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Renormalization of the ladder light-front Bethe-Salpeter equation in the Yukawa model
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The reduction of the two-fermion Bethe-Salpeter equation in the framework of light-front dynamics is
studied for the Yukawa model. It yields auxiliary three-dimensional quantities for the transition matrix and the
bound state. The arising effective interaction can be perturbatively expanded in powers of the coupling con-
stantg, allowing a defined number of boson exchanges; it is divergent and needs renormalization; it also
includes the instantaneous term of the Dirac propagator. One possible solution of the renormalization problem
of the boson exchanges is shown to be provided by expanding the effective interaction beyond single boson
exchange. The effective interaction in ladder approximation up to ag{@e} discussed in detall. It is shown
that the effective interaction naturally yields the “box counterterm” required to be introdaddtbcprevi-
ously. The covariant results of the Bethe-Salpeter equation can be recovered from the corresponding auxiliary
three-dimensional quantities.
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I. INTRODUCTION which the spin-dependent part is formed from on-mass shell
momenta and3, is the covariant bosonlike Green’'s func-
The Bethe-Salpeter equatioBSE) [1] describes interact- tion, whereang contains all particular divergences and
ing two-particle systems in the framework of a relativistic subtleties connected with fermion motion. In light-front co-
field theory. The transition matriX of two-particle scatter- ordinates,AGg takes the form
ing satisfies the inhomogeneous BSE

+ B 7 + + +
v Koont+m Kigntm; v 2%
T:V+VGST. (1) AGS: Al+ A220n > 2 A210n > l A2+ + Al+ A2+
2k; k3—m5+io  ki—mitio 2k, 2k; 2k,
In the above equatios] is the disconnected Green’s func- (6)

tion for two fermions. It is the Green’s function for two ) ) )
noninteracting particles when self-energy contributions arénd carries the instantaneous part of the fermion propagators

neglected. The two-fermion free Green’s function, in Iight-front time; it yields singular results undéy inte-
gration.
i(ky+my)  i(ky+my) The inhomogeneous terid in Eq. (1) is the complete

F_
0

2 interaction, irreducible with respect to two-particle propaga-
tion. The two-particle bound state with total four-momentum
Kg, K&=M3, is characterized by the vertdf) at the
bound-state pole of, which is a solution of the homoge-

k2—m2+io k3—m3+io

can be split up according to

GE=Go+AG, (3)  Neous BSE
— F
where we define 1) =VGg|T), ™
50:(&10n+ ml)(%oﬁ M) Go, 4) related to the Bethe-Salpeter amplitude of the bound state by
i i [¥)=Gg|r). ®
Goz = (5)

For convenience we use the bra-ket notation with round
brackets to represent functions which can be written in either

In Egs.(2), (4), and(5), Rf‘ is the off-mass-shell momentum Momentum or coordinatr-_: spaces. The vertex fun_c:tlbh
operator acting on the coordinates of partiokéth massm;, ~ and Bethe-Salpeter amplitudi#’) have the full four dimen-

the hat on the variable indicates its operator character; theional dependence on the coordinates of both particle. The
normalization condition has to be defined to deternie

S i in full from the solution of Eq.(7). The operators),=T,
=kP+k?. In Eq.(3) Gy is an auxiliary fermion operator in G, orV, as well a§¥) and|T) carry a four-dimensionad
function in momentum space due to the conservation of the
total two-particle four-momenturK in Egs.(1) and(7):
*Present address: Instituto désiea Teagica, Universidade Es-
tadual Paulista, 01405-900 &®aulo, Brazil. (K'0,|K)=8(K'=K)O,(K), ©)

k2—m2+io k3—m3+io

light-front components arek;; = (k3 +m2)/k", and k*
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(K'|W)=8(K'=Kg)|¥g), (100  transverse momentum finite for some of its spin components
[15]. To solve this problem in thé3+1) Yukawa model in
(K'IT)=8(K'—Kg)|T'g). (11) the lowest order of the light-front Tamm-Dancoff approxi-

mation, without self-energy terms, the introduction of a

The reduced quantitigd?g), |T's) and the®,(K) are func- counterterm to renormalize the integral equation was pro-
tions of the internal variables expressed in terms of the fourPoSed in Ref[5]. The transverse momentum cutoff depen-
dimensional momentunk® or coordinatex* and depend dence of the bound-state mass is reduced or vanishes de-

. . : —pending on the procedure chosen to renormalize the light-
E:gg;?{;%a:‘gsﬁ%(ﬁ They satisfy Eqs(1) and(7) in a cor front integral equation[5]. A lowest order perturbative

The field theoretic scattering amplitude and the boun nalysis performed in Ref5], provides the so-called "box

f : h luti fthe B q ounterterm” which is nonlocal, and reduced considerably
state vertex function are the solutions of the BSEsand e toff dependence of the bound-state mass. Refefshce

(7). However, the solution of the BSE constitutes a difficult 5155 derives an additional asymptotic counterterm which
calculational task for any realistic field theory. In practical completely removes the cutoff dependence.
calculations, the driving ternv(K) has to be truncated to  |n the present work, we are concerned with the origin of
low orders of particle exchang@-7]. In bosonic models, the perturbative counterterms of the light-front ladder Bethe-
the issue of the convergence of the truncation to low orderSalpeter equation for the Yukawa model. We will show that
of intermediate particle propagation has been studied ressing the systematic expansion of the Bethe-Salpeter equa-
cently in the two boson bound systdi®—10] as well as in  tion in the light-front developed in Reff8], the kernel of the
the scattering11]. In fermionic models, the papers by Fuda auxiliary integral equation, expanded up to orddr, natu-
[12] discuss one-boson exchange models in the ladder apally yields the “box counterterm’[5] and a well defined
proximation in both light-front and instant-form dynamics finite part. We derive the “box counterterm” from the con-
without emphasis, however, to the underlying field-theoretidribution of the intermediate state light-front virtual propaga-
framework. The field theoretic approach in the light-front istion of four particles(two sigmas and two fermionsinclud-
also being used to describe finite nucjéB] and nuclear ing the instantaneous terms of the fermion propagators in
matter with nucleon-nucleon correlations obtained at theordergé. Although, we have exemplified the systematic ex-
level of the one boson exchange approximafib4]. pansion of the kernel of the projected Bethe-Salpeter equa-
In this work, we consider the two fermion system in thetion in the light-front up to ordegg, the construction of the
light front with one-boson exchange in tfid+1) Yukawa kernel of the auxiliary integral equation can be performed, in
model, for which the interaction Lagrangian density is givenpPrinciple, to any desired order in the perturbative expansion.
by It is remarkable, that the cancellation of singularities, exem-
plified at orderg‘é, occurs at all orders. This is because, the
T erturbative expansion of the light-front scattering amplitude
Li=gs¥Wo. (12 % powers of thg coupling cons?ant, obtained fr0|9n theplight—
front T-matrix equation with the kernel calculated up to the
same order, necessarily reproduces the perturbative covariant
ladder scattering amplitude at that ordeiggf Consequently

coqu;]Iingl;. cr(])nfstant_:_gs. D ff N dthe ladder approximation to the Bethe-Salpeter equation in
e light-front Tamm-Dancoflt approximation, proposed y,q light-front does not need a new class of couterterms. To

in Ref. [4], corresponds to the truncatiqn of thg Iig_ht—front the best of the authors’ knowledge, no other work has
Fock space, where the light-front Hamiltonian is diagonal-achieved such an explicit systematic reduction of a given
ized. In the one-boson-exchange aproximation of the twofoyr-dimensional equation of a fermionic model to the light
fermion bound state, the wave function has components onlfgnt.
in the two-fermion and in the two-fermion plus one-boson  Section Il discusses three-dimensional auxiliary quantities
sectors of the Fock space. The coupled equations in the Fogkom which the covariant solutions of the BSE can be ob-
space can be reduced to a two-fermion Bethe-Salpeter equigined. The auxiliary quantities are operators and functions
tion by writing the three particle component of the wavedefined on the light front. Section Il gives our theoretical
function in terms of the projection of the wave function in apparatus in full for the Yukawa model. Sections Il and Il
the two-fermion sector. In this case, the kernel of the reducetbllow closely our previous paper on the bosonic moddl
Bethe-Salpeter equation contains the virtual state threewith the aim of presenting the underlying formalism of this
particle propagation, which besides the fermion self-energyvork in complete form. Section IV, which is the central part
includes the one-boson-exchange interaction in the lighef the present work, discusses the effective three-
front. dimensional interaction in second order of the coupling con-
The kernel of the light-front Tamm-Dancoff#t] reduced ~ Stantgs, and shows that the perturbative “box couterterm”
Bethe-Salpeter equation for the vertex function for the one@PP€ars naturally in the systematic expansion of the effective

boson-exchange interaction in ladder approximation, ignorinteraction. Our conclusions are given in Sec. V.

ing self-energy contributions, has a divergence problem,
since the kernel becomes independent of the integrated trans-
verse momentum when it goes to infinityl5]. The
asymptotic behavior of the two-fermion bound state wave The transition matrix (K) and the bound-state amplitude
function does not render the integration over the interna| W) of the covariant BSE can be obtained with the help of

The fermion corresponds to the fie¥l with rest massem
and the exchanged boson to the fietdwith massw. The

Il. TWO-PARTICLE AUXILIARY FREE GREEN'S
FUNCTION Gg(K)
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a convenient auxiliary Green's functidBy(K) [16], which  proximation[8], the aim here is to choog8,(K) such that
will be chosen to include explicitly the propagation of the the integral equatiol6) does not have to be solved in full,
two-fermion system between two light-front hyperplanes ofbut that a few terms of the infinite series

xt=x%+x3= const, as precisely defined by E@O0) and
discussed at the end of this section. This and the following
section generalize the discussion presented in [Béfn the
context of bosons to fermions. According to REE6], we

[

W<K>=V<K>n§0 [(G§(K)—Go(K)V(K)]",

have
T(K)=W(K) +W(K)Go(K)T(K), (13 W(K) = V(K)+V(K)(GE(K) = Go(K)V(K) + - - -
~ (18)
[I'g) =W(Kg)Go(Kg)|I's), 14
|Wg)=G{(K)|Tg), (150  will be sufficient for a converged solution of the BSE. The

o ) ) auxiliary Green’s function éO(K) remains a four-
where the driving ternV(K) is changed taV(K), given by gimensional one, but its choice may sacrifice the covariance
V(K) according to the integral equation which G(F,(K) possesses.

The dynamics of the interacting two-particle system can
be fully described by its propagation between hyperplanes,
o_ . . .
The normalization condition for the bound-state Bethe-€ NyPerplanes®=const in instant-form dynamics, the hy-
perplanesx ™ =x"+x°=const in light-front dynamic$18].

Salpeter amplitud is
P P #e) The null-plane defined bx*=0 is special since it is left

W(K)=V(K)+V(K)[GH(K)=Go(K) JW(K). (16)

' GS(K)—l_Gg(KB)—l V(K)=V(Kg) invariant under seven klnematlcgl boosts, while the
lim { ¥y > - > B =const hyperplanes scale under light-front boosts. In con-
K2 K2 K —Kg K —Kg trast, the free Green’s function of the BSE depends on the
L an individual timesx? or on the individual light-front times;"

According to Eq.(4) the propagating pa@o of the free

y . T . _ —_ 1,0
It involves the original driving termV(K) [17]. As was the ~Green's function n light-front coordinates, k;= (ki =k;
case for the bosonic light-front propagator in the ladder ap—k?2 k" =k?+k2, k,)

—_— 1 . - ’ ’ H -_ ’
(X17x5 7 |Glxy X5 )= — _(277)2 J dk; dK e~ (12K 04 =3 xg 33 o= (12K (x5 =x3)

» (Aﬁlon‘l‘ ml)(&20n+m2) (]_9)

K> +m’—io K2 +mi—io
k(K —k)| kg — =——— )(K-—k‘——2L 2
l( l)( 1 k]J_r 1 KJr_kir

(only its dependence on the individual light-front “timest;"

hyperplanes; =x; =x* andx; " =x,"=x"", to

is made expliclt, reduces, for propagation between the
(G x) = [ G020 [ kg (g [atKo k), 0

dK- .
- J e (P OIGyK)|. (21)

In Eq. (20), the notation

- - (ki —ky) (Kiont my) (Koontmy)
(ki [Go(K)[ky )= = ——5— = N (22
k +m?—io K2, +m2—io
RE(K =k | kg — = — | Kk =k - 22— —
i ”( ! k; YK -k

is introduced, as well as
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[Go(K)l= [ ks i 1Go(KlKs) 9

. Coo o (2my)(2mp) A (Kyon) A (kgon)
=ig(K™ =k k= _ = =
' Do 1)kf(K+_kI)(K__hon_kz_on—Ho)

(29)

=go(K), (25

whereK >0 can be chosen without any loss of generality, The basis states are eigenfunctions of the momentum opera-

and A, (kon) = (Ko m)/2m is the positive energy spinor tors (k" ,k.,) and of the free energy operatiy,, acting on
projector. The operatogo(K) is three-dimensional and de- f,¢tions of the kinematical variables. The stalksk, s)

pends on the kinematic variable?bi*(,lzu) only. Itis a glo- form a complete basis in the space of positive energy spinor
bal propagator, since it mediates propagation between hypefdnctions of the kinematical variables, e.g.,
planes according to Eq21), not allowing different light-
front times for each particle. It does not possess explicit dk™d?k, e . 0
covariance but is still covariant under light-front boosts. The > fﬁ'k kos)(k"k,s[y’=1. (29
global propagatogy(K) allows only physical particle propa- ° (2m)
gation which has the plus component of the momentum posi- . ) i , =
tive, and contains only intermediate two-body states, with | "€ auxiliary four-dimensional Green's functidBo(K)
K*>0. This is an advantage of using light-front dynamics.Intreduced in Eqs(13)—(18) is defined, according to Ref.
For example, in a system in which the lowest Fock-statd8l: Such that the light-front propagators in higher Fock
component is composed of a particle and antiparticle, th&tates appear explicitly in the kernel of integral equation for
individual physical plus momentum, as well as the total, ardn® auxiliary transition matrix, which will be given in the
positive and in this casgy(K) propagates only particle and NEXt Section. It is written as
antiparticle intermediate two-body states.

The matrix element(k’; |Go(K)|ky) of Eg. (22), in
which only the dependence dq is explicit, is still an op-
erator with respect to functions of the “kinematic” variables

Go(K) :=Go(K)|go(K) ¥ Go(K). (30)

The reduced Green'’s functiagy(K) is defined only in the
- N positive energy spinor subspace. It has an inverse there, with
(ki k11), kion=(K3, +m2)/k;, and ku,,=[(K, —kq,)?>  the inversego(K) * following from the definition in Eq.
+m2]/(K* —k{). The vertical bar indicates that the depen- (25 as
dence ork; is integrated out in Eq23). The bar on the left o ) PR R R
of the Green’s function represents integrationkgnin the go(K) " T:=—16(K" —ky ) 0(ky )A 4 (Kion) A+ (Kaon)
bra-state, the bar on the right in the ket state. The bar being
placed on one side only of a Green'’s function represents the
integration ofk; on that side alone.

The basis states for spinorial functions of the kinematicabr
light-front variables are defined only for the positive energy
sector of the spinor space by

Xk (KT =k (K™ —kion—kopntio). (31)

The auxiliary Green’s function has the following useful
operties:

Go(K)|=Go(K)], (32)

NN 7 SV S ~ _
<X XL|k+kLS>—e i(7 k"x 9 XL)U(k,S), (26) |Go(K)=|Go(K), (33)

where the light-front spinor is ~ —
d P [Bo(K)|=[Go(K), (34

u(k,s)= (Kontm) + o Xs 27) and defines a three-dimensional light-front transition matrix
T kiam . Yo t(K) through
with x5 being the two-component Pauli spinor. The light- [[Go(K) +Go(K)T(K)Go(K)]|

front spinors are normalized such that the positive-energy = go(K) + go(K)t(K)go(K). (35)

spinor projector is

We remind the reader that the bar signifies the integration of
A+(kon):2 u(k,s)u(k,s). (28) the k; Q(_apendencc_a_of operators. Expl_|C|t matrlx_element of
s the auxiliary quantities are computed in Appendix A.
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ll. LIGHT-FRONT TRANSITION MATRIX The four-dimensional vertex functidii's) of the BSE at the
AND BOUND-STATE WAVE FUNCTION bound-state pole can be obtained frgwyg) by using Eq.

(37),

Following Ref.[8], the four-dimensional transition matrix
T(K) can be obtained from the three-dimensional light-front

onet(K) defined by Eq(35). The latter can be written as [T'e)=W(Kg)Go(Kg)|| ve)- (41)

_ _ The BSE bound-state amplitude is found from the vertex
t(K)=go(K) "HGo(K)T(K)Go(K)|go(K) ™%, (36)  function as

by first iterating the integral equation, E@.3), once, |Wg)=GE(Kg)W(Kg)Go(Kg)|| v8)- (42
T(K)=W(K)+W(K)[Go(K) +Go(K)T(K)Go(K)JW(K), The BSE bound-state vertex functidfig) is related to
the three-dimensional light-front wave functideg), de-

and using the definition and properties ®§(K), Eq. (30), fined by

and Eq.(36). The on-mass-shell matrix elements BfK),

which define the two-fermion scattering amplitude are iden-

tical to the ones obtained froniK), as follows directly from 5,4 satisfying
Eqg. (36) and the analytical properties of tlke integration

discussed in Appendix A. The scattering operafdK) is | ) =do(Kg)W(Kg)|dg), (44
determined byt(K) as

| #8)=00(Kp)|v8) (43

through the projection onto the hyperplaxie=0
T(K)=W(K)+W(K)Go(K)

The light-front transition matrix(K) is the solution of the This result follows immediately from the properties of the

three-dimensional integral equation vertex and wave functions, Eq&40), (41), and (43). The
@xiliary bound-state wave functidig) is the projection of
t(K)=w(K)+w(K)go(K)t(K), (38)  Go(K)|I'g), to equal individual light-front times¢"=x",

taken on the hyperplane” =0. The extraction of the instan-
obtained from Eqs(36) and (13), where the driving term tantaneous terms of the fermion propagator allow the projec-
w(K) is obtained from the four-dimensional interaction tion of the remaining part of the Bethe-Salpeter amplitude

W(K) of Eqg. (16) according to onto equal individual light-front times.
When predicting physical observables, we may either
o -1 - -1 work directly with covariant operators, usin®'g) and/or

W(K)1=go(K) ™| Go(K)W(K)Go(K)lgo(K) ™% (39) the transition matrixT(K) of the BSE, or V\?e m>ay derive

effective operators suited to the context of the three-

ments of the light-front scattering amplitude, obtained fromg!mens!ona: ll.'g;‘:']fron: tbour.ltql staﬂeﬁtB_) End(/c\J/r t::e thg_ae-
the perturbative solution of E@38), match exactly the ma- |men§|qnat1h '9 -tront ;anﬁl lon ma ri(K). We avel 'S}
trix elements of the perturbative covariant ladder scatterin usseda, In the context ot a bosonic _sys[@]n an example o
amplitude for on-mass-shell fermions at the same order i he utility of the three-dimensional light-front wave-function

. . or determining the bound-state matrix element of the elec-
ih the aftective intractiom(K), from £ (39, oalou. ToWeak cuTrent7(Q) in the elaslic process. We repeat the
lated at the same perturbative ordergg. We should also basic steps in the fermion case in Apper.“?"x B.
consider that in the evaluation of the matrix elements of Eq We note th_at the normalization condition qf the Bethe-
(36) between states on the shell, the inverse of the global Salpeter amplitud¢¥g), Eq. (17), can be rewritten as the

propagatorg,(K) cancels exactly the effect of the operator normallzanon condition pf its Fhree-d|men§|on_al I|ght—f_rc_>nt
—~ : . _ . i version| ¢g). The three-dimensional normalization condition
Go(K), as discussed in Appendix A, and the right-side beg ond by inserting EqB2) in Eq. (17) taking into account
comes equal to the matrix element o{K) between on- Eq. (43).

mass-shell states.

If a bound-state pole of the transition matiixK) exists
at total four momentunkg, K3=M3, it is also present in
the three-dimensional transition matrigK) at exactly the

It is important to notice that the ok--shell matrix ele-

IV. SOLUTION OF THE BETHE-SALPETER EQUATION
IN THE LADDER APPROXIMATION

sameKg, due to Eq.(36). The vertex functior]yg) of the We discuss a possible calculational strategy for solving
bound-state is the solution of the homogeneous threethe BSE in the ladder approximation here. Within the spirit
dimensional equation of this paper, we consider three-dimensional auxiliary quan-
tities, i.e., of the bound-state verteyg) of Eq. (40) and the
[ve)=W(Kg)do(Kg)| ¥g)- (400 transition matrixt(K) of Eq.(38). The steps fronmyg) to the

064003-5



SALES, FREDERICO, CARLSON, AND SAUER PHYSICAL REVIEW 63 064003

The auxiliary quantitie$yg) andt(K) are determined by

’ the effective interactiow(K), which has an expansion in
P powers of the coupling constagg,
/ d 0
i w(K)= >, w"(K). (46)
n=2

FIG. 1. Light-front time ordered diagram fer®(K) represent- _ . . _
ing the light-front time ordered view of one exchange. It is hoped that this expansion converges rapidly. We there-

fore study its expansion up to ordg@,

four-dimensional BS bound-state vert¢kgz) and bound- W(K)=w3(K)+w*(K). (47)
state amplitudé¥g) and fromt(K) to the four-dimensional

transition matrixT(K) should be carried out only when the Both contributions to Eq(47) are given in terms of the driv-
full covariant results are required. ing termV(K) of the BSE, using Eq9418) and (39), as

WA(K)=go(K) YGo(K)V(K)Go(K)|go(K) 7, (48)

W (K) = go(K) Y Go(K)V(K)GE(K)V(K)Go(K)|go(K) 2= go(K) " Go(K)V(K)Go(K)V(K)Go(K) |go(K) 2
=go H(K)|Go(K)V(K)[Go(K) = Go(K)|gg (K)| Go(K) TV(K)Go(K)gg H(K)|

+00 H(K)|Go(K)V(K)AGEH(K)V(K)Go(K)| g * (49)

Equations(40) and (38) for the vertex|yg) and the transition matrixt(K) are integral equations with the kernel
w(K)go(K). A common technique for solving the homogeneous equddonfor | yg) or the inhomogeneous or{88) for
t(K) is to iterate that kernel. With the approximati6$?) for the effective interactiow(K) up to ordergs, the once-iterated
kernel can be written and rearranged as

W(K)go(K) +[W(K)go(K) 2= {W@(K) + WO (K) + [W(K) + WO(K) Tgo( K)[ W (K) +w®(K) T} go(K)
= (WO(K) +[W(K) + WO(K) go(K)W(K) ]+ [ W (K) go(K)W(K)
+ W) go K)W(K) T+ WD(K) go(K)W (K)ol K). (50

The discussion of this section will mainly be concerned with the contribditid®(K) +w®)(K)go(K)w®(K)] of order
gg. We will show that the two terms in this contribution have singularities which cancel. Thus the need for an artificial and
ad hoccounterterm fom(?(K)go(K)w®(K), introduced in Ref[5], does not exist. We demonstrate the cancellation of the
two singularities next. In our opinion it is the most important observation of this section. However, we observe without further
discussion that, in order to cancel the transverse singularitiesw&?(K)go(K)W*(K)+w®(K)ge(K)wP(K)
+wH(K)go(K)W¥(K), the expansion of Eq50) should be performed up fav(K)go(K)]® with the effective interaction
expanded up to ordeg?.

The operatow(®(K) (see Fig. 1is computed and discussed in Appendix C, the openat8(K) in Appendix D. The
operatorw®)(K) is not finite and it is divided in Appendix D into the two terms of E@9), w*)(K)=w{}) (K)
+w{% (K). Due to the propagator difference fBo(K) —Go(K)|go(K) "1 Go(K)] in wi¥ (K), the reducible fourth order

pro
term,w(?(K)go(K)W(K), does not occur im{*)(K). The second term af(“(K), i.e., f;‘gt(K), contains the instantaneous

partAEE of the free two-fermion propagator.

The three-dimensional quantities are written in the basis of light-front kinematic momenta of fernk@ml?;ﬁ). All
operators also depend on the total momenturfior which IZL=0 is chosen without any loss of generality. The mass of the
interacting system i#12=K?2 with K*>0. It is then more convenient to use the basik(,) with x:=k; /K* for compu-
tations. For the sake of simplicity in the notation, the matrix element of the effective interaction is written as
W(lezii ;Xalzn):<ki+EL|W(K)|k1+|Zn>-

The perturbative “box counterterm,” according to RES], is given in terms of the divergent part of the operatd’®
=w®(K)go(K)W(K),
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W(ITE)(y le i X, kn)_ -

1 J d?py, dzo(A _|p1¢|) W(z)(y ku 1z pu)W( )(Z P X, ku) (51)

(2m)3 2z(1-2) , pli+m
z(1—- z)

The “box counterterm”w(®€7 is the A — o limit of —w(T®, and takes the form

4
W(BCT)(y ku_ Xy Izli): - %ln AA+(kion)'}’IA+(klon)A+((K_ki)on)?’;AJr((K_kl)on)
X-y 1 In(l1-y) 1 In x
NN T x  xy 1=y (=yi—x| = 0xeyl (52

Using thatu(k’,s') y u(k,s) =k’ Tk /m, the matrix element of the effective interaction can be written as
u(ky,spu(ks,sp)wED(y,ky, 3%,k u(ky,sp)u(kz, ) =wED(y;x),

since it does not depend on the spin projections and on the transverse momentum. It is given by

(BCT) /- o (gS)4
w (y,x)——m\/y(l—y)x(l—x)

y—X 1 In(1—x) 1 Iny

(1-x)y y xy 1-x (1-x)(1-y)

In short, the divergent part of E¢p3) can be compared to the “box counterterm” obtained in R&fand, up to a phase space
factor and a factor of?, it agrees with the corresponding formula of that work.

The second order effective interaction, E(312)—(D21), is derived in detail in Appendix D. Thé?p,, integrations in the
matrix elements of the effective interaction in ordgy diverge logarithmicaly when the external momentum are kept fixed.
They must be regularized and, to do this, we use a transversal momentum Luteffr A — o, the sum of the effective
interaction terms reproduce the counterterm presented in[Rednd given by Eq(53).

The contribution to the kernel from the interaction evaluated at aydéras two types of termsy®=w{}) +w(),. The
first termwmp comes from the propagating part of the Dirac propagators of F&y, @tained from Eq(D12) as detailed in
Appendlx D. It includes the virtual four-body propagation. The second type comes from the contribution of the instantaneous
terms w,nsta(a 1,...,8)obtained from Eqs(D14)—(D21). The diagrams of Figs.(B)—2(d) represent schematically the
contribution of the mstantaneous term of the Dirac propagator to the effective interaction. The diagram {b)Fepr2sents
the effective interaction fow=1—4; Fig. 2c) represents the effective interaction fo=5 and 6; and Fig. @) represents the
effective interaction fow=7 and 8. The effective interaction at ordeyg[* is

xInA{e(y—x) +0(x—y)[x<—>y]]. (53

8
wB=wi) + 2 wild, . (54)

The matrix elements of the divergent part of each component of the effective interaction are given below. They do not depend
on the spin projection nor on the transverse momentum, so that

u(ky,spu(ks, sHWS insd(y.KeL %Ko u(ky,Sp)u(ka,s)=wit i (yix).

The divergent part of the effective interaction at ordgg)¢ due to the light-front four-body intermediate state propagation
is

Wi oYX )— \/y(l y)X(1—x)In A
O(X—Y) (1-y) y
X[m x—y—(l—y)(l—x)ln(l_x) +xy|n; +0(y—x)[X<—>y]]. (55)

The divergent part of the effective interaction at ordgg)¢ due to the instantaneous terms of the Dirac propagator is given
as the sum of
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g4
Wit a(Yix) + Wi oY) = = ———y(1—y)x(1-x)In A
8(27m)

O(x—y) y (1-y)| 6(y—x) WY (1-y)
[(1—y><x—y> yIn + A=Y yy—0 YNk FEYIng x)”’ 50
Wil oY)+ WL oy %) = — Jy(l Y)X(1=x)In A
O(x—y) X (1—x) 6(y—Xx) 1-x X
X[X(X y)[ In —+(1 x)In (1_y) (1—X)(y—X) (1 X)|HH+X|H)—/}, (57
|nst5(y X)+W|nst6(y X)_ 2 VY(1-y)x(1=x)In A
O(x—y) 6(y—x) oy —X) O(x —y)
(mlnx+(l—x)(1—y)lny+ Xy In(1—x)+ In(1— y)] (58

and

g* O(x—y) x(1-y) 0(y—=x) (1-x)y
—— 2 N1= — ]
Inst7(y x)+w,nst8(y X)= 8(2mm)? y(1-y)x(1—x)In A x=y) lny(l—x) + y=x) In(l—y)x (59

Many cancellations occur in the sum of the divergent terms, &-(59), of the effective interaction in ordegg)®. The
final result is

(4) o (99)*
w (y,x)——m\/y(l—y)x(l—x)InA

y—X 1 In(1—x) 1 Iny

0(y—X)L1_X)y_§_ Xy _]_—x_(l—X)(l—Y)

+ 0(x—y)[x<—>y]], (60)

which exactly matches the result found for the “box coun-ables depends on these cutoffs. The cutoffs are tuned to some
terterm,” w(B¢D(y:x), in Eq. (53). of the observables, giving the regularized theory predicting

The three-dimensional integral equation for the vertexpower with respect to other observables. The need for regu-
function | yg), with the effective interaction expanded up to larization is different for the field-theoretic problem at hand,
fourth order in the coupling constant,, is developed in defined by the interaction Langrangian of Ed2). It is
Appendix E. It is given by known that a four-dimensional bound state exists for the

BSE in the ladder approximation, without any regularization
lye) =W (Kg) + W (Kg)190(Kg)| vs)- (61) by cutoff. If singularities occur in the steps chosen to obtain
that four-dimensional bound state, the calculation procedure

We remind the reader that, although the effective interacshould be rearranged in order to avoid them completely or to
tion w?)(K3) is well-behaved, the kerng(®(Kg)]go(Kg)  balance them naturally.
decreases only weakly likdk,,| 2 for large momenta. The projection of the ladder Bethe-Salpeter equation on
However, since some spin components of the veftay the light-front is performed systematically by the expansion
may become constant for large momenta, due to quite genn powers ofgg of the reduced interaction(K) according to
eral considerations given in Ré6], converged solutions of Egs.(18) and (39). The kernel of the projected bound state
Eq. (61), with only w®?(Kg) cannot be obtained without equation for the vertex function, EG0), can in principle be
regularizing the integral equation. calculated to any orderof gg. The ladder light-front Bethe-

In a physically sound but mathematically nonconvergentSalpeter equation for the two-fermion bound-state in the
theory, the suppression of large momenta by cutoffs is aryukawa model, with the kernel including only intermediate
acceptable brute-force method of avoiding singularitiesthree-particle states, must be renormaliZ&l We have
Regularization by cutoffs is considered a rough approximashown above that the perturbative counterterms required to
tion to the regularization of physics processes, too complexenormalize it, arises naturally in the systematic expansion of
to be taken into account explicitly. The prediction of observ-the interactiorw(K) given in Eq.(18). However, it is known
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7 three-dimensional quantities are only covariant under kine-
s s matical light-front boosts. Full covariance is restored in the
77 final step to the solution to the BSE.
s s The formalism is exact, offering an efficient approxima-
A tive scheme in which only intermediate two-fermion states
4—< propagate. All the complexity of many-body and antiparticle
(a) propagation is contained in the effective three-dimensional
interaction. At the level of the ladder approximation the an-
tiparticle propagation is included in the instantaneous term of
, the Dirac propagator which is cointained in the effective in-
s ' teraction. Systematical improvement of the calculation is
;s 7 possible through the expansion of the effective interaction to
L0, higher orders of the coupling constant.
‘Lt The systematic expansion of the effective interaction
(b) shows in principle how to handle the renormalization prob-
lem of the ladder BS equation, as exemplified in the Yukawa
model, at order@s)*. The so-called “box counterterm” for
, renormalizing w?)(K)go(K)w®(K) appears naturally in
y \ the expansion of the effective interaction. It is the sum of ten
‘ \ diagrams in which cancellations between different terms re-
’ \ sult in the proposed counterterm. At each order of the sys-
tematic expansion of the kernel of the ladder equation, the
(C) cutoff is still required although sensitivity to the cutoff
should decrease as we proceed in the expansion. However,
the four-dimensional ladder BS equation in the Yukawa
, model need not be renormalized. It is natural that the coun-
/ terterms are generated by the expansion, as we are approach-
P ing the true solution of the BS equation. The cancellation of
1 d singularities occurs at all orders in the expansion of the ker-
nel of the light-front BS equation, because the expansion of
(d) the kernel together with the iteration of the light-front
T-matrix equation necessarily reproduces the perturbative
FIG. 2. Light-front time ordered diagram for”(K) represent-  covariant ladder scattering amplitude at the given power in
ing the light-front time ordered view of two- exchanges between gs. At least in principle, at the ladder level, we have shown
two fermions. Diagram(a) representsvy,,, in which the simulta-  that the light-front theory does not need any counterterms
neous propagation of two's and two fermions occurs between the pagide those already included in the expansion of the effec-
creation and annihilation of the bosons. Diagrélo) represents tive interaction.
W32, o With &-=1-4, in which the contribution of the instantaneous A '|3st comment is appropriate here. The computation time
term of the Dirac propagator of one of the fermions appéa@s- o ired to solve the homogeneous light-front BSE for a
resented by the vertical lineDiagram (c) representsv(i, ., with two-boson bound state with a kernel calculated at ogder
a=5,6, in which the instantaneous term of one of the fermion . L .
propagators again appears. Diagrédh representsv’), . with « by means of .d|scr_et|zat.|on .through Ggussmn—Legendre
=7,8, in which both intermediate fermions have Yinstantaneouéquadraturle and iteratidig], is qu'te ,mOdeSt’ in a present day
propagation. worskstation. The computation time needed_to solve the
bound state problem in the Yukawa model with the above
that the perturbative “box counterterm” decreases the senethod, at ordegs, increases by about two orders of mag-
S|t|v|ty to the transverse momentum CUtOff, but it does notnitude. To estimate it, we consider that the dimension of the
renormalize the theory and permit the prediction of the mas#atrix increases by a factor of 4 and the number of indepen-
of the lowest bound stafé&] without further renormalization, dent terms in the kernel is 5, EqE3), (E5—(E8). We be-
even though the four-dimensional ladder Bethe-Salpeter hdigve that the numerical solution of the bound state problem

a well-defined ground state mass for the bound two-fermiofvith the present formalism is within reach, but we leave it
system. for a future work.
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APPENDIX A: EVALUATION OF AUXILIARY QUANTITIES

The connection between the three-dimensional and four-dimensional equations is made through the operators
Go(K)|go(K)* and go(K_)*1|GO(K). To discuss the dimensional reduction, we choGs€K)|go(K) 1. The momentum
space matrix elements @y(K)|go(K) " for K*>0, are

—“Lrt+or |~ - " I ’ "~ »
(k1 k1 "ki |Go(K)|go(K) 1|kirku>:z5(k1+_k1+)5(k1i_k1¢)9(K+_k1+)9(kf)

A+(k§_0n) A+((K_ki)on)
ki +mi-io _ (K —Kkp)*+mi—io
51 e KT—ky - ¥+
1 K _kl
X (K™ —Kion— Kaont1i0). (A1)

If the light-front “energy” K™ is not on-shell, i.e K™ #ki,,+ K5, the evaluation of the matrix element in E4.1) obtained
from the integration ork’; can be carried out with usual techniques.
If the avalable light-front “energy”K™ is on-shell, i.e. K™ =K_,=Kj,,1 Kz, the integration ok’; should be performed
with care using the concepts of distributions. In this case the matrix element will always be integrated with rdsgecbiat
over a functionf(k’;) still to be determined and, unfortunately, with unknown analyticity properties. We will assume that
K*>0 andk; >0, without a loss the generality. Thus, we have

[k fe 00K IGot K)otk K

A+(k10n) A-¢—(k20n)
(k1™ —kipntio) (KT —k; —ky,Ti0)

i I o o
=Z5(k1+—kf)5(ku—kh)fdkl f(k;7) (K™ —Kion—Kzon+i0).
(A2)

In generalf(k';) can be split into a parft,,,(k’ ;) having singularities only in the upper h&lf; -plane and a parft,,(k’;)
having singularities only in the lower half ; -plane,

f(ka ) ="Funp(ky )+ Finp(ky ). (A3)

In the case that there are poles in both half planes, they can be fully separated,

1 1 1 1 1
9k ki —ay—ia, k{—ﬁﬁiﬁzzg(ki_) (a=B)+i(atBo) |k —ay—ia k| —By+iBa) (A
with g(k’;) being singularity free. The integration in EGA2) can now be carried out using Cauchy’s theorem:
[l 104K KL IGo()lgo(K) kK. )
= 8(ky " —k{) 8(Ky, — ki) (K™ —Kyon—Kaon+i0)
X fung(Kion) KA _(le )_Ak;kill +finp(K ™ —kzo) KA —(kklz)fkl(kin:
= o(ky " ki) (K1, Ko )[Funp(Kion) + Finp(K ™ = Kaon) JA 1 (Kaon) A 4 (Kaon). (A5)

We note that the propagators cancel and no singularity remains. The importance of this result appears when the light-front
“energy” is on-shell,K™=K_,. Then the two terms can be recombined to obtain the original function, i.e.,
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f di; (kg ) (ks K Ky [Go(K)lgo(K) ™ Hky Ky, )= (kg ™ ki) 8Ky, — Ky ) F(Kaon) A+ (Kion) A+ (Kzon) — (AB)
for KT=Kg,-

APPENDIX B: ELECTROWEAK CURRENT IN THE ELASTIC PROCESS

The electroweak currenf#(Q) in the elastic process serves as an example of how to derive expressions for one particular
observable using three-dimensional light-front operators and wave function. The current operator connects an initial bound
state defined from the Bethe-Salpeter amplit{dig;) to a final ong| W) through an elastic process. The current operator,
JH*(Q), is appropriately defined in field theory with a four-momentum tran§ierKgi—Kpg;. The matrix element for
describing the procegal | 7#(Q)|¥g;) can be derived from the Bethe-Salpeter bound-state amplitageas well as from
the three-dimensional light-front bound statks) through the relation

(Vo TM(Kg—Kgi) [ Wiy =( dgil i “(Kgt . Kgi) | ¢gi) - (B1)

Using the condition of Eq(40), |yg)—W(Kg)do(Kg)|ys)=0, and the definition ofw(K), Eqg. (39) in Eqg. (42) the
bound-state amplitude can be written in terms of the three-dimensional vertex function as

|Wg)=[1+(G§(Kg) — Go(Kg)|go(Ks) ~1|Go(Ke))W(Kg)1Go(Kg)|| v8)- (B2)

The effective current in three-dimensional space, which is deduced by introducipg ghe@iven by Eq.(B2) and|¢g) from
Eq. (43), separates in the kinematic and interaction-dependent part8Ey.as

(K¢, KD ==g0(K) Y Go(K)[ 1+ W(K)(GE(K¢) = Go(K1)|go(Kf) Y Go(Ki))]
THK = KDL+ (GE(Ki) = Go(K)) | go(Ki) " Go(Ki))W(K ) 1Go(Ki)|go(Ki) L. (B3)

The bound state has to be calculated for the initial and final four monkgftandK ;. The effective current”(K;,K;) is

predominantly obtained kinematically from the covariant on@(ﬁd{f)*HEo(Kf)j"(Kf—Ki)EO(Ki)|go(Ki)*1, but it also
depends on the interactiéhi(K) of Eq. (16). If W(K) is computed up to a certain order in the original interacti¢K) of the
BSE, the effective current should be expanded consistently up that order.

APPENDIX C: INTERACTION IN FIRST ORDER
The interactionwv(k), defined by Eqs(39) and (16), to lowest order in the driving terfd(K), is given by
w(K)=go(K) "} Go(K)V(K)Go(K)|go(K) (C1)
where the matrix element of the operai@,(K)V(K)Gy(K)| is

(K Ky, | [Go(K)V(K)Go(K)| |k Ky, )

(4m1m2)2(|gs)2J'd ~dk 1 A+ (Kiop)
(2m)2 & YRPKT-KY [ K2 +mi—io
ki ——
k"
. A (Kb 1 1
_ o (Ki=kp)2rmi—io| (kit—k{) (K =Ky )2+ u?~io
K _kl - T T+ kl kl_ ’+ +
K*—kK| K. F—k;
% 1 +(k10n) A+(k20n) (CZ)
Ki(KT=ky) [ kn+m1 io (K =Ky )?+mi—io|
k; K*—k;

The double integration ik~ in Eq. (C2) is performed analytically using Cauchy’s theorem and the condiibr-0. The
integration is nonzero foK *>k; >0 andK* >k, >0. Two possibilities also appear fer forward propagation. Fok;
>k;", ao is emitted by particle 1. Otherwise, it is absorbed, so that
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(K3 KL 1 Go(K)V(K) Go(K) k7 Ky, )

OK =k Ok, ™) IA L (Kion) A+ (Kaop)

=(4m;m,)?(igs)?
MM 98 T TR (K —Kigy—Kian10)

o(k; —k;") TA 4 (K1on) A+ (Kaon) N O(k'y —ky)  iA L (Kion) A (Kpgp)
(kf—ki+) (Ki_krlion_kgon_kri +io) (klf_kf) (Ki_klion_ké(;n_k;on_kio)

oon

% 0(K+_kf)0(k1+) iA+(klon)A+(k20n)
ki (K¥—k{) (K™ —Kpon—Kyonti0)

: (C3)

where the light-front “energies” of the intermediate states of the individual particles are given by
k'2, +m?

= _
klon_ k,+
1

2 2
ki, +mi

k7 =
lon kI—

- (K —kj, )2 +m3
2on"— f '
K+_k1+

(K, =Ky, )2+ m3
K™ —kj

k20n:

:(lzii_lzn)z"'l-l«z

,—
ko’Oﬂ k+_kr+
1 1

_ (IZL—IZM)Z—FMZ
koon=W- (C4

The global three-particle propagator for 1, 2, andppears in Eq(C3), in two cases: whewr is either emitted or absorbed
by particle 1.

The matrix elementk’; k;, [w®(K)|k; Ky, ) is obtained from Eq(C3) by multiplying both sides by the matrix element of
the operatogy(K) 1, given in Eq.(24),

<k,+|2, |W(2)(K)|k+|2 >_(Ig )2 H(kir_krf) iA+(kion)A+(klon)A+(kéon)A+(k20n)
1™ 101/ S

(kf_klf) (Ki_ki;n_kzion_k’;on_l_io)
+(ig )Zﬁ(k’f—kf) iA 4 (Kion) A4 (K1on) A 4 (Kgon) A 4 (Kzon)
s ; S - R
(k Ir_kir) (K _klon_k Zon_kcron+|0)
—(ig )20(kz—_klf) iA+(kion)A+(klon)A-#(kéon)A-%—(kZon)
- S ’ _)[ z " i "
(ky —ki™) K-— k i*’m%_ (Ki_kli)2+m§_ (ku_kn)z‘kﬂz_i_io
ky* K*—k; ki —k,*
(g )Zﬂ(kf—kf) A4 (Kion) A 4 (Kion) A+ (Kgon) A 4 (Kaon)
S ’ » ya Wi Wi »” -
(ki —ki) - ki +mi (K —kp)?+mj (ku—ku)%ﬂzﬂo
ki K™ —k'} Ky ki
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Above, the convention was used that the positive energy spinor projectors with argument of thK tykg, ( refer to the
fermion labeled 2, while argument of the tyRg, refers to the fermion labeled 1.

APPENDIX D: INTERACTION IN SECOND ORDER
The interactionw(k), defined by Eqs(39) and(16) to second order in the driving terti(K), is given by
w(K)=w®(K)+w*(K), (DY)
wherew(®)(K) is given by Eq.(C5) and

w<4><K>=go(K>—1|€o<K>V<K)GS(K>V(K>60<K>|go<r<>—l—go<K>—1|€o<K>V(K)60(K>V<K>€O<K>|90<K>-1.( )
D2

The second term in EqD2) corresponds to the iteration of the interactioff)(K)

9o(K) ~YGo(K)V(K)Go(K)V(K)Go(K)|go(K) ~1=go(K) " Go(K)V(K)Go(K)|go(K) ~HGo(K)V(K) Go(K)|go(K) 2
=W(2)g0(K)W(2). (D3)

The matrix element of the operator|Go(K)V(K)GE(K)V(K)Go(K)| has two parts, one being
|Go(K)V(K)Go(K)V(K)Go(K)| and the other being the instantaneous term of the Dirac propagator,
|Go(K)V(K)AGH(K)V(K)Go(K)|. We split the interaction in second ordena&)=w!;, +w),, wherew(;) , contains the
propagating part of the fermion propagator amf), contains the instantaneous pieces. We begin the evaluatiw:fﬁbg by

calculating

(K Tk, ||Go(K)V(K)Go(K)V(K)Go(K)|| ki Ky, )

(4m1m2)3(igs)4f i 1 A 4 (Kion)
=——————"| dk] dp; dk; dp; d? =
2(2m)® e ( B k1L2+wnf—io)
T T o
" A L (Kgp) 1 1
_ - (KL_EZII.J_)2+m§_iO (ki"=p1) R (Eh_ﬁlﬂz‘*'#z_io
K=k - T+ ki —p1— ’+ T
< 1 A+(plon) A+(p20n) 1
pr(K*=pi) [ _ pi+mi-io) [ (K —py)*+mi—io| (py —kyi)
P | K =ps— PR
P1 K™=p;
« 1 1 A1 (kyon) A 1 (kaon)
o Pk )P+ pPio| ki (KT —ky) [ Kf mi-io) [ (K —ky)*+mi-io)
pl_kl_ + + kl_—+ K _kl_ + +
Py — kg ky K™ —k;
(D4)
The on-energy-shell values of the light-front minus momentum in(Bg) are given in Eq(C4), and
pL, +mi
plon:—Jr
1
_ (K =py)?+m3
PZOnZ#- (D5)

K*—p;f
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The matrix elementk; "k}, ||Go(K)V(K)Go(K)V(K)Go(K)| ki Ky, ) is found by analytical integration in the light-front
“energies” in Eq.(D4). To separate the intermediate four particle propagation, which occuksfomp; , andk; satisfying
0<kj <p; <k'*<KT™, the following factorization is necessary:

1 1
K——p; - (RL_F;u)Z"‘m%_iO o7 ki — (Eu_ﬁl)z"‘#z_io
K*—p; P —ki
B 1
_K‘—kl_—(Kl_ﬁll)2+m§_io_('Zn_ﬁn)erMZ—io
K*—p; p1 — ki
X - 1% ——+ - 1% — |. (D6)
K__pl__(KL_plL)2+m2_'° pl__kI_(kn_pn)z‘*'Mz_lO
K*—p; P —k{

In all equations below, the convention is used that the positive energy spinor projectors with argument of thé type (
—K),n, refer to the fermion labeled 2, while argument of the tikggrefers to the fermion labeled 1, if the fermion label is not
explicit.

After the Cauchy integration in the light-front “energies,” the result (&t "k’ ||Go(K)V(K)Go(K)V(K)Go(K)| ki Ky, )
in the region of O<k; <p; <k;"<K*, which is denoted byk} "k}, ||Go(K)V(K)Go(K)V(K)Go(K)|a|ki K1, ), is given
by

(k1KLL IGo(K)V(K) Go(K)V(K) Go(K) | (oK1 Ky, )

:(4m1m2)3(igs)4J + g2 (k") 0K —ki™) iA 4 (Kion) A+ (K=K)on)
2(2m)° Uk ktmE (R kg )Pmg
k1+ KJ’—kiJr
k)oK =k iA L (Kion) A (K=K
X[F,(K)+F,,(K)] ( i) (Jr - l) _ +( 120n) :r(( _ lz)or'l)2 (D?)
ky (KT =kyp) K,_le—i_ml_(KL_le) +m2+i0
ks K*—k;
with
, . 0(k1+—pf) iA+(p10n)A+((K_ki)on)
F (K)_ r+ A ~2 2 7 L' \2 2 A 2 2
(ki —p1) K__pll+m1_(KL ki) "’mz_(ku P )t u tio
s K =k " ki"—p1
XG(pI)Q(K+_pI) iA+(p10n)A+((K_p1)on) g(pir_kir)
PLKT=p{)  _ PLAM (K —pi)trmg (Pl ki)
sy K*—p;y
iA(Kion) A ((K=P1)on) 08)

KL +mE (K —py)?+mi (py—Ky )2+ u?
N v Y+ - ¥+ tio
ky K" =pq Py — Ky

064003-14



RENORMALIZATION OF THE LADDER LIGHT-FRONT . .. PHYSICAL REVIEW C 63 064003

o Okt —py) TA 4 (P1on) A+ (K=Kp)on)
F'(K)= r+_ o+ ~2 2 [ \2 2 Cro_ o2 2
(k1" —p71) K__p1L+ml_(KL ki)+my (ki —pu) ™+ pu tio
pL K™ —k; " ki"—py

iA+(k10n)A+((K_ki)on)

X = = = = = = =
- ki""mi_ (KL_kL)Z"'mg_ (kh_pn)z"'ﬂz_(pli_k1¢)2+/-L2+io
ky K™ —k;" k1" —py p; — ki
XH(IOI)H(K*—PI) 0(p; — k) iA 4 (Kion) A+ ((K=P1)on) 09)
PL(K =pD)  (pi—ki) | _ Ktmi (R —pr)®+m} (py—ki)*+p®
ki K" —p;i Py —ky

The part of the propagator given by E@7) contains the virtual light-front propagation of intermediate states with up to
four particles. The functiolr’ contains only intermediate states with up to three particles and is two-body reducible. It will
eventually be canceled by the corresponding piece in the second term (BEqgThe functionF” has an intermediate state
in which four-particles propagate that can be recognized as the middle piece @%qThe other possibility which includes
up to four particles in the intermediate state propagation is given<i;0 <p; <k, <K*. To obtain this contribution, we
exchange the external fermion states:2 in Eq. (D7).

The contribution of the region determined by<@; <k; <K® and 0<p; <k;" <K' to the matrix element
(K' 7KL |Go(K)V(K)Go(K)V(K)Go(K)|[ki Ky, ) is denoted by(kj K], || Go(K)V(K)Go(K)V(K)Go(K)| Ky Kyr). It
contains up to three-particle intermediate states only and is two-body reducible. Consequently, it will be canceled by the
corresponding piece of the second term in H3R). It is given by

(ki K1, [1Go(K)V(K)Go(K)V(K)Go(K)| oy k1 K1, )

_(4m1mz)3(igs)4J ‘2 Ok )K" —k;™) IA 4 (Kion) A s (K=K7)on)
2(2m)° T K-k o KEem (K ktemg
k" KT —ki*
Ok ki) iA 4 (Paon) A+ (K—Ki)on)
(k,I_kI) K__5i+m§_(KL—EL)Z-Fmg_(Eii—f)u)z-l-,uz*_io
Py K™ —ki* K'i —p1
L P 6KT —pi) IA 4 (P1on) A+ (K=P1)on)
PL(KT=p) LM (K —pu)?rmy
p1 K*—pi
Xﬁ(kf—pf) TA 4 (P1on) A+ (K—K7)on)
(i=pi) | o PLAME (Ri—kp)?ems (ki —p)+u?
pi K" —ki* k'f —py

XG(kDa(K*—kI) i (Kion) A 4 (K—Kq)on)
ki (KT =ky) o Kpmi (R, —Ky)?+mp

Ky K™ —ki

(D10)

For the momentum region satisfying<tk; <p; <K* and 0<k;*<p; <K™, the contribution to the matrix element
(ki "KL || Go(K)V(K)Go(K)V(K)Go(K)| [k Ky, ) can be obtained from EGD10) by exchanging the variables of the fermi-
ons 1—-2. From Eqs(D9) and(D10), the following result is obtained:
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(k1KLL Go(K)V(K)Go(K)V(K)Go(K)| K1 Ky, ) = ((k; 7K1, || Go(K)V(K)Go(K)V(K)Go(K)| (oK1 Ky, ) +[1+2])
+((k; Tk, [|Go(K)V(K)Go(K)V(K)Go(K)| by | K1 Ky, )+[1+2]).
(D11

The subtraction of the iterated first order driving term in B9R) cancels the corresponding terms in H911) so that the

matrix element, an operator in spinor spage,” lZLlwf)ﬂ,p(KHkl+ E1L> is two-body irreducible and contains a global four-
body propagation. It is obtained from Eq&7), (D9), and(D2) as

<ki+EZ’LL|Wg}%p(K)|kI Elﬁ

_ 2m;my(igs)* + 2 (k' —py)

@m® )PP T
y A4 (Kion) A4 (Pron) A+ (K—K{)op)

PR M (K oK)PEmE (K —pa)?hat

Py K" —ky" k'i —p1

XG(DI)G(K+—DI) A (Kyon) A+ ((K—Kp)op)

p1+(K+_pI) K- — Izi"'m%_ (KL_EL)Z"'mg_ ('zh_ﬁn)z"'ﬂz_(51¢_|21¢)2+,U«2+i0

ki K —k'{ k" —ps p1 —ki

XG(pf—kf) iA+(klon)A+((K_pl)on)A+((K_k1)on) +[1<_>2] (D12)

(pf_kf) K,_Izi"'mi_(Ki_ﬁu)z"'mg_(51L_E1L)2+/J«2+i0

Ky K*—py P1 —K;

Next, we discuss the contribution of the instantaneous terms of the Dirac propagators to the interéd¢titamived from
the operatotGo(K)V(K)AGS(K)V(K)GO(K)|. The integration over thk™ variable is performed in the above operator as it
is done for Eq(D4). Eight terms result, denoted by

8
4 4
Wil 3w

insta *
a=1

(D13

The first one corresponds to the region of integratienkg <p; <k;"<K™* and the instantaneous term from fermion 1.
In this case, the bosons are absorbed by fermion 2:

my(igg)* (., Ok'T—p)) . 6(p1) (KT —py)
=S dp %y e A (Ko i Y
2(2m) (k1" —p1) Py (K" =pyp)

iAJr(klon)AJr((K_ki)on)
_ KEmi (K —kg)Pmy (ki —pa)® e’ (pu—Kp)PH e

<ki+|2h |Wi(r2t,1( K)| kir En>:

+10
ky K™ —k'{ ki"—pi pi —ki
% 0(p1+_k1+) iA+(klon)A+((K_pl)on)A+((K_k1)on) (Dl4)
(p1 —kp) K__ki*'mi_ (Kl_pn)z"'m%_ (51¢_|21¢)2+M2+i0
ky K*—py pr —k{

The contribution to the interactiowfﬁgtlz, corresponds to the region of integratior R, “ <p; <k; <K* and the instan-
taneous term from fermion 2. It is obtained by exchanging fermions 1 andiip; :

(ky Ry W2 K Tkg Ky, )= (kg kg, (Wl ((KOLKT Ky Ya ez (D15)
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The third contribution corresponds to the region of integrationek§ <p; <k;"<K™ and the instantaneous term from
fermion 1. The scalar bosons are emitted by fermion 2,

<k1+|21¢ |Wi(r‘12t,3( K| kf IZlJ.>

_ my(ige)* ot d? 0(ky"—py) iA L (Kion) A4 (Pron) A+ ((K—=K1)on)
EPYPSEN 1 ' - 7 " M -

2(2m)° ' ’ (ki"=p7) K-— pi+m%_(KL—le)2+m§_(ku—pu)2+,uz+io

Py K™=k " k't —p1
Xa(Pf)a(K+—pf) AL (K=KDonA 4 (Kion)
pI(K+_pI) K-— Ei"'m%_ (KL_EL)Z"'m%_ (lzh_f’u)z"‘ﬂz_(51¢_E1L)2+M2+i0
Ky K —k'{ k" —ps p1 — ki
0(py —ki) .
X173 A (K—Ky)on). (D16)

(py —ky)
(4

The contribution to the interactiorwingm, corresponds to the region of integration ofR; " <p; <kj <K™ and the
instantaneous term from fermion 1. It is obtained by exchanging fermions 1 anw(n?,‘gm:

(ky Ry W2 a(K) Tk Ky, )= (kg kg, (Wl (KO LKT Ky gz (D17)

The contribution to the interactiomvi(,fgtls, corresponds to the region of integration that satisfiepp<k;*<K™ and
0<p; <k; <K™. The instantaneous term comes from fermion 2. The boson is emitted by the initial fermion 1, absorbed by
fermion 2 and reemitted instantaneously by it and absorbed by fermion 1:

<ki+ Eh |Wi(rlmlgt,5(K)|k1r |21L>

_ml(igs)4f o OKT—KT) iA (Ko A+ (Pron) A+ (K=K )on)
- 2(277)3 ' H (k,I_kI) K- — 5i+mi_(KL_IZL)z'*’mg_(Eh_ﬁu)z"'/iz_i_io
Py K*—ki"* ki —ps
X0(pf)0<K+—pI)i7+a(kI—pI) iA 4 (P1on) A+ (K=K on)A 4 (Kion) 018
pr(K*=py) 7 (ki—py) | PR (K —ky)Pem (Ky-pu)’te’
N K*—k{ ki —p;

The contribution to the interactiomvi(,‘gt’e, corresponds to the region of integration that satisfiekp"<p; <K* and
0<kj <p;j <K™. The instantaneous term comes from fermion 1. The boson is emitted by the initial fermion 2, absorbed by
fermion 1 and reemitted instantaneously by it and absorbed by fermion 2. It is obtained by exchanging fermions 1 and 2 in

(4)
Winst51

(R W oK) R ) = (R, Wt oK) R ) ar. 019

The contribution to the interactiowvi(r‘]‘gw, corresponds to the region of integration okR; <p; <k;"<K™ and the
instantaneous terms from both fermions 1 and 2. In this case, the bosons are emitted by fermion 1 and absorbed by fermion 2,

(ki Tk Wi AK) KT Ky, )

_ (igs)4f b+ d?p 9(ki+_pI)A (k)i +¢9(DI)0(K+—DI)
a2m?) T gt —pn) T p ki)
5 iA+((K_ki)on)A+(klon) e(pf_kf)i + (K—Ky)or)
= S = >, > = = Yo Ay — K .
__ki""mi_(KL_ku)z""m%_(ku_pu)z"'//«z_(pll_le)2+M2+io (p1 —ki) °"
ks K*—ki™ k'i —p; p1— ki

(D20)
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The contribution to the interactiowvi(rfgtyg, corresponds to the region of integration okR; " <p; <k; <K and the
instantaneous terms from both fermions 1 and 2. It is obtained by exchanging fermions 1 awﬁ?g;n

(ky Ry Wl g(K) kg Ky, )= (kg kg, (Wl AKOIKT Ky Yazy (D21)

APPENDIX E: INTEGRAL EQUATION FOR THE BOUND STATE

In the approximation considered, the vertex function satisfies an integral equation with the kernel containing two parts, one
corresponding to Eq(C5) and the other to Eq(D2). The plus momentum are rescaled Ky, such that the momentum

fractionsx=k; /K", y=k; /K", andz=p; /K*, are used. The notatiofk] "k} | yg)=ys(y.Kk} ) will be used. The homo-
geneous integral equation for the light-front vertex function is evaluated in the center-of-mass system, is

ya(X,Ky. ), (E1)

, 1 dky dx KO(y,Kg ixKe) + K@y, KgL ixK)
ve(Y.Ky )= f

(2m)%) 2x(1-x) MZ—M32

where the free two-body mass MSz(Eierz)/x(l—x) and 0<x<1. The effective interaction is defined according to
KM(y,kq, 3x,ke)=i(ky "k, [w(Kg) ki Ky, ).

The part of the kernel which includes only the propagation of virtual three particles states forward in the light-front time is
obtained from Eq(C5). In all equations below, the positive energy spinor projectors with argument of theKypg&)(,, refer
to the fermion labeled 2, while argument of the typg refers to the fermion labeled 1. We have

K®(y,Ky, %K ) =A 4 (Ko A ¢ (Ko A s (K=K oA+ (K—Ky) oG5

X oy =) +[12] (E2)
(X—Y) Mz_Izif+m2_Ei‘*'mz_(lzh_'zu)z"'ﬂz
y B 1-y X y—X

Equation(E1) with the effective interaction given by EGE2) corresponds to the fermionic version of the bosonic Weinberg
equation derived from the BSE in the infinitum momentum frd&le Other works have discussed the two-boson bound state
in the one-boson-exchange approximatj@8] and also including self-energy correctioro].

The contribution to the kernel from the interaction evaluated at ogdenas two terms/C (=K () + K, one that
comes from the propagating part of the Dirac propagatlsirg‘&,p and another that comes from the contribution of the

instantaneous terms; (12, The termk(7), ; coming from the virtual four-body propagation, is obtained from @12 as

4m?gd f d?p,, dz 0(y—2)0(z—X)A 4 (Ko A + (K=K} on)

KW (y,kp, %Ky, )= = = - =
pron s k)= s 22(1‘2)(2_””_2)( , KL B (K, Py

op

B

1-y z y—z
A (Pron) A+ (K=P1)on)
Z_E’i‘*‘mz B ki-l—mz_ (kil_F;lL)2+M2 B (P1,—Ky, )2+ u?
B 1-y X y—z Z—X
A+(k10n)A+((K_k1)on)
2 55¢+m2_ Ei"_mz_ (51L_|21L)2+1u“2
B 1-z X z—X

+[12]. (E3)

The termlCi(,‘gt coming from the instantaneous terms of the Dirac propagators, is obtained froniCA4$-(D21). The
eight terms that result are denoted by

8
’Ci(r?gt: azl ]Ci(:gt,a' (E4

The termsK {1, ,+ K {1, , are derived from Eqs(D14) and (D15), through the substitution of the ratidg /K", k’

in

+,/K*, andp; /K" by x, y, andz, respectively:
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4 2
>, N = - m gS d le_dZ ’ ’
’Ci(r?%t,l(%le ;Xvku)‘l'lci(ﬁét,z(yvku ;Xakn):(zﬂ_)gJ 22(1—2)(z—x)(y—2) 0(y—2) 0(z=X)A 4 (Kion) 1 A+ (K—K{)op)
v A+(plon)A+((K_pl)on)
vz Kitm? K am? (K ) e (P ki)t e
B 1-y X y—z zZ—X
% A+(k10n)A+((K_k1)on)

- — — - +[1<2]. (E5
2 pi"'mz _ ki+m2 _ (P1, — kg, )%+ p?

B 1-z X z—X

The contribution to the kernek (3, 3+ K (32, , comes from Eqs(D16) and (D17),

K i(r?gt,s(y'lzil X, IzlL) +K i(r?gt,zl(y! EL ;Xylzll) =

m g‘éf d%py, dz
(2m)®) 2z2(1-2)(z=x)(y—2)
0(y—2)0(z=x)A 1 (Kion) A - (K—=K1)on)
(Mz— E’i"'mz_ 51"'“"2_ (K, =P )2+ p?
B 1— _
y z y—z

A (P1on) A+ (K—P1)on)

X - = s —
Mz_k/iL+m2 _ kZ, +m? B (K, —p1)%+p? B (P1, — Ky )2+ p?
B 1-y X y—z Z—X
XA 4 (Kion) Y2 A (K=Kq)on)+[12]. (E6)

The contribution to the kernel of EGED), /cfﬁgt,5+/c§;‘gt,6, comes from Eqs(D18) and(D19):

K i(:gt,s(Yini X, 'Zn) +K i(r‘gt,G(y! |ZL ;X:Eu) =

2mg§f d?p,, dz
(2m)3) 2z(1-2)(z=x)(y—2)

0(y—2) 0(x=2) A 4 (Kgon) A+ (K—=K)on)

= = —— A >
( , Rt Remt (G purial) e
Mg— 1— - o _
y z y—z
y A+ (Kion) A+ (K—K)on)

_ . = — +[1<2]. (E7)
B pi+m2 B ki—l—mz _ (P1, — Ky )2+ p?

M2
B z 1—x X—2

The contribution to the kernel of EGED), K {2, .+ K (s, comes from Eqs(D20) and (D22):

inst,8:

4

Js f dzpndz
(2m)%) 2z(1-2)(z=x)(y—2)

’Ci(rz]lgt](yvlz_‘;_l ;XlﬁlL)+’Ci(r‘]‘gt,8(y!E:,|_L ;XIEIL) :2

Xo(y—z)6(z— X)A+(k:llon)A+((K_ ki)on)'yz—

A+(plon)A+((K - pl)on)

X - = — ——
Mz_k,i‘FmZ B ki, +m? B (Ki, —p1)%+u? B (P1, —Kqy )2+ p?
B 1-y X y—z Z—X
XA 4 (Kion) Y2 A (K=Kq)on)+[12]. (E®

064003-19



SALES, FREDERICO, CARLSON, AND SAUER PHYSICAL REVIEW 63 064003

EquationgdE1)—(E8) are easily recognized to be covariant under kinematical light-front boosts. However, the covariance of
the four-dimensional wave function, E@2), is certainly lost by the finite expansion W#(K), given in Eq.(16), and the use
of the correspondingv(K). Covariance continues to hold however for the solution of &6).
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