
Cognitive-Support Code Review Tools

Improved Efficiency of Change-Based Code Review by Guiding and

Assisting Reviewers

Von der Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

Doktor-Ingenieur

(abgekürzt: Dr.-Ing.)

genehmigte Dissertation von Herrn

M. Eng. Tobias Baum

geboren am 28.04.1985 in Hannover, Deutschland

2019

Betreuer: Prof. Dr. Kurt Schneider
1. Referent: Prof. Dr. Alberto Bacchelli
2. Referent: Prof. Dr. Sören Auer
Vorsitzende der Prüfungskommission: Prof. Dr. Eirini Ntoutsi

Tag der Promotion: 25. Oktober 2019

c© 2019 Tobias Baum.
Some figures contain icons made by Freepik from www.flaticon.com
Parts of this thesis share material with published articles (see pg. 273f) and are c© the respective
publishers.

To my family . . .

Abstract

Code reviews, i.e., systematic manual checks of program source code by other developers,
have been an integral part of the quality assurance canon in software engineering since their for-
malization by Michael Fagan in the 1970s. Computer-aided tools supporting the review process
have been known for decades and are now widely used in software development practice. De-
spite this long history and widespread use, current tools hardly go beyond simple automation of
routine tasks. The core objective of this thesis is to systematically develop options for improved
tool support for code reviews and to evaluate them in the interplay of research and practice.

The starting point of the considerations is a comprehensive analysis of the state of research
and practice. Interview and survey data collected in this thesis show that review processes in
practice are now largely change-based, i.e., based on checking the changes resulting from the
iterative-incremental evolution of software. This is true not only for open source projects and
large technology companies, as shown in previous research, but across the industry. Despite
the common change-based core process, there are various differences in the details of the review
processes. The thesis shows possible factors influencing these differences. Important factors seem
to be the process variants supported and promoted by the used review tool. In contrast, the
used tool has little influence on the fundamental decision to use regular code reviews. Instead,
the interviews and survey data suggest that the decision to use code reviews depends more on
cultural factors.

Overall, the analysis of the state of research and practice shows that there is a potential for
developing better code review tools, and this potential is associated with the opportunity to
increase efficiency in software development. The present thesis argues that the most promising
approach for better review support is reducing the reviewer’s cognitive load when reviewing
large code changes. Results of a controlled experiment support this reasoning. The thesis
explores various possibilities for cognitive support, two of these in detail: Guiding the reviewer
by identifying and presenting a good order of reading the code changes being reviewed, and
assisting the reviewer through automatic determination of change parts that are irrelevant for
review. In both cases, empirical data is used to both generate and test hypotheses. In order to
demonstrate the practical suitability of the techniques, they are also used in a partner company
in regular development practice. For this evaluation of the cognitive support techniques in
practice, a review tool which is suitable for use in the partner company and as a platform for
review research is needed. As such a tool was not available, the code review tool “CoRT” has
been developed. Here, too, a combination of an analysis of the state of research, support of
design decisions through scientific studies and evaluation in practical use was employed.

Overall, the results of this thesis can be roughly divided into three blocks: Researchers and
practitioners working on improving review tools receive an empirically and theoretically sound
catalog of requirements for cognitive-support review tools. It is available explicitly in the form of
essential requirements and possible forms of realization, and additionally implicitly in the form

i

of the tool “CoRT”. The second block consists of contributions to the fundamentals of review
research, ranging from the comprehensive analysis of review processes in practice to the analysis
of the impact of cognitive abilities (specifically, working memory capacity) on review perfor-
mance. As the third block, innovative methodological approaches have been developed within
this thesis, e.g., the use of process simulation for the development of heuristics for development
teams and new approaches in repository and data mining.

Keywords: Software Engineering, Code Reviews, Cognitive Load, Code Reading Techniques,
Software Development Tools

ii

Zusammenfassung

Code Reviews, d. h. manuelle Prüfungen von Programmquellcode durch andere Entwick-
ler, sind seit ihrer Formalisierung durch Michael Fagan in den 1970er Jahren fester Bestandteil
des Qualitätssicherungs-Kanons im Software Engineering. Auch computerbasierte Werkzeuge
zur Unterstützung des Review-Prozesses sind seit Jahrzehnten bekannt und inzwischen in der
Softwareenwicklungspraxis weit verbreitet. Trotz dieser langen Historie und weiten Verbrei-
tung gehen auch aktuelle Werkzeuge kaum über einfache Automatisierung anfallender Rou-
tineaufgaben hinaus. Das Kernziel der vorliegenden Arbeit ist, systematisch Möglichkeiten zur
verbesserten Werkzeugunterstützung für Code Reviews zu erarbeiten und im Zusammenspiel
von Wissenschaft und Praxis zu evaluieren.

Ausgangspunkt der Überlegungen ist eine umfassende Analyse des Standes der Forschung
und der Praxis. Im Rahmen dieser Arbeit erhobene Interview- und Umfragedaten zeigen, dass
Review-Prozesse in der Praxis inzwischen zu einem großen Teil änderungsbasiert sind, d.h. auf
dem Prüfen von Änderungen, die sich aus der iterativ-inkrementellen Weiterentwicklung von
Software ergeben, basieren. Dies gilt nicht nur, wie in der vorherigen Forschung gezeigt wurde,
für Open-Source-Projekte und große Technologiefirmen, sondern in der gesamten Branche. Dem
gemeinsamen änderungsbasierten Kernprozess stehen jedoch diverse Unterschiede in der De-
tailumsetzung der Reviewprozesse gegenüber. Die Arbeit zeigt mögliche Einflussfaktoren für
diese Unterschiede auf. Wichtige Faktoren scheinen die vom genutzen Review-Werkzeug un-
terstützten und bevorzugten Prozessvarianten zu sein. Diesem großen Einfluss der verwende-
ten Werkzeuge auf die Ausprägung des Review-Prozesses steht ein geringer Einfluss auf die
grundsätzliche Entscheidung für die Nutzung regelmäßiger Code Reviews entgegen. Die Inter-
views und Umfragedaten legen stattdessen nahe, dass die Entscheidung für die Nutzung von
Code Reviews eher von kulturellen Faktoren abhängig ist.

Aus der Analyse des Stands der Forschung und der Praxis ergibt sich insgesamt, dass es
ein Potential zur Entwicklung besserer Code-Review-Werkzeuge gibt und mit diesem Potential
die Chance zur Effizienzsteigerung in der Softwareentwicklung einhergeht. In der vorliegenden
Arbeit wird dargelegt, dass der vielversprechendste Ansatz für bessere Review-Unterstützung in
der kognitiven Entlastung des Reviewers beim Prüfen großer Code-Änderungen besteht. Diese
Argumentation kann durch Ergebnisse eines kontrollierten Experiments gestützt werden. Die Ar-
beit untersucht verschiedene Möglichkeiten zur kognitiven Unterstützung, zwei davon im Detail:
Das Leiten des Reviewers durch Ermitteln und Präsentieren einer guten Abfolge des Lesens der
zu prüfenden Code-Änderungen sowie das Entlasten des Reviewers durch automatisches Erken-
nen für das Review irrelevanter Teile der Änderungen. In beiden Fällen werden empirische
Daten sowohl zur Generierung als auch zur Prüfung von Hypothesen verwendet. Um die Praxis-
tauglichkeit der Unterstützungsvarianten zu zeigen, werden diese zusätzlich in einem Partnerun-
ternehmen in der regulären Entwicklungspraxis eingesetzt. Für diese Evaluation der kognitiven
Unterstützungsfunktionen im Praxiseinsatz wird ein Review-Werkzeug benötigt, das sich für den

iii

Einsatz im Partnerunternehmen und als Plattform für Reviewforschung eignet. Da ein solches
Werkzeug nicht verfügbar war, wurde im Rahmen dieser Arbeit das Code-Review-Werkzeug

”
CoRT“ entwickelt. Auch hierbei wurde wieder auf eine Kombination aus einer Analyse des

Standes der Forschung, Unterstützung von Designentscheidungen durch wissenschaftliche Stu-
dien und Evaluation im Praxiseinsatz zurückgegriffen.

Insgesamt lassen sich die Ergebnisse dieser Arbeit grob in drei Blöcke einteilen: Forscher und
Praktiker, die an der Verbesserung von Review-Werkzeugen arbeiten, erhalten einen empirisch
und theoretisch fundierten Katalog von Anforderungen an kognitiv-unterstützende Review-
Werkzeuge. Dieser liegt einmal explizit in Form essentieller Anforderungen und möglicher Reali-
sierungsformen vor, und zusätzlich implizit in Form der im Praxiseinsatz bewährten Ausprägung

”
CoRT“. Der zweite Block besteht aus Beiträgen zu den Grundlagen der Reviewforschung und

erstreckt sich von der umfassenden Analyse von Review-Prozessen in der Praxis bis hin zur
Analyse des Einflusses kognitiver Fähigkeiten (konkret der Arbeitsgedächtniskapazität) auf die
Reviewleistung. Aus den erzielten Ergebnissen ergeben sich Ansätze für weitere Forschung und
die weitere Verbesserung der Softwareentwicklung durch Code Reviews. Als dritter Block wur-
den im Rahmen dieser Arbeit innovative methodische Ansätze ausgearbeitet, u.a. die Nutzung
von Prozesssimulation zur Erarbeitung von Heuristiken für Entwicklungsteams und neue Ansätze
im Repository- und Data-Mining.

Schlagworte: Software Engineering, Code Reviews, kognitive Last, Quellcode-Lesetechniken,
Software-Entwicklungswerkzeuge

iv

Acknowledgments

While working on this thesis, I had the luck to meet and work with a large number of friendly
and gifted people. Firstly, I would like to thank my supervisor, Kurt Schneider, for giving me
the freedom to follow my interests and supporting me throughout the process. Further major
thanks need to go to Alberto Bacchelli, who not only was a great collaborator on several of my
studies but also introduced me to other bright people from his Delft und Zürich groups.

As another great collaborator, Steffen Herbold provided valuable input on the data mining
study at the end of the thesis. In Hannover, I had the chance to work with and learn from
several of the other Ph.D. students and postdocs. Leif Singer and Raphael Pham provided
valuable advice on my Grounded Theory studies, Olga Boruszweski and Kai Niklas were great
collaborators in my early studies and Fabian Kortum, Katja Fuhrmann and Javad Ghofrani
helped later on. Perhaps even more importantly, they and many of the other colleagues helped
to create a positive atmosphere and became friends over time. Beyond the software engineering
group, people from other groups and departments in Hannover were open to my questions when
I needed them, most notably Matthias Becker on simulation and Eirini Ntoutsi on data mining.
Besides, several students contributed to my research to varying degrees: Hendrik Lessmann,
Roman Gripp, Martin Liro, Hakan Sahin, and Rajib Das in Hannover, and Enrico Fregnan and
Lorenzo Gasparini in Delft.

Without the teachers during my earlier studies at FHDW Hannover, especially Michael Löwe,
Carsten Elsner, Harald König and Volkhard Klinger, I would not be where I am today.

It should not be taken for granted that a company supports its employees as much in pursuing
their academic goals as my employer, SET GmbH, did. Therefore, I am greatly indebted to its
founder, Till Dammermann, for making this possible. Many of my colleagues at SET had to
deal with me being less available for a long time, and I want to thank them all. Special thanks
go to Arthur Brack and Christoph Schulz for their contributions.

I am happy to have several good and long friends who also supported me during my thesis.
Of them, Matthias Becker (Uni Bonn) deserves a special mention. His advice from his own
Ph.D. experiences was invaluable, and his proof-reading skills helped to shape the thesis for the
better. Final thanks need to go to my family. This thesis is for you.

v

vi

Contents

1 Introduction 1

1.1 Motivation and Background . 1

1.2 Contributions . 2

1.3 Approach and Research Methods . 2

1.4 Structure . 3

Part I Code Review in Industry – Why improved review support is
worthwhile 5

2 Related Work on the State and History of Code Reviews in Industrial Practice 9

3 Methodology to Assess the State of the Practice 13

3.1 Grounded Theory Interview Study . 14

3.2 Systematic Literature Review . 17

3.3 Online Survey . 18

3.4 Validity and Limitations . 20

4 Reviews in Current Industrial Practice 23

4.1 Commonalities of Review Processes in Practice 23

4.2 The Dominance of Change-Based Code Review 24

4.3 Desired and Undesired Review Effects . 26

5 Use and Non-Use of Reviews – Culture Beats More Efficient Tools 29

5.1 Triggers of Review Introduction . 29

5.2 Inhibitors of Review Introduction . 30

5.3 Comparison to Related Work . 33

6 Variations in Industrial Review Processes 35

6.1 A Faceted Classification Scheme of Change-Based Code Review Processes 35

6.2 Factors Shaping the Review Process . 37

6.3 Comparison to Related Work . 41

7 Tools and Techniques to Support Reviews 43

7.1 Code Reading Techniques . 43

7.2 Research on Code Review Tools . 45

7.3 The Use of Review Tools in Practice . 48

vii

Part II The Code Review Tool and Research Platform ‘CoRT’ 51

8 Context for Action Research on Improved Code Review Tooling: The Part-
ner Company 55

9 The Code Review Tool ‘CoRT’ 59

9.1 Key Design Decisions . 59

9.2 CoRT from the User’s Perspective . 60

9.3 CoRT as a Research Platform . 63

9.4 Overview of CoRT’s Internal Architecture . 64

10 A Simulation-Based Comparison of Pre- and Post-Commit Reviews 67

10.1 Methodology . 68

10.2 Results . 70

10.3 Validity and Limitations . 75

11 An Empirical Comparison of Multiple Ways to Present Source Code Diffs 77

11.1 Methodology . 78

11.2 Results . 80

11.3 Validity and Limitations . 83

Part III Cognitive Support: Guiding and Assisting Reviewers 85

12 Cognitive-Support Code Review Tools 89

12.1 How to Improve Review Performance . 89

12.2 Ideas to Address the Challenges . 92

12.3 A New Generation of Code Review Tools . 95

13 An Experiment on Cognitive Load in Code Reviews 97

13.1 Experimental Design . 97

13.2 Results . 106

13.3 Validity and Limitations . 110

14 Ordering of Change Parts 113

14.1 Methodology . 113

14.2 The Relevance of the Order by the Tool . 117

14.3 Principles for an Optimal Ordering . 119

14.4 Input from Other Research Areas . 122

14.5 A Theory for Ordering the Change Parts to Review 124

14.6 An Experiment on Change Part Ordering and Review Efficiency 128

14.7 Validity and Limitations . 134

15 Classification of Change Parts 137

15.1 Methodology . 138

15.2 Use of Change Part Classification to Reach Code Review Goals more Efficiently . 139

15.3 Approach for Data Extraction and Model Creation 142

15.4 Application of the Approach within the Partner Company 147

viii

15.5 Discussion . 156

15.6 Validity and Limitations . 157

15.7 Related Work . 158

Part IV Conclusion 161

16 Conclusion 165

16.1 Summary . 165

16.2 Implications of the Findings . 167

16.3 Next Steps in Code Review Research . 169

Part V Appendix 171

A Essential Requirements for Code Review Tools and Possible Realizations 175

A.1 Cross-Cutting Requirements . 176

A.2 Core Features . 177

A.3 Advanced Reviewer Support . 179

A.4 Further Basic Features . 182

B The Faceted Classification Scheme in Detail 185

B.1 Process Embedding . 185

B.2 Reviewers . 187

B.3 Checking . 189

B.4 Feedback . 190

B.5 Overarching Facets . 191

C Details on the Simulation Model for the Comparison of Pre- and Post-
Commit Reviews 193

C.1 Details on the Modeling of Developers’ Work . 194

C.2 Details on the Modeling of Issues . 195

C.3 Empirical Triangulation of Model Parameters . 199

C.4 Simplifying Assumptions . 200

D An Efficient Algorithm to Find an Optimally Ordered Tour 203

D.1 Description of the Algorithm . 203

D.2 An Implementation of the Abstract Data Type ‘Binder’ 209

D.3 Proof of Correctness for the Ordering Algorithm 211

E Details on How to Extract Review Remark Triggers 217

E.1 Remarks, Triggers, and Change Parts . 217

E.2 Selecting a Data Source . 218

E.3 Determinining Review Commits . 218

E.4 Finding Potential Triggers: The RRT Algorithm 219

E.5 Comparison of RRT to SZZ . 220

F Features Used for Classifying Change Parts 225

ix

G Results of the Remark Classification Model for the Training Data 229

Bibliography 260

Glossary 261

List of Figures 266

List of Tables 269

List of Definitions 271

Curriculum Vitae 273

x

1
Introduction

1.1 Motivation and Background

Software Engineering is often more about humans than about computers: Humans pose
the requirements, humans collaborate to implement these requirements in software, and human
characteristics lead to mistakes and inefficiencies in that process. This thesis, too, is about a
software engineering technique in which humans play a major role: Code Reviews. In code
reviews, software developers read each other’s source code to find errors and other deficiencies
and to learn and spread knowledge (see Chapter 4 for a more detailed definition). In many
areas, humans use tools to increase their abilities, and the central hypothesis for this thesis is
that the performance of human reviewers can be improved by providing better computer-based
tools to help them during the review.

This hypothesis arose out of the author’s experiences with current code review tools and with
code review practices in a medium-sized software company. As is detailed in Chapter 7, review
tools so far provide little more than support for book-keeping and data-handling. According
to results from Microsoft as well as open-source projects, developers spend 10 to 15% of their
time in code reviews [60]. This points to a considerable potential for cost savings by increasing
review efficiency, not to mention savings through better quality or spreading of knowledge. Like
the cited study, most current research on code reviews is based on open-source projects or large
software companies. The emphasis of this thesis is different: Its scope is limited to commercial
software development, and it takes care to include companies of different sizes in its survey of the
state of the practice. When developing better code review support, this emphasis is amplified
by applying the results in a medium-sized software company.

The analysis of the state of the art and practice shows possibilities for better review support.
However, there is a vast number of possibilities, and to keep the thesis scope manageable not all
of them can be studied. This thesis argues that cognitive support for the reviewer is the most
promising route, and selects two possibilities for such cognitive support to study in detail.

All in all, these arguments lead to the following goal:

1

The goal of this thesis is to analyze the state of the practice regarding the use of code
reviews, to derive how code review tools should be improved to help software development
teams most, and to study selected improvement possibilities in detail. The research is done
with a focus on commercial software development, which is emphasized by applying the
results in a medium-sized software company.

1.2 Contributions

This section lists the main contributions of the thesis and also some limitations. The thesis
contains several contributions to research on improved code review tools and to general code
review research, among those:

• The systematically derived notion of “cognitive-support code review tools”, and an em-
pirically and theoretically founded catalog of essential requirements for cognitive-support
code review tools.

• An open-source implementation of a cognitive-support code review tool that showed its
fitness for production use in a deployment in a software company.

• An empirically derived and tested theory on how to order code changes for optimal un-
derstanding in code reviews, and an implementation of this theory.

• An approach that uses repository mining to classify code change parts by their importance
for review, tested in a company case study.

• An analysis of the state of the practice for code reviews, and grounded hypotheses on the
use and non-use of reviews in general and on the use of certain review variants.

• An analysis of the effects and contextual factors that influence whether pre-commit or
post-commit reviews lead to better results regarding efficiency, quality or cycle time.

• Evidence that the reviewer’s working memory capacity is associated with code review
effectiveness for certain kinds of defects.

Besides these contributions, the thesis also advances several Software Engineering research
methods, for example with an approach to use software process simulation to derive heuristics
for use in practice, and a data mining algorithm and system that is geared towards iterative
feedback from domain experts.

One of the major limitations is the low statistical power for some conclusions from the
controlled experiments. Most of the studied techniques were also deployed in commercial practice
for triangulation, but this does not allow definite conclusions either, because there is no control
group and it is hard to measure the effect on review outcomes. A second limitation is that the
hypothesis of cognitive-support as the most promising avenue for improvement in code reviews
is not compared to competing hypotheses with a controlled experiment, but only assessed by
accumulating confirmatory evidence.

1.3 Approach and Research Methods

The general approach taken by this thesis is rooted in Hevner’s three-cycle model of design
science research [173], as depicted in Figure 1.1. Hevner’s model emphasizes that research that
creates artifacts to reach some human goal needs to be integrated with both, the application
domain (relevance) and the scientific and domain body of knowledge (rigor). These integrations,

2

Figure 1.1: Hevner’s three-cycle view of design science research, which is used as a methodological guide
for this thesis. (based on [173])

as well as the creation of the artifact itself, are iterative, going back and forth between evaluation
and incorporation of gathered knowledge. The central created artifact of this thesis is the code
review tool CoRT, but the three-cycle view also influenced the creation of secondary artifacts,
like the code ordering theory of Chapter 14 or the data mining system used in Chapter 15.

For the specific (sub-)studies to establish relevance and rigor, the research methods are chosen
pragmatically based on the respective study goals and research questions. Many studies use a
mixed-methods approach and triangulate several data sources. In sum, this leads to the use of a
wide variety of different methods, like qualitative interviews and Grounded Theory hypothesis
generation, controlled experiments, software process simulation, repository mining case studies,
and semi-systematic literature reviews. The specific methods are described together with the
respective studies.

1.4 Structure

The results are described linearly in the thesis, although an iterative research methodology
has been used. The thesis is structured into three parts. Part I discusses background information
on code reviews from the related work. In addition, it contains the results from three studies on
code review use in commercial practice. That first part ensures that the remaining parts of this
thesis are rooted in an in-depth analysis of current code review processes and their problems.
Part II discusses the code review tool that is used to test some of the thesis’ hypotheses in a
company setting. It also describes a simulation study and a controlled experiment that were
performed to inform design decisions for that code review tool. Part III finally revolves around
cognitive-support code review tools. It first motivates, based on the results from the earlier
parts, why cognitive-support is a sensible next step in the evolution of code review tools. Then,
it describes two ideas for cognitive-support in detail: Showing the parts of the code change
under review in an improved order, and using empirical data from previous reviews to classify
parts that can be left out from the review. The final Part IV concludes the thesis and provides
an outlook on future research opportunities.

Figure 1.2 depicts how findings and arguments from specific chapters are used in others.
The thesis uses a variety of data sources, and many of them were reused in several chapters.
Therefore, the figure also shows which data sources were used in which chapters.

3

P
art II T

he "C
oR

T
" C

ode R
eview

 Tool and R
esearch P

latform

9. T
he C

ode R
eview

 Tool "C
oR

T
"

8. C
ontext for A

ction R
esearch on Im

proved C
ode R

eview
Tooling: T

he C
ase C

om
pany

10. A
 S

im
ulation-B

ased C
om

parison of P
re- and P

ost-C
om

m
it R

eview
s

11. A
n E

m
pirical C

om
parison of M

ultiple W
ays to P

resent
S

ource C
ode D

iffs

P
art III C

ognitive S
upport: G

uiding and A
ssisting R

eview
ers

12. C
ognitive-S

upport C
ode R

eview
 Tools

13. A
n E

xperim
ent on C

ognitive L
oad in C

ode R
eview

s

14. O
rdering of C

hange P
arts

15. C
lassification of C

hange P
arts

P
art I: C

ode R
eview

 in Industry - W
hy im

proved review
 support is w

orthw
hile

2. R
elated W

ork on the S
tate and H

istory of C
ode R

eview
s

 in Industrial P
ractice

3. M
ethodology to A

ssess the S
tate of the P

ractice

4. R
eview

s in C
urrent Industrial P

ractice

5. U
se and N

on-U
se of R

eview
s - C

ulture B
eats M

ore E
fficient Tools

6. V
ariations in Industrial R

eview
 P

rocesses

7. Tools and Techniques to S
upport R

eview
s

R
ecent inform

ation on review
s in S

M
E

s m
issing

Team
s use review

s to reach a com
bination

of goals.

C
hange-based review

 dom
inates in practice.

C
ode review

 is m
ost likely to rem

ain in use if it is
em

bedded into the process or tools so that it does
not require a conscious decision to do a review

.

B
etter review

 tools w
ill m

ainly help
team

s that already use review
s.

Industrial review
 processes differ in various details,

influenced by contextual factors and the used tool.

In m
ost industrial use cases, there is no

striking benefit of pre-com
m

it review
s.

C
olored, aligned presentation of diffs is

preferred by a m
ajority of developers.

R
educing the cognitive load of review

ers w
ill lead to better

review
 perform

ance. A
 new

 generation of review
 tools should

support the review
er w

hen understanding large changes.

A
 good order of reading code change parts can be form

ally
defined and efficiently com

puted, but strong em
pirical

support for its benefits is still lacking.

S
im

ple rules can reduce the size of changes that need to
be review

ed. To find even m
ore efficient rules w

ith
repository m

ining, several obstacles need to be overcom
e.

S
em

i-system
atic literature

review
: R

eview
 U

se

Interview
s on review

 use
(24 participants, 19 com

panies)

O
nline survey on review

 use
(240 team

s)

S
em

i-system
atic literature

review
: R

eview
 Tools

C
ollaboration w

ith tw
o

practitioners

S
urvey in Java U

ser G
roup

(12 participants)

C
ase com

pany review
 statistics

C
ontrolled experim

ent
(32 participants)

C
ontrolled experim

ent
(50 participants)

Task-guided interview
s on

ordering (12 participants)

O
nline survey on ordering

(201 participants)

S
C

M
 repository m

ining in
com

pany

F
eedback sessions in com

pany

S
urveys in case com

pany

C
ase com

pany feedback on
deployed tool

D
ata Sources

T
hesis C

hapters
Selected F

indings

C
urrent tools are lacking advanced review

er support

F
ig

u
re

1
.2

:
C

on
n

ectio
n

s
b

etw
een

d
ata

so
u

rces,
th

esis
ch

a
p

ters,
a
n

d
th

e
fl

ow
o
f

a
rg

u
m

en
ts

a
n

d
cen

tral
fi

n
d

in
gs.

T
h
e

colored
b

ars
on

d
ata

sou
rces

d
en

o
te

th
e

ch
ap

ters
th

ey
are

u
sed

in
.

A
rrow

s
d

en
o
te

a
rg

u
m

en
t-fl

ow
;

a
rrow

s
th

a
t

d
irectly

con
n

ect
ch

ap
ters

d
en

ote
m

otivatin
g

a
rgu

m
en

ts.
F

or
litera

tu
re

stu
d

ies,
o
n

ly
(sem

i-)sy
stem

a
tic

stu
d

ies
a
re

sh
ow

n
.

4

Part I

Code Review in Industry – Why
improved review support is

worthwhile

5

2 Related Work on the State and History of Code Reviews in Industrial
Practice 9

3 Methodology to Assess the State of the Practice 13

3.1 Grounded Theory Interview Study . 14

3.2 Systematic Literature Review . 17

3.3 Online Survey . 18

3.4 Validity and Limitations . 20

4 Reviews in Current Industrial Practice 23

4.1 Commonalities of Review Processes in Practice . 23

4.2 The Dominance of Change-Based Code Review . 24

4.3 Desired and Undesired Review Effects . 26

5 Use and Non-Use of Reviews – Culture Beats More Efficient Tools 29

5.1 Triggers of Review Introduction . 29

5.2 Inhibitors of Review Introduction . 30

5.3 Comparison to Related Work . 33

6 Variations in Industrial Review Processes 35

6.1 A Faceted Classification Scheme of Change-Based Code Review Processes 35

6.2 Factors Shaping the Review Process . 37

6.2.1 Effect Goals as a Mediator . 39

6.2.2 Sources of Information . 40

6.2.3 The Influence of Model Processes . 41

6.3 Comparison to Related Work . 41

7 Tools and Techniques to Support Reviews 43

7.1 Code Reading Techniques . 43

7.2 Research on Code Review Tools . 45

7.3 The Use of Review Tools in Practice . 48

8

2
Related Work on the State and History of

Code Reviews in Industrial Practice

Before starting out to work on improved code review tooling, the current state of the practice
has to be known. Furthermore, the extent of the potential practical impact of work on review
tooling should be checked. Therefore, the first part of this thesis describes the current state of
the practice and motivates the search for better code review tools. It also provides information
on the state and history of code review tools and related techniques.

This chapter surveys the existing research literature on code reviews in industrial practice.
Before that, the topic is introduced by a brief overview of the history of code reviews and
inspections. This shows the state of the art regarding the studies described in the other chapters
of Part I of this thesis. The relevant state of the art for Parts II and III also contains research
on review support and code review tools. Their description depends on the results brought forth
in the following chapters. Therefore, an overview of related work on tools and techniques to
support code reviews is postponed to Chapter 7, and further related work for cognitive-support
is discussed in Chapter 12. Furthermore, several other chapters discuss related work that is
specific to their respective contents.

Reduced to its core, code review is the proof-reading of program source code by one or sev-
eral peers, and as such it is probably as old as programming itself. The first major scientific
contribution appeared in 1976: Michael Fagan [117] had systematically compared various ways
of reviewing code and other development artifacts in projects at IBM and developed a structured
process which he called ‘Inspection’. An Inspection is performed by a disciplined team of several
people with distinct roles. In a Fagan Inspection, there is a phase of individual preparation and
a review meeting in which the artifact is checked by the team. Fagan stressed the importance
of the meeting synergy for finding defects. He noted that Inspections can be performed for all
kinds of development artifacts, and that reviewing early artifacts like requirements and design
documents is more important than reviewing late documents like code and tests. Following
Fagan’s publication, several other authors published variants of inspection processes (e.g., [140,
397]), and in 1988 an IEEE standard [179] was published that defines several review processes.
Classification schemes for these processes have been published, among others, by Laitenberger
and DeBaud [216] and Kim, Sauer and Jeffery [195]. Macdonald and Miller [238] even devel-

9

oped a domain-specific language for the description of inspection processes based on a detailed
comparison of different processes from the literature.

Many aspects of inspections have been studied empirically: Several case studies indicate
that for finding an optimal number of defects, one has to review slowly enough (i.e., with
a low ‘inspection rate’) [218, 354]. A series of experiments (e.g., [187, 390]) found only small
meeting gains, which raises doubts whether they are worth the scheduling effort. More reviewers
usually mean more defects found, but with quickly diminishing returns [300], and two-person
inspections can already be sufficient [56]. Many experiments assess review results by effectiveness
(share of found defects) and efficiency (defects found per unit of time). But many of the early
publications already stressed the value of inspections for individual and organizational learning,
and Section 4 shows that secondary benefits are indeed considered in practice. These are just
a few of the empirical results on reviews, and there are several published literature reviews and
other overviews that provide a more detailed picture [17, 216, 302].

The given empirical results cast doubts on some of the assumptions of Fagan Inspections, but
more serious problems are caused by the changes in development practices since their publication.
Classic inspection is rooted in staged, document-centric development processes, but most current
development is highly iterative or even ‘continuous’. Several recent case studies indicate that
a new style of ‘modern’ code review has replaced it [318]. These studies are confirmed with
a larger sample in this thesis (Chapter 4). The modern style of reviewing code is adapted to
continuous development by reviewing code changes, and it relies on computerized tools to gather
the needed information. This, often informal, change-based style of reviewing was popularized
by open-source practices. Peer review practices in open source software development have been
studied intensively in the last decade, with contributions for example by Asundi and Jayant [15],
Rigby and Storey [321], Wang et al. [395], Thongtanunam et al. [374] and Baysal et al. [44].
A survey by Bosu and Carver studied the impact of code review on peer impression among
developers in open source projects [58]. Recent studies that assess code reviews in industry are
more rare. Before this thesis, several case studies described its use for a limited number of cases.
The semi-systematic literature review that is described in Section 3.2 identifies such studies.
Baker [19] gave an early description of a change-based code review process in the industry and
Bernhart et al. [50] describe its use (under the term “continuous differential code review”) in
airport operations software. Other small-scale studies of code review and inspection practices in
the industry have been performed by Harjumaa, Tervonen, and Huttunen [162] and by Kollanus
and Koskinen [204]. The latter study describes software inspection practices based on interviews
with practitioners from five Finnish companies. In their sample, code review was quite rare and
consequently not described in much detail. They conclude stating a need for further case studies
on characteristics and problems of software inspection in practice. In Rigby’s and Bird’s study
from 2013 [318], the authors compare peer review processes from several projects and note
convergence towards a common process. This process is lightweight, flexible and based on the
frequent review of small changes. Their analysis contains qualitative and quantitative parts,
with a focus on the quantitative analysis of data sets from review tools. They surveyed a broad
range of projects, but their study is limited to projects from large companies (Google, Microsoft,
AMD) and large open source projects (Apache, Subversion, Linux, . . .). The studies in Part I
of this thesis differ from theirs by using a different methodology and extend it by studying a
broader range of organization sizes and styles. Nevertheless, Rigby’s and Bird’s study is closely
related and this thesis confirms many of their findings.

The most recent academic survey on the state of review practices was published by Ciolkowski,
Laitenberger, and Biffl in 2003 [75, 214]. This survey targeted not only code review, but also

10

reviews in other lifecycle phases. Its authors found a share of 28% of the 226 respondents using
code reviews. A recent survey on software testing practices by Winter, Vosseberg, and Spill-
ner [403] briefly touches upon reviews and notes that 52% of the respondents often or always
perform reviews for source code. In a more specific survey, Bacchelli and Bird [18] studied ex-
pectations regarding code review at Microsoft and found a set of intended effects similar to the
ones found in this thesis for a larger and different sample (Section 4.3).

Looking beyond the academic literature, there are some more recent surveys that contain
information on code review practices. A whitepaper written in 2010 by Forrester Consulting [127]
for Klocwork, a company selling a code review tool, notes that 25% of the 159 survey respondents
use a review process that fits the definition of “regular, change-based code review” (Section 4.1).
A survey performed in 2015 by Smartbear [354], another company selling code review software,
contains information on code review practices and perceptions on code quality from about 600
respondents. Like the Forrester study, it contains very little information on the sampling method
and possible biases. It states that 63% of their respondents perform tool-based code reviews.

♦
All in all, contemporary code review practices have considerably departed from classic Fagan

Inspection. Many results for Inspections might still hold, whereas others need to be adapted.
The IEEE Standard on Reviews and Audits [179], for example, is not an adequate definition
of common current code review practices. Therefore, Chapter 4 introduces definitions of code
review that better suit today’s reality.

11

12

3
Methodology to Assess the State of the

Practice

As could be seen from the previous chapter, there is a lack of recent and rigorous research on
the current state of code review use in industry. This part of the thesis aims to close this gap by
means of several inter-related studies: An interview study with industrial software developers
provides in-depth knowledge of their review processes, a systematic literature review augments
these findings with data from other studies, and a large scale online survey tests and extends
some of the claims from the first two studies. The current chapter describes the research methods
used in these studies, so that the later chapters can build upon this knowledge when presenting
the results. Many of the results from the studies were also published separately [37, 38, 39], and
these publications contain further methodological details on the studies. Figure 3.1 shows the
interplay of the research methods.

The research questions that are studied in the next chapters all revolve around the question
of how code review is performed in industry today. For all of the RQs, the question ‘What is the
role of tools in this regard?’ looms in the background. RQ4

1 establishes the common ground:

RQ4. Which commonalities exist between code review processes of different teams and
companies?

A positive effect of more efficient review tools could be to convince more development teams
to use reviews. In this regards, RQ5 studies the reasons for review adoption and cessation:

RQ5. Why are code reviews used or not used by industrial software development teams?

The studies find a lot of variation in the details of the review processes. To further lay a
foundation for better review tools, it seems advisable to systematize these variations, and to
determine what influences the teams’ decisions:

1Throughout the thesis, the identifiers of RQs contain the chapter in which they are answered. So RQ4 is
answered in Chapter 4, and RQ1 does not exist.

13

 Semi-Structured Interviews
 22 Interviews
 24 Participants
 19 Companies

 Semi-Systematic Literature Review
 16 Published cases of code review use in industry

 Online Survey

 240 Respondents

 Commonalities in review
 processes (Chapter 4)

 Variations in review
 processes + Classification

 scheme (Chapter 6)

 Hypotheses on the use and
 non-use of reviews

 (Chapter 5)

 Hypotheses on factors that
 influence the review process

 (Chapter 6)

 Quantitative data on
 used process variants

 (Appendix B)

 Tested subset of
 hypotheses (Chapter 5 + 6)

 Development of Hypotheses
 (Grounded Theory)

 Elaboration of
 hypotheses with
 Constant Comparison
 and Memoing

 Data Collection
 + Transscribing

 Coding

Figure 3.1: Overview of the data sources and results used to assess and explain the state of the practice

RQ6.1. How can the variations between code review processes of different teams and com-
panies be systematized?
RQ6.2. Why are code reviews used the way they are?

3.1 Grounded Theory Interview Study

Besides determining the current state of the practice, this part of the thesis shows hypotheses
regarding the factors influencing review process decisions and the role of tools. The Grounded
Theory methodology [2, 81, 144] suits the goal of empirically generating such hypotheses well: It
uses an iterative approach to build a theory that is ‘grounded’ in data. Interviews with industrial
practitioners as the primary source of data allow to elicit motivations, opinions and detailed
descriptions. To clarify the used interpretation of Grounded Theory, the chosen method is
described in more detail in the following. Besides presenting the Grounded Theory methodology,
this section also presents demographics on the interviewees and their companies. The articles
on the Grounded Theory study were co-authored by Olga Boruszewski (Liskin), Kai Niklas, and
Kurt Schneider. Raphael Pham gave further methodological advice.

I performed ‘theoretical sampling’ to select the interviewees: The emerging theory helped to
choose participants that could extend or challenge that theory, for example because they came
from a so far unexplored context. I gained access to the participants either by direct or indirect
personal connections or by approaching them on conferences or after they showed interest in
code reviews on the Internet. In total, the study is based on 22 interviews with 24 participants.
They describe 22 different cases of code review use in 19 companies. Detailed information on
participants’ demographics and contextual information can be seen in Tables 3.1 and 3.2. The
sample has a focus on small and medium standard software development companies and in-
house IT departments from Germany, but it includes contrasting cases for all main factors. As
some examples, company IS is much larger and company II much smaller than the other cases.
Companies IB and II do the main development outside of Germany. The team from company IJ

14

Table 3.1: Demographics and review use of the companies from the interviews

ID1 Type2
Employees

(IT, ca.)
Country

Development
Process

Spatial
Regular
Review Use

IA in-house IT, travel 450 DE agile co-located no

IB std. softw., dev. tools 400 CZ ad hoc distributed yes

IC std. softw., government 200 DE classic / ad hoc co-located no

ID std. softw., CAD 100 DE ad hoc co-located yes

IE std. softw., output mgmt. 70 DE agile co-located yes

IF std. softw.,
agriculture

130 DE agile co-located yes

IG std. softw., retail 50 DE agile co-located yes

IH contractor,
automotive

70 DE agile co-located yes

II SaaS, dev. tools 5 US ad hoc distributed no

IJ in-house IT, finance 1100 DE ad hoc co-located no

IK in-house IT, finance 200 DE classic co-located no

IL in-house IT, finance 400 DE classic co-located yes

IM in-house IT,
government

200 DE classic co-located no

IN in-house IT,
marketing

50 DE agile co-located no

IO – – DE – co-located yes

IP in-house IT, finance – DE – distributed yes

IQ in-house IT, retail 120 DE classic / agile co-located yes

IR in-house IT,
marketing

50 DE agile co-located no

IS in-house IT, automotive 4000 DE agile co-located yes

1 All company IDs from the interviews start with ‘I’ to be able to separate them from IDs from other
data sources that will be introduced later.

2 For consultants, the company given is the consultancy’s customer, not the consulting company itself.

does not directly work on a product (like most of the other cases), but on an architectural
platform. The interviewees are mostly software developers and team or project leads, because
the development teams were responsible for code reviews in the sampled cases. Company IE
is the partner company that is described in more detail in Chapter 8. By sampling several
interviewees from that company, differences in the descriptions between participants could be
tested and more knowledge on the problems of individual reviewers gained. The second topic is
addressed in the later parts of this thesis. The interviews were conducted between September
2014 and May 2015. Data collection was stopped when theoretical saturation was reached, i.e.,
when there was only marginal new information in the last interviews.

The interviews are semi-structured, using open-ended questions. The corresponding inter-
view guide was initially created based on the research questions and checked by another re-
searcher (Pham) who has experience with interview studies and Grounded Theory. It was later
continually adjusted according to earlier interview experiences and the emerging theory. The
interviews lasted 46 minutes on average, ranging from 24 minutes to 78 minutes. Face-to-face

15

Table 3.2: Demographics of interviewees

Company ID Role
Industrial Softw. Dev.
Experience (Years)

IA 1 software developer 30

IB 2 software developer 15

IC 3 software developer 15

ID 4 software developer 17

IE 5 team/project lead 10

IE 6 software developer 25

IE 7 software developer 10

IE 8 software developer 7

IE 9 software developer 7

IE 10 software developer 6

IF 11 team/project lead 12

IG 12 team/project lead 10

IH 13 team/project lead 15

II 14 team/project lead 14

IJ 15 software developer 16

IK 16 software developer 3

IL 17 software developer 6

IM 18 requirements engineer (consultant) 20

IN 19 software developer (consultant) 20

IO 20 team/project lead (consultant) –

IP 21 team/project lead (consultant) –

IQ 22 software developer 3

IR 23 software developer 14

IS 24 team/project lead (consultant) 18

interviews were preferred; Skype or telephone were used for 5 interviewees where a face-to-face
interview was not possible. Three participants (IDs 19, 20, and 21 in Table 3.2) were interrogated
in a group interview2, all other interviews were conducted with single persons. All interviews
were recorded and later transcribed. To reduce the risk of bias when interviewing colleagues in
company IE, the respective interviews were performed by another researcher (Boruszewski).

After performing and transcribing the first four interviews, I started data analysis: I used
open coding to identify common themes in the data and analyzed the resulting codes for di-
mensions in which they vary as well as for similarities. Coding was done paper-based at first
and later using the CAQDAS software Atlas.TI [131]. Coding was done incrementally and itera-
tively, including new interviews as they were taken and revisiting most interviews several times.
In this constant comparison process [81], I compared and related citations and codes to each
other. Furthermore, I contrasted whole cases of review usage to carve out their differences and
similarities. The basic open coding was done again indepenently by a second researcher (Niklas).
The results were compared and discussed afterwards to check for possible bias or different view-

2The gate-keeper which had provided access to these interviewees left the company during the study. They
could not be reached by other means. Therefore, some entries in Table 3.1 and 3.2 could not be determined and
had to be left blank.

16

points. During the whole process, memos were written to capture emerging ideas. The resulting
analysis was reported back to all participants, asking for review regarding misunderstandings
and relevance. This “member checking” resulted in minor extensions and changes to the the-
ory and increased the confidence that the results are a suitable description of the participants’
reality.

3.2 Systematic Literature Review

In addition to the interviews, a semi-systematic literature review is performed to find recent
descriptions of industrial code review processes. The found descriptions are used to triangulate
and extend the findings from the interviews. The literature review is systematic in the way that
it uses the rigorous procedure for snowballing-based systematic literature reviews described by
Wohlin [405]. It is semi-systematic because the decisions regarding inclusion or exclusion of
studies were done only by a single researcher.

The inclusion criteria for studies were as follows: (1) the study has been published since 2006
(inclusive), (2) it has been peer-reviewed, (3) it is published in English and (4) it describes code
review practices in industry in some detail. There has to be some indication that the process
is really used and not only brought into the company for a case study by the researchers. The
description of the code review process does not have to be the article’s main topic, as long as it
is described in enough detail. Open source projects that are largely driven by a company (e.g.,
Android, Qt) are included as “industrial”, other open source projects are excluded. The review
in my original article [38] contained publications up to 2016. For this thesis it is extended up
to the start of 2019.

The start set consists of four papers: [50, 266, 318, 342]. They have been chosen because
they span a number of different years and publication venues. In addition, the article by Rigby

Table 3.3: Companies with review process information extracted from the literature review

ID Company name Sources

LE Eiffel Software [266]

LA AMD [312, 318]

LX name unknown [248]

LC Critical Software S.A. [122]

LF Frequentis [49, 50]

LV VMWare [20]

LM Microsoft [18, 55, 60, 61, 241, 318]

LG Google/Android [275, 318]

LQ Digia/Qt [257, 375]

LL Salesforce.com [413]

LS Sony Mobile [342]

LN Vendasta [310]

LY name unknown [104]

LH Shopify [207]

LO Google [331]

LD Dell EMC [396]

17

and Bird [318] is a key publication that combines several previous studies and that is cited quite
often. Saturation was reached after four iterations. Table 3.3 lists the found sources, grouped
by the companies whose code review process they describe. The information gained from the
publications was much more shallow compared to the rich descriptions from the interviews. Its
main use is as additional evidence for the identified variants.

3.3 Online Survey

Theoretically sampled interviews can provide in-depth data, but they require a lot of effort to
get a broad overview and are not suitable to test hypotheses. Therefore, a survey was performed
in a third step, based on the results of the interview study and the literature review. The survey
was joint work with Hendrik Leßmann: He created the survey instrument and conducted the
survey as part of his master thesis [232].

The survey’s target population consists of all commercial software development teams. As
there is no repository of all software development teams, a controlled random sampling of partic-
ipants was not possible. Instead, they were contacted via a number of communication channels:
We (Baum, Leßmann) directly contacted 32 people belonging to the target population from our
personal networks. We further asked 23 people outside the target population from our net-
works to advertise the survey. We posted the survey invitation to several online communities,
on Twitter, Xing, and Facebook; and also advertised the survey at a German software engi-
neering conference. Finally, we posted the invitation on some mailing lists. Probably the most
important single channel was a post on the mailing list of the German software craftsmanship
communities (“Softwerkskammer”), reaching out to roughly 1400 people. When selecting chan-
nels, we took care to avoid introducing bias on the type of review process used. Specifically, we
decided against sampling GitHub users, and we turned down an offer to spread the invitation
to a mailing list of former participants of a series of review courses.

The intended granularity of sampling was teams. As the survey was conducted anonymously,
it was not possible to tell whether two respondents came from the same or different teams.
Survey participants were informed that we only want one response per team. When inviting
participants directly, we took care to only invite one person per company. Nevertheless, there
is a risk that the sample includes several respondents from the same team.

Most parts of the survey were created based on the results of the interviews and literature
study. The process of survey creation followed established guidelines [183, 363]. To ease an-
swering and analyzing the survey, it mainly contains multiple-choice and numerical questions.
Following guidelines for survey research [363], it was tried to reuse questions from existing sur-
veys, but only a limited number of questions from the first version of the HELENA survey [211]
could be reused with adjustments.

The questionnaire was iteratively tested and refined. Initial internal testing was followed by
six rounds of pre-tests, four of these with members of the target population and two with PhD
students. The final survey also allowed the participants to enter feedback on the survey, which
was checked for possible problems. There was a German as well as an English translation of the
questionnaire.

It became evident early during questionnaire creation that if all hypotheses and factors from
the interview study were included, the survey would become too long for the intended audience.
Therefore, the scope of the questionnaire was limited and the questionnaire was split into a
main part and an optional extension part. Answering the main part took around 15 minutes

18

and answering the extension part additional 8 minutes in the pre-tests.

The survey questions can be roughly classified into four groups: (1) Demographics or filter
questions (e.g., on the country, role of the participant or the use of reviews), (2) questions on
the context of the review process (e.g., product, development process, team characteristics, . . .)
(3) questions on the used review process (based on the classification scheme in Appendix B)
and (4) ranking questions to assess the relative importance of intended and unintended review
effects. The full instrument can be found in the online material of the original publication [36].

The survey data analysis constitutes a mix of descriptive and inferential statistics. Multiple-
choice questions that contained an ‘other’ option with free-text answers were coded for analysis.

Most statistical tests performed during analysis checked for a dependence between two di-
chotomous variables. Unless otherwise noted, these 2x2 contingency tables were checked using
Fisher’s exact test and statistical significance was tested at the 5% level. Bonferroni correction
is used when there are multiple tests for a research question, but not between research ques-
tions. Confidence intervals for proportions are 95% confidence intervals calculated using the
Clopper-Pearson method. All percentages are presented rounded to the nearest integer. All but
the filter questions were optional, to avoid forcing participants to answer. The resulting missing
data was handled by ‘pairwise deletion’ (also called ‘available case analysis’), i.e., participants
were excluded only from those analyses where data was missing for at least one of the needed
questions.

Data collection happened in early 2017. In total, 240 respondents from the target population
answered the survey. 130 participants went on to answer the extension part after finishing the
main part. The respondents are working in 19 different countries. The majority of respondents,
170 (76%), is from Germany. 33 respondents (15%) work in other European countries, 11 (5%)
in Asia (including the Middle East) and 11 (5%) in Northern America. 19 respondents (10%)
were invited directly by one of the researchers, 30 (16%) were indirectly invited by other people,
104 (55%) heard about the survey on a mailing list, 24 (13%) in an online forum and 13 (7%)
named some other channel. When asked about their role, 154 respondents (67%) said they
mainly work as a developer, 50 (22%) work as architects, 14 (6%) as managers and 11 (5%) gave
other roles.

The survey’s target population is teams in commercial software development, so the large
majority (94%, 215 teams) of the responding teams works on closed source software. The
remaining share (14 teams) said their team mainly works on an open source project. The teams

0 10 20 30 40

1 to 10
11 to 25
26 to 50

51 to 100
101 to 250
251 to 500

501 to 1000
1001 to 10000
10001 or more

14
24

19
24

42
33

23
27

19

respondent count

Figure 3.2: Company sizes (number of employees) in survey

19

work in companies of vastly differing sizes, from less than 10 to more than 10,000 employees;
Figure 3.2 shows the detailed distribution of company sizes. 68% (148 of 217) of the participants
work in co-located (as opposed to distributed) teams.

3.4 Validity and Limitations

This section presents the limitations of the claims put forward based on the interview study,
the survey and the results from the literature. They are presented jointly because the three
studies complement each other.

The interview study relies on the human researcher as instrument for data collection and
analysis and is therefore prone to researcher bias. To mitigate this threat, the study follows
Grounded Theory best practices, a reflexive research approach [71], and uses additional measures
described below.

There is a risk that the interviewees left out or changed some aspects of their processes
when describing them. This risk is reduced because the interviews did not touch upon sensitive
personal data and interviewees were assured anonymity. The validity of the interview data could
also be threatened by asking for descriptions and rationales after the fact. There is only one
data point for most of the companies, and a larger study using several data points from each
company as well as longitudinal observation could provide more reliable results.

During data analysis, there is the risk of introducing observational bias, for example when
important data is not taken into account or open questions are not followed up. This risk is
reduced through the used Grounded Theory practices: Careful and thorough coding, constant
comparison, theoretical sampling and memoing. To avoid premature closing of the interviews,
the interviewer explicitly asked for points missed in the discussion at the end of each inter-
view. By recording and transcribing all interviews, it was ensured that no information was lost
unintentionally and that the data could be coded and checked several times.

To mitigate researcher bias during data analysis and interpretation, coding was performed
by two researchers (Baum, Niklas) and the results were discussed by all four authors of the
publication. Another important mitigation for observational as well as researcher bias was
‘member checking’: I provided the results to the study participants and asked for feedback,
which was then incorporated into the study.

As Grounded Theory studies use theoretical sampling and rather small sample sizes, it is
hard to assess their generalizability. The study used a broad range of different interviewees from
a heterogeneous sample of companies, and the interviewed sample is large compared to most
qualitative studies. The most significant biases are that most of the companies and all of the
interviewees are German, and that none of the interviewees came from a team producing highly
safety critical software or from upper management.

Regarding the literature review, I mitigated many potential threats to validity by following
the rigorous procedure outlined by Wohlin [405]. A snowballing-based literature review is sen-
sitive to the choice of the start set. I chose a start set that was heterogeneous and quite large,
which minimized this threat. The choice to only include peer-reviewed publications ensured
a minimum of reliability of the data. It comes at the cost of excluding many review process
descriptions from other sources, e.g., from blogs on the Internet. The most significant threat
to the validity of the literature review is that the decision on inclusion and exclusion was done
only by a single author.

The data sources combined cover various different review contexts. Nevertheless, the set of

20

potential code review processes is essentially unbounded, so it would be presumptuous to claim
that the study captures all variation there is in change-based industrial code review processes.

For the survey, the primary threat to internal validity is sampling bias, given that the
survey was distributed over various channels without the possibility to control who answered.
Consequently, the participants likely differ systematically from the population of all developers,
and they do so not only in their geographical distribution: They are probably more interested
in code reviews and/or in process improvement or software quality in general. Due to this bias,
the share of teams using code review in the survey should be regarded as an upper limit rather
than an estimate of the real proportion. Apart from this bias, it was actively tried to avoid
favoring certain types of code review processes in the sample.

A general problem of online surveys is that there is little control over the quality of responses.
The survey included filter questions to check whether participants belong to the target popu-
lation. Another threat with long online surveys is survey fatigue. As 209 of 240 participants
reached the end of the main part, there is no indication of major fatigue effects.

The survey was anonymous, and most of the questions did not touch upon sensitive topics.
However, the results of some questions might be influenced by social desirability bias, e.g., by
stating that the team is using reviews just because it is desirable to do. Again, this might have
influenced the descriptive results.

A weakness of the chosen method of data collection, i.e., of cross-sectional observational
studies, is that they cannot be used to distinguish between correlation and causation.

♦
Summing up, the state of the practice is assessed with a combination of three data sources:

Semi-structured interviews in 19 companies, a semi-systematic literature review that provides
data on 16 additional companies, and an online survey with responses from 240 development
teams. Besides the descriptive results, the interview data is used to develop hypotheses on
reasons for the current state, which are then partly tested with data from the survey.

21

22

4
Reviews in Current Industrial Practice

Before delving into the details of the processes in later chapters, this chapter delineates the
common ground and addresses RQ4: “Which commonalities exist between code review processes
of different teams and companies?” The practice of change-based code review is defined based
on the interview data. Results from the survey confirm that it is the dominating review variant
in practice. Another important foundation are the effects that teams try to reach when using
code reviews, and they are discussed at the end of the chapter.

4.1 Commonalities of Review Processes in Practice

This section presents the definitions of code review and change-based code review that were
derived based on the interviews. All interviewees have a rather broad but common idea of code
reviews. It is summarized in the following definition:

Definition 1 (Code Review). Code Review is a software quality assurance activity with
the following properties:
• The main checking is done by one or several humans.
• At least one of these humans is not the code’s author.
• The checking is performed mainly by viewing and reading source code.
• It is performed after implementation or as an interruption of implementation.

The humans performing the checking, excluding the author, are called “reviewers”.

Each part of the definition delimits code review from other quality assurance techniques,
namely static analysis, self checks, testing and pair programming. All these delimitations are
blurred: Human reviewers can be assisted by static code analysis, they sometimes execute tests
or click through the GUI, in some cases the author joins the reviewers in checking his own code,
and when author and reviewer jointly correct issues on-the-fly, they are basically doing pair
programming. Definition 1 specifies a least common denominator of what practitioners consider
a code review, in contrast to the definitions given in the IEEE Standard for Software Reviews
and Audits [179] that describe specific processes in detail.

In the interviews, there were cases in which code review is performed irregularly and driven
by individual needs, as well as cases in which there is a defined and regularly used code review

23

process. This thesis focuses on reviews that are done regularly. In all of the observed cases, this
regular code review process is change-based:

Definition 2 (Regular, change-based code review). Regular, change-based code review is a
type of code review that is codified in the development process of the team or organization
in the following way: Every time a ‘unit of work’a is seen as ‘ready for review’, all changes
that were performed in the course of its implementation are considered a review candidate.
This candidate is then assessed: For which parts of the change is a review needed, and is
it needed at all? If a review is needed, the review candidate then waits for the reviewers to
start reviewing.

aThe term “unit of work” is similar to the ‘patch set’ identified in other studies. The definition does not
use the term ‘patch set’ because that term is more narrowly focused on specific technologies.

The following commonalities of the observed change-based code review processes were iden-
tified from the interviews:

• No management action is required to trigger single code reviews, they are triggered solely
based on pre-agreed rules. This replacement of the planning phase with conventions and
rules is the difference most consistently separating regular change-based code reviews from
classical inspection variants.

• When code reviews are performed in addition to unit testing or other developer-centric
tests, testing is performed before code review. The same applies to static code analysis
and to (other) checks that are performed automatically on a continuous integration server.

• The number of reviewers is two or less for the majority of reviews.

• All teams try to prevent situations in which code review happens after the changes are
released to the customer.

4.2 The Dominance of Change-Based Code Review

The interviews suggest that change-based review is very frequent, and so does the study done
by Rigby and Bird [318]. But results from a large scale survey were missing so far. This section
provides quantitative empirical support for the dominance of change-based reviews in practice
and also studies the prevalence of several more specific review styles. Finally, the further claims
on convergent practices by Rigby and Bird are tested.

Of the companies from the interviews, eleven (IB, ID - IH, IL, IO, IP, IQ, and IS) have a
regular, change-based code review process, whereas the remaining eight (IA, IC, II, IJ, IK, IM,
IN, IR) only do irregular code reviews. Systematic review that is not change-based is mentioned
in the interviews, but always in the form of “we did this once, but it was discontinued”. In
the literature, LE and LC describe cases that do not use change-based code review. All other
literature sources describe change-based code review processes.

In the survey, the participants were asked how the review scope is determined: Based on
changes, based on architectural properties of the software (whole module/package/class) or in
some other way (with free text for further details). With a share of 90% (146 of 163; confidence
interval 84 – 94%) of the teams doing code reviews, a change-based review scope is indeed
dominating.

In the literature on code review and related work practices, there are slightly differing defini-
tions and descriptions of sub-styles of change-based code review. Table 4.1 shows the frequency

24

Table 4.1: Frequency of use of different styles of code review

Style Used Approximation of Definition
Using Survey Constructs

Frequency of Use

Review based on code-changes scope=changes 90% (146/163)

Regular, change-based code review
(Definition 2)

scope=changes and trigger=rules 60% (96/160)

Contemporary Code Review [318] scope=changes and
publicness=pre-commit and
unit-of-work≤user-story

46% (61/133)

Pull-based software
development [147]

scope=changes and trigger=rules and
publicness=pre-commit and
interaction=no-meeting

22% (29/134)

Approximating Inspection [117] interaction=meeting and
communication=oral+stored and
temporal-arrangement=parallel and
trigger=explicit

2% (3/141)

of use for “modern/contemporary code review” [318], “regular, change-based review” (this the-
sis) and “pull-based software development” [147]. As not all of these sub-styles are concisely
defined in the respective publications, the table also shows how the definitions/descriptions were
approximated in terms of constructs used in the survey. Most of the teams that do not fall un-
der Rigby and Bird’s description of contemporary code review do so because they do not use
pre-commit reviews (pre-commit: 46%, 61 teams; post-commit: 54%, 72 teams). There is only
one respondent whose team uses a review scope that is larger than a user story/requirement.

The survey did not focus on Fagan-style Inspection [117] and, therefore, the current analysis
cannot tell for sure whether a team uses a fully-fledged Inspection process to review code. To
estimate an upper bound on the number of teams doing Inspection, a number of necessary
conditions that would hold for those teams (see Table 4.1) were combined. Only 2% (3/141;
confidence interval 0 - 6%) of the teams have a process that approximates Inspection in that
way. Because much existing research on modern/change-based code review is based on open-
source development or agile teams, I also checked whether there is a difference in the use of
change-based review between open-source and closed-source products and between agile and
classic development processes. There is no statistically significant difference in either case.

Apart from their description of a change-based review process as referred to in Table 4.1,
Rigby and Bird consolidated three further convergent review practices:

1. “Contemporary review usually involves two reviewers. However, the number of review-
ers is not fixed and can vary to accommodate other factors, such as the complexity of a
change.” [318]: The survey results support the finding that the usual number of reviewers
is low, indeed the numbers are even lower than Rigby and Bird’s.1 The average usual
number of reviewers in the sample is 1.57, the median is 1 reviewer. With regard to the
accommodation of other factors when determining the number of reviewers, 51% of the
teams (47 of 92) named at least one rule that they use to adjust the number of reviewers
in certain situations. The most commonly used rule is to decrease the number of review-

1The numbers are not fully comparable: Rigby and Bird looked at the actual number of reviewers in a large
sample of reviews, whereas the survey asked for the usual number of reviewers in a review.

25

0 20 40 60 80

asynchronous discussion
meeting with author

meeting without author
on demand

89
41

2
26

respondent count

Figure 4.1: Interaction during Reviews

ers or to skip code review completely when the code change was implemented using pair
programming: Such a rule is used in 36% of the teams.

2. “Contemporary reviewers prefers [sic] discussion and fixing code over reporting defects.” [318]:
Figure 4.1 shows how the surveyed teams usually interact during a review. Depending on
how many of the teams discuss code during review meetings, between 55% and 81% of
the teams have a review process that includes discussion of the code. Regarding fixing
the code, 54% (84 of 157) of the respondents indicate that reviewers sometimes or often
fix code during a review. This pragmatic attitude towards the classic boundaries of code
review also shows up when 76% (69 of 91) of the respondents state that the reviewer
executes the code for testing during review at least occasionally.

3. “Tool supported review provides the benefits of traceability, when compared to email based
review, and can record implicit measures, when compared to traditional inspection. The
rise in adoption of review tools provides an indicator of success.” [318]: In the survey
sample, 59% of the teams (96 of 163) use at least one specialized review tool. 33% (54 of
163) use only general software development tools, like ticket system and version control
system, for review. 13 respondents indicated no tool use.2 The ability of specialized review
tools to record implicit measures might be one of their benefits, but it is seldom used in
practice. Only 5% (4 of 88) of the teams systematically analyze review metrics. Further
details on tool use are given in Chapter 7.

4.3 Desired and Undesired Review Effects

Reviews are used not only for finding defects, but for a variety of reasons. This section
presents these desired effects, and also the undesired potential side-effects. The described effects
were mentioned in the interviews as generally relevant to a team or organization as a whole.
Besides these, there are also effects mostly relevant to single developers (e.g., “solving a specific
problem”). This thesis does not describe those single developer effects, as they are of minor
importance for regular code reviews. An overview of the team level effects is shown in Table 4.2.

Better code quality (desired) Reviews are expected to have a positive effect on internal
code quality and maintainability (readability, uniformity, understandability, etc.). This
effect results most directly from checking and fixing the found issues. Furthermore, the
interviewees claim a preventive effect which leads developers to take more care in writing
code that will be reviewed. Lastly, a better distribution of knowledge increases uniformity
(see “Learning” below).

2A weakness in the used questionnaire is that there was no explicit “We do not use any tool” choice available.
Therefore, the distinction between non-response and non-use of tools cannot be reliably made.

26

Table 4.2: Overview of found desired and undesired review effects, with results from the survey.

Rank in Survey

Type Effect Mean Mode Distribution

Desired Better code quality 2.24 1 (37%)

Finding defects 2.79 1 (35%)

Finding better solutions 4.09 5 (21%)

Learning (author) 4.38 5 (23%)

Learning (reviewer) 4.49 6 (28%)

Sense of mutual responsibility 4.72 6 (21%)

Complying to QA guidelines 5.29 7 (45%)

Undesired Increased cycle time 1.79 2 (41%)

Staff effort 2.08 2 (36%)

Offending the author / Social problems 2.13 3 (45%)

Finding defects (desired) Reviews are expected to find defects (regarding external quality
aspects, especially correctness). This is seen as particularly important for defects that are
hard to find using tests, such as concurrency or integration problems.

Learning of the reviewer (desired) Reviews are expected to trigger learning of the review-
ers: They gain knowledge about the specific change and the affected module, but also
more general knowledge on the coding style of the author and possibly new ways to solve
problems. In this way, regular review shall lead to a balancing of skills and values in the
team.

Learning of the author (desired) Reviews are expected to trigger learning of the authors:
They get to know their own weaknesses (sometimes as simple as unknown coding guide-
lines). Furthermore, they learn new possibilities to solve certain problems, for example
using libraries they did not know about: “You just don’t develop [better skills] if other peo-
ple don’t look at [your code].”I.12

3 Additionally, they learn something about the reviewers’
values and quality norms for source code. Like the previous point, regular review shall
consequently lead to a balancing of skills and values in the team.

Sense of mutual responsibility (desired) Reviews are expected to increase a sense of col-
lective code ownership and to increase a sense of solidarity: “. . . that it’s not a single
person’s code, but that we strengthen the feeling of having a common code base”I.10

Finding better solutions (desired) Reviews are expected to generate ideas for new and bet-
ter solutions and ideas that transcend the specific code at hand.

Complying to QA guidelines (desired) There can be external guidelines that demand code
reviews or even certain styles of code reviews. Such guidelines may be safety regulations
and standards or customer demands in the case of contractors.

Staff effort (undesired) Performing reviews demands an investment of effort that could be
used for other tasks.

Increased cycle time (undesired) Performing reviews increases the time until a feature is
regarded “done”. This increase can be split into the time needed until the review starts,
the time for the review itself and finally the time until the found issues are corrected.

3Interviewee IDs are from Table 3.2

27

Offending the author (undesired) The author can feel offended (or discouraged) when his
or her code is reviewed or when issues are found. Although this effect is mostly undesired,
one of the interviewees explicitly mentioned a case where an individual used reviews as
a form of bullying and intended to offend the author. A related effect occurs when the
reviewers refrain from noting certain issues because they fear offending or discouraging
the author: “Then unfortunately you always have to give them so many review comments.
Then one always feels bad, because you think they think ’they always beat me up’.”I.10

As stated at the start of this section, the above-mentioned effects are based on the interviews.
In a study at Microsoft, Bacchelli and Bird [18] also studied reasons for performing code reviews
and found a similar set of intended effects.

♦
Summing up, this chapter provides the definitions for code review and its subtype regular,

change-based code review. It shows that review based on code changes is dominating in practice.
Developing better tool-based support for these processes is the main focus of this thesis. A
second contribution that is reused on several occasions is a set of common goals that teams
usually try to reach with reviews.

28

5
Use and Non-Use of Reviews – Culture

Beats More Efficient Tools

Review tools can help teams that already use code reviews. But another option to improve
the state of the practice would be to have teams that currently don’t use reviews introduce them
for their benefit. This section presents the results on RQ5: “Why are code reviews used or not
used by industrial software development teams?” It turns out that making reviews more efficient
will probably have little impact on review adoption, as the main influence is the company’s and
team’s culture.

5.1 Triggers of Review Introduction

This section deals with the causes for the introduction of code reviews. According to the in-
terviews, introduction of reviews was done mostly as a reaction to a problematic incident: There
had been quality issues regarding correctness or maintainability I .2 ,5 ,7 ,10 ,12 ,21 ,24 (“It started this
way: There was a mail from the project manager that there are these [quality] problems, and that
we want to solve them [with reviews].”I.2), quality standards in the team were diverging I .11 ,13

or some changes were perceived as risky or insecure I .4 ,21 . Another trigger is demand for code
reviews by an external stakeholder I .19 , or positive experiences with reviews in the past I .13 ,24 .
In many cases, a single developer initiated a discussion on the introduction of reviews in the
(at least partly self-organizing) team, which was followed by an ‘experimental’ introduction of
reviews I .4 ,7 ,24 : “Some day we realized: The code doesn’t look the way we want it to. I don’t
remember it exactly, I think we did it in the retrospective, but it could have been in a discussion
at the coffee maker, too. Where we said: We have to do something, and then somehow reviews
came to our mind.”I.24

On the other hand, when no problem was perceived, there was reluctance to introduce
reviews I .4 ,13 ,15 ,18 : “It’s just this way, . . . everybody has his tasks, and when it works it’s fine.
And you don’t take the time to do [reviews].”I.15; “Eventually, because everything works quite
well, . . . there’s no need for action.”I.4.

“Perceived problem” means that there was a gap between some goal and reality. The goal
is influenced by a role model (like another team/project I .2 ,13 or a professional movement like

29

‘clean code development’ I .10), the product/project context I .2 ,4 ,8 ,18 ,20 (e.g., ‘Which quality
level is needed for the customer?’), the team members’ personalities I .1 ,11 ,13 ,18 and the team’s
culture I .1 ,2 ,5 ,11 ,15 ,16 ,18 .

Generally spoken, the introduction of code reviews or changes to the code review process are
done when (and only when) this topic area moves into the focus of the team or its management
as being ripe for improvement. In addition to an ad hoc reaction to a perceived problem, this
can also be triggered by a continuous improvement process I .7 ,11 ,24 (e.g., agile retrospectives).

Hypothesis 5.1. Code review processes are mainly introduced or changed when a problem,
i.e., a gap between some goal and reality, is perceived.

5.2 Inhibitors of Review Introduction

In cases where regular reviews were not used, the interviewees named several factors that
inhibited their introduction. The most basic case is when there is nobody who could review
the code, either because there is no other person in the project or because the culture fosters a
strong separation of responsibilities I .9 ,10 ,15 .

Another category of inhibitors are problems that are generally associated with change: There
is resistance to change among the people concerned I .16 . Lack of knowledge and corresponding
insecurity I .16 ,18 belong to this category, too. Furthermore, performing a process change con-
sumes effort, leading to conflicts with other projects and tasks I .12 ,18 . The effort for a process
change varies widely and can be substantial in bureaucratic organizations I .18 .

More specific to reviews, there is a weighing of the desired and undesired effects. One
important factor is the fear of social problems: A general fear of being rated, or fear of annoying
certain (key) developers I .1 ,18 : “I don’t know it definitely, but what I hear again and again, and
the impression I get is: The people have fear of others looking at their code and telling them
they did it badly.”I.1; “With developers that are in the business for a long time, it’s difficult.
You often have the attitude that it’s their code, it belongs to them, and you shouldn’t meddle
with it.”I.18 Where fear of social problems is not dominating, there remains the needed time and
effort facing the expected benefits I .4 ,15 ,22 ,23 .

Hypothesis 5.2. When code reviews are not used at all, this is mainly due to cultural and
social issues. Needed time and effort are another important, but secondary, factor.

Hypothesis 5.2 can be triangulated with data from the online survey. I determined the sub-
set of factors that are the best predictors for the distinction between teams that use reviews
and teams that have not used reviews so far. The selection was done using Weka’s ‘CfsSub-
setEval’ [404]. Based on the resulting set of seven factors, a logistic regression model was built
with R [308]. Table 5.1 shows the respective model statistics. Four of the influential factors can
be considered as aspects of the team’s or company’s culture: A defined (not ‘ad hoc’) devel-
opment process, use of static analysis, a preferred knowledge distribution of generalists instead
of specialists, and a positive error culture. It may seem questionable to consider “use of static
analysis” as a cultural factor, but the decision is backed up by a principal component analysis of
the contextual factors. The two main dimensions of the results can be seen in Figure 5.1. In this
analysis, “use of static analysis” is similar to aspects of quality and long-term orientation and
orthogonal for example to the severity of defect consequences. Nevertheless, the reader should

30

Table 5.1: Regression coefficients and analysis of deviance statistics for a logistic regression model to
predict review use vs non-use. Factors written in italic are cultural factors. All factors are binary.

Factor Coefficient Deviance Resid. Df Resid. Deviance p (χ2)

(Intercept) -4.3604 106 105.968

Development process not “ad hoc” 1.7857 11.5957 105 94.372 0.0007

Use of static analysis (code quality
culture)

2.0575 14.7884 104 79.584 0.0001

Team size 5 or larger 1.6489 6.5211 103 73.063 0.0107

Preference to “generalists” instead
of “specialists”

1.2725 4.8392 102 68.223 0.0278

Type of software is neither “games”
nor “research”

18.4912 5.1486 101 63.075 0.0233

Positive error culture 2.4576 5.2481 100 57.827 0.0220

Team works spatially distributed 0.7652 0.7472 99 57.079 0.3874

Figure 5.1: Principal Component Analysis of the contextual factors based on the survey data (projection
on the two main components). Use of static analysis is similar to various aspects of quality orientation
and orthogonal to defect consequences in the shown main dimensions. Unlabeled arrows are other factors
from the survey.

31

keep in mind that principal component analysis and stepwise factor selection are not able to
show a direct causal relationship.

Performing reviews normally decreases fear of social problems as well as the problems them-
selves: Fear is reduced due to habituation, the ability to accept criticism is increased and the
corporate feeling is improved I .11 ,24 (“[There have been problems], right at the start, when [re-
views] were introduced. Especially here, where we develop software for fifty years and have some
old veterans. . . . But this learning process has advanced considerably, and now the positive effects
of a code review prevail for everybody.”I.11). The needed time and effort does not decrease as
much. This could explain the observation that although culture and social problems are the top
reason to refrain from starting reviews, a negative assessment of costs versus benefits dominates
when reviews are stopped again I .4 ,19 ,20 .

Hypothesis 5.3. The importance of negative social effects decreases with time when re-
views are in regular use.

When reviews are stopped, this has most often been described in the interviews as “fading
away”I.1,3,7,13,19 and was seldom an explicitly stated directive. The survey asked the teams
whether they are currently using code reviews. Teams not using code reviews were subdivided
further: Have they never used reviews before, and if so have they never thought about it or did
they explicitly decide against review use? Or did they stop using reviews in the past, and if so
was this an explicit decision or did the review use “fade away”? Figure 5.2 shows the results:
With a share of 78% (186 teams), the majority of teams is currently using code reviews.1 38
teams (16%) have never used code reviews so far, 8 of them because there was an explicit decision
against their use. In 16 teams (7%), the use of code reviews ended, but in only one of those
teams this was an explicit decision.

The risk of fading away seems to increase when developers have to perform a conscious de-
cision every time they want to get a review. When taking this decision, there are immediately
observable costs, while many benefits materialize only in the long term. This fits to the obser-
vation that the effects with personal short-term benefits dominate in the cases doing irregular
reviews I .3 ,4 ,14 ,15 ,23 . When reviews are institutionalized, the risk of fading away is reduced: A
fixed integration of reviews in the process and a tool that supports this process impedes decisions
against reviews, and regularly performing reviews leads to routine and habituation. This also
fits the observed cases, where all teams doing frequent reviews have institutionalized them in
their development process.

1This number is likely biased, see Section 3.4.

0 20 40 60 80 100 120 140 160 180 200

was used – explicitly terminated
was used – faded away

currently in use
never used – explicit decision

never used – not thought about it

1
15

186
8

30

respondent count

Figure 5.2: Survey results on use of reviews and reasons for non-use

32

Table 5.2: Review triggers vs review continuation

Trigger Reviews in use Review use faded away

Manager 7 3 (30%)

Reviewer 14 2 (13%)

Author 38 4 (10%)

Rules/conventions 103 3 (3%)

Hypothesis 5.4. Code review is most likely to remain in use if it is embedded into the
development process (and its supporting tools) so that it does not require a conscious
decision to do a review.

The results from the survey can be used to test a subset of this hypothesis: The risk that code
review use fades away depends on the mechanism that is used to determine that a review shall
take place: This risk is lower when rules or conventions are used instead of ad hoc decisions.

To test this hypothesis, two sub-samples from the survey are compared: Teams currently
doing code reviews, and teams where review use faded away. The survey also asked how it
was decided whether a review should take place: By fixed rules or conventions, or ad hoc on a
case-by-case basis. For the ad hoc triggers, the survey further distinguished triggering by the
reviewer, the author or a manager. There was the possibility for respondents to select “other”
and enter a free-text description.

Of twelve teams that answered this question for which review use faded away, three used rules
or conventions and the remaining nine used ad hoc decisions. For the 162 teams currently using
reviews, the relation was 103 with rules/conventions compared to 59 without. Put differently, the
risk to be in the “fade away” subsample increases from 2.8% with rule triggers to 13.2% with ad
hoc triggers, a risk ratio of 4.7. The exact Fisher test of the corresponding 2x2 contingency table
results in a p-value of 0.0124, therefore the difference is statistically significant at the 5% level.
Table 5.2 shows the detailed numbers for the different review triggers. An interesting side-note
is that having managers trigger reviews seems to be especially prone to discontinuation.

Another possible explanation for the higher share of teams with ad hoc triggers in the “fade
away” subsample would be a generation effect: Teams that introduced reviews more recently
could use rule triggers more often. Therefore, teams that have used reviews for less than a year
were compared with those that used them for two years or more. Of 45 teams with brief review
use, 25 use rules (56%). For teams with long review use, the share is 49 of 75 (65%). This
higher share of rule use for longer review use supports Hypothesis 5.4 and opposes the stated
generation effect.

5.3 Comparison to Related Work

The found results confirm some previous studies and challenge or extend others. The current
section discusses the results in comparison to related work as well as to more general theories.

Harjumaa et al. [162] studied characteristics of and motivators and demotivators for peer
reviews. The study is based on twelve development divisions from ten small Finnish software
companies. Interviews were performed in a structured fashion, based on a questionnaire devel-
oped using information from the literature, and analyzed mostly quantitatively. The authors
examined motivators for review, with defect detection being the most important one. The only

33

obstacle they identified as relevant is lack of time and resources. They did not examine cultural
or social issues in depth.

In his book “Diffusion of Innovations” [324], Rogers describes a general theory of the mecha-
nisms behind the spread of new ideas and improvements, based on a large body of empirical work
from several disciplines. Diffusion is described as a process of communication in social networks.
Others’ opinions and experiences are most important when deciding if to adopt, but they also
influence the knowledge of innovations. The rate of adoption of an innovation is influenced by
several of its characteristics: Relative advantage compared to current solutions, compatibility
to values, experiences and needs, complexity, trialability and observability.

Code reviews are part of the general software development process, and introducing code re-
views is a special case of software development process improvement. Therefore, it is interesting
to compare the results to general studies on this topic. In Coleman’s study of software devel-
opment process formation and evolution in practice [79, 80], he observed that process change
is triggered by “business events”, often problems. This is similar to Hypothesis 5.1. After a
change, “process erosion” occurs until a “minimum process” is reached. In the studied cases,
major erosion occurred only when code reviews had not been institutionalized (Hypothesis 5.4).
Like this thesis, Coleman found that software process is influenced by cultural issues (“man-
agement style”, “employee buy-in”, “bureaucracy”, . . .) as well as business issues (“market
requirements”, “cost of process”). However, in his area of research cost of process was dominat-
ing, while this thesis found a dominance of cultural and social issues among inhibitors of review
use. This can possibly be explained by the more social and subjective character of code reviews.

Some other sources also support Hypothesis 5.4: Komssi et al. [205] describe experiences at F-
Secure where document inspections were not integrated into the process and were abandoned as
soon as the champions lost their interest. Land and Higgs [219] describe the institutionalization
of development practices in a case study of an Australian software company.

♦
Summing up, this chapter studied to what degree better review support could lead to higher

review adoption, based on empirically grounded hypotheses on why reviews are introduced and
stopped. Non-introduction of reviews is mainly influenced by cultural and social issues and fit
to the context, so that better review support is unlikely to increase review introduction much.
Stopping of reviews, instead, is often not an explicit decision but a ‘fading away’. By using rules
and conventions to trigger reviews, the risk of ‘fading away’ can be substantially reduced. This
is a strong point of tool-supported change-based review processes.

34

6
Variations in Industrial Review Processes

Although industrial review processes are converging, there is a lot of variation in the details.
The next section answers RQ6.1 (“How can the variations between code review processes of dif-
ferent teams and companies be systematized?”) and presents a model to classify these variants.
A single dimension is not adequate to capture the variation. Instead a multi-dimensional model
is used, based on several so called ‘facets’ of the process. But where does the variation come
from, and which factors determine the review process? The later parts of this chapter address
RQ6.2 by discussing these questions, and compare the results obtained from the empirical data
with findings from the literature.

6.1 A Faceted Classification Scheme of Change-Based Code Re-
view Processes

Common classification schemes for review processes use simple labels like “Inspection”,
“walkthrough” or “passaround” to classify types of review processes as a whole. Such a one-
dimensional taxonomy simplifies discussions, but it is inadequate for describing the variations
without losing a lot of information. Therefore, this thesis proposes a faceted classification scheme:
A review process is described by the combination of values for a number of facets/dimensions.
Because the data led to a large number of facets, the scheme is grouped into thematic categories.
Figure 6.1 shows the groups, the contained facets and the possible values for the facets. The
thematic categories in the classification scheme are:

Process embedding The first group of facets contains aspects that vary with regard to how the
code review process is embedded into the rest of the development process, i.e., when and
in which way a review is triggered and which influences it has on other process activities.

Reviewers The facets belonging to this group describe differences regarding the selection of
reviewers.

Checking The facets in this group describe variations regarding the central activity of a code
review: Checking the code. Like in the rest of the scheme, only variations in the codified
processes of the teams are described. Personal differences in the checking habits of the
individual reviewers are out of the scope of the classification scheme.

35

Regular, Change-Based Code Review in Industry

Process Embedding (B.1)

Unit of work:
release or story/requirement or task or push/pull/combined commit or singular commit

Tool support/enforcement for triggering:
tool or conventions

Publicness of the reviewed code:
post-commit review or pre-commit review

Means to keep unreviewed changes from customer releases:
organizational or pre-commit review or release branch

Means to ensure swift review completion:
priority and/or wip limit and/or time slot and/or author’s responsibility

Blocking of process:
full follow-up or wait for review or no blocking

Reviewers (B.2)

Usual number of reviewers:
1 or 2 or 1 + author

Rules for reviewer count / review skipping:
component and/or author’s experience and/or lifecycle phase and/or change size
and/or pair programming and/or reviewer’s choice and/or author’s choice

Reviewer population:
everybody or restricted or fixed

Assignment of reviewers to reviews:
pull or push or mix or fixed or discussion or random

Tool support for reviewer assignment:
no support or reviewer recommendations

Checking (B.3)

Interaction while checking:
on-demand or asynchronous discussion or meeting with author or meeting without author

Temporal arrangement of reviewers:
parallel or sequential

Specialized roles:
roles and/or no roles

Detection aids:
checklists and/or static code analysis and/or testing

Reviewer changes code:
never or sometimes

Feedback (B.4)

Communication of issues:
written or oral only or oral stored

Options to handle issues:
resolve and/or reject and/or postpone and/or ignore

Overarching Facets (B.5)

Use of metrics:
metrics in use or no metrics use

Tool specialization:
general-purpose or specialized

Figure 6.1: Overview of the classification scheme. Each gray box is a facet. Possible values are written
in small caps. Values separated by “or” are alternatives, values separated by “and/or” can be combined.
A tuple with values for all facets describes a review process. (based on [38])

36

Feedback Feedback in the form of review remarks is the main output of the checking. The
facets in this group summarize differences in the handling of feedback between the team’s
review processes.

Overarching facets The facets in this group pertain to aspects that span the whole code
review process, for example the use of review tools.

The details of the various facets are not described in the current chapter, but are available
in Appendix B.

6.2 Factors Shaping the Review Process

Observing the variation in review processes, the question of the sources of this variation
comes up. This section presents hypotheses on factors that shape the review process. But it
also describes weaknesses of these hypotheses, as they could not be fully validated in the online
survey. An important partial result for the rest of the thesis is that model processes are an
important factor shaping the details of the process, and that review tools are an important
source for these model processes. Scientific publications, on the other hand, seem to have little
direct influence on practice.

When a change in (or introduction of) the review process is triggered, a small number of
possible solutions is examined I .5 ,7 ,17 ,24 (see also Section 6.2.3). Each possibility has to satisfy
mainly three criteria: It has to fit into the context of the team I .4 ,5 ,9 ,12 ,17 ,24 , and it has to
be believed to provide the expected desired effects I .3 ,6 ,8 ,9 ,10 ,14 ,19 ,21 ,22 ,23 while staying in the
acceptable range of undesired effects I .4 ,6 ,7 ,9 ,10 ,14 ,18 ,19 ,21 ,22 . These general relationships are
visualized in Figure 6.2. The term “effect level” shall indicate that the team is looking for a
solution that is “good enough” with regard to the desired effects and “not too bad” with regard
to undesired effects I .10 ,12 ,13 . Influences between the contextual factors are not included in the
diagram.

The factors forming the context are divided into five categories: “culture”, “development
team”, “product”, “development process” and “tool context”. The following text describes the
factors extracted from the interviews. It also gives examples for their influence on the review
process.

The category “culture” subsumes conventions, values and beliefs of the team or company.
The following inter-related factors belong to this category:

Collective Code Ownership In companies with full collective code ownership, every devel-
oper can and should work on every part of the code. At the other end of the spectrum are
companies where only a designated module owner is allowed to change certain parts of the
code. As an example, this directly influences whether a reviewer is allowed to fix minor
issues on his own during the review I .2 ,5 ,6 ,8 . It also influences the importance of clarity of
the code to other developers, which indirectly influences the intended level of code quality
to be reached by reviews.

Intended knowledge distribution The intended knowledge distribution is closely related to
collective code ownership. When every developer should be able to work on every part of
the code, knowledge has to be distributed broadly. This increases the need for review as a
means of knowledge distribution I .11 . Many interviewees believe that face-to-face commu-
nication is better suited for knowledge distribution than written feedback I .4 ,7 ,8 ,9 ,11 ,21 .

37

Code review
process

Used review
tool(s)

Intended/Acceptable
levels of

review effects

Process used by
role models

Product:
Defect consequences

Contractual or legislative obligations
Complexity Development process:

Task-based/Story-based/Pull-based
Use of review alternatives

Rigidity
Release cycle

Tool context:
SCM

Ticket system

Development team:
Actual knowledge distribution

Spatial distribution

Culture:
Collective Code Ownership

Intended knowledge distribution
Long-term thinking
Quality orientation

Error culture

Figure 6.2: Main factors shaping the review process. Arrows mean “influences”. (Source: [39])

Long-term thinking An orientation towards the long-term success of the company or prod-
uct increases the importance of code quality and knowledge distribution and therefore
influences review process choices indirectly I .7 ,15 .

Quality orientation The balance between quality, effort and time-to-market differs between
teams and companies. When quality is considered to be of secondary importance, the effort
and time spent on reviews becomes an important factor, and vice-versa I .5 ,6 ,13 ,18 ,23 ,24 .

Error culture When errors are seen as personal failures of the author, this increases the risk
that the author feels offended by review remarks I .12 ,17 .

The category “development team” subsumes factors that characterize the development team:
Actual knowledge distribution The reviewer’s expertise is seen as an important factor for

its effectiveness in finding defects I .2 ,4 ,5 ,9 ,11 ,14 ,22 . Therefore, some teams choose to restrict
the reviewer population to experienced team members I .12 ,22 ,24 . Less experienced team
members often introduce more defects and benefit more from knowledge transfer through
reviews I .14 ,19 ,21 ,24 .

Spatial distribution Some teams work co-located, others are distributed. In distributed
teams, face-to-face interaction in reviews is harder I .4 .

The category “product” contains factors that characterize the requirements posed to the devel-
oped product. These factors have an indirect influence on the review process:
Defect consequences When defects have severe consequences, finding defects becomes more

important. The importance of finding defects influences for example the number of re-
viewers and the selection of certain experienced reviewers I .24 .

Contractual or legislative obligations When code reviews are mandated by a contract or
law, the review process is designed to satisfy these requirements I .20 .

Complexity When the developed code is not very complex, the intended levels of code quality
and defects can possibly be reached without doing regular code reviews I .8 ,18 .

38

The code review process is a subprocess of the general development process and is influenced by
the other parts of this process:

Task/Story/Pull-based Some teams divide user stories into development tasks, while others
only use stories or only pull requests based on commits. A team can only choose between
tasks and stories as the unit of work to review when both are available in the development
process.

Use of review alternatives There are alternative techniques to reach the effects intended by
code reviews. A commonly used alternative for defect detection is testing I .6 ,12 ,14 ,20 ,23 ,24 .
Many teams use static code analysis on a continuous integration server to detect maintain-
ability issues I .2 ,3 ,6 ,8 ,11 ,23 ,24 . To find better solutions, many teams discuss requirements
and design alternatives before code review I .5 ,6 ,7 ,23 . Pair programming is another alter-
native to code reviews, often seen to provide similar benefits I .1 ,3 ,6 ,7 ,8 ,24 .

Rigidity When the development process leaves a lot of freedom to the single developer, tech-
niques like pull requests help to ensure that reviews are performed I .2 .

Release cycle When releases are very frequent, the acceptable increase in cycle time through
reviews is lower I .23 . Frequent or even “continuous” releases also demand techniques to
keep unreviewed changes from being delivered to the customer. This often means pre-
commit reviews/pull requests I .2 .

Tools used in the development team can reduce the possible choices of process variants:

SCM To use a pull-based review process, a decentralized source code management system
(SCM) is needed I .9 ,12 ,20 .

Ticket system The review process can only be codified into the ticket system’s workflows if a
ticket system is in use and supports customizable ticket workflows I .12 .

6.2.1 Effect Goals as a Mediator

In the preceding section, it could already be seen that some contextual factors influence the
review process directly by delimiting which process variants are feasible. Many others influence
it indirectly by influencing the intended/acceptable levels of review effects (“. . . , but which
processes you introduce is heavily linked to how valuable you perceive them”I.14; Figure 6.2).
Based on the interviews, many process variants are expected to promote certain effects, and
often also to impair others. This leads to conflicts between the effects. Consequently, the chosen
review process is influenced by the combination of intended effects. Some effects are seen as
more important than others, while others are seen as secondary or not pursued at all. This is
used to perform trade-offs while designing the review process. The resulting combination is not
constant for a team, but can be different for example for different modules or for different phases
of the release cycle.

Hypothesis 6.1. The intended and acceptable levels of review effects are a mediator in
determining the code review process.

An effect can be desired by the team or by a single developer. Only effects that are desired
by the team lead to a codification of the review process in form of a process specification or
conventions. This then leads to a more homogeneous process, while the review practices stay
inhomogeneous when they are driven largely by individual needs.

The process for selection of the review variants is not done comprehensively in most cases.
Most interviewees argued with positive and negative effects of certain techniques but did not

39

include every effect into their consideration. And in some cases it seems that the primacy of a
certain effect is taken for granted, without stating it explicitly I .13 ,22 ,24 .

Hypothesis 6.1 was also tested based on the survey results. Following this hypothesis, one
would expect to find that the relative ranking of review effects influences the chosen variant
for some of the review process facets, that the team’s context influences the relative ranking of
review effects, and that this indirect effect is in most cases stronger than the direct influence of
context on review process facets.

I systematically checked each of the combinations of review effect and process facet that were
mentioned in the interviews [27]. For intended review effects, none of the checked interactions
were statistically significant, even at the 10% level and without Bonferroni correction. For the
relative ranking of undesired effects, some of the predicted effects had p-values smaller than
0.05:

• When “increased staff effort” is most unintended this makes a “very small review scope”
(i.e., more overhead due to a higher number of small reviews) less likely: risk ratio=2.2;
p=0.034.

• When “increased staff effort” is most unintended this makes “pull or mixed reviewer to
review assignment” more likely: risk ratio=1.6; p=0.037.

• When “increased cycle time” is most unintended this makes “review meetings” less likely:
risk ratio=2.8; p=0.006.

Those three interactions are also those with the highest risk ratio (i.e., effect size). Even
though they have p-values smaller than 0.05, none of them is statistically significant after Bon-
ferroni correction. A complete list of all tested interactions can be found in the survey study’s
online material [36].

Summing up, only 3 of 30 cases give some support for the expected relationship. Therefore,
there is little evidence that the intended and acceptable levels of review effects influence the
code review process, except in some narrow areas. Consequently, they cannot be mediators, and
Hypothesis 6.1 is not supported by the survey.

Due to the low statistical power and multiple threats, the analysis of this hypothesis is
problematic. Assuming that the non-finding is not caused by flaws in the data collection and
analysis, there are two explanations: (1) There is an effect, but the study checked the wrong sub-
hypotheses, or (2) the intended effects determine a team’s review process only to a small degree.
The second explanation is in line with Ciolkowski, Laitenberger, and Biffl’s conclusion that
many companies use reviews unsystematically [75]. It would also mean that ‘satisficing’ [249]
and orientation along experiences from peers and processes used by review tools are even more
important than noted earlier. There remains a lot of research to be done, both to find out
which process variants are best in a given situation, and to find ways to bring these results into
practical use.

6.2.2 Sources of Information

Until here, it was mainly described how the choice among the possibilities is performed, but
it remained open how the possibilities to examine are determined: The interviewees were asked
which sources, if any, they used to gain knowledge on reviews. Most did not explicitly look for in-
formation on reviews very often and also perceived no need for further information I .3 ,8 ,12 ,16 ,17 ,18 .
Own experiences in open source projects and experiences from colleagues were the most influential I .2 .
Overall, the following information sources were mentioned:

• colleagues or other teams in the same company I .2 ,13

40

• open source projects I .9

• blogs and web pages I .1 ,10 ,21

• university education I .14

• practitioners’ journals I .1 ,15 ,18 ,24

• practitioners’ conferences I .24

• books on software engineering best practices I .15 ,24

6.2.3 The Influence of Model Processes

In addition to the sources of information mentioned in the preceding section, many of the
considered process variants were conceived without having an explicit source of information I .12 .
When choosing a review process, the number of examined possibilities was often quite low I .7 ,13 ,17 ,21 .
In many cases, only the possibility that first came to mind was examined, and only when
it was not suitable to reach the intended effect levels a search for further possibilities was
started I .7 ,8 ,13 ,21 .

This low number of examined possibilities is especially true for many of the minor decisions
involved in the choice of a review process. Mostly, the potential for improvement of these
process variations is regarded as minimal. Consequently, many of these minor decisions have
been justified by the interviewees with statements like ‘We tried it that way, it worked well
enough, so there is no reason to change it’ I .10 ,12 ,13 . This observation is similar to the one that
led to Hypothesis 5.1 (“change only on perceived problem”).

From another point of view, the observations described in the preceding paragraph also
mean that the initial choice of a possibility for consideration has a tremendous effect on the
final process. Among other things, this explains a pattern of ‘tool shapes process’ that occurred
several times IB ,IE ,IG,IH ,IS : A team selects a certain tool to support its review process. This
tool has certain ‘standard’ process variants. Consequently, the team mainly uses the standard
variants and only tries to circumvent the limitations of the tool (or looks for another tool) when
it expects a notable increase in effect level attainment or the standard is in conflict to fixed
contextual factors.

Hypothesis 6.2. Model processes known from other teams or projects or coming from
review tools have a large influence on many minor decisions shaping the code review process.

6.3 Comparison to Related Work

This section discusses the results in comparison to the related work as well as to more general
theories.

As already mentioned in Chapter 5, Rogers [324] describes a general theory of the mecha-
nisms behind the spread of new ideas and improvements. Others’ opinions and experiences are
most important when deciding if to adopt, but they also influence the knowledge of innovations.
This supports that review processes of familiar teams have a large influence (Hypothesis 6.2).
The rate of adoption of an innovation is influenced by several of the innovation’s character-
istics: Relative advantage compared to current solutions, compatibility to values, experiences
and needs, complexity, trialability and observability. Given these categories, the “intended re-
view effects” coincide with the perceived “relative benefit”, and the cultural issues inhibiting
review use can be seen as cultural incompatibility. Rogers also notes that “re-invention”, the
customization of an innovation to one’s needs, is another factor benefiting innovation adoption.

41

All the variations in the interview study are essentially re-inventions of the basic notion of code
review.

Theories of ‘bounded rationality’, particularly ‘satisficing’, are used to explain decisions in
organizations [249]. They claim that humans typically do not choose an optimal solution, but
instead stop searching for further solutions when one is found that satisfies their needs. The
findings support this theory: A team does not search for the optimal review process, but instead
uses one that reaches the intended effect levels (Hypothesis 6.1).

Code reviews are part of the general software development process, and introducing code
reviews is a special case of software process improvement. Therefore, it is interesting to compare
the study’s results to general studies on this topic. Clarke and O’Connor combined several stud-
ies to develop a reference framework of factors affecting the software development process [76].
Compared to the classifications from the current thesis, they provide a lot more structure re-
garding environmental factors (“Organization”, “Application”, “Business”), but cultural factors
are mainly restricted to only two sub-categories (“Culture” and “Disharmony”). Further work
in similar areas has been performed by Sánchez-Gordón and O’Connor for very small software
companies [333], by Mustonen-Ollila and Lyytinen using diffusion of innovation theory as a guid-
ing framework to quantify some aspects of the adoption of information system innovations [277]
and by Orlikowski on the adoption of computer-aided software engineering tools [286].

Hypothesis 6.1 stated that the review process is tailored according to the pursued goals.
Tailoring of review processes has also been proposed in the research literature, for example in
the TAQtIC approach [100] with a focus on classical Inspection. And Green et al. [149] noted
that “[the pursued] value can change everything” with regard to tailoring software processes.

Porter et al. [301] observed that only a small share of the variance in review performance can
be explained by process structure, and Sauer et al. [336] arrive at a similar result by theoretical
considerations. This indicates that the choice to give little attention to the review processes’
details (Hypothesis 6.2) is likely a sensible one.

♦
This chapter shows the large amount of variation in industrial review processes and proposes

a classification scheme to systematize it. Furthermore, it provides grounded hypotheses on
the factors that influence the used process. In Part II, Chapter 8 uses these findings when
describing the partner company’s context and review process. Another important hypothesis
for this thesis is that there is a cyclic influence between review tool and used process – a chance
and a responsibility for tool creators.

42

7
Tools and Techniques to Support Reviews

Researchers and practitioners alike have been looking for ways to support code reviews
for decades. One possibility is to support the reviewer during the checking of the code. Much
research in this regard was done under the label of ‘reading techniques’. These reading techniques
are introduced in the next section, as they are a predecessor of the computerized cognitive
support techniques of Part III. Besides the checking, support is also possible for the bookkeeping
and process management tasks. This is what most current code review tools focus on, and the
last two sections of this chapter provide an overview of research on code review tools (Section 7.2)
and of review tools used in current industrial practice (Section 7.3).

7.1 Code Reading Techniques

‘Reading techniques’ are a largely manual tool to support the reviewer. This section presents
related work on reading techniques, and also discusses their limited use in practice. There is
a multitude of reading techniques, and Table 7.1 shows an overview. Many of these reading
techniques share underlying mechanisms that are assumed to be the cause for their functioning.
These are:

Thoroughness Demanding that all artifacts of a certain type, or all artifacts satisfying certain
conditions, are reviewed.

Focus/Prioritization The reviewer shall focus on parts that are more important, for example
due to high business value or error proneness. Here, focus means a binary decision, whereas
techniques that use prioritization distinguish several levels of priority, up to a total ordering
of items.

Activation These techniques try to make the reviewer work actively with the document under
review, for example by writing test cases for requirements.

Reduce Overlap By focusing different reviewers on different aspects, the overlap between
multiple reviewers in a review team shall be reduced.

Include Documents The reviewer shall perform a comparison to other documents, for exam-
ple to the requirements for a design review.

Step-by-Step The technique gives a detailed step-by-step procedure how to perform the check-
ing, to make the process more repeatable and to guide inexperienced reviewers.

43

Table 7.1: Reading techniques and their main mechanisms.

Technique Type Proposed for T
h

or
ou

gh
n

es
s

F
o
cu

s/
P

ri
or

it
iz

at
io

n

A
ct

iv
at

io
n

R
ed

u
ce

O
v
er

la
p

In
cl

u
d

e
D

o
cu

m
en

ts

S
te

p
-b

y
-S

te
p

S
ec

o
n

d
a
ry

O
u

tc
o
m

e

D
ef

ec
t

C
a
u

se
A

n
a
ly

si
s

Checklist-Based Reading [65, 117,
165]

checklist any F

Value-Based Review [231] checklist requirements P

Indicator-Based Inspections [114] checklist req./design • F • • •
Rigorous Inspection Method [234] checklist design • F • •
Abstraction-Based Reading [109] code • F • • •
Functionality-Based Reading [1] scenario code • F • • •
Perspective-Based Reading [24] scenario requirements • F • • •
Traceability-Based Reading [378] scenario design • F • • • •
Task-Directed Software Inspection
[193, 194]

code • • (•) •

Use-Case Based Reading [108] code F • •
Usage-Based Reading [373] design P • • •
Time-Controlled Reading [298] design P • • •
Inspection-Based Testing [401] design/code F • • • •
Test-Case Driven Inspection [113] requirements F • • •
Error-Abstraction and Inspection
[12]

requirements F •

Secondary Outcome The outcomes of the reviewer’s active work are meant to be useful on
their own. This is usually used to lessen the burden of Activation. In ‘task-directed
software inspection’, for example, the reviewers create documentation for the code under
review.

Defect Cause Analysis The reviewer shall explicitly consider defect root causes, like common
human errors.

There are two larger families of reading techniques, indicated by the ‘Type’ column in Ta-
ble 7.1: Checklists are used to focus reviewers on certain aspects and to ensure that these are
checked. Variants of scenario-based reading instead provide detailed descriptions how the re-
viewer should actively work with the document under review, often focusing different reviewers
on different roles to reduce overlap. Not all details of the techniques can be discussed here, but
a book by Zhu [414] and some earlier surveys [23, 25] provide in-depth discussions. Only few
of the reading techniques in the table explicitly focus on code reviews, and none deal with code
changes. Most reading techniques were developed in a time when review tools were in their
infancy, and there is still little computer-support for most of them.

The survey on review use in practice also contained questions to roughly assess the use of the
main families of reading techniques in practice. It is sometimes claimed that “checklist-based

44

reading” is the prevalent reading technique in practice. The survey results do not support this
claim: Only 23% (22 of 94) of the respondents state that they use a checklist during reviews.
Only 7% (6 of 90) of the respondents state that they explicitly assign distinct roles to the
different reviewers. 72% (63 of 88) use neither checklists nor roles. Given the high research
effort that went into developing reading techniques, this result is disappointing. The results
from Chapters 4 to 6 hint at possible reasons:

• Reading techniques might not fit the context well: For example, assigning different roles
to different people is only useful when there is more than one reviewer, but often there
is only one. Creating tests during code review is useless when they are created during
implementation. Requirements or design documents can only be reviewed when they exist,
but many teams do not use them consistently. And none of the techniques is tailored for
the review of code changes.

• The choice of review process is influenced more by experiences and tools than by research
publications, and checklist-based reading is the only technique that is supported in at least
some of the practically used tools (see Sections 7.2 and 7.3).

• Many experienced developers dislike the tedious manual work and strict procedures asso-
ciated with many reading techniques. [226, 259]

All in all, this casts doubts on three of the mentioned mechanisms (Reduce Overlap, Secondary
Outcome, and Step-by-Step) for regular change-based code reviews. Empirical results whether
and under which conditions Activation is beneficial are inconclusive [99, 226, 402]. Of the
remaining mechanisms, Chapter 9 shows how the review tool developed in this thesis (CoRT)
supports Thoroughness and Include Documents. The identification of irrelevant change parts
(Chapter 15) helps to Focus the reviewer. Support for Defect Cause Analysis is not discussed
in detail in this thesis.

7.2 Research on Code Review Tools

This section presents the results of a semi-systematic literature review on code review tools.
Such a literature review provides an overview of central innovations and the development of
the field over time. It does not cover review tools not originating in academia, which form the
majority of tools used in practice today and which are discussed in the next section.

In the literature review, an extensive start set of research papers was systematically com-
pleted by forward and backward snowballing [235, 405]. The start set ([48, 49, 53, 59, 62, 63,
64, 70, 74, 93, 94, 95, 106, 112, 141, 155, 156, 163, 167, 168, 174, 185, 189, 217, 224, 225, 237,
239, 296, 297, 335, 359, 370]) consisted not only of articles on review tools, but also of earlier
literature reviews and overviews. Saturation was reached after three iterations. The review in-
cludes peer-reviewed publications that describe implemented code review tools, published until
November 2018. In particular, this excludes (1) tools that are only described in Master or other
student’s theses (e.g., [274, 407]), (2) tools that explicitly target the review of non-code artifacts
(e.g., [53, 151, 154, 156, 181, 209]), (3) descriptions how to apply general-purpose collaboration
or code exploration tools to reviews (e.g., [11, 98, 266, 306, 385]), and (4) publications that only
discuss concepts without at least a prototypical realisation (e.g., [103, 283]).

The literature review found 51 publications that describe 30 tools. They are shown in Tables
7.2 and 7.3. The earliest contribution, ICICLE, was also a substantial one and introduced many
of the central ideas of review tools: Presentation of the code under review, automatic remark
collection, and further support for process administration and bookkeeping. In addition, it

45

Table 7.2: Review tools originating from academia (1/2). The tools are ordered chronologically, except
for successors of an earlier tool, which are marked by ↪→.

Tool Name Publ.
Year

Artifact
Type

Process
Integra-
tion

Interaction Evaluation Major Innovations

ICICLE/
TRICICLE
[62, 63, 64,
338]

1990 code no in-person
(ICICLE),
synchronous
(TRICICLE)

industry first published tool, code
presentation, remark
collection, process
administration support,
code cross-referencing,
navigation to background
knowledge, inclusion of
static analysis review
agents

InspeQ
[201, 202]

1991 code no none laboratory support for ‘phased
inspections’, checklist
integration

CSI [106,
251]

1991 generic no synchronous laboratory review of non-code
artifacts, support for
geographical distribution

↪→ CAIS
[252]

1994 generic no asynchronous laboratory

↪→ AISA
[359]

1997 generic no asynchronous industry inspection of graphical
artifacts

Scrutiny
[141, 142]

1993 code no asynchronous
or
synchronous

industry asynchronous

CSRS [185,
186]

1994 code no asynchronous laboratory collection of telemetry data
for research

HyperCode
[296, 297]

1997 code
changes

no none industry shows code changes,
browser-based

ASSIST
[237, 240,
270, 271]

1997 generic no asynchronous
or
synchronous

laboratory configurable process,
evaluation with controlled
experiment, defect content
prediction with
capture-recapture

WIPS [217] 1998 code no synchronous laboratory

WiP [161] 1998 code no asynchronous laboratory

↪→ WiT
[160, 370]

1999 generic no asynchronous laboratory

↪→ SATI
[159]

2001 generic no none laboratory

↪→ XATI
[167, 168]

2002 generic no none laboratory

InspectA
[269]

1999 code no asynchronous laboratory

AnnoSpec
[358]

1999 code no asynchronous laboratory showing annotations from
related code parts

46

Table 7.3: Review tools originating from academia (2/2). Names in italics are author names of otherwise
unnamed tools.

Tool Name Publ.
Year

Artifact
Type

Process
Integra-
tion

Interaction Evaluation Major Innovations

IBIS [67,
222, 223,
224, 225]

2001 code no asynchronous laboratory

jInspect
[372]

2004 code no none laboratory support for usage-based
reading

ISPIS [188] 2004 generic no asynchronous laboratory reviewer recommendation

CIT [70] 2005 code no asynchronous laboratory support for scenario-based
reading

Nick [282] 2005 code no none laboratory

WAIT [93,
94, 95, 96]

2007 generic yes asynchronous
or
synchronous

laboratory process integration

CollabReview
[304, 305]

2008 code (no) asynchronous laboratory continuous feedback

SCRUB
[174]

2010 code no asynchronous
and
synchronous

industry

ReviewClipse
[48, 49]

2010 code
changes

yes asynchronous industry

CodeTalk
[360]

2010 code (no) asynchronous laboratory

Fistbump
[189]

2016 code
changes

yes asynchronous laboratory

Dürschmid
[112]

2017 code (no) asynchronous laboratory

The
Empire of
Gemstones
[335]

2017 code
changes

yes asynchronous laboratory gamification

contained features that are above the standard of many more recent tools, like support for code
cross-referencing, presentation of background knowledge, and the use of review agents based on
static code analysis. It was focused on Fagan-type Inspections, with mandatory synchronous
review meetings that had to be held in the same room. CSI, published shortly afterward, was
the first prototype tool to overcome this limitation and supported distributed review meetings.
With the introduction of asynchronous discussion by Scrutiny and of explicit support for code
changes in Hypercode, the features that define code review tools until today were established by
the year 1997. Asynchronous discussion has become the standard since then, in line with the
empirical findings from the 1990s that showed no substantial benefit of review meetings [187,
390].

Innovations also happened besides the main features: Certain publications brought support
for reading techniques, like checklists in InspeQ and usage-based reading in jInspect, or other

47

extended support features, like support for re-inspection decisions in ASSIST. Further contribu-
tions are targeted towards research, like the collection of detailed telemetry data pioneered by
CSRS or the evaluation with controlled experiments, first performed for ASSIST. Many later
tools brought improvements in the details, adjustments to other technological bases, and occa-
sionally also re-inventions of earlier concepts. Recently, there have also been several prototypes
that try to overcome explicit reviews and move towards continuous feedback on code.

Whereas most early tools were stand-alone and not well integrated into the surrounding
process, integration with SCMs, ticket systems and IDEs has become more common in the last
ten years. Still, few tools from academia support reviews based on code changes, let alone fully
integrated regular change-based code reviews as defined in Section 4.1. As Tables 7.2 and 7.3
show, tools that were developed or evaluated with industry are in the minority, but this minority
was responsible for many of the central innovations.

7.3 The Use of Review Tools in Practice

The previous section presented a large number of review tools from academia. Now, it is
shown which tools are actually used in practice. The survey on the state of the review practice
(Section 3.3) asked development teams that perform reviews which review tools they use, if
any. Figure 7.1 shows the most prevalent answers. 33% of the teams (54 of 163) only use
general-purpose development tools during reviews. Among the specialized tools, the commercial
or service offerings from Atlassian, GitHub, GitLab and JetBrains take the lion’s share, with
Gerrit as only non-commercial open-source contender. For the most prevalent tools (Bitbucket,
GitHub, GitLab) the review support is only a sub-function of a general repository management
and development support suite.

To compare these tools, Table 7.4 shows some of their central features. It contains all tools
that were mentioned in the interviews or the survey, so that there is evidence that these tools
are used in industry, or at least were used in the last years. The information on the tools was
collected by trying them out, asking users, or looking up information from their websites. In
contrast to the majority of tools with an academic origin, most of the tools analyzed here provide
the integration with the SCM and the development process necessary to support regular change-
based code reviews. Most tools are limited with regard to the process variants they support:

0 10 20 30 40 50

only general development tools
Atlassian Stash/Bitbucket

GitHub
GitLab
Gerrit

Atlassian Crucible
JetBrains Upsource

54
32

26
12

11
11

7

Team count

Figure 7.1: Number of teams that use a certain review tool. Multiple mentions were possible. The
figure shows the most prevalent tools in the survey. Further mentions were: Team Foundation Server (3),
SmartBear Collaborator (2), Phabricator (2), Codeflow (1), Reviewboard (1), ReviewAssistant (1), pro-
prietary tools (4)

48

T
a
b

le
7
.4

:
S

el
ec

te
d

fe
a
tu

re
s

o
f

re
v
ie

w
to

o
ls

u
se

d
in

p
ra

ct
ic

e.

C
h

a
n

g
e-

B
a
se

d
In

te
g
ra

ti
o
n

R
ev

ie
w

er
S

u
p

p
o
rt

N
am

e1
A

va
il

ab
il

it
y
2

U
n

it
of

W
o
rk

S
C

M
In

te
g
ra

ti
o
n

P
ro

ce
ss

In
te

g
ra

ti
o
n

P
re

/
P

o
st

-
C

o
m

m
it

ID
E

In
te

g
ra

ti
o
n

C
ro

ss
-

R
ef

er
en

ci
n

g
O

n
-t

h
e-

F
ly

E
d

it
in

g

A
tl

as
si

an
S

ta
sh

/
B

it
b

u
ck

et
S

er
ve

r
co

m
m

er
ci

al
p

u
ll

re
q
u

es
t

g
it

,
M

er
cu

ri
a
l

ye
s

p
re

n
o

n
o

ye
s

G
it

H
u

b
S

aa
S

p
u

ll
re

q
u

es
t

g
it

ye
s

p
re

n
o3

n
o

ye
s

G
it

L
ab

S
aa

S
p

u
ll

re
q
u

es
t

g
it

ye
s

p
re

n
o

n
o

ye
s

G
er

ri
t

op
en

-s
ou

rc
e

p
u

ll
re

q
u

es
t

g
it

ye
s

p
re

p
o
ss

ib
le

(E
G

er
ri

t)
w

it
h

E
G

er
ri

t
w

it
h

E
G

er
ri

t

A
tl

as
si

an
C

ru
ci

b
le

co
m

m
er

ci
al

re
v
ie

w
ta

sk
g
it

,
sv

n
,

..
.

n
o4

p
o
st

n
o

n
o

n
o

J
et

B
ra

in
s

U
p

so
u

rc
e

co
m

m
er

ci
al

re
v
ie

w
ta

sk
g
it

,
sv

n
,

..
.

ye
s

p
o
st

o
p

ti
o
n

a
l

ye
s

n
o

M
ic

ro
so

ft
T

ea
m

F
ou

n
d

at
io

n
S

er
ve

r
cl

os
ed

-s
ou

rc
e

p
u

ll
re

q
u

es
t

tf
vc

,
g
it

ye
s

p
re

ye
s

n
o

n
o

S
m

ar
tB

ea
r

C
ol

la
b

or
at

or
cl

os
ed

-s
ou

rc
e

re
v
ie

w
ta

sk
g
it

,
sv

n
,

..
.

ye
s

b
o
th

ye
s

n
o

n
o

P
h

ab
ri

ca
to

r
op

en
-s

ou
rc

e
p

u
ll

re
q
u

es
t

g
it

,
sv

n
,

..
.

ye
s

b
o
th

n
o

n
o

n
o

M
ic

ro
so

ft
C

o
d

efl
ow

5
in

-h
ou

se
re

v
ie

w
ta

sk
tf

vc
,

g
it

,
..

.
ye

s
p

re
n

o
n

o
n

o

R
ev

ie
w

b
oa

rd
op

en
-s

ou
rc

e
re

v
ie

w
ta

sk
g
it

,
sv

n
,

..
.

n
o

b
o
th

n
o

n
o

n
o

R
ev

ie
w

A
ss

is
ta

n
t

cl
os

ed
-s

ou
rc

e
p

u
ll

re
q
u

es
t

g
it

,
sv

n
,

..
.

ye
s

p
re

ye
s

n
o

n
o

R
ev

ie
w

C
li

p
se

op
en

-s
ou

rc
e

re
v
ie

w
ta

sk
sv

n
n

o
p

o
st

ye
s

n
o

n
o

1
T

o
ol

s
w

er
e

ch
os

en
ac

co
rd

in
g

to
th

e
in

te
rv

ie
w

an
d

su
rv

ey
a
n

sw
er

s
a
n

d
a
re

o
rd

er
ed

b
y

p
o
p

u
la

ri
ty

.
2

‘c
om

m
er

ci
al

’
im

p
li

es
‘s

ou
rc

e
av

ai
la

b
le

fo
r

p
ay

in
g

cu
st

o
m

er
s’

h
er

e;
‘c

lo
se

d
-s

o
u

rc
e’

is
co

m
m

er
ci

a
l

w
it

h
o
u

t
av

a
il

a
b

le
so

u
rc

e.
3

as
of

In
te

ll
iJ

ID
E

A
20

18
.3

,
th

er
e

is
a

ru
d

im
en

ta
ry

su
p

p
o
rt

fo
r

G
it

H
u
b

p
u

ll
re

q
u

es
ts

in
In

te
ll

iJ
ID

E
A

(h
tt

p
s:

//
b

lo
g.

je
tb

ra
in

s.
co

m
/i

d
ea

/2
01

8/
10

/i
n
te

ll
ij

-i
d

ea
-2

0
1
8
-3

-e
a
p

-g
it

h
u
b

-p
u

ll
-r

eq
u

es
ts

-a
n
d

-m
o
re

/
)

4
re

v
ie

w
s

ca
n

n
ot

b
e

m
ad

e
a

m
an

d
at

or
y

p
ar

t
of

th
e

ti
ck

et
/
d

ev
el

o
p

m
en

t
w

o
rk

fl
ow

5
d

at
a

fo
r

C
o
d

efl
ow

m
ig

h
t

b
e

ou
td

at
ed

,
as

th
e

to
o
l

is
n

o
t

p
u

b
li

cl
y

av
a
il

a
b

le

49

Many focus on pre-commit reviews, and few have explicit support for multiple review rounds in
sequential review. Most of the tools are browser-based, and there is neither an IDE-integration
nor an alternative support for advanced code navigation and editing. For many of the tools, the
source code is not available or only available to paying customers, so the only way to adapt these
tools is by using their plugin APIs, or by using hacks like changing the displayed HTML with a
browser plugin. None of the tools provides the cognitive support features that are discussed in
Part III, i.e., automatic change part ordering, advanced identification of irrelevant change parts
and summarization of code changes.

♦
Summing up, the discussion in this chapter shows the ideas underlying various code reading

techniques, the core features that a review tool should possess, and also the limitations of current
tools with regard to supported process variants, tool contexts and extendability for research.
Section 7.2 also supported the design science research approach of developing innovative tools
in the interplay between research and practice. Part II of this thesis now describes how the
requirements of a specific company and the knowledge gained in Part I can be combined to
build a state-of-the-art review tool and platform for code review research.

50

Part II

The Code Review Tool and Research
Platform ‘CoRT’

51

8 Context for Action Research on Improved Code Review Tooling: The
Partner Company 55

9 The Code Review Tool ‘CoRT’ 59

9.1 Key Design Decisions . 59

9.2 CoRT from the User’s Perspective . 60

9.3 CoRT as a Research Platform . 63

9.4 Overview of CoRT’s Internal Architecture . 64

10 A Simulation-Based Comparison of Pre- and Post-Commit Reviews 67

10.1 Methodology . 68

10.1.1 Performance Metrics . 69

10.1.2 Iterative Creation of the Model . 69

10.1.3 Data Generation and Analysis . 69

10.2 Results . 70

10.2.1 Details for a Specific Data Point . 70

10.2.2 General Results . 71

10.3 Validity and Limitations . 75

11 An Empirical Comparison of Multiple Ways to Present Source Code
Diffs 77

11.1 Methodology . 78

11.2 Results . 80

11.3 Validity and Limitations . 83

54

8
Context for Action Research on Improved

Code Review Tooling: The Partner
Company

The goal of this thesis is to improve code review tooling in industrial practice. To this end,
it is of high value to be able to try out tool features in practice and to improve them iteratively.
The collaboration with a software company provided the chance to do so. A description of this
case-study context is needed for the discussion in later chapters, so the current chapter gives
details on this company setting. In the chapters that follow, the tool and the decisions that led
to its design are described.

The company is a medium-sized software company from Germany. It develops and sells a
software product suite, as well as related consulting and services. Many of its customers are
from the financial or public sector. The most severe consequence of defects can be financial
losses for the customers. The company employs around 70 people, of which about 18 are full-
time developers (growing from 14 in the year 2013, where the earliest empirical data used in
the thesis is from). The thesis author also worked part-time for the company during his PhD
studies and was a full-time employee before and afterwards.

In the year 2013, the SCM repository contained about 28,000 files and directories. Of
these, about 7400 are Java files with a total of about 950,000 lines of Java code1. In 2018, the
repository contained about 86,000 files and directories, of which about 20,000 are Java files with
about 2.3 million lines of Java code. Java is the primary implementation language; only recently
TypeScript was introduced as a second language for UI code.

The company’s development team has been using an agile scrum/scrum-ban process since
2008. Currently, sprints last three weeks, and there is a public release of the product at the end
of each sprint. There is a culture of collective code ownership, and the developers shall be able
to work as generalists on many parts of the code base. The team works mostly co-located. Code
quality is important, and code style, unit tests, and many other quality checks are performed
on a continuous integration (CI) server. The development is done trunk-based in a monolithic
Subversion repository. The company has a policy of a consistent development environment, for

1simply counting lines, not distinguishing between empty lines, comments, etc

55

Figure 8.1: Basic state diagram for tickets (Source: [34])

example, all developers use a common setup of the Eclipse IDE.

The company introduced regular code reviews in 2010, and the general process stayed stable
over the last years. For almost every development task (ticket), a review is performed for the
corresponding code changes. When there are review remarks, these are usually addressed in
further commits for the same ticket. In the following, the review process is described along the
facets from the classification scheme that is introduced in Chapter 6:

Unit of work = Task: The team divides user stories into separate implementation tasks. A
review is performed for each such task. Besides, there are “bug” and “impediment” (i.e.,
internal improvement) change tasks that are reviewed, too. All change tasks are hosted as
tickets in Atlassian Jira.

Enforcement for triggering = Tool: Separate states in the Jira ticket workflow ensure that
a review candidate is created for each task. The relevant states are “ready for review”,
“in review”, “rejected” and “done”. Figure 8.1 shows the basic state diagram for a ticket.

Publicness of the reviewed code = Post-commit: A review is performed after the changes
are visible for other developers, i.e., after committing to the Subversion repository.

Means to keep unreviewed changes from customer releases = Organizational: Before
a release, reviews have higher priority and it is checked that all critical reviews are com-
pleted.

Means to ensure swift review completion = Priority: Open reviews have to be completed
before new work is started.

Blocking of process = Full Follow-Up: A ticket is not considered done before all changes
have been accepted by a reviewer.

Number of reviewers / Rules for reviewer count: There is usually one reviewer per ticket,
but for specific modules two reviewers are mandatory. Pair programming reduces the num-
ber of needed reviewers by one.

Reviewer population = Everybody: Every team member shall be available as a reviewer
for every change, albeit very inexperienced team members usually don’t review alone.

Assignment of reviewers to reviews = Pull: A reviewer chooses among the open reviews.

Tool support for reviewer assignment = No support: There is no decision support for
the choice between the open reviews.

Interaction while checking = On-Demand: The review participants only interact on-demand,
e.g., when there are questions regarding the code, and mostly asynchronously. Very rarely,
reviews are performed in an in-person meeting.

Temporal arrangement of reviewers = Sequential: Only one reviewer reviews a ticket at
a time and rework is done after each reviewer.

56

Specialized roles = No roles: Even if there are multiple reviewers, they do not take on dis-
tinct roles.

Detection aids = Sometimes testing: Sometimes, reviewers perform a limited amount of
manual exploratory testing during reviews.

Reviewer changes code = Sometimes: The reviewers may change code during checking
and commonly do so for minor changes.

Communication of issues = Written: The found issues are mainly communicated in writ-
ing and stored in Jira.

Options to handle issues = Resolve, Reject: The author usually fixes observed issues right
away or decides together with the reviewer that the remark will not be fixed. Consequently,
review changes are almost always done in the same ticket as the original implementation.

Tool specialization = General-purpose, later Specialized: The traditional way of per-
forming reviews in the company is by looking at the source code changes in TortoiseSVN,
a graphical client for Subversion. In 2016 CoRT was introduced as a specialized review
tool that could optionally be used by the developers.

57

58

9
The Code Review Tool ‘CoRT’

There are two alternatives for the review tool platform to use in the partner company:
Build upon an existing review tool, or implement a specialized tool. Section 9.1 describes why
the second option is chosen, based on major requirements for the tool. The created tool is
named CoRT. The sections after that describe CoRT from the perspectives of user (Section 9.2),
researcher (Section 9.3), and tool developer (Section 9.4).

9.1 Key Design Decisions

This section motivates key design decisions for CoRT: Why not build on an existing tool?
What main features are needed? Why extend the IDE?

The decision to not build on an existing tool is based on two main reasons: Existing tools
did not fit the partner company context well, and they were not easily extensible for research.
The analysis of existing review tools in Section 7.3 shows that they lack one or several features
needed in the context of the partner company: Support for post-commit reviews, integration
with Subversion, and streamlined Jira integration. It might have been possible to change the
company’s environment to accomodate for some of the limitations of the tools, but this would
have meant an invasive, big bang approach. By building a tool that fits well into the context, it
is instead possible to migrate to the new review tooling step-by-step. No developer is forced to
use CoRT.

Another drawback of the existing tools is that they are hard to extend with research features.
One is either limited to the public APIs, has to change the source directly, which is only possible
if it is available, or resort to hacks like changing the created HTML with browser plugins. A
further feature that is deemed important based on the interviews in Part I but missing from
most existing tools are IDE-like code navigation and support features.

The basic features of a review tool, like connecting to the ticket system, getting the code
changes and highlighting them in the IDE, are not hard to implement building upon open-
source libraries. Still, possible drawbacks of this decision are that there is a risk of spending too
much work on non-research implementation, and that there is no existing user base, meaning
less empirical data and less relevance of the development. The latter drawback is considered

59

acceptable due to the focus on reviews in the partner company and in-depth research in its
context.

The core feature requirements for the tool were extracted from the analysis of existing tools
and the results of the interviews. The tool needs to manage the review process, determine the
changes that need to be reviewed, allow viewing these changes, and provide facilities to collect,
store and distribute review remarks. It is also found that cross-cutting requirements like good
performance and usability are important.

The interviews from Part I clearly show that developers desire IDE-like navigation features
for reviews. Still, many existing review tools are browser-based. It is certainly possible to
implement such features in a browser-based tool, with Upsource being a prime example. But
integrating the review tool into the IDE is a much easier way to gain these features. Specifically,
the partner company consistently uses the Eclipse IDE, so CoRT is implemented as an Eclipse
plugin. A drawback of this decision is that the tool is restricted to teams that use this IDE.
Although many parts of CoRT do not rely on Eclipse (see Section 9.4), adapting CoRT to a
different IDE is not as easy as adapting it to a different SCM or ticket system.

9.2 CoRT from the User’s Perspective

This section gives on overview on CoRT’s use and its main user interface components. Based
on the result of the interviews in Part I and the research by Myers et al. [278], it is a major
concern to provide a streamlined review experience with good usability. The user does not have
to focus on the minutiae of the bookkeeping, but can focus on understanding and checking the
source code.

CoRT builds on several of Eclipse’s standard UI mechanisms. One of these mechanisms is
that there are distinct ‘perspectives’ that can be customized for specific tasks, like programming
or debugging. CoRT adds two such perspectives, one for reviewing and one for fixing review
remarks. The fixing perspective contains two additional views, one with information on the
ticket and one with the review remarks. It is not discussed further in this thesis.

An example of the review perspective can be seen in Figure 9.1. CoRT provides several
views for the review perspective. The ‘review info’ view (Point 1 in Figure 9.1) shows general
information on the review and the reviewed ticket. It also links to the ticket itself, as a simple
means to implement the Include Documents feature from Section 7.1. As CoRT is integrated
in the Eclipse IDE, all of the IDE’s editors and views can be used during review. Point 2 in
Figure 9.1 shows how a portion of the code that needs to be reviewed is highlighted with a violet
background in the standard Java editor. Such a code portion is called ‘review stop’ in CoRT,
based on the tour-stop metaphor used in other publications [285, 337]. The ‘review content’
view (Point 3 in Figure 9.1) shows the hierachical tours and stops that need to be reviewed (see
Chapter 14), along with their classifications (see Chapter 15). This view also shows which of
the stops have already been reviewed and for how long, by using different shades of green on the
stop’s icons. The reviewer can directly navigate to a stop by clicking on it in the tree, or he or
she can navigate to the next non-reviewed stop. CoRT also indicates when all parts of the code
change have been reviewed. In this way, CoRT helps to reach the Thoroughness demanded in
Section 7.1 without burdening the reviewer with keeping track of what was reviewed.

Reviewing in the most recent version of the code, as shown in Point 2 in Figure 9.1, can
be argued to be beneficial because the most recent version of the code is also the one that will
be deployed. Furthermore, it allows integration with standard IDE features like code cross-

60

Figure 9.1: Exemplary screenshot of CoRT’s review views. The example is based on a developer working
with two screens (upper and lower half of the figure).

61

Figure 9.2: Interaction flow and main dialogs

referencing. But sometimes it is much easier to understand and verify a code change by looking
not only at the new state, but at the diff of the change. For these cases, the ‘review stop info’
view (Point 4 in Figure 9.1) shows a diff view of the stop. The final view shown in Figure 9.1
is the ‘summary of review content’ view that provides a textual summary of the changes to
be reviewed, which allows the reviewer to get an overview of the code change. This view was
implemented by Roman Gripp in his master thesis [150].

The main checking is done in the review perspective, but several other dialogs interact to
enable a streamlined review. Figure 9.2 shows an overview of the main interaction flow and
dialogs. The top-most dialog in the figure allows the user to select the ticket he or she wants
to review. After selecting a ticket, the respective commits are analyzed and CoRT shows an
overview of the commits. This dialog also displays when earlier reviews of the ticket happened,
and which of the stops CoRT would filter out (see Chapter 15). The user can adjust the selection
of commits and filters. At the end of the review, the user selects which transition in the ticket
workflow shall be used (for example ‘Review OK’ or ‘Reject’).

As shown in Chapter 4, a characteristic of regular, change-based code review is that subjec-
tive planning decisions have been replaced by team-wide rules and conventions. This demands a
team-wide configuration of most of CoRT’s settings. This configuration is stored in an XML file
that can be checked in to version control. Other settings, like passwords or cognitive preferences,
can be customized by each user based on Eclipse’s standard configuration mechanisms.

62

S1 S2 S3 S4
1

2

3

4

5

Survey

CoRT supports me while reviewing
CoRT impedes me while reviewing

Figure 9.3: Mean ratings from longitudinal CoRT user surveys. Both results are from a 5-point scale,
from 1 (don’t agree at all) to 5 (totally agree).

Informal user feedback was gathered continuously since CoRT was deployed in the partner
company. Apart from that, I handed out brief surveys to gather anonymous qualitative and
quantitative feedback at four points in time. The three first surveys were done at the start of
the deployment, each spaced about half a year apart, and the last survey was done near the end of
the thesis timeframe two years later. Figure 9.3 shows the results from the questions on CoRT’s
utility. Having two questions might seem redundant, but apart from avoiding bias, this also
helped to stimulate responses both on things that are liked a lot and that need to be improved.
Among the positive things that cropped up most often are: The streamlined usability and
integration with the development context, the classification of review remarks (see Chapter 15)
and the tracking of reviewed portions of the change. Negative comments often revolved around
performance problems, the early diff views (see Chapter 11), and badly supported contexts, e.g.,
for programming languages that are not well supported by the installed Eclipse IDE.

9.3 CoRT as a Research Platform

The CoRT code review tool has two goals: To be a practically usable code review tool, and
to be a platform for research on better code review tooling. To act as a research platform, CoRT
includes software telemetry features, and it is extensible in several ways.

Software telemetry is an approach that uses instrumentation of software development tools
to collect metrics automatically and unobstrusively [412]. It was pioneered for review tools by
Johnson [185], with other contributions, e.g., by Halling et al. [154]. CoRT, too, is instrumented
to log various events on its use, for example when a review is started, the viewed file is changed,
code is executed, and many more. Each event contains a timestamp, a pseudonymized developer
ID, an identifier for the review session, the event type, and several fields depending on the type.
These events are centrally collected, and the collected data can then be processed further and
analyzed. The developers at the partner company could decide whether to activate CoRT’s
telemetry features. The collected data is used, for example, in the ordering study of Chapter 14.

The ‘Hackystat’ project at the University of Hawaii was a major milestone for software
project telemetry. To stay compatible to potentially existing tools of other researchers, CoRT
uses the same XML format as Hackystat [412]. A lightweight library that logs the events as files
on a shared network directory is a part of CoRT.

The second aspect that increases CoRT’s utility as a research platform is its extensibility.

63

Figure 9.4: Component diagram for CoRT. To reduce clutter, dependencies inside the ‘core’ plugin are
not shown.

As a part of the Eclipse IDE, other Eclipse plugins can naturally be used in combination with
CoRT. But more specific extensions are possible, too: CoRT provides an OSGi extension point
for so called ‘configurators’. Plugins that implement this extension point can be configured
together with CoRT, and use this lifecycle to hook into further parts of CoRT’s API.

9.4 Overview of CoRT’s Internal Architecture

The following section describes the basic structure of CoRT’s source code and some key
mechanisms in its implementation. Figure 9.4 shows an overview of CoRT’s architecture. Each
top-level component is an OSGi plugin. For the ‘core’ plugin, the figure also shows the internal
package structure. Coloring is used to classify the components (inspired by Quasar [346]):
Common base components are shown in blue, algorithms for cognitive-support review tools that
are mostly independent from the development context are green, components that interface to
the user or to external systems are yellow, and glue code that assembles the components into
a working application is red. The blue and green parts are largely decoupled from the Eclipse
IDE. The responsibilites of the components are:

core.plugin is responsible for the lifecycle of the Eclipse plugin and for integrating the other
components into a working application.

core.config provides a mechanism for other components to be configurable based on a single
team-wide configuration.

core.ui is a large component with several sub-packages and provides the views, dialogs and
other user interface implementations of CoRT.

64

core.viewtracking is responsible for tracking which parts of the code change have already
been visited, based on the user’s interaction with the IDE.

summary is a mostly independent plugin that provides the textual change summary view
developed in Gripp’s master thesis [150].

reminder is a largely independent plugin that informs the user when there are too many tickets
waiting for review, or when they are waiting for too long.

ticketconnectors.jira connects CoRT to the Jira ticket system to store review remarks, show
open reviews and interact with the ticket lifecycle.

ticketconnectors.file provides a simple file-based storage of tickets and review remarks, mostly
for testing.

changesources.git provides the ability to extract code changes from the git SCM.
changesources.svn provides the ability to extract code changes from the Subversion SCM.
core.irrelevancestrategies implements several strategies to classify code changes based on

their relevance for review. Further details on this topic are described in Chapter 15.
core.ordering implements several strategies to determine relations between change parts and

to find a good order of reviewing them. This topic is discussed in detail in Chapter 14.
core.tourrestructuring provides strategies to combine the parts of the code change under

review into stops and tours. This is especially relevant when the same code portion was
changed in several commits.

core.preferredtransitions provides strategies that decide which ‘transition’ in the ticket work-
flow shall be pre-selected in the ‘End review’ dialog, based on the found remarks and the
contents of the review.

core.model implements the domain model and provides interfaces to customize parts of the
review process. Important parts of the domain model are the ‘changestructure’, dealing
with commits and the contained changes, and the tours and stops that are later created
based on the changes.

core.telemetry provides the telemetry functionality that is described in Section 9.3.
hackybuffer is the light-weight implementation of Hackystat’s XML format that is mentioned

in Section 9.3.
ordering implements the efficient ordering algorithm of Appendix D, independent from the

review domain.
reviewdata contains the domain model for review remarks, which is described below, and

allows serialization and deserialization of these remarks in textual form.
Figure 9.5 shows the model for review remarks that is used in CoRT, i.e., the model underly-

ing the ‘reviewdata’ component. It is based on the review practices of the partner company, and
on further input gathered from the interviews of Part I. With a sequential temporal arrangement
of reviewers (see Section B.3), the overall review data is split into several review rounds. In each
round, the reviewer(s) can add review remarks. These review remarks contain an initial textual
comment, and are bound to a certain position in the code base. Positions can point to a specific
line in a file (in the reviewed revision), but sometimes it is more adequate to consider a remark
to apply to a file as a whole, or even to the whole ticket (‘GlobalPosition’). A remark can spark
further discussion, which is modeled as a simple thread of additional comments. To mark a re-
mark as considered, the author can add a resolution to it, either stating that he or she fixed the
problem, does not agree with the remark (‘Rejected’) or needs further clarification (‘Question’).
Each remark is classified by the reviewer into one of several types: For remarks that demand
action (‘ToFix’), the reviewer can specify whether he or she regards addressing it as mandatory
(‘MustFix’) or just as a suggestion (‘CanFix’). Furthermore, there are remark types that do not

65

Figure 9.5: Domain model for review data

demand an action from the author and just serve to convey information: Remarks that were
‘AlreadyFixed’ on-the-fly by the reviewer, remarks about positive aspects, and other remarks,
for example on process issues. The remark type ‘Temporary’ is special in that it is only used
during the review to store ideas that the reviewer wants to follow-up later during the review. In
this way, they help the reviewer to off-load mental load (see Chapter 12), and they could also
be used to store the results of static analyzer or other agent that should help the reviewer (see
Chapter 15).

♦
This chapter could only provide a brief overview of CoRT. It shows its utility from the user’s

perspective, reflected in very positive ratings, and also its features as a research platform and
how it is designed to be reusable and extendable by other researchers. CoRT’s full source code
is available online.1 The central findings gathered while designing CoRT are summarized in
abstract form in Appendix A. In addition, the next two chapters describe two studies done to
inform the design of CoRT, before Part III goes into details on its cognitive support features.

1https://github.com/tobiasbaum/reviewtool, licence: EPL

66

10
A Simulation-Based Comparison of Pre- and

Post-Commit Reviews

In Chapter 6 it is shown that development teams are split between two process variants,
depicted in Figure 10.1: Some perform reviews after the code change has been integrated into
the main development branch (post-commit review), whereas others review before integration
(pre-commit review). This process choice has a large influence on a review tool such as CoRT,
and supporting both would be effortful. The partner company traditionally used a post-commit
review process. In recent scientific publications, pre-commit reviews are more prevalent, espe-
cially in the form of pull requests. Therefore, a simulation study is performed to show under
which circumstances pre- or post-commit review is better, and whether the partner company
should change its process. This chapter describes the basics of the study, its results, and its
limitations. Details on the simulation model are provided in Appendix C. This chapter uses
material from [34] and [35], joint work with Fabian Kortum, Kurt Schneider, Arthur Brack, and
Jens Schauder.

In the interviews for the Grounded Theory study in Part I, the developers named several
reasons why they believe that either pre- or post-commit reviews are more efficient:

• Pre-commit reviews find defects before they impede other developers.
• Pre-commit reviews might extend the cycle time of user stories, increasing the ‘work in

progress’ and consequently increasing task switch overhead. On this basis, Czerwonka et

 central/main
 repository

 local
 working

 copy

 commit/push

 review

 central/main
 repository

 local
 working

 copy

 commit/push

 review

Pre-Commit Review /
Review Then Commit

Post-Commit Review /
Commit Then Review

Figure 10.1: Different levels of publicness of the reviewed change: Pre-commit review and post-commit
review

67

al. [85] criticize that “code reviews [...] often do not find functionality defects that should
block a code submission.”

• Post-commit reviews support the early and often integration of changes, better suiting the
mindset behind continuous integration and possibly reducing the risk of conflicts.

This chapter assumes that the best choice might depend on the context and that some of
these effects have a larger influence than others. Consequently, the research questions are:

RQ10.1. Are there practically relevant performance differences between pre-commit and
post-commit reviews?

RQ10.2. How are these differences influenced by contextual factors?

As these questions are still quite broad, they are further detailed in Section 10.1. The study
shall result in a better understanding of the effects responsible for performance differences. This
knowledge can then be used by the partner company and others to decide which variant is
adequate for their situation. To ease adoption, the knowledge is distilled into a set of simple,
practically usable heuristics.

A simulation-based approach is used to assess the research questions, instead of a controlled
experiment or a number of case studies. Performing a simulation permits to study a vast number
of different situations in a holistic way and with less effort than a large scale experiment.

In terms of related work, no other simulation studies explicitly target ‘modern’ change-
based code review, but many studies used simulation to examine classic forms of inspection and
review: Among these are system dynamics models, like the ones by Madachy [242] and Tvedt
and Collofello [381], as well as discrete event models, for example by Neu et al. [281] and Rus,
Halling and Biffl [329]. The requirements inspection process has been studied by Münch and
Armbrust [276], as well as Wakeland, Martin and Raffo [391].

Simulations have been used to assess other questions in the context of agile software devel-
opment: Turnu et al. [380] used a system dynamics model to investigate the effect of test-driven
development in open source development, and Melis et al. [262] built a model to analyze the
effects of test-driven development and pair programming. Anderson et al. [10] used simulation
to compare Scrum, Kanban and a classic process for a team at Microsoft. A comprehensive
overview of further software process simulation studies can be gained from the systematic liter-
ature reviews done by Zhang, Kitchenham and Pfahl [411] and Ali, Petersen and Wohlin [8].

10.1 Methodology

From a very high-level view, the ‘in silico’ study described in this chapter consists of two
iterations of the scientific cycle of induction and deduction: I start with mostly qualitative
empirical observations, create a simulation model (i.e., an executable theory) based on these
observations, use this model to deduce quantitative data, which can then be used to validate
the model but also as the starting point of another cycle, inducing heuristics and checking them
against the simulation results. A closer look reveals that each cycle, in fact, consists of several
iterations of refinement and validation.

68

10.1.1 Performance Metrics

The term “performance difference” from this chapter’s general research question is too vague
to be used directly. Following the goal question metric paradigm, it is split into three questions
corresponding to the classic target dimensions of software projects: quality, cost/efficiency and
time to market. The chosen metric for quality is ‘number of issues found by customers per
story point’1. Efficiency is measured as ‘number of story points completed’ because the actual
effort (i.e., number of developers times simulated duration) is fixed for a given situation. Time
to market is measured as ‘mean user story cycle time’, i.e. the average time from the start of
a story to its delivery to the customer. The adequacy of these measures has been checked in
a questionnaire answered by twelve industrial software developers, a convenience sample taken
from the local Java User Group. The respondents also gave bounds for the differences that they
regard as practically relevant in the context of the study. The resulting intervals (and order of
importance) are ±7.5% for quality, ±10% for efficiency and ±15% for cycle time.

10.1.2 Iterative Creation of the Model

I used the model development process described by Ali and Petersen [7], in addition to the
guidelines from Law and Kelton [228] and Page and Kreuzer [291] to create the simulation model.

The conceptual model is based on review processes observed in practice. These observations
mainly stem from the interviews on the state of the practice described in Part I. The model was
reviewed and checked for face validity by two experienced practitioners, one using pre-commit
reviews and the other using post-commit reviews in his daily work. Both of these practitioners
are lead software developers and have worked at several different companies. One has about
eleven years of experience in industrial software development, the other about 19 years. The
reviews of the conceptual model were conducted as a walk-through [179]. Further validation
measures are described in Section 10.3.

The model is implemented as a discrete event simulation model using the DESMO-J simula-
tion framework [291]. Verification is done with a combination of several methods. Among those
are software engineering best practices like unit tests and code reviews. Additionally, a group
of three researchers (Baum, Kortum, Kiesling) checked parts of a simulation trace in detail by
enacting it. Several iterations of global variance-based sensitivity analysis were performed using
the method of Sobol’ [332]. Parameters that were shown to be of little influence were set to fixed
values. After several iterations for verification, I started to generate data to analyze the main
effects and derive heuristics. Details for this sampling process are described in Section 10.2.2.

10.1.3 Data Generation and Analysis

The model is parametric, with input parameters for the details of the development context,
for example, how skilled the reviewers are and how long it takes for customers to find injected
defects. Details for the parameters are described in Appendix C. For a given situation, the model
is executed both using pre-commit and post-commit reviews, and the relative difference for the
three output metrics is calculated. It is also executed without reviews, to be able to exclude
data points for which any type of code review is not advisable. The execution is repeated with
different random number seeds (using common random numbers [228] for variance reduction) to

1I first used ‘number of issues found by customers’, but this is highly correlated with the amount of work
finished.

69

obtain a median difference and its confidence interval. Some more details on the data generation
are described in Section 10.2.2.

To extract the heuristics, I used an iterative process based on exploratory data analysis and
local sensitivity analysis: I formed working hypotheses, mainly by looking for correlations and
other distinctive patterns in scatter plots of subsets of the simulation results. These hypotheses
were then checked by two types of local sensitivity analysis [332]: For a single data point, one
factor at a time was increased and decreased, and two data points with opposing results were
systematically interleaved. This process led to an increased understanding of the model’s main
effects but was also quite effective as a further method of verification.

10.2 Results

To derive simple heuristics for the use in practice, the study analyzes a broad range of
different contextual factors. These results are shown in Section 10.2.2, but beforehand a specific
data point based on the partner company is analyzed.

10.2.1 Details for a Specific Data Point

The example in this section is based on data for the partner company. Some parameter
values were derived from the company’s ticket system and the rest is based on expert judgment.
All these values have to be taken with a grain of salt: The ticket system data likely contains
systematic biases, among others due to a tendency to forget to change a ticket’s state or to
pause working on a task without changing its state. The expert estimates are impeded by a lack
of intuition for some of the parameters. The detailed values can be found in Appendix C.

Figure 10.2 shows an output from a simulation run with these estimates. It shows simulation
time on the x-axis and the number of started and finished user stories as well as the number of
issues observed by the customer on the y-axis. The sharp drop in the diagram marks the end
of the warm-up period of 700 days. All counters were reset at that point. Only data collected
in the 600 working days (about 3 years) after that is used for further analysis. At the very
start of the simulation, the number of issues found by customers increases slowly due to the
associated delays in the model. After that, all values show a roughly linear rise, as expected for
a continuous Kanban process. It can be seen that for this data point, the warm-up period is by
far large enough. It is sized this large to allow the same value to be used for data points which
need a longer warm-up.

Table 10.1 shows the results after 42 simulation runs with different random seeds. For each
output dimension, the table shows the median relative difference, the median’s 99% confidence
interval and the minimum and maximum relative difference obtained. Efficiency is measured in

Table 10.1: Relative differences for the example data. A positive relative difference means that post-
commit reviews have the larger value. For efficiency, the larger value is better, for quality and cycle time
the smaller. All percentages have been rounded to the nearest integer for presentation.

Median Tendency Confidence interval Minimum Maximum

Efficiency 0% – −1% .. 1% −3% 6%

Quality −2% post −5% .. 1% −11% 10%

Cycle Time −12% post −15% .. −11% −22% −6%

70

Figure 10.2: Example output from a simulation run: Stories and issues over time (Source: [34])

terms of ‘finished story points’, quality in ‘issues found by customers per story point’ and cycle
time by the ‘mean cycle time of a user story’. Those results show that the difference in terms
of efficiency and quality is very small for this data point. The difference in cycle time is much
larger, but still not practically relevant, according to the limits for practical relevance gained in
the respective survey (−15% to 15%).

10.2.2 General Results

To understand the influence of different contextual factors and to derive heuristics, a total of
289,230 random data points was sampled in the final analysis run. This was done after several
iterations of model verification, refinement and parameter exclusion through global sensitivity
analysis. To obtain a data point, each input value was sampled uniformly from an interval (see
Tables C.1 and C.2 in Appendix C for the detailed intervals). These intervals were estimated
jointly by two researchers and two practitioners (one a developer from the partner company),
with a tendency to “if in doubt, enlarge”. For each sampled point, the simulation repeatedly ran
with different random number seeds at least 20 times. This process continued until a statistically
significant classification as one of ‘pre better’, ‘post better’ or ‘negligible (not practically relevant)
difference’ for each of the three target attributes was possible. Furthermore, it was checked that
the data point is not obviously unrealistic (more than 80% of the invested effort wasted on fixing
etc.) and that performing code reviews is beneficial at all. To err on the safe side, the number
of finished story points without review had to be higher than 110% compared to the next best
alternative to dismiss review. After excluding these cases, as well as those where statistical
significance was not reached after 2,000 repetitions, 50,901 data points remained. By far the
largest number of exclusions were situations in which almost no work was finished due to high
error rates and ineffective fixing. Based on these results and the combination of manual analysis
and local sensitivity analysis described in Section 10.1.3, I identified the main effects. They are
described in the following.

71

10.2.2.1 Analysis for Quality

Regarding the number of issues found by customers per story point, there is one main effect
that leads to a practically relevant difference between pre- and post-commit reviews: Soon after
a change is committed, other developers can spot (or ‘stumble upon’) issues. The time between
this point and the delivery of the story is generally larger for post-commit than for pre-commit
reviews so that more issues are found outside of reviews. This effect is larger the higher the
chance that developers will really do so, e. g. they are really good at finding issues or there are
many of them, and the effect is larger the higher the difference in time between post-commit and
pre-commit reviews. The relative difference is also higher for lower review skills. That being
said, the difference is not practically relevant for the vast majority of the sampled situations.
The only effect I found that leads to a preference for pre-commit reviews in terms of quality is an
edge case: A high number of global blocker issues2 leads to more review rounds for pre-commit
reviews, and therefore increases total review effectiveness compared to post-commit reviews.

10.2.2.2 Analysis for Efficiency

For differences in efficiency, there are more effects interacting: As described for quality,
post-commit reviews lead to more issues found by uninvolved developers. When review skills
are low, this is a chance to find more issues while the author is still working at the task, which
is beneficial for efficiency. With higher reviewer effectiveness, when most issues would be found
in a review anyway, letting other developers find them is detrimental to efficiency. The relation
between task switch overhead and review mode is double-edged, too: For small teams with task
dependencies, task switch overhead is smaller for post-commit reviews, but for larger teams, the
task switch overhead for issues spotted by other developers grows and makes pre-commit better.
Another relevant effect that is beneficial for pre-commit reviews stems from global blocker issues:
The effect of blocker issues increases with a growing risk of injecting them, increasing time to
recover from them and a growing number of affected developers. It also rises with the probability
of finding blocker issues during a review.

10.2.2.3 Analysis for Cycle Time

The largest difference between pre- and post-commit reviews exists in terms of cycle time:
When there are dependencies between tasks so that one task has to be committed before another
can be started, this leads to longer cycle times for pre-commit reviews. Figure 10.3 shows this
quite well. The relative effect becomes larger when the time between initial implementation
and the end of the review cycle grows in comparison to the total cycle time (e.g., through long
review times or a large number of review rounds). This effect is so large that post-commit review
has a smaller cycle time in the majority of sampled cases with dependencies, whereas without
dependencies a negligible difference in cycle times is prevalent. A second effect that affects cycle
time is again the same as that responsible for differences in quality: With post-commit reviews,
more issues can be found by developers other than the reviewers. This usually takes more time
than finding and fixing them as review remarks. When it does not, and review effectiveness is
low so that a significant number of issues will pop up after review, this can also lead to lower
cycle times for post-commit review. The ‘global blocker’ effect described for efficiency is relevant
for cycle time, too.

2‘global blocker issues’ are issues that will block many developers as soon as they are integrated, e.g., if
someones commits a compile error; see Appendix C

72

Figure 10.3: Scatter plot of reviewer effectiveness (x-axis), relative difference in cycle time (y-axis) and
dependency graph constellation (color; light/green = REALISTIC, dark/blue = NO DEPENDENCIES;
see Appendix C for a description of the dependency structures) (Source: [34])

RQ10.1: Under certain circumstances, there are differences in quality, efficiency or cycle
time between teams that use pre- or post-commit reviews. The most common difference is a
higher cycle time for pre-commit reviews, the other differences are rare.

10.2.2.4 Resulting heuristics

Figure 10.4 shows the heuristics derived from the findings on the main effects and the simu-
lation results. When formulating heuristics, the question is not if there will be inaccuracies, but
rather which inaccuracies are least troublesome. In that regard, the simplicity of the rules and
the recall for ‘pre better’ and ‘post better’ is valued highest. The accuracy of the heuristics for
the simulation results can be seen in the confusion matrices in Table 10.2. They show for each
of the three result classes the number of data points classified by the heuristic as belonging to
each class.

RQ10.2: The conditions under which pre- or post-commit reviews are preferable can be stated
as heuristics based on several contextual factors, like the dependency structure of tasks, the
team size and several aspects of developer skills.

Further boiling down the heuristics, the main implication of the study to practitioners can
be summarized as: If the team currently uses code reviews and has no problem with cycle time
or developers being held back by issues that would be found in reviews, it is probably not worth
the effort to switch from post to pre or vice versa. If the team does not have an existing process
yet, it should use pre-commit reviews if the team is large and cycle time is of little importance
or the reviews can be arranged so that no dependent task waits for a review to be finished. It
should use post-commit reviews if the team is small or there are dependencies between tasks that

73

For quality:

IF veryGoodAtSpottingIssues THEN Post

ELSE NegligibleDifference

For efficiency:

IF lowReviewSkill THEN

IF veryGoodAtSpottingIssues

THEN Post

ELSE NegligibleDifference

ELSE

IF globalIssuesAreAProblemSolvedByReviews OR veryGoodAtSpottingIssues

THEN Pre

ELSE IF smallTeam AND dependenciesRelevant AND shortIssueAssessment

THEN Post

ELSE NegligibleDifference

For cycle time:

IF lowReviewSkill OR NOT dependenciesRelevant

THEN NegligibleDifference

ELSE Post

Helper definitions:

veryGoodAtSpottingIssues := issue activation time mean for developers < 75 days

lowReviewSkill := review effectiveness < 25 %

globalIssuesAreAProblemSolvedByReviews :=

(global blocker issue risk *

global blocker issue suspend time *

number of developers *

review effectiveness) > 1.5 person-hours

smallTeam := number of developers < 8

dependenciesRelevant := dependency graph constellation != NO_DEPENDENCIES

shortIssueAssessment := issue assessment time mean < 1.5 h

Figure 10.4: Heuristics derived from the simulation results. ‘issue activation time mean for developers’
roughly corresponds to the time it takes a developer to notice a defect or other issue; definitions of this
and the other parameters can be found in Tables C.1 and C.2 in Appendix C

74

Table 10.2: Confusion matrices for the heuristics. For quality, only data points with at least 10 issues
found by customers per year were used, because for lower values the “issues per story point” metric is
dominated by differences in story points.

Heuristic for quality:

pre 0 4 271

post 0 10043 263

negl. 0 2910 16693

classified as → pre post negl.

Heuristic for efficiency:

pre 3201 12 1062

post 32 87 44

negl. 9157 1564 35742

classified as → pre post negl.

Heuristic for cycle time:

pre 0 39 531

post 0 18738 397

negl. 0 4143 27053

classified as → pre post negl.

would otherwise increase cycle time3. For pre-commit reviews in the form of pull requests, one
should also keep in mind the benefits that were out of the scope of this study: Pull requests allow
easier contribution to open source projects by outsiders [147], and they enforce more process
discipline and are an easy way to keep unreviewed changes from being delivered to the customer
(see Appendix B.1). Also, what is described as post- and pre-commit review in this study are
actually extremes on a scale with multiple mix processes in between. Understanding the main
effects can help to find the right mix for a given situation.

10.3 Validity and Limitations

The two parts of the current study, creation of the simulation model and derivation of
heuristics, have their own threats to validity. To mitigate these, I mainly used techniques
described by Sargent [334] and de França and Travassos [97], in addition to the guidelines
referenced in Section 10.1 and general software development best practices.

Several means helped to establish a valid conceptual model: The general structure of the
model is based on empirical evidence, gained from the in-depth analysis of the code review
processes of several companies in Part I. Two software development practitioners (Schauder,
Brack) performed an independent check for face validity. One of them uses pre-commit reviews
in his daily work, the other post-commit reviews. In addition, the model was discussed with
software developers at a local Java User Group meeting. In contrast, the model’s quantitative
validation is much more limited, mainly due to missing data: We (Baum, Kortum, Brack,
Schauder) estimated some parameter values and fitted distributions based on historical data from
the partner company’s ticket system. The simulation results of this data point were compared
to the real historical outcomes. The results were encouraging, but their value is limited, as many
of the model’s parameters could be estimated only.

There are additional limitations regarding the quantitative empirical data: It is taken only

3These heuristics can be derived from the earlier formal heuristics by assuming that: (1) “veryGoodAtSpot-
tingIssues” is false (2) “globalIssuesAreAProblemSolvedByReviews” correlates with team size and is rare compared
to differences in cycle time and (3) “NegligibleDifference” can be treated as a “don’t care” when optimizing the
resulting boolean formulae.

75

from a single company, and it is based on the analysis of data collected for a different purpose.
These limitations do not weaken the main study results, because the values are mainly used to
cross-check the results. In the remaining cases, like for determining a realistic task dependency
structure, we also ran the simulation model with alternative values. The ensuing sensitivity
analysis showed the exact values for these parameters to be of lesser importance.

Like every simulation model, the model is built for a specific purpose (comparison of pre-
and post-commit reviews) and contains simplifying assumptions. As these are related to details
of the model’s implementation, they are described in Section C.4. The computerized model is
verified with a combination of techniques: The model was developed iteratively, with a first
throw-away prototype followed by incremental refinement. Use of an established simulation
framework [291] reduced the chance of defects. In addition to testing, the computerized model’s
code was reviewed by two persons (Brack, Kortum).

The simulation model is a probabilistic model. Therefore, interpretations are done based on
the median and its 99% confidence interval. Following the advice by Pawlikowski et al. [294], the
simulation runs were repeated with different random number seeds until the confidence interval
was small enough to assign each data point to an output class with statistical significance. All
random numbers were drawn from Mersenne Twister pseudo-random number generators.

The developed heuristics intentionally trade accuracy for simplicity. Nevertheless, we took
some measures to ensure validity: When deciding whether to include a model parameter in the
random sampling space, this was done with a policy of ‘if in doubt, leave it in’. Parameter values
were only fixed if global sensitivity analysis showed them to be irrelevant. The large random
sample of 289,230 data points provides some protection against misinterpretation of random
effects. Local sensitivity analysis further ensured that the observed correlations in the output
are really based on specific effects.

Regarding external validity, the model is based on a commonly used type of review process,
but many real team’s processes differ in the details. The main effects discussed for the heuristics
can help to decide if the differences between a specific situation and the implemented situation
are relevant. The external validity of the heuristics is limited by the fact that the empirical
distributions of the input parameters for real development teams are unknown: It is not sure if
an erroneous classification for a data point will affect thousands of real teams or no team at all.

♦
Summing up, this chapter compares two variants of change-based code review, pre-commit

review and post-commit review, regarding differences in software development quality, efficiency
and cycle time. This is done with a parametric discrete event simulation model that is built
based on observations of agile development processes. The model has been validated and verified
in a number of ways, including checks for face validity by one lead software developer per variant.
The simulation model is used to explore the main effects contributing to performance differences
and to derive simple heuristics for the use in practice. Which variant is preferable depends on the
context, for example, if task dependencies exist and are relevant for reviews, how fast developers
are at spotting issues, and how large the team is. In many situations, there are no practically
relevant differences. When there are, there is a tendency for pre-commit review to be better
regarding efficiency and for post-commit review regarding cycle time and quality. The results
of the study were presented to the development team at the partner company. Based on them
the team decided to stay with their process of post-commit reviews. Consequently, CoRT also
focuses on post-commit reviews.

76

11
An Empirical Comparison of Multiple Ways

to Present Source Code Diffs

As stated in Chapter 9, CoRT provides two views that show the code to review. One shows
the most recent version of the code, whereas the other shows the change parts with both the old
and new version. An early release of CoRT contained a view for single change parts, which was
changed to the use of a diff view for the whole file according to user feedback. Initially, this view
used the standard ‘compare view’ of Eclipse to show diffs. Before the introduction of CoRT, the
developers used the diff view of TortoiseSVN1, and several developers complained about the new
view. The Eclipse view and TortoiseSVN differ mainly in two ways: The use of color, and the
alignment of the old and new code in the two-pane diff. Several other available tools also disagree
on whether to use color and/or alignment. Therefore, a controlled experiment is conducted to
test whether and how these characteristics influence the efficiency of understanding. The current
chapter describes the design, execution, results and limitations of this experiment.

Three students, Christian Koetsier, Daniel Schulz und Christian Mergenthaler, designed
many of the details of the experiment, as a part of a course on experimentation in Software
Engineering. Further empirical data was later gathered by Katja Fuhrmann and Hendrik Leß-
mann. The author of this thesis co-supervised the students, supported the design and analyzed
the resulting data.

There is one other study that analyzes aspects of diff viewers in a controlled experiment:
Lanna und Amyot [221] compare two viewers in it, the one by Eclipse and a novel implementation
created by them. There are three main differences between these:

• Their implementation uses color.

• Their implementation reduces line jumps for equal content (alignment)

• Their implementation allows interactive switching between old and new version.

Their experiment shows better efficiency with their implementation, but their design confounds
the three factors so that the factors’ individual influence is unclear. In the context of code review,
their interactive switching feature cannot be used well, so that it is not taken into account in
this chapter.

1https://tortoisesvn.net

77

line 1
line 2
line 3
line 4
line 5
line 6
line 7

line 1
new line 2.1
new line 2.2
line 3
new line 4
line 5
new line 6

line 1
line 2
line 3
line 4
line 5
line 6
line 7

line 1
new line 2.1
new line 2.2
line 3
new line 4
line 5
new line 6

line 1
line 2

line 3
line 4
line 5
line 6
line 7

line 1
new line 2.1
new line 2.2
line 3
new line 4
line 5
new line 6

line 1
line 2

line 3
line 4
line 5
line 6
line 7

line 1
new line 2.1
new line 2.2
line 3
new line 4
line 5
new line 6

GN

GA

CN

CA

gray color

not aligned

aligned

Figure 11.1: Visualization of the four combinations of color and alignment

11.1 Methodology

The final goal is to show whether the differences in presentation lead to differences for one of
the intended review outcomes, mainly for the efficiency and effectiveness of finding issues. But
these measures are influenced by many other factors. As efficient understanding is a prerequisite
for efficient review, it is compared instead. The experiment’s goal is to answer two research
questions:

RQ11.1. Does the use of different background colors for hunks in a two-pane diff, instead of
using only a border and a common gray background, lead to more efficient understanding
of code changes?

RQ11.2. Does aligning unchanged lines on the old and new side of a two-pane diff with
empty space, instead of showing the old and new file without additional lines, lead to more
efficient understanding of code changes?

For RQ11.1, old code is highlighted in red and new code in green. The alignment for RQ11.2 is
reached by adding empty gray spacer blocks. Figure 11.1 depicts the four resulting combinations.
Two letter codes are used in the following to denote the treatment combinations: CA for ‘color’
and ‘aligned’, CN for ‘color’ and ‘not aligned’, GA for ‘gray’ and ‘aligned’, and GN for ‘gray’
and ‘not aligned’.

To measure understanding, the participants are asked questions regarding the code change,
and the total needed time and correctness of answers is measured. Correctness is measured in
three levels: Correct, partly correct and incorrect. Besides these measurements, the collected
data also contains subjective assessments of the participants’ opinions and values for several
confounding factors (see Table 11.1).

78

Table 11.1: The variables collected and investigated for the diff experiment.

Independent variables (design):

Color dichotomous

Alignment dichotomous

Shown code change / Task A1/A2/A3/A4

Number of task 1/2/3/4

Independent variables (measured confounders):

Age ratio

Student dichotomous

Semester (if student) ordinal

Java experience ratio

Current general programming practice ordinal

Current Java programming practice ordinal

Experience with diff viewers ordinal

Experience with Eclipe’s compare editor ordinal

Color blindness nominal

First or second batch dichotomous

Dependent variables per task (measured):

Needed time ratio

Number of correct answers ratio

Number of partially correct answers ratio

Dependent variables (opinions):

Preferred combination of color and alignment nominal

Opinion on the chosen colors ordinal

The experiment uses a within-groups design, i.e., every participant is tested on all four
combinations of color and alignment. The same participant cannot analyze the same change
twice, so that four different code changes (with associated understanding questions) are used.
The participants are assigned to the four treatment groups in a round-robin fashion. The order
of treatments in each group is shown in Table 11.2. The order of files was randomized for every
participant.

To perform the experiment, the students created an Eclipse plugin that automated most
parts of the experiment flow. Color and alignment were added to the standard compare editor
of Eclipse. The time was measured manually with a stop-watch. To account for the reliance
on manual measurements, the sessions were video-taped (if agreed on by the participant) to
allow later assessment and correction in case of problems. Participants were asked to answer

Table 11.2: Order of treatments in the four treatment groups

Group Treatments

A CA → CN → GA → GN

B GN → CA → CN → GA

C GA → GN → CA → CN

D CN → GA → GN → CA

79

no 1 year 2 yrs 3 −5 6 − 10 more

pa

rt
ip

an
ts

0
2

4
6

8
10

12

Figure 11.2: Participant’s experience with Java programming (in years)

the understanding questions both quickly and correctly.

The experiment was pre-tested, and several refinements to the experiment setup were per-
formed due to the results, for example changes to the wording of some of the understanding
questions. Overall, the experimental procedure for each participant was as follows:

1. The participant enters the room and takes a seat in front of the computer.

2. A researcher explains the steps of the experiment to the participant.

3. The participant is asked for informed consent. The video recording is started if the par-
ticipant agreed to be recorded.

4. The participant starts the experiment in the instrumented IDE.

5. For each of the four code changes:

(a) The IDE shows the diff and the participant has one minute to get used to the code.

(b) After this minute, the first question is posed to the participant.

(c) The participant responds to the question orally and one of the researchers notes down
the result.

(d) This is repeated for a total of five questions per code change.

(e) After answering all five questions, or after five minutes, the elapsed time is noted and
the participant proceeds to the next code change. Questions that were not answered
in time are counted as ‘not answered’.

6. After completing the last code change, the recording is stopped and the participant answers
some final demographic questions.

11.2 Results

In total, 32 participants took part in the experiment. Of these, 13 identified as students. Due
to a problem with the data collection, the demographic data is incomplete for one participant and
is left out in the respective statistics. One group of researchers (Koetsier, Schulz, Mergenthaler)
supervised a first batch of 16 participants, another group (Fuhrmann, Leßmann) several months
later the second batch of the remaining 16.

Figure 11.2 shows the Java experience of the participants. 28 of the participants have three
or more years of experience with Java. 25 of the participants program more than an hour each
week. Only two participants have no prior experience with a diff viewer, 20 often use one. For
Eclipe’s compare editor in particular, there are three participants that did not know it before
and ten that use it often. One participant is red/green color-blind.

80

●

●

color gray

0
50

10
0

15
0

20
0

25
0

30
0

T
im

e
(s

ec
on

ds
)

●

aligned not aligned

0
50

10
0

15
0

20
0

25
0

30
0

T
im

e
(s

ec
on

ds
)

●●●● ●

color gray

0
1

2
3

4

C
or

re
ct

 a
ns

w
er

s

● ●●●●

aligned not aligned

0
1

2
3

4

C
or

re
ct

 a
ns

w
er

s

●●●●

color gray

0
1

2
3

4

at
 le

as
t p

ar
tia

lly
 c

or
re

ct
 a

ns
w

er
s

●● ●●

aligned not aligned

0
1

2
3

4

at
 le

as
t p

ar
tia

lly
 c

or
re

ct
 a

ns
w

er
s

Figure 11.3: Boxplots for time and correctness of answers, dependent on color and alignment

The boxplots in Figure 11.3 provide a first overview of the differences in time and correctness,
depending on the two factors of interest, color and alignment. Correctness is measured in two
ways, by the number of correct answers and by the number of at least partially correct answers.
The graphic indicates a small improvement in the needed time for the color condition compared
to no color and for alignment compared to no alignment, but there is also a lot of variation in
the data. For correctness, there does not seem to be a difference. Looking at the numerical
values of the 20% trimmed means in Table 11.3 also indicates at most small effects.

Due to the complex repeated measures structure with four measurements per participant, a
simple t-test is not adequate to formally check for statistical significance. A linear mixed effect
model [26] is a suitable alternative. Table 11.4 shows the results from building such a model with

81

Table 11.3: Trimmed means, relative differences in trimmed means, and effect sizes (d) for differences
in color and alignment.

Color Alignment

Gray Color Diff. d1 Aligned Not Al. Diff. d

Time 150.3 s 141.1 s -6% -0.17 149.1 s 142.0 s -5% -0.13

Fully correct answers 2.56 2.56 0% 0.00 2.60 2.52 -3% -0.08

At least part. corr. answ. 3.20 3.42 7% 0.31 3.27 3.35 2% 0.10

1 d := difference in trimmed means / winsorized standard deviance

Table 11.4: Results of fitting a linear mixed effect model for the needed time

Fixed Effect Coefficient Confidence Interval

(Intercept) 133.3 s 109.1 s . . . 160.0 s

Color -9.7 s -26.1 s . . . 7.7 s

Aligned -8.8 s -26.3 s . . . 8.3 s

Task = A2 -11.4 s -33.2 s . . . 12.1 s

Task = A3 12.0 s -12.5 s . . . 35.1 s

Task = A4 28.7 s 4.9 s . . . 53.4 s

fixed effects for color, alignment, and task, and with a random effect for the participant. It also
shows the bootstrapped 95% confidence intervals for the coefficients. Both confidence intervals
of interest (color and alignment) contain zero, so the effect is not statistically significant at the
5% level, even without alpha error correction. A rough estimation of the study’s power, based
on the observed effect size, shows that it is underpowered: More than 250 participants would
be needed to achieve a power of 80% for the effect on time.

Besides these objective measures, the participants also selected their preferred treatment
combination. Figure 11.4 shows the results. Here, the trend towards color and alignment is
much clearer, with 22 (of 30) participants preferring the CA combination. Splitting by factors,
93% of the participants prefer color over gray-only (conf. int.: 78% – 99%) and 80% prefer
alignment over non-alignment (conf. int.: 61% – 92%).

RQ11.1: The large majority of participants shows a subjective preference for using different
colors instead of gray to highlight change parts. The objective differences are compatible with
this preference, but the effect is small and it did not reach statistical significance.

RQ11.2: The large majority of participants shows a subjective preference for aligning un-
changed lines in the diff view by adding empty lines, instead of showing them unaligned
without spacers. The objective differences are mostly compatible with this preference, but the
effect is small and it did not reach statistical significance.

82

GN GA CN CA

pa

rt
ip

an
ts

0
5

10
15

20
25

Figure 11.4: Subjective preferences for the treatment combinations

11.3 Validity and Limitations

One major threat precludes valid objective conclusions: Low statistical power. There are
two options to deal with low power: Gathering data from more participants, or changing the
measurement procedures to be more likely to obtain a stronger, less noisy effect. When it
became clear after two batches of participants that the chosen experimental setup would need
several hundred developers to obtain a significant effect, I decided to stop looking for further
participants. In retrospect, there are several weaknesses in the experimental setup that reduce
the measured effect: Giving the participants one minute to read the code before asking the
questions swallows a part of the differences. In addition, the effort needed to understand the
posed questions and to phrase an answer is a source of noise. Therefore, a replication of the
experiment should carefully choose a more sensitive measurement instrument.

For the differences in the participants’ subjective preferences, there are other limitations:
First of all, these are just opinions not directly related to objective performance. That said,
matters of taste influence tool choice and should not be neglected. In addition to this construct
bias, there might also be a researcher bias, for example provoked by asking the participants for
their opinion in a face-to-face setting. Prior experience with various diff viewers might have
influenced the participants’ opinion, too. Other factors, like color-blindness or inexperience
of the participants probably introduced some noise into the data, but should not be a major
problem according to the demographics presented in the previous section.

In terms of external validity, the results can probably be transferred to uses of diff viewers
outside of code reviews. Intentionally, the study focused on two limited aspects of presenting
diffs, so other features of diff viewers, like one-pane diffs, need to be investigated separately.

♦
This chapter describes an experiment performed as joint work with several students to study

the influence of color and alignment on the understanding of diffs in a diff viewer. No statisti-
cally significant objective results could be found, but the opinions of the participants and the
tendencies in the data support two conclusions: (1) Diff viewers should use different colors to
highlight the changed parts for the old and new side of the two-pane diff view. Red for old and

83

green for new are intuitive candidates for most participants, but it is probably best to make
them configurable. (2) Diff viewers should align unchanged lines by adding spacers as needed.
Several widely used diff viewers are in conflict with these recommendations: Eclipe’s standard
compare editor uses the exact opposite, and Atlassian Crucible and Bitbucket use color but no
aligning. According to the results of the study, the diff viewer used in CoRT was augmented to
use colors and alignment.

84

Part III

Cognitive Support: Guiding and
Assisting Reviewers

85

12 Cognitive-Support Code Review Tools 89

12.1 How to Improve Review Performance . 89

12.1.1 Bottom-Up Argument: Factors that Impact a Reviewer’s Performance . . . 89

12.1.2 Top-Down Argument: The Cognitive Load Framework 90

12.2 Ideas to Address the Challenges . 92

12.2.1 Problem Aspect: Reviewer . 92

12.2.2 Problem Aspect: Large Change . 93

12.2.3 Problem Aspect: Understanding . 94

12.3 A New Generation of Code Review Tools . 95

13 An Experiment on Cognitive Load in Code Reviews 97

13.1 Experimental Design . 97

13.1.1 Research Questions and Hypotheses . 97

13.1.2 Design . 98

13.1.3 Browser-Based Experiment Platform . 101

13.1.4 Objects and Measurement . 101

13.1.5 Statistical Data Analysis . 104

13.1.6 Participants . 104

13.2 Results . 106

13.2.1 Working Memory and Found Defects . 107

13.2.2 Code Change Size and Found Defects . 109

13.3 Validity and Limitations . 110

14 Ordering of Change Parts 113

14.1 Methodology . 113

14.1.1 Research Questions . 113

14.1.2 Research Method . 114

14.2 The Relevance of the Order by the Tool . 117

14.3 Principles for an Optimal Ordering . 119

14.3.1 General Principles . 119

14.3.2 The Macro Structure: How to Start and How to End 121

14.3.3 The Micro Structure: Relations between Change Parts 122

14.4 Input from Other Research Areas . 122

14.4.1 Reading Comprehension for Natural Language Texts 122

14.4.2 Hypertext: Comprehension and Tours . 123

14.4.3 Empirical Findings on Real-World Code Structure 123

14.4.4 Clustering of Program Fragments and Change Parts 123

14.4.5 Program Comprehension: Empirical Findings and Theories 124

14.5 A Theory for Ordering the Change Parts to Review 124

14.5.1 Scope and Constructs . 124

14.5.2 Propositions . 126

14.5.3 Explanation . 128

14.6 An Experiment on Change Part Ordering and Review Efficiency 128

14.6.1 Design . 129

14.6.2 Results . 131

14.7 Validity and Limitations . 134

15 Classification of Change Parts 137

15.1 Methodology . 138

15.2 Use of Change Part Classification to Reach Code Review Goals more Efficiently . . 139

15.2.1 Possibilities for Using Change Part Importance to Improve Review 139

15.2.2 Influence of Leaving out Change Parts on Possible Review Goals and Deriva-
tion of Target Metrics . 141

15.3 Approach for Data Extraction and Model Creation 142

15.3.1 Extracting Potential Triggers for Review Remarks from Repositories 142

15.3.2 Intended Characteristics of the Model . 144

15.3.3 Mining Rules from the Extracted Data . 146

15.3.4 Feature Selection . 147

15.4 Application of the Approach within the Partner Company 147

15.4.1 Iterative Improvement of the Approach . 148

15.4.2 Extracted Data . 149

15.4.3 Rule Mining Results . 150

15.4.4 Developers’ Opinion on the Rules . 152

15.4.5 Performance on Unseen Data . 153

15.5 Discussion . 156

15.6 Validity and Limitations . 157

15.7 Related Work . 158

88

12
Cognitive-Support Code Review Tools

Part I shows why improved code review support is worthwhile, and Part II describes CoRT
as a platform for research on review tools. Part III of this thesis builds upon these foundations to
study cognitive support for the reviewer in detail. This first chapter establishes why cognitive-
support code review tools are a promising candidate for the next generation of code review tools
and introduces several ways to provide such support. It combines findings from the empirical
studies discussed in Part I of this thesis and from other works on code reviews and on cognitive
support. The chapter is partly based on [40].

12.1 How to Improve Review Performance

This section argues that the most promising way to improve review performance is to address
the reviewer’s problem of understanding large changes during checking. This conclusion is
reached by two independent arguments. One is bottom-up, based on empirical results on code
reviews. The other is top-down, based on the theory of cognitive load.

12.1.1 Bottom-Up Argument: Factors that Impact a Reviewer’s Performance

A lot of research has been done on code reviews and inspections. Still, many questions
could not be answered conclusively. But some results are relatively well supported and a subset
of these forms the foundation of the current chapter’s discussion on how to improve review
performance.

The first such research result concerns which factors have a major and which only a minor in-
fluence on the effectiveness and efficiency of reviews. When analyzing experimental data, Porter
et al. “found that [reviewers, authors, and code units] were responsible for much more variation
in defect detection than was process structure”, and they “conclude that better defect detection
techniques, not better process structures, are the key to improving inspection effectiveness.” [301]
The results of Chapter 10 support this statement in a specific case. A similar conclusion is also
reached by Sauer et al. [336], who identify “individuals’ task expertise as the primary driver of
review performance” based on theoretical considerations. Correlations between the (inspection)
expertise of the reviewer and the number of found defects have also been reported by Rigby [317]

89

as well as by Biffl and Halling [54], just to name a few. I conclude that the major factors in-
fluencing code review effectiveness and efficiency are the reviewer, the reviewer’s relation to the
artifact under review and the way in which he or she performs the checking.

The second important result is about the role of understanding the artifact under review.
In their study based on interviews with developers at Microsoft, Bacchelli and Bird found that
“[m]any interviewees eventually acknowledged that understanding is their main challenge when
doing code reviews” [18], which confirmed earlier results from Tao et al. [367]. Further sup-
port for a positive correlation between code understanding and review effectiveness comes from
experiments by Dunsmore, Roper, and Wood [111]. As Rifkin and Deimel [316] put it: “You
cannot inspect what you cannot understand”. The interview results1 fully support these findings,
e.g.: “I have to understand what the other developer thought at that time. And for that, you
look very closely at the code, and then things that should or could be done better somehow come
up automatically”I.3.

The interviewees from Part I were also asked about problems hampering review effective-
ness. One of the most common themes was the difficulty in understanding and reviewing large
changesets: “Smaller commits are generally not a problem. But these monster commits are
always . . . not liked very much by the reviewers.”I.5 “What sometimes impedes me is when the
ticket is just too big.”I.7 “When you have such a big pile to review the motivation is not very
high and you probably don’t approach the review with the needed quality in mind.”I.12

The hypothesis that large, complex changes are detrimental to code review performance
is reflected in many publications. An example is MacLeod et al.’s guideline to “aim for small,
incremental changes” [241], which can be found similarly in the earlier works by Rigby et al. [318,
319]. These guidelines are based on interviews with developers and observations of real-world
practices. Similar guidelines also exist for code inspection (e.g., by Gilb and Graham [140]). In
the context of design inspection in the industry, Raz [315] found support for higher detection
effectiveness for smaller review workloads. Rigby et al. [320] build regression models for review
outcomes based on data from open-source projects. They predict review interval (i.e., time
from the publication of a review request to the end of the review) and the number of found
defects. The nature of their data does not permit to build models for review efficiency and
effectiveness. They observe an influence of the number of reviewers and their experience, and
also that an increased change size (churn) leads to an increase in review interval and number of
found defects. In light of this chapter’s hypotheses, the latter observation should be the result
of two confounded and opposing effects: A higher total number of defects and smaller review
effectiveness in larger changes.

The conclusion that large changesets are problematic can also be deduced from other research
results: There is evidence that the review effectiveness greatly decreases when the review rate
(checked lines of code/time for checking) is outside the optimal interval (see, e.g., [140]). Further
evidence shows that concentration and therefore review effectiveness fades after some time of
reviewing [218, 315]. Combining these values leads to an upper limit on the maximal size of an
artifact that can be reviewed effectively in a single session.

12.1.2 Top-Down Argument: The Cognitive Load Framework

The negative effects of large changes on understanding and review performance can be de-
rived from the construct of cognitive (over-)load from cognitive psychology, too. This section
introduces the associated terms, before providing the respective argument.

1The citations are from the interviews described in Chapter 3.1 and the interviewee IDs are those from Table 3.2.

90

Cognitive load is “a multidimensional construct that represents the load that performing a
particular task imposes on the cognitive system” [289]. Two parts of its substructure are the
mental load exerted by the task and the mental effort spent on the task. As an example, consider
the task of adding numbers in the head. The more digits the numbers have, the more mental
load is exerted by the task. Now consider a young child and an older student: With the same
amount of mental effort, the older student can solve summing tasks that are more complex (i.e.,
have a higher mental load) than those the child can solve.

Various theories use cognitive load to explain performance on cognitive tasks. An example
is the cognitive load theory for learning [364], which predicts that better learning success is
achieved by avoiding extraneous cognitive load.

The capacity of human working memory [399] greatly influences cognitive load. Cognitive
psychology defines working memory as a part of human memory that is needed for short-term
storage during information processing. Working memory is used when combining information,
for example, when reading a sentence and determining which previously read word a pronoun
refers to. The capacity of working memory in terms of distinct items is limited [82]. To over-
come this limitation, items can be combined by ‘chunking’ [268, 348] to form new items (e.g.,
when consecutive words are chunked to a semantic unit). Working memory capacity can be
measured using ‘complex span tests’ [89], in which time-limited recall and cognitive processing
tasks are interleaved, and the number of correctly remembered items forms the memory span
score. This score has been shown to be associated with many cognitive tasks, for example,
the understanding of text [89, 90] and hypertext [101]. In the context of software engineering,
Bergersen et al. [47] studied the influence of working memory on programming performance.
They found that such an influence exists, yet it is mediated through programming knowledge,
which, in turn, is influenced by experience. More experience allows for more efficient chunking
and should, therefore, lead to lower cognitive load. In line with this prediction, Crk et al. [83]
found reduced cognitive load during code understanding for more experienced participants in
the analysis of electroencephalography (EEG) data.

For code review, there is evidence of the influence of expertise on effectiveness (e.g., [257]),
but no studies on the influence of working memory capacity on code review performance. Hunger-
ford et al. [177] studied cognitive processes in reviewing design diagrams and observed differ-
ent strategies with varying performance. In a think-aloud protocol analysis study, Robbins et
al. [322] analyzed cognitive processes in perspective-based reading. One of their observations
is that combining knowledge leads to a higher number of defects found. When studying the
cognitive level of think-aloud statements during reviews, McMeekin et al. [258] found that more
structured techniques lead to higher cognition levels.

A different viewpoint on task performance in the presence of computerized tools is to regard
human and computer as a joint cognitive system [105]. This viewpoint is also called distributed
cognition. It has been proposed by Walenstein to study cognitive load in software development
tools [393, 394], looking for an optimal distribution of the load among the parts of the system.

Supposing that code review is a cognitive task that follows the predictions of the cognitive
load framework, code review performance depends on the reviewer’s cognitive load. Overload,
as well as underload, lead to sub-optimal performance. Assuming that overload is the more com-
mon situation, review performance can be improved by reducing cognitive load. The cognitive
load is determined by characteristics of the subject (reviewer), the task, and by subject-task-
interactions [289]. The task, in turn, consists of understanding and checking a code change, so
its mental load depends on the respective sub-characteristics.

91

Code review effectiveness and
efficiency depend mainly on the
work of the reviewer and its fit
to the artifact under review

Understanding is the most important
aspect of reviewing

Change-based review is dominating
in practice

The review of large changes is the
most significant challenge (cognitive
overload)

Reviewer

Large Change

Understanding

Avoid Problem Support Solving

Avoid human
reviewers: Improve
review alternatives

Help choose the
best reviewer for
the task

Avoid large
changesets

Shrink the
changeset to
be reviewed

Avoid the need
to understand the
change

Help the reviewer
to understand
large changes

Solution Approach

P
ro

b
le

m
 A

sp
e
ct

Figure 12.1: Overview of argumentation: Three main problem aspects follow from the empirical findings
as well as the cognitive load theory and can be tackled in several ways.

12.2 Ideas to Address the Challenges

The previous section substantiates that to increase the effectiveness and efficiency of code
reviews for defect detection, researchers should focus on the reviewer and how to help him or her
to understand large code changes better. Better understanding can be achieved by reducing the
cognitive load of the reviewer. Tools with features to reduce cognitive load are called ‘cognitive-
support code review tools’ in this thesis:

Definition 3 (Cognitive-Support Code Review Tool). A Cognitive-Support Code Review
Tool is a code review tool that is designed to reduce the cognitive load of the reviewer
during checking.

Figure 12.1 shows an overview of the argumentation. There are three main problem aspects:
The reviewer, the large change size, and the reviewer’s need to understand the change. For each
problem aspect, there are two general ways to deal with it: Avoid the problem aspect, or accept
it and provide better support for dealing with it. The following subsections discuss each of these
combinations and survey related work in these areas.

12.2.1 Problem Aspect: Reviewer

12.2.1.1 Avoid Human Reviewers

An extreme way to deal with the difficulties of human reviewers in code reviews could be
to avoid human reviewers altogether. As human reviewers are one of the characteristics of code
review according to Definition 1, this is synonymous to avoiding code reviews. Essentially, this is
a question of efficiency: Is code review the most efficient way to find a certain defect type or are
there more efficient ways, e.g., static code analysis, defect prediction, or testing? [140, 325] For
example, Panichella at al. [292] found that certain problems identified during code review could
have been identified earlier using static analysis. But as long as there are practically relevant
defect types for which code review is most efficient, it should be used. If such defect types did
not exist anymore, for example after a breakthrough in static analysis research, code review in
its current form would not be needed any longer for defect detection. Therefore, this topic is
not discussed further in this thesis.

92

12.2.1.2 Help Choose the Best Reviewer for the Task

In recent years, there have been a number of studies on ‘reviewer recommendation’, i.e., on
finding the best reviewer(s) for a given change (e.g. [20, 376]). Although this promises a large
effect, there are several problems reducing the practical benefit, especially in smaller teams.
The most obvious is that in a small team, it is often fairly easy to see who is a good reviewer
for a change so that computer support does not provide large gains. In some other cases, the
reviewer for a certain module is fixed (see Section 6.1), so there is no choice at all. A study
by Kovalenko et al. [208] supports this argument and indicates that a central use of reviewer
recommendation is improved usability during reviewer selection. Additionally, always choosing
the best reviewer can lead to a high review load for experienced developers, and a high workload
has a negative impact on review quality [44]. Therefore, reviewer recommendation has to move
from determining local optima for every single review to more global optimization of reviewer
assignment. This thesis does not study reviewer recommendation further.

12.2.2 Problem Aspect: Large Change

12.2.2.1 Avoid Large Changesets

Given the problems with the review of large changes, many teams resort to the frequent
review of small changes [317]. Up to a certain point, this is a good thing to do, but there
are also arguments in favor of larger changes and reviews: The change under review should
be self-contained, it should satisfy certain quality criteria before central check-in (at least to be
compilable) and reviewing very small changes can lead to high overhead and duplicate work [367].
Hence, instead of forcing every change to be very small, the review of larger changes should be
made more effective and so that changes can stay at their ‘smallest natural size’.

12.2.2.2 Shrink the Changeset to be Reviewed

Given large changesets with change parts of varying relevance for the review goals, reviewers
try to manually pick the relevant subset. This is regarded as hard and error-prone: “After some
time you get a feeling which files are relevant and which are not, but it’s hard to filter them out.
And when I don’t look at them there might be some change in there that was relevant, anyway.
That’s problematic.”I.8

An important special case is systematic changes, especially rename and move refactorings.
This special case has been studied for example by Thangthumachit, Hayashi and Saeki [371] as
well as Ge [135]. Zhang et al. [413] describe the tool “Critics” to help inspecting systematic
changes using generic templates. For the more general case, Kawrykow and Robillard [192]
developed a method to identify “non-essential” differences. Tao and Kim [368] propose an
approach to partition composite code changes. A lot could be gained by bringing the promising
existing results into wider use. Beyond that, Chapter 15 presents research to provide a better
foundation to decide which changes are low-risk. It also introduces the distinction between
change parts that are error-prone and need to be checked in detail and change parts that only
need to be read to help to understand other change parts. Another research path is to include
more data, such as test coverage information, to assess review relevance. The latter is not
examined further in this thesis and provides potential for future work.

93

12.2.3 Problem Aspect: Understanding

12.2.3.1 Avoid the Need to Understand the Change

From a theoretical point of view, reducing the need to understand the code is another
possibility to solve the stated problem. There are defects that can be found without a deep
understanding of the code, and it could be sufficient to identify these in a review if other defects
are not contained or are found by other means. Chapter 15 discusses the distinction between
knowledge-based and rule-based cognitive processing in this regard, but otherwise, the topic is
not dealt with further in this thesis.

12.2.3.2 Help the Reviewer to Understand the Change

A theme that occurred throughout the interviews is that large changes are best reviewed with
the search and hyperlinking support of an IDE (e.g., “I think reviewing code purely in ’Crucible’
only works for trivialities. Because naturally many features are missing that you have in an
IDE.”I.2). As shown in Chapter 7, this improvement has already made its way into some widely
used review tools. A benefit of IDE-integration is that new features to support understanding,
e.g., symbolic execution [171], will automatically be available for reviewers, too.

Many of the interviewees try to get a high-level understanding of the change at the start
of the review (“at first an overview because otherwise, the problem is that you lose sight of the
interrelation of the changes”I.10; this topic is taken up in Chapter 14). The support for this ac-
tivity in common tools is very limited, consisting mainly of the overview of the commit messages
of the singular commits belonging to the change. There is relatively little research on visualizing
and summarizing code changes for better understanding: McNair, German and Weber-Jahnke
propose an approach to visualize change-sets [260], as do Gomez, Ducasse and D’Hondt [145].
In addition, several textual summarization techniques have been proposed (e.g. [66]).

This thesis does not discuss summarization of changes in detail, but the thesis author
(co-)supervised two master theses on this topic: Gripp [150] collected requirements for tex-
tual summarization of code changes and implemented an extension for CoRT that builds upon
several of the research works mentioned above. It was successfully deployed in practice, and
especially refactoring detection was considered useful by the partner company’s developers. A
brief glimpse at its UI is given together with CoRT’s UI in Section 9.2. A second thesis by Gas-
parini [134] deals with graphical summaries. His study uses a mixed-methods, theory-generating
design. He generated and evaluated several approaches to visualize code changes in reviews. In
the empirical evaluation of prototypes for three approaches, the participants preferred an ap-
proach that made rather little use of graphical depictions. Instead, it provides a better overview
of the call flow relation (cmp. Section 14.3), especially when compared to GitHub or similar sim-
ple tools. The approach was implemented and evaluated in a web-based tool based on GitHub
but has not been integrated into CoRT so far.

A related technique that can help to summarize the contents of a change and to reduce its
observed complexity is ‘change untangling’, i.e., splitting a large change that consists of several
unrelated smaller changes into these smaller changes. Change untangling has first been studied
by Herzig et al. [172] and alternative approaches have been proposed by Dias et al. [102], Platz
et al. [299], and Matsuda et al. [253]. Barnett et al. [21] investigated change untangling in
the context of code review and obtained positive results in a user study. Tao et al. [368] also
proposed to use change untangling for review and showed in a user study that untangling code
changes can improve code understanding.

94

After having an overview of the changes, the reviewer needs to step through the change
parts in some order. Many reviewers try to find an order that helps their understanding, but
often fall back to the order presented by their review tool: “The problem is you sometimes
get lost and don’t find a good starting point.”I.10 “If you don’t have that, you just step through
the files in the commit one after another . . . ”I.10. A similar finding resulted from a study by
Dunsmore, Roper, and Wood in which participants suggested “ordering of code” to improve
inspections [109]. Guiding the reviewer shares similarities with the ‘step-by-step’ mechanism
underlying many of the reading techniques studied intensively for inspections (Section 7.1).
Dunsmore et al. [107, 109, 110] developed a reading technique based on the claim that with the
advent of object-oriented software development, delocalized programming plans have become
more common. This also leads to delocalized defects, i.e., defects that can only be found (or
at least found much more easily) when combining knowledge about several parts of the code.
Dunsmore et al. tested their reading technique in a series of experiments. They did not find
a significant influence of their technique on review effectiveness and did not analyze review
efficiency. When efficiency was later analyzed in an experiment by Abdelnabi et al. [1], a
positive effect was found, and the results of an experiment by Skoglund et al. [352] are largely
compatible with these findings, too. The main difference between the proposed guidance and
these reading techniques is that the reading techniques try to change the way the reviewer works,
while the proposed guidance transfers cognitive load from the human reviewer to the tool. In
addition, most reading techniques proposed so far are not intended to be used with changesets.
In Chapter 14 of this thesis, it is shown in detail how ordering the code changes under review
can guide the reviewer.

Clearly, the reviewer can also be supported by ensuring better comprehensibility of the code
before the review, for example with code style checks [5, 28].

12.3 A New Generation of Code Review Tools

About a decade ago, Henrik Hedberg proposed a classification of software inspection/review
tools into generations [167] (see Figure 12.2). He concluded that the coming fifth generation
should provide flexibility with regard to the supported documents and processes and that they
should comprehensively include existing research results. This prediction has come true (with
limitations): Current review tools, as introduced in Section 7.3, are flexible and commonly

1: Early tools
Support of data collection

2: Distributed tools
Geographically dispersed work

4: Web-based tools
Use of web technologies

3: Asynchronous tools
Meeting-less inspection

5: Comprehensive tools
Flexibility and integration

6: Cognitive-support tools
Advanced reviewer support

Figure 12.2: Hedberg’s classification of code review tools, with cognitive support tools added as the
sixth generation

95

support the review of any kind of text file. The preceding sections show opportunities to reach
a higher level of review effectiveness. For most of them, a reification from the review of changes
in text files to the review of changes in source code is necessary. The tool still allows the review
of various file types, but there is much better support for some of them. I consider this to be a
new generation of code review tools, the generation of cognitive-support review tools.

♦
Summing up, the most promising avenue for better review tooling is to support the reviewer

when understanding large changesets. This leads to the notion of ‘cognitive-support code review
tools’, i.e., tools that are designed to reduce the cognitive load of the reviewer during check-
ing. The next chapter further substantiates the hypothesis that reducing the cognitive load
of reviewers will lead to better review performance. After that, Chapters 14 and 15 study two
possibilities for cognitive support in detail: Ordering of change parts and classification of change
parts.

96

13
An Experiment on Cognitive Load in Code

Reviews

The previous chapter argued that reducing the cognitive load of the reviewer leads to better
review performance. To substantiate this claim, this chapter presents a controlled experiment
on aspects of cognitive and mental load during reviews. It studies the effect of working memory
capacity and of code change size on review effectiveness. This chapter is based on parts of [29],
joint work with Alberto Bacchelli and Kurt Schneider.

13.1 Experimental Design

The following section discusses the design of the experiment. It is also used to test hypotheses
regarding the ordering of code changes. The latter parts of the experiment are detailed in the
next chapter (Section 14.6).

13.1.1 Research Questions and Hypotheses

Based on the importance of human factors for improving code review performance (see
Section 12.1), prior research in text and hypertext comprehension that shows an influence of
working memory capacity on comprehension [101], and Chapter 12’s hypotheses on a similar
influence for reviews, the first research question of this chapter asks:

RQ13.1. Is the reviewer’s working memory capacity associated with code review effective-
ness?

Comparing and mentally combining different parts of the object under review may help in
finding defects [177, 322] and higher working memory capacity could be beneficial in doing so.
Therefore, the study looks for differences in the number of defects found. It also analyzes the
subset of delocalized defects. With one-sided tests, this leads to the following null and alternative
hypotheses:

97

H1.1.0 There is no correlation between the total number of found defects and working memory
span scores.

H1.1.A There is a positive correlation between the total number of found defects and working
memory span scores.

H1.2.0 There is no correlation between the total number of found delocalized defects and
working memory span scores.

H1.2.A There is a positive correlation between the total number of found delocalized defects
and working memory span scores.

Section 12.1 presented results from earlier work which brought evidence that large, complex1

code changes are detrimental to review performance. But this evidence is mostly based on
qualitative or observational data. Because a lot of research builds upon this ‘large change’
hypothesis, this thesis reports on more reliable support and quantitative data from a controlled
setting for it:

RQ13.2. Does higher mental load in the form of larger, more complex code changes lead to
lower code review effectiveness?

The hypothesis is that more complex changes pose higher cognitive demands on the reviewer,
leading to lower review effectiveness. The effect on review efficiency is harder to predict: The
higher cognitive load may demotivate reviewers and make them review faster (skimming), but
it may also lead to longer review times. Consequently, only the effect of code change size on
effectiveness is tested formally.

The probability of detection can vary greatly between different defect types. Therefore, one
particular defect type was selected for this RQ: the swapping of arguments in a method call, a
specific kind of delocalized defect.2 Among the defects seeded into the code changes, three are
such swapping defects: one defect in the small code change (SwapWU) and two defects in one of
the large code changes (SwapS1 and SwapS2; jointly referred to as Swapd with d as a placeholder
in the following). The corresponding null and alternative one-sided hypotheses take the general
form:

H2.<d>.<n>.0 The detection probability for SwapWU and Swapd is the same when Swapd is
in the n-th review.

H2.<d>.<n>.A The detection probability for SwapWU is larger than the detection probability
for Swapd when Swapd is in the n-th review.

With all combinations of d=‘S1’ or ‘S2’ and n=‘first large review’ or ‘second large review’,
there are four null and four alternative hypotheses.

13.1.2 Design

Figure 13.1 shows an overview of the phases, participation, and overall flow of the experiment.
Each participant performs three reviews in total, one for a small code change and two larger

1Size and complexity are often highly correlated [164], therefore, they are not treated separately here.
2The experiment had to be restricted to a specific defect type to keep the experiment duration manageable

and the set of defects that could be seeded into the small change was limited. I know from professional experience
that swapping defects occur in practice and they can have severe consequences. I cannot quantify how prevalent
they are, as studies that count defect types usually use more general categories (like “interface defects”).

98

ones. In addition to the questions studied in this chapter, the large reviews were also used to
study the effect of code ordering, which are dealt with further in Section 14.6. Next, each phase
of the experiment is briefly described.

1. The experiment is entirely done through an instrumented browser-based tool that was
created for the experiment to enable performing change-based reviews, collecting data
from survey questions and on the interaction during reviews, and other aspects of the
experiment. The welcome interface gives the participants information on the experiment
and requires informed consent.

2. The participant is then shown a questionnaire to collect information on demographics
and some confounding factors: The main role of the participant in software development,
experience with professional software development and Java, current practice in program-
ming as well as reviewing, and two surrogate measures for current mental freshness (i.e.,
hours already worked today and a personal assessment of tiredness/fitness on a Likert
scale). These questions loosely correspond to the advice by Falessi et al. to measure “real,
relevant and recent experience” [118] of participants in software engineering experiments.
After providing this information, the participant receives more details on the tasks and the
expectations regarding the reviews. Moreover, the participant is shown a brief overview
of the relevant parts of the open-source software (OSS) project that was the source of the
code changes to review.3

3. Each participant is then asked to perform a review on a small change; afterward the
participant has to answer a few understanding questions on the code change just reviewed.

4. Next, the participant is asked to perform the first large review, preceded by a short re-
minder of the expected outcome (i.e., efficiently finding correctness defects). The code
change in the review is ordered according to a randomly selected ordering type (see Sec-
tion 14.6). Like for the small change, the participant has to answer a few understanding
questions after the review.

5. Subsequently, the participant is asked to repeat the review task and understanding ques-
tions for a second large code change.

6. After all reviews are finished, the participant is asked for a subjective comparison: Which
of the two large reviews was understood better? Which change was perceived as having
a more complicated structure? Furthermore, the UI asks for the participant’s experience
with the OSS system that was the source of the code changes.

7. Finally, the participant is asked to perform an optional task of computing arithmetic
operations and recalling letters shown after each arithmetic operation. This task is an
automated operation span test [384], based on the shortened operation span test by Oswald
et al. [288], which I re-implemented for the browser-based setting. This task is used to
measure the working memory capacity for answering RQ13.1. The task is optional for two
reasons: (1) Working memory capacity as a component of general intelligence is more
sensitive data than most other collected data, thus participants should be able to partially
opt-out. (2) The test can be tiring, especially after having completed a series of non-trivial
code reviews.

3All these descriptions could be accessed again on demand by participants during the review.

99

online setting
76 participants

started

company setting
16 participants

started

dropout
(23/76) online
(1/16) companyX

dropout
(13/76) onlineX

Take
optional
memory

test?

yes

no

online
setting
(2/76)

company
setting
(3/16)

online
setting
(33/76)

company
setting
(12/16)

dropout
(5/76) onlineX

completed with memory test

Welcome
participant!

access to the
controlled software

environment
for the experiment

working
memory
capacity
test

small
change

demographics
& confounders

review
understanding

1st large
change

(randomized
change &
ordering) understanding

review

understanding
review

subjective
comparison

& jEdit experience

(2*3+12)/2
…
J

2nd large
change

(randomized
change &
ordering)

completed without memory test

1

2

3

4

5

6

7

Figure 13.1: Experiment steps, flow, and participation (Source: [29])

100

13.1.3 Browser-Based Experiment Platform

I created a browser-based experiment environment to support all the aspects of the ex-
periment, most importantly conducting the reviews, gathering data from the survey questions,
conducting the working memory span test, and assigning participants to treatment groups. This
browser-based environment allows access to professional developers and control of the ensuing
threats to validity. The next paragraph details the part devised to conduct the reviews. To
reduce the risk of data loss and corruption, almost no data processing was done in the UI
server itself. Instead, the participants’ data was written to file as log records, which were then
downloaded and analyzed offline.

Part I shows that in current industrial practice, browser-based code review tools that present
a code change as a series of two-pane diffs are widely used. Therefore, I implemented a similar
UI for the current study. Although this setup allows for free scrolling and searching over the
whole code change and thus introduces some hardly controllable factors into the design, we
(Baum, Bacchelli) chose it in favor of more restrictive setups because of its higher ecological
validity. During code review, the UI logged various kinds of user interaction in the background,
for example, mouse clicks and pressed keys.

An example of the review UI can be seen in Figure 13.2. The HTML page for a review starts
with a description of the commit. After that, a brief description of the UI’s main features was
given, followed by the change parts in the order chosen for the particular review and participant.
The presentation of each change part consisted of a header with the file path and method name
and the two-pane diff view of the change part. The initial view for a change part showed at most
four lines of context below and above the changed lines, but the user could expand this context
to show the whole method. Further parts of the code base were not available to the participants
(and not needed to notice the defects). Review remarks could be added and changed by clicking
on the margin beneath the code.

13.1.4 Objects and Measurement

Patches / Code changes. Because it is infeasible to find a code base that is equally well
known to a large number of professional developers, the study uses one that is probably little
known to all participants. This increases the difficulty of performing the reviews. To keep the
task manageable, at least the functional domain and requirements should be well known to the
participants and there should be little reliance on special technologies or libraries. To satisfy
these goals, the jEdit programmer’s text editor4 was selected as the basis from which to pick code
changes to review. To select suitable code changes, I screened the commits to jEdit from the
years 2010 to 2017. I programmatically selected changes with a file count similar to the median
size of commercial code reviews identified in previous work [21, 41]. The resulting subset was
then checked manually for changes that are (1) self-contained, (2) neither too complicated nor
too trivial, and (3) of a minimum quality, especially not containing dubious changes/“hacks”.

With that procedure, I manually checked ten commits for the large reviews and excluded
two as not self-contained, one as too complicated, two as too simple and three as dubious. The
selected commits are those of revision 19705 (‘code change A’ in the following) and of revision
19386 (‘code change B’). In addition, I selected a smaller commit (revision 23970) for the warm-
up task. For this choice, a large number of commits satisfied the criteria, so the sampling was
less exhaustive. Code change A is a refactoring, changing the implementation of various file

4http://jedit.sourceforge.net

101

Commit description

Allow columns to be rearranged in file system browser

Code changes

Below you find the code changes to review. The old version of the code is on the left, the new version is on the right.

To add a review remark, click on the respective line number. To delete it, click on it again and delete the remark's text. If a defect spans multiple lines, just
mark one of those lines. If similar defects appear multiple times, please mark every occurrence. If you suspect something could be a defect but are not
100% sure, it's better to add a review remark.

At several of the change parts, you can show the whole changed method by clicking on "(Show more context)".

org/experiment/editor/browser/VFSDirectoryEntryTable.java, constructor org/experiment/editor/browser/VFSDirectoryEntryTable.java, constructor
(Show more context)

org/experiment/editor/browser/VFSDirectoryEntryTableModel.java org/experiment/editor/browser/VFSDirectoryEntryTableModel.java,
columnMoved()

org/experiment/editor/browser/VFSDirectoryEntryTable.java org/experiment/editor/browser/VFSDirectoryEntryTable.java
(Show more context)

End review ►

 setDefaultRenderer(Entry.class,
 renderer = new FileCellRenderer());

 header = getTableHeader();
 header.setReorderingAllowed(false);
 addMouseListener(new MainMouseHandler());
 header.addMouseListener(new MouseHandler());
 header.setDefaultRenderer(new HeaderRenderer(

(DefaultTableCellRenderer)header.getDefaultRenderer()));

 setDefaultRenderer(Entry.class,
 renderer = new FileCellRenderer());

 header = getTableHeader();
 header.setReorderingAllowed(true);
 addMouseListener(new MainMouseHandler());
 header.addMouseListener(new MouseHandler());
 header.setDefaultRenderer(new HeaderRenderer(

(DefaultTableCellRenderer)header.getDefaultRenderer()));

 protected void columnMoved(int from, int to) {
 if (from == to)
 return;
 if (from < 1 || from >= getColumnCount())
 return;
 if (to < 1 || to >= getColumnCount())
 return;
 ExtendedAttribute ea = extAttrs.remove(from - 1);
 extAttrs.add(to - 1, ea);
 }

 class ColumnHandler implements TableColumnModelListener
 {
 public void columnAdded(TableColumnModelEvent e) {}
 public void columnRemoved(TableColumnModelEvent e) {}
 public void columnMoved(TableColumnModelEvent e) {}
 public void columnSelectionChanged(ListSelectionEvent e)
{}

 public void columnMarginChanged(ChangeEvent e)
 {

 class ColumnHandler implements TableColumnModelListener
 {
 public void columnAdded(TableColumnModelEvent e) {}
 public void columnRemoved(TableColumnModelEvent e) {}
 public void columnMoved(TableColumnModelEvent e) {

((VFSDirectoryEntryTableModel)getModel()).columnMoved(
 e.getToIndex(), e.getFromIndex());
 }
 public void columnSelectionChanged(ListSelectionEvent e)
{}

 public void columnMarginChanged(ChangeEvent e)
 {

66
67
68
69
70
71
72
73
74

66
67
68
69
70
71
72
73
74

275 275
276
277
278■
279
280■
281
282
283
284
285

574
575
576
577
578
579

580
581
582

574
575
576
577
578
579

580■
581
582

583
584
585

Re-show introduction ❚❚ Pause

Figure 13.2: Example of the review view in the browser-based experiment UI, showing the small
code change. It contains three defects: In ‘VFSDirectoryEntryTableModel’, the indices in the check
of both ‘from’ and ‘to’ are inconsistent (local defects). Furthermore, the order of arguments in the
call in ‘VFSDirectoryEntryTable.ColumnHandler’ does not match the order in the method’s definition
(delocalized defect). At each defect, there is a review remark marker (little red square) in the line number
margin, i.e., the figure could show the view at the end of a review that found all defects. (Source: [29])

102

Table 13.1: Code change sizes, complexity, and number of correctness defects (total defect count as well
as count of delocalized defects only) after seeding

Code Change Changed
Files

Change
Parts

Presented
LOC1

Cycl.
Compl.2

Total
Defects

Delocalized
Defects

Small / Warm-up 2 3 31 12 3 1

Large code change A 7 15 490 57 9 2

Large code change B 7 21 233 83 10 3

1 presented LOC := Lines Of Code visible to the participant on the right (=new) side of the two-pane
diffs without expanding the visible context

2 total cyclomatic complexity [255] of the methods on the right (=new) side of the two-pane diffs

system tasks from an old API for background tasks to a new one. Code change B is a feature
enhancement, allowing the combination of the search for whole words and the search by regular
expressions in the editor’s search feature. The small change is also a feature enhancement,
allowing columns to be rearranged in the editor’s file system browser UI. Details on the sizes of
the code changes can be found in Table 13.1. Mainly because it contained a lot of code moves,
code change A contains fewer change parts but more lines of code than code change B, but code
change B is algorithmically more complex.

There was a risk that some participants would ignore the given instructions and look for
further information about jEdit (e.g., bug reports) on the internet while performing the exper-
iment. To reduce that risk all mentions of jEdit and its contributors were removed from the
code changes presented to the participants and credit to jEdit was only given after the end of all
reviews. I also normalized some irrelevant, systematic parts of the changes (automatically added
@Override annotations, white space) and added some line breaks to avoid horizontal scrolling
during the reviews, but otherwise left the original changes unchanged.

Seeding of Defects. Code review is usually employed by software development teams to
reach a combination of different goals (see Chapter 4). Of these goals, the detection of faults
(correctness defects; [178]), improvement of code quality (finding of maintainability issues),
and spreading of knowledge are often among the most important ones. As the definition of
maintainability is fuzzy and less consensual than that of a correctness defect, the analysis of the
experiment is restricted to correctness defects. In its original form, code change A contained one
correctness defect and code change B contained two. To gain richer data for analysis, several
further defects were added, so that the small code change contains a total of 3 defects, code
change A contains 9 defects, and code change B contains 10. The seeded defects are a mixture
of various realistic defect types. There are rather simple ones (e.g., misspelled messages and
forgetting a boundary check), but also hard ones (e.g., a potential stall of multithreaded code
and a forgotten adjustment of a variable in a complex algorithm). Six of these defects are
delocalized [107], i.e., their detection is likely based on combining knowledge of different parts
of the code. Two researchers independently classified defects as (de)localized and contrasted
results afterward. Both types of defects can be seen in Figure 13.2: The parameter swap in the
call of ‘columnMoved’ is a delocalized defect because both the second and third change part
have to be combined to find it. The off-by-one errors in the if conditions in the second change
part are not delocalized because they can be spotted by only looking at that change part. The
full code changes and the seeded defects can be found in the study’s replication package [42].

Measurement of Defects. The experiment UI explicitly asked the participants to review

103

only for correctness defects. All review remarks were manually coded, taking into account the
position of the remark as well as its text. A remark could be classified as (1) identifying a certain
defect, (2) ‘not a correctness defect’, or (3) occasionally also as relating to several defects. In
edge cases, a remark was counted if it was in the right position and could make a hypothetical
author aware of his defect. It was not counted if it was in the right position but unrelated to the
defect (e.g., it is related only to a minor issue of style). If this procedure led to several remarks
for the same defect for a participant, it was only counted once. To check the reliability of the
coding, a second researcher (Ghofrani) coded a sample of 56 of the remarks again. In 13 of these
cases, it was discussed whether the remark should be counted as a defect or not. In all cases, it
was agreed that the original coding was correct. The detailed coding of all review remarks can
be seen in the study’s online material [42].

Working Memory. As described in Section 12.1.2, working memory capacity can be measured
with complex span tests [89] that consist of interleaved time-limited recall and cognitive pro-
cessing tasks. The implementation of the shortened automated operation span test [288, 384]
consists of two tasks each with 3 to 7 random letters. Each letter is shown for a brief amount of
time, and the letter sequence has to be remembered while solving simple arithmetic tasks after
each letter (see the experiment’s online material for more details [42]). Each correctly remem-
bered letter gives one point, so the maximum score is 50. The theoretical minimum is zero, but
this is unlikely for the study’s population. Rescaling the results from Oswald et al. [288] gives
an expected mean score of 38.2. Before the main tasks, there were some tasks for calibration
and getting used to the test’s UI.

13.1.5 Statistical Data Analysis

For RQ13.1, correlation between working memory span scores and found defect counts is
checked using Kendall’s τB correlation coefficient [4]. τB is used because it does not require
normality and can cope with ties, which are likely for counts. In line with the hypotheses for
this RQ, tests are performed for the total number of found defects as well as the total number of
found delocalized defects. To augment and triangulate the results, I also build a regression model
to predict the number of found (delocalized) defects. The independent variables are chosen by
stepwise selection (stepwise BIC [388]) from the variables listed in Table 13.2.

For RQ13.2, the experiment returned simple count data (defect found in the small review,
defect found in the large review) that leads to 2x2 contingency tables. As the observations are
dependent (several per participant), McNemar’s exact test [3] is used.

13.1.6 Participants

With a large number of participants it is infeasible to use a code base that is well known
to all participants. Also, inexperienced participants (e.g., students) would be overwhelmed by
the difficult review tasks. The choice of an online, browser-based setting helped to increase
the chance of reaching a high number of professional software developers. Because this meant
less control over the experimental setting, the experiment contains questions to characterize the
participants:

• Their role in software development,

• their experience with professional software development,

• their experience with Java,

• how often they practice code reviews, and

104

Table 13.2: The variables collected and investigated for the cognitive load + ordering experiment.

Independent variables (design):

Working memory span score (measured) ordinal/interval

Used change part order type (controlled, see Section 14.6) nominal

Used code change (controlled) dichotomous

First or second large review (controlled) dichotomous

Independent variables (measured confounders):

Professional development experience ordinal/interval

Java experience ordinal/interval

Current programming practice ordinal/interval

Current code review practice ordinal/interval

Working hours before experiment (surrogate for tiredness) ratio

Perceived fitness before experiment ordinal

Experience with jEdit ordinal

Screen height ratio

Controlled setting (i.e., lab instead of online) dichotomous

Dependent variables per review:

Needed gross review time ratio

Needed net review time (i.e., without pauses) ratio

Number of detected defects ratio

Number of detected delocalized defects ratio

Number of correctly answered understanding questions ratio

• how often they program.

The experiment UI was made available online in 2017 for six weeks. Similar to canary releas-
ing [176], I initially invited a small number of people and kept a keen eye on potential problems,
before gradually moving out to larger groups of people. To contact participants, we (Baum,
Bacchelli) used our personal and professional networks and spread the invitation widely over
mailing lists, Twitter, Xing, Meetup and advertised on Bing. The complete development team of
the partner company participated in the experiment. This subsample of 16 developers performed
the experiment in a more controlled setting, one at a time in a quiet room with standardized
hardware. This subpopulation allowed us to detect variations between online setting and a more
controlled environment that can hint at problems with the former.

A consequence of the chosen sampling method is that participants could not be assigned to
groups in bulk before the experiment, but had to be assigned with an online algorithm. The
assignment was performed with a combination of balancing over treatment groups, minimization
based on the number of defects found in the small change review (Point 3 in Figure 13.1) and
randomization.

As the mean duration turned out to be about one and a half hours, with some participants
taking more than two hours, we (Baum, Bacchelli, Schneider) decided to offer financial com-
pensation. This was done in form of a lottery [213, 349], offering three cash prizes of EUR 200
each. The winners were selected by chance among the participants with a better than median
total review efficiency so that there was a mild incentive to strive for good review results.

A total of 50 participants finished all three reviews (of 92 who submitted at least the warm-
up review). 45 chose to also take the working memory span test. Unless otherwise noted,

105

no 1 year 2 yrs 3 − 5 6 − 10 more

pa
rt

ic
ip

an
t c

ou
nt

0
5

10
15

Figure 13.3: Professional development experience of the 50 participants that finished all reviews. Darker
shade indicates company setting, lighter shade is pure online setting.

Table 13.3: Mean and standard deviation (sd) for the number of defects found (all Defects as well as
the subset of delocalized defects only) and review time, depending on review number and code change

All Defects Delocalized Defects Time (Minutes)

Small / Warm-up 1.76 (of 3), sd=1.13 0.76 (of 1), sd=0.43 8.49, sd=5.48

First large review 3.68, sd=2.12 0.66, sd=0.82 30.03, sd=16.41

Second large review 2.98, sd=2.16 0.68, sd=0.87 20.69, sd=17.32

Large code change A 3.16 (of 9), sd=2.09 0.7 (of 2), sd=0.86 23.85, sd=16.96

Large code change B 3.5 (of 10), sd=2.23 0.64 (of 3), sd=0.83 26.88, sd=17.93

participants who did not complete all reviews are not taken into account in further analyses.
Participants who spent less than 5 minutes on a review and entered no review remark are
regarded as ‘did not finish’. Another participant was excluded because he or she restarted the
experiment after having finished it partly in a previous session. 24 participants dropped out
during the first large review, 13 during the second large review.

42 participants named ‘software developer’ as their main role. Four are researchers and
the remaining participants identified as managers, software architects or analysts. 47 of the
participants program and 32 review at least weekly. 40 have at least three years of experience in
professional software development, only one has none. Figure 13.3 shows the detailed distribution
of experience. None of the participants ever contributed to jEdit.

The minimum observed working memory span score is 17, the maximum is 50, the median is
45 and the mean is 41.93 (sd=7.05). The mean in the study’s sample is about 3.7 points higher
than estimated based on the sample of Oswald et al. [288] (from a different population), and
there seems to be a slight ceiling effect that is discussed in the threats to validity (Section 13.3).

13.2 Results

This section presents the empirical results and the performed statistical tests. Before that, it
briefly describes general results on the participant’s performance and their qualitative remarks.
The complete dataset is available [42].

106

Table 13.4: Mean review efficiency and effectiveness for the two levels of control in the study (online or
company setting)

Controlled Setting Effectiveness Efficiency

Yes (Company) 43% 8.8 defects/hour

No (Online) 36% 10.4 defects/hour

Table 13.3 shows the mean number of defects found and the mean review time depending
on the reviewed code change and also depending on the review number (i.e., small review, first
large review or second large review). This preliminary analysis indicates a large ordering/fatigue
effect, particularly striking for the drop in review time between the first and second large review.
Comparing the company and the online setting, the mean review effectiveness in the company
is higher than online, whereas the efficiency is slightly smaller (see Table 13.4).

The participant’s full-text answers were analyzed for potential problems with the experi-
ment. Most comments in this regard revolved around some of the compromises in the design
of the experiment: Little review support in the web browser (e.g., “For more complex code
as in review 2 or three a development IDE would support the reviewer better than a website
can do”PC11

5), mentally demanding and time-consuming tasks (e.g., “I found the last exer-
cises complicated.”PO33), and the high number of seeded defects (e.g., “I am rarely exposed to
code that bad”PO44). There were also a number of positive comments (e.g., “It was quite fun,
thanks!”PO37).

I also scanned the participants’ scrolling and UI interaction patterns. These patterns indicate
that some participants made intensive use of the browser’s search mechanism, whereas others
scrolled through the code more linearly. The detailed patterns are available with the rest of the
experiment results [42].

13.2.1 Working Memory and Found Defects

RQ13.1 asks: “Is the reviewer’s working memory capacity associated with code review effec-
tiveness?” As motivated in Section 13.1.1, all defects as well as delocalized defects are analyzed.
Kendall’s τB rank correlation coefficient (one-sided) is used to check whether a positive correla-
tion exists. For all defects, τB is 0.05 (n=45, p=0.3143). Looking only at the correlation between
the number of delocalized defects found and working memory span, τB is 0.24 (p=0.0186); in-
versely it is almost zero (-0.01) for localized defects. Using an alpha value of 5% and applying
the Bonferroni-Holm procedure for alpha error correction, the null hypothesis H1.2.0 can be re-
jected for delocalized defects, yet with a rather small Kendall correlation. The null hypothesis
H1.1.0 for all defects cannot be rejected.

Looking at the scatter plot in Figure 13.4 helps to clarify the nature of the relation: The plot
suggests that a high working memory span score is a necessary but not a sufficient condition for
high detection effectiveness for delocalized defects. In other words, a higher working memory
capacity seems to increase the chances of finding delocalized defects, but it does not guarantee it
and other mediating or moderating factors must be present. It may seem that the leftmost data
point is a very influential outlier and its exclusion would indeed reduce statistical significance;
however, systematic analysis of influential data points showed that it is not the most influential

5The subscripts next to the citations are participant IDs, with POn from the online setting and PCn from the
more controlled company setting.

107

●

●

●

●●

●

●

●

●

●

●

●

●●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

0

5

10

15

20 30 40 50

working memory span test score

to

ta
l d

el
oc

al
iz

ed
 d

ef
ec

ts
 fo

un
d

0

5

10

15

20 30 40 50

working memory span test score

to
ta

l o
th

er
 d

ef
ec

ts
 fo

un
d

Figure 13.4: Scatter Plots of Working Memory Span and Number of Delocalized (Left Plot) and Other
(i.e., Localized; Right Plot) Defects Detected; Slight jitter added

Table 13.5: Results of fitting a linear regression model for the number of all found defects using stepwise
BIC. Coefficient for time is based on measuring in minutes.

Coefficients Model statistics

Intercept Net time for reviews R2 adj. R2 BIC

4.7803 0.0682 0.2768 0.2599 258.61

one. The three most influential participants both for and against the hypothesis were scrutinized,
checking the time taken, found defects, answers to understanding questions and other measures.
Based on these in-depth checks, we (Baum, Bacchelli) decided to stick to the formal exclusion
criteria described in Section 13.1.6 and keep all included data points. If we were to exclude one
influential data point, it would be participant PO15, who spent little time on the reviews; this
exclusion would strengthen the statistical significance.

Other influencing factors were checked for with a regression model fitted by stepwise BIC
(Bayesian Information Criterion) [388]. Additionally, the correlation between all factors and the
defect counts (see Table 13.7) was determined. The only effect strong enough for inclusion in the
regression model for all defects was review time, with longer reviewing time leading to more de-
fects found (see Table 13.5). Looking at the correlations for the remaining factors in Table 13.7,
professional development experience and review practice also seem to be positively correlated
with the total number of defects found, as is the experimental setting. Review practice and ex-
perimental setting can also be found in the regression model for delocalized defects (Table 13.6).
The other factors, e.g., subjective mental fitness/tiredness, are neither highly correlated nor did
they make it into one of the regression models.

108

Table 13.6: Results of fitting a linear regression model for the number of all found delocalized defects
using stepwise BIC. Coefficient for time is based on measuring in minutes.

Coefficients Model statistics

Intercept
Net time
for
reviews

Working
memory
span score

Current
review
practice

Controlled
setting

R2 adj. R2 BIC

-3.6914 0.0215 0.0865 0.2717 0.8478 0.5359 0.4895 162.54

Table 13.7: Kendall τB correlation for all variable combinations. The names are replaced by single letter
IDs for space reasons: a := Working memory span score, b := Total number of detected defects, c := Total
number of detected delocalized defects, d := Total number of detected localized (=other) defects, e := Net
time for reviews, f := Controlled setting, g := Professional development experience, h := Current code
review practice, i := Screen height, j := Current programming practice, k := Java experience, l := Code
change B in first large review, m := Working hours before experiment, n := Perceived fitness before
experiment

b c d e f g h i j k l m n

a 0.05 0.24 −0.01 0.07 −0.18 0.04 −0.01 0.13 −0.19 0.22 −0.04 −0.2 0.23

b 0.64 0.88 0.35 0.28 0.24 0.2 0.21 0.07 0.04 −0.05 −0.08 −0.08

c 0.45 0.44 0.3 0.24 0.31 0.22 0.1 0.07 −0.01 −0.07 0.11

d 0.28 0.2 0.21 0.13 0.2 0.03 0.02 −0.06 −0.08 −0.12

e 0.21 0.15 0.13 0.09 −0.07 0.01 −0.12 −0.06 −0.09

f 0.02 0.28 0.3 0.13 −0.07 0.01 0.25 0.02

g 0.14 0.04 0.24 0.5 0.17 −0.05 −0.05

h 0.05 0.47 −0.02 0.03 0.07 −0.04

i 0 0.05 −0.06 −0.05 0.08

j 0.09 0.07 −0.04 −0.19

k 0.05 −0.15 −0.05

l −0.09 0.07

m −0.13

RQ13.1: Working memory capacity is positively correlated with the effectiveness of finding
delocalized defects. Not delocalized defects are influenced to a much lesser degree, if at all.
Even for delocalized defects, working memory capacity is only one of several factors, of which
the strongest is review time.

13.2.2 Code Change Size and Found Defects

RQ13.2 asks: “Does higher mental load in the form of larger, more complex code changes lead
to lower code review effectiveness?” It could already be seen in Table 13.3 that the reviewers
performed better in the small review than in the larger reviews. More specifically, the mean
review effectiveness is 59% for the small reviews and 35% for the large reviews. The mean
review efficiency is 15.65 defects/hour for the small review and 9.47 defects/hour for the large

109

Table 13.8: Count of reviews in which the respective defects were detected, p-value from one-sided
McNemar’s test for RQ13.2 and corresponding effect size measured as Cohen’s g [77] (classification as
‘large’ also according to Cohen [77])

Defect found in review

Hypothesis small
only

large
only

both none p Cohen’s g

H2.S1.first large review.0 10 0 9 6 0.001 0.5 (large)

H2.S2.first large review.0 11 0 8 6 0.0005 0.5 (large)

H2.S1.second large review.0 10 1 9 5 0.0059 0.41 (large)

H2.S2.second large review.0 12 1 7 5 0.0017 0.42 (large)

reviews. These numbers depend to a large degree on the seeded defects. For a fair comparison,
a specific defect type was picked to compare in detail (as described in Section 13.1.1): The
swapping of arguments in a method call. The small code change contained one defect of this
type and code change A contained two such defects (S1 and S2 in the following). The defect
has been found in the small reviews in 38 of 50 occasions (detection probability: 76%). When
code change A was the first large review, S1 has been found 9 of 25 times (detection probability:
36%). The detailed numbers for all four situations can be seen in Table 13.8. The corresponding
tests for association are all highly statistically significant (the smallest threshold, after applying
Bonferroni-Holm correction, is 0.05/4=0.0125; the largest p-value is 0.0059). Therefore, all four
null hypotheses H2.<d>.<n>.0 can be rejected, with the conclusion that the probability of finding
‘swap type’ defects is smaller for larger, more complex code changes. In all four situations, the
effect size is large. There is only a small difference in effect size between the first and second
large review, i.e., if there is a fatigue or other ordering effect it does not play a major role.

Part of the hypothesis underlying RQ13.2 is that the lower performance is due to increased
mental load. This increase should have a larger effect for the participants with lower working
memory span score, so one would expect a higher drop in detection effectiveness for them. I
checked for such an effect, but it is far from statistically significant. All in all, it is not possible
to reliably conclude whether the lower effectiveness is due to cognitive overload in spite of high
mental effort or to a decision to invest less mental effort than needed (e.g., caused by lower
motivation).

RQ13.2: Larger, more complex code changes are associated with lower code review effective-
ness. This may be caused by higher mental load or by other reasons, such as faster review
rates or lower motivation.

13.3 Validity and Limitations

This section discusses the threats to validity of the results from the current chapter.

External Validity. A setup similar to code review tools in industrial practice, code changes
from a real-world software system, and mainly professional software developers as participants
strengthen the external validity of the experiment. There is a risk of the participants not being
as motivated as they are in real code reviews, which was tried to counter by making code

110

review efficiency part of the precondition to winning the cash prize. External validity is mainly
hampered by four compromises: (1) Usually, code reviews are performed for a known code base.
(2) Unlike in industry, discussion with other reviewers or the author was not possible in the
reviews. (3) The defect density in the industry is usually lower than in the experiment’s code
changes. (4) The experiment UI asked participants to focus on correctness defects, although
identification of maintainability defects is normally an important aspect of code review [248,
374]. This could pose a threat to external validity if the mechanisms for finding other types
of defects are notably different. This threat is probably under control, as there are delocalized
design/maintenance issues with a need for deeper code understanding as well, but this claim
has to be checked in future research. It would also be worthwhile to study whether and to what
extent the high defect density often used in code review experiments is a problem.

Construct Validity. To avoid problems with the experimental materials, a multi-stage pro-
cess was used: After tests among the authors, I performed three pre-tests with one external
participant each. Afterward, the canary release phase started.

Many of the used constructs are defined in previous publications and the experiment reuses
existing instruments as much as possible, e.g., the automated operation span test and many of
the questions to assess the participants’ experience and practice. It was not formally checked
whether the used implementation of the operation span test measures the same construct as
other implementations, but this threat is mitigated since far more diverse tests have been shown
to measure essentially the same construct [399]. Compared to working memory, the mental load
construct is less well defined and usually assessed using subjective rankings.

One of the central measures in the current study is the number of defects found, which
was restricted to correctness defects to avoid problems with fuzzy construct definitions. To
reduce the risk of overlooking defects that a participant has spotted, the experiment UI asked
participants to favor mentioning an issue when they are not fully sure if it really is a defect.
This advice is compatible with good practices in industrial review settings [140]. The defects
were seeded by the author of this thesis, based on his (then) 11-years experience in professional
software development and checked for realism by another researcher (Bacchelli). Still, there can
be implicit bias in seeding the defects as well as in selecting the code changes. Also, a defect
is either considered delocalized or not, which ignores that the distance between the delocalized
parts differs depending on the defect and change part order. This could increase noise in the
data.

A sample of 50 professional software developers is large in comparison to many experiments
in software engineering [351]. For other sources of variation, the experiment had to be limited
to considerably smaller samples, leading to a risk of mono-operation bias and limited generaliz-
ability: For example, there are only three different code changes, and only one analyzed defect
type for RQ13.2. Similarly, the set of analyzed defects and defects types for RQ13.1 is limited
to a small sample of all possible defects and defect types, and there might well be other defect
types whose detection is influenced by working memory capacity. In addition, there could be al-
ternative commonalities between the defects besides ‘delocalization’ that also explain the found
correlation.

Internal Validity. A threat to validity in an online setting is the missing control over par-
ticipants, which is amplified by their full anonymity. To mitigate this threat, the experiment
included questions to characterize the sample (e.g., experience, role, screen size). To identify
and exclude duplicate participation, the experiment UI logged hashes of participant’s local and
remote IP addresses and set cookies in the browser. This threat was further controlled by

111

comparing the online and company sub-sample. There are signs that the participants in the
controlled setting showed less fatigue and more motivation, i.e., the difference in review time
between first and second large review is less pronounced than in the online setting. The exper-
iment UI asked the participants to review in full-screen mode and did not mention jEdit, but
it is still possible that participants in the online setting searched for parts of the code on the
internet. If somebody did, this would increase the noise in the data.

The participant sample is self-selected. Many potential reasons for participation make it
more likely that the sample contains better and more motivated reviewers than the population
of all software developers. Probably, this does not pose a major risk to the validity of the main
findings; on the contrary, I would expect stronger effects with a more representative sample. The
participant’s working memory span scores were higher than those observed in other studies [288,
384]. The resulting slight ceiling effect might have reduced statistical power in the analyses that
use working memory span scores. This effect could be due to the selection bias6 and possibly
also to a general difference in working memory span scores between software developers and the
general population. Still, it could also be a sign of a flaw in the implementation of the working
memory span test. A downside of having the working memory span test at the end is that the
study cannot detect a measurement error caused by only measuring participants that are tired
due to the reviews. Given the above-average working memory test results of the participants
compared to other studies, this does not seem to be a major problem.

Statistical Conclusion Validity. Ideally, the experiment should show a causal relationship
between working memory capacity and review effectiveness for RQ13.1. This demands controlled
changes to working memory capacity [295], which is ethically infeasible. Therefore, it was
checked for potential confounders (see Table 13.2) but unobserved confounders cannot reliably
be ruled out and only associations are reported.

♦
Summing up, this chapter shows that working memory capacity is positively correlated with

the effectiveness of finding delocalized defects, and that larger, more complex code changes are
associated with lower code review effectiveness. Both findings support the argument that lower
cognitive load leads to better review performance. This provides a foundation for the studies of
detailed support mechanisms in the next two chapters.

6This explanation is supported by the negative correlation between company/online setting and working mem-
ory (Table 13.7)

112

14
Ordering of Change Parts

As motivated in Chapter 12, cognitive-support review tools should help the reviewer to
understand a code change better and faster. The current chapter argues that one way to do so
is to determine an order of reading the code that helps the reviewer understand it. The tool can
then use this order to guide the reviewer. First, it is explored whether the order of code changes
used by the tool is indeed used as a guidance by the reviewers. Then, a theory-generating
mixed-methods study results in principles for how such an optimal order could look like. An
important input for determining an optimal order are the ‘relations’ between the change parts.
The found principles are specified as a formal theory and implemented in software. Selected
predictions of the theory are tested in a controlled experiment, an extension to the experiment
of the previous chapter. Furthermore, the approach is implemented in CoRT and used in the
partner company. The theory-generating study has been published in [41] and the experiment
in [29], both joint works with Alberto Bacchelli and Kurt Schneider.

14.1 Methodology

This section describes the overall methodology for this chapter in more detail. The detailed
information for the individual studies is contained in the respective sections.

14.1.1 Research Questions

Although an iterative methodology has been used, the results are structured linearly along
four research questions.

Reviewers can navigate the code in two ways: On their own, driven by hypotheses they form
along the way, or guided by the order presented by the tool. There is qualitative evidence that
both occur in practice and that the current tool order is sub-optimal (Section 12.2.3.2). To add
further qualitative as well as quantitative support to this claim, RQ14.1 (Section 14.2) asks:

RQ14.1. How relevant to reviewers is the order of code changes offered by the code review
tool?

113

Theory generation

Results

change
α

change
β

…

change
δ

change
α

…

Task-guided interviews
12 participants

II

Analysis of existing findings
from related areas

Commit Comments

Review Comment

Commit CommentsSE
Literature

Commit Comments

Review Comment

Commit CommentsOther
Literature

III

Task-guided survey
201 valid respondents

change
α

change
C

change
β

?

change
C

change
B

change
α

✗

IV

Relevance of Ordering
by Code Review Tools

Empirically Grounded
Ordering Principles

Theory for Ordering
Change Parts

Efficient Algorithm
to Determine Order

Instrumented code-review tool
292 recorded sessions

I

Theory testing

Controlled experiment
to test theory

V

in CoRT

Figure 14.1: High-level view of the research method (parts based on [41])

Given that the current order is perceived as sub-optimal, the next question then focuses on
empirically defining what makes a better order (Section 14.3):

RQ14.2. Are there principles for an optimal order of reading code changes under review?

Those principles, if any, would provide a human-readable impression of what is meant when
talking about presenting the changes in a better order. To be implemented in software or used
for predictions, they need to be specified more precisely (Section 14.5):

RQ14.3. How can the notion of ‘better order for code review’ be formalized as a theory?

Appendix D shows how the problem of finding an optimal tour according to the theory from
RQ14.3 can be solved in polynomial time. The claims of the theory can be tested formally in a
controlled experiment (Section 14.6):

RQ14.4. Can the order of presenting code change parts to the reviewer influence code review
efficiency, and does this depend on working memory capacity?

14.1.2 Research Method

This chapter’s theory-generating approach was inspired by methods to iteratively generate
theory from data, most notably Grounded Theory [143, 144]. The study started with interviews
as a flexible means to gather rich data and triangulated the findings with empirical results from
related fields as well as with an online survey. Furthermore, I collected log data from code
reviews in the partner company with CoRT to support the claim that better automatic ordering
of changes can help to improve review. After formalizing the theory, it was tested in a controlled
experiment and implemented in CoRT. Figure 14.1 details the data sources and their connection
to the results.

114

Table 14.1: Interview participants: ID, experience, and changeset

ID
Dev. exp.

(in years)

Change

set
ID

Dev. exp.

(in years)

Change

set

OI1 2 A OI7 23 B+C

OI2 8 A OI8 3 A

OI3 3 A OI9 10 A

OI4 3 A OI10 5 A

OI5 7 A OI11 10 A

OI6 5 B+C OI12 10 A

Logged review navigation (Point I in Figure 14.1): There is qualitative evidence from the
interviews in Part I and also from others [21] that the current standard order of review tools, i.e.,
alphabetical by path, is not optimal. To triangulate these findings and to gain more quantitative
information, I analyzed the navigation patterns from the interaction data that was logged by
CoRT in the partner company (see Section 9.3). The data used in the current study consists
of 292 reviews collected during fall 2016. To determine the size of code changes, I analyzed the
company’s versioning system. The data set is available [43].

Task-guided Interviews (Point II): The main method of data collection in the early phases
of the study was a special form of task-guided interview. I prepared exemplary code changes
from real world projects and printed each part of the changes in form of a two-pane diff on a
different piece of paper. Interviewees were asked to sort the shuffled parts for a change into the
order believed to be best for review. A short printed description of the participant’s task and
the purpose of the change was also handed out. While sorting, the participant was asked to
think aloud. When the participant had finished, the interviewer explicitly asked for a rationale
for the given order. After that, the interviewer presented an alternative order (either taken from
an earlier interview or prepared by the researchers before the session) and the participant was
asked to explain why his/her order was better than this alternative. In most interviews, this
comparison was repeated with yet another order, in other interviews the whole procedure was
repeated with a different code change.

The study used three different changesets (A, B, and C) sampled from real-world software
systems. The main criteria for selecting the changes were their size/complexity (manageable,
yet not trivial) and their content (based on the preliminary hypotheses). Changes consist of 7 to
10 change parts, mainly in Java files, but also in XML and XML Schema files. In the interviews,
the participants were familiar with the code base for changes B and C, but not for A. Details
on the changes are in the study’s material [43].

All of the sampled interview participants had good programming knowledge, but not all of
them were experienced reviewers. Table 14.1 presents the participants’ experience. Seven of
the interviews were performed by the author of this thesis and five by a co-author of the study
(Bacchelli). In the first four interviews, the researcher took interview notes; all of the other
interviews were recorded and later transcribed.

The interviews resulted in two types of data: the orders declared optimal by the participants
and the interview transcripts. The interview transcripts were analyzed by open coding aug-
mented by memoing. The codes were then refined and checked in a peer card sort session [158,
357] performed jointly by both interviewers, followed by further selective coding. The sequences
given by the participants were included in the card sorting and also analyzed programmatically

115

to systematically search for nonrandom patterns. Furthermore, they were used later to check
the formalization of the theory. During the whole research process, I used memoing to capture
ideas and preliminary hypotheses.

Existing Findings in Related Areas (Point III): One of the guidelines in Grounded Theory
is that “other works simply become part of the data and memos to be further compared to the
emerging theory” [143]. With this mindset, existing findings from related areas were used to
inform and triangulate the theory. The selection of related fields was guided by theoretical
sampling, e.g., by looking for works on hypertext after the importance of relations began to
emerge.

Task-based Survey (Point IV): After formulating preliminary hypotheses, we (Baum, Bac-
chelli) conducted an online survey. It contained task-guided confirmatory questions to challenge
the preliminary hypotheses and exploratory questions to develop the theory further. We defined
the target population as ‘software developers with experience in change-based code review’ and
included a set of questions to filter respondents accordingly.

We used established guidelines for survey research [183] to formulate the questions and
structuring the survey. The main part consisted of tasks asking respondents to declare their
opinion regarding different code orders for review. In addition, besides the filter questions, the
survey contained three questions on the participant’s navigation behavior during code review
(for RQ14.1) and four questions to analyze potential confounding factors, such as the used review
tool and programming language. All the questions were optional, except for the filter questions.

The main, task-guided part consisted of four pages; Figure 14.2 shows an extract of one.
Every page started with the abstract description of a code change (Point 1 in Figure 14.2) and
ended with a free text question for further remarks (Point 2). Between that, a selection of
three types of questions was included, which asked for: the participant’s preferred order of the
change parts (Point 3), a comparison of two orders pre-selected based on the research hypotheses
(Point 4), and an assessment of the usefulness of a set of orders on a 4-point Likert scale (not
shown in Figure 14.2). The order in which the change parts and proposed orders were presented
was randomized.

We used eight pre-tests with software developers to iteratively optimize the survey. The
creation and testing of the survey took seven weeks; the final survey ran for five weeks. To
invite software developers to the survey, we randomly sampled active GitHub users and invited
developers from our professional networks. We invited a total of 3,020 developers. The initial
filter questions were answered by 238 people (response rate: 8%), of which 201 were part of
the target population. Not all participants completed the survey or answered all questions. We
excluded participants if values for the respective hypothesis/research question were missing or
if an answer was inconsistent with one of their earlier answers. Therefore, the total number of
answers differs for the analyses.

Of the respondents, 97% program and 85% review at least weekly, so differences in practice
of the participants are of little importance. 57% of the respondents have only one or two years of
experience with regular code reviews; these participants were included unless otherwise noted,
but only after statistically showing their answers to be distributed like those of the respondents
with 3 years or more of experience. The influence of sampling through GitHub is clearly visible:
A majority (102 of 177) uses GitHub pull requests for reviewing and JavaScript (66 of 133) or
Java (41 of 133) as a programming language. 89% (117 of 132) develop software commercially
and 72% (95 of 132) participate in open source. The survey and the data sets are available [43].

Controlled Experiment (Point V): In a controlled experiment, the theory was tested by

116

…

0% 100%

Your choices

green

purple

blue

Your ranking

Code Review and Code Ordering Screenshots

Ordering questions (2/4)

Imagine you have to understand and review a code change. This time the code

change consists of three changed methods:

blue (method): A change in a method that uses data from green()
green (method): A change in a method that provides data for blue()
purple (method): A change in the same package as green(), without further connection to
the other changes

You can assume that all methods are equally important for review.

Please sort these changes so that the part that you would like to review first is on

the top and the part you would like to review last is on the bottom in the right

list. Doubleclick or draganddrop items in the left list to move them to the right.

The following options show two possible orders to review the code changes

described above. Which of these orders would you prefer?

 green; blue; purple
 blue; green; purple
 I definitely do not see a difference between these two
 No answer

1

Which of these two orders would you prefer?

 green; purple; blue
 green; blue; purple
 I definitely do not see a difference between these two
 No answer

Which of these two orders would you prefer?

 green; purple; blue
 blue; green; purple
 I definitely do not see a difference between these two
 No answer

Further remarks on these questions (in case you have any, e.g. when you had to

make additional assumptions)

This survey is currently not active. You will not be able to save your responses.

Previous Next Exit and clear survey

2

0% 100%

Your choices

green

purple

blue

Your ranking

Code Review and Code Ordering Screenshots

Ordering questions (2/4)

Imagine you have to understand and review a code change. This time the code

change consists of three changed methods:

blue (method): A change in a method that uses data from green()
green (method): A change in a method that provides data for blue()
purple (method): A change in the same package as green(), without further connection to
the other changes

You can assume that all methods are equally important for review.

Please sort these changes so that the part that you would like to review first is on

the top and the part you would like to review last is on the bottom in the right

list. Doubleclick or draganddrop items in the left list to move them to the right.

The following options show two possible orders to review the code changes

described above. Which of these orders would you prefer?

 green; blue; purple
 blue; green; purple
 I definitely do not see a difference between these two
 No answer

3

0% 100%

Your choices

green

purple

blue

Your ranking

Code Review and Code Ordering Screenshots

Ordering questions (2/4)

Imagine you have to understand and review a code change. This time the code

change consists of three changed methods:

blue (method): A change in a method that uses data from green()
green (method): A change in a method that provides data for blue()
purple (method): A change in the same package as green(), without further connection to
the other changes

You can assume that all methods are equally important for review.

Please sort these changes so that the part that you would like to review first is on

the top and the part you would like to review last is on the bottom in the right

list. Doubleclick or draganddrop items in the left list to move them to the right.

The following options show two possible orders to review the code changes

described above. Which of these orders would you prefer?

 green; blue; purple
 blue; green; purple
 I definitely do not see a difference between these two
 No answer

4

Figure 14.2: Example main page from the survey (data-flow variant/Situation 2a) (Source: [41], c©
IEEE)

comparing the review performance in a specific situation depending on the order of the code.
Details on the design of the experiment are given in Section 14.6, after having introduced the
generated theory.

14.2 The Relevance of the Order by the Tool

RQ14.1 seeks to understand the relevance of the ordering of changes proposed by the code
review tools. To answer this question, the study builds on opinions gathered in interviews, log
data from CoRT, and estimates from the survey’s respondents.

The log data contains traces of files visited in a review session. By comparing these files to
the alphabetical order, they show whether the user followed the order of the review tool, which
was alphabetical at that time. In 156 of 292 studied review sessions (53%), the user started with
the file presented first by the review tool. When reviewing further, 3,071 of 8,254 between-file
navigations (37%) took the reviewer to the next file in the tool order; moreover, in 162 (55%) of
the review sessions, the reviewer visited additional files that were not part of the changeset. The
numbers suggest that the hyperlinking and search features of the IDE might help the reviewer
navigating, after a place to start is found.

For small changes, the presentation order may have a negligible effect, because the number

117

count
0 25 50 7525 10050

How often do you continue with the change presented next by the tool?

How often do you start a review with the change presented first by the tool?

count
0 25 50 7525 10050

7 63299 24

6 54254 43

Never Rarely Sometimes Often Always

Figure 14.3: Survey results: Relevance of the ordering offered by the tool (Source: [41], c© IEEE)

of permutations and the cognitive load for the reviewer grows with change size. In a study
at Microsoft, Barnett et al. [21] found a median size of 5 files and 24 diff regions in changes
submitted for review. The review sessions at the partner company are even larger, with a median
size of 11.5 files per task. About 54% of the reviews have a scope of 10 or more files. There is
no statistically significant pattern connecting review size and navigation behavior.

The interviewers asked for the participants’ opinion on an alphabetical order for review. The
participants were either neutral or negative about it, e.g., “Well, I don’t think file based is a
good order [...] or alphabetical order is definitely not a good order.”OI9 “I mean it’s clear that
GitHub doesn’t have any intelligence behind the way that it presents you the reviews, currently,
so even a small improvement is welcome.”OI10 And although the survey did not ask for it, some
participants left a similar remark, for example: “I’ve never thought about ordering of changes
in code review tools. But while filling this survey I started thinking that proper ordering could
make reviewing of code much simpler.”OS270

When a code review is performed jointly with the author of the code, the author can guide the
reviewer through the code. Therefore, the survey asked about joint reviews. Of 167 participants
answering this question, 32 (19%) perform reviews ‘often or always’ together with the code’s
author. The survey asked the remaining participants about their behavior in two situations:
(1) When starting the review and (2) when in the midst of the review. 132 respondents answered
these questions and a large fraction reported to use the tool’s order ‘often or always’: 97 (73%)
for the start and 87 (66%) for the middle of the review; Figure 14.3 reports the details. There is
a tendency for more experienced reviewers and for reviewers with IDE-integrated review tools
to use the tool’s order less often, but the general picture stays the same for all studied sub-
populations.

Summing up, in a significant number of change-based code reviews, the reviewers use the
order in which the code changes are presented by the review tool to step through the code,
although they report to regard this order as sub-optimal for efficient understanding and checking
of the code. The size of a code change under review is often small, but in a notable number
of cases not small enough to make the effect of the order irrelevant. The problem is more
pronounced for less knowledgeable reviewers. A code review tool should, therefore, present the
changes in an order that is well-suited for a human reviewer. The results of the next research
questions describe how such an order should look like.

118

14.3 Principles for an Optimal Ordering

14.3.1 General Principles

The interview participants believe that certain orders are better suited for code review than
others. But the choice of the optimum is subjective. However, participants generally acknowl-
edged that other orders are good, too, and believe that a number of orders will be similar in
terms of review effectiveness and efficiency: “I don’t necessarily think this is worse. It’s more
a different point of view.”OI4 “[This order] probably makes sense if you’re super-deep into the
system.”OI10

Following the ‘tour/path’ metaphor used in other publications [285, 337], the term ‘tour’ is
used in the following to denote a permutation of the change parts under review. ‘Change parts’
and change hunks from the version control system are related, but do not have to be identical,
as is further detailed in Section 14.5.

Based on the combination of the different data sources, it emerges that an order that obeys
the principles described in the following is perceived to lead to better review effectiveness and
efficiency compared to other orders.

Principle 1. Group related change parts as closely as possible.

By grouping related change parts together, a good tour reduces context switches and reduces
the cognitive load for the reviewer. Additionally, it eases the task of comparing neighboring
change parts to spot inconsistencies or duplications: “So here, seems a bit like a code clone.
[...] And this is actually why I think it is really cool to have these two [related change parts]
together.”OI10 “If I was to return on this one, I would have to switch the context, which is
bad.”OI8 “I think a review tool should try to group changes that ’logically’ belong together.”OS44

“Unrelated things should not get in the way of related things.”OS296 As shown in Table 14.2,
Principle 1 is also well supported in the survey results.

Principle 2. Provide information before it is needed.

This allows the reviewer to better understand the change parts: “Without the knowledge
if this attribute is required or optional, I can’t tell if the mapper is correctly implemented.”OI7

“Blue depends on green, so it’s useful to know what green is before reviewing blue.”OS248

Table 14.2: Survey results: Confirmatory questions for Principle 1.

Preference Sit. 2a + 2b1 Sit. 2a
(Only data-flow)

Sit. 2b
(Only attr. decl.-use)

Sit. 42

close 102 67 35 102

not close 14 4 10 6

no preference 7 4 3

Total responses 123 75 48 108

1 Only one of Situation 2a (data-flow relation) and Situation 2b (declaration-use
relation) was shown selected by chance.

2 Results for Situation 4 are deduced from the user-given order (Point 3 in Fig-
ure 14.2), therefore “no preference” does not occur.

119

Table 14.3: Survey results: Comparison of different ways to order change parts related by call-flow (one
callee, four callers), used for Principles 2 and 6.

Order strategy Count among
best rated

Count among
worst rated

Mode (prevalent answer)

bottom-up (i.e., callee first) 111 16 very useful (100 times)

top-down breadth-first 35 61 somewhat useful (49 times)

top-down depth-first 34 67 somewhat useful (56 times)

no sensible rule 10 112 not very useful (55 times)1

Total responses 130 130 130

1 For experienced reviewers, the mode is “not at all useful” (21 of 45).

Table 14.4: Survey results: Confirmatory questions for Principle 3.

Preference Sit. 2a + 2b1 Sit. 2a
(Only data-flow)

Sit. 2b
(Only attr. decl.-use)

prefer closeness 82 57 25

prefer direction 26 12 14

no preference 11 5 6

Total responses 119 74 45

1 Only one of Situation 2a (data-flow relation) and Situation 2b (declaration-
use relation) was shown selected by chance.

Although the survey did not include a confirmatory question for Principle 2, one of the results
might be attributable to it: The respondents showed a clear tendency towards going bottom-up
along the call-flow relation, with 111 of 130 (85%) rating bottom-up as preferred (see Table 14.3).

Principle 3. In case of conflicts between Principles 1 and 2, prefer Principle 1 (grouping).

When reviewers come across a change part where they need knowledge they do not yet have,
they need to make assumptions (at least implicitly). As long as the related information-providing
change parts are coming shortly afterward, they can then check the assumptions against reality:
“The order doesn’t actually influence me that much.”OI11 “Maybe the order was not what I pre-
ferred, but the groupings of the snippets made sense.”OI5 “The only thing that matters here is
that purple and gold appear one after the other, whichever first.”OS392 Principle 3 is supported
in the survey, although less than Principle 1: 76% of the respondents who indicated a preference
preferred closeness (see Table 14.4).

Principle 4. Closely related change parts form chunks treated as elementary for further
grouping and ordering.

Principle 4 is needed to explain some of the interview results and is supported in the litera-
ture on cognitive processes, but it did not emerge explicitly from the interviewees’ statements.
Therefore, the survey included two exploratory questions to investigate it (Situation 3). The

120

tour using chunking to let the relations point in the preferred direction was chosen as better by
35 of 50 respondents (70%) in one and 38 (76%) in the other question.

Principle 5. The closest distance between two change parts is “visible on the screen at the
same time.”

Seeing two closely related change parts directly after another is good, but seeing them both
at the same time is better: With the latter, the cognitive load is minimal and inconsistencies can
be spotted. As the participants put it: “The most useful presentation would be to display all [5
related] changes at once and to allow the user to navigate freely”OS44 “I’d prefer to have them
both [...] on screen, ideally.”OS54 “I’d make [the description] stay on top, wherever I look at.”OI8

Principle 6. To satisfy the other principles, use rules that the reviewer can understand.
Support this by making the grouping explicit to the reviewer.

An order that the reviewer does not understand can “break his line of thought” and lead
to disorientation. Making the grouping explicit helps the reviewers to understand it, to form
expectations and to divide it into parts they can handle separately. “We’re going back from
something that is more specific to something that is generic. And that kind of breaks my line of
thought.”OI10 “[This order] doesn’t have a specific pattern, at least none that I can immediately
identify. [...] This is bad”OI5 “If the parts had been grouped, the groups made visible and ideally
given sensible names, I would have been able to understand the ordering better.”OI5

When asking the survey participants to rate bottom-up vs top-down tours, there was also a
tour that was not based on a “sensible” rule. This option was rated among the worst by 112 of
130 respondents (86%), thus supporting Principle 6.

The common guideline to ‘keep commits self-contained’ is a special case of Principle 1 com-
bined with Principle 6. In this case, a commit is an explicit group of related change parts.

The importance of a change part for code review varies, e.g., some change parts are more
defect-prone than others. The participants took this importance into account to varying degrees.
Some used it as the prime ordering criterion, while others did not. A lot of the variation in
participant’s orders from the interviews is due to these differences in the assessment and handling
of unimportance. The importance of change parts for review is dealt with in Chapter 15 of this
thesis.

14.3.2 The Macro Structure: How to Start and How to End

At the very beginning of the review, the reviewer should learn about the requirements that led
to the change. Many also wanted to get some kind of overview at the start (“First introduction
to understand the context, then the crucial part”OI2). An example of usage, e.g., a test case,
can help to achieve this. Such overviews are further studied in the master theses of Gripp [150]
and Gasparini [134].

The interviewees use several tactics (T) how to proceed after the initial overview, i.e., start
with: (T1) something easy, (T2) a natural entry point, e.g., GUI, Servlet or CLI, (T3) the most
important change parts, (T4) new things, (T5) change parts that “don’t fit in”, if any. Of these
tactics, T1 and T2 often suit Principle 2 better, i.e., to provide information before it is needed.
In contrast, T3, T4 and T5 are heuristics to visit more important/defect-prone change parts
early.

121

Some participants gave tactics for the end of the review, too: (1) End with a wrap-up/overview
(e.g., a test case or some other example of usage putting it all together), or (2) put the unim-
portant rest at the end.

14.3.3 The Micro Structure: Relations between Change Parts

Principle 1 states that related change parts should be close together. The participants gave
a number of different types of ‘relatedness’, e.g.: (1) Data flow, (2) call flow, (3) class hierarchy,
(4) declare & use, (5) file order, (6) similarity, (7) logical dependencies, and (8) development
flow. A more detailed description of the relation types can be found in the study’s supplemental
material [43].

Most of these relations are inherently directed (e.g., class hierarchy or data flow), while
others are undirected (e.g., similarity). For many of the directed relations, there is a preferred
direction (e.g., to put the declaration of an attribute before its use); for others—mainly for call
flow—the preferred direction seems to be more subjective. Many interview participants prefer
to go top-down from caller to callee, but others also talked about going bottom-up from callee
to caller. In contrast, the survey results support bottom-up (see Table 14.3). This indicates
that a simple global rule of “always prefer bottom-up/top-down” probably does not exist.

Another distinction between the relations is whether they are binary or gradual. For a binary
relation, like call flow, there are only two possibilities: Either there is a relation or there is none.
For a gradual relation, like similarity, the distinction between related and unrelated is fuzzier.

Fregnan’s master thesis [129] built upon the identified relations and asked a sample of 18
developers to rank the relation types by importance. The ‘method call’ relation type (a subtype
of ‘call flow’) was considered most important by the developers.

14.4 Input from Other Research Areas

This section discusses related work on the ordering of change parts for review and compares
it to the found principles.

14.4.1 Reading Comprehension for Natural Language Texts

Brain regions responsible for language processing are also active during code comprehension
[347]. There are differences in the activation patterns between code and text, but these become
less pronounced with programming experience [124]. Therefore, I used several studies from the
large body of research on reading comprehension and the understandability of natural language
texts to inform the ordering theory.

The “Karlsruhe comprehensibility concept” [146], an extension of the “Hamburg comprehen-
sibility concept” [220], summarizes multiple studies on factors influencing the comprehensibility
of natural language texts. It names six influencing factors/dimensions: Structure, concision,
simplicity, motivation, correctness and perceptibility. This chapter’s approach to improve code
ordering mainly targets the ‘structure’ dimension.

The positive impact of a sensible, explicitly recognizable or presented text structure is also
reported in other studies (e.g., [128, 148, 267]). A good text structure is “coherent”, i.e., parts
of the texts stick together in a meaningful and organized manner [148]. Reading scrambled
paragraphs takes more time, and is detrimental to recall quality when there is a time limit [200].

122

Presenting news and corresponding explanations in a clustered way can improve the understand-
ing and interest of a reader [409]. And there is evidence that stories are mentally organized in
a hierarchical fashion [57].

The aforementioned results fit to those from the previous section, but there is also some
evidence to the contrary: McNamara et al. found that a less coherent structure can improve
the learning of knowledgeable readers from a text, presumably because they have to think more
actively [261]. The same could be true in the case of reviews, with a sub-optimal structure
forcing the reviewer into a more active role. This underlines the need to empirically test the
predictions in a controlled experiment.

14.4.2 Hypertext: Comprehension and Tours

The ordering theory is based on the assumption that the relations between change parts are
an important factor in determining the optimal tour. The resulting part graph shares many
similarities to a hypertext. Hypertext research has studied how different link structures and
different presentations of the structure influence a reader’s interest and understanding (e.g.,
[408]). In the case of reviews, the link structure cannot be influenced, but the presentation can,
and a hierarchical presentation has been found to be beneficial [303]. It has also been found that
characteristics of the reader, notably working memory capacity and cognitive style, mediate the
influence of structure [101].

The notion of ‘guided tours’ has also been proposed for hypertext [379]. In addition, Ham-
mond and Allison [157] suggest the metaphors of “go-it-alone” (similar to the targeted navigation
briefly mentioned in Section 14.1.1) and of “map navigation” (similar to the participants’ need
to get an overview). An approach to automatically create such guided tours has been proposed
by Guinan and Smeaton [152]. They, too, use patterns to determine the order of the nodes.

14.4.3 Empirical Findings on Real-World Code Structure

Developers in long-living projects likely try to structure their code in a way that helps
understanding. Therefore, I looked for empirical results on the order of methods and fields in
software systems. I found two: Biegel et al. observed that in many cases, the code adheres
to the structure specified in the Java Code Conventions published by Sun/Oracle, and that a
clustering by visibility is also quite common [51]. They could also observe semantic clustering
(by common key terms), whereas alphabetic order was rare. Geffen and Maoz studied a number
of different criteria, also on open-source Java projects but with a stronger focus on call-flow
relationships [137]. They found that a “calling” criterion of having a callee after the caller
(i.e., top-down) is often satisfied. Regarding the conflicting results on top-down vs bottom-up
between the interviews and survey, this can be regarded as a point in favor of top-down. The
article of Geffen and Maoz also contains results on a second study: They tested experimentally
whether clustering or sorting by call-flow helps to understand code faster. Their results are
not statistically significant, but they show a tendency that a random order is worst and a
combination of clustering and sorting is best, especially for inexperienced developers.

14.4.4 Clustering of Program Fragments and Change Parts

After the importance of grouping in an optimal tour became clear, I started to look at
existing approaches for clustering in software. Many clustering approaches exploit structural
[247] and similarity relations [210], possibly augmented with latent semantic analysis [245]. Often

123

clustering is performed using randomized meta-heuristics, an approach that is incompatible with
Principle 6 (understandable rules). In contrast, the ACDC approach of Tzerpos and Holt [383]
is based on recognizing patterns in subsystem structures and encouraged me to pursue a similar
approach. Most clustering approaches deal with modules. In contrast, ‘change untangling’ (see
Section 12.2) can be seen as a special kind of clustering of change parts.

14.4.5 Program Comprehension: Empirical Findings and Theories

A number of theories on the cognitive processes of developers during code comprehension
have been proposed. Developers sometimes use ‘bottom-up comprehension’, i.e., they combine
and integrate parts of the program into increasingly complete mental models. On other occa-
sions, they employ ‘top-down comprehension’, either inference-based by using beacons in the
code or expectation-based guided by hypotheses [284]. They switch between these modes de-
pending on their knowledge, the needs of the task, and other factors [387, 389]. The survey by
Storey [362] provides further information.

Recent studies looked at the navigation behavior of developers during debugging and main-
tenance. It was found that ‘information foraging theory’ provides a more accurate pattern of
navigation behavior than hypothesis-driven exploration [229, 230]. In information foraging, de-
velopers follow links between program fragments. These links are largely based on dependencies.
The importance of links/relations for developer navigation has also been noted in other studies
[132, 203, 367]. A comparison of developers with differing experience showed that effective de-
velopers navigate by following structural information [323] and make more use of chunking [227].

Storey et al. [361] combined empirical findings from the literature to derive guidelines for
tools that support program comprehension. The theory described in this chapter results in such
a tool, therefore their guidelines should be partly reflected in it. Specifically, two of Storey
et al.’s guidelines for bottom-up comprehension are to “reduce the effect of delocalized plans”
and “provide abstraction mechanisms”. They are addressed by grouping and by hierarchical
chunking, respectively. By allowing the reviewers to also explore the source code on their own,
further of Storey et al.’s guidelines can be satisfied.

14.5 A Theory for Ordering the Change Parts to Review

The principles and findings described in the previous sections detail what makes a good order
of changes for code review, but to implement them in software or to test the hypotheses, they
are still too vague. Therefore, they are formalized based on the guidelines for building theories
in software engineering by Sjøberg et al. [350], i.e., by giving the theory’s scope, constructs,
propositions, and the underlying explanations.

14.5.1 Scope and Constructs

The scope of the theory is regular, change-based code review. The theory has been developed
based on code written in object-oriented languages; it possibly has to be adapted to be applicable
to other programming paradigms. The constructs of the theory are detailed in Table 14.5.

124

Table 14.5: Definitions of the constructs for the ordering theory

Construct Description

Code change The ‘code change’ consists of all changes to source files performed in the ‘unit
of work’ (see Definition 2 on page 24) under review. This also includes auxiliary
sources like test code, configuration files, etc. The code change defines the scope
of the review, i.e., the parts of the code base that shall be reviewed. With task
or user story level reviews, a code change can consist of multiple ‘commits’.

Review efficiency Review efficiency is the number of defects found per review hour invested (defi-
nition adapted from [52]).

Review
effectiveness

Review effectiveness is the ratio of defects found to all defects in the code change
(definition adapted from [52]).

Defect In the context of this theory, a defect is any kind of true positive issue that can be
remarked in a review. This encompasses faults as defined in the IEEE Systems
and Software Engineering Vocabulary [178], but also for example maintenance
issues.

Change part The elements of a code change are called ‘change parts’. In its simplest form, a
change part corresponds directly to a change hunk as given by the Unix diff tool
or the version control system. When some part of the source code was changed
several times in a code change, a change part can span more than two versions of
a file. It could be beneficial to split large change hunks into several change parts,
e.g., when the hunk spans several methods.

Tour A tour is a sequence (permutation) of all change parts of a code change.

Relation (between
change parts)

There can be ‘relations’ between change parts. A relation consists of a type
(e.g., call flow, inheritance, similarity; see Section 14.3.3) and an ID that allows
distinguishing several relations of the same type (e.g., the name of the called
method). There are relations of differing strength, but these are not taken into
account in the current formal model. Change parts (as vertices) and relations (as
edges) define a graph with labeled edges, the ‘part graph’. There are directed as
well as undirected relations. Undirected relations can be modeled as two directed
edges so that the graph is directed. There can be multiple edges between two
change parts, but their labels have to be distinct. The approach further demands
that the graph has no loops. A mechanism similar to the one used by Barnett et
al. [21] can be used to get from the syntactic level to the relation graph.

Grouping pattern The grouping and ordering preferences of a reviewer are modeled as ‘grouping
patterns’. A grouping pattern combines a matching rule that identifies a subset
with at least two change parts in the part graph and a function rate to provide
a rating for a permutation of the matched change parts. Only one family of
grouping patterns was sufficient to describe the data so far: A ‘star pattern’
(see Figure 14.4) matches a core vertex and all vertices (at least one) that are
connected by an edge with a given relation type and the same ID to the core.
In the ‘bottom-up’ case, the rating function assigns a high rating (e.g., 1) to all
sequences that start with the core and a low rating (e.g., 0) to all others.

125

call,foo()

call,foo()call,foo()

call,foo()

call,baz()

similarity,X

call,bar()

Figure 14.4: Example of a star pattern (thick edges) in a change part graph (Source: [41], c© IEEE)

14.5.2 Propositions

The goal of this section is to define a partial order ≥T ⊆ Tour × Tour (in words: is better
than or equal) between tours that captures the notion of the utility of an order for review. For
every pair of tours t1 and t2 it holds (other things being equal):

∀t1, t2 : t1 ≥T t2 ⇒ (reviewEfficiency(t1) ≥ reviewEfficiency(t2) ∧
reviewEffectiveness(t1) ≥ reviewEffectiveness(t2))

The proposition above states that a tour that is better than another in terms of ≥T will
not be worse in terms of review efficiency or effectiveness. A stronger proposition shall also
hold, namely that there are tours where a better ranking in terms of ≥T means better review
efficiency (with >T defined as usual: x >T y ⇔ (x ≥T y ∧ ¬ (y ≥T x))):

∃t1, t2 : t1 >T t2 ⇒ reviewEfficiency(t1) > reviewEfficiency(t2)

The definition of ≥T is parametric; based on a set P of grouping patterns. Different prefer-
ences of reviewers can be captured by changing this set P . It also depends on the part graph
g, which is assumed to be implicitly known. By using a partial order, the theory allows for two
tours to be incomparable, which is exploited when there is yet no sufficient empirical evidence
to base the comparison upon.

The relation ≥T is defined based on a helper construct, the ‘satisfied matches’ (SM) of a
tour. The satisified matches set consists of all occurrences of a grouping pattern in a tour. A
grouping pattern match occurs in a tour when all vertices matched for the pattern in the part
graph are direct neighbors in the tour. Structurally, a grouping pattern match is a pair (p, v) of
a grouping pattern p and the set of matched change parts v.

A tour is better than another when its set of satisfied matches is better, i.e., when it has
more matches or the same matches with higher ratings, as given by the grouping pattern’s rating
function (rate):

t1 ≥T t2 ⇐⇒ sM(t1, g) ≥SM sM(t2, g)

⇐⇒ sM(t1, g) ⊃ sM(t2, g) ∨
(sM(t1, g) = sM(t2, g) ∧ ∀m ∈ sM(t1, g) : rate(m, t1) ≥ rate(m, t2))

The inclusion of all pattern matches from the sequence of change parts in a tour into the sat-
isfied matches mainly formalizes Principles 1 (group related parts) and 3 (prefer grouping). To

126

Table 14.6: Relating the formalization of the ordering theory to the empirical findings

Principle/Finding Way it is accounted for in the formalization

Subjectiveness By changing the set of patterns, the comparison of tours can be adapted to different
preferences or cognitive styles of reviewers.

Principle 1
(group related
parts)

A grouping pattern captures the notion of “all related change parts”, and the
definition of the satisfied matches and the “is better than” relation ensure that in
a better tour more related change parts are close together.

Principle 2
(provide
information
before needed)

It is hard to formalize the notion of provided information; not least because in-
formation structures in software are often cyclic, e.g., with the caller of a method
providing information on why the callee exists and how it is used and the callee
providing information about its pre- and postconditions. Currently, reviewers often
resort to heuristics like going bottom-up or top-down along the call flow, and these
heuristics can be included in the formalization in the grouping pattern’s rating
function.

Principle 3
(prefer
grouping)

A pattern match is only included in the satisfied matches if the matched parts are
close together, and the rating function is only relevant for matches included in the
satisfied matches. This is a very strict interpretation of the principle; it was chosen
because the participants of the survey rated tours with intervening unrelated change
parts low, irrespective of the distance: For 85 of 113 (75%) respondents a tour with
one unrelated change part in between was rated as “not very useful” or “not at all
useful”, and almost the same number said this for two unrelated change parts in
between (82 of 113).

Principle 4
(chunking)

The notion of chunking is formalized by the recursive evaluation of sM on shrunk
tours and graphs.

Principle 5
(closest is
neighbouring)

This principle is more relevant to the presentation of the change parts in the review
tool and therefore not explicitly integrated into the formalization.

Principle 6
(understandable
rules)

The grouping patterns as a central part of the formalization can be easily explained
to software developers. Furthermore, they can be made explicit to the reviewer.

Macro structure In the study’s observations, applying the ordering principles generally leads to a
sensible macro structure, too, mostly due to the inclusion of the chunking principle.
Therefore, the formalization does not include further measures regarding the macro
structure.

Importance
order

The importance of a change part for review has not been included in the formal-
ization. Instead, I propose to remove clearly unimportant change parts from the
review scope (see Chapter 15) and to optimize the order of the remaining for un-
derstandability.

Open questions There are a number of areas where data is lacking for a grounded formalization, e.g.,
how to best include differing strengths of gradual relations or differing priorities of
grouping patterns. Therefore, a conservative approach is taken and the relation ≥T

is defined to be partial, with the downside that many tours end up as incomparable.

127

also formalize Principle 4 (chunking), the notion of shrinking a tour (and the corresponding part
graph) by combining change parts is introduced: The function shrink : Tour × PartGraph ×
P (ChangePart) → Tour × PartGraph creates a new tour by removing all change parts con-
tained in the set given as the third parameter and replaces them with a composite part. On the
part graph, it also combines all given change parts into the composite part. Edges that pointed
to one of the removed parts now point to the composite part. If this leads to duplicate edges or
loops, they are combined/removed.

The formalization is concluded by defining the recursive function sM : Tour×PartGraph→
SM (pM stands for patternMatches, i.e., the matches for a pattern in a tour given a graph):

sM(t, g) :=
⋃
p∈P

pM(p, t, g) ∪
⋃

m∈pM(p,t,g)

sM(shrink(t, g,m.v))

Table 14.6 shows how the formalization reflects the principles and other empirical findings

presented in Section 14.3.

14.5.3 Explanation

To end the presentation of the theory, this section now summarizes and extends its rationale:
The theory is based on the assumption that the efficiency and effectiveness of code review (with
a fixed number of reviewers) is largely determined by the cognitive processes of the reviewers.
The reviewer and the review tool can be regarded as a joint cognitive system, and the efficiency
of this system can be improved by off-loading cognitive processes from the reviewer to the tool.
The relevant cognitive processes can be divided into two parts: Understanding the code change,
and checking for defects. The way in which the changes are presented to the reviewer influences
both. A good order helps understanding by reducing the reviewer’s cognitive load and by an
improved alignment with human cognitive processes (hierarchical chunking and relating). It
helps checking for defects by avoiding speculative assumptions and by easing the spotting of
inconsistencies.

14.6 An Experiment on Change Part Ordering and Review Ef-
ficiency

The ordering theory that was developed in the previous sections is rooted in empirical data.
But much of this data is the opinion of developers, and opinions are fallible. A controlled ex-
periment can test the theory more objectively. This section presents the results from such a
controlled experiment regarding the impact of change part ordering on review efficiency. The
data was gathered together with the data on working memory, cognitive load, and review per-
formance that is presented in Chapter 13. The current section presents the remaing details of
the experiment design and the respective results.

RQ14.4 asks: Can the order of presenting code change parts to the reviewer influence code
review efficiency, and does this depend on working memory capacity? Suppose there are two
orders a and b for a given code change and that a ≥T b. Then the proposed theory predicts
that review efficiency and effectiveness for a is not inferior to that of b. For efficiency it also
predicts that there are cases where efficiency is greater, based on the rationale that a better
order might lead to a faster review with the same found defects, or to finding more defects in

128

Table 14.7: Considered order types

ID Origin Explanation

OF ‘optimal + files’ a best order (i.e., a maximal element according to ≥T) that keeps file
boundaries intact

ONF ‘optimal + no files’ a best order (i.e., a maximal element according to ≥T) that is allowed
to ignore file boundaries

WF ‘worst + files’ a worst order (i.e., a minimal element according to ≥T) that keeps file
boundaries intact

WNF ‘worst + no files’ a worst order (i.e., a minimal element according to ≥T) that is allowed
to ignore file boundaries

the same amount of time. Focusing on efficiency, this leads to the following null and alternative
hypotheses:1

H3.<a,b>.0 reviewEfficiency(a) = reviewEfficiency(b)

H3.<a,b>.A reviewEfficiency(a) 6= reviewEfficiency(b)

To study the dependence on working memory capacity, the sub-sample with less than median
working memory capacity is also tested. This sub-sample should be more prone to cognitive
overload.

For a given code change of non-trivial size, there is a vast number of possible permutations
and consequently many possible comparisons to perform; a subset has to be selected for the
experiment. As the experiment is the first to measure the effect of change part ordering on code
review, the choice is exploratory: The experiment compares one of the best change part orders
according to ≥T with one of the worst orders. Usually, such a worst order mixes change parts
from different files. As a more realistic comparison, one of the best and one of the worst orders
that keep change parts from the same file together are also included. In the following, these
order types are called as described by the terms in the column ID in Table 14.7.

By construction, it holds that OF >T WF , ONF >T WNF , WF >T WNF and, by
transitivity, OF >T WNF . The experiment considers the first 3 pairs. When inserted into the
above-mentioned hypotheses, they give rise to a total of 3 combinations of null and alternative
hypotheses, each named after the first order in the pair: H3.OF.0, H3.OF.A, H3.ONF.0, . . .

14.6.1 Design

The general structure follows a partially counter-balanced repeated measures design [123],
augmented with additional phases. It is ‘partially counter-balanced’ because the order of treat-
ments and patches is randomized, but only two of the four treatments per participant are
measured. The basic experimental setup was already described in Section 13.1.

When designing an experiment on code reviews, one has to account for large variations in
the review performance between participants. Therefore, counterbalanced repeated-measures
designs are common (as argued, for example, by Laitenberger [215]). To gain maximum infor-
mation from the experiment, it would be desirable to gather data for each of the four types of
orders from each participant. But this is infeasible due to the large amount of participants’ time
and effort needed for each review. Therefore, we (Baum, Bacchelli) decided to restrict ourselves
to pairs of change part order types, specifically, those pairs needed for checking the predictions

1The two-sided formulation is used for reasons of conservatism, even though the theory’s prediction is one-sided

129

for RQ14.4: ONF vs WNF, OF vs WF and WF vs WNF. Each participant is shown a different
change in each review. For each pair of order type, the experiment uses a fully counter-balanced
design. Consequently, there are four groups per pair, differing in the orders of change part order
type and of code change.

To determine the four different orders (ONF, OF, WNF, WF) for each of the two code
changes, I first split the code changes into change parts. I mainly split along method boundaries,
i.e., if several parts of the same method were changed, the method was kept intact and regarded
as a single change part. If a whole class was added, it was kept intact. After that, I determined
the relations between the change parts. I checked for the following subset of the relation types
identified from the ordering interviews: (1) Similarity (moved code or Jaccard similarity [182]
of used tokens > 0.7), (2) declare & use, (3) class hierarchy, (4) call flow, and (5) file order. The
previous sections did not specify which relation types should be regarded as more important
than others. To determine a concrete order, I had to assume a certain priority and used the
order just given (i.e., similarity as most important; file order as least important). To construct
the OF and WF orders, an additional relation type ‘in same file’ was added as the top priority.
To find the orders based on the relations, I implemented the partial order ≥T in software and
semi-automatically constructed minimal and maximal elements of this partial order relation.

One of the experiment’s main variables of interest is review efficiency, measured as the ratio
of found defects and needed time. It is generally believed that there is a trade-off between speed
and quality in reviews [140], which lets many researchers control for time by fixing it to a certain
amount. This would run contrary to one of the experiment’s main research goals, i.e., finding
differences in efficiency. Therefore, participants were allowed to review as long as they deem it
necessary and the total time was measured. A participant who needed to interrupt the review
could press a ‘pause’ button; 14 participants did so at least once. The study measures gross
time (including pauses) and net time (without pauses).

I performed power analysis for RQ14.4, because I expected a smaller effect for it and it had
more groups compared to the other RQs in the experiment (Chapter 13). I used Monte Carlo
power analysis: I implemented a simple simulation model for the experiment2, estimated effect
sizes and some parameters and performed randomized simulation runs with and without a sim-
ulated effect. Based on 1000 simulated experiments per run, the model estimated false positive
and false negative rates. Among the analyzed variants were different choices for the treat-
ment groups, different statistical tests and different sample sizes. We settled for the incomplete
repeated-measures design described so far. To deal with this design and allow for potentially
imbalanced groups and several confounding factors, we planned to use linear mixed effect (lme)
regression models [26] and determine confidence intervals for the coefficients using parameterized
bootstrap. The dependent variable is review efficiency (‘Number of detected defects’ / ‘Needed
net review time’), independent variables are ‘used change part order type’ and ‘first or second
large review’ (fixed effects) and ‘used code change’ and participant ID (random effects). Using
further of the measured confounders in the model is not beneficial here as they are subsumed in
the random effect per participant. It turned out that some of the assumptions in the simulation
were wrong, most notably that it did not take drop-outs into account. Also, the empirical data
does not satisfy all assumptions needed for lme models.3 A non-parametric alternative with
a minimal set of assumptions is the Wilcoxon signed-rank test, but it is also problematic due
to imbalanced groups after removal of drop-outs. Therefore, both results are presented to the

2‘generateTestData.r’ and ‘SimulateExperiment.java’ in the replication package [42]
3for further discussion, see ‘Statistical Conclusion Validity’ in Section 14.7

130

Table 14.8: Number of participants by treatment groups, with details for order of treatment and order of
code change. Only the first large review is given for each group, the second review is the respective other
value (e.g., in the OF-WF group, when WF+Change A was reviewed first by a participant, OF+Change
B was second).

OF-WF ONF-WNF WF-WNF

OF
first

WF
first

total ONF
first

WNF
first

total WF
first

WNF
first

total

Change A first 5 6 11 5 4 9 3 2 5

Change B first 3 4 7 4 5 9 4 5 9

total 8 10 18 9 9 18 7 7 141

1 The slightly lower number for the WF-WNF combinations is intended, the
balancing algorithm slightly favored the other two treatment combinations.

reader. The R code of all analyses is available [42]. The full set of all participants as well as the
subset of participants with lower than median working memory capacity is analyzed, but the
difference is not tested formally.

14.6.2 Results

Due to the online assignment of participants to groups and due to data cleansing, the number
of participants per group is not fully balanced, especially in the WF-WNF group. Table 14.8
shows the distribution. There are also signs that the review skill is not equally distributed
among the three groups: The mean efficiencies in the small, warm-up review are 13.9 (OF-WF),
17.23 (ONF-WNF), and 15.88 defects/hour (WF-WNF).

RQ14.4 asks: “Can the order of presenting code change parts to the reviewer influence code
review efficiency, and does this depend on working memory capacity?” Figure 14.5 shows box
plots with efficiency for the different change part orders for each of the treatment groups. The
difference in medians is in the direction predicted by theory, but subject to a lot of variation
(Table 14.9 shows the exact numbers). As mentioned in the experiment design, it was originally
planned to analyze the full data with a linear mixed effect model [26]. Such a model can take
the slightly unbalanced and incomplete nature of the data into account, but its preconditions
(independence, homoscedasticity, normality of residuals) were not fully satisfied. To ensure in-
dependence, each treatment group is analyzed separately instead of being pooled. Regarding
the other preconditions, the data is also analyzed with a Wilcoxon signed-rank test, acknowl-
edging that it is more prone to bias due to ordering and/or different code changes. With neither
analysis, there is an effect that is statistically significant at the 5% level (especially after taking
alpha error correction into account). Looking at the tendencies in the data, there seems to be
a medium-sized positive effect of the OF order compared to WF. For ONF vs WNF instead,
there is a conflict in the direction of the effect between mean and median. As expected, the
difference between WF and WNF is small. The theory suggests that the positive effect of a bet-
ter ordering should be larger for participants with lesser working memory capacity. Except for
the ONF-WNF sub-sample, the tendencies for the respective sub-samples in Table 14.9 support
that prediction, but the sub-samples are too small to draw meaningful statistical conclusions.

For the percentage of understanding questions answered correctly at the end of the reviews,
the results are weaker but otherwise similar: Largely compatible tendencies but statistically

131

OF WF

0
5

10
15

20
25

30

E
ffi

ci
en

cy

●

●

●

ONF WNF

0
5

10
15

20
25

30 ●

WF WNF

0
5

10
15

20
25

30

OF WF

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
ffe

ct
iv

en
es

s

●

ONF WNF

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

WF WNF

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

OF WF

0
20

40
60

80

R
ev

ie
w

 T
im

e

●

●

ONF WNF

0
20

40
60

80

●

●

●

WF WNF

0
20

40
60

80

Figure 14.5: Box plots for review efficiency (in defects/hour), effectiveness (found defects/total defects),
and review time (in minutes) for the three treatment groups. In each plot, the left treatment is the
theoretically better one.

132

Table 14.9: Comparison of efficiency (in defects/hour) for the different change part orders; overall,
for each treatment combination and for the subsamples with below median working memory capacity.
Caution has to be applied when interpreting the results of lmer as not all assumptions are met. Due to
the small samples, lmer models for low wm span are left out and the respective intervals are inaccurate.
Every row from the upper part is continued in the lower part. ‘conf.int.’ = ‘confidence interval’, ‘sd’ =
‘standard deviation’, ‘negl.’ = ‘negligible’

theoretically better treatment theoretically worse treatment

group n median (conf.int.) mean (sd) median (conf.int.) mean (sd)

all 50 10.1 (7.1 .. 11.4) 9.9 (6.2) 7.0 (5.8 .. 9.3) 9.1 (7.0)

low wm span 22 11.9 (6.5 .. 13.4) 11.2 (5.9) 7.2 (5.3 .. 9.6) 9.8 (8.2)

OF-WF 18 8.7 (5.5 .. 13.0) 9.1 (4.7) 5.5 (2.3 .. 8.1) 6.3 (5.0)

OF-WF, low 11 10.1 (3.9 .. 13.4) 10.2 (5.1) 5.3 (0.0 .. 8.1) 5.8 (5.4)

ONF-WNF 18 9.4 (4.1 .. 10.8) 9.4 (7.8) 7.0 (5.8 .. 9.1) 9.8 (7.8)

ONF-WNF, low 6 8.6 (0.0 .. 12.4) 8.7 (5.9) 7.2 (6.3 .. 9.5) 11.0 (8.9)

WF-WNF 14 11.9 (5.6 .. 14.8) 11.4 (5.8) 12.1 (5.5 .. 14.7) 11.8 (7.4)

WF-WNF, low 5 15.7 (11.4 .. 25.3) 16.4 (5.3) 15.5 (6.0 .. 29.7) 17.0 (8.7)

comparison

group relative
differ-

ence of
medians

p
(Wilcoxon)

Cliff’s δ lmer
coefficient

(conf. int.)1

all 44% 0.2587 0.14 (negl.)

low wm span 67% 0.2479 0.22 (small)

OF-WF 59% 0.1084 0.35 (medium) 2.66 (-0.66 .. 5.45)

OF-WF, low 91% 0.0537 0.52 (large) –

ONF-WNF 35% 1.0000 0.07 (negl.) -0.36 (-2.63 .. 2.04)

ONF-WNF, low 21% 0.5625 0 (negl.) –

WF-WNF -2% 0.6698 0.02 (negl.) -0.38 (-3.56 .. 3.15)

WF-WNF, low 1% 0.6250 -0.04 (negl.) –

1 Goodness of fit for the lmer models [22]: OF-WF R2
m = 0.11, R2

c = 0.17;
ONF-WNF R2

m = 0.01, R2
c = 0.81; WF-WNF R2

m = 0.03, R2
c = 0.51

non-significant results, with the strongest effect for the OF-WF condition. Mean correctness in
detail: OF-WF 67.1% vs 56.5%, ONF-WNF 60.6% vs 64.8%, WF-WNF 63.1% vs 60.1%.

Part of the hypothesis underlying RQ14.4 is that a better order means less mental load. To
roughly assess mental load, the experiment UI asked participants to rate which of the large
changes was subjectively more complicated. In line with the hypothesis, a majority of the
participants rated the worse order as more complicated (answer as expected: 26 participants,
no difference: 11, inverse: 13). Interestingly, this difference does not carry through to subjective
differences in understanding (as expected: 22, no difference: 10, inverse: 18). When justifying
their choice when comparing the two large reviews for complexity and understanding, many
participants gave reasons based on properties of the code changes (e.g., “The change in the
second review contained a more behavioral change whereas the change in the third review involved

133

a more structural change”PC5). But many of their explanations can also be attributed to the
different change part orders, e.g.: “Changes in the same files were distributed across changes
at various positions”PC4, “the [theoretically worse review] involved moving of much code which
was hard to track”PC1, “there were jumps between algorithm and implementation parts for the
[theoretically worse review]”PO6, “in the [theoretically worse] review changes within one file
were not presented in the order in which they appear in the file.”PO11, “The [theoretically worse
review] was pure code chaos. [The theoretically better one] was at least a bit more ordered.”PC8

or plainly “very confusing”PC6.
The theory proposed in Section 14.5 contains additional hypotheses that a better change

part order will not lead to worse review efficiency or effectiveness. As the examination of the
box plots in Figure 14.5 and the confidence intervals in Table 14.9 gives little reason to expect
statistically significant support or rejection, formal non-inferiority tests are left out.

RQ14.4: Strong statistically significant conclusions cannot be drawn. If an effect of better
change part ordering on review efficiency exists, its strength is highly dependent on the
respective orders.

14.7 Validity and Limitations

This section presents limitations for the results on change part ordering for reviews. The
theory-generating part of the study is limited by two assumptions underlying the argumentation:
(1) For the interviews and survey: What is a good tour and what experienced developers
think is a good tour coincides to a large degree. (2) For the usage of related work: Findings
from natural language reading and program comprehension can be transferred to code change
comprehension. To overcome these and other limitations, the results from the various data
sources were triangulated, as detailed in Table 14.10. Most importantly, the theory was tested
with the controlled experiment described in Section 14.6. The following sections give more
details on limitations of the used data sources.
Log Data. The main limitation of the collected log and repository data of Section 14.2 is that

Table 14.10: Triangulation of the single data source’s weaknesses with a mixed-methods approach

Study Weakness Triangulated by

Log Data • single company → survey

• no data on goodness of order → interview, survey, experiment

Interviews • small sample → survey, literature

• researcher bias → survey, experiment

• depends on opinion of developers → literature, experiment

Literature Study • not specific for code order in reviews → interviews

Survey • depends on opinion of developers only → experiment

• needs to focus on few specific hypotheses → interviews, literature

Experiment • depends on opinion of developers only → experiment

• needs to focus on few specific hypotheses → interviews, literature

• missing statistical significance –

134

it comes only from a single company and code review tool. Since the general tendency in this
data was also supported in the survey, this should only be a limitation to the generalizability of
the exact numbers.

Task-Guided Interviews and Survey. One of the greatest risks in the ordering interviews
and the survey was to accidentally introduce a bias for a certain order. Several measures were
taken to counter this risk: In the interviews, all change parts were shuffled and random words
instead of numbers were used as IDs for the distinct parts. Line numbers were not removed as
they could be part of a sensible ordering strategy. The survey used randomized orders in the
questions and in the descriptions, and used colors as part IDs. Color names instead of random
words were found to be easier to understand in the pre-tests. To avoid the anchoring effect [382]
in both the interviews and survey, the interviewers first asked for the participant’s preferred
order before presenting other orders. Describing the steps of the interview in an interview guide
and videotaping some sessions increased intersubjectivity. Mitigating researcher bias was one of
the reasons to perform a joint card sort.

During survey creation, I checked against published guidelines [183] and we (Baum, Bacchelli)
performed several rounds of pre-testing. Nevertheless two factors probably introduced some noise
into the data: (1) Understanding the abstract situations was still a problem for some participants
(some respondents indicated that they left the respective questions empty, but others might have
answered without having understood the described situation); (2) the drag and drop support in
the ranking widget (used for the questions of type Point 3 in Figure 14.2) had to be used with
a certain care to avoid unintended results.

A negative side-effect of the sampling method is that the sample should be regarded as self-
selected; the survey included a number of questions to characterize the sample and check for
influencing factors.

The generalizability of the survey results to the population of users of change-based review is
probably quite high, mainly due to the large number of participants in the survey. The sample
of distinct code changes in the survey is much smaller, which could impede generalizability in
this regard. Specifically, the set of relations given in Section 14.3 may be incomplete.

Controlled Experiment. Many general limitations of the experiment were already discussed
in Section 13.3. What follows is a discussion more specific to the ordering-related parts of the
experiment.

One of the central measures needed to determine review efficiency is the time taken for a
review. By having a ‘pause’ button and measuring time with and without pauses, the experiment
UI allowed to measure time more accurately, but it cannot be assured that all participants used
this button as intended. A risk when measuring time is that the total time allotted for the
experiment, which was known to the participants, could bias their review speed. To partially
counter this threat, participants were not told the number of the review tasks, so that the time
allotted per task was unknown to them. To avoid one participant’s time influencing another’s in
the lab setting, only one participant took part at a time. Participants were asked to not talk to
others about details of the experiment but it is not known whether all complied. Participants did
not get feedback on their review performance during the experiment, to not influence them to go
faster or more thoroughly than they normally would. A common threat in software engineering
studies is hypothesis guessing by the participants. The experiment UI stated only abstractly
that we are interested in improving the efficiency of code review and did not mention ordering
of code at all.

A sample of 50 professional software developers is large in comparison to many experiments
in software engineering [351]. For other sources of variation, the experiment was limited to con-

135

siderably smaller samples, leading to a risk of mono-operation bias and limited generalizability:
There are only two large code changes, and only four different change part orders.

A likely consequence of the difficult task is the observed ordering effect, i.e., participants
spent less time on the last review. By random, balanced group assignment and inclusion of the
review number in the regression model for RQ14.4 we tried to counter the ensuing risk. Due to
drop-outs and the failed assumptions of the lme model we did not fully succeed. There is a high
drop-out rate, likely again a consequence of the difficult task and the online setting. A larger
share of drop-outs, 23 of 37, happened when either a WF or WNF order was shown. On average,
the drop-outs have lower review practice and performed worse in the short review (differential
attrition), which could partly explain the differences between groups described in Section 14.6.2.
Each treatment group had to be analyzed separately to counter that risk.

A failure to reach statistically significant results is problematic because it can have multiple
causes, e.g., a non-existent or too small effect or a too small sample size. Based on the power
analysis for RQ14.4, we planned to reach a larger sample of participants than we finally got,
and the sample we got had to be split into three sub-samples due to differential attrition. This
could be a reason that statistical significance is not reached for RQ14.4. For the analysis with
linear-mixed effect models for RQ14.4, the statistical conclusions could be influenced by failing to
meet several assumptions of these models (normality of residuals, homoscedasticity). Therefore,
we decided to also report results from Wilcoxon signed-rank tests, which do not share these
assumptions. But these tests have their own problems, mainly that they do not account for the
imbalance in treatment group sizes and have lower power. All in all, it is not possible to draw
reliable conclusions for RQ14.4.

♦
This chapter went a long way, from motivating why improved code ordering for code reviews is

worthwhile, over inductive generation of a theory for a good ordering, to a controlled experiment
that tests this theory. An efficient algorithm for the ordering is now implemented in CoRT.
Overall, the results are promising, but unfortunately the controlled experiment did not give
conclusive results.

136

15
Classification of Change Parts

This chapter studies how the computer can support the human reviewer by automatically
analyzing and classifying the change parts to review. Marking change parts as irrelevant for
review is derived as a promising possibility for such support, extending the argument from
Chapter 12. An approach that uses data extracted from software repositories to create such a
classification model is presented. It is based on [31], joint work with Steffen Herbold and Kurt
Schneider.

In sum, the purpose of this chapter’s study is to analyze ways to use repository mining to
identify the importance of change parts for code review and to improve code review efficiency
based on this information. This chapter includes a discussion on the foundations of the approach,
rooted in research on code reviews and, to some degree, cognitive psychology. The resulting
concepts are applied in a case study at the partner company. The study’s ambition is to go
the whole way from the initial discussion to the use in practice. By using an interactive and
multi-objective approach for rule mining, the study leaves the beaten path followed by most of
the current defect prediction research to explore a promising alternative.

As motivated in Chapter 12, the focus is on support for the reviewer. Answering this chapter’s
first research question derives possibilities to help the reviewer, assuming that the importance
of the parts of the code change under review is known:

RQ15.1. How can information on change part importance help to reach code review goals
more efficiently? What is “importance” in this regard?

RQ15.1 is treated deductively, based on earlier findings from this thesis and others.

A model to determine change part importance can be built based on empirical data that
shows which change parts act as triggers for review remarks. We (Baum, Herbold) extract
such empirical data from the partner company’s source code repository and use the data to
build a prediction model. We choose a mining approach based on preferences articulated by the
developers at the partner company. We evaluate the results of our approach and a standard rule
mining approach, both subjectively with the developers and objectively based on performance
metrics:

137

RQ15.2.1. Which requirements for the classification model are considered most important
by the developers in the partner company?
RQ15.2.2. What are the characteristics of good rulesets found in the data?
RQ15.2.3. How good are the found rulesets in the developers’ opinions?
RQ15.2.4. How well do the found rulesets perform on unseen data?

15.1 Methodology

For RQ15.1, a purely deductive methodology is used: Based on findings from earlier chapters,
on concepts from cognitive psychology, and on logical arguments, possibilities to consider change
part importance in code reviews are discussed and evaluated.

The remaining research questions in this chapter are assessed with a case study, which studies
review remark prediction in the context of the partner company. The research design is flexible,
and it pragmatically mixes methods: The study combines qualitative as well as quantitative
data, e.g., when triangulating the quality of the found rules from the results on the extracted
data (Sections 15.4.3 and 15.4.5) and opinions from the team (Section 15.4.4). The specific data
sources are described in the sections where they are used.

Both case study research, as well as data mining, are highly iterative endeavors [250, 328].
I also used an iterative approach, starting with the initial stages of the study in fall 2017, until
the discussion of the study’s results with the development team in fall 2018. Figure 15.1 depicts
central data sources and research steps. The current chapter linearizes the results. It starts with
the goal of the mining process (Section 15.2), followed by the approach for data extraction and
mining (Section 15.3). Finally, the results of applying the approach to the company data are
shown in Section 15.4. The chapter concludes by discussing problems (Section 15.5), threats to
validity (Section 15.6) and related work (Section 15.7).

 Cognitive-Support
 Approach Literature SCM Ticket System Survey in

 Partner Company

 Goal of Mining
 (RQ 15.1)

 Data Extraction
 (Appendix F)

 Intended Model
 Characteristics

 (RQ 15.2.1)

 Evaluation of Found Rule Sets
 on Unseen Test Data (RQ 15.2.4)

 Developers' Opinion on
 Found Rule Sets (RQ 15.2.3)

Figure 15.1: Overview of the data sources and steps used in this chapter

138

15.2 Use of Change Part Classification to Reach Code Review
Goals more Efficiently

15.2.1 Possibilities for Using Change Part Importance to Improve Review

In other studies, defect prediction or static analysis are used to create review agents (e.g.,
[69, 233]). Those agents act as a computerized reviewer by highlighting certain parts of the
changed code as problematic, with varying degrees of specificity. The results of the agents are
then either meant to be double-checked by a human reviewer, or they are communicated directly
to the author. Depending on the quality of the review agent, these approaches can be useful, but
there are further possibilities for support. Therefore, another point of view to use change part
classification to improve review performance is proposed here. The proposed approach follows
the agenda of cognitive-support code review tools by focusing on support for the reviewer during
checking and by relying on theories of human cognitive processing.

Rasmussen [311] put forward that it is beneficial to regard human cognitive processing to
happen on one of three levels: (1) Skill-based behavior “take[s] place without conscious control as
smooth, automated, and highly integrated patterns of behavior.” Examples of skill-based behavior
are bicycle riding or musical performance (for experienced cyclists resp. musicians). (2) Rule-
based behavior is “controlled by a stored rule or procedure”, which has been acquired in the past
and which is activated based upon the given situation. In contrast to skill-based behavior, “the
higher level rule-based coordination is generally based on explicit know-how, and the rules used
can be reported by the person”. He gives an example of a skilled operator who observes some
measurements and controls valves accordingly. (3) Knowledge-based behavior is characterized
by effortful explicit mental processing, and “the internal structure of the system is explicitly
represented by a “mental model” which may take several different forms”. It occurs “during
unfamiliar situations, faced with an environment for which no know-how or rules for control
are available from previous encounters”. After the first letters of the three levels, Rasmussen’s
model is called ‘SRK taxonomy’.

Checking of the source code during a review can also happen on each of Rasmussen’s levels.
When trying to understand an unfamiliar algorithm, the reviewer is acting on the knowledge-
based level. An example of rule-based processing is when an experienced reviewer looks at the
code and finds a pattern of ‘array access’ that triggers the rule ‘there should be boundary checks’.
Skill-based checking in a review is probably rare; an example could be finding a typographic

Knowledge-based
processing

Rule-based processing

Skill-based processing

No processing

N decision K decision

explicit, effortful
thinking

automatic, pattern-based
activation of rules

unconscious automated
behavior

no cognitive processing

Figure 15.2: The SRK taxonomy with ‘no processing’ added, and the two options to decide how to
process a change-part

139

Table 15.1: Pros and cons for the possibilities to use the information on change-part importance for
reviewing

Option Pros Cons

(1) Show importance value Most information available for user Might not reduce effort for decision

(2) Sort by importance Ensures that most important parts
have been read when review is
ended prematurely

Resulting order can be confusing to
the reviewer; Does not provide a
clue for the reviewer whether and
when the review should be ended
early

(3) Leave out unimportant Most reduction in effort for re-
viewer

Hard threshold needed

error. Rasmussen’s model assumes that some cognitive processing is done by the human. In
the following, it will be useful to introduce the distinction between processing and no processing
explicitly as a fourth level (‘no processing’). This happens, for example, when the reviewer
decides to skip the review of certain parts of the changes. One of the core assumptions for the
remaining chapter is that the most efficient cognitive mode can differ between the change parts
in a review. For some parts, it is worth to think deeply about them, whereas it is sufficient for
others to skim them (i.e., to process them rule-based and skill-based only) or not have a look at
them at all. In the interviews of Part I and the ordering study described in Chapter 14, some
of the developers stated accordingly that not all parts of an artifact under review are equally
important for the review. Varying importance for review has also been mentioned in much
older works, e.g., by Gilb and Graham [140]. To some degree, the cognitive mode of checking
a change part can be chosen (Figure 15.2): The reviewer can decide to not expend the effort
to do knowledge-based processing and stay on the skill- and rule-based level (‘K decision’), and
the reviewer can decide to not check a certain part at all (‘N decision’). This chapter proposes
to provide computer support for this choice of mode. In the following, the study focuses on
the N decision and leaves the K decision for future work, for three reasons: (1) There is more
existing support that not reviewing certain change parts at all will help to increase review
performance both directly by saving time and indirectly by reducing the cognitive load (see
Chapters 12 and 13). (2) Relative to the checking itself, the effort for the K decision is much
smaller than for the N decision. Therefore, a model for the N decision is already beneficial when
it has a performance similar to the human, whereas a model for the K decision needs to be
better than the unsupported reviewer’s choice. (3) Data to learn a model for the N decision can
more readily be extracted from software repositories.

So the goal for the remaining chapter is to support the reviewer when deciding whether to
skip certain change parts during a review. A change part can be skipped when its inclusion is
not important for one of the review goals. Section 15.2.2 discusses what this means in detail.
Given that such an importance value is known, it can be used in at least three ways: (1) The
importance value can be presented to the reviewer so that he or she can decide whether to review.
(2) The change parts can be sorted from most important to least important. (3) The review tool
can leave out all change parts less important than a certain threshold from the proposed review
tour. Table 15.1 shows pros and cons of these options. Because it has the highest potential
to reduce cognitive load and does not interfere with the optimal code order as determined in
Chapter 14, option 3 is pursued in the following.

140

Table 15.2: Assessment of the effect of leaving out change parts from reviews on the attainment of
review goals and avoidance of unintended review side-effects.

Review goals:

Better code quality. The direct positive effect of code reviews on code quality is based on the
correction of the code according to the review remarks. Reaching this goal is unaffected as long as the
review of the reduced set of change parts still leads to the same fixed remarks.

Finding defects. Same as above, reaching this goal depends on the fixed remarks.

Finding better solutions. When the review discussion leads to better solutions, this results in
changes to the code base (i.e., fixed review remarks), so an indicator that this goal is still reached is
again when the fixed remarks stay the same.

Learning (author). The code’s author mainly learns from the review remarks communicated to
him/her, so that this goal will be unaffected when the communicated remarks stay the same.

Learning (reviewer). This goal is unaffected when the knowledge gained from the shrunk review
set is comparable to the original review. A necessary (but not sufficient) precondition for that is that
the shrunk change under review is still understandable.

Complying to QA guidelines. When the quality assurance guidelines demand the review of certain
parts of the code, these may not be left out from the review scope.

Improved sense of mutual responsibility. The attainment of this goal mainly depends on doing
reviews at all, not on the exact review scope.

Team awareness. The attainment of this goal mainly depends on how the reviews are communicated,
not on the exact review scope.

Track rationale. Review remarks can point to portions of the code with an insufficient description of
the rationale, so the attainment of this goal also depends on the set of communicated review remarks.

Avoid build breaks. Usually, build breaks can be avoided more efficiently by automatic checks than
by manual reviews. In case reviews are still used for this goal, its attainment also depends on the set
of fixed remarks.

Review side-effects:

Avoid higher staff effort Leaving out parts to review should usually lead to lower review effort and,
therefore, help to attain this goal. A potentially adverse effect could occur when the understandability
of the change is hampered by leaving out change parts needed for understanding.

Avoid increased cycle time Same as above, the review duration could only be negatively affected
when the understandability of the change is hampered.

Avoid offending/social problems Leaving out change parts based on objective rules probably does
not influence the risk of offending people or provoking other social problems through reviews.

15.2.2 Influence of Leaving out Change Parts on Possible Review Goals and
Derivation of Target Metrics

Table 15.2 shows for each of the common review goals how leaving out change parts can
make a difference in achieving the goal. The goals have been consolidated from Section 4.3 and
Bacchelli and Bird’s findings [18]. The essence of the analysis is that most of the goals depend
either on the communicated or the fixed review remarks. The decision whether to communicate
a remark or to fix it on-the-fly is unlikely to be affected by shrinking the review scope so that
these are treated the same in the following.

There are two main preconditions for a reviewer to find a remark: The reviewer needs to
understand the relevant portions of the code and needs to observe a trigger for the remarks.
Consequently, the set of review remarks stays the same when the relevant code portions are still
understandable and when there is still at least one trigger for each review remark in the shrunk

141

change. The notion of triggers for review remarks is discussed further in Section 15.3.1.
Two goals do not directly relate to review remarks: ‘complying to QA guidelines’ and ‘learn-

ing of the reviewer’. For many teams, these are the least important goals (see Section 4.3),
whereas ‘better code quality’ and ‘finding defects’ are very often among the top reasons for
doing reviews. Therefore, the study focuses on shrinking the review scope while leaving the set
of triggered remarks and the understandability of the change intact.

In commercial software development, code reviews are usually not an end in itself but are
a means among several to obtain a high profit or return on investment. Therefore, it is often
acceptable to find a few review remarks less when this is offset by higher savings in the review
effort. A simple model for the profit of shrinking the changeset is:

profitshrinking = savings− effortmissedRemarks

=
∑

l∈leftOut

reviewEffort(l)−
∑

m∈missedRemarks

cost(m) (15.1)

As a further simplification, a constant cost factor c that relates the review effort for change
parts to the effort caused by missed remarks is assumed, i.e., profit ∝ |leftOut |−c·|missedRemarks|.
The time needed to review a change part can be estimated based on the empirical data from
code review logs, but the effort caused by a missed review remark is much harder to quantify.
The study uses two alternatives: (1) The cost factor is treated as unknown and the break-even
point for a positive profit calculated, i.e., the maximum cost per missed remark up to which
the profit will still be positive for a given rule. A rule with a higher break-even point is more
conservative and therefore usually better. (2) The mining UI (see Section 15.3) provides the
results for several cost factors to the user so that he or she can easily compare the possibilities.

RQ15.1: Information on change part importance can help the reviewer to reach code review
goals more efficiently by: (1) Leaving out change parts that neither trigger review remarks
nor are needed for understanding, or (2) highlighting change parts that the reviewer should
review in a higher cognitive mode than he or she otherwise would. The rest of the chapter
focuses on (1) and takes the point of view that a slight decrease in found remarks is acceptable
when offset by a significant saving in effort, i.e., when the overall profit is positive.

15.3 Approach for Data Extraction and Model Creation

Next, an overview of how the data for the mining study was extracted from the partner
company’s repositories and used to build a prediction model is given.

15.3.1 Extracting Potential Triggers for Review Remarks from Repositories

This section motivates the approach taken to extract the needed data from the partner
company’s SCM and ticket system. A more detailed discussion of the rationale and applied
simplifications, and a description of the used algorithms, can be found in Appendix E.

As discussed in the previous section, a change part is not important for review when it does
not lead to a review remark (i.e., it is not a ‘trigger for a remark’) and is also not needed to
understand a trigger. Multiple change parts can act as a trigger for the same review remark, for

142

 public void printMesage(String m) {
 System.out.println(m);
}

 ...
 printMesage(“ Hello World!“);
 ...

 ...
 printMesage(null);
 ...

 ...
 if (activeMessages()) {
 this.messagePrinting = true;
}
 ...

 Remark 1: There is a Typo in the
 method name „printMesage“

 Remark 2: You should provide a
 message instead of null

 Remark 3: There is no unit test for
 the new method

Figure 15.3: Example how change parts can act as triggers for review remarks. Arrows mean ‘can be
trigger for’.

example, when a problem in a method’s interface is manifested in several calls to that method.
Furthermore, a change part can also contain multiple problems, i.e., be a trigger for multiple
remarks. Figure 15.3 shows an example with several change parts and remarks.

In a very simple situation, each review would deal with only one commit and the used review
tool would store which change parts from that commit triggered each remark. The situation in
the partner company is more complicated in several ways:

• Structured information on remark positions is only available for a fraction of the reviews.
CoRT stores the position of review remarks, but reviews before its introduction don’t have
that information, as do reviews performed by non-users of CoRT. Therefore, the actual
changes performed in reaction to the review are extracted from the company’s SCM and
used as a proxy for review remarks.

• Remark positions refer to the state of the code base at the time of review. The extracted
review remarks are from a later state of the code base than the commits under review.
Therefore, they need to be traced back to the original commits. This is similar to the
tracing of defects to defect-introducing commits with the SZZ approach [353], but it is not
the same. This thesis proposes an adjusted tracing algorithm, called RRT. It can be found
in Appendix E.4, and Appendix E.5 shows how much RRT’s results differ from those of
simply applying SZZ.

• Reviews are performed for multiple commits at once. This can lead to situations where
the same part of the code was changed multiple times so that the tracing algorithm cannot
tell which of these is the correct trigger.

• There are commits that cannot be triggers for a remark. As the company performs post-
commit reviews, other changes outside of the reviewed ticket can happen to the codebase.
Because these do not change the review scope, it would be useless to treat them as change
parts that can be left out from the review scope, and they need to be skipped when tracing
remarks to their triggers.

Figure 15.4 exemplifies a situation in which a review remark is traced back to potential
triggers. The mentioned complications are not specific to the partner company. For example,
Part I’s survey1 revealed that 33% of the teams do not use a specialized code review tool and
that 54% of the teams perform post-commit reviews.

1with detailed numbers in Appendix B

143

Ticket

Type of Commit

Commit 1

TIC-1

impl.

Commit 2

impl.

TIC-1

Commit 3

TIC-2

impl.

Commit 4

review

TIC-1

cannot be trigger
because other ticket

algorithm cannot tell
which of both is trigger

Figure 15.4: Example of a review remark (i.e., change in review commit) that is traced back in SCM
history to find potential triggers

15.3.2 Intended Characteristics of the Model

With the approach outlined in the previous section, a mapping between change parts from
the implementation commits and review remarks/changes can be created. The next step is to
use this data to construct a classifier for change parts to be left out from reviews.

Various types of models are used in data mining techniques, e.g., rules, neural networks,
regression models, etc. A suitable model for this study should meet the following requirements:

• The constructed model must be able to reach an adequate profit, as defined in Sec-
tion 15.2.2.

• The model shall be discussed with the development team of the partner company, both
to achieve better results and to increase user acceptance [365]. Therefore, it needs to be
understandable by human developers.

• For each review, it shall be transparent why certain parts of the change are left out from
the review, i.e., its decisions shall be explainable [88]. Furthermore, the reviewer shall be
able to override this decision for certain parts.

To cross-check the requirements, I performed a survey among all available software developers
of the partner company. The survey was handed out on paper and collected anonymously in the
following days. The questionnaire asked for a rating of the importance of several requirements
for the model and the modeling process on a 7-point Likert-type scale. It furthermore asked
for a rating of several granularities to group code changes in the review into review remarks.
For both questions, explanations and other free-text comments could be given. I received 13
responses, of which 3 answered that they are not experienced enough with the topic to reply to
the remaining questions. The analysis is based on the remaining 10 responses.

Table 15.3 shows the aggregated results for the requirements’ importance. The most impor-
tant requirements are a low number of misclassifications and a quick review start. Here, “quick
review start” is more a restriction on the usable features of the data, as all common model
types are quick to evaluate. Next, and also with high importance on average, come the three
requirements on the understandability of the model. The requirements with the least relative
importance are the quick and effortless creation of the model and maximization of the number
of change parts that the model classifies as ‘no review needed’. When looking at the latter
result in detail, there is a large spread in the answers, with some developers considering this
as very important and others of the opposite opinion. One of the developers who considered
a high number of ‘no review’ classifications as unimportant explained his answer: “I consider

144

Table 15.3: Survey results for the importance of various requirements for the prediction model and
mining process. All ratings are on a scale from 1 (not important at all) over 4 (neutral) to 7 (extremely
important). The requirements are translations of the German originals. Rows are ordered by mean
rating.

Rating

Requirement Mean Median Min. Max.

The model classifies as few change parts as possible as “no review
needed” by error (i.e., the leaving out leads to as few oversights as
possible)

5.9 7.0 3 7

The model can be evaluated quickly at review start 5.5 5.5 3 7

I can see why a certain change part was classified as “no review
needed”

5.3 6.0 1 7

The parts of the model have been checked by the development team
before deployment to production

5.2 5.0 4 7

I can override/disable parts of the model so that the respective
change parts remain in the review scope

5.2 5.0 2 7

The initial creation of the model from the raw data requires little
human interaction

4.7 5.0 1 6

The model classifies as many change parts as possible as “no review
needed”

4.4 4.5 1 7

The initial creation of the model from the raw data is quick 4.0 4.0 1 7

leaving out change parts in reviews as dangerous because it can give a false sense of security.
Personally, I prefer thorough code reviews.”

For the second question in the survey, the right granularity for counting missed review
remarks, the developers preferred counting change parts, followed by counting lines. Counting
at a coarser granularity, i.e., files or whole tickets, was considered inadequate by the majority
of respondents.

RQ15.2.1: The three most important requirements from the team are that the model provokes
as few missed review remarks as possible, does not lead to additional waiting time in the
review, and is transparent to and checked by the team.

Concerning this section’s goal to select an adequate type of model, the survey results sup-
port the initially stated requirements. A rule-based model seems well-suited to satisfy these
requirements: Rules are a well-known concept for software developers, and a rule-based model
is relatively easy to analyze manually. The classification task is binary, classifying each change
part as either ‘needs no review’ or ‘review’. Based on the intuition that it is possible to find
some rules for change parts that definitely need to be reviewed, other parts that definitely need
no review and a harder to classify rest that will conservatively be kept for review, rules should
have the following form:

sk ip when one o f
(. . . and . . . and . . .)
or (. . .)

145

. . .
u n l e s s one o f

(. . . and . . . and . . .)
or (. . .)
. . .

Or, put mathematically: skip :=
∨

r∈incl
(∧

c∈r c
)
∧¬
∨

r∈excl
(∧

c∈r c
)
. This notion allows certain

rules to be written more concisely than a simple disjunctive normal form but is still simple and
easily explainable. Furthermore, every single rule in the disjunctions can be treated as a separate
nugget of knowledge and can be used to explain and override the decisions of the review tool.
The rules are restricted to propositional logic for the single conditions: ‘less or equal’ and ‘greater
or equal’ for numeric features and ‘equals’ and ‘not equal’ for categorical features.

15.3.3 Mining Rules from the Extracted Data

There are two complications when using standard data mining algorithms on the extracted
data: (1) The standard algorithms optimize for accuracy, not for profit. (2) They cannot
take into account that remarks are not just simple classification labels but are objects with a
distinguishable identity: A mining algorithm can exploit the identity of the remarks because it
suffices to cover only one of the potential triggers for each remark. As an example, consider
two potential triggers, one an addition of complex code and the other a minor change. Without
taking into account that only one of these triggers is needed, a rule of the form ‘minor changes
need no review’ would be unnecessarily seen as inaccurate. Section 15.4 shows that the generic
rule mining algorithms RIPPER [78] and C4.5-Rules [404] indeed create inferior results in this
study’s context.

One of the variants of profit, as introduced in Section 15.2.2, is the primary target metric.
But simply maximizing it on the training set can lead to overfitting. Simpler rules and rules
that have fewer features can work better on unseen data, even though they seem worse on the
training set. This thesis assumes that this problem is best dealt with by letting the development
team select the final ruleset from a number of candidates with different characteristics. Simpler
rules have the additional benefit of being easier to explain, and rules with fewer features lead to
less implementation effort in a tool. Therefore, the mining task is treated as a multi-objective
problem: The basic objectives are ‘maximize saved effort’, ‘minimize the number of missed
review remarks’, and ‘minimize rule complexity’. Saved effort and missed review remarks are
used in favor of profit because the latter can be derived from the former and do not need an
estimate of the cost of missed remarks. More details on the finally used objective vector are
given in Section 15.4.1.

To be able to take the above problems and the multi-objective nature of the problem into
account, we (Baum, Herbold) developed the GIMO approach for interactive, multi-objective
rule mining. Its main characteristics, distinguishing it from other data mining approaches, are:

Multi-objective Instead of optimizing for a single objective, the approach considers multiple
competing objectives and determines a Pareto front of solutions (see Figure 15.5). In
this way, the user can decide a posteriori, with knowledge of the found solutions, which
compromise of the objectives to settle for.

Geared towards domain expert feedback Many data mining approaches treat human feed-
back as an after-thought, if at all. In contrast, GIMO is designed to allow efficient col-
laboration of domain expert and computer. To reach this goal, it uses rules as a human-
understandable model, allows the users to give interactive feedback in domain terms (e.g.,

146

objective to minimize

ob
je

ct
iv

e
to

 m
a

xi
m

iz
e

A

B

C

D

theoretical
optimum non-dominated

solutions (Pareto
front)

dominated
solution

Figure 15.5: Example to illustrate the concept of Pareto-optimality. Solution B dominates solution D
because it is better in both objectives. The other solutions do not dominate each other because they are
better for one but worse for the other objective. They form the Pareto front.

as patterns of rules that do not make sense in the domain) instead of opaque tuning pa-
rameters, and integrates data mining and interactive data exploration and preprocessing.
In contrast to many data mining algorithms that cannot be influenced once started, GIMO
allows iterative user interaction at any time.

Domain-specific evaluation As shown above, evaluating the quality of a rule is not a simple
matter of counting misclassifications of change parts. Instead, multiple change parts can
act as triggers for the same review remark, and the approach assumes that it suffices
to read one of these change parts to find the remark. Contrary to usual data mining
algorithms, GIMO allows the integration of this ‘set cover’ aspect for model evaluation.

To keep the current chapter focused, it does not contain the details of the GIMO rule mining
system. A detailed description is available in a separate report [30].

15.3.4 Feature Selection

A data mining model can only deliver good results if the used features fit the task. To select
the features for the current study, I use two sources: (1) Features that showed good results in
defect prediction studies, based on a survey of the literature. (2) Iterative analysis and idea
generation (“open coding”) based on the code change data. By combining these sources, the
similarity between defect prediction and review remark prediction is taken into account, as are
the likely differences and more specialized features. The selection is restricted to a subset of the
potentially applicable features to limit the effort for this part of the study. Details on the used
features can be found in Appendix F.

15.4 Application of the Approach within the Partner Company

After having outlined the approach in the previous sections, this section describes the results
of applying it in the partner company.

147

15.4.1 Iterative Improvement of the Approach

The interactive rule mining system outlined in Section 15.3.3 was used to infer rules from the
data. Input from domain experts on intermediate results was given by the thesis’ author and by
three other developers from the partner company. The field notes and interaction logs can be
found in the online material [32]. The feedback can be categorized into specific feedback on the
mining results and meta-feedback on the approach. This section describes the meta-feedback
and the resulting improvements to the approach.

The other developers found the system helpful and considered it interesting to analyze the
data with it. Apart from minor technical problems with the rule mining system, the domain
experts identified two major problems:

Too much focus on a small fraction of large tickets. Initially, the algorithm focused too
narrowly on parts of the data with large-scale changes, e.g., single tickets that changed
many files. These are correct findings that shouldn’t simply be removed as ‘outliers’, but
they are not very interesting because they account only for a small fraction of the tickets
and the review effort.

Too much noise in the data. Noise appears in the data in several ways: Identified remarks
might not be remarks at all, or they might be traced to wrong triggers. These problems
can be due to remarks that are follow-ups of other remarks (e.g., rename refactorings or
overrides) or remarks for code not belonging to the ticket. Another form of noise is caused
by not taking the severity of the remarks into account, e.g., if a whitespace correction
influences the algorithm as much as a critical defect. I analyzed a random sample of 100
remarks from an early version of the data to assess the problem. When checking for quality
of the remarks, 19% were no true remarks. When checking the tracing, the tracing was
OK for 71% of the remarks. Of the remaining 29%, 9% were definitely wrong.

Based on this feedback, the data extraction and mining objectives have been adjusted to mitigate
the problems:

Additional objectives. The approach initially started with four objectives: missed remark
count (to minimize), saved record count (to maximize), rule complexity (to minimize)
and number of used features (to minimize). These are generic objectives that could be
applied to almost every data mining problem2. Using only these objectives gives rise to
the above-mentioned “too much focus” problem. This problem is countered with three
further objectives: (1) “Saved lines of code in Java files” captures the intuition that the
main effort of a review is mostly spent on the source code. (2) “Log-transformed missed
remarks” is calculated by counting each missed remark with the logarithm of the total
number of remarks in its ticket (instead of 1 as for “missed remark count”). This objective
puts less weight on large review changes, based on the intuition that these are often
systematic. (3) “Trimmed mean of saved records per ticket” is calculated as the 20%
trimmed mean [398] of the number of saved records per ticket. It puts less weight on rare
tickets that have a large number of records. As a per ticket measure, it is also easy to
interpret by domain experts. Table 15.4 shows the seven finally used objectives.

Additional target functions. The GIMO approach uses combinations of the objective values
to guide the search. These are called ‘target functions’. The additional objectives described
above give rise to additional target functions, too. The most important of these is a family

2taking into account that “missed remark count” is similar to “false positives” and “saved record count” is
similar to “true positives + false positives”

148

Table 15.4: The seven objectives used for the multi-objective data mining

Objective Group Objective Rationale

Minimize missed
review remarks

Missed Remark Count The fewer remarks are missed, the better.
Simple metric.

Log-transformed missed
remarks

When there are many remarks in a ticket, it
could be more likely that each single remark
is systematic and, therefore, less important.

Maximize saved effort Saved record count The more change part records can be skipped,
the better. Simple metric.

Trimmed mean of saved
records per ticket

By using the trimmed mean, outlier tickets
with a large number of remarks have a lesser
influence.

Saved lines of code in Java
files

Java LOC count could be a better approxi-
mation of review effort than the number of
change part records.

Minimize rule
complexity

Complexity (= Number of
Conditions)

The fewer conditions a rule set has, the easier
it is to interpret.

Feature Count The fewer features are used in a rule set, the
easier it is to understand and the fewer imple-
mentation effort is needed in the review tool.

of per-ticket cost functions. With cost defined as negative profit as given in Equation 15.1
and the cost factor c as introduced in Section 15.2.2, it can be stated as:

costc =
r

t
c− s

In this formula, r is the log-transformed missed remark objective value, t is the number of
analyzed tickets, and s is the trimmed mean of saved records per ticket.

Merging of remarks with identical content. One of the problems with determining the
review remarks based on the changes in review commits is that systematic changes lead
to a large number of ‘remarks’ whose number does not adequately represent the cost of
missing one of them. In addition to the “log-transformed missed remarks” objective (see
above), all change parts that represent the same textual change in the same commit are
merged into one remark.

Removal of certain remark types. Another means to get rid of remarks with minor rele-
vance is to delete certain types of remarks: Remarks with whitespace-only changes, re-
marks with changes to package declaration or import statements only, and other derived
changes.

Manual cleaning of the data. I systematically checked tickets with a large number of changes
or a large number of review commits and removed problematic ones, e.g., when there was
a violation of the development process that led to unusable data.

15.4.2 Extracted Data

Before delving into the details of the mining, this section gives some characteristics of the
extracted data. Table 15.5 shows statistics for the extracted training data. It can be seen that

149

Table 15.5: Number of commits, change part records and review remarks in total and per ticket for the
extracted training data. Commits are subdivided into implementation and review commits. There are
6,005 tickets in total. All counts are after cleaning.

per Ticket

Total Min. 25% Qu. Median 75% Qu. Max.

Commits (impl. + review) 23,853 1 2 3 5 88

Commits (impl.) 15,365 1 1 1 3 65

Commits (review) 8,488 0 0 1 2 32

Change part records 703,706 1 10 27 77 53,594

Change part records (Java) 370,130 0 4 18 57 5,749

Review remarks 68,960 0 0 2 10 1,437

the distributions per ticket are all heavily skewed, with a few huge changes. Java is the primary
implementation language, and therefore the majority of changes is performed in Java files. Next
in frequency of occurrence are XML schema files. XML schema is heavily used for interface
definitions in the company. Most other frequently occurring changes are due to test data and
committed dependencies. The earliest analyzed commit in the training data is from March 2013,
the most recent from July 2018. Of the 703,706 change part records, 439,626 have no association
to a review remark at all. Of the remaining, a minority of 14,385 records is the only trigger for
at least one review remark. These records must be triggers in the proposed approach, whereas
the remaining records are only candidates for triggers.

15.4.3 Rule Mining Results

The results from the multi-objective interactive approach (called “MO I” in the following)
are compared to three other approaches: The results from the multi-objective algorithm, but
without human interaction (“MO A”), rule sets created by the RIPPER and C4.5-Rules rule
mining algorithm [78]3, and a baseline of skipping a randomly sampled share of the records
for each ticket. To make the information on review remarks and their potential triggers (see
Section E.1) amenable for RIPPER and C4.5, the study took a conservative approach: Every
record that is linked to at least one remark is labeled as ‘must review’ and records without a
link to a remark are labeled as ‘no trigger’.

There are no established guidelines on how to assess the mining results in a multi-objective,
interactive setting. Relying on iterative human feedback makes cross-validation impossible, and
many metrics (like precision, recall, or cost) are only defined for single rulesets and not for a
Pareto set of rulesets. Therefore, several evaluation approaches are combined: (1) Checking
where the results from RIPPER and C4.5 lie relative to the Pareto front of MO I. (2) Selecting
rulesets from the Pareto fronts for MO I and MO A and comparing the objective values of all
four rulesets. (3) Asking the company’s developers for their opinion on the rules. Section 15.4.4
presents the results of the developer assessment and the discussion with the development team.
Section 15.4.5 shows the quantitative results for unseen test data. The results for the training
data are given in Appendix G. For the discussion with the development team, the ruleset MO I
was further adapted. This adapted version will be referred to as ‘SESSION’.

3the RIPPER and C4.5 baselines were mined by Herbold

150

skip when one of
(changetype == ’DELETE’)
or (isNodeModules == ’ true ’)
or (packageAndImportOnly == ’ true ’)
or (whitespaceOnly == ’ true ’)
or (changeInHunkSize >= −0.5 and hunkCountInFile >= 147 .5)
or (f i l e t y p e == ’ jav ’)
or (b inary == ’ true ’)
or (f i leCountInCommit >= 55.5 and hunkCountInCommit >= 2560 .0)
or (f i leCountInCommit >= 274 .0)
or (f i leCountInCommit >= 11.5 and s r c d i r == ’ t e s tda ta ’)
or (g i t S i m i l a r i t y >= 9 8 . 5)
or (p r o j e c t == ’ UnitTestRunner ’)
or (p r o j e c t == ’ TestPlug ins ’)
or (commitsSinceLastRemarkInFile >= 7 8 . 0)
or (newLineCountInFile >= 12170 .0)
or (entropyCbMed <= 0.0919)
or (v i s i b i l i t yChangeOn ly == ’ true ’)

Figure 15.6: Ruleset SESSION, i.e., the ruleset that was used in the discussion with the development
team. It is based on MO I.

All selected rulesets can be found in the online material [32]. To give an impression of the
found rulesets, Figure 15.6 shows the ruleset SESSION. It is the least complex of the five rulesets,
and similar to MO I. Abstracting its specific contents a bit, it contains the following groups:

• Derived or too low-level changes, e.g., changes in imports or generated code4,

• Likely systematic changes, e.g., very large commits5 or additions in files with many changes,

• Changes that are low-risk due to previous checks (compiler, CI server, . . .), e.g., deletions
or pure whitespace changes,

• Files that are empirically low-risk because there was no remark for a long time,

• Changes that are low-risk because they concern non-production code, e.g., the “UnitTestRun-
ner” project, and

• Very non-surprising changes, i.e., changes with a low entropy compared to the rest of the
code base.

The three rules that are responsible for most of the savings are packageAndImportOnly ==

’true’, whitespaceOnly == ’true’, and binary == ’true’. When using only these three
rules, the trimmed mean of saved hunks per ticket is 8.5 records/ticket. This is a share of 84% of
the value for the whole SESSION ruleset. The most influential single rule is packageAndImportOnly
== ’true’, with savings of 5.4 records/ticket.

RQ15.2.2: The interaction between mining tool and domain experts with the GIMO approach
identified a collection of Pareto optimal rule sets. Of these, the domain experts selected the
rule set shown in Figure 15.6 as the most promising one. On the training data, 84% of the
savings of this ruleset are due to three simple syntactic rules.

4The team uses the file extension “jav” to denote generated Java code.
5Even when a large commit does not contain systematic changes only, the chance of finding problems in it

might be lower.

151

Table 15.6: Survey results for the subjective quality of the mined rulesets. All ratings are on a scale
from -5 (extremely bad) over 0 (neutral) to 5 (extremely good). Rows are ordered by mean rating.

Rating

Ruleset Mean Median Min. Max.

MO I -0.21 0 -5 3

MO A -1.08 -1 -5 3

RIPPER S -3.25 -5 -5 0

15.4.4 Developers’ Opinion on the Rules

The requirements survey (Section 15.3.2) revealed that the developers prefer to check the
rules before using them. Therefore, the development team and the author discussed the ruleset
SESSION in a joint session. Before that session, the team answered a survey for a subjective
ranking for the four other rulesets. Each rule was printed on a separate sheet of paper, and
the participants were asked to rate it on a scale from -5 (extremely bad) to 5 (extremely good).
They were also asked to give reasons for their rating. The sheets were shuffled before handing
them out and did not mention how the rules were obtained. A total of 14 developers filled out
this survey and took part in the discussion.

Table 15.6 shows that the team members considered the ruleset MO I to be the best, and
RIPPER S as worst. But even the best ruleset has a negative mean rating (-0.21). Analysis of
the textual comments from the survey and the audio recording of the discussion sheds light on
the reasons.

Especially the RIPPER results were criticized for being hard to understand and containing
partial rules that looked nonsensical. Large size, use of negation and rules with many numerical
thresholds were especially detrimental to understanding. Often, this led to worse ratings, but
sometimes the rulesets were still rated neutrally based on trust that “there will be something
good in there”. Contrary to the other rulesets, two participants criticized MO I for not filtering
out further change parts.

For MO A and MO I, the criticism was more towards specific rules and features. Often
rules were regarded as not explicit enough, i.e., they left a theoretical chance of defects slipping
through. Additional conditions were suggested to reduce this chance. This problem is discussed
further in Section 15.5. Very coarse rules that lead to the non-review of whole files or commits
were also criticized. To the developers’ intuition, these rules and the features used in them miss
a strong link to the importance of the changes for review. Most criticized for missing this link
were the time/day features. The latter was also disapproved for providing the opportunity to
“game the system”, e.g., when waiting for a specific day to avoid a review. Single feature rules,
for example based on whitespace or entropy, were instead praised as intuitive.

There were two opposing points of view among the company’s developers. Some agreed
with the point of view taken in the current thesis: Leaving out parts during review is a cost-
benefit-tradeoff, and the costs and benefits can be derived from empirical data. Others took on
a point of view that opposed leaving out change parts in reviews. The latter group often argued
with the theoretical possibility of defects, no matter how small the empirical risk. Instead of
shrinking the review scope, the reviewers should take more time for reviews and make pauses
to avoid overload. Looking again at the results of the survey on the requirement importance
(Section 15.3.2), the vast spread of responses for leaving out many change parts can be explained

152

by these opposing views.
Based on the controversial discussion in the development team, the team decided to imple-

ment the skipping rules in its review process in a limited way for now: The classification and
reasons for the classification of every change part shall be visualized, but they should not be left
out entirely in an automated way. In this way, their consequences can be studied in practice.

RQ15.2.3: The ruleset obtained by the interactive multi-objective approach (MO I) is rated
best by the developers. The ruleset from RIPPER is rated worst. But even MO I is rated
only neutral on average. Likely reasons are a rejection of specific contained rules and a
general opposition to the idea of leaving out change parts in reviews by some developers.

15.4.5 Performance on Unseen Data

After creating and discussing the results based on the training data, I waited until mid-
November 2018 and extracted the new data that had accumulated in these 3.5 months. This
test set contains data from 311 tickets. After applying the same filtering as for the training
data, the found rulesets were re-evaluated on the test data.

Figure 15.7 shows projections of the Pareto front obtained by the multi-objective algorithm
with and without input from domain experts. It also shows the position of the four selected
rules in the objective space. RIPPER and C4.5 are dominated by both Pareto fronts, and do
not perform much better, and sometimes worse, than just skipping the review of random change
parts. RIPPER differs from all other rulesets by having the form “skip all except . . . ”. RIPPER
and C4.5 are insensitive to the (high) cost of missed remarks and lead to rulesets with many
missed review remarks. The RIPPER and C4.5 rulesets are also more complex than the MO
rulesets. The exact numbers for these and the other objectives are shown in Table 15.7, and
Table 15.8 reframes the results for savings and missed remarks as relative values.

Comparing the results to those on the training set (Appendix G) shows that MO A’s per-
formance strongly degraded: The saved hunk count and the saved Java source line count plum-
meted, so that it does not filter out much at all on the test data. The trimmed mean of saved
hunks is already low for this ruleset on the training data, indicating that the difference in per-
formance might be due to focusing too much on large but rare events. A likely cause is that
MO A is the only ruleset whose creation did not employ an automated or interactive mechanism
against this problem.

For the SESSION ruleset, twelve remarks are counted as missed. I analyzed these in detail:
In six cases the remark would have been found anyway, i.e., they are false positives. For two of
these false positives, the remark is real but not all triggers were identified, and the other four
were follow-up changes and no real remarks. This leaves six cases in which a real remark would
have been missed. Of these, two are negligible improvements. Another one is a build script
maintainability issue that would have been missed because the respective commit was larger
than 274 files. The most severe misses are three customer-facing documentation issues/typos
that would have been missed because the file containing the documentation became longer than
12,170 lines. These misses echo the developers’ criticism of coarse rules that miss a strong link
to the importance of the changes for review (Section 15.4.4).

Looking at the objective values for the ruleset SESSION, it allows skipping of 25.2% of the
records per ticket (trimmed mean) and of 23.2% of Java source code lines in reviews. According
to the tracing mechanism, this skipping will lead to non-detection of 0.6% of the review remarks

153

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

*

**

*

*
*

*

*

*

*

*

*

*

*

*

*

**

*

*

**

*

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●●●●

●●

●

RIPPER

MO_I

MO_A

SESSION C45_2

C45_3

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

missed remarks (relative)

sa
ve

d
hu

nk
s

(r
el

at
iv

e)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

*

*

*

*

*

*** ***

*

**

*

**

*

*

*

**

*

** *

**
*

*

*

*

*

*

*

*

* *

*

*
*

*

**

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●●●●●

●

RIPPER

MO_I

MO_A

SESSION

C45_2 C45_3

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

log missed remark (relative)

sa
ve

d
hu

nk
 tr

im
m

ed
 m

ea
n

(r
el

at
iv

e)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

*

**

*

*

*

*
*
*
**

*

*

*

**

*

*

*

*

*

**

*

*

*

** ***

**

*

*

●
●

●●

●

● ●●

●

●

●
●

●
●

●

●

●●●

●
●

●

●●●●●●

●

●

●●●

●●

●●●●

●●●●●●●●●●●

●●●●●●●●●

RIPPER

MO_I

MO_A

SESSION

C45_2

C45_3

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

log missed remark (relative)

sa
ve

d
Ja

va
 li

ne
s

(r
el

at
iv

e)

Figure 15.7: Pareto fronts and selected rulesets, evaluated on the unseen test data. The plots show
two-dimensional projections from the seven-dimensional objective space. The gray dots show the baseline
performance of leaving out a certain percentage of records per ticket; each dot corresponds to a percentage
value, with results averaged over 100 random seeds.

154

Table 15.7: Objective values for the selected rulesets on the unseen test data

Objectives to Minimize Objectives to Maximize

Ruleset
Compl-

exity
Feature

Count

Missed
Remark

Count

Log-
Transf.
Missed

Remarks

Saved
Record
Count

Tr.M.1

Saved
Records

per Ticket

Saved
LOC

in Java
Files

SESSION 40 17 12 4.1 13,998 9.5 11,425

MO I 58 17 8 3.1 11,733 7.8 11,004

MO A 184 24 8 2.9 6,293 1.3 2,469

RIPPER S2 200 17 539 110.1 14,166 19.2 18,784

RIPPER 342 25 456 100.9 14,294 21.2 20,338

C4.5 2 151,084 39 312 59.6 14,277 14.9 27,625

C4.5 3 63,872 38 628 105.8 13,106 14.5 22,756

Max. Valu3 ∞ 52 1,940 310.7 26,968 37.8 49,199

1 Tr.M. := trimmed mean
2 During the team session it was decided to remove one further ticket from the training data. RIPPER

is the rule set learned with the final data, RIPPER S is based on the older data and was used in the
survey.

3 The last row shows the total count / maximum possible value for the respective objective.

Table 15.8: Relative objective values (i.e., percentages of the maximum) for the selected rulesets on the
unseen test data. Tr.M. := trimmed mean

Objectives to Minimize Objectives to Maximize

Ruleset
Missed

Remark
Count

Log-
Transf.
Missed

Remarks

Saved
Record
Count

Tr.M.
Saved

Records
per Ticket

Saved
LOC

in Java
Files

SESSION 0.6% 1.3% 51.9% 25.2% 23.2%

MO I 0.4% 1.0% 43.5% 20.7% 22.4%

MO A 0.4% 0.9% 23.3% 3.5% 5.0%

RIPPER S 27.8% 35.4% 52.5% 50.8% 38.2%

RIPPER 23.5% 32.5% 53.0% 56.1% 41.3%

C4.5 2 16.1% 19.2% 52.9% 39.5% 56.1%

C4.5 3 32.4% 34.1% 48.6% 38.3% 46.3%

(resp. 1.3% when using the log-transformed value). Based on the raw objective values, approx-
imations for profit can be calculated. As motivated in Section 15.2.2, these values depend on a
cost factor that determines how much more costly missing a remark in a review is compared to
reviewing a change part. A break-even value that determines when the profit will become posi-
tive can be calculated. When using the log-transformed remark count and the trimmed mean of
saved records per ticket, this break-even value is 726, i.e., using the ruleset has a positive profit
as long as missing a review remark is less than 726 times as costly as reviewing a record. When
using Java lines of code as the approximation of effort instead, the profit is positive as long as
missing a review remark is less than 2,793 times as costly as reviewing a line of Java code.

155

The three simple syntactic rules that are responsible for most of the savings for the SES-
SION ruleset on the training data are responsible for most of the savings on the test data,
too. packageAndImportOnly == ’true’ is most influential, binary == ’true’ second and
whitespaceOnly == ’true’ third. When using only these three rules, the trimmed mean of
saved hunks per ticket is 7.8 records/ticket. This is a share of 82% of the value for the whole
SESSION ruleset.

RQ15.2.4: The ruleset SESSION, and the closely related MO I, both perform well on the
unseen test data. They allow savings of more than one-fifth of reviewed records and Java
LOC. In turn, they lead to about one percent of missed remarks. The RIPPER and C4.5
rulesets lead to much higher numbers of missed remarks. MO A filters out very little on the
test data.

15.5 Discussion

The study could successfully extract data and mine useful rules, but some problems were
not yet satisfyingly solved:

Noise. Section 15.4.1 describes a significant amount of noise found in the data, due to failed
assumptions of the tracing algorithm. Other problems are caused by non-obedience to the
development process, e.g., when remarks are not fixed in the proper ticket or the ticket state is
not changed correctly. Noise is a significant problem: The most relevant target for the mining
process is the profit of using the ruleset. The cost of missing a remark is magnitudes larger than
that of reviewing a change part. Therefore, the profit metric behaves similarly to precision,
which is known to be vulnerable to noise [264]. Many potentially interesting rules might be
obscured by the noise in the data.

Unknown individual costs. The cost per individual missed remark is not known. This can
lead to wrong incentives for the mining algorithm, which might opt for a rule that leads to
the oversight of one critical error instead of another that misses two trivial issues. The same
problem exists for the cost of reviewing change parts, but this cost can at least be approximated
for example by the number of lines of code.

Reliance on Occam’s razor. Ruleset complexity is one of the algorithm’s objectives for two
reasons: (1) Simpler rules are easier to understand. (2) There is the hope that of two competing
and otherwise similar rules, the simpler one is the better model of reality (Occam’s razor).
Albeit useful, Occam’s razor is only a heuristic that fails sometimes. An example that was
criticized by some of the company’s developers illustrates this: The algorithm selected a rule
to ignore whitespace-only changes. This rule is straightforward, and it is also highly successful,
as there are many whitespace-only changes in Java files that do not lead to review remarks.
But in other file types, whitespace changes are much more dangerous and remark-prone. When
changes in these files occur rarely, the ‘ignore whitespace-only changes’ rule will seem better
than the ‘ignore whitespace-only changes in Java files’ rule, albeit the latter better represents
the underlying domain.

Reliance on historical data. A general problem of every empirical approach for rule creation
is that the rules are built for past data. Changes in the project structure, development processes,
or other areas can make found rules obsolete. One example is the growth in file size that led to
the missed remarks described in Section 15.4.5. Another example is the “isNodeModules” rule

156

in MO I, MO A, and SESSION, which relates to the practice of committing certain libraries to
the SCM. This practice was stopped by the development team so that the rule will not lead to
savings in the future. Besides input from domain experts, regular re-training can help to reduce
this problem.

Amplification of reviewers’ weaknesses and self-fulfilling prophecies. If a change part
does not trigger review remarks, this can have two causes: There is no problem, or the reviewer
did not find the problem. The latter case is disputed: When there are changes in which the re-
viewers consistently overlook problems, this weakness of the reviewers might be institutionalized
as a skipping rule. This rule deprives the reviewers of the remaining small chance to find the
issue. The problem could be reduced by combining a model for skipping with the SRK model
discussed in Section 15.2 or with a general defect prediction model. A variant of the problem
occurs when data from a team in which skipping rules are in use is used to re-evaluate the rules:
As the reviewers did not see the change parts that are matched by the rules, they probably left
few remarks for them. So, the existing rules will look good no matter how good they really are
– a self-fulfilling prophecy.

Much ado about .. not much. A large share of the savings of the SESSION and MO I
rulesets are due to simple syntactic rules. This leaves the impression that similar benefits for
the company could have been reaped in a more lightweight way, without going through the
hassle of extracting the remark data and performing a large-scale data mining study. It is open
whether less noisy data would allow the extraction of less obvious high-impact rules or whether
there is just nothing to be found. Please note that the criticism of the high effort applies mostly
to the action research view of the study; I still consider it worthwhile to gather and analyze
empirical data in detail from a basic research perspective.

Most of the mentioned problems are not unique to the current study; they are shared by
many other repository mining studies. This might contribute to their still relatively low use in
industry.

15.6 Validity and Limitations

RQ15.1 is only studied theoretically, deducing arguments from previous findings. To show
that these arguments really hold, empirical validation is needed.

The answers to the remaining research questions (RQ15.2.1 to RQ15.2.4) provide a first step
towards such empirical validation. Still, several limitations apply to them as well. One of the
central limitations stems from being a single case study, which makes the generalizability of the
results to other contexts hard to judge. This applies to the mined data and found rules as well
as to the results of the surveys and discussion sessions. As an example, the high savings due to
leaving out changes in import statements are probably influenced by the use of version numbers
in some package names and by a positive attitude towards refactorings, both of which might not
exist in other contexts.

Another limitation is that the study does not measure the final outcomes of introducing
the model in practice. A smaller review scope leads to better results (Chapter 13) and the
case study results indicate that applying the model will safe effort, but it does not measure the
construct ‘effort’ explicitly. The validity of many other of the measured constructs depends on
the correctness of the mining and extraction programs. Many parts of the extraction and mining
source code are tested with automated unit tests. But as a heuristic approach, the mechanism to
count the number of missed review remarks can still fail. It might do so in two ways: identifying

157

too many or too few missed remarks. By manually checking a sample of the remarks, the ‘too
many’ case could be assessed. But the ‘too few’ case, e.g., review remarks that were fixed in a
commit that was not correctly labeled with the ticket number, is only assessed qualitatively.

A usual practice in data mining studies is to use repeated cross-validation to statistically
judge the quality of the results. This is not possible with an interactive approach. Instead,
the study uses a training set and a separate test set. Having only one test set leads to less
reliable results. On the other hand, using a test set collected after mining is a very realistic way
of performance evaluation. To put the interactive, multi-objective mining approach in context,
it is compared to RIPPER and C4.5 as a baseline. In defect prediction studies, other mining
approaches outperform RIPPER and C4.5 [366]. But these approaches, like random forests, lead
to opaque models that do not meet the team’s requirements. Therefore, a rule mining approach
is an adequate baseline.

Various threats apply to the opinions gathered from the developers. In the interactive eval-
uation sessions, the participants needed more time than initially expected to understand the
system, as they were overwhelmed by the current UI of the system. This limited the amount of
feedback that could be gathered in the available time. The opinions on the mined rulesets were
gathered directly before the discussion session. As some of the presented rules were clearly sub-
optimal, this might have put some developers in a negative mood for the discussion. Another
threat here is reactivity, in particular, because the researcher presenting the approach and the
rules was also a colleague.

For the analysis of the qualitative data, best practices from qualitative data analysis, like
transcribing the audio recordings and performing several passes of open coding, were used. Still,
having only one coder amplifies the risk of researcher bias. To allow others to judge this and
other potential biases, the session transcripts are available [32]. All other raw data is also made
available, albeit the dataset was anonymized to protect confidential company data. With an
interactive data mining approach, it is not sufficient to make the data mining algorithms and
scripts available to allow others to double-check or recreate the results. Therefore, logs of the
interactive sessions are also provided as an audit trail.

15.7 Related Work

Besides the discussion of cognitive-support review tools in the current thesis, positive effects
of reducing the review size are also discussed in other works (e.g., [315, 318, 319]). Section 15.2
also relates to another theory from cognitive psychology, the SRK taxonomy that divides human
cognitive processing into three modes that differ in the degree of automation and efficiency
of processing [311]. A general analysis of the utility of these and other theories for software
engineering research is performed by Walenstein [393].

SZZ [353] is the standard algorithm for tracing defect fixes to the introducing changes in
defect prediction studies. Kim et al. [199] proposed a variant of this algorithm that reduces the
noise in the extracted data. Like the proposed tracing algorithm for review remarks, they skip
changes that cannot be a cause/trigger. The problem of noise in defect prediction is studied by
Kim et al. [198].

Review remark prediction is not the same as defect prediction: A change part might contain
a defect that does not lead to a review remark, and the different assumptions during tracing
also lead to differences in the raw data (see Section E.5). Still, review remark prediction and
defect prediction are related. Defect prediction and repository mining are vast research areas,

158

so this section can just give a small overview of the literature.

This chapter’s approach classifies at the level of change parts. Most defect prediction studies
work at a coarser granularity, e.g., predicting defect proneness for whole changes (also called
“just-in-time” prediction) or for methods, files or components. An early study to predict the
risk of a software change was performed by Mockus and Weiss [272] at Bell Labs. Shihab et
al. [340] use input from industrial developers to assess the risk of changes. One of the problems
of the current study is that it considers the severity of the review remarks only to a limited
degree. Shihab et al. [341] tackle a similar problem for just-in-time defect prediction and study
“high impact” fixes. Results of just-in-time prediction at Google were disappointing [233], but
Tan et al.’s case study at Cisco [365] and especially Nayrolles and Hamou-Lhadj’s case study
at Ubisoft [280] show that an elaborated approach can bring just-in-time defect prediction to
industrial usefulness. There are further defect prediction studies with change granularity (e.g.,
[191, 197, 345, 355]). Ray et al. [314] show that the entropy of code is related to its defect density
and go down to the level of single lines. Results of Pascarella et al. [293], when re-evaluating
a study by Giger et al. [139], indicate that the current state of the art of method-level defect
prediction does not lead to results that are satisfying in practice. Shippey [344] analyzes the
relation of AST patterns to defective and non-defective methods. He finds associations for
defective methods, but not for non-defective methods.

The current study argues that the meta-parameters of many data mining techniques are
hard to interpret for domain experts. Other researchers (e.g., [366]) use automatic approaches
to optimize these meta-parameters. Arisholm et al. [14] criticize that often used evaluation
measures like precision and recall do not directly relate to cost-effectiveness. As Kamei et
al. [190] show, effort-aware evaluation of models leads to different conclusions. A benefit of the
proposed approach is that it is easy to include domain-specific evaluation measures. The decision
to go for a multi-objective mining technique was encouraged by Fu et al.’s promising results
with DART [133], which can be regarded as an ensemble of rules created with a multi-objective
approach. Further studies on defect prediction are surveyed by Hall et al. [153], Radjenović et
al. [309], and Malhotra [246].

Review remarks can relate not only to defects but also to other quality problems. These, too,
can be found with data mining, for example like Fontana et al. [126] who predict code smells.

This thesis focuses on ways to support the reviewer. Another avenue to improve code reviews
is to create automated review agents [69], i.e., programs that directly create review remarks.
Just-in-time defect prediction is one possibility to create such automated reviewers [121, 280,
326]. Another possibility is to use results from static analysis [46, 63, 119, 170]. Automated
reviewers can already work during check-in [28, 369] or even in parallel to development [244].
Section 15.2 discusses sorting change parts by their importance for review. Similar ideas have
been studied by other researchers, e.g., by Lumpe et al. [236]. The idea to focus reviewing on
“sections where finding defects is really worthwhile” can already be found in Gilb and Gra-
ham [140, p. 74], albeit they relate more to the severity of defects and not to the probability of
finding them. Begel and Vrzakova [45] study eye movements of reviewers and find that devel-
opers focus on relevant portions instead of the entire text, which supports this chapter’s idea
of automatically classifying parts as irrelevant. Huang et al. [175] propose a machine learning
approach to identify the ‘salient class’ in a change, i.e., the class whose change is at the core of
the commit. This could be a further criterion to rate the importance of code changes for review.
The idea to leave out lines of lesser importance to improve understanding has been studied in
the context of end-user programming by Athreya and Scaffidi [16].

The proposed approach is bottom-up and empirically determines change parts that are ir-

159

relevant for review. Other researchers instead start by assuming that certain types of changes
are irrelevant. Refactorings are one such type, and Ge et al. [136] propose to use refactoring
detection in code reviews. Thangthumachit et al. [371] use refactoring detection to improve the
understandability of source code changes. Going beyond refactorings, Kim et al. [196] describe
how to discover systematic code changes and Zhang et al. [413] propose a tool to interactively
match systematic changes in code reviews. Simple syntactic rules (e.g., whitespace and import
statements) are responsible for a large part of the savings with the selected rulesets. Similar
results could be obtained by using semantic or otherwise improved diff algorithms [13, 125, 192,
410].

The current chapter studies the importance of change parts for review. Other aspects of
review data have also been assessed in data mining studies: For example, Gerede and Mazan [138]
predict at the coarse granularity of whole patches whether they will lead to review remarks.
Padberg et al. [290] predict the defect content after reviews and Kononenko et al. [206] study
factors that influence review quality in Firefox subprojects. Bird et al. [55] have deployed a
code review analytics platform at Microsoft, which could also be useful to determine irrelevant
change parts. It was used by Bosu et al. [61] to develop a model to distinguish useful review
remarks from less useful ones (i.e., noise).

The current study uses a multi-objective rule mining meta-heuristic and domain feedback to
create comprehensible rules. With the same goal, Vandecruys et al. [386] use the AntMiner+
meta-heuristic for mining. Other researchers use a two-step process: First, a black box model is
created, and as a second step this model is transformed into a comprehensible model [273]. This
approach is not without criticism [327]. Still another approach is to create explanations for the
model’s decision upon request [88, 365]. Multi-objective meta-heuristics were also used in other
software engineering studies, often based on genetic algorithms. They are used for the model
creation itself [73, 92], but also for feature selection [72] or model refinement [68, 330, 406].
There are also studies that explicitly incorporate iterative human feedback, e.g., to determine
patterns for implicit coding rules [254], common defects [400] and requirements tracing links
[166].

♦
Summing up, this chapter discusses how classification of change parts can support the re-

viewer. It shows how a bottom-up repository mining approach can be used to build such a
classifier. The approach contains a novel extraction and tracing algorithm for review remarks
and makes use of a multi-objective, interactive data mining system. Albeit there are some prob-
lems with the approach, especially with noise in the data, it leads to a substantial reduction in
review scope. Consequently, the most promising found rules have been implemented in CoRT,
with positive user feedback.

160

Part IV

Conclusion

161

16 Conclusion 165

16.1 Summary . 165

16.1.1 Cognitive-Support Code Review Tools . 165

16.1.2 Results on Code Reviews beyond Tools . 166

16.1.3 Methodological Advances . 167

16.2 Implications of the Findings . 167

16.3 Next Steps in Code Review Research . 169

164

16
Conclusion

This final chapter summarizes the thesis, discusses a selection of its implications and hints
at major areas of further research related to code reviews.

16.1 Summary

This thesis started out with the idea to improve computer support for code reviews in practice
that goes beyond the book-keeping and data-handling support of current tools. In its three main
parts, the thesis gives an extensive discussion of the state of the art and the practice (Part I),
shows how an instrumented review tool is used as a foundation for code review research in
a partner company (Part II), derives the concept of cognitive-support code review tools, and
provides extensive empirical studies on several ways to provide such cognitive support (Part III).

16.1.1 Cognitive-Support Code Review Tools

The systematically derived notion of “cognitive-support code review tools” forms the cen-
tral contribution of this thesis. Such tools extend the current state of the art of review tools
with features that reduce the cognitive load of the reviewer during checking. An empirically
and theoretically founded catalog of essential requirements for cognitive-support code review
tools, including general core features of review tools, can be found in Appendix A. This catalog
summarizes the main findings on review tools from this thesis in a way that is geared towards
tool developers.

Chapter 12 presents a number of ways to provide cognitive support. Two of them are
studied in detail: Ordering of change parts (Chapter 14), and classification of change parts by
importance based on repository mining (Chapter 15). Both approaches are derived and tested
empirically, and both have shown their practical viability with an implementation in the review
tool CoRT. A limitation of this thesis is that the controlled experiment to test the proposed
ordering could not show a statistically significant improvement. There are some indications that
this could be a problem of statistical power. Regarding the study on change part classification
in Chapter 15, reducing the review scope by more than 20% while missing out very few remarks
is an opportunity that should not be left untapped. But when it comes to how to establish

165

the model underlying this mechanism, repository mining does not seem to be the best way at
the moment. Most of the found savings are due to simple syntactic rules, and it seems that
most of these could have been conceived without laborious repository mining, albeit with worse
empirical underpinning.

In addition to the analysis of cognitive-support, improvements of the scientific foundations
of code review tools in general are a contribution of this thesis, too. Based on the analysis in
Part I, Part II describes the CoRT code review tool, which is used both as a practically-used
review tool in a partner company and as a platform for code review research. The thesis presents
two studies that influenced the development of CoRT. In the first study (Chapter 10), the effects
and contextual factors that influence whether pre-commit or post-commit reviews lead to better
results regarding efficiency, quality, or cycle time are analyzed. It shows no striking differences
in most cases, with a disadvantage of pre-commit reviews in terms of cycle time usually being
the main difference. The study’s more detailed results are condensed into heuristic rules for the
use in practice. The second study (Chapter 11) compares different ways to present source code
diffs. Albeit no statistically significant performance difference could be measured, it shows a
preference of developers towards colored and aligned presentation.

16.1.2 Results on Code Reviews beyond Tools

State of the practice. Part I of this thesis contains an extensive discussion of the state of the
art and state of the practice regarding code reviews. Particularly, both the interview study and
the survey on code review use in practice are the largest scientific studies of the respective type
done to date. They confirm the observation from other researchers [18, 318] that code review
in practice is converging towards a change-based process, which is used by development teams
to reach a combination of goals. But the studies also show that there is a lot of variation in the
details of these processes, and the thesis proposes a classification scheme (see Appendix B) to
capture these variations. Large parts of the survey’s questions are based on this classification
scheme, and they are made available for re-use by other researchers.

Hypotheses on the use of reviews. Following the Grounded Theory methodology, the
interview study led to several hypotheses on the use of reviews, of which some could be confirmed
in the survey (Chapters 5 and 6). Particularly, the thesis provides evidence that the use or non-
use of code reviews depends to a large degree on cultural factors. Furthermore, there is evidence
that code review is most likely to remain in use if it is embedded into the development process
(and its supporting tools) so that it does not require a conscious decision to do a review.

Systematic overview of review tools and reading techniques. As a final contribution of
Part I, Chapter 7 contains a semi-systematic literature review on code review tools and contains
an analysis of the common ideas behind several code reading techniques.

Influence of working memory capacity and change size on review performance.
Part III’s main purpose is to present the rationale and formation of cognitive-support review
tools, but it also contains findings that transcend this purpose. The experiment in Chapter 13
provides evidence that the reviewer’s working memory capacity is associated with code review
effectiveness for certain kinds of defects. Additionally, the thesis provides a confirmation from
a controlled experiment that review effectiveness is higher for smaller code changes, a fact that
was widely assumed but not studied systematically so far.

166

16.1.3 Methodological Advances

A wide variety of research methods are used in this thesis, and novel and significantly im-
proved methods form a contribution of this thesis on their own. Specifically, software engineering
research could benefit from the following methods and practices:

Heuristics derived from simulation. Software process simulation has been proposed as a
means to support decision making in development teams. But software process simulation is
expensive [8], too expensive for small companies or agile teams. It is better thought of as a means
for theory development [91]. Heuristic rules are an efficient way of communicating theories to
developers, and Chapter 10 uses a combination of simulation and rule mining to develop such
heuristics. Other researchers could use a similar approach for research questions that are not
easily amenable to direct empirical evaluation.

Machine learning with the human in-the-loop. A basic theme underlying this thesis is
that the best results can often be reached by combining the strengths of the human and the
computer, instead of focusing on only one of them. Still, much research on software repository
mining neglects the human side. The approach taken in Chapter 15 embraces iterative human
feedback. It should encourage other authors to try multi-objective and interactive approaches
to data mining when domain feedback and acceptance are essential.

Combination of systematic theory generation and theory testing. Iteration between
theory generation and theory testing is a basic principle of science, and this thesis used it in
several of its studies with good results.1 Software engineering as a discipline could benefit from
embracing it more thoroughly.

Open science. The datasets and algorithm implementations for the studies of this thesis were
made publicly available as far as possible. The thesis also benefitted from publicly available
implementations and results of others. Software engineering research is slowly moving towards
open science, and perhaps this thesis can encourage others to follow and increase the pace.

16.2 Implications of the Findings

This section presents selected implications of the findings that go beyond cognitive-support
code review tools. The detailed implications for building code review tools are summarized as
‘essential requirements’ and ‘realizations’ in Appendix A.

Research on improvements to change-based code review can have large practical
relevance. The studies in Part I of this thesis confirm Rigby and Bird’s [318] observation
of convergence towards change-based code reviews in practice. Comparing the survey results
to those of Ciolkowski, Laitenberger, and Biffl [75], the raw survey numbers indicate a large
increase in the use of code reviews in the last 15 years. Another survey by Winter, Vosseberg,
and Spillner [403] also shows an increase in the use of reviews. This implies that research on
improvements to code reviews can have a large practical relevance.

Software Engineering research should not focus on open source development and
large companies only. Many of the variations between the processes described by Rigby and
Bird [318] could be observed in Part I’s interview and survey data, too. However, this thesis
couldn’t observe as much convergence as they do regarding the subtleties of the processes. In
part, this is probably due to a more fine-grained comparison of the processes, but there are

1Like the next point, this point is neither new nor unique to this thesis, but subjectively under-used in current
software engineering research practice.

167

contradictions, too, for example for pre-commit vs post-commit reviews. Assuming that most of
these differences are rooted in different contextual characteristics of the respective study samples,
this is an indicator that results from studies of open source software development can be valuable
for commercial development, but it is also a warning that results from large companies and open
source development are not fully generalizable to smaller companies.

Proposed Software Engineering techniques need to fit the real-world context. By
strengthening the evidence that using rules or conventions to trigger code reviews helps to keep
code review use from fading away, Chapter 5 provides a partial explanation for the observed
dominance of change-based reviews. As a more abstract consequence for future software engi-
neering research, this finding strengthens the case for software engineering techniques that not
only work in isolation but are also able to survive in the environment of a software development
team. The low number of teams using perspective-based reading or a similar technique for code
review could be an example for such a mismatch: There is little use in perspectives when there
is only one reviewer.

Review tools should contain cognitive-support features. To have an impact on practice,
improving a review tool is more effective than publishing a research paper, at least according
to the findings from Part I’s interviews. As argued in Chapter 12, better cognitive support is a
promising opportunity for improvement, and Part III shows the viability of several such options.
They all share the benefit that once such tooling is available, the effort of using it in a team is
very small, compared to classic reading techniques that have to be taught to every reviewer. The
observed variations in review processes and contextual factors imply that it is hard for a single
tool to fit all practical contexts. This is one of the reasons to summarize the results abstractly
in Appendix A so they can be used by other tool-builders.

Reviewers’ mental resources matter. Chapter 13 shows that the reviewer’s working memory
capacity is associated with code review effectiveness for certain kinds of defects. Given that
working memory capacity can be measured computerized in around 10 minutes per participant,
it is reasonable to recommend researchers to measure it as a potential confounding factor in
future studies. This finding also has practical implications for reviewer recommendation [376]:
Code changes with more potential for delocalized defects could be assigned to reviewers with
higher working memory capacity; moreover, working memory capacity could be used when
distinguishing between reviewers for critical and less critical code changes in an attempt to find
a globally optimal reviewer assignment.

Defect types matter. The finding that the factors that influence detection effectiveness differ
between defect types leads to several new questions: Which further factors influence effectiveness
for other defect types? And which other defect types or defect properties are relevant at all?
Future studies should investigate better review support for defect types that are currently not
found easily.

The problem of noise in review remark prediction needs to be solved. The study of
change part classification in Chapter 15 establishes that review remark prediction is a distinct
application area in repository mining and that there is much open work in this area. This
thesis only follows one of the possibilities outlined in Section 15.2.1, and further delving into
the distinction between knowledge-based and rule-based cognitive processing in reviews could
lead to interesting results. It seems advisable to first tackle the open problems of the chosen
approach, most importantly the reduction of noise in the data.

168

16.3 Next Steps in Code Review Research

To conclude the thesis, this section looks at promising directions for future code review
research.

Further computer support for reviews. The first idea is also the one most related to this
thesis: Chapter 7 analyzes the principles underlying various code reading techniques, and some
of these principles are integrated into the developed tool, in addition to the idea of cognitive
support. Further research could try to combine more of these principles with computer support.
Additional support could also be gained by asking the author to provide further information
for the reviewer and the tool [87]. This thesis tried to lessen the burden on the author and not
mandatorily demand such additional work, but giving the option to add, e.g., information about
importance could augment the approach.

Instrumentation of other review tools. By deploying a code review tool into practice
that was explicitly designed as a research platform, this thesis could gather rich empirical data.
Many other code review studies rely on data from more widely deployed review tools, with the
benefit of a large empirical basis but the drawback of lacking information for several possible
research questions. Researchers could try to collaborate with review tool builders to integrate
further lightweight data collection facilities and extension points into popular review tools. This
investment could pay off in a few years in a much better empirical basis for code review research.

More research on cognitive processes in reviews. The third research idea is based on
the findings of Chapter 13: It is by now well-established that code review effectiveness is lower
for larger changes. But the cause for this effect is not known. Several hypotheses have been
proposed by this thesis and others: (1) Large changes lead to mental overload, (2) large changes
lead to lower motivation, (3) large changes seduce the reviewer to review faster than optimal,
(4) the mental focus of the reviewer fades after some time, and larger changes need more time,
(5) larger changes increase the risk that delocalized defects are spread out, which in turn reduces
the chance of finding them. Basic research on the cognitive processes during code review could
shed light on the combination of these hypothesized effects that leads to the observed decrease
in effectiveness. This topic touches on the more general question of whether the model of mental
and cognitive load is adequate to explain performance in code reviews. The results of the thesis
generally support the model, but it could be too simple and abstract to be useful to guide
research. For example, it needs improvement for the currently quite fuzzy definitions of mental
and cognitive load. Another mechanism that would benefit from further quantitative evaluation
is the association between code understanding and review performance. Research can be carried
out to investigate an extended version of the model, more specific for code reviews, and test it
more thoroughly.

Fun in reviews. In the interviews and experiments of this thesis, many developers mentioned
that they have less fun reviewing code than developing it, whereas others seemed to like re-
viewing. This was also observed in previous research [180], but is somehow surprising: Code
reviews are similar to ‘spot-the-problem’ puzzles, and many people do such puzzles for leisure.
Gamification of code reviews has been studied to some degree [335], but future research could
investigate reasons for disliking reviews and propose techniques to make them more fun. One
idea is that, in contrast to puzzles, reviews are lacking positive feedback for the reviewer. An-
other, related to the mental load hypothesis of this thesis, is that reviews often overload the
reviewers and put them out of their ‘flow’ zone [84].

Training for reviewers. The reviewer and his or her fit to the reviewing task significantly
influence review performance (see Chapter 12). This thesis briefly discussed reviewer recom-

169

mendation as a way to exploit this fact, and also why reviewer recommendation is often of little
practical use. But reviewer recommendation is not the only possibility to have better reviewers
for the task – reviewer education is another. The data gathered for the experiment in Chap-
ter 13 shows a correlation between reviewer experience and performance. It also hinted at a
much better review performance for defects that can be found with rule-based cognitive process-
ing [311]. Deliberate practice [115] could be used to train these skills, and computerized tools
could support this training. As the mental assessment of possible solutions is also a central skill
when developing code [392], such review training could even lead to better general programming
performance.
Culture in development teams. A final result that hints at future work is the observed
influence of team and company culture (Chapter 5). When considering the software engineering
industry as a whole, the potential gains of faster wide-spread adoption of best practices dwarf
the benefits of improvements to specific techniques. Research on the intersection between busi-
ness administration and software engineering can study how development team culture can be
improved.

♦
The main text of this thesis is now about to end. It started with an assessment of the state

of the practice, based on several empirical studies and the literature. Motivated by the lack
of a good code review tool that fits the context of the partner company and can be used as a
platform for code review research, the second part of this thesis then described the code review
tool ‘CoRT’ and two studies that supported its design. Finally, the notion of cognitive-support
code review tools was proposed, tested, and two possibilities for cognitive support were studied
in detail: Ordering of change parts, and classification of change parts as irrelevant for review.
My hope is that several of the proposed ideas will make their way into other code review tools so
that they can benefit a wider variety of software development teams. And I hope that some of
the results of the thesis and some of the ideas for future work proposed in this final chapter will
spark the interest in code reviews in other researchers. Their improvements to the understanding
of the requirements of practice and of the cognitive processes during reviews could then lead to
still better review support.

170

Part V

Appendix

171

A Essential Requirements for Code Review Tools and Possible Realizations175

A.1 Cross-Cutting Requirements . 176

A.1.1 Usability . 176

A.1.2 Performance/Reactivity . 176

A.1.3 Good Fit to Context . 177

A.1.4 Broad and Deep Support . 177

A.2 Core Features . 177

A.2.1 Determine the Changes that Need to be Reviewed 177

A.2.2 Allow Viewing the Changes that Need to be Reviewed 177

A.2.3 Collect, Store and Distribute Remarks . 178

A.2.4 Manage the Review Process . 179

A.3 Advanced Reviewer Support . 179

A.3.1 Reduce Cognitive Load: Shrink the Task . 180

A.3.2 Reduce Cognitive Load: Help to Off-Load Items from Human Memory to the
Computer . 180

A.3.3 Reduce Cognitive Load: Allow Efficient Chunking 181

A.3.4 Take the Differing Working Styles and Backgrounds of Developers into Account181

A.3.5 Support Checking . 181

A.4 Further Basic Features . 182

A.4.1 Allow Communication around Remarks . 182

A.4.2 Allow Fixing On-The-Fly . 182

A.4.3 Fixing Support for the Author . 183

B The Faceted Classification Scheme in Detail 185

B.1 Process Embedding . 185

B.2 Reviewers . 187

B.3 Checking . 189

B.4 Feedback . 190

B.5 Overarching Facets . 191

C Details on the Simulation Model for the Comparison of Pre- and Post-
Commit Reviews 193

C.1 Details on the Modeling of Developers’ Work . 194

C.2 Details on the Modeling of Issues . 195

C.3 Empirical Triangulation of Model Parameters . 199

C.4 Simplifying Assumptions . 200

D An Efficient Algorithm to Find an Optimally Ordered Tour 203

D.1 Description of the Algorithm . 203

D.2 An Implementation of the Abstract Data Type ‘Binder’ 209

D.3 Proof of Correctness for the Ordering Algorithm . 211

E Details on How to Extract Review Remark Triggers 217

E.1 Remarks, Triggers, and Change Parts . 217

E.2 Selecting a Data Source . 218

E.3 Determinining Review Commits . 218

E.4 Finding Potential Triggers: The RRT Algorithm . 219

E.5 Comparison of RRT to SZZ . 220

F Features Used for Classifying Change Parts 225

G Results of the Remark Classification Model for the Training Data 229

Bibliography 260

Glossary 261

List of Figures 266

List of Tables 269

List of Definitions 271

Curriculum Vitae 273

174

A
Essential Requirements for Code Review

Tools and Possible Realizations

This thesis started out with the goal to show how better tool support can help to improve code
review in industry, and it shows and evaluates several possibilities. The findings are summarized
under the label ‘cognitive-support code review tools’, and many of them are implemented in the
tool CoRT. But one of the results in the first part of this thesis (mainly Chapter 6) is that there
is a lot of variation between the review processes of teams in industry. One tool will not fit all.
Other tool-builders need to integrate the findings into other code review tools. To ease the task
of these tool-builders and to summarize the respective findings, this chapter condenses them into
essential requirements for building code review tools, and lists realizations from this thesis for
these requirements. Similar to patterns [6], these shall form a toolbox that other tool-creators
can use. Figure A.1 shows an overview of the essential requirements that are discussed in the
following.

After each ‘realization’, small icons indicate the strength of the respective evidence. Their
meanings are:

Strong quantitative evidence from this thesis. A controlled experiment showed conclusively
that the realization leads to the intended effect.

Weak quantitative evidence from this thesis, e.g., correlational results from a survey or
promising but inconclusive results from an experiment.

Strong ‘action research’ evidence from this thesis. The realization is implemented in CoRT
and was explicitly mentioned as important/beneficial by the users, or it is a standard
feature of most review tools that are in wide-spread use.

Weak ‘action research’ evidence from this thesis. The realization is implemented in CoRT
and perhaps a few other tools and is known to be used.

Strong qualitative evidence from this thesis. The realization was mentioned as importan-
t/beneficial by various interviewees or survey participants.

Weak qualitative evidence from this thesis. The realization was mentioned as importan-
t/beneficial by a few interviewees or survey participants.

Strong deductive evidence. It can be clearly derived from the literature, or is perhaps even
shown there, that the realization is beneficial.

175

Cross-Cutting Requirements

Usability Performance/Reactivity Good Fit to Context Broad and Deep Support

C
o
re

 F
e
a
tu

re
s

Determine the Changes
that Need to be Reviewed

Allow Viewing the Changes
that Need to be Reviewed

Collect, Store and Distribute
Remarks

Manage the Review Process

Further Basic Features

Allow Communication
around Remarks

Allow Fixing on the Fly Fixing Support for the Author

Cognitive-
Support

Code Review
Tools

A
d

v
a
n

c
e
d

 R
e
v
ie

w
e
r S

u
p

p
o
rt

Reduce Cognitive Load: Shrink
the Task

Reduce Cognitive Load: Help
to Off-Load Items from Human
Memory to the Computer

Reduce Cognitive Load: Allow
Efficient Chunking

Take the Differing Working
Styles and Backgrounds of
Developers into Account

Support Checking

Figure A.1: Overview of the essential requirements for cognitive-support code review tools

Weak deductive evidence. The realization is mentioned in the literature, or can be derived
with additional assumptions.

A.1 Cross-Cutting Requirements

From the interviews and from the experiences gained when using CoRT in practice, I found
a number of cross-cutting requirements that need to be taken into account throughout the whole
tool. When these are not addressed adequately, developers resort to using general-purpose soft-
ware development tools. This topic cropped up in the interviews (Part I), and is a possible reason
for the high number of developers that do not use a specialized review tool (see Section 7.3).

A.1.1 Usability

As Myers et al. [278] state it, “Programmers are Users too”, and good usability is a major
concern to allow efficient use of software development tools. A code review tool should streamline
the review process. Some examples where usability plays a role is the integration with the ticket
system to avoid context switches (Section 9.1), adding of remarks directly from the source view
(Section 9.2) and the presentation of diffs for efficient examination (Chapter 11).

A.1.2 Performance/Reactivity

The performance and reactivity of the review tool could be regarded as a sub-aspect of
usability. Reviewers do not want to wait more than a few seconds when starting a review (see
Section 15.3), and other interactions with the tools shall be swift, too. To reach this goal, it
might be needed to cache data locally or to trade reviewer support for speed when the full
calculation takes too long (see Section D.1).

176

A.1.3 Good Fit to Context

The development and review process and other contextual factors that influence the review
tool differ a lot between teams and companies (see Chapter 6). A review tool has to integrate
well into this context. Two examples: if there is an interface to an SCM, this needs to be
the SCM used in the team; and if the team uses a post-commit review process this needs to be
supported by the tool. For each contextual variant, a tool creator can decide whether to support
it and make the tool configurable in this regard, or to not support it. In the latter case, the tool
might not be usable for these teams, or the teams might decide to change the context (i.e., the
tool shapes the process; see Section 6.2).

A.1.4 Broad and Deep Support

The variety in the tool’s context also applies to the artifacts under review. There is not only
source code in one programming language, but other languages, build scripts, test cases and
much more that can be changed in a unit of work [120]. The advanced reviewer support that is
proposed in this thesis is based on language-specific analyses, and such a deep support is only
possible for a small part of the possible file types. But there needs to be a graceful fallback to
keep up broad and robust support for all changes, for example resorting to simple textual diffs.
A similar reasoning applies when there are very large changes that cannot be analyzed fully
without compromising performance. Here, a graceful fallback is needed, too, to ensure basic
functionality is still working.

A.2 Core Features

These are the core requirements that every tool for change-based review needs to satisfy.
They are satisfied by most current tools (see Chapter 7).

A.2.1 Determine the Changes that Need to be Reviewed

A review tool must be able to determine the scope of the review for a unit of work, i.e.,
which parts of the code base need to be checked in the review.
Realization: Interface to SCM To determine the review scope, a review tool can gather the
needed information automatically from the SCM. The tool determines the commits that belong
to the unit of work and the changes that were performed in these commits. In this way, the tool
is well integrated into the development context and provides a streamlined user experience.
(; Ch. 4, Ch. 7, Ch. 9, [241, 318])

A.2.2 Allow Viewing the Changes that Need to be Reviewed

The second core requirement is that the reviewer must be able to view and explore the
changes that need to be reviewed with the review tool. There are several non-exclusive ways to
allow this.
Realization: Show changes/diff To understand a change, it can be helpful to see the origin
(old version) of the change. Checking that the new code works is easier when the reviewers know
what changed and can assume that the old version did not contain unknown defects. To allow
this type of analysis, a review tool can provide a two-pane diff view of the changes. Chapter 11
discusses a number of different ways to present these diffs.

177

(; Ch. 7, Ch. 9, [296, 318])

Realization: Show in current code While working on a task, a portion of code may be
changed several times. With post-commit reviews, changes might also happen from outside
the unit of work under review. These intermediate steps do not matter much, the important
question is whether there are issues in the final version of the code. To allow this type of analysis,
a review tool can provide a view in which the review scope is highlighted in the most recent
version of the code. Such a view also aligns well with other patterns such as ‘Review in IDE
editor’ (Section A.4.2) or ‘Allow for exploratory testing’ (Section A.3.5).

(; Ch. 9)

Realization: Free Navigation The reviewer needs to explore the various parts of the change
under review. If the reviewer has a good knowledge of the code base, a good approach can be to
form hypotheses on expected changes and to check whether the changes were done as expected.
A review tool can support this type of analysis by providing means for free navigation, with
facilities such as hyperlinking, determining callers, determining subclasses, and so on.

(; Ch. 9, Ch. 14, [140, 377, 387])

Realization: Guided Navigation The reviewer needs to explore the various parts of the
change under review. With limited background information, it is hard to predict which parts
of the code need to be checked and in which order. The review tool can help the reviewer by
providing a means for guided navigation. In its simplest form, this can be a list of the change
parts that need to be reviewed. Chapter 14 deals with the question how to determine a good
order to guide the reviewer.

(; Ch. 9, Ch. 14, [157])

A.2.3 Collect, Store and Distribute Remarks

Another core requirement for a review tool is the handling of review remarks: Reviewers must
be able to enter remarks, and these must be stored and distributed to the other stakeholders.
Storing the remarks also allows for later analysis or auditing.

Realization: Adding of remarks in source view Reviewers usually notice an issue that
leads to a remark while viewing the code. To streamline the process of adding a remark, the
review tool can provide a feature to add a remark in such a view and to take the current context
into account. For example, the remark could automatically be attached to the current line or
current file.

(; Sect. 7.3, Ch. 9)

Realization: Remark classification Remarks may come in different types. For some, the
reviewer thinks that they definitely need to be addressed, but others might be optional, or even
just notes for the author. To allow the author to clearly distinguish these types of remarks,
the review tool can force the classification of remarks. CoRT’s remark types can be found in
Section 9.4.

(; Ch. 9, [140])

Realization: Remark storage in tickets Many ticket systems allow the addition of custom
fields to tickets, and the review tool can use such a field to store the review remarks. In this
way, they are automatically stored together with their ticket, and there is no need for a separate
database. This also allows other developers to read the remarks without having to use the review
tool, and therefore allows for gradual introduction and graceful fallback.

(; Ch. 9)

178

Realization: Remark storage in separate database When a review tool uses ‘Remark
storage in tickets’, the review tool depends on the ticket system. This dependency might hamper
its use in a broad range of teams with different ticket systems. Another possibility to store
remarks is to use a separate database. This is available in CoRT as a second option, and is used
in many other review tools.

(; Sect. 7.3, Ch. 9, [141, 275, 338])

A.2.4 Manage the Review Process

Another core requirement is that the review tool must manage the review process, for example
by allowing reviews to end with either acceptance or rejection, spawn the fixing of remarks, etc.
The exact form of the support also depends on the chosen review process. The classification
scheme in Chapter 6 presents many of the relevant process facets (e.g. Post-Commit vs Pre-
Commit, Fixing on the same ticket or postponed to separate tickets, . . .). Rule-based process
integration is one of the factors that differentiate change-based review from other forms of review
which rely on subjective review decisions, and Chapter 5 shows that such process integration is
associated with a higher chance of keeping up the use of reviews.

Realization: Interface to Ticket System Often, the development process for tickets is
managed in the ticket system. It can be adapted to also include the review sub-process. By
interfacing with the ticket system, the review tool can find open reviews and change the state
of tickets. This provides for a streamlined review experience while still leaving the possibility to
gradually introduce the tool.

(; Sect. 7.3, Ch. 9)

Realization: Pull Requests Another option to embed reviewing in the development workflow
are ‘pull requests’. With pull requests, code changes are not directly applied to the main/master
repository. Instead, submission of changes leads to a ‘pull request’ which is then reviewed (pre-
commit review).

(; Ch. 10, [147])

Realization: Team-wide configuration For regular reviews, the review process is defined for
the whole team or company. Therefore, a review tool should allow the team-wide configuration
of the respective settings. For teams that use a ‘mono repository’ strategy [184], this can be
done by committing the configuration to version control.

(; Sect. 4.1, Ch. 9)

A.3 Advanced Reviewer Support

The requirements stated in the previous section form the core of what today’s review tools
provide. Section 12.1 motivates that the main way to achieve better review results goes through
the reviewer, either by finding (or educating) better or better-matching reviewers, or by sup-
porting the existing reviewers to understand large changes better. The latter is more amenable
for tool support. I propose that the review of large changes means high cognitive load, and that
reducing this cognitive load can lead to better understanding and review results. The following
requirements outline several ways to reduce the reviewer’s cognitive load.

179

A.3.1 Reduce Cognitive Load: Shrink the Task

A cognitive-support review tool should reduce the size of the task, either by reducing the
amount of code to review or by reducing the depth with which it needs to be reviewed. This
not only reduces the cognitive load, but also directly reduces the needed effort.

Realization: Leave out unimportant change parts A cognitive-support review tool can
reduce the review scope by identifying change parts that are not important for review and
leaving them out from the list of items that need to be reviewed (see ‘Guided Navigation’
above). Chapter 15 performs a data mining study to classify change parts by importance. It
concludes that simple syntactic checks are sufficient to reap most of the benefits here.

(; Ch. 15, [136, 373])

Realization: Help focusing on the most important parts A cognitive-support review tool
can also help the reviewer to decide which parts of the change need to be checked in detail and
for which parts skimming is sufficient. Section 15.2 touches upon this topic, but it is not studied
deeply in the current thesis.

(; Sect. 15.2, [311])

A.3.2 Reduce Cognitive Load: Help to Off-Load Items from Human Memory
to the Computer

The more items have to be stored in human working memory for a task, the higher its mental
load. Therefore, a cognitive-support review tool should help the reviewer to off-load items from
his or her memory to the computer.

Realization: Take Care of Tracking what was Checked Apart from the main task of
checking the code, a reviewer has to perform book-keeping to assure that no important part of
the change is missed. A cognitive-support review tool can provide means to move this book-
keeping load to the computer. One possibility is to automatically track which parts of the change
have been viewed, another is to allow the reviewer to explicitly mark change parts as checked.

(; Sect. 9.2)

Realization: Allow Offloading of Temporary Markers to the Tool During review, a
reviewer might suspect a potential problem, but needs to check other things first before con-
firming the suspicion. Keeping such a suspicion in memory adds to the mental load of the task.
A cognitive-support review tool can provide temporary review markers that the reviewer can
use to keep notes of such suspicions. In this way, the review tool can make sure that they are
not lost.

(; Sect. 9.2, Sect. 9.4)

Realization: Efficient guided exploration Frequent context-switches lead to unnecessary
mental load. Reviewers often rely on the order given by the review tool to guide them through the
change, especially when they are no experts in the respective part of the code base (Section 14.2).
The theory developed in Chapter 14 of this thesis argues that an optimal order of reading source
code keeps related change parts close together, which reduces the mental load. A cognitive-
support review tool can automatically determine such an order and allow more efficient guided
exploration that way.

(; Ch. 14)

180

A.3.3 Reduce Cognitive Load: Allow Efficient Chunking

Another way to overcome the limits of human working memory is chunking. By chunking,
a number of items are conceptually combined into a single item, and this combined item can
be processed more effectively in working memory. An example is a developer that subsumes a
large number of syntactic source code items as “a standard loop over the items in an array”. A
cognitive-support review tool should help the reviewer to perform mental chunking.
Realization: Provide background/context information Mental chunking depends on la-
bels and links that connect the information fragments. A cognitive-support review tool can
provide such background information, for example by showing the description of the task un-
der review or the commit descriptions. The reviewer can then map the code changes to these
descriptions more easily.
(; Ch. 14)
Realization: Provide views of the change with different granularity A cognitive-
support review tool can also suggest groupings of the change. Having such high-level views
of the change can help the reviewer to put the low-level changes in context. One such possibility
is discussed in Section 14.3 with the hierarchical view of the code change. Another is Gripp’s
summary view of the change briefly discussed in Section 12.2.3.2.
(; Ch. 14, [150])

A.3.4 Take the Differing Working Styles and Backgrounds of Developers into
Account

Cognitive load is based on the combination of the mental load of the task and the capabilities
of the human. The human influence is not only a matter of raw cognitive abilities, but also
depends on its background and experiences. For example, the needed support differs between
a developer with a lot of experience in the changed portion of the code and another with little
experience there. A cognitive-support review tool should allow different developers to benefit
from its features.
Realization: Customizability In some cases, developers know what way of presenting infor-
mation is best for them. And if they don’t, providing ways to customize the tool to their wishes
can still increase the tool’s acceptance. A cognitive-support review tool can provide customiz-
ability in various regards, for example for the creation of the hierarchical tours (Chapter 14) or
for the presentation of the source code diffs (Chapter 11).
(; Ch. 11, Ch. 14, [278])
Realization: Efficient free exploration Developers with experience in a code base might
readily know how a certain method is usually used, whereas others need to collect this knowledge
from the code on-demand. A cognitive-support review tool can provide various means for free
exploration of the change and the code base: Hyper-linking and back-referencing between callers
and callees, analysis of inheritance hierarchies, tooltips with Javadocs, and so on. Many of these
features can be subsumed as IDE-like navigation features, and consequently one possibility to
provide these features is by integrating the review tool with an IDE.
(; Ch. 9, Sect. 12.2.3.2, [323, 361, 362])

A.3.5 Support Checking

This thesis focused on more efficient understanding of large changes, mainly by reducing the
cognitive load of the reviewers. But this is not the only way to aid the reviewer, support can

181

also be provided for the checking itself. The thesis briefly touched upon two ways to do so.

Realization: Incorporate review agents / context-sensitive checklists Context-sensitive
checklists, i.e., checklists whose content depends on properties of the change, can help to find
problems during check-in [28]. They are similar to the review agents that were touched upon
in Section 15.2. Both analyze the change and create items of the form “There could be this
kind of problem here. Please check it.” Similar checklists can also be used during review, to
provide hints especially for inexperienced reviewers. It remains to show in future work whether a
framing as checklist targeted at the reviewer or as agent-created remarks targeted at the author
is better.

(; Sect. 6.1, Sect. 15.2, [28, 69, 121, 280])

Realization: Allow for exploratory testing The interviews and the survey in Part I show
that developers sometimes execute the code during review, for example to gain a better un-
derstanding or to test a hypothesis about a potential problem. A review tool can allow such
execution, for example by integrating into the IDE.

(; Sect. 6.1)

A.4 Further Basic Features

So far, this section discussed the core features that every change-based review tool must
possess and the cognitive support features that are one of the main contributions of this thesis.
But apart from these, there are more features that a creator of a review tool should consider.

A.4.1 Allow Communication around Remarks

Reviews are not only about finding defects, but also about communication and discussion of
improvement possibilities (see Section 4.3). Like other remarks, this discussion usually spawns
at a certain position in the code, or as a reaction to a remark.

Realization: Discussion Threads for Remarks A review tool should allow discussion
threads for remarks, i.e., other developers can respond to remarks and this responses form
a linear discussion thread. By starting at a remark, the discussion has a focus and is bound to
a certain position in the code, and the linear form is easy to grasp.

(; Sect. 6.1, [318])

A.4.2 Allow Fixing On-The-Fly

Chapter 6 mentions that many developers commonly fix small issues on-the-fly during review.
A review tool should support such on-the-fly edits. The reviewer should still be able to give
a rationale for the change, and other reviewers or the author should be able to see and check
them.

Realization: Review in IDE editor The review tool can provide the possibility to fix remarks
on-the-fly by integrating into the IDE. In this way, continuous compilation and many of the
other checks in the IDE prevent the introduction of simple errors, and the changes need to be
committed and are, therefore, automatically traceable to the reviewer. Chapter 9 discusses the
pros and cons of integrating a review tool with the IDE in more depth.

(; Sect. 6.1)

182

A.4.3 Fixing Support for the Author

Without fixing the found issues, many of the benefits of reviews cannot be reaped. Therefore,
a review tool should also provide support for the author during fixing.
Realization: List of Remarks By providing a list of the found remarks, the review tool can
help the author to address them in a systematic way.
(; Ch. 9)
Realization: Navigation from Remarks to Code For remarks that are bound to a certain
position in the code, the review tool should allow easy navigation from the list of remarks to
that part of the code.
(; Ch. 9)
Realization: Check-off for Remarks The author needs to keep track of which items still
need to be addressed. The review tool can provide a feature to check-off remarks as addressed
or to reject their fixing.
(; Sect. 6.1, Ch. 9)

♦
Summing up, this chapter presented essential requirements for cognitive-support code review

tools, and possible realizations to satisfy these requirements. The requirements are separated
into four groups, of which three apply to all code review tools and one contains the advanced
reviewer support features that are specific to cognitive-support code review tools.

183

184

B
The Faceted Classification Scheme in Detail

This chapter presents the details on the facets of the classification scheme that was introduced
in Chapter 6.1. When there was a corresponding question in the online survey from Part I, the
percentages of the teams that use the respective variant are also given.

A variation point is included as a facet of the classification scheme when it is an identifiable,
fixed part of the process for at least one case and at least two different variations were observed.
Some of the interviewees reported several distinct cases of review use for a single company.
For the scheme, I consider a review variant a distinct case if it differs from other review process
variants in the same company and if this choice only depends on external factors (team, product,
. . .). The IDs from Table 3.1 (in Section 3.1) are used as subscripts to refer to the companies.
When the ID is followed by a number, this refers to a specific case for that company.

B.1 Process Embedding

The first group of facets contains aspects that varied with regard to how the code review
process is embedded into the rest of the development process, i.e., when and in which way a
review is triggered and which influences it has on other process activities.

Unit of work The definition of regular change-based code review (Definition 2) states that
the changes performed in a “unit of work” define the scope of the review. The smaller the unit of
work, the smaller the effort spent on every single review, but the higher the number of reviews.
In the studied cases, one of these types of unit of work was chosen as a trigger for reviews:

release Review is triggered for changes that are put into production or are ready for “produc-
tion approval”. I .IQ Survey: 1% (1/136)

story/requirement Review is triggered for a user story/requirement that is considered done.

I .IF1 ,IH ,IL Survey: 11% (15/136)

task Many teams divide user stories into separate implementation tasks. If the chosen value
for unit of work is “task”, a review spans the changes done in such an implementation
task. I .IE ,IF2 ,IG,LX ,LF Survey: 53% (72/136)

185

push/pull/combined commit Review is done for each source code management (SCM) ‘pull
request’ or some other type of combined commit. A pull request often corresponds to a
task when a team uses both. I .IB1 ,IO ,IS ,LA,LS ,LQ Survey: 27% (37/136)

singular commit Review is triggered for every small-grained SCM commit. Mainly, this vari-
ant is used when changes are rare and strictly controlled, such as in release branches. I .ID ,IB2 ,

IP1 ,IP2 Survey: 8% (11/136)

Tool support/enforcement for triggering The triggering of reviews can either be sup-
ported by tools, or it is done completely manually:

tool A tool ensures that a review candidate is created for each unit of work. This can be
accomplished, for example, with a separate state in a bug tracker’s ticket workflow or
with specialized tools that enforce this process, like pull requests on GitHub1 or Ger-
rit2. I .ID ,IE ,IF1 ,IF2 ,IG,IO ,IS ,LG,LS ,LQ

conventions If no tools are employed, conventions and group pressure are used to reach process
compliance: “. . . and this is more like peer pressure. If something goes live and there was
no review, the other developers will ask ‘Why not? What’s up?’ ”I.IQ I .IB1 ,IB1 ,IH ,IL,IQ ,LM

Publicness of the reviewed code The changes under review can be made public to other
developers before the review, or they are still private during the review. This is studied in detail
in Chapter 10. The two corresponding values for this facet are:

post-commit review A review is performed after the changes are visible for other develop-
ers3. I .IB1 ,IE ,IF1 ,IF2 ,IG,IH ,IL,IP2 ,IQ Survey: 54% (76/140)

pre-commit review A review is performed before the changes reach the main development
trunk4. Review using pull requests is a special case of pre-commit review. I .IB2 ,ID ,IO ,IP1 ,IS ,

LA,LV ,LM ,LG,LQ ,LN ,LY ,LH ,LD Survey: 46% (64/140)

Means to keep unreviewed changes from customer releases All studied teams that
perform regular reviews to detect defects try to avoid performing reviews after the changes have
been released to the customer(s). They choose different means to reach this goal:

organizational They manually check for open reviews when a release approaches, in com-
bination with organizational means to ensure swift completion of reviews (see “Means to
ensure swift review completion”). I .IE ,IF1 ,IF2 ,IH ,IL,IQ Survey: 26% (26/99)

pre-commit review They use pre-commit reviews (see “Publicness of the reviewed code”),
either generally or for a certain time before releases. I .IB2 ,ID ,IO ,IP1 ,IS ,LA,LV ,LS Survey: 40%
(40/99)

release branch There is a permanent technical separation between development branch/stream
and release branch/stream. I .IG,LS Survey: 33% (33/99)

1https://github.com
2https://www.gerritcodereview.com
3also called “Commit Then Review” in other publications
4also called “Review Then Commit” in other publications

186

https://github.com
https://www.gerritcodereview.com

Means to ensure swift review completion To ensure that a review does not stay open for
too long and open reviews don’t accumulate too much, many teams employ at least one of the
following organizational means:

priority Reviews have higher priority than other tasks (“In one team we defined a rule in
which order tasks have to be worked on. That production problems are the first priority,
but that when the implementation of a user story is done and it is ready for review on the
taskboard, that this has a higher priority then starting a new story. To keep the cycle times
in a sprint short.”I.IF). I .IE ,IF1 ,IF2 Survey: 24% (24/99)

WIP limit The team has a “work in progress (WIP) limit”5 that restricts the number of tasks
that can be “ready for review”. I .IH Survey: 13% (13/99)

time slot The reviewers reserve specific times of the day or week for code review. I .IG Survey:
19% (19/99)

author’s responsibility The author actively seeks out a reviewer, perhaps they even review
together. When pre-commit reviews are used, the author has an incentive to get the review
done, in order to get his changes included into the common code base. I .IB1 ,ID ,IL,IO ,IP1 ,IQ ,IS

Survey: 35% (35/99)

Blocking of process There are steps following code review in a unit of work’s life cycle.
Commonly this is declaring the feature ready for use and delivering it to the customer. The
observed cases differ in whether these following steps are blocked while the review is underway:

full follow-up The steps following code review in a unit of work’s life cycle, e.g., declaring
it as ‘ready for delivery’, are not begun until all issues found in the review have been
resolved. I .IB2 ,ID ,IE ,IF1 ,IF2 ,IG,IL,IO ,IP1 ,IP2 ,IS ,LA,LF ,LM ,LG,LS ,LQ

wait for review The unit of work is blocked until the reviewers finished checking. Fixing is
done based on trust only and not explicitly waited for. I .IH ,IQ

no blocking The unit of work can be further processed, e.g., delivered to the customer, without
checking for missing reviews. I .IB1

B.2 Reviewers

The facets belonging to this group describe differences we found regarding the selection of
reviewers.

Usual number of reviewers It was noted as a commonality of the observed processes that
there are usually at most two reviewers (excluding the author). Some teams report rare cases
with more reviewers: “When it’s database migration code [. . .], five to six selected reviewers
have to give their OK to it”I.IH . In cases ID and IL, the author usually takes part in reviewing
(see “Interaction while checking”).

Rules for reviewer count / review skipping The teams have different rules regarding
the minimal number of reviewers, and whether this number can be zero, i.e. review can be
skipped. In most cases, at least one of the following factors can influence the minimal number
of reviewers:

5a term from “Kanban” and similar methodologies [212]

187

component Review is only obligatory for certain components, or certain components have to
be checked by more reviewers. These components are commonly more complex or the
estimated consequences of defects are more severe. I .IB1 ,IE ,IO ,LS Survey: 27% (25/93)

author’s experience Only changes by inexperienced developers have to be reviewed. I .IP2
Survey: 23% (21/93)

life cycle phase In some teams, review is only obligatory near releases. I .IB2 ,ID ,IP1 ,LS Survey:
12% (11/93)

change size Changes smaller than a certain threshold do not have to be reviewed. I .IL Survey:
13% (12/93)

pair programming Changes done using pair programming do not have to be reviewed or have
to be reviewed by one reviewer less. I .IE ,IF2 ,IS Survey: 35% (33/93)

reviewer’s choice The reviewer can decide that a review is not needed or that a second re-
viewer would be advisable, for example, based on an assessment of the change’s complexity.

I .IF1 ,IF2 ,IG,IH
6

author’s choice The author can choose to have additional reviewers, e.g., because she con-
siders the change risky. I .IB1 ,IB2

Reviewer population There are large differences in the studied cases regarding the set of
potential reviewers. The significant factor is how, and to what extent, the experience of the
potential reviewer is taken into account. The authors themselves are not employed as the
only reviewer in any of the cases, but they are sometimes asked to review jointly with another
developer. Among the studied teams, the variants were:

everybody Every team member shall be available as a reviewer for every change, mostly with
some exceptions allowed. I .IB1 ,IB2 ,IE ,IF1 ,IF2 ,IH ,IL,LF Survey: 87% (80/92)

restricted Only a certain subset of experienced developers, core team members or specialists
shall do reviews. I .IG,IS ,LF ,LG,LL Survey: 2% (2/92)

fixed All reviews are done by the same reviewer(s). In one of the observed cases, the team
elects two experienced reviewers to perform every review. Another variant is the team
leader reviewing everything. I .ID ,IP2 ,IQ ,LX Survey: 11% (10/92)

Assignment of reviewers to reviews The interviewees described several possibilities how
the connection between reviewers and reviews can be determined:

pull Using this style of reviewer assignment, it is the reviewer who chooses among the out-
standing reviews. I .IE ,IF1 ,IF2 ,LF Survey: 30% (47/155)

push This is the opposite of the “pull” style: The author chooses who should perform the
review. I .IB1 ,IB2 ,IL,LA,LV ,LM ,LQ ,LL Survey: 35% (54/155)

mix In a mix of the “push” and “pull” style, the author invites a preferred subset of the reviewer
population and the potential reviewers then decide if they want to participate. I .IG,IH ,IS ,LA,

LM ,LQ Survey: 21% (32/155)

fixed The same reviewers perform all reviews for a certain team or module, so that there is no
choice left. I .ID ,IP2 ,IQ ,LA,LV ,LQ Survey: 12% (18/155)

discussion The assignment of reviewers is discussed in the team. Survey: 1% (2/155)

random Reviews are assigned randomly to reviewers. Survey: 1% (1/155)

6The options “reviewer’s choice” and “author’s choice” were not considered in the survey, because the survey
focused on situations where a specific number of usual reviewers can be given.

188

Tool support for reviewer assignment When the number of potential reviewers is large
and reviewer assignment is performed in the ‘push’ style, tool support can help the authors find
suitable reviewers.

no support There is no support for finding a suitable assignment of reviewers to reviews. I .ID ,IE ,

IF1 ,IF2 ,IG,IH ,IL,IP2 ,IG,IS

reviewer recommendations There is computer support for finding suitable reviewers for a
given change. I .IB1 ,IB2 ,LV ,LF ,LM ,LN ,LD

Tool support for ‘pull’ assignment, i.e., help for the reviewers to find open reviews that are
suitable for them, comes to mind as an obvious additional possibility. We could not observe this
kind of support in the studied cases.

B.3 Checking

The facets in this group describe variations that were observed regarding the central activity
of a code review: Checking the code. Like in the rest of this chapter, I only describe variations in
the codified processes of the teams. Personal differences in the checking habits of the individual
reviewers are out of the scope of the classification scheme.

Interaction while checking Differences in reviewer interaction while checking have been
described in some of the earliest publications on code reviews. We could also observe similar
differences in the studied cases:

on-demand The review participants only interact on-demand, e.g., when there are questions
regarding the code. I .IE ,IG,IP2 ,LV ,LF Survey: 16% (26/158)

asynchronous discussion In addition to on-demand interaction, review remarks are instantly
communicated and are discussed asynchronously by the review participants. I .IB1 ,IB2 ,IH ,IO ,

IS ,LA,LM Survey: 56% (89/158)

meeting with author All review participants, potentially including the author, meet for
checking. Often, the author actively guides the reviewer and explains the code. This
has been called “pair review” by some of the interviewees. I .ID ,IF1 ,IF2 ,IL,LS Survey: 26%
(41/158)

meeting without author The reviewers meet to discuss the code. This variant has been
called “pair review”, too. I .IQ Survey: 1% (2/158)

The main use of direct interaction, according to the interviewees, is to help to understand
the code and to gain background information on implementation decisions (e.g., to decide if
something is there for a legitimate reason or if it is an issue). It is also used to foster discussion
on better solutions.

Temporal arrangement of reviewers When multiple reviewers perform a review, we ob-
served two variants of temporal arrangement:

parallel All reviewers work in parallel and rework starts when all are finished. Parallel re-
view is a prerequisite for direct inter-reviewer interaction. I .IB1 ,IB2 ,ID ,IF1 ,IF2 ,IH ,IO ,IQ ,LF ,LM

Survey: 73% (73/99)

sequential Only one reviewer reviews at a time and rework is done after each reviewer. I .IE ,IG,LV

Survey: 26% (26/99)

189

Specialized roles When there are multiple reviewers, they can take on different roles, spe-
cializing on certain quality aspects. We only observed a limited number of cases using different
roles, so that we divided this facet’s possibilities coarsely:

roles The different reviewers take on different roles, e.g., with one reviewer specializing in code
quality and another looking at GUI aspects. I .IG,LF Survey: 7% (6/90)

no roles Reviewers do not take on different roles. I .IB1 ,IB2 ,ID ,IE ,IF1 ,IF2 ,IH ,IL,IP2 ,IQ ,IS ,LF ,LQ

Survey: 93% (84/90)

Detection aids The checking in a code review is performed mainly by viewing and reading
source code (Definition 1). To increase the chance of finding defects, some teams use one or
several auxiliary techniques:

checklists A checklist, i.e., a list of questions or topics that have to be checked in a review,
is used by a subset of the observed cases. I .IF1 ,IF2 ,IL,IQ ,IS ,LA Survey: 23% (22/94)

static code analysis Static code analysis during checking can be used to guide and focus the
reviewer on portions of the code that might need further attention. This differs from the
use of static analysis before reviewing that is commonly done to find simple issues early
(see Section 4.1 and Chapter 15). I .IE Survey: 79% (72/91)

testing In several of the cases, a limited amount of manual exploratory testing is common when
performing a review (sometimes even adding additional unit tests during reviewing). I .IB1 ,

IB2 ,IE ,IF1 ,IF2 ,IG,IL,LS Survey: 76% (69/91)

Reviewer changes code When performing a code review, it is often tempting for the reviewer
to directly change some code. The observed teams use one of two options with regard to code
changes by the reviewer:

never The reviewer is not allowed or technically not able to change code during checking. I .IB1 ,

IB2 ,ID ,IH ,IQ Survey: 46% (73/157)
sometimes The reviewers may change code during checking. This option is most often used

for changes that are small and which are regarded as risk-free and not worth the effort to
write a remark. I .IE ,IF1 ,IF2 ,IG,IL,IS Survey: 54% (84/157)

B.4 Feedback

Feedback in the form of review remarks is the main result of the checking. The facets in this
group summarize differences in the handling of feedback between the teams’ review processes.

Communication of issues The bulk of issues that is not fixed by the reviewer (and sometimes
also issues that have been fixed) has to be communicated to the author. This communication
can generally be divided into oral and written communication.

written The found issues are mainly communicated in written form. Depending on the
used tools, this can happen for example in the form of email, as ticket comments, us-
ing comments in the source code or using a specialized review tool. I .IB1 ,IB2 ,IE ,IF1 ,IF2 ,IG,

IH ,IO ,IQ ,IS ,LA,LV ,LF ,LM ,LG,LS ,LQ Survey: 53% (84/158)
oral only The issues are discussed orally with the author, mostly face-to-face. They are not

stored except for short-term note taking. I .ID ,LX Survey: 23% (36/158)
oral stored The issues are mainly communicated orally, but also stored in written form, e.g.,

for traceability purposes. I .IL Survey: 24% (38/158)

190

Options to handle issues When the review remarks finally reach the author, he or she
decides how to cope with them. The following possibilities were found:

resolve Change the code according to the remark. Survey: 100% (91/91)

reject Ask for clarification or justification of the remark (when it is seen as some sort of ‘false
positive’ by the author). Survey: 99% (90/91)

postpone Create a task to perform the needed changes. This task is then prioritized according
to the team’s development process. I .IB1 ,IH ,IL,IQ Survey: 65% (59/91)

ignore Do nothing. I .IB1 ,IH ,IQ Survey: 42% (38/91)

The actually found differences apply to the options postpone and ignore. Some teams
dismiss postponing with an attitude of “either fix it now or forget it”. And some teams demand
a reaction on every raised issue (“. . . when the reviewer says something, that either has to be
done this way or it has to be discussed together and a consensus reached.”I.IS) while for some
it is an accepted practice to ignore remarks. The survey also asked about the frequency of
the respective behaviors. When only counting teams in which the respective behavior happens
occasionally or more often, the counts go down to 31% (28/91) for “postpone” and 4% (4/91)
for “ignore”.

B.5 Overarching Facets

The facets in this group pertain to aspects that span the whole code review process.

Use of metrics The collection of review metrics and the systematic use of review results to
improve the process is mentioned in the literature as a key feature that separates “inspection”
from “Inspection” [140]:

metrics in use Metrics on the code reviews are gathered and used systematically, for example
for report generation and process improvement. I .LA,LF ,LM Survey: 5% (4/88)

no metrics use Metrics on the code reviews are either not available or not used systematically.

I .IB1 ,IB2 ,ID ,IE ,IF1 ,IF2 ,IG,IH ,IL,IO ,IP1 ,IP2 ,IQ ,IS Survey: 95% (84/88)

We could not observe the value metrics in use in the empirical data from the interviews,
but only in the cases described in the literature and in the survey.

Tool specialization In the preceding sections, several facets referred to tool support for
specific tasks. More generally, we observed a difference between the use of a specialized tool and
the combination of general-purpose tools:

general-purpose No specialized review software is in use. Instead, the teams use a combi-
nation of IDE, source code management system (SCM) and ticket system/bug tracker.
Combined, these systems support all features seen as the core of a review tool: View-
ing, examining and possibly editing the code, determining which parts of the code belong
to a unit of work, documenting issues and integration of reviews into the development
process. I .ID ,IE ,IF1 ,IF2 ,IG,IL,IQ

specialized The teams use a specialized code review tool that combines all relevant features.

I .IB1 ,IB2 ,IH ,IO ,IP2 ,IS ,LA,LV ,LF ,LM ,LG,LS ,LL

Section 7.3 goes into more detail on the specific tools that are used in the sample.

♦
191

By choosing a faceted description, it is possible to cleanly describe the variations found in
the study. A weakness of this approach is that it is more complicated to use, compared to a
small number of placative process names. In addition, interdependencies between certain values
of the facets are not immediately obvious. Another drawback of the proposed model is the
large number of facets. There intentionally was no exclusion of facets based on some measure
of relevance, because relevance depends on the context in which the model is used. Researchers
using the model should consider excluding facets that they know to be irrelevant for their study.

192

C
Details on the Simulation Model for the

Comparison of Pre- and Post-Commit
Reviews

This chapter provides implementation details on the discrete-event simulation model that is
used in the simulation study in Chapter 10. The description is based on [35].

The model’s basic structure follows an agile Kanban-style [9] development process, incorpo-
rating agile best practices and common industrial practices: A development team continuously
pulls user stories from a pool of requirements, splits them into tasks, works on the tasks until all
of them are finished and then delivers the results to the customers. After the implementation of
a task is finished, the corresponding changes are reviewed. If issues are found during the review,
they have to be fixed and another round of review follows, otherwise, the task is considered done.
This basic life-cycle of a task is depicted in Figure C.11. Further quality assurance measures,
like unit testing and static code analysis, are subsumed under “implementation”. The model
assumes that some kind of ‘continuous delivery’ process ensures that finished stories will be
available to the customer shortly after they are finished, but does not model it in detail. Also
out of scope is the prioritization process: Stories are simply created with random attributes
when needed.

At the start of Chapter 10, the effects that the interviewees believed to influence whether

1As advised in [291], the UML is used to describe the model. The full diagrams are available online [33].

Figure C.1: State diagram for Tasks (see also Figure C.2) (Source: [35])

193

Figure C.2: Overview of important classes from the model (Source: [35])

pre-commit or post-commit reviews are a better fit are shown. All of these effects are considered
in the model: Injection of ‘normal’ and ‘blocker’ issues, task switch overhead, and conflicts
on commit. The review variant is a special model parameter that is used in some of the sub-
processes described below.

Figure C.2 shows the classes constituting the model. It contains two ‘active’ parts: De-
velopers2 and Issues. The next sections first describe a Developer’s life-cycle in more detail
and elaborate on Issues afterward. Not every detail of the model is described as thoroughly as
needed for detailed replication and scrutiny of the results. Therefore, the full model has been
made available online [33].

C.1 Details on the Modeling of Developers’ Work

A Developer is an active process and follows the process model depicted in Figure C.3.
When looking for something to do, the Developer follows a strict priority order: When there
is an Issue that just newly occurred, she has a look at it and decides what to do with it
(“issue assessment”). When no such Issues exist, she checks whether a Task she implemented
was rejected with review remarks and fixes these remarks. Next in priority order comes the
reviewing of Tasks implemented by others, then fixing of IssueFixTasks, then implementation of
new StoryTasks and finally, when there is no other work to do, planning a new Story or joining
someone else who is already planning.

The sub-process of implementing a task belonging to a story is shown in Figure C.4. It
starts with the Developer changing the Task’s state to “in implementation” and moving it to
the corresponding column of the Board. She updates her local working copy from the source
code repository, which registers the current simulation time for the later calculation of potential
conflicts. The following two activities are shown separated, but could also be seen as interleaved:
Depending on the time she last worked on the Story, she has to spend some “task switch
overhead” to (re-)familiarize herself with it. Additionally, she performs the implementation
work (including testing), which for the sake of this model mainly boils down to the creation of

2In the rest of this section, class names are written in italic.

194

Figure C.3: Activity diagram: Main process followed by Developer (see also Section C.1) (Source: [35])

new Issues. The step after that depends on the review mode: In pre-commit review mode, the
Task’s state is directly changed to “ready for review”. In post-commit mode, she first has to
commit her changes, during which there can be conflicts that have to be resolved.

When performing a review, the Developer first changes the Task’s state and has to cope
with task switch overhead, too (see Figure C.5). Then, the code is checked, which means that
each Issue that is currently ‘lurking’ in the Task is found with a certain developer-specific
probability. If the developer found at least one Issue, she rejects the Task and notes the found
Issues as review remarks. Otherwise, if in pre-commit mode, the Task’s accumulated changes
will be committed to the main development source tree, like described above. The Task is then
considered “done”, which could mean that the corresponding Story can be finished.

The process for fixing review remarks is similar to the process for the implementation of
tasks. One of the main differences is that when fixing review remarks, the corresponding Issue
will be marked as “fixed” on commit so that it cannot occur anymore (see Figure C.6 for the
issues’ states). Furthermore, the time needed for fixing depends on the sum of the single remarks’
sizes and not the task’s size.

C.2 Details on the Modeling of Issues

The preceding section already alluded to the life-cycle of an Issue, which is now described
in more detail: In the model, an Issue is very broadly defined as every true positive that can

195

Figure C.4: Activity diagram: Details for the sub process “Implement task” (from Figure C.3)
(Source: [35])

be remarked in a review [248]. The model distinguishes two kinds of issues: NormalIssues
stand for problems like an incorrectly implemented algorithm (corresponding to the definition of
fault in [178]), as well as maintainability or performance problems. GlobalBlockerIssues on the
other hand handle the special case when a Developer injects a problem that will block all other
currently implementing Developers soon after it is committed. In contrast, when a NormalIssue
is observed by a developer or customer, it is put in a queue with Issues that have to be assessed.
During issue assessment, a Developer determines which Task the Issue belongs to. Depending
on the Task’s current state, the Issue can be fixed by some Developer who is currently at it
anyway, or an IssueFixTask has to be created. Conceptually, time lost due to distraction by
an issue while working on another task is also modeled as part of the issue assessment time.
Further details on issue assessment can be seen in Figure C.7.

There are two ways a NormalIssue can become visible. It can be observed by a Developer
after it has been committed to the main development source tree, and it can be observed by a
customer after the story has been finished and delivered (see Figure C.6). As soon as a fix for
the Issue is committed, it cannot be observed anymore. Not all NormalIssues can be found by
customers: A significant share of issues found in code reviews are maintainability issues [248],
and as such can only be observed by Developers (“internOnly”).

196

Figure C.5: Activity diagram: Details for the sub process “Perform review” (from Figure C.3)
(Source: [35])

Figure C.6: State diagram for NormalIssues (see also Figure C.2) (Source: [35])

197

Figure C.7: Activity diagram: Details for the sub process “Perform issue assessment” (from Figure C.3)
(Source: [35])

Issues can be injected every time a Developer implements a StoryTask, or fixes a review
remark or an IssueFixTask. The number of Issues injected is calculated based on the Developer’s
skill (measured in issues/hour for the sake of simplicity), and the time spent implementing (taken
as a surrogate for the task’s complexity). An additional increase is due to follow-up issues3:

issue count ≈ issue injection ratedeveloper · relevant time

+ follow up issue spawn probability ·
∑

p∈prerequisites

∣∣lurking issuesp
∣∣ (C.1)

When fixing issues, there is an additional ‘fixing issue rate factor’ in the first part of the sum.
It accounts for the possibly lower chance of introducing new issues when fixing old ones (due to
fewer degrees of freedom). The relevant time depends on several parameters and on the type of
the task. As an example, it is calculated for issue fix tasks as:

relevant time := review remark fix duration · review fix to task factor

+ task switch overhead · task switch issue factor (C.2)

The calculation of the task switch time is modeled with an exponential decay, inspired by the
forgetting curve of Ebbinghaus [243]. Full details on its calculation are available in the model [33].

3Please refer to Tables C.1 and C.2 and Figure C.2 for more details on the parameters and terms from the
model used in the formulas. Like the rest of the model, the formulas were generated and validated with the
iterative process described in Section 10.1.2

198

C.3 Empirical Triangulation of Model Parameters

As described in Section 10.1, the main empirical foundation of the simulation study is qual-
itative. In addition, quantitative empirical data was used in three ways: (1) To validate the
shape of probability distributions for input parameters, (2) to determine realistic dependency
structures, and (3) to cross-check the choice of input parameter ranges. The quantitative data
was collected in retrospect from the partner company’s ticket system. It contains information
on all software development tasks for the company’s product for several years.

The distribution for the time between when an Issue could be observed and when it will
be observed belongs to the category (1) (“determine the shape of probability distributions”). I
sampled 15 user-found issues and manually determined the date they were injected and the date
they were observed (i.e., the bug ticket was created). The median difference was 207 days. The
obtained distribution matched an exponential distribution fairly well. As it can also be argued
on a theoretical basis that the time until an issue is found by a customer follows a (shifted)
exponential distribution, this distribution was chosen for the simulation.

To cross-check the choice of parameter ranges for the durations of task implementation and
review, I also sampled data from the same ticket system. As this analysis was fully automated,
I was able to take a larger sample. I excluded tasks with obviously erroneous durations, leaving
1896 tasks. The median time for implementation was about 4 working hours, the arithmetic
mean about 9 working hours. For the review time, the median was 0.5 working hours and
the arithmetic mean was 1 working hour. A day was counted as 8 working hours for the
calculation. Both distributions are skewed to the right. The Pearson correlation coefficient of
implementation and review time is (only) 0.18, so that I chose independent distributions for
the implementation and review time. For distribution fitting, I compared log-normal, gamma,
normal and exponential distributions using R [307]. A log-normal distribution is the best fit for
all task durations.

As described in the previous section, new stories are created when needed in the simulation.
During creation, the number of tasks and their dependency structure has to be determined. To
gain realistic structures, I sampled 49 stories from the industrial ticket system and determined
the dependency structure of the subtasks. The minimal number of tasks per story was one,
the maximal number in the sample was 16. Small numbers of tasks were much more frequent
than larger numbers. The obtained empirical distribution of task counts can be seen in Fig-
ure C.8. I encountered 25 different dependency graphs. To provide a little more insight into
their structure, I determined the number of start tasks (tasks not dependent on anything) and
end tasks (task on which no other tasks depends). In 14 of the graphs (15 of the stories), there
are more end tasks than start tasks. In 4 cases it is the other way around so that there is
a tendency towards common prerequisite tasks followed by parallel work. In addition to this
“REALISTIC” dependency structure, the simulation study uses four artificial structures: In
“NO SUBDIVISION” every story consists of only one task. In “NO DEPENDENCIES” the
number of tasks per story is distributed like in “REALISTIC”, but without any dependencies
between the tasks. In “CHAINS” the tasks are totally ordered so that their dependencies form
a sequential structure. Every story contains at least two tasks, otherwise the distribution of
small to large tasks is similar to “REALISTIC”. In the last studied structure, “DIAMONDS”,
there is a single start task and a single end task. All tasks in between can be done in parallel.
Consequently, every story consists of at least three tasks. During sensitivity analysis, it turned
out that the exact dependency structure is not that relevant so that only “REALISTIC” and
“NO DEPENDENCIES” were studied in full detail. More information on the graph structure

199

data can be found in the class DependencyGraphConstellation of [33].
Tables C.1 and C.2 summarize the main parameters of the model. A dagger (†) in the last

column indicates that example values could be taken or estimated from empirical data.

C.4 Simplifying Assumptions

Like every simulation model, this simulation model is built for a specific purpose (comparison
of pre- and post-commit reviews) and contains simplifying assumptions, notably:
• A developer works on only one task at a time.
• Breaks and interruptions are not modeled, as are weekends and breaks between working

days.
• There is a strict priority order of task types.
• The review round does not influence the time for a review, as well as the probability of

finding an issue.
• A review is never canceled, even if there is a very high number of issues found.
• Review effects other than defect detection and spent effort (e. g. better knowledge distri-

bution or social problems) are not modeled. Neither are psychological effects.
• The model representation of the planning process is very simplistic (a developer starts

planning alone, other developers join anytime, . . .).
• While working on a task, a developer will not update his working copy.
• The process of developers finding issues while working on other tasks can be modeled with

an exponential distribution.
• Soon after they are finished, stories will reach the customer (like continuous delivery with

cherry picking) without further issues being injected (unlike cherry picking).
• The model contains no distinction between issues found by customers and issues found by

system testing after development. That is, ‘issues found by customers’ really means ‘issues
found by customers or by external QA’ in the context of this study.
• The “topic” that determines if a change of topic leads to task switch overhead is the story

the task belongs to.
• Dependencies between tasks only occur within a story.
• The same distribution is used for the issue assessment times of issues found by developers

and issues found by customers.
• Normal issues can only be found once by a developer and once by a customer.

200

Table C.1: Main model parameters (1/2). The example values marked with † are derived from the
partner company’s ticket system.

Name/topic Description Sampling
range
(Sec. 10.2.2)

Example
value

(Sec. 10.2.1)

Issue injection
rate

The mode and width of a triangular distribution
giving the implementation skills of the developers,
measured in issues injected per implementation task
hour.

0.0 – 1.5 i./h
0.0 – 0.4 i./h

0.26 i./h†

0.1 i./h

Review
effectiveness

The mode and width of a triangular distribution
giving the code reviewing skills of the developers,
measured as the probability of detecting an issue in
review.

0.0 – 1.0
0.0 – 0.3

0.45
0.05

Global blocker
issue risk

The probability that a global blocker issue is injected
while implementing a task or fix.

0.0 – 0.1 0.001

Global blocker
issue suspend
time

Mode of a triangular distribution taken for sampling
the time for interruptions through global blocker
issues.

0.01 – 3.0 h 0.15 h

Conflict
probability

The probability that a conflict occurs between a task
and another specific task that was committed
between the first task’s update and now.

0.0 – 0.1 0.012

Conflict
resolution time

Mode of a triangular distribution taken for sampling
the time for resolving a conflict on commit.

0.1 – 3.0 h 0.3 h

Implementation
task duration

Mode and difference between mode and mean for the
distribution from which a story task’s duration
(without overhead) is sampled. A log-normal
distribution provided the best fit to the empirical
data, a shifted exponential distribution was used as a
second alternative (this applies to all durations).

0.1 – 2.0 h
0.1 – 28.0 h

0.2 h†

9.5 h†

Review
duration

Mode and difference between mode and mean for the
distribution from which the time needed for a single
review round is sampled.

0.02 – 1.0 h
0.1 – 6.0 h

0.0323 h†

1.625 h†

Review remark
fix duration

Mode and difference between mode and mean for the
distribution from which the time needed to fix a
single review remark is sampled.

0.01 – 0.25 h
0.01 – 4.0 h

0.02 h
0.7 h

Issue fix task
overhead

Mode and difference between mode and mean for the
distribution from which the overhead analysis time for
fixing an issue as an issue fix task (in addition to the
time needed to fix it as review remark) is sampled.

0.01 – 2.0 h
0.1 – 28.0 h

0.0132 h†

5.5 h†

Issue
assessment
duration

Mode and difference between mode and mean for the
distribution from which the time needed for issue
assessment is sampled.

0.01 – 1.0 h
0.1 – 4.0 h

0.1 h
0.35 h

Internal issue
share

Share of issues that can not be found by customers. 0.0 – 1.0 0.5

Issue activation
time –
Developer

Shift and mean for a shifted exponential distribution
giving the time between committing an issue and its
surfacing to a developer.

0.0 – 8.0 h
4 - 4000 h

0.5 h
2000 h

Issue activation
time –
Customer

Shift and mean for a shifted exponential distribution
giving the time between “delivering” an issue and its
surfacing to a customer.

4.0 h
4 - 4000 h

4.0 h
1000 h†

201

Table C.2: Main model parameters (2/2)

Name/topic Description Sampling
range
(Sec. 10.2.2)

Example
value

(Sec. 10.2.1)

Planning
duration

Mean of the distribution from which the time needed
for planning a story is sampled.

0.1 – 30.0 h 4.0 h

Developer
count

Number of developers working in the team/same part
of the software.

3 – 29 12†

Task switch
overhead

Time it takes for a developer to re-familiarize himself
with a topic after working on another topic for (1)
one hour (2) a very long time.

0.01 – 0.5 h
0.5 – 3.0 h

5 min.
30 min.

Task switch
issue factor

Factor that determines to which amount time needed
for task switch will be taken into account when
calculating the number of issues injected.

0.0 – 1.0 0.0

Fixing issue
rate factor

Factor for the issue injection rate that determines
how safe fixing is compared to creating new code.

0.2 – 1.1 0.3

Follow up issue
spawn
probability

Probability that an issue in a predecessor task leads
to a follow up issue in a dependent task.

0.0 – 0.15 0.005

Review fix to
task factor

Factor determining how time-consuming fixing an
issue (without finding it) is in an issue fix task
compared to a review remark.

0.9 – 2.0 1.1

Dependency
graph
constellation

Different types of task dependency structures, for
example “NO DEPENDENCIES” when there are no
(relevant) dependencies between tasks of a story and
“REALISTIC” for empirically observed structures.

NO DEP./
REALIS-
TIC

REALISTIC†

Figure C.8: Relative frequency of different task counts per user story in the empirical sample

202

D
An Efficient Algorithm to Find an

Optimally Ordered Tour

Section 14.5 formalized what is meant by an optimal tour. The current chapter builds upon
this formalization and presents a polynomial time algorithm to find an optimal tour, given a
collection of pattern matches.

D.1 Description of the Algorithm

This section outlines the algorithm. In many cases, there are several mutually incomparable
optimal tours, because ≥T is only a partial order. Putting further constraints on which of these
tours to select can increase the computational complexity of the problem. For example, the
problem becomes NP-hard when looking for an optimal tour with a maximal number of non-
clustered pattern matches (proof by reduction from Hamiltonian path). The algorithm presented
here takes a different route: It assumes a list of pattern matches as input that is ordered from
most to least important. The optimal tour is then found greedily, trying to satisfy the most
important pattern match first.

Another clarification is needed for the function rate that was left unspecified in Section 14.5.
Both the results from this chapter’s survey (Table 14.3) and from Fregnan’s thesis [129] indicate
a preference for starting with the center of a star pattern. The respective rate function is:

ratebottomUp(m, t) =

{
1 if the center of m is before all other change parts of m.v in t,

0 otherwise

The notion of shrinking the part graph, as used in the formalization of the theory in Sec-
tion 14.5, is intuitive for humans, but it can be further simplified to ease the construction of
the algorithm. The simplification is based on the observation that the only information needed
from an undirected pattern match is the set of matched change parts. And for directed matches,
with the restriction to the ‘bottomUp’ rate function, it is sufficient to have two sets for ‘center’
and ‘rest’. Instead of looking for matches in a shrunk graph, the matches from the original sets
can also be ‘expanded’ before checking whether they are satisfied for a tour.

203

To ease the formulation of the algorithm, this thesis proposes a novel abstract data type
called ‘Binder’ (B). The intuition is that such a binder can be used to accumulate requests to
‘bind together’ a group of change parts, as long as they do not conflict with earlier requests,
and finally to get a tour that satisfies the accumulated requests. Its interface is as follows:

create : P (ChangePart)→ B

bind : B × P (ChangePart)→ B

bindOrdered : B × P (ChangePart)× P (ChangePart)→ B

get : B → Tour

For ease of specification, a binder b ∈ B is regarded as a triple (e, s, o), with e the set of change
parts that need to be ordered, s the set of satisfiable matches added so far, and o the additional
center/rest information for the subset of s that are ordered matches.

create(e) := (e, ∅, ∅)

bind((e, s, o),m) := addIfSatisfiable (e, s, {m}, o, ∅)

bindOrdered((e, s, o),mc,mr) := addIfSatisfiable (e, s, {mc ∪mr}, o, {(mc,mr)})

get((e, s, o)) := t such that satisfiesAll(t, e, s, o)

addIfSatisfiable(e, s1, s2, o1, o2) :=

{
(e, s1 ∪ s2, o1 ∪ o2) if ∃t : satisfiesAll(t, e, s1 ∪ s2, o1 ∪ o2)
(e, s1, o1) otherwise

satisfiesAll(t, e, s, o) := t is a permutation of e

∧ ∀m ∈ s : satisfiesBind(t,m)

∧ ∀(mc,mr) ∈ o : satisfiesOrder(t,mc,mr)

satisfiesBind(t,m) := ∃i ∈ N : ∀j ≥ i, j < i+ |m| : tj ∈ m

satisfiesOrder(t,mc,mr) := ∀i, j ∈ N : ti ∈ mc ∧ tj ∈ mr ⇒ i < j

The wording “A call to ‘bind’ or ‘bindOrdered’ could be satisfied” is used for the situation where
the call led to a Binder which reflects the parameters in the call.

The description of the algorithm itself is split over the Figures D.1, D.2, and D.3. The
algorithm has three main phases. In the first, it tries to satisfy as many match sets as possible
without taking folding into account. In the second, it tries to satisfy further match sets with
folding. In the final phase, it tries to satisfy the bottom-up ordering for ordered match sets
induced by ratebottomUp. The first and third phase are simple greedy loops, the second phase is
more complicated. It needs to find a minimal set of folds that satisfy further match sets. Simply
testing all subsets would not be possible in polynomial time. Instead, it starts with applying all
folds at once and then leaves out unnecessary folds until a minimal set is found. The algorithm’s
correctness is proven in Section D.3.

A rough estimation of the runtime complexity of the presented algorithm shows that is
O(m4 · b(m,n)), with m being the number of match sets, n the number of change parts and b a

204

placeholder for the runtime complexity of the bind operation. Most of the runtime complexity
lies in the handling of folds. Section D.2 introduces an implementation of the abstract data
type Binder for which b is O(n), as are the other operations. In the worst case, the number of
match sets m is O(n2). All combined, this leads to an upper bound of the worst-case complexity
of O(n9), which is better than the exponential complexity that would follow from the direct
implementation of the definitions in Section 14.5. The actual implementation of the algorithm
in CoRT contains some further optimizations to avoid testing unnecessary folds.

Often, there are far fewer than n2 match sets, and many of them can be satisified without
folding. In these cases, the performance of the algorithm is good enough for use in industrial
practice. But cases with a high number of change parts or match sets occur in practice. One
example are large systematic changes, for which many pairs of change parts are related by
similarity. These cases led to problems in an early implementation of the algorithm in CoRT.
In these cases, CoRT takes advantage of the incremental nature of the algorithm. When the
calculation is stopped prematurely, the intermediate state of the binder contains the successfully
satisfied match sets. So CoRT monitors the time spent for finding the optimal tour. If the user
has to wait for too long, the optimization is stopped prematurely and the current intermediate
result is used.

205

function determineOptimalOrder (changeParts , matchSets)
b inder = Binder . c r e a t e (changeParts)
t o S a t i s f y = matchSets
s a t i s f i e d = empty s e t

// Phase 1 : b ind e v e r y t h i n g t h a t can be bound wi thout f o l d i n g / expanding
(binder , newlySat i s f i edMatches) = bindAl l (binder , t o S a t i s f y)
t o S a t i s f y . removeAll (newlySat i s f i edMatches)
s a t i s f i e d . addAll (newlySat i s f i edMatches)

// Phase 2 : tak e f o l d i n g i n t o account
loop

// expand the u n s a t i s f i e d matches (e q u i v a l e n t to f o l d i n g the tour)
// and t r y to s a t i s f y f u r t h e r matches wi th a minimal s e t o f f o l d s
toFold = f indMin ima lSetOfSucces s fu lFo lds (binder , t o S a t i s f y , s a t i s f i e d)
i f (did not f i n d a s u c c e s s f u l f o l d)

//no f u r t h e r match s e t s can be s a t i s f i e d , even wi th f o l d i n g
break

else
t o S a t i s f y = expandAll (t o S a t i s f y , toFold)
(binder , newlySat i s f i edMatches) = bindAl l (binder , t o S a t i s f y)
t o S a t i s f y . removeAll (newlySat i s f i edMatches)
s a t i s f i e d . addAll (newlySat i s f i edMatches)

end−i f
end−loop

// Phase 3 : t r y to s a t i s f y the ord er in g r e q u e s t s
foreach matchSet in s a t i s f i e d

i f (matchSet demands bottom−up order)
b inder = binder . bindOrdered (matchSet . center , matchSet . r e s t)

end−i f
end−foreach

return binder . get ()
end−function

Figure D.1: Pseudo-code description of the algorithm to determine an optimal tour (1/3): Main algo-
rithm. This is a simplified version, the full algorithm contains additional performance optimizations and
is distributed with CoRT.

206

function f indMin imalSetOfSuces s fu lFo lds (binder , t o S a t i s f y , foldsToTry)
// s t a r t wi th a p p l y i n g a l l f o l d s and then remove f o l d s
// as long as matches can s t i l l be s a t i s f i e d
i f (! a l lowsFurtherBinds (binder , foldsToTry))

return empty s e t
end−i f
do

unnecessaryFold = findFoldThatCanBeLeftOut (binder , t o S a t i s f y ,
foldsToTry)

foldsToTry . remove (unnecessaryFold)
while (unnecessaryFold != n u l l)
return foldsToTry

end−function

function findFoldThatCanBeLeftOut (binder , t o S a t i s f y , foldsToTry)
foreach f o l d in foldsToTry

i f (a l lowsFurtherBinds (binder , t o S a t i s f y , foldsToTry / { f o l d }))
return f o l d

end−i f
end−foreach
return n u l l

end−function

function a l lowsFurtherBinds (binder , t o S a t i s f y , foldsToApply)
t o S a t i s f y = expandAll (t o S a t i s f y , foldsToApply)
(, newlySat i s f i edMatches) = bindAl l (binder , t o S a t i s f y)
return ! newlySat i s f i edMatches . isEmpty ()

end−function

Figure D.2: Pseudo-code description of the algorithm to determine an optimal tour (2/3): Finding the
folds to apply.

207

function bindAl l (binder , toBind)
newlySat i s f i edMatches = empty s e t
foreach matchSet in toBind

binder = binder . bind (matchSet)
i f (bind was p o s s i b l e)

newlySat i s f i edMatches . add (matchSet)
end−i f

end−foreach
return (binder , newlySat i s f i edMatches)

end−function

function expandAll (t o S a t i s f y , foldsToApply)
expandedMatchSets = empty l i s t
foreach m in t o S a t i s f y

expandedMatchSets . add (expand (m, foldsToApply))
end−foreach
return expandedMatchSets

end−function

function expand (m, foldsToApply)
expanded = m
foreach n in foldsToApply

i f (m and n are not d i s j o i n t)
expanded . addAll (n)

end−i f
end−foreach
return expanded

end−function

Figure D.3: Pseudo-code description of the algorithm to determine an optimal tour (3/3): Utility
functions.

208

D.2 An Implementation of the Abstract Data Type ‘Binder’

This section illustrates a tree-based implementation of the abstract data type ‘Binder’, which
was specified in the previous section. It focuses on the idea and intuition. The full implementa-
tion is complicated by the handling of several special cases and can be seen in the implementation
of CoRT (component “ordering”; see Section 9.4).

A ‘BinderTree’ is a tree in which every leaf node corresponds to exactly one change part and
which has exactly one leaf node for every change part. The inner nodes can be of several types,
and each type restricts the possible permutations of the children in a specific way. The possible
types for inner nodes are:
• set: Denotes that every permutation of the children leads to a valid order.
• sequence: Denotes that the children must be sorted in their given order or reversed in

total to give a valid order.
• fixed: Denotes that the children must be sorted in their given order and may not even

be reversed.
Semantically, a BinderTree stands for a subset of the permutations of the changesets. The

semantic for a leaf node is the one-element sequence with the change part itself. The semantic
function s for the intermediate nodes is as follows:

s : BinderTree→ P (Tour)

s(set(c1, c2, . . . , cn)) :=
⋃

p∈Sn

s(cp(1))× s(cp(2))× · · · × s(cp(n))

s(sequence(c1, c2, . . . , cn)) := (s(c1)× s(c2)× · · · × s(cn)) ∪ (s(cn)× · · · × s(c2)× s(c1))

s(fixed(c1, c2, . . . , cn)) := s(c1)× s(c2)× · · · × s(cn)

Here, Sn denotes the set of all permutation operations on n items.
In the following, the operations on a BinderTree are illustrated by various examples. The

examples use a short-hand notation for BinderTrees in which set(. . .) stand for a set node,
seq(. . .) stands for a sequence node, fix(. . .) stands for a fixed node, and leaf nodes are
denoted by single uppercase letters. Figure D.4 depicts this notation.

Assume that there are eight change parts, A to H. The initial BinderTree does not restrict
the possible permutations at all:

create({A,B,C,D,E, F,G,H}) = set(ABCDEFGH)

Binding together certain change parts results in a tree that reflects the reduced set of possible
permutations:

bind(set(ABCDEFGH), {A,B,C,D}) = set(set(ABCD)EFGH)

bind(set(set(ABCD)EFGH), {E,F,G,H}) = set(set(ABCD)set(EFGH))

set(seq(ABC)DEset(FGH))

set

sequence D E set

A B C F G H

Figure D.4: Example of a BinderTree and its textual notation

209

When change parts that reside in different subtrees shall be bound together, sequence nodes
need to be introduced so that the parts cannot be torn apart any more:

bind(set(set(ABCD)set(EFGH)), {A,H}) = seq(set(BCD)AHset(EFG))

bind(seq(set(BCD)AHset(EFG)), {A,B,C}) = seq(Dset(BC)AHset(EFG))

bind(seq(Dset(BC)AHset(EFG)), {C,D}) = seq(DCBAHset(EFG))

Sometimes, a sequence node needs to be reversed to allow satisfying a bind:

bind(set(ABCDEFGH), {A,B}) = set(set(AB)CDEFGH)

bind(set(set(AB)CDEFGH), {B,C}) = set(seq(ABC)DEFGH)

bind(set(set(ABC)DEFGH), {D,E}) = set(seq(ABC)set(DE)FGH)

bind(set(seq(ABC)set(DE)FGH), {E,F}) = set(seq(ABC)seq(DEF)GH)

bind(set(seq(ABC)seq(DEF)GH), {C,F}) = set(seq(ABCFED)GH)

Sequence nodes can occur inside sequence nodes, as set nodes can occur inside set nodes:

bind(set(set(seq(ABC)seq(DEF))seq(GHI)), {D,E, F,G,H, I}) =

seq(seq(ABC)seq(DEF)seq(GHI))

Because the in-order traversal of the tree leaves always leads to a valid permutation, the get
function simply needs to return this order:

get(set(seq(ABCFED)GH)) = (A,B,C, F,E,D,G,H)

The ‘bindOrdered’ operation binds together the center set, the rest set, and the union of
center and rest. Furthermore, it needs to assure that these will not be reversed anymore by
introducing a fixed node:

bindOrdered(set(ABCDEFGH), {A,B,C}, {D,E, F}) = set(fix(set(ABC)set(DEF))GH)

210

D.3 Proof of Correctness for the Ordering Algorithm

Section 14.5 defined the partial order relation ≥T and Section D.1 introduced an algorithm
to determine a maximal element regarding ≥T . This section now proves that this algorithm
works correctly.

The general structure is that of a proof by contradiction, showing that assuming both that
ta is the result of the algorithm and that there is an element tb >T ta leads to a contradiction.
Like the algorithm, the proof does not use the graph-based formulation of the theory but is
instead based on sets of change parts that need to be grouped. Before showing the proof itself,
this alternative definition of >T is given.

Definition 4 (MatchSet). A match set is a set of change parts that are matched by a rule.
The set “MatchSet” is the set of all possible match sets:

MatchSet := P (ChangePart)

For ordered matches for a star pattern, it is also assumed that there are projections ‘center’
and ‘rest’ that return the respective disjoint subsets of change parts for the match set.

Definition 5 (SatisfiedMatch). ‘SatisfiedMatch’ is a shorthand notation for a set of pairs
of a match set and a set of match sets that need to be considered in shrinking the graph to
satisfy it for a given tour:

SatisfiedMatch := MatchSet×P (MatchSet)

Definition 6 (sM). The function ‘sM’ from Section 14.5 can be redefined based on match
sets:

sM : Tour×P (MatchSet)→ P (SatisfiedMatch)

sM(t,M) := sME(t,M, ∅)

The second parameter to ‘sM’ are the sets of change parts that were matched in the change
part graph. Therefore, the graph and the set of patterns can be left out from this defini-
tion. The recursive helper function ‘sME’ takes the match sets that shall be considered for
expansion/shrinking as the third parameter:

sME : Tour×P (MatchSet)× P (MatchSet)→ P (SatisfiedMatch)

sME(t,M,E) := pM(t,M,E) ∪
⋃

(m,)∈pM(t,M,E)

sME(t,M,E ∪ {m})

The helper function ‘pM’ returns the match sets that are satisfied for a given tour and set
of expansions (with ‘satisfiesBind’ as defined in Section D.1):

pM : Tour×P (MatchSet)× P (MatchSet)→ P (SatisfiedMatch)

pM(t,M,E) := {(m,E) : m ∈M ∧ satisfiesBind(t, expand(m,E))}

211

Definition 7 (expand). The function ‘expand’ enlarges a match set by joining it with
overlapping match sets:

expand : MatchSet×P (MatchSet)→ MatchSet

expand(m,E) :=

{
expand(m ∪ x,E \ {x}) ∃x ∈ E : m ∩ x 6= ∅
m otherwise

For ordered matches of a star pattern, expanding the center is preferred:

expand(m,E).center = expand(m.center, E)

Definition 8 (>T). Based on the original definition of >T and ≥T as given in Section 14.5,
an alternative definition of >T can be given as:

t1 >T t2 ⇐⇒ sM(t1,M) ⊃ sM(t2,M) ∨
(sM(t1,M) = sM(t2,M)

∧ ∀(m,E) ∈ sM(t1,M) : rate(expand(m,E), t1) ≥ rate(expand(m,E), t2)

∧ ∃(m,E) ∈ sM(t1,M) : rate(expand(m,E), t1) > rate(expand(m,E), t2))

It is parametric, based on the set M of MatchSets derived from the pattern matching in the
part graph. In the following, rE(m,E, t) is used as a shorthand for ‘rate(expand(m,E), t)’.

With these preparations in place, this chapter’s main proposition can be stated:

Proposition D.1 (Correctness of ordering algorithm). For a given set C of change parts
and M ⊆ MatchSet (with MatchSet = P (C)) and any permutation M ′ of M , it holds that
ta := determineOptimalOrder(C,M ′) is a maximal element of ≥T , i.e., there is no tb such
that tb >T ta. The implementation of ‘determineOptimalOrder’ is given in Figure D.1 in
Section D.1.

Proof of Proposition D.1, High-level overview. Assume that ta := determineOptimalOrder(C,M ′)
and that there exists an tb >T ta. According to Definition 8, two cases can be distinguished:

Case ‘set difference’: sM(tb,M) ⊃ sM(ta,M)

Case ‘rating difference’: sM(tb,M) = sM(ta,M) ∧ ∀(m,E) ∈ sM(tb,M) : rE(m,E, tb) ≥
rE(m,E, ta) ∧ ∃(m,E) ∈ sM(tb,M) : rE(m,E, tb) > rE(m,E, ta)

As is shown later, both cases lead to contradictions. Therefore, such a tb cannot exist and ta
must be maximal.

212

To prove Case ‘set difference’, some auxiliary definitions are useful:

Definition 9 (expand path). An ‘expand path’ of length n is a pair (binds, expands) with

binds := bind0, bind1, . . . , bindn

bindi ⊆ MatchSet

expands := expands1, . . . , expandsn

∅ ⊂ expandsi ⊆
⋃

0≤j<i

bindj

It is useful to have a short-hand notation for the union of expanded match sets in the path
up to length i:

ems(p, i) := {expand(m,
⋃

1≤k≤j
p.expandsk) : j ≤ i ∧m ∈ p.bindj}

The intuition behind an expand path is that the match sets in bind0 can be satisfied without
expanding, those in bind1 can be satisfied by applying the expansions in expands1, those in
bind2 by applying the expansions in expands1 and expands2, and so on.

Definition 10 (expand path for algorithm call). Each call to ‘determineOptimalOrder’
corresponds to an expand path as follows:
• bind0 is the set of satisfied matches after Phase 1
• expandsi corresponds to the value of ‘toFold’ after the i-th iteration of Phase 2’s loop
• bindi, i ≥ 1 corresponds to the unexpanded versions of the newly satisfied match sets

after the i-th iteration of Phase 2’s loop

Definition 11 (conflict). The predicate ‘conflict’ is true for a set of match sets when the
match sets cannot be satisfied jointly:

conflict(M) := @t ∈ Tour : satisfiesAll(t, C,M, {m ∈M : m is ordered match})

with satisfiesAll as defined in Section D.1, and C the set of change parts. Besides the ‘one
set’ variant of the predicate defined above, a variant that takes two arguments is useful,
too: conflict(m,M) := conflict({m} ∪M).

As the algorithm heavily relies on the abstract data type Binder, the following Lemma is
useful later:

Lemma D.1. Every call to ‘bind’ or ‘bindOrdered’ for a match set m and a Binder B can
either be satisfied or there is a non-empty set S of match sets used in earlier calls that
cannot be satisfied jointly with m.

Proof of Lemma D.1. The proof is done by structural induction over the interface of Binder.
Induction start, operation ‘create’: B = create(s). For the newly created binder, every call to
‘bind’ or ‘bindOrdered’ can be satisfied so that the Lemma is trivially true.
Induction step, operation ‘bind’: B = bind(B′, x). When bind(B′,m) cannot be satisfied, then

213

there exists a non-empty set S′ that cannot be satisfied jointly with m by the induction pre-
condition. Adding further calls to ‘bind’ cannot make non-satisfiable match sets satisfiable, so
that bind(B,m) cannot be satisfied, too and S ⊇ S′ is non-empty. When bind(B′,m) can be
satisfied but bind(B,m) cannot, x must be an element of S and S is non-empty.
Induction step, operation ‘bindOrdered’: Like for ‘bind’.

The expand path for a run of the algorithm as specified in Definition 10 satisfies two prop-
erties that are needed later:

Lemma D.2. Let p be the expand path for the call determineOptimalOrder(C,M). For
all bindi in p, it holds that

∀m ∈M,m /∈
⋃

0≤k≤i
bindk : conflict(expand(m,

⋃
1≤l≤i

expandsl), ems(p, i))

I.e., the bindi are complete in a way that no further match set could be added without
conflicting with another one.

Proof for Lemma D.2. Case i = 0: bind0 corresponds to the matches that could be satisfied in
Phase 1. In Phase 1, the algorithm calls ‘bindAll’ to try to bind all match sets in M . If such a
call to ‘bind’ cannot be satisfied, there exists, according to Lemma D.1, another match set m′

that was satisfied earlier. Therefore, m′ is contained in bind0.

Case i > 0: The items in bindi for i > 0 are determined by calling ‘bindAll’ in the i-th
iteration of Phase 2’s loop. The binds that are tried are obtained by expanding the original
match sets with the items in expands1 to expandsi. The same binder is kept from one iteration
to the next. Again, if a call to ‘bind’ cannot be satisfied there must be another match set m′

that was satisfied earlier (Lemma D.1).

Lemma D.3. Let p be the expand path for the call determineOptimalOrder(C,M). For
all expandsi in p, it holds that

∀e ∈ expandsi : ∃m ∈ bindi,me = expand(m,
⋃

1≤j≤i
expandsj \ {e}) :

conflict(me, ems(p, i))

I.e., the expandsi are minimal in a way that removing one will make at least one match set
in the path unsatisfiable jointly with the rest.

Proof of Lemma D.3. The set expandsi is determined by a call to ‘findMinimalSetOfSuccessful-
Folds’. The loop in that operation only stops when any further removal of an element would
make any additional bind impossible.

Proof of Proposition D.1, Case ‘set difference’. It needs to be shown that the assumption that
sM(tb,M) ⊃ sM(ta,M) when ta is the result of the ordering algorithm leads to a contradiction.
Spelled out, the assumption can be written as ∃x ∈ sM(tb,M) : x /∈ sM(ta,M)∧∀y ∈ sM(ta,M) :
y ∈ sM(tb,M). According to the definition of sM, x can be written as a pair (m,E), meaning
that m can be satisfied after the expansions in E are applied.

The proof is done by induction over the size of E.

214

Induction start: E = ∅. This means that m can be satisfied without expansion. According
to Definition 10, there is an expand path p corresponding to ta, and m would be in bind0 of that
path. According to Lemma D.2, there is an element c in bind0 which cannot be satisfied jointly
with m. Therefore, c ∈ sM(ta,M) and c /∈ sM(tb,M), which contradicts this case’s precondition.
Such a (m, ∅) cannot exist.

Induction step: To show: Assuming that @(m,E) ∈ sM(tb,M) : |E| < n ∧ (m,E) /∈
sM(ta,M), there is also no (m,E) ∈ sM(tb,M) : |E| = n ∧ (m,E) /∈ sM(ta,M). This is
shown by separating a number of cases:
• Case 1: ∃E′ : E′ ⊂ E∧(m,E′) ∈ sM(tb,M). By the induction precondition, it follows that

(m,E′) ∈ sM(ta,M). By adding further expansions, a satisfied match cannot be made
unsatisfied, so (m,E) ∈ sM(ta,M), leading to a contradiction.
• Case 2: @E′ : E′ ⊂ E∧(m,E′) ∈ sM(tb,M). Again, p is the expand path for ta. Determine

the smallest i such that
⋃

1≤j≤i p.expandsj = U ⊇ E.
– Case 2.1: There is no such i. This can only happen when one of the e ∈ E could

not be satisified, i.e., ∃(e, E′′) ∈ sM(tb,M) : |E′′| < |E| ∧ (e, E′′) /∈ sM(ta,M). This
contradicts the induction precondition.

– Case 2.2: There is such a i.
∗ Case 2.2.1: U = E. Similar to the induction start, it can be shown based on

Lemma D.2 that this leads to a contradiction.
∗ Case 2.2.2: U ⊃ E. The following again uses p as notation for the expand path

for ta.
· Case 2.2.2.1: m ∈ p.bindi. According to the condition for Case 2.2.2, there

is an x ∈ U, x /∈ E that could be removed from the expand path without
affecting the satisfiability of m in p.bindi. But according to Lemma D.3, there
is another (m′, E∗) ∈ sM(ta,M) that depends on this x. This contradicts the
precondition that ∀e ∈ sM(ta,M) : e ∈ sM(tb,M)
· Case 2.2.2.2: m ∈ p.bindj , j < i. In this case, there must be an (m,E∗) ∈

sM(ta,M) with E∗ ⊂ U but not E∗ ⊂ E. Respectively, there is an x ∈
E∗, x /∈ E. Like for Case 2.2.2.1, it can be argued based on Lemma D.3 that
this leads to a contradiction.
· Case 2.2.2.3: m /∈

⋃
0≤j≤i p.bindj . According to Lemma D.2, there must

be another match set that conflicts with (m,U). When (m,U) cannot be
satisfied, (m,E) cannot be satisfied, either (contraposition of the observation
that adding items to the expands set will never lead to conflicts).

As all possible cases lead to contradictions, it can be concluded that sM(tb,M) is not a superset
of sM(ta,M).

Proof of Proposition D.1, Case ‘rating difference’. With this case’s precondition, sM(tb,M) =
sM(ta,M). Note that sM(ta,M) is reflected in the variable ‘satisfied’ in the function ‘determi-
neOptimalOrder’.
With the ‘bottom-up’ definition of ‘rate’ from Section D.1,

∃(m,E) ∈ sM(tb,M) : rE(m,E, tb) > rE(m,E, ta)

can be stated as

∃(m,E) ∈ sM(tb,M),me = expand(m,E) :

satisfiesOrder(tb, center(me), rest(me)) ∧ ¬satisfiesOrder(ta, center(me), rest(me))

215

It follows from the initial observation that every element in sM(tb,M) was tried to satisfy
by calling ‘bindOrdered’ in Phase 3 of the algorithm. So ‘bindOrdered’ was also called for me.
There are two possible outcomes: The call to ‘bindOrdered’ was successful for me. In this case,
satisfiesOrder(ta, center(me), rest(me)) must have been true, leading to a contradiction. Or
the call to ‘bindOrdered’ was not successful for me. In this case, an earlier call to ‘bind’ or
‘bindOrdered’ must have rendered it impossible (Lemma D.1). It cannot have been a call to
‘bind’, because sM(tb,M) = sM(ta,M) and all successful binds are reflected in the ‘satisfied’
variable. According to Lemma D.1, there must be a non-empty set S ⊂ sM(tb,M) which
cannot be satisfied together with me and which is satisfied for ta. For the elements in s ∈ S,
rE(s, E, tb) = 0 < rE(s, E, ta) = 1, which again contradicts the for-all-clause in the case’s
precondition.

♦
All in all, Proposition D.1 could be proven. This shows that the ordering algorithm will find

an order of change parts that is a maximal element according to ≥T and, therefore, a good order
for review. The definition of ≥T allows for various mutually incomparable maximal elements,
so this result does not mean that the algorithm will return the single empirically best order (if
such an order should exist at all).

216

E
Details on How to Extract Review Remark

Triggers

The study on change part classification in Chapter 15 needs data on which change parts can
act as triggers for which review remarks. The following sections provide details on how this
information can be extracted from the SCM and ticket system at the partner company. The
final Section E.5 furthermore provides evidence that it is not sufficient to use the simpler SZZ
approach [353] to trace review remarks to their triggers.

E.1 Remarks, Triggers, and Change Parts

To judge the importance of a change part for review, one needs to tell whether it contains
triggers for review remarks. A trigger is the portion of code whose review leads to the creation of
a review remark. In a simple case, the trigger is a defect in a specific line of the code. Another
example could be a misspelled or confusing method name: Every occurrence of the method
name in the code can lead to the observation of the problem and creation of the remark. As this
example shows, the relation between remarks, triggers, and change parts is not a simple one-to-
one relation: There can be multiple types of composite conditions. Several of the possibilities
are depicted in Figure E.1.

The simplest possibility is when a change part acts as a trigger for exactly one review remark,
as for C1 and R1. A single change part can also lead to several remarks (C2, R2, and R3). In
some cases, there can be more than one trigger for a remark. One example is the typo in a
method name mentioned above. This situation is similar to a logical ‘or’: R4 is triggered when
C3 or C4 is reviewed. In other cases, the knowledge of several parts of the code is needed to
spot a problem and trigger a remark, i.e., a logical ‘and’. The figure shows a combined case,
where reviewing C5 and at least one of C6 or C7 triggers the remark R5. There are also change
parts that do not act as a trigger at all (C8), which is the primary motivation for the current
study. The concept of “and” relations in triggers is related to the issue of understandability for
the reviewer mentioned in the previous section. It is not studied further in this thesis.

217

Change Parts Review Remarks

C1

C2

C3

C4

C5

C6

C7

C8

R1

R2
R3

R4

R5

or

or
and

Figure E.1: Several possibilities how change parts can act as triggers for review remarks

E.2 Selecting a Data Source

This section discusses how the information on potential review triggers can be extracted
from software repositories. The technique is based on the assumption that one of the triggers
for a review remark is close to the position of the remark.

There are two possibilities to gather review remarks from software repositories: (1) Commu-
nicated review remarks can be extracted from the repository of the code review tool; or (2) fixed
review remarks can be extracted from the SCM. Although there usually is a high overlap be-
tween communicated and fixed remarks, there is a subset of non-fixed remarks that cannot be
found in the SCM and there are remarks that the reviewer fixes ‘on-the-fly’ without recording
them in the review discussion1. Table E.1 contains a detailed discussion of benefits of both
approaches to extract review remarks. There are strong reasons for both options, but I decided
to use the SCM data in the current case study. One of the main reasons for this choice was that
there are historically many reviews in the partner company done without a tool that captures
the necessary data and I wanted to include these reviews in the analysis. This decision has a
significant impact on the type of noise occurring in the data. Resulting problems are discussed
in Section 15.5.

E.3 Determinining Review Commits

Having decided that all changes done in ‘review commits’ shall be counted as review remarks,
the next question is how to decide whether a commit is a review commit for a certain ticket. The
corresponding algorithm is based on the assumption that it is known which commits belong to
a certain ticket and that a commit belongs to only one ticket. The partner company has a hook
script in the SCM that demands a ticket ID at the start of every commit message, which makes
this information easy to extract. Figure E.2 shows how the classification of the commits is done:
During its lifetime, a ticket can have one of several states, of which “in implementation” and
“in review” are the most important here. “In implementation” means that the code’s author is
currently working on the ticket, whereas “in review” means that a reviewer is checking the code.
Both, changes performed as a reaction to review remarks, as well as changes performed by the

1CoRT allows reviewers to leave remarks for their on-the-fly fixes (see Chapter 9), but this is used only for a
fraction of the fixes.

218

Table E.1: Comparison of the benefits of the two options to extract review remarks from software
repositories

Benefits of extracting the fixed review remarks from the SCM:

The remarks that led to changes in the code base are arguably the most practically relevant.

They can be extracted quite easily and with high accuracy from the SCM, only ticket IDs and time
intervals for the reviews are needed.

Gathering complete data is easy.

Remarks that have been communicated only orally will not be missed.

The technique is also usable in settings where review remarks are not stored in a structured form.

Benefits of extracting the review remarks from the review tool database:

The remarks that the reviewer took the time to write down textually are arguably the most practically
relevant. (This definition of “practical relevance” would contradict the one given above for SCMs.)

This approach will also cover remarks given only to transport knowledge to the code’s author.

The line where a review remark is anchored is probably close to the line that triggered this remark.

One high-level remark can lead to several changes in the code when fixed (like in the example with
the typo in the method name given in Section E.1). The review tool stores these conceptual remarks,
whereas the SCM stores the low-level changes.

The number of remarks is well-defined, in contrast to the data from the SCM where it is unclear
whether two consecutive changed lines should be regarded as one or two remarks (or possibly even
more).

Remarks for which the fixing was postponed and not done in the respective ticket can be extracted
(also in contrast to the SCM data).

Ticket state Open InbImplementation WaitingbforbReview InbReview Rejected InbImpl. Waiting InbReview Done

Commits co1 co2 co3 co4 co5 co6

lastbimplementation
endbtimebbefore

firstbreview

middlebof
interval

firstbreviewbstart
time

Figure E.2: Example of how to decide which commits for a ticket shall be regarded as “review commits”

reviewer when fixing on-the-fly, shall be included. Therefore, every commit after the start of
the first review can be regarded as a ‘review commit’. Complications arise because (1) a ticket’s
state is sometimes changed before the author commits the respective changes (e.g., “co3” in
Figure E.2), and because (2) in non-tool reviews, developers sometimes forget to change the
ticket state when starting their work and do so later. To deal with these complications, the
algorithm heuristically uses the middle of the interval between the end of the last pre-review
implementation phase and the start of the first review as the split point.

E.4 Finding Potential Triggers: The RRT Algorithm

Given a set of review commits, the changes (i.e., remarks) in these commits have to be traced
back to their potential triggers. This section describes the corresponding algorithm, RRT (for
‘review remark tracing’). For now, the finest possible granularity of tracing every changed line
is used, as the data can be aggregated later if needed.

As mentioned above, the tracing algorithm is based on the intuition that a remark’s trigger

219

is usually close to the position of the remark. In the simplest case, some line was added or
changed during implementation, and some defect in that line was found and fixed in the review
phase. This is similar to the SZZ algorithm [353] that is often used in defect prediction studies.
But there’s a difference to SZZ: In the review case, it is known that a trigger must be one of the
changes in the ticket’s implementation commits2. So in contrast to SZZ, the algorithm cannot
stop once it found the previous change of the remark’s line (e.g., via ‘blame’). If that previous
change is not in one of the implementation commits, it needs to skip it and trace back further3.
The algorithm might find no potential trigger this way, for example, if there was a change in a
method during implementation, and in the review it was found that another part of the method
has to be changed, too. In this case, the trigger is still close to the remark (i.e., in the same
method), but it is not in the same line. This means that the search scope needs to be expanded.
These considerations lead to the tracing algorithm outlined in Figure E.3.

As motivated from the example above, the expansion of the search scope should take the
structure of the source file into account. I implemented corresponding parsers for Java and
XML (and derivatives), the file types most relevant for the case study. If no potential trigger
for a change is found in a single line, the algorithm first looks for triggers in the line’s block,
then in the enclosing blocks, in the containing method, the containing class, until the whole file
becomes the search scope. Figure E.4 shows an example of this scope expansion in a Java file.
In case there was no implementation commit in the whole file, the algorithm resorts to marking
all changes in the whole ticket as potential triggers. For text files not supported by one of the
specialized parsers, the algorithm directly moves from the line scope to the file scope.

Another important detail of the algorithm is that it does not stop when the first potential
trigger for a remark is found, but instead keeps on searching for further triggers with the same
scope. The intuition here is that code might be added in one implementation commit, with a
minor change (e.g., fixing a code style issue found by static analysis) done in a later implemen-
tation commit. If the algorithm would stop after the first potential trigger, it would only find
the minor change, whereas the initial addition of the code is more likely to be the “real” trigger.

To sum up, review remarks can be extracted either from code review repositories or from
review commits in the SCM. The thesis focuses on the latter and proposes the RRT algorithm
(Figure E.3) to associate review remarks (i.e., changed lines in review commits) with potential
triggers (i.e., changed lines in implementation commits for the same ticket). The RRT algorithm
finds these triggers by tracing back in history, expanding the search scope if no matching trigger
could be found with the smaller scope. It is based on two main assumptions: There exists at
least one trigger for each review remark, and the most likely triggers are close4 to the remark.

E.5 Comparison of RRT to SZZ

The reasoning in Section 15.2 shows that review remark prediction differs from defect pre-
diction. Nevertheless, there are similarities, and it is yet to be shown that the simple SZZ
approach [353] that is commonly used for tracing in defect prediction studies is not suitable to
determine review remark triggers. I perform SZZ-style tracing (with “git blame”) for all review

2“Trigger” in this case does not necessarily mean that the root cause for the remark (e.g., a defect) was injected
with an implementation commit. It just means that the remark was created because of reviewing that part of the
code.

3Similar to how Kim et al. [199] skip changes that cannot be the cause of a defect in their improved version of
SZZ

4with closeness defined according to a suitable scope concept for the file type

220

function t r a c eT i cke t (t i c k e t)
foreach rev iew commit c in t i c k e t

traceCommit (c)
end−foreach

end−function

function traceCommit (commit)
foreach change part p in commit

i f p i s add i t i on o f whole f i l e
a s s i gn whole t i c k e t as p o t e n t i a l t r i g g e r f o r p

else i f p i s d e l e t i o n o f whole f i l e
or p i s rename o f whole f i l e without f u r t h e r changes
or p i s change in binary f i l e
or p s h a l l be f o r c ed to f i l e scope (e . g . f i l e too l a r g e)

traceWithScopeAndExpandIfNeeded (c r e a t e a scope ob j e c t f o r the whole f i l e in p)
else

traceWithScopeAndExpandIfNeeded (c r e a t e a l i n e range scope f o r each s i n g l e l i n e
in p)

end−i f
end−foreach

end−function

function traceWithScopeAndExpandIfNeeded (scope)
do

found := traceWithScope (scope)
i f found == AT LEAST ONE TRIGGER FOUND

return
else

// scope expansion happens depending on the f i l e type
scope := expand (scope)

while scope could be expanded

// the l a r g e s t (imp l i c i t) scope i s ”whole t i c k e t ”
a s s i gn whole t i c k e t as p o t e n t i a l t r i g g e r f o r p

end−function

function traceWithScope (scope)
i f scope i s l i n e range scope

prevChange := l a s t change to scope . l ineRange be f o r e scope . commit
else

prevChange := l a s t change to scope . f i l e b e f o r e scope . commit
end−i f

i f prevChange not found
return NO TRIGGER FOUND

end−i f

i f prevChange i s implementation commit f o r t i c k e t
a s s i gn change par t s in prevChange as p o t e n t i a l t r i g g e r (s) f o r scope . remark
traceWithScope (ad jus t scope to commit be f o r e prevChange)
return AT LEAST ONE TRIGGER FOUND

else
return traceWithScope (ad jus t scope to commit be f o r e prevChange)

end−i f
end−function

Figure E.3: RRT algorithm for tracing review remarks to potential triggers (simplified)

221

package(a8b8c;

944
(4(A(class(javadoc8
(49
public(class(Xyz({
((((944
(((((4(One(method8
(((((49
((((public(void(foo23({
((((((((if(2Boolean8getBoolean2BpropB33({
 System.out.println("x");
((((((((((((System8out8println2ByB3;
((((((((}
((((((((System8out8println2BzB3;
((((}

((((944
(((((4(Another(method8
(((((49
((((public(void(bar23({
((((}
}

(1
(2
(3
(4
(5
(6
(7
(8
(9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Figure E.4: Example for scope expansion in a Java file, starting with the single line scope in line 12

remarks extracted from the dataset and compare the results to the results of the proposed RRT
tracing algorithm.

The analysis is performed on the raw data, i.e., with line granularity. Figure E.5 shows
the results. Of 326,066 remark records, only 119,031 (37%) are traced with the same result
for the proposed approach and SZZ. For 9,947 (3%), the proposed approach returns further
potential triggers because it does not stop at the first candidate. For 197,088 (60%) the results
differ completely: For 70,582 (22%) the tracing is stopped prematurely either at a commit from
another ticket or at a review commit. For 126,506 (39%) SZZ does not find a trigger because
it does not enlarge the search scope when no trigger is found. Figure E.5 also shows that the
distribution for the subset of remark lines in Java source files is similar.

222

37%

3%

12% 10%

39%

0

50,000

100,000

Same result
Incomplete

Stuck at review commit
Stuck at other commit

Scope too small

Comparison Result

R
em

ar
k

C
ou

nt

36%

3%

10% 8%

43%

0

50,000

100,000

Same result
Incomplete

Stuck at review commit
Stuck at other commit

Scope too small

Comparison Result

R
em

ar
k

C
ou

nt
 (

Ja
va

 o
nl

y)

Figure E.5: Comparison of the tracing approach from the current thesis (RRT) and SZZ, both for all
remarks (i.e., changed lines/files in review commits) and for remarks in Java files only.

223

224

F
Features Used for Classifying Change Parts

Chapter 15’s model to predict importance for review uses data from a variety of features.
Which features to use was determined systematically, combining results from the literature with
an inductive approach.

To identify features from the literature, I looked for defect prediction studies and especially
studies that compare the relative suitability of features for defect prediction. I identified these
studies using searches on Google Scholar and performed snowballing [405] for further studies, but
did not perform a formal systematic literature review. Few studies use change part granularity
for prediction, so the features were partly adapted to fit the current context. The studies selected
for analysis are: [14, 72, 86, 116, 139, 256, 263, 265, 272, 279, 287, 309, 313, 339, 340, 343, 345,
355].

As second feature source, I used an inductive approach, inspired by qualitative approaches for
hypothesis generation [144]: Initially, I sampled some code changes from the data and assigned
“codes” to the change parts, similar to “open coding” in qualitative data analysis. Later, I
extended the data mining tool with a feature to sample misclassified change parts. These were
again analyzed for missing features that could explain the misclassification.

Tables F.1 to F.3 show the final selection of features implemented for the study, with a
brief explanation and the source for each feature. ‘Source’ means the source responsible for the
inclusion in this study and does not contain an exhaustive list of all studies that use that feature.

225

Table F.1: Final selection of change part features used as input for the mining (1/3)

Name and Type Description Source /
Inspired by

Ticket and commit granularity:

issueType
(nominal)

Type of the Jira ticket (e.g., bug or user story task) [340]

author (nominal) User ID for the author of the commit inductive

authorDay
(nominal)

Weekday of the commit
[116, 340]

shiftedAuthorHour
(numeric)

Hour of the time of the commit. The value is shifted so that
0 stands for 6 AM. In this way, “night” vs “day” can be
expressed with a single comparison.

fileCountInCommit
(numeric)

Count of files that were changed in the commit. inductive

hunkCountIn-
Commit
(numeric)

Count of change parts in the commit (changes in binary files
count as 1)

inductive

commitContains-
Test
(boolean)

“true” iff the commit contains changes to test code [313]

File granularity:

binary (boolean) “true” iff the file is treated as binary. Very large text files (≥
1 MiB) are also treated as binary.

inductive

filetype (nominal) Extension of the filename (e.g., “java” or “txt”) inductive

srcdir (nominal) Classification of the file in the project: “src” (production
code), “test” (test code), “testdata” or “resources”

inductive

project (nominal) Project to which the file belongs. In the partner company,
there are also some pseudo projects, e.g., for common build
scripts or external dependencies.

inductive

frequentFilename
(nominal)

Filename (without path, but with extension), but set only
when it is one of the 20 most common filenames. In the
partner company there are some very common filenames that
denote specific roles, e.g., “Messages.java” or “Logger.java”.

inductive

fileAgeDays
(numeric)

Number of days since the creation (initial commit) of the file. [287, 309, 343]

fileCommitCount
(numeric)

Number of commits to the file since its creation. [14, 256, 263,
340]

distinctFileAuthor-
Count
(numeric)

Number of distinct authors of the file since its creation. [14, 139, 256,
263, 287, 340,
343]

newLineCountIn-
File
(numeric)

Total number of lines in the file (after the commit) [265, 339]

recentProject-
Ownership
(numeric)

Ratio of the number of commits to the file’s project in the
last year by the author to the number of commits to the
file’s project in the last year by all authors.

[272, 355]

226

Table F.2: Final selection of change part features used as input for the mining (2/3)

Name and Type Description Source /
Inspired by

File granularity (continued):

commitsSinceLast-
RemarkForAuthor-
InProject
(numeric)

Number of commits since the file’s author last received a
review remark in the file’s project.

[86, 287, 309,
340, 343, 355]

commitsSinceLast-
RemarkInFile
(numeric)

Number of commits since the file last received a review
remark.

hunkCountInFile
(numeric)

Count of change parts in the file inductive

changetype
(nominal)

Git’s classification of the change to the file
(MODIFY/ADD/RENAME/DELETE/COPY).

inductive

gitSimilarity
(numeric)

Git’s similarity statistic for the file content (i.e., 100 when
the content stayed the same)

inductive

newShareOfLines-
InFile
(numeric)

Ratio of the changed lines to the total number of lines (in
the new file version).

[313]

isNodeModules
(boolean)

“true” if the file path denotes a commited external
dependency from npm (node.js package manager)

inductive

Change part granularity:

oldHunkSize
(numeric)

Number of lines of the change part in the old file version inductive

newHunkSize
(numeric)

Number of lines of the change part in the new file version inductive

changeInHunkSize
(numeric)

newHunkSize minus oldHunkSize inductive

commentLine-
CountOld
(numeric)

Number of comment lines in the old side of the change part

[139, 265]

commentLine-
CountNew
(numeric)

Number of comment lines in the new side of the change part

changeInComment-
LineCount
(numeric)

commentLineCountNew minus commentLineCountOld

oldBlockCount
(numeric)

Number of Java blocks (i.e., braces pairs) in the old side of
the change part. [265]

newBlockCount
(numeric)

Number of Java blocks (i.e., braces pairs) in the new side of
the change part.

changeInBlock-
Count
(numeric)

newBlockCount minus oldBlockCount

227

Table F.3: Final selection of change part features used as input for the mining (3/3)

Name and Type Description Source /
Inspired by

Change part granularity (continued):

responseForHunk-
Old
(numeric)

RFC metric (Response For a Class; approx. number of
distinct method calls) restricted to the code in the old side of
the change part

[14, 72, 86, 139,
287]

responseForHunk-
New
(numeric)

RFC metric (Response For a Class; approx. number of
distinct method calls) restricted to the code in the new side
of the change part

changeInResponse-
ForHunk
(numeric)

responseForHunkNew minus responseForHunkOld [14, 86]

whitespaceOnly
(boolean)

“true” iff only whitespace was changed for the change part. inductive

packageAndImport-
Only
(boolean)

“true” iff only package declarations and import statements
were changed for the change part.

inductive

finalChangeOnly
(boolean)

“true” iff the change consists only of adding or removing
Java’s “final” keyword.

inductive

nonnlsChangeOnly
(boolean)

“true” iff the change consists only of changes to the marker
comments and annotations for non-internationalized string
constants.

inductive

visibilityChange-
Only
(boolean)

“true” iff only visibility modifiers (“public”, “private”, . . .)
were changed.

inductive

overrideAnnotation
(nominal)

Denotes which side of the change part contains an
“@Override” annotation (none/old/new/both)

inductive

entropyCbMax,
entropyCbUp-
pQuar,
entropyCbMed,
entropyCbSum,
entropyCbAvg
(numeric)

This group of features conceptually denotes the
“surprisingness” of the new code given the old code base.
Formally, the SLP library by Hellendoorn et al. [169] is used
to compute an entropy for each token on the new side of the
change part, with smaller values for less surprising tokens.
These per token entropies are then combined to find the
maximum (“Max”), 75% quantile (“UppQuar”), median
(“Med”), sum (“UppQuar”) and mean (“Avg”) for the
change part.

inductive, [169]

entropyReMax,
entropyReUp-
pQuar,
entropyReMed,
entropyReSum,
entropyReAvg
(numeric)

This group of features conceptually denotes the
“surprisingness” of a change part given the earlier change
parts under review. Like the “entropyCb. . . ” group of
features, it uses the SLP library by Hellendoorn et al. [169]
and combines the per token values differently for each feature
(“Max”, “UppQuar”, . . .). Pre-processing is performed to
make the library work on code changes instead of code; its
details can be seen in the study’s online material [32].

inductive, [169]

228

G
Results of the Remark Classification Model

for the Training Data

Chapter 15 contains the results of the found rules on the unseen test data. Mainly to identify
signs of overfitting, the results on the training data can be useful, too.

Figure G.1 shows projections of the Pareto front obtained by the multi-objective algorithm
with and without input from domain experts. It also shows the position of the four selected
rules in the objective space. RIPPER and C4.5 are dominated by both Pareto fronts, and do
not perform much better, and sometimes worse, than just skipping the review of random change
parts. RIPPER differs from all other rulesets by having the form “skip all except . . . ”. RIPPER
and C4.5 were insensitive to the (high) cost of missed remarks and created rulesets with many
missed review remarks. The RIPPER and C4.5 rulesets are also more complex than the MO
rulesets. The exact numbers for these and the other objectives are shown in Table G.1.

Figure G.1 also allows an estimate of the hardness of the mining task for the objectives.
Without missing remarks, the best found model can save the review of 46% of the records. But
practically more relevant are the relative numbers of saved Java lines and the trimmed mean of
saved records per ticket. Both are much lower (17% and 10%), indicating that the good numbers
are due to rare events: tickets with a large number of changes to non-source files. Also, all the
stated numbers are optimistic, as they are evaluated on the training set. More realistic results
from unseen data follow in Section 15.4.5.

Summing up, the results of the multi-objective rule mining algorithm are better than those
obtained with RIPPER and C4.5. The results obtained with user interaction are better in the
regions of the objective space that were focused on by the user, i.e., complexity and broad ticket
coverage. Figure 15.6 shows the ruleset that came out of this interaction between mining tool
and domain experts. 84% of the savings of this ruleset are due to three simple syntactic rules.

229

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
*

*

*

*

*

*

**

*
*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*
*

*
*

*

*

*

*
*

*

*

*

*

*

*

**

●

●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●

●
●
●

●

● ●
●

●

●●

●

●●●●

●

●

●

●

RIPPER

MO_I

MO_A

SESSION
C45_2 C45_3

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

missed remarks (relative)

sa
ve

d
hu

nk
s

(r
el

at
iv

e)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
*

*

*

*

*

*

*

**

**

*

*

*

*

*

*

*

*

**

*

*

*

*
**

*

*

**
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

**

*

*

*

●

●●

●

●

●

●●●

●●

●

●

●

●●

●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●●●●●●

●
●
●●

●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●●●
●●●
●

●●●●●

●

●
●

●

●

●

●

●●●●●●●
●●●

● ●●●
●●●

●●●●●●●

RIPPER

MO_I

MO_A

SESSION

C45_2

C45_3

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

log missed remark (relative)

sa
ve

d
hu

nk
 tr

im
m

ed
 m

ea
n

(r
el

at
iv

e)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

*

*

*

*

*

*

*

*

*
*

*
*
*
*

*

*
**
*

*

*

**

**

*

**

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

**

**

*

**

*

*

**

●

●

●

●
●●

●

●

●

●

●

●

●●
●●●

●●●●

●●●

●

●●●●●●●

●

●●●●●●●●●●●

●

●●
●

●
●

●●
●

●

●

●●

●●

●●●●●

●

RIPPER

MO_I

MO_A

SESSION

C45_2 C45_3

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

log missed remark (relative)

sa
ve

d
Ja

va
 li

ne
s

(r
el

at
iv

e)

Figure G.1: Pareto fronts and selected rulesets, evaluated on the training data. The plots show two-
dimensional projections from the seven-dimensional objective space. The gray dots show the baseline
performance of leaving out a certain percentage of records per ticket; each dot corresponds to a percentage
value, with results averaged over 100 random seeds.

230

Table G.1: Objective values for the selected rulesets on the training data.

Objectives to Minimize Objectives to Maximize

Ruleset
Compl-

exity
Feature

Count

Missed
Remark

Count

Log-
Transf.
Missed

Remarks

Saved
Record
Count

Tr.M.1

Saved
Records

Per Ticket

Saved
LOC

in Java
Files

SESSION 40 17 1,500 142.4 410,974 10.1 303,943

MO I 58 17 338 40.6 384,058 8.8 292,371

MO A 184 24 0 0.0 300,266 1.2 161,920

RIPPER S2 200 17 16,806 2,493.6 445,275 21.6 431,981

RIPPER 342 25 12,867 2,245.3 460,408 22.1 464,148

C4.5 2 151,084 39 7,669 1,476.6 394,179 15.4 515,225

C4.5 3 63,872 38 17,231 2,838.4 402,585 18.4 514,911

Max. Value3 ∞ 52 68,960 8,055.8 703,706 43.9 1,155,636

1 Tr.M. := trimmed mean
2 During the team session it was decided to remove one further ticket from the training data. RIPPER

is the rule set learned with the final data, RIPPER S is based on the older data and was used in the
survey.

3 The last row shows the total count / maximum possible value for the respective objective.

231

232

Bibliography

[1] Z. Abdelnabi, G. Cantone, M. Ciolkowski, and D. Rombach. Comparing code reading
techniques applied to object-oriented software frameworks with regard to effectiveness and
defect detection rate. In Empirical Software Engineering, 2004. ISESE’04. Proceedings.
2004 International Symposium on, pages 239–248. IEEE, 2004.

[2] S. Adolph, W. Hall, and P. Kruchten. Using grounded theory to study the experience of
software development. Empirical Software Engineering, 16(4):487–513, 2011.

[3] A. Agresti. An introduction to categorical data analysis. Wiley, 2nd edition, 2007.

[4] A. Agresti. Analysis of Ordinal Categorical Data. Wiley, 2nd edition, 2010.

[5] Ö. Albayrak and D. Davenport. Impact of maintainability defects on code inspections.
In Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, page 50. ACM, 2010.

[6] C. Alexander. The timeless way of building. Oxford University Press, 1979.

[7] N. B. Ali and K. Petersen. A consolidated process for software process simulation: state
of the art and industry experience. In Software Engineering and Advanced Applications
(SEAA), 2012 38th EUROMICRO Conference on, pages 327–336. IEEE, 2012.

[8] N. B. Ali, K. Petersen, and C. Wohlin. A systematic literature review on the industrial
use of software process simulation. Journal of Systems and Software, 97:65–85, 2014. doi:
10.1016/j.jss.2014.06.059.

[9] D. Anderson. Kanban: Successful Evolutionary Change for Your Technology Business.
Blue Hole Press, 2010. isbn: 9780984521401.

[10] D. J. Anderson, G. Concas, M. I. Lunesu, M. Marchesi, and H. Zhang. A comparative
study of scrum and kanban approaches on a real case study using simulation. In Agile
Processes in Software Engineering and Extreme Programming, pages 123–137. Springer,
2012.

[11] P. Anderson, T. Reps, and T. Teitelbaum. Design and implementation of a fine-grained
software inspection tool. Software Engineering, IEEE Transactions on, 29(8):721–733,
2003.

[12] V. Anu, G. Walia, W. Hu, J. C. Carver, and G. Bradshaw. Using a cognitive psychology
perspective on errors to improve requirements quality: an empirical investigation. In
Software Reliability Engineering (ISSRE), 2016 IEEE 27th International Symposium on,
pages 65–76. IEEE, 2016.

233

https://doi.org/10.1016/j.jss.2014.06.059

[13] T. Apiwattanapong, A. Orso, and M. J. Harrold. A differencing algorithm for object-
oriented programs. In Proceedings of the 19th IEEE international conference on Auto-
mated software engineering, pages 2–13. IEEE Computer Society, 2004. doi: 10.1109/
ASE.2004.1342719.

[14] E. Arisholm, L. C. Briand, and E. B. Johannessen. A systematic and comprehensive
investigation of methods to build and evaluate fault prediction models. Journal of Systems
and Software, 83(1):2–17, 2010.

[15] J. Asundi and R. Jayant. Patch review processes in open source software development
communities: a comparative case study. In System Sciences, 2007. HICSS 2007. 40th
Annual Hawaii International Conference on, pages 166c–166c. IEEE, 2007.

[16] B. Athreya and C. Scaffidi. Towards aiding within-patch information foraging by end-
user programmers. In Visual Languages and Human-Centric Computing (VL/HCC), 2014
IEEE Symposium on, pages 13–20. IEEE, 2014.

[17] A. Aurum, H. Petersson, and C. Wohlin. State-of-the-art: software inspections after 25
years. Software Testing, Verification and Reliability, 12(3):133–154, 2002.

[18] A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of modern code review.
In Proceedings of the 2013 International Conference on Software Engineering, pages 712–
721. IEEE Press, 2013.

[19] R. A. Baker Jr. Code reviews enhance software quality. In Proceedings of the 19th Inter-
national Conference on Software Engineering, pages 570–571. ACM, 1997.

[20] V. Balachandran. Reducing human effort and improving quality in peer code reviews
using automatic static analysis and reviewer recommendation. In Proceedings of the 2013
International Conference on Software Engineering, pages 931–940. IEEE Press, 2013.

[21] M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri. Helping developers help themselves:
automatic decomposition of code review changesets. In Proceedings of the 2015 Interna-
tional Conference on Software Engineering. IEEE Press, 2015.

[22] K. Barton. MuMIn: Multi-Model Inference. R package version 1.42.1. 2018. url: https:
//CRAN.R-project.org/package=MuMIn.

[23] V. R. Basili. Evolving and packaging reading technologies. Journal of Systems and Soft-
ware, 38(1):3–12, 1997.

[24] V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Sørumg̊ard, and M. V.
Zelkowitz. The empirical investigation of perspective-based reading. Empirical Software
Engineering, 1(2):133–164, 1996.

[25] V. Basili, G. Caldiera, F. Lanubile, and F. Shull. Studies on reading techniques. In Proc.
of the Twenty-First Annual Software Engineering Workshop, volume 96, page 002, 1996.

[26] D. Bates, M. Maechler, B. Bolker, S. Walker, et al. Lme4: linear mixed-effects models
using eigen and s4. R package version, 1(7):1–23, 2014.

[27] T. Baum. Detailed table with review effects (team level) and their connections to con-
textual factors and process variants for ”factors influencing code review processes in
industry”. 2016. url: http://dx.doi.org/10.6084/m9.figshare.5104111.

[28] T. Baum. Leveraging pre-commit hooks for context-sensitive checklists: a case study.
In Fachtagung des GI-Fachbereichs Softwaretechnik, Software Engineering (SE 2015),
Dresden, Germany, pages 219–222, 2015.

234

https://doi.org/10.1109/ASE.2004.1342719
https://doi.org/10.1109/ASE.2004.1342719
https://CRAN.R-project.org/package=MuMIn
https://CRAN.R-project.org/package=MuMIn
http://dx.doi.org/10.6084/m9.figshare.5104111

[29] T. Baum, A. Bacchelli, and K. Schneider. Associating working memory capacity and
code change ordering with code review performance. Empirical Software Engineering,
2018. doi: 10.1007/s10664-018-9676-8.

[30] T. Baum, S. Herbold, and K. Schneider. A multi-objective anytime rule mining system
to ease iterative feedback from domain experts. arXiv preprint arXiv:1812.09746, 2018.

[31] T. Baum, S. Herbold, and K. Schneider. An industrial case study on shrinking code
review changesets through remark prediction. arXiv preprint arXiv:1812.09510, 2018.

[32] T. Baum, S. Herbold, and K. Schneider. Online appendix for ”an industrial case study
on shrinking code review changesets through remark prediction”. 2018. url: http://dx.
doi.org/10.6084/m9.figshare.7438676.

[33] T. Baum and F. Kortum. Simulation results and source code for pre/post commit com-
parison paper. https : / / github . com / FG - SE / PrePostReviewProcessSimulation /

releases/tag/v1.0.

[34] T. Baum, F. Kortum, K. Schneider, A. Brack, and J. Schauder. Comparing pre com-
mit reviews and post commit reviews using process simulation. In Software and Sys-
tem Process (ICSSP), 2016 International Conference on, Austin, TX, USA, 2016. doi:
10.1109/ICSSP.2016.012.

[35] T. Baum, F. Kortum, K. Schneider, A. Brack, and J. Schauder. Comparing pre-commit
reviews and post-commit reviews using process simulation. Journal of Software: Evolution
and Process, 29(11):e1865, 2017. doi: 10.1002/smr.1865.

[36] T. Baum, H. Leßmann, and K. Schneider. Online material for survey on code review
use. doi: 10.6084/m9.figshare.5104249. url: http://dx.doi.org/10.6084/m9.
figshare.5104249.

[37] T. Baum, H. Leßmann, and K. Schneider. The choice of code review process: a sur-
vey on the state of the practice. In M. Felderer, D. Méndez Fernández, B. Turhan, M.
Kalinowski, F. Sarro, and D. Winkler, editors, Product-Focused Software Process Im-
provement, pages 111–127, Cham. Springer International Publishing, 2017. isbn: 978-3-
319-69926-4. doi: 10.1007/978-3-319-69926-4_9.

[38] T. Baum, O. Liskin, K. Niklas, and K. Schneider. A faceted classification scheme for
change-based industrial code review processes. In Software Quality, Reliability and Se-
curity (QRS), 2016 IEEE International Conference on, pages 74–85, Vienna, Austria.
IEEE, 2016. doi: 10.1109/QRS.2016.19.

[39] T. Baum, O. Liskin, K. Niklas, and K. Schneider. Factors influencing code review pro-
cesses in industry. In Proceedings of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, FSE 2016, pages 85–96, Seattle, WA,
USA. ACM, 2016. isbn: 978-1-4503-4218-6. doi: 10.1145/2950290.2950323.

[40] T. Baum and K. Schneider. On the need for a new generation of code review tools. In
Product-Focused Software Process Improvement: 17th International Conference, PRO-
FES 2016, Trondheim, Norway, November 22-24, 2016, Proceedings 17, pages 301–308.
Springer, 2016. doi: 10.1007/978-3-319-49094-6_19.

[41] T. Baum, K. Schneider, and A. Bacchelli. On the optimal order of reading source code
changes for review. In 33rd IEEE International Conference on Software Maintenance and
Evolution (ICSME), Proceedings, pages 329–340, 2017. doi: 10.1109/ICSME.2017.28.

235

https://doi.org/10.1007/s10664-018-9676-8
http://dx.doi.org/10.6084/m9.figshare.7438676
http://dx.doi.org/10.6084/m9.figshare.7438676
https://github.com/FG-SE/PrePostReviewProcessSimulation/releases/tag/v1.0
https://github.com/FG-SE/PrePostReviewProcessSimulation/releases/tag/v1.0
https://doi.org/10.1109/ICSSP.2016.012
https://doi.org/10.1002/smr.1865
https://doi.org/10.6084/m9.figshare.5104249
http://dx.doi.org/10.6084/m9.figshare.5104249
http://dx.doi.org/10.6084/m9.figshare.5104249
https://doi.org/10.1007/978-3-319-69926-4_9
https://doi.org/10.1109/QRS.2016.19
https://doi.org/10.1145/2950290.2950323
https://doi.org/10.1007/978-3-319-49094-6_19
https://doi.org/10.1109/ICSME.2017.28

[42] T. Baum, K. Schneider, and A. Bacchelli. Online material for ”Associating working mem-
ory capacity and code change ordering with code review performance”. 2018. url: http:
//dx.doi.org/10.6084/m9.figshare.5808609.

[43] T. Baum, K. Schneider, and A. Bacchelli. Online material for ”On the optimal order of
reading source code changes for review”. 2017. url: http://dx.doi.org/10.6084/m9.
figshare.5236150.

[44] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey. Investigating technical and
non-technical factors influencing modern code review. Empirical Software Engineering,
21:932–959, 2016. doi: 10.1007/s10664-015-9366-8.

[45] A. Begel and H. Vrzakova. Eye movements in code review. In Proceedings of the Work-
shop on Eye Movements in Programming, page 5. ACM, 2018. doi: 10.1145/3216723.
3216727.

[46] F. Belli and R. Crisan. Empirical performance analysis of computer-supported code-
reviews. In Software Reliability Engineering, 1997. Proceedings., The Eighth International
Symposium on, pages 245–255. IEEE, 1997.

[47] G. R. Bergersen and J.-E. Gustafsson. Programming skill, knowledge, and working mem-
ory among professional software developers from an investment theory perspective. Jour-
nal of Individual Differences, 32(4):201–209, 2011.

[48] M. Bernhart, A. Mauczka, and T. Grechenig. Adopting code reviews for agile software
development. In Agile Conference (AGILE), 2010, pages 44–47. IEEE, 2010. doi: 10.
1109/AGILE.2010.18.

[49] M. Bernhart, S. Reiterer, K. Matt, A. Mauczka, and T. Grechenig. A task-based code
review process and tool to comply with the do-278/ed-109 standard for air traffic man-
agment software development: an industrial case study. In High-Assurance Systems En-
gineering (HASE), 2011 IEEE 13th International Symposium on, 2011. doi: 10.1109/
HASE.2011.54.

[50] M. Bernhart, S. Strobl, A. Mauczka, and T. Grechenig. Applying continuous code reviews
in airport operations software. In Quality Software (QSIC), 2012 12th International Con-
ference on, pages 214–219. IEEE, 2012. doi: 10.1109/QSIC.2012.61.

[51] B. Biegel, F. Beck, W. Hornig, and S. Diehl. The order of things: how developers sort
fields and methods. In Software Maintenance (ICSM), 2012 28th IEEE International
Conference on, pages 88–97. IEEE, 2012.

[52] S. Biffl. Analysis of the impact of reading technique and inspector capability on indi-
vidual inspection performance. In Software Engineering Conference, 2000. APSEC 2000.
Proceedings. Seventh Asia-Pacific, pages 136–145. IEEE, 2000.

[53] S. Biffl, P. Grünbacher, and M. Halling. A family of experiments to investigate the effects
of groupware for software inspection. Automated Software Engineering, 13(3):373–394,
2006. doi: 10.1007/s10851-006-8531-5.

[54] S. Biffl and M. Halling. Investigating the influence of inspector capability factors with four
inspection techniques on inspection performance. In Software Metrics, 2002. Proceedings.
Eighth IEEE Symposium on, pages 107–117. IEEE, 2002.

236

http://dx.doi.org/10.6084/m9.figshare.5808609
http://dx.doi.org/10.6084/m9.figshare.5808609
http://dx.doi.org/10.6084/m9.figshare.5236150
http://dx.doi.org/10.6084/m9.figshare.5236150
https://doi.org/10.1007/s10664-015-9366-8
https://doi.org/10.1145/3216723.3216727
https://doi.org/10.1145/3216723.3216727
https://doi.org/10.1109/AGILE.2010.18
https://doi.org/10.1109/AGILE.2010.18
https://doi.org/10.1109/HASE.2011.54
https://doi.org/10.1109/HASE.2011.54
https://doi.org/10.1109/QSIC.2012.61
https://doi.org/10.1007/s10851-006-8531-5

[55] C. Bird, T. Carnahan, and M. Greiler. Lessons learned from building and deploying a code
review analytics platform. In Mining Software Repositories (MSR), 2015 IEEE/ACM
12th Working Conference on, pages 191–201, 2015.

[56] D. B. Bisant and J. R. Lyle. A two-person inspection method to improve programming
productivity. IEEE Transactions on Software Engineering, 15(10):1294–1304, 1989.

[57] J. B. Black and G. H. Bower. Story understanding as problem-solving. Poetics, 9(1-
3):223–250, 1980.

[58] A. Bosu and J. C. Carver. Impact of peer code review on peer impression formation: a
survey. In Empirical Software Engineering and Measurement, 2013 ACM/IEEE Interna-
tional Symposium on, pages 133–142. IEEE, 2013.

[59] A. Bosu and J. C. Carver. Peer code review in open source communitiesusing review-
board. In Proceedings of the ACM 4th annual workshop on Evaluation and usability of
programming languages and tools, pages 17–24. ACM, 2012.

[60] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley. Process aspects and social
dynamics of contemporary code review: insights from open source development as well as
industrial practice at microsoft. IEEE Transactions on Software Engineering, 2016. doi:
10.1109/TSE.2016.2576451.

[61] A. Bosu, M. Greiler, and C. Bird. Characteristics of useful code reviews: an empirical
study at microsoft. In MSR ’15 Proceedings of the 12th Working Conference on Mining
Software Repositories, pages 146–156, 2015.

[62] L. R. Brothers. Multimedia groupware for code inspection. In Communications, 1992.
ICC’92, Conference record, SUPERCOMM/ICC’92, Discovering a New World of Com-
munications., IEEE International Conference on, pages 1076–1081. IEEE, 1992.

[63] L. Brothers, V. Sembugamoorthy, and M. Muller. Icicle: groupware for code inspection.
In Proceedings of the 1990 ACM conference on Computer-supported cooperative work,
pages 169–181. ACM, 1990. doi: 10.1145/99332.99353.

[64] L. Brothers, V. Sembugamoorthy, and A. E. Irgon. Knowledge-based code inspection
with icicle. In IAAI, pages 295–314, 1992.

[65] B. Brykczynski. A survey of software inspection checklists. ACM SIGSOFT Software
Engineering Notes, 24(1):82, 1999.

[66] R. P. Buse and W. R. Weimer. Automatically documenting program changes. In Pro-
ceedings of the IEEE/ACM international conference on Automated software engineering,
pages 33–42. ACM, 2010.

[67] D. Caivano, F. Lanubile, and G. Visaggio. Scaling up distributed software inspections.
In Proceedings of the Fourth ICSE Workshop on Software Engineering over the Internet,
2001.

[68] G. Canfora, A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella, and S. Panichella. Defect
prediction as a multiobjective optimization problem. Software Testing, Verification and
Reliability, 25(4):426–459, 2015.

[69] K. Chan. An agent-based approach to computer assisted code inspections. In Software
Engineering Conference, 2001. Proceedings. 2001 Australian, pages 147–152. IEEE, 2001.

237

https://doi.org/10.1109/TSE.2016.2576451
https://doi.org/10.1145/99332.99353

[70] L. Chan, K. Jiang, and S. Karunasekera. A tool to support perspective based approach to
software code inspection. In Software Engineering Conference, 2005. Proceedings. 2005
Australian, pages 110–117. IEEE, 2005. doi: 10.1109/ASWEC.2005.10.

[71] K. Charmaz. Constructing Grounded Theory. Introducing Qualitative Methods series.
SAGE Publications, 2014. isbn: 9781446293492.

[72] X. Chen, Y. Shen, Z. Cui, and X. Ju. Applying feature selection to software defect
prediction using multi-objective optimization. In Computer Software and Applications
Conference (COMPSAC), 2017 IEEE 41st Annual, volume 2, pages 54–59. IEEE, 2017.

[73] X. Chen, Y. Zhao, Q. Wang, and Z. Yuan. Multi: multi-objective effort-aware just-in-time
software defect prediction. Information and Software Technology, 93:1–13, 2018.

[74] H. ÇİFCİ. A Workflow Based Online Software Review System. Master’s thesis, Middle
East Technical University, 2004.

[75] M. Ciolkowski, O. Laitenberger, and S. Biffl. Software reviews: the state of the practice.
IEEE Software, 20(6):46–51, 2003.

[76] P. Clarke and R. V. O’Connor. The situational factors that affect the software develop-
ment process: towards a comprehensive reference framework. Information and Software
Technology, 54(5):433–447, 2012.

[77] J. Cohen. Statistical power analysis for the behavioral sciences. Revised edition. Academic
Press, 1977.

[78] W. W. Cohen. Fast effective rule induction. In Twelfth International Conference on Ma-
chine Learning, pages 115–123. Morgan Kaufmann, 1995.

[79] G. Coleman and R. O’Connor. Using grounded theory to understand software process
improvement: a study of irish software product companies. Information and Software
Technology, 49(6):654–667, 2007.

[80] G. Coleman and R. V. O’Connor. An investigation into software development process for-
mation in software start-ups. Journal of Enterprise Information Management, 21(6):633–
648, 2008.

[81] J. Corbin and A. Strauss. Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory. SAGE Publications, 3e edition, 2007. isbn: 9781452278933.

[82] N. Cowan. The magical mystery four: how is working memory capacity limited, and why?
Current directions in psychological science, 19(1):51–57, 2010.

[83] I. Crk, T. Kluthe, and A. Stefik. Understanding programming expertise: an empirical
study of phasic brain wave changes. ACM Transactions on Computer-Human Interaction
(TOCHI), 23(1):2, 2016.

[84] M. Csikszentmihalyi. Flow: The Psychology of Optimal Experience. Harper Perennial
Modern Classics, 2008.

[85] J. Czerwonka, M. Greiler, and J. Tilford. Code reviews do not find bugs. how the current
code review best practice slows us down. In Proceedings of the 2015 International Con-
ference on Software Engineering – Volume 2. IEEE, May 2015. url: http://research.
microsoft.com/apps/pubs/default.aspx?id=242201.

238

https://doi.org/10.1109/ASWEC.2005.10
http://research.microsoft.com/apps/pubs/default.aspx?id=242201
http://research.microsoft.com/apps/pubs/default.aspx?id=242201

[86] M. D’Ambros, M. Lanza, and R. Robbes. An extensive comparison of bug prediction
approaches. In Mining Software Repositories (MSR), 2010 7th IEEE Working Conference
on, pages 31–41. IEEE, 2010.

[87] M. D’Ambros, M. Lanza, and R. Robbes. Commit 2.0. In Proceedings of the 1st Workshop
on Web 2.0 for Software Engineering, pages 14–19. ACM, 2010.

[88] H. K. Dam, T. Tran, and A. Ghose. Explainable software analytics. In Proceedings of
the 40th International Conference on Software Engineering: New Ideas and Emerging
Results, pages 53–56. ACM, 2018.

[89] M. Daneman and P. A. Carpenter. Individual differences in working memory and reading.
Journal of verbal learning and verbal behavior, 19(4):450–466, 1980.

[90] M. Daneman and P. M. Merikle. Working memory and language comprehension: a meta-
analysis. Psychonomic bulletin & review, 3(4):422–433, 1996.

[91] J. P. Davis, K. M. Eisenhardt, and C. B. Bingham. Developing theory through simulation
methods. Academy of Management Review, 32(2):480–499, 2007.

[92] A. B. De Carvalho, A. Pozo, and S. R. Vergilio. A symbolic fault-prediction model
based on multiobjective particle swarm optimization. Journal of Systems and Software,
83(5):868–882, 2010.

[93] A. De Lucia, F. Fasano, G. Scanniello, and G. Tortora. Evaluating distributed inspection
through controlled experiments. IET software, 3(5):381–394, 2009. doi: 10.1049/iet-
sen.2008.0101.

[94] A. De Lucia, F. Fasano, G. Scanniello, and G. Tortora. Improving artefact quality man-
agement in advanced artefact management system with distributed inspection. IET soft-
ware, 5(6):510–527, 2011. doi: 10.1049/iet-sen.2010.0108.

[95] A. De Lucia, F. Fasano, G. Tortora, and G. Scanniello. Assessing the effectiveness of
a distributed method for code inspection: a controlled experiment. In Global Software
Engineering, 2007. ICGSE 2007. Second IEEE International Conference on, pages 252–
261. IEEE, 2007. doi: 10.1109/ICGSE.2007.11.

[96] A. De Lucia, F. Fasano, G. Tortora, and G. Scanniello. Integrating a distributed inspec-
tion tool within an artefact management system. In ICSOFT 2007 – 2nd International
Conference on Software and Data Technologies, Proceedings, pages 184–189, Dec. 2007.

[97] B. B. N. de França and G. H. Travassos. Simulation based studies in software engineering:
a matter of validity. CLEI Electronic Journal, 18(1):5–5, 2015.

[98] G.-J. de Vreede, P. G. Koneri, D. L. Dean, A. L. Fruhling, and P. Wolcott. A collaborative
software code inspection: the design and evaluation of a repeatable collaboration process
in the field. International Journal of Cooperative Information Systems:205–228, 2006.
doi: 10.1142/S0218843006001347.

[99] C. Denger, M. Ciolkowski, and F. Lanubile. Does active guidance improve software in-
spections? a preliminary empirical study. In IASTED Conf. on Software Engineering,
pages 408–413, 2004.

[100] C. Denger and F. Shull. A practical approach for quality-driven inspections. Software,
IEEE, 24(2):79–86, 2007.

239

https://doi.org/10.1049/iet-sen.2008.0101
https://doi.org/10.1049/iet-sen.2008.0101
https://doi.org/10.1049/iet-sen.2010.0108
https://doi.org/10.1109/ICGSE.2007.11
https://doi.org/10.1142/S0218843006001347

[101] D. DeStefano and J.-A. LeFevre. Cognitive load in hypertext reading: a review. Comput-
ers in human behavior, 23(3):1616–1641, 2007.

[102] M. Dias, A. Bacchelli, G. Gousios, D. Cassou, and S. Ducasse. Untangling fine-grained
code changes. In Software Analysis, Evolution and Reengineering, 2015 IEEE 22nd In-
ternational Conference on, pages 341–350. IEEE, 2015.

[103] B. Doherty and S. Sahibuddin. Software quality through distributed code inspection.
Proceedings of the International Conference on Software Quality Engineering, SQE :159–
168, Jan. 1997. doi: 10.2495/SQE970151.

[104] E. W. dos Santos and I. Nunes. Investigating the effectiveness of peer code review in
distributed software development. In Proceedings of the 31st Brazilian Symposium on
Software Engineering, pages 84–93. ACM, 2017. doi: 10.1145/3131151.3131161.

[105] J. Dowell and J. Long. Target paper: conception of the cognitive engineering design
problem. Ergonomics, 41(2):126–139, 1998.

[106] J. Drake, V. Mashayekhi, J. Riedl, and W.-T. Tsai. A distributed collaborative software
inspection tool: design, prototype, and early trial. In Proceedings of the 30th Aerospace
Sciences Conference, 1991.

[107] A. Dunsmore, M. Roper, and M. Wood. Object-oriented inspection in the face of delo-
calisation. In Proceedings of the 22nd International Conference on Software Engineering,
pages 467–476. ACM, 2000.

[108] A. Dunsmore, M. Roper, and M. Wood. Practical code inspection for object-oriented
systems. In WISE, volume 1, pages 49–57, 2001.

[109] A. Dunsmore, M. Roper, and M. Wood. Systematic object-oriented inspection – an empir-
ical study. In Proceedings of the 23rd International Conference on Software Engineering,
pages 135–144. IEEE Computer Society, 2001.

[110] A. Dunsmore, M. Roper, and M. Wood. The development and evaluation of three diverse
techniques for object-oriented code inspection. Software Engineering, IEEE Transactions
on, 29(8):677–686, 2003. doi: 10.1109/TSE.2003.1223643.

[111] A. Dunsmore, M. Roper, and M. Wood. The role of comprehension in software inspection.
Journal of Systems and Software, 52(2):121–129, 2000.

[112] T. Dürschmid. Continuous code reviews. In Companion to the first International Confer-
ence on the Art, Science and Engineering of Programming, 2017. doi: 10.1145/3079368.
3079374.

[113] N. Dzamashvili-Fogelström and T. Gorschek. Test-case driven versus checklist-based in-
spections of software requirements–an experimental evaluation. In 10th Workshop on
Requirements Engineering (WER 07), 2007.

[114] F. Elberzhager, R. Eschbach, and J. Kloos. Indicator-based inspections: a risk-oriented
quality assurance approach for dependable systems. In Fachtagung des GI-Fachbereichs
Softwaretechnik, Software Engineering (SE 2010), Paderborn, Germany, 2010.

[115] K. A. Ericsson, R. T. Krampe, and C. Tesch-Römer. The role of deliberate practice in
the acquisition of expert performance. Psychological review, 100(3):363, 1993.

[116] J. Eyolfson, L. Tan, and P. Lam. Do time of day and developer experience affect commit
bugginess? In Proceedings of the 8th Working Conference on Mining Software Reposito-
ries, pages 153–162. ACM, 2011.

240

https://doi.org/10.2495/SQE970151
https://doi.org/10.1145/3131151.3131161
https://doi.org/10.1109/TSE.2003.1223643
https://doi.org/10.1145/3079368.3079374
https://doi.org/10.1145/3079368.3079374

[117] M. E. Fagan. Design and code inspections to reduce errors in program development. IBM
Systems Journal, 15(3):182–211, 1976.

[118] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A. Jedlitschka, and M. Oivo.
Empirical software engineering experts on the use of students and professionals in exper-
iments. Empirical Software Engineering :1–38, 2017.

[119] E. Farchi and B. R. Harrington. Assisting the code review process using simple pattern
recognition. In Hardware and Software, Verification and Testing, pages 103–115. Springer,
2006.

[120] J.-M. Favre. Understanding-in-the-large. In Program Comprehension, 1997. IWPC’97.
Proceedings., Fifth Iternational Workshop on, pages 29–38. IEEE, 1997.

[121] M. Fejzer, M. Wojtyna, M. Burzańska, P. Wísniewski, and K. Stencel. Supporting code
review by automatic detection of potentially buggy changes. In International Conference:
Beyond Databases, Architectures and Structures, pages 473–482. Springer, 2015.

[122] A. L. Ferreira, R. J. Machado, L. Costa, J. G. Silva, R. F. Batista, and M. C. Paulk.
An approach to improving software inspections performance. In Software Maintenance
(ICSM), 2010 IEEE International Conference on, pages 1–8. IEEE, 2010.

[123] A. Field and G. Hole. How to design and report experiments. Sage, 2002.

[124] B. Floyd, T. Santander, and W. Weimer. Decoding the representation of code in the
brain: an fmri study of code review and expertise. In Proceedings of the 39th International
Conference on Software Engineering (ICSE), 2017. doi: 10.1109/ICSE.2017.24.

[125] B. Fluri, M. Wursch, M. PInzger, and H. C. Gall. Change distilling: tree differencing for
fine-grained source code change extraction. Software Engineering, IEEE Transactions on,
33(11):725–743, 2007.

[126] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino. Comparing and experimenting
machine learning techniques for code smell detection. Empirical Software Engineering :1–
49, 2015.

[127] Forrester Research, Inc. The value and importance of code reviews. Mar. 2010. url:
http://embedded-computing.com/white-papers/white-paper-value-importance-

code-reviews/. last checked 2017-06-13.

[128] L. T. Frase. Paragraph organization of written materials: the influence of conceptual
clustering upon the level and organization of recall. Learning and instructional Processes,
1969.

[129] E. Fregnan. Automatic Ordering of Code Changes for Review. Master’s thesis, TU Delft,
2018.

[130] E. Fregnan, T. Baum, F. Palomba, and A. Bacchelli. A survey on software coupling
relations and tools. Information and Software Technology, 107:159–178, 2019. doi: https:
//doi.org/10.1016/j.infsof.2018.11.008.

[131] S. Friese. Qualitative Data Analysis with ATLAS.ti. SAGE Publications, 2012. isbn:
9780857021311.

[132] T. Fritz, D. C. Shepherd, K. Kevic, W. Snipes, and C. Bräunlich. Developers’ code
context models for change tasks. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 7–18. ACM, 2014.

241

https://doi.org/10.1109/ICSE.2017.24
http://embedded-computing.com/white-papers/white-paper-value-importance-code-reviews/
http://embedded-computing.com/white-papers/white-paper-value-importance-code-reviews/
https://doi.org/https://doi.org/10.1016/j.infsof.2018.11.008
https://doi.org/https://doi.org/10.1016/j.infsof.2018.11.008

[133] W. Fu, T. Menzies, D. Chen, and A. Agrawal. Building better quality predictors using
”ε-dominance”. arXiv preprint arXiv:1803.04608, 2018.

[134] L. Gasparini. Visualisation of Code Changes for Code Review. Master’s thesis, Delft
University of Technology, 2019.

[135] X. Ge. Improving Tool Support for Software Developers through Refactoring Detection.
PhD thesis, North Carolina State University, 2014.

[136] X. Ge, S. Sarkar, J. Witschey, and E. Murphy-Hill. Refactoring-aware code review. In
2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
2017. doi: 10.1109/VLHCC.2017.8103453.

[137] Y. Geffen and S. Maoz. On method ordering. In Program Comprehension (ICPC), 2016
IEEE 24th International Conference on, pages 1–10, 2016. doi: 10.1109/ICPC.2016.
7503711.

[138] Ç. E. Gerede and Z. Mazan. Will it pass? predicting the outcome of a source code review.
Turkish Journal of Electrical Engineering & Computer Sciences, 26(3):1343–1353, 2018.

[139] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall. Method-level bug prediction. In Pro-
ceedings of the ACM-IEEE international symposium on Empirical software engineering
and measurement, pages 171–180. ACM, 2012.

[140] T. Gilb and D. Graham. Software Inspection. Addison-Wesley, 1993.

[141] J. Gintell, J. Arnold, M. Houde, J. Kruszelnicki, R. McKenney, and G. Memmi. Scrutiny:
a collaborative inspection and review system. In European Software Engineering Confer-
ence, pages 344–360. Springer, 1993. doi: 10.1007/3-540-57209-0_24.

[142] J. Gintell, M. Houde, and R. McKenney. Lessons learned by building and using scrutiny,
a collaborative software inspection system. In Proceedings of the International Workshop
on Computer-Aided Software Engineering, pages 350–357. IEEE, Jan. 1995. doi: 10.

1109/CASE.1995.465299.

[143] B. G. Glaser. Theoretical Sensitivity – Advances in the Methodology of Grounded Theory.
The Sociology Press, 1978.

[144] B. G. Glaser and A. L. Strauss. The Discovery of Grounded Theory: Strategies for Qual-
itative Research. Aldine, 1967.

[145] V. U. Gómez, S. Ducasse, and T. D’Hondt. Visually characterizing source code changes.
Science of Computer Programming, 98:376–393, 2015.

[146] S. Göpferich. Comprehensibility assessment using the Karlsruhe comprehensibility con-
cept. The Journal of Specialised Translation, 11(2009):31–52, 2009.

[147] G. Gousios, M. Pinzger, and A. v. Deursen. An exploratory study of the pull-based
software development model. In Proceedings of the 36th International Conference on
Software Engineering, pages 345–355, Hyderabad, India. ACM, 2014.

[148] A. C. Graesser, D. S. McNamara, and M. M. Louwerse. What do readers need to learn in
order to process coherence relations in narrative and expository text. Rethinking reading
comprehension:82–98, 2003.

242

https://doi.org/10.1109/VLHCC.2017.8103453
https://doi.org/10.1109/ICPC.2016.7503711
https://doi.org/10.1109/ICPC.2016.7503711
https://doi.org/10.1007/3-540-57209-0_24
https://doi.org/10.1109/CASE.1995.465299
https://doi.org/10.1109/CASE.1995.465299

[149] P. Green II, T. Menzies, S. Williams, and O. El-Rawas. Understanding the value of
software engineering technologies. In Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, pages 52–61. IEEE Computer Society,
2009.

[150] R. Gripp. Automatische Erzeugung von Zusammenfassungen für Quellcode-Änderungen.
Master’s thesis, Leibniz Universität Hannover, 2018.

[151] P. Grünbacher, M. Halling, and S. Biffl. An empirical study on groupware support for
software inspection meetings. In Automated Software Engineering, 2003. Proceedings.
18th IEEE International Conference on, pages 4–11. IEEE, 2003. doi: 10.1109/ASE.
2003.1240289.

[152] C. Guinan and A. F. Smeaton. Information retrieval from hypertext using dynamically
planned guided tours. In Proceedings of the ACM conference on Hypertext, pages 122–
130. ACM, 1992.

[153] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A systematic literature review
on fault prediction performance in software engineering. Software Engineering, IEEE
Transactions on, 38(6):1276–1304, 2012. doi: 10.1109/TSE.2011.103.

[154] M. Halling, S. Biffl, and P. Grünbacher. A groupware-supported inspection process for ac-
tive inspection management. In Euromicro Conference, 2002. Proceedings. 28th, pages 251–
258. IEEE, 2002. doi: 10.1109/EURMIC.2002.1046168.

[155] M. Halling, S. Biffl, and P. Grünbacher. An experiment family to investigate the de-
fect detection effect of tool-support for requirements inspection. In Software Metrics
Symposium, 2003. Proceedings. Ninth International, pages 278–285. IEEE, 2003. doi:
10.1109/METRIC.2003.1232474.

[156] M. Halling, P. Grünbacher, and S. Biffl. Tailoring a cots group support system for soft-
ware requirements inspection. In Automated Software Engineering, 2001.(ASE 2001).
Proceedings. 16th Annual International Conference on, pages 201–208. IEEE, 2001. doi:
10.1109/ASE.2001.989806.

[157] N. Hammond and L. Allinson. Travel around a learning support environment: rambling,
orienteering or touring? In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 269–273. ACM, 1988.

[158] B. Hanington and B. Martin. Universal methods of design: 100 ways to research complex
problems, develop innovative ideas, and design effective solutions. Rockport Publishers,
2012.

[159] L. Harjumaa, H. Hedberg, and I. Tervonen. A path to virtual software inspection. In
Quality Software, 2001. Proceedings. Second Asia-Pacific Conference on, pages 283–287.
IEEE, 2001. doi: 10.1109/APAQS.2001.990032.

[160] L. Harjumaa and I. Tervonen. Virtual software inspections over the internet. In Proc. of
the Third ICSE Workshop on Software Engineering over the Internet, 2000.

[161] L. Harjumaa and I. Tervonen. Www-based tool for software inspection. In Proceedings
of the Hawaii International Conference on System Sciences, pages 379–388. Institute of
Electrical and Electronics Engineers Computer SocietyLos Alamitos, CA, United States,
Jan. 1998. doi: 10.1109/HICSS.1998.656308.

243

https://doi.org/10.1109/ASE.2003.1240289
https://doi.org/10.1109/ASE.2003.1240289
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1109/EURMIC.2002.1046168
https://doi.org/10.1109/METRIC.2003.1232474
https://doi.org/10.1109/ASE.2001.989806
https://doi.org/10.1109/APAQS.2001.990032
https://doi.org/10.1109/HICSS.1998.656308

[162] L. Harjumaa, I. Tervonen, and A. Huttunen. Peer reviews in real life-motivators and
demotivators. In Quality Software, 2005.(QSIC 2005). Fifth International Conference
on, pages 29–36. IEEE, 2005.

[163] L. Harjumaa, I. Tervonen, and P. Vuorio. Improving software inspection process with
patterns. In Quality Software, 2004. QSIC 2004. Proceedings. Fourth International Con-
ference on, pages 118–125. IEEE, 2004. doi: 10.1109/QSIC.2004.1357952.

[164] A. E. Hassan. Predicting faults using the complexity of code changes. In Proceedings of
the 31st International Conference on Software Engineering, pages 78–88. IEEE Computer
Society, 2009.

[165] L. Hatton. Testing the value of checklists in code inspections. Software, IEEE, 25(4):82–
88, 2008.

[166] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram. Advancing candidate link generation for
requirements tracing: the study of methods. IEEE Transactions on Software Engineering,
32(1):4–19, 2006.

[167] H. Hedberg. Introducing the next generation of software inspection tools. In Product
Focused Software Process Improvement, pages 234–247. Springer, 2004. doi: 10.1007/
978-3-540-24659-6_17.

[168] H. Hedberg and L. Harjumaa. Virtual software inspections for distributed software en-
gineering projects. In Proceedings of ICSE International Workshop on Global Software
Development. Citeseer, 2002.

[169] V. J. Hellendoorn and P. Devanbu. Are deep neural networks the best choice for modeling
source code? In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pages 763–773. ACM, 2017.

[170] A. Z. Henley, K. Muslu, M. Christakis, S. D. Fleming, and C. Bird. Cfar: a tool to increase
communication, productivity, and review quality in collaborative code review. In CHI ’18
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 2018.
doi: 10.1145/3173574.3173731.

[171] M. Hentschel, R. Hähnle, and R. Bubel. Can formal methods improve the efficiency of
code reviews? In International Conference on Integrated Formal Methods, pages 3–19.
Springer, 2016.

[172] K. Herzig and A. Zeller. The impact of tangled code changes. In Mining Software Repos-
itories (MSR), 2013 10th IEEE Working Conference on, pages 121–130. IEEE, 2013.

[173] A. R. Hevner. A three cycle view of design science research. Scandinavian journal of
information systems, 19(2):4, 2007.

[174] G. J. Holzmann. Scrub: a tool for code reviews. Innovations in Systems and Software
Engineering, 6(4):311–318, 2010. doi: 10.1007/s11334-010-0136-x.

[175] Y. Huang, N. Jia, X. Chen, K. Hong, and Z. Zheng. Salient-class location: help developers
understand code change in code review. In Proceedings of the 2018 26th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 770–774. ACM, 2018.

[176] J. Humble and D. Farley. Continuous delivery. Addison-Wesley, 2011.

244

https://doi.org/10.1109/QSIC.2004.1357952
https://doi.org/10.1007/978-3-540-24659-6_17
https://doi.org/10.1007/978-3-540-24659-6_17
https://doi.org/10.1145/3173574.3173731
https://doi.org/10.1007/s11334-010-0136-x

[177] B. C. Hungerford, A. R. Hevner, and R. W. Collins. Reviewing software diagrams: a
cognitive study. IEEE Transactions on Software Engineering, 30(2):82–96, 2004.

[178] Systems and software engineering Vocabulary ISO/IEC/IEEE 24765: 2010. Standard
24765, ISO/IEC/IEEE, 2010. doi: 10.1109/IEEESTD.2010.5733835.

[179] IEEE standard for software reviews and audits. (IEEE 1028-2008). doi: 10 . 1109 /

IEEESTD.2008.4601584.

[180] J. Iisakka and I. Tervonen. The darker side of inspection. In Proceedings of Workshop on
Inspection in Software Engineering (WISE 2001), Paris, 2001.

[181] J. Iniesta. A tool and a set of metrics to support technical reviews, Nov. 1994. doi:
10.2495/SQM940402.

[182] P. Jaccard. The distribution of the flora in the alpine zone. New phytologist, 11(2):37–50,
1912.

[183] R. Jacob, A. Heinz, and J. P. Décieux. Umfrage: Einführung in die Methoden der Um-
frageforschung. Walter de Gruyter, 2013.

[184] C. Jaspan, M. Jorde, A. Knight, C. Sadowski, E. K. Smith, C. Winter, and E. Murphy-
Hill. Advantages and disadvantages of a monolithic repository: a case study at google.
In Proceedings of the 40th International Conference on Software Engineering: Software
Engineering in Practice, pages 225–234. ACM, 2018.

[185] P. M. Johnson. An instrumented approach to improving software quality through formal
technical review. In Proceedings of the 16th International Conference on Software Engi-
neering, pages 113–122. IEEE Computer Society Press, 1994. doi: 10.1109/ICSE.1994.
296771.

[186] P. M. Johnson. Supporting technology transfer of formal technical review through a com-
puter supported collaborative review system. In Proceedings of the Fourth International
Conference on Software Quality, 1994.

[187] P. M. Johnson and D. Tjahjono. Does every inspection really need a meeting? Empirical
Software Engineering, 3(1):9–35, 1998.

[188] M. Kalinowski and G. H. Travassos. A computational framework for supporting software
inspections. In Automated Software Engineering, 2004. Proceedings. 19th International
Conference on, pages 46–55. IEEE, 2004.

[189] A. Kalyan, M. Chiam, J. Sun, and S. Manoharan. A collaborative code review platform for
github. In Engineering of Complex Computer Systems (ICECCS), 2016 21st International
Conference on, pages 191–196. IEEE, 2016. doi: 10.1109/ICECCS.2016.032.

[190] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams, and A. E. Hassan.
Revisiting common bug prediction findings using effort-aware models. In Software Main-
tenance (ICSM), 2010 IEEE International Conference on, pages 1–10. IEEE, 2010.

[191] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and N. Ubayashi.
A large-scale empirical study of just-in-time quality assurance. IEEE Transactions on
Software Engineering, 39(6):757–773, 2013.

[192] D. Kawrykow and M. P. Robillard. Non-essential changes in version histories. In Pro-
ceedings of the 33rd International Conference on Software Engineering, pages 351–360.
ACM, 2011.

245

https://doi.org/10.1109/IEEESTD.2010.5733835
https://doi.org/10.1109/IEEESTD.2008.4601584
https://doi.org/10.1109/IEEESTD.2008.4601584
https://doi.org/10.2495/SQM940402
https://doi.org/10.1109/ICSE.1994.296771
https://doi.org/10.1109/ICSE.1994.296771
https://doi.org/10.1109/ICECCS.2016.032

[193] D. Kelly and T. Shepard. Task-directed software inspection. Journal of Systems and
Software, 73(2):361–368, 2004.

[194] D. Kelly and T. Shepard. Task-directed software inspection technique: an experiment
and case study. In Proceedings of the 2000 conference of the Centre for Advanced Studies
on Collaborative research, page 6. IBM Press, 2000.

[195] L. P. W. Kim, C. Sauer, and R. Jeffery. A framework for software development technical
reviews. In Software Quality and Productivity, pages 294–299. Springer, 1995.

[196] M. Kim, D. Notkin, D. Grossman, and G. Wilson. Identifying and summarizing systematic
code changes via rule inference. IEEE Transactions on Software Engineering, 39(1):45–
62, 2013.

[197] S. Kim, E. J. Whitehead Jr, and Y. Zhang. Classifying software changes: clean or buggy?
Software Engineering, IEEE Transactions on, 34(2):181–196, 2008.

[198] S. Kim, H. Zhang, R. Wu, and L. Gong. Dealing with noise in defect prediction. In
Software Engineering (ICSE), 2011 33rd International Conference on, pages 481–490.
IEEE, 2011.

[199] S. Kim, T. Zimmermann, K. Pan, E. James Jr, et al. Automatic identification of bug-
introducing changes. In 21st IEEE/ACM International Conference on Automated Soft-
ware Engineering, pages 81–90. IEEE, 2006. doi: 10.1109/ASE.2006.23.

[200] W. Kintsch, T. S. Mandel, and E. Kozminsky. Summarizing scrambled stories. Memory
& Cognition, 5(5):547–552, 1977.

[201] J. C. Knight and E. A. Myers. Phased inspections and their implementation. SIGSOFT
Softw. Eng. Notes, 16(3):29–35, July 1991. issn: 0163-5948. doi: 10.1145/127099.

127101.

[202] J. C. Knight and E. A. Myers. An improved inspection technique. Communications of
the ACM, 36(11):50–61, 1993.

[203] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An exploratory study of how
developers seek, relate, and collect relevant information during software maintenance
tasks. Software Engineering, IEEE Transactions on, 32(12):971–987, 2006.

[204] S. Kollanus and J. Koskinen. Software inspections in practice: six case studies. In Product-
Focused Software Process Improvement, pages 377–382. Springer, 2006.

[205] M. Komssi, M. Kauppinen, M. Pyhajarvi, J. Talvio, and T. Mannisto. Persuading soft-
ware development teams to document inspections: success factors and challenges in
practice. In Requirements Engineering Conference (RE), 2010 18th IEEE International,
pages 283–288. IEEE, 2010.

[206] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey. Investigating code
review quality: do people and participation matter? In Software Maintenance and Evo-
lution (ICSME), 2015 IEEE International Conference on, pages 111–120. IEEE, 2015.

[207] O. Kononenko, T. Rose, O. Baysal, M. Godfrey, D. Theisen, and B. De Water. Study-
ing pull request merges: a case study of shopify’s active merchant. In Proceedings of the
40th International Conference on Software Engineering: Software Engineering in Prac-
tice, pages 124–133. ACM, 2018. doi: 10.1145/3183519.3183542.

246

https://doi.org/10.1109/ASE.2006.23
https://doi.org/10.1145/127099.127101
https://doi.org/10.1145/127099.127101
https://doi.org/10.1145/3183519.3183542

[208] V. Kovalenko, N. Tintarev, E. Pasynkov, C. Bird, and A. Bacchelli. Does reviewer rec-
ommendation help developers? IEEE Transactions on Software Engineering, 2018. doi:
10.1109/TSE.2018.2868367.

[209] T. Krishnamurthy and S. Subramani. Ailments of distributed document reviews and
remedies of doctor (document tree organizer tool) with distributed reviews support. In
2008 IEEE International Conference on Global Software Engineering, pages 210–214,
Aug. 2008. doi: 10.1109/ICGSE.2008.8.

[210] A. Kuhn, S. Ducasse, and T. Girba. Enriching reverse engineering with semantic clus-
tering. In 12th Working Conference on Reverse Engineering (WCRE’05), 10–pp. IEEE,
2005.

[211] M. Kuhrmann, P. Diebold, J. Münch, P. Tell, V. Garousi, M. Felderer, K. Trektere,
O. Linssen, E. Hanser, and C. R. Prause. Hybrid software and system development in
practice: waterfall, scrum, and beyond. In ICSSP 2017, pages 30–39, 2017. doi: 10.1145/
3084100.3084104.

[212] C. Ladas. Scrumban-essays on kanban systems for lean software development. Lulu.com,
2009. isbn: 978-0578002149.

[213] J. S. Laguilles, E. A. Williams, and D. B. Saunders. Can lottery incentives boost web
survey response rates? findings from four experiments. Research in Higher Education,
52(5):537–553, 2011.

[214] O. Laitenberger, S. Vegas, and M. Ciolkowski. The State of the Practice of Review and
Review Technologies in Germany. Technical report, tech. report 011.02, Virtual Software
Engineering Competence Center (VISEK), 2002.

[215] O. Laitenberger. Cost-effective detection of software defects through perspective-based in-
spections. PhD thesis, Universität Kaiserslautern, 2000.

[216] O. Laitenberger and J.-M. DeBaud. An encompassing life cycle centric survey of software
inspection. Journal of Systems and Software, 50(1):5–31, 2000.

[217] O. Laitenberger and H. M. Dreyer. Evaluating the usefulness and the ease of use of a
web-based inspection data collection tool. In Software Metrics Symposium, 1998. Met-
rics 1998. Proceedings. Fifth International, pages 122–132. IEEE, 1998. doi: 10.1109/
METRIC.1998.731237.

[218] O. Laitenberger, M. Leszak, D. Stoll, and K. El Emam. Quantitative modeling of software
reviews in an industrial setting. In Software Metrics Symposium, 1999. Proceedings. Sixth
International, pages 312–322. IEEE, 1999.

[219] L. P. W. Land and J. Higgs. Factors contributing to software quality practices-an aus-
tralian case study. In Wireless Communications, Networking and Mobile Computing,
2007. WiCom 2007. International Conference on, pages 5149–5152. IEEE, 2007.

[220] I. Langer, F. S. von Thun, and R. Tausch. Sich verständlich ausdrücken. E. Reinhardt,
9th edition, 2011.

[221] M. Lanna and D. Amyot. Spotting the difference. Software: Practice and Experience,
41(6):607–626, 2011.

[222] F. Lanubile and T. Mallardo. An empirical study of web-based inspection meetings.
Proceedings - 2003 International Symposium on Empirical Software Engineering, ISESE
2003 :244–251, Jan. 2003. doi: 10.1109/ISESE.2003.1237984.

247

https://doi.org/10.1109/TSE.2018.2868367
https://doi.org/10.1109/ICGSE.2008.8
https://doi.org/10.1145/3084100.3084104
https://doi.org/10.1145/3084100.3084104
https://doi.org/10.1109/METRIC.1998.731237
https://doi.org/10.1109/METRIC.1998.731237
https://doi.org/10.1109/ISESE.2003.1237984

[223] F. Lanubile and T. Mallardo. Preliminary evaluation of tool-based support for distributed
inspection. In Proceedings of ICSE International Workshop on Global Software Develop-
ment, Mar. 2002.

[224] F. Lanubile and T. Mallardo. Tool support for distributed inspection. In 2013 IEEE
37th Annual Computer Software and Applications Conference, pages 1071–1071. IEEE
Computer Society, 2002. doi: 10.1109/CMPSAC.2002.1045151.

[225] F. Lanubile, T. Mallardo, and F. Calefato. Tool support for geographically dispersed
inspection teams. Software Process: Improvement and Practice, 8(4):217–231, 2003. doi:
10.1002/spip.184.

[226] F. Lanubile, T. Mallardo, F. Calefato, C. Denger, and M. Ciolkowski. Assessing the im-
pact of active guidance for defect detection: a replicated experiment. In Software Metrics,
2004. Proceedings. 10th International Symposium on, pages 269–278. IEEE, 2004.

[227] T. D. LaToza, D. Garlan, J. D. Herbsleb, and B. A. Myers. Program comprehension as
fact finding. In Proceedings of the the 6th joint meeting of the European software engi-
neering conference and the ACM SIGSOFT symposium on The foundations of software
engineering, pages 361–370. ACM, 2007.

[228] A. M. Law and W. D. Kelton. Simulation modeling and analysis. McGraw-Hill, 2000.

[229] J. Lawrance, R. Bellamy, M. Burnett, and K. Rector. Using information scent to model
the dynamic foraging behavior of programmers in maintenance tasks. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pages 1323–1332.
ACM, 2008.

[230] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D. Fleming. How
programmers debug, revisited: an information foraging theory perspective. IEEE Trans-
actions on Software Engineering, 39(2):197–215, 2013.

[231] K. Lee and B. Boehm. Empirical results from an experiment on value-based review (vbr)
processes. In Empirical Software Engineering, 2005. 2005 International Symposium on,
10–pp. IEEE, 2005.

[232] H. Leßmann. Durchführung einer Umfrage-Studie zur Nutzung von Code Reviews in der
Praxis. Master’s thesis, Leibniz Universität Hannover, 2017.

[233] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead Jr. Does bug prediction
support human developers? findings from a google case study. In Proceedings of the 2013
International Conference on Software Engineering, pages 372–381. IEEE Press, 2013.

[234] M. Li and S. Liu. Tool support for rigorous formal specification inspection. In Compu-
tational Science and Engineering (CSE), 2014 IEEE 17th International Conference on,
pages 729–734. IEEE, 2014.

[235] M. Liro. Computerunterstützung für systematische Literaturreviews mit der Snowballing-
Technik. Master’s thesis, Leibniz Universität Hannover, 2016.

[236] M. Lumpe, R. Vasa, T. Menzies, R. Rush, and B. Turhan. Learning better inspection
optimization policies. International Journal of Software Engineering and Knowledge En-
gineering, 22(05):621–644, 2012.

[237] F. Macdonald and J. Miller. A comparison of tool-based and paper-based software inspec-
tion. Empirical Software Engineering, 3(3):233–253, 1998. doi: 10.1023/A:1009747104814.

248

https://doi.org/10.1109/CMPSAC.2002.1045151
https://doi.org/10.1002/spip.184
https://doi.org/10.1023/A:1009747104814

[238] F. Macdonald and J. Miller. Modelling software inspection methods for the application
of tool support. Technical report EFoCS-16-95, University of Strathclyde, 1995.

[239] F. Macdonald and J. Miller. A comparison of computer support systems for software
inspection. Automated Software Engineering, 6(3):291–313, 1999. doi: 10 . 1023 / A :

1008760911330.

[240] F. Macdonald and J. Miller. A software inspection process definition language and proto-
type support tool. Software Testing Verification and Reliability :99–128, Jan. 1997. doi:
10.1002/(SICI)1099-1689(199706)7:2<99::AID-STVR133>3.0.CO;2-Q.

[241] L. MacLeod, M. Greiler, M.-A. Storey, C. Bird, and J. Czerwonka. Code reviewing in
the trenches: understanding challenges and best practices. IEEE Software, 35(4):34–42,
2017. doi: 10.1109/MS.2017.265100500.

[242] R. J. Madachy. System dynamics modeling of an inspection-based process. In Software
Engineering, 1996., Proceedings of the 18th International Conference on, pages 376–386,
Berlin, Germany. IEEE, 1996.

[243] R. J. Madachy. Software Process Dynamics. Wiley, 2007. isbn: 9780470192702.

[244] J. T. Madhavan and E. J. Whitehead Jr. Predicting buggy changes inside an integrated
development environment. In Proceedings of the 2007 OOPSLA workshop on eclipse tech-
nology eXchange, pages 36–40. ACM, 2007.

[245] J. I. Maletic and A. Marcus. Using latent semantic analysis to identify similarities in
source code to support program understanding. In Tools with Artificial Intelligence, 2000.
ICTAI 2000. Proceedings. 12th IEEE International Conference on, pages 46–53. IEEE,
2000.

[246] R. Malhotra. A systematic review of machine learning techniques for software fault pre-
diction. Applied Soft Computing, 27:504–518, 2015.

[247] S. Mancoridis, B. S. Mitchell, C. Rorres, Y.-F. Chen, and E. R. Gansner. Using automatic
clustering to produce high-level system organizations of source code. In IWPC, volume 98,
pages 45–52, 1998.

[248] M. V. Mantyla and C. Lassenius. What types of defects are really discovered in code
reviews? Software Engineering, IEEE Transactions on, 35(3):430–448, 2009.

[249] J. G. March and H. A. Simon. Organizations. John Wiley & Sons, Inc., 1958.

[250] G. Mariscal, O. Marban, and C. Fernandez. A survey of data mining and knowledge dis-
covery process models and methodologies. The Knowledge Engineering Review, 25(2):137–
166, 2010.

[251] V. Mashayekhi, J. M. Drake, W.-T. Tsal, and J. Riedl. Distributed, collaborative software
inspection. IEEE Software:66–75, Jan. 1993. doi: 10.1109/52.232404.

[252] V. Mashayekhi, C. Feulner, and J. Riedl. Cais: collaborative asynchronous inspection
of software. In Proceedings of the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 21–34. Association for Computing Machinery, Dec. 1994.
doi: 10.1145/193173.195290.

[253] J. Matsuda, S. Hayashi, and M. Saeki. Hierarchical categorization of edit operations for
separately committing large refactoring results. In Proceedings of the 14th International
Workshop on Principles of Software Evolution, pages 19–27. ACM, 2015.

249

https://doi.org/10.1023/A:1008760911330
https://doi.org/10.1023/A:1008760911330
https://doi.org/10.1002/(SICI)1099-1689(199706)7:2<99::AID-STVR133>3.0.CO;2-Q
https://doi.org/10.1109/MS.2017.265100500
https://doi.org/10.1109/52.232404
https://doi.org/10.1145/193173.195290

[254] T. Matsumura, A. Monden, and K.-i. Matsumoto. The detection of faulty code violat-
ing implicit coding rules. In Empirical Software Engineering, 2002. Proceedings. 2002
International Symposium on, pages 173–182. IEEE, 2002.

[255] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
(4):308–320, 1976. doi: 10.1109/TSE.1976.233837.

[256] S. McIntosh and Y. Kamei. Are fix-inducing changes a moving target? a longitudinal
case study of just-in-time defect prediction. IEEE Transactions on Software Engineering,
44:412–428, 2017. doi: 10.1109/TSE.2017.2693980.

[257] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. An empirical study of the impact
of modern code review practices on software quality. Empirical Software Engineering,
21(5):2146–2189, 2015. doi: 10.1007/s10664-015-9381-9.

[258] D. A. McMeekin, B. R. von Konsky, E. Chang, and D. J. Cooper. Evaluating software
inspection cognition levels using bloom’s taxonomy. In Software Engineering Education
and Training, 2009. CSEET’09. 22nd Conference on, pages 232–239. IEEE, 2009.

[259] D. A. McMeekin, B. R. von Konsky, M. Robey, and D. J. Cooper. The significance
of participant experience when evaluating software inspection techniques. In Software
Engineering Conference, 2009. ASWEC’09. Australian, pages 200–209. IEEE, 2009.

[260] A. McNair, D. M. German, and J. Weber-Jahnke. Visualizing software architecture evo-
lution using change-sets. In Reverse Engineering, 2007. WCRE 2007. 14th Working Con-
ference on, pages 130–139. IEEE, 2007.

[261] D. S. McNamara, E. Kintsch, N. B. Songer, and W. Kintsch. Are good texts always
better? interactions of text coherence, background knowledge, and levels of understanding
in learning from text. Cognition and instruction, 14(1):1–43, 1996.

[262] M. Melis, I. Turnu, A. Cau, and G. Concas. Evaluating the impact of test-first pro-
gramming and pair programming through software process simulation. Software Process:
Improvement and Practice, 11(4):345–360, 2006.

[263] A. Meneely, L. Williams, W. Snipes, and J. Osborne. Predicting failures with developer
networks and social network analysis. In Proceedings of the 16th ACM SIGSOFT Inter-
national Symposium on Foundations of software engineering, pages 13–23. ACM, 2008.

[264] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald. Problems with precision: a
response to ”comments on ’data mining static code attributes to learn defect predictors’
”. IEEE Transactions on Software Engineering, 33(9):637–640, 2007.

[265] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener. Defect predic-
tion from static code features: current results, limitations, new approaches. Automated
Software Engineering, 17(4):375–407, 2010.

[266] B. Meyer. Design and code reviews in the age of the internet. In Software Engineering
Approaches for Offshore and Outsourced Development, pages 126–133. Springer, 2008.

[267] B. J. Meyer. Reading research and the composition teacher: the importance of plans.
College composition and communication:37–49, 1982.

[268] G. A. Miller. The magical number seven, plus or minus two: some limits on our capacity
for processing information. Psychological review, 63(2):81, 1956.

250

https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.2017.2693980
https://doi.org/10.1007/s10664-015-9381-9

[269] J. Miller, J. D. Ferguson, and P. Murphy. Groupware support for asynchronous docu-
ment review. In Proceedings of the 17th Annual International Conference on Computer
Documentation, pages 185–192. ACM, 1999. doi: 10.1145/318372.318592.

[270] J. Miller and F. MacDonald. Empirical incremental approach to tool evaluation and
improvement. Journal of Systems and Software:19–35, Apr. 2000. doi: 10.1016/S0164-
1212(99)00107-7.

[271] J. Miller, F. Macdonald, and J. Ferguson. Assisting management decisions in the software
inspection process. Information Technology and Management, 3(1-2):67–83, 2002. doi:
10.1023/A:1013112826330.

[272] A. Mockus and D. M. Weiss. Predicting risk of software changes. Bell Labs Technical
Journal, 5(2):169–180, 2000.

[273] J. Moeyersoms, E. J. de Fortuny, K. Dejaeger, B. Baesens, and D. Martens. Comprehen-
sible software fault and effort prediction: a data mining approach. Journal of Systems
and Software, 100:80–90, 2015.

[274] M. I. Mukadam. git-reviewed: A Distributed Peer Review Tool & User Study. Master’s
thesis, Concordia University, 2014.

[275] M. Mukadam, C. Bird, and P. C. Rigby. Gerrit software code review data from android. In
Mining Software Repositories (MSR), 2013 10th IEEE Working Conference on, pages 45–
48. IEEE, 2013.

[276] J. Münch and O. Armbrust. Using empirical knowledge from replicated experiments for
software process simulation: a practical example. In Empirical Software Engineering,
2003. ISESE 2003. Proceedings. 2003 International Symposium on, pages 18–27, Rome,
Italy. IEEE, 2003.

[277] E. Mustonen-Ollila and K. Lyytinen. Why organizations adopt information system pro-
cess innovations: a longitudinal study using diffusion of innovation theory. Information
Systems Journal, 13(3):275–297, 2003.

[278] B. A. Myers, A. J. Ko, T. D. LaToza, and Y. Yoon. Programmers are users too: human-
centered methods for improving programming tools. Computer, 49(7):44–52, 2016.

[279] N. Nagappan and T. Ball. Use of relative code churn measures to predict system de-
fect density. In Software Engineering, 2005. ICSE 2005. Proceedings. 27th International
Conference on, pages 284–292. IEEE, 2005.

[280] M. Nayrolles and A. Hamou-Lhadj. Clever: combining code metrics with clone detec-
tion for just-in-time fault prevention and resolution in large industrial projects. In MSR
’18 Proceedings of the 15th International Conference on Mining Software Repositories,
pages 153–164, 2018. doi: 10.1145/3196398.3196438.

[281] H. Neu, T. Hanne, J. Münch, S. Nickel, and A. Wirsen. Creating a code inspection model
for simulation-based decision support. In ProSim, volume 3, pages 3–4, 2003.

[282] M. Nick, C. Denger, and T. Willrich. Experience-based support for code inspections. In
Professional Knowledge Management, pages 121–126. Springer, 2005.

[283] A. Nwesri and K. Hashim. A model and tool features for collaborative artifact inspection
and review. WSEAS Transactions on Systems:1038–1047, Oct. 2008.

251

https://doi.org/10.1145/318372.318592
https://doi.org/10.1016/S0164-1212(99)00107-7
https://doi.org/10.1016/S0164-1212(99)00107-7
https://doi.org/10.1023/A:1013112826330
https://doi.org/10.1145/3196398.3196438

[284] M. P. O’Brien and J. Buckley. Inference-based and expectation-based processing in pro-
gram comprehension. In Program Comprehension, 2001. IWPC 2001. Proceedings. 9th
International Workshop on, pages 71–78. IEEE, 2001.

[285] C. Oezbek and L. Prechelt. Jtourbus: simplifying program understanding by documenta-
tion that provides tours through the source code. In Software Maintenance, 2007. ICSM
2007. IEEE International Conference on, pages 64–73. IEEE, 2007.

[286] W. J. Orlikowski. Case tools as organizational change: investigating incremental and
radical changes in systems development. MIS quarterly :309–340, 1993. doi: 10.2307/
249774.

[287] H. Osman and O. M. Nierstrasz. Empirically-Grounded Construction of Bug Prediction
and Detection Tools. PhD thesis, Universität Bern, 2017.

[288] F. L. Oswald, S. T. McAbee, T. S. Redick, and D. Z. Hambrick. The development of a
short domain-general measure of working memory capacity. Behavior research methods,
47(4):1343–1355, 2015.

[289] F. G. Paas and J. J. Van Merriënboer. Instructional control of cognitive load in the
training of complex cognitive tasks. Educational psychology review, 6(4):351–371, 1994.

[290] F. Padberg, T. Ragg, and R. Schoknecht. Using machine learning for estimating the defect
content after an inspection. IEEE Transactions on Software Engineering, 30:17–28, 2004.

[291] B. Page and W. Kreuzer. The Java Simulation Handbook – Simulating Discrete Event
Systems with UML and Java. Shaker, 2005.

[292] S. Panichella, V. Arnaoudova, M. Di Penta, and G. Antoniol. Would static analysis tools
help developers with code reviews? In Software Analysis, Evolution and Reengineering
(SANER), 2015 IEEE 22nd International Conference on, pages 161–170. IEEE, 2015.

[293] L. Pascarella, F. Palomba, and A. Bacchelli. Re-evaluating method-level bug prediction.
In 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pages 592–601. IEEE, 2018.

[294] K. Pawlikowski, H.-D. Jeong, and J.-S. Lee. On credibility of simulation studies of
telecommunication networks. Communications Magazine, IEEE, 40(1):132–139, 2002.

[295] J. Pearl. Causality: models, reasoning, and inference. Cambridge University Press, 2001.

[296] J. M. Perpich, D. E. Perry, A. A. Porter, L. G. Votta, and M. W. Wade. Anywhere,
anytime code inspections: using the web to remove inspection bottlenecks in large-scale
software development. In Proceedings of the 19th International Conference on Software
Engineering, pages 14–21. ACM, 1997. doi: 10.1145/253228.253234.

[297] D. E. Perry, A. Porter, M. W. Wade, L. G. Votta, and J. Perpich. Reducing inspection
interval in large-scale software development. Software Engineering, IEEE Transactions
on, 28(7):695–705, 2002. doi: 10.1109/TSE.2002.1019483.

[298] K. Petersen, K. Rönkkö, and C. Wohlin. The impact of time controlled reading on soft-
ware inspection effectiveness and efficiency: a controlled experiment. In Proceedings of
the Second ACM-IEEE international symposium on Empirical software engineering and
measurement, pages 139–148. ACM, 2008.

252

https://doi.org/10.2307/249774
https://doi.org/10.2307/249774
https://doi.org/10.1145/253228.253234
https://doi.org/10.1109/TSE.2002.1019483

[299] S. Platz, M. Taeumel, B. Steinert, R. Hirschfeld, and H. Masuhara. Unravel programming
sessions with thresher: identifying coherent and complete sets of fine-granular source code
changes. In Proceedings of the 32nd JSSST Annual Conference, pages 24–39, 2016. doi:
10.11185/imt.12.24.

[300] A. A. Porter, H. P. Siy, C. A. Toman, and L. G. Votta. An experiment to assess the
cost-benefits of code inspections in large scale software development. IEEE transactions
on software engineering, 23(6):329–346, 1997. doi: 10.1109/32.601071.

[301] A. Porter, H. Siy, A. Mockus, and L. Votta. Understanding the sources of variation
in software inspections. ACM Transactions on Software Engineering and Methodology
(TOSEM), 7(1):41–79, 1998.

[302] A. Porter, H. Siy, and L. Votta. A review of software inspections. Advances in Computers,
42:39–76, 1996.

[303] H. Potelle and J.-F. Rouet. Effects of content representation and readers’ prior knowledge
on the comprehension of hypertext. International Journal of Human-Computer Studies,
58(3):327–345, 2003.

[304] C. R. Prause and S. Apelt. An approach for continuous inspection of source code. In
Proceedings of the 6th international workshop on Software quality, pages 17–22. ACM,
2008.

[305] C. R. Prause and M. Eisenhauer. Social aspects of a continuous inspection platform for
software source code. In Proceedings of the 2008 international workshop on Cooperative
and human aspects of software engineering, pages 85–88. ACM, 2008.

[306] R. Priest and B. Plimmer. Rca: experiences with an ide annotation tool. In Proceedings
of the 7th ACM SIGCHI New Zealand Chapter’s International Conference on Computer-
human Interaction: Design Centered HCI, pages 53–60. ACM, 2006. doi: 10 . 1145 /

1152760.1152767.

[307] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing. Vienna, Austria, 2014. url: https://www.R-project.org.

[308] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing. Vienna, Austria, 2017. url: https://www.R-project.org/.

[309] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič. Software fault prediction metrics:
a systematic literature review. Information and Software Technology, 55(8):1397–1418,
2013.

[310] M. M. Rahman, C. K. Roy, J. Redl, and J. A. Collins. Correct: code reviewer recommen-
dation at github for vendasta technologies. In Automated Software Engineering (ASE),
2016 31st IEEE/ACM International Conference on, pages 792–797. IEEE, 2016. doi:
10.1145/2970276.2970283.

[311] J. Rasmussen. Skills, rules, and knowledge; signals, signs, and symbols, and other distinc-
tions in human performance models. IEEE transactions on systems, man, and cybernetics,
SMC-13(3):257–266, 1983. doi: 10.1109/TSMC.1983.6313160.

[312] J. Ratcliffe. Moving software quality upstream: the positive impact of lightweight peer
code review. In Pacific NW Software Quality Conference, 2009.

253

https://doi.org/10.11185/imt.12.24
https://doi.org/10.1109/32.601071
https://doi.org/10.1145/1152760.1152767
https://doi.org/10.1145/1152760.1152767
https://www.R-project.org
https://www.R-project.org/
https://doi.org/10.1145/2970276.2970283
https://doi.org/10.1109/TSMC.1983.6313160

[313] J. Ratzinger, M. Pinzger, and H. Gall. Eq-mine: predicting short-term defects for software
evolution. In Fundamental Approaches to Software Engineering, pages 12–26. Springer,
2007.

[314] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. Devanbu. On the ”nat-
uralness” of buggy code. In 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), pages 428–439, May 2016. doi: 10.1145/2884781.2884848.

[315] T. Raz and A. T. Yaung. Factors affecting design inspection effectiveness in software
development. Information and Software Technology, 39(4):297–305, 1997.

[316] S. Rifkin and L. Deimel. Applying program comprehension techniques to improve software
inspections. In Proceedings of the 19th annual NASA software engineering laboratory
workshop, Greenbelt, MD, 1994.

[317] P. C. Rigby. Understanding open source software peer review: Review processes, param-
eters and statistical models, and underlying behaviours and mechanisms. PhD thesis,
University of Victoria, 2011.

[318] P. C. Rigby and C. Bird. Convergent contemporary software peer review practices. In
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
pages 202–212, Saint Petersburg, Russia. ACM, 2013.

[319] P. C. Rigby, B. Cleary, F. Painchaud, M. Storey, and D. M. German. Contemporary
peer review in action: lessons from open source development. Software, IEEE, 29(6):56–
61, 2012.

[320] P. C. Rigby, D. M. German, L. Cowen, and M.-A. Storey. Peer review on open source soft-
ware projects: parameters, statistical models, and theory. ACM Transactions on Software
Engineering and Methodology, 23:35:1–35:33, 2014. doi: 10.1145/2594458.

[321] P. C. Rigby and M.-A. Storey. Understanding broadcast based peer review on open
source software projects. In Proceedings of the 33rd International Conference on Software
Engineering, pages 541–550. ACM, 2011.

[322] B. Robbins and J. Carver. Cognitive factors in perspective-based reading (pbr): a protocol
analysis study. In Proceedings of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, pages 145–155. IEEE Computer Society, 2009.

[323] M. P. Robillard, W. Coelho, and G. C. Murphy. How effective developers investigate
source code: an exploratory study. Software Engineering, IEEE Transactions on, 30(12):889–
903, 2004.

[324] E. M. Rogers. Diffusion of Innovations. Free Press, 5th edition, 2003.

[325] M. Roper, M. Wood, and J. Miller. An empirical evaluation of defect detection techniques.
Information and Software Technology, 39(11):763–775, 1997.

[326] C. Rosen, B. Grawi, and E. Shihab. Commit guru: analytics and risk prediction of software
commits. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 966–969. ACM, 2015.

[327] C. Rudin. Please stop explaining black box models for high stakes decisions. arXiv
preprint arXiv:1811.10154, 2018.

[328] P. Runeson, M. Höst, A. Rainer, and B. Regnell. Case Study Resarch in Software Engi-
neering – Guidelines and Examples. Wiley, 2012.

254

https://doi.org/10.1145/2884781.2884848
https://doi.org/10.1145/2594458

[329] I. Rus, M. Halling, and S. Biffl. Supporting decision-making in software engineering with
process simulation and empirical studies. International Journal of Software Engineering
and Knowledge Engineering, 13(05):531–545, 2003.

[330] D. Ryu and J. Baik. Effective multi-objective näıve bayes learning for cross-project defect
prediction. Applied Soft Computing, 49:1062–1077, 2016.

[331] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli. Modern code review:
a case study at google. In Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice, pages 181–190. ACM, 2018. doi: 10.

1145/3183519.3183525.

[332] A. Saltelli, K. Chan, and E. M. Scott, editors. Sensitivity Analysis. John Wiley & Sons,
Inc., 2000.

[333] M.-L. Sánchez-Gordón and R. V. O’Connor. Understanding the gap between software
process practices and actual practice in very small companies. Software Quality Jour-
nal :1–22, 2015.

[334] R. G. Sargent. Verification and validation of simulation models. In Proceedings of the 37th
conference on Winter simulation, pages 130–143. winter simulation conference, 2005.

[335] T. D. Sasso, A. Mocci, M. Lanza, and E. Mastrodicasa. How to gamify software engi-
neering. In SANER 2017, Proceedings of, 2017. doi: 10.1109/SANER.2017.7884627.

[336] C. Sauer, D. R. Jeffery, L. Land, and P. Yetton. The effectiveness of software development
technical reviews: a behaviorally motivated program of research. Software Engineering,
IEEE Transactions on, 26(1):1–14, 2000.

[337] K. Schneider. Prototypes as assets, not toys: why and how to extract knowledge from
prototypes. In Proceedings of the 18th International Conference on Software Engineering,
pages 522–531. IEEE Computer Society, 1996.

[338] V. Sembugamoorthy and L. Brothers. Icicle: intelligent code inspection in a c language
environment. In Proceedings - IEEE Computer Society’s International Computer Software
& Applications Conference, pages 146–154. IEEE, Piscataway, NJ, Dec. 1990. doi: 10.
1109/CMPSAC.1990.139343.

[339] E. Shihab. An exploration of challenges limiting pragmatic software defect prediction.
PhD thesis, Queen’s University (Canada), 2012.

[340] E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang. An industrial study on the risk of
software changes. In Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, page 62. ACM, 2012.

[341] E. Shihab, A. Mockus, Y. Kamei, B. Adams, and A. E. Hassan. High-impact defects:
a study of breakage and surprise defects. In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software engineering,
pages 300–310. ACM, 2011.

[342] J. Shimagaki, J. Shimagaki, Y. Kamei, S. McIntosh, A. E. Hassan, and N. Ubayashi. A
study of the quality-impacting practices of modern code review at sony mobile. In ICSE
’16 Companion, 2016. doi: 10.1145/2889160.2889243.

[343] Y. Shin, R. Bell, T. Ostrand, and E. Weyuker. Does calling structure information improve
the accuracy of fault prediction? In Mining Software Repositories, 2009. MSR’09. 6th
IEEE International Working Conference on, pages 61–70. IEEE, 2009.

255

https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1109/SANER.2017.7884627
https://doi.org/10.1109/CMPSAC.1990.139343
https://doi.org/10.1109/CMPSAC.1990.139343
https://doi.org/10.1145/2889160.2889243

[344] T. J. Shippey. Exploiting Abstract Syntax Trees to Locate Software Defects. PhD thesis,
University of Hertfordshire, 2015.

[345] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim. Reducing features to improve code
change-based bug prediction. IEEE Transactions on Software Engineering, 39(4):552–
569, 2013.

[346] J. Siedersleben. Moderne Softwarearchitektur. dpunkt.verlag, 2004.

[347] J. Siegmund, C. Kästner, S. Apel, C. Parnin, A. Bethmann, T. Leich, G. Saake, and
A. Brechmann. Understanding understanding source code with functional magnetic res-
onance imaging. In Proceedings of the 36th International Conference on Software Engi-
neering, pages 378–389. ACM, 2014.

[348] H. A. Simon. How big is a chunk? Science, 183(4124):482–488, 1974.

[349] E. Singer and C. Ye. The use and effects of incentives in surveys. The ANNALS of the
American Academy of Political and Social Science, 645(1):112–141, 2013.

[350] D. I. Sjøberg, T. Dyb̊a, B. C. Anda, and J. E. Hannay. Building theories in software en-
gineering. In Guide to advanced empirical software engineering, pages 312–336. Springer,
2008.

[351] D. I. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanovic, N.-K. Liborg,
and A. C. Rekdal. A survey of controlled experiments in software engineering. Software
Engineering, IEEE Transactions on, 31(9):733–753, 2005.

[352] M. Skoglund and V. Kjellgren. An experimental comparison of the effectiveness and
usefulness of inspection techniques for object-oriented programs. In 8th International
Conference on Empirical Assessment in Software Engineering (EASE 2004), pages 165–
174. IET, 2004. doi: 10.1049/ic:20040409.

[353] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes? ACM sigsoft
software engineering notes, 30(4):1–5, 2005.

[354] SmartBear. The state of code quality 2016. url: https://smartbear.com/resources/
ebooks/state-of-code-quality-2016/. last checked 2017-06-13.

[355] B. Soltanifar, A. Erdem, and A. Bener. Predicting defectiveness of software patches.
In Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, page 22. ACM, 2016. doi: 10.1145/2961111.2962601.

[356] D. Spadini, F. Palomba, T. Baum, S. Hanenberg, M. Bruntink, and A. Bacchelli. Test-
driven code review: an empirical study. In Software Engineering (ICSE), 2019 41st In-
ternational Conference on, 2019.

[357] D. Spencer. Card sorting: a definitive guide. http://boxesandarrows.com/card-sorting-a-
definitive-guide/, 2004.

[358] M. V. Stein, M. P. E. Heimdahl, and J. T. Riedl. Enhancing annotation visibility for
software inspection. In 14th IEEE International Conference on Automated Software En-
gineering, pages 243–246, Aug. 1999. doi: 10.1109/ASE.1999.802288.

[359] M. Stein, J. Riedl, S. J. Harner, and V. Mashayekhi. A case study of distributed, asyn-
chronous software inspection. In Proceedings of the 19th International Conference on
Software Engineering, pages 107–117. ACM, 1997. doi: 10.1145/253228.253250.

256

https://doi.org/10.1049/ic:20040409
https://smartbear.com/resources/ebooks/state-of-code-quality-2016/
https://smartbear.com/resources/ebooks/state-of-code-quality-2016/
https://doi.org/10.1145/2961111.2962601
https://doi.org/10.1109/ASE.1999.802288
https://doi.org/10.1145/253228.253250

[360] B. Steinert, M. Taeumel, J. Lincke, T. Pape, and R. Hirschfeld. Codetalk conversations
about code. In 2010 Eighth International Conference on Creating, Connecting and Col-
laborating through Computing, pages 11–18, Jan. 2010. doi: 10.1109/C5.2010.11.

[361] M.-A. Storey, F. D. Fracchia, and H. A. Müller. Cognitive design elements to support
the construction of a mental model during software exploration. Journal of Systems and
Software, 44(3):171–185, 1999.

[362] M.-A. Storey. Theories, tools and research methods in program comprehension: past,
present and future. Software Quality Journal, 14(3):187–208, 2006.

[363] S. Sudman and N. M. Bradburn. Asking questions: a practical guide to questionnaire
design. San Francisco Calif. Jossey-Bass Publishers, 1982.

[364] J. Sweller. Cognitive load during problem solving: effects on learning. Cognitive science,
12(2):257–285, 1988.

[365] M. Tan, L. Tan, S. Dara, and C. Mayeux. Online defect prediction for imbalanced data.
In Proceedings of the 37th International Conference on Software Engineering-Volume 2,
pages 99–108. IEEE Press, 2015.

[366] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. The impact of
automated parameter optimization on defect prediction models. IEEE Transactions on
Software Engineering, 2018. doi: 10.1109/TSE.2018.2794977.

[367] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim. How do software engineers understand
code changes?: an exploratory study in industry. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering. ACM, 2012.

[368] Y. Tao and S. Kim. Partitioning composite code changes to facilitate code review. In
Mining Software Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on,
pages 180–190. IEEE, 2015.

[369] A. Tarvo, N. Nagappan, T. Zimmermann, T. Bhat, and J. Czerwonka. Predicting risk
of pre-release code changes with checkinmentor. In 2013 IEEE 24th International Sym-
posium on Software Reliability Engineering (ISSRE), 2013. doi: 10.1109/ISSRE.2013.
6698912.

[370] I. Tervonen, L. Harjumaa, and J. Iisakka. The virtual logging meeting: a web-based
solution to resource problems in software inspection. In Proceedings of the Sixth European
Conference on Software Quality, pages 342–351. Citeseer, 1999.

[371] S. Thangthumachit, S. Hayashi, and M. Saeki. Understanding source code differences by
separating refactoring effects. In Software Engineering Conference (APSEC), 2011 18th
Asia Pacific, pages 339–347. IEEE, 2011.

[372] T. Thelin, P. Andersson, and J. Harrell. Tool support for usage-based reading. In IASTED
Conf. on Software Engineering, pages 601–606, 2004. isbn: 0-88986-410-1.

[373] T. Thelin, P. Runeson, and B. Regnell. Usage-based reading—an experiment to guide
reviewers with use cases. Information and Software Technology, 43(15):925–938, 2001.

[374] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. Investigating code review
practices in defective files: an empirical study of the qt system. In MSR ’15 Proceedings
of the 12th Working Conference on Mining Software Repositories, pages 168–179, 2015.

257

https://doi.org/10.1109/C5.2010.11
https://doi.org/10.1109/TSE.2018.2794977
https://doi.org/10.1109/ISSRE.2013.6698912
https://doi.org/10.1109/ISSRE.2013.6698912

[375] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. Revisiting code ownership and
its relationship with software quality in the scope of modern code review. In Proceedings
of the 38th international conference on software engineering, pages 1039–1050. ACM,
2016. doi: 10.1145/2884781.2884852.

[376] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida, and K.-i.
Matsumoto. Who should review my code? a file location-based code-reviewer recommen-
dation approach for modern code review. In Software Analysis, Evolution and Reengi-
neering (SANER), 2015 IEEE 22nd International Conference on, pages 141–150, 2015.
doi: 10.1109/SANER.2015.7081824.

[377] S. R. Tilley, S. Paul, and D. B. Smith. Towards a framework for program understanding.
In Program Comprehension, 1996, Proceedings., Fourth Workshop on, pages 19–28. IEEE,
1996.

[378] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili. Detecting defects in object-
oriented designs: using reading techniques to increase software quality. In Proceedings of
the 14th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA ’99, pages 47–56, Denver, Colorado, USA. ACM,
1999. isbn: 1-58113-238-7. doi: 10.1145/320384.320389. url: http://doi.acm.org/
10.1145/320384.320389.

[379] R. H. Trigg. Guided tours and tabletops: tools for communicating in a hypertext envi-
ronment. ACM Transactions on Information Systems (TOIS), 6(4):398–414, 1988.

[380] I. Turnu, M. Melis, A. Cau, A. Setzu, G. Concas, and K. Mannaro. Modeling and simula-
tion of open source development using an agile practice. Journal of Systems Architecture,
52(11):610–618, 2006.

[381] J. D. Tvedt and J. Collofello. Evaluating the effectiveness of process improvements on
software development cycle time via system dynamics modelling. In Computer Software
and Applications Conference, 1995. COMPSAC 95. Proceedings., Nineteenth Annual In-
ternational, pages 318–325, Dallas, TX, USA. IEEE, 1995.

[382] A. Tversky and D. Kahneman. Judgment under uncertainty: heuristics and biases. In
Utility, probability, and human decision making, pages 141–162. Springer, 1975.

[383] V. Tzerpos and R. C. Holt. Acdc: an algorithm for comprehension-driven clustering. In
Reverse Engineering, 2000. Proceedings. Seventh Working Conference on, pages 258–267.
IEEE, 2000.

[384] N. Unsworth, R. P. Heitz, J. C. Schrock, and R. W. Engle. An automated version of the
operation span task. Behavior research methods, 37(3):498–505, 2005.

[385] M. Van Genuchten, W. Cornelissen, and C. Van Dijk. Supporting inspections with an
electronic meeting system. Journal of Management Information Systems:165–178, Jan.
1997. doi: 10.1080/07421222.1997.11518179.

[386] O. Vandecruys, D. Martens, B. Baesens, C. Mues, M. De Backer, and R. Haesen. Min-
ing software repositories for comprehensible software fault prediction models. Journal of
Systems and software, 81(5):823–839, 2008.

[387] A. M. Vans, A. von Mayrhauser, and G. Somlo. Program understanding behavior during
corrective maintenance of large-scale software. International Journal of Human-Computer
Studies, 51:31–70, 1999.

258

https://doi.org/10.1145/2884781.2884852
https://doi.org/10.1109/SANER.2015.7081824
https://doi.org/10.1145/320384.320389
http://doi.acm.org/10.1145/320384.320389
http://doi.acm.org/10.1145/320384.320389
https://doi.org/10.1080/07421222.1997.11518179

[388] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York,
fourth edition, 2002. url: http://www.stats.ox.ac.uk/pub/MASS4. ISBN 0-387-95457-
0.

[389] A. von Mayrhauser and A. M. Vans. Industrial experience with an integrated code com-
prehension model. Software Engineering Journal, 10(5):171–182, 1995.

[390] L. G. Votta. Does every inspection need a meeting? ACM SIGSOFT Software Engineering
Notes, 18(5):107–114, 1993.

[391] W. W. Wakeland, R. H. Martin, and D. Raffo. Using design of experiments, sensitivity
analysis, and hybrid simulation to evaluate changes to a software development process:
a case study. Software Process: Improvement and Practice, 9(2):107–119, 2004.

[392] A. Walenstein. Cognitive support in software engineering tools: A distributed cognition
framework. PhD thesis, Simon Fraser University, 2002.

[393] A. Walenstein. Observing and measuring cognitive support: steps toward systematic tool
evaluation and engineering. In Program Comprehension, 2003. 11th IEEE International
Workshop on, pages 185–194. IEEE, 2003.

[394] A. Walenstein. Theory-based analysis of cognitive support in software comprehension
tools. In Program Comprehension, 2002. Proceedings. 10th International Workshop on,
pages 75–84. IEEE, 2002.

[395] J. Wang, P. C. Shih, Y. Wu, and J. M. Carroll. Comparative case studies of open source
software peer review practices. Information and Software Technology, 67:1–12, 2015.

[396] R. Wen, D. Gilbert, M. G. Roche, and S. McIntosh. Blimp tracer: integrating build
impact analysis with code review. In 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 685–694. IEEE, 2018. doi: 10.1109/ICSME.
2018.00078.

[397] K. Wiegers. Peer reviews in software: a practical guide. Addison-Wesley information tech-
nology series. Addison-Wesley, 2002. isbn: 9780201734850.

[398] R. R. Wilcox. Introduction to robust estimation and hypothesis testing. Academic press,
2011.

[399] O. Wilhelm, A. Hildebrandt, and K. Oberauer. What is working memory capacity, and
how can we measure it? Frontiers in psychology, 4, 2013. doi: 10.3389/fpsyg.2013.
00433.

[400] C. C. Williams and J. K. Hollingsworth. Automatic mining of source code repositories
to improve bug finding techniques. IEEE Transactions on Software Engineering, 31:466–
480, 2005.

[401] D. Winkler, S. Biffl, and K. Faderl. Investigating the temporal behavior of defect detec-
tion in software inspection and inspection-based testing. In International Conference on
Product Focused Software Process Improvement, pages 17–31. Springer, 2010.

[402] D. Winkler, S. Biffl, and B. Thurnher. Investigating the impact of active guidance on
design inspection. In F. Bomarius and S. Komi-Sirviö, editors, Product Focused Soft-
ware Process Improvement, pages 458–473, Berlin, Heidelberg. Springer Berlin Heidel-
berg, 2005. isbn: 978-3-540-31640-4. doi: 10.1007/11497455_36.

259

http://www.stats.ox.ac.uk/pub/MASS4
https://doi.org/10.1109/ICSME.2018.00078
https://doi.org/10.1109/ICSME.2018.00078
https://doi.org/10.3389/fpsyg.2013.00433
https://doi.org/10.3389/fpsyg.2013.00433
https://doi.org/10.1007/11497455_36

[403] M. Winter, K. Vosseberg, and A. Spillner. Umfrage 2016 ”Softwaretest in Praxis und
Forschung”. dpunkt.verlag, 2016.

[404] I. H. Witten, E. Frank, and M. A. Hall. Data Mining – Practical Machine Learning Tools
and Techniques. Elsevier, 3rd edition, 2011.

[405] C. Wohlin. Guidelines for snowballing in systematic literature studies and a replication
in software engineering. In EASE ’14 Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering, 2014. doi: 10.1145/2601248.
2601268.

[406] X. Xia, D. Lo, X. Wang, and X. Yang. Collective personalized change classification with
multiobjective search. IEEE Transactions on Reliability, 65(4):1810–1829, 2016.

[407] T. Yamashita. Evaluation of Jupiter, a Lightweight Code Review Framework. Master’s
thesis, University of Hawai’i, 2006.

[408] R. A. Yaros. Effects of text and hypertext structures on user interest and understanding
of science and technology. Science Communication, 33(3):275–308, 2011.

[409] R. A. Yaros. Is it the medium or the message? structuring complex news to enhance en-
gagement and situational understanding by nonexperts. Communication Research, 33(4):285–
309, 2006.

[410] Y. Yu, T. T. Tun, and B. Nuseibeh. Specifying and detecting meaningful changes in
programs. In Proceedings of the 2011 26th IEEE/ACM International Conference on Au-
tomated Software Engineering, pages 273–282. IEEE Computer Society, 2011.

[411] H. Zhang, B. Kitchenham, and D. Pfahl. Software process simulation modeling: an ex-
tended systematic review. In New Modeling Concepts for Today’s Software Processes,
pages 309–320. Springer, 2010.

[412] Q. Zhang. Improving software development process and project management with software
project telemetry. PhD thesis, University of Hawai’i, 2006.

[413] T. Zhang, M. Song, J. Pinedo, and M. Kim. Interactive code review for systematic
changes. In Proceedings of 37th IEEE/ACM International Conference on Software Engi-
neering. IEEE, pages 111–122, 2015. doi: 10.1109/ICSE.2015.33.

[414] Y.-M. Zhu. Software Reading Techniques: Twenty Techniques for More Effective Software
Review and Inspection. apress, 2016.

260

https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1109/ICSE.2015.33

Glossary

API Application Programming Interface.

Author In the context of a code review, the author is the developer that implemented the unit
of work to be reviewed.

BIC Bayesian Information Criterion.

CAQDAS Computer-Aided Qualitative Data Analysis.

CI Continuous Integration.

CLI Command Line Interface.

Change Part The elements of a code change are called ‘change parts’. In its simplest form, a
change part corresponds directly to a change hunk as given by the Unix diff tool or the
version control system. In the context of Chapters 13 and 14, we combined hunks from
the same method into one change part.

Changeset Used as synonym to ‘Code Change’ in this thesis.

Code Change The ‘code change’ consists of all changes to source files performed in the unit of
work under review (see also Definition 2 on page 24). The code change defines the scope
of the review, i.e., the parts of the code base that shall be reviewed.

Code Review See Definition 1 on page 23.

Cognitive Load ‘Cognitive load’ is a multidimensional construct that represents the load that
performing a particular task imposes on the human cognitive system. It depends on traits
of the task, of the environment, of the human (e.g., the working memory capacity) and
the mental effort spent. [289]

Delocalized Defect A defect that can only be found or found much more easily by combining
knowledge about several parts of the source code. [109]

IDE Integrated Development Environment.

Mental Load The term ‘mental load’ of a task is used to refer to the subset of factors that
influence the task’s cognitive load which depends only on the task or environment, i.e.,
which is independent of subject characteristics. [289]

QA Quality Assurance.

Regular, Change-Based Code Review See Definition 2 on page 24.

Review Effectiveness ‘Review effectiveness’ is the ratio of defects found to all defects in the
code change. [52]

Review Efficiency ‘Review efficiency’ is the number of defects found per review hour in-
vested. [52]

Reviewer The humans performing the code review, excluding the author, are called ‘reviewers’
(see also Definition 1 on page 23).

SCM Source Code Management system, e.g., Subversion or git.

SE Software Engineering.

261

Tour A ‘tour’ is a sequence (permutation) of all change parts of a code change. This thesis also
uses ‘code change part order’ as a synonym.

Trigger (for review remark) A trigger for a review remarks is a change part that, when
reviewed, leads to the creation of that remark. The term is mainly used in the context of
Chapter 15’s data mining study.

UI User Interface.
UML Unified Modeling Language.
Working Memory ‘Working memory’ is the part of human memory that is needed for short-

term storage during information processing. Its capacity can be measured using ‘complex
span tests’. [399]

262

List of Figures

1.1 Hevner’s three-cycle view of design science research, which is used as a method-
ological guide for this thesis. (based on [173]) . 3

1.2 Connections between data sources, thesis chapters, and the flow of arguments and
central findings. The colored bars on data sources denote the chapters they are
used in. Arrows denote argument-flow; arrows that directly connect chapters de-
note motivating arguments. For literature studies, only (semi-)systematic studies
are shown. 4

3.1 Overview of the data sources and results used to assess and explain the state of
the practice . 14

3.2 Company sizes (number of employees) in survey 19

4.1 Interaction during Reviews . 26

5.1 Principal Component Analysis of the contextual factors based on the survey data
(projection on the two main components). Use of static analysis is similar to
various aspects of quality orientation and orthogonal to defect consequences in
the shown main dimensions. Unlabeled arrows are other factors from the survey. 31

5.2 Survey results on use of reviews and reasons for non-use 32

6.1 Overview of the classification scheme. Each gray box is a facet. Possible values are
written in small caps. Values separated by “or” are alternatives, values separated
by “and/or” can be combined. A tuple with values for all facets describes a review
process. (based on [38]) . 36

6.2 Main factors shaping the review process. Arrows mean “influences”. (Source: [39]) 38

7.1 Number of teams that use a certain review tool. Multiple mentions were possi-
ble. The figure shows the most prevalent tools in the survey. Further mentions
were: Team Foundation Server (3), SmartBear Collaborator (2), Phabricator (2),
Codeflow (1), Reviewboard (1), ReviewAssistant (1), proprietary tools (4) 48

8.1 Basic state diagram for tickets (Source: [34]) . 56

9.1 Exemplary screenshot of CoRT’s review views. The example is based on a devel-
oper working with two screens (upper and lower half of the figure). 61

9.2 Interaction flow and main dialogs . 62

9.3 Mean ratings from longitudinal CoRT user surveys. Both results are from a 5-
point scale, from 1 (don’t agree at all) to 5 (totally agree). 63

263

9.4 Component diagram for CoRT. To reduce clutter, dependencies inside the ‘core’
plugin are not shown. 64

9.5 Domain model for review data . 66

10.1 Different levels of publicness of the reviewed change: Pre-commit review and
post-commit review . 67

10.2 Example output from a simulation run: Stories and issues over time (Source: [34]) 71

10.3 Scatter plot of reviewer effectiveness (x-axis), relative difference in cycle time
(y-axis) and dependency graph constellation (color; light/green = REALISTIC,
dark/blue = NO DEPENDENCIES; see Appendix C for a description of the
dependency structures) (Source: [34]) . 73

10.4 Heuristics derived from the simulation results. ‘issue activation time mean for
developers’ roughly corresponds to the time it takes a developer to notice a defect
or other issue; definitions of this and the other parameters can be found in Tables
C.1 and C.2 in Appendix C . 74

11.1 Visualization of the four combinations of color and alignment 78

11.2 Participant’s experience with Java programming (in years) 80

11.3 Boxplots for time and correctness of answers, dependent on color and alignment . 81

11.4 Subjective preferences for the treatment combinations 83

12.1 Overview of argumentation: Three main problem aspects follow from the empir-
ical findings as well as the cognitive load theory and can be tackled in several
ways. 92

12.2 Hedberg’s classification of code review tools, with cognitive support tools added
as the sixth generation . 95

13.1 Experiment steps, flow, and participation (Source: [29]) 100

13.2 Example of the review view in the browser-based experiment UI, showing the
small code change. It contains three defects: In ‘VFSDirectoryEntryTableModel’,
the indices in the check of both ‘from’ and ‘to’ are inconsistent (local defects). Fur-
thermore, the order of arguments in the call in ‘VFSDirectoryEntryTable.ColumnHandler’
does not match the order in the method’s definition (delocalized defect). At each
defect, there is a review remark marker (little red square) in the line number
margin, i.e., the figure could show the view at the end of a review that found all
defects. (Source: [29]) . 102

13.3 Professional development experience of the 50 participants that finished all re-
views. Darker shade indicates company setting, lighter shade is pure online setting.106

13.4 Scatter Plots of Working Memory Span and Number of Delocalized (Left Plot)
and Other (i.e., Localized; Right Plot) Defects Detected; Slight jitter added . . . 108

14.1 High-level view of the research method (parts based on [41]) 114

14.2 Example main page from the survey (data-flow variant/Situation 2a) (Source:
[41], c© IEEE) . 117

14.3 Survey results: Relevance of the ordering offered by the tool (Source: [41], c©
IEEE) . 118

14.4 Example of a star pattern (thick edges) in a change part graph (Source: [41], c©
IEEE) . 126

264

14.5 Box plots for review efficiency (in defects/hour), effectiveness (found defects/total
defects), and review time (in minutes) for the three treatment groups. In each
plot, the left treatment is the theoretically better one. 132

15.1 Overview of the data sources and steps used in this chapter 138

15.2 The SRK taxonomy with ‘no processing’ added, and the two options to decide
how to process a change-part . 139

15.3 Example how change parts can act as triggers for review remarks. Arrows mean
‘can be trigger for’. 143

15.4 Example of a review remark (i.e., change in review commit) that is traced back
in SCM history to find potential triggers . 144

15.5 Example to illustrate the concept of Pareto-optimality. Solution B dominates
solution D because it is better in both objectives. The other solutions do not
dominate each other because they are better for one but worse for the other
objective. They form the Pareto front. 147

15.6 Ruleset SESSION, i.e., the ruleset that was used in the discussion with the de-
velopment team. It is based on MO I. 151

15.7 Pareto fronts and selected rulesets, evaluated on the unseen test data. The plots
show two-dimensional projections from the seven-dimensional objective space.
The gray dots show the baseline performance of leaving out a certain percentage
of records per ticket; each dot corresponds to a percentage value, with results
averaged over 100 random seeds. 154

A.1 Overview of the essential requirements for cognitive-support code review tools . . 176

C.1 State diagram for Tasks (see also Figure C.2) (Source: [35]) 193

C.2 Overview of important classes from the model (Source: [35]) 194

C.3 Activity diagram: Main process followed by Developer (see also Section C.1)
(Source: [35]) . 195

C.4 Activity diagram: Details for the sub process “Implement task” (from Figure C.3)
(Source: [35]) . 196

C.5 Activity diagram: Details for the sub process “Perform review” (from Figure C.3)
(Source: [35]) . 197

C.6 State diagram for NormalIssues (see also Figure C.2) (Source: [35]) 197

C.7 Activity diagram: Details for the sub process “Perform issue assessment” (from
Figure C.3) (Source: [35]) . 198

C.8 Relative frequency of different task counts per user story in the empirical sample 202

D.1 Pseudo-code description of the algorithm to determine an optimal tour (1/3):
Main algorithm. This is a simplified version, the full algorithm contains additional
performance optimizations and is distributed with CoRT. 206

D.2 Pseudo-code description of the algorithm to determine an optimal tour (2/3):
Finding the folds to apply. 207

D.3 Pseudo-code description of the algorithm to determine an optimal tour (3/3):
Utility functions. 208

D.4 Example of a BinderTree and its textual notation 209

E.1 Several possibilities how change parts can act as triggers for review remarks . . . 218

265

E.2 Example of how to decide which commits for a ticket shall be regarded as “review
commits” . 219

E.3 RRT algorithm for tracing review remarks to potential triggers (simplified) . . . 221
E.4 Example for scope expansion in a Java file, starting with the single line scope in

line 12 . 222
E.5 Comparison of the tracing approach from the current thesis (RRT) and SZZ,

both for all remarks (i.e., changed lines/files in review commits) and for remarks
in Java files only. 223

G.1 Pareto fronts and selected rulesets, evaluated on the training data. The plots
show two-dimensional projections from the seven-dimensional objective space.
The gray dots show the baseline performance of leaving out a certain percentage
of records per ticket; each dot corresponds to a percentage value, with results
averaged over 100 random seeds. 230

266

List of Tables

3.1 Demographics and review use of the companies from the interviews 15

3.2 Demographics of interviewees . 16

3.3 Companies with review process information extracted from the literature review 17

4.1 Frequency of use of different styles of code review 25

4.2 Overview of found desired and undesired review effects, with results from the
survey. 27

5.1 Regression coefficients and analysis of deviance statistics for a logistic regression
model to predict review use vs non-use. Factors written in italic are cultural
factors. All factors are binary. 31

5.2 Review triggers vs review continuation . 33

7.1 Reading techniques and their main mechanisms. 44

7.2 Review tools originating from academia (1/2). The tools are ordered chronologi-
cally, except for successors of an earlier tool, which are marked by ↪→. 46

7.3 Review tools originating from academia (2/2). Names in italics are author names
of otherwise unnamed tools. 47

7.4 Selected features of review tools used in practice. 49

10.1 Relative differences for the example data. A positive relative difference means
that post-commit reviews have the larger value. For efficiency, the larger value is
better, for quality and cycle time the smaller. All percentages have been rounded
to the nearest integer for presentation. 70

10.2 Confusion matrices for the heuristics. For quality, only data points with at least
10 issues found by customers per year were used, because for lower values the
“issues per story point” metric is dominated by differences in story points. 75

11.1 The variables collected and investigated for the diff experiment. 79

11.2 Order of treatments in the four treatment groups 79

11.3 Trimmed means, relative differences in trimmed means, and effect sizes (d) for
differences in color and alignment. 82

11.4 Results of fitting a linear mixed effect model for the needed time 82

13.1 Code change sizes, complexity, and number of correctness defects (total defect
count as well as count of delocalized defects only) after seeding 103

13.2 The variables collected and investigated for the cognitive load + ordering exper-
iment. 105

267

13.3 Mean and standard deviation (sd) for the number of defects found (all Defects
as well as the subset of delocalized defects only) and review time, depending on
review number and code change . 106

13.4 Mean review efficiency and effectiveness for the two levels of control in the study
(online or company setting) . 107

13.5 Results of fitting a linear regression model for the number of all found defects
using stepwise BIC. Coefficient for time is based on measuring in minutes. 108

13.6 Results of fitting a linear regression model for the number of all found delocalized
defects using stepwise BIC. Coefficient for time is based on measuring in minutes. 109

13.7 Kendall τB correlation for all variable combinations. The names are replaced by
single letter IDs for space reasons: a := Working memory span score, b := To-
tal number of detected defects, c := Total number of detected delocalized de-
fects, d := Total number of detected localized (=other) defects, e := Net time
for reviews, f := Controlled setting, g := Professional development experience,
h := Current code review practice, i := Screen height, j := Current program-
ming practice, k := Java experience, l := Code change B in first large review,
m := Working hours before experiment, n := Perceived fitness before experiment 109

13.8 Count of reviews in which the respective defects were detected, p-value from
one-sided McNemar’s test for RQ13.2 and corresponding effect size measured as
Cohen’s g [77] (classification as ‘large’ also according to Cohen [77]) 110

14.1 Interview participants: ID, experience, and changeset 115

14.2 Survey results: Confirmatory questions for Principle 1. 119

14.3 Survey results: Comparison of different ways to order change parts related by
call-flow (one callee, four callers), used for Principles 2 and 6. 120

14.4 Survey results: Confirmatory questions for Principle 3. 120

14.5 Definitions of the constructs for the ordering theory 125

14.6 Relating the formalization of the ordering theory to the empirical findings 127

14.7 Considered order types . 129

14.8 Number of participants by treatment groups, with details for order of treatment
and order of code change. Only the first large review is given for each group,
the second review is the respective other value (e.g., in the OF-WF group, when
WF+Change A was reviewed first by a participant, OF+Change B was second). 131

14.9 Comparison of efficiency (in defects/hour) for the different change part orders;
overall, for each treatment combination and for the subsamples with below median
working memory capacity. Caution has to be applied when interpreting the results
of lmer as not all assumptions are met. Due to the small samples, lmer models
for low wm span are left out and the respective intervals are inaccurate. Every
row from the upper part is continued in the lower part. ‘conf.int.’ = ‘confidence
interval’, ‘sd’ = ‘standard deviation’, ‘negl.’ = ‘negligible’ 133

14.10Triangulation of the single data source’s weaknesses with a mixed-methods approach134

15.1 Pros and cons for the possibilities to use the information on change-part impor-
tance for reviewing . 140

15.2 Assessment of the effect of leaving out change parts from reviews on the attain-
ment of review goals and avoidance of unintended review side-effects. 141

268

15.3 Survey results for the importance of various requirements for the prediction model
and mining process. All ratings are on a scale from 1 (not important at all) over
4 (neutral) to 7 (extremely important). The requirements are translations of the
German originals. Rows are ordered by mean rating. 145

15.4 The seven objectives used for the multi-objective data mining 149
15.5 Number of commits, change part records and review remarks in total and per

ticket for the extracted training data. Commits are subdivided into implementa-
tion and review commits. There are 6,005 tickets in total. All counts are after
cleaning. 150

15.6 Survey results for the subjective quality of the mined rulesets. All ratings are on
a scale from -5 (extremely bad) over 0 (neutral) to 5 (extremely good). Rows are
ordered by mean rating. 152

15.7 Objective values for the selected rulesets on the unseen test data 155
15.8 Relative objective values (i.e., percentages of the maximum) for the selected rule-

sets on the unseen test data. Tr.M. := trimmed mean 155

C.1 Main model parameters (1/2). The example values marked with † are derived
from the partner company’s ticket system. 201

C.2 Main model parameters (2/2) . 202

E.1 Comparison of the benefits of the two options to extract review remarks from
software repositories . 219

F.1 Final selection of change part features used as input for the mining (1/3) 226
F.2 Final selection of change part features used as input for the mining (2/3) 227
F.3 Final selection of change part features used as input for the mining (3/3) 228

G.1 Objective values for the selected rulesets on the training data. 231

269

270

List of Definitions

1 Definition (Code Review) . 23
2 Definition (Regular, change-based code review) 24

3 Definition (Cognitive-Support Code Review Tool) 92

4 Definition (MatchSet) . 211
5 Definition (SatisfiedMatch) . 211
6 Definition (sM) . 211
7 Definition (expand) . 212
8 Definition (>T) . 212
9 Definition (expand path) . 213
10 Definition (expand path for algorithm call) . 213
11 Definition (conflict) . 213

271

272

Curriculum Vitae

Personal Details

Name: Tobias Baum

Date of Birth: 28.04.1985

City of Birth: Hannover, Germany

Education

1991 – 1995 Friedrich-Ebert-Grundschule, Hannover

1995 – 1997 Orientierungsstufe Badenstedt, Hannover

1997 – 2004 Helene-Lange-Schule, Hannover, Abitur

2004 – 2007 FHDW Hannover, Studium Informatik, Diplom-Informatiker (FH)

2007 – 2009 FHDW Hannover, Studium Business Process Engineering, Master of En-
gineering

2014 – 2019 Leibniz Universität Hannover, Promotion Informatik

Professional Experience

2000 – 2004 SET GmbH, Hannover, side job

2004 – 2007 SET GmbH, Hannover, working student

2007 – 2009 SET GmbH, Hannover, developer

2009 – 2018 SET GmbH, Hannover, lead developer

2019 ongoing SET GmbH, Hannover, director

Peer-Reviewed Publications

• Spadini, D., Palomba, F., Baum, T., Hanenberg, S., Bruntink, M., and Bac-
chelli, A. Test-driven code review: An empirical study. In Software Engineering (ICSE),
2019 41st International Conference on (2019). [356]

• Fregnan, E., Baum, T., Palomba, F., and Bacchelli, A. A survey on software
coupling relations and tools. Information and Software Technology 107 (2019), 159 – 178.
[130]

• Baum, T., Bacchelli, A., and Schneider, K. Associating working memory capacity
and code change ordering with code review performance. Empirical Software Engineering
(2018). [29]

273

• Baum, T., Leßmann, H., and Schneider, K. The choice of code review process: A
survey on the state of the practice. In Product-Focused Software Process Improvement
(Cham, 2017), M. Felderer, D. Méndez Fernández, B. Turhan, M. Kalinowski, F. Sarro,
and D. Winkler, Eds., Springer International Publishing, pp. 111–127. [37]

• Baum, T., Schneider, K., and Bacchelli, A. On the optimal order of reading source
code changes for review. In 33rd IEEE International Conference on Software Maintenance
and Evolution (ICSME), Proceedings (2017), pp. 329–340. [41]

• Baum, T., Kortum, F., Schneider, K., Brack, A., and Schauder, J. Compar-
ing pre-commit reviews and post-commit reviews using process simulation. Journal of
Software: Evolution and Process 29, 11 (2017), e1865. [35]1

• Baum, T., and Schneider, K. On the need for a new generation of code review tools.
In Product-Focused Software Process Improvement: 17th International Conference, PRO-
FES 2016, Trondheim, Norway, November 22-24, 2016, Proceedings 17 (2016), Springer,
pp. 301–308. [40]

• Baum, T., Liskin, O., Niklas, K., and Schneider, K. Factors influencing code review
processes in industry. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (New York, NY, USA, 2016), FSE
2016, ACM, pp. 85–96. [39]

• Baum, T., Liskin, O., Niklas, K., and Schneider, K. A faceted classification scheme
for change-based industrial code review processes. In Software Quality, Reliability and
Security (QRS), 2016 IEEE International Conference on (Vienna, Austria, 2016), IEEE,
pp. 74–85. [38]

• Baum, T., Kortum, F., Schneider, K., Brack, A., and Schauder, J. Comparing
pre commit reviews and post commit reviews using process simulation. In Software and
System Process (ICSSP), 2016 International Conference on (Austin, TX, USA, 2016). [34]

• Baum, T. Leveraging pre-commit hooks for context-sensitive checklists: a case study. In
Fachtagung des GI-Fachbereichs Softwaretechnik, Software Engineering (SE 2015), Dres-
den, Germany (2015), pp. 219–222. [28]

Invited Talks

• ISEC 2018, Hyderabad, India: “Factors Influencing Code Review Processes in Industry –
Extended Version”

• 56th CREST Open Workshop, 2017, UCL, London, UK: “Culture is Key: Results of a
Survey on Factors Influencing Code Review Adoption”

Funding and Awards

• ACM SIGSOFT Distinguished Paper Award at FSE 2016 for “Factors Influencing Code
Review Processes in Industry” [39]

• Best Paper Award at ICSSP 2016 for “Comparing Pre Commit Reviews and Post Commit
Reviews Using Process Simulation” [34]

• Scholarship ‘Studienstiftung des deutschen Volkes’, 2006 – 2009

• 22. Bundeswettbewerb Informatik, 2003/2004

1Extended version of [34]

274

– Reached final round
– Special price ‘originellste Einzelidee’
– Special price ‘beste Gruppenleistung’

275

	Title
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	Introduction
	Motivation and Background
	Contributions
	Approach and Research Methods
	Structure

	I Code Review in Industry – Why improved review support is worthwhile
	Related Work on the State and History of Code Reviews in Industrial Practice
	Methodology to Assess the State of the Practice
	Grounded Theory Interview Study
	Systematic Literature Review
	Online Survey
	Validity and Limitations

	Reviews in Current Industrial Practice
	Commonalities of Review Processes in Practice
	The Dominance of Change-Based Code Review
	Desired and Undesired Review Effects

	Use and Non-Use of Reviews – Culture Beats More Efficient Tools
	Triggers of Review Introduction
	Inhibitors of Review Introduction
	Comparison to Related Work

	Variations in Industrial Review Processes
	A Faceted Classification Scheme of Change-Based Code Review Processes
	Factors Shaping the Review Process
	Comparison to Related Work

	Tools and Techniques to Support Reviews
	Code Reading Techniques
	Research on Code Review Tools
	The Use of Review Tools in Practice

	II The Code Review Tool and Research Platform `CoRT'
	Context for Action Research on Improved Code Review Tooling: The Partner Company
	The Code Review Tool `CoRT'
	Key Design Decisions
	CoRT from the User's Perspective
	CoRT as a Research Platform
	Overview of CoRT's Internal Architecture

	A Simulation-Based Comparison of Pre- and Post-Commit Reviews
	Methodology
	Results
	Validity and Limitations

	An Empirical Comparison of Multiple Ways to Present Source Code Diffs
	Methodology
	Results
	Validity and Limitations

	III Cognitive Support: Guiding and Assisting Reviewers
	Cognitive-Support Code Review Tools
	How to Improve Review Performance
	Ideas to Address the Challenges
	A New Generation of Code Review Tools

	An Experiment on Cognitive Load in Code Reviews
	Experimental Design
	Results
	Validity and Limitations

	Ordering of Change Parts
	Methodology
	The Relevance of the Order by the Tool
	Principles for an Optimal Ordering
	Input from Other Research Areas
	A Theory for Ordering the Change Parts to Review
	An Experiment on Change Part Ordering and Review Efficiency
	Validity and Limitations

	Classification of Change Parts
	Methodology
	Use of Change Part Classification to Reach Code Review Goals more Efficiently
	Approach for Data Extraction and Model Creation
	Application of the Approach within the Partner Company
	Discussion
	Validity and Limitations
	Related Work

	IV Conclusion
	Conclusion
	Summary
	Implications of the Findings
	Next Steps in Code Review Research

	V Appendix
	Essential Requirements for Code Review Tools and Possible Realizations
	Cross-Cutting Requirements
	Core Features
	Advanced Reviewer Support
	Further Basic Features

	The Faceted Classification Scheme in Detail
	Process Embedding
	Reviewers
	Checking
	Feedback
	Overarching Facets

	Details on the Simulation Model for the Comparison of Pre- and Post-Commit Reviews
	Details on the Modeling of Developers' Work
	Details on the Modeling of Issues
	Empirical Triangulation of Model Parameters
	Simplifying Assumptions

	An Efficient Algorithm to Find an Optimally Ordered Tour
	Description of the Algorithm
	An Implementation of the Abstract Data Type `Binder'
	Proof of Correctness for the Ordering Algorithm

	Details on How to Extract Review Remark Triggers
	Remarks, Triggers, and Change Parts
	Selecting a Data Source
	Determinining Review Commits
	Finding Potential Triggers: The RRT Algorithm
	Comparison of RRT to SZZ

	Features Used for Classifying Change Parts
	Results of the Remark Classification Model for the Training Data
	Bibliography
	Glossary
	List of Figures
	List of Tables
	List of Definitions
	Curriculum Vitae

