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Let g be a pseudo–Riemanian metric on a manifoldV with conventional n+n dimensional
splitting, n ≥ 2, for a nonholonomic (non–integrable) distribution N and consider a
correspondingly adapted linear metric compatible connection D̂ and its torsion T̂ , both
completely determined by g. We prove that there are certain generalized frame and/or
jet transforms and prolongations with (g,V) → (ĝ, V̂) into explicit classes of solutions
of some generalized Einstein equations R̂ic = Λĝ, Λ = const, encoding various types
of (nonholonomic) Ricci soliton configurations and/or jet variables and symmetries, in
particular, subject to the condition T̂ = 0. This allows us to construct in general form
generic off–diagonal exact solutions depending on all space time coordinates on V and
its jet prolongations, via generating and integration functions and various classes of
constants and associated symmetries. We consider an example when exact solutions are
constructed as nonholonomic jet prolongations of the Kerr metrics, with possible Ricci
soliton deformations, and characterized by generalized connections.

Keywords: Nonholonomic manifolds and jets; geometric methods and PDE; Ricci solitons
and Einstein spaces; exact solutions and modified gravity.

1. Nonholonomic jets and (pseudo) Riemannian manifolds

Jets are certain equivalence classes of smooth maps between two manifolds

M, dimM = n, and Q, dimQ = m, when maps are represented by Taylor poly-

nomials7. One writes this as f, g : M → Q: a r-jet is determined at a point u ∈ M

if there is a r-th order contact at u. Two curves γ, δ : R → V have the r-th contact

at zero if for every smooth function ϕ on M the difference ϕ ◦ γ − ϕ ◦ δ vanishes

to r-th order at 0 ∈ R. In this case, we have an equivalence relation γ ∼r δ when

r = 0 means γ(0) = δ(0). If γ ∼r δ, then f ◦ γ ∼r f ◦ δ for every map f : b → Q.

Two maps f, g : V → Q are said to determine the same r–jet at x ∈ M, if for

every curve γ : R → V with γ(0) = x the curves f ◦ γ and g ◦ γ have the r-th

order contact at zero. In such a case, we write jrxf = jrxg, or j
rf(x) = jrg(x). An

equivalence class of this relation is called an r-jets of M into Q. The set of all r–jets

of M into Q is denoted by Jr(M,Q); for an element X = jrxf ∈ Jr(M,Q), the

point x := αX is the source of X and the point f(x) =: βX is the target of X.
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One denotes by πr
s , 0 ≤ s ≤ r the projection jrxf → jsxf of r–jets into s–jets.

All r–jets form a category, the units of which are the r–jets of the identity maps

of manifolds. By Jr
x(M,Q), or Jr

x(M,Q)y, we mean the set of all r-jets of x onto

Q with source x ∈ M, or tangent y ∈ Q, respectively, and we write Jr
x(M,Q)y =

Jr
x(M,Q) ∩ Jr

x(M,Q)y and Lr
n,m = Jr

0 (R
n,Rm)0. In local coordinates xi, we write

∂ǐf := ∂ |̌i|f
(∂x1)i1 ...(∂xn)in

as the partial derivative of a function f : U ⊂ R
n → R, with a

multi-index ǐ of range n, which is am–tuple ǐ = (i1, ..., in) of non-negative integers.

We use |̌i| = i1 + ... + in, with ǐ! = i1!i2!...in!, 0! = 1, and xǐ = (x1)i1 ...(xn)in for

x = (x1, x2, ..., xn) ∈ R
n.

In this work, we study nonholonomic jet prolongations of the geometric ob-

jects in Jr(V,V′)–framework, where boldface letters are used for spaces and ob-

jects adapted to certain non-integrable constraints, with local coordinates uαs =

(xi, ya, ζα
′

α̌1...α̌r
) = (xi, ya, ζas). We use the label s in order to perform a conventional

splitting of dimensions, dim sV = 4 + 2s = 2 + 2 + ... + 2 ≥ 4; s ≥ 0 for conven-

tional finite dimensional (pseudo) Riemannian space sV. The jet coordinates vα
′

α̌1...α̌r

are re–grouped in oriented two shells which allows us to apply the AFDM and to

construct exact solutions for generalized Einstein equations and metrics sg with ar-

bitrary signatures (±1,±1,±1, ...±1). Such shells are determined by nonholonomic

data which transforms into ζα
′

α̌1...α̌r
with symmetric low indices if the constructions

are performed in coordinate bases. Let us establish conventions on (abstract) indices

and coordinates uαs = (xis , yas), for s = 0, 1, 2, 3, .... labelling the oriented number

of two dimensional, 2-d, ”shells” added to a 4–d spacetime. For s = 0 (in a conven-

tional form), we write uα = (xi, ya) and consider such local systems of coordinates:

s = 1 : uα1 = (xα = uα, va1) = (xi, ya, ζa1); s = 2 : uα2 = (xα1 = uα1 , va2) =

(xi, ya, ζa1 , ζa2); s = 3 : uα3 = (xα2 = uα2 , va3) = (xi, ya, ζa1 , ζa2 , ζa3), ... for

i, j, ... = 1, 2; a, b, ... = 3, 4; a1, b1... = 5, 6; a2, b2... = 7, 8; a3, b3... = 9, 10, ... and

i1, j1, ... = 1, 2, 3, 4; i2, j2, ... = 1, 2, 3, 4, 5, 6; i3, j3, ... = 1, 2, 3, 4, 5, 6, 7, 8; ... In brief,

we write u = (x, y); 1u = (u, 1ζ) = (x, y, 1ζ), 2u = ( 1u, 2ζ) = (x, y, 1ζ, 2ζ), ...

2. Jet prolongated Ricci soliton and Einstein equations

A map jrf : M → Jr(M,Q) is called a r-th jet prolongation of f : M → Q. The

set JrQ of all r–jets of the local sections of Y is called the r–th jet prolongation of

Q and JrQ ⊂ Jr(M,Q) is a closed submanifold. Any N–connection structure N on

V determines a r–th jet prolongated N–connection sN on Jr(V,V′) as Whitney

sum

sN : T sV = hV ⊕ vV ⊕ 1vV ⊕ 2vV ⊕ ...⊕ svV,

for a conventional horizontal (h) and vertical (v) “shell by shell” splitting.

r–th jet prolongations induce on Jr(V,V′) a system of N-elongated bases/ par-

tial derivatives, eνs = (eis , eas), and N–adapted differentials, eμs = (eis , eas),with

eis = ∂
∂xis − Nas

is
ðas , eas = ðas = ∂

∂ζas , eis = dxis , eas = dζas + Nas

is
dxis ,
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satisfying anholonomy relations

[eαs , eβs ] = eαseβs − eβseαs = W γs

αsβs
eγs ,

when W bs
isas

= ∂asN
bs
is

and W as

jsis
= JNas

isjs
, where the Neijenhuis tensor, i.e. the

curvature of the r–th jet prolongated N–connection, is

JNas

isjs
= ejs

(
Nas

is

)− eis
(
Nas

js

)
.

On Jr(V,V′) with prolongation of geometric objects from V, we define linear

connection structures in N–adapted form. There are distinguished connection, d–

connection, structures,

sD = {Dαs},D = (hD; vD), 1D = ( 1hD; 1vD), ...,
s−1D = ( s−2hD; s−1vD), sD = ( s−1hD; svD),

preserving under parallelism the N–connection splitting. There are natural r–th jet

prolongations of the torsion, T αs = {Tαs

βsγs
}, and curvature, Rαs

βs
= {Rαs

βsγsδs
},

tensors sD defined on a primeV and elongated in N–adapted form on Jr(V,V′). In
standard r–jet coordinates for Jr(V,V′), uαs = (xi, ya, ζα

′
α̌1...α̌r

), additional contrac-

tion of up-down indices and symmetrization result in very cumbersome coefficient

formulas. A metric structure on sV can be written as a distinguished metric

sg = gisjs(
su) eis ⊗ ejs + gasbs(

su)eas ⊗ ebs .

In nonholonomic N–adapted r–jet variables on natural prolongations from V on

Jr(V,V′), the gradient canonical Ricci jet–solitons are defined by equations4

R̂ βsγs + D̂βsD̂γsκ = λgβsγs . (1)

Our goal is to elaborate on a geometric method for decoupling the equations (1),

which for certain classes of nonholonomic constraints transforms into systems of

nonlinear PDE with possible zero torsion conditions. We are able to find general

classes of solutions when κ is parameterized in such forms that3–7

R̂ij =
hΥ(xk)gij ,

R̂ab =
vΥ(xk, ya)gab, for jet shells: R̂asbs =

svΥ(xk, ya, ζa1 , ..., ζas)gasbs ,

R̂βγ = 0, for β �= γ, R̂βsγs = 0, for βs �= γs.

3. Exact solutions and nonholonomic jet prolongations

The Boyer–Linquist coordinates for the Kerr metric were introduced as (r, ϑ, ϕ, t),

where r = m0(1 + px̂1), x̂2 = cosϑ. The parameters p, q are related to the total

black hole mass, m0 and the total angular momentum, am0, for the asymptotically

flat, stationary and axisymmetric Kerr spacetime. The formulas m0 = Mp−1 and

a = Mqp−1 when p2 + q2 = 1 implies m2
0 − a2 = M2, resulting in

ds2[0] = (dx1′)2 + (dx2′ )2 +A(e3
′
)2 + (C −B

2
/A)(e4

′
)2,

e3
′
= dt+ dϕB/A = dy3

′ − ∂i′(ŷ
3′ + ϕB/A)dxi′ , e4

′
= dy4

′
= dϕ,
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where x1′(r, ϑ), x2′(r, ϑ), y3
′
= t+ ŷ3

′
(r, ϑ, ϕ) + ϕB/A, y4

′
= ϕ, ∂ϕŷ

3′ = −B/A,

for which

(dx1′ )2 + (dx2′)2 = Ξ
(
Δ−1dr2 + dϑ2

)
,

when the coefficients are

A = −Ξ−1(Δ− a2 sin2 ϑ), B = Ξ−1a sin2 ϑ
[
Δ− (r2 + a2)

]
,

C = Ξ−1 sin2 ϑ
[
(r2 + a2)2 −Δa2 sin2 ϑ

]
,

Δ = r2 − 2m0 + a2, Ξ = r2 + a2 cos2 ϑ.

Kerr Ricci soliton deformations and effective vacuum r–jet prolongations:
There are classes of solutions with jet variables describing vacuum ellipsoid space-
time configurations prolongated on two shell jet variables when the source is of type

Υ = λ̃+ ε(Λ̃ +Λ) = 0, with effective gravity mass term μΛ̃=μ2
g| λ|, resulting in el-

lipsoidal off–diagonal configurations in GR. For such metrics, ε = − μΛ̃/(Λ̃+Λ) � 1
can be considered as an eccentricity parameter. The corresponding models of off–

diagonal jet interior gravitational interactions are with f–modifications when Λ̃

compensates nonholonomic contributions via effective constant Λ̃ and relates the
constructions to massive gravity deformations of a Kerr solution. This subclass of
solutions for ε–deformations into vacuum solutions is parameterized by

ds2 = eψ(xk′
)(1 + εχ(xk

′
))[(dx1

′
)2 + (dx2

′
)2]

− Φ̃2A

4 μΛ̃
[1 + εχ3′ ][dy

3′ +
(
∂k′ ηn(xi

′
)− ∂k′(ŷ3

′
+ ϕB/A)

)
dxk

′
]2

+
(∂ϕΦ̃)

2η4′
μΛ̃Φ̃2

(C − B
2

A
)[1 + εχ4′ ][dϕ+ (∂i′ Ã+ ε∂i′

1Ǎ)dxi
′
]2

+
1Φ̃2

4( Λ̃ + Λ)

[
dζ5 + (∂τ

1n)duτ
]2

+
(ð6

1Φ̃)2

( Λ̃ + Λ) 1Φ̃2

[
dζ6 + (∂τ

1Ǎ)duτ
]2

+
2Φ̃2

4 (Λ̃ + Λ)

[
dζ7 + (ðτ1

2n)duτ1
]2

+
(ð8

2Φ̃)2

( Λ̃ + Λ) 2Φ̃2

[
dζ8 + (ðτ1

2Ǎ)duτ1
]2

.

The jet components are generated by functions 1Φ̃, 2Φ̃ and N–coefficients mod-

ified effective jet prolongated sources, Λ → Λ̃ + Λ. This result shows that inte-

rior jet interactions can mimic ε–deformations in order to compensate contribu-

tions from f–modifications and even effective vacuum configurations for the 4–d

horizontal part1,2,4. In general, such effective vacuum metrics encode possible jet

modifications/ polarizations of physical constants and coefficients of metrics under

nonlinear polarizations of an effective 8-d vacuum distinguishing 4–d nonholonomic

configurations and Ricci soliton or massive gravity contributions7. Jet variables

and f–modified contributions are described by terms proportional to eccentricity ε.

Future research on extended on jet variables (super) gravity and cosmological

solutions in modified gravity theories a planned following recent works on supersting

gravity and modified gravity theories8,9.
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