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ABSTRACT: The effect of natural and man made disasters on critical infrastructures are substantial, as 
evident from recent history. Break downs of critical systems such as electrical power grids, water supply net-
works, communication networks or transportation can have dire consequences on the availability of aid in 
such a crisis. That is why, reliability analyses of these networks are of paramount importance. Two important 
factors must taken into consideration during reliability analysis. First, the networks are subject to complex 
interdependencies and must not be treated as individual units. Second, the reliability analysis is typically 
based on some form of data and or expert knowledge. However, this information is rarely precise or even 
available. Therefore, it is important to account for different kinds of uncertainties, namely aleatory uncer-
tainty and epistemic uncertainty. Aleatory uncertainty represents the natural randomness in a process, while 
epistemic uncertainty represents vaguness or lack of knowledge in the model. In this work we present an 
approach to the numerical reliability analysis of complex networks and systems extending a previously devel-
oped method based on Monte Carlo simulation and survival signature. The extended method treats both 
kinds of uncertainties, thus, yielding better results. We show how Monte Carlo simulation controls aleatory 
uncertainty and apply sets of distributions (probability boxes) to treat epistemic uncertainties in component 
failures. In this framework, dependencies are modelled using copulas. Copulas possess the unique property 
of decoupling the odelling of the univariate margins from the modelling of the dependence structure for con-
tinuous multivariate distributions. Analoguous to the p-boxes we use sets of copulas to include imprecision 
in the dependencies. Finally, the method is applied to an example system of coupled networks.

A secondary task during the reliability analysis is 
the accurate modelling of component failures and 
dependencies. Typically, this is done based on data 
or expert assessments. However, both are subject 
to two kinds of imprecisions, namely, aleatory and 
epistemic uncertainty (Beer et al. 2013). Aleatory 
uncertainty represents the randomness inherent 
in a process, such as component degradation and 
external forces affecting the system (natural haz-
ards, earthquakes, etc.), while epistemic uncertainty 
describes the uncertainty in the model due to a lack 
of or vagueness of knowledge about the system. 
The latter is usually regarded as reducible through 
acquiring of additional data and information.

In this work we expand our previously devel-
oped technique by inclusion of imprecision. The 
method is based on Monte Carlo simulation and 
as such already deals with aleatory uncertainty. In 
this extension the modelling of component failures 
is refined by applying probability-boxes (p-boxes) 
to account for epistemic uncertainty. Feng et al. 
2016 have shown the advantages of using p-boxes 

1 INTRODUCTION

Modern infrastructure systems are highly complex 
and subject to a multitude of different depend-
encies. Disasters in recent years have shown how 
critical the impact of these dependencies can be. 
Failures in one network such as a power outage 
will surely impact other dependent systems. In 
worst case scenarios these dependencies can lead 
to cascading effect ultimately breaking down entire 
networks (Buldyrev et al. 2010). This highlights the 
need for methods of reliability analysis that can 
deal with these complexities.

Recently, the survival signature (Coolen and 
Coolen-Maturi 2013) has gained in popularity as 
a tool to aid with this task. The survival signature 
allows to decouple the structural evaluation from the 
probabilistic analysis, allowing for highly efficient 
simulation. In Behrensdorf et al. 2017 we introduced 
a method for the reliability analysis of complex inter-
dependent networks. Other efficient algorithms can 
be found for example in Patelli et al. 2017.
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in reliability analysis. Additionally, the rather sim-
ple dependency modelling of the initially developed 
method is replaced by imprecise copulas (Montes 
et al. 2015). Copulas split continuous multivariate 
distributions in a dependence structure and uni-
variate marginals, which in turn allows for separate 
flexible modelling of the two (Joe 2014).

This paper is outlined as follows. First we intro-
duce the previously developed method for the reli-
ability analysis of networks. Then, after presenting 
basic theory and notation on copulas, we discuss 
how to model dependencies with copulas and how 
to translate these methodologies into an imprecise 
setting. Finally, we apply the developed techniques 
to a simple example. The paper closes with some 
concluding remarks and an insight into future 
work.

2 RELIABILITY ANALYSIS

This section presents the survival signature based 
method to calculate the reliability of a system, as 
first presented in Behrensdorf et al. 2017.

The survival signature was developed as an 
extension to the system signature (Samaniego 
2007), overcoming the limitations that restrict the 
system signature to systems of one single compo-
nent type (Coolen and Coolen-Maturi 2013). The 
main function of the survival signature is to sepa-
rate the structural information of a network from 
its probabilistic characteristics.

2.1 Survival signature

Considering a system with m components, the sur-
vival signature for l out of m components working 
is defined as 
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where x x xm= …( )1, ,  denotes the state vector 
of  the system with xi  =  1 and xi  =  0 represent-
ing a working or failed component respectively 
and ϕ x( )  is the structure function returning the 
state of  the full system with ϕ x( ) = 1  indicating a 
working system and ϕ x( ) = 0  indicating a failed 
system.

Extending the survival signature to systems with 
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An efficient algorithm to compute the survival 
signature can be found in Aslett 2012.

2.2 Survival function

The next step in calculating the reliability of a sys-
tem is the definition of the survival function. This 
function uses the survival signature to calculate the 
probability that a system is working at time t and 
as such calculates the reliability. The survival func-
tion is defined as 
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Note especially the separation of structural 
information (left) and probabilistic information 
(right). This means, that the structural evalua-
tion of the system must occur only once for the 
entire reliability analysis. In the last remaining 
step, the probabilistic part of the survival function 
is approximated using Monte Carlo Simulation in 
order to be able to include imprecisions and inter-
dependencies in the analysis.

2.3 Monte Carlo simulation

The simulation starts by selecting a sufficient 
number of samples NMC and small time step fol-
lowed by the sampling of component failure times 
from the assumed copula (see section 3). Next, in 
two nested loops over all combinations l lk1, ,…  
where Φ l lk1 0, ,…( ) >  and all time steps t the 
number of samples in the same configuration are 
counted as N tl lk1 , , .… ( )  Then, the probabilistic part 
of the survival function is approximated by 
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Finally, the partial reliabilities obtained in the 
previous step are multiplied by their probability 
from the survival signature and summed up, yield-
ing the full reliability of the network.

3 MODELLING DEPENDENCIES

This section introduces the necessary notation of 
copulas and how to apply them to model depend-
encies in and between networks. In more detail, 
section 3.4 presents how to use copulas to model 
common causes of failure while section 3.5 shows 
how to model interdependencies. This is a very 
basic introduction, for a thorough discussion of 
copulas see Nelsen 2006.
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3.1 Copulas

The basis of copulas is built by what is today 
known as Sklar’s theorem (Sklar 1959). The theo-
rem states that any multivariate distribution H (in 
dimensions d ≥ 2) can be separated into its univari-
ate marginal distributions Fi and a copula function 
C d: [ , ] , .0 1 0 1→ [ ]
Theorem 1. Sklar’s theorem Let H be a d-dimen-
sional distribution function with margins F Fd1, , .…  
There exists an n-dimensional copula C such that for 
all x in Rd

H C F x F xn dx( ) = ( ) … ( )( )1 1 , , .  (5)

If the marginals F Fd1, ,…  are continuous, then C 
is unique; otherwise, C is unique on Range(F1) ×…× 
Range(Fd).

Conversely, if C is a d-copula and F Fd1, ,…  are 
distribution functions, then the function H defined by 
Eq. 5 is an d-dimensional distribution function with 
margins F Fd1, ,…

This facilitates separate modelling of the marginal 
distributions from modelling of the dependence 
structure, in turn allowing for effective treatment of 
imprecisions in both parts (see section 4).

In this work we apply three distinct copula 
families, namely the Gaussian copula, the Inde-
pendence copula, and the Clayton copula. For an 
encompassing discussion of copula families the 
reader is referred to Nelsen 2006 and Joe 2014.

The d-dimensional Gaussian copula is defined as

C u u u uR d d d1
1

1
1, , , , ,…( ) = ( ) … ( )( )− −Φ Φ Φ  (6)

where R ∈ − ×[ , ]1 1 d d  is a positive definite correla-
tion matrix and Φd ⋅( );R  is the d-variate cumu-
lative distribution of a Nd 0,R( )  random vector. 
Φ −1  denotes the inverse of the univariate standard 
Gaussian cdf (Joe 2014).

The latter two copulas belong to the class of 
Archimedean copulas. This family is particu-
larly popular due to their easy construction and 
wide range of applications (Nelsen 2006). The 
Archimedean copulas used in this work are one 
parameter families, which allow for easy treat-
ment of imprecision as seen in the subsequent 
section. Any d-dimensional Archimedean copula 
is constructed using a so called generator function 
ϕ : [ , ] [ , ]0 0 1∞ →  and its inverse ϕ-1 according to

C u u u ud dϕ ϕ ϕ ϕ1
1

1
1, , : ,…( ) = ( ) + …+ ( )( )− −  (7)

where u ud1 0 1, ,… ∈[ ]  (Mai and Scherer 2012). 
Table 7 shows the generators and parameter ranges 
for the Independence and Clayton copula families.

3.2 Dependence measure

Studies have shown, that correlation is not a suit-
able measurement of dependence for copulas 

(Schirma Schirmacher and Schirmacher 2008). 
Therefore, in this work, Kendall’s tau is selected 
as the preferred dependence measure. Kendall’s 
tau is based on concordance. A pair of random 
variables is said to be concordant if  “large” values 
are associated with “large” values “small” values 
with “small”. Formally, two observations (xi, yi) 
and (xj, yj) from a vector (X,Y) X Y,( )  are con-
cordant if  x x y yi j i j−( ) −( ) > 0  and discordant if  

x x y yi j i j−( ) −( ) < 0.
Then, Kendall’s tau for a sample of n observa-

tions x y x yi i n n, , , ,( ) … ( ){ }  from a vector of con-
tinuous random variables X Y,( )  can be defined as
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where c and d represent the number of concord-
ant and discordant pairs among all possible pairs 
of observations. This value may also be interpreted 
as the probability of concordance minus the prob-
ability of discordance for a random pair of obser-
vations x yi i,( )  and x yj j, .( )  Based on this fact, 
Kendall’s tau for the random variables X and Y 
can be defined by 
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where � �X Y,( )  is an independent copy of X Y,( )  
(Schirmacher and Schirmacher 2008).

Kendall’s tau is not only used to measure 
dependence but also to find copula parameters 
representing a desired strength of dependence.

3.3 Vine copulas

In order to analyse the reliability of complex net-
works it one must build hight dimensional copu-
las. However, in comparison to bivariate copulas, 
the available literature on multivariate copulas is 
scarce (Mai and Scherer 2012). For this reason, we 
employ a technique called pair copula construction 
to break down multivariate copulas into combina-
tions of bivariate copulas. More accurately, we use 
vine copulas as a graphical tool to model pair cop-

Table 1. Generators, generator inverses and parameter 
ranges for the Clayton and Independence copula.

Name
Generator  
ϕθ t( )

Generator  
Inverse  
ϕθ

− ( )1 t Parameter θ

Clayton 1
1

θ
θt− −( ) ( ) /1 1+ −θ θt θ ∈ − ∞[ , ) \ { }1 0

Independence − log ( )t exp ( )−t
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ula constructions as sets of trees. An example of 
a five-dimensional vine copula is shown in Fig. 1.

A regular vine (R-Vine) V  is defined as a set 
of trees T Td1 1, , ,… −  where T1 consists of nodes 
N d1 1= …{ }, ,  and edges E1. Every subsequent Tree 
Tj uses the edges Ej-1 as nodes and connects them 
with the edges Ej. The last property needed to define 
a regular vine is the proximity property, stating that 
if a and b are connected by an edge in T jj , ,≥ 2  
then a and b must share a common node in Tj-1.

A plethora of different structures exist for a 
d-dimensional R-Vine based on the definition. 
Because of this and the fact, that a regular vine 
possesses 2n-1 sampling order we apply D-vines 
instead, which have a much more restrictive struc-
ture. As seen in Fig. 2, a D-Vine is characterized by 
each node n Ni∈  having a maximum degree of 2. 
Sampling from D-Vines is a lot simpler and in this 
work performed by using the MATLAB toolbox 
VineCopulaMatlab (Kurz 2016).

3.4 Common cause of failure

One type of dependent failure tackled in this work 
is common cause of failure. It is defined as two or 
more components failing at the same time due to 
common defects or weaknesses. Causes include 
but are not limited to: errors in manufacturing, 
errors during maintenance or operation, and envi-
ronmental causes such as earthquakes or tsunamis 

(Hanks 1998). We model common cause of failure 
by application of Clayton copulas. This family 
possesses a property called lower-tail dependence, 
meaning that dependence is stronger in the lower-
left quadrant of [0,1]2. By modelling the failures 
this way, the dependence is much stronger in early 
component life and as such brings us closer to the 
traditional bathtub shape or component failure 
probabilities. Figure 3 shows samples drawn from 
a Clayton copula. Note, how the stronger depend-
ence in the lower-tail is clearly visible in the scatter 
plot.

3.5 Interdependencies

Interdependencies between nodes and networks 
are handled by application of Gaussian Copulas. 
Gaussian copulas possess no tail-dependence and 
show good results, although other families could be 
investigated for the same application in the future. 
In addition to the copula there is one more step 
required to accurately model the dependencies. We 
understand interdependencies as the phenomenon 
of one component failing due to the failure of 
another. As such, interdependencies imply causal-
ity. In order to represent this causality in the model, 
dependence is introduced in the marginals. During 
the transformation of the failure times sampled 
from the copula by the inverse transformation 
method, the marginal distributions are aggregated 
from the dependent marginals using Kendall’s tau 
of the random variables u1 and u2 as

U F u F u1 1
1

1 2
1

11= −( ) ⋅ ( ) + ⋅ ( )− −τ τ ,  (10)

where F1 and F2 are the marginals of a copula C.

Figure  1. Five-dimensional copula represented as a 
regular vine.

Figure 2. Structure of a five-dimensional D-Vine.

Figure 3. Samples drawn from a Clayton copula with 
the parameter chosen so τ = 0.5.
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4 HANDLING IMPRECISION

Two types of uncertainties must be taken care of dur-
ing the reliability analysis, namely, aleatory and epis-
temic uncertainties. Aleatory uncertainty describes 
the natural randomness inherent in a process, while 
epistemic uncertainty represents the uncertainty due 
to vagueness in information or a lack thereof.

Aleatory uncertainty can automatically han-
dled by our reliability analysis technique. Through 
assuming failure time distributions for the com-
ponent failures and sampling these during Monte 
Carlo simulation, the randomness that our model 
is subject to is fully included. However, the selec-
tion appropriate failure time distributions is typi-
cally based on either data or expert knowledge, 
neither of which yield perfect results, in turn intro-
ducing epistemic uncertainty into the model. This 
uncertainty can be reduced by using probability-
boxes (p-boxes) (Feng et al. 2016).

P-boxes are defined as bounds on the cumula-
tive distribution function of a random variable. 
The left and right bounds can be found by for 
example selecting an appropriate distribution and 
giving the parameters as intervals. As such, a p-box 
comprises boththe aleatory and the epistemic 
uncertainty. An example of an exponential p-box 
with parameters λ ∈ [1.2,2.2] is shown in Fig. 4.

By feeding the bounds of the p-box into the reli-
ability analysis, the epistemic uncertainty propa-
gates into the result. Thus, instead of one survival 
function, we obtain an upper and lower bound. 
Figure 5 shows an example of theupper and lower 
bounds obtained by performing a reliability analy-
sis of a simple system of two parallel components 
of the same type, assuming the p-box of Fig. 4 for 
the failure time distributions.

Similarly to the application of p-boxes to han-
dle epistemic uncertainty in the marginals, we 
can define the copula parameters as intervals and 
obtain imprecise copulas for the dependencies 
(Montes et al. 2015). This works especially well 
since all copula families, including the bivariate 
Gaussian copula, we apply in the vine copula are 
defined by a single parameter.

Finally, the bounds of the p-boxes as well as the 
bounds of the copula parameters are fed into the 
reliability analysis. Returning to the simple sys-
tem of two parallel components and linking the 
components with an imprecise Gaussian copula 
R ∈ [0.3, 0.6] results in the upper and lower bounds 
for the reliability as seen in Fig. 5.

Figure  4. Example of an exponential p-box with 
λ ∈ [1.2,2.2].

Figure  5. Upper and lower bounds of the reliability 
resulting from applying the p-box in Fig. 4 to a simple 
system of two parallel components.

Figure  6. Structure of the example network. The 
red lines represent interdependencies between the two 
subsystems.

Figure 7. D-Vine used to model the common cause of 
failure in system 2 and the interdependencies between the 
two networks.
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5 NUMERICAL EXAMPLE

The methods that were introduced in the previous 
sections will now be applied to a simple toy exam-
ple. All marginals and dependencies will be consid-
ered as imprecise in order to account for all aleatory 
and epistemic uncertainties. Figure 6 presents the 
example system build from two systems of two 
parallel components where the first and second 
components respectively are interconnected.

A four-dimension D-Vine copula, including the 
interdependencies and a common cause of failure 
shared among the components in system 2, is built 
in order to sample the component failure times. 
The structure of the vine is shown in Fig. 7.

The component failure times for systems 1 and 
2 are assumed to be exponentially distributed 
with λ1 1 5 1 7∈[ ]. , .  and λ2 0 7 1 1∈[ ]. , . .  The copula 
parameters are chosen such that τ ∈[ ]0 2 0 4. , .  for 
the Clayton copula and τ ∈[ ]0 4 0 6. , .  for the Gaus-
sian copulas. The resulting bounds on the reliabil-
ity of system 2 are plotted in Fig. 8.

6 CONCLUSION AND OUTLOOK

In this work we have presented how to perform 
reliability analyses of complex interdependent net-
works in a highly imprecise setting. The necessary 
theory on copulas and vine-copulas and applied to 
the modelling of dependencies in and between net-
works. Finally, the modelling of dependencies and 
a previously introduced method for the reliability 
analysis of networks were extended to account 
for both aleatory and epistemic uncertainties. As 
a result, we obtained bounds on the network reli-
ability. The method was applied to a numerical toy 
example to prove the functionality.

Figure 8. Bounds on the reliability of system 2 based 
on the assumed imprecisions.

It is obvious that this paper only serves as a short 
introduction into future work. The methods must be 
validated further and applied to complex real world 
networks in order to ensure usability. Especially the 
construction of the D-Vine copula for sampling of 
the component failure times must be further investi-
gated. There exist a plethora of possible vine struc-
tures for a given problem and effective automatic 
construction techniques have to be created.
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