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Renormalization of the ladder light-front Bethe-Salpeter equation in the Yukawa model
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The reduction of the two-fermion Bethe-Salpeter equation in the framework of light-front dynamics is
studied for the Yukawa model. It yields auxiliary three-dimensional quantities for the transition matrix and the
bound state. The arising effective interaction can be perturbatively expanded in powers of the coupling con-
stant gs allowing a defined number of boson exchanges; it is divergent and needs renormalization; it also
includes the instantaneous term of the Dirac propagator. One possible solution of the renormalization problem
of the boson exchanges is shown to be provided by expanding the effective interaction beyond single boson
exchange. The effective interaction in ladder approximation up to ordergs

4 is discussed in detail. It is shown
that the effective interaction naturally yields the ‘‘box counterterm’’ required to be introducedad hocprevi-
ously. The covariant results of the Bethe-Salpeter equation can be recovered from the corresponding auxiliary
three-dimensional quantities.
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I. INTRODUCTION

The Bethe-Salpeter equation~BSE! @1# describes interact
ing two-particle systems in the framework of a relativis
field theory. The transition matrixT of two-particle scatter-
ing satisfies the inhomogeneous BSE

T5V1VG0
FT. ~1!

In the above equationG0
F is the disconnected Green’s fun

tion for two fermions. It is the Green’s function for tw
noninteracting particles when self-energy contributions
neglected. The two-fermion free Green’s function,

G0
F5

i ~k”̂ 11m1!

k̂1
22m1

21 io

i ~k”̂ 21m2!

k̂2
22m2

21 io
, ~2!

can be split up according to

G0
F5Ḡ01DG0

F , ~3!

where we define

Ḡ05~k”̂ 1on1m1!~k”̂ 2on1m2!G0 , ~4!

G05
i

k̂1
22m1

21 io

i

k̂2
22m2

21 io
. ~5!

In Eqs.~2!, ~4!, and~5!, k̂i
m is the off-mass-shell momentum

operator acting on the coordinates of particlei with massmi ,
the hat on the variable indicates its operator character;

light-front components arek̂ion
2 5(kŴ i'

2 1m1
2)/ k̂i

1 , and k̂i
1

5 k̂i
01 k̂i

3 . In Eq. ~3! Ḡ0 is an auxiliary fermion operator in
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which the spin-dependent part is formed from on-mass s
momenta andG0 is the covariant bosonlike Green’s func
tion, whereasG0

F contains all particular divergences an
subtleties connected with fermion motion. In light-front c
ordinates,DG0

F takes the form

DG0
F5

g1
1

2k̂1
1

k”̂ 2on1m2

k̂2
22m2

21 io
1

k”̂ 1on1m1

k̂1
22m1

21 io

g2
1

2k̂2
1

1
g1

1

2k̂1
1

g2
1

2k̂2
1

~6!

and carries the instantaneous part of the fermion propaga
in light-front time; it yields singular results underk1

2 inte-
gration.

The inhomogeneous termV in Eq. ~1! is the complete
interaction, irreducible with respect to two-particle propag
tion. The two-particle bound state with total four-momentu
KB , KB

25MB
2 , is characterized by the vertexuG) at the

bound-state pole ofT, which is a solution of the homoge
neous BSE

uG)5VG0
FuG), ~7!

related to the Bethe-Salpeter amplitude of the bound stat

uC)5G0
FuG). ~8!

For convenience we use the bra-ket notation with rou
brackets to represent functions which can be written in eit
momentum or coordinate spaces. The vertex functionuG)
and Bethe-Salpeter amplitudeuC) have the full four dimen-
sional dependence on the coordinates of both particle.
normalization condition has to be defined to determineuC)
in full from the solution of Eq.~7!. The operatorsOa5T,
G0, or V, as well asuC) anduG) carry a four-dimensionald
function in momentum space due to the conservation of
total two-particle four-momentumK in Eqs.~1! and ~7!:

~K8uOauK !5d~K82K !Oa~K !, ~9!
©2001 The American Physical Society03-1
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~K8uC!5d~K82KB!uCB&, ~10!

~K8uG!5d~K82KB!uGB&. ~11!

The reduced quantitiesuCB&, uGB& and theOa(K) are func-
tions of the internal variables expressed in terms of the fo
dimensional momentumkm or coordinatexm and depend
parametrically onK. They satisfy Eqs.~1! and ~7! in a cor-
responding fashion.

The field theoretic scattering amplitude and the bou
state vertex function are the solutions of the BSEs~1! and
~7!. However, the solution of the BSE constitutes a diffic
calculational task for any realistic field theory. In practic
calculations, the driving termV(K) has to be truncated to
low orders of particle exchange@2–7#. In bosonic models,
the issue of the convergence of the truncation to low ord
of intermediate particle propagation has been studied
cently in the two boson bound system@8–10# as well as in
the scattering@11#. In fermionic models, the papers by Fud
@12# discuss one-boson exchange models in the ladder
proximation in both light-front and instant-form dynamic
without emphasis, however, to the underlying field-theore
framework. The field theoretic approach in the light-front
also being used to describe finite nuclei@13# and nuclear
matter with nucleon-nucleon correlations obtained at
level of the one boson exchange approximation@14#.

In this work, we consider the two fermion system in t
light front with one-boson exchange in the~311! Yukawa
model, for which the interaction Lagrangian density is giv
by

LI5gSC̄Cs. ~12!

The fermion corresponds to the fieldC with rest massesm
and the exchanged boson to the fields with massm. The
coupling constant isgS .

The light-front Tamm-Dancoff approximation, propose
in Ref. @4#, corresponds to the truncation of the light-fro
Fock space, where the light-front Hamiltonian is diagon
ized. In the one-boson-exchange aproximation of the tw
fermion bound state, the wave function has components o
in the two-fermion and in the two-fermion plus one-bos
sectors of the Fock space. The coupled equations in the F
space can be reduced to a two-fermion Bethe-Salpeter e
tion by writing the three particle component of the wa
function in terms of the projection of the wave function
the two-fermion sector. In this case, the kernel of the redu
Bethe-Salpeter equation contains the virtual state th
particle propagation, which besides the fermion self-ene
includes the one-boson-exchange interaction in the l
front.

The kernel of the light-front Tamm-Dancoff@4# reduced
Bethe-Salpeter equation for the vertex function for the o
boson-exchange interaction in ladder approximation, ign
ing self-energy contributions, has a divergence proble
since the kernel becomes independent of the integrated tr
verse momentum when it goes to infinity@15#. The
asymptotic behavior of the two-fermion bound state wa
function does not render the integration over the inter
06400
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transverse momentum finite for some of its spin compone
@15#. To solve this problem in the~311! Yukawa model in
the lowest order of the light-front Tamm-Dancoff approx
mation, without self-energy terms, the introduction of
counterterm to renormalize the integral equation was p
posed in Ref.@5#. The transverse momentum cutoff depe
dence of the bound-state mass is reduced or vanishes
pending on the procedure chosen to renormalize the lig
front integral equation@5#. A lowest order perturbative
analysis performed in Ref.@5#, provides the so-called ‘‘box
counterterm’’ which is nonlocal, and reduced considera
the cutoff dependence of the bound-state mass. Referenc@5#
also derives an additional asymptotic counterterm wh
completely removes the cutoff dependence.

In the present work, we are concerned with the origin
the perturbative counterterms of the light-front ladder Bet
Salpeter equation for the Yukawa model. We will show th
using the systematic expansion of the Bethe-Salpeter e
tion in the light-front developed in Ref.@8#, the kernel of the
auxiliary integral equation, expanded up to ordergS

4 , natu-
rally yields the ‘‘box counterterm’’@5# and a well defined
finite part. We derive the ‘‘box counterterm’’ from the con
tribution of the intermediate state light-front virtual propag
tion of four particles~two sigmas and two fermions!, includ-
ing the instantaneous terms of the fermion propagators
ordergS

4 . Although, we have exemplified the systematic e
pansion of the kernel of the projected Bethe-Salpeter eq
tion in the light-front up to ordergS

4 , the construction of the
kernel of the auxiliary integral equation can be performed
principle, to any desired order in the perturbative expans
It is remarkable, that the cancellation of singularities, exe
plified at ordergS

4 , occurs at all orders. This is because, t
perturbative expansion of the light-front scattering amplitu
in powers of the coupling constant, obtained from the lig
front T-matrix equation with the kernel calculated up to t
same order, necessarily reproduces the perturbative cova
ladder scattering amplitude at that order ofgS . Consequently
the ladder approximation to the Bethe-Salpeter equation
the light-front does not need a new class of couterterms.
the best of the authors’ knowledge, no other work h
achieved such an explicit systematic reduction of a giv
four-dimensional equation of a fermionic model to the lig
front.

Section II discusses three-dimensional auxiliary quanti
from which the covariant solutions of the BSE can be o
tained. The auxiliary quantities are operators and functi
defined on the light front. Section III gives our theoretic
apparatus in full for the Yukawa model. Sections II and
follow closely our previous paper on the bosonic model@8#
with the aim of presenting the underlying formalism of th
work in complete form. Section IV, which is the central pa
of the present work, discusses the effective thr
dimensional interaction in second order of the coupling c
stantgs , and shows that the perturbative ‘‘box couterterm
appears naturally in the systematic expansion of the effec
interaction. Our conclusions are given in Sec. V.

II. TWO-PARTICLE AUXILIARY FREE GREEN’S
FUNCTION G̃0„K…

The transition matrixT(K) and the bound-state amplitud
uCB& of the covariant BSE can be obtained with the help
3-2
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RENORMALIZATION OF THE LADDER LIGHT-FRONT . . . PHYSICAL REVIEW C 63 064003
a convenient auxiliary Green’s functionG̃0(K) @16#, which
will be chosen to include explicitly the propagation of th
two-fermion system between two light-front hyperplanes
x15x01x35 const, as precisely defined by Eq.~30! and
discussed at the end of this section. This and the follow
section generalize the discussion presented in Ref.@8# in the
context of bosons to fermions. According to Ref.@16#, we
have

T~K !5W~K !1W~K !G̃0~K !T~K !, ~13!

uGB&5W~KB!G̃0~KB!uGB&, ~14!

uCB&5G0
F~K !uGB&, ~15!

where the driving termV(K) is changed toW(K), given by
V(K) according to the integral equation

W~K !5V~K !1V~K !@G0
F~K !2G̃0~K !#W~K !. ~16!

The normalization condition for the bound-state Beth
Salpeter amplitudeuCB& is

lim
K2→KB

2
K CBU G0

F~K !212G0
F~KB!21

K22KB
2

2
V~K !2V~KB!

K22KB
2 UCBL

51. ~17!

It involves the original driving termV(K) @17#. As was the
case for the bosonic light-front propagator in the ladder
06400
f

g

-

-

proximation@8#, the aim here is to chooseG̃0(K) such that
the integral equation~16! does not have to be solved in ful
but that a few terms of the infinite series

W~K !5V~K ! (
n50

`

@„G0
F~K !2G̃0~K !…V~K !#n,

W~K !5V~K !1V~K !„G0
F~K !2G̃0~K !…V~K !1•••

~18!

will be sufficient for a converged solution of the BSE. Th
auxiliary Green’s function G̃0(K) remains a four-
dimensional one, but its choice may sacrifice the covaria
which G0

F(K) possesses.
The dynamics of the interacting two-particle system c

be fully described by its propagation between hyperplan
the hyperplanesx05const in instant-form dynamics, the hy
perplanesx15x01x35const in light-front dynamics@18#.
The null-plane defined byx150 is special since it is left
invariant under seven kinematical boosts, while thex1

5const hyperplanes scale under light-front boosts. In c
trast, the free Green’s function of the BSE depends on
individual timesxi

0 or on the individual light-front timesxi
1 .

According to Eq.~4! the propagating partḠ0 of the free
Green’s function in light-front coordinates,ki5(ki

25ki
0

2ki
3 ,ki

15ki
01ki

3 , kW')
he
^x18
1x28

1uḠ0ux1
1x2

1&52
1

~2p!2 E dk1
2dK2e2( i /2)k1

2(x18
1

2x28
1

2x1
1

1x2
1)e2( i /2)K2(x28

1
2x2

1)

3
~k”̂ 1on1m1!~k”̂ 2on1m2!

k̂1
1~K12 k̂1

1!S k1
22

kŴ1'
2 1m1

22 io

k̂1
1

D S K22k1
22

kŴ2'
2 1m2

22 io

K12 k̂1
1

D ~19!

~only its dependence on the individual light-front ‘‘times’’xi
1 is made explicit!, reduces, for propagation between t

hyperplanesx1
15x2

15x1 andx18
15x28

15x81, to

^x81x81uḠ0ux1x1&5E dK2

2p
e2( i /2)K2(x812x1)E dk18

2dk1
2^k18

2uḠ0~K !uk1
2&, ~20!

[E dK2

2p
e2( i /2)K2(x812x1)uḠ0~K !u. ~21!

In Eq. ~20!, the notation

^k18
2uḠ0~K !uk1

2&52
d~k18

22k1
2!

2p

~k”̂ 1on1m1!~k”̂ 2on1m2!

k̂1
1~K12 k̂1

1!S k1
22

kŴ1'
2 1m1

22 io

k̂1
1

D S K22k1
22

kŴ2'
2 1m2

22 io

K12 k̂1
1

D ~22!

is introduced, as well as
3-3
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uḠ0~K !uªE dk18
2dk1

2^k18
2uḠ0~K !uk1

2& ~23!

5 iu~K12 k̂1
1!u~ k̂1

1!
~2m1!~2m2!L1~ k̂1on!L1~ k̂2on!

k̂1
1~K12 k̂1

1!~K22 k̂1on
2 2 k̂2on

2 1 io !
~24!

ªg0~K !, ~25!
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whereK1.0 can be chosen without any loss of generali
and L1( k̂on)5(k”̂ on1m)/2m is the positive energy spino
projector. The operatorg0(K) is three-dimensional and de

pends on the kinematic variables (k̂i
1 ,kŴ i') only. It is a glo-

bal propagator, since it mediates propagation between hy
planes according to Eq.~21!, not allowing different light-
front times for each particle. It does not possess exp
covariance but is still covariant under light-front boosts. T
global propagatorg0(K) allows only physical particle propa
gation which has the plus component of the momentum p
tive, and contains only intermediate two-body states, w
K1.0. This is an advantage of using light-front dynamic
For example, in a system in which the lowest Fock-st
component is composed of a particle and antiparticle,
individual physical plus momentum, as well as the total,
positive and in this caseg0(K) propagates only particle an
antiparticle intermediate two-body states.

The matrix element̂ k81
2uḠ0(K)uk1

2& of Eq. ~22!, in
which only the dependence onk1

2 is explicit, is still an op-
erator with respect to functions of the ‘‘kinematic’’ variable

( k̂1
1 ,kŴ1'), k̂1on

2 5(kŴ1'
2 1m1

2)/ k̂1
1 , and k̂2on

2 5@(KW '2kŴ1')2

1m2
2#/(K12 k̂1

1). The vertical bar indicates that the depe
dence onk1

2 is integrated out in Eq.~23!. The bar on the left
of the Green’s function represents integration onk1

2 in the
bra-state, the bar on the right in the ket state. The bar b
placed on one side only of a Green’s function represents
integration ofk1

2 on that side alone.
The basis states for spinorial functions of the kinemati

light-front variables are defined only for the positive ener
sector of the spinor space by

^x2xW'uk1kW's&5e2 i (
1
2 k1x22kW'•xW')u~k,s!, ~26!

where the light-front spinor is

u~k,s!5
~k” on1m!

A2k12m
g1g0S xs

0 D , ~27!

with xs being the two-component Pauli spinor. The ligh
front spinors are normalized such that the positive-ene
spinor projector is

L1~kon!5(
s

u~k,s!ū~k,s!. ~28!
06400
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The basis states are eigenfunctions of the momentum op

tors (k̂i
1 ,kŴ i') and of the free energy operatork̂ion

2 acting on

functions of the kinematical variables. The statesuk1kW's&
form a complete basis in the space of positive energy sp
functions of the kinematical variables, e.g.,

(
s
E dk1d2k'

2~2p!3
uk1kW's&^k1kW'sug051. ~29!

The auxiliary four-dimensional Green’s functionG̃0(K)
introduced in Eqs.~13!–~18! is defined, according to Ref
@8#, such that the light-front propagators in higher Fo
states appear explicitly in the kernel of integral equation
the auxiliary transition matrix, which will be given in th
next section. It is written as

G̃0~K !ªḠ0~K !ug0~K !21uḠ0~K !. ~30!

The reduced Green’s functiong0(K) is defined only in the
positive energy spinor subspace. It has an inverse there,
the inverseg0(K)21 following from the definition in Eq.
~25! as

g0~K !21
ª2 iu~K12 k̂1

1!u~ k̂1
1!L1~ k̂1on!L1~ k̂2on!

3 k̂1
1~K12 k̂1

1!~K22 k̂1on
2 2 k̂2on

2 1 io !. ~31!

The auxiliary Green’s function has the following usef
properties:

G̃0~K !u5Ḡ0~K !u, ~32!

uG̃0~K !5uḠ0~K !, ~33!

uG̃0~K !u5uḠ0~K !u, ~34!

and defines a three-dimensional light-front transition ma
t(K) through

u@G̃0~K !1G̃0~K !T~K !G̃0~K !#u

5g0~K !1g0~K !t~K !g0~K !. ~35!

We remind the reader that the bar signifies the integration
the k1

2 dependence of operators. Explicit matrix element
the auxiliary quantities are computed in Appendix A.
3-4
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III. LIGHT-FRONT TRANSITION MATRIX
AND BOUND-STATE WAVE FUNCTION

Following Ref.@8#, the four-dimensional transition matri
T(K) can be obtained from the three-dimensional light-fro
one t(K) defined by Eq.~35!. The latter can be written as

t~K !5g0~K !21uḠ0~K !T~K !Ḡ0~K !ug0~K !21, ~36!

by first iterating the integral equation, Eq.~13!, once,

T~K !5W~K !1W~K !@G̃0~K !1G̃0~K !T~K !G̃0~K !#W~K !,

and using the definition and properties ofG̃0(K), Eq. ~30!,
and Eq.~36!. The on-mass-shell matrix elements ofT(K),
which define the two-fermion scattering amplitude are id
tical to the ones obtained fromt(K), as follows directly from
Eq. ~36! and the analytical properties of thek2 integration
discussed in Appendix A. The scattering operatorT(K) is
determined byt(K) as

T~K !5W~K !1W~K !Ḡ0~K !

3u@g0~K !211t~K !#uḠ0~K !W~K !. ~37!

The light-front transition matrixt(K) is the solution of the
three-dimensional integral equation

t~K !5w~K !1w~K !g0~K !t~K !, ~38!

obtained from Eqs.~36! and ~13!, where the driving term
w(K) is obtained from the four-dimensional interactio
W(K) of Eq. ~16! according to

w~K !ªg0~K !21uḠ0~K !W~K !Ḡ0~K !ug0~K !21. ~39!

It is important to notice that the on-k2-shell matrix ele-
ments of the light-front scattering amplitude, obtained fro
the perturbative solution of Eq.~38!, match exactly the ma
trix elements of the perturbative covariant ladder scatter
amplitude for on-mass-shell fermions at the same orde
gS . The reason is the equality expressed by Eq.~36! together
with the effective interactionw(K), from Eq. ~39!, calcu-
lated at the same perturbative order ingS . We should also
consider that in the evaluation of the matrix elements of
~36! between states on thek2 shell, the inverse of the globa
propagatorg0(K) cancels exactly the effect of the operat
Ḡ0(K), as discussed in Appendix A, and the right-side b
comes equal to the matrix element ofT(K) between on-
mass-shell states.

If a bound-state pole of the transition matrixT(K) exists
at total four momentumKB , KB

25MB
2 , it is also present in

the three-dimensional transition matrixt(K) at exactly the
sameKB , due to Eq.~36!. The vertex functionugB& of the
bound-state is the solution of the homogeneous th
dimensional equation

ugB&5w~KB!g0~KB!ugB&. ~40!
06400
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The four-dimensional vertex functionuGB& of the BSE at the
bound-state pole can be obtained fromugB& by using Eq.
~37!,

uGB&5W~KB!Ḡ0~KB!uugB&. ~41!

The BSE bound-state amplitude is found from the ver
function as

uCB&5G0
F~KB!W~KB!Ḡ0~KB!uugB&. ~42!

The BSE bound-state vertex functionuGB& is related to
the three-dimensional light-front wave functionufB&, de-
fined by

ufB&ªg0~KB!ugB& ~43!

and satisfying

ufB&5g0~KB!w~KB!ufB&, ~44!

through the projection onto the hyperplanex150

E dk1
2^k1

2uḠ0~K !uGB&5ufB&. ~45!

This result follows immediately from the properties of th
vertex and wave functions, Eqs.~40!, ~41!, and ~43!. The
auxiliary bound-state wave functionufB& is the projection of
Ḡ0(K)uGB&, to equal individual light-front timesxi

15x1,
taken on the hyperplanex150. The extraction of the instan
tantaneous terms of the fermion propagator allow the pro
tion of the remaining part of the Bethe-Salpeter amplitu
onto equal individual light-front times.

When predicting physical observables, we may eith
work directly with covariant operators, usinguCB& and/or
the transition matrixT(K) of the BSE, or we may derive
effective operators suited to the context of the thre
dimensional light-front bound stateufB& and/or the three-
dimensional light-front transition matrixt(K). We have dis-
cussed, in the context of a bosonic system@8#, an example of
the utility of the three-dimensional light-front wave-functio
for determining the bound-state matrix element of the el
troweak currentJ m(Q) in the elastic process. We repeat th
basic steps in the fermion case in Appendix B.

We note that the normalization condition of the Beth
Salpeter amplitudeuCB&, Eq. ~17!, can be rewritten as the
normalization condition of its three-dimensional light-fro
versionufB&. The three-dimensional normalization conditio
is found by inserting Eq.~B2! in Eq. ~17! taking into account
Eq. ~43!.

IV. SOLUTION OF THE BETHE-SALPETER EQUATION
IN THE LADDER APPROXIMATION

We discuss a possible calculational strategy for solv
the BSE in the ladder approximation here. Within the sp
of this paper, we consider three-dimensional auxiliary qu
tities, i.e., of the bound-state vertexugB& of Eq. ~40! and the
transition matrixt(K) of Eq. ~38!. The steps fromugB& to the
3-5
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four-dimensional BS bound-state vertexuGB& and bound-
state amplitudeuCB& and fromt(K) to the four-dimensiona
transition matrixT(K) should be carried out only when th
full covariant results are required.

FIG. 1. Light-front time ordered diagram forw(2)(K) represent-
ing the light-front time ordered view of ones exchange.
06400
The auxiliary quantitiesugB& and t(K) are determined by
the effective interactionw(K), which has an expansion in
powers of the coupling constantgS ,

w~K !5 (
n52

`

w(n)~K !. ~46!

It is hoped that this expansion converges rapidly. We the
fore study its expansion up to ordergS

4 ,

w~K !5w(2)~K !1w(4)~K !. ~47!

Both contributions to Eq.~47! are given in terms of the driv-
ing termV(K) of the BSE, using Eqs.~18! and ~39!, as
el

ial and
the
further

s

the

n as
w(2)~K !5g0~K !21uḠ0~K !V~K !Ḡ0~K !ug0~K !21, ~48!

w(4)~K !5g0~K !21uḠ0~K !V~K !G0
F~K !V~K !Ḡ0~K !ug0~K !212g0~K !21uḠ0~K !V~K !G̃0~K !V~K !Ḡ0~K !ug0~K !21

5g0
21~K !uḠ0~K !V~K !@Ḡ0~K !2Ḡ0~K !ug0

21~K !uḠ0~K !#V~K !Ḡ0~K !g0
21~K !u

1g0
21~K !uḠ0~K !V~K !DḠ0

F~K !V~K !Ḡ0~K !ug0
21 . ~49!

Equations~40! and ~38! for the vertex ugB& and the transition matrixt(K) are integral equations with the kern
w(K)g0(K). A common technique for solving the homogeneous equation~40! for ugB& or the inhomogeneous one~38! for
t(K) is to iterate that kernel. With the approximation~47! for the effective interactionw(K) up to ordergS

4 , the once-iterated
kernel can be written and rearranged as

w~K !g0~K !1@w~K !g0~K !#25$w(2)~K !1w(4)~K !1@w(2)~K !1w(4)~K !#g0~K !@w(2)~K !1w(4)~K !#%g0~K !

5$w(2)~K !1@w(4)~K !1w(2)~K !g0~K !w(2)~K !#1@w(2)~K !g0~K !w(4)~K !

1w(4)~K !g0~K !w(2)~K !#1w(4)~K !g0~K !w(4)~K !%g0~K !. ~50!

The discussion of this section will mainly be concerned with the contribution@w(4)(K)1w(2)(K)g0(K)w(2)(K)# of order
gS

4 . We will show that the two terms in this contribution have singularities which cancel. Thus the need for an artific
ad hoccounterterm forw(2)(K)g0(K)w(2)(K), introduced in Ref.@5#, does not exist. We demonstrate the cancellation of
two singularities next. In our opinion it is the most important observation of this section. However, we observe without
discussion that, in order to cancel the transverse singularities ofw(2)(K)g0(K)w(4)(K)1w(4)(K)g0(K)w(2)(K)
1w(4)(K)g0(K)w(4)(K), the expansion of Eq.~50! should be performed up to@w(K)g0(K)#3 with the effective interaction
expanded up to ordergS

6 .
The operatorw(2)(K) ~see Fig. 1! is computed and discussed in Appendix C, the operatorw(4)(K) in Appendix D. The

operator w(4)(K) is not finite and it is divided in Appendix D into the two terms of Eq.~49!, w(4)(K)5wprop
(4) (K)

1winst
(4) (K). Due to the propagator difference of@Ḡ0(K)2Ḡ0(K)ug0(K)21uḠ0(K)# in wprop

(4) (K), the reducible fourth order
term,w(2)(K)g0(K)w(2)(K), does not occur inw(4)(K). The second term ofw(4)(K), i.e.,winst

(4) (K), contains the instantaneou

part DḠ0
F of the free two-fermion propagator.

The three-dimensional quantities are written in the basis of light-front kinematic momenta of fermion 1(k1
1 ,kW1'). All

operators also depend on the total momentumK for which KW '50 is chosen without any loss of generality. The mass of
interacting system isM25K2 with K1.0. It is then more convenient to use the basis (x,kW1') with xªk1

1/K1 for compu-
tations. For the sake of simplicity in the notation, the matrix element of the effective interaction is writte
w(y,kW1'8 ;x,kW1')5^k18

1kW1'8 uw(K)uk1
1kW1'&.

The perturbative ‘‘box counterterm,’’ according to Ref.@5#, is given in terms of the divergent part of the operatorw(ITE)

5w(2)(K)g0(K)w(2)(K),
3-6
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w(ITE)~y,kW1'8 ;x,kW1'!52
1

~2p!3 E d2p1'dzu~L2upW 1'u!
2z~12z!

w(2)~y,kW1'8 ;z,pW 1'!w(2)~z,pW 1' ;x,kW1'!

M22
pW 1'

2 1m2

z~12z!
1 io

. ~51!

The ‘‘box counterterm’’w(BCT) is theL→` limit of 2w(ITE), and takes the form

w(BCT)~y,kW1'8 ;x,kW1'!52
~gS!4

8~2p!2~K1!2
ln LL1~k1on8 !g1

1L1~k1on!L1„~K2k18!on…g2
1L1„~K2k1!on…

3H u~x2y!F x2y

~12y!x
2

1

x
2

ln~12y!

xy
2

1

12y
2

ln x

~12y!~12x!G1u~y2x!@x↔y#J . ~52!

Using thatū(k8,s8)g1u(k,s)5Ak81k1/m, the matrix element of the effective interaction can be written as

ū~k18 ,s18!ū~k28 ,s28!w(BCT)~y,kW1'8 ;x,kW1'!u~k1 ,s1!u~k2 ,s2![w(BCT)~y;x!,

since it does not depend on the spin projections and on the transverse momentum. It is given by

w(BCT)~y;x!52
~gS!4

8~2pm!2
Ay~12y!x~12x!

3 ln LH u~y2x!F y2x

~12x!y
2

1

y
2

ln~12x!

xy
2

1

12x
2

ln y

~12x!~12y!G1u~x2y!@x↔y#J . ~53!

In short, the divergent part of Eq.~53! can be compared to the ‘‘box counterterm’’ obtained in Ref.@5# and, up to a phase spa
factor and a factor ofi 2, it agrees with the corresponding formula of that work.

The second order effective interaction, Eqs.~D12!–~D21!, is derived in detail in Appendix D. Thed2p1' integrations in the
matrix elements of the effective interaction in ordergS

4 diverge logarithmicaly when the external momentum are kept fi
They must be regularized and, to do this, we use a transversal momentum cutoffL. For L→`, the sum of the effective
interaction terms reproduce the counterterm presented in Ref.@5# and given by Eq.~53!.

The contribution to the kernel from the interaction evaluated at ordergS
4 has two types of terms,w(4)5wprop

(4) 1winst
(4) . The

first termwprop
(4) comes from the propagating part of the Dirac propagators of Fig. 2~a!, obtained from Eq.~D12! as detailed in

Appendix D. It includes the virtual four-body propagation. The second type comes from the contribution of the instan
terms,winst,a

(4) (a51, . . . ,8) obtained from Eqs.~D14!–~D21!. The diagrams of Figs. 2~b!–2~d! represent schematically th
contribution of the instantaneous term of the Dirac propagator to the effective interaction. The diagram in Fig. 2~b! represents
the effective interaction fora5124; Fig. 2~c! represents the effective interaction fora55 and 6; and Fig. 2~d! represents th
effective interaction fora57 and 8. The effective interaction at order (gS)4 is

w(4)5wprop
(4) 1 (

a51

8

winst,a
(4) . ~54!

The matrix elements of the divergent part of each component of the effective interaction are given below. They do no
on the spin projection nor on the transverse momentum, so that

ū~k18 ,s18!ū~k28 ,s28!wprop/ inst
(4) ~y,kW1'8 ;x,kW1'!u~k1 ,s1!u~k2 ,s2![wprop/ inst

(4) ~y;x!.

The divergent part of the effective interaction at order (gS)4 due to the light-front four-body intermediate state propaga
is

wprop
(4) ~y;x!5

g4

8~2pm!2
Ay~12y!x~12x!ln L

3H u~x2y!

~12y!~x2y!x Fx2y2~12y!~12x!ln
~12y!

~12x!
1xy ln

y

xG1u~y2x!@x↔y#J . ~55!

The divergent part of the effective interaction at order (gS)4 due to the instantaneous terms of the Dirac propagator is g
as the sum of
064003-7
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winst,1
(4) ~y;x!1winst,2

(4) ~y;x!52
g4

8~2pm!2
Ay~12y!x~12x!ln L

3H u~x2y!

~12y!~x2y! Fy ln
y

x
1~12y!ln

~12y!

~12x!G1
u~y2x!

y~y2x! Fy ln
y

x
1~12y!ln

~12y!

~12x!G J , ~56!

winst,3
(4) ~y;x!1winst,4

(4) ~y;x!52
g4

8~2pm!2
Ay~12y!x~12x!ln L

3H u~x2y!

x~x2y! Fx ln
x

y
1~12x!ln

~12x!

~12y!G1
u~y2x!

~12x!~y2x! F ~12x!ln
12x

12y
1x ln

x

yG J , ~57!

winst,5
(4) ~y;x!1winst,6

(4) ~y;x!5
g4

8~2pm!2
Ay~12y!x~12x!ln L

3H u~x2y!

~12x!~12y!
ln x1

u~y2x!

~12x!~12y!
ln y1

u~y2x!

xy
ln~12x!1

u~x2y!

xy
ln~12y!J , ~58!

and

winst,7
(4) ~y;x!1winst,8

(4) ~y;x!5
g4

8~2pm!2
Ay~12y!x~12x!ln LH u~x2y!

~x2y!
ln

x~12y!

y~12x!
1

u~y2x!

~y2x!
ln

~12x!y

~12y!xJ . ~59!

Many cancellations occur in the sum of the divergent terms, Eqs.~55!-~59!, of the effective interaction in order (gS)4. The
final result is

w(4)~y;x!52
~gS!4

8~2pm!2
Ay~12y!x~12x! ln L

3H u~y2x!F y2x

~12x!y
2

1

y
2

ln~12x!

xy
2

1

12x
2

ln y

~12x!~12y!G1u~x2y!@x↔y#J , ~60!
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which exactly matches the result found for the ‘‘box cou
terterm,’’ w(BCT)(y;x), in Eq. ~53!.

The three-dimensional integral equation for the ver
function ugB&, with the effective interaction expanded up
fourth order in the coupling constantgs , is developed in
Appendix E. It is given by

ugB&5@w(2)~KB!1w(4)~KB!#g0~KB!ugB&. ~61!

We remind the reader that, although the effective inter
tion w(2)(KB) is well-behaved, the kernel@w(2)(KB)#g0(KB)
decreases only weakly like,uk1'u22 for large momenta.
However, since some spin components of the vertexugB&
may become constant for large momenta, due to quite g
eral considerations given in Ref.@5#, converged solutions o
Eq. ~61!, with only w(2)(KB) cannot be obtained withou
regularizing the integral equation.

In a physically sound but mathematically nonconverg
theory, the suppression of large momenta by cutoffs is
acceptable brute-force method of avoiding singulariti
Regularization by cutoffs is considered a rough approxim
tion to the regularization of physics processes, too comp
to be taken into account explicitly. The prediction of obse
06400
-

x

-

n-

t
n
.
-
x
-

ables depends on these cutoffs. The cutoffs are tuned to s
of the observables, giving the regularized theory predict
power with respect to other observables. The need for re
larization is different for the field-theoretic problem at han
defined by the interaction Langrangian of Eq.~12!. It is
known that a four-dimensional bound state exists for
BSE in the ladder approximation, without any regularizati
by cutoff. If singularities occur in the steps chosen to obt
that four-dimensional bound state, the calculation proced
should be rearranged in order to avoid them completely o
balance them naturally.

The projection of the ladder Bethe-Salpeter equation
the light-front is performed systematically by the expans
in powers ofgS of the reduced interactionw(K) according to
Eqs. ~18! and ~39!. The kernel of the projected bound sta
equation for the vertex function, Eq.~40!, can in principle be
calculated to any ordern of gS . The ladder light-front Bethe-
Salpeter equation for the two-fermion bound-state in
Yukawa model, with the kernel including only intermedia
three-particle states, must be renormalized@5#. We have
shown above that the perturbative counterterms require
renormalize it, arises naturally in the systematic expansio
the interactionw(K) given in Eq.~18!. However, it is known
3-8
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that the perturbative ‘‘box counterterm’’ decreases the s
sitivity to the transverse momentum cutoff, but it does n
renormalize the theory and permit the prediction of the m
of the lowest bound state@5# without further renormalization
even though the four-dimensional ladder Bethe-Salpeter
a well-defined ground state mass for the bound two-ferm
system.

V. CONCLUSION

This work generalizes to the fermionic case a calcu
tional procedure applied for solving the light-front BSE f
bosons. This procedure uses a three-dimensional inte
equation, in the framework of light-front dynamics, to pr
duce the solution to the BSE by quadrature. The intermed

FIG. 2. Light-front time ordered diagram forw(4)(K) represent-
ing the light-front time ordered view of twos exchanges betwee
two fermions. Diagram~a! representswprop

(4) in which the simulta-
neous propagation of twos’s and two fermions occurs between th
creation and annihilation of the bosons. Diagram~b! represents
winst,a

(4) with a51 –4, in which the contribution of the instantaneo
term of the Dirac propagator of one of the fermions appears~rep-
resented by the vertical line!. Diagram~c! representswinst,a

(4) with
a55,6, in which the instantaneous term of one of the ferm
propagators again appears. Diagram~d! representswinst,a

(4) with a
57,8, in which both intermediate fermions have instantane
propagation.
06400
-
t
s

as
n

-

ral

te

three-dimensional quantities are only covariant under ki
matical light-front boosts. Full covariance is restored in t
final step to the solution to the BSE.

The formalism is exact, offering an efficient approxim
tive scheme in which only intermediate two-fermion sta
propagate. All the complexity of many-body and antipartic
propagation is contained in the effective three-dimensio
interaction. At the level of the ladder approximation the a
tiparticle propagation is included in the instantaneous term
the Dirac propagator which is cointained in the effective
teraction. Systematical improvement of the calculation
possible through the expansion of the effective interaction
higher orders of the coupling constant.

The systematic expansion of the effective interact
shows in principle how to handle the renormalization pro
lem of the ladder BS equation, as exemplified in the Yuka
model, at order (gS)4. The so-called ‘‘box counterterm’’ for
renormalizing w(2)(K)g0(K)w(2)(K) appears naturally in
the expansion of the effective interaction. It is the sum of
diagrams in which cancellations between different terms
sult in the proposed counterterm. At each order of the s
tematic expansion of the kernel of the ladder equation,
cutoff is still required although sensitivity to the cuto
should decrease as we proceed in the expansion. Howe
the four-dimensional ladder BS equation in the Yuka
model need not be renormalized. It is natural that the co
terterms are generated by the expansion, as we are appro
ing the true solution of the BS equation. The cancellation
singularities occurs at all orders in the expansion of the k
nel of the light-front BS equation, because the expansion
the kernel together with the iteration of the light-fro
T-matrix equation necessarily reproduces the perturba
covariant ladder scattering amplitude at the given powe
gS . At least in principle, at the ladder level, we have show
that the light-front theory does not need any counterter
beside those already included in the expansion of the ef
tive interaction.

A last comment is appropriate here. The computation ti
required to solve the homogeneous light-front BSE for
two-boson bound state with a kernel calculated at ordergS

4 ,
by means of discretization through Gaussian-Legen
quadrature and iteration@8#, is quite modest, in a present da
worskstation. The computation time needed to solve
bound state problem in the Yukawa model with the abo
method, at ordergS

4 , increases by about two orders of ma
nitude. To estimate it, we consider that the dimension of
matrix increases by a factor of 4 and the number of indep
dent terms in the kernel is 5, Eqs.~E3!, ~E5!–~E8!. We be-
lieve that the numerical solution of the bound state probl
with the present formalism is within reach, but we leave
for a future work.
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APPENDIX A: EVALUATION OF AUXILIARY QUANTITIES

The connection between the three-dimensional and four-dimensional equations is made through the o
Ḡ0(K)ug0(K)21 and g0(K)21uḠ0(K). To discuss the dimensional reduction, we chooseḠ0(K)ug0(K)21. The momentum
space matrix elements ofḠ0(K)ug0(K)21 for K1.0, are

^k18
2k18

1kW1'8 uḠ0~K !ug0~K !21uk1
1kW1'&5

i

2p
d~k18

12k1
1!d~kW1'8 2kW1'!u~K12k1

1!u~k1
1!

3
L1~k1on8 !

S k18
22

kW81'
2 1m1

22 io

k18
1 D

L1„~K2k18!on…

S K22k18
22

~KW '2kW1'8 !21m2
22 io

K12k18
1 D

3~K22k1on
2 2k2on

2 1 io !. ~A1!

If the light-front ‘‘energy’’ K2 is not on-shell, i.e.,K2Þk1on
2 1k2on

2 , the evaluation of the matrix element in Eq.~A1! obtained
from the integration onk81

2 can be carried out with usual techniques.
If the avalable light-front ‘‘energy’’K2 is on-shell, i.e.,K25Kon

2 5k1on
2 1k2on

2 the integration ofk81
2 should be performed

with care using the concepts of distributions. In this case the matrix element will always be integrated with respect tok81
2 , but

over a functionf (k81
2) still to be determined and, unfortunately, with unknown analyticity properties. We will assume

K1.0 andk1
1.0, without a loss the generality. Thus, we have

E dk18
2 f ~k18

2!^k18
2k18

1kW1'8 uḠ0~K !ug0~K !21uk1
1kW1'&

5
i

2p
d~k18

12k1
1!d~kW1'8 2kW1'!E dk18

2 f ~k18
2!

L1~k1on!

~k18
22k1on

2 1 io !

L1~k2on!

~K22k18
22k2on

2 1 io !
~K22k1on

2 2k2on
2 1 io !.

~A2!

In general,f (k81
2) can be split into a partf uhp(k81

2) having singularities only in the upper halfk81
2-plane and a partf lhp(k81

2)
having singularities only in the lower halfk81

2-plane,

f ~k18
2!5 f uhp~k18

2!1 f lhp~k18
2!. ~A3!

In the case that there are poles in both half planes, they can be fully separated,

g~k18
2!

1

k18
22a12 ia2

1

k18
22b11 ib2

5g~k18
2!

1

~a2b!1 i ~a21b2! F 1

k18
22a12 ia2

2
1

k18
22b11 ib2

G , ~A4!

with g(k81
2) being singularity free. The integration in Eq.~A2! can now be carried out using Cauchy’s theorem:

E dk1
2 f ~k18

2!^k18
2k18

1kW1'8 uḠ0~K !ug0~K !21uk1
1kW1'&

5d~k18
12k1

1!d~kW1'8 2kW1'!~K22k1on
2 2k2on

2 1 io !

3F f uhp~k1on
2 !

L1~k1on!L1~k2on!

K22k1on
2 2k2on

2 1 io
1 f lhp~K22k2on

2 !
L1~k1on!L1~k2on!

K22k2on
2 2k1on

2 1 io
G

5d~k18
12k1

1!d~kW1'8 2kW1'!@ f uhp~k1on
2 !1 f lhp~K22k2on

2 !#L1~k1on!L1~k2on!. ~A5!

We note that the propagators cancel and no singularity remains. The importance of this result appears when the l
‘‘energy’’ is on-shell,K25Kon

2 . Then the two terms can be recombined to obtain the original function, i.e.,
064003-10
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E dk18
2 f ~k18

2!^k18
2k18

1kW1'8 uḠ0~K !ug0~K !21uk1
1kW1'&5d~k18

12k1
1!d~kW1'8 2kW1'! f ~k1on

2 !L1~k1on!L1~k2on! ~A6!

for K25Kon
2 .

APPENDIX B: ELECTROWEAK CURRENT IN THE ELASTIC PROCESS

The electroweak currentJ m(Q) in the elastic process serves as an example of how to derive expressions for one pa
observable using three-dimensional light-front operators and wave function. The current operator connects an initia
state defined from the Bethe-Salpeter amplitudeuCBi& to a final oneuCB f& through an elastic process. The current opera
J m(Q), is appropriately defined in field theory with a four-momentum transferQ5KB f2KBi . The matrix element for
describing the process^CB fuJ m(Q)uCBi& can be derived from the Bethe-Salpeter bound-state amplitudeuCB& as well as from
the three-dimensional light-front bound stateufB& through the relation

^CB fuJ m~KB f2KBi!uCBi&5^fB fu j m~KB f ,KBi!ufBi&. ~B1!

Using the condition of Eq.~40!, ugB&2w(KB)g0(KB)ugB&50, and the definition ofw(K), Eq. ~39! in Eq. ~42! the
bound-state amplitude can be written in terms of the three-dimensional vertex function as

uCB&5@11„G0
F~KB!2Ḡ0~KB!ug0~KB!21uḠ0~KB!…W~KB!#Ḡ0~KB!uugB&. ~B2!

The effective current in three-dimensional space, which is deduced by introducing theuCB& given by Eq.~B2! andufB& from
Eq. ~43!, separates in the kinematic and interaction-dependent parts Eq.~B1!, as

j m~K f ,Ki !ªg0~K f !
21uḠ0~K f !@11W~K f !„G0

F~K f !2Ḡ0~K f !ug0~K f !
21uḠ0~K f !…#

J m~K f2Ki !@11„G0
F~Ki !2Ḡ0~Ki !ug0~Ki !

21uḠ0~Ki !…W~Ki !#Ḡ0~Ki !ug0~Ki !
21. ~B3!

The bound state has to be calculated for the initial and final four momentaKBi andKB f . The effective currentj m(K f ,Ki) is
predominantly obtained kinematically from the covariant one asg0(K f)

21uḠ0(K f)J m(K f2Ki)Ḡ0(Ki)ug0(Ki)
21, but it also

depends on the interactionW(K) of Eq. ~16!. If W(K) is computed up to a certain order in the original interactionV(K) of the
BSE, the effective current should be expanded consistently up that order.

APPENDIX C: INTERACTION IN FIRST ORDER

The interactionw(k), defined by Eqs.~39! and ~16!, to lowest order in the driving termV(K), is given by

w(2)~K !5g0~K !21uḠ0~K !V~K !Ḡ0~K !ug0~K !21, ~C1!

where the matrix element of the operatoruG0(K)V(K)G0(K)u is

^k18
1kW1'8 u uḠ0~K !V~K !Ḡ0~K !uuk1

1kW1'&

5 i
~4m1m2!2~ igS!2

~2p!2 E dk18
2dk1

2
1

k18
1~K12k18

1!

L1~k1on8 !

S k18
22

kW81'
2 1m1

22 io

k18
1 D

3
L1~k2on8 !

S K22k18
22

~KW '2kW1'8 !21m2
22 io

K12k18
1 D

1

~k18
12k1

1!

1

S k18
22k1

22
~kW182kW1'!21m22 io

k18
12k1

1 D
3

1

k1
1~K12k1

1!

L1~k1on!

S k1
22

kW1'
2 1m1

22 io

k1
1 D

L1~k2on!

S K22k1
22

~KW '2kW1'!21m2
22 io

K12k1
1 D . ~C2!

The double integration ink2 in Eq. ~C2! is performed analytically using Cauchy’s theorem and the conditionK1.0. The
integration is nonzero forK1.k18

1.0 andK1.k1
1.0. Two possibilities also appear fors forward propagation. Fork1

1

.k18
1 , a s is emitted by particle 1. Otherwise, it is absorbed, so that
064003-11
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^k18
1kW1'8 uuḠ0~K !V~K !Ḡ0~K !uuk1

1kW1'&

5~4m1m2!2~ igS!2
u~K12k18

1!u~k18
1!

k81
1~K12k81

1!

iL1~k1on8 !L1~k2on8 !

~K22k1on82 2k2on82 1 io !

3S u~k1
12k18

1!

~k1
12k18

1!

iL1~k1on8 !L1~k2on!

~K22k81on
2 2k2on

2 2kson82 1 io !
1

u~k81
12k1

1!

~k81
12k1

1!

iL1~k1on!L1~k2on8 !

~K22k1on
2 2k2on82 2kson

2 1 io !
D

3
u~K12k1

1!u~k1
1!

k1
1~K12k1

1!

iL1~k1on!L1~k2on!

~K22k1on
2 2k2on

2 1 io !
, ~C3!

where the light-front ‘‘energies’’ of the intermediate states of the individual particles are given by

k1on82 5
kW81'

2 1m1
2

k81
1

,

k1on
2 5

kW1'
2 1m1

2

k1
1

,

k82on
2 5

~KW '2kW1'8 !21m2
2

K12k18
1

,

k2on
2 5

~KW '2kW1'!21m2
2

K12k1
1

,

k8son
2 5

~kW1'8 2kW1'!21m2

k1
12k81

1
,

kson
2 5

~kW1'8 2kW1'!21m2

k18
12k1

1
. ~C4!

The global three-particle propagator for 1, 2, ands appears in Eq.~C3!, in two cases: whens is either emitted or absorbe
by particle 1.

The matrix element̂k81
1kW1'8 uw(2)(K)uk1

1kW1'& is obtained from Eq.~C3! by multiplying both sides by the matrix element o
the operatorg0(K)21, given in Eq.~24!,

^k81
1kW1'8 uw(2)~K !uk1

1kW1'&5~ igS!2
u~k1

12k81
1!

~k1
12k81

1!

iL1~k1on8 !L1~k1on!L1~k2on8 !L1~k2on!

~K22k1on82 2k2on
2 2k8son

2 1 io !

1~ igS!2
u~k81

12k1
1!

~k81
12k1

1!

iL1~k1on8 !L1~k1on!L1~k2on8 !L1~k2on!

~K22k1on
2 2k82on

2 2kson
2 1 io !

5~ igS!2
u~k1

12k81
1!

~k1
12k18

1!

iL1~k1on8 !L1~k1on!L1~k2on8 !L1~k2on!

S K22
kW81'

2 1m1
2

k18
1

2
~KW '2kW1'!21m2

2

K12k1
1

2
~kW1'8 2kW1'!21m2

k1
12k18

1
1 io D

1~ igS!2
u~k18

12k1
1!

~k18
12k1

1!

iL1~k1on8 !L1~k1on!L1~k2on8 !L1~k2on!

S K22
kW1'

2 1m1
2

k1
1

2
~KW '2kW1'8 !21m2

2

K12k81
1

2
~kW1'8 2kW1'!21m2

k18
12k1

1
1 io D .

~C5!
064003-12
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Above, the convention was used that the positive energy spinor projectors with argument of the type (K2k)on refer to the
fermion labeled 2, while argument of the typekon refers to the fermion labeled 1.

APPENDIX D: INTERACTION IN SECOND ORDER

The interactionw(k), defined by Eqs.~39! and ~16! to second order in the driving termV(K), is given by

w~K !.w(2)~K !1w(4)~K !, ~D1!

wherew(2)(K) is given by Eq.~C5! and

w(4)~K !5g0~K !21uḠ0~K !V~K !G0
F~K !V~K !Ḡ0~K !ug0~K !212g0~K !21uḠ0~K !V~K !G̃0~K !V~K !Ḡ0~K !ug0~K !21.

~D2!

The second term in Eq.~D2! corresponds to the iteration of the interactionw(2)(K)

g0~K !21uḠ0~K !V~K !G̃0~K !V~K !Ḡ0~K !ug0~K !215g0~K !21uḠ0~K !V~K !Ḡ0~K !ug0~K !21uḠ0~K !V~K !Ḡ0~K !ug0~K !21

5w(2)g0~K !w(2). ~D3!

The matrix element of the operator uḠ0(K)V(K)G0
F(K)V(K)Ḡ0(K)u has two parts, one being

uḠ0(K)V(K)Ḡ0(K)V(K)Ḡ0(K)u and the other being the instantaneous term of the Dirac propag
uḠ0(K)V(K)DG0

F(K)V(K)Ḡ0(K)u. We split the interaction in second order asw(4)5wprop
(4) 1winst

(4) , wherewprop
(4) contains the

propagating part of the fermion propagator andwinst
(4) contains the instantaneous pieces. We begin the evaluation ofwprop

(4) by
calculating

^k18
1kW1'8 uuḠ0~K !V~K !Ḡ0~K !V~K !Ḡ0~K !uuk1

1kW1'&

5
~4m1m2!3~ igS!4

2~2p!6 E dk18
2dp1

2dk1
2dp1

1d2p1'

1

k18
1~K12k18

1!

L1~k1on8 !

S k18
22

kW1'8
21m1

22 io

k18
1 D

3
L1~k2on8 !

S K22k18
22

~KW '2kW1'8 !21m2
22 io

K12k18
1 D

1

~k18
12p1

1!

1

S k18
22p1

22
~kW1'8 2pW 1'!21m22 io

k18
12p1

1 D
3

1

p1
1~K12p1

1!

L1~p1on!

S p1
22

pW 1'
2 1m1

22 io

p1
1 D

L1~p2on!

S K22p1
22

~KW '2pW 1'!21m2
22 io

K12p1
1 D

1

~p1
12k1

1!

3
1

S p1
22k1

22
~pW 1'2kW1'!21m22 io

p1
12k1

1 D
1

k1
1~K12k1

1!

L1~k1on!

S k1
22

kW1'
2 1m1

22 io

k1
1 D

L1~k2on!

S K22k1
22

~KW '2kW1'!21m2
22 io

K12k1
1 D .

~D4!

The on-energy-shell values of the light-front minus momentum in Eq.~D4! are given in Eq.~C4!, and

p1on
2 5

pW 1'
2 1m1

2

p1
1

,

p2on
2 5

~KW '2pW 1'!21m2
2

K12p1
1

. ~D5!
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The matrix element̂k18
1kW1'8 uuḠ0(K)V(K)Ḡ0(K)V(K)Ḡ0(K)uuk1

1kW1'& is found by analytical integration in the light-fron
‘‘energies’’ in Eq. ~D4!. To separate the intermediate four particle propagation, which occurs fork

81
1 , p1

1 , andk1
1 satisfying

0,k1
1,p1

1,k81,K1, the following factorization is necessary:

1

K22p1
22

~KW '2pW 1'!21m2
22 io

K12p1
1

1

p1
22k1

22
~kW1'2pW 1!21m22 io

p1
12k1

1

5
1

K22k1
22

~KW '2pW 1'!21m2
22 io

K12p1
1

2
~kW1'2pW 1'!21m22 io

p1
12k1

1

3F 1

K22p1
22

~KW '2pW 1'!21m2
22 io

K12p1
1

1
1

p1
22k1

22
~kW1'2pW 1'!21m22 io

p1
12k1

1
G . ~D6!

In all equations below, the convention is used that the positive energy spinor projectors with argument of the tK
2k)on refer to the fermion labeled 2, while argument of the typekon refers to the fermion labeled 1, if the fermion label is n
explicit.

After the Cauchy integration in the light-front ‘‘energies,’’ the result for^k18
1kW1'8 uuḠ0(K)V(K)Ḡ0(K)V(K)Ḡ0(K)uuk1

1kW1'&
in the region of 0,k1

1,p1
1,k18

1,K1, which is denoted bŷk18
1kW1'8 uuḠ0(K)V(K)Ḡ0(K)V(K)Ḡ0(K)u(a)uk1

1kW1'&, is given
by

^k18
1kW1'8 uuḠ0~K !V~K !Ḡ0~K !V~K !Ḡ0~K !u(a)uk1

1kW1'&

5
~4m1m2!3~ igS!4

2~2p!3 E dp1
1d2p1'

u~k18
1!u~K12k18

1!

k18
1~K12k18

1!

iL1~k1on8 !L1„~K2k18!on…

K22
kW1'8

21m1
2

k18
1

2
~KW '2kW1'8 !21m2

2

K12k18
1

1 io

3@F8~K !1F9~K !#
u~k1

1!u~K12k1
1!

k1
1~K12k1

1!

iL1~k1on!L1„~K2k1!on…

K22
kW1'

2 1m1
2

k1
1

2
~KW '2kW1'!21m2

2

K12k1
1

1 io

, ~D7!

with

F8~K !5
u~k18

12p1
1!

~k18
12p1

1!

iL1~p1on!L1„~K2k18!on…

K22
pW 1'

2 1m1
2

p1
1

2
~KW '2kW1'8 !21m2

2

K12k18
1

2
~kW1'8 2pW 1'!21m2

k18
12p1

1
1 io

3
u~p1

1!u~K12p1
1!

p1
1~K12p1

1!

iL1~p1on!L1„~K2p1!on…

K22
pW 1'

2 1m1
2

p1
1

2
~KW '2pW 1'!21m2

2

K12p1
1

1 io

u~p1
12k1

1!

~p1
12k1

1!

3
iL1~k1on!L1„~K2p1!on…

K22
kW1'

2 1m1
2

k1
1

2
~KW '2pW 1'!21m2

2

K12p1
1

2
~pW 1'2kW1'!21m2

p1
12k1

1
1 io

, ~D8!
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F9~K !5
u~k18

12p1
1!

~k18
12p1

1!

iL1~p1on!L1„~K2k18!on…

K22
pW 1'

2 1m1
2

p1
1

2
~KW '2kW1'8 !21m2

2

K12k18
1

2
~kW1'8 2pW 1'!21m2

k18
12p1

1
1 io

3
iL1~k1on!L1„~K2k18!on…

K22
kW1'

2 1m1
2

k1
1

2
~KW '2kW1'8 !21m2

2

K12k18
1

2
~kW1'8 2pW 1'!21m2

k18
12p1

1
2

~pW 1'2kW1'!21m2

p1
12k1

1
1 io

3
u~p1

1!u~K12p1
1!

p1
1~K12p1

1!

u~p1
12k1

1!

~p1
12k1

1!

iL1~k1on!L1„~K2p1!on…

K22
kW1'

2 1m1
2

k1
1

2
~KW '2pW 1'!21m2

2

K12p1
1

2
~pW 1'2kW1'!21m2

p1
12k1

1
1 io

. ~D9!

The part of the propagator given by Eq.~D7! contains the virtual light-front propagation of intermediate states with u
four particles. The functionF8 contains only intermediate states with up to three particles and is two-body reducible. I
eventually be canceled by the corresponding piece in the second term in Eq.~D2!. The functionF9 has an intermediate stat
in which four-particles propagate that can be recognized as the middle piece of Eq.~D9!. The other possibility which includes
up to four particles in the intermediate state propagation is given by 0,k18

1,p1
1,k1

1,K1. To obtain this contribution, we
exchange the external fermion states 1↔2 in Eq. ~D7!.

The contribution of the region determined by 0,p1
1,k1

1,K1 and 0,p1
1,k18

1,K1 to the matrix element

^k81
1kW1'8 uuḠ0(K)V(K)Ḡ0(K)V(K)Ḡ0(K)uuk1

1kW1'& is denoted by^k18
1kW1'8 uuḠ0(K)V(K)Ḡ0(K)V(K)Ḡ0(K)u(b)uk1

1kW1'&. It
contains up to three-particle intermediate states only and is two-body reducible. Consequently, it will be canceled
corresponding piece of the second term in Eq.~D2!. It is given by

^k18
1kW1'8 uuḠ0~K !V~K !Ḡ0~K !V~K !Ḡ0~K !u(b)uk1

1kW1'&

5
~4m1m2!3~ igS!4

2~2p!3 E dp1
1d2p1'

u~k18
1!u~K12k18

1!

k81
1~K12k18

1!

iL1~k1on8 !L1„~K2k18!on…

K22
kW81'

2 1m1
2

k18
1

2
~KW '2k1'8 !21m2

2

K12k18
1

1 io

3
u~k18

12k1
1!

~k81
12k1

1!

iL1~p1on!L1„~K2k18!on…

K22
pW 1'

2 1m1
2

p1
1

2
~KW '2kW1'8 !21m2

2

K12k18
1

2
~kW1'8 2pW 1'!21m2

k81
12p1

1
1 io

3
u~p1

1!u~K12p1
1!

p1
1~K12p1

1!

iL1~p1on!L1„~K2p1!on…

K22
pW 1'

2 1m1
2

p1
1

2
~KW '2pW 1'!21m2

2

K12p1
1

1 io

3
u~k1

12p1
1!

~k1
12p1

1!

iL1~p1on!L1„~K2k18!on…

K22
pW 1'

2 1m1
2

p1
1

2
~KW '2kW1'8 !21m2

2

K12k18
1

2
~kW1'8 2pW 1'!21m2

k81
12p1

1
1 io

3
u~k1

1!u~K12k1
1!

k1
1~K12k1

1!

iL1~k1on!L1„~K2k1!on…

K22
kW1'

2 1m1
2

k1
1

2
~KW '2kW1'!21m2

2

K12k1
1

. ~D10!

For the momentum region satisfying 0,k1
1,p1

1,K1 and 0,k18
1,p1

1,K1, the contribution to the matrix elemen

^k18
1kW1'8 uuḠ0(K)V(K)Ḡ0(K)V(K)Ḡ0(K)uuk1

1kW1'& can be obtained from Eq.~D10! by exchanging the variables of the ferm
ons 1↔2. From Eqs.~D9! and ~D10!, the following result is obtained:
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^k18
1kW1'8 uuḠ0~K !V~K !Ḡ0~K !V~K !Ḡ0~K !uuk1

1kW1'&5~^k18
1kW1'8 uuḠ0~K !V~K !Ḡ0~K !V~K !Ḡ0~K !u(a)uk1

1kW1'&1@1↔2# !

1„^k18
1kW1'8 uuḠ0~K !V~K !Ḡ0~K !V~K !Ḡ0~K !u(b)uk1

1kW1'&1@1↔2#….

~D11!

The subtraction of the iterated first order driving term in Eq.~D2! cancels the corresponding terms in Eq.~D11! so that the
matrix element, an operator in spinor space,^k18

1kW1'8 uwprop
(4) (K)uk1

1kW1'& is two-body irreducible and contains a global fou
body propagation. It is obtained from Eqs.~D7!, ~D9!, and~D2! as

^k18
1kW1'8 uwprop

(4) ~K !uk1
1kW1'&

5
2m1m2~ igS!4

~2p!3 E dp1
1d2p1'

u~k81
12p1

1!

~k18
12p1

1!

3
iL1~k1on8 !L1~p1on!L1„~K2k18!on…

K22
pW 1'

2 1m1
2

p1
1

2
~KW '2kW1'8 !21m2

2

K12k18
1

2
~kW1'8 2pW 1'!21m2

k81
12p1

1
1 io

3
u~p1

1!u~K12p1
1!

p1
1~K12p1

1!

iL1~k1on!L1„~K2k18!on…

K22
kW1'

2 1m1
2

k1
1

2
~KW '2kW1'8 !21m2

2

K12k81
1

2
~kW1'8 2pW 1'!21m2

k18
12p1

1
2

~pW 1'2kW1'!21m2

p1
12k1

1
1 io

3
u~p1

12k1
1!

~p1
12k1

1!

iL1~k1on!L1„~K2p1!on…L1~~K2k1!on!

K22
kW1'

2 1m1
2

k1
1

2
~KW '2pW 1'!21m2

2

K12p1
1

2
~pW 1'2kW1'!21m2

p1
12k1

1
1 io

1@1↔2#. ~D12!

Next, we discuss the contribution of the instantaneous terms of the Dirac propagators to the interactionw(4) derived from
the operatoruḠ0(K)V(K)DG0

F(K)V(K)Ḡ0(K)u. The integration over thek2 variable is performed in the above operator as
is done for Eq.~D4!. Eight terms result, denoted by

winst
(4) 5 (

a51

8

winst,a
(4) . ~D13!

The first one corresponds to the region of integration 0,k1
1,p1

1,k18
1,K1 and the instantaneous term from fermion

In this case, the bosons are absorbed by fermion 2:

^k18
1kW1'8 uwinst,1

(4) ~K !uk1
1kW1'&5

m2~ igS!4

2~2p!3 E dp1
1d2p1'

u~k81
12p1

1!

~k18
12p1

1!
L1~k1on8 !ig1

1
u~p1

1!u~K12p1
1!

p1
1~K12p1

1!

3
iL1~k1on!L1„~K2k18!on…

K22
kW1'

2 1m1
2

k1
1

2
~KW '2kW1'8 !21m2

2

K12k81
1

2
~kW1'8 2pW 1'!21m2

k18
12p1

1
2

~pW 1'2kW1'!21m2

p1
12k1

1
1 io

3
u~p1

12k1
1!

~p1
12k1

1!

iL1~k1on!L1„~K2p1!on…L1„~K2k1!on…

K22
kW1'

2 1m1
2

k1
1

2
~KW '2pW 1'!21m2

2

K12p1
1

2
~pW 1'2kW1'!21m2

p1
12k1

1
1 io

. ~D14!

The contribution to the interaction,winst,2
(4) , corresponds to the region of integration 0,k18

1,p1
1,k1

1,K1 and the instan-
taneous term from fermion 2. It is obtained by exchanging fermions 1 and 2 inwinst,1

(4) :

^k18
1kW1'8 uwinst,2

(4) ~K !uk1
1kW1'&5^k18

1kW1'8 uwinst,1
(4) ~K !uk1

1kW1'& [1↔2] . ~D15!
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The third contribution corresponds to the region of integration of 0,k1
1,p1

1,k18
1,K1 and the instantaneous term fro

fermion 1. The scalar bosons are emitted by fermion 2,

^k18
1kW1'8 uwinst,3

(4) ~K !uk1
1kW1'&

5
m2~ igS!4

2~2p!3 E dp1
1d2p1'

u~k18
12p1

1!

~k18
12p1

1!

iL1~k1on8 !L1~p1on!L1„~K2k18!on…

K22
pW 1'

2 1m1
2

p1
1

2
~KW '2kW1'8 !21m2

2

K12k18
1

2
~kW1'8 2pW 1'!21m2

k81
12p1

1
1 io

3
u~p1

1!u~K12p1
1!

p1
1~K12p1

1!

iL1„~K2k18!on…L1~k1on!

K22
kW1'

2 1m1
2

k1
1

2
~KW '2kW1'8 !21m2

2

K12k81
1

2
~kW1'8 2pW 1'!21m2

k18
12p1

1
2

~pW 1'2kW1'!21m2

p1
12k1

1
1 io

3
u~p1

12k1
1!

~p1
12k1

1!
ig2

1L1„~K2k1!on…. ~D16!

The contribution to the interaction,winst,4
(4) , corresponds to the region of integration of 0,k18

1,p1
1,k1

1,K1 and the
instantaneous term from fermion 1. It is obtained by exchanging fermions 1 and 2 inwinst,3

(4) :

^k18
1kW1'8 uwinst,4

(4) ~K !uk1
1kW1'&5^k18

1kW1'8 uwinst,3
(4) ~K !uk1

1kW1'& [1↔2] . ~D17!

The contribution to the interaction,winst,5
(4) , corresponds to the region of integration that satisfies 0,p1

1,k18
1,K1 and

0,p1
1,k1

1,K1. The instantaneous term comes from fermion 2. The boson is emitted by the initial fermion 1, absor
fermion 2 and reemitted instantaneously by it and absorbed by fermion 1:

^k18
1kW1'8 uwinst,5

(4) ~K !uk1
1kW1'&

5
m1~ igS!4

2~2p!3 E dp1
1d2p1'

u~k18
12k1

1!

~k81
12k1

1!

iL1~k1on8 !L1~p1on!L1„~K2k18!on…

K22
pW 1'

2 1m1
2

p1
1

2
~KW '2kW1'8 !21m2

2

K12k18
1

2
~kW1'8 2pW 1'!21m2

k18
12p1

1
1 io

3
u~p1

1!u~K12p1
1!

p1
1~K12p1

1!
ig2

1
u~k1

12p1
1!

~k1
12p1

1!

iL1~p1on!L1„~K2k1!on…L1~k1on!

K22
pW 1'

2 1m1
2

p1
1

2
~KW '2kW1'!21m2

2

K12k1
1

2
~kW1'2pW 1'!21m2

k1
12p1

1
1 io

. ~D18!

The contribution to the interaction,winst,6
(4) , corresponds to the region of integration that satisfies 0,k18

1,p1
1,K1 and

0,k1
1,p1

1,K1. The instantaneous term comes from fermion 1. The boson is emitted by the initial fermion 2, absor
fermion 1 and reemitted instantaneously by it and absorbed by fermion 2. It is obtained by exchanging fermions 1 a
winst,5

(4) ,

^k18
1kW1'8 uwinst,6

(4) ~K !uk1
1kW1'&5^k18

1kW1'8 uwinst,5
(4) ~K !uk1

1kW1'& [1↔2] . ~D19!

The contribution to the interaction,winst,7
(4) , corresponds to the region of integration of 0,k1

1,p1
1,k18

1,K1 and the
instantaneous terms from both fermions 1 and 2. In this case, the bosons are emitted by fermion 1 and absorbed by f

^k18
1kW1'8 uwinst,7

(4) ~K !uk1
1kW1'&

5
~ igS!4

4~2p!3E dp1
1d2p1'

u~k18
12p1

1!

~k18
12p1

1!
L1~k1on8 !ig1

1
u~p1

1!u~K12p1
1!

p1
1~K12p1

1!

3
iL1„~K2k18!on…L1~k1on!

K22
kW1'

2 1m1
2

k1
1

2
~KW '2kW1'8 !21m2

2

K12k18
1

2
~kW1'8 2pW 1'!21m2

k81
12p1

1
2

~pW 1'2kW1'!21m2

p1
12k1

1
1 io

u~p1
12k1

1!

~p1
12k1

1!
ig2

1L1„~K2k1!on….

~D20!
064003-17



rts, one

to

time is

erg
tate

he

SALES, FREDERICO, CARLSON, AND SAUER PHYSICAL REVIEW C63 064003
The contribution to the interaction,winst,8
(4) , corresponds to the region of integration of 0,k18

1,p1
1,k1

1,K1 and the
instantaneous terms from both fermions 1 and 2. It is obtained by exchanging fermions 1 and 2 inwinst,7

(4) :

^k18
1kW1'8 uwinst,8

(4) ~K !uk1
1kW1'&5^k18

1kW1'8 uwinst,7
(4) ~K !uk1

1kW1'& [1↔2] . ~D21!

APPENDIX E: INTEGRAL EQUATION FOR THE BOUND STATE

In the approximation considered, the vertex function satisfies an integral equation with the kernel containing two pa
corresponding to Eq.~C5! and the other to Eq.~D2!. The plus momentum are rescaled byK1, such that the momentum
fractionsx5k1

1/K1, y5k18
1/K1, andz5p1

1/K1, are used. The notation̂k18
1kW1'8 ugB&[gB(y,kW1'8 ) will be used. The homo-

geneous integral equation for the light-front vertex function is evaluated in the center-of-mass system, is

gB~y,kW1'8 !5
1

~2p!3E d2k1'dx

2x~12x!

K (2)~y,kW1'8 ;x,kW1'!1K (4)~y,kW1'8 ;x,kW1'!

MB
22M0

2
gB~x,kW1'!, ~E1!

where the free two-body mass isM0
25(kW1'

2 1m2)/x(12x) and 0,x,1. The effective interaction is defined according

K (n)(y,kW1'8 ;x,kW1')5 i ^k18
1kW1'8 uw(n)(KB)uk1

1kW1'&.
The part of the kernel which includes only the propagation of virtual three particles states forward in the light-front

obtained from Eq.~C5!. In all equations below, the positive energy spinor projectors with argument of the type (K2k)on refer
to the fermion labeled 2, while argument of the typekon refers to the fermion labeled 1. We have

K (2)~y,kW1'8 ;x,kW1'!5L1~k1on8 !L1~k1on!L1„~K2k18!on…L1„~K2k1!on…gS
2

3
u~y2x!

~x2y!S MB
22

kW1'8
2 1m2

12y
2

kW1'
2 1m2

x
2

~kW1'8 2kW1'!21m2

y2x
D 1@1↔2#. ~E2!

Equation~E1! with the effective interaction given by Eq.~E2! corresponds to the fermionic version of the bosonic Weinb
equation derived from the BSE in the infinitum momentum frame@2#. Other works have discussed the two-boson bound s
in the one-boson-exchange approximation@19# and also including self-energy corrections@20#.

The contribution to the kernel from the interaction evaluated at ordergS
4 has two terms,K (4)5K prop

(4) 1Kinst
(4) , one that

comes from the propagating part of the Dirac propagators,K prop
(4) and another that comes from the contribution of t

instantaneous terms,K inst
(4) . The termKprop

(4) coming from the virtual four-body propagation, is obtained from Eq.~D12! as

K prop
(4) ~y,kW1'8 ;x,kW1'!5

4m2gS
4

~2p!3 E d2p1'dz

2z~12z!~z2x!~y2z!

u~y2z!u~z2x!L1~k1on8 !L1„~K2k18!on…

S MB
22

kW81'
2 1m2

12y
2

pW 1'
2 1m2

z
2

~kW1'8 2pW 1'!21m2

y2z
D

3
L1~p1on!L1„~K2p1!on…

S MB
22

kW81'
2 1m2

12y
2

kW1'
2 1m2

x
2

~kW1'8 2pW 1'!21m2

y2z
2

~pW 1'2kW1'!21m2

z2x
D

3
L1~k1on!L1„~K2k1!on…

S MB
22

pW 1'
2 1m2

12z
2

kW1'
2 1m2

x
2

~pW 1'2kW1'!21m2

z2x
D 1@1↔2#. ~E3!

The termK inst
(4) coming from the instantaneous terms of the Dirac propagators, is obtained from Eqs.~D14!–~D21!. The

eight terms that result are denoted by

K inst
(4) 5 (

a51

8

K inst,a
(4) . ~E4!

The termsK inst,1
(4) 1K inst,2

(4) are derived from Eqs.~D14! and ~D15!, through the substitution of the ratiosk1
1/K1, k8

11 /K1, andp1
1/K1 by x, y, andz, respectively:
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K inst,1
(4) ~y,kW1'8 ;x,kW1'!1K inst,2

(4) ~y,kW1'8 ;x,kW1'!5
m gS

4

~2p!3E d2p1'dz

2z~12z!~z2x!~y2z!
u~y2z!u~z2x!L1~k1on8 !g1

1L1„~K2k18!on…

3
L1~p1on!L1„~K2p1!on…

S MB
22

kW81'
2 1m2

12y
2

kW1'
2 1m2

x
2

~kW1'8 2pW 1'!21m2

y2z
2

~pW 1'2kW1'!21m2

z2x
D

3
L1~k1on!L1„~K2k1!on…

S MB
22

pW 1'
2 1m2

12z
2

kW1'
2 1m2

x
2

~pW 1'2kW1'!21m2

z2x
D 1@1↔2#. ~E5!

The contribution to the kernel,K inst,3
(4) 1K inst,4

(4) comes from Eqs.~D16! and ~D17!,

K inst,3
(4) ~y,kW1'8 ;x,kW1'!1K inst,4

(4) ~y,kW1'8 ;x,kW1'!5
m gS

4

~2p!3E d2p1'dz

2z~12z!~z2x!~y2z!

3
u~y2z!u~z2x!L1~k1on8 !L1„~K2k18!on…

S MB
22

kW81'
2 1m2

12y
2

pW 1'
2 1m2

z
2

~kW1'8 2pW 1'!21m2

y2z
D

3
L1~p1on!L1„~K2p1!on…

S MB
22

kW81'
2 1m2

12y
2

kW1'
2 1m2

x
2

~kW1'8 2pW 1'!21m2

y2z
2

~pW 1'2kW1'!21m2

z2x
D

3L1~k1on!g2
1L1„~K2k1!on…1@1↔2#. ~E6!

The contribution to the kernel of Eq.~E1!, K inst,5
(4) 1K inst,6

(4) , comes from Eqs.~D18! and ~D19!:

K inst,5
(4) ~y,kW1'8 ;x,kW1'!1K inst,6

(4) ~y,kW1'8 ;x,kW1'!5
2mgS

4

~2p!3E d2p1'dz

2z~12z!~z2x!~y2z!

3
u~y2z!u~x2z!L1~k1on8 !L1„~K2k18!on…

S MB
22

kW81'
2 1m2

12y
2

pW 1'
2 1m2

z
2

~kW1'8 2pW 1'!21m2

y2z
D L1~p1on!g2

1

3
L1~k1on!L1„~K2k1!on…

S MB
22

pW 1'
2 1m2

z
2

kW1'
2 1m2

12x
2

~pW 1'2kW1'!21m2

x2z
D 1@1↔2#. ~E7!

The contribution to the kernel of Eq.~E1!, K inst,7
(4) 1K inst,8

(4) , comes from Eqs.~D20! and ~D21!:

K inst,7
(4) ~y,kW1'8 ;x,kW1'!1K inst,8

(4) ~y,kW1'8 ;x,kW1'!5
gS

4

2~2p!3E d2p1'dz

2z~12z!~z2x!~y2z!

3u~y2z!u~z2x!L1~k1on8 !L1„~K2k18!on…g1
1

3
L1~p1on!L1„~K2p1!on…

S MB
22

kW81'
2 1m2

12y
2

kW1'
2 1m2

x
2

~kW1'8 2pW 1'!21m2

y2z
2

~pW 1'2kW1'!21m2

z2x
D

3L1~k1on!g2
1L1„~K2k1!on…1@1↔2#. ~E8!
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Equations~E1!–~E8! are easily recognized to be covariant under kinematical light-front boosts. However, the covaria
the four-dimensional wave function, Eq.~B2!, is certainly lost by the finite expansion ofW(K), given in Eq.~16!, and the use
of the correspondingw(K). Covariance continues to hold however for the solution of Eq.~16!.
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