
cba

Maurice Chandoo1

Abstract: We describe an approach to teaching algorithmic thinking and programming and the
first experiences that we made with it in practice. The idea is to present computational problems
as a certain kind of game that the learner can play in order for them to develop a concrete idea of
what constitutes an algorithm. The purpose of this is to emphasize that one can think of algorithms
independently of a particular programming language. For the programming part a mini language
called machine programs and a method to construct such programs from traces is described.

Keywords: programming education; computational thinking; notional machines; execution traces

1 Introduction

The ubiquity of computers and their immense computing power in our age has contributed
to the perception that programming is a generally useful ability. Consequently, it has become
commonplace to teach students in other fields than CS how to program. In contrast to CS
students, however, they usually only have one course which does not only need to convey the
fundamentals of programming but also a minimal understanding of algorithmic thinking.

We describe an approach to teaching algorithmic thinking and programming that can be
implemented as a short learning unit. It emphasizes the separation of algorithm design and
implementation: design the algorithm first without thinking about a programming language
and then implement it in a principled manner using its execution traces. The purpose of our
approach is to diverge from the language-centric perception of programming that is often
implicitly conveyed (“what commands do I need to write in this programming language to
solve the given task”) to a more algorithmically-oriented view: “what do I need to compute
and how can this be done with the given primitives”. Additionally, it should convey the
message that designing and communicating algorithms can be done independently of a
programming language [La18]. Due to the formal nature of our approach we believe that it
might be particularly suitable for mathematically inclined students.

The general idea for teaching algorithmic thinking in our approach is to present computational
problems as games to the learner. The learner can test and demonstrate his or her winning
strategy (algorithm) by playing the game. We describe a general mechanism to translate
computational problems into games. The basis for this translation is a formal definition
1 FernUniversität in Hagen, Lehrgebiet für Softwaretechnik und Theorie der Programmierung, Universitätsstraße
11, 58084 Hagen, Deutschland maurice.chandoo@fernuni-hagen.de

Separating Algorithmic Thinking and Programming

https://creativecommons.org/licenses/by-sa/4.0/
mailto:maurice.chandoo@fernuni-hagen.de


2 Maurice Chandoo

of model of computation from automata theory described in [Sc67]. For example, Turing
machines, push-down automata and finite state machines are examples of models of
computation in this sense. The definition does not only describe concepts from theoretical
computer science but can also express more playful settings such as Kara the ladybug
[RNH00] or technical ones such as a simple CPU.

Models of computation are a subclass of notional machines. A notional machine is described
as “the general properties of the machine that one is learning to control” by du Boulay who
introduced the concept [dB86]. Sorva has given an extensive survey on the relevance of
notional machines in programming education and different research threads in this area
[So13]. In particular, forming a mental representation of a notional machine is one of the
difficulties that novice programmers face. We aim to minimize this difficulty by starting
with a very simple model of computation and then generalizing it to a more complex one.

The idea of teaching algorithmic thinking by letting students play games is fairly natural and
has been explored and implemented before. For example, a way of using games for specific
computational problems as means to understand and develop algorithms in groups has been
described by Futschek and Moschitz [FM10]. By algorithmic thinking we mean a set of
abilities related to constructing and understanding algorithms as defined in [Fu06]. We see
it as a subset of the broader, more popular term computational thinking [Wi06].

In general, we feel that the complexity of translating a mental representation of an algorithm
into a program seems to be underestimated. A learner might know an algorithm for a given
problem but does not know how to translate it into a given programming language other
than by trial and error. In our approach the learner is taught how a formal representation of
an algorithm can be constructed from its traces. The traces can be either written manually
or generated from playing the game that is used to present the computational problem.

In [Ch19b] we present a programming method that deals with implementing complex
algorithms. The method presented here is a simplified version thereof, which is adapted
to the context of models of computations and which does not require prior programming
experience. Similar approaches are described in [HLR19] and [DvK10]. All have in common
that one starts with executing an algorithm by hand for a concrete input and then generalizing
the steps to build a program incrementally. In these trace-based approaches, the user must
already possess a mental representation of the algorithm that they want to implement.
A related approach called direct-manipulation programming is tested in [ADF19]. The
importance of traces and tracing activities in early programming courses has been affirmed
in [HJ13].

The paper is structured as follows. The first part contains a formal description of models
of computation and how computational problems can be framed as what we call machine-
computer game. Moreover, a sequence of training tasks which build on each other is given.
The second part describes machine programs—a formalism used to describe algorithms—
and how to construct them from traces. Finally, we briefly report our experiences with this



Separating Algorithmic Thinking and Programming 3

approach in an experimental run with two 16-year-old high school students and what next
steps are planned for evaluation and further development of this approach.

2 Models of Computation

A model of computation can be seen as an abstract description of a machine: it consists of
buttons (operations) and indicator lamps (predicates), and it resides in a particular state
(machine state). The indicator lamps (partially) describe its current state. When a button is
pressed the machine changes its state depending only on its current state and which button
has been pressed. For example, a Turing machine with tape alphabet {0, 1,�} has 5 buttons
and 3 indicator lamps. For each character 𝑥 from the alphabet it has an indicator lamp which
is on iff the current cell contains 𝑥 and a button which writes 𝑥 to the current cell. It also has
buttons to move the head one cell to the left and right. Its state consists of the tape contents
and the position of the head.

Formally, a model of computation consists of a set of machine states 𝑆, a set of operations
(total functions from 𝑆 to 𝑆) and a set of predicates (total functions from 𝑆 to {0, 1}). A
counter machine with 𝑘 registers can hold a non-negative integer in each register; a machine
state is a sequence of 𝑘 such numbers (𝑆 = N𝑘

0 ). Each register can be incremented or
decremented by one (decrementing a register that contains 0 has no effect). This means the
machine has 2𝑘 operations. For each register it has a predicate which holds iff that register
contains 0.

A simple task on a counter machine with 3 registers is to copy the number of register 1 to
register 2. More specifically, the machine is initialized with an unknown state and a human
computer has to operate the machine such that register 1 and 2 contain the value that register
1 had in the beginning. This can be presented as a game to the learner as shown in Figure 1.
The difficulty is that the indicator lamps (predicates) only reveal partial information about
the machine state, i.e. whether a register contains 0 or not.

A trivial strategy for the computer is to determine the number in register 1 by counting
(decrement until 0) and then set register 1 and 2 to this value by repeatedly applying
the ‘+1’-operations. This strategy can be generalized to solve arbitrary tasks: determine
the initial machine state, solve the problem without the machine, enter the result into the
machine. The issue is that no algorithm is executed on the machine itself. To prevent the
learner from resorting to this strategy an additional requirement must be made that it should
be possible to teach their strategy to a person who cannot count (e.g. a preschool child).
More generally, the computer is only allowed to remember a constant amount of information
independent of the input.

The learner can train the first steps of algorithmic thinking by trying to find algorithms for
simple models of computation and tasks. If the learner consistently wins the game without
resorting to the trivial winning strategy described above then this indicates that they found a



4 Maurice Chandoo

Fig. 1: Machine-computer game interface for the task copy on a 3-counter machine

correct algorithm. The feedback for the learner is relatively quick (provided the inputs are
not too large) and easy to obtain since there is no need to convert the mental representation
of the algorithm into a program or an informal description; by playing the game they can
check whether their algorithm produces the desired output for a given input.

Any computational problem which can be framed as the task of reaching a particular target
machine state from an unknown initial machine state in some model of computation can
be presented as machine-computer game. For example, in a gummy bear factory there are
two containers: one with sugar and one with food dye. Beneath these two containers is a
mixer. A gummy bear consists of three pieces of sugar and two pieces of food dye. There is
a button which drops a piece of sugar in the mixer and another one which drops a piece of
food dye in the mixer, provided the respective container is not empty. There are also two
indicator lamps which show whether the sugar or food dye container is empty. The task is to
put as many piece of sugar and food dye as possible into the mixer in the correct ratio (3:2)
to produce gummy bears. For example, if there were 60 pieces of sugar and 45 pieces of
food dye in the beginning then there should be 60 pieces of sugar and 40 pieces of food
dye in the mixer in the end. The challenge is that one does not know how many pieces of
sugar and food dye are in the containers in the beginning. Moreover, the trivial strategy
involving counting cannot be applied here (because it is not possible to revert the operations
of dropping sugar or food dye in the mixer) thus making it a good introductory task to set
the learner on the right path.

A stack machine with 𝑘 registers over an alphabet Σ can hold a string over Σ (including the
empty string 𝜀) in each register; a machine state is a sequence of 𝑘 such strings. For each
register it has an operation to remove the last character or append a given character from Σ;
removing the last character from an empty string has no effect. For each register and each



Separating Algorithmic Thinking and Programming 5

character 𝑥 from Σ it has a predicate which holds iff 𝑥 is the last character of the string in
that register.

In the following, sequences of training tasks for the counter and stack machine are given.
We write R𝑖 and R𝑖′ for the initial and final value of the 𝑖-th register, respectively. For a
string 𝑥 let |𝑥 | denote its length. The right column contains tasks for counter machines and
the left one for stack machines over the alphabet {A,B,C}. The numbers in parentheses
after the task names indicate the available number of registers.

• Reverse (2): R2′ = the reverse of R1

• Move (3): R2′ = R1

• Copy (3): R1′ = R2′ = R1

• Concat (3): R3′ = R1 concatenated with
R2

• Repeat (4): R3′ = R1 concatenated with
itself |R2| times

• Substr (4): R4′ = substring of R1 starting
from the ( |R2| +1)-th character with length
|R3|

• Binary (4): R2′ = 𝑥 times A where 𝑥 is
the value of the binary number in R1 (A=1,
B=0, last character is LSB)

• Move (2): R2′ = R1

• Copy (3): R1′ = R2′ = R1

• Add (3): R3′ = R1 + R2

• Mult (4): R3′ = R1 · R2

• Div (4): R1 · R3′ + R4′ = R2

• Parity (1): R1′ = R1 mod 2

• Prime (6): R2′ = 1 if R1 is prime,
0 otherwise

For the task Substr the initial machine state must be chosen such that it describes a valid
substring, i.e. |R2| + |R3| ≤ |R1|. The game for these tasks can be played at [Ch19a].

We recommend starting with a task like the gummy bear factory that has a concrete scenario
before introducing the abstract counter machine. The task Parity is interesting because one
cannot infer what the computer does simply by observing them play the game. It could be
either that they count the number and determine its parity (illegal) or they keep track of the
parity. This becomes visible when the algorithm has to be formalized. The task Prime is a
bit more difficult and can be given as optional task. The stack machine can be introduced as
a generalization of the counter machine: a counter machine is a stack machine with unary
alphabet.

3 Machine Programs

The complexity of general-purpose programming languages can make it difficult for a
learner to grasp the basics of programming as they struggle with language-specific details.
Mini languages such as Karel the Robot or the drawing turtle try to solve these difficulties



6 Maurice Chandoo

Start

S1
R2 − 1

S2
R1 − 1

S3
R2 + 1

S4
R2 + 1

Start, S1: R2 = 0

R1 = 0

EndS2

S1

S2: S3

S3: S4

S4: R1 = 0

EndS2

Fig. 2: Machine program for a counter machine computing R2′ = 2 · R1

by reducing the language to a bare minimum and are suggested for programming courses
for non-CS students by Brusilovsky et al [BSS04].

Machine programs constitute a mini language and are a generalized form of finite state
automata for arbitrary models of computation. A machine program consists of a set of
(program) states of which each is associated with an operation that is executed when that
state is reached and of a special state Start. After a state has been visited, the program needs
to decide with what state to continue or whether to halt. This decision process is encoded by
a binary decision tree (BDT). Each inner node of such a tree is a predicate. If the predicate
holds, the right (non-dashed) subtree is taken, otherwise the left (dashed line). The leaves
are program states or End to indicate end of execution.

Figure 2 shows such a program and Table 1 is the trace it produces for the input (2, 1). An
empty cell in a register column indicates that the value has not changed. For instance, the
first row begins with the start state and register contents (2, 1). Then the BDT of Start is
checked. The predicate at the root node is R2 = 0 and therefore the program must check
whether this holds. Since R2 contains 1 this is false and thus the left (dashed) branch is
taken, which leads to the leave with S1. Therefore the program continues execution with the
program state S1 in the second row.

While Figure 2 also shows the control flow graph (CFG), the set of states along with their



Separating Algorithmic Thinking and Programming 7

Tab. 1: Execution trace of program from Fig. 2

Program State Operation R1 R2 Predicate Sequence

Start 2 1 R2 = 0 d S1
S1 R2 − 1 0 R2 = 0→ R1 = 0 d S2
S2 R1 − 1 1 S3
S3 R2 + 1 1 S4
S4 R2 + 1 2 R1 = 0 d S2
S2 R1 − 1 0 S3
S3 R2 + 1 3 S4
S4 R2 + 1 4 R1 = 0→ End
End

operations and BDTs are already a complete description of the program. A gray state
indicates that the program’s execution can end there.

While it is possible to describe algorithms for models of computation as a sequence of
instructions (see [Sc67]) or with conventional control structures, we opted for this particular
representation due to the tight correspondence between machine programs and traces which
is the basis for the programming method described below.

A fundamental principle of programming is to construct complex programs from simpler
ones using an abstraction mechanism such as functions. Subprogram calls are one such
mechanism that can be easily integrated into machine programs. Suppose 𝑃 is a machine
program for the model of computation 𝑀 . 𝑃 can be treated as if it were an operation of 𝑀
because it takes a machine state as input and returns one (assuming it always halts). Thus,
if one writes a new program 𝑃′ for 𝑀, a program state 𝑠 of 𝑃′ can be associated with 𝑃
meaning: execute 𝑃 when 𝑠 is visited and then continue with the BDT of 𝑠. There should
not be any cycles in the subprogram calls such as 𝑃′ calling 𝑃 and vice versa.

Programming Method. The last column in Table 1 describes the path that was taken
in the BDT of the program state in that row. For example, in the second row the machine
state is (2, 0) after executing the operation R2 − 1. Thus, in the BDT of S1 the predicate
R2 = 0 is checked first (true) and then R1 = 0 (false), which leads to S2. This trace table
can be used to derive a partial version of the program in Figure 2. The program states and
their operations can be directly read from the table. The BDT of a program state can be
reconstructed by combining the paths from the predicate sequences. For example, for S4
we combine the paths ‘R1 = 0 d S2’ and ‘R1 = 0→ End’. Whenever an inner node in a
reconstructed BDT has only one child, we add ∅ as other child which represents a program
state with undefined behavior. Applying this procedure leads to the partial program shown
in Figure 3. The program state ∅ has End as BDT and an arbitrary operation can be assigned



8 Maurice Chandoo

to it (represented by ∗ in the CFG). Further traces can be added and incorporated until the
program is complete (no more undefined behavior).

This method has a consistency guarantee. Suppose that we want to reconstruct a program 𝑃

from some of its traces 𝑇 . Let 𝑃′ be the partial program derived from 𝑇 as described above.
Then 𝑃′ will either behave identically to 𝑃 or terminate in the undefined state ∅. In our
example this means the partial program in Figure 3 behaves identically to the complete one
for all inputs (𝑥, 𝑦) such that 𝑥 ≥ 1 and 𝑦 = 1.

The previous example only served to show the correspondence between machine programs
and their traces. But since the goal is to construct a program from scratch this begs the
question of how to obtain trace tables without a program? Playing the machine-computer
game yields a trace containing the operations and machine states. The learner then has to fill
in the column for the program states manually. Whenever two rows have different operations
they cannot be assigned the same program state. The converse is not necessarily true, i.e. in
Table 1 the fourth and fifth row have the same operation but different program states. The
predicate sequences can also be filled in manually but this seems to be too complicated
in practice. Alternatively, the machine-computer game can be slightly modified to yield
these sequences as well. The predicates are hidden from the computer. In order to see one
the computer has to ask the machine. The order in which the computer asks to see the

Fig. 3: Partial program constructed from Tab. 1



Separating Algorithmic Thinking and Programming 9

predicates is the predicate sequence. After an operation is executed all predicates are hidden
from the computer again. The key challenge for the learner is to understand under what
circumstances two rows correspond to the same program state. After obtaining such a table
the rest of this procedure can be automated.

A less rigid way of applying this method is to leave out the predicate sequences. In this
case the traces are only used to construct the CFG since the sequence of program states in
a trace corresponds to a path through the CFG. Then the BDTs are developed separately
knowing which states must occur as leaves from the CFG. Manually constructing BDTs
makes it easier to exploit repeating subtrees in them. A hybrid approach could be to partially
determine a BDT using a few predicate sequences and then complete it manually.

4 First Experiences

We carried out a trial run with two 10th graders (Gymnasialschüler, both age 16) over 5 days
for 3 hours per day. Neither of them had previous experience with programming and both
performed very well in math as attested by their math teacher. Moreover, the trial run was
held during school vacation without any kind of reward except a certificate of participation
implying both had a high intrinsic motivation. We prepared a collection of worksheets based
on the tasks described in Section 2, which they had to solve by themselves. We only engaged
if there was a conceptual misunderstanding, the description of a problem was unclear or to
verify solutions, otherwise both of them worked independently on the worksheets.

The 1st worksheet presented the gummy bear factory problem and another similar one.
To describe their solution for the tasks they were given trace tables with columns for the
operation and machine state only. The first row in these tables was already given and they
had to fill out the other rows to demonstrate how their algorithm would proceed on that
input. The 2nd worksheet contained a description of counter machines and the tasks for
them (except Div and Prime). Again, they were given trace tables to demonstrate their
solutions. Additionally, they were also given the option to play the machine-compute game
for the tasks. The 3rd worksheet contained a description of machine programs along with
the program from Figure 2 and the trace from Table 1. They had to fill out two trace tables
with predetermined inputs for this program to see whether they understood the semantics.
The other problem was to reconstruct a machine program from a given trace. The purpose
here was to make them aware of the connection between traces and machine programs. The
last problem was to implement the algorithms that they found for the previous worksheet as
machine programs. The 4th and 5th worksheet described the stack machine and its tasks.
The first problem was to find algorithms and demonstrate them using trace tables again. The
second problem was to implement them. For the task Binary it contained an explanation
of how a binary number can be converted by summing the appropriate powers of two.

At the end of the second day both had already found and implemented algorithms for all
tasks up to Mult. Both were able to find algorithms for all of the tasks without help. The



10 Maurice Chandoo

only exception was the task Binary for which one student didn’t find an algorithm but
was able to develop one with the help of an example trace that we gave them. Before the
workshop ended one student wrote correct machine programs for all tasks except Concat
and Binary and the other one for all tasks except Repeat. The programs that they had to
write were quite large. For example, both their programs for Substr had 27 program states
and over 60 nodes in the BDTs.

They were given laptops and an online interpreter to write machine programs (see [Ch19a]).
At first, they tried to implement their algorithms ad hoc, i.e. directly typing something into
the interpreter. While this worked for the small programs up to Add, they both struggled to
implement their algorithms for Mult and the first tasks on the stack machine. Whenever
they thought that they fixed a problem in their program by making some modification,
they seemed to introduce another one. After realizing this, they switched to using our
programming method and wrote their programs using pen and paper. When they copied their
finished programs, the programs were either immediately correct or had a minor bug which
they were able to quickly identify using the traces produced by the interpreter and resolved
it quickly. We consider this to be a positive indicator for our programming method’s utility.

The students did not use the column for the predicate sequences when they applied the
mehtod. Instead, they only filled out the program state column and used this information to
derive a partial CFG, which then was used as basis to construct the BDTs. It seems that a
less rigid way of applying the method was more intuitive and useful to them. Additionally,
the machine programs for the tasks on the stack machine contained many recurring subtrees
in the BDTs; constructing those using predicate sequences would be needlessly repetitive.
Since they were constructing the BDTs separately, they were able to recognize these common
patterns and exploit them.

For the algorithmic part, the concept with the machine-computer game and writing traces
to demonstrate their algorithms worked well in practice. Even before introducing machine
programs both seemed to have grasped what constitutes an algorithm in the context of a
model of computation. Alternatively, prompting them to play the machine-computer game
for a particular task to check whether they have found a correct algorithm also worked well.

5 Outlook & Discussion

From our experiences with the trial run it seems that our approach and the difficulty of
the tasks are suitable for a university-level programming course for non-CS students or
maybe as an optional intro course for CS students who haven’t started their first semester
yet (Vorbereitungsveranstaltung). The learning unit outlined here will be implemented and
evaluated in a CS course that is part of a preparatory college (Studienkolleg). Moreover, the
worksheets and software are being refined to make them publicly available.

A more sophisticated variant of the programming method presented here that can be used
to implement complex algorithms has been tried out in an advanced programming course



Separating Algorithmic Thinking and Programming 11

for CS students and has been met with positive feedback from the students. Our goal is to
extend the contents of the concept presented here such that it connects to this advanced
method in which algorithms are expressed in a similar manner to machine programs.

Lastly, we want to briefly address the question of evaluating the effectiveness of a program-
ming method. Programming in practice requires various skills such as a good understanding
of the programming language in use and the ability to select adequate frameworks and
libraries to accomplish a given task. One constant, inevitable aspect of programming, though,
is the ability to formalize a given algorithm in some formal language. This ability can be
tested in the context of models of computations (MoC) as follows.

The test subject gets a description of a MoC and an algorithm for it along with some example
traces. The task is to implement this algorithm in a programming language of their choice
such that the implementation is consistent with the example traces. It should be verified
that the test subject has correctly understood the algorithm. For example, in an OOPL a
MoC could be modeled as a class 𝐶 whose methods represent the operations and predicates.
Whenever an operation is called the operation name and the machine state after applying
that operation is printed. Then, implementing the given algorithm means to write a program
that only uses a single variable whose type is 𝐶 such that the traces it produces are identical
to the given example traces.

This type of evaluation measures the ability to formalize a given algorithm in a precise sense
in a way that prevents the test subject from implementing some ‘similar’ algorithm that might
be easier to implement. This differs from the common testing method where an algorithmic
problem is given and the task is to write a programwhich solves it. Often, efficient algorithms
are more challenging to implement than their naive counterparts. Therefore the ability to
formalize complex algorithms is desirable but difficult to assess with the common testing
method.

Bibliography
[ADF19] Adam, Michel; Daoud, Moncef; Frison, Patrice: Direct Manipulation versus Text-based

Programming: An experiment report. In: Proceedings of the 2019 ACM Conference on
Innovation and Technology in Computer Science Education, Aberdeen, Scotland, UK, July
15-17, 2019. pp. 353–359, 2019.

[BSS04] Brusilovsky, Peter; Shcherbinina, Olena; Sosnovsky, Sergey A.: Mini-languages for non-
computer science majors: what are the benefits? Interact. Technol. Smart Educ., 1(1):21–28,
2004.

[Ch19a] Chandoo, Maurice: , https://upsl.uber.space/aws19/info.txt, 2019.

[Ch19b] Chandoo, Maurice: A Systematic Approach to Programming. 2019.

[dB86] du Boulay, Benedict: Some Difficulties of Learning to Program. J. Educational Computing
Research, 2(1), 1986.



12 Maurice Chandoo

[DvK10] Desel, Jörg; von Klenze, Leo: AMSEL - ein Lernsystem zum Algorithmenentwurf. In
(Kerres, Michael; Ojstersek, Nadine; Schroeder, Ulrik; Hoppe, Ulrich, eds): DeLFI 2010 - 8.
Tagung der Fachgruppe E-Learning der Gesellschaft für Informatik e.V., 12.-15. September
2010, Universität Duisburg-Essen. volume P-169 of LNI. GI, pp. 33–44, 2010.

[FM10] Futschek, Gerald; Moschitz, Julia: Developing Algorithmic Thinking by Inventing and
Playing Algorithms. In: Constructionism, Paris. 2010.

[Fu06] Futschek, Gerald: Algorithmic Thinking: The Key for Understanding Computer Science.
In: Informatics Education - The Bridge between Using and Understanding Computers,
International Conference in Informatics in Secondary Schools - Evolution and Perspectives,
ISSEP 2006, Vilnius, Lithuania, November 7-11, 2006, Proceedings. pp. 159–168, 2006.

[HJ13] Hertz, Matthew; Jump, Maria: Trace-based teaching in early programming courses. In: The
44th ACM Technical Symposium on Computer Science Education, SIGCSE ’13, Denver,
CO, USA, March 6-9, 2013. pp. 561–566, 2013.

[HLR19] Hilton, Andrew D.; Lipp, Genevieve M.; Rodger, Susan H.: Translation from Problem
to Code in Seven Steps. In: Proceedings of the ACM Conference on Global Computing
Education. CompEd ’19, ACM, New York, NY, USA, pp. 78–84, 2019.

[La18] Lamport, Leslie: If You’re Not Writing a Program, Don’t Use a Programming Language.
Bulletin of the EATCS, 125, 2018.

[RNH00] Reichert, Raimond; Nievergelt, Jürg; Hartmann, Werner: Ein spielerischer Einstieg in die
Programmierung mit Java, Kara to Java - erste Schritte beim Programmieren. Inform.
Spektrum, 23(5):309–315, 2000.

[Sc67] Scott, Dana S.: Some Definitional Suggestions for Automata Theory. J. Comput. Syst. Sci.,
1(2):187–212, 1967.

[So13] Sorva, Juha:Notionalmachines and introductory programming education. TOCE, 13(2):8:1–
8:31, 2013.

[Wi06] Wing, Jeannette: Computational Thinking. Communications of the ACM, 49:33–35, 03
2006.




