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A variational ansatz for momentum eigenstates of translation-invariant quantum spin chains is formulated. The
matrix product state ansatz works directly in the thermodynamic limit and allows for an efficient implementation
(cubic scaling in the bond dimension) of the variational principle. Unlike previous approaches, the ansatz
includes topologically nontrivial states (kinks, domain walls) for systems with symmetry breaking. The method
is benchmarked using the spin- 1

2 XXZ antiferromagnet and the spin-1 Heisenberg antiferromagnet, and we
obtain surprisingly accurate results.
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The density matrix renormalization group (DMRG) has
proven to be the most successful variational method for
strongly correlated quantum lattice systems in one spatial
dimension.1 The associated variational class is the class of
matrix product states (MPS),2 which has been generalized to
higher-dimensional systems3 and can also be applied directly
in the thermodynamic limit.4 It is now understood that the
success of these ansatze can be attributed to the fact that they
occupy that corner of Hilbert space that is characterized by
an area scaling law of entanglement entropy, a property also
satisfied by ground states of gapped short-ranged quantum
systems.5 The same argument applies equally—under some
general constraints—to the lowest excited states of such
systems.6

Accurate information about the lowest-lying excited states
is important to relate theoretical models to experimental
measurements via spectral functions. Excited states appear as
poles in these spectral functions, with corresponding residues
given by the spectral weight. In dynamic DMRG methods,7

information about the spectrum of excited states is gathered
from an approximate computation of the spectral function. The
latest state-of-the-art algorithms first generate time-dependent
correlation functions through a dynamic real-time evolution,
after which highly accurate information about the spectrum can
be extracted using spectral analysis.8 However, this approach
is limited by the fact that only reasonably short time scales
are computationally accessible due to the linear growth of
entanglement under real-time evolution. This results in a
broadening of the exact poles in spectral functions. Extracting
high-quality information requires a combination of working
with a large bond dimension D ≈ O(103), linear prediction
to extend the range of accessible time scales, and complex
statistical machinery to extract the precise position of the pole.
However, since low-lying excited states also satisfy an area law
for the scaling of entanglement entropy, it should be possible
to construct a more direct and efficient approximation.

Nevertheless, MPS-inspired variational ansatze for excited
states are rare. Most interesting is the case of translation-

invariant states, where the Hamiltonian is block-diagonal
in the different momentum sectors. Rommer and Östlund
proposed a Bloch-like ansatz that allowed them to get an
early estimate of the Haldane gap in the spin-1 Heisenberg
antiferromagnet9 by adding a virtual boundary operator Q

acting in the D-dimensional auxiliary space to the MPS
approximation of the ground state and making a momentum
superposition thereof. This is closely related to the general
strategy of Bijl, Feynman, and Cohen, who act with the Fourier
transform of a local physical operator Ô on the ground state
to create excitations.10 This strategy is called the single-mode
approximation in the context of spin systems,11 and it has been
applied to MPS in Ref. 12. Other ansatze include the projected
entangled momentum states13 and very recently the proposal
by Pirvu et al.,14 in which a momentum superposition is taken
of the ground-state MPS in which at a single site the matrices
As are replaced by a matrix Bs that is variationally optimized.
This ansatz contains and extends the Rommer and Östlund
ansatz (Bs = QAs) and the single-mode approximation (Bs =∑

t 〈s|Ô|t〉 At ). All of these proposals exploit translational
invariance on a finite lattice with periodic boundary conditions,
which unfortunately introduces finite-size effects and prevents
them from reaching the computational efficiency [O(D3) with
D the bond dimension of the MPS] of indirect methods on
systems with open boundary conditions.

This paper presents a variational ansatz that allows us to
describe excited states directly in the thermodynamic limit.
This ansatz generalizes,14 but differs by not relying on periodic
boundary conditions, which is of key importance for the
formulation of a computationally efficient implementation.
This also allows for the possibility of topologically nontrivial
excited states, which are very important in systems with
symmetry breaking,15 but for which few direct alternatives
are available.

We now consider a one-dimensional lattice of d-level
quantum systems described by a local, translation-invariant
Hamiltonian Ĥ = ∑

n∈Z T̂ nĥT̂ −n, with T̂ the translation
operator that shifts the lattice over a single site, and ĥ an
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operator that acts nontrivially only on sites zero and one
(we restrict to nearest-neighbor Hamiltonians for the sake
of simplicity). We approximate translation-invariant ground
states of such Hamiltonians with infinite-size uniform MPS
(uMPS), given by

|�(A)〉 = v
†
L

⎛
⎝∏

n∈Z

d∑
sn=1

Asn

⎞
⎠ vR|s〉, (1)

where |s〉 ≡ |· · · s1s2 · · ·〉, As (s = 1,2, . . . ,d), constitute a set
of D × D complex matrices acting on a D-level auxiliary
system, and vL and vR are two D-dimensional vectors living at
±∞. The MPS construction has a gauge invariance under the
gauge transform As �→ GAsG−1, with G an invertible D × D

matrix. While leaving the gauge unspecified, we do assume
that the transfer matrix EA

A = ∑d
s=1 As ⊗ Ās has precisely one

eigenvalue 1 with corresponding left and right eigenvectors (l|
and |r) of length D2 which are denoted using a braket-style
with round brackets, and to which we can associate D × D

matrices l and r , respectively, by reshaping them. These two
matrices are Hermitian and positive and are assumed to be
full rank. We choose the normalization (l|r) = Tr(lr) = 1. In
addition, we assume that all other eigenvalues of EA

A lie strictly
within the unit circle, so the spectral radius of EA

A − |r)(l| is
smaller than 1.16 Under these conditions, the boundary vectors
vL and vR do not feature in normalized expectation values of
local operators.

Within the philosophy of Bijl, Feynman, and Cohen, a
typical elementary excitation of a local gapped Hamiltonian
can be interpreted as a momentum superposition of a local-
ized disturbance of the ground state. We therefore define a
variational ansatz for excitations as

|�κ (B)〉 =
∑
n∈Z

eiκnT̂ nv
†
L(· · ·As−1Bs0Ãs1 · · ·)vR|s〉, (2)

where As and Ãs represent the same (for a topologically trivial
excitation) or different (for a topologically nontrivial excitation
in the case of symmetry breaking) set of matrices for which
|�(A)〉 and |�(Ã)〉 are equally good (i.e., the same energy)
uMPS approximations of ground states of Ĥ (e.g., obtained
using the imaginary time-dependent variational principle17).
The state |�κ (B)〉 has momentum κ ∈ [−π,π ). The set of D ×
D matrices Bs (s = 1,2, . . . ,d) contains the only variational
parameters in our class; they are also denoted as a D2d vector
B. All expectation values are quadratic in B, and we define

〈�κ (B)|�κ ′(B ′)〉 = 2πδ(κ − κ ′)B†NκB
′,

〈�κ (B)|Ĥ − H |�κ ′(B ′)〉 = 2πδ(κ − κ ′)B†HκB
′.

For an infinite system size, the momentum eigenstates |�κ (B)〉
cannot be normalized to 1 but rather satisfy a δ normalization.
This δ function also appears in the expectation value of every
translation-invariant operator. The energy expectation value
〈�κ (B)|Ĥ |�κ ′(B ′)〉 has a contribution H 〈�κ (B)|�κ ′(B ′)〉,
where H = 〈�(A)|Ĥ |�(A)〉 = |Z| 〈�(A)|ĥ|�(A)〉 is the di-
verging ground-state energy, which was therefore subtracted in
the definition of H(�)

κ . The spectrum of excitation energies ω

at momentum κ can then be obtained by solving the dD2-
dimensional generalized eigenvalue problem (H(�)

κ ,N(�)
κ ).

Since our variational space is a linear subspace of the Hilbert

space, this generalized eigenvalue system can be recognized
as the Rayleigh-Ritz equation.

However, it can easily be seen that ∀X ∈ CD×D , the choice
Bs = eiκAsX − XÃs results in |�κ (B)〉 = 0. For any κ 
= 0,
or for κ = 0 and |�(A)〉 
= |�(Ã)〉, our linear parametrization
B has D2 linearly independent zero modes which can be
eliminated by fixing a part of the variational parameters.
For |�(A)〉 = |�(Ã)〉, there exists a gauge transformation
G such that As = GÃsG−1 and one can see that X = G

leads to Bs = 0 for κ = 0. Hence, there are only D2 − 1
linearly independent zero modes, but we can fix one additional
variational parameter in B by imposing 〈�(A)|�κ (B)〉 = 0.
This orthogonality constraint is automatically satisfied in all
other cases. Hence, in all cases only (d − 1)D2 variational
parameters remain. We prove elsewhere that this freedom in
fixing some variational parameters is related to the gauge
freedom in the original manifold of MPS, and that we can
construct a linear representation B(x) in terms of a (d − 1)D ×
D matrix x containing the free variational parameters such that
B(x)†N(�)

κ B(y) = tr[x†y].18 In this study, we find the dD ×
(d − 1)D matrix VL that contains an orthonormal basis for the
null space of the D × dD matrix L with entries Lα,(βs) =
[(As)†l1/2]α,β . Reshaping VL such that [V s

L]αβ = [VL](αs),γ

[for all α = 1, . . . ,D, s = 1, . . . ,d, γ = 1, . . . ,(d − 1)D], the
representation is given by Bs(x) = l−1/2V s

Lxr̃−1/2, with l and
r̃ the left and right eigenvector of EA

A and EÃ
Ã

. We then obtain
(see Ref. 18)

B(x)†HκB(y)

= {
(l|HB(y)Ã

B(x)Ã
|r̃) + (l|HAB(y)

AB(x) |r̃)

+ e+iκ (l|HAB(y)
B(x)Ã

|r̃) + e−iκ (l|HB(y)Ã
AB(x) |r̃)

+ (l|EB(y)
B(x)

(
1 − EÃ

Ã

)−1
HÃÃ

ÃÃ
|r̃)

+ (l|HAA
AA

(
1 − EA

A

)−1
E

B(y)
B(x) |r̃)

+ e+iκ (l|HAA
AA

(
1 − EA

A

)−1
EA

B(x)

(
1 − e+iκEA

Ã

)−1
E

B(y)
Ã

|r̃)

+ e−iκ (l|HAA
AA

(
1 − EA

A

)−1
E

B(y)
A

(
1 − e−iκEÃ

A

)−1
EÃ

B(x)|r̃)

+ e+iκ (l|HAA
AB(x)

(
1 − e+iκEA

Ã

)−1
E

B(y)
Ã

|r̃)

+ e−iκ (l|HAB(y)
AA

(
1 − e−iκEÃ

A

)−1
EÃ

B(x)|r̃)

+ e+2iκ (l|HAA
B(x)Ã

(
1 − e+iκEA

Ã

)−1
E

B(y)
Ã

|r̃)

+ e−2iκ (l|HB(y)Ã
AA

(
1 − e−iκEÃ

A

)−1
EÃ

B(x)|r̃)
}
,

where EA
B = ∑d

s=1 As ⊗ B
s

and HAB
CD =∑d

s,t,u,v=1 〈s,t |ĥ|u,v〉 (AuBv) ⊗ (C
s
D

t
). When A 
= Ã,

which does not necessarily imply |�(A)〉 
= |�(Ã)〉, we can
substitute Ã ← eiϕÃ in order to obtain |�κ (B)〉 = |�κ−ϕ(B)〉
up to an infinite phase, which seems to indicate that
the momentum label is completely arbitrary. This is an
artifact of not having momentum in a system with open
boundary conditions. It does not appear when Ã = A. This
inconsistency can be solved by fixing ϕ such that the dominant
eigenvalue (largest in magnitude) of EÃ

A is positive. When
|�(A)〉 = |�(Ã)〉 up to phase, the dominant eigenvalue of EÃ

A

is 1. By assumption, the dominant eigenvalues of EA
A and EÃ

Ã

100408-2



RAPID COMMUNICATIONS

VARIATIONAL MATRIX PRODUCT ANSATZ FOR . . . PHYSICAL REVIEW B 85, 100408(R) (2012)

FIG. 1. Spectrum of the lowest-lying excitations of the spin- 1
2

XXZ antiferromagnet with anisotropy parameter � = 4 at D =
33. Black circles indicate topologically nontrivial excitations, gray
squares indicate topologically trivial excitations.

are always 1. All inverses of (1 − EA
A), (1 − EÃ

Ã
), (1 − eiκEA

Ã
),

and (1 − e−iκEÃ
A) should be read as “pseudo-inverses”19 that

act as zero in the eigenspace corresponding to the eigenvalue
one of the transfer operator. In the case of symmetry breaking
with |�(A)〉 
= |�(Ã)〉, the spectral radius ρ(EÃ

A ) < 1 and the
expressions (1 − eiκEA

Ã
)−1 and (1 − e−iκEÃ

A)−1 denote the full
inverses. If A and Ã satisfy the properties that were outlined
before, it is straightforward to prove that the corresponding
uMPS approximate ground states with maximal symmetry
breaking, i.e., they yield extremal values for the expectation
value of the order parameter associated with the symmetry
breaking.

Excitation energies can thus be found from diagonalizing
the effective (d − 1)D2 × (d − 1)D2 Hamiltonian defined
with respect to entries of x and y in B(x)†HκB(y), since
the effective norm matrix is now the unit matrix. As shown
in the results below, we are often interested in the lowest
excitation energies. Using an iterative method for the different
(pseudo)-inversions, the action of the effective Hamiltonian
can be implemented as an O(D3) operation and can be
combined with a sparse eigensolver.

We now illustrate the power of our variational ansatz for
excited states using some benchmark problems. The first
Hamiltonian under consideration is the spin- 1

2 XXZ antifer-
romagnet in the symmetry-breaking phase � > 1. The ground
states of maximal symmetry breaking are antiferromagnetic
and also break translational invariance. We therefore perform
a spin flip (σx) on every second site in order to obtain

ĤXXZ = J
∑
n∈Z

σx
n σ x

n+1 − σy
n σ

y

n+1 − �σz
nσ z

n+1.

The gap closes at the critical point � = 1, where we obtain the
spin- 1

2 Heisenberg antiferromagnet. Figure 1 displays the full
spectrum of excited states obtained with our ansatz at D = 33
(full diagonalization becomes computationally demanding for
much larger values of D) for � = 4, resulting in (d − 1)D2 =
1089 topologically trivial excitations (Ãs = As) and 1089
topologically nontrivial excitations (Ãs = ∑

t 〈s|σx |t〉 At ). As
pointed out in Ref. 15, the elementary particle excitations in
the symmetry-broken phase are topologically nontrivial kinks,
and all topologically trivial excitations are compound states
containing an even number of kinks. Not only do we recover
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FIG. 2. (a) Simulation results for �
(D)
XXZ as a function of the

anisotropy � for various values of D ranging from 10 to 400 (gray
circles), as well as the exact result with the Bethe ansatz (black line).
(b) Absolute error on the energy gap vs absolute error on the energy
density for various values of � and D.

the elementary kink, we also obtain a large set of points that fall
within the two-particle (topologically trivial) and three-particle
(topologically nontrivial) continuum. This happens because
our ansatz contains a single perturbation that can spread out
over a region of O(logd D) sites. The two-particle states
are states with fixed total momentum κ1 + κ2mod 2π = κ ,
but which consist of a superposition of relative momenta
�κ = κ2 − κ1 so as to confine the two particles into the region
allowed by the ansatz.

We can assess the accuracy of our approach as a function
of D by comparing the energy gap �

(D)
XXZ (lowest excitation

energy at κ = 0 or κ = π ) with the exact value �
(∞)
XXZ . Because

this gap belongs to a topologically nontrivial excitation that
only comes in pairs on lattices with periodic boundary
conditions, the value of the energy gap calculated in Ref. 20
using the Bethe ansatz on a lattice with periodic boundary
conditions is twice the exact value. As illustrated in Fig. 2, we
can even obtain highly accurate values of the energy gap very
close to the critical point by going to larger values of the bond
dimension D using a sparse implementation. Note that errors
on the elementary excitation are negative. This violation of
the variational principle is caused by subtracting an estimate
of the ground-state energy H that is too large. Also note that
the error on the gap scales as the square root of the error on
the energy (density) for low values of D, but is proportional
to this error for larger D, except at the critical point.

Secondly, we study the spin-1 Heisenberg antiferromagnet,
which has a translation-invariant ground state in a symmetry-
protected topological phase and is characterized by the
presence of the Haldane gap.21 There is a long history of
numerical estimates of the Haldane gap using a variety of
methods.8,9,22 Figure 3 shows the spectrum of topologically
trivial excitations of the spin-1 Heisenberg antiferromagnet,
obtained using our ansatz for D = 30, where excitation
energies are colored according to their degeneracy (which was
obtained without using the symmetry explicitly). As expected,
the elementary excitation around momentum κ = π is the
S = 1 magnon excitation, and the corresponding energy at
κ = π is the Haldane gap. This spectrum is in agreement with
a previous proposal that was obtained using a dynamic DMRG
simulation on a finite chain of up to 400 sites with values
for the bond dimension up to D = 2000 (second reference in
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FIG. 3. (Color online) Spectrum of the lowest-lying excitations
of the spin-1 Heisenberg antiferromagnet at D = 30, labeled by their
spin S degeneracy.

Ref. 8). The most accurate results for the Haldane gap are
obtained using ground-state DMRG on finite lattices in the
second reference of Ref. 8 [� = 0.410 479 25(4) on a lattice
of 400 sites with D = 500] and the last reference of Ref. 22
[� = 0.410 479 248 5(4) on a lattice of 2048 sites with D up to
2700]. With modest computational resources (solving a single
eigenvalue problem iteratively), we obtain similar results for
various values of D up to D = 208, which were chosen so
that all Schmidt values with a certain degeneracy (given by
half-integral spin representations) are present, but without
explicitly using the SU(2) symmetry. We can even improve
the estimate for the Haldane gap by two more significant digits

from a scaling analysis in D: � = 0.410 479 248 463+6×10−12

−3×10−12 .
Unlike in the second reference in Ref. 8, where the rest
of the dispersion relation was much less accurate than the
gap, we can now expect roughly the same accuracy for all
points of the dispersion relation where the elementary magnon
exists. Around κ = π/4, the elementary magnon excitation
is absorbed into the two-magnon continuum and becomes
unstable against decay into two magnons.

We have presented a variational algorithm, based on the
matrix product state formalism, to determine topologically
trivial and nontrivial excited states of one-dimensional quan-
tum lattices, directly in the thermodynamic limit. We envisage
that this set of excited states can also be used to accurately
determine spectral functions, as requested in Ref. 23. In
addition, we expect that our proposal can be extended to the
setting of two-dimensional lattice systems by replacing a single
tensor in the network of projected entangled-pair states,3 or
to the setting of quantum field theories by building on the
continuous MPS proposal.24
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S. Rommer and S. Östlund, Phys. Rev. B 55, 2164 (1997).

10A. Bijl, J. de Boer, and A. Michels, Physica 8, 655 (1941); R. P.
Feynman, Phys. Rev. 94, 262 (1954); R. P. Feynman and M. Cohen,
ibid. 102, 1189 (1956).

11D. P. Arovas, A. Auerbach, and F. D. M. Haldane, Phys. Rev. Lett.
60, 531 (1988).

12E. Bartel, A. Schadschneider, and J. Zittartz, Eur. Phys. J. B 31,
209 (2003); S. G. Chung and L. Wang, Phys. Lett. A 373, 2277
(2009).

13D. Porras, F. Verstraete, and J. I. Cirac, Phys. Rev. B 73, 014410
(2006).

14B. Pirvu, J. Haegeman, and F. Verstraete, Phys. Rev. B 85, 035130
(2012).

15L. D. Faddeev and L. A. Takhtajan, Phys. Lett. A 85, 375
(1981).

16States satisfying this condition are also known as pure finitely
correlated states.

17J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pizorn, H. Verschelde,
and F. Verstraete, Phys. Rev. Lett. 107, 070601 (2011).

18J. Haegeman, T. J. Osborne, and F. Verstraete (in preparation).
19For κ 
= 0, the operators (1 − eiκEA

Ã
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