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Abstract: B-spline surfaces possess attractive properties such as a high degree of continuity or the
local support of their basis functions. One of the major applications of B-spline surfaces in engineering
geodesy is the least-square (LS) fitting of surfaces from, e.g., 3D point clouds obtained from terrestrial
laser scanners (TLS). Such mathematical approximations allow one to test rigorously with a given
significance level the deformation magnitude between point clouds taken at different epochs. Indeed,
statistical tests cannot be applied when point clouds are processed in commonly used software such
as CloudCompare, which restrict the analysis of deformation to simple deformation maps based on
distance computation. For a trustworthy test decision and a resulting risk management, the stochastic
model of the underlying observations needs, however, to be optimally specified. Since B-spline
surface approximations necessitate Cartesian coordinates of the TLS observations, the diagonal
variance covariance matrix (VCM) of the raw TLS measurements has to be transformed by means
of the error propagation law. Unfortunately, this procedure induces mathematical correlations,
which can strongly affect the chosen test statistics to analyse deformation, if neglected. This may
lead potentially to rejecting wrongly the null hypothesis of no-deformation, with risky and expensive
consequences. In this contribution, we propose to investigate the impact of mathematical correlations
on test statistics, using real TLS observations from a bridge under load. As besides TLS, a highly
precise laser tracker (LT) was used, the significance of the difference of the test statistics when the
stochastic model is misspecified can be assessed. However, the underlying test distribution is hardly
tractable so that only an adapted bootstrapping allows the computation of trustworthy p-values.
Consecutively, the extent to which heteroscedasticity and mathematical correlations can be neglected
or simplified without impacting the test decision is shown in a rigorous way, paving the way for a
simplification based on the intensity model.

Keywords: 3D point clouds; B-spline surface approximation; terrestrial laser scanner; laser tracker;
deformation analysis; bootstrap; test statistics; mathematical correlation; intensity model

1. Introduction

Most users of terrestrial laser scanner (TLS) observations analyse the recorded 3D point clouds
in software such as CloudCompare (www.cloudcompare.org/), 3DReshaper (Hexagon Metrology,
Cobham, Wimborne Minster, UK) or Geomagic Studio (3DSystems, Rock Hill, SC, USA). Such software
allows to visualize maps of deformation, which are mainly based on the computation of a predetermined
distance. This latter depends on the application under consideration and can be, e.g., Cloud to Cloud
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(C2C), Cloud to Mesh (C2M), Mesh to Mesh (M2M) or M3C2 for CloudCompare, see Holst and
Kuhlmann [1] for a short comparison of the different strategies.

The main drawback of this approach is the impossibility to carry out a rigorous statistical test for
deformation: no decision based on a statistical approach can be taken, whether a null hypothesis stating
that no deformation magnitude occurs between two epochs can be rejected or not for a predefined
significance level. Alternatively, approximations of the point clouds with mathematical models such as
B-spline surfaces allow to derive such statistical tests. However, usual congruency tests (Pelzer [2])
are irrelevant in the specific case of B-spline surface approximation. Indeed, different numbers of
parameters called control points (CP) may have to be estimated at the two different epochs to fit
optimally the point clouds in least-squares (LS) sense. Consecutively, Zhao et al. [3] and Kermarrec
et al. [4] proposed a specific procedure for testing deformation based on gridded B-spline surface
approximations from TLS point clouds. The distribution of the apriori test statistics could be rigorously
determined as corresponding to a chi-squared distribution.

Unfortunately, test statistics are known to be strongly influenced by the underlying stochastic model
of the observation’s errors (see, e.g., Kermarrec et al. [5]). For both a trustworthy test decision and LS
solution, an optimal description of the stochasticity is needed as any inaccuracies may affect further risk
analysis. TLS raw observations (range, horizontal and vertical angles) are known to be heteroscedastic,
i.e., depending on the scanning geometry (Soudarissane et al. [6]) or the properties of the scanned
objects (Wujanz et al. [7]). Furthermore, correlations between range measurements are expected to affect
the computed deformation magnitude (Holst et al. [1], Jurek et al. [8]). Assuming homoscedasticity
is, thus, a strong assumption, which weaken the test statistics, when B-spline surfaces are estimated
from scattered and noisy point clouds. Moreover, due to the transformation of the raw observations
from polar to Cartesian coordinates to perform the LS approximation, mathematical correlations are
introduced. Accounting for such specific correlations in the adjustment lead to fully populated variance
covariance matrix (VCM), similarly to temporal correlations (Kermarrec et al. [9]). Such matrices
are less easy to handle than their diagonal counterpart, particularly when their inverse is involved
in the estimations. Neglecting them is, thus, a tempting alternative to avoid computational burden.
Consecutively, an incorrect rejection of the null hypothesis may happen, when the test statistics
corresponding to a simplified stochastic model are close to the predefined critical value of the test.
Accounting for both heteroscedasticity and mathematical correlations is expected to avoid such
challenging situations. However, the difference between the test statistics obtained with different
stochastic models may not be significant enough to allow for such a strong conclusion. Thus, it may be
totally sufficient to use diagonal VCM for a trustworthy test decision, which would simplify grandly
the computation in case of large matrices.

In this contribution, we propose to investigate the significance of the difference between the test
statistics obtained with different VCM, focusing on gradually neglecting mathematical correlations.
Thanks to a case study with real observations for which reference values of deformation were obtained
with a highly precise LT, we aim to point out the undertaken risk—or not—when mathematical
correlations or heteroscedasticity are neglected.

The p-value provides information about the significance of the difference (see Wasserstein and
Lazar [10] for a didactical explanation of the p-values and their limitations). Thus, by analysing
them, it is possible to confirm and extend the empirical findings of simulations to a real case study
within a rigorous framework. Using deformation magnitude from a LT as a reference, we will, in this
contribution, show how neglecting mathematical correlations affect or not these p-values. Because the
distribution of the test statistics is hardly tractable, we propose to use an innovative bootstrap approach
(Kargoll et al. [11]).

The remainder of the paper is as follows: in a first part, we will shortly present how B-spline
surfaces can be approximated from scattered data by means of a LS adjustment. Focusing on
deformation analysis, a specific test procedure will be described. We will explain the concept of
mathematical correlations and heteroscedasticity and present simplifications of the stochastic model.
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A bootstrap testing approach will be introduced to determine the p-values for different stochastic
models. A third part is devoted to the application of the theoretical developments using TLS and LT
observations from a bridge under load. We will conclude by analysing if and when mathematical
correlations can be neglected.

2. Mathematical Background

In this section, we propose to explain the concept of the approximation of TLS point clouds with
B-spline surfaces. The second part of this section describes the stochastic model of the TLS observations,
with a focus on mathematical correlations. In a third part, we will develop our strategy to test for
deformation of gridded surfaces. A novel bootstrap approach will be presented to assess the extent
to which differences of the chosen test statistic obtained with simplified stochastic models can be
considered as significant or not.

2.1. Approximation of TLS Point Cloud with B-Spline Surfaces

For the sake of shortness, we will focus only on the main steps involved in the approximation of
point clouds with parametrized B-spline surfaces. Interested readers can find more specific information,
e.g., in Bureick et al. [12].

The first step of an approximation with a B-spline surface starts with the parametrization of the
point cloud. Two location parameters u and v have to be associated with each point, which will be
used to construct a knot vector for the spline approximation. Although iterative parameter correction
procedures have been suggested, the chord length method mentioned in Piegl and Tiller [13] gives
satisfactory results for regularly and rectangular shaped point clouds. Dealing in this contribution
with rectangular patches of homogeneous objects, we will make use of this strategy. Please note
that for more complicated surfaces, the choice of the parameters may largely affect the results of the
approximation (see, e.g., Ma and Kruth [14] and the references therein).

The parametric B-spline surface S(u,v) is expressed as:

S(u,v) =
n∑

i=0

m∑
j=0

Bi,p,t(u)(u)B j,q,t(v)(v)pi j (1)

where Bi,p = Bi,p,t(u) is the B-spline function of degree p in the direction of the surface parameter

u depending on the non-decreasing sequence of real numbers t(u) =
(
t(u)i

)n+d+1

i=1
, called knots.

B j,q = B j,q,t(v) is the B-spline function of degree q in the direction of the surface parameter v depending

on the non-decreasing sequence of real numbers t(v) =
(
t(v)j

)r+d+1

j=1
. Bi,p, B j,q are given by the recurrence

relation (de Boor [15]), i is varied from 0 to n, the number of CP in the u-direction, whereas j is varied
from 0 to m, the number of CP in the v-direction. In this contribution, we will take a degree of p = q = 3
for the B-spline function, which corresponds to cubic B-splines known for their smoothness properties.
We solve the determination of an optimal knot vector using the knot placement technique as described
in Piegl and Tiller [13].

The parameter vector p of size (n + 1)(m + 1) contains the coordinates of the CP, which are
weighting factors of the B-spline functions. They are defined in R3 by their Cartesian coordinates.
The estimation of the coordinates of the CP is the central part of the approximation of scattered point
clouds with B-spline surfaces and can be performed by minimizing the difference between the true and
computed observations in a LS sense. In that case, the error term v = l−Ap is minimized by searching:

min
p∈R3
‖Ap−l‖2Σ (2)
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We define the observation vector l of size (nobs, 3) as pointwise sorted and expressed in Cartesian
coordinates. The deterministic design matrix A of size of (3nobs, (n + 1)(m + 1)) is built based on the
tensor product of the B-spline functions. We let E(v) = 0, E

(
vvT

)
= Σ0 = σ2

0Q0, Σ0 is the true VCM
of the error term, σ2

0 the apriori variance factor and Q0 the true Variance Cofactor Matrix of the error
term. E(•) is the expectation operator. Interested readers should refer to Zhao et al. [3] for the detailed
setting of the matrix.

The coordinates of the estimated CP are given by the generalized LS estimator from

p̂0 =
(
ATΣ−1

0 A
)−1

ATΣ−1
0 l of size (3(n + 1)(m + 1), 1). The aposteriori variance factor is given by

σ̂2
0 =

v̂0
TΣ−1

0 v̂0

nobs−3(n+1)(m+1) with v̂0 = Ap̂0−l being the residuals of the adjustment. Since the true Σ0 is

unknown, it is replaced by its estimate Σ̂. The corresponding estimator reads thus:

p̂ =
(
ATΣ̂

−1A
)−1

ATΣ̂
−1l (3)

and the aposteriori variance factor is:

σ̂2 =
v̂TΣ̂

−1v̂
nobs − 3(n + 1)(m + 1)

(4)

with v̂ = Ap̂−l.
The apriori VCM of the estimates is given by:

Σ̂p̂p̂=
(
ATΣ̂

−1A
)−1

(5)

and the corresponding cofactor matrix by Qp̂p̂=
(
ATP̂−1A

)−1
with Σ̂ = σ2

0Q̂.
The aposteriori VCM of the estimates reads:

Σ̂p̂p̂,post = σ̂2
(
ATQ̂−1A

)−1
(6)

2.2. Determination of the Optimal Number of CP by Information Criteria

The number of CP to estimate can be iteratively adjusted by using information criteria (see, e.g.,
Alkhatib et al. [16] for the specific application of information criteria to B-spline surface approximations
and the references therein):

(i) the Akaike information criterion (AIC), which minimizes the Kullback-Leibler divergence of the
assumed model from the data-generating model, or

(ii) the Bayesian information criterion (BIC), which assumes that the true model exists and is thus
more adequate for large samples. They are defined as:

AIC = −2[l(p̂)] + 2nobs
BIC = −2[l(p̂)] + log(3(n + 1)(m + 1))nobs

(7)

where we call l(p̂) the log-likelihood of the estimated parameters. Using this formulation,
a minimum is searched, which corresponds to the optimal number of CP to estimate.

2.3. Stochastic Model for TLS Observations

Unfortunately, the Cartesian coordinates of the point cloud are not directly measured by a TLS.
Thus, setting up Σ̂ involves some knowledge about the stochastic properties of the original raw TLS
observations, which are made of the range r expressed in (m), as well as horizontal and vertical angles,
which we will call HA and VA respectively, expressed in (◦).
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These measurements are heteroscedastic, i.e., they have different variances σ2
r , σ2

HA, σ2
VA for each

point of the point cloud. The angle variances are often assumed to be constant and their values
are based on manufacturer datasheets (Boehler and Marbs [17]). On the contrary, σr is expected to
have a stronger point dependency. Influencing factors are exemplarily the range itself. In addition,
properties of the reflected object and eventually atmospheric transmission (Soudarissanane et al. [6],
Zamecnikova et al. [18]) can influence σ2

r .
These dependencies are summarized in the signal to noise ratio (Hebert and Krotkov [19]). Thus,

an empirical proposal based on the intensity values of the backscattered signal has been proposed to
model the range variance (Wujanz et al. [16,20]). Justified by the small and homogeneous surfaces
under consideration in this contribution, we will use the simplification of Kermarrec et al. [21]. Thus,
we replace the point-wise standard deviation by a global value, which is computed using the mean of
the intensity values of the object, i.e.,:

σr,mean = β
(
Int

)α
(8)

where Int is the mean of the intensities of the reflected object expressed in Increment [Inc]. The three
parameters α, β and c of the power law function can be determined empirically in controlled experiment
by regression analysis for different laser scanners. For the TLS Zoller+Fröhlich (Z+F) Imager 5006
under consideration in this contribution, we will assume a root mean square of 7◦ for both angles as
well as [α, β, c] = [−0.57, 1.6, 0].

Consecutively, the diagonal VCM Σ̂i,ori for point i of the raw TLS measurements can be built based
on these estimated variances and reads:

Σ̂i,ori =


σ2

i,r 0 0
0 σ2

i,HA 0
0 0 σ2

i,VA


The whole matrix is easily built as Σ̂ori =


Σ̂1 0 0
0 . . . 0
0 0 Σ̂nobs

.
2.4. Mathematical Correlations

2.4.1. Fully Populated VCM

As aforementioned, a B-spline approximation involves the Cartesian coordinates of the point
cloud. By means of the error propagation law, the corresponding VCM Σ̂ is obtained by the error
propagation law:

Σ̂ = FΣ̂oriFT (9)

The matrix F contains the derivatives of the point coordinates with respect to the range and angles
and reads for one point i:

Fi =


sin(VAi) cos(HAi) ri cos(VAi) cos(HAi) −ri sin(VAi) sin(HAi)

sin(VAi) sin(HAi) ri cos(VAi) sin(HAi) ri sin(VAi) cos(HAi)

cos(VAi) −ri sin(VAi) 0


As a consequence, the corresponding variances for one point in Cartesian coordinates of the point

clouds are:

σ2
X = (r cos(HA) sin(VA))2σ2

HA + (r sin(HA) sin(VA))2σ2
VA + (cos(HA) sin(VA))2σ2

r

σ2
Y = (r sin(HA) cos(HA))2σ2

HA + (r cos(HA) sin(VA))2σ2
VA + (sin(HA) sin(HA))2σ2

r

σ2
z = (r sin(VA))2σ2

HA + (cos(HA))2σ2
r
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where the subcript i is skipped for the sake of readability. The Cartesian coordinates are mathematically
correlated. The corresponding covariances read:

σ2
XY = σ2

YX =
(
cos(HA) sin(HA) sin2(VA)

)
σ2

r + . . .(
r2 cos(HA) sin(HA) cos2(VA)

)
σ2

HA −
(
r2 sin(HA) cos(HA) sin2(VA)

)
σ2

VA

σ2
XZ = σ2

ZX =
(
−r2 cos(HA) sin(HA) cos(VA)

)
σ2

HA + (cos(HA) sin(VA) cos(VA)A)σ2
r

σ2
YZ = σ2

ZY =
(
−r2 sin(HA) cos(VA) sin(VA)

)
σ2

HA + (sin(HA) sin(VA) cos(VA))σ2
r

Consecutively, the transformed VCM Σ̂ = FΣ̂oriFT becomes fully populated.

2.4.2. Simplification of the VCM

Because fully populated matrices may be uneasy to handle in LS adjustment, we propose, in this
contribution, to approximate them following Zhao et al. [3]. The VCM will correspond to a gradual
misspecification by neglecting mathematical correlations and heteroscedasticity:

(i) The approximated VCM Σ̂(i) = FΣ̂oriFT is used in the adjustment and further computation

(ii) The diagonal values of (i) are only considered and the approximated diagonal VCM Σ̂(ii) is built

as follows: diag
(
Σ̂(ii)

)
= diag

(
Σ̂(i)

)
.

(iii) The scaled identity matrix: Σ̂(iii) = σ2
meanI is used. The scaling factor σ2

mean is computed as the

mean of the diagonal values of Σ̂(ii). I is the identity matrix of size
(
3nobs,3nobs,

)
.

2.5. Test for Deformation

In the following, we assume that the same object is measured at two different epochs 1 and 2.
Thus, two B-spline surface approximations are performed for two different point clouds. Based on
information criterion results (Section 2.1), the optimal number of CPs used to approximate the point
clouds may be different for each epoch.

2.5.1. Test Statistic

As we aim to test for deformation, we define the null hypothesis H0 and the alternative hypothesis
H1 as:

H0 : E{∆} = 0 vs. H1 : E{∆} , 0 (10)

H0 states that no deformation occurs. We define ∆̂ as the difference between the two estimated
surfaces at the two epochs given by ∆̂=Hβ̂. H is a matrix which is splitted in two parts to provide a
difference at the level of the gridded surface points. In the following, this test will be called test1.

In our particular case, the uniformly most powerful invariant test1 cannot be based on the estimated
parameters. As aforementioned, these are the Cartesian coordinates of the CPs, which number may
vary from epoch to epoch. Consecutively, we make use of the gridded surface difference and the
corresponding test statistic reads:

Tapriori = ∆̂Σ−1
∆̂∆̂

∆̂ =
1
σ2

0

∆̂Q−1
∆̂∆̂

∆̂ ∼ χ2
u with Σ−1

∆̂∆̂
=HΣ−1

β̂β̂
HT (11)

where Σ−1
β̂β̂

is the inverse of the VCM of the estimated CPs for both epochs and β̂ =

 p̂epoch1
p̂epoch2


contains the LS estimates of the CPs.
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Using the apriori test statistic, the test decision is based on the quantile kχ
2
u

1−α, i.e., on the χ2
u

test distribution with u = nobs − 3(n + 1)(m + 1) degrees of freedom at the significance level αtest1

Exemplarily, H0 is accepted if Tapriori ≤ kχ
2
u

1−α.
The aposteriori test statistic is derived by replacing σ2

0 by it’s aposteriori counterpart σ̂2

(Equation (4)) for each of the two approximations. From Teunissen [22], Tpost should theoretically
follow a F-distribution. σ̂2 can be considered as a weighting factor of Tpost that accounts for functional
and/or stochastic model misspecifications. Working with real data, it seems more appropriate to use
this quantity rather than the apriori one.

For one set of observations, three values of the test statistics are obtained, which correspond
to the three approximated stochastic models (i), (ii) and (iii). We call them Tpost,(i), Tpost,(ii), Tpost,(iii),
respectively. By defining a significance level (α-level) as the probability of making the wrong decision
when the null hypothesis is true and under the assumption that the F-distribution for the test statistic
holds, we are able to reject or not the null hypothesis of test1.

Kermarrec et al. [4] shows for a real case study that accounting or not for mathematical
correlations—up to neglecting them completely—affects strongly the test statistics of test1. The results
were shown to depend on the scanning geometry (range and angle) and/or on the deformation
magnitude. Test decision for small deformation close to the standard deviation of the range were more
influenced by a misspecified stochastic model than when stronger deformation magnitude arised.
A deeper analysis of the structure of the fully populated VCM by studying the ratio of the diagonal
elements to the cross diagonal provided some mathematical explanations of these empirical conclusions.

2.5.2. Bootstrap p-Values

Simplifications of the stochastic model will affect the previously defined test statistics. Indeed,
from Equation (11), the test statistic Tpost depends on the VCM of the estimated parameters

Σ̂p̂p̂=
(
ATΣ̂

−1A
)−1

through Σ−1
β̂β̂

. As a consequence, neglecting mathematical correlations or

misspecifying the heteroscedasticity of the raw observations may lead to an inappropriate rejection of
the null hypothesis. To study more deeply the strength of this effect, we propose to test the significance
of the deviation of the test statistics from a reference value. This reference value can be exemplarily
computed with a more precise sensor, as proposed in Section 3. Indeed, the difference between
the Tpost,(i), Tpost,(ii), Tpost,(iii) may not be significant enough to rigorously conclude that mathematical
correlations could have been neglected without affecting the test decision. Thus, provided that a
reference value for the test statistic Tpost is available, the significance of the difference can be easily
assessed by computing the p-value of the so-called “0difference hypothesis test” called in the following
test2: H0 : E

{
Tpost − Tre f

}
= 0

vs. H1 : E
{
Tpost − Tre f

}
, 0 (12)

In the following, we call Tpost − Tre f = T0di f f the test statistic of test2. Thus, we have a total of
three test statistics T0di f f ,(i), T0di f f ,(ii), T0di f f ,(iii) for the cases (i), (ii) and (iii) under consideration.

Provided that a distribution can be assessed to the test statistic of test2, the p-value can be computed
from a reference table. However, if Tpost can be considered as F-distributed, the same cannot be said for
Tre f , so that the distribution of T0di f f is hardly tractable. Fortunately, bootstrap simulations provide an
optimal and elegant way to estimate the critical values for such test statistics. In the following, we will
shortly summarize the methodology to compute the bootstrap p-value according to McKinnon [23].
Without loss of generality, we introduce the procedure only for case (i). The computation for the two
other cases is exactly similar.
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We use a simple parametric bootstrap method in the sense of Efron [24], which can be summarized
in four steps:

(1) Testing step: The first step starts with the approximation of scattered (TLS) observations from
2 epochs with B-spline surfaces. In the second step, a large number of observation vectors under
H0 have to be generated. We define a so-called bootstrap sample, as the mean of the surface
differences, i.e., SH0 = S2−S1

2 considered as being generated under H0 that no deformation occurs.
(2) Generating step: The generating step begins by adding to the generated bootstrap surface a

noise vector, which structure corresponds to Σ̂(i). We use a Cholesky decomposition of the VCM
Σ̂(i) = GTG and generate a Gaussian random vector Wnoise,i,k, i = 1, 2 for the two epochs with
mean 0 and variance 1 from the Matlab random number generator randn. The noise vector
thus reads: Ni,k = GTWnoise,i,k Added to SH0, we generate consecutively two noised surfaces,
which we approximate with B-splines surfaces. Finally, we compute the aposteriori test statistics
Tpost. For one iteration kBS, we call the corresponding test statistics TkBS

post.

(3) Evaluation step: KBS iterations are carried out. Following Davindson and McKinnon [25],

we fixed KBS = 999. Finally, the p-value is estimated by p̂vHD = 1
KBS

KS∑
kBS=1

I
(
TkBS

post − Tre f

)
according

to McKinnon [23]. I is an indicator function, which takes the value 1 when TkBS
post > Tre f and 0,

on the contrary.
(4) Decision test: A large p̂vHD indicates a large support of H0 by the observations. Assuming that all

assumptions were correct, H0 is rejected if p̂vHD < αtest2, where αtest2 is the specified significance
level, usually taken to 0.05.

The methodology of the bootstrapping approach is summarized in Figure 1.

2.6. Interpreting the p-Values

Whereas the alpha level of the test refers to a pre-chosen probability, the term p-value is used
to indicate a probability that is calculated after the experiment was carried out and is often called
an “observed significance level” for the test hypothesis (Wasserstein and Lazar [10]). Treating all
assumptions to compute the p-value as being correct, the p-value can be interpreted as an empirical
significance level, which can be compared to the chosen alpha level. More rigorously, the p-value is the
probability that the chosen test statistic would have been at least as large as its observed value if every
model assumption (e.g., correct data or study protocol) was correct, including the test hypothesis itself.
Thus, a small p-value means rather that the data is more unusual if all the assumptions are correct,
whereas a high p-value indicates that the data are not unusual under the statistical model. The p-value
only measures the sample’s compatibility with the hypothesis. This slight difference with respect
to a rough interpretation as “significance level” is worth mentioning to avoid misleading—and too
strong—general conclusions about the impact of the stochastic model: an interpretation of the p-value
as a “significance level” is only valid when all assumptions used to compute it can be considered as
correct. In the context of this study, we will place ourselves within this framework, as we do not see
where a wrong assumption may have been taken. However, since p-values remain only probability
statements about the observed sample in the context of a hypothesis and not about the hypotheses
being tested, we will avoid exaggerated general statements about the simplified stochastic model.
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respect to a rough interpretation as “significance level” is worth mentioning to avoid 
misleading—and too strong—general conclusions about the impact of the stochastic model: an 
interpretation of the p-value as a “significance level” is only valid when all assumptions used to 
compute it can be considered as correct. In the context of this study, we will place ourselves within 
this framework, as we do not see where a wrong assumption may have been taken. However, 

Figure 1. Flowchart describing the methodology to compute the p-value with a bootstrap approach.

3. Case Study

In this section, we will apply the theoretical derivations of Section 2 for a real case study
corresponding to a bridge under load observed with TLS and a highly precise point wise sensor,
i.e., a laser tracker (LT). We test for the deformation magnitude of the gridded TLS point cloud between
two epochs of load by approximating them with B-spline surfaces in order to carry out a rigorous test at
the approximated surface level. Since different stochastic models will give rise to different values of the
test statistics, we will investigate the significance of the difference with respect to a reference value by
making use of the previously described bootstrap approach to compute accurate p-values. The results
are expected to provide a support to judge if and when accounting for mathematical correlations can
be replaced by a simplified stochastic model. However, as they are related to a specific case study and
as mentioned in Section 2.4, general conclusions based on the interpretation of the p-values should be
extended with a sense of measure and care.
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3.1. Experiment Design and Data Acquisition

In this section, we use a real data set of an historic masonry arch bridge over the river Aller near
Verden in Germany to compare and test for significance the results of the test statistics for detecting
deformation at the level of the B-spline approximation. The historic masonry arch bridge was made
of circular brick arches of following dimensions: width 14 m, depth 8 m and height 4–6 m. Figure 2
shows the side view from west of the arch 4 under investigation.

The aim of the experiment was the combination of numerical models and experimental
investigations for model calibration (Schacht et al. [26]). An interdisciplinary project team with
partners from industry and academia has carried out two load tests with a maximum load of 570 ton
in March and June 2016. The contributions from researchers of the Geodetic community were the
detection of load-induced arch displacements by means of, e.g., laser scanner, laser tracker and ground
based synthetic aperture radar, which is discussed, e.g., in Paffenholz et al. [27]. The 3D point cloud
acquisition was carried out using TLS sensors of kind Zoller+Fröhlich (Z+F) Imager 5006/h in periods
of a constant load on the bridge. 3D point clouds for different load scenarios ranging from 1 up to
6 meganewton were captured and finally processed.
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Paffenholz, AVN; published by Wichmann-Verlag, 2018. 

Figure 2. Side view from west of the arch 4 of the historic masonry arch bridge. The whitewashed
area indicates the area of the direct influence of the load application. On the bridge: four hydraulic
cylinders for the load application (Paffenholz et al. [27]). Reproduced with permission from Paffenholz,
AVN; published by Wichmann-Verlag, 2018.

In the scope of the load testing the standard load of 1.0 meganewton should be clearly excited.
By this setup first nonlinear deformations should be detected. According to Schacht et al. [26] and
the references therein, performed numerical simulations stated that a loading with five-times the
standard load had to be realised. Thus, a maximum load of approximately 6.0 meganewton was
defined, produced by four hydraulic cylinders. These hydraulic cylinders were mounted on the arch
(see Figure 2). Injection piles of length 18 m in depth realized the counteracting force and threaded
rods, the connection of hydraulic cylinders and injection piles. A detailed description of the bridge
structure as well as the design of experiments can be found in (Schacht et al. [26]).

The acquisition of the 3D point clouds was carried out from a fixed laser scanner position for
the various load steps. To support the subsequent calculation and interpretation of deformation
measurements, a 3D point cloud filtering with respect to objects on the arch surface was performed.
Consecutively, interfering objects (other sensor installations like prisms for the laser tracker and strain
gauges), which most likely appear differently in various load steps were carefully removed from the
3D point clouds. Previous investigations have shown, that aforementioned objects appear differently
in the load steps and could lead to misinterpretations in the subtraction of a load step with respect to a
reference epoch, see (Table 2 in Paffenholz et al. [27]).
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The measurements of the laser tracker to pre-installed prism well distributed in the arch of the
bridge serve as reference measurements. In particular, the measurements to the prisms denoted by L8,
L10 and L13 are used as the reference for the computation of the p-values as proposed in Section 2.

In this contribution, we will consider the five epochs of loads for further analysis: the reference
(no load) is called E00 whereas the fifth one (E05) corresponds to the maximum load, i.e.,
maximum deformation. Thus, we have a total of five deformation steps corresponding to five5
load steps, which we call Def1 between E00–E01, Def2 between E00–E02, Def3 between E00–E03,
Def4 between E00–E04 and Def5 between E00–E05. As the load step, one deformation step is defined
as the deformation difference between one epoch of load and the reference one.

Because the weights were applied in the middle of the bridge, specific parts were shown to have
been more strongly and rapidly influenced by the loading than others. Consecutively, we expect the
impact of mathematical correlations to be lower for parts located close to the extremity of the bridge.
This is due both to the smaller deformation magnitude and the scanning geometry, following the
interpretation of Kermarrec et al. [4].

3.1.1. Surface Approximation

As proposed in Section 2, deformation magnitudes from B-spline approximation are assessed by
taking the differences between the gridded surfaces obtained at two different epochs of load. In order
to have an optimal functional model, we did not make use of a global approximation of the point cloud
from the whole bridge but selected small patches around the reference LT points. Using the software
CloudCompare, the same surfaces in each point cloud for the reference epoch and the 5 epochs of
load under consideration were selected. They were located in the direct neighbourhood of the three
prisms observed by the LT. Figure 3 shows the localisation of the chosen surfaces around the points
L8, L10 and L13. These points were intentionally chosen. Indeed, for L8 and L13, the deformation
magnitudes of approximately 4 mm are small and comparable but the surfaces are recorded under two
different scanning geometries. Small deformation magnitudes of the order of the standard deviation of
the noise are highly interesting since they may not be detected with the statistical tests. L10 serves as a
reference point: it has a stronger deformation magnitude of 10 mm and is scanned under a favourable
geometry (see also Figure 4, right).

The corresponding extracted point clouds were gridded in 10 cells in both directions, leading to a
total of 100 gridded observations for the B-spline approximation. All observations falling in one cell
were correspondingly averaged. We chose intentionally a loose gridding so that only a small amount
of observations is available. This allows a better comparison between the deformation magnitudes
obtained with the B-spline modelization and the one obtained from the point wise LT measurements.
Indeed, increasing the number of points available by reducing the gridding leads to the modelling of
small artefacts of the surface that could affect the computed surface difference when compared with a
value from a point-wise LT. The comparison between sensors and methods (point wise versus surface
wise) is, thus, made more trustworthy. On the contrary, higher gridding, would not affect the present
results as soon as enough points are available to perform a B-spline approximation with LS. The values
for the test statistics would change accordingly, the distance between two point clouds being impacted
by the number of points.

In order to mathematically approximate the small patches with B-spline surfaces, a parameterization
was carried out using a uniform method, which is justified by their relatively smooth and uncomplicated
geometries. The knot vector was determined as proposed in Section 2.1. The number of CP was
determined using the BIC criterion (Zhao et al. [3]). Whereas for L8 4 CP in both directions were found
as optimal, 4 in the u-direction and 3 in the v-direction were considered for L10. The same values were
found for the bootstrap mean surfaces and for all epochs under consideration.

Our goal being to test the impact of mathematical correlations for B-spline surface approximations,
we do not use a Gauss-Helmert Model (Lenzmann and Lenzmann [28]) to approximate a planar surface,
which may not correspond exactly to the underlying geometry of the point cloud.
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the B-spline approximation will, thus, differ for both points. Figure 4 (right, table) gives the 
corresponding HA, VA and ranges for the points under consideration (coordinates in the local TLS 
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Figure 3. Representation of the bridge under load with the localization of the three patches L13, L10 and
L8. The load was positioned approximately in the middle of the bridge under which the TLS was
positioned (image adapted from Paffenholz et al. [27]). Reproduced with permission from Paffenholz,
AVN; published by Wichmann-Verlag, 2018.

3.1.2. Stochastic Model for TLS

Figure 4 (left) shows the localization of the three LT points chosen in this contribution. The TLS was
positioned approximately in the middle of the bridge. Consecutively, whereas L10 can be considered
as optimally scanned at a short distance in the Up-direction, L8 was scanned with a less favourable
geometry with respect to footprint, range and incidence angle. The stochastic model for the B-spline
approximation will, thus, differ for both points. Figure 4 (right, table) gives the corresponding HA,
VA and ranges for the points under consideration (coordinates in the local TLS coordinate system).Sensors 2019, 19, 3640 13 of 19 
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Following the proposal of Section 2.2, we use the intensity model to compute the standard
deviation of the range. Whereas a large mean intensity of 1,557,500 Inc for the zero-load epoch (E00)
was found for L10, leading to σL10

ρ ≈ 0.47 mm, the mean of the intensity for L8 reaches 99,874 Inc so that
σL8
ρ ≈ 2.20 mm. For L13, a value of σL13

ρ ≈ 0.48 mm corresponding to a mean intensity of 1,468,652 Inc
was computed. All range variances were computed using Equation (8) with two significant digits to
show the slight difference between L13 and L10 due to the range (Figure 4, right, table). The range
variances were evaluated similarly for the five load epochs under consideration. A maximum difference
of ±0.10 was found compared with the E00 values.

Temporal correlations between points are considered as meaningless due to the gridding approach,
which do not allow for the determination of a time stamp for averaged observations. Thus, we only
consider the heteroscedasticity of the raw TLS observations. Accounting for temporal range correlations
acting as decreasing the variance (Kermarrec et al. [29]), we will investigate the impact of lower values
on the p-values for the sake of completeness. In a first approach, the angle variances are chosen to
correspond to the manufacturer datasheet.

We adopt the strategy developed in Section 2. Thus, three cases are considered corresponding to a
gradual misspecification of the approximated VCM. We compute the corresponding test statistics for
deformation as well as the p-values.

3.1.3. Stochastic Model for LT

In order to test the difference between the obtained test statistics for significance, a reference
value is needed. We propose to use the deformation magnitude obtained with the highly precise LT,
thus considering a point-wise distance as a reference value with respect to the deformation magnitudes
obtained from the TLS point cloud approximations with B-spline surfaces.

We define Tre f as:

Tre f =
(
Li,E00 − Li,E0 j

)T
Σ̂
−1
L, j

(
Li,E00 − Li,E0 j

)
, i = 8, 10, 13, j = 1, . . . , 5 (13)

with Li,E00 − Li,E0 j being the Cartesian coordinate difference between the LT point i at epoch E00 and
the same LT point at epoch E01, E02, E03, E04 and E05, respectively.

Since repeated LT measurements were carried out for all epochs under consideration, we make
use of the aposteriori variance factors (Equation (4)) of the performed adjustment to estimate the
LT coordinates (i.e., a mean with nobs_LT = 3 repetitions). We follow, thus, the definition of Tpost.
Σ̂L, j corresponds to the aposteriori estimated VCM of the coordinate difference

(
Li,E00 − Li,E0 j

)
with

j = 1, . . . , 5. Σ̂L, j reads for the LT point i:

Σ̂L, j,i = σ2
0,LTi


σ̂2

x,E00 + σ̂2
x,E0 j 0 0

0 σ̂2
y,E00 + σ̂2

y,E0 j 0

0 0 σ̂2
z,E00 + σ̂2

z,E0 j

 (14)

with σ̂2
x,E00 and σ̂2

x,E0 j being the mean values of the variances of the x-component from the repeated
measurements for epoch E00 and E0j, respectively, divided by nobs_LT − 1. The other variances are
defined similarly for the y- and z-components. As these values were computed without any apriori
weighting, we multiply them with σ2

0,LTi, i.e., the apriori variance for the LT point i under consideration,
which we take according to manufacturer specification (15 µm + 0.6 µm/m). Please note that the
subscript i is switched in Equation (14) for the sake of readability.

The Euclidian distance between the points, as well as the variance of the x-, y- and z-components,
is summarized in Figure 5 for the 3 points under consideration. As can be seen, the variance of the
coordinates is generally increasing with increasing distance. The differences found between Def02 and
Def03 are below 0.025 mm2 (i.e., at the submm level for the corresponding standard deviation) cannot
be considered as significant enough to draw conclusions from them. The variance for the z-component
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is higher than for the other components, as it is strongly depending on the range variance of the raw
measurements, which is higher than the angle variances (see Equation (9)). The points L13 and L8 have
the same deformation magnitude under load. However, as these 2 points correspond to two different
geometries (Figure 4, right), the corresponding observations have, thus, different variances for the x-,
y- and z-components. Similarly, the intensity values of the TLS measurements led to different standard
deviations of the range. These two results are coherent.

For the sake of shortness, the values of Tre f are not presented here. Similarly to the behavior
highlighted in Figure 5, they increase with the deformation magnitude and are always over the
critical value of the F-distribution with α = 0.05. Consecutively, the highly precise LT allowed for the
acceptance of the H0 hypothesis with the chosen confidence level, i.e., the detection of deformation for
all three points under consideration. This result holds true even for L8 and L13 and the Def01 step for
which the magnitude was around 0.5 mm.Sensors 2019, 19, 3640 15 of 19 
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(Def1, Def2, Def3, Def4, Def5). 3 LT points are considered: L8, L10 and L13. Bottom: corresponding
apriori variance of the distance difference in [mm2]: * for x-, + for y- and o for z-component, respectively.

3.2. Results

Figure 6 presents the results obtained for the p-values for the 5 deformation steps under
consideration. For L8 (Figure 6 top), a high p-value—larger than 0.9—is obtained for case (i),
for which mathematical correlations and heteroscedasticity were taken into consideration. This is
a strong evidence not to reject H0, and means that the difference between Tre f and Tpost,i cannot
be considered as significant, provided that all assumptions for test2 are correct (non-corrupted
observations, correct model and adequate study protocol).

On the contrary, 9 times smaller p-values are found for both cases (ii) and (iii). For the computed
aposteriori Tre f , the p-values were around and slightly lower than αtest2 = 0.05. Consecutively, it cannot
be concluded, as for case (i), that the difference between Tre f and Tpost are non-significant. Clearly,
different values of Tre f may have led to different p-values. However, within a range of plausible values,
these would not have changed the high deviation to Tpost,i.

For L13 and L10 and although the deformation magnitudes differ strongly (Figure 5, top),
the p-values are similar for the 3 stochastic models under consideration, independently of the
deformation step. For the Tre f , the p-values are, in all cases and for both LT points, higher than
αtest2 = 0.05 by a factor 5 for L10 and 2.2 for L13. Thus, the difference between Tre f and Tpost cannot be
considered as significant. Additionally, the p-values that would have been obtained by taking 10 times
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the original standard deviation of the TLS range are plotted as dotted line in Figure 6 (bottom). It aims
to highlight the strong impact of σρ on the p-values, which we further discuss in the next section.
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values that would have been obtained by artificially increasing σρ to 5 mm.
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3.3. Discussion

3.3.1. Role of σρ on the p-Values

The combination of Figures 5 and 6 highlights that mathematical correlations should not be
neglected, particularly as σρ increases. Indeed, the cases of Figure 5 (top, L8) and Figure 5 (bottom,
L13) correspond to similar deformation magnitudes (see Figure 4, L8 and L13). However, the p-values
strongly differ for both cases, which can be linked with the different values of σρ. Whereas the p-values
are high for L8 and far over αtest2 = 0.05, they are much lower for L13. For the computed Tre f , they are
found around and lower than αtest2 = 0.05, i.e., the difference with Tre f can be considered as significant
for case (ii) and (iii), but not for case (i). As this latter corresponds to a more optimal stochastic
model (temporal correlations were neglected due to the gridding), it highlights the impact of the
chosen simplification.

Moreover, the p-values for L13 exhibit similar values in all three cases (i), (ii) and (iii) and,
are, thus, independent of the underlying stochastic model. This is not the case for L13 if σρ is
misspecified (i.e., higher than assumed) as shown in Figure 6 (bottom, dotted line). This result confirms
the role of increasing σρ on the p-values. For an optimal σρ computed with the intensity model,
mathematical correlations can be consecutively neglected without affecting the significance of the
difference between Tre f and Tpost. This is an important result, that should, however, not be too rapidly
generalized. Indeed, not only the range variance but also the geometry of the scanning plays an
important role. Kermarrec et al. [4] show that variations of HA or VA can lead to high values of the
cross-diagonal with respect to the diagonal values of the fully populated VCM (see Equation (9) and
following). However, if the point cloud is recorded from a TLS under optimal geometric conditions with
a σρ under 2.5 mm (Figure 7), we propose to neglect mathematical correlations by making use of the
simplification corresponding to case (iii). The corresponding VCM is diagonal with a constant variance
factor that can be easily computed from the transformed VCM. The LS computation is simplified and
more stable as no inverse of the fully populated VCM has to be performed. This is of great advantage
for large point clouds.

3.3.2. Role of σρ on Tpost

As aforementioned, the range variance is playing a central role in the computation of Tpost

(Figure 7). As σρ decreases, Tpost falls under the critical value of the F-distribution for the given degree
of freedom (75 and 37) with αtest1 = 0.05. Thus, the H0 of test1 is accepted. Neglecting mathematical
correlations (case (ii) and (iii)) by misspecifying at the same time the range variance can lead to the
acceptance of the H0 hypothesis “no deformation”, although highly precise sensors such as LT were
able to detect a deformation with a high confidence. On the contrary, accounting for mathematical
correlations allows the rejection of H0, which is a more trustworthy test decision. This behavior strongly
supports that accounting for correlations—mathematical or temporal—has a similar effect as decreasing
the range variance in a diagonal model (Kermarrec and Schön [5]). Thus, it is possible to find an optimal
range variance for which the results are comparable with the one obtained with a fully populated
VCM. The so-called diagonal correlation model (DCM) proposed in Kermarrec et al. [29] for temporal
correlations could be used to simplify the computational burden associated with a fully populated
VCM. Its generalization for mathematical correlations needs, however, further investigations.

4. Conclusions

The modelization of TLS point cloud with B-spline surfaces provides a rigorous framework to test
for deformation. Indeed, recently available software allows for the visualization of deformation by
means of maps of distances, but not for statistical testing. However, the usual congruency test cannot
be used with B-spline surfaces since the number of parameters to estimate at the two epochs may differ
strongly. Consecutively, a specific test statistic had to be developed, which is based on the difference of
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the gridded approximated B-spline surfaces. The test distribution can be found as corresponding to
the F-distribution for the aposteriori test statistic.

In order to get a trustworthy test decision, i.e., the rejection of the null-hypothesis that no
deformation occurs, an optimal stochastic model for the surface difference is necessary. Provided that
temporal correlations are neglected, the model relies mainly on the heteroscedasticity of the raw TLS
observations. Assuming that the angles have a constant variance provided from the manufacturer,
the range variance can be estimated with an empirical intensity model that allows to account for
specific effects such as scanning geometry or atmospheric condition in an optimal way. Since Cartesian
coordinates are needed for the B-spline surface approximation, mathematical correlations have to
be considered, leading to a fully populated VCM of the transformed raw measurements. In this
contribution, the impact of neglecting mathematical correlations on the results of the developed test
statistics for deformation was investigated. Moreover, by means of a bootstrap approach, it was tested
if the test statistics difference obtained by varying the stochastic model with respect to a reference value
obtained from a LT could be considered as significant or not. To that aim, p-values were computed
for optimal or less optimal stochastic models. Using real data from a bridge under load, three LT
points were chosen. In the neighbourhood of these LT points, rectangular patches of observations
were extracted for 5 load steps and optimally approximated with B-spline surfaces. The test statistics
and p-values were computed for three stochastic models: (i) with mathematical correlations and
heteroscedasticity, (ii) the diagonal version of (ii) and (iii) a scaled identity matrix.

The strong dependency of the p-values with the chosen standard deviation of the range was
highlighted by using two LT points corresponding to a similar deformation magnitude under load
but different scanning geometries. It could be shown that the significance of the difference of the test
statistics and the LT reference value was decreasing with the range variance. A limit value around a
range standard deviation of 2.5 mm could be identified. Over this value, mathematical correlations
should not be neglected for a trustworthy test decision. The results of this work on test statistics can
be used as soon as mathematical correlations due to the transformation from polar raw to Cartesian
measurements have to be considered in a LS adjustment. In order to simplify the computational power
linked with the fully populated VCM, a proposal was made to decrease artificially the range variance
in order to get an easy to handle diagonal VCM. This strategy needs, however, further investigations
to be widely extended, which we let to a next contribution.
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