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Systematic investigations have shown subsidence in almost 30% of the land area in Lower
Saxony. It is essential to model these variations of the Earth surface especially to update
the spatial reference system. Since the geodetic observations result in discrete points, it is
necessary to mathematically model these measurements to have a continues surface. This
enables the user to do predictions at any position. This is challenging especially because these
types of measurements usually result in non-uniformly distributed data. There are di�erent
approaches to deal with this problem, here the stochastic method of Kriging and the deter-
ministic method of Multilevel B-Splines are implemented to model ground motion.
This paper investigates the ground motion of speci�c areas in Lower Saxony through the coop-
eration of Landesamt für Geoinformation und Landesvermessung Niedersachsen (LGLN) and
Geodetic Institute of Hannover. For this investigation, a time series of measurements from
leveling, Global Navigation Satellite System (GNSS) observations and height changes that are
acquired by Persistent Scatterer Interferometry (PSI) technique are taken into consideration.
Evaluation of the results show not only good performance and promising results from both
the approaches, but also compatibility between the approximated surface from both of them.
keywords: Ground motion in Lower Saxony, Multilevel B-Splines, Kriging, Surface Approxi-
mation

1. Introduction

To provide a uniform, integrated spatial reference system, it is essential to have an up-
to-date benchmark network. Due to variations of the Earth surface, the o�cial spatial
reference system di�ers from the current calculated coordinates. It is important to deter-
mine these variations and model the ground movements to be able to update the spatial
reference system. This is not an easy task since all geodetic measurement techniques will
result in discrete points. Also, these measurements are mostly non-uniformly distributed
and contain data gaps. Therefore it is necessary to mathematically model the data set
to have a continuous surface. This enables the user to obtain the target quantity at any
position and to predict in areas where fewer observations are available.
A data set contains both deterministic and stochastic parts. For accurately modeling the
underlying function of the data, di�erent methods should be taken into account to deal
with both parts of each data set. There are several known deterministic and stochastic
approaches to deal with the problem of surface approximation. Among the deterministic
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approaches, traditional polynomial surface and free-form surfaces, such as Bézier, B-
Splines, and Non-uniform rational B-Splines could be mentioned NURBS. Least Squares
Collocation (Straub 1996), Gaussian Processes (Rassmussen & Williams 2006)
and Kriging (Montero et al. 2015) are examples of stochastic approaches.
Deterministic approaches mainly model the trend part of the data set. Whereas stochastic
methods deal with the stochastic properties. Stochastic methods are based on spatial or
temporal correlation between data points and use a covariance function or a variogram
to describe such relations. Both deterministic and stochastic approaches provide optimal
solutions based on the complexity of the data set and individual applications. For more
information the reader is referred to (Schabenberger & Gotway 2017).
A common approach for surface approximation is the method of Kriging. It should be
noted that in a stochastic method such as Kriging, an assumption is that the data set
is homogeneous. Therefore to get reliable results, the trend in the data should be re-
moved. Another assumption is the existence of spatial correlation among the data points
which means that neighboring points behave similarly that may not always be the case.
Therefore, a method with less such limitations and more computational e�ciency might
be more appropriate for some applications. B-Splines is a proper alternative to Kriging
which has less complexities yet delivering optimized results. Detailed description of these
methods and results of their application on real data set are provided in the following
sections.
Using the two methods of Kriging and Multilevel B-Splines Approximation (MBA), the
ground movement in the area of Hengstlage is modeled. A continuous velocity �eld based
on non-uniformly distributed measurements of height changes and horizontal displace-
ments of the Earth surface is estimated by both methods. In particular height components
which are acquired by PSI data in combination with leveling data are analyzed.
This paper is organized as follows. Section 2. reviews the main ideas behind the two
approaches of Kriging and MBA. In section 3. the results related to validation and com-
parison of the analysis of the mentioned methods through applying a closed-loop Monte
Carlo (MC) simulation including cross-validation on an exemplary reference data is pre-
sented. Section 4. contains the results of applying these approaches to real data sets
related to ground movement in the area of Hengstlage.

2. Scattered data approximation

Approximation of scattered data refers to the problem of �tting a surface through a set
of non-homogeneously distributed data points which is a common problem in di�erent
�elds of studies. The main goal is to �nd the underlying function as a surface, which
best describes the behavior of the data and makes it possible to propagate the existing
information from the positions where measurements are available to new positions where
no data exist. Let (x, y) present an arbitrary position, we look for the function f(x, y)
which computes the z value at that position.

z = f(x, y) (1)
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2.1. Approximation with Kriging

Kriging is a geostatistical approach which is based on the assumption that there is a
spatial correlation among the data set. This method results in a prediction surface and
performs prediction by summing the weighted observations around the desired location.
The prediction in Kriging is done by means of Eq. 2 using a linear combination of the
observations (zi) and their weights (λi) (Montero et al. 2015). In this equation,
(x0, y0) represents a point where prediction is desired.

z∗(x0, y0) =
n∑
i=1

λizi, (2)

The weights {λ1, λ2, ..., λn} are calculated using a semivariogram. A semivariogram is a
variance function which represents the dissimilarities between the data points. In order to
derive the semivariogram the �rst step is calculating an experimental semivariogram based
on the observations (see Eq.3, (Montero et al. 2015)). To derive this semivariogram,
it is important for the data to be stationary. The experimental semivariogram values
(γ̂(h)), which show the variability of the data points at di�erent distances, are calculated
considering prede�ned lags (h). Lags are the distances in which the semivariogram is
calculated. In Eq. 3, N(h) represents the number of observation pairs within the lag
distance.

γ̂(h) =
1

2N(h)

N(h)∑
n=1

(zn − zn+h)2 (3)

The next step is �tting a theoretical semivariogram (γ) to the discrete function (Eq.
3). Weights for prediction in position (x0, y0) can be calculated by solving the following
equation for all the observations simultaneously (Montero et al. 2015). In Eq. 4
γ((xi, yi)−(xj , yj)) is the semivariogram value corresponding to the observation location
pairs (xi, yi) and (xj , yj) and γ((xi, yi) − (x0, y0)) is related to semivariogram values
relative to the prediction location.

n∑
j=1

λjγ((xi, yi)− (xj , yj)) = γ((xi, yi)− (x0, y0)) (4)

It should be noted that in a stochastic method such as Kriging, the basic assumption is
the homogeneity of the data. In other words, in order to get reliable results, the trend in
the data should be removed in advance.

2.2. Approximation with Multilevel B-Splines

Multilevel B-Splines for scattered data is an approximation method based on hierarchical
tensor product B-Splines surfaces. The method was �rst developed in the 1990s for
speci�c image processing applications such as image morphing (Lee et al. 1995). Lee
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et al. (1997) introduced a modi�ed version of this method for general scattered data
approximation tasks.

Figure 1: Con�guration of control lattice Φ (Lee et al. 1997).

The B-Spline surface is de�ned by a control lattice Φ overlaid on the domain Ω. Where
Ω = {(x, y)|0 ≤ x < m, 0 ≤ y < n} is a rectangular domain de�ned in xy plane
containing all the observations. The control lattice Φ is an (m + 3) × (n + 3) lattice
which overlaps the integer values of Ω. In which φij is the value of the ij-th control point
on lattice Φ, for i = −1, 0, . . . ,m+ 1 and j = −1, 0, . . . , n+ 1 (Figure 1).
The B-Splines surface f is linear combination of uniform bicubic basis functions (Bk(s),
Bl(t)) and control points of a control lattice Φ, where i = bxc − 1, j = byc − 1, s =
x− bxc, t = y − byc.

f(x, y) =
3∑
k=0

3∑
l=0

Bk(s)Bl(t)φ(i+k)(j+l) (5)

The uniform cubic basis functions Bk(s) for 0 ≤ t < 1, are de�ned as follows,

B0(s) =
(1− s)3

6
,

B1(s) =
(3s3 − 6s2 + 4)

6
,

B2(s) =
(−3s3 + 3s2 + 3s+ 1)

6
,

B3(s) =
t3

6
.

(6)

Similarly, the basis functions Bl(t) are calculated. In the estimation of the control points,
all the data points that lie within the 4× 4 neighborhood of that control point a�ect the
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solution. From each point Pc in the neighborhood of a control point, one solution can
be derived φc. The unique solution φij for a control point is derived from minimization
of error term (wcφij −wcφc) for all points. Where wc = Bk(s)Bl(t), k = (i+ 1)−bxcc,
l = (j+1)−bycc, s = xc−bxcc, t = yc−bycc. The minimization could be solved through
a Gauss Markov Model. And the �nal solution is as follows (Lee et al. 1997):

φij =

∑
c w

2
cφc∑

c w
2
c

. (7)

MBA algorithm by Lee et al. (1997) uses a hierarchy of control lattices to generate a
sequence of fk. The sum of all B-Spline surfaces in the hierarchy approximates the �nal
desired surface. The approximation starts with a rough approximation and the resolution
of the control lattices increase in each step. For approximation in using MBA, at �rst
step, a hierarchy of control lattices Φ0, Φ1, ..., Φh are de�ned. The re�nement here is
in a way that from one lattice to the next, the spacing of the grid lines is halved. The
�rst control lattice Φ0 and the number levels of estimation h are parameters that should
be �xed beforehand. The levels of re�nement can be chosen based on approximation
error. The MBA algorithm starts with the coarsest control point lattice (Φ0). Then using
the deviation of the estimated function to the original observations ∆1z based on (Φ0),
the control lattice of the next level is estimated. This process will continue until the
last control lattice is estimated. In general at each level k, for estimation of the control
lattices, the function fk is calculated based on ∆kz.

∆kz = z −
k−1∑
i=0

fi(x, y) = ∆k−1z − fk−1(x, y) (8)

∆0z = 0 (9)

The �nal approximation function is de�ned as the sum of functions in the hierarchy
f(x, y) =

∑k−1
i=0 fi(x, y). An example of the process is illustrated in Figure 2 for a test

data. In this �gure, on the left side the original data set is shown and in the middle
the control lattice hierarchy and the approximated functions at each level based on the
related control lattice are illustrated. The 3D view of the approximated functions show
how the estimation levels get re�ned in each step sequentially.
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Figure 2: Schematic example of MBA approximation.

3. Validation of the methods

Before applying the mentioned surface approximation methods to a real data set, it is
important to assess the functionality and performance of the methods to evaluate whether
or not its results could be relied on in real applications. In this context, the reliability
of the result is referred to as the approximation accuracy. In order to be able to judge
such characteristics through a validation process, the true underlying function in a data
set should be known beforehand. A `segmented cross-validation' (Esbensen et al.
2010) method is implemented to assess the performance of the approximation methods
individually and at the end a comparison between performances of the approaches is
possible.
For this purpose, a reference data set is simulated and the details are explained in section
3.1.. The cross-validation is integrated into a MC simulation to include the e�ect of
di�erent realizations of the simulated data set in the validation process (section 3.2.).

3.1. Test data

The simulated data set for the cross-validation process is a 3D data set. Only z compo-
nent of the data set is stochastic, x and y components are assumed to be deterministic.
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The data set includes 6561 data points. The simulated data set can be split into two
parts; the deterministic part or trend and the stochastic part or noise. The trend part of
the 3D data set is generated by means of a multivariate Gaussian probability distribution
function (PDF). The PDF is a mixture of two Gaussian distributions with the mean (µ)
and variance-covariance matrix (Σ) in accordance with Eq. 10. The x and y locations
are equally distanced on a 0.1 grid where −4 ≤ x, y ≤ 4. The trend is constant over the
full simulation:

z ∼ N (0.6µ1 + 0.4µ2, Σ11 + Σ22), (10)

wherein:

µ1 =

0.5

1

 , µ2 =

−0.5

−1

 , (11)

Σ11 =

 2 0.5

0.5 0.5

 , Σ22 =

 1 0.8

0.8 1

 . (12)

The result can be seen in Figure 3a.

(a) Trend (b) Noise

(c) Trend + Noise (d) Close view of (c)

Figure 3: Separate visualizations of generated trend and noise.
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The noise is generated from a Gaussian distribution with zero mean and standard deviation
equal to 0.001.

noise ∼ N (0, 0.0012) (13)

The simulated data set is the combination of the deterministic trend and the stochastic
noise. Figure 3 illustrates both parts separately. The combination of the two part is the
input for the cross-validation process. For every MC run a new noise is simulated and
added to the trend. Figure 3 only depicts one example for such a process.

3.2. Cross validation and Monte Carlo simulation

In segmented cross-validation for each iteration, q% of the whole data set is selected and
eliminated as the test data set. The remaining part, or so-called training data set, is in-
troduced to the surface approximation method to estimate the underlying function in the
data set. Then the approximation method predicts the function values in the position of
the test data. Since the true values of the test data are known, at the end the di�erences
between the prediction (z∗) and the true value of the test data are used to assess the
performance of the method. Here Root Mean Square Error (RMSE) of the di�erences,
in accordance with Eq. 14, is used as a measure for the prediction error (Martens &
Martens 2001).

RMSE =

√√√√ 1

n

n∑
i=1

(zi − z∗i )2 (14)

However, cross-validation only on one data set will not guarantee the functionality of
the methods. To ensure their performance, they should be subjected to di�erent data
sets. In this case, through a certain number of MC runs, the cross-validation is repeated
for di�erent realizations of the simulated data set. In each realization, a di�erent noise
is generated. The general algorithm of the implemented MC simulation environment is
outlined in Algorithm 1. Here the number of MC runs (k2) is set to 500 and the number
of cross-validation iterations k1 is set to 100. The results of the MC simulations are
provided in the next section.
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Algorithm 1: Monte Carlo Simulation.
1 Input: trend part of data set Q[n×3] = [x y z] generated from Eq. 10
2 Output: prediction for removed observations, RMSE of cross validations, mean of RMSEs

3 for i = 1→ k2 do
4 generate noise vector (noise[n×1]) from Eq. 13
5 set P[n×3] = Q[n×3] + noise[n×1]

6 for all surface approximation methods (Kriging and MBA) do
7 for j = 1→ k1 do
8 remove m points (q%) from P

9 test data set (P′′) = the removed m data points
10 training data set (P′)= data set P after removing test data P′′

11 model estimation based on P′

12 for k = 1→ m do
13 prediction in P ′′k = (xk, yk)

14 calculate RMSE (Eq. 14)

15 calculate mean of k1 × k2 RMSEs

3.3. Simulation results

In the method of Kriging, an exponential function for a variogram is selected. The
e�ective area for calculation of the weights is considered to be the whole �eld. In case of
applying MBA on a data set, two parameters should be �xed beforehand; the number of
control points in the coarsest control lattice Φ0 and the number of levels in the control
lattice hierarchy (h). Through a sensitivity analysis, m0 = n0 = 5 for the coarsest
control lattice with three levels of re�nement is selected as an optimal solution. For the
evaluation of the aforementioned surface approximation methods, �ve MC simulations
for di�erent cross-validation parameters are applied. The size of the test data increases
by 10% in each simulation to study the e�ect of data gaps on the performance of the
methods. Overall, each simulation contains 500 MC runs and each run includes 100
cross-validation iterations. In each MC run, a new noise vector is generated. The noise
is constant during the 100 iterations of cross-validation and only the combination of the
test data changes.
The results of the performance of the methods are illustrated in Figure 4. In this �gure,
the horizontal axis represents di�erent MC simulations based on the size of the test data.
Larger test data results in larger data gaps in the training set. The vertical axis presents the
mean of the RMSEs from all MC runs. The performance of Kriging and MBA throughout
the simulations are relatively steady. MBA has a smaller prediction error in comparison
to Kriging. By increasing the size of the data gaps the quality of approximation decreases
and especially in the case of Kriging. It can be seen that the prediction error derived with
respect to `trend + noise' is in the range of the generated noise. This means that the
methods are smoothly predicting the true trend in the data set. Overall, the results show
that MBA has smaller prediction error and is the more robust against data gaps.
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Figure 4: Mean of RMSEs for di�erent MC simulations.

4. Ground motion in Hengstlage

Systematic investigations of di�erent data sources in 2007 have shown that approximately
30% of Lower Saxony's land area is in�uenced by ground movements due to raw material
extraction. These movements are due to the construction and operation of cavern facilities
as well as the storage of CO2 and hydrocarbons in the area (Jahn et al. 2011). This
emphasized the necessity to update the o�cial spatial reference system in the related
area. Here speci�cally the ground movement in the area of Hengstlage is investigated.
For this purpose, both the stochastic method of Kriging and the deterministic method of
MBA are employed.

4.1. Data set

To investigate the ground movement, all measurements up to now are used as a basis to
derive the related velocity information. In general, data from GNSS observations, level-
ing and PSI are used as a basis for the investigation of recent movements of the Earth's
crust. For this purpose, the existing time series of vertical and horizontal benchmarks from
`amtlichen Festpunktinformationssystem' (AFIS) in Lower Saxony are gathered (Brock-
meyer 2019).
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(a) Height component

(b) Horizontal component

Figure 5: (a) PSI and leveling data (red bars), (b) Data from AFIS (red) and SAPOS® (blue) in
Hengstlage (Brockmeyer 2019).

Since 2008, a uniform coordinate monitoring by the satellite positioning service of the
German national survey (SAPOS®) reference stations has been continuously carried out
in Lower Saxony for quality assurance of the SAPOS® services. The results of these
weekly GNSS evaluations are free coordinate solutions with complete stochastic informa-
tion, which are examined in time series analysis to determine the three-dimensional motion
behavior of the reference stations. Besides the regular data acquired from leveling and
GNSS observations, vertical data which are acquired by the PSI technique, are also taken
into consideration. Velocity information from PSI, as a part of the group of di�erential
Interferometric Synthetic Aperture Radar (InSAR), plays an important factor in the ana-
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lysis of ground movement due to the fact that this method provides denser information
especially outside the regular geodetic networks and speci�cally in urban areas.
All the velocities, derived from di�erent measurement methods, are considered to be
uncorrelated. The variance related to vertical component derived from leveling and hori-
zontal velocities are calculated based on Eq. 15. The variances are based on the accuracy
of the individual measurements and time di�erence between measurements (αt). The
prior standard deviation (σ0) in this case is considered to be 3 [mm] (Brockmeyer
2019).

σ2 = 2
1

α2
t

σ2
0 (15)

The variance related to PSI velocities is derived following Eq. 16. It should be noted
that the PSI observations are considered to be less accurate, the larger uncertainty is
included as a parameter to the variance (∆PSI). ∆PSI shows the instability of points
and is considered to be 2 [mm] (Brockmeyer 2019).

σ2 = 2
1

α2
t

σ2
0 + ∆2

PSI (16)

The vertical data from leveling includes measurements from 20 years (1988 until 2008)
related to 106 benchmarks. The maximum observed vertical deformation in the center
is -9.9 [mm/year]. The PSI measurements are acquired between 2003 and 2010. The
number of these observations after preprocessing is 5962. In Figure 5a the PSI data set
and the leveling are shown. The two measurement techniques of leveling and InSAR
show comparable observations. The horizontal velocities in this area are derived from 115
benchmarks. The measurements are performed in the time span of 1968 until 2010. In
Figure 5b the horizontal velocities acquired from SAPOS® measurements (blue arrows)
and GNSS-post processing (red arrows) are shown.

4.2. Results of approximation

The approximated ground movement for both height changes and horizontal displace-
ments are illustrated together in Figure 6. Height changes are presented as a heat diagram
and horizontal displacements are speci�ed as a vector �eld combining the displacement
of the east and north components.
For approximation with MBA three levels of control lattice hierarchy in which the coarsest
control lattice is Φ4 (m = n = 4) are selected. Overall three control lattices Φ4, Φ8

and Φ16 are used. Figure 6b shows the results of the estimation. The subsidence in the
middle of the area is in both approximations distinguished.
For the approximation of horizontal displacement, observations of east and north com-
ponents are analyzed separately. The methods of Kriging and MBA show similar results.
For this analysis, similar speci�cations are used for the methods as in height changes
approximation. The maximum absolute velocities in displacements appear around the
edges of the subsided area. In the center of the subsidence area, horizontal displacement
is zero.
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(a) Kriging

(b) MBA

Figure 6: Ground movement approximated by (a) Kriging (b) MBA (height changes are illustrated as
heat diagram and vector �eld represents the horizontal displacements).

Figure 7 shows a 3D view of the approximated surface related to height changes by the
two methods. The RMSE representing the prediction error in the location of the obser-
vations for Kriging and MBA are 0.44 and 0.47 [mm/year], respectively.
The approximations show similar behavior but they are not the same. The true function
behind the ground movement is not known. To have a comparison between the result of
these two approaches, the di�erences between the approximations are calculated.
Figure 8a shows a heat diagram of the absolute di�erences. Mostly the di�erences can be
seen in areas where less observations are available. This results from di�erent approaches
of the two methods in interpolating information from positions with observations to data
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gaps. The histogram of these di�erences in Figure 8b shows that they are randomly
distributed overall the �eld.

Figure 7: Approximation of the two methods of Kriging and MBA.

Figure 8: (a) Absolute di�erences (b) Histogram of the di�erences between approximation of Kriging and
MBA.

5. Conclusion

In this paper, a stochastic and a deterministic surface approximation method are used to
mathematically model ground movements. Speci�cally, the stochastic method of Kriging
and a deterministic method based on B-Spline tensor product surfaces (MBA) are used.
The performance and implementation of the methods are evaluated using cross-validation
integrated into a closed-loop MC simulation. Di�erent data sets are simulated, which
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contain data gaps in order to be comparable to the real data set. Di�erent appearances
of data gaps in the simulated data help to investigate the e�ect of data gaps on the
performance of the approaches. The results show that the quality of the estimation
decreases by increasing the size of the data gaps. However, the method of MBA showed
better performance in dealing with data gaps.
This research is a collaboration between LGLN and Geodetic Institute of Hannover. All
the data set related to the ground movements in Lower Saxony are processed and provided
by LGLN. The ground movement in the area of Hengstlage, modeled with the Kriging
approach is implemented by LGLN. Height changes in this area are approximated with the
two approaches and Kriging shows a smaller prediction error. The approximated surfaces
by MBA and Kriging show a similar pattern of subsidence in the area and have comparable
prediction errors. The Kriging method is computationally more expensive compared to
the MBA. These results are also highly dependent on the used variogram and control
lattice hierarchy.
For future research, it would be interesting to combine the deterministic and stochastic
approaches. This means to estimate the trend in the data set by means of a deterministic
method and model the remaining stochastic part with a stochastic method. In the method
of MBA choosing an optimal control lattice hierarchy highly a�ects the �nal estimation.
It is recommended to investigate an optimal control lattice hierarchy to obtain a more
accurate estimation.
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