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Abstract 

Live cell imaging is an important tool for the investigation of cellular processes. It has become 

possible with the discovery and improvement of fluorescent proteins that can be genetically 

fused to a protein of interest, thereby allowing its direct observation by fluorescence 

microscopy. The resolution of conventional fluorescence microscopy is limited by diffraction 

to ~200 nm which is not sufficient for the detailed analysis of cellular organelles. Several 

methods that bypass the diffraction limit have been developed, including STED (stimulated 

emission depletion) and RESOLFT (reversible saturable optical linear fluorescence transition) 

microscopy which allow imaging of living cells far beyond the diffraction limit. RESOLFT 

microscopy uses reversibly switchable fluorescent proteins (RSFPs) to obtain increased 

resolution. All commonly used RSFPs have been developed from fluorescent proteins of the 

GFP (green fluorescent protein) family. These proteins exhibit high brightness, but are not 

optimal for all applications due to their relatively large size (27 kDa), dependence on oxygen 

for chromophore maturation, and fluorescence quenching at low pH. Another class of 

fluorescent proteins that circumvents all these problems are LOV (light-oxygen-voltage-

sensing) domains that contain a flavin chromophore. In the first project of this thesis, two new 

RSFPs were developed from the LOV domain of the photoreceptor protein YtvA from Bacillus 

subtilis by mutagenesis. The first variant rsLOV1 was successfully used for RESOLFT 

imaging, whereas the second variant rsLOV2 was used for STED microscopy achieving a 

resolution of down to 40–50 nm in living cells. 

Another type of flavin-binding proteins that can also be used for imaging are bacterial 

luciferases. These enzymes use FMN (flavin mononucleotide) to convert chemical energy into 

light in a process called bioluminescence. The emitted light can be used for imaging without 

an external light source as it is required for the excitation of fluorescence, which can disturb 

light-sensitive processes and lead to photobleaching. However, the low brightness of bacterial 

bioluminescence has so far limited its use for single-cell imaging. In the second part of this 

thesis, it was shown that bioluminescence from the luxCDABE operon from Photorhabdus 

luminescens could be improved ~7-fold by expression of an additional FMN reductase and 

subsequent mutagenesis of several proteins of the lux operon. The resulting ilux operon could 

be used to image single E. coli cells for extended time periods at enhanced spatiotemporal 

resolution and to investigate the effect of different antibiotics on cell viability. 

  



 

 

  



 
 

Zusammenfassung 

Die Beobachtung lebender Zellen ist eine wichtige Methode zur Erforschung zellulärer 

Prozesse. Sie wurde möglich durch die Entdeckung und Verbesserung fluoreszierender 

Proteine, welche genetisch an zelluläre Proteine fusioniert werden können und so deren 

direkte Beobachtung durch Fluoreszenzmikroskopie ermöglichen. Die Auflösung 

herkömmlicher Fluoreszenzmikroskope ist durch Beugung auf etwa 200 nm begrenzt. Dies 

ist für die detaillierte Beobachtung von Zellorganellen nicht ausreichend. Es wurden jedoch 

mehrere Methoden entwickelt, die das Beugungslimit umgehen. Zu diesen gehören die STED 

(stimulated emission depletion)- und RESOLFT (reversible saturable optical linear 

fluorescence transition)-Mikroskopie, welche die Beobachtung lebender Zellen mit einer 

Auflösung deutlich unterhalb der Beugungsgrenze ermöglichen. Die RESOLFT-Mikroskopie 

verwendet reversibel schaltbare fluoreszierende Proteine (RSFPs) zur Verbesserung der 

Auflösung. Alle bisher gebräuchlichen RSFPs wurden aus Proteinen der GFP (grün 

fluoreszierendes Protein)-Familie entwickelt. Diese Proteine besitzen eine hohe Helligkeit, 

sind jedoch aufgrund ihrer relativ hohen Größe (27 kDa), Sauerstoff-Abhängigkeit und 

Empfindlichkeit ihrer Fluoreszenz gegenüber niedrigen pH-Werten nicht für alle 

Anwendungen geeignet. Eine andere Klasse fluoreszierender Proteine, die alle diese 

Probleme umgeht, sind LOV (light-oxygen-voltage-sensing)-Domänen, welche einen Flavin-

Chromophor enthalten. Im ersten Projekt dieser Arbeit wurden zwei neue RSFPs durch 

Mutagenese ausgehend von der LOV-Domäne des Photorezeptor-Proteins YtvA aus Bacillus 

subtilis entwickelt. Die erste Variante rsLOV1 wurde für RESOLFT-Mikroskopie verwendet, 

während mit der zweiten Variante rsLOV2 durch STED-Mikroskopie eine Auflösung von 40–

50 nm in lebenden Zellen erreicht werden konnte. 

Ein weiterer Typ Flavin-bindender Proteine, die ebenfalls zur Abbildung lebender Zellen 

verwendet werden können, sind bakterielle Luciferasen. Diese Enzyme verwenden FMN 

(Flavinmononukleotid), um chemische Energie in einem als Biolumineszenz bezeichneten 

Prozess in Licht umzuwandeln. Anders als Fluoreszenz kann die Emission von 

Biolumineszenz ohne zusätzliches Licht von außerhalb aufgenommen werden, welches 

lichtempfindliche Prozesse stören und zu Bleichen führen kann. Die Verwendbarkeit 

bakterieller Biolumineszenz zur Abbildung einzelner Zellen wurde jedoch bisher durch ihre 

geringe Helligkeit eingeschränkt. Im zweiten Teil dieser Arbeit wurde gezeigt, dass die 

Biolumineszenz vom luxCDABE-Operon aus Photorhabdus luminescens etwa 7-fach erhöht 

werden konnte. Dies wurde durch die zusätzliche Expression einer FMN-Reduktase und 



 

anschließende Mutagenese mehrerer Proteine des lux-Operons erreicht. Das verbesserte 

ilux-Operon konnte zur Beobachtung einzelner E. coli-Zellen mit erhöhter räumlich-zeitlicher 

Auflösung über lange Zeiträume verwendet werden und ermöglichte darüber hinaus die 

Erforschung der Wirkung verschiedener Antibiotika auf die Zellviabilität. 
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Abbreviations 

aa   amino acid 

ATP   adenosine-5'-triphosphate 

BLUF domain  sensors of blue light using FAD 

B. subtilis  Bacillus subtilis 

CCD   charge-coupled device 

DNA   deoxyribonucleic acid 

E. coli   Escherichia coli 

e.g.   for example 

EMCCD  electron-multiplying charge-coupled device 

FAD, FADH2  flavin adenine dinucleotide 

FbFP   FMN-binding fluorescent protein 

FMN, FMNH2  flavin mononucleotide 

FRET   Förster resonance energy transfer 

FWHM   full width at half maximum 

GFP   green fluorescent protein 

GTP   guanosine-5'-triphosphate 

ICCD   intensified charge-coupled device 

IPTG   isopropyl β-D-1-thiogalactopyranoside 

LB   lysogeny broth 

LOV domain  light-oxygen-voltage-sensing domain 

NAD+, NADH  nicotinamide adenine dinucleotide 

NADP+, NADPH nicotinamide adenine dinucleotide phosphate 

OD600    optical density at 600 nm 

PALM   photoactivated localization microscopy 

PCR   polymerase chain reaction 

PDB   protein data bank 

PI   propidium iodide 

Pi   inorganic phosphate 

P. luminescens Photorhabdus luminescens 

PPi   pyrophosphate 

RESOLFT  reversible saturable optical linear fluorescence transition 

RF   riboflavin 
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SNR   signal-to-noise ratio 

RSFP   reversibly switchable fluorescent protein 

STED   stimulated emission depletion 

VBNC   viable but non-culturable 

V. campbellii  Vibrio campbellii 

V. harveyi  Vibrio harveyi 

YFP   yellow fluorescent protein 
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Introduction 

Light microscopy has become an indispensable tool for cell biology. With the discovery and 

development of new fluorescent proteins during the last decades, it became possible to 

specifically label proteins in living cells and to image them in their native environment. The 

resolution of light microscopy, however, is typically limited to ~200 nm due to diffraction. 

Various cellular organelles such as endosomes are considerably smaller than 200 nm, making 

it impossible to resolve their structure with conventional light microscopes. Higher resolution 

in the sub-nanometer range can be achieved with electron microscopy. Unfortunately, this 

technique requires previous fixation and staining of the sample and is therefore not compatible 

with live cell imaging. In addition, the fixation procedure can lead to the creation of artifacts. 

During the last decades, several methods based on fluorescence microscopy have been 

developed that allow imaging of living cells far beyond the diffraction limit, including STED 

(stimulated emission depletion) and RESOLFT (reversible saturable optical linear 

fluorescence transition) microscopy. These methods require suitable fluorophores. 

Fluorescent proteins for live cell imaging with STED and RESOLFT microscopy have so far 

been mainly developed from GFP (green fluorescent protein) and related proteins. Yet, other 

proteins with entirely different properties exist that contain a fluorescent cofactor and can 

therefore also be used for fluorescence microscopy. One of these proteins are flavin-binding 

LOV (light-oxygen-voltage-sensing) domains that are superior to GFP-based proteins for 

certain applications due to their smaller size, oxygen-independence, and stability of their 

fluorescence at low pH [1]. Chapter I of this thesis deals with the development of LOV-based 

proteins for RESOLFT and STED microscopy. 

Flavin-binding proteins can also be used for another type of imaging. Several bacteria use 

FMN (flavin mononucleotide) to convert chemical energy into light in a process called 

bioluminescence. Hence, detection of the emitted light allows imaging without an external light 

source. This is particularly useful for long-term measurements of living cells where 

phototoxicity and bleaching of fluorescent proteins can be a problem. However, due to its low 

light intensity, imaging of bacterial bioluminescence suffers from poor spatiotemporal 

resolution. Chapter II of this work therefore focuses on the improvement of bioluminescence 

emission for long-term studies on the single cell level. 

The following paragraphs provide the theoretical background for chapter I and II. 
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Flavins 

Flavins are a group of cellular redox cofactors that contain an isoalloxazine ring system. They 

include riboflavin (RF), also known as vitamin B2, and its biologically active derivatives flavin 

mononucleotide (FMN) and flavin adenine dinucleotide (FAD) (Figure 1). Whereas plants and 

most bacteria are able to synthesize riboflavin from GTP (guanosine-5'-triphosphate) and 

ribulose 5-phosphate [2] (p. 15), animals must take up riboflavin contained in their diet or 

produced by intestinal bacteria. Riboflavin is absorbed by carrier proteins [3] and 

phosphorylated by riboflavin kinase to FMN which can be further converted into FAD by FAD 

synthetase. 
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Figure 1: Structures of different flavins 

(a) Structure of isoalloxazine 

(b) Structures and interconversion of RF, FMN, and FAD 

FMN and FAD are found in a large number of flavoproteins to which they are usually non-

covalently bound. Due to their unique ability to mediate both one- and two-electron redox 

reactions, they are important for many cellular oxidation/reduction reactions. For instance, 

FMN and FAD are required for several one- and two-electron transfer processes in the citric 

acid cycle and respiratory chain [4] (pp. 786-788 and 808 f) and photosynthesis [4] (p. 893). 

In addition, flavins are involved in fatty acid oxidation [4] (pp. 916 f), halogenation reactions 

[5], and photorepair of DNA damage [6, 7]. Flavins also serve as the blue light-sensing 

component in different photoreceptors such as LOV and BLUF (sensors of blue light using 
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FAD) domains (see chapter I). Furthermore, FMN is required for generation of bacterial 

bioluminescence (see chapter II). 

The three different redox states of flavins (oxidized, one-electron reduced (semiquinone), and 

fully reduced (hydroquinone)) exist as a mixture of different protonation states in solution 

(Figure 2). At pH 7, the redox potential for the two-electron reduction of free flavins is about 

Em = -200 mV [2] (p. 6). However, the redox potential of protein-bound flavins can be 

substantially different, ranging from about -500 mV to +80 mV [2] (p. 230), [8], demonstrating 

the important role of the flavin environment. The redox potential is expected to decrease in a 

hydrophobic environment or with negative charges nearby, whereas positive charges are 

believed to increase it [2] (p. 6), [9]. In the excited state, the redox potential strongly increases 

to 1.9 V [10], favoring electron transfer reactions (see below). 

 

Figure 2: Redox and acid-base equilibria of flavins (FL) [2] (p. 6) 

The oxidized form of flavins strongly absorbs in the UV and blue region with absorption peaks 

at 445, 375, 265, and 220 nm [2] (p. 8) (Figure 3a). The extinction coefficient of riboflavin at 

445 nm in water is 12,500 M-1∙cm-1 [11]. Neutral, oxidized flavins in aqueous solution exhibit 

strong fluorescence with a maximum at ~520 nm (Figure 3b) whereas the protonated and 
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deprotonated forms are non-fluorescent [2] (p. 9). The fluorescence quantum yields are 0.27 

for riboflavin and FMN and 0.04 for FAD due to quenching by its adenosyl moiety [12]. Despite 

the strong fluorescence of flavins in solution, many flavin-binding proteins are only very weakly 

fluorescent or non-fluorescent. The reason for this are electron transfer and electron transfer 

followed by proton transfer reactions from nearby tryptophan and tyrosine residues to the 

excited flavin chromophore [13, 14], [15] (pp. 315 f). Nevertheless, some flavoproteins exhibit 

relatively bright fluorescence, including the LOV domains described in the following section.   

 

     

Figure 3: Absorption and fluorescence emission spectra of riboflavin 

(a) Absorption spectrum of riboflavin [16] 

(b) Fluorescence spectrum of riboflavin excited at 450 nm (adapted from [17]) 

 

Photoreceptor Proteins and LOV Domains 

To be able to sense and respond to light, living organisms possess several types of 

photoreceptor proteins. These proteins usually contain a chromophore that absorbs light in a 

certain spectral range, thereby triggering a conformational change in the protein which leads 

to a cellular response. Some examples for photoreceptors are rhodopsins in the vertebrate 

retina for visual perception and cryptochromes, phototropins, and phytochromes in plants that 

control for instance time of flowering, phototropism, and photomorphogenesis [18, 19]. 

Whereas phytochromes contain a bilin chromophore for the reception of red light, 

cryptochromes and phototropins both bind flavin chromophores and absorb light in the blue 

region. Phototropins contain LOV domains as their flavin-binding moiety which non-covalently 

bind oxidized FMN (in some cases FAD) [20]. LOV domains are not only found in plants, but 

also in fungi and bacteria, where they are coupled to different effector domains that mediate 

(a) (b) 
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the cellular response, such as histidin kinases and serine/threonine kinases. The LOV domain 

of the bacterial photoreceptor protein YtvA from Bacillus subtilis that is used in chapter I of 

this work contains a STAS (sulphate transporter anti-σ antagonist) effector domain that is 

involved in general stress response [20, 21]. 

The light-dependent signaling from the LOV domain to the effector domain functions in 

different ways. In YtvA, signal transmission is achieved by rotation of its two LOV domains 

relative to each other by 5° [22]. Signaling in the AsLOV2 domain of Avena sativa phototropin 

involves partial unfolding of an α-helix, whereas the LOV protein Vivid forms homodimers 

upon illumination [20, 23, 24]. Despite these entirely different effects, all LOV domains share 

the underlying mechanism of light sensing and undergo a photocycle that is shown in a 

simplified version in Figure 4a (see [25] for a more detailed description of the photocycle of 

YtvA-LOV). Upon absorption of blue light, the FMN that is first non-covalently bound to the 

LOV domain is excited into a triplet state. Subsequently, a covalent bond between the FMN 

and a cysteine residue of the protein is formed, possibly via a semiquinone form of the FMN. 

Upon bond formation, the plane of the FMN ring system is tilted by ~6° towards the cysteine 

residue [22], leading to the rearrangement of the surrounding residues of the binding pocket 

(Figure 4b). This triggers a small conformational change in the whole protein that mediates 

the downstream signaling. After several seconds to hours (𝜏 = 43 𝑚𝑖𝑛 at room temperature 

for YtvA-LOV [25]), the photoadduct decays back to the non-covalently bound state. 
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Figure 4: Photocycle of LOV domains 

(a) (from [10]) Absorption of blue light by FMN triggers the formation of a covalent bond to a cysteine residue of 

the protein. The photoadduct decays spontaneously into the non-covalently bound state. 

(b) Comparison of the FMN binding pocket of YtvA-LOV in the dark- (blue) and light-adapted state (yellow) 

(adapted from [22]) 

YtvA consists of an N-terminal segment (amino acids (aa) 1–24), a LOV domain (aa 25–126), 

a linker region (aa 127–147), and a C-terminal STAS domain (aa 148–258) [22]. The 

structures of YtvA-LOV (aa 20–147) in the dark- and light-adapted state and the recently 

solved structure of the full-length YtvA protein are shown in Figure 5. The isolated LOV 

domain with and without the N-terminal extension (aa 1–126 and aa 25–126) has a strong 

tendency to dimerize via a hydrophobic β-sheet [26]. However, dimerization of full-length YtvA 

in solution is prevented by its C-terminal domain [26]. The FMN is bound to the LOV domain 

by hydrogen bonds and hydrophobic interactions with multiple residues of the binding pocket. 

The affinity of YtvA-LOV for FMN is ~715 nM [27]. 
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Figure 5: Structure of the photoreceptor YtvA 

(a) Structures of the dark- (green) and light-adapted form (blue) of YtvA-LOV (PDB (Protein Data Bank) entry 2PR5 

and 2PR6 [28]) 

(b) Structure of full-length YtvA (PDB entry 2MWG [28]) 

The light-dependent properties of LOV domains make them interesting for two different types 

of applications. On the one hand, the light-dependent activation of an effector domain can be 

used for optogenetics. For example, fusion of a LOV domain with the tryptophan repressor 

protein TrpR from E. coli has been demonstrated to enable control of its DNA binding activity 

by light [29]. On the other hand, LOV domains can be used as fluorescent proteins. Since the 

FMN is only fluorescent in its oxidized, non-covalently bound form, the photocycle of different 

LOV domains has been abolished to make these proteins constitutively fluorescent. This was 

achieved by mutation of the photoactive cysteine residue into an alanine [30-33]. In addition, 

brighter variants have been generated by DNA shuffling, site-directed and random 

mutagenesis [31-33]. The resulting FMN-binding fluorescent proteins (FbFPs) include the 

YtvA-derived protein EcFbFP [30], iLOV and its more photostable variant phiLOV2.1 [31, 32] 

that were created from Arabidopsis phototropin, as well as CreiLOV from Chlamydomonas 

reinhardtii [33]. However, the brightness of FbFPs is still moderate, with extinction coefficients 

of ~14,000 M-1∙cm-1 and fluorescence quantum yields in the range of 0.20 to 0.51 [33, 34]. 

Nevertheless, FbFPs possess several advantages compared to GFP-related proteins. First, 

their small size (10–19 kDa [31, 35] compared to 27 kDa for EGFP) makes them less likely to 

influence the function of fusion proteins. In addition, FbFPs are superior for applications where 

(a) (b) 
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size is limiting, e.g. for packaging into viruses [31]. Second, FbFP fluorescence is oxygen-

independent, allowing imaging of anaerobic organisms [30]. Third, fluorescence of FbFPs is 

preserved at low pH down to pH ~4 [1] where GFP fluorescence is strongly quenched, making 

them suitable for studying acidic organelles such as lysosomes. 

The fluorescence of LOV domains can be excited and switched off by blue light. UV light has 

been reported to promote cleavage of the photoadduct, converting ~10 % of the proteins back 

into the fluorescent state [36]. Therefore, LOV domains are promising for the development of 

new reversibly switchable fluorescent proteins (RSFPs) for superresolution microscopy (see 

chapter I). First superresolution imaging with a LOV domain has been demonstrated with wild-

type YtvA expressed in E. coli using photoactivated localization microscopy (PALM) [36]. 

 

Bioluminescence 

Bioluminescence is a process in living cells that converts chemical energy into light. It is found 

in certain bacteria, fungi, and animals such as glowworms and fireflies. The functions of 

bioluminescence include attraction of mates, illumination of prey, camouflage by 

counterillumination, and defense against predators [37]. There are different ways how 

bioluminescence light is generated. They all require enzymes referred to as luciferases and 

their corresponding substrates, luciferins. The luciferase catalyzes the conversion of the 

luciferin into a product in an electronically excited state that emits a photon upon return to its 

ground state, thus producing bioluminescence light. Several luciferins are found in nature that 

are structurally completely distinct, indicating that the phenomenon of bioluminescence has 

evolved many times independently during evolution. The energy of a photon in the visible 

range is 

𝐸 = ℎ ∙ 𝑐𝜆 ≈ 6.6 ∙ 10−34𝐽𝑠 ∙ 3.0 ∙ 108𝑚𝑠−1500 𝑛𝑚 ≈ 4 ∙ 10−19𝐽 
or 240 kJ∙mol-1, with ℎ denoting Planck's constant, 𝑐 the speed of light, and 𝜆 the wavelength 

of the light. This greatly exceeds the free energy of hydrolysis of ATP (adenosine-5'-

triphosphate) which is ~50 kJ∙mol-1 under cellular conditions [4] (p. 567). Since the energy has 

to be released in a single step, a highly exergonic reaction is required for generation of 

bioluminescence light. This is achieved by reaction of the luciferin with molecular oxygen for 

all bioluminescence reactions known so far. 

As the excited state of the product of the luciferase reaction is identical to the S1 state from 

which fluorescence usually occurs, the bioluminescence emission spectrum is expected to 
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match the fluorescence spectrum of the product. However, this is rarely the case due to 

different reasons. First, the spectrum is altered by binding to the luciferase because the energy 

of the excited state depends on the environment. The second reason is that transfer of the 

excited state energy to a second molecule can occur. This can either take place by absorption 

of the bioluminescence light and re-emission of a photon, or in a radiationless process by 

electron exchange and Förster resonance energy transfer due to dipole-dipole coupling [38]. 

Several organisms use resonance energy transfer to modulate their bioluminescence 

emission spectrum. For example, the jellyfish Aequorea victoria uses GFP as an acceptor to 

shift the blue emission from its luciferin coelenterazine to the green. The main function for the 

energy transfer to an acceptor, however, is assumed to be an increase the overall 

bioluminescence quantum efficiency since the fluorescence quantum yield of GFP is much 

higher than for coelenterazine [39]. 

Most luciferins are only present in organisms expressing the corresponding luciferase. The 

only exception is the bacterial luciferin FMNH2, the reduced form of FMN that is ubiquitous in 

all cells. Bacterial bioluminescence is found in several species from the genera 

Photobacterium, Photorhabdus, and Vibrio. Bioluminescent species of Photobacterium and 

Vibrio were isolated from marine habitats whereas the soil bacterium Photorhabdus lives 

symbiotically with entomopathogenic nematodes. All known bacterial luciferases catalyze the 

same reaction to produce bioluminescence light. In addition to FMNH2, they bind a long chain 

fatty aldehyde (≥8 carbon atoms) and oxygen. The fatty aldehyde is converted into a fatty acid 

whereas FMNH2 is oxidized to FMN, thereby emitting blue-green light with λmax ~490 nm 

(Figure 6). The quantum yield of this reaction is reported to be approximately 10–16 % [40-

42]. 
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Figure 6: Reaction of bacterial bioluminescence 

The mechanism of the bacterial bioluminescence reaction is shown in Figure 7. After binding 

of FMNH- to the luciferase, a C4a-peroxyflavin is formed by reaction with oxygen. This 
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intermediate reacts with the fatty aldehyde to form a flavin-C4a-peroxyhemiacetal. Decay of 

this adduct results in formation of a carboxylic acid and the luminescence emitter C4a-

hydroxyflavin in an excited state. After emission of a photon, the C4a-hydroxyflavin is 

dehydrated to FMN and both carboxylic acid and FMN are released from the protein [42]. 

 

Figure 7: Catalytic mechanism of bacterial luciferase reaction (from [42]) 

Bacterial luciferase is an αβ heterodimer. The α subunit contains the catalytic center whereas 

the β subunit serves to stabilize the α subunit, which alone has only very low activity ([43] and 

references therein). In addition to the luciferase, several other enzymes are required to 

regenerate the substrates FMNH2 and fatty aldehyde. Reduction of FMN to FMNH2 is 

catalyzed by an NAD(P)H (nicotinamide adenine dinucleotide (phosphate))-dependent FMN 

reductase. The fatty aldehyde is regenerated in an ATP- and NADPH-dependent process 

catalyzed by the fatty acid reductase complex that consists of a fatty acid reductase, a fatty 

acid transferase, and a fatty acid synthetase. All proteins that are required for generation of 

bacterial bioluminescence are coded in the luxCDABE operon. The luxA and luxB genes 

encode the luciferase α and β subunits, whereas luxC, D, and E encode the fatty acid 

reductase, transferase, and synthetase, respectively. As FMN reductases are also present in 

non-luminescent bacteria such as E. coli, expression of an additional FMN reductase is not 

necessary for generation of a bioluminescence output. Additional genes in naturally occurring 



Introduction 

13 
 

lux operons serve to regulate bioluminescence. Since generation of bioluminescence light is 

an energetically demanding process, bacteria only emit bioluminescence light at high cell 

densities when the resulting signal is high enough to have an impact on their environment. To 

regulate the emission, bioluminescent bacteria synthesize a cell-permeable autoinducer. At 

high cell densities, the concentration of the autoinducer increases, leading to enhanced 

expression of the luxCDABE genes and thus to high levels of bioluminescence ([44], [38] and 

references therein). 

 

Imaging 

Superresolution Imaging 

Fluorescence microscopy is an important technique for the observation of living cells. It allows 

imaging of specific proteins with high contrast and sensitivity. Since antibodies and many 

organic dyes are cell-impermeable, labeling of a protein of interest in living cells is most often 

achieved by genetically fusing it to a fluorescent protein. 

The resolution of conventional fluorescence microscopy is limited by diffraction to 

𝑑 = 𝜆2𝑛 · sin (𝛼) 

in the focal plane where 𝜆 denotes the wavelength of the light, 𝑛 the refractive index of the 

medium between objective lens and coverslip, and 𝛼 the semi-aperture angle of the objective 

lens. Therefore, the best resolution that can be achieved with light in the visible range is 

~200 nm. This is not sufficient for many applications since various cellular structures are 

considerably smaller. Several methods have been developed that overcome the diffraction 

limit and allow imaging at significantly higher resolution. The first concept for far-field 

superresolution imaging is STED microscopy that was described in 1994 [45]. All techniques 

for superresolution imaging temporally separate the emission of molecules lying closely 

together by switching a subset of the fluorophores into a dark (i.e., non-fluorescent) state. 

Hence, molecules lying closer together than the diffraction limit can be resolved by imaging 

them sequentially. The different techniques for superresolution imaging can be divided into 

two major groups, scanning techniques including STED and RESOLFT microscopy and 

stochastic methods such as PALM (photoactivated localization microscopy) and STORM 

(stochastic optical reconstruction microscopy). 
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The stochastic approaches use photoactivatable dyes that are randomly switched on 

throughout the sample [46-48]. By using low light intensities for photoactivation, the distance 

between emitting fluorophores can be kept above the diffraction limit so that they can be easily 

separated. Since the individual fluorophores typically emit several hundreds to thousands of 

photons per switching cycle, depending on the combination of dye and imaging buffer [49], 

they can be localized with a precision greater than the diffraction limit. The achieved 

localization precision is approximately proportional to 
1√𝑁 , with 𝑁 being the number of recorded 

photons [50]. After spontaneous off-switching or photobleaching (i.e., the irreversible 

destruction of the fluorophore by light), the next subset of fluorophores is recorded. 

The second approach uses selective deactivation of fluorescence from the outer regions of a 

diffraction-limited excited area. An image is obtained by scanning over the region of interest. 

Reduction of the spot size beyond the diffraction limit can be achieved with a second, typically 

donut-shaped laser beam, which brings the fluorophores in the outer regions of the spot back 

to a dark state (Figure 8b). STED microscopy uses stimulated emission to drive the transition 

from the excited state S1 of the fluorophore (the fluorescent on-state) into its ground state S0 

(the fluorescent off-state) (Figure 8a), thereby preventing emission of fluorescence in this 

region [45, 51]. Stimulated emission has to occur before spontaneous emission of 

fluorescence. Since the lifetime of S1 is usually only a few nanoseconds, high STED intensities 

are required to effectively suppress the fluorescence. The resolution of a STED microscope 

is given by 

𝑑 = 𝜆2𝑛 · sin (𝛼)√1 + 𝐼𝐼𝑆
 

with 𝐼 denoting the intensity of the STED beam and 𝐼𝑆 = (𝜎𝜏)−1 the intensity at which the 

population of the excited state has been depleted to 
1𝑒 [52, 53]. 𝐼𝑆 depends on the cross-section 𝜎 for stimulated emission and the lifetime 𝜏 of S1. By increasing the STED power so that        𝐼 ≫ 𝐼𝑆, 𝑑 → 0, i.e. there is no principal limit for resolution down to the size of individual 

fluorophores or even below. The best resolution that has been achieved so far is 2.4 nm in 

non-biological [54] and 20 nm in biological samples [55]. A different approach to obtain a high 𝐼𝐼𝑆 with lower light intensities is to decrease 𝐼𝑆. Since 𝐼𝑆 ∝ 𝜏−1, this can be achieved by using a 

fluorescent state with a longer lifetime. This is the basis for RESOLFT microscopy with RSFPs 

which can be switched between a fluorescent and a non-fluorescent conformation by light 



Introduction 

15 
 

[56]. Since the lifetime of these conformations is ≫ 1 µ𝑠, the intensity required for off-switching 

of fluorescence in RESOLFT is several orders of magnitude lower than for STED microscopy. 

 

 

 

Figure 8: Principles of STED microscopy 

(a) (from [57]) Jablonski diagram of a fluorophore. After excitation (green) and fast internal conversion into the 

excited state S1, the molecule can return into the ground state by emission of fluorescence (orange), stimulated 

emission (red), or non-radiative processes (not shown). 

(b) (from [58]) Size of the excited spot before (left) and after (right) application of a superimposed donut-shaped 

STED beam (middle) 

 

Bioluminescence Imaging 

Since luciferases, like fluorescent proteins, can be expressed in different cell types, 

bioluminescence can be used for live cell imaging. Bioluminescence imaging has several 

advantages but also some drawbacks compared to fluorescence microscopy. The major 

disadvantage is its very low brightness, often requiring long exposure times. Furthermore, 

most of the commonly used luciferases exhibit several drawbacks resulting from the need to 

add the luciferin. These substances are often toxic, poorly soluble and cell-permeable, and 

must be applied repeatedly to maintain the bioluminescence reaction [59, 60]. Moreover, 

coelenterazine, the luciferin of Renilla and Gaussia luciferase, is oxidized non-enzymatically 

in solution, thereby producing bioluminescence background. Bacterial luciferase is the only 

exception that does not require addition of an exogenous luciferin since it uses reduced FMN 

as luciferin which is abundant in all cells. This feature enables long-term measurements 

(a) (b) 
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without the need for repeated luciferin addition. Its brightness, however, is several orders of 

magnitude lower compared to other luciferases [61]. 

On the other hand, bioluminescence imaging offers several benefits. No excitation light source 

and filters are required, simplifying the optical system. In addition, no phototoxicity and 

bleaching occur, allowing imaging of cells over days or even weeks. The bioluminescence 

background of living tissue is extremely low [59, 62] whereas autofluorescence from cellular 

molecules such as flavins can lead to significant background in fluorescence measurements. 

Therefore, detection of bioluminescence is often more sensitive than fluorescence despite its 

low signal [59, 61]. Another feature of bioluminescence is its dependence on metabolic 

energy. Therefore, only live and healthy cells are imaged, preventing wrong conclusions from 

the observation of severely damaged or dead cells. 

Different applications of bioluminescence imaging have been demonstrated. For example, 

bioluminescence has been used to study light-sensitive tissues such as the retina [63] and 

circadian gene expression [64, 65]. Furthermore, it was applied to observe bacterial infections 

in fish [66] and growth of tumors in mice [60, 67]. 

Despite the low technical complexity of a bioluminescence microscope, several issues need 

to be taken into account for imaging. Due to the low light levels of bioluminescence, as much 

light from the sample as possible must be detected. Therefore, high numerical objective 

lenses should be used and the number of optical elements in the light path must be kept as 

low as possible. In addition, all optical elements should be chosen for optimal performance in 

the spectral range of bioluminescence light. By using low magnification lenses, the emitted 

light is distributed over fewer pixels on the detector, resulting in an increased signal-to-noise 

ratio (SNR), but at the expense of spatial resolution. Furthermore, the detection efficiency of 

the camera should be as high as possible. Conventional CCD cameras, Intensified CCDs 

(ICCDs) and Electron-Multiplying CCDs (EMCCDs) are most often used for bioluminescence 

imaging due to their high sensitivity [59]. On the other hand, the background signal has to be 

kept low to achieve an optimal SNR. Consequently, stray light from the environment must be 

eliminated. The second source of background is the camera itself. There are two different 

sources of camera noise: readout noise which is produced during the readout process, and 

dark noise due to fluctuations of dark current that increases with exposure time. Dark noise 

can be reduced by cooling the camera to -90 or -100 °C whereas the effect of readout noise 

can be reduced by the usage of an EMCCD instead of a normal CCD camera and by slower 

readout and longer exposure times [59]. 
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Although a setup for bioluminescence imaging can be self-built, a microscope particularly 

designed for long-term bioluminescence measurements has become commercially available 

[68]. In addition to shielding sample and optics from external light, it allows regulation of 

temperature, humidity, and gas flow to keep the cultured cells under optimal conditions for 

extended observation times [68]. 

 

Objective of this Work 

RESOLFT microscopy with reversibly switchable fluorescent proteins enables sub-diffraction 

imaging of living cells with relatively low light intensities. It requires proteins that are bright, 

can undergo multiple switching cycles, and exhibit fast switching to enhance the speed of 

imaging. The RSFPs existing so far have been engineered from GFP and related proteins 

which are not ideal for all purposes due to their relatively large size, oxygen-dependence, and 

pH sensitivity. Therefore, the development of new RSFPs with different properties is expected 

to extend the scope of application of RESOLFT microscopy. The LOV domain from the 

bacterial photoreceptor YtvA has been shown to be useful for PALM [36], but its low brightness 

and low extent of on-switching prevent its application for RESOLFT microscopy. Therefore, 

the first objective of this thesis was the improvement of switching and brightness of YtvA-LOV 

for other types of superresolution imaging (see chapter I). 

Microscopy can be performed at even lower light levels using bioluminescence which does 

not require excitation light. However, its low signal and the need for exogenous luciferin 

addition limit its use for imaging. Hence, brighter luciferases with autonomous 

bioluminescence are desirable. The second objective of this work was the development of a 

brighter version of bacterial luciferase that does not require an exogenous luciferin (see 

chapter II). 
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Preface 

The aim of this study was the generation of a new reversibly switchable fluorescent protein 

(RSFP) from the LOV domain of the photoreceptor protein YtvA from Bacillus subtilis. The 

work was supervised by Prof. Dr. Stefan Hell. Wild-type YtvA-LOV in pET28a was provided 

by Prof. Dr. Wolfgang Gärtner (Max Planck Institute for Chemical Energy Conversion, 

Mülheim). The STED/RESOLFT microscope was built and maintained by Dr. Sven Sidenstein 

and Dr. Johann Danzl. Dr. Martin Andresen maintained and aided with the screening systems. 

STED and RESOLFT imaging was performed by me and Dr. Sven Sidenstein. Absorption and 

emission spectra were taken by Kurt Müller. Mutagenesis, screening, cloning, sample 

preparation, and all other experiments described were performed by me. I conceptualized and 

wrote this manuscript. 
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Abstract 

The reversibly switchable fluorescent proteins (RSFPs) commonly used for RESOLFT 

microscopy are all developed from fluorescent proteins of the GFP superfamily [69-75]. 

These proteins are bright and photostable, but exhibit several drawbacks such as 

relatively large size, oxygen-dependence, sensitivity to low pH, and limited switching 

speed. Therefore, RSFPs from other origins with improved properties are needed. Here, 

we report the development of two RSFPs based on the LOV domain of the 

photoreceptor protein YtvA from Bacillus subtilis. The first variant, rsLOV1, can be 

used for RESOLFT microscopy, whereas rsLOV2 proved useful for STED imaging of 

living cells with a resolution of down to 40–50 nm. In addition to their smaller size 

compared to GFP-related proteins (17 kDa instead of 27 kDa), rsLOV1 and rsLOV2 

exhibit ultrafast switching kinetics and switch on and off 3 times faster than rsEGFP2, 

the fastest switching RSFP published so far. Therefore, LOV domain-based RSFPs may 

prove useful for applications where the switching speed of GFP-based proteins is 

limiting. 

 

Introduction 

The resolution of conventional fluorescence microscopes is limited by diffraction to 
𝜆2∙𝑁𝐴, with 𝜆 denoting the wavelength and 𝑁𝐴 the numerical aperture of the objective lens. Therefore, 

structures residing closer together than ~200 nm cannot be discerned using light in the visible 

range. However, several methods breaking the diffraction limit have been developed, 

including STED and RESOLFT microscopy with reversibly switchable fluorescent proteins 

(RSFPs), that allow imaging of living cells with enhanced resolution. STED microscopy uses 

stimulated emission to silence fluorophores located in the outer regions of a diffraction-limited 

excitation spot, thereby decreasing the area from which fluorescence is emitted. Since 
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stimulated emission has to occur before spontaneous emission of fluorescence, relatively high 

STED intensities are required as the lifetime of the excited state is typically in the range of 

only a few nanoseconds. The light intensity required to switch molecules into a dark state can 

be decreased if a long-lived fluorescent on-state and non-fluorescent off-state are used. This 

is the basis for RESOLFT microscopy that uses the switching of fluorescent proteins between 

two different conformations, one of which is non-fluorescent [56]. 

The speed of imaging in RESOLFT microscopy is limited by the switching kinetics of the 

RSFP. This can be a problem for the observation of quickly moving structures in living cells. 

For this purpose, GFP-related RSFPs have been developed that are optimized for fast 

switching [73, 74], achieving pixel dwell times during imaging of down to 75 µs [73, 76]. All 

commonly used RSFPs are derived from GFP-related proteins and share the same β barrel 

structure with a tripeptide forming the chromophore at the center. Therefore, they share 

several features that limit their applicability as fluorescent reporter proteins. First, their 

relatively large size of 27 kDa can affect the function of fusion proteins and therefore lead to 

the observation of artifacts. Second, GFP fluorescence is strongly quenched at low pH, 

impeding imaging of acidic organelles such as lysosomes. Third, GFP fluorescence is 

dependent on oxygen for chromophore maturation and can therefore not be used under 

anaerobic conditions. FMN (flavin mononucleotide)-binding fluorescent proteins (FbFPs) 

overcome all these limitations. They are small (12–19 kDa [35]) and their fluorescence is 

oxygen-independent and less sensitive to low pH [1, 30]. FbFPs were engineered from 

different LOV (light-oxygen-voltage sensing) domains [30-33] that non-covalently bind FMN, 

a cofactor that is abundant in all cell types. Upon absorption of blue light, LOV domains 

undergo a photocycle that leads to formation of a covalent bond between the FMN and a 

cysteine residue of the protein, thereby switching it into a non-fluorescent state. After seconds 

to hours, the photoadduct decays back into the non-covalently bound, fluorescent state. To 

make LOV domains constitutively fluorescent with emission in the green range, their 

photoactive cysteine residue was mutated into alanine. In addition, their brightness and 

photostability were further improved by mutagenesis [31, 32]. On the other hand, their inherent 

photoswitching makes LOV domains interesting for superresolution microscopy. This has 

been demonstrated for the first time with the LOV domain from the photoreceptor protein YtvA 

from Bacillus subtilis in PALM imaging [36]. In this study, the wild-type LOV domain was used 

that has a relatively weak fluorescence and switches back into the fluorescent state under UV 

light to less than 10 % [36]. This impedes its use for RESOLFT microscopy where multiple 

switching cycles have to be performed. We aimed at improving switching and brightness of 
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YtvA-LOV by site-directed and error-prone mutagenesis to enable RESOLFT imaging and 

demonstrate that the effective brightness could be increased ~10-fold compared to the wild-

type protein. In addition, we generated another variant with an even ~2-fold further increased 

fluorescence that was used for STED microscopy. 

 

Results 

To improve the brightness of YtvA-LOV upon 488 nm excitation after repeated on- and off-

switching with 405 and 488 nm light, respectively, multiple rounds of site-directed and error-

prone mutagenesis were performed. Colonies of E. coli DH5α cells expressing YtvA-LOV 

mutants from the vector pGEX-6P-1 were grown at 37 °C and screened for improved 

brightness after repeated switching with an automated microscope. Multiple mutations were 

identified that contributed to enhanced brightness by improved on-switching and possibly also 

by better expression and folding at 37 °C. Two final variants, named rsLOV1 and rsLOV2 

(reversibly switchable LOV1 and 2), were obtained that contain the mutations indicated in 

Figure 9. rsLOV1 exhibits similar brightness as the wild-type LOV domain (LOV wt) in the first 

switching cycle, measured as the amplitude of off-switching. However, upon irradiation with 

UV light (405 nm), 57 % of the initial brightness is recovered, compared to ~5 % for LOV wt 

under our screening conditions (Figure 10). This corresponds to a ~10-fold increase in 

reversibly switchable fluorescence required for RESOLFT imaging. The switching background 

of rsLOV1 is less than 3 %, indicating an almost complete off-switching with 488 nm light. 

rsLOV2 exhibits a brightness ~2 times higher than LOV wt in the first cycle and shows an 

even better on-switching to 78 % of the initial value, increasing the overall effective brightness 

~30-fold compared to the wild-type protein. However, the switching background of rsLOV2 

increases after repeated switching (Figure 10), an undesirable feature for RESOLFT 

applications. 
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LOV wt      MASFQSFGIPGQLEVIKKALDHVRVGVVITDPALEDNPIVYVNQGFVQMTGYETEEILGK 

rsLOV1      MTRFQSFGISGQLEVIKNALDHLRVGVVITDPAREDNPIVYVNQGFVQMTGYEAEEILGK 

rsLOV2      MTRFQSFGISGQLEVIKNALDHLRVGVVITDPAREDNPVVYVNNGFVQMTGYEAEEILGK 

            *: ****** *******:****:********** ****:****:*********:****** 

 

LOV wt      NCRFLQGKHTDPAEVDNIRTALQNKEPVTVQIQNYKKDGTMFWNELNIDPMEIEDKTYFV 

rsLOV1      NCRILQGEHTDPAEVDIIRTALQNKEPVTVQILNYRKDGTMFWNLLHIVPIVIEGKTYFV 

rsLOV2      SCRILQGEHTDPAEVDIIRTALQNKEPVTVQILNYRKDGTMFWNLLHIVPIVIEGKTYFV 

            .**:***:******** *************** **:******** *.* *: ** ***** 

 

LOV wt      GIQNDITKQKEYEKLLEDSLTEITAL 

rsLOV1      GNQNDITKQKEYEKLLERPHRG---- 

rsLOV2      GNQNDITKQKEYEKLLERPHRG---- 

            * ***************          

Figure 9: Sequence alignment of YtvA-LOV wt (aa 1–146), rsLOV1, and rsLOV2 

rsLOV1 and rsLOV2 consist of the first 137 amino acids of YtvA with the indicated mutations and have a deviating 

C-terminal extension. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 10: Switching of YtvA-LOV wt, rsLOV1, and rsLOV2 under low-power screening conditions 

Purified proteins in solution were switched off with 488 nm light (~2 W∙cm-2) for 2 s and switched on with 405 nm 

light (~5 W∙cm-2) for 0.5 s. For better clarity, only off-switching is shown. The fluorescence signal is normalized to 

the initial value. 
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To determine the photostability of rsLOV1 and rsLOV2 upon repeated switching, we 

measured 500 switching cycles under the low power conditions used for screening. Screening 

was performed under low-power conditions (few W·cm-2) because of the poor signal from 

E. coli colonies. rsLOV1 retains 72 % of its brightness after 500 switching cycles whereas 

rsLOV2 is bleached to 27 % of its initial value (Figure 11). Under high-power excitation 

comparable to RESOLFT imaging conditions, however, rsLOV1 and rsLOV2 lose 50 % of their 

brightness within the first 10 and 3 switching cycles, respectively. This loss of signal is 

reversible and is almost fully reconstituted after a break of 1 min (Figure 12), possibly 

indicating the transition into a long-lived triplet state. Similar reversible photobleaching has 

also been described for the LOV domain-based fluorescent protein iLOV [31] where the 

photocycle is abolished. 

  

Figure 11: Brightness of rsLOV1 and rsLOV2 after 500 switching cycles under low power conditions. 

Purified proteins in solution were switched off with 488 nm light for 2 s (~2 W∙cm-2) and switched on with 405 nm 

light (~5 W∙cm-2) for 0.5 s 500 times. Off-switching curves were fitted with a single exponential decay function. The 

normalized amplitudes of the fits are displayed. The first switching cycle was omitted. 
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Figure 12: Fast “bleaching“ of rsLOV1 and rsLOV2 under high-power conditions is reversible. 

40 switching cycles of rsLOV1 and rsLOV2 were recorded under high-power conditions (~100 kW∙cm-2 for 

405 nm and ~300 kW∙cm-2 for 488 nm) with a break of 1 min after the first 20 switching cycles. Normalized off-

switching amplitudes fitted with a single exponential function are shown. Measurements were performed in E. coli 

SURE colonies to rule out diffusional effects. 

We compared the switching kinetics of rsLOV1 and rsLOV2 as well as the wild-type protein 

LOV wt to rsEGFP2, the fastest switching RSFP published so far. On- and off-switching were 

performed at 405 and 488 nm, respectively, with the same powers for all proteins. LOV wt, 

rsLOV1, and rsLOV2 switch on ~3 times faster than rsEGFP2 (Figure 13). The on-switching 

time constant of rsLOV1 and rsLOV2 is not significantly affected by mutagenesis. LOV wt 

switches off 5 times faster than rsEGFP2. Off-switching in rsLOV1 and rsLOV2 is slower, but 

still faster than rsEGFP2 by a factor of 3 and 1.4, respectively, making them interesting for 

fast RESOLFT imaging. 

   

Figure 13: Time constants of on- and off-switching of YtvA-LOV wt, rsLOV1, rsLOV2, and rsEGFP2 

Measurements were performed with purified proteins under high-power conditions (~100 kW∙cm-2 for 405 nm 

and ~300 kW∙cm-2 for 488 nm). On- and off-switching curves were fitted with a single exponential function. Error 

bars represent standard deviation of the mean. 
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We measured spectra of purified GST-tagged LOV wt, rsLOV1, and rsLOV2 (Figure 14). The 

spectra of rsLOV1 and rsLOV2 are similar to the wild-type protein with absorption and 

fluorescence emission maxima of ~450 and 498 nm, respectively. Extinction coefficients ε 

were calculated from the absorption at 450 nm (Table 1), assuming that the proteins are fully 

saturated with FMN. Therefore, the given values represent only a lower limit for ε. Quantum 

yields were determined using FMN as a reference (ɸfl = 0.246 [34]). Our data indicate that the 

extinction coefficients of rsLOV1 and rsLOV2 are not significantly altered by mutagenesis. In 

addition, the quantum yield of rsLOV1 is identical to that of LOV wt, demonstrating that its 

improved brightness under imaging conditions is solely due to improved on-switching. rsLOV2 

exhibits a quantum yield almost 2 times higher than LOV wt, consistent with the amplitudes 

measured during the first cycle of off-switching (data not shown). These data demonstrate 

that the brightness of rsLOV1 and rsLOV2 is still low compared to EGFP (6 % and 11 % of 

EGFP for rsLOV1 and rsLOV2, respectively, as calculated from the product of extinction 

coefficient and quantum yield, assuming ε = 55,000 M-1·cm-1 and ɸfl = 0.60 for EGFP [77, 78]). 

 

   

Figure 14: Absorption and fluorescence emission spectra of FMN, LOV wt, rsLOV1, and rsLOV2 

(a) Normalized absorption spectra of FMN, LOV wt, rsLOV1, and rsLOV2 

(b) Normalized fluorescence emission spectra of FMN, LOV wt, rsLOV1, and rsLOV2 excited at 440 nm 

 

 ε450 nm [M-1·cm-1] ɸfl 

LOV wt 12,700 0.17 

rsLOV1 10,900 0.17 

rsLOV2 11,400 0.31 

Table 1: Extinction coefficients at 450 nm and fluorescence quantum yields of LOV wt, rsLOV1, and 

rsLOV2 

(a) (b) 
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Wild-type YtvA-LOV (aa 25–126) has been reported to dimerize, whereas dimerization is 

prevented in full-length YtvA [26]. We observed that GST-tagged YtvA-LOV (aa 1–146), 

rsLOV1, and rsLOV2 migrate mostly as monomers on semi-native gels (Figure 15). To test 

the behavior of rsLOV2 in mammalian cells, we expressed a fusion protein of rsLOV2 and 

histone H2B that requires a monomeric tag for proper localization (Figure 16). We observed 

that localization of rsLOV2-H2B is not impaired, indicating that rsLOV2 is predominantly 

monomeric under cellular conditions. rsLOV2 was also used for labeling of other cellular 

structures (Figure 16), demonstrating its use as a protein tag in living cells. Its brightness, 

however, is relatively low. Therefore, autofluorescence from lysosomes around the nucleus is 

clearly visible in some cells. 

 

Figure 15: SDS- and seminative gel of GST-tagged rsLOV1, rsLOV2, and LOV wt 

Proteins were purified from E. coli SURE cells. 15 µg of each protein was applied to a denaturing gel containing 

0.1 % SDS (left) or a seminative gel (right). Gels were stained with Coomassie Brilliant Blue. 
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lifeact-rsLOV2 vimentin-rsLOV2 rsLOV2-MAP2 

   

LAMP1-rsLOV2 H2B-rsLOV2 rsLOV2-ER 

   

Figure 16: Expression of different fusion proteins of rsLOV2 in living cells 

Lifeact-rsLOV2, rsLOV2-MAP2, LAMP1-rsLOV2, histone H2B-rsLOV2, and rsLOV2-KDEL for targeting into the 

endoplasmic reticulum were expressed in CV-1 cells. Vimentin-rsLOV2 was expressed in HeLa cells. Images of 

living cells were taken with a confocal Leica SP8 microscope with simultaneous excitation at 405 and 488 nm light. 

Scale bar, 10 µm 

The fluorescence of LOV domains from different origin has been found to be insensitive to 

changes in pH over a broad range [1]. This makes LOV domains superior for imaging at low 

pH where GFP fluorescence is strongly quenched. To test if this feature is preserved in 

rsLOV1 and rsLOV2, CV-1 cells expressing lifeact-EGFP, lifeact-rsLOV1, and lifeact-rsLOV2 

were permeabilized with nigericin and imaged in citric acid/phosphate buffer at pH 7 and 4 

(Figure 17). As expected, EGFP fluorescence is strongly quenched at low pH whereas 

fluorescence from rsLOV1 and rsLOV2 is largely preserved at pH 4. 
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EGFP pH 7 rsLOV1 pH 7 rsLOV2 pH 7 

   

EGFP pH 4 rsLOV1 pH 4 rsLOV2 pH 4 

   

Figure 17: Fluorescence of lifeact-EGFP, -rsLOV1, and -rsLOV2 at pH 7 and 4. 

CV-1 cells expressing lifeact-EGFP, lifeact-rsLOV1, and lifeact-rsLOV2 were permeabilized with 1 µM nigericin in 

citric acid/phosphate buffer of pH 7 and 4. Images were taken with a confocal Leica SP8 microscope. Scale bar, 

10 µm 

We used rsLOV1 for RESOLFT imaging of actin in living CV-1 cells (Figure 18). For each 

pixel, the proteins were switched on with 405 nm light for 10 µs, switched off with a 488 nm 

donut for 200 µs, and read out with a confocal 488 nm beam for 5 µs. To gain sufficient signal, 

20 scans per line were accumulated. A resolution of ~60–65 nm was achieved. The resolution 

seems to be limited by the low brightness of rsLOV1, as thinner and therefore darker filaments 

do not provide sufficient signal above background. Interestingly, the second protein rsLOV2 

proved to be useful for STED imaging (Figure 19). Apart from the reversible photobleaching, 

the protein seems to be very photostable even at high STED intensities. We observed that 

bleaching is reduced when omitting the 405 nm on-switching pulse and that imaging can be 

performed with 488 nm excitation and simultaneous 618 nm STED only. Lines were scanned 

3 times with a pixel dwell time of 200 µs. A resolution of down to 40–50 nm was achieved. 
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Figure 18: Confocal (left) and RESOLFT image (right) of lifeact-rsLOV1 

Living CV-1 cells expressing lifeact-rsLOV1 were imaged with the following pulse sequence: 10 µs activation 

(405 nm confocal), 1 µs break, 200 µs deactivation (488 nm donut), 1 µs break, 5 µs readout (488 nm confocal). 

The signal from 20 scans per line was accumulated. Images represent raw data. Line Profiles were fitted with a 

Lorentzian Function. FWHM values of (a) and (b) are 58 nm and 66 nm, respectively. Scale bar, 1 µm 

 

 

Figure 19: Confocal (left) and STED image (right) of lifeact-rsLOV2 

Living CV-1 cells expressing lifeact-rsLOV2 were imaged with 488 nm excitation (pulsed) and 618 nm STED 

(pulsed) with a pixel dwell time of 200 µs. The signal from 3 scans per line was accumulated. Images represent 

raw data. Line Profiles were fitted with a Lorentzian Function. FWHM values of (a) and (b) are 41 nm and 48 nm, 

respectively. Scale bar, 1 µm 
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Discussion 

The potential of wild-type YtvA-LOV for PALM imaging has already been outlined [36], but its 

low brightness in combination with inefficient on-switching hinders its use for RESOLFT 

microscopy. In this work, it was demonstrated that the extent of on-switching of YtvA-LOV by 

405 nm light can be improved 10-fold by mutagenesis, resulting in the new protein rsLOV1 

that could be used for RESOLFT imaging of living cells with a resolution of down to ~60–

65 nm. An interesting feature of rsLOV1 is its ultrafast on- and off-switching, pointing out its 

potential for faster RESOLFT imaging than it has been achieved with GFP-related RSFPs so 

far. Yet, the low number of photons per switching cycle of rsLOV1 required repeated scanning 

of the sample to gain sufficient signal, thereby reducing the speed of imaging. Hence, further 

improvements in the brightness of rsLOV1 would be beneficial. This could be achieved either 

by further changes in the protein sequence or by exchanging its cofactor FMN against flavins 

with higher extinction coefficients and quantum yields, as it has been done in vitro [12, 79]. 

However, the modified cofactor would need to be incorporated into the protein in vivo and is 

likely to influence the switching behavior. Therefore, further mutagenesis and screening in the 

presence of the exchanged cofactor might be necessary for improving the performance 

further. 

A second variant, rsLOV2, is brighter than rsLOV1, but displays a significant switching 

background that hinders its application for RESOLFT imaging. It was demonstrated, however, 

that rsLOV2 can be used for STED imaging with a resolution of down to ~40–50 nm despite 

its faster apparent photobleaching under low-power screening conditions. Interestingly, 

rsLOV2 exhibited very little photobleaching even at high STED intensities at 618 nm (38 mW 

in the back aperture) when excited at 488 nm. Yet, previous or simultaneous irradiation with 

405 nm led to a fast decrease in fluorescence even during confocal imaging. Surprisingly, 

STED imaging with 488 nm excitation without previous on-switching turned out to be superior 

for imaging. Possible explanations for this observation are either on-switching by two-photon 

absorption from the STED beam or imaging of the switching background only with less protein 

accumulating in long-lived dark states than by excitation with 405 nm. By specific optimization 

of FbFPs for STED, it might be possible to generate even brighter and more photostable 

proteins that would supplement the toolbox of fluorescent proteins for superresolution imaging 

of living cells. 
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Materials and Methods 

Mutagenesis and Screening 

The LOV domain of YtvA including the C-terminal linker (aa 1–146) was cloned into the vector pGEX-

6P-1 between the BamHI and SalI restriction sites. Error-prone PCRs were performed with the primers 

TTAGTCGGATCCATGGCTAGTTTTCAATCA and TTAGTCGTCGACTTAAAGTGCAGTAATTTC with 

25 PCR cycles and MnCl2 concentrations ranging from 100 to 300 µM. Screening was performed with 

the expression vector pGEX-6P-1 in E. coli DH5α cells. Cells were grown on LB agar plates over night 

at 37 °C and screened at room temperature. Screening was performed with an automated microscope 

under low-power conditions with 405 nm (~2 W∙cm-2) and 488 nm (~5 W∙cm-2) for on- and off-switching, 

respectively. 

 

Protein purification and characterization 

GST-tagged LOV wt, rsLOV1, rsLOV2, and EGFP were expressed from the vector pGEX-6P-1 in E. coli 

SURE cells. Cells were grown at 37 °C to an OD600 between 0.5 and 0.6 and induced with 1 mM IPTG 

(AppliChem) over night at 30 °C. Cells were lysed in B-PER solution (Thermo Scientific) and purified 

by affinity chromatography with glutathione spin columns (Thermo Scientific) according to the 

instructions of the manufacturer. The eluted protein was ultrafiltrated against 150 mM NaCl, 50 mM 

Tris-HCl, pH 8.0. All measurements with purified proteins were performed in this buffer. Protein 

concentration was determined by Bradford assay. Fluorescence measurements under low-power 

conditions were performed with approximate intensities of 5 W∙cm-2 for 405 nm and 2 W∙cm-2 for 

488 nm. Intensities under high-power conditions were approximately 100 kW∙cm-2 for 405 nm and 

300 kW∙cm-2 for 488 nm. Gel electrophoresis was performed with 15 % acrylamide gels containing 

0.1 % SDS. For denaturing gels, samples were boiled for 2 min at 99 °C in a loading buffer containing 

100 mM DTT and 2 % (w/v) SDS. For seminative gels, samples were applied to the gel in a loading 

buffer without DTT and SDS without previous heating. 

Absorption and fluorescence emission spectra were recorded with a Varian Cary 4000 UV/VIS 

spectrophotometer and a Varian Cary Eclipse fluorescence spectrophotometer, respectively. 

Measurements were performed without previous illumination of the proteins in order to keep the 

proteins in the fluorescent on-state. Extinction coefficients were calculated from the protein 

concentrations determined by the absorption at 450 nm and Bradford assay assuming that the proteins 

are fully saturated with FMN. Quantum yields of GST-tagged LOV wt, rsLOV1, and rsLOV2 were 

determined using FMN (HPLC-purified, purity ≥ 95 %, Sigma-Aldrich) as a reference, assuming a 

quantum yield for FMN of 0.246 [34]). 
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Cloning 

Codon-optimized versions of rsLOV1 and rsLOV2 for expression in mammalian cells were cloned into 

into the given vectors with the primers and restriction enzymes indicated in Table 2. Lifeact, MAP2, 

LAMP1, and H2B were integrated into pcDNA3.1(+) with the following restriction enzymes: lifeact: 

HindIII / BamHI, MAP2: AscI / NotI, LAMP1: HindIII / BamHI, H2B: NheI / HindIII. Vimentin-rsLOV2 was 

expressed from the vector pmKate2 where vimentin was integrated between the EcoRI and AgeI 

restriction sites. 

construct primer sequence 

lifeact 

rsLOV BamHI fwd 
GTTGATGGATCCACCGGTCGCCACCATGACAAGATTTCAGT

CA 

rsLOV NotI rev TTGATCGCGGCCGCTCAGCCTCTGTGCGGTCTCTC 

MAP2 

rsLOV NheI fwd AAGCTGGCTAGCATGACAAGATTTCAGTCA 

rsLOV AscI rev GATCCTGGCGCGCCGCCTCTGTGCGGTCTCTC 

LAMP1 

rsLOV EcoRI fwd GTGGTGGAATTCCATGACAAGATTTCAGTCA 

rsLOV XhoI rev TCTAGACTCGAGTCAGCCTCTGTGCGGTCTCTC 

H2B 

rsLOV BamHI fwd GAATCAGGATCCATGACAAGATTTCAGTCA 

rsLOV XbaI rev ATCAACTCTAGATCAGCCTCTGTGCGGTCTCTC 

vimentin 

rsLOV AgeI fwd GTAGATACCGGTCGCCACCATGACAAGATTTCAGTCA 

rsLOV NotI rev TTGATCGCGGCCGCTCAGCCTCTGTGCGGTCTCTC 

Table 2: Primers used for cloning of lifeact, MAP2, LAMP1, H2B, and vimentin constructs of rsLOV1 and 

rsLOV2 

 

Mammalian cell culture 

CV-1 and HeLa cells were grown in DMEM with 4.5 g/l glucose (Gibco) supplemented with 10 % FBS, 

1 mM sodium pyruvate, 100 units/ml penicillin, and 100 µg/ml streptomycin (all Biochrom). Cells were 

cultured at 37 °C with 5 % CO2. CV-1 and HeLa cells were transfected with Lipofectamine 2000 

(Invitrogen) according to the protocol of the manufacturer and imaged the following day. 

 

Imaging 

Confocal images were taken with a Leica SP8 microscope with simultaneous excitation at 405 and 

488 nm for rsLOV1 and rsLOV2. EGFP fluorescence was excited at 488 nm. For measurements at 
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different pH, living CV-1 cells were permeabilized with 1 µM nigericin (Sigma Aldrich) in a citric 

acid/phosphate buffer of pH 7 or 4 supplemented with 140 mM KCl (Sigma Aldrich). 

RESOLFT and STED images were taken with a home-built setup described in [76]. The STED laser 

was exchanged to a fibre laser with a repetition rate of 40 MHz and a wavelength of 618 nm (MPB 

Communications Inc.).  Following powers were used for RESOLFT imaging (measured in the back 

aperture): 405 nm activation: 5.1 µW (CW), 488 nm off-switching (donut): 4.8 µW (CW), 488 nm 

readout (confocal): 4.2 µW (pulsed, repetition rate 40 MHz). Imaging was performed with the following 

pulse sequence: 10 µs activation (405 nm), 1 µs break, 200 µs deactivation (488 nm donut), 1 µs break, 

5 µs readout (488 nm confocal). The signal from 20 scans per line was accumulated. The pixel size 

was 50 nm for confocal and 30 nm for RESOLFT images. Images represent raw data. 

For STED imaging, following powers were used (measured in the back aperture): 488 nm excitation 

(confocal): 3.0 µW, 618 nm STED (donut): 38 mW (both lasers pulsed, repetition rate 40 MHz). Pixel 

dwell time was 200 µs. Nanosecond time gating was used. The signal from 3 scans per line was 

accumulated. The pixel size was 50 nm for confocal and 15 nm for STED images. Images represent 

raw data. 

 

Data Analysis 

To determine switching time constants and amplitudes, switching curves were fitted with Matlab 

software (MathWorks) using the single exponential function  𝑦 = 𝑦0 + 𝐴 ∙ 𝑒−𝑡𝜏 with t denoting the time, 

y the fluorescence signal, 𝑦0 the switching background, 𝐴 the amplitude, and 𝜏 the switching time 

constant. 

Resolution of RESOLFT and STED images was determined by the FMWH (full width at half maximum) 

of line profiles with a width of 5–10 pixels. The signal was fitted with a Lorentzian function 𝑦 = 𝑦0 + 2·𝐴𝜋 ·( 𝑤4(𝑥−𝑥𝐶)2 + 𝑤2) with 𝑤 denoting the FWMH using OriginPro software (OriginLab). 
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Preface 

The aim of this study was to improve the lux operon from Photorhabdus luminescens by 

mutagenesis in order to obtain higher levels of bacterial bioluminescence for single-cell 

imaging. The work was supervised by Prof. Dr. Stefan Hell. Dr. Klaus Gwosch built the 

microscope, programmed the software, aided with imaging, and performed the calibration. 

Mutagenesis, screening, cloning, sample preparation, and imaging were performed by me. I 

conceptualized and wrote this manuscript.  
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Abstract 

Besides the use of fluorescent proteins, bioluminescence microscopy is becoming an 

emerging tool for imaging of live cells. However, the luciferases which are mainly used 

currently require the addition of luciferins that are often toxic, expensive, poorly cell-

permeable or produce high bioluminescence background signal. Bacterial 

bioluminescence is unique as it uses reduced FMN as a luciferin which is abundant in 

all cells, making this system purely genetically encodable. Unfortunately, the use of 

bacterial bioluminescence is limited by its low brightness compared to other 

luciferases. Here, we report the generation of an improved lux operon with a ~7-fold 

increase in brightness when expressed in E. coli cells at 37 °C. Besides addition of the 

frp gene from Vibrio campbellii to the lux operon from Photorhabdus luminescens that 

encodes an FMN reductase, luxA, B, C, and frp were improved by mutagenesis. The 

new version called ilux can be used to image single E. coli cells with enhanced 

spatiotemporal resolution for unlimited periods of time. In addition, since only living 

cells produce bioluminescent signal, we show that ilux can be used to observe the 

effect of different antibiotics on cell viability at single cell level in real time. 

 

Introduction 

Bioluminescence is a process in which cells generate light by a chemical reaction. It is 

catalyzed by an enzyme called luciferase and requires a luciferin substrate. The luciferin is 

converted into a product in an electronically excited state that emits a photon upon return to 

the ground state, thus emitting visible light. There are about 30 different luciferases and 

corresponding luciferins found in nature, indicating that bioluminescence has evolved several 

times independently during evolution [38], although in many cases its function remains 
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unknown. Most luciferins are only produced by organisms expressing the corresponding 

luciferase, with the exception of the bacterial luciferin FMNH2. Bacterial luciferase is an 

αβ heterodimer that is coded by the genes luxA and luxB. In addition to FMNH2, the reaction 

requires molecular oxygen and a long-chain fatty aldehyde. The fatty aldehyde is oxidized to 

a fatty acid and FMNH2 is oxidized to FMN, thereby emitting a photon with a wavelength of 

λmax ~490 nm: 

FMNH2 + RCHO + O2 → FMN + RCOOH + H2O + hν 

To keep this reaction ongoing, the fatty aldehyde must be regenerated. This is performed by 

the fatty acid reductase complex which consists of fatty acid reductase, transferase, and 

synthetase, coded by luxC, luxD, and luxE, respectively. Since an FMN reductase is already 

present in E. coli, introduction of the luxCDABE operon is sufficient to produce a 

bioluminescence output in these cells. 

Due to its very low light levels compared to fluorescence, bioluminescence imaging is not 

routinely applied so far. Yet, bioluminescence provides several benefits compared to 

fluorescence measurements. First, there is virtually no background because of the lack of 

autofluorescence. Bioluminescence background levels in living cells are extremely low, 

making bioluminescence sometimes even more sensitive than fluorescence ([59] and 

references therein). Second, no excitation light source and filters are needed, making the 

setup very simple. In addition, it is possible to study processes where the intense excitation 

light required for fluorescence measurements would be disturbing, such as circadian rhythms 

or Ca2+ activity in the retina [63, 65]. Third, no phototoxicity or bleaching is observed, allowing 

image acquisition over arbitrary time spans. Furthermore, bioluminescence is dependent on 

cellular metabolism and hence only live cells are visible, preventing artifacts due to 

observation of severely damaged or dead cells. 

In addition to the limitation by its low brightness, the luciferases that are most commonly used 

exhibit several drawbacks as the luciferin must be externally supplied. The luciferins are often 

expensive, toxic, poorly soluble, or cell-impermeable. Since the luciferin concentration is not 

stable over time, the signal often decays after only seconds or minutes. Therefore, the luciferin 

has to be applied repeatedly which complicates quantification of the signal. Moreover, 

coelenterazine, the substrate of Renilla and Gaussia luciferase, is auto-oxidized in solution, 

leading to background luminescence. Bacterial luciferase is the only luciferase that 

circumvents all these problems since FMN is present in all cell types and can be converted 

into FMNH2 by the additional expression of an FMN reductase. Its main limitation is the poor 



Chapter II 

38 
 

brightness which is several orders of magnitude lower than for other luciferases. Several 

attempts have been made to improve the brightness of bacterial bioluminescence, including 

splitting the lux operon for enhanced expression, codon-optimization for expression in 

mammalian cells, and exogenous addition of the fatty aldehyde [80-83]. However, to our 

knowledge, introduction of mutations in the luxCDABE operon to increase the brightness has 

so far been unsuccessful. Here, we demonstrate that bioluminescence from the lux operon 

from Photorhabdus luminescens expressed in E. coli can be substantially enhanced by co-

expression of an FMN reductase and error-prone mutagenesis of the complete lux operon. 

The improved lux operon ilux can be used to image single E. coli cells for extended time 

periods and to assay cell viability in the presence of different antibiotics. 

 

Results and Discussion 

To engineer a bacterial bioluminescence system with improved brightness at 37 °C, we chose 

the luxCDABE operon from P. luminescens as this luciferase has been reported to be more 

thermostable than Vibrio harveyi luciferase [84]. The P. luminescens luxCDABE operon was 

cloned into the vector pGEX-6P-1. Expression in E. coli DH5α cells resulted in only weakly 

luminescent colonies. Since in this vector the fatty acid reductase coded by the luxC gene 

was expressed as a fusion protein with an N-terminal GST tag that may affect its function, we 

cloned the luxCDABE operon into an expression vector we named pGEX(-). This vector is 

based on pGEX-6P-1, but does not contain the GST tag. This increased the brightness ~40 % 

at room temperature and ~20-fold at 37 °C (Figure 20), suggesting that the activity of the fatty 

acid reductase is strongly inhibited by the large GST tag at elevated temperature, possibly by 

inhibiting assembly of the fatty acid reductase complex. In addition, we observed that the 

luminescence signal increases with temperature, yielding ~3 times more signal at 37 °C 

compared to room temperature. To further enhance the luminescence, we performed site-

directed mutagenesis of multiple residues at the binding pocket in the luciferase α subunit and 

at the αβ interface. However, we were not able to identify mutants with increased 

luminescence signal (data not shown). Also random mutagenesis by error-prone PCR of the 

luxAB genes did not result in brighter variants, suggesting that the luciferase reaction might 

not be the rate-limiting step in the generation of bioluminescence light. To test this hypothesis, 

we cloned a second copy of luxAB, CD, E as well as an FMN reductase downstream of the 

luxCDABE operon and compared the brightness to the original construct. Both FMN reductase 

from E. coli and NADPH-flavin oxidoreductase from Vibrio campbellii coded by the frp gene 
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resulted in a ~1.5- and ~2.3-fold increase in brightness, respectively (Figure 20), showing that 

the endogenous FMN reductase in E. coli does not regenerate sufficient amounts of FMNH2 

for maximum levels of bioluminescence. We chose luxCDABE+frp pGEX(-) for mutagenesis 

and performed multiple rounds of error-prone PCR in the luxAB, CD, E, and frp genes. The 

resulting clones were screened for enhanced luminescence in DH5α cells on agar plates at 

37 °C. We identified several mutations in luxA, B, C, and frp that resulted in higher 

bioluminescence signal, whereas no beneficial mutations in luxD and E were found. The final 

improved version called ilux contains the mutations listed in Table 3. Interestingly, the 

brightness of ilux was not only increased at 37 °C, but also at room temperature, showing that 

the introduced mutations not only enhance thermal stability of the enzymes, but mainly 

improve expression and folding or the catalytic activity. 

These results indicate that not only the activity of the luciferase itself can be improved by 

mutagenesis, but also increasing the concentrations of FMNH2 and fatty aldehyde by 

enhanced enzyme activities lead to higher bioluminescence. However, addition of myristate 

that is converted into tetradecanal by the fatty acid reductase complex in the cell did not further 

increase the brightness, either because the uptake is too slow or the concentration of 

tetradecanal does not limit the bioluminescence reaction any more. Also overexpression of 

the riboflavin transporter pnuX and addition of riboflavin to the medium to increase the cellular 

concentration of FMN showed no increase in brightness. 

gene mutations 

luxA K22E, T119A, S178A 

luxB S13P, V121A, N259D 

luxC N10T, N59D, E74D, S256P, M355T, N360D 

luxD - 

luxE - 

frp M213L, R242L, K256R 

Table 3: Mutations contained in ilux 

The listed mutations were introduced by error-prone PCR into the luxCDABE operon from P. luminescens 

supplemented with the frp gene from V. campbellii, resulting in the improved operon ilux. 
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Figure 20: Brightness of different lux variants expressed from pGEX(-) in DH5α cells 

luxCDABE with a second copy of the indicated genes were expressed from pGEX(-) in DH5α cells. 6 colonies of 

each construct were spread on a new agar plate. After growth over night at 37 °C, plates were imaged at 37 °C 

and 22 °C. The signal from 3 different areas for each clone was averaged. Error bars represent standard deviation. 

After several rounds of screening, we did not obtain further improvements by error-prone 

mutagenesis in any of the luxCDABE+frp genes. A possible explanation is that at least one of 

the lux proteins is already optimized under the screening conditions and limits the overall 

reaction, or the number of possible additional beneficial mutations is so low that we were not 

able to identify them in our screening. To obtain higher levels of expression for imaging of 

single E. coli cells, the ilux operon was cloned into the vector pQE(-). This vector was 

generated from pQE30 by deletion of the His tag. Expression of ilux from pQE(-) in E. coli 

Top10 cells resulted in a ~2.3-fold higher signal at room temperature compared to pGEX(-) in 

DH5α on agar plates. Although the bioluminescence intensity is higher at 37 °C, imaging was 

performed at room temperature for technical reasons. Single Top10 cells can already be 

discriminated after only 10-20 s (Figure 21). Longer exposure times result in significantly 

improved signal-to-noise ratio. A calibration of the camera indicates that 100–200 photons per 

pixel are detected during a 10 min exposure time, corresponding to ~4·103 detected photons 

per cell per minute. 



Chapter II 

41 
 

   

10 s 20 s 30 s 

   

60 s 180 s 600 s 

Figure 21: E. coli Top10 cells with ilux pQE(-) imaged for different exposure times. 

E. coli Top10 cells with ilux pQE(-) were imaged under an LB agar pad containing 50 µg/ml ampicillin. Single 

images were taken with the indicated exposure times. For the 10 min image, the colorbar represents the 

approximate number of detected photons. For the other images, the contrast was adjusted manually. Scale bar, 

2 µm  

We used exposure times of 10 min to observe cells over longer time spans. Most cells 

remained viable over the whole recording time of 12 h and divided several times (Figure 22). 
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Figure 22: Cell division of E. coli cells expressing ilux 

E. coli Top10 cells with ilux pQE(-) were imaged under an LB agar pad containing 50 µg/ml ampicillin. Single 

images were taken with 10 min exposure time. The same colormap was used for all images. Scale bar, 2 µm 

Subsequently, we investigated the effect of different antibiotics on cell viability. Since 

continuous supply of ATP and NADPH is required for regeneration of fatty aldehyde and 

FMNH2 to keep the bioluminescence reaction ongoing, the signal is expected to disappear 

upon cell death. First, we imaged Top10 cells in the presence of 100 µg/ml kanamycin which 

inhibits protein synthesis (Figure 23). The brightness decreased continuously, indicating a 

reduction in metabolic activity. Most cells died within the 45 h observation time, nevertheless, 

bioluminescence was still detectable from a few cells. This demonstrates that even at high 

kanamycin concentrations cellular metabolism continues for relatively long time spans, 

although cell division is prevented immediately. 
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Figure 23. E. coli cells expressing ilux in the presence of kanamycin 

E. coli Top10 cells with ilux pQE(-) were imaged under an LB agar pad containing 50 µg/ml ampicillin and 100 µg/ml 

kanamycin. Single images were taken with 10 min exposure time. The same colormap was used for all images. 

Scale bar, 2 µm 

The second antibiotic we examined is timentin, a mixture of the β-lactame antibiotic ticarcillin 

and clavulanic acid. Since pQE(-) contains β-lactamase as a resistance marker, cells 

expressing ilux are expected to be resistant to ticarcillin. However, since the β-lactamase is 

inhibited by clavulanic acid, the cells become susceptible for the cell wall-disrupting effects of 

ticarcillin and ampicillin. Upon cell division, this leads to formation of small holes in the cell 

wall. As a result, the inner membrane occasionally forms large protrusions due to osmotic 

pressure (Figure 24). This finally leads to cell lysis. After 12 h, all cells had died. 
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Figure 24. E. coli cells expressing ilux in the presence of 100 µg/ml timentin 

E. coli Top10 cells with ilux pQE(-) were imaged under an LB agar pad containing 50 µg/ml ampicillin and 100 µg/ml 

timentin. Single images were taken with 10 min exposure time. The same colormap was used for all images. Scale 

bar, 2 µm  

Interestingly, we often observed “blinking” of the cells before cell death. The signal from from 

cells that had already disappeared completely often recovered, sometimes even between two 

10 min frames (Figure 25). Since ATP and NADPH are required for bioluminescence, this 

possibly indicates that E. coli cells can temporarily recover after breakdown of their energy 

metabolism, although complete cell death usually occurred within few hours thereafter. 
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Figure 25: "Blinking" of E. coli cells during kanamycin-induced cell death 

E. coli Top10 cells with ilux pQE(-) were imaged under an LB agar pad containing 50 µg/ml ampicillin and 100 µg/ml 

kanamycin. Single images were taken with 10 min exposure time. The same colormap was used for all images. 

Scale bar, 2 µm  

Our results show that bacterial bioluminescence can be enhanced by mutagenesis of the 

luxCDABE genes in combination with introduction of an additional FMN reductase into E. coli. 

This allows imaging of single E. coli cells with improved spatiotemporal resolution in 

comparison to previous approaches of single-cell imaging [65, 83]. Since the brightness of 

ilux is increased ~3-fold at 37 °C compared to room temperature, heating of the sample during 

imaging is expected to reduce the necessary recording times even further. We have 

demonstrated that ilux can be used to study processes such as cell division and cell death, 

extending the range of applications of bioluminescence imaging. The independence of 

exogenous luciferin makes the lux system particularly interesting, although its utility has been 

limited by its low brightness compared to other luciferases. Codon-optimized versions of the 

lux proteins have been shown to be functional in eukaryotic cells [81, 82], facilitating 

observation of bacterial bioluminescence from cell types other than bacteria. Therefore, ilux 

is promising to be a valuable tool for the observation of mammalian cells as well. In addition, 

it might be possible to image cellular structures by fusing the luciferase α subunit or a fusion 

of α and β subunit to a protein of interest, allowing its usage in a similar way as GFP. 
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Materials and Methods 

Cloning and Mutagenesis 

The vector pGEX(-) was generated by PCR of pGEX-6P-1 with the primers pGEX(-) BamHI 

fwd / pGEX(-) BamHI rev (Table 4). The PCR product was digested with DpnI to remove template DNA 

and gel-purified. The obtained DNA fragment was digested with BamHI and ligated without an insert to 

obtain pGEX(-). pQE(-) was generated from pQE30 in an analogous way using the primers pQE(-) 

BamHI fwd / pQE(-) BamHI rev. 

luxCDABE was amplified with the primers luxC BamHI fwd / luxE SalI rev and cloned into pGEX-6P-1 

and pGEX- with BamHI and SalI. The frp gene was introduced behind luxE between the SalI and NotI 

restriction sites with the primers frp SalI fwd and frp NotI rev. Second copies of luxA, AB, CD, and E 

were also cloned between the SalI and NotI restriction sites using the primers luxA SalI fwd / luxA NotI 

rev, luxA SalI fwd / luxB NotI rev, luxB SalI fwd / luxB NotI rev, luxC SalI fwd / luxD NotI rev, and luxE 

SalI fwd / luxE NotI rev, respectively. 

For error-prone PCRs, an EcoRI restriction site was introduced in front of luxA by PCR of the whole 

plasmid with the primers luxA EcoRI fwd and linker luxDA EcoRI rev, digesting the PCR product with 

DpnI and EcoRI and ligation without an insert. Similarly, an NcoI restriction site behind luxB were 

introduced with the primers linker luxBE NcoI fwd and luxB NcoI rev. 

Error-prone PCRs were performed with the following primers: 

luxAB: EP luxAB EcoRI fwd / EP luxAB NcoI rev 

luxCD: EP luxCD BamHI fwd / EP luxCD EcoRI rev 

luxE: EP luxE NcoI fwd / EP luxE SalI rev 

frp: EP frp SalI fwd / EP frp NotI rev 

25 PCR cycles were performed with MnCl2 concentrations ranging from 50 µM to 150 µM. The PCR 

products were gel-purified, digested with the indicated enzymes, and ligated back into the lux pGEX(-) 

vector. 

An XmaI restriction site behind the frp gene was introduced by PCR of frp with the primers frp SalI 

fwd / frp XmaI NotI rev and cloning the PCR product back into the vector with SalI and NotI. pnuX was 

cut from a template vector with AgeI and NotI and integrated between the XmaI and NotI restriction 

sites. The complete ilux operon was cut with BamHI and XmaI and ligated into pQE(-) digested with the 

same enzymes. 
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pGEX(-) BamHI fwd CAGGGGCCCCTGGGATCCCCGGAATTCCCG 

pGEX(-) BamHI rev TATAGGGGACATGGATCCTGTTTCCTGTGT 

pQE(-) BamHI fwd CGTAATGGATCCGCATGCGAGCTCG 

pQE(-) BamHI rev GTTCAGGGATCCAGTTAATTTCTCCTCTTTAATGAATTCTGTGT 

luxC BamHI fwd TTAGATGGATCCATGACTAAAAAAATTTCA 

luxE SalI rev TCTTAGGTCGACTCAACTATCAAACGCTTC 

frp SalI fwd GTAACTGTCGACCTAAGGAGAAAGAAATGGTGAAGATACAG 

frp NotI rev CTTAGAGCGGCCGCTTACCTTTTGGCAAGGC 

luxA EcoRI fwd TGTATCGAATTCATGAAATTTGGAAACTTTTTG 

linker luxDA EcoRI rev TGTATCGAATTCAGAGAGTCCTTATATTGCTAT 

linker luxBE NcoI fwd TGTATCCCATGGTAGATTTCGAGTTGCAGCGAG 

luxA SalI fwd GTAACTGTCGACCTAAGGAGAAAGAAATGAAATTTGGAAACTTTTTGC 

luxA NotI rev GTAAGTGCGGCCGCCTAATATAATAGCGAACGTTGTT 

luxB NotI rev CTTAGAGCGGCCGCTTAGGTATATTCCATGTGGTAC 

luxC SalI fwd GTAACTGTCGACCTAAGGAGAAAGAAATGACTAAAAAAATTTCATTCATTATT

AACG 

luxD NotI rev CTTAGAGCGGCCGCTTAAGACAGAGAAATTGCTTG 

luxE SalI fwd GTAACTGTCGACCTAAGGAGAAAGAAATGACTTCATATGTTG 

luxE NotI rev CTTAGAGCGGCCGCTCAACTATCAAACGCTTC 

luxB NcoI rev TGTATCCCATGGTTAGGTATATTCCATGTGGTA 

EP luxAB EcoRI fwd GCAATATAAGGACTCTCTGAATTC 

EP luxAB NcoI rev GCTGCAACTCGAAATCTACCATGG 

EP luxCD BamHI fwd GGGCCCCTGGGATCC 

EP luxCD EcoRI rev TTTCATGAATTCAGAGAGTCCTTATATTGCTATTTGAGTG 

EP luxE NcoI fwd ACCTAACCATGGTAGATTTCGAGTTGCAGC 

EP luxE SalI rev GCGGCCGCTCGAGTCGAC 

EP frp SalI fwd GTAACTGTCGACCTAAGGAGAAAGAAATGGTGAAGATACAG 

EP frp NotI rev CTTAGAGCGGCCGCTTACCTTTTGGCAAGGC 

frp XmaI NotI rev CTTCATGCGGCCGCTATCCACCCGGGTTCTTTCTCCTTAGTTACCTTCTGG

CAAGGCCC 

Table 4: Primers used for cloning and error-prone PCRs 
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Imaging 

Screening for brighter variants was performed with E. coli DH5α cells expressing lux proteins from 

pGEX(-). Colonies on agar plates were grown and imaged at 37 °C with a PCO Sensicam (LaVision). 

The brightest clones were selected for the next cycle of mutagenesis. 

For single-cell imaging, E. coli Top10 cells containing ilux pQE(-) were grown over night at 37 °C on LB 

agar plates containing 50 µg/ml ampicillin and 100 µg/ml carbenicillin to prevent loss of the plasmid. 

Cells from the agar plate were resuspended in water. 1 µl of the suspension was placed on a coverslip, 

covered with an agar pad cut from an LB agar plate, and immediately used for imaging.  

Imaging was performed with a self-built setup (see Figure 26). An EMCCD camera (iXon DU860, 

Andor) was used for detection that was cooled to -93 °C. Readout was performed in kinetics mode 

using a vertical shift speed of 0.1 µs/pixel and a horizontal readout speed of 1 MHz. The pre-amp gain 

was set to 5 and the EM gain was set to 300 (Real EM gain mode). The effective pixel size of the 

camera was 120 nm. 

A 405 nm excitation laser (PhoxX 405-60, Omicron) was used to select and focus the cells. The laser 

was focused to the back focal plane of the objective resulting in an illumination area in the sample of 

about 20 µm in diameter. The utilized laser power in the back focal plane of the objective was 290 nW. 

To keep the sample in the same z-position during long-term imaging, a home-built focus lock was used. 

The focus lock system measured the axial position of the sample by measuring the position of a total 

internal reflection (TIR) signal at the coverslip-media interface. For this purpose, a 980 nm laser beam 

was focused off-center into the back focal plane of the objective lens. The TIR signal was detected by 

a position sensitive diode. A feedback loop written in Python calculated the necessary shift of the 

objective to compensate for drifts of the focal plane. The axial position of the objective lens was updated 

every 100 ms commanding the objective positioner piezo (MIPOS 100 PL CAP, piezosystem Jena). 

Light from the sample was collected with a HC PL APO 100x/1.40-0.70 OIL CS oil immersion objective 

lens (Leica). The light was directed to the camera using dielectric mirrors (BB1-E02, Thorlabs), a 

dichroitic beam splitter (ZT405rdc, Chroma), and a detection filter (BrightLine FF01-842/SP, Semrock) 

to block light from the focus lock laser. The first mirror after the objective lens was a back side polished 

version (BB1-E02P, Thorlabs) to allow in- and outcoupling of the 980 nm focus lock. Focusing onto the 

camera was performed with an achromatic lens with a focal length of f = 400 mm and VIS coating 

(Qioptiq) resulting in an effective pixel size on the camera of 120 nm. Measurement control and data 

acquisition were performed with self-written Python programs. 

To filter out bright pixels due to cosmic radiation, the value of pixels above a brightness threshold was 

replaced by the average of the same pixel in the previous and following image. Unless otherwise stated, 

the average background signal from the same exposure time without sample was subtracted. 

Calibration of camera pixel values to detected photons was performed by measuring the mean and 

variance of the pixel values of a uniformly illuminated camera sensor chip for several exposure times. 
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Assuming Shot noise for conditions when background counts are negligible, variance and mean of the 

pixel values 𝑁𝐴𝐷𝐶  are proportional to each other: var(𝑁𝐴𝐷𝐶) ∝ 2 ⋅ 𝛼 ⋅ mean(𝑁𝐴𝐷𝐶) 

The proportionality factor 𝛼 given by the ADC counts per photoelectron and can be obtained by a linear 

fit to the data. The factor 2 accounts for the excess noise factor of 1.41 of an EMCCD camera. The 

mean of the camera count offset 𝜇𝑜𝑓𝑓𝑠𝑒𝑡 was obtained from camera images without illumination. Finally, 

the conversion of camera ADC counts 𝑁𝐴𝐷𝐶  to photons 𝑁𝑝ℎ𝑜𝑡𝑜𝑛 was performed by 𝑁𝑝ℎ𝑜𝑡𝑜𝑛 = 𝛼−1 (𝑁𝐴𝐷𝐶 − 𝜇𝑜𝑓𝑓𝑠𝑒𝑡) 

with the definitions given above. 

 

Figure 26: Schematic setup of the microscope 

Bioluminescence light is collected by an oil immersion objective lens and directed to an EMCCD camera using 

dielectric mirrors (BPM, M) optimized for the visible wavelength range. The light is spectrally filtered by a shortpass 

filter (F) and focused onto the camera using a lens (L) with a focal length of 400 mm. For focusing and selection 

of cells, a widefield excitation with 405 nm is implemented. A dielectric mirror (DM) is used to separate excitation 

light from fluorescence. Long term stability of the focus position is provided by a home-built focus lock system. It 

is based on the detection of a total internal reflection signal using a position sensitive diode (PSD) and repositioning 

the objective lens with a z-piezo. In- and outcoupling of the 980 nm light for the focus lock is done through a back 

side polished dielectric mirror (BPM). 
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Discussion 

In the previous chapters, the utility of flavin-binding proteins for different kinds of microscopy 

has been demonstrated. Considerable improvements in brightness were achieved by 

mutagenesis, opening new fields of application of flavin-based proteins in superresolution and 

bioluminescence microscopy. 

 

RESOLFT microscopy with RSFPs has so far been only performed with proteins from the 

GFP superfamily [71-74]. GFP-based proteins exhibit high brightness and many different 

variants have been developed that cover the whole visible spectral range [85], making them 

excellent tools for the imaging of living cells. However, GFP-related proteins share several 

features that restrict their applicability under certain conditions. These include their relatively 

large size (27 kDa), dependence on oxygen for chromophore maturation, and quenching of 

their fluorescence at low pH. Therefore, the development of new fluorescent proteins with 

different properties from other origin is desirable for certain applications. 

A new class of fluorescence reporters are FbFPs which are derived from LOV domains and 

contain a flavin chromophore. They are small (10–19 kDa) and oxygen-independent and their 

fluorescence is relatively constant over a broad pH range, but they exhibit generally lower 

brightness than GFP-based proteins [1, 35]. Due to their inherent photoswitching, LOV 

domains are also interesting for superresolution microscopy. This was demonstrated for the 

first time with the LOV domain of the photoreceptor YtvA from B. subtilis where the wild-type 

protein was used for PALM imaging [36]. YtvA-LOV can in principle also be used for 

RESOLFT microscopy, but its use is impeded by its relatively low brightness combined with 

an on-switching of only ~5 %. In chapter I of this thesis, it was shown that the on-switching of 

YtvA-LOV could be improved by mutagenesis, resulting in the new RSFP rsLOV1 (Figure 27). 

rsLOV1 switches off with little switching background (< 3 %) and switches both on and off ~3 

times faster than rsEGFP2, the fastest switching RSFP published so far, making it interesting 

for fast RESOLFT imaging. The fraction of on-switching under 405 nm illumination was 

increased by a factor of ~10 for rsLOV1 compared to YtvA-LOV wt, resulting in a ~10-fold 

increase in brightness under RESOLFT imaging conditions. Its applicability for RESOLFT 

imaging with a resolution of down to ~60–65 nm was proved in chapter I. 

Despite these improvements, the brightness of rsLOV1 is still relatively low. Its brightness is 

only ~6 % of EGFP in the fluorescent on-state (εrsLOV1 = 11,000 M-1∙cm-1, ϕrsLOV1 = 0.17, 

εEGFP = 55,000 M-1∙cm-1, ϕEGFP = 0.60 [77, 78]). The effective brightness under RESOLFT 
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imaging conditions was even further reduced by incomplete on-switching (~57 % of the initial 

signal) and excitation at 488 nm instead of the absorption maximum of 450 nm. Therefore, 

the sample had to be scanned multiple times during image acquisition to accumulate sufficient 

signal, nullifying the advantage of ultrafast switching of rsLOV1 for fast imaging. 

 

Figure 27: Mutations of rsLOV1 and rsLOV2 based on the structure of YtvA-LOV (aa 1–137) 

The first 137 residues of YtvA-LOV wt (PDB entry 2MWG [28]) containing the FMN cofactor are shown. Positions 

of the mutations in rsLOV1 are shown in blue. Additional mutations in rsLOV2 are marked in purple. 

Further improvements in brightness are therefore favorable that might be achieved by 

continued mutagenesis. However, mutagenesis has been done extensively in this work, 

including multiple rounds of error-prone mutagenesis, site-directed saturation mutagenesis of 

all single residues, exchange of the N- and C-terminal regions, and exchange of a loop region 

(aa 32–37), without further improvements in brightness. A different approach for increasing 

the brightness is exchange of the cofactor. Modified flavin cofactors with higher quantum 

yields than FMN have been synthesized and incorporated into YtvA-LOV in vitro [12, 79]. Yet, 

modified flavins would need to be taken up and incorporated into the protein under cellular 

conditions. This might be inefficient and result in only a small fraction of the protein containing 

the modified cofactor. Moreover, some flavin derivatives such as roseoflavin are toxic and 

therefore undesirable for live-cell imaging. In addition, the photocycle can be influenced by 

exchange of the cofactor [12] so that additional mutagenesis and screening may be required 

for optimal switching. Another possible way to obtain brighter LOV-based proteins is the 
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choice of a different template for mutagenesis. FbFPs have been generated from LOV 

domains of different origin [30-33] with quantum yields of up to 51 % [33]. However, their 

increased brightness is partially due to removal of the photoactive cysteine residue required 

for switching. Therefore, it remains questionable by how much the brightness of flavin-binding 

RSFPs can be further improved. 

Another variant of YtvA-LOV was described in chapter I of this work. This protein, named 

rsLOV2, contains three additional mutations compared to rsLOV1 (I39V, Q44N and N61S), 

indicated in Figure 27. rsLOV2 is approximately twice as bright as rsLOV1 in its fluorescent 

on-state (εrsLOV2 = 11,000 M-1∙cm-1, ϕrsLOV2 = 0.31) and switches on even more efficiently than 

rsLOV1. Unfortunately, its switching background is relatively high and strongly increases after 

repeated switching or prolonged illumination with UV light, making it unsuitable for RESOLFT 

imaging. It was shown that rsLOV2 can be used for STED imaging of living cells instead, 

achieving a resolution of down to 40–50 nm. Interestingly, imaging could be performed with 

488 nm excitation and 618 nm STED only, omitting the on-switching at 405 nm. This indicates 

that a fraction of rsLOV2 accumulates in a fluorescent state under imaging conditions, 

although the reasons for this remain unknown and may include nonlinear processes due to 

the high STED intensity. The complex photocycle of YtvA-LOV was studied in detail [25], but 

is still not fully understood. Furthermore, the photochemistry of rsLOV2 is different than for 

the wild-type protein, making it difficult to predict transitions into certain states. 

Since protein screening was performed with the aim to optimize switching and brightness for 

RESOLFT microscopy, it is likely that rsLOV2 and other LOV domains can be further 

optimized for STED applications. Due to the unpredictable behavior under different conditions, 

screening for brighter and more photostable LOV variants should be performed under the 

same conditions as used for STED imaging. The high photostability of rsLOV2 under the 

applied imaging conditions makes FbFPs promising for the development of valuable 

alternatives to GFP-based fluorescent proteins for STED microscopy. 

 

In the second part of this work, the usefulness of bacterial bioluminescence for microscopy 

was demonstrated. Although bioluminescence has been studied for decades, it has received 

relatively little attention for the purpose of imaging so far. This is mainly due to its relatively 

low light levels compared to fluorescence and because exogenous luciferins must often be 

added. Fluorescent proteins have been used extensively to image living cells since they are 

non-toxic, relatively small, genetically encodable, can be expressed as fusion proteins with a 

specific protein of interest, and produce strong fluorescence when excited with intense light. 
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However, fluorescence measurements are not optimal for all purposes. For some 

applications, the excitation light would disturb the process that is to be observed and for long-

term measurements bleaching can be a problem. Bioluminescence imaging complements the 

potential applications of fluorescent proteins and can also be combined with them for imaging. 

Due to the limitation by their low brightness, several attempts were made to improve naturally 

occurring luciferases by mutagenesis. For firefly luciferase which has the highest 

bioluminescence quantum yield known (~0.40 [86]), this has so far been unsuccessful and it 

was suggested that this enzyme may be nearly optimized by natural evolution [59]. An 

improved luciferase called NanoLuc, however, has been generated from a fragment of the 

luciferase from the deep sea shrimp Oplophorus gracilirostris. This was achieved by 

mutagenesis as well as chemical modification of its natural luciferin coelenterazine [87]. 

NanoLuc has also been used for dual color bioluminescence imaging in combination with 

firefly luciferase [88]. Other approaches to increase bioluminescence intensity have mainly 

focused on enhancing the expression in other cell types by codon-optimization [81, 89, 90]. 

Bacterial bioluminescence, which is particularly interesting because it does not require the 

addition of an exogenous luciferin, has so far been improved by addition of an FMN reductase 

to a codon-optimized version of the luxCDABE operon for expression in mammalian cells [81, 

82], splitting the luxCDABE operon for generating higher concentrations of the rate-limiting 

aldehyde [80], and exogenous addition of tetradecanal or other long-chain fatty aldehydes 

[80, 83]. However, to my knowledge, no approaches to enhance the activity of the involved 

proteins by mutagenesis have been reported. 

In this work, it was shown that bacterial bioluminescence originating from the luxCDABE 

operon from P. luminescens expressed in E. coli could be improved by mutagenesis. This was 

achieved by integration of an FMN reductase into the lux operon and subsequent error-prone 

mutagenesis of the luxA, B, C, and frp genes. It was demonstrated that the brightness could 

be substantially improved, resulting in a ~7-fold yield of bioluminescence at 37 °C. This was 

used to study the effects of different antibiotics on cell viability since only cells with an intact 

metabolism emit bioluminescence light. Viability of bacteria is usually assayed by their ability 

to divide because methods to monitor their metabolic state on the single-cell level are lacking. 

Yet, non-dividing cells may still be metabolically active and a ‘viable but non-culturable’ 

(VBNC) state has been hypothesized from which non-dividing cells may be ‘resuscitated’, 

although the existance of this state is controversial [91]. An approach to observe ATP levels 

in single bacteria using a Förster resonance energy transfer (FRET)-based ATP biosensor 

has been described [92]. In this study, it was found that after antibiotic treatment not all non-
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growing bacteria with low ATP levels stained with propidium iodide (PI), a widely used 

fluorescent live/dead cell marker. Since PI is membrane impermeable, only dead cells with 

damaged membranes are stained. In addition, it was found that a subset of PI-negative cells 

with high ATP levels did not resume growth after antibiotic washout [92]. This indicates that 

PI is not an optimal marker for assaying bacterial viability. It is known that subpopulations of 

bacteria (called persisters) escape killing by antibiotics although they are not genetically 

resistant [92]. As antibiotic resistances are an increasing problem for public health, the 

development of new antibiotics and methods to test their impact on single bacterial cells are 

required. Using the ilux proteins developed in this work, it was observed that E. coli cells can 

temporarily recover from metabolic inactivity sometimes occuring before cell death. Although 

it cannot be ruled out completely that other effects account for this observation, ilux is a useful 

alternative to fluorescent reporters for long-term investigations of single bacteria. 

It is not yet clear if the brightness of bacterial bioluminescence can be further enhanced. To 

test if one of the lux proteins is already optimized and limits the overall reaction, second copies 

of the improved luxA, B, C, D, E, AB, CD, and frp genes were cloned into ilux pGEX(-). 

However, none of these constructs showed a significant increase in brightness (data not 

shown). This may be due to inefficient expression of the second copies due to their large 

distance from the promotor or the cells may regulate cellular levels of the lux enzymes and 

degrade proteins at higher concentrations. A different explanation is that the brightness is not 

limited by the ilux proteins themselves, but by another process. Since NADPH is required for 

regeneration of fatty aldehyde and FMNH2, an attempt to increase cellular levels of NADPH 

by overexpressing glucose-6-phosphate dehydrogenase, the key enzyme of the pentose 

phosphate pathway, was made. Yet, no increase in brightness was observed (data not 

shown), probably because the level of this metabolic protein is tightly regulated. Possibly the 

supply of cells with nutrients when grown in colonies on agar plates is limiting for the 

bioluminescence reaction due to slow diffusion from the agar into the cells. However, this is 

in contradiction to the observation that colonies of Top10 cells expressing ilux from pQE(-) 

are ~3-fold brighter than ilux pGEX(-) in DH5α cells, a fact that may be attributed to higher 

expression. Perhaps there are also differences between the E. coli strains allowing for higher 

bioluminescence yields in Top10 cells. Alternatively, the pGEX(-) plasmid may get lost more 

easily during cell division, resulting in lower signal in DH5α cells because not all cells express 

the ilux proteins. Further experiments are therefore required to identify the rate-limiting step 

and to potentially further increase the brightness of bacterial bioluminescence. 
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Although bacterial luciferase has the disadvantage to be dimeric, it may be used to label 

structures within living cells. This could either be achieved by fusion of the α subunit or a 

fusion protein of α and β subunit to the protein of interest. Monomeric bacterial luciferases 

consisting of fused α and β subunit separated by different linkers were reported to be active, 

although sometimes having significantly reduced activity, depending on the type of bacterial 

luciferase, length and sequence of the linker, and temperature [84, 93]. In addition, the 

improved ilux proteins should also be applicable in mammalian cells after codon-optimization 

and therefore extend their use beyond imaging of bacterial cells. 

Other ways to modify bacterial bioluminescence are the generation of red-shifted mutants that 

would be superior for imaging of living animals due to better penetration of tissue for red light. 

However, the potential spectral shifts are likely to be of minor influence due to the small size 

and rigidity of the flavin chromophore. The introduction of artificial flavins with different spectral 

properties as discussed for LOV domains may be possible, but at the expense of making the 

lux system dependent on an exogenous luciferin. Another way to red-shift the emission and 

at the same time possibly enhance the overall quantum yield is the co-expression of a 

fluorescent protein like YFP (yellow fluorescent protein) as an acceptor and light emitter after 

resonance energy transfer. 

A different way for generating autonomous bioluminescence from enzymes other than 

bacterial luciferase is the synthesis of other luciferins in the cell. Since all luciferins are 

synthesized by cells in nature, co-expression of all enzymes that are involved in their 

biosynthesis would circumvent the requirement of luciferin addition. In this way, 

bioluminescence from other luciferases could be made completely genetically encodable and 

therefore expand their use for live cell imaging. 
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