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ABSTRACT: Common-Cause Failures (CCF) impose severe consequences on a complex system’s reli-
ability and overall performance. A more realistic assessment, therefore, of the survivability of the system 
requires an adequate consideration of these failures. The survival signature approach opens up a new and 
efficient way to compute system reliability, given its ability to segregate the structural and probabilistic 
attributes of the system. Traditional survival signature-based approaches assume the failure of one com-
ponent to have no effect on the survival of the others. This assumption, however, is flawed for most realis-
tic systems, given the existence of various forms of couplings between components. This paper, therefore, 
presents a novel and general survival signature-based simulation approach for non-repairable complex 
systems. We have used Monte Carlo Simulation to enhance the easy propagation of CCF across the com-
plex system, instead of an analytical approach, which currently is impossible. In real application world, 
however, due to lack of knowledge or data about the behaviour of a certain component, its parameters 
can only be reported with a certain level of confidence, normally expressed as an interval. In order to deal 
with the imprecision, the double loop Monte Carlo simulation methodology which bases on the survival 
signature is used to analyse the complex system with CCF. The numerical examples are presented in the 
end to show the applicability of the approach.

the reliability and availability of multi-component 
systems. They are, therefore, extremely impor-
tant in reliability assessment and must be given 
adequate treatment, to minimise overestimation 
(Modarres 2006).

The CCF event can either impact the overall sys-
tem operation or only affect specific components 
within the system (Wierman et al. 2007). Aldemir 
(1987) haa given an overview of parametric Com-
mon-Cause Failure models. To be specific, for com-
ponent level, the CCF event is a component level 
failure. Rasmuson and Kelly reviewed the basic 
concepts of modelling CCFs in reliability and risk 

1 INTRODUCTION

Common-Cause Failures (CCFs) are failure events 
that affect multiple components simultaneously. 
The origin of common cause events can be out-
side the system components they affect, or they 
can originate from the components themselves, 
causing the other components to fail. The proper 
consideration and modelling of CCFs is essential 
in complex systems reliability analysis, as they may 
have a significantly adverse effect on the system’s 
overall functionality. They have been shown by 
many studies (Dhillon & Anude 1994) to decrease 
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studies (Rasmuson & Kelly 2008). One of the most 
commonly used single parameter models defined 
by Fleming (1975) is the β-factor model, which 
is the first parameter model applied to common 
cause failures in risk and reliability analysis. He 
then generalised the β-factor model to the multiple 
Greek letter model in 1986 (Fleming et al. 1986). 
The α-factor model which is proposed by Mosleh 
et al. (1988) develops CCFs from a set of failure 
ratios and the total component failure rate. Based 
on the α-factor model, Kelly & Atwood (2011) 
presented a method for developing Dirichlet prior 
distributions that have specified marginal means, 
but which are otherwise minimally informative. 
The binomial failure rate model (Atwood 1986) on 
the other hand, estimates the failure frequency of 
two or more components in a redundant system. 
This is computed as the product of the CCF shock 
arrival rate and the conditional failure probability 
of the components given the shock.

At for system level, the CCF event is a system 
functional level failure. A number of models have 
been developed recently. For instance, George-Wil-
liams & Patelli (2017) proposed an efficient load-
flow simulation approach to assess the availability 
of reconfigurable multi-state systems with inter-
dependencies. A robust Bayesian approach to the 
α-factor model for common cause failures has also 
been proposed by Troffaes et al. (2014). Coolen 
& Coolen-Maturi (2015b) presented a non-para-
metric predictive inference for system reliability 
following a common cause failure. However, there 
are mainly two problems within the above research 
works: (1) either recognise the components 
within the system as exchangeable single type; or  
(2) evaluate the system configuration for every reli-
ability estimation trial, which is time consuming. 
Therefore, an extension of above works is needed. 
To be specific, it is necessary to perform reliability 
analysis on systems susceptible to CCFs, because 
these realistic complex systems always consist of 
components which belong to different types. Sur-
vival signature provides a good way to solve this 
problem.

Survival signature was first proposed by Coolen 
& Coolen-Maturi (2012) in 2012. It is a powerful 
methodology which can not only hold the merits of 
the former system signature (Samaniego 2007), but 
can be used in complex system with components 
belong to multiple types. In essence, it does not 
have the assumption that components of different 
types are exchangeable, which overcomes the long-
standing limitation of the system signature. This 
is useful when a system consists of components 
that belong to different types, which means their 
failure times follow different probability distribu-
tions characters (Coolen & Coolen-Maturi 2015a). 
Therefore, survival signature is a promising method 

for application to complex systems. Based on the 
former work, Aslett et al. (2015) analysed system 
reliability within the Bayesian framework of sta-
tistics. Feng et al. (2016) dealt with the imprecision 
within the system by analytical and numerical ways 
respectively, what is more, new component impor-
tance measures were presented in this paper. An 
imprecise Bayesian non-parametric approach by 
using sets of priors to system reliability with multi-
ple types of components was developed by Walter 
et al. (2017). Patelli et al. (2017) proposed efficient 
simulation approaches which based on survival 
signature for reliability analysis on large system. 
Reed (2017) put forward an efficient algorithm 
for exact computation of survival signature using 
binary decision diagrams.

This paper is organised as follows. Section 2 gives 
a brief  conceptions about the survival signature 
and α-factor parameter. The survival signature-
based simulation reliability approach is proposed 
in Section  3, in addition, this Section introduces 
imprecision within the components failure times. 
The applicability and performance of the proposed 
approaches is presented in Section 4. Finally Sec-
tion 5 closes the paper with conclusions.

2 SURVIVAL SIGNATURE AND α-FACTOR 
PARAMETER

2.1 Survival signature

Suppose there is a complex system with m 
components which belong to K ≥ 2 component types, 
with mk components of type k K∈{ }1 2, ,...,  and 

m mkk
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of components of the same type are exchangeable, 
while full independence is assumed for compo-
nents belong to different types (iid), the survival 
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where φ φ= ( ) → { }x m:{ , } ,0 1 0 1  is the system struc-
ture function, i.e., the system status based on all 
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possible state vectors x.  φ is 1 if  the system func-
tions for state vector x  and 0 if  not.

Let C t mk k( ) ∈{ }0 1, ,...,  denote the number of 
k components working at time t. Assume that the 
components of type k have a known cumulative 
distribution function (CDF) Fk(t) and the compo-
nents failure times of different type are assumed 
independent, then:
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Hence, the survival function of the system with 
K types of components becomes:
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Equation 3 shows that the structure of the sys-
tem is separated from the its components failure 
times, which is the typical advantage of the sur-
vival signature. The survival signature is a sum-
mary of structure functions and only needs to be 
calculated once for the same system. As a result, it 
is an efficient method to perform system reliability 
analysis on complex systems with multiple compo-
nent types.

2.2 α-factor model

The α-factor model is particularly useful in the 
practical engineering world as the alpha factor 
parameters can be got through experts’ judgement 
of the system or past data on the system.

The parameter, αr, of  the model, is the frac-
tion of the total component failure events caus-
ing the simultaneous failure of an additional r – 1 
components.

Let us assume there is a system with three 
exchangeable components, α1 means the failure of 
one component cannot influence the status of the 
other components. α3 denotes the failure of one 
component can lead to the other two components 
fail simultaneously, which means CCFs occur. For 
α2 = p, it expresses that there is a probability p of  
one additional component failing, following the 
failure of a component in this system. It can be 
drawn that α rr

=
=∑ 1

1

3
.

Similarly, for the complex system with multi-
ple component types, the alpha parameters α r

k  
denotes that if  one component of type k fails due 
to an common cause event, the probability that the 
other r – 1 components fail simultaneously. If  there 

are mk components in this group, it can conclude 
that α r

k
r

mk =
=∑ 1

1
.

Based on the definition of α-factor parameter, 
the probability of a common cause basic event 
involving failure of k components in a system of m 
components can be calculated by Equation 4.
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where, k m= 1 2, ,...,  and α αt kk
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. Qt is the 

total probability of failure accounting both for 
common cause failures and independent failures. 
The alpha parameter estimator can be expressed as:
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where, nk is the number of events with k failed 
components.

The α parameter estimator represents the prob-
ability that exactly k of  the m components fail, 
given that at least one failure has occurred. It can 
be seen from Equation  5 that the sum of all the 
αk will be 1. The advantage of the α-factor model 
is its distinction between the total failure rate of a 
component Qt, for which we generally have a lot of 
information, and common cause failures modelled 
by αk, for which we generally have very little infor-
mation (Troffaes et al. 2014).

3 EFFICIENT METHOD FOR ANALYSING 
SYSTEM RELIABILITY WITH COMMON 
CAUSE FAILURES

3.1 The proposed approach

In order to perform reliability assessment on any 
kind of systems without introducing simplifica-
tions or unjustified assumptions, this Section 
proposes a simulation method to analyse system 
reliability after common cause failures.

Suppose there is a complex system with m com-
ponents which belong to Xc different component 
groups, and there are mk components of type 
k K∈{ }1 2, ,...,  and m mkk

K
=

=∑ .
1

 The common 
cause group matrix can be expressed as MCCG, the 
α factor parameters of each component group, 
αm

k
k
,  are stored in the matrix, recall αm

k
k

K

k
=

=∑ 1
1

.
The number of failing component of each type is 

depended on the number of component still func-
tioning, therefore, it is necessary to use the α-factor 
model to provide probabilities for any combina-
tions of number of components that would fail 
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when a common cause failure event occurs. Here 
has an assumption that if  one component of type 
k fails, it can only influence the components within 
the same component group Xc under the CCF 
model. This is reasonable as the components of the 
same type tend to be influenced by the same com-
mon cause failure event, this is also the reason why 
they are grouped in the same type. Then looking 
at how many of the components of each type still 
function, and assume exchangeability within them 
with regard to the CCF failure model.

The reliability of the system after common 
cause failures can be estimated adopting the fol-
lowing simulation procedure:

Step 1.  Initialise the counter V to store the out-
put, define the mission time as tm and 
number of samples as N;

Step 2.  Define the component groups as Xc, and 
the common cause group matrix MCCG, 
the α factor parameters αm

k
k

 are stored 
in the matrix;

Step 3.  Sample the failure time of each compo-
nent as ti ≤ ti+1, where i = 1, 2, …, m, and 
set told = 0, at this time the survival signa-
ture (production level) is equal to 1;

Step 4.  Set the current time tcurrent = min(ti);
Step 5.  At time ti, finding out which component 

fails and which common cause group it 
belongs to. The components affected by a 
failure event due to CCF can be expresses 
as Vcomp;

Step 6.  Upgrade the number of working compo-
nents of each component group after the 
CCF, and then get the survival signature 
(production level) Φti

 after the corres pon-
ding failure time ti;

Step 7.  Set the failure time of the components 
(the failure component and its common 
cause failure components) as infinite;

Step 8.  Repeat Steps 4 through 7 until tm > told;
Step 9.  Store the production level of the system 

over the time by V j V j ti( ) = ( ) + Φ ;
Step 10. Repeat Steps 3 through 9 for N times.

Therefore, the survival function of the complex 
system after common cause failures is obtained 
by averaging the vector collecting the production 
level of the system over the number of samples: 
P T t CCF V Ns t( | ) / .> =

The algorithm of the proposed simulation 
method can be seen follows:

3.2 Imprecision in consideration

In the engineering applications, if there exist impre-
cision within the components failure time distri-
butions, or empirical distribution of components 
failure times are used, no analytical methods can be 

used without resorting to some degree of simplifica-
tion or approximation (Beer et al. 2013) (Aven 2017). 
Instead, the proposed simulation methods can be 
applied to any systems irrespectively to the probabil-
ity distribution for the component failure time used.

To be specific, the system reliability perform-
ance after common cause failures can be simu-
lated using survival signature-based Monte Carlo 
method. This double loop simulation method (Du 
& Chen 2004) not only has the advantage of sur-
vival signature to handle complex system reliability 
problems, but can recur to Monte Carlo simulation 
to deal with the uncertainties within the system.

Double loop sampling involves two layers of 
sampling: the outer loop is called the parameter 
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loop since it concerns sampling different values 
for the set of distribution parameters for all of the 
uncertain quantities; while the inner loop goes by 
the name of probability loop because it involves 
sampling from precise probability distribution func-
tions. As a matter of fact, double loop sampling 
implicates sampling from an analytical distribution 
whose parameters have been generated by sampling.

To solve the parameter epistemic imprecision 
within components, it is just need to add an opti-
mization loop around the survival signature-based 
simulation method cited in Section 3.1 to estimate 
the bounds. In other words, it can be done by add-
ing a simple Monte Carlo loop and sampling the 
values of components parameters from uniform 
distributions.

4 NUMERICAL EXAMPLE

Shown in Figure 1 is an arbitrary 13-component 
complex system, which components are arranged 
into five groups. The number within each box 
denotes which group the component belongs to 
while the number outside defines the index of the 
component in the system. The system is assumed 
to be non-repairable and components of the same 
group have the same failure time distribution, as 
defined in Table 2. In the table, an exponential dis-
tribution is defined by its mean (in hours) while a 
Weibull distribution is defined by a set which first 
element is its scale parameter (in hours).

The system is first analysed without CCF using the 
proposed simulation model with the data presented 
in Table 2 and compared to its analytical solution.

It is then re-analysed considering common 
cause failures with all common cause groups are 
active. For this system, the common cause group 
failure matrix MCCG, with and without CCF, can 
be expressed in Equations 6 and 7 respectively. The 
results obtained are shown in Figure 2.

MCCG =




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0 95 0 05 0 0
0 8 0 1 0 05 0 05
1 0 0 0

0 9 0 1 0 0
0 75 0 1 0 1 0 05

. .
. . . .

. .
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

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
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 (6)Figure  1. Complex system with thirteen components 
which belong to four types. The number inside the com-
ponent box represents the type, while the number outside 
the box expresses the component index.

Table 1. Component failure data with precise distribu-
tion parameters.

Compo-
nent  
type

Distribution  
type

Distribution  
parameters

CCF  
parameters

1 Weibull (1.8,2.2) {0.95, 0.05}
2 Exponential 1.2 {0.8, 0.1, 0.05, 0.05}
3 Weibull (2.3,1.6) {1}
4 Weibull (3.2,2.6) {0.9, 0.1}
5 Exponential 2.1 {0.75, 0.1, 0.1, 0.05}

Table 2. Component failure data with imprecise distri-
bution parameters.

Component 
type

Distribution 
type

Distribution 
parameters

CCF  
parameters

1 Weibull ([1.68,1.86],  
[2.08,2.32])

{0.95, 0.05}

2 Exponential [1.07,1.33] {0.8, 0.1,  
0.05, 0.05}

3 Weibull ([2.12,2.51],  
[1.38,1.72])

{1}

4 Weibull ([2.99,3.41],  
[2.51,2.79])

{0.9, 0.1}

5 Exponential [2.01,2.28] {0.75, 0.1,  
0.1, 0.05}

Figure  2. Survival function of the system in Figure  1 
with CCF and without CCF through simulation method, 
along with the system reliability without CCF got by ana-
lytical solution.
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MCCG =
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 (7)

The accuracy and generality of the proposed 
simulation approach are validated by the plots in 
Figure 2, given the agreement between the simula-
tion and analytical results. As shown, the reliability 
of the system reduces drastically when the effects 
of CCF are factored into the analysis. It exempli-
fies the need to consider this realistic aspect of a 
system’s operation in its reliability evaluation.

To deduce the effects of imprecision in the fail-
ure distribution parameters of components on the 
system survival function, the system is analysed 
using the data presented in Table  2. Instead of 
a single curve, the survival function, in this case, 
could be any of an infinite number of curves lying 
within the bounds shown in Figure 3.

5 CONCLUSIONS

Common-Cause Failures (CCF) have an adverse 
effect on the reliability and performance of multi-
component systems. They are normally a conse-
quence of functional couplings between a group of 
components due to a variety of possible reasons. 
Thus, there is an inevitability about the suscepti-
bility of realistic multi-component engineering 
systems to these failures. The need, therefore, to 
incorporate CCF considerations into system anal-
ysis is overwhelming, as the alternative may lead to 
overestimating the reliability of the system.

This paper puts forwards an efficient simulation 
method which bases on the survival signature to 

perform reliability analysis on complex systems 
with common cause failures. In fact, this approach 
extends the applicability of the survival signature 
approach to systems susceptible to common cause 
failures. More importantly, it holds the merits of 
both survival signature methodology and Monte 
Carlo simulation. Therefore, this approach is gen-
eral and allows to know the survival function of the 
system after common cause failures at each time. 
What is more, the probabilistic uncertainty and 
imprecision in components parameters are taken 
into consideration by resorting this general simu-
lation method. The effectiveness and feasibility of 
the proposed approach hasbeen demonstrated by 
the numerical example.
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