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KURZDARSTELLUNG

Wird ein System vermessen, so es dadurch immer auch gestort — und zwar
umso stérker, je starker und genauer die Messung ist. Bei schwachen kontinu-
ierlichen Messungen fiihrt der Kompromiss zwischen Messgenauigkeit und
Storung des Systems zu einer optimalen Messempfindlichkeit, die bei opto-
mechanischen Messungen wie der Gravitationswellendetektion unter dem
Namen Standardquantenlimit (SQL) firmiert. Sie entspricht der Verwendung
einer optimalen optischen Leistung, bei der Schrotrauschen und Strahlungs-
druckrauschen zu gleichen Teilen zur Messunsicherheit beitragen. Durch
kohidrente Quantenrauschunterdriickung (coherent quantum-noise cancella-
tion, CQNC) sollen mittels eines Oszillators mit effektiver negativer Masse
das Strahlungsdruckrauschen reduziert und das SQL {iberwunden werden. In
einer optischen Umsetzung von CONC wird die effektive negative Masse mit
einem verstimmtem optischen Resonator realisiert, der mit einem Strahlteiler
und einem optisch-parametrischen Prozess an das einfallende Lichtfeld gekop-
pelt ist." Der Resonator muss in Bezug auf Resonanzfrequenz, Zerfallsdauer
und Kopplungsstarken auf das zu vermessende System angepasst werden.?

In der vorliegenden Arbeit werden CQNC und eine mogliche optische
Realisierung theoretisch und experimentell untersucht. Ein besonderer Fokus
liegt dabei auf der Strahlteiler- und der parametrischen Interaktion. Zwei
potentielle Aufbauten werden theoretisch miteinander verglichen und kritische
Parameter ermittelt. Zur Verfligung stehende optomechanische Elemente
wurden charakterisiert und als fiir CQNC geeignet befunden.

Die Kopplungsstirke der optisch-parametrischen Interaktion, gpc, wird
auf experimentell messbare Parameter zurtickgefiihrt. Messungen von zwei-
Moden-gequetschtem Licht zeigten eine Reduktion des Vakuumrauschens
um mehr als 2.3 dB. Mit diesen Messungen wurde die Kopplungsstiarke zu
goc ~ 21 x 200kHz bei 100mW Pumpleistung bestimmt und liegt damit
im erwiinschten Rahmen. Zwei weitere Messmethodiken bestétigten dieses
Resultat.

Mit einer Strahlteilerinteraktion gekoppelte optische Resonatoren werden
theoretisch und experimentell untersucht. Eine Strahlteilerkopplung der Stdrke
gss wurde mit einer Wellenplatte realisiert. Eine Vereinfachung des experimen-
tellen Aufbaus ermoglichte die Stabilisierung der gekoppelten Resonatoren.
Messungen bestétigen die theoretischen Vorhersagen exakt. Die beobachtete
Modenaufspaltung ergab eine Kopplungsstidrke gps ~ 27t x 235kHz, die im

'M. Tsang and C. Caves, Phys. Rev. Lett. 105 (2010), 123601.
*M. H. Wimmer, D. Steinmeyer, K. Hammerer, and M. Heurs, Phys. Rev. A 89 (2014), 053836.
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KURZDARSTELLUNG

aktualisierten erwiinschten Parameterbereich liegt.

CQNC wird von optischen Verlusten und einer begrenzten Messstédrke
limitiert sein. Die Umsetzung einer aktualisierten Liste an Parametern, be-
ruhend auf den durchgefiihrten Experimenten, sollte eine Reduktion des
Strahlungsdruckrauschens von bis zu 4.8 dB ermdglichen.

ScHLAGWORTE kohdrente Quantenrauschunterdriickung, Standardquanten-
limit, zwei-Moden-gequetschtes Licht, gekoppelte optische Resonatoren
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ABSTRACT

Quantum mechanics dictates that a measurement always disturb the measured
system. In weak continuous measurements, the trade-off between measure-
ment precision and back-action onto the system yields an optimal measure-
ment sensitivity, which is known as the Standard Quantum Limit (SQL) in
opto-mechanical measurements, such as gravitational-wave detection. It corres-
ponds to finding the optimal optical power in a compromise between quantum
shot noise and quantum radiation-pressure noise. Coherent quantum-noise
cancellation (CQNC) aims at overcoming the SQL and reducing back-action
noise via the introduction of an effective negative-mass oscillator. In an all-
optical set-up, this oscillator is realised by a detuned optical resonator coupled
to incoming light with a beam-splitter and a down-conversion interaction®
and needs to be matched to the measured system in resonance frequency,
damping and coupling strengths.?

This thesis explores the nature of CQNC and a potential all-optical realisa-
tion in theory and experiment, with a particular emphasis on the beam-splitter
and the down-conversion interaction. Two possible set-ups are compared
theoretically and critical parameters determined. Available opto-mechanical
devices were characterised and confirmed to be suitable for CQNC.

The down-conversion coupling strength gpc is linked to experimentally
obtainable parameters. More than 2.3dB reduction in uncertainty of two-
mode squeezed light were observed. The squeezing measurements yielded
gnc ~ 27 x 200 kHz at 100 mW pump power, which is well within the initially
required range and is in agreement with results from two other measurement
methods.

Optical resonators coupled via a beam-splitter interaction are studied the-
oretically and experimentally. In this work, the beam-splitter interaction of
strength gps was realised by a wave plate. A simplified experiment design
enabled stabilisation of the coupled resonators. Our experimental observations
accurately confirmed our theoretical predictions. The observed mode splitting
yielded ggs ~ 27t x 235kHz, within the updated requirements.

Losses and a limited measurement strength will be the limiting factors for
CQNC. The updated set of parameters, backed by the conducted experiments,
paves the way towards a reduction of radiation-pressure noise of up to 4.8 dB.

KEYwoRDSs: coherent quantum-noise cancellation, standard quantum limit,
two-mode squeezed light, coupled optical resonators

'M. Tsang and C. Caves, Phys. Rev. Lett. 105 (2010), 123601.
*M. H. Wimmer, D. Steinmeyer, K. Hammerer, and M. Heurs, Phys. Rev. A 89 (2014), 053836.
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INTRODUCTION

They do.
— C. Caves

Radiation pressure has long been known as the force which a light field exerts
onto an object. As early as 1619, Kepler suspected radiation pressure to be the
cause of the comet’s tail pointing away from sun." A quantitative description
of the effect was provided by Maxwell 250 years later.” In 1972, Rai Weiss Isited
radiation-pressure noise among the main noise sources limiting the sensitivity
of potential interferometric gravitational-wave detectors.3 Fluctuating light
power causes a fluctuating radiation pressure on the object. Where the position
of an object is to be measured, this may result in additional fluctuations of the
object’s position, rendering its measurement imprecise. The masking of the
‘true’ position is called noise.

In 1980, Carlton Caves confirmed that not only classical fluctuations in light
power give rise to radiation-pressure noise in gravitational-wave detectors, but
that also quantum-mechanical fluctuations inherent to the quantum nature of
light contribute.# What here shows as radiation-pressure noise is actually a far
more general effect stemming from the quantum-mechanical description of a
measurement. In quantum mechanics, a measurement is always bidirectional.
In order to obtain information about a system, there has to be some interaction
between the system and an observer. This measurement interaction will lead
to a disturbance of the system. If not only the current state of a system is of
interest, but also its evolution in time, this becomes a problem. For the class of

'For a history of radiation pressure and opto-mechanical interactions, see, e.g., M. Aspelmeyer,
T. ]J. Kippenberg and F. Marquardt, ‘Cavity optomechanics’, Rev. Mod. Phys. 86 (2014), 1391—
1452, Sec. L.

2]. C. Maxwell, A Treatise on Electricity and Magnetism, Oxford: Clarendon, 1873, § 792 [= p. 391
in Vol. II of that work].

3R. Weiss, ‘Electromagnetically coupled broadband gravitational wave antenna’, Q. Prog. Rep.
Research Lab. Electronics, Massachusetts Inst. Technol. 105 (1972), 54, p. 63.

4C. M. Caves, ‘Quantum-mechanical radiation-pressure fluctuations in an interferometer’, Phys.

Rev. Lett. 45 (1980), 75—79.
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weak continuous measurements,> a trade-off has to be found, taking into account
measurement imprecision, which is lower with stronger measurements, and
back-action, which disturbs the system and future measurements.

In interferometric measurements, light is used to estimate changes in forces
or positions by monitoring a moveable object. Even if all technical noises
have been mitigated, the quantum nature of light sets a limit to the possible
measurement sensitivity. The weaker the light field is, the smaller is the
signal and the less precise the measurement. If the light field is too weak,
inherent fluctuations called shot noise limit the measurement, corresponding
to the above-mentioned imprecision noise. On the other hand, if the field
becomes too strong, the radiation-pressure effects, caused by the reflection of
light off the moveable object, become visible. Radiation-pressure noise will
limit the measurement, corresponding to the above-mentioned back-action
noise. There is a trade-off between shot noise and radiation-pressure noise,
leading to an optimal measurement strength. The obtained sensitivity is called
Standard Quantum Limit (SQL). Changing the optical power from this optimal
spot causes either shot noise or radiation-pressure noise to dominate and the
sensitivity to decrease.

Gravitational-wave detectors are but one among a variety of opto-mechanical
measurement apparatuses potentially affected by these effects. To date, they
have been the most sensitive devices and are about to be limited by the
trade-off between radiation-pressure noise and shot noise, between meas-
urement imprecision and back-action.® But also in micro-opto-mechanical
set-ups, radiation-pressure noise has been observed” and will, at some point,
be limiting the measurement sensitivity.

However, the Standard Quantum Limit is not the ultimate limit. Several
ideas exist of how to circumvent the SQL. Interest in techniques to overcome
the SQL with quantum-mechanical tricks has been fuelled in the gravitational-
wave community.® One of those tricks will be studied in the course of this

5See, e.g. A. A. Clerk et al., ‘Introduction to quantum noise, measurement, and amplification’,
Rev. Mod. Phys. 82 (2010), 1155-1208.

6], Aasi et al., “Advanced LIGO’, Class. Quantum Gravity 32 (2015), 074001.

7T. P. Purdy, R. W. Peterson and C. A. Regal, ‘Observation of Radiation Pressure Shot Noise on
a Macroscopic Object’, Science 339 (2013), 801-804.

8V. B. Braginsky, Y. I. Vorontsov and K. S. Thorne, ‘Quantum Nondemolition Measurements’,
Science 209 (1980), 547-557; C. M. Caves et al., ‘On the measurement of a weak classical force
coupled to a quantum-mechanical oscillator. I. Issues of principle’, Rev. Mod. Phys. 52 (1980),

341-392.


http://dx.doi.org/10.1103/RevModPhys.82.1155
http://dx.doi.org/10.1103/RevModPhys.82.1155
http://dx.doi.org/10.1088/0264-9381/32/7/074001
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http://dx.doi.org/10.1126/science.209.4456.547
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thesis. It is known under the name coherent quantum-noise cancellation® and
introduces an effective negative-mass serving as a reference against which the
position of the device under test is to be measured. The idea is as follows.
Whenever light is reflected off a mechanical object, this object is pushed away.
An object with a negative mass, on the contrary, is attracted by such a push.
Fluctuations in radiation pressure affect both objects oppositely. Sending
light first onto one, and then onto the other object, the pushes by radiation
pressure should cancel. Ever more measurement power could be used to
obtain increased measurement sensitivities, not any more limited by back-
action on the system.

In an all-optical set-up, as studied in this thesis, the effective negative-
mass will be realised by a detuned optical resonator, as suggested by Tsang
and Caves.™ This ancilla cavity will be coupled to the incoming light via a
beam-splitter interaction and a down-conversion interaction as to mimic the
radiation-pressure interaction. An experiment showing back-action noise can-
cellation with all-optical CQNC consists of three subsystems. A positive-mass
oscillator subject to radiation pressure and introducing radiation-pressure
noise, and a beam-splitter interaction and a down-conversion interaction, to-
gether realising the coupling to a detuned ancilla cavity, which is the effective
negative-mass oscillator. Combining the systems in a suitable parameter range
should show radiation-pressure cancellation.™

This thesis aims at a better understanding of all-optical CQNC with respect
to several aspects. Different set-ups are conceivable. The positive- and the
negative-mass oscillator could be part of the same surrounding resonator as in
the integrated set-up, or they are traversed by the light field one after the other
as in the cascaded set-up. Advantages and disadvantages of the two set-ups
have to be understood. Of particular interest are the limiting deviations from
ideally required parameters. In an experiment, the underlying processes and
effects have to be fully understood, especially the three subsystem — opto-
mechanics, down-conversion interaction, beam-splitter interaction — and their
limitations. It will be interesting see to what extent the required parameters
can actually be realised in an experiment. A particular emphasis will lie on
the beam-splitter coupling and down-conversion coupling.

9M. Tsang and C. M. Caves, ‘Coherent quantum-noise cancellation for optomechanical sensors’,
Phys. Rev. Lett. 105 (2010), 123601.

®Tsang and Caves (2010).

M. H. Wimmer, D. Steinmeyer, K. Hammerer and M. Heurs, ‘Coherent cancellation of backaction
noise in optomechanical force measurements’, Phys. Rev. A 89 (2014), 053836.
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STRUCTURE OF THE THEsIs. Chapter 1 serves as an extended introduc-
tion. The basis for the following chapters will be laid by introducing light
fields, interferometers and optical resonators. Opto-mechanical measurements
leading to the Standard Quantum Limit will be formalised, and the state of
the art regarding measurements below the Standard Quantum Limit will be
presented.

Chapter 2 is devoted to coherent quantum-noise cancellation, particularly
its all-optical realisation. After explaining how CQNC can be understood
to work, the effects of CQNC are calculated for two different set-ups. Cal-
culations for the integrated set-up™ are compared to those for a cascaded
set-up. The chapter concludes with motivating design decisions regarding
a concrete experimental implementation, and with a set of experimentally
feasible parameters for which the possible reduction in radiation-pressure
noise is calculated."3

In Chapters 3 to 5, the three subsystems required to experimentally demon-
strate CQNC are studied. Chapter 3 deals with the opto-mechanics needed to
create radiation-pressure noise. Photonic-crystal membrane and Bragg mirrors
are characterised in a Michelson interferometer.

Chapter 4 contains the two-mode squeezing part of CQNC. Calculations
are presented in order to first clarify differences and similarities between
single-mode and two-mode squeezing and then connect the down-conversion
formalism with CQNC'’s formalism and an eventual experiment. From this,
different ways of measuring the down-conversion coupling strength are de-
vised and conducted.

In Chapter 5, the beam-splitter interaction is studied. It contains a theoretical
description of coupled optical resonators, seen first as coupled harmonic
oscillators in a Hamiltonian formalism and then coupled with a wave plate in
a transfer-matrix approach. An experiment to study the theoretical predictions
and to measure the down-conversion coupling is designed and conducted.

The thesis concludes with a summation of the findings. The set of experi-
mentally feasible parameters determining all-optical CQNC is updated with
the knowledge gained in the course of this work, resulting in reductions of
quantum noise which should be in reach. Studying the different systems
not only determined the next steps but also opened up further opportunities,
which will finally be summarised.

2Wimmer, Steinmeyer, Hammerer and Heurs (2014).
BWimmer, Steinmeyer, Hammerer and Heurs (2014).
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NoTEs oN NOTATION. Different fields use different conventions. Within this
thesis, quite different fields are touched. Rather than inventing a consistent
and unambiguous notation, I will mostly stick to conventions used in the
respective field. This entails some ambiguities when it comes to using symbols
as place holders for physical quantities. Some of symbols are overloaded — r
can be the complex amplitude reflectivity or the squeezing parameter, x can
be a spatial coordinate or the pump parameter, R can be the power reflectivity,
a resistance, or a radius of curvature, and so forth. In all cases, the respective
meaning should be clear from context.

A lot of physical quantities in this thesis are rates and can thus be expressed
in units of frequency (hertz) or in units of angular frequency (radians per
second). The dimension usually used is that of an angular frequency. Ex-
perimentally, however, it is more convenient to talk in hertz, which is why
sometimes the implicit factor of 27t is omitted.

As in the corresponding publication,’ the operators, particularly the force
in the calculations for CQNC in Secs. 2.3 and 2.4, are dimensionless. To obtain
a force spectral density in units of N2 /Hz, multiply with imymwm.

All operators are denoted with a hat, 9, vectors are written in boldface
(additionally, the unit vectors denoted & also wear hats). The symbols for
fields and their operators are usually chosen such that light fields and cavity
modes are named a and c. b is used for the mechanical mode, the pump field
or the local oscillator.

A core element of CQNC is the effective negative-mass oscillator. In this
thesis, for brevity, the ‘effective’ is sometimes omitted, without wanting to
imply that the mass is actually negative.
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MEASUREMENTS WITH LIGHT

This chapter lays the foundations for what follows in Secs. 2 to 5. It starts
with the classical and quantum-mechanical description of light. For distance
measurements, light is used in interferometers and optical resonators, which
are introduced in Sec. 1.2.1. Measurements with light often involve monitoring
of a moving mechanical device. The formalism of such a measurement, which
leads to the Standard Quantum Limit, is given in Sec. 1.3, followed by an
overview of techniques to surpass the Standard Quantum Limit.

1.1 LIGHT

Already the simple picture of plane waves as in Sec. 1.1.1 contains most of
the important terms for describing light. A more realistic, and in fact for
this thesis sufficient, description within the paraxial approximation of light is
given in Sec. 1.1.2, where the term mode is defined. The second half of this
section, Secs. 1.1.3 and 1.1.4, discusses a quantum-mechanical description of
electromagnetic modes and formalises losses of a mode as mixing the mode
with vacuum.

1.1.1 PLANE WAVES, QUADRATURES

One family of periodic solutions of Maxwell’s equations in free space'> are
plane waves taking two arguments, position r and time ¢, and four parameters,
amplitude A, phase ¢, angular frequency w, and wave vector k.

E(r,t) = Acos(wt —kr+ ¢y). (1.1)

Equally, E(r, f) can be written as
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FIGURE 1.1: Left: Phasor picture of an electromagnetic field vector at time f = 0
and position r = 0. Instantaneous electromagnetic field strength E(r,t) (yellow)
and complex electromagnetic field aet(w!—kr) (red). Right: Electromagnetic field
strength E(r,t) at time t = 0 in space (red) and at t = 0,r = 0 (yellow). Thin
arrows indicate movement in time. Additional axes are co-moving quadrature
coordinate system as in Fig. 1.2.
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FIGURE 1.2: Phasor picture of electromagnetic quadratures in co-moving coordinate
system. Left: Complex amplitude a (red) and projection of complex amplitude a
onto quadrature axes (blue). Right: Projection of complex amplitude a on quadrat-
ure axis over quadrature 6 (red) and projections onto quadrature axes 6 and 6 + 7
for fixed 6 (blue).
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E(r,t) = Acos(wt —kr+ ¢p)
=A (cos(wt — kr) cos ¢ + cos(wt — kr + 7) sin 4)0)
= Xj cos(wt — kr) — X; sin(wt — kr) (1.2)
where X; and X are called field quadratures and defined as
X1 = Acos ¢, Xy = Asingy. (1.3)

Amplitude and phase as well as the two quadratures can be used to paramet-
rise the electromagnetic field. The first quadrature is often called amplitude
quadrature as it is equal to the amplitude A in the limit of small phases ¢y.
The second quadrature is called phase quadrature as it is proportional to
phase ¢y in the limit of small ¢9. They are, however, not the same as amplitude

and phase:'®
X
— 2 2 — 2
A =/X]+ X5, ¢o = arctan X (1.4)

The field E(r, t) is also often written in complex notation as to simplify
calculations, '
E(r,t) = Re Ael(«@!—kr+go), (1.5)

sometimes with implicitly taking the real part. The complex part of the
equation can be depicted in a complex plane as in Fig. 1.1, where the argument
of the exponential, wt — kr + ¢, defines the angle between the real axis and
the line of length A leaving from the origin. This line is called phasor.

It is convenient to define a complex amplitude a,

a= Ae'®, (1.6)
Then,

E(i’) _ Reaei(wtfkr) _ % (aei(wtfkr) + a*efi(wtfkr))

= 1 (a+a*)cos(wt —kr) + }i (a —a*) sin(wt — kr). (1.7)
Compare this with Eq. 1.2 and see that'”
a+a* a—a*
X1 = 5 X = T (1.8)

15Cf. Appendix A.1.

This becomes particularly relevant in the quantum-mechanical description, see Sec. 1.1.3.

17One could also define the field, or rather the complex amplitude, as E(t) = ae!(“!%) 4 c.c., as
does, e.g., R. W. Boyd, Nonlinear Optics, Amsterdam et al.: Acad. Press, 2008, Eq. 1.2.1. Then,
X1 =a+a* and X, = —i(a —a*). Cf. also Sec. 1.1.3, Eq. 1.31.
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The same can be derived from
Rea = Acos¢y = X1, Ima = Asingg = Xo = a = X3 +iXp. (1.9)
The notion of quadratures can be generalised to arbitrary angles 0,

X% = Xq cosf + X, sinf

= % (ae 0 4 a*elg)
= Acos¢y— 96, (1.10)
XH% = Asingy — 0, (1.11)

with 0 called quadrature angle.

In the above representation of an electromagnetic field, a constant set of
parameters was assumed, particularly only a single frequency w. In reality,
no field is truly monochromatic, as a finite lifetime of an electromagnetic wave
results in a superposition of waves with in theory infinitely many different
frequencies and in a finite linewidth. Often, particularly in the experimental
configurations presented in the following and in the classical limit, the single-
frequency approximation is nevertheless justified — except for modulated
fields.

Time-dependent amplitude, phase and/or frequency changes, usually de-
liberately imprinted onto the light field and of a sinusoidal form, are called
modulations. Of special interest are phase and amplitude modulations, which
can be expressed as

A=A(t) = A(1+mcosOt), (1.12)

¢ = ¢(t) = mcosQt, (1.13)

respectively, where () is the modulation frequency and m is the modulation

index and is in practice very small. The electric field then becomes (setting

r=0, ¢ =0)

Eam = A (cos wt + m cos wt cos Q)

= A (coswt + % cos(w + Q)t + % cos(w — Q)t), (1.14)

Epy = A cos(wt + m cos Q). (1.15)

Amplitude-modulated light can thus be seen as a superposition of waves of
three different frequencies, cf. Eq. 1.14 and Fig. 1.3. The mathematics of phase

10
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FIGURE 1.3: Amplitude modulation. Left: Strength of modulated field as in Eq. 1.14
with small modulation indices m = 0.2 and modulation frequency (2 much bigger
(red) and much smaller (blue) than carrier frequency w. Centre and right: Phasors
in coordinate system rotating with carrier frequency w. Centre: Phasor of mod-
ulated field. The arrow indicates the change of amplitude in time. Right: Phasor
from central figure decomposed in phasors for carrier and side-bands at time
t = /20 Black arrows indicate movement in time. Adding up the phasors res-
ults again in the phasor shown in the centre. Note the difference in phase relation
between side-bands at () compared to Fig. 1.4.
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FIGURE 1.4: Phase modulation. Left: Strength of modulated field as in Eq. 1.15 with
small modulation index m = 0.4 and a modulation frequency () much bigger than
carrier frequency w (red) and large modulation index m = 10 and a modulation
frequency Q) much smaller than carrier frequency w (blue). Centre and right:
Phasors in coordinate system rotating with carrier frequency w. Centre: Phasor of
modulated field. The arrow indicates the change of phase in time. Right: Phasor
from central figure decomposed in phasors for carrier and side-bands at time
t = 0. Black arrows indicate movement in time. Adding up the phasors results
again in the phasor shown in the centre. Note the difference in phase relation
between side-bands at () compared to Fig. 1.3.
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modulation is slightly more involved, but Eq. 1.15 can be expanded into a
sum of Bessel functions of the first kind using the Jacobi-Anger identity.'®
Technically, phase-modulated light has side-bands at every multiple of the
modulation frequency. In practice and for small modulation indices m, an
expansion up to a low order suffices. Expanding the phase-modulated field
up to second order in m leads to

m? m( . .
Epy=A 1_T coswt — = sin(w — O)t + sin(w + Q)¢

2
- n;<cos(a) —ZQ)t—I—cos(aH—ZQ)t)] + O(m®) (1.16)
with side-bands at =() and £2(), see Fig. 1.4."

It is not possible to measure the phase of an electromagnetic wave directly, a
phase is only ever defined with regard to some reference. In a setting involving
several waves, one of the phases can be chosen arbitrarily and is often set to
zero, with all other phases being defined with respect to this reference. Neither
can frequency or instantaneous field strength of an electromagnetic wave in
the optical domain directly be measured, changes with rates of hundreds
of terahertz are just to fast. Instead, the energy of a field deposited in a
photodetector per unit time, its power P, is measured. The power as the
number of incoming photons per time at a certain frequency is first converted
into current by the photodiode, and then into voltage by a transimpedance
amplifier.

The energy of an electromagnetic field is the volume integral over the
energy density, which in free is space proportional to the square of electric
and magnetic field strengths, such that*°

H /dV (eoEz(r, £+ 1B2(r,t)> . (1.17)

Ho

Under certain boundary conditions, e.g. restricting the field to a certain
volume, the integration over the volume can be performed. With time-
dependent constants g(t) and p(t) « 4(t), the energy, or Hamiltonian, of

18M. Abramowitz and 1. A. Stegun, eds., Handbook of Mathematical Functions: With Formulas,
Graphs, and Mathematical Tables, New York: Dover, 1972, p. 361, 9.1.44.

190f course, one can also do all this in complex notation as do, e.g., C. Bond, D. Brown, A. Freise
and K. A. Strain, ‘Interferometer techniques for gravitational-wave detection’, Living Rev.
Relativ. 19 (2016), 1221, Sec. 3.

2°Cf., e.g., C. C. Gerry and P. L. Knight, Introductory Quantum Optics, Cambridge et al.: Cambridge
University Press, 2005, Eq. 2.7.
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a classical electromagnetic field with frequency w can be written as®*
H « (p2 +w2q2> . (1.18)

As Eq. 1.18 looks like the Hamiltonian of an ordinary harmonic oscillator, the
oscillating electromagnetic field can actually be understood as a harmonic
oscillator. This is important for the quantisation of the electromagnetic field
in Sec. 1.1.3 and for the interpretation of the approach used in Sec. 5.

The power as the energy transfer per time is defined via the intensity and
the Poynting vector. The intensity I(r, t) is the magnitude of the time-averaged
Poynting vector and for the fields in this thesis connected to the electric field
strength via |E|2. The power which flows through an area is the integral of
the intensity over that area,*

I(r,t) « |E], P:/dAI(r,t). (1.19)

In practical applications, the electromagnetic fields do not have an infinite
spatial extension as is assumed in the plane-wave description, see the following
Sec. 1.1.2. Using normalised mode functions to describe their spatial extension,
the power becomes proportional to |E|? as well. The exact conversion factors
are often neglected and the measured quantities usually normalised — the
output of a photodetector has units of volts anyway.

1.1.2 MODES OF AN ELECTROMAGNETIC FIELD

The infinite spatial extension of wave in the previous chapter is in reality not
true. Usually true, instead, is that the envelope of an electromagnetic wave
does not vary much over one period of oscillation. This is the so-called paraxial
approximation and leads to a family of solutions in free space, called Gaussian
beams or Gaussian modes, see Appendix A.1.2. Modes are those solutions of
a problem which do not, by themselves, change their shape over time, e.g.
transform into other modes.

The field strength of Gaussian modes perpendicular to their axis of propaga-
tion follows a normal distribution as shown in Fig. 1.6. Position zy and beam
waist wy at z = zp fully determine a Gaussian beam and its scaling at other

2'Gerry and Knight (2005), Eq. 2.8.
**B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd, Hoboken, NJ: Wiley, 2007,
Sec. 5.1.
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FIGURE 1.5: Gaussian beam. Left: Divergence of beam around the beam waist wy
with the direction of propagation along the z-axis. Curved lines indicate points
of equal phase. Right: Phase front’s radius of curvature R(z) (blue) and Gouy
phase ¢(z) (red) for a fundamental mode around the waist z = 0. The radius of
curvature is minimal at the Rayleigh range z = zz. The Gouy phase accumulated
between +zy is equal to 77/2.

positions in space. The beam waist is defined as the distance from the beam’s
axis of propagation where the field amplitude has decreased to 1/e of the
maximum amplitude. From beam waist and position, other parameters (see
Fig. 1.5) such as Rayleigh range zz, waist w(z), radius of curvature of the
beam’s phase front R(z), and Gouy phase ¢(z) can be determined (in the
following, zg = 0):*3

2
Zg = %, (1.20a)
w(z) = woy |1+ <ZZ> (1.20b)
R(z) =z [1 + (?)2] , (1.200)
§(z) = arctan zi (1.20d)

Equivalently, and more easily, Gaussian beams are parametrised by a single

23Cf., e.g., A. E. Siegman, Lasers, Sausalito, CA: University Science Books, 1986, Sec. 17.1.
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FIGURE 1.6: Transverse electromagnetic modes. Field amplitudes in a plane perpen-
dicular to the wave’s direction of propagation along the z-axis, plotted for the
fundamental and some higher-order modes from Eq. 1.28. Note the radial sym-
metry resulting from the addition of modes HGp, and HGy with the same phase.
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complex beam parameter g comprising both, waist size and waist position,

q(z) =z +izg, (1.21a)

—_
—_
>

16 RE@ wEr -210)
The solutions to the paraxial wave equation consist of the fundamental
TEMyp mode and higher-order modes, see Fig. 1.6. They form a complete
orthogonal basis. In this approximation, each light beam can be described as a
superposition of these modes. The most-commonly used higher-order modes
are Hermite-Gaussian modes. They are convenient to describe beams with
rectangular symmetry, which are regularly encountered in the experiment.
Another set are Laguerre-Gauss modes with a cylindrical symmetry. Any
Hermite-Gaussian mode can be written as a combination of Laguerre-Gaussian
modes and vice versa.** An important aspect of higher-order modes is that
the Gouy phase is a multiple of a TEMy’s Gouy phase,

m+n  Hermite-Gauss modes,

2p+|l| Laguerre-Gauss modes,

(1.22)
with m, n mode numbers of higher-order Hermite-Gaussian, and p, I mode
numbers of higher-order Laguerre-Gaussian modes. The beams encountered
in this work are rarely completely radially symmetric due to non-normal
incidence on optical elements. Hermite-Gaussian modes are used for their
description, see also Sec. 1.2.2. Non-normal incidence on focussing elements
results in astigmatic beams. These beams are elliptical and have different
waists in x- and y-direction and thus different Gouy phases for these directions.
The Gouy phase of mode HG,; , can be written as?>

Pmn(z) = mpx(z) + ”lpy(Z) + w (1.23)

wma=W+nwa,wmmN:{

The transformation of Gaussian beams by optical elements such as lenses
and transmitting or reflecting surfaces can be described with ABCD-matrices

*4The transformation is given by Eq. A3 in E. Abramochkin and V. Volostnikov, ‘Beam transform-
ations and nontransformed beams’, Opt. Commun. 83 (1991), 123-135.

25Complications arise for odd-numbered modes under a non-normal angle of incidence on the
optical element — then, an additional phase shift of 77 has to be included, see C. Mathis et al.,
‘Resonances and instabilities in a bidirectional ring laser’, Phys. D Nonlinear Phenom. 96 (1996),
242-250.
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1.1 LIGHT

of said elements via
, _ Aq+B

=D (1.24)

where g and ¢’ are the complex beam parameters of incoming and outgoing
beam as in Eq. 1.21.

Used in this thesis are ABCD-matrices My, for a flat interface between
materials with refractive indices ny, and nout, Mcyrved for a curved mirror with
radius of curvature R, and Mp;op for propagation along a distance L,

M= (2 g) , (1.25a)

Moprop(L) = ((1) i) , (1.25b)
Meurved (R, 0) = (2/1Reff (1)> , (1.25¢0)
Mai o) = (o ), (1.254)

with the effective radius of curvature R.¢ = Rcos6 for incidence under an
angle 6 in the plane of incidence and R = R/ cosf perpendicular to the
plane of incidence.

With this model, it is possible to calculate the Gouy phase shift accumulated
by a beam traversing several optical elements, which change its complex
parameter .27 The Gouy phase is connected to the matrix entries via2®

Y = sgn B arccos (1.26)

Conversely, one can calculate the characteristics of the elements from meas-
uring the Gouy phase shift and this way characterise the optical system, see
Appendix C.

The paraxial approximation is valid up to divergences of 30°,?? roughly
corresponding to beam waists of the order of, or bigger than, the beam’s

26H. Kogelnik and T. Li, ‘Laser Beams and Resonators’, Proc. IEEE 54 (1966), 1312-1329; Siegman
(1986), Secs. 15, 20.2.

*’M. F. Erden and H. M. Ozaktas, ‘Accumulated Gouy phase shift in Gaussian beam propagation
through first-order optical systems’, J. Opt. Soc. Am. A 14 (2008), 2190.

K. Arai, On the accumulated round-trip Gouy phase shift for a general optical cavity, tech. rep.,
LIGO-T1300189, 2013, URL: https://dcc.ligo.org/LIGD-T1300189/public, Eq. 28.

*9Siegman (1986), Sec. 16.1, p. 630.
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wavelength, which is fulfilled in the experiments presented in this thesis.
Additionally, Gaussian modes are solutions of a specific optical system such
as an optical cavity, another reason for their widespread use.3°

The full (monochromatic) electric vector field for one spatial mode in the
Hermite-Gauss basis can thus be described as3"

E(t,r) = & Au(r) cos(wt —kr + ¢y), (1.27)

Cwe o, [ViEx Vay | S )

with A the electric field strength amplitude at r = 0 for a TEMy; beam
and u(r) the mode shape, here in the Hermite-Gauss basis. A new vector
was introduced in Eq. 1.28: & indicates the polarisation of the light field, the
direction in which it is oscillating. As the polarisation does not change in free
space either, it represents another characteristic of a mode. The terms in u(r)
denote the decrease in field strength along z due to divergence, the spatial
shape in x- and y-direction (H,; and Hj) scaled to account for the divergence,
the Gaussian-shaped envelope perpendicular to the direction of propagation,
also scaled, the phase due to curvature of the wave front, and the Gouy phase,
an additional phase-shift of Gaussian beams compared to plane waves.
Modes can thus differ in their

¢ frequency w (equivalently, wavelength A, or magnitude of wave vector k,
k=k|=2n/A=w/c);

e direction of propagation k/ [k|;
* longitudinal and transversal mode shape u(r);
® polarisation é&.

Bachor and Ralph additionally list phase and amplitude to completely
define a mode.3* Often not mentioned is the temporal extension of a mode.
Modes can also differ because they exist at different points in time.

3°This is only true in the limit of negligible losses, cf. Siegman (1986)

3'In more general terms, a field is a superposition of (in principle an infinite number of)
components of different frequencies and a superposition of components of different mode
shapes. The latter is important especially if the basis is changed from the beam’s eigenbasis to,
e.g., the basis of a cavity or of a second beam.

32H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics, Weinheim: Wiley,
2004, Tab. 2.2. See also R. Schnabel, ‘Squeezed states of light and their applications in laser
interferometers’, Phys. Rep. 684 (2017), 1-51, Sec. 2.1.
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1.1.3 QUANTUM-MECHANICAL DESCRIPTION AND UNCERTAINTIES

Certain observations cannot be described classically any more. This is par-
ticularly true for the experiments shown in Sec. 4, but basically the whole
thesis is founded on the premise of quantum mechanics and quantum noise.
A quantum-mechanical description thus is necessary, but not straightforward.
Often, quantum-mechanical operators, which will replace classical variables,
are just stated. Seeing that the used definitions result in correct experimental
predictions is motivation enough, further justification on how to arrive at cor-
rectly quantised operators is not deemed necessary. At times, this feels a but
unsatisfying, but there are reasons for that. There is no such thing as ‘the one’
quantisation procedure. Not even historically, the path from classical variables
to quantum mechanical operators was all that clear. Classical equations can
be derived from their quantum mechanical counterparts. Doing it the other
way round is not straightforward, similar to how the derivative of a function
can easily be found whereas the integral not. Quantum-mechanical operators
are constructed rather than derived.

The starting point of the quantisation procedure for electromagnetic fields
is usually the notion that the fields in a finite volume can be expanded into
a set of orthogonal (eigen-)modes.33 The volume integral over their energy
density leads to a Hamiltonian expression as in Eq. 1.17. For orthogonal
modes, the Hamiltonian can be written as the Hamiltonian of independent
harmonic oscillators by identifying canonical coordinates, see also Eq. 1.18.
Up to now, everything has happened in the classical domain. The quantisation
follows from knowing how to quantise (mechanical) harmonic oscillators,
and imposing similar commutation relations onto the canonical coordinates
in the light field’s Hamiltonian. The correspondence between the Poisson
bracket generating classical equations of motion and the quantum-mechanical
commutation relation determining quantum-mechanical equations of motion
then leads to similar results.34

A not too different procedure3> identifies Fourier amplitudes of the electro-
magnetic field vector with (dimensionsless) creation and annihilation operators

33Gerry and Knight (2005), Sec. 2.1.

34The derivation in more or less detail can be found in many textbooks, for a quite detailed
account, the reader is referred, e.g., to G. M. Wysin, ‘Quantization of the Free Electromagnetic
Field: Photons and Operators’, 2011, URL: https://www.phys.ksu.edu/personal/wysin/
notes/quantumEM.pdf.

35D. F. Walls and G. J. Milburn, Quantum Optics, Berlin, Heidelberg: Springer, 2008, Sec. 2.1.
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and introduces bosonic commutation relations:

[k, 8] = b, (1.29)
where 4; belongs to one particular electromagnetic field mode denoted with k.
With this, the Hamiltonian of mode 4 is written as
A /\+ A 1
H=hw, |ada"a+ 5 (1.30)

The annihilation and creation operators of a specific mode give rise to dimen-
sionless quadrature operators £ and p via

f_a+a+ . a—at (1.31)
= "m  PT T 3
such that )
[%,5) = = (1:32)
P =2 3

In terms of quadrature operators, the Hamiltonian becomes

- m?
H = hwaz (J?z + f)z) . (1.33)
Common choices for the constant m are m = {1,/2,2}.3° From the commuta-
tion relation, an uncertainty relation follows due to var A var B > 411<é )2 for
[A,B] =iC:

var £ var p > 1 (1.34)

g .

With the choice of m, the vacuum uncertainty is fixed to var £yac = m~2. In
this thesis, the prevailing conventions of different fields are used. In Sec. 2
for theoretical studies of CQNG, this is m = /2, in Sec. 4, when dealing with

squeezed light, it is m = 2.

3%m = 1 is chosen, e.g., by Bachor and Ralph (2004), Eq. 2.1.3 and Sec.4.1.2, Walls and Milburn
(2008), Sec. 2.4 and C. W. Gardiner and P. Zoller, Quantum noise : a handbook of Markovian
and non-Markovian quantum stochastic methods with applications to quantum optics, Berlin et al.:
Springer, 2000, Sec. 10.2; m = 2 is chosen by Gerry and Knight (2005), Sec. 2.3 and Gardiner
and Zoller (2000), Sec. 7.2.9. A choice of m = V2 leads to the same Hamiltonian as in
Eq. 1.66 and the same commutation relation as the quantum harmonic oscillator, and has the
advantage that expressions for creation and annihilation operators and quadrature operators
are symmetric. It is used, e.g., in M. H. Wimmer, D. Steinmeyer, K. Hammerer and M. Heurs,
‘Coherent cancellation of backaction noise in optomechanical force measurements’, Phys. Rev.
A 89 (2014), 053836. Cf. also Sec. 1.1.1.
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In the above, the variance of the operator £ is defined as the expectation
value of the operator squared minus its mean,

var £ = (£2) — (£)2. (1.35)

Correspondingly, a symmetrised covariance can be defined between to operat-
ors X1, Xy,

A 1,0 . .. o\ s
cov Ry, Xy = §(x1x2 + Ro%q) — (R1)(%2). (1.36)

Covariances and means of modes completely define the probability distribu-
tion of a normally distributed mode. The modes in this thesis all fall in this

category as they are either vacuum modes, coherent modes or squeezed light
fields.

Equations can become easier to solve in Fourier space. The Fourier-
transformed versions of annihilation and creation operators are

i(w) = \/127” /dtﬁ(t)ei‘”t, (1.37)
it (w) = \/%/dtﬁ(t)*ei“’t

— 1 A —iwt '

= {\/ﬁ /dta(t)e }

=a(—w)' (1.38)

Care has to be taken with the signs in front of the frequencies. The commuta-
tion relation of the Fourier transformed pair is

[a(w), 8" (w')] = V2ré(w — o). (1.39)

The factor of \/277'[ comes from the symmetric definition of the Fourier trans-
form and the definition of the commutator in time domain.3”

Often, also in the experiments in Secs. 3 and 4, a noise spectral density is

37 Again, several conventions exist. Often, the Fourier transform is defined symmetric to keep
it unitary. If working in frequency space, it is convenient to absorb the factor V27 into the
operators. It then shows up again by backtransformation into time domain. Alternatively, the
Fourier transform can be defined asymmetric. Then, there is a factor 27t in front of one of the
commutation relations.
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1 MEASUREMENTS WITH LIGHT

measured. Looking at the expectation value in Fourier space,

(#(w)2(w")T) </dt /dt 9t (1 )eiw’t’>

=(w — ') r/d 2(H)(E+1))e 't
:5(w—w/)ﬁ/dTG(T)€in

= §(w — WSy (), (1.40)

where G(7) is the auto-correlation function and the noise spectral density
Sxx is its Fourier transform. Thus, a covariance matrix in frequency space, a
stationary spectral covariance,3® is connected to a noise spectral density. Note that
£(t) and £(#') usually do not commute. The same is true for £(w) and £(w’).
An ordering of the operators has to be fixed, because different orderings result
in different spectral densities. Normal ordering has all annihilation operators
to the right of creation operators, anti-normal ordering has it the other way
round. The former is often used by theorists and simplifies calculations
because spectra and variances become zero for vacuum or coherent states.
Most popular among experimentalists is the symmetrised version:

S(w — w")Sxx(w /dT )2(T) + 3?(1')3?(0)> e 'T, (1.41)

with a corresponding symmetric spectral covariance (see also Eq. 1.36). For
the purpose of this thesis, the differences between normally-ordered, anti-
normally ordered and symmetrised version can be broken down to different
levels of vacuum fluctuations, i.e. the variance of the vacuum state.39

3Walls and Milburn (2008), p. 281. ‘Stationary” because the periodicity assumed for the Fourier
transformation implies stationarity.

391t is interesting to note, but not important for the remainder of the thesis, that the different
orderings correspond to different quasi-probability distribution functions, namely normally-
ordered to the Glauber-Sudarshan P-distribution, the anti-normally ordered to Husimi Q-
distribution, and the symmetrised to the Wigner distribution, cf., e.g., Gerry and Knight (2005),
Secs. 3.7 and 3.8. Which one to use depends on the problem at hand.
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1.1.4 LOSSES

Classically, losses mean a reduction in amplitude of the light field, down
to zero amplitude in the case of total losses. With zero amplitude, both
quadratures become zero as in Eq. 1.2. Quantum-mechanically, amplitude and
phase quadrature cannot be exactly zero at the same time, this is forbidden by
the uncertainty relation, Eq. 1.34. The classical description of loss cannot be
valid quantum-mechanically. Instead, losses are always a two-way process. A
loss does not exist without another field coupling in. Losses of a field 4 can
be modelled as mixing mode 4@ with a vacuum mode dyac,

Gout = \/Mlin + /1 — Nlyac. (1.42)

n € [0,1] gives the efficiency of the process, the smaller 7, the less efficient
the process and the higher the losses. The second output mode, dout2 =

/1 —nlin — \/Nlvac, is lost, or traced out.

The same idea can be applied to a (co-)variance. The (co-)variance of the
output modes is a combination of the (co-)variance of input modes with the
variances of vacuum. Then,

var dout = <‘igut> - <ﬁout>2 = <(\/ﬁf’in +v1- U‘ivaC)2>
= g vardin + (1 — 1) var dyac, (1.43a)

S 1 . . . .
COV dout, Cout = E <(\/%ain + v/ 1-— 7]aavac)(\/ NeCin + / 1-— chvac)>
1
+ E <(\/ Wcéin + v 1-—- Ucévac)(\/ ﬂaﬁin + Y 1-— Waﬁvac)>

= /Nal]c COV din, Cin, (1.43b)

where the vacuum input is assumed to be uncorrelated and the modes @ and
¢ have zero means.

From these Egs. 1.42 and 1.43, it becomes clear that losses change the state
of light. Large losses make a state more and more similar the a vacuum state.
Losses become particularly important for quantum-noise cancellation, see
Sec. 2.3, and for squeezes states of light, see Sec. 4.1.2.

1.2 INTERFEROMETRY

An electromagnetic wave experiences a phase shift kr when travelling a
distance |r| = |r; — r1| through space, see Fig. 1.1 and Eq. 1.1. This is often
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1 MEASUREMENTS WITH LIGHT

used to measure distances between objects: If one object moves compared to a
reference object, for example due to a force, the movement can be observed
and the force onto the object measured. The phase of an electromagnetic
wave is not directly accessible, but translates into a change in intensity when
superimposed with a second, reference wave. This is called interferometry,
the important concepts are introduced in Sec. 1.2.1.

Optical resonators or cavities form a special type of interferometers with
particular characteristics such that they warrant a sub-chapter, Sec. 1.2.2, on
their own.

1.2.1 INTERFEROMETERS

Adding (plane) waves E; and E; travelling in the same direction with amp-
litudes A1 and Aj, frequencies w; and w; and a relative phase difference
6p = ¢1 — ¢ at a point r = 0 in space and taking the absolute squared,
|E|> = |E1 + E3|?, to obtain an expression proportional to the intensity leads
to

\E\z |A1 cos(wrt + ¢1) + Ap cos(wat + ¢2)|2

FA3[1+4 cos(2wit +2¢1)] + FA3[1 + cos(2wrt +2¢)]

+ A1Az[cos (w1 — wa)t + @1 — ¢2) + cos (w1 + w2) +¢1 + ¢2)]

:&+@
2

+ A1Az cos (w1 — wy)t + 6¢), (1.44)

where in the last step, high optical frequencies 2 wj,w; were averages out.
This is justified because detectors integrate over the very high frequencies
of light. If w; = wy, the signal is directly related to the phase difference ¢,
this is called homodyne interferometry. If wq # wy, the signal is modulated
by the difference of the frequencies, ) = |w; — wy/, this is called heterodyne
interferometry. To obtain phase information from heterodyne interferometry,
the signal needs to be demodulated. It is mixed electronically with a local
oscillator wave of frequency () and low-pass filtered by throwing away all
frequencies 2 (),

A? + A2
|E|? cos(Qt) = (1;—2 + A1 Ay cos ((wy — wo)t + 54))) cos(Ot)

 A1A

cos 6¢. (1.45)
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1.2 INTERFEROMETRY

In homodyne detection, a signal is directly mixed down, whereas heterodyne
detection requires two mixing steps, first the optical interference, then the
electronic mixing.
The homodyne detection can also be written in terms of the complex
amplitude:
|E|* = |ay + a2|* = A} + A3 +2A; Ay cos 5. (1.46)

An important parameter quantifying the signal strength in a homodyne set-up
is called visibility VIS, the ratio of maximum and minimum signal,

|Eo|*> — |Ex|>  2A1A,  2/PiP;

VIS = = = ,
|[Eol> +|Ex|2  A2+AZ Pi+P

(1.47)

with E(d¢) = Esp, and 0 < VIS < 1. The higher the visibility, the more
sensitive is the measurement to phase changes with an optimum at A; = Aj.
This notion can be extended including other parameters than amplitudes A;
and more realistic electromagnetic waves, in this thesis polarised Gaussian
modes. Then, the visibility is a measure of how well two modes of light interact
with each other. Interference or the ability to interact nonlinearly can be
quantified by their spatial mode overlap. This is often sought to be maximised,
e.g. when coupling into a cavity (Sec. 1.2.2), performing homodyne detection
(Sec. 4.1.2) or increasing the efficiency of nonlinear processes (Sec. 4.2.4), and
can be formalised as

Hvis = ’/ dxdy uy(x,y) uz(x,y) (1.48)

with normalised mode functions u; as in Eq. 1.28 for waves travelling in z-
direction.*° In an experiment, the ratio of minimum to maximum power when
changing the relative phase d¢ from 0 to 277 serves as a measure for mode
overlap,
VIS = Prmax — Pmin,
Prmax + Pmin
as long as both waves contain the same power and are otherwise able to
interfere, e.g. have the same polarisation. The mode overlap is zero for modes
of orthogonal transverse mode shape.
The simplest interferometer is constructed with a beam splitter overlaying
two electromagnetic waves with each other as in Fig. 1.7. Homodyne detection

(1.49)

4°Cf. L.-A. Wu, M. Xiao and H. J. Kimble, ‘Squeezed states of light from an optical parametric
oscillator’, J. Opt. Soc. Am. B 4 (2008), 1465, Eq. 24.
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o¢

a b C

FIGURE 1.7: Interferometers. Interference after a beam splitter (a), Mach-Zehnder
interferometer (b), Michelson interferometer (c). The triangle symbolises the differ-
ential phase shift d¢ between the two interfering beams.

can be realised by two other interferometers, the Michelson interferometer
and the Mach-Zehnder interferometer, also depicted in Fig. 1.7.

In this thesis, interferometers are used for characterising opto-mechanical
devices (Michelson interferometer, see Sec. 3.2.1), and characterising quantum
statistics of light via homodyne detection, see Sec. 4.1.2. Furthermore, several
different cavities are employed. Their use is explained in the following
Sec. 1.2.2.

1.2.2 OPTICAL RESONATORS

Another means of interfering light is via optical resonators or cavities. Cav-
ities are a set of mirrors and, sometimes, lenses, aiming to superimpose an
incoming beam with itself. This serves mainly two reasons:

* A cavity can provide a mode reference with respect to frequency, polar-
isation, spatial mode shape, and direction of propagation, and can filter
the light accordingly, if necessary.

® A cavity can enhance the incoming light field in order to enhance a
certain intracavity interaction.

In this thesis, the first purpose is served by mode-cleaning and mode-matching
cavities, the second for enhancing the interaction with a nonlinear crystal or
with an opto-mechanical oscillator.
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1.2 INTERFEROMETRY

Tin Tout
Ain, [| n : |]atrans

Arefl

FIGURE 1.8: Input and output beams of a linear cavity, characterised by input coupler
amplitude reflectivity rj,, output coupler amplitude reflectivity rou: and intracav-
ity propagation efficiency r.

LONGITUDINAL MODES — FREE SPECTRAL RANGE, LINEWIDTH, FINESSE,
IMPEDANCE MATCHING, REFLECTED PHASE#!

For the light to constructively interfere with itself, the phase ¢ after one round-
trip of length L;** has to be the same as the phase of the incoming light,
$(0) = ¢(Ly), which, together with ¢(z) = 27rz/A + ¢ leads to the following
condition for the cavity length Ly:

Ly = nA. (1.50)

The modes which fulfil the equation for different n are called longitudinal
modes. They are spaced a frequency distance

c
FSR = — 1.51
L. (1.51)

apart, called free spectral range. Intracavity losses limit the average number of
reflections and the intracavity power stays finite. The system in equilibrium
requires that a light field replicate after one round-trip. On that round-trip, it
experiences a phase shift kL; due to propagation, reflections on input and end
mirrors with amplitude reflectivities of rj, and 7out, losses inside the cavity,
quantified via 1} and addition of incoming light through the input coupler

41 A very good overview on the following is given by N. Ismail, C. C. Kores, D. Geskus and
M. Pollnau, ‘Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions,
linewidths, finesses, and performance at low or frequency-dependent reflectivity’, Opt. Express
24 (2016), 16366, and the Wikipedia article Fabry-Pérot interferometer, which is based on that
paper.

4?For standing-wave cavities, the cavity length L as the distance between the two end mirrors is
usually half the round-trip length, 2L = L, whereas for travelling-wave cavities, the cavity
length is equal to the round-trip length, L = L.
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FIGURE 1.9: Intracavity resonance enhancement and phase of reflected light, plotted
from Egs. 1.53 and 1.55 for two different values for the cavity Finesse.

with amplitude transmission t;,, see Fig. 1.8. The equilibrium condition is%3

; ) !
a(Ly) = rinroutrle_lkL“a(O) + itinain = a(0). (1.52)

This can be solved for the intracavity field a right after the input coupler,

N1
—ikL .
a= (1 — TinTout?€” ' “) itinfin, (1.53)

with a maximum of t, /(1 — rinTout”1) at resonance (kL mod 27t = 0). The
power build-up inside the cavity is determined by the product r = rinr7out
(or, equivalently, by R = r%). On resonance it is given by (1 —/R)2 ~
4(Tin + L)%, where L + Ty, are the total round-trip power losses with T,
the power transmission of the input coupler and L other power losses. An

often used measure for the power build-up or optical quality of a cavity is the

43Here, the convention of multiplication of i at each transmission is used. Also, for a single-sided,
lossless cavity, just set 7] = oyt = 1, and thus toue = 0.
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1.2 INTERFEROMETRY

Finesse, defined by

F = g <arcsin 12\_/;) (1.54a)
~ (1.54b)
~ f , (1.54¢)
P (1.540)
S Ti:j— 7 (1.54€)

where the approximations are valid for increasing values of r — 1.
The reflected and transmitted fields are

Arefl = Tinfin + inTout!a

2 Fout?
= (rin - 1 in_out’l ) Ain, (1'55)

— TinToutrie~KLr

Atrans = itoutd
— __ fnfout (1.56)
7’in7’outrlelkLrt " .
The transmitted power is maximised if #j, = #7out, because then the reflected
field on resonance becomes zero. Under this condition, the cavity is called
impedance-matched. The phase of the reflected field changes with the distance
from resonance, see Fig. 1.9. This fact is used for stabilising cavities, see
Sec. 1.2.3.
Another cavity characteristic is its linewidth «, in this thesis used as the
full-width-half-maximum (FWHM) value as in Fig. 1.9 with units of angular
frequency. It is defined via the relation

PSR (o)
x/2m 57

The linewidth, or rather its reciprocal, is a measure of storage time of the cavity.
x becomes smaller for longer cavities and less intracavity losses. Additionally,
the coupling to the outside of a cavity is quantified by the linewidth, it then
resembles a tunnelling rate.
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FIGURE 1.10: Single-waist cavities. Despite their different geometrical set-up, all
seven cavities have the same Gaussian eigenmode with beam waist wy at the same
position zg. Mirrors have radii of curvature R, R/, R”, cavities have lengths L, 2L,
L’ (lengths of c and d not specified). Lens has focal length f = R/2.
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1.2 INTERFEROMETRY

TRANSVERSAL MODES AND RESONATOR GEOMETRIES

The paraxial approximation results in transversally confined beams, which
describe well the type of light found in the lab. In order for this light to be
resonant between a set of mirrors, not only the phase has to replicate after
one round-trip, but also the spatial, i.e. transversal mode shape. Because
Gaussian beams diverge, this cannot be accomplished with only plane mirrors.
A focusing element inside the cavity is needed to refocus the light beam onto
itself is needed. The simplest set-up consists of one plane and one curved
mirror as depicted in Fig. 1.10a. The cavity geometry is determined by the
beam waist wy, the mirror’s radius of curvature R and the cavity’s length L.
Any two of them yield the third parameter. In practice, the radius of curvature
R is fixed and a cavity length L chosen such as to obtain a certain waist wy.
If R # zg, two possible cavity lengths to form a stable cavity exist (as long
as L < R), one with L > zr and one with L < zg, see Fig. 1.10a and f. Both
are solutions to Eq. 1.20c with the wave front’s radius of curvature at z = L
matching the mirror’s radius of curvature. For cavities as in Fig. 1.10c and
especially d, it is not a priori obvious whether R, R’ (or R”) and the cavity
length permit a beam shape which replicates after one round-trip, but stability
criteria in form of so-called g-parameters exist.4+

The same geometrical mode inside a cavity can be realised with different
linear or travelling-wave cavities as in Fig. 1.10g. With the latter, astigmatism
has to be taken into account. The travelling-wave cavity is no longer radially
symmetric due to non-normal incidence on the curved mirror, resulting in
different effective radii of curvature in x- and y-direction, see Eq. 1.25. This
leads to different beam waists in horizontal and vertical direction. Also, for
an odd number of mirrors, higher-order modes with an odd mode-number in
the plane of incidence experience an additional phase shift,*> see Fig. 1.12.

Sometimes, a long cavity with a small beam waist is needed. This is for
example the case if a strong interaction with a nonlinear crystal and, at the
same time, a small linewidth or small angles of incidence on curved mirrors
are required. The small beam waist results in strong divergence and the
need to refocus the beam. This leads to ‘two-waist” cavities, cavities with
beams of two different beam parameters as depicted in Fig. 1.11. The simplest
case is that with two flat mirrors and a lens in between, Fig. 1.11a. Then,
five parameters, namely the two beam waists wp and wé, the two distances

#Cf. Kogelnik and Li (1966).
45Mathis et al. (1996).
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FIGURE 1.11: Two-waist cavities. Cavities a to d have the same two waists wy and wy,
at the same positions. Cavities e and f extend this to asymmetric set-ups, still with
the same waists. Mirrors have radii of curvature R, R/, R”, lenses focal lengths
f=2/R, f =2/R, cavities lengths L = L; + Ly, 2L, L+ L' with L' = L} + L},
(length of cavity b not specified).
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between mirror and focusing element L; and Ly, and focal length f (or, radius
of curvature R, if a curved mirror is used instead of a lens) describe the cavity.
For any given three of them, the other two follow. Set-ups as in Fig. 1.11b-d
lead to the same spatial mode with two waists wy, w6 at the same positions.
Two unequal radii of curvature in the cavity Fig. 1.11e result in an asymmetric
cavity with the same beam waists wy, w(,. This set-up is equivalent to the one
in Fig. 1.11f. Further generalisations are possible. For linear cavities, if there
is no flat mirror exactly at waist position (for travelling-wave cavities, if the
cavity is not symmetric around the waists), an additional focusing element is
needed to refocus the beam onto itself.4° Cavity design is mostly a question
of symmetries, as can be seen in Sec. 5.3.1, where a cavity is being designed.
Because of different Gouy phases of higher-order modes (cf. Eq. 1.23),
cavities can be used to separate transverse Gaussian modes as was mentioned
at the beginning of this Sec. 1.2.2. The mode spacing for a cavity as in Fig. 1.10a
depends on the ratio of cavity length L to Rayleigh range zg, as can be seen in
Eq. 1.20d:
(L) = arctan £ (1.58)
Zr
For L = zg, the acquired Gouy phase and thus the mode-spacing ¢(L) —
{(—L) becomes 71/2 (see also Fig. 1.5), meaning the fundamental and the
even-numbered modes are resonant at the same time, and all odd-numbered
modes are resonant at the same time. For L — 0 or L — R (as the cavity
approaches instability), the cavity becomes completely degenerate. Most often,
the resonances of modes with lower mode numbers should be far away from
the fundamental TEM resonance so that remaining misalignment does not
cause higher-order modes couple into the cavity. Instead, they should be
off-resonant and get reflected. The Gouy phase then should be a fraction 77
with a big least common multiple of n and m (but % far enough away from
an integer number such that %7t and its smaller multiples do not lie within
the oo mode’s linewidth).

ALIGNMENT OF CAVITIES

A cavity defines a spatial eigenmode, which is the transversal mode shape
replicating after one round-trip. The incoming beam can be written in the

46 All cavities can in principle be extended with an arbitrary number of flat mirrors without
changing the cavity’s eigenmode (if the total length stays constant; note also the additional
phase flip in case of odd-numbered mirrors).
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basis of the cavity’s eigenmode. This is most probably a superposition of the
fundamental mode and several higher-order modes. Usually, the incoming
beam’s shape is to be transformed such that it matches the cavity’s eigenmode,
this is called mode matching. There are six degrees of freedom. The beam can
be shifted laterally and vertically with respect to the cavity’s eigenmode, have
an angle between its direction of propagation and the cavity beam’s direction
of propagation in either horizontal or vertical direction, or there might be a
mismatch in either waist sizes or waist positions. The first four parameters+’
are called misalignments as they can be corrected for by changing the beam’s
path with adjusting mirrors, by realignment. To first order, misaligned beams
couple to Hermite-Gaussian modes, most strongly to the first-order modes
(o1 and 10), whereas mode mismatch, a mismatch in waist size and/or waist
position, couples to Laguerre-Gauss modes,*® predominantly the first order-
modes.* A mode spectrum of an intentionally misaligned cavity can be seen
in Fig. 1.12.

THOUGHTS ON CAVITY DESIGN

When designing a cavity, the most important design criterion is the cavity’s
purpose. This decides over the cavity’s figures of merit, be it a particular
beam intensity or beam waist, power build-up, linewidth, priority on mode
separation, or even characteristics such as a small spatial footprint. Next the
parameters important for the respective figure of merit need be determined
and fixed, e.g. waist size, Finesse, cavity length, Gouy phases, ... Now, the
other free parameters need to be found and fixed according to convenience.
Often, first design decisions regard the choice between single- and two-waist
cavities or standing-wave and travelling-wave cavities. The basic single- or
two-waist cavities in Fig. 1.10a and Fig. 1.11a can serve as a starting point and
be expanded to other, slightly more complex geometries. Another possibility
is to take an existing, working set-up and modify that as needed.

An example for designing a new cavity with particular requirements in

47 Actually, three parameters are enough to describe the misalignment, see F. Bayer-Helms,
‘Coupling coefficients of an incident wave and the modes of a spherical optical resonator in
the case of mismatching and misalignment.”, Appl. Opt. 23 (1984), 1369.

4BIf the cavity is astigmatic, the radial symmetry is broken and the mismatch also couples to HG
modes. An addition of same order horizontal HG modes with the right relative phase is again
radially symmetric, see Fig. 1.6.

49D. Z. Anderson, ‘Alignment of resonant optical cavities.”, Appl. Opt. 23 (1984), 2944; Bond,
Brown, Freise and Strain (2016), Secs. 9.3, 9.16.
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FIGURE 1.12: Higher-order modes in misaligned cavity. The plotted data stems from
the 5-mirror cavity described in Sec. 5.3. Misalignment in horizontal direction
caused the blue trace, misalignment in vertical direction the red trace. The cavity
is astigmatic, a good mode matching can only be achieved for either horizontal or
vertical direction (here, there is a remaining mode mismatch in vertical direction
causing the 02 mode still being present in the blue trace). The cavity was not
misaligned horizontally and vertically at the same time, therefore there is no
coupling to modes of higher order in both, 7 and n (except for remaining vertical
mode-mismatch resulting, together with horizontal misalignment, in coupling to
the 12 and 22 mode). Because of the odd number of mirrors, there is a phase flip
for odd-numbered horizontal modes leading to an additional phase of 7= (here
for modes 10, 30, 12). From the traces, the Gouy phases vert and ¢, can be
extracted and used to characterise the optical system, see Appendix C.
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mind is given in Sec. 5.3 when setting up an experiment with coupled cavities.

1.2.3 STABILISING INTERFEROMETERS AND OPTICAL RESONATORS

Usually, interferometers and cavities need to be kept at a certain operating
point. This means holding the length fixed, such that the relative phase
between the interfering beams (which, in a cavity, is the beam itself after one
round-trip) stays constant. In the case of cavities, often, resonant enhancement
of the incoming light is desired. This means for both, the cavities and the
interferometers, knowledge of the relative phase and its changes is to be
acquired. The phase of a light beam is not directly accessible, it can be seen
only as a relative phase in interference patterns. Different methods exist to
create an apt interference.

The interference inherent to the system to be stabilised can be used in
order to lock the device. The power transmitted through a cavity or an
interferometer depends on the path length, i.e. accumulated phase of the
cavity /interferometer. This is called side-fringe locking. Disadvantages are
that this scheme is sensitive to power fluctuations, and that the single most
important operating point of a cavity is not accessible with this method: At
resonance, the interference signal does not provide a sign for the control loop
— it is not clear in which direction to change the cavity length in order to coun-
teract the phase change, see Fig. 1.9. The same applies to an interferometer
operated at maximum or minimum interference. Hence, a reference beam is
needed which can interfere with the beam leaving the system.

The reference beam for cavities is often not resonant in the cavity, but is
directly reflected. This beam interferes with the beam leaking out of the cavity,
thereby providing a relative phase measurement, where the relative phase
only depends on what happens inside the cavity and not on any other path
differences. There are several options to make a beam not resonant in the
cavity. Creating side-bands via modulation which then are not resonant inside
the cavity (cf. Sec. 1.1.1) is one of them. This scheme is called Pound-Drever-
Hall locking.5° Alternatively, a different polarisation which is not resonant
due to residual birefringence of cavity elements (homodyne locking®") or due

5°R. W. Drever et al., ‘Laser phase and frequency stabilization using an optical resonator’, Appl.
Phys. B 31 (1983), 97-105; E. D. Black, “An introduction to Pound-Drever-Hall laser frequency
stabilization’, Am. J. Phys. 69 (2001), 79-87.

5T™M. Heurs, L. R. Petersen, M. R. James and E. H. Huntington, ‘Homodyne locking of a squeezer’,
Opt. Lett. 34 (2009), 2465.
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to the cavity being non-existent for a certain polarisation because of high
losses for that polarisation (Hansch-Coulliaud>?), or a different transverse
mode which is not resonant due to a different Gouy phase shift (cf. Sec. 1.1.2,
tilt locking>3) could be used. A beam not completely off-resonant but slightly
resonant still experiences a different phase shift than the resonant beam, which
then also scales differently with disturbances. The interference can also lead to
to an error signal. This is achieved modulation-based (slow PDH, also known
as dither-locking>%).

In principle, only relative phases matter — it depends on experimental
circumstances whether to lock a beam to a cavity/to the reference beam, or
the other way round. In this thesis, the laser beam acts as frequency reference.
The cavities are controlled as to accommodate the laser beam. It also does
not matter in theory whether one modulates the reference beam or the cavity
(experimentally, very fast modulations of the order of some Megahertz might
be difficult to do mechanically).

In this thesis, polarisation-based homodyne locking (for the mode cleaner),
PDH-locking (for the nonlinear cavities and the coupled cavities), dither-
locking (for the pump phase) and side-fringe locking (for the opto-mechanical
interferometer and the homodyne detector) were deployed.>>

1.3 OPTO-MECHANICAL INTERACTION AND THE
STANDARD QUANTUM LiMmIT

Light and matter interact in various ways. In this thesis, the interaction via
radiation pressure is the one of importance. The radiation pressure of a
light beam exerts a force on a moveable mass. In the particle picture, photons
transfer momentum onto the mass. This becomes problematic if the light beam
is to observe the movement of a mass under some force. Then, a fluctuating
radiation pressure force disturbs the measurement by also causing the mass
to move. This is true even for quantum radiation-pressure fluctuations if the
measurement is sensitive enough, and gives rise to the Standard Quantum

52T. Hansch and B. Couillaud, ‘Laser frequency stabilization by polarization spectroscopy of a
reflecting reference cavity’, Opt. Commun. 35 (1980), 441—444.

53D. A. Shaddock, M. B. Gray and D. E. McClelland, ‘Frequency locking a laser to an optical
cavity by use of spatial mode interference’, Opt. Lett. 24 (1999), 1499.

54Black (2001).

55Cf. Sec. 4.4.1, 3.2.1, and 5.3.2, respectively.
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Limit (SQL).

Usually, the mass is modelled as a damped harmonic oscillator. This
oscillator is characterised by its resonance frequency wp, (in the single-mode
approximation, only one resonance is considered) and its linewidth yy. The
two give rise to the Q-factor, Q = %’ characterising the rate of energy loss
to the environment. An oscillator is harmonic if the force counteracting its
displacement is proportional to the displacement, mX = —kX. Introducing a
damping v proportional to its velocity X and an additional driving force F,
the equations of motion of a (classical) harmonic oscillator can be written as

. . F(t
X+ ymX + Wi X = —7(”), (1.59)

where wp, is the oscillator’s resonance frequency. For the undamped, undriven
oscillator (ym = 0, F(t) = 0), the Hamiltonian H as the sum of potential and
kinetic energy can be constructed,

mw?2 X> P2

H - 2 ﬁ (1.60)

From this Hamiltonian, the equations of motion can be found and solved with
boundary conditions X (t = 0) = Xy and P(t = 0) = Py:

X(f) = Xpcoswmt +

sin wmt. (1.61)
Wm

The Hamiltonian can be quantised with requiring [X’, 15] = ih. Then,

A=—/m" 4+ (1.62)

A

X(t) = Xo cos wmt +

sin wmt. 1.6

W m (1.63)
In order to precisely measure the position over time, both, position and
momentum at time f = 0 would have to be known. Because they do not
commute, this is not possible. The precision of a position measurement over
time is limited. Another way to see it: X does not commute with itself at later

times,>°

[R(0),%(0)) = T2y, %) 20, (1.64)

56For the special case of ¢ = multiples of 77/2wn,, see next Sec. 1.4.
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o !

FIGURE 1.13: Simple opto-mechanical cavity with force F causing a displacement X
of the moveable end mirror.

Position and momentum operators can be rescaled to dimensionless quant-
ities, which are more convenient to use later on: £ = X/Xzpr, Pm = XzprP /11
with the mechanical zero point fluctuation xzpg,””

X7zpF = / h/mwm (165)

Their commutation relation is [£m, Pm]| = i. With this, the quantum-mechanical
Hamiltonian can be written as

A = Yo (;afn + xfn) — hiom (E*B + %) , (1.66)

with the phonon creation operator h = (Xm + ipm)/ V2. The equations of
motion follow to be

fm = WmPm, Pm = —wWmim, £(t) = Rocoswmt+ Posinwmt.  (1.67)

Let the mechanical oscillator now be an end mirror of an optical cavity as
in Fig. 1.13. The cavity’s resonance frequency w, depends on its length L and
thus on the position X of the mechanical oscillator, L(X) = L + X. Together
with the resonance condition Eq. 1.50, the resonance frequency of mode 4,
expanded around small length changes X, is

dwa(X)

2\ Wa
e X:OX—i—O(X) wa + —X. (1.68)

wa(X) = wa T

Using the dimensionless position operator £, and the single-photon coupling
strength go, the opto-mechanical Hamiltonian can be written as

A = wa(1+ go&m)a'a + wmb™d (1.69)

57Sometimes, an additional factor of 27172 is included in the definition of xzpr, due to a different
definition of quadratures, see, e.g., M. Aspelmeyer, T. ]. Kippenberg and F. Marquardt, ‘Cavity
optomechanics’, Rev. Mod. Phys. 86 (2014), 1391-1452, p. 1397.
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with 7 set to one, which leads to the standard opto-mechanical (radiation
pressure) interaction Hamiltonian5®

+

Hrp = gofmad'a (1.70)

with the single-photon coupling strength gp as

We
80 = T.XZPF. (1.71)

In Eq. 1.70, the force 4% is coupled to the position £ with strength (rate) go
similar to other Hamiltonians coupling a force to a position.

Usually, the cavity field 4 is strong and can be linearised via 4 — a« + 4 with
« the mean complex amplitude. Dropping higher-order terms in 4 leads to

Ay = ago(a+ ") tm = gtatm = 5(ab+ D" +ab' + ') (1.72)

with the opto-mechanical coupling strength g as

w w 1
g= \fZagO = \@afaxZPF = 204%1 / p— (1.73)
m

where the factor of v/2, again, comes from the definition of quadratures, cf.
Sec. 1.1.3.

In order to quantify the limit on measurement precision, which was argued
for rather intuitively above, the set-up is as follows:®® Again, there is an
opto-mechanical cavity as in Fig. 1.13, giving rise to the same Hamiltonian
as in Eq. 1.69. One cavity mirror is moving due to some force F and due
to radiation pressure. Including driving and damping terms with optical
linewidth %, and mechanical linewidth <y, yields the following equations of
motion:

fa = —Ka/2+ Kok, (1.74a)
pa = —Ka/2 — ghm + V/KaPR, (1.74b)
Zm = WmPm, (1.740)
Pm = —WmEm — &%a — YmPm + mﬁ (1.74d)

38C. K. Law, “Interaction between a moving mirror and radiation pressure: A Hamiltonian
formulation’, Phys. Rev. A 51 (1995), 2537-2541.
59For the derivation, see, e.g., Wimmer, Steinmeyer, Hammerer and Heurs (2014).
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The light’s phase quadrature p, is coupled to the mechanical position £r. The
evolution of the position %, is governed by the mechanical momentum pp,
which carries information about the input force F and the light’s amplitude
quadrature £,. The equations can be solved in Fourier space. Together with
input-output relations, pi* + pSUt =, /kaPa, the output phase becomes

poUt = P — \fragxax + & X KA (1.75)
with
i _ iw — Ka /2 _ 1
T ety T it (1.76)
Xm = wm(wz - wrzn + i')’mw)ilr (1.77)

and the position x0, = xm/¥mF due to the influence of the force. The position
can be estimated to be®

sout el

pa 0

_ =Y _ _ pin . fx xAin, 1.78
\/ﬁg)(a m \/ﬂgxapa \/:gXaXm a (1.78)

=>
3

with the ‘true’ position xp and added terms proportional to input phase and
input amplitude quadrature, pi, and £j,. Due to the uncertainty relation,
Eg. 1.34, there is a lower limit to the product of variances of i, and pin,
leading to a trade-off between larger and smaller measurement strengths: The
measurement strength, here the opto-mechanical coupling g proportional to
the intracavity field amplitude, can be found once in the denominator and
once in the numerator of Eq. 1.78. Additionally, the expression is frequency-
dependent. For each frequency, there exists a specific measurement strength
which minimises the noise. This becomes clearer if looking at the output
spectral density,

var pin ;
St = T + [ G var sl (179)

with the frequency-dependent measurement strength G = x,|Xa|2¢> = |xm| ™"
Stronger measurements enhance the second term proportional to the input
amplitude quadrature, this is the radiation pressure/back-action part. Weaker
measurements enhance the first term proportional to the input phase quad-

rature, this is the shot noise/measurement imprecision part. The optimal

oEqually, one could choose to measure the force via F = xQ v/ 2yl
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measurement strength G = |xm|~! for vacuum inputs reduces the noise
spectral density to
o = |Xml- (1.80)

In the field of weak continuous measurements, opto-mechanics and gravitatio-
nal-wave detection, this limit is called Standard Quantum Limit (SQL).°* The
position as well as the force spectral densities and the respective Standard
Quantum Limits are plotted in Fig. 1.14.

The here presented effect is very small and a challenge to even observe.
This is mainly because of other noise sources such as thermal noise, which
was neglected above, dominating the sensitivity. Nevertheless, it has the
potential to limit sensitive measurements®? and has been seen in experiments.
In an opto-mechanical set-up similar to the one above, the first observation
of radiation-pressure noise was by Purdy and co-workers with a membrane
as mechanical oscillar inside an optical cavity.3 Using the collective motion
of atoms as mechanical oscillators, it was observed even earlier.%4 Recently,
quantum fluctuations in a micro-mechanical set-up at room temperature have
been published.®

1.4 BELOW THE STANDARD QUANTUM LiMIT

The preceding Sec. 1.3 showed how the uncertainty relation for quadratures
of a light field gives rise to the Standard Quantum Limit (SQL) in opto-
mechanical measurements. The careful reader, however, might already have
noticed that loopholes exist and this limit can be circumvented. Most of the
ideas to overcome the SQL have been developed in the context of gravitational-
wave detection around 1980,°® but only recently have experiments reached

611n other fields, where there is a one-time measurement instead of a continuous measurement,
and thus back-action is not relevant, Standard Quantum Limit refers to the measurement
precision limited by measurement strength alone.

02Cf,, e.g. ]. Aasi et al., “Advanced LIGO’, Class. Quantum Gravity 32 (2015), 074001, Sec. 3.1 and
Fig. 2.

63T. P. Purdy, R. W. Peterson and C. A. Regal, ‘Observation of Radiation Pressure Shot Noise on
a Macroscopic Object’, Science 339 (2013), 801-804.

64K. W. Murch, K. L. Moore, S. Gupta and D. M. Stamper-Kurn, ‘Observation of quantum-
measurement backaction with an ultracold atomic gas’, Nat. Phys. 4 (2008), 561-564.

65]. Cripe et al., ‘Observation of a room-temperature oscillator’s motion dominated by quantum
fluctuations over a broad audio-frequency band” (2018).

6C. M. Caves et al., ‘On the measurement of a weak classical force coupled to a quantum-
mechanical oscillator. I. Issues of principle’, Rev. Mod. Phys. 52 (1980), 341-392; V. B.
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FIGURE 1.14: Noise spectral densities for measurements of a harmonic oscillator, plot-
ted from Eq. 1.79. Crossings of grid lines indicate where the SQL (blue traces) is
reached. Top row: Position sensitivity. Bottom row: Force sensitivity. Both are con-
nected via the mechanical susceptibility ym translating applied force into position
of the oscillator. Left column: Noise over measurement strength with frequencies
w fixed to 102w, 10w, and 102w, respectively. The frequency-dependent op-
timal measurement strength Gopt(w) = | Xm| ™! is the same for position and for
force measurements. The sensitivity reached is called Standard Quantum Limit,
S = |xml, SFF = Ym' |xm| . Right column: Sensitivity in frequency space with
powers fixed to the optimal measurement strength Gopt(w;) = | Xm\_l for different
frequencies w; = 1072w, 10wm, and 10?wn, respectively. The envelope with the
optimal power at each frequency is the Standard Quantum Limit (blue traces).
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this limit (see preceding Sec. 1.3).

One rationale behind a limit in measurement precision, given with Eq. 1.64,
is that for a harmonic oscillator, the position does not commute with itself
at later times. This is not true for all times, though: If measurement times
are chosen wisely such that the measurements happen at times t, = n7mw/wn
with integer 1, the commutation relation [X(t,), X(0)] becomes zero, the
measurement is back-action-free. This is called stroboscopic measurement.®?

Another possibility is to use a different observable altogether. Whereas the
position does not commute with itself at later times, the momentum does. A
continuous measurement of the momentum is also back-action-free, this idea
is known under the term speed meter.®®

Observations of a system which do not result in a disturbance of the
observable are called back-action evasion or quantum non-demolition (QND)
measurements.®® Modifications of the input or output of an opto-mechanical
measurement apparatus can also lead to a reduction of quantum noise and to
surpassing the SQL, rendering the apparatus QND, as described by by Kimble
and co-workers in their similarly named paper.”” One such modification,
which has been in use in gravitational-wave detectors, is the transformation
of noise characteristics of the input light, known as squeezing. Squeezed light
shows a reduced uncertainty in one quadrature at the cost of an increased
uncertainty in the orthogonal quadrature. This is very similar to using a
different amount of power, as can be seen in Eq. 1.79.7" It also means that
for different measurement frequencies, the input field needs be squeezed in
different quadrature angles, resulting in frequency-dependent squeezing.”>

Braginsky, Y. I. Vorontsov and K. S. Thorne, ‘Quantum Nondemolition Measurements’, Sciernce
209 (1980), 547-557, and references therein.

67Caves et al. (1 980), Sec. ILF.2. realised for atoms by G. Vasilakis, V. Shah and M. V. Romalis,
‘Stroboscopic Backaction Evasion in a Dense Alkali-Metal Vapor’, Phys. Rev. Lett. 106 (2011),
143601.

68V, Braginsky and F. Khalili, ‘Gravitational wave antenna with QND speed meter’, Phys. Lett. A
147 (1990), 251—256.

9There is no clear distinction between the two nor to a third concept, quantum-noise cancellation.
If at all, the difference might lie in what point of view is emphasised by the respective term.
See also Sec. 2.1 for different angles on the same system.

7°H. J. Kimble et al., ‘Conversion of conventional gravitational-wave interferometers into quantum
nondemolition interferometers by modifying their input and/or output optics’, Phys. Rev. D
65 (2001), 022002.

7'But not quite, as with squeezing under an angle of 45°, the SQL can be surpassed, see S. L.
Danilishin, F. Y. Khalili and H. Miao, “Advanced quantum techniques for future gravitational-
wave detectors’, Living Rev. Relativ. 22 (2019), 2-89, Fig. 10.

72Kimble et al. (2001), Sec. IV.B.
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Conceptually similar is a technique known as variational readout.73 It aims at a
frequency-dependent measurement angle. For each frequency, the quadrature
with the lowest back-action noise is measured, the back-action is evaded.

The idea studied in this thesis, coherent quantum-noise cancellation, can
be understood as measuring a QND variable as well — more of that in the
next Sec. 2. All these concepts, back-action evasion, QND, coherent noise
cancellation, are subsumed under the broad term quantum mechanics free
subsystem by Tsang and Caves’+ — a quantum-mechanical system constructed
to be governed only by classical laws, which allow for arbitrary precision.

In gravitational-wave detection, a different approach is to modify the in-
terferometer dynamics. The SQL of a harmonic oscillator depends on its
resonance frequency, see Fig. 1.14. With a second cavity coupled to the in-
terferometer (Signal recycling”>) or with detuning the arms (optical spring,
coupling mechanics and optics”®), the resonance frequencies can be shifted.””
The system leaves the free-mass domain and becomes more similar to an
optical bar, one of the first devices built to measure gravitational waves. Con-
ceptually, these schemes of coupled resonators are similar to the coupled
cavities presented in Sec. 5. These approaches usually come at the cost of
a reduced bandwidth. Mizuno found a sensitivity-bandwidth limit,7® ideas
to overcome this is to shape the dispersion inside a cavity, e.g. with opto-
mechanical or nonlinear white-light cavities and with internal squeezing.”9

For gravitational-wave detectors, current approaches and efforts including
the above-mentioned are put together in a review by Danilishin, Khalili and
Miao.%

73Kimble et al. (2001), Sec. IV.C.

74M. Tsang and C. M. Caves, ‘Evading quantum mechanics: Engineering a classical subsystem
within a quantum environment’, Phys. Rev. X 2 (2012), 031016.

75B. J. Meers, ‘Recycling in laser-interferometric gravitational-wave detectors’, Phys. Rev. D 38
(1988), 2317-2326.

76 A. Buonanno and Y. Chen, ‘Optical noise correlations and beating the standard quantum limit
in advanced gravitational-wave detectors’, Class. Quantum Gravity 18 (2001), Lg5-L101.

77See also S. L. Danilishin and F. Y. Khalili, ‘Quantum Measurement Theory in Gravitational-Wave
Detectors’, Living Rev. Relativ. 15 (2012), 5-147, Sec. 5.3.1.

78]. Mizuno, ‘Comparison of optical configurations for laser-interferometric gravitational-wave
detectors’, PhD thesis, Universitit Hannover and Max-Planck-Institut fiir Quantenoptik,
Garching, 1995.

79Danilishin, Khalili and Miao (2019), Sec. 7.2.

80Danilishin, Khalili and Miao (2019).
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COHERENT QUANTUM-NOISE
CANCELLATION

The previous chapter showed the inherent limitations to opto-mechanical meas-
urements and presented ideas to overcome the so-called Standard Quantum
Limit. In this chapter, one of the ideas, which is a method to reduce back-
action noise in the form of quantum radiation-pressure noise and was coined
coherent quantum-noise cancellation (CQNC) by Tsang and Caves,* will be ex-
plored in detail. The first section gives intuitive explanations of how CQNC
can be understood to work. Then, realisations of an effective negative mass
which have been proposed, being worked on, or realised, are presented. An
emphasis lies on the all-optical scheme studied in this thesis. The third sec-
tion is devoted to a detailed theoretical analysis of all-optical CQNC with
its requirements and limitations in two possible realisations, an integrated
set-up already discussed earlier,®? and a cascaded set-up. Both set-ups lead
to, in principle, similar results. The last section of this chapter makes the link
to the experiments shown in the remainder of the thesis. The evolution of
design proposals is shown and the reasoning for design decisions given. A
set of experimentally achievable parameters, also to be found in the above-
mentioned publications,®3 is presented together with possible reductions in
quantum noise for both set-ups.

81M. Tsang and C. M. Caves, ‘Coherent quantum-noise cancellation for optomechanical sensors’,
Phys. Rev. Lett. 105 (2010), 123601.

82\, H. Wimmer, D. Steinmeyer, K. Hammerer and M. Heurs, ‘Coherent cancellation of back-
action noise in optomechanical force measurements’, Phys. Rev. A 89 (2014), 053836; D.
Steinmeyer, “Towards Coherent Quantum Noise Cancellation. Untersuchungen zur kohédrenten
Unterdriickung von Quantenrauschen in Interferometern’, Master thesis, Leibniz Universitét
Hannover, 2014.

83Wimmer, Steinmeyer, Hammerer and Heurs (2014); Steinmeyer, Master thesis (2014).
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FIGURE 2.1: Relative position measurement with effective negative-mass oscillator.
The effective negative-mass oscillator reacts oppositely to a positive-mass os-
cillator to a push by the reflected light. The measured separation between two
mirrors, one of them with positive, one with negative mass, stays the same as
their initial separation. Figure from C. G. Baker and W. P. Bowen, ‘Precision meas-
urement: Sensing past the quantum limit’, Nature 547 (2017), 164-165.

2.1 How Tto THINK OF CQNC

Different pictures for looking at back-action noise exist as shown in the
previous Sec. 1.3. Consequently, a method to overcome back-action noise can
also be seen in different frameworks. Three of them are presented in this
section, followed by an overarching control-theoretic viewpoint.

2.1.1 CQNC AS AN ENTANGLED NEGATIVE-MASS OSCILLATOR

Measuring the position X of an object with light influences its motion as the
light applies a force F to the object. The acceleration X of a negative mass
is opposite to the direction of the force acting on it. Newton’s second law,
mX = F, results in X = —F/m for a negative mass. Sending light first onto a
positive-mass object and then onto a similar object with negative mass, the
relative distance between the two stays the same, see Fig. 2.1. The term negative
mass in the context of back-action evasion was first used by Hammerer and
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co-workers.?* Negative masses do not exist in nature, but certain systems
behave effectively as if they had a negative mass, see the next Sec. 2.2.

On a more formal level, back-action in opto-mechanical measurements is
caused by measuring a variable which does not commute with itself at later
times. A new observable can be constructed which does commute with itself as
later times. This new observable is the relative position between two objects,
one of them with a negative mass. The reasoning for a harmonically bound
mass, i.e. a harmonic oscillator, goes along the following lines.®>

The equation of motion for a harmonic oscillator with mass m and resonance
frequency wn is as in Eq. 1.63,

X(t) = Xo cos wmt + - 0

Wm

sin wmt. (2.1)

The position X(t) over time cannot be known exactly because position and

momentum operators X and P do not commute. Including as a reference

a second harmonic oscillator with the same frequency wm and position X/,

momentum P’ , and mass m’ into the measurement, the equation of motion of
the relative positions is

D D/

X(t) = X'(t) = (Xo — X{) cos wmt + ( Fo Fo

; ) sin wmt. (2.2)
Mmwm M wm

If the mass of the reference oscillator is the same as that of the first oscillator
but negative, m’ = —m, the evolution of the difference in position,

p0+p6

Wm

X(t) = X'(t) = (Xo — X()) cos wmt + sin wmt, (2.3)

depends on the sum of the initial momenta — which commutes with the
difference in positions:

A

[R— XD+ D)= & D] - [X,P] = 0. (2.4)

Thus, the relative position can be known arbitrarily well at all times. In other
words, measuring the position of one object, the position of the other object

84K. Hammerer, M. Aspelmeyer, E. S. Polzik and P. Zoller, ‘Establishing Einstein-Poldosky-Rosen
Channels between Nanomechanics and Atomic Ensembles’, Phys. Rev. Lett. 102 (2009), 020501.

85E. S. Polzik and K. Hammerer, ‘Trajectories without quantum uncertainties’, Ann. Phys. 527
(2015), A15-A20.
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follows due to the relative position X — X’ being defined — the two objects
became entangled through the interaction with light.

For a negative mass, the Hamiltonian is the same as the one for a positive
mass, but with a negative sign, H = — (mwmX? + P2/2m). This points to-
wards negative energies. Changing to dimensionless position and momentum
operators as in Sec. 1.3, Egs. 1.66 and 1.67, the negative energies correspond to
negative frequencies. This is important to understand the optical realisation
of negative-mass oscillators, particularly the detuning of the ancilla cavity in
Sec. 2.2.

Another finding from the reasoning above is that the negative-mass oscillator
has to match the positive-mass oscillator in its characteristics, which in the
above are mass and resonance frequency. The picture presented here is
especially handy for looking at a cascaded set-up, where the interactions of
the light field with the two oscillators are sequential.

2.1.2 CQNC AS DESTRUCTIVE INTERFERENCE OF QUANTUM NOISE

Back-action is introduced by an opto-mechanical oscillator because the oscil-
lator couples noise from one quadrature of the light field, £;,, into the other,
measured quadrature, pout, see Egs. 1.74 in Sec. 1.3. An evasion technique
might be to couple the noise from £;, into the measured quadrature foyt via an
additional path, which provides a negative sign. In the measured quadrature,
the two noises add up and cancel out — they interfere destructively. This
view was proposed by Tsang and Caves®® and can be visualised nicely with
flowchart diagrams they introduced in their publication.

A flowchart diagram shows, similar to block diagrams, which variables
are coupled and thus influence each other. With appropriate labelling, they
are a visualisation of the equations of motion of a system. The equations of
motion of an opto-mechanical system were introduced in Sec. 1.3, Eq. 1.74.
The flowchart Fig. 2.2a depicts these equations. Input variables are visualised
as circles, system variables as squares. Arrows lead from a variable on the
right-hand side of an equation to a variable on the left-hand side. Signal and
noise flow can easily be followed through the system. The readout quadrature
Pout, which contains the signal to be measured, additionally includes noise
from both input quadratures, £i, and pi,, because opto-mechanics couples
the input amplitude quadrature £;, to the output phase quadrature pout. As

86Tsang and Caves (2010).
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FIGURE 2.2: Flowchart of opto-mechanical interaction from Eqs. 1.74 (a), and anti-
noise path (b). Green dashed line represents the signal flow, red dashed line the
noise flow, blue dashed line the antinoise flow. Rectangles are system quadratures,
green circles input quadratures, yellow circles output quadratures. The blue rect-
angles in the background denote the two harmonic oscillators coupling the light’s
amplitude quadrature £. to its phase quadrature p..

these two variables do not commute, they cannot be known or prepared both
arbitrarily well. This is why squeezing does not help much: If one quadrature
is prepared more precisely, the uncertainty in the other increases.

To overcome this dilemma, a second path between the input amplitude
quadrature £j, and the output phase quadrature poy: is introduced. It couples
these two system variables to each other in exactly the same way as the opto-
mechanical oscillator couples them — only with a negative sign acquired on
the way. This coupling is done with a second system with quadratures £,
and p, as in Fig. 2.2b. Formally, it is equivalent to a negative-mass oscillator
with the same characteristics as the positive-mass oscillator, which can be seen
when looking at the transfer functions of both paths.®”

This point of view stresses that not only the characteristics of the two
oscillators have to be the same, but also that the couplings of the two systems
to the light field need to be matched. It is especially useful when thinking in
the wave picture instead of the particle picture. As the flowchart in Fig. 2.2b
depicts the quadratures of both oscillators coupled to the same set of light

87Cf. Tsang and Caves (2010) and the following Sec. 2.3.2, especially Eq. 2.39.
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FIGURE 2.3: Ponderomotive squeezing. Quadrature uncertainties and probability
density are calculated from Eq. 2.46 for different measurement frequencies for
vacuum input interacting with an opto-mechanical oscillator and drawn in phase
space. They show a frequency-dependent transformation of the input quadrat-
ure noises. Ellipses bound one-sigma uncertainty regions. Plot parameters as
in Tab. 2.1. See also Fig. 2.12 for ponderomotive squeezing by a negative-mass
oscillator.

quadratures £. and p, it is more useful for picturing the integrated set-up.

2.1.3 CQNC AS UNDOING PONDEROMOTIVE SQUEEZING

Opto-mechanical interactions are the cause of frequency-dependent transform-
ation of the light quadrature uncertainties. The uncertainty ellipse in phase
space is stretched, squeezed, and rotated, see Fig. 2.3. Correlations between
amplitude and phase of a light field are introduced, their cause can be un-
derstood as follows: A larger field amplitude causes a larger displacement of
the opto-mechanical oscillator, which leads to a bigger phase acquired by the
light field reflected off that oscillator. These frequency-dependent correlations
are calculated in Sec. 2.3.3, Eq. 2.46, and are called ponderomotive squeezing.

Ponderomotive squeezing is problematic when uncertainties of quadratures
which also contain the signal to be measured are increased. CQNC can be
seen as back-stretching, -squeezing and -rotating the quadrature uncertainties,
as ‘undoing’ ponderomotive squeezing.

This picture emphasises the transformation of the light field by interacting
with a mechanical oscillator instead of stressing the introduction of noise.

2.1.4 CQNC AS A FEED-FORWARD COHERENT CONTROL SCHEME

Measurement-based control of noise in the light field is not possible when
dealing with quantum noise. Not all involved observables, here the two
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disturbances

controller

input output
——>{ system

FIGURE 2.4: Block diagram of CQNC as a coherent feed-forward scheme. Input is the
signal, i.e. the force on the mechanical oscillator. System imprints the signal on
the light field. Disturbances are fluctuations in the incoming light field. Output
is light field now containing signal and disturbances. Controller is the effective
negative-mass oscillator. Flow from input to output corresponds to the green
arrow in the flowchart diagram, Fig. 2.2, from disturbances to output through
system to the red arrows, from disturbances to output through controller to blue
arrow.

quadratures of the incoming light field, can be known to the needed arbitrary
precision at the same time. Or, similarly, a measurement disturbs the quantum
state, introducing additional uncertainties, up to the point where the state
is destroyed by a projective measurement. With quantum radiation-pressure
noise, one has to make do without measurement. Still, a control loop can be
designed that does not disturb the quantum system. In control terminology®®
and in Fig. 2.4, a system translates inputs into outputs. External disturbances
act on the system and cause noise in the system’s output. A controller is
introduced, which acts onto the system’s output or input according to some
external input to the controller. In feed-forward or open-loop control, the external
input to the controller is the disturbances or some unrelated signal, e.g. a
timer. In feed-back control, the input to the controller is the output of the
system, compared to a desired reference state.

With CQNC, the input of the system is the signal to be measured. The
system is the mechanical oscillator. Its output is the output phase quadrature
of light, pout, containing the signal. The disturbances acting on the system
are fluctuations in the input quadratures, specifically in the input amplitude
quadrature £i,. The controller is the negative-mass oscillator, also experiencing
the disturbances. Taking the fluctuations £;, as input, it acts on the output of

88CE. K. Ogata, Modern Control Engineering, s5th ed., Upper Saddle River, NJ: Pearson, 2010,
Sec. 1-1.
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the system, the phase quadrature poyt, to control it.89

In this picture, CQNC is a feed-forward control scheme.?° As usual for
feed-forward control, the system has to be known/modelled very well in
order to counteract the disturbances.?* The action of the controller needs to
have exactly the opposite effect as the disturbances acting on the system. This
corresponds to tailoring the negative-mass oscillator such that it matches the
positive-mass oscillator.

Picturing CQONC as a feed-forward control scheme unifies the three ap-
proaches presented before and again stresses the importance of matching the
two oscillators.

2.2 ALL-OPTICAL SCHEME AND OTHER REALISATIONS

The previous section aimed at helping to develop an understanding of how
CQONC can work. A major question arises: How is a negative-mass oscillator
to be realised when there is no negative mass available in nature? This section
searches to clarify that. Two main concepts, an all-optical realisation, which
this thesis is about, and an atomic realisation are presented in the following.

2.2.1 ALL-OPTICAL SCHEME

Tsang and Caves proposed a detuned cavity as a negative-mass oscillator,
which is not at all intuitive. It can be explained with the following rationale.
Light in a cavity can be described as a harmonic oscillator (cf. Sec. 1.1.3). To
excite a harmonic oscillator means to increase its particle number by one. For
a cavity mode, its photon number has to increase, which can be accomplished
by a photon decaying into the cavity. If the frequency w, of the cavity mode
is smaller than the frequency w,. of the incoming photon, energy is won by
converting the meter photon9* into the cavity photon. The frequency difference
can be realised by a negative detuning A, = wa — w, of the cavity from the

891t could also act on the input. The symmetry of negative- and positive-mass oscillator make
‘system’ and ‘controller” interchangeable if neglecting the signal.

9°Tsang and Caves (2010) call it ‘coherent feedforward quantum control’, ‘coherent” because
coherence is preserved due to the lack of measurements. Yamamoto seems to sort it into the
feed-back category, though (N. Yamamoto, ‘Coherent versus Measurement Feedback: Linear
Systems Theory for Quantum Information’, Phys. Rev. X 4 (2014), 041029).

91See, e.g. Ogata (2010), Sec. 1-1.

92The photon is called meter photon because it is the same photon which also interacts with the
positive-mass oscillator in order to measure its position.
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Aa, Ka

FIGURE 2.5: Schematic set-up of an all-optical CQNC scheme, proposed in M. Tsang
and C. M. Caves, ‘Coherent quantum-noise cancellation for optomechanical
sensors’, Phys. Rev. Lett. 105 (2010), 123601. The two rectangles denote the two
harmonic oscillators, characterised by their resonance frequencies, wm and A,,
and their linewidths, ym and «,, coupled to each other via cavity mode ¢ with
coupling strengths g, gss, and gpc.

incoming light.3 Seen in a frame rotating with the frequency of the incoming
light,94 the cavity has a negative energy.?> The Hamiltonian of that cavity can
be written as

A

A= Aa'a (2.5)

with cavity mode 4 and the detuning A, = w, — w, the difference of the
ancilla cavity frequency w, from the impinging light’s frequency wc. If the
detuning is negative as required, the Hamiltonian, in this rotating frame, is
the one of a negative-energy/negative-mass harmonic oscillator.

One part of the process of realising a negative-mass oscillator is done — with
a detuned cavity, the so-called ancilla cavity, a system behaving like a negative
mass, is found. The next step in order to realise CQNC is to imitate the
coupling of light to a positive-mass oscillator, which is the radiation-pressure
interaction. As seen in Sec. 1.3, Eq. 1.72, the linearised radiation-pressure
Hamiltonian looks like the combination of a two-mode squeezing (TMS)
process and a beam-splitter (BS) process,

Hip o (¢4 %) (b + bY) = b+ Bt + bet + b, 26)
™S BS

93 A requirement detailed in Sec. 2.3.2, see e.g. Eq. 2.39.
94Regarding rotating frames and especially the interaction picture, see Sec. 2.3.1.
95For the equivalence between mass and energy here, see Sec. 2.1.1.
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where ¢ is a photon annihilation operator for a cavity field and b a phonon
annihilation operator for the positive-mass oscillator. In the TMS process, one
particle in each mode is created. It can optically be realised by a pumped
nonlinear crystal, where a pump photon is converted down into two photons
of lower frequency. In the BS process, photons of the two modes are exchanged
by annihilating a photon in one mode and creating one in the other. This is
why Tsang and Caves suggested using a down-conversion crystal and a beam
splitter to couple the meter light to the detuned ancilla cavity. Schematically,
the set-up then looks as in Fig. 2.5.

Hence, the two-mode squeezing or down-conversion process will play one
part in coupling the meter light to the ancilla cavity, the other part being a
beam-splitterlike process. Ideas of concrete realisations will be presented in
Sec. 2.4. The down-conversion and the beam-splitterlike interaction will be
explored in detail in Secs. 4 and 5, respectively.

2.2.2 OTHER REALISATIONS

Apart from the all-optical scheme suggested by Tsang and Caves, other ideas
of realising coherent quantum-noise cancellation have been around. A spe-
cial mention deserves the earlier proposal by Hammerer and co-workers of
realising a negative-mass oscillator with a spin ensemble® because with this
system, back-action evasion has recently been shown experimentally.9”

SPIN ENSEMBLE

In the proposal by Hammerer and co-workers,?® a spin ensemble in a magnetic
field acts as a negative-mass oscillator. The commutation relation of three
orthogonal spin components ]A,-,]-,k is given by [ Ji, f]] = iei]-kfk. If the spins of
the ensemble are mainly aligned along the direction of the magnetic field B
(e.g. along the x-axis), which can be accomplished by optically pumping them
in a corresponding state, then the spin component in the x-direction can be
approximated classically to Jy. The commutation relation for the other two

9%%Hammerer, Aspelmeyer, Polzik and Zoller (2009).

97C. B. Moller et al., “Quantum back-action-evading measurement of motion in a negative mass
reference frame’, Nature 547 (2017), 191-195.

9%Hammerer, Aspelmeyer, Polzik and Zoller (2009).
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FIGURE 2.6: CQNC with a spin ensemble. Left: Scheme of experimental set-up. Fig-
ure from K. Hammerer, M. Aspelmeyer, E. S. Polzik and P. Zoller, ‘Establish-
ing Einstein-Poldosky-Rosen Channels between Nanomechanics and Atomic
Ensembles’, Phys. Rev. Lett. 102 (2009), 020501. Light passes through an opto-
mechanical membrane-in-the-middle cavity acquiring back-action noise on the
way. The filtered light is fed into a spin ensemble in a magnetic field and then
detected. Right: Scheme of oscillators. Figure from C. B. Meller et al., ‘Quantum
back-action-evading measurement of motion in a negative mass reference frame’,
Nature 547 (2017), 191-195. The membrane constitutes the positive-mass oscillator.
The spin ensemble, polarised along its [,-component, consists of caesium atoms
in a magnetic field. Its level scheme depending on (the direction of) the magnetic
field can be inverted, thus rendering it an effective negative-mass oscillator.

spin operators (now normalised) becomes

- Iy J- | _.
XSrPS = | =1 .
. L/J: \/Tx] | @7

with quadrature operators X5 and Ps and the Hamiltonian
~ 1 5 -
A, = s (Xg + pg) (2.8)

that of a harmonic oscillator. This is the so-called Holstein-Primakoff trans-
formation.?? In a magnetic field B = Bé,, the spin vector J precesses around
the direction of the magnetic field with the Larmor frequency ws,

ws x B, (2.9)

which is proportional to the magnetic field strength B. As the magnetic field
can be made negative by reversing its direction, a harmonic oscillator with a

99K. Hammerer, A. S. Serensen and E. S. Polzik, ‘Quantum interface between light and atomic
ensembles’, Rev. Mod. Phys. 82 (2010), 1041-1093, Sec. I.A.3.
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2 COHERENT QUANTUM-NOISE CANCELLATION

negative resonance frequency equivalent to a negative-mass oscillator can be
realised.

In Polzik’s group in Copenhagen, such a system has been shown to be able
to reduce back-action noise.'® Light was coupled via the Faraday effect’** to
a spin ensemble consisting of room-temperature caesium atoms. Due to its
polarisation opposite to the direction of the applied magnetic field, the spin
ensemble has an effective negative mass (see Fig. 2.6).

By using the spin ensemble as a negative mass, the frequency of light used
to mediate the interactions is restricted to certain frequencies suitable for the
interaction with the atoms. Alternatively, different frequencies could be used
for interaction with atoms and with opto-mechanics as has been suggested
for gravitational-wave detection:'°> A nonlinear dielectric material entangles
two electromagnetic modes of different frequencies, one suited for interaction
with atoms, the other at the frequency required for the (opto-mechanical)
gravitational-wave detection, which then interact with their respective system.
After the interactions, they are detected separately, where a suitable combina-
tion of the detections can show noise reductions below the Standard Quantum
Limit.

The main benefit of using a spin system for coherent quantum-noise can-
cellation lies in the very small linewidth, which can be realised by the spin
oscillator and which makes it easier to match the mechanical resonator in
its linewidth."®3 Another advantage is the (polarisation-based) interaction
between the spin ensemble and the light field, which inherently matches the
opto-mechanical interaction. Only one coupling process is required as op-
posed to two in case of the all-optical scheme. This comes at the cost of leaving
the all-optical domain and the need of handling atoms. Overcoming their
frequency restrictions introduces more complexity as it adds an additional
system, a nonlinear optical device similar to the one needed for all-optical
CQONC.

1°Mpller et al. (2017).

191See also Hammerer, Serensen and Polzik (2010), Sec. II.C.3.

102F. Y. Khalili and E. S. Polzik, ‘Overcoming the Standard Quantum Limit in Gravitational Wave
Detectors Using Spin Systems with a Negative Effective Mass’, Phys. Rev. Lett. 121 (2018),
031101.

193In Moller et al. (2017), the linewidth is s =~ 271 x 2kHz, whereas in Khalili and Polzik (2018), a
linewidth as small as s = 3 Hz is assumed. For matching requirements, see next Sec. 2.3.2,
particularly Eq. 2.40.
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OTHER REALISATIONS

There are other ways to realise an effective negative mass. Similar to above,
atomic gas consisting of trapped ultra-cold rubidium atoms realises a positive-
mass and a negative-mass oscillator at the same time, the positive-mass
mode being the atoms’ centre-of-mass motion in the trapping potential, the
negative-mass mode being, again, the Larmor precession of polarised spins in
a magnetic field."** A Bose-Einstein condensate in a moving optical lattice can
also be interpreted as having a negative mass and used to cancel back-action
noise.'

A more general formalism incorporating all this was introduced by Woolley
and Clerk'®® and suggests the use of a two-tone driving field to measure
the combined quadrature of two harmonic oscillators. With suitable driving
frequencies at + the frequency of the harmonic oscillators, one of the harmonic
oscillators becomes, in the rotating frame, a negative-mass oscillator. This has
been experimentally demonstrated in the microwave regime.'7

2.3 THEORETICAL STUDIES

The previous sections clarified intuitions and ideas behind coherent quantum-
noise cancellation. In this section, the theoretical foundation will be laid for
an experimental realisation of all-optical CQNC. First, the general theoretical
framework is laid out and it is shown how noise spectral densities can be
derived from a Hamiltonian description. This is applied in the following two
sections, first to an integrated and then to a cascaded set-up of all-optical
CQNC. Parameters and requirements for both set-ups will be derived'*® and
deviations from ideal matching of the required parameters will be studied
with respect to their influence on the sensitivity. As in the corresponding

104]. Kohler, J. A. Gerber, E. Dowd and D. M. Stamper-Kurn, ‘Negative-Mass Instability of the
Spin and Motion of an Atomic Gas Driven by Optical Cavity Backaction’, Phys. Rev. Lett. 120
(2018), 013601.

195B. Eiermann et al., ‘Dispersion Management for Atomic Matter Waves’, Phys. Rev. Lett. 91
(2003), 060402; K. Zhang, P. Meystre and W. Zhang, ‘Back-action-free quantum optomechanics
with negative-mass Bose-Einstein condensates’, Phys. Rev. A 88 (2013), 043632.

196M. J. Woolley and A. A. Clerk, “Two-mode back-action-evading measurements in cavity op-
tomechanics’, Phys. Rev. A 87 (2013), 063846.

197C. F. Ockeloen-Korppi et al., ‘Quantum Backaction Evading Measurement of Collective Mech-
anical Modes’, Phys. Rev. Lett. 117 (2016), 140401.

108Eor the integrated set-up, this has been published, cf. Steinmeyer, Master thesis (2014); Wimmer,
Steinmeyer, Hammerer and Heurs (2014).
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theoretical publication, the sensitivity is that of a force measurement,’* but
transferring the results to potentially more familiar position measurements is
straightforward, see Sec. 1.3.

2.3.1 SOME REMARKS ON THE METHODS

Most of the systems described in this thesis are calculated from a Hamiltonian
describing their evolution. This is true for the calculations of CQNC later
in this section as well as the detailed calculation of the down-conversion
interaction and the beam-splitterlike interaction in Sec. 4.2 and Sec. 5.1.2. The
approach was also used in Sec. 1.3. Using the Heisenberg equation, together
with the coupling to the environment given by Langevin equations and the
input-output formalism, equations of motion can be derived from the system’s
Hamiltonian. These equations describe the time evolution of observables — the
interaction picture is used which means the uninteresting time dynamics are
transferred to the wave functions, whereas the observables follow the inter-
esting dynamics. These often will be linearised and approximated, meaning
higher-order terms will be neglected as was already done in Sec. 1.3, and can
be solved in frequency space as steady-state solutions suffice. From this, noise
spectral densities can be derived and a signal-to-noise ratio can be calculated.

Inherent to the Hamiltonian formulation is the single-mode approximation,
its validity for the systems under study needs to be ensured. In this thesis,
it is usually assumed that only one mode of each system takes part in the
interaction, which is, of course, generally not true. Close to the resonances of
each system, the approximations are valid.

Because most of the equations of motion are coupled differential equations,
they are usually conveniently described using matrices.

THE INTERACTION PICTURE

In quantum physics as well as in classical physics, a Hamiltonian determines
the time evolution of the system. In quantum physics, this happens via the

99Wimmer, Steinmeyer, Hammerer and Heurs (2014), note that the force is dimensionless.
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Schrodinger equation,™*©

. d -
il [s(£)) = Hlgs(8)). (2.10)
For a time-independent Hamiltonian H, it can easily be solved:

[95(6)) = /M ys(0)). (2.11)
The time evolution operator U(t) transports the state |ips(t)) from 0 to t,
Ut) = e~ iH/M, (2.12)
Expectation values of measurements are found from Born’s rule,'**

(A) = (ps(D)]Aslys (1)), (2.13)

where A is an operator required to be Hermitian and represents the quantity
to be measured. Up to now, the equations were written in the Schrédinger
picture. Now choose A instead of |¢) to evolve in time,

A(t) = (TN (AU [gn) = (Yul Au(t) ) (2.14)

with [y) = [s(0)). This is called Heisenberg picture. The time evolution of
the operators can be written as
d

EAH = —ih[H, Ay, (2.15)

A(t)

which can be easily verified by taking the derivative of Ay = Ut AsU.
Predominantly used in this thesis is the interaction picture: Trivial time
evolutions, in this thesis mainly the oscillation of a light field with a certain
frequency, are imposed onto the states |i(t)), whereas the interesting time
evolutions, such as changes of the state due to interactions, are imposed
onto the operators A,(t). This is equivalent to moving into a frame rotating

'°The indices S, H, and I clarify whether the Schrodinger, the Heisenberg, or the Interaction
picture is used. For the treatment in this subsection, see, e.g., the brief overviews in C. C. Gerry
and P. L. Knight, Introductory Quantum Optics, Cambridge et al.: Cambridge University Press,
2005, Appendix C, and C. W. Gardiner and P. Zoller, Quantum noise : a handbook of Markovian
and non-Markovian quantum stochastic methods with applications to quantum optics, Berlin et al.:
Springer, 2000, Secs. 4.1.2-4.1.4, or any other textbook on quantum physics.

The expectation value here is time-dependent, requiring it be taken on timescales much shorter
than the evolution of the system.
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with the oscillation frequency. The Hamiltonian is split into two parts, H =
Hy + H’, where Hj contains the trivial evolution and H’ the interesting part
(the perturbation). The trivial evolution can be written with Uy = exp iHyt/h.
Then,

AI = (.;Asao, (2.16)

i (1)) = Bolyi(1). (217)

This gives rise to the equations of motion for an operator in the interaction
picture:

A

B =i S0y 4 0,A0; = A, (2.18)
such that, again,
L. d . N N
lhaAI(t) = [AI<t)rHI]- (2.19)

The new Hamiltonian H, contains F’ but might not be time-independent any
more. Often, the rotating wave approximation is used and all terms rotating
fast are averaged to zero, thus getting rid of the time dependence.

Note two things: First, only pure states are handled in this formalism. For
mixed states, described with a density matrix, the equations are similar, but
not needed in the context of this thesis. Second, only closed systems are subject
to the above treatment. In reality, the systems dealt with in this thesis are open,
that means they are coupled to some bath in the course of which information
is lost. This coupling can be modelled with Lindblad operators."*? For the
purpose of this thesis it is enough to obtain the equations of motion with
added damping and driving terms as in Eq. 2.20. The emerging equations are
called Langevin equations.'3

The interesting part is to actually find a Hamiltonian which describes the
system to then derive equations of motion. Often, this is done the other
way round — a Hamiltonian is constructed such that the wanted equations
of motion can be derived. This has been done for a variety of systems.
In this thesis, the important ones are the Hamiltonian of an optical cavity,
which is the one of a harmonic oscillator, the opto-mechanical Hamiltonian,"*

112 As long as Markov approximation is valid, cf. Gardiner and Zoller (2000), Sec. 5.2.2.

3Gardiner and Zoller (2000), Sec. 5.3.2.

14C. K. Law, ‘Interaction between a moving mirror and radiation pressure: A Hamiltonian
formulation’, Phys. Rev. A 51 (1995), 2537-2541.
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the squeezing Hamiltonian''> and the beam-splitter Hamiltonian.'’® An
effective Hamiltonian for a wave plate is constructed in Sec. 5.2.1. As common
for Hamiltonians, all these cases require the single-mode approximation to be
valid."7 Only one of the resonant frequencies the systems exhibit is of interest.
It is usually justified, at least for the use cases opto-mechanics and squeezing.
Care has to be taken with coupled cavities as the coupling becomes easily
strong enough to reach towards higher-order modes, cf. Sec. 5.

FroM A HAMILTONIAN TO A NOISE SPECTRAL DENSITY

118

A Hamiltonian Hgys together with the quantum Langevin equations'*® gives
rise to the equation of motion for an operator 4 via

s L o Ko .

i= ﬁ[H’ al — 50 + VK. (2.20)

The damping term x4 and the driving term +/kdj, with linewidth x stem
from using the Lindblad equation to couple the system to a bath via a jump
operator. Alternatively, one can write above equation as'*?

i

a:h

AA K, R
[H,a] + 54 = ViKlout, (2.21)
which is the time reversal of the previous equation. Both together give rise to
the boundary conditions
fin + Aout = VKA. (2.22)

This so-called input-output formalism uses the Markov approximation. The
system’s time evolution only depends on the actual state — the system and its
bath have no memory of past interactions.

A vector X contains all n system variables (quadratures). Damping and
system evolution are included into Msys. The input-output relations can be

5W. H. Louisell, A. Yariv and A. E. Siegman, ‘Quantum fluctuations and noise in parametric
processes. 1./, Phys. Rev. 124 (1961), 1646-1654.

116Gerry and Knight (2005), Sec. 6.2, Eq. 6.12.

17Especially the interaction Hamiltonians. Hamiltonians for independent modes can easily be
written as sums of the single-mode Hamiltonian.

18Gardiner and Zoller (2000), Eq. 5.3.15, D. F. Walls and G. J. Milburn, Quantum Optics, Berlin,
Heidelberg: Springer, 2008, Eq. 7.16.

9Walls and Milburn (2008), Eq. 7.17. See also A. A. Clerk et al., ‘Introduction to quantum noise,
measurement, and amplification’, Rev. Mod. Phys. 82 (2010), 1155-1208, Sec. E.2, particularly
Egs. E32 and E36.
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written as
o T o
Xout = KinX — Xin (2.23)

with Xi, and Xout each containing k input and output quadratures, respectively,
making Kj,, a diagonal matrix describing the driving, n x k-dimensional. The
whole system description then reads

X = ]\/Isys)’z + KinXin + KpathXpath. (2‘24)

Xpath has m entries, Ky, is 7 X m-dimensional. The equations of motion can
be solved in the Fourier domain, where x(t) = iwx|w]:
% = (i = Msys) ™" (Kinfin + Koot Soatn) (2.25)
X Iw sys inXin bathXbath ) / 2.25
IS T & IS
Xout = KipX — Xin

= (K;(iw - MsyS)_lKin - 1) Xin + KiTn(iw - Msys)_leath)A(bath

= PX;n, (2.26)
where
< *in
Xin = | . , 2.2
. (Xbath) (2.27)
P = (K (iw = Myys) " Kin = 1K} (10 = Moys) "Koawn ), (2:28)

and thus Xi, is k + m x 1-dimensional and P is k x (k + m)-dimensional.

The (symmetrised) covariance matrix of the output quadratures follows to
be

S(w — w")Sout(w) =

—
>

out w),ﬁout(w’)) + c.c.

(
out(W)XE (@) + cc.
w)xinXh PT (=) + c.c.

(w)SinPT (=) + c.c. (2.29)

—
>

—
i)
1

Nl—= NI= N= =

g

where S, is a (k+ m) x (k4 m)-matrix and Seyt is k X k-dimensional.

2.3.2 IDEAL AND NON-IDEAL CQNC IN AN INTEGRATED SET-UP

In this section, the method presented above is used for calculations of an
integrated all-optical set-up, mostly as they were also published by Wimmer
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Xpath

-
Xvac

FIGURE 2.7: Block diagram of CQNC in an integrated set-up. The matrix Mconc de-
scribes the system evolution, matrices K; the coupling to and from the system, y
denotes losses on the way to detection. Transport from Xj, to Xout can be described
with P.

and co-workers®2°

and can be found elsewhere."**

CONC in an integrated set-up consists of n = 6 system variables, k = 2
input- and output quadratures and m = 6 bath quadratures coupling to the
system (cf. flowchart representation, Fig. 2.2b, and block diagram, Fig. 2.7).
Its Hamiltonian can be written as the sum of three Hamiltonians, the system
Hamiltonian Hsys, the radiation-pressure Hamiltonian I:Irp and the ancilla
cavity Hamiltonian Hane (omitting the harmonic oscillators” zero point energies

and, for the moment, coupling to a bath):

H= Hsys + Hrp + Hane, (2.30a)
Hsys = hwee ¢ + hwadta + hwmb'd, (2.30b)
Aep = h§(6+6*)(13+13*), (2.300)
Hane = hgpe(aé + a'eh) + hgws(act + a'e), (2.30d)

where the linearised opto-mechanical Hamiltonian Hrp with dimensionless
phonon number operators is known from Sec. 1.3. The meter cavity mode ¢
has frequency w, the ancilla cavity mode 4, coupled to mode ¢ via a beam-
splitter interaction with strength gzs and a down-conversion interaction with
strength gpc, has frequency w,, the phononic mode b coupled to mode ¢ via g
has frequency wn, as in Fig. 2.5. In the following, # = 1 and a frame rotating

2°Wimmer, Steinmeyer, Hammerer and Heurs (2014).
21Steinmeyer, Master thesis (2014); M. H. Wimmer, ‘Coupled nonclassical systems for coherent
backaction noise cancellation’, PhD thesis, Leibniz Universitit Hannover, 2016.
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with the frequency wy, of the driving field is used. This leads, together with
damping and driving terms to an equation of motion

5.\( = MCQNCf( + Kini(in + Kbathf(bath (2-31)
with
—Kc/2 Ac 0 8Bs — §bc 0 0
,,,,,,,,, A K/2 i —(gestgoc) 0 i -g 0
M _ 0 &8ss — &pc —Ka/2 JAW : 0 0
T (gmstsne) 0 i A /2 0 0 0
0 0 0 0 0 Wm
vee 0 Kpath = diag (\/ rbath,  [xbath, /iy, \/Ka, 0, / ’Ym) ,
0 Kin
Ko — 0 0 X= (fc/ ﬁc/ fa/ ﬁa/ -'fm/ ﬁm)T ’
in 0 0 ’ o o AT
0 0 Xin = (xm/ pm) ’
T
0 0 Roath = ( f‘?ath, Ialcjath, Jel;ath/ ﬁl;ath, )?‘trﬁlth, ﬁﬁh) )
(232)
bath

ke = k" + k23 js the linewidth of the meter cavity, with " describing the
coupling to the driving field and x22™ the losses caused by coupling to the
bath. «, is the linewidth of the ancilla cavity and describes losses caused
by coupling to the bath. 7, is the damping of the mechanical oscillator.
Ay = wy — wy is the detuning of the ancilla cavity and A, = w. — w; the
detuning of the meter cavity to the incoming laser light. After solving the
equations of motion in Fourier domain and using input-output relations,

Xout + Xin = K;gf(, (2.33)
the resulting spectral density is
20(w — w")Sout = P(w)Sin P (—w') + c.c. (2.34)
with
P(w) = (K (i = Mcoxe) 'Kin — 1

K};l(iw - MCQNC>71Kbath) . (235)

Sin contains the input noise which is assumed to be uncorrelated and at
vacuum level for the light fields:

1.,
Sin = 5 diag (1,1,1,1,1, 1,0, zsfjf) (2.36)
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with SEF being the spectral density of the force applied to the mechanical
oscillator, which is the sum of thermal noise and other forces.*2?

Using the ideas from Sec. 2.1, the coupling of light to negative-mass oscil-
lator needs mimic the coupling of light to positive-mass oscillator. This means
g = Sss + goc, $8s = Spc. Additionally, the meter cavity is assumed to be
resonant with the incoming light field, A. = 0, which results in A, = wa — w,
and to be one-sided, x22 = 0. These assumptions simplify the expressions to
the point where they can be easily written down. The phase quadrature’s noise
spectral density, where the measurement information is encoded, becomes (if

all input quadratures are uncorrelated)

Shofe (w) = SEPe + G| xm + xal*Sic™ (2.372)
+ GYm|xm[*S (2.37b)
w? +x2/4 Pa
+ GKa|Xa|2 (Azasix;xa + Si};p ) ’ (2.37¢)
a

with a mechanical susceptibility xm, an ancilla cavity susceptibility x,, a
measurement strength G and a meter cavity susceptibility x.,

- Wm o Ay
i w? — Wi —iymw’ Aa = w? — A2 —x2/4 — ik’
1 (2.38)
_ 2,2 _
G = Ke|xcl8"  Xe /2 1 i’

Equation 2.37a contains the noise of the incoming light field, coupled through
the cavity. The first term contains shot noise, the second term, proportional
to the squared measurement strength G2, radiation-pressure noise. Equa-
tion 2.37b contains incoming force noise, most importantly thermal noise and
the signal. Equation 2.37¢ contains noise coupled into the detuned ancilla
cavity, which is ultimately the limit for CONC under ideal assumptions. As
the radiation-pressure term is proportional to the sum of two susceptibilities,
the mechanical susceptibility xm and the ancilla cavity susceptibility xa,

+xa = Um + Aa (2:39)
Am T Xa = 2 Wi —iymw W — A2 —x2/4 —iKkaw’ 39
it can be made to vanish: If y; = —Xa, the back-action term cancels to zero.

This implies what was already suggested in Sec. 2.1. For perfect back-action

22Here, the convention that [£, p] = i is employed, resulting in var £ = 1/2. There is no noise
coupling to the mechanical position quadrature, leading to an asymmetry in the description
of negative- and positive-mass oscillator.
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cancellation, the two oscillators need to have equal characteristics, but a
negative sign. The complete list of requirements for ideal CQNC is

8 = &rs + 8bc, (2.40a)
8Bs = §bc/ (2.40b)
Ny = —Wn, (2.400)
Ka = Ym, (2.40d)

[Aal > Ka, = Q= Ym o5, (2.40€)
m

With this, the radiation-pressure term cancels and the signal can be made
arbitrarily large compared to the shot-noise term either with increasing meas-
urement strength G or with decreasing input phase noise due to squeezing.
Both are not detrimental any more due to back-action cancellation.

The noise-to-signal ratio can be obtained from Eq. 2.37 via dividing S/</° by
the prefactors of SIF for the force sensitivity and an additional multiplication
of ym|xm|? for the position sensitivity. This leads, if all requirements are
fulfilled and thermal noise is neglected, to a limit to the (force) noise density
of
W? + Wi + 72 /4 wtom 1

Wk 2
away from the mechanical resonance. The limit on sensitivity is now caused
by noise coupling in from the ancilla cavity bath. It leads to decoherence and,
due to matching positive- and negative-mass oscillators, limits the noise sup-
pression to 1/2Q. The effect of ideal CQNC on force sensitivity in frequency
space is shown in Fig. 2.8.

The assumptions made above are in practice not met perfectly. Especially
assuming an ancilla cavity linewidth of the size of the mechanical oscillator’s
linewidth is often not reasonable. Relaxing this assumption and instead re-
quiring only that x; < wm (which follows from having a mechanical oscillator
with Q > 1 and still requiring A; = —wn,) results in a noise spectral density

Scone = X Ssar (2.41)

Ka
S =
2wm

X Ssqr. (2.42)

Even without perfect linewidth matching, an improvement of x, /2wn, is pos-
sible, see Fig. 2.8. In this case, the back-action noise is not cancelled completely.
If the measurement strength becomes too high, the sensitivity decreases again,
see Fig. 2.10. For each frequency, there is an optimal measurement strength as
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K.
Ideal case 2 7 Tm
Ka = 1000’)/1’1'1 Ty T T 1T
10—  soL . ——Ka = 100y +10°
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FIGURE 2.8: Back-action evasion in an integrated set-up. Left: Perfect back-action
evasion and SQL. Away from the mechanical resonance frequency, the SQL can
be surpassed by 1/2Q. Right: Possible improvement if linewidths of positive-
and negative-mass oscillator are not perfectly matched, for different degrees of
mismatch. The dashed line shows the sensitivity with x; = 10y, at a fixed meas-
urement strength (solid lines have their measurement strength optimised at each
frequency). Grey lines show SQL and ideal CQNC for orientation. Plot paramet-
ers as in Tab. 2.1.
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8 #gBS'i'gDC IBs #gDC
1 1 11 e
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FIGURE 2.9: Imperfect matching of coupling strengths in an integrated set-up. Left:
Imperfect matching g # %(gss + goc)- Right: Imperfect matching gss 7# goc. Grey
lines show SQL and ideal CQNC for orientation. Plot parameters as in Tab. 2.1.

for the classical case without CQNC, which also be seen from the dashed line
in Fig. 2.8.

Other imperfections regard the coupling strengths. They are twofold: A
difference in ggs and gpc makes the interaction with the ancilla system deviate
from a radiation-pressurelike interaction. A difference in g and %( SBs + gpc)
causes different interaction strengths between the light and the respective
harmonic oscillator. These effects are shown in Fig. 2.9.

It has not been checked whether the system is stable at all. This is the case
if all coefficients of its characteristic equation are positive (the Routh-Hurwitz
criterion). The characteristic equation is det(Mcgne — A1) = 0. The coefficients
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FIGURE 2.10: Noise at fixed measurement frequency w = 10wm over measurement
strength. Red trace is without CQNC, blue shows ideal CQNC. Other colours in-
dicate the type of mismatch as in Figs. 2.8 and 2.9. Plot parameters as in Tab. 2.1.

for the system are listed below.

1
Co = w3 (ng g%c)z + EwranaKC(ggs - 82DC) - ZAaAC(g]%S + g%c)w

2 2
K

Jrngan(ggs - gZDC) - g2wmAC(A§ + 4a) (A2 )(A2 ZC)

= ’Ym(ggs - gZDC)Z - 2'YmAaAC(81%s + g%c) + c‘Jrzn(Kc + Ka)(gss - gDC)
1 2 2
+ E')’mKaKC(ggs - gch) =+ 'Ym( )(Az 4 —) - ngCKawm
KZ 2
+ (a(AZ + ) +ree(A5 + f))wfn
(2 2 V24 0(2 Ka + Kc 2V oA AL (o2 2
2 = (s — Sbe)” +2(8hs gDC)( + Tm 5 + W) aBc(8hs + 8bc)
2
— 8 Aewm + why (A2+—+A2 4+ Kake)
2, Ke 2, Ka 2 2 2 K2
K K, %2 %2
c3 = 2(83s — goc) (Ym + 5+ o)+ Am (AT + AT+ T+ Karce)
2 K3 2 K2 2
+ (A3 + Za)Kc + (AS + Zc)Ka + win(Ka + %)
2 2 2 Kg 2 K% 2

¢4 = 2(8ps — 8bc) + A5 + 1 +AC+ y + KaKe + Wiy + Ym(Ka + Kc)
€5 = Ym + Ka + Kc (243)
Ce = 1
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Xpath,1

)A(bath,Z ﬁvac,2

FIGURE 2.11: Block diagram of CONC in a cascaded set-up. Note the similarity to the
conceptual scheme in Fig. 2.1. The matrices M; describe the system evolution, K;
the coupling to and from the system, #; losses on the way. Transport from X, to
f(}mt’l can be described with Py, from ﬁgut’l to X}, o with P, from %i, to X, , with
P as in Egs. 2.53 and 2.54.

Most of the terms are quadratic or inherently positive. Under ideal conditions
with all requirements from Eq. 2.40 fulfilled, the system is stable. The main
sources for instability are a mismatch in coupling strengths, gpc > ggs (in
coefficients cg to c4 with red underline), gss > gnc (in coefficient ¢y with yellow
underline), and a high coupling strength ¢ if the detuning A, becomes positive
(in coefficients ¢y to c3 with green underline) or negative (in coefficients
co to cp with blue underline).”3 The system is actively pumped with gpc,
which gives an intuitive reason why it can become unstable with high down-
conversion coupling. The same phenomenon is the cause of opto-mechanical
instability: With a positive detuning A., the two-mode squeezing term in
the radiation-pressure Hamiltonian becomes dominant, the opto-mechanical
system resembles a pumped squeezing cavity.
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TABLE 2.1: Plot parameters integrated set-up used in Figs. 2.8 to 2.10 if not specified
otherwise. In the third column, all parameters are normalised to the mechanical
resonance frequency wm. Parameters are the same as used for the theoretical
plots in M. H. Wimmer, D. Steinmeyer, K. Hammerer and M. Heurs, ‘Coherent
cancellation of backaction noise in optomechanical force measurements’, Phys. Rev.
A 89 (2014), 053836. Parameters in the fourth column are obtained from the third

column via setting wm = 271 x 500 kHz.

Parameter Norm. value Value
wm mechanical resonance frequency 1 500 kHz
Ym mechanical linewidth 103w 5kHz
Q  mechanical quality factor % 103

Ay detuning ancilla cavity —Wm —500kHz
Ka linewidth ancilla cavity Ym 5kHz
A.  detuning meter cavity 0

k.  linewidth meter cavity 10wm 5MHz
g opto-mechanical coupling strength Wm 500 kHz
gss  beam-splitter coupling strength % g 250 kHz
goc  down-conversion coupling strength % g 250 kHz
n propagation efficiency 1

w  measurement (Fourier) frequency 10wm 5MHz
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2.3.3 IDEAL AND NON-IDEAL CQNC IN A CASCADED SET-UP

A cascaded set-up has been used with a spin ensemble as negative-mass
oscillator and a membrane as the positive-mass oscillator."> Here, the two
harmonic oscillators are not part of the same cavity. Instead, light leaving one
cavity after interaction with the first harmonic oscillator interacts with the
second harmonic oscillator in a different cavity (see Fig. 2.11 and also Fig. 2.6).
In the all-optical case, this gives more freedom in designing the experiment, as
further explicated in Sec. 2.4, and also leads to results similar to the integrated
set-up, as will be seen below. The main differences to the integrated set-up
are that, instead of coupling strengths, measurement strengths have to be
matched, which include the systems’ linewidths, and that losses occurring
between the two systems become important.

First, the positive-mass and the negative-mass oscillator will be studied on
their own. For the opto-mechanical system, this has already been done in
Sec. 1.3. The system’s matrix is

—Kom /2 Aom 0 0
- —Aom —Kom /2 —g 0
Mon = 0 0 0 Wm 7 (2-44)
-8 0 —Wm  —Tm

again with detuning Aon, of the cavity mode with linewidth xom, coupled to
the mechanical oscillator, characterised by its resonance frequency wp, and
linewidth vy, with coupling strength g. For simplification and illustration, the
cavity is assumed to to be on resonance (Aom = 0), and lossless (kom = Kg;n .
The output quadratures are then

om = e %in, (2.45a)
pg&t = eiq)ﬁin - Kom?(mgz)(gmfin
+ Xm+vKom&Xom+/ ')’mﬁ (2.45b)
with expi¢p = %, Xom = 1/(kom/2 + iw) and the known mechanical

susceptibility xm from Eq. 2.38. A frequency-dependent rotation of the input
quadratures can be seen as already shown in Sec. 2.1 and Fig. 2.3. The output

23Numerical calculations for stability are done in Steinmeyer, Master thesis (2014), Fig. 6.4.
24Moller et al. (2017).
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spectral density matrix for uncorrelated inputs ((£in, pin) = 0) is

1 1 Glxm]| )
SM = ~ < m 2.46
o 2 \Glxm| 14 G?*|xml*+2G|xm[*YmSF (2.46)

with measurement strength G = xom | Xom|?$? as before. In the output spec-
trum, there are now correlations between amplitude quadratures £,,: and
Pout, Which correspond to (ponderomotive) squeezing of the output field.

For the negative-mass oscillator realised by a detuned cavity, the system
matrix is

—%c/2 Ac 0 88s — &pc
_ —Ac¢ —c/2  —(gss + &oc) 0
Mhnegmass = 0 Qs — Soc /2 A, , (2.47)
—(8ss + goc) 0 AT —Ka/2

as before with the detuning A. of the meter cavity with linewidth ., coupled
to the ancilla cavity, characterised by its detuning A, and linewidth x,, with a
down-conversion interaction of strength gpc and a beam-splitter interaction of
strength gps. Again, a lossless meter cavity (k. = Ké“) on resonance (A, = 0) is
assumed. Furthermore, equal coupling strengths of beam-splitter coupling
and down-conversion coupling are assumed (gss = gpc = % Zanc)- The output
quadratures are then

fggftgmass = Rin, (2.48a)
ﬁ?ulelémass = e Pin — KchggncX%J?in
Ka/2+iw R
+ Xav/Kc8ancXcV/Ka <an§ath + p];ath> (2.48b)
a

with expi¢’ = (kc/2 —iw)/ (ko /2 + iw).
The spectral density matrix for uncorrelated inputs, (fin, Pin) = (
= 0, can be written as

Snegmass _1 1 Ganc|Xa| , - (2 9)
o 2 Ganc‘)(a‘ 1+ G§HC|Xa|2 + 2Ganc|Xa|2KaKa/4+% 4

sbath sbath
22 pat)

with a measurement strength Gane = &c|Xc|?¢2ne and the known ancilla cavity
susceptibility x, from Eq. 2.38

The system matrices, Egs. 2.44 and 2.47, as well as the solutions for the
output quadratures, Eqs. 2.45 and 2.48, and the output spectra, Eqs. 2.46
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Positive-mass oscillator
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Negative-mass oscillator
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X —A,

Output of first fed into matched second oscillator

FIGURE 2.12: Squeezing spectra of positive- and negative-mass oscillators at differ-
ent frequencies. First row, the squeezing over frequency caused by a positive-
mass oscillator, here the mechanical oscillator in an optical cavity (spectrum from
Eq. 2.46), second row, the squeezing over frequency caused by a negative-mass
oscillator, here the ancilla cavity with negative detuning in an optical cavity (spec-
trum from Eq. 2.49), each with vacuum input. The spectrum of the output of a
positive-mass oscillator fed into a matched negative-mass oscillator (third row)
shows perfect back-rotation and back-squeezing. Plot parameters as in Tab. 2.2.

and 2.49, reveal an almost exact symmetry of the two systems. There is,
as in the susceptibilities in Sec. 2.3.2, Eq. 2.39 above, a nearly one-to-one
correspondence between the two oscillators (as long as beam-splitter and
down-conversion coupling match). The difference shows in the asymmetric
coupling of the quadratures of positive- and negative-mass oscillator to a
bath. This is because there is no damping on the mechanical oscillator’s
position, only on its momentum, which translates to a difference of the
susceptibilities xm and x, with an additional x2 /4 in the denominator of the
latter (cf. Eq. 2.39).

For matching the systems, the coupling strengths do not need to be matched
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any more, but instead the measurement strengths G and Ganc,"*> which leads
to
Kom 2

W+ K228 (250)

!
The output spectra for matched systems are plotted at different frequencies in
Fig. 2.12. Ponderomotive squeezing by a positive-mass and by a negative-mass
oscillator differ in their squeezing angle. Feeding the output of a positive-
mass oscillator into a matched negative-mass oscillator results in back-rotation
and back-squeezing of the uncertainties such that one again obtains vacuum
uncertainties. The formalism combining the two systems is shown in the
following.

A combination of the positive-mass and the negative-mass oscillator into
one formalism allows full calculation of all effects (in the single-mode approx-
imation required by using a Hamiltonian formalism). The notation of the
participating matrices and vectors is as in Fig. 2.11. The Hamiltonians to derive
equations of motion from are similar to the ones in the integrated set-up, only
that now, two separate systems have to be considered with the output of one
system as the input of the other, see again Fig. 2.11. The order does not matter
much from a theoretical point of view. It can rather be chosen according to
experimental needs, which is why the two systems are just indexed with 1
and 2. The equations of motion amount to

%; = (iw — M;) ™" (Kin,i%in,i + Kbath,Xvath,i) (2.51)

S _ T
Xouti = Kip;

2

Xi — Xin,i

T 1 . T (; -1 .
(Kin,i(lw = M;)" Kini — 1) Kin,i + Kip i (i — M;) ™ Kpath,i Xpath,i

Sys bath
P; Y p;

(2.52)

with index i = 1,2 for the first and second system. There are four system
variables for each system, meaning Mom, Manc, Kpathom, Kbath,anc are all 4 x 4-
dimensional. In- and output quadratures are the two quadratures of the meter
light, meaning Kin om, Kinanc are 4 x 2-dimensional. Then, Pl.Sys are 2 X 2- and
Pl-b‘“th are 2 x 4-dimensional.

Losses can be modelled as mixing Xout with a vacuum mode in a beam-

25These are called readout rates I'; by Moller et al. (2017).
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splitterlike fashion characterised by the efficiency #; as in Sec. 1.1.4. Then,

sys  pbath Xin,i
)A(, _ 1 0 0O ’7 Pl‘ Pi at 0 ﬁbln}i X (253)
out,i 010 0 14x4 0 0 ]12><2 8 ath,:

A

Xvac,i

8x1

Pi5xs
The first matrix traces out the modes lost in the beam-splitterlike interaction,
the second matrix mixes the cavity output with vacuum, the third transports
input modes into output modes and traces out modes lost to the bath.

: o _ ol
Now choosing Xin2 = X, 1, the output quadratures become

)A(z)ut,Z = V12 (stys [V Uit (Pfysﬁin,l + P}Dathﬁbath,l) + v 1- ﬂlﬁvac,i}
+ 3 athf(bathg)

+ v 1- 772ﬁvac,2 (2.54a)

2

Xin
P 0 0 Xpath,1
=P [0 Iy O Xyvac,1 (2.54b)

0 0 ]12 X2 8x14 f(bath,z
Xvac2 / 1451

= P>, 14%in. (2.54¢)

The first term in Eq. 2.54a describes the coupling of the input quadratures of
system 1 through system 1 and 2, the second term the coupling of mixing of
system 1’s output with vacuum noise through system 2, the third then the
coupling of system 2’s bath through system 2 and the forth the mixing of
system 2’s output with vacuum noise.

Similar to the preceding section, noise spectral densities of the added
force noise in the output phase quadrature are calculated from Eq. 2.54 and
Eq. 2.29. For these calculations, the light passes the opto-mechanical cavity first
and then the negative-mass oscillator. The spectral densities are plotted for
different deviations from the requirements with otherwise perfectly matched
parameters: a difference in linewidths between positive- and negative-mass
oscillators (Fig. 2.13), and differences in coupling and measurement strengths
(Fig. 2.14). This still requires matching gps and gpc, but an imbalance of
g # gss + gpc can be adjusted with the linewidths . and %om, see Eq. 2.50
— at least in the bad cavity limit (x; > w) because then, the cavity transfer
functions )Xom and x. can be approximated to be frequency-independent.
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FIGURE 2.13: Back-action evasion in a cascaded set-up. Left: Perfect back-action
evasion and SQL. Right: Possible improvement if linewidths of positive- and
negative-mass oscillator are not perfectly matched, for different degrees of mis-
match. The dashed line shows the sensitivity with x, = 10y at a fixed meas-
urement strength (solid lines have their measurement strength optimised at each
frequency). Grey lines show SQL and ideal CQNC for orientation. Plot paramet-
ers as in Tab. 2.2. The resulting noise curves are the same as for the integrated
set-up, see Fig. 2.8.
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G 7’5 Ganc
IBs # dpc
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FIGURE 2.14: Imperfect matching of coupling and/or measurement strengths in a
cascaded set-up. For an imperfect linewidth matching (but still matched coupling
strengths), a frequency exists, here w ~ 5wm, where the cavity transfer functions
match, [xom|?> = |xc|?, and perfect noise cancellation is possible (dashed orange
line). For imperfect linewidth matching, compensated by coupling strengths
mismatch such that the measurement strengths match, perfect cancellation is
still possible at low frequencies in the bad-cavity limit (solid yellow line, see also
Fig. 2.16). Grey lines show SQL ideal and CQNC for orientation. Plot parameters
as in Tab. 2.2.
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FIGURE 2.15: Losses in a cascaded set-up. Losses acquired on the way from system 1
to system 2 prevent perfect cancellation. Grey lines show SQL and ideal CQNC
for orientation. Plot parameters as in Tab. 2.2.
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w = 10_2wm w = 102wm
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FIGURE 2.16: Sensitivity over measurement strength in a cascaded set-up. Blue trace
is without CQNC, red shows ideal CQNC. Other colours indicate the type of
mismatch as in Figs. 2.13-2.15. At low frequencies (left), perfect cancellation for
unmatched coupling strengths, but matched linewidths is possible, not so for
higher frequencies (right) — see yellow lines and Fig. 2.14. Plot parameters as in
Tab. 2.2.

Additionally, losses are taken into account (Fig. 2.15), which, apart from
vacuum noise coupling into the ancilla cavity, were ignored up to now. Losses
after system 2 do not change the noise cancellation but only affect the detection,
so 13 is set to o = 1. Propagation losses become important, as can be seen in
Fig. 2.15. Intracavity losses can be modelled as escape efficiencies, one for the
opto-mechanical cavity, and one for the ancilla cavity,

in in
Kom negmass Ke

o pams e = Sn T bam (2.55)
ki, + xBath” kin  kbath

om __
WESC -

The same formalism can also cover mode-matching losses. From Fig. 2.15 it
becomes clear that even modest losses are detrimental to the possible noise
reduction.

Again, the stability of the systems can be studied by looking at their char-
acteristic equation, det(M; — A1) = 0. A system is stable if all coefficients in
front of its characteristic equation are positive, which is true if all requirements
are fulfilled. The coefficients for the negative-mass oscillator, Eq. 2.56, and the

83



2 COHERENT QUANTUM-NOISE CANCELLATION

opto-mechanical system, Eq. 2.57, are listed below.
2 2
g = = (885 — 8bc)” — 2alc(83s + 8bc) + 2% (81235 — gbc) + (A7 + %)(A +5)
2
cfne = 287k (gf — gBc) + 2(A2 )KC + 2(A2 )%
c3" = 2(83s — 8bc) + A% + T +AZ+ Z + Kake
"¢ = Ka + K¢

anc __
oy =1

(2.56)
2
™ = —wWmAomg? + wk (A2, + )
IS
= (Acz)m +2 r'e )')’m + meom
m _ Ac2>m + sz + wlgn + YmKom (2.57)

Cgm:7m+Kom
m _

For the opto-mechanical system, the only critical part is cg™. If the detuning
is non-zero and positive and the coupling is strong enough, the system
becomes unstable, similar to the integrated system.

For the ancilla cavity, as A; = —wm < 0 is required, the main source of
instability is gpc > gss (red underline), again similar to the integrated set-up.
A strong measurement strength can render the system unstable in the case of
negative detunings A. (blue underline). As the two systems are separated, a
momentary non-zero positive detuning Agp, in the opto-mechanical system
cannot bring the ancilla system, which may be close to instability, over the
edge as could happen in the integrated set-up. A positive detuning A is not
an issue here.

2.4 TOWARDS THE EXPERIMENT

Up to now, all considerations have been quite far from actual physical and
experimental quantities. This chapter takes a closer look at what is feasible,
i.e. how and in which parameter range a potential experiment can be set up.
It further makes suggestions on how to implement the interactions required
from the previous chapter.
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TABLE 2.2: Plot parameters cascaded set-up used in Figs. 2.13 to 2.16 if not specified
otherwise. In the third column, all parameters are normalised to the mechanical
resonance frequency wm. Parameters in the fourth column are obtained from the
third column via setting wm = 271 x 500 kHz. Plot parameters are the same as for
integrated set-up (Tab. 2.1) with the addition of xom, Aom, #1 and ;.

Parameter Norm. value Value
wm  mechanical resonance frequency 1 500kHz
Ym  mechanical linewidth 10 3wm 5kHz
Q mechanical quality factor ‘fy’—z 103

A, detuning ancilla cavity —Wm —500kHz
Ka linewidth ancilla cavity Tm 5kHz
Ac detuning meter cavity 0

Ke linewidth meter cavity 10wm 5MHz
Aom  detuning OM cavity 0

Kom linewidth OM cavity Ke 5MHz
g opto-mechanical coupling strength Wm 500 kHz
gss  beam-splitter coupling strength le 250 kHz
gpc  down-conversion coupling strength % g 250 kHz
1 efficiency OM to negative mass 1

12 efficiency negative mass to detection 1

w measurement (Fourier) frequency 10wm 5MHz
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2.4.1 DESIGN DESICIONS AND PARAMETER SEARCH

The first restrictions on a possible experimental realisation arise from the down-
conversion interaction and the beam-splitter interaction, which are needed
to couple two in principle distinguishable modes of light. To make the two
modes, mode ¢ of the meter and mode 4 of the ancilla cavity, distinguishable,
any of the characteristics of a mode of light as presented in Sec. 1.1.2 could be
used. It is worth noting that a beam-splitter interaction couples two modes not
by splitting, but by mixing them, by converting one mode into another and
vice versa. Hence, a polarisation beam splitter for instance does not couple
two polarisation modes.

A beam-splitterlike interaction is not as easily realised for modes of different
frequencies'?® or different transverse mode shapes'?’ as it is for modes of
different polarisations or directions of propagation. A power beam splitter can
realise the beam-splitter interaction for modes different only in their direction
of propagation. A wave plate (actually any rotated birefringent medium, as
can be seen later in Sec. 5.2) can couple any two linear orthogonally polarised
modes in a beam-splitterlike fashion.

The down-conversion interaction can be enhanced by a surrounding cavity,
which is difficult to accomplish when the modes differ in their direction
of propagation. Additionally, two modes of light interact longer and thus
stronger inside a nonlinear medium when propagating in the same direction
(cf. Sec. 4.2.4)."2® Hence, the two modes shall differ only in their polarisation.
They can additionally be separated spatially with a polarising beam splitter.
This might become necessary in an integrated set-up because only one of two
modes is to interact with the opto-mechanical device.

A set of parameters for a proof-of-principle experiment was devised be-

126 A frequency beam splitter could be realised with a nonlinear crystal or an acousto-optic
modulator (AOM). The AOM would diffract light from zeroth to first order and vice versa.
The nonlinear process would convert modes of different frequencies via sum and difference
frequency generation. Actually, the AOM process and the up- or down-conversion process are
very similar — both caused by ‘diffraction” at a periodically modulated material, see Louisell,
Yariv and Siegman (1961).

27 A mode shape beam splitter could maybe look like a misaligned cavity or realised with the use
of a spatial light modulator, but losses definitely become a problem.

28Down-conversion interaction coupling two modes of different frequencies are common. A
coupling of two modes of different mode-shapes should be possible with the pump photon’s
shape being a superposition of the two down-conversion photons. It would, however, require
both modes being resonant in the same cavity, which is usually not the case, see 1.2.2.
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TABLE 2.3: Parameters for CQNC. As in the original publications, the system is as-
sumed to be lossless and the requirements are fulfilled (apart from x, = ym), see,
for the integrated set-up, D. Steinmeyer, “Towards Coherent Quantum Noise Can-
cellation. Untersuchungen zur kohdrenten Unterdriickung von Quantenrauschen
in Interferometern’, Master thesis, Leibniz Universitat Hannover, 2014; M. H.
Wimmer, D. Steinmeyer, K. Hammerer and M. Heurs, ‘Coherent cancellation of
backaction noise in optomechanical force measurements’, Phys. Rev. A 89 (2014),

053836. For an updated table see Tab. 6.1.

Parameter Given by Value
Wm 500 kHz
Tm wm/Q 500Hz
@ Q 10°
*é A, —wm  —500kHz
g Ka 400vm 200 kHz
g Ac 0
g Ke 1MHz
@] chaath 0
g 300 kHz
gBs § 150 kHz
gpc £ 150 kHz
o Aom 0
g Kom Ke 1MHz
o] bath
. °
S
12 1
In’;%%_rlz;}t)ed 7 1
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Integrated set-up Cascaded set-up
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FIGURE 2.17: Experimentally achievable sensitivity, normalised to the quality factor
Q. Standard Quantum Limit (blue traces), improvement through CQNC (red
traces) and sensitivities without coupling to a negative-mass oscillator (green
traces) Plot parameters as in Tab. 2.3.

fore,'? the parameters are given in Tab. 2.3 with additional parameters for a
cascaded set-up added to the list. Main trade-offs and difficulties are:

e When matching the coupling strengths, the beam-splitter coupling ggs is
more challenging to make weak enough whereas the other two couplings,
g and gpc, are difficult to increase.

® In order to reach a regime where radiation-pressure noise is actually
limiting, a large measurement strength G o« ¢? is needed.

¢ The ancilla cavity linewidth «, is challenging to make very small. On
the other hand, increasing the mechanical linewidth 7y in order to
match «, results in a small mechanical quality factor Q and thus small
improvement in sensitivity. Additionally, the coupling to a thermal bath
is increased, masking and decohering the quantum states.

With the parameters as in Tab. 2.3 and neglecting thermal noise, sensitivities
as shown in Fig. 2.17 are possible. With the same set of parameters, the
integrated and the cascaded set-up lead to the same results. Thermal noise
can be mitigated by cooling the system to cryogenic temperatures and isolating
it from the bath with high Q-factors,'3° or, in a first step, by creating artificial

9Wimmer, Steinmeyer, Hammerer and Heurs (2014); Steinmeyer, Master thesis (2014).
13°Mpller et al. (2017).
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amplitude quadrature noise resulting in radiation-pressure noise above the
thermal noise.

2.4.2 WHAT IT WILL LOOK LIKE IN THE END

Over time, schemes of potential experiments became more and more refined,
see Fig. 2.18. Starting point was the flowchart representing the interactions
in a very abstract way. Tsang and Caves gave implementation details in that
they suggested an all-optical scheme to realise the effective negative mass
and specified its parts, namely the beam-splitter and the down-conversion
interactions as means of coupling to a detuned cavity. Their schematic still
remained rather abstract, but they already suggested a cascaded set-up as an
alternative to the integrated set-up. Wimmer and co-workers further modified
the experimental scheme, mainly with the idea of using the polarisation as a
means to distinguish the two modes (for this see Sec. 5).

This thesis suggests the use of a cascaded set-up as in Fig. 2.18f. Here, the
opto-mechanical interaction is separated from the negative-mass interaction.
This makes it easier to take care of the small beam waists needed for the
down-conversion interaction and potentially also for the opto-mechanical
interaction. Having the two set-ups separated, it is not necessary any more
to spatially separate the two cavities coupled via the down-conversion and
the beam-splitter interaction, where the latter is realised by a wave plate. The
design considerations of the five-mirror coupled cavities are laid out in detail
in Sec. 5.3.1.
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RADIATION PRESSURE INTERACTION

This chapter deals with the opto-mechanics needed to create measurable
radiation-pressure noise in a table-top experiment. First, an introduction
into opto-mechanical devices and their use is given. Then, the experiments
conducted for studying opto-mechanical devices, namely mirrors on canti-
levers and photonic-crystal membranes obtained from Simon Groblacher,'3*
are presented. They resulted in measurements of resonance frequencies wn,
linewidths v, and effective masses .. These are important parameters for
coherent quantum-noise cancellation (CQNC), as wm and ym characterise a
mechanical oscillator and the effective mass m.g determines the device’s zero
point fluctuation xzpr and with that the opto-mechanical coupling strength g.

All experiments, which were the first conducted with opto-mechanical
devices in our group, were done together with Bernd Schulte. During the
assembly of an opto-mechanical cavity, the experiments were interrupted by
closure of the lab for almost one year due to construction work. After moving
to a new lab, I was not involved in opto-mechanical experiments any more
but started to set up the experiments presented in the following Secs. 4 and 5.

3.1 OPTO-MECHANICAL DEVICES

The interaction between light and matter through radiation pressure can
be mediated by a variety of devices ranging from very heavy (several tens
of kilograms for large mirrors) to very lightweight (centre-of-mass motion
of atoms). This makes the techniques used to realise an opto-mechanical
interaction differ a lot between different implementations, particularly in scale,

131S. Groblacher, now at TU Delft, fabricated the devices during his time at University of Vienna
and kindly left us some samples for our studies.
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although the underlying theory is rather straightforward (cf. Sec. 1.3) and in
all cases very similar. The Fig. 3.1, taken from a review by M. Aspelmeyer,
T. Kippenberg and F. Marquardt,'3* shows a broad range of opto-mechanical
devices.

The interest in opto-mechanics originated in the gravitational-wave com-
munity as early as in the 1980’s as mentioned in the introduction to this
thesis. But it was not until the beginning of this century when technical pro-
gress made it possible for opto-mechanical table-top experiments to approach
quantum level and renewed interest in opto-mechanical systems.'33 The main
reasons for doing opto-mechanics are:'34

MEASUREMENTS. Opto-mechanical devices are used as sensors. Usually,
the position of a moveable mechanical device is optically monitored.
Changes in position enable inference of forces acting on that device.
When used for sensing, the quantum nature of the light-mechanics
interaction is often unwanted. The gravitational wave community speaks
of radiation-pressure noise.

QUANTUM FOUNDATIONS. With opto-mechanics approaching the quantum
level, it became possible to realise truly macroscopic quantum systems, to
explore and to shift the boundary between the classical and the quantum
world. Entangled macroscopic objects are one such system.'3> Here,
light is not only a means for reading out, but actually mediates the en-
tanglement. Such systems facilitate studying fundamental decoherence
processes.'3°

QUANTUM COMPUTING AND NETWORKS. Quantum computing requires sys-
tems to store, manipulate and send or exchange information on a
quantum level. Two characteristics of opto-mechanical devices might
render them useful. Larger systems tend to operate at larger time-
scales making mechanics as a comparatively large quantum system
an option for storage of quantum states. Additionally, because the
radiation-pressure interaction is not wavelength-dependent as opposed

32M. Aspelmeyer, T. J. Kippenberg and F. Marquardt, ‘Cavity optomechanics’, Rev. Mod. Phys. 86
(2014), 1391-1452.

33 Aspelmeyer, Kippenberg and Marquardt (2014), Sec. L

134 Aspelmeyer, Kippenberg and Marquardt (2014), Sec. I.

35R. Riedinger et al., ‘Remote quantum entanglement between two micromechanical oscillators’,
Nature 556 (2018), 473—477.

136 Aspelmeyer, Kippenberg and Marquardt (2014), Sec. X.C.
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FIGURE 3.1: Overview of opto-mechanical devices. Figure from M. Aspelmeyer,
T. J. Kippenberg and F. Marquardt, ‘Cavity optomechanics’, Rev. Mod. Phys. 86
(2014), 1391-1452. Pictures courtesy of (from high to low masses) N. Mavalvala,
A. Heidmann, M. Aspelmeyer, D. Bouwmeester, J. Harris, P. Treutlein, T.]. Kippen-
berg, I. Favero, M. Lipson, T.]. Kippenberg/E. Weig/]. Kotthaus, H. Tang, K. Va-
hala/T. Carmon, J. Teufel /K. Lehnert, I. Robert, O. Painter, O. Painter, 1. Favero/

E. Weig/K. Karrai, and D. Stamper-Kurn.
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to interactions in nonlinear optics or atomic physics, mechanical devices
could be used as as an interface, e.g. between light in the optical and in
the microwave regime.'37 Hybrid systems with the mechanical element
coupled to atoms have also been realised.'38

For CONC, an opto-mechanical interaction is needed which can be as-
sembled in a table-top experiment and is able to work in the parameter range
specified in Sec. 2.4.1 (see Tab. 2.3). The main figure of merit'3® of opto-
mechanical devices for CONC is their coupling strength g. This coupling
strength is known from Sec. 1.3,

8= \@xgo, 8o = %xZPF = % me:wm/ (3.1)
again with a the amplitude of a light field with frequency w, in a cavity
with length L, the single-photon coupling strength gg, and the zero point
fluctuation xzpr, which contains the device parameters. In order to be limited
by radiation-pressure noise, a strong coupling g is needed, which requires a
lightweight mechanical device and a high-finesse cavity for strong intracavity
power. This can be intuitively understood because the lighter the mass, the
easier it is to move it with radiation pressure, and is why the effective-mass
measurement is important in the next Sec. 3.2.1.

The devices used in the context of this thesis are shown in Fig. 3.2. The
Bragg mirror on a cantilever is, just like an ordinary Bragg mirror, made of
layers of materials with different refractive indices as to increase the reflection
of the incoming light field. The surroundings and the material below the
cantilever is etched away.'#° These additional layers make the devices rather
heavy, resulting in a smaller coupling strength g. The samples at hand can
also only be used as an end mirror as the substrate is not transparent.

By structuring photonic-crystal membranes such that band-gaps for certain
frequencies of light and certain directions of propagation are formed, akin to

37R. W. Andrews et al., ‘Bidirectional and efficient conversion between microwave and optical
light’, Nat. Phys. 10 (2014), 321-326.

138Gee, e.g., S.Camerer et al., ‘Realization of an optomechanical interface between ultracold atoms
and a membrane’, Phys. Rev. Lett. 107 (2011).

1390ther important parameters are cooperativity C = :% comparing time-scales of coupling and
decoherence rates, and the Q f-product, quantifying the degree of isolation to a thermal bath,
see Aspelmeyer, Kippenberg and Marquardt (2014), IV.A.

1495, Groblacher, ‘Quantum opto-mechanics with micromirrors: combining nano-mechanics with
quantum optics’, PhD thesis, Universitdt Wien, 2010.
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FIGURE 3.2: Membranes and cantilevers. Upper left: Chips housing the opto-
mechanical devices, top two with Bragg mirrors on a cantilever, bottom right
with membranes. Lower left: Close-up of Bragg mirrors on cantilevers, taken in
reflection of chip (cf. Fig. 3.3). Bright spots are mirrors (ca. 40 pm in diameter),
sitting on a bridge with the material below etched away. Right: Close-up of a
photonic-crystal membrane, taken in transmission of chip (cf. Fig. 3.3). The dark
square in the centre is the actual membrane with a length of ca. 90 pm, held by
trampoline-like ligaments. Devices were fabricated by S. Groblacher, TU Delft
(formerly in Vienna).
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band-gaps known from solid state physics, propagation of light is prevented in
directions other than normal to the surface and the reflection enhanced.™" This
makes them potentially very lightweight, while higher reflectivities increase
the radiation-pressure force and thus the coupling strength.

Micro-mirrors and photonic-crystal membranes where chosen because of
their low mass meg facilitating high coupling strengths g, and their high
resonance frequency wmy compared to larger opto-mechanical systems (e.g.
suspended mirrors). The latter characteristic makes it easier to have a cavity
linewidth smaller than the mechanical resonance frequency, cf. Egs. 2.40.

The most prominent way to realise opto-mechanical set-ups has been that
of a membrane-in-the-middle set-up ever since Jayich and co-workers showed
that a membrane in a linear cavity is equivalent to a linear cavity with a
moveable end mirror.’#* Compared to conventional cavities with a moving end
mirror, optical and mechanical characteristics are decoupled in a membrane-
in-the-middle set-up, defeating the need to compromise between good optical
properties (meaning high reflectivities/low losses for large power build-up
inside the cavity) and good mechanical properties (low mass and high quality
factor) of a membrane/a mirror.

In opto-mechanical experiments with membranes and reflective mirrors,
coupling strengths of some hundreds of kilohertz to some megahertz have
been achieved in the optical domain, e.g. g = 27 x 325kHz with 11 mW
input power'43 already ten years ago, ¢ = 27 x 440kHz with 38 uW input
power more recently."** With new highly reflective trampoline membranes,
it is expected to easily reach coupling strength of more than 1 MHz with
just 10 pW driving power and at the same time very high quality factors.'4>
Even better quality factors in a similar effective-mass regime are obtained by
phononic shielding.'4

IR. A. Norte, J. P. Moura and S. Groblacher, ‘Mechanical Resonators for Quantum Optomechanics
Experiments at Room Temperature’, Phys. Rev. Lett. 116 (2016), 147202.

42A. M. Jayich et al., ‘Dispersive optomechanics: A membrane inside a cavity’, New J. Phys. 10
(2008), 095008.

43S, Groblacher, K. Hammerer, M. R. Vanner and M. Aspelmeyer, ‘Observation of strong coupling
between a micromechanical resonator and an optical cavity field’, Nature 460 (2009), 724—727.

144C. B. Moller et al., ‘Quantum back-action-evading measurement of motion in a negative mass
reference frame’, Nature 547 (2017), 191-195.

145Norte, Moura and Groblacher (2016).

146, Tsaturyan, A. Barg, E. S. Polzik and A. Schliesser, ‘Ultracoherent nanomechanical resonators
via soft clamping and dissipation dilution’, Nat. Nanotechnol. 12 (2017), 776-783.
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FIGURE 3.3: Opto-mechanical interferometer. Opto-mechanical (OM) device consti-
tutes one end mirror, the other, highly reflective end mirror attached to a piezo is
used for stabilising the Michelson interferometer. The OM device is also attached
to a piezo, which can be used to externally excite the device’s resonances.

3.2 DETERMINING ¢

For the characterisation of the opto-mechanical devices at hand, a Michelson
interferometer was used, with the end mirror of one arm being the opto-
mechanical device under test, see Fig. 3.3. A piezo-electric element was
attached to each of the two end mirrors. The one behind the opto-mechanical
device served as a means to excite mechanical resonances, the one behind
the other end mirror was used for locking the interferometer to mid-fringe
via the side-/fringe-locking technique (cf. Sec. 1.2.3). At this operation point,
relative phase changes cause the largest change in output power, meaning the
interferometer is most sensitive here.

The whole set-up was put into a vacuum tank and pumped down to less
than 2 x 102 mbar.’#” The outgoing beam was split with a power beam
splitter. One part was sent onto a photodiode, the other for imaging onto
a modified commercial CCD camera.’#® The pictures in Fig. 3.2 were made
using this imaging procedure.

The main challenge with these opto-mechanical devices is to create a waist
small enough and at the right position so that one is actually probing the
device and not the surrounding frame or other elements. Due to the devices’

147 A tank formerly used for GEO600 was used. The vacuum pump was a scroll pump by Agilent,
Datasheet Agilent IDP-15 Dry Scroll Vacuum Pump, Agilent, URL: https://www.agilent.com/
cs/library/datasheets/public/IDP-15_5991-7604EN_DataSheet_LR.pdf.

148 ens and infra-red filter were removed from a Namtai EyeToy camera, model no SCEH-0004.

99


https://www.agilent.com/cs/library/datasheets/public/IDP-15_5991-7604EN_DataSheet_LR.pdf
https://www.agilent.com/cs/library/datasheets/public/IDP-15_5991-7604EN_DataSheet_LR.pdf

3 RADIATION PRESSURE INTERACTION

fg ' ' ' ' ' " | —— Externally driven
o .

~ -9 T T T —— Thermally driven
= | —100 —— Electronic noise

b

E’ —100 - —110

2

8, ‘ 0.7 0.72 0.74 0.76 0.78 |

v, —110 it ikt

L oy |

% 1 1 1 1 1 1 1 1 1

~ 0.3 04 0.5 0.6 0.7 0.8

Frequency [MHz]

FIGURE 3.4: Resonances of membrane no. 9. First resonance found at 335 kHz, second
and third, for clarity also shown in the inset, at 758 kHz and 761 kHz. Second
and third resonance are non-degenerate due to the membrane not being perfectly
quadratic. Measurement was taken with a RBW of 2kHz and a VBW of 300 Hz.

dimensions, waists smaller than 10 pm were needed to limit diffraction losses.

3.2.1 CHARACTERISATION OF DEVICES

The devices’ resonances can be found with feeding the photodiode’s output
into a spectrum analyser. Comparing spectra of exciting the device with
white noise fed onto the piezo-electric element behind the device and not
exciting it shows mechanical resonances, see Fig. 3.4 The found resonances
can further be confirmed by driving the piezo with a modulation around
the mechanical resonance frequency and observing the transfer of electronic
drive into movement and thus power in optical side-bands at the respective
frequencies.

The linewidth of an opto-mechanical element was measured with two
different methods (Fig. 3.6): First, a device’s thermally excited resonance peak
can be measured with a spectrum analyser and the linewidth can be extracted.
This is because, with the equations of motion for a mechanical device in
Fourier domain,

(curzn —w?+ i'yw> x(w) = Fn/m, (3.2)

where Fy, is the thermal force acting on the mechanical device and is white,
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-

FIGURE 3.5: Eigenmodes of a membrane. The areas in grey do not move, a probe
beam positioned there sees an infinite effective mass of that mode.

i.e. independent of the frequency. The position spectral density is then

1 2 1
Syx = Tlgrgo T2|x(w)| = const. X (WL~

(3-3)

which can be used to model the data with resonance frequency wny and
linewidth vy and a constant as fit parameters.™?

Second, the mode resonance can be excited with the piezo element. After
switching off the excitation, the decay of that resonance can be observed in a
ring-down measurement using a spectrum analyser in zero-span mode — the
power contained in a frequency band around the resonance is measured over
time. Here, one can see the decaying resonances as a time-dependent phase
modulation of one of the interferometer arms. The output of the interferometer
is then™°

2
E = Ej cos(wit + ¢o) + Eo cos(wi t + %Aoe_“’mt/z COS Wmt), (3-4)

with E; ; the field amplitudes in the two interferometer arms and E; = E; for
a 50:50 beam splitter. For small phase modulations, this can be approximated
to (see Sec. 1.1.1)

E ; . Ey _;
E = Ej cos(wit + ¢p) + 726“"“(1 + im cos wmt) + 726 WLE(1 — m cos wmt),

(3-5)
where the modulation index m is m = ZT”AOe’th/ 2. The output power
of the interferometer, after averaging over the very fast oscillations wy, is
proportional to |E|?:

P
Poyt o const. + %m sin ¢y cos wmt, (3.6)

'49The units of the noise spectral density do not really matter here since we model the shape and
the only important parameter is the x-axis — the frequency which we do not need to convert.

1501t is important to take care whether the linewidth is defined as HWHM or FWHM in the initial
equation of motion.
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FIGURE 3.6: Opto-mechanical linewidth measurements, here of first resonance of
membrane no. 9. Left: Directly fitting the linewidth of a thermally excited mem-
brane. Right: Three ring-down measurements of externally driven membrane
after switching off the drive. The Lorentzian best-fit linewidth 14.4 Hz does not
differ visually from using the ring-down linewidth 11.9 Hz for plotting the Lorent-
zian. The linewidths determined by ring-down measurements were used for fur-
ther calculations. Both measurements were done at a pressure of 1.5 x 10~2 mbar.
RBWs are 1 Hz and 1kHz, respectively, VBWs are also 1 Hz and 1kHz, respect-
ively.
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where ¢g is the operation point of the interferometer (the relative phase
caused by length difference of the interferometer arms, here for maximum
signal stabilised to ¢9 = 71/2). The output light power causes a photocurrent,
converted into a voltage by the photodetector, which is fed into the signal
analyser. This device shows the power caused by the rms input voltage
dropped over its 50 () input impedance contained in a frequency band. In this
measurement, the power contained in the frequency band around wm, over
time is of interest. The remaining time dependency is the exponential decay
depending on the linewidth. In logarithmic display, all the conversion factors
cause a shift of the offset, the slope only changes with different exponents.
The slope k has to be converted from units of power, dBm/Hz, to units of
voltage, which is then proportional to optical power. Furthermore, the slope
is obtained being to base 10 and not to the natural logarithm. The linewidth
in rad/s ends up being

In10

where k has dimensions dBm/s and the factor in front of k accounts for
conversion to voltage and change of base.

All the linewidth measurements are limited not by the devices” intrinsic
damping properties, but by residual pressure inside the vacuum chamber.
Pressures lower than 1 x 10~*mbar to 1 x 107® mbar would be needed in
order to be limited by intrinsic damping properties. For different devices, the
measurement results are listed in Tab. 3.1.

3.2.2 INFERRING ¢

The fluctuation-dissipation theorem is a powerful theorem stating that, when-
ever there is dissipation, the process is two-way and there is a corresponding
driving term. This is the reason for thermal noise exciting the membrane. The
variance (x2) of the fluctuations in position caused by this driving term can
further be expressed as a function only of the temperature T (as the thermal
noise is frequency-independent) and of the characteristics of the mechanical
device. These characteristics are its resonance frequency wp, its linewidth yny,
(which quantifies the coupling to the thermal bath) and its effective mass 1.,
lending the system inertia, its resistance towards movements. Measuring the
variance, one can thus extract the temperature, knowing the effective mass, or
the effective mass, knowing the temperature.
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TaBLE 3.1: Characterisation results for different opto-mechanical devices. ‘mem’
denotes a membrane, the other devices are Bragg mirrors on a cantilever. Note
how higher pressure is not as detrimental to the quality factor of the heavier
Bragg mirrors.

Device wnm [kHz] Pressure [mbar] ym [Hz] g [ng] Q

mem 9 335 1.5 x 1072 11.7 1.8 29000
758 1.5 x 1072 10.0 34 76000

761 1.6 x 1072 11.7 11 65 000

mem 5 210 2.8 x 1072 7.0 30000
2.1 x107! 10.6 20000

5.1 75 2800

31 160 1300

2-3D 220 5.8 x 1072 4.0 55000
9.4 x 1072 47 47000

1.6 x 107! 5.8 38000

32x 1071 9.1 24000

1 21.1 10000

2-3E 188 1.9 x 1072 8.2 44 23000
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FIGURE 3.7: Nonlinearity of a piezo-electric element. Left: Interference fringes (red)
created by changing the length of one arm in the Michelson interferometer, cf.
Fig. 3.3. The voltage (green) on the piezo element changes linearly, but the spa-
cing of detected minima and maxima (red) is not equidistant. The latter is further
visualised by fitting the slope, i.e. the power change per unit time, dU/dt (blue),
on mid-fringe. Right: Velocity of piezo element (red dots), calculated from travel
time between extrema in left figure, at different voltages (green). After each turn-
ing point, the piezo element is moving rather slowly, but then accelerates until the
next turning point. See also Figs. 4.18 and 5.14.

The term effective mass is used in the preceding paragraph because the inertia
of a system depends on several parameters, which can be demonstrated with
the help of Fig. 3.9. Not the whole membrane moves, but only a fraction of the
membrane’s mass. If a probe beam is positioned on a node, it does not see any
moving, resulting in an infinite effective mass for that mode. More generally,
if there is no mode overlap between modes of membrane and of light beam,
the light field cannot excite the membrane’s mode. In addition to material
and dimension of a device, the effective mass thus depends on the mechanical
mode and the mode overlap of light field and mechanical mode.*>*

The effective mass can be extracted from the positional variance, which is
equal to the integral over the noise spectral density in Eq. 3.3,"5*

dw B 20 kg T
/ Swxse = (x()?) = T (3.8)

15TM. Pinard, Y. Hadjar and A. Heidmann, ‘Effective mass in quantum effects of radiation pressure’,

Eur. Phys. ]. C 7 (1999), 107-111.
152A. A. Clerk et al., “Introduction to quantum noise, measurement, and amplification’, Rev. Mod.

Phys. 82 (2010), 1155-1208, Eq. 3.52 and Appendix A, Aspelmeyer, Kippenberg and Marquardt
(2014), Sec. I1.B.3.
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The first equality follows from the Wiener-Khinchin theorem, the second from
the fluctuation-dissipation theorem in the limit of weak damping.'53 The noise
spectral density has already been measured in the preceding Sec. 3.2.1, see
Fig. 3.6. It needs to be calibrated to obtain a position spectral density.

A change in positionx of the mechanical device causes a change in the
photodetector’s output voltage U, see also Fig. 3.7,

w_duda @ o
dx  dt dx’ dx © Ax’ 39

where the first term, dU/dt, is the slope of the interference pattern at the
interferometer’s operation point and the second equation is valid if the piezo
is assumed to move linearly between two extrema. At can be measured and
Ax = A/4 because of interference. The conversion from power spectrum
measured by the spectrum analyser to a voltage spectrum is straightforward,
as it just measures the power dissipated over a 50 () input resistor by voltage
Urms and P = IU = U?/R:"5*

Suu[V?/Hz] = 50 Q) x 105prdBm/Hz]/10 5 =3, (3.10)

The voltage spectral density can be converted into position spectral density
via

-2
Sxx[m®/Hz] = i—lj SuulV?/Hz]. (3.11)

One inconsistency took some time to figure out: The calibration of position
to voltage, dU/dx, is done at a frequency 10Hz to 100 Hz, the ramping
frequency of the piezo, whereas the actual measurement takes place at some
100kHz, at the resonance frequencies wm, of the mechanical oscillator. If
the input for the spectrum analyser is not buffered, the voltage dropping
over the oscilloscope for calibration depends on the spectrum analyser’s
input impedance, which is frequency-dependent and renders the calibration
incorrect. The different measurement set-ups are shown in Fig. 3.8. After
correcting for these effects the measurements agree. The membranes were
measured to have effective masses of nanograms. In Fig. 3.9, one exemplary
measurement resulting in meg = 1.8ng is shown. The effective masses of
Bragg mirrors on a cantilever was higher and of the order of tens of nanograms.
Additionally taking linewidths 7, and resonance frequencies wp, into account,

153 Aspelmeyer, Kippenberg and Marquardt (2014), Sec. ILB.3.
154]f the spectrum analyser’s RBW is not equal to 1Hz, the power spectral density has to be
corrected for that.
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FIGURE 3.8: Set-ups for calibration of position spectral density measurements. b
and d lead to the same results. In ¢, only half the voltage is dropped over the
spectrum analyser (SA) compared to b an d, leading to a power spectral density
6 dB below that of b and d. In a, in addition to ¢, the voltage dropping over the
scope is frequency-dependent because of the SA’s frequency-dependent input
impedance leading to a wrong measurement calibration.
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FIGURE 3.9: Effective-mass measurement. The power spectral density from Fig. 3.6
is calibrated and converted into a position spectral density (cf. Eqs. 3.9-3.11). The
membrane’s thermal Lorentz function (red) is fitted (red, with added electronic
noise; blue, resulting spectrum without noise), the shaded area is the variance in
position, <x2>. From here, with a given temperature, the effective mass ¢ can be
calculated according to Eq. 3.8.
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photonic-crystal membranes seem suited for a set-up demonstrating coherent
quantum-noise cancellation.

There is a caveat to this measurement of the effective mass: The temperature
was assumed to be roughly room temperature. If it was higher, e.g. due
to absorption and bad thermalisation in vacuum, the effective mass would
be underestimated. It would be desirable to measure the effective mass, or
directly the coupling strength, without resorting to the temperature. For
this, several other methods exist:'>> When normal-mode splitting is observed,
which is the hybridisation of the optical and mechanical mode due to strong
coupling resulting in shifts of the system’s resonances, the coupling strength
is proportional to the splitting distance.’>® A related effect is opto-mechanically
induced transparency. Here, the coupling between modes of a strong cavity
field to a mechanical resonance changes the system characteristics for a probe
beam. The reflectivity of the system for the probe beam is directly related to
the cooperativity, which depends on the coupling strength.'>7 A third possible
way to determine the coupling strength is from the output spectral noise
density of the cavity field, i.e. from ponderomotive squeezing. The output
spectrum of Eq. 2.46 could be used for that.
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TWO-MODE SQUEEZING INTERACTION

The interaction between light and a mechanical oscillator through radiation
pressure can, in its linearised form, be written as a two-mode squeezing
interaction plus a beam-splitter interaction, cf. Eq. 2.6. The interaction with
the negative-mass oscillator is supposed to mimic the radiation-pressure
interaction and thus also needs a two-mode squeezing process. This chapter
deals with what squeezing is, how to detect and how to create it. For CQNC,
in order to match the coupling strengths of the participating processes (see
Eq. 2.40), the down-conversion coupling strength gpc needs to be determined.
Theory for that is provided for the classical and quantum domain. The chapter
concludes with measurements of this coupling strength and a discussion of
said measurements.

4.1 SQUEEZED LIGHT

There is a minimum to the product of the quadrature uncertainties of a light
field, stemming from the fact that amplitude and phase quadrature do not
commute, which leads to an uncertainty relation, 58

varXvarp > i (4.1)

This, however, does not restrict the uncertainty of a single quadrature. If one
of the uncertainties becomes very small and the other correspondingly large,
the inequality Eq. 4.1 is not violated. Such states exist and are called squeezed
states.

158See Sec. 1.1.3, Eq. 1.34. In this chapter, the convention with m = 2 is used.
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FIGURE 4.1: Phasor of squeezed light at time ¢ = 0. Left: Colour-coded probability
density in phase space. Right: Colour-coded probability density of field strength
as projection on £-quadrature. Both with phase ¢y = 50°, squeezing angle % =
30°, squeezing parameter ¥ = 0.97, corresponding to 7.2 dB squeezing. Dashed
uncertainty regions are one standard deviation per quadrature.

4.1.1 WHAT IS SQUEEZED LIGHT?

The term squeezed light suggests some kind of deformation of light. “Deform-
ation’ refers to shaping uncertainty regions in phase space. Usually (i.e. for
vacuum and coherent states), the uncertainty is independent of the quadrature
angle. A region of equal probability density in phase space is denoted by a
circle. Squeezing reduces the uncertainty along one direction, confines the
probability density along that direction, and can result in a variance below the
vacuum variance for the respective quadrature. To satisfy the uncertainty rela-
tion, the uncertainty region has to be stretched by at least the same factor in the
orthogonal direction, which results in an ellipse. This is exemplarily shown in
Fig. 4.1. The squeezing parameter r determines the amount of squeezing, the
squeezing angle 0 the direction of stretching and squeezing in phase space.
For a wave with ¢p = 0, an angle 8 = 0 corresponds to amplitude-quadrature
squeezing, an angle § = 7t to phase-quadrature squeezing. Its probability
density in time or space looks then as depicted in Fig. 4.2. At some quadrat-
ures, the uncertainty is smaller (squeezed), at others larger (anti-squeezed). In
this picture, similarities to amplitude and phase modulation can be seen (cf.
Figs. 1.3 and 1.4).
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FIGURE 4.2: Uncertainty of squeezed light wave. Top: Vacuum-squeezed state.

Middle: Phase-quadrature squeezed state. Bottom: Amplitude-quadrature
squeezed state. In all plots, ¢g = 0 and r = 0.97, corresponding to 7.2 dB squeez-

ing. 0 equals 0, 7t and 0, respectively. Compare these to amplitude- and phase-

modulated waves, Figs. 1.3 and 1.4.
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Theoretically, the deformation can be described by a Bogoliubov trans-
formation, which maps Gaussian states onto Gaussian states.’> The unitary
operator realising this operation is the squeezing operator 5(¢),*®°

5(0) =7 8) (42

with { = rexp if. Due to the quadratic occurrence of creation and annihilation
operators, photons in squeezed states of light come in pairs (this is already a
hint on how to create squeezed states, see Sec. 4.1.3). It also means the photon
statistics is changed compared to coherent states of light. In fact, one can think
of squeezed states as being more ‘regular’ than coherent states.’®* This can
be seen in the photon number distribution in Fig. 4.3: Amplitude-quadrature
squeezed states show a smaller uncertainty in photon number than coherent
states, whereas phase-quadrature squeezed states have a bigger uncertainty in
photon number.*62

Letting the squeezing operator with squeezing angle 8 = 0 act on vacuum
input results in a covariance matrix C(£, p) for quadratures £ and p,'®3

A 1 /e 2 0
C(x,p) = 1 ( 0 le) . (4-3)

The uncertainty in one quadrature is reduced, in the orthogonal quadrature
enhanced.

A different view on squeezed light originates in a comparison with amp-
litude and phase modulation. The frequency-independent — white — shot noise
of coherent states can be imagined as a superposition of a carrier wave and
side-bands at all frequencies around the carrier, all of them uncorrelated in
amplitude and phase. If now side-bands at £() are correlated, the resulting
distribution changes. Squeezing can be thought of side-bands correlated in

159L. S. Braunstein and P. Van Loock, ‘Quantum information with continuous variables’, Rev. Mod.
Phys. 77 (2005), 513-577, Sec. ILE.

160C. C. Gerry and P. L. Knight, Introductory Quantum Optics, Cambridge et al.. Cambridge
University Press, 2005, Eq. 7.10.

161See also R. Schnabel, ‘Squeezed states of light and their applications in laser interferometers’,
Phys. Rep. 684 (2017), 1-51, particularly Fig. 2.

162This shows similarities between amplitude-quadrature squeezed states and photon-number
squeezed states. They are not the same, though — see the difference between amplitude of a
wave and amplitude quadrature of the same wave in Sec. 1.1.1.

%3Here and in the following, the convention with the commutator [£, f] = i/2 is used — the same
as in Schnabel (2017) and Gerry and Knight (2005), Sec. 7.1. See also Sec. 1.1.3.
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FIGURE 4.3: Photon-number distribution of squeezed states. Left: Vacuum-squeezed
state with r = 0.7, corresponding to 6.1 dB squeezing. Right: Displaced amplitude-
quadrature squeezed state (blue trace), displaced phase-quadrature squeezed
state (red trace), coherent state (green trace). Again, r = 0.7. Squeezed states with
an average photon number of (4*2) = |a|2 + sinh?r and |a|2 = 50 the average
photon number of the coherent state, see C. C. Gerry and P. L. Knight, Introductory
Quantum Optics, Cambridge et al.: Cambridge University Press, 2005, Eq. 7.26 and

Eq. 7.81.

amplitude and phase around the carrier frequency similar to side-bands in
amplitude and phase modulation (see again Figs. 1.3 and 1.4). The relation in
phase between side-bands at () determines the squeezing angle. Again, the
quadratic nature of the squeezing operator is visible, seeing that two correlated
photons, one at —(), one at (), are needed. 4

Up to now, squeezing was restricted to two quadratures of the same mode.
It is also possible to look at quadratures of different modes. To correlate
different modes, an operator similar to the single-mode squeezing operator is
used, called two-mode squeezing operator:'

Stus () = e2(Fae-4a"EN) (4-4)

164See also S. Chelkowski, ‘Squeezed light and laser interferometric gravitational wave detectors’,
PhD thesis, Leibniz Universitit Hannover, 2007, Sec. 2.10.2.6, and H.-A. Bachor and T. C.
Ralph, A Guide to Experiments in Quantum Optics, Weinheim: Wiley, 2004, Fig. 4.9.

1%5Gerry and Knight (2005), Sec. 7.7, see also Sec. 4.2.2 of this thesis.
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FIGURE 4.4: Two-mode squeezing in phase space. Left: Correlations between amp-
litude quadratures and phase quadratures of the two modes. The two amplitude
quadratures, £, and £, are correlated, the two phase quadratures, p, and p., anti-
correlated. Right: Uncertainties of suitably combined quadratures. Subtraction of
correlated quadratures as well as addition of anti-correlated quadratures lead to
reduced uncertainties. £; — £c and p, + . are a realisation of the EPR paradox
and a combination of QND variables. All plots after Eq. 4.5 with r = 0.7. Colour
is normalised to the maximum in each of the eight plots individually.

The resulting covariance matrix for an angle 8 = 0 is (see Eq. 4.46)

cosh 2r 0 sinh 2r 0
C(%a) Pay £, Pe) = 1 . 0 cosh 2r 0 — sinh 2r 4.5)
i 4 | sinh?2r 0 cosh 2r 0
0 — sinh 2r 0 cosh 2r

With two-mode squeezing, quadratures on their own show enhanced un-
certainties. But the introduced correlations between different quadratures
lead to an uncertainty reduction below the vacuum uncertainty for a suitable
combination of quadratures, see Fig. 4.4. Particularly, the EPR paradox'®®
can be demonstrated by measuring both, £, — £. and pa + p., with arbitrary
precision at the same time."%7

166 A, Einstein, B. Podolsky and N. Rosen, ‘Can Quantum-Mechanical Description of Physical
Reality Be Considered Complete?’, Phys. Rev. 47 (1935), 777-780.

1677.Y. Ou, S. F. Pereira and H. J. Kimble, ‘Realization of the Einstein-Podolsky-Rosen paradox
for continuous variables in nondegenerate parametric amplification’, Appl. Phys. B 55 (1992),
265-278, particularly p.271.
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FIGURE 4.5: Homodyne detector. A local oscillator (LO) interferes with a signal beam.
The subtraction of photocurrents results in a measurement of a signal beam’s
quadrature.

4.1.2 DETECTING SQUEEZED LIGHT

To detect squeezed light, one needs to measure the quadrature of a light field
in order to determine its variance. This can be done directly,®® but usually a
balanced homodyne detector as depicted in Fig. 4.5 is used. A local oscillator
field (LO) interferes with the signal beam containing the squeezed light. The
photodiodes convert photons into a photocurrent. The currents are subtracted
from each other and converted into a voltage by a transimpedance amplifier.
The output of the photodetector is usually fed into a spectrum analyser to
measure noise powers in certain frequency bands, similar to Sec. 3.2.1.

In an experiment, the measured statistics do not directly reflect the quantum
state produced due to decoherence from losses on the way to the measurement
apparatus as described in Sec. 1.1.4. Decoherence due to an unbalanced
beam splitter is usually neglected. For the detection of two-mode squeezing,
however, a beam splitter efficiency #gs, introduced in the following, becomes
important.

SINGLE-MODE DETECTION

The detection process can be formalised as follows, using modes 4 and b as
input modes onto a beam splitter. The beam splitter is characterised'® by its
amplitude reflectivity r and transmissivity t = v/1 — r2. The resulting modes
¢ and d then become (here, the convention with a phase flip on reflection of

18f one is interested in the amplitude quadrature, cf. Schnabel (2017), Sec. 2.2.
169 A lossless beam splitter is assumed, i.e. 2+ 2 = 1. Losses can be modelled separately, if
necessary, see Sec. 1.1.4.
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FIGURE 4.6: Influence of losses on single-mode squeezing. Starting with reduction
in uncertainties of £10dB, 6 dB, and +3 dB above/below the uncertainty of
vacuum fields from light to dark, the resulting uncertainties are shown over the
efficiency #. Plotted from Eq. 4.9.

mode b is used),

&=ri+th, (4.6a)
d=ta—rb, (4.6b)
¢te = rfata + 2b6%b + rt(a’h + ab"), (4.6¢)
d'd = 2ata+ r*b'b — rt(a*b + ab"), (4.6d)

where ¢*¢ and d*d are the photon numbers in the respective modes, counted
by the photodetectors. Linearising the the modes, they can be written as
b— (,B +b)e'® and @ — « + 4, where ¢ is the relative phase between modes @
and b. From now on, b is supposed to be the local oscillator and assumed to
be a lot bigger than mode 4, such that g = (b ) > a = (@). In the following
approximation, all terms higher order in 4, b, « are dropped, only terms
proportional to 3 or % are kept. With this, the photocurrents become

I <éte+did =~ (r* +12) (J?b[% + ,32) , (4.7a)
I céfe—dtdm ontslp— (77 = £2) (%8 + B2) + drtapeosd,  (4.7D)

with the quadrature operators £ known from Sec. 1.1.3. The difference in
photocurrents contains information about a quadrature 24 of the signal field,
chosen by the phase ¢ between local oscillator and signal field, and amplified
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FIGURE 4.7: Beam-splitter efficiency. The efficiency of a lossless beam splitter is 7755 =
4R(1 — R) with R being the beam splitter’s power reflectivity, cf. Eq. 4.10.

with the local oscillator’s mean field B. It also contains a DC part offset,
proportional to cos¢. This can be used to stabilise the interferometer (the
balanced homodyne detector) at an appropriate operating point. The variance
of the difference in photocurrents is

var I o 472 var £7 + (r? — £2)2 var %y, (4.8)

The local oscillator is assumed to be shot-noise limited at the frequencies of
interest, var £}, = var Xy,c, and the variance normalised to shot-noise level,*7°
to obtain

4r?£2 var 29 + (12 — 2)2

var £ meas =

(12 + 2)2
= fJps Var 2P 4+1— Bs (4.9)
with
fes = 42t = 4R(1 — R) (4.10)

for a lossless beam splitter and var ¢ = var J?f / var fyac. An imbalanced beam
splitter thus can be modelled as an additional loss channel with an efficiency
#1ss-"7" The efficiency of an unbalanced beam splitter over the reflectivity is
plotted in Fig. 4.7 and becomes very close to one in the realistic case of an
almost 50:50 beam splitter. Note that this is only true if the local oscillator
is shot-noise limited — if not, the effect of an unbalanced beam splitter is

17°This means dividing by the same expression, but with var £{ and var %, set to one.

71 A more complete picture including gain and quantum efficiency differences in photodetectors
is given by L.-A. Wu, M. Xiao and H. J. Kimble, ‘Squeezed states of light from an optical
parametric oscillator’, . Opt. Soc. Am. B 4 (2008), 1465, particularly Eq. 23.
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more serious as then technical noise in the local oscillator is not suppressed
completely.

In the preceding paragraph, it was stated that the local oscillator b enhances
one quadrature of signal mode 4, chosen by the relative phase between signal
and local oscillator. This is only true for the part of mode 4 which is in the
same spatial mode as b — a classical mode matching problem as in Sec. 1.1.2.
Mode 4 is decomposed into mode b’s basis. The fractions of mode @ orthogonal
to b are lost, vacuum noise couples in instead. The result of this loss channel,
usually called homodyne efficiency, is quantified as'7>

M = VIS? (4.11)

with the visibility VZS quantifying the mode overlap as in Sec. 1.1.2. Choosing
to measure a certain mode 4 can thus be accomplished by shaping the local
oscillator accordingly.’”3 The parameters of the local oscillator determining
the mode quadrature under test are phase, polarisation, and spatial mode
shape.

TwO-MODE DETECTION

The calculation from the preceding Sec. 4.1.2 can be done with two orthogonal
modes (in the following denoted with subscripts s, p) in each of the four
beams 4, b, ¢, d (see again Fig. 4.5) instead of only one mode. This is similar to
the experiment presented in Sec. 4.4.1: There, orthogonally polarised photons
are created in the down-conversion process and consequently measured. All
participating beams 4, b, ¢, d can contain both polarisations. The measurement
can be accomplished with a single homodyne detector'74 as will be shown in
this section’s calculation and later experimentally (Sec. 4.4.1). The intuitive
reason for that is the following: As long as nothing distinguishes between the
two in principle distinguishable modes, the system should behave just as an
ordinary single-mode squeezer.

The detection process can be formalised as follows, again with amplitude

reflectivities 7; and transmissivities t; = /1 — 12, but this time with possibly

72For more regarding the mode overlap integral and the corresponding efficiency, see Wu, Xiao
and Kimble (2008), Eq. 24.

'73This enables full Gaussian mode estimation with a single homodyne detector, as described in
Appendix B.

74 Actually contrary to earlier belief, cf. M. H. Wimmer, ‘Coupled nonclassical systems for coherent
backaction noise cancellation’, PhD thesis, Leibniz Universitdt Hannover, 2016, p. 34.
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FIGURE 4.8: Influence of losses on two-mode squeezing. Starting with reduction
in uncertainties of 10dB, =6 dB, and +3 dB above/below the uncertainty of
vacuum fields from light to dark, the resulting uncertainties are shown over the
efficiency #. Left: Losses affecting both modes equally. Right: Losses affecting
only one of the modes. Plotted from Egs. 4.48 and 4.51.

different values for the two modes i = s, p:'7>

¢ o rels + Tpip + tsbs + tpbp, (4-12a)
d « teds + tpdp — rebs — rPEp, (4.12b)
&'e o rZalas + ryaga, + t3b7bs + tblby
+ rsts (adbs + asbY) + rptp (ahby + apbt), (4.12¢)
d'd o rialas + rpalap + 1203bs + 505 by
— rsts(a3bs + asbl) — rptp(zi;gf)p + ﬁpE;). (4.12d)

The sum and difference currents become, after assuming a strong local os-
cillator and linearisation via neglecting higher-order terms similar to the

75This is generally true for different polarisations due to non-normal incidence of the light field
onto the beam splitters.
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single-mode case (Egs. 4.7),
Lo (R4 B)tps + (R +B)20p) B+ (R+B+2+2) B, (313)
L o 2rtsBRY + 21ty BRY

ap
— (2= 2) pios — (2= ) o — (2 —E+2—22) B2
+ 4 (rsts + rptp) ap cos . (4-14)

The variance of the difference photocurrent becomes (where all operators are
assumed uncorrelated except for 92:’4) and %3 )

var [ o 4122 var xi’,s + 4r12, tlz, var xi’,p + 8rstsrptp cov ffls, fgp

+ (r2 — £2)? var £, + (r}z, — i%)2 var £, . (4.15)

Normalised to shot noise with #},; = £yac, the variance becomes

var [ = 7jgg var ;efls + ks var J?flp + 24/ n3s1hs cov ff/s, fgp
+2 = 155 — 1fs- (4.16)

The variance is twice as high as before because of two uncorrelated inputs
— one for each polarisation mode.'”7® Note the different role of losses in
the measurement outcome: For equal losses in s- and p-polarised light, the
variance simplifies to (normalised to shot noise)

varl_ =y (Var 3% 4 var 32;’4) +2cov?, 92;4)) +2-2y
= nvar(2y? + 257) +2 - 21, (4-17)

This is very similar to the single-mode squeezed case and results in vacuum
variance in the limit of zero efficiency, see also Fig. 4.8. For unequal losses in
the two modes, however, the measured variance can be enhanced above shot
noise (see same Fig. 4.8). This is not surprising, as in the limit of zero efficiency
in one mode, the variance of a vacuum quadrature mixed with a quadrature
of the second mode is detected — and the uncertainties of two-mode squeezed
state quadratures on their own are enhanced, see Eq. 4.5.

Not only is it possible to measure two-mode squeezed states with a single
homodyne detector. In fact, one can even do a full Gaussian state estimation
of a bipartite state, as is shown in Appendix. B.'77

176Cf. Eq. 24 and paragraph thereafter in Ou, Pereira and Kimble (1992).
77A different scheme for state estimation with a single homodyne detector, where not the local
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4.1.3 CREATING SQUEEZED LIGHT

Squeezing as the deformation of the uncertainty region in phase space, Fig. 4.1,
hints at the nonlinearity involved in creating squeezed light. A linear pro-
cess would only scale the region, not deform it. Many different nonlinear
interactions are able create squeezed light. There is Kerr squeezing, opto-
mechanical /ponderomotive squeezing, even two-photon absorption,'7® to
name but a few. This can be understood quite intuitively: If the interaction
is nonlinear, there is a disproportionally higher chance of interaction with
more light being present — if more photons arrive at a time, they get processed
(converted, absorbed) with a higher probability. Through the interaction, the
light has become more regular. This interaction could for example be an
intensity-dependent phase shift as in Kerr- or ponderomotive squeezing, or
nonlinear absorption as in two-photon absorption or in down-conversion and
second harmonic generation in a nonlinear crystal.

The most common technique for creating squeezed light is indeed the
down-conversion process. This is a rather simple nonlinear interaction, as
it is, in the limit of a strong pump beam, ‘only” a quadratic one. Hints that
this interaction might result in squeezed states come from the occurrence of
only even photon numbers in squeezed vacuum states, see Fig. 4.3, and from
the side-band picture, where squeezing is being thought of as correlated side-
bands around a carrier frequency. In a down-conversion process, one pump
photon is converted into two signal photons.’” In this second-order nonlinear
process, squeezing is actually not limited to the below-threshold case'® of
the down-converted field, but can also be observed in other configurations.
(Single-mode) squeezed states with a second-order nonlinear crystal can be
generated'®

oscillator is shaped but the signal beam, is proposed by V. D’Auria et al., ‘Characterization of
bipartite states using a single homodyne detector’, . Opt. B 7 (2005), S750-S753 and realised
by V. D’Auria et al., ‘Full characterization of Gaussian bipartite entangled states by a single
homodyne detector’, Phys. Rev. Lett. 102 (2009).

178M. J. Collett and D. F. Walls, ‘Squeezing spectra for nonlinear optical systems’, Phys. Rev. A 32
(1985), 2887—2892. A good overview over experimental progress is given by U. L. Andersen,
T. Gehring, C. Marquardt and G. Leuchs, ‘30 Years of Squeezed Light Generation’, Phys. Scr.
91 (2016), 053001.

179In fact, down-conversion most closely resembles the squeezing Hamiltonian, cf. the following
Sec. 4.2.

8oFor an explanation regarding the threshold, see remainder of this Section and Sec. 4.2.1.

B1Collett and Walls (1985), D. F. Walls and G. J. Milburn, Quantum Optics, Berlin, Heidelberg:
Springer, 2008, Secs. 8.1 and 8.2, for the different experimental realisations, see Andersen,
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FIGURE 4.9: Nonlinear interaction resulting in squeezed light. Compare yellow out-
put fields with plots in Fig. 4.2. Figure taken from J. Bauchrowitz, T. Westphal and
R. Schnabel, ‘A graphical description of optical parametric generation of squeezed
states of light’, Am. . Phys. 81 (2013), 767—771.

¢ in second-harmonic generation in both, the harmonic and the funda-
mental mode;

¢ in down-conversion above threshold in the fundamental field (the more
squeezing the closer to threshold);

¢ in down-conversion above threshold in the harmonic mode (but limited
to 3dB);

¢ in down-conversion below lasing threshold (also the better the closer to
threshold) — this is the prevalent case, it also led to the best results to
date with a measured noise reduction of 15dB in one quadrature.’®?

In parametric down-conversion, a pump beam of frequency 2f displaces
incoming vacuum fluctuations towards higher nonlinearities inside the crys-
tal. This is effectively the parametric modulation (with frequency 2f) of the
light's dielectric constant as the displacement is phase-dependent.’®3 A visual

Gehring, Marquardt and Leuchs (2016) and references therein.

1821 Vahlbruch, M. Mehmet, K. Danzmann and R. Schnabel, ‘Detection of 15 dB Squeezed
States of Light and their Application for the Absolute Calibration of Photoelectric Quantum
Efficiency’, Phys. Rev. Lett. 117 (2016), 110801.

183W. H. Louisell, A. Yariv and A. E. Siegman, ‘Quantum fluctuations and noise in parametric
processes. 1", Phys. Rev. 124 (1961), 1646—1654.
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depiction was made by Bauchrowitz and co-workers,'®+ see Fig. 4.9: Incoming
light causes a time-dependent polarisation of the material according to its
dielectric tensor . This oscillating polarisation is again the source of radiation.
Abbreviating the description by skipping the polarisation, the second-order
nonlinearity x(?) translates the incoming light of frequencies f and 2f nonlin-
early into outgoing light. The outgoing light field can be decomposed back
into original frequencies, the part with frequency f is squeezed. Because the
amplification or attenuation of the incoming field depends on its phase, the
pumped nonlinear crystal acts as a phase-sensitive amplifier. This picture can
explain the dependence of the squeezing angle on the pump phase as long as
a phase between squeezed light field and pump field can be defined,®> see
also Fig 4.9: Depending on where the anti-nodes of the squeezing field at f lie
with respect to the pump field at 2f — at pump field minima or at maxima (or
in between) — the outgoing field is amplitude-quadrature squeezed or phase-
quadrature squeezed (or in-between). The example in Fig. 4.9 shows vacuum
squeezing, where the phase is not defined due to the lack of a reference field
with the same frequency, and amplitude-quadrature squeezing due to extrema
of the squeezed field coinciding with maxima of the pump field. As is noted
in their paper, this picture limited: it does not include a cavity, and it does not
explain the exact crystal interactions, nor where vacuum fluctuations come
from.

Due to generally small x(?)-coefficients, the interaction and thus the result-
ing amplification/de-amplification and squeezing is also small. Options to
increase the interaction strength are increasing the pump intensities, e.g. by
using pulsed beams, or, what is done most often, enhancing the interaction by
building a cavity around the crystal. The amplification is increased as long
as one stays below the cavity’s threshold: The system becomes unstable if the
amplification of one quadrature is too big, larger then the attenuation due to
the light leaving the cavity, leading to unlimited growth of that quadrature.*8
At this point, the threshold, the orthogonal quadrature is de-amplified by a
factor one half. This leads to the 3 dB-limit of intracavity squeezing.’®” At

184], Bauchrowitz, T. Westphal and R. Schnabel, ‘A graphical description of optical parametric
generation of squeezed states of light’, Am. . Phys. 81 (2013), 767-771.

85This is the case if one deals with bright squeezing or if there is some kind of seed field within
the cavity, e.g. for locking purposes.

86T practice, at some point, saturation sets in and limits the growth.

87C. W. Gardiner and P. Zoller, Quantum noise : a handbook of Markovian and non-Markovian quantum
stochastic methods with applications to quantum optics, Berlin et al.: Springer, 2000, Sec. 10.2.1c.
The limit corresponds to a classical gain limit as derived in Sec. 4.2.3.
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first, the threshold was thought to prevent reductions of quantum noise of
more than 3 dB."®8 It then turned out that arbitrarily high reductions are still
possible, albeit not inside the squeezing cavity. There is no limit to squeezing
of the light reflected off the cavity.

This can be understood with a different picture of creating squeezed light:
Squeezing can be viewed as destructive interference of quantum noise in
reflection off a cavity. As shown in Sec. 1.2.2, the light directly reflected off
a cavity interferes with the light leaking out of the cavity — with complete
destructive interference on resonance if the cavity is impedance-matched
(Eg. 1.55). This is valid not only for classical fields but also for quantum noise.
Of course, the light field and the quantum noise have to go somewhere, they
are transmitted through the cavity. That there is no noise in reflection off an
impedance-matched cavity is, however, not true, the process is both ways.
Although there is no light sent into the cavity from the opposite side, there
are vacuum fluctuations, which also ‘see” an impedance-matched cavity and
are transmitted through the cavity. To prevent the quantum fluctuations from
coupling in from the other side of the cavity, the cavity could be made single-
ended. But then it is not impedance-matched any more, which means the
quantum noise does not interfere destructively in reflection. The impedance-
matching condition can be revived with a medium inside the cavity which
introduces attenuation of the size of the input-coupler transmission. Ordinary
attenuation in the form of losses would not help because then, vacuum
fluctuations would couple in (see Sec. 1.1.4). The process has to be realised by
the above-mentioned phase-sensitive amplifier. Then, only one quadrature is
attenuated, leading to the impedance-matching condition being fulfilled for
the respective quadrature and complete destructive interference in reflection
off the cavity — in that quadrature. The other quadrature is amplified and
anti-squeezed, no light is lost.

Squeezing as destructive interference in reflection off a nonlinear cavity
also explains the limited band-width of quantum-noise reduction. Impedance-
matching is only fulfilled around the cavity resonance, with the cavity’s
linewidth determining the band-width of the process.

®8Cf. G. Milburn and D. Walls, ‘Production of squeezed states in a degenerate parametric
amplifier’, Opt. Commun. 39 (1981), 401—404.
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4.2 THEORY OF PARAMETRIC DOWN-CONVERSION

After introducing squeezing in the preceding Sec. 4.1, goal of this section is
to connect the down-conversion coupling strength gpc with experimentally
obtainable parameters.

The first part starts with the single-mode squeezing Hamiltonian and solves
the resulting equations of motion to obtain noise spectra. Neglecting losses
and on resonance, the resulting variance depends on a single parameter — the
pump parameter x. Following the same path for two-mode squeezing yields
similar results. In the classical limit of amplification and de-amplification, the
classical gain G, again, depends only on the pump parameter x. This pump
parameter x is proportional to the desired coupling strength gpc, see Eq. 4.28.
The coupling strength gpc can be obtained from squeezing measurements as
well as from amplification/de-amplification measurements.

The starting point for the mentioned calculations is the rather abstract
quantum-mechanical Hamiltonian. The fourth part, instead, starts with Max-
well’s equations to obtain the pump threshold Py, of a system where a mater-
ial’s dielectric tensor couples modes of light to each other. This leads to a rela-
tion between the effective nonlinearity Ey; in a second-harmonic-generation
process and the pump threshold Py, in parametric down-conversion and thus
to another means of measuring the coupling strength gpc. It can be obtained
from the conversion efficiency in second-harmonic generation. This approach
makes clear the dependencies of the pump threshold and thus the coup-
ling strength on a more concrete level: In a nutshell, the nonlinear coupling
strength gpc is given by the effective nonlinear coefficient dog (which is a
material parameter) multiplied with the pump power and the cavity’s free
spectral range, and weighted by the mode overlap of the participating beams,
integrated over the volume of the crystal.

4.2.1 SINGLE-MODE SQUEEZING

The common starting Hamiltonian of parametric down-conversion is*®

H = hwa'a + ix(Ez?z+2 — B+ﬁ2) + driving and decay terms, (4.18)

89For the following treatment, see M. J. Collett and C. W. Gardiner, ‘Squeezing of intracavity
and traveling-wave light fields produced in parametric amplification’, Phys. Rev. A 30 (1984),
1386-1391.
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where x is the coupling strength (cf. Fig. 4.12 for dependencies). This is quite
intuitive because higher frequency pump photons b decay into two lower-
frequency photons 4 (down-conversion) or two lower-frequency photons
generate one higher-frequency photon (second harmonic generation). In the
limit of no pump depletion (valid below threshold), a semi-classical approach
can be used by substituting b — Be® with B the mean pump field and 6 the
phase between pump and signal field. The new Hamiltonian in the interaction
picture then is

H = ieat? — ie*a?, (4.19)

where € is complex and proportional to x, the pump’s mean amplitude §, and
e'® with 0 the phase between pump field and cavity field. This e is equal to
the coupling strength gpc from Sec. 2,

€ = gpc « xpe. (4.20)

The pump frequency w), of mode b was assumed to be twice the frequency
of mode 4, which makes the Hamiltonian in the interaction picture time-
independent. Together with damping and driving terms, the equations of
motion for 4 and 4" are

PO | , . .
b=ed’ - E(Kl +%2)d + /K18in1 + /K2llin 2,
At * A 1 At At At
a=¢e*a— E(K1 +x2)a" + /K183, 1 + /Kol 5. (4.21)

1 specifies the coupling of light to the driving mode, which happens via
the input coupler, «; the coupling to the bath through all other loss channels.
Both are full-width-half-maximum (FWHM) linewidths. The equations can
be solved in the Fourier domain. Defining the Fourier transform as 4(w) =
(271)~1/2 [ dte'“!a, the equations become

—iwd(w) = ea' (—w) — (11 + K2)a(w) + \/K1din1 (W) + v/Kadinp (W),

—iwd" (—w) = e*d(w) — § (k1 +12)a" (—w) + VErdh, | (—w) + Vi (—w).
(4.22)

128



4.2 THEORY OF PARAMETRIC DOWN-CONVERSION

The solutions for 4(w) and 4" (—w) are

o) =~ gf_/ i}—);ai) — [V/F1in1 (@) + Vi ()]
~ e e VR (—@) + VRdha(—w)|, G2)
i -w) = - 2 (VR (-w) + Vs a(-)]
6*

o (k/2 —iw)? — |e]? [VE18in,1 (W) + /K2ain2(w)], (4.24)

with ¥ = x1 + x2. From here, with the input-output relations 4i, + dout = /%14,
the output-fields follow to be

. B (k/2 —iw) N N N
aout(w) - (K/Z — l-w)z — |€‘2 {Klam,l(w) tv K1K2a1n,2(w):| — fin,1

C (k/2— i(f})z — el {Kl”;rn,l(_w) + vKlKZaiJrn,z(_W)] (4.25)

The interesting quantity is the noise spectrum of the quadrature variances,
Sxx; = [ dw' (%i(w)%j(w')). Collett and Gardiner calculate normally-ordered
spectra.’¥° They can be connected to for us more common symmetrised spectra
via adding vacuum noise and rescaling, such that vacuum noise corresponds
to a spectral density of one (= 0dB) and perfect squeezing to a spectral density
of zero (— —oodB): Sy,x;, = 1+4 : Sy,x, ;. The output spectra for the two
quadratures follow to be

le|x1/2
(k/2 —|e])? + w?

4x
(1—x)2+40%

L —1-4 le|x1/2
PP (/2 + |e|)? + w?
= 1_77esc4—x/
(14 x)%2 +40?

VE =S4 =1+4

=1+ 7esc (4.26a)

V- =S

(4.26b)

where the escape efficiency #esc, the pump parameter x, and the frequency

199Cf. Collett and Gardiner (1984), Egs. 49 and 52.
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normalised to the cavity’s linewidth Q) = w/ (k1 + K3) were introduced,

__k
Nesc = o KZ, (4-27)
€] p
= =/ =—. (4.28)
3 (K1 +12) P 4

The noise in the p-quadrature is smallest on resonance () = 0) at threshold
(x = 1), and becomes zero for perfect escape efficiency (fesc = 1), which
correponds to a single-sided, or lossless, cavity (kx; = 0). Other losses on the
way to detection can also be written as efficiencies (see Sec. 1.1.4), such that

4x
Vieas = 1+ Wtotalmr (4-29a)
_ 4x
Vineas = Wtotalm (4-29b)

Choosing 7iota1 = 1 leads to a (only theoretically) possible squeezing value
called initial squeezing. On resonance,

_ 1—x 1
Vinit = <1+x> Vi (4-30)

init

Introducing losses via an efficiency #ots1 < 1 as well as deviating from
measuring on resonance, () # 0, results in smaller detectable squeezing values
as can be seen in Fig. 4.10.

The initial squeezing value, as well as pump parameter and total losses, can
be derived from just measuring squeezing and anti-squeezing at DC or higher
FSRs (meaning () = 0):

_ Vieas — 1
Vinit = VE{:Z*_ 1 (4.31)
Mtotal = Vn:Eeas _ (Vr;eas — )(Vrj{eas — 1) (4 32)
al — - 4 :
? Vilt 1 Vmeas + Vnteas -2

\/T Vrﬁeas 1

t meas -1

x = = : (4-33)
1 + \/ Vlmt Vr_r}_eas i

Note that all the inconvenient subtrahends * — 1" after the variances come from
the fact that we are not looking at normally-ordered variances but at symmetric
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FIGURE 4.10: Left: Squeezing over pump parameter for different values of 7. Right:
Squeezing in frequency domain at a pump power of x = 0.6 and at resonance
(2 = 0) for different values of . Efficiency # in both plots 1, 0.9, and 0.6 from
light to dark. Plotted from Eq. 4.29. See also Fig. 4.6.

variances. Note also that the formulae above are only true if efficiencies are
the dominant degradation factor and other contributing processes such as
phase noise or electronic noise are not limiting (or included in the modelling,
see also Fig. 4.11).

4.2.2 TWO-MODE SQUEEZING

The treatment for two-mode squeezed states (also called bipartite entangled
states™") is very similar to those of single-mode squeezing, but starting with a
different Hamiltonian (already with linearised pump field and in the rotating

frame),'92

tat

¢, (4-34)

leading to equations of motion for two modes 4, ¢,

H =ieat —ie*a

a= eéJr - %(Ka,l + Ka,2)a + Ka,lﬁin,l + vV Ka,Zain,Zr (4'35)
¢=ed" — Lkt +xc2)¢ + \/Ke1ling + /Ke2Cin2, (4.36)

again with linewidth x;; and «; . being the coupling rates of modes i through
the input coupler and to the bath, respectively. It becomes complicated if the
cavity is different for the two modes 4 and ¢, meaning especially different

191Cf. e.g. Schnabel (2017), Sec. 3.4.
192Cf. Ou, Pereira and Kimble (1992), who themselves follow again Collett and Gardiner (1984).
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4 Two-MODE SQUEEZING INTERACTION

linewidths for the two modes. In Egs. 4.35 and 4.36, the detuning was already
set to zero for both modes such that both modes are resonant at the same
time,"93 which will be the case later in the experiment. Additionally, the cavity
losses are approximately the same for both modes because of almost normal
incidence on all intracavity optics (cf. experimental set-up in Sec. 4.4.1). With
the resulting assumption of equal linewidths for both modes, the equations of
motion can be decoupled via defining two new modes b = (4 + ¢)/+/2 and

d=(a—2¢)/V2:

b=eb" — (11 +12)b + \/K1bin1 + v/K2bin2, (4-37)
d=ed — (i1 +x2)d + \/Erdin1 + /Kodin 2. (4-38)

These are the same equations of motion as for the single-mode case — see
Eq. 4.21 above! The quadratures of mode d (and also mode b) will be squeezed
and anti-squeezed, only that these quadratures are a superposition of quad-
ratures of modes 4 and ¢:

fpocb+bt aterat et oz, + 2, (4.39a)
po o —i(b—b") o« —i(a+ ¢ —a" — &) o pa + pe, (4-39b)
fgoxd+dica—e+a"—ét £, — %, (4.39¢)
pa o —i(d —d) o« —i(a—e—at + &) & pa — pe. (4.39d)

To see squeezing, a combination of the original quadratures £,, £c, Pa, Pc
needs to be measured, for example

<9?%> o ((£2 + £c)?) = var £, + var . + 2 cov £, £c (4.40)

— and that is exactly what a homodyne detector can do, cf. Sec. 4.1.2, especially
Eq. 4.16. For (£2) (for (£3)) to vanish, £, and % need to be perfectly anti-
correlated (correlated), see also the corresponding plots in Fig. 4.4.

For a closer look at how to generate the correlations between these two
modes/quadratures, the equations of motion need to be solved, again in the
Fourier domain. To simplify the calculation, a single-ended cavity, again
with the same linewidth in both modes, is assumed.’* The output field

193C. Schori, J. L. Serensen and E. S. Polzik, ‘Narrow-band frequency tunable light source of
continuous quadrature entanglement’, Phys. Rev. A 66 (2002), 10.

94Calculations for double-ended cavities are done by Ou, Pereira and Kimble (1992), different
losses for the modes are included by Schori, Serensen and Polzik (2002).
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quadratures amount to"9>

() = Glw)# (@) + g(w) i (), (4412)
Pt (w) = G(w)pi(w) — g(w)p (w), (4-41b)
#9(@) = (@) (@) + () (w), (4419
P (w) = G(w)p(w) — g(w)pi(w), (4-41d)
where
e+ /A + Wt
Glw) = (/2 —iw)? — €2’ (442)
€K
g(w) = /2= 0 & (4-43)
Because |G(w)|? — |g(w)|> = 1 as can be checked from Egs. 4.42 and 4.43, one

can identify |G(w)| = coshr and |g(w)| = sinhr (on resonance for w = 0,
G =G* = Gpand g = ¢* = g0)."%° Each quadrature on its own has the same
variance of

(£ ()3 (@) = (FP (@) (@) = 0(w + ') (G () P+ [g(w)[?)

d(w+ ) (cosh2 7 + sinh? r)
)

(w + «') cosh 2r. (4-44)

The noise is enhanced compared to vacuum. Looking at combined quadrat-
ures, though, shows that, on resonance,

(29" £ 22")?) = (Go £ g0)*
= cosh? 7 + sinh? r & 2 cosh 7 sinh
= cosh2r 4+ sinh 2r = ¢*". (4-45)

The same is true for ((pSU* & poU*)2). From Egs. 4.44 and 4.45, — (putput) =
(xQutx0ut) = + sinh 2r. Thus, the covariance matrix can be written as

cosh2r 0 sinh 2r 0

N 0 cosh 2r 0 —sinh 2r
C(%a, Pa, £e, pe) = sinh 2r 0 cosh 2r 0 ! (4.46)
0 — sinh 2r 0 cosh 2r

195Eq. 15 in Ou, Pereira and Kimble (1992).
196Cf. equations after their Eq. 13 and Eq. 34 in Ou, Pereira and Kimble (1992).
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the same as in Eq. 4.5.
Again, r is the squeezing parameter, related to frequency w and pump
parameter x = 2¢/x via |g(w)|. Also on resonance,

4x

2 _

with x = 2e/x and 2 = w/«x, which is again similar to the single-mode case,
see eq. 4.29.

Losses can now be introduced with mixing the covariance matrix with
vacuum states as in Sec. 1.1.4. Including different efficiencies 7, and 7 for the
two modes results in a covariance matrix

C(an/ ﬁa/ xAc/ ﬁc) -
1—1#a+1a cosh2r 0 /Taljc sinh 2r 0
0 1—14+41a cosh2r 0 —/Naljc sinh 2r
/Taljc sinh 2r 0 1—1#c+1ccosh2r 0
0 —/"al]c sinh 2r 0 1—#c+1c cosh2r

(4-48)

The measured variance can be connected to the pump parameter x with
cosh2r = |G(w)|* + |¢(w)|? and sinh2r = 2coshrsinhr = 2|G(w)||g(w)].
On resonance, this leads to

8x 14 x?
cosh2r =1+ m, sinh 2r = 4xm. (4-49)

With this, the variance var £; + £. can be written as

8X2 82 2
o e £ VIS g (450

For 1, = 17 = 7, this simplifies to

varfa = 8. =1+7a,

o 1 o 4x
varf, £ £, =2 <1iqw> . (4.51)

Note again the similarities to the single-mode case, Eq. 4.29, and the additional
factor of 2. Normalising to the case of no coupling/no pump (x = 0), which
is done in the experiment (and in Fig. 4.8), cancels the factor.
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4.2.3 PARAMETRIC AMPLIFICATION AND DE-AMPLIFICATION

It is straightforward to take the classical limit of the above results. The mode
operators become complex variables, the driving field a;, 1 is (without loss
of generality) a real variable, the phase difference between input field and
pump field is included in the complex coupling strength €. The vacuum input
mode ain 2 becomes zero. On resonance (w = 0), the intracavity power in the
single-mode case from Egs. 4.23 and 4.24 is proportional to

2 _ K1 2 2\ 2
P = ey (e + o)+ el ) afy (4.52)
The gain, here defined as the ratio of the intracavity field with pump and
without pump, is*97
P K2 > >
= 2 6
Pe=0) ~ (2= [P (K + 2x|e| cos 0 + |e| )

_ 1+x*+2xcosf o=0r  (1£x)2 1 (453)

T -2 T d-x21+x? (AFn2 P
For 6 = 0, this equals the classical parametric amplification gain G =1/ (1 —
x)2.

The gain G can be determined from amplification and de-amplification

measurements:

|a

2

2
1 Prax 1 Py_g
- +1) == +1
4 ( Pmin ) 4 ( PG:H

1/1+x 2 1
:4< +1) :mzcr (4-54)

1—x
where the phase of the pump beam is swept and the driving field’s power
is measured in transmission of the cavity to obtain Pmax and Ppin. With
knowledge of the gain G at a given pump power, the pump parameter x
and also (with a known linewidth «) the coupling strength |€| = gpc can be
computed.

197This definition is also used by T. Aoki, G. Takahashi and A. Furusawa, ‘Squeezing at 946nm
with periodically poled KTiOPOy’, Opt. Express 14 (2006), 6930, Eq. 3, and by T. C. Zhang
et al.,, ‘Quantum teleportation of light beams’, Phys. Rev. A 67 (2003), 16, Eq. 15. Note that
this gain needs to be measured at another port than the input port. If measured in reflection
of the input port, a different gain definition needs to be used, taking account the destructive
interferences. This gain is employed, e.g., by Wu, Xiao and Kimble (2008), Eq. 2, with their
d being our pump parameter x. It is then the classical analogue to the quantum-mechanical
squeezing in reflection off a cavity.
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4 Two-MODE SQUEEZING INTERACTION

4.2.4 THRESHOLD POWER FROM CRYSTAL PARAMETERS

From the previous sections it is known that the coupling strength gpc is
proportional to the pump field (Eq. 4.20) and connected to the pump parameter
x (Eq. 4.28). At threshold, x becomes one, see for example Eq. 4.53 and 4.54.
It can also be defined as the ratio of applied pump amplitude to the pump
amplitude at threshold (or, as the ratio of the squareroot of pump power to
threshold power, Eq. 4.28), also evaluating to one at threshold.

At threshold, the gain from nonlinear conversion just balances the losses.
Equating the single-pass power gain for a light mode with the power lost
per round-trip and solving for the pump power yields an expression for
the threshold power. The task of finding the single-pass gain of a nonlinear
material for threshold computations can be approached classically or quantum-
mechanically, the ideas are similar. Quantum-mechanically, one starts with
the Hamiltonian which is the volume integral of the electromagnetic energy
density.’9® Classically, one uses Maxwell’s equations to obtain the single-pass
power gain from the same energy considerations.’”” Both approaches assume
a negligible pump depletion. Alternatively, the coupled equations of motion
derived from Maxwell’s equations need to be solved, which can be done via
a Green’s function approach.?*® All these options lead to a mode-overlap
integral, which can be simplified making several assumptions, but still needs
to be solved numerically. The full numerical solution of the coupled equations
of motion is another option and is provided by Lastzka’s Nonlinear Cavity
Simulator >°*

In a semi-classical picture,*** the incoming (pump) field accelerates electrons
in the dielectric material, which induces an oscillating polarisation. Because
the electrons might not sit in a purely harmonic potential,>®3 their movement
also contains higher harmonic frequencies — of interest is here the second
harmonic. The oscillating polarisation is again the source of radiation. The
second-order susceptibility tensor X(z) (Wm4n; Wm, wy) describes how incoming
electrical fields of frequencies w;, and w; induce a polarisation of frequency

198 A. Yariv, Quantum Electronics, New York et al., 1989, Sec. 17.5.

99G. D. Boyd and D. A. Kleinman, ‘Parametric interaction of focused Gaussian light beams’, J.
Appl. Phys. 39 (1968), 3597-3639.

2995, Guha, F. J. Wu and ]. Falk, ‘The Effects of Focusing on Parametric Oscillation’, IEEE |.
Quantum Electron. 18 (1982), 907—912.

20IN. Lastzka, ‘Numerical modelling of classical and quantum effects in non-linear optical systems’,
PhD thesis, Leibniz Universitit Hannover, 2010.

292The calculations follow Boyd and Kleinman (1968).

293 Yariv (1989), Sec. 16.3.
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wm + wy in the material (see Appendix A.2.2),2%4

D
Pmn(r) = € ?X(z) (W Wm, wy ) EC™ (1) E“" (x). (4.55)

The degeneracy factor D is 2 (see Appendix A.2.2) and w4y = wy + wy,. For
specific polarisations, beam directions and wave frequencies in a particular
crystal under certain symmetries (e.g. neglecting dispersion), an effective
second-order susceptibility®® deg can be defined,

i g oA 2 1 @ o
doff = EeinJrndijke]melri = %e;nJrn EXI(]‘k) (wm+n}wml wn)e]me;ﬁ/ (4.56)

which is reduced by a factor % due to quasi phase-matching.>*® &, denotes
the polarisation component of light of frequency wn, in direction i.

The average power from the polarisation P in the material which is depos-
ited in the fundamental field can be be calculated from energy considerations.
The average power per unit volume in the dielectric material needs to be
integrated over the volume of the material to obtain the power transferred
from a polarisation mode to the field mode,**”

Power oP
=E—. (4.57)

Volume ot
The total power transferred is zero (neglecting losses in the material) due
to energy conservation but it need not be zero if looking at one particular
frequency. From Eq. 4.57, the average power P, transferred to mode wj, is (see

2%4In the following, m and n denote frequencies, whereas i, j, k stand for spatial directions.

205A. Smith, SNLO, URL: http://www.as - photonics . com/snlo, provides a collection of
nonlinear materials and calculates effective coefficients for almost arbitrary configurations.
Lots of materials and references are also to be found in D. N. Nikogosyan, Nonlinear Optical
Crystals: A Complete Survey, New York: Springer, 2005.

206Phase matching is necessary for efficient conversion. Quasi phase matching is one of three
processes enabling phase matching, the other two being critical/angular phase matching and
non-critical /temperature phase matching, see R. W. Boyd, Nonlinear Optics, Amsterdam et al.:
Acad. Press, 2008, Secs. 2.2 and 2.3. Phase matching is touched again in Sec. 4.3 and also the
remainder of this section.

207Cf. Yariv (1989), Eq. 5.1-13, and Boyd and Kleinman (1968), Eq. A2.57, see also derivation in
Appendix A.2.3. Note that here, polarisation refers to the material’s polarisation, not to a
polarised light field.
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Appendix A.2.4)
1/ oPn(r, t)
5 _ 1 wn n I, _ ﬂ *w” Wy
P, = 5T /dt /drE (r,t)iat Im > /drE (r)P“(r) |,
-T Vv \4

(4.58)

where the integration takes place over the volume V of the crystal. With
the polarisation as in Eq. 4.55 and assuming Gaussian beams, the power
transferred to a mode with frequency wy is

Py = —Im | wieodegtE? E3EX2 / dr 115 (1) us (r) 15 (1) (Bk+9) (4-50)
1%

where u;(r) are the transversal mode functions known from Sec. 1.1.2. When
evaluating the integrals, it was assumed that the (product of the) amplitudes
do not change over the length of the crystal.

Equation 4.59 is an important intermediate result: The power gain depends
on the strength of the participating beams, the nonlinear coefficient d¢, the
phase matching and phase relationship Akz + ¢, and the mode overlap. The
mode-overlap integral can be evaluated in radial direction, assuming the
crystal’s aperture not to be limiting. For further (analytical) evaluation, more
simplifications are necessary. The position of the waist is assumed to be the
same for all participating beams and lies in the centre of the crystal, and the
Rayleigh ranges zy , are assumed to be equal (which, for w3 = wy = %w?,,
leads to wg; = wpy = woz/V/2). This is the optimal case in terms of mode
overlap (if there is no double refraction). The integral simplifies to

oo 2 1

¢
/dr r/dcp /dz u’{(r)u3(r)u§(r)eimk”¢) = gnwgei(”‘fﬂ") /dq
0 0 0 e

eloq
1+iq’
(4.60)
with the normalised beam parameter g = 2(z — f)/b = 2z/b —1/b, the
confocal parameter b = 2zg, the focusing parameter { = [/b, which also
determines the new integration limits in z-direction, the crystal length [/, and

the phase-mismatch parameter o = 1bAk. The transferred power can now be
written as

2 .
P = %wlbeodeffw%3E“’le3E“’2 x Im [e’(”§+¢)] x H(¢,0) (4.61)
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with a function H(§,0) = 27T IS d ¢ dg e’{f_i‘;q as given by Boyd and Kleinman,*

which is assumed to be real as the beam waists are in the centre of the
crystal*® and can be optimised with regard to the focusing parameter ¢ and
the phase mismatch ¢. Assuming perfect phase matching and adjusting the
phase ¢ such that o + ¢ = 1bAk + ¢ = :I:%n is usually justified.

Similarly, the power transferred to the idler mode is

08

2
P, = %w2b60deffw%3szEw3Ewl x H(,0). (4.62)

With E“» = (4P,/ cneonnw%n)l/ 2 for Gaussian beams and another focusing
function h which is then the same as / in the paper by Boyd and Kleinman,>°

HI? q ¢ elo(g—q") (463)
he.) = | | 4;‘/ qu A +ig)(1—iq)’ +23
the multiplication of P; and P, yields
PPw,
PP, = 2KPP,Ps—- 5 it h(o,&) = KPP, Pslkh(c, &), (4.64)
G, Wi

for equal beam waists of signal and idler beam, again with & = I/kwg?, where
the constant K is

2
8(,01 (Uzdeff

K=—"+%+=--, .6
TEYCIN N N3 (4-65)

actually very similar to I'? used by Wimmer and co-workers as gain parameter
in their calculation of the down-conversion coupling strength gpc.>'* At pump
threshold, the average power transfer is equal to the power lost per cavity
round-trip,

!

Pip = (Tin+L)Pip, (4.66)
assuming equal losses L and input coupler transmission T, for signal and
idler beam. After inserting Eq. 4.64, this can be solved for the power P3 = Py,:

Tin+L)2  (Tin+ L)?
= o L) (Tin FL)7 467
Kklh(o, ) 4En.

208Boyd and Kleinman (1968), Eq. 3.20.

29Boyd and Kleinman (1968), Eq. A4.8.

21°Boyd and Kleinman (1968), Eq. 3.32. h({) is also plotted in Fig. 4.13.

21M. H. Wimmer, D. Steinmeyer, K. Hammerer and M. Heurs, ‘Coherent cancellation of backaction
noise in optomechanical force measurements’, Phys. Rev. A 89 (2014), 053836.
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4 Two-MODE SQUEEZING INTERACTION

Enu is the single-pass power gain from second harmonic generation.?**The
threshold power does not depend on the powers of signal and idler beam. It
depends on total losses Tj, + L in the cavity and on the effective nonlinearity
Eni, which includes the crystal’s nonlinear coefficient deg, the crystal length
I, and h(c, ¢) quantifying focusing, mode overlap and phase matching. For
optimal focusing in the case of no double refraction and small losses, i.e.
¢ =1/b =284, h evaluates to h = 1.086.>"3 Equation 4.67 is equal to the result
given by Guha and co-workers*™ derived via solving Maxwell’s equations
with a Green’s function approach, if one takes care of different definitions of
losses and nonlinear susceptibility.

The optimisation of h(c,§) corresponds to a trade-off between weaker
focusing so that a larger interaction volume is used, and stronger focusing so
that the beam intensity is higher. Lastzka speaks of it as the maximisation of
the average field strength inside the crystal.>’> An optimum focusing exists
for a specific configuration.

It makes sense to recall the assumptions made in the derivation of the pump
threshold, which are:

1. monochromatic and collinear Gaussian beams (TEMy),
2. optimal pump phase and phase matching,

3. no losses at or in the crystal,

4. no double refraction,

5. no reflection at crystal surfaces,

6. optimal mode overlap, i.e. equal waist positions and equal confocal
parameters,

7. no change in amplitude over a single passing through the crystal,

8. QPM can be represented by factor of 2/7 in dg.

*Boyd and Kleinman (1968), paragraph after Eq. 3.27, see also Wu, Xiao and Kimble (2008),
Sec. 2.

213Boyd and Kleinman (1968), Eq. 3.39.

214Guha, Wu and Falk (1982).

215Lastzka, PhD thesis (2010), p. 61.
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4.3 HOW TO IMPROVE SQUEEZING AND/OR COUPLING STRENGTH

Assumptions 2 to 6 can be (and have been) relaxed?'®, but then the equations
get very cumbersome. In our case, Assumptions 1, 2, 4, 5 and — under
usual circumstances — 6 are reasonable to make. Numerical calculations can
be done, for example with Lastzka’s Nonlinear Cavity Simulator,>'7 but at
this point, the qualitative implications are more important than quantitative
results: The coupling strength gpc depends on the material parameter d,¢, the
mode overlap and focusing and the pump power. And: The threshold power,
needed to determine coupling strength, can be estimated from measuring the
single-pass gain in second harmonic generation, see Sec. 4.4.2.

4.3 How TO IMPROVE SQUEEZING AND/OR COUPLING
STRENGTH

In the previous Sec. 4.2 it was shown how the amount of created and detected
squeezing and the coupling strength are related. The qualitative findings
are put together in Figs. 4.11 and 4.12. That does not mean, however, that
improving one of them necessarily improves the other as can be seen in the
mentioned figures.

The amount of measured squeezing depends on the initial squeezing and on
processes which decohere or mask the quantum state and are detrimental to
its measurement (Fig. 4.11). To improve squeezing, first and foremost the loss
sources limiting the measured squeezing have to be identified and mitigated,
which seems straightforward, but can be very challenging in practice. Most of
the time not limiting is the available initial squeezing: It solely depends on the
pump parameter and the relative detuning, and usually enough pump power
is available.>'®

The pump parameter depends on the coupling strength — this way, squeez-
ing and coupling strength are connected. A higher coupling strength leads
to a lower threshold power. For squeezing, as mentioned above, this is only
beneficial if the squeezing was limited by the available pump power. Coherent

216G, e.g., Boyd and Kleinman (1968), Guha, Wu and Falk (1982), J.-J. Zondy, D. Touahri and O.
Acef, ‘Absolute value of the d3s nonlinear coefficient of AgGaS,: prospect for a low-threshold
doubly resonant oscillator-based 3:1 frequency divider’, J. Opt. Soc. Am. B 14 (2008), 2481, S.
Gubha, ‘Focusing dependence of the efficiency of a singly resonant optical parametric oscillator’,
Appl. Phys. B 66 (1998), 663-675

217Lastzka, PhD thesis (2010).

218True so more for single-mode squeezing than for two-mode squeezing because of the larger
interaction strength due to larger available nonlinear coefficients.
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FIGURE 4.11: From initial squeezing to measured squeezing. This figure shows the

dependency of the finally measured reduction in uncertainty on various paramet-
ers. The initial squeezing depends on the coupling strength, see Fig. 4.12.
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FIGURE 4.12: From experimental parameters to initial squeezing. This figure shows

the dependency of initial squeezing and coupling strength on various parameters.
They share the dependency on pump power and parameters pertaining to the

crystal.
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quantum-noise cancellation (CONC) does not aim at producing squeezed
states of light. Rather, a matching of coupling strengths is required to reduce
back-action noise with CQNC. In the ideal case, the higher the measurement
strength, the higher the sensitivity, which requires stronger coupling. For
that reason, this section shows how parameters can be tuned towards higher
coupling strength, investigating the nonlinear crystal, the beam shape of the
participating modes, and the surrounding cavity.

4.3.1 CRYSTAL

Crystal parameters influence the conversion efficiency and thereby the coup-
ling strength. They also determine the pump threshold and hence the possible
squeezing. The conversion is better with: a higher nonlinear coefficient, better
phase matching, more pump power, and/or a longer interaction time — a
longer crystal. The nonlinear coefficient is material-dependent. It is determ-
ined by the crystal structure and frequency-dependent.

Phase matching is needed for good conversion efficiency. For an efficient
process, the created photons, which inherit their phase from the decayed
photon, need to interfere constructively with the photons already in the cavity.
One can also think of this condition as momentum conservation.>'¥ Phase
matching depends on the interacting frequencies as the refractive index is
frequency-dependent. It can be achieved with three different methods,**° in
our experiments, quasi phase-matching is used: Whenever the participating
beams run out of phase, the nonlinear coefficient is reversed. The advantage of
quasi phase-matching is its flexibility with respect to the addressed nonlinear
coefficient and the frequencies used. This comes at the cost of the nonlinear
coefficient reduced by a factor 2/7. In order to create two-mode squeezing,
an additional requirement is that both modes be resonant in the cavity. For
polarisation two-mode squeezing as in this thesis, the birefringence of the
crystal causes a differential phase shift on the two polarisations which adds
to the phase shift caused by cavity mirror coatings. This results in different
optical cavity lengths for the two polarisation modes — they are not necessarily
both resonant at the same time. The cavity can be made resonant for both
polarisations by tuning the crystal’s temperature and thus length, which
changes the differential phase shift but potentially decreases phase matching,

219N. Bloembergen, ‘Conservation laws in nonlinear optics’, . Opt. Soc. Am. 70 (1980), 1429,
Sec. 1C.
22°Boyd (2008), Secs. 2.3 and 2.4.
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see Sec. 4.4.2. To circumvent this and operate the crystal at its ideal phase
matching temperature, a wedged crystal could be used, which can be moved
laterally. By that its effective length can be varied to obtain resonance for both
modes.

A longer crystal length would lead to increased interaction strength but
often requires a larger aperture in order to not induce diffraction losses. Then,
it becomes more difficult to apply the periodic poling needed for quasi phase-
matching. Crystals considerably larger than 1 mm x 2mm X 10 mm are not
commercially available. For squeezing light, it is actually not desirable to have
longer crystals as the absorption loss scales with the crystal length — longer
crystals are detrimental to the escape efficiency (see next Sec. 4.3.3).

The pump power could be limited by availability and damage threshold
of the crystal (see next Sec. 4.3.2). Another adverse effect caused by higher
pump powers is thermal lensing from heating due to absorption of the pump
light. This changes the cavity’s eigenmode and degrades mode matching.

Assuming perfect phase matching, the options when changing the crystal
for an increased coupling strength are:

¢ find material and/or wavelengths and/or phase matching process where
a higher nonlinear coefficient is possible,

¢ find material with higher damage threshold for more pump power,

* use longer crystal.

4.3.2 BEAM SHAPE

The participating beams influence the coupling strength and thus the squeez-
ing via their intensities: Conversion is a nonlinear process, the higher the
intensities, the more efficient the process. The intensity of a Gaussian beam
varies spatially with its beam shape. Optimising the beam shape for the crystal
geometry is an important part of designing the interaction process. One can
look at two extreme cases: For plane waves, the whole crystal is used equally,
but the peak intensity is small — the conversion is not very efficient. In contrast,
for very small beam waists, the peak intensity and conversion efficiency in the
waist is very high. Correspondingly strong divergence leads to an inefficient
conversion in the remaining crystal. There is a trade-off between these two
cases, which one can think of as maximising the mean intensity over the
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crystal.?*' Boyd and Kleinman numerically integrated the mode-matching
integral over the crystal length, resulting in a focusing function h(g) (red
trace in Fig. 4.13), depending on the ratio of crystal length to beam waist.
For maximum efficiency, it needs to be maximised, the optimal ratio is***
¢ =1/2zg =~ 2.84.

It is also important that the participating beams have the same spatial shape.
Stemming again from the mode overlap integrals, it can be informally thought
of the photons keeping their mode shape when changing frequency.?*3> An
alternative explanation is in terms of phase fronts: With equal Rayleigh ranges,
the phase fronts of the participating Gaussian beams are in sync, cf. Sec. 1.1.2,
especially Fig. 1.5.

One might wonder: What if with optimal focusing the peak intensity
becomes too high, i.e. lies above the material’s damage threshold? An idea is
to reduce the beam waist for smaller peak intensities resulting in less optimal
focusing. Then, with more pump power, a stronger coupling might be possible.
This hypothesis is tested in Fig. 4.13. The applied power P results in a peak
intensity Ipx and in a coupling strength gnc, related to power P and beam
waist wy/focusing parameter ¢ via

2P 1 w3
I f— 7, = — ’ p— 70’ ,68
pk nw% g 27r ZR A (4.68)

_ 8pc p
ximiﬂpithoﬁ/PXh(g)' (4.69)

Choosing the power P such that the coupling strength gpc stays constant
over different beam waists wy results in more power needed at less optimal
focusing (¢ # 2.84), which is expected. At the same time, the peak intensity
Ik decreases with larger beam waists. Now, choosing the power P such that
the peak intensity Iy stays constant over different beam waists wy results in a
lot more power needed with larger beam waists, which is expected. At the
same time, the coupling strength gpc also increases.

Within the approximation for the focusing function h(¢), it is thus possible
to use a less optimal focusing with larger beam waists and apply more pump

and

21Lastzka, PhD thesis (2010), pp. 60-61, see also preceding Sec. 4.2.4.

222With several assumptions made, see Sec. 4.2.4, especially p. 140.

*?3Keeping their mode shape in this case means keeping their Rayleigh range, not their beam
waist, which suggests that the Rayleigh range is the more fundamental quantity.
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FIGURE 4.13: Effects of focusing and power change over different beam waists. x-axes
are beam waist wy and focusing parameter ¢, related via Eq. 4.68. As all traces
are normalised, the y-axis is dimensionless. In red, the focusing function h(¢) is
shown with a maximum at {opt = 2.84. The applied power P (blue trace) results
in a normalised peak intensity Ipx / Iopt (green trace) and normalised coupling
strength +/P x & (yellow trace). Left: Pump power P chosen such that the normal-
ised coupling strength +/P x h stays constant. The peak intensity I,y is reduced at
larger beam waists. Right: Pump power P chosen such that the peak intensity I
stays constant over different beam waists. The coupling strength /P x h grows
with the applied power with larger beam waists. Plot parameters are A = 532nm,
I =10mm.
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FIGURE 4.14: Measured squeezing over input coupler transmission. Plot parameters
are L = 3 % intracavity losses, C = 21/Ex.P = 8 % conversion, #ytal = #escape- The
optimal input coupler transmission is Ty, = L 4 C = 11 %. Plotted from Eq. 4.70.

power, which would have damaged the crystal under the original focusing, to
obtain a larger coupling strength gpc.

4.3.3 CaviTy

The cavity influences squeezing via two things: First, the overall linewidth
depending on input coupler transmission, length, and intracavity losses de-
termines the pump threshold. At a given power, a smaller linewidth results
in a smaller pump threshold and a larger pump parameter, which (usually)
means more squeezing. Second, the ratio of input coupler to total cavity losses
determines the escape efficiency — the fraction of the nonlinear state which
leaves the cavity at the desired port. Both, smaller losses and higher input
coupler transmission, lead to a better escape efficiency and thus more squeez-
ing. Hence, there is a trade-off between higher input coupler transmission for
better escape efficiency and lower input coupler transmission for larger pump
parameter. For given losses L, an an optimal input coupler transmission Tj,
exists, which can be determined from Eq. 4.26b using the escape efficiency
fesc = Tin/ (Tin + L) and the threshold power Py, = (Tin + L)?/4Ex.. Writing
P/Py, = C?/(Ty + L)? with C being related to the single-pass amplitude gain
Eni, the variance on resonance becomes

C
_ Tln 4T' +L
Vo=1- n , (4.70)
Tin+ L c \?
" (1+ Tm-i-L)
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which can be minimised for T, (see Fig. 4.14),

TP =L+ C=L+2\ExP, (4.71)

resulting in V— = L/(C + L). This is then an impedance-matched cavity with
the input coupler transmission being the same as intracavity losses including
conversion.

On the coupling strength, the cavity has no direct influence — except that
the cavity length sets the rate at which the coupling happens. This is one over
the cavity’s round-trip time and equals the free spectral range, ¢/ L.

4.4 MEASURING gpc

In the previous Sec. 4.2, it was shown that the pump parameter x contains the
coupling strength gpc. This same pump parameter determines the classical
gain of the nonlinear amplification/de-amplification process as well as the
amount of initial squeezing (cf. Fig. 4.11 and 4.12). It is thus accessible with
measurements of the parametric gain and with measurements of squeezing
and anti-squeezing. Together with the knowledge of the cavity’s linewidth,
the coupling strength can be obtained from these measurements of the pump
parameter x. Another method which can be used to determine the coupling
strength is to retrieve the threshold power via equating the round-trip losses
with the round-trip gain. The gain can be measured from second harmonic
generation. All three ways to determine the coupling strength are employed
in this section.

The first half entails the introduction of the experimental set-up, including
the beam preparation and the generation of light at 532 nm needed for the
down-conversion interaction. In the second half, the various measurements of
the coupling strength gpc together with a discussion of their implications for
CQNC are presented.

4.4.1 EXPERIMENTAL SET-UP

A first version of this experiment in another lab was built by Maximilian
Wimmer.*** It served as a guide for the set-up presented in the following.

224Wimmer, PhD thesis (2016).
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to homodyne

to coupled detection
cavities

FIGURE 4.15: Set-up of beam preparation and SHG. After exiting the laser, the light
passes a Faraday isolator (FI), which prevents back-reflection into the laser. The
mode cleaner (MC) defines a spatial mode. The error signal for stabilisation of the
MC is obtained with the photodetector PD; and sent onto a piezo-electric element
behind the curved cavity mirror. Photodetector PD, monitors the locking status of
the MC. Part of the light traverses the electro-optic modulator (EOM) and is fed
into the second harmonic generator (SHG). With the mixing photodetector PDj3,
an error signal for stabilising the SHG is obtained and sent onto a piezo-electric
element attached to the incoupling mirror. The created green light and some
of the infra-red light is sent to the non-degenerate optical parametric oscillator
(NDOPO). Yellow plates are half-wave plates, green are quarter-wave plates. See
also the picture of the experimental set-up in Appendix D.
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FIGURE 4.16: SHG efficiency. Generated green power and conversion efficiency over
infra-red input power.

The beam preparation is depicted in Fig. 4.15. After the laser,>*> a Faraday
rotator prevents back-reflection into the lasing system. The following mode
cleaner defines a spatial mode with a waist of 370 pm and is locked via
polarisation homodyne locking.?2® Part of its output is sent through an electro-
optic modulator (EOM)>?7 for phase modulation with a modulation frequency
QO = 27 x 11.79MHz. Most of this light is fed into a second harmonic
generator (SHG).2® The SHG was stabilised with a Pound-Drever-Hall lock>2?
using the phase-modulation side-bands generated by the EOM. It achieved
a conversion from 1064 nm infra-red light into 532nm green light with an
efficiency of 60 % at an input power of 750 mW infra-red light. Its efficiency
curve is shown in Fig. 4.16. The generated green light serves as pump light
for the down-conversion process, which creates two-mode squeezed light.
Main part of this set-up is the non-degenerate optical parametric oscillator
cavity (NDOPO). The tried-and-tested design of earlier squeezing cavities was

**5Innolight (now Coherent) Mephisto, a Nd:YAG laser in a non-planar ring oscillator configuration
with up to 2W output power at 1064 nm with a linewidth of 1 kHz and shot-noise limited from
some MHz, Cf. Datasheet Mephisto, Coherent, URL: https://edge.coherent.com/assets/
pdf/COHRY7B%5C_%7DMephisto%7B%5C_%7DDS%7B%5C_%7D041777B%5C_%7D2.pdf.

226(Cf, Sec. 1.2.3 and M. Heurs, L. R. Petersen, M. R. James and E. H. Huntington, ‘"Homodyne
locking of a squeezer’, Opt. Lett. 34 (2009), 2465.

227 Datasheet Newport 4004 Broadband Phase Modulator, Newport, URL: https://wuw.newport .
com/medias/sys_master/images/images/h65/hcc/8797007839262/400X - and-406X-User-
Manual-Rev-J.pdf.

228Cf Wimmer, PhD thesis (2016), Sec. 7.2.2 and Fig. 7.7.

229Cf. Sec. 1.2.3
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FIGURE 4.17: NDOPO set-up. Light can be coupled into the non-degenerate optical
parametric oscillator (NDOPO) from the front through mirror M; (R = 94.2 %)
or from the rear through mirror M, (R = 99.98 %). It is pumped with green light
from the second harmonic generator (SHG). The squeezed light is detected with
a homodyne detector (HD), where signal beam (sqz) and local oscillator (HD)
interfere. The phases of green pump beam and LO, and the length of the NDOPO
cavity can be actuated with piezo-electric elements behind the respective mirrors.
See also picture of set-up in Fig. 4.20.

used.?3° Critical geometric parameters are:

¢ the waist wy = 23 um inside the crystal for best conversion efficiency (cf.
Boyd-Kleinman criterion in Sec. 4.2.4);

¢ the cavity round-trip length L;; = 1.51 m determining among others the
free spectral range, measured to be FSR = 199.65MHz, and thus the
measurement frequency, which is at the first free spectral range, not at
DC.

Other design considerations such as the use of mirrors with an off-the-shelf
radius of curvature, small angles of incidence on said mirrors for small
astigmatism, and transversal mode distribution inside the cavity lead to a
cavity design as depicted in Fig. 4.17.

23°Wimmer, PhD thesis (2016); T. Denker, ‘High-precision metrology with high-frequency nonclas-
sical light sources’, PhD thesis, Leibniz Universitit Hannover, 2016.

151


http://edok01.tib.uni-hannover.de/edoks/e01dh16/863136931.pdf

4 Two-MODE SQUEEZING INTERACTION

The crystal in use®3" was made of Potassium Titanyl Phosphate (KTP) with
a poling period of 458 um to allow quasi-phase matching for two orthogonally
polarised infra-red beams at 1064 nm and a green pump beam at 532 nm.?3?

The cavity has an input mirror M; with a measured transmission of
Tin = 5.8 %. This transmission determines the cavity’s linewidth with higher
reflectivities leading to smaller linewidths and thus to a (desirable) lower
threshold power. On the other hand, a higher reflectivity reduces the ratio of
mirror transmission to losses inside the cavity and thus reduces the escape ef-
ficiency, leading to a trade-off between higher and lower front mirror reflectiv-
ity.?33 Its linewidth was measured to be ¥ = 277 x 2.02MHz 4 277 x 15kHz
(Finesse F = 99) by ramping the cavity, taking the Airy distribution in
transmission of the cavity after setting the crystal temperature to minimal
interaction, fitting a Lorentz function to the transmission peak, calibrating
the time axis with PDH side-bands (see Fig. 4.18), and averaging over several
measurements.?? This corresponds to round-trip losses of Ty, + L ~ 6.2 %,
of which 5.8 % can be attributed to the input coupler, leaving L ~ 0.4 % per
round-trip lost to the bath. #esc & 93 % of the intracavity mode exits through
the input coupler. The linewidth measurement is critical as it yields, together
with the pump parameter x, the coupling strength gpc, see Sec. 4.4.2.

When generating squeezed light, the front input coupler M; (cf. Fig. 4.17)
cannot be used to couple light into the cavity for stabilisation because it is
needed for outcoupling the squeezed light. Instead, the second flat mirror
M), with a reflectivity of 99.98 % has to be used to lock the cavity. This poses
a problem: Very little light — ca. [t2/ (1 — r17o71)|? &~ 50 ppm of the incoming
light (cf. Eq. 1.55) — leaks back out of that mirror to interfere with the reflected
light. This leads to a very unfavourable ratio of signal to DC power and a

23'For decision process regarding the crystal see Wimmer, PhD thesis (2016), Sec 4.1.2. Crystal
parameters are available with the program SNLO, A. Smith, SNLO, URL: http://www.as-
photonics.com/snlo.

*32The infra-red beams are polarised along the crystal’s Y- and Z-axes, the green beam along
the crystal’s Y-axis, direction of propagation is thus along the crystal’s X-axis, leading to
an effective nonlinear coefficient of deg ~ 2.4pm/V (see also Eq. A.23). With single-mode
squeezing, all participating beams are polarised along the same axis. Thus, the highest
nonlinear coefficient, d33, can be used leading to an effective nonlinearity of degs = 10pm/V, a
lot higher than that for two-mode squeezing.

233Cf. Sec. 4.3.3. A smaller transmission than in earlier set-ups was chosen for lower threshold
power. Cf. Wimmer, PhD thesis (2016), Sec. 7.1.1.

234Note that the piezo does not move linearly with the applied voltage, see Sec. 3.2.1, especially
Fig. 3.7, which is why the free spectral range does not function as an accurate frequency
reference.
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FIGURE 4.18: Linewidth measurement of the NDOPO. Red trace: Transmitted light.
Blue trace: demodulated reflected (error) signal. Green trace: voltage on piezo.
The demodulation phase was set such that no error signal is visible for the cav-
ity’s main resonance. Then, the side-band peaks are spaced two times the (de-)
modulation frequency ) apart. This can be used to convert time into frequency
around a resonance.

small error signal: A gain of 100 at the limit of the operational amplifier’s gain-
bandwidth product®3> when demodulating the signal was required to obtain
a usable error signal. Additionally, the demodulated signal was found to drift
over timescales of some ten seconds to minutes. The drifts were a factor 5 to 20
larger than the error signal and prevented a stable cavity lock. After some
time, it turned out that time-varying residual amplitude modulations caused
by the EOM were the reason for this behaviour. The EOM not only modulates
the phase with frequency (), but also slightly rotates the polarisation with the
same frequency. Polarisation components such as polarising beam splitters
convert the polarisation modulation in amplitude modulation, which is mixed
down to DC by the mixing diode. The modulation index of the polarisation
rotation turned out to be temperature-dependent. Three improvements were
made to mitigate these drifts:

* A surprisingly reflective wave plate found to couple light back into the
EOM and mode cleaner was turned slightly around its vertical axis to
avoid reflection back along the optical path.

* The EOM was made resonant and impedance-matched to the signal-

235The op-amp used as transimpedance amplifier was a THS3201 with a gain-bandwidth product
of 1.8 GHz.
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FIGURE 4.19: EOM drifts. Left: Offset of demodulated signal over two 13 h-periods,
with (red) and without (green) active temperature stabilisation. Clearly visible in
stabilised signal are jumps, caused by jumping DC light power and losing lock.
Right: Picture of electro-optic modulator on its oven.

sending function generator by inserting an inductance and a resistance
to prevent reflection off the EOM and the creation of a standing wave.

* (Most importantly) the EOM was temperature-stabilised by placing it
onto a controlled oven (see Fig. 4.19).

The stabilisation and isolation of the EOM in particular is rather a work-
around, inspired by Skorupka’s solution.?3 Further improvement on the
design was not needed at that time as can be seen in Fig. 4.19, which shows ex-
emplary measurements of the drifts before and after installing the temperature
stabilisation.

Furthermore, the stability was greatly enhanced by encasing the NDOPO
in a plastic box to insulate it from acoustics and air flow, see Fig. 4.20. The
latter turned out to be particularly pronounced because of the cavity’s position
directly in front of the flow box blowing clean air over the optical table.*37

The front mirror M; was used as input coupler when characterising the
cavity and when operating the NDOPO as SHG. The green light generated
in the NDOPO possesses the optimal mode shape and overlaps best with
the infra-red cavity mode. It serves as a mode reference for the green pump

236Cf. S. Skorupka, ‘Rauschuntersuchungen an hochstabilen Lasersystemen fiir die wissenschaft-
liche Weltraummission LISA’, PhD thesis, Leibniz Universitdt Hannover, 2007, Fig. 3.20.

*37This was initially by design as the nonlinear cavity is the most critical part of the experiment
regarding cleanliness.
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FIGURE 4.20: Picture of NDOPO as set up on the optical table. Compare with schem-
atic in Fig. 4.17.

light needed for down-conversion: First, the green light generated inside the
NDOPO via SHG is matched onto a mode reference (mode-matching) cavity.
Then, the green pump light generated inside the SHG is matched to the very
same cavity with optics in the beam path before the crystal. Now, the green
pump light is in the same spatial mode shape as the green light generated
by the NDOPO and thus in the mode shape best for nonlinear efficiency. A
similar method was deployed to ensure that local oscillator for homodyne
detection and the squeezed light field are in the same spatial mode for good
conversion efficiency.

As noted above, the cavity itself is birefringent due to coatings and the
crystal. The temperature-dependence of the crystal’s refractive indices and
of the crystal’s length allow for tuning the cavity’s optical lengths of both
polarisations via temperature. With this, both modes can be made resonant at
the same time. The temperature bandwidth of the phase-matching process
ensures that the conversion away from the ideal phase-matching temperature
is still acceptable, see Sec. 4.4.2.

The light was detected with a balanced homodyne detector.3® In this
set-up, the beam splitter turned out to be important because it introduces
polarisation-dependent losses: The first beam splitter in use, made by B. Halle,
was only specified for s-polarised light and reflected 50 % of it as expected,
but only 20 % of p-polarised light. This leads to a beam splitter efficiency

238Wimmer, PhD thesis (2016), Sec. 7.2.5.
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nbs &~ 0.64 (Eq. 4.10) and is quite detrimental to the available squeezing (cf.
Fig. 4.8). It was exchanged to a different beam splitter with reflectivities close
to 50 % for both polarisations.?3?

4.4.2 MEASUREMENTS OF gpc

_k _x [P (472)
gDC_z _2 Pth' 4.7

Measurements of threshold power Py, and linewidth « lead to the coupling
strength gpc. It can also be calculated from known material and cavity para-
meters: From Egs. 4.67 and 4.65, as well as k = 2t FSR/F =~ ¢(Tin + L)/ Lyt
(cf. Egs. 1.57 and 1.54), it follows that

8oc = FSTR X4/ KkIh(&)P. (4-73)

Using, as explained in Sec. 4.4.1 above, a periodically-poled KTP crystal of
length I = 10 mm with an effective nonlinearity degs = 2.4 pm/V for converting
green light at 532nm into infrared light at 1064 nm and with the refractive
indices n; = 1.8302, ny = 1.7458, n3 = 1.7887 from Sellmeier equations,**°
assuming optimal focussing (h = 1.086), a cavity with overall losses Ti, + L =
0.062 leads to a pump threshold Py, = 1.85W. The theoretical benchmark for
the coupling strength at P = 100 mW is thus gpc = 27t x 230 kHz.

In the following, three ways to determine the coupling strength are real-
ised: First via the nonlinear efficiency Ey;. and the threshold power Py, from
single-pass second harmonic generation, second via the pump parameter x
from parametric gain measurements, third via the pump parameter x from
squeezing measurements.

To recap:

FROM SINGLE PASS CONVERSION EFFICIENCY

Equating the single-pass conversion efficiency (which is the gain over one
round-trip) depending on the pump power with the round-trip losses leads to

239The beam splitter was an off-the-shelf beam splitter, model BSW41-1064 by Thorlabs, with
reflectivities of 50.1% and 51.5% for s- and p-polarised light, respectively. Then, 1752 > 0.999.
This beam splitter turned out to be less sensitive to the angle of incidence than the beam
splitter 10B20NP.29 by Newport.

24°Nikogosyan (2005), p. 57 with green light polarised in Y-direction and signal and idler in Z-
and Y-direction.
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FIGURE 4.21: Single-pass conversion efficiency from SHG process in the NDOPO.
Red trace: Crystal temperature set to maximum conversion. Blue trace: Crystal
temperature set such that both polarisations are resonant in the cavity. Data was
fitted with Eq. 4.74.

an expression for the pump threshold. The expressions for down-conversion
efficiency and second harmonic generation efficiency are very similar, the
nonlinear efficiency Ey; from second harmonic generation can also be used for
the down-conversion process.?#' For single-pass second harmonic generation,
Eny is defined in units of W1 as4?

, (4.74)

with Pgreen being the generated green output power and Py the infra-red input
power. Then, the threshold power Py, for the down-conversion process can be
obtained from

Py =21 (4.75)

For the measurement of Ey; from single-pass second harmonic generation, the
cavity was blocked between second curved mirror M, and the front mirror
M, see Fig. 4.17. Then, for different infra-red powers, the green output
power was measured behind the second curved mirror My, which acts as a
dichroic mirror. From these measurements (see Fig. 4.21), together with losses
Tin + L = 6.2% obtained from linewidth measurements (x = 27t x 2.02 MHz),

*4'Boyd and Kleinman (1968), Eq. 3.34 and paragraph thereafter, Eq. 2.22.

242Cf. G. Masada et al., ‘Efficient generation of highly squeezed light with periodically poled
MgO:LiNbO3’, Opt. Express 18 (2010), 13114, Tab. 1. For a microscopic definition see also Wu,
Xiao and Kimble (2008), Eq. 11.
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FIGURE 4.22: Gain from amplification/de-amplification measurements over pump
power. Equation 4.54 was fitted to measurements with pump powers P < 200 mW.
At higher pump powers, the pump threshold is not constant any more suggesting
nonlinear losses in the system, probably caused by absorption-induced thermal
lensing.

the threshold power at a temperature when both polarisations are resonant in
the cavity is Py, = 2.23 W. The coupling strength for a given pump power is

K 2 x2.02MHz | P .

This implies that even with a moderate pump power P = 100mW of green
light, a coupling strength gpc larger than required in Sec. 2.4.1 is well possible.
Further measurements suggest a higher threshold power Py, and thus a slightly
smaller coupling strength gpc (see following sections) but do not invalidate
this point.

Making both polarisations resonant at optimal phase matching temperature
would lead to a pump threshold of 1.9W and a coupling strength of 232 kHz
at 100mW pump power, which is very close to the expected value given in
the beginning of this Sec. 4.4.2. The difference between optimal and resonance
temperature was ca. 7 °C.

FROM PARAMETRIC AMPLIFICATION/DEAMPLIFICATION

Amplification and de-amplification measurements can be used to obtain the
pump parameter x at a given pump power P and thus the pump threshold Py,.
From here, together with knowledge of losses, the coupling strength gpc can
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be determined. For this measurement, infra-red light was sent into the cavity
through the front mirror M;. Green light of different powers P was phase-
modulated with a small modulation frequency of the order of Hz and sent into
the crystal. The cavity output power changes were recorded in transmission
of the rear mirror Mj. The results are displayed in Fig. 4.22. Equation 4.54
explains the measurement at lower pump powers. At higher pump powers
P = 200 mW the gain decreases, which corresponds to higher threshold powers
caused by nonlinear loss. This might be due to thermal lensing degrading the
mode matching and thus the effective pump power. Fitting only data points
at lower powers results in a pump threshold Py, = 2.6 W. With the same
reasoning as above, this leads, together with the linewidth measurement, to a
coupling strength of

K 27t x 2.02MHz p p
goc = % = 5 TEW = 27 x 198 kHz x 100w (4.77)

Even with this lower pump threshold, the coupling strength at low pump
powers, where the measurement agrees with theory, is still as big as required.

FROM SQUEEZING/ANTISQUEEZING

Similar to parametric amplification, squeezing and anti-squeezing can be used
to extract the pump parameter x at a given pump power P and thus the
threshold power Py, and, again by using the linewidth «, the coupling strength
gnc. This is done by measuring squeezing and anti-squeezing at different
pump powers P. Most of the measurements were done with a swept pump
phase and a local oscillator locked via side-fringe technique (see Sec. 1.2.2),
as the lock for the pump phase was quite unstable due to very small signal
(taken in transmission of the first curved mirror M;). An exemplary squeezing
measurement with swept pump phase is shown in Fig. 4.23. A squeezing
spectrum obtained with both, the pump phase and the local oscillator’s phase
locked is shown in Fig. 4.24. This Fig. 4.24 was taken with the local oscillator
not very well mode-matched to the squeezed mode, resulting in increased
losses.

Fitting the measurements in Fig. 4.25, a pump threshold Py, = 2.44 W could
be obtained. Thus, the coupling strength becomes

K 27 x202MHz P P
goc = 5x = > Saaw = 27T X 204KHZ x|\ [ ool (4.78)

in agreement with the previously presented measurements.
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FIGURE 4.23: Squeezing spectrum with swept pump phase. Red trace is noise power
of signal beam, black trace is shot noise. Here, a pump power P = 390 mW results
in up to 2.3dB squeezing and 3.7 dB anti-squeezing, corresponding to an initial
squeezing of 5.1dB, a pump parameter x = 0.29, a total efficiency # = 59 % and a
threshold power Py, = 4.7 W. RBW 300 kHz, VBW 200 Hz.
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FIGURE 4.24: Squeezing measurement with both, pump and local oscillator phases
locked. Left: Squeezing and anti-squeezing around the first FSR. Right: Squeezing
and anti-squeezing at the first FSR over time. Measurements show 1.24 dB squeez-
ing and 2.03 dB anti-squeezing, corresponding (in the single-mode case) to initial
squeezing of 3.8dB, a pump parameter x = 0.22, threshold power Py, = 3.7W
and overall efficiency 1 = 0.43. Both spectra are taken with both, pump phase and
local oscillator locked (pump phase locked on de-amplification for squeezing and
on amplification for anti-squeezing, local oscillator locked on mid-fringe). Pump
power was 170 mW. RBW 300 kHz, VBW 300 Hz for both. All traces were aver-
aged over two sweeps. In the left plot, two traces are displayed for each, squeez-

ing and anti-squeezing.
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FIGURE 4.25: Squeezing and anti-squeezing at different pump powers. The data was
fitted assuming same losses for both modes, which corresponds to the single-
mode case (Egs. 4.29 and 4.51), and assuming different losses for the two modes
(Eq. 4.50). Fit results of efficiencies were #7 = 0.58 for same losses and 7, = 1,

e = 0.42 for different losses. The single-mode case fits to other measurements
presented in this chapter regarding threshold power and efficiency. In case of
different losses, the best fit was reached assuming one lossless and one lossy
mode, which is not realistic. Fixing one of the efficiencies to a value between 0.58
and 1 leads to threshold powers between those obtained from the two fits above
and efficiencies between 0.58 and 0.42.
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DiscussioN

Contrary to earlier belief,*43 the coupling strength realised with this set-up
is measured to lie indeed in the expected range of 150kHz. All three ways
to determine the threshold power Py,*#* and with it the coupling strengths
gpc were done independently from each other and conducted days to months
apart. This explains variations, still they agree rather well and are compatible
with the theoretically expected value. The higher threshold power obtained
from amplification/de-amplification measurements and from squeezing/anti-
squeezing measurements could be explained by non-optimal mode matching
of pump beam to infra-red beam — this mode-matching is not needed when
measuring the single-pass second harmonic generation gain Ey;.

Both, amplification/de-amplification and squeezing measurements, show
some instabilities at higher pump powers. This might be due to pump
beam alignment, thermal lensing and/or phase noise. Assuming that these
instabilities can be controlled in the future,*4> pump powers of up to 400 mW
just below the damage threshold could result in a coupling strength of more
than 400 kHz.

Making the cavity resonant for both polarisations at the crystal’s optimal
phase matching temperature can bring the pump threshold down to 1.9W
and thus the coupling strength up to more than 450 kHz — a factor three above
the initial requirements.

For even higher coupling strengths, either the beam shapes can be changed
as to use even more pump power, cf. Fig. 4.13, or other wavelengths, materials,
or phase-matching processes need to be used. A different beam shape and
a larger region of high intensity might additionally mitigate thermal lensing
problems. KTP allows for non-critical (temperature) phase matching at a
wavelength of 1080 nm, which would improve the effective nonlinear coef-
ficient degs and thus the coupling strength by a factor of 71/2 compared to
quasi-phase-matching.

23Wimmer, PhD thesis (2016), pp. 98, 112.

244 Note that two of them rely on the fact that the here presented two-mode squeezing experi-
ment can equally be described as a single-mode squeezing experiment because to a good
approximation nothing in the experiment distinguishes between the two polarisation modes.

245 A possible ansatz regarding alignment and phase noise would be to use a cavity resonant also
for the pump beam. This comes at the cost of needing a triply resonant cavity, which is a lot
more difficult to realise.
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COUPLED CAVITIES AND
BEAM-SPLITTERLIKE INTERACTION

At the heart of all-optical CQNC lies an optical cavity realising the negative-
mass harmonic oscillator, the ancilla cavity. The ancilla cavity will be coupled
to the incoming light via a down-conversion and a beam-splitter process.
Another cavity will be built around the ancilla cavity to enhance the coupling
interactions. This chapter deals with the effects of coupling the two cavities
with a beam-splitterlike process. Section 5.1 shows how two coupled cavities
influence each other. Here, they are modelled as two coupled harmonic
oscillators showing effects known from coupled mode theory.24® Section 5.2
shows how a wave plate is equivalent to a beam splitter and can be utilised
to couple two modes in a beam-splitterlike fashion. Section 5.3 presents an
experiment realising beam-splitter coupling with a wave plate. The theoretical
model from Sec. 5.1.2 accurately describes the two coupled cavities, and the
beam-splitter coupling strength required for all-optical CQNC as in Sec. 2.4.1
can be realised with a wave plate.

Parts of the assembly and of the measurements were done together with
Elisabeth von Kéanel.*4”

5.1 COUPLED CAVITIES
This section explores coupled optical cavities without specifying the concrete

realisation of the coupling interaction. First, the difficulties when trying to
stabilise coupled cavities are explained phenomenologically and approaches

246Cf. H. Haus and W. Huang, ‘Coupled-mode theory’, Proc. IEEE 79 (1991), 1505-1518.
247E. von Kénel, To be published, Master thesis, Leibniz Universitit Hannover.
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FIGURE 5.1: Previously realised coupled-cavity set-ups. Left: Cavities coupled via a
wave plate, figure from Wimmer, PhD thesis (2016), p. 99. Right: Cavities coupled
via a beam splitter, figure from Weifibrich, Master thesis (2017), p. 55.

to solve the difficulties are presented. Then, the Hamiltonian formalism is
used to derive effects caused by coupling two cavity modes to each other.

5.1.1 STABILISATION ISSUES WITH COUPLED CAVITIES

When coupled cavities were first set up within this group as in the schemes
shown in Fig. 5.1, they proved difficult to stabilise.>43 In hindsight, this makes
sense because the two cavities are not independent of one another due to their
coupling. The second cavity can be viewed as a compound mirror for the
first cavity.># The reflection coefficient of this compound mirror is frequency-
dependent and complex. It is a function of the detuning and the impedance
matching of the second cavity. Whenever the length of this second cavity
changes, the light inside the first cavity reflected from the compound mirror,
which represents the second cavity, experiences a phase change, which in
turn changes the resonance condition of the first cavity. A change in the error

248M. H. Wimmer, ‘Coupled nonclassical systems for coherent backaction noise cancellation’, PhD
thesis, Leibniz Universitdt Hannover, 2016; H. WeiSbrich, ‘Untersuchungen zur Frequenzsta-
bilisierung gekoppelter optischer Resonatoren’, Master thesis, Leibniz Universitat Hannover,
2017.

*9A. Thiiring, R. Schnabel, H. Liick and K. Danzmann, ‘Detuned Twin-Signal-Recycling for
ultrahigh-precision interferometers’, Opt. Lett. 32 (2007), 985; A. Thiiring, ‘Investigations of
coupled and Kerr non-linear optical resonators’, PhD thesis, Leibniz Universitdt Hannover,
2009; Wimmer, PhD thesis (2016); WeiSbrich, Master thesis (2017).
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signal of one cavity cannot be attributed to a phase change in said cavity but
could also be caused by the other cavity.

While this view is more general and somewhat more correct,”>° another,
more abstract way of looking at it yields further understanding of the observed
effects. The two coupled cavities can be described as two coupled harmonic
oscillators, cf. Sec. 1.1. If the coupling between two harmonic oscillators is
strong enough, they hybridise and can not be seen as two individual systems
any more, but as one new system. The resonances of the new system as well
as their linewidths are different from the resonance frequencies of the single
(sub-)systems and their respective linewidths. Common in different fields
in physics, e.g. opto-mechanics,*>" atomic physics,*>* classical mechanics,*>3
this approach is used to calculate coupling effects in the following Sec. 5.1.2.
It is compared to a transfer-matrix description closer to the experiment in
Sec. 5.2.2.

The question still remains how the two coupled cavities can be stabilised.
There are three options, explained in the following paragraphs.

MAKE CAVITIES DISTINGUISHABLE. The two main characteristics of a cavity
seen as a harmonic oscillator are its resonance frequency and its linewidth. The
resonance frequency is the parameter to be controlled, leaving the linewidth
to distinguish between the two cavities. If the linewidths are different, suitable
side-bands for a Pound-Drever-Hall lock are reflected off the cavity with
smaller linewidth, but enter the cavity with bigger linewidth. Demodulation
of the beat signal delivers an error signal only for one cavity, which can be
stabilised first. Once this cavity is stably locked, the other one can also be
locked. The stabilisation scheme of coupled cavities in the aLIGO detectors
makes use of their difference in linewidths.?>4 This does not work if the
linewidths of the two cavities are similar, as was the case in the schemes
previously tried in this group, see Fig. 5.1. If the cavities are travelling wave

25°Tt does not rely on the single-mode approximation made when using the Hamiltonian formalism,
cf. also Sec. 5.2.2.

251S. Groblacher, K. Hammerer, M. R. Vanner and M. Aspelmeyer, ‘Observation of strong coupling
between a micromechanical resonator and an optical cavity field’, Nature 460 (2009), 724-727.

252R. J. Thompson, G. Rempe and H. J. Kimble, ‘Observation of normal-mode splitting for an
atom in an optical cavity’, Phys. Rev. Lett. 68 (1992), 1132-1135.

253L. Novotny, ‘Strong coupling, energy splitting, and level crossings: A classical perspective’, Am.
J. Phys. 78 (2010), 1199-1202.

254A. Staley et al., “Achieving resonance in the Advanced LIGO gravitational-wave interferometer’,
Class. Quantum Gravity 31 (2014), 245010.
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resonators, they can be made different by inserting an optical diode (e.g., a
Faraday rotator) into one cavity and use counter-propagating locking beams.
This comes, however, at the cost of introducing additional losses. Another
option also used in the aLIGO detectors®> is to make one cavity resonant for
light of a different colour. This approach requires optical coatings for multiple
wavelengths and an additional light source.

KNow sysTEM pyNaMIcs. Coupled cavities have two degrees of freedom —
the phase (or length or detuning) of cavity one and the phase of cavity two.
These are the quantities to be stabilised. It should in principle be possible to
gather enough information from two independent measurements to trace back
which of the two phases changed, and correct for that change. This might be
done with measurements of amplitudes and phases of the outgoing beams. If
the system can be modelled well enough, a change in the measurements can
be attributed to a change in either cavity one or cavity two. The challenge of
this approach lies in the quality of the model and the quality and amount of
data. As much as four homodyne detectors measuring amplitudes and phases
of two outgoing beams might be necessary for a reliable state estimation.

USE TWO CAVITIES IN ONE. Another option is to simplify the set-up, a
solution in anticipation of Sec. 5.2’s results: If a wave plate is used as a beam
splitter, and there is no need to spatially separate the two coupled modes, they
can use the same beam path and the same set of mirrors. As a result, occurring
phase changes caused by environmental disturbances always affect both modes
equally. Additionally, only one beam path needs to be stabilised instead of
two. None of the disadvantages of the other two options applies here. Instead,
this approach simplifies the set-up. Its successful implementation is shown in
Sec. 5.3.

5.1.2 THEORETICAL DESCRIPTION OF COUPLED CAVITIES

A system of two coupled harmonic oscillators with modes 4 and ¢ can be
described using the Hamiltonian formalism as introduced in Sec. 2.3. With
resonance frequencies w, and w. detuned from a reference frequency wy
such that Ay = wy — w, and A = wy — w¢, the Hamiltonian Hsys in a frame

255Staley et al. (2014).
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rotating with wy is
Hyys = Nad'a + Accte — gus(a'e + act) (5.1)

with a coupling strength gps coupling the 4 and ¢. The Hamiltonian, together
with damping and driving terms quantified by the linewidths x, and x., gives
rise to the coupled equations of motion

K . .
qa= —Eau — iMaa + igpsC + \/Kallin, (5.2a)
K ) .
¢ = —Ecc — 1AcC 4 1gpsa 4 \/KcCin, (5.2b)
or, in matrix form,
—Ka/2 — i, ing
( s k)2 — in) AT Rindin

Cin

= (1), w= ("), Ke—digmvR), 63)

where, taking the classical limit, hats are omitted.
This system can easily be diagonalised (discarding the driving terms), with
eigenvalues A+ and eigenvectors d+

Ar = —xky/2—1 (A+ =+ \/ggs + (A= —ix_ /2)2> , (5-4)
~A- ik /2% [gh+ (A —ix_/2)?
dy = a+c, (5.5)
IBs

with n A LA

_ Kg T K RAY] c
K== At = 5 (5.6)

such that

d= ( 0 /\> d with d = (d) . (5.7)

The diagonalised equations of motion are easily solved, d+ (t) = dp exp A+t.
Effects typical for coupled oscillators can be seen in Egs. 5.4 and 5.5: The
new eigenmodes, also called normal modes®>° are superpositions of the modes

256Gee, e.g., Haus and Huang (1991), another term, especially in the context of exceptional points,
is super modes.
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FIGURE 5.2: Normal-mode splitting and effective linewidths. Left: Coupling the
modes shifts the resonance frequencies Im A4 of the coupled system, leading to a
splitting of degenerate modes. Right: Whereas the resonances split, the coupling
causes the dampings Re A+ to synthesise. Plotted from Eq. 5.4.

of the uncoupled systems. The new resonance frequencies Im A+ depend on
the uncoupled resonance frequencies w; and A;, respectively, on the coupling
strength gps, and on the difference of uncoupled linewidths x_. The damping
of the new modes has become Re A.+. The coupling effects are strongest in the
degenerate case A_ = 0.

A+ warrants more attention as it contains normal-mode resonance frequen-
cies and dampings. With strong enough coupling, a phenomenon called
normal-mode splitting occurs. Starting with degenerate modes, w, = w,, the
coupling causes energy shifts and the normal mode resonances become non-
degenerate, as can be seen in Fig. 5.2. The splitting distance dw is two times the
coupling strength gps in the limit of strong coupling or when the linewidths
are equal (x_ = 0). In the decoupled system, it was possible to change the
detuning of one mode to match its resonance frequency to the other mode’s
resonance (see dashed lines in Fig. 5.3). With coupling, the crossing of reson-
ances is avoided. The system cannot be made degenerate any more by changing
the relative detuning A_, see again Fig. 5.3.

The minimum splitting éw can be found by trying to minimise sw? =
(Im A — Im A_)? over the relative detuning A, which is the same as minim-
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FIGURE 5.3: Avoided crossing. With strongly coupled modes, their resonances cannot
be made degenerate any more, the minimum splitting distance is dw. For an
experimental demonstration, see Fig. 5.15. Plotted from Eq. 5.4.

2
ising [Re \/g§5 + (A —ix- /2)2] :

{Re \/ggs + (A — iK_/Z)z] i

2
=1 (\/g%s K2 /A4 A Ak gk K2 /A A2 —l—iAK)

=1 (- a4 22) + 1 (-2 /A 2P+ 2. (59)

The expression is positive. For g2 — k2 /4 > 0 it becomes minimal for A_ = 0.
For g%s — 2 /4 < 0 it becomes zero if A_ = 0.
The minimum distance of the resonance frequencies is given by

dw :2\/8%S_K2—/4:2\/g%s_ (ra — Kc)2/16 (5.9)
for |gps| > |k—/2| and zero for |gps| < |k—/2|. In an experiment, where the
resonance frequencies can be tuned with respect to each other, A_ = 0 is

reached when the normal-mode splitting is minimal. This is an important
indicator to find the degenerate point A_ = 0.

Similar arguments as for the imaginary part hold for the real part of the
eigenvalues, the damping:

ReAr = —x4/2+Im \/ggs + (A= —ix_/2)2 (5.10)
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Driving only mode a Driving only mode ¢

T T T l T T T
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— 8Bs = 27 x 200kHz

Power in mode

Detuning Detuning

FIGURE 5.4: Normal modes decomposed into original components. The total in-
tracavity power |a|? is represented by solid lines and equal to the sum of dotted
lines, |a|? + |c|?, where the dark dotted lines are |a|? and the light dotted lines
are \c|2. In the limit of strong coupling (red), it does not matter whether one or
the other mode is driven. Driving the smaller linewidth mode (mode a) results in
higher intracavity power in the case of smaller coupling (compare blue solid lines
in left and right plot). Also for smaller coupling, a splitting can be observed in
one of the modes even if normal-mode splitting does not occur, see right plot
and Fig. 5.5. Plotted from Eq. 5.11, plot parameters are: x, = 27 x 650kHz,
ke = 27 x 1.3MHz, Ay = Ac. It follows that dwq = 27 x 484kHz for
s = 271 x 200 kHz.

The normal-mode linewidths converge towards higher coupling strengths.

Their difference is minimal when A_ = 0 and given by 24/¢% —x% /4 at

A_ = 0. It becomes zero for k2 /4 < gZ.

Now, the the cavity output spectrum, obtained by solving the equations of
motion including the driving fields, Eq. 5.3, can be studied. In an experiment,
this would be accomplished by photodetection in transmission of the coupled
cavities, see Sec. 5.3 and Fig. 5.12. In Fourier space, the solution for the
intracavity field a is

a=i [ggs — (W Aa — ik /2) (W + Ac — iKC/Z)] B
" (w + Ac —ik/2 gBs ) <\/ﬁﬂm> ‘

8Bs w + Ay —iKa /2 VKcCin

The absolute squared of the intracavity field a is proportional to the intracavity

(5.11)
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power.

Two coupled damped and driven harmonic oscillators show peculiar beha-
viour which depends on driving details. For example, if driven with a suitable
combination of input modes, it is possible to excite only one of the normal
modes. As the other is not excited at all, normal mode splitting cannot be
observed. To obtain simple and experimentally verifiable expressions, two
assumptions are made. First, only one of the system modes is driven. Second,
the system is tuned to minimum splitting, where A_ is zero.*>”

Taking only one of a’s entries means a decomposition of the normal modes
back into their original components 2 and c. The total intracavity power,
|aJ?, and the powers in the two parts, |a|> and |c|?, are plotted in Fig. 5.4 for
different coupling strengths ggs. Peaks in the decomposed spectrum do not
necessarily coincide with normal mode resonances. This is especially true for
small coupling strengths close to the difference in linewidth. In fact, if only
the mode with bigger linewidth (here, mode c) is driven, a splitting can be
resolved in this mode even if the normal mode splitting cannot be observed
due to the not sufficient coupling strength. Conversely, the splitting in the
mode with smaller linewidth (here, mode a) is smaller than the normal-mode
splitting. The different splittings can be expressed as follows, where only one
of the original modes, here chosen to be mode ¢, is driven:258

¢ Normal-mode resonance splitting (as before):

Sw = 24/g% — x> /4 (5.12)

* Splitting of undriven mode:

Sy :2\/g§s—1<3,/4—1<2_/4 (5.13)

¢ Splitting of driven mode c:

dwy = 2\/g55\/g§5 + Kok — K2 /4 (5.14)

The normal-mode resonances do not depend on which of the two modes is
driven. Neither does the splitting in the undriven mode, but for a splitting

257Experimentally, the conditions can be realised by driving either only with s- or only with
p-polarised light, and by changing the crystal temperature to tune the relative phase between
s- and p-polarised mode, see Sec. 5.3.

258These are obtained by analytically finding maxima in Eq. 5.11 if driven with only one mode.
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FIGURE 5.5: Splittings over coupling strength while driving only mode ¢, obtained
from Egs. 5.12-5.14. Splitting in the driven mode is the earliest to occur. Compare
this plot with the experimentally obtained Fig. 5.17. Plot parameters are x, =
27t x 650kHz, x. = 27t x 1.3MHz.

to occur here, larger coupling strengths are needed than for normal-mode
splitting. Not so for the driven mode: Here, a splitting can be observed
even before the normal-mode splitting condition ggs > x_ /2 is fulfilled (if
the mode with larger linewidth is driven). With observing the decomposed
intracavity power, |a|?> and |c|?, and the knowledge of the linewidths x, and .,
the coupling strength gps can be determined even if the normal-mode splitting
dw cannot be observed, see Fig. 5.5 for the onset of splittings over coupling
strengths and for the splitting sizes.

If the system is driven with both polarisations while keeping an equal de-

tuning A. = A, resulting in A_ = 0, the intracavity power for one polarisation
can be minimised at w = —A,¢. It becomes zero for a suitable ratio of driving
fields,
K
IEC\/ Kaindin = &Bsv/KcinCin = 4= 0, (5.15a)
K
Bs4/Ka,indin = l?a\/ Kc,inCin = c¢=0, (515b)

which can be seen in Fig. 5.6. This is because, under these conditions, the
power coupled into one mode from the other mode via the beam-splitter
interaction is exactly the same as the power coupled into said mode via driving,
but phase-shifted for complete destructive interference.?>® The maxima of that

259T. Oishi and M. Tomita, ‘Inverted coupled-resonator-induced transparency’, Phys. Rev. A 88
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FIGURE 5.6: Destructive interference in coupled cavities. Similar to Fig. 5.4, the total
intracavity power |a|? is represented by solid lines and equal to the sum of dotted
lines, |a|?> + |c|?, where the dark dotted lines are |a|? and the light dotted lines
are |c|2. Plot parameters are x; = 27 X 650kHz, k. = 271 x 1.3MHz, A; = A,
cin = —i(1 — k)ay,, where k = 0.25 and k = 0.77 for stronger and weaker coupling,
respectively, resulting in no power in mode ¢ at resonance. It follows that dwq; =
27 x 940 kHz. Plotted from Eq. 5.11. See Fig. 5.16 for experimental realisation.

mode show a frequency splitting of>%°

Swgi = 24/ g8 + Kake /4. (5.16)

If the linewidths %, and x. are known well enough and the driving powers
ain and cj, and the relative detuning A_ as well as the relative phase between
ain and cj, can be controlled appropriately, even very small coupling strength
could be measured this way.2%!

Note that up to now, no assumptions about the nature of the two cavity
modes is made — in principle, they can be spatial modes, polarisation modes,
or transverse electromagnetic modes. The same is true for the kind of the
coupling, be it realised by a beam splitter, by a wave plate or by something
else. The results presented here are very general and apply to all kinds of

(2013), 063804.
26°For modes different in their polarisation, the necessary phase shift of 77/2 can be realised with
a quarter-wave plate, the ratio between aj, and cj, can be tuned with a half-wave plate.
261Eq. 5.16 seems to suggest that destructive interference and a splitting is visible even without
coupling (gss = 0). This is not true because in this case, Eqgs. 5.15, which are a prerequisite for
Eq. 5.16, cannot be fulfilled. Note also that the experimental realisation turns out to be rather
difficult for very small coupling strengths ggs, see Sec. 5.3.
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a4

ap

FIGURE 5.7: Inputs and outputs of a beam splitter.

couplings between two modes (as long as the single-mode approximation
inherent in the Hamiltonian method is justified).

5.2 WAVE PLATE AS BEAM SPLITTER

In this section, the use of a wave plate as a beam splitter is studied theoretically,
using first a Hamiltonian model and then a transfer-matrix approach. The
latter approach does not rely on the single-mode approximation and is thus
more general.

5.2.1 COUPLING STRENGTH OF A WAVE PLATE

In the following paragraphs, the equivalence between a wave plate and a
beam splitter is shown. A beam splitter is a two-port device, coupling two
input modes to two output modes and in the process mixing the two input
modes. This can be depicted with the following relation:

asy _ ay
() = e (%) 67

t 7
MBS = (T‘ t/) (518)

where the coupling coefficients need to fulfil the following relations due to
energy conservation (or, quantum-mechanically, conservation of commutation

178



5.2 WAVE PLATE AS BEAM SPLITTER

relations):2%>

rl =11, It =1t], (5.192)
>+ 7 =1, (5.19b)
7t = 0. (5.190)

Usually, the absolute phase shifts do not matter because the modes are spatially
separated and acquire different phases anyway. To make the theory self-
consistent, either a phase of 77/2 (a factor of i) is added to the off-diagonal
elements or a phase of 7t (a factor of —1) is added to one diagonal element.?%3

A wave plate is a birefringent medium which shifts the phase of the polarisa-
tion component perpendicular to its optical axis compared to the component
parallel to its optical axis. In the following, the relative phase shift is called 6,
whereas the angle of the optical axis towards s-polarised light is denoted as J.
With two input modes being of orthogonal polarisation and two output modes
in the basis of the input modes, the effect of a wave plate can be written as?*4

wa = Mot ( _‘S)Mdelay (9) Mot (5)

[ cosé sind) (1 O cosd —siné
" \—siné cosd) \0 e ) \sind cosé

[ cos’6+e sin?6  —(1—e ) sindcosé
—(1—e")sindcosd e cos?d + sin?s
t r,

_ ( wp yp) , (5.20)
T'wp twp

where the wave plate coefficients also fulfil the conditions in Egs. 5.19a-5.19c.
Thus, a wave plate coupling two polarisation components to each other is
equivalent to a beam splitter coupling two spatial modes to each other. As the
output modes are not spatially separated any more, the wave plate coupling
introduces noticeable phase shifts, which depend on the wave plate angle ¢
and delay 6.

262C, C. Gerry and P. L. Knight, Introductory Quantum Optics, Cambridge et al.. Cambridge
University Press, 2005, Sec. 6.2.

263For a discussion of phase relations at a beam splitter see also C. Bond, D. Brown, A. Freise and
K. A. Strain, ‘Interferometer techniques for gravitational-wave detection’, Living Rev. Relativ.
19 (2016), 1221, Sec. 2.4.

264 Actually, this is true for any birefringent medium if the angle of incidence is chosen such that
the medium does not exhibit double refraction.
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Seeing that the wave plate is equivalent to a beam splitter, a closer look
at the Hamiltonian description of such an interaction is warranted. In the
remainder of this section, an effective wave plate Hamiltonian is derived
following Leonhardt and Neumaier.2®> Quantum-mechanically, a unitary
operator S of the form § = e~ At is needed, such that 4 is transformed as

| A PN
a = dout = M,,a = 5"a$, (5.21)
where

M 43
A 4y . iy , Mwp 0
a= at |- dout = af |- wa = ( 0 M;rvp (5-22)

~t ~t

a

2

and § acts individually on each operator. The matrix Mj,p is diagonalisable
and can be written as MQVP = oK with

K =My 1n(M(/ie1ay)Mi'0t/ (5-23)

rot

M, 0
1  Miot O ! _ delay .
where Mig, = (M5 1) ), Migpyy = ( 0" M, ) 04 Macay, Mror as in

Eq. 5.20. Now, an effective Hamiltonian for the wave plate interaction can be
constructed as

A

14, s
Heg = §a+(—1GK)a (5-24)

with the G specifying commutation relations, G = (3 9 ), leading to

PN

S = e*iHeff, (5.25)

Hyy = —0sin?5 ala; — 0 cos?d aSar — 0 cosdsind (ﬁ{flz + ﬁyﬁ}) . (5.26)

Introducing a time-dependency, such that Hey = prt, the wave plate
Hamiltonian Hyyp becomes Hyyp, = Hegs/t = cHege/L with t = L/c, the cav-
ity round-trip time. Then, § = e~ iHwp! transforms to the familiar form for
time-evolution Hamiltonians.

Equation 5.26 can be compared with the formulation in Sec. 5.1.2, Eq. 5.1.
In addition to the beam-splitter interaction o aid, + 4,23, the wave plate

interaction shifts the phase of each mode, specified by the terms o 474;. A

265U. Leonhardt and A. Neumaier, ‘Explicit effective Hamiltonians for general linear quantum-
optical networks’, J. Opt. B 6 (2003), L1-L4.
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FIGURE 5.8: Simplified scheme for cavities coupled with a wave plate.

shift in resonance frequencies induced by a wave plate coupling two cavity
modes does not only occur due to the coupling, but also due to this phase
shift. In the experiment, the latter effect can be undone with an additional
phase shifter, realised by a temperature-controlled birefringent crystal, see
Sec. 5.3.

The beam-splitter coupling strength, realised with a wave plate, resulting

from the formalism above by again comparing Eq. 5.26 with Eq. 5.1 amounts
t0266

c _ co .
Bs = ZQ cosdsind = 7 sin 26. (5.27)

Although a quantum-mechanical formalism was used in this section, the
effects presented are not quantum-mechancial, but classical. They can also be
studied with a classical transfer matrix approach, which will be done in the
following Sec. 5.2.2.

5.2.2 SIMULATING WAVE-PLATE COUPLING WITH TRANSFER-MATRIX
APPROACH

As the wave plate coupling is a classical effect, it can be written solely in
classical terms. This is done in this section by using the transfer-matrix
approach. Light is coupled into the cavity and passes several optical elements.
In a stable cavity on resonance, the field has to replicate after one round-trip.
A vector description is used where a = (as,ap) contains amplitudes for s- and
p-polarised light. Further elements of the simplified system as in Fig. 5.8 are:

* an input coupling mirror with amplitude reflectivities and transmissivit-

ies ris“, tisn, rg‘, tg‘ for the s-polarised and the p-polarised mode,

2661t turns out that the prefactor /2 seems to be an approximation for sin6/2, cf. the following
Sec. 5.2.2, especially Fig. 5.9.
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* a wave plate with a relative delay 6 (¢ = 7 for half-wave plate and
0 = /2 for quarter-wave plate) between s- and p-polarised modes and
an angle J of its optical axis towards the s-polarised mode,

® a mirror with coefficients ré, té, ri,, ti, to model losses inside the cavity,

* propagation lengths of Ls, Ly of s- and p-polarised modes which lead to
detunings of the cavity.

The system of equations is then

Ain = Ajn, (5'28a)
a; = tinain + TinMpropaz, (5.28b)
a = rlepal, (5.28¢)
dout — _rinain + tinMprOpaZ/ (528d)
with the matrices

My = Miot(—6) x Mdelay(g) X Myot(9), (5.29a)

cosd —sind
Mrot = (sin5 cosd ) ’ (5-2)
Mgelay = diag(1,e iy, (5.29¢)
Mprop = diag(e’", '), (5-29d)
in — diag(#", tm) (5.29€)
in — diag(ri", m) (5.29f)
! = diag(ry, 7}). (5.298)

The system of equations 5.28 can be solved. The intracavity field a; becomes

a; = (]1 - rinMproprlep> ;. (5.30)

Taking the absolute square of a; gives information about the intracavity power,
which depends on the wave plate coupling. This can be used to get a mode
spectrum for comparison of this ansatz to the Hamiltonian one, see Fig. 5.9.
In the single-mode approximation, far away from other resonances, which
translates to an FSR much bigger than the linewidths, FSR > x,., and a
small coupling strength ggs such that the shifted resonances are still far away
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FIGURE 5.9: Coupled cavities mode spectrum with small coupling while driving
only mode c as in Fig. 5.4. Note how the Hamiltonian formalism only grasps one
resonance. The main figure shows only the normal modes, the inset addition-
ally includes the intracavity field decomposed into s- and p-polarised parts as in
Fig. 5.4. Plot parameters are similar to the actual experiment: L = 1.56m, § = 0.2°,
0 =m A =0,k = 21 x 1.7MHz, x, = 27 x 800 kHz, where the linewidths
correspond to total mirror reflectivities of R = 0.946, R, = 0.974.

from other resonances, FSR >> dw, the Hamiltonian approach is an excellent
approximation. It should be noted that the proper coupling strength is not
as derived in the preceding section. Rather, the correct prefactor seems to be
sin /2 instead of 6/2, which is confirmed by the experiment in the following
Sec. 5.3.207

5.3 MEASURING ggs

The beam-splitter coupling strength of a birefringent medium depends only
on the relative delay 6 it causes, determined by its birefringence and its length,
on the angle of its optical axis J, and on the cavity length. To determine
the coupling strength, the splitting in resonance frequencies caused by the
coupling device can be used according to Eqs. 5.12-5.14. In the presented
experiment, the two polarisation modes of a cavity are coupled with a wave

267The reason for this is not really clear to me. My guess is that in the course of the Hamiltonian
formalism, at some point the implicit assumption of small delays was made, but discussions
with a quantum optics theorist could not clarify this. Another reason might be a wrong use of
the Fourier transform.
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plate.2®® To find the minimum distance of the splitting, the modes are shifted
relatively to each other with a temperature-dependent birefringent crystal.
This is necessary because a cavity in practice is inherently birefringent due to
the mirrors’ coatings, and to account for the additional phase shift caused by
a wave plate as seen in Eq. 5.26.

A set-up like that, detailed further in the next Sec. 5.3.1, proves to offer
several advantages not only for CONC but for general studies of coupled
optical resonators. First, the coupling strength is easily tunable via rotating
the wave plate. Second, the resonance frequencies of the two modes are
easily shifted with the crystal temperature. And third, the normal modes can
be decomposed back into the original modes easily with a polarising beam
splitter. The latter is a characteristic usually not present in coupled optical
resonators.2%

5.3.1 EXPERIMENTAL SET-UP

To compare experimental results with above theory, and to find a suitable
design for future CQNC experiments, attention has to be paid to some re-
quirements:

¢ The cavity linewidth should be different for the two polarisation modes
for several of reasons. First, CQNC requires that the ancilla cavity’s
linewidth be as small as possible, whereas the other mode should be
efficiently coupled into the cavity. Second, the other mode’s linewidth
determines the measurement strength G,nc which in the cascaded set-
up needs to be matched to the opto-mechanical measurement strength
G, see Sec. 2.3.3. Third, a small linewidth for one polarisation eases
resolving the transmission peaks and mode splitting. Fourth, if the
linewidths are different, it is possible to also reach the regime below
the normal-mode splitting. Additionally, with different linewidths, the
convergence of the normal-mode linewidths when coupling the modes
could be observed.

2680Other unwanted coupling was caused by a not perfectly aligned birefringent nonlinear crystal,
see Fig. 5.18.

209Incidentally, this set-up shows exceptional points. It also makes it possible to realise a parity-
time symmetric non-Hermitian Hamiltonian. There has been a lot of interest in these recently,
see, e.g., M.-A. Miri and A. Alii, “Exceptional points in optics and photonics’, Science 363
(2019), eaary709, S. K. Ozdemir, S. Rotter, F. Nori and L. Yang, ‘Parity—time symmetry and
exceptional points in photonics’, Nat. Mater. (2019), and references therein.
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¢ For CONC, a nonlinear crystal inside the cavity will require a small
beam waist. To show coupled cavity theory, an element to detune the
mode resonances relative to each other is required. Conveniently, a
nonlinear crystal®’° is used whose temperature can be changed and
with it the difference in resonance frequencies of the polarisation modes.
Again, a small waist is required.

* The cavity needs to be a travelling-wave cavity.>’* In order to keep astig-
matic effects small, small angles of incidence on all focussing elements
are required.

A non-zero angle of incidence of a mirror breaks the degeneracy of its
reflection coefficient between the orthogonally polarised modes — the larger
the angle, the larger the difference in reflectivity and thus the difference in
linewidths.?”* All other mirrors should be highly reflective for both polarisa-
tions to not induce additional losses, which requires small angles of incidence.
One mirror with a large angle of incidence and small angles of incidence on
all other mirrors results in an odd number of cavity mirrors if the number of
mirrors is kept small.

Focussing elements are needed for the crystal inside the cavity. The NDOPO-
design from Sec. 4.4.1 serves as a starting point. The angles of incidence of
the flat mirrors M, and My are changed slightly and a fifth mirror M is
introduced as an input coupler. The basic design thus is as in Fig. 5.10.

The cavity has several geometric degrees of freedom, see Fig. 5.11. First,
two angles are fixed, which determines the third one according to

o+ B+ =90 (5.31)

27°The crystal used here is a PPKTP crystal with a poling period of 9.2nm, made by Raicol and
earlier used for SHG/down-conversion interaction. It couples infra-red light polarised along
its z-axis to green light of the same polarisation leading to (in this experiment unwanted)
creation of green light from s-polarised light. When possible, the temperature was chosen
such that phase-matching condition for this process was not fulfilled, which was the case
especially at temperatures below 20 °C.

271One reason is the ease of separating input and output beams. Another reason is that in a linear
cavity, a half-wave plate would be traversed twice per round-trip and thus would not have an
effect.

272 After finishing this thesis, another method of breaking the degeneracy became available. Micro-
structuring membranes can lead to different reflectivities for orthogonal polarisations, even
under normal incidence (private communication with Johannes Dickmann, PTB Braunsch-
weig).
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M, Ms

FIGURE 5.10: 5-mirror coupled cavities scheme. Flat mirror M; breaks the symmetry
between s- and p-polarised light and causes different linewidths for the two po-
larisations. It additionally serves as input coupler. Flat mirrors My and Ms are
highly reflective and are hit under a small angle of incidence to avoid polarisation-
dependent losses. Curved mirrors M3 and My are hit under a small angle of
incidence for the same reason and to additionally avoid astigmatism. They focus
the beam into the crystal. A wave plate A/n couples the polarisation modes.

d =2AB, y; = AE,
x=0D, y,=0A

FIGURE 5.11: Geometry of 5-mirror coupled cavities. Parameters are given in Tab. 5.1.
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In a symmetrical configuration as in Fig. 5.11, two more parameters determine
the geometrical layout. The distance between the two curved mirrors M3
and M, at points B, B’ and the total cavity length are chosen. Together with
the radius of curvature of the mirrors, these also determine the geometric
eigenmode, cf. Sec. 1.2.2. The geometrical layout is thus determined by four
parameters, namely two angles, « and B and two distances, d and L. The
eigenmode is determined by the distances d and L, and the effective radius of
curvature of the mirror, Reg, which depends on the radius of curvature R and
the angle of incidence « and is different in horizontal and vertical direction.

Of course, four different parameters could be chosen for the geometrical
layout, as for example, again the distance d = 2AB = BB’ between the curved
mirrors, and then the distance 2x = 20D = DD’ between the flat mirrors
M, and My, the vertical distance y; = OA between the incoupler M; and the
curved mirrors, and the vertical distance y, = AE between the curved mirrors
and the flat mirrors, as in Fig. 5.11. For the final design, first the critical angles
« and B were chosen to be as small as possible. Then, the distances d and
L were chosen for an appropriate eigenmode with given radii of curvature
R = 100mm. Next, the parameters y1, y2, x were calculated and for ease
of assembly changed to multiples of 2.5 cm, the optical table’s grid distance.
This did not result in big changes of angles and distances. The final set of
parameters is listed in Tab. 5.1.

The set-up as assembled on the optical table is shown in Fig. 5.12 and allows
observation of the total intracavity power and the s-polarised and p-polarised
parts of the intracavity modes separately.

5.3.2 INFERRING ggs

For coupling strength measurements, the frequency distances between the
various splittings calculated in Sec. 5.1.2 need to be measured. As in Sec. 4.4.1,
it is necessary to calibrate the oscilloscope’s time axis. This is done as shown
in Fig. 5.14. Misaligning the input beam vertically causes an equally spaced
comb of higher-order modes to show up. Utilising the spacing to linearise the
nonlinear piezo movement, the cavity’s free spectral range calculated from its
length can be used to convert the time axis into frequencies.

Introducing a wave plate into the set-up couples the two polarisation modes,
resulting in normal-mode splitting. Changing the relative detuning between
s- and p-polarised mode in the cavity driven only with p-polarised light
leads to the observation of an avoided crossing as in Fig. 5.15. At the point
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5 COUPLED CAVITIES AND BEAM-SPLITTERLIKE INTERACTION

TABLE 5.1: Design parameters of 5-mirror coupled cavities. For both, the geometrical
layout and the eigenmode, shaded parameters are fixed beforehand and determ-
ine the remaining parameters. Waists wy in the crystal and w; on input coupler
M result from geometrical layout and radius of curvature R.

Parameter in Fig. 5.11 Value
X OD 32.5cm
d 2AB 11cm
= .
% 1 OA 5cm
% 2 AE 5cm
*28‘3 L 2ABCDE  156m
5 o 7.5°
O
B 9.6°
27 145.8°
) R 100 mm
o]
s
S wo 22 pm
&
5] w1 380 pm
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Top < 100% '7

FIGURE 5.12: Experimental set-up of 5-mirror coupled cavities. Light can be coupled
into the cavity via the front mirror with T, ~ 97 % (only p-polarised light) or via
the not quite highly-reflective rear piezo-mirror with Ty, < 100 %. The intracavity
power is observed in transmission of a highly-reflective curved mirror. This mir-
ror also transmits (accidentally) created green light, separated from the infra-red
light with a dichroic mirror. The infra-red light is then separated into orthogonal
polarisations with a polarising beam splitter and sent onto two photodetectors.
See also picture of experimental set-up, Fig. 5.13.

FIGURE 5.13: Picture of 5-mirror coupled cavities as set up on the optical table. Com-
pare to schematic in Fig. 5.12.
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FIGURE 5.14: Calibrating time axis with higher-order mode spacing. Left: Trans-
mission of vertical higher-order modes (red), time it took the piezo to cover the
distance between adjacent higher order modes (blue), voltage applied to the
piezo (green). Right: Velocity of piezo at different points in time (blue), calculated
from distances between higher-order modes in space (vertical Gouy phase over
wave vector, divided by two) and time (measured); voltage on piezo for reference.
Cf. Fig 3.7 for nonlinear piezo behaviour and Fig. 1.12 for Gouy phase.

of minimal splitting, where A_ = 0, both normal mode resonances contain
both polarisations as expected from Eq. 5.5 and from simulations, cf. Fig. 5.9.
There is an intuitive explanation for that: Modes are those excitations of a
system which do not change over time into other modes or change their form.
Coupling of p-polarised light to s-polarised light means the conversion of a
part of the p-polarised light into s-polarised light. Contrary to a free-running
beam, the cavity field’s p-polarised part alone does not constitute a mode. A
mode, which does not change over time, has to be in a ‘conversion equilibrium’
and thus needs to consist of p- as well as s-polarised light.

Driving the system with a suitable combination of s- and p-polarised light
as given by Eq. 5.15 leads to destructive interference in one mode. This could
be used to measure the coupling strength according to Eq. 5.16. Very small
coupling strengths require a high, but still perfectly matched, ratio between
the amplitudes of the input modes for complete destructive interference. Only
for complete destructive interference, Eq. 5.16 for the coupling strength is
valid. Unfortunately, in this experiment, it was not possible to obtain complete
destructive interference for very small couplings. This is probably due to
mode matching differences between s- and p-polarised modes, and coupling
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Total transmitted power  p-polarised part s-polarised part

P

gunumRd
gued
gurd

Frequency Frequency Frequency

FIGURE 5.15: Experimental observation of avoided crossing. This measurement cor-
responds to the theoretical plot in Fig. 5.3. The wave plate was set under an angle
of roughly 5° leading to strong coupling between the two polarisation modes. The
avoided crossing is observed by varying the relative detuning via changing the
crystal’s temperature. The two resonances ‘repel” each other with a minimal split-
ting of ca. 5MHz and avoid a crossing. When the relative detuning approaches
zero, the normal modes entail both original modes as can be seen by breaking
the transmitted light into its polarisation components. A thermistor is used to

monitor temperature changes. Its resistance is tuned from 66 k() to 106 k(2 by
changing the temperature from 33 °C to 19 °C.
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T T T T T T T T T | T 1
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FIGURE 5.16: Coupling-induced destructive interference. The polarisation modes
were coupled by a misaligned crystal, see also Fig. 5.18. Destructive interference
around A_ = 0 is observed in the p-polarised part with a suitable driving field.
But only with complete destructive interference, the distance between the peaks
can be used to extract the coupling strength. This figure corresponds to the theor-
etical plot in Fig. 5.6.

to higher-order modes.

Instead, the coupling strength can be estimated from splittings of normal,
driven, and undriven modes as in Egs. 5.12-5.14. The cavity is driven only with
p-polarised light, which is the mode with a larger linewidth. Linewidths were
measured to be ks = 271 x 900 kHz and x, = 271 x 1.95 MHz, corresponding to
intracavity losses of ca. 2.9 % in addition to the transmission of the front mirror.
Changes in the coupling strength due to rotating a half-wave plate®’3 in a
precision rotation mount*7# at the degeneracy point (A_ = 0) caused splittings
in the resonances. Minimum coupling is realised by minimising the intracavity
power of s-polarised light at the degeneracy point over the wave plate angle ¢.
At this point, no splitting occurs. By changing the wave plate angle J, the onset
of the three splittings as in Fig. 5.17 can be observed. From this measurement,
a smallest observed coupling strength of ggs = 271 x 235 kHz was obtained.
The precise handling of the wave plate rotation makes it possible to go to even
smaller coupling strengths, in theory down to zero coupling. In practice, some
p-polarised light is converted into s-polarised light even at the point of smallest
coupling. Comparing peak heights with the simulation in Sec. 5.2.2 suggests
a minimum coupling strength of ggs = 271 X 500 Hz due to imperfections in
the alignment of the wave plate’s optical axis or residual misalignment of the

273Union Optic WPZ2320-1064nm.
*74High-precision rotation mount PRM1/M by Thorlabs.
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FIGURE 5.17: Mode splitting and beam-splitter coupling strength measurement (com-
pare with Fig. 5.5). The cavity was driven with p-polarised light, the swept trans-
mitted spectrum was calibrated as in Fig. 5.14 and used to determine the distance
of split modes. Linewidths were independently measured to be x5 = 271 x 900 kHz,
kp = 27 x 1.95MHz. The offset from the micrometre scale’s zero to min-
imal coupling was determined to be 890 pm. The coupling strength was mod-
elled as gss = A x sin24. Then, Egs. 5.12-5.14 were all three fitted to the data
points simultaneously with the single remaining fit constant A, which resul-
tedin A = 27t x 28.0 MHz roughly in agreement with the expected value of
A = fsin % = 27t x 30.6 MHz for a half-wave plate. This leads to a smallest
measured coupling strength of ggs = 271 x 235 kHz. Smaller coupling strengths
can be realised but not seen in this experiment as then the splitting is not visible
any more. Including offset and linewidths as fit parameters has a negligible ef-
fect on A but prefers a smaller linewidth x5 = 27t x 800 kHz, a bigger linewidth
kp = 27 X 2.05 MHz and a slight offset of 0.034°. This results in an even smaller
measured coupling strength of ggs = 271 x 205kHz. The right-hand y-axis corres-
ponds to the coupling strength needed for a splitting in the p-polarised mode of
size of the left-hand y-axis.
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FIGURE 5.18: Observed mode splitting due to misaligned crystal. Note the splitting
in the p-polarised mode part due to a misaligned crystal in an otherwise empty
cavity. Note also that the maximum in conversion to green light does not coin-
cide with the maximum of intracavity s-polarised light, which hints at different
polarisation bases for crystal and cavity.

crystal. However, this method would need further investigation if utilised for
reliable measurements of the coupling strength.

Note that the experimental set-up defines three potentially different polar-
isation bases.?’> The incoupling mirror hit under a large angle of incidence
defines the two cavity polarisation modes. The wave plate couples the two
cavity modes according to the angle of its optical axis to the cavity polarisa-
tion basis. A third basis is defined by the birefringent crystal. In an earlier
set-up with a mount which could not be rotated around the light’s direction of
propagation, the crystal’s birefringence visibly coupled the cavity polarisation
modes, see Fig. 5.18. Mode splitting was observed even without a wave plate
inside the cavity. With a better aligned crystal, a difference between the cavity
basis and the crystal basis can still be observed by the fact that the peak in
converted green light does not coincide perfectly with a peak in s-polarised
light, although the effect is much less pronounced than in Fig. 5.18.

From Sec. 5.1.1, it remains to be shown that the cavities can be stabilised
in spite of their coupling. With very small coupling as well as with strong
coupling, a typical Pound-Drever-Hall error signal can be obtained as seen in
Fig. 5.19. For small coupling strengths causing normal-mode splitting, locking

*75More for each additional mirror hit under an angle of incidence. The other four cavity mirrors
omitted due to their small angle of incidence.
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FIGURE 5.19: Error signal of coupled cavities. Left: Very small coupling such that
no splitting occurs (blue trace) and strong coupling with distinct split modes
(red trace). Power in reflection are upper traces, demodulated error signal lower
traces. The usual Pound-Drever-Hall signal makes it easy to lock on (normal-
mode) resonances. Off-resonance locking could be achieved with locking to one
of the side-bands or with changing the error signal’s offset. Right: Small coupling,
which causes small splitting. Here, the error signal is not as pronounced. Still,
on (normal-mode) resonances and right in between, a slope in the error signal is
found, which could be used for locking.
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to the resonances becomes more difficult but is still possible. In Sec. 2.4.1,
requirements for CQNC were determined. It follows from Tab. 2.3 that the
required coupling strength ggs will be too small to cause a normal mode
splitting. The detuning A, will lie within the meter cavity’s linewidth .. This
ensures that, in the cascaded set-up, the negative-mass oscillator consisting
of coupled cavities can be locked with a Pound-Drever-Hall lock as shown
above.

The main results of this chapter are summarised as follows: wave plates
can be used to realise beam-splitter coupling. Their coupling strength ggs
depends on the phase delay 6 specific to the wave plate and on the angle §
between the wave plate’s optical axis and the incoming light’s polarisation.
The smallest measured coupling strength gzs = 271 x 235 kHz lies above the
coupling strength required in Tab. 2.3. The smallest actually realised coupling
strength, however, is much smaller and believed to be of the order of 1kHz.
In a cascaded set-up, where there is no need to spatially separate the coupled
cavity modes, both polarisation modes use the same set of cavity mirrors. The
cavity can then be stabilised with the well-known Pound-Drever-Hall lock.
The 5-mirror coupled cavities still have to be improved in terms of losses, as
the measured ancilla cavity linewidth x, = x5 = 271 x 900 kHz corresponding
to 2.9 % intracavity losses is higher than required.
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CONCLUSION

The aim of this thesis was to develop a comprehensive understanding of
coherent quantum-noise cancellation to determine the specifics of an all-optical
experimental realisation. The starting point was an initial set of parameters
for the three subsystems, the opto-mechanical, the down-conversion and the
beam-splitter interaction, which in principle should enable reduction of back-
action noise.?7® These subsystems, together with the theoretical underpinnings
of CQNC, have been studied further, which has resulted in an updated set of
parameters, here backed by experimental evidence.

This conclusion is divided into three parts. The first part recapitulates
the theoretical and experimental results of this thesis. The second part is
devoted to updating the parameters and the experimentally feasible reduction
of quantum noise, using the knowledge gained through this work. The third
part sums up work proposed as sensible next steps.

WHAT HAS BEEN DONE

CONC. Intuitive ways of understanding coherent quantum-noise cancella-
tion were presented from four different viewpoints, namely as entanglement
of a positive- with a negative-mass oscillator, as destructive interference of
radiation-pressure noise, as undoing ponderomotive squeezing, and as non-
measurement-based feed-forward control. The formal equivalence of negative-
and positive-mass oscillators was shown. They differ only in the description of
mechanical damping and optical damping in the limit of small quality factors.
The motivation behind using a detuned cavity as an effective negative-mass
oscillator was given, as well as an explanation for it being coupled with a

276M. H. Wimmer, D. Steinmeyer, K. Hammerer and M. Heurs, ‘Coherent cancellation of backaction
noise in optomechanical force measurements’, Phys. Rev. A 89 (2014), 053836.
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beam splitter and a down-conversion process to the incoming light field. An
important design decision, namely using optical modes non-degenerate in
their polarisation, was motivated.

Two possible experimental set-ups of all-optical CQNC were presented, an
integrated set-up, where negative- and positive-mass oscillator reside in the
same cavity, and a cascaded set-up, where the cavities containing the two
oscillators are spatially separated. Calculations for the cascaded set-up were
done and compared to earlier calculations of the integrated set-up. Where for
the integrated set-up coupling strengths have to be matched, for the cascaded
set-up it is measurement strengths which have to coincide. They are frequency-
dependent and additionally depend on cavity linewidths. Additionally, in
case of the cascaded set-up, the potential propagation loss from one oscillator
to the other might become problematic. However, under similar conditions
the integrated and the cascaded set-up lead to similar results.

OPTO-MECHANICAL INTERACTION. Two different micro-mechanical sys-
tems, photonic-crystal membranes and Bragg mirrors on a cantilever, were
characterised with regard to resonance frequency, linewidth and effective
mass. The effective mass determines the opto-mechanical coupling strength.
Coupling strength, resonance frequency and potentially linewidth of the
micro-mechanical system will have to be matched by the negative-mass os-
cillator. A first experiment, set up before the lab was closed for construction
work, consisted of a Michelson interferometer at 2 x 10~2 mbar with the op-
tical device as end mirror of one arm. It confirmed that the devices under
test roughly agree with initially suggested parameters with their resonance
frequencies lying in the range of 100 kHz to 1 MHz, and an effective mass of
the membranes of the order of nanograms. The linewidths around 10 Hz were
limited by residual pressure.

DOWN-CONVERSION INTERACTION. A detailed theoretical analysis of differ-
ences and similarities of single- and two-mode squeezing helped gain a better
understanding of the role of different losses for different modes in two-mode
squeezing. Based on these insights, a simplified detection scheme was set-up,
proving that measuring two-mode squeezed light is indeed possible with
a single homodyne detector. This enabled measuring more than 2.3 dB of
squeezing in the newly built experiment, compared to 0.4dB in the old lab.
Full Gaussian state estimation of bipartite states with a single homodyne
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detector should be possible as well.

The relationship between the down-conversion coupling strength for CONC
and squeezing was clearly defined. Different ways of measuring the coupling
strength were devised. Several suggestions of how to improve one or the
other were made. The installation of a new input coupling mirror with lower
transmission led to an improved trade-off between pump parameter and
escape efficiency. In our set-up, the nonlinear crystal’s damage threshold
sets a limit to the usable pump power. It was shown that changing the
beam parameters of the participating beams towards larger waists in order to
pump harder can lead to stronger coupling and outweigh the resulting less
optimal focusing. Three different approaches to measure the down-conversion
coupling strength were conducted. All led to a similar down-conversion
coupling strength of gpc ~ 271 x 200 kHz at 100 mW pump power, well within
the initially required range for this parameter.

BEAM-SPLITTERLIKE INTERACTION. Two coupled optical resonators were
appropriately described as coupled harmonic oscillators. Their Hamiltonian
description, valid in the single-mode approximation, predicted effects such
as normal-mode splitting, different onsets of splittings in the decomposed
modes, and avoided crossing. The splittings are determined by the beam-
splitter coupling strength and the linewidths of the coupled resonators. It
was shown that a birefringent medium is equivalent to a beam splitter; its
corresponding coupling strength was derived. A comparison of the Hamilto-
nian formalism with a transfer matrix approach shows the validity of the
Hamiltonian formulation close to the cavity resonance and determines the
beam-splitter coupling strength.

With this knowledge, it is possible to simplify the set-up of coupled cavities.
If the cavity modes do not have to be separated spatially, both modes can
use the same set of mirrors and travel along the same path. An experiment
was set up in this fashion, the observed effects were in excellent agreement
with the predictions. Using observed mode splittings, the smallest measured
beam-splitter coupling strength was gps ~ 27t x 235 kHz, realised by a half-
wave plate inside the cavity. The wave plate can easily be adjusted for smaller
coupling strengths, but these are difficult to measure. The minimum coupling
realised with a wave plate is estimated to have been of a strength of ca. 500 Hz.

The simplified set-up of coupled cavities enabled locking the cavities with
a Pound-Drever-Hall lock, even when strongly coupled. A stabilisation of
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coupled cavities has been proved difficult before, but is of importance for
CQNC.

CQNC PARAMETERS REVISED

With the knowledge gained in the course of this work, the set of required
experimental parameters is updated with two new sets of parameters, an
optimistic case and a less optimistic one, see Tab. 6.1. Of special interest
are the coupling strengths. The down-conversion coupling has been shown
to be stronger than expected. A coupling strength of gpc = 27 x 250kHz
has been reliably realised in this thesis. The limit with the current set-up at
about gpc = 27 x 450kHz, caused by usable pump power, results in both,
the optimistic and the less optimistic parameter estimate in Tab. 6.1, being
feasible.

The smallest beam-splitter coupling strength was measured to be gps =
27 x 235kHz, but smaller coupling strengths as well as couplings of several
MHz can easily be realised. This seems to be the least critical of the parameters.

Opto-mechanical coupling strengths of ¢ = 271 x 440 kHz in similar micro-
mechanical set-ups have been reported,*’7 higher couplings in the order of
MHz should be possible.”® Hence, both assumed parameters for ¢ should be
achievable.

The beam-splitter coupling strength in the CQNC experiment will be too
small to cause normal-mode splitting. It has been shown here that in this case
stabilising the coupled cavities with a Pound-Drever-Hall lock is possible. The
required detuning of the ancilla cavity lies within the meter cavity’s linewidth.
It should not be too difficult to realise this by adjusting the crystal temperature,
without negatively affecting phase matching and thus the coupling strength
too much.

The linewidth of the ancilla cavity was measured to be x; = 271 x 900 kHz,
corresponding to 2.9 % intracavity loss, a value larger than expected and
required. Appropriately coated wave plate and crystal inside the cavity are
expected to introduce 0.1 % loss per surface, corresponding to a linewidth of
Ka = 271 X 120kHz. A different experiment in the group showed intracavity
losses of 0.3 % with a crystal inside the cavity. This corresponds to a linewidth

277C. B. Moller et al., ‘Quantum back-action-evading measurement of motion in a negative mass
reference frame’, Nature 547 (2017), 191-195.

278Cf. R. A. Norte, J. P. Moura and S. Groblacher, ‘Mechanical Resonators for Quantum Optomech-
anics Experiments at Room Temperature’, Phys. Rev. Lett. 116 (2016), 147202.
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TABLE 6.1: CQNC parameters revised. The main critical parameters are losses/
efficiencies and measurement strength. Only with a large enough measurement
strength is one limited by radiation-pressure noise and only then, CQNC is ad-
vantageous. Matching the oscillators and the coupling rates is not as important
while losses are still limiting.

Optimistic Less optimistic
Parameter
Given by Value Given by Value

Wm 500 kHz 500 kHz
Wam wm/Q 500 Hz 50 mHz
Q 108 107

o Aa  —099wn, —495kHz —09wy —450kHz

<]

2 Ka 400ym  200kHz 8 x 10%y,  400kHz

[

g Ac 0 0

[

g Ke 2MHz 2MHz

g bath

3 KE 30kHz 100 kHz
g 800 kHz 500 kHz
s 1.01§  404kHz 11§  275kHz
goc 097§  388kHz 07§  175kHz
Aom 0 0

Q.

§ Kom 0.99. 1.98MHz 0.9%. 1.8 MHz

2 xbath 30 kHz 100 kHz

e}

[

2 mn 0.95 0.9

@)
1 0.95 0.9

Infegrated 0.95 0.9
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F1Gure 6.1: CQNC sensitivity revised. Blue trace: SQL, red traces: with CQNC,
green traces: classical. Solid: Optimistic set of parameters, Dashed: Less optim-
istic set of parameters. Force noise normalised to Q. In the optimistic case, clas-
sical noise is a lot higher, with CQNC, the sensitivity becomes a lot smaller than
in the less optimistic case. Both effects are due to the sensitivity being actually
limited by radiation-pressure noise in the optimistic case. Plot parameters as in
Tab. 6.1.

of x, = 2m x 190kHz when assuming the same amount of losses for an
additional wave plate. The required ancilla cavity linewidth is thus in reach.

The propagation losses 7; mainly stem from mode mismatches, escape
efficiency and detection efficiency. Detection efficiencies in excess of 97.5 %
have been realised.?” Mode matching and escape efficiencies of 95 % up to
99 % have been measured in our lab. Thus, the assumed parameters in Tab. 6.1
should be well within reach. To me, however, they seem to be one of the more
challenging requirements.

With the parameters from Tab. 6.1, which realistically already assume most
of the requirements not to be met perfectly, sensitivities as in Fig. 6.1 can
be achieved. At low frequencies, the plots show reduction of 61 %/67 %
(4.1dB/4.8dB) below the SQL and 73 %/77 % (5.8 dB/6.4 dB) below the clas-
sical case for integrated and cascaded set-up in the optimistic case, and
13%/15% (0.6 dB/0.7 dB) below the SQL and the classical case in the less
optimistic case.

279H. Vahlbruch, M. Mehmet, K. Danzmann and R. Schnabel, ‘Detection of 15 dB Squeezed
States of Light and their Application for the Absolute Calibration of Photoelectric Quantum
Efficiency’, Phys. Rev. Lett. 117 (2016), 110801.
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The limiting factor will actually not necessarily be the matching of oscillators.
Rather, losses limit the amount of noise reduction. The other main difficulty
will be to actually reach the point where back-action noise becomes limiting.
Without being limited by back-action noise, there will be no noise reduction
by back-action evasion. A high measurement strength as well as low thermal
noise levels are required for that. These two factors will also be limiting the
quantum-noise cancellation.

FUTURE WORK

CQNC. A quantum-noise experiment in Copenhagen®*® showed that it
might be advantageous to detune the opto-mechanical cavity from resonance.
The effect of detuning the main cavities has not been studied for all-optical
CQNC, neither has the effect of using different squeezing angles. Within this
thesis, thermal noise has been neglected, an unrealistic assumption. Rather,
coupling to a thermal bath will be a limiting factor in an experiment, which
suggests a trade-off between isolation from thermal bath (small mechanical
linewidth) and matching of oscillator linewidths (big mechanical linewidth).
The parameters in Tab. 6.1 and the resulting sensitivities suggest that matching
the linewidths is not as important. Further studies in this direction are needed.

In the micro-mechanical set-up studied in this work (with resonance fre-
quencies in the hundreds-of-kilohertz range and parameters as in Tab. 6.1),
quantum noise will be reduced below the mechanical resonance. It would be
interesting to obtain a set of parameters which enables CQNC for frequencies
above the mechanical resonance. This is the region where quantum-noise reduc-
tion is needed for gravitational-wave detection, where mechanical resonance
frequencies lie around one hertz. Precondition for this is a high measurement
strength in order to be limited by radiation-pressure noise at these frequencies.
Injecting phase-quadrature squeezed light might help here and deserves an
investigation.

Preliminary investigations have shown that back-action evasion should
also be possible by reflection of light containing radiation-pressure noise
off a detuned single-mode squeezer, at least in a limited frequency range.
The advantage here would be that a substantially higher down-conversion
coupling strength is possible due to a higher effective nonlinear coefficient.
This set-up, which shows similarities to CQNC, requires further research.

Boppller et al. (2017).
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OPTO-MECHANICAL INTERACTION. The opto-mechanical subsystem is the
one that still requires the most work in terms of experimental realisation.
An opto-mechanical cavity needs to be set up in high vacuum in order to
reliably determine the opto-mechanical coupling strength, for example from
ponderomotive squeezing or opto-mechanically induced transparency meas-
urements. Then, artificial radiation-pressure noise can be produced by sending
an amplitude-modulated light field into the opto-mechanical cavity. The eva-
sion of this classical noise should be possible with current realisable parameters.
For quantum radiation-pressure noise cancellation, a significant reduction of
thermal noise will be necessary by transferring the set-up to a cryogenic
environment.

DOWN-CONVERSION INTERACTION. The down-conversion interaction already
shows the required coupling strength. However, improvements are needed
regarding the pump beam. The behaviour at higher pump powers shows
power-dependent losses, probably due to thermal lensing. The pump beam
alignment is not very stable, nor is the pump phase lock. With a reliable
pump phase lock, full estimation of a bipartite Gaussian state could be per-
formed. The cavity stability should further be improved. Additionally, losses
will become very important, even potentially limiting, and hence need to be
mitigated. All of these are technical, not principal problems.

BEAM-SPLITTER INTERACTION. The main limiting factor for the beam-
splitter interaction are losses. A different crystal, which is needed anyway
to provide the down-conversion interaction, will improve on that. Locking
the coupled cavities with a defined detuning has not yet been done, but there
should be no show-stopper to that.

An interesting aspect of the experiment as it is currently set up on the
optical table is that it shows exceptional points and can realise a parity-time
(PT) symmetric Hamiltonian.?®" Under certain conditions, eigenvalues as well
as eigenvectors of a system are degenerate. These points are called exceptional
points and have recently attracted a lot of interest due to their topological
characteristics and potentially enhanced sensitivities.?%2 PT-symmetric systems

BV -A. Miri and A. Ali, ‘Exceptional points in optics and photonics’, Science 363 (2019), eaar;700;
S. K. Ozdemir, S. Rotter, F. Nori and L. Yang, ‘Parity—time symmetry and exceptional points
in photonics’, Nat. Mater. (2019).

#2H K. Lau and A. A. Clerk, ‘Fundamental limits and non-reciprocal approaches in non-
Hermitian quantum sensing’, Nat. Commun. 9 (2018), 4320.
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are symmetric under swapping of parity, here the two modes, and time, here
corresponding to exchanging gain with loss. An additional pump beam would
turn the ancilla cavity mode into a mode with gain. Tuning the pump power
such that the gain is of the same size as the loss in the other mode renders
the system parity-time symmetric. These types of systems are interesting as
a means to study non-Hermitian Hamiltonians. Per se, the system has not a
lot to do with coherent quantum-noise cancellation, but this might still be an
interesting avenue to pursue.

The effective negative-mass oscillator with the ancilla cavity on resonance
resembles another system termed direct coupling coherent observer,%3 which has
been proposed in the field of control theory and engineering. A similar idea
with essentially the same set-up as for the direct observer (and as for CQNC)
comes from the quantum optics context, where two modes coupled with a
beam splitter or frequency converter and a down-conversion interaction create
a QND variable.?%4 As the system is very similar to the one studied here, it
makes sense to look into similarities and differences in the future.

After finishing this thesis, a new method to break the degeneracy between
the two polarisations inside the cavity became available: Instead of a very
shallow angle of incidence on the incoupling mirror, a conventional four-
mirror bow-tie cavity with a micro-structured input mirror could be used.?%
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APPENDIX

A ELECTRODYNAMICS

Maxwell’s equations describing the whole classical world of electrodynamics
are

V-D=p (A.12)
V-B=0 (A.1b)
d
V XE = _EB (A.10)
VxH=j+ %D. (A.1d)
with
D =¢E+P, B=u(H+M), (A.2)

and free charge densities and currents p and j.

A.1 MAXWELL'S EQUATIONS IN FREE SPACE

In free space, where there is no matter, they simplify to

V-E=0, (A.32)
V-H=0, (A.3b)
V XE= —%‘uoH, (A.30)
VxH= %GoE (A.3d)

209



APPENDIX

A.1.1 WAVE EQUATION

With the vector identity V x (V x V) = V(V V) — V. (VV) and because E
is divergence free, from V x (V x E) one arrives at the wave equation

VZE — 532E=0. (A.g)
General solutions to the wave equation are of the form
E(r,t) = g(wt —kr) (A.5)

with the dispersion relation [k| = <.

A.1.2 PARAXIAL APPROXIMATION

Monochromatic electromagnetic waves can be written as (assuming propaga-
tion in z-direction and an amplitude constant in time)

E(r, ) = Re A(r)e!(@!=k2), (A.6)
the wave equation becomes

V2A + 2ik LA (k2 — “’2> A=0. (A7)
dz c?
The last term is equal to zero because of the dispersion relation. The paraxial
approximation, also known as slowly varying envelope approximation, as-
sumes A to vary slowly with z. The second-order derivative in z is neglected
in comparison with the first one, the equation becomes

d? 42 . d
<dx2 + a7 + szdz> A =0. (A.8)

A family of solutions to this equation are Gaussian beams.

A.2 MAXWELL'S EQUATIONS IN DIELECTRIC MEDIA

In dielectric media, there are no free charges, p = 0, no free currents, j = 0.
Furthermore, a linear magnetisation is assumed, such that H+ M = u,H. The
polarisation P is developed in a Taylor series with the linear part included
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into €, and the nonlinear part P kept so that egE + P = €€, E + P. Now, with
u = opr and € = €pey, the Maxwell equations can be written as

V:-(eE4+P)=0, (A.9a)
V. H=0, (A.gb)

0
V XE= —gyoyrH, (A.9c)
VxH= %(EE +P) (A.od)

A.2.1 THE WAVE EQUATION

Similar as above, the wave equation can be obtained (c is the speed of light
within the medium),

1 92 1 92

2
E- -2 E=— >
v c2 ot? ec? ot?

P. (A.10)

The nonlinear polarisation P now acts as a driving term for the electric field.

A.2.2 THE NONLINEAR POLARISATION

Phenomenologically, the polarisation of a medium can be seen as its response
to an incoming electrical field. It can be series-expanded in terms of the
electrical field, so that we assume the polarisation to consist of several parts:

P(r,t) = PV (r,t) + PO (r,t) + PO (1, 8) + ..., (A.11)

where P(1) (r, t) is linear in the electric field, P(?)(r, ) quadratic and so on. The
electric field E(r, t) is assumed to be a superposition of several monochromatic
electric fields of frequency wy,:

E(rt) = 1Y E“(r)e ™' +cc. (A.12)
Wy

Here, we take the sum over positive frequencies, and E~“n (r) = E*“n (r).

We expect the second-order polarisation (which, in the following we write as
P(?) = P) to be connected to the square of the electric field. This is realised by
a tensor x, a material characteristic in general dependent on the participating
frequencies, the beam directions and the polarisations of the electric fields.
Squaring the electrical field yields contributions of frequencies £wy; + wy,
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including m = n. This justifies to also split the polarisation into frequency
components,

Prt)=1Y) P (r)e”nt 4 c.c. (A.13)
Wy

Now we restrict number of frequencies to three, wy, wy, and w3 = wy + wy.
We can write the frequency components of the nonlinear polarisation as

Pmin(r) =€ Y, X(Wmtn; Wiy W) B (1) E (1) (A.14)

(nm)

where wy, 1, is short for w, + wy,. E.g.:

Wpin = W3, Wy = W1, Wy = Wy (A.15)
or
Whpan = —W1, Wy = —WwW3, Wy = Wy. (A.16)

Here, (nm) means that we take the sum over different w;, and wy,, but such
that wy, + wy, stays constant. We can write this shorter by using a degeneracy
factor D:286

D
Peomn(x) = € x(@nrtn; Wm, wn ) E" (1) E (x) (A.17)

where D is the number of distinct permutations of w, and w,,. The same can
be written in index notation (summing over doubly appearing indices j and k
where ijk stand for the spatial (crystallographic) directions xyz):

P () = eO%Xijk(wm+n}wmzwn)E;dm (r)E;™ (r).2%7 (A.18)
For SHG, we have x(Wpn4n; Wm, wy) = x(2w; w, w) and thus only one distinct
permutation of w, and wy, (D = 1), whereas for down conversion, D = 2 due
to two permutations X (Wpn; Wi, wy) = x(w; 2w, —w) = x(w; —w,2w).

In the case of parametric down conversion, we are interested in the creation
of signal and idler, i.e. beams at frequencies w; and w; and a pump beam
at frequency w3 = wy + wy. With all kinds of symmetries, especially using
Kleinman’s symmetry, we can make x frequency-independent. For historical

286Cf. R. W. Boyd, Nonlinear Optics, Amsterdam et al.: Acad. Press, 2008, Eq. 1.3.19.
#7This formula differs by a factor 1/2 from Eq. 1.3.19 given by Boyd (2008) due different
definitions of the fields in our Eqs. A.12 and A.13 and their Egs. 1.3.7 and 1.3.11.
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reasons j;jx is often substituted by the tensor d;; = % Xijk so that we have

Pl(r) = ZeodijkE;Us (r,t)E “(r, t) (A.19)
= 2€OdijkE;‘dS (r,t)E;“2 (x, t) (A.20)
and correspondingly
P2 (r) = ZeodijkE;‘)3(r,t)EZw1(r,t), (A.21)
P (r) = eodijkE;‘)l (r,t)E2 (x, t). (A.22)

Usually d;j; is contracted to d;;.2%8 In our NDOPO, we use the tensor compon-
ent dz, = dyy = d3p ~ 3.7pm/V of KTP which yields an effective nonlinear
coefficient due to quasi phase matching%

2
degr = ;dﬂ ~24pm/V (A.23)

for the conversion involving wavelengths of 532 nm and 1064 nm. Note that
using the d33-coefficient to couple three waves of the same polarisation results
in an effective nonlinearity dog = %17 pm/V = 11pm/V - a factor 5 higher.

Two fundamental waves of orthogonal polarisation (y and z in the crys-
tal’s coordinate system) travelling in the same direction (x) are coupled to a
harmonic wave polarised in one direction (y) travelling in the same direction
by the nonlinear coefficient dy4. For a specific set of beams like these, the
following scalar equation suffice to describe the interaction:

P2(r) = 2e0dogE“3 (x, t) E* 1 (1, t) (A.24)
PUL(r) = 2e0dogE“3 (x,t)E*“2 (1, t) (A.25)
P (r) = eodeg EV (x, ) EV2 (1, t). (A.26)

A.2.3 ENERGY CONSIDERATIONS

Because of the BAC-CAB formula,

(VXEH-—(V xH)E=V(EXxH) (A.27)

B8Cf. Boyd (2008), Egs. 1.5.26 and 27.
289Cf. Boyd (2008), Sec. 2.4.
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and with the Gaussian theorem and the Poynting vector S = E x H defining
the flow of energy through a surface,

fda S— _/dv Vs (A.28)

- / dV V(E x H), (A.20)

the net power deposited in a volume V per unit volume from Maxwell’s
equations is

d 9P
~V(ExH) == (%eEE + %yHH) +E5; (A.30)

The first corresponds to the change of storage of energy in the vacuum
electromagnetic field and in the linear polarisation, the second term is the
work done on the nonlinear polarisation by the electric field. Integrating the
Poynting vector over the closed surface S of the crystal leads to

_ Jd (1 1 oP
j{da S = /dV [at (jeEE + ijH) + Eat} (A.31)
1%

Acrystal crystal

For a lossless medium, this is zero, but it does not need to be zero if one
only takes into account a specific frequency. Then, the last term gives the
power from the nonlinear polarisation converted into the new frequency. Its
calculation is shown in the next section, Sec. A.2.4.

A.2.4 AVERAGE POWER TRANSFER

From Sec. A.2.3 above, one derives the average power per unit volume in the
second-order nonlinear polarisation P, Eq. 4.57, which in the following will
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B FuLL GAUSSIAN STATE ESTIMATION WITH SINGLE HOMODYNE DETECTOR

be calculated for a specific beam i and volume V.

D — BPi(r, t)
Pz — 2T /dt /dr E I', ) at (A32)
» o) O . .
T T / a / dr 3 (Bi(r)e 4 B (e ) 23 (Pitr)e !+ P (el
(A.33)
= 1601 /d /dt E* —E;(r)P; (r) —.—Ei(r)’])i(r)e*l’zwif _ Ef(r)'])f(r)eizwft}
(A.34)
— _Im [‘;l / dr EX (r) P; () .
1%

B FurLL GAUSSIAN STATE ESTIMATION WITH SINGLE
HOMODYNE DETECTOR

For a complete state estimation of a Gaussian state with two modes, we need
to measure variances and correlations of all involved degrees of freedom,
which are amplitude and phase quadratures of both involved modes. The
covariance matrix C of the four quadratures of the two modes 4 and ¢ looks
like

var X, COV Xy, Pa COV Xy, Xc  cov Ry, Pe
COV Pa, Xa var pa COV Pa, Xc €OV Pa, Pe
cov X, Xa  cov X, Pa var X cov X¢, Pe
Cov P, Xa  COV P, Pa €OV Pe, X¢ var pe

[ ]
® X O *
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where C is symmetric (meaning only 10 independent entries) and different
symbols refer to different measurement methods.?° The whole covariance
matrix can be measured with a single homodyne detector by shaping the
local oscillator:*** The variances of the single quadratures (e) are easily
measured by using a local oscillator only interfering with mode 4 (or mode
¢) and adjusting the local oscillator’s phase as to measure either the phase
or the amplitude quadrature. Correlations between amplitude quadratures
(phase quadratures) of both modes (o) can be measured by using a diagonally
polarised local oscillator with the respective phase to the signal beam, see
Eq. 4.17.29? To measure correlations between the amplitude quadrature of one
mode and the phase quadrature of the other mode (x), the local oscillator of
one mode has to be 7r/2-phase-shifted with respect to the other mode. This
can be accomplished with a quarter-wave plate. The tricky part is measuring
correlations between amplitude and phase quadratures of the same mode (x).
Here, a trick helps:*%3 One can measure a linear combination of amplitude and
phase quadrature of the same mode. In an experiment, it means locking the
local oscillator’s phase not to measure the phase or the amplitude quadrature,
but something in between, e.g. to ¢ = 7/4. From here, one can calculate
the internal quadrature correlations with the help of earlier measurements of
single-quadrature variances:

1
var J?f/4 =3 (var % + var pc + 2 cov £, fc) - (B.2)

C MAXIMUM A-POSTERIORI ESTIMATION FOR CAVITY
CHARACTERISATION

The eigenmode of a symmetric two-waist cavity, e.g. a bow-tie cavity, is
determined by three out of five of the following parameters:

*%°Notation inspired by A. Samblowski, ‘State Preparation for Quantum Information Science and
Metrology’, PhD thesis, Leibniz Universitiat Hannover, 2012, Eq. 3.8.

291One could also shape the signal beam as is suggested by V. D’Auria et al., ‘Characterization of
bipartite states using a single homodyne detector’, . Opt. B 7 (2005), S750-S753 and done
by V. D’Auria et al., ‘Full characterization of Gaussian bipartite entangled states by a single
homodyne detector’, Phys. Rev. Lett. 102 (2009), but that might be detrimental to the quantum
state under test.

*92This is where later the squeezing will be visible.

293See V. Handchen, ‘Experimental analysis of Einstein-Podolsky-Rosen steering for quantum
information applications’, PhD thesis, Leibniz Universitit Hannover, 2016, Sec. 3.5 and
Samblowski, PhD thesis (2012), Sec. 3.3.
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C MAXIMUM A-POSTERIORI ESTIMATION FOR CAVITY CHARACTERISATION

(effective) radius of curvature of the mirrors, Re,

shorter distance between the two curved mirrors, d1,

* longer distance between the two curved mirrors, dy,

(smaller) waist wq centred between the two curved mirrors,

(bigger) waist w», also centred between the two curved mirrors.

Often and in our bow-tie cavities, the eigenmode and thus the waist (par-
ticularly the small waist) is very sensitive to the short distance between the
curved mirrors and to the radii of curvature of the focusing mirrors. One
characteristic of the eigenmode can be measured, though: the Gouy phase
acquired over one round-trip, which is determined by the cavity elements, i.e.
the propagations and the effective radii of curvature.

A non-normal angle of incidence on the curved mirrors leads to a second
Gouy phase in the opposite plane of the first, but also to a new parameter,
angle 6. I now have two equations of motion for the two Gouy phases, see
Eq. 1.26, depending on the total of four parameters, dy, d», R, and 6 = «/2 as
in Fig. 5.11.

The idea now to incorporate a prior belief on the parameters into the
analysis. The exact value of d; is not known, but the error bar is also not too
high. With priors for all parameters, and assumptions on the accurateness of
the Gouy phase measurements, a most likely set of parameters causing the
measurements can be devised. This is called maximum a posteriori estimation
(MAP).

MAP tries to maximise the probability P(p|x) that the set of four parameters
p = (p1, P2, p3, pa) caused the two measurements x = (x1,x2). According to
Bayes’ rule,

P(xlp)P(p)
Pplx) = =55 (C1)

When maximising P(p|x), the constant denominator P(x) is not needed. In-
stead, models for probabilities P(p) = [T; P(p;), here with the assumption
of independent parameters, and a model connecting the measurement res-
ults with the parameter in order to obtain P(x|p) is needed. The latter is
given by Eq. 1.26 and the additional assumption that the measurement res-
ults are normally distributed, with some standard deviation. Now, priors
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TaBLE C.1: Parameters for MAP. Note that length d; is corrected for the crystal’s
refractive index.

Parameter in Fig. 5.11 U o measured / fit result

Pert 6° 46°

Phor 6° 35°

dq 2AB  102cm  2cm 10.67 cm

dp 2BCDE 145m  02m 1.449m

R 100mm 20mm  100.1 mm
w/2 3.75° 2° 3.81°

for the parameters are needed, also normal distribution with some standard

deviation:
1 —ew?
N(x—po00) = ——e 2% . (C.2)

/2702

The round-trip Gouy phases for the system described above is given by

cos 6 cos2 0
cos lpvert(dlrdZI R, 6) =1- 2<d1 + dz) T + ZdleT/ (CB)
1
COS Phor(d1,d2, R, 0) =1 —2(dy + dp) Reost + 2d1d2m/ (Cy)

from Eq. 1.26 and Egs. 1.25. The assumed mean and standard deviations from
Tab. C.1 lead to priors. With them and assuming independent and identically
distributed measurements, the quantity to be maximised over the parameters
P= (dl, dz, R, 9) is

P(p’X) =N (lpvert(dlrdZI R,9) - l,bvert/ (Tlll) N (lphor(dl/er R,G) - lphorraw)
x N(dy — pa,,04,) N(d2 — pay, 04,) N (R — pr, 0r) N (0 — pg, 09)
(C.5)

with measurements X = ({vert, Phor). Because of big numbers and procedure,
actually the negative logarithm of P(p|x) is numerically minimised with
Matlab. The results are also displayed in Tab. C.1. The whole procedure
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D PICTURE OF COMPLETE SET-UP ON OPTICAL TABLE

is quite sensitive to the priors. If one of the standard deviations becomes
too big relative to the others, this will be the only parameter affected by the
optimisation, so some trial and error is necessary.

D PICTURE OF COMPLETE SET-UP ON OPTICAL TABLE

In the picture on pp. 220-221, the status of the optical table shortly before
finishing this thesis is recorded. Beam paths of the experiments from Secs. 4
and 5 are drawn, except for the intracavity paths of the monolithic cavities (the
silvery blocks) and dumped beams. Whenever beams seem to end nowhere,
they hit a photodetector (or leave a monolithic cavity). Starting with the laser in
the lower left corner, the beam traverses the beam preparation stage from laser
to mode-cleaning cavity including polarisation homodyne lock (lower left)
and second harmonic generator (SHG, lower centre), compare this to scheme
in Fig. 4.15, followed by the non-degenerate optical parametric oscillator with
the mode-matching cavity for green (lower right), the homodyne detection
scheme and the mode-matching cavity for the homodyne detection (lower
centre), compare this to scheme in Fig. 4.17. In the upper right, the 5-mirror
coupled cavities can be seen (compare to Fig. 5.12). The assembly of the first
components (laser, Faraday isolator) was done together with Bernd Schulte.
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