ (K, S) � ψ for some successor team S of T ,
(K, T) � �ψ ⇔ (K, RT) � ψ.

Like in the classical case, we sometimes omitK and write only T � ϕ. As for first-order
team logic, let ne := ∼⊥, ⊥⊥ := ∼> and Eα := ∼¬α. (We can again consider negation ¬ as
part of the syntax where this is convenient.)

Basic properties. The definition of flatness is similar to the first-order case:

Definition 2.22 (Flatness). An ML(∼)-formula ϕ is flat if, for all admissible (K, T), it
holds that (K, T) � ϕ if and only if (K, {w}) � ϕ for all w ∈ T .

The definitions of satisfiability, validity, model checking, entailment, substitution,
downward/upward closure, union closure and the empty team property are also analo-
gous.

Proposition 2.23 ([128]). Every ML-formula is flat. Moreover, if α ∈ ML, then (K, T) � α if
and only if it holds that (K, w) � α (in Kripke semantics) for all w ∈ T .

23

2 Preliminaries

The modal depth md(ϕ) of a formula ϕ is recursively defined:

md(p),md(>),md(⊥) := 0

md(∼ϕ),md(¬ϕ) := md(ϕ)
md(ϕ∧ψ),md(ϕ∨ψ) := max{md(ϕ),md(ψ)}
md(♦ϕ),md(�ϕ) := md(ϕ) + 1

MLk and MLk(∼) are the fragments of ML and ML(∼)with modal depth6 k, respectively.
If the propositions are restricted to a fixed set Φ ⊆ Prop as well, then the fragment is
denoted by MLΦk or MLΦk (∼), respectively.

The bisimulation relation
Φ
k captures the expressive power of modal logic [9, 43].

Definition 2.24. LetΦ ⊆ Prop and k > 0. For i ∈ {1, 2}, let (Ki, wi) be a pointed structure
over Φ ′

i ⊇ Φ, where Ki = (Wi, Ri, Vi). Then (K1, w1) and (K2, w2) are (Φ,k)-bisimilar,
in symbols (K1, w1)
Φ

k (K2, w2), if

• ∀p ∈ Φ : w1 ∈ V1(p)⇔ w2 ∈ V2(p),

• and if k > 0,
– ∀v1 ∈ R1w1 : ∃v2 ∈ R2w2 : (K1, v1)
Φ

k−1 (K2, v2) (forward condition),
– ∀v2 ∈ R2w2 : ∃v1 ∈ R1w1 : (K1, v1)
Φ

k−1 (K2, v2) (backward condition).

The next result is standard:

Theorem 2.25 ([43, Thm. 32]). Let Φ ⊆ Prop be finite and k > 0. For i ∈ {1, 2}, let (Ki, wi)
be a pointed structure over Φ ′

i ⊇ Φ, where Ki = (Wi, Ri, Vi). Then the following statements
are equivalent:

(1) ∀α ∈ MLΦk : (K1, w1) � α⇔ (K1, w2) � α.

(2) (K1, w1)
Φ
k (K2, w2).

Furthermore, so-called characteristic formulas or Hintikka formulas represent the bisim-
ulation equivalence classes syntactically.

Proposition 2.26 ([43, Thm. 32]). Let Φ ⊆ Prop be finite, k > 0, and let (K, w) be a pointed
structure over Φ ′ ⊇ Φ. Then there is a formula ζ ∈ MLΦk such that for all pointed structures
(K ′, w ′) we have (K, w)
Φ

k (K ′, w ′) if and only if (K ′, w ′) � ζ.

The notion of bisimulation was lifted to team semantics by Hella et al. [60] and
Kontinen et al. [82, 83]:

Definition 2.27. Let Φ ⊆ Prop be and k > 0. For i ∈ {1, 2}, let (Ki, Ti) be a structure
with team overΦ ′

i ⊇ Φ. Then (K1, T1) and (K2, T2) are (Φ,k)-team-bisimilar, (K1, T1)
Φ
k

(K2, T2), if

• ∀w1 ∈ T1 : ∃w2 ∈ T2 : (K1, w1)
Φ
k (K2, w2), and

24

2 Preliminaries

• ∀w2 ∈ T2 : ∃w1 ∈ T1 : (K1, w1)
Φ
k (K2, w2).

If no confusion can arise, wewill also refer to teams T1, T2 that are (Φ,k)-team-bisimilar
simply as (Φ,k)-bisimilar.

Proposition 2.28. Let Φ ⊆ Prop be finite, and k > 0. For i ∈ {1, 2}, let (Ki, wi) be a pointed
structure over Φ ′

i ⊇ Φ, where Ki = (Wi, Ri, Vi). The following statements are equivalent:

(1) ∀α ∈ MLΦk : (K1, w1) � α⇔ (K2, w2) � α,

(2) (K1, w1)
Φ
k (K2, w2), that is, (K1, w1) and (K2, w2) are (Φ,k)-bisimilar,

(3) (K1, {w1})
Φ
k (K2, {w2}), that is, (K1, {w1}) and (K2, {w2}) are (Φ,k)-team-bisimilar,

and if k > 0,

(4) (K1, w1)
Φ
0 (K2, w2) and (K1, R1w1)
Φ

k−1 (K2, R2w2).

Proof. (1)⇔ (2) is just Theorem 2.25. (2)⇔ (3) follows from Definition 2.27. For k > 0,
we first show that (2)+(3)⇒ (4). Clearly, (K1, w1)
Φ

0 (K2, w2) follows from (2). By
Hella et al. [60, Lem. 3.3], (3) implies (K1, R1w1)
Φ

k−1 (K2, R2w2).
Finally, we show (4)⇒ (2). Suppose (K1, w1)
Φ

0 (K2, w2) and (K1, R1w1)
Φ
k−1

(K2, R2w2). Then to show (K1, w1)
Φ
k (K2, w2), it is sufficient to prove the forward

and backward conditions of Definition 2.24. Suppose v1 ∈ R1w1. Since (K1, R1w1)
Φ
k−1

(K2, R2w2), by Definition 2.27 there exists v2 ∈ R2w2 such that (K1, v1)
Φ
k−1 (K2, v2),

proving the forward condition. The backward condition is symmetric.

This means that the forward and backward condition from Definition 2.24 can be
equivalently stated in terms of team-bisimilarity of the respective image teams.

Characteristic formulas exist also in the team setting:

Theorem 2.29 ([82, Prop. 3.10]). LetΦ ⊆ Prop be finite and k > 0, and let (K, T) be a Kripke
structure with team over Φ ′ ⊇ Φ such that T is non-empty. There is an MLΦk (∼)-formula ϕ
such that for all admissible Kripke structures with team (K ′, T ′), for T ′ non-empty, we have
(K, T)
Φ

k (K ′, T ′) if and only if (K ′, T ′) � ϕ.

Moreover, a characterization similar to Theorem 2.25 exists for team-bisimilarity. The
following theorem slightly extends Kontinen et al. [82, Prop. 2.8 and 3.10].

Proposition 2.30. Let Φ ⊆ Prop be finite, and k > 0. Let (Ki, Ti) be a structure with team for
i ∈ {1, 2}. Then the following statements are equivalent:

(1) ∀α ∈ MLΦk : (K1, T1) � α⇔ (K2, T2) � α,

(2) ∀ϕ ∈ ML(∼)Φk : (K1, T1) � ϕ⇔ (K2, T2) � ϕ,

(3) (K1, T1)
Φ
k (K2, T2).

25

2 Preliminaries

Logic Satisfiability Validity References

PL(dep) NP NExpTime [96, 139]
ML(dep) NExpTime NExpTime [51, 128]
PL(⊥) NP NExpTime-hard, in ΠE2 [55]
ML(⊥) NExpTime ΠE2 -hard [51, 83]
PL(⊆) ExpTime co-NP [55]
ML(⊆) ExpTime co-NExpTime-hard [58, 59]
PL(∼) ATime-Alt(exp,poly) ATime-Alt(exp,poly) [53, 56]
MLk(∼) ATime-Alt(expk+1,poly) ATime-Alt(expk+1,poly) Thm. 4.32
ML(∼) Tower(poly) Tower(poly) Thm. 4.32

Table 2.1: Complexity of satisfiability and validity of propositional and modal logics of dependence,
independence, inclusion, and full team logic. Entries are completeness results unless stated
otherwise. For logics without ∼, the satisfiability problem excludes the empty team.

Proof. An easy induction yields that (K1, ∅) and (K2, ∅) satisfy the same ML(∼)-formulas.
Moreover, a team satisfies ⊥ iff it is empty. Consequently, the above statements are all
true if T1 = T2 = ∅, and are all false if exactly one of the teams is empty. So w.l.o.g.
let T1 and T2 be non-empty. Then (3)⇒ (2) is due to Kontinen et al. [82, Prop. 2.8].
(2) ⇒ (1) is clear. Finally, (1) ⇒ (3) in shown as follows: Suppose w1 ∈ T1. Let ζ
be the characteristic MLΦk -formula from Proposition 2.26, i.e., we have (K2, w2) � ζ iff
(K1, w1)
Φ

k (K2, w2). Then obviously (K1, T1) � Eζ, so (K1, T1) 2 ¬ζ, and consequently
(K2, T2) 2 ¬ζ by (1). Hence (K2, T2) � Eζ. This means that there exists w2 ∈ T2 such
that (K1, w1)
Φ

k (K2, w2). As w1 was arbitrary, and the argument is symmetric, we
obtain (K1, T1)
Φ

k (K2, T2).

Note that the team analog of (4) in Proposition 2.28 is not equivalent: It is possible
that (K1, T1)
Φ

0 (K2, T2) and (K1, R1T1)
Φ
k−1 (K2, R2T2), but (K1, T1) 6
Φ

k (K2, T2).

Lax and strict semantics. Similarly to first-order logic, the modal connectives ∨ and
♦ comes in strict and lax variants. Let K = (W,R, V) be a Kripke structure and T ⊆W.

(K, T) � ψ ∨̇ θ⇔ ∃S,U ⊆ T such that T = S ∪U, S ∩U = ∅, and
(K, S) � ψ and (K, U) � θ,

(K, T) � ♦·ϕ ⇔ ∃f ∈
∏
w∈T

℘1(Rw) such that
(
K,
⋃
w∈T

f(w)

)
� ϕ.

We call the team
⋃
w∈T f(w) strict successor team if f(w) is a singleton for every w; other-

wise it is called lax successor team.
It is noteworthy that truth in strict semantics is not invariant under bisimulation. An

example is the formula E> ∨̇ E>, which states that the team has at least two elements.
However, a result analogous to Proposition 2.16 holds.

26

2 Preliminaries

Logic Model Checking Reference

PL(dep) NP [29]
ML(dep) NP [29]
QPL(dep) NExpTime [53]
PL(⊥) NP [56]
ML(⊥) NP [83]
QPL(⊥) NExpTime [53]
PL(⊆) P [58]
ML(⊆) P [58]
QPL(⊆) ExpTime [53]
PL(∼) PSpace [56]
ML(∼) PSpace [119]
QPL(∼) ATime-Alt(exp,poly) [53]

Table 2.2: Complexity of model checking of propositional and modal logics of dependence, indepen-
dence, and inclusion, and with negation. All entries are completeness results.

Proposition 2.31. Let ϕ,ψ ∈ ML(∼) such that ϕ is downward closed. Then ϕ∨ψ ≡ ϕ ∨̇ψ

and ♦ϕ ≡ ♦·ϕ.

Proof. The proof for ∨̇ is identical to Proposition 2.16. For ♦· , suppose (K, T) � ♦ϕ via
some successor team S of T . By the axiom of choice, there is some function f : T → S

such that f(w) ∈ Rw for each w ∈ T . The team {f(w) | w ∈ T } ⊆ S is now a strict successor
team of T and by downward closure satisfies ϕ, so (K, T) � ♦·ϕ. Conversely, (K, T) � ♦ϕ
again trivially follows from (K, T) � ♦·ϕ.

With modal team logic, strict semantics was studied, e.g., by Hella et al. [58, 59] and
Hella and Stumpf [61]. In these works, the underlying team logic has been enriched by
non-downward closed atoms such as inclusion or independence atom, analogously as
for first-order logic. As we will not study these here, and they are similarly defined as
the first-order atoms, we will skip their definitions here.

Decision problems. The complexity of modal logic equipped with the different atoms
has been subject to several studies (cf. Tables 2.1 and 2.2). For the model checking
problem of ML(∼), the complexity is as follows:

Theorem 2.32 ([119]). The model checking problem for ML(∼) is PSpace-complete. More-
over, it is decidable by an alternating Turing machine that runs in polynomial time and with
polynomially many alternations in |ϕ|, where (K, T, ϕ) is the input.

However, the complexity of satisfiability and validity has been open [28, 58, 82, 119].
We consider it in Chapter 4. We do not explicitly consider extensions ML(D, ∼) by the
various atoms D ∈ {dep,⊥,⊆, | }; these logics can be translated to ML(∼) in logarithmic

27

2 Preliminaries

space [108] and consequently the same completeness results apply. For instance, the
constancy atom dep(α), where α is a classical formula, is equivalent to α 6 ¬α, and
dep(α1, . . . αn;αn+1) is equivalent (cf. [56]) to ∼

(
>∨

∧n
i=1 dep(αi)∧ ∼dep(αn+1)

)
.

2.2.3 Propositional team logic

Propositional team logic (resp. propositional dependence logic) has been first studied
by Yang [142] and subsequently by Yang and Väänänen [143, 144]. Since it is closely
related to modal team logic, we introduce it only briefly.

Syntactically, PL(∼) coincides with ML0(∼), i.e., modal team logic without modalities,
just like PL coincides with ML0. Its semantics is based on propositional teams.

Definition 2.33. Let Φ ⊆ Prop. A team with domain Φ is a set T ⊆ (Φ→ {0, 1}).

Given a PL(∼)-formula ϕ, a team is admissible if it has domain Φ ⊇ Prop(ϕ). The
satisfaction relation is similar to ML(∼):

T � p ⇔ ∀s ∈ T : s(p) = 1,
T � ¬p ⇔ ∀s ∈ T : s(p) = 0,
T � > always,
T � ⊥ ⇔ T = ∅,
T � ∼ψ ⇔ T 2 ψ,
T � ψ∧ θ⇔ T � ψ and T � θ,
T � ψ∨ θ⇔ ∃S,U ⊆ T such that T = S ∪U, S � ψ, and U � θ.

Adding propositional quantifiers ∃p, ∀p results in the logic QPL(∼), a team-semantical
analog to quantified Boolean formulas:

T � ∃pϕ ⇔ T
p
f � ϕ for some f : T → ℘+({0, 1}),

T � ∀pϕ ⇔ T
p
{0,1}

� ϕ.

These teams are defined as in the first-order case, i.e., Tpf := {s
p
b | s ∈ T, b ∈ f(s)} and

T
p
{0,1}

:= {s
p
0 , s

p
1 | s ∈ T }, where spb is the assignment that maps p to b and all q 6= p to s(q).

Again, there are also strict connectives:

T � ψ ∨̇ θ⇔ ∃S,U ⊆ T such that T = S ∪U, S ∩U = ∅, S � ψ and U � θ,
T � ∃̇pϕ ⇔ T

p
f � ϕ for some f : T → {{0}, {1}}.

Analogously to before, PL resp. QPL corresponds to the ∼-free fragment of PL(∼) resp.
QPL(∼), and the logics PL(D), PL(D, ∼), QPL(D) and QPL(D, ∼), for non-classical atoms
D, are defined as expected. Concerning the complexity of the above logics, we refer the
reader to Tables 2.1 and 2.2 for the relevant completeness results.

28

3 Abstract team logic

Since the seminal work of Väänänen [135], numerous team-logical formalisms have been
proposed, most importantly in first-order logic [135], modal logic [136], propositional
logic [142] and temporal logic [90]. Moreover, these logics have been augmented with
a plethora of non-classical atoms of dependency [37, 41, 49, 123, 135] and non-classical
types of disjunction, implication, and other connectives [2, 61, 123], to only list a few.

In this chapter, we present a framework in which we systematically classify existing
team logics in an abstract fashion. We will not consider the concrete atoms and connec-
tives mentioned above, but rather abstractly gather those that have similar properties in
classes. While it turns out that the different manifestations of team semantics exhibit
many similarities, at the same time, the framework is be flexible enough to allow con-
cepts such as “lax” and “strict” semantics [37], or “synchronous” and “asynchronous”
semantics [91].

First, in Section 3.1, some basic definitions are introduced. In Section 3.2 we propose
a natural transformation from classical connectives to team-logical ones to which we
refer as teamification. As the next step, we then introduce the notion of flatness equivalent
operator pairs (i.e., that behave equivalently on flat formulas), such as lax and strict
disjunction, ∨ and ∨̇. We also distinguish between strong and weak duality. Section 3.3
deals with connectives that are operators, which includes all connectives of modal, propo-
sitional and first-order team logic but ¬ and ∼. Moreover, in Section 3.4, we study a
subclass of operators called transversalswhich is well-behaved and yet surprisingly abun-
dant in team logics. As an attempt to generalize strict and lax semantics, we consider
the further restriction towards standard transversals (Section 3.6) and relaxations thereof
(Section 3.5). In Section 3.7, we prove our collapse theorem inside our framework;
namely that logics such as PL(∼), ML(∼) and FO(∼) collapse to Boolean combinations
of flat formulas. We also discuss in Section 3.8 how our framework can be applied to
temporal logic. Finally, we conclude with some remarks in Section 3.9.

3.1 Basic definitions

We start with a compositional, algebraic definition of semantics.

Definition 3.1 (Signature). A signature is a (possibly infinite) set τ of symbols4, called
connectives, each having a finite arity ar(4) ∈ ω. A connective with arity zero is an atom.

Definition 3.2 (Algebra). Let τ be a signature. A τ-algebra is a pair A = (X, (f4)4∈τ)

where X is a non-empty set, the carrier of A, and f4 : Xar(4) → X for each4 ∈ τ. The f4
are called operations on X.

29

3 Abstract team logic

Definition 3.3 (Formula). The set Fτ of τ-formulas is built as follows. If ϕ1, . . . , ϕr are
τ-formulas and 4 ∈ τ is r-ary, then 4(ϕ1, . . . , ϕr) is a τ-formula (including the case
r = 0 where4 is an atom). Nothing else is a τ-formula.

Formulas themselves constitute an algebra, namely that where each r-ary 4 ∈ τ
induces an r-ary composition operation. This is known as term algebra (cf. [24, p. 21]).

Definition 3.4. The length |ϕ| of a τ-formula ϕ is inductively defined as

|∇(ψ1, . . . , ψr)| := 1+
∑
i∈[r]

|ψi|.

Definition 3.5. The set of subformulas sub(ϕ) of ϕ is inductively defined as

sub(∇(ψ1, . . . , ψr)) := {∇(ψ1, . . . , ψr)} ∪
⋃
i∈[r]

sub(ψi).

Note that always |sub(ϕ)| 6 |ϕ|.
We sometimes identify an algebra A = (X, (f4)4∈τ) with its carrier and write, e.g.,

x ∈ A instead of x ∈ X. We adapt the infix notation where this is common, that is, x∧ y
and x∨ y for ∧(x, y) and ∨(x, y). Also, if no confusion can arise, we identify the symbol
4 and the map f4 and sometimes write4A or even just4 instead of f4.

Definition 3.6 (Evaluation of formulas). For a τ-algebra A and τ-formula ϕ, we induc-
tively define the element JϕKA ∈ A as

J4(ϕ1, . . . , ϕar(4))KA = 4A(Jϕ1KA, . . . , Jϕar(4)KA)

for all4 ∈ τ and τ-formulas ϕ1, . . . , ϕar(4).

We sometimes refer to the elements of an algebra A as properties, and say that ϕ defines
the property JϕKA.

Definition 3.7 (Homomorphism). LetA = (X, (f4)4∈τ) and B = (Y, (g4)4∈τ) be τ-alge-
bras. A homomorphism from A to B is a map h : X→ Y such that

h(f4(x1, . . . , xar(f4))) = g4(h(x1), . . . , h(xar(f4)))

for all4 ∈ τ and elements x1, . . . , xar(f4) ∈ X.

Remark. If A is a τ-algebra, then J·KA is the unique homomorphism from Fτ to A (cf.
[24]). If J·KA is injective, then there are no non-trivial logical equivalences.1 If J·KA
is surjective, then Fτ is expressively complete, i.e., every property is definable by a
formula.

Note that signature in logic often means “first-order language”. However, this is
crucially different from the signature of an algebra. Our definition, where everything

1If there is at least one atom and any Boolean connective, then J·KA is not injective.

30

3 Abstract team logic

built from τ is a formula, is completely obliviously of concepts like terms or variables.
To interpret first-order logic algebraically, we require a new atom in τ for each atomic
FO-formula. Needless to say, there are more sophisticated approaches to algebraize
first-order logic (see, e.g., the very good introduction by Andréka et al. [5]), but this is
not necessary for our purposes.

Before continuing with definitions, we present an exhaustive list of how connectives
of PL, ML and FO are defined algebraically.

Example 3.8 (Algebraization of syntax). We list the signatures of propositional, modal
and first-order (team) logic.

• The signature of PL is τPL := τBool ∪ Prop, where τBool := {∧,∨,¬,>,⊥}. Note that
every proposition p ∈ Prop is an atom.

• The signature of QPL is τQPL := τPL ∪ {∃p, ∀p | p ∈ Prop}. In other words, the
quantifiers translate to infinitely many unary connectives, one for each p.

• The signature of ML is τML := τPL ∪ {♦,�}.

• The signature of σ-FO is τσ-FO := τBool∪{∃x, ∀x | x ∈ Var}∪Atomσ, where Atomσ :=

{α ∈ σ-FO | α atomic }. For example, 0 = 1 is an atom if 0 and 1 are σ-terms.

• The signature of the corresponding team logic L(∼) (without dependency atoms),
with L being PL,QPL,ML or σ-FO, is then τL(∼) := τL ∪ {∼}.

Note that the first-order dependence atom dep(t1, . . . , tn; tn+1) is atomic and hence a
nullary connective, while the truth-functional atom dep(α1, . . . , αn;αn+1) can be defined
as an (n+ 1)-ary connective.

To algebraize the semantics of the above logics, we are interested in algebras with
power sets as carriers. This is because a property P usually refers to a collection of states,
assignments, etc. For example, in modal logic, ♦ is often defined as

(K, w) � ♦ϕ⇔ ∃v ∈ Rw : (K, v) � ϕ

for a Kripke structure K = (W,R, V). Algebraically, this definition now becomes

♦(U) := {w ∈W | Rw ∩U 6= ∅ } .

Intuitively, if U ⊆W is the set of worlds where a formula ϕ is true, then ♦(U) is the set
of worlds where ♦ϕ is true.

Example 3.9 (Algebraization of classical semantics). Let τPL, τQPL, τML and τσ-FO be as
in Example 3.8.

• PL is evaluated on the set Prop→ {0, 1} of propositional assignments. This corre-
sponds to the unique τPL-algebra A with carrier ℘(Prop→ {0, 1}) and

– ∧A(U1, U2) = U1 ∩U2,

31

3 Abstract team logic

– ∨A(U1, U2) = U1 ∪U2,
– ¬A(U) = (Prop→ {0, 1}) \U,
– >A = Prop→ {0, 1},
– ⊥A = ∅,
– pA = {s : Prop→ {0, 1} | s(p) = 1} for p ∈ Prop.

• For QPL, we add for each p ∈ Prop
– ∃pA(U) = {s : Prop→ {0, 1} | {s

p
0 , s

p
1 } ∩U 6= ∅},

– ∀pA(U) = {s : Prop→ {0, 1} | {s
p
0 , s

p
1 } ⊆ U}.

• ML is evaluated on Kripke structures K = (W,R, V). The τML-algebra A induced
by K has carrier ℘W and

– ∧, ∨, ¬, > and ⊥ are defined analogously to PL,
– pA = V(p) for p ∈ Prop,
– ♦A(U) = {w ∈W | Rw ∩U 6= ∅},
– �A(U) = {w ∈W | Rw ⊆ U}.

• Finally, let A be a σ-structure for a first-order language σ. The semantic units in
first-order logic are, as for propositional logic, assignments, hence the τσ-FO-algebra
A corresponding toA has the carrier ℘(Var→ A). Besides the Boolean connectives,
we now have

– αA = {s : Var→ A | (A, s) � α} for atomic formulas α,
– ∃xA(U) = {s : Var→ A | {sxa | a ∈ A} ∩U 6= ∅} for x ∈ Var,
– ∀xA(U) = {s : Var→ A | {sxa | a ∈ A} ⊆ U} for x ∈ Var.

Note that the carrier of an algebra is not determined by the encoded structure, but
can also depend on the specific semantics. For example, LTL-formulas are modeled
by Kripke structures K = (W,R, V), but the corresponding carrier is the set of sets of
infinite traces in K, ℘(Rω), and not ℘W as in modal logics.

Also note that for the sake of simplicity we deviate from the definitions in Chapter 2
and w.l.o.g. assume that the domain of an first-order assignment is always Var, and that
every Kripke structure is over the set Prop of all propositions.

Team semantics

Logics with team semantics enjoy closure properties such as flatness, union closure or
downward closure. To be able to talk about these properties, we require carriers that are
double power sets.

Definition 3.10 (Team algebra). A τ-team algebra is a τ-algebra with carrier ℘℘X, where
X is a set.

32

3 Abstract team logic

Example 3.11 (Algebraization of team semantics). Under team semantics, the connec-
tives can be algebraically defined as follows.

• In PL, we have the unique τ-team algebra A with carrier ℘℘(Prop→ {0, 1}) and
– ∧A(T1,T2) = T1 ∩ T2,
– ∨A(T1,T2) = {T1 ∪ T2 | (T1, T2) ∈ T1 × T2} (lax semantics),

– ∨̇
A
(T1,T2) = {T1 ∪ T2 | (T1, T2) ∈ T1 × T2 and T1 ∩ T2 = ∅} (strict semantics),

– ¬A(T) = {T ⊆ Prop→ {0, 1} | ∀s ∈ T : {s} /∈ T},
– >A = ℘(Prop→ {0, 1}),
– ⊥A = {∅},
– pA = ℘{s ∈ Prop→ {0, 1} | s(p) = 1}.

For QPL, the quantifiers become
– ∃pA(T) = {T | ∃f : T → ℘+({0, 1}) : Tpf ∈ T} (lax semantics),
– ∃̇pA(T) = {T | ∃f : T → ℘1({0, 1}) : Tpf ∈ T} (strict semantics),
– ∀pA(T) = {T | T

p
{0,1}

∈ T}.

• For ML, the team algebra A corresponding to a Kripke structure (W,R, V) has
carrier ℘℘W, and

– ∧, ∨, ¬, > and ⊥ are analogous to PL,
– pA = ℘V(p),
– ♦A(T) = {T | ∃f ∈

∏
w∈T ℘

+(Rw) :
⋃
w∈T f(w) ∈ T} (lax semantics),

– ♦·A(T) = {T | ∃f ∈
∏
w∈T ℘

1(Rw) :
⋃
w∈T f(w) ∈ T} (strict semantics),

– �A(T) = {T | RT ∈ T}.

• Finally, for σ-FO, given a first-order structure A, the corresponding team algebra
A has carrier ℘℘(Var→ A), and

– ∧, ∨, ¬, > and ⊥ are again analogous to before,
– αA = ℘{s : Var→ A | (A, s) � α}, if α ∈ σ-FO is atomic,
– ∃xA(T) = {T | ∃f : T → ℘+(A) : Txf ∈ T} (lax semantics),
– ∃̇xA(T) = {T | ∃f : T → ℘1(A) : Txf ∈ T} (strict semantics),
– ∀xA(T) = {T | TxA ∈ T}.

Observe that we use¬ as a logical primitive instead of considering¬α as some formula
in negation normal form, already for the simple reason that negation normal forms do
not necessarily exist in arbitrary τ-algebras.

It is straightforward to algebraize other team-logical connectives, for example

• ∼T = (℘℘X) \ T for the contradictory negation, where ℘℘X is the carrier,

33

3 Abstract team logic

• dep(t1, . . . , tn; tn+1, . . . , tn+m)A = {T | ∀s, s ′ ∈ T : (∀i ∈ [n] : ti〈s〉 = ti〈s ′〉)⇒ (∀i ∈
[m] : tn+i〈s〉 = tn+i〈s ′〉)} for the first-order dependence atom.

Next, we algebraically define the common closure properties of team logic. Fix a team
algebra A and let T ∈ A be a property, i.e., a set of teams.

Definition 3.12 (Coherence). T is k-coherent, for k ∈ N, if for all teams T ∈ A it holds
that T ∈ T if and only if T ′ ∈ T for all subteams T ′ ⊆ T of size |T ′| = k.

Definition 3.13 (Flatness). T is flat if it is 1-coherent.

Definition 3.14 (Closure properties). T is union closed if, for any set T ′ ⊆ T of teams,⋃
T ′ ∈ T. T is downward closed if T ∈ T and T ′ ⊆ T implies T ′ ∈ T.

A formula ϕ is called k-coherent, flat, union closed or downward closed (w. r. t. A) if
JϕKA is.

Proposition 3.15. T is flat if and only if it is union closed and downward closed.

Proof. For “⇐”, if T is downward closed, then T ∈ T implies {s} ∈ T for all s ∈ T , and if it
is union closed, then {s} ∈ T for all s ∈ T implies T ∈ T. Hence T is then flat.

For “⇒”, if T is flat, we show that the other two properties hold. If T ′ ⊆ T, then {s} ∈ T

for all s ∈ T ∈ T ′; so in particular {s} ∈ T for all s ∈
⋃
T ′. But then

⋃
T ′ ∈ T by flatness.

Likewise, if T ∈ T and T ′ ⊆ T , then ∀s ∈ T : {s} ∈ T, so in particular ∀s ∈ T ′ : {s} ∈ T.
Consequently, T ′ ∈ T again by flatness.

Corollary 3.16. T is flat iff T = ℘
⋃
T iff T is a power set.

The flatness of formulas is usually proved by induction on the syntax, exploiting that
each connective in a sense “preserves flatness.” This can be made formal as follows.

Definition 3.17 (Flatness preserving). An operation 4 : Ar → A preserves flatness in a
team algebra A if4(T1, . . . ,Tr) is flat whenever T1, . . . ,Tr ∈ A are flat properties.

The team-logical variants of the common classical connectives preserve flatness.

Proposition 3.18. The connectives ¬, ∧, ∨, ∨̇, �, ♦, ♦· , ∀x, ∃x and ∃̇x preserve flatness.

The above is seen as part of typical inductive proofs of flatness in the literature, so we
will not include a proof here. However, we prove a stronger statement (Corollary 3.35)
later in this chapter.

Proposition 3.19. Let A = (℘℘X, (f4)4∈τ) be a τ-team algebra. If a τ-formula ϕ contains
only connectives4 ∈ τ such that f4 preserves flatness, then JϕKA is flat.

Proof. Straightforward by induction on the syntax of ϕ.

34

3 Abstract team logic

Often it seems natural to define a connective in a flatness preserving manner, such as
the above, but in other cases this is neither obvious nor desirable. For instance, Krebs
et al. [91] defined two team semantics for LTL, a synchronous and an asynchronous one.
Only the asynchronous connectives preserve flatness, but some properties can only be
defined synchronously.

Another example is the work of Grädel and Hegselmann [46] on first-order logic
with counting. They proposed two counting mechanisms for team semantics: counting
quantifiers ∃>µx as flatness preserving connectives on teams, and forking atoms ~u^>µ ~v,
which are non-flat atoms.

3.1.1 Duality

The idea of duality of connectives is tightly connected to negation. In team logic, there
are two distinct notions of duality, each induced by its own negation. We refer to duality
w. r. t. ¬ as weak and to duality w. r. t. ∼ as strong. 1

Definition 3.20 (Complement). Let A be a τ-algebra with carrier ℘X. The complement of
a property P ⊆ X is the property P{ := X \ P.

Definition 3.21 (Strong dual). Let A be a τ-algebra with carrier ℘X and 4 : (℘X)r →
℘X. The strong dual 4{ of 4 is defined by 4{(U1, . . . , Ur) := 4(U{

1, . . . , U
{
r)

{ for all
U1, . . . , Ur ⊆ X.

Proposition 3.22 (Symmetry). ∇ = 4{ if and only if4 = ∇{.

Proof. Clear.

We proceed with the second type of duality, weak duality, which exists only in team
semantics. Fix a τ-team algebra A = (℘℘X, (f4)4∈τ). Symbols 4,∇, . . . will denote
operations on A with some arity r > 0.

Recall the definition of ¬ as a logical primitive in Chapter 2:

(A, T) � ¬ϕ ⇔ ∀s ∈ T : (A, {s}) 2 ϕ.

Accordingly, the algebraic definition is:

¬T := { T ∈ A | ∀s ∈ T : {s} /∈ T }

For flat properties T, ¬T is simple to compute:

Proposition 3.23. Let T ∈ A be flat. Then ¬T = ℘(X \
⋃
T).

1It is not easy to come up with sensible and intuitive names for the two kinds of negation. In the
literature, ¬ is called game negation, dual negation, intuitionistic negation, or strong negation, while we call it
weak negation. The connective ∼ is called classical negation, contradictory negation, Boolean negation or weak
negation, while we call it strong negation. (So only the non-classical negation is allowed to appear in
classical formulas.) We simply call ¬ weak and ∼ strong because, unlike ∼, ¬ does not allow to define one
connective in terms of its dual, as we show at the end of the section.

35

3 Abstract team logic

Proof. Due to Corollary 3.16, for the team T =
⋃
T we have T = ℘T . Note that s ∈ T iff

{s} ⊆ T iff {s} ∈ ℘T . Hence

¬T =
{
T ′ ∣∣ ∀s ∈ T ′ : {s} /∈ T}

}
(def. ¬)

=
{
T ′ ∣∣ ∀s ∈ T ′ : {s} /∈ ℘T }

}
=
{
T ′ ∣∣ ∀s ∈ T ′ : s /∈ T }

}
=
{
T ′ ∣∣ T ′ ⊆ X \ T

}
= ℘(X \ T)

Proposition 3.24. For each T ∈ A, ¬T is flat.

Proof. The condition ∀s ∈ T : {s} /∈ T is downward and union closed w. r. t. T .

Corollary 3.25. The connective ¬ preserves flatness, and ¬¬T = T for all flat T.

Next, we proceed by definingweak duality. Note that for it we consider only singletons.
We come to the reason for that later.

Definition 3.26 (Weak duality). Let4,∇ : (℘℘X)r → ℘℘X. Then ∇ is a weak dual of4 if

{s} ∈ 4(T1, . . . ,Tr) ⇔ {s} /∈ ∇(¬T1, . . . ,¬Tr)

for all s ∈ X and flat T1, . . . ,Tr ∈ A.

Proposition 3.27 (Symmetry). If ∇ is a weak dual of4, then4 is a weak dual of ∇.

Proof. For all flat properties T1, . . . ,Tr ∈ A and s ∈ X,

{s} ∈ ∇(T1, . . . ,Tr)
⇔ {s} ∈ ∇(¬¬T1, . . . ,¬¬Tr) (Corollary 3.25)
⇔ {s} /∈ 4(¬T1, . . . ,¬Tr) (by assumption)

Proposition 3.28. Every operation4 has a weak dual.

Proof. We apply symmetry and show that4 is the weak dual of

∇(T1, . . . ,Tr) := { {s} ∈ ℘X | {s} /∈ 4(¬T1, . . . ,¬Tr) } .

As clearly {s} ∈ ∇(T1, . . . ,Tr) iff {s} /∈ 4(¬T1, . . . ,¬Tr), the proposition follows.

Above, we used the fact that weak duality is defined only w. r. t. flat arguments
T1, . . . ,Tr. Without this, we could construct operations 4 with no weak dual. By
Cantor’s theorem, |A| = |℘℘X| > |℘X| = |{T ∈ A | T flat}| > |{¬T | T ∈ A}|, so ¬ cannot be in-
jective. Thismeans there are properties T 6= T ′ with¬T = ¬T ′, andDefinition 3.26would
be impossible to satisfy. On flat properties T however, ¬ is a bijection (Proposition 3.23),
so this issue cannot occur.

36

3 Abstract team logic

The observant reader may also wonder why weak duality is defined only on the level
of singletons. Another natural definition of duality would be the stronger condition

4(T1, . . . ,Tr) = ¬∇(¬T1, . . . ,¬Tr).

However, the weaker one is easier to prove and suffices for our purposes, since both
definitions are equivalent for flatness preserving connectives:

Proposition 3.29. If ∇ and4 are flatness preserving and weak duals of each other, then

¬4(T1, . . . ,Tr) = ∇(¬T1, . . . ,¬Tr)

and

4(T1, . . . ,Tr) = ¬∇(¬T1, . . . ,¬Tr)

for all flat T1, . . . ,Tr ∈ A.

Proof. First observe that ¬4(T1, . . . ,Tr) and∇(¬T1, . . . ,¬Tr) are flat by Proposition 3.24
and since ∇ preserves flatness. Then for all teams T ,

T ∈ ¬4(T1, . . . ,Tr)

⇔ ∀s ∈ T : {s} /∈ 4(T1, . . . ,Tr) (def. ¬)
⇔ ∀s ∈ T : {s} ∈ ∇(¬T1, . . . ,¬Tr) (def. weak dual)
⇔ T ∈ ∇(¬T1, . . . ,¬Tr). (flatness)

The other equivalence is analogous.

Observe that any operation 4 has exactly one strong dual, but may have multiple
weak duals. For instance, ∧ has the strong dual 6 but (among others) the weak duals
∨ and ∨̇. The same holds for � and ♦/♦· , or ∀x and ∃x/∃̇x.

The terminology “weak” is not completely unjustified: Since weak duals are not
unique, and ¬T is always flat, ¬ cannot be used to define a connective by its weak
dual. While ∧ and ∨ are strong duals and thus interdefinable in classical logic, in team
semantics they become weak duals and are not definable in terms of each other, and for
this reason both need to be included as primitives in team logic. The same holds for the
pairs ♦/� and ∃/∀.

3.2 Teamification

Team semantical connectives such as∧,∨, ∀, ∃,�,♦ are carefully defined in the literature
in order to preserve flatness. Now imagine we are given some logical system and want

37

3 Abstract team logic

to build a “faithful” team semantics for it from scratch:

Given: An arbitrary logical connective4
Question: What is a ”natural” connective ∇ that satisfies

T � ∇(α1, . . . , αr) ⇔ ∀s ∈ T : s � 4(α1, . . . , αr) for all flat α1, . . . , αr?

This is not trivial, and connectives may have multiple team-semantical, seemingly
equally valid alternatives (think of ∃ and ∃̇, where ∃̇ was introduced first [135]).

In this section, we propose a rule called teamification1 to lift classical operations to
flatness preserving team semantics. We will show that the standard connectives obey it,
and prove several abstract results based on it.

The fundamental idea is that the power set operator ℘ is a natural homomorphism
between the corresponding algebras.

Definition 3.30 (Teamification). An operation ∇ : (℘℘X)r → ℘℘X is a teamification of an
operation4 : (℘X)r → ℘X if

℘4(T1, . . . , Tr) = ∇(℘T1, . . . , ℘Tr)

for all T1, . . . , Tr ⊆ X.

Definition 3.31. A τ-team algebra B = (℘℘X, (g4)4∈τ) is a teamification of a τ-algebra
A = (℘X, (f4)4∈τ) if g4 is a teamification of f4 for all4 ∈ τ, or equivalently, if ℘ is an
algebra homomorphism from A to B.

Proposition 3.32. (1) Every operation has multiple teamifications.

(2) There are operations that are not the teamification of any operation.

(3) If ∇ is the teamification of some operation4, then that4 is unique.

Proof. For (1), simply defining ∇(℘T1, . . . , ℘Tr) := ℘4(T1, . . . , Tr) yields a teamification,
with ∇ acting arbitrarily on arguments that are not power sets. As ∅ is not a power set,
∇(∅, . . . , ∅) can take for instance the distinct values ∅ (the set of no teams) and {∅} (the
set containing only the empty team), which yields two distinct teamifications.

For (2), if ∇(℘T1, . . . , ℘Tr) = ∅ then ∇ cannot be a teamification.
For (3), suppose that ∇ is a teamification of4 and4 ′. Then

℘4(T1, . . . , Tr) = ∇(℘T1, . . . , ℘Tr) = ℘4 ′(T1, . . . , Tr)

for all T1, . . . , Tr ∈ ℘X. But ℘ is injective, so4 = 4 ′.

Next, we show that the standard team-logical connectives are teamifications, that is, ℘
is a homomorphism from the corresponding classical semantics to the team semantics.
Recall that the usual atomic formulas are represented as nullary connectives.

1The term stems from a recent paper by Galliani [39], where he referred, without formal definition, to
a process of “lifting” classical compositional semantics to team semantics.

38

3 Abstract team logic

Theorem 3.33. The operations >,⊥,∧,∨, ∨̇,¬,♦,♦· ,�, ∃x, ∃̇x, ∀x, p ∈ Prop, and all atomic
first-order formulas are teamifications of the corresponding classical connectives.

Proof. While we usually use the same symbol for both, in this proof for the sake of
readability the classical operations will be denoted by 4c and the team-semantical
counterparts by4t. We show for all operations that4t is a teamification of4c, i.e.,

℘4c(T1, . . . , Tr) = 4t(℘T1, . . . , ℘Tr)

for all teams T1, . . . , Tr. Let us start with atoms. Since all the mentioned atoms obey
flatness,

T ∈ 4t ⇔ ∀s ∈ T : s ∈ 4c ⇔ T ⊆ 4c ⇔ T ∈ ℘4c.

In other words, ℘4c = 4t. As an example, we have ⊥t = {∅} = ℘∅ = ℘⊥c. We proceed
with the Boolean connectives ∧,∨,¬.

• For conjunction, we have to show ∧t(℘T1, ℘T2) = ℘∧c(T1, T2).

T ′ ∈ ∧t(℘T1, ℘T2)

⇔ T ′ ∈ ℘T1 ∩ ℘T2 (team semantics of ∧)
⇔ T ′ ⊆ T1 and T ′ ⊆ T2
⇔ T ′ ⊆ T1 ∩ T2
⇔ T ′ ⊆ ∧c(T1, T2) (classical semantics of ∧)
⇔ T ′ ∈ ℘∧c(T1, T2).

• For disjunction, we have to show ∨t(℘T1, ℘T2) = ℘∨c(T1, T2) (which was already
observed by Abramsky and Väänänen [2]).

T ′ ∈ ∨t(℘T1, ℘T2)

⇔ ∃V1 ∈ ℘T1, V2 ∈ ℘T2 : T ′ = V1 ∪ V2 (team semantics of ∨)
⇔ ∃V1 ⊆ T1, V2 ⊆ T2 : T ′ = V1 ∪ V2
⇔ T ′ ⊆ T1 ∪ T2
⇔ T ′ ⊆ ∨c(T1, T2) (classical semantics of ∨)
⇔ T ′ ∈ ℘∨c(T1, T2).

For strict disjunction ∨̇, the union V1 ∪ V2 in the second and third line has to be
disjoint, but then the fourth line is still equivalent.

• For negation, we have to show ¬t(℘T) = ℘¬c(T).

T ′ ∈ ¬t(℘T)

⇔ ∀s ∈ T ′ : {s} /∈ ℘T (team semantics of ¬)
⇔ ∀s ∈ T ′ : s /∈ T

39

3 Abstract team logic

⇔ T ′ ⊆ X \ T

⇔ T ′ ⊆ ¬c(T) (classical semantics of ¬)
⇔ T ′ ∈ ℘¬c(T).

Next, we consider modal logic.

• For diamond, we show ♦t(℘T) = ℘♦c(T).

T ′ ∈ ♦t(℘T)

⇔ ∃S ∈ ℘T : S successor team of T ′ (team semantics of ♦)

⇔ ∃S ⊆ T : ∃f ∈
∏
w∈T ′

℘+(Rw) : S =
⋃
w∈T ′

f(w)

For ”⇒”, the existence of f clearly implies the weaker statement below. For ”⇐”,
to construct f and hence Swe apply the axiom of choice to pick an element from
each of the non-empty sets Rw ∩ T .

⇔ ∀w ∈ T ′ : Rw ∩ T 6= ∅
⇔ ∀w ∈ T ′ : w ∈ ♦c(T) (classical semantics of ♦)
⇔ T ′ ∈ ℘♦c(T)

For strict semantics, f additionally is a function from
∏
w∈T ′ ℘1(Rw). The above

argument for the construction of S in the “⇐” direction however yields precisely
such a function.

• For box, we show �t(℘T) = ℘�c(T).

T ′ ∈ �t(℘T)

⇔ RT ′ ∈ ℘T (team semantics of �)
⇔ RT ′ ⊆ T
⇔ ∀s ∈ T ′ : Rs ⊆ T
⇔ ∀s ∈ T ′ : s ∈ �c(T) (classical semantics of �)
⇔ T ′ ⊆ �c(T)

⇔ T ′ ∈ ℘�c(T)

Finally, the quantifiers behave analogously to the modal connectives.

• Existential quantification:

T ′ ∈ ∃xt(℘T)
⇔ ∃S ∈ ℘T : S supplementing team of T ′ (team semantics of ∃x)
⇔ ∃f ∈ T ′ → ℘+(A) : (T ′)xf ⊆ T

40

3 Abstract team logic

⇔ ∀s ∈ T ′ : ∃a ∈ A : sxa ∈ T
⇔ ∀s ∈ T ′ : s ∈ ∃xc(T) (classical semantics of ∃x)
⇔ T ′ ⊆ ∃xc(T)
⇔ T ′ ∈ ℘∃xc(T)

For strict semantics, f(s) must be a singleton for each s. This is handled like for
the strict ♦.

• Universal quantification:

T ′ ∈ ∀xt(℘T)
⇔ (T ′)xA ∈ ℘T (team semantics of ∀x)
⇔ (T ′)xA ⊆ T
⇔ ∀s ∈ T ′ : ∀a ∈ A : sxa ∈ T (def. of duplicating team)
⇔ ∀s ∈ T ′ : s ∈ ∀xc(T) (classical semantics of ∀x)
⇔ T ′ ⊆ ∀xc(T)
⇔ T ′ ∈ ℘∀xc(T)

The next result is a central characterization of teamification.

Theorem 3.34. A map ∇ : (℘℘X)r → ℘℘X is a teamification if and only if it preserves flatness.

Proof. “⇒”: Let ∇ : (℘℘X)r → ℘℘X be the teamification of4, where4 : (℘X)r → ℘X, and
let T1, . . . ,Tr ⊆ ℘X be flat properties. By Corollary 3.16, Ti = ℘

⋃
Ti. By definition of

teamification, then ∇(℘
⋃
T1, . . . , ℘

⋃
Tr) = ℘4(

⋃
T1, . . . ,

⋃
Tr), which is a power set

and hence flat.
“⇐”: Let ∇ : (℘℘X)r → ℘℘X preserve flatness. We define an operation4 : (℘X)r → ℘X

such that, for arbitrary T1, . . . , Tr ⊆ X, we have ℘4(T1, . . . , Tr) = ∇(℘T1, . . . , ℘Tr). The
℘Ti are flat, so by assumption, ∇(℘T1, . . . , ℘Tr) is flat. Hence it is also of the form ℘U for
some team U ⊆ X. Now, to define4, we let4(T1, . . . , Tr) := U.

This yields an alternative proof of Proposition 3.18 by means of Theorem 3.33:

Corollary 3.35. The operations >, ⊥, ∧, ∨, ∨̇, ¬, ♦, ♦· , �, ∃x, ∃̇x and ∀x preserve flatness.

We return to the original question at the beginning of this section, and as follows
relate a semantics and its teamification.

Proposition 3.36. Let the τ-team algebra B be a teamification of a τ-algebra A. Then, for all τ-
formulas ϕ, JϕKB = ℘JϕKA. Moreover, T ∈ JϕKB iff ∀s ∈ T : {s} ∈ JϕKB iff ∀s ∈ T : s ∈ JϕKA,
for all teams T .

Proof. Note that the second claim follows easily from the first: For all teams T , T ∈ JϕKB

iff T ⊆ JϕKA iff ∀s ∈ T : s ∈ JϕKA. Setting T = {s} furthermore proves the equivalence to
∀s ∈ T : {s} ∈ JϕKB.

41

3 Abstract team logic

We prove the first claim by induction on the syntax of ϕ. Let ϕ = 4(ψ1, . . . , ψr),
where 4 ∈ τ and the proposition already holds for the τ-formulas ψi. Let 4A or 4B
denote the respective operation in the algebra A or B.

JϕKB = 4B(Jψ1KB, . . . , JψrKB) (def. J·K)
= 4B

(
℘Jψ1KA, . . . , ℘JψrKA

)
(induction hypothesis)

= ℘4A
(
Jψ1KA, . . . , JψrKA

)
(def. teamification)

= ℘JϕKA. (def. J·K)

Teamification also turns strong into weak duality, as is shown below.

Theorem 3.37. Let 41,42 : (℘X)r → ℘X and ∇1,∇2 : (℘℘X)r → ℘℘X. For i ∈ {1, 2}, let ∇i
be a teamification of4i. Then41 and42 are strong duals of each other if and only if ∇1 and
∇2 are weak duals of each other.

Proof. “⇒”: Suppose41 and42 are strongly dual. Let T1, . . . ,Tr ⊆ ℘X be flat properties
and T1, . . . , Tr teams such that Ti = ℘Ti. For weak duality, we have to show that {s} /∈
∇1(T1, . . . ,Tr)⇔ {s} ∈ ∇2(¬T1, . . . ,¬Tr), or equivalently, by Proposition 3.23, that

{s} /∈ ∇1(℘T1, . . . , ℘Tr)⇔ {s} ∈ ∇2(℘(X \ T1), . . . , ℘(X \ Tr)).

This follows by

{s} /∈ ∇1(℘T1, . . . , ℘Tr) ⇔ {s} /∈ ℘41(T1, . . . , Tr) (def. teamification)
⇔ s /∈ 41(T1, . . . , Tr)
⇔ s ∈ 42(X \ T1, . . . , X \ Tr) (def. strong duality)
⇔ {s} ∈ ℘42(X \ T1, . . . , X \ Tr)

⇔ {s} ∈ ∇2(℘(X \ T1), . . . , ℘(X \ Tr)). (def. teamification)

“⇐”: Let ∇1 and ∇2 be weakly dual and let T1, . . . , Tr ⊆ X and s ∈ X be arbitrary. For
strong duality, we have to show that s /∈ 41(T1, . . . , Tr)⇔ s ∈ 42(X \ T1, . . . , X \ Tr):

s /∈ 41(T1, . . . , Tr) ⇔ {s} /∈ ℘41(T1, . . . , Tr)
⇔ {s} /∈ ∇1(℘T1, . . . , ℘Tr) (def. teamification)
⇔ {s} ∈ ∇2(¬℘T1, . . . ,¬℘Tr) (def. weak duality)
⇔ {s} ∈ ∇2(℘(X \ T1), . . . , ℘(X \ Tr)) (Proposition 3.23)
⇔ {s} ∈ ℘42(X \ T1, . . . , X \ Tr) (def. teamification)
⇔ s ∈ 42(X \ T1, . . . , X \ Tr).

Based on the results of this section, we return to one question from Chapter 1:

Is a team semantics necessarily based on a classical logic?

42

3 Abstract team logic

This obviously depends on the meaning of “is based on”. At least if we interpret it as
being a teamification in the sense of Definition 3.31, we are in the position to give a
formal answer.

Theorem 3.38. Let B be a τ-team algebra. Then B is a teamification of some τ-algebra A if and
only if4B is flatness preserving for all4 ∈ τ.

Proof. Immediately from Theorem 3.34.

3.3 Operators

In the algebraic world, a unary operator 4 (in a set algebra) is an operation that is

normal: 4(∅) = ∅

additive: 4(U ∪U ′) = 4(U) ∪4(U ′)

monotone: U ⊆ U ′ ⇒ 4(U) ⊆ 4(U ′) (which follows from the first two).

Remarkably, many team-logical connectives behave like operators. In the literature,
a Boolean algebra augmented with operators is called bao (Boolean algebra with opera-
tors) [138]. The most common operators4 are those generated by a binary relation R
such that s ∈ 4(U)⇔ ∃s ′ ∈ U : (s, s ′) ∈ R, such as the classical ♦ from modal logic.

By the famous Jónsson-Tarski Representation Theorem [77], every bao is isomorphic
to one where the operators are generated in this way. For this reason, in this thesis we
restrict ourselves to such operators.1

Definition 3.39 (Operator). A map 4 : (℘X)r → ℘X is an r-ary operator if there is a
relation R ⊆ Xr+1 generating 4, meaning

u ∈ 4(U1, . . . , Ur) ⇔ ∃(u, u1, . . . , ur) ∈ R : u1 ∈ U1, . . . , ur ∈ Ur

for all U1, . . . , Ur ⊆ X and u ∈ X.

Our definition meets the above criteria of an operator:

Proposition 3.40. Let4 : (℘X)r → ℘X be an operator. Then4 is

• additive:
⋃
Ui∈C4(U1, . . . , Ur) = 4(U1, . . . , Ui−1,

⋃
C, Ui+1, . . . , Ur) for all C ⊆ ℘X,

• normal: 4(U1, . . . , Ui−1, ∅, Ui+1, . . . , Ur) = ∅,

• monotone: 4(U1, . . . , Ur) ⊆ 4(U1, . . . , Ui−1, V,Ui+1, . . . , Ur) for all Ui ⊆ V ⊆ X,

where U1, . . . , Ur ⊆ X and i ∈ [r].

Proof. Standard (see, e.g., Givant [42, Theorem 1.2]).
1A generating relation exists if the bao has atoms in the order-theoretic sense. Otherwise, those can be

obtained by an ultrafilter construction. For details, see Givant [42] or Venema [138].

43

3 Abstract team logic

As logical laws, these are well-known in, e.g., classical modal logic as ♦ϕ ∨ ♦ψ ≡
♦(ϕ∨ψ), ♦⊥ ≡ ⊥, and ϕ � ψ⇒ ♦ϕ � ♦ψ.

Proposition 3.41. The relation generating an operator is unique.

Proof. Suppose that4 : (℘X)r → ℘X is generated by both R and R ′. Then by definition,
the following are equivalent for all sets U1, . . . , Ur ⊆ X and u ∈ X:

(1) u ∈ 4(U1, . . . , Ur)

(2) ∃u1 ∈ U1 · · · ∃ur ∈ Ur : (u, u1, . . . , ur) ∈ R

(3) ∃u ′
1 ∈ U1 · · · ∃u ′

r ∈ Ur : (u, u ′
1, . . . , u

′
r) ∈ R ′

This implies R = R ′ as follows: Suppose (u0, u1, . . . , ur) ∈ R. Then u0 ∈ 4({u1}, . . . , {ur})

by (2)⇒ (1). Hence, (u0, u1, . . . , ur) ∈ R ′ by (1)⇒ (3). This proves R ⊆ R ′, with the
other direction being symmetric.

The unique (r + 1)-ary relation generating an r-ary operator 4 is denoted by R4.
Given an (r+ 1)-ary relation R, every element u ∈ X induces an r-ary relation,

Ru := { (u1, . . . , ur) | (u, u1, . . . , ur) ∈ R } .

These can be interpreted as “successor tuples” of u w. r. t. R. Note that in the case r = 1
there are only two possible relations Ru, namely ∅ and {ε} (where ε is the empty tuple).

Observe that the usual semantics of polyadic modal operators (cf. Blackburn and van
Benthem [9]),

w � 4(ϕ1, . . . , ϕr) ⇔ ∃(v1, . . . , vr) ∈ R4w such that ∀i ∈ [r] : vi � ϕi,

precisely mirrors Definition 3.39 on the level of formulas.

Example 3.42. Not only ♦, but also the classical ∧ and ∃x are operators. For instance, ∧
is generated by R∧ = {(s, s, s)}. In a first-order structure A, the relation R∃x is equal to
≈x, where s ≈x s ′ if there exists a such that s ′ = sxa.

Curiously, in team semantics, a lot more connectives become operators, even those
that are classically strong duals of each other.

Theorem 3.43. In classical semantics, ∧, ♦ and ∃x are operators, ∨, � and ∀x are strong duals
of operators, and ¬ is neither. In team semantics, ∧, ∨, ∨̇, �, ♦, ♦· , ∀x, ∃x, ∃̇x are operators,
while ¬ and ∼ are not.

Proof. For the classical operators, see above. For team semantics,

• R∧T = {(T, T)},

• R∨T = { (T1, T2) | T = T1 ∪ T2 },

• R∨̇T = { (T1, T2) | T = T1 ·∪ T2 },

44

3 Abstract team logic

• R♦T =
{⋃

w∈T f(w)
∣∣ f ∈∏w∈T ℘

+(Rw)
}
(in a Kripke structure (W,R, V)),

• R♦· T =
{⋃

w∈T f(w)
∣∣ f ∈∏w∈T ℘

1(Rw)
}
,

• R�T = { RT },

• R∃xT =
{
Txf | f ∈

∏
s∈T ℘

+(A)
}
(in a first-order structure A),

• R∃̇xT =
{
Txf | f ∈

∏
s∈T ℘

1(A)
}
,

• R∀xT =
{
TxA
}
.

On the other hand, ¬ and ∼ are for example not monotone, and hence no operators.

Proposition 3.44. Every nullary operation4 is an operator, and R4 = 4.

Proof. Straightforward from Definition 3.39.

An operator4 is functional if |R4u| = 1 for every u.

Theorem 3.45 (Self-dual modalities). Let 4 : (℘X)r → ℘X be a non-nullary operator and
X 6= ∅. The following statements are equivalent:

(1) 4{ is also an operator.

(2) 4 is unary and functional.

(3) 4 is strongly self-dual.

Proof. (1) to (2): Suppose4 and4{ are operators. For the sake of contradiction, assume
they have arity two (or higher; the proof is similar then). Any operator is normal
(Proposition 3.40), so4(∅,P) = 4(P, ∅) = ∅ for any P ⊆ X. But the strong dual of4 is
also an operator and hence normal, so4(P, X) = X for any P. But then ∅ = 4(∅, X) = X,
contradiction to the assumption X 6= ∅. So4 can only be unary.

Next, we show that4 is functional, that is, that R4u is a singleton for all u ∈ X. First,
assume that R4u is empty. Then u /∈ 4P for any P ⊆ X, in particular u /∈ 4X, so by
duality u ∈ 4{∅, contradiction to normality. So R4u 6= ∅, and by symmetry R4{ 6= ∅,
for all u ∈ X. Second, if v 6= v ′ and v, v ′ ∈ R4u, then

u ∈ 4{v} ∩4{v ′}⇔u /∈ 4{(X \ {v}) ∪4{(X \ {v ′})

⇔u /∈ 4{((X \ {v}) ∪ (X \ {v ′})) = 4{X = (4∅){ = ∅{ = X,

contradiction to additivity. Hence4 (and in fact also4{) is unary and functional.
(2) to (3): If4 is unary and functional, then4 is strongly self-dual:

u ∈ 4(U) ⇔ R4u ∩U 6= ∅ (def. operator)
⇔ R4u ⊆ U (since R4u is a singleton)
⇔ R4 ∩ (X \U) = ∅
⇔ u /∈ 4(X \U) (def. operator)

45

3 Abstract team logic

(3) to (1): Trivial.

Example 3.46. Besides ¬ and ∼, there are also less trivial examples for non-operators,
for instance in classical linear temporal logic LTL. The connectives F (“future”) and X
(“next time”) are operators, but the binary U (“until”) is not, since ⊥Uϕ is equivalent
to ϕ and not ⊥.1

Every connective has a weak dual, but does every operator also have a weakly dual
operator? In the next subsection, we give a characterization of weak duality to answer
this question affirmatively.

3.3.1 Characterizations of weak duality and flatness equivalence

Fix r-ary operators4,∇ : (℘℘X)r → ℘℘X. In the context of weak duality, we are interested
in the relations R4{s} and R∇{s} for singleton teams {s} ⊆ X.

As we are working in team semantics, the elements of R4{s} are r-tuples of teams, i.e.,
tuples (Xi)i∈[r] = (X1, . . . , Xr) where X1, . . . , Xr ⊆ X. We omit the subscript and just
write (Xi) for (Xi)i∈[r]. The following abbreviations will also be important. For r-tuples
(Xi) and (Yi), (Xi) ⊆ (Yi) means that Xi ⊆ Yi for all i. If X is a set of r-tuples, then

⋃
X is

the component-wise union (Yi)i∈[r] defined by

Yi :=
⋃{

Xi
∣∣ (Xi)i∈[r] ∈ X

}
.

In the next two lemmas, we give an upper and a lower bound, respectively, on what
(tuples of) teams may be in R∇ for ∇ to be a weak dual of4. So-called hitting vectors, a
generalization of hitting sets, play a crucial role in this.

Definition 3.47. Let X ⊆ (℘X)r. A hitting vector of X is an r-tuple (Hi)i∈[r] ∈ (℘X)r that
has a non-empty intersection with every tuple (Xi) ∈ X, meaning Xi ∩Hi 6= ∅ for at least
one i ∈ [r]. The set of all hitting vectors of X is hv(X).

Observe that
⋃
X itself is a hitting vector of X (and in fact the maximal one) iff X has

at least one hitting vector, iff (∅, . . . , ∅) /∈ X.
The characterization of weak duality is given in two steps. Recall that weak duality

means that exactly one of4(α1, . . . , αr) and ∇(¬α1, . . . ,¬αr) is true for each singleton.
In two lemmas, we first define a “maximal dual candidate”∇ for4, maximal in the sense
that4(α1, . . . , αr) and ∇(¬α1, . . . ,¬αr) cannot be simultaneously true; and a “minimal
candidate” ∇where always at least one of them is true.

Lemma 3.48 (Maximal weak dual). The following are equivalent for all T ⊆ X:

(1) T /∈ ∇(T1, . . . ,Tr) ∩4(¬T1, . . . ,¬Tr) for all flat team properties T1, . . . ,Tr ⊆ ℘X.

(2) For all (Ti) ∈ R∇T there is a hitting vector (Xi) of R4T such that (Xi) ⊆ (Ti).

1In temporal logic, ϕUψmeans “along the current trace (s0, s1, . . .), there exists n > 0 such that
(sn, sn+1, . . .) � ψ and (sk, sk+1, . . .) � ϕ for all k < n.”

46

3 Abstract team logic

Proof. (1) to (2): Let (T1, . . . , Tr) ∈ R∇T be arbitrary. We have to find a hitting vector
(Xi) of R4T such that (Xi) ⊆ (Ti). In order to apply the assumption (1), we require flat
team properties T1, . . . ,Tr. Here we simply choose Ti := ℘Ti (cf. Corollary 3.16). Now
T ∈ ∇(℘T1, . . . , ℘Tr), since clearly Ti ∈ ℘(Ti). By (1), T /∈ 4(¬℘T1, . . . ,¬℘Tr).

But this means that for every (Si) ∈ R4T there is some i such that Si /∈ ¬℘Ti = ℘(X\Ti)

(cf. Proposition 3.23), i.e., Si * X \ Ti. Equivalently, Si contains an element s ′ ∈ Ti.
Because (Si) was arbitrary, the tuple (Xi)i∈[r] defined by

Xi :=
{
s ′
∣∣ s ′ ∈ Si ∩ Ti and (Si) ∈ R4T

}
is a hitting vector of R4T , and obviously by definition (Xi) ⊆ (Ti).

(2) to (1): For the sake of contradiction, assume there are flat properties T1, . . . ,Tr ⊆
℘X such that both T ∈ ∇(T1, . . . ,Tr) and T ∈ 4(¬T1, . . . ,¬Tr), witnessed by tuples
(Ti) ∈ R∇T such that ∀i : Ti ∈ Ti and (Si) ∈ R4T such that ∀i : Si ∈ ¬Ti. By (2), there is
a hitting vector (Xi) of R4T such that (Xi) ⊆ (Ti). In particular, (Si) must be hit, i.e., for
some i, Xi∩Si 6= ∅. But observe that we also have Xi ⊆ Ti ⊆

⋃
Ti, and by Proposition 3.23

simultaneously Si ⊆ (X \
⋃
Ti), so Xi ∩ Si = ∅, contradiction.

Lemma 3.49 (Minimal weak dual). The following are equivalent for all T ⊆ X:

(1) T ∈ ∇(T1, . . . ,Tr) ∪4(¬T1, . . . ,¬Tr) for all flat team properties T1, . . . ,Tr ⊆ ℘X.

(2) For every hitting vector (Xi) of R4T there is (Ti) ∈ R∇T such that (Ti) ⊆ (Xi).

Proof. (1) to (2): Let (Xi) be an arbitrary hitting vector of R4T . In order to to apply
(1), we pick the flat property Ti := ¬℘Xi (cf. Corollary 3.16). Next, we show that
T /∈ 4(¬℘X1, . . . ,¬℘Xr). For this, note that any tuple (Ti) ∈ R4T satisfying ∀i : Ti ∈ ¬℘Xi
would contradict (Xi) being a hitting vector, since by Proposition 3.23, Ti ∈ ¬℘Xi iff
Ti ⊆ X \ Xi iff Ti ∩ Xi = ∅. Accordingly, T /∈ 4(¬℘X1, . . . ,¬℘Xr). In consequence, by (1),
T ∈ ∇(℘X1, . . . , ℘Xr). In other words, there is some (Ti) ∈ R∇T such that Ti ⊆ Xi for all
i ∈ [r], as desired.

(2) to (1): Let T1, . . . ,Tr be flat team properties. If T ∈ 4(¬T1, . . . ,¬Tr), then we are
done, so assume the contrary. This means that for every (Ti) ∈ R4T there is some i ∈ [r]

such that Ti /∈ ¬Ti. By flatness of ¬Ti, equivalently Ti contains an element s ′ such that
{s ′} /∈ ¬Ti, hence {s ′} ∈ Ti. We gather these elements in sets

Xi :=
{
s ′
∣∣ s ′ ∈ Ti, {s ′} ∈ Ti and (Ti) ∈ R4T

}
.

By construction, for every (Ti) ∈ R4T there is some i such that Xi ∩ Ti 6= ∅. In other
words, (Xi) is a hitting vector of R4T . Due to (2), there must be (Ti) ∈ R∇T such that
(Ti) ⊆ (Xi). Moreover, ∀i ∈ [r] : Xi ∈ Ti, since Ti contains all singletons {s} for s ∈ Xi
and is flat. This implies Ti ∈ Ti by downward closure of Ti (Proposition 3.15). As a
consequence, we have T ∈ ∇(T1, . . . ,Tr) witnessed by (Ti).

We can restate the above two lemmas more concisely in terms from order theory. If X
is a family of (tuples of) sets, then a subfamily Y ⊆ X is called coinitial if for all x ∈ X

47

3 Abstract team logic

there exists y ∈ Y such that y ⊆ x.1

Theorem 3.50 (Weak dual characterization). The following statements are equivalent:

(1) 4 and ∇ are weak duals.

(2) For all s ∈ X, the families R∇{s} and hv(R4{s}) are mutually coinitial.

(3) For all s ∈ X, the families R4{s} and hv(R∇{s}) are mutually coinitial.

Proof. By symmetry (Proposition 3.27) it suffices to consider only (1) and (2). Their
equivalence results from the above two lemmas as follows. First, recall that ∇ and 4
are weak duals if for all flat team properties T1, . . . ,Tr, any singleton {s} is contained
in exactly one of ∇(T1, . . . ,Tr) and 4(¬T1, . . . ,Tr). Now R∇{s} and hv(R4{s}) being
mutually coinitial is, by these lemmas, equivalent to {s} /∈ ∇(T1, . . . ,Tr)∩4(¬T1, . . . ,¬Tr)

and {s} ∈ ∇(T1, . . . ,Tr) ∪4(¬T1, . . . ,¬Tr), i.e., to weak duality of4 and ∇.

Corollary 3.51. Every operator has a weakly dual operator.

Proof. Given an operator4, define a weakly dual operator ∇ by R∇T := hv(R4T).

Example 3.52. Let us list some concrete team-logical operators and confirm that they
are weakly dual. Recall from p. 44 that R∧T = {(T, T)}. On singletons, consequently

R∧{s} = { ({s}, {s}) }.

What are the possible hitting vectors? This is the set

hv(R∧{s}) = { (∅, {s}), ({s}, ∅), ({s}, {s}) }

which is precisely R∨{s}. Conversely, {({s}, {s})} is the only hitting vector of the above set.
So ∨ is weakly dual to ∧. By contrast, the strict splitting,

R∨̇{s} = { (∅, {s}), ({s}, ∅) }

is only a subset of hitting vectors. But it is not arbitrary; it is the smallest coinitial subset
of hitting vectors, that is, all other hitting vectors contain one of its elements w. r. t.⊆. Let
us stress that the only hitting vector of either R∨{s} or R∨̇{s} is ({s}, {s}), which coincides
with R∧{s}. This explains why ∨ comes in strict and lax flavors, but ∧ does not.

As another example, consider modal team logic. Ifw ∈W is a world in a Kripke frame
(W,R), then R�{w} = {Rw}. The hitting vectors (or rather hitting sets) are precisely
all non-empty subsets, i.e., the elements of ℘+(Rw). Indeed, R♦{w} = ℘+(Rw) and
R♦· {w} = ℘

1(Rw), where the latter again contains only the minimal hitting sets of {Rw}.
In the converse direction, again R�{w} = {Rw} is the only possible hitting set of ℘+(Rw)
and/or ℘1(Rw), which explains why � also has no strict and lax variants.

Note that for successorless worlds we can have R�{w} = {Rw} = {∅} (as a formula, �⊥
is then true). Then there are no hitting vectors at all, i.e., R♦{w} = ∅ (so ¬♦> is true),

1The dual notion, cofinality, is common, for example in set theory.

48

3 Abstract team logic

since the empty set cannot be hit anywhere. However, unlike {∅}, ∅ has a hitting set,
namely ∅! Formally, we have to distinguish hv(∅) = {∅} and hv({∅}) = ∅.

Remark. Not all duals ∇ of an operator4 are necessarily operators, not even if4 and
∇ preserve flatness. For example, let ∇ be a flatness preserving weak dual of4, but set
∇(∅) 6= ∅. Since ∅ is not a flat property, this changes neither the fact that ∇ is flatness
preserving, nor the weak duality. But ∇ is not normal and hence not an operator.

Closely related to the concept ofweak duality is that of flatness equivalence. For example,
given flat formulas α1, α2, we have the equivalence α1 ∨̇α2 ≡ α1∨α2. In this subsection,
we characterize this sort of equivalence in a similar fashion as weak duality. In what
follows, let4,∇ : (℘℘X)r → ℘℘X again be operators.

Definition 3.53. The operators4,∇ : (℘℘X)r → ℘℘X are flatness equivalent if

{s} ∈ 4(T1, . . . ,Tr)⇔ {s} ∈ ∇(T1, . . . ,Tr)

for all flat team properties T1, . . . ,Tr ⊆ ℘X and s ∈ X.

Proposition 3.54. Flatness equivalence is an equivalence relation, i.e., reflexive, symmetric,
and transitive.

Again, a stronger natural statement would be4(T1, . . . ,Tr) = ∇(P1, . . . ,Pr), but:

Proposition 3.55. If4 and ∇ preserve flatness and are flatness equivalent, then

4(T1, . . . ,Tr) = ∇(T1, . . . ,Tr)

for all flat team properties T1, . . . ,Tr ⊆ ℘X.

Proof. If4 and ∇ preserve flatness, then4(T1, . . . ,Tr) and ∇(T1, . . . ,Tr) are flat. Con-
sequently, T ∈ 4(T1, . . . ,Tr) iff {s} ∈ 4(T1, . . . ,Tr) for all s ∈ T iff {s} ∈ ∇(T1, . . . ,Tr) for
all s ∈ T iff T ∈ ∇(T1, . . . ,Tr).

The next theorem is analogous to Theorem 3.50.

Theorem 3.56. The following statements are equivalent:

(1) 4 and ∇ are flatness equivalent.

(2) For all s ∈ X, the families R4{s} and R∇{s} are mutually coinitial.

(3) For all s ∈ X the families hv(R4{s}) and hv(R∇{s}) are mutually coinitial.

Proof. (1) to (2): Let s ∈ X and (Ti) ∈ R∇{s}. To show that R4{s} is coinitial in R∇{s}, we
have to find some (Si) ∈ R4{s} such that (Si) ⊆ (Ti). As in the proofs of Lemma 3.48
and 3.49, we use the flat properties ℘T1, . . . , ℘Tr. By assumption, {s} ∈ ∇(℘T1, . . . , ℘Tr),
and by (1), {s} ∈ 4(℘T1, . . . , ℘Tr). This is witnessed by some (Si) ∈ R4{s}. But then (Si)

is our desired tuple, since Si ∈ Ti = ℘Ti implies Si ⊆ Ti. Since Ti was arbitrary, R4{s} is
coinitial in R∇{s}. The above argument is symmetric, which proves (2).

49

3 Abstract team logic

(2) to (3): Let s ∈ X and (Xi) ∈ hv(R∇{s}) be arbitrary. The other direction of (3) is
again symmetric, so we define a tuple (Yi) ∈ hv(R4{s}) by

Yi :=
{
s ′
∣∣ s ′ ∈ Ui ∩ Xi for some (Ui) ∈ R4{s}

}
where obviously (Yi) ⊆ (Xi). It remains to show that (Yi) is actually a hitting vector of
R4{s}. Suppose the contrary, that is, for some (Ui) ∈ R4{s} and all i it holds Ui ∩Xi = ∅,
i.e., Ui ⊆ X \ Xi. By (2) there is a family (Si) ∈ R∇{s} such that (Si) ⊆ (Ui), hence also
Si ⊆ X \ Xi for all i. But by definition, (Xi) must hit (Si), contradiction.

(3) to (1): Let T1, . . . ,Tr ⊆ ℘X be arbitrary flat team properties, and let s ∈ X. To
prove that 4 and ∇ are flatness equivalent, we assume {s} ∈ 4(T1, . . . ,Tr) but {s} /∈
∇(T1, . . . ,Tr) and derive a contradiction. By symmetry, this suffices.

First of all, Ti = ℘Ti for teams Ti (Corollary 3.16). By assumption, for every (Si) ∈
R∇{s} there must exist i such that Si * Ti, i.e., Si ∩ (X \ Ti) 6= ∅. This means that

Xi :=
{
s ′
∣∣ s ′ ∈ Si ∩ (X \ Ti) and (Si) ∈ R∇{s}

}
defines a hitting vector (Xi) of R∇{s}. By (3), there is a corresponding hitting vector
(Yi) of R4{s} such that (Yi) ⊆ (Xi). Note that Yi ∩ Ti = ∅ for all i by construction of Xi.
Since we assumed {s} ∈ 4(T1, . . . ,Tr), there is a witnessing tuple (Ui) ∈ R4{s} such that
∀i : Ui ⊆ Ti. But (Yi) has to hit (Ui), contradiction.

Corollary 3.57. ∨ is flatness equivalent to ∨̇. ♦ is flatness equivalent to ♦· . ∃x is flatness
equivalent to ∃̇x.

Proof. By definition of ∨̇ and ∨, clearly R∨̇{s} ⊆ R∨{s}, and a set is coinitial in all of its
subsets. It remains to show that R∨̇{s} is coinitial in R∨{s}. But for any (T1, T2) ∈ R∨{s}

it holds that (T1, T2 \ T1) ∈ R∨̇{s}. As (T1, T2 \ T1) ⊆ (T1, T2), then R∨{s} is also coinitial
in R∨̇{s}. The same holds for R♦{s} = ℘

+(Rs) and R♦· {s} = ℘
1(Rs), since ℘1(Rs) ⊆ ℘+(Rs),

and since every non-empty set S ∈ ℘+(Rs) contains some singleton {s} which is in ℘1(Rs).
The quantifiers ∃x and ∃̇x are analogous.

Finally, we conclude this section with a characterization of flatness equivalence that
is analogous to Theorem 3.37 and works also for non-operators.

Theorem 3.58. For i ∈ {1, 2}, let4i : (℘X)r → ℘X, and let ∇i : (℘℘X)r → ℘℘X be a teamifica-
tion of4i. Then ∇1 and ∇2 are flatness equivalent if and only if41 = 42.

Proof. “⇒”: Let∇1 and∇2 be flatness equivalent. By Theorem 3.34, they are also flatness
preserving, and hence ∇1(T1, . . . ,Tr) = ∇2(T1, . . . ,Tr) for all flat Ti (Proposition 3.55).
By definition of teamification, for all teams T1, . . . , Tr ⊆ X we have ℘4i(T1, . . . , Tr) =

∇i(℘T1, . . . , ℘Tr). But then ℘41(T1, . . . , Tr) = ℘42(T1, . . . , Tr) for all T1, . . . , Tr ⊆ X. As ℘
is injective,41 = 42.

“⇐”: We have to prove {s} ∈ ∇1(℘T1, . . . , ℘Tr) ⇔ {s} ∈ ∇2(℘T1, . . . , ℘Tr) for all teams
T1, . . . , Tr ⊆ X. But this follows immediately from ∇1(℘T1, . . . , ℘Tr) = ℘41(T1, . . . , Tr) =
℘42(T1, . . . , Tr) = ∇2(℘T1, . . . , ℘Tr).

50

3 Abstract team logic

3.4 Transversals

We saw that the common team-logical connectives are operators (Theorem 3.43), but
in fact they satisfy an even stronger property: The sets R∇T depend solely on the sets
R∇{s} for individuals s ∈ T . Loosely speaking, to find a successor team of T , we traverse
all s ∈ T and pick one of the possible “successor teams” of each {s}, and afterwards take
the union of all these. We call such operators transversals.

Definition 3.59 (Transversal). A transversal is an operator4 : (℘℘X)r → ℘℘X that satis-
fies the following equation for all T ⊆ X:

R4T =

{⋃
{f(s) | s ∈ T }

∣∣∣∣∣ f ∈∏
s∈T

R4{s}

}
. (?)

We briefly explain this equation. For every s, R4{s} contains r-tuples of teams.∏
s∈T R4{s} is the set of all choice functions f that for each s ∈ T pick exactly one

successor team of {s}, and so f(s) is a specific r-tuple of teams, with
⋃
{f(s) | s ∈ T } being

the (component-wise) union over all s ∈ T .
The above equation uniquely determines a transversal in terms of the sets R∇{s} for

singletons {s}. Next, we show that the common operators are transversals.

Theorem 3.60. The operators ∧, ∨, ∨̇, �, ♦, ♦· , ∀x, ∃x, ∃̇x are transversals.

Proof. We prove (?) for each of these operators.

• ∧: Recall that R∧T = { (T, T) }, in particular R4{s} = { ({s}, {s}) }. Now
∏
s∈T R∧{s}

contains only one choice function f, namely f(s) = ({s}, {s}). We conclude

R∧T = {(T, T)} =
{⋃

{ ({s}, {s}) | s ∈ T }
}
=
{⋃

{ f(s) | s ∈ T }
}
.

• ∨: Disjunction is generated byR∨T = { (T1, T2) | T1 ∪ T2 = T }. On singletons, hence
R∨{s} = { ({s}, ∅), (∅, {s}), ({s}, {s}) }. We prove that (?) is satisfied.
For “⊆”, suppose T = T1 ∪ T2. Then we pick the choice function f defined by
f(s) = ({s}, ∅) if s ∈ T1 \ T2, by f(s) = (∅, {s}) if s ∈ T2 \ T1, and f(s) = ({s}, {s}) if
s ∈ T1 ∩ T2. Then clearly

⋃
s∈T f(s) = (T1, T2).

For “⊇”, let f ∈
∏
s∈T { ({s}, ∅), (∅, {s}), ({s}, {s}) }. Define teams

S1 := { s ∈ T | f(s) = ({s}, ∅) }
S2 := { s ∈ T | f(s) = (∅, {s}) }
S3 := { s ∈ T | f(s) = ({s}, {s}) } .

Then clearly
⋃
s∈T f(s) = (S1 ∪ S3, S2 ∪ S3). But since T = S1 ∪ S2 ∪ S3, also

T = (S1 ∪ S3) ∪ (S2 ∪ S3). As a consequence, (S1 ∪ S3, S2 ∪ S3) ∈ R∨T .

• ∨̇: The proof is similar to ∨, but with S3 = ∅.

51

3 Abstract team logic

• �: Let K = (W,R, V) be a Kripke structure and T ⊆W a team. Then R�T = { RT }.
Consequently, R�{s} = { Rs }. Again, the choice function f is unique, and obviously,
RT =

⋃
s∈T Rs =

⋃
s∈T f(s).

• ♦: LetK and T be as above. Then ♦ is generated by the relation R♦ where S ∈ R♦T

iff S is a successor team of T . The successor teams of a singleton {s} are exactly
the non-empty subsets of its image: R♦{s} = ℘+(Rs). Moreover, by definition
of ♦, the successor teams S are precisely those of the form

⋃
s∈T f(s) for some

f ∈
∏
s∈T ℘

+(Rs). Hence (?) holds.

• ♦· : Analogous to ♦, with ℘1(Rs) = R♦· {s}.

• ∀x: LetA be a first-order structure, T ⊆ Var→ A a team, and x ∈ Var. Analogously
to �, now R∀xT =

{
TxA
}
, and on singletons, R∀x{s} =

{
{s}xA

}
. By definition,

TxA =
⋃
s∈T {s}

x
A, so TxA =

⋃
s∈T f(s) for the unique choice function f.

• ∃x: Analogously to ♦. Let A, x, T be as above. By the semantics of ∃, S ∈ R∃xT iff
S = Txh for some h : T → ℘+(A). So for singletons {s}, S ∈ R∃x{s} iff S = {s}xA for
some A ∈ ℘+(A) iff S ∈ ℘+({s}xA). For arbitrary teams T , then

S ∈ R∃xT

⇔ S = Txh for some h : T → ℘+(A) (team semantics of ∃)
⇔ S = {sxa | s ∈ T, a ∈ h(s)} for some h : T → ℘+(A) (def. suppl. team)

⇔ S = {s ′ | s ′ ∈ f(s), s ∈ T } for some f ∈
∏
s∈T

℘+({s}xA)

⇔ S =
⋃
s∈T

f(s) for some f ∈
∏
s∈T

℘+({sxA}).

• ∃̇x: Analogous to ∃x, with ℘+ replaced by ℘1.

From the above picture, the atoms are missing. For atoms however, transversals and
flat operators coincide.

Theorem 3.61. Let4 ⊆ ℘X be flat. Then4 is a transversal.

Proof. First,4 is an operator (Proposition 3.44). Next, note that T ∈ R4 iff the empty
tuple ε is in R4T . In particular, for every team T , either R4T = {ε} or R4T = ∅. We
distinguish between two cases:

• T ∈ 4, i.e., R4T = {ε}: By flatness, {s} ∈ 4 for all s ∈ T , so R4{s} = {ε}. The only
choice function f ∈

∏
s∈T R4{s} is the constant function f(s) = ε. But then

R4T = {ε} =
{⋃

{ε | s ∈ T }
}
=

{⋃
{f(s) | s ∈ T }

∣∣∣∣∣ f ∈∏
s∈T

R∇{s}

}
.

so (?) holds.

52

3 Abstract team logic

• T /∈ 4: By flatness, {s0} /∈ 4 for some s0 ∈ T , hence R4{s0} = ∅. Then the set∏
s∈T R4{s} of choice functions is empty, as there is nothing to choose for s0.

However, also R4T = ∅, so (?) holds again.

Remarkably, virtually all common team-logical connectives are transversals (see
Table 3.1), which suggests that they constitute a natural class of connectives in team
semantics. At the very least, they are a tool to straightforwardly lift classical operators to
teams in a way that is guaranteed to preserve flatness, as we will see in the next theorem.

Theorem 3.62. Every transversal preserves flatness.

Proof. Let4 be a transversal and T1, . . . ,Tr ⊆ ℘X flat team properties. We have to show
that T0 := 4(T1, . . . ,Tr) is flat, i.e.,

T ∈ T0 ⇔ ∀s ∈ T : {s} ∈ T0.

For “⇒”, assume T ∈ T0. Then there exists a tuple (Ti) ∈ R4T such that Ti ∈ Ti for
all i ∈ [r]. As 4 is a transversal, there is a choice function f ∈

∏
s∈T R4{s} such that

(Ti) =
⋃
{f(s) | s ∈ T }. For each s, call the corresponding tuple (Ts1 , . . . , T

s
r) := f(s). Then

we can write Ti as
⋃
s∈T T

s
i . In particular Tsi ⊆ Ti, and since flatness implies downward

closure, we have Tsi ∈ Ti. But then {s} ∈ T0 via the tuple (Ts1 , . . . , T
s
r) in R4{s}.

For “⇐”, assume {s} ∈ T0 for all s ∈ T . Again for every s ∈ T , {s} ∈ T0 is witnessed by
some tuple (Ts1 , . . . , T

s
r) ∈ R4{s} such that Tsi ∈ Ti. Let Ui :=

⋃
s∈T T

s
i . Flatness implies

union closure, hence also Ui ∈ Ti. As the function fmapping each s ∈ T to (Ts1 , . . . , T
s
r)

is an element of
∏
s∈T R4{s}, by definition of a transversal, (Ui) must be in R4T . But as

we also showed Ui ∈ Ti for each i, we can conclude T ∈ T0.

Observe that this constitutes another proof for Proposition 3.18.
Not every flatness preserving operator is a transversal. If we define R4T = {T } for

every non-empty team T , but R4∅ = ℘X, then4 is a flatness preserving unary operator,
but in a transversal the only successor team of ∅ can be ∅.

Example 3.63. The universal modality �u is defined in a Kripke structure (W,R, V) as
w � �uϕ ⇔ ∀v ∈ W : v � ϕ. For a team semantics, we could naively set R�u T = {W} for
all T , analogously to �. However, this would result in �u not being flatness preserving,
since then, e.g., ∅ 2 �u⊥ in non-empty structures. Instead, we define it as a transversal,
where the natural choice is R�u {w} := {W} for all w ∈W. Then R�u ∅ = {∅} and R�u T = {W}

for T 6= ∅. This yields a flatness preserving semantics of �u , namely:

T � �uϕ⇔

{
always if T = ∅
W � ϕ if T 6= ∅

3.5 Relaxations

Some transversals considered so far come in flatness equivalent pairs, like ∨/∨̇, ♦/♦· ,
∃/∃̇, of so-called lax and strict variants. For others like ∧,�, ∀, no such distinction exists.

53

3 Abstract team logic

Logic Transversal ∇ R∇{s}

All ∧ Conjunction
{
({s}, {s})

}
∨ Lax disjunction

{
({s}, ∅), (∅, {s}), ({s}, {s})

}
∨̇ Strict disjunction

{
({s}, ∅), (∅, {s})

}
Modal � Box

{
Rs
}

♦ Lax diamond ℘+(Rs)

♦· Strict diamond ℘1(Rs)

p Proposition
{
{ε} if s ∈ V(p)
∅ else

¬p Negated proposition
{
∅ if s ∈ V(p)
{ε} else

First-order ∀x Universal quantifier
{
{s}xA

}
∃x Lax existential quantifier ℘+({s}xA)

∃̇x Strict existential quantifier ℘1({s}xA)

Temporal X Nexttime
{
{s[1] }

}
Fa Future (async.)

{
{s[k] } | k > 0

}
Gd Globally

{
{s[k] | k > 0}

}
Table 3.1: Transversals. For modal team logic, in a Kripke structure (W,R, V), the carrier is ℘℘W. For

first-order logic, if A is a first-order structure, the carrier is ℘℘(Var → A). For the temporal
operators, cf. Section 3.8.

In this section, we study the connection between these pairs formally.

Definition 3.64 (Relaxation). The relaxation of an operator 4 : (℘℘X)r → ℘℘X is the
operator4∪ : (℘℘X)r → ℘℘X defined by

R4∪T :=
{⋃

X
∣∣∣ X ∈ ℘+(R4T)

}
.

In other words, the “4∪-successors” of a team are the non-empty unions of its “4-
successors”.

Example 3.65. Observe that ∨ = ∨̇
∪, ♦ = ♦· ∪ and ∃x = ∃̇x∪. For example, R∨̇T =

{(T1, T2) | T = T1 ∪ T2, T1 ∩ T2 = ∅} and R∨T = {(T1, T2) | T = T1 ∪ T2}, but any pair (T1, T2)
with T = T1 ∪ T2 can be written as the union of two disjoint pairs from R∨̇T , namely
(T1, T2 \ T1) ∪ (T1 \ T2, T2).

On the other hand, we have � = �∪, ∧ = ∧∪, and ∀x = ∀x∪. From this perspective,
“lax” connectives are those that cannot be further “relaxed”.

Definition 3.66 (Strict and lax). An operator4 is lax if it is its own relaxation. Otherwise
it is strict.

54

3 Abstract team logic

This definition of strictness is subtle, and ultimately a bit unsatisfying, as the following
argument shows. Fix some lax operator∇, and suppose wewant to define a strictmost op-
erator corresponding to ∇. For this, we could define a partial order 6 on all connectives
flatness equivalent to ∇ such that41 6 42 if and only if R41

T ⊆ R42
T for all T . Then

intuitively 6 means “is stricter than”. Analogously to ∨̇, ♦· , and ∃̇, we could now call
those operators strict that are 6-minimal. However, this does not work in general. For
example, supposewe have the transversal ♦∞ defined byR♦∞ {s} = {S ⊆ Rs | S is infinite }.
♦∞ is lax, but what is the “strictmost” operator it corresponds to? The relation 6 is in
general not well-founded, so there is no hope in finding such an operator.

We proceed with some basic properties of relaxations.

Theorem 3.67 (Relaxation laws). Let4 be an operator. Then the following hold:

(1) R4T ⊆ R4∪T for any T (monotonicity).

(2) 4∪∪ = 4∪ (idempotency).

(3) If Y ∈ ℘+(R4∪T), then
⋃
Y ∈ R4∪T (relaxations are closed under non-empty union).

Proof. (1): If (Ui) ∈ R4T , then also (Ui) ∈ R4∪T , since (Ui) =
⋃

{ (Ui) } and { (Ui) } ∈
℘+(R4T). (2) follows from (1) and (3): We have R4∪T ⊆ R4∪∪T by (1); and if (Ui) ∈
R4∪∪T , then (Ui) =

⋃
Y for some Y ∈ ℘+(R4∪T), so already (Ui) ∈ R4∪T by (3).

Finally, we prove (3). Let Y ∈ ℘+(R4∪T) be arbitrary. We need to show
⋃
Y ∈ R4∪T .

By definition of4∪, every (Ui) ∈ Y is of the form
⋃
X for some non-empty set X ⊆ R4T

of tuples. Clearly X contains only tuples (Si) such that (Si) ⊆ (Ui). But then

(Ui) =
⋃

X ⊆
⋃{

(Si) ∈ R4T
∣∣ (Si) ⊆ (Ui)

}
⊆ (Ui),

so as a consequence,
⋃
X =

⋃{
(Si) ∈ R4T

∣∣ (Si) ⊆ (Ui)
}
, which in turn implies⋃

Y =
⋃{ ⋃{

(Si) ∈ R4T
∣∣ (Si) ⊆ (Ui)

} ∣∣∣ (Ui) ∈ Y
}

=
⋃{

(Si) ∈ R4T
∣∣ ∃(Ui) ∈ Y : (Si) ⊆ (Ui)

}
.

Let X? :=
{
(Si) ∈ R4T

∣∣ ∃(Ui) ∈ Y : (Si) ⊆ (Ui)
}
. Then

⋃
Y =

⋃
X?, and X? ∈ ℘(R4T).

It remains to show that
⋃
Y is actually a non-empty union of tuples in R4T , which is not

clear if
⋃
X? =

⋃
Y = ∅r. But in this case Y = {∅r} (by choice of Y, Y 6= ∅), and hence

∅r ∈ R4∪T , which in turn requires that also ∅r ∈ R4T .

Interestingly, relaxation preserves our previous classification of connectives. By
definition, the relaxation is an operator, but we can show that it is indeed flatness
equivalent, and furthermore the relaxation of a transversal is again a transversal.

Proposition 3.68. An operator4 and its relaxation4∪ are flatness equivalent.

Proof. To show flatness equivalence, we use its order-theoretic characterization (Theo-
rem 3.56). For this, we have to show that R4{s} and R4∪ {s} are mutually coinitial for

55

3 Abstract team logic

arbitrary singletons {s}. By Theorem 3.67, R4{s} ⊆ R4∪ {s}, so R4∪ {s} is trivially coinitial
in R4{s}. For the other direction, let (Si) ∈ R4∪ {s}. Then (Si) =

⋃
X for some non-empty

X ⊆ R4{s}. In consequence, there is (Ui) ∈ R4{s} such that (Ui) ⊆ (Si). As (Si) is
arbitrary, R4{s} is also coinitial in R4∪ {s}.

Theorem 3.69. The relaxation of a transversal is a transversal.

Proof. Let4 be a transversal. We have to show that

R4∪T =

{ ⋃
s∈T

g(s)

∣∣∣∣∣ g ∈∏
s∈T

R4∪ {s}

}
(?)

for an arbitrary team T . We prove both directions of (?).
“⊆”: Suppose (Si) ∈ R4∪T . Then (Si) =

⋃
X for some non-empty X ⊆ R4T . Since

4 is a transversal, every (Ui) ∈ X is the image of a choice function from T , i.e., (Ui) =⋃
s∈T f(s) for some f ∈

∏
s∈T R4{s}. The idea to show that the whole tuple (Si) is the

image of some choice function as well is to form the “union” of all previous choice
functions that do not exceed (Si). Formally, we choose

g(s) :=
⋃{

(Vi) ∈ R4{s}
∣∣ (Vi) ⊆ (Si)

}
.

First, we show that this is an actual choice function for4∪, i.e., for all s, g(s) ∈ R4∪ {s}.
By definition of4∪, R4∪ {s} contains any non-empty union of tuples of R4{s}, and hence
g(s), provided some (Vi) ⊆ (Si) exists in R4{s} such that the above union is actually
non-empty. Let (Ui) ∈ X. As (Ui) itself is the image of a choice function from T , that is,
(Ui) =

⋃
s∈T f(s), the tuple (Vi) := f(s) ⊆ (Ui) ⊆ (Si) is in R4{s}.

Next, we prove that (Si) =
⋃
s∈T g(s). For the ⊇-direction, obviously g(s) ⊆ (Si) for all

s. For the ⊆-direction, we show that (Ui) ⊆
⋃
s∈T g(s) for all (Ui) ∈ X. As before, given

(Ui), there is f such that (Ui) =
⋃
s∈T f(s). By definition of a transversal, f(s) ∈ R4{s} and

f(s) ⊆ (Ui) for all s ∈ T , hence f(s) ⊆ g(s). Consequently, (Ui) =
⋃
s∈T f(s) ⊆

⋃
s∈T g(s).

“⊇”: Let g ∈
∏
s∈T R4∪ {s} and (Ui) :=

⋃
s∈T g(s). To show (Ui) ∈ R4∪T , we demon-

strate that (Ui) is a non-empty union of tuples inR4T , which suffices by definition of4∪.
First, for arbitrary u ∈ Ui, i ∈ [r], we identify a tuple (Vi) ∈ R4T such that u ∈ Vi and
(Vi) ⊆ (Ui). This shows that (Ui) can be written as the union of such tuples. The union
can be empty in case (Ui) = ∅r, but we handle that case below. Let now i ∈ [r], u ∈ Ui.
As (Ui) =

⋃
s∈T g(s), there must exist s ∈ T such that (∅i−1, {u}, ∅r−i) ⊆ g(s). However,

g(s) ∈ R4∪ {s}, so g(s) itself is a non-empty union of tuples in R4{s}. This means that
there is (Vi) ∈ R4{s} with u ∈ Vi and (Vi) ⊆ g(s) ⊆ (Ui), as desired. Finally, we consider
the case where (Ui) = ∅r. Then g(s) must be ∅r for all s, too. In particular, ∅r ∈ R4∪ {s}

for all s ∈ T , which is only possible if ∅r ∈ R4{s}. Recall that4 is a transversal, so this
results in ∅r also being in R4T , and ultimately in R4∪T by definition of4∪.

Example 3.70. The team connectives considered so far suggest that always either for4
or its dual the lax and strict connectives coincide (such as with ∧, � and ∀). However,

56

3 Abstract team logic

it is also possible that both sides have distinct strict and lax variants, even for unary
operators. Consider the operators �s, �l, �s and �l satisfying

R�s {s} = { {s1}, {s2, s3} }

R�l {s} = { {s1}, {s2, s3}, {s1, s2, s3} }

R�s {s} = { {s1, s2}, {s1, s3} }

R�l {s} = { {s1, s2}, {s1, s3}, {s1, s2, s3} }.

Then by the order-theoretic (hitting vector) characterization, �s and �l are strict resp.
lax duals of �s and �l, while �s and �l are strict resp. lax duals of both �s and �l.

3.6 Strict and lax standard transversals

We saw that transversals are a natural and sensible restriction of operators that reduce
the work of defining an operator4 to the simpler task of defining R4{s} for singletons
{s}. Nevertheless, there is still some degree of freedom in defining R4{s}, for example
lax and strict variants of the same operator (cf. Example 3.52).

We propose a canonical definition on how to “teamify” arbitrary operators. In what
follows, let4 : (℘X)r → ℘X be a (classical) operator.

Definition 3.71. The strict standard transversal of4 is the transversal ∇ : (℘℘X)r → ℘℘X

defined by

R∇{s} :=
{ (

{si}
) ∣∣ (si) ∈ R4s

}
.

The strict dual standard transversal is the transversal ∇ ′ : (℘℘X)r → ℘℘X defined by

R∇ ′{s} :=

 ({si | (sj) ∈ f−1(i)})i∈[r]

∣∣∣∣∣∣ f ∈
∏

(sj)∈R4s

[r]

 .

The lax (dual) standard transversal of 4 is the relaxation of its strict (dual) standard
transversal.

This definition seems complicated, but for unary4 boils down to:

R∇{s} = ℘1(R4s)

R∇∪ {s} = ℘+(R4s)

R∇ ′{s} = R∇ ′∪ {s} =
{
R4s

}
Let us explain the intuition behind the general definition: If s ′ is a successor of s, then

{s ′} should be a “successor team” of {s} (and likewise for higher arities). For the dual
standard transversal, essentially we want ∇ ′ to be a weak dual of ∇, as we then obtain
(by Theorem 3.37) a teamification of4{ for free. For this, we follow the characterization
of weak duality via hitting vectors (Theorem 3.50). To form a hitting vector of the family

57

3 Abstract team logic

R∇{s}, for every tuple (Si) ∈ R∇{s} we pick a number i ∈ [r] and include an element
of the i-th component, which ensures that (Si) is hit. Indeed, every choice function
f ∈
∏

(si)∈R4s
[r] encodes a hitting vector. Finally, {si | (sj)j∈[r] ∈ f−1(i)} is simply the set

of all elements that have been selected from the i-th components, and thus is the i-th
component of the hitting vector.

Therefore, as shown in Table 3.1:

Corollary 3.72. The operators ∧,♦, ∃x (resp. ∧,♦· , ∃̇x) are the lax (resp. strict) standard
transversals of ∧,♦, ∃x. The operators ∨,�, ∀x (resp. ∨̇,�, ∀x) are the lax (resp. strict) dual
standard transversals of ∧,♦, ∃x.

In what follows, we assume4 : (℘X)r → ℘X and ∇,∇ ′ : (℘℘X)r → ℘℘X. We still have
to prove that this definition actually produces teamifications of4 and4{.

Theorem 3.73. Let4 be an operator. The strict and lax standard transversals of4 are teamifi-
cations of4. The strict and lax dual standard transversals of4 are teamifications of4{.

For the proof, we require a lemma:

Lemma 3.74. A flatness preserving operator ∇ is the teamification of the connective4 defined
by4(T1, . . . , Tr) := { s | ∃(Si) ∈ R∇{s} : (Si) ⊆ (Ti) }.

Proof. We have to show that ℘4(T1, . . . , Tr) = ∇(℘T1, . . . , ℘Tr). As ∇ is flatness preserv-
ing, ∇(℘T1, . . . , ℘Tr) is a power set. Hence it suffices to show that s ∈ 4(T1, . . . , Tr) iff
{s} ∈ ∇(℘T1, . . . , ℘Tr). But these are both equivalent to ∃(Si) ∈ R∇{s} : (Si) ⊆ (Ti).

Proof of Theorem 3.73. Let ∇ be the strict standard transversal of4. First of all, the relax-
ation of∇ is a transversal (Theorem 3.69), and flatness equivalent to it (Proposition 3.68).
Both preserve flatness (Theorem 3.62) and hence are teamifications of the same con-
nective4 ′ (Theorems 3.34 and 3.58). For this reason, if we show that4 = 4 ′, then we
prove the statement for both the strict and lax standard transversal. We show4 = 4 ′ as
follows:

s ∈ 4(T1, . . . , Tr)

⇔ ∃(si) ∈ R4s : ∀i : si ∈ Ti (4 is operator)
⇔ ∃(Si) ∈ R∇{s} : (Si) ⊆ (Ti) (def. standard transversal)
⇔ s ∈ 4 ′(T1, . . . , Tr) (Lemma 3.74)

Next, we proceed with the dual standard transversal ∇ ′. By the same arguments as
above, the strict variant suffices. Again, ∇ ′ is the teamification of some connective4 ′′.
We have the equivalences:

s ∈ 4{(T1, . . . , Tr) ⇔ ∀(si) ∈ R4s : ∃i ∈ [r] : si ∈ Ti (4 is operator)
s ∈ 4 ′′(T1, . . . , Tr) ⇔ ∃(Si) ∈ R∇ ′{s} : (Si) ⊆ (Ti) (Lemma 3.74)

58

3 Abstract team logic

So we need to show for all s that(
∀(si) ∈ R4s : ∃i ∈ [r] : si ∈ Ti

)
⇔
(
∃(Si) ∈ R∇ ′{s} : (Si) ⊆ (Ti)

)
.

For “⇒”, assume that ∀(si) ∈ R4s : ∃i ∈ [r] : si ∈ Ti. Then there is a choice function f
mapping each element of R4s to a number i := f((si)) ∈ [r], formally f ∈

∏
(si)∈R4

[r],
such that f((si)) = i implies si ∈ Ti. By definition of ∇ ′, then the tuple (Si), where
Si =

{
si
∣∣ (si) ∈ f−1(i) }, is in R∇{s}. Also, Si ⊆ Ti for all i by the choice of f.

For “⇐”, suppose (Si) ∈ R∇{s} exists such that (Si) ⊆ (Ti). Then by definition of ∇ ′,
the tuple (Si) must result from some f ∈

∏
(si)∈R4s

[r], such that Si = {si | (si) ∈ f−1(i)}
for all i ∈ [r]. In particular, it holds that f((si)) = i implies si ∈ Ti. Hence f witnesses the
left-hand side of the above equivalence.

Corollary 3.75. The (strict or lax) dual standard transversal of4 is a weak dual of the (strict
or lax) standard transversal of4.

Proof. Immediately by Theorem 3.37.

Oncemore, atoms arewell-behaved. Recall that every nullary connective is an operator
(Proposition 3.44), and, if it preserves flatness, a transversal (Theorem 3.61). This can
be strengthened as follows:

Proposition 3.76. Given a nullary connective4, its strict and lax standard transversal coincide
and are its unique teamification.

Proof. First, for any two teamifications∇1,∇2 of4, we have∇1 = ℘4 = ∇2 by definition
of teamification (Definition 3.30), which proves uniqueness. As both strict and lax
standard transversals are teamifications by Theorem 3.73, they coincide.

This implies that the team semantics of atomic formulas in propositional, modal or
first-order logic is precisely their standard transversal.

We conclude this sectionwith illustrations of the interplay of the various relations such
as teamification, weak and strong duality, and relaxation of connectives. In Figure 3.2
we show these relations for an arbitrary operator4. In Figures 3.3 to 3.5, this is shown
specifically for propositional, modal and first-order team logic.

3.7 Quasi-flatness

In this section, we consider a generalization of flatness called quasi-flatness. A property is
quasi-flat if it is the Boolean combination of flat properties. Some logics can only define
quasi-flat properties, which has several nice implications, for instance it allows to lift a
classical decision procedure to a team-semantical decision procedure (see Chapter 5).
As a counter-example, the dependence atom dep(x;y) is not quasi-flat.

Before we come to the results, we proceed with a formal definition. As before, let
A be a τ-team algebra with carrier ℘℘X. Let C ⊆ ℘℘X, i.e., C is a collection of team

59

3 Abstract team logic

weak dual

weak dual

re
la
xa

tio
n

(fl
at
ne

ss
eq

ui
va

le
nt

)

relaxation
(flatnessequivalent)

4 4{

4T 4{T

4T∪ 4{T∪4T∪{

4T{

4{T∪{

4{T{

te
am

ifi
ca

tio
n team

ification

te
am

ifi
ca

tio
ns

of
4

team
ificationsof4

{

strong dual

strong dual

strong dual

strong dual

strong dual

Figure 3.2: An operator4, its strong dual4{, the standard transversals4T ,4{T , the duals4T{,4{T{ of
those, and the relaxations4T∪,4{T∪ with their duals.

60

3 Abstract team logic

weak dual

weak dual

re
la
xa

tio
n

(fl
at
ne

ss
eq

ui
va

le
nt

)

relaxation
(flatnessequivalent)

∧♦∃ ∨�∀

∧♦· ∃̇

∧♦∃

∨̇�∀

∨�∀64!

64· !̇

��∀

�̇�∀
te
am

ifi
ca

tio
n team

ification

strong dual

strong dual

strong dual

strong dual

strong dual

Figure 3.3: Standard teamifications of common team-logical connectives.

weak dual

weak dual

relaxation
(flatnessequivalent)

∧ ∨

∧

∨̇

∨

6

�

�̇

te
am

ifi
ca

tio
n team

ification

strong dual

strong dual

strong dual

strong dual

relaxation

Figure 3.4: Standard teamifications of Boolean connectives.

61

3 Abstract team logic

weak dual

weak dual

re
la
xa

tio
n

(fl
at
ne

ss
eq

ui
va

le
nt

)

♦∃ �∀

♦· ∃̇

♦∃

�∀

4· !̇

4!

te
am

ifi
ca

tio
n

team
ification

strong dual

strong dual

strong dual

relaxation

strong dual

Figure 3.5: Standard teamifications of modal and first-order quantifiers.

properties. The Boolean closure B(C) of C is B(C) :=
⋃
n∈N Cn with C0 := C and Cn+1 :=

{T1 ∩ T2, T1 ∪ T2, ℘X \ T1 | T1,T2 ∈ Cn}.
If for example C = {JϕKA, JψKA}, then B(C) contains all properties that are definable

by a finite combination of ϕ and ψwith ∧,6 and ∼.
The collection of all flat properties is written Cflat.

Definition 3.77 (Quasi-flatness). A property T ∈ ℘℘X is quasi-flat if it is in B(Cflat).

Obviously flatness implies quasi-flatness. Quasi-flat properties permit a “disjunctive
normal form”:

Proposition 3.78. Every quasi-flat T ∈ ℘℘X is of the form
⋃
i∈[n]

(
Pi \

⋃
j∈Ji Qi,j

)
for some

finite n ∈ N, finite sets Ji ⊆ N and flat team properties Pi,Qi,j ∈ ℘℘X.

Proof. By assumption, T is a Boolean combination of flat teamproperties. By deMorgan’s
laws and distributive laws, it can be written as

⋃
i∈[n]

 ⋂
k∈Ki

Pi,k ∩
⋂
k∈K ′

i

Q{
i,k


for flat Pi,k,Qi,k. As the the intersection of flat properties is flat (the intersection of zero

62

3 Abstract team logic

properties being >), we obtain

P =
⋃
i∈[n]

Pi \
⋃
j∈Ji

Qi,j


for finite n and Ji and flat properties Pi,Qi,j.

How do we show that a property is quasi-flat? Due to the compositional semantics,
we are interested in connectives that preserve quasi-flatness, analogously to flatness
preserving connectives (Definition 3.17).

Definition 3.79. Let 4 : (℘℘X)r → ℘℘X. Then 4 preserves quasi-flatness if 4(T1, . . . ,Tr)

is quasi-flat for all quasi-flat properties T1, . . . ,Tr ⊆ ℘X.

Indeed all properties definable in PL(∼), ML(∼) and FO(∼) are quasi-flat because their
connectives fall under the above definition. For these logics, this boils down to the
following “distributive laws”, which have been proven in [100]:

(α∧

n∧
i=1

Eβi)∨ (α ′ ∧

m∧
i=1

Eβ ′
i) ≡ (α∨ α ′)∧

n∧
i=1

E(α∧ βi)∧

m∧
i=1

E(α ′ ∧ β ′
i)

for all flat formulas α,α ′, β1, . . . , βn, β
′
1, . . . , β

′
n,

♦(α∧

n∧
i=1

Eβi) ≡ ♦α∧

n∧
i=1

E♦(α∧ βi) �(α∧

n∧
i=1

Eβi) ≡ �α∧

n∧
i=1

E♦(α∧ βi)

for all flat formulas α,β1, . . . , βn, and likewise for first-order team logic,

∃x(α∧
n∧
i=1

Eβi) ≡ ∃xα∧
n∧
i=1

E∃x(α∧βi) ∀x(α∧
n∧
i=1

Eβi) ≡ ∀xα∧
n∧
i=1

E∃x(α∧βi).

In each case, the disjunction, modality or quantifier outside a quasi-flat formula can be
distributed over the conjunction in such a way that we obtain a Boolean combination of
flat formulas. (They all distribute also over disjunction because they are operators.) Next,
in the main theorem of this section, we show that in fact all (lax) standard transversals of
arbitrary arity permit distributive laws like the above, and hence preserve quasi-flatness.

Theorem 3.80. All lax standard transversals and lax dual standard transversals preserve quasi-
flatness.

The proof of Theorem 3.80 will be split into a series of lemmas below.

Lemma 3.81 (Union closure for lax transversals). Let ∇ be a lax transversal. Then (Si) ∈
R∇T1 and (Ui) ∈ R∇T2 implies (Si ∪Ui) ∈ R∇(T1 ∪ T2).

63

3 Abstract team logic

Proof. Let T1, T2 be arbitrary teams and let (Si)i∈[r] ∈ R∇T1 and (Ui)i∈[r] ∈ R∇T2. We
have to show that (Si ∪Ui)i∈[r] ∈ R∇(T1 ∪ T2). First, by definition of a transversal, there
are choice functions f ∈

∏
s∈T1 R∇{s} and g ∈

∏
s∈T2 R∇{s} such that for all i,

Si =
⋃{

Xi | (X1, . . . , Xr) = f(s), s ∈ T1
}
,

Ui =
⋃{

Yi | (Y1, . . . , Yr) = g(s), s ∈ T2
}
.

(?)

From this, we define a new choice function h on the team T1 ∪ T2 as follows:

h(s) :=


f(s) if s ∈ T1 \ T2
g(s) if s ∈ T2 \ T1
f(s) ∪ g(s) if s ∈ T1 ∩ T2

To see that h is a valid choice function, in symbols h ∈
∏
s∈T1∪T2 R∇{s}, observe that

f(s) ∪ g(s) is an element of R∇{s}. This is due to the fact that by Theorem 3.67, R∇T is
closed under non-empty union for all T . Finally, we show that the tuple (Si ∪Ui)i∈[r] is
actually generated by h and hence is in R∇T . In other words, if

Si ∪Ui =
⋃{

Zi | (Z1, . . . , Zr) = h(s) | s ∈ T1 ∪ T2
}

holds for all i.
“⊆”: Suppose s ∈ Si (the case s ∈ Ui works analogously). Then by (?) there exists

s ′ ∈ T1 such that f(s ′) = (X1, . . . , Xr) ∈ R∇{s ′} and s ∈ Xi. But h(s ′) ⊇ f(s ′).
“⊇”: Suppose s ∈ Zi for (Z1, . . . , Zr) = h(s ′) and some s ′ ∈ T1∪T2. We show s ∈ Si∪Ui.

• If s ′ ∈ T1 \ T2, then Zi = Xi, where (Xi)i∈[r] = f(s
′).

• If s ′ ∈ T2 \ T1, then Zi = Yi, where (Yi)i∈[r] = g(s
′).

• If s ′ ∈ T1 ∩ T2, then Zi = Xi ∪ Yi by definition of h, where (Xi)i∈[r] = f(s ′) and
(Yi)i∈[r] = g(s

′). Consequently, s ∈ Xi or s ∈ Yi.

In all cases, s ∈ Si ∪Ui due to (?).

We use the abbreviation EP := ∼¬P, so T ∈ EP if some {s} ⊆ T is in P. Also recall that
ne is the property of all non-empty teams, and P1 ∨ P2 = {T1 ∪ T2 | T1 ∈ P1, T2 ∈ P2}.

Lemma 3.82. For all flat properties P,Q1, . . . ,Qn,

P∨

n∨
i=1

(P ∩ Qi ∩ ne) = P ∩
n⋂
i=1

EQi

Proof. “⊆”: If T ∈ P∨
∨n
i=1(P∩Qi ∩ne). The splitting disjunction is witnessed by teams

T0 ∪ · · · ∪ Tn = T such that T0 ∈ P and, for i > 0, Ti ∈ P ∩ Qi and Ti 6= ∅. Hence Ti ∈ EQi.
Now by union closure, T ∈ P, and by downward closure, Ti ∈ EQi ⇒ Ti /∈ ¬Qi ⇒ T /∈
¬Qi ⇒ T ∈ EQi.

64

3 Abstract team logic

“⊇”: Suppose T ∈ P ∩
⋂n
i=1 EQi. The EQi are witnessed by elements s1, . . . , sn ∈ T

such that {si} ∈ Qi. Also, by downward closure, {si} ∈ P. Consequently, {si} ∈ P∩Qi∩ne.
Now T = T ∪ {s1} ∪ · · · ∪ {sn} witnesses T ∈ P∨

∨n
i=1(P ∩ Qi ∩ ne).

The remainder of the proof now consists of two lemmas, one for standard transversals
and one for dual standard transversals.

Lemma 3.83. Lax standard transversals preserve quasi-flatness.

Proof. Let∇∪ be the relaxation of the strict standard transversal∇ of an operator4. Let
T1, . . . ,Tr be quasi-flat properties. We have to show that ∇∪(T1, . . . ,Tr) is quasi-flat as
well, i.e., equivalent to a Boolean combination of flat properties. By assumption, each Ti
is equivalent to a Boolean combination of flat properties. By Proposition 3.78, there are
finite I, Ji, K(i,j) ⊆ N and flat properties P(i,j), Q(i,j,k) such that

Ti =
⋃
j∈Ji

P(i,j) ∩
⋂

k∈K(i,j)

EQ(i,j,k)

 .

Next, recall that operators distribute over Boolean disjunction (Proposition 3.40), so
it suffices to establish that properties of the form

V = ∇∪

P1 ∩
⋂
j∈J1

EQ(1,j), . . . ,Pr ∩
⋂
j∈Jr

EQ(r,j)


are quasi-flat. To prove this, we show that V is equivalent to a Boolean combination of
flat formulas, viz.

V ′ = ∇∪(P1, . . . ,Pr) ∩
⋂

i∈[r],j∈Ji

E∇∪(P1, . . . ,Pi−1,Pi ∩ Q(i,j),Pi+1, . . . ,Pr).

As E is short for ∼¬, V ′ is a Boolean combination of flat properties. We prove that it
equals V.

V ⊆ V ′: Let T ∈ V via (S1, . . . , Sr) ∈ R∇∪T such that Si ∈ Pi ∩
⋂
j∈Ji EQ(i,j) for all i ∈ [r].

First of all, this witnesses T ∈ ∇∪(P1, . . . ,Pr), as Si ∈ Pi. For the other ∩-conjuncts,
fix i ∈ [r] and j ∈ Ji. There exists s ′ ∈ Si such that {s ′} ∈ Pi ∩Q(i,j). Because∇∪ is a
transversal, there must exist a corresponding s ∈ T with tuple (Uk)k∈[r] ∈ R∇∪ {s}

such that s ′ ∈ Ui and (Uk) ⊆ (Sk). Because (Uk) is a union of tuples in R∇{s},
there must exist some (Vk) ∈ R∇{s} as well such that s ′ ∈ Vi and (Vk) ⊆ (Uk). By
definition of a strict standard transversal (Definition 3.71), each Vk is a singleton,
which implies Vi = {s ′} and therefore Vi ∈ Pi∩Q(i,j). As also Vk ∈ Pk for all k, {s} ∈
∇(P1, . . . ,Pi−1,Pi ∩ Q(i,j),Pi+1, . . . ,Pr). Since ∇ and ∇∪ are flatness equivalent
(Proposition 3.68), we conclude T ∈ E∇∪(P1, . . . ,Pi−1,Pi ∩ Q(i,j),Pi+1, . . . ,Pr).

65

3 Abstract team logic

V ′ ⊆ V: Assume T ∈ V ′. First of all, T ∈ ∇∪(P1, . . . ,Pr) implies there is a tuple (Si)i∈[r] ∈
R∇∪T such that Si ∈ Pi for all i ∈ [r]. Likewise, by the E-conjuncts, and flatness
equivalence of ∇ and ∇∪, for every i ∈ [r], j ∈ Ji there exists s(i,j) ∈ T such that

{s(i,j)} ∈ ∇(P1, . . . ,Pi−1,Pi ∩ Q(i,j),Pi+1, . . . ,Pr),

which is witnessed by some tuple (U
(i,j)
k)k∈[r] ∈ R∇{s(i,j)}. Every U

(i,j)
k is a single-

ton (Definition 3.71), so U(i,j)
i ∈ ne ∩ Pi ∩ Q(i,j). Together, we obtain

T ∪
⋃
i∈[r]
j∈Ji

{s(i,j)} ∈ ∇∪(P1, . . . ,Pr)∨
∨
i∈[r]
j∈Ji

∇(P1, . . . ,Pi ∩ Q(i,j) ∩ ne, . . . ,Pr),

but since s(i,j) ∈ T for all i ∈ [r], j ∈ Ji,

T ∈ ∇∪(P1, . . . ,Pr)∨
∨
i∈[r]
j∈Ji

∇(P1, . . . ,Pi ∩ Q(i,j) ∩ ne, . . . ,Pr)

from which we can by R∇T ⊆ R∇∪T conclude

T ∈ ∇∪(P1, . . . ,Pr)∨
∨
i∈[r]
j∈Ji

∇∪(P1, . . . ,Pi ∩ Q(i,j) ∩ ne, . . . ,Pr).

(?)

Furthermore, by Lemma 3.81,

∇∪(T1, . . . ,Tr)∨∇∪(U1, . . . ,Ur) ⊆ ∇∪(T1 ∨U1, . . . ,Tr ∨Ur). (??)

As P∨ · · ·∨ P = P, we obtain from (?) and (??) that

T ∈ ∇∪

P1 ∨
∨
j∈J1

(P1 ∩ Q1,j ∩ ne), . . . ,Pr ∨
∨
j∈Jr

(Pr ∩ Qr,j ∩ ne)


= ∇∪

P1 ∩
⋂
j∈J1

EQ1,j, . . . ,Pr
⋂
j∈Jr

EQr,j

 = V. (Lemma 3.82)

After relaxations of standard transversals (such as ♦, ∃), we proceed with relaxations
of dual standard transversals such as ∨,�, ∀.

Lemma 3.84. Lax dual standard transversals preserve quasi-flatness.

Proof. The proof is analogous to the case of standard transversals. Let ∇∪ be the re-
laxation of the dual standard transversal ∇ of 4. As before, we need only to prove

66

3 Abstract team logic

properties of the form

W = ∇∪

P1 ∩
⋂
j∈J1

EQ(1,j), . . . ,Pr ∩
⋂
j∈Jr

EQ(r,j)


to be quasi-flat where Pi,Qi,j are flat. We show that W equals

W ′ = ∇∪(P1, . . . ,Pr) ∩
⋂

i∈[r],j∈Ji

E¬∇∪(⊥i−1,¬(Pi ∩ Q(i,j)),⊥r−i).

We again proceed in two steps.

W ⊆W ′: Let T ∈W via some (Sk)k∈[r] ∈ R∇∪T . Clearly, T ∈ ∇∪(P1, . . . ,Pr). Next, fix
i ∈ [r] and j ∈ Ji. As ∇∪ is a transversal (Theorem 3.69), there is again some s ∈ T
such that

{s} ∈ ∇∪ (P1, . . . ,Pi−1,Pi ∩ EQ(i,j),Pi+1, . . . ,Pr
)

witnessed by a tuple (Uk) ∈ R∇∪ {s}. In particular, there is s ′ ∈ Ui such that
{s ′} ∈ Pi ∩ Q(i,j) and furthermore (Vk)k∈[r] ∈ R∇{s} such that s ′ ∈ Vi.
Now tuples in R∇{s} are minimal hitting vectors of R4s (Definition 3.71), so for
at least one tuple (uk)k∈[r] ∈ R4s it holds that ui = s ′. If ∇ ′ denotes the strict
standard transversal of4, then consequently {s} ∈ ∇ ′(>i−1,Pi ∩ Q(i,j),>r−i), so
by the weak duality of ∇ ′ and ∇∪ (Corollary 3.75) we obtain

T ∈ E¬∇∪(⊥i−1,¬(Pi ∩ Q(i,j)),⊥r−i).

W ′ ⊆W: Let T ∈W ′. By assumption we have T ∈ ∇∪(P1, . . . ,Pr). Our goal is for each
i ∈ [r] and j ∈ Ji to identify some subteam T (i,j) of T that satisfies

T (i,j) ∈ ∇(P1, . . . ,Pi−1,Pi ∩ EQ(i,j),Pi+1, . . . ,Pr). (?)

Since T = T ∪
⋃
i∈[r],j∈Ji T

(i,j), this suffices to prove T ∈W as follows. From

T ∈ ∇∪(P1, . . . ,Pr)∨
∨

i∈[r],j∈Ji

∇(P1, . . . ,Pi−1,Pi ∩ EQ(i,j),Pi+1, . . . ,Pr)

and since R∇ ⊆ R∇∪ and ∨ is monotone, we conclude

⊆ ∇∪(P1, . . . ,Pr)∨
∨

i∈[r],j∈Ji

∇∪(P1, . . . ,Pi−1,Pi ∩ EQ(i,j),Pi+1, . . . ,Pr)

⊆ ∇∪(P1 ∨
∨
j∈J1

(P1 ∩ EQ(1,j)), . . . ,Pr ∨
∨
j∈Jr

(Pr ∩ EQ(r,j))) (Lemma 3.81)

67

3 Abstract team logic

= ∇∪

P1 ∩
⋂
j∈J1

EQ(1,j), . . . ,Pr ∩
⋂
j∈Jr

EQ(r,j)

 = W. (Lemma 3.82)

Next, we show that the subteams T (i,j) as in (?) indeed exist. Fix i ∈ [r] and j ∈ Ji.
By definition of W ′, there exists an element s ∈ T such that

{s} ∈ ¬∇∪(⊥i−1,¬(Pi ∩ Q(i,j)),⊥r−i).

Let again ∇ ′ denote the strict standard transversal of4, then by weak duality of
∇ and ∇ ′ (Corollary 3.75)

{s} ∈ ∇ ′(>i−1,Pi ∩ Q(i,j),>r−i).

This is witnessed by some tuple in R∇ ′{s}, which by definition of strict standard
transversal (Definition 3.71) is of the form ({t1}, . . . , {tr}) ∈ R∇ ′{s} for some tuple
(t

(i,j)
1 , . . . , t

(i,j)
r) ∈ R4s. In particular, {ti} ∈ Pi ∩ Q(i,j). We require ti later.

Next, we show that {s} is now our desired subteam T (i,j). By assumption we have
T ∈ ∇∪(P1, . . . ,Pr), and so due to flatness {s} ∈ ∇(P1, . . . ,Pr). This is witnessed
by some tuple (Vk) ∈ R∇{s} generated by a choice function f ∈

∏
(sk)∈R4s

[r], in the
sense that Vk = {sk | (s1, . . . , sr) ∈ f−1(k)}. In order to satisfy (?), we need to add a
singleton satisfying Q(i,j) to Vi. To do so, we modify f to incorporate ti as follows.
Define g like f but set g(t1, . . . , tr) := i. This results in a new hitting vector (Uk) of
R∇ ′s, and hence tuple in R∇{s}. Furthermore, Uk ⊆ Vk for k 6= i, but Ui = Vi ∪ {ti}.
As a consequence, Uk ∈ Pk by downward closure and Ui ∈ Pi ∩ EQi by union
closure, which witnesses (?).

With Lemmas 3.83 and 3.84, this concludes the proof of Theorem 3.80.
We use the following definition for algebras that enjoy quasi-flatness.

Definition 3.85 (Nice). Let {∧,6, ∼,¬,>,⊥} ⊆ τ. A τ-team algebra a nice if ∧,6, ∼,¬,>
and ⊥ have their usual interpretations in A, and4A is a lax standard transversal or lax
dual standard transversal for all4 ∈ τ \ {∧,6, ∼,¬,>,⊥}.

This definition also covers propositional, modal and first-order team logic (in lax
semantics).

Theorem 3.86. If A is a nice τ-team algebra, then JϕKA is quasi-flat for every τ-formula ϕ.

Proof. By induction. We show that all connectives preserve quasi-flatness. For the
Boolean operations ∧, 6 and ∼ this is trivial. > and ⊥ are already flat, as is ¬ϕ for
every formula ϕ, so these connectives also trivially preserve quasi-flatness. For all other
connectives, this follows from Theorem 3.80.

68

3 Abstract team logic

3.7.1 Two normal forms for quasi-flatness

We introduce two normal forms of formulas, and show that every formula that defines
a quasi-flat property can be brought into such a normal form. Call a formula ϕ strongly
flat if it has only flat subformulas, including itself. Recall that Eγ = ∼¬γ.

Definition 3.87 ((6∧)-normal form and (6∨)-normal form). Let ϕ be a τ-formula. We
call ϕ in (6∧)-normal form if

ϕ =6
i∈I

αi ∧ ∧
j∈Ji

Eβi,j


for finite sets I and Ji and strongly flat τ-formulas αi, βi,j for all i ∈ I and j ∈ Ji. It is in
(6∨)-normal form if

ϕ =6
i∈I

αi ∨ ∨
j∈Ji

(βi,j ∧ ne)


for I, Ji, αi, βi,j as above.

Lemma 3.88 (Change of normal form). Let τ ⊇ {∧,6, ∼,¬,>,⊥}. Then for every τ-formula
ϕ in (6∧)-normal form (resp. (6∨)-normal form) there is a formula ψ in (6∨)-normal form
(resp. (6∧)-normal form) such that JϕKA = JψKA for every nice τ-team algebraA. Furthermore,
ψ is logspace-computable from ϕ.

Proof. Let A be a nice τ-team algebra, and let us write T � ϕ for T ∈ JϕKA.

• We first assume that ϕ itself is in (6∧)-normal form. Then every disjunct α ∧∧
j∈J Eβj is equivalent to the formula

α∨
∨
j∈J

((α∧ βj)∧ ne),

which can be seen as follows. Suppose T � α ∧
∧
j∈J Eβj. Then {s} � α for all

s ∈ T , and for every j ∈ J there is sj ∈ T such that {sj} � Eβj. But then also
{sj} � α∧ βj ∧ ne. Moreover, the union T ∪

⋃
j∈J{sj} is a (lax) splitting of T . As a

result, T � α∨
∨
j∈J(α∧ βj ∧ ne).

Conversely, suppose T � α ∨
∨
j∈J(α ∧ βj ∧ ne). This is witnessed by a split

T = T ′ ∪
⋃
Tj such that T ′ � α and Tj � α ∧ βj ∧ ne for each j ∈ J. Since flat

properties are union closed, T � α. Furthermore, each Tj is non-empty and satisfies
βj, so some s ∈ Tj exists such that {sj} � β. Hence T � Eβj, as desired.

• Next, we assume that ϕ is in (6∨)-normal form and again consider each disjunct

69

3 Abstract team logic

α∨
∨
j∈J(βj ∧ ne). We show that the latter is equivalent toα∨

∨
j∈J

βj

∧
∧
j∈J

Eβj.

Assume T � α∨
∨
j∈J(βj ∧ ne). Then in particular T � α∨

∨
j∈J βj, so the leftmost

conjunct is clear. It remains to show T � Eβj for every j ∈ J. Let T = T ′ ∪
⋃
j∈J Tj

witness T � α∨
∨
j∈J(βj∧ne). Then Tj � βj, but since also Tj � ne, Tj is non-empty.

Consequently, Tj ⊆ T witnesses T � Eβj.
Finally, for the other direction, assume T � (α∨

∨
j∈J βj)∧

∧
j∈J Eβj. By the first

conjunct, T can be split into T ′∪
⋃
j∈J Tj such that T ′ � α and Tj � βj for all j ∈ J. By

the second conjunct, for each j ∈ J there exists sj ∈ T such that {sj} � βj. We form
the subteams Sj := Tj∪ {sj} of T . Then T ′∪S1∪· · ·∪Sn = T , and this split witnesses
T � α∨

∨
j∈J(βj ∧ ne), since T ′ � α, Sj is non-empty, and Sj � βj by union closure.

Since the above transformation can be applied to each disjunct in parallel, it is straight-
forward that ψ is logspace constructible.

Next, we show how formulas can be translated into these normal forms.

Theorem 3.89. Let {∧,6, ∼,¬,>,⊥} ⊆ τ. There is a function f : Fτ → Fτ computable in time
expO(n)(1) such that for every τ-formula ϕ,

• f(ϕ) is in (6∧)-normal form,

• JϕKA = Jf(ϕ)KA for every nice τ-team algebra A.

Proof. Let ϕ ∈ Fτ and n := |ϕ|, and let A be a nice τ-team algebra. Let us abbreviate
JψKA = Jψ ′KA as ψ ≡ ψ ′, and refer to (6∧)-normal form simply as normal form.

We state an algorithm that computes f(ϕ) by repeatedly applying Lemmas 3.83
and 3.84. More precisely, it constructs formulas ϕ0, ϕ1, ϕ2, . . . , ϕn where ϕ0 := ϕ and
f(ϕ) := ϕn and for all i ∈ [n],

• ϕi−1 ≡ ϕi,

• ϕi contains at most n− i subformulas that are not in normal form,

• |ϕi| 6 expO(1)(|ϕi−1|).

It is clear than then ϕ ≡ f(ϕ), that f(ϕ) is in normal form, and that |f(ϕ)| 6 expO(n)(n) =

expO(n)(1). The formulaϕi is obtained fromϕi−1 as follows. Ifϕi−1 is already in normal
form, we do nothing and set ϕi := ϕi−1. Otherwise there is a minimal subformula
ψ of ϕi−1 that is not in normal form. Suppose we have a formula ψnf of size |ψnf | 6
expO(1) |ψ| in normal form such that ψnf ≡ ψ (we will prove this below). Then we set

70

3 Abstract team logic

ϕi := ϕi−1[ψ/ψ
nf]; and have that ϕi−1 ≡ ϕi, that ϕi contains fewer subformulas not in

normal form than ϕi−1 (namely, ψ), and that

|ϕi| 6 |ϕi−1|+ |ϕi−1|︸ ︷︷ ︸
max. # occurrences ofψ inϕi−1

·|ψnf | 6 |ϕi−1| · expO(1) |ψ|︸ ︷︷ ︸
size ofψnf + 1

= expO(1) |ϕi−1|︸ ︷︷ ︸
since |ψ|6 |ϕi−1|

.

Next, we explain how exactly the formula ψnf is constructed. As ψ is a minimal subfor-
mula not in normal form, it is of the form ∇(ψ1, . . . , ψr) (with necessarily r > 0) where
ψ1, . . . , ψr are in normal form. In particular, it cannot be an atom. By assumption of
the theorem, ∇ is either ¬ or ∼ or a lax (dual) standard transversal of some operator4.
Below, we handle each case separately.

• If∇ = ¬, we have ψ = ¬6i∈I(αi∧
∧
j∈Ji Eβ(i,j)) for suitable I, Ji and strongly flat

αi, β(i,j). By definition of ¬, T � ψ iff for every s ∈ T and every i ∈ I it holds that
{s} 2 αi or there is j ∈ Ji such that {s} 2 Eβ(i,j). But on singletons, {s} 2 Eβ(i,j) iff
{s} 2 β(i,j). As a consequence, ψ is equivalent to

ψnf :=
∧
i∈I

¬

αi ∧ ∧
j∈Ji

β(i,j)


which is strongly flat (Proposition 3.18) and hence trivially in normal form. Its
length is bounded by |ψnf | 6 2|ψ|. Note that the empty conjunction is >.

• If ∇ = ∼, then

ψ = ∼6
i∈I

αi ∧ ∧
j∈Ji

Eβ(i,j)


≡
∧
i∈I

E¬αi 66
j∈Ji

¬β(i,j)

 (De Morgan’s laws)

≡ 6
f∈

∏
i∈I
Li

∧
i∈I

f(i) =: ψnf (distributive law)

where Li := {E¬αi, β(i,j) | j ∈ Ji}. The conjunction of strongly flat formulas is
strongly flat, so ψnf is in normal form. Furthermore,

|ψnf | 6 |ψ||ψ|︸ ︷︷ ︸
of f

· |ψ|︸︷︷︸
|I|

· (|ψ|+ 3︸ ︷︷ ︸
size of E¬αi/β(i,j)

) 6 expO(1) |ψ|.

• Otherwise ∇ is the lax standard transversal or lax dual standard transversal. We
proceed in two steps, as in Lemmas 3.83 and 3.84. If ψ = ∇(ψ1, . . . , ψr), and
ψi = 6j∈Ji(α(i,j)∧

∧
k∈K(i,j)

Eβ(i,j,k)) is in normal form for all i ∈ [r], then ψ ≡ ψ ′,

71

3 Abstract team logic

where

ψ ′ := 6
f∈

∏
i∈[r]

Ji

∇

α(1,f(1)) ∧
∧

k∈K(1,f(1))

Eβ(1,f(1),k), . . . , α(r,f(r)) ∧
∧

k∈K(r,f(r))

Eβ(r,f(r),k)

 .

This is achieved by distributing ∇ over 6 (Proposition 3.40). Next, we proceed as
in Lemmas 3.83 and 3.84 and focus on the disjuncts of ψ ′, which are subformulas
of the form

θ = ∇

α1 ∧ ∧
j∈J1

Eβ(1,j), . . . , αr ∧
∧
j∈Jr

Eβ(r,j)

 .

We expand θ depending on whether ∇ is a lax standard transversal or dual stan-
dard transversal.

– If ∇ is a lax standard transversal, as in Lemma 3.83,

θ ≡ ∇(α1, . . . , αr)︸ ︷︷ ︸
size 6 |ψ|

∧
∧

i∈[r],j∈Ji

E∇(α1, . . . , αi−1, αi ∧ β(i,j), αi+1, . . . , αr)︸ ︷︷ ︸
size 6 |ψ|

.

– If ∇ is a lax dual standard transversal, as in Lemma 3.84,

θ ≡ ∇(α1, . . . , αr)︸ ︷︷ ︸
size 6 |ψ|

∧
∧

i∈[r],j∈Ji

E¬∇(⊥i−1,¬(αi ∧ β(i,j)),⊥r−i)︸ ︷︷ ︸
size 63+|ψ|

.

In both cases, the resulting formula is in normal form and of size 6 |θ|+ |θ|3. In
total, we obtain a normal form equivalent to ψ of size at most

|ψ||ψ|︸ ︷︷ ︸
disjuncts inψ ′

· (|ψ|+ 1+ |ψ|2(1+ 3+ |ψ|)︸ ︷︷ ︸
size of each disjunct θ

)

which is 6 exp2 |ψ| for |ψ| > 4, and hence in expO(1) |ψ|.

By the lemma of the change of normal form, the same works for (6∨)-normal form:

Corollary 3.90. Let {∧,6, ∼,¬,>,⊥} ⊆ τ. There is a function f : Fτ → Fτ computable in time
expO(n)(1) such that for every τ-formula ϕ,

• f(ϕ) is in (6∨)-normal form,

• JϕKA = Jf(ϕ)KA in every nice τ-team algebra A.

A formula in (6∧)-normal form contains only finitely many E-subformulas. This
means that every team satisfying it already contains a finite team doing so.

72

3 Abstract team logic

Corollary 3.91. If A is a nice τ-team algebra, ϕ is a τ-formula and T ∈ JϕKA, then there is a
finite subteam S ⊆ T with |S| 6 |ϕ| such that S ∈ JϕKA.

Since the connectives ∨,♦,�, ∃, ∀ from propositional, modal and first-order team
logic and their atoms are lax (dual) standard transversals (Corollary 3.72 and Proposi-
tion 3.76), the results in this section apply to them:

Corollary 3.92 (Collapse theorem). ForL ∈ {PL,QPL,ML,FO}, and for everyL(∼)-formula
ϕ, there is an equivalent L(∼)-formula ψ in (6∧)-normal form (resp. (6∨)-normal form) that
is computable in time expO(|ϕ|)(1).

3.8 Outlook: Linear Temporal Logic

As an example of a team logic that is not based on standard transversals, we turn to
linear temporal logic (LTL).

A trace π in a Kripke structure K = (W,R, V) is an infinite sequence π = (si)i∈N ∈Wω

such that (si, si+1) ∈ R for all i > 0. Let π[j] denote the trace π advanced by j places, i.e.,
(sj+i)i∈N. The logic LTL consists of atomic propositions and the temporal connectives
X,F,G,U, which are defined as follows:

(K, π) � p ⇔ s0 ∈ V(p), where π = (s0, s1, . . .)

(K, π) � ¬α ⇔ (K, π) 2 α
(K, π) � α∧ β ⇔ (K, π) � α and (K, π) � β

(K, π) � α∨ β ⇔ (K, π) � α or (K, π) � β
(K, π) � Xα ⇔ (K, π[1]) � α

(K, π) � Fα ⇔ ∃j > 0 : (K, π[j]) � α
(K, π) � Gα ⇔ ∀j > 0 : (K, π[j]) � α
(K, π) � αUβ ⇔ ∃j > 0 : (K, π[j]) � β and ∀k < j : (K, π[k]) � α.

First of all, we observe that G is the strong dual of F, which is an operator, whereas
neither U nor its dual is an operator. Furthermore, X is a self-dual operator.

The team semantics of LTL works with sets of traces as teams. For a team T of traces,
let T [j] := { π[j] | π ∈ T }, and for f : T → ω, let T [f] := { π[f(π)] | π ∈ T }. If f, f ′ : T → ω, then
f < f ′ means f(π) < f ′(π) for all π ∈ T .

The connectives ∧, ¬, ∼ and ∨ are completely analogous to modal team logic. Oth-
erwise the semantics is as follows, with all temporal connectives except for X being
defined in two variants [91]. (We omit the structure K in the definition.)

T � Xϕ ⇔ T [1] � ϕ

73

3 Abstract team logic

F, G and U exist as synchronous variants,

T � Fsϕ ⇔ ∃j > 0 : T [j] � ϕ
T � Gsϕ ⇔ ∀j > 0 : T [j] � ϕ
T � ϕUsψ ⇔ ∃j > 0 : T [j] � ψ and ∀k < j : T [k] � ϕ,

and asynchronous variants,

T � Faϕ ⇔ ∃f : T → ω : T [f] � ϕ

T � Gaϕ ⇔ ∀f : T → ω : T [f] � ϕ

T � ϕUaψ ⇔ ∃f : T → ω : T [f] � ψ and ∀f ′ : T → ω : if f ′ < f, then T [f ′] � ϕ.

Here, a curious asymmetry between synchronous and asynchronous definitions
emerges: All asynchronous connectives, X and Gs are flatness preserving, whereas Fs
and Us are not [91]. In fact, X, Fa and Ga are transversals. Also, Ga (Gs) is the strong
dual of Fa (Fs).

On teams, X, Fa, and Fs are still operators: The generating relations are RXT = { T [1] },
RFaT = { T [f] | f : T → ω }, and RFsT = { T [j] | j > 0 }, while Ga and Gs are the associated
strong duals. U is again neither an operator nor the dual of one. It is straightforward
to see that X is a transversal, and for Fa, the underlying choice functions correspond
precisely to the functions T → ω, as on singletons, RFa {π} =

{
{π[j] } | j > 0

}
. In fact, we

observe that Fa is the strict standard transversal of the classical F. The connective Fs is an
operator, but no transversal, as it is not flatness preserving.

The relaxation Fa∪ of Fa would additionally allow every trace π ∈ T , loosely speaking,
to advance to multiple positions at once, that is,

RFa∪ {π} = ℘
+ { π[j] | j > 0 } .

It seems that no such operator is defined in the literature yet. Neither is there an operator
Gd defined that—in the spirit of � and ∀—is a teamification of G and a weak dual of F.
It is the transversal

RGdT =
{
{π[j] | π ∈ T, j > 0}

}
.

In other words, with Gd, we associate with a trace π the team of all possible suffixes.
Finally, we show thatGd, Ga andGs are all not only flatness preserving, but teamifications
of G:

T ′ ∈ ℘G(T) ⇔ T ′ ⊆ G(T)

⇔ T ′ ⊆ {π | ∀j > 0 : π[j] ∈ T }
⇔ ∀π ∈ T ′ : ∀j > 0 : π[j] ∈ T
⇔
{
π[j] | π ∈ T ′, j > 0

}
∈ ℘T

⇔ RGdT
′ ∩ ℘T 6= ∅

74

3 Abstract team logic

⇔ T ′ ∈ Gd(℘T).

For Ga, additionally

. . . ⇔ ∀π ∈ T ′ : ∀j > 0 : π[j] ∈ T
⇔ ∀f : T ′ → ω : T ′[f] ∈ ℘T
⇔ T ′ ∈ Ga(℘T),

where the equivalence of the first two lines is easy to see. For Gs, the argument is
identical, since Gs corresponds to Ga restricted to constant functions f : T ′ → ω.

A peculiar consequence is that, by Theorem 3.37, Fa and Ga are simultaneously strong
and weak duals, and likewise for Fs and Gs. On singletons, Fs and Fa as well as Gs and
Ga are equivalent, so these are flatness equivalent pairs (Definition 3.53). This is not
a contradiction, but stems from the fact that, loosely speaking, starting on singleton
teams, F and G advance only to other singleton teams, and on those there is no difference
between ¬ and ∼. This shows that operators may have non-operators as weak duals.
From the above, the only weakly dual operator of Fa is Gd; see also Figure 3.6.

weak dual

fla
tn

es
se

qu
iv
al
en

t

flatnessequivalent

not
a teamification

F G

Fa Ga

Fs

Gd

Gs

te
am

ifi
ca

tio
n team

ification

strong dual

strong dual

strong dual

strong dual

Figure 3.6: Teamification of temporal operators F and G.

75

3 Abstract team logic

3.9 Summary and outlook

3.9.1 Summary

In this chapter, we presented an abstract framework to systematically classify existing
team-semantical logics. As a first step, we categorized connectives as teamifications of
their classical counterparts in Theorem 3.33, and saw in Theorem 3.34 that teamifications
are precisely the connectives that are flatness preserving (meaning that4(P1, . . . ,Pr)

is flat whenever P1, . . . ,Pr are flat team properties). Recall that a connective ∇ is a
teamification of4 if ∇(℘T1, . . . , ℘Tr) = ℘4(T1, . . . , Tr), and so the power set operation ℘
is a homomorphism between the corresponding algebras of classical and team semantics.

Next, in Theorem 3.43 and Proposition 3.44 we demonstrated that virtually all team-
logical connectives, including atoms, are operators, that is, generated by a “successor
relation” similar to classical modal logic. Furthermore, we showed in Corollary 3.51 that
also the duals of operators can become operators upon teamification. For example, ♦
and � are both operators on teams, and likewise ∧, ∨, ∃ and ∀, while classically, of these
only ♦, ∧ and ∃ are operators. We studied the connection between such pairs, called
weak duality, which is weak in the sense that dual connectives are in general not mutually
interdefinable by means of ¬ in team logic. In Theorem 3.50, we gave a characterization
of weak duality in terms of so-called hitting vectors.

An important subclass of operators were transversals. An operator is a transversal
whose semantics on a team are determined by the semantics of the singletons in the team.
This is a natural restriction satisfied by common team-logical connectives (Theorem3.60).
Since a classical connective can correspond to more than one transversal, we defined
standard transversals and their relaxations in order to propose a canonical teamification
resembling strict and lax semantics. These definitions also capture existing connectives
of propositional, modal and first-order team logic (Corollary 3.72).

Finally, we proved the main result of this chapter: Given a team logic where all
connectives but ∼ and ¬ are lax standard transversals, each of its formulas “collapses
down” and can bewritten as a Boolean combination of flat formulas (Theorem 3.89). We
called such formulas resp. logics quasi-flat. Although this result was indirectly known
for, e.g., modal team logic [82, 100], we generalized the theorem to logics with arbitrarily
many operators of arbitrary arity.

3.9.2 Open problems and further research directions

Atoms. One weakness of our approach is that it treats atoms as “black boxes” in order
to uniformly capture the different logics. For instance, a first-order literal α simply is
the unary relation of all assignments that satisfy it, oblivious of terms and variables. As
a consequence, concepts such as locality cannot be studied in this framework, despite
being a distinguishing feature between strict and lax semantics [37]. Moreover, our
classification mostly excluded non-classical atoms, as we focused on flatness preserving
connectives. In future research, the current model could be expanded to further analyze
and classify those atoms.

76

3 Abstract team logic

Algebras for team logic. Boolean algebras with operators are extremely well-studied
structures [138] and could yield interesting results for team logics, such as the famous
Jónsson-Tarski Representation Theorem [77]. One obstacle towards a purely algebraic
definition of team semantics is that we require carriers of the form ℘℘X in order to even
formulate basic properties like downward closure or flatness. But even assuming this,
given a Boolean algebra B = (℘℘X,∪, ·{) and a pair {T }, {T ′} ∈ ℘℘X, B does not “know”
whether T ⊆ T ′ or not, so Boolean algebras do not suffice to talk about these closure
properties. With an operation �, where x� y is the set of unions of teams in x and y,
T ⊆ T ′ could be expressed as {T }� {T ′} = {T ′}. Alternatively, we add a flattening operation
↓x in analogy to Hodges [71] with the semantics that T � ↓ϕ iff {s} � ϕ for all s ∈ T .
Algebraically, ↓maps x to ℘

⋃
x. We can then define T ⊆ T ′ as (↓{T }) ∪ (↓{T ′}) = (↓{T ′}).

Then the fixpoints of ↓ form a subalgebra that is isomorphic to the underlying classical
Boolean algebra on ℘X.

Furthermore, as Hintikka [67] noted, the dual of ↓, which we called E, is indeed an
operator. (T � Eϕ iff ∃s ∈ T : {s} � ϕ, so the generating relation is {(T, {s}) | s ∈ T }.) Since
¬ϕ ≡ ∼Eϕ, this allows a description of team logic in pure terms of baos, at least if all
connectives besides ∧, 6, ¬ and ∼ are operators, such as for PL(∼), ML(∼) or FO(∼).

Exotic connectives. In this chapter, we focused on teamifications as connection be-
tween classical and team-logical connectives, and special cases such as transversals.
This unfortunately excludes not only a plethora of non-classical atoms, but also two
other important classes of connectives: First, those not corresponding to any classical
symbol, such as relevant disjunction ∨

./ [123] or forking atoms ^ [46]. Secondly, natural
operators that have classical counterparts, but are not flatness preserving, or no opera-
tors. Examples for the latter are the temporal connectives Fs and U. In further research,
our framework could be extended to account for such connectives.

Finally, we could turn our attention to “intermediate” operators between the classical
strict and lax ones. Take for instance the transversal ♦? where R♦?{w} is any proper ideal
on ℘+(Rw) (i.e., closed under subsets and finite unions, for example, ℘<ω(Rw)). Then
♦? 6= ♦, but one can still show that ♦? preserves (quasi-)flatness. In the current form,
our results do not cover such operators.

77

4 The complexity of modal team logic

In this chapter, we study modal team logic ML(∼) and the complexity of its satisfiability
and validity problem. We show that they are complete for the non-elementary class
Tower(poly) (Definition 2.5), and that for the fragments MLk(∼) of bounded modal
depth k they are complete for ATime-Alt(expk+1,poly) (Definition 2.2). These results
fill a long-standing gap in the study of propositional and modal team logics (see Chap-
ter 2).

In our approach, we consider so-called canonical models, which are a standard tool in
modal logics. In Section 4.1, we adapt this notion to modal logics with team semantics,
and prove that such models exist for ML(∼). For the hardness results with respect to
the above complexity classes, in Sections 4.2 and 4.3 we first show that ML(∼) can, in a
certain sense, efficiently define bisimilarity. In the same spirit, in Section 4.4 we show
that it can define the canonicity of models. Then we show in Section 4.5 that the ordering
of a sufficiently large initial segment of the natural numbers can be simulated, which
we then use to encode computations of non-elementary length in such large models in
Section 4.6. See Figure 4.1 for an illustration of the whole reduction.

Afterwards, we adapt the lower bound to hold also in strict semantics (Section 4.7)
and in restricted frame classes (Section 4.8). Finally, in Section 4.9, we identify a non-
trivial fragment of ML(∼) with only elementary complexity, which we prove by adapting
the well-known filtration method to team semantics.

4.1 Types and canonical models

Manymodal logics admit a so-called canonical model, which witnesses all satisfiable (sets
of) formulas in some of its points. They are a standard tool for proving the completeness
of modal systems [33]. Unfortunately, a canonical model for ML is necessarily infinite,
and consequently impractical for complexity theoretic considerations. Instead, we use
so-called (Φ,k)-canonical models CΦk for finite Φ ⊆ Prop and k ∈ N. These are canonical
in the above sense for the fragment MLΦk , and more importantly are finite, although
their size is at least the number of equivalence classes of
Φ

k (Definition 2.24).
We will refer to these classes as (Φ,k)-types or just types and usually write them as the

letter τ. A first issue arises because types are proper classes. In team semantics we have
teams, so we need to speak about sets of types. For this reason, we begin this section by
defining types on proper set-theoretic grounds, by identifying the type of a point with
the set of formulas that are true in it.

Definition 4.1 (Type). A set τ ⊆ MLΦk of formulas is a (Φ,k)-type if it is (classically)
satisfiable and for all α ∈ MLΦk contains either α or ¬α.

78

4 The complexity of modal team logic

Section 4.2: Scopes and subteam quantifiers, ∃1α, ∃⊆α , ∀1α, ∀⊆α

Section 4.3: Bisimilarity
k/
∗
k

Section 4.4: Canonicity Ck Section 4.5: Ordering of types ≺k/≺∗
k

Section 4.6: Encoding large computations in a model

Figure 4.1: “Roadmap” for the reduction from Tower(poly) to satisfiability of ML(∼).

Definition 4.2. The (Φ,k)-type of a pointed structure (K, w) is

JK, wKΦk :=
{
α ∈ MLΦk | (K, w) � α

}
.

Definition 4.3. The set of (Φ,k)-types of a structure with team (K, T) is

JK, TKΦk :=
{
JK, wKΦk | w ∈ T

}
.

Definition 4.4. Let Φ ⊆ Prop and k > 0. The set of all (Φ,k)-types is ∆Φk .

The following assertions ensure that the above definition of types properly reflects
the bisimulation relation.

Proposition 4.5. Let Φ ⊆ Prop and k > 0. Then

(1) The unique (Φ,k)-type satisfied by (K, w) is JK, wKΦk .

(2) (K, w)
Φ
k (K ′, w ′) if and only if JK, wKΦk = JK ′, w ′KΦk .

(3) (K, T)
Φ
k (K ′, T ′) if and only if JK, TKΦk = JK ′, T ′KΦk .

Proof. (1) is clear: Two distinct types τ, τ ′ satisfied by (K, w)must differ in some formula
α ∈ MLΦk , but then (K, w) � α,¬α, contradiction.

(2) immediately follows from Theorem 2.25.

79

4 The complexity of modal team logic

For (3), we begin with the direction “⇒”. Due to symmetry, we only show that
(K, T)
Φ

k (K ′, T ′) implies JK, TKΦk ⊆ JK ′, T ′KΦk . Hence suppose τ ∈ JK, TKΦk . Then
there exists w ∈ T of type JK, wKΦk = τ. By Definition 2.27, there is w ′ ∈ T ′ with
(K, w)
Φ

k (K ′, w ′). Then JK ′, w ′KΦk = τ ∈ JK ′, T ′KΦk by (2). The direction “⇐” of (3) is
shown analogously.

Unsurprisingly, the type of a point w is determined solely by the propositions in w
and the types in the image Rw. In other words, all pointed structures of type τ satisfy the
same propositions in their roots, viz. τ ∩Φ, and have the same types contained in their
image teams. The set of k-types in the image of a (world of) (k+ 1)-type τ is defined as
Rτ :=

{
τ ′ ∈ ∆Φk | {α | �α ∈ τ} ⊆ τ ′

}
.

The following propositions show that types are indeed uniquely determined by the
above constituents; their proofs can be found in the appendix.

Proposition 4.6. Let Φ ⊆ Prop be finite and k > 0.

(1) JwKΦk ∩Φ = V−1(w)∩Φ and JRwKΦk = RJwKΦk+1, for all pointed structures (W,R, V,w).

(2) The map h : τ 7→ τ ∩Φ is a bijection from ∆Φ0 to ℘Φ.

(3) The map h : τ 7→ (τ ∩Φ,Rτ) is a bijection from ∆Φk+1 to ℘Φ× ℘∆Φk .

Proposition 4.7. Let (W,R, V,w) be a pointed structure, Φ ⊆ Prop finite and k > 0.

(1) If τ ∈ ∆Φ0 , then JwKΦ0 = τ if and only if V−1(w) = τ ∩Φ.

(2) If τ ∈ ∆Φk+1, then JwKΦk+1 = τ if and only if V−1(w) = τ ∩Φ and JRwKΦk = Rτ.

With types, we are now ready to state the formal definition of canonicity:

Definition 4.8. A structure with team (K, T) is (Φ,k)-canonical if JK, TKΦk = ∆Φk .

In the following, we often omitΦ andK and instead write JwKk and JTKk, respectively,
and simply say that T is (Φ,k)-canonical instead of (K, T) if K is clear.

4.1.1 Canonical models in team semantics

The usual construction of a canonical model is by taking all (infinite) maximal consistent
subsets of a certain class of modal formulas as worlds (see, e.g., Fitting [33]). This
indeed results in a finite number of worlds in the case of, say, MLΦk (cf. [19, 20]). Truly
finitary constructions of canonical models can be traced back to Fine [32], whose work
has been extended towards various other modal systems (e.g., by Moss [117]). Also,
Cresswell and Hughes [20] coined mini canonical models, models that are “canonical”
only with respect to all subformulas of a fixed ML-formula, which allows them to be
finite models with finite sets of formulas as worlds.

We will show that, given a (Φ,k)-canonical model CΦk , every satisfiable ML(∼)Φk -for-
mula can be satisfied in some team of CΦk as well. In other words, canonical models for
ML(∼)Φk and MLΦk coincide.

80

4 The complexity of modal team logic

Theorem 4.9. Let (K, T) be (Φ,k)-canonical and ϕ ∈ ML(∼)Φk . Then ϕ is satisfiable if and
only if (K, T ′) � ϕ for some T ′ ⊆ T .

Proof. Assume (K, T) and ϕ as above. The direction from right to left is trivial. Suppose
that ϕ is satisfiable by a model (K̂, T̂). As a team in K that satisfies ϕ, we define

T ′ :=
{
w ∈ T

∣∣∣ JK, wKΦk ∈ JK̂, T̂KΦk
}
.

By Proposition 2.28 and Proposition 4.5, it suffices to prove JK̂, T̂KΦk = JK, T ′KΦk . The
direction “⊇” of the proof is clear by definition. For “⊆”, as T is (Φ,k)-canonical, for every
τ ∈ JK̂, T̂KΦk there exists a world w ∈ T of type τ. Consequently, JK̂, T̂KΦk ⊆ JK, T ′KΦk .

How large is a (Φ,k)-canonical model at least? To capture the number of types, we
define the function exp∗

k:

exp∗
0(n) := n exp∗

k+1(n) := n · 2exp∗
k(n)

This function resembles expk(n) (p. 14) except for an additional factor of n after every
exponentiation.

Proposition 4.10. For all k > 0 and finite Φ ⊆ Prop it holds that |∆Φk | = exp∗
k

(
2|Φ|

)
.

Proof. By induction on k. For the base case k = 0, this follows from Proposition 4.6, as
there is a bijection between∆Φ0 and ℘(Φ) and exp∗

0

(
2|Φ|

)
= 2|Φ| = |∆Φ0 |. For the inductive

step, note that by induction hypothesis

exp∗
k+1

(
2|Φ|

)
= 2|Φ| · 2exp∗

k(2
|Φ|) = 2|Φ| · 2|∆Φk | = |℘(Φ)× ℘(∆Φk)|.

Since there again exists a bijection from ∆Φk+1 to ℘(Φ)× ℘(∆Φk) (Proposition 4.6), this
proves the proposition.

Next, we present an algorithm that solves the satisfiability and validity problems of
MLk(∼) by computing a canonical model. Let us first explicate this in a lemma.

Lemma 4.11. There is an algorithm that, given Φ ⊆ Prop and k > 0, runs in time polynomial
in |∆Φk | and computes a (Φ,k)-canonical model.

Proof. The idea is to construct sets L0 ∪L1 ∪ · · · ∪Lk of worlds in stage-wise manner such
that Li is (Φ, i)-canonical. For L0, we simply add a world w for each Φ ′ ⊆ Φ such that
V−1(w) = Φ ′. For i > 0, we iterate over all L ′ ∈ ℘(Li−1) and Φ ′ ⊆ Φ and insert a new
world w into Li such that L ′ is the image of w and such that again V−1(w) = Φ ′. An
inductive argument based on Propositions 2.28 and 4.6 shows that Li is (Φ, i)-canonical
for all i ∈ {0, . . . , k}. As k 6 |∆Φk |, and each Li is constructed in time polynomial in
|∆Φi | 6 |∆Φk |, the overall runtime is polynomial in |∆Φk |.

With the help of another small lemma, we conclude the upper bound for the satisfia-
bility and validity problem of ML(∼) and its fragments.

81

4 The complexity of modal team logic

Lemma 4.12. For every polynomial p there is a polynomial q such that

p(exp∗
k(n)) 6 expk(q((k+ 1) · n))

for all k > 0 and n > 1.

Proof. See the appendix.

Theorem 4.13. SAT(MLk(∼)) and VAL(MLk(∼)) are in ATime-Alt(expk+1,poly).

Proof. The following algorithm decides the satisfiability resp. validity problem. Let
ϕ ∈ MLk(∼) be the input, n := |ϕ|, and Φ := Prop(ϕ). As stated in Lemma 4.11, we
deterministically construct a (Φ,k)-canonical structure K = (W,R, V) in time p(|∆Φk |) for
a polynomial p. This part does not depend on the input formula ϕ, only on Prop(ϕ).

By Theorem 2.32, the model checking problem of ML(∼) is solvable by an alternating
Turing machine that has runtime polynomial in |ϕ|+ |K| and alternations polynomial in
|ϕ|. We call this algorithm as a subroutine: by Theorem 4.9, ϕ is satisfiable (resp. valid)
if and only if for at least one subteam (resp. all subteams) T ⊆W it holds that (K, T) � ϕ.
Equivalently, this is the case if and only if (K,W) satisfies >∨ϕ (resp. ∼(>∨ ∼ϕ)), so
we call the model checking routine for the formula >∨ϕ resp. ∼(>∨ ∼ϕ).

Let us turn to the overall runtime. K is constructed in time polynomial in |∆Φk | =

exp∗
k(2

|Φ|) 6 exp∗
k+1(|Φ|) 6 exp∗

k+1(n). The subsequent model checking runs in time
polynomial in |K|+ n, and hence polynomial in exp∗

k+1(n) as well. By Lemma 4.12, we
obtain a total runtime of expk+1(q((k+ 2) · n)) for some polynomial q.

The upper bound for ML(∼) is proved identically, as k := md(ϕ) is polynomial in |ϕ|.

Corollary 4.14. SAT(ML(∼)) and VAL(ML(∼)) are in Tower(poly).

4.2 Scopes and subteam quantifiers

Kontinen et al. [82] proved that ML(∼) is expressively complete up to bisimulation: it
can define every property of Kripke structures with teams that is (Φ,k)-bisimulation
invariant for some finite Φ and k, i.e., closed under
Φ

k .
Two interesting such team properties are in fact (Φ,k)-bisimilarity itself—in the sense

that all worlds in a team have the same (Φ,k)-type—as well as (Φ,k)-canonicity. Conse-
quently, these properties are definable by ML(∼)Φk -formulas. However, the latter might
be very long, the upper bound by Kontinen et al. [82] is non-elementary.

In this section, we consider a special subclass of Kripke structures and on these define
k-bisimilarity by a formula χk of polynomial size in Φ and k. (From now on, we always
assume some finite Φ ⊆ Prop and omit it in the notation, i.e., we write k-canonicity,
k-bisimilarity,
k, and so on.) Similarly, in Section 4.4 we devise a formula canonk of
polynomial size that expresses k-canonicity.

82

4 The complexity of modal team logic

T
S

α1 α3α2

⇒
α1 α3α2

S

Tα2S

Figure 4.2: Example of subteam selection in the scope α2

4.2.1 Scopes

It is the natural approach to implement k-bisimilarity by mutual recursion on the level
of formulas. The (k+ 1)-bisimilarity of two points w, v is expressed in terms of k-team-
bisimilarity of Rw and Rv, and conversely, to check whether the image teams Rw and Rv
are k-team-bisimilar, we proceed analogously to the forward and backward conditions of
Definition 2.24 and reduce the problem to checking k-bisimilarity of pairs of points in
Rw and Rv.

There is still one issue: Formulas define team properties, which are classes of (Kripke
structures with) teams, but bisimilarity is a binary relation between teams. For this
reason, we take the “marked union” of Rw and Rv as a single team. To decompose the
union again, we use the connective ↪→. Recall that T � α ↪→ ϕ if and only if Tα � ϕ,
where Tα = {w ∈ T | w � α}.

Now, instead of defining an n-ary relation on teams, a formula ϕ can define a unary
relation—a teamproperty—parameterized by formulasα1, . . . , αn ∈ ML, which function
as “markers” of the respective subteams in the whole union. We emphasize this by
writing ϕ(α1, . . . , αn).

It will be useful if these parameters are invariant under traversing edges in the struc-
ture. In that case, we call these formulas scopes:

Definition 4.15. Let K = (W,R, V) be a Kripke structure. A formula α ∈ ML is called a
scope (in K) if (w, v) ∈ R implies w � α⇔ v � α. Two scopes α,β are called disjoint (in
K) ifWα andWβ are disjoint.

To avoid interference, we assume that scopes are formulas in MLProp\Φ
0 , i.e., they are

always purely propositional and do not contain propositions from Φ.
Next, we define the team that results from “cutting out” parts of a specific scope.

Definition 4.16 (Scope selection). Let T be a team and S ⊆ T . Let α ∈ ML. Then
TαS := T¬α ∪ (Tα ∩ S).

For singletons {w}, we simply write Tαw instead of Tα
{w}

. Intuitively, TαS is obtained
by “shrinking” the subteam Tα down to Swhile retaining T \ Tα (see Figure 4.2 for an
example). The notation should remind of first-order logic: The assignment sxa is the
same as s but maps x to a. Likewise, TαS is the team T but Tα is set to S.

Scopes have several desirable properties:

Proposition 4.17. Let α,β be disjoint scopes and S,U, T teams in a Kripke structure K =

(W,R, V). Then the following laws hold:

83

4 The complexity of modal team logic

(1) Distributive laws: (T ∩ S)α = Tα ∩ S = T ∩ Sα = Tα ∩ Sα and (T ∪ S)α = Tα ∪ Sα.

(2) Disjoint selection commutes:
(
TαS
)β
U

=
(
T
β
U

)α
S
.

(3) Disjoint selection is independent:
(
(TαS)

β
U

)
α
= Tα ∩ S.

(4) Image and selection commute: (RT)α =
(
R(Tα)

)
α
= R(Tα)

(5) Successor and selection commute: If S is a strict resp. lax successor team of T , then Sα is a
strict resp. lax successor team of Tα.

(6) Selection propagates: If S ⊆ T , then R
(
TαS
)
= (RT)αRS.

Proof. Straightforward from the definition; see the appendix.

Accordingly, we can write RiTα instead of (RiT)α or Ri(Tα) and Tα1,α2S1,S2
for (Tα1S1)

α2
S2

.

4.2.2 Subteam quantifiers

In what follows, we use the material implication ϕ _ ψ as shorthand for ∼ϕ6 ψ. Its
semantics is

(K, T) � ϕ _ ψ ⇔ if (K, T) � ϕ, then (K, T) � ψ.

We refer to the following abbreviations as subteam quantifiers, where α ∈ ML:

∃⊆α ϕ := α∨ϕ ∀⊆α ϕ := ∼∃⊆α∼ϕ
∃1α ϕ := ∃⊆α

[
Eα∧ ∀⊆α(Eα _ ϕ)

]
∀1α ϕ := ∼∃1α∼ϕ

Intuitively, they quantify over subteams S ⊆ Tα or worlds w ∈ Tα such that TαS resp.
Tαw satisfies ϕ.

Proposition 4.18. The subteam quantifiers have the following semantics:

T � ∃⊆αϕ ⇔ ∃S ⊆ Tα : TαS � ϕ T � ∃1αϕ ⇔ ∃w ∈ Tα : Tαw � ϕ

T � ∀⊆αϕ ⇔ ∀S ⊆ Tα : TαS � ϕ T � ∀1αϕ ⇔ ∀w ∈ Tα : Tαw � ϕ

Proof. We prove the existential cases, as the other ones work dually. Let us first consider
the “⇒” direction for ∃⊆α , so suppose T � α ∨ ϕ. Then there exist S ⊆ T and U ⊆ Tα
such that S � ϕ and T = S ∪ U. Since U ∩ T¬α = ∅, it holds T¬α ⊆ S. For this reason,
S = (S ∩ Tα) ∪ (S ∩ T¬α) = (S ∩ Tα) ∪ T¬α = TαS∩Tα . Consequently, TαS∩Tα � ϕ for some set
S ∩ Tα ⊆ Tα.

For “⇐”, suppose TαS � ϕ for some S ⊆ Tα. Then TαS and T \ TαS form a partition of T .
Since T \ TαS = T \ (T¬α ∪ (Tα ∩ S)) ⊆ T \ T¬α = Tα, it holds T \ TαS � α. As a consequence,
T � α∨ϕ.

We proceed with ∃1α. For “⇒”, suppose that T � ∃1αϕ. Then there exists S ⊆ Tα such
that TαS � Eα∧ ∀⊆α(Eα _ ϕ). Since TαS � Eα, there exists w ∈ (TαS)α. As ∀⊆α now applies
to (TαS)

α
{w}

= Tαw as well, it follows that Tαw � Eα _ ϕ, and consequently Tαw � ϕ.

84

4 The complexity of modal team logic

α

β

T

z

0
0
0
1? ⇒
0
0
0 ⇒

RT

z z

RT
β
z

Figure 4.3: As z violates the backward condition, shrinking RTβ leads to a
0-free subteam, falsifying
∃1α∃1βχ0(α,β).

Suppose for “⇐” that Tαw � ϕ for some w ∈ Tα. Let S ⊆ Tα be arbitrary. If w /∈ S,
then (Tαw)

α
S = Tα∅ 2 Eα, and if w ∈ S, then (Tαw)

α
S = Tαw � ϕ. Therefore, for any S ⊆ Tα

it holds (Tαw)
α
S � (Eα _ ϕ), so Tαw � ∀⊆α(Eα _ ϕ). Since also Tαw � Eα, it follows

T � ∃⊆α
[
Eα∧ ∀⊆α(Eα _ ϕ)

]
.

4.3 Implementing bisimulation

Now we have all ingredients to implement k-bisimulation as a formula. The definition
is by induction on k:

χ0(α,β) := (α∨ β) ↪→
∧
p∈Φ

dep(p)

χk+1(α,β) := χ0(α,β)∧�χ∗k(α,β)

χ∗k(α,β) := (¬α∧ ¬β) 6
(

Eα∧ Eβ∧ ∼
[
(α6 β)∨ (Eα∧ Eβ∧ ∼∃1α∃1βχk(α,β))

])
The reader may wonder why this translation does not follow the forward and back-

ward condition, which rather corresponds to χ∗k(α,β) := ∀1α∃1βχk(α,β)∧ ∀1β∃1αχk(α,β).
The reason is that the more complicated formula shown above avoids the exponential
blowup that would come with two recursive calls.

Theorem 4.19. Let k > 0. For all teams T , disjoint scopes α,β, and points w ∈ Tα and v ∈ Tβ,
the following holds:

Tα,βw,v � χk(α,β) ⇔ w
k v,
T � χ∗k(α,β) ⇔ Tα
k Tβ.

Moreover, both χk(α,β) and χ∗k(α,β) are MLk(∼)-formulas that are constructible in space
O (log(k+ |Φ|+ |α|+ |β|)).

Proof. The formulas χ0 and χk+1 are straightforward. For χ∗k(α,β), let us start by first
providing some intuition on how this formula expresses team bisimulation. We focus

85

4 The complexity of modal team logic

on the case where ¬α∧ ¬β is false and Eα∧ Eβ is true (otherwise there is nothing to
prove). The idea is to isolate a witness point in z ∈ Tα ∪ Tβ for JTαKk 6= JTβKk, say, JzKk ∈
JTβKk \ JTαKk. We erase Tβ \ {z} from T using the disjunction ∨ in χ∗k, as Tβ \ {z} � α6 β.
The remaining team is exactly Tβz , in which ∃1α∃1βχk(α,β) fails (see Figure 4.3). The case
JzKk ∈ JTαKk \ JTβKk is detected analogously.

We proceed with a formal correctness proof by induction on k. Let K = (W,R, V) be a
Kripke structure. The base case k = 0 is straightforward, as no proposition p ∈ Φ occurs
in α or β. The induction step is by mutual recursion: First we assume that the theorem
holds for χk and prove it for χ∗k, and then we show it for χk+1.

“χk ⇒ χ∗k”: Let T be a team and α,β disjoint scopes in K. Observe that χ∗k is always
true if Tα and Tβ are both empty (then JTαKk = JTβKk), and that it is always false if
exactly one of them is empty (then JTαKk 6= JTβKk). So w.l.o.g. Tα, Tβ 6= ∅. Then χ∗k(α,β)
boils down to

ψ := ∼((α6 β)∨ Eα∧ Eβ∧ ∼∃1α∃1βχk(α,β)),

for which we prove that it is equivalent to JTαKk = JTβKk.
The first direction is proved by contradiction. Suppose JTαKk = JTβKk but T 2 ψ. The

disjunction is then witnessed by some division T = S ∪U, where w.l.o.g. S ⊆ Tα satisfies
α 6 β, (if S ⊆ Tβ, the proof is symmetric), and U � Eα ∧ Eβ ∧ ∼∃1α∃1βχk(α,β). Since
Tα ∩ Tβ = ∅, then Tβ ⊆ U, and clearly Tβ ⊆ Uβ. By the formula Eα, there exists w ∈ Uα.
By assumption that JTαKk = JTβKk, Uβ must contain a world v of type JwKk as well. But
then Uα,βw,v � χk(α,β) by induction hypothesis, contradiction to U � ∼∃1α∃1βχk(α,β).

For the other direction, suppose JTαKk 6= JTβKk. W.l.o.g. there exists w ∈ Tα such
that JwKk /∈ JTβKk. (For w ∈ Tβ, the proof is again symmetric.) Consider S := Tα \ {w}

and U := Tαw as a division of T . Then S � α 6 β and U � Eα ∧ Eβ. It remains to
show U � ∼∃1α∃1βχk(α,β). However, this is easy to see: U � ∃1α∃1βχk(α,β) if and only if
U � ∃1βχk(α,β), but Tβ and hence Uβ contains no world of type JwKk, so by induction
hypothesis U cannot satisfy ∃1βχk(α,β).

“χ∗k ⇒ χk+1”: We follow Definition 2.24 and Proposition 2.28.

Tα,βw,v � χk+1(α,β)

⇔ Tα,βw,v � χ0(α,β)∧�χ∗k(α,β) (def. χk+1)
⇔ w
0 v and Tα,βw,v � �χ∗k(α,β) (induction hypothesis)
⇔ w
0 v and RTα,βRw,Rv � χ

∗
k(α,β) (Proposition 4.17)

⇔ w
0 v and Rw
k Rv (induction hypothesis)
⇔ w
k+1 v. (Proposition 2.28)

It is routine to check that the formulas are constructible in logarithmic space from α, β,
Φ and k, and that md(χk) = md(χ∗k) = k.

Let us stress that χk relies on disjoint scopes to be present in the structure, and it
is open whether bisimilarity is polynomially definable otherwise. A related property,

86

4 The complexity of modal team logic

namely that a point w contains exactly one type in its image (i.e., |JRwKk| 6 1), was
recently studied by Hella and Vilander [62]. They proved it expressible in ML, but only
by formulas of non-elementary size. By this, it seems unlikely that even in ML(∼) a
polynomial formula is achievable without scopes.

However, Hella and Vilander [62] proved that their property is definable in expo-
nential size in 2-dimensional modal logic ML2. Roughly speaking, ML2 is evaluated by
traversing over pairs of points independently (for a formal introduction, see Marx and
Venema [112]). Pairs of points seem as a special case of teams, so it is plausible that
ML(∼) is stronger than ML2. But on the other hand, the modalities in ML(∼) do not act
on the points in a team independently, as they do in ML2, but instead always proceed
to a successor team “synchronously”. As a consequence, it is open whether ML(∼) can
define any of the above properties in an elementary sized formula.

4.4 Enforcing a canonical model

In this section, we return to canonical models of ML(∼), but prove a lower bound, in
a sense. We devise an MLk(∼)-formula that is satisfiable but permits only k-canonical
models. For k = 0, that is, in PL(∼), Hannula et al. [56] defined the formula

max(Φ) := ∼
∨
p∈Φ

dep(p)

and proved that T � max(Φ) if and only if T is 0-canonical, i.e., contains all Boolean
assignment over Φ. We generalize this for all k, i.e., construct a satisfiable formula
canonk that has only k-canonical models.

4.4.1 Staircase models

In our approach, we express k-canonicity by inductively enforcing i-canonical sets of
worlds for i = 0, . . . , k located in different “height” inside the model. For this purpose,
we use specific scopes s0, . . . , sk (“stairs”), and introduce a certain class of models:

Definition 4.20. Let k, i > 0 and let (K, T) be a structure with team,K = (W,R, V). Then
T is k-canonical with offset i if for every τ ∈ ∆k there existsw ∈ T with JRiwKk = {τ}. (K, T)
is called k-staircase if for all i ∈ {0, . . . , k} we have that Tsi is i-canonical with offset k− i.

As an example, a 3-staircase for Φ = ∅ is depicted in Figure 4.4. Observe that it is a
directed forest, i.e., its induced undirected graph is acyclic and all worlds are either roots
(i.e., without predecessor) or have exactly one predecessor. Moreover, it has bounded
height, where the height of a directed forest is the greatest number h such that every
path traverses at most h edges. It is straightforward to construct k-staircase models for
arbitrary k in a way similar to Figure 4.4.

Proposition 4.21. For each k > 0, there is a finite k-staircase (K, T) such that s0, . . . , sk are
disjoint scopes in K, and K is a directed forest of height at most k and T its set of roots.

87

4 The complexity of modal team logic

s0 s1 s2 s3, 22
22

|Φ|

= 16 = |∆3| elements

· · ·

· · ·

3-canonical2-canonical1-canonical0-c.

Offset

Scope:

T

Figure 4.4: Visualization of the 3-staircase forΦ = ∅, where the team Tsi is i-canonical with offset 3− i.

Observe that in such a model, Tsk is k-canonical (that is, with offset 0).

Corollary 4.22 (Finite forest model property of ML(∼)). Every satisfiable ML(∼)-formula
has a finite model (K, T) such that K is a directed forest of height at most md(ϕ) and its set of
roots being exactly T .

4.4.2 Enforcing canonicity

In the rest of the section, we prove that the existence of a k-staircase can be enforced
in ML(∼). Let us start with k = 0. The rather simple formula �imax(Φ) might come to
mind, which expresses 0-canonicity of RiT . But this is not the same as 0-canonicity of T
with offset i, an easy counter-example is a singleton T with multiple branches leading
away from it. Instead, we use the formula

maxi := >∨ (♦i>∧ ∼
∨
p∈Φ

(♦ip6 ♦i¬p)).

Lemma 4.23. T � maxi iff T is 0-canonical with offset i.

Proof. By definition, a team T is 0-canonical with offset i if it has a subteam T ′ such that
for every w ∈ T ′ it holds that JRiwK0 = {τ} for some type τ, and such that every τ ∈ ∆0
occurs in this way.

First, the quantification of the subteam T ′ is done via >∨ · · · . Then ♦i> ensures that
Riw 6= ∅ for every w ∈ T . For the remaining proof, it holds that

∼
∨
p∈Φ

(♦ip6♦i¬p) ≡ ∼ 6
Φ ′⊆Φ

(∨
p∈Φ ′

♦ip∨
∨

p∈Φ\Φ ′

♦i¬p
)
≡

∧
Φ ′⊆Φ

E
(∧
p∈Φ ′

�i¬p∧
∧

p∈Φ\Φ ′

�ip
)
.

This follows by the distributive law ϕ∨ (ψ1 6 ψ2) ≡ (ϕ∨ ψ1) 6 (ϕ∨ ψ2), the duality
∼(ψ1 6 ψ2) ≡ ∼ψ1 ∧ ∼ψ2, and the definition Eψ = ∼¬ψ. The rightmost formula now
states that for all types τ ∈ ∆0 (each represented by a subset of Φ, cf. Proposition 4.6),
there exists a world w ∈ T such that JRiwKΦ0 ⊆ {τ}.

88

4 The complexity of modal team logic

Next, we proceed with the inductive step, which is obtaining (k+ 1)-canonicity from
k-canonicity. First, we provide some intuition in the simple case Φ = ∅. For this, we
can consider the formula ∀⊆α ∃1β�χ∗k(α,β). It states that for every subteam T ′ ⊆ Tα there
exists a point w ∈ Tβ such that JRT ′Kk = JRwKk. Intuitively, every possible set of types is
captured as the image of some point in Tβ. As a consequence, if Tα is k-canonical with
offset 1, then Tβ will be (k+ 1)-canonical.

Combining the above two ideas, k-canonicity with offset i is now recursively defined
as ρik:

ρi0(β) := β ↪→ maxi
ρik+1(α,β) := ∀⊆α ∃

⊆
β

(
ρi0(β)∧�i∀1β �χ∗k(α,β)

)
canonk := ρk0(s0)∧

k∧
m=1

ρk−mm (sm−1, sm)

Theorem 4.24. Let k > 0 and K be a structure with disjoint scopes s0, . . . , sk. Then (K, T) �
canonk if and only if (K, T) is a k-staircase. Moreover, canonk is an MLk(∼)-formula con-
structible in space O (log(|Φ|+ k)).

Proof. Similar to Theorem 4.19, the construction of the above formula in logspace is
straightforward. We proceed with the correctness. Suppose that s0, . . . , sk are disjoint
scopes in K. We show the following by induction on 0 6 i 6 k: Assuming that Tα is
k-canonical with offset i+ 1, it holds that Tβ is (k+ 1)-canonical with offset i if and only
if T � ρik+1(α,β). With the induction basis done in Lemma 4.23, the inductive step is
proved by the following chain of equivalences:

Tβ is (k+ 1)-canonical with offset i
⇔ ∀τ ∈ ∆k+1 : ∃w ∈ Tβ : JRiwKk+1 = {τ}

Using the bijection h : τ 7→ (τ∩Φ,Rτ) from Proposition 4.6, we can equivalently quantify
over ℘∆k and ℘Φ:

⇔ ∀∆ ′ ⊆ ∆k : ∀Φ ′ ⊆ Φ : ∃w ∈ Tβ : JRiwKk+1 = {h−1(Φ ′, ∆ ′)}

⇔ ∀∆ ′ ⊆ ∆k : ∀Φ ′ ⊆ Φ : ∃w ∈ Tβ : Riw 6= ∅ and ∀v ∈ Riw : JvKk+1 = h−1(Φ ′, ∆ ′)

By Proposition 4.7, V−1(v) = Φ ′ and JRvKk = ∆ ′ is equivalent to JvKk+1 = h−1(Φ ′, ∆ ′):

⇔ ∀∆ ′ ⊆ ∆k : ∀Φ ′ ⊆ Φ : ∃w ∈ Tβ : Riw 6= ∅
and ∀v ∈ Riw : V−1(v) = Φ ′ and JRvKk = ∆ ′

Again by Proposition 4.6, h : τ 7→ τ ∩Φ is a bijection from ∆0 to ℘(Φ):

⇔ ∀∆ ′ ⊆ ∆k : ∀τ0 ∈ ∆0 : ∃w ∈ Tβ : Riw 6= ∅
and ∀v ∈ Riw : V−1(v) = τ0 ∩Φ and JRvKk = ∆ ′

89

4 The complexity of modal team logic

Once more by Proposition 4.7:

⇔ ∀∆ ′ ⊆ ∆k : ∀τ0 ∈ ∆0 : ∃w ∈ Tβ : Riw 6= ∅
and ∀v ∈ Riw : JvK0 = τ0 and JRvKk = ∆ ′

⇔ ∀∆ ′ ⊆ ∆k : ∀τ0 ∈ ∆0 : ∃w ∈ Tβ : JRiwK0 = {τ0} and ∀v ∈ Riw : JRvKk = ∆ ′

Since Tα is assumed k-canonical with offset i+ 1, for every τ ′ ∈ ∆k there exists u ∈ Tα
such that JRi+1uKk = {τ ′}. Accordingly, for every set ∆ ′ ⊆ ∆k there exists S ⊆ Tα such
that JRi+1SKk = ∆ ′:

⇔ ∀S ⊆ Tα : ∀τ0 ∈ ∆0 : ∃w ∈ Tβ : JRiwK0 = {τ0} and ∀v ∈ Riw : JRvKk = JRi+1SKk

For each S, gather the respective w in a team U ⊆ Tβ:

⇔ ∀S ⊆ Tα : ∃U ⊆ Tβ :
(
∀τ0 ∈ ∆0 : ∃w ∈ U : JRiwK0 = {τ0}

)
and ∀v ∈ RiU : JRvKk = JRi+1SKk

⇔ ∀S ⊆ Tα : ∃U ⊆ Tβ : U is 0-canonical with offset i
and ∀v ∈ RiU : JRvKk = JRi+1SKk

By the base case k = 0, and since U = (Tα,βS,U)β:

⇔ ∀S ⊆ Tα : ∃U ⊆ Tβ : Tα,βS,U � ρi0(β) and ∀v ∈ RiU : JRvKk = JRi+1SKk

By Theorem 4.19:

⇔ ∀S ⊆ Tα : ∃U ⊆ Tβ : Tα,βS,U � ρi0(β) and ∀v ∈ RiU : (Ri+1T)α,β
Ri+1S,Rv

� χ∗k(α,β)

By Proposition 4.17 (6):

⇔ ∀S ⊆ Tα : ∃U ⊆ Tβ : Tα,βS,U � ρi0(β) and ∀v ∈ RiU : (RiT)α,β
RiS,v

� �χ∗k(α,β)

By Proposition 4.18 applied to (RiT)α,β
RiS,RiU

:

⇔ ∀S ⊆ Tα : ∃U ⊆ Tβ : Tα,βS,U � ρi0(β) and (RiT)α,β
RiS,RiU

� ∀1β�χ∗k(α,β)

Again by Proposition 4.17 (6) and Proposition 4.18:

⇔ ∀S ⊆ Tα : ∃U ⊆ Tβ : Tα,βS,U � ρi0(β) and Ri
(
T
α,β
S,U

)
� ∀1β�χ∗k(α,β)

⇔ ∀S ⊆ Tα : ∃U ⊆ Tβ : Tα,βS,U � ρi0(β)∧�i∀1β�χ∗k(α,β)

⇔ T � ∀⊆α ∃
⊆
β (ρi0(β)∧�i∀1β�χ∗k(α,β))

⇔ T � ρik+1(α,β).

90

4 The complexity of modal team logic

4.4.3 Enforcing scopes

As the next step, we lift the restriction of the si being scopes a priori, because, in a sense,
they are definable in ML(∼) as well. For this, let ψ ⊆ Prop be finite and disjoint from Φ.
Then the formula below ensures that ψ is a set of disjoint scopes “up to height k”.

scopesk(Ψ) :=
∧

p,q∈Ψ
p6=q

¬(p∧ q)∧
∧
p∈Ψ

k∧
i=1

(
(p∧�ip)∨ (¬p∧�i¬p)

)
.

The definition up to height k is sufficient for our purposes, which follows from the
next lemma.

Lemma 4.25. If ϕ ∈ MLk(∼), then ϕ is satisfiable if and only if ϕ∧�k+1⊥ is satisfiable.

Proof. As the direction from right to left is trivial, suppose ϕ is satisfiable. By Corol-
lary 4.22, it then has a model (K, T) that is a directed forest of height at most k. But then
(K, T) � �k+1⊥, since Rk+1T = ∅ and (K, ∅) satisfies all ML-formulas, including ⊥.

Theorem 4.26. canonk∧scopesk({s0, . . . , sk})∧�k+1⊥ is satisfiable, but has only k-staircases
as models.

Proof. By combining Proposition 4.21, Theorem 4.24 and Lemma 4.25, the formula
is satisfiable. Since in every model (K, T) the propositions s0, . . . , sk must be disjoint
scopes due to �k+1⊥ and scopesk, we can apply Theorem 4.24.

Like for bisimilarity, it is open whether (Φ,k)-canonicity can be defined in ML(∼)Φk
efficiently without restricting the models to those with scopes. Note that the model
size lower bounds of this section do not imply that the brute force algorithm given in
Theorem 4.13 is optimal from a complexity theoretic perspective, as there could be a
satisfiability test that does not construct or a model. For a proper complexity theoretic
hardness result, we need to encode computations in such models, to which we will
proceed in the next sections.

4.5 Defining an order on types

In the previous section, we enforced k-canonicity with a formula, i.e., such that |∆k|
different types are contained in the team. In order to encode computations of length
|∆k|, we additionally need to be able to talk about coordinates in time and space, and
hence need an ordering of ∆k.

Let us call any finite strict linear ordering simply an order. We specify an order ≺k on
∆k, and an order ≺∗

k on ℘∆k. To begin with, let us first agree on some arbitrary order <
on Φ, say, p1 < p2 < · · · < p|Φ|. Furthermore, if @ is some order on some set X, then the
lexicographic order @∗ on ℘X is defined by

X1 @
∗ X2 iff ∃x ∈ X2 \ X1 such that ∀x ′ ∈ X : (x @ x ′)⇒ (x ′ ∈ X1 ⇔ x ′ ∈ X2).

91

4 The complexity of modal team logic

For example, let X = {0, 1} and 0 @ 1. Then ∅ @∗ {0} @∗ {1} @∗ {0, 1}.
The order ≺k depends on the propositions true in a world, and otherwise recursively

on the lexicographic order of the image team:

τ ≺0 τ ′ ⇔ τ ∩Φ <∗ τ ′ ∩Φ,
τ ≺k+1 τ ′ ⇔ τ ∩Φ <∗ τ ′ ∩Φ or (τ ∩Φ = τ ′ ∩Φ and Rτ ≺∗

k Rτ ′).

It is easy to verify by induction that ≺k and ≺∗
k are orders on ∆k and ℘∆k, respectively.

The next step is to prove that ≺k and ≺∗
k are (efficiently) definable in MLk(∼). For this,

we pursue the same approach as for χk and χ∗k in Section 4.2, and show that ≺k and ≺∗
k

are definable in formulas ζk and ζ∗k in a mutually recursive fashion. Since order is a
binary relation, the formulas below are once more parameterized by two scopes.

ζ0(α,β) :=
∨
p∈Φ

[
(α ↪→ ¬p)∧ (β ↪→ p)∧

∧
q∈Φ
q<p

(α∨ β) ↪→ dep(q)
]

ζk+1(α,β) := ζ0(α,β) 6 χ0(α,β)∧ �ζ∗k(α,β)

ζ∗k(α,β) := ∃1sk
(
∃1βχk(sk, β)

)
∧
(
∼∃1αχk(sk, α)

)
∧
((
χ∗k(α,β)∧ (α∨ β)

)
∨
(
∀1α∨β∼ζk(sk, α∨ β)

))
Note that we make use of the scopes s0, . . . , sk in the formula, and in the following

we restrict ourselves to k-staircase models. Moreover, in the subformula ζk(sk, α∨ β),
we use the fact that α∨ β is a scope whenever α,β are scopes.

We require the next lemma for the correctness of ζk and ζ∗k. Intuitively, it states that
MLk(∼) is invariant under substitution of “locally equivalent” ML-formulas.

Lemma 4.27. Let α,β ∈ ML and ϕ ∈ MLk(∼). Let T be a team such that RiT � α↔ β for all
i ∈ {0, . . . , k}. Then T � ϕ if and only if T � ϕ[α/β].

Proof. By straightforward induction; see the appendix.

The following theorem states that in the class of k-staircase models (see the previous
section) ζk and ζ∗k define the required orders.

Theorem 4.28. Let k > 0, and let (K, T) be a k-staircase with disjoint scopes s0, . . . , sk, α, β.
If w ∈ Tα and v ∈ Tβ, then

Tα,βw,v � ζk(α,β) if and only if JwKk ≺k JvKk,
T � ζ∗k(α,β) if and only if JTαKk ≺∗

k JTβKk.

Furthermore, both ζk(α,β) and ζ∗k(α,β) are MLk(∼)-formulas that are constructible in space
O (log(k+ |Φ|+ |α|+ |β|)).

We first give a rough idea of the proof, and after a series of lemmas fully prove the
theorem. The definition of ζk+1 simply follows the definition of ≺k+1. Furthermore, the

92

4 The complexity of modal team logic

�k �k �k �k �k Tβ =̂ 101000

�k �k �k �k �k Tα =̂ 100110

Tsk

z ≺∗
k ?

�k

k

�k

Figure 4.5: The pivot z ∈ Tsk determines that JTαKk ≺∗
k JTβKk. The subteam of Tα∨β of worlds≺k-greater

than zmust satisfy χ∗k(α,β).

formula ζ∗k implements the lexicographic order ≺∗
k as follows. As shown in Figure 4.5,

some z ∈ Tsk acts as an pivot that witnesses JTαKk ≺∗
k JTβK, in the sense that it is the

≺k-maximal type in which Tα and Tβ differ.1 The first line of ζ∗k indeed expresses that
JzKk ∈ JTβKk \ JTαKk.

The disjunction in the second line intuitively states that we then can “split off” the
subteam of Tα ∪ Tβ consisting of the elements ≺k-greater than z (the solid green area
in Figure 4.5), while χ∗k ensures that they agree on the contained types (this reflects
the part after the quantifier in the definition of @∗). To achieve this, the subformula
∀1α∨β∼ζk(sk, α∨ β) stipulates that any “remaining” elements from Tα ∪ Tβ possess only
types not ≺k-greater than JzKk (the dashed green area in the figure).

Here, Lemma 4.27 is applied, as it ensures that after processing ∀1α∨β the formula
ζk(sk, α∨ β) in fact is either equivalent to ζk(sk, α) or to ζk(sk, β); and hence behaves
correctly by induction hypothesis.

Next, we come to the formal proof, which requires a series of lemmas and the following
definition.

Definition 4.29. Let k > 0. Let α,β be disjoint scopes and T a team in a Kripke structure.
Then α and β are called ≺k-comparable in T if for all w ∈ Tα, v ∈ Tβ

Tα,βw,v � ζk(α,β) iff JwKk ≺k JvKk and
Tα,βw,v � ζk(β,α) iff JvKk ≺k JwKk.

Likewise, α and β are ≺∗
k-comparable in T if

T � ζ∗k(α,β) iff JTαKk ≺∗
k JTβKk and

T � ζ∗k(β,α) iff JTβKk ≺∗
k JTαKk.

The next lemma shows that the correctness of ≺∗
k follows from that of ≺k.

1Since the pivot is selected from Tsk , at this point it is crucial that the underlying structure is a
k-staircase, so that any k-type can be potentially picked.

93

4 The complexity of modal team logic

Lemma 4.30. Suppose that (K, T) is a k-staircase with disjoint scopes α,β, s0, . . . , sk. If both
α and β are ≺k-comparable to sk in all subteams S of the form Ts0 ∪ · · · ∪ Tsk−1 ⊆ S ⊆ T , then α
and β are ≺∗

k-comparable in T .

Proof. AssumingK, T, α, β, s0, . . . , sk as above, the proof is split into the following claims.

Claim (a). The disjoint scopes α∨ β and sk are ≺k-comparable in any team S that satisfies
Ts0 ∪ · · · ∪ Tsk−1 ⊆ S ⊆ T .

Proof of claim. Let w ∈ Sα∨β and v ∈ Ssk . W.l.o.g. w ∈ Sα (the case w ∈ Sβ works
analogously). Then

Sα∨β,skw,v � ζk(α∨ β, sk)

⇔ S
α,β,sk
w,∅,v � ζk(α∨ β, sk) (since Sα∨β,skw,v = Sα,β,sk

w,∅,v)
⇔ S

α,β,sk
w,∅,v � ζk(α, sk) (by Lemma 4.27, as

⋃k
i=0 R

iS
α,β,sk
w,∅,v � α↔ (α∨ β))

⇔ JwKk ≺k JvKk. (by assumption of the lemma)

The case ζk(sk, α∨ β) is symmetric. /

For the remaining proof, we omit the subscript k when referring to types and ≺. Fur-
thermore, for all τ ∈ ∆k, let JTKτ denote the restriction of JTK to types τ ′ � τ. Intuitively,
these types are the “more significant positions” for the lexicographic ordering. In the
next claim, we essentially show that the second line in the definition of ζ∗k(α,β) can be
expressed as a statement of the form JTαKτ = JTβKτ.

Claim (b). Let T be a team and τ ∈ ∆k. Then JTαKτ = JTβKτ if and only if there exists
S ⊆ Tα∨β such that JSαK = JSβK and JwK � τ for all w ∈ Tα∨β \ S.

Proof of claim. “⇒”: Simply define S := {v ∈ Tα∨β | JvK � τ}. Then JSαK = JTαKτ =

JTβKτ = JSβK. Moreover, for every w ∈ Tα∨β \ S clearly JwK � τ holds.
“⇐”: Assume that S exists as stated in the claim. By symmetry, we only prove

JTαKτ ⊆ JTβKτ. Consequently, let w ∈ Tα such that JwK ∈ JTαKτ. Then JwK � τ by
definition. But then w /∈ Tα∨β \ S. However, we have w ∈ Tα, hence w ∈ Tα∨β, which
only leaves the possibility w ∈ S. Combining w ∈ S and w ∈ Tα yields w ∈ Sα, which
by assumption also implies JwK ∈ JSβK. As JSβK ⊆ JTβK and JwK � τ, the membership
JwK ∈ JTβKτ follows. /

We finish the proof of Lemma 4.30 in the final claim below.

Claim (c). α and β are ≺∗
k-comparable in T .

Proof of claim. Due to symmetry, we prove only that T � ζ∗k(α,β) iff JTαKk ≺∗
k JTβKk.

JTαK ≺∗ JTβK
⇔ ∃τ ∈ JTβK \ JTαK : ∀τ ′ ∈ ∆, τ ≺ τ ′ : τ ′ ∈ JTαK⇔ τ ′ ∈ JTβK (def. ≺∗

k)
⇔ ∃τ ∈ JTβK \ JTαK : JTαKτ = JTβKτ (def. J·Kτ)

94

4 The complexity of modal team logic

Since Tsk is k-canonical, for every τ ∈ ∆k there exists z ∈ Tsk of type τ:

⇔ ∃z ∈ Tsk : JTαKJzK = JTβKJzK and JzK ∈ JTβK \ JTαK

⇔ ∃z ∈ Tsk : JTαKJzK = JTβKJzK and ∃x ∈ Tβ : JzK = JxK and @y ∈ Tα : JzK = JyK

As α,β and sk are disjoint, we have Tα = Oα and Tβ = Oβ for O := Tskz :

⇔ ∃z ∈ Tsk : JOαKJzK = JOβKJzK and ∃x ∈ Oβ : JzK = JxK and @y ∈ Oα : JzK = JyK
⇔ ∃z ∈ Tsk : ∃x ∈ Oβ : JzK = JxK and @y ∈ Oα : JzK = JyK

and ∃S ⊆ Oα∨β : JSαK = JSβK and ∀w ∈ Oα∨β \ S : JzK ⊀ JwK (Claim (b))

Clearly, S is a subteam of Oα∨β if and only if it is a subteam of O and satisfies α∨ β:

⇔ ∃z ∈ Tsk : ∃x ∈ Oβ : JzK = JxK and @y ∈ Oα : JzK = JyK
and ∃S ⊆ O : JSαK = JSβK and S � α∨ β and ∀w ∈ Oα∨β \ S : JzK ⊀ JwK

Observe that the property ∀w ∈ U : JzK ⊀ JwK is downward closed in U and hence holds
for U = O \ S iff it holds for any U ⊇ O \ S:

⇔ ∃z ∈ Tsk : ∃x ∈ Oβ : JzK = JxK and @y ∈ Oα : JzK = JyK
and ∃S ⊆ O : JSαK = JSβK and S � α∨ β

and ∃U ⊆ O : U ⊇ O \ S and ∀w ∈ Uα∨β : JzK ⊀ JwK

By Theorem 4.19:

⇔ ∃z ∈ Tsk : O � (∃1βχk(s, β))∧ (∼∃1αχk(s, α)) and ∃S ⊆ O :

S � (α∨ β)∧ χ∗k(α,β) and ∃U ⊆ O : U ⊇ O \ S and ∀w ∈ Uα∨β : JzK ⊀ JwK

Note that Ts0 , . . . , Tsk−1 are retained in O. Moreover, S ⊆ Oα∨β, which implies that they
are still subteams of O \ S and hence of U. But by Claim (a), α ∨ β and sk are then
≺k-comparable scopes in U and we can replace JzK ⊀ JwK:

⇔ ∃z ∈ Tsk : O � (∃1βχk(s, β))∧ (∼∃1αχk(s, α)) and ∃S ⊆ O : S � (α∨ β)∧ χ∗k(α,β)

and ∃U ⊆ O : U ⊇ O \ S and ∀w ∈ Uα∨β : Uα∨βw � ∼ζk(sk, α∨ β)

Recalling that O = Tskz , and by Proposition 4.18, we obtain:

⇔ ∃z ∈ Tsk : T
sk
z � (∃1βχk(s, β))∧ (∼∃1αχk(s, α)) and ∃S ⊆ Tskz : S�(α∨ β)∧ χ∗k(α,β)

and ∃U ⊆ Tskz : U ⊇ Tskz \ S and U � ∀1α∨β∼ζk(sk, α∨ β)

⇔ T � ∃1sk(∃
1
βχk(s, β))∧ (∼∃1αχk(s, α))
∧
(
(α∨ β)∧ χ∗k(α,β)

)
∨
(
∀1α∨β∼ζk(sk, α∨ β)

)
⇔ T � ζ∗(α,β). /

95

4 The complexity of modal team logic

In the next lemma, we prove the converse direction of Lemma 4.30.

Lemma 4.31. Let k > 0, and let (K, T) be a k-staircase with disjoint scopes α,β, s0, . . . , sk−1.
Then α and β are ≺k-comparable in every subteam S of T that contains Ts0 ∪ · · · ∪ Tsk−1 .

Proof. The proof is by induction on k. Disjoint scopes α and β are always≺0-comparable,
which can be easily seen in ζ0. For the inductive step to k+ 1, assume (K, T) and S as
above, and let K = (W,R, V). Let O := Sα,βw,v with w ∈ Sα, v ∈ Sβ arbitrary.

Claim (d). α and β are ≺∗
k-comparable in RO.

Proof of claim. In the inductive step, now s0, . . . , sk, α, β are disjoint scopes. Additionally,
(K, RT) is a k-staircase. In particular, in the induction step, α and β are disjoint from sk.
For this reason, (K, RO) is a k-staircase as well, as (RO)s0∨···∨sk = (RT)s0∨···∨sk .

Hence, by induction hypothesis, for every team U such that ROs0 ∪ · · · ∪ROsk−1 ⊆ U ⊆
RO, we obtain that sk and α are ≺k-comparable in U, as well as sk and β. Consequently,
we can apply Lemma 4.30, which proves the claim. /

We proceed with the induction step. Again by symmetry, we only show that O �
ζk+1(α,β) iff JwKk+1 ≺k+1 JvKk+1. We distinguish three cases w. r. t. ≺0:

• If JwK0 ≺0 JvK0, then O � ζ0(α,β) by the induction basis. As the former implies
JwKk+1 ≺k+1 JvKk+1 and the latter O � ζk+1(α,β), the equivalence holds.

• If JwK0 �0 JvK0, then JwKk+1 ⊀k+1 JvKk+1. Moreover, O 2 ζ0(α,β) by induction
basis. Additionally, O 2 χ0(α,β) by Theorem 4.19. Consequently, both sides of the
equivalence are false.

• If JwK0 = JvK0, then O � χ0(α,β) by Theorem 4.19, but O 2 ζ0(α,β) by induction
basis. Consequently, O � ζk+1(α,β) iff O � �ζ∗k(α,β). Also, JwKk+1 ≺k+1 JvKk+1
iff RJwKk+1 ≺∗

k RJvKk+1. The following equivalence concludes the proof:

RJwKk+1 ≺∗
k RJvKk+1

⇔ JRwKk ≺∗
k JRvKk (Proposition 4.6)

⇔ RO � ζ∗k(α,β) (Claim (d))
⇔ O � �ζ∗k(α,β).

With the above lemmas, we are now in the position to prove Theorem 4.28:

Proof of Theorem 4.28. First, it is straightforward to construct ζk and ζ∗k in logarithmic
space. For the correctness, let (K, T) be a model with disjoint scopes α,β, s0, . . . , sk as in
the theorem. By Lemma 4.31 it immediately follows that α and β are ≺k-comparable in
T . The second part, that α and β are ≺∗

k-comparable in T , follows from the combination
of Lemma 4.30 and 4.31.

96

4 The complexity of modal team logic

4.6 Encoding non-elementary computations

We combine all the previous sections of this chapter, and complement Theorem 4.13
and Corollary 4.14 with their matching lower bounds:

Theorem 4.32.

• SAT(ML(∼)) and VAL(ML(∼)) are complete for Tower(poly).

• If k > 0, then SAT(MLk(∼)) and VAL(MLk(∼)) are complete for
ATime-Alt(expk+1,poly).

The above complexity classes are complement-closed, and additionally ML(∼) and
MLk(∼) are syntactically closed under negation. For this reason, it suffices to prove
the hardness of SAT(ML(∼)) and SAT(MLk(∼)), respectively. Moreover, the case k = 0

is equivalent to SAT(PL(∼)) being ATime-Alt(exp,poly)-hard, which was proven by
Hannula et al. [56]. Their reduction also works in logarithmic space. Consequently, the
result comes down to the following lemma:

Lemma 4.33.

• If A ∈ Tower(poly), then A 6log
m SAT(ML(∼)).

• If k > 1 and A ∈ ATime-Alt(expk+1,poly), then A 6log
m SAT(MLk(∼)).

We devise for each A a reduction x 7→ ϕx such that ϕx is a formula that is satisfiable if
and only if x ∈ A. By assumption, there exists a single-tape alternating Turing machine
M that decidesA in suitable runtime. For the case of Tower(poly), clearly a deterministic
machine is a special case of an alternating one.

Let Q be the set of states of M, and the disjoint union of Q∃ (existential states), Q∀
(universal states), Qacc (accepting states) and Qrej (rejecting states). Also, let Q contain
the initial state q0. LetM have a finite tape alphabet Γ with blank symbol [∈ Γ , and a
transition relation δ.

We design ϕx in a fashion that forces its models (K, T) to encode an accepting compu-
tation ofM on x. Let us call any legal sequence of configurations ofM (not necessarily
starting with the initial configuration) a run. Then, similarly to Cook’s theorem [18],
we encode runs as tableaus, which can be depicted as square grids with a vertical time
coordinate and a horizontal space coordinate, i.e., each row of the grid represents a
configuration ofM. In what follows, let x = x1 · · · xn be some input, i.e., |x| = n.

W.l.o.g.M never leaves the input to the left, and there exists N that is an upper bound
on both the length of a configuration and the runtime ofM. Formally, a run ofM is
then a function C : {1, . . . ,N}2 → Γ ∪ (Q × Γ), Here, C(i, j) = c for c ∈ Γ means that the
i-th configuration (i.e., afterM performed i− 1 transitions) contains the symbol c in its
j-th cell. The same holds if C(i, j) = (q, c) for (q, c) ∈ Q × Γ , but then additionally the
machine is in the state q with its head visiting the j-th cell in the i-th configuration. As
an example, if C starts fromM’s initial configuration then we have C(1, 1) = (q0, x1),
C(1, i) = xi for 2 6 i 6 n, and C(1, i) = [for n < i 6 N.

97

4 The complexity of modal team logic

Due to the semantics of ML(∼), such a run must be encoded in (K, T) very carefully.
We force a team T to contain N2 worlds wi,j in which the respective value of C(i, j) is
encoded as a propositional assignment. However, we cannot enforce an actual N×N-
grid in the frame of K, as by Corollary 4.22, we cannot force the model to even contain
R-paths longer than md(ϕx). Instead, we define grid neighborship indirectly. The idea
is to encode i and j in wi,j by its type. More precisely, we use the linear order ≺k on
∆k we defined with the MLk(∼)-formula ζk in the previous section. Then, instead of
using � and ♦, we examine the grid by letting ζk judge whether a given pair of worlds
is deemed (horizontally or vertically) adjacent.

4.6.1 Encoding runs in a team

Next, we discuss how runs C : {1, . . . ,N}2 → Γ ∪ (Q× Γ) are encoded in T . Given a world
w ∈ T , we partition the image Rw with two fresh propositions t (“timestep”) and p

(“position”). Then we assign to w its location `(w), which is the pair (i, j) such that
J(Rw)tKk−1 is the i-th element, and J(Rw)pKk−1 is the j-th element in the order ≺∗

k−1.
The space of such representable coordinates is N := |℘(∆Φk−1)|. For the reduction

from the class ATime-Alt(expk+1,poly),M has runtime bounded by expk+1(g(n)) for a
polynomial g. Then taking Φ := {p1, . . . , pg(n)} yields sufficiently large coordinates, as

expk+1(g(n)) = expk+1(|Φ|) = 2expk−1
(
2|Φ|

)
6 2exp∗

k−1

(
2|Φ|

)
= 2|∆

Φ
k−1| = N

by Proposition 4.10. Likewise for the class Tower(poly)whereM has runtime expg(n)(1)
for a polynomial g: We define Φ := ∅ and compute k := g(|x|) + 1 in the reduction, but
otherwise proceed identically.

Next, let Ξ be a set of propositions disjoint from Φ that encodes Γ ∪ (Q× Γ), formally
there is a bijection c : Ξ → Γ ∪ (Q× Γ). If a world w satisfies exactly one proposition p
of those in Ξ, then by slight abuse of notation we write c(w) instead of c(p). Intuitively,
c(w) ∈ Γ ∪ (Q× Γ) is the content of the grid cell at location `(w).

Using ` and c, the function C can be encoded into a team T as follows. First, a team
T is called grid if every point in T satisfies exactly one proposition in Ξ, and every pair
(i, j) ∈ {1, . . . ,N}2 occurs as the location `(w) of some point w ∈ T . Moreover, a grid T
is called pre-tableau if for every pair (i, j) and every element p ∈ Ξ there is some world
w ∈ T such that `(w) = (i, j) and w � p. Finally, a grid T is a tableau if any two elements
w,w ′ ∈ T with `(w) = `(w ′) also agree on Ξ, i.e., c(w) = c(w ′).

Let us motivate the above definitions. Clearly, the definition of a grid T means that T
captures the whole domain of C, and that c is well-defined on the level of points. If T is
additionally a tableau, then c is also well-defined on the level of locations. In other words,
a tableau T induces a function CT : {1, . . . ,N}2 → Γ ∪ (Q× Γ) via Cα(i, j) := c(w), where
w ∈ T is arbitrary such that `(w) = (i, j).

A pre-tableau can be seen as the union of all possible tableaus. In particular, given any
pre-tableau, with this definition we ensure that arbitrary tableaus can be obtained from
it by the means of subteam quantification (cf. p. 84).

98

4 The complexity of modal team logic

A tableau T is legal if CT is a run ofM, i.e., if every row is a configuration ofM, and if
every pair of two successive rows represents a valid δ-transition.

The idea of the reduction is now to capture the alternating computation of M by
nesting polynomially many quantifications (via ∃⊆ and ∀⊆) of legal tableaus, of which
each one continues the computation of the previous one.

4.6.2 Accessing two components of locations

As discussed earlier, we choose to represent a location (i, j) in a pointw as a pair (∆ ′, ∆ ′′)

by stipulating that∆ ′ = J(Rw)tKk−1 and∆ ′′ = J(Rw)pKk−1. To access the two components
of an encoded location independently, we introduce the shorthand

|αq ψ := (α∧ ¬q)∨ ((α ↪→ q)∧ψ),

where q ∈ {t, p} and α ∈ ML. It is easy to check that T � |αq ψ iff TαTq � ψ.
In order to compare the locations of grid cells, for each component q ∈ {t, p} we define

the following formulas. Assuming singleton teams Tα and Tβ, ψq
≺(α,β) tests whether

the location in Tα is less than that in Tβ w. r. t. its q-component. Analogously, ψq
≡(α,β)

checks for equality of the respective components:

ψ
q
≺(α,β) := � |αq |

β
q ζ

∗
k−1(α,β)

ψ
q
≡(α,β) := � |αq |

β
q χ

∗
k−1(α,β)

For this purpose, ψq
≺ is built upon the formula ζ∗k−1 from Theorem 4.28, while ψq

≡
checks for equality using χ∗k−1 from Theorem 4.19.

Claim (e). Let K be a structure with a team T and disjoint scopes α and β. Suppose w ∈ Tα
and v ∈ Tβ, where `(w) = (iw, jw) and `(v) = (iv, jv). Then:

Tα,βw,v � ψt
≡(α,β) ⇔ iw = iv

Tα,βw,v � ψp
≡(α,β) ⇔ jw = jv

Moreover, if α,β, s0, . . . , sk are disjoint scopes in K and (K, T) is a k-staircase, then:

Tα,βw,v � ψt
≺(α,β) ⇔ iw < iv

Tα,βw,v � ψp
≺(α,β) ⇔ jw < jv

Proof of claim. Let us begin with ψt
≡ (then ψp

≡ works identically):

iw = iv ⇔ J(Rw)tKk−1 = J(Rv)tKk−1 (def.)
⇔ RT

α,β
(Rw) t,(Rv) t

� χ∗k−1(α,β) (Theorem 4.19)

⇔
(
RT
α,β
Rw,Rv

)α,β
RTt,RTt

� χ∗k−1(α,β)

⇔ RT
α,β
Rw,Rv � |αt |

β
t χ

∗
k−1(α,β)

99

4 The complexity of modal team logic

⇔ Tα,βw,v � � |αt |
β
t χ

∗
k−1(α,β) (Proposition 4.17)

Similarly for ψt
≺ (then ψp

≺ again works identically):

iw < iv ⇔ J(Rw)tKk−1 ≺∗
k−1 J(Rv)tKk−1 (def.)

⇔ RT
α,β
(Rw) t,(Rv) t

� ζ∗k−1(α,β) (Theorem 4.28)

⇔
(
RT
α,β
Rw,Rv

)α,β
Tt,Tt

� ζ∗k−1(α,β)

⇔ RT
α,β
Rw,Rv � |αt |

β
t ζ

∗
k−1(α,β)

⇔ Tα,βw,v � � |αt |
β
t ζ

∗
k−1(α,β) (Proposition 4.17) /

4.6.3 Defining grids, pre-tableaus, and tableaus

Next, we aim at constructing formulas that check whether a given team is a grid, pre-
tableau, or a tableau, respectively.

First, to check that every location (i, j) ∈ {1, . . . ,N}2 of the grid occurs as `(w) of some
w ∈ T , we quantify over all corresponding pairs (∆ ′, ∆ ′′) ∈ ℘(∆k−1)2. To cover all these
sets of types we can quantify, for instance, over the images of all points of Tsk . However,
as subteam quantifiers ∃⊆, ∃1, ∀⊆, ∀1 cannot pick two subteams of the pair from the same
scope, we enforce a k-canonical copy s ′k of sk in the spirit of Theorem 4.24:

canon ′ := ρk0(s0)∧

k∧
m=1

ρk−mm (sm−1, sm)∧ ρ0k(sk−1, s
′
k)

Then sk is used for the first component and s ′k is used for the second.

Claim (f). If s0, . . . , sk, s ′k are disjoint scopes in K, then (K, T) � canon ′ if and only if (K, T)
is a k-staircase and Ts ′

k
is k-canonical. Moreover, canon ′∧ scopesk({s0, . . . , sk, s ′k})∧�k+1⊥ is

satisfiable, but is only satisfied by k-staircases (K, T) in which both Tsk and Ts ′
k
are k-canonical.

Furthermore, both formulas are constructible in space O (log(|Φ|+ k)).
Proof of claim. Proven similarly to Theorem 4.24 and 4.26. /

The next formula checks whether a given team is a grid. More precisely, the sub-
formula ψpair compares the t-component of the selected location in Tα to the image of
the world quantified in sk, and its p-component to s ′k, respectively. That every world
satisfies exactly one element of Ξ is guaranteed by ψgrid as well.

ψgrid(α) :=
(
α ↪→

∨
e∈Ξ

e∧
∧
e ′∈Ξ
e ′ 6=e

¬e ′)
)
∧ ∀1sk ∀

1
s ′
k
∃1αψpair(α)

ψpair(α) := �
[(

|αt χ
∗
k−1(sk, α)

)
∧
(
|αp χ

∗
k−1(s

′
k, α)

)]
In the following and all subsequent claims, we always assume that T is a team in a

Kripke structureK such that (K, T) satisfies canon ′∧�k+1⊥. Moreover, all stated scopes

100

4 The complexity of modal team logic

are always assumed pairwise disjoint in K (as we can enforce this later in the reduction
using the formula scopesk).

Claim (g). T � ψgrid(α) if and only if Tα is a grid.

Proof of claim. Clearly T � α ↪→
∨
e∈Ξ e∧

∧
e ′∈Ξ,e ′ 6=e ¬e

′ if and only if every worldw ∈ Tα
satisfies exactly one element of Ξ. For the proof that all locations appear in Tα we use
the following chain of equivalences:

∀(i, j) ∈ {1, . . . ,N}2 : ∃w ∈ Tα : `(w) = (i, j)

⇔ ∀∆ ′, ∆ ′′ ⊆ ∆k−1 : ∃w ∈ Tα : J(Rw)tKk−1 = ∆ ′ and J(Rw)pKk−1 = ∆ ′′ (def.)

By k-canonicity of sk, s ′k due to Claim (f):

⇔ ∀v ∈ Tsk , v
′ ∈ Ts ′

k
: ∃w ∈ Tα : J(Rw)tKk−1 = JRvKk−1 and J(Rw)pKk−1 = JRv ′Kk−1

By Theorem 4.19:

⇔ ∀v ∈ Tsk , v
′ ∈ Ts ′

k
: ∃w ∈ Tα : RT

α,sk,s
′
k

(Rw)t,Rv,Rv ′ � χ
∗
k−1(sk, α)

and RTα,sk,s
′
k

(Rw)p,Rv,Rv ′ � χ
∗
k−1(s

′
k, α)

⇔ ∀v ∈ Tsk , v
′ ∈ Ts ′

k
: ∃w ∈ Tα :

(
RT
α,sk,s

′
k

Rw,Rv,Rv ′

)α
RTt

� χ∗k−1(sk, α)

and
(
RT
α,sk,s

′
k

Rw,Rv,Rv ′

)α
RTp

� χ∗k−1(s
′
k, α)

⇔ ∀v ∈ Tsk , v
′ ∈ Ts ′

k
: ∃w ∈ Tα : RT

α,sk,s
′
k

Rw,Rv,Rv ′ � |αt χ
∗
k−1(sk, α)∧ |αp χ

∗
k−1(s

′
k, α)

By Proposition 4.17 (6):

⇔ ∀v ∈ Tsk , v
′ ∈ Ts ′

k
: ∃w ∈ Tα : T

α,sk,s
′
k

w,v,v ′ � � (|αt χ
∗
k−1(sk, α)∧ |αp χ

∗
k−1(s

′
k, α))

By Proposition 4.18:

⇔ T � ∀1sk∀
1
s ′
k
∃1α�(|αt χ

∗
k−1(sk, α)∧ |αp χ

∗
k−1(s

′
k, α))

⇔ T � ∀1sk∀
1
s ′
k
∃1αψpair(α) /

With slight modifications it is straightforward to define pre-tableaus:

ψpre-tableau(α) := ψgrid(α)∧ ∀1sk ∀
1
s ′
k

∧
e∈Ξ

∃1α
(
ψpair(α)∧ (α ↪→ e)

)
Claim (h). T � ψpre-tableau(α) if and only if Tα is a pre-tableau.

Proof of claim. Proven similarly to Claim (g). /

The other special case of a grid, that is, a tableau, requires a more elaborate approach to
define in ML(∼). The difference to a grid or pre-tableau is that we have to quantify over

101

4 The complexity of modal team logic

all pairs (w,w ′) of points in T , and check that they agree on Ξ whenever `(w) = `(w ′).
However, as mentioned before, while ∀1 can quantify over all points in a team, it cannot
quantify over pairs.

As a workaround, we consider not only a tableau Tα, but also a second tableau that
acts as a copy of Tα. Formally, for grids Tα, Tβ, let Tα ≈ Tβ mean that for all pairs
(w,w ′) ∈ Tα × Tβ it holds that `(w) = `(w ′) implies c(w) = c(w ′). As ≈ is symmetric
and transitive, Tα ≈ Tβ in fact implies Tα ≈ Tα and Tβ ≈ Tβ, and hence that Tα and Tβ
are both tableaus and in fact CTα = CTβ . The following formula defines this, where γ0 is
a new scope that contains the “copy” of Tα.

ψtableau(α) := ψgrid(α)∧ ∃⊆γ0 ψgrid(γ0)∧ψ≈(α, γ0)

ψ≈(α,β) := ∀1α∀1β
((
ψt

≡(α,β)∧ψ
p
≡(α,β)

)
_
∧
e∈Ξ

((α ↪→ e)] (β ↪→ e)
)

In the above formula, we use the scopes γ0, γ1, γ2, . . . as “auxiliary pre-tableaus”. Later,
we will also use them as domains to quantify extra locations or rows from. (The index
of γi is incremented whenever necessary to avoid quantifying from the same scope
twice.) For this reason, from now on we always assume, for sufficiently large i, that Tγi
is a pre-tableau. This can be later enforced in the reduction with ψpre-tableau(γi).

Claim (i). (1) T � ψtableau(α) if and only if Tα is a tableau.

(2) For grids Tα, Tβ, it holds T � ψ≈(α,β) if and only if Tα ≈ Tβ.

Proof of claim. (2) follows straightforwardly from Claim (e), so let us consider (1). As
ψtableau entails ψgrid, we can assume that Tα is a grid.

Suppose that the formula is true. Then there exists S ⊆ Tγ0 such that TαS � ψgrid(γ0).
By Claim (g), then S is a grid as well. Moreover, Tα ≈ S by (2). As argued above, this
implies that Tα (and S) is a tableau.

For the other direction, suppose that Tα is a tableau. Then it defines a function
CTα . Since Tγ0 is a pre-tableau, we can pick a subteam S of it that contains for each
(i, j) ∈ {1, . . . ,N}2 exactly those worlds w with `(w) = (i, j) such that c(w) = CTα(i, j).
Then Tα ≈ S, and ψtableau is true, with the quantifier ∃⊆γ0 witnessed by S. /

4.6.4 From tableaus to runs

To ascertain that a tableau contains a run of M, we have to check whether each row
indeed is a configuration ofM—in other words, exactly one cell of each row contains a
pair (q, a) ∈ Q× Γ—and whether consecutive configurations obey the transition relation
δ ofM.

For this, in the spirit of Cook’s theorem [18] it suffices to consider all legal windows in
the grid, i.e., cells that are adjacent as follows, where e1, . . . , e6 ∈ Γ ∪ (Q× Γ):

e1 e2 e3
e4 e5 e6

102

4 The complexity of modal team logic

If, say, (q, a, q ′, a ′, R) ∈ δ—M switches to state q ′ from q, replacing a on the tape
by a ′, and moves to the right—then for all b, b ′ ∈ Γ , the windows obtained by setting
e1 = e4 = b, e2 = (q, a), e5 = a ′, e3 = b ′, e6 = (q ′, b ′) are legal. Using this scheme,
δ is completely represented by a constant finite set win ⊆ Ξ6 of tuples (e1, . . . , e6) that
represent the allowed windows in a run ofM.

Let us next explain how adjacency of cells is expressed. Suppose that two points
w ∈ Tα and v ∈ Tβ are given. That v is the immediate (t- or p-)successor ofw then means
that no element of the order exists between them. Simultaneously,w and v have to agree
on the other component of their location, which is expressed by the first conjunct below.
If q ∈ {t, p} and q ∈ {t, p} \ {q}, we define:

ψq
succ(α,β) := ψ

q
≡(α,β)∧ψ

q
≺(α,β)∧ ∼∃1γ0

(
ψ

q
≺(α, γ0)∧ψ

q
≺(γ0, β)

)
Claim (j). If w ∈ Tα and v ∈ Tβ, then:

Tα,βw,v � ψt
succ(α,β)⇔ ∃i, j ∈ {1, . . . ,N} : `(w) = (i, j) and `(v) = (i+ 1, j)

Tα,βw,v � ψp
succ(α,β)⇔ ∃i, j ∈ {1, . . . ,N} : `(w) = (i, j) and `(v) = (i, j+ 1)

Proof of claim. Let us consider only q = t, as the case q = p is proven analogously. Assume
that the formula ψt

succ(α,β) is true in Tα,βw,v . By Claim (e), ψp
≡ holds if and only if there

is a unique j such that `(w) = (i, j) and `(v) = (i ′, j), for some i, i ′; in other words, if w
and v agree on their p-component.

Next, consider the sets ∆w := J(Rw)tKk−1 and ∆v := J(Rv)tKk−1 which correspond to
the t-components of `(w) and `(v). Suppose that ∆w is the i-th element of ≺∗

k−1. By ψt
≺

and Claim (e), then clearly ∆v is the i ′-th element for some i ′ > i.
Suppose for the sake of contradiction that also i ′ > i+1, and let then instead∆ ′ ⊆ ∆k−1

be the (i+ 1)-th element of ≺∗
k−1. As Tγ0 is a pre-tableau, it contains a world z such that

`(z) = (i+ 1, j). But then ψq
≺(α, γ0)∧ψ

q
≺(γ0, β) is true in Tα,β,γ0w,v,z , contradiction to ψt

succ.
Consequently, i ′ = i+ 1. The direction from right to left is shown similarly. /

To check all windows in the tableau Tα, we need to simultaneously quantify elements
from six tableaus Tγ1 , . . . , Tγ6 that are copies of Tα. For this purpose, we define the
following abbreviation:

∃≈αγi ϕ := ∃⊆γi (ψgrid(γi)∧ψ≈(α, γi)∧ϕ)

Intuitively, under the premise that Tγi is a pre-tableau and Tα is a tableau, it “copies” the
tableau Tα into Tγi by shrinking Tγi accordingly. This is proven analogously to Claim (i).
The next formula states that the picked points are arranged as in the picture below:

ψwindow(γ1, . . . , γ6) := ψ
t
succ(γ1, γ4)∧ψ

t
succ(γ2, γ5)∧ψ

t
succ(γ3, γ6) ∧

ψp
succ(γ1, γ2)∧ψ

p
succ(γ2, γ3)

Tγ1 Tγ2 Tγ3
Tγ4 Tγ5 Tγ6

103

4 The complexity of modal team logic

The formula defining legal tableaus follows, for which we define subformulas θ1, θ2, θ3.

ψlegal(α) := ψtableau(α)∧ ∃≈αγ1 · · · ∃
≈α
γ6

(θ1 ∧ θ2 ∧ θ3)

With θ1, we check that the head ofM is over at most one cell:

θ1 := ∀1γ1∀
1
γ2

(
ψt

≡(γ1, γ2)∧ψ
p
≺(γ1, γ2)

)
_∧

(q1,a1),(q2,a2)∈Q×Γ

∼
(
(γ1 ↪→ c−1(q1, a1))∧ (γ2 ↪→ c−1(q2, a2)

))
With θ2, we check that the head is on at least one cell. For this, ∀1γ1 fixes a row and
∃1γ2ψ

t
≡(γ1, γ2) searches that particular row for a state ofM:

θ2 := ∀1γ1∃
1
γ2
ψt

≡(γ1, γ2)∧6
(q,a)∈Q×Γ

(γ2 ↪→ c−1(q, a))

Finally, θ3 states that every window must obey the transition relation:

θ3 := ∀1γ1 · · · ∀
1
γ6

(
ψwindow(γ1, . . . , γ6) _ 6

(e1,...,e6)∈win

6∧
i=1

(γi ↪→ ei)
)

Claim (k). T � ψlegal(α) iff Tα is a legal tableau, i.e., iff CTα exists and is a run ofM.

Proof of claim. Suppose that the formula holds. We show that Tα is a legal tableau; the
other direction is proven similarly.

Due to Claim (i), there are tableaus S1 ⊆ Tγ1 , …, S6 ⊆ Tγ6 that are copies of Tα such
that θ1 ∧ θ2 ∧ θ3 holds in Tγ1,...,γ6S1,...,S6

.
Due to Claim (e), the subformula θ1 ensures the following: For all w ∈ S1, w ′ ∈ S2,

`(w) = (i, j), `(w ′) = (i ′, j ′), if i = i ′ and j < j ′ hold, then it is not the case that both
c(w) = (q, a) and c(w ′) = (q ′, a ′) for any state symbols q, q ′ ∈ Q. SinceCS1 = CS2 = CTα ,
this is precisely the case if each row of CTα contains at most one state symbol.

Conversely, again by Claim (e), the subformula θ2 states that for every cell w ∈ S1
there is some cell w ′ ∈ S2 in the same row (possibly w itself) that carries a state symbol:
in other words, every row of CTα contains at least one state symbol.

Finally, θ3 relies on Claim (j) and states for every choice of singletons w1, . . . , w6
in S1, . . . , S6, assuming that they are arranged as a window, that there exists a tuple
(e1, . . . , e6) ∈ win such thatwi ∈ Si satisfies c(wi) = ei. As we showed that CTα contains
in each row a configuration ofM, this implies that CTα exists and is a run ofM. /

4.6.5 From runs to a computation

To encode the initial configuration on input x = x1 · · · xn in a tableau, we access the first
n cells of the first row and assign the respective letter of x, also we assign the initial state
to the first cell. Finally, we assign [to all other cells in that row. To find the first cell, for

104

4 The complexity of modal team logic

each q ∈ {t, p}, we check whether the q-component of a point in Tα is minimal:

ψ
q
min(α) := ∼∃1γ0ψ

q
≺(γ0, α)

This enables us to fix the first row of the configuration:

ψinput(α) := ∃≈αγ1 · · · ∃
≈α
γn+1

∃1γ1 · · · ∃
1
γn
ψt

min(γ1)∧ψ
p
min(γ1)∧

(
γ1 ↪→ c−1(q0, x1)

)
n∧
i=2

ψp
succ(γi−1, γi) ∧

(
γi ↪→ c−1(xi)

)
∧ ∀1γn+1

((
ψt

≡(γn, γn+1))∧ψ
p
≺(γn, γn+1)

)
_
(
γn+1 ↪→ c−1([)

))
Claim (l). Let Tα be a tableau. Then T � ψinput(α) if and only if

(1) CTα(1, 1) = (q0, x1),

(2) CTα(1, i) = xi for 2 6 i 6 n,

(3) CTα(1, i) = [for n < i 6 N.

Proof of claim. Suppose that the formula holds. After processing ∃≈αγ1 · · · ∃
≈α
γn+1

, for all
m ∈ {1, . . . , n + 1} the team Tγm is a tableau such that CTγm = CTα . (Obviously this
requires these teams to be pre-tableaus beforehand.) For this reason, we can freely
replace CTα(i, j) with CTγm (i, j) when proving the properties (1)–(3).

In the second line of the formula, we make sure that c(w) = (q0, x1) holds for least one
point w ∈ CTγ1 of location `(w) = (1, 1). That `(w) = (1, 1) holds follows from Claim (e),
ψ

q
min, and the assumption that Tγ0 is a pre-tableau (which it still is after processing the

quantifiers ∃≈αγ1 · · · ∃
≈α
γn+1

). In particular, CTγ1 (1, 1) = (q0, x1).
The third line works similarly: for 2 6 i 6 n, it assigns xi to CTγi (1, i) and hence

to CTα(1, i). Finally, the last two lines state that every other location (1, j ′) with j ′ > n
contains [. The other direction is again similar. /

Until now, we ignored the fact thatM (polynomially often) alternates. To simulate
this, we alternatingly quantify polynomially many tableaus, each containing a part of
the computation ofM. Each of these tableaus possesses a tail configuration, which is
the configuration whereM either accepts, rejects, or alternates. Formally, a number
i ∈ {1, . . . ,N} is a tail index of a run C if, for some j,

(1) C(i, j) has an accepting or rejecting state,

(2) or C(i, j) has an existential state and there are i ′ < i and j ′ with a universal state in
C(i ′, j ′),

(3) or C(i, j) has a universal state and there are i ′ < i and j ′ with an existential state in
C(i ′, j ′).

105

4 The complexity of modal team logic

The least such i is called first tail index, and the corresponding configuration is the first tail
configuration. The idea is that we can split the computation ofM into multiple tableaus
if any tableau (except the initial one) contains a run that continues from the previous
tableau’s first tail configuration.

We formalize the above as follows. Assume that Tα is a tableau, and that Tβ marks
a single row i by being a singleton {w} with `(w) = (i, j) for some j. Then the formula
ψtail(α,β) below will be true if and only if the i-th row of CTα is a tail configuration.
With the subformula

Q ′-state(β) :=6
(q,a)∈Q ′×Γ

(β ↪→ c−1(q, a)),

we check if a given singleton Tβ = {w} encodes an accepting, rejecting, existential,
universal, or arbitrary state by setting Q ′ to Qacc, Qrej, Q∃, Q∀ or Q, respectively.

ψtail(α,β) := ∃≈αγ0 ∃
1
α

[
ψt

≡(α,β)∧Q-state(α)∧
[
Qacc-state(α) 6Qrej-state(α)

6 ∃1γ0
(
ψt

≺(γ0, α)∧
(
Q∃-state(α)∧Q∀-state(γ0))

6 (Q∀-state(α)∧Q∃-state(γ0)
))]]

ψfirst-tail(α,β) := ψtail(α,β)∧ ∼∃1γ1
(
ψt

≺(γ1, β)∧ψtail(α, γ1)
)

Claim (m). Suppose that Tα is a tableau, Tβ = {w}, and `(w) = (i, j). Then T � ψtail(α,β) if
and only if i is a tail index of CTα . Moreover, T � ψfirst-tail(α,β) if and only if i is the first tail
index of CTα .

Proof of claim. Since Tγ1 is a pre-tableau and hence contains all locations in rows i ′ < i,
it is easy to see that the proof for ψfirst-tail boils down to that of ψtail. Consequently, let
us consider ψtail. First, due to ∃≈αγ0 , we can assume that Tγ0 is a tableau that is a copy of
Tα, i.e., CTα = CTγ0 . Here, it is required for the inner quantification in the definition of a
tail index.

The first line of the formula reduces Tα to a singleton that is (due to ψt
≡) in row i.

Furthermore, it carries a state q of M due to Q-state(α). The further examination of
this state will determine if i is a tail index. Now, q is exactly one of accepting, rejecting,
existential, or universal. If q ∈ Qacc ∪Qrej, then i is a tail index by definition.

Otherwise we quantify over the states q ′ of all (copies of) earlier rows in Tα, using
∃1γ0ψ

t
≺(γ0, α), and search for a universal state if q is existential and vice versa, which as

well, if it exists, proves by definition that i is a tail index. /

Given a run C ofM that has a tail configuration, we say that C accepts if the state q in
its first tail configuration is inQacc, C rejects if that q is inQrej, and C alternates otherwise.
That a run of the form CTα accepts or rejects is expressed by

ψacc(α) := ∃≈αγ2 ∃
1
γ2

(Qacc-state(γ2)∧ψfirst-tail(α, γ2)),

106

4 The complexity of modal team logic

ψrej(α) := ∃≈αγ2 ∃
1
γ2

(Qrej-state(γ2)∧ψfirst-tail(α, γ2)).

In this formula, first the tableau Tα is copied to Tγ2 to extract with ∃1γ2 the world
carrying an accepting/rejecting state, while ψfirst-tail(α, γ2) ensures that no alternation
or rejecting/accepting state occurs at some earlier point in CTα .

If the first tail configuration of the run contains an alternation, and if the run was
existentially quantified, then it should be continued in a universally quantified tableau,
and vice versa. The following formula expresses, given two tableaus Tα, Tβ, that CTβ is
a continuation of CTα , i.e., that the first configuration of CTβ equals the first tail configu-
ration of CTα . In other words, if i is the first tail index of CTα , then CTα(i, j) = CTβ(1, j)
for all j ∈ {1, . . . ,N}.

ψcont(α,β) := ∃1γ2

[
ψfirst-tail(α, γ2) ∧ ∀1α∀1β[(
ψt

min(β)∧ψ
t
≡(α, γ2)∧ψ

p
≡(α,β)

)
_
(6
e∈Ξ

(α∨ β) ↪→ e
)]]

The above formula first obtains the first tail index i of CTα and stores it in a singleton
y ∈ Tγ2 . Then for all worlds w ∈ Tα and v ∈ Tβ, where v is t-minimal (i.e., in the first
row) and w is in the same row as y, and which additionally agree on their p-component,
the third line states that w and v agree on Ξ. Altogether, the i-th row of CTα and the first
row of CTβ then have to coincide.

M performs at most r(n) − 1 alternations for some polynomial r. Then we require
r = r(n) tableaus, which we call α1, . . . , αr. In the following, the formulaψrun,i describes
the behaviour of the i-th run, i.e., the part of the computation after i − 1 alternations.
W.l.o.g. r is even and q0 ∈ Q∃. We may then define the final run by

ψrun,r := ∀⊆αr
[(
ψlegal(αr)∧ψcont(αr−1, αr)

)
_
(
∼ψrej(αr)∧ψacc(αr)

)]
.

For 1 < i < r and i even, let

ψrun,i := ∀⊆αi
[(
ψlegal(αi)∧ψcont(αi−1, αi)

)
_
(
∼ψrej(αi)∧

(
ψacc(αi) 6ψrun,i+1

))]
and for 1 < i < r and i odd,

ψrun,i := ∃⊆αi
[
ψlegal(αi)∧ψcont(αi−1, αi)∧ ∼ψrej(αi)∧

(
ψacc(αi) 6ψrun,i+1

)]
.

Finally, the initial run is described by

ψrun,1 := ∃⊆α1
(
ψlegal(α1)∧ψinput(α1)∧ ∼ψrej(α1)∧

(
ψacc(α1) 6ψrun,2

))
.

We are now in the position to state the full reduction. Let us gather all relevant scopes

107

4 The complexity of modal team logic

in the set Ψ ⊆ Prop:

Ψ := {si | 0 6 i 6 k} ∪ {s ′k} ∪ {γi | 0 6 i 6 n+ 1} ∪ {αi | 1 6 i 6 r}

The scopes that host pre-tableaus are

Ψ ′ := {γi | 0 6 i 6 n+ 1} ∪ {αi | 1 6 i 6 r}.

W.l.o.g. n > 5, as γ1, . . . , γ6 are always required in the construction. The reduction now
maps x to the MLk(∼)-formula

ϕx := canon ′ ∧ scopesk(Ψ)∧
∧
p∈Ψ ′

ψpre-tableau(p)∧ψrun,1.

It is straightforward to check that all of the above steps are computable in logspace
from x and k, where k itself is either constant or a polynomial in |x| and hence logspace-
computable. By Lemma 4.25, ϕx is satisfiable if and only if ϕx ∧�k+1⊥ is satisfiable.
For this reason, we conclude the reduction with the following proof.

Proof of Lemma 4.33. It remains to argue that ϕx ∧ �k+1⊥ is satisfiable if and only if
M accepts x. For the sake of simplicity, assume r = 2. The cases r > 2 are proven
analogously.

“⇒”: Suppose (K, T) � ϕx ∧ �k+1⊥. Similarly as in Theorem 4.26, the p ∈ Ψ are
disjoint scopes due to scopesk(Ψ). Moreover, by canon ′ and Claim (f), (K, T) is then a
k-staircase in which Tsk and Ts ′

k
both are k-canonical teams. Due to Claim (h) and the

large conjunction in ϕx, Tα1 , Tα2 , Tγ1 , . . . , Tγn+1 are then pre-tableaus.
As the formula ψrun,1 holds, by Claim (k) and Claim (l), Tα1 has a subteam S1 that is

a legal tableau and starts withM’s initial configuration on x. In particular, CS1 exists.
Moreover, either ψacc holds (i.e., CS1 and henceM is accepting) or ψrun,2 holds (i.e.,
if CS1 alternates). Consider the latter case. Then for all legal tableaus S2 ⊆ Tα2 such
that CS2 is a continuation of CS1 it holds that CS2 is accepting. However, as Tα2 is a
pre-tableau, every run is of the form CS2 for some S2 ⊆ Tα2 . Consequently,M accepts x.

“⇐”: Suppose M accepts x. First of all, due to Claim (f), the formula canon ′ ∧

scopesk({s0, . . . , sk, s ′k}) ∧ �k+1⊥ has a model (K, T). Moreover, we can freely add a
pre-tableau Tp for each p ∈ ψ to satisfy the large conjunction in ϕx. By labeling the
propositions in ψ correctly (as disjoint scopes), we ensure that scopesk(ψ) holds as well.

It remains to demonstrate T � ψrun,1. AsM accepts x, there exists a run C1 starting
fromM’s initial configuration such that either C1 accepts, or, for all runs C2 continuing
C1, C2 accepts.

Since Tα1 is a pre-tableau, it also contains a subteam S1 such that S1 is a legal tableau
and CS1 = C1. We choose S1 as witness for ∃⊆α1 . If C1 itself accepts, then ψacc(α1) and
hence ψrun,1 is satisfied. Otherwise we consider ψrun,2. Suppose that S2 ⊆ Tα2 is picked
as a subteam by ∀⊆α2 . If it forms a legal tableau and CS2 is a continuation of C1, then C2
must be accepting sinceM accepts x. But this implies that ψacc(α2) is true for any such
S2. Consequently, ψrun,2 and hence ψrun,1 is true.

108

4 The complexity of modal team logic

4.7 Hardness under strict semantics

Next, we further generalize the hardness results of the previous section and show that
they also hold under strict semantics. Recall the strict connectives ∨̇ and ♦· :

(K, T) � ψ ∨̇ θ⇔ ∃S,U ⊆ T such that T = S ∪U, S ∩U = ∅,
(K, S) � ψ and (K, U) � θ,

(K, T) � ♦·ψ ⇔ (K, S) � ψ for some strict successor team S of T ,

where a strict successor team of T is a successor team S ⊆ RT for which there exists a
surjective f : T → S satisfying f(w) ∈ Rw for all w ∈ T .

In the lax disjunction the teams of the splitting may overlap, while in the strict disjunc-
tion they are disjoint. Likewise, a lax successor team may contain multiple successor of
any w ∈ T , while in a strict successor team we pick exactly one successor for each w ∈ T .

We prove that our hardness results also hold in strict semantics. Let the logics
ML(∼, ∨̇,�) and MLk(∼, ∨̇,�) be defined like ML(∼) and MLk(∼), but with ∨̇ instead
of ∨ and without ♦ and ♦· (i.e., only using the modality �). Hardness for this fragment
clearly implies hardness for strict semantics.

Theorem 4.34. The satisfiability and validity problem of ML(∼, ∨̇,�) is Tower(poly)-hard.
For k > 0, the satisfiability and validity problem of MLk(∼, ∨̇,�) isATime-Alt(expk+1,poly)-
hard.

Proof. An analysis of the proof of Lemma 4.33 yields that the ML(∼)-formula ϕx pro-
duced in the reduction can be easily adapted to strict semantics. First, observe that ♦
occurs only in the subformula maxi, which is by Proposition 2.31 equivalent to

> ∨̇

(
¬�i⊥∧ ∼

∨̇
p∈Φ

(¬�ip6 ¬�i¬p)

)
,

since ♦α ≡ ¬�¬α, and since ¬�ip 6 ¬�i¬p is a downward closed formula. A quick
check reveals that Proposition 2.31 applies to all other instances of∨ inϕx as well, except
of the occurrence in the second line of ζ∗k. Here, the critical part of the correctness proof
is the choice of the subteam U in Claim (c) of Lemma 4.30. In strict semantics, the only
possibility becomes U = O \ S, for which the proof works identically. Finally, for the
case k = 0, a similar check of the proof for PL(∼) [56, Theorem 4.9] reveals that again
every ∨ can be replaced by ∨̇ due to Proposition 2.31.

Note that the corresponding upper bound via the construction of a canonical model
(Theorem 4.9) does not apply to strict semantics. As already mentioned in Chapter 2,
the reason for this is the failure of Proposition 2.30, which roots in the fact that in strict
semantics MLk(∼)-formulas are not invariant under k-team-bisimulation in general.

109

4 The complexity of modal team logic

4.8 Hardness on restricted frame classes

A frame is a pair F = (W,R), where W is a non-empty set and R ⊆ W ×W. A natural
restriction in the context of modal logic is to focus on Kripke structures over a specific
subclass of frames, which is useful for instance for modeling belief or temporal systems.
For an introduction to frame classes, consider, e.g., Fitting [33]. Prominent frame classes
include

K: the class of all frames,

D: serial frames (w ∈W ⇒ Rw 6= ∅),

T: reflexive frames (w ∈W ⇒ w ∈ Rw),

K4: transitive frames (u ∈ Rv∧ v ∈ Rw⇒ u ∈ Rw),

D4: serial and transitive frames,

S4: reflexive and transitive frames.

In this section, we consider these classes from a complexity theoretic perspective, and
show that the lower bounds of ML(∼) are preserved when restricted to these classes.
Given a frame class F and a fragment L of ML(∼), let SAT(L,F) denote the set of all
L-formulas that are satisfied in a model (K, T) where K = (F, V) and F ∈ F. Define
VAL(L,F) analogously.

For example, E�⊥ ∈ SAT(ML(∼),K), but E�⊥ /∈ SAT(ML(∼),D4).
Ladner’s theorem [94, Theorem 3.1] implies that classical modal satisfiability and

validity are PSpace-hard for any frame class between S4 and K, i.e., the complexity does
not change for restricted frame classes. This includes all the above frame classes. We
show an analog to Ladner’s theorem for team semantics, in the sense that the complexity
of ML(∼) does not decrease for any frame class between S4 and K.

Theorem 4.35. Let F be a frame class such that S4 ⊆ F ⊆ K. Then SAT(ML(∼),F) and
VAL(ML(∼),F) are hard for Tower(poly), and SAT(MLk(∼),F) and VAL(MLk(∼),F) are
hard for ATime-Alt(expk+1,poly), for k > 0.

The hardness is shown by a reduction from the case of unrestricted frames, i.e.,
SAT(MLk(∼),K) 6log

m SAT(MLk(∼),F). The proof for ML(∼) (i.e., unbounded modal
depth) is similar. Also, the reduction for VAL is clear.

As a part of the reduction, we use a class ofmodels that are “stratified” in the following
sense. Given a formula ϕ ∈ MLΦk (∼), we introduce new propositions `0, . . . , `k /∈ Φ that
mark the layers of different height in a structure. For this to be a consistent labeling, we
use propositional formulas λi := `i∧

∧
j6=i ¬`j that exclude all but one `i from being true

in each world. Given a Φ ∪ {`0, . . . , `k}-structure K = (W,R, V), let K◦ := (W,R◦, V) be
the structure where only “good” edges are retained, i.e., between layers with numbers i

110

4 The complexity of modal team logic

and i+ 1, respectively:

R◦ = R ∩
k−1⋃
i=0

(V(`i)× V(`i+1)).

On the formula side, we mirror this by changing the modalities such that all “bad”
edges are ignored. For this, we inductively define the formula ϕi from ϕ as follows. The
propositions and Boolean connectives are unchanged, i.e., pi := p for p ∈ Φ, (ψ∧ θ)i :=

ψi∧θi, (∼ψ)i := ∼ψi, (ψ∨θ)i := ψi∨θi. For the modalities, let (♦ψ)i := ♦(λi+1∧ψi+1)
and (�ψi) := �(λi+1 ↪→ ψi+1).

The next lemma now states that we can arbitrarily add “bad” edges as long as each
world has a well-defined “layer”.

Lemma 4.36. Let k > 0. Let K = (W,R, V) be a structure such that V(`i) ∩ V(`j) = ∅ for all
0 6 i < j 6 k.
Then, for all i ∈ {0, . . . , k}, teams T ⊆ V(`i), and formulas ψ ∈ MLk−i(∼), it holds that

(K, T) � ψi if and only if (K◦, T) � ψ.

Proof. By induction on ψ. Let K, i, T be as above.

• Atomic propositions are clear, and the Boolean connectives and splitting follow
easily from the induction hypothesis.

• Let ψ = ♦θ ∈ MLk−i(∼). In this case, k − i > 1, so k > i + 1. Now suppose
(K, T) � ψi, i.e., (K, S) � λi+1 ∧ θi+1 for some R-successor team S of T . Then
observe that S ⊆ V(`i+1), and θ ∈ MLk−(i+1)(∼). Consequently, by the induction
hypothesis, (K◦, S) � θ. S is also an R◦-successor team of T , since (w, v) ∈ R
is retained in R◦ for every (w, v) ∈ V(`i) × V(`i+1), and we have T ⊆ V(`i) and
S ⊆ V(`i+1). This proves (K◦, T) � ψ.
Conversely, if (K◦, T) � ψ, then (K◦, S) � θ for some R◦-successor team S of
T . However, any R◦-successor team of T is a subset of V(`i+1). This is because
i + 1 6 k, so T ⊆ V(`i) implies T ∩ V(`j) = ∅ for all j 6= i, which means that
any outgoing R◦-edge must lead into V(`i+1). Consequently, we obtain both
(K, S) � `i+1 and by induction hypothesis (K, S) � θi+1. This ultimately yields
(K, T) � ψi = ♦(`i+1∧θi+1), since the R◦-successor team S is trivially a R-successor
team of T .

• Let ψ = �θ. Then:

(K, T) � ψi ⇔ (K, RT) � (`i+1 ↪→ θi+1) (def. ψi = (�θ)i)
⇔ (K, RT ∩ V(`i+1)) � θi+1 (def. ↪→)
⇔ (K◦, RT ∩ V(`i+1) � θ (induction hypothesis)

(?)⇔ (K◦, R◦T � θ

⇔ (K◦, T) � ψ

111

4 The complexity of modal team logic

For (?), we show that R◦T = RT ∩ V(`i+1). Clearly R◦T ⊆ RT and by a similar
argument as before we have R◦T ⊆ V(`i+1), which proves “⊆”. Conversely, if
w ∈ RT ∩ V(`i+1), then (v,w) ∈ R for some v ∈ T . As (v,w) ∈ V(`i)× V(`i+1), then
(v,w) ∈ R◦, hence w ∈ R◦T This shows “⊇”.

We proceed with the proof of the full theorem.

Proof of Theorem 4.35. The reduction is now

ϕ 7→ ϕ ′ := `0 ∧ϕ
0 ∧

k∧
i=0

�i
k∨
j=0

λj

We proceed with proving the correctness of the reduction, i.e., ϕ is satisfied in an
arbitrary model if and only if ϕ ′ is satisfied in a reflexive and transitive model.

“⇒”: First, assume that ϕ ∈ MLk(∼) is satisfiable by some model (K, T). We show that
ϕ ′ has a reflexive and transitive model.

By Corollary 4.22, w.l.o.g. (K, T) is a forest of height k with the set of roots being
T . W.l.o.g. the propositions `0, . . . , `k (which we can assume do not occur in ϕ) ap-
pear in K as follows: V(`i) = RiT , that is, V(`0) = T , V(`1) = RT and so on. The sets
V(`0), V(`1), . . . , V(`k) are then pairwise disjoint since K is a forest.

This enables us to apply the lemma. Let R∗ be the reflexive transitive closure of R
and K∗ := (W,R∗, V). We will show below (R∗)◦ = R. Then by the lemma we obtain
(K∗, T) � ϕ0, and since we ensured (K∗, T) � `0 ∧

∧k
i=0�

i
∨k
j=0 λj from the beginning,

(K∗, T) is then a reflexive transitive model of ϕ ′.
It remains to prove (R∗)◦ = R. It is easy to see that R = R◦ ⊆ (R∗)◦. For the other

direction, suppose (w, v) ∈ (R∗)◦. By definition of (R∗)◦, there is i such that w ∈ V(`i),
v ∈ V(`i+1), and v is reachable from w by some R-path (u0, . . . , un) where w = u0 and
v = un (and possibly n = 0). But since u0 ∈ RiT , for all m it holds um ∈ Ri+mT =

V(`i+m). As V(`i+n) ∩ V(`i+1) = ∅ for n 6= 1, we conclude n = 1, so (w, v) ∈ R.
“⇐”: Suppose ϕ ′ = `0 ∧ ϕ

0 ∧
∧k
i=0�

i
∨k
j=0 λj is satisfiable by some model (K, T).

W.l.o.g. (K, T) again is a directed forest of height k. The large conjunction then has the
effect that every world in K satisfies precisely one `i. Moreover, (K, T) � `0. For these
reasons, the lemma again applies, and from (K, T) � ϕ0 we conclude (K◦, T) � ϕ, so ϕ
is satisfiable.

Originally, Ladner [94] proved the hardness of the satisfiability problem of modal
logic by a direct reduction from the satisfiability problem of QPL. The proof worked,
like our result, for any frame class between S4 and K. The new part of our result here
is that such a flexible reduction is not only possible from, say, QPL, but even between
different frame classes of modal logic. This way, it is also applies to modal team logic
and possibly other logics as well.

112

4 The complexity of modal team logic

4.9 Filtration in team semantics

Next, we study amodel-theoretic concept called the filtration technique. Filtration turned
out to be a powerful tool to prove that a logic has the small model property. This property
states that, if a formula ϕ has a model, then ϕ has a model that obeys a specific size
bound. If this is for instance an exponential size in |ϕ|, then the logic has the exponential
model property. Prominent examples of logics with this property are modal logics [9],
dynamic and temporal logics [30], and even fragments of first-order logic [48]. The
application of filtration to modal logic seems to go back to Segerberg [127] as well as
Gabbay [35].

In this section, we adapt the filtration technique to team semantics, and prove the
exponential model property for a non-trivial fragment of ML(∼) we call ML(mon).

4.9.1 Morphisms and filtrations

Definition 4.37 (Modal homomorphism). Let K = (W,R, V) and K ′ = (W ′, R ′, V ′) be
Kripke structures overΦ ⊆ Prop. A mapping h : W →W ′ is a homomorphism, in symbols
h : K→ K ′, if

(1) for all p ∈ Φ, if w ∈ V(p), then h(w) ∈ V ′(p)

(2) for all w, v ∈W, if Rwv, then R ′f(w)f(v).

If h is additionally surjective, then K ′ is called morphic image of K and written h(K).

If ≈ is an equivalence relation on a set S, then [s]≈ := { s ′ ∈ S | s ′ ≈ s } denotes the
equivalence class of s ∈ S. The set of all equivalence classes in S is the quotient S/≈ :=

{ [s]≈ | s ∈ S }, and the index of ≈ is the cardinality |S/≈|. For a subset U ⊆ S, let [U]≈ :=

{ [s]≈ | s ∈ U }. We often will drop the subscript and write [s] and [U]. If ≈ and ≈ ′ are
equivalence relations on S such that s ≈ ′ s ′ implies s ≈ s ′, then ≈ ′ is a refinement of
≈. Given two equivalence relations ≈1,≈2 on S, their intersection ≈1 ∩ ≈2 is again
an equivalence relation on S and a refinement of both ≈1 and ≈2, and |S/≈1∩≈2 | 6
|S/≈1 | · |S/≈2 |.

Definition 4.38 (Filtration). Let K = (W,R, V) be a Kripke structure. Let ≈ be an
equivalence relation onW. Then the Kripke structure (W ′, R ′, V ′) defined by

W ′ := W/≈,
R ′[w][v] ⇔ ∃w ′ ∈ [w], ∃v ′ ∈ [v] such that Rwv,

[w] ∈ V ′(p) ⇔ [w] ∩ V(p) 6= ∅,

is the filtration of K through ≈, denoted K/≈.1

Every filtration of a structure is also a morphic image of it, via the mapping w 7→ [w].

1The definition used here is also known as the minimal filtration.

113

4 The complexity of modal team logic

Standard modal logic has, for any given formula α ∈ ML and model K, a filtration
down to a model of α of size exponential in |α|. The approach is the following: For a
fixed Kripke structure K = (W,R, V) and a subset Γ ⊆ ML, we define an equivalence
relation≈Γ onW such thatw ≈Γ w ′ if and only if ∀α ∈ Γ : (K, w) � α⇔ (K, w ′) � α. The
result is the next theorem, which is standard (see, e.g., Blackburn and van Benthem [9]):

Theorem 4.39. Let K = (W,R, V) be a Kripke structure, and let Γ ⊆ ML be closed under
taking subformulas, i.e., sub(Γ) = Γ . Let ≈ ′ be any refinement of ≈Γ . Then (K, w) � α iff
(K/≈ ′ , [w]≈ ′) � α, for all formulas α ∈ Γ and worlds w ∈W.

Corollary 4.40 (Small model property of modal logic). Every satisfiable formula α ∈ ML
has a model of size at most 2|α|.

4.9.2 Strongly invariant formulas

An obvious generalization of Theorem 4.39 is to replace the universal quantification of
worlds by that of teams. It is plausible that a similar inductive proof works for teams.
The next definition yields some filtration results for team semantics, but its limits are
quickly reached, as we see later in this section.

Definition 4.41. If K = (W,R, V) is a Kripke structure, T ⊆W is a team, ≈ is an equiva-
lence relation onW, and Φ ⊆ ML(∼), then ≈ is

• Φ-invariant on (K, T) if ∀ϕ ∈ Φ : (K, T) � ϕ ⇔ (K/≈, [T]≈) � ϕ,

• Φ-invariant on K if it is (K, T)-invariant for all T ⊆W,

• strongly Φ-invariant on K (resp. (K, T)) if every refinement ≈ ′ of ≈ is Φ-invariant
on K (resp. (K, T)).

Recall that sub(Γ) is the closure of Γ under taking subformulas.

Proposition 4.42. Let Γ ⊆ ML. Then on any structure K, the corresponding equivalence
relation ≈sub(Γ) is strongly Γ -invariant on K.

Proof. Let K = (W,V, R), and let ≈ ′ be a refinement of ≈sub(Γ). We have to show that ≈ ′

is α-invariant on K for all α ∈ Γ . By Theorem 4.39, it holds w � α ⇔ [w]≈ ′ � α for all
w ∈W. The statement is then proven, since for all T ⊆W,

T � α

⇔ ∀w ∈ T : w � α (flatness)
⇔ ∀w ∈ T : [w]≈ ′ � α (by assumption)
⇔ ∀ [w]≈ ′ ∈ [T]≈ ′ : [w]≈ ′ � α (def. [T]≈ ′)
⇔ [T]≈ ′ � α (flatness)

The above result demonstrates that team semantics supports filtration when restricted
to flat formulas. Next, we proceed with non-flat fragments of ML(∼) and show that they
still admit filtration.

114

4 The complexity of modal team logic

Definition 4.43 (B- and S-closures). If Φ ⊆ ML(∼), then B(Φ) is the closure of Φ under
∼ and ∧, and S(Φ) is the closure of Φ under ∼,∧ and ∨.

Clearly Φ ⊆ B(Φ) ⊆ S(Φ) ⊆ ML(∼).

Lemma 4.44. LetK = (W,R, V) be a structure andΦ ⊆ ML(∼). If≈ is (strongly)Φ-invariant
on K, then ≈ is also (strongly) S(Φ)-invariant on K.

Proof. The proof is by induction on ϕ, where ϕ ∈ S(Φ). The inductive step is clear for
the truth-functional connectives on the level of teams, i.e., ∼ and ∧.

Next, suppose ϕ = ψ1 ∨ ψ2. Let (K, T) � ϕ via S ∪ U = T , S � ψ1 and U � ψ2. Then
clearly [T]≈ = [S]≈ ∪ [U]≈. By induction hypothesis, [T]≈ � ψ1 ∨ψ2.

Conversely, let [T]≈ � ϕ via teams S̃, Ũ ⊆ W/≈ such that S̃ ∪ Ũ = [T]≈, S̃ � ψ1 and
Ũ � ψ2. There is not necessarily a unique choice of S,U ⊆ T such that [S]≈ = S̃ and
[U]≈ = Ũ, so we choose corresponding S andU as large as possible to ensure T is covered
by S∪U. Namely, define S :=

{
w ∈ T

∣∣ [w]≈ ∈ S̃ } and U :=
{
w ∈ T

∣∣ [w]≈ ∈ Ũ }. If now
w ∈ T , then [w]≈ ∈ [T]≈, so [w]≈ ∈ S̃ or [w]≈ ∈ Ũ, and consequently w ∈ S or w ∈ U.
Therefore T ⊆ S ∪U. By definition S,U ⊆ T , so T = S ∪U.

To show that T � ψ1∨ψ2 follows from the induction hypothesis, it remains to show that
actually [S]≈ = S̃ resp. [U]≈ = Ũ holds. Suppose [w]≈ ∈ [S]≈. (The proof is analogous
for U). Then by definition of [·]≈ there exists ŵ ∈ S such that ŵ ≈ w, again implying by
definition of S that [ŵ]≈ = [w]≈ ∈ S̃. Hence [S]≈ ⊆ S̃.

Let conversely [w]≈ ∈ S̃. Then [w]≈ ∩ T is non-empty, since otherwise [w]≈ /∈ [T]≈ by
definition of [·]≈, contradicting [w]≈ ∈ S̃ ⊆ [T]≈. Hence there exists some ŵ ∈ T such
that ŵ ≈ w. Since ŵ ∈ T and [ŵ]≈ = [w]≈ ∈ S̃, it follows ŵ ∈ S by the definition of S, and
hence [ŵ]≈ = [w]≈ ∈ [S]≈ as desired.

Theorem4.45. For every Kripke structureK and every finiteΦ ⊆ S(ML) there is an equivalence
relation of index at most

∏
ϕ∈Φ 2

|ϕ| that is strongly Φ-invariant on K.

Proof. Let Γ := sub(Φ)∩ML. By Proposition 4.42,≈Γ is Γ -invariant. |Γ | 6
∑
ϕ∈Φ |ϕ|, so≈Γ

has index atmost
∏
ϕ∈Φ 2

|ϕ|. SinceΦ ⊆ S(Γ), the theorem follows fromLemma 4.44.

Corollary 4.46. Every satisfiable ϕ ∈ S(ML) has a model of size at most 2|ϕ|.

Based on these results, it appears that (strong) invariance is a natural property of
filtrations. It seems like a straightforward tool to generalize the usual filtration technique
to team semantics. However, it is inadequate when team-wide modalities come into
play, as the following counter-example shows. Recall the PL(∼)-formula from p. 87,

max(Φ) := ∼
∨
p∈Φ

dep(p),

due to Hannula et al. [56], where Φ ⊆ Prop is a finite set of propositions, and dep(p) :=
p6¬p. Clearly, max(Φ) has length O (|Φ|). It is true in a team T if and only if all Boolean
assignments to variables in Φ appear in T . The following counter-example is based on
it. It even applies to a more general notion of homomorphism than filtration.

115

4 The complexity of modal team logic

Definition 4.47. Let h : K → K ′ be a homomorphism between Kripke structures and
Φ ⊆ ML(∼). If T is a team in K, then h(T) := { h(w) | w ∈ T }.

• h is Φ-invariant on (K, T) if (K, T) � ϕ⇔ (K ′, h(T)) � ϕ for all ϕ ∈ Φ,

• h is Φ-invariant on K if it is Φ-invariant on (K, T) for all teams T in K.

We simply write ϕ-invariant instead of {ϕ}-invariant.

Theorem 4.48. Let Φ ⊆ Prop and ϕ = �max(Φ). Then there is a structure K such that the
image of any homomorphism that is ϕ-invariant on K has size at least 22|Φ| .

Proof. Let Φ := {p1, . . . , pn}. Define K = (W,R, V) as follows. Let W be the set of all
propositional teams over Φ, that is,W := ℘(Φ→ {0, 1}). Consequently, |W| = 22

n .
For any singleton X = {s} ∈W of exactly one assignment s, let {s} ∈ V(p)⇔ s(p) = 1,

that is, worlds in theKripke structure that are singletonsmimic the propositional labeling
represented by their unique member. In all other worlds, all propositions are true, i.e.,
if |X| 6= 1, then X ∈ V(p) for all p ∈ Φ. Finally, for all X ∈W and s ∈ X, add the edge from
X to {s}.

Let now h(K) be a morphic image of K with h being ϕ-invariant. As a first step, we
show that h is also p-invariant for all p ∈ Φ, which is not clear just from the fact that is
ϕ-invariant. By definition of homomorphism, X � p implies h(X) � p. For the converse
direction, suppose X 2 p but h(X) � p for some X ∈W and p ∈ Φ. Then by construction
of V , Xmust be one of the singletons {s} ∈W for s : Φ→ {0, 1}. It is not hard to see that of
the 2n − 1 assignments with at least one zero, only 2n − 2 of them occur as the valuation
of a world in h(K). As a consequence, no team in h(K) can satisfy �max(Φ) anymore,
and in particular not h(T). So X 2 pmust imply h(X) 2 p.

Next, we come to the actual proof. Suppose that the image h(K) has less than 22n

worlds. Then h is not injective, i.e., h(X) = h(Y) for some distinct X, Y ∈ W. W.l.o.g.
there is an assignment s ∈ X \ Y. Let Z := (Φ→ {0, 1}) \ {s} and consider now the team
T := { Y, Z }. Neither of its element has {s} as successor, and no edges lead to non-singleton
elements ofW, and so there is no edge from T to any world with the same propositions
as in the assignment s. Hence T 2 �max(Φ). But below we show that h(T) � �max(Φ),
which contradicts the fact that h is ϕ-invariant, so h(K) must have 22n or more worlds.

By definition, Z has {s ′} as successor for any assignment s ′ 6= s. Recall that h(X) = h(Y),
so h(T) =

{
h(Y), h(Z)

}
=
{
h(X), h(Z)

}
= T ′. But the team T ′ is a team in h(K) that

satisfies �max(Φ), since h preserves edges, and so h(X) has successor h({s}), and h(Z)
has successor h({s ′}) for all s ′ 6= s.

Corollary 4.49. There are families (ϕn)n>0 of PL(∼)-formulas of size |ϕn| ∈ O (n) and struc-
tures (Kn)n>0 such that every �ϕn-invariant equivalence relation on Kn has index at least
22
n .

Recall that by Theorem4.45, S(ML)has filtration down to an exponentialmodel. Hence
there is a succinctness gap between S(ML) and S(ML) preceded by modal operators.

116

4 The complexity of modal team logic

Corollary 4.50. There is a family (ϕn)n>0 of S(ML)-formulas of size O (n) such that every
S(ML)-formula equivalent to �ϕn has length > 2n.

Also, any homomorphism invariant for ♦max(Φ) is also invariant for >∨ ♦max(Φ),
which is shown similarly to Lemma 4.44. But > ∨ ♦max(Φ) ≡ �max(Φ), so as before,
no ♦max(Φ)-invariant homomorphism exists for K with an image of size < 22n .

Corollary 4.51. There is a family (ϕn)n>0 of S(ML)-formulas of size O (n) such that every
S(ML)-formula equivalent to ♦ϕn has length > 2n.

However, if ϕ ∈ B(ML), then �ϕ has an equivalent B(ML)-formula of length only
6 2|ϕ|. The translation is performed by �∼ψ ≡ ∼�ψ and �(ψ∧ψ ′) ≡ �ψ∧�ψ ′.

Corollary 4.52. There is a family (ϕn)n>0 of S(ML)-formulas of size |ϕn| ∈ O (n) such that
every B(ML)-formula equivalent to ϕn has length > 2n.

In other words, � is easy to distribute over ∧ and ∼, but hard to distribute over ∨, and
S(ML) is exponentially more succinct than B(ML).

4.9.3 A weak filtration for monotone modal team logic

An exponential model property can be obtained for larger fragments of ML(∼), provided
the requirements of filtration are weakened properly. An obvious candidate is the
invariance property. To find a small model of ϕ starting from a given model (K, T), it is
unnecessary to have ∼ϕ preserved as well; hencewe replace invariance by an asymmetric
feature called preservation.

Moreover, a filtration ≈ does not need to preserve a formula ϕ in all teams of a model
(K, T) — having ϕ true in [T]≈ would be completely sufficient. For this reason, we do
not define preservation on the whole structure K, but only locally:

Definition 4.53. If ≈ is an equivalence relation on a Kripke structure K = (W,R, V),
T ⊆W is a team, and Φ ⊆ ML(∼), then ≈ is

• Φ-preserving on (K, T) if ∀ϕ ∈ Φ : (K, T) � ϕ ⇒ (K/≈, [T]≈) � ϕ,

• strongly Φ-preserving if every refinement ≈ ′ of ≈ is Φ-preserving.

The above property is clearly not closed under negation, but still closed under the
modal connectives. In this context, we consider the ML(∼) operators ∧,∨,♦ and � as
monotone, and also add the Boolean disjunction 6 as a primitive connective. Based on
these, we define the following fragment.

Definition 4.54. The monotone fragment ML(mon) of ML(∼) is defined as the closure of
S(ML) under ∧,6,∨,� and ♦.

In a series of lemmas, we will prove the following upper bound for this restricted
fragment:

117

4 The complexity of modal team logic

Theorem 4.55. For every finiteΦ ⊆ ML(mon), every structureK = (W,R, V), and every team
T ⊆W, there is an equivalence relation of index at most

∏
ϕ∈Φ 2

|ϕ| that is stronglyΦ-preserving
on (K, T).

Note that we still quantify over all teams T , but are allowed to choose a different
filtration for each team. The order of these quantifications makes a crucial difference
here, in particular it eliminates the vulnerability against the method of Theorem 4.48
for filtration lower bounds.

In the following lemmas, letK = (W,V, R) be a Kripke structure and ≈ an equivalence
relation onW, and accordingly K/≈ = (W/≈, R

′, V ′) as in Definition 4.38.
First we prove that subformulas starting with ♦ are preserved.

Lemma 4.56. If S is a successor team of T , then [S]≈ is a successor team of [T]≈.

Proof. Suppose that S is a successor team of T . We have to show that every [w] ∈ [T] has
an R ′-successor in [S] and that every [v] ∈ [S] has an R ′-predecessor in [T]. Let [w] ∈ [T],
then w ′ ∈ T for some w ′ ≈ w. w ′ has an R-successor v ∈ S, so [v] ∈ [S]. But Rw ′v implies
R ′[w ′][v], so [w ′] = [w] has an R ′-successor in [S].

Conversely, if [v] ∈ [S], then v ′ ∈ S for some v ′ ≈ v. v ′ has an R-predecessor w ∈ T .
However, Rwv ′ again implies R ′[w][v ′], so R ′[w][v] for some [w] ∈ [T].

Formulas starting with � are similarly preserved in teams T , at least as long as the
filtration does not cross the boundaries of the preimage team T :

Lemma 4.57. If S is the image of T , and T is closed under ≈ (i.e., w ≈ w ′ and w ∈ T implies
w ′ ∈ T), then [S] is the image of [T].

Proof. As in the previous lemma, every [v] ∈ [S] has an R ′-predecessor in [T]. It remains
to prove that [S] contains all R ′-successors [v] of all [w] ∈ [T]. Let R ′[w][v] for [w] ∈ [T].
There exist w ′ ≈ w and v ′ ≈ v such that Rw ′v ′. By assumption of the lemma, w ′ ∈ T , so
its R-successor v ′ must be in S, and [v ′] = [v] ∈ [S].

It is easy to verify that the converse of the above two lemmas is false, or in other words,
that the negations of modal operators are not preserved in filtrations.

We are now ready to prove the theorem.

Proof of Theorem 4.55. LetK = (W,R, V), T ⊆W andΦ ⊆ ML(mon) be as in Theorem 4.55
such that (K, T) � Φ. Below, we define an equivalence relation ≈ and show that ϕ :=∧
ψ∈Φψ is strongly preserved.
By definition of ML(mon), ϕ is a monotone combination (i.e., using only operators

∧,6,∨,♦,�) of S(ML) formulas. We exploit the monotonicity and define a witness team
T?(ψ) for subformulas ψ of ϕ. W.l.o.g. every subformula of ϕ occurs only once in ϕ.
The idea is that it suffices to preserve these subformulas in their corresponding witness
teams instead of the whole structure.

The team T?(ψ) ⊆W is defined top-down for eachψ /∈ S(ML) such that (K, T?(ψ)) � ψ.
Accordingly, we start by setting T?(ϕ) := T . Whenever T?(�ψ) is defined for�ψ ∈ sub(ϕ),

118

4 The complexity of modal team logic

set T?(ψ) := RT?(�ψ). Intuitively, if the team T ′ := T?(�ψ) witnesses �ψ, then the team
RT ′ must witness ψ.

Similarly, T?(♦ψ) must have a successor team S that satisfies ψ, so set T?(ψ) := S.
Any team T?(ψ∨ψ ′), for ψ∨ψ ′ ∈ sub(ϕ), likewise can be split into S � ψ and U � ψ ′,
consequently then T?(ψ) := S and T?(ψ ′) := U. If ψ = ψ ′ ∧ ψ ′′ or ψ = ψ ′ 6 ψ ′′ is in
sub(ϕ), then T?(ψ ′) and/or T?(ψ ′′) simply equals T?(ψ).

The equivalence relation≈ is now constructed as follows. Similarly as in Theorem 4.45,
let Γ := sub(ϕ) ∩ML. Define ≈ ′ as the coarsest refinement of ≈Γ that does not cross
the boundaries of witness teams T?(ψ), i.e., w ≈ ′ w ′ if and only if w ≈Γ w ′ and, for all
ψ ∈ sub(ϕ), w ∈ T?(ψ)⇔ w ′ ∈ T?(ψ).

Lemmas 4.56 and 4.57 now allow to prove (K/≈ ′′ , [T?(ψ)]≈ ′′) � ψ for any refinement
≈ ′′ of ≈ ′, and any ψ ∈ sub(ϕ), by induction on ψ. The splitting case is handled as in
Lemma 4.44. As ≈ ′ has index at most 2|sub(ϕ)∩ML| · 2|sub(ϕ)\S(ML)| 6 2|ϕ|, this proves the
theorem.

Corollary 4.58. Every satisfiable formula ϕ ∈ ML(mon) has a model of size at most 2|ϕ|.

Proposition 4.59. The satisfiability problem of ML(mon) is ATime-Alt(exp,poly)-complete.

Proof. The hardness already holds for PL(∼) [56], which coincides with the modality-
free fragment of ML(mon), so we only need to prove the upper bound. By Theorem 2.32,
the model checking problem for ML(∼) is decidable by an alternating Turing machine
that with runtime polynomial in |K|+ |ϕ| and alternations polynomial in |ϕ|. This allows
to decide the satisfiability problem of ML(mon) as follows. Given a formula ϕ, guess a
Kripke structure K of size up to 2|ϕ| and a team T in K. Then execute the above model
checking algorithm on (K, T, ϕ). By the preceding corollary, the algorithm decides
ML(mon) in exponential runtime and with polynomially many alternations.

4.10 Summary and outlook

4.10.1 Summary

Theorem 4.32 settles the complexity of ML(∼) and proves that its satisfiability and
validity problems are complete for the non-elementary complexity class Tower(poly).
Moreover, the fragments MLk(∼) are proved complete for ATime-Alt(expk+1,poly), the
levels of the elementary hierarchy with polynomially many alternations.

In our approach, we developed a notion of (k-)canonical models for modal logics
with team semantics. We demonstrated that such models exist for ML(∼) and MLk(∼).
Moreover, we also proved a matching lower bound for this (Theorem 4.24) in the sense
that small MLk(∼)-formulas exist that are satisfiable, but only have k-canonical models.

Afterwards, we considered variants of the satisfiability problem for ML(∼). We showed
that it is as hard as the original problem when ML(∼) is interpreted in strict semantics,
and in fact already for ♦-free formulas with � and either ∨ or ∨̇. Also, any restriction of
the satisfiability problem to a frame class that includes at least the reflexive transitive
frames is at least as hard.

119

4 The complexity of modal team logic

Using the filtration method, we found the fragment ML(mon) of ML(∼) with its satis-
fiability problem in ATime-Alt(exp,poly). It seems that there is a tipping point with
respect to the complexity of the satisfiability problem: ML-formulas, and their closure
under ∧,∨ and ∼ are easy to solve. Furthermore, adding a layer of ♦, �, ∨, 6 and ∧

around these (resulting in ML(mon)) does still not increase the complexity. The jump
in computational hardness happens as soon as ∨ as well as � and/or ♦ are allowed to
occur negatively. A close inspection of the proof of Theorem 4.19 and the following
theorems show that universal splitting quantification, and thus negatively occurring ∨,
is indispensable in order to define subteam quantifiers, which we utilized to define
bisimilarity and canonicity. For this reason, the reduction cannot work in ML(mon),
which explains why the latter has only elementary complexity.

4.10.2 Open problems and further research directions

Canonical models. In future research, it could be useful to further generalize the
concept of canonical models to other logics with team semantics. As a first idea, in
their proof that the satisfiability problem of FO2 is in NExpTime, Grädel et al. [48]
defined types as maximal consistent set of literals quite similar to our definition of
(Φ,k)-types in Definition 4.1. Can this approach be adapted to a notion of canonical
models for FO2(∼)? In this vein, can a small model property can be achieved, perhaps
again by filtration? This would also be interesting because for the fragments MLk(∼) of
boundedmodal depth kweobtained completeness results for the levels of the elementary
hierarchy. The corresponding fragments of first-order logic would be FO2k(∼), the two-
variable fragments with additionally bounded quantifier depth k. Since the model
checking problem of FO2k(∼) also is in AP (see the next chapter), this would imply that
its satisfiability problem is complete for ATime-Alt(expk+1,poly) as well.

In principle we could solve FO2k(∼) by expanding its formulas as in the result Corol-
lary 3.92, but that translation is non-elementary in the nesting depth of ∼, even if k
is constant. Hence, for the fragment FO2k(∼), it seems that a detour via a small model
property is necessary, similar to MLk(∼).

Strict semantics and frame classes. Two other open problems are thematching upper
bounds for Theorems 4.34 and 4.35. Does the complexity coincide with the case of lax
semantics and arbitrary frames? To solve these issues, it seems that the model theory of
modal team logic has to be refined. For example, what is the analog of Proposition 2.30
for strict semantics? More specifically, what is a suitable notion of bisimulation
Φ

k

such that (K1, T1)
Φ
k (K2, T2) if and only if (K1, T1) and (K2, T2) satisfy the same

MLk(∼)-formulas, but with strict semantics?
It seems that any sensible notion of bisimilarity, canonical model and types for strict

semantics has to account for multiplicity of types, so an approach similar to, e.g., the
multiteam semantics by Durand et al. [26] seems to be a good starting point.

120

4 The complexity of modal team logic

Parameterized complexity. In parameterized complexity theory, introduced by Downey
and Fellows [25], decision problems are studied with respect to a so-called parameter
κ, which is a function that maps every input to a natural number. A problem is called
fixed-parameter tractable (fpt) if it is decidable in time f(κ(x)) · |x|O(1) for some computable
function f. The idea is that the runtime of the algorithm, even if it may depend on κ(x), is
reasonably short if we assume κ to take only small values on “practical” input instances,
and indeed many NP-complete problems turn out as fpt. In the area of team logic,
recently Meier and Reinbold [113] studied the enumeration complexity of a fragment of
propositional dependence logic in terms of parameterized complexity. In the same vein,
Mahmood and Meier [110] considered the model checking problem of PL(dep).

In modal team logics, several measures suggest themselves as a parameter. Examples
include the modal depth of formulas, the nesting depth of ∼, the number of occurring
propositions, the size of the team, or the treewidth of the underlying syntax dag of
the input formula. Parameters such as the modal depth, number of propositions, or
treewidth have already been studied in the setting of temporal logic (cf. Lück and
Meier [106] and Lück et al. [107]) andmodal logic (cf. Achilleos et al. [3]). Investigating
those parameters potentially leads to new progress on the complexity of (modal) team
logic.

121

5 First-order team logic

In the past decades, the work of logicians has unearthed a plethora of decidable frag-
ments of first-order logic FO. Many of these decidability results are rooted in a finite
model property: if there exists a (computable) upper bound on the size of minimal
models with respect to a class of formulas, and the logic admits effective model checking,
then the question of satisfiability can be settled by exhaustively searching all structures
of suitable size. Prominent examples are logics with restricted quantifier prefixes, such
as the BSR-fragment which contains only ∃∗∀∗-sentences [122]. Others include the
monadic class [98], the guarded fragment GF [4, 45], the recently introduced separated
fragment [133, 140], or the two-variable fragment FO2 [48, 116, 126], which all are de-
cidable. The above fragments all have been subject to intensive study with the purpose
of further pushing the boundary of decidability.

In this chapter, we continue this line of research in the setting of team semantics.
We study the logic FO(∼), that is, first-order team logic with negation but no atoms of
dependence. In the following sections, we show that FO(∼) shares many nice properties
with FO, including several decidable fragments. First, in Section 5.1, we revisit the idea
of normal forms which we treated abstractly in Section 3.7, and now give some concrete
applications for the case of first-order logic. One is the result that FO(∼) is recursively
enumerable, and hence of the same complexity as FO, that is, its satisfiability problem is
Π01-complete. Moreover, in the same spirit, we consider an analog to two-variable logic
FO2 and the guarded fragment GF in team semantics, which we call FO2(∼) and GF(∼),
and prove upper bounds for their complexity.

Next, in Section 5.2, we show that the classical standard translation from ML to FO2
can be generalized to team semantics. With minor adaptations, we show that there is a
similar translation from ML(∼) to FO2(∼). This also carries the lower bounds from the
previous chapter into the first-order setting.

Finally, in Section 5.3, we study FO(∼) from the perspective of model theory and prove
a variant of Łoś’s ultraproduct theorem. Roughly speaking, it states that a structure and
its ultrapower satisfy the same first-order formulas. We adapt this to team logic, which
includes a novel definition of the ultraproduct of teams, and prove an analogous result
for FO(∼)-formulas. This also entails, for instance, a variant of the compactness theorem
for FO(∼).

5.1 Upper bounds for satisfiability and validity

Several results on dependence logic and its variants stem from the well-known trans-
lation to second-order logic due to Väänänen [135] and Kontinen and Nurmi [84].

122

5 First-order team logic

Distributive laws for 6 over ∧,∨, ∃, ∀:

(θ1 6 θ2)∧ θ3 ≡ (θ1 ∧ θ3) 6 (θ2 ∧ θ3) θ1 ∧ (θ2 6 θ3) ≡ (θ1 ∧ θ2) 6 (θ1 ∧ θ3)

(θ1 6 θ2)∨ θ3 ≡ (θ1 ∨ θ3) 6 (θ2 ∨ θ3) θ1 ∨ (θ2 6 θ3) ≡ (θ1 ∨ θ2) 6 (θ1 ∨ θ3)

∃x(θ1 6 θ2) ≡ (∃xθ1) 6 (∃xθ2) ∀x(θ1 6 θ2) ≡ (∀xθ1) 6 (∀xθ2)

Distributive laws for ∧ over ∨, ∃, ∀:

(α∧
∧
i∈I Eβi)∨ (γ∧

∧
j∈J Eδj) ≡ (α∨ γ)∧

∧
i∈I E(α∧ βi)∧

∧
j∈J E(γ∧ δj)

∃x(α∧
∧
i∈I Eβi) ≡ (∃xα)∧

∧
i∈I E∃x(α∧ βi)

∀x(α∧
∧
i∈I Eβi) ≡ (∀xα)∧

∧
i∈I E∃x(α∧ βi)

Table 5.1: Distributive laws for FO(∼)

Dependence logic FO(dep) and team logic FO(dep, ∼) are equivalent to existential and
full second-order logic, respectively, so it appears there is not much left to say from a
model-theoretic or complexity theoretic perspective.

The logic FO(∼) on the other hand has no such known characterization. For sentences,
it collapses to FO [38], and otherwise it can only express Boolean combinations of flat
formulas (recall that Eγ = ∼¬γ):

ϕ ≡6
i∈I

αi ∧ ∧
j∈Ji

Eβi,j


This was first shown in [100, Thm. 7.5]. (We called this quasi-flat in Corollary 3.92, and
the above form in particular (6∧)-normal form.)

As a consequence, in the spirit of Kontinen and Nurmi [84] we can translate FO(∼)

without using any second-order quantifiers. The result is a Boolean combination of
formulas of the form ∀~x(R(~x)→ α(~x)) (where R is a new relation variable not appearing
in α that represents the team), but this is not a particularly natural fragment of first-order
logic.

The above normal form can be achieved by repeated application of the logical laws
depicted in Table 5.1. For the distributive laws for 6, see Galliani [38, Prop. 5] or
Proposition 3.40. The other laws were proven in general form in Lemmas 3.83 and 3.84.

A similar but independent result by Galliani [38], which was discovered earlier
already by Yang [142] in the propositional setting, is that every FO(∼)-formula can be
written as:1

ϕ ≡6
i∈I

αi ∨ ∨
j∈Ji

(βi,j ∧ ne)


1In the case of downward closed team logic, we can omit the ne atom. For dependence logic, the

corresponding normal form appeared already in Abramsky and Väänänen [2, p. 304].

123

5 First-order team logic

We called this form (6∨)-normal form in Subsection 3.7.1. We also showed that these
normal forms are easily mutually derivable, since

αi ∧
∧
j∈Ji

Eβi,j ≡ αi ∨
∨
j∈Ji

((αi ∧ βi,j)∧ ne),

and conversely

αi ∨
∨
j∈Ji

(βi,j ∧ ne) ≡ (α∨
∨
j∈Ji

βi,j)∧
∧
j∈Ji

Eβi,j.

The above normal forms offer a point of attack for complexity theoretic considerations.
In particular, by such a translation we establish a new decidability result for two-variable
team logic FO2(∼). More precisely, we show that satisfiability and validity of FO2(∼) are
Tower(poly)-complete. This is an interesting result when compared with two-variable
dependence logic, in our notation called FO2(dep). These logics are incomparable in
terms of expressive power, since FO2(dep) is downward closed and FO2(∼) is not, but
dep(x) is expressible in FO2(dep) and not in FO2(∼) [38]. (The same holds without the
restriction to two variables).

From the viewpoint of computational complexity, we now obtain a similar result.
Specifically, FO2(dep) has an undecidable validity problem [81], but only a NExpTime-
complete satisfiability problem [80]. By contrast, satisfiability and validity of FO2(∼) are
complete for Tower(poly). That means that FO2(dep) and FO(∼) are also incomparable
in terms of their computational complexity.

5.1.1 Computing the normal form

For the sake of self-containedness, we repeat some terminology from Chapter 3 and
concretize it to first-order logic.

We say that a σ-FO(∼)-formula is in (6∧)-normal form if it is of the form

ψ =6
i∈I

αi ∧ ∧
j∈Ji

Eβ(i,j)


for finite sets I, Ji and σ-FO-formulas αi, β(i,j).

A formula is quasi-flat if it is equivalent to a formula in (6∧)-normal form. In this
chapter, we do not use the (6∨)-normal form, so let us just refer to the (6∧)-form as
normal form.

Theorem 5.1. For every ϕ ∈ σ-FO(∼), there exists an equivalent formula ψ in normal form
computable from ϕ in time expO(|ϕ|)(1).

The first part, i.e., that there exists such a translation, was already shown in Chapter 3,
in particular in Corollary 3.92. However, the abstract proof can be greatly simplified if

124

5 First-order team logic

we restrict ourselves to first-order logic. Let us sketch an outline of the proof for this
special case.

Proof. Applied to σ-FO(∼), the idea of the proof of Theorem 3.89 boils down to the
distributive laws depicted in Table 5.1. The algorithm that computes ψ from ϕ proceeds
as follows. As long as there exists a subformula θ of ϕ that is not in normal form,
pick one of the shortest such subformulas and replace it by a normal form in a case
by case distinction regarding the outermost operator, as shown below. Suppose θ ′ =
6i∈I(αi ∧

∧
j∈Ji Eβi,j) and θ ′′ = 6i∈I ′(γi ∧

∧
j∈J ′

i
Eδi,j).

• ¬θ ′ ≡
∧
i∈I ¬(αi ∧

∧
j∈Ji βi,j), which is flat.

• ∼θ ′ ≡
∧
i∈I(E¬αi ∧6j∈Ji ¬βi,j), which can be expanded into normal form by

standard propositional laws for 6 and ∧.

• ∃xθ ′ ≡ 6i∈I[(∃xαi)∧
∧
j∈Ji E∃x(αi ∧ βi,j)].

• ∀xθ ′ ≡ 6i∈I[(∀xαi)∧
∧
j∈Ji E∃x(αi ∧ βi,j)].

• θ ′ ∨ θ ′′ ≡6(i,i ′)∈I×I ′
(
(αi ∧

∧
j∈Ji Eβi,j)∨ (γi ′ ∧

∧
j ′∈J ′

i
Eδi ′,j ′)

)
≡6(i,i ′)∈I×I ′

(
(αi ∨ γi ′)∧

∧
j∈Ji E(αi ∧ βi,j)∧

∧
j ′∈J ′

i ′
E(γi ′ ∧ δi ′,j ′)

)
.

Each of the above equivalences was shown in the proof of Theorem 3.89 and/or follows
from Table 5.1.

Since the number of subformulas that are not in normal form strictly decreases with
each step, at most |ϕ| iterations are needed. Moreover, as the ∼-case leads at most to
doubly exponential blow-up, and the other cases to at most polynomial blow-up, the
overall runtime is expO(|ϕ|)(1).

Clearly, the number of required elements in the team can be bounded from above by
the number of E-subformulas in the above normal form.
Corollary 5.2. If ϕ ∈ FO(∼) and (A, T) � ϕ, then there is a finite subteam T ′ ⊆ T of size
expO(|ϕ|)(1) such that (A, T ′) � ϕ.

The above corollary is related to the notion of k-coherence. A formula ϕ is k-coherent
if a structure with team (A, T) satisfies ϕ precisely if (A, T ′) � ϕ for every T ′ ⊆ T

with |T ′| = k. However, the notions of k-coherence (for k > 2) and quasi-flatness are
orthogonal, as we show next.
Proposition 5.3. There are FO(dep, ∼)-formulas ψ,ϕ1, ϕ2, . . . such that ψ is 2-coherent but
not quasi-flat, and for each k, ϕk is quasi-flat but not k-coherent.
Proof. The constancy atom ψ := dep(x) is 2-coherent but undefinable in FO(∼) [38],
which includes all formulas in normal form, hence dep(x) is not quasi-flat. For ϕk,
assume pairwise distinct constants c1, . . . , ck+1 and let

ϕk := 6
I⊆[k+1]
|I|=k

∨
i∈I

(x = ci).

125

5 First-order team logic

The formula ϕk is not k-coherent, since in the team T = {s1, . . . , sk+1}, si(x) = ci, it is
false, but true in all size k subteams of T . It is however quasi-flat since each

∨
i∈I(x = ci)

is flat for all I.

5.1.2 An upper bound for FO(∼)

Next, we show that the satisfiability problem of FO(∼) can be reduced to that of mere
FO-sentences. Intuitively, this is because an existential literal of the form Eβ, which states
that the team contains some assignment satisfying β, can be simulated by existential
quantifiers ∃x1 · · · ∃xnβ. This leads to the next translation.

Theorem 5.4. For every σ-FO(∼)-formula ϕ in normal form there is a polynomial time com-
putable σ-FO-sentence ψ such that A � ψ if and only if there is a team T such that (A, T) � ϕ.
Moreover, T can be assumed to have size |T | 6 |ϕ|.

Proof. Suppose ϕ ∈ σ-FO(∼) is of the form

ϕ =6
i∈I

αi ∧ ∧
j∈Ji

Eβi,j


for αi, βi,j ∈ FO. Let Fr(ϕ) = {x1, . . . , xn}. Then we define the sentence

ψ :=
∨
i∈I

∧
j∈Ji

∃x1 · · · ∃xn(αi ∧ βi,j)

which is obviously polynomial time computable.
Now we prove the correctness as stated in the theorem. Suppose that there is i ∈ I

such that A � ∃x1 · · · ∃xn(αi ∧ βi,j) for all j ∈ Ji, and for each j let sj : {x1, . . . , xn} → A

be the assignment witnessing the existential quantifiers. Then (A, {sj}) � αi ∧ βi,j in
team semantics. Now by union closure (Proposition 2.11), (A, {sj | j ∈ Ji}) � αi. Also,
by upward closure of E-formulas (as their negations are downward closed (Proposi-
tion 2.11)), (A, {sj | j ∈ Ji}) � Eβi,j. Consequently, with the team T = {sj | j ∈ Ji} we
prove the first direction.

Next, assume some team T such that (A, T) � ϕ via i ∈ I, where (A, T) � αi and
(A, T) � Eβi,j for all j ∈ Ji. The latter is witnessed by a family (sj)j∈Ji of assignments
sj ∈ T . Then for each j we have (A, {sj}) � βi,j and additionally (A, {sj}) � αi by
downward closure. Hence the assignment sj witnesses A � ∃x1 · · · xn(αi ∧ βi,j).

Corollary 5.5. For every σ-FO(∼)-formula ϕ in normal form there is a polynomial time com-
putable σ-FO-sentenceψ such thatϕ is satisfiable in team semantics iffψ is classically satisfiable.

We are now in the position to conclude the overall complexity of FO(∼).

Theorem 5.6. The problem SAT(FO(∼)) is Π01-complete. The problem VAL(FO(∼)) is Σ01-com-
plete.

126

5 First-order team logic

Proof. The lower bounds already hold for FO, so we argue for the upper bounds. For
those, recall that classical satisfiability resp. validity of FO are complete for Π01 resp. Σ01.

Given ϕ ∈ FO(∼), we compute a normal form ψ of ϕ (Theorem 5.1). By the previous
corollary, we can then compute a formulaψ ′ that is classically satisfiable iffψ is satisfiable
in team semantics. Hence ϕ is satisfiable in team semantics iff ψ ′ is classically satisfiable,
which reduces the problem SAT(FO(∼)) to SAT(FO). As a consequence, SAT(FO(∼))

is in Π01. For VAL, ϕ is valid iff ∼ϕ is unsatisfiable, which is the complement of the
previous problem, so VAL(FO(∼)) is in Σ01.

The approach of a translation to normal form is flexible enough to even yield decid-
ability results for fragments of FO(∼), as is shown in the next subsections.

5.1.3 Two-variable logic

The logic FOn, called n-variable logic, is the fragment of FO that contains the formulas
α such that |Var(α)| 6 n, i.e., α contains at most n distinct variables (although it can
contain any variable arbitrarily often). By a famous theorem by Mortimer [116], FO2 is
decidable. The result was subsequently improved to a sharp complexity bound:

Theorem 5.7 (Grädel et al. [48]). If σ is a relational vocabulary, then SAT(σ-FO2) is complete
for NExpTime.

For three or more variables, the problem again becomes undecidable [12].
We consider a similar fragment in team semantics. We define n-variable team logic,

σ-FOn(∼), as the fragment of σ-FO(∼) that contains all formulas ϕ such that |Var(ϕ)| 6 n.
We notice that σ-FOn(∼) admits the same normal forms as σ-FO(∼):

Theorem 5.8. For every ϕ ∈ σ-FOn(∼), there exists an equivalent formula ψ ∈ σ-FOn(∼) in
normal form that is computable from ϕ in time expO(|ϕ|)(1).

Proof. The proof of Theorem 5.1 does not introduce any new variables.

Theorem 5.9. For every σ-FOn(∼)-formula ϕ in normal form there is a polynomial time com-
putable σ-FOn-sentence ψ such that ϕ is satisfiable in team semantics iff ψ is classically satisfi-
able.

Proof. If ϕ is in σ-FOn(∼), then the formula ψ constructed in the proof of Theorem 5.4
itself also is in σ-FOn, since again no new variables are added.

Theorem 5.10. If σ is a relational vocabulary, then SAT(σ-FO2(∼)) and VAL(σ-FO2(∼)) are
in Tower(poly).

Proof. Completely analogous to Theorem 5.6. For the sake of self-containedness, we
sketch the algorithm for SAT.

Given ϕ ∈ σ-FO2(∼), first translate ϕ to an equivalent normal form ϕ ′ as in Corol-
lary 5.5. This takes time expO(|ϕ|)(1). Next, translate ϕ ′ to a formula ϕ ′′ ∈ σ-FO2 that is

127

5 First-order team logic

classically satisfiable iff ϕ ′ is satisfiable in team semantics. This takes time polynomial
in |ϕ ′|, so ϕ ′′ itself is computable again in time expO(|ϕ|)(1).

Finally, the problem SAT(σ-FO2) is in NExpTime [48] and consequently in 2ExpTime.
So to decide whether ϕ is satisfiable, we call the decision algorithm for FO2 as a

subroutine on ϕ ′′. The overall runtime is still expO(|ϕ|)(1). As FO2(∼) is closed under
negation, the algorithm for VAL is analogous.

The classical two-variable fragment, FO2, is decidable in NExpTime, and hence ele-
mentary. However, this complexity is dwarfed by the cost of the translation into normal
form. So one could say that the complexity of the underlying classical logic vanishes
inside the Tower(poly) upper bound.

5.1.4 The guarded fragment

Another well-behaved fragment of first-order logic is the guarded fragment by Andréka
et al. [4]. It is called guarded because quantification can only be performed relative to
some atomic formula, called the guard of the quantifier. Guarded σ-FO-formulas are
inductively defined:

• Any atomic σ-FO-formula is guarded.

• If α,β are guarded σ-FO-formulas, then so are α∧ β, α∨ β, and ¬α.

• If α is a guarded σ-FO-formula and γ is an atomic σ-FO-formula, then ∃x(γ∧ α)

and ∀x(γ → α) are guarded σ-FO-formulas, provided that Fr(α) ⊆ Var(γ), i.e.,
every variable free in α occurs in the atomic formula γ.

The logic σ-GF is now the fragment of all guarded σ-FO-formulas.

Theorem 5.11 (Grädel [45]). Let σ be a relational vocabulary. Then SAT(σ-GF) is complete
for 2ExpTime, and for every n > 2, the problem SAT(σ-GFn) is complete for ExpTime.

Next, we propose a definition of a guarded fragment in team logic, which we call
GF(∼). Compared to the classical logic GF, there are only minor changes in the definition:

• Any atomic σ-FO(∼)-formula is guarded.

• If ϕ,ψ are guarded σ-FO(∼)-formulas, then so are ϕ∧ψ, ϕ∨ψ, ∼ϕ and ¬ϕ.

• Ifϕ is a guarded σ-FO(∼)-formula and γ is an atomic σ-FO-formula, then ∃x(γ∧ϕ)
and ∀x(γ ↪→ ϕ) are guarded σ-FO(∼)-formulas, provided that Fr(ϕ) ⊆ Var(γ), i.e.,
every variable free in ϕ occurs in the atomic formula γ.

Recall that α ↪→ ϕ is defined as ¬α∨ (α∧ ϕ). There are technical reasons why this
change in the definition of guardedness is necessary, which will become clear later.

Definition 5.12. The logic σ-GF(∼) is the fragment of all guarded σ-FO(∼)-formulas. The
logic σ-GFn(∼) is the fragment of all formulas in σ-GF(∼) ∩ σ-FOn(∼).

128

5 First-order team logic

Distributive laws for 6 over ∃, ∀:

∃x[γ](θ1 6 θ2) ≡ (∃x[γ]θ1) 6 (∃x[γ]θ2) ∀x[γ](θ1 6 θ2) ≡ (∀x[γ]θ1) 6 (∀x[γ]θ2)

Distributive laws for ∧ over ∃, ∀:

∃x[γ](α∧
∧
i∈I Eβi) ≡ (∃x[γ]α)∧

∧
i∈I E∃x[γ](α∧ βi)

∀x[γ](α∧
∧
i∈I Eβi) ≡ (∀x[γ]α)∧

∧
i∈I E∃x[γ](α∧ βi)

Table 5.2: Distributive laws for GF(∼)

As before, we often omit σ.
Next, we present a result on the complexity of satisfiability of the guarded fragment.

It behaves like two-variable logic in that the complexity becomes non-elementary in
team semantics due to the translation to normal form.

In the following, we also use the shorthands ∃x[γ]ϕ and ∀x[γ]ϕ for ∃x(γ ∧ ϕ) and
∀x(γ ↪→ ϕ), where γ is the guard.

Theorem 5.13. For every ϕ ∈ σ-GF(∼) there is an equivalent σ-GF(∼)-formula ψ in normal
form that is computable in time expO(|ϕ|)(1).

Proof. The proof is similar to the non-guarded case (Theorem 5.1). For this, we prove
variants of the laws in Table 5.1 for guarded formulas. For laws that swap only 6 and
∧/∨, this is clear, as these preserve guardedness. Let us focus on the laws that concern
quantifiers. Those are depicted in Table 5.2, and we prove them as follows.

• Distribute ∃x[γ] over 6:

∃x[γ](θ1 6 θ2)

≡ ∃x(γ∧ (θ1 6 θ2)) (def. ∃x[γ])
≡ ∃x((γ∧ θ1) 6 (γ∧ θ2)) (∧ distributes over 6)
≡ ∃x(γ∧ θ1) 6 ∃x(γ∧ θ2) (∃ distributes over 6)
≡ ∃x[γ]θ1 6 ∃x[γ]θ2 (def. ∃x[γ])

Clearly Fr(θ1)∪Fr(θ2) ⊆ Var(γ) if and only if Fr(θ16θ2) ⊆ Var(γ). The cases below
behave analogously.

• Distribute ∀x[γ] over 6:

∀x[γ](θ1 6 θ2)

≡ ∀x(γ ↪→ (θ1 6 θ2)) (def. ∀x[γ])
≡ ∀x(¬γ∨ (γ∧ (θ1 6 θ2))) (def. ↪→)
≡ ∀x(¬γ∨ ((γ∧ θ1) 6 (γ∧ θ2))) (∧ distributes over 6)
≡ ∀x((¬γ∨ (γ∧ θ1)) 6 (¬γ∨ (γ∧ θ2))) (∨ distributes over 6)
≡ ∀x((γ ↪→ θ1) 6 (γ ↪→ θ2)) (def. ↪→)

129

5 First-order team logic

≡ ∀x(γ ↪→ θ1) 6 ∀x(γ ↪→ θ2) (∀ distributes over 6)
≡ ∀x[γ]θ1 6 ∀x[γ]θ2 (def. ∀x[γ])

• Distribute ∃x[γ] over ∧:

∃x[γ](α∧
∧
i∈I

Eβi)

≡ ∃x(γ∧ (α∧
∧
i∈I

Eβi)) (def. ∃x[γ])

≡ ∃x((γ∧ α)∧
∧
i∈I

Eβi) (∨ is associative)

≡ ∃x(γ∧ α)∧
∧
i∈I

E∃x((γ∧ α)∧ βi) (by Table 5.1)

≡ ∃x[γ]α∧
∧
i∈I

E∃x[γ](α∧ βi) (def. ∃x[γ])

• Distribute ∀x[γ] over ∧:

∀x[γ](α∧
∧
i∈I

Eβi)

≡ ∀x(γ ↪→ (α∧
∧
i∈I

Eβi)) (def. ∀x[γ])

≡ ∀x((γ ↪→ α)∧
∧
i∈I

(γ ↪→ Eβi)) (as γ ↪→ (θ1 ∧ θ2) ≡ (γ ↪→ θ1)∧ (γ ↪→ θ2))

≡ ∀x((γ ↪→ α)∧
∧
i∈I

E(γ∧ βi)) (as γ ↪→ Eβ ≡ E(γ∧ β))

≡ ∀x(γ ↪→ α)∧
∧
i∈I

E∃x((γ ↪→ α)∧ (γ∧ βi)) (by Table 5.1)

≡ ∀x(γ ↪→ α)∧
∧
i∈I

E∃x(γ∧ (α∧ βi)) (as (γ ↪→ α)∧ γ implies α)

≡ ∀x[γ]α∧
∧
i∈I

E∃x[γ](α∧ βi) (def. ∀x[γ])

In the above proof of the final distributive law for ∀ and ∧, it also becomes clear why
the guard of ∀ needs to be connected via ↪→ and not→. Suppose we define ∀x[γ]ϕ as
∀x(γ→ ϕ) ≡ ∀x(¬γ∨ϕ) instead. Then we have the equivalences

∀x[γ](α∧
∧
i∈I

Eβi)

≡ ∀x(¬γ∨ (α∧
∧
i∈I

Eβi))

130

5 First-order team logic

≡ ∀x((¬γ∨ α)∧
∧
i∈I

E(α∧ βi))

≡ ∀x[γ]α∧
∧
i∈I

∀xE(α∧ βi)

≡ ∀x[γ]α∧
∧
i∈I

E∃x(α∧ βi)

but here the final formula may be not guarded, since we only know that γ, but not α,
guards βi.

Next, we come to the step analogous to Theorem 5.4 where a formula in normal form
can be simulated by classical sentences. The approach we used previously for FO(∼)

and FO2(∼) does not simply go through for the guarded fragment, because the resulting
formula is not guarded due to the additionally introduced quantifiers. To circumvent
this, we tweak the proof a bit as follows.

Theorem 5.14. Let σ be a relational vocabulary. For every σ-GF(∼)-formula ϕ in normal form
there is a relational vocabulary σ ′ ⊇ σ and a polynomial time computable σ ′-GF-sentence ψ
such that ϕ is satisfiable in team semantics iff ψ is classically satisfiable.

Proof. We change the sentence ψ from the proof of Theorem 5.4 from

ψ :=
∨
i∈I

∧
j∈Ji

∃x1 · · · ∃xn(αi ∧ βi,j).

to

ψ ′ :=
∨
i∈I

∧
j∈Ji

∃x1[R1x1] ∃x2[R2x1x2] · · · ∃xn[Rnx1 · · · xn] (αi ∧ βi,j),

where each Ri is a fresh i-ary predicate not in σ. The formulas ψ and ψ ′ are clearly
satisfiability equivalent, as a model of ψ ′ can easily be obtained from one of ψ by
interpreting each Ri as the full i-ary relation. Moreover, as we assumed that ϕ is
guarded, so must be all αi, βi,j, and hence ψ ′ is guarded as well.

Theorem 5.15. Let σ be a relational vocabulary. Then SAT(σ-GF(∼)) and VAL(σ-GF(∼)) are
in Tower(poly).

Proof. Completely analogous to the approach for FO2(∼) (Theorem 5.10), using the
corresponding translation to GF (Theorem 5.14 and Theorem 5.13) instead of FO2.

Before we come to the lower bounds for the above logics, we will consider the model
checking problem in the next section.

5.1.5 Model checking

Next, we consider the model checking problem, and present an algorithm.

131

5 First-order team logic

Algorithm: MC(A, T, ϕ) for ϕ ∈ FO(∼), a σ-structure A, and a team T in A.
1 T ← T�Fr(ϕ);
2 if ϕ = α is a first-order formula then
3 universally guess s ∈ T ; if (A, s) � α then return true else return false;
4 end
5 else if ϕ = ∼α for a first-order formula α then
6 existentially guess s ∈ T ; if (A, s) 2 α then return true else return false;
7 end
8 else if ϕ = ∼∼ψ then return MC(A, T, ψ);
9 else if ϕ = ψ1 ∧ψ2 then universally guess i ∈ {1, 2} and return MC(A, T, ψi);

10 else if ϕ = ∼(ψ1 ∧ψ2) then
11 existentially guess i ∈ {1, 2} and return MC(A, T, ∼ψi);
12 end
13 else if ϕ = ψ1 ∨ψ2 then
14 existentially guess S1, S2 ⊆ T such that S1 ∪ S2 = T
15 universally guess i ∈ {1, 2} and return MC(A, Si, ψi);
16 end
17 else if ϕ = ∼(ψ1 ∨ψ2) then
18 universally guess S1, S2 ⊆ T such that S1 ∪ S2 = T
19 existentially guess i ∈ {1, 2} and return MC(A, Si, ∼ψi);
20 end
21 else if ϕ = ∀xψ then return MC(A, TxA, ψ);
22 else if ϕ = ∼∀xψ then return MC(A, TxA, ∼ψ);
23 else if ϕ = ∃xψ then existentially guess f : T → ℘+(A); return MC(A, Txf , ψ);
24 else if ϕ = ∼∃xψ then universally guess f : T → ℘+(A); return MC(A, Txf , ∼ψ);

Algorithm 1: Algorithm for MC(FO(∼))

Proposition 5.16. MC(FO(∼)) is decidable in time 2nO(1) and with O (n) alternations.

In other words, MC(FO(∼)) ∈ ATime-Alt(exp,poly).

Proof. Algorithm 1 decides MC(FO(∼)). Every run of the algorithm has at most |ϕ|
recursive calls, since the formula passed to the return-statements always is strictly
shorter than the respective input formula. Each call has at most two alternations,
yielding at most 2|ϕ| alternations in total. Lines 3 and 6 run in time polynomial in
log |T |+ 2|A||α|, since first-order model checking is in PSpace (cf. [47]). Lines 14 and 18
are also polynomial in |T |. Finally, the lines 23 and 24 run in time polynomial in |T ||A|,
which is the maximal size of a supplementing function f.

The structure A is clearly unchanged in every recursive call, and |ϕ| strictly decreases.
As the runtime in every call depends polynomially on T , for an overall exponential
runtime it suffices to show that the team T can only grow exponentially with respect
to the original input, call it (A, T0, ϕ0). This is ensured by line 1, which exploits that ϕ

132

5 First-order team logic

is local (Proposition 2.14). Hence T is a team with domain dom T ⊆ Var(ϕ0) and so is
bounded by O

(
|A|

|ϕ0|
)
= O

(
2log |A|·|ϕ0|

)
.

Corollary 5.17. MC(FOn(∼)) is in PSpace for all finite n.

Proof. Since PSpace = AP [13], wemodify the previous proof and show that the runtime
of each recursive call is polynomial. If the number of variables in the formula bounded
a priori, then lines 3 and 6 run in deterministic time polynomial in log |T |+ |A|+ |α|, as
model checking for FOn is in P for every n [137]. Moreover, lines 14 and 18 resp. 23
and 24 run in polynomial time since the size of T (and hence of S1, S2 and f) is always
polynomial in the original input, as |T | ∈ O

(
|A|

Var(ϕ0)
)
= |A|

O(1).

5.2 A standard translation for team semantics

The well-known standard translation embeds modal logic ML into FO2 with the relational
vocabulary σM = (R,Qp∈Prop), where the binary relation R represents the edges in a
Kripke structure, and the Qp are unary relations containing worlds that satisfy the
variable p ∈ Prop. The standard translation of an ML-formula α is denoted by stx(α)
or sty(α) depending on its free variable, which is either x or y. It is defined by mutual
recursion between x and y:

stx(p) := Qpx for p ∈ Prop stx(¬α) := ¬stx(α)
stx(�α) := ∀y (Rxy→ sty(α)) stx(α∧ β) := stx(α)∧ stx(β)
stx(♦α) := ∃y (Rxy∧ sty(α)) stx(α∨ β) := stx(α)∨ stx(β),

with sty(α) defined in a symmetric fashion. The corresponding first-order interpretation
of a Kripke structure K = (W,R ′, V) is the σM-structure pKq with domain W and
interpretations RpKq = R ′ and QpKq

p = V(p) of σM. For a world w ∈ W and x ∈ Var,
define the corresponding first-order assignment wx : {x}→W by wx(x) = w.

The next theorem is standard:

Theorem 5.18. Let (K, w) be a pointed Kripke structure and α ∈ ML. Then (K, w) � α if and
only if (pKq, wx) � stx(α).

Proof. By straightforward induction (cf. Blackburn and van Benthem [9]).

In this section, we lift this result to team semantics and translate ML(∼) to FO2(∼). On
the model side, the first-order interpretation of a team T in a Kripke structure becomes
Tx := {wx | w ∈ T }. In other words, the team of worlds becomes a team of assignments
of x to these worlds.

The standard translation for ML(∼) now extends that of ML by the final ∼-case. For
similar reasons as for the guarded fragment, we also change the clause for � to utilize
↪→ instead of→. Recall that α ↪→ ϕ ≡ ¬α∨ (α∧ϕ).

stx(p) := Qpx for p ∈ Prop stx(¬ϕ) := ¬stx(ϕ)

133

5 First-order team logic

stx(�ϕ) := ∀y (Rxy ↪→ sty(ϕ)) stx(ϕ∧ψ) := stx(ϕ)∧ stx(ψ)
stx(♦ϕ) := ∃y (Rxy∧ sty(ϕ)) stx(ϕ∨ψ) := stx(ϕ)∨ stx(ψ)
stx(∼ϕ) := ∼stx(ϕ),

with sty(ϕ) again defined symmetrically. Here, the naive translation of �ϕ to

∀y (Rxy→ sty(ϕ)) ≡ ∀y (¬Rxy∨ sty(ϕ))

would be unsound under team semantics, so using ↪→ instead of → is crucial. (The
similar translation by Yang [141] for modal dependence logic did not require this tweak
since this logic has downward closure.)

Theorem 5.19. For all Kripke structures with team (K, T), all ϕ ∈ ML(∼) and x ∈ Var it holds
(K, T) � ϕ if and only if (pKq, Tx) � stx(ϕ).

Proof. Proof by induction on ϕ. Let K = (W,R, V). We omit K and pKq to the left of �.

• ϕ ∈ ML: We have T � ϕ iff ∀w ∈ T : w � ϕ due to flatness, which by Theorem 5.18
is equivalent to ∀wx ∈ Tx : wx � stx(ϕ). However, as stx(ϕ) ∈ FO, the latter is
equivalent to Tx � stx(ϕ) again by flatness.

• ϕ = ψ∧ θ, ϕ = ¬ψ and ϕ = ∼ψ are clear by induction hypothesis.

• ϕ = ψ ∨ θ: Suppose T � ψ ∨ θ. Then T = S ∪ U such that S � ψ and U � θ.
By induction hypothesis, Sx � stx(ψ) and Ux � stx(θ). As S ∪ U = T , clearly
Sx ∪Ux = Tx. As a consequence, Tx � stx(ψ)∨ stx(θ) = stx(ψ∨ θ).

For the other direction, suppose Tx � stx(ψ∨ θ) = stx(ψ)∨ stx(θ) by the means of
some subteams S ′ ∪U ′ = Tx such that S ′ � stx(ψ) and U ′ � stx(θ). Then S ′ = Sx
and U ′ = Ux for some suitably chosen S,U ⊆ T . By induction hypothesis, S � ψ
and U � θ. In order to prove T � ψ ∨ θ, it remains to show T ⊆ S ∪ U. For this
assume w ∈ T . As then wx ∈ Tx, as least one of wx ∈ S ′ or wx ∈ U ′ holds. But
then w ∈ S or w ∈ U.

• ϕ = �ψ: Consider the duplicating team (Tx)yW of Tx. We define subteams S and U
of (Tx)yW as follows: S contains all “outgoing edges”: S := {s ∈ (Tx)yW | s(y) ∈ Rs(x)}.
By contrast, U contains all “non-edges”: U := {s ∈ (Tx)yW | s(y) /∈ Rs(x)}. Then
clearly (Tx)yW = S ∪ U, S � Rxy and U � ¬Rxy. Moreover, the above division of
(Tx)yW into S and U is the only possible splitting of (Tx)yW such that S � Rxy and
U � ¬Rxy. (This is the step that requires ↪→, not→, in the standard translation.)
By the induction hypothesis, T � �ψ iff RT � ψ iff (RT)y � sty(ψ). Moreover, by the
above argument, Tx � stx(�ψ) iff Tx � Rxy ↪→ sty(ψ) iff S � sty(ψ). Consequently,
it suffices to show that (RT)y and S agree on sty(ψ). This follows from locality
(Proposition 2.14), since

(RT)y = {vy | v ∈ Rw,w ∈ T }

134

5 First-order team logic

= {s | s : {y}→W, s(y) ∈ Rw,w ∈ T } (def. vy)
= {s�{y} | s : {x, y}→W, s(y) ∈ Rs(x), s(x) ∈ T }
= {s�{y} | s ∈ (Tx)yW , s(y) ∈ Rs(x)}
= S�{y}. (def. S)

• ϕ = ♦ψ: For the first direction, suppose T � ♦ψ, i.e., S � ψ for some successor
team S of T . We have to prove Tx � ∃y (Rxy∧ sty(ψ)), that is, find a supplementing
function f : Tx → ℘+(W) such that (Tx)yf � Rxy∧ sty(ψ).
By induction hypothesis, Sy � sty(ψ). We define f on Tx as follows. Givenwx ∈ Tx,
let f(wx) := Rw∩S. Then f(wx) is non-empty for eachw, as S is a successor team, so
f : Tx → ℘+(W) as required. Moreover, (Tx)yf � Rxy. To prove that (Tx)yf � sty(ψ),
we again apply locality (Proposition 2.14) and show that (Tx)yf �{y} = Sy:

(Tx)yf �{y} = {syv | s ∈ Tx, v ∈ f(s)}�{y} (def. supplementing team)
= {syv �{y} | s ∈ Tx, v ∈ f(s)} (def. �)
= {s : {y}→ {v} | ∃s ′ ∈ Tx, v ∈ f(s ′)}
= {s : {y}→ {v} | ∃w ∈ T, v ∈ Rw ∩ S} (def. f)
= {s : {y}→ {v} | v ∈ S} (since S =

⋃
w∈T (Rw ∩ S))

= Sy

For the other direction, suppose Tx � ∃y (Rxy∧ sty(ψ)) by means of a supplement-
ing function f : Tx → ℘+(W) such that (Tx)yf � Rxy∧ sty(ψ).
We define the team S :=

⋃
w∈T f(w

x), first prove that it is a successor team of T , and
then show that it satisfies ψ. For the first part, let v ∈ S. Then there exists w ∈ T
such that v ∈ f(wx). As a consequence, the assignment s given by s(x) = w and
s(y) = v is in (Tx)yf , and hence satisfies Rxy. In other words, v has a predecessor
in T , namely w. Conversely, if w ∈ T , then f(wx) is non-empty, i.e., contains an
element v. Again, v is a successor of w. Since v ∈ f(wx), v ∈ S, so w has a successor
in S. For the second part, we again use locality and the fact that Sy = (Tx)yf �{y} as
before.

It is easy to see that the standard translation of an ML(∼)-formula is in fact an GF2(∼)-
formula. From this, in the next section we obtain several lower bounds for fragments of
FO(∼).

5.2.1 Lower bounds

Next, we prove that the standard translation carries several complexity lower bounds
into the first-order setting.

In fact, the lower bounds already hold with equality and without equality if another
predicate is present. For this reason, in what follows we explicitly consider equality as a
predicate and then write = ∈ σ.

135

5 First-order team logic

Lemma 5.20. MC(σ-GF1(∼)) is PSpace-hard if σ contains infinitely many predicates.

Proof. We reduce from MC(PL(∼)) which is PSpace-complete (see [119] or [56, Thm.
3.3]). The lower bound by Hannula et al. [56] is easily seen to hold under logspace
reductions. The reduction is now simply the standard translation, i.e., it maps (K, T, ϕ) to
(pKq, Tx, stx(ϕ)). (W.l.o.g. σ contains predicates Qp for every p ∈ Prop; otherwise they
are easily simulated bypredicates of higher arity). It is easy to see that stx(ϕ) is quantifier-
free, hence guarded, and contains only the variable x. Moreover, by Theorem 5.19,
(K, T) � ϕ⇔ (pKq, Tx) � stx(ϕ).

Lemma 5.21. MC(σ-FO(∼)) isATime-Alt(exp,poly)-hard if σ contains at least one predicate
or equality. This even holds when restricted to sentences and for a fixed σ-structure A with
domain {0, 1} and team {∅}.

Proof. We reduce from SAT(PL(∼)), which is ATime-Alt(exp,poly)-hard (see Theo-
rem 4.32 or [56, Thm. 4.9], the hardness result by Hannula et al. [56] again also
holds for logspace reductions).

The reduction from SAT(PL(∼)) consists of several steps. Given ϕ ∈ PL(∼), suppose
that Prop(ϕ) = {p1, . . . , pn}. First, observe that ϕ is satisfiable if and only if ϕ ′ := >∨ϕ

is true in the full propositional team Tmax over p1, . . . , pn. So it suffices to reduce from
the problem of deciding truth of ϕ ′ in the full team w. r. t. ϕ ′.

Next, we translate from propositional to first-order logic. Fix a σ-structure A with
domain {0, 1}. Recall that σ contains either equality or some other predicate. We start
with the first case. The idea is that the Boolean assignments are simulated by first-order
assignments s : X→ A, where X = {z, x1, . . . , xn}. Here, xi simulates pi, and the auxiliary
variable z plays the role of the domain element 1.

Hence we map ϕ ′ to the formula ϕ∗ which is obtained from ϕ ′ by replacing every
occurrence of a proposition pi by the atomic formula xi = z. We define the team
accordingly; for b ∈ {0, 1}, let Vb := {s : X → {0, 1} | s(z) = b}, i.e., Vb is the full team
w. r. t. {x1, . . . , xn}, but z is constantly b. By a straightforward induction, now V1 � ϕ∗ iff
Tmax � ϕ ′.

The team V1 is exponentially large, so we cannot compute it as part of the reduction.
But we can compute an equivalent instance with the teamU1 := {z 7→ 1}, and the formula
∀x1 · · · ∀xnϕ∗, as V1 is the n-fold duplicating team of U1. In fact, we can output the
team U := {∅} and formula ψ := ∃z∀x1 · · · ∀xnϕ∗, as Tmax � ϕ ′ implies U � ψ. The other
direction holds as well, since w.l.o.g. z is chosen as 1. (Otherwise flip all bits in all
assignments, this does not change the truth of xi = z for any i, and hence not of ϕ∗.)
Hence we map ϕ to the team {∅}, structure A and formula ∃z∀x1 · · · ∀xnϕ∗.

The case remains where σ does not contain =, but contains some predicate R. Then we
define the team as above, but let RA := {(1, . . . , 1)}, and output the formula ∀x1 · · · ∀xnϕ∗,
whereϕ∗ is defined as the formula obtained fromϕ by replacing piwithR(xi, . . . , xi).

Clearly, the standard translation of satisfiable formulas is itself satisfiable. But the
converse is also true: In a sense, from a given first-order structure (and team) that
satisfies stx(ϕ) we can reconstruct a Kripke model (and team) for ϕ.

136

5 First-order team logic

PLNP

MLPSpace

GF2ExpTime

FO2NExpTime
GF2ExpTime

FOΠ01

PL(∼)ATime-Alt(exp,poly)

ML(∼)Tower(poly)

GF2(∼)Tower(poly)

FO2(∼)Tower(poly) GF(∼)Tower(poly)

FO(∼)Π01

Figure 5.3: Inclusion diagram of fragments of first-order team logic.

Complexity of ...

L SAT(L) SAT(L(∼))

PL NP [18] ATime-Alt(exp,poly) [56]
ML PSpace [94] Tower(poly) Thm. 4.32
GF2 ExpTime [45] Tower(poly) Thm. 5.26
FO2 NExpTime [48] Tower(poly) Thm. 5.26
GF 2ExpTime [45] Tower(poly) Thm. 5.26
FO Π01 [12] Π01 Thm. 5.6

Table 5.4: The complexity of fragments of first-order team logic. All entries are completeness results.

137

5 First-order team logic

Lemma 5.22. Let ϕ ∈ ML(∼). Then ϕ is satisfiable if and only if stx(ϕ) is satisfiable.
Proof. As Theorem 5.19 proves “⇒”, we only consider “⇐”. Suppose (B, S) � stx(ϕ),
whereB is some first-order structure and S is a team inB. By locality (Proposition 2.14),
w.l.o.g. S has domain {x}. Define now the Kripke structure K = (|B|, RB, V) such that
V(p) := QB

p . Then clearly pKq = B. By Theorem 5.19, (K, x〈S〉) � ϕ, soϕ is satisfiable.

Theorem 5.23. Let σ be a vocabulary that contains at least one predicate or equality.
• MC(σ-FO(∼)) is ATime-Alt(exp,poly)-complete, with hardness also on sentences and

for a fixed σ-structure A with domain {0, 1} and a fixed team {∅}.

• If σ contains infinitely many predicates and 0 < n < ω, then MC(σ-FOn(∼)) and
MC(σ-GFn(∼)) are PSpace-complete.

Proof. The upper bounds are due to Proposition 5.16 and Corollary 5.17. The lower
bounds are due to Lemmas 5.20 and 5.21.

Let D be a set of non-classical atoms. We call D polynomial time computable if{
(A, T, δ) | δ ∈ D and (A, T) � δ

}
∈ P

where A denotes a first-order structure and T a team in A. Let FO(D, ∼) be the logic
FO(∼) extended by atoms in D. Define FOn(D, ∼) analogously.

Now, Algorithm 1 is easily adapted to have another clause for atoms in D. The
resulting runtime is clearly still exponential, or polynomial in the case of a bounded
number of variables, respectively.
Corollary 5.24. Let D be a polynomial time computable set of non-classical atoms. Then
MC(FO(D, ∼)) is ATime-Alt(exp,poly)-complete, and MC(FOn(D, ∼)) is PSpace-complete
if 0 < n < ω.
Corollary 5.25. MC(FO(dep, ∼)) is ATime-Alt(exp,poly)-complete.

Likewise, the model checking problems of independence logic, inclusion logic and
exclusion logic with Boolean negation are ATime-Alt(exp,poly)-complete, and their
two-variable fragments are PSpace-complete.

The next theorem gathers the results of this chapter regarding the complexity of
satisfiability (see also Figure 5.3 and Table 5.4).
Theorem 5.26. Let σ be an infinite relational vocabulary with at least one binary predicate.
Let L be any fragment such that σ-GF2(∼) ⊆ L ⊆ σ-FO2(∼) ∪ σ-GF(∼). Then SAT(L) and
VAL(L) are Tower(poly)-complete.
Proof. The upper bounds for FO2(∼) and GF(∼) are by Theorems 5.10 and 5.15, so an
algorithm can choose the appropriate decision procedure as a subroutine depending
on the input formula. For the lower bounds, the mapping ϕ 7→ stx(ϕ) constitutes
a reduction from SAT(ML(∼)) to SAT(GF2(∼)) (see Theorem 4.32 and Lemma 5.22).
Finally, the validity cases easily follow since the logics σ-GF2(∼) and σ-FO2(∼) ∪ σ-GF(∼)
and the class Tower(poly) are closed under negation.

138

5 First-order team logic

5.3 Łoś’s theorem for team semantics

Model theory offers manifold notions of morphisms and constructions, of which many
preserve the first-order theory of structures. One such construction is the product of
structures, and in particular the ultraproduct of structures (also called ultrapower if all
factors are identical). A famous theorem by Jerzy Łoś states that a structure and its
ultrapower have the same first-order theory. For this section we mostly follow Chang
and Keisler [14] (see also van Dalen [21]); the fluent reader is referred to the original
result by Łoś [97] and to Skolem [131] for an early appearance of an ultraproduct
construction of N.

In this section, we generalize the construction to team semantics. Currently, for
example for dependence logic FO(dep), most model-theoretic results stem from its
equivalence to existential second-order logic SO(∃). With added negation however,
FO(dep, ∼) is equivalent to full SO and loses many nice model-theoretic properties, such
as compactness [135]. Because of this, for investigating the model theory of FO(∼) or
other team logics with negation, their second-order characterization may not be a good
starting point. Instead, a direct approach that does not hinge on translation to higher
order logic may be more favorable.

In this section, we instead study the model-theoretic properties of FO(∼) directly. As
a new result in this area, we present a team-semantical analog to Łoś’s theorem. A
corollary of it is the compactness theorem for FO(∼).1 Previously it was only known that
FO and FO(dep) are compact (since SO(∃) is compact) and that FO(dep, ∼) is not. With a
compactness theorem for FO(∼), this now implies that it cannot define, e.g., the infinity
of structures (even if this unsurprising since it can also not define the infinity of teams,
cf. Corollary 5.2).

We begin with some required notation from basic order theory. The reader is also
referred to the very good introduction by Davey and Priestley [22]. A partially ordered set
(poset) is a pair (X,6) where X is a set and 6 is a reflexive, transitive and anti-symmetric
(if x 6 y and y 6 x then x = y) binary relation. A filter on a poset (X,6) is a family
F ⊆ ℘X of subsets of X that is upward closed (Y ∈ F and Y ⊆ Z ⊆ X implies Z ∈ F), and
that is closed under finite intersection (Y, Z ∈ F implies Y ∩ Z ∈ F). For example, the
Fréchet filter is the filter of all subsets of Xwith a finite complement.

An ultrafilter F on a poset (X,6) is a filter such that additionally Y ∈ F ⇔ X \ Y /∈ F for
all Y ⊆ X. In what follows, ultrafilters will denoted by U. The Fréchet filter on infinite X
is never an ultrafilter, since there are sets Y such that neither Y nor X \ Y is finite. For any
fixed x ∈ X however, for example U := {Y ⊆ X | x ∈ Y} is an ultrafilter. Any ultrafilter is
non-empty, as it contains X. The existence of ultrafilters is implied, for example, by the
so-called finite intersection property (see, e.g., [14, Proposition 4.1.3]):

Proposition 5.27. If X is a set, F ⊆ ℘X, and the intersection of finitely many elements of F is
always non-empty, then there exists an ultrafilter U ⊆ ℘X such that U ⊇ F.

1Of course the compactness theorem can also be obtained by other means, such as a sound and
complete proof system for FO(∼) (see Chapter 6), or by a translation to FO sentences (see Theorem 5.4).

139

5 First-order team logic

We write (ultra-)products of sets, structures etc. in German letters. In what follows,
we always assume that I is a set and U is an ultrafilter on I.

Two families a = (ai)i∈I and b = (bi)i∈I are U-equivalent, in symbols a ≈U b, if
{i | ai = bi} ∈ U. Observe that this is an equivalence relation. The intuition is that an
ultrafilter U contains all the “large” subsets, and if the set {i | ai = bi} is “large”, then a

and b “agree almost everywhere”. The ≈U-equivalence class of a is [a].

Ultraproducts. The set ultraproduct of sets (Xi)i∈I is the quotient w. r. t. ≈U of their
Cartesian product:

∏
U

Xi :=

{
[a]

∣∣∣∣∣ a ∈∏
i∈I

Xi

}

Next, for each i ∈ I, let Ai be a σ-structure with domain Ai.

Definition 5.28 (Structure ultraproduct). The structure ultraproduct A :=
∏

UAi is the
σ-structure with domain

∏
UAi and the following interpretation of σ.

• For an r-ary relation symbol R ∈ σ and a1, . . . , ar ∈
∏
i∈IAi, let

([a1], . . . , [ar]) ∈ RA ⇔ {i ∈ I | (a1(i), . . . , ar(i)) ∈ RAi } ∈ U

• For an r-ary function symbol f ∈ σ, and a1, . . . , ar ∈
∏
i∈IAi, let

fA([a1], . . . , [ar]) :=
[
(fAi(a1(i), . . . , an(i)))i∈I

]
The above interpretations of relations and functions are well-defined [14, Proposition

4.1.7], since they depend only on the respective equivalence class.
For formulas with free variables we have to construct an assignment in the same

fashion. Let si : Var → Ai be an assignment for each i ∈ I. We cannot simply define
s = (si)i∈I; observe that s ∈

∏
i∈I(Var→ Ai), so s maps I to functions of Var instead of

the other way around. We have to transpose the arguments to obtain an assignment.

Definition 5.29 (Assignment ultraproduct). Let (si)i∈I ∈
∏
i∈I(Var → Ai). Then the

assignment ultraproduct
∏

U si : Var→
∏

UAi is defined by∏
U

si : x 7→
[(
si(x)

)
i∈I

]
for all x ∈ Var.

Intuitively, s(x) :=
(∏

U si
)
(x) is the “consensus” of the evaluation of all the si at x.

Evaluating a term in the ultraproduct A behaves as expected:

Lemma 5.30. Let t be a term. Then t〈A, s〉 = [(t〈Ai, si〉)i∈I].

140

5 First-order team logic

Proof. Proved in Chang and Keisler [14, Theorem 4.1.9]. Essentially, the proof is by
induction on t and application of Definitions 5.28 and 5.29.

From the above lemma, Łoś’s theorem again follows easily by induction.

Theorem 5.31 (Łoś). Let A =
∏

UAi and s =
∏

U si. Then, for every formula α ∈ σ-FO, it
holds that (A, s) � α if and only if { i | (Ai, si) � α } ∈ U.

Proof. See Chang and Keisler [14, Theorem 4.1.9].

Here, the intuition is again that the ultraproduct A satisfies the formulas that are
true in “almost all” Ai. Having stated the classical definitions and result, we now
switch to the team-semantical setting and introduce basic definitions that are required
to generalize the theorem.

5.3.1 Definition for team semantics and main result

First of all, we propose a suitable notion of ultraproducts of teams.

Definition 5.32 (Team ultraproduct). Let (Ti)i∈I be a family of teams in the respective
structures Ai, that is, Ti ⊆ Var→ Ai for all i. Then the team ultraproduct

∏
U Ti is defined

as the team

∏
U

Ti :=

{∏
U

si

∣∣∣∣∣ (si)i∈I ∈∏
i∈I

(Var→ Ai) and {i | si ∈ Ti} ∈ U

}
.

Let us lose some words on this definition. First, by definition of assignment ultra-
products

∏
U si (Definition 5.29) it is easy to see that

∏
U Ti ⊆ Var→

∏
UAi, that is, this

is a team in A :=
∏

UAi. The intuition is now that this team contains precisely those
assignments that are a member of “almost all” teams Ti, which is a definition that fits
with the idea of set, structure and assignment ultraproducts. This is expressed by the
condition {i | si ∈ Ti} ∈ U.

With the above definition, we are now ready to prove the analog to Łoś’s theorem.
Let A :=

∏
UAi and T :=

∏
U Ti be the ultraproduct of structures (Ai)i∈I with domains

(Ai)i∈I and teams (Ti)i∈I, respectively, where Ti ⊆ Var→ Ai.
In what follows, we say that a formula ϕ is preserved in ultraproducts if

(A,T) � ϕ ⇔ { i | (Ai, Ti) � ϕ } ∈ U

for all I, U, A, T, Ai, and Ti as above.

Lemma 5.33. Every flat formula is preserved in ultraproducts.

Proof. We have to show (A,T) � α⇔ { i | (Ai, Ti) � α } ∈ U, where α is flat. The proof is
by contraposition.

“⇒”: Suppose { i | (Ai, Ti) � α } /∈ U. As U is an ultrafilter, J := { i | (Ai, Ti) 2 α } ∈ U.
By flatness of α, for each i ∈ J the team Ti contains an assignment si falsifying α. By the

141

5 First-order team logic

axiom of choice, extend this to a family (si)i∈I of assignments where si is arbitrary for
i /∈ J, but such that si ∈ Ti and (Ai, si) 2 α if i ∈ J. Let s :=

∏
U si. Our goal is to show

that s is a witness of the flat formula α being false in T. First observe that J ⊆ {i | si ∈ Ti}
by choice of the si, and by upwards closure of ultrafilters, the latter set is in U. But then
s ∈ T by Definition 5.32. Moreover, J ⊆ { i | (Ai, si) 2 α }, so the latter set is in U as well,
and by Łoś’s theorem, (A, s) 2 α. Consequently, (A,T) 2 α by flatness of α.

“⇐”: Suppose (A,T) 2 α. Then (A, s) 2 α for some family (si)i∈I with s =
∏

U si
and s ∈ T. By Łoś’s theorem, { i | (Ai, si) � α } /∈ U, so for the complement J :=

{ i | (Ai, si) 2 α } we have J ∈ U. If now each of these si is in Ti we would be done,
but this is not necessarily the case. However, recall that { i | si ∈ Ti } ∈ U by definition
of T. U is closed under finite intersection, so { i | si ∈ Ti and (Ai, si) 2 α } ∈ U and as a
consequence, { i | (Ai, Ti) 2 α } ∈ U by flatness.

Theorem 5.34. Every FO(∼)-formula is preserved in ultraproducts.

Proof. Let ϕ ∈ FO(∼). The proof is now by induction on ϕ. By Theorem 5.1, ϕ is
semantically equivalent to a Boolean combination of FO-formulas, so it suffices to
consider only classical formulas, negation ∼, and conjunction ∧.

• The case ϕ ∈ FO is proved by the previous lemma.

• If ϕ = ψ ∧ θ, then (A,T) � ψ, θ iff { i | (Ai, Ti) � ψ } ∈ U and { i | (Ai, Ti) � θ } ∈ U.
But this is equivalent to { i | (Ai, Ti) � ψ∧ θ } ∈ U due to closure under finite
intersection and upward closure of ultrafilters.

• Ifϕ = ∼ψ, then (A,T) 2 ψ is equivalent to { i | (Ai, Ti) � ψ } /∈ U, which is equivalent
to { i | (Ai, Ti) 2 ψ } ∈ U by definition of an ultrafilter.

5.3.2 Łoś’s theorem for non-classical atoms

Next, we show that Łoś’s theorem for teams does not hold only for FO(∼), but also for
the non-classical atoms such as dependence or independence.

In what follows, fix a vocabulary σ and an n-ary relation symbol R /∈ σ. If R is an
n-ary relation, then (A,R) means the σ ∪ {R}-structure that expands A by interpreting R
as R.

Definition 5.35. Every first-order σ ∪ {R}-formula δ defines an n-ary atom D as follows:
For all σ-structures A, teams T in A and σ-terms ~t = t1, . . . , tn it holds that

(A, T) � D~t ⇔ (A,~t〈A, T〉) � δ(R).

An atom D is first-order definable if it is defined by some formula.

Theorem 5.36. Every first-order definable atom is preserved in ultraproducts.

Proof. Let D be an atom defined by the first-order formula δ(R). To reduce clutter, we
assume that D is unary. The case of higher arities is handled analogously. We also omit
A in the notation t〈A, ·〉 if it is clear.

142

5 First-order team logic

Let now A =
∏

UA, T =
∏

U Ti, and let t be a term. The key is that

[a] ∈ t〈T〉 if and only if { i | ai ∈ t〈Ti〉 } ∈ U. (?)

for all families a = (ai)i∈I ∈
∏
i∈IAi, which mirrors the definition of the interpretation

of a relation symbol in an ultraproduct (Definition 5.28). Consequently, (A,~t〈T〉) =∏
U(Ai,~t〈Ti〉). Hence by Łoś’s theorem, (A,~t〈T〉) � δ if and only if {i | (Ai,~t〈Ti〉) � δ} ∈ U,

which proves the theorem by definition of D.
It remains to prove (?).
“⇒”: Assume a = (ai)i∈I as above and let [a] ∈ t〈T〉. This means there is some

assignment s ∈ T such that t〈s〉 = [a]. Now s is of the form
∏

U si for some (si)i∈I. By
Lemma 5.30, t〈s〉 = [a] = [(t〈si〉)i∈I]. So by definition of [·], {i | ai = t〈si〉} ∈ U. Moreover,
by definition of T, the set {i | si ∈ Ti} is in U. By intersection and upward closure,

{i | si ∈ Ti and ai = t〈si〉} ⊆ {i | ai ∈ t〈Ti〉} ∈ U

which finishes the first direction.
“⇐”: By assumption, the set J := { i | ai ∈ t〈Ti〉 } is in U. This means that for every

i ∈ J there exists an assignment si ∈ Ti such that ai = t〈si〉. By the axiom of choice,
extend this to a family (si)i∈I of assignments such that si ∈ Ti and ai = t〈si〉 for i ∈ J,
and si is arbitrary for i /∈ J. Define the assignment s :=

∏
U si. Firstly, s ∈ T since

J ⊆ {i | si ∈ Ti} ∈ U. Secondly, t〈s〉 = [t〈si〉i∈I] by Lemma 5.30, which equals [a] by
definition of [·], as J ⊆ {i | ai = t〈si〉} ∈ U. It follows that [a] ∈ t〈T〉.

Corollary 5.37. The atoms of dependence, independence, inclusion, and exclusion are preserved
in ultraproducts.

By the inductive proof for ∧ and ∼ in Theorem 5.34, we obtain:

Corollary 5.38. Every Boolean combination of FO(∼)-formulas and/or first-order definable
atoms is preserved in ultraproducts.

5.3.3 Łoś’s theorem for non-classical atoms: A direct proof

The above proof that Łoś’s theorem extends to all first-order definable generalized atoms
is powerful but rather opaque. In what follows, we give an exemplary direct proof for
the independence atom in order to demonstrate how such a result can be provedwithout
assuming that an atom is first-order definable. This can easily be adapted to the other
non-classical atoms.

Theorem 5.39. The independence atom is preserved in ultraproducts.

Alternative proof. Again, we omit the structure A in the notation t〈A, ·〉 if it is clear.
Let ~p, ~q,~r be sequences of terms and let ϕ := ~p ⊥~r ~q. We have to show that (A,T) � ϕ

if and only if { i | (Ai, Ti) � ϕ } ∈ U.
“⇒”: Proof by contraposition. Let { i | (Ai, Ti) � ϕ } /∈ U. Then J := { i | (Ai, Ti) 2 ϕ } ∈

U. By definition of the independence atom, for each i ∈ J we can pick si, s ′i ∈ Ti that

143

5 First-order team logic

violate ϕ in the sense that ~r〈si〉 = ~r〈s ′i〉, but there exists no s ′′i ∈ Ti that satisfies both
~p~r〈si〉 = ~p~r〈s ′′i 〉 and ~q〈s ′i〉 = ~q〈s ′′i 〉. From this, we define assignments s, s ′ as follows. By
the above argument, there are families (si)i∈I ,

(
s ′i
)
i∈I such that si and s ′i are arbitrary for

i /∈ J, but if i ∈ J then si, s ′i ∈ Ti and no s ′′i as stated before exists in Ti. Next, let s :=
∏

U si
and s ′ :=

∏
U s

′
i. Then clearly s, s ′ ∈ T, since J ⊆ {i | si ∈ Ti} and J ⊆ {i | s ′i ∈ Ti}.

If now (A,T) � ϕ, then there must exist an assignment s ′′ ∈ T such that ~p~r〈s〉 = ~p~r〈s ′′〉
and ~q〈s ′〉 = ~q〈s ′′〉. There is a family

(
s ′′i
)
i∈I such that s ′′ =

∏
U s

′′
i . By Lemma 5.30 and

Definition 5.32, the sets {i | ~p~r〈si〉 = ~p~r〈s ′′i 〉}, {i | ~q〈s ′i〉 = ~q〈s ′′i 〉} and {i | s ′′i ∈ Ti} are all in
U, and so is their intersection

J ′ :=
{
i
∣∣ s ′′i ∈ Ti and ~p~r〈si〉 = ~p~r〈s ′′i 〉 and ~q〈s ′i〉 = ~q〈s ′′i 〉

}
.

But then the sets J ′ and

J ′′ :=
{
i
∣∣ @s ′′ ∈ Ti : ~p~r〈si〉 = ~p~r〈s ′′〉 and ~q〈s ′i〉 = ~q〈s ′′〉

}
⊇ J

are both in U, which is impossible since they have an empty intersection.
“⇐”: Suppose that { i | (Ai, Ti) � ϕ } ∈ U. Let s =

∏
U si and s ′ =

∏
U s

′
i be arbitrary

assignments in T such that ~r〈s〉 = ~r〈s ′〉. First observe that

J :=

{
i

∣∣∣∣∣ si /∈ Ti or s ′i /∈ Ti or ~r〈si〉 6= ~r〈s ′i〉
or ∃s ′′i ∈ Ti : (~p~r〈si〉 = ~p~r〈s ′′i 〉 and ~q〈s ′i〉 = ~q〈s ′′i 〉)

}

is in U due to J ⊇ { i | (Ai, Ti) � ϕ }. Intuitively, in J the independence only needs to hold
for the specific pair si, s ′i and not for all pairs. Next, from ~r〈s〉 = ~r〈s ′〉 and Lemma 5.30,
it follows that

J0 :=
{
i
∣∣ ~r〈si〉 = ~r〈s ′i〉

}
∈ U.

Also, as s, s ′ ∈ T, the sets J1 := { i | si ∈ Ti } and J2 :=
{
i | s ′i ∈ Ti

}
are in U. Hence

J ′ := J0 ∩ J1 ∩ J2 =
{
i
∣∣ ∃s ′′i ∈ Ti : (~p~r〈si〉 = ~p~r〈s ′′i 〉 and ~q〈s ′i〉 = ~q〈s ′′i 〉)

}
∈ U.

Given the witnesses s ′′i quantified in this set, we extend these to a family s ′′ =
(
s ′′i
)
i∈I

such that s ′′i is arbitrary for i /∈ J ′, but for i ∈ J ′ it holds that s ′′i ∈ Ti, ~p~r〈si〉 = ~p~r〈s ′′i 〉,
and finally ~q〈s ′i〉 = ~q〈s ′′i 〉. It is easy to see that s ′′ ∈ T, ~p~r〈s〉 = ~p~r〈s ′′〉 and ~q〈s ′〉 = ~q〈s ′′〉.
As s, s ′ were arbitrary, (A,T) � ϕ.

5.3.4 Application: The compactness theorem

We present an application of the ultraproduct theorem, namely a compactness theorem
for team logic that does not rely on translation to SO(∃) or a similar logic. The proof is
standard for first-order logic (e.g., Chang and Keisler [14, Cor. 4.1.11]). Below, we adapt
it to team semantics.

144

5 First-order team logic

Theorem 5.40 (Compactness theorem). Let Φ be a set of formulas that are preserved under
ultraproducts. Then Φ is satisfiable if every finite subset of Φ is satisfiable.

Proof. Let I := ℘<ωΦ, i.e., I is the set of finite subsets of Φ. Assume that every finite
subset of Φ is satisfiable. Then there exists a family (Ai, Ti)i∈I of models such that
(Ai, Ti) � i for all i ∈ I. If we now find an ultrafilter U on I that for all ϕ ∈ Φ contains
the subset { i | (Ai, Ti) � ϕ }, then by the assumption that all ϕ ∈ Φ are preserved in
ultraproducts, (A,T) � Φ.

We obtain U as follows. For each i ∈ I, let i↑ := { i ′ ∈ I | i ′ ⊇ i }. We apply Proposi-
tion 5.27 to the set F :=

{
i↑
∣∣ i ∈ I } ⊆ ℘I, for which we have to show the finite intersec-

tion property. But any finite intersection i↑1∩· · ·∩i
↑
n is non-empty, since i := i1∪· · ·∪in ∈ I,

and so i ∈ i↑ = (i1 ∪ · · · ∪ in)↑ = i↑1 ∩ · · · ∩ i
↑
n.

Next, we ensure that { i | (Ai, Ti) � ϕ } is in U for all ϕ ∈ Φ. For this, it suffices to show
that {ϕ}↑ ⊆ { i | (Ai, Ti) � ϕ }, since {ϕ}↑ ∈ F ⊆ U, and U is upward closed. For showing
that {ϕ}↑ ⊆ { i | (Ai, Ti) � ϕ }, suppose i ∈ {ϕ}↑. Then {ϕ} ⊆ i. But we assumed at the
beginning that (Ai, Ti) is a model of i. Consequently, also (Ai, Ti) � ϕ.

Corollary 5.41. FO(∼) satisfies the compactness theorem, i.e., if Φ ⊆ FO(∼) is unsatisfiable,
then already some finite Φ ′ ⊆ Φ is unsatisfiable.

As an example for a dependence logic formula that is beyond the power of first-order
logic, Väänänen [135] gave the FO(dep)-sentence

ϕ∞ = ∃c∀x∃y∀z∃w(dep(z;w)∧ c 6= y∧ (x = z↔ y = w))

which states that a structure is (Dedekind-)infinite, i.e., its universe is in bijection with
a proper subset. The set {ne, ∼ϕ∞} ∪ {ψn | n > 1}, where ψn states that the structure has
at least n elements, is unsatisfiable, but each finite subset is satisfiable. Hence it is not
compact. With Corollary 5.38, this proves that a Boolean combination of FO-formulas
and non-classical atoms cannot define ϕ∞, we must nest them inside ∨ or quantifiers in
order to define ϕ∞, as demonstrated above.

5.4 Summary and outlook

5.4.1 Summary

In this chapter, we settled the computational complexity of FO(∼) and identified decid-
able fragments (see Figure 5.3 and Table 5.4). In terms of decidability, team logic in a
sense mirrors classical logic. We showed that FO(∼) is recursively enumerable, just like
FO, and that both its two-variable fragment FO2(∼) and its guarded fragment GF(∼) are
decidable, similarly to FO2 and GF. Our method of proof was the translation into an
equivalent—albeit non-elementarily longer—form called (6∧)-normal form. Moreover,
FO(∼) has compactness, just like FO, and unlike FO(dep, ∼).

All in all, one could argue that FO(∼) is just a non-elementarily more succinct encoding
of first-order logic, and that it is perhaps closer related with FO than with FO(dep, ∼).

145

5 First-order team logic

This is supported by the result of Galliani [38] that the expressive power of FO(∼) and
FO coincides on sentences. From this point of view, however, we have at least precisely
quantified the difference in succinctness.

In Table 5.4, it is worth noting that all decidable first-order logics are complete for the
class Tower(poly). Subtle differences in the classical realm, such as GF2 being complete
for ExpTime, FO2 for NExpTime, and GF for 2ExpTime, vanish due to the vastly larger
succinctness of team logic. In order to prove the matching lower bounds, we generalized
the well-known standard translation to modal team logic, and thus utilized the lower
bounds we proved in Chapter 4.

Finally, we transferred the celebrated theorem by Łoś, i.e., that first-order theories of
models are preserved in ultrapowers, to team logic. By this, we also gave an alternative
proof that FO(∼) satisfies the compactness theorem, even if non-classical atoms are
added, as long as they are only inside Boolean connectives.

5.4.2 Open problems and further research directions

Expressiveness. We showed that the logics ML(∼), GF2(∼), FO2(∼) and GF(∼) all have
the same complexity, that is, they are Tower(poly)-complete. However, a separation
of these logics in terms of expressiveness would be desirable. Can we separate ML(∼),
GF(∼) and FO(∼) in the same way as ML, GF and FO, by a notion similar to (guarded)
bisimulation as defined by Andréka et al. [4]? Specifically, can we lift these bisimulation
relations to teams analogously to modal team-bisimulation (Definition 2.27)?

Standard translations and loosely guarded formulas. Analogously to our standard
translation from ML(∼) to GF2(∼), it would be interesting to embed other logics, such as
team-logical linear temporal logic (LTL) [91] or computation tree logic (CTL) [90], into
fragments of FO(∼).

Classically, the translation of LTL into FO is similar to the standard translation of ML:
Assuming a linear order 6, for example the translation of Fϕ is ∃y (x 6 y ∧ sty(ϕ)).
Likewise, ϕUψ is translated to ∃y (x 6 y ∧ sty(ψ) ∧ ∀z((x 6 z ∧ z < y) → stz(ϕ))).
However, the latter is not guarded since (x 6 z∧ z < y) is not atomic. Van Benthem [8]
defined the loosely guarded fragment LGF where certain conjunctions of atomic formulas
are allowed as guards. LGF contains LTL, and Grädel [45] proved that this fragment
has an 2ExpTime-complete satisfiability problem, just like GF.

In future research, we could define a team analog LGF(∼), which presumably is
complete for Tower(poly) as well. This could yield results also for LTL(∼), that is,
LTL with team semantics and added negation, of which the complexity of both the
model checking problem and the satisfiability problem are open under asynchronous
semantics [91]. Finally, the result on GF(∼) could serve as an upper bound for a polyadic
modal team logic which does not translate into FO2 but into GF (see, e.g., Goranko and
Otto [43]).

146

5 First-order team logic

Ultraproducts and model theory. Besides our ultraproduct construction, which results
from model theory else carry over to the team setting? For example, it is known that
FO(dep) is compact [135], since existential second-order logic is. However, it cannot be
preserved in ultraproducts: If a formula is preserved, then so is its negation, but the
negated FO(dep)-formula

∼∃c∀x∃y∀z∃w(dep(z;w)∧ c 6= y∧ (x = z↔ y = w))

is not preserved, since it expresses that the universe is finite (whereas the ultraproduct
of infinitely many finite but unbounded structures is infinite).

That being said, we showed that Boolean combinations of FO(∼)-formulas and first-
order definable atoms of dependency are preserved in ultraproducts, so the crucial
difference is the power of nesting the atoms inside quantifiers and splitting disjunctions.
It would be interesting to find the exact boundary of where Łoś’s theorem fails.

Also, are there other approaches for proving, say, the compactness of FO(dep) and
related logics, without relying on translations to second-order logic?

147

6 An axiomatization of team logic

In this chapter, we turn to the question of axiomatization of team logic, that is, finding a
set of rules from which we can derive all true formulas. In practice, one wants this rule
set to be small, natural, obvious and simple. In this thesis, we focus on Hilbert-style proof
systems. For an introduction to this area, we refer the reader to van Dalen [21].

This chapter is organized as follows. In Section 6.1, we start with an introduction
to proof systems and remind the reader of the different existing system for classical
propositional, modal and first-order logic. Afterwards, in Section 6.2, we switch to
team semantics and first consider the Boolean combinations (via ∧ and ∼) of classical
formulas. We call this fragment B(F), for a classical logic F. It was already investigated
in Sections 3.7, 4.9 and 5.1; we return to it now and show how a proof system for F can
be adapted to one for B(F).

The full logics PL(∼), ML(∼) and FO(∼) are handled in the subsequent Section 6.3.
Essentially, the idea is that the connectives ∨, �, ♦, ∀, and ∃ can be eliminated from
formulas, which again leads to the tractable fragment B(F). We proved similar results
already in Corollary 3.92 and Theorem 5.1. Here, we extend this result by showing that
the elimination can be carried out inside our proof system. As then every formula can
be translated to one in B(F) (with F ∈ {PL,ML,FO} accordingly), the completeness of a
proof system for a team logic boils down to that of B(F), which ultimately relies on a
system for F. Figure 6.1 visualizes this approach.

6.1 Introduction

A logic L is a triple (ΦL,AL,�L), where ΦL is a set called formulas of L, AL is a class
called valuations, and �L is the satisfaction relation between AL and ΦL.

PL(∼)
HPLLS

B(PL)
HPLL

PL
HPL

(eliminate ∨,�,♦,∀,∃)

(lift propositional axioms)

ML(∼)
HMLLSM

B(ML)
HMLL

ML
HML

FO(∼)
HFOULSQ

B(FO)

HFOUL

FO
HFO

Figure 6.1: Axiomatization of PL(∼),ML(∼) and FO(∼).

148

6 An axiomatization of team logic

For example, in modal team logic, ΦL is the set of ML(∼)-formulas, AL is the class of
pairs (K, T) where K is a Kripke structure and T a team in K, and �L is defined as in
Chapter 2. In what follows, we often omit L as a subscript. Sometimes we write ϕ ∈ L

and Φ ′ ⊆ L to mean ϕ ∈ ΦL and Φ ′ ⊆ ΦL.
For sets Φ ′, Φ ′′ ⊆ L, the notation Φ ′ � Φ ′′ means that A � Φ ′ implies A � Φ ′′ for all

A ∈ A. Likewise, Φ ′ ≡ Φ ′′ means Φ ′ � Φ ′′ and Φ ′′ � Φ ′. If Φ ′ and/or Φ ′′ is a single
formula, we omit the braces and write, e.g., Φ ′ � ϕ instead of Φ ′ � {ϕ}.

Definition 6.1. A proof system is a triple Ω = (Ξ,Ψ, I) where Ξ is a set of judgments
(usually formulas), Ψ ⊆ Ξ is a set of axioms, and I ⊆ ℘<ω(Ξ)× Ξ is a set of inference rules.

We often depict an inference rule (Φ ′, ϕ) ∈ I as a bar with the premises ϕ1, . . . , ϕn ∈
Φ ′ on top of it and the conclusion ϕ below it. An example for an inference rule is the
well-known modus ponens:

α α→ β

β

In this chapter, Ξ, Ψ and I are all assumed countable and decidable in polynomial
time. The component-wise union of two proof systemsΩ, Ω ′ is written ΩΩ ′.

Definition 6.2. Let Ω = (Ξ,Ψ, I) be a proof system and Φ ⊆ Ξ. An Ω-proof P from Φ is a
finite sequence P = (P0, . . . , Pn) of finite sets Pi ⊆ Ξ such that ξ ∈ Pi implies that either
ξ ∈ Pi−1 ∪ Ψ ∪Φ, or (P, ξ) ∈ I for some P ⊆ Pi−1.

In other words, every formula in Pi \ Pi−1 is either an axiom, an premise fromΦ, or is
derived by some rule in I from Pi−1.

We say that the proof P = (P1, . . . , Pn) proves or derives a formula ϕ from Φ if ϕ ∈ Pn
and P is an Ω-proof from Φ. We write Φ `Ω ϕ if there is some Ω-proof of ϕ from Φ.
We omit Ω if it is understood.

Definition 6.3 (Theorem). IfΩ = (Ξ,Ψ, I) is a proof system, ϕ ∈ Ξ and ∅ ` ϕ, then ϕ is
called theorem of Ω.

Instead of ∅ ` ϕ, we also write ` ϕ.
If two formulas ϕ and ϕ ′ prove each other, i.e., {ϕ} ` ϕ ′ and {ϕ ′} ` ϕ, then we write

ϕ a` ϕ ′ and say that ϕ and ϕ ′ are provably equivalent.

Definition 6.4. Let Ω be a proof system and L a logic. Then Ω is sound for L if for all
Φ ⊆ L and ϕ ∈ L it holds that Φ `Ω ϕ implies Φ �L ϕ. Moreover,Ω is complete for L if
for all such Φ and ϕ it holds that conversely Φ �L ϕ implies Φ `Ω ϕ.

A sound and complete proof system for L is an axiomatization of L.

We use the classical proof systems depicted in Table 6.2. This variant of the proposi-
tional calculus ((H1)–(H9) and (E→)) goes back to Łukasiewicz [109]. We refer to it as
HPL. The modal logic part ((H1)–(H9), (K1)–(K2), (E→), (Nec)) is standard, see, e.g.,
Fitting [33]. We call this system HML. The notation “(α theorem)” means that the rule

149

6 An axiomatization of team logic

(H1) α→ (β→ α)

(H2) (α→ (β→ γ))→ (α→ β)→ (α→ γ)

(H3) (¬α→ ¬β)→ (β→ α)

(H4) α→ (β→ (α∧ β))

(H5) (α∧ β)→ α

(H6) (α∧ β)→ β

(H7) α→ (α∨ β)

(H8) β→ (α∨ β)

(H9) (α→ γ)→ (β→ γ)→ ((α∨ β)→ γ)

(E→) α α→ β

β

(K1) ♦α↔ ¬�¬α

(K2) �(α→ β)→ (�α→ �β)

(Nec) α
�α (α theorem)

(H10) αxt → ∃xα (t term)
(H11) ∀xα→ αxt (t term)
(H12) x = x

(H13) x = y→ (α→ αxy)

(G∀) α→ β

α→ ∀xβ
(x /∈ Fr(α))

(G∃) α→ β

∃xα→ β
(x /∈ Fr(β))

Table 6.2: Hilbert-style axiomatizations of PL, ML and FO.

may only be applied to α that are derived without any assumptions, i.e., are theorems.
It is well-known that �α is valid (i.e., true in all models) if α is valid, but �α is not
necessarily true if α is true. We will come back to this complication in Subsection 6.2.1.
For now, observe that it can easily be encoded whether a formula is a theorem, e.g., by
choosing {0, 1} ×ML as the set of judgments, and flipping (0,ϕ) to (1,ϕ) whenever a
non-axiom premise is used in a proof, i.e., the first component is a “dirty bit”.

For the first-order axioms ((H1)–(H13), (E→), (G∀), (G∃)), we follow Hodges [69],
and call this system HFO.1

In each of these logics, we can assume that >, ⊥,→ and↔ are the usual abbreviations
via ∧, ∨ and ¬.

Proposition 6.5. In classical semantics, HPL is sound and complete for PL, HML is sound and
complete for ML, and HFO is sound and complete for FO.

1The notation αxt in (H10)–(H11) means that all free occurrences of x are replaced by the term t, but in
such a way that all variables introduced via t are still free. This is achieved by renaming all bound
variables into whose scope t falls.

150

6 An axiomatization of team logic

(L1) ϕ _ (ψ _ ϕ)

(L2) (ϕ _ (ψ _ θ)) _ (ϕ _ ψ) _ (ϕ _ θ)

(L3) (∼ϕ _ ∼ψ) _ (ψ _ ϕ)

(L4) (ϕ∧ψ) _ ϕ

(L5) (ϕ∧ψ) _ ψ

(L6) ϕ _ (ψ _ (ϕ∧ψ))

(L7) (α→ β) _ (α _ β)

(E_) ϕ ϕ _ ψ

ψ

Table 6.3: The system L of lifted propositional axioms for B(F); α and β denote classical F-formulas.

Recall that the logics PL, ML and FO all enjoy the flatness property (Propositions 2.10
and 2.23). Flatness has one particularly useful consequence regarding proof systems:

Proposition 6.6. Let F ∈ {PL,ML,FO}, Γ ⊆ F, α ∈ F. Then Γ � α holds in classical semantics
if and only if it holds in team semantics.

Proof. We prove only the FO case, as the others are similar. For “⇒”, let Γ � α in classical
semantics. Let (A, T) be arbitrary such that (A, T) satisfies Γ . Then (A, s) � Γ for all s ∈ T
by flatness. By assumption, (A, s) � α in for all s ∈ T . Consequently, (A, T) � α again by
flatness.

Next, we prove “⇐” by contraposition. If Γ 2 α in classical semantics, then there
is a valuation (A, s) such that (A, s) � Γ and (A, s) 2 α. But then also (A, {s}) � Γ and
(A, {s}) 2 α by flatness. Consequently, Γ 2 α in team semantics.

Corollary 6.7. The systems HPL, HML and HFO are sound and complete for PL, ML and FO in
team semantics, respectively.

6.2 Axioms of the Boolean connectives

The second step towards an axiomatization of team logic is to investigate the Boolean
operators∧ and ∼, which are added on top of a given classical logic F. The other Boolean
connectives are defined as abbreviations, besides ϕ 6 ψ := ∼(∼ϕ ∧ ∼ψ) these are the
material implication ϕ _ ψ := ∼ϕ6ψ, the equivalence ϕ] ψ := (ϕ _ ψ)∧ (ψ _ ϕ)

and the strict falsum ⊥⊥ := ∼>.
We again consider the Boolean closure B(F), and generalize the definition from that

in Section 4.9.

Definition 6.8. Let F be a logic. Then B(F) is the logic called the Boolean closure of F,
with its formulas given by the grammar ϕ ::= α | ∼ϕ | ϕ∧ϕ, for α ∈ F, with the same

151

6 An axiomatization of team logic

A ξ _ α

B ξ _ (α→ β)

1 (α→ β) _ (α _ β) (L7)
2 ξ _ ((α→ β) _ (α _ β)) (L1), 1
3 ξ _ (α _ β) (L2), B, 2
. ξ _ β (L2), A, 3

Figure 6.4: Example derivation in L

valuations as F, and with the semantics

A �B(F) ϕ ⇔


A �F ϕ if ϕ ∈ F,
A 2B(F) ψ if ϕ /∈ F and ϕ = ∼ψ,
A �B(F) ψ1 and A �B(F) ψ2 if ϕ /∈ F and ϕ = ψ1 ∧ψ2.

On the axiom side, the proof system L shown in Table 6.3 mainly consists of proposi-
tional axioms “L”ifted to team logic. The classical axioms (L1) to (L3) and (E_) describe
the meaning of _ and ∼. The axioms (L4) to (L6) define ∧. The only “non-classical”
axiom is (L7), which is necessary to relate the implication on the level of singletons (→)
with that on the level of teams (_).

Derivations are written down as in the example below (Figure 6.4). The premises have
the special line numbers A, B, …, whereas . marks the conclusion. The right column of
each proof shows the applied rules with the line numbers of the arguments. The format
is

(rule1), . . . , (rulen), argument1, . . . , argumentn

where omitted line numbers of the arguments means that the preceding lines are used.
For brevity, we omit applications of (E_) in L that are clear.

In the next several subsections, we prove that L, when combined with a proof system
for F, completely axiomatizes B(F). First, we show that L also preserves soundness.

Lemma 6.9. Let Ω = (Ξ,Ψ, I) be a proof system such that every rule and axiom of Ω contains
only F-formulas, that is, Ξ ⊆ F. If (E→) ∈ I andΩ is sound for F, thenΩL is sound for B(F).

Proof. We show that all axioms and inference rules ofΩL are sound. Then the soundness
of ΩL is easily shown by induction on the length of proofs.

The axioms and rules ofΩ apply only toF, and for this reason are soundby assumption.
As (E→) is also sound, {α,α→ β} � β for all α,β ∈ F. For this reason, α→ β � α _ β,
so (L7) is sound. For the other axioms and rules of L this is straightforward by the
semantics of ∼, ∧ and _.

152

6 An axiomatization of team logic

6.2.1 The deduction theorem for team logics

Similar to propositional logic, the first step in the completeness proof is the deduction
theorem, i.e., that Φ ` (ϕ _ ψ) if and only if Φ ∪ {ϕ} ` ψ. Unfortunately, for logics
beyond the propositional connectives, the status of the deduction theorem is rather
unclear. The prime example is modal logic, for which Hakli and Negri [50] claim:

For modal logic, however, there seems to be lack of agreement about the validity of the
deduction theorem. The answer to the question whether the deduction theorem fails
for modal logic is far from unanimous. Some sources in the literature claim that the
deduction theorem holds, whereas others claim that it fails, some give conditions and
restrictions for the theorem to hold or argue for the failure of the deduction theorem
as a consequence of a certain formulation of the rule of necessitation.

Classical modal logic consists of the propositional calculus together with the distri-
bution axiom �(ϕ → ψ) → (�ϕ → �ψ) and the Gödel rule (necessitation): ϕ ` �ϕ.
But clearly 0 ϕ → �ϕ, which is the said failure of the deduction theorem. Basically, the
deduction theorem is incompatible with the necessitation rule. On this account, some
authors claim only weak soundness and completeness of an axiom system for modal
logic, meaning ` ϕ⇔ � ϕ (cf. Sider [129]).

Instead, we pursue the approach of Hakli and Negri [50], which goes back to Fit-
ting (cf., e.g., [33]). Essentially, they restrict the application of ϕ ` �ϕ to those cases
where ϕ is a theorem (cf. p. 150). This approach leaves the calculus complete and pre-
serves the deduction theorem with only minor changes to the classical proof systems.

Since team logic contains several non-Boolean connectives, we generalize the proof of
Hakli and Negri [50, Thm. 2]. As the crucial property of a rule to be compatible with
the deduction theorem, we identify the following.

Definition 6.10. Let Ω = (Ξ,ψ, I) be a proof system. A rule ({ξ1, . . . , ξk}, ψ) ∈ I has
conditioning if {ϕ _ ξ1, . . . , ϕ _ ξk } ` (ϕ _ ψ) for all ϕ ∈ Ξ.

In other words, the rule can be applied relative to an arbitrary premiseϕ. It is needless
to say that we eventually will prove the above property for all rules of the corresponding
team-logical connectives.

We say that a system Ω has conditioning if all inference rules have it.

Theorem 6.11 (Deduction theorem). If Ω is a proof system and ΩL has conditioning, then
Φ `ΩL (ϕ _ ψ) if and only if Φ ∪ {ϕ} `ΩL ψ.

Proof. “⇒” is clear, as L has (E_). We prove “⇐” by induction on the length n of a
shortest proof of ψ. If ψ ∈ Φ, ψ = ϕ, or if ψ is an axiom, then Φ ` (ϕ _ ψ) by (L1) and
(E_). For n = 1 these are the only cases. If n > 1, then ψ could also be obtained by
application of some inference rule ({ξ1, . . . , ξk}, ψ). But then ξ1, . . . , ξk each have a proof
of length 6 n − 1 from Φ ∪ {ϕ}, so by induction hypothesis, Φ ` ϕ _ ξi for 1 6 i 6 k.
As ΩL has conditioning by assumption, Φ ` ϕ _ ψ as desired.

153

6 An axiomatization of team logic

This for example applies to the rule ϕ ` �ϕ in its weakened form (requiring ϕ to be
a theorem), as we will show next.

Definition 6.12. Let Ω and Ω ′ be proof systems. Ω ′ is a conservative extension of Ω, in
symbols Ω ′ � Ω, if Ω ′ contains all judgments, rules, and axioms of Ω, but all rules of
Ω ′ that are not in Ω apply only to theorems.

Theorem 6.13. Every conservative extension of L or HPLL has the deduction theorem.

Proof. Let Ω be a proof system as above. It suffices to show that all rules of Ω have
conditioning.

There are three cases to distinguish: (E→), (E_), and rules that apply only to the-
orems. The latter case is clear: If a rule (Φ ′, ϕ) applies only to theorems, then the
produced formula ϕ itself is a theorem. Then by (L1) and (E_) we can prove ξ _ ϕ

for arbitrary ξ, so the rule certainly has conditioning.
Next, consider the rule (E_), i.e., ({ϕ,ϕ _ ψ}, ψ). To demonstrate that it has con-

ditioning, we assume the premises ξ _ (ϕ _ ψ) and ξ _ ϕ, where ξ is arbitrary. By
(L2) and (E_), it is straightforward to derive ξ _ ψ. Finally, for (E→), conditioning is
proved as in Figure 6.4.

For team logic, we will later introduce rules like ϕ ` �ϕ, ϕ ` ∀xϕ etc. that act only on
theorems, and thereby fulfill the above requirement.

6.2.2 Completeness of L

We follow the standard completeness proof for propositional logic, which relies on Lin-
denbaum’s lemma to construct a so-called maximal consistent set. Let us first introduce
an analogous notion of consistency. In what follows, let Ω = (Ξ,ψ, I) be a proof system.

Definition 6.14. A set Φ ⊆ Ξ is Ω-inconsistent if Φ ` Ξ, i.e., if everything can be derived.
Φ is Ω-consistent if it is notΩ-inconsistent. Moreover, Φ ⊆ Ξ is maximal Ω-consistent if it
is Ω-consistent and contains ξ or ∼ξ for every ξ ∈ Ξ.

As before, we usually omit Ω. The following lemmas are standard, with their proofs
also found in the appendix.

Lemma 6.15. Let Ω � L. The following statements are equivalent:

(1) Φ `Ω ϕ and Φ `Ω ∼ϕ for some ϕ,

(2) Φ is Ω-inconsistent,

(3) Φ `Ω ⊥⊥ .

Lemma 6.16. Let Ω � L and let Φ be consistent. Then Φ 0Ω ϕ implies that Φ ∪ {∼ϕ} is
Ω-consistent, and Φ `Ω ϕ implies that Φ ∪ {ϕ} is Ω-consistent.

Lemma 6.17 (Lindenbaum’s lemma). If Ω � L, then every Ω-consistent set has a maximal
Ω-consistent superset.

154

6 An axiomatization of team logic

The next step in standard completeness proofs is to construct a model for anymaximal
consistent set. The application of Lindenbaum’s lemma is usually as follows: if Φ is
maximal consistent, then there is a modelM fulfilling all its atomic formulas. By the
maximality of Φ, then also all Boolean combinations of atomic formulas, if they are in
Φ, are true inM.

The part where we have to deviate from the standard proof is in fact the induction
basis, since at the bottomwe do not have atomic propositions, butF-formulas as “atoms”.
For this reason, a bit more work will be required.

Let ∼F denote the fragment of B(F) that is restricted to the formulas in { ∼α | α ∈ F }.
Likewise, F ∪ ∼F denotes the fragment restricted to formulas in { α, ∼α | α ∈ F }. Intu-
itively, F ∪ ∼F is the set of “literals.”

Definition 6.18. A proof system is refutation complete for L if every unsatisfiable Φ ⊆ L

is inconsistent.

With an additional assumption, the standard proof goes through:

Theorem 6.19 (Completeness of L). If Ω � L is refutation complete for F ∪ ∼F, then it is
complete for B(F).

Proof. Let Φ ⊆ B(F) and ϕ ∈ B(F). For completeness, we have to show that Φ 0 ϕ
implies Φ 2 ϕ. If Φ 0 ϕ, then by Lemma 6.16, Φ ∪ {∼ϕ} is consistent. Then Φ ∪ {∼ϕ}

has a maximal consistent superset Φ∗ by Lemma 6.17. Clearly, Φ∗ ∩ (F ∪ ∼F) is then
consistent as well. By refutation completeness of Ω for F ∪ ∼F, it has a model A. We
show that ψ ∈ Φ∗ ⇔ A � ψ for all ψ ∈ B(F). In particular, Φ ∪ {∼ϕ} is then satisfiable,
which proves Φ 2 ϕ. That ψ ∈ Φ∗ ⇔ A � ψ holds for ψ /∈ (F ∪ ∼F) can be proven by
induction on the length of ψ (see the appendix).

Why is the refutation completeness of literals an issue in team semantics? Let us
consider propositional logic PL as an example. Classically, it is the Boolean closure of
Prop, but the set {p,¬p | p ∈ Prop} of literals is trivially refutation complete: Any subsetΦ
is inconsistent only if it contains p,¬p for some proposition p. Otherwise it is satisfiable
simply due to the assignment s with s(p) = 0 iff ¬p ∈ Φ. But full team logic now
constitutes another layer on top of classical logic, in the sense that B(F) is the Boolean
closure of F-formulas. That means that “atoms” of team logic are not propositions, but
formulas of the underlying classical logic. For this reason, refutation completeness on
the level of literals becomes a non-trivial issue, whereas in classical logic it is not.

However, the case of having only propositions as atoms gives us a useful result. Let
ϕ ∈ B(Prop). A formula ϕ ′ is a substitution instance of ϕ if there are n ∈ N, propositions
p1, . . . , pn and formulas ψ1, . . . , ψn such that ϕ ′ = ϕ[p1/ψ1] · · · [pn/ψn].

Theorem 6.20. If �B(Prop) ϕ, then `L ϕ
′ for any substitution instance ϕ ′ of ϕ.

Example 6.21. The distributive law a∧ (b6 c)] (a∧ b) 6 (a∧ c) is semantically valid.
Therefore all its instances ϕ∧ (ψ6 θ)] (ϕ∧ψ) 6 (ϕ∧ψ) are provable.

155

6 An axiomatization of team logic

Proof of Theorem 6.20. Let ϕ ∈ B(Prop) such that �B(Prop) ϕ. First, we show that L is
complete for B(Prop). For this, we apply Theorem 6.19 and show that L is trivially
refutation complete for Prop ∪ ∼Prop. The argument is similar to the one above: Any
set Φ ⊆ Prop ∪ ∼Prop either contains p, ∼p for some p, or it is satisfiable due to the team
T = {s} with s(p) = 0⇔ ∼p ∈ Φ for all p ∈ Prop.

Hence `L ϕ. Now, suppose that ϕ? is a substitution instance of ϕ, i.e., there are n,
pi and ψi such that ϕ? = ϕ[p1/ψ1] · · · [pn/ψn] . Let θ? denote the same substitution
applied to θ, for arbitrary formulas θ, i.e., θ? := θ[p1/ψ1] · · · [pn/ψn].

We proceed with showing `L ϕ
? by induction on the length of a shortest proof of ϕ in

L. If ϕ is an instance of (L1) to (L6), then the same is the case for ϕ?. (Being a B(Prop)
formula, ϕ cannot be an instance of (L7).)

If ϕ was derived from ψ _ ϕ and ψ via (E_), then `L (ψ _ ϕ)? and `L ψ
? by

induction hypothesis. As (ψ _ ϕ)? = ψ? _ ϕ?, we can apply (E_) to obtain ϕ?.

Corollary 6.22. The standard propositional laws such as De Morgan’s laws, distributive laws,
commutative laws, etc. (over ∧ and ∼) are all provable in L.

6.2.3 Refutation completeness on literals

For the completeness of B(F), we required that our proof system is at least refutation
complete for literals, i.e., F ∪ ∼F. Next, several ways to establish this are presented.

Counter-model merging

Definition 6.23. A logic F admits counter-model merging if, for arbitrary sets Γ, ∆ ⊆ F the
following holds: If for every δ ∈ ∆ there is a modelM such thatM � Γ andM 2 δ, then
there is a modelM such thatM � Γ andM 2 δ for all δ ∈ ∆.

In other words, if every δ ∈ ∆ is falsified by a model of Γ , then Γ also has a model that
falsifies all formulas in ∆ simultaneously. A similar property, the 6-disjunction property,
was used by Virtema [139] and Yang and Väänänen [142, 143, 144]. It says that � ϕ6ψ

implies that either � ϕ or � ψ. For this reason, the Boolean disjunction 6 is sometimes
also known as intuitionistic disjunction in team logic.

Our definition speaks about entailment instead of only validity, but the proof is
essentially the same as for the disjunction property in the literature. For the sake of
self-containedness, we include it below.

Proposition 6.24. PL and ML admit counter-model merging.

Proof. We prove the more general case, ML. Let Γ, ∆ ⊆ ML, and for each δ ∈ ∆, let
(Kδ, Tδ) be a model of Γ ∪ {∼δ}, where Kδ is a Kripke structure and Tδ is a team in Kδ.
W.l.o.g., the Kripke structures Kδ are pairwise disjoint. Let K∗ be the union of the Kδ.
The truth of ML-formulas is invariant under disjoint union of structures [43]; hence
(K∗, w) � α if and only if (K, w) � α, for all formulas α ∈ ML and w ∈ Tδ. By flatness of
ML it follows that (K∗, Tδ) � Γ and (K∗, Tδ) 2 δ for all δ ∈ ∆. Finally, consider the team

156

6 An axiomatization of team logic

T∗ :=
⋃
δ∈∆ Tδ. As ML is union closed, (K∗, T∗) satisfies Γ , and as it is downward closed,

(K∗, T∗) falsifies each δ ∈ ∆.

Lemma 6.25. If F admits counter-model merging andΩ is complete for F, thenΩL is refutation
complete for F ∪ ∼F.

Proof. Let Φ ⊆ F ∪ ∼F be unsatisfiable. Let Γ := Φ ∩ F and ∆ := Φ ∩ ∼F. There exists
∼δ ∈ ∆ such that Γ ∪ {∼δ} is unsatisfiable, since otherwise Φ would be satisfiable by
counter-model merging. But then Γ � δ, which implies Γ ` δ by completeness ofΩ for F.
Consequently, Φ ` {δ, ∼δ}. By Lemma 6.15, Φ is inconsistent.

Theorem 6.26. HPLL axiomatizes B(PL). HMLL axiomatizes B(ML).

Proof. The soundness follows from Corollary 6.7 and Lemma 6.9. The completeness
follows from Proposition 6.24, Lemma 6.25 and Theorem 6.19.

Closure under quantification: First-order logic

First-order logic FO does not enjoy the counter-model merging property. Consider, for
instance, the sentences R(c) and ¬R(c), where c is a constant. Clearly, either of them can
be falsified by an appropriate interpretation in team semantics, but to falsify both in the
same structure is impossible regardless of the assigned teams. The crucial point is that
R(c) and ¬R(c) are contradicting sentences.

In this section, we show that sentences are in fact the only obstacle for axiomatizing
B(FO). The problem can be remedied by introducing an additional axiom, the unanimity
axiom:

(U) ∼α _ ¬α (α sentence)

We will refer to the above system simply as U.
Similar to classical first-order logic, the truth of a sentence depends only on the

underlying structure itself and not on the assignments in a given team:

Lemma 6.27. For any sentence α ∈ FO and structure A, the following are equivalent:

(1) (A, T) � α for some non-empty team T .

(2) (A, T) � α for all teams T .

(3) (A, s) � α for some s : Var→ A.

(4) (A, s) � α for all s : Var→ A.

Proof. Straightforward by the flatness property.

Corollary 6.28. The system U is sound for FO(∼).

157

6 An axiomatization of team logic

We proceed by investigating the fragment ∼FO := {∼α | α ∈ FO}. The next proposition
and the subsequent lemma show that the system HFOU is not only sound, but also
“complete” for FO-entailments from sets of ∼FO-formulas:
Proposition 6.29. Let ∆ ⊆ ∼FO be non-empty, and suppose that ∆ � α for some α ∈ FO. Then
there is an FO-sentence ε such that ∆ � ∼ε � ¬ε � α.
Proof. Define ε := ∃x1 · · · ∃xn¬α, where {x1, . . . , xn} = Fr(α). Clearly, ¬ε ≡ ∀x1 · · · ∀xnα.
In particular, ¬ε � α. Moreover, ∼ε � ¬ε by the previous lemma.

It remains to prove ∆ � ∼ε. Suppose (A, T) � ∆ for some team T and first-order
structure A. Let V = { s | s : Var→ A } be the team of all assignments. Then T ⊆ V , and
(A, V) � ∆ by upwards closure of ∼FO. By assumption of the proposition, (A, V) � α.

The next step is to show thatA � ¬ε. Since V contains all assignments, it also contains
a team of the form Ux1

A
. . .xn

A
for non-empty U, which then satisfies α by downward

closure. By definition of ∀ in team semantics, (A, U) � ∀x1 · · · ∀xn α ≡ ¬ε. Note that
T 6= ∅, as T satisfies at least one ∼FO-formula. By Lemma 6.27, (A, T) � ∼ε.

The above proposition exhibits an important property of ∼FO: If a subset ∆ ⊆ ∼FO
is not satisfiable, then it already entails contradicting sentences. This fact is exploited
in the next lemma. It is the first step toward refutation completeness of the fragment
FO ∪ ∼FO, which is required in order to utilize Theorem 6.19 for completeness of B(FO).
Lemma 6.30. The system HFOUL is refutation complete for ∼FO.
Proof. Let ∆ ⊆ ∼FO be unsatisfiable. Note that ∼δ `HFOL ∼⊥ for all δ ∈ FO, as ⊥ `HFO δ.
As ∆ necessarily contains at least one formula, which is of the form ∼δ, we have ∆ ` ∼⊥.
So we only need to demonstrate ∆ ` ⊥ to show it is inconsistent.

For the rest of the proof, we write δ(x1, . . . , xn) to indicate that δ has the free variables
x1, . . . , xn. Then we define a set Γ ⊆ FO of sentences by

Γ := { ∃x1 · · · ∃xn¬δ(x1, . . . , xn) | ∼δ(x1, . . . , xn) ∈ ∆ } .

The remaining proof of ∆ ` ⊥ is split into showing ∆ `HFOUL Γ and Γ `HFO ⊥. For the
first part, note that ∀x1 . . . ∀xn δ(x1, . . . , xn) `HFO δ(x1, . . . , xn) as HFO is complete for FO.
Consequently, for all ∃x1 · · · ∃xn¬δ(x1, . . . , xn) ∈ Γ ,

∆ ` ∼δ(x1, . . . , xn)

`HFOL ∼∀x1 · · · ∀xn δ(x1, . . . , xn)
`U ¬∀x1 · · · ∀xn δ(x1, . . . , xn)
`HFO ∃x1 · · · ∃xn¬δ(x1, . . . , xn).

So ∆ ` Γ . It remains to prove Γ ` ⊥. By classical completeness, it suffices to show
that Γ is classically unsatisfiable. Hence, for the sake of contradiction, assume that Γ
has a model (A, s). With A fixed, now for every formula ∃x1 · · · ∃xn¬δ(x1, . . . , xn) ∈ Γ
the set Sδ := { s : Var→ A | (A, s) � ¬δ(x1, . . . , xn) } must then be non-empty. But then
(A, Sδ) � ∼δ(x1, . . . , xn). By downward closure of FO, and hence upward closure of ∼FO,
we obtain (A,

⋃
δ Sδ) � ∆, contradiction to the assumption of the lemma.

158

6 An axiomatization of team logic

Lemma 6.31. The system HFOUL is refutation complete for FO ∪ ∼FO.

Proof. Wehave to show that any unsatisfiableΦ ⊆ FO∪∼FO is inconsistent, so supposeΦ
is unsatisfiable. We showed that FO(∼) satisfies the compactness theorem (see Chapter 5,
Corollary 5.41), so w.l.o.g. Φ is finite. Let Γ := Φ ∩ FO and ∆ := Φ ∩ ∼FO. As Γ is finite,
and by completeness of HFO, w.l.o.g. Γ = {γ} for some γ ∈ FO.

We construct the following set ∆γ ⊆ ∼FO, which “adjoins” γ to all formulas in ∆:

∆γ := { ∼(¬γ∨ δ) | ∼δ ∈ ∆ } ≡ { E(γ∧ ¬δ) | ∼δ ∈ ∆ }

The remainder of the proof shows that {γ} ∪ ∆ ` ∆γ and that ∆γ is unsatisfiable.
As HFOUL is refutation complete for ∼FO by Lemma 6.30, then ∆γ and consequently
Φ is inconsistent. As {γ,¬γ ∨ δ} `HFO δ, we have Φ ` {γ, ∼δ} `HFOL ∼(¬γ ∨ δ) for all
∼(δ∨ ¬γ) ∈ ∆γ. Hence Φ ` ∆γ.

Next, assume for the sake of contradiction that ∆γ is satisfiable, say, in (A, T) for a first-
order structure A and team T . For each ∼δ ∈ ∆, there is s ∈ T such that (A, s) � γ∧ ¬δ.
However, if T ′ := { s ∈ T | (A, s) � γ }, then (A, T ′) � γ by flatness and (A, T ′) � ∆ by
downward closure. Contradiction to the assumption that {γ} ∪ ∆ is unsatisfiable.

Theorem 6.32. HFOUL is sound and complete for B(FO).

Proof. The system HFO is sound by Proposition 6.5, and L by Lemma 6.9. U is sound by
Corollary 6.28. By Theorem 6.19 and the above lemma, HFOUL is complete.

6.3 Operator elimination

In this section, we build on top of the system L and axiomatize the other connectives,
∨,♦,�, ∃ and ∀, in multiple steps. This yields a proof system for the respective logics
F(∼), whereF ∈ {PL,ML,FO}. We prove completeness by presenting a translation ofF(∼)
to the fragmentB(F) that can be carried out in the proof system. A similar approach was
pursued by Yang [141, 142] for propositional and modal dependence logic, although
she translated formulas into a normal form based on 6 and ∨ instead of 6 and ∧

(cf. Subsection 3.7.1).The following lemma formalizes our approach.

Lemma 6.33. Let L,L ′ be logics such that L ′ ⊆ L. LetΩ be a proof system that is sound for L
and complete for L ′, and such that every L-formula is provably equivalent to an L ′-formula in
Ω. Then Ω is also complete for L.

Proof. Assume Φ ⊆ L and ϕ ∈ L. We have to show that Φ � ϕ implies Φ ` ϕ. By
assumption, every L-formula is provably equivalent to an L ′-formula, hence Φ a` Φ ′

for some set Φ ′ ⊆ L ′. Likewise, ϕ a` ϕ ′ for some ϕ ′ ∈ L ′. Since these equivalences
are proved between (sets of) L-formulas, soundness for L implies Φ ≡ Φ ′ and ϕ ≡ ϕ ′.
Consequently, Φ ′ � ϕ ′. By completeness of Ω for L ′, we obtain Φ ′ ` ϕ ′. Altogether,
then Φ ` Φ ′ ` ϕ ′ ` ϕ. As ` is transitive, the lemma follows.

159

6 An axiomatization of team logic

(Dual() (ϕ∨ψ)] ∼(ϕ(∼ψ) Definition of (
(Sub∨) α _ (ϕ(α) Downwards closure
(Lax∨) ϕ _ (θ∨ψ) _ (ϕ∨ψ) Lax semantics
(Ass∨) (ϕ∨ (ψ∨ θ)) _ ((ϕ∨ψ)∨ θ) Associative law
(Com∨) (ϕ∨ψ) _ (ψ∨ϕ) Commutative law
(Dis() (ϕ((ψ _ θ)) _ (ϕ(ψ) _ (ϕ(θ) Distribution axiom
(Nec() ϕ (ϕ theorem)

ψ(ϕ
Necessitation

Table 6.5: The system S, splitting axioms

To translate a formula to B(F) in our proof system, we use the following definition of
the elimination of connectives.

Definition 6.34. Let L be a logic and Ω a proof system. Let f be an n-ary connective. L
has f-elimination inΩ if for all formulas ξ1, . . . , ξn ∈ L there exists some ϕ ∈ L such that
f(ξ1, . . . , ξn) a`Ω ϕ.

In other words, if ξ1, . . . , ξn are L-formulas, then f(ξ1, . . . , ξn) is provably equivalent
to an L-formula as well. As we let the elimination start at the innermost subformulas,
we additionally require the next definition, which is a syntactic counterpart to the full
abstraction principle (Proposition 2.8):

Definition 6.35. Let g be an n-ary connective. A proof system Ω has substitution in g if
for all ϕ1, ψ1, . . . , ϕn, ψn it holds that ϕ1 a` ψ1, . . . , ϕn a` ψn implies g(ϕ1, . . . , ϕn) a`
g(ψ1, . . . , ψn).

6.3.1 Splitting elimination

The splitting disjunction is axiomatized by the rules listed in Table 6.5. We also include
a universal version of the splitting operator, which is denoted by(. It has the semantics

T � ϕ(ψ ⇔ ∀S,U : if T = S ∪U and S � ϕ, then U � ψ.

In this thesis, we consider ϕ(ψ as an abbreviation for ∼(ϕ∨ ∼ψ). The connective
(is useful in describing properties such as downward closure, which are formulated
by universal quantification over all subteams.

Let us briefly explain the role of each axiom and rule of S in the next lemma, and
prove that they are sound. We do not give a proof that this system is minimal, but the
informal explanation below hopefully convinces the reader that it cannot be condensed
much further.

Lemma 6.36. The proof system HPLLS is sound for PL(∼).

Proof. The soundness follows by induction on the length of proofs, for which we show
that all axioms are valid and rules preserve truth. For H0 and L, this is by Proposition 6.5
and Lemma 6.9, respectively. Finally, for S, we consider each axiom and rule separately.

160

6 An axiomatization of team logic

• (Dual() states that ∨ can be defined in terms of (. It is clearly sound, since
∼(ϕ(∼ψ) is ∼∼(ϕ∨ ∼∼ψ) ≡ ϕ∨ψ by definition.

• (Sub∨) states that ∨ always produces subteams of T (and not, say, successor teams
like ♦). This is expressed in terms of downward closure of classical formulas α;
if α holds, then α holds in every split (hence we use (instead of ∨). Formally,
let T � α, and let S ∪ U be an arbitrary split of T such that S � ϕ. Then U � α by
downward closure, as U ⊆ T .

• (Lax∨) describes that ∨ is lax. If a team T satisfies ϕ, and there is an arbitrary split
into S∪U such that S � θ and U � ψ, then T ∪U is also a split, witnessing ϕ∨ψ. In
strict semantics, this law is not true, hence it is not provable from the other axioms
(which are sound for strict semantics).

• (Ass∨) and (Com∨) are the associative and commutative law of ∨, and clearly are
true since ∪ is associative and commutative.

• (Dis() and (Nec() are used to introduce ∨ in the spirit of the necessitation
(Gödel rule) and the axiom K (distribution law) of modal logic. In analogy to ML,
where necessitation introduces the universal � and not the existential ♦, here we
introduce the universal (. We prove that they are sound. For (Dis(), suppose
that for every split S ∪ U of T such that S � ϕ it holds that U � ψ _ θ. If then
additionally for every split S ∪U of T it holds that U � ψ, then also U � θ for all
such U. For (Nec(), let ϕ be a theorem. Then by induction hypothesis, it is valid,
i.e., true in all teams. But then ψ(ϕ is valid, since U � ϕ for every split S ∪U of
T .

Example 6.37. The dependency atom dep(α;β) can be defined as > ((dep(α) _
dep(β)), where dep(γ) := γ 6 ¬γ. Figure 6.6 depicts a proof of one of Armstrong’s
axioms of dependence [6] in our system, namely the axiom of transitivity. It states that
from dep(α;β) and dep(β;γ) we can infer dep(α;γ).

We proceed with showing that ∨ can be eliminated by means of the system S. For
that matter, the following lemma considerably simplifies the required proof.

Lemma 6.38. Let Ω � LS. Then Ω has substitution in ∼, ∧ and ∨. Furthermore, Ω admits
the following meta-rules:

• Reductio ad absurdum (RAA): If Φ∪ {ϕ} ` {ψ, ∼ψ}, then Φ ` ∼ϕ. If Φ∪ {∼ϕ} ` {ψ, ∼ψ},
then Φ ` ϕ.

• Modus ponens in ((MP(): If ` ϕ _ ψ and Φ ` θ(ϕ, then Φ ` θ(ψ.

• Modus ponens in ∨ (MP∨): If ` ϕ _ ψ and Φ ` θ∨ϕ, then Φ ` θ∨ψ.

Proof. First, we derive the meta-rules in Ω. For (RAA), the standard proof is as follows.
SupposeΦ∪ {ϕ} ` {ψ, ∼ψ}. By the deduction theorem (Theorem 6.13),Φ ` {ϕ _ ψ,ϕ _

161

6 An axiomatization of team logic

A dep(α;β)
B dep(β;γ)
1 >((dep(α) _ dep(β)) def., A
2 >((dep(β) _ dep(γ)) def., B

3 (dep(α) _ dep(β)) _ ((dep(β) _ dep(γ)) _ (dep(α) _ dep(γ))) L

4 >(
(
((dep(α) _ dep(β))

_ ((dep(β) _ dep(γ)) _ (dep(α) _ dep(γ)))
) (Nec()

5
(
>((dep(α) _ dep(β))

)
_
(
>(((dep(β) _ dep(γ)) _ (dep(α) _ dep(γ)))

) (Dis()

6 >(
(
(dep(β) _ dep(γ)) _ (dep(α) _ dep(γ))

)
(E_), 1, 5

7
(
>((dep(β) _ dep(γ))

)
_
(
>((dep(α) _ dep(γ))

)
(Dis()

8 >((dep(α) _ dep(γ))) (E_), 2, 7
. dep(α;γ) def.

Figure 6.6: Example derivation: Transitivity of dependence

∼ψ}. Moreover, the propositional law (ϕ _ ∼ψ) _ (ψ _ ∼ϕ) is derivable in L due to
Theorem 6.20. Consequently, Φ ` {ϕ _ ψ,ψ _ ∼ϕ}, and together Φ ` {ϕ _ ∼ϕ}. But
(ϕ _ ∼ϕ) _ ∼ϕ is again a theorem, so Φ ` ∼ϕ as required. The other case is proved
analogously.

The rule (MP() is straightforward by application of (Nec(), (Dis() and (E_):
Given ` ϕ _ ψ, by (Nec() we have ` θ((ϕ _ ψ), so by (Dis() then ` (θ(ϕ) _
(θ(ψ), and finally with (E_) we obtain Φ ` θ(ψ from Φ ` θ(ϕ.

Finally, (MP∨) is derived as follows, where “(thm)” marks a formula as a theorem:
A ϕ _ ψ (thm)
B θ∨ϕ

1 ∼ψ _ ∼ϕ (thm), L, A
2 θ((∼ψ _ ∼ϕ) (thm), (Nec()
3 (θ(∼ψ) _ (θ(∼ϕ) (thm), (Dis()
4 ∼(θ(∼ϕ) _ ∼(θ(∼ψ) (thm), L
5 ∼(θ(∼ϕ) (Dual(), B
6 ∼(θ(∼ψ) (E_)
. θ∨ψ (Dual()

Next, we prove substitution in ∼, ∧ and ∨. For ∼, suppose ϕ = ∼ξ and ξ a` ψ.
Obviously, {ϕ,ψ} ` ξ, ∼ξ. By (RAA), ϕ ` ∼ψ. For ∧, suppose ϕ = ξ1 ∧ ξ2, ξ1 a` ψ1
and ξ2 a` ψ2. Then in L, immediately ϕ = ξ1 ∧ ξ2 ` {ξ1, ξ2} ` {ψ1, ψ2} ` ψ1 ∧ ψ2.
Finally, substitution is ∨ is obtained by two applications of (Com∨) and (MP∨) and the
deduction theorem.

Example 6.39. For α,β ∈ PL, the formula (α (β) _ β is valid: α is satisfied by the

162

6 An axiomatization of team logic

(D∧∨) (α∧ (ϕ∨ψ))] ((α∧ϕ)∨ (α∧ψ)) Distr. ∧ over ∨
(D∨6) (ϕ∨ (ψ6 θ))] ((ϕ∨ψ) 6 (ϕ∨ θ)) Distr. ∨ over 6
(D∨∧) (ϕ∨ (α∧ Eβ))] ((ϕ∨ α)∧ E(α∧ β)) Distr. ∨ over ∧
(AbsE∨) (Eα∨ϕ) _ Eα Absorption of ∨ in E
(AbsE∧) (α∧ Eβ) _ E(α∧ β) Absorption of ∧ in E

Table 6.7: Useful theorems of HPLLS

empty team, and as every team T has the trivial division into ∅ and T , having T � α(β

implies T � β. We sketch a proof of it in the system HPLLS. For a proof by (RAA), we
start with the assumptions (α(β) and ∼β and derive a contradiction. First, observe
that > ∨ ⊥ is a classical tautology and hence provable in HPL. By (Lax∨), we obtain
∼β∨⊥, and since classically ⊥ ` α, we derive ∼β∨ α by (MP∨) and α∨ ∼β by (Com∨).
This yields the desired contradiction, as α(β is short for ∼(α∨ ∼β).

Moreover, the axioms S allow to derive auxiliary laws regarding ∨ and (:

Lemma 6.40. Let Ω � HPLLS. Then all instances of the laws in Table 6.7 are provable in Ω.

Proof. Proven in the appendix.

The actual proof that HPLLS has ∨-elimination spans several further lemmas. We
implicitly apply Lemma 6.38 when using substitution in ∧, ∼ and ∨ and make use of
the laws in Lemmas 6.38 and 6.40. The first step is the and/or lemma.

Lemma 6.41 (And/Or lemma). If Ω � HPLLS, then

n∧
i=1

Eβi a`
n∨
i=1

Eβi

in Ω for all β1, . . . , βn ∈ F.

Proof. We begin with the direction “`”, and proceed by induction on n. The case n = 1

is trivial. For n > 1, due to the induction hypothesis and by substitution in ∧ it suffices
to prove (

∨n−1
i=1 Eβi)∧ Eβn `

∨n
i=1 Eβi.

In L, we can separate the two conjuncts and obtain Eβn and
∧n−1
i=1 Eβi. Now, >∨> is

classically provable in HPL, and yields Eβn ∨> by one application of (Lax∨), >∨ Eβn
by (Com∨), and

∨n−1
i=1 Eβi ∨ Eβn by another (Lax∨), hence

∨n
i=1 Eβi.

The other direction “a” is shown by a separate derivation of each conjunct with
(AbsE∨), (Ass∨) and (Com∨), which in L then yields the whole conjunction.

Lemma 6.42 (Change of normal form). If Ω � HPLLS, then

α∧

n∧
i=1

Eβi a`
n∨
i=1

(α∧ Eβi) (1)

163

6 An axiomatization of team logic

for all n ∈ N and α,β1, . . . , βn ∈ F, and

n∨
i=1

(αi ∧ Eβi) a`
(
n∨
i=1

αi

)
∧

n∧
i=1

E(αi ∧ βi) (2)

for all n ∈ N and α1, . . . , βn, β1, . . . , βn ∈ F.
Proof. Let us start with (1). Here, we first apply the and/or lemma to replace the large
conjunction by

∨n
i=1 Eβi. Then we simply distribute α with repeated application of

(D∧∨), (Ass∨) and (Com∨). Both steps are provable equivalences.
For (2), we consider both directions separately. For “`”, we obtain

∨n
i=1 αi from∨n

i=1 (αi ∧ Eβi) by the application of (Ass∨), (Com∨) and (MP∨), as (αi∧Eβi) `L αi for
all i. Next, we apply (AbsE∧) to similarly derive

∨n
i=1 E(αi ∧βi), which by Lemma 6.41

yields
∧n
i=1 E(αi ∧ βi). In L, we form the conjunction of both.

For “a”, we repeatedly apply the theorem (D∨∧) of Lemma 6.40, that is, (ϕ∨ α)∧

E(α ∧ β) ` ϕ ∨ (α ∧ Eβ). We proceed as follows. Assume that the formula has the
following form after k applications:(

k∨
i=1

(αi ∧ Eβi)∨
n∨

i=k+1

αi

)
∧

n∧
i=k+1

E(αi ∧ βi).

For k = 0, this is just the right hand side of (2). We isolate a single subformula on each
side with the commutative and associative laws:[(

k∨
i=1

(αi ∧ Eβi)∨
n∨

i=k+2

αi

)
∨ αk+1

]
∧ E(αk+1 ∧ βk+1)∧

n∧
i=k+2

E(αi ∧ βi)

Then we apply (D∨∧) (from right to left), resulting in[(
k∨
i=1

(αi ∧ Eβi)∨
n∨

i=k+2

αi

)
∨ (αk+1 ∧ Eβk+1)

]
∧

n∧
i=k+2

E(αi ∧ βi),

and again with commutative and associative laws in(
k+1∨
i=1

(αi ∧ Eβi)∨
n∨

i=k+2

αi

)
∧

n∧
i=k+2

E(αi ∧ βi),

where we can repeat the above steps until k = n.

With the above lemma, we are ready to prove ∨-elimination.
Lemma 6.43 (∨-elimination). Let F be a logic closed under ¬,∨,∧,>,⊥. Let Ω � HPLLS.
Then B(F) has ∨-elimination in Ω.
Proof. Suppose that ϕ = ψ∨ θwhere ψ, θ ∈ B(F). For ∨-elimination, we have to show
that ϕ is provably equivalent to a B(F)-formula. By Theorem 6.20, all propositional

164

6 An axiomatization of team logic

laws are available, and we have substitution in ∨ (Lemma 6.38), so w.l.o.g. ψ, θ are in
(6∧)-normal form (cf. Section 3.7.1), that is, in the form

n

6
i=1

αi ∧ mi∧
j=1

Eβi,j


for n,mi ∈ N and αi, βi,j ∈ F. Then, we have the following provable equivalences in Ω:

ϕ a`
[n

6
i=1

αi ∧ mi∧
j=1

Eβi,j

 ∨

n ′

6
i=1

α ′
i ∧

m ′
i∧

j=1

Eβ ′
i,j

]

a` 6
16i6n
16i ′6n ′

αi ∧ mi∧
j=1

Eβi,j

∨

α ′
i ′ ∧

m ′
i ′∧

j=1

Eβ ′
i ′,j

 (D∨6)

a` 6
16i6n
16i ′6n ′

 mi∨
j=1

(
αi ∧ Eβi,j

)
∨

m ′
i ′∨

j=1

(
α ′
i ′ ∧ Eβ ′

i ′,j

) (Lemma 6.42, (1))

a`
`

6
i=1

ki∨
j=1

(
γi,j ∧ Eδi,j

)
(renaming, γi,j, δi,j ∈ F)

a`
`

6
i=1

 ki∨
j=1

γi,j ∧

ki∧
j=1

E
(
γi,j ∧ δi,j

) ∈ B(F). (Lemma 6.42, (2))

Theorem 6.44. The system HPLLS axiomatizes PL(∼).

Proof. Using substitution in ∧, ∼ and ∨ (Lemma 6.38), any PL(∼)-formula can be trans-
formed into a B(PL)-formula by means of ∨-elimination (Lemma 6.43). Hence every
PL(∼) is provably equivalent to aB(PL)-formula in the system HPLLS. The completeness
consequently follows from the combination of Lemma 6.33 and Theorem 6.26. The
soundness was shown in Lemma 6.36.

6.3.2 Modality elimination

Next, we extend the proof system to cover the modal operators. This is achieved with
the proof system M depicted in Table 6.8. As for PL(∼), we introduce the universal dual
of ♦, which we write4. It has the semantics

T � 4ϕ ⇔ ∀S : if S is a successor team of T , then S � ϕ

and is syntactically defined as4ϕ := ∼♦∼ϕ. Recall that the operator � is self-dual, so
we do not require an additional connective here.

Lemma 6.45. The proof system HMLLSM is sound for ML(∼).

165

6 An axiomatization of team logic

(Dual♦) ♦ϕ] ∼4∼ϕ Duality of4 and ♦
(Lin�) �∼ϕ] ∼�ϕ Self-duality of �
(Dis♦∨) ♦(ϕ∨ψ)] (♦ϕ∨ ♦ψ) Distr. ♦ over ∨
(E�) �α _ 4α Successors are subteams of image
(I�) ♦ϕ _ (4ψ _ �ψ) Image is a successor (if one exists)
(Dis�) �(ϕ _ ψ) _ (�ϕ _ �ψ) Distribution axiom of �
(Dis4) 4(ϕ _ ψ) _ (4ϕ _ 4ψ) Distribution axiom of4

(Nec�) ϕ (ϕ theorem)
�ϕ Necessitation of �

(Nec4) ϕ (ϕ theorem)4ϕ Necessitation of4

Table 6.8: The system M, modal axioms

Proof. The soundness of HML, L and S is shown analogously to Lemma 6.36. Below, we
consider every rule and axiom of M.

• (Dual♦) states that ♦ can be defined in terms of4, and is clearly sound, as ♦ϕ ≡
∼∼♦∼∼ϕ, which is ∼4∼ϕ by definition.

• (Lin�) states that � is self-dual, or equivalently, that the image team RT of a team
T is unique. Hence T � �∼ϕ⇔ RT 2 ϕ⇔ T 2 �ϕ⇔ T � ∼�ϕ.

• (Dis♦∨) states that ♦ is lax. This is formalized by saying that it distributes over
the lax disjunction (whereas its strict counterpart ♦· distributes only over strict
disjunction ∨̇). A formal proof follows. Let K = (W,R, V) be a Kripke structure
and T ⊆W a team.

“_”: Suppose (K, T) � ♦(ϕ∨ψ). Then T has a successor team T ′ such that there are
S ′ and U ′ with T ′ = S ′ ∪U ′, (K, S ′) � ϕ and (K, U ′) � ψ. We define subteams
S and U of T such that T = S ∪U, (K, S) � ♦ϕ and (K, U) � ♦ψ:

S :=
{
v ∈ T

∣∣ ∃v ′ ∈ S ′ : (v, v ′) ∈ R } ,
U :=

{
v ∈ T

∣∣ ∃v ′ ∈ U ′ : (v, v ′) ∈ R
}
.

Every world v ∈ T has at least one successor v ′ ∈ T ′. Since S ′ ∪U ′ = T ′, either
v ′ ∈ S ′, or v ′ ∈ U ′, or both. By definition, v is in then in S or U. Consequently,
T = S ∪U.
To prove (K, S) � ♦ϕ, we demonstrate that S ′ is a successor team of S. (K, U) �
♦ψ is then shown analogously. First, by definition of S, every v ∈ S has at
least one successor in S ′. Likewise, every v ′ ∈ S ′ has at least one predecessor
in S: Since S ′ ⊆ T ′ and T ′ is a successor team of T , v ′ has some predecessor v
in T . By definition of S, v ∈ S. It follows that S ′ is a successor team of S.

“^”: Suppose (K, T) � ♦ϕ∨ ♦ψ due to subteams S and U of T such that T = S ∪U,
(K, S) � ♦ϕ and (K, U) � ♦ψ. Then there is a successor team S ′ of S satisfying

166

6 An axiomatization of team logic

ϕ, and a successor team U ′ of U satisfying ψ.
We show that T ′ := S ′ ∪U ′, which satisfies ϕ∨ψ, itself is a successor team
of T . If v ∈ T , then v ∈ S or v ∈ U, and v has a successor in S ′ or U ′, and
consequently in T ′. On the other hand, v ′ ∈ T ′ implies v ′ ∈ S ′ or v ′ ∈ U ′. But
then v ′ has a predecessor in S or U, and hence in T .

• (E�) states that the image team RT of T contains all successor teams of T as a
subteam. Like (Sub∨), it is formalized in terms of the downward closure of
classical formulas.

• (I�) states that the image team RT of T is itself a successor team of T , provided
that there is some successor team at all. If some w ∈ T has no successor, then4ψ
is trivially true as no successor team exists, but �ψ is not necessarily true. If the
premise ♦ϕ holds for some ϕ, then the implication is true.

• (Dis�), (Nec�), (Dis4) and (Nec4) are the distribution and necessitation of� and
4, respectively, and are sound by the same argument as (Dis() and (Nec().

Lemma 6.46. Let Ω � LSM be a proof system. Then Ω has substitution in ∼,∧,∨,� and ♦.
Furthermore, Ω admits the following meta-rules:

• Modus ponens in � (MP�): If ` ϕ _ ψ and Φ ` �ϕ, then Φ ` �ψ.

• Modus ponens in4 (MP4): If ` ϕ _ ψ and Φ ` 4ϕ, then Φ ` 4ψ.

• Modus ponens in ♦ (MP♦): If ` ϕ _ ψ and Φ ` ♦ϕ, then Φ ` ♦ψ.

Proof. It is straightforward to prove (MP�) and (MP4) from (Nec�) and (Dis�) resp.
(Nec4) and (Dis4) (see also the proof for (MP() in Lemma 6.38). As Ω � LS, (RAA)
is available by Lemma 6.38, so (MP♦) can be derived as follows.

A ϕ _ ψ (thm)
B ♦ϕ

1 ∼ψ _ ∼ϕ (thm), L, A
2 4∼ψ

3 4∼ϕ (MP4), 1, 2
4 ∼4∼ϕ (Dual♦), A

5 ∼4∼ψ (RAA), 3, 4
. ♦ψ (Dual♦)

It remains to prove that Ω admits substitution. The cases ∼, ∧ and ∨ follow from
Lemma 6.38, asΩ � LS. Finally, the cases � and ♦ immediately follow from (MP�) and
(MP♦).

Lemma 6.47. Let Ω � HMLLSM. Then all instances of the laws in Table 6.9 are provable in Ω.

Proof. Proven in the appendix.

167

6 An axiomatization of team logic

(Dis�∧) �(ϕ∧ψ)] (�ϕ∧�ψ) Distr. � over ∧
(Dis♦6) ♦(ϕ6ψ)] (♦ϕ6 ♦ψ) Distr. ♦ over 6
(Dis♦∧) ♦(α∧ Eβ)] ♦α∧ E♦(α∧ β) Distr. ♦ over ∧

Table 6.9: Useful theorems of HMLLSM

Lemma 6.48. Let Ω � LSM. Then B(ML) has �-elimination in Ω.

Proof. Supposeϕ ∈ B(ML). To prove the lemma, we have to show that�ϕ a` ψ for some
ψ ∈ B(ML). We repeatedly apply (Dis�∧) and (Lin�) in order to push � inside any ∧

and ∼. Since afterwards � only occurs in classical subformulas, and since the used laws
are symmetric, we conclude that �ϕ is provably equivalent to a B(ML)-formula.

Lemma 6.49. Let Ω � HMLLSM. Then B(ML) has ♦-elimination in Ω.

Proof. Suppose ϕ ∈ B(ML). We prove that ♦ϕ a` ψ for some ψ ∈ B(ML). Analogously
to the proof of Lemma 6.43, we can assume that ϕ is in normal form.

♦ϕ a` ♦
n

6
i=1

αi ∧ ki∧
j=1

Eβi,j


a` ♦

n

6
i=1

ki∨
j=1

(
αi ∧ Eβi,j

)
(Lemma 6.42 (1))

a`
n

6
i=1

♦
ki∨
j=1

(
αi ∧ Eβi,j

)
(Dis♦6)

a`
n

6
i=1

ki∨
j=1

♦
(
αi ∧ Eβi,j

)
(Dis♦∨))

a`
n

6
i=1

ki∨
j=1

(♦αi ∧ E♦(αi ∧ βi,j)) (Dis♦∧))

a`
n

6
i=1

ki∨
j=1

(µi ∧ Eνi,j) (renaming, µi, νi,j ∈ ML)

a`
n

6
i=1

 ki∨
j=1

µi ∧

ki∧
j=1

E
(
µi ∧ νi,j

) ∈ B(ML). (Lemma 6.42 (2))

Theorem 6.50. The system HMLLSM axiomatizes ML(∼).

Proof. Similar to Theorem 6.44. With �-elimination (Lemma 6.48) and ♦-elimination
(Lemma 6.49), every ML(∼)-formula is provably equivalent to a B(ML)-formula, so we
can apply Lemma 6.33 and Theorem 6.26. Soundness was proved in Lemma 6.45.

168

6 An axiomatization of team logic

6.3.3 Quantifier elimination

For first-order team logic, we use the system Q depicted in Table 6.10. The universal
dual of ∃x is denoted by !x and is defined as !xϕ := ∼∃x∼ϕ. The axioms almost resemble
those of the system M. There are two differences: First, there is no necessitation rule
for �, as it is derivable from (Nec!) and (I∀). Second, (I∀) lacks the additional premise
compared to (I�), because there always is a supplementing team.

Lemma 6.51. The proof system HFOULSQ is sound for FO(∼).

Proof. The soundness of HFO, L and S is again shown analogously to Lemma 6.36. U
was shown sound in Corollary 6.28. It remains to consider the rules and axioms of Q.

• (Dual∃) defines ! in terms of ∃, analogously to4/♦ and (/∨.

• (Lin∀) states that ∀x is self-dual, as the duplicating team TxA is unique.

• (Dis∃∨) states that ∃x is lax, i.e., distributes over∨. For a proof, letA be a first-order
structure, x ∈ Var and T a team in A.

“_”: Suppose (A, T) � ∃x(ϕ∨ψ). There is a supplementing function f : T → ℘+(A)

such that Txf can be split into Txf = S ′ ∪ U ′ with (A, S ′) � ϕ and (A, U ′) � ψ.
We define subteams S and U of T such that T = S ∪ U, (A, S) � ∃xϕ and
(A, U) � ∃xψ:

S :=
{
s ∈ T

∣∣ ∃s ′ ∈ S ′, a ∈ A : s ′ = sxa
}
,

U :=
{
s ∈ T

∣∣ ∃s ′ ∈ U ′, a ∈ A : s ′ = sxa
}
.

Let s ∈ T . As f(s) 6= ∅, there is at least one a ∈ A such that sxa ∈ Txf , and hence
sxa ∈ S ′ ∪ U ′. Consequently, s ∈ S or s ∈ U. As s was arbitrary, T = S ∪ U.
Next, we will prove that S is a supplementing team of S ′ (the proof for U is
analogous). As then (A, S ′) � ∃xϕ and (A, U ′) � ∃xψ, (A, T) � (∃xϕ)∨(∃xψ)
follows.
We show that S = (S ′)xg for g(s) := { a ∈ A | sxa ∈ S }. g(s) is always non-
empty, since s ∈ S ′ implies sxa ∈ S for some a by definition of S ′. So g is a

(Dual∃) ∃xϕ] ∼ !x ∼ϕ Duality of ∃ and !
(Lin∀) ∀x ∼ϕ] ∼∀xϕ Self-duality of ∀
(Dis∃∨) ∃x(ϕ∨ψ)] ∃xϕ∨ ∃xψ Distr. ∃ over ∨
(E∀) ∀xα _ !xα Suppl. teams are subteams of dupl. team
(I∀) !xψ _ ∀xψ Dupl. team is a suppl. team
(Dis�) ∀x(ϕ _ ψ) _ (∀xϕ _ ∀xψ) Distribution axiom
(Dis!) !x(ϕ _ ψ) _ (!xϕ _ !xψ) Distribution axiom

(Nec!) ϕ (ϕ theorem)!xϕ Necessitation

Table 6.10: The system Q, quantifier axioms

169

6 An axiomatization of team logic

supplementing function. In order to prove S ⊆ (S ′)xg, suppose s ′ ∈ S. As
S ⊆ Txf , then s ′ = sxa for some a ∈ f(s) and s ∈ T . By definition of S ′, then
s ∈ S ′, and since a ∈ g(s), we have sxa ∈ (S ′)xg. For (S ′)xg ⊆ S, let s ′ ∈ (S ′)xg.
Then s ′ = sxa for some s ∈ S ′ and a ∈ g(s). By definition of g, then s ′ = sxa ∈ S.

“^”: Suppose (A, T) � (∃xϕ) ∨ (∃xψ), i.e., that (A, S) � ∃xϕ and (A, U) � ∃xψ
for T = S ∪U. Let Sxf and Uxg be supplementing teams of S and U such that
(A, Sxf) � ϕ and (A, Uxg) � ψ. We prove that Sxf ∪Uxg is a supplementing team
of T , which implies (A, T) � ∃x (ϕ∨ψ). Consider the function h on T = S ∪U
given by

h(s) :=


f(s) if s ∈ S \U,
g(s) if s ∈ U \ S,
f(s) ∪ g(s) if s ∈ S ∩U.

Clearly h : T → ℘+(A). We demonstrate Sxf ∪ Uxg = Txh. For Sxf ⊆ Txh (Uxg
is analogous), suppose s ′ ∈ Sxf . Then s ′ = sxa for some s ∈ S ⊆ T and
a ∈ f(s) ⊆ h(s). Consequently, s ′ ∈ Txh .
Conversely, for Txh ⊆ Sxf ∪ Uxg, let s ′ ∈ Txh, i.e., s ′ = sxa for some s ∈ T and
a ∈ h(s). If s ∈ S \ U, then necessarily a ∈ f(s), and sxa ∈ Sxf . Likewise, if
s ∈ U \ S, then a ∈ g(s) and sxa ∈ Uxg. Finally, if s ∈ S ∩U, then a ∈ f(s) ∪ g(s),
so sxa is either in Sxf or in Uxg.

• (E∀) states that the duplicating team TxA of T contains all supplementing teams of
T as a subteam.

• (I∀) states that the duplicating team TxA of T is a supplementing team, namely by
the full supplementing function f : T → ℘+(A) with f(s) = A.

• (Dis!), (Dis�) and (Nec!) work as their modal counterparts in Table 6.8.

Lemma 6.52. For each x ∈ Var, the logic B(FO) has ∃x-elimination and ∀x-elimination in
HFOLSQ.

Proof. Shown identically as for the modal operators ♦ and �. All necessary proofs in
Subsection 6.3.2 and in the appendix are valid proofs in HFOLSQ when each ♦ is replaced
by ∃x, � by ∀x, and4 by !x.

Theorem 6.53. The system HFOULSQ axiomatizes FO(∼).

Proof. The completeness is analogous to that ofML(∼) (Theorem 6.50), since by the above
lemma we have elimination of ∃x and ∀x for every variable x ∈ Var. The soundness
follows from Lemma 6.51. Hence, we can again apply Lemma 6.33 together with
Theorem 6.32.

As a consequence of completeness of FO(∼), we also obtain compactness. Note that
we needed compactness in Lemma 6.31, but in fact only that of FO ∪ ∼FO, which can be
proven by other means (cf. [100]).

170

6 An axiomatization of team logic

Corollary 6.54 (cf. Corollary 5.41). FO(∼) satisfies the compactness theorem.

Corollary 6.55 (cf. Theorem 5.6). SAT(FO(∼)) is complete for Π01, and VAL(FO(∼) is
complete for Σ01.

6.4 A remark on the empty team

Most existing literature deals with team logics that have the empty team property.
For this reason, the empty team often is excluded from questions of complexity and
definability (cf. e.g., [59, 128, 135]). This goes back to Hodges [70], who defined trumps
(his term for teams), as non-empty sets of assignments that satisfy a formula.

The sense and meaning of the empty team ∅, or of the contradictory formula ⊥, is
worth discussing. There are some arguments to consider it purely as an artifact, or as
a technical detail, that ∅ � ⊥ holds. At least it is unintuitive and often requires special
treatment.1 Rönnholm [123] argued that the empty team naturally corresponds to the
absence of data, but lacks more useful interpretations. For example, in the epistemic
interpretation, or in the related inquisitive setting [16], a team represents a set of possible
states, but then should contain at least the actual state.

In this section, we discuss this matter from a proof-theoretic perspective, and also
show that the notions of consistency and satisfiability are subtle and deserve some
attention in team logic. A setΦ is called absolutely inconsistent ifΦ ` ϕ for all formulas ϕ,
and it is⊥-inconsistent ifΦ ` ⊥. Moreover, it is Aristotle inconsistent ifΦ ` ϕ,¬ϕ for some
formula ϕ. In classical logic, all these conditions coincide, and by the completeness
theorem are equivalent to unsatisfiability.

Proposition 6.56. Let F ∈ {PL,ML,FO} and Γ ⊆ F. The following are equivalent:

• Γ ` F

• Γ ` ⊥

• Γ ` α,¬α for some α ∈ F.

• Γ is unsatisfiable is classical semantics.

A logical constant⊥ is called proof-theoretic falsum if⊥ ` ϕ for everyϕ, and a connective
¬ is a proof-theoretic negation if ¬ϕ is derivable whenever ϕ ` ⊥ [118]. A semantic falsum
is a formula that is never true, and a semantic negation is a unary connective that inverts
the truth of its argument. In classical logic, these of course coincide with proof-theoretic
falsum and negation.

In team semantics of classical logics, however, the above notions of inconsistency still
coincide, but every formula is true in the empty team. Consequently, proof-theoretic

1The paper On Definability in Dependence Logic [88] characterized the properties definable in
dependence logic by means of SO(∃). Later, an erratum [87] appeared solely to address the issue that this
characterization does not extend to the empty team.

171

6 An axiomatization of team logic

falsum and negation exist, but semantical falsum and negation do not. Also, a set Φ
of formulas can be satisfiable but inconsistent. Does this mean that the completeness
theorem fails for team logic? Obviously, the matter is more complicated, since we have
completeness by Corollary 6.7. This apparent contradiction is of course due to the lack of
semantic negation and falsum: If the semantic falsum ⊥⊥ is available, then inconsistency
of ϕ would mean that it is derivable from ϕ, so ϕ cannot be satisfiable. However, in
classical logics with team semantics, ⊥⊥ is simply not a formula.

One could exclude the empty team to obtain a more “natural” behaviour. Let F+

denote the restriction of the classical logic F (with team semantics) to only valuations
with non-empty teams. Then the consistent sets again become exactly the satisfiable
sets:

Proposition 6.57. Let F ∈ {PL,ML,FO} and Γ ⊆ F. The following are equivalent:

• Γ ` F

• Γ is unsatisfiable is classical semantics.

• Γ is unsatisfiable by non-empty teams.

In fact, F+ is axiomatizable: Clearly Γ �F α implies Γ �F+ α. Since valuations with
the empty team satisfy every α, the converse is also true. So �F = �F+ , and since F is
axiomatizable, so is F+.

Proposition 6.58. A proof system is sound resp. complete for F ∈ {PL,ML,FO} if and only if
it is sound resp. complete for F+.

How useful is the logic F+? Now, ⊥ is a semantical falsum when excluding the empty
team, yet ¬ is still no semantical negation. In particular, the law of excluded middle
still fails, i.e., there are formulas α and valuations satisfying neither α nor ¬α under
team semantics (for instance p in the team T = {p 7→ 0, p 7→ 1}). Furthermore, excluding
the empty team has unintuitive side effects, for instance, the formula ⊥∨>would be
unsatisfiable instead of valid and hence contradict the flatness property.

In B(F), the picture changes, and much of the classical behaviour is restored. The
operators ∼ and ⊥⊥ are both the semantic and proof-theoretic negation and falsum. In
order to express non-emptiness, one can simply use the formula ne = ∼⊥.

Proposition 6.59. Let F ∈ {PL,ML,FO} and Φ ⊆ B(F). The following are equivalent:

• Φ ` B(F)

• Φ ` ⊥⊥

• Φ ` ϕ, ∼ϕ for some ϕ ∈ B(F)

• Φ is unsatisfiable under team semantics.

172

6 An axiomatization of team logic

But now we have that {α,¬α} ` F 6= B(F), so the set {α,¬α} is consistent relative to
B(F). Mossakowski and Schröder [118] call a logic paraconsistent that has a negation ¬

for which Aristotle inconsistency does not imply absolute inconsistency. But it is hardly
justifiable to call team logic a paraconsistent logic, as this behaviour once more rather
is an artifact due to the empty team being allowed, and due to the fact that team logic
consists of two “layers” of logic stacked on top of each other. Forbidding the empty team
again, we would obtain ⊥ � B(F) and avoid paraconsistency, but it seems preferable to
allow it in general and instead require the team to be non-empty where it is necessary.

6.5 Summary and outlook

6.5.1 Summary

We axiomatized the logics PL(∼), ML(∼) and FO(∼), and for this proceeded in several
steps. First, the Boolean connectives ∧ and ∼ have been captured by the system L, then
the disjunction ∨ by the system S, and finally the modalities and quantifiers by M and
Q, respectively. For first-order logic, we additionally required the axiom U, ∼α _ ¬α for
sentences α, to achieve refutation completeness on the level of literals. Propositional
and modal team logic do not require this step as they do not have sentences. Together
with existing complete proof systems for the underlying classical logics PL, ML and FO,
this yields the full axiomatizations. Below, in Table 6.11, we present an overview of
the introduced rules and axioms. Since the (truth-functional) non-classical atoms of
dependence, independence, inclusion and exclusion can be efficiently defined in the
above logics with only polynomial blow-up [108], adding these translations as axioms
almost trivially leads to sound and complete proof systems for propositional and modal
logics of dependence, independence, and so on.1

Comparison to existing results. We proceed with comparing our results with the
existing approaches in literature. Most notably, we presented a Hilbert-style proof sys-
tem (i.e., mostly axioms and only a few rules), whereas most other authors proposed
Gentzen-style proof systems of sequent calculi and natural deduction (i.e., only rules and
no axioms) for various team logics. This includes Yang and Väänänen [143, 144] and
Yang [141] in the propositional andmodal setting, and Kontinen and Väänänen [86] and
Galliani [36] for fragments of first-order team logic. Hilbert-style systems, and a tableau
calculus, were presented by Sano and Virtema [124] as well as Yang and Väänänen [144]
for modal dependence logic.

This bias is unsurprising, since Hilbert-style systems are infamous for being rather
opaque and requiring lengthy proofs even for simple theorems. In particular, for practi-
cal purposes they lack the subformula property that many Gentzen-style systems enjoy,
which means that it suffices to have subformulas of the premises and/or conclusion
occurring in the proofs [21]. Nevertheless, it turned out as a fruitful approach to con-

1In [100], which appeared before [108], these axioms have been stated explicitly.

173

6 An axiomatization of team logic

sider not only ♦, �, but also the connectives ∃, ∀ and in particular ∨ as modalities, and to
include Hilbert-style necessitation rules (cf. Tables 6.5 and 6.8).

Although the axiomatization of modal logic-like operators is also possible bymeans of
natural deduction, this creates new technical pitfalls. For instance, one has to distinguish
between “local” and “global” subproofs, since the necessitation rule has no simple
correspondent in natural deduction [33].

Yang [141] proposed a Hilbert-style calculus that works in a similar fashion as ours,
and is sound and complete for the downward closed fragment ML(dep,6) obtained
from adding 6 and dep(·; ·) to ML. By downward closure of the logic, her normal form
consisted of Boolean disjunctions of flat formulas instead of full B(ML), but essentially
the idea is the same. As these results occurred independently [99, 141], the method of
operator elimination seems to be a viable option for the axiomatization of team logic.

The other major difference to existing work is that we include the contradictory
negation ∼. Previous authors have avoided ∼ as part of the logic because their approaches
rely on downward closure (in particular, Yang and Väänänen [143, Thm. 4.7], Sano and
Virtema [124, Lem. 21], and Kontinen and Väänänen [86, Lem. 8]). It is noteworthy
that even Yang and Väänänen [144] considered not the full logic PL(∼), but only an
expressively equivalent fragment of it where ∼ is rewritten in terms of other connectives.

Here, we instead embrace ∼ as a primitive connective and hence can employ propo-
sitional calculus to lift much of the heavy work. This not only generalizes the existing
axiomatizability results towards logics closed under Boolean connectives, but also per-
mits a notably simpler set of rules. For example, Yang and Väänänen [144] included(∨

s∈X(p
s(i1)
i1

∧ · · ·∧ ps(in)in
∧ ne)

)
∧
(∨

s∈Y(p
s(i1)
i1

∧ · · ·∧ ps(in)in
∧ ne)

)
⊥∧ ne

as the rule “Strong contradiction introduction” for all distinct propositional teams X, Y
with domain i1, . . . , in. Intuitively, it says that if a team T equals X and Y at the same
time then T cannot exist, i.e., T � ⊥⊥ ≡ ⊥ ∧ ne. Admittedly, our completeness proof
required complicated distributive laws such as ♦(α∧ Eβ) ≡ ♦α∧ E♦(α∧β) instead, but
nonetheless we showed that they are provable from simpler axioms.

6.5.2 Open problems and further research directions

First of all, it is desirable to find a natural and simple system of sequent calculus or
natural deduction for the full logics PL(∼), ML(∼) and FO(∼) that also accounts for
∼. Also, it would be interesting to see whether our approach extends to other team
logics, say, in the first-order setting. Just like dependence logic FO(dep), team logic
FO(dep, ∼) is not axiomatizable [135]. But is there some hope to find a new partial proof
system? For example, can we axiomatize all FO(∼)-consequences of FO(dep, ∼)-formulas
in the spirit of Kontinen and Väänänen [86], who axiomatized all FO-consequences of
FO(dep)-formulas?

Also, small modifications like adding the universal modality �u (cf. Example 3.63)
to modal team logic leads to issues for the axiomatization. The reason is that the

174

6 An axiomatization of team logic

logic then in a sense has “sentences”, and the technique of counter-model merging
(Proposition 6.24) fails, as modal logic with �u has no longer the property that truth
is preserved under disjoint union of Kripke structures. It would be interesting to see
whether an axiom similar to U could help here.

Finally, one can combine the axiomatization with the ideas of Chapter 3. We showed
in Chapter 3 in an abstract way that certain team logics permit a translation into a
normal form based on Boolean combinations of flat formulas. In this chapter, we used
a similar result, but additionally had to carry out this translation in our proof system.
Is it possible to combine these approaches, and to find an axiomatization for arbitrary
team logics that are quasi-flat in the sense of Chapter 3?

The necessitation and distribution axioms are easy to adapt to arbitrary arities:

(Nec): ϕ
4(⊥⊥ , · · · , ⊥⊥ , ϕ, ⊥⊥ , · · · , ⊥⊥)

(Dis): 4(⊥⊥ , · · · , ⊥⊥ , ϕi _ ψ, ⊥⊥ , · · · , ⊥⊥) _ 4(ϕ1, . . . , ϕr) _ 4(ϕ1, . . . , ψ, . . . , ϕr)

The other axioms are more difficult. For instance, for a generalized diamond4, (E�)
becomes

¬4¬(⊥, . . . , α, . . . ,⊥) _ ∼4∼(⊥⊥ , . . . , α, . . . , ⊥⊥)

For axioms such as (Lax∨), it is open how they can be generalized.

175

6 An axiomatization of team logic

L (L1) ϕ _ (ψ _ ϕ)

(L2) (ϕ _ (ψ _ θ)) _ (ϕ _ ψ) _ (ϕ _ θ)

(L3) (∼ϕ _ ∼ψ) _ (ψ _ ϕ)

(L4) (ϕ∧ψ) _ ϕ

(L5) (ϕ∧ψ) _ ψ

(L6) ϕ _ (ψ _ (ϕ∧ψ))

(L7) (α→ β) _ (α _ β)

(E_) ϕ ϕ _ ψ

ψ

U (U) ∼α _ ¬α (α sentence)

S (Dual() (ϕ∨ψ)] ∼(ϕ(∼ψ)

(Sub∨) α _ (ϕ(α)

(Lax∨) ϕ _ (θ∨ψ) _ (ϕ∨ψ)

(Ass∨) (ϕ∨ (ψ∨ θ)) _ ((ϕ∨ψ)∨ θ)

(Com∨) (ϕ∨ψ) _ (ψ∨ϕ)

(Dis() (ϕ((ψ _ θ)) _ (ϕ(ψ) _ (ϕ(θ)

(Nec() ϕ
ψ(ϕ

(ϕ theorem)

M (Dual♦) ♦ϕ] ∼4∼ϕ

(Lin�) �∼ϕ] ∼�ϕ
(Dis♦∨) ♦(ϕ∨ψ)] (♦ϕ∨ ♦ψ)
(E�) �α _ 4α
(I�) ♦ϕ _ (4ψ _ �ψ)
(Dis�) �(ϕ _ ψ) _ (�ϕ _ �ψ)
(Dis4) 4(ϕ _ ψ) _ (4ϕ _ 4ψ)

(Nec�) ϕ
�ϕ (ϕ theorem)

(Nec4) ϕ
4ϕ (ϕ theorem)

Q (Dual∃) ∃xϕ] ∼ !x ∼ϕ
(Lin∀) ∀x ∼ϕ] ∼∀xϕ
(Dis∃∨) ∃x(ϕ∨ψ)] ∃xϕ∨ ∃xψ
(E∀) ∀xα _ !xα
(I∀) !xψ _ ∀xψ
(Dis�) ∀x(ϕ _ ψ) _ (∀xϕ _ ∀xψ)
(Dis!) !x(ϕ _ ψ) _ (!xϕ _ !xψ)

(Nec!) ϕ
!xϕ (ϕ theorem)

Table 6.11: Overview of the systems L, U, S, M, and Q

176

7 Conclusion

Summary

The thesis can be divided into two parts: One on abstract team logic and one on concrete
team logics.

In the first part of the thesis, Chapter 3, we studied team logic in general. We identified
teamification as a pattern which ensures that a team logic is a well-behaved and faithful
extension of the classical logic it is based on. Next, we showed that most common
team-logical connectives are operators in the sense of Boolean algebras with operators
(baos). As mentioned in Section 3.9, a fully algebraic and abstract description of team
logic in terms of baos is a promising goal for future research. We also identified transver-
sals—operators whose action on a team is determined by those on its elements—as a
natural class of operators that preserve flatness. This series of restrictions on the opera-
tors culminated in lax standard transversals, and in the result that team logics based on
those, e.g., PL(∼), ML(∼) and FO(∼), collapse to the Boolean closure of classical formulas.

This result was also crucial for the complexity of these logics in Chapters 4 and 5
and their axiomatizations in Chapter 6, which form the second part of the thesis. In
Chapter 5, we proved that FO(∼) has the same complexity as FO, and that it admits
a compactness theorem, which we proved with an adaptation of Łoś’s ultraproduct
theorem to team logic. Moreover, we showed that it mirrors classical logic also in
the sense that it encompasses ML(∼), GF(∼) and FO2(∼) as decidable fragments, namely
having a satisfiability problem that is complete for the non-elementary class Tower(poly).
The lower bound for this complexity was shown for ML(∼) in Chapter 4 by succinctly
enforcing canonical models. In Chapter 6, we cast the transformation into said Boolean
normal form into a proof system, and by this axiomatized the above logics.

Discussion

Let us draw some final conclusions and discuss the results of this thesis. The main
insight from the first part is that existing team semantics seems carefully designed
to ensure that the respective logics are well-behaved and follow certain patterns. By
studying the teamification pattern in particular, we formally approached the question
whether a team logic is necessarily based on a classical logic. We showed that a team
logic is a teamification of some classical logic precisely if all its connectives preserve
flatness. This again seems to be an indispensable feature of any well-behaved team logic
(leaving aside the negation ∼ and non-classical atoms, as these are not corresponding to
any classical connectives).

177

7 Conclusion

One could even argue that, in a sense, we studied only one team logic in this thesis that
manifests in the different formalisms (propositional, modal, first-order), but is uniformly
defined. The similarities between the team-logical operators are striking. Table 3.1
illustrates them as standard transversals, displaying a row ∧,♦,♦· , ∃, ∃̇ of “diamonds” and
a row ∨, ∨̇,�, ∀ of “boxes”.

We consider two possible interpretations of this fact. One is that propositional and
modal team logic have originally been meant to mirror the semantics of first-order team
logic as close as possible, and that alternative definitions besides strict and lax semantics
have not been considered much. The other is that the constraint of having flatness
preserving connectives in a team logic—and hence being limited to teamifications—is
so restrictive that no other sensible choice exists but (strict and lax) transversals.

A strong argument in favor of the first alternative is the fact that, for example, temporal
logic after all noticeably deviates from this pattern. Of its connectives, only Fa and X
are standard transversals. By contrast, Ga, Gs and Ua are flatness preserving but no
operators, and Fs is an operator, but not flatness preserving, and consequently none
of them is a transversal. Still, these definitions seem to be natural generalizations of
classical LTL. This suggests the conclusion that the framework presented in this thesis
has much potential to be further generalized and relaxed, in hope to classify more types
of natural team-logical connectives.

The main technical result of the first part is the collapse theorem, i.e., that every
formula using only lax standard transversals and negation can be written as a Boolean
combination of flat formulas. This result seems to severely limit the expressiveness of,
e.g., PL(∼), ML(∼) and FO(∼). On the other hand, it is strongly hinged on lax semantics.
While the latter also implies other natural properties such as locality [37], in this light,
all complexity upper bounds obtained in this thesis seem rather fragile. From this
perspective, finding similar normal forms for non-lax semantics is definitely worth
pursuing.

In Chapters 4 and 5, we demonstrated that the satisfiability problems of ML(∼), GF(∼)
and FO2(∼) are all complete for the class Tower(poly). This proves that the Boolean
negation vastly increases the complexity of these problems. The surprisingly uniform
complexity of the different logics ultimately reflects the non-elementary succinctness gap
between the mentioned Boolean combinations of flat formulas and the respective full
logic, in which the original complexity-wise differences between ML, GF and FO2 vanish.
In a sense, these completeness results refine the expressiveness result of Chapter 3 in a
quantitative sense.

In a nutshell, the Boolean negation seems to drastically increase the succinctness,
but only marginally the expressiveness of team logic, which comes down to Boolean
combinations of flat formulas. By contrast, non-classical atoms such as the dependence
atom tremendously increase the expressiveness—in a sense, from first-order to second-
order logic—but the non-classical atoms yield no additional succinctness.

Team logic was designed as a compositional semantics for logic of imperfect informa-
tion, and as a framework for dependency notions in logic. Upon a closer look, however,
its rich and fascinating structure surpasses these purposes by far.

178

Bibliography

[1] Samson Abramsky, Juha Kontinen, Jouko Väänänen and Heribert Vollmer. De-
pendence Logic: Theory and Applications. Cham: Birkhäuser / Springer, 2016.

[2] Samson Abramsky and Jouko Väänänen. From IF to BI. Synthese 167(2), 2009,
pp. 207–230.

[3] Antonis Achilleos, Michael Lampis and Valia Mitsou. Parameterized Modal Satisfi-
ability. Algorithmica 64(1), 2012, pp. 38–55.

[4] Hajnal Andréka, István Németi and Johan van Benthem. Modal Languages and
Bounded Fragments of Predicate Logic. Journal of Philosophical Logic 27(3), 1998,
pp. 217–274.

[5] Hajnal Andréka, István Németi and Ildikó Sain. Algebraic Logic. In: Handbook of
Philosophical Logic. Ed.: Dov M. Gabbay and F. Guenthner. Dordrecht: Springer
Netherlands, 2001, pp. 133–247.

[6] William W. Armstrong. Dependency Structures of Data Base Relationships. Infor-
mation Processing, Proc. of the 6th IFIP Congress 1974, Stockholm, Sweden,
August 5-10, 1974. Ed.: J. Rosenfeld. North Holland / Elsevier, 1974, pp. 580–583.

[7] Jon Barwise. On branching quantifiers in English. Journal of Philosophical Logic
8(1), 1979, pp. 47–80.

[8] Johan van Benthem. Dynamic bits and pieces. Institute for Logic, Language and
Computation (ILLC), University of Amsterdam, 1997.

[9] Patrick Blackburn and Johan van Benthem. 1 Modal logic: A semantic perspective.
In: Handbook of Modal Logic. Ed.: P. Blackburn, J. van Benthem and F. Wolter.
3. Studies in Logic and Practical Reasoning. Elsevier Science, 2007, pp. 1–84.

[10] Patrick Blackburn, Johan van Benthem and Frank Wolter. Handbook of Modal
Logic. Vol. 3. Studies in Logic and Practical Reasoning. Elsevier Science, 2007.

[11] George Boole. An investigation of the laws of thought, on which are founded the
mathematical theories of logic and probabilities. London: Walton & Maberly, 1854.

[12] Egon Börger, Erich Grädel and Yuri Gurevich. The Classical Decision Problem.
Universitext. Berlin, Heidelberg: Springer, 1997.

[13] Ashok K. Chandra, Dexter C. Kozen and Larry J. Stockmeyer.Alternation. Journal
of the ACM 28(1), Jan. 1981, pp. 114–133.

[14] Chen C. Chang and Howard J. Keisler. Model Theory. 3rd ed. Dover Books on
Mathematics. Dover Publications, 2012.

179

Bibliography

[15] Alonzo Church. An unsolvable problem of elementary number theory. American
Journal of Mathematics 58(2), 1936, pp. 345–363.

[16] Ivano Ciardelli.Dependency as Question Entailment. In: Dependence Logic: Theory
and Applications. Ed.: S. Abramsky, J. Kontinen, J. Väänänen and H. Vollmer.
Cham: Birkhäuser / Springer, 2016, pp. 129–181.

[17] Kevin J. Compton and C.Ward Henson.A uniform method for proving lower bounds
on the computational complexity of logical theories. Annals of Pure and Applied
Logic 48(1), 1990, pp. 1–79.

[18] Stephen A. Cook. The Complexity of Theorem-Proving Procedures. Proc. of the 3rd
Annual ACM Symp. on Theory of Computing. Ed.: M. Harrison, R. Banerji and
J. Ullman. ACM, 1971, pp. 151–158.

[19] Max J. Cresswell. KM and the finite model property. Notre Dame Journal of Formal
Logic 24(3), 1983, pp. 323–327.

[20] Max J. Cresswell and George E. Hughes. A New Introduction to Modal Logic.
London: Routledge, 1996.

[21] Dirk van Dalen. Logic and Structure. 5th ed. Universitext. London: Springer, 2013.
[22] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order. 2nd ed.

Cambridge University Press, 2002.
[23] Stéphane Demri and Raul Fervari. On the Complexity of Modal Separation Logics.

Advances in Modal Logic 12, Proc. of the 12th Conf. on “Advances in Modal
Logic,” held in Bern, Switzerland, August 27-31, 2018. Ed.: G. Bezhanishvili, G.
D’Agostino, G. Metcalfe and T. Studer. College Publications, 2018, pp. 179–198.

[24] Klaus Denecke and Shelly L. Wismath. Universal algebra and coalgebra. Singapore,
Hackensack, NJ: World Scientific, 2009.

[25] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer New York,
1999.

[26] Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier and Jonni Virtema.
Approximation and dependence via multiteam semantics. Annals of Mathematics
and Artificial Intelligence 83(3-4), 2018, pp. 297–320.

[27] Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier and Jonni Virtema.
Probabilistic Team Semantics. Foundations of Information and Knowledge Systems
- 10th Int. Symp., FoIKS 2018, Budapest, Hungary, May 14-18, 2018, Proc. Ed.:
F. Ferrarotti and S. Woltran. 10833. Lecture Notes in Computer Science. Cham:
Springer, 2018, pp. 186–206.

[28] ArnaudDurand, JuhaKontinen andHeribert Vollmer.Expressivity andComplexity
of Dependence Logic. In: Dependence Logic: Theory and Applications. Ed.: S.
Abramsky, J. Kontinen, J. Väänänen andH. Vollmer. Cham: Birkhäuser / Springer,
2016, pp. 5–32.

180

Bibliography

[29] Johannes Ebbing and Peter Lohmann. Complexity of Model Checking for Modal
Dependence Logic. SOFSEM 2012: Theory and Practice of Computer Science. 7147.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2012, pp. 226–
237.

[30] Ernest Allen Emerson. Temporal and Modal Logic. In: Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics. MIT Press, 1990,
pp. 995–1072.

[31] Herbert B. Enderton.AMathematical Introduction to Logic. 2nd ed. Elsevier Science,
2001.

[32] Kit Fine. Normal forms in modal logic. Notre Dame Journal of Formal Logic 16(2),
1975, pp. 229–237.

[33] Melvin Fitting. 2 Modal proof theory. In: Handbook of Modal Logic. Ed.: P. Black-
burn, J. van Benthem and F. Wolter. 3. Studies in Logic and Practical Reasoning.
Elsevier Science, 2007, pp. 85–138.

[34] Gottlob Frege. Logische Untersuchungen III: Gedankengefüge, 1923. In: Kleine Schrif-
ten. Ed.: I. Angelelli. Hildesheim: Georg Olms, 1967.

[35] Dov M. Gabbay. Investigations in Modal and Tense Logics with Applications to Prob-
lems in Philosophy and Linguistics. Dordrecht: Springer Netherlands, 1976.

[36] Pietro Galliani. General Models and Entailment Semantics for Independence Logic.
Notre Dame Journal of Formal Logic 54(2), 2013, pp. 253–275.

[37] Pietro Galliani. Inclusion and exclusion dependencies in team semantics—on some
logics of imperfect information. Annals of Pure and Applied Logic 163(1), 2012,
pp. 68–84.

[38] Pietro Galliani. On Strongly First-Order Dependencies. In: Dependence Logic: The-
ory and Applications. Ed.: S. Abramsky, J. Kontinen, J. Väänänen and H. Vollmer.
Cham: Birkhäuser / Springer, 2016, pp. 53–71.

[39] Pietro Galliani. Team Semantics for Spatial Reasoning: Locality and Separability.
Joint Proc. of the Workshops C3GI: The 7th Int. Workshop on Computational
Creativity, Concept Invention, and General Intelligence ISD4: The 4th Image
Schema Day, and SCORE: From Image Schemas to Cognitive Robotics, Bozen-
Bolzano, Italy, December 13-15, 2018. Ed.: O. Kutz, M. Hedblom, T. Besold, R.
Confalonieri, C. León, T. Veale and J. Bateman. 2347. CEUR Workshop Proc.
CEUR-WS.org, 2018.

[40] Pietro Galliani. The Doxastic Interpretation of Team Semantics. In: Logic Without
Borders - Essays on Set Theory, Model Theory, Philosophical Logic and Philoso-
phy of Mathematics. Ed.: Å. Hirvonen, J. Kontinen, R. Kossak and A. Villaveces.
5. Ontos Mathematical Logic. De Gruyter, 2015, pp. 167–192.

[41] Pietro Galliani. Upwards closed dependencies in team semantics. Information and
Computation 245, 2015, pp. 124–135.

181

Bibliography

[42] Steven Givant.Duality Theories for Boolean Algebras with Operators. SpringerMono-
graphs in Mathematics. Cham: Springer, 2014.

[43] Valentin Goranko and Martin Otto. 5 Model theory of modal logic. In: Handbook
of Modal Logic. Ed.: P. Blackburn, J. van Benthem and F. Wolter. 3. Studies in
Logic and Practical Reasoning. Elsevier Science, 2007, pp. 249–329.

[44] Erich Grädel. Model-checking games for logics of imperfect information. Theoretical
Computer Science 493, 2013, pp. 2–14.

[45] Erich Grädel. On The Restraining Power of Guards. The Journal of Symbolic Logic
64(4), 1999, pp. 1719–1742.

[46] Erich Grädel and Stefan Hegselmann. Counting in Team Semantics. 25th EACSL
Annual Conference on Computer Science Logic, CSL 2016, August 29 - Septem-
ber 1, 2016, Marseille, France. Ed.: J. Talbot and L. Regnier. 62. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, 35:1–35:18.

[47] Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer,
Moshe Y. Vardi, Yde Venema and Scott Weinstein. Finite Model Theory and Its
Applications. Texts in Theoretical Computer Science. An EATCS Series. Berlin,
Heidelberg: Springer, 2007.

[48] Erich Grädel, Phokion G. Kolaitis andMoshe Y. Vardi.On the Decision Problem for
Two-Variable First-Order Logic. Bulletin of Symbolic Logic 3(1), 1997, pp. 53–69.

[49] Erich Grädel and Jouko Väänänen. Dependence and Independence. Studia Logica
101(2), 2013, pp. 399–410.

[50] Raul Hakli and Sara Negri.Does the deduction theorem fail for modal logic? Synthese
187(3), 2012, pp. 849–867.

[51] Miika Hannula. Validity and Entailment in Modal and Propositional Dependence
Logics. Logical Methods in Computer Science 15(2), 2019.

[52] Miika Hannula and Juha Kontinen. A finite axiomatization of conditional inde-
pendence and inclusion dependencies. Information and Computation 249, 2016,
pp. 121–137.

[53] Miika Hannula, Juha Kontinen, Martin Lück and Jonni Virtema. On Quantified
Propositional Logics and the Exponential Time Hierarchy. Proc. of the Seventh Int.
Symp. on Games, Automata, Logics and Formal Verification, GandALF 2016,
Catania, Italy, 14-16 September 2016. Ed.: D. Cantone and G. Delzanno. 226.
EPTCS. 2016, pp. 198–212.

[54] Miika Hannula, Juha Kontinen and Jonni Virtema. Polyteam Semantics. Logical
Foundations of Computer Science - Int. Symp., LFCS 2018, Deerfield Beach, FL,
USA, January 8-11, 2018, Proc. Ed.: S. Artëmov and A. Nerode. 10703. Lecture
Notes in Computer Science. Springer, 2018, pp. 190–210.

182

Bibliography

[55] Miika Hannula, Juha Kontinen, Jonni Virtema and Heribert Vollmer. Complexity
of Propositional Independence and Inclusion Logic. Mathematical Foundations of
Computer Science 2015 - 40th Int. Symp., MFCS 2015, Milan, Italy, August 24-28,
2015, Proc., Part I. Ed.: G. Italiano, G. Pighizzini and D. Sannella. 9234. Lecture
Notes in Computer Science. Springer, 2015, pp. 269–280.

[56] Miika Hannula, Juha Kontinen, Jonni Virtema and Heribert Vollmer. Complexity
of Propositional Logics in Team Semantic. ACM Transactions on Computational
Logic 19(1), 2018, 2:1–2:14.

[57] Miika Hannula and Sebastian Link. On the Interaction of Functional and Inclusion
Dependencies with Independence Atoms. Database Systems for Advanced Applica-
tions - 23rd Int. Conf., DASFAA 2018, Gold Coast, QLD, Australia, May 21-24,
2018, Proc., Part II. Ed.: J. Pei, Y. Manolopoulos, S. Sadiq and J. Li. 10828. Lecture
Notes in Computer Science. Springer, 2018, pp. 353–369.

[58] Lauri Hella, Antti Kuusisto, Arne Meier and Jonni Virtema. Model Checking and
Validity in Propositional and Modal Inclusion Logics. 42nd Int. Symp. on Math-
ematical Foundations of Computer Science, MFCS 2017, August 21-25, 2017
- Aalborg, Denmark. Ed.: K. Larsen, H. Bodlaender and J. Raskin. 83. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, 32:1–32:14.

[59] Lauri Hella, Antti Kuusisto, Arne Meier and Heribert Vollmer. Satisfiability of
Modal Inclusion Logic: Lax and Strict Semantics. ACM Trans. Comput. Log. 21(1),
2020, 7:1–7:18.

[60] Lauri Hella, Kerkko Luosto, Katsuhiko Sano and Jonni Virtema. The Expressive
Power of Modal Dependence Logic. Advances in Modal Logic. College Publications,
2014, pp. 294–312.

[61] Lauri Hella and Johanna Stumpf. The expressive power of modal logic with inclusion
atoms. Proc. Sixth Int. Symp. on Games, Automata, Logics and Formal Verifica-
tion, GandALF 2015, Genoa, Italy, 21-22nd September 2015. Ed.: J. Esparza and
E. Tronci. 193. EPTCS. 2015, pp. 129–143.

[62] Lauri Hella andMiikka Vilander. The succinctness of first-order logic over modal logic
via a formula size game. Advances inModal Logic 11, proc. of the 11th conference on
“Advances in Modal Logic,” held in Budapest, Hungary, August 30 - September
2, 2016. Ed.: L. Beklemishev, S. Demri and A. Maté. College Publications, 2016,
pp. 401–419.

[63] Leon Henkin. Some Remarks on Infinitely Long Formulas. In: Journal of Symbolic
Logic. 30. Pergamon Press, 1961, pp. 167–183.

[64] Jaakko Hintikka. Defining Truth, the Whole Truth and Nothing but the Truth. In:
Lingua Universalis vs. Calculus Ratiocinator: An Ultimate Presupposition of
Twentieth-Century Philosophy. Dordrecht: Springer Netherlands, 1997, pp. 46–
103.

[65] JaakkoHintikka.Quantifiers vs. quantification theory. Linguistic inquiry 5(2), 1974,
pp. 153–177.

183

Bibliography

[66] Jaakko Hintikka. The Principles of Mathematics Revisited. Cambridge University
Press, 1996.

[67] Jaakko Hintikka.What is the True Algebra of Logic? In: First-Order Logic Revisited.
Ed.: V. Hendricks. Logos, 2004, pp. 117–128.

[68] Jaakko Hintikka and Gabriel Sandu. Informational Independence as a Semantical
Phenomenon. In: Logic, Methodology and Philosophy of Science VIII. Ed.: J.
Fenstad, I. Frolov and R. Hilpinen. 126. Studies in Logic and the Foundations of
Mathematics. Elsevier, 1989, pp. 571–589.

[69] Wilfrid Hodges. Classical Logic I: First-order Logic. In: The Blackwell Guide to
Philosophical Logic. John Wiley & Sons, Ltd, 2017. Chap. 1, pp. 9–32.

[70] Wilfrid Hodges. Compositional Semantics for a Language of Imperfect Information.
Logic Journal of the IGPL 5(4), 1997, pp. 539–563.

[71] Wilfrid Hodges. Some Strange Quantifiers. Structures in Logic and Computer
Science, A Selection of Essays in Honor of Andrzej Ehrenfeucht. Ed.: J. Mycielski,
G. Rozenberg and A. Salomaa. 1261. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 1997, pp. 51–65.

[72] Tapani Hyttinen, Gianluca Paolini and Jouko Väänänen. A logic for arguing about
probabilities in measure teams. Archive for Mathematical Logic 56(5-6), 2017,
pp. 475–489.

[73] Tapani Hyttinen, Gianluca Paolini and Jouko Väänänen. Quantum Team Logic
and Bell’s inequalities. The Review of Symbolic Logic 8(4), 2015, pp. 722–742.

[74] Rosalie Iemhoff and Fan Yang. Structural completeness in propositional logics of
dependence. Archive for Mathematical Logic 55(7-8), 2016, pp. 955–975.

[75] Theo M. V. Janssen. Frege, Contextuality and Compositionality. Journal of Logic,
Language and Information 10(1), 2001, pp. 115–136.

[76] Theo Janssen and Barbara Partee. Compositionality. In: Handbook of logic and
language. North Holland / Elsevier, 1997, pp. 417–473.

[77] Bjarni Jónsson and Alfred Tarski. Boolean algebras with operators. Part I. American
Journal of Mathematics 73(4), 1951, pp. 891–939.

[78] Juha Kontinen. On Natural Deduction in Dependence Logic. In: Logic Without Bor-
ders - Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy
of Mathematics. Ed.: Å. Hirvonen, J. Kontinen, R. Kossak and A. Villaveces. 5.
Ontos Mathematical Logic. De Gruyter, 2015, pp. 297–304.

[79] Juha Kontinen, Antti Kuusisto, Peter Lohmann and Jonni Virtema. Complexity of
Two-Variable Dependence Logic and IF-Logic. Proc. of the 26th Annual IEEE Symp.
on Logic in Computer Science, LICS 2011, June 21-24, 2011, Toronto, Ontario,
Canada. IEEE Computer Society, 2011, pp. 289–298.

[80] Juha Kontinen, Antti Kuusisto, Peter Lohmann and Jonni Virtema. Complexity
of two-variable dependence logic and IF-logic. Information and Computation 239,
2014, pp. 237–253.

184

Bibliography

[81] Juha Kontinen, Antti Kuusisto and Jonni Virtema. Decidability of Predicate Logics
with Team Semantics. 41st Int. Symp. on Mathematical Foundations of Computer
Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland. Ed.: P. Faliszewski,
A. Muscholl and R. Niedermeier. 58. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016, 60:1–60:14.

[82] Juha Kontinen, Julian-Steffen Müller, Henning Schnoor and Heribert Vollmer. A
Van Benthem Theorem for Modal Team Semantics. 24th EACSL Annual Conference
on Computer Science Logic, CSL 2015, September 7-10, 2015, Berlin, Germany.
Ed.: S. Kreutzer. 41. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2015, pp. 277–291.

[83] Juha Kontinen, Julian-Steffen Müller, Henning Schnoor and Heribert Vollmer.
Modal independence logic. Journal of Logic andComputation 27(5), 2016, pp. 1333–
1352.

[84] Juha Kontinen and Ville Nurmi. Team Logic and Second-Order Logic. Fundamenta
Informaticae 106(2-4), 2011, pp. 259–272.

[85] Juha Kontinen and Jouko Väänänen. A Remark on Negation in Dependence Logic.
Notre Dame Journal of Formal Logic 52(1), 2011, pp. 55–65.

[86] Juha Kontinen and Jouko Väänänen. Axiomatizing first-order consequences in de-
pendence logic. Annals of Pure and Applied logic 164(11), 2013, pp. 1101–1117.

[87] Juha Kontinen and Jouko Väänänen. Erratum to: On Definability in Dependence
Logic. Journal of Logic, Language and Information 20(1), 2011, pp. 133–134.

[88] Juha Kontinen and Jouko Väänänen. On Definability in Dependence Logic. Journal
of Logic, Language and Information 18(3), 2009, pp. 317–332.

[89] Juha Kontinen and Fan Yang. Logics for First-Order Team Properties. Logic, Lan-
guage, Information, and Computation - 26th Int. Workshop, WoLLIC 2019,
Utrecht, The Netherlands, July 2-5, 2019, Proc. Ed.: R. Iemhoff, M. Moortgat
and R. de Queiroz. 11541. Lecture Notes in Computer Science. Springer, 2019,
pp. 392–414.

[90] Andreas Krebs, Arne Meier and Jonni Virtema. A Team Based Variant of CTL.
22nd Int. Symp. on Temporal Representation and Reasoning, TIME 2015, Kassel,
Germany, September 23-25, 2015. Ed.: F. Grandi, M. Lange and A. Lomuscio.
IEEE Computer Society, 2015, pp. 140–149.

[91] Andreas Krebs, Arne Meier, Jonni Virtema and Martin Zimmermann. Team
Semantics for the Specification and Verification of Hyperproperties. 43rd Int. Symp.
on Mathematical Foundations of Computer Science, MFCS 2018, August 27-
31, 2018, Liverpool, UK. Ed.: I. Potapov, P. Spirakis and J. Worrell. 117. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, 10:1–10:16.

[92] Michał Krynicki and Marcin Mostowski. Henkin Quantifiers. In: Quantifiers:
Logics, Models and Computation: Volume One: Surveys. Ed.: M. Krynicki, M.
Mostowski and L. Szczerba. Dordrecht: Springer Netherlands, 1995, pp. 193–262.

185

Bibliography

[93] Antti Kuusisto. A Double Team Semantics for Generalized Quantifiers. Journal of
Logic, Language and Information 24(2), 2015, pp. 149–191.

[94] Richard E. Ladner. The Computational Complexity of Provability in Systems of Modal
Propositional Logic. SIAM Journal on Computing 6(3), 1977, pp. 467–480.

[95] Azriel Lévy. A hierarchy of formulas in set theory. 57. American Mathematical Soc.,
1965.

[96] Peter Lohmann and Heribert Vollmer. Complexity Results for Modal Dependence
Logic. Studia Logica 101(2), 2013, pp. 343–366.

[97] Jerzy Łoś.Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables
D’algèbres. In: Mathematical Interpretation of Formal Systems. Ed.: Th. Skolem,
G. Hasenjaeger, G. Kreisel, A. Robinson, Hao Wang, L. Henkin and J. Łoś. 16.
Studies in Logic and the Foundations of Mathematics. Elsevier, 1955, pp. 98–113.

[98] Leopold Löwenheim. Über Möglichkeiten im Relativkalkül. Mathematische An-
nalen 76, 1915, pp. 447–470.

[99] Martin Lück. Axiomatizations for Propositional and Modal Team Logic. 25th EACSL
Annual Conf. on Computer Science Logic, CSL 2016, August 29 - September 1,
2016, Marseille, France. Ed.: J. Talbot and L. Regnier. 62. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2016, 33:1–33:18.

[100] Martin Lück. Axiomatizations of team logics. Annals of Pure and Applied Logic
169(9), 2018, pp. 928–969.

[101] Martin Lück.CanonicalModels and the Complexity ofModal Team Logic. 27th EACSL
Annual Conf. on Computer Science Logic, CSL 2018, September 4-7, 2018, Birm-
ingham, UK. Ed.: D. Ghica and A. Jung. 119. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2018, 30:1–30:23.

[102] Martin Lück. Canonical Models and the Complexity of Modal Team Logic. Logical
Methods in Computer Science 15(2), 2019, 2:1–2:45.

[103] Martin Lück. On the Complexity of Linear Temporal Logic with Team Semantics.
Submitted.

[104] Martin Lück. On the Complexity of Team Logic and Its Two-Variable Fragment. 43rd
Int. Symp. on Mathematical Foundations of Computer Science, MFCS 2018,
August 27-31, 2018, Liverpool, UK. Ed.: I. Potapov, P. Spirakis and J. Worrell. 117.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, 27:1–27:22.

[105] Martin Lück. The Power of the Filtration Technique for Modal Logics with Team
Semantics. 26th EACSL Annual Conf. on Computer Science Logic, CSL 2017,
August 20-24, 2017, Stockholm, Sweden. Ed.: V. Goranko andM. Dam. 82. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, 31:1–31:20.

[106] Martin Lück andArneMeier. LTL Fragments are Hard for Standard Parameterisations.
22nd Int. Symp. on Temporal Representation and Reasoning, TIME 2015. Ed.:
F. Grandi, M. Lange and A. Lomuscio. IEEE Computer Society, 2015, pp. 59–68.

186

Bibliography

[107] Martin Lück, Arne Meier and Irena Schindler. Parametrised Complexity of Satisfia-
bility in Temporal Logic. ACM Transactions on Computational Logic 18(1), 2017,
1:1–1:32.

[108] Martin Lück and Miikka Vilander. On the Succinctness of Atoms of Dependency.
Logical Methods in Computer Science 15(3), 2019, 17:1–17:28.

[109] Jan Łukasiewicz. Elements of Mathematical Logic. 1958. Engl. trans. by O. Woj-
tasiewicz. Pergamon Press, 1963.

[110] Yasir Mahmood and Arne Meier. Parametrised Complexity of Model Checking and
Satisfiability in Propositional Dependence Logic. CoRR abs/1904.06107, 2019.

[111] Allen L. Mann. Independence-friendly cylindric set algebras. Logic Journal of the
IGPL 17(6), 2009, pp. 719–754.

[112] Maarten Marx and Yde Venema. Multi-dimensional modal logic. Vol. 4. Applied
logic series. Dordrecht: Springer, 1997.

[113] Arne Meier and Christian Reinbold. Enumeration Complexity of Poor Man’s Propo-
sitional Dependence Logic. Foundations of Information and Knowledge Systems
- 10th Int. Symp., FoIKS 2018, Budapest, Hungary, May 14-18, 2018, Proc. Ed.:
F. Ferrarotti and S. Woltran. 10833. Lecture Notes in Computer Science. Springer,
2018, pp. 303–321.

[114] Albert R. Meyer. The inherent computational complexity of theories of ordered sets.
Proc. Int. Congress of Mathematicians. 19722. 1974, p. 481.

[115] Albert R. Meyer. Weak monadic second order theory of succesor is not elementary-
recursive. Logic Colloquium. Ed.: R. Parikh. Berlin, Heidelberg: Springer, 1975,
pp. 132–154.

[116] Michael Mortimer.On languages with two variables. Mathematical Logic Quarterly
21(1), 1975, pp. 135–140.

[117] Lawrence S. Moss. Finite Models Constructed from Canonical Formulars. Journal of
Philosophical Logic 36(6), 2007, pp. 605–640.

[118] Till Mossakowski and Lutz Schröder. On Inconsistency and Unsatisfiability. Int.
Journal of Software and Informatics 9(2), 2015, pp. 141–152.

[119] Julian-Steffen Müller. Satisfiability and model checking in team based logics. Disser-
tation. Leibniz Universität Hannover. Göttingen: Cuvillier, 2014.

[120] Francis Jeffry Pelletier. Did Frege Believe Frege’s Principle? Journal of Logic, Lan-
guage and Information 10(1), 2001, pp. 87–114.

[121] Michael O Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society 141, 1969, pp. 1–35.

[122] Frank P. Ramsey.On a Problem of Formal Logic. In: Classic Papers in Combinatorics.
Ed.: I. Gessel and G. Rota. Boston, MA: Birkhäuser, 1987, pp. 1–24.

[123] Raine Rönnholm. Arity Fragments of Logics with Team Semantics. Dissertation.
Tampere University Press, 2018.

187

Bibliography

[124] Katsuhiko Sano and Jonni Virtema. Axiomatizing Propositional Dependence Logics.
24th EACSL Annual Conference on Computer Science Logic, CSL 2015, Septem-
ber 7-10, 2015, Berlin, Germany. Ed.: S. Kreutzer. 41. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2015, pp. 292–307.

[125] Sylvain Schmitz. Complexity Hierarchies beyond Elementary. ACM Transactions on
Computation Theory 8(1), 2016, 3:1–3:36.

[126] Dana Scott. A decision method for validity of sentences in two variables. Journal of
Symbolic Logic 27(4), 1962, p. 477.

[127] Krister Segerberg. Decidability of S4.1. Theoria 34(1), 1968, pp. 7–20.
[128] Merlijn Sevenster.Model-theoretic and Computational Properties ofModal Dependence

Logic. Journal of Logic and Computation 19(6), 2009, pp. 1157–1173.
[129] Theodore Sider. Logic for philosophy. Vol. 304. Oxford University Press, 2010.
[130] Michael Sipser. Introduction to the Theory of Computation. 3rd ed. Cengage learning,

2012.
[131] Thoralf Skolem. Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich

oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. Funda-
menta mathematicae 23(1), 1934, pp. 150–161.

[132] Larry J. Stockmeyer and Albert R. Meyer. Word Problems Requiring Exponential
Time: Preliminary Report. Proc. of the 5th Annual ACM Symp. on Theory of
Computing. 1973, pp. 1–9.

[133] Thomas Sturm, Marco Voigt and Christoph Weidenbach. Deciding First-Order
Satisfiability when Universal and Existential Variables are Separated. Proc. of the 31st
Annual ACM/IEEE Symp. on Logic in Computer Science, LICS ’16, New York,
NY, USA, July 5-8, 2016. Ed.: M. Grohe, E. Koskinen and N. Shankar. ACM, 2016,
pp. 86–95.

[134] Alan M. Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proc. of the London Mathematical Society s2-42(1), Jan. 1937,
pp. 230–265.

[135] Jouko Väänänen. Dependence logic: A New Approach to Independence Friendly Logic.
London Mathematical Society student texts 70. Cambridge University Press,
2007.

[136] Jouko Väänänen. Modal dependence logic. New perspectives on games and inter-
action 4, 2008, pp. 237–254.

[137] Moshe Y. Vardi.On the Complexity of Bounded-Variable Queries. PODS. ACM Press,
1995, pp. 266–276.

[138] YdeVenema. 6 Algebras and coalgebras. In: Handbook ofModal Logic. Ed.: P. Black-
burn, J. van Benthem and F. Wolter. 3. Studies in Logic and Practical Reasoning.
Elsevier Science, 2007, pp. 331–426.

188

Bibliography

[139] Jonni Virtema.Complexity of validity for propositional dependence logics. Information
and Computation 253, 2017, pp. 224–236.

[140] Marco Voigt.A fine-grained hierarchy of hard problems in the separated fragment. 32nd
Annual ACM/IEEE Symp. on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20-23, 2017. IEEE Computer Society, 2017, pp. 1–12.

[141] Fan Yang. Modal dependence logics: Axiomatizations and model-theoretic properties.
Logic Journal of the IGPL 25(5), 2017, pp. 773–805.

[142] Fan Yang. On extensions and variants of dependence logic. Dissertation. University
of Helsinki, 2014.

[143] Fan Yang and Jouko Väänänen. Propositional logics of dependence. Annals of Pure
and Applied Logic 167(7), 2016, pp. 557–589.

[144] Fan Yang and Jouko Väänänen. Propositional team logics. Annals of Pure and
Applied Logic 168(7), 2017, pp. 1406–1441.

189

Appendix

The appendix contains several technical or standard proofs omitted from the previous
chapters of this thesis.

A Proof details for Chapter 4

Proposition 4.6. Let Φ ⊆ Prop be finite and k > 0.

(1) JwKΦk ∩Φ = V−1(w)∩Φ and JRwKΦk = RJwKΦk+1, for all pointed structures (W,R, V,w).

(2) The mapping h : τ 7→ τ ∩Φ is a bijection from ∆Φ0 to ℘Φ.

(3) The mapping h : τ 7→ (τ ∩Φ,Rτ) is a bijection from ∆Φk+1 to ℘Φ× ℘∆Φk .

• Proof of (1). Assume (W,R, V, v), Φ ⊆ Prop and k > 0 as above. For all p ∈ Φ,
clearly p ∈ JwKΦk iffw � p iff p ∈ V−1(w). Next, we show that JRwKΦk = RJwKΦk+1.
Let τ = JwKΦk+1, and recall that Rτ = {τ ′ ∈ ∆Φk | {α | �α ∈ τ} ⊆ τ ′}. To prove
JRwKΦk ⊆ Rτ, let τ ′ ∈ JRwKΦk be arbitrary. Then JvKΦk = τ ′ for some v ∈ Rw.
Now, for all α ∈ MLΦk , �α ∈ τ implies w � �α. In particular, v � α, i.e., α ∈ τ ′.
Hence, {α | �α ∈ τ} ⊆ τ ′, which implies τ ′ ∈ Rτ.
For the converse direction, Rτ ⊆ JRwKΦk , let τ ′ ∈ Rτ be arbitrary. By definition,
{α | �α ∈ τ} ⊆ τ ′. Since τ ′ is a k-type, it has a model (K ′, v ′), and due to
Proposition 4.5, JK ′, v ′KΦk = τ ′. By Proposition 2.26, there is a formula ζ ∈ MLΦk
such that (K ′′, v ′′) � ζ if and only if (K ′, v ′)
Φ

k (K ′′, v ′′). As τ is a (k+ 1)-type,
either ♦ζ ∈ τ or ¬♦ζ ∈ τ.
First, suppose ¬♦ζ ∈ τ. Then �¬ζ ∈ τ, hence ¬ζ ∈ τ ′ by definition of τ ′. But
as (K ′, v ′) � τ ′, then both (K ′, v ′) 2 ζ and (K ′, v ′) � ζ, as (K ′, v ′)
Φ

k (K ′, v ′).
Contradiction, therefore ♦ζ ∈ τ. Consequently, w has an R-successor v such
that v � ζ, i.e., τ ′ = JvKΦk ∈ JRwKΦk .

• Proof that h in (2) and (3) is injective. Let τ, τ ′ ∈ ∆Φk be arbitrary. Let (K, w) =
(W,R, V,w) be of type τ, and (K ′, w ′) = (W ′, R ′, V ′, w ′) of type τ ′. We first
consider (2) and demonstrate that h : τ 7→ τ ∩Φ injective. This follows from
(1), as τ ∩ Φ = τ ′ ∩ Φ implies V−1(w) = τ ∩ Φ = τ ′ ∩ Φ = V ′−1(w ′), i.e.,
(K, w)
Φ

0 (K ′, w ′). By Proposition 4.5, then τ = τ ′.

For (3), let k > 0, and additionally suppose Rτ = Rτ ′. Again by (1), we have
JK, RwKΦk−1 = Rτ = Rτ ′ = JK ′, R ′w ′KΦk−1. By Proposition 4.5, (K, Rw)
Φ

k−1

190

Appendix

(K ′, R ′w ′) follows. Since (K, w)
Φ
0 (K ′, w ′) holds as before, (K, w)
Φ

k

(K ′, w ′) by Proposition 2.28. By Proposition 4.5, τ = JK, wKΦk = JK ′, w ′KΦk = τ ′.

• Proof that h in (2) and (3) is surjective. First, consider (2). We have to show that,
for all Φ ′ ⊆ Φ, there exists a type τ ∈ ∆Φ0 such that τ ∩Φ = Φ ′. Likewise, for
(3) we have to show that for all k > 0, Φ ′ ⊆ Φ and ∆ ′ ⊆ ∆Φk , there exists a type
τ ∈ ∆Φk+1 such that τ ∩Φ = Φ ′ and Rτ = ∆ ′. We show the second statement,
as the first one is then analogous. The following model (K, w) = (W,R, V,w)

witnesses that there exists τ ∈ ∆k+1 such that τ ∩Φ = Φ ′ and Rτ = ∆ ′. First,
recall that each τ ′ ∈ ∆ ′ has a model (Nτ ′ , vτ ′) such that, by Proposition 4.5,
JNτ ′ , vτ ′KΦk = τ ′. W.l.o.g. all Nτ ′ are pairwise disjoint. Define K as the disjoint
union of the models Nτ and of a distinct point w, and let V−1(w) = Φ ′. By (1),
then JwKΦk+1 ∩ Φ = Φ ′. Moreover, let Rw = {vτ ′ | τ ′ ∈ ∆ ′}. Again due to (1),
RJwKΦk+1 = JRwKΦk . By definition, JRwKΦk = J{vτ ′ | τ ′ ∈ ∆ ′}KΦk = {Jvτ ′KΦk | τ ′ ∈
∆ ′} = ∆ ′.

Proposition 4.7. Let (W,R, V,w) be a pointed structure, Φ ⊆ Prop finite and k > 0.

(1) If τ ∈ ∆Φ0 , then JwKΦ0 = τ if and only if V−1(w) = τ ∩Φ.

(2) If τ ∈ ∆Φk+1, then JwKΦk+1 = τ if and only if V−1(w) = τ ∩Φ and JRwKΦk = Rτ.

Proof. The direction “⇒” of both (1) and (2) follows directly from Proposition 4.6.
Moreover, we prove “⇐” only for statement (2), as the proof is analogous for (1).

Suppose that there are τ, τ ′ ∈ ∆Φk+1 such that V−1(w) = τ ∩Φ and JRwKΦk = Rτ, but
JwKΦk+1 = τ

′. Then, by “⇒”, we have V−1(w) = τ ′∩Φ and JRwKΦk = Rτ ′ as well. In other
words, τ ∩Φ = τ ′ ∩Φ and Rτ = Rτ ′. However, since the mapping h : τ 7→ (τ ∩Φ,Rτ) is
bijective according to Proposition 4.6, we have τ = τ ′ = JwKΦk+1.

Lemma 4.12. For every polynomial p there is a polynomial q such that

p(exp∗
k(n)) 6 expk(q((k+ 1) · n))

for all k > 0 and n > 1.

We require the following inequalities.

LemmaA.1. Letn, k, c > 0. Then c+expk(n) 6 expk(c+n). If alson > 1, then c·expk(n) 6
expk(cn).

Proof. Induction on k, where k = 0 is trivial. For k > 1,

c+ expk+1(n) = c+ 2expk(n) 6 2c · 2expk(n) (as c+ a 6 2c · a for c > 0, a > 1)
= 2c+expk(n) 6 2expk(c+n) (induction hypothesis)
= expk+1(c+ n).

191

Appendix

For the product, the cases c = 0, 1 are trivial. For c > 2,

c · expk+1(n) 6 2c−1 · 2expk(n) (since c > 2 implies c 6 2c−1)
= 2c−1+expk(n) 6 2expk(c−1+n) (by + case)
6 2expk(cn) = expk+1(cn). (as (c− 1) + n 6 cn for c, n > 1)

Recall that exp∗
0(n) := n and exp∗

k+1(n) := n · 2exp∗
k(n).

Lemma A.2. Let n, k > 0. Then exp∗
k(n) 6 expk((k+ 1) · n).

Proof. Induction on k. For k = 0, exp∗
0(n) = n = exp0((0+ 1) · n). For the inductive step,

exp∗
k+1(n) = n · 2exp∗

k(n) 6 2n · 2exp∗
k(n) = 2n+exp∗

k(n)

6 2n+expk((k+1)n) (induction hypothesis)
6 2expk(n+(k+1)n) = expk+1((k+ 2)n) (Lemma A.1)

The next inequality states that a polynomial can be “pulled inside” expk:

Lemma A.3. For every polynomial p there is a polynomial q such that

p(expk(n)) 6 expk(q(n)))

for all k > 0, n > 1.

Proof. For every polynomial p there are integers c, d > 1 such that p(n) 6 cnd for all
n > 1. Let q(n) := cdnd + c. Then the case k = 0 is clear. For k > 1 and n > 1,

p(expk(n)) 6 c · expk(n)d 6 2c · (2expk−1(n))d = 2c+d·expk−1(n)

6 2q(expk−1(n)) (as q(n) > c+ dn)
6 2expk−1(q(n)) = expk(q(n)). (Lemma A.1)

Finally, we combine both lemmas:

Proof of Lemma 4.12. Let p be a polynomial as above. W.l.o.g. p is non-decreasing. Then
by Lemma A.2, p(exp∗

k(n)) 6 p
(

expk((k+ 1) · n)
)
. Moreover, due to Lemma A.3, there

is a polynomial q such that p
(

expk((k+ 1) · n)
)
6 expk

(
q((k+ 1) · n)

)
.

Proposition 4.17. Let α,β be disjoint scopes and S,U, T teams in a Kripke structure K =

(W,R, V). Then the following laws hold:

(1) Distributive laws: (T ∩ S)α = Tα ∩ S = T ∩ Sα = Tα ∩ Sα and (T ∪ S)α = Tα ∪ Sα.

(2) Disjoint selection commutes:
(
TαS
)β
U

=
(
T
β
U

)α
S
.

(3) Disjoint selection is independent:
(
(TαS)

β
U

)
α
= Tα ∩ S.

(4) Image and selection commute: (RT)α =
(
R(Tα)

)
α
= R(Tα)

192

Appendix

(5) Successor and selection commute: If S is a strict resp. lax successor team of T , then Sα is a
strict resp. lax successor team of Tα.

(6) Selection propagates: If S ⊆ T , then R
(
TαS
)
= (RT)αRS.

Proof. (1) Observe that Xα = X ∩Wα. Hence, for the union (T ∪ S)α = (T ∪ S) ∩Wα =

(T ∩Wα)∪ (S∩Wα) = Tα ∪ Sα holds. For the intersection, likewise (T ∩ S)∩Wα =

(T ∩Wα) ∩ S = T ∩ (Wα ∩ S) = (T ∩Wα) ∩ (S ∩Wα).

(2) Proved in the following equation. We use the fact that Xγ∧γ ′ = (Xγ)γ ′ = (Xγ ′)γ =

Xγ ′∧γ for all teams X and scopes γ, γ.(
TαS
)β
U

=
(
T¬α ∪ (Tα ∩ S)

)
¬β
∪
((
T¬α ∪ (Tα ∩ S)

)
β
∩U
)

Distributing all scopes according to (1):

= T¬α∧¬β ∪
(
Tα∧¬β ∩ S¬β

)
∪
(
T¬α∧β ∩U

)
∪
(
Tα∧β ∩ Sβ ∩U

)
Replace U by U¬α/Uα due to the intersection law of (1):

= T¬α∧¬β ∪
(
Tα∧¬β ∩ S¬β

)
∪
(
T¬α∧β ∩U¬α

)
∪
(
Tα∧β ∩ Sβ ∩Uα

)
Likewise, replace S¬β/Sβ by S:

= T¬α∧¬β ∪
(
Tα∧¬β ∩ S

)
∪
(
T¬α∧β ∩U¬α

)
∪
(
Tα∧β ∩ S ∩Uα

)
= T¬β∧¬α ∪

(
Tβ∧¬α ∩U¬α

)
∪
(
T¬β∧α ∩ S

)
∪
(
Tβ∧α ∩Uα ∩ S

)
Reverse distribution of scopes:

=
(
T¬β ∪ (Tβ ∩U)

)
¬α
∪
((
T¬β ∪ (Tβ ∩U)

)
α
∩ S
)

=
(
T
β
U

)α
S
.

(3) By definition and application of (2),
(
(TαS)

β
U

)
α
equals[(

T¬β ∪ (Tβ ∩U)
)
¬α
∪
((
T¬β ∪ (Tβ ∩U)

)
α
∩ S
)]
α

=
(
T¬β ∪ (Tβ ∩U)

)
¬α∧α

∪
((
T¬β ∪ (Tβ ∩U)

)
α
∩ S
)
α

= ∅ ∪
((
T¬β ∪ (Tβ ∩U)

)
α
∩ Sα

)
=
(
T¬β∧α ∩ Sα

)
∪
(
Tβ∧α ∩Uα ∩ Sα

)
Since α and β are disjoint:

=
(
Tα ∩ Sα

)
∪ (∅ ∩Uα ∩ Sα) = Tα ∩ S.

193

Appendix

(4) (RT)α ⊆
(
R(Tα)

)
α
: Suppose v ∈ (RT)α. Then v ∈ Rw for some w ∈ T . Moreover,

w ∈ Tα, since α is a scope. Hence v ∈ R(Tα). As v � α, v ∈
(
R(Tα)

)
α
follows.(

R(Tα)
)
α
⊆ R(Tα): Obvious.

R(Tα) ⊆ (RT)α: Again, let v ∈ R(Tα) be arbitrary. Then v ∈ Rw for some w ∈ Tα.
Hence v ∈ RT . Since v � α follows from w � α, we conclude v ∈ (RT)α.

(5) If w ∈ Tα and S is a lax successor team of T , then Rw ∩ S 6= ∅. Scopes are closed
under R, so Rw = Rwα. Since Rwα ∩ S = (Rw ∩ S)α ⊆ Rw ∩ Sα by (1), w has a
successor in Sα. Conversely, since S ⊆ RT we have Sα ⊆ (RT)α = R(Tα) by (4), so
every v ∈ Sα has a predecessor in Tα. Hence Sα is a lax successor team of Tα.
If S is a strict successor team of T , then S = {f(w) | w ∈ T } for some f ∈

∏
w∈T Rw.

Consider the function f ′ := f�Tα ∈
∏
w∈Tα Rw. As for all w ∈ Tα we have that

Rw = (Rw)α and f(w) ∈ S, it holds that {f ′(w) | w ∈ Tα} ⊆ Sα. Likewise, if v ∈ Sα,
then v = f(w) for some w ∈ T . But as α is a scope, then w ∈ Tα, and so v = f ′(w).
This shows {f ′(w) | w ∈ Tα} = Sα. Consequently, Sα is a strict successor team of Tα.

(6) For “⊆”, suppose v ∈ R(TαS), i.e., v ∈ Rw for some w ∈ TαS . In particular, v ∈ RT .
If w 2 α, then v ∈ RT¬α and trivially v ∈ (RT)αRS. If w � α, then necessarily w ∈ S.
Moreover, v � α. Consequently, v ∈ RSα ∩ RTα, hence v ∈ (RT)αRS.
For “⊇”, suppose v ∈ (RT)αRS = RT¬α ∪ (RTα ∩ RS).
If v ∈ RT¬α, then by (4) v ∈ Rw for some w ∈ T¬α. In particular, w ∈ TαS , hence
v ∈ R

(
TαS
)
.

If v ∈ RTα ∩ RS, then by (1) v ∈ RSα. By (4) v ∈ R(Sα), in other words, v ∈ Rw
for some w ∈ Sα. As S ⊆ T , then w ∈ Sα ∩ T , and in fact w ∈ Tα ∩ S due to (1).
Consequently, w ∈ TαS and v ∈ R(TαS).

Lemma 4.27. Let α,β ∈ ML and ϕ ∈ MLk(∼). Let T be a team such that RiT � α↔ β for all
i ∈ {0, . . . , k}. Then T � ϕ if and only if T � ϕ[α/β].

Proof. Proof by induction on k and the syntax onϕ. W.l.o.g. α occurs inϕ. Ifϕ = α, then
ϕ[α/β] = β, in which case the proof comes down to showing T � α⇔ T � β. However,
this easily follows from T � α↔ β by the semantics for classical ML-formulas.

Otherwise, α is a proper subformula of ϕ. We distinguish the following cases.

• ϕ = ¬γ: Then (¬γ)[α/β] = ¬γ[α/β], and

T � ϕ[α/β]

⇔ T � ¬γ[α/β]

⇔ ∀w ∈ T : {w} � ¬γ[α/β]

⇔ ∀w ∈ T : {w} � ¬γ (induction hypothesis, as {w}, Rw, . . . � α↔ β)
⇔ T � ¬γ

⇔ T � ϕ

194

Appendix

• ϕ = ∼ψ resp. ϕ = ψ∧ θ: Obvious by induction hypothesis.

• ϕ = ψ∨ θ: First note that (ψ∨ θ)[α/β] = ψ[α/β]∨ θ[α/β]. Then:

T � ϕ[α/β]

⇔ T � ψ[α/β]∨ θ[α/β]

⇔ ∃S,U : T = S ∪U, S � ψ[α/β], U � θ[α/β]

By downward closure, S,U, RS, RU, . . . � α↔ β, so by induction hypothesis:

⇔ ∃S,U : T = S ∪U, S � ψ,U � θ

⇔ T � ϕ

• ϕ = �ψ: We have (�ψ)[α/β] = �ψ[α/β], hence

T � ϕ[α/β]

⇔ T � �ψ[α/β]

⇔ RT � ψ[α/β].

However, since ψ ∈ MLk−1(∼) and RT, . . . , Rk−1RT � α ↔ β holds by assump-
tion, we obtain by induction hypothesis:

⇔ RT � ψ

⇔ T � ϕ

• ϕ = ♦ψ: As before, (♦ψ)[α/β] = ♦ψ[α/β]. Then:

T � ϕ[α/β]

⇔ T � ♦ψ[α/β]

⇔ ∃S ⊆ RT, T ⊆ R−1S : S � ψ[α/β]

Note that S, RS, . . . , Rk−1S are subteams of RT, . . . , RkT , respectively. For this
reason, the teams S, RS, . . . , Rk−1S satisfy α↔ β as well. As also ψ ∈ MLk−1(∼)
holds, we obtain by induction hypothesis:

⇔ ∃S ⊆ RT, T ⊆ R−1S : S � ψ

⇔ T � ϕ

B Proof details for Chapter 6

Recall that a set Φ is Ω-inconsistent if from it we can derive all formulas in Ω.

Lemma 6.15. Let Ω � L. The following statements are equivalent:

195

Appendix

(1) Φ `Ω ϕ and Φ `Ω ∼ϕ for some ϕ,

(2) Φ is Ω-inconsistent,

(3) Φ `Ω ⊥⊥ .

Proof. For (1) to (2), we have to showΦ ` ξ for arbitrary ξ. First,Φ ` (∼ξ _ ∼ϕ) follows
from Φ ` ∼ϕ by (L1) and (E_). Next, Φ ` (ϕ _ ξ) follows by (L3) and (E_), and
finally Φ ` ξ by (E_) again. (2) to (3) is obvious. For (3) to (1), we take any standard
proof of propositional logic that derives >, as ⊥⊥ = ∼>.

Lemma 6.16. Let Ω � L and let Φ be consistent. Then Φ 0Ω ϕ implies that Φ ∪ {∼ϕ} is
Ω-consistent, and Φ `Ω ϕ implies that Φ ∪ {ϕ} is Ω-consistent.

Proof. For the first part, suppose for the sake of contradiction that Φ 0 ϕ, but Φ ∪ {∼ϕ}

is inconsistent. Then Φ ∪ {∼ϕ} ` ∼ψ for any axiom ψ. As conservative extensions have
the deduction theorem (Theorem 6.13), Φ ` (∼ϕ _ ∼ψ). But by (L3), Φ ` ψ _ ϕ, and
ultimately Φ ` ϕ, since ψ is an axiom. This contradicts Φ 0 ϕ, so instead Φ ∪ {∼ϕ} must
be consistent.

The second statement is proven similarly: Suppose that Φ ` ϕ, but Φ∪ {ϕ} is inconsis-
tent. ThenΦ∪ {ϕ} ` ⊥⊥ by Lemma 6.15, and again by the deduction theorem,Φ ` ϕ _ ⊥⊥ .
As a result, Φ ` ⊥⊥ , contradicting Lemma 6.15, since Φ is consistent.

Recall that maximal means that either ψ ∈ Φ or ∼ψ ∈ Φ for every formula ψ.

Lemma 6.17 (Lindenbaum’s lemma). If Ω � L, then every Ω-consistent set has a maximal
Ω-consistent superset.

Proof. Let Φ be Ω-consistent, Ω = (Ξ,ψ, I), and Ξ = {ξ1, ξ2, . . .}. Define Φ0 := Φ, and for
each i > 1,

Φi :=

{
Φi−1 ∪ {ξi} if Φi−1 ` ξi,
Φi−1 ∪ {∼ξi} otherwise.

By Lemma 6.16, the Ω-consistency of Φi−1 implies that of Φi. Consequently, Φi is
Ω-consistent for all i, and henceΦ∗ :=

⋃
n>0Φn isΩ-consistent as well. By construction,

Φ∗ is maximal Ω-consistent.

Recall that refutation completeness means that every unsatisfiable set is also inconsis-
tent, which is a strictly weaker property than completeness.

Theorem 6.19. If Ω � L is refutation complete for F ∪ ∼F, then it is complete for B(F).

Proof. Let Φ ⊆ B(F) and ϕ ∈ B(F). For completeness, we have to show that Φ 0 ϕ
impliesΦ 2 ϕ. IfΦ 0 ϕ, then by Lemma 6.16,Φ∪ {∼ϕ} is consistent. ThenΦ∪ {∼ϕ} has a
maximal consistent superset Φ∗ by Lindenbaum’s lemma. Clearly, Φ∗ ∩ (F ∪ ∼F) is then
consistent as well. By refutation completeness of Ω for F ∪ ∼F, it has a model A. We

196

Appendix

show that ψ ∈ Φ∗ ⇔ A � ψ for all ψ ∈ B(F). In particular, Φ ∪ {∼ϕ} is then satisfiable,
which proves Φ 2 ϕ.

The proof is by induction on ψ. In the simplest case, ψ is just an F-formula. Then
either ψ ∈ Φ∗, and A � ψ by definition of A, or ψ /∈ Φ∗, but then ∼ψ ∈ Φ∗ by maximality
of Φ∗, and A 2 ψ by definition of A.

For the induction step, let ψ /∈ F. The case ψ = ∼θ is clear asΦ∗ is maximal consistent,
which implies that ∼ϕ ∈ Φ∗ iff ϕ /∈ Φ∗.

Next, supposeψ = ψ1∧ψ2. Ifψ ∈ Φ∗, then both ∼ψ1 /∈ Φ∗ and ∼ψ2 /∈ Φ∗, as otherwise
Φ∗ would be inconsistent by (L4) and (L5). Hence {ψ1, ψ2} ⊆ Φ∗ by maximality of Φ∗,
so A � ψ1, ψ2 by induction hypothesis, and A � ψ.

Conversely, if ψ /∈ Φ∗, then ∼ψ ∈ Φ∗. By consistency, Φ∗ 0 ψ. For the sake of
contradiction, suppose that A � ψ, i.e., A � ψ1, ψ2. By induction hypothesis, {ψ1, ψ2} ⊆
Φ∗. But then Φ∗ ` ψ1 _ (ψ2 _ ψ) via (L6), so Φ∗ ` ψ by two applications of (E_).
But we showed Φ∗ 0 ψ, so A 2 ψmust hold.

C Proof details for Lemma 6.40 (Table 6.7)

In the proofs below, we sometimes implicitly apply (E_), (MP∨) and (MP() to replace
subformulas of ∨ and (without stating the rule in the right column. We also tacitly
apply (Com∨) if we replace the first argument of ∨ instead of the second.

(Aug∨)

A ϕ∨ψ

B ϕ(θ

1 ϕ(∼(ψ∧ θ)

2 ϕ((θ_ ∼ψ) L
3 (ϕ(θ) _ (ϕ(∼ψ) (Dis()
4 ϕ(∼ψ (E_), B, 3
5 ∼(ϕ∨∼∼ψ) def.
6 ϕ∨∼∼ψ L, A

7 ∼(ϕ(∼(ψ∧ θ)) (RAA), 5, 6
. ϕ∨ (ψ∧ θ) (Dual()

(I∨):

A Eα
1 α] ¬¬α (thm), HPL, (L7)

2 ¬α(∼∼(α_ ¬α)

3 ¬α((α_ ¬α) L
4 ¬α∨α (thm), HPL

5 ¬α∨ (α∧ (α_ ¬α)) (Aug∨)
6 ¬α∨¬α L
7 ¬α HPL

8 ∼¬α def., A
9 ∼(¬α(∼∼(α_ ¬α)) (RAA)
10 ¬α∨∼(α_ ¬α) (Dual()
11 >∨ (α∧∼¬α) HPL, L
. >∨ (α∧ Eα) def.

(AbsE∨):

A Eα∨ϕ

1 ¬α

2 ϕ(¬α (Sub∨)
3 ∼∼(ϕ(∼∼¬α) L
4 ∼(ϕ∨∼¬α) (Dual(), L
5 ∼¬α∨ϕ def., A
6 ϕ∨∼¬α (Com∨)

7 ∼¬α (RAA), 4, 6
. Eα def.

(AbsE∧)

A α∧ Eβ
1 ¬(α∧β) → (α→ ¬β) HPL

2 ¬(α∧β) _ (α→ ¬β) (L7)
3 α L, A

4 α→ ¬β

5 ¬β HPL, 3, 4
6 Eβ L, A
7 ∼¬β def., 6

8 ∼(α→ ¬β) (RAA), 5, 7
9 ∼¬(α∧β) L, 2, 8
. E(α∧β) def.

197

Appendix

(D∧∨)1:

A α∧ (ϕ∨ψ)

1 α L, A
2 ϕ(α (Sub∨)
3 ϕ∨ψ L, A
4 ϕ∨ (ψ∧α) (Aug∨)
5 (ψ∧α) (α (Sub∨), 1
6 (ψ∧α)∨ϕ (Com∨), 4
7 (ψ∧α)∨ (ϕ∧α) (Aug∨)
. (α∧ϕ)∨ (α∧ψ) L

(D∧∨)2:

A (α∧ϕ)∨ (α∧ψ)

1 (α∧ϕ)∨α L
2 α∨ (α∧ϕ) (Com∨)
3 α∨α L
4 α HPL

5 (α∧ϕ)∨ψ L, A
6 ψ∨ (α∧ϕ) (Com∨)
7 ψ∨ϕ L
8 ϕ∨ψ (Com∨)
. α∧ (ϕ∨ψ) L, 4, 8

(D∨6)1:

A ϕ∨ (ψ6 θ)
1 ∼((ϕ∨ψ) 6 (ϕ∨ θ))

2 ∼(ϕ∨ψ) L, 1
3 ∼(ϕ∨ θ) L, 1
4 ϕ(∼ψ (Dual(), L, 2
5 ϕ(∼θ (Dual(), L, 3
6 ϕ(∼(ψ6 θ) L, 4, 5
7 ∼(ϕ∨ (ψ6 θ)) (Dual(), L

. (ϕ∨ψ) 6 (ϕ∨ θ)) (RAA), A, 7

(D∨6)2:

A (ϕ∨ψ) 6 (ϕ∨ θ)

1 ϕ(∼(ψ6 θ)
2 ϕ(∼ψ L, (MP()
3 ∼∼(ϕ(∼ψ) L
4 ∼(ϕ∨ψ) (Dual(), L
5 ϕ∨ θ L, A, 4
6 ϕ(∼θ L, 1
7 ∼(ϕ∨ θ) (Dual(), L

8 ∼(ϕ(∼(ψ6 θ)) (RAA), 5, 7
. ϕ∨ (ψ6 θ) (Dual()

(D∨∧)1:

A ϕ∨ (α∧ Eβ)
1 ϕ∨ E(α∧β) (AbsE∧)
2 E(α∧β) (AbsE∨)
3 ϕ∨α L, A
. (ϕ∨α)∧ E(α∧β) L

(D∨∧)2:

A (ϕ∨α)∧ E(α∧β)

1 ϕ∨α L
2 E(α∧β) L, A
3 >∨ ((α∧β)∧ E(α∧β) (I∨)
4 >∨ (α∧ Eβ) HPL, L
5 (ϕ∨α)∨ (α∧ Eβ) (Lax∨), 1, 4
8 ϕ∨ (α∨ (α∧ Eβ)) (Ass∨)
9 ϕ∨ ((α∧α)∨ (α∧ Eβ)) HPL

10 ϕ∨ (α∧ (α∨ Eβ)) (D∧∨)
. ϕ∨ (α∧ Eβ) (AbsE∨)

D Proof details for Lemma 6.47 (Table 6.9)

As for (MP∨) and (MP(), we mostly omit applications of (MP♦), (MP4) and (MP�)
in the derivations.

(Dis�∧)1:

A �(ϕ∧ψ)

1 �ϕ L, A
2 �ψ L, A
. �ϕ∧�ψ L

(Dis�∧)2:

A �ϕ∧�ψ

1 ∼�(ϕ∧ψ)

2 �∼(ϕ∧ψ) (Lin�)
3 �(ϕ_ ∼ψ) L
4 �ϕ_ �∼ψ (Dis�)
5 �ϕ L, A
6 �∼ψ (E_)
7 ∼�ψ (Lin�)
8 �ψ L, A

. �(ϕ∧ψ) (RAA), 7, 8

198

Appendix

(Dis♦6)1:

A ♦(ϕ6ψ)

1 ∼(♦ϕ6 ♦ψ)

2 ∼(∼4∼ϕ6 ∼4∼ψ) (Dual♦)
3 4∼ϕ L, 2
4 4∼ψ L, 2

5 ∼ϕ_ (∼ψ_
∼(ϕ6ψ))

(thm), L

6 4∼(ϕ6ψ) (MP4), 3, 4, 5
7 ∼∼4∼(ϕ6ψ) L
8 ∼♦(ϕ6ψ) (Dual♦)

. ♦ϕ6 ♦ψ (RAA), A, 8

(Dis♦6)2:

A ♦ϕ6 ♦ψ

1 ∼♦(ϕ6ψ)

2 ∼∼4∼(ϕ6ψ) (Dual♦)
3 4∼ϕ L, 2
4 4∼ψ L, 2
5 (∼∼4∼ϕ)∧ (∼∼4∼ψ) L
6 (∼♦ϕ)∧ (∼♦ψ) (Dual♦), L
7 ∼(♦ϕ6 ♦ψ) L

. ♦(ϕ6ψ) (RAA), A, 7

(Com♦E):

A ♦Eα
1 ♦∼¬α def.

2 ∼E♦α
3 ∼∼¬♦α def.
4 ¬♦α L
5 �¬α HML

6 4¬α (E�)
7 ∼♦∼¬α (Dual♦)

. E♦α (RAA), 1, 7

(ComE♦):

A ♦ϕ
B E♦α

1 4∼∼¬α

2 4¬α L
3 �¬α (I�), A, 2
4 ¬♦α HML

5 ∼¬♦α def., B
6 ∼4∼∼¬α (RAA), 4, 5
. ♦Eα (Dual♦), def.

(Aug♦)

A ♦ϕ
B 4ψ

1 ∼♦(ϕ∧ψ)

2 4∼(ϕ∧ψ) (Dual♦), L
3 4(ψ_ ∼ϕ) L
4 4ψ_ 4∼ϕ (Dis4)
5 4∼ϕ L, B, 4
6 ∼♦ϕ (Dual♦), L

. ♦(ϕ∧ψ) (RAA), A, 6

(Join♦)

A ♦α
B E♦α

1 4∼(α∧ Eα)
2 4∼(α∧∼¬α) def.
3 4(α_ ¬α) L
4 ♦(α∧ (α_ ¬α)) (Aug♦), A, 4
5 ♦(α∧¬α) L
6 ⊥ HML

7 ¬♦α HML

8 ∼¬♦α def., B
9 ∼4∼(α∧ Eα) (RAA)
. ♦(α∧ Eα) (Dual♦)

(Dis♦∧)1:

A ♦(α∧ Eβ)
1 ♦α L
2 ♦E(α∧β) (AbsE∧), A
3 E♦(α∧β) (Com♦E)
. ♦α∧ E♦(α∧β) L, 1, 3

(Dis♦∧)2:

A ♦α∧ E♦(α∧β)

1 E♦(α∧β) L
2 >∨(♦(α∧β)∧E♦(α∧β)) (I∨)
3 >∨♦((α∧β)∧E(α∧β)) (Join♦)
4 >∨♦(α∧ Eβ) L, HML

5 ♦α L, A
6 ♦(α∧α) HML

7 ♦(α∧α)∨♦(α∧ Eβ) (Lax∨), 4, 6
8 ♦((α∧α)∨ (α∧ Eβ)) (Dis♦∨)
9 ♦(α∧ (α∨ Eβ)) (D∧∨)
. ♦(α∧ Eβ) (AbsE∨), (Com∨)

199

Index

sxa, see assignment update
dep(·), see atom, dependence
| , see atom, exclusion
⊆, see atom, inclusion
⊥, see atom, independence

Φ
k , see bisimulation

⊥, see bot∏
i∈I Xi, see choice function

∧, see conjunction
↪→, see conditioning
| · |, see domain; size
t〈·〉, see evaluation
J·K, see evaluation; type
⊥⊥ , see falsum
Fτ, see formula
R4, see generating relation
∨, see lax, disjunction
∃, see lax, quantifier
ω, N, see natural numbers
¬, see negation, dual
∼, see negation, contradictory
℘, ℘+, ℘1, ℘<ω, see power set
[·], see range
6elem

m , see reduction, elementary
6log

m , see reduction, logspace
�, see restriction
�, see truth; entailment
∨̇, see strict, disjunction
∃̇, see strict, quantifier
ϕ[ψ/θ], see substitution
Tα, see team, conditioned
TxA, see team, duplicating
TαS , see team, selection
Txf , see team, supplementing
>, see top

X∗, see word

ATime-Alt(exp,poly), 14
ATime-Alt(expk,poly), 14
admissible, 17, 23, 28
algebra, 29

team, 32
assignment, 16
assignment update, 16
atom

constancy, 20
dependence, 20
exclusion, 20
inclusion, 20
independence, 20

axiom, 149

bisimulation, 24
Boolean closure, 115, 151
bot, 18, 22, 23

canonical, 80
carrier, 29
choice function, 12
coherence, 34
comparable, k-comparable, 93
complement, 35
complete, 149
conditioning, 19, 153
conjunction, 18
connective, 29
conservative extension, 154
consistent, 154
counter-model merging, 156

deduction theorem, 153

200

Index

dep, 20
dom, 12
domain

of a function, 12
of a structure, 16
of a team, 17

downward closure, 19, 34
dual

strong, 35
weak, 36

Elementary, 14
elementary, 14

hierarchy, 14
reduction, 14

empty team property, 19
entailment, 18
equivalence, 18
evaluation, 17, 30
exp(n), expk(n), 14

f-elimination, 160
falsum, 18, 23
filter, 139
filtration, 113
flat, 18, 23, 34
flatness

equivalent, 49
flatness preserving, 34
FO, 16
FO(∼), 17
formula, 17, 30
frame, 22
function

duplicating, 17
supplementing, 17

generating relation, 44

hitting vector, 46
homomorphism, 30, 113
HPL, HML, HFO, 149

image, 23
inconsistent, 154

inference rule, 149
invariant, strongly invariant, 114, 116
inverse, 12

judgment, 149

Kripke structure, 22

L, 151
lax, 54

disjunction, 18
quantifier, 18

local, locality, 20

M, 166
MC, 21
md, 24
ML, 22
ML(mon), 117
ML(∼), 23
model, 17, 18

natural numbers, 12
ne, 18, 23
negation

contradictory, 18
dual, 19

non-elementary, 14

operation, 29
operator, 43

functional, 45

Prop, 22
PL, PL(∼), 28
point, 22
poset, 139
power set, 12
preserving, strongly preserving, 117
proof, 149
proof system, 149
property, 30

defined, 30
provably equivalent, 149

Q, 169

201

Index

QPL, QPL(∼), 28
quasi-flat, 62

preserving, 63

range, 12
reduction

elementary, 14
logspace, 12
polynomial time, 12

refutation complete, 155
relaxation, 54
restriction, 12

S, 160
SAT, 21
scope, 83
semantics

classical, 17
strict, 20
team, 17

sentence, 16
signature, 29
singleton, 12
size, 12
sound, 149
staircase, 87
strict, 54

quantifier, 21
splitting, 20

structure, 16
pointed, 22
with team, 23

substitution, 18
in g, 160

successor team, 23
lax, 26
strict, 26

Tower, Tower(poly), 14
team, 17

conditioned, 19
duplicating, 17
selection, 83
supplementing, 17

teamification, 38

term, 16
algebra, 30

theorem, 149
top, 18, 22, 23
transversal, 51

standard, 57
truth, 17, 22, 23
Turing machine, 13
type, 78

U, 157
ultrafilter, 139
ultraproduct

assignment, 140
set, 140
structure, 140
team, 141

union closure, 19, 34
upward closure, 19

VAL, 21
valuation, 22
Var, 16
variable, 16

free, 16
propositional, 22

vocabulary, 16
relational, 16

word, 12
world, 22

202

Curriculum Vitae
Persönliches
Name Martin Lück

Geburtsdatum und -ort 15. Dezember 1988, Güstrow

Ausbildung
1995–1999 Astrid-Lindgren-Grundschule Elze

06/2009 Allgemeine Hochschulreife, Gymnasium CJD Elze, Note: 1,9
Prüfungsfächer: Physik, Mathematik, Englisch, Religion, In-
formatik

10/2010–09/2013 Studium Bachelor Informatik, Nebenfach Physik
Leibniz Universität Hannover, Note: 1,1
Abschlussthema: Logikprogrammierung mit Abhängigkeiten

10/2013–06/2015 Studium Master Informatik, Nebenfach Physik
Leibniz Universität Hannover, Note: 1,0
Abschlussthema: Parameterized Complexity of Temporal Logic

Bisherige Tätigkeiten
11/2008–08/2010 Geringfügige Beschäftigung bei der Franz + Partner

Steuerberatungsgesellschaft, Hannover.

07/2009–07/2010 Zivildienst und geringfügige Beschäftigung bei der Ambu-
lante Krankenpflege Berezow GmbH, Hildesheim.

07/2011 Studentische Hilfskraft am Institut für Analysis,
Leibniz Universität Hannover.

10/2011–06/2015 Studentische Hilfskraft an den Instituten für Praktische In-
formatik, Mikroelektronische Systeme, Systems Engineering
und Theoretische Informatik, Leibniz Universität Hannover.

04/2015–06/2015 Studentische Hilfskraft am Institut für Raumfahrtsysteme,
DLR Bremen.

seit 07/2015 Wissenschaftlicher Mitarbeiter am Institut für Theoretische
Informatik, Leibniz Universität Hannover.

203

List of publications

[1] Martin Lück. Canonical Models and the Complexity of Modal Team Logic. Logical
Methods in Computer Science 15(2), 2019, 2:1–2:45.

[2] Martin Lück and Miikka Vilander. On the Succinctness of Atoms of Dependency.
Logical Methods in Computer Science 15(3), 2019, 17:1–17:28.

[3] Martin Lück. Axiomatizations of team logics. Annals of Pure and Applied Logic
169(9), 2018, pp. 928–969.

[4] Martin Lück.CanonicalModels and the Complexity ofModal Team Logic. 27th EACSL
Annual Conf. on Computer Science Logic, CSL 2018, September 4-7, 2018, Birm-
ingham, UK. Ed.: D. Ghica and A. Jung. 119. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2018, 30:1–30:23.

[5] Martin Lück. On the Complexity of Team Logic and Its Two-Variable Fragment. 43rd
Int. Symp. on Mathematical Foundations of Computer Science, MFCS 2018,
August 27-31, 2018, Liverpool, UK. Ed.: I. Potapov, P. Spirakis and J. Worrell. 117.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, 27:1–27:22.

[6] Martin Lück. Quirky Quantifiers: Optimal Models and Complexity of Computation
Tree Logic. Int. J. of Foundations of Computer Science 29(01), 2018, pp. 17–61.

[7] Martin Lück. The Power of the Filtration Technique for Modal Logics with Team
Semantics. 26th EACSL Annual Conf. on Computer Science Logic, CSL 2017,
August 20-24, 2017, Stockholm, Sweden. Ed.: V. Goranko andM. Dam. 82. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, 31:1–31:20.

[8] Martin Lück, Arne Meier and Irena Schindler. Parametrised Complexity of Satisfia-
bility in Temporal Logic. ACM Transactions on Computational Logic 18(1), 2017,
1:1–1:32.

[9] Miika Hannula, Juha Kontinen, Martin Lück and Jonni Virtema. On Quantified
Propositional Logics and the Exponential Time Hierarchy. Proc. of the Seventh Int.
Symp. on Games, Automata, Logics and Formal Verification, GandALF 2016,
Catania, Italy, 14-16 September 2016. Ed.: D. Cantone and G. Delzanno. 226.
EPTCS. 2016, pp. 198–212.

[10] Martin Lück. Axiomatizations for Propositional and Modal Team Logic. 25th EACSL
Annual Conf. on Computer Science Logic, CSL 2016, August 29 - September 1,
2016, Marseille, France. Ed.: J. Talbot and L. Regnier. 62. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2016, 33:1–33:18.

204

List of publications

[11] Martin Lück andArneMeier. LTL Fragments are Hard for Standard Parameterisations.
22nd Int. Symp. on Temporal Representation and Reasoning, TIME 2015. Ed.:
F. Grandi, M. Lange and A. Lomuscio. IEEE Computer Society, 2015, pp. 59–68.

[12] Martin Lück, Arne Meier and Irina Schindler. Parameterized Complexity of CTL
- A Generalization of Courcelle’s Theorem. Language and Automata Theory and
Applications - 9th Int. Conf., LATA 2015, Nice, France, March 2-6, 2015, Proc.
Ed.: A. Dediu, E. Formenti, C. Martıń-Vide and B. Truthe. 8977. Lecture Notes
in Computer Science. Springer, 2015, pp. 549–560.

205

	Contents
	1 Introduction
	1.1 Team logic
	1.2 Contributions
	1.3 Further notes

	2 Preliminaries
	2.1 Complexity theory
	2.2 Team logic

	3 Abstract team logic
	3.1 Basic definitions
	3.2 Teamification
	3.3 Operators
	3.4 Transversals
	3.5 Relaxations
	3.6 Strict and lax standard transversals
	3.7 Quasi-flatness
	3.8 Outlook: Linear Temporal Logic
	3.9 Summary and outlook

	4 The complexity of modal team logic
	4.1 Types and canonical models
	4.2 Scopes and subteam quantifiers
	4.3 Implementing bisimulation
	4.4 Enforcing a canonical model
	4.5 Defining an order on types
	4.6 Encoding non-elementary computations
	4.7 Hardness under strict semantics
	4.8 Hardness on restricted frame classes
	4.9 Filtration in team semantics
	4.10 Summary and outlook

	5 First-order team logic
	5.1 Upper bounds for satisfiability and validity
	5.2 A standard translation for team semantics
	5.3 Łoś's theorem for team semantics
	5.4 Summary and outlook

	6 An axiomatization of team logic
	6.1 Introduction
	6.2 Axioms of the Boolean connectives
	6.3 Operator elimination
	6.4 A remark on the empty team
	6.5 Summary and outlook

	7 Conclusion
	Bibliography
	Appendix
	A Proof details for chap:mtl
	B Proof details for chap:axiom
	C Proof details for lem:ptl-laws (tab:splitting2)
	D Proof details for lem:mtl-laws (tab:modal2)

	Index
	Curriculum Vitae
	List of publications

