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We propose a three-dimensional electromagnetic current operator within light-front dynamics that

satisfies a light-front Ward-Takahashi identity for two-fermion systems. The light-front current operator is

obtained by a quasipotential reduction of the four-dimensional current operator and acts on the light-front

valence component of bound or scattering states. A relation between the light-front valence wave function

and the four-dimensional Bethe-Salpeter amplitude both for bound or scattering states is also derived,

such that the matrix elements of the four-dimensional current operator can be fully recovered from the

corresponding light-front ones. The light-front current operator can be perturbatively calculated through a

quasipotential expansion, and the divergence of the proposed current satisfies a Ward-Takahashi identity at

any given order of the expansion. In the quasipotential expansion the instantaneous terms of the fermion

propagator are accounted for by the effective interaction and two-body currents. We exemplify our

theoretical construction in the Yukawa model in the ladder approximation, investigating in detail the

current operator at the lowest nontrivial order of the quasipotential expansion of the Bethe-Salpeter

equation. The explicit realization of the light-front form of the Ward-Takahashi identity is verified. We

also show the relevance of instantaneous terms and of the pair contribution to the two-body current and the

Ward-Takahashi identity.
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I. INTRODUCTION

A detailed investigation of the electromagnetic (em)
properties of hadrons (including also nuclei) requests a
careful treatment of the current operator for interacting-
fermion systems. In particular the gauge symmetry plays
the well-known essential role, that formally leads to the
fulfillment of the Ward-Takahashi identity (WTI).
Following the seminal paper by Gross and Riska [1], in a
fully covariant theory, namely, in a field-theoretical frame-
work in its full glory, one should first solve the Bethe-
Salpeter (BS) equation and obtain a consistent current
operator; then through a Mandelstam [2] approach, one
should evaluate the hadron em properties. Unfortunately
the BS equation can be solved only within approximate
schemes or for simple examples (see, e.g., [3–7]). For
instance, an appealing technique for solving the BS equa-
tion is based on the quasipotential (QP) expansion of the
four-dimensional T matrix (see, e.g., [8]), where one in-
troduces an auxiliary four-dimensional free Green’s func-
tion (in [8] it was three-dimensional), hopefully clever
enough to allow a meaningful truncation of the expansion.
Then, one projects the relevant operators onto a three-
dimensional hyperplane for obtaining a three-dimensional
integral equation for both scattering and bound states.
These three-dimensional states allow to fully reconstruct
the four-dimensional BS amplitude solution after applying
proper reverse projection operators [9,10]. The method is

in principle exact, giving the solution of the four-
dimensional BS equation if the QP is evaluated without
any approximation. As shown in [11] for massive particles,
with a proper choice of the auxiliary free Green’s function
the QP expansion can be put in correspondence with the
decomposition of the wave function in terms of Fock
components on the light-front (LF) hyperplane, i. e. on
the three-dimensional space adopted in this paper. There
are extended reviews [12–14] illustrating the relevant fea-
tures of the LF framework, introduced in a famous paper
by Dirac [15], and the interested reader can profit of those.
The present paper is a part of a program which attempts:

(i) to solve the four-dimensional BS equation for two
interacting particles, both bosons and fermions, by using
the QP expansion and a LF three-dimensional projection
onto the LF hypersurface (see, [9,10,16] for previous
works) and, (ii) to develop a procedure for evaluating
matrix elements of the four-dimensional em current keep-
ing WTI valid, at any order in the truncation. A key role is
played by the LF reverse projection operator that allows the
full reconstruction of the four-dimensional BS amplitudes,
without loosing any physics content [9,10,16]. The price to
be paid, however, is a rather complicated effective three-
dimensional interaction, that is derived from the full four-
dimensional one. In particular, the effective three-
dimensional interaction is obtained from the proper pro-
jection of the quasipotential, expanded in powers of the
four-dimensional interaction present in the BS equation. In
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conclusion, such an approach is useful if the convergence
rate of the expansion allows to adopt a truncated series, at a
nontrivial low order, in the actual calculations. The proce-
dure of LF projection and expansion/truncation of the
three-dimensional interaction is discussed in Ref. [9] for
the two-boson case and in Ref. [10] for the two-fermion
case.

By using the two previously introduced ingredients,
namely, the QP approach and LF projection, we first in-
vestigate the possibility to express the matrix elements of
the four-dimensional em current operator, for an interact-
ing two-fermion system, through matrix elements of a
three-dimensional LF current operator between valence
states, without introducing any truncation (see, [17] for a
formal definition of the valence state). In particular, it will
be shown that the three-dimensional LF current operator
fulfills WTI. This initial analysis will allow us to define LF
charge operators and the form of the WTI onto the LF
hyperplane. After introducing a proper truncation proce-
dure of the LF current operator, it will be presented a
systematical way for constructing workable approxima-
tions of the matrix elements of the LF current by increasing
the order of truncation of the QP expansion. It will be
shown that the truncated LF current fulfills WTI with the
LF charge operators obtained in the nontruncated case,
leaving a complete study of the relativistic covariance
under dynamical transformations to a future investigation.
In order to illustrate our procedure in an actual case, it will
be analyzed the lowest nontrivial truncation of a Yukawa
model with chargeless boson exchange, in ladder
approximation.

As is well-known (see, e.g., Ref. [14]), a peculiar feature
of any LF description of fermionic systems is the so-called
instantaneous (in LF time) propagation. The treatment of
this issue makes sharply different the study of the em
current for fermionic systems from the bosonic case, al-
ready analyzed in detail in Ref. [16], and in what follows
this point will be often emphasized.

In general, the construction of a conserved current op-
erator acting on the valence component of the LF wave
function is a challenging problem. For two-boson systems
Kvinikhidze and Blankleider [18] developed gauging tech-
niques for solving this problem. They were able to obtain a
current that satisfies a WTI and therefore is conserved. It is
remarkable that for the two-boson case the current operator
derived in Ref. [16] is equivalent to the one obtained with
gauging techniques [18]. An earlier perturbative approach
to the WTI within LF quantization was performed in
Ref. [19].

This work is organized as follows. In Sec. II, the four-
dimensional expression of the em current operator and the
associated WTI in the context of BS formalism, that leads
to current conservation, is briefly recalled. In Sec. III, we
illustrate the LF-time projection technique, that allows one
to eliminate relative LF-time, within a QP approach ap-

plied to the BS equation for two-fermion systems. In
Sec. IV, it is shown the connection of the two-fermion
valence LF wave function, for bound and scattering states,
with the corresponding BS amplitude. In Sec. V, the three-
dimensional current operator is introduced and the fulfilled
WTI is discussed. In Sec. VI, we propose a truncated form
of the em current operator that satisfies the WTI at any
given order, and we explicitly show that the current con-
servation is fulfilled by the matrix elements calculated
between valence states. In Sec. VII, we present the formal
construction in an actual case: a Yukawa model with a
chargeless boson exchange, in ladder approximation. Our
conclusions are drawn in Sec. VIII.

II. FOUR-DIMENSIONAL EM CURRENT
OPERATOR

The general field-theoretical description of an interact-
ing two-fermion system is given by the BS equation, where
the driving term, the interaction VðKÞ, is assumed to be
based on the irreducible exchange of bosons. In what
follows self-energy corrections will be omitted and con-
sidered elsewhere. Let us remind the reader that the total
four-momentum K is conserved, and all BS operators, as
VðKÞ, depend parametrically on K (see, e.g., [16]). As is
well-known, the interaction VðKÞ yields the transition
matrix TðKÞ, i.e.,

TðKÞ ¼ VðKÞ þ VG0ðKÞTðKÞ; (1)

and the full Green’s function, GðKÞ, i.e.,
GðKÞ ¼ G0ðKÞ þG0ðKÞVðKÞGðKÞ

¼ G0ðKÞ þG0ðKÞTðKÞG0ðKÞ; (2)

where G0ðKÞ is the free Green’s function of two fermions,

with four-momentum operators k̂j (j ¼ 1, 2), viz.,

G0ðKÞ ¼ {2

2�

^6k1 þm1

k̂21 �m2
1 þ i"

^6k2 þm2

k̂22 �m2
2 þ i"

; (3)

and k̂2 ¼ K � k̂1. For convenience a factor of 1=2� has
been included in the above definition.
The BS amplitude j�i, dependent upon internal varia-

bles, satisfies (the lim"!0 is understood)

G�1ðKÞj�i ¼ 0; (4)

with appropriate boundary conditions for bound and scat-
tering states [7].
The em current operator, J �, corresponding to the

interaction VðKÞ has a free term, J �
0 , and another one,

J �
I , which depends on the interaction, as dictated by the

commutation rules between J � and the generators of the
Poincarè group, i.e.,

J �ðQÞ ¼ J �
0 ðQÞ þ J �

I ðQÞ; (5)

where J �
I depends parametrically on the four-momentum
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transferQ ¼ Kf � Ki. In particular the Lorentz covariance

of J � imposes that (see, e.g., [20])

�
�
�J �ðQ0Þ ¼ DJf ½Wð��1; KfÞ��1J �ðQÞDJi½Wð��1; KiÞ�

(6)

where � is a Lorentz transformation, Q0 ¼ ��1Q, JiðfÞ is
the total spin of the initial (final) system, and DJ is the
unitary representation of the Wigner rotation, Wð��1; KÞ,
corresponding to �. As to the BS amplitude one has

�0
JMJ

ðk01; K0Þ ¼ X
M0
J

S�1
1 ð�ÞS�1

2 ð�ÞDJ
M0
JMJ

½Wð��1; KÞ�

��JM0
J
ðk1; KÞ (7)

where k01 ¼ ��1k1, K
0 ¼ ��1K, and S1ð2Þð�Þ is the spi-

norial representation of the transformation � [21].
Notably, the four current satisfies the following Ward-

Takahashi identity (see, e.g., [1,7])

Q�J �ðQÞ ¼ G�1ðKfÞê� êG�1ðKiÞ; (8)

where ê ¼ ê1 þ ê2 and êj is the charge operator for the

fermion j, with matrix elements given by

hkjjêjjpji ¼ ej�
4ðkj � pj �QÞ: (9)

Since the inverse of the full interacting Green’s function is
given by

G�1ðKÞ ¼ G�1
0 ðKÞ � VðKÞ; (10)

and

Q�J
�
0 ðQÞ ¼ G�1

0 ðKfÞê� êG�1
0 ðKiÞ (11)

then the interacting current fulfills the following relation

Q�J
�
I ðQÞ ¼ êVðKiÞ � VðKfÞê: (12)

Once we consider the matrix elements h�fjJ �ðQÞj�ii,
current conservation can be explicitly obtained through
Eq. (4), i.e.,

Q�h�fjJ �ðQÞj�ii ¼ h�fj½G�1ðKfÞê� êG�1ðKiÞ�j�ii
¼ 0: (13)

III. LF-TIME PROJECTION AND THE
QUASIPOTENTIAL APPROACH FOR FERMIONS

Following Ref. [10], where the LF projection of the BS
equation for a fermionic system was investigated, here we
briefly resume the QP formalism for the LF projection of
the two-fermion BS equation (see also, Refs. [22–24]), and
we introduce a more compact and efficient operator
notation.
Crucial for the LF projection is the separation of the

fermion propagator in an on-shell term and in an instanta-
neous one, viz.,

k6 þm

k2 �m2 þ i"
¼ k6 on þm

kþðk� � k�on þ i"
kþÞ

þ �þ

2kþ
; (14)

where k�on ¼ ð ~k2? þm2Þ=kþ is the on-minus-shell momen-
tum. The second term in Eq. (14) does not lead to a free-
propagation in the global time, since the Fourier transform
is divergent and yields �ðxþÞ, i.e., an instantaneous (in the
LF time) propagation. This term makes the treatment of a
fermionic system basically different from the treatment of
a bosonic one. The LF projection is based on the on-shell
part of the two-fermion free propagator of Eq. (3), i.e.,

�G 0ðKÞ :¼ i2

2�

ð^6k1on þm1Þð^6k2on þm2Þ
k̂þ1 ðKþ � k̂þ1 Þðk̂�1 � ~̂k

2

1?þm2
1
�i"

k̂þ1
ÞðK� � k̂�1 � ~̂k

2

2?þm2
2
�i"

Kþ�k̂þ1
Þ
: (15)

The role of �G0ðKÞ will become more and more clear as
the LF integral equations for the transition matrix, the
valence Green’s function, the valence wave function, and
etc., will be derived. It should be pointed out that the
instantaneous terms are fully restored into the theory
through the three-dimensional effective interaction (see,
below and also Sec. IV). Once the full structure of the
propagator is taken into account, the matrix elements of the
three-dimensional em current operator become equal to the
corresponding four-dimensional quantities, as will be dis-
cussed in Secs. IV and V.

The free Green’s functions G0ðKÞ and �G0ðKÞ are four-
dimensional operators which depend upon the four-
momenta of the two fermions. Let us introduce the LF
free Green’s function, g0ðKÞ, that is a three-dimensional

operator which depends upon the LF momenta ðkþi ; ~ki?Þ

only. It is obtained from the four-dimensional on-shell
Green’s function by projection, i.e.,

g0ðKÞ ¼ j �G0ðKÞj :¼
Z
dk0�1 dk

�
1 hk0�1 j �G0ðKÞjk�1 i (16)

¼ i�ðKþ � k̂þ1 Þ�ðk̂þ1 Þ

� 2m12m2�þðk̂1onÞ�þðk̂2onÞ
k̂þ1 ðKþ � k̂þ1 ÞðK� � k̂�1on � k̂�2on þ i"Þ ; (17)

where one can choose Kþ > 0without any loss of general-

ity, and �þðk̂onÞ ¼ ð^6kon þmÞ=2m is the positive energy
spinor projector. The vertical bar, j, on the right (left)
indicates that the minus component present in the ket,
jk�i (in the bra, hk�j) is integrated out, namely, through
the vertical bar operation one projects on the LF hypersur-
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face xþ ¼ 0 (see, Refs. [9,10,16]). Thus, in this paper the
two vertical bars in Eq. (16) do not mean the absolute
value; they indicate, indeed, the transition from a four-
dimensional operator to a three-dimensional one. It is
worth noting that g0ðKÞ yields the free global propagation
of two on-shell fermions, and its inverse exists in the

valence sector, since �þðk̂1onÞ�þðk̂2onÞ is the representa-
tion of the identity in a two-particle spinor space.
Furthermore, one can express the three-dimensional
g�1
0 ðKÞ in terms of the corresponding four-dimensional

quantity, G�1
0 ðKÞ, as follows [see, Appendix A, Eq. (A6)]

g�1
0 ðKÞ ¼ ��0ðKÞG�1

0 ðKÞ�0ðKÞ (18)

where we define the free reverse LF projection operator
[cf. Eq. (23)] and its LF conjugated, as

�0ðKÞ :¼ �G0ðKÞjg�1
0 ðKÞ ��0ðKÞ :¼ g�1

0 ðKÞj �G0ðKÞ:
(19)

An explicit expression of �0ðKÞ can be found in the
Appendix of Ref. [10]. These operators have the following
properties, as shown by the definitions in Eq. (19) and from
Eq. (A6),

j�0ðKÞ ¼ I ��0ðKÞj ¼ I

j �G0ðKÞG�1
0 ðKÞ�0ðKÞ ¼ I ��0ðKÞG�1

0 ðKÞ �G0ðKÞj ¼ I

(20)

where I is the identity in the LF three-dimensional space.
The LF free state, j�0i, is a solution of

g�1
0 ðKÞj�0i ¼ 0 (21)

then from Eq. (18) one has

�� 0ðKÞG�1
0 ðKÞ�0ðKÞj�0i ¼ 0: (22)

The last equation leads to the following transformation
property between the noninteracting BS amplitude and
the corresponding LF three-dimensional state, viz.,

j�0i ¼ �0ðKÞj�0i: (23)

Indeed, one obtains the eigenequation for j�0i by applying
G�1

0 ðKÞ to Eq. (23) and performing the understood lim"!0.

Then, on the right-hand side (rhs) of Eq. (23) one can use
Eqs. (19) and (A3) (that holds for any ") and can shift
lim"!0 to g

�1
0 ðKÞj�0i, namely, one has

G�1
0 ðKÞj�0i ¼ 0: (24)

Furthermore, one gets two expressions of the inverse of
Eq. (23) by using Eqs. (20) and (23), viz.,

jj�0i ¼ j�0i (25)

and

j �G0ðKÞG�1
0 ðKÞj�0i ¼ j�0i: (26)

In Eq. (26) the understood lim"!0 affects the whole left-

hand side. Notably, from the uniqueness of the solutions of
Eq. (24) and applying Appendix A of Ref. [10], one can
demonstrate that for any given solution j�0i of Eq. (24)
one has a LF wave function obtained by Eq. (26), that in
turn fulfills the eigenequation (21) and yields the initial
j�0i through Eq. (23). Namely, there is a one-to-one
relation between a given four-dimensional BS amplitude
j�0i and the corresponding three-dimensional j�0i. The
noninteracting operators �0ðKÞ and ��0ðKÞ connect three-
and four-dimensional quantities. In the next section the
corresponding interacting operators will be given.
The QP formalism makes use of the four-dimensional

auxiliary Green’s function ~G0ðKÞ defined by

~G0ðKÞ :¼ �G0ðKÞjg�1
0 ðKÞj �G0ðKÞ ¼ �0ðKÞg0ðKÞ ��0ðKÞ

¼ �G0ðKÞj ��0ðKÞ ¼ �0ðKÞj �G0ðKÞ: (27)

This operator has the following useful properties

j ~G0ðKÞ ¼ j �G0ðKÞ ~G0ðKÞj ¼ �G0ðKÞj: (28)

Let us apply the QP formalism to the four-dimensional
transition matrix (see Refs. [8–10]), i.e.,

TðKÞ ¼ WðKÞ þWðKÞ ~G0ðKÞTðKÞ
¼ WðKÞ þ TðKÞ ~G0ðKÞWðKÞ; (29)

where the effective interaction WðKÞ, in turn, is a solution
of

WðKÞ ¼ VðKÞ þ VðKÞ�0ðKÞWðKÞ; (30)

with

�0ðKÞ :¼ G0ðKÞ � ~G0ðKÞ: (31)

The four-dimensional quantity �0ðKÞ clearly contains the
instantaneous terms and has the following properties

�þ
1 �

þ
2 �0ðKÞj ¼ 0 �þ

1 �
þ
2 j�0ðKÞ ¼ 0: (32)

It is worth noting that in Eq. (29) the driving term VðKÞ is
substituted by WðKÞ, in order to increase the rate of con-
vergence of the iterative solution of the transition matrix
(for numerical studies of the convergence see, e.g., [9,25]).
In a similar manner, Eq. (30) can be solved by iteration,
obtaining

WðKÞ ¼ X1
i¼1

WiðKÞ; (33)

with WiðKÞ ¼ VðKÞ½�0ðKÞVðKÞ�i�1. The physical mean-
ing of the convergence of this series will be discussed in
Sec. VI.
The three-dimensional LF transition matrix can be in-

troduced through (see also, [10])

tðKÞ ¼ ��0ðKÞTðKÞ�0ðKÞ: (34)

Then, by using Eq. (29), one has
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tðKÞ ¼ ��0ðKÞ½WðKÞ þWðKÞ ~G0ðKÞTðKÞ��0ðKÞ
¼¼ wðKÞ þ wðKÞg0ðKÞtðKÞ
¼ wðKÞ þ wðKÞgðKÞwðKÞ; (35)

where the three-dimensional driving term, wðKÞ is ob-
tained from the four-dimensional interactionWðKÞ accord-
ing to

wðKÞ :¼ ��0ðKÞWðKÞ�0ðKÞ; (36)

and the three-dimensional interacting Green’s function is
given by

gðKÞ ¼ g0ðKÞ þ g0ðKÞtðKÞg0ðKÞ: (37)

Note that (i) the positions of ��0ðKÞ and�0ðKÞ in Eq. (34),
leading to the integrations over the external minus compo-
nents, straightforwardly indicate that tðkÞ is a three-
dimensional quantity [for comparison see Eq. (27), where

the four-dimensional quantity ~G0ðKÞ is defined, and the
integrations are on the internal minus components]; (ii) the
effective interaction wðKÞ contains the coupling of the
valence sector to the higher Fock-state components of the
wave function through WðKÞ [11].

Finally, the four-dimensional TðKÞ can be rewritten as
follows

TðKÞ ¼ WðKÞ þWðKÞ�0ðKÞgðKÞ ��0ðKÞWðKÞ: (38)

Such an expression is useful to discuss the relation between
the four-dimensional BS amplitude for a bound state and
the corresponding three-dimensional valence wave func-
tion (cf. Sec. IV).

The LF interacting Green’s function, or resolvent, can
also be written as a function of wðKÞ as follows:

gðKÞ ¼ g0ðKÞ þ g0ðKÞwðKÞgðKÞ
¼ g0ðKÞ þ gðKÞwðKÞg0ðKÞ: (39)

It should be pointed out that gðKÞ is the Fourier transform
of the global propagator of two interacting fermions be-
tween two LF hypersurfaces with given xþ’s. Its inverse
can be easily related to the four-dimensional G�1ðKÞ by
using Eqs. (18), (30), and (36). As a matter of fact, one has

g�1ðKÞ ¼ g�1
0 ðKÞ � wðKÞ

¼ ��0ðKÞ½G�1
0 ðKÞ �WðKÞ��0ðKÞ

¼ ��0ðKÞ½G�1
0 ðKÞ � VðKÞð1

þ �0ðKÞWðKÞÞ��0ðKÞ
¼ ��0ðKÞG�1ðKÞ½1þ�0ðKÞWðKÞ��0ðKÞ

� ��0ðKÞG�1
0 ðKÞ�0ðKÞWðKÞ�0ðKÞ: (40)

The last term is vanishing, as can be shown by using
Eqs. (19) and (A4) and the second relation in Eq. (32).
Finally one obtains

g�1ðKÞ ¼ ��0ðKÞG�1ðKÞ�ðKÞ (41)

where

�ðKÞ ¼ ½1þ �0ðKÞWðKÞ��0ðKÞ (42)

is the interacting LF reverse projection operator. From
analogous steps one can obtain the corresponding LF con-
jugated operator, given by

��ðKÞ ¼ ��0ðKÞ½1þWðKÞ�0ðKÞ�: (43)

It will be very useful in what follows to note that by using
Eqs. (20), (32), (A3), and (A4) one has in the three-
dimensional space

j �G0ðKÞG�1
0 ðKÞ�ðKÞ ¼ I ��ðKÞG�1

0 ðKÞ �G0ðKÞj ¼ I:

(44)

The solution of the following three-dimensional equation,

g�1ðKÞj�i ¼ ½g�1
0 ðKÞ � wðKÞ�j�i ¼ 0 (45)

with appropriate boundary conditions for bound and scat-
tering states, is the valence component of the LF wave
function [13,14]. It turns out that the full complexity of the
Fock space comes through the effective interaction.
However, the truncation of the quasipotential [see,
Eq. (33)] limits the number of Fock components involved
in the construction of effective interaction to be used to
obtain the valence wave function [11]. Then, one could
argue that the convergence rate of the QP expansion is
related to the smallness of the probability for the higher
Fock-components.
Inserting Eq. (41) in the eigenequation (45) one has

g�1ðKÞj�i ¼ ��0ðKÞG�1ðKÞ�ðKÞj�i ¼ 0 (46)

that leads to the following relation between the three-
dimensional valence component and the four-dimensional
BS amplitude

j�i ¼ �ðKÞj�i: (47)

Note that j�i fulfills Eq. (4) (as can be seen by using the
results in Appendix A of [10]). Furthermore, by applying
Eq. (44), one gets

j �G0ðKÞG�1
0 ðKÞj�i ¼ j�i: (48)

In the next section more details will be given about the one-
to-one relation between the four-dimensional j�i and the
three-dimensional j�i.
Finally, let us remind the reader that, the on-mass-shell

matrix elements of TðKÞ, which define the two-fermion
scattering amplitude are identical to the ones obtained from
tðKÞ [10].
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IV. THE LF VALENCEWAVE FUNCTION AND THE
BS AMPLITUDE

In this section, we will analyze the interacting operator
�ðKÞ, Eq. (42), that generates the full BS amplitude, for
bound and scattering states of two-fermion systems, start-
ing from the corresponding valence wave functions. It
should be emphasized the key role played by �ðKÞ,
when the matrix elements of a four-dimensional operator
acting on the BS amplitudes are considered. In particular,
the LF reverse projection allows to express those matrix
elements in terms of matrix elements of effective operators
acting on the valence wave functions.

The relation between the BS amplitude for a two-
fermion bound system, j�Bi, and the corresponding va-
lence wave function has been derived in [10], and reads as

j�Bi ¼ G0ðKBÞWðKBÞ�0ðKBÞj�Bi: (49)

This can be obtained through the analysis of the poles of
Eq. (38).

Since the valence wave function is the solution of

j�Bi ¼ g0ðKBÞwðKBÞj�Bi; (50)

the vanishing quantity �G0ðKBÞjðg�1
0 ðKBÞ � wðKBÞÞj�Bi ¼

0 can be added to Eq. (49) in order to recover the LF
reverse projection as given in Eq. (42), i.e.,

j�Bi ¼ ½1þ �0ðKBÞWðKBÞ��0ðKBÞj�Bi ¼ �ðKBÞj�Bi:
(51)

Therefore any j�Bi can be generated through�ðKBÞ from
the corresponding valence wave function j�Bi, eigensolu-
tion of Eq. (45). Moreover, from Eq. (48) one has

j �G0ðKBÞG�1
0 ðKBÞj�Bi ¼ j�Bi: (52)

Let us now show that the operator �ðKÞ connects BS
amplitudes and valence wave functions for scattering
states, as well. The BS amplitude for scattering states
satisfies the four-dimensional Lippman-Schwinger type
inhomogeneous equation,

j�þi ¼ j�0i þG0ðKÞTðKÞj�0i
¼ ½1þG0ðKÞTðKÞ��0j�0i; (53)

where we have made use of Eq. (23), that univocally relates
j�0i to j�0i. In the three-dimensional space the scattering
solution of Eq. (45) is given by

j�þi ¼ ½1þ gðKÞwðKÞ�j�0i
¼ ½g0ðKÞ þ gðKÞwðKÞg0ðKÞ�g�1

0 ðKÞj�0i
¼ gðKÞg�1

0 ðKÞj�0i; (54)

which implies the formal identity g0ðKÞg�1ðKÞj�þi ¼
j�0i. Then, by using Eq. (B1), one gets

j�þi ¼ ½1þG0ðKÞTðKÞ��0ðKÞj�0i
¼ ½1þG0ðKÞTðKÞ��0ðKÞg0ðKÞg�1ðKÞj�þi
¼ �ðKÞj�þi: (55)

From Eq. (48), the valence component of the LF wave
function can be obtained directly from the BS amplitude,
i.e.,

j �G0ðKÞG�1
0 ðKÞj�þi ¼ j�þi: (56)

It is worth noting that the operator j �G0ðKÞG�1
0 ðKÞ cuts the

instantaneous terms and projects onto the LF hyperplane
(through the k� integration), while �ðKÞ reconstructs the
full structure of the four-dimensional BS amplitude
through the instantaneous terms contained in G0 (see,
�0) and W. Moreover, the instantaneous terms affect the
effective interaction w that determines j�Bi and j�þi
[cf. Eq. (45)].
We should point out that the normalization of the BS

amplitude for a bound state [26] expressed in an operatorial
form,N ðKÞ, can be mapped onto an expectation value of a

proper three-dimensional operator viz., h�jN ðKÞj�i ¼
h�j ��ðKÞN ðKÞ�ðKÞj�i. Note that on one side, the BS
amplitude normalization corresponds to the sum over the
probabilities of each Fock component in the full LF wave
function [17], and on the other side the full complexity of
the Fock space is summarized in the three-dimensional

operator ��ðKÞN ðKÞ�ðKÞ.

V. LF WARD-TAKAHASHI IDENTITY

Once we have the relation between the four-dimensional
BS amplitude and the three-dimensional LF valence wave
function [see, Eq. (47)], the LF em current operator can be
obtained from the matrix element of the four-dimensional
current. As a matter of fact, one has for both scattering and
bound states

h�fjJ �ðQÞj�ii ¼ h�fjj�ðKf;KiÞj�ii; (57)

where the three-dimensional LF current operator, acting on
the valence wave functions, is defined as follows

j�ðKf;KiÞ :¼ ��ðKfÞJ �ðQÞ�ðKiÞ: (58)

Using Eqs. (42) and (43), one can put in evidence the
dependence of the LF current operator upon the effective
interaction WðKÞ, viz.,
j�ðKf;KiÞ :¼ ��0ðKfÞ½1þWðKfÞ�0ðKfÞ�

� J �ðQÞ½1þ�0ðKiÞWðKiÞ��0ðKiÞ: (59)

It is worth noting that Eq. (59) generalizes to scattering
states the expression for the three-dimensional current al-
ready derived in Ref. [10] for bound states. It should be
pointed out that J � is Poincaré covariant [cf. Eq. (6) for

the Lorentz covariance]. Since all the matrix elements of
the left-hand side are properly related through the Lorentz
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transformations, the investigation of the covariance prop-
erties of the operator j�, within the full theory, does not

represent a stringent question in view of the equality in
Eq. (57). But, given the following development of the
truncated approach, where the full covariance is broken,
it is important to investigate the transformation properties
of j�. As discussed elsewhere [27], we can anticipate that

the covariance with respect to the kinematical transforma-
tions can be demonstrated after introducing new factors in

the vertical bar operation (cf. also the factor �̂ in
Ref. [11]).

In what follows, our task is to find a suitable definition of
the LF charge operator that allows one to write the four-
divergence of the LF current operator in terms of the
inverse of the Green’s functions g�1ðKfÞ and g�1ðKiÞ.
Such an investigation is fundamental to obtain the WTI
for the truncated LF current (see the next section). It should
be pointed out that a similar analysis has been already
performed for bosonic systems in [16].

In order to find the LF charge operator, the four-
dimensional divergence of the LF current can be written
as follows by using Eqs. (8) and (58)

Q�j
�ðKf;KiÞ ¼ ��ðKfÞ½G�1ðKfÞê� êG�1ðKiÞ��ðKiÞ;

(60)

with ê ¼ ê1 þ ê2.
By applying Eqs. (B3) and (B4) of Appendix B, one gets

Q�j
�ðKf;KiÞ ¼ g�1ðKfÞj �G0ðKfÞG�1

0 ðKfÞê�ðKiÞ
� ��ðKfÞêG�1

0 ðKiÞ �G0ðKiÞjg�1ðKiÞ
¼ g�1ðKfÞQ̂L

LF � Q̂R
LFg

�1ðKiÞ (61)

where the left and right LF charge operators have been
introduced. Such operators are defined as follows

Q̂ L
LF ¼ j �G0ðKfÞG�1

0 ðKfÞê�ðKiÞ
¼ j �G0ðKfÞG�1

0 ðKfÞê�0ðKiÞ (62)

Q̂ R
LF ¼ ��ðKfÞêG�1

0 ðKiÞ �G0ðKiÞj
¼ ��0ðKfÞêG�1

0 ðKiÞ �G0ðKiÞj (63)

where Eqs. (A3), (A4), and (32) have been used, as well as
the absence of a Dirac structure in the operator ê. It is very
important to note that the LF charge operators are non-
interacting operators acting on the two-fermion spinor
space. From Eqs. (A4) and (A5), we can obtain the explicit
expression for the left LF charge operator for particle 1

Q̂ L
1LF ¼ �þðk̂1onÞm1

k̂þ1
�þ
1 ê1LF�þðk̂1onÞ�þðk̂2onÞ; (64)

where the notation ê1LF indicates the three-dimensional LF
counterpart of the operator ê, Eq. (9), with matrix elements
given by

hk0þ1 ; ~k01?jê1LFjkþ1 ; ~k1j?i :¼ e1�ðk0þ1 � kþ1 �QþÞ
� �2ð ~k01? � ~k1? � ~Q?Þ: (65)

The corresponding right operator is

Q̂ R
1LF ¼ �þðk̂1onÞê1LFm1

k̂þ1
�þ
1 �þðk̂1onÞ�þðk̂2onÞ: (66)

The operator �þm=kþ when sandwiched between LF
spinors gives the normalization condition. Let us remind
the reader that such an operator is the one particle free
charge operator of our model, since we do not include
fermion self-energy. This also indicates the ingredients
that ought to be considered when the full problem with
self-energy insertions is aimed. We will not discuss further
this issue here, which is left for a future study.
From Eq. (61), current conservation straightforwardly

follows by taking the matrix elements between three-
dimensional interacting states that are solutions of the
wave equation (45) and noting that the left and right charge
operators do not contain any {" dependence.
By multiplying both the left and right hand sides of

Eq. (61) by gðKfÞ and gðKiÞ, respectively, one gets
Q�gðKfÞj�ðKf;KiÞgðKiÞ ¼ Q̂L

LFgðKiÞ � gðKfÞQ̂R
LF;

(67)

which corresponds to the LF projection of the five-point
function with instantaneous terms cut from the external
fermion legs.
In conclusion the three-dimensional LF current given by

Eq. (58) acts on the LF valence wave functions and fulfills
WTI [see Eq. (67)].

VI. WARD-TAKAHASHI IDENTITY FOR THE
TRUNCATED LF CURRENT

In this section, to obtain a workable approximation for
the LF current operator that still fulfills WTI, we will
analyze the consequences of a proper truncation of the
QP expansion in the formal solution [Eq. (33)] of
Eq. (30). As already anticipated in the previous section,
the LF charges and the general form for the LF WTI
[cf Eq. (61)] will represent our fundamental ingredients.
To simplify notations, we will not show explicitly the
parametric dependence on total momentum K in the op-
erators. Therefore, it is understood that the operators on the
left of the charge operator depend upon Kf, while the ones

on the right depend upon Ki.
A naive substitution ofW in the current operator (59), by

the truncated quasipotential expansion

WðnÞ ¼ Xn
i¼1

Wi with Wi ¼ V½�0V�i�1 ¼ ½V�0�i�1V;

(68)

namely, by the truncated iterative solution of Eq. (30), does
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not lead to a conserved three-dimensional current. The
same problem has been met and solved for two-boson
systems in Ref. [16]. In this section we will follow the
same procedure, but applied to the case of two-fermion
systems. In the next section an actual application for the
Yukawa model will be illustrated.

Let us first consider the conserved current, for the case
n ¼ 0, i.e., the current without interaction. In this case one
has

jcð0Þ� :¼ ��0J
�
0 �0 ¼ g�1

0 j �G0J
�
0
�G0jg�1

0 : (69)

From Eqs. (11), (62), (63), and (69), WTI for n ¼ 0 reads

Q�jcð0Þ� ¼ g�1
0 j �G0G

�1
0 ê�0 � ��0êG

�1
0

�G0jg�1
0

¼ g�1
0 Q̂L

LF � Q̂R
LFg

�1
0 : (70)

The matrix elements of Eq. (70) should be taken between
solutions of g�1

0 j�0i ¼ 0.

The matrix elements of jcð0Þ� between free particle states,
as obtained explicitly in Appendix C together with the
corresponding WTI, are given by

hk0þ1 ~k01?jjcð0Þ�jkþ1 ~k1?i ¼ �i�ðkþ1 Þ�ðk0þ1 Þ�ðKþ
i � kþ1 Þ�ðKþ

f � k0þ1 Þ�þðk01onÞ��1 �þðk1onÞ�þððKi � k1ÞonÞ

� Kþ
i � kþ1
2m2

hk0þ1 ; ~k01?jê1;LFjkþ1 ~k1?i þ 1 $ 2: (71)

From Eq. (59) and cutting at the first order the effective
interaction (note that Wð1Þ ¼ V) one has

jð1Þ� ¼ jcð1Þ� þOðV2Þ þOðV3Þ (72)

where the first-order contribution is given by

jcð1Þ� ¼ ��0½J � þ V�0J
�
0 þ J �

0 �0V��0

¼ jcð0Þ� þ ��0½J �
I þ V�0J

�
0 þ J �

0 �0V��0:

(73)

Only jcð1Þ� is a conserved current operator in the corre-
sponding valence sector. Indeed, as shown in detail in
Appendix D, one obtains the following WTI

Q�jcð1Þ� ¼ g1
�1Q̂L

LF � Q̂R
LFg1

�1; (74)

where g1
�1 ¼ g0

�1 � wð1Þ and wð1Þ ¼ ��0V�0.
The matrix elements of Eq. (74) should be taken be-

tween solutions of g�1
1 j�1i ¼ 0. In Sec. VII, we will

discuss in detail the first-order LF current for the Yukawa
model in ladder approximation, and we will show that it is
essential to include the instantaneous terms, coming from
�0 to obtain WTI for n ¼ 1.
For the general case, where the interaction appears up to

n � 1 times in the LF current operator, we write

jcðnÞ� :¼ ��0

�
J � þWn�0J

�
0 þ J �

0 �0Wn þ
Xn�1

i¼1

ðWi�0J
�
0 �0Wn�i þWi�0J � þ J ��0WiÞ

þ Xn�1

j¼2

Xj�1

i¼1

Wi�0J ��0Wj�i
�
�0:

¼ jcðn�1Þ� þ ��0

�Xn
i¼0

Wi�0J
�
0 �0Wn�i þ

Xn�1

i¼0

Wi�0J
�
I �0Wn�1�i

�
�0; (75)

where it has been formally defined W0�0 ¼ �0W0 ¼ 1. It
is worth noting that Eq. (75) contains power of the inter-
action up to the nth order, since J �

0 is OðV0Þ and J �
I is

OðV1Þ.
As demonstrated by induction in Appendix E, this trun-

cated current operator satisfies a WTI given by

Q�jcðnÞ� ¼ gn
�1Q̂L

LF � Q̂R
LFgn

�1; (76)

where gn
�1 ¼ g0

�1 � wðnÞ and wðnÞ is the truncated effec-

tive interaction, viz.,

wðnÞ ¼ ��0W
ðnÞ�0 ¼

Xn
i¼1

��0Wi�0: (77)

The matrix elements of Eq. (76) should be taken between
solutions of g�1

n j�ni ¼ 0.
Thus, we conclude that the LF electromagnetic current

operator jcðnÞ� is conserved at any given order n of the QP
expansion. In the limit n! 1 the truncated conserved
current becomes the full current operator of the model, if
the QP expansion converges (for numerical studies of the
convergence see, e.g., [9,25]). Finally, the effects of the
truncation in the QP expansion, and correspondingly in the
Fock-space expansion, on the transformation properties
under the Poincaré group will be investigated elsewhere
[27].
It should be pointed out that the last line of Eq. (75)

suggests a possible diagrammatic representation of the
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current (cf. the next section for the first-order case in a
simple example), through the observation that the contri-
bution to the quasipotential at a pth order, Wp, can be

decomposed in Wp ¼ Wi�0Wp�i for p � i � 0 [see,

Eq. (68)]. Indeed one can construct a picture of the con-
tribution between square brackets in the last line of
Eq. (75), by starting with all the possible decompositions
forWn andWn�1, then breaking the subtracted propagation
represented by �0 and inserting the current J 0 and J I,
respectively, i.e., �0 ! �0J 0ðIÞ�0.

As shown in detail in the example of the next section, the
subtracted Green’s function �0 eliminates the presence of
disconnected diagrams, due to the global, free-propagation
of the two-fermions between the photon absorption and the
exchange of a boson from the interaction. At the same
time, it allows for the photon being absorbed
(i) instantaneously (in LF time), or (ii) by higher Fock-
state components, including a particle-antiparticle pair. In
particular, one can easily see that the disconnected dia-
grams generated from the gauging on the external legs, i.e.,
diagrams that are already taken into account through the
interacting LF wave function, are eliminated by the pres-
ence of the subtraction in �0, avoiding double counting.

VII. LF CURRENTAND WARD-TAKAHASHI
IDENTITY IN THE LADDER YUKAWA MODEL AT

THE FIRST-ORDER

In this section we explicitly derive the current operator

jcð1Þ�, see Eq. (73), for a two-fermion system interacting
through chargeless bosons, within the Yukawa model in
ladder approximation. This will illustrate in an actual case
how our procedure works to obtain the conserved current
operator at the first nontrivial order, namely n ¼ 1. The
Yukawa model is defined by the following interacting
Lagrangian (with no derivative coupling):

L I ¼ g � 1�
�
1 1	� þ g � 2�

�
2 2	�; (78)

where g is the coupling constant (that should not be con-
fused with the LF Green’s function gðkÞ),  1 and  2 are
fermionic fields, the corresponding particles have masses
m1 and m2, and charges e1 and e2, respectively. The field
	� corresponds to a chargeless boson with mass �. The
index � represents Lorentz components in the case of a
vector or tensor field. The vertex ��j is defined in the spinor

space. The four-dimensional interaction, V is given by

V ¼ ig2
��1 � �2�

ðp̂1 � p̂2Þ2 ��2 þ i"
(79)

where the symbol � takes distinct the vertices correspond-
ing to the fermions 1 and 2.

We choose this simple example to show that an interact-
ing LF two-body current can be generated even starting
from a four-dimensional free current, J �

0 . It should be

pointed out that in ladder BS approximation the consistent

four current is the free one, i.e., J � ! J �
0 , and the four-

dimensional WTI is fulfilled because the commutator
½ê; V� trivially vanishes. Such a cancellation is due to the
fact that the exchanged momentum in the potential just
depends on the spectator particle momentum, that remains
unchanged in the transition from the initial state to the final
one (cf. Ref. [1] and Fig. 1). Since we need all the four

components of jcð1Þ� to construct the WTI, Eq. (74), in
what follows we explicitly evaluate all the components of
the truncated em current, by projecting the four-
dimensional current onto the LF hypersurface (i.e., by
integrating on k�).
Let us start with the matrix elements of the free current

operator, given by

hk1jJ �
0 ðQÞjp1i ¼�2�e1�

�
1 �

4ðk1 �p1 �QÞ
� ½ðK6 f� k6 1Þ�m2Þ�
þ ½1! 2; k1 !Kf� k1;p1 !Ki�p1�;

(80)

where Q� ¼ K�
f � K�

i . The factor ð�2�Þ is introduced in
the current operator to make it compatible with the free
Green’s function, see Eq. (3).
The first-order current operator for the interacting two-

fermion system in this example is given by [cf. Eq. (73)],

jcð1Þ� ¼ jcð0Þ� þ ��0½V�0J
�
0 þ J �

0 �0V��0; (81)

where the zero-order LF current operator is the LF free
current, see, Eqs. (69) and (71).
The contribution of the interaction to the LF current

operator in lowest order comes from two-body irreducible
amplitudes given by the second term in the rhs of Eq. (73)
with J � � J �

0 , since we are adopting the ladder approxi-

mation. Using Eq. (31) for �0 we write that

jcð1Þ� � jcð0Þ� ¼ ��0VG0J
�
0 �0 � wð1Þg0jcð0Þ�

þ ��0J
�
0 G0V�0 � jcð0Þ�g0wð1Þ; (82)

FIG. 1. Diagrammatic representation of the matrix elements of
the four-dimensional operator �G0J

�
0 G0V �G0, [cf. Eqs. (F1) and

(F2)]. Dashed line: four-dimensional interaction V. The full dot
represents the free current.
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where wð1Þ ¼ ��0V�0 is the three-dimensional effective interaction, with matrix elements for a total momentum K given
by (see Appendix C in [10])

hk0þ1 ~k01?jwð1ÞðKÞjkþ1 ~k1?i ¼ iðigÞ2�ðk0þ1 Þ�ðkþ1 Þ�ðKþ � k0þ1 Þ�ðKþ � kþ1 Þ
�

�ðk0þ1 � kþ1 Þ
ðk0þ1 � kþ1 ÞðK� � k�1on � k0�2on � k	on þ i"Þ

þ �ðkþ1 � k0þ1 Þ
ðkþ1 � k0þ1 ÞðK� � k0�1on � k�2on þ k	on þ i"Þ

�
�þðk01onÞ��1 �þðk1onÞ�þðk02onÞ�2��þðk2onÞ;

(83)

where k2 ¼ K � k1,

k�1on ¼
~k21? þm2

1

kþ1
k0�1on ¼

~k021? þm2
1

k0þ1

k�	on ¼ ð ~k01? � ~k1?Þ2 þ�2

ðk0þ1 � kþ1 Þ

(84)

and the quantities corresponding to fermion 2 easily fol-
lows. As shown in Appendix F, both the first term and the
third one in the rhs of Eq. (82) contain a LF two-body
reducible part (already taken into account when jcð0Þ� is
applied to the valence wave function), that is canceled by
the second and the fourth ones, respectively. In particular
(see, Ref. [10]), the LF two-body reducible contributions
are generated by the effective interaction used to obtain the
valence wave function at the first order in the quasipoten-
tial expansion of the ladder BS equation. The essential role
played by the reducible terms was stressed in [28], in a
calculation of higher Fock states contributions to the gen-
eralized parton distribution of pion.

The difference with the boson case, that was recently
studied [16], comes from the instantaneous terms present
in the quasipotential expansion of the fermionic current
operator, as we will show in detail.

In the following we report the matrix elements of the
first-order current operator relevant for the em processes in
the spacelike region, as obtained in Appendix F.

A. The term ��0J
�
0 ðQÞG0V�0

In Fig. 2, it is diagrammatically illustrated the third
term in the rhs of Eq. (82), g�1

0 j �G0J
�
0 ðQÞG0V �G0jg�1

0 .

It is worthwhile to note that this term contains the relevant
pair production contribution, for Qþ > 0 (cf. diagram (b)
in Fig. 2). Differently, in the first term,
g�1
0 j �G0VG0J

�
0 ðQÞ �G0jg�1

0 , there is no contribution from

the pair production by the virtual photon, since the conser-
vation of the plus momentum component always requires a
positive plus component of the intermediate fermion mo-
mentum and then the initial state cannot contain a photon
and a pair (cf. Fig. 3).
Performing analytical integrations over k�1 and k01 by

Cauchy’s theorem with the conditions Kþ
i > 0 and Qþ �

0 (see Appendix F), we get the six contributions that appear
in Fig. 2. We observe that the limited number of LF time-
ordered diagrams are essentially a consequence of the
trivial vacuum structure, due to the conservation of the
total positive plus momentum. Now, let us discuss in detail
the irreducible diagrams of Fig. 2.

FIG. 2. LF time-ordered diagrams representing the matrix element of the current operator obtained from ��0J
�
0 ðQÞG0V�0, i.e., the

third term in the rhs of Eq. (82). The reducible diagrams, (d) and (e), are canceled by jcð0Þ�g0wð1Þ.
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Diagram (a) gives a two-body current with intermediate
three-body virtual state propagations before and after the
photon absorption, in the kinematical range pþ

1 ¼ k0þ1 �
Qþ � 0 and kþ1 > ðk0þ1 �QþÞ. Diagram (b) represents the
contribution to the current of the virtual photon decay in a
pair. The kinematical condition in this case is pþ

1 ¼ k0þ1 �
Qþ < 0 (note that �Qþ < pþ

1 < 0). Diagram (c) repre-
sents a contribution from the instantaneous term of the
fermion propagator, which is nonvanishing in two kine-

matical regions: (i) pþ
1 ¼ k0þ1 �Qþ � 0 and kþ1 > ðk0þ1 �

QþÞ, (ii) pþ
1 ¼ k0þ1 �Qþ < 0. Diagrams (d) and (e) are

two-body reducible terms which are canceled by

jcð0Þ�g0wð1Þ in Eq. (82). Diagram (f) represents a contri-
bution of the instantaneous term for pþ

1 ¼ k0þ1 �Qþ >
kþ1 > 0.
Defining � ¼ �ðkþ1 Þ�ðkþ0

1 Þ�ðKþ
i � kþ1 Þ�ðKþ

f � kþ0
1 Þ,

diagram (a) is given by [see, Eq. (F7)]

hk0þ1 ~k01?jjcð1Þ�jkþ1 ~k1?iðaÞ ¼ ie1ð2m1ÞðigÞ2� �ðkþ1 � pþ
1 Þ

ðkþ1 � pþ
1 Þpþ

1

�ðpþ
1 Þ

�ð1aÞ�
f �ð1aÞ�

i

��þðk01onÞ��1 �þðp1onÞ��1 �þðk1onÞ�þððKf � k01ÞonÞ�2��þððKi � k1ÞonÞ: (85)

The four vectors �ð1aÞ
f and �ð1aÞ

i are the following combinations of the four momenta

�ð1aÞ
f ¼ Kf � k01on � ðKi � k1Þon � ðk1 � p1Þon þ i" �ð1aÞ

i ¼ Ki � p1on � ðKi � k1Þon � ðk1 � p1Þon þ i": (86)

The minus components yield the three-body (two fermions and the exchanged boson) global propagation in the final and
initial states, respectively.

The matrix element of the current operator (b) (virtual photon decay in a pair) is [see, Eq. (F13)]

hk0þ1 ~k01?jjcð1Þ� jkþ1 ~k1?iðbÞ ¼ �ie1ð2m1ÞðigÞ2� �ð�pþ
1 Þ

pþ
1

�ðkþ1 � pþ
1 Þ

ðkþ1 � pþ
1 Þ�ð1aÞ�

f �ð1bÞ�
�

�þðk01onÞ��1 �þðp1onÞ��1 �þðk1onÞ

��þððKf � k01ÞonÞ�2��þððKi � k1ÞonÞ; (87)

where the combination �ð1bÞ
� of four momenta is

�ð1bÞ
� ¼ Q� k01on þ p1on þ i": (88)

The instantaneous term (c) [see, Eqs. (F9) and (F15) in Appendix F15] can be expressed as

hk0þ1 ~k01?jjcð1Þ�jkþ1 ~k1?iðcÞ ¼
i

2
e1ðigÞ2� 1

pþ
1

�ðkþ1 � pþ
1 Þ

ðkþ1 � pþ
1 Þ�ð1aÞ�

f

�þðk01onÞ��1 �þ
1 �

�
1 �þðk1onÞ�þððKf � k01ÞonÞ

� �2��þððKi � k1ÞonÞ: (89)

Finally the contribution from the instantaneous term for k0þ1 �Qþ > kþ1 , represented by diagram (f), is [see, Eq. (F11)]

hk0þ1 ~k01?jjcð1Þ�jkþ1 ~k1?iðfÞ ¼
i

2
e1ðigÞ2��ðpþ

1 Þ
pþ
1

�ðpþ
1 � kþ1 Þ

ðpþ
1 � kþ1 Þ�ð1fÞ�

i

��þðk01onÞ��1 �þ
1 �

�
1 �þðk1onÞ�þððKf � k01ÞonÞ�2��þððKi � k1ÞonÞ; (90)

FIG. 3. LF time-ordered diagrams representing the matrix element of the current operator obtained from ��0VG0J
�
0 ðQÞ�0, i.e., the

first term in the rhs of Eq. (82). The reducible diagrams, canceled by wð1Þjcð0Þ�g0, are not shown.
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where the denominator is the minus component of the following four momentum

�ð1fÞ
i ¼ Ki � k1on � ðKf � k01Þon � ðp1 � k1Þon (91)

and yields the intermediate propagation of the three-body system composed by two fermions and a boson.

B. The term ��0VG0J
�
0 ðQÞ�0

Let us now discuss the first contribution in Eq. (82), g�1
0 j �G0VG0J

�
0 ðQÞ �G0jg�1

0 , depicted by diagrams (g) to (i) in Fig. 3.

It is worth noting that the pair contribution is not present due to the conservation of the plus momentum component. For the

sake of simplicity, the two reducible diagrams, which are canceled by wð1Þg0jcð0Þ� in Eq. (82) in an analogous way as we
have already discussed for diagrams (e) and (d) in Fig. 2, are not shown in Fig. 3. As discussed in detail in Appendix F, by
analytical integrations over k�1 and k01 by Cauchy’s theorem one can express diagram (g) as ([see, Eq. (F21)]

hk0þ1 ~k01?jjcð1Þ�jkþ1 ~k1?iðgÞ ¼ ie1ð2m1ÞðigÞ2� �ðk0þ1 � p0þ
1 Þ

ðk0þ1 � p0þ
1 Þp0þ

1 �ð1gÞ�
f �ð1gÞ�

i

�þðk01onÞ��1 �þðp0
1onÞ��1 �þðk1onÞ

��þððKf � k01ÞonÞ�2��þððKi � k1ÞonÞ; (92)

where the combinations �ð1gÞ
f and �ð1gÞ

i of four momenta are

�ð1gÞ
f ¼ Kf � p0

1on � ðKf � k01Þon � ðk01 � p0
1Þon þ i" �ð1gÞ

i ¼ Ki � k1on � ðKf � k01Þon � ðk01 � p0
1Þon þ i" ¼ �ð1fÞ

i ;

(93)

since k01 � p0
1 ¼ p1 � k1.

The instantaneous diagram (h) is given by [see, Eq. (F23)]

hk0þ1 ~k01?jjcð1Þ�jkþ1 ~k1?iðhÞ ¼
i

2
e1ðigÞ2� �ðk0þ1 � p0þ

1 Þ
ðk0þ1 � p0þ

1 Þp0þ
1 �ð1gÞ�

i

�þðk01onÞ��1�þ
1 �

�
1 �þðk1onÞ�þððKf � k01ÞonÞ

� �2��þððKi � k1ÞonÞ; (94)

while the instantaneous contribution in the region p0þ
1 > k0þ1 > 0, illustrated by diagram (i) in Fig. 3, is [see, Eq. (F24)]

hk0þ1 ~k01?jjcð1Þ�jkþ1 ~k1?iðiÞ ¼
i

2
e1ðigÞ2� �ðp0þ

1 � k0þ1 Þ
ðp0þ

1 � k0þ1 Þp0þ
1 �ð1iÞ�

f

�þðk01onÞ��1�þ
1 �

�
1 �þðk1onÞ�þððKf � k01ÞonÞ

� �2��þððKi � k1ÞonÞ; (95)

where the three-body denominator is the minus component
of

�ð1iÞ
f ¼ Kf � k01on � ðKi � k1Þon � ðp0

1 � k01Þon ¼ �ð1aÞ
f :

(96)

Closing the discussion on the first-order current, we
refer the reader to Appendix G for an explicit check of
the current conservation. The detailed derivation of current
conservation allows a deeper understanding of the explicit
effects of the formal manipulations used to obtain a con-
served LF operator, consistent with the effective interac-
tion at each given order. This calculation also shows the
essential role played by the instantaneous terms in the
cancellation of terms from the two-body current (a) and
(g), that otherwise break current conservation. In this
respect it is useful to consider that current (i), as current

(c), yields contribution in both the kinematical regions (i)
pþ
1 ¼ k0þ1 �Qþ > 0 and (ii) 0> k0þ1 �Qþ ¼ pþ

1 , as
easily obtained from the kinematical constraint p0þ

1 ¼
kþ1 þQþ > k0þ1 leading to kþ1 > k0þ1 �Qþ ¼ pþ

1
>
< 0.

The peculiarity of the instantaneous terms in the treat-
ment of the fermionic case is also illustrated by the can-
cellation of logarithmic singularities of the iterated ladder
and stretched box diagrams of the Yukawa model [10,29].
This cancellation yields the full covariant form of the box
diagram [29].

VIII. CONCLUSION

In this paper we propose a conserved electromagnetic
current operator that acts on the valence component of the
three-dimensional LF wave function of a two-fermion
system. In order to obtain the LF current, we have ex-
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ploited the quasipotential approach to the BS equation [8]
and then we have projected the relevant quantities onto the
light-front hyperplane. This approach has been already
applied to the BS equation for both boson and fermions
[9,10] and to the construction of the conserved current
operator for two-boson systems [16].

The starting point of the reduction scheme to the LF is
the QP approach to the BS equation with a proper auxiliary
four-dimensional Green’s function without instantaneous
terms. Such terms, that represent the peculiar feature of a
fermionic system, are recovered both in the kernel of the
LF equation for the valence wave function and in the LF
two-body current operator. The integration of the minus
component of the particle four momenta in the relevant
operators, namely, the Green’s function, the T matrix, and
etc., allows one to accomplish the desired LF projection of
both eigenequation and em four current. Furthermore, we
have identified a nonunitary operator, the reverse LF-time
projection operator, that acts on the LF valence wave
function and allows one to reconstruct the four-
dimensional BS amplitude for bound or scattering states.
Such an operator is nonunitary since the valence compo-
nent does not carry the full normalization of the wave
function (for a discussion of the probability of the higher
Fock components in the Wick-Cutkosky model see
Ref. [17]). The explicit expression of the reverse LF-time
operator in terms of the quasipotential is essential for
obtaining a LF three-dimensional current that fulfills the
WTI, at any order of the quasipotential expansion. In
particular, the reverse LF-time operator applied to a four-
dimensional current generates a three-dimensional LF cur-
rent. Such an application trivially leads to the equality
between the matrix elements of the four current, evaluated
by using the full BS amplitudes, and the matrix elements,
of the LF current evaluated by using the valence wave
functions corresponding to the previous BS amplitudes.
Then the current conservation follows. This result is essen-
tial for identifying the ingredients to be used for demon-
strating the WTI for the truncated LF current. In particular,
we have defined the left and right LF charge operators (that
do not contain interaction), and we have found the formal
expression for the LF WTI, where the LF Green’s func-
tions, for the initial and final states, appear. The last step in
our analysis is of particular relevance. Indeed, a naive
truncation of the QP expansion that defines the LF current
does not lead to a conserved current, while retaining all the
contributions up to a given order in the effective interaction
allows one to construct a LF truncated current that satisfies
the WTI. In such a truncated WTI, the truncated initial and
final Green’s functions appear, as well as the same LF
charge operators obtained in the full case. In particular,
the truncated effective current operator can be put in
correspondence to a sum over intermediate states [11] up
to some maximal number of particles exchanged at a given
LF time that flows from the initial to the final valence states

due to the photo-absorption process. The truncation of the
expansion of the quasipotential implies that the observ-
ables derived from the three-dimensional conserved cur-
rent operator are frame dependent, but with gauge
invariance correctly implemented. The covariance under
Lorentz transformations of the full LF current operator,
j�ðKf;KiÞ, is not greatly relevant, given the equality in

Eq. (57) between the four-dimensional matrix elements of
the covariant current and the corresponding three-
dimensional ones. However, since the truncated theory is
necessary for obtaining workable approximations, the co-
variance properties of both the full and the truncated LF
current will be investigated elsewhere [27]. Here, we can
anticipate that the covariance under the seven kinematical
LF transformations is satisfied by the LF current operator
(and also by the valence wave functions) in both cases,
with a suitable introduction of new factors in the vertical
bar operation. For the truncated theory, the violation of
covariance under dynamical LF transformations produces
effects on the matrix elements of the current, that can be
reduced at any desired accuracy, by increasing the order n
of the truncated quasipotential, namely, approaching the
full theory. This necessarily leads to consider intermediate
Fock states with larger and larger number of particles in the
evaluation of the effective interaction. Moreover, a quanti-
tative study of the effect of covariance violations was
already performed in the computation of the masses of
bound states for the bosonic model [9,25]. It was con-
cluded that the expansion in the Fock space is rapidly
converging for a given covariant model (see also,
[5,30,31]). In particular the splitting between magnetic
states of spin-1 composite bosons decreases when the
kernel of the LF bound state equation is evaluated taking
into account higher order terms, like stretched boxes, in a
bosonic model [25].
Our procedure for constructing a truncated LF current

has been illustrated in an actual case: the Yukawa model
with chargeless boson exchange in ladder approximation.
We have evaluated the LF current operator at the lowest
nontrivial order and have explicitly checked the Ward-
Takahashi identity for such a model. The role of instanta-
neous terms has been clarified and their relevance in pro-
ducing two-body contributions has been emphasized.
Let us finally comment on possible problems about

singularities and regularizations that can occur in the trun-
cated LF current. Restricting to a model without self-
energies and vertex corrections, but considering in the
kernel the ladder and two-body irreducible cross-ladder
terms, the Bethe-Salpeter equation is finite allowing a
solution. However, the projection of this equation to the
light-front is plagued by infinities (see, e.g., [10,23,29–
31]). Recently it was shown that the finite covariant box
amplitude in the Yukawa model is fully recovered when all
terms in the light-front projection beyond the iterated box
(i.e., stretched box and instantaneous terms) are obtained
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and that all the singularities are canceled [29]. Thus in
general one could argue that regularization problems occur
in the integration loops for the truncated current at order
n > 1, since the presence in �0 of the global propagation,

described by ~G0ðKÞ, destroys the balance between singu-
larities that allows for a finite result when only G0ðKÞ is
considered (see, e.g., [29]). For instance, an easy form of

regularization can be introduced in ~G0ðKÞ through a cutoff
function, e.g., �ð�2 �M2

0Þ. Since the starting four-

dimensional covariant BS model is finite, one expects
that the effect of the scale � vanishes if the QP expansion
is not truncated.

However, the issue of renormalization of the nonpertur-
bative bound state problem in the truncated QP expansion
is subtle [24], and therefore the dependence upon the scale
� in the three-dimensional truncated theory should be
carefully analyzed. This nontrivial elaboration on the re-
normalization issue has to be postponed to a future work.

In summary, we have proposed a systematic expansion
of a conserved electromagnetic current operator within LF
dynamics for two-fermion interacting systems, using the
quasipotential approach to the Bethe-Salpeter equation. As
to the future perspectives, we plan to apply such an inter-
acting current for the investigation of inclusive and exclu-
sive electromagnetic processes, like hadron form factors
and deeply virtual photon scattering, after properly gener-
alizing the present approach to fermion-antifermion sys-
tems [27]. It should be pointed out that the identification of
the matrix elements of any operator in the four-
dimensional space with the matrix elements of the corre-
sponding three-dimensional operator acting on the valence
wave function is a general procedure.
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APPENDIX A: USEFUL IDENTITIES

We introduce the following identities that will be useful
in exploring the relation between LF and four-dimensional
covariant quantities. It is straightforward to get that

ðp6 �mÞðp6 on þmÞ ¼ ðp2 �m2Þ �
þ

2pþ ðp6 on þmÞ; (A1)

ðp6 on þmÞðp6 �mÞ ¼ ðp2 �m2Þðp6 on þmÞ �
þ

2pþ : (A2)

These identities imply the following relations

hk0�1 jG�1
0 ðKÞ �G0ðKÞjk�1 i

¼ �þ
1

2kþ1

�þ
2

2kþ2
ðk6 1on þm1Þðk6 2on þm2Þ�ðk0�1 � k�1 Þ; (A3)

hk0�1 j �G0ðKÞG�1
0 ðKÞjk�1 i

¼ ðk6 1on þm1Þðk6 2on þm2Þ �
þ
1

2kþ1

�þ
2

2kþ2
�ðk0�1 � k�1 Þ: (A4)

Note the presence of the product �þ
1 �

þ
2 that is essential for

the definition of the LF charge operators, Eqs. (62) and
(63). Exploiting ð�þÞ2 ¼ 0, one obtains another useful
identity

ðp6 þmÞ �
þ

2pþ ðp6 þmÞ ¼ ðp6 on þmÞ; (A5)

with p�
on ¼ ð ~p2

? þmÞ=pþ.
Using (i) Eqs. (A3) and (A5), and (ii) the explicit form of

�G0ðKÞ, one gets

g0ðKÞ ¼ j �G0ðKÞG�1
0 ðKÞ �G0ðKÞj; (A6)

for the free three-dimensional propagator.
Now we can relate the interacting LF Green’s function

directly with the four-dimensional Green’s function by
evaluating

j �G0ðKÞG�1
0 ðKÞGðKÞG�1

0 ðKÞ �G0ðKÞj
¼ j �G0ðKÞG�1

0 ðKÞ �G0ðKÞj þ j �G0ðKÞTðKÞ �G0ðKÞj
¼ g0ðKÞ þ g0ðKÞ ��0ðKÞTðKÞ�0ðKÞg0ðKÞ
¼ g0ðKÞ þ g0ðKÞtðKÞg0ðKÞ ¼ gðKÞ; (A7)

where Eq. (34) for the definition of tðKÞ was used.

APPENDIX B: THE INTERACTING REVERSE LF
PROJECTION OPERATOR

In this appendix, we will prove some useful identities
involving the interacting reverse LF projection operator.
The following relation between �ðKÞ [see, the defini-

tion in Eq. (42)] and TðKÞ can be obtained from Eqs. (27),
(29), (31), (34), and (39). Indeed one has
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�ðKÞ ¼ �0ðKÞ þ�0ðKÞWðKÞ�0ðKÞ ¼ �0ðKÞ þG0ðKÞWðKÞ�0ðKÞ ��0ðKÞg0ðKÞ ��0ðKÞWðKÞ�0ðKÞ
¼ �0ðKÞ þG0ðKÞWðKÞ�0ðKÞ ��0ðKÞg0ðKÞwðKÞ ¼ �0ðKÞg0ðKÞg�1ðKÞ þG0ðKÞWðKÞ�0ðKÞgðKÞg�1ðKÞ
¼ ½�0ðKÞ þG0ðKÞWðKÞ�0ðKÞ þG0ðKÞWðKÞ�0ðKÞg0ðKÞtðKÞ�g0ðKÞg�1ðKÞ ¼
¼ ½1þG0ðKÞWðKÞ þG0ðKÞWðKÞ ~G0ðKÞTðKÞ��0ðKÞg0ðKÞg�1ðKÞ ¼ ½1þG0ðKÞTðKÞ��0ðKÞg0ðKÞg�1ðKÞ:

(B1)

Furthermore, by using Eqs. (2) and (19), one gets

�ðKÞ ¼ GðKÞG�1
0 ðKÞ �G0ðKÞjg�1ðKÞ (B2)

that can be recast in the following form

G�1ðKÞ�ðKÞ ¼ G�1
0 ðKÞ �G0ðKÞjg�1ðKÞ: (B3)

The analogous expression for ��ðKÞ reads
��ðKÞG�1ðKÞ ¼ g�1ðKÞj �G0ðKÞG�1

0 ðKÞ: (B4)

APPENDIX C: ZERO-ORDER LF CURRENT
OPERATOR AND WTI

In this appendix we will evaluate the matrix elements of
the free LF current operator, Eq. (69), between free particle
states and we will prove explicitly the WTI. The matrix
elements of the free four-dimensional current operator are

hk1jJ �
0 ðQÞjp1i ¼�2�½e1��1 �4ðk1 �p1 �QÞ

� ððK6 f� k6 1Þ�m2Þ�
þ ½1! 2; k1 !Kf� k1;p1 !Ki�p1�;

(C1)

where Q� ¼ K�
f � K�

i . The factor ð�2�Þ is introduced in
the current operator to make it compatible with the free
Green’s function, see Eq. (3).
Since g�1

0 is the identity in the two-particle space,

modulo some factors, to simplify the presentation let us

consider in what follows only the relevant part of jc�ð0Þ
containing the k� integration. Moreover, in order to make
more fast the discussion related to the position of the poles,
we will take profit of the � functions present in the dropped
g�1
0 factors, that remind us we are dealing with particles in

the external legs. Therefore, one has

�hk0þ1 ~k01?jj �G0J
�
0
�G0jjkþ1 ~k1?i

¼ � 1

ð2�Þ�
Z
dk�1

e1�ðk0þ1 � kþ1 �QþÞ�2ð ~k01? � ~k1? � ~Q?Þ
k0þ1 k

þ
1 ðk�1 þQ� � k0�1on þ i "

k0þ
1

Þðk�1 � k�1on þ i "
kþ
1

Þ
ðk6 01on þm1Þ��1 ðk6 1on þm1ÞððK6 i � k6 1Þon þm2Þ
ðKþ

i � kþ1 ÞðK�
i � k�1 � ðKi � k1Þ�2on þ i "

Kþ
i �kþ1 Þ

þ 1 $ 2; (C2)

where k01 ¼ k1 þQ, and � ¼ �ðkþ1 Þ�ðkþ0
1 Þ�ðKþ

i � kþ1 Þ�ðKþ
f � kþ0

1 Þ. It is important noting that, without profiting of the
presence of � on the left of Eq. (C2), a lengthy discussion of the poles leads to the presence of � in the result. We have
used the identities (A1) and (A5) to simplify the following combination that appears in the numerator of Eq. (C2)

ðk6 2on þm2Þðk6 2 �m2Þðk6 2on þm2Þ ¼ ðk22 �m2
2Þðk6 2on þm2Þ; (C3)

with k2 ¼ Ki � k1 ¼ Kf � k01.
Integrating over k�1 and assuming that Kþ

i > 0 and Qþ � 0, without loss of generality, one gets that

�hk0þ1 ~k01?jj �G0J
�
0
�G0jjkþ1 ~k1?i ¼ i�e1�ðk0þ1 � kþ1 �QþÞ�2ð ~k01? � ~k1? � ~Q?Þ

� ðk6 01on þm1Þ��1 ðk6 1on þm1ÞððK6 i � k6 1Þon þm2Þ
k0þ1 ðKþ

i � kþ1 Þkþ1 �ð0Þ�
f �ð0Þ�

i

þ 1 $ 2 (C4)

where we have introduced the four-vector quantities
�ð0Þ
f ¼ Kf � k01on � ðKf � k01Þon þ i
 and �ð0Þ

i ¼
Ki � k1on � ðKi � k1Þon þ i
 for convenience. Note that
the minus component of �f and �i are the only nonvanish-
ing ones. The on-minus-shell values of the individual
momenta are

k0�1on ¼
~k021? þm2

1

k0þ1
(C5)

k�1on ¼
~k21? þm2

1

kþ1
(C6)
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ðKf � k01Þ�on ¼
ð ~Kf? � ~k01?Þ2 þm2

2

Kþ
f � k0þ1

(C7)

ðKi � k1Þ�on ¼ ð ~Ki? � ~k1?Þ2 þm2
2

Kþ
i � kþ1

: (C8)

Taking into account the definition of g0ðKÞ, Eq. (16), and the matrix elements of ê1LF, Eq. (65), we have

hk0þ1 ~k01?jj �G0J
�
0
�G0jjkþ1 ~k1?i ¼ �i K

þ
i � kþ1
2m2

hk0þ1 ; ~k01?jg0ðKfÞ��1 ê1;LFg0ðKiÞjkþ1 ~k1?i þ 1 $ 2: (C9)

Finally, by multiplying by the proper g0ðKÞ�1, the matrix element of the free current operator can be written as

hk0þ1 ~k01?jjcð0Þ�jkþ1 ~k1?i ¼ �i��þðk01onÞ��1 �þðk1onÞ�þððKi � k1ÞonÞK
þ
i � kþ1
2m2

hk0þ1 ; ~k01?jê1;LFjkþ1 ~k1?i þ 1 $ 2: (C10)

To derive the WTI for the free LF current operator, we evaluate the four-divergence of the current by contracting it with
Q�. Since ðKf � k01Þ�on ¼ ðKi � k1Þ�on, which follows from kinematical momentum conservation, the momentum transfer

can be written in terms of �’s as, Q ¼ �ð0Þ
f � �ð0Þ

i þ k01on � k1on, and thus

Q6 ¼ �þ

2
ð�ð0Þ�

f � �ð0Þ�
i Þ þ k01on � k1on: (C11)

Then one has

�þðk01onÞQ6 �þðk1onÞ ¼ �þðk01onÞ
�þ
1

2
�þðk1onÞð�ð0Þ�

f � �ð0Þ�
i Þ: (C12)

From the above results, the four divergence of the free current becomes

hk0þ1 ~k01?jQ � jcð0Þjkþ1 ~k1?i ¼ �i��þðk01onÞ
�þ
1

2
�þðk1onÞ�þððKi � k1ÞonÞK

þ
i � kþ1
2m2

ð�ð0Þ�
f ��ð0Þ�

i Þhk0þ1 ; ~k01?jê1;LFjkþ1 ~k1?i
þ 1 $ 2:

¼ hk0þ1 ~k01?j½g0ðKfÞ��1Q̂L
LF � Q̂R

LF½g0ðKiÞ��1jkþ1 ~k1?i; (C13)

since the free resolvent that appears in Eq. (C13) comes
from the following relations

�ð0Þ�
i �þðk1onÞ�þðk2onÞ ¼ i

2m1

kþ1

2m2

Kþ
i � kþ1

½g0ðKiÞ��1

�ð0Þ�
f �þðk01onÞ�þðk2onÞ ¼ i

2m1

k0þ1

2m2

Kþ
f � k0þ1

½g0ðKfÞ��1:

(C14)

Equation (C13) gives, as expected, the matrix elements of
(70), i.e., the WTI for n ¼ 0.

APPENDIX D: WTI FOR THE FIRST-ORDER LF
CURRENT OPERATOR

In this appendix we show the WTI for LF current,
obtained by truncating at the first order the effective inter-
action, see Sec. VI. Let us rewrite the LF first-order current

operator

jcð1Þ� ¼ ��0½J �
0 þ J �

I þ V�0J
�
0 þ J �

0 �0V��0: (D1)

Using the current conservation for J �
0 and J �

I , see

Eqs. (11) and (12), the four divergence is given by

Q�jcð1Þ� ¼ g0
�1Q̂L

LF � Q̂R
LFg0

�1 þ ��0½ðêV � VêÞ
þ V�0G

�1
0 ê� êG�1

0 �0V��0: (D2)

Note that the term ½�V�0êG
�1
0 �0 þ ��0G

�1
0 ê�0V� is not

present in the above equation, since it is vanishing due to
the absence of a Dirac structure in the operator ê and
because of Eqs. (A3), (A4), and (32).
Furthermore, by using the definitions of (i) �0, Eq. (31),

(ii) ~G0, Eq. (27), and (iii) Q̂L
LF, Eq. (62), and Q̂R

LF,
Eq. (63), one has
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Q�jcð1Þ� ¼ g0
�1Q̂L

LF � Q̂R
LFg0

�1 � ��0½V ~G0G
�1
0 ê� êG�1

0
~G0V��0

¼ g0
�1Q̂L

LF � Q̂R
LFg0

�1 � ��0½V�0g0 ��0G
�1
0 ê� êG�1

0 �0g0 ��0V��0

¼ g0
�1Q̂L

LF � Q̂R
LFg0

�1 � ½wð1Þj �G0G
�1
0 ê�0 � ��0êG

�1
0 G0jwð1Þ�

¼ ðg0�1 � wð1ÞÞQ̂L
LF � Q̂R

LFðg0�1 � wð1ÞÞ ¼ g1
�1Q̂L

LF � Q̂R
LFg1

�1: (D3)

APPENDIX E: WTI FOR ARBITRARY n > 1 LF
CURRENT OPERATOR

The proof of WTI is based on the induction hypothesis.
Once the current operator at order n satisfies the Ward-
Takahashi identity, we must demonstrate its validity for
nþ 1. First note that

jcðnþ1Þ� ¼ jcðnÞ� þ ��0

�
Wn�0J

�
I þ J �

I �0Wn

þWnþ1�0J
�
0 þ J �

0 �0Wnþ1

þ Xn�1

i¼1

Wi�0J
�
I �0Wn�i

þXn
i¼1

Wi�0J
�
0 �0Wn�iþ1

�
�0; (E1)

where we have separated out the free term from the inter-
acting one in the four-dimensional current using Eq. (5).
Since Q�J

�
I ¼ êV � Vê, by induction, we have

Q�jcðnþ1Þ
� ¼ g�1

n Q̂L
LF � Q̂R

LFg
�1
n þ ��0

�
Wn�0ðêV�VêÞ

þ ðêV�VêÞ�0Wn

þWnþ1�0ðG�1
0 ê� êG�1

0 Þþ ðG�1
0 ê� êG�1

0 Þ

��0Wnþ1 þ
Xn�1

i¼1

Wi�0ðêV�VêÞ�0Wn�i

þXn
i¼1

Wi�0ðG�1
0 ê� êG�1

0 Þ�0Wn�iþ1

�
�0:

(E2)

In the above equation, the term ��0½�Wnþ1�0êG
�1
0 þ

G�1
0 ê�0Wnþ1��0 vanishes due to the absence of a Dirac

structure in the operator ê and because of Eqs. (A3), (A4),
and (32). By using the same relations and the definition of
~G0, Eq. (27), we can simplify the following term that
appears in last sum, i.e.,

�0ðG�1
0 ê� êG�1

0 Þ�0 ¼ ðê�0 ��0êÞ: (E3)

Then, since by definition V�0Wi ¼ Wiþ1, we have

Q�jcðnþ1Þ
� ¼ g�1

n Q̂L
LF � Q̂R

LFg
�1
n þ ��0

�
Wn�0êV

� Vê�0Wn �Wnþ1
~G0G

�1
0 êþ êG�1

0
~G0Wnþ1

þ Xn�1

i¼1

Wi�0êWn�iþ1 �
Xn�1

i¼1

Wiþ1ê�0Wn�i

þXn
i¼1

Wiðê�0 � �0êÞWn�iþ1

�
�0; (E4)

and rearranging the terms we get

Q�jcðnþ1Þ
� ¼ g�1

n Q̂L
LF � Q̂R

LFg
�1
n þ ��0

�
êG�1

0
~G0Wnþ1

�Wnþ1
~G0G

�1
0 êþXn

i¼1

Wi�0êWn�iþ1

� Xn�1

i¼0

Wiþ1ê�0Wn�i

þXn
i¼1

Wiðê�0 � �0êÞWn�iþ1

�
�0: (E5)

Since the sums cancel each other, we have

Q�jcðnþ1Þ
� ¼ g�1

n Q̂L
LF � Q̂R

LFg
�1
n

þ ��0½êG�1
0

~G0Wnþ1 �Wnþ1
~G0G

�1
0 ê�

��0 ¼ g�1
n Q̂L

LF � Q̂R
LFg

�1
n

þ Q̂R
LFwnþ1 � wnþ1Q̂

L
LF (E6)

where the LF charge operators as given by Eqs. (62) and
(63) have been introduced through

��0êG
�1
0

~G0Wnþ1�0 ¼ Q̂R
LFwnþ1

��0Wnþ1
~G0G

�1
0 ê�0 ¼ wnþ1Q̂

L
LF:

(E7)

Finally, since g�1
nþ1 ¼ g�1

n � wnþ1, one gets

Q�jcðnþ1Þ
� ¼ g�1

nþ1Q̂
L
LF � Q̂R

LFg
�1
nþ1: (E8)

Thus, by induction, we conclude that the LF electromag-

netic current operator jcðnÞ� is conserved at any given order
n of the quasipotential expansion, once the matrix elements
are taken between eigenstates of g�1

n j�ni ¼ 0.
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APPENDIX F: INTERACTION-DEPENDENT PART
OF THE LF FIRST-ORDER CURRENT OPERATOR

IN LADDER APPROXIMATION

The contribution of the interaction to the LF current
operator in lowest order in ladder approximation comes
from two-body irreducible amplitudes given by the second
term in the rhs of Eq. (81). Using Eq. (31) for �0 one has

jcð1Þ� � jcð0Þ� ¼ ��0VG0J
�
0 �0 � wð1Þg0jcð0Þ�

þ ��0J
�
0 G0V�0 � jcð0Þ�g0wð1Þ; (F1)

where wð1Þ ¼ ��0V�0 is the three-dimensional effective
interaction [see Eq. (83)].

In the following we analyze the matrix elements of the
first-order current operator relevant for the em processes in
the spacelike region.

1. Evaluation of the term j �G0J
�
0 ðQÞG0V �G0j

Let us start with the third term in the rhs. of Eq. (F1),
g�1
0 j �G0J

�
0 ðQÞG0V �G0jg�1

0 , which is diagrammatically il-

lustrated in Fig. 2. It is important to observe that this term
contains the relevant pair production contribution, for
Qþ > 0 (cf. diagram (b) in Fig. 2). For the sake of sim-
plicity, we can first drop the multiplicative factors g�1

0 on

the left and on the right, and we will consider the current
only for particle 1. However, we can take advantage of the
� functions contained in both g�1

0 ðKfÞ and g�1
0 ðKiÞ, that

greatly help in the discussion of the analytical integrations
over k�1 and k0�1 . Therefore, we have to evaluate the fol-
lowing matrix element between free particle states

�hk0þ1 ~k01?jj �G0J
�
0 ð1ÞG0V �G0jjkþ1 ~k1?i ¼ ie1

�
ig

2�

�
2
�
Z
dk0�1 dk�1

1

k0þ1 ðKþ
f � k0þ1 Þ

k6 01on þm1

ðk0�1 � k0�1on þ i "
k0þ1
Þ

� ðK6 f � k6 01Þon þm2

ðK�
f � k0�1 � ðKf � k01Þ�on þ i "

Kþ
f
�k0þ

1
Þ�

�
1

p6 1 þm1

pþ
1 ðp�

1 � p�
1on þ i "

pþ
1
Þ

� ��1 �2�

ðkþ1 � pþ
1 Þðk�1 � p�

1 � ðk1 � p1Þ�on þ i "
kþ
1
�pþ

1

Þ
1

kþ1 ðKþ
i � kþ1 Þ

� k6 1on þm1

ðk�1 � k�1on þ i "
kþ
1

Þ
ðK6 i � k6 1Þon þm2

ðK�
i � k�1 � ðKi � k1Þ�on þ i "

Kþ
i �kþ1 Þ

; (F2)

where � ¼ �ðkþ1 Þ�ðkþ0
1 Þ�ðKþ

i � kþ1 Þ�ðKþ
f � kþ0

1 Þ and
p�1 ¼ k0�1 �Q�. Equation (F2) is represented by the
Feynman diagram shown in Fig. 1. The six poles in
Eq. (F2) are

k�1A ¼ k�1on � i
"

kþ1

k�1B ¼ K�
i � ðKi � k1Þ�on þ i

"

Kþ
i � kþ1

k�1C ¼ p�
1 þ ðk1 � p1Þ�on � i

"

kþ1 � pþ
1

k0�1A ¼ k0�1on � i
"

k0þ1

k0�1B ¼ K�
f � ðKf � k01Þ�on þ i

"

Kþ
f � k0þ1

p�
1 ¼ k0�1C �Q� ¼ p�

1on � i
"

pþ
1

(F3)

with the on-minus-shell definition of the respective mo-
menta given by

k�1on ¼
~k21? þm2

1

kþ1

ðKi � k1Þ�on ¼ ð ~Ki? � ~k1?Þ2 þm2
2

Kþ
i � kþ1

ðk1 � p1Þ�on ¼ ð ~k1? � ~p1?Þ2 þ�2

kþ1 � pþ
1

p�
1on ¼

~p2
1? þm2

1

pþ
1

k0�1on ¼
~k021? þm2

1

k0þ1

ðKf � k01Þ�on ¼
ð ~Kf? � ~k01?Þ2 þm2

2

Kþ
f � k0þ1

:

(F4)

The integrations over k�1 and k01 in Eq. (F2) are per-
formed analytically using Cauchy’s theorem with the con-
ditions Kþ

i > 0 and Qþ � 0. As a result, we get the six
contributions that appear in Fig. 2. Note that diagrams (d)
and (e) are two-body reducible terms which are canceled

by jcð0Þ�g0wð1Þ in Eq. (F1). Let us now discuss in detail the
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diagrams of Fig. 2, devoting a specific subsection to the
pair diagram (b).

a. Diagrams (a), (c), (d), (e), and (f) for pþ
1 ¼

k0þ1 �Qþ � 0

Let us start considering the kinematical region pþ
1 ¼

k0þ1 �Qþ � 0 and kþ1 > k0þ1 �Qþ. We first perform the

analytical integration of Eq. (F2) on k�1 . The poles k
�
1A and

k�1C belong to the lower semiplane, while k�1B lays in the

upper semiplane. The result obtained integrating in the
upper semiplane contains contributions corresponding to
diagrams (a), (c) and (d), viz.,

�hk0þ1 ~k01?jj �G0J
�
0 ð1ÞG0V �G0jjkþ1 ~k1?iðaÞþðcÞþðdÞ ¼ e1

ðigÞ2
2�

��ðpþ
1 Þ�ðkþ1 � pþ

1 Þ
Z
dk0�1

1

k0þ1 ðKþ
f � k0þ1 Þ

k6 01on þm1

ðk0�1 � k0�1on þ i "
k0þ
1

Þ

� ðK6 f � k6 01Þon þm2

½K�
f � k0�1 � ðKf � k01Þ�on þ i "

Kþ
f
�k0þ

1

�
1

ðkþ1 � pþ
1 Þpþ

1

� �
�
1

½K�
f � k0�1 � ðKi � k1Þ�on þ i "

Kþ
i �kþ1 � ðk1 � p1Þ�on þ i "

kþ
1
�pþ

1
�

�
�

p6 1on þm1

ðk0�1 �Q� � p�
1on þ i "

pþ
1
Þ þ

�þ
1

2

�
��1 �2�

kþ1 ðKþ
i � kþ1 Þ

� ðk6 1on þm1Þ½ðK6 i � k6 1Þon þm2�
½K�

i � ðKi � k1Þ�on þ i "
Kþ
i �kþ1 � k�1on þ i"

kþ
1

� : (F5)

Note that (i) the instantaneous term, proportional to �þ
1 , leading to a first contribution to the current (c) shown in Fig. 2, is

explicitly separated out in Eq. (F5), (ii) the global propagation of the initial state, i.e., 1=½K�
i � ðKi � k1Þ�on � k�1on�will be

canceled by g0ðKiÞ�1.
In order to separate the processes corresponding to diagrams (a) and (d) of Fig. 2, we make use of the identity

1

ðK�
f � k0�1 � ðKi � k1Þ�on þ i "

Kþ
i �kþ1 � ðk1 � p1Þ�on þ i "

kþ1 �pþ
1
Þ

1

ðk0�1 �Q� � p�
1on þ i "

pþ
1

Þ

¼
�

1

ðK�
f � k0�1 � ðKi � k1Þ�on þ i "

Kþ
i �kþ1 � ðk1 � p1Þ�on þ i "

kþ
1
�pþ

1

Þ þ
1

ðk0�1 �Q� � p�
1on þ i "

pþ
1

Þ
�

� 1

K�
i � p�

1on þ i "
pþ
1
� ðKi � k1Þ�on þ i "

Kþ
i �kþ1 � ðk1 � p1Þ�on þ i "

kþ
1
�pþ

1

; (F6)

and integrate Eq. (F5) analytically on k0�1 . The first term in the square brackets in Eq. (F6) generates the contribution
illustrated by diagram (a) in Fig. 2, once we take the residue at the pole k01A, in the lower semiplane, and multiply on the left
by g0ðKfÞ�1 and on the right by g0ðKiÞ�1 [cf. Eq. (17)]. The second term in the square brackets leads to the contribution of
diagram (d), a two-body reducible term, which is canceled out by one of the contributions in jcð0Þ�g0wð1Þ, see Eq. (F1).
Diagram (a) is given by

hk0þ1 ~k01?jjcð1Þ�jkþ1 ~k1?iðaÞ ¼ ie1ð2m1ÞðigÞ2� �ðkþ1 � pþ
1 Þ

ðkþ1 � pþ
1 Þpþ

1

�ðpþ
1 Þ

�ð1aÞ�
f �ð1aÞ�

i

�þðk01onÞ��1 �þðp1onÞ��1 �þðk1onÞ

��þððKf � k01ÞonÞ�2��þððKi � k1ÞonÞ: (F7)

The four-vectors �ð1aÞ
f and �ð1aÞ

i are the following combinations of the four momenta

�ð1aÞ
f ¼ Kf � k01on � ðKi � k1Þon � ðk1 � p1Þon þ i" �ð1aÞ

i ¼ Ki � p1on � ðKi � k1Þon � ðk1 � p1Þon þ i": (F8)

The minus components yield the three-body (two fermions and the exchanged boson) global propagation in the final and
initial states, respectively.

The instantaneous term (c), in the kinematical region under consideration in this subsection, can be obtained from the
same pole k01A. Then one has
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hk0þ1 ~k01?jjcð1Þ�jkþ1 ~k1?iIðcÞ ¼
i

2
e1ðigÞ2��ðpþ

1 Þ
pþ
1

�ðkþ1 � pþ
1 Þ

ðkþ1 � pþ
1 Þ�ð1aÞ�

f

�þðk01onÞ��1 �þ
1 �

�
1 �þðk1onÞ�þððKf � k01ÞonÞ

� �2��þððKi � k1ÞonÞ: (F9)

Let us then consider the kinematical region where pþ
1 ¼ k0þ1 �Qþ > kþ1 . We first perform the analytical integration of

Eq. (F2) in k�1 by calculating the residue at the pole k�1A in the lower semiplane, where only this pole appears. Then in this
region we obtain two contributions from Eq. (F2): a reducible one (cf. diagram (e) in Fig. 2) and an irreducible one given by

diagram (f), namely, an instantaneous term. Diagram (e) is canceled by the remaining part of jcð0Þ�g0wð1Þ. The result
corresponding to diagram (f) is

�hk0þ1 ~k01?jj �G0J
�
0 ðQÞG0V �G0jjkþ1 ~k1?iðfÞ ¼ e1

ðigÞ2
2�

��ðpþ
1 Þ�ðpþ

1 � kþ1 Þ
Z
dk0�1

1

k0þ1 ðKþ
f � k0þ1 Þ

k6 01on þm1

ðk0�1 � k0�1on þ i "
k0þ
1

Þ

� ðK6 f � k6 01Þon þm2

½K�
f � k0�1 � ðKf � k01Þ�on þ i "

Kþ
f
�k0þ

1

�
1

ðpþ
1 � kþ1 Þpþ

1

� �
�
1

½k0�1 �Q� � k�1on � ðp1 � k1Þ�on þ i "
kþ
1

þ i "
pþ
1
�kþ

1

�
�þ
1

2

� ��1 �2�

kþ1 ðKþ
i � kþ1 Þ

ðk6 1on þm1ÞððK6 i � k6 1Þon þm2Þ
½K�

i � ðKi � k1Þ�on þ i "
Kþ
i �kþ1 � k�1on þ i "

kþ
1

� : (F10)

The analytical integration of Eq. (F10) is easily performed by calculating the residue at the pole k0�1B in the upper
semiplane. Therefore, the contribution from the instantaneous term for k0þ1 �Qþ > kþ1 , represented by diagram (f), is

hk0þ1 ~k01?jjcð1Þ�jkþ1 ~k1?iðfÞ ¼
i

2
e1ðigÞ2��ðpþ

1 Þ
pþ
1

�ðpþ
1 � kþ1 Þ

ðpþ
1 � kþ1 Þ�ð1fÞ�

i

�þðk01onÞ��1 �þ
1 �

�
1 �þðk1onÞ�þððKf � k01ÞonÞ

� �2��þððKi � k1ÞonÞ; (F11)

where in the denominator appears the minus component of the following four momentum

�ð1fÞ
i ¼ Ki � k1on � ðKf � k01Þon � ðp1 � k1Þon (F12)

which yields the intermediate propagation of the three-body system composed by two fermions and a boson.

b. Diagrams (b) and (c) for 0 � k0þ1 �Qþ ¼ pþ
1

In the kinematical region where 0 � k0þ1 �Qþ ¼ pþ
1 , the nonvanishing result can be obtained from the pole k�1B in the

upper semiplane, as in Eq. (F5). Then one has to consider the pole k0�1A, when the integration over k0�1 is performed. Note
that in Eq. (F5) �ðpþ

1 Þ has now to be substituted by �ð�pþ
1 Þ. The resulting matrix element of the current operator (b) is

hk0þ1 ~k01?jjcð1Þ�jkþ1 ~k1?iðbÞ ¼ �ie1ð2m1ÞðigÞ2��ð�pþ
1 Þ

pþ
1

�ðkþ1 � pþ
1 Þ

ðkþ1 � pþ
1 Þ�ð1aÞ�

f �ð1bÞ�
�

�þðk01onÞ��1 �þðp1onÞ��1 �þðk1onÞ

��þððKf � k01ÞonÞ�2��þððKi � k1ÞonÞ; (F13)

where the combination �ð1bÞ
� of four momenta is

�ð1bÞ
� ¼ Q� k01on þ p1on þ i": (F14)

Finally one has to compute the two-body current due to the instantaneous term (c), which in this kinematical region is
given by
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hk0þ1 ~k01?jjcð1Þ� jkþ1 ~k1?iIIðcÞ ¼
i

2
e1ðigÞ2��ð�pþ

1 Þ
pþ
1

�ðkþ1 � pþ
1 Þ

ðkþ1 � pþ
1 Þ�ð1aÞ�

f

�þðk01onÞ��1 �þ
1 �

�
1 �þðk1onÞ�þððKf � k01ÞonÞ

� �2��þðKi � k1ÞonÞ: (F15)

2. Evaluation of the term j �G0VG0J
�
0 ðQÞ �G0j

Let us now discuss the first contribution in Eq. (F1), g�1
0 j �G0VG0J

�
0 ðQÞ �G0jg�1

0 , depicted by diagrams (g) to (i) in Fig. 3.

It is worth noting that the pair contribution is not present due to the conservation of the plus momentum component. For the

sake of simplicity, the two reducible diagrams, which are present in this first term and are canceled by the termwð1Þg0jcð0Þ�
of Eq. (F1) in an analogous way as we have already discussed for diagrams (e) and (d) of Fig. 2, are not shown in Fig. 3. As
we did for the third term in Eq. (F1), we evaluate first the matrix elements of the relevant part of the contribution under
consideration, i.e.,

�hk0þ1 ~k01?jj �G0VG0J
�
0 ð1Þ �G0jjkþ1 ~k1?i ¼ ie1

�
ig

2�

�
2
�
Z
dk0�1 dk�1

1

k0þ1 ðKþ
f � k0þ1 Þ

k6 01on þm1

ðk0�1 � k0�1on þ i "
k0þ1
Þ

� ðK6 f � k6 01Þon þm2

ðK�
f � k0�1 � ðKf � k01Þ�on þ i "

Kþ
f
�k0þ

1
Þ

� ��1 �2�

ðk0þ1 � p0þ
1 Þðk0�1 � p0�

1 � ðk01 � p0
1Þ�on þ i "

k0þ
1
�p0þ

1

Þ

� p6 0
1 þm1

p0þ
1 ðp0�

1 � p0�
1on þ i "

p0þ
1

Þ�
�
1

1

kþ1 ðKþ
i � kþ1 Þ

k6 1on þm1

ðk�1 � k�1on þ i "
kþ
1

Þ

� ðK6 i � k6 1Þon þm2

ðK�
i � k�1 � ðKi � k1Þ�on þ i "

Kþ
i �kþ1 Þ

; (F16)

where the intermediate momentum is changed now to p
0�
1 ¼ k

�
1 þQ�. In order to analytically evaluate the integral, in

addition to the poles k�1A, k�1B, k0�1A, k0�1B, given in Eq. (F3), we have to consider the following ones

k�1D þQ� ¼ p0�
1on � i

"

p0þ
1

k0�1D ¼ p0�
1 þ ðk01 � p0

1Þ�on � i
"

k0þ1 � p0þ
1

(F17)

with the on-minus-shell definitions given by

p0�
1on ¼

~p02
1? þm2

1

p0þ
1

ðk01 � p0
1Þ�on ¼

ð ~k01? � ~p0
1?Þ2 þ�2

k0þ1 � p0þ
1

: (F18)

As already said in Sec. VII, we have always p0þ
1 > 0 and therefore no pair contribution can be generated from this term. In

what follows we consider two regions: (i) k0þ1 > p0þ
1 ¼ kþ1 þQþ and (ii) p0þ

1 ¼ kþ1 þQþ > k0þ1 . Moreover the definition
of p0�

1 suggests to start with the integration over k0�1 . In this way we have to discuss only three poles.

a. Diagrams (g) and (h) for k0þ1 >p0þ
1 � 0

From the residue at the pole k0�1B one gets
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�hk0þ1 ~k01?jj �G0VG0J
�
0 ð1Þ �G0jjkþ1 ~k1?iðgÞþðhÞ

¼ e1
ðigÞ2
2�

��ðk0þ1 � p0þ
1 Þ

Z
dk�1

1

k0þ1 ðKþ
f � k0þ1 Þ

k6 01on þm1

½K�
f � ðKf � k01Þ�on � k0�1on þ i "

k0þ
1

þ i "
Kþ
f
�k0þ

1

� ½ðK6 f � k6 01Þon þm2�

� ��1 �2�

ðk0þ1 � p0þ
1 Þ½K�

f � ðKf � k01Þ�on � p0�
1 � ðk01 � p0

1Þ�on þ i "
k0þ
1
�p0þ

1

þ i "
Kþ
f
�k0þ

1

�
�

p6 0
1on þm1

p0þ
1 ðp0�

1 � p0�
1on þ i "

p0þ
1

Þ þ
�þ

2p0þ
1

�

� ��1
1

kþ1 ðKþ
i � kþ1 Þ

k6 1on þm1

ðk�1 � k�1on þ i "
kþ1
Þ

ðK6 i � k6 1Þon þm2

ðK�
i � k�1 � ðKi � k1Þ�on þ i "

Kþ
i �kþ1 Þ

: (F19)

Adopting the same strategy as in Eq. (F6), one obtains (i) the contribution illustrated by diagram (g) in Fig. 3 and a
reducible term (not shown in Fig. 3), (ii) the instantaneous term (h). In order to separate the irreducible contribution from
the reducible one, we exploit the following identity

1

½K�
f � ðKf � k01Þ�on � p0�

1 � ðk01 � p0
1Þ�on þ i "

k0þ
1
�p0þ

1

þ i "
Kþ
f
�k0þ

1

�
1

ðp0�
1 � p0�

1on þ i "
p0þ
1
Þ

¼
�

1

½K�
f � ðKf � k01Þ�on � p0�

1 � ðk01 � p0
1Þ�on þ i "

k0þ
1
�p0þ

1

þ i "
Kþ
f
�k0þ

1

� þ
1

ðp0�
1 � p0�

1on þ i "
p0þ
1

Þ
�

� 1

½K�
f � ðKf � k01Þ�on � p0�

1on � ðk01 � p0
1Þ�on þ i "

k0þ
1
�p0þ

1

þ i "
Kþ
f
�k0þ

1

þ i "
p0þ
1

� : (F20)

In particular, the term generated by the first contribution in the square brackets can integrated over k�1 taking the residue at
the pole k�1A. Then one gets

hk0þ1 ~k01?jjcð1Þ�jkþ1 ~k1?iðgÞ ¼ ie1ð2m1ÞðigÞ2� �ðk0þ1 � p0þ
1 Þ

ðk0þ1 � p0þ
1 Þp0þ

1 �ð1gÞ�
f �ð1gÞ�

i

�þðk01onÞ��1 �þðp0
1onÞ��1 �þðk1onÞ

��þððKf � k01ÞonÞ�2��þððKi � k1ÞonÞ; (F21)

where the combinations �ð1gÞ
f and �ð1gÞ

i of four momenta are

�ð1gÞ
f ¼ Kf � p0

1on � ðKf � k01Þon � ðk01 � p0
1Þon þ i" �ð1gÞ

i ¼ Ki � k1on � ðKf � k01Þon � ðk01 � p0
1Þon þ i" ¼ �ð1fÞ

i ;

(F22)

since k01 � p0
1 ¼ p1 � k1. The second term in the square brackets yields a reducible contribution, which is canceled out by

a term from wð1Þg0jcð0Þ�.
The result for the instantaneous diagram (h) can be obtained by taking the residue at the pole k�1A in Eq. (F19), i.e.,

hk0þ1 ~k01?jjcð1Þ�jkþ1 ~k1?iðhÞ ¼
i

2
e1ðigÞ2� �ðk0þ1 � p0þ

1 Þ
ðk0þ1 � p0þ

1 Þp0þ
1 �ð1gÞ�

i

�þðk01onÞ��1�þ
1 �

�
1 �þðk1onÞ�þððKf � k01ÞonÞ

� �2��þððKi � k1ÞonÞ: (F23)

b. Diagram (i) for p0þ
1 > k0þ1 > 0

In this kinematical region only an instantaneous contribution is an irreducible term, the one illustrated by diagram (i) in
Fig. 3. By taking first the residue at the pole k0�1A and then the residue at the pole k�1B, one has

hk0þ1 ~k01?jjcð1Þ�jkþ1 ~k1?iðiÞ ¼
i

2
e1ðigÞ2� �ðp0þ

1 � k0þ1 Þ
ðp0þ

1 � k0þ1 Þp0þ
1 �ð1iÞ�

f

�þðk01onÞ��1�þ
1 �

�
1 �þðk1onÞ�þððKf � k01ÞonÞ

� �2��þððKi � k1ÞonÞ; (F24)
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where the three-body denominator is the minus component
of

�ð1iÞ
f ¼ Kf � k01on � ðKi � k1Þon � ðp0

1 � k01Þon ¼ �ð1aÞ
f ;

(F25)

APPENDIX G: Oð1Þ CURRENT CONSERVATION IN
THE LADDER YUKAWA MODEL

The operatorial form of the current conservation at the
first order of the QP expansion, as given by the expression
in Eq. (74), will be explicitly checked in what follows. The
symbol � ¼ �ðkþ1 Þ�ðk0þ1 Þ�ðKþ

i � kþ1 Þ�ðKþ
f � k0þ1 Þ sim-

plifies the notation. Furthermore, it is worth noting that
the �’s, given in Eqs. (F8), (F12), (F14), (F22), and (F25),
allow to express the momentum transfer,Q, in a convenient
way, depending upon the term we are considering, and they
have only minus components non vanishing.

Let us separate two kinematical regions: (i) k0þ1 >Qþ
and (ii) Qþ > k0þ1 .

1. pþ
1 ¼ k0þ1 �Qþ > 0

In this region one has contribution from diagrams (a),
(cI), (f), (g), (h) in Figs. 2 and 3 (since k0þ � p0þ

1 ¼ pþ
1 �

kþ1 > 0). For diagrams (a) and (g), the momentum transfer
can be expressed in two different ways, viz.,

Q ¼ �ð1aÞ
f � �ð1aÞ

i þ k01on � p1on; (G1)

Q ¼ �ð1gÞ
f � �ð1gÞ

i � k1on þ p0
1on: (G2)

Therefore, since �þðk01onÞðk6 01on � p6 1onÞ�þðp1onÞ ¼ 0, one
has

�þðk01onÞQ6 �þðp1onÞ ¼ �þðk01onÞ
�þ
1

2
�þðp1onÞ

� ð�ð1aÞ�
f � �ð1aÞ�

i Þ: (G3)

Analogously one finds that,

�þðp0
1onÞQ6 �þðk1onÞ ¼ �þðp0

1onÞ
�þ
1

2
�þðk1onÞ

� ð�ð1gÞ�
f � �ð1gÞ�

i Þ: (G4)

Equations (G3) and (G4) allow one to calculate the four
divergence of the current.
The divergence for the term (a) plus (g) [see Eqs. (F7)

and (F21)] is given by

Q � hk0þ1 ~k01?jjcð1Þjkþ1 ~k1?iðaÞþðgÞ ¼ �ie1ðigÞ2�ðk0þ1 �QþÞ

�
�
�ðkþ1 � pþ

1 Þ
ðkþ1 � pþ

1 Þ
�

1

�ð1aÞ�
i

� 1

�ð1aÞ�
f

�
�þðk01onÞ

m1

pþ
1

�þ
1 �þðp1onÞ��1 �þðk1onÞ

þ �ðk0þ1 � p0þ
1 Þ

ðk0þ1 � p0þ
1 Þ

�
1

�ð1gÞ�
i

� 1

�ð1gÞ�
f

�
�þðk01onÞ��1 �þðp0

1onÞ
m1

p0þ
1

�þ
1 �þðk1onÞ

�

��þðk02onÞ�2��þðk2onÞ; (G5)

where we have used k2on ¼ ðKi � k1Þon and k02on ¼ ðKf � k01Þon to simplify the notation.
Let us consider the divergence of currents (cI) and (iI), corresponding to the contribution of instantaneous terms in the

kinematical region k0þ1 >Qþ > 0. The following relation, obtained by exploiting (i) the property ð�þÞ2 ¼ 0 and (ii) the
anticommutation rule fk6 ; �þg ¼ 2kþ, is useful for the next formal steps, i.e.,

�þðk01onÞQ6 �þ ¼ �þðk01onÞ½k6 01 � p6 1��þ ¼ �þðk01onÞ½k6 01on � p6 1on��þ ¼ �þðk01onÞ½m1 � p6 1on��þ

¼ �þðk01onÞ½�2pþ
1 þ 2m1�

þ�þðp1onÞ� ¼ 2pþ
1 �þðk01onÞ

�
�1þ m1

pþ
1

�þ�þðp1onÞ
�
: (G6)

Then, from Eq. (F9), one has

Q � hk0þ1 ~k01?jjcð1Þjkþ1 ~k1?iIðcÞ ¼ �ie1ðigÞ2 �ðk
0þ
1 �QþÞ�ðkþ1 � pþ

1 Þ
ðkþ1 � pþ

1 Þ�1a�
f

�þðk01onÞ
�
�1þ m1

pþ
1

�þ
1 �þðp1onÞ

�

� ��1 �þðk1onÞ�þðk02onÞ�2��þðk2onÞ: (G7)

For diagram (i), Eq. (F24), in this region, a relation analogous to Eq. (G6) holds, i.e.,

�þQ6 �þðk1onÞ ¼ �þ½p6 0
1 � k6 1��þðk1onÞ ¼ �þ½p6 0

1on � k6 1on��þðk1onÞ ¼ 2p0þ
1

�
1� m1

p0þ
1

�þðp0
1onÞ�þ

�
�þðk1onÞ: (G8)

Therefore, from Eq. (F24), one obtains
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Q � hk0þ1 ~k01?jjcð1Þjkþ1 ~k1?iIðiÞ ¼ i�e1ðigÞ2 �ðk
0þ
1 �QþÞ�ðkþ1 � pþ

1 Þ
ðkþ1 � pþ

1 Þ�ð1aÞ�
f

�þðk01onÞ��1
�
1��þðp0

1onÞ
m1

p0þ
1

�þ
1

�

��þðk1onÞ�þðk02onÞ�2��þðk2onÞ: (G9)

Summing Eqs. (G7) and (G9), we find that

Q � hk0þ1 ~k01?jjcð1Þjkþ1 ~k1?iIðcÞþðiÞ ¼ {�e1ðigÞ2 �ðk
0þ
1 �QþÞ�ðkþ1 � pþ

1 Þ
ðkþ1 � pþ

1 Þ�ð1aÞ�
f

�þðk01onÞ

�
�
m1

pþ
1

�þ
1 �þðp1onÞ��1 � ��1 �þðp0

1onÞ
m1

p0þ
1

�þ
1

�
�þðk1onÞ�þðk02onÞ�2��þðk2onÞ: (G10)

The instantaneous terms (f) plus (h), see Eqs. (F11) and (F23) can be calculated following the same steps as the ones that

lead to Eq. (G10). Noting that �ð1gÞ
i ¼ �ð1fÞ

i , one has

Q � hk0þ1 ~k01?jjcð1Þjkþ1 ~k1?iðfÞþðhÞ ¼ {�e1ðigÞ2 �ðk
0þ
1 �QþÞ�ðpþ

1 � kþ1 Þ
ðpþ

1 � kþ1 Þ�ð1gÞ�
i

�þðk01onÞ

�
�
m1

pþ
1

�þ
1 �þðp1onÞ��1 � ��1 �þðp0

1onÞ
m1

p0þ
1

�þ
�
�þðk1onÞ�þðk02onÞ�2��þðk2onÞ: (G11)

Adding Eqs. (G5), (G10), and (G11) one gets in the kinematical region k0þ1 >Qþ > 0 the result

Q � hk0þ1 ~k01?jjcð1Þjkþ1 ~k1?i�ðk0þ1 �QþÞ ¼ �ðk0þ1 �QþÞ�
�
e1�þðk01onÞ

m1

pþ
1

�þ
1 �þðp1onÞhpþ

1 ~p1?jwð1ÞðKiÞjkþ1 ~k1?i

� hk0þ1 ~k01?jwð1ÞðKfÞjp0þ
1 ~p0

1?ie1�þðp0
1onÞ

m1

p0þ
1

�þ
1 �þðk1onÞ

�
; (G12)

where the matrix elements of the effective interaction in first order of QP truncation, for total momentum Ki, are given by

hpþ
1 ~p1?jwð1ÞðKiÞjkþ1 ~k1?i ¼ iðigÞ2�ðpþ

1 Þ�ðkþ1 Þ�ðKþ
i � pþ

1 Þ�ðKþ
i � kþ1 Þ

�
�ðpþ

1 � kþ1 Þ
ðpþ

1 � kþ1 Þ
1

�ð1gÞ�
i

þ �ðkþ1 � pþ
1 Þ

ðkþ1 � pþ
1 Þ

1

�ð1aÞ�
i

�

��þðp1onÞ��1 �þðk1onÞ�þðk02onÞ�2��þðk2onÞ: (G13)

For total momentum Kf, the matrix elements of wð1ÞðKfÞ can be easily obtained from the previous expression properly
changing the individual momenta, i.e.,

hk0þ1 ~k01?jwð1ÞðKfÞjp0þ
1 ~p0

1?i ¼ iðigÞ2�ðp0þ
1 Þ�ðk0þ1 Þ�ðKþ

f � p0þ
1 Þ�ðKþ

f � k0þ1 Þ
�
�ðk0þ1 � p0þ

1 Þ
ðk0þ1 � p0þ

1 Þ
1

�ð1gÞ�
f

þ �ðp0þ
1 � k0þ1 Þ

ðp0þ
1 � k0þ1 Þ

1

�ð1aÞ�
f

�

��þðk01onÞ��1 �þðp0
1onÞ�þðk02onÞ�2��þðk2onÞ: (G14)

Let us remind that k0þ1 � p0þ
1 ¼ pþ

1 � kþ1 and that �ðp0þ
1 Þ is redundant. For �� � 1, i.e., for a scalar boson exchange, one

obtains the expression derived in Ref. [10].

2. Qþ � k0þ1 > 0

In this kinematical region diagrams (b) and (cII) contribute. Furthermore we consider the contribution of diagram (i) in
this region [cf. the discussion after Eq. (F24)]. The divergence of the pair current [see, Eq. (F13)] is given by

Q � hk0þ1 ~k01?jjcð1Þjkþ1 ~k1?iðbÞ ¼ �i�e1ðigÞ2 �ðp
0þ
1 � k0þ1 Þ

ðp0þ
1 � k0þ1 Þ

�ðQþ � k0þ1 Þ
�ð1aÞ�
f

�þðk01onÞ

� m1

pþ
1

�þ
1 �þðp1onÞ��1 �þðk1onÞ�þðk02onÞ�2��þðk2onÞ; (G15)

where Q ¼ �ð1bÞ
� þ k01on � p1on has been used [see, Eq. (F14) and note that only �ð1bÞ�

� does not vanishes].
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In the kinematical region under consideration, the divergence of the current (c) [see Eq. (F15)] is obtained by using
Eq. (G6)

Q � hk0þ1 ~k01?jjcð1Þjkþ1 ~k1?iIIðcÞ ¼ ie1ðigÞ2��ðp0þ
1 � k0þ1 Þ

ðp0þ
1 � k0þ1 Þ

�ðQþ � k0þ1 Þ
�ð1aÞ�
f

�þðk01onÞ
�
m1

pþ
1

�þ
1 �þðp1onÞ � 1

�

� ��1 �þðk1onÞ�þðk02onÞ�2��þðk2onÞ: (G16)

The divergence of the current (i), Eq. (F24), in this region, using Eq. (G8) results in

Q � hk0þ1 ~k01?jjcð1Þjkþ1 ~k1?iIIðiÞ ¼ ie1ðigÞ2��ðp0þ
1 � k0þ1 Þ

ðp0þ
1 � k0þ1 Þ

�ðQþ � k0þ1 Þ
�ð1aÞ�
f

�þðk01onÞ��1
�
1��þðp0

1onÞ
m1

p0þ
1

�þ
1

�

��þðk1onÞ�þðk02onÞ�2��þðk2onÞ: (G17)

where we have used that Q ¼ �ð1gÞ
f ��ð1fÞ þ p0

1on � k1on.
Finally, adding Eqs. (G15)–(G17), only the second term in the square bracket of (G17) survives, resulting in

Q � hk0þ1 ~k01?jjcð1Þjkþ1 ~k1?iðbÞþðcÞþðiÞ�ðQþ � k0þ1 Þ

¼ �ie1ðigÞ2��ðp0þ
1 � k0þ1 Þ

ðp0þ
1 � k0þ1 Þ

�ðQþ � k0þ1 Þ
�ð1aÞ�
f

�þðk01onÞ��1 �þðp0
1onÞ�þðk02onÞ�2��þðk2onÞ�þðp0

1onÞ
m1

p0þ
1

�þ
1 �þðk1onÞ

¼ hk0þ1 ~k01?jwð1ÞðKfÞjp0þ
1 ~p0

1?ie1�þðp0
1onÞ

m1

p0þ
1

�þ
1 �þðk1onÞ�ðQþ � k0þ1 Þ: (G18)

This single term corresponds to the interaction calculated at first order in QP expansion, for total momentum Kf, in the
considered kinematical region. The term with wð1ÞðKiÞ vanishes in this kinematical region, since we have Qþ � k0þ1 ¼
�pþ

1 > 0 and therefore we are outside the kinematical support of the interaction, see Eq. (G13).

The total divergence of the current operator is found by adding Eqs. (G12) and (G18) and Q � jcðoÞ. Then, by taking into
account the definition of the left and right LF charge operator, Eqs. (64) and (66), one can obtain an expression for the LF
WTI valid for the whole kinematical range 0< k01 <Kþ

f . This illustrates how one can check the formal expression for

Q � jcð1Þ, given by Eq. (74), in the example of the Yukawa model in ladder approximation.
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(1998).

[21] S. J. Brodsky and J. R. Primack, Ann. Phys. (N.Y.) 52, 315
(1969).

LIGHT-FRONT WARD-TAKAHASHI IDENTITY FOR . . . PHYSICAL REVIEW D 77, 116010 (2008)

116010-25



[22] R. J. Perry, A. Harindranath, and K.G. Wilson, Phys. Rev.
Lett. 65, 2959 (1990).

[23] S. Glazek, A. Harindranath, S. Pinsky, J. Shigemitsu, and
K. Wilson, Phys. Rev. D 47, 1599 (1993).

[24] M. Mangin-Brinet, J. Carbonell, and V.A. Karmanov,
Phys. Rev. D 64, 125005 (2001); Phys. Rev. C 68,
055203 (2003).

[25] J. R. Cooke, G. A. Miller, and D. R. Phillips, Phys. Rev. C
61, 064005 (2000).
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