Studien zur Totalsynthese von Disciformycin A und B

Von der Naturwissenschaftlichen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades Doktor der Naturwissenschaften (Dr. rer. nat.)

> genehmigte Dissertation von Michael Wolling, M. Sc.

> > 2017

Referent:Prof. Dr. Andreas KirschningKorreferent:Prof. Dr. Markus KalesseTag der Promotion:10.11.2017

Zusammenfassung

Michael Wolling

Studien zur Totalsynthese von Disciformycin A und B

Schlagworte: Totalsynthese, Disciformycin, Gulmirecin, Makrolacton, Polyketide

Die Sekundärmetabolite Disciformycin A und B wurden im Jahr 2014 von Müller *et al.* aus Extrakten des Myxobakteriums *Pyxidicoccus fallax* AndGT8 isoliert und charakterisiert. Bei den beiden Naturstoffen handelt es sich um 12-gliedrige Makrolactone mit antibiotischer Wirkung gegen GRAM-positive Bakterien. Ein besonderer Wert als potentielle Wirkstoffe ergibt sich durch die fehlende Kreuzresistenz mit anderen Antibiotika.

Ziel dieser Dissertation ist der Strukturbeweis der von Müller *et al.* postulierten Struktur. Dieser sollte über die Totalsynthese von Disciformycin A und B erreicht werden. Interessante schutzgruppenfreie Intermediate sollten auf ihre biologische Wirksamkeit getestet werden, um Erkenntnisse über die Struktur-Aktivitätsbeziehung der Wirkstoffe zu erhalten.

Als synthetisches Ziel dieser Arbeit wurde zunächst Disciformycin A gewählt. Mehrere getestete Methoden erlaubten keinen Zugang zu einem Schlüssel-Element in der Struktur von Disciformycin A. Neben einer intramolekularen Transfer-Ringschlussmetathese, einer intramolekularen Olefinierung und einer Ringschlussmetathese bzw. Transfer-Ringschlussmetathese zum δ -Lacton wurden auch eine Epoxid- und eine Makrolactonisierungs-Strategie verfolgt. Das gewünschte Strukturelement wurde in zwei Fällen erhalten, konnte aber im Folgenden nicht wie benötigt umgesetzt werden. Da im Rahmen der Makrolactonisierungs-Strategie ein Vorläufermolekül von Disciformycin B erhalten werden konnte, wurde im Weiteren an der Darstellung dieses Sekundärmetabolites gearbeitet. In dieser Arbeit konnte ein fortgeschrittenes Intermediat mit drei verbleibenden Stufen zu Disciformycin B synthetisiert werden.

Abstract

Michael Wolling

Studies towards the total synthesis of disciformycin A and B

Key words: Total synthesis, disciformycin, gulmirecin, macrolacton, polyketides

The secondary metabolites disciformycin A and B were isolated and characterized from extracts of the myxobacterium *Pyxidicoccus fallax* AndGT8 by Müller *et al.* in 2014. Both natural products are 12-membered macrolactons with activity against GRAM-positive bacteria. Neither one of the compounds shows a cross resistance with other antibiotics, indicating their value for further development as therapeutic agents.

The aim of this work was to elucidate the structures postulated by Müller *et al.*, through achieving an enantioselective the total synthesis of disciformycin A and B. Interesting protecting group free intermediates were supposed to be tested for their biological activity, to gain insight into the structure-activity relations of the natural products.

Disciformycin A was chosen as the first synthetic goal. Multiple approaches did not allow access to a key element in the structure of disciformycin A. Besides an intramolecular relay ring-closing metathesis, an intramolecular olefination, ring-closing metathesis/relay ring-closing metathesis towards a δ -lacton, an epoxid- and a macrolactonization strategy were investigated. The desired structural element was obtained in two cases, but could not be transformed as desired in the following steps. As the macrolactonization strategy yielded a precursor molecule for disciformycin B, a synthesis of this secondary metabolite was pursued. In this thesis an advanced synthetic intermediate *en* route to disciformycin B was synthesized, with three steps remaining to complete the total synthesis.

Inhaltsverzeichnis

Abkürzungsverzeichnis	1
1 Einleitung	3
1.1 Sekundärmetabolite als Quelle pharmazeutischer Wirkstoffe	3
1.2 Antibiotika	5
1.3 Myxobakterien	8
1.4 Disciformycine und Gulmirecine	10
1.4.1 Strukturaufklärung und Isolierung	10
1.4.2 Biologische Aktivität	12
1.4.3 Biosynthese	14
2. Problemstellung und Zielsetzung	17
3 Beschreibung und Diskussion der Ergebnisse	
3.1 Allgemeine Syntheseplanung	
3.2 Vorarbeiten	19
3.3 NAGAO/Epoxid Route	20
3.3.1 Retrosynthese	20
3.3.2 NAGAO-Aldolreaktion	21
3.3.3 Instabilität des olefinischen Strukturmotivs	22
3.4 Lactat/Epoxid Route	23
3.4.1 Retrosynthese	23
3.4.2 Sakurai-Allylierung	23
3.4.3 Evans-Aldolreaktion	25
3.4.4 Synthese des Epoxids	
3.4.4.1 Synthese des Epoxids – Route A	27
3.4.4.2 Synthese des Epoxids – Route B	28
3.4.5 Synthese des Nukleophils	29
3.5 Lactat/RCM Route	32
3.5.1 Retrosynthese	32
3.5.2 Zugang zum Homoallylalkohol	32
3.5.2.1 Synthese des WEINREB-Amids	32
3.5.2.2 Diastereoselektive Reduktion	
3.5.3 RCM zum δ -Lacton	38
3.5.4 RRCM zum δ -Lacton	40
3.5.5 Verseifung des δ -Lactons	42
3.6 RRCM-Makrozyklisierung	43

3.6.1 Retrosynthese	43
3.6.2 RRCM-Makrozyklisierung mit Keton	
3.6.3 RRCM-Makrozyklisierung mit geschütztem Alkohol	47
3.6.3.1 RRCM-Makrozyklisierung mit monosubstituierter Doppelbindung	47
3.6.3.2 RRCM-Makrozyklisierung mit höher substituierter Doppelbindung	50
3.7 Makrolactonisierung	52
3.7.1 Retrosynthese	52
3.7.2 Zum (<i>E</i>)-konfigurierten Vorläufer	53
3.7.2.1 Kreuz-Metathese	53
3.7.2.2 Olefinierung	54
3.7.3 Zum (Z)-konfigurierten Vorläufer	56
3.7.4 Makrolactonisierung	58
3.7.4.1 (<i>E</i>)-Vorläufer	58
3.7.4.2 (<i>Z</i>)-Vorläufer	59
3.7.4.3 Computergestützte molekulare Modelierung	60
3.7.4.4 Isomerisierungsversuche	61
3.8 Intramolekulare Olefinierung	63
3.8.1 Retrosynthese	63
3.8.2 Bis-(Trifluorethanol)-phosphonat	64
3.8.3 Di-(2- <i>t</i> -Bu-phenol)-phosphonat	65
3.8.4 Bis-Ethanol-phosphonat	67
3.9 Endspiel	69
3.9.1 Retrosynthese	69
3.9.2 WITTIG Reaktion	69
3.9.3 Entschützungen	71
3.9.4 Glykosylierung	
4 Zusammenfassung und Ausblick	
4.1 Zusammenfassung	78
4.2 Ausblick	80
5 Experimenteller Teil	82
5.1 Computergestützte molekulare Modelierung	82
5.1.1 Disciformycin A (9) (CHCl ₃)	82
5.1.2 Disciformycin B (10) (CHCl ₃)	84
5.1.3 2- <i>epi</i> -Disciformycin B (14) (CHCl ₃)	87
5.1.4 Disciformycin A (9) (H ₂ O)	89

5.1.5 Disciformycin B (10) (H_2O)	91
5.1.6 2- <i>epi</i> -Disciformycin B (14) (H ₂ O)	94
5.1.7 (Z)-konfigurierter Makrozyklus 114 (CHCl ₃)	96
5.1.8 (E)-konfigurierter Makrozyklus 128 (CHCl₃)	99
5.1.9 Isomerisierter 2-(S)-Makrozyklus 146 (CHCl₃)	103
5.1.10 Isomerisierter 2-(<i>R</i>)-Makrozyklus 147 (CHCl₃)	106
5.2 Chemische Arbeiten	110
5.2.1 Reagenzien und Bausteine	113
5.2.2 NAGAO/Epoxid Route	120
5.2.3 Lactat/Epoxid Route	123
5.2.4 Lactat/RCM Route	131
5.2.5 RRCM Makrozyklisierung	141
5.2.6 Makrolactonisierung	143
5.2.7 Intramolekulare Olefinierung	150
5.2.8 Endspiel	152
6 Spektrenanhang	161

Abkürzungsverzeichnis

°C	Grad Celsius
Ac	Acetyl
Bn	Benzyl
br	breites Signal (¹ H-NMR)
brsm	engl. based on recovered starting material)
Bu	Butyl
С	Konzentration
CBS	Corey-Bakshi-Shibata
COSY	engl. correlation spectroscopy
CSA	Camphersulfonsäure
d	Dublett (¹ H-NMR)
DBBP	4,4'Di- <i>t</i> -Butylbiphenyl
DCC	Dicyclohexylcarbodiimid
DDQ	2,3-Dichlor-5,6-dicyano-1,4-benzochinon
DIBAL-H	Diisobutylaluminiumhydrid
DIPEA	Diisopropylethylamin
DMAC	Dimethylacetamid
DMAP	4-(Dimethylamino)-pyridin
DME	Ethylenglycoldimethylether
DMF	N,N-Dimethylformamid
DMP	Dess-Martin-Periodinan
DMPU	Dimethylpropylenharnstoff (engl. N,N'-Dimethylpropyleneurea)
dr.	Diastereomerenverhältnis (engl. diastereomeric ratio)
EDC	1-Ethyl-3-(3-dimethylaminopropyl)carbodiimid
Et	Ethyl
et al.	und andere
FA	Ameisensäure (<i>engl.</i> Formic acid)
h	Stunde (<i>engl.</i> Hour)
НМВС	engl. heteronuclear multiple bond correlation
HMPA	Hexamethylphosphorsäuretriamid
HRMS	Hochauflösende Massenspektrometrie (engl. high resolution mass spectroscopy)
HSQC	engl. heteronuclear single quantum coherence
Hz	Hertz
KHMDS	Kaliumhexamethyldisilazan
Lihmds	Lithiumhexamethyldisilazan
Lit.	Literatur
LMCS	engl. mixed low-frequency-mode conformational search
m	Multiplett (¹ H-NMR)
Me	Methyl
MRSA	Methicillin-resistente Staphylococcus aureus

MTM	Methylthiomethyl
MTPA	lpha-Methoxy- $lpha$ -trifluoromethylphenylessigsäure (<i>engl.</i> $lpha$ -Methoxy- $lpha$ -trifluoromethylphenylacetic acid)
<i>n-</i> Bu	<i>n</i> -Butyl
NMMO	<i>N</i> -Methylmorpholin- <i>N</i> -oxid
NMR	Kernspinresonanzspektroskopie (engl. nuclear magnetic resonance spectroscopy)
NOESY	engl. nuclear overhauser enhancement and exchange spectroscopy
р	primär (¹³ C-NMR)
PG	Schutzgruppe (<i>engl.</i> protecting group)
Ph	Phenyl
PMB	<i>p</i> -Methoxybenzyl
ppm	engl. parts per million
PPTS	Pyridinium- <i>p</i> -toluolsulfonat
Ру	Pyridin
q	Quartett (¹ H-NMR)
q	quartär (¹³ C-NMR)
RCM	Ringschlussmetathese (engl. ring-closing metathesis)
RRCM	Transfer-Ringschlussmetathese (engl. relay ring-closing metathesis)
RT	Raumtemperatur
S	Singulett (¹ H-NMR)
S	sekundär (¹³ C-NMR)
Sdp.	Siedepunkt
SEM	2-(Trimethylsilyl)ethoxymethyl
sep	Septett (¹ H-NMR)
Smp.	Schmelzpunkt
t	Triplett (¹ H-NMR)
t	tertiär (¹³ C-NMR)
TASF	Tris(dimethylamino)sulfonium difluortrimethylsilicat
TBAF	Tetrabutylammoniumfluorid
TBS	<i>t</i> -Butyldimethylsilyl
t-Bu	<i>t</i> -Butyl
TCBC	2,4,6-Trichlorbenzoylchlorid
Tf	Triflat
TFA	Trifluoressigsäure
TFE	Trifluorethanol
THF	Tetrahydrofuran
TMS	Trimethylsilyl
VMAR	vinyloge Mukaiyama-Aldolreaktion
δ	chemische Verschiebung (NMR)

1 Einleitung

1.1 Sekundärmetabolite als Quelle pharmazeutischer Wirkstoffe

Alle von Lebewesen produzierten Stoffe lassen sich in Primär- und Sekundärmetabolite unterteilen. Primärmetabolite sind Verbindungen des Stoffwechsels, welche direkt essentiell für das Überleben sind.¹ Hierunter fallen alle Stoffe die für den Energiestoffwechsel, Wachstum und Fortpflanzung benötigt werden. Als wichtige Beispiele sind Nukleinsäuren, Aminosäuren, Proteine, Zucker und Lipide zu nennen. Diese Verbindungen sind in allen Lebewesen grundsätzlich identisch.²

Im Gegensatz hierzu stehen die Sekundärmetabolite, welche vor allem die evolutionäre Fitness im Wechselspiel mit anderen Organismen verbessern.¹ Da es sich bei diesen oftmals um Fressfeinde handelt, dienen die meisten Stoffe der Verteidigung.^{3,4} Hierbei findet sich insgesamt eine Wirkung gegen ein breites Spektrum aus Mikroben, Insekten, Pflanzen und Tieren. Weitere bedeutende Funktionen von Sekundärmetaboliten sind Botenstoffe in symbiotischen Verbindungen, Sexualhormone, Signalstoffe für die Differenzierung von Zellen und Metall-Ion-Transporter.²

Viele dieser Stoffe sind für medizinische Anwendungen von Interesse, da sie bereits von der Natur beziehungsweise der Evolution auf ihre Wirkung hin optimiert wurden. Dies trifft jedoch nicht auf alle Sekundärstoffe zu. Beispielsweise wirkt Salicylsäure in Weidenrinden als Hormon, im Menschen hingegen als entzündungshemmendes Schmerzmittel.⁵

Tatsächlich wurden Naturstoffe schon seit Jahrtausenden ohne Wissen ihrer Existenz, zum Beispiel in Pflanzenextrakten, verwendet. Vor der Entdeckung der Aktivität des Penicillins im Jahr 1928 waren bereits einige Sekundärstoffe und deren biologische Wirkung bekannt. Hierbei handelte es sich hauptsächlich um pflanzliche Sekundärmetabolite.^{1,6} Erst in den 1940er Jahren, mit Markteinführung des Penicillins, wurde das große Potential von mikrobiellen Sekundärstoffen für die Medizin erkannt. Die pharmazeutische Industrie begann nun eine breite Untersuchung von Sekundärmetaboliten auf ihre antibiotische, antifungale und cytotoxische Aktivität.^{2,7}

¹⁾ L. C. Vining, Annu. Rev. Microbiol. 1990, 44, 395-427.

²⁾ A. L. Demain, A. Fang, *The Natural Functions of Secondary Metabolites*. In: A. Fiechter, *History of Modern Biotechnology I. Advances in Biochemical Engineering/Biotechnology, Vol. 69*, Springer-Verlag Berlin Heidelberg **2000**.

³⁾ M. J. Stone, D. H. Williams, Mol. Microbiol. 1992, 6, 29-34.

⁴⁾ D. H. Williams, M. J. Stone, P. R. Hauck, S. K. Rahman, J. Nat. Prod. 1989, 52, 1189-1208.

⁵⁾ I. Raskin, Annu. Rev. Plant Physiol. Plant Mol. Biol. 1992, 43, 439-463.

⁶⁾ Für näheres hierzu siehe Kapitel 1.2.

⁷⁾ D. D. Baker, M. Chu, U. Oza, V. Rajgarhia, Nat. Prod. Rep. 2007, 24, 1225-1244.

Auch wenn sich die Aufmerksamkeit in den letzten Jahrzehnten in Richtung synthetischer Verbindungen entwickelte, sind Sekundärstoffe für die Entwicklung von Medikamenten immer noch grundlegend bedeutsam.⁸ Abbildung 1 zeigt alle 1562 im Zeitraum von 1981 bis 2014 zugelassenen Wirkstoffe aufgeschlüsselt nach ihrer Herkunft.⁹ 27 % der Wirkstoffe sind unmodifizierte Sekundärmetabolite (V, B, N, NB). Weiterhin handelt es sich bei 35 % der Wirkstoffe um Derivate von Naturstoffen oder synthetische Wirkstoffe deren Pharmakophor von Naturstoffen übernommen wurde (ND, S*, S*/NM). Die verbleibenden 38 % entfallen auf Stoffe die durch Untersuchungen von Substanzbibliotheken zufällig entdeckt wurden und keinerlei Vorbild in der Natur haben (S, S/NM).

Abbildung 1: Ursprung aller im Zeitraum von 1981-2014 zugelassenen 1562 Wirkstoffe. B= Biologisches Makromolekül (Protein oder Peptid); N= unveränderter Naturstoff; NB= Pflanzlicher Naturstoff; ND= Naturstoffderivat; S= Synthetischer Wirkstoff (durch Untersuchung von Substanzbibliotheken entdeckt), S*= Synthetischer Wirkstoff (Naturstoff-Pharmakophor); V= Impfstoff; /NM= Kompetitiver Inhibitor eines Naturstoffs.¹⁰

⁸⁾ F. von Nussbaum, M. Brands, B. Hinzen, S. Weigand, D. Häbich, Angew. Chem. Int. Ed. 2006, 45, 5072-5129.

⁹⁾ D. J. Newmann, G. M. Cragg, J. Nat. Prod. 2016, 79, 629-661.

¹⁰⁾ Abbildung nach: 9) D. J. Newmann, G. M. Cragg, J. Nat. Prod. 2016, 79, 629-661.

1.2 Antibiotika

Im Vergleich zu synthetischen Verbindungen spielen Naturstoffe bei den Antibiotika eine besonders wichtige Rolle. So sind nur drei klinisch eingesetzte Verbindungsklassen ausschließlich präparativ erzeugt.¹¹

Dennoch ist das erste Antibiotikum synthetischen Ursprungs. Die Arsenverbindung Arsphenamin kam, unter dem Namen Salvarsan[®], im Jahr 1910 auf den Markt (Abbildung 2). Dieser Stoff wurde von Paul Ehrlich entwickelt und ist gegen Syphilis aktiv, eine bis dahin nicht heilbare bakterielle Infektionserkrankung. Bei Salvarsan[®] handelt es sich um eine Verbindung, die durch systematische Untersuchungen einer großen Zahl synthetischer Substanzen entdeckt wurde.¹²

Abbildung 2: Struktur von Arsphenamin. Es handelt sich bei dem Wirkstoff hauptsächlich um ein Gemisch der beiden gezeigten Ringgrößen.¹³

Sulfamidochrysoidin (1) wurde 1934 bei Bayer in Wuppertal-Elberfeld hergestellt und seine antibakterielle Wirkung 1935 entdeckt (Abbildung 3). Die Markteinführung erfolgte ebenfalls im Jahr 1935 unter dem Namen Prontosil[®]. Dieser Azofarbstoff ist der erste Vertreter der Sulfonamide und ebenfalls kein Naturstoff.¹²

Abbildung 3: Struktur von Sulfamidochrysoidin (1).

12) R. I. Aminov, Front. Microbiol. 2010, 1, 134-140.

¹¹⁾ K. M. G. O'Connell, J. T. Hodgkinson, H. F. Sore, M. Welch, G. P. C. Salmond, D. R. Spring, *Angew. Chem. Int. Ed.* 2013, *52*, 10706-10733.

¹³⁾ N. C. Lloyd, H. W. Morgan, B. K. Nicholson, R. S. Ronimus, Angew. Chem. Int. Ed. 2005, 44, 941-944.

Die Wirkung von Penicillin (2) wurde bereits im Jahr 1928 von Alexander Fleming entdeckt (Abbildung 4). Penicillin (2) dient verschiedenen Schimmelpilzen als Abwehr gegen Bakterien.¹⁴ Die Markteinführung und Massenproduktion dieses Naturstoffs begann in den 1940er Jahren und war aufgrund seines breiten Wirkspektrums von wesentlich größerer Bedeutung als die Einführung der beiden vorher genannten Antibiotika. Es erlaubte die Behandlung einer Vielzahl bakteriell verursachter, bis dahin oftmals tödlich verlaufender, Infektionskrankheiten. Die Entdeckung dieser biologisch aktiven Substanz aus einem Pilz war der Startschuss für eine breite Untersuchung von Mikroorganismen auf biologisch aktive Substanzen.¹²

Abbildung 4: Struktur von Penicillin G (2).

Zwischen den 1940er und 1960er Jahren wurden die meisten der heute bekannten Antibiotikaklassen entdeckt. Dieser Zeitraum wird darum auch als goldenes Zeitalter der Antibiotikaentdeckung bezeichnet.¹⁵ Danach stagnierte die Entwicklung neuer Antibiotika, da die meisten der damals einfach zugänglichen Naturstoffe identifiziert waren. Außerdem entwickelte sich eine gewisse Sorglosigkeit gegenüber Infektionskrankheiten, da diese mit der Vielzahl bekannter Antibiotika einfach zu behandeln waren. Dies führte zu einer Innovationslücke von annährend 40 Jahren, die mit der Einführung des Oxazolidinons Linezolid im Jahr 2000 geschlossen wurde.¹⁶ Die Entwicklung neuer Antibiotika ist aufgrund der unvermeidlichen Resistenzbildung in Bakterien dringend nötig. Resistenzen treten durch den massiven Einsatz von Antibiotika und den damit verbundenen Selektionsdruck innerhalb weniger Jahre auf (Abbildung 5). Resistenzen entstehen durch Mutation im bakteriellen Genom und können sich dann über horizontalen Gentransfer über verschiedene Bakterienzellen und -stämme verbreiten. Dies ist neben der hohen Mutationsrate die Hauptursache für die schnelle Bildung und Verbreitung von Resistenzen in Bakterien.¹⁷ Besonders problematisch wird es, wenn ein Bakterium mehrere Resistenzen aufweist. Man spricht dann von einem multiresistenten Keim, welcher schwierig bis im schlimmsten Fall gar nicht zu behandeln ist. Das Fehlen neuer Antibiotika wird vor allem wegen dieser multiresistenten pathogenen Keime zu einem immer drängenderen medizinischen Problem.

¹⁴⁾ A. Fleming, Brit. J. Exp. Pathol. 1929, 10, 226-236.

¹⁵⁾ J. Davies, Can. J. Infect. Dis. Med. Microbiol. 2006, 17, 287-290.

¹⁶⁾ C. Walsh, Nat. Rev. Microbiol. 2003, 1, 65-70.

¹⁷⁾ M. N. Alekshun, S. B. Levy, Cell 2007, 128, 1037-1050.

Abbildung 5: Zeitpunkt der Markteinführung sowie der ersten berichteten Resistenz ausgewählter Antibiotika.¹⁸

Eine Strategie zur Entdeckung neuer Antibiotika aus der Natur, beinhaltet die Untersuchung wenig bis gar nicht kultivierbarer Mikroben. Es wird geschätzt, dass nur ca. 1 % des im Erdboden vorhandenen mikrobiellen Lebens überhaupt kultivierbar und somit untersucht worden ist.¹⁹ Mittels Genomanalyse dieser Organismen können mögliche Biosynthesegene identifiziert und deren Funktion durch Abgleich mit Datenbanken entschlüsselt werden. Außerdem besteht die Möglichkeit, diese Gene auf kultivierbare Organismen zu übertragen, was die Erzeugung und Untersuchung neuer Sekundärstoffe erlauben würde.¹¹

¹⁸⁾ Abbildung nach: 11) K. M. G. O'Connell, J. T. Hodgkinson, H. F. Sore, M. Welch, G. P. C. Salmond, D. R. Spring, Angew. Chem. Int. Ed. 2013, 52, 10706-10733.

¹⁹⁾ I. A. MacNell, C. L. Tlong, C. Minor, P. R. August, T. H. Grossman, K. A. Lolacono, B. A. Lynch, T. Phillips, S. Narula, R. Sundaramoorthl, A. Tyler, T. Aldredge, H. Long, M. Gilman, D. Holt, M. S. Osburne, *J. Mol. Microbiol. Biotechnol.* **2001**, *3*, 301-308.

Seite 8

1.3 Myxobakterien

Myxobakterien sind GRAM-negative Bakterien die vor allem im Erdreich auftreten. Sie wurden in allen Klimazonen und sogar in marinen Sedimenten nachgewiesen. Eine Spezialisierung auf die Zersetzung von Biomakromolekülen, sowie räuberisches Verhalten sind bekannt. Myxobakterien können sich gleitend fortbewegen. Als soziale Bakterien bilden sie Schwärme, welche auch als Jagdgruppen dienen. Die Bildung von Fruchtkörpern im Falle eines Nährstoffmangels ist ein unter Bakterien einzigartiges Merkmal der Myxobakterien (Abbildung 6). Tatsächlich sind Myxobakterien eher als multizelluläre, denn als einzelzelluläre, Lebensform anzusehen.^{20,21}

Abbildung 6: Fruchtkörper von Chondromyces apiculatus (links) und Corallococcus coralloides (rechts).²²

Wegen der im Schwarm nötigen Kommunikation, aber auch wegen des räuberischen Verhaltens, erzeugen Myxobakterien eine Vielzahl von Sekundärmetaboliten. Da sich die Kultivierung der Bakterien als schwierig darstellt, wurden erst in den letzten Jahrzehnten größere Forschritte in der Erforschung der vielfältigen Welt der myxobakteriellen Naturstoffe gemacht. Bis heute konnten insgesamt ungefähr 100 neue Naturstoff-Grundgerüste, sowie mehr als 500 Derivate selbiger, aus Myxobakterien identifiziert werden.²³

Vermutlich handelt es sich hierbei aber nur um einen Ausschnitt der vorhandenen Sekundärmetabolite, da die bisher entdeckten Naturstoffe fast nur durch Kultivierung und Isolation identifiziert wurden. Die vollständige Genomsequenzierung einzelner Stämme zeigt eine weit größere Anzahl an Biosynthesegenen an. Die dazu gehörigen Naturstoffe konnten fermentativ noch nicht erzeugt werden.²⁴

21) J. Munoz-Dorado, F. J. Marcos-Torres, E. Garcia-Bravo, A. Moraleda-Munoz, J. Perez, Front. Microbiol. 2016, 7, 781-798.

²⁰⁾ H. Reichenbach, J. Ind. Microbiol. Biotechnol. 2001, 27, 149-156.

²²⁾ https://www.dsmz.de/home/press/media-center/pictures/microorganisms.html (abgerufen am 02.06.2017).

²³⁾ K. J. Weissmann, R. Müller, Bioorg. Med. Chem. 2009, 17, 2121-2136.

²⁴⁾ K. J. Weissmann, R. Müller, Nat. Prod. Rep. 2010, 27, 1276-1295.

Die von Myxobakterien produzierten Naturstoffklassen umfassen vor allem Polyketide, nicht-ribosomale Polypeptide und Polyketid-Peptid-Hybride (Abbildung 7).²⁵ Bei den meisten Verbindungen handelt es sich um Antimykotika (54 %) und Antibiotika (29 %), was sich auf das räuberische Verhalten der Myxobakterien zurückführen lässt. Es sind ebenfalls cytostatische oder cytotoxische, herbizide, insektizide, immunsuppressive oder gegen Malaria wirkende myxobakterielle Verbindungen bekannt.²³

Abbildung 7: Ausgewählte Beispiele der verschiedenen in Myxobakterien produzierten Naturstoffklassen. Aurafuron A (**3**)= Polyketid, Argyrin A (**4**)= Polypeptid, Tubulysin A (**5**)= Polyketid-Peptid-Hybrid.

Beispiele für ungewöhnliche Strukturelemente in myxobakteriellen Naturstoffen sind in Abbildung 8 dargestellt. Die Nitrogruppe in Pyrrollnitrin (6) ist besonders selten in Naturstoffen zu finden. Bei Tatrolon A (7) handelt es sich um ein Boronat, welches durch ein Polyketid-Dimer gebildet wird. Thiangazol (8) zeigt einen iterativen Aufbau dreier identischer Thiazoline.

Abbildung 8: Ausgewählte myxobakterielle Naturstoffe.²⁰

²⁵⁾ M. Nett, G. M. König, Nat. Prod. Rep. 2007, 24, 1245-1261.

1.4 Disciformycine und Gulmirecine

1.4.1 Strukturaufklärung und Isolierung

Die Strukturen der Naturstoffe Disciformycin A (**9**) und Disciformycin B (**10**) wurden im Jahr 2014 von Rolf Müller *et al.* beschrieben (Abbildung 9).²⁶ Die Isolierung beider Makrolactone gelang aus dem Myxobakterienstamm *Pyxidicoccus fallax* AndGT8 über eine Fermentation im 70 l Maßstab. Hierbei wurden 25.4 mg von Disciformycin A (**9**) und 7.6 mg von Disciformycin B (**10**) erhalten.

Die strukturell eng verwandten Naturstoffe Gulmirecin A (**11**) und Gulmirecin B (**12**) wurden ebenfalls im Jahr 2014 beschrieben (Abbildung 9).²⁷ Die Isolation gelang nach einer Fermentation des Myxobakterienstamms *Pyxidicoccus fallax* HKI 727 im 50 l Maßstab. Von Gulmirecin A (**11**) wurden 8.2 mg, von Gulmirecin B (**12**) wurden 2.1 mg erhalten.

Abbildung 9: Strukturen von Disciformycin A (9), Disciformycin B (10), Gulmirecin A (11) und Gulmirecin B (12).

Auffallend ist die strukturelle Ähnlichkeit der Naturstoffe. Die einzigen strukturellen Unterschiede, abgesehen von dem fehlenden Isovaleriansäureester an O-6 bei Gulmirecin B (**12**), finden sich zwischen den Carbonyl-Funktionen an C-1 bis C-5.

²⁶⁾ F. Surup, K. Viehring, K. I. Mohr, J. Herrmann, R. Jansen, R. Müller, Angew. Chem. Int. Ed. 2014, 53, 1-5.

²⁷⁾ S. Schieferdecker, S. König, C. Weigel, H. Dahse, O. Werz, M. Nett, Chem. Eur. J. 2014, 20, 15933-15940.

1 Einleitung

Die Strukturaufklärung von Disciformycin A (**9**) erfolgte über NMR-spektroskopische Methoden und ESI-HRMS. Mithilfe von ROESY-Korrelationen und Kopplungskonstanten konnte die relative Konfiguration des Makrolactons aufgeklärt werden. Die Identität der D-Arabinose-Einheit wurde über Abtrennung, Derivatisierung und Vergleich des Derivats mit kommerziell erhältlichen Zuckerderivaten über GC-MS bestimmt. Über die ROESY-Korrelationen mit dem Zucker konnte die absolute Konfiguration des Makrozyklus geschlussfolgert werden. Die Konfiguration des Methyl-Stereozentrums an C-2 in Disciformycin B (**10**) wurde ebenfalls über ROESY-Korrelation bestimmt, wobei hierzu ein 3D-Modell des Naturstoffs hinzugezogen wurde. Aufgrund der großen Kopplungskonstante wurde die in Konjugation zum Keton stehende Doppelbindung als (*E*)-konfiguriert angenommen.

Gulmirecin A (**11**) wurde mittels NMR-Spektroskopie und Massenspektrometrie untersucht. Der Nachweis der relativen Konfiguration erfolgte über NOESY-Korrelationen. Ähnlich wie bei Disciformycin A erfolgte die Bestimmung der absoluten Konfiguration des Zuckers durch Abtrennung, Derivatisierung und Vergleich mit kommerziell erhältlichen Zucker-Derivaten. Aus einer bioinformatischen Analyse des Genclusters wurde die absolute Konfiguration des Aglykons bestimmt. Die Struktur von Gulmirecin B (**12**) wurde ebenfalls aufgrund von NMR-Spektroskopie, Massenspektrometrie sowie durch Vergleich mit Gulmirecin A vorgeschlagen.

Für einen eindeutigen Nachweis der aufgeklärten Strukturen müssen diese vier Naturstoffe totalsynthetisch hergestellt werden.

1.4.2 Biologische Aktivität

Disciformycin A (**9**) und Disciformycin B (**10**) zeigen generell eine hohe Aktivität gegenüber GRAMpositiven Bakterien, speziell gegen MRSA- und VRSA-Stämme (Tabelle 1). Da sich keine Kreuzresistenz mit anderen bekannten Antibiotika zeigt, wirken die Naturstoffe folglich über ein neues biologisches *Target*. Disciformycin B (**10**) zeigt generell eine höhere Aktivität als Disciformycin A (**9**). Das Reserve-Antibiotikum Vancomycin ist in den meisten Fällen aktiver als beide Disciformycine.²⁶

Tabelle 1: Biologische Aktivitäten von Disciformycin A (**9**) und Disciformycin B (**10**), sowie Vancomycin gegenüber Bakterien (MHK in μ g/mL).²⁶

	Disciformycin A (9)	Disciformycin B (10)	Vancomycin
Bacillus subtilis DSM-10	4.2	0.8	0.25
Nocardioides simplex DSM-20130	33.3	16.6	0.42
Paenibacillus polymyxa DSM-36	16.6	16.6	-
Staphylococcus carnosus DSM-20501	7.8	2.4	0.25
Staphylococcus areus Newman	8.0	1.2	0.5
Staphylococcus areus DSM-11822 (MRSA)	4.0	0.6	1.0
Staphylococcus areus N315 (MRSA)	8.0	1.2	1.0
Staphylococcus areus Mu50 (MRSA/VRSA)	2.0	0.6	16.0

Gegen Säugetierzellen konnte keine Aktivität festgestellt werden, was für die Anwendung als Antibiotikum von essentieller Bedeutung ist (Tabelle 2).

Tabelle 2: Biologische Aktivitäten von Discifor	mycin A (9) und Disciformycin B (10)	, gegenüber Säugetierzellen (IC $_{50}$ in μ M). 26
---	--	--

	Disciformycin A (9)	Disciformycin B (10)
Colon carcinoma cells HCT-116	>10	>10
Murine fibroblast-like cells L929	>10	>10
Chinese hamster ovary cells CHO-K1	>10	>10

Gulmirecin A (**11**) zeigt ebenfalls nur eine Aktivität gegenüber GRAM-positiven Bakterien, Gulmirecin B (**12**) ist im Vergleich erkennbar weniger aktiv (Tabelle 3).²⁷

	Gulmirecin A (11)	Gulmirecin B (12)
Bacillus subtilis	35	k.A.
Staphylococcus areus	29	17
Staphylococcus auricularis	31	19
Mycobakterium vaccae	17	k.A.
Escherichia coli	k.A.	k.A.
Pseudomonas aeruginosa	k.A.	k.A.
Sporobolomyces salmonicolor	k.A.	k.A.
Candida albicans	k.A.	k.A.
Penicillium notatum	k.A.	k.A.

Tabelle 3: Biologische Aktivitäten von Gulmirecin A (**11**) und Gulmirecin B (**12**). Agardiffusionstest, Werte geben den Durchmesser der jeweiligen Inhibierungszone an; keine Aktivität (k.A.).²⁷

Da die biologischen Aktivitäten von Gulmirecin A (**11**) und Gulmirecin B (**12**) über einen Agardiffusionstest bestimmt wurden, sind sie nur qualitativ mit den Ergebnissen für die Disciformycine vergleichbar (Tabelle 1). Generell wirken alle vier Naturstoffe gegen GRAM-positive Bakterien.

1.4.3 Biosynthese

Das Biosynthese-Gencluster für die Disciformycine wurde als PKS vom Typ 1, bestehend aus sechs seperaten Domänen identifiziert (Schema 1). Von besonderem Interesse ist Modul DifF, hier wird durch die Ketoreduktase (KR) ein Alkohol gebildet, welcher durch die Dehydratase (DH) eliminiert wird. Hierbei kann in Konjugation zum Ester oder zum Keton eliminiert werden, was zur Bildung von Disciformycin A (**9**) und Disciformycin B (**10**) führen soll. Bei der in DifF dargestellten Enoylreduktase (ER) handelt es sich nur um eine Vermutung. Die Autoren gehen außerdem davon aus, dass dieses Enzym inaktiv ist. Desweiteren wurden zwei Gene unbekannter Funktion (*difH* und *difl*) im Gencluster identifiziert.

Als post-PKS Schritte wurde eine Oxidation, sowie die Installation des Zuckers und des Esters identifiziert.²⁶

Schema 1: Vorgeschlagene Disciformycin B (**10**) Biosynthese.²⁸ ACP= acyl carrier protein; AT= Acyl Transferase; CYP= Cytochrom P450; DH= Dehydrogenase; ER= Enoyl Reduktase; KS= Ketosynthetase; KR= Ketoreduktase; TE= Thioesterase.²⁶

Das Biosynthese-Gencluster für die Gulmirecine wurde ebenfalls als PKS vom Typ 1, bestehend aus sechs separaten Domänen identifiziert (Schema 2). Generell zeigen die Biosynthesen eine sehr hohe Übereinstimmung. Im Falle von Gulmirecin A (**11**) gehen die Autoren in Modul GulF (vergleichbar mit

²⁸⁾ nach: 26) F. Surup, K. Viehring, K. I. Mohr, J. Herrmann, R. Jansen, R. Müller, Angew. Chem. Int. Ed. 2014, 53, 1-5.

DifF) von einer inaktiven Dehydratase (DH) und Enoylredukase (ER) aus. Ein Vorschlag zur Biosynthese von Gulmirecin B (**12**) wurde in der Publikation nicht erwähnt.²⁷

Schema 2: Vorgeschlagene Biosynthese von Gulmirecin A (**11**).²⁹ ACP= acyl carrier protein; AT= Acyl Transferase; CYP= Cytochrom P450; DH= Dehydrogenase; ER= Enoyl Reduktase; KS= Ketosynthetase; KR= Ketoreduktase; TE= Thioesterase.²⁷

Neben der hohen strukturellen Ähnlichkeit der Disciformycine und Gulmirecine, sind auch die Biosynthese-Module der Naturstoffe fast identisch. Da außerdem auch keine Erklärung für die Bildung von Gulmirecin B (**12**) und Disciformycin A (**9**) gegeben ist, wurde im Rahmen dieser Arbeit folgende Hypothese aufgestellt:

Die von den Autoren in beiden Fällen als inaktiv vermuteten Domänen (DH+ER in DifF bzw. GulF) sind aktiv und reduzieren somit zum Aliphaten. Verbindung **13** wird somit als Produkt der Polyketidsynthase in beiden Mikroorganismen gebildet (Schema 3). Diese wird im Folgenden in post-PKS Modifikationen weiter umgesetzt. Durch Oxidation mit Cytochrom P450 (CYP) an C-6, gefolgt von einer Glykosylierung, wird zunächst Gulmirecin B (**12**) gebildet. Dieses wird nun mit Cytochrom P450 (CYP) an C-3 oxidiert. Die nun folgende Installation des Esters führt zur Bildung von Gulmirecin A (**11**). Bleibt die Oxidation, wie in Gulmirecin B (**12**) aus, ist eine Installation des Esters aufgrund substratspezifischer Erkennung des entsprechenden Enzyms vermutlich nicht möglich.

²⁹⁾ nach: 27) S. Schieferdecker, S. König, C. Weigel, H. Dahse, O. Werz, M. Nett, Chem. Eur. J. 2014, 20, 15933-15940.

Schema 3: Vorgeschlagene Biosynthese von Gulmirecin A und B über einen gemeinsamen Vorläufer 13.

Zur Bildung der Disciformycine aus Gulmirecin A (**11**) muss der Alkohol an C-3 eliminiert werden. Da von den Autoren keine chemische Instabilität von Gulmirecin A (**11**) beschrieben wurde, findet diese Eliminierung vermutlich nur enzymatisch katalysiert statt (Schema 4). Als mögliche Kandidaten bieten sich die in den beiden Genen im Disciformycin Gencluster (*difH* und *difl*) codierten Enzyme bisher unbekannter Funktion (DifH und Difl) an.

Schema 4: Vorgeschlagene Bildung der Disciformycine aus Gulmirecin A (11).

Dieses Postulat erklärt die aus den Publikationen bekannten Informationen über beide Biosynthesen wesentlich schlüssiger als die unabhängig voneinander aufgestellten Vermutungen. Außerdem wurde die Biosynthese aller vier Verbindungen erklärt.

2. Problemstellung und Zielsetzung

Das Ziel dieser Arbeit ist die Entwicklung eines synthetischen Zugangs zu Disciformycin A (**9**) und B (**10**). Die enge strukturelle Verwandtschaft der beiden Disciformycine sollte eine Überführung in den jeweils anderen Naturstoff innerhalb der letzten Stufen erlauben (Schema 5).

Schema 5: Geplante Überführung der Disciformycine ineinander.

Eine Totalsynthese der Disciformycine soll zunächst als Strukturbeweis dienen. Interessante schutzgruppenfreie Intermediate sollen auf ihre biologische Wirksamkeit getestet werden, um Erkenntnisse über die Struktur-Aktivitätsbeziehung der Wirkstoffe zu erhalten.

Da die Strukturen der Gulmirecine A (**11**) und B (**12**) erst im Verlauf dieser Dissertation publiziert wurden, konnten diese bei der synthetischen Planung nicht berücksichtigt werden.

3 Beschreibung und Diskussion der Ergebnisse

3.1 Allgemeine Syntheseplanung

Aufgrund der strukturellen Verwandtschaft der Disciformycine A (9) und B (10) soll zunächst einer der beiden Naturstoffe totalsynthetisch hergestellt werden, um dann in das isomere Disciformycin überführt zu werden. Somit soll ein einfacher Zugang zu beiden Naturstoffen mit nur einer Totalsynthese erreicht werden. Hierzu bietet es sich an, den thermodynamisch labileren Naturstoff zu erzeugen, um eine einfache Isomerisierung zu ermöglichen.

Hierfür wurden die Grundenergien von Disciformycin A (9) und B (10), sowie von 2-*epi*-Disciformycin B (14), jeweils in Chloroform und Wasser berechnet (Tabelle 4).³⁰ In beiden Lösungsmitteln zeigt Disciformycin A (9) die höchste Grundenergie, gefolgt von 2-*epi*-Disciformycin B (14) und schlussendlich Disciformycin B (10). Der Energieunterschied zwischen Disciformycin B (10) und 2-*epi*-Disciformycin B (14) ist jedoch in beiden Lösungsmitteln sehr gering. Eine Überführung von Disciformycin A (9) in Disciformycin B (10) in Chloroform unter thermodynamischen Bedingungen sollte zur hauptsächlichen Bildung von Disciformycin B (10) mit einem geringen Anteil 2-*epi*-Disciformycin B (14) führen.

Tabelle 4: Mit MAESTRO berechnete Grundenergien für Disciformycin A (**9**), Disciformycin B (**10**) und 2-epi-Disciformycin B (**14**) in CHCl₃ und H₂O.³⁰ Angaben in kJ·mol⁻¹

Disciformycin A (**9**)

Disciformycin B (**10**)

2-*epi*-Disciformycin B (14)

Lösungsmittel	Disciformycin A (9)	Disciformycin B (10)	2- <i>epi</i> -Disciformycin B (14)
CHCl ₃	34.6	19.3	21.6
H ₂ O	24.5	6.4	6.8

Aufgrund dieser Ergebnisse wurde Disciformycin A (9) als Syntheseziel gewählt.

³⁰⁾ Für Details zur computergestützten molekularen Modelierung siehe Seite 81.

3.2 Vorarbeiten

Im Rahmen einer vorangegangen Masterarbeit wurde zunächst eine retrosynthetische Analyse aufgestellt, welche im Folgenden kurz dargestellt ist (Schema 6).³¹ Die finalen Schritte der Totalsynthese von Disciformycin A (9) betrafen die Installation der Seitenketten an O-6 und O-7. Außerdem war geplant, die Oxidation zum Keton an C-5 in den letzten Stufen durchzuführen. Die Alkoholfunktionen am Zucker 16 sollten für die anvisierte Glykosylierung als Ester geschützt vorliegen, da somit eine direkte Erzeugung des 1,2-trans-Glykosids ermöglicht werden sollte. Die Schutzgruppen an O-5 bis O-7 sollten orthogonal gewählt werden, um verschiedene Reaktionsreihenfolgen im Endspiel erproben zu können. Der Ringschluss zum Disciformycin-Grundgerüst 15 sollte durch eine Makrolactonisierung erfolgen. Die Installation des (Z)-Olefins an C-2 und C-3 soll durch einen an Carbonsäure 17 induzierten, Halogen-Metall-Austausch, gefolgt von einem nukleophilen Angriff an das Epoxid an C-4 in Verbindung 18 erreicht werden. Diese Methodik ist nicht literaturbekannt und sollte zunächst entwickelt werden. Alternativ könnte diese Reaktion auch intramolekular durchgeführt werden. Zuvor sollte das Epoxid 18 aus einem Aldehyd an C-5 erzeugt werden. Die Etablierung der stereogenen Zentren an C-6 und C-7 sollte über eine α -Oxy-Evans-Aldolreaktion erfolgen. Der Vorläufer 19 sollte über eine vinyloge MUKAIYAMA-Aldolreaktion (VMAR) mit dem Aldehyd aus Methylangelat (20) erzeugt werden, wobei auch das Stereozentrum an C-11 etabliert wird.

Schema 6: Retrosynthetische Analyse der VMAR/EpoxidRoute.

³¹⁾ M. Wolling, Masterarbeit, *Untersuchungen zur Synthese von Disciformin* **2013**, Gottfried Wilhelm Leibniz Universität Hannover.

Es konnte gezeigt werden, dass eine vinyloge MUKAIYAMA-Aldolreaktion mit Angelicaaldehyd (**22**) nur in einer geringen Ausbeute und einem Diastereomerenverhältnis von 6:1 erreicht werden kann (Schema 7).³¹ Dieses Ergebnis erwies sich im Weiteren außerdem als nicht reproduzierbar. Weitere getestete Systeme lieferten geringere Ausbeuten oder führten nicht zum Umsatz mit dem eingesetzten Aldehyd.

Schema 7: VMAR mit Angelicaaldehyd 22. Reagenzien und Bedingungen: a) TiCl₄, CH₂Cl₂, H₂O, -50 °C, 34 h, 43 %, dr. 6:1.

Aufbauend auf diesen Ergebnissen wurde die Syntheseroute im nächsten Kapitel weiterentwickelt.

3.3 NAGAO/Epoxid Route

3.3.1 Retrosynthese

In der neuen Syntheseroute sollte anstelle der vinylogen MUKAIYAMA-Aldolreaktion eine NAGAO-Aldolreaktion, gefolgt von einer WITTIG-Reaktion verwendet werden (Schema 8, Veränderungen hervorgehoben). In der weiteren Syntheseroute wurden keine Anpassungen vorgenommen.

Schema 8: Retrosynthetische Analyse der NAGAO/Epoxid Route.

3.3.2 NAGAO-Aldolreaktion

Für die Aldolreaktion musste zunächst der Aldehyd **22** aus dem Methylester **20** gewonnen werden. Die Darstellung von Angelicaaldehyd (**22**) erfolgte über zwei Stufen in einer Ausbeute von 41 % (Schema 9). Die geringe Ausbeute lässt sich auf die hohe Flüchtigkeit des Produkts zurückführen.

Schema 9: Synthese von Aldehyd **22**. Reagenzien und Bedingungen: a) LiAlH₄, Et₂O, 0 °C, 20 min; b) MnO_2 , CH₂Cl₂, 16 h, 41 % über 2 Stufen.

Bei der im Folgenden durchgeführten Testreaktion mit dem NAGAO-Auxiliar **25** konnte das Produkt **26** in einem (E)/(Z)-Verhältnis von 1:3 isoliert werden (Schema 10, Reihe 1).³² Da das (*E*)-Isomer **27** ebenfalls synthetisiert wurde, konnte das (E)/(Z)-Verhältnis durch Vergleich der ¹H-NMR-Spektren bestimmt werden. Wurde das sterisch anspruchsvollere Auxiliar **28** bei einer Reaktionstemperatur von -95 °C verwendet, konnte das Produkt **29** in einem Diastereomerenverhältnis von 10:1 erhalten werden (Schema 10, Reihe 2). Da in diesem Fall kein (*E*)-Isomer hergestellt wurde, kann nicht gesagt werden, ob es sich hierbei ebenfalls um (*E*)/(*Z*)-Isomere handelt.

Schema 10: NAGAO-Aldolreaktionen mit verschiedenen Auxiliaren sowie Übergangszustand der NAGAO-Aldolreaktion im ZIMMERMAN-TRAXLER-Modell. Reagenzien und Bedingungen: a) TiCl₄, DIPEA, CH_2Cl_2 , -78 °C, 60 min; b) TBSOTf, 2,6-Lutidin, CH_2Cl_2 , -78 °C zu RT, 18 h, 70 % über 2 Stufen, (E)/(Z)= 1:3; c) TiCl₄, DIPEA, CH_2Cl_2 , -95 °C, 50 min; d) TBSOTf, 2,6-Lutidin, CH_2Cl_2 , -78 °C zu RT, 18 h, 70 % über 2 Stufen, dr. 10:1.

Die Diastereoselektivität der Reaktion erfolgt aufgrund der sterischen Abstoßung der *t*-Butylgruppe, wobei der Übergangszustand durch die Koordination des Auxiliars an das Metallatom der verwendeten LEWIS-Säure stabilisiert wird (Schema 10). Beide Faktoren ergeben den gezeigten ZIMMERMAN-TRAXLER-Übergangszustand.³³

³²⁾ T. Frenzel, M. Brünjes, M. Quitschalle, A. Kirschning, Org. Lett. 2006, 8, 135-138.

³³⁾ M. T. Crimmins, B. W. King, E. A. Tabet, K. Chaudhary, J. Org. Chem. 2001, 66, 894-902.

3.3.3 Instabilität des olefinischen Strukturmotivs

Bei den weiteren Stufen offenbarte sich eine Instabilität des dreifach substituierten Doppelbindungsmotivs. So lag der nach Abtrennung des Auxiliars gebildete Aldehyd **30** laut ¹H-NMR-Spektrum bereits als (*Z*)/(*E*) Gemisch von 4:1 vor (Schema 11). Nach der anschließenden WITTIG-Reaktion verringerte sich das Verhältnis in Ester **31** auf 1.6:1.³⁴

Die Synthese des stabilisierten WITTIG-Reagenzes **33** erfolgte aus 2-Ethyl-brompropionat (**32**) und Triphenylphosphin in guter Ausbeute (Schema 11, Reihe 2).³⁵

Schema 11: Synthese der α , β -ungesättigten Verbindung **31**, ausgehend von Aldolprodukt **29**. Reagenzien und Bedingungen: a) DIBAL-H, PhMe, -78 °C, 1 h; b) **33**, CH₂Cl₂, 50 °C, 60 h; c) PPh₃, 50 °C, 10 h, dann NaOH, H₂O, 0 °C bis RT, 30 min, 81 %.

Eine (Z)/(E)-Isomerisierung ließ sich weder unter den thermischen Bedingungen der WITTIG-Reaktion noch unter Rühren in Toluol als Photosensibilisator reproduzieren (Schema 12).³⁶ Eine Umwandlung dieses Strukturmotivs bei leicht erhöhter Temperatur ist jedoch literaturbekannt.³⁷

Schema 12: Versuchte Isomerisierungen der dimethylierten Doppelbindung. Reagenzien und Bedingungen: a) PhMe, hv, 57 h, keine Reaktion; b) CH_2CI_2 , 50 °C, 57 h, keine Reaktion.

Das instabile olefinische Stukturmotiv sollte zu einem möglichst späten Zeitpunkt in der Totalsynthese eingeführt werden.

³⁴⁾ K. Kinoshita, P. G. Williard, C. Khosla, D. E. Cane, J. Am. Chem. Soc. 2001, 123, 2495-2502.

³⁵⁾ S. E. Denmark, T. Kobayashi, C. S. Regens, J. Am. Chem. Soc. 2007, 129, 2774-2776.

³⁶⁾ J. J. Snyder, F. P. Tise, R. D. Davis, P. J. Kropp, J. Org. Chem. 1981, 46, 3609-3611.

³⁷⁾ B. Stenne, J. Timperio, J. Savoie, T. Dudding, S. K. Collins, Org. Lett. 2010, 12, 2032-2035.

3.4 Lactat/Epoxid Route

3.4.1 Retrosynthese

Aufgrund der Isomerisierungsanfälligkeit der isolierten, (*Z*)-konfigurierten Doppelbindung im offenkettigen System, wurde beschlossen, dieses Motiv erst nach erfolgter Zyklisierung einzuführen (Schema 13). Hierzu soll ein geschützter Alkohol über eine Sequenz aus Entschützung, Oxidation und WITTIG-Olefinierung in das gewünschte Strukturmotiv überführt werden.

Somit kann die Syntheseroute von Methyllactat (**38**) ausgehen und mittels einer substratkontrollierten SAKURAI-Allylierung das Stereozentrum an C-11 aufgebaut werden (Schema 15, Veränderungen hervorgehoben). Die folgenden Stufen unterscheiden sich von denen der NAGAO/Epoxid Route nur durch die Anwesenheit des geschützten Alkohols O-12, was für die Synthese jedoch keinen Unterschied darstellen sollte.

Schema 13: Retrosynthetische Analyse der Lactat/Epoxoid Route.

3.4.2 SAKURAI-Allylierung

Zur PMB-Schützung von Methyllactat (**38**) wurde zunächst das Trichloracetimidat **39** aus *para*-Methoxybenzylalkohol und Trichloracetonitril in guter Ausbeute erhalten (Schema 14). ³⁸ Die Schützung von Methyllactat (**38**) im leicht sauren Millieu mit dem Trichloracetimidat **39** ergab das Produkt **40** in sehr guter Ausbeute (Schema 14).³⁹

³⁸⁾ G. D. Joly, E. N. Jacobsen, Org. Lett. 2002, 4, 1795-1798.

³⁹⁾ W. Yu, Y. Zhang, Z. Jin, Org. Lett. 2001, 3, 1447-1450.

Schema 14: Synthese des geschützten Methyllactats **38**. Reagenzien und Bedingungen: a) i) NaH, Et₂O, RT, 90 min, ii) Cl₃CCN, RT, 3 h, 80 %; b) **38**, CSA, CH₂Cl₂, RT, 18 h, 95 %.

Bei der SAKURAI-Reaktion/Schützungs Sequenz konnte für das geschützte Diol **43** eine Ausbeute von 69 % erreicht werden (Schema 15).^{40,41} Als Nebenprodukt nach der Allylierung konnte Diol **44** identifiziert werden. Hierbei handelt es sich um das PMB-entschützte Allylierungsprodukt. Die Entschützung geschah vermutlich durch die im Überschuss vorhandene LEWIS-Säure.

Schema 15: SAKURAI-Allylierung mit anschließender Schützung als TBS-Ether. Reagenzien und Bedingungen: a) DIBAL-H, CH₂Cl₂, -78 °C, 1 h; b) Trimethylallylsilan, SnCl₄, CH₂Cl₂, -78 °C, 100 min; c) TBSOTf, 2,6-Lutidin, -78 °C, 10 min, RT, 40 min; 69 % über 3 Stufen, dr. 7:1.

Der Übergangszustand dieser substratkontrollierten SAKURAI-Allylierung ist in Abbildung 10 dargestellt.⁴² Der PMB geschützte, α -oxy substituierte Aldehyd **41** chelatisiert die LEWIS-Säure Zinntetrachlorid. Ein nukleophiler Angriff von der Rückseite ist aufgrund der sterischen Wechselwirkung mit der Methylgruppe nicht begünstigt. Der Angriff erfolgt somit von der *Re*-Seite.

Abbildung 10: Übergangszustand der substratkontrollierten Sakurai-Allylierung.⁴²

⁴⁰⁾ a) H. Knust, R. W. Hoffmann, Helv. Chim. Acta. 2003, 86, 1871-1893.

⁴¹⁾ H. J. Martin, P. Pojarliev, H. Kählig, J. Mulzer, Chem. Eur. J. 2001, 7, 2261-2271.

⁴²⁾ C. H. Heathcock, S. Kiyooka, T. A. Blumenkopf, J. Org. Chem. 1984, 49, 4214-4223.

3.4.3 EVANS-Aldolreaktion

Das Alken **43** wurde in einer Ozonolyse zum Aldehyd **45** umgesetzt,⁴¹ welcher direkt in der WITTIG-Olefinierung eingesetzt wurde (Schema 16).³⁴

Schema 16: Synthese von Ester **46**. Reagenzien und Bedingungen: a) O_3 , PPh₃, CH₂Cl₂/MeOH, -78 °C, 5 min; b) **33**, CH₂Cl₂, 50 °C, 16 h; 87 % über 2 Stufen.

Der erhaltene α , β -ungesättigte Ester **46** wurde nach Reduktion mit Lithiumaluminiumhydrid und Oxidation mit Braunstein in den Aldehyd **47** überführt. Hierbei wurden reproduzierbar sehr gute Ausbeuten erhalten. Die Evans-Aldolreaktion lieferte den Alkohol **48** in guter Ausbeute und Selektivität (Schema 17).⁴³ Bei dieser Reaktion war es für eine gute Ausbeute wichtig, bei der Enolisierung des Auxiliars auf 0 °C zu erwärmen. Das Produkt **48** wurde immer als Mischung mit im Überschuss eingesetztem Evans-Auxiliar **50** erhalten. Das Auxiliar **50** für die Evans-Aldolreaktion wurde aus Benzyloxyacetylchlorid und dem (*S*)-Evans Auxiliar **49** über eine Stufe dargestellt (Schema 17).⁴⁴

Schema 17: Evans-Aldolreaktion mit Aldehyd **47**. Reagenzien und Bedingungen: a) LiAlH₄, THF, 0 °C, 20 min; 97 %; b) MnO_2 , CH_2Cl_2 , 5 h; c) **50**, Bu_2BOTf , NEt_3 , PhMe, -78 °C, 16 h, 0 °C, 30 min, 66 % über 2 Stufen, dr. >10:1; d) **49**, Benzyloxyacetyl-chlorid, LiCl, THF, -20 °C, 18 h, 90 %.

⁴³⁾ a) E. W. Rogers, D. S. Dalisay, T. F. Molinski, *Angew. Chem. Int. Ed.* **2008**, *47*, 8086-8089; b) A. Kamal, P. Reddy, S. Prabhakar, *Tetrahedron: Asymmetry* **2009**, *20*, 1936-1939; c) A. J. Rudge, I. Collins, A. B. Holmes, R. Baker, *Angew. Chem. Int. Ed. Engl.* **1994**, *33*, 2320-2322.

⁴⁴⁾ G. Ho, D. J. Mathre, J. Org. Chem. 1995, 60, 2271-2273.

Die zunächst erprobte Schützung des sekundären Alkohols im Produkt der EVANS-Aldolreaktion **48** als TBDPS-Ether war nicht möglich. Alternativ zur TBDPS-Schutzgruppe wurde die SEM-Schutzgruppe installiert (Schema 18).⁴⁵ Diese kann wie TBDPS orthogonal zu den anderen Schutzgruppen im Endspiel entschützt werden kann.⁴⁶ Es konnte gezeigt werden, dass die Reaktion zum SEM-Acetal erst bei 40 °C stattfindet.

Schema 18: Schützung des freien Alkohols als SEM-Acetal. Reagenzien und Bedingungen: SEMCI, DIPEA, DMAP, DMF, 40 °C, 18 h, 83 %.

3.4.4 Synthese des Epoxids

Die Synthese des Epoxids **53** aus dem geschützten EVANS-Aldolprodukt **51** sollte über eine Epoxidierung des korrespondierenden Aldehyds **52** mit *in situ* generiertem Lithiumiodmethan geschehen (Schema 19).⁴⁷ Alternativ sollte Epoxid **56** durch Reaktion von *in situ* erzeugtem Lithiumchlormethan mit einem geeigneten Elektrophil **51** über ein α -Chlorketon **54** aufgebaut werden.⁴⁸ Keton **54** sollte anschließend zum Alkohol **55** reduziert und in einer WILLIAMSON-Ethersynthese zum Epoxid **56** umgesetzt werden (Schema 19).

Schema 19: Synthese-Strategie zu Epoxid 53 bzw. 56.

⁴⁵⁾ B. H. Lipshutz, J. J. Pegram, Tetrahedron Lett. 1980, 21, 3343-3346.

⁴⁶⁾ T. W. Greene, P. G. M. Wuts, Protective Groups in Organic Synthesis, Third Edition, John Wiley & Sons, Inc., 1999.

⁴⁷⁾ J. Barluenga, B. Baragana, J. M. Concellon, J. Org. Chem. 1995, 60, 6696-6699.

⁴⁸⁾ a) E. W. Rogers, T. F. Molinski, *Org. Lett.* **2007**, *9*, 437-440; b) J. Barluenga, B. Baragana, A. Alonso, J. M. Concellon, *J. Chem. Soc., Chem. Commun.* **1994**, 969-970; c) J. M. Concellon, E. Riego, H. Rodriguez-Solla, A. M. Plutin, *J. Org. Chem.* **2001**, *66*, 8661-8665.

Beide Methoden sollten die Synthese enantiomerenreiner Epoxide erlauben.^{47,48} Bei der ersten Methode unter Verwendung von Diiodmethan wird das Stereozentrum am Epoxid selektiv nach der FELKIN-ANH-Regel erzeugt.⁴⁷ Bei der Methode über das Chlorketon soll das Stereozentrum am Epoxid über eine diastereoselektive Reduktion generiert werden.

Obwohl das erzeugte stereogene Zentrum am Alkohol im Naturstoff zum Keton oxidiert ist, sollte ein möglichst diastereoselektiver Zugang zum Alkohol etabliert werden. Somit vereinfacht sich die Analytik in den folgenden Stufen, da sonst mit zwei diastereomeren Verbindungen gearbeitet werden müsste.

3.4.4.1 Synthese des Epoxids – Route A

Für die Synthese des Aldehyds **52** aus dem Aldolprodukt **51** wurde das EVANS-Auxiliar zunächst reduktiv entfernt und der Alkohol **57** in guter Ausbeute erhalten (Schema 20).⁴⁹ Eine Oxidation zum Aldehyd **52** konnte weder unter SWERN-, PARIKH-DOERING- oder COREY-SCHMIDT-Bedingungen erreicht werden.⁵⁰ Die Reaktion gelang schließlich unter Verwendung von DMP.⁵¹

Schema 20: Synthese des Alydehyds **52**. Reagenzien und Bedingungen: a) LiBH₄, MeOH, THF, 0 °C, 40 min, 77 %; b) DMP, NaHCO₃, CH₂Cl₂, RT, 18 h, 75 %.

Aufgrund der Instabilität des Aldehyds **52** wurde dieser in den folgenden Epoxidierungsreaktionen direkt eingesetzt. Das Epoxid **53** wurde in allen durchgeführten Epoxidierungen mit Diiodmethan⁴⁸ laut HRMS erhalten (Tabelle 5). Im ¹H-NMR-Spektrum wurde jedoch ersichtlich, dass bei jeder Reaktion ein Gemisch mehrerer Isomere vorlag (Tabelle 5, Einträge 1-2). Dies lässt sich durch eine Isomerisierung des Aldehyds **52** in α -Position, sowie eine geringe Stereoselektivität des nukleophilen Angriffs erklären. Eine Verringerung der Reaktionstemperatur bei Verlängerung der Reaktionszeit führte zu keiner Verbesserung der Ausbeuten oder Selektivitäten (Tabelle 5, Eintrag 3). Alternativ wurde die Reaktion unter COREY-CHAYKOVSKY-Bedingungen durchgeführt.⁵² Hier wurde, aufgrund der basischen Bedingungen, ausschließlich das Produkt einer Eliminierungsreaktion **58** und nicht das ge-

⁴⁹⁾ N. Arai, N. Chikaraishi, S. Omura, I. Kuwajima, Org. Lett. 2004, 6, 2845-2848.

⁵⁰⁾ a) SWERN: J. W. Winkler, J. Uddin, C. N. Serhan, N. A. Petasis, *Org. Lett.* **2013**, *15*, 1424-1427; b) PARIKH-DOERING: J. R. Parikh, W. v. E. Doering, *J. Am. Chem. Soc.* **1967**, 89, 5505-5507; c) COREY-SCHMIDT: H. Huang, J. S. Panek, *Org. Lett.* **2004**, *6*, 4383-4385.

⁵¹⁾ D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277-7287.

⁵²⁾ S. Hagen, W. Lwande, L. Kilaas, T. Anthonsen, Tetrahedron 1980, 36, 3101-3105.

wünschte Epoxid **53** erhalten (Tabelle 5, Eintrag 4). Die charakteristische Struktur des Aldehyds **58** wurde über ¹H-NMR-Spektroskopie nachgewiesen.

H H ÖBn	SEM	OTBS Bedingungen T, t	OSEM OTBS	MB OBn 58	OPMB
		Bedingungen	T, t	Ergebnis	-
	1	CH ₂ I ₂ , <i>n</i> -BuLi	-78 °C, 30 min RT, 30 min	50 % über 2 Stufen	
	2	CH ₂ I ₂ , <i>n</i> -BuLi	-78 °C, 18 h	50 % über 2 Stufen	
	3	CH ₂ I ₂ , <i>n</i> -BuLi	-85 °C, 2 d	50 % über 2 Stufen	
	4	[Me₃S]I, NaH	RT, 48 h	Aldehyd 58	_

Tabelle 5: Getestete Bedingungen zur Epoxidierung des Aldehyds 52.

Aufgrund der bei diesen Epoxidierungen anfallenden komplexen Gemische wurde dieser Ansatz nicht weiterverfolgt.

3.4.4.2 Synthese des Epoxids – Route B

Eine Umsetzung des Aldolprodukts **51** mit Chloriodmethan und Methyllithium bei -78 °C führte, bei unvollständigem Umsatz, zum tertiären Alkohol **59** und nicht, wie gewünscht, zum α -Chlorketon **54** (Schema 21).⁴⁷ Der tertiäre Alkohol **59** wurde über LC/MS nachgewiesen. Eine Wiederholung der Reaktion bei -100 °C lieferte das gleiche Ergebnis.

Schema 21: Versuchte Mono-Chlormethylierung von Verbindung **54**. Reagenzien und Bedingungen: a) CH₂ICl, MeLi, THF, -78 °C, 18 h, 29 % für Alkohol **59**.

In Analogie zu Literaturbeispielen sollte die Reaktion eines entsprechenden Methylesters mit Chloriodmethan und Methyllithium zum Keton führen.⁴⁸ Um dies zu testen, musste zunächst der Methylester **60** generiert werden. Hierzu wurde das geschützte Aldolprodukt **51** mit Natriummethanolat umgesetzt (Schema 22).⁵³ Es wurden der gewünschte Methylester **60**, sowie das Produkt der Addi-

⁵³⁾ D. Haigh, H. C. Birrell, B. C. C. Cantello, R. M. Hindley, A. Ramaswamy, H. K. Rami, N. C. Stevens, *Tetrahedron:* Asymmetry **1999**, *10*, 1335-1351.

tion an das Auxiliar-Carbonylkohlenstoffatom **61** erhalten.⁵⁴ Weder der Methylester **60**, noch das erhaltene Nebenprodukt **61** zeigten eine Reaktion mit dem aus Chloriodmethan erzeugten Nukleophil.

Schema 22: Methanolyse von Verbindung **51**, gefolgt von versuchter Mono-Chlormethylierung. Reagenzien und Bedingungen: a) NaOMe, MeOH, 0 °C, 50 min, 28 % für **60**, 47 % für **61**; b) CH₂ICl, MeLi, THF, -78 °C, 2 h, keine Reaktion.

Parallel zu diesen Arbeiten wurde an der, im folgenden Kapitel behandelten, Synthese des Nukleophils für die angedachte Epoxidöffnung gearbeitet.

3.4.5 Synthese des Nukleophils

Ein Halogen-Metall Austausch an (*Z*)-3-Brom-2-methylacrylsäure (**66**) mit anschließender nukleophiler Umsetzung der Lithiumspezies ist literaturbekannt.⁵⁵ Aufgrund dessen wurde die Carbonsäure **66** hergestellt um im Folgenden in einer Epoxidöffnung eingesetzt zu werden (Schema 23). Die Reaktion von Propargylalkohol (**62**) zu Alkohol **65** erfolgte in einer Ausbeute von 19 %.⁵⁶ Anschließende Oxidation zur Carbonsäure **66** gelang in einer Ausbeute von 60 % bei einem (*E*)/(*Z*)-Verhältnis von 1:6 (Schema 10).

Schema 23: Synthese von (Z)-3-Brom-2-methylacrylsäure (**66**). Reagenzien und Bedingungen: a) i) Cul, MeMgBr, THF, -10 °C, 20 h; ii) B(OMe)₃, -78 °C, 30 min; iii) CuBr₂, MeOH, H₂O, 110 °C, 22 h, 19 %; b) MnO₂, CH₂Cl₂; c) NaH₂PO₄, H₂O₂, NaClO₂, MeCN, 0 °C, 3.5 h, 60 % über 2 Stufen, (E)/(Z) 1:6.

Zur Erprobung der Literaturreaktion wurde Carbonsäure **66** zur Spiroverbindung **68** umgesetzt (Schema 24).⁵⁵ Diese Reaktion lieferte das erwartete Produkt **68** in 35 % Ausbeute, was unterhalb der Literaturausbeute von 66 % liegt.

⁵⁴⁾ N. Kanomata, S. Maruyama, K. Tomono, S. Anada, Tetrahedron Lett. 2003, 44, 3599-3603.

⁵⁵⁾ D. Caine, A. S. Frobese, Tetrahedron Lett. 1978, 52, 5167-5170.

⁵⁶⁾ M. Rössle, D. J. Del Valle, M. J. Krische, Org. Lett. 2011, 13, 1482-1485.

Schema 24: Testreaktion von (Z)-3-Brom-2-methylacrylsäure (**66**) mit Cyclohexanon. Reagenzien und Bedingungen: a) Zugabe n-BuLi über 1.5 h, Et₂O, -78 °C, dann -78 °C, 1.5 h; b) Cyclohexanon, 35 %.

Aufgrund der geringen Ausbeute bei der Herstellung der (*Z*)-3-Brom-2-methylacrylsäure (**66**) sowie bei der Umsetzung mit Cyclohexanon sollte das *in situ* erzeugte Nukleophil **63** (Schema 23) direkt in einer Epoxidierung eingesetzt werden.

In einer ersten Reaktion wurde Propylenoxid mit dem *in situ* generierten Nukleophil **63** umgesetzt (Schema 25). Trotz seiner einfachen Verfügbarkeit erwies sich Propylenoxid als Testsubstrat für untauglich, da eine Verfolgung des Reaktionsfortschritts über den Verbrauch des Epoxids nicht möglich war. Das Produkt **69** konnte dennoch in einer Ausbeute von 22 % isoliert werden. Die nachfolgende Oxidation mit Braunstein lieferte das δ -Lacton **70** in 81 % (Schema 25). Diese Reaktionskaskade erlaubt eine deutliche höhere Ausbeute bei der Oxidation im Vergleich zur Oxidation von Alkohol **65** zu Carbonsäure **66**.

Schema 25: Reaktion von Propargylalkohol **62** mit Propylenoxid, gefolgt von Oxidation zum δ -Lacton **70**. Reagenzien und Bedingungen: a) i) Cul, MeMgBr, THF, -10 °C, 20 h; ii) Proplylenoxid, -78 °C, 2 h, 22 %; b) MnO₂, CH₂Cl₂, RT, 18 h, 81 %.

Die Reaktion wurde mit einem komplexeren Epoxid **72** wiederholt. Dieses Epoxid wurde der Stoffdatenbank des Arbeitskreises entnommen. Die verwendeten Bedingungen führten auch bei niedrigen Temperaturen zur vollständigen Zersetzung des Startmaterials **72** (Schema 26). Möglicherweise ist das hier verwendete Epoxid **72** kein aussagekräftiges Testsubstrat, da es im Gegensatz zum vorher verwendeten Propylenoxid und zum für die Synthese relvanten Substrat **56** geminal doppelt substituiert ist.

Schema 26: Versuchte Reaktion von Propargylalkohol **62** mit Epoxid **72**. Reagenzien und Bedingungen: Cul, MeMgBr, THF, -10 °C, 20 h, ii) **72**, -78 °C, 18 h; 0 °C, 30 min, Zersetzung.

Die Reaktion wurde mit einem einfach substituierten Epoxid **74** wiederholt (Schema 27). Dieses Epoxid wurde ebenfalls der Stoffdatenbank des Arbeitskreises entnommen. Es konnte keine Reaktion beobachtet werden.

Schema 27: Versuchte Reaktion von Propargylalkohol **62** mit Epoxid **74**. Reagenzien und Bedingungen: a) i) Cul, MeMgBr, THF, -10 °C, 1 h; ii) **74**, -78 °C, 19 h, keine Reaktion.

Aufgrund der nur im Falle des simplen Propylenoxids in geringer Ausbeute erfolgten Reaktion und dem Ausbleiben einer Reaktion mit komplexeren Substraten scheint eine Epoxidöffnung bei gleichzeitigem Aufbau der (*Z*)-Doppelbindung nicht in der Totalsynthese anwendbar.

Da die parallel getestete Bildung des Epoxids **56** ebenfalls nicht erfolgreich war (3.4.4 Synthese des Epoxids), wurde ein anderer Ansatz zum Aufbau des (*Z*)-konfigurierten MICHAEL-Systems untersucht.

3.5 Lactat/RCM Route

3.5.1 Retrosynthese

Bei der neuen Syntheseroute soll das (*Z*)-konfigurierte MICHAEL-System statt über eine nukleophile Expoxidöffnung über eine RCM (*ring-closing metathesis*) installiert werden (Schema 28, Veränderungen hervorgehoben). Hierbei wird die Tatsache genutzt, das Doppelbindungen in α , β -ungesättigten δ -Lactonen nur (*Z*)-konfiguriert sein können. Somit ergibt sich Verbindung **75** als neues Schlüsselintermediat. In weiteren Teilen der Syntheseroute wurden keine Anpassungen vorgenommen.

Schema 28: Retrosynthetische Analyse der Lactat/RCM Route.

3.5.2 Zugang zum Homoallylalkohol

3.5.2.1 Synthese des WEINREB-Amids

Das bereits zuvor hergestellte SEM-geschützte Evans-Aldolprodukt **51** sollte in das entsprechende WEINREB-Amid **76** überführt werden, um eine einfache Allylierung und Bildung des Ketons zu erlauben.

Mit den zunächst getesteten Bedingungen mit dem geschützten Vorläufer **51** konnte nur eine geringe Ausbeute von 18 % erreicht werden (Schema 29).⁵⁷

⁵⁷⁾ a) A. N. Hulme, C. H. Montgomery, D. K. Henderson, *J. Chem. Soc., Perkin Trans.* 1, 2000, 1837–1841; b) D. A. Evans, J. R. Gage, *J. Org. Chem.* 1992, *57*, 1958-1961.

Schema 29: Reaktion der vollgeschützten Verbindung **51** zum WEINREB-Amid **76**. Reagenzien und Bedingungen: (MeNH)OMe·HCl, DIBAL-H, RT, 2 d, dann 40 °C, 1 d, 18 %.

Alternativ wurde das Imid zunächst zur Carbonsäure **77** verseift, um anschließend zum WEINREB-Amid **76** umgesetzt zu werden. Die Verwendung von EDC ergab die höchste Ausbeute, wobei Amid **76** in 66 % isoliert werden konnte (Schema 30).⁵⁸

Schema 30: Reaktion der vollgeschützten Verbindung **51** zum WEINREB-Amid **76**, über die freie Carbonsäure **77**. Reagenzien und Bedingungen: a) LiOH, H₂O₂, H₂O, RT, 18 h; b) (MeNH)OMe·HCl, EDC·HCl, DMAP, DIPEA, RT, 18 h, 66 % über 2 Stufen.

Die direkte Umsetzung des ungeschützten EVANS-Aldolprodukts **48** zum WEINREB-Amid **78**, gefolgt von einer Schützung des Alkohols, erwies sich als effizientester Zugang.⁵⁷ Die hierzu verwendeten Reaktionsbedingungen führten in sehr guten Ausbeuten zum WEINREB-Amid **78** (Schema 31). Unter Verwendung von DIBAL-H konnte im Testansatz eine 10 % höhere Ausbeute im Vergleich zur Reaktion mit Trimethylaluminium erzielt werden. Aus diesem Grund wurde ausschließlich DIBAL-H als Reagenz für diese Reaktion verwendet. Das Amid **78** konnte in quantitativer Ausbeute als SEM-Acetal **76** geschützt werden (Schema 31).

Schema 31: Reaktion des freien Alkohols **48** zum WEINREB-Amid **76**. Reagenzien und Bedingungen: a) MeNHOMe·HCl, DIBAL-H, THF, -30 °C, 2 h, 90 %; b) SEMCl, DIPEA, DMAP, DMF, 40 °C, 18 h, 100 %.

⁵⁸⁾ J. Garcia-Fortanet, J. Murga, M. Carda, J. A. Marco, R. Matesanz, J. F. Diaz, I. Barasoain, *Chem. Eur. J.* 2007, 13, 5060-5074.

Ausgehend vom WEINREB-Amid **76** sollte nun der Homoallylalkohol **80** synthetisiert werden. Obwohl das erzeugte stereogene Zentrum am Alkohol im Naturstoff später zum Keton oxidiert wird, sollte ein möglichst diastereoselektiver Zugang zum Alkohol etabliert werden. Somit vereinfacht sich die Analytik in den folgenden Stufen, da sonst mit zwei diastereomeren Verbindungen gearbeitet werden müsste.

Die Allylierung erwies sich als einfach durchzuführende und verlässliche Reaktion. Durch Umsetzung mit Allylmagnesiumbromid wurde bereits nach Extraktion sauberes Homoallylketon **79** in Ausbeuten bis zu 100 % erhalten (Schema 32).⁵⁹ Um eine selektive Reduktion zu erreichen, wurden Natriumborhydrid, L-Selektrid, Lithium-tri(*t*-butoxy)aluminiumhydrid und Zinkborhydrid getestet.^{60,61} Da nur mit Zinkborhydrid ein Diastereomerenverhältnis >10:1 erreicht werden konnte, wurde mit diesem Reagenzsystem weitergearbeitet (Schema 32).

Schema 32: Allylierung und diastereoselektive Reduktion von Weinreb-Amid **76** zu Alkohol **80**. Reagenzien und Bedingungen: a) AllylMgBr, THF, -78 °C, 15 min, 0 °C, 15 min, 100 %; b) Zn(BH₄)₂, Et₂O, -50 °C, 18 h, 63 %.

Die Stereoselektivität der Reduktion von Zinkborhydrid beruht auf der Chelatisierung des Zinkatoms an LEWIS-basische Sauerstoffatome (Schema 33). In diesem Fall handelt es sich um das Keton und den als Benzylether geschützten Alkohol. Der so gebildete Komplex begünstigt die Reduktion von derjenigen Seite mit dem kleineren Substituenten.⁶²

Schema 33: Mechanismus der Zinkborhydrid-Reduktion.

⁵⁹⁾ I. Paterson, E. A. Anderson, S. M. Dalby, J. H. Lim, P. Maltas, O. Loiseleur, J. Genovino, C. Moessner, Org. Biomol. Chem. 2012, 10, 5861-5872.

⁶⁰⁾ Natriumborhydrid: H. Liu, C. Chang, Y. Lai, M. Yang, C. Chang, *Tetrahedron: Asymmetry* **2014**, *25*, 187-192; L-Selektrid: C. Ribes, E. Falomier, M. Carda, J. Murga, J. A. Marco, *Org. Biomol. Chem.* **2009**, *7*, 1355-1360; Lithium-tri(*t*-butoxy)aluminium-hydrid: H. Hashimoto, M. Kawanishi, H. Yuasa, *Carbohydr. Res.* **1996**, *282*, 207-221.

⁶¹⁾ Zinkborhydrid: Nadine Bluhm, Dissertation, Synthese von chemischen Sonden für das aktivitätsbasierte Protein-Profiling zur Aufklärung der Wirkungsweise von Spirangien **2012**, Gottfried Wilhelm Leibniz Universität Hannover.

⁶²⁾ R. F. Helm, J. Ralph, J. Wood Chem. Technol. 1993, 13, 593-601.

Die absolute Konfiguration des gebildeten Alkohols **80** wurde nach der MOSHER-Methode bestimmt. Hierzu wurden zwei diastereomere Verbindungen **81** jeweils durch Reaktion mit enantiomerenreinem MOSHER-Säurechlorid (**82**) hergestellt (Schema 34).⁶³

Schema 34: Veresterung zum Mosher-Ester 81. Reagenzien und Bedingungen: a) (R) oder (S)-82, DMAP, CH₂Cl₂, RT, 18 h. Die gebildeten MOSHER-Ester (81) liegen aufgrund stereoelektronischer Effekte in einer Vorzugskonformation vor (Abbildung 11, Kasten). In der jeweiligen Vorzugskonformation beider gebildeter Diastereomere unterscheidet sich die chemische Verschiebung der ¹H-NMR-Signale aufgrund des Ringstromeffekts des Phenylrings. Dieser wirkt jeweils auf eine andere Seite des Moleküls. Eine Seite des Moleküls wird leicht entschirmt, die Andere abgeschirmt. Wird die Differenz der ¹H-NMR-Daten beider Diastereomere gebildet kann die absolute Konfiguration geschlussfolgert werden (Abbildung 11, Zeile 3).⁶⁴ In diesem Fall konnte die absolute Konfiguration als (*R*) bestimmt werden.

Abbildung 11: Zeile 1: Vorzugskonformation des (S)-MOSHER-Esters in NEWMAN-Projektion. Der schwarze Pfeil zeigt an auf welchen Rest der Phenylring eine abschirmende Wirkung ausübt. Zeile 2: Vorzugskonformation des (R)-MOSHER-Esters in NEWMAN-Projektion. Der schwarze Pfeil zeigt an auf welchen Rest der Phenylring eine abschirmende Wirkung ausübt. Zeile 3: Differenzbildung der ¹H-NMR-Signale beider diastereomerer MOSHER-Ester nach der Formel $\Delta \delta = \delta(S) - \delta(R)$ (ppm). Die absolute Konfiguration folgt aus: $\Delta \delta(S-R) > 0 = R^1$ und $\Delta \delta(S-R) < 0 = R^2$.

⁶³⁾ T. R Hoye, C. S Jeffrey, F. Shao, Nat. Protoc. 2007, 2, 2451-2458.

⁶⁴⁾ Zur detaillierten Auswertung siehe Experimenteller Teil.

Aufgrund der mäßigen Ausbeute für die Zinkborhydrid-Reduktion wurde als weitere selektive Reduktionsmethode die CBS-Reduktion untersucht.⁶⁵ Hierbei bildete sich unerwarteterweise mit beiden Enantiomeren des CBS-Reagenzes das gleiche Produkt **83**, die Reaktion verläuft somit substratkontrolliert. Wurde nur mit dem Reduktionsmittel Boran gerührt, fand keine Reaktion statt, was auf eine aktivierende Beteiligung des CBS-Reagenzes hinweist. Unter Verwendung von (*R*)-2-Methyl-CBS-oxazaborolidin (**84**) konnte eine Ausbeute von 95 % erhalten werden (Schema 35).

Schema 35: Diastereoselektive Reduktion von Keton **79** zu Alkohol **83**. Reagenzien und Bedingungen: a) **84**, BH_3 ·SMe₂, THF, -78 °C, 1 h, -50 °C, 15 h, 95 %, dr. >10:1.

Die üblicherweise reagenzkontrollierte Stereoinduktion des CBS-Oxazaborolidin-Reagenzes **84** beruht auf der Fähigkeit, an den Ketoncarbonylsauerstoff, sowie das Reduktionsmittel Boran zu koordinieren (Schema 36). Aufgrund sterischer Wechselwirkung des chiralen Reagenzes mit den Ketonsubstituenten wird ein Übergangszustand gebildet, in dem der größere Rest (R_L) der Methylgruppe und dem Fünfring ausweicht.⁶⁶

Schema 36: Mechanismus der CBS-Reduktion.

Die Reduktion muss in diesem Fall über einen anderen Mechanismus ablaufen, da mit beiden CBS-Reagenz-Enantiomeren das gleiche Produkt gebildet wurde. Dies steht im Widerspruch zu dem in Schema 36 gezeigten Mechanismus, aus welchem eine Reagenzkontrolle folgt.

Die absolute Konfiguration des neu gebildeten Alkohols wurde ebenfalls über die MOSHER-Methode als (*S*) bestimmt (Abbildung 12).⁶⁴

⁶⁵⁾ Jekaterina Hermane, Dissertation, Synthetische und mutasynthetische Zugänge zu neuen Hsp 90 Inhibitoren 2013, Gottfried Wilhelm Leibniz Universität Hannover.

⁶⁶⁾ E. J. Corey, C. J. Helal, Angew. Chem. Int. Ed. 1998, 37, 1986-2012.

Abbildung 12: Ergebnis der MOSHER Analyse für Verbindung 83.⁶⁴

Ein alternativer Ansatz über eine Reduktion des WEINREB-Amids **76** zum Aldehyd **52**, gefolgt von einer diastereoselektiven Allylierung erwies sich als unzureichend in Bezug auf Ausbeute und Diastereoselektivität.⁶⁷ In Schema 37 ist das beste erhaltene Ergebnis gezeigt.⁶⁸

Schema 37: Reaktion zum Homoallylalkohol **83** über Reduktion zu Aldehyd **52**, gefolgt von einer diastereoselektiven Allylierung. Reagenzien und Bedingungen: a) DIBAL-H, CH₂Cl₂, -78 °C, 90 min, quant.; b) MgBr₂, AllylMgBr, CH₂Cl₂, -78 °C, 18 h, RT, 4 h, 42 %, dr. 3:1.

Für die folgenden Reaktionen wurde zunächst der (*R*)-konfigurierte Alkohol **80** eingesetzt, später dann ausschließlich der (*S*)-konfigurierte **83**. Dies ist darauf zurückzuführen, dass der (*R*)-Alkohol **80** in der zuerst etablierten Reduktion mit Zinkborhydrid erzeugt wurde und mit diesem bereits weitere Stufen untersucht wurden. Erst später wurde die zum (*S*)-Alkohol **83** führende Reduktion mit CBS-Reagenz **84** etabliert, welche aufgrund der wesentlich höheren Ausbeute, anschließend ausschließlich verwendet wurde (Schema 38).

Schema 38: Vergleich der diastereoselektiven Reduktionen mit Zinkborhydrid- und mit CBS-Reagenz 84.

⁶⁷⁾ a) J. Mulzer, A. Angermann, W. Münch, *Liebigs Ann. Chem.* 1986, 825-838; b) K. R. Prasad, S. L. Gholap, *J. Org. Chem.*2008, 73, 2916-2919; c) J. Liu, R. P. Hsung, *Org. Lett.* 2005, 7, 2273-2276.

⁶⁸⁾ D. R. Williams, F. D. Klingler, Tetrahedron Lett. 1987, 28, 869-872.

3.5.3 RCM zum δ -Lacton

Für eine Ringschluss-Metathese musste zunächst der Homoallylalkohol **80** in den Methacrylatester **85** überführt werden. Eine gute Ausbeute von 86 % ließ sich durch Reaktion mit Methacrylanhydrid **86** erzielen,⁶⁹ mit dem entsprechenden Säurechlorid konnten hingegen nur mäßige Ausbeuten erzielt werden. (Schema 39).^{70,71}

Schema 39: Veresterung mit Methacrylanhydrid **86** zu Ester **85**. Reagenzien und Bedingungen: a) **86**, DIPEA, DMAP, CH₂Cl₂, RT, 18 h, 86 %.

Die RCM wurde zuerst in nicht entgastem Toluol mit GRUBBS II-Katalysator (**88**) bei 100 °C durchgeführt.⁷⁰ Hierbei bildeten sich, unter Zersetzung des eingesetzten Startmaterials, schwarze Partikel (Tabelle 6, Eintrag 1). Alle im Folgenden durchgeführten Metathese-Reaktionen wurden darum mit entgastem Lösungsmittel durchgeführt. Die Wiederholung der Reaktion mit entgastem Lösungsmittel ergab das Dimerisierungsprodukt **91** (Abbildung 13) in einer Ausbeute von 75 % (Tabelle 6, Eintrag 2). Die Struktur von Verbindung **91** wurde über ¹H-NMR-Spektroskopie und LC/MS aufgeklärt. Das gewünschte Produkt **87** wurde nicht gebildet. In Dichlormethan bei 40 °C wurde ebenfalls nur das Dimer gebildet (Tabelle 6, Eintrag 3). Auch die Zugabe des Katalysators **88** zu der Reaktionslösung bei 100 °C führte nicht zur Bildung des gewünschten Lactons **87** (Tabelle 6, Eintrag 6).⁷² In den Reaktionsansätzen vier und fünf wurden die Umicore-Katalysatoren **89** und **90** erprobt. In beiden Fällen wurde ebenfalls nur das Dimer **91** erhalten (Tabelle 6, Einträg 4-5).

⁶⁹⁾ M. L. Schulte, M. L. Turlington, S. S. Phatak, J. M. Harp, S. R. Stauffer, C. W. Lindsley, *Chem. Eur. J.* 2013, 19, 11847-11852.

⁷⁰⁾ a) J. A. Marshall, J. J. Sabatini, Org. Lett. 2005, 7, 4819-4822; b) A. D. Wadsworth, D. P. Furkert, M. A. Brimble, J. Org. Chem. 2014, 79, 11179-11193.

⁷¹⁾ M. Chen, W. R. Roush, Org. Lett. 2012, 14, 426-428.

⁷²⁾ A. D. Wadsworth, D. P. Furkert, M. A. Brimble, J. Org. Chem. 2014, 79, 11179-11193.

Tabelle 6: Getestete Bedingungen zur Synthese von Lacton 87 durch RCM.

	OSEM OTBS	Bedingungen T, t	O OSEM OTBS
	Bedingungen	<i>T</i> , t	Ergebnis
1 ^{a)}	88 , PhMe	100 °C, 18 h	Zersetzung
2	88 , PhMe	110 °C, 5 d	75 % 91
3	88 , CH ₂ Cl ₂	40 °C, 5 d	Dimer 91
4 ^{b)}	88 , PhMe	100 °C, 18 h	Dimer 91
5	89 , PhMe	100 °C, 2 d	Dimer 91
6	90 , PhMe	100 °C, 2 d	Dimer 91

a) Lösungsmittel nicht entgast; b) Katalysatorzugabe bei 100 °C.

Abbildung 13: Verwendete Metathese-Katalysatoren, sowie gebildetes Dimer 91.

3.5.4 RRCM zum δ -Lacton

Da alle verwendeten Metathese-Katalysatoren ausschließlich über das Homoallyl-Motiv reagierten, sollte die Reaktivität der elektronenarmen, doppelt substituierten Doppelbindung erhöht werden. In einer RRCM (*relay ring-closing metathesis*) kann der Metathese-Katalysator dirigiert werden, was eine initiale Reaktion am ansonsten reaktionsgehinderten Motiv ermöglicht (Schema 40).⁷³

Schema 40: Prinzipielle Funktionsweise der RRCM.

Hierfür sollte zunächst die RRCM-fähige Carbonsäure **94** dargestellt werden. Die Synthese über drei Stufen ergab das Produkt **94** in einer Ausbeute von 47 %, was der Literaturausbeute von 49 % entspricht (Schema 41).^{74,75} Ausgehend von Allyl- α -Glyceryl-Ether **92** wurde zunächst eine Periodatspaltung durchgeführt, der erhaltene Aldehyd in einer WITTIG-Olefinierung mit dem stabilisiertem Ylid **33** umgesetzt und schlussendlich der Ester **93** zur freien Carbonsäure **94** hydrolysiert.

Schema 41: Synthese der RRCM-fähigen Carbonsäure **94**. Reagenzien und Bedingungen: a) NalO₄, H₂O, RT, 2.5 h; b) **33**, PhMe, 50 °C, 18 h; c) KOH, H₂O, MeOH, RT, 5 h, 47 % über 3 Stufen.

Die erhaltene Carbonsäure **94** wurde anschließend mit Homoallylalkohol **80** verestert, wobei das Produkt **95** in sehr guter Ausbeute von 85 % erhalten werden konnte (Schema 42).

Schema 42: Installation der RRCM-fähigen Carbonsäure **94** an Alkohol **80**. Reagenzien und Bedingungen: a) **94**, DCC, DMAP, CH₂Cl₂, RT, 18 h, 85 %.

⁷³⁾ a) T. R. Hoye, C. S. Jeffrey, M. A. Tennakoon, J. Wang, H. Zhao, J. Am. Chem. Soc. 2004, 126, 10210-10211; b) T. R. Hoye,
J. Leon, L. C. Kopel, T. D. Ryba, M. A. Tennakoon, Y. Wang, Angew. Chem. Int. Ed. 2010, 49, 6151-6155; M. L. Schulte, M. L.
Turlington, S. S. Phatak, J. M. Harp, S. R. Stauffer, C. W. Lindsley, Chem. Eur. J. 2013, 19, 11847-11852.

⁷⁴⁾ D. Farquhar, A. Cherif, E. Bakina, J. A. Nelson, J. Med. Chem. 1998, 41, 965-972.

⁷⁵⁾ K. Fujioka, H. Yokoe, M. Yoshida, K. Shishido, Org. Lett. 2012, 14, 244–247.

Im Folgenden wurden Bedingungen für die RRCM getestet (Tabelle 7). Zunächst wurde der Katalysator **88** erst zum bereits erhitzten Reaktionsgemisch zugegeben. Hierbei wurde das Produkt **87** in einer Ausbeute von 20 % erhalten (Tabelle 7, Eintrag 1). Da hierbei außerdem die Bildung mehrerer Nebenprodukte zu beobachten war, wurde beschlossen, die Reaktion bei geringerer Temperatur in Dichlormethan durchzuführen. Das Substrat **95** wurde nun über einen Zeitraum von einer Stunde per Spritzenpumpe zur Katalysatorlösung getropft und dann erhitzt. (Tabelle 7, Eintrag 2). Säulenchromatographisch nicht abtrennbare Metallreste wurden mit Dimethylsulfoxid bei Raumtemperatur oxidiert und konnten anschließend abgetrennt werden.⁷⁶ Das Produkt **87** konnte in 33 % Ausbeute isoliert werden. Die Reaktion wurde auch mit dem Umicore M51-Katalysator (**89**) durchgeführt. Die Oxidation des Metalls mittels Dimethylsulfoxid war nach Abschluss der Reaktion nicht nötig. Das Produkt **87** konnte in geringer Ausbeute von 16 % isoliert werden (Tabelle 7, Eintrag 3). Durch Zusatz von Tetrafluorochinon sollte die Isomerisierung des Olefins durch Reduktion einer intermediär gebildeten Rutheniumhydrid-Spezies unterdrückt werden.^{71,77} Obwohl die Bildung des Isomerisierungsprodukt nicht beobachtet wurde, könnte sich dieses möglicherweise zersetzt haben und somit zu verminderten Ausbeuten geführt haben. Die höchste Ausbeute betrug 51 % (Tabelle 7, Eintrag 4).

	O OSEM OTBS	Bedingungen	O OSEM OTBS
	Bedingungen	T, t	Ergebnis
1 ^{a)}	88 , PhMe	100 °C, 18 h	20 %
2 ^{b,c)}	88 , CH ₂ Cl ₂	40 °C, 1 h	33 %
3	89 , CH ₂ Cl ₂	40 °C, 19 h	16 %
4 ^{c)}	88 , Tetrafluorchinon, CH ₂ Cl ₂	40 °C, 1 h	51 %

a) Katalysatorzugabe bei 100 °C; b) Substratzugabe über 1 h; c) Aufarbeitung mit DMSO.

⁷⁶⁾ Y. M. Ahn, K. Yang, G. I. Georg, Org. Lett. 2001, 3, 1411-1413.

⁷⁷⁾ S. H. Hong, D. P. Sanders, C. W. Lee, R. H. Grubbs, J. Am. Chem. Soc. 2005, 127, 17160-17161.

3.5.5 Verseifung des δ -Lactons

Mit dem erhaltenen δ -Lacton **87** wurden verschiedenste Verseifungs- bzw. Ringöffnungsbedingungen erprobt. Unter keiner der getesteten Versuchsbedingungen konnte die Bildung des Produkts **96** nachgewiesen werden (Tabelle 8, Einträge 1-7).

Tabelle 8: Geteste Verseifungsbedingungen mit δ -Lacton 87.

	OSEM OTBS Bedingung T, t OBn 87 OPMB	en O OH	OH OSEM OTBS
	Bedingungen	T, t	Ergebnis
1	LiOH, THF/H ₂ O (1:1)	RT, 18 h 40 °C, 3 d 60 °C, 4 d	-
2	LiOH, THF/H ₂ O (1:1)	RT, 4 d	-
3	NaOH, THF/H ₂ O (1:1)	RT, 4 d 40 °C, 3 d	-
4	KOH, MeOH	RT, 1 d 40 °C, 3 d	-
5	KOH, THF/H ₂ O (3:1)	RT, 2 d 30 °C, 7 d	
6	LiOH, H ₂ O ₂ , THF/H ₂ O (3:1)	RT, 2 d 30 °C, 7 d	-
7	LiOH, H ₂ O ₂ , THF/H ₂ O (3:1)	40 °C, 20 h	-

Anstelle der erfolglosen Verseifung könnte das δ -Lacton **87** zum Diol **97** reduziert werden, beide Alkohole geschützt und anschließend selektiv der primäre Alkohol entschützt und zu Carbonsäure **100** oxidiert werden (Schema 43).

Schema 43: Alternativer Ansatz zur Generierung der freien Carbonsäure 100 aus dem δ -Lacton 87.

Da dies jedoch zu einer deutlichen Erhöhung der Stufenzahl führen würde und die Ausbeute bei der RRCM nur mäßig war, wurde die Syntheseroute über das δ -Lacton **87** nicht weiterverfolgt.

3.6 RRCM-Makrozyklisierung

3.6.1 Retrosynthese

Ein effizienterer Zugang zum Naturstoff **9** sollte erreicht werden, indem die zuvor etablierte RRCM zur Makrozyklisierung genutzt wird. Hierzu müssen das *relay*-Motiv und ein Allylrest im Molekül installiert werden (Schema 44, Veränderungen hervorgehoben). Die (E)/(Z)-Selektivität bei Meta-these-Makrozyklisierungen kann über die Wahl des Katalysators und des Startmaterials beeinflusst werden.^{78,79} Die weiteren Stufen unterscheiden sich nicht von der vorherigen Route.

Schema 44: Retrosynthetische Analyse der RRCM-Makrozyklisierungs Route.

Hierfür ergeben sich, ausgehend von bereits hergestellten WEINREB-Amid **76** mehrere mögliche Substrate für den Ringschluss (Schema 45). Zunächst soll das Amid **76** in Homoallylketon **79** überführt werden, gefolgt von der Installation der *relay*-Seitenkette. Diese Verbindung **102** kann nun in der RRCM eingesetzt werden. Alternativ kann das Keton **102** zum Alkohol **103** reduziert und geschützt werden, um anschließend in der RRCM eingesetzt zu werden.

⁷⁸⁾ a) A. Fürstner, K. Langemann, J. Org. Chem. **1996**, *61*, 3942-3943; b) C. Shu, X. Zeng, M. Hao, X. Wie, N. K. Yee, C. A. Busacca, Z. Han, V. Farina, C. H. Senanayake, Org. Lett. **2008**, *10*, 1303-1306; c) A. Gradillas, J. Perez-Castells, Angew. Chem. Int. Ed. **2006**, *45*, 6086-6101.

⁷⁹⁾ V. M. Marx, M. B. Herbert, B. K. Keitz, R. H. Grubbs, J. Am. Chem. Soc. 2013, 135, 94-97.

Schema 45: Mögliche Wege zur RRCM Makrozyklisierung.

3.6.2 RRCM-Makrozyklisierung mit Keton

Die Synthese des RRCM-Vorläufers **102** wurde zunächst ausgehend vom bereits zuvor aus dem WEIN-REB-Amid **76** erzeugten Allylketon **79** (Seite 34) getestet. Zur Entfernung des TBS-Ethers wurden verschiedene Fluorid-Quellen getestet (Tabelle 9). Die Verwendung von TBAF, HF·Pyridin in Pyridin und LiBF₄ führte nur zur Zersetzung des eingesetzten Startmaterials (Tabelle 9, Einträge 1-3).⁸⁰ Mit TASF wurde statt der anvisierten Entschützung des Silylethers eine Isomerisierung der vormals endständigen Doppelbindung erreicht und MICHAEL-System **107** gebildet (Tabelle 9, Eintrag 4).⁸¹ Die konjugierte Doppelbindung wurde mittels ¹H-NMR-Spektroskopie nachgewiesen. Erst die Verwendung der Säuren CSA und Hexafluoridokieselsäure führte zur Produktbildung (Tabelle 9, Einträge 5+6).⁸² Die Ausbeuten waren jedoch auch mit den hier gezeigten, bereits optimierten Bedingungen nicht zufriedenstellend.

⁸⁰⁾ TBAF: a) M. S. J. Briggs, M. Helliwell, D. Moorcroft, E. J. Thomas, *J. Chem. Soc., Perkin Trans.* 1 1992, *16*, 2233-2234;
HF·Pyridin: b) Vorschrift nach WANG; LiBF₄: c) N. K. Garg, D. D. Caspi, B. M. Stoltz, *J. Am. Chem. Soc.* 2004, *126*, 9552-9553.
81) R. A. Holton, H. B. Kim, C. Somoza, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith, S. Kim, *J. Am. Chem. Soc.* 1994, *116*, 1599-1600.

⁸²⁾ CSA: a) K. C. Nicolaou, J. J. Liu, C. K. Hwang, W. M. Dai, R. K. Guy, *J. Chem. Soc., Chem. Commun.* 1992, *16*, 1118-1120;
H₂SiF₆: b) A. S. Pilcher, P. DeShong, *J. Org. Chem.* 1993, *58*, 5130-5134; c) A. W. H. Speed, T. J. Mann, R. V. O'Brien III, R. R. Schrock, A. H. Hoveyda, *J. Am. Chem. Soc.* 2014, *136*, 16136-16139.

O OS 	5EM 0 79	$ \begin{array}{c} \text{TBS} \\ \text{OPMB} \\ \end{array} \xrightarrow{\text{Bedingungen}} \\ T, t \\ \end{array} $	O OSEM OH	OPMB	и отвя 107 ормв
		Bedingungen	T, t	Ergebnis	
	1	TBAF, THF	RT, 18 h	Zersetzung	
	2	НF∙Ру, Ру	RT, 18 h	Zersetzung	
	3	LiBF ₄ , CH ₃ CN, H ₂ O	30 °C, 3 d	Zersetzung	
	4	TASF, THF	RT, 3 h	Verbindung 107	
	5	CSA, MeOH	RT <i>,</i> 4 h	26 %	
	6	30 % H ₂ SiF ₆ , MeOH	4 °C, 18 h	40 %	

Tabelle 9: Erprobte Bedingungen zur Entschützung des TBS-Ethers von Allylketon 79.

Die Entschützung der TBS-Gruppe mit TBAF am WEINREB-Amid **76** ergab das Produkt **108** in einer Ausbeute von 89 % (Schema 46). Im nächsten Schritt wurde Amid **106** mit Allylmagnesiumbromid bei 0 °C allyliert (Schema 46).

Schema 46: Reaktion zu Verbindung **106** über TBS-Entschützung, gefolgt von einer Allylierung. Reagenzien und Bedingungen: a) TBAF, THF, RT, 2 h, 89 %; b) AllylMgBr, THF, 0 °C, 2.5 h, 63 %.

Die *relay*-Seitenkette konnte unter Verwendung von DCC an Verbindung **106** installiert werden, wobei eine sehr gute Ausbeute von 90 % erzielt wurde. Allerdings wurde das unerwünschte konjugierte Keton **109** als Produkt identifiziert (Schema 47). Diese Isomerisierung des nicht konjugierten Ketons zum konjugierten Produkt ist literaturbekannt und kann bei Installation der Seitenkette vermutlich nicht vermieden werden.⁸³

⁸³⁾ Siehe beispielsweise: S. Fustero, J. Moscardo, M. Sanchez-Rosello, S. Flores, M. Guerola, C. del Pozo, *Tetrahedron* **2011**, *67*, 7412-7417.

Schema 47: Installation der RRCM-fähigen Carbonsäure **94** am Alkohol **106**. Reagenzien und Bedingungen: a) **94**, DCC, DMAP, CH₂Cl₂, RT, 18 h, 90 % für **109**.

Bei dem Versuch, die Dekonjugation des Systems wiederherzustellen, wurde das Produkt **102** nur in geringer Ausbeute von 23 % in einem Produktverhältnis von 1.7:1 isoliert (Schema 48).⁸⁴ Die α -Acidität des Ketons ist hierbei vermutlich für die Bildung von Diastereomeren verantwortlich.

Schema 48: Versuchte Dekonjugation von Verbindung **109** zu Homoallylketon **102**. Reagenzien und Bedingungen: a) KHMDS, Dimethylmalonat, DMPU, THF, -78 °C auf RT, 4 h, 23 %, dr. 1.7:1.

Aufgrund der Isomerisierung des Homoallylketons **106** zum Allyketon **109**, sowie der fehlenden Möglichkeit dieses effizient in das nicht konjugierte Keton **102** zurückzuführen, wurde dieser Ansatz nicht weiterverfolgt.

⁸⁴⁾ J. Hoeckler, G. C. Rudolf, F. Bächle, S. Fleischer, B. D. Lindner, G. Helmchen, Eur. J. Org. Chem. 2013, 5149-5159.

3.6.3 RRCM-Makrozyklisierung mit geschütztem Alkohol

3.6.3.1 RRCM-Makrozyklisierung mit monosubstituierter Doppelbindung

Als Schutzgruppe für den freien Alkohol sollte ursprünglich die MTM-Schutzgruppe (Methylthiomethyl) genutzt werden, da diese selektiv mit Silber- oder Quecksilbersalzen entfernt werden kann.⁴⁶ Dies sollte im Endspiel der Synthese eine orthogonale Entschützung zwischen der SEM- und der Benzyl-Schutzgruppe erlauben.

Nach längerer Optimierung konnte das Produkt **110** in einer Ausbeute von 53 % gewonnen werden (Schema 49).⁸⁵

Schema 49: MTM-Schützung des freien Alkohols in Verbindung **83**. Reagenzien und Bedingungen: a) Ac₂O/HOAc (2:3), DMSO, RT, 20 h, 53 %.

Somit wurde die bereits verwendete SEM-Schutzgruppe installiert, da mit dieser bereits gute Schützungsbedingungen etabliert waren. Die selektive Entschützung der beiden SEM-Gruppen am Ende der Synthese könnte sich als problematisch erweisen. Möglicherweise verhalten sich die beiden Alkohole im Makrozyklus aufgrund konformativer Einflüsse jedoch so unterschiedlich, um selektiv entschützt werden zu können.

Die Installation der SEM-Schutzgruppe unter Standardbedingungen erfolgte, wie bereits zuvor, in guter Ausbeute (Schema 50).

Schema 50: SEM-Schützung des freien Alkohols in Verbindung **83**. Reagenzien und Bedingungen: a) SEMCl, DIPEA, DMAP, DMF, 40 °C, 18 h, 93 %.

⁸⁵⁾ a) Y. Wang, M. Kurosu, *Tetrahedron* 2012, *68*, 4797-4804; b) K. Kobayashi, Y. Fujii, I. Hayakawa, H. Kigoshi, *Org. Lett.*2011, *13*, 900-903; c) A. Pelter, R. S. Ward, G. M. Little, *J. Chem. Soc., Perkin. Trans. 1* 1990, 2775-2790; d) J. U. Jeong, C. Guo, P. L. Fuchs, *J. Am. Chem. Soc.* 1999, *121*, 2071-2084; e) P. M. Pojer, S. J. Angyal, *Aust. J. Chem.* 1978, *31*, 1031-1040; f)
K. Suzuki, J. Inanaga, M. Yamaguchi, *Chem. Lett.* 1979, *8*, 1277-1278; g) K. Tomaya, M. Takahasi, N. Minakawa, A. Matsuda, *Org. Lett.* 2010, *12*, 3836-3839; h) W. P. Hong, M. N. Noshi, A. El-Awa, P. L. Fuchs, *Org. Lett.* 2011, *13*, 6342-6345.

Nach erfolgter TBS-Enschützung mit TBAF konnte die *relay*-Seitenkette in guter Ausbeute installiert werden (Schema 51).

Schema 51: Synthese von Ester **113** über TBS-Entschützung, gefolgt von einer Veresterung. Reagenzien und Bedingungen: a) TBAF, THF, RT, 5 h, 71 %; b) **94**, DCC, DMAP, CH₂Cl₂, RT, 6 d, 97 %.

Im Folgenden wurden mehrere verschiedene Bedingungen für die RRCM getestet (Tabelle 10). Bei Verwendung des GRUBBS II-Katalysator (**88**) konnte nach drei Tagen bei 40 °C die vollständige Umwandlung zu einer Verbindung mit der Summenformel C₄₆H₇₂O₁₀Si₂ über LC/MS nachgewiesen werden (Tabelle 10, Eintrag 1). Verbindung **115** erfüllt diese Summenformel und wird gebildet, wenn der Katalysator zuerst mit der nicht *relay*-Position (C-1, C-2) und anschließend intramolekular mit der *relay*-Position (C-19, C-20) reagiert. Hierbei kann Dihydrofuran nicht mehr eliminiert werden und der 17-gliedrige Makrozyklus **115** wird als Produkt erhalten. Wurde der gleiche Katalysator bei 60 °C und 80 °C für drei Tage gerührt, ergab sich im ersten Fall ebenfalls das 17-gliedrige Produkt **115**, im zweiten Fall konnte nur Zersetzung beobachtet werden (Tabelle 10, Einträge 2+3). Die Verwendung der Katalysatoren GRUBBS I (**116**) sowie HOVEYDA-GRUBBS II (**117**) ergaben nach einem Tag bei 60 °C in beiden Fällen ebenfalls nur den zuvor gebildeten unerwünschten Makrozyklus **115** (Tabelle 10, Einträge 4+5). Die Verwendung des (*Z*)-selektiven GRUBBS-Katalysators **118** führte bei 60 °C nach einem Tag zu keiner Reaktion (Tabelle 10, Eintrag 6).⁷⁹

Tabelle 10: Getestete Bedingungen zur RRCM-Makrozyklisierung mit monosubstituierter Doppelbindung.

Abbildung 14: Verwendete Metathese-Katalysatoren.

3.6.3.2 RRCM-Makrozyklisierung mit höher substituierter Doppelbindung

Um die Reaktivität der nicht *relay*-Position (C-1 und C-2) herabzusetzen, soll diese an C-1 mit einer bzw. zwei Methylgruppen substituiert werden (Schema 52). Dies sollte eine initiale Reaktion des Metathese-Katalysators an der *relay*-Position (C-19 und C-20) ermöglichen.

Schema 52: Geplante RRCM-Makrozyklisierung mit 2- bzw. 3-fach substituierter Doppelbindung.

Die Einführung der Methylgruppen erfolgte über eine Kreuzmetathese mit 2-Methyl-2-buten vor Installation der *relay*-Seitenkette.⁸⁶ Diese Reaktion wurde mit dem GRUBBS II-Katalysator bei 30 °C über drei Tage durchgeführt und ergab ein untrennbares 1:2-Produktgemisch von ein- und zweifach methyliertem Produkt **119/120** in 70 % Ausbeute (Schema 53). Die *relay*-Seitenkette wurde nach TBS-Entschützung eingeführt.

Schema 53: Synthese von Ester **123/124** als untrennbares Gemisch über Kreuzmetathese, gefolgt von einer TBS-Entschützung und einer Veresterung. Reagenzien und Bedingungen: a) 2-Methyl-2-buten, GRUBBS II, CH₂Cl₂, 30 °C, 3 d, 70 %; b) TBAF, THF, RT, 19 h, 52 %; c) **94**, DCC, DMAP, CH₂Cl₂, RT, 18 h, 40 %.

⁸⁶⁾ A. Blanc, F. D. Toste, Angew. Chem. Int. Ed. 2006, 45, 2096-2099.

Im Folgenden wurden drei Testreaktionen durchgeführt. Hierfür wurde der GRUBBS II-Katalysator (**88**) bei 40 °C in Dichlormethan, bei 60 °C in 1,2-Dichlorethan und bei 80 °C in Toluol eingesetzt (Tabelle 11, Einträge 1-3). In keinem Fall wurde Produkt **114** gebildet, der nicht *relay*-Position mangelt es in diesem Molekül möglicherweise an Reaktivität.

 Tabelle 11: Getestete Bedingungen zur RRCM-Makrozyklisierung mit 2- bzw. 3-fach substituierter Doppelbindung.

Aufgrund der wenig zufrieden stellenden Ergebnisse für alle verwendeten Metathese-Ansätze, sowie des Erfolgs des im Folgenden dargestellten und parallel hierzu getesteten Olefinierungsansatzes, wurde die Totalsynthese mittels RRCM nicht weiterverfolgt.

3.7 Makrolactonisierung

3.7.1 Retrosynthese

Als Alternative zur RRCM-Strategie sollte, wie bereits in vorherigen Routen geplant, der Ringschluss über eine Makrolactonisierung erfolgen (Schema 54, Veränderungen hervorgehoben). Das für den Ringschluss benötigte MICHAEL-System sollte nun jedoch über eine Allylierung, gefolgt von einer Olefinierung aufgebaut werden.

Schema 54: Retrosynthetische Analyse der Makrolactonisierungs Route

Zur Synthese von Disciformycin A (9) wird der (*Z*)-konfigurierte- α , β -ungesättigte Ester **126** benötigt. Da die Isomerisierung von (*Z*)-konfigurierten- α , β -ungesättigten Systemen für Makrolactonisierungen literaturbekannt ist, soll parallel hierzu auch der (*E*)-konfigurierte Vorläufer **127** synthetisiert werden.^{87,88,89} Mit diesem soll nach erfolgtem Ringschluss die Isomerisierung in den (*Z*)-konfigurierten Disciformycin A Vorläufer **114** erprobt werden (Schema 55).

⁸⁷⁾ A. K. Ghosh, Y. Wang, Tetrahedron Lett. 2001, 42, 3399-3401.

⁸⁸⁾ a) W. R. Roush, A. P. Spada, Tetrahedron Lett. **1983**, 24, 3693-3696; b) W. R. Roush, T. A. Blizzard, J. Org. Chem. **1984**, 49, 4332-4339.

⁸⁹⁾ A. Ahmed, E. K. Hoegenauer, V. S. Enev, M. Hanbauer, H. Kaehlig, E. Öhler, J. Mulzer, J. Org. Chem. 2003, 68, 3026-3042.

Schema 55: Geplante Makrolactonisierungs-Strategie.

3.7.2 Zum (E)-konfigurierten Vorläufer

3.7.2.1 Kreuz-Metathese

Die Synthese des α,β -ungesättigten Esters **127** wurde zunächst mittels Kreuzmetathese erprobt. Der ungeschützte Alkohol **83** wurde mit Methylmethacrylat (**130**) und katalytischen Mengen GRUBBS II-Katalysator (**88**) in verschiedenen Lösungsmitteln umgesetzt (Tabelle 12). Die Verwendung von Methylmethacrylat (**130**) als Lösungsmittel bei 100 °C führte zur vollständigen Polymerisation der Reaktionslösung (Tabelle 12, Eintrag 1).⁹⁰ In Dichlormethan und Toluol bei jeweils 40 °C und 100 °C wurde die Zersetzung des Startmaterials **83** beobachtet (Tabelle 12, Einträge 2+3).⁹¹

Tabelle 12: Getestete Bedingungen zur Kreuzmetathese von Alken	83 mit Methylmethacrylat (130).
--	---------------------------------

OH OSEM	OTBS Bedingungen 83 OPMB	MeO MeO <u>G</u> G G G G G G G G		ЛеО 130
	Bedingungen	T, t	Ergebnis	
1	88, 130 (Lösungsmittel)	100 °C, 18 h	Polymerisation	
2	88, 130, CH ₂ Cl ₂	40 °C, 18 h	Zersetzung	
3	88, 130 , PhMe	100 °C, 18 h	Zersetzung	

⁹⁰⁾ F. D. Ferrari, A. J. Ledgard, R. Marquez, Tetrahedron 2011, 67, 4988-4994.

⁹¹⁾ R. Aouzal, J. Prunet, Org. Biomol. Chem. 2009, 7, 3594-3598.

Als Alternative wurde das Olefin mit SEM-geschütztem Alkohol **111** in der Metathese eingesetzt (Tabelle 13).⁹¹ In der ersten Reaktion konnte mittels Dünnschichtchromatographie ein Umsatz des Startmaterials beobachtet werden, während der säulenchromatographischen Reinigung auf Kieselgel fand jedoch Zersetzung statt (Tabelle 13, Eintrag 1). Der Versuch wurde unter gleichen Bedingungen wiederholt, wobei die Reaktionszeit von 18 auf zwei Stunden verkürzt wurde und das für die Säulenchromatographie verwendete Kieselgel vorher mit Triethylamin neutralisiert wurde (Tabelle 13, Eintrag 2). In diesem Fall konnte ebenfalls kein Produkt **131** isoliert werden.

SEMO	OSEM	OTBS	Bedingungen T, t	MeO SEI	MO OSEM	1 OTBS	Me0 130	
		Bedingu	ngen	T, t		Ergebnis		
	1	88, 130 , (CH ₂ Cl ₂	40 °C, 18 h		-		
	2 ^{a)}	88, 130 , (CH_2CI_2	40 °C, 2 h		-		

Tabelle 13: Getestete Bedingungen zur Kreuzmetathese von Alken 111 mit Methylmethacrylat (130).

a) Kieselgel mit Triethylamin neutralisiert.

3.7.2.2 Olefinierung

Zur Einführung des α , β -ungesättigten Esters sollte die terminale Doppelbindung alternativ zur Kreuzmetathese über eine Dihydroxylierung/Periodatspaltungs-Sequenz in den entsprechenden Aldehyd überführt werden, um anschließend über eine WITTIG-Olefinierung den gewünschten Ester **127** zu erhalten.

Die Dihydroxylierung mit Osmiumtetroxid zeigte am partiell ungeschützten sowie am vollständig geschützten Vorläufer **83** und **111** mit allen getesteten Methoden nur geringe Reproduzierbarkeit.^{41,92} Dies äußerte sich in stark variierenden Ausbeuten zwischen 25 % bis 68 % über drei Stufen für Vorläufer **83** sowie 30 % bis 55 % über zwei Stufen für die Reaktion von Verbindung **111** zu Aldehyd **133** (Schema 56). In einigen Fällen wurde nach der WITTIG-Olefinierung ein Nebenprodukt der Summenformel C₄₄H₇₄O₁₁Si₂ über LC/MS nachgewiesen. Das doppelt dihydroxylierte Produkt **134** erfüllt diese Summenformel.

⁹²⁾ a) X. Chen, D. F. Wiemer, J. Org. Chem. 2003, 68, 6597-6604; b) A. Giardina, T. Mecozzi, M. Petrini, J. Org. Chem. 2000, 65, 8277-8282; c) N. Jana, D. Das, S. Nanda, *Tetrahedron* 2013, 69, 2900-2908; d) E. J. Jeong, E. J. Kang, L. T. Sung, S. K. Hong, E. Lee, J. Am. Chem. Soc. 2002, 124, 14655-14662; e) J. I. Aird, A. N. Hulme, J. W. White, Org. Lett. 2007, 9, 631-634; f) J. Kister, P. Nuhant, R. Lira, A. Sorg, W. R. Roush, Org. Lett. 2011, 13, 1868-1871; g) J. S. Wzorek, T. F. Knöpfel, I. Sapountzis, D. A. Evans, Org. Lett. 2012, 14, 5840-5843.

Schema 56: Ergebnisse der Dihydroxylierung/Periodatspaltungs-Sequenz unter Verwendung von OsO₄. Reagenzien und Bedingungen: a) i) OsO₄, NMMO, Aceton/H₂O 2:1, 24 h; ii) NalO₄, 1 h; b) **33**, CH₂Cl₂, 40 °C, 18 h, 68 % über 3 Stufen; c) i) OsO₄, NMMO, Aceton/H₂O 2:1, RT, 18 h, ii) NalO₄, RT, 4 h, 55 % über 2 Stufen.

Die SHARPLESS-Dihydroxylierung findet üblicherweise chemoselektiv nur am sterisch leichter zugänglichen Olefin statt. Nach Periodatspaltung wurde im Testansatz der Aldehyd **135** in sehr guter Ausbeute von 91 % erhalten (Schema 57).⁹³ Für einen hohen Umsatz sollte AD-Mix- α für das (*S*)-Epimer **83** und AD-Mix- β für das (*R*)-Epimer **80** verwendet werden.

Schema 57: Dihydroxylierung von Verbindung **80** mit AD-Mix. Reagenzien und Bedingungen: a) AD-Mix- β , t-BuOH/H₂O 1:1, RT, 23 h; b) NalO₄, THF/H₂O 1:1, RT, 30 min, 91 % über 2 Stufen.

Unter Verwendung von AD-Mix- α für die Dihydroxylierung, gefolgt von Periodatspaltung und WITTIG-Reaktion konnte das Produkt **132** über drei Stufen in einer Ausbeute von 56 %, bei einer Maßstabsgröße von 4 g, erhalten werden (Schema 58). Für die Olefinierung wurde die Reaktion bei 0 °C gestartet und dann langsam über vier Stunden auf RT erwärmt. Die so erhaltene Verbindung **132** wurde in der nächsten Stufe als SEM-Acetal geschützt **136** (Schema 58).

⁹³⁾ a) K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung, K. Jeong, H. Kwong, K. Morikawa, Z. Wang, D. Xu,
X. Zhang, J. Org. Chem. 1992, 57, 2768-2771; b) M. B. Andrus, S. D. Lepore, T. M. Turner, J. Am. Chem. Soc. 1997, 119, 12159-12169.

Schema 58: Synthese von Verbindung **136** über Dihydroxylierung mit AD-Mix- β . Reagenzien und Bedingungen: a) i) AD-Mix- β , t-BuOH/H₂O 1:1, RT, 21 h; ii) NalO₄, THF/H₂O 1:1, RT, 2 h; b) **33**, CH₂Cl₂, 0 °C, 4 h, RT, 68 h, 56 % über 3 Stufen; c) SEMCl, DIPEA, DMAP, DMF, 40 °C, 18 h, 80 %.

3.7.3 Zum (Z)-konfigurierten Vorläufer

Für die Erzeugung des (*Z*)-konfigurierten- α , β -ungesättigten Esters sollte die STILL-GENNARI Reaktion zum Einsatz gelangen. Hierbei handelt es sich um die (*Z*)-selektive Variante der ansonsten (*E*)-selektiv verlaufenden HORNER-WADSWORTH-EMMONS-Reaktion. Die Selektivität für das kinetische Reaktionsprodukt wird durch Verwendung von 18-Krone-6 und KHMDS bei der Deprotonierung des mit elektronenziehenden Trifluorethanol-Gruppen veresterten Phosphonats **139** erreicht.⁹⁴

Zur Herstellung des monomethylierten STILL-GENNARI Reagenzes **139** wurde das kommerziell erhältliche Ethylphosphonsäuredichlorid **137** zunächst mit Trifluorethanol zum Bistrifluorethanolphosphonat **138** umgesetzt (Schema 59). Dieses wurde im nächsten Schritt mit LiHMDS deprotoniert und mit Methylchlorformiat in das gewünschte, monomethylierte, STILL-GENNARI-Phosphonat **139** überführt.⁹⁵ Ein alternativer Ansatz basierend auf α -Methylierung des entsprechenden Phosphonats zeigte sich dieser Methode deutlich unterlegen, da keine selektive Monomethylierung erreicht werden konnte.⁹⁶

Schema 59: Synthese von Verbindung **139**. Reagenzien und Bedingungen: a) TFE, NEt₃, THF, RT, 2 h; b) Methylchlorformiat, LiHMDS, THF, -78 °C, 15 min, 0 °C, 30 min, 36 % über 2 Stufen.

⁹⁴⁾ W. C. Still, C. Gennari, Tetrahedron Lett. 1983, 24, 4405-4408.

⁹⁵⁾ C. Patois, P. Savignac, Synth. Commun. 1991, 21, 2391-2396.

⁹⁶⁾ S. Sano, T. Takehisa, S. Ogawa, K. Yokoyama, Y. Nagao, Chem. Pharm. Bull. 2002, 50, 1300-1302.

Die STILL-GENNARI Olefinierung wurde zunächst mit dem SEM-geschützten Aldehyd **133** getestet (Schema 60).⁹⁷ Hierbei konnte das Produkt **140** in einer Ausbeute von 38 %, bei sehr gutem Diastereomerenverhältnis, isoliert werden. Die (*Z*)-Konfiguration der erzeugten Doppelbindung wurde über ¹H-NMR-Spektroskopie mittels eines NOESY Experiments nachgewiesen.

Schema 60: STILL-GENNARI-Olefinierung mit Aldehyd **133**. Reagenzien und Bedingungen: a) **139**, KHMDS, 18-Krone-6, THF, -78 °C, 1.5 h; 0 °C, 15 min, 38 %, dr. >10:1.

Die STILL-GENNARI-Olefinierung mit dem Aldehyd **141** ergab eine bessere Ausbeute von 53 %, allerdings bei einem verringertem Diastereomerenverhältnis von 6:1 (Schema 61).

Schema 61: STILL-GENNARI-Olefinierung mit Aldehyd **141**. Reagenzien und Bedingungen: a) **139**, KHMDS, 18-Krone-6, THF, -78 °C, 90 min, 53 %, dr. 6:1.

⁹⁷⁾ a) M. Kretschmer, M. Dieckmann, P. Li, S. Rudoplh, D. Herkommer, J. Troendlin, D. Menche, *Chem. Eur. J.* **2013**, *19*, 15993-16018; b) R. Schiess, J. Gertsch, W. B. Schweizer, K. Altmann, *Org. Lett.* **2011**, *13*, 1436-1439.

3.7.4 Makrolactonisierung

3.7.4.1 (E)-Vorläufer

Im Folgenden wurde die Makrozyklisierung, ausgehend vom vollständig geschützten, (*E*)-konfiguriertem Ester **136** über drei Stufen durchgeführt. Die Entschützung des TBS-Ethers an Verbindung **136** wurde zunächst mit TBAF durchgeführt und lieferte den Alkohol **143** in 59 % Ausbeute. Die Ausbeute ließ sich nicht gut reproduzieren. Unter Verwendung des alternativen Reagenziensystems HF·Pyridin in Pyridin und THF lieferte reproduzierbar und mit höherer Ausbeute den Zielalkohol **143** (Schema 62).⁹⁸ Hierbei war es wichtig, die Aufarbeitung auf die Extraktion zu beschränken, da die säulenchromatographische Reinigung an Kieselgel zu Verlusten führte.

Schema 62: TBS-Entschützung von Verbindung 136. Reagenzien und Bedingungen: a) HF-Py, Py, THF 1:3:5, RT, 72 h, 74 %.

Der erhaltene Ester **143** wurde durch Verseifung in die Carbonsäure **144** überführt und aus dieser durch YAMAGUCHI-Makrozyklisierung der nicht konjugierte Makrozyklus **145** gebildet (Schema 63).⁹⁹ Die Ausbeute betrug 69 % über zwei Stufen, das Diastereomerenverhältnis wurde mit 4:1 bestimmt. Aufgrund des neu gebildeten Stereozentrums an C-2 ist die Bildung von Diastereomeren an dieser Position naheliegend. Auf die Isomerisierung wird später (Seite 59) eingegangen.

Schema 63: Makrolactonisierung des (E)-konfigurierten Vorläufers **144**. Reagenzien und Bedingungen: a) LiOH, H₂O, MeOH, THF, 40 °C, 25 h; b) i) TCBC, DIPEA, RT, 1.5 h, ii) über 16.5 h zu: DMAP, PhMe, bei 80 °C gegeben, 69 % über 2 Stufen, dr. 4:1.

⁹⁸⁾ L. Liu, J. Han, G. Yue, C. Li, Z. Yang, J. Am. Chem. Soc. 2010, 132, 13608-13609.

⁹⁹⁾ a) J. Inanaga, K. Hirata, H. Saeki, T. Katsuki, M. Yamaguchi, *Bull. Chem. Soc. Jpn.* **1979**, *52*, 1989-1993; b) D. A. Evans, B. T. Connell, *J. Am. Chem. Soc.* **2003**, *123*, 10899-10905.

3.7.4.2 (Z)-Vorläufer

Die TBS-Schutzgruppe des (*Z*)-konfigurierten Methylesters **140** wurde entfernt und der Ester **146** in einer Ausbeute von 80 % verseift (Schema 64). In der nachfolgend durchgeführten YAMAGUCHI-Makrozyklisierung wurden neben dem erwarteten (*Z*)-konfigurierten Produkt **114** das nicht konjugierte Produkt **145** erhalten (Schema 64).⁹⁹

Schema 64: Makrolactonisierung des (Z)-konfigurierten Vorläufers **147**. Reagenzien und Bedingungen: a) TBAF, THF, RT, 4 h, 34 %; b) LiOH, H_2O , MeOH, THF, 60 °C, 2 d, 80 %; c) i) TCBC, DIPEA, RT, 1.5 h, ii) über 50 min zu: DMAP, PhMe, 100 °C, 20 h, 66 % für ein 1:1 Gemisch von **114** (dr. >10:1) und **145** (dr. 3:1).

Da das nicht konjugierte Produkt **145** zuvor schon mit dem (*E*)-konfiguriertem Vorläufer **144** entstanden war, ist von einer teilweisen Isomerisierung des (*Z*)-konfigurierten α,β -ungesättigten Aktivesters auszugehen (Schema 65).^{87,88,89} Diese erfolgt vermutlich durch eine MICHAEL-Addition, gefolgt von einer E1cB-Eliminierung des nukleophilen Katalysators DMAP. Da in Veresterungen ohne DMAP keine Isomerisierung beobachtet wurde, ist die Beteiligung von DMAP bei der Isomerisierung naheliegend.

Schema 65: Vorgeschlagener Reaktionspfad zur YAMAGUCHI-Reaktion mit den Vorläufern 147 und 144.⁸⁸

3.7.4.3 Computergestützte molekulare Modelierung

Um einen Einblick in die beobachtete Isomerisierung zu erhalten, wurden die Grundenergien der vier in Abbildung 15 gezeigten Makrozyklen mit dem Programm MAESTRO berechnet.¹⁰⁰ Hierbei zeigte sich, dass der (*E*)-konfigurierte Makrozyklus **128**, welcher nach Ringschluss ohne Isomerisierung zunächst gebildet werden sollte, im Vergleich zum (*Z*)-konfigurierten **114** und den beiden möglichen Isomerisierungsprodukten **146** und **147** deutlich energiereicher ist. Diese Berechnungen stimmen mit den beobachteten Daten überein. Die Umwandlung des (*Z*)-Makrozyklus **114** in die anderen möglichen Isomerisierungsprodukte scheint aus kinetischen Gründen nicht stattzufinden, da auch das (*Z*)-konfigurierte Makrolacton **114** instabiler ist als die beiden nicht konjugierten Produkte **146** und **147**.Möglicherweise ist die für die Isomerisierung nötige Reaktion bei 80 bzw. 100 °C im (*E*)-Zyklus **128** aufgrund der Ringspannung stark begünstigt und findet beim (*Z*)-Zyklus **114** nicht statt.

Abbildung 15: Mit MAESTRO berechnete Grundenergien für die Makrozyklen.¹⁰⁰

Der geringe Energieunterschied zwischen den beiden nicht konjugierten Makrozyklen **146** und **147** ist im Einklang zu dem erhaltenen Verhältnis der beiden Diastereomere.

¹⁰⁰⁾ Für Details zur computergestützten molekularen Modelierung siehe Seite 81.

3.7.4.4 Isomerisierungsversuche

Um einen Zugang zu Disciformycin A (9) zu etablieren, wurde versucht, die Doppelbindung in die Konjugation zur Estergruppe zu bringen. Dies sollte laut den berechneten Grundenergien der computergestützten molekularen Modelierung nicht möglich sein und diente somit auch der Überprüfung der erhaltenen Ergebnisse.

Zunächst wurde Zyklus 145 mit DIPEA bei 100 °C für zwei Tage gerührt ohne dass Umsatz beobachtet wurde (Tabelle 14, Eintrag 1). Wurde das Startmaterial 145 jedoch bei -78 °C mit KHMDS umgesetzt, wurden zwei neue Verbindungen 148 und 149 erhalten (Tabelle 14, Eintrag 2). Bei dem Makrozyklus 148 handelt es sich um das Produkt der OSEM-Eliminierung an C-5. Der bei dieser Reaktion freiwerdende Formaldeyhd reagierte anschließend direkt an C-2 mit dem in α -Position deprotonierten Makrozyklus 145 zu Verbindung 149. Die Identität beider Verbindungen wurde mittels LC/MS und ¹H-NMR-Spektroskopie aufgeklärt, wobei das olefinische Spinsystem zwischen H-3 und H-5 in Verbindung 148 und die Methylengruppe C-16 in Verbindung 149 jeweils charakteristisch sind. Unter sauren Bedingungen wurde zunächst mit PPTS in Dichlormethan für zwei Tage gerührt (Tabelle 14, Eintrag 3). Hierbei fand keine Reaktion statt. Wurde die Verbindung 145 jedoch mit CSA in Dichlormethan gerührt, wurden die SEM-Schutzgruppen an C-7 und C-5 im Verhältnis von 2:1 gespalten (Tabelle 14, Eintrag 4). Beide Verbindungen 150 und 151 wurden über ¹H- und ¹³C-NMR-Spektroskopie identifiziert, wobei die Position der jeweils verbleibenden SEM-Gruppe über ein HMBC-Experiment bestimmt wurde. Obwohl die erhoffte Isomerisierung ausblieb und die Alkohole 150 und 151 in einer Gesamtausbeute von 48 % erhalten wurden, ist dieses Ergebnis von Wert für die weiteren Syntheseplanungen (Seite 75).

SEMO BnO ^{vi}	OPMB OSEM 145	$\frac{\text{Bedingungen}}{T, t} \xrightarrow{\text{SEMO}}_{\text{BnO}^{\vee}}$	OPMB 114
	Bedingungen	T, t	Ergebnis
1	DIPEA, PhMe	100 °C, 2 d	-
2	KHMDS, THF	-78 °C, 60 min	148 , 50 % 149 , 50 %
3	PPTS, CH ₂ Cl ₂	RT, 2 d	-
4	CSA, CH_2Cl_2	RT, 3 d	150 , 32 % 151 , 16 %

Tabelle 14: Isomerisierungsversuche an Makrozyklus 145.

Abbildung 16: Nebenprodukte der Isomerisierungsversuche.

Im Einklang mit den Ergebnissen der computergestützten molekularen Modelierung konnte keine Isomerisierung erreicht werden. Die Synthese von Disciformycin A (**9**) mittels Makrolactonisierung erscheint somit ungünstig. Zum einen konnte der Disciformycin A Vorläufer aus der YAMAGUCHI-Reaktion **114** nur als Gemisch mit dem isomerisierten Produkt **145** erhalten werden. Zum anderen zeigte bereits die STILL-GENNARI-Olefinierung nur unbefriediegende Ausbeuten.

Über die Makrolactonisierung mit dem (*E*)-konfigurierten Vorläufer **144** kann jedoch ein Zugang zum nicht konjugierten Makrozyklus **145** und somit zu Disciformycin B (**10**) erreicht werden.

3.8 Intramolekulare Olefinierung

3.8.1 Retrosynthese

Zur Synthese von Disciformycin A (9) wird das (*Z*)-konfigurierte- α , β -ungesättigte System **35** benötigt. Da die Makrolactonisierungs-Strategie nur einen Zugang zu Disciformycin B (**10**) liefert, soll auf Grundlage der bisher entwickelten Synthese ein Zugang zu Disciformycin A (9) über eine intramolekulare Olefinierung von Phosphonat **152** geschaffen werden (Schema 66).

Schema 66: Retrosynthetische Analyse zur intramolekularen Olefinierung.

Hierfür wurden im Folgenden verschiedene Phosphonate untersucht, wobei der Fokus zunächst auf (Z)-selektiv reagierenden Phosphonaten ruhte. Laut Literatur ist die Wahl des Phosphonats weniger entscheidend als die Wahl der verwendeten Base sowie die aus dem entstehenden Makrozyklus stammende Substratkontrolle.^{89,101,102}

¹⁰¹⁾ a) D. R. Williams, M. P. Clark, *Tetrahedron Lett.* **1999**, *40*, 2291-2294; b) A. B. Smith III, P. Verhoest, K. P. Minbiole, M. Schelhaas, *J. Am. Chem. Soc.* **2001**, *123*, 4834-4836.

¹⁰²⁾ C. J. Forsyth, F. Ahmed, R. D. Cink, C. S. Lee, J. Am. Chem. Soc. 1998, 120, 5597-5598.

Zunächst wurde das STILL-GENNARI-Phosphonat **139** genutzt, da dieses bekanntermaßen eine gute Selektivität zum (*Z*)-konfiguriertem Produkt geben sollte. Um im Folgenden eine Veresterung durchführen zu können, sollte das Phosphonat **139** zunächst verseift werden (Schema 67). Diese Bedingungen führten zur Zersetzung des Startmaterials **139**.

Schema 67: Versuch zur Verseifung von 139. Reagenzien und Bedingungen: NaOH, H₂O, RT, 4 d, Zersetzung.

Alternativ wurde eine direkte Veresterung des Methylesters **139** mit dem zuvor generierten freien Alkohol **112** erprobt (Schema 68).¹⁰³ Es konnte jedoch auch ohne Zugabe von Phosphonat **139** nur eine langsame Zersetzung des eingesetzten Alkohols **112** beobachtet werden.

Schema 68: Versuch zur Installation der Phosphonat-Seitenkette an Verbindung **112**. Reagenzien und Bedingungen: a) HF·Py, Py, THF 1:3:5, RT, 27 h, 75 %; b) **139**, DMAP, PhMe, 110 °C, 7 d, Zersetzung.

¹⁰³⁾ a) S. Hatakeyama, K. Satoh, K. Sakurai, S. Takano, *Tetrahedron Lett.* **1987**, *28*, 2713-2716; b) D. R. Williams, M. P. Clark, *Tetrahedron Lett.* **1999**, *40*, 2291-2294.

3.8.3 Di-(2-t-Bu-phenol)-phosphonat

Das für (*Z*)-selektive intramolekulare Olefinierungen entwickelte Di-(2-*t*-Bu-phenol)-phosphonat **155** ist nur ohne zusätzliche Methylgruppe in α -Position literaturbekannt (Abbildung 17).^{104,105}

Abbildung 17: Literaturbekanntes, nicht methylverzweigtes Di-(2-t-Bu-phenol)-phosphonat **155** und das benötigte α -methylierte Di-(2-t-Bu-phenol)-phosphonat **156**.

Das benötigte Phosphonat **156** sollte, wie das literaturbekannte Derivat **155**, über eine ARBUZOV-Reaktion präpariert werden (Schema 69).¹⁰⁵ Das Phosphit **158** ließ sich aus 2-*t*-Bu-Phenol (**157**) und Phosphortrichlorid herstellen. Bei der im Anschluss erprobten ARBUZOV-Reaktion mit einem sekundären Halogenid **32** konnte keine Reaktion beobachtet werden.¹⁰⁶

Schema 69: Versuch zur Synthese von Phosphonat **159** über eine ARBUZOV-Reaktion. Reagenzien und Bedingungen: a) i) PCl₃, NEt₃, PhMe, ii) EtOH, RT, 18 h, 67 %; b) Ethyl-2-brompropionat **32**, 180 °C, 6 h, 160 °C, 18 h, keine Reaktion.

Einen alternativen Zugang sollte die Reaktion des Phosphonats **160** mit Chlorameisensäuremethylester ermöglichen.^{104,107} Das Phosphonat **161** konnte in sehr guter Ausbeute über zwei Stufen erhalten werden (Schema 70). Die nun folgende Verseifung des Methylesters **161** führte jedoch nur zu einem Umsatz von 25 %.

¹⁰⁴⁾ K. Ando, K. Narumiya, H. Takada, T. Teruya, Org. Lett. 2010, 12, 1460-1463.

¹⁰⁵⁾ F. P. Touchard, N. Capelle, M. Mercier, Adv. Synth. Catal. 2005, 347, 707-711.

¹⁰⁶⁾ A. Ianni, S. R. Waldvogel, Synthesis 2006, 13, 2103-2112.

¹⁰⁷⁾ M. D. Molin, G. Gasparini, P. Scrimin, F. Rastrelli, L. J. Prins, Chem. Commun. 2011, 47, 12476-12478.

Schema 70: Synthese von Phosphonat **162**. Reagenzien und Bedingungen: *a*) *i*) NaH, THF, RT, 1 h, *ii*) Cl₂P(O)Et, RT, 15 h, *b*) Chlorameisensäuremethylester, LiHMDS, THF, -78 °C, 30 min, 0 °C, 60 min, 99 %, c) NaOH, THF/H₂O (8:1), RT; 23 h, 25 %.

Das erzeugte Startmaterial/Produkt-Gemisch **161/162** wurde nicht getrennt, sondern direkt in einer Testreaktion eingesetzt. Hierbei wurde trotz Einsatz von drei Äquivalenten freier Säure **162** bezogen auf den sterisch anspruchsvollen Alkohol **163** nur eine Ausbeute von 31 % erreicht (Schema 71).

Schema 71: Installation der Phosphonat-Seitenkette an Modellalkohol **163**. Reagenzien und Bedingungen: a) **162**, DCC, DMAP, CH₂Cl₂, RT, 3 d, 31 %.

Aufgrund der Probleme mit der Verseifung sowie der Kupplung dieses Phosphonats **161** wurde mit Phosphonat **165** weitergearbeitet, um die weiteren Stufen zur intramolekularen Olefinierung testweise zu erproben. Außerdem sollte auch mit dem diesem Phosphonat eine gute (Z)/(E)-Selektivität erreicht werden können.¹⁰²

3.8.4 Bis-Ethanol-phosphonat

Da die Verseifung des Phosphonats **165** literaturbekannt ist, bot es sich für erste Testolefinierungen zum Erproben an. Das Phosphonat **165** konnte in guter Ausbeute verseift werden (Schema 72).¹⁰⁸

Schema 72: Verseifung von Phosphonat 165. Reagenzien und Bedingungen: a) NaOH, THF/H₂O (2:1), RT, 18 h, 73 %.

Die erhaltene freie Säure **166** konnte in sehr guter Ausbeute mit dem Alkohol **112** verestert werden (Schema 73).

Schema 73: Installation der Phosphonat-Seitenkette an Verbindung **112**. Reagenzien und Bedingungen: a) **166**, DCC, DMAP, CH₂Cl₂, RT, 20 h, 93 %.

Die nun erprobte Dihydroxylierung/Periodatspaltungs-Reaktionsfolge, unter bekannten Bedingungen, führte nur zu geringen Ausbeuten für den Aldehyd **168**, wobei in beiden Beispielen auch Startmaterial **167** reisoliert wurde (Tabelle 15). Die Verwendung von AD-mix- β führte im Vergleich zu AD-mix- α zu einer höheren Ausbeute.

Tabelle 15: Getestete Bedingungen zur Dihydroxylierung/Periodatspaltungs-Reaktionsfolge an Verbindung 167.

//	SEMO	OSEM OF OEt OSEM OF OEt OBn 167 OPMB		
		Bedingungen	T, t	Ergebnis
	1	i) AD-mix- <i>β</i> , <i>t</i> -BuOH/H ₂ O (1:1) ii) NaIO ₄ , THF/H ₂ O (1:1)	RT, 41 h RT, 1.5 h	40 % 57 % brsm
	2	i) AD-mix- <i>α, t</i> -BuOH/H ₂ O (1:1) ii) NalO ₄ , THF/H ₂ O (1:1)	RT, 59 h RT, 2.5 h	27 % 44 % brsm

¹⁰⁸⁾ G. P. Luke, C. K. Seekamp, Z. Wang, B. L. Chenard, J. Org. Chem. 2008, 16, 6397-6400.

Die intramolekulare Olefinierung mit dem erhaltenen Aldehyd **168** wurde unter Bedingungen durchgeführt, die (*Z*)-Selektivität begünstigten, wobei mit KHMDS und 18-Krone-6 die Bedingungen der STILL-GENNARI Olefinierung genutzt wurden (Schema 74).⁸⁹ Bei dieser Reaktion wurde bereits innerhalb von 30 Minuten bei -78 °C vollständige Zersetzung des Startmaterials **168** beobachtet.

Schema 74: Versuch zur intramolekularen Olefinierung zu Makrozyklus **114**. Reagenzien und Bedingungen: a) KHMDS, 18-Krone-6, THF, -78 °C, 30 min, Zersetzung.

Alternativ zur Base KHDMS könnten auch die deutlich milderen Reaktionsbedingungen unter Verwendung von Kaliumcarbonat getestet werden.^{101,102} Aufgrund der geringen Ausbeuten bei der Dihydroxylierung/Periodatspaltungs Reaktionsfolge wurde der Ansatz einer intramolekularen Olefinierung jedoch nicht weiterverfolgt. Für die Synthese von Disciformycin A (**9**) über eine intramolekulare Olefinierung sollte der Aldehyd alternativ aus einem Alkohol durch Oxidation erzeugt werden.

Eine weitere Möglichkeit besteht darin, das (*Z*)-konfigurierte- α , β -ungesättigte System zunächst in einer Olefinierung aufzubauen und die Makrozyklisierung an andere Stelle im Molekül durchzuführen.^{89,109} Da beide oben genannten Alternativen zur Erzeugung des (*Z*)-konfigurierten- α , β -ungesättigten Systems **114** mit einer grundlegenden Umstellung der Syntheseroute einhergehen würden, wurde im Folgenden der bereits etablierte Zugang zu Disciformycin B (**10**) mittels Makrolactonisierung weiterverfolgt.

¹⁰⁹⁾ B. M. Trost, D. Amans, W. M. Seganish, C. K. Chung, Chem. Eur. J. 2012, 18, 2961-2971.

3.9 Endspiel

3.9.1 Retrosynthese

Im Folgenden wurde die Synthese mit dem über eine Makrolactonisierung erzeugten Makrozyklus **145** (Seite 58) weiterverfolgt. Aus diesem Vorläufer ergäbe sich der Zugang zu Disciformycin B (**10**) (Schema 75). Die Konformation an C-2 wurde nicht bestimmt, sollte aber im Naturstoff, thermodynamisch getrieben, in das richtige Epimer überführt werden.

Schema 75: Endspiel zur Synthese von Disciformycin B (10).

3.9.2 WITTIG Reaktion

Für die Installation des zuvor als isomerisierungsanfällig identifizierten (*Z*)-Olefins (Seite 22) musste die PMB-Schutzgruppe zunächst entschützt und der erhaltene Alkohol **169** anschließend oxidativ in das Keton **170** überführt werden.

Die Entschützung der PMB-Gruppe wurde mit DDQ erreicht (Schema 76).¹¹⁰ Für die Oxidation wurde DMP gewählt.⁵¹ Das Keton **170** wurde in einem Diastereomerenverhältnis von 6:1 erhalten. Als Nebenprodukt wurde die isomere Verbindung **171** in 17 % Ausbeute isoliert. Der Strukturnachweis erfolgte über LC/MS und ¹H-NMR-Spektroskopie, wobei der charakteristischste Unterschied zwischen beiden Produkten am Signal für H-13 zu finden ist. Beim gewünschten Produkt **170** liegt diese Methylgruppe als Singulett vor, beim Nebenprodukt **171** als Dublett.

¹¹⁰⁾ D. W. Custar, T. P. Zabawa, K. A. Scheidt, J. Am. Chem. Soc. 2008, 130, 804-805.

Schema 76: Synthese von Keton **170**. Reagenzien und Bedingungen: a) DDQ, CH₂Cl₂/pH7-Phosphatpuffer-Lösung 10:1, 0 °C, 3 h; b) DMP, NaHCO₃, CH₂Cl₂, RT, 75 min, 55 % über 2 Stufen, dr. 6:1.

Das so erhaltene Keton **170** sollte nun in einer (*Z*)-selektiven WITTIG-Olefinierung umgesetzt werden.¹¹¹ Hierbei zeigte sich zunächst, dass der Zusatz eines Additivs zum WITTIG-Ylid zwingend erforderlich ist. Desweitern ist HMPA als Additiv gegenüber DMPU in Bezug auf Umsatz und Ausbeute deutlich überlegen. Ebenso wichtig ist es, das Keton zum WITTIG-Reagenz zuzugeben; Die reverse Zugabe führte zur reduzierten Ausbeute. Bei den in THF durchgeführten Testreaktionen wurden Temperaturen von -95, -78, -50 und -30 °C erprobt. Die Reaktionstemperatur von -50 °C erwies sich als optimal. Die soweit optimierten Bedingungen wurden abschließend mit DME als Lösungsmittel getestet, wobei hierbei eine gute Ausbeute erreicht wurde (Schema 77).

Schema 77: WITTIG-Olefinierung zu Verbindung **172**. Reagenzien und Bedingungen: a) i) **173**, DME/HMPA (10:1), KHMDS, RT, 10 min, dann -50 °C; ii) Zugabe **170** in DME, -50 °C, 20 min, 70 %, dr. 6:1.

Das Diastereomerenverhältnis betrug 6:1. Die Konfiguration des neu erhaltenen Olefins **172** wurde über ein NOESY-NMR-Experiment bestätigt. Der in Schema 77 gezeigte NOESY-Kontakt zwischen H-11 und H-14 lässt sich nur mit einer (*Z*)-konfigurierten Doppelbindung erklären. Der zweite Kontakt zwischen H-10 und H-17 zeigt die konformative Anordnung der Seitenkette zum Makrozyklus an.

¹¹¹⁾ a) R. E. Ireland, J. Vevert, *J. Org. Chem.* **1980**, *45*, 4260-4262. b) O. F. Jeker, E. M. Carreira, *Angew. Chem. Int. Ed.* **2012**, *51*, 3474-3477.

3.9.3 Entschützungen

Für die Entschützung der Benzylgruppe wurden verschiedene Bedingungen getestet (Tabelle 16). Unter Verwendung der LEWIS-Säure Bortribromid in verschiedenen Lösungsmitteln und bei verschiedenen Temperaturen konnte nur Zersetzung des Startmaterials **172** gefunden werden (Tabelle 16, Einträge 1-3).¹¹² Mit der Brønsted-Säure CSA konnte keine Reaktion erreicht werden (Tabelle 16, Einträge 4-5). *In situ* erzeugter Wasserstoff mit Palladiumhydroxid auf Kohle führte zur Zersetzung (Tabelle 16, Einträge 6). Mit Palladium auf Kohle fand mit Ameisensäure als Hydridtransfer-Reagenz keine Reaktion statt, mit Cyclohexen wurde eine Überreduktion des Moleküls beobachtet (Tabelle 16, Einträg 7-8).¹¹³ Die Verwendung von LiDBBP führte zur Bildung von Makrozyklus **175** durch Reduktion des dekonjugierten MICHAEL-Systems (Tabelle 16, Eintrag 9). Im zweiten Nebenprodukt **176** wurde zunächst die OSEM-Gruppe eliminiert, gefolgt von partieller Reduktion des, aus der Eliminierung gebildeten, MICHAEL-Systems.¹¹⁴ Der Strukturnachweis beider Nebenprodukte **175** und **176** erfolgte über LC/MS und ¹H-NMR-Spektroskopie, wobei das Fehlen bzw. die Isomerisierung der Doppelbindung jeweils charakteristisch für die Nebenprodukte ist. Die Umsetzung mit DDQ bei Raumtemperatur offenbarte keine Reaktion. Bei 40 °C erfolgte die Entschützung zum Produkt **174** in 44 % Ausbeute (Tabelle 16, Einträge 10-11).¹¹⁵

¹¹²⁾ a) D. E. Ward, Y. Gai, B. F. Kaller, *J. Org. Chem.* **1995**, *60*, 7830-7836; b) M. S. Congreve, E. C. Davison, M. A. M. Fuhry, A. B. Holmes, A. N. Payne, R. A. Robinson, *Synlett* **1993**, *9*, 663-664; c) D. R. Williams, D. L. Brown, J. W. Benbow, *J. Am. Chem. Soc.* **1989**, *111*, 1923-1925.

¹¹³⁾ a) P. Vemishetti, R. Saibaba, R. P. Panzica, E. Abushanab, *J. Med. Chem.* 1990, *33*, 681-686; b) T. Terasaka, H. Okumura, K. Tsuji, T. Kato, I. Nakanishi, T. Kinoshita, Y. Kato, M. Kuno, N. Seki, Y. Naoe, T. Inoue, K. Tanaka, K. Nakamura, *J. Med. Chem.* 2004, *47*, 2728-2731; c) D. Xiao, M. D. Vera, B. Liang, M. M. Joullie, *J. Org. Chem.* 2001, *66*, 2734-2742; d) M. E. Jung, Y. Usui, C. T. Vu, *Tetrahedron Lett.* 1987, *28*, 5977-5980; e) A. A. Sabino, R. A. Pilli, *Tetrahedron Lett.* 2002, *43*, 2819-2821.

¹¹⁴⁾ G. Jürjens, A. Kirschning, Org. Lett. 2014, 16, 3000-3003.

¹¹⁵⁾ N. Ikemoto, S. L. Schreiber, J. Am. Chem. Soc. 1990, 112, 9657-9659.

Tabelle 16: Erprobte Bedingunger	zur Entschützung	des Benzylethers 172
----------------------------------	------------------	----------------------

	SEMO BnO'' OSEM 172	$\frac{\text{dingungen}}{T, t} \xrightarrow{\text{SEMO}} \text{HO}^{(1)}$	O OSEM 174
	Bedingungen	T, t	Ergebnis
1	$BBr_3 \cdot SMe_2$, CH_2Cl_2	0 °C, 10 min	Zersetzung
2	BBr ₃ ·SMe ₂ , Et ₂ O	0 °C, 10 min	Zersetzung
3	$BBr_3 \cdot SMe_2$, CH_2Cl_2	-78 °C, 2.5 h	Zersetzung
4	CSA, CH ₂ Cl ₂	RT, 4 d 40 °C, 21 h	Keine Reaktion
5	CSA, PhMe	60 °C, 18 h	Keine Reaktion
6	Pd(OH) ₂ /C, Cyclohexen, EtOH (1:4)	90 °C, 20 h	Zersetzung
7	Pd/C, FA, MeOH (1:24)	RT, 3 d 40 °C, 24 h	Keine Reaktion
8	Pd/C, Cyclohexen, EtOH (1:2)	85 °C, 21 h	Überreduktion
9	Li-DBBP, THF	-78 °C, 10 min	35 % 175 41 % 176
10	DDQ, CH ₂ Cl ₂ /pH7- Phosphatpuffer (10:1)	RT, 4 h	Keine Reaktion
11	DDQ, CH ₂ Cl ₂ /pH7- Phosphatpuffer (10:1)	40 °C, 20 h	44 %

Abbildung 18: Bei der mit Li-DBBP versuchten Benzyl-Entschützung anfallende Nebenprodukte.

Wurde die Entschützung bei 35 °C durchgeführt, konnte nach nachfolgender Veresterung des freien Alkohols **174** der Ester **177** in guter Ausbeute von 68 % über zwei Stufen erhalten werden (Schema 78).

Schema 78: Gekoppelte Benzyl-Entschützung und Veresterung und Bildung von Verbindung **177**. Reagenzien und Bedingungen: a) DDQ, CH₂Cl₂/pH7-Phosphatpuffer-Lösung (10:1), 35 °C, 20 h; b) Isovaleriansäureanhydrid, DIPEA, DMAP, CH₂Cl₂, RT, 3 d, 68 % über 2 Stufen, dr. 10:1.

Bei der sich anschließenden Entschützung der beiden SEM-geschützten Alkohole sollte entweder selektiv entschützt oder beide Schutzgruppen gleichzeitig entfernt werden. Die Differenzierung der Alkohole müsste dann bei der nachfolgenden Glykosylierung erfolgen.

Zunächst wurden LEWIS-Säuren getestet. Unter Verwendung von Bortrifluorid konnte das Produkt **178** in geringer Ausbeute zusammen mit dem Produkt einer Acylmigration **179** isoliert werden (Tabelle 17, Einträge 1+2).¹¹⁶ Der Strukturnachweis des Nebenprodukts erfolgte über LC/MS und ¹H-NMR-Spektroskopie, wobei vor allem die Kopplungspartner des charakteristischen Signals für den veresterten Alkohol an C-6 für **178** bzw. C-7 für **179** als Strukturbeweis dienen. Die Verwendung von Magnesiumbromid mit Nitromethan als Additiv führte zur Zersetzung des Startmaterials **177** (Tabelle 17, Eintrag 3).¹¹⁷ Wurde statt Nitromethan Ethanthiol als Additiv verwendet, konnte das gewünschte Produkt **178**, sowie das Produkt einer Acylmigration **179** erhalten werden (Tabelle 17, Eintrag 4).¹¹⁸ Mit Zinkchlorid fand die Zersetzung des Edukts **177** statt (Tabelle 17, Eintrag 5).¹¹⁹ Da das Produkt **178** mit LEWIS-Säuren nur in geringen Ausbeuten erzeugt werden konnte, wurden anschließend BRØNSTED-Säuren erprobt. Während mit 1 M Salzsäure in Methanol keine Reaktion stattfand, fand mit TFA eine schnelle und mit CSA eine langsame Zersetzung des Startmaterials **177** statt (Tabelle 17, Einträge 6-8).¹²⁰ Die Verwendung von HF·Pyridin führte zur Zersetzung des eingesetzten Stoffes **177**

¹¹⁶⁾ S. D. Burke, G. J. Pacojsky, Tetrahedron Lett. 1986, 27, 445-448.

¹¹⁷⁾ R. R. Mears, E. J. Thomas, Tetrahedron Lett. 2015, 56, 3975-3979.

¹¹⁸⁾ A. B. Smith III, D. Lee, J. Am. Chem. Soc. 2007, 129, 10957-10962.

¹¹⁹⁾ a) H. C. Kolb, H. M. R. Hoffmann, *Tetrahedron: Asymmetry*, **1990**, *1*, 237-250; b) Eingesetztes ZnCl₂ wurde vor Benutzung mit Thionylchlorid getrocknet: R. T. Weberg, R. C. Haltiwanger, J. C. V. Laurie, M. R. DuBois, *J. Am. Chem. Soc.* **1986**, *108*, 6242-6250.

¹²⁰⁾ a) K. C. Nicolaou, K. C. Fylaktakidou, H. Monenschein, Y. Li, B. Weyershausen, H. J. Mitchell, H. Wei, P. Guntupalli, D. Hepworth, K. Sugita, *J. Am. Chem. Soc.* **2003**, *125*, 12433-12442; b) Y. Peng, H. W. Pang, T. Ye, *Org. Lett.* **2004**, *6*, 3781-3784.

(Tabelle 17, Eintrag 9).¹²¹ Wurde die Reaktion durch Zugabe von Pyridin abgemildert, konnte keine Reaktion beobachtet werden (Tabelle 17, Eintrag 10).¹²² Anschließend wurden verschiedene Fluoridquellen getestet. Die Verwendung von TBAF in DMPU führte zu keiner Umsetzung, während mit TBAF in HMPA und Cäsiumfluorid eine schnelle Zersetzung des Startmaterials **177** beobachtet werden konnte (Tabelle 17, Einträge 11-13).¹²³

Tabelle 17: Erprobte Bedingungen zur Entschützung der SEM-Gruppen in Anwesenheit des Isovaleriansäureesters.

¹²¹⁾ J. D. White, M. Kawasaki, J. Org. Chem. 1992, 57, 5292-5300

¹²²⁾ E. Menager, E. Merifield, M. Smallridge, E. J. Thomas, Tetrahedron 1997, 53, 9377-9392.

¹²³⁾ a) B. H. Lipshutz, T. A. Miller, *Tetrahedron Lett.* **1989**, *30*, 7149-7152; b) J. Shin, D. H. Thompson, *J. Org. Chem.* **2003**, *68*, 6760-6766; c) M. Bratz, W. H. Bullock, L. E. Overman, T. Takemoto, *J. Am. Chem. Soc.* **1995**, *117*, 5958-5966.

stattfand, sollte die Entschützung der SEM-Gruppen mit dem Vorläufer ohne Ester **172** erprobt werden. Tatsächlich gelang mit Zinkchlorid und Ethanthiol eine saubere Reaktion zum zweifach entschützten Produkt **180** in guter Ausbeute (Schema 79).¹¹⁹ Der Zusatz von Ethanthiol ist hierbei für einen hohen Umsatz essentiell.

Schema 79: Gleichzeitige Entschützung beider SEM-Acetale. Reagenzien und Bedingungen: a) ZnCl₂·OEt₂, Et₂O, EtSH, 0 °C, 1 h, 69 %, dr. 10:1.

Die Entschützung wurde ebenfalls unter Verwendung von CSA erprobt, da hiermit bereits bei den Isomerisierungsversuchen selektiv eine SEM-Schutzgruppe entfernt werden konnte (Seite 61). Tatsächlich konnte hierbei das in der gewünschten Position (O-7) entschützte Produkt **181** in mäßiger Ausbeute als 2:1 Gemisch zusammen mit dem an der unerwünschten Position (O-5) entschützte Produkt **182** erhalten werden. Die Trennung der beiden Verbindungen wurde mittels *semi*-präparativer HPLC erreicht.

Schema 80: Selektive Entschützung der SEM-Acetale. Reagenzien und Bedingungen: a) CSA, CH₂Cl₂, RT, 3 d, 31 % für **181**, dr. >10:1, 16 % für **182**, dr. >10:1.

3.9.4 Glykosylierung

Für die nachfolgende Glykosylierung musste zunächst die aktivierte Arabinose hergestellt werden. Die Erzeugung des gewünschten 1,2-*trans*-Glykosids sollte mittels der Acetat-Schutzgruppe erfolgen. Tetraacetyl-D-arabinofuranose **186** wurde über drei Stufen dargestellt (Schema 81).¹²⁴

Schema 81: Synthese von des D-Arbinosids **186**. Reagenzien und Bedingungen: a) MeOH, AcCl, RT, 3 h; b) Ac₂O, Py, 0 °C zu RT, 18 h, 78 % über 2 Stufen; c) AcOH, H₂SO₄, Ac₂O, RT, 3 h, 91 %.

Das Trichloracetimidat der Tetraacetyl-D-arabinofuranose **188** wurde über zwei Stufen gebildet und direkt in den folgenden Glykosylierungen eingesetzt (Schema 82).¹²⁵ Alternative Verseifungsmethoden des glykosidischen Acetats **186** waren nicht erfolgreich.¹²⁶

Schema 82: Synthese von Trichloracetimidat **188**. Reagenzien und Bedingungen: a) 30 % HBr/HOAc, CH₂Cl₂, RT, 3 h; b) CCl₃CN, K₂CO₃, CH₂Cl₂, RT, 18 h, 53 % über 2 Stufen.

Die Glykosylierung wurde mit Silbertriflat als Aktivator am einfach entschützten Makrozyklus **181** erprobt.¹²⁷ Hierbei zeigte sich eine initiale Reaktionstemperatur von -40 °C sowie die Verwendung von Molsieb 4Å als wichtig für eine vollständige Reaktion (Schema 83). Das Produkt **189** wurde zusammen mit einem nicht identifizierten Nebenprodukt isoliert, wodurch keine genaue Ausbeute angegeben werden kann. Da nur ein Diastereomer des Produkts **189** im ¹H-NMR-Spektrum sichtbar war, muss die Glykosylierung am Makrozyklus selektiv verlaufen. Die Entschützung des verbleibenden SEM-Acetals wurde im Folgenden mit Zinkchlorid erprobt, da hiermit bereits zuvor eine gute

¹²⁴⁾ a) S. G. Patching, S. A. Baldwin, A. D. Baldwin, J. D. Young, M. P. Gallageher, P. J. F. Henderson, R. B. Herbert, *Org. Biomol. Chem.* **2005**, *3*, 462-470; b) C. V. S. Ramamurty, P. Ganney, C. S. Rao, B. Fraser-Reid, *J. Org. Chem.* **2011**, *76*, 2245-2247.

¹²⁵⁾ S. Deng, B. Yu, Y. Hui, H. Yu, X. Han, Carbohydr. Res. 1999, 317, 53-62.

¹²⁶⁾ a) Y. Su, J. Xie, Y. Wang, X. Hu, X. Lin, *Eur. J. Med. Chem.* **2010**, *45*, 2713-2718; b) M. K. Gurjar, L. K. Reddy, S. Hotha, J. Org. Chem. **2001**, *66*, 4657-5660.

¹²⁷⁾ a) S. P. Douglas, D. M. Whitefield, J. J. Krepinksy, *J. Carbohydr. Chem.* **1993**, *12*, 131-136; b) I. Robina, E. Lopez-Barba, J. Fuentes, *Tetrahedron* **1996**, *52*, 10771-10784; c) G. Wei, G. Gu, Y. Du, *J. Carbohydr. Chem.* **2003**, *22*, 385-393.

Ausbeute erreicht werden konnte. Diese Bedingungen führten allerdings zur Zersetzung des eingesetzten SEM-Acetals **189**. Deshalb wurde nachfolgend der Fokus auf die Glykosylierung der doppelt SEM-entschützten Verbindung **180** gelegt.

Schema 83: Glykosylierung zu Verbindung **189**, sowie Versuch zur SEM-Entschützung. Reagenzien und Bedingungen: a) **188**, AgOTf, Molsieb 4Å, CH₂Cl₂, -40 °C, 1 h, <46 %, dr. >10:1; b) ZnCl, Et₂O, EtSH, 0 °C, 2 h, RT, 1 h, Zersetzung.

Die optimierten Glykosylierungsbedingungen wurden nun auf den zweifach entschützten Makrozyklus **180** angewandt (Schema 84). Hierbei wurden, nach Trennung des Produktgemisches über *semi*-präparative HPLC das Startmaterials **180** in 9 %, das unerwünschte Regioisomer **191** in 15 % sowie das gewünschte Produkt **190** in 4 % Ausbeute erhalten. Die Regioisomere wurden beide jeweils mit DMP oxidiert und die Ketone **192** und **193** in mäßiger bis geringer Ausbeute erhalten.

Schema 84: Glykosylierung mit dem zweifach entschützten Diol **180**. Reagenzien und Bedingungen: a) **188**; AgOTf, Molsieb 4Å, CH_2CI_2 , -40 °C, 8 h, 4 % für **190**, 15 % für **191**; b) DMP, NaHCO₃, CH_2CI_2 , RT, 24 h, 38 %; c) DMP, NaHCO₃, CH_2CI_2 , RT, 3 h, 15 %.

An dieser Stelle mussten die synthetischen Arbeiten aufgrund des vollständigen Verbrauchs aller Vorstufen und wegen Zeitmangel eingestellt werden.

4 Zusammenfassung und Ausblick

4.1 Zusammenfassung

Das Ziel dieser Arbeit war die Entwicklung eines synthetischen Zugangs zu Disciformycin A (9) und B (10), wobei die Totalsynthesen der Disciformycine zunächst als Strukturbeweis dienen sollten.

Für die Synthese beider Disciformycin-Naturstoffe wurde zunächst Disciformycin A (**9**) als Syntheseziel gewählt, da es laut computergestützter molekularer Modellierungen einen Zugang zu Disciformycin B (**10**) auf Stufe des Naturstoffs erlauben sollte (Seite 18).

Als besonders anspruchsvoll erwies sich der Aufbau des (*Z*)-Olefins an C-2 und C-3 (Schema 85 und Schema 86). Für die Etablierung der Substruktur wurden eine intramolekulare RRCM mit verschiedenen Vorläufern, sowie eine intramolekulare Olefinierung getestet; beide führten jedoch nicht zum Produkt **114** (Schema 85; Seiten 49, 51 und 67).

Schema 85: Erprobte intramolekulare Methoden zur Etablierung des (Z)-Olefins an C-2 und C-3.

Andere Methoden lieferten Teilerfolge bei der Erzeugung des (*Z*)-Olefins (Schema 86). Im Rahmen der Makrolactonisierungs-Strategie wurde die (*Z*)-Doppelbindung über eine STILL-GENNARI-Olefinierung erzeugt. Diese erwies sich jedoch in der nachfolgenden YAMAGUCHI-Reaktion als instabil und führte teilweise zur Isomerisierung (Seiten 57 und 59). Das δ -Lacton **87** ließ sich über eine RRCM erzeugen; während die RCM keinen Erfolg zeigte (Seiten 38 und 41). Allerdings konnte das so hergestellte Lacton **87** nicht verseift werden (Seite 42). Eine weitere angedachte Methode bei der eine nukleophile Epoxidöffnung als Schlüsselschritt verwendet werden sollte, führte ebenfalls nicht zum Erfolg (Seite 26).

Schema 86: Erprobte intermolekulare Methoden zur Etablierung des (Z)-Olefins.

Die Makrolaktonisierungs-Strategie eröffnete einen Zugang zu Disciformycin B (**10**) (Seite 58), womit sich im Verlaufe dieser Dissertation das synthetische Ziel auf dieses Naturstoffderivat verlagerte. Ausgehend von Methyllactat (**38**) konnte 1.0 g des Makrozyklus **145** bei einer Ausbeute von 7 % über 19 Stufen hergestellt werden (Schema 87). Nach erfolgter Installation des im offenkettigen System isomerisierungsanfälligen (*Z*)-Olefins (C-12 und C-13) über eine WITTIG-Reaktion (Seite 22), wurde Verbindung **172** in 39 % über drei Stufen erhalten. Nach Entschützung beider SEM-Acetale wurde das Glykosid an C-7 und das Keton an C-5 eingeführt. Dies war der Endpunkt der synthetischen Arbeiten; drei Stufen verbleiben für die abschließende Totalsynthese des Naturstoffs Disciformycin B (**10**).

Schema 87: Zusammenfassung der etablierten Synthese zu Disciformycin B (10).

4.2 Ausblick

Die geringe Ausbeute am Ende der bestehenden Totalsynthese ist vor allem mit der Glycosylierung verbunden, die in einer Ausbeute von 4 % erfolgte (Seite 77). Diese Reaktion muss substantiell optimiert werden. Hierfür ist es essentiell die Ausbeute zu verbessern und das Augenmerk auf die Regioselektivität von 3:1 zu legen. Außerdem muss die Regioselektivität dieses Reaktionsschritts kontrollierbar gestaltet werden, das heißt auch die Möglichkeit der zweifachen Glykosylierung muss unterdrückt werden.

Hierfür ist eine modifizierte Schutzgruppen-Strategie im Endspiel vonnöten. Hierzu bietet es sich an, das SEM-Acetal an C-5 durch eine weitere Benzyl-Schutzgruppe zu ersetzen. Diese sollte hinreichend stabil gegenüber LEWIS-Säuren wie Zinkchlorid sein, sodass die bereits etablierten Entschützungsbedingungen für die SEM-Gruppe weiterhin zum Einsatz kommen könnten. Die Differenzierung der Alkohole an C-5 und C-6 könnte dann durch die Oxidation des allylischen Alkohols mit Braunstein erreicht werden. Die folgenden beiden Stufen würden die Synthese von Disciformycin B (**10**) abschließen.

Schema 88: Alternatives Endspiel durch Modifizierung der Schutzgruppen-Strategie zur Synthese von Disciformycin B (10).

Ein Zugang zu Disciformycin A (**9**) könnte über eine Makrolactonisierung mit dem (*Z*)-Vorläufer **198** mit angepasster Schutzgruppen-Strategie erreicht werden (Schema 89). Dieser generelle Ansatz konnte in dieser Arbeit wegen des nur über präparative HPLC-trennbaren Gemisches und der mäßigen Ausbeuten der STILL-GENNARI-Olefinierung sowie der YAMAGUCHI-Reaktion nicht weiterverfolgt (Seiten 57 und 59).

Schema 89: Zugang zu Disciformycin A (9) über YAMAGUCHI-Makrolactonisierung und Trennung des anfallenden Gemisches.

Aus der etablierten Synthese könnten auch weitere Derviate wie Gulmirecin B (**12**) zugänglich gemacht werden. Die Benzyl-Entschützung mit Li·DBBP führte zur Reduktion des β , γ -ungesättigten Systems (Seite 72); diese eigentlich nicht erwünschte Reaktion wäre hier eine Methode der Wahl. Hierzu sollte als Schutzgruppe eine Ester- statt einer Benzyl-Schutzgruppe für O-5 verwendet werden.

Schema 90: Vorgeschlagene Synthese von Gulmirecin B (12) ausgehend von Makrozyklus 202.

Gulmirecin A (**11**) ist aus den bisher entwickelten Syntheseansätzen nur schwer zugänglich, da diese Arbeit vor allem die Etablierung des, in Gulmirecin A (**11**), nicht vorhandenen Olefin-Motivs behandelt. Zu diesem Naturstoff müsste dementsprechend eine neue Synthese-Strategie entworfen werden.

5 Experimenteller Teil

5.1 Computergestützte molekulare Modelierung

Für die Modelierung wurden die zu berechnenden Moleküle zunächst in ChemBioDraw 15.1 gezeichnet und in Chem3D 14.0 der Firma PERKINELMER INFORMATICS vorminimiert und als mol2 Datei exportiert. Die eigentliche Modelierung erfolgte mit Maestro 9.8 der Firma SCHRÖDINGER. Für die Konformationssuche wurde *mixed low-frequency-mode conformational search* (LMCS) mit einem OPLS2005 Kraftfeld verwendet. Als Lösungsmittelhintergrund dienten CHCl₃ oder H₂O. Die Limitierung der Stufen betrug 29000 mit 200 gespeicherten Konformeren.

Die Bindungsangaben der Daten im mol2 Dateiformat wurden der Übersichtlichkeit halber in tabellarischer Form dargestellt.

5.1.1 Disciformycin A (9) (CHCl₃)

6510 unique conformations found so far 6220 minimized with good convergence 13 confs within 1.00 kcal/mol (4.18 kJ/mol) of glob. min. Found Found 57 confs within 2.00 kcal/mol (8.37 kJ/mol) of glob. min. Found 191 confs within 3.00 kcal/mol (12.55 kJ/mol) of glob. min. Found 972 confs within 5.00 kcal/mol (20.92 kJ/mol) of glob. min. Found 6510 confs within 10.00 kcal/mol (41.84 kJ/mol) of glob. min. Global minimum E = 34.61 found 3 times. 24000 steps performed so far, out of 24000 E of low-energy structures above global min [kJ/mol], and no. times found: E: 0.00 0.35 0.73 1.18 1.38 2.24 2.86 3.27 3.31 3.79 3.86 4.08 No.: 3 14 13 12 2 15 9 13 10 6 6 8

Die energieärmste Konformation ist im Folgenden im mol2 Dateiformat angegeben.

@<TRIPOS>MOLECULE ***** 77 78 1 SMALL USER_CHARGES

@ <tripos>ATOM</tripos>					
1 C1	3.5113	3.5465	11.3779 C.2	1 UNK	0.4220
2 C2	4.2624	3.5434	10.0300 C.3	1 UNK	0.2680
3 C3	4.8763	4.9133	9.6603 C.3	1 UNK	0.2390
4 C4	5.8200	5.4362	10.7424 C.2	1 UNK	-0.0690
5 C5	4.2983	3.1176	12.6252 C.3	1 UNK	-0.1200
6 C6	5.4313	6.4348	11.5619 C.2	1 UNK	-0.1150
7 C7	6.1510	6.9476	12.7976 C.3	1 UNK	-0.1200
8 C8	5.2270	6.9200	14.0302 C.3	1 UNK	0.2890
9 09	4.6928	5.6028	14.1659 0.3	1 UNK	-0.3300
10 C10	3.4867	5.4106	14.7365 C.2	1 UNK	0.5100
11 C11	3.0361	3.9904	14.7481 C.2	1 UNK	0.0000
12 C12	3.4116	3.0321	13.8648 C.2	1 UNK	-0.1150

13	013	2.8159	6.3224	15.2238	0.2	1	UNK	-0.4300
14	C14	2.0621	3.6676	15.8711	C.3	1	UNK	-0.1800
15	015	2.3314	3.8997	11.4489	0.2	1	UNK	-0.4700
16	016	3.3551	3.2170	8.9811	0.3	1	UNK	-0.3300
17	017	5.5601	4.7377	8.4195	0.3	1	UNK	-0.4000
18	C18	7.1547	4.7058	10.8472	C.3	1	UNK	-0.1800
19	C19	5.9664	7.3658	15.2934	C.2	1	UNK	-0.0690
20	C20	6.8452	6.3120	15.9503	C.3	1	UNK	-0.1800
21	C21	5.8535	8.5961	15.8346	C.2	1	UNK	-0.1150
22	(22	5.0318	9.7615	15.3145	C.3	1	UNK	-0.1800
23	(23	3,1671	1.9407	8.6372	C.2	1	UNK	0.5100
24	024	3 6746	0 9710	9 2000	0.2	1		-0 4300
25	C25	5 6900	5 8829	7 6430	0.2	1		0.4500
25	C25	5.0900	5.0029	6 2060	C.5	1		0.3000
20	C20	7 2100	5.4052	0.5009	C.5	1		0.2050
27	C27	7.3190	6.5813	0.0053	0.3	1	UNK	0.2050
28	C28	/./865	6.8536	7.4944	0.3	T	UNK	0.1/00
29	029	6.5581	6.8166	8.2131	0.3	1	UNK	-0.4000
30	030	5.4046	5.3987	5.2370	0.3	1	UNK	-0.6830
31	031	8.3354	6.1159	5.2019	0.3	1	UNK	-0.6830
32	C32	8.4304	8.2289	7.7013	C.3	1	UNK	0.1450
33	033	8.8679	8.3155	9.0426	0.3	1	UNK	-0.6550
34	C34	2.2331	1.7660	7.4354	C.3	1	UNK	-0.1200
35	C35	2.6579	2.4721	6.1193	C.3	1	UNK	-0.0600
36	C36	4.0958	2.1399	5.6785	C.3	1	UNK	-0.1800
37	C37	2.4046	3.9909	6.1235	C.3	1	UNK	-0.1800
38	H38	5.0662	2.8075	10.0850	Н	1	UNK	0.0300
39	H39	4.0511	5.6175	9.5306	Н	1	UNK	0.0300
40	H40	4.7313	2.1340	12.4430	Н	1	UNK	0.0600
41	H41	5.1368	3.7899	12.7826	н	1	UNK	0.0600
42	H42	4,4621	6.8867	11.4002	н	1	UNK	0.1150
43	H43	6.4764	7.9713	12.6105	Н	1	UNK	0.0600
44	H44	7.0475	6.3708	13,0076	н	1	UNK	0.0600
45	H45	4 4016	7 6025	13 8310	н	1		0 0300
16	H46	2 9611	2 0569	13 9866	н	1		0.0500
40	H47	1 1370	1 2312	15 7/3/	н	1		0.1150
47		1 0005	4.2312	15 0071		1		0.0000
40	П40	1.0005	2.6079	16 0272	п 	1		0.0000
49	H49	2.4922	5.9341	11 4402	п 	1		0.0000
50		7.0907	2,2340	11.4462	п 	1		0.0000
51	H51	7.0205	3.7109	11.2/04	н	T	UNK	0.0600
52	H52	7.6015	4.5893	9.8598	H	1	UNK	0.0600
53	H53	7.5831	5.9294	15.2458	H	1	UNK	0.0600
54	H54	7.3826	6./143	16.8093	Н	1	UNK	0.0600
55	H55	6.2421	5.4740	16.3002	Н	1	UNK	0.0600
56	H56	6.3914	8.8071	16.7480	Н	1	UNK	0.1150
57	H57	5.6449	10.6629	15.2999	Н	1	UNK	0.0600
58	H58	4.1838	9.9422	15.9757	Н	1	UNK	0.0600
59	H59	4.6530	9.6103	14.3056	Н	1	UNK	0.0600
60	H60	4.7231	6.3684	7.4917	Н	1	UNK	0.1000
61	H61	6.8396	4.5109	6.4423	Н	1	UNK	0.0600
62	H62	6.8264	7.4621	5.6483	Н	1	UNK	0.0600
63	H63	8.4392	6.0494	7.8411	Н	1	UNK	0.0300
64	H64	4.8021	4.6905	5.4211	Н	1	UNK	0.4180
65	H65	7.8951	5.7968	4.4245	Н	1	UNK	0.4180
66	H66	9.2866	8.3524	7.0366	Н	1	UNK	0.0600
67	H67	7.7243	9.0307	7.4818	Н	1	UNK	0.0600
68	H68	8.1457	8.0285	9.5860	Н	1	UNK	0.3900
~~				-				-
69	H69	1.2360	2.0945	7.7292	Н	1	UNK	0.0600
69 70	H69 H70	1.2360 2.1513	2.0945 0.6947	7.7292 7.2495	H H	1 1	UNK UNK	0.0600 0.0600

72	H72		4.2518	1.0610	5.6	363 H	1 UNK		0.0	9600
73	H73		4.3046	2.5348	4.6	835 H	1 UNK		0.6	3600
74	H74		4.8386	2.5531	6.3	621 H	1 UNK		0.6	3600
75	H75		3.0637	4.5193	6.8	104 H	1 UNK		0.6	9600
76	H76		2.5547	4.4163	5.1	304 H	1 UNK		0.6	9600
77	H77		1.3779	4.2146	6.4	161 H	1 UNK		0.6	ð600
@ <tripo< td=""><td>S>BON</td><td>D</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tripo<>	S>BON	D								
1	1	21		27	11	14 1		53	26	30 1
2	1	51		28	12	46 1		54	26	61 1
3	1	15 2		29	14	47 1		55	27	28 1
4	2	31		30	14	48 1		56	27	31 1
5	2	16 1		31	14	49 1		57	27	62 1
6	2	38 1		32	16	23 1		58	28	29 1
7	3	41		33	17	25 1		59	28	32 1
8	3	17 1		34	18	50 1		60	28	63 1
9	3	39 1		35	18	51 1		61	30	64 1
10	4	62		36	18	52 1		62	31	65 1
11	4	18 1		37	19	20 1		63	32	33 1
12	5	12 1		38	19	21 2		64	32	66 1
13	5	40 1		39	20	53 1		65	32	67 1
14	5	41 1		40	20	54 1		66	33	68 1
15	6	71		41	20	55 1		67	34	35 1
16	6	42 1		42	21	22 1		68	34	69 1
17	7	81		43	21	56 1		69	34	70 1
18	7	43 1		44	22	57 1		70	35	36 1
19	7	44 1		45	22	58 1		71	35	37 1
20	8	91		46	22	59 1		72	35	71 1
21	8	19 1		47	23	24 2		73	36	72 1
22	8	45 1		48	23	34 1		74	36	73 1
23	9	10 1		49	25	26 1		75	36	74 1
24	10	11 1		50	25	29 1		76	37	75 1
25	10	13 2		51	25	60 1		77	37	76 1
26	11	12 2		52	26	27 1		78	37	77 1

```
@<TRIPOS>SUBSTRUCTURE
```

1 UNK 1 GROUP 0 **** 0 R	UNK 1 GRO	P 0	**** 6	ROOT
--------------------------	-----------	-----	--------	------

5.1.2 Disciformycin B (10) (CHCl₃)

5935 unique conformations found so far 5662 minimized with good convergence Found 7 confs within 1.00 kcal/mol (4.18 kJ/mol) of glob. min. 43 confs within 2.00 kcal/mol (8.37 kJ/mol) of glob. min. Found Found 155 confs within 3.00 kcal/mol (12.55 kJ/mol) of glob. min. Found 866 confs within 5.00 kcal/mol (20.92 kJ/mol) of glob. min. Found 5935 confs within 10.00 kcal/mol (41.84 kJ/mol) of glob. min. Global minimum E = 19.32 found 14 times. 24000 steps performed so far, out of 24000 E of low-energy structures above global min [kJ/mol], and no. times found: E: 0.00 0.51 1.47 2.30 2.45 2.94 3.09 4.74 4.77 5.06 5.17 5.53 No.: 11 10 1 12 5 5 14 6 3 8 5 13

Die energieärmste Konformation ist im Folgenden im mol2 Dateiformat angegeben.

@<TRIPOS>MOLECULE

77 78 1
SMALL
USER_CHARGES

51 H51

7.1750

5.7194

10.3367 H

1 UNK

0.0600

@<TRIPOS>ATOM 1 C1 6.9934 2.0544 10.5756 C.2 1 UNK 0.4220 10.6187 C.3 1 UNK 2 C2 5.9217 3.1644 0.2680 1 UNK 3 C3 5.9076 3.9733 11.9428 C.3 0.2390 4 C4 7.2243 4.6948 12.2507 C.2 1 UNK -0.0690 1 UNK 5 C5 8.3844 2.4565 10.3176 C.2 -0.1150 6 C6 7.9943 4.3466 13.3053 C.2 1 UNK -0.1150 7 C7 9.2724 5.0357 13.7714 C.3 1 UNK -0.1200 8 C8 10.5264 4.1476 13.6410 C.3 1 UNK 0.2890 9 09 10.5995 3.6977 12.2945 0.3 1 UNK -0.3300 11.9876 C.2 1 UNK 10 C10 11.2293 2.5483 0.5100 11 C11 10.8711 2.0684 10.5752 C.3 1 UNK -0.0600 12 C12 9.4145 1.6436 10.6149 C.2 1 UNK -0.1150 13 013 12.7441 0.2 1 UNK 11.9450 1.8916 -0.4300 14 C14 11.7822 0.9393 10.0643 C.3 1 UNK -0.1800 15 015 6.6743 0.8817 10.7912 0.2 1 UNK -0.4700 16 016 4.6258 2.5836 10.4821 0.3 1 UNK -0.3300 17 017 4.8465 4.9223 11.8234 0.3 1 UNK -0.4000 18 C18 7.5277 5.8882 11.3532 C.3 1 UNK -0.1800 19 C19 11.7901 4.8998 14.0641 C.2 1 UNK -0.0690 20 C20 12.3657 5.8568 13.0310 C.3 1 UNK -0.1800 21 C21 12.3980 4.7343 15.2567 C.2 1 UNK -0.1150 1 UNK 22 C22 11.9630 3.8319 16.3971 C.3 -0.1800 23 C23 4.0808 2.4449 9.2697 C.2 1 UNK 0.5100 24 024 4.6186 2.7563 8.2074 0.2 1 UNK -0.4300 25 C25 4.2596 5.3167 13.0210 C.3 1 UNK 0.3000 26 C26 3.0818 6.2441 12.6795 C.3 1 UNK 0.2050 27 C27 13.7175 C.3 1 UNK 3.2260 7.3377 0.2050 28 C28 4.7476 7.4385 13.8073 C.3 1 UNK 0.1700 29 029 5.1271 6.0667 13.8180 0.3 1 UNK -0.4000 30 030 12.8058 0.3 1 UNK 1.8172 5.6276 -0.6830 -0.6830 31 031 2.5947 8.5097 13.2458 0.3 1 UNK 1 UNK 32 C32 5.2696 8.0955 15.0894 C.3 0.1450 33 033 6.6791 8.1640 15.0057 0.3 1 UNK -0.6550 34 C34 2.6729 1.8413 9.3005 C.3 1 UNK -0.1200 35 C35 10.1079 C.3 1 UNK -0.0600 1.6009 2.6212 36 C36 1.4888 4.1042 9.7075 C.3 1 UNK -0.1800 37 C37 1.7337 2.4524 11.6324 C.3 1 UNK -0.1800 38 H38 3.8513 9.7938 H 1 UNK 6.1135 0.0300 39 H39 5.6878 3.2706 12.7499 H 1 UNK 0.0300 40 H40 8.5657 3.4643 9.9737 H 1 UNK 0.1150 41 H41 7.6973 3.5009 13.9097 H 1 UNK 0.1150 42 H42 9.1386 5.3071 14.8190 H 1 UNK 0.0600 43 H43 9.4229 5.9779 13.2500 H 1 UNK 0.0600 44 H44 14.2782 H 1 UNK 10.3862 3.2750 0.0300 45 H45 10.9656 2.9271 9.9097 H 1 UNK 0.0600 46 H46 9.2229 0.6557 11.0134 H 1 UNK 0.1150 47 H47 11.5131 9.0489 H 1 UNK 0.6480 0.0600 48 H48 12.8260 1.2551 10.0515 H 1 UNK 0.0600 49 H49 11.7142 0.0521 10.6955 H 1 UNK 0.0600 50 H50 7.0233 6.7769 11.7323 H 1 UNK 0.0600

52	H52		8.5935	6.0986	11.2	804 H	ł	1	UNK		0.	0600
53	H53		11.6208	6.5910	12.7	257 H	ł	1	UNK		0.	0600
54	H54		13.2270	6.3995	13.4	211 ⊦	ł	1	UNK		0.	0600
55	H55		12.6916	5.3129	12.1	443 H	ł	1	UNK		0.	0600
56	H56		13.3055	5.2877	15.4	520 H	ł	1	UNK		0.	1150
57	H57		10.9598	3.4287	16.2	734 H	1	1	UNK		0.	0600
58	H58		12.6582	2.9979	16.4	963 H	ł	1	UNK		0.	0600
59	H59		11.9753	4.3931	17.3	317 H	ł	1	UNK		0.	0600
60	H60		3.9321	4.4509	13.6	010 H	1	1	UNK		0.	1000
61	H61		3.2261	6.6438	11.6	728 H	1	1	UNK		0.	0600
62	H62		2.8050	7.0270	14.6	760 H	1	1	UNK		0.	0600
63	H63		5.1491	7,9255	12.9	161 +	ł	1	UNK		0.	0300
64	H64		1.7592	4.9539	12.1	412 F	-	1	UNK		0.4	4180
65	H65		1.7007	8.2646	13.0	442 F	4	1	UNK		0.	4180
66	H66		4.8662	9.1038	15.1	930 F	4	- 1	UNK		0.	0600
67	H67		4.9709	7.5283	15.9	719 F		- 1	UNK		0.	0600
68	H68		6.9788	7.3073	14.7	317 F		- 1	UNK		0.	3900
69	H69		2,7499	0.8199	9.6	737 F		- 1	UNK		0	9699
70	H70		2.3409	1,7561	8.2	654 F		1	UNK		0.	0600 0600
70	H71		0 6482	2 1621	9.2	394 -		1	LINK		a.	0000 0600
72	H72		1 3474	4 2077	8 6	307 -		1	LINK		о. о	0000 0600
72	H73		0 6352	4.2077	10 1	012 ⊨		1			0.	0000 0600
75	H7/		2 3821	4.5885	10.1	767 ⊨		1			0.	0000 0600
74	LI74		1 79/5	1 2075	11 0	010 L		1			0.	0000
75	117.5 117.5		0 9726	2 9760	12.9	510 L		1			0.	0000
70	1170 1177		2 6262	2.8700	12.1	267 L		1			0.	0000
//	1177		2.0205	2.9552	12.0	207 1		T	UNK		0.	0000
ALTRTOO		`										
۳۲۱۲۲۲O. 1	3700NL 1	, 21		27	11	15	1			52	26	20 1
1 2	1	2 I E 1		27	10	45	1 1			55	20	50 I 61 1
2	1	15 2		20	14	40	1 1			54	20	201 1
2	1 2	15 Z 2 1		29	14	47	1 1			55	27	20 I 21 1
4 F	2	1 1 1		21	14	40	1 1			50	27	62 1
5	2	10 I 20 1		22	14	49	1 1			57	27	02 I 20 1
0	2	JO I 4 1		52	17	25	1 1			50	20	29 I 22 1
/	כ ר	4 L		55	10	25	1			59	20	52 I 62 I
0	2	1/1		54	10	50	1			60	20	05 I
9	5	39 I		35	18	51	1			61	30	64 1
10	4	6 Z		30	18	52	1			62	31	22 1
11	4	10 1		57	19	20	т С			65	52 22	55 I
12	5	12 2		38	19	21	2 1			64	32	66 I
13	5	40 1		39	20	53	1			65	32	6/ I
14	6	/ 1		40	20	54	T			66	33	68 I
15	6	41 1		41	20	55	1			67	34	35 1
16	/	81		42	21	22	1			68	34	69 1
1/	/	42 1		43	21	56	1			69	34	70 1
18	/	43 1		44	22	57	1			70	35	36 1
19	8	91		45	22	58	1			/1	35	3/1
20	8	19 1		46	22	59	1			72	35	/1 1
21	8	44 1		47	23	24	2			73	36	72 1
22	9	10 1		48	23	34	1			74	36	73 1
23	10	11 1		49	25	26	1			75	36	74 1
24	10	13 2		50	25	29	1			76	37	75 1
25	11	12 1		51	25	60	1			77	37	76 1
26	11	14 1		52	26	27	1			78	37	77 1

@<TRIPOS>SUBSTRUCTURE

1 UNK	1 GROUP	0	****	0 ROOT
-------	---------	---	------	--------

5.1.3 2-epi-Disciformycin B (14) (CHCl₃)

6295	unique	confor	rmations	s found	d so far						
6012	2 minim:	ized wi	ith good	d conve	ergence						
Found	8	confs	within	1.00	kcal/mol	. (4.18	kJ/mol)	of glo	b. min		
Found	54	confs	within	2.00	kcal/mol	. (8.37	kJ/mol)	of glo	b. min	•	
Found	198	confs	within	3.00	kcal/mol	(12.55	kJ/mol)	of glo	b. min		
Found	1128	confs	within	5.00	kcal/mol	(20.92	kJ/mol)	of glo	b. min	•	
Found	6295	confs	within	10.00	kcal/mol	(41.84	kJ/mol)	of glo	b. min	•	
Globa	al minir	num E =	= 22	1.61 fo	ound 1	2 times	•				
24000) steps	perfor	rmed so	far, d	out of 24	1000					
E of	low-er	nergy s	structu	res abo	ove globa	al min [kJ/mol],	and n	o. tim	es fou	nd:
E	: 0.00	0.57	7 1.51	2.45	2.72 2	2.98 3.	12 4.17	4.66	4.72	4.77	5.02
No.	: 12	2 4	47	5	16	11	69	17	4	5	8

Die energieärmste Konformation ist im Folgenden im mol2 Dateiformat angegeben.

@<TRIPOS>MOLECULE

77 78 1
SMALL
USER_CHARGES

@<TRIPOS>ATOM

1	C1	-1.7368	0.1174	-0.9456	C.2	1	UNK	0.4220
2	C2	-1.7402	0.3174	0.5852	C.3	1	UNK	0.2680
3	С3	-0.3520	0.1171	1.2494	C.3	1	UNK	0.2390
4	C4	0.7295	1.0776	0.7422	C.2	1	UNK	-0.0690
5	C5	-1.1981	1.2053	-1.7755	C.2	1	UNK	-0.1150
6	C6	1.7969	0.6375	0.0398	C.2	1	UNK	-0.1150
7	C7	2.9785	1.4705	-0.4455	C.3	1	UNK	-0.1200
8	C8	3.0788	1.5472	-1.9823	C.3	1	UNK	0.2890
9	09	1.8302	2.0145	-2.4741	0.3	1	UNK	-0.3300
10	C10	1.4205	1.7015	-3.7200	C.2	1	UNK	0.5100
11	C11	-0.0714	1.9808	-3.9310	C.3	1	UNK	-0.0600
12	C12	-0.8283	0.9939	-3.0536	C.2	1	UNK	-0.1150
13	013	2.1024	1.1694	-4.5943	0.2	1	UNK	-0.4300
14	C14	-0.4262	3.4577	-3.6642	C.3	1	UNK	-0.1800
15	015	-2.1433	-0.9430	-1.4291	0.2	1	UNK	-0.4700
16	016	-2.6220	-0.6278	1.1887	0.3	1	UNK	-0.3300
17	017	-0.5469	0.2984	2.6530	0.3	1	UNK	-0.4000
18	C18	0.5616	2.5255	1.1860	C.3	1	UNK	-0.1800
19	C19	4.2385	2.4430	-2.4220	C.2	1	UNK	-0.0690
20	C20	3.9684	3.9396	-2.3817	C.3	1	UNK	-0.1800
21	C21	5.4290	1.9734	-2.8476	C.2	1	UNK	-0.1150
22	C22	5.8661	0.5232	-2.9468	C.3	1	UNK	-0.1800
23	C23	-3.9035	-0.3084	1.3943	C.2	1	UNK	0.5100
24	024	-4.4313	0.7574	1.0776	0.2	1	UNK	-0.4300
25	C25	0.3382	-0.3929	3.4735	C.3	1	UNK	0.3000
26	C26	-0.0946	-0.1564	4.9298	C.3	1	UNK	0.2050
27	C27	1.2327	0.0681	5.6242	C.3	1	UNK	0.2050
28	C28	1.9910	0.8290	4.5382	C.3	1	UNK	0.1700
29	029	1.6452	0.0884	3.3728	0.3	1	UNK	-0.4000
30	030	-0.7591	-1.2585	5.5120	0.3	1	UNK	-0.6830
31	031	1.0168	0.8087	6.8072	0.3	1	UNK	-0.6830
32	C32	3.5156	0.8087	4.6904	C.3	1	UNK	0.1450

33	033		4.0713	1.5895	3.6513	0.3	1	UNK		-0.	6550	
34	C34		-4.7045	-1.4175	2.0839	С.3	1	UNK		-0.	1200	
35	C35		-4.2024	-1.8696	3.4814	С.3	1	UNK		-0.	0600	
36	C36		-4.0214	-0.7067	4.4748	С.3	1	UNK		-0.	1800	
37	C37		-2.9545	-2.7698	3.4263	С.3	1	UNK		-0.	1800	
38	H38		-2.0807	1.3325	0.7917	н	1	UNK		0.	0300	
39	H39		-0.0410	-0.9104	1.0477	н	1	UNK		0.	0300	
40	H40		-1.0143	2.1550	-1.2967	н	1	UNK		0.	1150	
41	H41		1.8558	-0.4114	-0.2147	н	1	UNK		0	1150	
42	H42		3 8882	1 0143	-0 0542	н	- 1	LINK		о. О	0600	
/13	H/13		2 9553	2 /711	-0 0205	ц	1			о. о	0600	
10			2.3335	0 5362	-2 3502	 L	1			0. 0	00000	
44	1144 U/IE		0 2169	1 7502	-2.3392	н ц	1			0.	0500	
45			-0.5168	1.7508	-4.9684		1			0.	1150	
46	H46		-0.9704	0.0146	-3.4918	н	1	UNK		0.	1150	
47	H47		-1.4981	3.6267	-3./686	н	1	UNK		0.	0600	
48	H48		0.0773	4.1081	-4.3802	н	1	UNK		0.	0600	
49	H49		-0.1305	3.7860	-2.6673	Н	1	UNK		0.	0600	
50	H50		1.0012	2.6656	2.1735	Н	1	UNK		0.	0600	
51	H51		1.0228	3.2314	0.4972	Н	1	UNK		0.	0600	
52	H52		-0.4900	2.8005	1.2533	Н	1	UNK		0.	0600	
53	H53		3.6575	4.2497	-1.3844	Н	1	UNK		0.	0600	
54	H54		4.8545	4.5159	-2.6484	н	1	UNK		0.	0600	
55	H55		3.1773	4.2055	-3.0830	н	1	UNK		0.	0600	
56	H56		6.1772	2.6843	-3.1685	н	1	UNK		0.	1150	
57	H57		5.9487	0.2311	-3.9941	н	1	UNK		0.	0600	
58	H58		5.1889	-0.1693	-2.4507	н	1	UNK		0.	0600	
59	H59		6 8472	0 4051	-2 4863	н	- 1	LINK		а. А	0600	
60	нбо		0.3506	-1 4571	3 2275	н	1	LINK		о. а	1000	
61	H61		-0 7123	0 7/39	1 97/0	ц	1			о. о	0600	
62	462		1 7264	-0 9910	5 9/20	 L	1			0. 0	00000	
62			1.7204	1 8402	3.0432		1			0.	0000	
60			1.6107	1.6495	4.4554		1			0.	4100	
64	H64		-1.5842	-1.3681	5.0581	н	1	UNK		0.	4180	
65	H65		0.3/93	0.319/	/.311/	н	1	UNK		0.	4180	
66	H66		3.8086	1.2302	5.6530	н	1	UNK		0.	0600	
67	H67		3.9018	-0.2103	4.6449	Н	1	UNK		0.	0600	
68	H68		3.6506	1.3143	2.8474	Н	1	UNK		0.	3900	
69	H69		-4.7492	-2.2729	1.4097	Н	1	UNK		0.	0600	
70	H70		-5.7296	-1.0579	2.1777	Н	1	UNK		0.	0600	
71	H71		-5.0013	-2.4926	3.8863	Н	1	UNK		0.	0600	
72	H72		-3.8061	-1.0747	5.4788	Н	1	UNK		0.	0600	
73	H73		-4.9292	-0.1052	4.5403	Н	1	UNK		0.	0600	
74	H74		-3.2079	-0.0418	4.1823	Н	1	UNK		0.	0600	
75	H75		-3.1058	-3.6042	2.7403	н	1	UNK		0.	0600	
76	H76		-2.7344	-3.1963	4.4057	н	1	UNK		0.	0600	
77	H77		-2.0688	-2.2305	3.0947	н	1	UNK		0.	0600	
@ <trtpo< td=""><td>5>BOND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></trtpo<>	5>BOND											
1	1	2	1	27	11 45	5 1			53	26	30	1
2	1	5	1	_, 28	12 46	- 5 1			54	26	61	1
2	1	15	- 2	20	14 47	· <u>-</u> / 1			54	20	201	1
ر ۸	- 2	2	-	20	1/ /0	- ! 1			55	27	20	⊥ 1
4 F	∠ ว	د ۱ <i>د</i>	1 1	0C 21	14 40	, ⊥ \ 1			50	∠/ 27	51 67	1
5	2	70	1	31	14 49	, T			5/	27	62	Ţ
6	2	38	T	32	10 23) I			58	28	29	Ţ
7	3	4	T	33	1/ 25	1			59	28	32	1
8	3	17	1	34	18 50) 1			60	28	63	1
9	3	39	1	35	18 51	. 1			61	30	64	1
10	4	6	2	36	18 52	1			62	31	65	1
11	4	18	1	37	19 20) 1			63	32	33	1

12	5	12 2	38	19	21 2	64	32	66 1
13	5	40 1	39	20	53 1	65	32	67 1
14	6	71	40	20	54 1	66	33	68 1
15	6	41 1	41	20	55 1	67	34	35 1
16	7	8 1	42	21	22 1	68	34	69 1
17	7	42 1	43	21	56 1	69	34	70 1
18	7	43 1	44	22	57 1	70	35	36 1
19	8	91	45	22	58 1	71	35	37 1
20	8	19 1	46	22	59 1	72	35	71 1
21	8	44 1	47	23	24 2	73	36	72 1
22	9	10 1	48	23	34 1	74	36	73 1
23	10	11 1	49	25	26 1	75	36	74 1
24	10	13 2	50	25	29 1	76	37	75 1
25	11	12 1	51	25	60 1	77	37	76 1
26	11	14 1	52	26	27 1	78	37	77 1
@ <tripo< td=""><td>S>SUB</td><td>STRUCTURE</td><td></td><td></td><td></td><td></td><td></td><td></td></tripo<>	S>SUB	STRUCTURE						

1 UNK	1 GROUP	0	****	0 ROOT
-------	---------	---	------	--------

5.1.4 Disciformycin A (9) (H₂O)

7694 unique conformations found so far 7694 minimized with good convergence Found 24 confs within 1.00 kcal/mol (4.18 kJ/mol) of glob. min. Found 96 confs within 2.00 kcal/mol (8.37 kJ/mol) of glob. min. Found 242 confs within 3.00 kcal/mol (12.55 kJ/mol) of glob. min. Found 1006 confs within 5.00 kcal/mol (20.92 kJ/mol) of glob. min. Found 7694 confs within 10.00 kcal/mol (41.84 kJ/mol) of glob. min. Global minimum E = 24.52 found 6 times. 24000 steps performed so far, out of 24000 E of low-energy structures above global min [kJ/mol], and no. times found: E: 0.00 0.58 1.41 1.53 1.66 1.82 2.06 2.07 2.13 2.22 2.26 2.81 5 No.: 6 12 12 9 4 3 3 9 12 8 5

Die energieärmste Konformation ist im Folgenden im mol2 Dateiformat angegeben.

@<TRIPOS>MOLECULE ***** 77 78 1 SMALL USER_CHARGES

@<TRIPOS>ATOM

1	C1	-8.4335	8.2173	8.8280 C.2	1	UNK	0.4220
2	C2	-9.1057	9.3721	8.0485 C.3	1	UNK	0.2680
3	C3	-8.8047	9.3650	6.5276 C.3	1	UNK	0.2390
4	C4	-9.1723	8.0358	5.8679 C.2	1	UNK	-0.0690
5	C5	-9.2289	6.9122	8.9884 C.3	1	UNK	-0.1200
6	C6	-8.2085	7.1679	5.4962 C.2	1	UNK	-0.1150
7	C7	-8.3896	5.7428	5.0007 C.3	1	UNK	-0.1200
8	C8	-7.5760	4.7506	5.8528 C.3	1	UNK	0.2890
9	09	-7.9383	4.9318	7.2225 0.3	1	UNK	-0.3300
10	C10	-7.0672	4.6545	8.2112 C.2	1	UNK	0.5100
11	C11	-7.5812	4.9612	9.5759 C.2	1	UNK	0.0000

12	C12	-8.5133	5.8991	9.8787 C	.2 1	UNK	-0.1150
13	013	-5.9475	4.1737	8.0145 0	.2 1	UNK	-0.4300
14	C14	-6.9569	4.1116	10.6718 C	.3 1	UNK	-0.1800
15	015	-7.2996	8.3421	9,3066 0	.2 1	UNK	-0.4700
16	016	-8.6253	10.6201	8.5471 0	3 1	UNK	-0.3300
17	017	-9 5313	10 4489	5 9394 0	3 1	LINK	-0 4000
10	C19	-10 6680	7 7676	5,5554 0	· 5 · 1		-0.1800
10	C10	-10.0080	2 2090	5.7570 C	. J I		-0.1000
19	C19	-7.7998	3.5000	5.3936 C	.2 1		-0.0090
20	C20	-9.0690	2.6447	5.90/5 C	.3 1	UNK	-0.1800
21	C21	-6.9400	2.62/3	4.6113 C	.2 1	UNK	-0.1150
22	C22	-5.6413	3.1353	4.0130 C	.3 1	UNK	-0.1800
23	C23	-9.2348	11.2189	9.5764 C	.2 1	UNK	0.5100
24	024	-10.1881	10.7587	10.2078 0	.2 1	UNK	-0.4300
25	C25	-9.0111	10.9425	4.7438 C	.3 1	UNK	0.3000
26	C26	-9.8542	12.1662	4.3291 C	.3 1	UNK	0.2050
27	C27	-10.0971	11.9130	2.8502 C	.3 1	UNK	0.2050
28	C28	-10.1871	10.3857	2.8275 C	.3 1	UNK	0.1700
29	029	-9.1238	10.0206	3.6998 0	.3 1	UNK	-0.4000
30	030	-9.1912	13.4051	4.5079 0	.3 1	UNK	-0.6830
31	031	-11,2871	12,5677	2,4410 0	.3 1	UNK	-0.6830
32	(32	-9 9286	9 7523	1 4531 0	3 1	LINK	0 1450
32	033	-10 1/32	8 35/2	1 5/38 0	3 1		-0 6550
24	C24	- 10, 14, 52	10 5770	1.0400	. J I J 1		-0.0550
54	C34	-8.6255	12.5/72	9.9552 C	.5 1	UNK	-0.1200
35	C35	-8.6090	13.64/6	8.8116 (.3 1	UNK	-0.0600
36	C36	-9.9908	13.8914	8.1//8 C	.3 1	UNK	-0.1800
37	C37	-7.5334	13.4028	7.7375 C	.3 1	UNK	-0.1800
38	H38	-10.1852	9.2953	8.1872 H	1	UNK	0.0300
39	H39	-7.7328	9.5393	6.4082 H	1	UNK	0.0300
40	H40	-9.4554	6.4917	8.0137 H	1	UNK	0.0600
41	H41	-10.1926	7.1463	9.4408 H	1	UNK	0.0600
42	H42	-7.1748	7.4580	5.6278 H	1	UNK	0.1150
43	H43	-8.0535	5.6926	3.9647 H	1	UNK	0.0600
44	H44	-9.4350	5.4463	5.0018 H	1	UNK	0.0600
45	H45	-6.5241	5.0110	5.7404 H	1	UNK	0.0300
46	H46	-8.7592	6.0220	10.9234 H	1	UNK	0.1150
47	H47	-5.8886	4.3160	10.7518 H	1	UNK	0,0600
48	H48	-7 4085	4 3093	11 6442 H	- 1	LINK	0.0000
40 //Q	нла	-7 0869	3 0509	10 /535 H	1		0.0000
4J EQ		-7.0005	7 5202	6 7061 H	1		0.0000
50	1150	-11.1072	7.5502		1		0.0000
21	HDI	-11.1805	8.6480	5.3506 H	1	UNK	0.0600
52	H52	-10.9026	6.9574	5.0511 H	1	UNK	0.0600
53	H53	-9.9465	3.2336	5.640/ H	1	UNK	0.0600
54	H54	-9.1990	1.6466	5.4881 H	1	UNK	0.0600
55	H55	-9.0429	2.5463	6.9930 H	1	UNK	0.0600
56	H56	-7.1692	1.5993	4.3658 H	1	UNK	0.1150
57	H57	-5.5127	4.2124	4.1038 H	1	UNK	0.0600
58	H58	-5.6107	2.8941	2.9501 H	1	UNK	0.0600
59	H59	-4.7928	2.6461	4.4921 H	1	UNK	0.0600
60	H60	-7.9551	11.2005	4.8567 H	1	UNK	0.1000
61	H61	-10.7946	12.1460	4.8855 H	1	UNK	0.0600
62	H62	-9.2459	12.2473	2.2529 H	1	UNK	0.0600
63	H63	-11,1391	10.0556	3.2495 H	- 1	UNK	0.0300
64	H64	-9 0629	13,5225	5.4433 H	1	UNK	0 4180
65	H65	-11 1676	13 /001	2.4725 H	1		0.7100 A 1100
66		-10 6100	10 1707	2.0J20 N	1		0.4100
67		00100	10.1/02	0./U/ H	1		
0/	по/ нсс	-8.9126	9.9589	1.1134 H	1	UNK	0.0600
68	H68	-9.6296	8.0490	2.2861 H	1	UNK	0.3900
69	H69	-7.6100	12.4086	10.2997 H	1	UNK	0.0600
70	H70	-9.1832	12.9683	10.7854 H	1	UNK	0.0600

71	H71	-8.33	315 14.58	01 9	.3057 H	1 (UNK	0.	0600
72	H72	-10.74	109 14.10	45 8	.9406 H	1	UNK	0.	0600
73	H73	-10.33	358 13.02	.95 7	.6052 H	1 (UNK	0.	0600
74	H74	-9.96	570 14.74	64 7	.5009 H	1 (UNK	0.	0600
75	H75	-6.55	552 13.23	96 8	.1914 H	1 (UNK	0.	0600
76	H76	-7.44	402 14.26	644 7	.0752 H	1 (UNK	0.	0600
77	H77	-7.75	569 12.53	76 7	.1152 H	1 (UNK	0.	0600
@ <tripo< td=""><td>S>BONI</td><td>D</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tripo<>	S>BONI	D							
1	1	2 1		27 11	14 1		53	26	30 1
2	1	51		28 12	46 1		54	26	61 1
3	1	15 2		29 14	47 1		55	27	28 1
4	2	3 1		30 14	48 1		56	27	31 1
5	2	16 1		31 14	49 1		57	27	62 1
6	2	38 1		32 16	23 1		58	28	29 1
7	3	4 1		33 17	25 1		59	28	32 1
8	3	17 1		34 18	50 1		60	28	63 1
9	3	39 1		35 18	51 1		61	30	64 1
10	4	62		36 18	52 1		62	31	65 1
11	4	18 1		37 19	20 1		63	32	33 1
12	5	12 1		38 19	21 2		64	32	66 1
13	5	40 1		39 20	53 1		65	32	67 1
14	5	41 1		40 20	54 1		66	33	68 1
15	6	71		41 20	55 1		67	34	35 1
16	6	42 1		42 21	22 1		68	34	69 1
17	7	8 1		43 21	56 1		69	34	70 1
18	7	43 1		44 22	57 1		70	35	36 1
19	7	44 1		45 22	58 1		71	35	37 1
20	8	91		46 22	59 1		72	35	71 1
21	8	19 1		47 23	24 2		73	36	72 1
22	8	45 1		48 23	34 1		74	36	73 1
23	9	10 1		49 25	26 1		75	36	74 1
24	10	11 1		50 25	29 1		76	37	75 1
25	10	13 2		51 25	60 1		77	37	76 1
26	11	12 2		52 26	27 1		78	37	77 1
@ <tripo< td=""><td>S>SUB</td><td>STRUCTURE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tripo<>	S>SUB	STRUCTURE							

1 UNK	1 GROUP	0	****	0 ROOT

5.1.5 Disciformycin B (10) (H_2O)

6696 unique conformations found so far 6696 minimized with good convergence Found 21 confs within 1.00 kcal/mol (4.18 kJ/mol) of glob. min. Found 102 confs within 2.00 kcal/mol (8.37 kJ/mol) of glob. min. Found 287 confs within 3.00 kcal/mol (12.55 kJ/mol) of glob. min. Found 1241 confs within 5.00 kcal/mol (20.92 kJ/mol) of glob. min. Found 6696 confs within 10.00 kcal/mol (41.84 kJ/mol) of glob. min. Global minimum E = 6.39 found 4 times. 24000 steps performed so far, out of 24000 E of low-energy structures above global min [kJ/mol], and no. times found: E: 0.00 0.20 1.33 1.74 1.92 2.02 2.29 2.42 2.50 2.56 2.81 2.85 No.: 4 6 6 9 5 7 1 7 1 4 8 4

Die energieärmste Konformation ist im Folgenden im mol2 Dateiformat angegeben.

@<TRIPOS>MOLECULE

77 78 1
SMALL
USER_CHARGES

51 H51

-6.9556

-2.2015

-8.8020 H

1 UNK

0.0600

@<TRIPOS>ATOM 1 C1 -6.4245 -2.6416 -4.4740 C.2 1 UNK 0.4220 1 UNK 2 C2 -5.1269 -2.8636 -5.2859 C.3 0.2680 1 UNK 3 C3 -5.2266 -3.9890 -6.3553 C.3 0.2390 4 C4 -6.3181 -3.7604 -7.4083 C.2 1 UNK -0.0690 1 UNK 5 C5 -7.5335 -1.9331 -5.1316 C.2 -0.1150 6 C6 -7.3910 -4.5764 -7.5065 C.2 1 UNK -0.1150 7 C7 -8.4919 -4.5164 -8.5602 C.3 1 UNK -0.1200 8 C8 -9.8726 -4.1525 -7.9791 C.3 1 UNK 0.2890 9 09 -9.7323 -2.9289 -7.2682 0.3 1 UNK -0.3300 -10.5682 -6.2636 C.2 1 UNK 10 C10 -2.6090 0.5100 -1.4674 11 C11 -10.0057 -5.4064 C.3 1 UNK -0.0600 -4.6733 C.2 12 C12 -8.7959 -2.0192 1 UNK -0.1150 13 013 -5.9908 0.2 1 UNK -11.6259 -3.1824 -0.4300 14 C14 -11.0338 -0.8629 -4.4353 C.3 1 UNK -0.1800 -3.0656 15 015 -6.5080 -3.3140 0.2 1 UNK -0.4700 16 016 -4.0684 -3.2316 -4.3987 0.3 1 UNK -0.3300 17 017 -3.9448 -4.0764 -6.9888 0.3 1 UNK -0.4000 18 C18 -6.0426 -2.6266 -8.3881 C.3 1 UNK -0.1800 19 C19 -10.9335 -4.0575 -9.0778 C.2 1 UNK -0.0690 20 C20 -10.9372 -2.7659 -9.8809 C.3 1 UNK -0.1800 21 C21 -11.8386 -5.0241 -9.3327 C.2 1 UNK -0.1150 1 UNK 22 C22 -11.9721 -6.3664 -8.6378 C.3 -0.1800 23 C23 -3.2900 -2.2945 -3.8431 C.2 1 UNK 0.5100 24 024 -3.4095 -1.0782 -4.0040 0.2 1 UNK -0.4300 25 C25 -3.6250 -5.3204 -7.5333 C.3 1 UNK 0.3000 26 C26 -2.1726 -5.2559 -8.0500 C.3 1 UNK 0.2050 27 C27 -5.9146 -9.4155 C.3 1 UNK -2.2793 0.2050 28 C28 -5.4646 -9.8453 C.3 1 UNK 0.1700 -3.6768 29 029 -4.4174 -5.6309 -8.6415 0.3 1 UNK -0.4000 30 030 -1.2461 -5.9625 -7.2448 0.3 1 UNK -0.6830 31 031 -1.2372 -5.4459 -10.2559 0.3 1 UNK -0.6830 -10.9353 C.3 1 UNK 32 C32 -4.3205 -6.3329 0.1450 33 033 -5.5588 -5.7541 -11.3099 0.3 1 UNK -0.6550 34 C34 -2.1985 -2.8715 -2.9355 C.3 1 UNK -0.1200 -1.2023 35 C35 -3.8631 -3.5923 C.3 1 UNK -0.0600 36 C36 -0.5302 -3.3067 -4.8608 C.3 1 UNK -0.1800 37 C37 -1.7939 -5.2638 -3.8334 C.3 1 UNK -0.1800 38 H38 -4.8818 -1.9279 -5.7890 H 1 UNK 0.0300 39 H39 -5.4362 -4.9198 -5.8236 H 1 UNK 0.0300 40 H40 -7.3209 -1.4038 -6.0490 H 1 UNK 0.1150 41 H41 -7.5053 -5.3748 -6.7862 H 1 UNK 0.1150 42 H42 -8.5529 -5.4995 -9.0278 H 1 UNK 0.0600 43 H43 -8.2285 -3.8337 -9.3644 H 1 UNK 0.0600 44 H44 1 UNK -10.1488 -4.9259 -7.2632 H 0.0300 45 H45 -9.6689 -0.6884 -6.0914 H 1 UNK 0.0600 46 H46 -9.0085 -2.5949 -3.7822 H 1 UNK 0.1150 47 H47 -10.6005 -3.8747 H 1 UNK -0.0343 0.0600 48 H48 -11.9009 -0.4771 -4.9728 H 1 UNK 0.0600 49 H49 -11.3907 -1.6007 -3.7154 H 1 UNK 0.0600 50 H50 -5.5118 -1.8062 -7.9071 H 1 UNK 0.0600

52	H52	-5	.4224	-2.9825	-9.21	L01 H	1	UNK		0.0	3600
53	H53	-11	.6748	-2.7930	-10.68	335 H	1	UNK		0.0	3600
54	H54	-9	.9616	-2.5891	-10.33	333 H	1	UNK		0.0	3600
55	H55	-11	.1750	-1.9149	-9.24	124 H	1	UNK		0.0	3600
56	H56	-12	.5700	-4.8531	-10.11	L07 H	1	UNK		0.1	1150
57	H57	-11	.1273	-6.6099	-7.99	960 H	1	UNK		0.6	9600
58	H58	-12	.8796	-6.3855	-8.03	337 H	1	UNK		0.6	9600
59	H59	-12	.0499	-7.1572	-9.38	344 H	1	UNK		0.0	3600
60	H60	-3	.7528	-6.1133	-6.79	922 H	1	UNK		0.1	1000
61	H61	-1	.8830	-4.2066	-8.14	166 H	1	UNK		0.0	2600
62	H62	-2	.2462	-7.0028	-9.32	272 H	1	UNK		0.6	3600
63	H63	-3	.6633	-4.4097	-10.12	78 H	- 1	UNK		0.0	3300
64	H64	-1	2089	-5.5189	-6.40	Э41 Н	- 1	UNK		0.4	1180
65	H65	-0	.4222	-5.6429	-9.86	л <u>я</u> н 909 н	- 1	UNK		0.4	1180
66	Нбб	-3	6709	-6 3841	-11 81	ю2 н	- 1	LINK		0. 0.0	2600
67	H67	-4	4707	-7 3542	-10 58	х22 H	1	LINK		0.0 0 0	2600
68	H68	-6	0429	-5 6058	-10.50	аза н	1	LINK		0.t	3900
69	нбо	-2	6823	-3 3444	-2 05	207 н	1	LINK		a a	2600
70	H70	ے 1_	6380	-2 0287	-2.50	ол н	1			0.0 0 0	2600
70	H71	-1	1010	-2.0207	-2.92	ая н	1			0.0	2600
71		0-	0720		-2.0.	ос ц	1			0.0	2600
72	п/2 ц72	-0	2612	2.0700	-4.00		1			0.0	2600
75		1	2404	-3.9/00	-5.2	ют п 701 ц	1			0.0	2600
74	п/4 U75	-1	.2404	-3.1022	-5.07		1			0.0	2000
75		-2	.2546	-5.0558	-2.92		1	UNK		0.6	2600
70 77	H/6	-2	.5524	-5.2003	-4.6	146 H	1	UNK		0.6	2600
//	н//	-1	.0174	-5.9703	-4.12	292 H	T	UNK		0.6	1000
0.70700											
@ <tripu< td=""><td></td><td>2 1</td><td></td><td>27</td><td>11</td><td>45 1</td><td></td><td></td><td>53</td><td>26</td><td>20 1</td></tripu<>		2 1		27	11	45 1			53	26	20 1
1	1			27	11	45 I			55	20	50 I
2	1	5 L 15 D		20	14	40 I			54	20	20 1
5	1	15 2		29	14	4/ 1 40 1			55	27	28 I
4	2	5 I 1 C 1		50	14	40 1			50	27	51 1
5	2	10 1		51	14	49 I			57	27	62 I 20 1
6	2	38 1		32	16	23 I			58	28	29 1
/	3	4 1		33	1/	25 I			59	28	32 1
8	3	1/1		34	18	50 1			60	28	63 1
9	3	39 1		35	18	51 1			61	30	64 1
10	4	62		36	18	52 1			62	31	65 1
11	4	18 1		3/	19	20 1			63	32	33 1
12	5	12 2		38	19	21 2			64	32	66 1
13	5	40 1		39	20	53 1			65	32	6/1
14	6	71		40	20	54 1			66	33	68 1
15	6	41 1		41	20	55 1			67	34	35 1
16	7	81		42	21	22 1			68	34	69 1
17	7	42 1		43	21	56 1			69	34	70 1
18	7	43 1		44	22	57 1			70	35	36 1
19	8	91		45	22	58 1			71	35	37 1
20	8	19 1		46	22	59 1			72	35	71 1
21	8	44 1		47	23	24 2			73	36	72 1
22	9	10 1		48	23	34 1			74	36	73 1
23	10	11 1		49	25	26 1			75	36	74 1
24	10	13 2		50	25	29 1			76	37	75 1
25	11	12 1		51	25	60 1			77	37	76 1
26	11	14 1		52	26	27 1			78	37	77 1

@<TRIPOS>SUBSTRUCTURE

1 UNK	1 GROUP	0	****	Ø ROOT
T OWN		0		0 1001

5.1.6 2-epi-Disciformycin B (14) (H₂O)

6913	unique	confo	rmations	s found	d so far						
6913	s minimi	ized w	ith good	d conve	ergence						
Found	l 17	confs	within	1.00	kcal/mol	(4.18	kJ/mol)	of gl	ob. mir	ı.	
Found	103	confs	within	2.00	kcal/mol	(8.37	kJ/mol)	of gl	ob. mir	ı.	
Found	302	confs	within	3.00	kcal/mol	(12.55	kJ/mol)	of gl	ob. mir	ı.	
Found	1344	confs	within	5.00	kcal/mol	(20.92	kJ/mol)	of gl	ob. mir	ı.	
Found	6913	confs	within	10.00	kcal/mol	(41.84	kJ/mol)	of gl	ob. mir	n .	
Globa	ıl minin	num E =	= 6	5.77 fo	ound	5 times	•				
24000) steps	perfo	rmed so	far, d	out of 24	000					
E of	low-er	nergy s	structu	res abo	ove globa	l min [kJ/mol],	and	no. tir	nes fou	nd:
E	: 0.00	0.23	3 1.35	1.36	1.74 2	.07 2.	25 2.59	2.83	2.86	3.41	3.47
No.	: 5	5 5	5 3	7	6	4	11 7	4	5	5	3

Die energieärmste Konformation ist im Folgenden im mol2 Dateiformat angegeben.

@<TRIPOS>MOLECULE ***** 77 78 1 SMALL USER_CHARGES

@<TRIPOS>ATOM

1	C1	5.1411	6.4104	10.6163	C.2	1	UNK	0.4220
2	C2	4.4669	7.7826	10.8522	C.3	1	UNK	0.2680
3	C3	2.9437	7.7037	11.1596	C.3	1	UNK	0.2390
4	C4	2.5950	6.8751	12.4022	C.2	1	UNK	-0.0690
5	C5	5.3990	5.5623	11.7904	C.2	1	UNK	-0.1150
6	C6	1.8898	5.7257	12.3134	C.2	1	UNK	-0.1150
7	C7	1.4016	4.8616	13.4713	C.3	1	UNK	-0.1200
8	C8	2.0600	3.4684	13.5116	C.3	1	UNK	0.2890
9	09	3.4685	3.6589	13.5218	0.3	1	UNK	-0.3300
10	C10	4.3041	2.7087	13.0582	C.2	1	UNK	0.5100
11	C11	5.7195	3.2464	12.8200	C.3	1	UNK	-0.0600
12	C12	5.6272	4.2395	11.6693	C.2	1	UNK	-0.1150
13	013	3.9982	1.5494	12.7729	0.2	1	UNK	-0.4300
14	C14	6.3338	3.8351	14.1061	C.3	1	UNK	-0.1800
15	015	5.4347	6.0550	9.4675	0.2	1	UNK	-0.4700
16	016	4.6097	8.5902	9.6816	0.3	1	UNK	-0.3300
17	017	2.4813	9.0495	11.3238	0.3	1	UNK	-0.4000
18	C18	3.0036	7.4994	13.7306	C.3	1	UNK	-0.1800
19	C19	1.5848	2.6617	14.7218	C.2	1	UNK	-0.0690
20	C20	2.2609	2.9949	16.0429	C.3	1	UNK	-0.1800
21	C21	0.6475	1.6945	14.6572	C.2	1	UNK	-0.1150
22	C22	-0.1253	1.2433	13.4318	C.3	1	UNK	-0.1800
23	C23	5.6735	9.3898	9.5329	C.2	1	UNK	0.5100
24	024	6.6085	9.4914	10.3297	0.2	1	UNK	-0.4300
25	C25	1.1334	9.2628	11.0344	C.3	1	UNK	0.3000
26	C26	0.8532	10.7753	11.1543	C.3	1	UNK	0.2050
27	C27	-0.4465	10.8080	11.9415	C.3	1	UNK	0.2050
28	C28	-0.2628	9.5940	12.8539	C.3	1	UNK	0.1700
29	029	0.2898	8.6379	11.9564	0.3	1	UNK	-0.4000
30	030	0.6791	11.4263	9.9085	0.3	1	UNK	-0.6830
31	031	-0.5554	12.0407	12.6346	0.3	1	UNK	-0.6830

32	C32		-1.5670	9.0232	13.42	282 C.3	1	UNK		0.	1450	
33	033		-1.2508	7.9746	14.32	276 0.3	1	UNK		-0.	6550	
34	C34		5.6508	10.1950	8.22	294 C.3	1	UNK		-0.	1200	
35	C35		4.4309	11.1285	8.03	118 C.3	1	UNK		-0.	0600	
36	C36		4.1828	12,0965	9.18	331 C.3	1	UNK		-0.	1800	
37	C 37		3.1452	10.3813	7.6	134 C.3	1	UNK		-0.	1800	
38	нзя		4 9662	8 2604	11 60	ала н	1	LINK		а. а	2000 0300	
30	1130		2 1627	7 2551	10 29	277 H	1			о. о	0300	
10			Z.402/	6 0219	10.20	574 II 572 II	1			0.	1150	
40	140		1 6154	0.0210	11 7		1			0.	1150	
41	H41		1.6154	5.3574	11.3:	545 H	1	UNK		0.	1120	
42	H42		0.323/	4.7405	13.30	501 H	1	UNK		0.	0600	
43	H43		1.5352	5.3695	14.42	236 H	1	UNK		0.	0600	
44	H44		1.7982	2.9465	12.59	917 H	1	UNK		0.	0300	
45	H45		6.3495	2.4207	12.48	372 H	1	UNK		0.	0600	
46	H46		5.6558	3.7927	10.68	344 H	1	UNK		0.	1150	
47	H47		7.3181	4.2603	13.90	096 H	1	UNK		0.	0600	
48	H48		6.4595	3.0593	14.80	520 H	1	UNK		0.	0600	
49	H49		5.7144	4.6172	14.54	467 H	1	UNK		0.	0600	
50	H50		3.1729	6.7543	14.50	065 H	1	UNK		0.	0600	
51	H51		2.2333	8.1893	14.07	739 H	1	UNK		0.	0600	
52	H52		3,9312	8,0624	13.63	372 H	1	UNK		0.	0600	
53	H53		2.1576	4.0552	16.2	727 H	1	UNK		0	0600	
54	H54		1 8276	2 4320	16 8	702 H	1	LINK		о. а	0600 0600	
55			2 22/2	2,4520	16 00	лод II аза ц	1			0. 0	0000	
55			0 2001	1 1567	10.00	ылы 17 ц	1			0.	1150	
50			0.3964	1.1307	12.20		1			0.	1120	
57	H57		0.1914	0.2421	13.1:		1	UNK		0.	0600	
58	H58		-1.1894	1.2027	13.60	565 H	1	UNK		0.	0600	
59	Н59		-0.0080	1.9053	12.5	/5/ H	1	UNK		0.	0600	
60	H60		0.8858	8.8858	10.03	389 H	1	UNK		0.	1000	
61	H61		1.6640	11.2360	11.72	241 H	1	UNK		0.	0600	
62	H62		-1.3049	10.6562	11.28	333 H	1	UNK		0.	0600	
63	H63		0.4585	9.8200	13.64	424 H	1	UNK		0.	0300	
64	H64		1.5118	11.3834	9.4	504 H	1	UNK		0.	4180	
65	H65		-0.4949	12.7231	11.97	709 H	1	UNK		0.	4180	
66	H66		-2.1160	9.7994	13.96	533 H	1	UNK		0.	0600	
67	H67		-2.2164	8.6568	12.63	317 H	1	UNK		0.	0600	
68	H68		-0.6627	7.3874	13.86	519 H	1	UNK		0.	3900	
69	H69		5.7358	9.4964	7.39	968 H	1	UNK		0.	0600	
70	H70		6.5604	10.7958	8.20	060 H	1	UNK		0.	0600	
71	H71		4,6929	11.7499	7.1	540 H	1	UNK		0.	0600	
72	H72		3,4119	12.8265	8.9	335 H	1	UNK		0.	0600	
73	H73		3.8615	11.5738	10.08	R48 H	- 1	UNK		0	0600	
74	H74		5 0873	12 6544	9 41	оо н	1	LINK		о. о	0600 0600	
75	LI75		2 2675	11 0700	7 20	225 LL	1			0. 0	0000	
75			2.3073	0 7040	0 1		1			0.	0000	
70	п/о u==		2.7408	9.7848	0.44	297 F	1			0.	0000	
//	н//		3.3268	9.7098	6.7	/34 H	T	UNK		6.	0000	
0.707000												
@ <tripus< td=""><td>>BOND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tripus<>	>BOND											
1	1	21		27	11	45 1			53	26	30	1
2	1	51		28	12	46 1			54	26	61	1
3	1	15 2		29	14	47 1			55	27	28	1
4	2	31		30	14	48 1			56	27	31	1
5	2	16 1		31	14	49 1			57	27	62	1
6	2	38 1		32	16	23 1			58	28	29	1
7	3	4 1		33	17	25 1			59	28	32	1
8	3	17 1		34	18	50 1			60	28	63	1
9	3	39 1		35	18	51 1			61	30	64	1
10	4	62		36	18	52 1			62	31	65	1

11	4	18 1	37	19	20 1	63	32	33 1
12	5	12 2	38	19	21 2	64	32	66 1
13	5	40 1	39	20	53 1	65	32	67 1
14	6	71	40	20	54 1	66	33	68 1
15	6	41 1	41	20	55 1	67	34	35 1
16	7	8 1	42	21	22 1	68	34	69 1
17	7	42 1	43	21	56 1	69	34	70 1
18	7	43 1	44	22	57 1	70	35	36 1
19	8	91	45	22	58 1	71	35	37 1
20	8	19 1	46	22	59 1	72	35	71 1
21	8	44 1	47	23	24 2	73	36	72 1
22	9	10 1	48	23	34 1	74	36	73 1
23	10	11 1	49	25	26 1	75	36	74 1
24	10	13 2	50	25	29 1	76	37	75 1
25	11	12 1	51	25	60 1	77	37	76 1
26	11	14 1	52	26	27 1	78	37	77 1

```
@<TRIPOS>SUBSTRUCTURE
```

```
1 UNK 1 GROUP
```

```
0 **** 0 ROOT
```

5.1.7 (Z)-konfigurierter Makrozyklus 114 (CHCl₃)

```
12368 unique conformations found so far
9841 minimized with good convergence
Found 21 confs within 1.00 kcal/mol (4.18 kJ/mol) of glob. min.
Found 153 confs within 2.00 kcal/mol ( 8.37 kJ/mol) of glob. min.
Found 638 confs within 3.00 kcal/mol (12.55 kJ/mol) of glob. min.
Found 3321 confs within 5.00 kcal/mol (20.92 kJ/mol) of glob. min.
Found 12368 confs within 10.00 kcal/mol (41.84 kJ/mol) of glob. min.
Global minimum E = -323.30 found
                                     3 times.
29000 steps performed so far, out of 29000
 E of low-energy structures above global min [kJ/mol], and no. times found:
   E: 0.00 0.01 0.30 0.83 1.13 1.50 1.60 1.94 2.19 2.43 2.58 2.79
  No.:
               3
                           8
                                 1
                                       5
                                            4
                                                  2
                                                                          2
          3
                     6
                                                        4
                                                              4
                                                                   10
```

Die energieärmste Konformation ist im Folgenden im mol2 Dateiformat angegeben.

@<TRIPOS>MOLECULE

119 121 1
SMALL
USER_CHARGES

@<TRIPOS>ATOM

1	C1	39.2053	56.0022	5.4440 (С.З	1	UNK	0.1700
2	C2	39.7972	57.2292	4.6682 0	C.3	1	UNK	0.1700
3	C3	39.4523	58.6078	5.3045 (C.3	1	UNK	0.2390
4	C4	39.7740	58.6606	6.7998 (C.2	1	UNK	-0.0690
5	C5	40.2383	54.8737	5.6349 (C.3	1	UNK	-0.1200
6	C6	40.9962	58.3091	7.2445 (C.2	1	UNK	-0.1150
7	C7	41.4490	58.0542	8.6738 0	C.3	1	UNK	-0.1200
8	C8	42.0789	56.6500	8.8435 (C.3	1	UNK	0.2200
9	09	41.1927	55.7045	8.2450 (0.3	1	UNK	-0.3300
10	C10	40.9765	54.4920	8.7671 (C.2	1	UNK	0.5100

11	C11	40.0853	53.6264	7.9390	C.2	1	UNK	0.0000
12	C12	39.7644	53.8231	6.6342	C.2	1	UNK	-0.1150
13	013	41 4539	54 1264	9 8434	0.2	1	LINK	-0 4300
14	C14	39 5032	52 4467	8 7027	с з	1		-0 1800
15	C15	38 5974	59 0047	7 6990	C 3	1		-0 1800
16	C15	13 5080	55.0047	9 2456	C.3	1		0.1000
17	C10 C17	43.3080		0.2400	C.5	1		0.1700
10	018	44.2000	55.2775	0./290	0.3	1		-0.1000
10	018	36.0035	55.4095	4.0104	0.5	1	UNK	-0.4000
19	5119	34.7621	54.7342	9.2869	51	T	UNK	0.7476
20	C20	35.4849	56.06//	8.1498	0.3	1	UNK	-0.4025
21	C21	35.9832	55.4953	6.8201	C.3	1	UNK	0.1400
22	022	36.4651	56.5739	6.0331	0.3	1	UNK	-0.4000
23	C23	34.1429	55.5376	10.8802	C.3	1	UNK	-0.5103
24	C24	33.3170	53.8609	8.4382	C.3	1	UNK	-0.5103
25	C25	36.0875	53.4622	9.7201	C.3	1	UNK	-0.5103
26	C26	36.9117	56.1933	4.7716	C.3	1	UNK	0.2000
27	027	39.3544	57.2652	3.3097	0.3	1	UNK	-0.4000
28	C28	39.5514	56.4738	1.0088	C.ar	1	UNK	-0.0418
29	C29	40.3551	55.9177	-0.0085	C.ar	1	UNK	-0.1150
30	C30	39.9990	56.0770	-1.3624	C.ar	1	UNK	-0.1150
31	C31	38.8319	56.7874	-1.7048	C.ar	1	UNK	-0.1150
32	C32	38.0210	57.3373	-0.6926	C.ar	1	UNK	-0.1150
33	C33	38.3789	57.1787	0.6610	C.ar	1	UNK	-0.1150
34	C34	39,9398	56.2841	2.4637	C. 3	1	UNK	0.1818
35	035	40 1907	59 5977	4 5844	0.3	1		-0 4000
36	555 5136	43 6583	62 2480	7 8655	Si	1		0.4000
27	C27	41 8021	62.2400	7 52/0	C 3	1		-0 1025
)/ 20	C37	41.0021	61 6590	6 0060	C.5	1		0.4025
20	020	41.5150	61.0309	5.0000 F.0474	0.3	1		0.1400
29	039	40.1126	61.4707	5.94/4	0.5	1	UNK	-0.4000
40	C40	44.3588	63.66/6	6.834/	0.3	T	UNK	-0.5103
41	C41	43.9340	62.6185	9.6966	0.3	1	UNK	-0.5103
42	C42	44.5/22	60.6545	7.4204	C.3	1	UNK	-0.5103
43	C43	39.7464	60.9113	4.7283	C.3	1	UNK	0.2000
44	044	43.4096	56.5075	6.8257	0.3	1	UNK	-0.4000
45	C45	44.3842	56.2396	2.3377	C.ar	1	UNK	-0.1150
46	C46	43.6431	57.3530	1.8922	C.ar	1	UNK	0.0850
47	C47	43.2165	58.3136	2.8426	C.ar	1	UNK	-0.1150
48	C48	43.5346	58.1554	4.2049	C.ar	1	UNK	-0.1150
49	C49	44.2725	57.0378	4.6418	C.ar	1	UNK	-0.0418
50	C50	44.6971	56.0779	3.7019	C.ar	1	UNK	-0.1150
51	C51	44.5826	56.8691	6.1157	C.3	1	UNK	0.1818
52	052	43.3746	57.4254	0.5431	0.3	1	UNK	-0.2850
53	C53	42.6403	58.5453	0.0672	C.3	1	UNK	0.1100
54	H54	38.9137	56.3005	6.4498	Н	1	UNK	0.0300
55	H55	40.8847	57.1547	4.6629	н	1	UNK	0.0300
56	H56	38.3835	58,7769	5,1684	н	1	UNK	0.0300
57	H57	41.2077	55.2767	5,9193	н	1	UNK	0.0600
58	H58	40.4238	54.3696	4.6878	Н	1	UNK	0.0600
59	H59	41 7436	58 1066	6 4977	н	1		0 1150
60	H60	40 6102	58 1329	9 3610	н	1		0.1150
61	H61	42 1582	58 8271	8 9666	 Н	- 1	LINK	0 0600
67	H62	12 1/96	56 1775	Q Q170	 Н	1 1		0.0000
62		20 0607	50.4/25 52 101F	5.31/9	н Ц	1 1		0.000
60		10 2050		0.1921		1 1		0.1120
ь4 сг	п04 ПСГ	40.2959	51./531	8.9854	п	Ţ		0.0600
65		29.0104	52./849	9.6144	п 	1	UNK	0.0600
66	Нбб	38.//16	51.898/	8.1091	н 	1	UNK	0.0600
67	H6/	38.8877	59.2162	8.7254	н 	1	UNK	0.0600
68	H68	38.0997	59.8988	7.3227	Н	1	UNK	0.0600
69	H69	37.8731	58.1908	7.7020	Н	1	UNK	0.0600

6

2 27 1

70	H70		44.0710	57.4021	8.5663	Н	1	UNK		0.	.0300	
71	H71		45.3121	55.3002	8.4278	Н	1	UNK		0.	.0600	
72	H72		44.2437	55.2048	9.8172	Н	1	UNK		0.	.0600	
73	H73		43.8276	54.3646	8.3267	Н	1	UNK		0.	.0600	
74	H74		36.3085	56.5756	8.6503	н	1	UNK		0.	.1078	
75	H75		34,7349	56.8323	7,9498	н	1	UNK		0.	1078	
76	H76		35 1702	54 9839	6 3024	н	- 1	LINK		а. О	0300	
70	H77		36 7766	54.7664	6 99/2	н	1			о. О	0300	
77	1177		20.7700	54.7004	11 5621		1			0.	1070	
70	п/о uzo		22.0400	54.7998	11.5021		1			0.	1070	
/9	H/9		34.9480	56.0470	11.4090	н	1	UNK		0.	1078	
80	H80		33.36/4	56.2762	10.6/94	н	1	UNK		0.	10/8	
81	H81		32.8621	53.1167	9.0912	н	1	UNK		0.	1078	
82	H82		33.6350	53.3460	7.5323	Н	1	UNK		0.	.1078	
83	H83		32.5360	54.5660	8.1550	Н	1	UNK		0.	.1078	
84	H84		36.4650	52.9600	8.8302	Н	1	UNK		0.	.1078	
85	H85		35.7018	52.6935	10.3890	Н	1	UNK		0.	.1078	
86	H86		36.9366	53.9305	10.2168	Н	1	UNK		0.	.1078	
87	H87		36.1330	55.6278	4.2572	Н	1	UNK		0.	1000	
88	H88		37.0806	57.0918	4.1795	н	1	UNK		0.	.1000	
89	H89		41.2552	55.3775	0.2491	н	1	UNK		0.	.1150	
90	Н90		40.6226	55.6548	-2.1372	н	1	UNK		0.	.1150	
91	H91		38.5581	56.9094	-2.7430	н	1	UNK		0	1150	
92	H92		37 1243	57 8806	-0 9536	н	- 1	LINK		а. О	1150	
02			27 7540	57.6000	1 /2/2	 Ц	1			о. О	1150	
93			20 6220	57.0014	2 7505	и П	1			0.	0200	
94	П94 U05		41 0266	55.2050	2./393		1			0.	0300	
95	195		41.0200	50.5195	2.5457		1			0.	1070	
96	H96		41.2/56	62.9797	/./682	н	1	UNK		0.	1078	
97	H97		41.3833	61.2949	8.1944	н	1	UNK		0.	.10/8	
98	H98		42.0481	60.7396	5.8469	н	1	UNK		0.	.0300	
99	H99		41.8600	62.4302	5.3969	н	1	UNK		0.	.0300	
100	H100		45.4210	63.8150	7.0277	н	1	UNK		0.	1078	
101	H101		44.2454	63.4823	5.7671	Н	1	UNK		0.	.1078	
102	H102		43.8545	64.6078	7.0566	Н	1	UNK		0.	.1078	
103	H103		44.9927	62.7362	9.9260	Н	1	UNK		0.	.1078	
104	H104		43.5504	61.8181	10.3287	Н	1	UNK		0.	.1078	
105	H105		43.4322	63.5380	9.9971	Н	1	UNK		0.	.1078	
106	H106		44.1572	59.7975	7.9474	Н	1	UNK		0.	.1078	
107	H107		44.5111	60.4435	6.3534	Н	1	UNK		0.	.1078	
108	H108		45.6293	60.7166	7.6772	Н	1	UNK		0.	.1078	
109	H109		38.6607	60.9592	4.6283	н	1	UNK		0.	. 1000	
110	H110		40.1687	61.5069	3.9172	н	1	UNK		0.	. 1000	
111	H111		44.7116	55.4993	1.6226	н	1	UNK		0.	.1150	
112	H112		42.6326	59.1759	2,5584	н	1	UNK		0.	.1150	
113	H113		43,1937	58.8901	4,9181	н	1	UNK		0.	1150	
114	H114		45.2573	55,2122	4.0239	н	- 1	UNK		0	1150	
115	н115		45 3579	56 1141	6 2486	н	- 1			о. О	0300	
116	н116		43.3373	57 8119	6 4915	н	1			о. О	0300	
117	H117		12 1002	58 4520	_1 0005	н	1			о. О	0300	
110	LI110		41 6505	58 5001	0 5220	 Ц	1			0. 0	0200	
110			41.0505	50.5991	0.5220	п	1			0.	0200	
119	птта		43.1/33	59.4/8/	0.2525	п	T	UNK		0.	0000	
@ <tripo< td=""><td>5>BOND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tripo<>	5>BOND											
1	1	21		42	18 26	5 1			83	36	41	1
2	1	51		43	19 20) 1			84	36	42	1
3	1	18 1		44	19 23	-			85	37	38	1
4	1	54 1		45	19 24	- 1			86	37	96	1
5	2	31		46	19 25	1			87	37	97	1
-				.0		_			2.		- /	_

47

20

21 1

88

38

39 1

7	2	55 1	48	20	74 1	89	38	98 1			
8	3	4 1	49	20	75 1	90	38	99 1			
9	3	35 1	50	21	22 1	91	39	43 1			
10	3	56 1	51	21	76 1	92	40	100 1			
11	4	62	52	21	77 1	93	40	101 1			
12	4	15 1	53	22	26 1	94	40	102 1			
13	5	12 1	54	23	78 1	95	41	103 1			
14	5	57 1	55	23	79 1	96	41	104 1			
15	5	58 1	56	23	80 1	97	41	105 1			
16	6	7 1	57	24	81 1	98	42	106 1			
17	6	59 1	58	24	82 1	99	42	107 1			
18	7	8 1	59	24	83 1	100	42	108 1			
19	7	60 1	60	25	84 1	101	43	109 1			
20	7	61 1	61	25	85 1	102	43	110 1			
21	8	91	62	25	86 1	103	44	51 1			
22	8	16 1	63	26	87 1	104	45	46 ar			
23	8	62 1	64	26	88 1	105	45	50 ar			
24	9	10 1	65	27	34 1	106	45	111 1			
25	10	11 1	66	28	29 ar	107	46	47 ar			
26	10	13 2	67	28	33 ar	108	46	52 1			
27	11	12 2	68	28	34 1	109	47	48 ar			
28	11	14 1	69	29	30 ar	110	47	112 1			
29	12	63 1	70	29	89 1	111	48	49 ar			
30	14	64 1	71	30	31 ar	112	48	113 1			
31	14	65 1	72	30	90 1	113	49	50 ar			
32	14	66 1	73	31	32 ar	114	49	51 1			
33	15	67 1	74	31	91 1	115	50	114 1			
34	15	68 1	75	32	33 ar	116	51	115 1			
35	15	69 1	76	32	92 1	117	51	116 1			
36	16	17 1	77	33	93 1	118	52	53 1			
37	16	44 1	78	34	94 1	119	53	117 1			
38	16	70 1	79	34	95 1	120	53	118 1			
39	17	71 1	80	35	43 1	121	53	119 1			
40	17	72 1	81	36	37 1						
41	17	73 1	82	36	40 1						
@ <tripo< td=""><td colspan="11">@<tripos>SUBSTRUCTURE</tripos></td></tripo<>	@ <tripos>SUBSTRUCTURE</tripos>										
1	UNK	1 GROUP		0	****	0 ROOT					

1 1	JNK	
-----	-----	--

5.1.8 (E)-konfigurierter Makrozyklus 128 (CHCl₃)

15177 unique conformations found so far 11823 minimized with good convergence Found 36 confs within 1.00 kcal/mol (4.18 kJ/mol) of glob. min. Found 182 confs within 2.00 kcal/mol (8.37 kJ/mol) of glob. min. Found 799 confs within 3.00 kcal/mol (12.55 kJ/mol) of glob. min. Found 3113 confs within 5.00 kcal/mol (20.92 kJ/mol) of glob. min. Found 15177 confs within 10.00 kcal/mol (41.84 kJ/mol) of glob. min. 2 times. Global minimum E = -305.88 found 29000 steps performed so far, out of 29000 E of low-energy structures above global min [kJ/mol], and no. times found: E: 0.00 0.10 0.10 0.15 0.47 0.53 0.64 0.71 0.79 0.88 1.12 1.19 No.: 2 3 3 9 3 2 1 1 5 2 3 11

Die energieärmste Konformation ist im Folgenden im mol2 Dateiformat angegeben:

@<TRIPOS>MOLECULE

119 121 1
SMALL
USER_CHARGES

51 C51

-9.7159

-16.5065

5.8628 C.3

1 UNK

0.1818

@<TRIPOS>ATOM 1 C1 -4.3392 -13.5618 1.5862 C.3 1 UNK -0.1200 1 UNK 2 C2 -3.3253 -13.9406 2.6934 C.3 0.1700 1 UNK 3 C3 -2.8824 -12.8084 3.6685 C.3 0.1700 4 C4 -6.7903 -12.7757 1.6319 C.2 1 UNK 0.0000 1 UNK 5 C5 -5.7734 -13.5486 2.0770 C.2 -0.1150 6 C6 -7.5068 -13.0410 5.6676 C.3 1 UNK -0.1200 7 C7 -8.6644 -13.1903 4.6457 C.3 1 UNK 0.2200 8 08 -8.1152 -13.6077 3.3996 0.3 1 UNK -0.3300 9 C9 -8.1017 -12.7785 2.3402 C.2 1 UNK 0.5100 -3.9573 10 C10 4.3494 C.3 1 UNK -11.9046 0.2390 11 C11 -5.0028 -12.6197 5.2110 C.2 1 UNK -0.0690 12 C12 -6.3096 -12.3203 5.0641 C.2 1 UNK -0.1150 13 013 -9.0317 2.0658 0.2 1 UNK -12.0192 -0.4300 14 C14 -9.7245 -14.2196 5.0871 C.3 1 UNK 0.1700 15 C15 -6.6615 -11.7803 0.4882 C.3 1 UNK -0.1800 16 C16 -4.4856 -13.6414 6.2122 C.3 1 UNK -0.1800 17 C17 -10.9344 -14.2459 4.1382 C.3 1 UNK -0.1800 18 018 -3.2553 -10.9404 5.1355 0.3 1 UNK -0.4000 19 Si19 -3.3885 -7.6530 0.8603 Si 1 UNK 0.7476 20 C20 -4.4350 -7.9457 2.4122 C.3 1 UNK -0.4025 21 C21 -3.6407 -8.6545 3.5123 C.3 1 UNK 0.1400 -4.5663 4.4798 0.3 1 UNK 22 022 -9.1310 -0.4000 23 C23 -3.1249 -9.2979 -0.0294 C.3 1 UNK -0.5103 24 C24 -4.2978 -6.4737 -0.3018 C.3 1 UNK -0.5103 25 C25 -1.7221 -6.8958 1.3230 C.3 1 UNK -0.5103 26 C26 -3.9833 -9.8213 5.5395 C.3 1 UNK 0.2000 27 027 -2.0399 -11.9711 2.8751 0.3 1 UNK -0.4000 28 C28 0.0110 -10.6919 2.6081 C.ar 1 UNK -0.0418 29 C29 -0.0181 -10.8000 1.2019 C.ar 1 UNK -0.1150 30 C30 -9.9059 1 UNK 0.7238 0.4052 C.ar -0.1150 31 C31 1.5081 -8.9062 1.0131 C.ar 1 UNK -0.1150 32 C32 1.5504 -8.8022 2.4174 C.ar 1 UNK -0.1150 33 C33 0.8046 -9.6943 3.2134 C.ar 1 UNK -0.1150 34 C34 -0.7839 -11.6602 3.4634 C.3 1 UNK 0.1818 35 035 -3.7211 3.4259 0.3 1 UNK -0.4000 -15.1034 36 Si36 -7.8745 -17.8444 0.8359 Si 1 UNK 0.7476 37 C37 -6.0819 -17.2546 0.6545 C.3 1 UNK -0.4025 38 C38 -5.3651 -17.1273 2.0006 C.3 1 UNK 0.1400 39 039 -4.0464 -16.6630 1.7463 0.3 1 UNK -0.4000 40 C40 -7.9326 -19.5136 1.7170 C.3 1 UNK -0.5103 41 C41 -8.8826 -16.5822 1.8066 C.3 1 UNK -0.5103 42 C42 -8.6405 -18.0366 -0.8797 C.3 1 UNK -0.5103 43 C43 -3.3345 -16.3327 2.8927 C.3 1 UNK 0.2000 1 UNK 44 044 -9.0739 -15.4842 5.1188 0.3 -0.4000 45 C45 -6.8076 -18.9907 5.4857 C.ar 1 UNK -0.1150 46 C46 -7.4343 -20.2208 5.8057 C.ar 1 UNK 0.0850 47 C47 -8.8013 -20.2173 6.1487 C.ar 1 UNK -0.1150-9.5386 48 C48 -19.0173 6.1684 C.ar 1 UNK -0.1150 49 C49 -8.9156 -17.7974 5.8382 C.ar 1 UNK -0.0418 50 C50 -7.5448 -17.7904 5.5031 C.ar 1 UNK -0.1150

52	052	-6.7943	-21.4409	5.8070	0.3	1	UNK	-0.2850					
53	C53	-5.4262	-21.4799	5.4273	С.3	1	UNK	0.1100					
54	H54	-4.0633	-12.6021	1.1494	Н	1	UNK	0.0600					
55	H55	-4.2811	-14.2960	0.7830	н	1	UNK	0.0600					
56	H56	-2.4049	-14.1972	2.1651	н	1	UNK	0.0300					
57	H57	-2.2877	-13.2850	4.4502	н	1	UNK	0.0300					
58	H58	-5.9383	-14.2333	2.8950	н	1	UNK	0.1150					
59	H59	-7.8550	-12.4955	6.5445	н	1	UNK	0.0600					
60	H60	-7 1971	-14 0283	6 0087	н	1	LINK	0 0600					
61	H61	-9 1464	-12 2167	4 5398	н	1	LINK	0.0000					
62	H62	-4 4760	_11 3909	3 5391	ц	1		0.0300					
62		-6 5672	-11 5226	1 3700	 L	1		0.0500					
605		10,0622	12 0525	4.3799	п 11	1		0.1150					
64		-10.0023	-13.9525	0.0099	п 	1		0.0500					
65	HOD	-5.7980	-11.98/3	-0.1420	н	1	UNK	0.0600					
66	H66	-6.5662	-10.7681	0.8821	н	1	UNK	0.0600					
67	H67	-7.5433	-11.8151	-0.1528	н	1	UNK	0.0600					
68	H68	-5.2102	-13.8454	6.9992	н	1	UNK	0.0600					
69	H69	-4.2404	-14.5852	5.7308	Н	1	UNK	0.0600					
70	H70	-3.5864	-13.2614	6.6975	Н	1	UNK	0.0600					
71	H71	-11.7216	-14.9061	4.4988	Н	1	UNK	0.0600					
72	H72	-11.3671	-13.2506	4.0348	Н	1	UNK	0.0600					
73	H73	-10.6459	-14.5829	3.1425	Н	1	UNK	0.0600					
74	H74	-5.3004	-8.5536	2.1492	Н	1	UNK	0.1078					
75	H75	-4.8299	-7.0075	2.8003	н	1	UNK	0.1078					
76	H76	-3.0764	-9.4836	3.0841	н	1	UNK	0.0300					
77	H77	-2.9199	-7.9723	3.9655	н	1	UNK	0.0300					
78	H78	-2.4467	-9.1936	-0.8753	н	1	UNK	0.1078					
79	H79	-2.6985	-10.0437	0.6414	н	1	UNK	0.1078					
80	H80	-4.0629	-9.7046	-0.4055	н	1	UNK	0.1078					
81	H81	-5 2673	-6 8736	-0 5974	н	- 1	UNK	0 1078					
82	H82	-3 7281	-6 2938	-1 2130	н	1	LINK	0.1078					
83	1102	-4 4740	-5 5068	0 1685	н	1	LINK	0.1078					
8/	нал	-1 1515	-7 5634	1 9686	ц	1		0.1078					
04 0E		1 1100	-7.3034	0 4416	н ц	1		0.1078					
20		1 0/10	-0.7037 E 0E10	1 9517	н ц	1		0.1078					
00		-1.8410	-5.9510	1.051/	п 	1		0.1078					
87	H87	-3.3109	-9.1524	6.0/90	н	1	UNK	0.1000					
88	H88	-4.7695	-10.1182	6.2350	н	1	UNK	0.1000					
89	H89	-0.6219	-11.5648	0.7346	н	1	UNK	0.1150					
90	H90	0.6886	-9.9865	-0.6715	Н	1	UNK	0.1150					
91	H91	2.0760	-8.2190	0.4026	Н	1	UNK	0.1150					
92	H92	2.1526	-8.0358	2.8838	Н	1	UNK	0.1150					
93	H93	0.8398	-9.6079	4.2897	Н	1	UNK	0.1150					
94	H94	-0.1990	-12.5733	3.5824	Н	1	UNK	0.0300					
95	H95	-0.9165	-11.2317	4.4569	Н	1	UNK	0.0300					
96	H96	-6.0607	-16.2882	0.1513	Н	1	UNK	0.1078					
97	H97	-5.5248	-17.9400	0.0168	н	1	UNK	0.1078					
98	H98	-5.3294	-18.0935	2.5064	н	1	UNK	0.0300					
99	H99	-5.9050	-16.4411	2.6531	н	1	UNK	0.0300					
100	H100	-8.9518	-19.8921	1.7868	н	1	UNK	0.1078					
101	H101	-7.3398	-20.2645	1.1959	н	1	UNK	0.1078					
102	H102	-7.5495	-19.4425	2.7341	н	1	UNK	0.1078					
103	H103	-9,9096	-16.9130	1.9551	н	1	UNK	0 1072					
104	H104	-8 9182	-15 6195	1 2989	н	1	UNK	0 1079					
104	H105	-8 1567	-16 /076	2 7011	 н	1		0.1070					
105	H106	-0.4307	17 0027	_1 /JE0	ц	1		0.1070					
107	L100	-0.000	-10 7677	-1.4200	и Ц	1		0.1070 0.1070					
100	11100	-0.6750	10./03/	-1.4811	п 11	1		0.10/8					
100	N100	-9.6/50	-10.3/33	-0.8190	н	1	UNK	0.10/8					
103	H109	-3.4801	-1/.1013	3.6541	н	1	UNK	0.1000					
110	H110	-2.2690	-16.3266	2.6561	н	1	UNK	0.1000					
111	H111		-5.7635	-18.9390	5.2	191	н	1	UNK		0.	1150	
--	--------	-----	----------	----------	-----	-----------	--------	------	-----	-----	----	------	--------
112	H112		-9.2888	-21.1487	6.3	970	н	1	UNK		0.	1150	
113	H113		-10.5857	-19.0377	6.4	327	н	1	UNK		0.	1150	
114	H114		-7.0535	-16.8609	5.2	513	н	1	UNK		0.	1150	
115	H115		-10.7082	-16.7054	5.4	576	н	1	UNK		0.	0300	
116	H116		-9.8386	-16.1923	6.9	001	н	1	UNK		0.	0300	
117	H117		-5.0725	-22.5104	5.4	597	н	1	UNK		0.	0300	
118	H118		-5.2850	-21.1149	4.4	.089	н	1	UNK		0.	0300	
119	H119		-4.8064	-20.8972	6.1	100	н	1	UNK		0.	0300	
@ <tripo< td=""><td>S>BOND</td><td>)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tripo<>	S>BOND)											
1	1	2	1	42	18	26	1			83	36	41	1
2	1	5	1	43	19	20	1			84	36	42	1
3	1	54	1	44	19	23	1			85	37	38	1
4	1	55	1	45	19	24	1			86	37	96	1
5	2	3	1	46	19	25	1			87	37	97	1
5	2	35	1	47	20	21	1			88	38	39	1
7	2	56	1	48	20	74	1			89	38	98	1
, 8	2	10	1	40	20	75	1			90	28	20	1
ۍ ۵	2	27	1	49 50	20	22	1			01	20	12	1 1
10	2	27	1	50	21	76	1			91	10	100	1
10	2	57	1	51	21	70	1			92	40	100	1
11	4	5	2	52	21	20	1			93	40	101	1
12	4	9	1	53	22	26	T			94	40	102	T
13	4	15	1	54	23	/8	1			95	41	103	1
14	5	58	1	55	23	/9	1			96	41	104	1
15	6	7	1	56	23	80	1			97	41	105	1
16	6	12	1	57	24	81	1			98	42	106	1
17	6	59	1	58	24	82	1			99	42	107	1
18	6	60	1	59	24	83	1			100	42	108	1
19	7	8	1	60	25	84	1			101	43	109	1
20	7	14	1	61	25	85	1			102	43	110	1
21	7	61	1	62	25	86	1			103	44	51	1
22	8	9	1	63	26	87	1			104	45	46	ar
23	9	13	2	64	26	88	1			105	45	50	ar
24	10	11	1	65	27	34	1			106	45	111	1
25	10	18	1	66	28	29	ar			107	46	47	ar
26	10	62	1	67	28	33	ar			108	46	52	1
27	11	12	2	68	28	34	1			109	47	48	ar
28	11	16	1	69	29	30	ar			110	47	112	1
29	12	63	1	70	29	89	1			111	48	49	ar
30	14	17	1	71	30	31	ar			112	48	113	1
31	14	44	1	72	30	90	1			113	49	50	ar
32	14	64	1	73	31	32	ar			114	49	51	1
33	15	65	1	74	31	91	1			115	50	114	1
34	15	66	1	75	32	33	ar			116	51	115	1
35	15	67	1	76	32	92	1			117	51	116	1
36	16	68	1	77	33	93	1			118	52	53	1
37	16	69	1	78	34	94	1			119	53	117	1
38	16	70	1	79	34	95	1			120	53	118	1
39	17	71	1	80	35	43	1			121	53	119	1
40	17	72	- 1	23 21	36	, J 77	-				22		-
	17	73	- 1	82	36	10	- 1						
+1	1/	, ,	-	02	50	40	-						
@ <trtpo< td=""><td>SZSURS</td><td></td><td>TURF</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></trtpo<>	SZSURS		TURF										
1 1	UNK		1 GROUP		0		****	0 R	оот				
- ·			- 3.000		-			5 10					

1 UNK

5.1.9 Isomerisierter 2-(S)-Makrozyklus 146 (CHCl₃)

11307	unique	e confo	ormatio	ns fou	nd so far							
9540	minimi	ized w	ith good	d conv	ergence							
Found	29	confs	within	1.00	kcal/mol	(4.18	kJ/mol)	of g	lob.	min.	•	
Found	158	confs	within	2.00	kcal/mol	(8.37	kJ/mol)	of g	lob.	min.	•	
Found	445	confs	within	3.00	kcal/mol	(12.55	kJ/mol)	of g	lob.	min	•	
Found	1957	confs	within	5.00	kcal/mol	(20.92	kJ/mol)	of g	lob.	min.	•	
Found	11307	confs	within	10.00	kcal/mol	(41.84	kJ/mol)	of g	lob.	min.	•	
Globa	l minin	num E =	-352	2.88 f	ound	2 times	•					
29000	steps	perfo	rmed so	far,	out of 29	000						
E of	low-er	nergy s	structu	res ab	ove globa	l min [kJ/mol],	and	no.	time	es fou	nd:
E	: 0.00	0.2	1 0.24	0.75	1.68 2	.17 2.	99 3.19	3.1	93.	27	3.31	3.51
No.	: 2	2 2	2 2	1	1	2	2 2		1	1	5	5

Die energieärmste Konformation ist im Folgenden im mol2 Dateiformat angegeben:

@<TRIPOS>MOLECULE

119 121 1
SMALL
USER_CHARGES

@<TRIPOS>ATOM

1	C1	-27.5388	-1.5044	97.7863	C.3	1	UNK	0.2390
2	C2	-27.5049	-2.9884	97.3355	C.3	1	UNK	0.1700
3	С3	-28.8806	-3.6935	97.1571	C.3	1	UNK	0.2390
4	C4	-29.6087	-3.3681	95.8517	C.2	1	UNK	-0.0690
5	C5	-28.2390	-0.5672	96.8136	C.2	1	UNK	-0.1840
6	C6	-30.8838	-2.9290	95.8692	C.2	1	UNK	-0.1150
7	C7	-31.7357	-2.4998	94.6838	C.3	1	UNK	-0.1200
8	C8	-32.3089	-1.0919	94.9161	C.3	1	UNK	0.2200
9	09	-31.1962	-0.2222	95.0507	0.3	1	UNK	-0.3300
10	C10	-31.2399	0.7977	95.9130	C.2	1	UNK	0.5100
11	C11	-29.8390	1.3250	96.2323	C.3	1	UNK	-0.0600
12	C12	-29.1622	0.3423	97.1743	C.2	1	UNK	-0.1150
13	013	-32.2548	1.2456	96.4489	0.2	1	UNK	-0.4300
14	C14	-29.8537	2.7462	96.8204	C.3	1	UNK	-0.1800
15	C15	-28.8067	-3.5886	94.5763	C.3	1	UNK	-0.1800
16	C16	-33.2860	-0.5863	93.8235	C.3	1	UNK	0.1700
17	C17	-32.6572	-0.5279	92.4237	C.3	1	UNK	-0.1800
18	018	-26.1762	-1.1035	97.9191	0.3	1	UNK	-0.4000
19	Si19	-24.6498	-2.2593	103.1666	Si	1	UNK	0.7476
20	C20	-25.6488	-0.9828	102.1801	C.3	1	UNK	-0.4025
21	C21	-25.4764	-1.1425	100.6669	C.3	1	UNK	0.1400
22	022	-26.2554	-0.1392	100.0283	0.3	1	UNK	-0.4000
23	C23	-25.4196	-3.9728	103.0201	C.3	1	UNK	-0.5103
24	C24	-22.8632	-2.3161	102.5522	C.3	1	UNK	-0.5103
25	C25	-24.6428	-1.7672	104.9902	C.3	1	UNK	-0.5103
26	C26	-25.9540	0.0408	98.6816	C.3	1	UNK	0.2000
27	027	-26.8501	-3.6898	98.3942	0.3	1	UNK	-0.4000
28	C28	-24.9905	-5.0548	99.1427	C.ar	1	UNK	-0.0418
29	C29	-23.6832	-4.8247	99.6203	C.ar	1	UNK	-0.1150
30	C30	-23.1443	-5.6479	100.6290	C.ar	1	UNK	-0.1150
31	C31	-23.9082	-6.7071	101.1576	C.ar	1	UNK	-0.1150
32	C32	-25.2125	-6.9417	100.6793	C.ar	1	UNK	-0.1150

33	C33	-25.7520	-6.1159	99.6733	C.ar	1	UNK	-0.1150
34	C34	-25.5723	-4.1944	98.0405	C.3	1	UNK	0.1818
35	035	-28.6416	-5.1017	97.2384	0.3	1	UNK	-0.4000
36	Si36	-29.7210	-4.7925	102.5232	Si	1	UNK	0.7476
37	C37	-30.6652	-5.2264	100.9404	C.3	1	UNK	-0.4025
38	C38	-29.7278	-5.6075	99.7925	C.3	1	UNK	0.1400
39	039	-30.4816	-5.5690	98.5882	0.3	1	UNK	-0.4000
40	C40	-28.8530	-3.1316	102.2939	C.3	1	UNK	-0.5103
41	C41	-30,9401	-4.6472	103,9583	C.3	1	UNK	-0.5103
42	C42	-28 4546	-6 1343	102 9247	C 3	1	LINK	-0 5103
42	C43	-29 7605	-5 9068	97 4453	C 3	1		a 2000
10	044	-34 4427	1 1150	02 712/	0.3	1		-0.1000
44	C45	-34 8025	-1.7052	08 /176	0.J	1		-0.4000
45	C45	-34.6526	-2 1926	00.4170		1		0.0250
40	C40	- 34.0320	2 0204	07 2459	C.ar	1		0.0050
47	C47	-34.7110	- 3 . 9204	97.2450	C.ar	1		0 1150
40	C48	-54.9950	-3.2090	90.0294	C.ar	1		-0.1150
49	C49	-35.2137	-1.8/85	95.9996	C.ar	T	UNK	-0.0418
50	C50	-35.1/29	-1.1429	97.2012	C.ar	1	UNK	-0.1150
51	C51	-35.4/03	-1.1835	94.6/49	0.3	1	UNK	0.1818
52	052	-34.3712	-3.7351	99.6856	0.3	1	UNK	-0.2850
53	C53	-34.0841	-5.1253	99.7447	C.3	1	UNK	0.1100
54	H54	-28.0358	-1.4544	98.7573	Н	1	UNK	0.0300
55	H55	-26.9323	-3.0670	96.4103	Н	1	UNK	0.0300
56	H56	-29.5025	-3.3889	98.0000	Н	1	UNK	0.0300
57	H57	-27.9286	-0.6359	95.7813	Н	1	UNK	0.1150
58	H58	-31.3784	-2.8315	96.8267	Н	1	UNK	0.1150
59	H59	-32.5486	-3.2153	94.5657	Н	1	UNK	0.0600
60	H60	-31.1680	-2.5145	93.7572	Н	1	UNK	0.0600
61	H61	-32.8301	-1.1138	95.8712	Н	1	UNK	0.0300
62	H62	-29.2820	1.3399	95.2950	н	1	UNK	0.0600
63	H63	-29.4647	0.4014	98.2108	Н	1	UNK	0.1150
64	H64	-28.8401	3.1105	96.9879	н	1	UNK	0.0600
65	H65	-30.3479	3.4449	96.1444	н	1	UNK	0.0600
66	H66	-30.3824	2.7802	97.7741	Н	1	UNK	0.0600
67	H67	-28.1773	-4.4733	94.6796	н	1	UNK	0.0600
68	H68	-29.4353	-3.7565	93.7042	н	1	UNK	0.0600
69	H69	-28.1618	-2.7334	94.3757	н	1	UNK	0.0600
70	H70	-33.5984	0.4288	94.0744	н	1	UNK	0.0300
71	H71	-33.3525	-0.0885	91.7088	н	1	UNK	0.0600
72	H72	-31.7526	0.0803	92,4208	н	1	UNK	0.0600
73	H73	-32.3983	-1.5207	92.0571	Н	1	UNK	0.0600
74	H74	-25.3437	0.0239	102.4633	н	1	UNK	0.1078
75	H75	-26.7063	-1.0580	102,4303	н	1	UNK	0.1078
76	H76	-25,7990	-2.1330	100.3430	н	1	UNK	0.0300
77	H77	-24 4225	-1 0373	100 4045	н	1		0.0300
78	H78	-26 3650	-4 0350	103 5548	н	1		0.0500 0 1078
70	H79	-24 7668	-1 7//9	103 / 2/7	н	1		0.1070
80	117.5	-24.7000	-4.7445	103.4247	ц	1		0.1078
00	100	22.0120	2 0150	102 1244		1		0.1070
01		-22.2048	1 2205	103.1344		1		0.1070
02		-22.3031	-1.5595	102.0214		1		0.1070
ده ۸۵	100	24 1020	0 7060	105 1076	11 LL	1		0.1070
04 05	П04 ЦОГ	-24.1920	2טע/יש- 1 בורד	105.13/6	n u	1		0.1070
85		-23.053/	-1./252	105.594/	п	Ţ		0.1070
86		-24.0800	-2.4/90	T02.2024	н	1	UNK	0.10/8
8/	H8/	-26.5406	0.8/85	98.3021	н	1	UNK	0.1000
88	ноо	-24.9036	0.3190	98.5821	н	1	UNK	0.1000
89	H89	-23.0925	-4.0151	99.2172	Н	1	UNK	0.1150
90	H90	-22.1457	-5.4651	100.9987	н	1	UNK	0.1150
91	H91	-23.4958	-7.3367	101.9328	Н	1	UNK	0.1150

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02	110.2	25 9010	7 7500	101	0000		1			0	1150	
93 H93 -20.7528 -0.2685 93.3935 H 1 UNK 0.033 95 H95 -25.6594 -4.8139 97.1454 H 1 UNK 0.033 95 H95 -31.2644 -4.3667 100.6402 H 1 UNK 0.033 96 H96 -31.2644 -6.5993 99.9570 H 1 UNK 0.033 96 H99 -28.3964 -6.9026 97.7445 H 1 UNK 0.033 100 H100 -28.3831 -2.7933 103.2160 H 1 UNK 0.101 102 H103 -31.4670 -5.5550 101.9825 H 1 UNK 0.101 104 H104 -30.4345 -4.3121 104.3861 H UNK 0.102 105 H105 -31.6919 -3.8821 103.7663 H UNK 0.102 106 H102 -29.7674 -6.1806 102.1651 H UNK 0.102 107 H107 -27.7674 </td <td>92</td> <td>192</td> <td>-25.8010</td> <td>-7.7509</td> <td>101.</td> <td>2025</td> <td>п </td> <td>1</td> <td></td> <td></td> <td>0.</td> <td>1120</td> <td></td>	92	192	-25.8010	-7.7509	101.	2025	п 	1			0.	1120	
94 +44 -24.9958 -5.3704 97.8095 H 1 UNK 0.031 95 +95 -25.5504 -4.8167 100.6402 H 1 UNK 0.101 96 H95 -31.2644 -4.3667 100.6402 H 1 UNK 0.101 98 H99 -23.3040 -6.5993 99.9570 H 1 UNK 0.813 100 H100 -28.381 -2.7933 103.2160 H 1 UNK 0.101 101 H101 -28.0754 -3.1889 101.5307 H 1 UNK 0.101 102 H102 -2.35599 -2.35520 104.1318 H 1 UNK 0.101 103 H103 -31.4670 -5.55505 104.1318 H 1 UNK 0.101 104 H104 -30.4345 -4.3812 104.8661 H 1 UNK 0.101 106 H107 -27.6747 -5.16473 105.551 H 1 UNK 0.101 108 H108 -28.9424 -6.9418 97.5251 H 1 UNK <	93	H93	-26.7528	-6.2885	99.	3035	н	1	UNK		0.	1120	
95 149 14 10 10 8 8 96 195 -4.8139 97.1454 1 100K 6.167 97 197 -31.3664 -6.607 100.1402 1 100K 6.167 98 199 -28.896 -6.9926 99.7445 1 100K 6.033 100 1100 -28.3831 -2.7933 103.2160 1 100K 6.161 101 1102 -28.5509 -2.3552 101.9825 1 100K 6.161 102 H102 -28.5509 -2.3552 101.9825 1 100K 6.161 104 1104 -30.4345 -4.3812 104.3861 1 UNK 6.162 105 -31.6919 -3.8821 103.7663 1 UNK 6.162 107 H107 -27.9747 -6.1886 19.75251 1 UNK 6.101 108 H108 -28.9165 -7.1192 102.9	94	H94	-24.8958	-3.3/04	97.	8096	н	1	UNK		0.0	0300	
96 96 -31.2644 -4.3667 100.6402 1 1 UNK 0.16 98 H98 -29.3040 -6.5993 99.9570 H 1 UNK 0.633 100 H100 -28.3831 -2.7933 103.2160 H 1 UNK 0.633 100 H100 -28.3831 -2.73552 101.9825 H 1 UNK 0.107 102 H101 -28.9754 -3.1889 101.5307 H 1 UNK 0.107 103 H103 -31.4670 -5.5556 104.1318 H 1 UNK 0.107 103 H104 -30.4345 -4.3812 104.8661 H 1 UNK 0.107 106 H106 -27.6747 -6.1806 102.1651 H 1 UNK 0.107 108 H108 -28.9165 -7.1129 102.9244 H 1 UNK 0.101 108 H108 -28.3532 -0.0743 97.1330 H 1 UNK 0.101 111 <td>95</td> <td>H95</td> <td>-25.6504</td> <td>-4.8139</td> <td>97.</td> <td>1454</td> <td>н</td> <td>1</td> <td>UNK</td> <td></td> <td>0.0</td> <td>0300</td> <td></td>	95	H95	-25.6504	-4.8139	97.	1454	н	1	UNK		0.0	0300	
97 -31.3664 -6.0407 101.1175 H 1 UNK 0.033 98 H98 -28.3940 -6.5939 99.570 H 1 UNK 0.033 100 H100 -28.3831 -2.7933 103.2160 H 1 UNK 0.103 101 H101 -28.0754 -3.1889 101.5307 H 1 UNK 0.101 102 H102 -29.5509 -2.3552 104.1318 H 1 UNK 0.101 104 H104 -30.4345 -4.3812 104.8861 H 1 UNK 0.101 105 H105 -31.6919 -3.8821 103.7663 H 1 UNK 0.102 107 H107 -27.9624 -5.9478 103.8785 H 1 UNK 0.102 108 H108 -28.9165 -7.1192 102.9624 H 1 UNK 0.102 110 H110 -30.4277 -5.8473 96.5842 H 1 UNK 0.111 111 H111 -34.5500 -1.2234 99.3331 H 1 UNK 0.111	96	H96	-31.2644	-4.3667	100.	6402	н	1	UNK		0.3	1078	
B H98 -29.3040 -6.5993 99.9570 H 1 UNK 0.033 100 H100 -28.3831 -2.7933 103.2160 H 1 UNK 0.101 110 H101 -28.0754 -3.1889 101.5307 H 1 UNK 0.101 102 H102 -29.5509 -2.3552 101.9825 H 1 UNK 0.101 103 H103 -31.4670 -5.5850 104.1318 H 1 UNK 0.101 104 H104 -30.4345 -4.3812 104.8661 H 1 UNK 0.101 106 H106 -27.6747 -6.1806 102.1651 H 1 UNK 0.101 108 H108 -28.9165 -7.1121 102.92824 H 1 UNK 0.101 110 H11 -34.5374 -4.9851 97.5251 H 1 UNK 0.101 111 H11 <	97	H97	-31.3664	-6.0407	101.	1175	Н	1	UNK		0.	1078	
99 99 -28.8968 -4.9026 99.7445 H 1 UNK 0.03 100 H100 -28.0754 -3.1889 101.5307 H 1 UNK 0.10 101 H101 -28.0754 -3.1889 101.5307 H 1 UNK 0.10 102 H102 -29.5599 -2.3552 101.9825 H 1 UNK 0.10 104 H104 -30.4345 -4.3812 104.8861 H 1 UNK 0.10 104 H106 -27.6747 -6.1806 102.1651 H 1 UNK 0.10 107 H107 -27.9624 -5.9478 103.8785 H 1 UNK 0.10 109 H108 -28.9165 -7.1192 102.9824 H 1 UNK 0.10 110 H108 -28.9165 -7.1192 102.9824 H 1 UNK 0.10 111 H113 -34.5374 -4.9851 97.525 H 1 UNK 0.10 111 H114 -34.5374 -4.9851 97.1330 H 1 UNK 0.11	98	H98	-29.3040	-6.5993	99.	9570	н	1	UNK		0.0	0300	
100 +100 -28.3831 -2.7933 103.2160 H 1 1 UNK 0.167 101 H101 -28.0754 -3.1882 101.5307 H 1 UNK 0.167 102 H102 -29.5509 -2.3552 101.9825 H 1 UNK 0.167 104 H104 -30.4345 -4.3812 104.37663 H 1 UNK 0.167 105 H105 -31.6919 -3.8821 103.7663 H 1 UNK 0.167 106 H106 -27.6747 -6.1806 102.1651 H 1 UNK 0.107 108 H108 -28.9165 -7.1192 102.9824 H 1 UNK 0.107 108 H109 -29.4244 -6.9418 97.5251 H 1 UNK 0.101 110 H111 -34.8500 -1.2234 99.331 H 1 UNK 0.101 112 H112 -34.5374 -4.9851 97.1930 H 1 UNK 0.101 111 H111 -36.3962 -1.5924 94.2697 H 1 UNK	99	H99	-28.8968	-4.9026	99.	7445	Н	1	UNK		0.0	0300	
101 H101 -28.0754 -3.1889 101.5307 H 1 UNK 0.167 102 H102 -29.5509 -2.3552 101.9825 H 1 UNK 0.167 103 H103 -31.4670 -5.5850 104.1318 H 1 UNK 0.167 106 H106 -7.6747 -6.1806 102.1651 H 1 UNK 0.167 107 H107 -27.9624 -5.9478 103.8785 H 1 UNK 0.167 108 H108 -28.9165 -7.1192 102.9824 H 1 UNK 0.167 109 H109 -29.4244 -6.9418 97.5251 H 1 UNK 0.107 110 H112 -34.8574 -4.94851 97.2266 H UNK 0.111 1112 H113 -35.0265 -3.8356 95.1093 H UNK 0.111 114 H114 -55.6503 -0.1165 94.8161 H UNK 0.633 116 H116 -35.6503 -0.1165 94.8161 H UNK <td< td=""><td>100</td><td>H100</td><td>-28.3831</td><td>-2.7933</td><td>103.</td><td>2160</td><td>н</td><td>1</td><td>UNK</td><td></td><td>0.3</td><td>1078</td><td></td></td<>	100	H100	-28.3831	-2.7933	103.	2160	н	1	UNK		0.3	1078	
102102-29.5509-2.3552101.9825 H1UNK0.16103H103-31.4670-5.5850104.1318 H1UNK0.16104H104-30.4345-4.3812104.8861 H1UNK0.16105H105-31.6919-3.8821103.7663 H1UNK0.16106H106-27.6747-6.1806102.1651 H1UNK0.16107H107-7.7624-5.9478103.8785 H1UNK0.16108H108-28.9165-7.1192102.9824 H1UNK0.16109H109-29.4244-6.941897.5251 H1UNK0.11110H110-30.4277-5.847396.5842 H1UNK0.11111H111-34.8500-1.223499.331 H1UNK0.11112H112-34.5374-4.985197.2226 H1UNK0.11113H113-35.0265-3.835695.1093 H1UNK0.11115H115-36.3962-1.592494.2697 H1UNK0.03117H117-33.86185.4030 100.7748 H1UNK0.03118H118-34.9365-5.722994.192 H1UNK0.03119H119-33.2124-5.379199.1398 H1UNK0.63119H119-33148364215	101	H101	-28.0754	-3.1889	101.	5307	Н	1	UNK		0.3	1078	
103 H03 -31.4670 -5.5850 104.1318 1 UNK 0.10 104 H104 -30.4345 -4.3812 104.8861 1 UNK 0.10 105 H106 -27.6747 -6.1806 102.1651 1 UNK 0.10 106 H106 -27.6747 -6.1806 102.1651 1 UNK 0.10 107 H107 -27.9624 -5.9478 103.8765 1 UNK 0.10 108 H108 -28.9165 -7.1172 102.9824 1 UNK 0.10 110 H11 -34.6500 -1.2234 93.331 1 UNK 0.10 111 H112 -34.5374 -4.9851 97.2226 1 UNK 0.11 113 H13 -35.0265 -3.8356 95.1093 1 UNK 0.11 114 H14 -35.5533 -0.1643 97.1930 1 UNK 0.03 115 H15 -36.362 -1.522 94.2697 1 UNK 0.03	102	H102	-29.5509	-2.3552	101.	9825	н	1	UNK		0.3	1078	
104 H104 -30.4345 -4.3812 104.8851 H 1 UNK 0.10 105 H105 -31.6919 -3.8821 103.7663 H 1 UNK 0.10 106 H106 -27.6747 -6.1866 102.1651 H 1 UNK 0.10 109 H109 -29.9165 -7.1192 102.9824 H 1 UNK 0.10 110 H110 -30.4277 -5.8473 96.5842 H 1 UNK 0.10 111 H111 -34.8500 -1.2234 99.3331 H 1 UNK 0.101 111 H111 -34.5374 -4.9851 97.1930 H 1 UNK 0.111 113 H13 -35.0265 -3.3356 95.1093 H UNK 0.031 116 H16 -35.6503 -0.1165 94.2697 H 1 <unk< td=""> 0.033 118 H18 -34.9365 -5.7229 99.4192 H UNK 0.033 119 H19 -33.2124<</unk<>	103	H103	-31.4670	-5.5850	104.	1318	н	1	UNK		0.	1078	
105 H105 -31.6919 -3.8821 103.7663 H 1 UNK 0.107 106 H106 -27.6747 -6.1806 102.1651 H 1 UNK 0.107 107 H107 -27.9624 -5.9478 103.8785 H 1 UNK 0.107 109 H109 -29.4244 -6.9418 97.5251 H 1 UNK 0.107 110 H110 -34.8500 -1.2234 99.3331 H 1 UNK 0.111 112 H112 -34.5374 -4.9851 97.2226 H 1 UNK 0.111 113 H13 -35.0265 -3.8356 95.1093 H 1 UNK 0.111 114 H14 -35.5332 -0.0743 71.930 H 1 UNK 0.031 116 H16 -35.6503 -0.1165 94.8161 H 1 UNK 0.033 118 H18 -34.9365 -5.7229 99.4192 H 1 UNK 0.033 119 H19 -33.2124 -5.3791 99.1398 H 1 UNK 0	104	H104	-30.4345	-4.3812	104.	8861	н	1	UNK		0.	1078	
	105	H105	-31.6919	-3.8821	103.	7663	н	1	UNK		0.	1078	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	106	H106	-27.6747	-6.1806	102.	1651	н	1	UNK		0.	1078	
108H108 -28.9165 -7.1192 102.9824 H1UNK 0.101 109H109 -29.4244 -6.9418 97.5251 H1UNK 0.101 110H110 -30.4277 -5.8473 96.5842 H1UNK 0.101 111H111 -34.8500 -1.2234 99.3331 HUNK 0.1121 112H112 -34.5374 -4.9851 97.2226 H1UNK 0.1121 113H113 -35.6265 -3.8356 95.1093 H1UNK 0.1121 114H114 -35.3322 -0.0743 97.1930 H1UNK 0.0331 115H15 -36.3962 -1.5924 94.2697 H1UNK 0.0331 116H116 -35.6503 -0.1165 94.8161 H1UNK 0.0331 117H117 -33.8124 -5.3791 99.1398 H1UNK 0.0331 118H118 -34.9365 -5.7229 99.1398 H1UNK 0.0331 119H119 -33.2124 -5.3791 99.1398 HUNK 0.0331 119H119 -33.2124 -5.3791 99.1392 HUNK 0.0331 111414419231 85 37 5 52314419231 85 37 5 62	107	H107	-27.9624	-5.9478	103.	8785	н	1	UNK		0.	1078	
109H109 -29.4244 -6.9418 97.5251 H1UNK 0.104 110H110 -30.4277 -5.8473 96.5842 H1UNK 0.104 111H111 -34.5374 -4.9851 97.2226 H1UNK 0.112 112H112 -34.5374 -4.9851 97.2226 H1UNK 0.112 113H113 -35.0265 -3.8356 95.1093 H1UNK 0.112 114H114 -55.3322 -0.0743 97.1930 H1UNK 0.031 115H115 -36.593 -0.0743 97.1930 H1UNK 0.031 116H116 -35.6503 -0.1165 94.8161 HUNK 0.031 117H117 -33.8618 -5.4930 100.7748 H1UNK 0.031 119H119 -33.2124 -5.3791 99.1398 H1UNK 0.031 119H119 -33.2124 -5.3791 99.1398 H1UNK 0.031 119H119 -33.2124 -5.3791 99.1398 H1UNK 0.031 119H118 -34.9365 -5.7229 99.4192 H1UNK 0.634 119H118 -34.9365 -5.7229 92.192 H1UNK 0.634 119H118 -12.2712 HHHHHHH <td< td=""><td>108</td><td>H108</td><td>-28.9165</td><td>-7.1192</td><td>102.</td><td>9824</td><td>н</td><td>1</td><td>UNK</td><td></td><td>0.</td><td>1078</td><td></td></td<>	108	H108	-28.9165	-7.1192	102.	9824	н	1	UNK		0.	1078	
110H110 -30.4277 -5.8473 96.5842 H1UNK 0.101 111H111 -34.8500 -1.2234 99.3331 H1UNK 0.111 112H112 -34.5374 -4.9851 97.226 H1UNK 0.111 113H113 -35.0265 -3.8356 95.1093 H1UNK 0.111 114H114 -35.3322 -0.0743 97.1930 H1UNK 0.111 115H115 -36.3962 -1.5924 94.2697 H1UNK 0.031 116H116 -35.6503 -0.1165 94.8161 H1UNK 0.031 117H117 -33.8618 -5.4930 100.7748 H1UNK 0.031 118H118 -34.9365 -5.7229 99.4192 H1UNK 0.031 119H119 -33.2124 -5.3791 99.1398 H1UNK 0.033 119H119 -33.2124 -5.3791 99.1398 H1UNK 0.033 119H119 -33.2124 -5.3791 99.1398 H1UNK 0.033 118H18H18H18H4H923HHHHH119H3HHHHHHHHHHH1117H119H119H119H1919HHHH<	109	H109	-29,4244	-6.9418	97.	5251	н	1	UNK		0.	1000	
111111 -34.8500 -1.2234 99.3331H1UNK0.111112H112 -34.5374 -4.9851 97.2226H1UNK0.111113H113 -35.0265 -3.8356 95.1093H1UNK0.111114H114 -35.0332 -0.0743 97.1930H1UNK0.031115H15 -36.3962 -1.5924 94.2697HUNK0.033116H116 -35.6503 -0.1165 94.8161HUNK0.033117H117 -33.8618 -5.4730 100.7748H1UNK0.033119H119 -33.2124 -5.3791 99.1398H1UNK0.033119H119 -33.2124 -5.3791 99.1398H1UNK0.033119H119 -33.2124 -5.3791 99.1398H1UNK0.034119H119 -33.2124 -5.3791 99.1398H1UNK0.034119H119 -33.2124 -5.3791 99.1398H1UNK0.034119H119 -33.2124 -5.3791 99.1398H1UNK0.034119H1K10HHHHHHH11H18HHHHHHHH111H18HHHHHHH<	110	H110	-30.4277	-5.8473	96.	5842	н	1	UNK		0.	1000	
1121343435 -4.9851 97.2226 1 $10NK$ 0.111 113H113 -35.0265 -3.8356 95.1093 H $10NK$ 0.112 114H114 -35.3332 -0.0743 97.1930 H $10NK$ 0.112 115H115 -36.3962 -1.5924 94.2697 H $10NK$ 0.633 116H116 -35.6503 -0.1165 94.8161 H $10NK$ 0.633 117H117 -33.8618 -5.4030 100.7748 H $10NK$ 0.633 118H118 -34.9365 -5.7229 99.4192 H $10NK$ 0.633 119H119 -33.2124 -5.3791 99.1398 H $10NK$ 0.634 $@BOND$ 1 42 18 26 1 82 36 4 4 1 54 44 19 23 84 36 4 4 1 54 1 45 19 24 1 85 37 5 5 2 31 46 19 25 86 37 5 37 37 5 6 2 27 1 47 20 21 87 37 5 6 2 27 1 47 20 21 86 37 5 6 2 27 1 47 20 11 87 37 5 6	111	H111	-34.8500	-1.2234	99.	3331	н	- 1	UNK		0.	1150	
113 135.025 -3.8356 95.1093 H 10NK 0.111 114 H113 -35.0255 -3.8356 95.1093 H 10NK 0.111 115 H115 -36.3962 -1.5924 94.2697 H 10NK 0.031 116 H116 -35.6503 -0.1165 94.8161 H 10NK 0.033 117 H117 -33.8618 -5.4030 100.7748 H 10NK 0.033 118 H118 -34.9365 -5.7229 99.4192 H 10NK 0.033 119 H119 -33.2124 -5.3791 99.1398 H 10NK 0.034 @ <tripos>BOND 1 1 42 1 82 36 4 4 1 54 19 24 1 85 37 5 5 2 3 1 45 19 24 1 88 38 5 6 2 27 1 47 20 21 1 87 37 <td< td=""><td>112</td><td>H112</td><td>-34 5374</td><td>-4 9851</td><td>97</td><td>2226</td><td>н</td><td>- 1</td><td>LINK</td><td></td><td>0</td><td>1150</td><td></td></td<></tripos>	112	H112	-34 5374	-4 9851	97	2226	н	- 1	LINK		0	1150	
1141353533-0.074397.1930H110NK0.111115H114-35.3332-0.074397.1930H1UNK0.033116H116-35.6503-0.116594.8161H1UNK0.033117H117-33.8618-5.4030100.7748H1UNK0.033118H18-34.9365-5.722999.4192H1UNK0.033119H119-33.2124-5.379199.1398H1UNK0.034(@ <tripos>BONDI4218<26</tripos>	113	H113	-35 0265	-3 8356	95	1093	н	1			о. о	1150	
115136.36.3962 -1.5924 94.2697 H11UNK0.034116H116 -35.6593 -0.1165 94.8161 H1UNK0.034117H117 -33.8618 -5.4030 100.7748 H1UNK0.034118H118 -34.9365 -5.7229 99.4192 H1UNK0.034119H119 -33.2124 -5.3791 99.1398 H1UNK0.034@ <tripos>BOND112142182618336311814419231843644155231461925186375523146192518637556227147202118737572551482075189385933515021221903859335150212219038593351512176191394010103561512177192401011462522379194<</tripos>	114	H114	-35 3332	-0 0743	97	1930	н	1			о. о	1150	
116116-35.650-0.116594.8161 H1UNK0.034117H117-33.8618-5.4030100.7748 H1UNK0.034118H118-34.9365-5.722999.4192 H1UNK0.034119H119-33.2124-5.379199.1398 H1UNK0.034 $(@BOND$ 14319201833642151431920183364311814419231863755231461925186375622714720211873757255148207418838583414920751893859335150212219038510356151217619139411462522177192401011462522177192401012415155237919541101455715623 <td>115</td> <td>нттт 11115</td> <td>-36 3962</td> <td>-1 5924</td> <td>97. Q/I</td> <td>2697</td> <td>н</td> <td>1</td> <td></td> <td></td> <td>0.</td> <td>0300</td> <td></td>	115	нтт т 11115	-36 3962	-1 5924	97. Q/I	2697	н	1			0.	0300	
1101101101001	115		-35 6503	-1.5524	04. 01	2057	 L	1			0.0	0300	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110		22 0610	-0.1105	100	7740	н ц	1			0.0	0300	
113 113 113 119 13 119 1000 0.033 $(0,7R)$ 1000 1000 1000 0.033 $(0,7R)$ 1000 1000 1000 0.033 (11) 1000 1000 1000 1000 0.033 $(0,7R)$ 1000 1000 1000 1000 1000 0.033 (11) 1000 1000<	110		-33.0010	-5.4050	100.	//40	п 11	1			0.0	0300	
Is nilly -53.2124 -53.5731 99.1398 n I town 0.031 @ <tripos>BOND 1 1 2 1 5 1 42 18 26 1 82 36 4 2 1 5 1 43 19 20 1 83 36 4 3 1 18 1 44 19 23 1 84 36 4 4 1 54 1 45 19 24 1 85 37 5 5 2 3 1 46 19 25 1 86 37 9 6 2 27 1 47 20 21 1 87 37 9 7 2 55 1 48 20 74 1 88 38 9 9 3 35 1 50 21 22 1 90 38 9 10 3 56 1 51 21</tripos>	110	H110	- 54.9505	-5.7229	99.	1200	п 	1			0.0	0300	
@ <tripos>BOND 1 1 2 1 5 1 42 18 26 1 82 36 4 2 1 5 1 43 19 20 1 83 36 4 3 1 18 1 44 19 23 1 84 36 4 4 1 54 1 45 19 24 1 85 37 5 5 2 3 1 46 19 25 1 86 37 9 6 2 27 1 47 20 21 1 87 37 9 6 2 27 1 48 20 74 1 88 38 3 8 3 4 1 49 20 75 1 89 38 9 10 3 56 1 51 21 76 1 91 39 40 10 11</tripos>	119	пттэ	-33,2124	-2.2/91	33.	1290	п	T	UNK		0.0	0300	
1 1 2 1 42 18 26 1 82 36 4 2 1 5 1 43 19 20 1 83 36 4 3 1 18 1 44 19 23 1 84 36 4 4 1 54 1 45 19 24 1 85 37 37 5 2 3 1 46 19 25 1 86 37 9 6 2 27 1 47 20 21 1 87 37 9 6 2 27 1 47 20 21 1 88 38 9 3 35 1 50 21 22 1 91 39 48 9 10 3 56 1 51 21 76 1 91 39 40 10 12 4 15 1 53													
1121421826182364215143192018336431181441923184364415414519241853755231461925186375622714720211873757255148207418838383414920751893859335150212219038510356151217619139411462522177192401012415153222619340101351225423781944010145571552380196411015671562380196411016658157248119741101668			2 1	40	10	26	1			00	26	40	1
215145192018536431181441923184364415414519241853737523146192518637562271472021187375725514820741883838341492075189385933515021221903851035615121761913941146252217719240101241515322261934010135122542378194401014557155237919541101567155238019641101665815724831974110166581622586110243121616 <td>1</td> <td>1</td> <td></td> <td>42</td> <td>10</td> <td>20</td> <td>1</td> <td></td> <td></td> <td>02 02</td> <td>20</td> <td>40</td> <td>1</td>	1	1		42	10	20	1			02 02	20	40	1
31181441923184363641541451924185373752314619251863737622714720211873737725514820741883838834149207518938389335150212219038381035615121761913940114625221771924010124151532226193401013512254237819440101455715523791954110156715623801964110166581572481197411017781602584110042101875916225851101431020	2	1	51	45	19	20	1			00	30	41	1
4 1 54 1 45 19 24 1 85 37 37 5 2 3 1 46 19 25 1 86 37 37 7 2 55 1 47 20 21 1 87 37 37 7 2 55 1 48 20 74 1 88 38 38 8 3 4 1 49 20 75 1 89 38 9 9 3 56 1 51 21 76 1 91 39 40 10 12 4 15 1 53 22 26 1 93 40 10 13 5 12 2 54 23 78 1 96 41 10 14 5 57 1 56 23 80 1 96 41 10 14 5 57 1 56	3	1		44	19	23	1			84	30	42	T
5 2 3 1 46 19 25 1 86 37 8 6 2 27 1 47 20 21 1 87 37 9 7 2 55 1 48 20 74 1 88 38 3 8 3 4 1 49 20 75 1 89 38 9 9 3 35 1 50 21 22 1 90 38 9 10 3 56 1 51 21 76 1 91 39 4 11 4 6 2 52 21 77 1 92 40 10 13 5 12 2 54 23 78 1 94 40 10 14 5 57 1 56 23 80 1 97 41 10 15 6 7 1 56 23 <	4	1	54 1	45	19	24	1			85	37	38	1
62 27 1 47 26 21 1 87 37 87 7255148 20 74 188 38 38 834149 20 75 1 89 38 38 93 35 1 50 21 22 1 90 38 38 103 56 1 51 21 76 1 91 39 40 11462 52 21 77 1 92 40 16 124151 53 22 26 1 93 40 16 135 12 2 54 23 78 1 94 40 16 145 57 1 56 23 80 1 96 41 16 15671 56 23 80 1 96 41 16 166 58 1 57 24 81 1 97 41 16 166 58 1 59 24 83 1 99 42 16 177 8 1 57 24 81 1 100 42 16 166 58 1 60 25 84 1 100 42 16 197 60 1 62 25 86 <td>5</td> <td>2</td> <td>31</td> <td>46</td> <td>19</td> <td>25</td> <td>T</td> <td></td> <td></td> <td>86</td> <td>37</td> <td>96</td> <td>T</td>	5	2	31	46	19	25	T			86	37	96	T
7255148207418838383883414920751893899335150212219038910356151217619139411462522177192401012415153222619340101351225423781944010145571552379195411015671562380196411016658157248119741101778158248219842101875915924831994210197601602584110042102089161258511014310218161622586110243112286116326871103445 <t< td=""><td>6</td><td>2</td><td>27 1</td><td>47</td><td>20</td><td>21</td><td>T</td><td></td><td></td><td>87</td><td>37</td><td>97</td><td>T</td></t<>	6	2	27 1	47	20	21	T			87	37	97	T
8 3 4 1 49 20 75 1 89 38 9 9 3 35 1 50 21 22 1 90 38 9 10 3 56 1 51 21 76 1 91 39 4 11 4 6 2 52 21 77 1 92 40 16 12 4 15 1 53 22 26 1 93 40 16 13 5 12 2 54 23 78 1 94 40 16 14 5 57 1 56 23 80 1 96 41 16 15 6 7 1 56 23 80 1 97 41 16 16 6 58 1 57 24 81 1 97 42 16 17 7 8 1 58 24 <td>/</td> <td>2</td> <td>55 1</td> <td>48</td> <td>20</td> <td>/4</td> <td>1</td> <td></td> <td></td> <td>88</td> <td>38</td> <td>39</td> <td>1</td>	/	2	55 1	48	20	/4	1			88	38	39	1
93351502122190383810356151217619139411462522177192401012415153222619340101351225423781944010145571552379195411015671562380196411016658157248119741101778158248219842101875915924831994210197601602584110042102089161258511014310218161622586110243112286116326871103449239101642688110445424101116527341106451 <td< td=""><td>8</td><td>3</td><td>4 1</td><td>49</td><td>20</td><td>75</td><td>1</td><td></td><td></td><td>89</td><td>38</td><td>98</td><td>1</td></td<>	8	3	4 1	49	20	75	1			89	38	98	1
10 3 56 1 51 21 76 1 91 39 40 11 4 6 2 52 21 77 1 92 40 16 12 4 15 1 53 22 26 1 93 40 16 13 5 12 2 54 23 78 1 94 40 16 14 5 57 1 55 23 79 1 95 41 16 15 6 7 1 56 23 80 1 96 41 16 16 6 81 57 24 81 1 97 41 16 17 7 8 1 58 24 82 1 98 42 16 18 7 59 1 59 24 83 1 99 42 16 19 7 60 1 60 25 84 1 100 42 16 20 8 9 1 61 25 85 1 101 43 16 21 8 16 1 63 26 87 1 103 44 54 23 9 10 1 65 27 34 1 106 45 12 24 10 11 1 65 27 34 1 1	9	3	35 1	50	21	22	1			90	38	99	1
11462522177192401012415153222619340101351225423781944010145571552379195411015671562380196411016658157248119741101778158248219842101875915924831994210197601602584110042102089161258511014310218161622586110243122286116326871103444523910164268811044545241011165273411054592510132662829ar10645132611121672833ar1074645 </td <td>10</td> <td>3</td> <td>56 1</td> <td>51</td> <td>21</td> <td>76</td> <td>1</td> <td></td> <td></td> <td>91</td> <td>39</td> <td>43</td> <td>1</td>	10	3	56 1	51	21	76	1			91	39	43	1
12 4 15 1 53 22 26 1 93 40 16 13 5 12 54 23 78 1 94 40 16 14 5 57 1 55 23 79 1 95 41 16 15 6 7 1 56 23 80 1 96 41 16 16 6 58 1 57 24 81 1 97 41 16 17 7 8 1 57 24 83 1 99 42 16 18 7 59 1 59 24 83 1 99 42 16 19 7 60 1 60 25 84 1 100 42 16 20 8 9 1 61 25 85 1 101 43 16 21 8 16 1 62 25 86 1 102 43 12 22 8 61 1 63 26 87 1 103 44 94 23 9 10 1 65 27 34 1 104 45 44 24 10 11 1 65 27 34 1 106 45 12 25 10 13 2 66 28 29 ar <	11	4	62	52	21	77	1			92	40	100	1
135122542378194401014557155237919541101567156238019641101665815724811974110166581572481197411017781582482198421018759159248319942101976016025841100421020891612585110143102181616225861102431322861163268711034444239101652734110545132410111652734110645132510132662829ar10645132611121672833ar10746462811621692930ar1094747 </td <td>12</td> <td>4</td> <td>15 1</td> <td>53</td> <td>22</td> <td>26</td> <td>1</td> <td></td> <td></td> <td>93</td> <td>40</td> <td>101</td> <td>1</td>	12	4	15 1	53	22	26	1			93	40	101	1
14 5 57 1 55 23 79 1 95 41 16 15 6 7 1 56 23 80 1 96 41 16 16 6 58 1 57 24 81 1 97 41 16 17 7 8 1 58 24 82 1 98 42 16 18 7 59 1 59 24 83 1 99 42 16 19 7 60 1 60 25 84 1 100 42 16 20 8 9 1 61 25 85 1 101 43 16 20 8 9 1 61 25 86 1 102 43 12 20 8 9 1 61 25 86 1 102 43 12 21 8 16 1 62 25 86 1 102 43 12 22 8 61 1 63 26 87 1 103 44 92 23 9 10 1 65 27 34 1 105 45 12 24 10 11 1 67 28 33 ar 107 46 42 24 10 11 1 67 28 33 <	13	5	12 2	54	23	78	1			94	40	102	1
15 6 7 7 56 23 80 1 96 41 16 16 6 58 1 57 24 81 1 97 41 16 17 7 8 1 58 24 82 1 98 42 16 18 7 59 1 59 24 83 1 99 42 16 19 7 60 1 60 25 84 1 100 42 16 20 8 9 1 61 25 85 1 101 43 16 20 8 9 1 61 25 85 1 101 43 16 21 8 16 1 62 25 86 1 102 43 12 22 8 61 1 63 26 87 1 103 44 9 23 9 10 1 64 26 88 1 104 45 42 24 10 11 1 65 27 34 1 106 45 12 24 10 11 1 67 28 33 ar 107 46 42 24 10 11 1 67 28 33 ar 107 46 42 24 10 11 1 67 28 33 </td <td>14</td> <td>5</td> <td>57 1</td> <td>55</td> <td>23</td> <td>79</td> <td>1</td> <td></td> <td></td> <td>95</td> <td>41</td> <td>103</td> <td>1</td>	14	5	57 1	55	23	79	1			95	41	103	1
16 6 58 1 57 24 81 1 97 41 16 17 7 8 1 58 24 82 1 98 42 16 18 7 59 1 59 24 83 1 99 42 16 19 7 60 1 60 25 84 1 100 42 16 20 8 9 1 61 25 85 1 101 43 16 20 8 9 1 61 25 85 1 101 43 16 21 8 16 1 62 25 86 1 102 43 12 22 8 61 1 63 26 87 1 103 44 9 23 9 10 1 64 26 88 1 104 45 42 24 10 11 1 65 27 34 1 105 45 12 24 10 11 1 67 28 33 ar 106 45 12 24 10 11 1 67 28 33 ar 107 46 42 24 10 11 1 68 28 34 1 108 46 42 25 10 13 2 66 28 34	15	6	7 1	56	23	80	1			96	41	104	1
17781 58 24 82 1 98 42 16 18 7 59 1 59 24 83 1 99 42 16 19 7 60 1 60 25 84 1 100 42 16 20 891 61 25 85 1 101 43 16 20 891 61 25 85 1 101 43 16 21 8 16 1 62 25 86 1 102 43 12 22 8 61 1 63 26 87 1 103 44 94 23 9 10 1 64 26 88 1 104 45 45 24 10 11 1 65 27 34 1 105 45 94 24 10 11 1 67 28 33 ar 106 45 12 26 11 12 67 28 33 ar 107 46 46 94 27 11 14 68 28 34 1 108 46 94 28 11 62 1 69 29 30 ar 109 47 47	16	6	58 1	57	24	81	1			97	41	105	1
187 59 24 83 1 99 42 16 19 7 60 1 60 25 84 1 100 42 16 20 891 61 25 85 1 101 43 16 21 8 16 1 62 25 86 1 102 43 12 22 8 61 1 63 26 87 1 103 44 92 23 9 10 1 64 26 88 1 104 45 42 24 10 11 1 65 27 34 1 105 45 12 24 10 11 2 66 28 29 ar 106 45 12 25 10 13 2 66 28 29 ar 106 45 12 26 11 12 67 28 33 ar 107 46 42 27 11 14 68 28 34 1 108 46 92 28 11 62 1 69 29 30 ar 109 47 47	17	7	8 1	58	24	82	1			98	42	106	1
197 60 1 60 25 84 1 100 42 100 20 8 9 1 61 25 85 1 101 43 101 21 8 16 1 62 25 86 1 102 43 12 22 8 61 1 63 26 87 1 103 44 92 23 9 10 1 64 26 88 1 104 45 42 24 10 11 1 65 27 34 1 105 45 92 25 10 13 2 66 28 29 ar 106 45 122 26 11 12 67 28 33 ar 107 46 426 27 11 14 1 68 28 34 1 108 46 92 28 11 62 1 69 29 30 ar 109 47 47	18	7	59 1	59	24	83	1			99	42	107	1
20 8 9 1 61 25 85 1 101 43 16 21 8 16 1 62 25 86 1 102 43 12 22 8 61 1 63 26 87 1 103 44 9 23 9 10 1 64 26 88 1 104 45 42 24 10 11 1 65 27 34 1 105 45 9 25 10 13 2 66 28 29 ar 106 45 12 26 11 12 67 28 33 ar 107 46 42 27 11 14 1 68 28 34 1 108 46 92 28 11 62 1 69 29 30 ar 109 47 47	19	7	60 1	60	25	84	1		1	.00	42	108	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	8	9 1	61	25	85	1		1	.01	43	109	1
22 8 61 63 26 87 1 103 44 9 23 9 10 1 64 26 88 1 104 45 4 24 10 11 1 65 27 34 1 105 45 9 25 10 13 2 66 28 29 ar 106 45 12 26 11 12 1 67 28 33 ar 107 46 4 27 11 14 1 68 28 34 1 108 46 9 28 11 62 1 69 29 30 ar 109 47 47	21	8	16 1	62	25	86	1		1	.02	43	110	1
23 9 10 1 64 26 88 1 104 45 16 45 16 45 16 45 16 45 16 45 16 45 16 45 16 45 16 45 16 45 16 45 16 45 16 45 16 45 16 46 45 16 4	22	8	61 1	63	26	87	1		1	.03	44	51	1
24 10 11 105 25 25 10 13 2 66 28 29 ar 106 45 12 26 11 12 11 67 28 33 ar 107 46 45 12 27 11 14 1 68 28 34 1 108 46 45 28 11 62 1 69 29 30 ar 109 47 47	23	9	10 1	64	26	88	1		1	.04	45	46	ar
25 10 13 2 66 28 29 ar 106 45 12 26 11 12 1 67 28 33 ar 107 46 45 27 11 14 1 68 28 34 1 108 46 45 28 11 62 1 69 29 30 ar 109 47	24	10	11 1	65	27	34	1		1	.05	45	50	ar
26 11 12 1 67 28 33 ar 107 46 4 27 11 14 1 68 28 34 1 108 46 4 28 11 62 1 69 29 30 ar 109 47 4	25	10	13 2	66	28	29	ar		1	.06	45	111	1
27 11 14 1 68 28 34 1 108 46 9 28 11 62 1 69 29 30 ar 109 47 47	26	11	12 1	67	28	33	ar		1	.07	46	47	ar
28 11 62 1 69 29 30 ar 109 47 4	27	11	14 1	68	28	34	1		1	.08	46	52	1
	28	11	62 1	69	29	30	ar		1	.09	47	48	ar

29	12	63 1	70	29	89 1		110	47	112 1
30	14	64 1	71	30	31 ar		111	48	49 ar
31	14	65 1	72	30	90 1		112	48	113 1
32	14	66 1	73	31	32 ar		113	49	50 ar
33	15	67 1	74	31	91 1		114	49	51 1
34	15	68 1	75	32	33 ar		115	50	114 1
35	15	69 1	76	32	92 1		116	51	115 1
36	16	17 1	77	33	93 1		117	51	116 1
37	16	44 1	78	34	94 1		118	52	53 1
38	16	70 1	79	34	95 1		119	53	117 1
39	17	71 1	80	35	43 1		120	53	118 1
40	17	72 1	81	36	37 1		121	53	119 1
41	17	73 1							
@ <trip(< td=""><td>OS>SUB</td><td>STRUCTURE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></trip(<>	OS>SUB	STRUCTURE							
1	UNK	1 GROUP		0	****	0 ROOT			

5.1.10 Isomerisierter 2-(R)-Makrozyklus 147 (CHCl₃)

```
12509 unique conformations found so far
```

```
10789 minimized with good convergence
Found 40 confs within 1.00 kcal/mol ( 4.18 kJ/mol) of glob. min.
Found265 confs within2.00 kcal/mol ( 8.37 kJ/mol) of glob. min.Found782 confs within3.00 kcal/mol (12.55 kJ/mol) of glob. min.Found3336 confs within5.00 kcal/mol (20.92 kJ/mol) of glob. min.
Found 12509 confs within 10.00 kcal/mol (41.84 kJ/mol) of glob. min.
Global minimum E = -358.21 found 12 times.
29000 steps performed so far, out of 29000
 E of low-energy structures above global min [kJ/mol], and no. times found:
    E: 0.00 0.03 0.06 0.14 0.76 1.47 1.75 1.83 2.27 2.43 2.71 2.73
  No.: 12
                  20 36
                               60
                                       4
                                             64
                                                  16
                                                           4
                                                               12
                                                                      68
                                                                               40
                                                                                      16
```

Die energieärmste Konformation ist im Folgenden im mol2 Dateiformat angegeben:

@<TRIPOS>MOLECULE ***** 119 121 1 SMALL USER_CHARGES

@<TRIPOS>ATOM

1	C1	12.8013	-14.7259	107.3464	C.3	1	UNK	0.2390
2	C2	14.2971	-15.1060	107.1669	C.3	1	UNK	0.1700
3	C3	14.7962	-16.2988	108.0252	C.3	1	UNK	0.2390
4	C4	14.0171	-17.5906	107.7847	C.2	1	UNK	-0.0690
5	C5	11.8801	-15.5543	106.4676	C.2	1	UNK	-0.1840
6	C6	14.2246	-18.3158	106.6657	C.2	1	UNK	-0.1150
7	C7	13.5684	-19.6296	106.2586	C.3	1	UNK	-0.1200
8	C8	12.6560	-19.5060	105.0134	C.3	1	UNK	0.2200
9	09	11.7706	-18.4050	105.1609	0.3	1	UNK	-0.3300
10	C10	10.6267	-18.5134	105.8501	C.2	1	UNK	0.5100
11	C11	9.9375	-17.1590	106.0498	C.3	1	UNK	-0.0600
12	C12	10.8331	-16.2760	106.9098	C.2	1	UNK	-0.1150
13	013	10.1615	-19.5515	106.3193	0.2	1	UNK	-0.4300
14	C14	9.5582	-16.5088	104.7051	C.3	1	UNK	-0.1800

15	C15	13.0917	-18.0044	108.9195	C.3	1	UNK	-0.1800
16	C16	13.4220	-19.3418	103.6809	C.3	1	UNK	0.1700
17	C17	12.4921	-19.4167	102.4604	C.3	1	UNK	-0.1800
18	018	12.6624	-13.3460	107.0047	0.3	1	UNK	-0.4000
19	Si19	13.7141	-11.8231	112.0947	Si	1	UNK	0.7476
20	C20	12.1828	-12.1906	111.0412	C.3	1	UNK	-0.4025
21	C21	12.4954	-12.1661	109.5434	C.3	1	UNK	0.1400
22	022	11.3911	-12.7383	108.8556	0.3	1	UNK	-0.4000
23	C23	14.8988	-13.2904	112.0120	C.3	1	UNK	-0.5103
24	C24	14.5851	-10.2648	111.4785	C.3	1	UNK	-0.5103
25	C25	13,1905	-11.5678	113,8913	C.3	1	UNK	-0.5103
26	C26	11 5077	-12 7192	107 4675	C 3	1		0 2000
20	027	15 0565	-13 9742	107 5931	0.3	1		-0.2000
28	C28	16 6174	-12 2045	107 0194	C ar	1		-0 0418
20	C20	15 0205	_11 1612	107.0104	C.an	1		-0 1150
29	C29	16 1/15	-11,1012	107.000	C.an	1		-0.1150
50 21	C30	17 9267	-9.9397	107.3134	C.ar	1		-0.1150
22	C31	17.8287	-9.7566	107.7509	C.ar	1		-0.1150
32	C32	10,0009	-10./9/6	107.1915	C.ar	1	UNK	-0.1150
33	C33	18.0020	-12.01/3	106.8288	C.ar	1	UNK	-0.1150
34	C34	15.9529	-13.4995	106.6029	0.3	T	UNK	0.1818
35	035	16.1/46	-16.4888	107.7045	0.3	1	UNK	-0.4000
36	S136	19.1742	-13.2145	111.0452	Si	1	UNK	0.7476
37	C37	18.2662	-14.8801	111.0800	C.3	1	UNK	-0.4025
38	C38	17.7810	-15.3118	109.6932	C.3	1	UNK	0.1400
39	039	17.0985	-16.5514	109.8308	0.3	1	UNK	-0.4000
40	C40	17.9608	-11.7980	110.7781	C.3	1	UNK	-0.5103
41	C41	20.0449	-12.9460	112.6998	C.3	1	UNK	-0.5103
42	C42	20.4723	-13.2009	109.6716	C.3	1	UNK	-0.5103
43	C43	16.9073	-17.2270	108.6295	C.3	1	UNK	0.2000
44	044	14.0862	-18.0833	103.6828	0.3	1	UNK	-0.4000
45	C45	17.9558	-15.3315	103.5429	C.ar	1	UNK	-0.1150
46	C46	17.2155	-14.1491	103.3449	C.ar	1	UNK	0.0850
47	C47	15.8404	-14.2508	103.0164	C.ar	1	UNK	-0.1150
48	C48	15.2280	-15.5144	102.8995	C.ar	1	UNK	-0.1150
49	C49	15.9762	-16.6909	103.1022	C.ar	1	UNK	-0.0418
50	C50	17.3460	-16.5951	103.4196	C.ar	1	UNK	-0.1150
51	C51	15.3091	-18.0458	102.9648	C.3	1	UNK	0.1818
52	052	17.8928	-12.9590	103.4943	0.3	1	UNK	-0.2850
53	C53	17.1760	-11.7487	103.2939	C.3	1	UNK	0.1100
54	H54	12.5388	-14.8682	108.3955	н	1	UNK	0.0300
55	H55	14.4759	-15.3257	106.1116	н	1	UNK	0.0300
56	H56	14.7103	-16.0188	109.0772	н	1	UNK	0.0300
57	H57	12.1334	-15.5662	105.4175	н	1	UNK	0.1150
58	H58	14.9307	-17.9223	105.9486	н	1	UNK	0.1150
59	Н59	12.9914	-20.0469	107.0802	н	1	UNK	0.0600
60	H60	14.3560	-20.3574	106.0647	н	1	UNK	0.0600
61	H61	12.0768	-20,4276	104.9338	н	1	UNK	0.0300
62	H62	9.0204	-17.3332	106.6132	н	1	UNK	0.0600
63	H63	10.6088	-16.2792	107.9667	н	1	UNK	0.1150
64	H64	9.0889	-15.5374	104.8606	н	1	UNK	0,0600
65	H65	8.8486	-17,1325	104,1605	н	1	UNK	0,0600
66	H66	10.4241	-16.3610	104,0586	н	1	UNK	0,0600
67	H67	12,3491	-18 7423	108 6741	н	1	UNK	0.0000 0 0600
62	H68	13 6754	-18 4114	109 7/5/	н	1	LINK	0.0000
60	H69	12 5/27	-17 1/07	100 2051	н	1 1		0.0000
70	H70	14 1/60	-20 1551	103 6160	н	1 1		0.0000
70	H71	13 0510	_10 25/0	101 577	н	1 1		0.0500
/エ マつ	11/ ± 1170	11 7696	-19.2040	102 1601	и Ц	1		0.0000
ע <i>ו</i> רד	11/ Z	11 0260	- 70 2543	102.4001	н ц	1		0.0000
15	11/5	71.900	-20.3342	102.4490	11	Т	JNIC	0.0000

74	H74		11.3849	-11.4799	111.2	537	н	1	UNK		0.	1078	
75	H75		11.7926	-13.1724	111.3	074	н	1	UNK		0.	1078	
76	H76		13.4016	-12.7401	109.3	452	н	1	UNK		0.	0300	
77	H77		12.6761	-11.1432	109.2	092	н	1	UNK		0.	0300	
78	H78		15,7515	-13.1556	112.6	757	н	1	UNK		0.	1078	
79	H79		14,4078	-14,2193	112.2	995	н	1	UNK		0	1078	
80	H80		15 2881	-13 4327	111 0	027	н	1	LINK		о. о	1078	
81 81	HQ1		15 /210	_9 9937	112 1	212		1			о. а	1078	
01	1101		12 0002	- 3. 3337	111 4	440		1			0.	1070	
02			14 0050	-9.4119	110 4	443	п 	1			0.	1070	
83	H83		14.9850	-10.4077	110.4	·/51	н	1	UNK		0.	1078	
84	H84		12.5031	-10./283	113.9	914	н	1	UNK		0.	10/8	
85	H85		12.6885	-12.4492	114.2	893	H	1	UNK		0.	10/8	
86	H86		14.0482	-11.3646	114.5	317	н	1	UNK		0.	1078	
87	H87		11.5225	-11.6837	107.1	241	н	1	UNK		0.	1000	
88	H88		10.6246	-13.1938	107.0	368	Н	1	UNK		0.	1000	
89	H89		14.7766	-11.3079	107.6	972	Н	1	UNK		0.	1150	
90	H90		15.8423	-9.1448	108.3	391	Н	1	UNK		0.	1150	
91	H91		18.2909	-8.8241	108.0	169	Н	1	UNK		0.	1150	
92	H92		19.6690	-10.6597	107.0	500	Н	1	UNK		0.	1150	
93	H93		18.6007	-12.8078	106.3	994	н	1	UNK		0.	1150	
94	H94		15.4081	-13.3001	105.6	796	н	1	UNK		0.	0300	
95	H95		16.7058	-14.2585	106.3	848	н	1	UNK		0.	0300	
96	H96		17.4152	-14.8296	111.7	581	н	1	UNK		0.	1078	
97	H97		18,9226	-15.6527	111.4	784	н	1	UNK		0.	1078	
98	H98		18,6349	-15,4124	109.0	212	н	- 1	UNK		0.	0300	
99	H99		17,1133	-14.5623	109.2	659	н	- 1	UNK		0.	0300	
100	н100		18 /7/0	-10 8571	110 5	850		1			о. а	1078	
101	H101		17 3106	_11 0015	100.0	256	ч	1			0. 0	1070	
101	L101		17 2100	-11 6471	111 6	230	 Ц	1			0. 0	1070	
102	11102			11 0057	112 7	205		1			0.	1070	
104	1100		20.5774	-11.9957	112.7	205	п 	1			0.	1070	
104	H104		20.7721	-13./321	112.9	800	н	1	UNK		0.	1078	
105	H105		19.3350	-12.9397	113.5	263	H	1	UNK		0.	10/8	
106	H106		20.0124	-13.3074	108.6	899	н	1	UNK		0.	1078	
107	H107		21.0340	-12.2675	109.6	646	н	1	UNK		0.	1078	
108	H108		21.1880	-14.0140	109.7	883	Н	1	UNK		0.	1078	
109	H109		17.8793	-17.4545	108.1	889	Н	1	UNK		0.	1000	
110	H110		16.4194	-18.1804	108.8	379	Н	1	UNK		0.	1000	
111	H111		19.0045	-15.2657	103.7	933	Н	1	UNK		0.	1150	
112	H112		15.2301	-13.3750	102.8	580	Н	1	UNK		0.	1150	
113	H113		14.1768	-15.5853	102.6	595	Н	1	UNK		0.	1150	
114	H114		17.9337	-17.4877	103.5	761	Н	1	UNK		0.	1150	
115	H115		15.1362	-18.2471	101.9	072	Н	1	UNK		0.	0300	
116	H116		15.9825	-18.8183	103.3	398	Н	1	UNK		0.	0300	
117	H117		16.3520	-11.6484	104.0	013	н	1	UNK		0.	0300	
118	H118		17.8464	-10.9041	103.4	529	н	1	UNK		0.	0300	
119	H119		16.7895	-11.6778	102.2	764	Н	1	UNK		0.	0300	
@ <tripo< td=""><td>5>BOND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tripo<>	5>BOND												
1	1	21		42	18	26	1			82	36	40	1
2	1	51		43	19	20	1			83	36	41	1
3	1	18 1		44	19	23	1			84	36	42	1
4	1	54 1		45	19	24	1			85	37	38	1
5	2	31		46	19	25	1			86	37	96	1
5	2	27 1		43 Λ7	20	21	1			87	37	97	1
0 7	2	<u>-</u> , <u>-</u> 5ς 1		47	20	7/	- 1			82	22	20	1
2 2	∠ २	/ 1		40	20	75	- 1			20	20	ور	1 1
0	ر د	25 1		49	20	, , , ,	1 1			09	20	20	1
9 10	2 2	72 T		50	∠⊥ ว1	22	1 1			01 01	20	99 10	1
TO	5	7 OC		51	Z T	70	т			91	22	43	T

11	4	62	52	21	77 1		92	40	100	1
12	4	15 1	53	22	26 1		93	40	101	1
13	5	12 2	54	23	78 1		94	40	102	1
14	5	57 1	55	23	79 1		95	41	103	1
15	6	7 1	56	23	80 1		96	41	104	1
16	6	58 1	57	24	81 1		97	41	105	1
17	7	8 1	58	24	82 1		98	42	106	1
18	7	59 1	59	24	83 1		99	42	107	1
19	7	60 1	60	25	84 1		100	42	108	1
20	8	9 1	61	25	85 1		101	43	109	1
21	8	16 1	62	25	86 1		102	43	110	1
22	8	61 1	63	26	87 1		103	44	51	1
23	9	10 1	64	26	88 1		104	45	46	ar
24	10	11 1	65	27	34 1		105	45	50	ar
25	10	13 2	66	28	29 ar		106	45	111	1
26	11	12 1	67	28	33 ar		107	46	47	ar
27	11	14 1	68	28	34 1		108	46	52	1
28	11	62 1	69	29	30 ar		109	47	48	ar
29	12	63 1	70	29	89 1		110	47	112	1
30	14	64 1	71	30	31 ar		111	48	49	ar
31	14	65 1	72	30	90 1		112	48	113	1
32	14	66 1	73	31	32 ar		113	49	50	ar
33	15	67 1	74	31	91 1		114	49	51	1
34	15	68 1	75	32	33 ar		115	50	114	1
35	15	69 1	76	32	92 1		116	51	115	1
36	16	17 1	77	33	93 1		117	51	116	1
37	16	44 1	78	34	94 1		118	52	53	1
38	16	70 1	79	34	95 1		119	53	117	1
39	17	71 1	80	35	43 1		120	53	118	1
40	17	72 1	81	36	37 1		121	53	119	1
41	17	73 1								
RIPO	S>SUBS	STRUCTURE								
1	UNK	1 GROU	Р	0	****	Ø ROOT				

@<TF

1 UNK

**** 0 ROOT

5.2 Chemische Arbeiten

Glasgeräte

Alle Reaktionen, in denen sauerstoff- oder feuchtigkeitsempfindliche Stoffe zum Einsatz kamen, wurden unter Schutzgas (Argon) durchgeführt. Außerdem wurden die Glasgeräte vor Benutzung unter Vakuum ausgeheizt.

Lösungsmittel und Reagenzien

Eingesetzte trockene Lösungsmittel wurden entweder vor Ort getrocknet und unter Argonatmosphäre aufbewahrt oder von ACROS, SIGMA-ALDRICH und FISHER-SCIENTIFIC kommerziell erhalten. Dichlormethan und Diethylether wurden aus einer mit einer Trocknungskartusche versehenen MB SPS-Apparatur (M. BRAUN) entnommen. THF wurde mit elementarem Natrium unter Schutzgasatmosphäre unter Rückfluss erhitzt und destilliert, wobei Benzophenon als Indikator verwendet wurde. Triethylamin und Diisopropylamin wurden mit Kaliumhydroxid in einer Argonatmosphäre und Rückfluss erhitzt. Trockenes Toluol wurde von ACROS erworben.

Lösungen wurden für 30 min mittels Durchleiten von Argon durch das Lösungsmittel entgast.

Die zum Einsatz gelangten Reagenzien wurden von ABCR, FLUROCHEM, SIGMA-ALDRICH, ACROS, FISHER-SCIENTIFIC und TCI EUROPE käuflich erworben.

Die verwendete ph 7-Phosphatpuffer-Lösung wurde aus 168 g Na_2HPO_4 und 103 g KH_2PO_4 in 1.0 l H_2O hergestellt.

Eingesetzte Lösungen anorganischer Salze sind, sofern nicht anders vermerkt, immer wässrig.

Extraktion

Wässrige Lösungen wurden, sofern nicht anders angegeben, mindestens drei Mal extrahiert. In jedem Fall wurde solange extrahiert, bis mittels Dünnschichtchromatograhie kein Produkt mehr in der wässrigen Phase nachgewiesen werden konnte.

Für die Dünnschichtchromatographie wurden mit Kieselgel beschichtete Aluminiumfolien des Typs ALUGRAM[®] Xtra SIL G/UV254 der Firma MACHERY-NAGEL verwendet. Indikation erfolgte mittels UV-Licht der Wellenlänge λ = 254 nm und verschiedenen Färbereagenzien (Anisaldehyd, Kaliumpermanganat, Ammoniumcer(IV)-nitrat) mit anschließender Wärmebehandlung.

In manchen Fällen wurden Verbindungen auf Kieselgel aufgezogen. Dies bedeutet, dass die entsprechende Verbindung in Dichlormethan oder Diethylether gelöst wurde und das Lösungsmittel nach Zugabe eines etwa gleich großen Volumens Kieselgel am Rotationsverdampfer unter vermindertem Druck entfernt wurde. Das so erhaltene Kieselgel wurde anschließend in der Flash-Chromatographie eingesetzt.

Für die Flash-Chromatographie wurde Kieselgel der Firma MACHERY-NAGEL mit einer Korngröße von 40 bis 63 μm verwendet. Als Laufmittel wurden ausschließlich Petrolether/Essigester-Gemische verwendet, die jeweiligen Mischungen sind angegeben.

Semi-präparative HPLC wurde über ein Alliance 2695 HPLC-Gerät der Firma WATERS mit einem WATERS 996 Photodioden Array Detektor (λ = 200-350 nm) durchgeführt. Es wurde eine Nucleodur C18 HTec (5 µm, 250 mm, Ø 8 mm) Chromatographiesäule der Firma MACHERY-NAGEL verwendet. Die Massendetektion erfolgte über ein WATERS Quattro *micro* API Massenspektrometer.

Massenspektrometrie

Bei der zur Reaktionskontrolle genutzten LC/MS handelt es sich um eine Hewlett Packard Series 1100 HPLC-Anlage mit einer Nucleoshell RP-18 (2.7 μ m, 100 mm, ø 2 mm, mit Vorfilter) Säule von MACHERY-NAGEL. Die Massendetektion erfolgte mit einem LCT Massenspektrometer der Firma Micromass.

Hochaufgelöste Massenspektrometrie (HRMS) wurde mit einer MICROMASS LCT mit Lock-Spray-Einheit gemessen. Die Injektion erfolgte im Loop-Modus in einer HPLC-Anlage der Firma WATERS (Alliance 2695). Alternativ wurde mit einer MICROMASS Q-TOF in Verbindung mit einer WATERS Aquity UPLC-Anlage gemessen. Die Ionisierung erfolgte durch Elektronensprayionisation (ESI).

NMR-Spektroskopie

Die NMR-Spektren wurden mit den Geräten DPX-200 (200 MHz), AVS-400 (400 MHz), Ascend-400 (400 MHz), Avance-400 (400 MHz) und DRX-500 (500 MHz) der Firma BRUKER bei Raumtemperatur aufgenommen. Das jeweils verwendete Lösungsmittel ist angegeben. Die Kalibration erfolgte anhand des Restprotonengehalts des Solvens verursachten Signals (CDCl₃= 7.26 ppm, C₆D₆= 7.16 ppm).¹²⁸ Die Angabe der chemischen Verschiebung δ erfolgt in ppm, die der Kopplungskonstanten *J* in Hertz (Hz). Für die Signale werden folgende Abkürzungen verwendet: s= Singulett, d= Dublett, t= Triplett, q= Quartett, sept= Septett, br= breites Signal und m= Multiplett.

Die Kalibration der ¹³C-Spektren erfolgte anhand des vom Solvens verursachten Signals (CDCl₃ = 77.16 ppm, C₆D₆ = 128.06 ppm).¹²⁸ Die Angabe der chemischen Verschiebung δ erfolgt in ppm. Für die Signale werden folgende Abkürzungen verwendet: p= primär, s= sekundär, t= tertiär, q= quartär.

Für eine vollständige Interpretation wurden ${}^{1}H - {}^{1}H - Korrelationsspektren (COSY, teilweise NOESY) und <math>{}^{1}H - {}^{13}C - Korrelationsspektren (HMBC, HSQC) aufgenommen.$

Die Nummerierung der NMR-Signale zu den zugehörigen Atomen erfolgt primär über die in den jeweiligen Reaktionsgleichungen angegebenen Nummern. Die Zuordnung bei der Bn- und PMB-Schutzgruppe erfolgt nach folgendem Muster: Aromatische Signale= Ar, benzylische Positionen= Bn, Methoxygruppe in PMB= ArOMe.

Schmelzpunkte

Schmelzpunkte wurden durch zweimalige Messung bestimmt. Es wurde ein Gerät des Typs OptiMelt der Firma SRS verwendet.

Drehwerte

Die Drehwerte wurden an einem Polarimeter 341 der Firma PERKIN-ELMER gemessen. Als Lösungsmittel wurde destilliertes Dichlormethan der Firma VWR oder Chloroform verwendet. Die Drehwerte wurden bei Raumtemperatur bei einer Wellenlänge von 589.3 nm (Natriumdampflampe) bestimmt. Die verwendete Quarzglaszelle hatte ein Volumen von 1 ml. Die Konzentrationen *c* sind in $[10 \text{ mg} \cdot \text{ml}^{-1}]$ und die Drehwerte α in $[\text{ml} \cdot \text{g}^{-1} \cdot \text{dm}^{-1}]$ angegeben.

5.2.1 Reagenzien und Bausteine

Triphenyl(1-[ethoxycarbonyl]ethyliden)phosphoran (33)

PPh₃ (80.6 g, 307 mmol, 1.0 Äq.) wurde in 2-Ethylbrompropionat **32** (59.8 ml, 461 mmol, 1.5 Äq.) gelöst und für 10 h bei 50 °C gerührt. Nach Zugabe von Petrolether (250 ml) wurde der Feststoff abgesaugt und zwei Mal mit Petrolether (je 250 ml) gewaschen. Der erhaltene Feststoff wurde zu einer auf 0 °C gekühlten wässrigen 2.5 M NaOH-Lösung gegeben und die Lösung über 30 min auf RT erwärmt. Die Phasen wurden getrennt, die wässrige Phase mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen zwei Mal mit wässriger gesättigter NaCl-Lösung gewaschen, getrocknet (Na₂SO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **33** (89.7 g, 247 mmol, 81 %) wurde als gelber Feststoff erhalten.

Der Schmelzpunkt und die ¹H-NMR-spektroskopischen Daten stimmen mit den in der Literatur beschriebenen überein.³⁵

Smp. 153 °C (Lit.: 157-158 °C).

¹**H-NMR** (200 MHz, CDCl₃) δ : 7.72-7.40 (15H, m, H_{Ph}), 4.06 (2H, q, *J*= 7.0 Hz, H_{Et,minor}), 3.71 (2H, q, *J*= 7.0 Hz, H_{Et,major}), 1.62 (3H, d, *J*= 14.0 Hz, H_{Me,minor}), 1.25 (3H, t, *J*= 7.0 Hz, H_{Et,minor}), 0.46 (3H, t, *J*= 7.0 Hz, H_{Et,major}) ppm.

4-Methoxybenzyltrichloracetimidat (39)

Zu einer Suspension von NaH (60 % Suspension in Petrolether, 2.78 g, 69.4 mmol, 0.2 Äq.) in Et₂O (1.00 l) wurde 4-Methoxybenzylalkohol (42.4 ml, 347 mmol, 1.0 Äq.) über 15 min getropft. Das Gemisch wurde für 1.5 h gerührt und anschließend auf 0 °C gekühlt. Trichloracetonitril (38.2 ml, 382 mmol, 1.1 Äq.) wurde nun über 1 h zu der Suspension gegeben und dann für 2 h bei RT gerührt. Das Lösungsmittel wurde unter vermindertem Druck entfernt und der so erhaltene Rückstand in einer Mischung von Petrolether (367 ml) und MeOH (1.3 ml) unter Rühren für 30 min gelöst. Die Suspension wurde anschließend über Kieselgur filtriert und das Produkt **39** (78.8 g, 279 mmol, 80 %) nach Entfernung des Lösungsmittels unter vermindertem Druck als gelbes Öl erhalten.

Die ¹H-NMR-spektroskopischen Daten stimmen mit den in der Literatur beschriebenen überein.³⁸

¹**H-NMR** (400 MHz, CDCl₃) δ: 8.36 (1H, br, H_{NH}), 7.40-7.35 (2H, m, H_{Ar}), 6.93-6.89 (2H, m, H_{Ar}), 5.27 (2H, s, H_{Bn}), 3.82 (3H, s, H_{ArOMe}) ppm.

(S)-4-Benzyl-3-(2-[benzyloxy]acetyl)oxazolidin-2-on (50)

Zu einer Lösung des (*S*)-EVANS Auxiliars **49** (17.5 g, 98.8 mmol, 1.0 Äq.) in THF (500 ml) bei -20 °C, wurde Benzyloxyacetylchlorid (25.0 g, 138 mmol, 1.3 Äq.) getropft. Nach Zugabe von LiCl (4.80 g, 114 mmol, 1.1 Äq.) wurde die Lösung für 18 h bei -20 °C gerührt. Nach Zugabe wässriger 1 M HCl-Lösung (40 ml) wurde das THF unter vermindertem Druck entfernt. Der wässrige Rückstand wurde mit EtOAc extrahiert. Die vereinigten organischen Phasen wurden mit wässriger 1 M HCl-, wässriger gesättigter NaHCO₃- und wässriger gesättigter NaCl-Lösung gewaschen, getrocknet (MgSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Der Rückstand wurde auf Kieselgel aufgezogen und das Produkt **50** (29.0 g, 89.2 mmol, 90 %) wurde durch säulenchromatographische Reinigung (4:1) als farbloser Feststoff erhalten.

Der optische Drehwert, der Schmelzpunkt und die ¹H-NMR-spektroskopischen Daten stimmen mit den in der Literatur beschriebenen überein.¹²⁹

Smp. 65 °C (Lit.: 69.0-69.5 °C).

¹**H-NMR** (400 MHz, CDCl₃) δ: 7.43-7.28 (8H, m, H_{Ar}), 7-22-7.20 (2H, m, H_{Ar}) 4.73-4.67 (5H, m, H-1,3 H_{Bn}), 4.28 (1H, dd, *J*= 9.1, 8.4 Hz, H-2) 4.23 (1H, dd, *J*= 9.1, 3.1 Hz, H-2) 3.34 (1H, dd, *J*= 13.4, 3.3 Hz, H-4), 2.82 (1H, dd, *J*= 13.4, 9.6 Hz, H-4) ppm.

 $[\alpha]_{D}^{24} = +59.0^{\circ} (c = 1.13, CHCl_{3}), (Lit.: +64^{\circ} [c = 1.00, CHCl_{3}]).$

¹²⁹⁾ V. Matousek, A. Togni, V. Bizet, D. Cahard, Org. Lett. 2011, 13, 5762-5765.

Zinkborhydrid

$ZnCl_2 + 2 NaBH_4 \longrightarrow Zn(BH_4)_2 + 2 NaCl$

ZnCl₂ (2.50 g, 18.3 mmol, 1.4 Äq.) wurde in einem Zweihalskolben vorgelegt, in Et₂O (30 ml) gelöst und anschließend für 3 h bei 40 °C gerührt. Die so erhaltene klare Lösung wurde nach Abkühlen auf RT zu NaBH₄ in Et₂O (100 ml) gegeben und für 3 d bei RT gerührt. Der klare Überstand wurde vom sich absetzenden Feststoff abdekantiert und in einen trockenen Kolben überführt. Die Lösung wurde ohne weitere Aufarbeitung verwendet. Es wurde eine Konzentration von 0.13 M angenommen.

(E)-4-(Allyloxy)-2-methylbut-2-ensäure (94)

Zu einer Lösung von NalO₄ (10.3 g, 48.4 mmol, 1.0 Äq.) in H₂O (115 ml) wurde 3-Allyloxy-1,2propandiol **92** (6.26 g, 47.4 mmol, 1.0 Äq.) bei 0 °C getropft. Das Reaktionsgemisch wurde 2.5 h bei RT gerührt. Nach Zugabe von EtOH wurde filtriert und das organische Lösungsmittel unter vermindertem Druck entfernt. Der wässrige Rückstand wurde mit CH_2Cl_2 extrahiert, die vereinigten organischen Phasen getrocknet (MgSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Der Rückstand wurde in PhMe (100 ml) gelöst und nach Zugabe des stabilisierten WITTIG-Ylids **33** (25.7 g, 71.0 mmol, 1.5 Äq.) für 18 h bei 110 °C gerührt. Das Reaktionsgemisch wurde auf Kieselgel aufgezogen und das Produkt nach säulenchromatographischer Reinigung (3.7:1) über eine Filtersäule erhalten. Der erhaltene Ester wurde in MeOH (40 ml) gelöst und nach Zugabe einer 1 M KOH-Lösung (40 ml) für 4 h gerührt. Nach Zugabe von H₂O wurde mit Et₂O extrahiert, die wässrige Phase anschließend mithilfe von wässriger 1 M-HCl-Lösung auf pH 3 angesäuert und dann erneut mit Et₂O extrahiert. Die so erhaltenen organischen Phasen wurden vereinigt, mit wässriger gesättigter NaCl-Lösung gewaschen, getrocknet (MgSO₄) und filtriert. Das Produkt **94** (3.53 g, 22.6 mmol, 47 %) wurde nach Entfernen des Lösungsmittels unter vermindertem Druck als farbloses Öl erhalten.

Die ¹H-NMR-spektroskopischen Daten stimmen mit den in der Literatur beschriebenen überein.⁷⁵

¹**H-NMR** (400 MHz, CDCl₃) δ: 6.98 (1H, tq, *J*= 5.9, 1.4 Hz, H-1), 5.92 (1H, ddt, *J*= 17.3, 10.6, 5.5 Hz, H-4), 5.30 (1H, ddd, *J*= 17.3, 3.1, 1.4 Hz, H-5), 5.22 (1H, ddd, *J*= 10.6, 3.1, 1.4 Hz, H-5), 4.20 (2H, dq, *J*= 5.9, 1.1 Hz, H-2), 4.02 (2H, dt, *J*= 5.5, 1.4 Hz, H-3), 1.84 (3H, q, *J*= 1.4 Hz, H-6) ppm.

Methyl 2-(bis[2,2,2-trifluoroethoxy]phosphoryl)propanoat (139)

Zu einer Lösung von Trifluorethanol (5.03 ml, 66.7 mmol, 2.0 Äq.) und NEt₃ (10.2 ml, 73.3 mmol, 2.2 Äq.) in THF (45 ml) bei 0 °C wurde Ethylphosphondichlorid **137** (3.63 ml, 33.3 mmol, 1.0 Äq.) in THF (7.5 ml) getropft. Das Gemisch wurde für 2 h bei RT gerührt und anschließend filtriert. Der Filterkuchen wurde mit THF gewaschen und das Lösungsmittel unter vermindertem Druck entfernt. Das Intermediat **138** wurde destillativ aus dem Rückstand erhalten (Sdp. 83 °C, 27 mbar).

Eine auf -78 °C gekühlte Lösung des Intermediats **138** und Methylchloroformiat (1.97 ml, 35.0 mmol, 1.05 Äq.) in THF (77 ml) wurde mittels einer Transferkanüle zu einer ebenfalls auf -78 °C gekühlten Lösung von LiHMDS (1 M Lösung in THF, 47.7 ml, 47.7 mmol, 2.0 Äq.) in THF (34 ml) getropft. Das Gemisch wurde für 15 min bei -78 °C und für 30 min bei 0 °C gerührt. Die Reaktion wurde durch Zugabe wässriger 1 M HCl-Lösung auf pH 1 angesäuert und die Phasen getrennt und die wässrige Phase mit Et₂O extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **139** (3.97 g, 12.0 mmol, 36 % über 2 Stufen) wurde destillativ aus dem Rückstand als farbloses Öl erhalten.

Der Siedepunkt und die ¹H-NMR-spektroskopischen Daten stimmen mit den in der Literatur beschriebenen überein.¹³⁰

Sdp. 105 °C, 10 mbar (Lit.: 110-120 °C, 30 mbar).

¹**H-NMR** (400 MHz, CDCl₃) δ: 4.49-4.36 (4H, m, H-3), 3.78 (3H, s, H_{OMe}), 3.20 (1H, dq, *J*= 22.5, 7.7 Hz, H-1), 1.52 (3H, dd, *J*= 18.4, 7.7 Hz, H-2) ppm.

¹³⁰⁾ C. Patois, P. Savignac, E. About-Jaudet, N. Collignon, Synth. Commun. 1991, 21, 2391-2396.

5 Experimenteller Teil

Methyl 2-(bis[2-{t-butyl}phenoxy]phosphoryl)propanoat (161)

2-*t*-Butylphenol **157** (5.91 ml, 38.5 mmol, 2 Äq.) wurde zu einer Lösung von NaH (60 % Dispersion in Mineralöl, 1.70 g, 42.4 mmol, 2.2 Äq.) in THF (370 ml) bei 0 °C getropft. Das Gemisch wurde für 1 h bei RT gerührt und anschließend auf 0 °C gekühlt. Nach Zugabe von Ethylphosphonsäuredichlorid (2.10 ml, 19.3 mmol, 1.0 Äq.) wurde für 18 h bei RT gerührt. Die organische Phase wurde mit H₂O gewaschen und die wässrige Phase mit CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Intermediat **160** (5.62 g, quant.) wurde nach säulenchromatographischer Reinigung (10:1) aus dem Rückstand als leicht gelbliches Öl erhalten.

Zu LiHMDS (1 M Lösung in Hexan, 40.5 ml, 40.5 mmol, 2.0 Äq.) bei -78 °C wurde ein Gemisch des Intermediats **160** (5.62 g, 19.3 mmol, 1.0 Äq.) und Methylchlorformiat (1.28 ml, 20.2 mmol, 1.05 Äq.) in THF (65 ml) über eine Transferkanüle zugetropft. Es wurde zunächst 30 min bei -78 °C und anschließend für 1 h bei 0 °C gerührt. Die Reaktion wurde durch Zugabe wässriger 1 M HCl-Lösung auf pH 1 angesäuert. Die Phasen wurden getrennt und die wässrige Phase wurde mit Et₂O extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **162** (6.34 g, 19.1 mmol, 99 %) wurde nach säulenchromatographischer Reinigung (4:1) aus dem Rückstand als farbloses Öl erhalten.

Für das ¹³C-NMR-Spektrum sind zusätzlich die Kopplungskonstanten der Kohlenstoff-Phosphor Kopplung angegeben.

¹**H-NMR** (400 MHz, CDCl₃) δ: 7.74 (1H, dd, *J*= 8.2, 1.1 Hz, H_{Ar}), 7.65 (1H, dd, *J*= 8.1, 1.2 Hz, H_{Ar}), 7.35 (1H, dd, *J*= 3.4, 1.7 Hz, H_{Ar}), 7.33 (1H, q, *J*= 3.4, 1.7 Hz, H_{Ar}), 7.15-7.04 (4H, m, H_{Ar}), 3.62 (3H, s, H_{OMe}), 3.50 (1H, dq, *J*= 24.2, 7.4 Hz, H-2), 1.70 (3H, dd, *J*= 19.5, 7.4 Hz, H-3), 1.34 (9H, s, H_{t-Bu}), 1.32 (9H, s, H_{t-Bu}) ppm.

¹³**C-NMR** (100 MHz, CDCl₃) δ : 168.9 (q, [d, *J*= 4.6 Hz], C-1), 150.9 (q, [d, *J*= 9.0 Hz], C_{Ar}), 150.7 (q, [d, *J*= 9.0 Hz], C_{Ar}), 139.0 (q, [d, *J*= 4.0 Hz], C_{Ar}), 127.7 (t, [d, *J*= 0.7 Hz], C_{Ar}), 127.5 (t, [d, *J*= 0.6 Hz], C_{Ar}), 127.5 (t, [d, *J*= 0.6 Hz], C_{Ar}), 124.5 (t, C_{Ar}), 119.8 (t, [d, *J*= 3.0 Hz], C_{Ar}), 119.8 (t, [d, *J*= 3.0 Hz], C_{Ar}), 52.8 (p, C_{OMe}), 40.9 (t, [d, *J*= 138.7 Hz], C-2), 34.8 (q, [d, *J*= 0.6 Hz], C_{t-Bu}), 34.8 (q, [d, *J*= 0.6 Hz], C_{t-Bu}), 30.1 (p, C_{t-Bu}), 12.1 (p, [d, *J*= 6.0 Hz], C-3) ppm.

HRMS (ESI): m/z berechnet für C₂₄H₃₃O₅PNa [M + Na]⁺: 455.1963; gefunden 455.1961.

2-(Diethoxyphosphoryl)propansäure (166)

Zu einer Lösung des Ethylesters **165** (2.00 g, 8.39 mmol, 1.0 Äq.) in THF (21 ml) wurde wässrige 1 M NaOH-Lösung gegeben (9.23 ml, 9.23 mmol, 1.1 Äq.) und für 20 h bei RT gerührt. Das Reaktionsgemisch wurde mit 37 % HCl-Lösung auf pH 1 eingestellt und mit NaCl gesättigt. Die Lösung wurde mit EtOAc extrahiert und das Produkt **166** (1.29 g, 6.15 mmol, 73 %) nach Entfernen des Lösungsmittels unter vermindertem Druck erhalten.

Die ¹H-NMR-spektroskopischen Daten stimmen mit den in der Literatur beschriebenen überein.¹³¹

¹**H-NMR** (400 MHz, CDCl₃) δ: 8.71 (1H, br, H_{CO2H}), 4.20 (4H, dq, *J*= 14.8, 7.4 Hz, H_{OEt}), 3.06 (1H, dq, *J*= 23.9, 7.3 Hz, H-1), 1.43 (3H, dd, *J*= 17.9, 7.3 Hz, H-2), 1.34 (6H, t, *J*= 7.4 Hz, H_{OEt}) ppm.

D-Arabinose (**183**) (1.03 g, 6.89 mmol, 1.0 Äq.) wurde in MeOH (24 ml) gelöst und nach Zugabe von Acetylchlorid (0.42 ml, 10 μmol, 0.001 Äq.) auf RT für 3 h gerührt. Die Reaktion wurde durch Zugabe von Pyridin (5 ml) beendet, das Lösungsmittel unter vermindertem Druck entfernt und der Rückstand im Hochvakuum getrocknet.

Der Rückstand wurde anschließend in Pyridin (20 ml) gelöst und auf 0 °C gekühlt. Nach Zugabe von Essigsäureanhydrid (2.56 ml, 27.6 mmol, 4.0 Äq.) wurde für 18 h langsam auf RT erwärmt. Die Reaktion wurde bei 0 °C durch Zugabe von H₂O (25 ml) beendet und die wässrige Phase mit CH_2Cl_2 extrahiert. Die vereinigten organischen Phasen wurden mit H₂O gewaschen, getrocknet (MgSO₄) und filtriert. Nach Entfernen des Lösungsmittels unter vermindertem Druck wurde das Produkt **185** (1.56 g, 5.37 mmol, 78 %) als Öl erhalten.

Die ¹H- und ¹³C-NMR-spektroskopischen Daten stimmen mit den in der Literatur beschriebenen überein.¹³² Die Verbindung **185** wurde laut ¹H-NMR-Spektrum als 2:1 Gemisch der β : α -Anomere erhalten.

¹³¹⁾ D. Menche, J. Hassfeld, J. Li, K. Mayer, S. Rudolph, J. Org. Chem. 2009, 74, 7220-7229.

¹³²⁾ M. Taverna-Porro, L. A. Bouvier, C. A. Pereira, J. M. Montserrat, A. M. Iribarren, *Tetrahedron Lett.* 2008, 49, 2642–2645.

¹**H-NMR** (400 MHz, CDCl₃) δ: 5.34 (1H, dd, *J*= 6.8, 5.1 Hz, H-3α), 5.09 (1H, d, *J*= 4.6 Hz, H-1α), 5.06 (1H, d, *J*= 1.6 Hz, H-2β), 5.05 (1H, dd, *J*= 6.8, 4.6 Hz, H-2α), 4.98 (1H, m, H-4β), 4.92 (1H, s, H-1β), 4.44 (1H, dd, *J*= 13.0, 5.1 Hz, H-5β), 4.42 (dd, *J*= 11.6, 3.9 Hz, H-5α), 4.23 (1H, dd, *J*= 6.5, 1.6 Hz, H-3β), 4.25-4.20 (1H, m, H-5β), 4.17 (1H, dd, *J*= 11.6, 7.4 Hz, H-5α), 4.10 (1H, ddd, *J*= 7.4, 5.1, 3.9 Hz, H-4α), 3.40 (3H, s, H_{OMe}β), 3.37 (3H, s, H_{OMe}α), 2.11 (3H, s, H_{Ac}α), 2.10 (9H, s, H_{Ac}β), 2.09 (6H, s, H_{Ac}α) ppm.

¹³**C-NMR** (100 MHz, CDCl₃) δ: 170.8 (q, C_{Ac}α), 170.8 (q, C_{Ac}β), 170.5 (q, C_{Ac}α), 170.4 (q, C_{Ac}α), 170.3 (q, C_{Ac}β), 169.8 (q, C_{Ac}β), 106.9 (t, C-1β), 101.3 (t, C-1α), 81.3 (C-2β), 80.3 (C-3β), 78.7 (C-4α), 77.2 (C-4β), 76.8 (C-2α), 75.7 (C-3α), 65.5 (s, C-5α), 63.3 (s, C-5β), 55.5 (p, C_{OMe}α), 55.0 (p, C_{OMe}β), 20.8 (p, C_{Ac}α), 20.8 (p, C_{Ac}β), 20.8

Tetra-O-acetyl-D-arabinofuranose (186)

Zu einer auf 0 °C gekühlten Lösung des Methoxyacetals **185** (1.25 g, 3.92 mmol, 1.0 Äq.) in Ac₂O (4.49 ml, 47.5 mmol, 11 Äq.) wurden AcOH (30 ml) und H₂SO₄ (0.60 ml) gegeben. Das Reaktionsgemisch wurde für 3 h bei RT gerührt und anschließend auf 0 °C durch Zugabe von Eis beendet. Die organische Phase wurde mit H₂O, wässriger gesättigter NaHCO₃-Lösung und H₂O gewaschen. Das Produkt **186** (1.25 g, 3.92 mmol, 91 %) wurde nach Entfernen des Lösungsmittels unter vermindertem Druck als farbloses Öl erhalten.

Die ¹H-NMR-spektroskopischen Daten stimmen mit den in der Literatur beschriebenen überein.¹³³ Die Verbindung wurde laut ¹H-NMR-Spektrum als 3:1 Gemisch der β : α -Anomere erhalten.

¹**H-NMR** (400 MHz, CDCl₃) δ: 6.38 (1H, dd, *J*= 4.1 Hz, H-1α), 6.19 (1H, s, H-1β), 5.36-5.35 (2H, m, H-2,3α), 5.21 (1H, d, *J*= 1.7 Hz, H-2β), 5.05 (1H, ddd, *J*= 4.8, 1.7, 0.7 Hz, H-3β), 4.42-4.34 (3H, m, H-5α, H-4,5β), 4.29-4.19 (3H, m, H-4,5α, H-5β), 2.13 (6H, s, H_{Ac}β), 2.12 (3H, s, H_{Ac}β), 2.11 (3H, s, H_{Ac}α), 2.10 (3H, s, H_{Ac}β), 2.10 (3H, s, H_{Ac}β), 2.09 (3H, s, H_{Ac}α), 2.08 (3H, s, H_{Ac}α) ppm.

¹³³⁾ R. Dureau, L. Legentil, R. Deniellou, V. Ferrieres, J. Org. Chem. 2012, 77, 1301-1307.

5 Experimenteller Teil

2,3,5-Tri-O-acetyl-D-arabinofuranosyl-trichloracetimidat (188)

Zu einer auf 0 °C gekühlten Lösung des Tetraacetats **186** (195 mg, 0.61 mmol, 1.0 Äq.) in CH_2CI_2 (6.0 ml) wurde HBr (33 %ige Lösung in AcOH, 0.5 ml) gegeben und für 3 h bei RT gerührt. Das Lösungsmittel wurde unter vermindertem Druck entfernt und das Intermediat durch säulenchromatographische Reinigung (10:1 bis 1:1) des Rückstands gereinigt.

Das Halbacetal **187** wurde in CH_2CI_2 (6.0 ml) gelöst und nach Zugabe von Trichloracetonitril (0.31 ml, 3.06 mmol, 5.0 Äq.) und K_2CO_3 (131 mg, 0.95 mmol, 3.0 Äq.) für 18 h bei RT gerührt. Das Reaktionsgemisch wurde auf Kieselgel aufgezogen und das Produkt **188** (137 mg, 0.33 mmol, 53 %) mittels säulenchromatographischer Reinigung (4:1 bis 1:1) als farblose Flüssigkeit erhalten und direkt in der Glykosylierung eingesetzt.

5.2.2 NAGAO/Epoxid Route

Angelicaaldehyd (22)

Zu einer Suspension von Lithiumaluminiumhydrid (3.80 g, 100 mmol, 2.5 Äq.) in Et₂O (100 ml) bei 0 °C wurde in Et₂O (80 ml) gelöster Angelicasäuremethylester **20** (4.80 ml, 40.0 mmol, 1.0 Äq.) zugetropft. Nach 1.5 h bei RT wurde die Reaktion durch Zugabe von H₂O (12 ml), wässriger 12 % NaOH-Lösung (12 ml), gefolgt von H₂O (36 ml) beendet. Der entstandene farblose Feststoff wurde durch Filtration über Kieselgur abgetrennt. Die erhaltenen Phasen wurden getrennt, die organische Phase getrocknet (Na₂SO₄), filtriert und mit MnO₂ (52.0 g, 600 mmol, 15 Äq.) versetzt. Diese Lösung wurde für 18 h gerührt. Der Feststoff wurde durch Filtration über Kieselgur entfernt und das Produkt **22** (1.36 g, 16.2 mmol, 41 %) wurde aus der erhaltenen Lösung durch fraktionierte Destillation als farbloses Öl erhalten.

Die ¹H-NMR-spektroskopischen Daten stimmen mit den in der Literatur beschriebenen überein.¹³⁴

¹³⁴⁾ U. Vogeli, W. von Philipsborn, Org. Magn. Resonance 1975, 7, 617 - 627.

¹**H-NMR** (200 MHz, CDCl₃) δ: 10.19 (1H, s, H-1), 6.61 (1H, qq, *J*= 7.6, 1.4 Hz, H-2), 2.11 (3H, dq, *J*= 7.6, 1.5 Hz, H-3), 1.76 (3H, dq, *J*= 1.5, 1.4 Hz, H-4) ppm.

(*R*,*Z*)-3-([*t*-Butyldimethylsilyl]oxy)-1-([*S*]-4-isopropyl-2-thioxothiazolidin-3-yl)-4-methylhex-4-en-1on (26)

Das Auxiliar **25** (4.94 g, 24.3 mmol, 1.7 Äq.) wurde in CH_2CI_2 (65 ml) gelöst und auf -40 °C gekühlt. TiCl₄ (2.82 ml, 24.7 mmol, 1.8 Äq.) wurde zugetropft, worauf sich die Lösung von gelb nach rot verfärbte. Nach fünf Minuten wurde DIPEA (4.37 ml, 24.7 mmol, 1.8 Äq.) zugegeben und die nun tiefrote Lösung für 2 h bei -40 °C gerührt. Anschließend wurde die Lösung auf -78 °C gekühlt und über 30 min Angelicaaldehyd (**22**) (1.20 g, 14.3 mmol, 1.0 Äq.) zugetropft. Nach weiteren 30 min wurde die Reaktion durch Zugabe einer 1:2-Mischung von wässriger gesättigter NH₄Cl und pH 7-Pufferlösung (150 ml) beendet. Das Gemisch wurde für 1 h bei RT gerührt und anschließend wurden die Phasen getrennt. Die wässrige Phase wurde mit CH_2CI_2 extrahiert, die vereinigten organischen Phasen getrocknet (Na₂SO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt.

Das Intermediat wurde in 120 ml trockenem CH_2CI_2 gelöst, 2,6-Lutidin (6.64 ml, 57.2 mmol, 4.0 Äq.) zugegeben und auf -78 °C gekühlt. Nach tropfenweiser Zugabe von TBSOTf (9.83 ml, 42.9 mmol, 3.0 Äq.) wurde die Lösung für 18 h bei RT gerührt. Die Reaktion wurde durch Zugabe wässriger gesättigter NH_4CI -Lösung beendet, die Phasen getrennt und die wässrige Phase zwei Mal mit CH_2CI_2 extrahiert. Die vereinigten organischen Phasen wurden getrocknet (MgSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Rohgemisch wurde durch säulenchromatographische Reinigung (30:1 zu 0:1) gereinigt.

Das Produkt **27** wurde als gelbes Öl (250 mg, 0.62 mmol, 70 %) in einem Isomerenverhältnis (Z)/(E)= 3:1 erhalten. Der Nachweis der Stereochemie erfolgte durch Synthese des (*E*)-konfigurierten Produkts und Vergleich der ¹H-NMR-Spektren.

¹**H-NMR** (400 MHz, CDCl₃) δ: 5.23 (1H, m, H-5), 5.20 (1H, dd, *J*= 9.1, 3.5 Hz, H-3), 5.05-5.01 (1H, m, H-10), 3.97 (1H, dd, *J*= 16.1, 9.1 Hz, H-2), 3.46 (1H, dd, *J*= 11.4, 7.9 Hz, H-9), 3.02 (1H, dd, *J*= 11.4, 1.0

Hz, H-9), 2.85 (1H, dd, *J* = 16.1, 3.5 Hz, H-2), 2.40 (1H, dsept, *J*= 6.1, 6.7 Hz, H-11), 1.67 (3H, dq, *J*= 1.5, 1.4 Hz, H-7), 1.65 (3H, dq, *J*= 7.0, 1.4 Hz, H-6), 1.06 (3H, d, *J*= 6.7 Hz, H-12), 0.98 (3H, d, *J*= 6.7 Hz, H-12), 0.84 (9H, s, H_{TBS}), 0.05 (3H, q, H_{TBS}), 0.01 (3H, q, H_{TBS}) ppm.

¹³C-NMR (100 MHz, CDCl₃) δ: 203.3 (q, C-8), 171.8 (q, C-1), 137.6 (q, C-4), 120.8 (t, C-5), 72.2 (t, C-10), 67.1 (t, C-3), 44.4 (s, C-2), 31.2 (t, C-11), 31.2 (s, C-9), 26.1 (p, C_{TBS}), 19.5 (p, C-12), 18.4 (q, C_{TBS}), 18.3 (p, C-7), 18.2 (p, C-12), 13.4 (p, C-6), -4.6 (p, C_{TBS}), -4.7 (p, C_{TBS}) ppm.

$$[\alpha]_D^{33} = +252^\circ (c= 1.06, CH_2Cl_2).$$

HRMS (ESI): m/z berechnet für C₁₉H₃₅NO₂S₂SiNa [M + Na]⁺: 424.1776; gefunden 424.1776.

(*R,Z*)-1-([*S*]-4-[*t*-Butyl]-2-thioxothiazolidin-3-yl)-3-([*t*-butyldimethylsilyl]oxy)-4-methylhex-4-en-1-on (29)

Das Auxiliar **28** (5.19 g, 23.9 mmol, 1.7 Äq.) wurde in CH_2CI_2 (65 ml) gelöst und auf -40 °C gekühlt. TiCl₄ (2.77 ml, 25.3 mmol, 1.8 Äq.) wurde zugetropft, worauf sich die Lösung von gelb nach rot verfärbte. Nach fünf Minuten wurde DIPEA (4.31 ml, 25.3 mmol, 1.8 Äq.) zugetropft und die nun tiefrote Lösung für zwei Stunden auf -40 °C gerührt. Anschließend wurde das Gemisch auf -95 °C gekühlt. In CH_2CI_2 (14 ml) gelöster Angelicaaldehyd **22** (1.36 ml, 14.06 mmol, 1.0 Äq.) wurde auf -95 °C gekühlt und mittels einer Transferkanüle über 15 min zu der Reaktionslösung getropft. Das Gemisch wurde 15 min bei -95 °C gerührt. Nach weiteren 60 min bei -78 °C wurde die Reaktion durch Zugabe wässriger gesättigter NH_4CI -Lösung (50 ml) und einer pH 7-Phospohatpuffer-Lösung (50 ml) beendet. Das Gemisch wurde für eine Stunde bei RT gerührt und anschließend die Phasen getrennt. Die wässrige Phase wurde mit CH_2CI_2 extrahiert, die vereinigten organischen Phasen mit Na_2SO_4 getrocknet, filtriert und das Lösungsmittel unter vermindertem Druck entfernt.

Das so erhaltene Intermediat wurde in CH_2Cl_2 (150 ml) gelöst, 2,6-Lutidin (6.54 ml, 56.2 mmol, 4.0 Äq.) zugegeben und auf -78 °C gekühlt. Nach tropfenweiser Zugabe von TBSOTf (9.67 ml, 42.2 mmol, 3.0 Äq.) wurde die Lösung für 18 h bei RT gerührt. Die Reaktion wurde durch Zugabe wässriger gesättigter NH₄Cl-Lösung beendet, die Phasen getrennt und die wässrige Phase zwei Mal mit CH_2Cl_2 extrahiert. Die vereinigten organischen Phasen wurden mit MgSO₄ getrocknet, filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Rohgemisch wurde durch säulenchromatographische Reinigung (40:1) gereinigt. Das Produkt **29** wurde als gelbes Öl (4.58 g, 11.0 mmol, 78 %) in einem Diastereomerenverhältnis von 10:1 erhalten.

¹**H-NMR** (400 MHz, CDCl₃) δ: 5.24-5.17 (3H, m, H-3,5,10), 4.06 (1H, dd, *J*= 16.2, 8.7 Hz, H-2), 3.47 (1H, dd, *J*= 11.6, 8.2 Hz, H-9), 3.10 (1H, dd, *J*= 11.6, 0.7 Hz, H-9), 2.85 (1H, dd, *J*= 16.2, 3.9 Hz, H-2), 1.67 (3H, dq, *J*= 1.4, 1.4 Hz, H-7), 1.64 (3H, dq, *J*= 6.8, 1.4 Hz, H-6), 1.04 (9H, s, H-12), 0.84 (9H, s, H_{TBS}), 0.05 (3H, s, H_{TBS}), 0.01 (3H, s, H_{TBS}) ppm.

¹³**C-NMR** (100 MHz, CDCl₃) δ: 205.4 (q, C-8), 170.9 (q, C-1), 137.4 (q, C-4), 120.6 (t, C-5), 72.5 (t, C-10), 67.0 (t, C-3), 43.4 (s, C-2), 38.1 (q, C-11), 30.9 (t, C-9), 27.1 (p, C-12), 25.9 (p, C_{TBS}), 18.2 (q, C_{TBS}), 18.1 (p, C-7), 13.2 (p, C-6), -4.8 (p, C_{TBS}), -4.9 (p, C_{TBS}) ppm.

 $[\alpha]_D^{33} = +319^\circ (c= 1.01, CH_2Cl_2).$

HRMS (ESI): m/z berechnet für C₂₀H₃₇NO₂S₂SiNa [M + Na]⁺: 438.1993; gefunden 438.1996.

5.2.3 Lactat/Epoxid Route

Methyl (R)-2-([4-methoxybenzyl]oxy)propanoat (40)

Methyllactat **38** (16.9 ml, 177 mmol, 1.0 Äq.) wurde in CH₂Cl₂ (800 ml) gelöst und nach Zugabe von 4-Methoxybenzyltrichloracetimidat **39** (59.6 g, 212 mmol, 1.2 Äq.) und CSA (4.10 g, 17.7 mmol, 0.1 Äq.) für 18 h gerührt. Die Reaktion wurde durch Zugabe wässriger gesättigter NaHCO₃-Lösung beendet und die wässrige Phase mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen getrocknet (Na₂SO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **40** (37.7 g, 168 mmol, 95 %) wurde durch säulenchromatographische Reinigung (6:1) des Rückstands als farbloses Öl erhalten.

Die ¹H-NMR-spektroskopischen Daten und der Drehwert stimmen mit den in der Literatur beschriebenen überein.¹³⁵

¹**H-NMR** (400 MHz, CDCl₃) δ: 7.30-7.27 (2H, m, H_{Ar}), 6.89-6.87 (2H, m, H_{Ar}), 4.64 (1H, d, *J*= 11.3 Hz, H_{Bn}), 4.39 (1H, d, *J*= 11.3 Hz, H_{Bn}), 4.05 (1H, q, *J*= 6.8 Hz, H-1), 3.80 (3H, s, H_{ArOMe}), 3.75 (3H, s, H_{COOMe}), 1.41 (3H, d, *J*= 6.8 Hz, H-2) ppm.

 $[\alpha]_{D}^{25} = +77.5^{\circ} (c= 1.0, CHCl_{3}), (Lit.: +74.0 [c= 1.0, CHCl_{3}]).$

¹³⁵⁾ T. Hirose, Y. Noguchi, Y. Furuya, A. Ishiyama, M. Iwatsuki, K. Otoguro, S. Omura, T. Sunazuka, *Chem. Eur. J.* 2013, 19, 10741-10750.

t-Butyl([{2R,3R}-2-{(4-methoxybenzyl)oxy}hex-5-en-3-yl]oxy)dimethylsilan (43)

Zu einer Lösung des Methylesters **40** (8.71 g, 38.9 mmol, 1.0 Äq.) in CH_2Cl_2 (390 ml) bei -78 °C wurde DIBAL-H, (1 M Lösung in PhMe, 42.8 ml, 42.8 mmol, 1.1 Äq.) über 15 min zugetropft. Die Reaktion wurde für 1 h bei -78 °C gerührt, dann durch Zugabe wässriger gesättigter ROCHELLE-Salz-Lösung beendet und anschließend für 3 h bei RT gerührt. Die wässrige Phase wurde mit CH_2Cl_2 extrahiert, die vereinigten organischen Phasen getrocknet (Na₂SO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt.

Der Aldehyd **41** wurde zu einer auf -78 °C gekühlten Lösung von SnCl₄ (4.53 ml, 38.9 mmol, 1.0 Äq.) in CH_2Cl_2 (180 ml) getropft und die rote Lösung für 15 min gerührt. Allyltrimethylsilan (6.78 ml, 42.8 mmol, 1.1 Äq.) wurde zu dem Gemisch gegeben und die Lösung für 100 min bei -78 °C gerührt. Die Reaktion wurde durch Zugabe von H₂O (90 ml) beendet. Die wässrige Phase wurde mit CH_2Cl_2 extrahiert, die vereinigten organischen Phasen getrocknet (Na₂SO₄), filtriert und das Lösungsmittel unter vermindertem Druck auf ca. 100 ml verringert.

Die so erhaltene Lösung des Alkohols **42** in CH₂Cl₂ wurde auf -78 °C gekühlt und es wurden nacheinander 2,6-Lutidin (18.1 ml, 155 mmol, 4.0 Äq.) und TBSOTf (14.1 ml, 77.7 mmol, 2.0 Äq.) zugegeben. Das Reaktionsgemisch wurde bei RT für 40 min gerührt und anschließend durch Zugabe wässriger gesättigter NH₄Cl-Lösung beendet. Die wässrige Phase wurde mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen getrocknet (Na₂SO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **43** (9.39 g, 26.8 mmol, 69 % über 3 Stufen) wurde durch säulenchromatographische Reinigung (10:1) des Rückstands als farblöses Öl in einem Diastereomerenverhältnis von 7:1 erhalten.

Die ¹H-NMR-spektroskopischen Daten sowie der Drehwert stimmen mit den in der Literatur beschriebenen überein.⁴¹

¹**H-NMR** (400 MHz, CDCl₃) δ: 7.28-7.24 (2H, m, H_{Ar}), 6.89-6.85 (2H, m, H_{Ar}), 5.88-5.77 (1H, ddt, *J*= 17.1, 10.3, 7.2 Hz, H-2), 5.07-5.00 (2H, m, H-1), 4.52 (1H, d, *J*= 11.6, H_{Bn}), 4.44 (1H, d, *J*= 11.6 Hz, H_{Bn}), 3.80 (3H, s, H_{ArOMe}), 3.72 (1H, ddd, *J*= 8.0, 4.7, 3.6 Hz, H-4), 3.47 (1H, dq, *J*= 4.7, 6.4 Hz, H-5), 2.41-2.33 (1H, m, H-3), 2.15-2.08 (1H, m, H-3), 1.12 (3H, d, *J*= 6.4 Hz, H-6), 0.87 (9H, s, H_{TBS}), 0.01 (3H, s, H_{TBS}), -0.02 (3H, s, H_{TBS}) ppm.

 $[\alpha]_{D}^{24} = +0.42^{\circ} (c = 2.16, CHCl_{3}), (Lit.: +0.40^{\circ} [c = 2.4, CHCl_{3}]).$

Ethyl-(5R,6R,E)-5-([t-butyldimethylsilyl]oxy)-6-([4-methoxybenzyl]oxy)-2-methylhept-2-enoat (46)

In eine auf -78 °C gekühlte Lösung des Olefins **43** (9.39 g, 26.8 mmol, 1.0 Äq.) in einem 5:1-Gemisch aus CH₂Cl₂/MeOH (54 ml) wurde Ozon geleitet. Nachdem sich die Lösung blaufärbte, wurde restliches Ozon durch Durchleiten von Sauerstoff entfernt und PPh₃ (21.1 g, 80.5 mmol, 3.0 Äq.) zugegeben. Die Lösung wurde auf RT erwärmt und für eine Stunde gerührt, anschließend wurde das Lösungsmittel unter vermindertem Druck entfernt.

Der Rückstand wurde in CH₂Cl₂ (40 ml) gelöst und nach Zugabe des stabilisierten WITTIG-Ylids **33** (5.15 g, 14.2 mmol, 3.0 Äq.) für 18 h bei 40 °C gerührt. Das Reaktionsgemisch wurde auf Kieselgel aufgezogen und das Produkt **46** (10.2 g, 23.3 mmol, 87 %) mittels säulenchromatographischer Reinigung (20:1) als farblose Flüssigkeit erhalten.

¹**H-NMR** (400 MHz, CDCl₃) δ: 7.26-7.22 (2H, m, H_{Ar}), 6.89-6.85 (2H, m, H_{Ar}), 6.85-6.81 (1H, m, H-3), 4.53 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.43 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.18 (1H, q, *J*= 7.2 Hz, H_{Et}), 3.84-3.81 (1H, m, H-5), 3.80 (3H, s, H_{ArOMe}), 3.50 (1H, dq, *J*= 4.8, 6.5 Hz, H-6), 2.46 (1H, m, H-4), 2.31-2.23 (1H, m, H-4), 1-84 (3H, d, *J*= 1.2 Hz, H-8), 1.28 (3H, t, *J*= 7.2 Hz, H_{Et}), 1.14 (3H, d, *J*= 6.5 Hz), 0.85 (9H, s, H_{TBS}), 0.00 (3H, s, H_{TBS}), -0.03 (3H, s, H_{TBS}) ppm.

¹³**C-NMR** (100 MHz, CDCl₃) δ: 168.2 (q, C-1), 159.3 (q, C_{Ar}), 140.1 (t, C-3), 131.0 (q, C_{Ar}), 129.2 (t, C_{Ar}), 128.8 (q, C-2), 113,9 (t, C_{Ar}), 77.0 (t, C-6), 73.0 (t, C-5), 70.8 (s, C_{Bn}), 60.4 (s, C_{Et}), 55.4 (p, C_{ArOMe}), 30.8 (s, C-4), 25.9 (p, C_{TBS}), 18.1 (q, C_{TBS}), 14.4 (p, C_{Et}), 13.8 (p, C-7), 12.7 (p, C-8), -4.5 (p, C_{TBS}), -4.6 (p, C_{TBS}) ppm.

 $[\alpha]_{D}^{26} = +2.70^{\circ} (c= 1.11, CH_{2}CI_{2}).$

HRMS (ESI): m/z berechnet für C₂₄H₄₀O₅SiNa [M + Na]⁺: 459.2543; gefunden 459.2546.

(5R,6R,E)-5-([t-butyldimethylsilyl]oxy)-6-([4-methoxybenzyl]oxy)-2-methylhept-2-enal (48)

Der Ester **46** (9.49 g, 21.7 mmol, 1.0 Äq.) wurde in Et₂O (200 ml) bei 0 °C gelöst. Nach Zugabe von Lithiumaluminiumhydrid (2.48 g, 65.1 mmol, 3.0 Äq.) wurde die Suspension für 20 min bei 0 °C gerührt. Die Reaktion wurde durch vorsichtige Zugabe von H₂O (2.50 ml), wässriger 15 % NaOH-Lösung (2.50 ml) und weiterem H₂O (7.50 ml) beendet. Nach 15 min wurde MgSO₄ zugegeben und für weitere 15 min gerührt. Das Gemisch wurde filtriert und der Filterkuchen mit CH₂Cl₂ gewaschen. Das Lösungsmittel wurde unter vermindertem Druck entfernt. Der Alkohol (8.34 g, 21.1 mmol, 97 %) wurde als farbloses Öl erhalten und ohne weitere Aufarbeitung in der nächsten Reaktion eingesetzt. Der Alkohol (8.07 g, 20.4 mmol, 1.0 Äq.) wurde in CH₂Cl₂ (50 ml) gelöst und nach Zugabe von MnO₂ (53.3 g, 613 mmol, 30 Äq.) für 4.5 h bei RT gerührt. Die Reaktion wurde über Kieselgur filtriert und

(53.3 g, 613 mmol, 30 Äq.) für 4.5 h bei RT gerührt. Die Reaktion wurde über Kieselgur filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Der so erhaltene Aldehyd **47** wurde direkt in der nachfolgenden Reaktion eingesetzt.

Zu einer Lösung von (*S*)-4-Benzyl-3-(2-[benzyloxy]acetyl)oxazolidin-2-on **50** (8.36 g, 25.7 mmol, 1.2 Äq.) und NEt₃ (4.77 ml, 34.3 mmol, 1.6 Äq.) in PhMe (64 ml) auf -78 °C wurde Bu₂BOTf (1 M Lösung in CH₂Cl₂, 30.0 ml, 30.0 mmol, 1.4 Äq.) getropft. Das Gemisch wurde für 2 h bei 0 °C gerührt. Die Lösung wurde auf -78 °C gekühlt und in PhMe (15 ml) gelöster Aldehyd **47** (7.64 g, 19.4 mmol, 1.0 Äq.) zu getropft. Das Reaktionsgemisch wurde nach 16 h bei -78 °C auf 0 °C erwärmt und für weitere 30 min gerührt. Durch Zugabe von pH 7-Phosphatpuffer-Lösung (20 ml) wurde die Reaktion beendet. Ein Gemisch von 30 % H₂O₂-Lösung (20 ml) und MeOH (60 ml) wurde über 30 min zugetropft und anschließend für 1 h bei RT gerührt. Die wässrige Phase wurde fünf Mal mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen getrocknet (Na₂SO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **48** (9.62 g, 13.4 mmol, 66 % über 2 Stufen) wurde mittels säulenchromatographischer Reinigung (4:1) als 1.5:1 Gemisch mit (*S*)-4-Benzyl-3-[2-(benzyl-oxy)acetyl]oxazolidin-2-on **50** aus dem Rückstand erhalten. Das Produktverhältnis wurde ¹H-NMR-spektroskopisch bestimmt.

Da das Produkt nicht rein erhalten werden konnte, wurde auf eine Vollcharakterisierung verzichtet.

HRMS (ESI): m/z berechnet für C₄₁H₅₅NO₈SiNa [M + Na]⁺: 740.3589; gefunden 740.3467.

(*S*)-4-Benzyl-3-([2*S*,3*R*,7*R*,8*R*,*E*]-2-[benzyloxy]-7-[{*t*-butyldimethylsilyl}oxy]-3-[{*t*-butyldiphenylsilyl}oxy]-8-[{4-methoxybenzyl}oxy]-4-methylnon-4-enoyl)oxazolidin-2-on (51)

Der Alkohol **48** (309 mg, 0.43 mmol, 1.0 Äq.) wurde in DMF (4 ml) gelöst und nach sequentieller Zugabe von DIPEA (0.43 ml, 2.55 mmol, 6.0 Äq.), SEMCI (0.23 ml, 1.29 mmol, 3.0 Äq.) und DMAP (katalytisch) wurde die Mischung über 19 h bei 40 °C gerührt. Durch Zugabe von H₂O wurde die Reaktion beendet und die wässrige Phase mit CH_2Cl_2 extrahiert, die vereinigten organischen Phasen getrocknet (Na₂SO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **51** (302 mg, 0.36 mmol, 83 %) wurde mittels säulenchromatographischer Reinigung (8:1) aus dem Rückstand in einem Diastereomerenverhältnis > 10:1 erhalten.

¹**H-NMR** (400 MHz, CDCl₃) δ : 7.36-7.17 (12H, m, H_{Ar}), 6.87-6.83 (2H, m, H_{Ar}), 5.63 (1H, t, *J*= 6.9 Hz, H-5), 5.36 (1H, d, *J*= 4.8 Hz, H-2), 4.71 (1H, d, *J*= 12.2 Hz, H_{Bn}), 4.65 (1H, d, *J*= 6.8, H_{SEM}), 4.59 (1H, d, *J*= 12.2 Hz, H_{Bn}), 4.51 (1H, d, *J* = 6.8 Hz, H_{SEM}), 4.49 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.49-4.46 (1H, m, H-13), 4.42 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.39 (1H, d, *J*= 4.8 Hz, H-3), 4.15-4.08 (2H, m, H-12), 3.79 (3H, s, H_{ArOMe}), 3.74-3.66 (2H, m, H-7, H_{SEM}), 3.50-3.42 (2H, m, H-8, H_{SEM}), 3.21 (1H, dd, *J*= 13.4, 3.1 Hz, H_{Bn}), 2.66 (1H, dd, *J*= 13.4, 9.7 Hz, H_{Bn}), 2.44-2.38 (1H, m, H-6), 2.11-2.04 (1H, m, H-6), 1.60 (3H, s, H-10), 1.09 (3H, d, *J*= 6.2 Hz, H-9), 0.93-0.77 (2H, m, H_{SEM}), 0.86 (9H, s, H_{TBS}), 0.03 (3H, s, H_{TBS}), -0.01 (3H, s, H_{TBS}), -0.02 (9H, s, H_{SEM}) ppm.

¹³**C-NMR** (100 MHz, CDCl₃) δ : 170.5 (q, C-1), 159.2 (q, C_{Ar}), 153.2 (q, C-11), 137.7 (q, C_{Ar}), 135.3 (q, C_{Ar}), 132.1 (q, C-4), 131.2 (q, C_{Ar}), 129.6 (t, C_{Ar}), 129.2 (t, C_{Ar}), 129.1 (t, C_{Ar}), 128.4 (t, C_{Ar}), 128.4 (t, C_{Ar}), 128.0 (t, C_{Ar}), 127.5 (t, C_{Ar}), 127.0 (t, C-5), 113,8 (t, C_{Ar}), 92.9 (s, C_{SEM}), 80.9 (t, C-3), 79.2 (t, C-2), 76.9 (t, C-8), 73.9 (t, C-7), 73.6 (s, C_{Bn}), 70.8 (s, C_{Bn}), 66.7 (s, C_{Xn}), 66.6 (s, C_{SEM}), 56.0 (t, C_{Xn}), 55.4 (p, C_{ArOMe}), 37.7 (s, C_{Xn}), 30.4 (s, C-6), 26.0 (p, C_{TBS}), 18.2 (s, C_{SEM}), 18.2 (q, C_{TBS}) 14.3 (p, C-9), 13.5 (p, C-10), -1.3 (p, C_{SEM}), -4.3 (p, C_{TBS}), -4.4 (p, C_{TBS}) ppm.

 $[\alpha]_{D}^{22} = -0.63^{\circ} (c = 1.11, CH_2CI_2).$

HRMS (ESI): m/z berechnet für C₄₇H₆₉NO₉Si₂Na [M + Na]⁺: 870.4403; gefunden 870.4404.

(Z)-3-Brom-2-methylprop-2-en-1-ol (65)

Zu einer Lösung von frisch destilliertem Propargylalkohol 62 (2.00 g, 35.7 mmol, 1.0 Äq.) und Cul (0.68 g, 3.57 mmol, 0.1 Äq.) in THF (35 ml) bei -10 °C wurde MeMgBr (3 м Lösung in Et₂O, 26 ml, 80.0 mmol, 2.2 Äq.) getropft. Das Gemisch wurde 18 h bei RT gerührt, anschließend auf -78 °C gekühlt und nach Zugabe von B(OMe)₃ (4.85 ml, 43.0 mmol, 1.2 Äq.) für 30 min bei RT gerührt. Die Reaktion wurde durch Zugabe wässriger 2 M HCl-Lösung (50 ml) beendet, die wässrige Phase mit Et₂O extrahiert und ungefähr die Hälfte des organischen Lösungsmittels unter vermindertem Druck entfernt. Die organische Phase wurde nun vier Mal mit wässriger 8 M NaOH-Lösung (13 ml) gewaschen, die vereinigten wässrigen Phasen wurden mit Et₂O extrahiert und die vereinigten wässrigen Phasen mit wässriger 6 M HCl-Lösung angesäuert. Die wässrige Phase wurde mit Et₂O extrahiert, die vereinigten organischen Phasen getrocknet (NaSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Der Rückstand wurde in MeOH (41 ml) gelöst und nach Zugabe von CuBr₂ (14.0 g, 63 mmol, 3.0 Äq.) in H₂O (40 ml) für 22 h bei 110 °C gerührt. Nach Zugabe wässriger gesättigter NaCl-Lösung wurde die wässrige Phase sechs Mal mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen getrocknet (Na₂SO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt 65 (1.04 g, 6.89 mmol, 19 %) wurde mittels säulenchromatographischer Reinigung (4:1 bis 2:1) aus dem Rückstand erhalten.

Die ¹H-NMR-spektroskopischen Daten stimmen mit den in der Literatur beschriebenen überein.⁵⁶

¹**H-NMR** (200 MHz, CDCl₃) δ: 5.97 (1H, tq, *J*= 0.8 Hz, 1.6 Hz, H-1), 4.29 (2H, s, H-3), 1.89 (3H, d, *J*= 1.6 Hz, H-2) ppm.

(Z)-3-Brom-2-methylacrylsäure (66)

Zu einer Lösung des Alkohols **65** (530 mg, 3.50 mmol, 1.0 Äq.) in CH_2Cl_2 (35 ml) wurde MnO_2 (6.10 g, 70.2 mmol, 20 Äq.) gegeben und für 27 h bei RT gerührt. Die Reaktionslösung wurde über Kieselgur filtriert und anschließend mit CH_2Cl_2 gewaschen. Das Lösungsmittel wurde unter vermindertem Druck entfernt und der Rückstand in MeCN (4 ml) gelöst. Die Lösung wurde auf 0 °C gekühlt und nach Zugabe von NaH₂PO₄·H₂O (145 mg, 1.10 mml, 0.3 Äq.) in H₂O (3 ml), 30% H₂O₂-Lösung (5 ml) und 25% NaClO₂-Lösung (1.8 ml, 5.0 ml, 1.4 Äq.) für 10 min gerührt. Die wässrige Phase wurde mit Et₂O extrahiert, die wässrige Phase mit 37 % HCl-Lösung angesäuert und dann mit CH_2Cl_2 extrahiert. Die vereinigten organischen Phasen wurden getrocknet (Na₂SO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **66** (348 mg, 2.11 mmol, 60 %) wurde mittels säulenchromatographischer Reinigung (1:1 bis 0:1) aus dem Rückstand ein einem Diastereomerenverhältnis (*E*)/(*Z*) von 1:6 erhalten.

Die ¹H-spektroskopischen Daten stimmen mit den in der Literatur beschriebenen überein.¹³⁶

¹**H-NMR** (400 MHz, CDCl₃) δ: 6.71 (1H, q, *J*= 1.6, H-1), 2.03 (3H, d, *J*= 1.6 Hz, H-2) ppm.

(*Z*)-2-Methylhex-2-en-1,5-diol (69)

Zu einer Lösung von Propargylalkohol **62** (206 mg, 3.68 mmol, 1.0 Äq.) und Cul (70.3 mg, 0.37 mmol, 0.1 Äq.) in THF (4 ml) wurde bei -20 °C MeMgBr (3 M Lösung in Et₂O, 2.70 ml, 8.09 mmol, 2.2 Äq.) getropft und anschließend für 30 min bei -10 °C gerührt. Das Gemisch wurde auf -78 °C gekühlt und eine Lösung von Propylenoxid (0.26 ml, 3.70 mmol, 1.0 Äq.) in THF (2 ml) zugetropft. Das Reaktionsgemisch wurde für 1.5 h bei -78 °C und dann 30 min bei -40 °C gerührt. Die Reaktion wurde durch Zugabe wässriger gesättigter NH₄Cl- sowie NaCl-Lösung beendet. Die wässrige Phase wurde mit Et₂O extrahiert, die vereinigten organischen Phasen getrocknet (MgSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **69** (104 mg, 0.80 mmol, 22 %) wurde durch säulenchromatographische Reinigung (1:1 bis 0:1) aus dem Rückstand als farbloses Öl erhalten.

¹³⁶⁾ C. Rappe, K. Andersson, Acta Chem. Scand. 1967, 21, 1741-1749.

¹**H-NMR** (400 MHz, CDCl₃) δ: 5.37 (1H, t, *J*= 8.0 Hz, H-3), 4.15 (1H, d, *J*= 11.5 Hz, H-1), 3.99 (1H, d, *J*= 11.5 Hz, H-1), 3.85-3.78 (1H, m, H-5), 2.50-2.16 (4H, m, H-4, H_{OH}, H_{OH}), 1.84 (3H, s, H-7), 1.22 (3H, d, *J*= 6.2 Hz, H-6) ppm.

¹³**C-NMR** (100 MHz, CDCl₃) δ: 138.6 (q, C-2), 124.3 (t, C-3), 67.2 (t, C-5), 61.3 (s, C-1), 37.2 (s, C-4), 23.3 (p, C-6), 22.5 (p, C-7) ppm.

HRMS (ESI): m/z berechnet für C₇H14NO₂Na [M + Na]⁺: 153.0891; gefunden 153.0892.

3,6-Dimethyl-5,6-dihydro-2H-pyran-2-on (70)

Zu einer Lösung von (*Z*)-2-Methylhex-2-en-1,5-diol **69** (39.0 mg, 0.30 mmol, 1.0 Äq.) in CH_2Cl_2 (3 ml) wurde MnO_2 (522 mg, 6.00 mmol, 20 Äq.) gegeben und das Gemisch bei RT für 18 h gerührt. Die Reaktionslösung wurde über Kieselgur filtriert und anschließend mit CH_2Cl_2 gewaschen. Das Lösungsmittel wurde unter vermindertem Druck entfernt und das Produkt **70** (31.0 mg, 0.25 mmol, 82 %) als farbloses Öl erhalten.

Die ¹H-spektroskopischen Daten stimmen mit den in der Literatur beschriebenen überein.¹³⁷

¹**H-NMR** (400 MHz, CDCl₃) δ: 6.55-6.53 (1H, m, H-3), 4.50 (1H, ddq, *J*= 12.7, 6.2, 5.2 Hz, H-5), 2.29-2.24 (2H, m, H-4), 1.88 (3H, q, *J*= 1.8 Hz, H-7), 1.38 (3H, d, *J*= 6.2 Hz, H-6) ppm.

¹³**C-NMR** (100 MHz, CDCl₃) δ: 166.2 (q, C-1), 139.0 (q, C-2), 128.3 (t, C-3), 74.5 (t, C-5), 31.5 (s, C-4), 20.8 (p, C-6), 17.1 (p, C-7) ppm.

¹³⁷⁾ R. G. Hofstraat, J. Lange, H. W. Scheeren, R. J. F. Nivard, J. Chem. Soc., Perkin Trans. 1 1988, 2315-2322.

5.2.4 Lactat/RCM Route

(2*S*,3*R*,7*R*,8*R*,*E*)-2-(Benzyloxy)-7-([*t*-butyldimethylsilyl]oxy)-*N*-methoxy-8-([4-methoxybenzyl]oxy)-*N*,4-dimethyl-3-([2-{trimethylsilyl}ethoxy]methoxy)non-4-enamid (76)

Route A

Zu einer Suspension von *N,O*-Dimethylhydroxylamin·HCl (59.5 mg, 0.61 mmol, 10 Äq.) in THF (2 ml) bei -30 °C wurde DIBAL-H (1 M Lösung in Cyclohexan, 0.62 ml, 0.62 mmol, 10 Äq.) gegeben. Es wurde bis zur Bildung einer klaren Lösung für 1 h bei RT gerührt. Anschließend wurde auf -78 °C gekühlt und das Imid **51** (52.0 mg, 61 μ mol, 1.0 Äq.) in THF (0.5 ml) zugetropft. Das Reaktionsgemisch wurde für 2 h bei 0 °C, für 2 d bei RT und dann 1 d bei 40 °C gerührt. Die Lösung wurde in ein 1:1 Gemisch bestehend aus CH₂Cl₂ und wässriger gesättigter ROCHELLE-Salz-Lösung gegeben und für 18 h gerührt. Die wässrige Phase wurde mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen wurden getrocknet (MgSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **76** (8.0 mg, 11 μ mol, 19 %) wurde durch säulenchromatographische Reinigung (10:1 bis 4:1) aus dem Rückstand als farbloses Öl erhalten.

Die analytischen Daten sind bei Route B zu finden.

Route B

Zu einer Lösung des Imid **51** (2.77 g, 3.26 mmol, 1.0 Äq.) in einer 3:1 Mischung von THF/H₂O (16 ml) wurde bei 0 °C LiOH·H₂O (0.27 g, 6.53 mmol, 2.0 Äq.), gefolgt von einer 30 % H₂O₂-Lösung (2 ml), gegeben. Das Reaktionsgemisch wurde 1 h bei 0 °C und anschließend für 18 h bei RT gerührt. Die Reaktion wurde durch Zugabe wässriger gesättigter Na₂S₂O₃- sowie NH₄Cl-Lösung beendet und die wässrige Phase mit Et₂O extrahiert. Die vereinigten organischen Phasen wurden getrocknet (MgSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt.

Der Rückstand wurde in CH_2Cl_2 (30 ml) gelöst und auf 0 °C gekühlt. Es wurden nacheinander EDC·HCl (1.25 g, 6.53 mmol, 2.0 Äq.), DIPEA (5.54 ml, 32.7 mmol, 10 Äq.), DMAP (0.80 g, 6.53 mmol, 2.0 Äq.) und *N*,*O*-Dimethylhydroxylamin·HCl (1.58 g, 16.3 mmol, 5.0 Äq.) zugegeben. Die Reaktion wurde für 3 d bei RT gerührt.

Das Lösungsmittel wurde unter vermindertem Druck entfernt und das Produkt **76** (1.57 g, 2.14 mmol, 66 %) durch säulenchromatographische Reinigung des Rückstands (10:1 bis 4:1) als farbloses Öl gewonnen.

¹**H-NMR** (400 MHz, CDCl₃) δ: 7.34-7.23 (7H, m, H_{Ar}), 6.87-6.84 (2H, m, H_{Ar}), 5.58 (1H, t, J = 6.8 Hz, H-5), 4.73 (1H, d, J = 11.7 Hz, H_{Bn}), 4.66 (1H, d, J = 6.8 Hz, H_{SEM}), 4.59 (d, J = 6.8 Hz, H_{SEM}), 4.51 (1H, d, J = 11.7 Hz, H_{Bn}), 4.50 (1H, d, J = 11.5, H_{Bn}), 4.44-4.38 (2H, m, H-2,3), 4.42 (1H, d, J = 11.5 Hz, H_{Bn}), 3.79 (3H, s, H_{ArOMe}), 3.77-3.67 (2H, m, H-7, H_{SEM}), 3.53-3.41 (5H, m, H-8, H_{SEM}, H_{N-OMe}), 3.12 (3H, s, H_{NMe}), 2.46-2.39 (1H, m, H-6), 2.08-2.01 (1H, m, H-6), 1.60 (3H, s, H-10), 1.09 (3H, d, J = 6.5 Hz, H-9), 0.92-0.86 (2H, m, H_{SEM}), 0.86 (9H, s, H_{TBS}), 0.03 (3H, s, H_{TBS}), -0.01 (3H, s, H_{TBS}), -0.02 (9H, s, H_{SEM}) ppm. ¹³C-NMR (100 MHz, CDCl₃) δ: 159.1 (q, C_{Ar}), 138.0 (q, C_{Ar}), 132.5 (q, C-4), 131.22 (q, C_{Ar}), 129.2 (t, C_{Ar}), 128.4 (t, C_{Ar}), 128.0 (t, C_{Ar}), 127.7 (t, C-5), 127.2 (t, C_{Ar}), 113.8 (t, C_{Ar}), 92.4 (s, C_{SEM}), 81.0 (t, C-2/C-3), 79.2 (t, C-2/C-3), 76.9 (t, C-8), 74.1 (t, C-7), 72.4 (s, C_{Bn}), 70.8 (s, C_{Bn}), 65.3 (s, C_{SEM}), 61.2 (p, C_{N-OMe}), 55.4 (p, C_{ArOMe}), 35.5 (p, C_{NMe}), 30.4 (s, C-6), 26.0 (p, C_{TBS}), 18.2 (q, C_{TBS}), 18.1 (q, C_{SEM}), 14.4 (p, C-9), 13.1 (p, C-10), -1.3 (p, C_{SEM}), -4.4 (p, C_{TBS}), -4.5 (p, C_{TBS}) ppm. [**α**]_p²³ = -36.2° (*c* = 0.81, CH₂Cl₂).

HRMS (ESI): m/z berechnet für C₃₉H₆₆NO₈Si₂ [M + H]⁺: 732.4327; gefunden 732.4330.

Route C

(2*S*,3*R*,7*R*,8*R*,*E*)-2-(Benzyloxy)-7-([*t*-butyldimethylsilyl]oxy)-3-hydroxy-*N*-methoxy-8-([4-methoxy-benzyl]oxy)-*N*,4-dimethylnon-4-enamid (78)

Zu einer Suspension von *N*,*O*-Dimethylhydroxylamin·HCl (20.0 g, 206 mmol, 15 Äq.) in THF (70 ml) wurde bei 0 °C eine DIBAL-H (1 M Lösung in Hexan, 206 ml, 206 mmol, 15 Äq.) getropft. Das Gemisch wurde auf RT bis zum Entstehen einer klaren Lösung gerührt (30 min). Die Lösung wurde auf -30 °C gekühlt, das Imid **48** (9.86 g, 13.8 mmol, 1.0 Äq.) in THF (40 ml) zugegeben und für 3 h gerührt. Die Reaktionslösung wurde in ein Gemisch wässriger gesättigter ROCHELLE-Salz-Lösung (120 ml) und CH_2Cl_2 (120 ml) bei 0 °C gegeben und für 18 h bei RT gerührt. Die wässrige Phase wurde mit CH_2Cl_2 extrahiert, die vereinigten organischen Phasen wurden getrocknet (MgSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **78** (7.46 g, 12.4 mmol, 90 %) wurde durch säulenchromatographische Reinigung (1:1) aus dem Rückstand als farbloses Öl erhalten.

¹**H-NMR** (400 MHz, CDCl₃) δ : 7.36-7.26 (7H, m, H_{Ar}), 6.90-6.87 (2H, m, H_{Ar}), 5.56 (1H, t, *J*= 7.5 Hz, H-5), 4.75 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.52 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.48 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.46 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.38 (1H, d, *J*= 4.6 Hz, H-2), 4.31 (1H, t, *J*= 4.6 Hz, H-3), 3.79 (3H, s, H_{ArOMe}), 3.74-3.70 (1H, m, H-7), 3.52 (3H, s, H_{N-OMe}), 3.51-3.45 (1H, m, H-8), 3.16 (3H, s, H_{NMe}), 2.87 (1H, d, *J*= 4.6 Hz, H_{OH}), 2.46-2.40 (1H, m, H-6), 2.11-2-04 (1H, m, H-6), 1.62 (3H, s, H-10), 1.13 (3H, d, *J*= 6.5 Hz, H-9), 0.88 (9H, s, H_{TBS}), 0.03 (3H, s, H_{TBS}), 0.00 (3H, s, H_{TBS}) ppm.

¹³C-NMR (100 MHz, CDCl₃) δ: 159.2 (q, C_{Ar}), 137.3 (q, C_{Ar}), 133.9 (q, C-4), 131.2 (q, C_{Ar}), 129.2 (t, C_{Ar}), 128.6 (t, C_{Ar}), 128.3 (t, C_{Ar}), 128.1 (t, C_{Ar}), 125.3 (t, C-5), 113.8 (t, C_{Ar}), 77.0 (C-8), 76.9 (s, C-2,3), 73.8 (t, C-7), 72.2 (s, C_{Bn}), 70.79 (s, C_{Bn}), 61.2 (p, C_{N-OMe}), 55.4 (p, C_{ArOMe}), 32.6 (p, C_{NMe}), 30.0 (s, C-6), 26.0 (p, C_{TBS}), 18.1 (q, C_{TBS}), 14.2 (p, C-9), 12.8 (p, C-10), -4.4 (p, C_{TBS}), -4.4 (p, C_{TBS}) ppm.

Das Signal für C-1 konnte nicht detektiert werden.

 $[\alpha]_{D}^{22} = -15.9^{\circ} (c = 0.97, CH_2Cl_2).$

HRMS (ESI): m/z berechnet für C₃₃H₅₁NO₇SiNa [M + Na]⁺: 624.3333; gefunden 624.3329.

Route C

(2*S*,3*R*,7*R*,8*R*,*E*)-2-(Benzyloxy)-7-([*t*-butyldimethylsilyl]oxy)-*N*-methoxy-8-([4-methoxybenzyl]oxy)-*N*,4-dimethyl-3-([2-{trimethylsilyl}ethoxy]methoxy)non-4-enamid (76)

Zu einer Lösung des Alkohols **78** (7.95 g, 13.2 mmol, 1.0 Äq.) in DMF (130 ml) wurden sequentiell DIPEA (13.3 ml, 78.5 mmol, 6.0 Äq.), SEMCI (4.65 ml, 26.2 mmol, 2.0 Äq.) und DMAP (katalytisch) gegeben. Das Reaktionsgemisch wurde für 18 h bei 40 °C gerührt. Zu der nun roten Lösung wurde H₂O gegeben, die erhaltene wässrige Phase mit CH_2Cl_2 extrahiert, die vereinigten organischen Phasen getrocknet (MgSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **76** (9.65 g, 13.2 mmol, 100 %) wurde durch säulenchromatographische Reinigung (4:1) aus dem Rückstand als farbloses Öl erhalten.

Die analytischen Daten sind bei Route B zu finden.

(5*S*,6*R*,10*R*,11*R*,*E*)-5-(Benzyloxy)-10-([*t*-butyldimethylsilyl]oxy)-11-([4-methoxybenzyl]oxy)-7methyl-6-([2-{trimethylsilyl}ethoxy]methoxy)dodeca-1,7-dien-4-on (79)

Zu einer Lösung des WEINREB-amids **76** (9.65 g, 13.2 mmol, 1.0 Äq.) in THF (100 ml) wurde bei -78 °C AllylMgBr (1 M Lösung in Et₂O, 40.0 ml, 40.0 mmol, 3.0 Äq.) getropft. Das Gemisch wurde für 15 min bei -78 °C gerührt, dann auf 0 °C erwärmt, für 15 min gerührt und anschließend durch Zugabe wässriger gesättigter NH₄Cl-Lösung beendet. Die erhaltene wässrige Phase wurde mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen getrocknet (MgSO₄) und filtriert. Das Produkt **79** (7.40 g, 13.2 mmol, 100 %) wurde nach Entfernen des Lösungsmittels unter vermindertem Druck als farbloses bis leicht gelbliches Öl erhalten und ohne weitere Aufarbeitung weiterverwendet.

(5*R*,6*R*,10*R*,11*R*,*E*)-5-(Benzyloxy)-10-([*t*-butyldimethylsilyl]oxy)-11-([4-methoxybenzyl]oxy)-7methyl-6-([2-{trimethylsilyl}ethoxy]methoxy)dodeca-1,7-dien-4-ol (80)

Zu einer Lösung des Ketons **79** (684 mg, 0.96 mmol, 1.0 Äq.) in Et₂O (24 ml) auf -78 °C wurde frisch hergestelltes Zn(BH₄)₂ (0.13 M Lösung in Et₂O, 15 ml, 1.92 mmol, 2.0 Äq.) getropft. Das Reaktionsgemisch wurde für 18 h bei -50 °C gerührt. Die Reaktion wurde durch Zugabe wässriger gesättigter NH₄Cl-Lösung, gefolgt von wässriger gesättigter ROCHELLE-Salz-Lösung beendet und 1 h bei RT gerührt. Die erhaltene wässrige Phase wurde mit EtOAc extrahiert, die vereinigten organischen Phasen getrocknet (MgSO₄) und filtriert. Das Produkt **80** (430 mg, 0.60 mmol, 63 %) wurde durch säulenchromatographische Reinigung (10:1 bis 4:1) aus dem Rückstand als farbloses Öl erhalten.

¹**H-NMR** (400 MHz, CDCl₃) δ : 7.32-7.23 (7H, m, H_{Ar}), 6.87-6.84 (2H, m, H_{Ar}), 5.92-5.81 (1H, m, H-2), 5.61 (1H, t, *J*= 6.8 Hz, H-8), 5.11-5.06 (2H, m, H-1), 4.74 (1H, d, *J*= 11.3 Hz, H_{Bn}), 4.64 (1H, d, *J*= 6.5 Hz, H_{SEM}), 4.56 (1H, d, *J*= 6.5 Hz, H_{SEM}), 4.55 (1H, d, *J*= 11.3 Hz, H_{Bn}), 4.51 (1H, d, *J*= 12.0, H_{Bn}), 4.41 (1H, d, *J*= 12.0, H_{Bn}), 4.20 (1H, d, *J*= 4.8 Hz, H-6), 3.79 (3H, s, H_{ArOMe}), 3.78-3.70 (3H, m, H-4,10,H_{SEM}), 3.54-3.43 (3H, m, H-5,11,H_{SEM}), 2.78 (1H, d, *J*= 6.2 Hz, H_{OH}), 2.43-2.39 (2H, m, H-3,9), 2.28-2.13 (2H, m, H-3,9), 1.66 (3H, s, H-13), 1.11 (3H, d, *J*= 6.2 Hz, H-12), 0.95-0.87 (2H, m, H_{SEM}), 0.87 (9H, s, H_{TBS}), 0.03 (3H, s, H_{TBS}), -0.01 (3H, s, H_{TBS}), -0.02 (9H, s, H_{SEM}) ppm.

¹³**C-NMR** (100 MHz, CDCl₃) δ : 159.2 (q, C_{Ar}), 138.7 (q, C_{Ar}), 135.7 (t, C-2), 132.8 (q, C-7), 131.1 (q, C_{Ar}), 129.3 (t, C_{Ar}), 128.5 (t, C_{Ar}), 128.0 (t, C_{Ar}), 127.7 (t, C-8), 126.5 (t, C_{Ar}), 117.3 (s, C-1), 113.9 (t, C_{Ar}), 93.0 (s, C_{SEM}), 83.2 (t, C-5), 81.9 (t, C-6), 76.8 (t, C-11), 74.7 (s, C_{Bn}), 74.1 (t, C-10), 70.8 (s, C_{Bn}), 70.6 (t, C-4), 66.0 (s, C_{SEM}), 55.4 (p, C_{ArOMe}), 37.2 (s, C-3), 30.5 (s, C-9), 26.0 (p, C_{TBS}), 18.2 (s, C_{SEM}), 18.2 (q, C_{TBS}), 14.3 (p, C-12), 13.6 (p, C-13), -1.3 (p, C_{SEM}), -4.4 (p, C_{TBS}; p, C_{TBS}) ppm. $[\alpha]_{\rho}^{22} = -27.4^{\circ}$ (*c*= 1.00, CH₂Cl₂).

HRMS (ESI): m/z berechnet für C₄₀H₆₆O₇Si₂Na [M + Na]⁺: 737.4237; gefunden 737.4230.

Allgemeine Vorschrift zur Darstellung von MOSHER-Estern

Zu einer Lösung des freien Alkohols (1.0 Äq.) in CH_2Cl_2 (0.1 M) wurden sequentiell DMAP (cat.), DIPEA (3.0 Äq.) und enantiomerenreines MOSHER-Säurechlorid (1.0 Äq.) gegeben. Die Reaktion wurde nach 18 h bei RT durch Zugabe von H₂O beendet. Die so erhaltene wässrige Phase wurde mit CH_2Cl_2 extrahiert, die vereinigten organischen Phasen getrocknet (Na₂SO₄) und filtriert. Das Produkt wurde nach säulenchromatographischer Reinigung (10:1) aus dem Rückstand erhalten.

Bei dieser Reaktion muss berücksichtigt werden, dass sich die absolute Konfiguration des MOSHER-Säurechlorids in der CIP-Nomenklatur nach Reaktion mit einem Alkohol umkehrt. Mit dem (*R*)-MOSHER-Säurechlorid wird also der (S)-Mosher-Ester gebildet.

(R)-MOSHER Ester

Ausgehend von der allgemeinen Vorschrift zur Darstellung von MOSHER-Estern wurde (*R*)-MOSHER-Ester (2 mg, 2 µmol, 15 %) nach säulenchromatographischer Reinigung als farbloses Öl erhalten.

(S)-MOSHER Ester

Ausgehend von der allgemeinen Vorschrift zur Darstellung von MOSHER-Estern wurde (*S*)-MOSHER-Ester (1 mg, 1 µmol, 8 %) nach säulenchromatographischer Reinigung als farbloses Öl erhalten.

MOSHER-Ester Analyse:

MTPAO OSEM		MTPAO			OTBS
1 3 4 5 6 7 9 		+0.09 +0.01 ±-0 +0.09 +0.02 OB	07 +0.01 n +0.01 +0.00 OPMB	° = OBn	ОРМВ
		δ (S)-Ester	δ (R)-Ester	$\Delta \delta^{\rm SR} = \delta(S) - \delta(R)$	
		(ppm)	(ppm)	(ppm)	
	1a	5.08-5.02	5.00-4.93	+0.09	
	1b	5.04	4.95	+0.09	
	2	5.73-5.63	5.64-5.53	+0.10	
	3a	2.64-2.56	2.63-2.55	+0.01	
	3b	2.36-2.30	2.35-2.28	+0.02	
	5	3.64	3.80	-0.16	
	6	3.94	4.01	-0.07	
	8	5.55	5.57	-0.02	
	9a	2.52-2.45	2.51-2.44	+0.01	
	9b	2.17-2.10	2.17-2.10	+0.00	
	12	1.28	1.12	+0.16	
	13	1.70	1.69	+0.01	

Die fehlenden Signale konnten nicht exakt zugewiesen werden.

(4*S*,5*R*,6*R*,10*R*,11*R*,*E*)-5-(Benzyloxy)-10-([*t*-butyldimethylsilyl]oxy)-11-([4-methoxybenzyl]oxy)-7methyl-6-([2-{trimethylsilyl}ethoxy]methoxy)dodeca-1,7-dien-4-ol (83)

Zu einer Lösung des Ketons **79** (9.65 g, 13.2 mmol, 1.0 Äq.) in THF (130 ml) wurde bei -78 °C (*R*)-(+)-2-Methyl-CBS-oxazaborolidin **84** (1 M Lösung in PhMe, 40 ml, 40.0 mmol, 3.0 Äq.) gegeben und das Gemisch für 1.5 h gerührt. Nach Zugabe von $BH_3 \cdot SMe_2$ (12.5 ml, 132 mmol, 10 Äq.) wurde 1 h bei -78 °C und anschließend 15 h bei -50 °C gerührt. Die Reaktion wurde durch vorsichtige Zugabe von MeOH (20 ml) beendet und langsam auf RT erwärmt. Nach Zugabe von H_2O wurde die so erhaltene wässrige Phase mit CH_2Cl_2 extrahiert, die vereinigten organischen Phasen getrocknet (Na₂SO₄) und filtriert. Das Produkt **83** (8.98 g, 12.6 mmol, 95 %) wurde nach säulenchromatographischer Reinigung (10:1) aus dem Rückstand als farbloses Öl erhalten. ¹**H-NMR** (400 MHz, CDCl₃) δ : 7.37-7.24 (7H, m, H_{Ar}), 6.87-6.85 (2H, m, H_{Ar}), 5.73 (1H, dddd, *J*= 17.1, 8.7, 7.0, 5.1 Hz, H-2), 5.64 (1H, t, *J*= 6.8 Hz, H-8), 5.05-4.99 (2H, m, H-1), 4.96 (1H, d, *J*= 11.2 Hz, H_{Bn}), 4.61 (2H, s, H_{SEM}), 4.60 (1H, d, *J*= 11.2 Hz, H_{Bn}), 4.51 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.42 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.26 (1H, d, *J*= 7.5 Hz, H-6), 3.80 (3H, s, H_{ArOMe}), 3.76-3.70 (2H, m, H-10, H_{SEM}), 3.57-3.43 (4H, m, H-4,5,11, H_{SEM}), 2.46-2.40 (1H, m, H-9), 2.33-2.10 (3H, m, H-3,9), 1.60 (3H, s, H-13), 1.11 (3H, d, *J*= 6.5 Hz, H-12), 0.92-0.88 (2H, m, H_{SEM}), 0.87 (9H, s, H_{TBS}), 0.04 (3H, s, H_{TBS}), -0.01 (3H, s, H_{TBS}), -0.04 (9H, s, H_{SEM}) ppm.

¹³**C-NMR** (100 MHz, CDCl₃) δ: 159.2 (q, C_{Ar}), 138.7 (q, C_{Ar}), 135.0 (t, C-2), 132.6 (q, C-7), 131.2 (q, C_{Ar}), 129.3 (t, C_{Ar}), 128.5 (t, C_{Ar}), 128.3 (t, C_{Ar}), 128.2 (t, C-8), 127.8 (t, C_{Ar}), 117.5 (s, C-1), 113.9 (t, C_{Ar}), 92.2 (s, C_{SEM}), 83.2 (t, C-6), 81.0 (t, C-5), 76.9 (t, C-11), 75.4 (s, C_{Bn}), 74.1 (t, C-10), 70.8 (s, C_{Bn}), 70.4 (t, C-4), 65.5 (s, C_{SEM}), 55.4 (p, C_{PMB}), 39.2 (s, C-3), 30.6 (s, C-9), 26.0 (p, C_{TBS}), 18.2 (q, C_{TBS}), 18.2 (s, C_{SEM}), 14.3 (p, C-12), 12.7 (p, C-13), -1.3 (p, C_{SEM}), -4.4 (p, C_{TBS}), -4.4 (p, C_{TBS}) ppm.

 $[\alpha]_D^{25} = -31.4^\circ (c = 1.00, CH_2Cl_2).$

HRMS (ESI): m/z berechnet für C₄₀H₆₆O₇Si₂Na [M + Na]⁺: 737.4245; gefunden 737.4243.

(R)-MOSHER-Ester

Ausgehend von der allgemeinen Vorschrift zur Darstellung von MOSHER-Estern wurde (*R*)-MOSHER-Ester (16.9 mg, 18 µmol, 96 %) nach säulenchromatographischer Reinigung als farbloses Öl erhalten.

(S)-MOSHER-Ester

Ausgehend von der allgemeinen Vorschrift zur Darstellung von MOSHER-Estern wurde (*S*)-MOSHER-Ester (9.7 mg, 10 μmol, 55 %) nach säulenchromatographischer Reinigung als farbloses Öl erhalten.
MOSULE Ector	Analyse	
IVIUSHER-ESLEI	Allalyse	

MTPAO OSEM 1 2 3 4 5 6 7 8 9 <u>5 6 7 8 9</u> <u>5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</u>	OTBS 10 11 12 OPMB	MTPAO -0.05 -0.04 -0.03 ±+0 -0.04 -0.07 OE	OSEM OTBS - +0.010.02 - 0.05 +0.02 OPMB +0.038 +0.02 OPMB		OTBS OPMB
		δ (S)-Ester	$\delta(R)$ -Ester	$\Delta \delta^{\rm SR} = \delta(S) - \delta(R)$	
		(ppm)	(ppm)	(ppm)	
	1a	5.0688	5.1042	-0.0354	
	1b	5.0346	5.0705	-0.0359	
	2	5.6566	5.7060	-0.0494	
	3a	2.5981	2.6268	-0.0287	
	3b	2.4377	2.5115	-0.0738	
	6	4.1871	4.1384	0.0487	
	8	5.5440	5.5346	0.0094	
	9a	2.4493	2.4284	0.0209	
	9b	2.0799	2.0649	0.0150	
	12	1.0842	1.1004	-0.0162	
	13	1.5410	1.5027	0.0383	

Die fehlenden Signale konnten nicht exakt zugewiesen werden.

(4*R*,5*R*,6*R*,10*R*,11*R*,*E*)-5-(Benzyloxy)-10-([*t*-butyldimethylsilyl]oxy)-11-([4-methoxybenzyl]oxy)-7methyl-6-([2-{trimethylsilyl}ethoxy]methoxy)dodeca-1,7-dien-4-ylmethacrylat (85)

Zu einer Lösung des freien Alkohols **80** (8.9 mg, 12 µmol, 1.0 Äq.) in CH_2Cl_2 (0.1 ml) wurden bei 0 °C DIPEA (0.01 ml, 62 µmol, 5.0 Äq.), DMAP (0.8 mg, 6 µmol, 0.5 Äq.) und Methacrylanhydrid (0.1 ml, 50 µmol, 4.0 Äq.) zugegeben. Es wurde anschließend für 17 h bei RT gerührt. Die Reaktion wurde bei 0 °C durch Zugabe wässriger gesättigter NH₄Cl-Lösung beendet. Die wässrige Phase wurde mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen getrocknet (Na₂SO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **85** (8.4 mg, 11 µmol, 86 %) wurde nach säulenchromatographischer Reinigung (10:1) aus dem Rückstand als farbloses Öl erhalten.

¹**H-NMR** (400 MHz, CDCl₃) δ: 7.37-7.23 (7H, m, H_{Ar}), 6.87-6.85 (2H, m, H_{Ar}), 6.07 (1H, dq, *J*= 1.5, 0.9 Hz, H-13), 5.69 (1H, dddd, *J*= 17.1, 8.7, 7.0, 5.1 Hz, H-2), 5.55 (1H, t, *J*= 7.2 Hz, H-8), 5.52 (1H, dq, *J*= 1.5, 1.5 Hz, H-13), 5.05-4.97 (2H, m, H-1), 4.88 (1H, ddd, *J*= 10.1, 2.6, 2.5 Hz, H-4), 4.77 (1H, d, *J*= 11.4 Hz, H_{Bn}), 4.68 (1H, d, *J*= 11.4 Hz, H_{Bn}), 4.60 (2H, s, H_{SEM}), 4.51 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.41 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.00 (1H, d, *J*= 8.0 Hz, H-6), 3.83 (1H, dd, *J*= 8.0, 2.5 Hz, H-5), 3.79 (3H, s, H_{ArOMe}), 3.74-3.67 (2H, m, H-10, H_{SEM}), 3.52-3.40 (2H, m, H-11, H_{SEM}), 2.67-2.59 (1H, m, H-3), 2.50-2.43 (1H, m, H-9), 2.35-2.29 (1H, m, H-3), 2.16-2.09 (1H, m, H-9), 1.90 (3H, dd, *J*= 1.5, 0.9 Hz, H-14), 1.70 (3H, s, H-15), 1.11 (3H, d, *J*= 6.5 Hz, H-12), 0.87 (9H, s, H_{TBS}), 0.04 (3H, s, H_{TBS}), -0.00 (3H, s, H_{TBS}), -0.06 (9H, s, H_{SEM}) ppm.

(4*R*,5*R*,6*R*,10*R*,11*R*,*E*)-5-(Benzyloxy)-10-([*t*-butyldimethylsilyl]oxy)-11-([4-methoxybenzyl]oxy)-7methyl-6-([2-{trimethylsilyl}ethoxy]methoxy)dodeca-1,7-dien-4-yl-(*E*)-4-(allyloxy)-2-methylbut-2enoat (95)

Zu einer Lösung von (*E*)-4-(Allyloxy)-2-methylbut-2-ensäure **94** (47.3 mg, 0.30 mmol, 3.0 Äq.) und DMAP (37.0 mg, 0.30 mmol, 3.0 Äq.) in CH_2Cl_2 (1 ml) bei 0 °C wurde DCC (62.4 mg, 0.30 mmol, 3.0 Äq.) gegeben und 30 min bei 0 °C gerührt. Nach Zugabe von einer Lösung von Alkohol **80** (72.1 mg, 0.10 mmol, 1.0 Äq.) in CH_2Cl_2 (0.5 ml) wurde die Lösung für 18 h bei RT gerührt. Das Lösungsmittel wurde unter vermindertem Druck entfernt und das Produkt **95** (74.6 mg, 0.08 mmol, 87 %) durch säulenchromatographische Reinigung des Rückstands (10:1 bis 4:1) als farbloses Öl gewonnen.

Das Produkt wurde direkt in der folgenden Reaktion eingesetzt.

(*R*)-6-([8*R*,9*R*]-8-{(5*R*,6*R*,*E*)-5-([*t*-Butyldimethylsilyl]oxy)-6-{(4-methoxybenzyl])oxy}hept-2-en-2-yl}-2,2-dimethyl-11-phenyl-5,7,10-trioxa-2-silaundecan-9-yl)-3-methyl-5,6-dihydro-2H-pyran-2-on (87)

Zu einer Lösung von GRUBBS II-Katalysator (3.0 mg, 4 μ mol, 0.3 Äq.) und Tetrafluorchinon (0.6 mg, 4 μ mol, 0.3 Äq.) in entgastem CH₂Cl₂ (14 ml) wurde in entgastem CH₂Cl₂ (2 ml) gelöstes Substrat **95** (12.0 mg, 14 μ mol, 1.0 Äq.) über 1 h getropft. Das Gemisch wurde für 1 h bei 40 °C gerührt und nach Zugabe von DMSO (10 μ l, 180 μ mol, 12.5 Äq.) für 18 h bei RT gerührt. Das Lösungsmittel wurde unter vermindertem Druck entfernt und das Produkt **87** (5.4 mg, 7.2 μ mol, 51 %) durch säulenchromato-graphische Reinigung des Rückstands (50:1 bis 10:1) als farbloses Öl gewonnen.

¹**H-NMR** (400 MHz, C_6D_6) & 7.44-7.42 (2H, m, H_{Ar}), 7.26-7.09 (5H, m, H_{Ar}), 6.84-6.82 (2H, m, H_{Ar}), 5.82-5.81 (1H, m, H-3), 5.75 (1H, t, *J*= 6.8 Hz, H-9), 4.89 (1H, d, *J*= 11.3 Hz, H_{Bn}), 4.83 (1H, d, *J*= 11.3 Hz, H_{Bn}), 4.74 (1H, d, *J*= 6.8 Hz, H_{SEM}), 4.65 (1H, d, *J*= 6.8 Hz, H_{SEM}), 4.49 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.36-4.32 (1H, m, H-5), 4.34 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.21 (1H, d, *J*= 8.0 Hz, H-7), 3.98 (1H, dd, *J*= 8.0, 2.7 Hz, H-6), 3.89 (1H, dt, *J*= 7.0, 9.4 Hz, H_{SEM}), 3.80 (1H, dt, *J*= 5.5, 6.2 Hz, H-11), 3.52 (1H, dt, *J*= 7.0, 9.4 Hz, H_{SEM}), 3.47 (1H, dq, *J*= 5.5, 6.5 Hz, H-12), 3.33 (3H, s, H_{ArOMe}), 2.59-2.48 (2H, m, H-4,10), 2.22-2.15 (1H, m, H-10), 1.95-1.87 (1H, m, H-4), 1.78 (3H, s, H-14), 1.59 (3H, s, H-15), 1.14 (3H, d, *J*= 6.5 Hz, H-13), 0.99 (9H, s, H_{TBS}), 0.98-0.92 (2H, m, H_{SEM}), 0.12 (3H, s, H_{TBS}), 0.07 (3H, s, H_{TBS}), -0.01 (9H, s, H_{SEM}) ppm. ¹³C-NMR (100 MHz, C₆D₆) & 164.6 (q, C-1), 159.8 (q, C_{Ar}), 139.5 (q, C_{Ar}), 138.9 (t, C-3), 133.1 (q, C-8), 131.4 (q, C_{Ar}), 129.4 (t, C_{Ar}), 128.5 (t, C_{Ar}), 128.2 (q, C-2), 128.1 (t, C-9), 127.7 (t, C_{Ar}), 114.1 (t, C_{Ar}), 91.9 (s, C_{SEM}), 82.0 (t, C-7), 81.7 (t, C-6), 78.6 (t, C-5), 77.1 (t, C-12), 75.8 (s, C_{Bn}), 74.7 (t, C-11), 70.9 (s, C_{Bn}), 65.5 (s, C_{SEM}), 54.8 (p, C_{ArOMe}), 30.8 (s, C-10), 26.2 (p, C_{TBS}), 24.4 (s, C-4), 18.3 (q, C_{TBS}), 18.2 (s, C_{SEM}), 17.3 (p, C-14), 14.3 (p, C-13), 12.2 (p, C-15), -1.2 (p, C_{SEM}), -4.2 (p, C_{TBS}), -4.4 (p, C_{TBS}) ppm.

$$[\alpha]_D^{24} = +4.12^\circ (c=0.51, CH_2Cl_2).$$

Das Signal für ein tertiäres C_{Ar} konnte nicht eindeutig zugewiesen werden und fällt vermutlich mit dem Lösungsmittelsignal zusammen.

HRMS (ESI): m/z berechnet für C₄₂H₆₆O₈Si₂Na [M + Na]⁺: 777.4191; gefunden 777.4190.

5.2.5 RRCM Makrozyklisierung

(8*S*,9*R*,10*R*)-8-Allyl-9-(benzyloxy)-10-([5*R*,6*R*,*E*]-5-[{*t*-butyldimethylsilyl}oxy]-6-[{4-methoxybenzyl}oxy]hept-2-en-2-yl)-2,2,16,16-tetramethyl-5,7,11,13-tetraoxa-2,16-disilaheptadecan (111)

Zu einer Lösung des Alkohols **83** (235 mg, 0.33 mmol, 1.0 Äq.) in DMF (3.3 ml) wurden DIPEA (0.39 ml, 2.31 mmol, 7.0 Äq.), SEMCI (0.18 ml, 0.99 mmol, 3.0 Äq.) und DMAP (katalytisch) gegeben. Das Reaktionsgemisch wurde für 18 h bei 40 °C gerührt. Die Reaktion wurde durch vorsichtige Zugabe von H₂O (1 ml) bei RT beendet. Die Phasen wurden getrennt und die wässrige Phase wurde mit CH_2Cl_2 extrahiert und die vereinigten organischen Phasen getrocknet (MgSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **111** (223 mg, 0.26 mmol, 80 %) wurde durch säulenchromatographische Reinigung (10:1) aus dem Rückstand als farbloses Öl erhalten.

¹**H-NMR** (400 MHz, CDCl₃) δ : 7.36-7.22 (7H, m, H_{Ar}), 6.87-6.85 (2H, m, H_{Ar}), 5.73 (1H, ddt, *J*= 16.6, 12.4, 6.2 Hz, H-2), 5.57 (1H, t, *J*= 6.9 Hz, H-8), 5.04 (1H, m, H-1), 5.01-4.99 (1H, m, H-1), 4.76 (1H, d, *J*= 11.3 Hz, H_{Bn}), 4.72 (1H, d, *J*= 7.0 Hz, H_{SEM}), 4.69 (1H, d, *J*= 7.0 Hz, H_{SEM}), 4.66 (1H, d, *J*= 11.3 Hz, H_{Bn}), 4.61 (1H, d, *J*= 6.7 Hz, H_{SEM}), 4.58 (1H, d, *J*= 6.7 Hz, H_{SEM}), 4.50 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.42 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.21 (1H, d, *J*= 5.7 Hz, H-6), 3.80 (3H, s, H_{ArOMe}), 3.79-3.69 (3H, m, H-10, H_{SEM}), 3.66-3.61 (1H, m, H-4), 3.54-3.42 (4H, m, H-5,11, H_{SEM}), 2.55-2.38 (3H, m, H-3,9), 2.11-2.04 (1H, m, H-9), 1.55 (3H, s, H-13), 1.10 (3H, d, *J*= 6.3 Hz, H-12), 0.93-0.86 (4H, m, H_{SEM}), 0.87 (9H, s, H_{TBS}), 0.03 (3H, s, H_{TBS}), -0.00 (9H, s, H_{SEM}), -0.01 (3H, s, H_{TBS}), -0.02 (9H, s, H_{SEM}) ppm.

¹³C-NMR (100 MHz, CDCl₃) δ: 159.2 (q, C_{Ar}), 139.0 (q, C_{Ar}), 134.9 (t, C-2), 133.0 (q, C-7), 131.2 (q, C_{Ar}), 129.2 (t, C_{Ar}), 128.4 (t, C_{Ar}), 128.3 (t, C_{Ar}), 127.6 (t, C_{Ar}), 127.2 (t, C-8), 117.4 (s, C-1), 113.9 (t, C_{Ar}), 96.4 (s, C_{SEM}), 92.4 (s, C_{SEM}), 82.0 (t, C-6), 81.3 (t, C-5), 78.9 (t, C-4), 76.9 (t, C-11), 75.2 (s, C_{Bn}), 74.2 (t, C-10), 70.8 (s, C_{Bn}), 65.8 (s, C_{SEM}), 65.4 (s, C_{SEM}), 55.4 (p, C_{ArOMe}), 36.5 (s, C-3), 30.5 (s, C-9), 26.0 (p, C_{TBS}), 18.2 (s, C_{SEM}), 18.2 (q, C_{TBS}), 18.2 (s, C_{SEM}), 14.4 (p, C-12), 13.0 (p, C-13), -1.2 (p, C_{SEM}), -1.3 (p, C_{SEM}), -4.3 (p, C_{TBS}), -4.3 (p, C_{TBS}) ppm.

 $[\alpha]_D^{24} = -46.3^{\circ} (c = 1.12, CH_2Cl_2).$

HRMS (ESI): m/z berechnet für C₄₆H₈₀O₈Si₃Na [M + Na]⁺: 867.5059; gefunden 867.5061.

(8*S*,9*R*,10*R*,14*R*,15*R*,*E*)-8-Allyl-9-(benzyloxy)-17-(4-methoxyphenyl)-2,2,11,15-tetramethyl-10-([2-{trimethylsilyl}ethoxy]methoxy)-5,7,16-trioxa-2-silaheptadec-11-en-14-yl (*E*)-4-(allyloxy)-2-methylbut-2-enoat (113)

Zu einer Lösung des TBS-Ethers **111** (43.7 mg, 52 μ mol, 1.0 Äq.) in THF (0.5 ml) wurde bei 0 °C TBAF (1 M Lösung in THF, 0.26 ml, 0.26 mmol, 5.0 Äq.) zugetropft. Das Reaktionsgemisch wurde für 6 h bei RT gerührt. Die Reaktion wurde durch Zugabe wässriger gesättigter NH₄Cl-Lösung beendet, die wässrige Phase mit EtOAc extrahiert und die vereinigten organischen Phasen getrocknet (MgSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **112** (26.7 mg, 37 μ mol, 71 %) wurde durch säulenchromatographische Reinigung (4:1) aus dem Rückstand als farbloses Öl erhalten.

Zu einer Lösung von (*E*)-4-(Allyloxy)-2-methylbut-2-ensäure **94** (16.6 mg, 0.11 mmol, 3.0 Äq.) und DMAP (13.0 mg, 0.11 mmol, 3.0 Äq.) in CH_2Cl_2 (0.4 ml) bei 0 °C wurde DCC (22.0 mg, 0.11 mmol, 3.0 Äq.) gegeben und 30 min bei 0 °C gerührt. Nach Zugabe von in CH_2Cl_2 (0.4 ml) gelöstem freiem Alkohol (26.7 mg, 37 µmol, 1.0 Äq.) wurde die Lösung für 6 d bei RT gerührt. Das Lösungsmittel wurde unter vermindertem Druck entfernt und das Produkt **113** (30.0 mg, 35 µmol, 97 %) durch säulenchromatographische Reinigung des Rückstands (10:1 bis 4:1) als farbloses Öl gewonnen.

¹**H-NMR** (400 MHz, CDCl₃) & 7.34-7.23 (7H, m, H_{Ar}), 6.87-6.81 (3H, m, H-16, H_{Ar}), 5.91 (1H, ddt, J = 17.2, 10.5, 5.5, Hz, H-19), 5.71 (1H, ddt, J = 17.1, 10.2, 7.2 Hz, H-2), 5.45 (1H, t, J = 7.0 Hz, H-8), 5.29 (1H, ddd, J = 17.2, 3.0, 1.7 Hz, H-20), 5.20 (1H, ddd, J = 10.5, 3.0, 1.4 Hz, H-20), 5.06-4.97 (3, m, H-1,10), 4.71 (1H, d, $J = 11.6 Hz, H_{Bn}$), 4.69 (1H, d, $J = 7.3 Hz, H_{SEM}$), 4.66 (1H, d, $J = 7.3 Hz, H_{SEM}$), 4.64 (1H, d, $J = 11.6 Hz, H_{Bn}$), 4.59 (1H, d, $J = 7.0 Hz, H_{SEM}$), 4.64 (1H, d, $J = 11.6 Hz, H_{Bn}$), 4.59 (1H, d, $J = 7.0 Hz, H_{SEM}$), 4.54 (1H, d, $J = 11.6 Hz, H_{Bn}$), 4.50 (1H, d, $J = 7.0 Hz, H_{SEM}$), 4.43 (1H, d, $J = 11.6 Hz, H_{Bn}$), 4.18 (1H, d, J = 5.4 Hz, H-6), 4.14 (2H, d, J = 5.8 Hz, H-17), 3.99 (2H, ddd, J = 5.5, 1.7, 1.4 Hz, H-18), 3.79 (3H, s, H_{ArOMe}), 3.78-3.71 (2H, m, H_{SEM}), 3.65-3.59 (2H, m, H-4,11), 3.50-3.44 (3H, m, H-5, H_{SEM}), 2.52-2.33 (4H, m, H-3,9), 1.81 (3H, d, J = 1.0 Hz, H-21), 1.53 (3H, s, H-13), 1.14 (3H, d, J = 6.1 Hz, H-12), 0.92-0.85 (4H, m, H_{SEM}), -0.00 (9H, s, H_{SEM}), -0.02 (9H, s, H_{SEM}), ppm. ¹³C-NMR (100 MHz, CDCl₃) & 167.0 (q, C-14), 159.3 (q, C_{Ar}), 138.9 (t, C-16), 138.5 (q, C_{Ar}), 134.9 (t, C-2), 134.7 (q, C-7), 134.5 (t, C-19), 130.8 (q, C_{Ar}), 129.3 (t, C_{Ar}), 129.2 (q, C-15), 128.5 (t, C_{Ar}), 128.3 (t, C_{Ar}), 127.6 (t, C_{Ar}), 125.0 (t, C-8), 117.6 (s, C-1), 117.4 (s, C-20), 113.9 (t, C_{Ar}), 96.2 (s, C_{SEM}), 92.3 (s, C_{SEM}), 81.3 (s, C-6), 80.7 (t, C-5), 78.7 (t, C-11), 75.6 (t, C-10), 75.1 (s, C_{Bn}), 74.2 (t, C-4), 71.9 (s, C-18), C_{SEM}), 81.3 (s, C-6), 80.7 (t, C-5), 78.7 (t, C-11), 75.6 (t, C-10), 75.1 (s, C_{Bn}), 74.2 (t, C-4), 71.9 (s, C-18), C_{SEM}), 81.3 (s, C-6), 80.7 (t, C-5), 78.7 (t, C-11), 75.6 (t, C-10), 75.1 (s, C_{Bn}), 74.2 (t, C-4), 71.9 (s, C-18), C_{SEM}), 81.3 (s, C-6), 80.7 (t, C-5), 78.7 (t, C-11), 75.6 (t, C-10), 75.1 (s, C_{Bn}), 74.2 (t, C-4), 71.9 (s, C-18), C_{SEM}), 81.3 (s, C-6), 80.7 (t, C-5), 78.7 (t, C-11), 75.6 (t, C-10), 75.1 (s, C_{Bn}), 7

70.9 (s, C_{Bn}), 67.0 (s, C-17), 65.8 (s, C_{SEM}), 65.4 (s, C_{SEM}), 55.4 (p, C_{ArOMe}), 36.4 (s, C-3), 28.0 (s, C-9), 18.2 (s, C_{SEM}), 18.1 (s, C_{SEM}), 15.5 (p, C-12), 13.1 (p, C-13; p, C-21), -1.3 (p, C_{SEM}), -1.3 (p, C_{SEM}) ppm. [α]_D²⁵ = -34.7° (c= 1.00, CH₂Cl₂).

HRMS (ESI): m/z berechnet für C₄₈H₇₆O₁₀Si₂Na [M + Na]⁺: 891.4875; gefunden 891.4869.

5.2.6 Makrolactonisierung

Ethyl-(2*E*,5*S*,6*R*,7*R*,8*E*,11*R*,12*R*)-6-(benzyloxy)-11-([*t*-butyldimethylsilyl]oxy)-5-hydroxy-12-([4-methoxybenzyl]oxy)-2,8-dimethyl-7-([2-{trimethylsilyl}ethoxy]methoxy)trideca-2,8-dienoat (132)

Zu einer Lösung des Alkohols **83** (4.20 g, 5.87 mmol, 1.0 Äq.) in einer Mischung von *t*-BuOH (30 ml) und H_2O (30 ml) bei 0 °C wurde AD-mix- α (8.80 g, 1.5 g/mmol) gegeben. Das Reaktionsgemisch wurde anschließend für 21 h bei RT gerührt. Das Triol wurde durch direkte säulenchromatographische Reinigung der Lösung (1:1) als farbloses Öl gewonnen.

Zu dem erhaltenen Triol in THF (30 ml) und H_2O (30 ml) wurde NalO₄ (1.88 g, 8.80 mmol, 1.5 Äq.) gegeben und für 2 h gerührt. Der Aldehyd wurde durch direkte säulenchromatographische Reinigung der Lösung (1:1) als farbloses Öl gewonnen.

Zu einer Lösung des Aldehyds in CH_2Cl_2 (60 ml) bei 0 °C wurde das stabilisierten WITTIG-Ylid **33** (5.31 g, 14.7 mmol, 2.5 Äq.) gegeben. Das Reaktionsgemisch wurde anschließend für 72 h bei RT gerührt. Der Rückstand wurde auf Kieselgel aufgezogen und das Produkt **132** (2.63 g, 3.29 mmol, 56 % über 3 Stufen) durch säulenchromatographische Reinigung (4:1) als farbloses Öl gewonnen.

¹**H-NMR** (400 MHz, CDCl₃) δ : 7.35-7.23 (7H, m, H_{Ar}), 6.87-6.85 (2H, m, H_{Ar}), 6.72 (1H, t, *J*= 6.7 Hz, H-3), 5.65 (1H, t, *J*= 6.8 Hz, H-9), 4.98 (1H, d, *J*= 11.3 Hz, H_{Bn}), 4.61 (2H, s, H_{SEM}), 4.58 (1H, d, *J*= 11.3 Hz, H_{Bn}), 4.51 (1H, d, *J*= 11.7 Hz, H_{Bn}), 4.41 (1H, d, *J*= 11.7 Hz, H_{Bn}), 4.27 (1H, d, *J*= 7.5 Hz, H-7), 4.15 (2H, q, *J*= 7.0 Hz, H_{Et}), 3.79 (3H, s, H_{ArOMe}), 3.79-3.70 (2H, m, H-11, H_{SEM}), 3.64-3.61 (1H, m, H-5), 3.54-3.40 (3H, m, H-6,12, H_{SEM}), 2.47-2.33 (2H, m, H-4,10), 2.26-2.11 (2H, m, H-4,10), 1.77 (3H, s, H-14), 1.60 (3H, s, H-15), 1.26 (3H, t, *J*= 7.0 Hz, H_{Et}), 1.11 (3H, d, *J*= 6.3 Hz, H-13), 0.92-0.86 (2H, m, H_{SEM}), 0.86 (9H, s, H_{TBS}), 0.03 (3H, s, H_{TBS}), -0.02 (3H, s, H_{TBS}), 0.03 (9H, s, H_{SEM}) ppm.

¹³**C-NMR** (100 MHz, CDCl₃) δ : 167.9 (q, C-1), 159.2 (q, C_{Ar}), 138.5 (q, C_{Ar}), 138.1 (t, C-3), 132.4 (t, C-9), 131.2 (t, C_{Ar}), 129.7 (q, C-2), 129.3 (q, C_{Ar}), 128.7 (q, C-8), 128.6 (t, C_{Ar}), 128.2 (t, C_{Ar}), 127.9 (t, C_{Ar}), 113.8 (t, C_{Ar}), 92.2 (s, C_{SEM}), 83.3 (t, C-7), 81.4 (t, C-6), 76.9 (t, C-12), 75.4 (s, C_{Bn}), 74.0 (t, C-11), 70.8 (s, C_{Bn}), 70.1 (t, C-5), 65.5 (s, C_{SEM}), 60.6 (s, C_{Et}), 55.4 (p, C_{ArOMe}), 34.2 (s, C-4), 30.6 (s, C-10), 26.0 (p, C_{TBS}), 18.2 (s, C_{SEM}), 18.2 (q, C_{TBS}), 14.4 (p, C_{Et}), 14.2 (p, C-13), 12.8 (p, C-14), 12.5 (p, C-15), -1.3 (p, C_{SEM}), -4.4 (p, C_{TBS}), -4.4 (p, C_{TBS}) ppm.

 $[\alpha]_D^{22} = -33.0^{\circ} (c=1.00, CH_2Cl_2).$

HRMS (ESI): m/z berechnet für C₄₄H₇₂O₉Si₂Na [M + Na]⁺: 823.4613; gefunden 823.4614.

Ethyl-(2*E*,5*S*,6*R*,7*R*,8*E*,11*R*,12*R*)-6-(benzyloxy)-11-([*t*-butyldimethylsilyl]oxy)-12-([4-methoxy-benzyl]oxy)-2,8-dimethyl-5,7-bis([2-{trimethylsilyl}ethoxy]methoxy)trideca-2,8-dienoat (136)

Zu einer Lösung des Alkohols **132** (2.63 g, 3.29 mmol, 1.0 Äq.) in DMF (33 ml) wurden nacheinander DIPEA (3.35 ml, 19.7 mmol, 6.0 Äq.), DMAP (cat.) und SEMCI (1.17 ml, 6.58 mmol, 2.0 Äq.) gegeben. Die Lösung wurde für 18 h bei 40 °C gerührt. Die Reaktion wurde durch Zugabe von H₂O beendet und es wurde für 10 min gerührt. Die Phasen wurden getrennt und die wässrige Phase wurde mit EtOAc extrahiert. Die vereinigten organischen Phasen wurden getrocknet (Na₂SO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **136** (2.45 g, 2.64 mmol, 80 %) wurde durch säulenchromatographische Reinigung des Rückstands (20:1) als farbloses Öl gewonnen.

¹**H-NMR** (400 MHz, CDCl₃) & 7.35-7.22 (7H, m, H_{Ar}), 6.87-6.85 (2H, m, H_{Ar}), 6.72 (1H, tq, *J*= 7.1, 1.3 Hz, H-3), 5.57 (1H, t, *J*= 7.2 Hz, H-9), 4.78 (1H, d, *J*= 11.4 Hz, H_{Bn}), 4.70 (1H, d, *J*= 7.0 Hz, H_{SEM}), 4.67 (1H, d, *J*= 7.0 Hz, H_{SEM}), 4.62 (1H, d, *J*= 11.4 Hz, H_{Bn}), 4.61 (1H, d, *J*= 6.7 Hz, H_{SEM}), 4.58 (1H, d, *J*= 6.7 Hz, H_{SEM}), 4.50 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.61 (1H, d, *J*= 11.6 Hz, H_{SEM}), 4.58 (1H, d, *J*= 6.7 Hz, H_{SEM}), 4.50 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.41 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.20-4.14 (3H, m, H-7, H_{Et}), 3.80 (3H, s, H_{ArOMe}), 3.78-3.67 (4H, m, H-5,11, H_{SEM}), 3.54-3.42 (4H, m, H-6,12, H_{SEM}), 2.55 (2H, t, *J*= 6.6 Hz, H-4), 2.47-2.41 (1H, m, H-10), 2.10-2.03 (1H, m, H-10), 1.80 (3H, d, *J*= 1.3 Hz, H-14), 1.55 (3H, s, H-15), 1.28 (3H, t, *J*= 7.2 Hz, H_{Et}), 1.10 (3H, d, *J*= 6.4 Hz, H-13), 0.92-0.85 (4H, m, H_{SEM}), 0.86 (9H, s, H_{TBS}), 0.03 (3H, s, H_{TBS}), -0.02 (12H, s, H_{SEM}, H_{TBS}), -0.02 (9H, s, H_{SEM}) ppm.

¹³**C-NMR** (100 MHz, CDCl₃) δ : 167.9 (q, C-1), 159.2 (q, C_{Ar}), 138.7 (q, C_{Ar}), 138.2 (t, C-3), 132.8 (q, C-8), 131.2 (q, C_{Ar}), 129.5 (q, C-2), 129.2 (t, C_{Ar}), 128.4 (t, C_{Ar}), 128.4 (t, C_{Ar}), 127.6 (t, C-9), 113.8 (t, C_{Ar}), 96.3 (s, C_{SEM}), 92.4 (s, C_{SEM}), 82.2 (t, C-7), 81.4 (t, C-6), 78.3 (t, C-5), 76.9 (t, C-12), 75.2 (s, C_{Bn}), 74.1 (t, C-11), 70.8 (s, C_{Bn}), 65.8 (s, C_{SEM}), 65.5 (s, C_{SEM}), 60.5 (s, C_{Et}), 55.4 (p, C_{ArOMe}), 31.6 (t, C-4), 30.5 (t, 10),

26.0 (p, C_{TBS}), 18.2 (q, C_{SEM}), 18.1 (s, C_{TBS}), 18.1 (s, C_{SEM}), 14.5 (p, C_{Et}), 14.3 (p, C-13), 12.9 (p, C-14), 12.9 (p, C-15), -1.3 (p, C_{SEM}), -1.3 (p, C_{SEM}), -4.4 (p, C_{TBS}), -4.4 (p, C_{TBS}) ppm. [α]_D²² = -41.9° (c=0.87, CH₂Cl₂).

HRMS (ESI): m/z berechnet für C₅₀H₈₆O₁₀Si₃Na [M + Na]⁺: 953.5427; gefunden 953.5424.

Methyl-(2*Z*,5*S*,6*R*,7*R*,8*E*,11*R*,12*R*)-6-(benzyloxy)-11-([*t*-butyldimethylsilyl]oxy)-12-([4-methoxy-benzyl]oxy)-2,8-dimethyl-5,7-bis([2-{trimethylsilyl}ethoxy]methoxy)trideca-2,8-dienoat (140)

Zu einer auf 0 °C gekühlten Lösung von frisch umkristallisiertem 18-Krone-6 Ether¹³⁸ (40.2 mg, 0.15 mmol, 3.0 Äq) und Methyl 2-(bis[2,2,2-trifluoroethoxy]phosphoryl)propionat **139** (16.9 mg, 51 µmol, 1.0 Äq.) in THF (0.5 ml) wurde KHMDS (0.5 M Lösung in PhMe, 0.10 ml, 51 µmol, 1.0 Äq.) gegeben. Das Reaktionsgemisch wurde für 1 h bei 0 °C gerührt und anschließend auf -78 °C gekühlt. Der frisch hergestellte Aldehyd **133** (43.0 mg, 51 µmol, 1.0 Äq.) wurde in THF (0.3 ml) gelöst und zu dem Gemisch getropft. Es wurde für 1.5 h bei -78 °C und anschließend für 15 min bei 0 °C gerührt. Die Reaktion wurde durch Zugabe wässriger gesättigter NH₄Cl-Lösung beendet, die wässrige Phase mit Et₂O extrahiert, die vereinigten organischen Phasen getrocknet (MgSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **140** (18.4 mg, 19 µmol, 38 %) wurde durch säulenchromatographische Reinigung des Rückstands (10:1 bis 4:1) als farbloses Öl, in einem Diastereomerenverhältnis >10:1, gewonnen.

¹**H-NMR** (400 MHz, CDCl₃) δ : 7.34-7.23 (7H, m, H_{Ar}), 6.87-6.85 (2H, m, H_{Ar}), 5.95 (1H, t, *J*= 6.3 Hz, H-3), 5.57 (1H, t, *J*= 6.8 Hz, H-9), 4.74 (1H, d, *J*= 11.2 Hz, H_{Bn}), 4.71 (1H, d, *J*= 7.2 Hz, H_{SEM}), 4.69 (1H, d, *J*= 7.2 Hz, H_{SEM}), 4.64 (1H, d, *J*= 11.2 Hz, H_{Bn}), 4.61 (1H, d, *J*= 6.5 Hz, H_{SEM}), 4.57 (1H, d, *J*= 6.5 Hz, H_{SEM}), 4.50 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.61 (1H, d, *J*= 6.5 Hz, H_{SEM}), 4.57 (1H, d, *J*= 6.5 Hz, H_{SEM}), 4.50 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.61 (1H, d, *J*= 6.5 Hz, H_{SEM}), 4.57 (1H, d, *J*= 6.5 Hz, H_{SEM}), 4.50 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.61 (1H, d, *J*= 6.5 Hz, H_{SEM}), 4.57 (1H, d, *J*= 6.5 Hz, H_{SEM}), 4.50 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.61 (1H, d, *J*= 6.5 Hz, H_{SEM}), 2.94-2.87 (1H, m, H-5,11, H_{SEM}), 3.69 (3H, s, H_{COOMe}), 3.53-3.42 (4H, m, H-6,12, H_{SEM}), 2.94-2.87 (1H, m, H-4), 2.81-2.74 (1H, m, H-4), 2.46-2.40 (1H, m, H-10), 2.10-2.03 (1H, m, H-10), 1.86 (3H, d, *J*= 1.4 Hz, H-14), 1.55 (3H, s, H-15), 1.10 (3H, d, *J*= 6.5 Hz, H-13), 0.93-0.87 (4H, m, H_{SEM}), 0.87 (9H, s, H_{TBS}), 0.03 (3H, s, H_{TBS}) -0.01 (12H, s, H_{SEM}, H_{TBS}), -0.02 (9H, s, H_{SEM}), ppm.

NOESY Kontakte zwischen H-3 und H-14, sowie zwischen H-4 und COOMe. Diese lassen sich nur durch eine (*Z*)-Konfiguration erklären.

¹³⁸⁾ G. W. Gokel, D. J. Cram, J. Org. Chem. 1974, 39, 2445-2446.

¹³**C-NMR** (100 MHz, CDCl₃) δ : 168.2 (q, C-1), 159.3 (q, C_{Ar}), 139.4 (t, C-3), 138.8 (q, C_{Ar}), 132.9 (q, C-8), 131.2 (q, C_{Ar}), 129.2 (t, C_{Ar}), 128.5 (t, C_{Ar}), 128.3 (t, C_{Ar}), 128.1 (q, C-2), 127.6 (t, C_{Ar}), 127.3 (t, C-9), 113.8 (t, C_{Ar}), 96.4 (s, C_{SEM}), 92.4 (s, C_{SEM}), 82.1 (t, C-7), 81.9 (t, C-6), 78.9 (t, C-5), 76.9 (t, C-12), 75.2 (t, C_{Bn}), 74.2 (t, C-11), 70.8 (s, C_{Bn}), 65.7 (s, C_{SEM}), 65.5 (s, C_{SEM}), 55.4 (p, C_{ArOMe}), 51.4 (p, C_{COOMe}), 32.6 (s, C-4), 30.5 (s, C-10), 26.0 (p, C_{TBS}), 20.9 (p, C-14), 18.2 (s, C_{SEM}), 18.2 (q, C_{TBS}), 18.1 (s, C_{SEM}), 14.4 (p, C-13), 13.0 (p, C-15), -1.3 (p, C_{SEM}), -1.3 (p, C_{SEM}), -4.4 (p, C_{TBS}), -4.4 (p, C_{TBS}) ppm. [α]_D²¹ = -33.3° (*c*= 1.02, CH₂Cl₂).

HRMS (ESI): m/z berechnet für C₄₉H₈₄O₁₀Si₃Na [M + Na]⁺: 939.5270; gefunden 939.5273.

Methyl (2*Z*,5*S*,6*R*,7*R*,8*E*,11*R*,12*R*)-6-(benzyloxy)-11-([*t*-butyldimethylsilyl]oxy)-5-hydroxy-12-([4-methoxybenzyl]oxy)-2,8-dimethyl-7-([2-{trimethylsilyl}ethoxy]methoxy)trideca-2,8-dienoat (142)

Zu einer auf 0 °C gekühlten Lösung von frisch umkristallisiertem 18-Krone-6 Ether¹³⁸ (33.0 mg, 0.13 mmol, 4.0 Äq) und Methyl 2-(bis[2,2,2-trifluoroethoxy]phosphoryl)propionat (**139**) (10.4 mg, 31 µmol, 1.0 Äq.) in THF (0.3 ml) wurde KHMDS (0.5 M Lösung in PhMe, 0.06 ml, 31 µmol, 1.0 Äq.) gegeben. Das Reaktionsgemisch wurde für 1 h bei 0 °C gerührt und anschließend auf -78 °C gekühlt. Der frisch hergestellte Aldehyd **141** (22.4 mg, 31 µmol, 1.0 Äq.) wurde in THF (0.3 ml) gelöst und zu dem Gemisch getropft. Es wurde für 1.5 h bei -78 °C gerührt. Die Reaktion wurde durch Zugabe von pH 7-Phosphatpuffer-Lösung beendet, die wässrige Phase mit Et₂O extrahiert, die vereinigten organischen Phasen getrocknet (MgSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **142** (13.0 mg, 17 µmol, 53 %) wurde durch säulenchromatographische Reinigung des Rückstands (10:1 bis 4:1) als farbloses Öl und Gemisch zweier Diastereomere (6:1) gewonnen.

¹**H-NMR** (400 MHz, CDCl₃) δ : 7.37-7.26 (5H, m, H_{Ar}), 7.25-7.23 (2H, m, H_{Ar}), 6.87-6.85 (2H, m, H_{Ar}), 6.00 (1H, t, *J*= 7.2 Hz, H-3), 5.63 (1H, t, *J*= 6.7 Hz, H-9), 4.96 (1H, d, *J*= 10.9 Hz, H_{Bn}), 4.61 (2H, s, H_{SEM}), 4.60 (1H, d, *J*= 10.9 Hz, H_{Bn}), 4.50 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.42 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.26 (1H, d, *J*= 7.5 Hz, H-7), 3.79 (3H, s, H_{ArOMe}), 3.75-3.71 (2H, m, H-5,11), 3.69 (3H, s, H_{COOMe}), 3.61-3.57 (1H, m, H-12), 3.53-3.40 (3H, m, H-6, H_{SEM}), 2.76-2.69 (1H, m, H-4), 2.65-2.59 (1H, m, H-4), 2.47-2.40 (1H, m, H-10), 2.17-2.10 (1H, m, H-10), 1.87 (3H, d, *J*= 1.0 Hz, H-14), 1.61 (3H, s, H-15), 1.10 (3H, d, *J*= 6.5 Hz, H-13), 0.92-0.86 (2H, m, H_{SEM}), 0.86 (9H, s, H_{TBS}), 0.03 (3H, s, H_{TBS}) -0.02 (3H, s, H_{TBS}), -0.05 (9H, s, H_{SEM}), ppm.

Zu dem TBS-Ether **136** (2.45 g, 2.64 mmol, 1.0 Äq.) aufgeteilt auf zwei Kunststoffgefäße bei 0 °C wurde HF·Py (6.6 ml HF·Py, 19.2 ml Pyridin) in THF (33.6 ml) gegeben. Das Reaktionsgemisch wurde für 72 h bei RT gerührt. Zu der Reaktionslösung wurde zunächst wässrige gesättigte NaHCO₃-Lösung gegeben. Die Reaktion wurde anschließend durch Zugabe von festem NaHCO₃ bis zum Ausbleiben einer Gasentwicklung neutralisiert. Die wässrige Phase wurde mit CH_2Cl_2 extrahiert, die vereinigten organischen Phasen getrocknet (NaSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Intermediat **143** (1.59 g, 1.95 mmol, 74 %) wurde als farbloses Öl gewonnen.

Zu dem Ethylester **143** (1.59 g, 1.95 mmol, 1.0 Äq.) in THF/MeOH (je 10 ml) wurde wässrige 1 M LiOH-Lösung (19.5 ml, 19.5 mmol, 10 Äq.) gegeben. Das Reaktionsgemisch wurde für 25 h bei 40 °C gerührt. Die Reaktion wurde durch Zugabe wässriger gesättigter NH₄Cl-Lösung beendet, die wässrige Phase mit Et₂O extrahiert, die vereinigten organischen Phasen getrocknet (NaSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt.

Zu der Säure **144** in THF (20 ml) wurde DIPEA (2.08 ml, 11.7 mmol, 6.0 Äq.), gefolgt von 2,4,6-Trichlorbenzoylchlorid (0.91 ml, 5.84 mmol, 3.0 Äq.) gegeben. Der Reaktionsansatz wurde nach 2 h über Kieselgur filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Der Rückstand wurde in PhMe (1.25 l) gelöst. Die Lösung wurde gedrittelt und jeweils über 5.5 h zu einer Lösung von DMAP (je: 793 mg, 6.50 mmol, 10 Äq.) in je PhMe (70 ml) bei 80 °C getropft. Nach Abkühlen der Reaktionsmischung wurde der Reaktionsansatz durch Zugabe wässriger gesättigter NaHCO₃-Lösung beendet, die wässrige Phase mit Et₂O extrahiert, die vereinigten organischen Phasen getrocknet (MgSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **145** (1.03 g, 1.34 mmol, 69 % über 2 Stufen) wurde nach säulenchromatographischer Reinigung des Rückstands (10:1 bis 4:1), als Gemisch zweier Diastereomere (4:1), als gelbliches Öl gewonnen. ¹**H-NMR** (400 MHz, CDCl₃) δ: 7.37-7.22 (7H, m, H_{Ar}), 6.89-6.86 (2H, m, H_{Ar}), 5.54 (1H, dd, *J*= 15.5, 7.3 Hz, H-3), 5.38 (1H, ddd, *J*= 15.5, 8.0, 0.8 Hz, H-4), 5.22-5.19 (1H, m, H-9), 5.02 (1H, ddd, *J*= 11.9, 4.3, 2.9 Hz, H-11), 4.88 (1H, d, *J*= 10.8 Hz, H_{Bn}), 4.72 (1H, d, *J*= 10.8 Hz, H_{Bn}), 4.67 (1H, d, *J*= 6.8 Hz, H_{SEM}), 4.65 (1H, d, *J*= 6.8 Hz, H_{SEM}), 4.60 (1H, d, *J*= 6.6 Hz, H_{SEM}), 4.59 (1H, d, *J*= 11.5 Hz, H_{Bn}), 4.58 (1H, d, *J*= 6.6 Hz, H_{SEM}), 4.45 (1H, d, *J*= 11.5 Hz, H_{Bn}), 4.00 (1H, dd, *J*= 8.0, 8.0 Hz, H-5), 3.86 (1H, d, *J*= 9.8 Hz, H-7), 3.80 (3H, s, H_{ArOMe}), 3.67-3.37 (6H, m, H-6,12, H_{SEM}), 3.16 (1H, qd, *J*= 7.3, 6.6 Hz, H-2), 2.79-2.70 (1H, m, H-10), 2.07-2.03 (1H, m, H-10), 1.62 (3H, s, H-15), 1.19 (3H, d, *J*= 6.6 Hz, H-14), 1.16 (3H, d, *J*= 6.4 Hz, H-13), 0.88-0.81 (4H, m, H_{SEM}), -0.08 (18H, s, H_{SEM}) ppm.

¹³C-NMR (100 MHz, CDCl₃) δ: 174.5 (q, C-1), 159.4 (q, C_{Ar}), 139.5 (q, C_{Ar}), 134.7 (q, C-8), 134.0 (t, C-3), 130.6 (q, C_{Ar}), 129.5 (t, C_{Ar}), 128.5 (t, C-9), 128.4 (t, C-4), 128.3 (t, C_{Ar}), 127.7 (t, C_{Ar}), 127.3 (t, C_{Ar}), 113.9 (t, C_{Ar}), 92.9 (s, C_{SEM}), 91.6 (s, C_{SEM}), 82.7 (t, C-7), 82.5 (t, C-6), 79.5 (t, C-5), 75.7 (s, C_{Bn}), 74.7 (t, C-12), 73.6 (t, C-11), 70.9 (s, C_{Bn}), 65.4 (s, C_{SEM}), 65.1 (s, C_{SEM}), 55.4 (p, C_{ArOMe}), 42.9 (t, C-2), 29.1 (s, C-10), 18.1 (s, C_{SEM}), 18.1 (s, C_{SEM}), 16.2 (p, C-14), 15.6 (p, C-13), 12.6 (p, C-15), -1.3 (p, C_{SEM}, p, C_{SEM}) ppm.

 $[\alpha]_{D}^{24} = -13.9^{\circ} (c=0.64, CH_{2}Cl_{2}).$

HRMS (ESI): m/z berechnet für C₄₂H₆₆O₉Si₂Na [M + Na]⁺: 793.4143; gefunden 793.4144.

(3Z,6S,7R,8R,9E,12R)-7-(Benzyloxy)-12-([R]-1-[{4-methoxybenzyl}oxy]ethyl)-3,9-dimethyl-6,8-bis-([2-{trimethylsilyl}ethoxy]methoxy)oxacyclododeca-3,9-dien-2-on (114)

Zu dem TBS-Ether **140** (30.0 mg, 33 μ mol, 1.0 Äq.) wurde bei 0 °C TBAF (1 M Lösung in THF, 0.16 ml, 0.16 mmol, 5.0 Äq.) gegeben. Das Reaktionsgemisch wurde für 4 h bei RT gerührt. Der Reaktionsansatz wurde durch Zugabe wässriger gesättigter NH₄Cl-Lösung beendet, die wässrige Phase mit Et₂O extrahiert, die vereinigten organischen Phasen getrocknet (NaSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Intermediat **146** (8.9 mg, 11 μ mol, 34 %) wurde durch säulenchromatographische Reinigung des Rückstands (10:1 bis 4:1) als farbloses Öl gewonnen.

Zu dem Methylester **146** (7.4 mg, 9 μmol, 1.0 Äq.) in THF/MeOH (je 0.1 ml) wurde wässrige 1 M LiOH-Lösung (0.10 ml, 0.10 mmol, 10 Äq.) gegeben. Das Reaktionsgemisch wurde für 42 h bei 60 °C 5 Experimenteller Teil

gerührt, wobei nach 18 h weiteres THF/MeOH (je 0.1 ml) zugegeben wurde. Der Reaktionsansatz wurde durch Zugabe wässriger gesättigter NH₄Cl-Lösung beendet, die wässrige Phase mit EtOAc extrahiert, die vereinigten organischen Phasen getrocknet (NaSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **147** (6.0 mg, 8 μmol, 81 %) wurde direkt in der folgenden Reaktion eingesetzt.

Zu der Säure **147** (6.0 mg, 8 µmol, 1.0 Äq.) in THF (0.2 ml) wurde DIPEA (0.1 ml, 0.59 mmol, 7.4 Äq.), gefolgt von einer 2,4,6-Trichlorbenzoylchlorid Stammlösung (0.05 ml, 15 µmol, 2.0 Äq. [0.24 ml Säurechlorid in 4.76 ml THF]). Nach 1.5 h wurde der Reaktionsansatz über Kieselgur filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Der Rückstand wurde in PhMe (4 ml) gelöst und über 50 min zu einer Lösung von DMAP (9.3 mg, 76 µmol, 10 Äq.) in PhMe (0.8 ml) auf 100 °C getropft. Die Reaktion wurde nach 18 h durch Zugabe wässriger gesättigter NaHCO₃-Lösung beendet, die wässrige Phase mit Et₂O extrahiert, die vereinigten organischen Phasen getrocknet (MgSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produktgemisch (3.9 mg, 5 µmol, 66 %) wurde durch säulenchromatographische Reinigung des Rückstands (10:1 bis 4:1) als farbloses Öl gewonnen.

Es wurde laut ¹H-NMR-spektroskopischen Analyse ein 1:1 Gemisch des gewünschten (*Z*)-Makrozyklus **114**, sowie das Produkt der Isomerisierung der Doppelbindung zum Ester **145** erhalten. Die Struktur des (*Z*)-Makrozyklus **114** konnte mittels ¹H-NMR-Spektroskopie und LC/MS bestätigt werden. Eine vollständige Strukturanalyse wurde nicht durchgeführt, da beide Produkte nicht voneinander getrennt werden konnten. Der (*E*)-Makrozyklus **145** war bereits bekannt und charakterisiert (siehe vorherige Seite).

¹**H-NMR** (400 MHz, CDCl₃) δ : 7.39-7.22 (m, 7H, H_{Ar}), 6.89-6.86 (m, 2H, H_{Ar}), 5.49-5.46 (1H, m, H-9), 5.27 (t, 1H, *J*= 7.2 Hz, H-3), 5.22-5.17 (1H, m, H-11), 4.83 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.72 (1H, d, *J*= 11.6 Hz, H_{Bn}), 4.70 (1H, d, *J*= 6.9 Hz, H_{SEM}), 4.69 (1H, d, *J*= 6.5 Hz, H_{SEM}), 4.66 (1H, d, *J*= 6.9 Hz, H_{SEM}), 4.64 (1H, d, *J*= 6.5 Hz, H_{SEM}), 4.57 (1H, d, *J*= 11.2 Hz, H_{Bn}), 4.47 (1H, d, *J*= 11.2 Hz, H_{Bn}), 4.05 (1H, d, *J*= 9.2 Hz, H-7), 3.80 (3H, s, H_{ArOMe}), 3.73-3.47 (6H, m, H-5,12, H_{SEM}), 3.25 (1H, dd, *J*= 9.2, 5.0 Hz, H-6), 2.66 (1H, dd, *J*= 13.8, 11.5 Hz, H-10), 2.53-2.46 (1H, m, H-4), 2.27-2.20 (1H, m, H-4), 2.18-2.14 (1H, m, H-10), 1.79 (3H, s, H-14), 1.59 (3H, s, H-15), 1.66 (3H, d, *J*= 6.4 Hz, H-13), 0.95-0.84 (4H, m, H_{SEM}), 0.00 (9H, s, H_{SEM}), -0.04 (9H, s, H_{SEM}) ppm.

5.2.7 Intramolekulare Olefinierung

Ethyl-(2*E*,5*S*,6*R*,7*R*,8*E*,11*R*,12*R*)-6-(benzyloxy)-11-([2-{diethoxyphosphoryl}propanoyl]oxy)-12-([4-methoxybenzyl]oxy)-2,8-dimethyl-5,7-bis([2-{trimethylsilyl}ethoxy]methoxy)trideca-2,8-dienoat (167)

Zu dem TBS-Ether **111** (123 mg, 0.15 mmol, 1.0 Äq.) in einem Kunststoffgefäß bei 0 °C wurde HF·Py (0.37 ml HF·Py, 1.09 ml Pyridin) in THF (1.90 ml) gegeben. Das Reaktionsgemisch wurde für 27 h bei RT gerührt. Zu der Reaktionslösung wurde bei 0 °C zunächst wässrige gesättigte NaHCO₃-Lösung gegeben. Die Reaktion wurde nun durch Zugabe von festem NaHCO₃ bis zum Ausbleiben einer Gasentwicklung neutralisiert. Die wässrige Phase wurde mit Et₂O extrahiert, die vereinigten organischen Phasen getrocknet (NaSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **112** (75.2 mg, 0.10 mmol, 75 %) wurde nach säulenchromatographischer Reinigung des Rückstands (Zusatz: NEt₃) als farbloses Öl gewonnen. Ein Teil des Produkts wurde direkt in der nächsten Reaktion eingesetzt.

Zu einer Lösung von 2-(Diethoxyphosphoryl)propionsäure (**153**) (10.5 mg, 17 μ mol, 3.0 Äq.) in CH₂Cl₂ (0.5 ml) wurden bei 0 °C DMAP (6.1 mg, 50 μ mol, 3 Äq.) und DCC (10.3 mg, 50 μ mol, 3.0 Äq.) gegeben. Nach 2 h bei 0 °C wurde der in CH₂Cl₂ (0.3 ml) gelöste Alkohol **112** (12.2 mg, 17 μ mol, 1.0 Äq.) zugetropft. Das Reaktionsgemisch wurde für 20 h bei RT gerührt. Das Lösungsmittel wurde unter vermindertem Druck entfernt und das Produkt **167** (14.3 mg, 15 μ mol, 93 %) nach säulenchromatographischer Reinigung des Rückstands (4:1 bis 1:1) als farbloses Öl gewonnen.

Das Produktgemisch lag als 1:1 Diastereomerengemisch an C-15 vor, welches am doppelten Signalsatz in den ¹H-NMR- sowie ¹³C-NMR-Spektren zu erkennen ist. Im ¹³C-NMR-Spektrum sind zusätzlich die Kopplungskonstanten der Kohlenstoff-Phosphor Kopplung angegeben.

¹**H-NMR** (400 MHz, CDCl₃) & 7.34-7.22 (14H, m, H_{Ar}), 6.87-6.85 (4H, m, H_{Ar}), 5.77-5.66 (2H, m, H-2,2), 5.44 (1H, t, *J*= 7.8 Hz, H-8), 5.42 (1H, t, *J*= 7.5 Hz, H-8), 5.03-4.98 (4H, m, H-1,1), 4.98-4.91 (2H, m, H-10,10), 4.73 (1H, d, *J*= 11.3 Hz, H_{Bn}), 4.73 (1H, d, *J*= 11.3 Hz, H_{Bn}), 4.71 (1H, d, J= 11.3 Hz, H_{Bn}), 4.70 (1H, d, *J*= 7.0, H_{SEM}), 4.70 (1H, d, *J*= 7.0, H_{SEM}), 4.67 (1H, d, *J*= 6.8 Hz, H_{SEM}), 4.66 (1H, d, *J*= 6.8 Hz, H_{SEM}), 4.66 (1H, d, *J*= 11.3 Hz, H_{Bn}), 4.59 (1H, d, *J*= 6.8 Hz, H_{SEM}), 4.59 (1H, d, *J*= 6.8 Hz, H_{SEM}), 4.66 (1H, d, *J*= 6.8 Hz, H_{SEM}), 4.66 (1H, d, *J*= 11.3 Hz, H_{Bn}), 4.59 (1H, d, *J*= 6.8 Hz, H_{SEM}), 4.51 (1H, d, *J*= 6.8 Hz, H_{SEM}), 4.42 (1H, d, *J*= 11.4 Hz, H_{Bn}), 4.38 (1H, d, *J*= 11.3 Hz, H_{Bn}), 4.19 (2H, d, *J*= 5.6 Hz, H-6,6), 4.16-4.08 (8H, m, H_{OEt}), 3.79 (6H, s, H_{ArOMe}), 3.78-3.71 (4H, m, H_{SEM}), 3.66-3.59 (4H, m, H-4,4,11,11), 3.51-3.44 (6H, m, H-5,5, H_{SEM}), 3.02 (2H, dq, *J*= 23.1, 7.3 Hz, H-15,15), 2.57-2.46 (2H, m, H-3,3,9,9), 2.41-2.28 (2H, m, H-3,3,9,9), 1.55 (3H, s, H-13), 1.54 (3H, s, H-13), 1.44 (3H, dd, *J*= 7.3, 6.0 Hz, H-16), 1.40 (3H, dd, *J*= 7.3, 6.0 Hz, H-16), 1.30-1.26 (12H, m, H_{OEt}), 1.19 (3H, d, *J*= 6.4 Hz, H-12), 1.15 (3H, d, *J*= 6.4 Hz, H-12), 0.92-0.83 (8H, m, H_{SEM}), -0.00 (9H, s, H_{SEM}), -0.00 (9H, s, H_{SEM}), -0.02 (18H, s, H_{SEM}) ppm.

¹³**C-NMR** (100 MHz, CDCl₃) δ: 169.6 (q, [d, *J*= 5.0 Hz], C-14), 169.3 (q, [d, *J*= 5.0 Hz], C-14), 159.3 (q, C_{Ar}), 138.8 (q, C_{Ar}), 138.8 (q, C_{Ar}), 135.0 (t, C-1), 134.9 (q, C-7), 134.9 (q, C-7), 134.8 (t, C-1), 130.7 (q, C_{Ar}), 130.7 (q, C_{Ar}), 129.4 (t, C_{Ar}), 129.3 (t, C_{Ar}), 128.5 (t, C_{Ar}), 128.4 (t, C_{Ar}), 128.3 (t, C_{Ar}), 127.6 (t, C_{Ar}), 127.6 (t, C_{Ar}), 125.0 (t, C-8), 124.7 (t, C-8), 117.5 (t, C-1), 117.5 (t, C-1), 113.9 (t, C_{Ar}), 113.9 (t, C_{Ar}), 96.2 (s, C_{SEM}), 96.1 (s, C_{SEM}), 92.3 (s, C_{SEM}), 92.2 (s, C_{SEM}), 81.4 (t, C-6), 81.3 (t, C-6), 80.7 (t, C-5), 80.5 (t, C-5), 78.7 (t, C-4), 78.6 (t, C-4), 76.6 (t, C-10), 76.5 (t, C-10), 75.1 (s, C_{Bn}), 75.1 (s, C_{Bn}), 73.7 (t, C-11), 73.5 (t, C-11), 70.9 (s, C_{Bn}), 70.8 (s, C_{Bn}), 65.8 (s, C_{SEM}), 65.4 (s, C_{SEM}), 62.8 (s, [d, *J*= 6.2 Hz], C_{OEt}), 62.7 (s, [d, *J*= 6.2 Hz], C_{OEt}), 55.4 (p, C_{ArOMe}), 40.2 (t, [d, *J*= 43.5 Hz], C-15), 38.9 (t, [d, *J*= 43.5 Hz], C-15), 36.4 (s, C-3), 36.3 (s, C-3), 28.0 (s, C-9), 27.7 (s, C-9), 18.2 (s, C_{SEM}), 18.2 (s, C_{SEM}), 16.5 (p, C_{OEt}), 16.5 (p, C_{OEt}), 15.4 (p, C-12), 15.1 (p, C-12), 13.0 (p, C-13), 13.0 (p, C-13), 12.0 (p, [d, *J*= 5.1 Hz], C-16), 11.9 (p, [d, *J*= 5.1 Hz], C-16), -1.3 (p, C_{SEM}), -1.3 (p, C_{SEM}) -1.3 (p, C_{SEM}), ppm. [α]_ρ²⁵ = -17.1° (c=1.43, CH₂Cl₂).

HRMS (ESI): m/z berechnet für C₄₇H₇₉O₁₂PSi₂Na [M + Na]⁺: 945.4745; gefunden 945.4745.

5.2.8 Endspiel

(3*S*,4*E*,6*S*,7*R*,8*R*,9*E*,12*R*)-12-Acetyl-7-(benzyloxy)-3,9-dimethyl-6,8-bis([2-{trimethylsilyl}ethoxy]methoxy)oxacyclododeca-4,9-dien-2-on (170)

Zu einer auf 0 °C gekühlten Lösung des Startmaterials **145** (285 mg, 0.37 mmol, 1.0 Äq.) in einer Mischung von CH_2Cl_2/pH 7-Phosphatpuffer-Lösung (10:1, 4.0 ml) wurde langsam DDQ (252 mg, 1.11 mmol, 3.0 Äq.) gegeben. Das Intermediat **169** wurde nach einer Reaktionszeit von 2 h bei 0 °C und direkt anschließender säulenchromatographischer Reinigung der Lösung (1:1, Zusatz: NEt₃) als farbloses Öl gewonnen und direkt in der folgenden Reaktion eingesetzt.

Der Alkohol **169** wurde in CH₂Cl₂ (4.0 ml) gelöst und nach Zugabe von festem NaHCO₃ (621 mg, 7.40 mmol, 20 Äq.) und DMP (785 mg, 1.85 mmol, 5.0 Äq.) für 90 min gerührt. Die Reaktion wurde durch Zugabe von festem NaHCO₃, wässriger gesättigter NaHCO₃- sowie Na₂S₂O₃-Lösungen beendet, die wässrige Phase mit Et₂O extrahiert, die vereinigten organischen Phasen getrocknet (MgSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **170** (131 mg, 0.20 mmol, 55 %) wurde nach säulenchromatographischer Reinigung des Rückstands (10:1 bis 4:1) als farbloses Öl als Gemisch zweier Diastereomere (6:1) gewonnen.

¹**H-NMR** (400 MHz, CDCl₃) δ: 7.37-7.21 (5H, m, H_{Ar}), 5.55 (1H, dd, *J*= 15.6, 7.9 Hz, H-3), 5.41 (1H, ddd, *J*= 15.6, 7.9, 0.7 Hz, H-4), 5.25-5.21 (1H, m, H-9), 5.15 (1H, dd, *J*= 12.0, 3.4 Hz, H-11), 4.87 (1H, d, *J*= 11.1 Hz, H_{Bn}), 4.74 (1H, d, *J*= 11.1 Hz, H_{Bn}), 4.68 (1H, d, *J*= 6.8 Hz, H_{SEM}), 4.66 (1H, d, *J*= 6.8 Hz, H_{SEM}), 4.60 (2H, s, H_{SEM}), 4.01 (1H, dd, *J*= 8.1, 7.9 Hz, H-5), 3.89 (1H, d, *J*= 9.8 Hz, H-7), 3.66-3.38 (4H, m, H_{SEM}), 3.64 (1H, dd, *J*= 9.9, 7.9 Hz, H-6), 3.27 (1H, dq, *J*= 7.2, 7.0 Hz, H-2), 2.70-2.61 (1H, m, H-10), 2.52-2.47 (1H, m, H-10), 2.19 (3H, s, H-13), 1.63 (3H, s, H-15), 1.23 (3H, d, *J*= 6.8 Hz, H-14), 0.87-0.81 (4H, m, H_{SEM}), -0.07 (9H, s, H_{SEM}), -0.07 (9H, s, H_{SEM}) ppm.

¹³C-NMR (125 MHz, CDCl₃) δ: 205.3 (q, C-12), 173.8 (q, C-1), 139.3 (q, C_{Ar}), 136.4 (q, C-8), 133.4 (t, C-3), 128.8 (t, C-4), 128.3 (t, C_{Ar}), 127.7 (t, C_{Ar}), 127.3 (t, C_{Ar}), 126.6 (t, C-9), 92.9 (s, C_{SEM}), 91.7 (s, C_{SEM}), 82.7 (t, C-7), 82.7 (t, C-6), 79.0 (t, C-5), 76.3 (t, C-11), 75.9 (s, C_{Bn}), 65.5 (s, C_{SEM}), 65.2 (s, C_{SEM}), 42.6 (t, C-2), 29.8 (s, C-10), 26.4 (p, C-13), 18.1 (s, C_{SEM}), 18.1 (s, C_{SEM}), 16.0 (p, C-14), 12.8 (p, C-15), -1.3 (p, C_{SEM}), -1.3 (p, C_{SEM}) ppm.

 $[\alpha]_D^{25} = +21.3^{\circ} (c=0.30, CH_2Cl_2).$

HRMS (ESI): m/z berechnet für C₃₄H₅₆O₈Si₂Na [M + Na]⁺: 671.3411; gefunden 671.3410.

(3*S*,4*E*,6*S*,7*R*,8*R*,9*E*,12*R*)-7-(Benzyloxy)-12-([*Z*]-but-2-en-2-yl)-3,9-dimethyl-6,8-bis([2-{trimethylsilyl}ethoxy]methoxy)oxacyclododeca-4,9-dien-2-on (172)

Zu Ethyltriphenylphosphoniumbromid (453 mg, 1.22 mmol, 6.0 Äq.) in 1,2-Dimethoxyethan/HMPA (10:1, 2.0 ml) wurde langsam KHDMS (0.5 \bowtie Lösung in PhMe, 2.03 ml, 5.0 Äq.) gegeben. Das tiefrote Gemisch wurde für 10 min auf RT gerührt und anschließend auf -50 °C gekühlt und für weitere 5 min gerührt. Im Folgenden wurde das Keton **170** (131 mg, 0.20 mmol, 1.0 Äq.) in 1,2-Dimethoxyethan (0.4 ml) langsam zu der Reaktionslösung getropft. Die Reaktion wurde nach 20 min durch Zugabe von pH 7-Phosphatpuffer-Lösung beendet, die wässrige Phase mit Et₂O extrahiert, die vereinigten organischen Phasen getrocknet (MgSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **172** (93.6 mg, 0.14 mmol, 70 %) wurde nach säulenchromatographischer Reinigung des Rückstands (10:1 bis 4:1) als farbloses Öl als Gemisch zweier Diastereomere (6:1) gewonnen.

¹**H-NMR** (400 MHz, CDCl₃) & 7.37-7.36 (2H, m, H_{Ar}), 7.30-7.21 (3H, m, H_{Ar}), 5.69 (1H, dd, J= 12.1, 2.9 Hz, H-11) 5.55 (1H, dd, J= 15.6, 7.8 Hz, H-3), 5.41 (1H, ddd, J= 15.6, 8.0, 0.7 Hz, H-4), 5.39-5.36 (1H, m, H-13), 5.32-5.28 (1H, m, H-9), 4.89 (1H, d, J= 10.9 Hz, H_{Bn}), 4.75 (1H, d, J= 10.9 Hz, H_{Bn}), 4.69 (1H, d, J= 6.7 Hz, H_{SEM}), 4.67 (1H, d, J= 6.7 Hz, H_{SEM}), 4.63 (1H, d, J= 6.7 Hz, H_{SEM}), 4.60 (1H, d, J= 6.7 Hz, H_{SEM}), 4.01 (1H, dd, J= 8.0, 8.0 Hz, H-5), 3.90 (1H, d, J= 9.9 Hz, H-7), 3.67-3.58 (2H, m, H-6, H_{SEM}), 3.66 (1H, d, J= 9.9, 8.0 Hz, H-6), 3.54-3.48 (1H, m, H_{SEM}), 3.44-3.39 (1H, m, H_{SEM}), 3.13 (1H, dq, J=7.8, 6.6 Hz, H-2), 2.81 (1H, dt, J= 14.3, 11.5 Hz, H-10), 1.96-1.93 (1H, m, H-10), 1.71 (3H, dq, J= 8.4, 1.4 Hz, H-14), 1.71 (3H, dq, J= 1.6, 1.4 Hz, H-17), 1.65 (3H, s, H-16), 1.17 (3H, d, J= 6.6 Hz, H-15), 0.87-0.82 (4H, m, H_{SEM}), -0.07 (18H, s, H_{SEM}) ppm.

NOESY Kontakte zwischen H-11 und H-14. Diese lassen sich nur durch eine (*Z*)-Konfiguration erklären. ¹³C-NMR (100 MHz, CDCl₃) δ : 173.9 (s, C-1), 139.5 (q, C_{Ar}), 134.8 (q, C-8), 133.9 (t, C-3), 133.7 (q, C-12), 128.7 (t, C-9), 128.3 (t, C_{Ar}), 128.2 (C-4), 127.7 (t, C_{Ar}), 127.3 (t, C_{Ar}), 123.3 (t, C-13), 93.0 (s, C_{SEM}), 91.5 (s, C_{SEM}), 82.9 (t, C-6), 82.9 (t, C-7), 79.3 (t, C-5), 75.9 (s, C_{Bn}), 70.8 (t, C-11), 65.5 (s, C_{SEM}), 65.1 (s, C_{SEM}), 42.9 (t, C-2), 31.9 (s, C-10), 18.3 (p, C-17), 18.2 (s, C_{SEM}), 18.1 (s, C_{SEM}), 16.1 (p, C-15), 13.1 (p, C-14), 12.6 (p, C-16), -1.3 (p, C_{SEM}), -1.3 (p, C_{SEM}) ppm.

$$[\alpha]_D^{21} = -13.2^\circ (c = 0.19, CH_2Cl_2).$$

HRMS (ESI): m/z berechnet für C₃₆H₆₀O₇Si₂Na [M + Na]⁺: 683.3775; gefunden 683.3774.

(3*S*,4*E*,6*S*,7*R*,8*R*,9*E*,12*R*)-12-([*Z*]-But-2-en-2-yl)-3,9-dimethyl-2-oxo-6,8-bis([2-{trimethylsilyl}ethoxy]methoxy)oxacyclododeca-4,9-dien-7-yl 3-methylbutanoat (177)

Zu einer Lösung des Benzylethers **172** (22.4 mg, 34 μ mol, 1.0 Äq.) in einer Mischung von CH₂Cl₂/pH 7-Phosphatpuffer-Lösung (10:1, 0.33 ml) wurde DDQ (38.5 mg, 0.17 mmol, 5.0 Äq.) gegeben und auf 35 °C für 20 h gerührt. Der Alkohol **174** wurde direkt aus dem Reaktionsgemisch nach säulenchromatographischer Reinigung (4:1) erhalten und in der nächsten Stufe eingesetzt.

Zu einer Lösung des Alkohols **174** in CH₂Cl₂ (0.4 ml) wurde DIPEA (0.09 ml, 0.51 mmol, 15 Äq.), DMAP (katalytisch) und Isovaleriansäureanhydrid (0.03 ml, 0.17 mmol, 5.0 Äq.) gegeben. Die Mischung wurde für 3 d bei RT gerührt und anschließend durch Zugabe wässriger gesättigter NaHCO₃-Lösung beendet, die wässrige Phase mit Et₂O extrahiert, die vereinigten organischen Phasen getrocknet (MgSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **177** (15.1 mg, 23 µmol, 68 % über 2 Stufen) wurde nach säulenchromatographischer Reinigung des Rückstands (10:1 bis 4:1) als gelbliches Öl eines Gemisches zweier Diastereomere (10:1) gewonnen.

¹**H-NMR** (400 MHz, CDCl₃) & 5.68 (1H, dd, *J*= 11.7, 2.9 Hz, H-11), 5.58 (1H, dd, *J*= 15.5, 7.6 Hz, H-3), 5.40-5.30 (4H, m, H-4,6,9,13), 4.64 (1H, d, *J*= 6.8 Hz, H_{SEM}), 4.56 (1H, d, *J*= 1.7 Hz, H_{SEM}), 4.54 (1H, d, *J*= 1.7 Hz, H_{SEM}), 4.46 (1H, d, *J*= 6.8 Hz, H_{SEM}), 4.03 (1H, t, *J*= 8.7 Hz, H-5), 3.87 (1H, d, *J*= 10.2 Hz, H-7), 3.73-3.65 (2H, m, H_{SEM}), 3.46 (1H, dt, *J*= 7.4, 9.5 Hz, H_{SEM}), 3.39 (1H, dt, *J*= 6.7, 9.9 Hz, H_{SEM}), 3.15 (1H, dq, *J*= 7.6, 7.1 Hz, H-2), 2.82 (1H, dt, *J*= 14.3, 11.7 Hz, H-10), 2.22-2.14 (3H, m, H-2',3'), 1.98-1.94 (1H, m, H-10), 1.72-1.69 (6H, m, H-14,17), 1.68 (3H, s, H-16), 1.18 (3H, d, *J*= 7.1 Hz, H-15), 0.97 (6H, d, *J*= 6.1 Hz, H-4'), 0.94-0.83 (4H, m, H_{SEM}), 0.03 (9H, s, H_{SEM}), 0.02 (9H, s, H_{SEM}) ppm.

¹³C-NMR (100 MHz, CDCl₃) & 173.7 (q, C-1), 172.5 (q, C-1'), 136.1 (t, C-3), 133.7 (q, C-8), 133.5 (q, C-12), 130.2 (t, C-9), 127.2 (t, C-4), 123.4 (t, C-13), 91.4 (s, C_{SEM}), 90.3 (s, C_{SEM}), 79.3 (t, C-7), 76.5 (t, C-5), 73.0 (t, C-6), 70.8 (t, C-11), 65.4 (s, C_{SEM}), 65.1 (s, C_{SEM}), 43.7 (s, C-2'), 43.2 (t, C-2), 31.9 (s, C-10), 25.5 (p, C-3'), 22.6 (p, C-4'), 22.6 (p, C-4'), 18.3 (C-17), 18.2 (s, C_{SEM}), 18.2 (s, C_{SEM}), 16.0 (p, C-15), 13.1 (p, C-14), 12.4 (p, C-16), -1.1 (p, C_{SEM}), -1.2 (p, C_{SEM}) ppm.

 $[\alpha]_{D}^{24} = -29.2^{\circ} (c = 0.12, CH_2CI_2).$

HRMS (ESI): m/z berechnet für C₃₄H₆₂O₈Si₂Na [M + Na]⁺: 677.3881; gefunden 671.3876.

(4E,6S,7R,8R,9E,12R)-7-(Benzyloxy)-12-([Z]-but-2-en-2-yl)-6,8-dihydroxy-3,9-dimethyloxacyclododeca-4,9-dien-2-on (180)

ZnCl₂ (29.3 mg, 0.22 mmol) wurde mit Thionylchlorid (2.0 ml) versetzt und für 2 h unter Rückfluss erhitzt. Nach Entfernen des Thionylchlorids unter vermindertem Druck wurde der Rückstand in Et₂O (2.0 ml) und EtSH (0.3 ml) gelöst. Die Lösung wurde auf 0 °C gekühlt und das in Et₂O (2x 0.5 ml) gelöste Startmaterial **172** (71.1 mg, 108 μmol, 1.0 Äq.) zugetropft. Das Reaktionsgemisch wurde bei für 35 min bei 0 °C gerührt und anschließend durch Zugabe wässriger gesättigter NaHCO₃-Lösung beendet, die wässrige Phase mit EtOAc extrahiert, die vereinigten organischen Phasen getrocknet (NaSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **180** (35.6 mg, 89 μmol, 83 %) wurde nach säulenchromatographischer Reinigung des Rückstands (4:1 bis 1:1) als Öl eines Gemisches zweier Diastereomere (10:1) gewonnen.

¹**H-NMR** (400 MHz, CDCl₃) δ: 7.40-7.33 (5H, m, H_{Ar}), 5.72 (1H, dd, *J*= 12.0, 3.1 Hz, H-11), 5.61 (1H, dd, *J*= 15.6, 7.3 Hz, H-3), 5.50 (1H, dd, *J*= 15.6, 7.5 Hz, H-4), 5.40-5.33 (2H, m, H-9,13), 4.90 (1H, d, *J*= 10.9 Hz, H_{Bn}), 4.85 (1H, d, *J*= 10.9 Hz, H_{Bn}), 4.04 (1H, dd, *J*= 8.6, 7.5 Hz, H-5), 3.86 (1H, d, *J*= 9.5 Hz, H-7), 3.49 (1H, dd, *J*= 9.5, 8.6 Hz, H-6), 3.12 (1H, dq, *J*= 7.3, 6.9 Hz, H-2), 2.85-2.76 (1H, ddd, *J*= 14.5, 12.0, 11.1, H-10), 2.80 (1H, br, H_{OH}), 2.28 (1H, br, H_{OH}), 2.01-1.91 (1H, m, H-10), 1.73-1.69 (9H, m, H-14,16,17), 1.18 (3H, d, *J*= 6.9 Hz, H-15) ppm.

¹³C-NMR (100 MHz, CDCl₃) δ: 173.8 (q, C-1), 137.6 (q, C_{Ar}), 136.4 (q, C-8), 133.9 (t, C-3), 133.4 (q, C-12), 129.9 (t, C-4), 128.8 (t, C_{Ar}), 128.5 (t, C_{Ar}), 128.3 (t, C-9), 128.1 (t, C_{Ar}), 123.3 (t, C-13), 84.0 (t, C-6), 78.1 (t, C-7), 76.1 (s, C_{Bn}), 75.3 (t, C-5), 70.8 (t, C-11), 43.0 (t, C-2), 31.9 (s, C-10), 18.2 (p, C-17), 15.8 (p, C-15), 13.0 (p, C-14), 12.0 (p, C-16) ppm.

 $[\alpha]_D^{24} = -2.4^\circ (c = 0.25, CH_2Cl_2).$

HRMS (ESI): m/z berechnet für C₂₄H₃₂O₅Na [M + Na]⁺: 423.2147; gefunden 423.2156.

(4E,6S,7S,8R,9E,12R)-7-(Benzyloxy)-12-([Z]-but-2-en-2-yl)-8-hydroxy-3,9-dimethyl-6-([2-{trimethyl-silyl}ethoxy]methoxy)oxacyclododeca-4,9-dien-2-on (181)

Zu einer Lösung des Startmaterials **172** (32.7 mg, 50 μ mol, 1.0 Äq.) in CH₂Cl₂ (3.3 ml) wurde CSA (11.9 mg, 50 μ mol, 1.0 Äq.) gegeben und für 3 d bei RT gerührt. Das Produktgemisch wurde durch direkte säulenchromatographische Reinigung (10:1 bis 4:1) der Lösung als Mischung von an C-7 und C-5 entschützten Isomeren in einem Verhältnis von 2:1 erhalten.

Das an C-7 entschützte Produkt **181** (8.3 mg, 16 μ mol, 31 %) konnte durch Reinigung des Produktgemisches mittels semipräparativer HPLC (Gradient: 0 bis 70 min 50:50 MeOH/H₂O linear zu 100:0 MeOH/H₂O, dann 10 min 100:0 MeOH/H₂O) von dem an C-5 entschützten Produkt **182** (4.0 mg, 8 μ mol, 15 %) getrennt werden. Es wurde nur das gewünschte, an C-7 entschützte, Produkt **181** charakterisiert. Produkt **181** lag laut ¹H-NMR-spektroskopischer Analyse als Diastereomerengemisch (>10:1) vor.

¹**H-NMR** (400 MHz, CDCl₃) δ: 7.37-7.29 (5H, m, H_{Ar}), 5.73 (1H, dd, *J*= 12.0, 3.0 Hz, H-11), 5.55 (1H, dd, *J*= 15.3, 8.0 Hz, H-3), 5.38-5.33 (2H, m, H-9,13), 5.32 (1H, ddd, *J*= 15.3, 8.3, 1.0 Hz, H-4), 5.10 (1H, d, *J*= 11.2 Hz, H_{Bn}), 4.72 (1H, d, *J*= 6.8 Hz, H_{SEM}), 4.69 (1H, d, *J*= 11.2 Hz, H_{Bn}), 4.66 (1H, d, *J*= 6.8 Hz, H_{SEM}), 4.08 (1H, dd, *J*= 8.6, 8.3 Hz, H-5), 3.78 (1H, d, *J*= 9.5, H-7), 3.75-3.69 (1H, m, H_{SEM}), 3.58 (1H, dd, *J*= 9.5, 8.6 Hz, H-6), 3.56-3.50 (1H, m, H_{SEM}), 3.15-3.09 (1H, m, H-2), 2.85-2.75 (1H, m, H-10), 1.96-1.92 (1H, m, H-10), 1.72-1.69 (6H, m, H-14,17), 1.64 (3H, t, *J*= 1.3 Hz, H-16), 1.18 (3H, d, *J*= 6.9 Hz, H-15), 0.92-0.89 (2H, m, H_{SEM}), 0.07 (9H, s, H_{SEM}) ppm.

¹³**C-NMR** (100 MHz, CDCl₃) δ: 173.8 (q, C-1), 138.2 (q, C_{Ar}), 136.4 (q, C-8), 135.1 (t, C-3), 133.6 (q, C-12), 128.8 (t, C_{Ar}), 128.6 (t, C-9), 128.1 (t, C_{Ar}),128.0 (t, C_{Ar}), 127.8 (t, C-4), 123.5 (t, C-13), 91.8 (s, C_{SEM}), 82.4 (t, C-6), 79.6 (t, C-5), 77.8 (t, C-7), 76.3 (s, C_{Bn}), 70.7 (t, C-11), 65.7 (s, C_{SEM}), 43.2 (t, C-2), 32.1 (s, C-10), 18.3 (p, C-17), 18.2 (s, C_{SEM}), 16.3 (p, C-15), 13.1 (p, C-14), 12.1 (p, C-16), -1.2 (p, C_{SEM}) ppm.

 $[\alpha]_D^{24} = +5.0^\circ (c = 0.16, CH_2Cl_2).$

HRMS (ESI): m/z berechnet für C₃₀H₄₆O₆Na [M + Na]⁺: 553.2961; gefunden 553.2964.

(2*R*,3*R*,4*S*,5*S*)-2-(Acetoxymethyl)-5-([{2*R*,4*E*,6*R*,7*R*,8*S*,9*E*}-7-{benzyloxy}-2-{(*Z*)-but-2-en-2-yl}-5,11dimethyl-12-oxo-8-{(2-[trimethylsilyl]ethoxy)methoxy}oxacyclododeca-4,9-dien-6-yl]oxy)tetrahydrofuran-3,4-diyl diacetat (189)

AgOTf wurde als AgOTf-Stammlösung (0.05 ml, 6 µmol, 2.0 Äq., [143 mg AgOTf in 5.0 ml Et₂O]) vorgelegt. Nach Entfernen des Lösungsmittels unter vermindertem Druck wurde CH_2Cl_2 (0.1 ml) zugegeben und auf -40 °C gekühlt. Im Folgenden wurden MS (4Å), der Alkohol **181** (1.6 mg, 3 µmol, 1.0 Äq.) in CH_2Cl_2 (0.2 ml) und 2,3,5-Tri-*O*-acetyl-D-arabinofuranosyl-trichloracetimidat (**188**) (2.5 mg, 6 µmol, 2.0 Äq.) in CH_2Cl_2 (0.1 ml) zugegeben. Die Suspension wurde für 1 h bei -40 °C und anschließend für 24 h bei RT gerührt. Die Reaktion wurde durch Zugabe wässriger gesättigter NaHCO₃-Lösung beendet, die wässrige Phase mit EtOAc extrahiert, die vereinigten organischen Phasen getrocknet (NaSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Nach säulenchromatographischer Reinigung des Rückstands (4:1 bis 1:1) wurde ein Gemisch (1.1 mg) bestehend aus dem Produkt **189** und einer unbekannten Verbindung erhalten. Deshalb wurde im Folgenden nur das ¹H-NMR-Spektrum ausgewertet.

¹**H-NMR** (500 MHz, CDCl₃) δ : 7.34-7.20 (5H, m, H_{Ar}), 6.21 (1H, d, *J*= 4.2 Hz, H-1"), 5.68 (1H, dd, *J*= 12.0, 2.8 Hz, H-11), 5.54 (1H, dd, *J*= 15.5, 7.9 Hz, H-3), 5.39-5.29 (3H, m, H-4,9,13), 5.05 (1H, d, *J*= 4.2 Hz, H-2"), 4.84-4.78 (3H, m, H-3", H_{Bn}), 4.65 (2H, s, H_{SEM}), 4.37-4.32 (1H, m, H-5"), 4.13 (1H, dd, *J*= 11.9, 6.0 Hz, H-5"), 4.05-3.99 (3H, m, H-5,7,4"), 3.69-3.63 (1H, m, H-6), 3.62-3.56 (1H, m, H_{SEM}), 3.51-3.45 (1H, m, H_{SEM}), 3.12 (1H, dq, *J*= 7.1, 7.0 Hz, H-2), 2.79 (1H, ddd, *J*= 14.3, 11.5, 11.5 Hz, H-10), 2.07 (3H, s, H_{Ac}), 1.98 (3H, s, H_{Ac}), 1.94-1.88 (1H, m, H-10), 1.90 (3H, s, H_{Ac}), 1.73-1.68 (9H, m, H-14,16,17), 1.17 (1H, d, *J*= 7.0 Hz, H-15) 0.89-0.82 (2H, m, H_{SEM}), -0.09 (9H, s, H_{SEM}) ppm. **HRMS** (ESI): *m/z* berechnet für C₄₁H₆₀O₁₃SiNa [M + Na]⁺: 811.3701; gefunden 811.3708. (2*R*,3*R*,4*S*,5*S*)-2-(Acetoxymethyl)-5-([{2*R*,4*E*,6*R*,7*R*,8*S*,9*E*}-7-{benzyloxy}-2-{(*Z*)-but-2-en-2-yl}-8-hydroxy-5,11-dimethyl-12-oxooxacyclododeca-4,9-dien-6-yl]oxy)tetrahydrofuran-3,4-diyl diacetat (190)

(2*R*,3*R*,4*S*,5*S*)-2-(Acetoxymethyl)-5-([{4*E*,6*S*,7*S*,8*R*,9*E*,12*R*}-7-{benzyloxy}-12-{(*Z*)-but-2-en-2-yl}-8hydroxy-3,9-dimethyl-2-oxooxacyclododeca-4,9-dien-6-yl]oxy)tetrahydrofuran-3,4-diyl diacetat (191)

AgOTf wurde als AgOTf-Stammlösung (0.52 ml, 65 µmol, 1.2 Äq., [143 mg AgOTf in 5.0 ml Et₂O]) vorgelegt. Nach Entfernen des Lösungsmittels unter vermindertem Druck wurde der Alkohol **180** (21.6 mg, 54 µmol, 1.0 Äq.) in CH₂Cl₂ (0.6 ml) und MS (4Å) zugegeben. Die Suspension wurde für 15 min auf RT gerührt und anschließend auf -40 °C gekühlt. Im Folgenden wurde 2,3,5-Tri-*O*-acetyl-Darabinofuranosyl-trichloracetimidat (**188**) (21.8 mg, 65 µmol, 1.2 Äq.) in CH₂Cl₂ (0.22 ml) zugegeben. Die Suspension wurde für 8 h bei -40 °C gerührt. Der Reaktionsansatz wurde durch Zugabe von NEt₃ beendet und über Kieselgur filtriert. Das Lösungsmittel wurde unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch gereinigt. Das so erhaltene Gemisch bestehend aus Startmaterial **180** und den beiden regioisomeren Produkten **190** und **191** wurde mittels semipräparativer HPLC (Gradient: 0 bis 70 min 60:40 MeOH/H₂O linear zu 90:10 MeOH/H₂O, dann 10 min 100:0 MeOH/H₂O) gereinigt. Das Startmaterial **180** (2.0 mg, 5 µmol, 9 % reisoliert), das gewünschte Regioisomer **190** (1.3 mg, 2 µmol, 4 %) und das unerwünschte Regioisomer **191** (5.4 mg, 8 µmol, 15 %) konnten voneinander getrennt werden.

Die erhaltenen Regioisomere wurden direkt in den folgenden Reaktionen eingesetzt.

(2*R*,3*R*,4*S*,5*S*)-2-(Acetoxymethyl)-5-([{2*R*,4*E*,6*R*,7*S*,9*E*}-7-{benzyloxy}-2-{(*Z*)-but-2-en-2-yl}-5,11-dimethyl-8,12-dioxooxacyclododeca-4,9-dien-6-yl]oxy)tetrahydrofuran-3,4-diyl diacetat (192)

Zu einer Lösung des Alkohols **190** (1.3 mg, 2 μ mol, 1.0 Äq.) in CH₂Cl₂ (0.3 ml) wurden festes NaHCO₃ (2.0 mg, 23 μ mol, 12 Äq.) und DMP (4.2 mg, 10 μ mol, 5.0 Äq.) gegeben. Die Suspension wurde für 24 h bei RT gerührt. Die Reaktion wurde durch Zugabe von festem NaHCO₃, wässriger gesättigter NaHCO₃- sowie Na₂S₂O₃-Lösung beendet, die wässrige Phase mit EtOAc extrahiert, die vereinigten organischen Phasen getrocknet (NaSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **192** (0.5 mg, 1 μ mol, 38 %) wurde nach säulenchromatographischer Reinigung des Rückstands (10:1 bis 4:1) gewonnen. Das Diastereomerenverhältnis konnte aufgrund der geringen Substanzmenge nicht bestimmt werden.

¹**H-NMR** (500 MHz, C_6D_6) & 7.42-7.40 (1H, m, H_{Ar}), 7.24-7.19 (2H, m, H_{Ar}), 7.11-7.06 (2H, m, H_{Ar}), 6.88 (1H, dd, *J*= 15.8, 8.7 Hz, H-3), 6.28 (1H, d, *J*= 15.8, 1.0 Hz, H-4), 5.71 (1H, dd, *J*= 11.9, 2.8 Hz, H-11), 5.61 (1H, s, H-1"), 5.55 (1H, ddd, *J*= 16.0, 1.7, 0.3 Hz, H-2"), 5.24-5.18 (2H, m, H-13,3"), 5.17-5.14 (1H, m, H-9), 4.66 (1H, d, *J*= 11.9 Hz, H_{Bn}), 4.49 (1H, dd, *J*= 11.7, 3.9 Hz, H-5"), 4.43 (1H, d, *J*= 11.9 Hz, H_{Bn}), 4.37 (1H, d, *J*= 8.0 Hz, H-7), 4.31 (1H, ddd, *J*= 5.9, 5.2, 3.9 Hz, H-4"), 4.31 (1H, d, *J*= 8.0 Hz, H-6), 4.24 (1H, dd, *J*= 11.7, 5.8 Hz, H-5"), 2.81-2.75 (1H, m, H-2), 2.59 (1H, ddd, *J*= 14.8, 11.9, 10.4 Hz, H-10), 1.74-1.71 (1H, m, H-10), 1.71-1.70 (3H, m, H-16), 1.66 (3H, s, H_{Ac}), 1.63-1.60 (6H, m, H-14,17), 1.57 (3H, s, H_{Ac}), 1.55 (3H, s, H_{Ac}), 1.02 (3H, d, *J*= 6.8 Hz, H-15) ppm.

¹³**C-NMR** (125 MHz, C_6D_6) & 195.4 (q, C-5), 171.8 (q, C-1), 169.9 (q, C_{Ac}), 169.7 (q, C_{Ac}), 169.3 (q, C_{Ac}), 144.8 (t, C-3), 138.3 (q, C_{Ar}), 134.6 (q, C-8), 133.7 (q, C-12), 129.0 (t, C-4), 128.2 (t, C_{Ar}), 128.1 (t, C-9), 128.0 (t, C_{Ar}), 127.9 (t, C_{Ar}), 123.4 (t, C-13), 106.7 (t, C-1"), 87.2 (t, C-6), 84.4 (t, C-7), 81.9 (t, C-2"), 81.2 (t, C-4"), 78.1 (t, C-3"), 72.7 (s, C_{Bn}), 72.0 (t, C-11), 63.5 (s, C-5"), 41.26 (t, C-2), 32.3 (s, C-10), 20.3 (p, C_{Ac}), 20.2 (p, C_{Ac}), 20.1 (p, C_{Ac}), 18.4 (p, C-17), 14.5 (p, C-15), 14.1 (p, C-14), 12.5 (p, C-16) ppm.

HRMS (ESI): m/z berechnet für C₃₅H₄₄O₁₂Na [M + Na]⁺: 679.2730; gefunden 679.2729.

(2*R*,3*R*,4*S*,5*S*)-2-(Acetoxymethyl)-5-([{4*E*,6*S*,7*R*,9*E*,12*R*}-7-{benzyloxy}-12-{(*Z*)-but-2-en-2-yl}-3,9-dimethyl-2,8-dioxooxacyclododeca-4,9-dien-6-yl]oxy)tetrahydrofuran-3,4-diyl diacetat (193)

Zu einer Lösung des Alkohols **191** (5.4 mg, 8 μ mol, 1.0 Äq.) in CH₂Cl₂ (0.4 ml) wurden festes NaHCO₃ (8.2 mg, 100 μ mol, 12 Äq.) und DMP (17.4 mg, 41 μ mol, 5.0 Äq.) gegeben. Die Suspension wurde für 3 h bei RT gerührt. Die Reaktion wurde durch Zugabe von festem NaHCO₃, wässriger gesättigter NaHCO₃- sowie Na₂S₂O₃-Lösung beendet, die wässrige Phase mit EtOAc extrahiert, die vereinigten organischen Phasen getrocknet (NaSO₄), filtriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **193** (0.8 mg, 1 μ mol, 15 %) wurde nach säulenchromatographischer Reinigung des Rückstands (10:1 bis 4:1) gewonnen. Das Diastereomerenverhältnis konnte aufgrund der geringen Substanzmenge nicht bestimmt werden.

¹**H-NMR** (500 MHz, C_6D_6) & 7.39-7.38 (2H, m, H_{Ar}), 7.21-7.18 (2H, m, H_{Ar}), 7.11-7.07 (1H, m, H_{Ar}), 6.55-6.52 (1H, m, H-9), 5.97, (1H, dd, *J*= 11.8, 3.9 Hz, H-11), 5.65 (1H, ddd, *J*= 15.8, 8.3, 0.7 Hz, H-3), 5.48 (1H, d, *J*= 1.5 Hz, H-2"), 5.39 (1H, ddd, *J*= 15.8, 6.8, 0.6 Hz, H-4), 5.33 (1H, ddd, *J*= 5.5, 1.5, 0.5 Hz, H-3"), 5.23-5.19 (2H, m, H-13,1"), 4.77 (1H, ddd, *J*= 5.5, 5.4, 3.5 Hz, H-4"), 4.72 (1H, d, *J*= 8.0 Hz, H-6), 4.63 (1H, d, *J*= 12.0 Hz, H_{Bn}), 4.60-4.56 (2H, m, H-5,5"), 4.41 (1H, d, *J*= 12.0 Hz, H_{Bn}), 4.29 (1H, dd, *J*= 12.1, 5.4 Hz, H-5"), 2.85-2.79 (1H, m, H-2), 2.43 (1H, ddd, *J*= 14.2, 11.8, 9.1 Hz, H-10), 1.92-1.87 (1H, m, H-10), 1.73 (3H, m, H-16), 1.69 (3H, s, H_{Ac}), 1.68 (3H, s, H_{Ac}), 1.65 (3H, s, H_{Ac}), 1.64-1.61 (6H, m, H-14,17), 1.92-1.87 (1H, m, H-10), 0.97 (3H, d, *J*= 6.8 Hz, H-15) ppm.

¹³**C-NMR** (125 MHz, C_6D_6) δ : 197.9 (q, C-7), 172.8 (q, C-1), 169.9 (q, C_{Ac}), 169.9 (q, C_{Ac}), 169.6 (q, C_{Ac}), 140.1 (t, C-9), 139.7 (q, C-8), 138.6 (q, C_{Ar}), 134.8 (t, C-3), 133.5 (q, C-12), 128.4 (t, C-4), 128.2 (t, C_{Ar}), 128.1 (t, C_{Ar}), 128.0 (t, C_{Ar}), 123.9 (t, C-13), 103.2 (t, C-1"), 82.8 (t, C-2"), 82.7 (t, C-6), 80.9 (t, C-4"), 77.8 (t, C-3"), 76.9 (t, C-5), 72.1 (s, C_{Bn}), 70.4 (t, C-11), 63.1 (s, C-5"), 42.2 (t, C-2), 31.9 (s, C-10), 20.4 (p, C_{Ac}), 20.3 (p, C_{Ac}), 20.1 (p, C_{Ac}), 18.1 (p, C-17), 16.2 (p, C-15), 13.1 (p, C-14), 12.3 (p, C-16) ppm. **HRMS** (ESI): m/z berechnet für $C_{35}H_{44}O_{12}Na$ [M + Na]⁺: 679.2730; gefunden 679.2729.

6 Spektrenanhang

/

-10 ppm

Danksagung

An dieser Stelle möchte ich mich bei allen Menschen bedanken, die in irgendeiner Art an der Ermöglichung dieser Arbeit beteiligt waren. Des Weiteren entschuldige ich mich bei jeder Person, die ich im folgenden Text vergessen habe zu erwähnen oder welcher nicht gebührend gedankt wurde.

Als erstes möchte ich mich bei meinem Doktorvater Prof. Dr. Andreas Kirschning für die freundliche Aufnahme in die Gruppe und die Vergabe des interessanten Themas einer neuen Totalsynthese bedanken. Besonders hervorheben möchte ich vor Allem die große Freiheit und Unterstützung bei der versuchten Synthese der Disciformycine.

Bei Prof. Dr. Markus Kalesse möchte ich mich für die Übernahme des Korreferats bedanken.

Prof. Dr. Thomas Scheper danke ich für die Übernahme des Prüfungsvorsitzes.

Für das gründliche Korrekturlesen der Arbeit möchte ich mich bei Maik Siebek Stahlbart, Egor Geist, Jonas Ammermann und Benjamin Schröder bedanken.

Des Weiteren möchte ich mich bei Dr. Gerald Dräger für seine stete Hilfsbereitschaft, das schnelle Reparieren aller irgendwie defekten technischen Geräte und die Unterstützung beim Modeling bedanken.

Besonderer Dank gilt den Mitarbeitern der NMR- und massenspektrometrischen Abteilungen: Dr. Jörg Fohrer, Dagmar Körtje, Monika Rettstadt, Dr. Gerald Dräger, Roswitha Reichel und Anne Schulz für das Messen diverser Proben.

Dem Sekretariat des Instituts: Monika Griese, Ines Roloff, Kristina Struckmeier und Christine Bartetzko danke ich für die unkomplizierte Hilfe bei organisatorischen Dingen und der angenehmen Atmosphäre in den Sekretariatsräumen. Monika Griese gilt außerdem Dank für die zur Verfügung Stellung selbstgemachter Seife.

Meinen Laborkollegen aus Raum 129, Dr. Gerrit Jürjens, Dr. Franziska Gille und Maik Siebek Stahlbauch, danke ich für die tolle Zeit die wir zusammen im Labor hatten. Bei Gerrit Jürjens möchte ich mich im Speziellen für die gute Zusammenarbeit als Abzugspartner und für das Mentoring bedanken.

Für gemeinsam Doppelkopf oder Durak spielend verbrachte Pausenzeiten möchte ich mich bei: Maik Siebek Stahlfuß, Dr. Gerrit Jürjens, Dr. Franziska Gille, Dr. Jessica Buchholz, Dr. Nadine Kandziora, Jonas Ammermann, Dr. Nazar Pidlypnyi, Dr. Jan Hobbes Hartwig und Egor Geist bedanken. Desweiteren möchte ich mich für den regen und anregenden Austausch von fachlichen Ideen und Gedanken bei Dr. Gerrit Jürjens, Maik Siebek Stahlfaust, Egor Geist, Dr. Liangliang Wang, Dr. Nazar Pidlypnyi, Jonas Ammermann, Dr. Hobbes Hartwig bedanken.

Allgemeiner Dank gilt dem alten und neuen AK Kirschning für diverse Aktivitäten in und außerhalb des Instituts wie Paddeltouren, gemeinsames Grillen, diverse Spieleabende, Radtouren, Jugger und Lasertag spielen.

Schlussendlich möchte ich mich bei meiner Familie bedanken. Ohne die fortwährende Unterstützung meiner Eltern und meines Bruders wäre ein sorgenfreies Studium nicht möglich gewesen. Der größte Dank gilt meiner Frau Hanna, die mir in all den Jahren stets verständnisvoll und unterstützend zur Seite stand.

Lebenslauf

Michael Wolling, geboren am 22.05.1988 in Hannover, Deutschland

Werdegang

12.2013 - 11.2017	Promotion
	Promotion an der Gottfried Wilhelm Leibniz Universität Hannover
	Institut für Organische Chemie, Betreuer: Prof. Dr. A. Kirschning
	Studien zur Totalsynthese von Disciformycin A und B
10.2011 - 10.2013	M.Sc. Wirk- und Naturstoffchemie
	an der Leibniz Universität Hannover
	Masterarbeit: Untersuchungen zur Synthese von Disciformin
10.2012 - 03.2013	ERASMUS Auslandsaufenthalt
	in Cambridge (UK) in der Arbeitsgruppe von Prof. Steven Ley
10.2008 - 09.2011	Studium: B.Sc. Chemie
	an der Leibniz Universität Hannover
	Bachelorarbeit: Synthese von Oxanorbornadien-Bausteinen für die kupfer-
	freie Ligation mit Biomakromolekülen
04.2008 - 08.2008	Industriepraktikum
	bei Solvay Pharmaceuticals Hannover
07.2007 - 04.2008	Zivildienst
	Im Seniorencentrum Godehardistift
07.2007	Abitur
	Abitur an der Wilhelm Raabe Schule Hannover

Aktivitäten

05.2012 - 06.2012	wissenschaftliche Hilfskraft
	am Institut für Organische Chemie der Leibniz Universität Hannover
08.2010 - 06.2011	wissenschaftliche Hilfskraft
	am Institut für Anorganische Chemie der Leibniz Universität Hannover

Veröffentlichungen

- L. Guetzoyan, R. J. Ingham, N. Nikbin, J. Rossignol, <u>M. Wolling</u>, M. Baumert, N. A. Burgess-Brown, C. M. Strain-Damerell, L. Shrestha, P. E. Brennan, O. Fedorov, S. Knappc, S. V. Ley, *MedChemComm* 2014, *5*, 540-546.
- A. Kirschning, F. Gille, <u>M. Wolling</u>, Brook Rearrangement as the Key Step in Domino Reactions, in: Applications of Domino Transformations in Organic Synthesis Vol. 1 (Science of Synthesis), Georg Thieme Verlag Stuttgart-New York, **2015**, 355-448.
- F. Surup, H. Steinmetz, K. Mohr, K. Viehrig, R. Müller, M. Nett, S. Schieferdecker, H. Dahse, <u>M. Wolling</u>, A. Kirschning, EP3166934, **2017**.