Orbifold Jacobian Algebras of Isolated Singularities with Group Action

Von der Fakultät für Mathematik und Physik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades
Doktorin der Naturwissenschaften
Dr. rer. nat.
genehmigte Dissertation von

Elisabeth Werner, M.Sc.

Referent: Prof. Dr. Wolfgang Ebeling Korreferent: Prof. Dr. Sabir M. Gusein-Zade Tag der Promotion: 15. Juni 2017

Kurzzusammenfassung

Schlagworte: Hyperflächensingularitäten, "orbifold"-Landau-Ginzburg-Modelle, Milnorzahl, Frobenius Algebren, invertierbare Polynome, Arnolds seltsame Dualität

In der Singularitätentheorie ist die Milnorzahl eine wichtige Invariante einer Hyperflächensingularität. Sie ist die Dimension der Jacobischen Algebra, die über die partiellen Ableitungen eines Polynoms f definiert wird, welches die Singularität beschreibt. Solche Polynome mit isolierter Singularität im Ursprung werden auch in der Physik untersucht und führen auf sogenannte Landau-Ginzburg-Modelle. In dieser Arbeit befassen wir uns mit einer "orbifold"Version hiervon. Sei f invariant unter der Wirkung einer endlichen Gruppe G. Wir definieren axiomatisch eine "orbifold" Jacobische $\mathbb{Z} / 2 \mathbb{Z}$-graduierte Algebra für das Paar (f, G) und zeigen die Existenz und Eindeutigkeit dieser, wenn f ein invertierbares Polynom oder ein Spitzenpolynom ist. Wir definieren auch eine "orbifold"-Milnorzahl und zeigen den Zusammenhang zu den Dimensionen der "orbifold"-Vektorräume. Wenn ein invertierbares Polynom eine ADE-Singularität oder eine exzeptionelle unimodale Singularität beschreibt, klären wir eine geometrische Bedeutung und finden einen Zusammenhang zu Arnolds seltsamer Dualität. Für die restlichen unimodalen Singularitäten, die von Spitzenpolynomen gegeben werden, finden wir einen Zusammenhang zur Gromov-Witten-Theorie von "orbifold" projektiven Geraden.

Abstract

Keywords: hypersurface singularities, orbifold Landau-Ginzburg models, Milnor number, Frobenius algebras, invertible polynomials, Arnold's strange duality

In singularity theory an important invariant of a hypersurface singularity is the Milnor number. This is the dimension of the Jacobian algebra defined by the partial derivatives of the polynomial f, which defines the singularity. Such polynomials with isolated singularity at the origin are also considered in physics, where they are called Landau-Ginzburg models. In this thesis we study this in an orbifold setting. Let f be invariant with respect to the action of a finite group G. We axiomatically define an orbifold Jacobian $\mathbb{Z} / 2 \mathbb{Z}$-graded algebra for the pair (f, G). We show its existence and uniqueness in the case, when f is an invertible polynomial or a cusp polynomial. We also define an orbifold Milnor number and show the connection with the dimension of the orbifold spaces. In case if an invertible polynomial defines an ADE singularity or one of the exceptional unimodal singularities, we illustrate a geometric meaning and find a connection to Arnold's strange duality. For the other unimodal singularities given by cusp polynomials we find a connection with the Gromov-Witten theory for orbifold projective lines.

Contents

1 Introduction 1
2 Isolated Hypersurface Singularities 7
2.1 Milnor Number and Jacobian Algebra 7
2.2 Euler Characteristic and Milnor Fibre 8
2.3 The Space Ω_{f} and the Residue Pairing 12
3 Equivariant Euler Characteristic 15
3.1 The Representation Ring 15
3.2 Equivariant Euler Characteristic in $R(G)$ 16
3.3 The Burnside Ring 17
3.4 Equivariant Euler Characteristic in $B(G)$ 18
3.5 The Higher Order Euler Characteristics 20
4 Isolated Singularities with Group Action 23
4.1 About the Group Action 23
4.2 Equivariant Milnor Number 24
4.3 Orbifold Version of Ω_{f} 27
4.4 Dimensions and Milnor Numbers 28
4.5 Orbifold Residue Pairing 33
5 Orbifold Jacobian Algebra 37
5.1 Setup 37
5.2 Axioms 38
5.3 Orbifold Jacobian Algebra 40
5.4 Preliminaries for the Proofs 41
6 Orbifold Jacobian Algebras for Invertible Polynomials 45
6.1 Invertible Polynomials 45
6.2 Theorem for Invertible Polynomials 47
6.3 Orbifold Jacobian Algebras for ADE Singularities 68
6.4 Orbifold Jacobian Algebras for Exceptional Unimodal Singularities 81
7 Orbifold Jacobian Algebras for Cusp Polynomials 93
7.1 Cusp Polynomials 93
7.2 Theorem for Cusp Polynomials 95
7.3 Frobenius Algebras Associated to the Gromov-Witten Theory for Orbifold Projective Lines 109
Bibliography 115

1 Introduction

Singularity theory is well established in mathematics for many years (cf. [AGV85]). For almost fifty years $\left(\left[\right.\right.$ Mi68]) it is known that when a function germ $f:\left(\mathbb{C}^{n}, \mathbf{0}\right) \rightarrow(\mathbb{C}, 0)$ has an isolated singularity at $\mathbf{0}$ there exists a local fibration over $\mathbb{C} \backslash\{0\}$ with fibre \bar{X}_{w} and the middle Betti number μ_{f} called the Milnor number is equal to the dimension of the Jacobian algebra (often called the Milnor algebra) $\operatorname{Jac}(f)=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)$. Singularity theory also plays a role in physics. To a given polynomial f with isolated critical point one can associate a so called Landau-Ginzburg model. In quantum cohomology Landau-Ginzburg models and singularity theory gave some of the first examples of Frobenius manifolds. Here we are considering Frobenius algebras in more detail. It is well known that $\operatorname{Jac}(f)$ has the structure of Frobenius algebra (cf. [AGV85]). Namely by taking a nowhere vanishing holomorphic n-form there is an isomorphism $\operatorname{Jac}(f) \cong \Omega_{f}=\Omega^{n}\left(\mathbb{C}^{n}\right) / d f \wedge \Omega^{n-1}\left(\mathbb{C}^{n}\right)$. It is on Ω_{f}, where a natural or canonical non-degenerate symmetric bilinear form, called the residue pairing, exists.

In this thesis we study pairs (f, G) of a polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ with isolated singularity at the origin and a finite group G which acts on \mathbb{C}^{n} and preserves f. Such pairs are often called orbifold Landau-Ginzburg models, in which mostly only special groups G are meant (cf. [BH95], [Kr09]). They have been studied intensively by many mathematicians and physicists working in mirror symmetry for more than twenty years since it yields important, interesting and unexpected geometric information. In particular, the so called orbifold constructions are a cornerstone. An important aspect in the approach of the physicists is the consideration of so-called twisted sectors. Roughly speaking for an orbifold version of a quotient by a group action one first defines an object for each element in the group together with a group action on this object and in the second step takes invariants of all these components. In this sense an orbifold version $\Omega_{f, G}$ as the invariant part of $\Omega_{f, G}^{\prime}$ can be defined. This is a $\mathbb{Z} / 2 \mathbb{Z}$-graded vector space, which also had a G-grading, and a natural non-degenerated bilinear form, called the orbifold residue pairing, which is a natural generalization of the residue pairing on Ω_{f}.

Motivated from string theory physicists defined an orbifold Euler characteristic. There are also many other equivariant Euler characteristics for spaces with an action of a finite group. First, one can consider the Euler characteristic of the quotient. Then there is defined an equivariant Euler characteristic as an element of the representation ring $R(G)$ of the group (cf. [tD79], [Wa80]) or higher generalizations of the orbifold Euler characteristic (cf. [AS89], [BF98]), which have values in the integers. A more general concept is the equivariant Euler characteristic, which is an element of the Burnside ring $B(G)$ of the group (cf. [tD79], [EG15]). The previous versions of the Euler characteristic are specializations of this one. So it is reasonable to also consider an equivariant version of the Milnor number. In this thesis we
show that the orbifold Milnor number is the $\mathbb{Z} / 2 \mathbb{Z}$-graded dimension of $\Omega_{f, G}$ (Theorem 4.4.4): $\mu_{f, G}^{\text {orb }}=\operatorname{dim}\left(\Omega_{f, G}\right)_{\overline{0}}-\operatorname{dim}\left(\Omega_{f, G}\right)_{\overline{1}}$.

The main construction in this thesis is the definition of an orbifold version of $\operatorname{Jac}(f)$. For that we restrict ourselves to subgroups of G_{f}, namely diagonally acting groups. This is the common restriction for orbifold Landau-Ginzburg models (cf. [BH95], [Kr94], [Kr09], [EG12], [FJR13]). In a joint work with Atsushi Takahashi and Alexey Basalaev [BTW16] we gave an axiomatic definition (Definition 5.2.1) of a G-twisted version of the Jacobian algebra, denoted by $\operatorname{Jac}^{\prime}(f, G)$. Here we consider the pair $\left(\operatorname{Jac}^{\prime}(f, G), \Omega_{f, G}^{\prime}\right)$ in the way it is in the classical situation when the group G is trivial. As a consequence $\operatorname{Jac}^{\prime}(f, G)$ has many structures defined naturally on $\Omega_{f, G}^{\prime}$, as a $\mathbb{Z} / 2 \mathbb{Z}$-grading, a G-grading, equivariance with respect to automorphisms of the pair (f, G), the orbifold residue pairing, and so on.

Certain works towards the definition of the Frobenius algebras associated to the pair (f, G) were also done previously by R. Kaufmann and M. Krawitz. In [Ka03], R.Kaufmann proposes a general construction of orbifolded Frobenius superalgebras of (f, G). To build such a $\mathbb{Z} / 2 \mathbb{Z}$ graded algebra one should make a certain non-unique choice called a "choice of a two cocycle". A different choice of this cocycle gives indeed a different product. This construction was later used by Kaufmann in [Ka06] for the mirror symmetry purposes from the point of view of physics. In [Kr09], M. Krawitz proposes a very special construction of a commutative (not a $\mathbb{Z} / 2 \mathbb{Z}$-graded) algebra, for invertible polynomials (cf. [BH93]). Later this definition was improved and used in [FJJS12] to set up the mirror symmetry on the level of Frobenius algebras. However, the crucial part of it remained to be the particularly fixed product that could only be well defined for weighted-homogeneous polynomials. There is also no explanation why a particular product structure is chosen.

Mirror symmetry on the level of Frobenius algebras is a first step towards the mirror symmetry of Frobenius manifolds where the key role is played by the so-called primitive form (cf. [Sa82], [Sa83], [ST08]). From the point of view of mirror symmetry, the algebras we consider here are those in the complex geometry side, the so-called B-model side.

The main advantage of our work compared to that of Kaufmann and Krawitz is that our construction can be used as a starting point for mirror symmetry at the level of Frobenius manifolds having the notion of a primitive form (cf. [Sa82], [Sa83], [ST08]) in the definition (cf. the role of ζ in Definition 5.2.1). Secondly both Kaufmann and Krawitz predefine the product structure either by a choice of a two cocycle or a direct definition. We do not do this in our axiomatization and so we are able to consider our algebra also for not weighted-homogeneous polynomials, like cusp polynomials. Last but not least our algebra inherits a natural $\mathbb{Z} / 2 \mathbb{Z}$ grading from the Hodge theory associated to (f, G). This $\mathbb{Z} / 2 \mathbb{Z}$-grading occurs only in an abstract way in the definition of Kaufmann and was not considered at all by Krawitz.

Our Axiomatization of a G-twisted Jacobian algebra lists a minimum of conditions to be satisfied. In particular we do not predefine any product structure. The $\operatorname{Algebra\operatorname {Jac}(f,G)}$ called the orbifold Jacobian algebra of the pair (f, G) will be, as usual in orbifold construction, the G-invariant subalgebra of $\operatorname{Jac}^{\prime}(f, G)$. However, it is not clear in general whether such an algebra as $\operatorname{Jac}^{\prime}(f, G)$ exists or not. Even if it exists it may not be unique.

The main results in this thesis are the existence and uniqueness of a G-twisted Jacobian
algebra $\operatorname{Jac}^{\prime}(f, G)$ for two classes of polynomials f and any subgroup of the maximal diagonal symmetry group G_{f} (Theorems 6.2 .1 and 7.2 .2). Namely it is uniquely determined up to isomorphism by our axiomatization. Moreover we show that when G is a subgroup of $\operatorname{SL}(n, \mathbb{C})$ the orbifold Jacobian algebra $\operatorname{Jac}(f, G)$ is a $\mathbb{Z} / 2 \mathbb{Z}$-graded commutative Frobenius algebra (Proposition 5.3.7).

The first class of polynomials are the so called invertible polynomials. These are weighted homogeneous polynomials with the number of monomials coinciding with the number of variables such that the weights are well defined. These polynomials were introduced in [BH93] to construct mirror pairs of Calabi-Yau manifolds. Therefore the authors considered f and the Berglund-Hübsch transpose f^{T} (see Definition 6.1.2). As already cited this construction was generalized to an orbifold setting in [BH95].

The second class of polynomials are the so called cusp polynomials. For a triplet $A=$ $\left(a_{1}, a_{2}, a_{3}\right)$ of positive integers there is given the polynomial $f_{A}=x_{1}^{a_{1}}+x_{2}^{a_{2}}+x_{3}^{a_{3}}-q^{-1} x_{1} x_{2} x_{3}$ ([IST12],[ST15]).

One of the most famous examples in singularity theory is the ADE-classification of hypersurface singularities with zero modality (cf. [AGV85]). These singularities can be given by invertible polynomials. We show for this case, when f is an invertible polynomial giving an ADE-singularity and G a subgroup of $G_{f} \cap \operatorname{SL}(n, \mathbb{C})$, that our orbifold Jacobian algebra $\operatorname{Jac}(f, G)$ is isomorphic to the usual Jacobian algebra $\operatorname{Jac}(\bar{f})$ (Theorem 6.3.7). This result completes the results of [ET13a] where concerning a crepant resolution $\widehat{\mathbb{C}^{3} / G}$ of \mathbb{C}^{3} / G it was shown that the geometry of vanishing cycles for the holomorphic map $\widehat{f}: \widehat{\mathbb{C}^{3} / G} \longrightarrow \mathbb{C}$ associated to f is equivalent to the one for the polynomial \bar{f}. Therefore, our orbifold Jacobian algebra is not only natural from the view point of algebra but also from the view point of geometry.

Also the hypersurface singularities of modality one are classified (cf.[AGV85]). The parabolic and hyperbolic singularities can be given by cusp polynomials. Moreover there are 14 exceptional families where one can again find invertible polynomials. We state a similar result, as for the ADE-singularities, for the Berglund-Hübsch transposes of these polynomials (Theorem 6.4.8).

Arnold [Ar75] observed a "strange duality" in this class of singularities, the Dolgachev numbers (a triple of algebraically defined positive integers) of one singularity are equal to the Gabrielov numbers (a triple of positive integers associated to a Coxeter-Dynkin diagram) of another one and vice versa. It is now naturally understood as one of mirror symmetry phenomena (cf. [ET11] and references therein). A corollary (Corollary 6.4.9) of the Theorem 6.4.8 shows an isomorphism $\operatorname{Jac}\left(f_{1}^{T}, G_{f_{1}^{T}}^{\mathrm{SL}}\right) \cong \operatorname{Jac}\left(f_{2}\right)$ if and only if the associated singularities of f_{1} and f_{2} are strangely dual.

Last but not least we have mentioned that our construction works as a starting point for the mirror symmetry on the level of Frobenius manifolds having the notion of a primitive form. For cusp polynomials there were given primitive forms in [ST15] and [IST12] and associated to the Gromov-Witten theory for orbifold projective lines with at most 3 orbifold points (cf. [IST15]). On the level of Frobenius algebras we associate $\operatorname{Jac}(f, G)$ to the Gromov-Witten theory for orbifold projective lines with at most r orbifold points (cf. [Sh14]) in Theorem 7.3.6.

Structure of the Thesis

This thesis starts with two introductory chapters.
In Chapter 2 we recall the basic facts about hypersurface singularities and define the algebra $\operatorname{Jac}(f)$, the Milnor number μ_{f}, the space Ω_{f}, and the residue pairing on them. We also give the definition of the Euler characteristic in Section 2.2 and the connection with the Milnor number.

In Chapter 3 we give all definitions of equivariant Euler characteristics for a space with a group action. For that we define the representation ring in Section 3.1 and the Burnside Ring in Section 3.3.

Chapter 4 first introduces the pair (f, G) and defines the action of the group G. Then we define the orbifold versions of the Milnor number, of Ω_{f} and of the residue pairing.

In Section 4.4 we also prove our first theorem about the correspondence between the orbifold Milnor number and the dimension of the orbifold spaces.

Chapter 5 gives the axiomatic definition of the G-twisted Jacobian algebra $\operatorname{Jac}^{\prime}(f, G)$ in Section 5.2. In the setup in Section 5.1 we therefore define $\operatorname{Aut}(f, G)$, the automorphisms of the pair (f, G) which act naturally on $\Omega_{f, G}$ and $\operatorname{Jac}^{\prime}(f, G)$. Then in Section 5.3 we define the orbifold $\operatorname{Jacobian}$ algebra $\operatorname{Jac}(f, G)$. At the end, in Section 5.4, we also give some preliminaries for the proofs in the next two chapters.

In Chapter 6 we first introduce invertible polynomials and then in Section 6.2 prove the uniqueness and existence of the G-twisted Jacobian algebra for this class of polynomials.

In Section 6.3 and 6.4 we introduce the ADE and the exceptional unimodal singularities which can be given by invertible polynomials and show a geometric meaning of the orbifold Jacobian algebra. This gives in Section 6.4 also a connection to Arnold's strange duality.

In Chapter 7 we first introduce cusp polynomials and then in Section 7.2 show the uniqueness and existence of the G-twisted Jacobian algebra for this class of polynomials.

In the last section 7.3 we associate $\operatorname{Jac}(f, G)$ for this class of polynomials to Frobenius algebras associated to the Gromov-Witten theory for orbifold projective lines.

Notation and Conventions

- We will always use the notation

$$
\mathbf{e}[\alpha]=e^{2 \pi \sqrt{-1} \alpha} .
$$

So e.g. $\mathbf{e}\left[\frac{1}{k}\right]$ is a k-th root of unity.

- In this thesis we are always thinking of G as a finite group written in multiplicative way and the element id $\in G$ is the neutral element.
- S_{n} is the symmetric group on n elements. For permutations, we use the cycle notation; i.e., we write (132) for the permutation $\left(\begin{array}{ccc}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right) \in S_{3}$. Again its neutral element is denoted by id $\in S_{n}$.
- Let the group G act on the set X. Then we denote the G-invariant part of X by

$$
X^{G}=\{x \in X \mid g x=x \quad \forall g \in G\} .
$$

- For the disjoint union we will use \dot{U}. Otherwise the union need not be disjoint.
- We write $A \backslash B$ for the set A without the set B. Recognize that this is different from the next notion.
- H^{G} or G / H denote the quotient of the group G by the subgroup H.

Normally we think of left cosets G / H, but sometimes it is relevant to consider right cosets.

- We write $|A|$ for the number of elements in the set A.
- As always $\operatorname{gcd}(l, m)$ is the greatest common divisor of the numbers l and m, and $\operatorname{lcm}\left(a_{1}, a_{2}, a_{3}\right)$ is the least common multiple of the numbers a_{1}, a_{2}, a_{3}.

Acknowledgements

First of all, I would particularly like to thank my advisor, Prof. Wolfgang Ebeling, for always giving me the opportunity to take advantage of his knowledge, his good intuition and his enthusiasm.
I also would like to thank Prof. Sabir M. Gusein-Zade for his willingness to act as the second reviewer of my thesis.

In particular I would like to thank Dr. Alexey Basalaev and Prof. Atsushi Takahashi for a very fruitful collaboration which resulted in a joint paper which provides a basis of this thesis. Additionally, Atsushi Takahashi was a great host during my stay in Japan.

The atmosphere at the Institute of Algebraic Geometry and the Research Training Group 1463 at Leibniz Unversität Hannover has been wonderful, both from a mathematical and from a personal point of view. I would like to thank you all for a marvelous time.

Finally, I am deeply grateful to my family and my friends, especially Sascha, for their support.

2 Isolated Hypersurface Singularities

In this chapter we want to introduce the fundamental and known facts about hypersurface singularities.

2.1 Milnor Number and Jacobian Algebra

Definition 2.1.1. Let n be a non-negative integer and

$$
f=f(\mathbf{x})=f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]
$$

a complex polynomial with $f(\mathbf{0})=0 . f$ has an isolated singularity at $\mathbf{0}$, if the map

$$
\operatorname{grad} f=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}
$$

has an isolated zero at $\mathbf{0}$, i.e. there exists a neighborhood U of $\mathbf{0}$ where $\operatorname{grad} f$ has no zero in U except possibly at $\mathbf{0}$ itself.

Definition 2.1.2. The Jacobian algebra of f is defined as

$$
\operatorname{Jac}(f):=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right) .
$$

When f has an isolated singularity at $\mathbf{0}, \operatorname{Jac}(f)$ is a finite dimensional \mathbb{C}-vector space. We define $\mu_{f}:=\operatorname{dim} \operatorname{Jac}(f)$ the Milnor number of f.

Example 2.1.3. - For $n=0$ we have $\operatorname{Jac}(f) \cong \mathbb{C}$ and $\mu_{f}=1$.

- Let be $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3}+x_{2}^{3}+x_{3}^{3} \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$. We have $\mu_{f}=8$ and

$$
\operatorname{Jac}(f)=\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(3 x_{1}^{2}, 3 x_{2}^{2}, 3 x_{3}^{2}\right) \cong\left\langle 1, x_{1}, x_{2}, x_{3}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, x_{1} x_{2} x_{3}\right\rangle_{\mathbb{C}}
$$

- Let be $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3}+x_{2}^{3} x_{3}+x_{3}^{3} \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$. We have $\mu_{f}=14$ and

$$
\begin{aligned}
\operatorname{Jac}(f) & =\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(3 x_{1}^{2}, 3 x_{2}^{2} x_{3}, x_{2}^{3}+3 x_{3}^{2}\right) \\
& \cong\left\langle 1, x_{1}, x_{2}, x_{2}^{2}, x_{3}, x_{3}^{2}, x_{2} x_{3}, x_{2} x_{3}^{2}, x_{1} x_{2}, x_{1} x_{2}^{2}, x_{1} x_{3}, x_{1} x_{3}^{2}, x_{1} x_{2} x_{3}, x_{1} x_{2} x_{3}^{2}\right\rangle_{\mathbb{C}}
\end{aligned}
$$

Definition 2.1.4. The $i n d e x \operatorname{ind}(\operatorname{grad} f)$ of the $\operatorname{map} \operatorname{grad} f$ is the degree of the map

$$
\frac{\operatorname{grad} f}{\|\operatorname{grad} f\|}: S_{\varepsilon}^{2 n-1} \rightarrow S^{2 n-1}
$$

from a sufficient small sphere $\|\mathbf{x}\|=\varepsilon$ in \mathbb{C}^{n} to the unique sphere. This number is well defined, when f has an isolated singularity at $\mathbf{0}$.

Proposition 2.1.5. We have

$$
\operatorname{ind}(\operatorname{grad} f)=\mu_{f}
$$

Proof. There is a good proof of this in [AGV85, sect.I.5].

2.2 Euler Characteristic and Milnor Fibre

Definition 2.2 .1 (cf. e.g. [Eb07]). Let X be a topological space and

$$
\Delta^{k}=\left\{\sum_{i=0}^{k} \lambda_{i} e_{i} \mid \sum \lambda_{i}=1,0 \leq \lambda_{i} \leq 1\right\} \quad e_{0}, \ldots, e_{k} \text { standard basis of } \mathbb{R}^{k+1}
$$

a standard- k-simplex. A singular k-simplex is a continuous map $\sigma: \Delta^{k} \rightarrow X$. Let $C_{k}(X)$ be the free abelian group of all singular k-simplices and $C_{k}(X)=0$ for $k<0$.

We define a boundary operator $\partial_{k}: C_{k}(X) \rightarrow C_{k-1}(X)$ which sends a singular k-simplex to its boundary

$$
\partial_{k} \sigma=\left.\sum_{j}(-1)^{j} \sigma\right|_{\partial \Delta_{j}^{k}},
$$

where $\partial \Delta_{j}^{k}$ is the j-th face of Δ^{k}, which is a $(k-1)$-simplex.
Remark 2.2.2. We can calculate directly $\partial_{k} \partial_{k-1}=0$ and so $\left(C_{\bullet}(X), \partial\right)$ is a complex (cf. e.g. [Eb07, Prop 4.8]).

Definition 2.2.3. We define the homology groups

$$
H_{k}(X, \mathbb{Z})=\operatorname{ker} \partial_{k} / \operatorname{Im} \partial_{k+1}
$$

We suppose that X is a topological space, s.t. each homology group is finitely generated, then we call

$$
b_{k}(X)=\operatorname{rank} H_{k}(X, \mathbb{Z})
$$

the k-th Betti number.
Definition 2.2.4. We define the Euler characteristic of X as

$$
\chi(X)=\sum_{k=0}^{\infty}(-1)^{k} b_{k}(X)
$$

We will give a well known other definition
Proposition 2.2.5. We also have

$$
\chi(X)=\sum_{k=0}^{\infty}(-1)^{k} \operatorname{rank} C_{k}(X) .
$$

Proof. By the definition of ∂ and $H_{k}(X, \mathbb{Z})$ it is clear that we have the two short exact sequences:

$$
\begin{aligned}
& 0 \rightarrow \operatorname{ker} \partial_{k} \xrightarrow{\partial} C_{k}(X) \xrightarrow{\partial} \operatorname{Im} \partial_{k} \rightarrow 0 \\
& 0 \rightarrow \operatorname{Im} \partial_{k+1} \rightarrow \operatorname{ker} \partial_{k} \rightarrow H_{k}(X, \mathbb{Z}) \rightarrow 0
\end{aligned}
$$

So we have

$$
\operatorname{rank} C_{k}(X)=\operatorname{rank} \operatorname{ker} \partial_{k}+\operatorname{rank} \operatorname{Im} \partial_{k}
$$

and

$$
\operatorname{rank} \operatorname{ker} \partial_{k}=\operatorname{rank} \operatorname{Im} \partial_{k+1}+\operatorname{rank} H_{k}(X, \mathbb{Z})
$$

and so

$$
\operatorname{rank} C_{K}(X)=\operatorname{rank} H_{k}(X, \mathbb{Z})+\operatorname{rank} \operatorname{Im} \partial_{k+1}+\operatorname{rank} \operatorname{Im} \partial_{k}
$$

In total we get

$$
\begin{aligned}
& \sum_{k=0}^{\infty}(-1)^{k} \operatorname{rank} C_{k}(X)=\sum_{k=0}^{\infty}(-1)^{k}\left(\operatorname{rank} H_{k}(X, \mathbb{Z})+\operatorname{rank} \operatorname{Im} \partial_{k+1}+\operatorname{rank} \operatorname{Im} \partial_{k}\right) \\
& \quad=\sum_{k=0}^{\infty}(-1)^{k} \operatorname{rank} H_{k}(X, \mathbb{Z})+\sum_{k=0}^{\infty}(-1)^{k} \operatorname{rank} \operatorname{Im} \partial_{k+1}+\sum_{k=0}^{\infty}(-1)^{k} \operatorname{rank} \operatorname{Im} \partial_{k} \\
& = \\
& =\chi(X)+\sum_{k=0}^{\infty}(-1)^{k}\left(-\operatorname{rank} \operatorname{Im} \partial_{k}+\operatorname{rank} \operatorname{Im} \partial_{k}\right)=\chi(X)
\end{aligned}
$$

Remark 2.2.6 (cf. [Vo02]). The same definitions can be done for the dual complex $\left(C^{\bullet}(X), d\right)$ and cohomology. Of course we get the same Euler characteristic. We also get the same Euler characteristic, when we take the de Rham cohomology which is defined over the k-forms on a manifold X.

Definition 2.2.7. We define the de Rham cohomologies

$$
H^{k}(X, \mathbb{C})=\operatorname{ker}\left(\Omega^{k}(X) \xrightarrow{d} \Omega^{k+1}(X)\right) / \operatorname{Im}\left(\Omega^{k-1}(X) \xrightarrow{d} \Omega^{k}(X)\right)
$$

Remark 2.2.8 ([Vo02, Thm. 0.8]). So we can write

$$
\chi(X)=\sum_{k=0}^{\infty}(-1)^{k} \operatorname{dim} H^{k}(X, \mathbb{C})
$$

and especially we have $H^{k}(X, \mathbb{C})=H^{k}(X, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C}$.

Remark 2.2.9 (cf. [Fu93, p. 141-142], [Di04, Cor. 4.1.23]). For "good enough" spaces X, e.g. a union of cells in a finite CW-complex or a quasi-projective complex analytic variety, we can take the cohomology with compact support instead of the normal cohomology and the Euler characteristic stays the same. Then we see that the Euler characteristic is additive in the sense

$$
\chi(X \dot{\cup} Y)=\chi(X)+\chi(Y)
$$

All spaces in this thesis will be "good enough".
Now we define a fibration.
Definition 2.2.10 (cf. e.g. [Eb07]). A locally trivial differentiable fibre bundle is a tupel (E, π, B, F) where E, B, F are differentiable manifolds and $\pi: E \rightarrow B$ is a surjective differentiable map and they satisfy: Each point $b \in B$ has a neighborhood U and there exists a diffeomorphism

$$
\psi: \pi^{-1}(U) \rightarrow U \times F
$$

such that the following diagram commutes:

$$
\begin{array}{rll}
\pi^{-1}(U) & \xrightarrow[\rightarrow]{ } & U \times F \\
\pi \searrow & & \swarrow \mathrm{pr}_{1} \\
& U &
\end{array}
$$

Here pr_{1} is the projection onto the first factor. E is called the total space, π the projection, B the basis and F the fibre of the bundle.

Let us now come back to a polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ with an isolated singularity at the origin.

Remark 2.2.11 (cf. [AGV85]). We are only interested in polynomials. One can prove that each function germ with an isolated singularity at the origin is right-equivalent to a polynomial.
Definition 2.2.12 (cf. [Eb07]). An unfolding of f is a holomorphic function germ

$$
F: \mathbb{C}^{n} \times \mathbb{C}^{m} \rightarrow \mathbb{C} \quad \text { with } \quad F(\mathbf{x}, \mathbf{0})=f(\mathbf{x})
$$

Two unfoldings $F: \mathbb{C}^{n} \times \mathbb{C}^{m} \rightarrow \mathbb{C}$ and $G: \mathbb{C}^{n} \times \mathbb{C}^{m} \rightarrow \mathbb{C}$ are called equivalent if there is a holomorphic map germ $\psi: \mathbb{C}^{n} \times \mathbb{C}^{m} \rightarrow \mathbb{C}^{n}$ with $\psi(\mathbf{x}, 0)=\mathbf{x}$ such that

$$
G(\mathbf{x}, \mathbf{u})=F(\psi(\mathbf{x}, \mathbf{u}), \mathbf{u})
$$

Definition 2.2.13. Let $F: \mathbb{C}^{n} \times \mathbb{C}^{m} \rightarrow \mathbb{C}$ be an unfolding of f and $\phi: \mathbb{C}^{l} \rightarrow \mathbb{C}^{m}$ a holomorphic map germ. The unfolding $G: \mathbb{C}^{n} \times \mathbb{C}^{l} \rightarrow \mathbb{C}$ with

$$
G(\mathbf{x}, \mathbf{t})=F(\mathbf{x}, \phi(\mathbf{t}))
$$

is called the unfolding induced from F. We call an unfolding $F: \mathbb{C}^{n} \times \mathbb{C}^{m} \rightarrow \mathbb{C}$ of f versal if all unfoldings of f are equivalent to an unfolding induced from F. A versal unfolding is called universal if m is minimal.

Proposition 2.2 .14 (cf. e.g. [Eb07, Prop. 3.17]). Let $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ have an isolated singularity at $\mathbf{0}$. Then

$$
\begin{aligned}
F: \mathbb{C}^{n} \times \mathbb{C}^{\mu_{f}} & \rightarrow \mathbb{C} \\
(\mathbf{x}, \mathbf{u}) & \mapsto f(\mathbf{x})+\sum_{j=0}^{\mu_{f}-1} \phi_{j}(\mathbf{x}) u_{j}
\end{aligned}
$$

is a universal unfolding of f, where $\phi_{0}(\mathbf{x})=1, \phi_{1}(\mathbf{x}), \ldots, \phi_{\mu_{f}-1}(\mathbf{x})$ is a basis of $\operatorname{Jac}(f)$.
We will now define the Milnor fibration. The results were shown by Milnor [Mi68]. We will take the notations of [Eb07, 5.4], where one can also find proofs for the statements.

Remark 2.2.15. Let $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ have an isolated singularity at $\mathbf{0}$. From the implicit function theorem we know that $f^{-1}(w)$ for $w \in \mathbb{C}, w \neq 0,|w|$ small enough, is a complex manifold in the neighborhood of $0 \in \mathbb{C}$. Let $\varepsilon>0$, we define $X=\left\{\mathbf{x} \in \mathbb{C}^{n} \mid\|\mathbf{x}\|<\varepsilon\right\}$ and $\Delta=\left\{w \in \mathbb{C}| | w \mid<\eta_{0}\right\}$ for $\eta_{0}>0, \eta_{0} \ll \varepsilon$, such that $\mathbf{0}$ is the only critical point of f in $\bar{X} \cap f^{-1}(\bar{\Delta})$.

Definition 2.2.16. The fibration

$$
f\left|\left.\right|_{\bar{X} \cap f^{-1}(\bar{\Delta}) \backslash\{0\}}: \bar{X} \cap f^{-1}(\bar{\Delta}) \backslash\{0\} \rightarrow \bar{\Delta} \backslash\{0\}\right.
$$

which exists due to $[\mathrm{Eb} 07,5.1]$ is called the Milnor fibration. The fibre

$$
\bar{X}_{w}=f^{-1}(w) \cap \bar{X}
$$

over $w \in \bar{\Delta} \backslash\{0\}$ is called the Milnor fibre of f. It is a $2(n-1)$-dimensional differentiable manifold with boundary and is up to diffeomorphism uniquely determined.

Theorem 2.2.17 ([Mi68]). The Milnor fibre \bar{X}_{w} of f is homotopy equivalent to a bouquet of μ_{f} real $(n-1)$-dimensional spheres. So we have for the dimensions of the cohomology groups $H^{i}\left(\bar{X}_{w}, \mathbb{C}\right)$

$$
\operatorname{dim} H^{i}\left(\bar{X}_{w}, \mathbb{C}\right)= \begin{cases}1 & \text { if } i=0 \\ \mu_{f} & \text { if } i=n-1 \\ 0 & \text { otherwise }\end{cases}
$$

So for the Euler characteristic we have

$$
\chi\left(\bar{X}_{w}\right)=1+(-1)^{n-1} \mu_{f} .
$$

Here we see another meaning of the Milnor number μ_{f}. In [Eb07] one can find a proof of this, where the universal unfolding of f plays a role.

2.3 The Space Ω_{f} and the Residue Pairing

Definition 2.3.1. Let $\Omega^{p}\left(\mathbb{C}^{n}\right)$ be the \mathbb{C}-module of regular p-forms on \mathbb{C}^{n}. We consider the \mathbb{C}-module

$$
\Omega_{f}=\Omega^{n}\left(\mathbb{C}^{n}\right) / d f \wedge \Omega^{n-1}\left(\mathbb{C}^{n}\right)
$$

Remark 2.3.2. Note that Ω_{f} is a free $\operatorname{Jac}(f)$-module of rank 1. For a nowhere vanishing n-form $\tilde{\omega} \in \Omega^{n}\left(\mathbb{C}^{n}\right)$ we have the following isomorphism

$$
\begin{equation*}
\operatorname{Jac}(f) \stackrel{\cong}{\rightrightarrows} \Omega_{f} \quad[\phi(\mathbf{x})] \mapsto[\phi(\mathbf{x})] \omega=[\phi(\mathbf{x}) \tilde{\omega}], \tag{2.1}
\end{equation*}
$$

where $\omega=[\tilde{\omega}]$ is the residue class of $\tilde{\omega}$ in Ω_{f}. Such a class $\omega \in \Omega_{f}$ giving the isomorphism (2.1) is a non-zero constant multiple of the residue class of $d x_{1} \wedge \cdots \wedge d x_{n}$.

Example 2.3.3. - For $n=0$ we have

$$
\Omega_{f}=\Omega^{0}(\{\mathbf{0}\}) /\left(d f \wedge \Omega^{-1}(\{\mathbf{0}\})\right)=\Omega^{0}(\{\mathbf{0}\})
$$

is the \mathbb{C}-module of rank one consisting of constant functions on $\{\mathbf{0}\}$.

- For $f=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}$ we have

$$
\Omega_{f}=\left\langle d x_{1} \wedge d x_{2} \wedge d x_{3}, x_{1} d x_{1} \wedge d x_{2} \wedge d x_{3}, \ldots, x_{1} x_{2} x_{3} d x_{1} \wedge d x_{2} \wedge d x_{3}\right\rangle
$$

- For $f=x_{1}^{3}+x_{2}^{3} x_{3}+x_{3}^{3}$ we have

$$
\Omega_{f}=\left\langle d x_{1} \wedge d x_{2} \wedge d x_{3}, x_{1} d x_{1} \wedge d x_{2} \wedge d x_{3}, \ldots, x_{1} x_{2} x_{3}^{2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right\rangle
$$

Corollary 2.3.4. As \mathbb{C}-modules we have

$$
\operatorname{Jac}(f) \cong \Omega_{f} \cong H^{n-1}\left(\bar{X}_{w}, \mathbb{C}\right)
$$

since they all have the dimension μ_{f}.
Definition 2.3.5. We define the Hessian of f as the polynomial

$$
\operatorname{hess}(f):=\operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)_{i, j=1, \ldots, n}
$$

The class of the Hessian is always a non-zero element in $\operatorname{Jac}(f)$.
Example 2.3.6. - For $n=0$ we define $\operatorname{hess}(f)=1 \in \operatorname{Jac}(f) \cong \mathbb{C}$.

- For $f=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}$ we calculate

$$
\operatorname{hess}(f)=\operatorname{det}\left(\begin{array}{ccc}
6 x_{1} & 0 & 0 \\
0 & 6 x_{2} & 0 \\
0 & 0 & 6 x_{3}
\end{array}\right)=216 x_{1} x_{2} x_{3}=8 \cdot 27 x_{1} x_{2} x_{3} .
$$

- For $f=x_{1}^{3}+x_{2}^{3} x_{3}+x_{3}^{3}$ we calculate

$$
\operatorname{hess}(f)=\operatorname{det}\left(\begin{array}{ccc}
6 x_{1} & 0 & 0 \\
0 & 6 x_{2} x_{3} & 3 x_{2}^{2} \\
0 & 3 x_{2}^{2} & 6 x_{3}
\end{array}\right)=216 x_{1} x_{2} x_{3}^{2}-54 x_{1} x_{2}^{4} .
$$

So we have in $\operatorname{Jac}(f)$ with $x_{2}^{3}+3 x_{3}^{2}=0$

$$
\operatorname{hess}(f)=216 x_{1} x_{2} x_{3}^{2}-54 x_{1} x_{2}^{4}=216 x_{1} x_{2} x_{3}^{2}+54 \cdot 3 x_{1} x_{2} x_{3}^{2}=14 \cdot 27 x_{1} x_{2} x_{3}^{2}
$$

Definition 2.3.7. We define a \mathbb{C}-bilinear form, the residue pairing $J_{f}: \Omega_{f} \otimes \Omega_{f} \rightarrow \mathbb{C}$ as

$$
J_{f}\left(\omega_{1}, \omega_{2}\right):=\operatorname{Res}_{\mathbb{C}^{n}}\left[\begin{array}{c}
\phi(\mathbf{x}) \psi(\mathbf{x}) d x_{1} \wedge \cdots \wedge d x_{n} \\
\frac{\partial f}{\partial x_{1}} \cdots \frac{\partial f}{\partial x_{n}}
\end{array}\right]
$$

where $\omega_{1}=\left[\phi(\mathbf{x}) d x_{1} \wedge \cdots \wedge d x_{n}\right]$ and $\omega_{2}=\left[\psi(\mathbf{x}) d x_{1} \wedge \cdots \wedge d x_{n}\right]$ and

$$
\operatorname{Res}_{\mathbb{C}^{n}}\left[\begin{array}{c}
\phi(\mathbf{x}) \psi(\mathbf{x}) d x_{1} \wedge \cdots \wedge d x_{n} \\
\frac{\partial f}{\partial x_{1}} \cdots \frac{\partial f}{\partial x_{n}}
\end{array}\right]:=\frac{1}{(2 \pi \sqrt{-1})^{n}} \int \frac{\phi(\mathbf{x}) \psi(\mathbf{x})}{\frac{\partial f}{\partial x_{1}} \cdots \frac{\partial f}{\partial x_{n}}} d x_{1} \wedge \cdots \wedge d x_{n}
$$

where the integration is along the small cycle, given by the equations $\left|\frac{\partial f}{\partial x_{k}}\right|^{2}=\delta_{k}$ (see [AGV85, I.5.18]).

Proposition 2.3.8 ([AGV85, I.5.11]). The bilinear form J_{f} on Ω_{f} is non-degenerate. Moreover, for $\phi(\mathbf{x}) \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$,

$$
J_{f}\left(\left[\phi(\mathbf{x}) d x_{1} \wedge \cdots \wedge d x_{n}\right],\left[\operatorname{hess}(f) d x_{1} \wedge \cdots \wedge d x_{n}\right]\right) \neq 0
$$

if and only if $\phi(\mathbf{0}) \neq 0$. In particular, we have

$$
J_{f}\left(\left[d x_{1} \wedge \cdots \wedge d x_{n}\right],\left[\operatorname{hess}(f) d x_{1} \wedge \cdots \wedge d x_{n}\right]\right)=\mu_{f}
$$

Example 2.3.9. - For $n=0$ we have $J_{f}(a, b)=a b$ for $a, b \in \Omega_{f} \cong \mathbb{C}$.

- For $f=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}$ we calculate

$$
J_{f}\left(d x_{1} \wedge d x_{2} \wedge d x_{3}, x_{1} x_{2} x_{3} d x_{1} \wedge d x_{2} \wedge d x_{3}\right)=\frac{1}{27}
$$

since hess $(f)=\mu_{f} \cdot 27 x_{1} x_{2} x_{3}$.

- For $f=x_{1}^{3}+x_{2}^{3} x_{3}+x_{3}^{3}$ we calculate

$$
J_{f}\left(d x_{1} \wedge d x_{2} \wedge d x_{3}, x_{1} x_{2} x_{3}^{2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right)=\frac{1}{27}
$$

since hess $(f)=\mu_{f} \cdot 27 x_{1} x_{2} x_{3}^{2}$.

Definition 2.3.10. An associative \mathbb{C}-algebra (A, \circ) is called Frobenius if there exists a nondegenerate bilinear form $\eta: A \otimes A \rightarrow \mathbb{C}$ such that $\eta(X \circ Y, Z)=\eta(X, Y \circ Z)$ for $X, Y, Z \in A$.

Proposition 2.3.11. Under the isomorphism (2.1), the residue pairing endows the Jacobian algebra $\operatorname{Jac}(f)$ with the structure of a Frobenius algebra.

Proof. The residue pairing J_{f} is non-degenerate (Proposition 2.3.8) and the shifting of the multiplication can be directly seen by Definition 2.3.7.

Remark 2.3.12. If f is even defined over the real numbers, we can define everything similarly. But then $\operatorname{ind}(\operatorname{grad} f)$ need not any more be the same as the Milnor number. In this case we have the Theorem of Eisenbud-Levine-Khimshiashvili:

Theorem 2.3.13 ([EL77], [Kh77]). Let $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial with an isolated singularity at $\mathbf{0}$. Then we have:

$$
\operatorname{ind}(\operatorname{grad} f)=\operatorname{sign} J_{f},
$$

where $\operatorname{sign} J_{f}$ is the signature of the symmetric bilinear form J_{f}.

3 Equivariant Euler Characteristic

Let X be a topological space and G a finite group acting on X. In this chapter we want to discuss two equivariant versions of the Euler characteristic. The first one was introduced in [tD79, 5.1.2] and used in the way we need it in [Wa80]. It is an element of the representation ring $R(G)$. The second more general one is an element of the Burnside ring $B(G)$. This was also introduced in [tD79, 5.4.5] and used in [EG15].

3.1 The Representation Ring

Definition 3.1.1 (cf. [FH91]). A representation of a finite group G on a finite dimensional vector space V is a homomorphism

$$
\rho_{V}: G \rightarrow \mathrm{GL}(V)
$$

from G into the group of linear automorphisms of V. We will often regard V itself with a group action as a representation. A subrepresentation of a representation V is a linear subspace W of V which is invariant under G. A representation V is called irreducible if V and $\{0\}$ are the only subrepresentations of V.
Remark 3.1.2. If V and W are representations, the direct sum $V \oplus W$ and the tensor product $V \otimes W$ are also representations.
Proposition 3.1.3 (cf. [FH91, Cor. 1.6]). Each representation is the direct sum of irreducible representations.
Definition 3.1.4. We can define the character of a representation V. This is a class function

$$
V: G \rightarrow \mathbb{C}
$$

which we will also describe by V, with the value

$$
V(g)=\operatorname{Tr}\left(\rho_{V}(g)\right)
$$

the trace of the linear map $\rho_{V}(g)$.
Remark 3.1.5. A class function is constant on conjugacy classes. So we have

$$
V\left(h g h^{-1}\right)=V(g) \quad \forall g, h \in G .
$$

We can calculate that

$$
V(\mathrm{id})=\operatorname{dim} V
$$

for id $\in G$ the neutral element.

Definition 3.1.6. For a representation V we define

$$
V^{G}=\{v \in V \mid g v=v \quad \forall g \in G\}
$$

the G-invariant part of V.
We can calculate the dimension of V^{G}, which is the multiplicity of the trivial representation in V.

Proposition 3.1.7 ([FH91, Prop. 2.8]). The map

$$
\varphi=\frac{1}{|G|} \sum_{g \in G} \rho_{V}(g) \in \mathrm{GL}(V)
$$

is a projection of V into V^{G}. So we have

$$
\operatorname{dim} V^{G}=\operatorname{Tr}(\varphi)=\frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}\left(\rho_{V}(g)\right)=\frac{1}{|G|} \sum_{g \in G} V(g) .
$$

Definition 3.1.8. The ring generated by isomorphism classes of representations with the operations \oplus and \otimes is the representation ring $R(G)$. With Proposition 3.1.3 it is the free abelian group of isomorphism classes of irreducible representations.

Definition 3.1.9 (cf. [FH91]). The group algebra $\mathbb{C} G$ of a group G is the \mathbb{C}-vector space with basis $\left\{e_{g} \mid g \in G\right\}$ and the multiplication $e_{g} \cdot e_{h}=e_{g h}$ for $g, h \in G$.

Remark 3.1.10. A representation V with $\rho_{V}: G \rightarrow \mathrm{GL}(V)$ can be extended to a map $\rho: \mathbb{C} G \rightarrow \mathrm{GL}(V)$ and so V becomes a $\mathbb{C} G$-module, i.e. each representation can be seen as a $\mathbb{C} G$-module.

3.2 Equivariant Euler Characteristic in $R(G)$

To introduce the equivariant Euler characteristic in $R(G)$ let X be a finite simplicial complex and we suppose that G acts in the way, that if $g \in G$ fixes one simplex, then it fixes it pointwise.

Definition 3.2.1 ([Wa80]). The equivariant Euler characteristic $\chi_{G}(X) \in R(G)$ is defined as

$$
\chi_{G}(X)=\sum_{i=0}^{n}(-1)^{i}\left[C_{i}(X)\right] \in R(G) .
$$

Here we regard the chain complex

$$
0 \rightarrow C_{n}(X) \rightarrow C_{n-1}(X) \rightarrow \cdots \rightarrow C_{0}(X) \rightarrow 0
$$

with complex coefficients as a sequence of $\mathbb{C} G$-modules. The action of G is induced by the action on the simplices of X.

With the standard argument (cf. Proposition 2.2.5), this is the same as

$$
\chi_{G}(X)=\sum_{i=0}^{n}(-1)^{i} H_{i}(X, \mathbb{C})
$$

where the G-action on $H_{i}(X, \mathbb{C})$ is induced by the one on X.
Remark 3.2.2. When we take the character of $\chi_{G}(X)$ we get as in Remark 3.1.5

$$
\chi_{G}(X)(\mathrm{id})=\chi(X) .
$$

Proposition 3.2.3 (cf. [Wa80]). The normal Euler characteristic of the quotient X / G can be calculated as

$$
\chi(X / G)=\frac{1}{|G|} \sum_{g \in G} \chi\left(X^{g}\right)
$$

where X^{g} is the subcomplex fixed by g.
Proof. For the character we have as Wall shows in [Wa80] $\chi_{G}(X)(g)=\chi\left(X^{g}\right)$. In the quotient X / G each G-orbit of simplices is collapsed to one single simplex, so it follows

$$
C_{*}(X / G)=C_{*}(X) \otimes_{\mathbb{C} G} \mathbb{C} .
$$

Since G is finite, $\mathbb{C} G$ is semisimple and we can identify this with the summand of $C_{*}(X)$ which belongs to the trivial representation, $C_{*}(X)^{G}$. So the Euler characteristic $\chi(X / G)$ is equal to the multiplicity of the trivial representation in $\chi_{G}(X)$, so with Proposition 3.1.7

$$
\chi(X / G)=\frac{1}{|G|} \sum_{g \in G} \chi_{G}(X)(g)=\frac{1}{|G|} \sum_{g \in G} \chi\left(X^{g}\right)
$$

3.3 The Burnside Ring

Definition 3.3.1. Let Consub G be the set of all conjugacy classes of subgroups of G. This is a partially ordered set (cf. [Ha86, 2.2]) with $[K] \leq[H]$ if $\exists K \in[K], H \in[H]$ with $K \subset H$.

Remark 3.3.2 (cf. [Ha86, Thm. 2.2.1]). On a partially ordered set we can define the Moebius function

$$
\mu([H],[K])= \begin{cases}1 & {[H]=[K]} \\ -\sum_{[H]<\left[H^{\prime}\right] \leq[K]} \mu\left(\left[H^{\prime}\right],[K]\right) & {[H]<[K]} \\ 0 & \text { otherwise }\end{cases}
$$

The Moebius inversion formula follows: Let g and f be functions on the partially ordered set. When $g([H])=\sum_{[H] \leq\left[H^{\prime}\right]} f\left(\left[H^{\prime}\right]\right)$ we have $f([H])=\sum_{[H] \leq\left[H^{\prime}\right]} \mu\left([H],\left[H^{\prime}\right]\right) g\left(\left[H^{\prime}\right]\right)$.

Definition 3.3.3 ([Kn73]). A G-set is a finite set with a group action on it. A G-set is called irreducible if the group action is transitive, i.e. it only consists of one G-orbit. A G-map is a map $\varphi: A \rightarrow B$ between two G-sets A and B such that for $a \in A$ we have $\varphi(g a)=g(\varphi(a))$ for all $g \in G$. Two G-sets are isomorphic, if there exists a G-map-isomorphism of them.

Definition 3.3.4 (cf. [Kn73]). The Burnside ring $B(G)$ is the Grothendieck ring of finite G-sets, i.e. it's the abelian group generated by the isomorphism classes of finite G-sets modulo the relation $[A \dot{\cup} B]=[A]+[B]$. The multiplication is given by the cartesian product.

Lemma 3.3.5. The group $B(G)$ as a free group is generated by the isomorphism classes of irreducible G-sets. This isomorphism classes of irreducible G-sets are in 1:1-correspondence with conjugacy classes in Consub G. So we can write each element of $B(G)$ in a unique way as

$$
\sum_{[H] \in \operatorname{Consub} G} a_{[H]}[G / H] \quad \text { with } a_{[H]} \in \mathbb{Z}
$$

Proof. It is clear that each G-set is a union of irreducible G-sets. And each G-orbit, so each irreducible G-set, has $|G / H|$-many elements for one subgroup H of G. When $H, K \subset G$ are in the same conjugacy class in Consub G, the action on G / H and G / K is the same, so we can associate to a class $[H] \in \operatorname{Consub} G$ the isomorphism class $[G / H] \in B(G)$, cf. also [Kn73].

3.4 Equivariant Euler Characteristic in $B(G)$

Let X be a topological space and G a finite group acting on X.
Definition 3.4.1. For each point $x \in X$ let $G_{x}=\{g \in G \mid g x=x\}$ be the isotropy group of x. Furthermore we define $X^{H}=\{x \in X \mid g x=x \forall g \in H\}$ the fixed point set of the subgroup $H \subset G$ and $X^{(H)}=\left\{x \in X \mid G_{x}=H\right\}$ the set of points with isotropy group H. For a conjugacy class $[H] \in$ Consub G we set $X^{[H]}=\bigcup_{K \in[H]} X^{K}$ and $X^{([H])}=\bigcup_{K \in[H]} X^{(K)}$.

Definition 3.4.2 ([EG15]). The equivariant Euler characteristic $\chi^{G}(X) \in B(G)$ is defined as

$$
\chi^{G}(X)=\sum_{[H] \in \operatorname{Consub} G} \chi\left(X^{([H])} / G\right)[G / H] .
$$

The reduced equivariant Euler characteristic of (X, G) is

$$
\bar{\chi}^{G}(X)=\chi^{G}(X)-[G / G] .
$$

Remark 3.4.3 ([EG15]). The definition of the equivariant Euler characteristic in $B(G)$ is more general. For example we can see that the natural homomorphism from $B(G)$ to $R(G)$ which sends a G-set A to the vector space of functions on A, also sends the equivariant Euler characteristic $\chi^{G}(X) \in B(G)$ to the equivariant Euler characteristic $\chi_{G}(X) \in R(G)$.

Proposition 3.4.4. We can also write

$$
\chi^{G}(X)=\sum_{[H] \in \operatorname{Consub} G} \frac{|H|}{|G|}\left(\sum_{[K] \in \operatorname{Consub} G} \mu([H],[K]) \chi\left(X^{[K]}\right)\right)[G / H] .
$$

Proof. First observe that by Proposition 3.2.3 $\chi\left(X^{(H)} / G\right)=\frac{1}{|G|} \sum_{g \in G} \chi\left(X^{(H)^{g}}\right)$. Since $X^{(H)^{g}}=X^{(H)}$ for $g \in H$ and $X^{(H)^{g}}=\emptyset$ for $g \notin H$ we have

$$
\chi\left(X^{(H)} / G\right)=\frac{1}{|G|} \sum_{g \in H} \chi\left(X^{(H)}\right)=\frac{|H|}{|G|} \chi\left(X^{(H)}\right)
$$

On the other hand we have $X^{([H])}$ is the disjoint union of all $X^{(H)}$ for $H \in[H]$ and so we have by the additivity from Remark 2.2.9 also

$$
\chi\left(X^{([H])} / G\right)=\frac{|H|}{|G|} \chi\left(X^{([H])}\right) .
$$

Then we have

$$
X^{K}=\bigcup_{K \subset H} X^{(H)}
$$

and when we take the union on both sides we also get

$$
X^{[K]}=\bigcup_{K \subset H} X^{([H])}
$$

Again by the additivity from Remark 2.2.9 we have

$$
\chi\left(X^{[K]}\right)=\sum_{[K] \leq[H]} \chi\left(X^{([H])}\right) .
$$

So with this and the Moebius inversion formula 3.3.2 we have

$$
\begin{aligned}
& \sum_{[H] \in \operatorname{Consub} G} \frac{|H|}{|G|}\left(\sum_{[K] \in \operatorname{Consub} G} \mu([H],[K]) \chi\left(X^{[K]}\right)\right)[G / H] \\
= & \sum_{[H] \in \operatorname{Consub} G} \frac{|H|}{|G|}\left(\chi\left(X^{([H])}\right)\right)[G / H]=\sum_{[H] \in \operatorname{Consub} G} \chi\left(X^{([H])} / G\right)[G / H]=\chi^{G}(X) .
\end{aligned}
$$

3.5 The Higher Order Euler Characteristics

Definition 3.5.1 ([BF98] and cf. also [AS89]). Let k be a positive integer. The k-th order Euler characteristic of the pair (X, G) is defined as

$$
\chi^{(k)}(X, G)=\frac{1}{|G|} \sum_{\substack{\mathbf{g} \in G^{k} \\ g_{i} g_{j}=g_{j} g_{i}}} \chi\left(X^{\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle}\right) .
$$

The first order Euler characteristic is nothing else but the Euler characteristic of the quotient space X / G. For us the most interesting is the second order Euler characteristic. It is called the orbifold Euler characteristic (cf. [DHVW] and [HH90]):

$$
\chi^{\mathrm{orb}}(X, G)=\frac{1}{|G|} \sum_{g h=h g} \chi\left(X^{\langle g, h\rangle}\right)
$$

Definition 3.5.2 ([EG15]). We define homomorphisms from $B(G)$ to \mathbb{Z}. The natural morphism $|\cdot|$ sends a G-set A to the number of elements $|A|$. We define the maps $r^{(k)}$ as

$$
r^{(k)}([G / H])=\chi^{(k)}([G / H], G)=\frac{1}{|G|} \sum_{\substack{\mathbf{g} \in G^{k} \\ g_{i} g_{j}=g_{j} g_{i}}}\left|[G / H]^{\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle}\right| .
$$

The $r^{(k)}$ are homomorphisms of abelian groups and in general not ring homomorphisms.
Proposition 3.5.3. We have

$$
\begin{aligned}
\left|\chi^{G}(X)\right| & =\chi(X), \\
r^{(k)}\left(\chi^{G}(X)\right) & =\chi^{(k)}(X, G)
\end{aligned}
$$

Proof. For the first statement we can use the same formula as in Proposition 3.4.4 and its proof:

$$
\begin{aligned}
\left|\chi^{G}(X)\right| & =\sum_{[H] \in \operatorname{Consub} G} \frac{|H|}{|G|}\left(\sum_{[K] \in \operatorname{Consub} G} \mu([H],[K]) \chi\left(X^{[K]}\right)\right)|G / H| \\
& =\sum_{[H] \in \operatorname{Consub} G} \frac{|H|}{|G|}|G / H|\left(\chi\left(X^{([H])}\right)\right) \\
& =\sum_{[\{\text {id }\}] \leq[H]} \chi\left(X^{([H])}\right) \\
& =\chi\left(X^{[\{i d\}]}\right)=\chi(X)
\end{aligned}
$$

For the second statement again like in the proof of Proposition 3.4.4 we first observe

$$
\frac{1}{|G|} \sum_{\mathbf{g} \in G^{k}} \chi\left(X^{([H])\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle}\right)=\frac{1}{|G|} \sum_{\mathbf{g} \in H^{k}} \chi\left(X^{([H])}\right),
$$

since $X^{(H)^{g}}=X^{(H)}$ for $g \in H$ and $X^{(H)^{g}}=\emptyset$ for $g \notin H$. The same we see for

$$
\frac{1}{|G|} \sum_{\mathbf{g} \in G^{k}}\left|[G / H]^{\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle}\right|=\frac{1}{|G|} \sum_{\mathbf{g} \in H^{k}}|G / H| .
$$

So we have

$$
\begin{aligned}
& r^{(k)}\left(\chi^{G}(X)\right) \\
& =\sum_{[H] \in \operatorname{Consub} G} \frac{|H|}{|G|}\left(\sum_{[K] \in \operatorname{Consub} G} \mu([H],[K]) \chi\left(X^{[K]}\right)\right) \frac{1}{|G|} \sum_{\substack{\mathbf{g} \in G^{k} \\
g_{i} g_{j}=g_{j} g_{i}}}\left|[G / H]^{\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle}\right| \\
& =\sum_{[H] \in \operatorname{Consub} G} \frac{|H|}{|G|}\left(\chi\left(X^{([H])}\right)\right) \frac{1}{|G|} \sum_{\mathbf{g} \in H^{k}}|G / H| \\
& =\sum_{[\{\text {id }\}] \leq[H]} \frac{1}{|G|} \sum_{\mathbf{g} \in H^{k}} \chi\left(X^{([H])}\right) \\
& =\sum_{[\{i d\}\}] \leq[H]} \frac{1}{|G|} \sum_{\mathbf{g} \in G^{k}} \chi\left(X^{([H])\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle}\right) \\
& =\frac{1}{|G|} \sum_{\mathbf{g} \in G^{k}} \sum_{[\{\text {id }\}] \leq[H]} \chi\left(X^{([H])\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle}\right) \\
& =\frac{1}{|G|} \sum_{\mathbf{g} \in G^{k}} \chi\left(X^{\left.[\{i d\}\} \backslash g_{1}, g_{2}, \ldots, g_{k}\right\rangle}\right) \\
& =\chi^{(k)}(X, G) .
\end{aligned}
$$

Remark 3.5.4. We are able to write down also other numbers in an equivariant way. This we will do in the next chapter for the Milnor number.

4 Isolated Singularities with Group Action

4.1 About the Group Action

Let $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be again a polynomial with isolated singularity at $\mathbf{0}$.
Definition 4.1.1. Let G be a finite group acting linearly on \mathbb{C}^{n} which leaves f invariant. So we have for each $g \in G$ and $\mathbf{x} \in \mathbb{C}^{n}$

$$
f(g \mathbf{x})=f(\mathbf{x})
$$

Since G acts linearly we can identify G with a subgroup of $\operatorname{GL}(n, \mathbb{C})$.
Example 4.1.2. - The group of maximal diagonal symmetries of f is defined as

$$
G_{f}:=\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in\left(\mathbb{C}^{*}\right)^{n} \mid f\left(\lambda_{1} x_{1}, \ldots, \lambda_{n} x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right)\right\} .
$$

- For $f=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}$ we have

$$
G_{f}=\left\langle\left(\mathbf{e}\left[\frac{1}{3}\right], 1,1\right),\left(1, \mathbf{e}\left[\frac{1}{3}\right], 1\right),\left(1,1, \mathbf{e}\left[\frac{1}{3}\right]\right)\right\rangle .
$$

Here we can also take the group $G=S_{3}$ permuting the coordinates.

- For $f=x_{1}^{3}+x_{2}^{3} x_{3}+x_{3}^{3}$ we have

$$
G_{f}=\left\langle\left(\mathbf{e}\left[\frac{1}{3}\right], 1,1\right),\left(1, \mathbf{e}\left[\frac{1}{3}\right], 1\right)\right\rangle .
$$

Definition 4.1.3. For each $g \in G$ we define the fixed locus $\operatorname{Fix}(g):=\left\{\mathbf{x} \in \mathbb{C}^{n} \mid g \mathbf{x}=\mathbf{x}\right\} . G$ acts linearly on \mathbb{C}^{n} so $\operatorname{Fix}(g)$ is a linear subspace. We write $n_{g}=\operatorname{dim} \operatorname{Fix}(g)$ for its dimension and $f^{g}:=\left.f\right|_{\text {Fix }(g)}$ for the restriction of f to the fixed locus of g.

Example 4.1.4. (i) Let us consider the pair (f, G) with $f=x_{1}^{3}+x_{2}^{3} x_{3}+x_{3}^{3}$ and the group $G=\langle g\rangle=\left\{\mathrm{id}, g, g^{-1}\right\}$ generated by one element $g=\left(\mathbf{e}\left[\frac{1}{3}\right], \mathbf{e}\left[\frac{2}{3}\right], 1\right)$. Here G is a subgroup of $\operatorname{SL}(n, \mathbb{C})$. We have $n_{g}=1$ since only the third coordinate is fixed by g, and $f^{g}=x_{3}^{3}$.
(ii) Secondly we consider (f, G) with $f=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}$ and the group $G=S_{3}=\{\mathrm{id},(12),(13),(23),(123),(132)\}$. We see that the fixed locus of each 2-cycle is 2 dimensional, so $n_{(12)}=2$ since $\operatorname{Fix}((12))=\langle(1,1,0),(0,0,1)\rangle$ and the fixed locus of each 3 -cycle is 1 dimensional, so $n_{(123)}=1$, since $\operatorname{Fix}((123))=\langle(1,1,1)\rangle$. To get $f^{(12)}$ we have to think of another basis of \mathbb{C}^{3}. Let us take $\{(1,1,0),(1,-1,0),(0,0,1)\}$. We
associate the variables y_{1}, y_{2}, y_{3} respectively. So we have $x_{1}=\frac{1}{2}\left(y_{1}+y_{2}\right), x_{2}=\frac{1}{2}\left(y_{1}-y_{2}\right)$, $x_{3}=y_{3}$. So $f=\frac{2}{8} y_{1}^{3}+\frac{6}{8} y_{1} y_{2}^{2}+y_{3}^{3}$ and so $f^{(12)}=\frac{2}{8} y_{1}^{3}+y_{3}^{3}$ since only y_{2} is not (12)invariant. Similar we do it for the other 2-cycles. For the 3-cycles we can take a basis $\left\{(1,1,1),\left(1, \mathbf{e}\left[\frac{1}{3}\right], \mathbf{e}\left[\frac{2}{3}\right]\right),\left(1, \mathbf{e}\left[\frac{2}{3}\right], \mathbf{e}\left[\frac{1}{3}\right]\right)\right\}$ of \mathbb{C}^{3} and get e.g. $x_{1}=\frac{1}{3}\left(y_{1}+y_{2}+y_{3}\right)$ and since only y_{1} is (123)-invariant, we get $f^{(123)}=\frac{3}{27} y_{1}^{3}$.

Proposition 4.1.5 (cf. [ET13b, Prop. 5]). For each $g \in G$ the restriction f^{g} has an isolated singularity at $\mathbf{0}$. There exists a surjective \mathbb{C}-algebra homomorphism $\operatorname{Jac}(f) \rightarrow \operatorname{Jac}\left(f^{g}\right)$. This means in particular that also the Jacobian algebra $\operatorname{Jac}\left(f^{g}\right)$ is finite dimensional.

Proof. We may assume that $\operatorname{Fix}(g)=\left\{\mathrm{x} \in \mathbb{C}^{n} \mid x_{n_{g}+1}=\cdots=x_{n}=0\right\}$ by a suitable coordinate transformation. Since f is invariant under $G, g \cdot x_{i} \neq x_{i}$ for $i=n_{g}+1, \ldots, n$ and $\frac{\partial f}{\partial x_{n g+1}}, \ldots, \frac{\partial f}{\partial x_{n}}$ form a regular sequence, we have

$$
\left(\frac{\partial f}{\partial x_{n_{g}+1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right) \subset\left(x_{n_{g}+1}, \ldots, x_{n}\right) .
$$

Therefore, we have a natural surjective \mathbb{C}-algebra homomorphism

$$
\begin{aligned}
\operatorname{Jac}(f) & =\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right) \\
& \longrightarrow \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n_{g}}}, x_{n_{g}+1}, \ldots, x_{n}\right) \\
& =\mathbb{C}\left[x_{1}, \ldots, x_{n_{g}}\right] /\left(\frac{\partial f^{g}}{\partial x_{1}}, \ldots, \frac{\partial f^{g}}{\partial x_{n_{g}}}\right)=\operatorname{Jac}\left(f^{g}\right) .
\end{aligned}
$$

Corollary 4.1.6. For each $g \in G, \Omega_{f^{g}}$ is naturally equipped with the structure of a $\operatorname{Jac}(f)$ module.

Proof. Since $\Omega_{f^{g}}$ is a free $\operatorname{Jac}\left(f^{g}\right)$-module of rank one (cf. (2.1)), the surjective \mathbb{C}-algebra homomorphism $\operatorname{Jac}(f) \longrightarrow \operatorname{Jac}\left(f^{g}\right)$ yields the statement.

Remark 4.1.7. Each $g \in G$ is a bi-regular map on \mathbb{C}^{n} and so acts also on Ω_{f} by the pullback g^{*} of differential forms. With this Ω_{f} is in a natural sense a $\mathbb{C} G$-module.

4.2 Equivariant Milnor Number

Definition 4.2 .1 ([Wa80]). Let us consider $M=H^{n-1}\left(\bar{X}_{w}, \mathbb{C}\right)$ as $\mathbb{C} G$-module. M is called the equivariant Milnor number in $R(G)$. Then we have like in Theorem 2.2.17

$$
\chi_{G}\left(\bar{X}_{w}\right)=\mathbb{C}+(-1)^{n-1} M
$$

Theorem 4.2.2 ([Wa80, Thm. 1]). $H^{n-1}\left(\bar{X}_{w}, \mathbb{C}\right)$ and Ω_{f} are isomorphic as $\mathbb{C} G$-modules.
Remark 4.2.3. So Ω_{f} as an element of $R(G)$ is the equivariant Milnor number $M \in R(G)$.

Definition 4.2.4. We define the equivariant Milnor number in $B(G)$ as

$$
\mu_{f}^{G}=(-1)^{n-1} \bar{\chi}^{G}\left(\bar{X}_{w}\right) .
$$

So we have also defined the higher order Milnor numbers:

$$
\mu_{f, G}^{(k)}=r^{(k)}\left(\mu_{f}^{G}\right)
$$

and we call

$$
\mu_{f, G}^{\mathrm{orb}}=\mu_{f, G}^{(2)}
$$

the orbifold Milnor number.

Proposition 4.2.5. We have:

$$
\begin{aligned}
\left|\mu_{f}^{G}\right| & =\mu_{f} \\
\mu_{f / G} & :=r^{(1)}\left(\mu_{f}^{G}\right)=\frac{1}{|G|} \sum_{g \in G}(-1)^{n-n_{g}} \mu_{f g} \\
\mu_{f, G}^{o r b} & =\frac{1}{|G|} \sum_{g h=h g}(-1)^{n-n_{<g, h>}>} \mu_{f<g, h>} \\
\mu_{f, G}^{(k)} & =\frac{1}{|G|} \sum_{\substack{\mathbf{g} \in G^{k} \\
g_{i} g_{j}=g_{j} g_{i}}}(-1)^{n-n<\mathbf{g}>} \mu_{f<\mathbf{g}>}
\end{aligned}
$$

Proof. With Proposition 3.5.3 and Theorem 2.2.17 we get

$$
\begin{aligned}
\left|\mu_{f}^{G}\right| & =\left|(-1)^{n-1} \bar{\chi}^{G}\left(\bar{X}_{w}\right)\right| \\
& =(-1)^{n-1}\left|\chi^{G}\left(\bar{X}_{w}\right)-[G / G]\right| \\
& =(-1)^{n-1}\left(\chi\left(\bar{X}_{w}\right)-1\right) \\
& =\mu_{f} .
\end{aligned}
$$

Then observe by Theorem 2.2 .17 for $\mathbf{g} \in G^{k}$ that $\chi\left(\bar{X}_{w}^{<\mathbf{g}\rangle}\right)=1+(-1)^{n_{<\mathbf{g}>-1}} \mu_{f}<\mathbf{g}>$ since the $<\mathbf{g}>$-invariant subspace of the Milnor fibre \bar{X}_{w} of f is the Milnor fibre of $f^{<\mathbf{g}>}=\left.f\right|_{\mathrm{Fix}(<\mathbf{g}>)}$.

Then we have with Proposition 3.5.3

$$
\begin{aligned}
\mu_{f, G}^{(k)} & =r^{(k)}\left(\mu_{f}^{G}\right) \\
& =r^{(k)}\left((-1)^{n-1} \bar{\chi}^{G}\left(\bar{X}_{w}\right)\right) \\
& =(-1)^{n-1} r^{(k)}\left(\chi^{G}\left(\bar{X}_{w}\right)-[G / G]\right) \\
& =(-1)^{n-1}\left(\chi^{(k)}\left(\bar{X}_{w}, G\right)-r^{(k)}([G / G])\right) \\
& =(-1)^{n-1} \frac{1}{|G|} \sum_{\substack{\mathbf{g} \in G^{k} \\
g_{i} g_{j} g_{j} g_{i}}}\left(\chi\left(\bar{X}_{w}^{<\mathbf{g}>}\right)-1\right) \\
& =\frac{1}{|G|} \sum_{\substack{\mathbf{g} \in G^{k} \\
g_{i} g_{j}=g_{j} g_{i}}}(-1)^{n-n_{<\mathbf{g}\rangle}>}(-1)^{n<\mathbf{g}>-1}\left(\chi\left(\bar{X}_{w}^{<\mathbf{g}>}\right)-1\right) \\
& =\frac{1}{|G|} \sum_{\substack{\mathbf{g} \in G^{k} \\
g_{i} g_{j}=g_{j} g_{i}}}(-1)^{n-n<\mathbf{g}>} \mu_{f}<\mathbf{g}>.
\end{aligned}
$$

This is true for all $k=1,2, \ldots$
Example 4.2.6. Let (f, G) be as in Example 4.1.4.
(i) Set $f=x_{1}^{3}+x_{2}^{3} x_{3}+x_{3}^{3}$ and $G=\left\langle\left(\mathbf{e}\left[\frac{1}{3}\right], \mathbf{e}\left[\frac{2}{3}\right], 1\right)\right\rangle$. We have seen $f^{g}=x_{3}^{3}$ and so $\mu_{f g}=2$. Since $\operatorname{Fix}(g)=\operatorname{Fix}\left(g^{-1}\right)$ we also have $\mu_{f^{-1}}=2$ and we can calculate

$$
\begin{aligned}
\mu_{f} & =14, \quad \text { see Example 2.1.3, } \\
\mu_{f / G} & =\frac{1}{3}(14+2+2)=6, \quad n-n_{g}=3-1 \equiv 0 \quad \bmod 2, \\
\mu_{f, G}^{\mathrm{orb}} & =\frac{1}{3}((14+2+2)+(2+2+2)+(2+2+2))=10, \quad \text { since } G \text { is abelian. }
\end{aligned}
$$

(ii) Set $f=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}$ and $G=S_{3}$. We have seen $f^{(12)}=\frac{2}{8} y_{1}^{3}+y_{3}^{3}$ so $\mu_{(12)}=4$ and similar $\mu_{(13)}=4$ and $\mu_{(23)}=4$. For the 3 -cycles we have $\mu_{(\bullet \bullet \bullet)}=2$. We can calculate

$$
\begin{aligned}
\mu_{f}= & 8, \\
\mu_{f / G}= & \frac{1}{6}(8-4-4-4+2+2)=0, \\
& n-n_{(\bullet \bullet)}=3-2 \equiv 1 \bmod 2, \quad n-n_{(\bullet \bullet \bullet)}=3-1 \equiv 0 \bmod 2, \\
\mu_{f, G}^{\text {orb }}= & \frac{1}{6}(\underbrace{(8-4-4-4+2+2)}_{g g}+\underbrace{(-4-4-4+2+2)}_{g \text { id and id } g}+\underbrace{(2+2)}_{(\bullet \bullet \bullet)(\bullet \bullet \bullet)})=-2 .
\end{aligned}
$$

4.3 Orbifold Version of Ω_{f}

Definition 4.3.1. We define a $\mathbb{Z} / 2 \mathbb{Z}$-graded \mathbb{C}-module $\Omega_{f, G}^{\prime}=\left(\Omega_{f, G}^{\prime}\right)_{\overline{0}} \oplus\left(\Omega_{f, G}^{\prime}\right)_{\overline{1}}$ by

$$
\left(\Omega_{f, G}^{\prime}\right)_{\overline{0}}:=\bigoplus_{\substack{g \in G \\ n-n_{g} \equiv 0(\bmod 2)}} \Omega_{f, g}^{\prime}, \quad\left(\Omega_{f, G}^{\prime}\right)_{\overline{1}}:=\bigoplus_{\substack{g \in G \\ n-n_{g} \equiv 1(\bmod 2)}} \Omega_{f, g}^{\prime},
$$

where $\Omega_{f, g}^{\prime}:=\Omega_{f g}$.
Remark 4.3.2. Each $g \in G$ is a bi-regular map on \mathbb{C}^{n} and maps $\operatorname{Fix}\left(g^{-1} h g\right)$ to $\operatorname{Fix}(h)$ for each $h \in G$. So G acts naturally on $\Omega_{f, G}^{\prime}$ by

$$
\Omega_{f, h}^{\prime} \longrightarrow \Omega_{f, g^{-1} h g}^{\prime},\left.\quad \omega \mapsto g^{*}\right|_{\mathrm{Fix}(g)} \omega,
$$

where $\left.g^{*}\right|_{\text {Fix }(g)}$ denotes the restriction of the pullback g^{*} of differential forms to Fix (g). In order to simplify the notation, for each $g \in G$, we shall denote by g^{*} the action of g on $\Omega_{f, G}^{\prime}$.

Definition 4.3.3. Define a $\mathbb{Z} / 2 \mathbb{Z}$-graded \mathbb{C}-module $\Omega_{f, G}$ as the G-invariant part of $\Omega_{f, G}^{\prime}$,

$$
\Omega_{f, G}=\left(\Omega_{f, G}^{\prime}\right)^{G}
$$

Of course we have $\Omega_{f, G}=\left(\Omega_{f, G}\right)_{\overline{0}} \oplus\left(\Omega_{f, G}\right)_{\overline{1}}$ where

$$
\left(\Omega_{f, G}\right)_{\overline{0}}:=\left(\left(\Omega_{f, G}^{\prime}\right)_{\overline{0}}\right)^{G}, \quad\left(\Omega_{f, G}\right)_{\overline{1}}:=\left(\left(\Omega_{f, G}^{\prime}\right)_{\overline{1}}\right)^{G}
$$

since the dimension of $\operatorname{Fix}(g)$ is the same for all g in one conjugacy class.
Example 4.3.4. Let (f, G) be as in Example 4.1.4. We calculate $\Omega_{f, G}^{\prime}$ and $\Omega_{f, G}$ (cf. also Example 2.3.3)
(i) Set $f=x_{1}^{3}+x_{2}^{3} x_{3}+x_{3}^{3}$ and $G=\left\langle\left(\mathbf{e}\left[\frac{1}{3}\right], \mathbf{e}\left[\frac{2}{3}\right], 1\right)\right\rangle$.

$$
\begin{aligned}
\Omega_{f, G}^{\prime}= & \left\langle d x_{1} \wedge d x_{2} \wedge d x_{3}, x_{1} d x_{1} \wedge d x_{2} \wedge d x_{3}, \ldots, x_{1} x_{2} x_{3}^{2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right\rangle \\
& \oplus\left\langle d x_{3}, x_{3} d x_{3}\right\rangle \oplus\left\langle d x_{3}, x_{3} d x_{3}\right\rangle
\end{aligned}
$$

and since G is abelian

$$
\begin{aligned}
\Omega_{f, G}= & \left\langle d x_{1} \wedge d x_{2} \wedge d x_{3}, x_{3} d x_{1} \wedge d x_{2} \wedge d x_{3}, x_{3}^{2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right. \\
& \left.x_{1} x_{2} d x_{1} \wedge d x_{2} \wedge d x_{3}, x_{1} x_{2} x_{3} d x_{1} \wedge d x_{2} \wedge d x_{3}, x_{1} x_{2} x_{3}^{2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right\rangle \\
& \oplus\left\langle d x_{3}, x_{3} d x_{3}\right\rangle \oplus\left\langle d x_{3}, x_{3} d x_{3}\right\rangle
\end{aligned}
$$

(ii) Set $f=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}$ and $G=S_{3}$.

$$
\begin{array}{rlrl}
\Omega_{f, G}^{\prime}= & \left\langle d x_{1} \wedge d x_{2} \wedge d x_{3}, x_{1} d x_{1} \wedge d x_{2} \wedge d x_{3}, \ldots, x_{1} x_{2} x_{3} d x_{1} \wedge d x_{2} \wedge d x_{3}\right\rangle & & g=\mathrm{id} \\
& \oplus & \left\langle\left(d x_{1} \wedge d x_{3}+d x_{2} \wedge d x_{3}\right),\left(x_{1}+x_{2}\right)\left(d x_{1} \wedge d x_{3}+d x_{2} \wedge d x_{3}\right),\right. & \\
& \left.x_{3}\left(d x_{1} \wedge d x_{3}+d x_{2} \wedge d x_{3}\right),\left(x_{1} x_{3}+x_{2} x_{3}\right)\left(d x_{1} \wedge d x_{3}+d x_{2} \wedge d x_{3}\right)\right\rangle & & g=(12) \\
& \oplus & \left\langle\left(d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{2}\right),\left(x_{1}+x_{3}\right)\left(d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{2}\right),\right. & \\
& \left.x_{2}\left(d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{2}\right),\left(x_{1} x_{2}+x_{2} x_{3}\right)\left(d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{2}\right)\right\rangle & & g=(13) \\
& \oplus & \left\langle\left(d x_{2} \wedge d x_{1}+d x_{3} \wedge d x_{1}\right),\left(x_{2}+x_{3}\right)\left(d x_{2} \wedge d x_{1}+d x_{3} \wedge d x_{1}\right),\right. & \\
& \left.x_{1}\left(d x_{2} \wedge d x_{1}+d x_{3} \wedge d x_{1}\right),\left(x_{1} x_{2}+x_{1} x_{3}\right)\left(d x_{2} \wedge d x_{1}+d x_{3} \wedge d x_{1}\right)\right\rangle & g=(23) \\
& \oplus\left\langle\left(d x_{1}+d x_{2}+d x_{3}\right),\left(x_{1}+x_{2}+x_{3}\right)\left(d x_{1}+d x_{2}+d x_{3}\right)\right\rangle & & g=(123) \\
& \oplus\left\langle\left(d x_{1}+d x_{2}+d x_{3}\right),\left(x_{1}+x_{2}+x_{3}\right)\left(d x_{1}+d x_{2}+d x_{3}\right)\right\rangle & g=(132)
\end{array}
$$

and since here G is not abelian, we get sums for every conjugacy class of elements in G :

$$
\begin{aligned}
\Omega_{f, G}= & \{0\} \\
\oplus & \left\langle\left(d x_{1} \wedge d x_{3}+d x_{2} \wedge d x_{3}\right)+\left(d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{2}\right)+\left(d x_{2} \wedge d x_{1}+d x_{3} \wedge d x_{1}\right)\right. \\
& \left(x_{1}+x_{2}\right)\left(d x_{1} \wedge d x_{3}+d x_{2} \wedge d x_{3}\right)+\cdots+\left(x_{2}+x_{3}\right)\left(d x_{2} \wedge d x_{1}+d x_{3} \wedge d x_{1}\right) \\
& x_{3}\left(d x_{1} \wedge d x_{3}+d x_{2} \wedge d x_{3}\right)+x_{2}\left(d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{2}\right)+x_{1}\left(d x_{2} \wedge d x_{1}+d x_{3} \wedge d x_{1}\right) \\
& \left.\left(x_{1} x_{3}+x_{2} x_{3}\right)\left(d x_{1} \wedge d x_{3}+d x_{2} \wedge d x_{3}\right)+\cdots+\left(x_{1} x_{2}+x_{1} x_{3}\right)\left(d x_{2} \wedge d x_{1}+d x_{3} \wedge d x_{1}\right)\right\rangle \\
\oplus & \left\langle\left(d x_{1}+d x_{2}+d x_{3}\right)+\left(d x_{1}+d x_{2}+d x_{3}\right),\right. \\
& \left.\left(x_{1}+x_{2}+x_{3}\right)\left(d x_{1}+d x_{2}+d x_{3}\right)+\left(x_{1}+x_{2}+x_{3}\right)\left(d x_{1}+d x_{2}+d x_{3}\right)\right\rangle .
\end{aligned}
$$

4.4 Dimensions and Milnor Numbers

Remark 4.4.1. As we had in the section about the Milnor number, we have:

$$
\left|\mu_{f}^{G}\right|=\mu_{f}=\operatorname{dim} \Omega_{f}
$$

Proposition 4.4.2. We have

$$
r^{(1)}\left(\mu_{f}^{G}\right)=\mu_{f / G}=\operatorname{dim}\left(\Omega_{f}\right)^{G}
$$

is the dimension of the G-invariant part of Ω_{f}.
Proof. As in the proof of Proposition 3.2.3 the multiplicity of the trivial representation in $M=\Omega_{f} \in R(G)$ is

$$
\frac{1}{|G|} \sum_{g \in G}(-1)^{n-n_{g}} \mu_{f^{g}}=\mu_{f / G}
$$

and that is directly the dimension of the G-invariant part of $M=\Omega_{f}$.
Example 4.4.3. Let (f, G) be as in Example 4.1.4.
(i) Set $f=x_{1}^{3}+x_{2}^{3} x_{3}+x_{3}^{3}$ and $G=\left\langle\left(\mathbf{e}\left[\frac{1}{3}\right], \mathbf{e}\left[\frac{2}{3}\right], 1\right)\right\rangle$. As we have seen in Example 4.3.4

$$
\operatorname{dim} \Omega_{f}^{G}=6 \text { and } \operatorname{dim} \Omega_{f, G}=10
$$

which are $\mu_{f / G}$ and $\mu_{f, G}^{\mathrm{orb}}$ respectively, see Example 4.2.6. Here we have $\Omega_{f, G_{\overline{1}}}=\{0\}$ since $n-n_{g} \equiv 0$ for all $g \in G$.
(ii) Set $f=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}$ and $G=S_{3}$. As we have seen in Example 4.3.4

$$
\operatorname{dim} \Omega_{f}^{G}=0 \text { and } \operatorname{dim} \Omega_{f, G}=4+2=6,
$$

which is $\mu_{f / G}$, see Example 4.2.6. But for $\Omega_{f, G}$ we see

$$
\operatorname{dim}\left(\Omega_{f, G}\right)_{\overline{0}}=2 \text { and } \operatorname{dim}\left(\Omega_{f, G}\right)_{\overline{1}}=4
$$

and then we have $\mu_{f, G}^{\mathrm{orb}}=-2=2-4$.
In general we have the following theorem.
Theorem 4.4.4. We have

$$
\mu_{f, G}^{o r b}=\operatorname{dim}\left(\Omega_{f, G}\right)_{\overline{0}}-\operatorname{dim}\left(\Omega_{f, G}\right)_{\overline{1}} .
$$

We will first prove a restriction of this theorem.
Proposition 4.4.5. Let G be abelian, then Theorem 4.4.4 holds.
Proof. If G is abelian, each $h \in G$ acts on $\Omega_{f, g}$ for each $g \in G$ and we have

$$
\left(\Omega_{f, G}\right)_{\overline{0}}:=\bigoplus_{\substack{g \in G \\ n-n_{g} \equiv 0(\bmod 2)}}\left(\Omega_{f, g}^{\prime}\right)^{G}, \quad\left(\Omega_{f, G}\right)_{\overline{1}}:=\bigoplus_{\substack{g \in G \\ n-n_{g} \equiv 1(\bmod 2)}}\left(\Omega_{f, g}^{\prime}\right)^{G}
$$

since we always get $h^{-1} g h=g$. So we have

$$
\begin{aligned}
\operatorname{dim}\left(\Omega_{f, G}\right)_{\overline{0}}-\operatorname{dim}\left(\Omega_{f, G}\right)_{\overline{1}} & =\sum_{\substack{g \in G \\
n-n_{g} \equiv 0(\bmod 2)}} \operatorname{dim}\left(\Omega_{f, g}^{\prime}\right)^{G}-\sum_{\substack{g \in G \\
n-n_{g} \equiv 1(\bmod 2)}} \operatorname{dim}\left(\Omega_{f, g}^{\prime}\right)^{G} \\
\text { see Proposition 4.4.2 } & =\sum_{\substack{g \in G \\
n-n_{g} \equiv 0(\bmod 2)}} \mu_{f^{g} / G}-\sum_{\substack{g \in G \\
n-n_{g} \equiv 1(\bmod 2)}} \mu_{f^{g} / G} \\
& =\sum_{g \in G}(-1)^{n-n_{g}} \mu_{f^{g} / G} .
\end{aligned}
$$

On the other hand we have, since $g h=h g$ for all $g, h \in G$:

$$
\begin{aligned}
\mu_{f, G}^{\mathrm{orb}} & =\frac{1}{|G|} \sum_{g h=h g}(-1)^{n-n_{<g, h>}} \mu_{f<g, h>} \\
& =\frac{1}{|G|} \sum_{g \in G} \sum_{h \in G}(-1)^{n-n_{g}+n_{g}-n_{<g, h>}} \mu_{f<g, h>} \\
& =\sum_{g \in G}(-1)^{n-n_{g}} \frac{1}{|G|} \sum_{h \in G}(-1)^{n_{g}-n_{<g, h>}} \mu_{(f g)^{h}} \\
& =\sum_{g \in G}(-1)^{n-n_{g}} \mu_{f^{g} / G} .
\end{aligned}
$$

Now we prepare for the proof.
Definition 4.4.6. For $g \in G$ let $C(g)=\{k \in G \mid g k=k g\}$ be the centralizer of g and $C(g)=$: $\left\{k_{1}, \ldots, k_{|C(g)|}\right\}$. Let $[g]=\left\{h^{-1} g h \mid h \in G\right\}$ be the conjugacy class of g. Let $\left\{h_{1}, \ldots, h_{|[g]|}\right\}$ be a set, such that $[g]=\left\{h_{1}^{-1} g h_{1}, \ldots, h_{|[g]|}^{-1} g h_{|[g]|}\right\}$.

We now prove a well known fact in group theory:
Lemma 4.4.7. There is a 1:1-correspondence between $[g]$ and $C(g) \backslash G$. So we have

$$
|[g]| \cdot|C(g)|=|G|
$$

and

$$
\left\{k_{j} h_{i}|i=1, \ldots,|[g]| ; j=1, \ldots,|C(g)|\}=G .\right.
$$

Proof. We take $C(g) \backslash G=\{C(g) h \mid h \in G\}$. The map

$$
[g] \rightarrow C(g) \backslash G \quad h^{-1} g h \mapsto C(g) h
$$

is well defined and bijective. For $h^{-1} g h=k^{-1} g k$ we have $k h^{-1} \in C(g)$ and so we have $C(g) h=C(g) k h^{-1} h=C(g) k \in C(g) \backslash G$ and vice versa for $C(g) h=C(g) k$ we have $k=\tilde{g} h$ with $\tilde{g} \in C(g)$ and so $k^{-1} g k=(\tilde{g} h)^{-1} g(\tilde{g} h)=h^{-1}\left(\tilde{g}^{-1} g \tilde{g}\right) h=h^{-1} g h$.
Lemma 4.4.8 (cf. also [HH90]). We have

$$
\mu_{f, G}^{o r b}=\sum_{[g]}(-1)^{n-n_{g}} \mu_{f^{g} / C(g)},
$$

where we sum over all different conjugacy classes in G.
Proof. Since $\Omega_{f^{g}}$ and $\Omega_{f^{h}}$ are isomorphic for g and h in the same conjugacy class, we also have $\mu_{f g}=\mu_{f h}$. So we have

$$
\begin{aligned}
\mu_{f, G}^{\mathrm{orb}} & =\frac{1}{|G|} \sum_{g h=h g}(-1)^{n-n_{<g, h>}} \mu_{f<g, h>} \\
& =\sum_{g \in G} \frac{1}{|G|} \sum_{h \in C(g)}(-1)^{n-n_{g}+n_{g}-n_{<g, h>}} \mu_{f<g, h>} \\
& =\sum_{[g]}(-1)^{n-n_{g}}|[g]| \frac{1}{|G|} \sum_{h \in C(g)}(-1)^{n_{g}-n_{<g, h>}} \mu_{f<g, h>} \\
& =\sum_{[g]}(-1)^{n-n_{g}} \frac{1}{|C(g)|} \sum_{h \in C(g)}(-1)^{n_{g}-n_{<g, h>}} \mu_{f<g<, h>} \\
& =\sum_{[g]}(-1)^{n-n_{g}} \mu_{f^{g} / C(g)} .
\end{aligned}
$$

Lemma 4.4.9. We have

$$
\left(\Omega_{f, G}\right)_{\overline{0}}=\bigoplus_{\substack{[g] \\ n-n_{g} \equiv 0(\bmod 2)}}\left(\bigoplus_{h \in[g]} \Omega_{f, h}^{\prime}\right)^{G}, \quad\left(\Omega_{f, G}\right)_{\overline{1}}=\bigoplus_{\substack{[g] \\ n-n_{g} \equiv 1(\bmod 2)}}\left(\bigoplus_{h \in[g]} \Omega_{f, h}^{\prime}\right)^{G}
$$

Proof. Of course we can write

$$
\left(\Omega_{f, G}\right)_{\overline{0}}=\left(\bigoplus_{\substack{[g] \\ n-n_{g} \equiv 0(\bmod 2)}}^{\bigoplus_{h \in[g]}} \Omega_{f, h}^{\prime}\right)^{G}, \quad\left(\Omega_{f, G}\right)_{\overline{1}}=\left(\bigoplus_{\substack{[g] \\ n-n_{g} \equiv 1(\bmod 2)}} \bigoplus_{h \in[g]} \Omega_{f, h}^{\prime}\right)^{G}
$$

since the action of $g \in G$ goes from $\Omega_{f, h}^{\prime}$ to $\Omega_{f, g^{-1} h g}^{\prime}$ we need to take the invariance only over the sum in one conjugacy class.

Lemma 4.4.10. For $\Omega_{f g}$ there exists a basis $\left\{v_{g}^{1}, \ldots, v_{g}^{\mu_{f / C(g)}}, \ldots, v_{g}^{\mu_{f g}}\right\}$ such that $\left\{v_{g}^{1}, \ldots, v_{g}^{\mu_{f / C(g)}}\right\}$ is a basis of $\Omega_{f g}^{C(g)}$.

Proof. We can take a basis of the subspace $\Omega_{f^{g}}^{C(g)}$ and can extend it to a basis of $\Omega_{f g}$. So the statement is clear.

Lemma 4.4.11. Let $\left\{v_{g}^{1}, \ldots, v_{g}^{\mu_{f g}}\right\}$ be a basis of $\Omega_{f g}$ as in Lemma 4.4.10. For $h \in G$ set $v_{h^{-1} g h}^{i}:=h^{*}\left(v_{g}^{i}\right)$. Then $\left\{v_{h^{-1} g h}^{1}, \ldots, v_{h^{-1} g h}^{\mu_{f} g}\right\}$ is a basis of $\Omega_{f^{h-1} g h}$ as in Lemma 4.4.10.

Proof. Since h induces an isomorphism from $\Omega_{f^{g}}$ to $\Omega_{f^{h-1} g h}$, it is clear that it is a basis. We have $C\left(h^{-1} g h\right)=h^{-1} C(g) h$, so for each $k \in C\left(h^{-1} g h\right)$ we have $k=h^{-1} \tilde{k} h$ for $\tilde{k} \in C(g)$. So the basis has the property of Lemma 4.4.10:

$$
\begin{aligned}
k^{*}\left(v_{h^{-1} g h}^{i}\right) & =\left(h^{-1} \tilde{k} h\right)^{*}\left(h^{*}\left(v_{g}^{i}\right)\right) \\
\text { pullback } & =\left(h h^{-1} \tilde{k} h\right)^{*}\left(v_{g}^{i}\right) \\
& =h^{*}\left(\tilde{k}^{*}\left(v_{g}^{i}\right)\right) \\
& = \begin{cases}h^{*}\left(v_{g}^{i}\right)=v_{h^{-1} g h}^{i} & i \leq \mu_{f^{g} / C(g)} \\
h^{*}\left(k^{*}\left(v_{g}^{i}\right)\right) \neq h^{*}\left(v_{g}^{i}\right) & i>\mu_{f^{g} / C(g)}\end{cases}
\end{aligned}
$$

Lemma 4.4.12. For each conjugacy class [g] of G we have

$$
\operatorname{dim}\left(\bigoplus_{h \in[g]} \Omega_{f, h}^{\prime}\right)^{G}=\mu_{f^{g} / C(g)}
$$

Proof. Let $\left\{h_{1}, \ldots, h_{|[g]|}\right\}$ be as in Definition 4.4.6. We set $v_{h_{j}^{-1} g h_{j}}^{i}:=h_{j}^{*}\left(v_{g}^{i}\right)$. Then

$$
\left\{v_{h_{1}^{-1} g h_{1}}^{1}, \ldots, v_{h_{1}^{-1} g h_{1}}^{\mu_{f g}}, v_{h_{2}^{-1} g h_{2}}^{1}, \ldots, \ldots, v_{h_{\mid[g| |}^{-1} g h_{|g|]}}^{\mu_{f} g}\right\}
$$

is a basis of $\left(\bigoplus_{h \in[g]} \Omega_{f, h}^{\prime}\right)$. Since each $v_{g^{\prime}}^{i}$ for $i>\mu_{f g / G}$ is not fixed by $h \in C\left(g^{\prime}\right)$, it is not possible to be fixed by G. So we only concentrate on $i \leq \mu_{f^{g} / G}$. Let $h \in G$. From Lemma 4.4.7 we know $h=k_{l} h_{j}$ for h_{j} as above and $k_{l} \in C(g)$ so we have

$$
h^{*}\left(v_{g}^{i}\right)=\left(k_{l} h_{j}\right)^{*}\left(v_{g}^{i}\right)=h_{j}^{*}\left(k_{l}^{*}\left(v_{g}^{i}\right)\right)=h_{j}^{*}\left(v_{g}^{i}\right)=v_{h_{j}^{-1} g h_{j}}^{i}, \quad i \leq \mu_{f^{g} / G} .
$$

And for each $m=1, \ldots,|[g]|$ we also have $h_{m} h \in G$ and we can again write $h_{m} h=k_{l} h_{j}$ from Lemma 4.4.7. So we have for $i \leq \mu_{f^{g} / G}$

$$
h^{*}\left(v_{h_{m}^{-1} g h_{m}}^{j}\right)=h^{*}\left(h_{m}^{*}\left(v_{g}^{i}\right)\right)=\left(h_{m} h\right)^{*}\left(v_{g}^{i}\right)=\left(k_{l} h_{j}\right)^{*}\left(v_{g}^{i}\right)=h_{j}^{*}\left(k_{l}^{*}\left(v_{g}^{i}\right)\right)=h_{j}^{*}\left(v_{g}^{i}\right)=v_{h_{j}^{-1} g h_{j}}^{i} .
$$

So each $h \in G$ sends each v_{\bullet}^{i} for $i \leq \mu_{f^{g} / G}$ also to a v_{\bullet}^{i}. And since each h_{m} for $m=1, \ldots,|[g]|$ sends v_{g}^{i} to $v_{h_{m}^{-1} g h_{m}}^{i}$ only the whole sum $v_{h_{1}^{-1} g h_{1}}^{j}+\cdots+v_{h_{|g| \mid}^{-1} g h_{\| g| |}}^{j}$ can be invariant by all $h \in G$. So

$$
\left\{v_{h_{1}^{-1} g h_{1}}^{1}+\cdots+v_{h_{|g g| \mid}^{-1} g h_{|g| \mid}}^{1}, \ldots, v_{h_{1}^{-1} g h_{1}}^{\mu_{f} g / G}+\cdots+v_{h_{||g| g}^{-1}}^{\mu_{f h_{\| g g \mid}}^{-1}}\right\}
$$

is a basis of the invariant part. So the dimension is as given.
Proof of Theorem 4.4.4. As shown before we have

$$
\begin{aligned}
\operatorname{dim}\left(\Omega_{f, G}\right)_{\overline{0}} & -\operatorname{dim}\left(\Omega_{f, G)_{\overline{1}}}\right. \\
& =\sum_{\substack{[g] \\
n-n_{g} \equiv 0(\bmod 2)}} \operatorname{dim}\left(\bigoplus_{h \in[g]} \Omega_{f, h}^{\prime}\right)^{G}-\sum_{\substack{[g] \\
n-n_{g} \equiv 1(\bmod 2)}} \operatorname{dim}\left(\bigoplus_{h \in[g]} \Omega_{f, g}^{\prime}\right)^{G} \\
& =\sum_{\substack{[g] \\
\mu_{f(\bmod 2)}}} \mu_{f^{g} / C(g)}-\sum_{\substack{[g] \\
n-n_{g} \equiv 1(\bmod 2)}}^{\mu_{f g} / C(g)} \\
& =\sum_{\substack{\left.n-n_{g} \equiv 0\right]}}(-1)^{n-n_{g}} \mu_{f^{g} / C(g)} \\
& =\mu_{f, G}^{\text {orb }} .
\end{aligned}
$$

4.5 Orbifold Residue Pairing

Now we can also define a bilinear form on $\Omega_{f, G}^{\prime}$ and on $\Omega_{f, G}$.
Definition 4.5.1. Since the finite group G acts linearly on \mathbb{C}^{n} we can diagonalize each $g \in$ $G \subset \mathrm{GL}(n, \mathbb{C})$. So each $g \in G$ is up to order uniquely isomorphic to

$$
g \cong \operatorname{diag}\left(\mathbf{e}\left[\frac{a_{1}}{r}\right], \ldots, \mathbf{e}\left[\frac{a_{n}}{r}\right]\right), \quad 0 \leq a_{i}<r
$$

where r is the order of g.
The age of g is defined (cf. [IR96]) as the rational number

$$
\operatorname{age}(g)=\frac{1}{r} \sum_{i=1}^{n} a_{i} .
$$

For $g \in \operatorname{SL}(n, \mathbb{C})$ we have age $(g) \in \mathbb{Z}$.
Example 4.5.2. (a) If $G \subset G_{f}$, all g are automatically diagonal and
$g=\operatorname{diag}\left(\mathbf{e}\left[\frac{a_{1}}{r}\right], \ldots, \mathbf{e}\left[\frac{a_{n}}{r}\right]\right)$ is given directly and uniquely.
(b) The identity id $\in G$ is of the form $\operatorname{id}=\operatorname{diag}(1, \ldots, 1)=\operatorname{diag}(\mathbf{e}[0], \ldots, \mathbf{e}[0])$. So

$$
\operatorname{age}(\mathrm{id})=0 .
$$

(c) For g and g^{-1} the diagonalization can be chosen in the same way such that they preserve the same coordinates. Then we have $g \cong \operatorname{diag}\left(\mathbf{e}\left[\frac{a_{1}}{r}\right], \ldots, \mathbf{e}\left[\frac{a_{l}}{r}\right], \mathbf{e}[0], \ldots, \mathbf{e}[0]\right)$ and $g^{-1} \cong \operatorname{diag}\left(\mathbf{e}\left[\frac{r-a_{1}}{r}\right], \ldots, \mathbf{e}\left[\frac{r-a_{l}}{r}\right], \mathbf{e}[0], \ldots, \mathbf{e}[0]\right)$ for $l=n_{g}=n_{g^{-1}} \leq n$. So we directly see

$$
\operatorname{age}(g)+\operatorname{age}\left(g^{-1}\right)=n-n_{g} .
$$

Example 4.5.3. Let (f, G) be as in Example 4.1.4.
(i) Set $G=\langle g\rangle=\left\langle\left(\mathbf{e}\left[\frac{1}{3}\right], \mathbf{e}\left[\frac{2}{3}\right], 1\right)\right\rangle$. So we see directly

$$
\operatorname{age}(g)=1 \text { and } \operatorname{age}\left(g^{-1}\right)=1 .
$$

(ii) Set $G=S_{3}=\{\mathrm{id},(12),(13),(23),(123),(132)\}$. In Example 4.1 .4 we have seen a basis $\{(1,1,0),(1,-1,0),(0,0,1)\}$ of \mathbb{C}^{3}, s.t. (12) is diagonal on it. We have

$$
(12) \cong \operatorname{diag}\left(\mathbf{e}[0], \mathbf{e}\left[\frac{1}{2}\right], \mathbf{e}[0]\right)
$$

and so we see

$$
\operatorname{age}((12))=\frac{1}{2} \text { and similar age }((13))=\frac{1}{2}, \text { age }((23))=\frac{1}{2} .
$$

In the same way we saw

$$
(123) \cong \operatorname{diag}\left(\mathbf{e}[0], \mathbf{e}\left[\frac{1}{3}\right], \mathbf{e}\left[\frac{2}{3}\right]\right)
$$

and so we see

$$
\begin{gathered}
\operatorname{age}((123))=1 \text { and } \operatorname{age}((132))=1 \\
\text { since } n-n_{(123)}=3-1=2=1+1=\operatorname{age}((123))+\operatorname{age}((132))
\end{gathered}
$$

Definition 4.5.4. We define the non-degenerate \mathbb{C}-bilinear form $J_{f, G}: \Omega_{f, G}^{\prime} \otimes_{\mathbb{C}} \Omega_{f, G}^{\prime} \rightarrow \mathbb{C}$, called the orbifold residue pairing, by

$$
J_{f, G}:=\bigoplus_{g \in G} J_{f, g},
$$

where $J_{f, g}$ is the perfect \mathbb{C}-bilinear form $J_{f, g}: \Omega_{f, g}^{\prime} \otimes_{\mathbb{C}} \Omega_{f, g^{-1}}^{\prime} \longrightarrow \mathbb{C}$ defined by

$$
J_{f, g}\left(\omega_{1}, \omega_{2}\right):=(-1)^{n-n_{g}} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}(g)\right] \cdot|G| \cdot \operatorname{Res}_{\mathrm{Fix}(g)}\left[\begin{array}{c}
\phi \psi d x_{i_{1}} \wedge \cdots \wedge d x_{i_{n_{g}}} \\
\frac{\partial f^{g}}{\partial x_{i_{1}}} \cdots \frac{\partial f^{g}}{\partial x_{i_{n_{g}}}}
\end{array}\right]
$$

for $\omega_{1}=\left[\phi d x_{i_{1}} \wedge \cdots \wedge d x_{i_{n_{g}}}\right] \in \Omega_{f, g}^{\prime}$ and $\omega_{2}=\left[\psi d x_{i_{1}} \wedge \cdots \wedge d x_{i_{n_{g}}}\right] \in \Omega_{f, g^{-1}}^{\prime}$, where $x_{i_{1}}, \ldots, x_{i_{n_{g}}}$ are coordinates of $\operatorname{Fix}(g)=\operatorname{Fix}\left(g^{-1}\right)$.

For each $g \in G$ with $\operatorname{Fix}(g)=\{\mathbf{0}\}$, we define

$$
J_{f, g}\left(1_{g}, 1_{g^{-1}}\right):=(-1)^{n} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}(g)\right] \cdot|G|,
$$

where $1_{g} \in \Omega_{f, g}^{\prime}$ and $1_{g^{-1}} \in \Omega_{f, g^{-1}}^{\prime}$ denote the constant functions on $\{\boldsymbol{0}\}$ whose values are 1 .
Example 4.5.5. Let (f, G) be as in Example 4.1.4.
(i) Set $f=x_{1}^{3}+x_{2}^{3} x_{3}+x_{3}^{3}$ and $G=\left\langle\left(\mathbf{e}\left[\frac{1}{3}\right], \mathbf{e}\left[\frac{2}{3}\right], 1\right)\right\rangle$. We can calculate with Example 2.3.9

$$
J_{f, \text { id }}\left(d x_{1} \wedge d x_{2} \wedge d x_{3}, x_{1} x_{2} x_{3}^{2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right)=(-1)^{0} \mathbf{e}\left[-\frac{1}{2} \cdot 0\right] \cdot 3 \cdot \frac{1}{27}=\frac{1}{9}
$$

With $\mu_{f^{g}}=2$ and $\operatorname{hess}_{f^{g}}=3 \cdot 2 x_{3}$ we calculate

$$
J_{f, g}\left(d x_{3}, x_{3} d x_{3}\right)=(-1)^{2} \mathbf{e}\left[-\frac{1}{2} \cdot 1\right] \cdot 3 \cdot \frac{1}{3}=-1 .
$$

(ii) Set $f=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}$ and $G=S_{3}$. We can calculate with Example 2.3.9

$$
J_{f, \text { id }}\left(d x_{1} \wedge d x_{2} \wedge d x_{3}, x_{1} x_{2} x_{3} d x_{1} \wedge d x_{2} \wedge d x_{3}\right)=(-1)^{0} \mathbf{e}\left[-\frac{1}{2} \cdot 0\right] \cdot 6 \cdot \frac{1}{27}=\frac{2}{9}
$$

With $\mu_{f^{(12)}}=4$ and $\operatorname{hess}_{f^{(12)}}=3 \cdot 2 \cdot \frac{2}{8}\left(x_{1}+x_{2}\right) \cdot 3 \cdot 2 x_{3}$ we calculate

$$
\begin{aligned}
J_{f,(12)} & \left(d x_{1} \wedge d x_{3}+d x_{2} \wedge d x_{3},\left(x_{1} x_{3}+x_{2} x_{3}\right)\left(d x_{1} \wedge d x_{3}+d x_{2} \wedge d x_{3}\right)\right) \\
& =(-1)^{1} \mathbf{e}\left[-\frac{1}{2} \cdot \frac{1}{2}\right] \cdot 6 \cdot \frac{4}{9}=(-1)(-\sqrt{-1}) \frac{8}{3}=\frac{8 \sqrt{-1}}{3}
\end{aligned}
$$

With $\mu_{f^{(123)}}=2$ and $\operatorname{hess}_{f^{(123)}}=3 \cdot 2 \cdot \frac{3}{27}\left(x_{1}+x_{2}+x_{3}\right)$ we calculate

$$
\begin{gathered}
J_{f,(123)}\left(d x_{1}+d x_{2}+d x_{3},\left(x_{1}+x_{2}+x_{3}\right)\left(d x_{1}+d x_{2}+d x_{3}\right)\right) \\
=(-1)^{2} \mathbf{e}\left[-\frac{1}{2} \cdot 1\right] \cdot 6 \cdot \frac{9}{3}=(+1)(-1) 18=-18 .
\end{gathered}
$$

Proposition 4.5.6. The orbifold residue pairing is G-twisted $\mathbb{Z} / 2 \mathbb{Z}$-graded symmetric in the sense that

$$
J_{f, G}\left(\omega_{1}, \omega_{2}\right)=(-1)^{n-n_{g}} \cdot \mathbf{e}[-\operatorname{age}(g)] \cdot J_{f, G}\left(\omega_{2}, \omega_{1}\right)
$$

for $\omega_{1} \in \Omega_{f, g}^{\prime}$ and $\omega_{2} \in \Omega_{f, g^{-1}}^{\prime}$.
Proof. We have $\operatorname{Fix}(g)=\operatorname{Fix}\left(g^{-1}\right)$, and so $f^{g}=f^{g^{-1}}$ and $\operatorname{age}(g)+\operatorname{age}\left(g^{-1}\right)=n-n_{g}$, see Example 4.5.2(c). So we have

$$
\begin{aligned}
J_{f, G}\left(\omega_{1}, \omega_{2}\right) & =J_{f, g}\left(\omega_{1}, \omega_{2}\right) \\
& =(-1)^{n-n_{g}} \mathbf{e}\left[-\frac{1}{2} \operatorname{age}(g)\right]|G| \cdot \operatorname{Res}[\cdots] \\
& =\mathbf{e}\left[-\frac{1}{2} \operatorname{age}(g)+\frac{1}{2} \operatorname{age}\left(g^{-1}\right)\right](-1)^{n-n_{g^{-1}}} \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g^{-1}\right)\right]|G| \cdot \operatorname{Res}[\cdots] \\
& =\mathbf{e}\left[-\frac{1}{2} \operatorname{age}(g)+\frac{1}{2} \operatorname{age}\left(g^{-1}\right)\right] \cdot J_{f, g^{-1}}\left(\omega_{2}, \omega_{1}\right) \\
& =\mathbf{e}\left[\frac{1}{2}\left(\operatorname{age}(g)+\operatorname{age}\left(g^{-1}\right)\right)\right] \mathbf{e}[-\operatorname{age}(g)] \cdot J_{f, g^{-1}}\left(\omega_{2}, \omega_{1}\right) \\
& =(-1)^{n-n_{g}} \cdot \mathbf{e}[-\operatorname{age}(g)] \cdot J_{f, G}\left(\omega_{2}, \omega_{1}\right) .
\end{aligned}
$$

Remark 4.5.7. In [EG15] there is defined an equivariant index in $B(G)$. So we could also define some higher order indices. But since this bilinear form is $\mathbb{Z} / 2 \mathbb{Z}$-graded one would need a good version of the signature to find an equivariant version of Theorem 2.3.13. On the other hand for a good orbifold version of $\operatorname{Jac}(f)$ (cf. next chapter and Proposition 5.3.7) we only take $G \subset S L$. And then a group in $\operatorname{SL}(n, \mathbb{R})$ would be very small, such that this is no fruitful direction.

5 Orbifold Jacobian Algebra

In a joint work with Alexey Basalaev and Atsushi Takahashi we constructed this orbifold version of $\operatorname{Jac}(f)$. The Chapters 5 and 6 are mainly an elaborated version of the paper [BTW16].

5.1 Setup

Let $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial with isolated singularity at $\mathbf{0}$. From now on, we shall denote by G a finite subgroup of G_{f}, cf. Example 4.1.2, unless otherwise stated.

Remark 5.1.1. We will restrict ourselves to subgroups of the diagonal symmetries of f, $G \subset G_{f}$ (cf. Example 4.1.2). For the defining axioms this is not totally necessary as we write in Remark 5.2.4. But the commutativity of the group simplifies the proofs considerably.

This is also a common assumption:
Remark 5.1.2. The pair (f, G) for a weighted homogeneous f (cf. Definition 6.1.1) and a finite subgroup $G \subset G_{f}$ is often called a orbifold Landau-Ginzburg model (cf. [BH95], [Kr94], [Kr09], [EG12], [FJR13]).
Definition 5.1.3. We will additionally define

$$
G_{f}^{\mathrm{SL}}:=G_{f} \cap \mathrm{SL}(n ; \mathbb{C}) .
$$

Remark 5.1.4. We recall Example 4.5.2. Each element $g \in G_{f}$ has a unique expression of the form

$$
g=\operatorname{diag}\left(\mathbf{e}\left[\frac{a_{1}}{r}\right], \ldots, \mathbf{e}\left[\frac{a_{n}}{r}\right]\right) \quad \text { with } 0 \leq a_{i}<r
$$

where r is the order of g. We use the notation $\left(a_{1} / r, \ldots, a_{n} / r\right)$ or $\frac{1}{r}\left(a_{1}, \ldots, a_{n}\right)$ for the element g. And we had defined the

$$
\operatorname{age}(g):=\frac{1}{r} \sum_{i=1}^{n} a_{i} .
$$

Note that if $g \in G_{f}^{\text {SL }}$ then age $(g) \in \mathbb{Z}$.
Definition 5.1.5. Define the group $\operatorname{Aut}(f, G)$ of automorphisms of (f, G) as

$$
\operatorname{Aut}(f, G):=\left\{\varphi \in \operatorname{GL}(n, \mathbb{C}) \mid f(\varphi \mathbf{x})=f(\mathbf{x}), \varphi^{-1} g \varphi \in G \text { for all } g \in G\right\}
$$

It is obvious that G is a subgroup of $\operatorname{Aut}(f, G)$. Note that a $\varphi \in \operatorname{Aut}(f, G)$ is G-equivariant if and only if $\varphi^{-1} g \varphi=g$ for all $g \in G$.

Definition 5.1.6. For a \mathbb{C}-algebra R, denote by $\operatorname{Aut}_{\mathbb{C} \text {-alg }}(R)$ the group of all \mathbb{C}-algebra automorphisms of R. Note that $\operatorname{Aut}(f, G)$ is identified with a subgroup of Aut $_{\mathbb{C}-a l g}\left(\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right)$ by the action $\left(\varphi^{*} \phi\right)(\mathbf{x})=\phi(\varphi \mathbf{x})$ for $\varphi \in \operatorname{Aut}(f, G)$ and $\phi \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.

Remark 5.1.7. Let $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] * G$ be the skew group ring which is the \mathbb{C}-vector space $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \otimes_{\mathbb{C}} \mathbb{C} G$ with a product defined as $\left(\phi_{1} \otimes g_{1}\right)\left(\phi_{2} \otimes g_{2}\right)=\left(\phi_{1} g_{1}^{*}\left(\phi_{2}\right)\right) \otimes g_{1} g_{2}$ for any $\phi_{1}, \phi_{2} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and $g_{1}, g_{2} \in G$. Then the group $\operatorname{Aut}(f, G)$ can be regarded as the subgroup of all $\varphi^{\prime} \in \operatorname{Aut}_{\mathbb{C}-a l g}\left(\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] * G\right)$ such that $\varphi^{\prime}(f \otimes \mathrm{id})=f \otimes \operatorname{id}$. For $\varphi \in \operatorname{Aut}(f, G)$, the corresponding element in $\operatorname{Aut}_{\mathbb{C}-\mathrm{alg}}\left(\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] * G\right)$ is given by $\phi \otimes g \mapsto \varphi^{*}(\phi) \otimes\left(\varphi^{-1} g \varphi\right)$.

Remark 5.1.8. As we have said for G in $\operatorname{Remark} 4.3 .2$ also each $\varphi \in \operatorname{Aut}(f, G)$ is a bi-regular map on \mathbb{C}^{n} and maps $\operatorname{Fix}\left(\varphi^{-1} g \varphi\right)$ to $\operatorname{Fix}(g)$ for each $g \in G$. Hence, the group $\operatorname{Aut}(f, G)$ acts naturally on $\Omega_{f, G}^{\prime}$ by

$$
\Omega_{f, g}^{\prime} \longrightarrow \Omega_{f, \varphi^{-1} g \varphi}^{\prime},\left.\quad \omega \mapsto \varphi^{*}\right|_{F i x(g)} \omega,
$$

where $\left.\varphi^{*}\right|_{\text {Fix }(g)}$ denotes the restriction of the pullback φ^{*} of differential forms to Fix (g). In order to simplify the notation, for each $\varphi \in \operatorname{Aut}(f, G)$, we shall denote by φ^{*} the action of φ on $\Omega_{f, G}^{\prime}$. It also follows that $\operatorname{Aut}(f, G)$ acts naturally on $\Omega_{f, G}$.

5.2 Axioms

In order to introduce an orbifold Jacobian algebra of the pair (f, G), we first define axiomatically a G-twisted Jacobian algebra of f.

Definition 5.2.1. A G-twisted Jacobian algebra of f is a $\mathbb{Z} / 2 \mathbb{Z}$-graded \mathbb{C}-algebra $\operatorname{Jac}^{\prime}(f, G)=$ $\operatorname{Jac}^{\prime}(f, G)_{\overline{0}} \oplus \operatorname{Jac}^{\prime}(f, G)_{\overline{1}}, \bar{i} \in \mathbb{Z} / 2 \mathbb{Z}$, satisfying the following axioms:
(i) For each $g \in G$, there is a \mathbb{C}-module $\operatorname{Jac}^{\prime}(f, g)$ isomorphic to $\Omega_{f, g}^{\prime}$ as a \mathbb{C}-module satisfying the following conditions:
a) For the identity id of G,

$$
\operatorname{Jac}^{\prime}(f, \mathrm{id})=\operatorname{Jac}(f)
$$

b) We have

$$
\begin{aligned}
\operatorname{Jac}^{\prime}(f, G)_{\overline{0}} & =\bigoplus_{\substack{g \in G \\
n-n_{g} \equiv 0(\bmod 2)}} \operatorname{Jac}^{\prime}(f, g), \\
\operatorname{Jac}^{\prime}(f, G)_{\overline{1}} & =\bigoplus_{\substack{g \in G \\
n-n_{g} \equiv 1(\bmod 2)}} \mathrm{Jac}^{\prime}(f, g) .
\end{aligned}
$$

(ii) The $\mathbb{Z} / 2 \mathbb{Z}$-graded \mathbb{C}-algebra structure \circ on $\operatorname{Jac}^{\prime}(f, G)$ satisfies

$$
\operatorname{Jac}^{\prime}(f, g) \circ \operatorname{Jac}^{\prime}(f, h) \subset \operatorname{Jac}^{\prime}(f, g h), \quad g, h \in G
$$

and the \mathbb{C}-subalgebra $\operatorname{Jac}^{\prime}(f, \mathrm{id})$ of $\operatorname{Jac}^{\prime}(f, G)$ coincides with the \mathbb{C}-algebra $\operatorname{Jac}(f)$.
(iii) The $\mathbb{Z} / 2 \mathbb{Z}$-graded \mathbb{C}-algebra $\operatorname{Jac}^{\prime}(f, G)$ is such that the \mathbb{C}-module $\Omega_{f, G}^{\prime}$ has the structure of a $\operatorname{Jac}^{\prime}(f, G)$-module

$$
\vdash: \operatorname{Jac}^{\prime}(f, G) \otimes \Omega_{f, G}^{\prime} \longrightarrow \Omega_{f, G}^{\prime}, \quad X \otimes \omega \mapsto X \vdash \omega,
$$

satisfying the following conditions:
a) For any $g, h \in G$ we have

$$
\operatorname{Jac}^{\prime}(f, g) \vdash \Omega_{f, h}^{\prime} \subset \Omega_{f, g h}^{\prime},
$$

and the $\operatorname{Jac}^{\prime}(f$, id $)$-module structure on $\Omega_{f, g}^{\prime}$ coincides with the $\operatorname{Jac}(f)$-module structure on $\Omega_{f^{g}}$ given by Corollary 4.1.6.
b) By choosing a nowhere vanishing n-form, we have the following isomorphism

$$
\begin{equation*}
\operatorname{Jac}^{\prime}(f, G) \xrightarrow{\cong} \Omega_{f, G}^{\prime}, \quad X \mapsto X \vdash \zeta, \tag{5.1}
\end{equation*}
$$

where ζ is the residue class in $\Omega_{f, \text { id }}^{\prime}=\Omega_{f}$ of the n-form. Namely, $\Omega_{f, G}^{\prime}$ is a free $\operatorname{Jac}^{\prime}(f, G)$-module of rank one.
(iv) There is an induced action of $\operatorname{Aut}(f, G)$ on $\operatorname{Jac}^{\prime}(f, G)$ given by

$$
\begin{equation*}
\varphi^{*}(X) \vdash \varphi^{*}(\zeta):=\varphi^{*}(X \vdash \zeta), \quad \varphi \in \operatorname{Aut}(f, G), \quad X \in \operatorname{Jac}^{\prime}(f, G), \tag{5.2}
\end{equation*}
$$

where ζ is an element in $\Omega_{f, \text { id }}^{\prime}$ giving the isomorphism in Axiom (iiib). The algebra structure of $\operatorname{Jac}^{\prime}(f, G)$ satisfies the following conditions:
a) It is $\operatorname{Aut}(f, G)$-invariant, namely,

$$
\varphi^{*}(X) \circ \varphi^{*}(Y)=\varphi^{*}(X \circ Y), \quad \varphi \in \operatorname{Aut}(f, G), \quad X, Y \in \operatorname{Jac}^{\prime}(f, G)
$$

b) It is G-twisted $\mathbb{Z} / 2 \mathbb{Z}$-graded commutative, namely, for any $g, h \in G$ and $X \in$ $\operatorname{Jac}^{\prime}(f, g), Y \in \operatorname{Jac}^{\prime}(f, h)$, we have

$$
X \circ Y=(-1)^{\bar{X} \cdot \bar{Y}} g^{*}(Y) \circ X
$$

where $\bar{X}=n-n_{g}$ and $\bar{Y}=n-n_{h}$ are the $\mathbb{Z} / 2 \mathbb{Z}$-gradings of X and Y, and g^{*} is the induced action of g considered as an element of $\operatorname{Aut}(f, G)$.
(v) For any $g, h \in G$ and $X \in \operatorname{Jac}^{\prime}(f, g), \omega \in \Omega_{f, h}^{\prime}, \omega^{\prime} \in \Omega_{f, G}^{\prime}$, we have

$$
J_{f, G}\left(X \vdash \omega, \omega^{\prime}\right)=(-1)^{\bar{X} \cdot \bar{\omega}} J_{f, G}\left(\omega,\left(\left(h^{-1}\right)^{*} X\right) \vdash \omega^{\prime}\right),
$$

where $\bar{X}=n-n_{g}$ and $\bar{\omega}=n-n_{h}$ are the $\mathbb{Z} / 2 \mathbb{Z}$-gradings of X and ω, and $\left(h^{-1}\right)^{*}$ is the induced action of h^{-1} considered as an element of $\operatorname{Aut}(f, G)$.
(vi) Let G^{\prime} be a finite subgroup of G_{f} such that $G \subset G^{\prime}$. Fix a nowhere vanishing n-form and denote by ζ its residue class in $\Omega_{f, \text { id }}^{\prime}$. By Axiom (iiib) for G, G^{\prime}, fix the isomorphisms given by ζ;

$$
\begin{aligned}
& \operatorname{Jac}^{\prime}(f, G) \xrightarrow{\cong} \Omega_{f, G}^{\prime}, \quad X \mapsto X \vdash \zeta, \\
& \operatorname{Jac}^{\prime}\left(f, G^{\prime}\right) \xrightarrow{\cong} \Omega_{f, G^{\prime}}^{\prime}, \quad X^{\prime} \mapsto X^{\prime} \vdash \zeta .
\end{aligned}
$$

Then, the injective map $\Omega_{f, G}^{\prime} \longrightarrow \Omega_{f, G^{\prime}}^{\prime}$ induced by the identity maps $\Omega_{f, g}^{\prime} \longrightarrow \Omega_{f, g}^{\prime}$, $g \in G$ yields an injective map of the $\mathbb{Z} / 2 \mathbb{Z}$-graded \mathbb{C}-modules $\operatorname{Jac}^{\prime}(f, G) \rightarrow \operatorname{Jac}^{\prime}\left(f, G^{\prime}\right)$, which is an algebra-homomorphism.
Remark 5.2.2. Such a class $\zeta \in \Omega_{f, \text { id }}^{\prime}$ giving the isomorphism in Axiom (iiib) is a non-zero constant multiple of the residue class of $d x_{1} \wedge \cdots \wedge d x_{n}$. It follows that the $\operatorname{Aut}(f, G)$-action on $\operatorname{Jac}^{\prime}(f, G)$ does not depend on the choice of ζ. In particular, the $\operatorname{Aut}(f, G)$-action on $\operatorname{Jac}^{\prime}(f, \mathrm{id})=\operatorname{Jac}(f)$ is nothing but the usual one which is induced by the natural $\operatorname{Aut}(f, G)$ action on $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. For different choices of ζ we get isomorphic algebras.
Remark 5.2.3. Axioms (iva), (ivb) and (v) are naturally expected by keeping the skew group ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] * G$ in mind (see also Remark 5.1.7). Indeed, our axioms are motivated by some intuitive properties of the "Jacobian algebra of f over the non-commutative skew group ring". Axiom (ivb) can also be found in [Ka03], while the others seem to be new in [BTW16].

Remark 5.2.4. We have not used the commutativity of $G \subset G_{f}$ in the axioms in Definition 5.2.1 except for the last one (vi). Instead of G_{f} there, by the use of the largest group like $\operatorname{Aut}(f,\{\operatorname{id}\})$ the definition can naturally be extended to the non-abelian case, namely, the case when G is any group like in Chapter 4.

5.3 Orbifold Jacobian Algebra

Lemma 5.3.1. Let us denote by v_{id} the residue class of $1 \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ in $\operatorname{Jac}^{\prime}(f, \mathrm{id})=$ $\operatorname{Jac}(f) . v_{\mathrm{id}}$ is the unit with respect to the product structure \circ and v_{id} is G-invariant.

Proof. By Axiom (v) we have

$$
J_{f, G}\left(\left(X \circ v_{\mathrm{id}}\right) \vdash \zeta, \omega\right)=J_{f, G}\left(X \vdash\left(v_{\mathrm{id}} \vdash \zeta\right), \omega\right)=J_{f, G}(X \vdash \zeta, \omega)
$$

for all $X \in \operatorname{Jac}^{\prime}(f, G), \omega \in \Omega_{f, G}^{\prime}$ and $\zeta \in \Omega_{f, \text { id }}$ giving the isomorphism (5.1). Note also that $\varphi^{*}\left(v_{\text {id }}\right)=v_{\text {id }}$ for all $\varphi \in \operatorname{Aut}(f, G)$ since $\varphi^{*}\left(v_{\text {id }}\right) \vdash \varphi^{*}(\zeta)=\varphi^{*}\left(v_{\text {id }} \vdash \zeta\right)=\varphi^{*}(\zeta)=v_{\text {id }} \vdash \varphi^{*}(\zeta)$. And so $v_{\text {id }}$ is in particular G-invariant.
Remark 5.3.2. By the isomorphism (5.1), it follows from Remark 5.1.8 that

$$
\varphi^{*}\left(\operatorname{Jac}^{\prime}(f, g)\right)=\operatorname{Jac}^{\prime}\left(f, \varphi^{-1} g \varphi\right), \quad \varphi \in \operatorname{Aut}(f, G)
$$

In particular, $g^{*}\left(\operatorname{Jac}^{\prime}(f, h)\right)=\operatorname{Jac}^{\prime}\left(f, g^{-1} h g\right)$ for $g, h \in G$. Now, G is a commutative group, we have $g^{*}\left(\operatorname{Jac}^{\prime}(f, h)\right)=\operatorname{Jac}^{\prime}(f, h)$. Since the product structure \circ is also G-invariant by Axiom (iva) it follows that the G-invariant subspace of $\operatorname{Jac}^{\prime}(f, G)$ has the structure of a $\mathbb{Z} / 2 \mathbb{Z}$-graded algebra, which is $\mathbb{Z} / 2 \mathbb{Z}$-graded commutative due to Axiom (ivb).

A priori there might not be a unique $\mathbb{Z} / 2 \mathbb{Z}$-graded \mathbb{C}-algebra satisfying the axioms in Definition 5.2.1, nevertheless we expect the following:

Conjecture 5.3.3. Let the notations be as above.
(a) A G-twisted Jacobian algebra $\operatorname{Jac}^{\prime}(f, G)$ of f should exist.
(b) The subalgebra $\left(\operatorname{Jac}^{\prime}(f, G)\right)^{G}$ should be uniquely determined by (f, G) up to isomorphism.

Definition 5.3.4. Suppose that Conjecture 5.3 .3 holds for the pair (f, G). The $\mathbb{Z} / 2 \mathbb{Z}$-graded commutative algebra

$$
\operatorname{Jac}(f, G):=\left(\operatorname{Jac}^{\prime}(f, G)\right)^{G}
$$

is called the orbifold Jacobian algebra of (f, G).
Remark 5.3.5. Under the isomorphism in Axiom (iiib), it follows from Axiom (v) that the non-degenerate G-twisted $\mathbb{Z} / 2 \mathbb{Z}$-graded symmetric \mathbb{C}-bilinear form $J_{f, G}$ on $\Omega_{f, G}^{\prime}$ equips $\operatorname{Jac}^{\prime}(f, G)$ with the structure of $\mathbb{Z} / 2 \mathbb{Z}$-graded G-twisted Frobenius algebra.

Remark 5.3.6. Often we will have $G \subset G_{f}^{\mathrm{SL}}$. We don't need this from the definition of $\operatorname{Jac}(f, G)$ but only then we get a "good" orbifold Jacobian algebra. Namely only for $G \subset$ $\mathrm{SL}(n, \mathbb{C})$ we have the following proposition.

Proposition 5.3.7. Let $G \subset G_{f}^{\mathrm{SL}}$ and suppose the orbifold Jacobian Algebra exists. Then

$$
\operatorname{Jac}(f, G) \cong \Omega_{f, G}
$$

as vector spaces. And the orbifold residue pairing endows $\operatorname{Jac}(f, G)$ with the structure of a $\mathbb{Z} / 2 \mathbb{Z}$-graded commutative Frobenius algebra, which will be of our main interest.

Proof. When $G \subset \operatorname{SL}(n, \mathbb{C})$ the residue class ζ is G-invariant. So we get the isomorphism by the isomorphism (5.1). Furthermore we have age $(g) \in \mathbb{Z}$ for all $g \in G_{f}^{\mathrm{SL}}$ and so the pairing $J_{f, G}$ induces a $\mathbb{Z} / 2 \mathbb{Z}$-graded symmetric pairing on $\Omega_{f, G}$ due to the G-twisted $\mathbb{Z} / 2 \mathbb{Z}$-graded commutativity (Proposition 4.5.6). With this and Remarks 5.3.5 and 5.3.2 we see that we have here even a $\mathbb{Z} / 2 \mathbb{Z}$-graded commutative Frobenius algebra.

5.4 Preliminaries for the Proofs

In the next chapters we will prove Conjecture 5.3 .3 (actually a stronger statement) for some classes of polynomials.

We will need some common definitions for the proofs.
Definition 5.4.1. Let $I_{g}:=\left\{i_{1}, \ldots, i_{n_{g}}\right\}$ be a subset of $\{1, \ldots, n\}$ such that $\operatorname{Fix}(g)=\{x \in$ $\left.\mathbb{C}^{n} \mid x_{j}=0, j \notin I_{g}\right\}$. In particular, $I_{\mathrm{id}}=\{1, \ldots, n\}$. Denote by I_{g}^{c} the complement of I_{g} in I_{id}.

Definition 5.4.2. For each $g \in G$ let us define $\omega_{g} \in \Omega_{f, g}^{\prime}$ as

$$
\omega_{g}:=\left\{\begin{array}{ll}
\zeta & \text { if } g=\mathrm{id} \\
{\left[d x_{i_{1}} \wedge \cdots \wedge d x_{i_{n_{g}}}\right]} & \text { if } I_{g}=\left(i_{1}, \ldots, i_{n_{g}}\right), i_{1}<\cdots<i_{n_{g}} \\
1_{g} & \text { if } \operatorname{Fix}(g)=\{\mathbf{0}\}
\end{array} .\right.
$$

Remark 5.4.3. It might not be necessary to distinguish ζ and ω_{id}, however, we regard ζ as a "primitive form" (cf. [Sa82], [Sa83], [ST08]) at the origin of the base space of the "properlydefined deformation space" of the pair (f, G) while we consider $\omega_{\text {id }}$ as just a $\operatorname{Jac}^{\prime}(f$, id)-basis of $\Omega_{f, \text { id }}^{\prime}$.

We will have to proof the uniqueness and the existence.

Idea of the Uniqueness Proof

For the stronger statement we will show that for any $G \subset G_{f}$ the axioms in Definition 5.2.1 determine $\operatorname{Jac}^{\prime}(f, G)$ uniquely up to isomorphism. We only have to show that for $g, h \in G$ the product $\circ: \operatorname{Jac}^{\prime}(f, g) \otimes_{\mathbb{C}} \operatorname{Jac}^{\prime}(f, h) \longrightarrow \operatorname{Jac}^{\prime}(f, g h)$ is uniquely determined up to rescaling of generators of $\operatorname{Jac}\left(f^{g}\right)$-modules $\operatorname{Jac}^{\prime}(f, g)$.

Definition 5.4.4. Let ζ be a non-zero constant multiple of the residue class of $d x_{1} \wedge \cdots \wedge d x_{n}$. For each subgroup $G \subset G_{f}$, fix an isomorphism in Axiom (iii) in Definition 5.2.1

$$
\vdash: \mathrm{Jac}^{\prime}(f, G) \xrightarrow{\cong} \Omega_{f, G}^{\prime}, \quad X \mapsto X \vdash \zeta,
$$

where ζ is considered as an element in $\Omega_{f, \text { id }}^{\prime}=\Omega_{f}$ (recall Definition 4.3.1).
Definition 5.4.5. For each $g \in G$, let v_{g} be an element of $\operatorname{Jac}^{\prime}(f, g)$, such that

$$
v_{g} \vdash \zeta=\alpha_{g} \omega_{g},
$$

where α_{g} is given by a map

$$
\alpha: G_{f} \longrightarrow \mathbb{C}^{*}, \quad g \mapsto \alpha_{g}
$$

with $\alpha_{\mathrm{id}}=1$, which is given in more details in the different proofs.
Remark 5.4.6. We see directly that the definition of $v_{\text {id }}$ is the same as in Lemma 5.3.1 and this says that $v_{\text {id }} \circ v_{g}=v_{g} \circ v_{\mathrm{id}}=v_{g}$ since $v_{\text {id }}$ is the unit.

Axiom (iiia) in Definition 5.2.1 implies that for all $Y \in \operatorname{Jac}^{\prime}(f, g)$ there exists $X \in \operatorname{Jac}^{\prime}(f$, id $)$ $=\operatorname{Jac}(f)$ represented by a polynomial in $\left\{x_{i}\right\}_{i \in I_{g}}$ such that $Y=X \circ v_{g}$. For any $X \in \operatorname{Jac}^{\prime}(f, \mathrm{id})$, we shall often write $X \circ v_{g}$ as $\left.X\right|_{\operatorname{Fix}(g)} v_{g}$ where $\left.X\right|_{\mathrm{Fix}(g)}$ is the image of X under the map $\operatorname{Jac}(f) \longrightarrow \operatorname{Jac}\left(f^{g}\right)$.

Idea of the Existence Proof

Afterwards we will prove the existence of a G-twisted Jacobian algebra of f. We will first show this when $G=G_{f}$.

We will give a Definition:
Definition 5.4.7. Define a $\mathbb{Z} / 2 \mathbb{Z}$-graded \mathbb{C}-module $\mathcal{A}^{\prime}=\mathcal{A}_{\overline{0}}^{\prime} \oplus \mathcal{A}_{\overline{1}}^{\prime}$ as follows: For each $g \in G_{f}$, consider a free $\operatorname{Jac}\left(f^{g}\right)$-module \mathcal{A}_{g}^{\prime} of rank one generated by a formal letter \bar{v}_{g},

$$
\mathcal{A}_{g}^{\prime}=\operatorname{Jac}\left(f^{g}\right) \bar{v}_{g} .
$$

and set

$$
\mathcal{A}_{\overline{0}}^{\prime}:=\bigoplus_{\substack{g \in G_{f} \\ n-n_{g} \equiv 0(\bmod 2)}} \mathcal{A}_{g}^{\prime}, \quad \mathcal{A}_{\overline{1}}^{\prime}:=\bigoplus_{\substack{g \in G_{f} \\ n-n_{g} \equiv 1(\bmod 2)}} \mathcal{A}_{g}^{\prime} .
$$

By definition, Axiom (i) in Definition 5.2.1 trivially holds for \mathcal{A}^{\prime}.
Remark 5.4.8. We will then define a multiplication $\circ: \mathcal{A}^{\prime} \otimes_{\mathbb{C}} \mathcal{A}^{\prime} \longrightarrow \mathcal{A}^{\prime}$ and a \mathbb{C}-bilinear map $\vdash: \mathcal{A}^{\prime} \otimes_{\mathbb{C}} \Omega_{f, G_{f}}^{\prime} \longrightarrow \mathcal{A}^{\prime}$ and show all axioms of Definition 5.2.1. Where Axiom (vi) is trivially satisfied for \mathcal{A}^{\prime} since $G=G_{f}$.

And then we can get in all proofs
Proposition 5.4.9. For each subgroup $G \subset G_{f}$, there exists a G-twisted Jacobian algebra of f.

Proof. Consider the subspace \mathcal{A}_{G}^{\prime} of \mathcal{A}^{\prime} defined by

$$
\mathcal{A}_{G}^{\prime}:=\bigoplus_{g \in G} \mathcal{A}_{g}^{\prime}
$$

the restriction of the product structure map $\circ: \mathcal{A}^{\prime} \otimes_{\mathbb{C}} \mathcal{A}^{\prime} \longrightarrow \mathcal{A}^{\prime}$ to $\mathcal{A}_{G}^{\prime} \otimes_{\mathbb{C}} \mathcal{A}_{G}^{\prime}$ and the restriction of the \mathcal{A}^{\prime}-module structure map $\vdash: \mathcal{A}^{\prime} \otimes_{\mathbb{C}} \Omega_{f, G_{f}}^{\prime} \longrightarrow \mathcal{A}^{\prime}$ to $\mathcal{A}_{G}^{\prime} \otimes_{\mathbb{C}} \Omega_{f, G}^{\prime}$. By the construction of these structures on \mathcal{A}^{\prime}, it is almost obvious that they satisfy all the axioms in Definition 5.2.1.

6 Orbifold Jacobian Algebras for Invertible Polynomials

6.1 Invertible Polynomials

Definition 6.1.1. A polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is called a weighted homogeneous polynomial if there are positive integers w_{1}, \ldots, w_{n} and d such that

$$
f\left(\lambda^{w_{1}} x_{1}, \ldots, \lambda^{w_{n}} x_{n}\right)=\lambda^{d} f\left(x_{1}, \ldots, x_{n}\right)
$$

for all $\lambda \in \mathbb{C}^{*}$. We call $\left(w_{1}, \ldots, w_{n} ; d\right)$ a system of weights of f. A weighted homogeneous polynomial f is called non-degenerate if it has at most an isolated critical point at the origin in \mathbb{C}^{n}, equivalently, if the Jacobian algebra $\operatorname{Jac}(f)$ of f is finite-dimensional.

Definition 6.1.2 (cf. [BH93], [Kr94]). A weighted homogeneous polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is called invertible if the following conditions are satisfied.
(i) The number of variables $(=n)$ coincides with the number of monomials in the polynomial f, namely,

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} a_{i} \prod_{j=1}^{n} x_{j}^{E_{i j}}
$$

for some coefficients $a_{i} \in \mathbb{C}^{*}$ and non-negative integers $E_{i j}$ for $i, j=1, \ldots, n$.
(ii) The matrix $E:=\left(E_{i j}\right)$ is invertible over \mathbb{Q}.
(iii) The polynomial f and the Berglund-Hübsch transpose f^{T} of f defined by

$$
f^{T}\left(x_{1}, \ldots, x_{n}\right):=\sum_{i=1}^{n} a_{i} \prod_{j=1}^{n} x_{j}^{E_{j i}}
$$

are non-degenerate.
Remark 6.1.3. Usually a polynomial f is called invertible if only conditions (i) and (ii) are satisfied. It is called a non-degenerate invertible polynomial, if f has additionally only an isolated singularity at the origin. This is equivalent to condition (iii), see e.g. [EG12]. Here we will only say invertible polynomial, if it satisfies all three conditions.

Definition 6.1.4. Let $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} c_{i} \prod_{j=1}^{n} x_{j}^{E_{i j}}$ be an invertible polynomial. Define rational numbers q_{1}, \ldots, q_{n} by the unique solution of the equation

$$
E\left(\begin{array}{c}
q_{1} \\
\vdots \\
q_{n}
\end{array}\right)=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right) .
$$

Namely, set $q_{i}:=w_{i} / d, i=1, \ldots, n$, for the system of weights $\left(w_{1}, \ldots, w_{n} ; d\right)$.
Example 6.1.5. Let (f, G) be as in Example 4.1.4.
(i) Set $f=x_{1}^{3}+x_{2}^{3} x_{3}+x_{3}^{3}$ and $G=\left\langle\left(\mathbf{e}\left[\frac{1}{3}\right], \mathbf{e}\left[\frac{2}{3}\right], 1\right)\right\rangle . f$ is an invertible polynomial. We have $E=\left(\begin{array}{ccc}3 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3\end{array}\right)$, which is obviously invertible. So the system of weights is $(3,2,3 ; 9)$ and $q_{1}=\frac{1}{3}, q_{2}=\frac{2}{9}, q_{3}=\frac{1}{3}$. The group is directly $G=G_{f}^{\mathrm{SL}}$ (cf. Example 4.1.2).
(ii) The polynomial $f=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}$ is also an invertible polynomial. We have $E=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0\end{array}\right)$, which is obviously invertible. So the system of weights is $(1,1,1 ; 3)$ and $q_{i}=\frac{1}{3}$ for all $i=1,2,3$. But the group S_{3} is no subgroup of G_{f}.

Remark 6.1.6. If $f\left(x_{1}, \ldots, x_{n}\right)$ is an invertible polynomial, then we have

$$
G_{f}=\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in\left(\mathbb{C}^{*}\right)^{n} \mid \prod_{j=1}^{n} \lambda_{j}^{E_{1 j}}=\cdots=\prod_{j=1}^{n} \lambda_{j}^{E_{n j}}=1\right\}
$$

and hence G_{f} is a finite group. It is easy to see that G_{f} contains an element $g_{0}:=\left(q_{1}, \ldots, q_{n}\right)$.
It is important to note the following
Proposition 6.1.7. The group $G_{f}^{\mathrm{SL}}=G_{f} \cap \mathrm{SL}(n ; \mathbb{C})$ is a proper subgroup of G_{f}.
Proof. Let f^{T} be the Berglund-Hübsch transpose of f. It is known by [ET11] and [Kr09] (see also Proposition 2 in [EGT16]) that

$$
G_{f}^{\mathrm{SL}} \cong \operatorname{Hom}\left(G_{f^{T}} /\left\langle\left(\widetilde{q}_{1}, \ldots, \widetilde{q}_{n}\right)\right\rangle, \mathbb{C}^{*}\right) \subsetneq \operatorname{Hom}\left(G_{f^{T}}, \mathbb{C}^{*}\right) \cong G_{f},
$$

where $\left(\widetilde{q}_{1}, \ldots, \widetilde{q}_{n}\right)$ is the unique solution of the equation $\left(\widetilde{q}_{1}, \ldots, \widetilde{q}_{n}\right) E=(1, \ldots, 1)$.
Remark 6.1.8. Let $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} c_{i} \prod_{j=1}^{n} x_{j}^{E_{i j}}$ be an invertible polynomial. Without loss of generality one may assume that $c_{i}=1$ for $i=1, \ldots, n$ by rescaling the variables.
M. Kreuzer and H. Skarke showed the following

Proposition 6.1.9 (cf. [KS92]). An invertible polynomial f can be written as a SebastianiThom sum $f=f_{1} \oplus \cdots \oplus f_{p}$ of invertible polynomials (in groups of different variables) f_{ν}, $\nu=1, \ldots, p$ of the following types:
(i) $x_{1}^{a_{1}} x_{2}+x_{2}^{a_{2}} x_{3}+\cdots+x_{m-1}^{a_{m-1}} x_{m}+x_{m}^{a_{m}}$ (chain type; $m \geq 1$)
(ii) $x_{1}^{a_{1}} x_{2}+x_{2}^{a_{2}} x_{3}+\cdots+x_{m-1}^{a_{m-1}} x_{m}+x_{m}^{a_{m}} x_{1}$ (loop type; $m \geq 2$)

Remark 6.1.10. In [KS92] the authors distinguished also polynomials of the so called Fermat type: $x_{1}^{a_{1}}$, which is regarded as a chain type polynomial with $m=1$ in this thesis.

We shall use the monomial basis of the $\operatorname{Jacobian}$ algebra $\operatorname{Jac}\left(f_{\nu}\right)$.
Proposition 6.1.11 (cf. [Kr94]). For an invertible polynomial $f_{\nu}=x_{1}^{a_{1}} x_{2}+x_{2}^{a_{2}} x_{3}+\cdots+$ $x_{m-1}^{a_{m-1}} x_{m}+x_{m}^{a_{m}}$ of chain type with $m \geq 1$, the Jacobian algebra $\operatorname{Jac}\left(f_{\nu}\right)$ has a monomial basis consisting of all the monomials $x_{1}^{k_{1}} \cdots x_{m}^{k_{m}}$ such that

1) $0 \leq k_{i} \leq a_{i}-1$,
2) if

$$
k_{i}=\left\{\begin{array}{l}
a_{i}-1 \text { for all odd } i, i \leq 2 s-1 \\
0 \text { for all even } i, i \leq 2 s-1
\end{array}\right.
$$

then $k_{2 s}=0$.
For an invertible polynomial $f_{\nu}=x_{1}^{a_{1}} x_{2}+x_{2}^{a_{2}} x_{3}+\cdots+x_{m-1}^{a_{m-1}} x_{m}+x_{m}^{a_{m}} x_{1}$ of loop type with $m \geq 2$, the Jacobian algebra $\operatorname{Jac}\left(f_{\nu}\right)$ has a monomial basis consisting of all the monomials $x_{1}^{k_{1}} \cdots x_{m}^{k_{m}}$ with $0 \leq k_{i} \leq a_{i}-1$.

6.2 Theorem for Invertible Polynomials

Theorem 6.2.1. Let f be an invertible polynomial and G a subgroup of G_{f}. There exists a unique G-twisted Jacobian algebra $\operatorname{Jac}^{\prime}(f, G)$ of f up to isomorphism. Namely, it is uniquely characterized by the axioms in Definition 5.2.1.

In particular, the orbifold Jacobian algebra $\operatorname{Jac}(f, G)$ of (f, G) exists.
We will first prepare some notations and then show the uniqueness and the existence as stated in Section 5.4.

Notations

Let $f=f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \prod_{j=1}^{n} x_{j}^{E_{i j}}$ be an invertible polynomial.
In what follows, we are mostly interested in special pairs of elements of G_{f}.
Definition 6.2.2. (i) An ordered pair (g, h) of elements of G_{f} is called spanning if

$$
I_{g} \cup I_{h} \cup I_{g h}=\{1, \ldots, n\} .
$$

(ii) For a spanning pair (g, h) of elements of G_{f}, define $I_{g, h}:=I_{g}^{c} \cap I_{h}^{c}$.
(iii) For a spanning pair (g, h) of elements of G_{f}, there always exist $g_{1}, g_{2}, h_{1}, h_{2} \in G_{f}$ such that $g=g_{1} g_{2}$ and $h=h_{1} h_{2}$ with $g_{2} h_{2}=$ id and $I_{g_{1}, h_{1}}=\emptyset$. The tuple $\left(g_{1}, g_{2}, h_{1}, h_{2}\right)$ is called the factorization of (g, h).

Remark 6.2.3. For a spanning pair (g, h) of elements of G_{f}, up to a reordering of the variables, we have

$$
\begin{align*}
& g=\left(0, \ldots, 0, \alpha_{1}, \ldots, \alpha_{p}, \beta_{1}, \ldots, \beta_{q}\right) \\
& h=\left(\gamma_{1}, \ldots, \gamma_{r}, 0, \ldots, 0,1-\beta_{1}, \ldots, 1-\beta_{q}\right), \tag{6.1}
\end{align*}
$$

for some rational numbers $0<\alpha_{i}, \beta_{i}, \gamma_{i}<1$ and integers p, q, r such that $0 \leq r \leq n_{g}$ and $n_{g}+p+q=r+n_{h}+q=n$. In this presentation, we have $I_{g} \cap I_{h}=\left\{i_{r+1}, \ldots, i_{n-q-p}\right\}$, $I_{g, h}=\left\{i_{n-q+1}, \ldots, i_{n}\right\}$ and

$$
\begin{aligned}
& g_{1}=\left(0, \ldots, 0, \alpha_{1}, \ldots, \alpha_{p}, 0, \ldots, 0\right) \\
& g_{2}=\left(0, \ldots, 0,0, \ldots, 0, \beta_{1}, \ldots, \beta_{q}\right) \\
& h_{1}=\left(\gamma_{1}, \ldots, \gamma_{r}, 0, \ldots, 0,0, \ldots, 0\right) \\
& h_{2}=\left(0, \ldots, 0,0, \ldots, 0,1-\beta_{1}, \ldots, 1-\beta_{q}\right) .
\end{aligned}
$$

We introduce one of the most important objects in this section.
Definition 6.2.4. For each spanning pair (g, h) of elements of G_{f}, define a polynomial $H_{g, h} \in$ $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ by

$$
H_{g, h}:=\left\{\begin{array}{ll}
\widetilde{m}_{g, h} \operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)_{i, j \in I_{g, h}} & \text { if } \\
I_{g, h} \neq \emptyset \\
1 & \text { if } \\
I_{g, h}=\emptyset
\end{array},\right.
$$

where $\widetilde{m}_{g, h} \in \mathbb{C}^{*}$ is the constant uniquely determined by the following equation in $\operatorname{Jac}\left(f^{g h}\right)$

$$
\begin{equation*}
\frac{1}{\mu_{f g \cap h}}\left[\operatorname{hess}\left(f^{g \cap h}\right) H_{g, h}\right]=\frac{1}{\mu_{f g h}}\left[\operatorname{hess}\left(f^{g h}\right)\right], \tag{6.2}
\end{equation*}
$$

where $f^{g \cap h}$ is the invertible polynomial given by the restriction $\left.f\right|_{\operatorname{Fix}(g) \cap \operatorname{Fix}(h)}$ of f to the locus $\operatorname{Fix}(g) \cap \operatorname{Fix}(h)$.

Remark 6.2.5. The polynomial $H_{g, h}$ is a non-zero constant multiple of the determinant of a minor of the Hessian matrix of $f\left(x_{1}, \ldots, x_{n}\right)$. Since $I_{g} \cap I_{h} \subset I_{g h}$ and $I_{g, h} \subset I_{g h}$, hess $\left(f^{g \cap h}\right)$ and $H_{g, h}$ define elements of $\operatorname{Jac}\left(f^{g h}\right)$.

Remark 6.2.6. Let (g, h) be a spanning pair of elements of G_{f}. Suppose that $\operatorname{Fix}(g)=\{0\}$. Then $h=g^{-1}$. It is easy to check that $H_{g, h}=\frac{1}{\mu_{f}}[\operatorname{hess}(f)]$ by the explanation of $\widetilde{m}_{g, h}$ below. Recall also Example 2.1.3 that if $\operatorname{Fix}(g) \cap \operatorname{Fix}(h)=\{0\}$ then $\mu_{f g \cap h}=1$ and $\operatorname{hess}\left(f^{g \cap h}\right)=1$.

Example 6.2.7. Let $f=x_{1}^{3}+x_{2}^{3} x_{3}+x_{3}^{3}$ and $G=\left\langle\left(\mathbf{e}\left[\frac{1}{3}\right], \mathbf{e}\left[\frac{2}{3}\right], 1\right)\right\rangle$ be as in Example 4.1.4. We have that $\left(g, g^{-1}\right)$ is a spanning pair, with $I_{g}=\{3\}=I_{g^{-1}}$ and so $I_{g, g^{-1}}=\{1,2\}$. We calculate

$$
\operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)_{i, j \in\{1,2\}}=\operatorname{det}\left(\begin{array}{cc}
6 x_{1} & 0 \\
0 & 6 x_{2} x_{3}
\end{array}\right)=36 x_{1} x_{2} x_{3}
$$

which is an element in $\operatorname{Jac}\left(f^{g g^{-1}}\right)=\operatorname{Jac}(f)$. With

$$
\begin{aligned}
& \frac{1}{\mu_{f}}[\operatorname{hess}(f)]=\frac{1}{14} 14 \cdot 27 x_{1} x_{2} x_{3}^{2} \\
& \frac{1}{\mu_{f g \cap g^{-1}}}\left[\operatorname{hess}\left(f^{g \cap g^{-1}}\right) H_{g, g^{-1}}\right]=\frac{1}{2} 2 \cdot 3 x_{1} \cdot \widetilde{m}_{g, g^{-1}} 36 x_{1} x_{2} x_{3}
\end{aligned}
$$

we see directly $\widetilde{m}_{g, g^{-1}}=\frac{1}{4}$. So we have

$$
H_{g, g^{-1}}=9 x_{1} x_{2} x_{3} .
$$

We have to show the uniqueness of $\widetilde{m}_{g, h}$. First observe:
Lemma 6.2.8. Let (g, h) be a spanning pair of elements of G_{f}. Suppose that $f=f_{1} \oplus \cdots \oplus f_{p}$ is a Sebastiani-Thom sum such that each $f_{\nu}, \nu=1, \ldots, p$ is either of chain type or loop type. Fix one ν. Let $I_{\nu}=\left\{i_{1}, \ldots, i_{m}\right\}$ be the index set of the variables of f_{ν}. Then, for $f_{\nu}=f_{\nu}\left(x_{i_{1}}, \ldots, x_{i_{m}}\right)$, precisely one of the following holds:
(i) f_{ν} is of chain type and, for some $0 \leq l \leq m$,
(a) $\left\{i_{1}, \ldots, i_{m}\right\} \subset I_{g},\left\{i_{1}, \ldots, i_{l}\right\} \subset I_{h}^{c}$ and $\left\{i_{l+1}, \ldots, i_{m}\right\} \subset I_{h}$,
(a') $\left\{i_{1}, \ldots, i_{m}\right\} \subset I_{h},\left\{i_{1}, \ldots, i_{l}\right\} \subset I_{g}^{c}$ and $\left\{i_{l+1}, \ldots, i_{m}\right\} \subset I_{g}$,
(b) $\left\{i_{1}, \ldots, i_{l}\right\} \subset I_{g, h}$ and $\left\{i_{l+1}, \ldots, i_{m}\right\} \subset I_{g} \cap I_{h}$.
(ii) f_{ν} is of loop type and
(a) $\left\{i_{1}, \ldots, i_{m}\right\} \subset I_{g} \cap I_{h}$,
(b) $\left\{i_{1}, \ldots, i_{m}\right\} \subset I_{g} \cap I_{h}^{c}$,
(b) $\left\{i_{1}, \ldots, i_{m}\right\} \subset I_{g}^{c} \cap I_{h}$,
(c) $\left\{i_{1}, \ldots, i_{m}\right\} \subset I_{g, h}$.

Proof. From the explicit form of an invertible polynomial of each type and the group action on it the following facts are straightforward for each $g \in G_{f}$:

- If f_{ν} is of the chain type $f_{\nu}=x_{i_{1}}^{a_{1}} x_{i_{2}}+\cdots+x_{i_{m-1}}^{a_{m-1}} x_{i_{m}}+x_{i_{m}}^{a_{m}}$, then there exists $l, 0 \leq l \leq m$ such that $\left\{i_{1}, \ldots, i_{l}\right\} \subset I_{g}^{c}$ and $\left\{i_{l+1}, \ldots, i_{m}\right\} \subset I_{g}$.
- If f_{ν} is of loop type $f_{\nu}=x_{i_{1}}^{a_{1}} x_{i_{2}}+\cdots+x_{i_{m-1}}^{a_{m-1}} x_{i_{m}}+x_{i_{m}}^{a_{m}} x_{i_{1}}$, then $I_{\nu} \subset I_{g}$ or $I_{\nu} \subset I_{g}^{c}$.

And so the cases above are clear.
Lemma 6.2.9. $\widetilde{m}_{g, h}$ exists and is uniquely determined by the equation in Definition 6.2.4.
Proof. Suppose that $f=f_{1} \oplus \cdots \oplus f_{p}$ is a Sebastiani-Thom sum as in Lemma 6.2.8.
Then $\operatorname{Jac}(f)=\operatorname{Jac}\left(f_{1}\right) \otimes \cdots \otimes \operatorname{Jac}\left(f_{p}\right)$ and

$$
\operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)_{i, j \in I_{\mathrm{id}}}=\prod_{\nu=1}^{p} \operatorname{det}\left(\frac{\partial^{2} f_{\nu}}{\partial x_{i} \partial x_{j}}\right)_{i, j \in I_{\nu}}
$$

Obviously, only polynomials f_{ν} satisfying $I_{\nu} \cap I_{g, h} \neq \emptyset$ contribute non-trivially to $H_{g, h}$. Such a f_{ν} satisfies one of the following two by Lemma 6.2.8:
(a) $I_{\nu}=\left\{i_{1}, \ldots, i_{m}\right\} \subset I_{g, h}$.
(b) f_{ν} is of the chain type and, for some $0 \leq l \leq m-1,\left\{i_{1}, \ldots, i_{l}\right\} \subset I_{g, h}$ and $\left\{i_{l+1}, \ldots, i_{m}\right\} \subset$ $I_{g} \cap I_{h}$.

Set $\Gamma_{a}:=\left\{\nu \mid f_{\nu}\right.$ satisfies (a) $\}$ and $\Gamma_{b}:=\left\{\nu \mid f_{\nu}\right.$ satisfies (b) $)$. Since $I_{g h}=I_{g, h} \cup\left(I_{g} \cap I_{h}\right)$, we have

$$
f^{g h}=\bigoplus_{\nu_{a} \in \Gamma_{a}} f_{\nu_{a}} \oplus \bigoplus_{\substack{\nu_{b} \in \Gamma_{b}}} f_{\nu_{b}} \oplus \bigoplus_{\substack{\nu \text { s.t. } \\ I_{\nu} \subset I_{g} \cap I_{h}}} f_{\nu},
$$

where \oplus denotes a Sebastiani-Thom sum and hence

$$
\operatorname{Jac}\left(f^{g h}\right)=\bigotimes_{\nu_{a} \in \Gamma_{a}} \operatorname{Jac}\left(f_{\nu_{a}}\right) \otimes \bigotimes_{\nu_{b} \in \Gamma_{b}} \operatorname{Jac}\left(f_{\nu_{b}}\right) \otimes \bigotimes_{\substack{\nu \text { s.t. } \\ I_{\nu} \subset I_{g} \cap I_{h}}} \operatorname{Jac}\left(f_{\nu}\right)
$$

Consider the factorization

$$
\operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)_{i, j \in I_{g, h}}=\prod_{\nu_{a} \in \Gamma_{a}} \widetilde{H}_{a}^{\left(\nu_{a}\right)} \cdot \prod_{\nu_{b} \in \Gamma_{b}} \widetilde{H}_{b}^{\left(\nu_{b}\right)},
$$

where

$$
\widetilde{H}_{a}^{\left(\nu_{a}\right)}:=\operatorname{det}\left(\frac{\partial^{2} f_{\nu_{a}}}{\partial x_{i} \partial x_{j}}\right)_{i, j \in I_{\nu_{a}}}, \quad \widetilde{H}_{b}^{\left(\nu_{b}\right)}:=\operatorname{det}\left(\frac{\partial^{2} f_{\nu_{b}}}{\partial x_{i} \partial x_{j}}\right)_{i, j \in I_{\nu_{b}} \cap I_{g, h}} .
$$

Suppose for simplicity that $f_{\nu_{b}}=x_{1}^{a_{1}} x_{2}+\cdots+x_{m-1}^{a_{m-1}} x_{m}+x_{m}^{a_{m}}$ with $I_{\nu_{b}} \cap I_{g, h}=\{1, \ldots, l\}$. By a direct calculation, we have the following equalities in $\operatorname{Jac}\left(f_{\nu_{b}}\right)$;

$$
\begin{equation*}
\left[\widetilde{H}_{b}^{\left(\nu_{b}\right)}\right]=\left(\prod_{i=1}^{l} a_{i}\right) \cdot\left(\sum_{j=1}^{l}(-1)^{l-j} \prod_{i=1}^{j} a_{i}\right)\left[x_{1}^{a_{1}-2} x_{2}^{a_{2}-1} \cdots x_{l}^{a_{l}-1} x_{l+1}\right] \tag{6.3a}
\end{equation*}
$$

$$
\begin{equation*}
\left[\operatorname{hess}\left(\left.f_{\nu_{b}}\right|_{\operatorname{Fix}(g) \cap \operatorname{Fix}(h)}\right)\right]=\left(\prod_{i=l+1}^{m} a_{i}\right) \cdot\left(\sum_{j=l}^{m}(-1)^{m-j} \prod_{i=l+1}^{j} a_{i}\right)\left[x_{l+1}^{a_{l+1}-2} x_{l+2}^{a_{l+2}-1} \cdots x_{m}^{a_{m}-1}\right] \tag{6.3b}
\end{equation*}
$$

$$
\begin{equation*}
\left[\operatorname{hess}\left(f_{\nu_{b}}\right)\right]=\left(\prod_{i=1}^{m} a_{i}\right) \cdot\left(\sum_{j=0}^{m}(-1)^{m-j} \prod_{i=1}^{j} a_{i}\right)\left[x_{1}^{a_{1}-2} x_{2}^{a_{2}-1} \cdots x_{m}^{a_{m}-1}\right] . \tag{6.3c}
\end{equation*}
$$

Note that

$$
\mu_{f_{\nu_{b}}}=\sum_{j=0}^{m}(-1)^{m-j} \prod_{i=1}^{j} a_{i}, \quad \mu_{f_{\nu_{b} \mid \mathrm{Fix}(g) \cap \mathrm{Fix}(h)}}=\sum_{j=l}^{m}(-1)^{m-j} \prod_{i=l+1}^{j} a_{i} .
$$

Hence, it is straightforward to see the existence and the uniqueness of $\widetilde{m}_{g, h}$.

Proposition 6.2.10. For each spanning pair (g, h) of elements of G_{f}, the following holds:
(i) The class of $H_{g, h}$ is non-zero in $\operatorname{Jac}\left(f^{g h}\right)$.
(ii) If $I_{g, h}=\emptyset$, then $\left[H_{g, g^{-1}} H_{h, h^{-1}}\right]=\left[H_{g h,(g h)^{-1}}\right]$ in $\operatorname{Jac}(f)$.
(iii) For any $j \in I_{g, h}$, the class of $x_{j} H_{g, h}$ is zero in $\operatorname{Jac}\left(f^{g h}\right)$.

Proof. Let the notations be as above. We may assume that $I_{g, h} \neq \emptyset$ since the statements are trivially true, if $I_{g, h}=\emptyset$. Part (i) is almost clear by the equation (6.2) since [hess $\left(f^{g h}\right)$] is non-zero. Part (ii) follows from the normalization of $H_{g, h}$ by the equation (6.2) in view of the equations (6.3).

To prove part (iii), first note that there is $\nu, 1 \leq \nu \leq p$, such that $j \in I_{\nu}$ for some f_{ν} satisfying either (a) or (b) above. Due to the factorization of $\operatorname{Jac}\left(f^{g h}\right)$, it is enough to show that $\left[x_{j} \widetilde{H}_{a}^{(\nu)}\right]=0$ if $\nu \in \Gamma_{a}$ and $\left[x_{j} \widetilde{H}_{b}^{(\nu)}\right]=0$ if $\nu \in \Gamma_{b}$. Since the first case is almost clear, suppose that $f_{\nu} \in \Gamma_{b}, I_{\nu}=\{1, \ldots, m\}$ and $I_{\nu} \cap I_{g, h}=\{1, \ldots, l\}$. Recall again that $\left[\widetilde{H}_{b}^{(\nu)}\right]$ is a non-zero constant multiple of $\left[x_{1}^{a_{1}-2} x_{2}^{a_{2}-1} \ldots x_{l}^{a_{l}-1} x_{l+1}\right]$. It is easy to calculate by induction that $\left[x_{1}^{a_{1}-1} x_{2}\right]=0$ and $\left[x_{j}^{a_{j}} x_{j+1}\right]=0$ in $\operatorname{Jac}\left(f_{\nu}\right)$ for $j=2, \ldots, l$. Therefore, we have $\left[x_{j} \widetilde{H}_{b}^{(\nu)}\right]=0$ in $\operatorname{Jac}\left(f_{\nu}\right)$ for $j=1, \ldots, l$ (see also the description of the monomial basis in Proposition 6.1.11). This completes part (iii) of the proposition.

Proposition 6.2.11. For each spanning pair (g, h) of elements of G_{f}, we have

$$
\left(n-n_{g}\right)+\left(n-n_{h}\right) \equiv\left(n-n_{g h}\right)(\bmod 2)
$$

Moreover, if $I_{g, h}=\emptyset$ then $\left(n-n_{g}\right)+\left(n-n_{h}\right)=\left(n-n_{g h}\right)$.
Proof. First of all, note that $n-n_{g}=\left|I_{g}^{c}\right|$. Therefore, the following equalities yield the statement:

$$
\begin{aligned}
& n-n_{g}=\left|I_{g}^{c} \backslash I_{g, h}\right|+\left|I_{g, h}\right|, \quad n-n_{h}=\left|I_{h}^{c} \backslash I_{g, h}\right|+\left|I_{g, h}\right|, \\
& n-n_{g h}=\left|I_{g h}^{c}\right|=\left|I_{g}^{c} \backslash I_{g, h}\right|+\left|I_{h}^{c} \backslash I_{g, h}\right| .
\end{aligned}
$$

Definition 6.2.12. For each $g \in G_{f}$, the set $I_{g} \subset\{1, \ldots, n\}$ and its complement I_{g}^{c} will often be regarded as a subsequence of $(1, \ldots, n)$:

$$
I_{g}=\left(i_{1}, \ldots, i_{n_{g}}\right), i_{1}<\cdots<i_{n_{g}}, \quad I_{g}^{c}=\left(j_{1}, \ldots, j_{n-n_{g}}\right), j_{1}<\cdots<j_{n-n_{g}} .
$$

Let g_{1}, \ldots, g_{k} be elements of G_{f} such that $I_{g_{i}, g_{j}}=\emptyset$ if $i \neq j$.
(i) Denote by $I_{g_{1}}^{c} \sqcup I_{g_{2}}^{c}$ the sequence given by adding the sequence $I_{g_{2}}^{c}$ at the end of the sequence $I_{g_{1}}^{c}$. Define inductively $I_{g_{1}}^{c} \sqcup \cdots \sqcup I_{g_{k}}^{c}$ by $\left(I_{g_{1}}^{c} \sqcup \cdots \sqcup I_{g_{k-1}}^{c}\right) \sqcup I_{g_{k}}^{c}$. Obviously, as a set, $I_{g_{1}}^{c} \sqcup \cdots \sqcup I_{g_{k}}^{c}=I_{g_{1} \ldots g_{k}}^{c}$.
(ii) Let $\sigma_{g_{1}, \ldots, g_{k}}$ be the permutation which turns the sequence $I_{g_{1}}^{c} \sqcup \cdots \sqcup I_{g_{k}}^{c}$ to the sequence $I_{g_{1} \ldots g_{k}}^{c}$. Define $\widetilde{\varepsilon}_{g_{1}, \ldots, g_{k}}$ as the signature $\operatorname{sgn}\left(\sigma_{g_{1}, \ldots, g_{k}}\right)$ of the permutation $\sigma_{g_{1}, \ldots, g_{k}}$.

Remark 6.2.13. It is straightforward from the definition that

$$
\begin{array}{ll}
\widetilde{\varepsilon}_{g, \mathrm{id}}=1=\widetilde{\varepsilon}_{\mathrm{id}, g}, & g \in G_{f}, \\
\widetilde{\varepsilon}_{g, h}=(-1)^{\left(n-n_{g}\right)\left(n-n_{h}\right)} \widetilde{\varepsilon}_{h, g}, & g, h \in G_{f}, I_{g, h}=\emptyset, \\
\widetilde{\varepsilon}_{g, g^{\prime}} \widetilde{\varepsilon}_{g g^{\prime}, g^{\prime \prime}}=\widetilde{\varepsilon}_{g, g^{\prime}, g^{\prime \prime}}=\widetilde{\varepsilon}_{g, g^{\prime} g^{\prime \prime}} \widetilde{\varepsilon}_{g^{\prime}, g^{\prime \prime}}, & g, g^{\prime}, g^{\prime \prime} \in G_{f}, I_{g, g^{\prime}}=I_{g^{\prime}, g^{\prime \prime}}=I_{g, g^{\prime \prime}}=\emptyset . \tag{6.4c}
\end{array}
$$

Uniqueness

Throughout this subsection, $f=f\left(x_{1}, \ldots, x_{n}\right)$ denotes an invertible polynomial. And we show, as mentioned in Section 5.4, the uniqueness of $\operatorname{Jac}^{\prime}(f, G)$ for any $G \subset G_{f}$.

Take a nowhere vanishing n-form $d x_{1} \wedge \cdots \wedge d x_{n}$ and set $\zeta:=\left[d x_{1} \wedge \cdots \wedge d x_{n}\right] \in \Omega_{f}$.
Definition 6.2.14. Fix also a map

$$
\alpha: G_{f} \longrightarrow \mathbb{C}^{*}, \quad g \mapsto \alpha_{g},
$$

such that $\alpha_{\mathrm{id}}=1$ and

$$
\alpha_{g} \alpha_{g^{-1}}=(-1)^{\frac{1}{2}\left(n-n_{g}\right)\left(n-n_{g}+1\right)}, \quad g \in G_{f} .
$$

Such a map α always exists since for each g we may choose α_{g} as

$$
\alpha_{g}=\mathbf{e}\left[\frac{1}{8}\left(n-n_{g}\right)\left(n-n_{g}+1\right)\right] .
$$

For each $g \in G$, let v_{g} be as in Definition 5.4.5

$$
v_{g} \vdash \zeta=\alpha_{g} \omega_{g} .
$$

Proposition 6.2.15. For a pair (g, h) of elements of G which is not spanning, we have $v_{g} \circ v_{h}=0 \in \operatorname{Jac}^{\prime}(f, G)$.

Proof. Denote by $\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]$ the element of $\operatorname{Jac}\left(f^{g h}\right)$ satisfying $v_{g} \circ v_{h}=\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right] v_{g h}$. Suppose that $f=f_{1} \oplus \cdots \oplus f_{p}$ is a Sebastiani-Thom sum such that each $f_{\nu}, \nu=1, \ldots, p$, is either of chain type or loop type. Without loss of generality, we may assume the coordinate x_{k}, $k \notin I_{g} \cup I_{h} \cup I_{g h}$ to be a variable of the polynomial f_{1}. Consider the following two cases;
(a) $f_{1}=x_{1}^{a_{1}} x_{2}+x_{2}^{a_{2}} x_{3}+\cdots+x_{m-1}^{a_{m-1}} x_{m}+x_{m}^{a_{m}}$ is of chain type.
(b) $f_{1}=x_{1}^{a_{1}} x_{2}+x_{2}^{a_{2}} x_{3}+\cdots+x_{m-1}^{a_{m-1}} x_{m}+x_{m}^{a_{m}} x_{1}$ is of loop type.

Case (a): First, note that $1 \notin I_{g} \cup I_{h} \cup I_{g h}$. Consider $\left(\frac{1}{a_{1}}, 0 \ldots, 0\right) \in \operatorname{Aut}\left(f_{1}, G\right)$ and extend it naturally to the element $\varphi \in \operatorname{Aut}(f, G)$. Since $1 \notin I_{g} \cup I_{h} \cup I_{g h}$, we have $\varphi^{*}\left(v_{g^{\prime}}\right)=\mathbf{e}\left[-\frac{1}{a_{1}}\right] v_{g^{\prime}}$ (see Equation (5.2)) for $g^{\prime} \in\{g, h, g h\}$. Axiom (iva) yields $\varphi^{*}\left(\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]\right)=\mathbf{e}\left[-\frac{1}{a_{1}}\right]\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]$. On the other hand, we have $\varphi^{*}\left(\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]\right)=\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]$ since $1 \notin I_{g h}$. Hence, $\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]=0$.

Case (b): First, note that $1, \ldots, m \notin I_{g} \cup I_{h} \cup I_{g h}$. Choose an element of $G_{f_{1}} \backslash G_{f_{1}}^{\mathrm{SL}}$, which exists due to Proposition 6.1.7, and extend it naturally to the element $\varphi \in \operatorname{Aut}(f, G)$. There exists a complex number $\lambda_{\varphi} \neq 1$, the determinant of φ regarded as an element of $\mathrm{GL}(n ; \mathbb{C})$, such that $\varphi^{*}\left(v_{g^{\prime}}\right)=\lambda_{\varphi}^{-1} v_{g^{\prime}}$ for $g^{\prime} \in\{g, h, g h\}$ since $1, \ldots, m \notin I_{g} \cup I_{h} \cup I_{g h}$. Axiom (iva) yields $\varphi^{*}\left(\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]\right)=\lambda_{\varphi}^{-1}\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]$. On the other hand, we have $\varphi^{*}\left(\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]\right)=\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]$ since $1, \ldots, m \notin I_{g h}$. Hence, $\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]=0$.

We consider the product $v_{g} \circ v_{h}$ for a spanning pair (g, h).
Proposition 6.2.16. For each spanning pair (g, h) of elements of G, there exists $c_{g, h} \in \mathbb{C}$ such that

$$
v_{g} \circ v_{h}=c_{g, h}\left[H_{g, h}\right] v_{g h} .
$$

Moreover, $c_{g, h}$ does not depend on the choice of the subgroup G of G_{f} containing g, h.
Proof. We only need to show the first statement since the second one follows from it together with Axiom (vi), the Definition 5.4.5 of v_{g} and the independence of $H_{g, h}$ from a particular choice of G. Based on Lemma 6.2.8, we study which variable in f_{ν} can appear in the product structure.

Lemma 6.2.17. Let the notation and the cases be as in Lemma 6.2.8 above. There is a polynomial $\gamma_{g, h}(\mathbf{x}) \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ which doesn't depend on $x_{i_{1}}, \ldots, x_{i_{m}}$ such that one of the following holds:
(i) (a) $v_{g} \circ v_{h}=\left[\gamma_{g, h}(\mathbf{x})\right] v_{g h}$
(b) $v_{g} \circ v_{h}= \begin{cases}{\left[\gamma_{g, h}(\mathbf{x}) \cdot\left(x_{i_{1}}^{a_{i_{1}}-2} x_{i_{2}}^{a_{i_{2}}-1} \cdots x_{i_{m}}^{a_{i_{m}}-1}\right)\right] v_{g h}} & \text { if } l=m \\ \left.-\gamma_{g, h}(\mathbf{x}) \cdot\left(x_{i_{1}}^{a_{i_{1}-2}} x_{i_{2}}^{a_{i_{2}-1}} \cdots x_{i_{l}-1}^{a_{i_{l}}} x_{i_{l+1}}\right)\right] v_{g h} & \text { if } l<m\end{cases}$
(ii) (a) $v_{g} \circ v_{h}=\left[\gamma_{g, h}(\mathbf{x})\right] v_{g h}$
(b) $v_{g} \circ v_{h}=\left[\gamma_{g, h}(\mathbf{x})\right] v_{g h}$
(c) $v_{g} \circ v_{h}=\left[\gamma_{g, h}(\mathbf{x}) \cdot\left(x_{i_{1}}^{a_{i_{1}}-1} x_{i_{2}}^{a_{i_{2}}-1} \cdots x_{i_{m}}^{a_{i m}-1}\right)\right] v_{g h}$

Here, we denote by $\left[\gamma_{g, h}(\mathbf{x})\right]$ the class of $\gamma_{g, h}(\mathbf{x})$ in $\operatorname{Jac}\left(f^{g h}\right)$.
Proof. (i): We may assume $f_{\nu}=x_{1}^{a_{1}} x_{2}+x_{2}^{a_{2}} x_{3}+\cdots+x_{m}^{a_{m}}$. For each $r=1, \ldots, m$, there is a unique element $\varphi_{r} \in \operatorname{Aut}\left(f_{\nu}, G\right)$ such that $\varphi_{r}^{*}\left(x_{i}\right)=x_{i}$ for all $i=r+1, \ldots, m$, which is explicitly given by

$$
\begin{aligned}
\varphi_{r}^{*}\left(x_{r}\right) & :=\mathbf{e}\left[\frac{1}{a_{r}}\right] x_{r}, \\
\varphi_{r}^{*}\left(x_{i}\right) & :=\mathbf{e}\left[\frac{1}{a_{i}}\left(1-\frac{1}{a_{i+1}}\left(1-\cdots-\frac{1}{a_{r-1}}\left(1-\frac{1}{a_{r}}\right)\right)\right)\right] x_{i}, 1 \leq i<r .
\end{aligned}
$$

Denote also by φ_{r} its natural extension to $\operatorname{Aut}(f, G)$ and by $\lambda_{\varphi_{r}} \in \mathbb{C}^{*}$ the determinant of φ_{r} as an element of $\mathrm{GL}(n ; \mathbb{C})$.
(a) For each $r=1, \ldots, m$, we have $\varphi_{r}^{*}\left(v_{g}\right)=v_{g}, \varphi_{r}^{*}\left(v_{h}\right)=\lambda_{\varphi_{r}}^{-1} v_{h}$ and $\varphi_{r}^{*}\left(v_{g h}\right)=\lambda_{\varphi_{r}}^{-1} v_{g h}$. Suppose that a polynomial $\gamma_{g, h}(\mathbf{x}) \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ satisfies $v_{g} \circ v_{h}=\left[\gamma_{g, h}(\mathbf{x})\right] v_{g h}$. By Axiom (iva), we obtain

$$
\begin{aligned}
{\left[\varphi_{r}^{*}\left(\gamma_{g, h}(\mathbf{x})\right)\right] v_{g h} } & =\lambda_{\varphi_{r}} \varphi_{r}^{*}\left(\left[\gamma_{g, h}(\mathbf{x})\right] v_{g h}\right)=\lambda_{\varphi_{r}} \varphi_{r}^{*}\left(v_{g} \circ v_{h}\right) \\
& =\lambda_{\varphi_{r}} \varphi_{r}^{*}\left(v_{g}\right) \circ \varphi_{r}^{*}\left(v_{h}\right)=v_{g} \circ v_{h}=\left[\gamma_{g, h}(\mathbf{x})\right] v_{g h},
\end{aligned}
$$

and hence $\varphi_{r}^{*}\left(\left[\gamma_{g, h}(\mathbf{x})\right]\right)=\left[\gamma_{g, h}(\mathbf{x})\right]$ in $\operatorname{Jac}\left(f^{g h}\right)$. In view of the above action of φ_{r} and Proposition 6.1.11, the polynomial $\gamma_{g, h}(\mathbf{x})$ can be chosen so that it does not depend on $x_{i}, i=1, \ldots, m$.
(b) For each $r=1, \ldots, m$, we have $\varphi_{r}^{*}\left(v_{g}\right)=\lambda_{\varphi_{r}}^{-1} v_{g}, \varphi_{r}^{*}\left(v_{h}\right)=\lambda_{\varphi_{r}}^{-1} v_{h}$ and $\varphi_{r}^{*}\left(v_{g h}\right)=v_{g h}$. Suppose that a polynomial $\gamma_{g, h}^{\prime}(\mathbf{x}) \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ satisfies $v_{g} \circ v_{h}=\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right] v_{g h}$. By Axiom (iva), we obtain

$$
\begin{aligned}
{\left[\varphi_{r}^{*}\left(\gamma_{g, h}^{\prime}(\mathbf{x})\right)\right] v_{g h} } & =\varphi_{r}^{*}\left(\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right] v_{g h}\right)=\varphi_{r}^{*}\left(v_{g} \circ v_{h}\right) \\
& =\varphi_{r}^{*}\left(v_{g}\right) \circ \varphi_{r}^{*}\left(v_{h}\right)=\lambda_{\varphi_{r}}^{-2}\left(v_{g} \circ v_{h}\right)=\lambda_{\varphi_{r}}^{-2}\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right] v_{g h},
\end{aligned}
$$

and hence $\left[\varphi_{r}^{*}\left(\gamma_{g, h}^{\prime}(\mathbf{x})\right)\right]=\lambda_{\varphi_{r}}^{-2}\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]$ in $\operatorname{Jac}\left(f^{g h}\right)$. In view of the above action of φ_{r} and Proposition 6.1.11, the polynomial $\gamma_{g, h}^{\prime}(\mathbf{x})$ can be chosen so that it is divisible by $x_{1}^{a_{1}-2} x_{2}^{a_{2}-1} \cdots x_{m}^{a_{m}-1}$ if $l=m$ and by $x_{1}^{a_{1}-2} x_{2}^{a_{2}-1} \cdots x_{l}^{a_{l}-1} x_{l+1}$ if $l<m$.
(ii): We may assume $f_{\nu}=x_{1}^{a_{1}} x_{2}+x_{2}^{a_{2}} x_{3}+\cdots+x_{m}^{a_{m}} x_{1}$. For each element $\varphi \in G_{f_{\nu}} \subset$ $\operatorname{Aut}\left(f_{\nu}, G\right)$, denote also by φ its natural extension to $\operatorname{Aut}(f, G)$. Let $\lambda_{\varphi} \in \mathbb{C}^{*}$ be the determinant of φ as an element of $\operatorname{GL}(n ; \mathbb{C})$. Note that if $\varphi \neq$ id then $\varphi^{*}\left(x_{i}\right) \neq x_{i}$ for all $i=1, \ldots, m$.
(a) For all $\varphi \in G_{f_{\nu}}$, we have $\varphi^{*}\left(v_{g}\right)=v_{g}, \varphi^{*}\left(v_{h}\right)=v_{h}$ and $\varphi^{*}\left(v_{g h}\right)=v_{g h}$. Suppose that a polynomial $\gamma_{g, h}(\mathbf{x}) \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ satisfies $v_{g} \circ v_{h}=\left[\gamma_{g, h}(\mathbf{x})\right] v_{g h}$. By Axiom (iva), we obtain

$$
\begin{aligned}
{\left[\varphi^{*}\left(\gamma_{g, h}(\mathbf{x})\right)\right] v_{g h} } & =\varphi^{*}\left(\gamma_{g, h}(\mathbf{x}) v_{g h}\right)=\varphi^{*}\left(v_{g} \circ v_{h}\right) \\
& =\varphi^{*}\left(v_{g}\right) \circ \varphi^{*}\left(v_{h}\right)=v_{g} \circ v_{h}=\left[\gamma_{g, h}(\mathbf{x})\right] v_{g h},
\end{aligned}
$$

and hence $\left[\varphi^{*}\left(\gamma_{g, h}(\mathbf{x})\right)\right]=\left[\gamma_{g, h}(\mathbf{x})\right]$ in $\operatorname{Jac}\left(f^{g h}\right)$. In view of Proposition 6.1.11, the polynomial $\gamma_{g, h}(\mathbf{x})$ can be chosen so that it does not depend on $x_{i}, i=1, \ldots, m$.
(b) Suppose that a polynomial $\gamma_{g, h}(\mathbf{x}) \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ satisfies $v_{g} \circ v_{h}=\left[\gamma_{g, h}(\mathbf{x})\right] v_{g h}$. Since $1, \ldots, m$ do not belong to $I_{g} \cap I_{h}$ nor $I_{g, h}$, it is obvious that the polynomial $\gamma_{g, h}(\mathbf{x})$ can be chosen so that it does not depend on $x_{i}, i=1, \ldots, m$.
(c) For all $\varphi \in G_{f_{\nu}}$, we have $\varphi^{*}\left(v_{g}\right)=\lambda_{\varphi}^{-1} v_{g}, \varphi^{*}\left(v_{h}\right)=\lambda_{\varphi}^{-1} v_{h}$ and $\varphi^{*}\left(v_{g h}\right)=v_{g h}$. Suppose that a polynomial $\gamma_{g, h}^{\prime}(\mathbf{x}) \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ satisfies $v_{g} \circ v_{h}=\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right] v_{g h}$. By Axiom (iva), we obtain

$$
\begin{aligned}
{\left[\varphi^{*}\left(\gamma_{g, h}^{\prime}(\mathbf{x})\right)\right] v_{g h} } & =\varphi^{*}\left(\gamma_{g, h}^{\prime}(\mathbf{x}) v_{g h}\right)=\varphi^{*}\left(v_{g} \circ v_{h}\right) \\
& =\varphi^{*}\left(v_{g}\right) \circ \varphi^{*}\left(v_{h}\right)=\lambda_{\varphi}^{-2}\left(v_{g} \circ v_{h}\right)=\lambda_{\varphi}^{-2}\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right] v_{g h}
\end{aligned}
$$

and hence $\left[\varphi^{*}\left(\gamma_{g, h}^{\prime}(\mathbf{x})\right)\right]=\lambda_{\varphi}^{-2}\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]$ in $\operatorname{Jac}\left(f^{g h}\right)$. In view of Proposition 6.1.11, the polynomial $\gamma_{g, h}^{\prime}(\mathbf{x})$ can be chosen so that it is divisible by $x_{1}^{a_{1}-1} x_{2}^{a_{2}-1} \cdots x_{m}^{a_{m}-1}$.

Now the first statement of the proposition is a direct consequence of Lemma 6.2.17, since $H_{g, h}$ is a constant multiple of the product of the monomials in the round brackets there. We have finished the proof of the proposition.

By Proposition 6.2.16, we may assume that $G=G_{f}$. We give some properties of $c_{g, h}$.
Lemma 6.2.18. For each $g \in G_{f}$, we have

$$
c_{g, g^{-1}}=(-1)^{\frac{1}{2}\left(n-n_{g}\right)\left(n-n_{g}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}(g)\right] .
$$

Proof. We have

$$
\begin{aligned}
\frac{1}{\mu_{f g}} J_{f, g}\left(\left[\operatorname{hess}\left(f^{g}\right)\right] v_{g} \vdash \zeta, v_{g^{-1}} \vdash \zeta\right) & =\frac{\alpha_{g} \alpha_{g^{-1}}}{\mu_{f^{g}}} J_{f, g}\left(\left[\operatorname{hess}\left(f^{g}\right)\right] \omega_{g}, \omega_{g^{-1}}\right) \\
& =(-1)^{\frac{1}{2}\left(n-n_{g}\right)\left(n-n_{g}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}(g)\right] \cdot|G|
\end{aligned}
$$

On the other hand, by Axiom (v) and normalization (6.2) of $H_{g, h}$, we have

$$
\begin{aligned}
\frac{1}{\mu_{f g}} J_{f, g}\left(\left[\operatorname{hess}\left(f^{g}\right)\right] v_{g} \vdash \zeta, v_{g^{-1}} \vdash \zeta\right) & =\frac{1}{\mu_{f g}} J_{f, i d}\left(\omega_{\mathrm{id}},\left[\operatorname{hess}\left(f^{g}\right)\right] v_{g} \circ v_{g^{-1}} \vdash \zeta\right) \\
& =\frac{1}{\mu_{f g}} J_{f, i d}\left(\omega_{\mathrm{id}}, c_{g, g^{-1}}\left[\operatorname{hess}\left(f^{g}\right) H_{g, g^{-1}}\right] \omega_{\mathrm{id}}\right) \\
& =\frac{c_{g, g^{-1}}}{\mu_{f}} J_{f, i d}\left(\omega_{\mathrm{id}},[\operatorname{hess}(f)] \omega_{\mathrm{id}}\right) \\
& =c_{g, g^{-1}}|G| .
\end{aligned}
$$

Lemma 6.2.19. For each pair (g, h) of elements of G_{f} such that $I_{g, h}=\emptyset$, we have

$$
c_{g, h} c_{h^{-1}, g^{-1}}=(-1)^{\left(n-n_{g}\right)\left(n-n_{h}\right)} .
$$

In particular it follows that $c_{g, h} \neq 0$.
Remark 6.2.20. If $I_{g, h}=\emptyset$ for a pair (g, h) of elements of G_{f}, it is spanning.
Proof. We have

$$
\begin{aligned}
& v_{g} \circ\left(v_{h} \circ v_{h^{-1}}\right) \circ v_{g^{-1}} \\
& =(-1)^{\frac{1}{2}\left(n-n_{g}\right)\left(n-n_{g}-1\right)+\frac{1}{2}\left(n-n_{h}\right)\left(n-n_{h}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}(g)-\frac{1}{2} \operatorname{age}(h)\right]\left[g^{*}\left(H_{h, h^{-1}}\right) H_{g, g^{-1}}\right] v_{\mathrm{id}}, \\
& \left(v_{g} \circ v_{h}\right) \circ\left(v_{h^{-1}} \circ v_{g^{-1}}\right) \\
& =(-1)^{\frac{1}{2}\left(n-n_{g h}\right)\left(n-n_{g h}-1\right)} \mathbf{e}\left[-\frac{1}{2} \operatorname{age}(g h)\right] c_{g, h} c_{h^{-1}, g^{-1}}\left[H_{g h,(g h)^{-1}}\right] v_{\mathrm{id}} .
\end{aligned}
$$

The proposition follows from the facts that the product \circ is associative, $g^{*}\left(H_{h, h^{-1}}\right)=H_{h, h^{-1}}$ since $I_{g, h}=\emptyset,\left[H_{g, g^{-1}} H_{h, h^{-1}}\right]=\left[H_{g h,(g h)^{-1}}\right]$ in $\operatorname{Jac}(f)$, age $(g)+\operatorname{age}(h)=\operatorname{age}(g h)$ since $I_{g, h}=\emptyset$, and $\left(n-n_{g}\right)+\left(n-n_{h}\right) \equiv\left(n-n_{g h}\right)(\bmod 2)$ by Proposition 6.2.11.

Corollary 6.2.21. Let (g, h) be a spanning pair of elements of G_{f} with the factorization $\left(g_{1}, g_{2}, h_{1}, h_{2}\right)$. The complex numbers $c_{g_{1}, h_{2}}, c_{g_{2}, h_{1}}$ and $c_{g_{1}, h_{1}}$ are non-zero.

Proof. It follows from the fact that $I_{g_{1}, h_{2}}=\emptyset, I_{g_{2}, h_{1}}=\emptyset$ and $I_{g_{1}, h_{1}}=\emptyset$.
Proposition 6.2.22. Let (g, h) be a spanning pair of elements of G_{f} with the factorization $\left(g_{1}, g_{2}, h_{1}, h_{2}\right)$. We have

$$
c_{g, h}=(-1)^{\frac{1}{2}\left(n-n_{g_{2}}\right)\left(n-n_{g_{2}}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{2}\right)\right] \cdot \frac{c_{g_{1}, h_{1}}}{c_{g_{1}, g_{2}} c_{h_{2}, h_{1}}} .
$$

In particular, $c_{g, h} \neq 0$.
Proof. We have

$$
\begin{aligned}
v_{g_{1}} \circ\left(v_{g_{2}} \circ v_{h_{2}}\right) \circ v_{h_{1}} & =(-1)^{\frac{1}{2}\left(n-n_{g_{2}}\right)\left(n-n_{g_{2}}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{2}\right)\right] \cdot v_{g_{1}} \circ\left[H_{g_{2}, g_{2}^{-1}}\right] v_{\mathrm{id}_{1}} \circ v_{h_{1}} \\
& =(-1)^{\frac{1}{2}\left(n-n_{g_{2}}\right)\left(n-n_{g_{2}}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{2}\right)\right] \cdot c_{g_{1}, h_{1}}\left[H_{g_{2}, g_{2}^{-1}}\right] v_{g h} .
\end{aligned}
$$

On the other hand, we get:

$$
\begin{aligned}
\left(v_{g_{1}} \circ v_{g_{2}}\right) \circ\left(v_{h_{2}} \circ v_{h_{1}}\right) & =c_{g_{1}, g_{2}} v_{g_{1} g_{2}} \circ c_{h_{2}, h_{1}} v_{h_{1} h_{2}} \\
& =c_{g_{1}, g_{2}} c_{h_{2}, h_{1}} c_{g, h}\left[H_{g, h}\right] v_{g h} .
\end{aligned}
$$

Note that $H_{g, h}=H_{g_{2}, g_{2}^{-1}}=H_{h_{2}, h_{2}^{-1}}$ by the definition of the factorization $\left(g_{1}, g_{2}, h_{1}, h_{2}\right)$. By Corollary 6.2.21, we know that $c_{g_{1}, g_{2}}$ and $c_{h_{2}, h_{1}}$ are non-zero, which gives the statement.

Hence, by this proposition, we only have to determine $c_{g, h}$ for all pairs (g, h) of elements of G_{f} such that $I_{g, h}=\emptyset$.

Remark 6.2.23. Suppose that $f=f_{1} \oplus \cdots \oplus f_{p}$ is a Sebastiani-Thom sum such that each f_{ν}, $\nu=1, \ldots, p$, is either of chain type or loop type. Then, we have a natural isomorphism $G_{f} \cong$ $G_{f_{1}} \times \cdots \times G_{f_{p}}$. Therefore, it follows that each $g \in G_{f}$ has a unique expression $g=g_{1} \cdots g_{p}$ such that $g_{i} \in G_{f_{i}}$ for all $i=1, \ldots, p$, hence $I_{g_{i}, g_{j}}=\emptyset$ if $i \neq j$ and $I_{g}^{c}=I_{g_{1}}^{c} \dot{\cup} \ldots \dot{\cup} I_{g_{p}}^{c}$.

Definition 6.2.24. With this notation, define \widetilde{v}_{g} by

$$
\widetilde{v}_{g}:=\widetilde{\varepsilon}_{g_{1}, \ldots, g_{p}} v_{g_{1}} \circ \cdots \circ v_{g_{p}} .
$$

Obviously, \widetilde{v}_{g} is a non-zero constant multiple of v_{g} for all $g \in G_{f}$.
Remark 6.2.25. It is also easy to see that \widetilde{v}_{g} does not depend on the choice of ordering in the Sebastiani-Thom sum and by having equation (6.4) in mind for a pair (g, h) of elements of G_{f} with $I_{g, h}=\emptyset$ we have

$$
\widetilde{v}_{g} \circ \widetilde{v}_{h}=\frac{1}{\widetilde{\varepsilon}_{g, h}} \widetilde{v}_{g h} .
$$

Proposition 6.2.26. For each $g \in G$, we have

$$
\widetilde{v}_{g} \circ \widetilde{v}_{g^{-1}}=(-1)^{\frac{1}{2}\left(n-n_{g}\right)\left(n-n_{g}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}(g)\right] \cdot\left[H_{g, g^{-1}}\right] \widetilde{v}_{\mathrm{id}} .
$$

Proof. There is an inductive presentation of \widetilde{v}_{g} given by

$$
\widetilde{v}_{g}=\left\{\begin{array}{ll}
v_{g_{1}} & \text { if } \quad g=g_{1} \\
\widetilde{\varepsilon}_{g_{1} \ldots g_{i}, g_{i+1}} \widetilde{v}_{g_{1} \ldots g_{i}} \circ v_{g_{i+1}} & \text { if } \quad g=g_{1} \ldots g_{i} g_{i+1}, i=1, \ldots, p-1
\end{array} .\right.
$$

The statement follows by induction from the following calculation:

$$
\begin{aligned}
\widetilde{v}_{g} \circ \widetilde{v}_{g^{-1}}= & \left(\widetilde{\varepsilon}_{g_{1} \ldots g_{i}, g_{i+1}} \widetilde{v}_{g_{1} \ldots g_{i}} \circ v_{g_{i+1}}\right) \circ\left(\widetilde{\varepsilon}_{g_{1}^{-1} \ldots g_{i}^{-1}, g_{i+1}^{-1}} \widetilde{v}_{g_{1}^{-1} \ldots g_{i}^{-1}} \circ v_{g_{i+1}^{-1}}\right) \\
= & (-1)^{\left(n-n_{g_{1}^{-1} \ldots g_{i}^{-1}}\right)\left(n-n_{g_{i+1}}\right)} \cdot\left(\widetilde{v}_{g_{1} \ldots g_{i}} \circ \widetilde{v}_{g_{1}^{-1} \ldots g_{i}^{-1}}\right) \circ\left(v_{g_{i+1}} \circ v_{g_{i+1}^{-1}}\right) \\
= & (-1)^{\left(n-n_{g_{1} \ldots g_{i}}\right)\left(n-n_{g_{i+1}}\right)+\frac{1}{2}\left(n-n_{g_{1} \ldots g_{i}}\right)\left(n-n_{g_{1} \ldots g_{i}}-1\right)+\frac{1}{2}\left(n-n_{g_{i+1}}\right)\left(n-n_{g_{i+1}}-1\right)} \\
& \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{1} \ldots g_{i}\right)-\frac{1}{2} \operatorname{age}\left(g_{i+1}\right)\right] \cdot\left[H_{g_{1} \ldots g_{i}, g_{1}^{-1} \ldots g_{i}^{-1}} H_{g_{i+1}, g_{i+1}^{-1}}\right] \widetilde{v}_{\mathrm{id}} \\
= & (-1)^{\frac{1}{2}\left(n-n_{g}\right)\left(n-n_{g}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}(g)\right] \cdot\left[H_{g, g^{-1}}\right] \widetilde{v}_{\text {id }}
\end{aligned}
$$

This proposition states that by replacing the map $\alpha: G_{f} \longrightarrow \mathbb{C}^{*}$ by a suitable one we have a new basis $\left\{\widetilde{v}_{g}\right\}_{g \in G_{f}}$ instead of $\left\{v_{g}\right\}_{g \in G_{f}}$. To summarize, we finally obtain the following:
Corollary 6.2.27. Let (g, h) be a spanning pair of elements of G_{f} with the factorization $\left(g_{1}, g_{2}, h_{1}, h_{2}\right)$. We have

$$
\widetilde{v}_{g} \circ \widetilde{v}_{h}=(-1)^{\frac{1}{2}\left(n-n_{g_{2}}\right)\left(n-n_{g_{2}}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{2}\right)\right] \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}} \widetilde{\varepsilon}_{h_{2}, h_{1}}}{\widetilde{\varepsilon}_{g_{1}, h_{1}}}\left[H_{g, h}\right] \widetilde{v}_{g h} .
$$

In particular, for any subgroup G of G_{f}, if a G-twisted Jacobian algebra of f exists, then it is uniquely determined by the axioms in Definition 5.2.1 up to isomorphism.

Existence

Throughout this subsection, $f=f\left(x_{1}, \ldots, x_{n}\right)$ denotes an invertible polynomial. And we show, as mentioned in Section 5.4, the existence of $\operatorname{Jac}^{\prime}(f, G)$ for any $G \subset G_{f}$. Let \mathcal{A}^{\prime} be as in Definition 5.4.7.

Definition 6.2.28. For a spanning pair (g, h) of elements of G_{f} with the factorization $\left(g_{1}, g_{2}, h_{1}, h_{2}\right)$, set

$$
\begin{equation*}
\bar{c}_{g, h}:=(-1)^{\frac{1}{2}\left(n-n_{g_{2}}\right)\left(n-n_{g_{2}}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{2}\right)\right] \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}} \widetilde{\varepsilon}_{h_{2}, h_{1}}}{\tilde{\varepsilon}_{g_{1}, h_{1}}} . \tag{6.5}
\end{equation*}
$$

Remark 6.2.29. It is easy to see that

$$
\begin{array}{ll}
\bar{c}_{g, \mathrm{id}}=1=\bar{c}_{\mathrm{id}, g}, & g \in G_{f}, \\
\bar{c}_{g, g^{-1}}=(-1)^{\frac{1}{2}\left(n-n_{g}\right)\left(n-n_{g}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}(g)\right], & g \in G_{f}, \\
\bar{c}_{g, h}=\widetilde{\varepsilon}_{g, h}^{-1}, & g, h \in G_{f}, I_{g, h}=\emptyset .
\end{array}
$$

Definition 6.2.30. For each $g, h \in G_{f}$, define an element of $\mathcal{A}_{g h}^{\prime}$ by

$$
\bar{v}_{g} \circ \bar{v}_{h}:=\left\{\begin{array}{ll}
\bar{c}_{g, h}\left[H_{g, h}\right] \bar{v}_{g h} & \text { if the pair }(g, h) \text { is spanning } \\
0 & \text { otherwise }
\end{array} .\right.
$$

It is clear that $\bar{v}_{\mathrm{id}} \circ \bar{v}_{g}=\bar{v}_{g}=\bar{v}_{g} \circ \bar{v}_{\mathrm{id}}$ since $I_{\mathrm{id}, g}=I_{g, \text { id }}=\emptyset$ and hence $\left[H_{\mathrm{id}, g}\right]=\left[H_{g, \mathrm{id}}\right]=1$.
Proposition 6.2.31. For a spanning pair (g, h) of elements of G_{f} with the factorization $\left(g_{1}, g_{2}, h_{1}, h_{2}\right)$, we have

$$
\bar{c}_{g, h}=(-1)^{\left(n-n_{g}\right)\left(n-n_{h}\right)} \cdot \mathbf{e}\left[-\operatorname{age}\left(g_{2}\right)\right] \cdot \bar{c}_{h, g} .
$$

Hence, we have

$$
\bar{v}_{g} \circ \bar{v}_{h}=(-1)^{\left(n-n_{g}\right)\left(n-n_{h}\right)} \cdot\left(\mathbf{e}\left[-\operatorname{age}\left(g_{2}\right)\right] \bar{v}_{h} \circ \bar{v}_{g}\right) .
$$

Proof. We have

$$
\begin{aligned}
\bar{c}_{g, h}= & (-1)^{\frac{1}{2}\left(n-n_{g_{2}}\right)\left(n-n_{g_{2}}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{2}\right)\right] \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}} \widetilde{\varepsilon}_{h_{2}, h_{1}}}{\widetilde{\varepsilon}_{g_{1}, h_{1}}} \\
= & (-1)^{\left(n-n_{g_{1}}\right)\left(n-n_{g_{2}}\right)+\left(n-n_{h_{1}}\right)\left(n-n_{h_{2}}\right)-\left(n-n_{g_{1}}\right)\left(n-n_{h_{1}}\right)+\left(n-n_{g_{2}}\right)} \cdot \mathbf{e}\left[-\operatorname{age}\left(g_{2}\right)\right] \\
& \cdot(-1)^{\frac{1}{2}\left(n-n_{h_{2}}\right)\left(n-n_{h_{2}}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(h_{2}\right)\right] \cdot \frac{\widetilde{\varepsilon}_{h_{1}, h_{2}} \widetilde{\varepsilon}_{g_{2}, g_{1}}}{\widetilde{\varepsilon}_{h_{1}, g_{1}}} \\
= & (-1)^{\left(n-n_{g}\right)\left(n-n_{h}\right)} \cdot \mathbf{e}\left[-\operatorname{age}\left(g_{2}\right)\right] \cdot \bar{c}_{h, g},
\end{aligned}
$$

where we used that $h_{2}=g_{2}^{-1}, n-n_{g_{2}}=\operatorname{age}\left(g_{2}\right)+\operatorname{age}\left(h_{2}\right)$ and Proposition 6.2.11.
Proposition 6.2.32. For each $g, g^{\prime}, g^{\prime \prime} \in G_{f}$, we have

$$
\begin{equation*}
\left(\bar{v}_{g} \circ \bar{v}_{g^{\prime}}\right) \circ \bar{v}_{g^{\prime \prime}}=\bar{v}_{g} \circ\left(\bar{v}_{g^{\prime}} \circ \bar{v}_{g^{\prime \prime}}\right) . \tag{6.6}
\end{equation*}
$$

Proof. First, we show the following
Lemma 6.2.33. For $g, g^{\prime}, g^{\prime \prime} \in G_{f}$, suppose that $\left(g, g^{\prime}\right)$ and $\left(g g^{\prime}, g^{\prime \prime}\right)$ are spanning pairs with $I_{g, g^{\prime}} \subset I_{g^{\prime \prime}}$.
(i) There exist $g_{1}, g_{2}, g_{3}, g_{1}^{\prime}, g_{2}^{\prime}, g_{3}^{\prime}, g_{1}^{\prime \prime}, g_{2}^{\prime \prime}, g_{3}^{\prime \prime} \in G_{f}$ such that

$$
g=g_{1} g_{2} g_{3}, \quad g^{\prime}=g_{1}^{\prime} g_{2}^{\prime} g_{3}^{\prime}, \quad g^{\prime \prime}=g_{1}^{\prime \prime} g_{2}^{\prime \prime} g_{3}^{\prime \prime}, \quad g_{1}^{\prime} g_{1}^{\prime \prime}=\mathrm{id}, g_{2} g_{2}^{\prime \prime}=\mathrm{id}, g_{3} g_{3}^{\prime}=\mathrm{id}
$$

and $\left(g_{1} g_{2}, g_{3}, g_{1}^{\prime} g_{2}^{\prime}, g_{3}^{\prime}\right)$ is the factorization of $\left(g, g^{\prime}\right)$ and $\left(g_{1} g_{2}^{\prime}, g_{2} g_{1}^{\prime}, g_{3}^{\prime \prime}, g_{1}^{\prime \prime} g_{2}^{\prime \prime}\right)$ is the factorization of $\left(g g^{\prime}, g^{\prime \prime}\right)$.
(ii) The pairs $\left(g^{\prime}, g^{\prime \prime}\right)$ and $\left(g, g^{\prime} g^{\prime \prime}\right)$ are spanning such that $I_{g^{\prime}, g^{\prime \prime}} \subset I_{g}$ and $\left(g_{2}^{\prime} g_{3}^{\prime}, g_{1}^{\prime}, g_{2}^{\prime \prime} g_{3}^{\prime \prime}, g_{1}^{\prime \prime}\right)$ is the factorization of $\left(g^{\prime}, g^{\prime \prime}\right)$ and $\left(g_{1}, g_{2} g_{3}, g_{2}^{\prime} g_{3}^{\prime \prime}, g_{2}^{\prime \prime} g_{3}^{\prime}\right)$ is the factorization of $\left(g, g^{\prime} g^{\prime \prime}\right)$.

Proof. (i) Similarly to the presentation of (6.1), the elements $g, g^{\prime}, g^{\prime \prime}$ satisfying the conditions can be expressed, in the multiplicative form, as follows:

$$
\begin{array}{llllllllllll}
g & =g_{1} & \cdot & g_{2} & \cdot & \mathrm{id} & \cdot & \mathrm{id} & \cdot & g_{3} & \cdot & \mathrm{id} \\
g^{\prime} & =\mathrm{id} & \cdot & \mathrm{id} & \cdot & g_{1}^{\prime} & \cdot & g_{2}^{\prime} & \cdot & g_{3}^{\prime} & \cdot & \mathrm{id} \\
g^{\prime \prime} & =\mathrm{id} & \cdot & g_{2}^{\prime \prime} & \cdot & g_{1}^{\prime \prime} & \cdot & \text { id } & \cdot & \text { id } & \cdot & g_{3}^{\prime \prime}
\end{array}
$$

(ii) By the above presentation, it is easy to see that $\left(g, g^{\prime}\right)$ and $\left(g g^{\prime}, g^{\prime \prime}\right)$ are spanning pairs with the given factorization. It follows from $g_{1}^{\prime} g_{1}^{\prime \prime}=\operatorname{id}$ that $I_{g^{\prime}, g^{\prime \prime}} \subset I_{g}$.

Lemma 6.2.34. The LHS of (6.6) is non-zero if and only if the RHS of (6.6) is non-zero.
Proof. By Proposition 6.2.10 (iii), the LHS of (6.6) is non-zero only if both pairs (g, g^{\prime}) and $\left(g g^{\prime}, g^{\prime \prime}\right)$ are spanning and $I_{g, g^{\prime}} \subset I_{g^{\prime \prime}}$ and the RHS of (6.6) is non-zero only if both pairs $\left(g, g^{\prime} g^{\prime \prime}\right)$ and $\left(g^{\prime}, g^{\prime \prime}\right)$ are spanning and $I_{g^{\prime}, g^{\prime \prime}} \subset I_{g}$. Lemma 6.2.33 together with Proposition 6.2.31 yields the statement.

Lemma 6.2.35. Let the notations be as above. We have

$$
H_{g, g^{\prime}}=H_{g_{3}, g_{3}^{\prime}}, H_{g g^{\prime}, g^{\prime \prime}}=H_{g_{2} g_{1}^{\prime}, g_{2}^{\prime \prime} g_{1}^{\prime \prime}}, \quad H_{g, g^{\prime} g^{\prime \prime}}=H_{g_{2} g_{3}, g_{2}^{\prime \prime} g_{3}^{\prime}}, \quad H_{g^{\prime}, g^{\prime \prime}}=H_{g_{1}^{\prime}, g_{1}^{\prime \prime}}
$$

and hence $\left[H_{g, g^{\prime}} H_{g g^{\prime}, g^{\prime \prime}}\right]=\left[H_{g, g^{\prime} g^{\prime \prime}} H_{g^{\prime}, g^{\prime \prime}}\right]$ in $\operatorname{Jac}\left(f^{g g^{\prime} g^{\prime \prime}}\right)$.
Proof. The first statement follows from the definition of $H_{g, h}$ and the second one does from Proposition 6.2.10 (ii).

Therefore, we only have to show the following
Lemma 6.2.36. Let the notations be as above. We have

$$
\bar{c}_{g, g^{\prime}} \bar{c}_{g g^{\prime}, g^{\prime \prime}}=\bar{c}_{g, g^{\prime} g^{\prime \prime}}{\overline{g_{g^{\prime}, g^{\prime \prime}}} .}
$$

Proof. It follows from the definition (6.5) that

$$
\begin{aligned}
& \bar{c}_{g, g^{\prime}}=(-1)^{\frac{1}{2}\left(n-n_{g_{3}}\right)\left(n-n_{g_{3}}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{3}\right)\right] \cdot \frac{\widetilde{\varepsilon}_{g_{1} g_{2}, g_{3}} \widetilde{\varepsilon}_{g_{3}^{\prime}, g_{1}^{\prime} g_{2}^{\prime}}}{\widetilde{\varepsilon}_{g_{1} g_{2}, g_{1}^{\prime} g_{2}^{\prime}}}, \\
& \bar{c}_{g g^{\prime}, g^{\prime \prime}}=(-1)^{\frac{1}{2}\left(n-n_{g_{2} g_{1}^{\prime}}\left(n-n_{g_{2} g_{1}^{\prime}}-1\right)\right.} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{2} g_{1}^{\prime}\right)\right] \cdot \frac{\widetilde{\varepsilon}_{g_{1} g_{2}^{\prime}, g_{2} g_{1}} \widetilde{\varepsilon}_{g_{g_{2}^{\prime \prime}} g_{1}^{\prime \prime}, g_{3}^{\prime \prime}}}{\widetilde{\varepsilon}_{g_{1} g_{2}^{\prime}, g_{3}^{\prime \prime}}}, \\
& \bar{c}_{g, g^{\prime} g^{\prime \prime}}=(-1)^{\frac{1}{2}\left(n-n_{g_{2} g_{3}}\right)\left(n-n_{g_{2} g_{3}}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{2} g_{3}\right)\right] \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2} g_{3}} \widetilde{\varepsilon}_{g_{2}^{\prime \prime} g_{3}^{\prime}, g_{2}^{\prime} g_{3}^{\prime \prime}}}{\widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime} g_{3}^{\prime \prime}}}, \\
& \bar{c}_{g^{\prime}, g^{\prime \prime}}=(-1)^{\frac{1}{2}\left(n-n_{g_{1}^{\prime}}\right)\left(n-n_{g_{1}^{\prime}}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{1}^{\prime}\right)\right] \cdot \frac{\widetilde{\varepsilon}_{g_{2}^{\prime} g_{3}^{\prime}, g_{1}} \widetilde{\varepsilon}_{g_{1}^{\prime \prime}, g_{2}^{\prime \prime} g_{3}^{\prime \prime}}}{\widetilde{\varepsilon}_{g_{2}^{\prime} g_{3}^{\prime}, g_{2}^{\prime \prime} g_{3}^{\prime \prime}}} .
\end{aligned}
$$

Since all $I_{g_{i}}^{c}, I_{g_{i}^{\prime}}^{c}$ and $I_{g_{i}^{\prime \prime}}^{c}$ are mutually disjoint, we get

$$
\begin{aligned}
& \bar{c}_{g, g^{\prime}} \bar{c}_{g g^{\prime}, g^{\prime \prime}}=(-1)^{\frac{1}{2}\left(n-n_{g_{3}}\right)\left(n-n_{g_{3}}-1\right)+\frac{1}{2}\left(n-n_{g_{2} g_{1}}\right)\left(n-n_{g_{2} g_{1}^{\prime}}-1\right)} \\
& \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{3}\right)-\frac{1}{2} \operatorname{age}\left(g_{2} g_{1}^{\prime}\right)\right] \cdot \frac{\widetilde{\varepsilon}_{g_{1} g_{2}, g_{3}} \widetilde{\varepsilon}_{g_{3}^{\prime}, g_{1}^{\prime}} \widetilde{\varepsilon}_{2}^{\prime}}{\widetilde{\varepsilon}_{g_{1} g_{2}, g_{1}^{\prime} g_{2}^{\prime}}} \frac{\widetilde{\varepsilon}_{g_{1} g_{2}^{\prime}, g_{2} g_{1}} \widetilde{\varepsilon}_{g_{2}^{\prime \prime} g_{1}^{\prime \prime}, g_{3}^{\prime \prime}}}{\widetilde{\varepsilon}_{g_{1} g_{2}^{\prime}, g_{3}^{\prime \prime}}} \\
& =(-1)^{\frac{1}{2}\left(n-n_{g_{3}}\right)\left(n-n_{g_{3}}-1\right)+\frac{1}{2}\left(n-n_{g_{2}}+n-n_{g_{1}^{\prime}}\right)\left(n-n_{g_{2}}+n-n_{g_{1}^{\prime}}-1\right)} \\
& \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{3}\right)-\frac{1}{2} \operatorname{age}\left(g_{2}\right)-\frac{1}{2} \operatorname{age}\left(g_{1}^{\prime}\right)\right] \\
& \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}} \widetilde{\varepsilon}_{g_{1}, g_{2}, g_{3}} \widetilde{\varepsilon}_{g_{g^{\prime}, g_{1}^{\prime}, g_{2}^{\prime}}} \widetilde{\varepsilon}_{g_{1}^{\prime}, g_{2}} \widetilde{\varepsilon}_{g_{1}, g_{2}} \widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime}, g_{1}^{\prime}, g_{2}} \widetilde{\varepsilon}_{g_{1}^{\prime}, g_{2}} \widetilde{\varepsilon}_{g_{1}^{\prime \prime}, g_{2}^{\prime \prime}} \widetilde{\varepsilon}_{g_{1}^{\prime \prime}, g_{2}^{\prime \prime}, g_{3}^{\prime \prime}}}{\widetilde{\varepsilon}_{g_{1}, g_{2}} \widetilde{\varepsilon}_{g_{1}, g_{2}, g_{1}^{\prime}, g_{2}^{\prime}} \widetilde{\varepsilon}_{g_{1}^{\prime}, g_{2}^{\prime}} \widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime}}^{\prime} \widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime}, g_{3}^{\prime \prime}}} \\
& =(-1)^{\frac{1}{2}\left(\left(n-n_{g_{3}}\right)^{2}-\left(n-n_{g_{3}}\right)+\left(n-n_{g_{2}}\right)^{2}-\left(n-n_{g_{2}}\right)+\left(n-n_{g_{1}^{\prime}}\right)^{2}-\left(n-n_{g_{1}^{\prime}}\right)+2\left(n-n_{g_{2}}\right)\left(n-n_{g_{1}^{\prime}}\right)\right)} \\
& \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{3}\right)-\frac{1}{2} \operatorname{age}\left(g_{2}\right)-\frac{1}{2} \operatorname{age}\left(g_{1}^{\prime}\right)\right] \\
& \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}, g_{3}} \widetilde{\varepsilon}_{g_{3}^{\prime}, g_{1}^{\prime}, g_{2}} \widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime}, g_{1}^{\prime}, g_{2}} \widetilde{\varepsilon}_{g_{1}^{\prime}, g_{2}} \widetilde{\varepsilon}_{g_{1}^{\prime \prime}, g_{2}^{\prime \prime}} \widetilde{\varepsilon}_{g_{1}^{\prime \prime}, g_{2}^{\prime \prime}, g_{3}^{\prime \prime}}}{\widetilde{\varepsilon}_{g_{1}, g_{2}, g_{1}^{\prime}, g_{2}^{\prime}} \widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime}, g_{3}^{\prime \prime}}},
\end{aligned}
$$

and

$$
\begin{aligned}
& \bar{c}_{g, g^{\prime} g^{\prime \prime}} \bar{c}_{g^{\prime}, g^{\prime \prime}}=(-1)^{\frac{1}{2}\left(n-n_{g_{2} g_{3}}\right)\left(n-n_{g_{2} g_{3}}-1\right)+\frac{1}{2}\left(n-n_{g_{1}^{\prime}}\right)\left(n-n_{g_{1}^{\prime}}-1\right)} \\
& \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{2} g_{3}\right)-\frac{1}{2} \operatorname{age}\left(g_{1}^{\prime}\right)\right] \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}} g_{3} \widetilde{\varepsilon}_{g_{2}^{\prime \prime} g_{g^{\prime}}^{\prime}, g_{2}^{\prime} g_{3}^{\prime \prime}}}{\widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime}}^{2} g_{3}^{\prime \prime}} \frac{\widetilde{\varepsilon}_{g_{2}^{\prime} g_{3}^{\prime}, g_{1}^{\prime}}}{\widetilde{\varepsilon}_{g_{2}^{\prime}} \widetilde{\varepsilon}_{g_{1}^{\prime \prime}, g_{2}^{\prime \prime}, g_{2}^{\prime \prime} g_{3}^{\prime \prime}}} \\
& =(-1)^{\frac{1}{2}\left(n-n_{g_{2}}+n-n_{g_{3}}\right)\left(n-n_{g_{2}}+n-n_{g_{3}}-1\right)+\frac{1}{2}\left(n-n_{g_{1}^{\prime}}\right)\left(n-n_{g_{1}^{\prime}}-1\right)} \\
& \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{3}\right)-\frac{1}{2} \operatorname{age}\left(g_{2}\right)-\frac{1}{2} \operatorname{age}\left(g_{1}^{\prime}\right)\right] \\
& \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}, g_{3}} \widetilde{\varepsilon}_{g_{2}, g_{3}} \widetilde{\varepsilon}_{g_{2}^{\prime \prime}, g_{3}^{\prime}} \widetilde{\varepsilon}_{g_{2}^{\prime \prime}, g_{3}^{\prime}, g_{2}^{\prime}, g_{3}^{\prime}} \widetilde{\varepsilon}_{g_{2}^{\prime}, g_{3}^{\prime}} \widetilde{\varepsilon}_{g_{2}^{\prime}, g_{3}^{\prime}} \widetilde{\varepsilon}_{g_{2}^{\prime}, g_{3}^{\prime}, g_{1}^{\prime}} \widetilde{\varepsilon}_{g_{1}^{\prime \prime}, g_{2}^{\prime \prime}, g_{3}^{\prime \prime}} \widetilde{\varepsilon}_{g_{2}^{\prime \prime}, g_{3}^{\prime \prime}}}{\widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime}, g_{3}^{\prime \prime}} \widetilde{\varepsilon}_{g_{2}^{\prime}, g_{3}^{\prime \prime}} \widetilde{g}_{g_{2}^{\prime}, g_{3}} \widetilde{\varepsilon}_{g_{2}^{\prime}, g_{3}^{\prime}, g_{2}^{\prime \prime}, g_{3}^{\prime \prime}} \widetilde{g}_{g_{2}^{\prime \prime}, g_{3}^{\prime \prime}}} \\
& =(-1)^{\frac{1}{2}\left(\left(n-n_{g_{3}}\right)^{2}-\left(n-n_{g_{3}}\right)+\left(n-n_{g_{2}}\right)^{2}-\left(n-n_{g_{2}}\right)+\left(n-n_{g_{1}^{\prime}}\right)^{2}-\left(n-n_{g_{1}^{\prime}}\right)+2\left(n-n_{g_{2}}\right)\left(n-n_{g_{3}}\right)\right)} \\
& \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{3}\right)-\frac{1}{2} \operatorname{age}\left(g_{2}\right)-\frac{1}{2} \operatorname{age}\left(g_{1}^{\prime}\right)\right] \\
& \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}, g_{3}} \widetilde{\varepsilon}_{g_{2}, g_{3}} \widetilde{\varepsilon}_{g_{2}^{\prime \prime}, g_{3}^{\prime}}{\widetilde{q_{g_{2}^{\prime \prime}}, g_{3}^{\prime}, g_{2}^{\prime}, g_{3}^{\prime \prime}} \widetilde{\varepsilon}_{g_{2}^{\prime}, g_{3}^{\prime}, g_{1}^{\prime}} \widetilde{\varepsilon}_{g_{1}^{\prime \prime}, g_{2}^{\prime \prime}, g_{3}^{\prime \prime}}}_{\widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime},,_{3}^{\prime \prime}} \widetilde{\varepsilon}_{g_{2}^{\prime}, g_{3}^{\prime}, g_{2}^{\prime \prime}, g_{3}^{\prime \prime}}} .}{\text {. }}
\end{aligned}
$$

Therefore, we only have to show that

$$
\begin{aligned}
(-1)^{\left(n-n_{g_{2}}\right)\left(n-n_{g_{1}^{\prime}}\right)} \cdot & \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}, g_{3}} \widetilde{\varepsilon}_{g_{3}^{\prime}, g_{1}^{\prime}, g_{2}^{\prime}} \widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime}, g_{1}^{\prime}, g_{2}} \widetilde{\varepsilon}_{g_{1}^{\prime}, g_{2}} \widetilde{\varepsilon}_{g_{1}^{\prime \prime}, g_{2}^{\prime \prime}} \widetilde{\varepsilon}_{g_{1}^{\prime \prime}, g_{2}^{\prime \prime}, g_{3}^{\prime \prime}}}{\widetilde{\varepsilon}_{g_{1}, g_{2}, g_{1}^{\prime}, g_{2}^{\prime}} \widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime}, g_{3}^{\prime \prime}}} \\
& =(-1)^{\left(n-n_{g_{2}}\right)\left(n-n_{g_{3}}\right)} \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}, g_{3}} \widetilde{\varepsilon}_{g_{2}, g_{3}} \widetilde{\varepsilon}_{g_{2}^{\prime \prime}, g_{3}^{\prime}} \widetilde{\varepsilon}_{g_{2}^{\prime \prime}, g_{3}^{\prime}, g_{2}^{\prime}, g_{3}} \widetilde{\varepsilon}_{g_{2}^{\prime}, g_{3}^{\prime}, g_{1}^{\prime}}{\widetilde{g_{1}^{\prime \prime}, g_{2}^{\prime \prime}, g_{3}^{\prime \prime}}}^{\widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime}, g_{3}^{\prime \prime}} \widetilde{\varepsilon}_{g_{2}^{\prime}, g_{3}^{\prime}, g_{2}^{\prime \prime}, g_{3}^{\prime \prime}}}}{} .
\end{aligned}
$$

Since $g_{1}^{\prime} g_{1}^{\prime \prime}=\mathrm{id}, g_{2} g_{2}^{\prime \prime}=\mathrm{id}$ and $g_{3} g_{3}^{\prime}=\mathrm{id}$, we have $I_{g_{1}^{\prime}}^{c}=I_{g_{1}^{\prime \prime}}^{c}, I_{g_{2}}^{c}=I_{g_{2}^{\prime \prime}}^{c}$ and $I_{g_{3}}^{c}=I_{g_{3}^{\prime}}^{c}$. We also have that $\widetilde{\varepsilon}_{\bullet}^{2}=1$ for any expression \bullet. Hence, the problem is reduced to showing the following equation:

$$
\begin{aligned}
(-1)^{\left(n-n_{g_{2}}\right)\left(n-n_{g_{1}^{\prime}}\right)} & \frac{{\widetilde{g_{g_{1}}, g_{2}, g_{3}}}^{\widetilde{\varepsilon}_{g_{3}, g_{1}, g_{2}^{\prime}}} \widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime}, g_{1}^{\prime}, g_{2}} \widetilde{\varepsilon}_{g_{1}^{\prime}, g_{2}, g_{3}^{\prime \prime}}}{\widetilde{\varepsilon}_{g_{1}, g_{2}, g_{1}^{\prime},,_{2}^{\prime}} \widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime}, g_{3}^{\prime \prime}}} \\
& =(-1)^{\left(n-n_{g_{2}}\right)\left(n-n_{g_{3}}\right)} \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}, g_{3}} \widetilde{\varepsilon}_{g_{2}, g_{3}, g_{2}^{\prime},,_{3}^{\prime \prime}} \widetilde{\varepsilon}_{g_{2}^{\prime}, g_{3}, g_{1}} \widetilde{\varepsilon}_{g_{1}^{\prime}, g_{2}, g_{3}^{\prime \prime}}}{\widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime}, g_{3}^{\prime}} \tilde{\varepsilon}_{g_{2}^{\prime}, g_{3}, g_{2}, g_{3}^{\prime \prime}}}
\end{aligned}
$$

Recall also that $\widetilde{\varepsilon}_{\bullet}$ is the signature of a permutation σ_{\bullet} based on the expression \bullet (see Definition 6.2.12), and hence we get a suitable sign by interchanging two indices, for example, $\widetilde{\varepsilon}_{g_{3}, g_{1}^{\prime}, g_{2}^{\prime}}=$ $(-1)^{\left(n-n_{g_{1}^{\prime}}\right)\left(n-n_{g_{2}^{\prime}}\right)} \widetilde{\varepsilon}_{g_{3}, g_{2}^{\prime}, g_{1}^{\prime}}$. The LHS of the above equation is given by

$$
\begin{aligned}
&(-1)^{\left(n-n_{g_{2}}\right)\left(n-n_{g_{1}^{\prime}}^{\prime}\right.} \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}, g_{3}} \widetilde{\varepsilon}_{g_{3}, g_{1}^{\prime}, g_{2}} \widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime}, g_{1}^{\prime}, g_{2}} \widetilde{\varepsilon}_{g_{1}^{\prime}, g_{2}, g_{3}^{\prime \prime}}}{\widetilde{\varepsilon}_{g_{1}, g_{2}, g_{1}^{\prime}, g_{2}^{\prime}} \widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime}, g_{3}^{\prime \prime}}} \\
&=(-1)^{\left(n-n_{g_{2}}\right)\left(n-n_{g_{1}^{\prime}}\right)} \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}, g_{3}}(-1)^{\left(n-n_{g_{1}^{\prime}}\right)\left(n-n_{g_{2}^{\prime}}\right)} \widetilde{\varepsilon}_{g_{3}, g_{2}^{\prime}, g_{1}^{\prime}}{\widetilde{\varepsilon_{g_{1}^{\prime}}^{\prime}, g_{2}, g_{3}^{\prime \prime}}}^{\widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime}, g_{3}^{\prime \prime}}}}{} \\
& \cdot \frac{(-1)^{\left(n-n_{g_{2}}\right)\left(n-n_{g_{1}^{\prime}}\right)+\left(n-n_{g_{2}}\right)\left(n-n_{g_{2}^{\prime}}\right)+\left(n-n_{g_{2}^{\prime}}\right)\left(n-n_{g_{1}^{\prime}}\right)} \widetilde{\varepsilon}_{g_{1}, g_{2}, g_{1}^{\prime}, g_{2}^{\prime}}}{\widetilde{\varepsilon}_{g_{1}, g_{2}, g_{1}^{\prime}, g_{2}^{\prime}}} \\
&=(-1)^{\left(n-n_{g_{2}}\right)\left(n-n_{g_{2}^{\prime}}\right)} \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}, g_{3}} \widetilde{\varepsilon}_{g_{3}, g_{2}^{\prime}, g_{1}} \widetilde{\varepsilon}_{g_{1}^{\prime}, g_{2}, g_{3}^{\prime \prime}}}{\widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime}, g_{3}^{\prime \prime}}}
\end{aligned}
$$

while the RHS is given by

$$
\begin{aligned}
&\left.(-1)^{\left(n-n_{g_{2}}\right)\left(n-n_{g_{3}}\right)}\right) \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}, g_{3}} \widetilde{\varepsilon}_{g_{2}, g_{3}, g_{2}^{\prime}, g_{3}^{\prime}}}{\widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime},,_{3}^{\prime}} \widetilde{\varepsilon}_{g_{2}^{\prime}, g_{3}, g_{3}, g_{2}, g_{3}^{\prime \prime}}} \widetilde{\varepsilon}_{g_{3}} \widetilde{\varepsilon}_{g_{1}^{\prime}, g_{2}, g_{3}^{\prime \prime}} \\
&=(-1)^{\left(n-n_{g_{2}}\right)\left(n-n_{g_{3}}\right)} \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}, g_{3}}(-1)^{\left(n-n_{g_{2}^{\prime}}\right)\left(n-n_{g_{3}}\right)} \widetilde{\varepsilon}_{g_{3}, g_{2}, g_{1}^{\prime}} \widetilde{\widetilde{g}}_{g_{1}^{\prime}, g_{2}, g_{3}^{\prime \prime}}}{\widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime}, g_{3}^{\prime \prime}}} \\
& \cdot \frac{(-1)^{\left(n-n_{g_{2}}\right)\left(n-n_{g_{3}}\right)+\left(n-n_{\left.g_{2}\right)}\right)\left(n-n_{g_{2}^{\prime}}\right)+\left(n-n_{g_{2}^{\prime}}^{\prime}\right)\left(n-n_{g_{3}}\right)} \widetilde{\varepsilon}_{g_{2}^{\prime}, g_{3}, g_{2}, g_{3}^{\prime \prime}}}{\widetilde{\varepsilon}_{g_{2}^{\prime}, g_{3}, g_{2}, g_{3}^{\prime \prime}}} \\
&=(-1)^{\left(n-n_{g_{2}}\right)\left(n-n_{g_{2}^{\prime}}\right)} \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}, g_{3}} \widetilde{\varepsilon}_{g_{3}, g_{2}^{\prime}, g_{1}} \widetilde{\varepsilon}_{g_{1}^{\prime}, g_{2}, g_{3}^{\prime \prime}}}{\widetilde{\varepsilon}_{g_{1}, g_{2}^{\prime}, g_{3}^{\prime \prime}}}
\end{aligned}
$$

which coincides with the LHS.
We have finished the proof of the proposition.
Now it is possible to equip \mathcal{A}^{\prime} with the structure of a $\mathbb{Z} / 2 \mathbb{Z}$-graded \mathbb{C}-algebra.
Definition 6.2.37. Define a \mathbb{C}-bilinear map $\circ: \mathcal{A}^{\prime} \otimes_{\mathbb{C}} \mathcal{A}^{\prime} \longrightarrow \mathcal{A}^{\prime}$ by setting, for each $g, h \in G_{f}$ and $\phi(\mathbf{x}), \psi(\mathbf{x}) \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$,

$$
\left([\phi(\mathbf{x})] \bar{v}_{g}\right) \circ\left([\psi(\mathbf{x})] \bar{v}_{h}\right):=\bar{c}_{g, h}\left[\phi(\mathbf{x}) \psi(\mathbf{x}) H_{g, h}\right] \bar{v}_{g h}
$$

It is easy to see that the map \circ is well defined by Proposition 6.2.10 (iii).
Proposition 6.2.38. The map \circ equips \mathcal{A}^{\prime} with the structure of a $\mathbb{Z} / 2 \mathbb{Z}$-graded \mathbb{C}-algebra with the identity \bar{v}_{id}, which satisfies Axiom (ii).

Proof. The associativity of the product follows from Proposition 6.2.32. It is obvious by Proposition 6.2 .11 that $\mathcal{A}_{\bar{i}}^{\prime} \circ \mathcal{A}_{\bar{j}}^{\prime} \subset \mathcal{A}_{\bar{i}+j}^{\prime}$ for all $\bar{i}, \bar{j} \in \mathbb{Z} / 2 \mathbb{Z}$. It is also clear by the definition of the map \circ above that the natural surjective maps $\operatorname{Jac}(f) \longrightarrow \operatorname{Jac}\left(f^{g}\right), g \in G_{f}$, equip \mathcal{A}^{\prime} with the structure of a $\operatorname{Jac}(f)$-module, which coincides with the product map $\circ: \mathcal{A}_{\mathrm{id}}^{\prime} \otimes_{\mathbb{C}} \mathcal{A}_{g}^{\prime} \longrightarrow \mathcal{A}_{g}^{\prime}$.
Definition 6.2.39. Take a nowhere vanishing n-form $d x_{1} \wedge \cdots \wedge d x_{n}$ and set $\zeta:=\left[d x_{1} \wedge \cdots \wedge\right.$ $\left.d x_{n}\right] \in \Omega_{f}$. Define a \mathbb{C}-bilinear map $\vdash: \mathcal{A}^{\prime} \otimes_{\mathbb{C}} \Omega_{f, G_{f}}^{\prime} \longrightarrow \Omega_{f, G_{f}}^{\prime}$ by setting, for each $g, h \in G_{f}$ and $\phi(\mathbf{x}), \psi(\mathbf{x}) \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$,

$$
\left([\phi(\mathbf{x})] \bar{v}_{g}\right) \vdash\left([\psi(\mathbf{x})] \omega_{h}\right):=\frac{\bar{\alpha}_{g h} \bar{c}_{g, h}}{\bar{\alpha}_{h}}\left[\phi(\mathbf{x}) \psi(\mathbf{x}) H_{g, h}\right] \omega_{g h},
$$

where $\bar{\alpha}: G \longrightarrow \mathbb{C}^{*}, g \mapsto \bar{\alpha}_{g}$ is the map given by

$$
\begin{equation*}
\bar{\alpha}_{g}:=\mathbf{e}\left[\frac{1}{8}\left(n-n_{g}\right)\left(n-n_{g}+1\right)\right] . \tag{6.7}
\end{equation*}
$$

Remark 6.2.40. The map $\bar{\alpha}: G \longrightarrow \mathbb{C}^{*}$ satisfies $\bar{\alpha}_{\mathrm{id}}=1$ and

$$
\bar{\alpha}_{g} \bar{\alpha}_{g^{-1}}=(-1)^{\frac{1}{2}\left(n-n_{g}\right)\left(n-n_{g}+1\right)}, \quad g \in G_{f} .
$$

Proposition 6.2.41. The map $\vdash: \mathcal{A}^{\prime} \otimes_{\mathbb{C}} \Omega_{f, G_{f}}^{\prime} \longrightarrow \Omega_{f, G_{f}}^{\prime}$ satisfies Axiom (iii) in Definition 5.2.1.

Proof. The map \vdash induces an isomorphism $\vdash \zeta: \mathcal{A}^{\prime} \longrightarrow \Omega_{f, G_{f}}^{\prime}$ of $\mathbb{Z} / 2 \mathbb{Z}$-graded \mathbb{C}-modules:

$$
\vdash \zeta: \mathcal{A}_{g}^{\prime} \longrightarrow \Omega_{f, g}^{\prime}, \quad[\phi(\mathbf{x})] \bar{v}_{g} \mapsto[\phi(\mathbf{x})] \bar{v}_{g} \vdash \zeta=\bar{\alpha}_{g}[\phi(\mathbf{x})] \omega_{g}
$$

So we directly see Axiom (iiib). Then we can show for each $g, h \in G_{f}$ and $\phi(\mathbf{x}), \psi(\mathbf{x}) \in$ $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$

$$
\begin{aligned}
\left([\phi(\mathbf{x})] \bar{v}_{g}\right) \vdash\left([\psi(\mathbf{x})] \bar{v}_{h} \vdash \zeta\right) & =\left([\phi(\mathbf{x})] \bar{v}_{g}\right) \vdash\left(\bar{\alpha}_{h}[\psi(\mathbf{x})] \omega_{h}\right) \\
& =\bar{\alpha}_{g h} \bar{c}_{g, h}\left[\phi(\mathbf{x}) \psi(\mathbf{x}) H_{g, h}\right] \omega_{g h} \\
& =\bar{c}_{g, h}\left[\phi(\mathbf{x}) \psi(\mathbf{x}) H_{g, h}\right] \bar{v}_{g h} \vdash \zeta \\
& =\left(\left([\phi(\mathbf{x})] \bar{v}_{g}\right) \circ\left([\psi(\mathbf{x})] \bar{v}_{h}\right)\right) \vdash \zeta .
\end{aligned}
$$

So we have seen the \mathcal{A}^{\prime}-module structure of $\Omega_{f, G}^{\prime}$. Axiom (iiia) is clear from the definition.
On \mathcal{A}^{\prime} we have the action of $\varphi \in \operatorname{Aut}(f, G)$ induced by the isomorphism $\vdash \zeta: \mathcal{A}^{\prime} \longrightarrow \Omega_{f, G_{f}}^{\prime}$, which is denoted by φ^{*}. We also use the notation of Remark 5.1.8.

Proposition 6.2.42. Axiom (iv) in Definition 5.2.1 is satisfied by \mathcal{A}^{\prime}, namely, Axioms (iva) and (ivb) hold.

Proof. Let (g, h) be a spanning pair of elements of G_{f} with the factorization $\left(g_{1}, g_{2}, h_{1}, h_{2}\right)$ and $\varphi \in \operatorname{Aut}(f, G)$. For simplicity, set $g^{\prime}:=\varphi^{-1} g \varphi, h^{\prime}:=\varphi^{-1} h \varphi, g_{i}^{\prime}:=\varphi^{-1} g_{i} \varphi$ and $h_{i}^{\prime}:=\varphi^{-1} h_{i} \varphi$ for $i=1,2$. Note that the pair $\left(g^{\prime}, h^{\prime}\right)$ is a spanning pair with the factorization $\left(g_{1}^{\prime}, g_{2}^{\prime}, h_{1}^{\prime}, h_{2}^{\prime}\right)$ since φ induces a bi-regular map $\varphi: \operatorname{Fix}\left(g_{i}^{\prime}\right) \longrightarrow \operatorname{Fix}\left(g_{i}\right)$. It also follows that there exist $\lambda_{\varphi}, \lambda_{\varphi_{g_{i}}}, \lambda_{\varphi_{h_{i}}} \in \mathbb{C}^{*}, i=1,2$ such that

$$
\varphi^{*}\left(\omega_{\mathrm{id}}\right)=\lambda_{\varphi} \omega_{\mathrm{id}}, \quad \varphi^{*}\left(\omega_{g_{i}}\right)=\lambda_{\varphi_{g_{i}}} \omega_{g_{i}^{\prime}}, \varphi^{*}\left(\omega_{h_{i}}\right)=\lambda_{\varphi_{h_{i}}} \omega_{h_{i}^{\prime}}, \quad i=1,2,
$$

and that, by (6.7), $\bar{\alpha}_{g^{\prime}}=\bar{\alpha}_{g}, \bar{\alpha}_{h^{\prime}}=\bar{\alpha}_{h}, \bar{\alpha}_{g_{i}^{\prime}}=\bar{\alpha}_{g_{i}}$ and $\bar{\alpha}_{h_{i}^{\prime}}=\bar{\alpha}_{h_{i}}$ for $i=1,2$.
For each $\phi(\mathbf{x}) \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, we have

$$
\varphi^{*}\left([\phi(\mathbf{x})] \bar{v}_{g}\right)=\left[\varphi^{*} \phi(\mathbf{x})\right] \varphi^{*}\left(\bar{v}_{g}\right),
$$

since

$$
\begin{aligned}
& \varphi^{*}\left([\phi(\mathbf{x})] \bar{v}_{g}\right) \vdash \varphi^{*}(\zeta)=\varphi^{*}\left([\phi(\mathbf{x})] \bar{v}_{g} \vdash \zeta\right)=\varphi^{*}\left(\bar{\alpha}_{g}[\phi(\mathbf{x})] \omega_{g}\right) \\
& =\bar{\alpha}_{g}\left[\varphi^{*} \phi(\mathbf{x})\right] \varphi^{*}\left(\omega_{g}\right)=\frac{\bar{\alpha}_{g}}{\bar{\alpha}_{g^{\prime}}}\left(\left[\varphi^{*} \phi(\mathbf{x})\right] \varphi^{*}\left(\bar{v}_{g}\right)\right) \vdash \varphi^{*}(\zeta)=\left(\left[\varphi^{*} \phi(\mathbf{x})\right] \varphi^{*}\left(\bar{v}_{g}\right)\right) \vdash \varphi^{*}(\zeta) .
\end{aligned}
$$

Therefore, we only need to show that $\varphi^{*}\left(\bar{v}_{g}\right) \circ \varphi^{*}\left(\bar{v}_{h}\right)=\varphi^{*}\left(\bar{v}_{g} \circ \bar{v}_{h}\right)$.
It easily follows that

$$
\varphi^{*}\left(\bar{v}_{\mathrm{id}}\right)=\bar{v}_{\mathrm{id}}, \quad \varphi^{*}\left(\bar{v}_{g_{i}}\right)=\frac{\lambda_{\varphi_{g_{i}}}}{\lambda_{\varphi}} \bar{v}_{g_{i}^{\prime}}, \quad \varphi^{*}\left(\bar{v}_{h_{i}}\right)=\frac{\lambda_{\varphi_{h_{i}}}}{\lambda_{\varphi}} \bar{v}_{h_{i}^{\prime}}, i=1,2,
$$

since $\varphi^{*}\left(\bar{v}_{\text {id }}\right) \vdash \varphi^{*}(\zeta)=\varphi^{*}\left(\bar{v}_{\text {id }} \vdash \zeta\right)=\varphi^{*}(\zeta)$ and

$$
\begin{aligned}
& \left(\lambda_{\varphi_{g_{i}}} \bar{v}_{g_{i}^{\prime}}\right) \vdash \zeta=\lambda_{\varphi_{g_{i}}} \bar{\alpha}_{g_{i}^{\prime}} \omega_{g_{i}^{\prime}}=\varphi^{*}\left(\bar{\alpha}_{g_{i}} \omega_{g_{i}}\right)=\varphi^{*}\left(\bar{v}_{g_{i}}\right) \vdash \varphi^{*}(\zeta)=\left(\lambda_{\varphi} \varphi^{*}\left(\bar{v}_{g_{i}}\right)\right) \vdash \zeta, \\
& \left(\lambda_{\varphi_{h_{i}}} \bar{v}_{h_{i}^{\prime}}\right) \vdash \zeta=\lambda_{\varphi_{h_{i}}} \bar{\alpha}_{h_{i}^{\prime}} \omega_{h_{i}^{\prime}}=\varphi^{*}\left(\bar{\alpha}_{h_{i}} \omega_{h_{i}}\right)=\varphi^{*}\left(\bar{v}_{h_{i}}\right) \vdash \varphi^{*}(\zeta)=\left(\lambda_{\varphi} \varphi^{*}\left(\bar{v}_{h_{i}}\right)\right) \vdash \zeta .
\end{aligned}
$$

Lemma 6.2.43. We have

$$
\varphi^{*}\left(\omega_{g}\right)=\frac{\lambda_{\varphi_{g_{1}}} \lambda_{\varphi_{g_{2}}}}{\lambda_{\varphi}} \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}}}{\widetilde{\varepsilon}_{g_{1}^{\prime}, g_{2}^{\prime}}} \cdot \omega_{g^{\prime}}, \quad \varphi^{*}\left(\omega_{h}\right)=\frac{\lambda_{\varphi_{h_{1}}} \lambda_{\varphi_{h_{2}}}}{\lambda_{\varphi}} \cdot \frac{\widetilde{\varepsilon}_{h_{1}, h_{2}}}{\widetilde{\varepsilon}_{h_{1}^{\prime}, h_{2}^{\prime}}} \cdot \omega_{h^{\prime}},
$$

which implies

$$
\varphi^{*}\left(\bar{v}_{g}\right)=\frac{\lambda_{\varphi_{g_{1}}} \lambda_{\varphi_{g_{2}}}}{\lambda_{\varphi}^{2}} \cdot \frac{\widetilde{\varepsilon}_{g_{1}^{\prime}, g_{2}^{\prime}}}{\widetilde{\varepsilon}_{g_{1}, g_{2}}} \cdot \bar{v}_{g^{\prime}}, \quad \varphi^{*}\left(\bar{v}_{h}\right)=\frac{\lambda_{\varphi_{h_{1}}} \lambda_{\varphi_{h_{2}}}}{\lambda_{\varphi}^{2}} \cdot \frac{\widetilde{\varepsilon}_{h_{1}^{\prime}, h_{2}^{\prime}}}{\widetilde{\varepsilon}_{h_{1}, h_{2}}} \cdot \bar{v}_{h^{\prime}} .
$$

Proof. Let $\mathcal{T}_{\mathbb{C}^{n}}$ be the tangent sheaf on \mathbb{C}^{n}. For each $g^{\prime \prime} \in G_{f}$, define a poly-vector field $\widetilde{\theta}_{g^{\prime \prime}} \in \Gamma\left(\mathbb{C}^{n}, \wedge^{n-n_{g^{\prime \prime}}} \mathcal{T}_{\mathbb{C}^{n}}\right)$ by

$$
\widetilde{\theta}_{g^{\prime \prime}}:=\left\{\begin{array}{ll}
\frac{\partial}{\partial x_{j_{1}}} \wedge \cdots \wedge \frac{\partial}{\partial x_{j_{n-n_{g^{\prime \prime}}}}} & \text { if } I_{g^{\prime \prime}}^{c}=\left(j_{1}, \ldots, j_{n-n_{g^{\prime \prime}}}\right), j_{1}<\cdots<j_{n-n_{g^{\prime \prime}}} \\
1 & \text { if } I_{g^{\prime \prime}}^{c}=\emptyset
\end{array} .\right.
$$

Since we have $\varphi^{*}\left(\omega_{\mathrm{id}}\right)=\lambda_{\varphi} \omega_{\text {id }}$ and $\varphi^{*}\left(\omega_{g_{i}}\right)=\lambda_{\varphi_{g_{i}}} \omega_{g_{i}^{\prime}}$ for $i=1,2$, the poly-vector field $\widetilde{\theta}_{g_{i}}$ transforms under φ as

$$
\tilde{\theta}_{g_{i}} \mapsto \frac{\lambda_{\varphi_{g_{i}}}}{\lambda_{\varphi}} \cdot \frac{\widetilde{\varepsilon}_{g_{i}}}{\widetilde{\varepsilon}_{g_{i}^{\prime}}} \cdot \tilde{\theta}_{g_{i}^{\prime}}, \quad i=1,2,
$$

where $\widetilde{\varepsilon}_{g_{i}}$ is the signature of the permutation $I_{\mathrm{id}} \longrightarrow I_{g_{i}}^{c} \sqcup I_{g_{i}}$ and ${\widetilde{g_{g_{i}^{\prime}}}}$ is the signature of the permutation $I_{\mathrm{id}} \longrightarrow I_{g_{i}^{\prime}}^{c} \sqcup I_{g_{i}^{\prime}}$. Suppose that $\varphi^{*}\left(\omega_{g}\right)=\lambda_{\varphi_{g}} \omega_{g^{\prime}}$ for some $\lambda_{\varphi_{g}} \in \mathbb{C}^{*}$ and let $\widetilde{\varepsilon}_{g}$ be the signature of the permutation $I_{\mathrm{id}} \longrightarrow I_{g}^{c} \sqcup I_{g}$ and $\widetilde{\varepsilon}_{g^{\prime}}$ be signature of the permutation $I_{\mathrm{id}} \longrightarrow I_{g^{\prime}}^{c} \sqcup I_{g^{\prime}}$. Then, $\widetilde{\theta}_{g}$ transforms under φ as

$$
\widetilde{\theta}_{g} \mapsto \frac{\lambda_{\varphi_{g}}}{\lambda_{\varphi}} \cdot \frac{\widetilde{\varepsilon}_{g}}{\widetilde{\varepsilon}_{g^{\prime}}} \cdot \widetilde{\theta}_{g^{\prime}} .
$$

Note that $\widetilde{\theta}_{g}=\widetilde{\varepsilon}_{g_{1}, g_{2}} \widetilde{\theta}_{g_{1}} \wedge \widetilde{\theta}_{g_{2}}$ and $\widetilde{\theta}_{g^{\prime}}=\widetilde{\varepsilon}_{g_{1}^{\prime}, g_{2}} \widetilde{\theta}_{g_{1}^{\prime}} \wedge \widetilde{\theta}_{g_{2}^{\prime}}$. Hence, we have

$$
\frac{\lambda_{\varphi_{g}}}{\lambda_{\varphi}} \cdot \frac{\widetilde{\varepsilon}_{g} \widetilde{\varepsilon}_{g_{1}^{\prime}, g_{2}^{\prime}}}{\widetilde{\varepsilon}_{g^{\prime}} \widetilde{\varepsilon}_{g_{1}, g_{2}}}=\frac{\lambda_{\varphi_{g_{1}}} \lambda_{\varphi_{g_{2}}}}{\lambda_{\varphi}^{2}} \cdot \frac{\widetilde{\varepsilon}_{g_{1}} \widetilde{\varepsilon}_{g_{2}}}{\widetilde{\varepsilon}_{g_{1}^{\prime}} \widetilde{\varepsilon}_{g_{2}^{\prime}}^{\prime}} .
$$

Therefore, the statement is reduced to showing that

$$
\frac{\widetilde{\varepsilon}_{g_{1}} \widetilde{\varepsilon}_{g_{2}}}{\widetilde{\varepsilon}_{g}}=\frac{\widetilde{\varepsilon}_{g_{1}} \widetilde{\varepsilon}_{g_{2}^{\prime}}}{\widetilde{\varepsilon}_{g^{\prime}}} .
$$

However, by calculating the number of elements less than j in the sequences $I_{g_{1}}^{c}, I_{g_{2}}^{c}$ and I_{g}^{c} for each element j in $I_{g_{1}}^{c}$ or $I_{g_{2}}^{c}$, it turns out that the LHS of the above equation is equal to $(-1)^{\left(n-n_{g_{1}}\right)\left(n-n_{g_{2}}\right)}$. Similarly, the RHS is equal to $(-1)^{\left(n-n_{g_{1}^{\prime}}\right)\left(n-n_{g_{2}^{\prime}}\right)}$. They coincide since we have $n_{g_{1}}=n_{g_{1}^{\prime}}$ and $n_{g_{2}}=n_{g_{2}^{\prime}}$.

Lemma 6.2.44. We have

$$
\left[\varphi^{*} H_{g, h}\right]=\frac{\lambda_{\varphi_{g_{2}}}^{2}}{\lambda_{\varphi}^{2}}\left[H_{g^{\prime}, h^{\prime}}\right] .
$$

Proof. Recall Definition 6.2.4, where $H_{g, h}$ is defined as a non-zero constant multiple of $\operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)_{i, j \in I_{g, h}}$. Now, $I_{g, h}=I_{g_{2}}^{c}=I_{h_{2}}^{c}, I_{g^{\prime}, h^{\prime}}=I_{g_{2}^{\prime}}^{c}=I_{h_{2}^{\prime}}^{c}$. This is nothing but the transformation rule of the determinant under the automorphism φ.

Since $g_{2} h_{2}=\mathrm{id}$ and $g_{2}^{\prime} h_{2}^{\prime}=\mathrm{id}$ by definition of the factorizations,

$$
n_{g_{2}}=n_{h_{2}}=n_{h_{2}^{\prime}}=n_{g_{2}^{\prime}}, \quad \lambda_{\varphi_{g_{2}}}=\lambda_{\varphi_{h_{2}}},
$$

where we identify $\omega_{h_{2}}$ with $\omega_{g_{2}}$ under $\Omega_{f, h_{2}}=\Omega_{f, g_{2}}$ and $\omega_{h_{2}^{\prime}}$ with $\omega_{g_{2}^{\prime}}$ under $\Omega_{f, h_{2}^{\prime}}=\Omega_{f, g_{2}^{\prime}}$.

By the above lemma, it follows that

$$
\begin{aligned}
& \varphi^{*}\left(\bar{v}_{g}\right) \circ \varphi^{*}\left(\bar{v}_{h}\right) \\
& =\frac{\lambda_{\varphi_{g_{1}}} \lambda_{\varphi_{g_{2}}} \lambda_{\varphi_{h_{1}}} \lambda_{\varphi_{h_{2}}}}{\lambda_{\varphi}^{4}} \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}}}{\widetilde{\varepsilon}_{g_{1}^{\prime}, g_{2}^{\prime}}} \cdot \frac{\widetilde{\varepsilon}_{h_{1}, h_{2}}}{\widetilde{\varepsilon}_{h_{h^{\prime}}, h_{2}^{\prime}}} \cdot \bar{v}_{g^{\prime}} \circ \bar{v}_{h^{\prime}} \\
& =\frac{\lambda_{\varphi_{g_{1}}} \lambda_{\varphi_{g_{2}}} \lambda_{\varphi_{h_{1}}} \lambda_{\varphi_{h_{2}}}}{\lambda_{\varphi}^{4}} \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}}}{\widetilde{\varepsilon}_{g_{1}^{\prime}, g_{2}^{\prime}}^{\prime}} \cdot \frac{\widetilde{\varepsilon}_{h_{1}, h_{2}}}{\widetilde{\varepsilon}_{h_{1}^{\prime}, h_{2}^{\prime}}} \\
& \cdot(-1)^{\frac{1}{2}\left(n-n_{g_{2}^{\prime}}\right)\left(n-n_{g_{2}^{\prime}}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{2}^{\prime}\right)\right] \cdot \frac{\widetilde{\varepsilon}_{g_{1}^{\prime}, g_{2}} \widetilde{\varepsilon}_{h_{2}^{\prime}, h_{1}^{\prime}}}{\widetilde{\varepsilon}_{g_{1}^{\prime}, h_{1}^{\prime}}} \cdot\left[H_{g^{\prime}, h^{\prime}}\right] \bar{v}_{g^{\prime} h^{\prime}} \\
& =(-1)^{\frac{1}{2}\left(n-n_{g_{2}}\right)\left(n-n_{g_{2}}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{2}\right)\right] \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}} \widetilde{\varepsilon}_{h_{2}, h_{1}}}{\widetilde{\varepsilon}_{g_{1}, h_{1}}} \\
& \cdot\left(\frac{\lambda_{\varphi_{g_{2}}}^{2}}{\lambda_{\varphi}^{2}}\left[H_{g^{\prime}, h^{\prime}}\right]\right)\left(\frac{\lambda_{\varphi_{g_{1}}} \lambda_{\varphi_{h_{1}}}}{\lambda_{\varphi}^{2}} \cdot \frac{\widetilde{\varepsilon}_{g_{1}, h_{1}}}{\widetilde{\varepsilon}_{g_{1}^{\prime}, h_{1}^{\prime}}} \bar{v}_{g^{\prime} h^{\prime}}\right) \\
& =c_{g, h}\left[\varphi^{*} H_{g, h}\right] \varphi^{*}\left(\bar{v}_{g h}\right)=\varphi^{*}\left(\bar{v}_{g} \circ \bar{v}_{h}\right),
\end{aligned}
$$

where we also used that

$$
\widetilde{\varepsilon}_{h_{1}, h_{2}}=(-1)^{\left(n-n_{h_{1}}\right)\left(n-n_{h_{2}}\right)} \widetilde{\varepsilon}_{h_{2}, h_{1}}, \quad \widetilde{\varepsilon}_{h_{1}^{\prime}, h_{2}^{\prime}}=(-1)^{\left(n-n_{h_{1}^{\prime}}\right)\left(n-n_{h_{2}^{\prime}}\right)} \widetilde{\varepsilon}_{h_{2}^{\prime}, h_{1}^{\prime}} .
$$

Hence, we proved that the algebra structure o of \mathcal{A}^{\prime} is $\operatorname{Aut}(f, G)$-invariant.
The G-twisted $\mathbb{Z} / 2 \mathbb{Z}$-graded commutativity, Axiom (ivb), is a direct consequence of Proposition 6.2.31 since $H_{g, h}=H_{h, g}$ and $g^{*}\left(\bar{v}_{h}\right)=\mathbf{e}\left[-\operatorname{age}\left(g_{2}\right)\right] \cdot \bar{v}_{h}$ which follows from the calculation

$$
\begin{aligned}
& g^{*}\left(\bar{v}_{h}\right) \vdash \zeta=g^{*}\left(\bar{v}_{h}\right) \vdash\left(\mathbf{e}[-\operatorname{age}(g)] g^{*}(\zeta)\right)=\mathbf{e}[-\operatorname{age}(g)] \cdot g^{*}\left(\bar{\alpha}_{h} \omega_{h}\right) \\
& \quad=\mathbf{e}\left[-\operatorname{age}\left(g_{2}\right)\right] \cdot\left(\bar{\alpha}_{h} \omega_{h}\right)=\left(\mathbf{e}\left[-\operatorname{age}\left(g_{2}\right)\right] \cdot \bar{v}_{h}\right) \vdash \zeta .
\end{aligned}
$$

We have finished the proof of the proposition.

We show the invariance of the bilinear form $J_{f, G}$ with respect to the product structure of \mathcal{A}^{\prime}. We use the notation in Definition 6.2.4.

Proposition 6.2.45. For a spanning pair (g, h) of elements of G_{f}, we have

$$
\begin{align*}
J_{f, g h}\left(\bar{v}_{g}\right. & \left.\vdash \omega_{h},\left[\frac{1}{\mu_{f g \cap h}} \operatorname{hess}\left(f^{g \cap h}\right)\right] \omega_{(g h)^{-1}}\right) \\
& =(-1)^{\left(n-n_{g}\right)\left(n-n_{h}\right)} J_{f, h}\left(\omega_{h},\left(\left(h^{-1}\right)^{*} \bar{v}_{g}\right) \vdash\left(\left[\frac{1}{\mu_{f g \cap h}} \operatorname{hess}\left(f^{g \cap h}\right)\right] \omega_{(g h)^{-1}}\right)\right) . \tag{6.8}
\end{align*}
$$

As a consequence, the algebra \mathcal{A}^{\prime} satisfies Axiom (v) in Definition 5.2.1.

Proof. Let $\left(g_{1}, g_{2}, h_{1}, h_{2}\right)$ be the factorization of the spanning pair (g, h). The LHS of the equation (6.8) is calculated as

$$
\begin{aligned}
& J_{f, g h}\left(\bar{v}_{g} \vdash \omega_{h},\left[\frac{1}{\mu_{f g \cap h}} \operatorname{hess}\left(f^{g \cap h}\right)\right] \omega_{(g h)^{-1}}\right) \\
= & \frac{1}{\bar{\alpha}_{h}} \cdot J_{f, g h}\left(\left(\bar{v}_{g} \circ \bar{v}_{h}\right) \vdash \zeta,\left[\frac{1}{\mu_{f g n h}} \operatorname{hess}\left(f^{g \cap h}\right)\right] \omega_{(g h)^{-1}}\right) \\
= & \frac{\bar{\alpha}_{g h} \bar{c}_{g, h}}{\bar{\alpha}_{h}} \cdot J_{f, g h}\left(\omega_{g h},\left[\frac{1}{\mu_{f g \cap h}} \operatorname{hess}\left(f^{g \cap h}\right) H_{g, h}\right] \omega_{(g h)^{-1}}\right) \\
= & \frac{\bar{\alpha}_{g h}}{\bar{\alpha}_{h}} \cdot(-1)^{\frac{1}{2}\left(n-n_{g_{2}}\right)\left(n-n_{g_{2}}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{2}\right)\right] \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}} \widetilde{\varepsilon}_{h_{2}, h_{1}}}{\widetilde{\varepsilon}_{g_{1}, h_{1}}} \\
& \cdot(-1)^{n-n_{g h}} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}(g h)\right] \cdot|G| \\
= & \frac{\bar{\alpha}_{g h}}{\bar{\alpha}_{h}} \cdot(-1)^{\frac{1}{2}\left(n-n_{g_{2}}\right)\left(n-n_{g_{2}}-1\right)+\left(n-n_{g h}\right)} \\
& \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{1}\right)-\frac{1}{2} \operatorname{age}\left(h_{1}\right)-\frac{1}{2} \operatorname{age}\left(g_{2}\right)\right] \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}} \widetilde{\varepsilon}_{h_{2}, h_{1}}}{\widetilde{\varepsilon}_{g_{1}, h_{1}}} \cdot|G| .
\end{aligned}
$$

On the other hand, the RHS of the equation (6.8) can be calculated by having in mind that $\left(h^{-1}\right)^{*} \bar{v}_{g}=\mathbf{e}\left[-\right.$ age $\left.\left(h_{2}^{-1}\right)\right] \bar{v}_{g}$ by Equation (5.2), since only h_{2}^{-1} acts on variables not fixed by g :

$$
\begin{aligned}
& (-1)^{\left(n-n_{g}\right)\left(n-n_{h}\right)} \cdot J_{f, h}\left(\omega_{h},\left(\left(h^{-1}\right)^{*} \bar{v}_{g}\right) \vdash\left(\left[\frac{1}{\mu_{f g \cap h}} \operatorname{hess}\left(f^{g \cap h}\right)\right] \omega_{(g h)^{-1}}\right)\right) \\
= & \frac{1}{\overline{\alpha_{(g h)^{-1}}}}(-1)^{\left(n-n_{g}\right)\left(n-n_{h}\right)} \cdot \mathbf{e}\left[-\operatorname{age}\left(h_{2}^{-1}\right)\right] \\
& \cdot J_{f, h}\left(\omega_{h},\left(\left[\frac{1}{\mu_{f g \cap h}} \operatorname{hess}\left(f^{g \cap h}\right)\right] \bar{v}_{g} \circ \bar{v}_{(g h)^{-1}}\right) \vdash \zeta\right) \\
= & \frac{\bar{\alpha}_{h^{-1}} c_{g,(g h)^{-1}}}{\bar{\alpha}_{(g h)^{-1}}}(-1)^{\left(n-n_{g}\right)\left(n-n_{h}\right)} \cdot \mathbf{e}\left[-\operatorname{age}\left(g_{2}\right)\right] \cdot J_{f, h}\left(\omega_{h},\left[\frac{1}{\mu_{f g \cap h}} \operatorname{hess}\left(f^{g \cap h}\right)\right] \vdash \omega_{h^{-1}}\right) \\
= & \frac{\bar{\alpha}_{h^{-1}}}{\bar{\alpha}_{(g h)^{-1}}}(-1)^{\left(n-n_{g}\right)\left(n-n_{h}\right)+\frac{1}{2}\left(n-n_{\left.g_{1}\right)}\right)\left(n-n_{\left.g_{1}-1\right)}\right.} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{1}\right)-\operatorname{age}\left(g_{2}\right)\right] \cdot \frac{\widetilde{\varepsilon}_{g_{2}, g_{1}} \widetilde{\varepsilon}_{g_{1}^{-1}, h_{1}}}{\widetilde{\varepsilon}_{g_{2}, h_{1}}} \\
& \cdot(-1)^{n-n_{h}} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}(h)\right] \cdot|G| \\
= & \frac{\bar{\alpha}_{h^{-1}}}{\bar{\alpha}_{(g h)^{-1}}}(-1)^{\left(n-n_{g}+1\right)\left(n-n_{h}\right)+\frac{1}{2}\left(n-n_{g_{1}}\right)\left(n-n_{g_{1}}-1\right)-\left(n-n_{g_{2}}\right)+\left(n-n_{\left.g_{1}\right)}\right)\left(n-n_{g_{2}}\right)} \\
& \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{1}\right)-\frac{1}{2} \operatorname{age}\left(h_{1}\right)-\frac{1}{2} \operatorname{age}\left(g_{2}\right)\right] \cdot \frac{\widetilde{\varepsilon}_{g_{1}, g_{2}} \widetilde{\varepsilon}_{h_{2}, h_{1}}}{\widetilde{\varepsilon}_{g_{1}, h_{1}}} \cdot|G|,
\end{aligned}
$$

where we used that $\widetilde{\varepsilon}_{g_{2}^{-1}, h_{1}}^{-1}=\widetilde{\varepsilon}_{g_{2}^{-1}, h_{1}}=\widetilde{\varepsilon}_{h_{2}, h_{1}}$ and $\widetilde{\varepsilon}_{g_{1}^{-1}, h_{1}}=\widetilde{\varepsilon}_{g_{1}, h_{1}}=\widetilde{\varepsilon}_{g_{1}, h_{1}}^{-1}$. We have $\bar{\alpha}_{g h} \bar{\alpha}_{(g h)^{-1}}=$ $(-1)^{\frac{1}{2}\left(n-n_{g h}\right)\left(n-n_{g h}+1\right)}$ and $\bar{\alpha}_{h} \bar{\alpha}_{h^{-1}}=(-1)^{\frac{1}{2}\left(n-n_{h}\right)\left(n-n_{h}+1\right)}$ by Remark 6.2.40. Hence, it follows
from a direct calculation by the use of

$$
\begin{aligned}
& n-n_{g}=\left(n-n_{g_{1}}\right)+\left(n-n_{g_{2}}\right), \quad n-n_{h}=\left(n-n_{h_{1}}\right)+\left(n-n_{h_{2}}\right), \\
& n-n_{g h}=n-n_{g_{1} g_{2}}=\left(n-n_{g_{1}}\right)+\left(n-n_{h_{1}}\right), \quad n_{g_{2}}=n_{h_{2}},
\end{aligned}
$$

(cf. Proposition 6.2.11) that

$$
\begin{aligned}
& \frac{1}{2}\left(n-n_{g h}\right)\left(n-n_{g h}+1\right)+\frac{1}{2}\left(n-n_{g_{2}}\right)\left(n-n_{g_{2}}-1\right)+\left(n-n_{g h}\right) \\
& \quad-\frac{1}{2}\left(n-n_{h}\right)\left(n-n_{h}+1\right)+\left(n-n_{g}+1\right)\left(n-n_{h}\right) \\
& \quad+\frac{1}{2}\left(n-n_{g_{1}}\right)\left(n-n_{g_{1}}-1\right)-\left(n-n_{g_{2}}\right)+\left(n-n_{g_{1}}\right)\left(n-n_{g_{2}}\right) \\
& \equiv 0(\bmod 2),
\end{aligned}
$$

which gives the equation (6.8)
For $X \in \mathcal{A}_{g}^{\prime}, \omega \in \Omega_{f, h}^{\prime}, \omega^{\prime} \in \Omega_{f, G}^{\prime}, J_{f, G}\left(X \vdash \omega, \omega^{\prime}\right)$ is non-zero only if $\omega^{\prime} \in \Omega_{f,(g h)^{-1}}^{\prime}$ and the pair (g, h) is a spanning pair. Note that $I_{g} \cup I_{h} \cup I_{g h}=I_{\mathrm{id}}$ if and only if $I_{h} \cup I_{(g h)^{-1}} \cup I_{g^{-1}}=I_{\mathrm{id}}$, which means the pair (g, h) is a spanning pair if and only if the pair $\left(h,(g h)^{-1}\right)$ is so. Therefore, $J_{f, G}\left(X \vdash \omega, \omega^{\prime}\right)$ is non-zero if and only if $J_{f, G}\left(\omega,\left(h^{-1}\right)^{*} X \vdash \omega^{\prime}\right)$ is so. It follows that Axiom (v) can be reduced to the equation (6.8).

So we have shown all axioms and with Proposition 5.4.9 we have finished the proof of Theorem 6.2.1.

Example 6.2.46. Let $f=x_{1}^{3}+x_{2}^{3} x_{3}+x_{3}^{3}$ and $G=\left\langle\left(\mathbf{e}\left[\frac{1}{3}\right], \mathbf{e}\left[\frac{2}{3}\right], 1\right)\right\rangle$ be as in Example 4.1.4. With Example 4.3.4 we see

$$
\operatorname{Jac}(f, G) \cong\left\langle v_{\mathrm{id}},\left[x_{3}\right],\left[x_{3}\right]^{2},\left[x_{1} x_{2}\right],\left[x_{1} x_{2}\right]\left[x_{3}\right],\left[x_{1} x_{2}\right]\left[x_{3}\right]^{2}\right\rangle \oplus\left\langle v_{g},\left[x_{3}\right] v_{g}\right\rangle \oplus\left\langle v_{g^{-1}},\left[x_{3}\right] v_{g^{-1}}\right\rangle
$$

with the following relations

$$
\left[x_{1} x_{2}\right]^{2}=0,\left[x_{3}\right]^{3}=0, v_{g}^{2}=0, v_{g^{-1}}^{2}=0, v_{g} \circ v_{g^{-1}}=9\left[x_{1} x_{2} x_{3}\right],
$$

see the normal multiplication in $\operatorname{Jac}(f)^{G}=\operatorname{Jac}(f$, id $)$, Proposition 6.2.15, Example 6.2.7 and observe that

$$
\begin{aligned}
\bar{c}_{g, g^{-1}} & =(-1)^{\frac{1}{2}\left(n-n_{g}\right)\left(n-n_{g}-1\right)} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}(g)\right] \cdot \frac{\widetilde{\varepsilon}_{\mathrm{id}, g} \widetilde{g}_{g-1, \mathrm{id}}}{\widetilde{\varepsilon}_{\mathrm{id}, \mathrm{id}}} \\
& =(-1)^{\frac{1}{2}(3-1)(3-1-1)} \cdot \mathbf{e}\left[-\frac{1}{2} 1\right] \cdot \frac{1 \cdot 1}{1}=(-1)(-1)=1 .
\end{aligned}
$$

6.3 Orbifold Jacobian Algebras for ADE Singularities

Definition 6.3.1. The classification of invertible polynomials in three variables giving ADE singularities and the subgroups of their maximal diagonal symmetries preserving the holomorphic volume form is given in Table 6.1 (see also [ET13a, Sec. 8 Table 3]).

Type	$f\left(x_{1}, x_{2}, x_{3}\right)$	$G_{f}^{\text {SL }}$	Singularity Type
I	$x_{1}^{2 k+1}+x_{2}^{2}+x_{3}^{2}, \quad k \geq 1$	$\left\langle\frac{1}{2}(0,1,1)\right\rangle$	$A_{2 k}$
	$x_{1}^{2 k}+x_{2}^{2}+x_{3}^{2}, \quad k \geq 1$	$\left\langle\frac{1}{2}(0,1,1), \frac{1}{2}(1,0,1)\right\rangle$	$A_{2 k-1}$
	$x_{1}^{3}+x_{2}^{3}+x_{3}^{2}$	$\left\langle\frac{1}{3}(1,2,0)\right\rangle$	D_{4}
	$x_{1}^{4}+x_{2}^{3}+x_{3}^{2}$	$\left\langle\frac{1}{2}(1,0,1)\right\rangle$	E_{6}
	$x_{1}^{5}+x_{2}^{3}+x_{3}^{2}$	$\{1\}$	E_{8}
II	$x_{1}^{2}+x_{2}^{2}+x_{2} x_{3}^{2 k}, \quad k \geq 1$	$\left\langle\frac{1}{2}(1,0,1)\right\rangle$	$A_{4 k-1}$
	$x_{1}^{2}+x_{2}^{2}+x_{2} x_{3}^{2 k+1}, \quad k \geq 1$	$\left\langle\frac{1}{2}(0,1,1)\right\rangle$	$A_{4 k+1}$
	$x_{1}^{2}+x_{2}^{k-1}+x_{2} x_{3}^{2}, \quad k \geq 4$	$\left\langle\frac{1}{2}(1,0,1)\right\rangle$	D_{k}
	$x_{1}^{3}+x_{2}^{2}+x_{2} x_{3}^{2} \quad\{1\}$	E_{6}	
	$x_{1}^{2}+x_{2}^{3}+x_{2} x_{3}^{3}$	$\{1\}$	E_{7}
III	$x_{1}^{2}+x_{3} x_{2}^{2}+x_{2} x_{3}^{k+1}, \quad k \geq 1$	$\{1\}$	$D_{2 k+2}$
IV	$x_{1}^{k}+x_{1} x_{2}+x_{2} x_{3}^{l}, \quad k, l \geq 2$	$\{1\}$	$A_{k l-1}$
	$x_{1}^{2}+x_{1} x_{2}^{k}+x_{2} x_{3}^{2}, \quad k \geq 2$	$\{1\}$	$D_{2 k+1}$
V	$x_{1} x_{2}+x_{2}^{k} x_{3}+x_{3}^{l} x_{1}, \quad k, l \geq 1$	$\{1\}$	$A_{k l}$

Table 6.1: Classification of invertible polynomials giving ADE singularities and the groups of their diagonal symmetries preserving the holomorphic volume form.

Remark 6.3.2. As it is explained in Section 8 in [ET13a], one can describe explicitly the geometry of vanishing cycles for the holomorphic map $\widehat{f}: \widehat{\mathbb{C}^{3} / G} \longrightarrow \mathbb{C}$. Here, $\widehat{\mathbb{C}^{3} / G}$ is a crepant resolution of \mathbb{C}^{3} / G and \widehat{f} is the convolution of the resolution map $\widehat{\mathbb{C}^{3} / G} \longrightarrow \mathbb{C}^{3} / G$ and the induced one $f: \mathbb{C}^{3} / G \longrightarrow \mathbb{C}$. Note that $\widehat{\mathbb{C}^{3} / G}$ is covered by some charts all isomorphic to \mathbb{C}^{3}.

Remark 6.3.3. When G respects one coordinate we only need to look at the resolutions of \mathbb{C}^{2} given in [BK91]. For $G \cong \mathbb{Z} / 2 \mathbb{Z}$ acting $\left(x_{i}, x_{j}\right) \mapsto\left(-x_{i},-x_{j}\right)$, we have $\mathbb{C}^{3} / G \cong \mathbb{C} \times\left\{z^{2}=\right.$ $x y\} \subset \mathbb{C}^{4}$ by $x=x_{i}^{2}, y=x_{j}^{2}, z=x_{i} x_{j}$ and we have the two charts $\mathbb{C}^{3} \rightarrow \mathbb{C}^{4}$:

$$
(t, u, v) \mapsto\left(t, u, u v^{2}, u v\right) \text { and }(t, u, v) \mapsto\left(t, u^{2} v, v, u v\right)
$$

For $G \cong \mathbb{Z} / 3 \mathbb{Z}=\langle g\rangle$ acting by $g^{*} x_{i}=\mathbf{e}\left[\frac{1}{3}\right] x_{i}, g^{*} x_{j}=\mathbf{e}\left[\frac{2}{3}\right] x_{j}$, we have $\mathbb{C}^{3} / G \cong \mathbb{C} \times\left\{z^{3}=\right.$ $x y\} \subset \mathbb{C}^{4}$ by $x=x_{i}^{3}, y=x_{j}^{3}, z=x_{i} x_{j}$ and we have the three charts $\mathbb{C}^{3} \rightarrow \mathbb{C}^{4}$:

$$
(t, u, v) \mapsto\left(t, u, u^{2} v^{3}, u v\right),(t, u, v) \mapsto\left(t, u^{2} v, u v^{2}, u v\right) \text { and }(t, u, v) \mapsto\left(t, u^{3} v^{2}, v, u v\right)
$$

Example 6.3.4. We will calculate the restriction of \widehat{f} on each chart based on the classification in Table 6.1.

1. For the pair

$$
f:=x_{1}^{k+1}+x_{2}^{2}+x_{3}^{2}(k \geq 1), \quad G:=\left\langle\frac{1}{2}(0,1,1)\right\rangle
$$

we have in the two charts

$$
\widehat{f}(t, u, v)=t^{k+1}+u+u v^{2} \text { and } \widehat{f}(t, u, v)=t^{k+1}+u^{2} v+v .
$$

Critical points of \widehat{f} are on the intersection of the two charts.
2. For the pair

$$
f:=x_{1}^{2 k}+x_{2}^{2}+x_{3}^{2}(k \geq 1), \quad G:=\left\langle\frac{1}{2}(1,0,1)\right\rangle
$$

we have in the two charts

$$
\widehat{f}(t, u, v)=t^{2}+u^{k}+u v^{2} \text { and } \widehat{f}(t, u, v)=t^{2}+u^{2 k} v^{k}+v .
$$

Critical points of \widehat{f} are on the first chart.
3. See Example 6.3.5.
4. For the pair

$$
f:=x_{1}^{3}+x_{2}^{3}+x_{3}^{2}, \quad G:=\left\langle\frac{1}{3}(1,2,0)\right\rangle,
$$

we have in the three charts

$$
\widehat{f}(t, u, v)=t^{2}+u+u^{2} v^{3}, \widehat{f}(t, u, v)=t^{2}+u^{2} v+u v^{2} \text { and } \widehat{f}(t, u, v)=t^{2}+u^{3} v^{2}+v
$$

Critical points of \widehat{f} are on the second chart.
5. For the pair

$$
f:=x_{1}^{4}+x_{2}^{3}+x_{3}^{2}, \quad G:=\left\langle\frac{1}{2}(1,0,1)\right\rangle
$$

we have in the two charts

$$
\widehat{f}(t, u, v)=t^{3}+u^{2}+u v^{2} \text { and } \widehat{f}(t, u, v)=t^{3}+u^{4} v^{2}+v .
$$

Critical points of \widehat{f} are on the first chart.
6. For the pair

$$
f:=x_{1}^{2}+x_{2}^{2}+x_{2} x_{3}^{2 k}(k \geq 1), \quad G:=\left\langle\frac{1}{2}(1,0,1)\right\rangle
$$

we have in the two charts

$$
\widehat{f}(t, u, v)=t^{2}+t u^{k} v^{2 k}+u \text { and } \widehat{f}(t, u, v)=t^{2}+t v^{k}+v u^{2} .
$$

Critical points of \widehat{f} are on the second chart.
7. For the pair

$$
f:=x_{1}^{2}+x_{2}^{2}+x_{2} x_{3}^{2 k+1}(k \geq 1), \quad G:=\left\langle\frac{1}{2}(0,1,1)\right\rangle
$$

we have in the two charts

$$
\widehat{f}(t, u, v)=t^{2}+u+u^{k+1} v^{2 k+1} \text { and } \widehat{f}(t, u, v)=t^{2}+v u^{2}+u v^{k+1} .
$$

Critical points of \widehat{f} are on the second chart.
8. For the pair

$$
f:=x_{1}^{2}+x_{2}^{k-1}+x_{2} x_{3}^{2}(k \geq 4), \quad G:=\left\langle\frac{1}{2}(1,0,1)\right\rangle
$$

we have in the two charts

$$
\widehat{f}(t, u, v)=t^{k-1}+t u v^{2}+u \text { and } \widehat{f}(t, u, v)=t^{k-1}+t v+v u^{2} .
$$

Critical points of \widehat{f} are on the second chart.
Example 6.3.5. For $k \geq 1$, set

$$
f:=x_{1}^{2 k}+x_{2}^{2}+x_{3}^{2}(k \geq 1), \quad G:=\left\langle\frac{1}{2}(0,1,1), \frac{1}{2}(1,0,1)\right\rangle .
$$

Here, since the resolution is not unique, we take A-Hilb \mathbb{C}^{3} of [CR02] where $A=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
We have $\mathbb{C}^{3} / G \cong\left\{z^{2}=w x y\right\} \subset \mathbb{C}^{4}$ by $w=x_{1}^{2}, x=x_{2}^{2}, y=x_{3}^{2}, z=x_{1} x_{2} x_{3}$ and we have four charts $\mathbb{C}^{3} \rightarrow \mathbb{C}^{4}$:

$$
\begin{aligned}
& (t, u, v) \mapsto\left(t, u, t u v^{2}, t u v\right),(t, u, v) \mapsto\left(t, t u^{2} v, v, t u v\right), \\
& (t, u, v) \mapsto\left(t^{2} u v, u, v, t u v\right) \text { and }(t, u, v) \mapsto(t u, u v, t v, t u v)
\end{aligned}
$$

Then we have in the four charts

$$
\begin{aligned}
& \widehat{f}(t, u, v)=t^{k}+u+t u v^{2}, \widehat{f}(t, u, v)=t^{k}+t u^{2} v+v \\
& \widehat{f}(t, u, v)=t^{2 k} u^{k} v^{k}+u+v \text { and } \widehat{f}(t, u, v)=t^{k} u^{k}+u v+t v .
\end{aligned}
$$

Critical points of \widehat{f} are on the fourth chart.
Remark 6.3.6. To summarize, we observed that critical points of the map \widehat{f} are contained in one chart isomorphic to \mathbb{C}^{3}. The restriction of \widehat{f} to the chart is given by \bar{f} defined in Table 6.2.

Concerning the geometry of vanishing cycles, the pair (f, G) is equivalent to the pair $(\bar{f},\{\mathrm{id}\})$. Then, it is quite natural to expect that the orbifold $\operatorname{Jacobian}$ algebra $\operatorname{Jac}(f, G)$ of (f, G) is isomorphic to the one $\operatorname{Jac}(\bar{f},\{\mathrm{id}\})$ of the pair $(\bar{f},\{\mathrm{id}\})$, the usual Jacobian algebra $\operatorname{Jac}(\bar{f})$ of \bar{f}, which is the following theorem.

	$f\left(x_{1}, x_{2}, x_{3}\right)$	G	$\bar{f}\left(y_{1}, y_{2}, y_{3}\right)$
1.	$x_{1}^{k+1}+x_{2}^{2}+x_{3}^{2}, \quad k \geq 1$	$\left\langle\frac{1}{2}(0,1,1)\right\rangle$	$y_{1}^{k+1}+y_{2}+y_{2} y_{3}^{2}$
2.	$x_{1}^{2 k}+x_{2}^{2}+x_{3}^{2}, \quad k \geq 1$	$\left\langle\frac{1}{2}(1,0,1)\right\rangle$	$y_{1}^{2}+y_{2}^{k}+y_{2} y_{3}^{2}$
3.	$x_{1}^{2 k}+x_{2}^{2}+x_{3}^{2}, \quad k \geq 1$	$\left\langle\frac{1}{2}(0,1,1), \frac{1}{2}(1,0,1)\right\rangle$	$y_{1}^{k} y_{2}^{k}+y_{1} y_{3}+y_{2} y_{3}$
4.	$x_{1}^{3}+x_{2}^{3}+x_{3}^{2}$	$\left\langle\frac{1}{3}(1,2,0)\right\rangle$	$y_{1}^{2}+y_{3} y_{2}^{2}+y_{2} y_{3}^{2}$
5.	$x_{1}^{4}+x_{2}^{3}+x_{3}^{2}$	$\left\langle\frac{1}{2}(1,0,1)\right\rangle$	$y_{1}^{3}+y_{2}^{2}+y_{2} y_{3}^{2}$
6.	$x_{1}^{2}+x_{2}^{2}+x_{2} x_{3}^{2 k}, \quad k \geq 1$	$\left\langle\frac{1}{2}(1,0,1)\right\rangle$	$y_{1}^{2}+y_{1} y_{2}^{k}+y_{2} y_{3}^{2}$
7.	$x_{1}^{2}+x_{2}^{2}+x_{2} x_{3}^{2 k+1}, \quad k \geq 1$	$\left\langle\frac{1}{2}(0,1,1)\right\rangle$	$y_{1}^{2}+y_{3} y_{2}^{2}+y_{2} y_{3}^{k+1}$
8.	$x_{1}^{2}+x_{2}^{k-1}+x_{2} x_{3}^{2}, \quad k \geq 4$	$\left\langle\frac{1}{2}(1,0,1)\right\rangle$	$y_{1}^{k-1}+y_{1} y_{2}+y_{2} y_{3}^{2}$

Table 6.2: $(f, G) \cong(\bar{f})$

Theorem 6.3.7. There is an isomorphism of Frobenius algebras

$$
\operatorname{Jac}(f, G) \cong \operatorname{Jac}(\bar{f})
$$

for all f and \bar{f} in Table 6.2.
Proof. We shall give a proof of this theorem based on the classification in Table 6.2. Let the notation be as in the sections before. For each $g \in G$ let K_{g} be the maximal subgroup of G fixing $\operatorname{Fix}(g)$. Let $v_{g} \in \operatorname{Jac}^{\prime}(f, G)$ be the elements with $v_{g} \vdash \zeta=\alpha_{g} \omega_{g}$, cf. Definition 5.4.5. We will now define $e_{g} \in \operatorname{Jac}(f, G)$ by $e_{g}:=\frac{\alpha_{g}^{-1}}{\left|K_{g}\right|} v_{g}$, which is a more natural element than v_{g}. 1. For $k \geq 1$, set

$$
\begin{aligned}
& f:=x_{1}^{k+1}+x_{2}^{2}+x_{3}^{2}, \quad G:=\langle g\rangle, g:=\frac{1}{2}(0,1,1), \\
& \bar{f}:=y_{1}^{k+1}+y_{2}+y_{2} y_{3}^{2} .
\end{aligned}
$$

The Jacobian algebra $\operatorname{Jac}(f)$ can be calculated as

$$
\operatorname{Jac}(f)=\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left((k+1) x_{1}^{k}, 2 x_{2}, 2 x_{3}\right) \cong\left\langle 1, x_{1}, \ldots, x_{1}^{k-1}\right\rangle_{\mathbb{C}}
$$

so $\mu_{f}=k$. With hess $(f)=k(k+1) \cdot 2 \cdot 2 \cdot x_{1}^{k-1}$ we can calculate the bilinear form J_{f} on Ω_{f}

$$
J_{f}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{1}^{k-1} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right)=\frac{1}{4(k+1)}
$$

As a \mathbb{C}-module, the orbifold Jacobian algebra $\operatorname{Jac}(f, G)$ is of the following form:

$$
\operatorname{Jac}(f, G) \cong\left\langle e_{\mathrm{id}},\left[x_{1}\right], \ldots,\left[x_{1}\right]^{k-1}\right\rangle_{\mathbb{C}} \oplus\left\langle e_{g},\left[x_{1}\right] e_{g}, \ldots,\left[x_{1}\right]^{k-1} e_{g}\right\rangle_{\mathbb{C}}
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(f, G)=2 k$. The bilinear form $J_{f, G}$ on $\Omega_{f, G}$ can be calculated as

$$
\begin{aligned}
J_{f, \text { id }}\left(e_{\mathrm{id}} \vdash \zeta,\left[x_{1}\right]^{k-1} \vdash \zeta\right) & =J_{f, \text { id }}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{1}^{k-1} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right) \\
& =2 \cdot \frac{1}{4(k+1)}=\frac{1}{2(k+1)}
\end{aligned}
$$

and with $\mu_{f^{g}}=k$, $\operatorname{hess}\left(f^{g}\right)=(k+1) k x_{1}^{k-1}$

$$
\begin{aligned}
J_{f, g}\left(e_{g} \vdash \zeta,\left[x_{1}\right]^{k-1} e_{g} \vdash \zeta\right) & =\frac{1}{4} J_{f, g}\left(\left[d x_{1}\right],\left[x_{1}^{k-1} d x_{1}\right]\right) \\
& =\frac{1}{4} \cdot(-1) \cdot 2 \cdot \frac{1}{k+1}=-\frac{1}{2(k+1)},
\end{aligned}
$$

which imply the following relations in the orbifold $\operatorname{Jacobian} \operatorname{algebra} \operatorname{Jac}(f, G)$:

$$
\left[x_{1}\right]^{k}=0, \quad e_{g}^{2}=-e_{\mathrm{id}} .
$$

The first relation is clear from the relation in $\operatorname{Jac}(f, \operatorname{id})=\operatorname{Jac}(f)^{G}$. The second one we get by having Axiom (v) in mind. We see that $e_{g} \circ\left[x_{1}\right]^{k-1} e_{g}=-\left[x_{1}\right]^{k-1}$ from the calculation of the orbifold residue pairings. And since $e_{g} \circ\left[x_{1}\right]^{k-1} e_{g}=\left[x_{1}\right]^{k-1} \circ e_{g}^{2}$, we see the relation $e_{g}^{2}=-e_{\mathrm{id}}$ with Remark 5.4.6 in mind. In similar way we always get the relations for the other calculations.

On the other hand, the Jacobian algebra $\operatorname{Jac}(\bar{f})$ is given by

$$
\begin{aligned}
\operatorname{Jac}(\bar{f}) & =\mathbb{C}\left[y_{1}, y_{2}, y_{3}\right] /\left((k+1) y_{1}^{k}, 1+y_{3}^{2}, 2 y_{2} y_{3}\right) \\
& \cong \mathbb{C}\left[y_{1}, y_{3}\right] /\left(y_{1}^{k}, y_{3}^{2}+1\right) .
\end{aligned}
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(\bar{f})=2 k$. Therefore, we have an algebra isomorphism

$$
\mathrm{Jac}(\bar{f}) \xrightarrow{\cong} \mathrm{Jac}(f, G), \quad y_{1} \mapsto\left[x_{1}\right], \quad y_{3} \mapsto e_{g},
$$

which is, moreover, an isomorphism of Frobenius algebras since we have $\operatorname{hess}(\bar{f})=-(k+1) k \cdot 2 \cdot 2 y_{1}^{k-1} y_{3}^{2}=2(k+1) \cdot 2 k y_{1}^{k-1}$ and so

$$
J_{\bar{f}}\left(\left[d y_{1} \wedge d y_{2} \wedge d y_{3}\right],\left[y_{1}^{k-1} d y_{1} \wedge d y_{2} \wedge d y_{3}\right]\right)=\frac{1}{2(k+1)}
$$

2. For $k \geq 1$, set

$$
\begin{aligned}
& f:=x_{1}^{2 k}+x_{2}^{2}+x_{3}^{2}, \quad G:=\langle g\rangle, g:=\frac{1}{2}(1,0,1), \\
& \bar{f}:=y_{1}^{2}+y_{2}^{k}+y_{2} y_{3}^{2} .
\end{aligned}
$$

The Jacobian algebra $\operatorname{Jac}(f)$ can be calculated as

$$
\operatorname{Jac}(f)=\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(2 k x_{1}^{2 k-1}, 2 x_{2}, 2 x_{3}\right) \cong\left\langle 1, x_{1}, \ldots, x_{1}^{2 k-2}\right\rangle_{\mathbb{C}}
$$

so $\mu_{f}=2 k-1$. With hess $(f)=2 k(2 k-1) \cdot 2 \cdot 2 \cdot x_{1}^{2 k-2}=8 k(2 k-1) x_{1}^{2 k-2}$ we can calculate the bilinear form J_{f} on Ω_{f}

$$
J_{f}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{1}^{2 k-2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right)=\frac{1}{8 k}
$$

As a \mathbb{C}-module, the orbifold Jacobian algebra $\operatorname{Jac}(f, G)$ is of the following form:

$$
\operatorname{Jac}(f, G) \cong\left\langle e_{\mathrm{id}},\left[x_{1}^{2}\right], \ldots,\left[x_{1}^{2}\right]^{k-1}\right\rangle_{\mathbb{C}} \oplus\left\langle e_{g}\right\rangle_{\mathbb{C}}
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(f, G)=k+1$. The bilinear form $J_{f, G}$ on $\Omega_{f, G}$ can be calculated as

$$
\begin{aligned}
J_{f, \text { id }}\left(e_{\mathrm{id}} \vdash \zeta,\left[x_{1}^{2}\right]^{k-1} \vdash \zeta\right) & =J_{f, \text { id }}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{1}^{2 k-2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right) \\
& =2 \cdot \frac{1}{8 k}=\frac{1}{4 k},
\end{aligned}
$$

and with $\mu_{f^{g}}=1, \operatorname{hess}\left(f^{g}\right)=2$

$$
\begin{aligned}
J_{f, g}\left(e_{g} \vdash \zeta, e_{g} \vdash \zeta\right) & =\frac{1}{4} J_{f, g}\left(\left[d x_{2}\right],\left[d x_{2}\right]\right) \\
& =\frac{1}{4} \cdot(-1) \cdot 2 \cdot \frac{1}{2}=-\frac{1}{4},
\end{aligned}
$$

which imply the following relations in the orbifold Jacobian algebra $\operatorname{Jac}(f, G)$:

$$
\left[x_{1}^{2}\right] \circ e_{g}=0, \quad e_{g}^{2}=-k\left[x_{1}^{2}\right]^{k-1} .
$$

Here the first relation is clear since x_{1} is not fixed by g. The second one is again as in the last calculation directly seen by the residue pairings.

On the other hand, the Jacobian algebra $\operatorname{Jac}(\bar{f})$ is given by

$$
\begin{aligned}
\operatorname{Jac}(\bar{f}) & =\mathbb{C}\left[y_{1}, y_{2}, y_{3}\right] /\left(2 y_{1}, k y_{2}^{k-1}+y_{3}^{2}, 2 y_{2} y_{3}\right) \\
& \cong \mathbb{C}\left[y_{2}, y_{3}\right] /\left(k y_{2}^{k-1}+y_{3}^{2}, y_{2} y_{3}\right) .
\end{aligned}
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(\bar{f})=k+1$. Therefore, we have an algebra isomorphism

$$
\operatorname{Jac}(\bar{f}) \xrightarrow{\cong} \operatorname{Jac}(f, G), \quad y_{2} \mapsto\left[x_{1}^{2}\right], \quad y_{3} \mapsto e_{g},
$$

which is, moreover, an isomorphism of Frobenius algebras since we have
$\operatorname{hess}(\bar{f})=2 \cdot k(k-1) \cdot 2 y_{2}^{k-1}-2 \cdot 2 \cdot 2 y_{3}^{2}=4 k(k-1) y_{2}^{k-1}+8 \cdot k y_{2}^{k-1}=4 k(k-1+2) y_{2}^{k-1} \in \operatorname{Jac}(\bar{f})$ and so

$$
J_{\bar{f}}\left(\left[d y_{1} \wedge d y_{2} \wedge d y_{3}\right],\left[y_{2}^{k-1} d y_{1} \wedge d y_{2} \wedge d y_{3}\right]\right)=\frac{1}{4 k}
$$

3. For $k \geq 1$, set

$$
\begin{aligned}
& f:=x_{1}^{2 k}+x_{2}^{2}+x_{3}^{2}, \quad G:=\langle g, h\rangle, g:=\frac{1}{2}(0,1,1), h:=\frac{1}{2}(1,0,1), \\
& \bar{f}:=y_{1}^{k} y_{2}^{k}+y_{1} y_{3}+y_{2} y_{3} .
\end{aligned}
$$

The Jacobian algebra $\operatorname{Jac}(f)$ can be calculated as

$$
\operatorname{Jac}(f)=\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(2 k x_{1}^{2 k-1}, 2 x_{2}, 2 x_{3}\right) \cong\left\langle 1, x_{1}, \ldots, x_{1}^{2 k-2}\right\rangle_{\mathbb{C}}
$$

so $\mu_{f}=2 k-1$. With hess $(f)=2 k(2 k-1) \cdot 2 \cdot 2 \cdot x_{1}^{2 k-2}=8 k(2 k-1) x_{1}^{2 k-2}$ we can calculate the bilinear form J_{f} on Ω_{f}

$$
J_{f}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{1}^{2 k-2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right)=\frac{1}{8 k}
$$

As a \mathbb{C}-module, the orbifold Jacobian algebra $\operatorname{Jac}(f, G)$ is of the following form:

$$
\operatorname{Jac}(f, G) \cong\left\langle e_{\mathrm{id}},\left[x_{1}^{2}\right], \ldots,\left[x_{1}^{2}\right]^{k-1}\right\rangle_{\mathbb{C}} \oplus\left\langle e_{g}^{\prime},\left[x_{1}^{2}\right] e_{g}^{\prime}, \ldots,\left[x_{1}^{2}\right]^{k-2} e_{g}^{\prime}\right\rangle_{\mathbb{C}}
$$

where $e_{g}^{\prime}:=\left[x_{1}\right] e_{g}$ since $\operatorname{Jac}(f, h)=\{0\}$ and $\operatorname{Jac}(f, g h)=\{0\}$. Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(f, G)=$ $2 k-1$. The bilinear form $J_{f, G}$ on $\Omega_{f, G}$ can be calculated as

$$
\begin{aligned}
J_{f, \text { id }}\left(e_{\text {id }} \vdash \zeta,\left[x_{1}^{2}\right]^{k-1} \vdash \zeta\right) & =J_{f, \text { id }}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{1}^{2 k-2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right) \\
& =4 \cdot \frac{1}{8 k}=\frac{1}{2 k},
\end{aligned}
$$

and with $\mu_{f^{g}}=2 k-1, \operatorname{hess}\left(f^{g}\right)=2 k(2 k-1) x_{1}^{2 k-2}$

$$
\begin{aligned}
J_{f, g}\left(e_{g}^{\prime} \vdash \zeta,\left[x_{1}^{2}\right]^{k-2} e_{g}^{\prime} \vdash \zeta\right) & =\frac{1}{4} J_{f, g}\left(\left[x_{1} d x_{1}\right],\left[x_{1}^{2 k-3} d x_{1}\right]\right) \\
& =\frac{1}{4} \cdot(-1) \cdot 4 \cdot \frac{1}{2 k}=-\frac{1}{2 k},
\end{aligned}
$$

which imply the following relations in the orbifold Jacobian algebra $\operatorname{Jac}(f, G)$:

$$
\left[x_{1}^{2}\right]^{k-1} \circ e_{g}^{\prime}=0, \quad\left(e_{g}^{\prime}\right)^{2}=-\left[x_{1}^{2}\right] .
$$

On the other hand, the Jacobian algebra $\operatorname{Jac}(\bar{f})$ is given by

$$
\operatorname{Jac}(\bar{f})=\mathbb{C}\left[y_{1}, y_{2}, y_{3}\right] /\left(k y_{1}^{k-1} y_{2}^{k}+y_{3}, k y_{1}^{k} y_{2}^{k-1}+y_{3}, y_{1}+y_{2}\right)
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(\bar{f})=2 k-1$. Therefore, we have an algebra isomorphism

$$
\operatorname{Jac}(\bar{f}) \xrightarrow{\cong} \operatorname{Jac}(f, G), \quad y_{1} y_{2} \mapsto\left[x_{1}^{2}\right], y_{1} \mapsto e_{g}^{\prime},
$$

which is, moreover, an isomorphism of Frobenius algebras since we have
$\operatorname{hess}(\bar{f})=k^{2} y_{1}^{k-1} y_{2}^{k-1}+k^{2} y_{1}^{k-1} y_{2}^{k-1}-k(k-1) y_{1}^{k-2} y_{2}^{k}-k(k-1) y_{1}^{k} y_{2}^{k-2}$
$=2 k^{2} y_{1}^{k-1} y_{2}^{k-1}-k(k-1) y_{1}^{k-2} y_{2}^{k-2}\left(y_{2}^{2}+y_{1}^{2}\right)=2 k^{2} y_{1}^{k-1} y_{2}^{k-1}-k(k-1) y_{1}^{k-2} y_{2}^{k-2}\left(\left(y_{2}+y_{1}\right)^{2}-2 y_{1} y_{2}\right)$
$=\left(2 k^{2}+2 k(k-1)\right) y_{1}^{k-1} y_{2}^{k-1}=2 k(2 k-1) y_{1}^{k-1} y_{2}^{k-1} \in \operatorname{Jac}(\bar{f})$ and so

$$
J_{\bar{f}}\left(\left[d y_{1} \wedge d y_{2} \wedge d y_{3}\right],\left[y_{1}^{k-1} y_{2}^{k-1} d y_{1} \wedge d y_{2} \wedge d y_{3}\right]\right)=\frac{1}{2 k}
$$

4. Set

$$
\begin{aligned}
& f:=x_{1}^{3}+x_{2}^{3}+x_{3}^{2}, \quad G:=\langle g\rangle, g:=\frac{1}{3}(1,2,0), \\
& \bar{f}:=y_{1}^{2}+y_{3} y_{2}^{2}+y_{2} y_{3}^{2} .
\end{aligned}
$$

The Jacobian algebra $\operatorname{Jac}(f)$ can be calculated as

$$
\operatorname{Jac}(f) \cong \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(3 x_{1}^{2}, 3 x_{2}^{2}, 2 x_{3}\right) \cong\left\langle 1, x_{1}, x_{2}, x_{1} x_{2}\right\rangle_{\mathbb{C}}
$$

so $\mu_{f}=4$. With hess $(f)=6 \cdot 6 \cdot 2 \cdot x_{1} x_{2}=4 \cdot 18 x_{1} x_{2}$ we can calculate the bilinear form J_{f} on Ω_{f}

$$
J_{f}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{1} x_{2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right)=\frac{1}{18}
$$

As a \mathbb{C}-module, the orbifold Jacobian algebra $\operatorname{Jac}(f, G)$ is of the following form:

$$
\operatorname{Jac}(f, G) \cong\left\langle e_{\mathrm{id}},\left[x_{1} x_{2}\right]\right\rangle_{\mathbb{C}} \oplus\left\langle e_{g}, e_{g^{-1}}\right\rangle_{\mathbb{C}}
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(f, G)=4$. The bilinear form $J_{f, G}$ on $\Omega_{f, G}$ can be calculated as

$$
\begin{aligned}
J_{f, \text { id }}\left(e_{\mathrm{id}} \vdash \zeta,\left[x_{1} x_{2}\right] \vdash \zeta\right) & =J_{f, \text { id }}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{1} x_{2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right) \\
& =3 \cdot \frac{1}{18}=\frac{1}{6},
\end{aligned}
$$

and with $\mu_{f g}=1, \operatorname{hess}\left(f^{g}\right)=2$

$$
\begin{aligned}
J_{f, g}\left(e_{g} \vdash \zeta, e_{g^{-1}} \vdash \zeta\right) & =\frac{1}{9} J_{f, g}\left(\left[d x_{3}\right],\left[d x_{3}\right]\right) \\
& =\frac{1}{9} \cdot(-1) \cdot 3 \cdot \frac{1}{2}=-\frac{1}{6},
\end{aligned}
$$

which imply the following relations in the orbifold $\operatorname{Jacobian} \operatorname{algebra} \operatorname{Jac}(f, G)$:

$$
e_{g}^{2}=0, \quad e_{g^{-1}}^{2}=0, \quad e_{g} \circ e_{g^{-1}}=-\left[x_{1} x_{2}\right] .
$$

The first two relations are proven in Proposition 6.2.15.

On the other hand, the Jacobian algebra $\operatorname{Jac}(\bar{f})$ is given by

$$
\begin{aligned}
\operatorname{Jac}(\bar{f}) & =\mathbb{C}\left[y_{1}, y_{2}, y_{3}\right] /\left(2 y_{1}, 2 y_{3} y_{2}+y_{3}^{2}, y_{2}^{2}+2 y_{2} y_{3}\right) \\
& \cong \mathbb{C}\left[y_{2}, y_{3}\right] /\left(2 y_{3} y_{2}+y_{3}^{2}, y_{2}^{2}+2 y_{2} y_{3}\right) .
\end{aligned}
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(\bar{f})=4$. Therefore, we have an algebra isomorphism

$$
\begin{aligned}
& \operatorname{Jac}(\bar{f}) \xrightarrow{\cong} \operatorname{Jac}(f, G), \\
& y_{2} \mapsto \mathbf{e}\left[\frac{1}{3}\right] e_{g}+\mathbf{e}\left[\frac{2}{3}\right] e_{g^{-1}}, \quad y_{3} \mapsto \mathbf{e}\left[\frac{2}{3}\right] e_{g}+\mathbf{e}\left[\frac{1}{3}\right] e_{g^{-1}},
\end{aligned}
$$

which is, moreover, an isomorphism of Frobenius algebras since we have
$\operatorname{hess}(\bar{f})=2\left(2 \cdot 2 \cdot y_{2} y_{3}-\left(2 y_{2}+2 y_{3}\right)^{2}\right)=2\left(4 y_{2} y_{3}-4 y_{2}^{2}-8 y_{2} y_{3}-4 y_{3}^{2}\right)=2\left(-4 y_{2} y_{3}+8 y_{2} y_{3}+8 y_{2} y_{3}\right)$ $=4 \cdot 6 y_{2} y_{3} \in \operatorname{Jac}(\bar{f})$ and so

$$
J_{\bar{f}}\left(\left[d y_{1} \wedge d y_{2} \wedge d y_{3}\right],\left[y_{2} y_{3} d y_{1} \wedge d y_{2} \wedge d y_{3}\right]\right)=\frac{1}{6}
$$

5. Set

$$
\begin{aligned}
& f:=x_{1}^{4}+x_{2}^{3}+x_{3}^{2}, \quad G:=\langle g\rangle, g:=\frac{1}{2}(1,0,1), \\
& \bar{f}:=y_{1}^{3}+y_{2}^{2}+y_{2} y_{3}^{2} .
\end{aligned}
$$

The Jacobian algebra $\operatorname{Jac}(f)$ can be calculated as

$$
\operatorname{Jac}(f)=\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(4 x_{1}^{3}, 3 x_{2}^{2}, 2 x_{3}\right) \cong\left\langle 1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{1}^{2} x_{2}\right\rangle_{\mathbb{C}}
$$

so $\mu_{f}=6$. With hess $(f)=12 \cdot 6 \cdot 2 \cdot x_{1}^{2} x_{2}=24 \cdot 6 x_{1}^{2} x_{2}$ we can calculate the bilinear form J_{f} on Ω_{f}

$$
J_{f}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{1}^{2} x_{2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right)=\frac{1}{24}
$$

As a \mathbb{C}-module, the orbifold Jacobian algebra $\operatorname{Jac}(f, G)$ is of the following form:

$$
\operatorname{Jac}(f, G) \cong\left\langle e_{\mathrm{id}},\left[x_{2}\right],\left[x_{1}^{2}\right],\left[x_{1}^{2}\right]\left[x_{2}\right]\right\rangle_{\mathbb{C}} \oplus\left\langle e_{g},\left[x_{2}\right] e_{g}\right\rangle_{\mathbb{C}}
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(f, G)=6$. The bilinear form $J_{f, G}$ on $\Omega_{f, G}$ can be calculated as

$$
\begin{aligned}
J_{f, \text { id }}\left(e_{\text {id }} \vdash \zeta,\left[x_{1}^{2}\right]\left[x_{2}\right] \vdash \zeta\right) & =J_{f, \text { id }}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{1}^{2} x_{2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right) \\
& =2 \cdot \frac{1}{24}=\frac{1}{12},
\end{aligned}
$$

and with $\mu_{f^{g}}=2, \operatorname{hess}\left(f^{g}\right)=3 \cdot 2 x_{2}$

$$
\begin{aligned}
J_{f, g}\left(e_{g} \vdash \zeta,\left[x_{2}\right] e_{g} \vdash \zeta\right) & =\frac{1}{4} J_{f, g}\left(\left[d x_{2}\right],\left[x_{2} d x_{2}\right]\right) \\
& =\frac{1}{4} \cdot(-1) \cdot 2 \cdot \frac{1}{3}=-\frac{1}{6},
\end{aligned}
$$

which imply the following relations in the orbifold $\operatorname{Jacobian} \operatorname{algebra} \operatorname{Jac}(f, G)$:

$$
\left[x_{2}\right]^{2}=0, \quad\left[x_{1}^{2}\right] \circ e_{g}=0, \quad e_{g}^{2}=-2\left[x_{1}^{2}\right] .
$$

On the other hand, the Jacobian algebra $\operatorname{Jac}(\bar{f})$ is given by

$$
\operatorname{Jac}(\bar{f})=\mathbb{C}\left[y_{1}, y_{2}, y_{3}\right] /\left(3 y_{1}^{2}, 2 y_{2}+y_{3}^{2}, 2 y_{2} y_{3}\right) .
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(\bar{f})=6$. Therefore, we have an algebra isomorphism

$$
\operatorname{Jac}(\bar{f}) \xrightarrow{\cong} \operatorname{Jac}(f, G), \quad y_{1} \mapsto\left[x_{2}\right], \quad y_{2} \mapsto\left[x_{1}^{2}\right], y_{3} \mapsto e_{g},
$$

which is, moreover, an isomorphism of Frobenius algebras since we have $\operatorname{hess}(\bar{f})=6 \cdot 2 \cdot 2 \cdot y_{1} y_{2}-6 \cdot 2 \cdot 2 \cdot y_{1} y_{3}^{2}=24 y_{1} y_{2}+24 \cdot 2 y_{1} y_{2}=6 \cdot 12 y_{1} y_{2} \in \operatorname{Jac}(\bar{f})$ and so

$$
J_{\bar{f}}\left(\left[d y_{1} \wedge d y_{2} \wedge d y_{3}\right],\left[y_{1} y_{2} d y_{1} \wedge d y_{2} \wedge d y_{3}\right]\right)=\frac{1}{12} .
$$

6. For $k \geq 1$, set

$$
\begin{aligned}
& f:=x_{1}^{2}+x_{2}^{2}+x_{2} x_{3}^{2 k}, \quad G:=\langle g\rangle, g:=\frac{1}{2}(1,0,1), \\
& \bar{f}:=y_{1}^{2}+y_{1} y_{2}^{k}+y_{2} y_{3}^{2} .
\end{aligned}
$$

The Jacobian algebra $\operatorname{Jac}(f)$ can be calculated as

$$
\begin{aligned}
\operatorname{Jac}(f) & =\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(2 x_{1}, 2 x_{2}+x_{3}^{2 k}, 2 k x_{2} x_{3}^{2 k-1}\right) \\
& \cong\left\langle 1, x_{3}, \ldots, x_{3}^{2 k-1}, x_{2}, x_{2} x_{3}, \ldots, x_{2} x_{3}^{2 k-2}\right\rangle_{\mathbb{C}}
\end{aligned}
$$

so $\mu_{f}=4 k-1$. With hess $(f)=2 \cdot 2 \cdot 2 k(2 k-1) x_{2} x_{3}^{2 k-2}-2 \cdot 2 k \cdot 2 k \cdot x_{3}^{4 k-2}$
$=8 k(2 k-1) x_{2} x_{3}^{2 k-2}+8 k^{2} \cdot 2 x_{2} x_{3}^{2 k-2}=8 k(4 k-1) x_{2} x_{3}^{2 k-2} \in \operatorname{Jac}(f)$ we can calculate the bilinear form J_{f} on Ω_{f}

$$
J_{f}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{2} x_{3}^{2 k-2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right)=\frac{1}{8 k} .
$$

As a \mathbb{C}-module, the orbifold Jacobian algebra $\operatorname{Jac}(f, G)$ is of the following form:

$$
\operatorname{Jac}(f, G) \cong\left\langle e_{\mathrm{id}},\left[x_{3}^{2}\right], \ldots,\left[x_{3}^{2}\right]^{k-1},\left[x_{2}\right],\left[x_{2}\right]\left[x_{3}^{2}\right], \ldots,\left[x_{2}\right]\left[x_{3}^{2}\right]^{k-1}\right\rangle_{\mathbb{C}} \oplus\left\langle e_{g}\right\rangle_{\mathbb{C}}
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(f, G)=2 k+1$. The bilinear form $J_{f, G}$ on $\Omega_{f, G}$ can be calculated as

$$
\begin{aligned}
J_{f, \text { id }}\left(e_{\mathrm{id}} \vdash \zeta,\left[x_{2}\right]\left[x_{3}^{2}\right]^{k-1} \vdash \zeta\right) & =J_{f, \text { id }}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{2} x_{3}^{2 k-2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right) \\
& =2 \cdot \frac{1}{8 k}=\frac{1}{4 k},
\end{aligned}
$$

and with $\mu_{f^{g}}=1, \operatorname{hess}\left(f^{g}\right)=2$

$$
\begin{aligned}
J_{f, g}\left(e_{g} \vdash \zeta, e_{g} \vdash \zeta\right) & =\frac{1}{4} J_{f, g}\left(\left[d x_{2}\right],\left[d x_{2}\right]\right) \\
& =\frac{1}{4} \cdot(-1) \cdot 2 \cdot \frac{1}{2}=-\frac{1}{4},
\end{aligned}
$$

which imply the following relations in the orbifold Jacobian algebra $\operatorname{Jac}(f, G)$:

$$
\left[x_{3}^{2}\right]^{k}=-2\left[x_{2}\right], \quad\left[x_{3}^{2}\right] \circ e_{g}=0, \quad e_{g}^{2}=-k\left[x_{2}\right]\left[x_{3}^{2}\right]^{k-1} .
$$

On the other hand, the Jacobian algebra $\operatorname{Jac}(\bar{f})$ is given by

$$
\operatorname{Jac}(\bar{f})=\mathbb{C}\left[y_{1}, y_{2}, y_{3}\right] /\left(2 y_{1}+y_{2}^{k}, k y_{1} y_{2}^{k-1}+y_{3}^{2}, 2 y_{2} y_{3}\right) .
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(\bar{f})=2 k+1$. Therefore, we have an algebra isomorphism

$$
\mathrm{Jac}(\bar{f}) \xrightarrow{\cong} \operatorname{Jac}(f, G), \quad y_{1} \mapsto\left[x_{2}\right], \quad y_{2} \mapsto\left[x_{3}^{2}\right], \quad y_{3} \mapsto e_{g},
$$

which is, moreover, an isomorphism of Frobenius algebras since we have $\operatorname{hess}(\bar{f})=2 \cdot k(k-1) \cdot 2 \cdot y_{1} y_{2}^{k-1}-2 \cdot 2 \cdot 2 \cdot y_{3}^{2}-2 \cdot k \cdot k y_{2}^{2 k-1}$ $=4 k(k-1) y_{1} y_{2}^{k-1}+8 \cdot k y_{1} y_{2}^{k-1}+2 k^{2} \cdot 2 y_{1} y_{2}^{k-1}=4 k(2 k+1) y_{1} y_{2}^{k-1} \in \operatorname{Jac}(\bar{f})$ and so

$$
J_{\bar{f}}\left(\left[d y_{1} \wedge d y_{2} \wedge d y_{3}\right],\left[y_{1} y_{2}^{k-1} d y_{1} \wedge d y_{2} \wedge d y_{3}\right]\right)=\frac{1}{4 k}
$$

7. For $k \geq 1$, set

$$
\begin{aligned}
& f:=x_{1}^{2}+x_{2}^{2}+x_{2} x_{3}^{2 k+1}, \quad G:=\langle g\rangle, g:=\frac{1}{2}(0,1,1), \\
& \bar{f}:=y_{1}^{2}+y_{3} y_{2}^{2}+y_{2} y_{3}^{k+1} .
\end{aligned}
$$

The Jacobian algebra $\operatorname{Jac}(f)$ can be calculated as

$$
\begin{aligned}
\operatorname{Jac}(f) & =\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(2 x_{1}, 2 x_{2}+x_{3}^{2 k+1},(2 k+1) x_{2} x_{3}^{2 k}\right) \\
& \cong\left\langle 1, x_{3}, \ldots, x_{3}^{2 k}, x_{2}, x_{2} x_{3}, \ldots, x_{2} x_{3}^{2 k-1}\right\rangle_{\mathbb{C}}
\end{aligned}
$$

so $\mu_{f}=4 k+1$. With hess $(f)=2 \cdot 2 \cdot(2 k+1) 2 k x_{2} x_{3}^{2 k-1}-2 \cdot(2 k+1) \cdot(2 k+1) \cdot x_{3}^{4 k}$ $=8 k(2 k+1) x_{2} x_{3}^{2 k-1}+2(2 k+1)^{2} \cdot 2 x_{2} x_{3}^{2 k-1}=4(2 k+1)(4 k+1) x_{2} x_{3}^{2 k-1} \in \operatorname{Jac}(f)$ we can calculate the bilinear form J_{f} on Ω_{f}

$$
J_{f}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{2} x_{3}^{2 k-1} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right)=\frac{1}{4(2 k+1)}
$$

As a \mathbb{C}-module, the orbifold Jacobian algebra $\operatorname{Jac}(f, G)$ is of the following form:

$$
\operatorname{Jac}(f, G) \cong\left\langle e_{\text {id }},\left[x_{3}^{2}\right], \ldots,\left[x_{3}^{2}\right]^{k},\left[x_{2} x_{3}\right],\left[x_{2} x_{3}\right]\left[x_{3}^{2}\right], \ldots,\left[x_{2} x_{3}\right]\left[x_{3}^{2}\right]^{k-1}\right\rangle_{\mathbb{C}} \oplus\left\langle e_{g}\right\rangle_{\mathbb{C}}
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(f, G)=2(k+1)$. The bilinear form $J_{f, G}$ on $\Omega_{f, G}$ can be calculated as

$$
\begin{aligned}
J_{f, \text { id }}\left(e_{\mathrm{id}} \vdash \zeta,\left[x_{2} x_{3}\right]\left[x_{3}^{2}\right]^{k-1} \vdash \zeta\right) & =J_{f, \text { id }}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{2} x_{3}^{2 k-1} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right) \\
& =2 \cdot \frac{1}{4(2 k+1)}=\frac{1}{2(2 k+1)},
\end{aligned}
$$

and with $\mu_{f g}=1, \operatorname{hess}\left(f^{g}\right)=2$

$$
\begin{aligned}
J_{f, g}\left(e_{g} \vdash \zeta, e_{g} \vdash \zeta\right) & =\frac{1}{4} J_{f, g}\left(\left[d x_{1}\right],\left[d x_{1}\right]\right) \\
& =\frac{1}{4} \cdot(-1) \cdot 2 \cdot \frac{1}{2}=-\frac{1}{4},
\end{aligned}
$$

which imply the following relations in the orbifold $\operatorname{Jacobian} \operatorname{algebra} \operatorname{Jac}(f, G)$:

$$
\left[x_{3}^{2}\right]^{k+1}=-2\left[x_{2} x_{3}\right], \quad\left[x_{3}^{2}\right] \circ e_{g}=0, \quad e_{g}^{2}=-\frac{2 k+1}{2}\left[x_{2} x_{3}\right]\left[x_{3}^{2}\right]^{k-1} .
$$

On the other hand, the Jacobian algebra $\operatorname{Jac}(\bar{f})$ is given by

$$
\begin{aligned}
\operatorname{Jac}(\bar{f}) & =\mathbb{C}\left[y_{1}, y_{2}, y_{3}\right] /\left(2 y_{1}, 2 y_{3} y_{2}+y_{3}^{k+1}, y_{2}^{2}+(k+1) y_{2} y_{3}^{k}\right) \\
& \cong \mathbb{C}\left[y_{2}, y_{3}\right] /\left(2 y_{3} y_{2}+y_{3}^{k+1}, y_{2}^{2}+(k+1) y_{2} y_{3}^{k}\right) .
\end{aligned}
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(\bar{f})=2(k+1)$. Therefore, we have an algebra isomorphism

$$
\operatorname{Jac}(\bar{f}) \xrightarrow{\cong} \operatorname{Jac}(f, G), \quad y_{2} \mapsto e_{g}-\frac{1}{2}\left[x_{3}^{2}\right]^{k}, y_{3} \mapsto\left[x_{3}^{2}\right],
$$

which is, moreover, an isomorphism of Frobenius algebras since we have
$\operatorname{hess}(\bar{f})=2 \cdot 2 \cdot(k+1) k \cdot y_{2} y_{3}^{k}-2 \cdot\left(2 y_{2}+(k+1) y_{3}^{k}\right)^{2}$
$=4 k(k+1) y_{2} y_{3}^{k}-2\left(4 y_{2}^{2}+4(k+1) y_{2} y_{3}^{k}+(k+1)^{2} y_{3}^{2 k}\right)$
$=4 k(k+1) y_{2} y_{3}^{k}-2\left(-4(k+1) y_{2} y_{3}^{k}+4(k+1) y_{2} y_{3}^{k}-(k+1)^{2} \cdot 2 y_{2} y_{3}^{k}\right)$
$=\left(4 k(k+1)+4(k+1)^{2}\right) y_{2} y_{3}^{k}=2(k+1)(4 k+2) y_{2} y_{3}^{k} \in \operatorname{Jac}(\bar{f})$ and so

$$
J_{\bar{f}}\left(\left[d y_{1} \wedge d y_{2} \wedge d y_{3}\right],\left[y_{2} y_{3}^{k} d y_{1} \wedge d y_{2} \wedge d y_{3}\right]\right)=\frac{1}{2(2 k+1)}
$$

8. For $k \geq 4$, set

$$
\begin{aligned}
& f:=x_{1}^{2}+x_{2}^{k-1}+x_{2} x_{3}^{2}, \quad G:=\langle g\rangle, g:=\frac{1}{2}(1,0,1), \\
& \bar{f}:=y_{1}^{k-1}+y_{1} y_{2}+y_{2} y_{3}^{2}
\end{aligned}
$$

The Jacobian algebra $\operatorname{Jac}(f)$ can be calculated as

$$
\begin{aligned}
\operatorname{Jac}(f) & =\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(2 x_{1},(k-1) x_{2}^{k-2}+x_{3}^{2}, 2 x_{2} x_{3}\right) \\
& \cong\left\langle 1, x_{2}, \ldots, x_{2}^{k-2}, x_{3}\right\rangle_{\mathbb{C}}
\end{aligned}
$$

so $\mu_{f}=k$. With hess $(f)=2 \cdot(k-1)(k-2) \cdot 2 \cdot x_{2}^{k-2}-2 \cdot 2 \cdot 2 \cdot x_{3}^{2}=4(k-1)(k-2) x_{2}^{k-2}+8 \cdot(k-1) x_{2}^{k-2}$ $=4(k-1)(k) x_{2}^{k-2} \in \operatorname{Jac}(f)$ we can calculate the bilinear form J_{f} on Ω_{f}

$$
J_{f}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{2}^{k-2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right)=\frac{1}{4(k-1)}
$$

As a \mathbb{C}-module, the orbifold Jacobian algebra $\operatorname{Jac}(f, G)$ is of the following form:

$$
\operatorname{Jac}(f, G) \cong\left\langle e_{\mathrm{id}},\left[x_{2}\right], \ldots,\left[x_{2}\right]^{k-2}\right\rangle_{\mathbb{C}} \oplus\left\langle e_{g},\left[x_{2}\right] e_{g}, \ldots,\left[x_{2}\right]^{k-3} e_{g}\right\rangle_{\mathbb{C}}
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(f, G)=2 k-3$. The bilinear form $J_{f, G}$ on $\Omega_{f, G}$ can be calculated as

$$
\begin{aligned}
J_{f, \text { id }}\left(e_{\mathrm{id}} \vdash \zeta,\left[x_{2}\right]^{k-2} \vdash \zeta\right) & =J_{f, \text { id }}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{2}^{k-2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right) \\
& =2 \cdot \frac{1}{4(k-1)}=\frac{1}{2(k-1)},
\end{aligned}
$$

and with $\mu_{f^{g}}=k-2, \operatorname{hess}\left(f^{g}\right)=(k-1)(k-2) x_{2}^{k-3}$

$$
\begin{aligned}
J_{f, g}\left(e_{g} \vdash \zeta,\left[x_{2}\right]^{k-3} e_{g} \vdash \zeta\right) & =\frac{1}{4} J_{f, g}\left(\left[d x_{2}\right],\left[x_{2}^{k-3} d x_{2}\right]\right) \\
& =\frac{1}{4} \cdot(-1) \cdot 2 \cdot \frac{1}{k-1}=-\frac{1}{2(k-1)},
\end{aligned}
$$

which imply the following relations in the orbifold $\operatorname{Jacobian} \operatorname{algebra} \operatorname{Jac}(f, G)$:

$$
\left[x_{2}\right]^{k-2} \circ e_{g}=0, \quad e_{g}^{2}=-\left[x_{2}\right]
$$

On the other hand, the Jacobian algebra $\operatorname{Jac}(\bar{f})$ is given by

$$
\operatorname{Jac}(\bar{f})=\mathbb{C}\left[y_{1}, y_{2}, y_{3}\right] /\left((k-1) y_{1}^{k-2}+y_{2}, y_{1}+y_{3}^{2}, 2 y_{2} y_{3}\right) .
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(\bar{f})=2 k-3$. Therefore, we have an algebra isomorphism

$$
\operatorname{Jac}(\bar{f}) \xrightarrow{\cong} \operatorname{Jac}(f, G), \quad y_{1} \mapsto\left[x_{2}\right], y_{2} \mapsto-(k-1)\left[x_{2}\right]^{k-2}, y_{3} \mapsto e_{g},
$$

which is, moreover, an isomorphism of Frobenius algebras since we have $\operatorname{hess}(\bar{f})=-(k-1)(k-2) \cdot 2 \cdot 2 \cdot y_{1}^{k-3} y_{3}^{2}-2 y_{2}=4(k-1)(k-2) y_{1}^{k-2}+2 \cdot(k-1) y_{1}^{k-2}$ $=2(k-1)(2 k-4+1) y_{1}^{k-2} \in \operatorname{Jac}(\bar{f})$ and so

$$
J_{\bar{f}}\left(\left[d y_{1} \wedge d y_{2} \wedge d y_{3}\right],\left[y_{1}^{k-2} d y_{1} \wedge d y_{2} \wedge d y_{3}\right]\right)=\frac{1}{2(k-1)}
$$

We finished the proof of Theorem 6.3.7.

6.4 Orbifold Jacobian Algebras for Exceptional Unimodal Singularities

Definition 6.4.1 ([AGV85, p. 247]). There is a list of 14 exceptional families of unimodal isolated hypersurface singularities. In the notation of Arnold they are called $E_{12}, E_{13}, E_{14}, Z_{11}$, $Z_{12}, Z_{13}, W_{12}, W_{13}, Q_{10}, Q_{11}, Q_{12}, S_{11}, S_{12}$ and U_{12}. One can give invertible polynomials in three variables belonging to these families. In Table 6.3 there are listed all possible choices of an invertible polynomial, representing an exceptional unimodal singularity (see [RN16, Table 1]).

Singularity Type	$f(\mathrm{v} 1)$	$f(\mathrm{v} 2)$	$f(\mathrm{v} 3)$
E_{12}	$x^{2}+y^{3}+z^{7}$	-	-
E_{13}	$x^{2}+y^{3}+y z^{5}$	-	-
E_{14}	$x^{3}+y^{2}+y z^{4}$	$x^{2}+y^{3}+z^{8}$	-
Z_{11}	$x^{2}+y^{3} z+z^{5}$	-	-
Z_{12}	$x^{2}+y^{3} z+y z^{4}$	-	-
Z_{13}	$x^{2}+x y^{3}+y z^{3}$	$x^{2}+y^{3} z+z^{6}$	-
W_{12}	$x^{5}+y^{2}+y z^{2}$	$x^{2}+y^{4}+z^{5}$	-
W_{13}	$x^{2}+x y^{2}+y z^{4}$	$x^{2}+y^{4}+y z^{4}$	-
Q_{10}	$x^{3}+y^{2} z+z^{4}$	-	-
Q_{11}	$x^{2} y+y^{3} z+z^{3}$	-	-
Q_{12}	$x^{3}+y^{2} z+y z^{3}$	$x^{3}+y^{2} z+z^{5}$	-
S_{11}	$x^{2} y+y^{2} z+z^{4}$	-	-
S_{12}	$x^{3} y+y^{2} z+x z^{2}$	-	-
U_{12}	$x^{4}+y^{2} z+y z^{2}$	$x^{3}+y^{3}+z^{4}$	$x^{4}+y^{3}+y z^{2}$

Table 6.3: All invertible polynomials, representing the exceptional unimodal singularities.

Remark 6.4.2. In some cases $G_{f}^{\text {SL }}$ is not the trivial group. We can try to do the same as in Remark 6.3.2 and consider a crepant resolution of $\mathbb{C}^{3} / G_{f}^{\text {SL }}$. We observe:

Only in the cases, where f and f^{T} are of the same singularity type, the critical points of \widehat{f} are isolated and contained in one chart isomorphic to \mathbb{C}^{3}.

Example 6.4.3. For E_{14} and the pair (f, G)

$$
f:=x_{1}^{2}+x_{2}^{3}+x_{3}^{8}, \quad G:=\left\langle\frac{1}{2}(1,0,1)\right\rangle
$$

we have in the two charts

$$
\widehat{f}(t, u, v)=t^{3}+u+\left(u v^{2}\right)^{4} \text { and } \widehat{f}(t, u, v)=t^{3}+u^{2} v+v^{4} .
$$

Critical points of \widehat{f} are on the second chart.
We see $f=f^{T}$ and the restriction of \widehat{f} to the chart is given by $\bar{f}=y_{1}^{4}+y_{2}^{3}+y_{1} y_{3}^{2}$ which is of singularity type Q_{10} which is strangely dual (cf. [Ar75]) to E_{14}.

For Z_{13} and the pair (f, G)

$$
f:=x_{1}^{3} x_{2}+x_{2}^{6}+x_{3}^{2}, \quad G:=\left\langle\frac{1}{2}(1,1,0)\right\rangle,
$$

we have in the two charts

$$
\widehat{f}(t, u, v)=t^{2}+u u v+\left(u v^{2}\right)^{3} \text { and } \widehat{f}(t, u, v)=t^{2}+u^{2} v u v+v^{3} .
$$

There are no isolated singularities in the first chart.
Proposition 6.4.4 ([ET11, Table 9]). For the polynomials (v1) of Table 6.3 we always have $G_{f^{T}}^{\mathrm{SL}}=\{\mathrm{id}\}$. And we get:

When $f(v 1)$ is of one singularity type, f^{T} is of the singularity type of the strangely dual in the sense of Arnold (c.f. [Ar75]).

Proof. One can easily see that there are no elements in G_{f} that are also in $\operatorname{SL}(3, \mathbb{C})$ for all polynomials (v1). The second statement is shown in [ET11].

Remark 6.4.5. From Remark 6.4.2 and Proposition 6.4.4 it is straightforward to consider the pairs $\left(f^{T}, G_{f^{T}}^{\mathrm{SL}}\right)$.
Example 6.4.6. With Remark 6.3 .3 we will calculate the restriction of $\widehat{f^{T}}$ for all f in Table 6.3 with $G_{f^{T}}^{\mathrm{SL}} \supsetneq\{\mathrm{id}\}$.

1. For E_{14} and the pair $\left(f^{T}, G\right)$

$$
f^{T}:=x_{1}^{2}+x_{2}^{3}+x_{3}^{8}, \quad G:=\left\langle\frac{1}{2}(1,0,1)\right\rangle,
$$

see Example 6.4.3.
2. For Z_{13} and the pair $\left(f^{T}, G\right)$

$$
f^{T}:=x_{1}^{2}+x_{2}^{3}+x_{2} x_{3}^{6}, \quad G:=\left\langle\frac{1}{2}(1,0,1)\right\rangle
$$

we have in the two charts

$$
\widehat{f^{T}}(t, u, v)=t^{3}+u+t\left(u v^{2}\right)^{3} \text { and } \widehat{f^{T}}(t, u, v)=t^{3}+u^{2} v+t v^{3} .
$$

Critical points of $\widehat{f^{T}}$ are on the second chart.
3. For W_{12} and the pair $\left(f^{T}, G\right)$

$$
f^{T}:=x_{1}^{2}+x_{2}^{4}+x_{3}^{5}, \quad G:=\left\langle\frac{1}{2}(1,1,0)\right\rangle
$$

we have in the two charts

$$
\widehat{f^{T}}(t, u, v)=t^{5}+u+\left(u v^{2}\right)^{2} \text { and } \widehat{f^{T}}(t, u, v)=t^{5}+u^{2} v+v^{2} .
$$

Critical points of $\widehat{f^{T}}$ are on the second chart.
4. For W_{13} and the pair $\left(f^{T}, G\right)$

$$
f^{T}:=x_{1}^{2}+x_{2}^{4} x_{3}+x_{3}^{4}, \quad G:=\left\langle\frac{1}{2}(1,1,0)\right\rangle
$$

we have in the two charts

$$
\widehat{f^{T}}(t, u, v)=t^{4}+u+t\left(u v^{2}\right)^{2} \text { and } \widehat{f^{T}}(t, u, v)=t^{4}+u^{2} v+t v^{2} .
$$

Critical points of $\widehat{f^{T}}$ are on the second chart.
5. For Q_{12} and the pair $\left(f^{T}, G\right)$

$$
f^{T}:=x_{1}^{3}+x_{2}^{2}+x_{2} x_{3}^{5}, \quad G:=\left\langle\frac{1}{2}(0,1,1)\right\rangle
$$

we have in the two charts

$$
\widehat{f^{T}}(t, u, v)=t^{3}+u+u v\left(u v^{2}\right)^{2} \text { and } \widehat{f^{T}}(t, u, v)=t^{3}+u^{2} v+u v v^{2} .
$$

Critical points of $\widehat{f^{T}}$ are on the second chart.
6. For U_{12} and the pair $\left(f^{T}, G\right)$

$$
f^{T}:=x_{1}^{3}+x_{2}^{3}+x_{3}^{4}, \quad G:=\left\langle\frac{1}{3}(1,2,0)\right\rangle
$$

we have in the three charts

$$
\begin{aligned}
\widehat{f^{T}}(t, u, v)=t^{4}+u+\left(u^{2} v^{3}\right), & \widehat{f^{T}}(t, u, v)=t^{4}+u^{2} v+u v^{2} \\
\text { and } & \widehat{f^{T}}(t, u, v)=t^{4}+u^{3} v^{2}+v .
\end{aligned}
$$

Critical points of $\widehat{f^{T}}$ are on the second chart.
7. For U_{12} and the pair $\left(f^{T}, G\right)$

$$
f^{T}:=x_{1}^{4}+x_{2}^{3} x_{3}+x_{3}^{2}, \quad G:=\left\langle\frac{1}{2}(0,1,1)\right\rangle
$$

we have in the two charts

$$
\widehat{f^{T}}(t, u, v)=t^{4}+u u v+\left(u v^{2}\right) \text { and } \widehat{f^{T}}(t, u, v)=t^{4}+u^{2} v u v+v .
$$

Critical points of $\widehat{f^{T}}$ are on the first chart.
Remark 6.4.7. Here we observed that critical points of the map $\widehat{f^{T}}$ are contained in one chart isomorphic to \mathbb{C}^{3}. The restriction of $\widehat{f^{T}}$ to the chart is given by \bar{f} defined in Table 6.4.

	Type of f	f^{T}	$G_{f^{T}}^{\mathrm{SL}}$	\bar{f}	Type of \bar{f}
1.	E_{14}	$x_{1}^{2}+x_{2}^{3}+x_{3}^{8}$	$\left\langle\frac{1}{2}(1,0,1)\right\rangle$	$y_{1}^{3}+y_{2}^{2} y_{3}+y_{3}^{4}$	Q_{10}
2.	Z_{13}	$x_{1}^{2}+x_{2}^{3}+x_{2} x_{3}^{6}$	$\left\langle\frac{1}{2}(1,0,1)\right\rangle$	$y_{1}^{2} y_{2}+y_{2}^{3} y_{3}+y_{3}^{3}$	Q_{11}
3.	W_{12}	$x_{1}^{2}+x_{2}^{4}+x_{3}^{5}$	$\left\langle\frac{1}{2}(1,1,0)\right\rangle$	$y_{1}^{5}+y_{2}^{2}+y_{2} y_{3}^{2}$	W_{12}
4.	W_{13}	$x_{1}^{2}+x_{2}^{4} x_{3}+x_{3}^{4}$	$\left\langle\frac{1}{2}(1,1,0)\right\rangle$	$y_{1}^{2} y_{2}+y_{2}^{2} y_{3}+y_{3}^{4}$	S_{11}
5.	Q_{12}	$x_{1}^{3}+x_{2}^{2}+x_{2} x_{3}^{5}$	$\left\langle\frac{1}{2}(0,1,1)\right\rangle$	$y_{1}^{3}+y_{2}^{2} y_{3}+y_{2} y_{3}^{3}$	Q_{12}
6.	U_{12}	$x_{1}^{3}+x_{2}^{3}+x_{3}^{4}$	$\left\langle\frac{1}{3}(1,2,0)\right\rangle$	$y_{1}^{4}+y_{2}^{2} y_{3}+y_{2} y_{3}^{2}$	U_{12}
7.	U_{12}	$x_{1}^{4}+x_{2}^{3} x_{3}+x_{3}^{2}$	$\left\langle\frac{1}{2}(0,1,1)\right\rangle$	$y_{1}^{4}+y_{2}^{2} y_{3}+y_{2} y_{3}^{2}$	U_{12}

Table 6.4: $\left(f^{T}, G_{f^{T}}^{\mathrm{SL}}\right) \cong(\bar{f})$

It is again natural to expect that the orbifold Jacobian algebra $\operatorname{Jac}\left(f^{T}, G_{f^{T}}^{\mathrm{SL}}\right)$ of $\left(f^{T}, G_{f^{T}}^{\mathrm{SL}}\right)$ is isomorphic to the usual Jacobian algebra $\operatorname{Jac}(\bar{f})$ of \bar{f}, which is the following theorem.

Theorem 6.4.8. There is an isomorphism of Frobenius algebras

$$
\operatorname{Jac}\left(f^{T}, G_{f^{T}}^{\mathrm{SL}}\right) \cong \operatorname{Jac}(\bar{f})
$$

for all f^{T} and \bar{f} in Table 6.4.
Proof. We give a proof of this theorem based on the classification in Table 6.4. Let the notation be as in the sections before and again $e_{g}:=\frac{\alpha_{g}^{-1}}{\left|K_{g}\right|} v_{g} \in \operatorname{Jac}(f, G)$ the element already mentioned in the proof of Theorem 6.3.7.

1. Set

$$
\begin{aligned}
& f^{T}:=x_{1}^{2}+x_{2}^{3}+x_{3}^{8}, \quad G:=\langle g\rangle, g:=\frac{1}{2}(1,0,1), \\
& \bar{f}:=y_{1}^{3}+y_{2}^{2} y_{3}+y_{3}^{4} .
\end{aligned}
$$

The Jacobian algebra $\operatorname{Jac}\left(f^{T}\right)$ can be calculated as

$$
\operatorname{Jac}\left(f^{T}\right)=\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(2 x_{1}, 3 x_{2}^{2}, 8 x_{3}^{7}\right) \cong\left\langle 1, x_{2}, x_{3}, \ldots, x_{3}^{6}, x_{2} x_{3}, \ldots, x_{2} x_{3}^{6}\right\rangle_{\mathbb{C}}
$$

so $\mu_{f^{T}}=14$. With hess $\left(f^{T}\right)=2 \cdot 6 \cdot 56 \cdot x_{2} x_{3}^{6}=14 \cdot 48 x_{2} x_{3}^{6}$ we can calculate the bilinear form $J_{f^{T}}$ on $\Omega_{f^{T}}$

$$
J_{f^{T}}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{2} x_{3}^{6} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right)=\frac{1}{48}
$$

As a \mathbb{C}-module, the orbifold Jacobian algebra $\operatorname{Jac}\left(f^{T}, G\right)$ is of the following form:

$$
\operatorname{Jac}\left(f^{T}, G\right) \cong\left\langle e_{\mathrm{id}},\left[x_{2}\right],\left[x_{3}^{2}\right],\left[x_{3}^{2}\right]^{2},\left[x_{3}^{2}\right]^{3},\left[x_{2}\right]\left[x_{3}^{2}\right],\left[x_{2}\right]\left[x_{3}^{2}\right]^{2},\left[x_{2}\right]\left[x_{3}^{2}\right]^{3}\right\rangle_{\mathbb{C}} \oplus\left\langle e_{g},\left[x_{2}\right] e_{g}\right\rangle_{\mathbb{C}}
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}\left(f^{T}, G\right)=10$. The bilinear form $J_{f^{T}, G}$ on $\Omega_{f^{T}, G}$ can be calculated as

$$
\begin{aligned}
\left.J_{f^{T}, \text { id }}\left(e_{\mathrm{id}} \vdash \zeta,\left[x_{2}\right]\left[x_{3}^{2}\right]^{3}\right] \vdash \zeta\right) & =J_{f^{T}, \text { id }}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{2} x_{3}^{6} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right) \\
& =2 \cdot \frac{1}{48}=\frac{1}{24},
\end{aligned}
$$

and with $\mu_{f^{T g}}=2, \operatorname{hess}\left(f^{T g}\right)=3 \cdot 2 x_{2}$

$$
\begin{aligned}
J_{f^{T}, g}\left(e_{g} \vdash \zeta,\left[x_{2}\right] e_{g} \vdash \zeta\right) & =\frac{1}{4} J_{f^{T}, g}\left(\left[d x_{2}\right],\left[x_{2} d x_{2}\right]\right) \\
& =\frac{1}{4} \cdot(-1) \cdot 2 \cdot \frac{1}{3}=-\frac{1}{6},
\end{aligned}
$$

which imply the following relations in the orbifold Jacobian algebra $\operatorname{Jac}\left(f^{T}, G\right)$:

$$
\left[x_{2}\right]^{2}=0, \quad\left[x_{3}^{2}\right] \circ e_{g}=0, \quad e_{g}^{2}=-4\left[x_{3}^{2}\right]^{3} .
$$

On the other hand, the Jacobian algebra $\operatorname{Jac}(\bar{f})$ is given by

$$
\operatorname{Jac}(\bar{f})=\mathbb{C}\left[y_{1}, y_{2}, y_{3}\right] /\left(3 y_{1}^{2}, 2 y_{2} y_{3}, y_{2}^{2}+4 y_{3}^{3}\right) .
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(\bar{f})=10$. Therefore, we have an algebra isomorphism

$$
\operatorname{Jac}(\bar{f}) \stackrel{\cong}{\rightrightarrows} \operatorname{Jac}\left(f^{T}, G\right), \quad y_{1} \mapsto\left[x_{2}\right], y_{2} \mapsto e_{g}, y_{3} \mapsto\left[x_{3}^{2}\right],
$$

which is, moreover, an isomorphism of Frobenius algebras since we have $\operatorname{hess}(\bar{f})=6 \cdot 2 \cdot 12 \cdot y_{1} y_{3}^{3}-6 \cdot 2 \cdot 2 \cdot y_{1} y_{2}^{2}=24 \cdot 6 y_{1} y_{3}^{3}+24 \cdot 4 y_{1} y_{3}^{3}=24 \cdot(10) y_{1} y_{3}^{3} \in \operatorname{Jac}(\bar{f})$ and so

$$
J_{\bar{f}}\left(\left[d y_{1} \wedge d y_{2} \wedge d y_{3}\right],\left[y_{1} y_{3}^{3} d y_{1} \wedge d y_{2} \wedge d y_{3}\right]\right)=\frac{1}{24}
$$

2. Set

$$
f^{T}:=x_{1}^{2}+x_{2}^{3}+x_{2} x_{3}^{6}, \quad G:=\langle g\rangle, g:=\frac{1}{2}(1,0,1),
$$

$$
\bar{f}:=y_{1}^{2} y_{2}+y_{2}^{3} y_{3}+y_{3}^{3} .
$$

The Jacobian algebra $\operatorname{Jac}\left(f^{T}\right)$ can be calculated as

$$
\begin{aligned}
\operatorname{Jac}\left(f^{T}\right) & =\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(2 x_{1}, 3 x_{2}^{2}+x_{3}^{6}, 6 x_{2} x_{3}^{5}\right) \\
& \cong\left\langle 1, x_{2}, x_{2}^{2}, x_{3}, \ldots, x_{3}^{5}, x_{2} x_{3}, \ldots, x_{2} x_{3}^{4}, x_{2}^{2} x_{3}, \ldots, x_{2}^{2} x_{3}^{4}\right\rangle_{\mathbb{C}}
\end{aligned}
$$

so $\mu_{f^{T}}=16$. With hess $\left(f^{T}\right)=2 \cdot 6 \cdot 30 \cdot x_{2}^{2} x_{3}^{4}-2 \cdot 6 \cdot 6 \cdot x_{3}^{10}=36 \cdot 10 x_{2}^{2} x_{3}^{4}+2 \cdot 36 \cdot 3 x_{2}^{2} x_{3}^{4}$ $=36 \cdot 16 x_{2}^{2} x_{3}^{4} \in \operatorname{Jac}\left(f^{T}\right)$ we can calculate the bilinear form $J_{f^{T}}$ on $\Omega_{f^{T}}$

$$
J_{f^{T}}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{2}^{2} x_{3}^{4} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right)=\frac{1}{36} .
$$

As a \mathbb{C}-module, the orbifold Jacobian algebra $\operatorname{Jac}\left(f^{T}, G\right)$ is of the following form:

$$
\begin{aligned}
\operatorname{Jac}\left(f^{T}, G\right) \cong & \xlongequal{ }\left\langle_{\mathrm{id}},\left[x_{2}\right],\left[x_{2}\right]^{2},\left[x_{3}^{2}\right],\left[x_{3}^{2}\right]^{2},\left[x_{2}\right]\left[x_{3}^{2}\right],\left[x_{2}\right]\left[x_{3}^{2}\right]^{2},\left[x_{2}\right]^{2}\left[x_{3}^{2}\right],\left[x_{2}\right]^{2}\left[x_{3}^{2}\right]^{2}\right\rangle_{\mathbb{C}} \\
& \oplus\left\langle e_{g},\left[x_{2}\right] e_{g}\right\rangle_{\mathbb{C}}
\end{aligned}
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}\left(f^{T}, G\right)=11$. The bilinear form $J_{f^{T}, G}$ on $\Omega_{f^{T}, G}$ can be calculated as

$$
\begin{aligned}
J_{f^{T}, \text { id }}\left(e_{\mathrm{id}} \vdash \zeta,\left[x_{2}\right]^{2}\left[x_{3}^{2}\right]^{2} \vdash \zeta\right) & =J_{f^{T}, \text { id }}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{2}^{2} x_{3}^{4} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right) \\
& =2 \cdot \frac{1}{36}=\frac{1}{18},
\end{aligned}
$$

and with $\mu_{f^{T g}}=2, \operatorname{hess}\left(f^{T g}\right)=3 \cdot 2 x_{2}$

$$
\begin{aligned}
J_{f^{T}, g}\left(e_{g} \vdash \zeta,\left[x_{2}\right] e_{g} \vdash \zeta\right) & =\frac{1}{4} J_{f^{T}, g}\left(\left[d x_{2}\right],\left[x_{2} d x_{2}\right]\right) \\
& =\frac{1}{4} \cdot(-1) \cdot 2 \cdot \frac{1}{3}=-\frac{1}{6},
\end{aligned}
$$

which imply the following relations in the orbifold Jacobian algebra $\operatorname{Jac}\left(f^{T}, G\right)$:

$$
\left[x_{3}^{2}\right]^{3}=-3\left[x_{2}\right]^{2}, \quad\left[x_{3}^{2}\right] e_{g}=0, \quad e_{g}^{2}=-3\left[x_{2} x_{3}^{4}\right] .
$$

On the other hand, the Jacobian algebra $\operatorname{Jac}(\bar{f})$ is given by

$$
\operatorname{Jac}(\bar{f})=\mathbb{C}\left[y_{1}, y_{2}, y_{3}\right] /\left(2 y_{1} y_{2}, y_{1}^{2}+3 y_{2}^{2} y_{3}, y_{2}^{3}+3 y_{3}^{2}\right) .
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(\bar{f})=11$. Therefore, we have an algebra isomorphism

$$
\operatorname{Jac}(\bar{f}) \xrightarrow{\cong} \operatorname{Jac}\left(f^{T}, G\right), \quad y_{1} \mapsto e_{g}, y_{2} \mapsto\left[x_{3}^{2}\right], y_{3} \mapsto\left[x_{2}\right],
$$

which is, moreover, an isomorphism of Frobenius algebras since we have $\operatorname{hess}(\bar{f})=2 \cdot 6 \cdot 6 \cdot y_{2}^{2} y_{3}^{2}-2 \cdot 3 \cdot 3 \cdot y_{2}^{5}-2 \cdot 2 \cdot 6 \cdot y_{1}^{2} y_{3}=72 y_{2}^{2} y_{3}^{2}+18 \cdot 3 y_{2}^{2} y_{3}^{2}+24 \cdot 6 y_{2}^{2} y_{3}^{2}$ $=18(4+3+4) y_{2}^{2} y_{3}^{2} \in \operatorname{Jac}(\bar{f})$ and so

$$
J_{\bar{f}}\left(\left[d y_{1} \wedge d y_{2} \wedge d y_{3}\right],\left[y_{2}^{2} y_{3}^{2} d y_{1} \wedge d y_{2} \wedge d y_{3}\right]\right)=\frac{1}{18}
$$

3. Set

$$
\begin{aligned}
& f^{T}:=x_{1}^{2}+x_{2}^{4}+x_{3}^{5}, \quad G:=\langle g\rangle, g:=\frac{1}{2}(1,1,0) \\
& \bar{f}:=y_{1}^{5}+y_{2}^{2}+y_{2} y_{3}^{2}
\end{aligned}
$$

The Jacobian algebra $\operatorname{Jac}\left(f^{T}\right)$ can be calculated as

$$
\operatorname{Jac}\left(f^{T}\right)=\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(2 x_{1}, 4 x_{2}^{3}, 5 x_{3}^{4}\right) \cong\left\langle 1, x_{2}, x_{2}^{2}, x_{3}, x_{3}^{2}, x_{3}^{3}, x_{2} x_{3}, \ldots, x_{2}^{2} x_{3}^{3}\right\rangle_{\mathbb{C}}
$$

so $\mu_{f^{T}}=12$. With hess $\left(f^{T}\right)=2 \cdot 12 \cdot 20 \cdot x_{2}^{2} x_{3}^{3}=12 \cdot 40 x_{2}^{2} x_{3}^{3}$ we can calculate the bilinear form $J_{f^{T}}$ on $\Omega_{f^{T}}$

$$
J_{f^{T}}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{2}^{2} x_{3}^{3} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right)=\frac{1}{40}
$$

As a \mathbb{C}-module, the orbifold Jacobian algebra $\operatorname{Jac}\left(f^{T}, G\right)$ is of the following form:

$$
\begin{aligned}
\operatorname{Jac}\left(f^{T}, G\right) \cong & \left\langle e_{\text {id }},\left[x_{2}^{2}\right],\left[x_{3}\right],\left[x_{3}\right]^{2},\left[x_{3}\right]^{3},\left[x_{2}^{2}\right]\left[x_{3}\right],\left[x_{2}^{2}\right]\left[x_{3}\right]^{2},\left[x_{2}^{2}\right]\left[x_{3}\right]^{3}\right\rangle_{\mathbb{C}} \\
& \oplus\left\langle e_{g},\left[x_{3}\right] e_{g},\left[x_{3}\right]^{2} e_{g},\left[x_{3}\right]^{3} e_{g}\right\rangle_{\mathbb{C}}
\end{aligned}
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}\left(f^{T}, G\right)=12$. The bilinear form $J_{f^{T}, G}$ on $\Omega_{f^{T}, G}$ can be calculated as

$$
\begin{aligned}
J_{f^{T}, \text { id }}\left(e_{\mathrm{id}} \vdash \zeta,\left[x_{2}^{2}\right]\left[x_{3}\right]^{3} \vdash \zeta\right) & =J_{f^{T}, \text { id }}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{2}^{2} x_{3}^{3} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right) \\
& =2 \cdot \frac{1}{40}=\frac{1}{20}
\end{aligned}
$$

and with $\mu_{f^{T g}}=4, \operatorname{hess}\left(f^{T^{g}}\right)=5 \cdot 4 x_{3}^{3}$

$$
\begin{aligned}
J_{f^{T}, g}\left(e_{g} \vdash \zeta,\left[x_{3}\right]^{3} e_{g} \vdash \zeta\right) & =\frac{1}{4} J_{f^{T}, g}\left(\left[d x_{3}\right],\left[x_{3}^{3} d x_{3}\right]\right) \\
& =\frac{1}{4} \cdot(-1) \cdot 2 \cdot \frac{1}{5}=-\frac{1}{10},
\end{aligned}
$$

which imply the following relations in the orbifold Jacobian algebra $\operatorname{Jac}\left(f^{T}, G\right)$:

$$
\left[x_{3}\right]^{4}=0, \quad\left[x_{2}^{2}\right] \circ e_{g}=0, \quad e_{g}^{2}=-2\left[x_{2}^{2}\right] .
$$

On the other hand, the Jacobian algebra $\operatorname{Jac}(\bar{f})$ is given by

$$
\operatorname{Jac}(\bar{f})=\mathbb{C}\left[y_{1}, y_{2}, y_{3}\right] /\left(5 y_{1}^{4}, 2 y_{2}+y_{3}^{2}, 2 y_{2} y_{3}\right)
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(\bar{f})=12$. Therefore, we have an algebra isomorphism

$$
\operatorname{Jac}(\bar{f}) \xrightarrow{\cong} \operatorname{Jac}\left(f^{T}, G\right), \quad y_{1} \mapsto\left[x_{3}\right], y_{2} \mapsto\left[x_{2}^{2}\right], \quad y_{3} \mapsto e_{g},
$$

which is, moreover, an isomorphism of Frobenius algebras since we have $\operatorname{hess}(\bar{f})=20 \cdot 2 \cdot 2 \cdot y_{1}^{3} y_{2}-20 \cdot 2 \cdot 2 \cdot y_{1}^{3} y_{3}^{2}=80 y_{1}^{3} y_{2}+80 \cdot 2 y_{1}^{3} y_{2}=20 \cdot 12 y_{1}^{3} y_{2} \in \operatorname{Jac}(\bar{f})$ and so

$$
J_{\bar{f}}\left(\left[d y_{1} \wedge d y_{2} \wedge d y_{3}\right],\left[y_{1}^{3} y_{2} d y_{1} \wedge d y_{2} \wedge d y_{3}\right]\right)=\frac{1}{20}
$$

4. Set

$$
\begin{aligned}
& f^{T}:=x_{1}^{2}+x_{2}^{4} x_{3}+x_{3}^{4}, \quad G:=\langle g\rangle, g:=\frac{1}{2}(1,1,0), \\
& \bar{f}:=y_{1}^{2} y_{2}+y_{2}^{2} y_{3}+y_{3}^{4} .
\end{aligned}
$$

The Jacobian algebra $\operatorname{Jac}\left(f^{T}\right)$ can be calculated as

$$
\begin{aligned}
\operatorname{Jac}\left(f^{T}\right) & =\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(2 x_{1}, 4 x_{2}^{3} x_{3}, x_{2}^{4}+4 x_{3}^{3}\right) \\
& \cong\left\langle 1, x_{2}, x_{2}^{2}, x_{2}^{3}, x_{3}, x_{3}^{2}, x_{3}^{3}, x_{2} x_{3}, x_{2} x_{3}^{2}, x_{2} x_{3}^{3}, x_{2}^{2} x_{3}, x_{2}^{2} x_{3}^{2}, x_{2}^{2} x_{3}^{3}\right\rangle_{\mathbb{C}}
\end{aligned}
$$

so $\mu_{f^{T}}=13$. With hess $\left(f^{T}\right)=2 \cdot 12 \cdot 12 \cdot x_{2}^{2} x_{3}^{3}-2 \cdot 4 \cdot 4 \cdot x_{2}^{6}=288 x_{2}^{2} x_{3}^{3}+32 \cdot 4 x_{2}^{2} x_{3}^{3}=$ $32(9+4) x_{2}^{2} x_{3}^{3} \in \operatorname{Jac}\left(f^{T}\right)$ we can calculate the bilinear form $J_{f^{T}}$ on $\Omega_{f^{T}}$

$$
J_{f^{T}}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{2}^{2} x_{3}^{3} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right)=\frac{1}{32}
$$

As a \mathbb{C}-module, the orbifold Jacobian algebra $\operatorname{Jac}\left(f^{T}, G\right)$ is of the following form:

$$
\begin{aligned}
\operatorname{Jac}\left(f^{T}, G\right) \cong & \left\langle e_{\mathrm{id}},\left[x_{2}^{2}\right],\left[x_{3}\right],\left[x_{3}\right]^{2},\left[x_{3}\right]^{3},\left[x_{2}^{2}\right]\left[x_{3}\right],\left[x_{2}^{2}\right]\left[x_{3}\right]^{2},\left[x_{2}^{2}\right]\left[x_{3}\right]^{3}\right\rangle_{\mathbb{C}} \\
& \oplus\left\langle e_{g},\left[x_{3}\right] e_{g},\left[x_{3}\right]^{2} e_{g}\right\rangle_{\mathbb{C}}
\end{aligned}
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}\left(f^{T}, G\right)=11$. The bilinear form $J_{f^{T}, G}$ on $\Omega_{f^{T}, G}$ can be calculated as

$$
\begin{aligned}
J_{f^{T}, \text { id }}\left(e_{\text {id }} \vdash \zeta,\left[x_{2}^{2}\right]\left[x_{3}\right]^{3} \vdash \zeta\right) & =J_{f^{T}, \text { id }}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{2}^{2} x_{3}^{3} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right) \\
& =2 \cdot \frac{1}{32}=\frac{1}{16},
\end{aligned}
$$

and with $\mu_{f^{T g}}=3$, hess $\left(f^{T g}\right)=4 \cdot 3 x_{3}^{2}$

$$
\begin{aligned}
J_{f^{T}, g}\left(e_{g} \vdash \zeta,\left[x_{3}\right]^{2} e_{g} \vdash \zeta\right) & =\frac{1}{4} J_{f^{T}, g}\left(\left[d x_{3}\right],\left[x_{3}^{2} d x_{3}\right]\right) \\
& =\frac{1}{4} \cdot(-1) \cdot 2 \cdot \frac{1}{4}=-\frac{1}{8},
\end{aligned}
$$

which imply the following relations in the orbifold Jacobian algebra $\operatorname{Jac}\left(f^{T}, G\right)$:

$$
\left[x_{2}^{2}\right]^{2}=-4\left[x_{3}\right]^{3}, \quad\left[x_{2}^{2}\right] \circ e_{g}=0, \quad e_{g}^{2}=-2\left[x_{2}^{2} x_{3}\right] .
$$

On the other hand, the Jacobian algebra $\operatorname{Jac}(\bar{f})$ is given by

$$
\operatorname{Jac}(\bar{f})=\mathbb{C}\left[y_{1}, y_{2}, y_{3}\right] /\left(2 y_{1} y_{2}, y_{1}^{2}+2 y_{2} y_{3}, y_{2}^{2}+4 y_{3}^{3}\right)
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(\bar{f})=11$. Therefore, we have an algebra isomorphism

$$
\operatorname{Jac}(\bar{f}) \xrightarrow{\cong} \operatorname{Jac}\left(f^{T}, G\right), \quad y_{1} \mapsto e_{g}, y_{2} \mapsto\left[x_{2}^{2}\right], y_{3} \mapsto\left[x_{3}\right],
$$

which is, moreover, an isomorphism of Frobenius algebras since we have
$\operatorname{hess}(\bar{f})=2 \cdot 2 \cdot 12 \cdot y_{2} y_{3}^{3}-2 \cdot 2 \cdot 2 \cdot y_{2}^{3}-2 \cdot 2 \cdot 12 \cdot y_{1}^{2} y_{3}^{2}=48 y_{2} y_{3}^{3}+8 \cdot 4 y_{2} y_{3}^{3}+48 \cdot 2 y_{2} y_{3}^{3}$ $=16(3+2+6) y_{2} y_{3}^{3} \in \operatorname{Jac}(\bar{f})$ and so

$$
J_{\bar{f}}\left(\left[d y_{1} \wedge d y_{2} \wedge d y_{3}\right],\left[y_{2} y_{3}^{3} d y_{1} \wedge d y_{2} \wedge d y_{3}\right]\right)=\frac{1}{16}
$$

5. Set

$$
\begin{aligned}
& f^{T}:=x_{1}^{3}+x_{2}^{2}+x_{2} x_{3}^{5}, \quad G:=\langle g\rangle, g:=\frac{1}{2}(0,1,1), \\
& \bar{f}:=y_{1}^{3}+y_{2}^{2} y_{3}+y_{2} y_{3}^{3} .
\end{aligned}
$$

The Jacobian algebra $\operatorname{Jac}\left(f^{T}\right)$ can be calculated as

$$
\begin{aligned}
\operatorname{Jac}\left(f^{T}\right) & =\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(3 x_{1}^{2}, 2 x_{2}+x_{3}^{5}, 5 x_{2} x_{3}^{4}\right) \\
& \cong\left\langle 1, x_{1}, x_{3}, x_{3}^{2}, x_{3}^{3}, x_{3}^{4}, x_{3}^{5}, x_{3}^{6}, x_{3}^{7}, x_{3}^{8}, x_{1} x_{3}, \ldots, x_{1} x_{3}^{8}\right\rangle_{\mathbb{C}},
\end{aligned}
$$

so $\mu_{f^{T}}=18$. With hess $\left(f^{T}\right)=6 \cdot 2 \cdot 20 \cdot x_{1} x_{2} x_{3}^{3}-6 \cdot 5 \cdot 5 \cdot x_{1} x_{3}^{8}=-15 \cdot 16 \cdot \frac{1}{2} x_{1} x_{3}^{8}-15 \cdot 10 x_{1} x_{3}^{8}$ $=-15 \cdot 18 x_{1} x_{3}^{8} \in \operatorname{Jac}\left(f^{T}\right)$ we can calculate the bilinear form $J_{f^{T}}$ on $\Omega_{f^{T}}$

$$
J_{f^{T}}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{1} x_{3}^{8} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right)=\frac{-1}{15}
$$

As a \mathbb{C}-module, the orbifold Jacobian algebra $\operatorname{Jac}\left(f^{T}, G\right)$ is of the following form:

$$
\begin{aligned}
\operatorname{Jac}\left(f^{T}, G\right) \cong & \left\langle e_{\mathrm{id}},\left[x_{1}\right],\left[x_{3}^{2}\right],\left[x_{3}^{2}\right]^{2},\left[x_{3}^{2}\right]^{3},\left[x_{3}^{2}\right]^{4},\left[x_{1}\right]\left[x_{3}^{2}\right],\left[x_{1}\right]\left[x_{3}^{2}\right]^{2},\left[x_{1}\right]\left[x_{3}^{2}\right]^{3},\left[x_{1}\right]\left[x_{3}^{2}\right]^{4}\right\rangle_{\mathbb{C}} \\
& \oplus\left\langle e_{g},\left[x_{1}\right] e_{g}\right\rangle_{\mathbb{C}}
\end{aligned}
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}\left(f^{T}, G\right)=12$. The bilinear form $J_{f^{T}, G}$ on $\Omega_{f^{T}, G}$ can be calculated as

$$
\begin{aligned}
J_{f^{T}, \mathrm{id}}\left(e_{\mathrm{id}} \vdash \zeta,\left[x_{1}\right]\left[x_{3}^{2}\right]^{4} \vdash \zeta\right) & =J_{f^{T}, \text { id }}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{1} x_{3}^{8} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right) \\
& =2 \cdot \frac{-1}{15}=\frac{-2}{15}
\end{aligned}
$$

and with $\mu_{f^{T g}}=2, \operatorname{hess}\left(f^{T g}\right)=3 \cdot 2 x_{1}$

$$
\begin{aligned}
J_{f^{T}, g}\left(e_{g} \vdash \zeta,\left[x_{1}\right] e_{g} \vdash \zeta\right) & =\frac{1}{4} J_{f^{T}, g}\left(\left[d x_{1}\right],\left[x_{1} d x_{1}\right]\right) \\
& =\frac{1}{4} \cdot(-1) \cdot 2 \cdot \frac{1}{3}=-\frac{1}{6},
\end{aligned}
$$

which imply the following relations in the orbifold Jacobian algebra $\operatorname{Jac}\left(f^{T}, G\right)$:

$$
\left[x_{1}\right]^{2}=0, \quad\left[x_{3}^{2}\right] \circ e_{g}=0, \quad e_{g}^{2}=\frac{5}{4}\left[x_{3}^{8}\right] .
$$

On the other hand, the Jacobian algebra $\operatorname{Jac}(\bar{f})$ is given by

$$
\begin{aligned}
\operatorname{Jac}(\bar{f}) & =\mathbb{C}\left[y_{1}, y_{2}, y_{3}\right] /\left(3 y_{1}^{2}, 2 y_{2} y_{3}+y_{3}^{3}, y_{2}^{2}+3 y_{2} y_{3}^{2}\right) \\
& \cong\left\langle 1, y_{1}, y_{2}, y_{3}, y_{3}^{2}, y_{3}^{3}, y_{3}^{4}, y_{1} y_{2}, y_{1} y_{3}, y_{1} y_{3}^{2}, y_{1} y_{3}^{3}, y_{1} y_{3}^{4}\right\rangle_{\mathbb{C}}
\end{aligned}
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(\bar{f})=12$ and we have $y_{2}^{2}=-3 y_{2} y_{3}^{2}=(-3)\left(\frac{-1}{2} y_{3}^{4}\right)=\frac{3}{2} y_{3}^{4} \in \operatorname{Jac}(\bar{f})$. Therefore, we have an algebra isomorphism

$$
\operatorname{Jac}(\bar{f}) \stackrel{\cong}{\leftrightarrows} \operatorname{Jac}\left(f^{T}, G\right), \quad\left[y_{1}\right] \mapsto\left[x_{1}\right], \quad\left[y_{2}\right] \mapsto \frac{\sqrt{6}}{\sqrt{5}} e_{g}, \quad\left[y_{3}\right] \mapsto\left[x_{3}^{2}\right],
$$

which is, moreover, an isomorphism of Frobenius algebras since we have
$\operatorname{hess}(\bar{f})=6 y_{1}\left(2 \cdot 6 y_{2} y_{3}^{2}-\left(2 y_{2}+3 y_{3}^{2}\right)^{2}\right)=6 y_{1}\left(12 y_{2} y_{3}^{2}-4 y_{2}^{2}-12 y_{2} y_{3}^{2}-9 y_{3}^{4}\right)=6 y_{1}\left(-4 \cdot \frac{3}{2} y_{3}^{4}-9 y_{3}^{4}\right)$ $=-6(15) y_{1} y_{3}^{4} \in \operatorname{Jac}(\bar{f})$ and so

$$
J_{\bar{f}}\left(\left[d y_{1} \wedge d y_{2} \wedge d y_{3}\right],\left[y_{1} y_{3}^{4} d y_{1} \wedge d y_{2} \wedge d y_{3}\right]\right)=\frac{-2}{15}
$$

6. and 7. Set

$$
\begin{aligned}
& f_{1}^{T}:=x_{1}^{3}+x_{2}^{3}+x_{3}^{4}, \quad G_{1}:=\langle g\rangle, g:=\frac{1}{3}(1,2,0) \\
& f_{2}^{T}:=z_{1}^{4}+z_{2}^{3} z_{3}+z_{3}^{2}, \quad G_{2}:=\langle h\rangle, h:=\frac{1}{2}(0,1,1), \\
& \bar{f}:=y_{1}^{4}+y_{2}^{2} y_{3}+y_{2} y_{3}^{2} .
\end{aligned}
$$

The Jacobian algebra $\operatorname{Jac}\left(f_{1}^{T}\right)$ can be calculated as

$$
\begin{aligned}
\operatorname{Jac}\left(f_{1}^{T}\right) & \cong \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(3 x_{1}^{2}, 3 x_{2}^{2}, 4 x_{3}^{3}\right) \\
& \cong\left\langle 1, x_{1}, x_{2}, x_{1} x_{2}, x_{3}, x_{1} x_{3}, x_{2} x_{3}, x_{1} x_{2} x_{3}, x_{3}^{2}, x_{1} x_{3}^{2}, x_{2} x_{3}^{3}, x_{1} x_{2} x_{3}^{2}\right\rangle_{\mathbb{C}}
\end{aligned}
$$

so $\mu_{f_{1}^{T}}=12$. With hess $\left(f_{1}^{T}\right)=6 \cdot 6 \cdot 12 \cdot x_{1} x_{2} x_{3}^{2}$ we can calculate the bilinear form $J_{f_{1}^{T}}$ on $\Omega_{f_{1}^{T}}$

$$
J_{f_{1}^{T}}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{1} x_{2} x_{3}^{2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right)=\frac{1}{36}
$$

As a \mathbb{C}-module, the orbifold Jacobian algebra $\operatorname{Jac}\left(f_{1}^{T}, G_{1}\right)$ is of the following form:

$$
\begin{aligned}
\operatorname{Jac}\left(f_{1}^{T}, G_{1}\right) \cong & \left\langle e_{\mathrm{id}},\left[x_{1} x_{2}\right],\left[x_{3}\right],\left[x_{3}\right]^{2},\left[x_{1} x_{2}\right]\left[x_{3}\right],\left[x_{1} x_{2}\right]\left[x_{3}\right]^{2}\right\rangle_{\mathbb{C}} \\
& \oplus\left\langle e_{g},\left[x_{3}\right] e_{g},\left[x_{3}\right]^{2} e_{g}\right\rangle_{\mathbb{C}} \oplus\left\langle e_{g^{-1}},\left[x_{3}\right] e_{g^{-1}},\left[x_{3}\right]^{2} e_{g^{-1}}\right\rangle_{\mathbb{C}}
\end{aligned}
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}\left(f_{1}^{T}, G_{1}\right)=12$. The bilinear form $J_{f_{1}^{T}, G_{1}}$ on $\Omega_{f_{1}^{T}, G_{1}}$ can be calculated as

$$
\begin{aligned}
J_{f_{1}^{T}, \text { id }}\left(e_{\mathrm{id}} \vdash \zeta,\left[x_{1} x_{2}\right]\left[x_{3}\right]^{2} \vdash \zeta\right) & =J_{f_{1}^{T}, \text { id }}\left(\left[d x_{1} \wedge d x_{2} \wedge d x_{3}\right],\left[x_{1} x_{2} x_{3}^{2} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]\right) \\
& =3 \cdot \frac{1}{36}=\frac{1}{12},
\end{aligned}
$$

and with $\mu_{f_{1}^{T g}}=3, \operatorname{hess}\left(f_{1}^{T g}\right)=4 \cdot 3 x_{3}^{2}$

$$
\begin{aligned}
J_{f_{1}^{T}, g}\left(e_{g} \vdash \zeta,\left[x_{3}\right]^{2} e_{g^{-1}} \vdash \zeta\right) & =\frac{1}{9} J_{f_{1}^{T}, g}\left(\left[d x_{3}\right],\left[x_{3}^{2} d x_{3}\right]\right) \\
& =\frac{1}{9} \cdot(-1) \cdot 3 \cdot \frac{1}{4}=-\frac{1}{12},
\end{aligned}
$$

which imply the following relations in the orbifold $\operatorname{Jacobian}$ algebra $\operatorname{Jac}\left(f_{1}^{T}, G\right)$:

$$
\left[x_{3}\right]^{3}=0, \quad e_{g}^{2}=0, \quad e_{g^{-1}}^{2}=0, \quad e_{g} \circ e_{g^{-1}}=-\left[x_{1} x_{2}\right] .
$$

Secondly the Jacobian algebra $\operatorname{Jac}\left(f_{2}^{T}\right)$ can be calculated as

$$
\begin{aligned}
\operatorname{Jac}\left(f_{2}^{T}\right) & \cong \mathbb{C}\left[z_{1}, z_{2}, z_{3}\right] /\left(4 z_{1}^{3}, 3 z_{2}^{2} z_{3}, z_{2}^{3}+2 z_{3}\right) \\
& \cong\left\langle 1, z_{1}, z_{1}^{2}, z_{2}, z_{2}^{2}, z_{3}, z_{2} z_{3}, z_{1} z_{2}, z_{1} z_{2}^{2}, z_{1} z_{3}, z_{1} z_{2} z_{3}, z_{1}^{2} z_{2}, z_{1}^{2} z_{2}^{2}, z_{1}^{2} z_{3}, z_{1}^{2} z_{2} z_{3},\right\rangle_{\mathbb{C}}
\end{aligned}
$$

so $\mu_{f_{2}^{T}}=15$. With hess $\left(f_{2}^{T}\right)=12 \cdot 6 \cdot 2 \cdot z_{1}^{2} z_{2} z_{3}-12 \cdot 3 \cdot 3 \cdot z_{1}^{2} z_{2}^{4}=144 z_{1}^{2} z_{2} z_{3}+108 \cdot 2 z_{1}^{2} z_{2} z_{3}$ $=24(6+9) z_{1}^{2} z_{2} z_{3} \in \operatorname{Jac}\left(f_{2}^{T}\right)$ we can calculate the bilinear form $J_{f_{2}^{T}}$ on $\Omega_{f_{2}^{T}}$

$$
J_{f_{2}^{T}}\left(\left[d z_{1} \wedge d z_{2} \wedge d z_{3}\right],\left[z_{1}^{2} z_{2} z_{3} d z_{1} \wedge d z_{2} \wedge d z_{3}\right]\right)=\frac{1}{24}
$$

As a \mathbb{C}-module, the orbifold Jacobian algebra $\operatorname{Jac}\left(f_{2}^{T}, G_{2}\right)$ is of the following form:

$$
\begin{aligned}
\operatorname{Jac}\left(f_{2}^{T}, G_{2}\right) \cong & \left\langle e_{\mathrm{id}},\left[z_{1}\right],\left[z_{1}\right]^{2},\left[z_{2}^{2}\right],\left[z_{2} z_{3}\right],\left[z_{1}\right]\left[z_{2}^{2}\right],\left[z_{1}\right]\left[z_{2} z_{3}\right],\left[z_{1}\right]^{2}\left[z_{2}^{2}\right],\left[z_{1}\right]^{2}\left[z_{2} z_{3}\right]\right\rangle_{\mathbb{C}} \\
& \oplus\left\langle e_{h},\left[z_{1}\right] e_{h},\left[z_{1}\right]^{2} e_{h}\right\rangle_{\mathbb{C}}
\end{aligned}
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}\left(f_{2}^{T}, G_{2}\right)=12$. The bilinear form $J_{f_{2}^{T}, G_{2}}$ on $\Omega_{f_{2}^{T}, G_{2}}$ can be calculated as

$$
\begin{aligned}
J_{f_{2}^{T}, \text { id }}\left(e_{\mathrm{id}} \vdash \zeta,\left[z_{1}\right]^{2}\left[z_{2} z_{3}\right] \vdash \zeta\right) & =J_{f_{2}^{T}, \text { id }}\left(\left[d z_{1} \wedge d z_{2} \wedge d z_{3}\right],\left[z_{1}^{2} z_{2} z_{3} d z_{1} \wedge d z_{2} \wedge d z_{3}\right]\right) \\
& =2 \cdot \frac{1}{24}=\frac{1}{12},
\end{aligned}
$$

and with $\mu_{f_{2}^{T h}}=3, \operatorname{hess}\left(f_{2}^{T h}\right)=4 \cdot 3 z_{1}^{2}$

$$
\begin{aligned}
J_{f_{2}^{T}, h}\left(e_{h} \vdash \zeta,\left[z_{1}\right]^{2} e_{h^{-1}} \vdash \zeta\right) & =\frac{1}{4} J_{f_{2}^{T}, h}\left(\left[d z_{1}\right],\left[z_{1}^{2} d z_{1}\right]\right) \\
& =\frac{1}{4} \cdot(-1) \cdot 2 \cdot \frac{1}{4}=-\frac{1}{8},
\end{aligned}
$$

which imply the following relations in the orbifold Jacobian algebra $\operatorname{Jac}\left(f_{2}^{T}, G\right)$:

$$
\left[z_{1}\right]^{3}=0, \quad\left[z_{2}^{2}\right] \circ e_{h}=0, \quad\left[z_{2}^{2}\right]^{2}=-2\left[z_{2} z_{3}\right], \quad e_{h}^{2}=\frac{-3}{2}\left[z_{2} z_{3}\right] .
$$

Therefore, we have an algebra isomorphism

$$
\begin{aligned}
& \operatorname{Jac}\left(f_{1}^{T}, G_{1}\right) \xrightarrow{\cong} \operatorname{Jac}\left(f_{2}^{T}, G_{2}\right), \\
& {\left[x_{1} x_{2}\right] \mapsto\left[z_{2} z_{3}\right],\left[x_{3}\right] \mapsto\left[z_{1}\right], e_{g} \mapsto \frac{\sqrt{-1}}{2}\left[z_{2}^{2}\right]+\frac{1}{\sqrt{3}} e_{h}, e_{g^{-1}} \mapsto \frac{-\sqrt{-1}}{2}\left[z_{2}^{2}\right]+\frac{1}{\sqrt{3}} e_{h},}
\end{aligned}
$$

which is, moreover, an isomorphism of Frobenius algebras since we have

$$
J_{f_{1}^{T}, G_{1}}\left(e_{\mathrm{id}} \vdash \zeta,\left[x_{1} x_{2} x_{3}^{2}\right] \vdash \zeta\right)=J_{f_{2}^{T}, G_{2}}\left(e_{\mathrm{id}} \vdash \zeta,\left[z_{1}^{2} z_{2} z_{3}\right] \vdash \zeta\right)=\frac{1}{12} .
$$

On the other hand, the Jacobian algebra $\operatorname{Jac}(\bar{f})$ is given by

$$
\operatorname{Jac}(\bar{f})=\mathbb{C}\left[y_{1}, y_{2}, y_{3}\right] /\left(4 y_{1}^{3}, 2 y_{3} y_{2}+y_{3}^{2}, y_{2}^{2}+2 y_{2} y_{3}\right)
$$

Note that $\operatorname{dim}_{\mathbb{C}} \operatorname{Jac}(\bar{f})=12$. Therefore, we have an algebra isomorphism

$$
\begin{aligned}
& \operatorname{Jac}(\bar{f}) \stackrel{\cong}{\leftrightarrows} \operatorname{Jac}\left(f_{1}^{T}, G_{1}\right), \\
& y_{1} \mapsto\left[x_{3}\right], \quad y_{2} \mapsto \mathbf{e}\left[\frac{1}{3}\right] e_{g}+\mathbf{e}\left[\frac{2}{3}\right] e_{g^{-1}}, \quad y_{3} \mapsto \mathbf{e}\left[\frac{2}{3}\right] e_{g}+\mathbf{e}\left[\frac{1}{3}\right] e_{g^{-1}},
\end{aligned}
$$

which is, moreover, an isomorphism of Frobenius algebras since we have $\operatorname{hess}(\bar{f})=12 y_{1}\left(2 \cdot 2 \cdot y_{2} y_{3}-\left(2 y_{2}+2 y_{3}\right)^{2}\right)=12 y_{1}^{2}\left(4 y_{2} y_{3}-4 y_{2}^{2}-8 y_{2} y_{3}-4 y_{3}^{2}\right)$ $=12 y_{1}^{2}\left(-4 y_{2} y_{3}+4 \cdot 2 y_{2} y_{3}+4 \cdot 2 y_{2} y_{3}\right)=12(12) y_{1}^{2} y_{2} y_{3} \in \operatorname{Jac}(\bar{f})$ and so

$$
J_{\bar{f}}\left(\left[d y_{1} \wedge d y_{2} \wedge d y_{3}\right],\left[y_{1}^{2} y_{2} y_{3} d y_{1} \wedge d y_{2} \wedge d y_{3}\right]\right)=\frac{1}{12}
$$

Then it is clear that there is also an algebra isomorphism

$$
\operatorname{Jac}(\bar{f}) \xrightarrow{\cong} \operatorname{Jac}\left(f_{2}^{T}, G_{2}\right)
$$

by the composition of the last two isomorphisms.
We finished the proof of Theorem 6.4.8.
Corollary 6.4.9 (cf. also our note [BTW17]). Let f_{1} and f_{2} be invertible polynomials defining exceptional unimodal singularities see Table 6.3. There is an isomorphism of Frobenius algebras

$$
\operatorname{Jac}\left(f_{1}^{T}, G_{f_{1}^{T}}^{\mathrm{SL}}\right) \cong \operatorname{Jac}\left(f_{2}\right)
$$

if and only if the associated singularities of f_{1} and f_{2} are strangely dual to each other in the sense of Arnold.
Proof. It is clear that for two polynomials of the same singularity type the normal Jacobian algebras are isomorphic. So the statement is clear, if one can show it for one polynomial f_{2} which is strangely dual to f_{1}. For all polynomials f_{1} with $G_{f_{1}^{T}}^{\mathrm{SL}}=\{\mathrm{id}\}$ the statement is clear from Proposition 6.4.4. The rest follows from Theorem 6.4.8 since there \bar{f} is always the strangely dual to f.

7 Orbifold Jacobian Algebras for Cusp Polynomials

7.1 Cusp Polynomials

Let A be a triplet $\left(a_{1}, a_{2}, a_{3}\right)$ of positive integers such that $a_{1} \leq a_{2} \leq a_{3}$. Set

$$
\mu_{A}=a_{1}+a_{2}+a_{3}-1
$$

and

$$
\chi_{A}=\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}-1 .
$$

Definition 7.1.1. A polynomial $f_{A} \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$ given by

$$
f_{A}=x_{1}^{a_{1}}+x_{2}^{a_{2}}+x_{3}^{a_{3}}-q^{-1} x_{1} x_{2} x_{3}
$$

for some $q \in \mathbb{C} \backslash\{0\}$ is called a cusp polynomial of type A.
Definition 7.1.2. We have three cases for f_{A} :
(i) If $\chi_{A}>0$ we call f_{A} an affine cusp polynomial.
(ii) If $\chi_{A}=0$ we have the following three cases:
a) $f_{A}=x_{1}^{2}+x_{2}^{3}+x_{3}^{6}-q^{-1} x_{1} x_{2} x_{3}$
b) $f_{A}=x_{1}^{2}+x_{2}^{4}+x_{3}^{4}-q^{-1} x_{1} x_{2} x_{3}$
c) $f_{A}=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}-q^{-1} x_{1} x_{2} x_{3}$
(iii) If $\chi_{A}<0 f_{A}$ defines a cusp singularity.

Remark 7.1.3. In case (i) the polynomial has many singularities and the Milnor fibre at $\mathbf{0}$ is not the right one to consider. So we will only concentrate on cusp polynomials with $\chi_{A} \leq 0$. These are the parabolic (case (ii)) and hyperbolic (case (iii)) unimodal singularities (cf. [AGV85, p.146])

Lemma 7.1.4. In case (iii) for all $q \in \mathbb{C} \backslash\{0\}$ the polynomial f_{A} has an isolated singularity at 0. In case (ii) we exclude $q^{-6}=432$ in (iia), $q^{-4}=64$ in (iib), $q^{-3}=27$ in (iic) respectively. For all other $q \in \mathbb{C} \backslash\{0\}$ the polynomial f_{A} has an isolated singularity at $\mathbf{0}$.

Proof. This is an easy computation. We see that $\operatorname{Jac}\left(f_{A}\right)$ has always a finite dimension over \mathbb{C}. See also Definition 7.1.8.

Definition 7.1.5 (cf. [ST15]). We can consider the universal unfolding of f_{A} (cf. Proposition 2.2.14). A holomorphic function $F_{A}\left(\mathbf{x} ; \mathbf{s}, s_{\mu_{A}}\right)$ defined on a neighborhood of $(\mathbf{0} ; \mathbf{0}, q)$ of $\mathbb{C}^{3} \times$ $\left(\mathbb{C}^{\mu_{A}-1} \times \mathbb{C} \backslash\{0\}\right)$ is given as follows:

$$
F_{A}\left(\mathbf{x} ; \mathbf{s}, s_{\mu_{A}}\right)=x_{1}^{a_{1}}+x_{2}^{a_{2}}+x_{3}^{a_{3}}-s_{\mu_{A}}^{-1} x_{1} x_{2} x_{3}+s_{1} \cdot 1+\sum_{i=1}^{3} \sum_{j=1}^{a_{i}-1} s_{i, j} x_{i}^{j}
$$

Of course we have

$$
F_{A}(\mathbf{x}, \mathbf{0}, q)=f_{A}(\mathbf{x})
$$

Remark 7.1.6. In [ST15] and [IST12] it was shown that for a cusp polynomial a good primitive form (cf. [Sa82], [Sa83], [ST08]) is given by

$$
\zeta_{A}=\left[s_{\mu_{A}}^{-1} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]
$$

In [IST12] it is even done for $\chi_{A}>0$. There is defined an algebra as an \mathcal{O}_{M} module for $M=\left(\mathbb{C}^{\mu_{A}-1} \times \mathbb{C} \backslash\{0\}\right)$, or for $\bar{M}=\left(\mathbb{C}^{\mu_{A}-1} \times \mathbb{C}\right)$.

We will still use our normal \mathbb{C}-module $\operatorname{Jac}\left(f_{A}\right)$. But we will always use this primitive form $\zeta=\left[q^{-1} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]$ for the isomorphism (2.1).

Definition 7.1.7. We can calculate the hessian of f_{A} :

$$
\begin{aligned}
\operatorname{hess}\left(f_{A}\right)= & a_{1}\left(a_{1}-1\right) a_{2}\left(a_{2}-1\right) a_{3}\left(a_{3}-1\right) x_{1}^{a_{1}-2} x_{2}^{a_{2}-2} x_{3}^{a_{3}-2} \\
& -\left(2+a_{1}-1+a_{2}-1+a_{3}-1\right) q^{-3} x_{1} x_{2} x_{3}
\end{aligned} \in \operatorname{Jac}\left(f_{A}\right)
$$

We define $\kappa=1$ for $\chi_{A}<0$ and $\kappa=1-432 q^{6}$ for (iia), $\kappa=1-64 q^{4}$ for (iib), $\kappa=1-27 q^{3}$ for (iic) respectively for $\chi_{A}=0$. So we get

$$
\operatorname{hess}\left(f_{A}\right)=-\kappa \mu_{f_{A}} q^{-3} x_{1} x_{2} x_{3} \in \operatorname{Jac}\left(f_{A}\right)
$$

Definition 7.1.8. The Jacobiam algebra $\operatorname{Jac}\left(f_{A}\right)$ has the monomial basis

- 1
- $x_{1}, x_{1}^{2}, \ldots, x_{1}^{a_{1}-1}$
- $x_{2}, x_{2}^{2}, \ldots, x_{2}^{a_{2}-1}$
- $x_{3}, x_{3}^{2}, \ldots, x_{3}^{a_{3}-1}$
- $\kappa q^{-1} x_{1} x_{2} x_{3}$.

So we have $\mu_{f_{A}}=\left(2+a_{1}-1+a_{2}-1+a_{3}-1\right)=\mu_{A}$.

Remark 7.1.9. We see

$$
J_{f_{A}}\left(\zeta, \kappa q^{-1} x_{1} x_{2} x_{3} \zeta\right)=J_{f_{A}}\left(q^{-1} d x_{1} \wedge d x_{2} \wedge d x_{3}, \kappa q^{-1} x_{1} x_{2} x_{3} q^{-1} d x_{1} \wedge d x_{2} \wedge d x_{3}\right)=-1
$$

That is the reason for this monomial basis.
Remark 7.1.10. If $f_{A}\left(x_{1}, x_{2}, x_{3}\right)$ is a cusp polynomial, then we have

$$
G_{f}=G_{f}^{\mathrm{SL}},
$$

and hence age (g) is an integer for all $g \in G_{f}$.
Let now be G again a subgroup of G_{f}.
Definition 7.1.11. For $i=1,2,3$ let K_{i} be the maximal subgroup of G fixing the i-th coordinate x_{i}, whose order $\left|K_{i}\right|$ is denoted by n_{i}.

Proposition 7.1.12 ([ET14, Cor. 2]). We have

$$
|G|=1+2 j_{G}+\sum_{i=1}^{3}\left(n_{i}-1\right),
$$

where j_{G} is the number of elements $g \in G$ such that age $(g)=1$ and $n_{g}=0$.
Remark 7.1.13. From this we also see directly that each group $K_{i}, i=1,2,3$ can only have the form $K_{i}=\mathbb{Z} / n_{i} \mathbb{Z}$ and we can choose generators for these cyclic groups. All elements $g \in G$, that are not in one $K_{i}, i=1,2,3$ have $n_{g}=0$. And we directly have always pairs g, g^{-1}. When we have age $(g)=1$ we get age $\left(g^{-1}\right)=2$.

Remark 7.1.14. From Remark 7.1.6 we see that q plays an important role for cusp polynomials. We have to consider this as an additional variable. So we will define $\operatorname{Aut}(f, G)$ in a little different way.

Definition 7.1.15. For a cusp polynomial $f_{A}=x_{1}^{a_{1}}+x_{2}^{a_{2}}+x_{3}^{a_{3}}-q^{-1} x_{1} x_{2} x_{3}$ and a group $G \subset G_{f_{A}}$ we define

$$
\operatorname{Aut}\left(f_{A}, G\right):=\left\{\varphi \in \mathrm{GL}(3+1, \mathbb{C}) \mid F_{A}(\varphi(\mathbf{x} ; \mathbf{0}, q))=F_{A}(\mathbf{x} ; \mathbf{0}, q), \varphi^{-1} g \varphi \in G \text { for all } g \in G\right\}
$$

Here we see $G \subset G_{f_{A}}$ as a subgroup of $\mathrm{GL}(3+1, \mathbb{C})$ which leaves q invariant. Then it is again obvious that G is a subgroup of $\operatorname{Aut}\left(f_{A}, G\right)$.

7.2 Theorem for Cusp Polynomials

We cannot give the uniqueness in total for all cusp polynomials, for the following pair we cannot give the uniqueness:

Definition 7.2.1. Let $f=x_{1}^{a_{1}}+x_{2}^{a_{2}}+x_{3}^{a_{3}}-q^{-1} x_{1} x_{2} x_{3}$ be a cusp polynomial and G be a group of diagonal symmetries of f, such that there exists a id $\neq g \in G$ and $i \in\{1,2,3\}$ with $x_{i} \in \operatorname{Fix}(g)$ and $a_{i}=3$. Such a pair (f, G) is called of bad type.

Theorem 7.2.2. Let $f=x_{1}^{a_{1}}+x_{2}^{a_{2}}+x_{3}^{a_{3}}-q^{-1} x_{1} x_{2} x_{3}$ be a cusp polynomial and G a subgroup of G_{f}. There exists a G-twisted Jacobian algebra $\operatorname{Jac}^{\prime}(f, G)$ of f. Furthermore when (f, G) is not of bad type it is a unique G-twisted Jacobian algebra $\operatorname{Jac}^{\prime}(f, G)$ of f up to isomorphism. Namely, it is uniquely characterized by the axioms in Definition 5.2.1.

In particular, the orbifold Jacobian algebra $\operatorname{Jac}(f, G)$ of (f, G) exists.
We will first define some elements and then show the uniqueness and the existence as stated in Section 5.4.

Definition 7.2.3. We choose a generator g_{1} of K_{1}.
Let $\varphi_{i j} \in \mathrm{GL}(3, \mathbb{C})$ be the automorphism which interchanges the i-th and j-th coordinate.
If $\left(\varphi_{1 j}^{-1} g_{1} \varphi_{1 j}\right)$ is a generator for $K_{j}, j=2,3$, we choose $g_{j}=\left(\varphi_{1 j}^{-1} g_{1} \varphi_{1 j}\right)$. Otherwise we choose other generators g_{j} for $K_{j}, j=2,3$.

Definition 7.2.4. Let $\varphi_{i} \in \operatorname{Aut}(f, G)$ be the element, which sends x_{i} to $\mathbf{e}\left[\frac{1}{a_{i}}\right] x_{i}$ and q to $\mathbf{e}\left[\frac{1}{a_{i}}\right] q$ and preserves the other coordinates.

Uniqueness

Throughout this subsection, $f=x_{1}^{a_{1}}+x_{2}^{a_{2}}+x_{3}^{a_{3}}-q^{-1} x_{1} x_{2} x_{3}$ denotes a cusp polynomial. And we show, as mentioned in Section 5.4, the uniqueness of $\operatorname{Jac}^{\prime}(f, G)$ for any $G \subset G_{f}$, such that (f, G) is not of bad type.

Take the nowhere vanishing 3 -form $q^{-1} d x_{1} \wedge d x_{2} \wedge d x_{3}$ and set $\zeta:=\left[q^{-1} d x_{1} \wedge d x_{2} \wedge d x_{3}\right] \in \Omega_{f}$.
Definition 7.2.5. Fix also a map

$$
\alpha: G_{f} \longrightarrow \mathbb{C}^{*}, \quad g \mapsto \alpha_{g}
$$

such that $\alpha_{\mathrm{id}}=1$ and

$$
\alpha_{g} \alpha_{g^{-1}}=1, \quad g \in G_{f}
$$

Such a map α always exists since for each g we may choose $\alpha_{g}=1$. For each $g \in G$, let v_{g} be as in Definition 5.4.5

$$
v_{g} \vdash \zeta=\alpha_{g} \omega_{g}
$$

Proposition 7.2.6. For $g, h \in G$ with $g, h, g h \neq$ id and Fix $(g)=\{0\}$ or Fix $(h)=\{0\}$, we have $v_{g} \circ v_{h}=0 \in \operatorname{Jac}^{\prime}(f, G)$.
Proof. W.l.o.g. $\operatorname{Fix}(g)=\{0\}$. Denote by $\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]$ the element of $\operatorname{Jac}\left(f^{g h}\right)$ satisfying $v_{g} \circ v_{h}=$ $\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right] v_{g h}$. We have four cases:
(i) $\operatorname{Fix}(h)=\{0\}, \operatorname{Fix}(g h)=\{0\}$
(ii) $F i x(h)=\{0\}, g h \in K_{i}$ for one $i \in\{1,2,3\}$
(iii) $h \in K_{i}$ for one $i \in\{1,2,3\}$, $\operatorname{Fix}(g h)=0$
(iv) $h \in K_{i}$ for one $i \in\{1,2,3\}, g h \in K_{j}$ for one $i \neq j \in\{1,2,3\}$

We prove it in every case:
(i) Here we have $v_{g}, v_{h}, v_{g h} \in \operatorname{Jac}^{\prime}(f, G)_{\overline{1}}$ so we get zero by the $\mathbb{Z} / 2 \mathbb{Z}$-grading.
(ii) We have $\varphi_{i}^{*}\left(v_{g}\right)=v_{g}$ and $\varphi_{i}^{*}\left(v_{h}\right)=v_{h}$, but $\varphi_{i}^{*}\left(v_{g h}\right)=\mathbf{e}\left[\frac{1}{a_{i}}\right] v_{g h}$. Axiom (iva) yields $\varphi^{*}\left(\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]\right)=\mathbf{e}\left[\frac{-1}{a_{i}}\right]\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]$, so $\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]$ has to be a constant multiple of $x_{i}^{a_{i}-1}$ or of q^{-1}. We have $x_{i}^{a_{i}-1}=0$ in $\operatorname{Jac}\left(f^{g h}\right)$. And for q^{-1} we get a contradiction by taking φ_{j}, $j \neq i$, which leaves all $v_{g}, v_{h}, v_{g h}$ invariant.
(iii) When we take $g \in G \subset \operatorname{Aut}(f, G)$, we have $g^{*}\left(v_{g}\right)=v_{g}, g^{*}\left(v_{g h}\right)=v_{g h}$, but $g^{*}\left(v_{h}\right)=\beta v_{h}$ for $\beta \neq 1 \in \mathbb{C}$, since ζ is G-invariant. Axiom (iva) yields $g^{*}\left(\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]\right)=\beta\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]$, so $\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]=0$ since $\operatorname{Jac}\left(f^{g h}\right) \cong \mathbb{C}$.
(iv) Here we have $v_{g} \in \operatorname{Jac}^{\prime}(f, G)_{\overline{1}}$ and $v_{h}, v_{g h} \in \operatorname{Jac}^{\prime}(f, G)_{\overline{0}}$ so we get zero by the $\mathbb{Z} / 2 \mathbb{Z}$ grading.

Proposition 7.2.7. For $g, h \in G$ with $g \in K_{i}$ and $h \in K_{j}, i \neq j$, we have $v_{g} \circ v_{h}=0 \in$ $\operatorname{Jac}^{\prime}(f, G)$.

Proof. Denote by $\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]$ the element of $\operatorname{Jac}\left(f^{g h}\right)$ satisfying $v_{g} \circ v_{h}=\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right] v_{g h}$. We have again two cases:
(i) $\operatorname{Fix}(g h)=\{0\}$
(ii) $g h \in K_{k}$ for one $k \in\{1,2,3\} \backslash\{i, j\}$

We prove it in every case:
(i) Here we have $v_{g} \in \operatorname{Jac}^{\prime}(f, G)_{\overline{0}}$ and $v_{h}, v_{g h} \in \operatorname{Jac}^{\prime}(f, G)_{\overline{1}}$ so we get zero by the $\mathbb{Z} / 2 \mathbb{Z}$ grading.
(ii) As in the second case of Proposition 7.2.6, we get with φ_{k} that $\left[\gamma_{g, h}^{\prime}(\mathbf{x})\right]$ has to be a constant multiple of $x_{k}^{a_{k}-1}$ or of q^{-1}, which is zero or gives a contradiction by taking φ_{i} or φ_{j}.

So we only have to consider $g, h \in K_{i}$ for each $i \in\{1,2,3\}$ and g, g^{-1} with $\operatorname{Fix}(g)=\{0\}$.
Proposition 7.2.8. For $g \in G$ with $\operatorname{Fix}(g)=\{0\}$ we have

$$
v_{g} \circ v_{g^{-1}}=(-1)^{\mathrm{age}(g)} \kappa q^{-1} x_{1} x_{2} x_{3} v_{\mathrm{id}}
$$

with the κ of Definition 7.1.7.

Proof. Since $\alpha_{g} \alpha_{g^{-1}}=1$, we have

$$
\begin{aligned}
J_{f, \text { id }}\left(\zeta, v_{g} \circ v_{g^{-1}} \vdash \zeta\right) & =J_{f, g}\left(v_{g} \vdash \zeta, v_{g^{-1}} \vdash \zeta\right) \\
& =(-1)^{3} \cdot \mathbf{e}\left[-\frac{1}{2} \operatorname{age}(g)\right] \cdot|G| \\
& =-(-1)^{-\operatorname{age}(g)}|G|
\end{aligned}
$$

and on the other hand

$$
\begin{aligned}
J_{f, \text { id }} & \left(\zeta, \kappa q^{-1} x_{1} x_{2} x_{3} v_{\mathrm{id}} \vdash \zeta\right) \\
& =|G| J_{f}\left(q^{-1} d x_{1} \wedge d x_{2} \wedge d x_{3}, \kappa q^{-1} x_{1} x_{2} x_{3} q^{-1} d x_{1} \wedge d x_{2} \wedge d x_{3}\right) \\
& =-|G| .
\end{aligned}
$$

For each $i=1,2,3$, we take the generators g_{i} of the group $K_{i} \cong \mathbb{Z} / n_{i} \mathbb{Z}$ (cf. Definition 7.2.3). We define the elements $w_{g_{i}^{l}}$ of $\operatorname{Jac}^{\prime}\left(f, g_{i}^{l}\right)$ as $w_{g_{i}^{l}}=v_{g_{i}^{l}}$ for each $l \in \mathbb{Z}$ with $l \notin n_{i} \mathbb{Z}$ and we set the element $w_{g_{i}^{l}}=x_{i} v_{\mathrm{id}} \in \operatorname{Jac}^{\prime}(f, \mathrm{id})$ for each $l \in n_{i} \mathbb{Z}$.
Lemma 7.2.9. For $i \neq j \in\{1,2,3\}$ and all $l_{i}, l_{j} \in \mathbb{Z}$, we have the following equality in $\operatorname{Jac}^{\prime}\left(f, g_{i}^{l_{i}} g_{j}^{l_{j}}\right)$

$$
w_{g_{i}^{l_{i}}} \circ w_{g_{j}^{l_{j}}}=\left\{\begin{array}{ll}
a_{k} q x_{k}^{a_{k}-1} v_{\mathrm{id}} & l_{i} \in n_{i} \mathbb{Z} \text { and } l_{j} \in n_{j} \mathbb{Z}, k \in\{1,2,3\} \backslash\{i, j\} \\
0 & \text { otherwise }
\end{array} .\right.
$$

Proof. If $l_{i} \in n_{i} \mathbb{Z}, l_{j} \in n_{j} \mathbb{Z}$, then $w_{g_{i}^{0}} \circ w_{g_{j}^{0}}=x_{i} v_{\text {id }} \circ x_{j} v_{\text {id }}=a_{k} q x_{k}^{a_{k}-1} v_{\text {id }}$ in $\operatorname{Jac}^{\prime}(f$, id $) \cong \operatorname{Jac}(f)$. If $l_{i} \in n_{i} \mathbb{Z}$ and $l_{j} \notin n_{i} \mathbb{Z}$, then $w_{g_{i}^{0}} \circ w_{g_{j}}=x_{i} v_{\mathrm{id}} \circ v_{g_{j}}=x_{i} v_{g_{j}}=0$ in $\operatorname{Jac}^{\prime}\left(f, g_{j}^{l_{j}}\right)$ and vice versa. If $l_{i} \notin n_{i} \mathbb{Z}$ and $l_{j} \notin n_{j} \mathbb{Z}$, we are in the case of Proposition 7.2.7.
Proposition 7.2.10. For each pair $l, m \in \mathbb{Z}$ there exists $c_{l, m} \in \mathbb{C}$ such that

$$
w_{g_{i}^{l}} \circ w_{g_{i}^{m}}=c_{l, m} x_{i} w_{g_{i}^{l+m}} \in \operatorname{Jac}^{\prime}\left(f, g_{i}^{l+m}\right)
$$

Remark 7.2.11. The $c_{l, m} \in \mathbb{C}$ can depend on q in the case $\chi_{A}=0$ as we will see in Lemma 7.2.14.

Proof. Denote by $\left[\gamma_{l, m}^{\prime}(\mathbf{x})\right]$ the element of $\operatorname{Jac}\left(f^{g_{i}^{l+m}}\right)$ satisfying $w_{g_{i}^{l}} \circ w_{g_{i}^{m}}=\left[\gamma_{l, m}^{\prime}(\mathbf{x})\right] w_{g h}$. With the $\operatorname{Aut}(f, G)$-element φ_{i} we get $\varphi_{i}\left(w_{g_{i}^{l}}\right)=\mathbf{e}\left[\frac{1}{a_{i}}\right] w_{g_{i}^{l}}$ and so since the multiplication is $\operatorname{Aut}(f, G)$ invariant, we get $\varphi_{i}^{*}\left(\left[\gamma_{l, m}^{\prime}(\mathbf{x})\right]\right)=\mathbf{e}\left[\frac{1}{a_{i}}\right]\left[\gamma_{l, m}^{\prime}(\mathbf{x})\right]$ so it has to be a multiple of x_{i} or of q. For $j \neq i$ we have $\varphi_{j}^{*}\left(w_{g_{i}^{l}}\right)=w_{g_{i}^{l}}$, so a constant multiple of x_{i} is the only possibility.
Remark 7.2.12. In the proof of Proposition 7.2 .10 we assumed that $w_{g_{i}^{l}} \circ w_{g_{i}^{m}}$ is always a multiple of $w_{g_{i}^{l+m}}$ which is a priori not clear for $l+m \in n_{i} \mathbb{Z}$. But even there we can only have that $w_{g_{i}^{l}} \circ w_{g_{i}^{m}}$ is a constant multiple of $q^{2} x_{j}^{a_{j}-2} x_{k}^{a_{k}-2}$ this is not zero only for $a_{j}=a_{k}=3$ but then this is not possible, since we would have $0=J_{f, g}\left(x_{i} w_{g_{i}^{l}}, w_{g_{i}^{m}}\right)=J_{f, \mathrm{id}}\left(v_{\mathrm{id}}, x_{i} w_{g_{i}^{l}} \circ w_{g_{i}^{m}}\right)=$ $J_{f, \mathrm{id}}\left(v_{\mathrm{id}}, c q^{2} x_{i} x_{j} x_{k}\right) \neq 0$. So we get a contradiction.

We give some properties of $c_{l, m}$.
It is obvious that $c_{l, m+n_{i}}=c_{l, m}=c_{l+n_{i}, m}$. If $l \in n_{i} \mathbb{Z}$ or $m \in n_{i} \mathbb{Z}$ it is clear that $c_{0, m}=c_{l, 0}=1$ because of Axiom (iiia) and the definition of $w_{g_{i}^{0}}$. Nevertheless for $a_{i}=2$ the multiplication need not to be nonzero.

Lemma 7.2.13. We have $c_{l, m}=c_{m, l}$.
Proof. Since $n-n_{g} \equiv 0 \bmod 2$ for g_{i}^{l} for all $l \in \mathbb{Z}$, this multiplication is in $\operatorname{Jac}^{\prime}(f, G)_{\overline{0}}$, the commutative subalgebra.

Lemma 7.2.14. We have $c_{l,-l}=\kappa$ from Definition 7.1.7 for $l \in \mathbb{Z}, l \notin n_{i} \mathbb{Z}$. So for $\chi_{A}<0$ we even have $c_{l,-l}=1$ for all $l \in \mathbb{Z}$.

Proof. For $l \in n_{i} \mathbb{Z}$ it is clear that $c_{l,-l}=1$. For $l \notin n_{i} \mathbb{Z}$ we have

$$
\begin{aligned}
J_{f, g_{i}^{l}}\left(x_{i}^{a_{i}-2} v_{g_{i}^{l}} \vdash \zeta, v_{g_{i}^{-l}} \vdash \zeta\right) & =\alpha_{g_{i}^{l}} \alpha_{g_{i}^{-l}} J_{f, g}\left(x_{i}^{a_{i}-2} \omega_{g}, \omega_{g^{-1}}\right) \\
& =1 \cdot(-1)^{3-1} \mathbf{e}\left[-\frac{1}{2} \operatorname{age}\left(g_{i}^{l}\right)\right] \cdot|G| \cdot \frac{1}{a_{i}} \\
& =-\frac{|G|}{a_{i}} .
\end{aligned}
$$

On the other hand, by Axiom (v), we have

$$
\begin{aligned}
J_{f, g}\left(x_{i}^{a_{i}-2} v_{g_{i}^{l}}\right. & \left.\vdash \zeta, v_{g_{i}^{-l}} \vdash \zeta\right)=J_{f, i d}\left(\omega_{\mathrm{id}}, x_{i}^{a_{i}-2} v_{g_{i}^{l}} \circ v_{g_{i}^{-l}} \vdash \zeta\right) \\
& =J_{f, i d}\left(\omega_{\mathrm{id}}, c_{l,-l} x_{i}^{a_{i}-1} v_{g_{i}^{\circ}} \vdash \zeta\right) \\
& =c_{l,-l} J_{f, i d}\left(\omega_{\mathrm{id}}, x_{i}^{a_{i}} \omega_{\mathrm{id}}\right) \\
& =c_{l,-l} J_{f, i d}\left(\omega_{\mathrm{id}}, \frac{1}{a_{i}} q^{-1} x_{1} x_{2} x_{3} \omega_{\mathrm{id}}\right) \\
& =c_{l,-l} \frac{1}{a_{i}} \cdot|G| J_{f}\left(q^{-1} d x_{1} \wedge d x_{2} \wedge d x_{3}, q^{-1} x_{1} x_{2} x_{3} q^{-1} d x_{1} \wedge d x_{2} \wedge d x_{3}\right) \\
& =c_{l,-l} \frac{1}{a_{i}} \cdot|G|\left(\frac{-1}{\kappa}\right) .
\end{aligned}
$$

Remark 7.2.15. Note that if $a_{i}=2$ then $w_{g_{i}^{\prime}} \circ w_{g_{i}^{m}} \neq 0$ if and only if $l+m \in n_{i} \mathbb{Z}$ and the product structure is uniquely determined by these lemmata.

Also for the three polynomials with $\chi_{A}=0$ and $a_{i} \neq 2$ we can only have $K_{i} \cong \mathbb{Z} / 2 \mathbb{Z}$ when K_{i} is not trivial. For the polynomial with $a_{i}=3$ for all $i=1,2,3$ we would otherwise have a pair of bad type (cf. Definition 7.2.1). So for all three polynomials with $\chi_{A}=0$ the product structure is also uniquely determined by these lemmata.

So from now on we can assume $\chi_{A}<0$ and $a_{i} \geq 4$, since for $a_{i}=3$ we would have a pair of bad type.

Lemma 7.2.16. Assume that $a_{i} \geq 4$. We have $c_{l, m} c_{l+m, n}=c_{l, m+n} c_{m, n}$ for all $l, m, n \in \mathbb{Z}$.

Proof. We have

$$
\begin{aligned}
& \left(v_{g_{i}^{l}} \circ v_{g_{i}^{m}}\right) \circ v_{g_{i}^{n}}=\left(c_{l, m} x_{i} v_{g_{i}^{l+m}}\right) \circ v_{g_{i}^{n}}=c_{l, m} c_{l+m, n} x_{i}^{2} v_{g_{i}^{l+m+n}}, \\
& v_{g_{i}^{l}} \circ\left(v_{g_{i}^{m}} \circ v_{g_{i}^{n}}\right)=v_{g_{i}^{l}} \circ\left(c_{m, n} x_{i} v_{g_{i}^{m+n}}\right)=c_{l, m+n} c_{m, n} x_{i}^{2} v_{g_{i}^{l+m+n}} .
\end{aligned}
$$

The associativity of o yields the statement.
Lemma 7.2.17. Assume that $a_{i} \geq 4$. For all $l, m \in \mathbb{Z}$, we have $c_{l, m} c_{-l,-m}=1$, in particular, $c_{l, m} \neq 0$ for all $l, m \in \mathbb{Z}$.

Proof. We have

$$
\begin{aligned}
v_{g_{i}^{l}} \circ v_{g_{i}^{m}} \circ v_{g_{i}^{-l}} \circ v_{g_{i}^{-m}} & =\left(c_{l, m} x_{i} v_{g_{i}^{l+m}}\right) \circ\left(c_{-l,-m} x_{i} v_{g_{i}^{-l-m}}\right) \\
& =c_{l, m} c_{-l,-m} c_{l+m,-l-m} x_{i}^{3} v_{g_{i}^{0}}=c_{l, m} c_{-l,-m} x_{i}^{4} v_{\mathrm{id}}, \\
v_{g_{i}^{l}} \circ v_{g_{i}^{-l}} \circ v_{g_{i}^{m}} \circ v_{g_{i}^{-m}} & =\left(c_{l,-l} x_{i} v_{g_{i}^{0}}\right) \circ\left(c_{m,-m} x_{i} v_{g_{i}^{0}}\right) \\
& =c_{l,-l} c_{m,-m} x_{i}^{2} x_{i}^{2} v_{\mathrm{id}}=x_{i}^{4} v_{\mathrm{id}} .
\end{aligned}
$$

The statement follows from the associativity and the commutativity of the product 0 with Lemma 7.2.14.

Lemma 7.2.18. Assume that $a_{i} \geq 4$. For all $l, m \in \mathbb{Z}_{\geq 1}$, we have

$$
c_{l, m}=\frac{\prod_{d=0}^{l+m-1} c_{1, d}}{\left(\prod_{a=0}^{l-1} c_{1, a}\right)\left(\prod_{b=0}^{m-1} c_{1, b}\right)} .
$$

Proof. By Lemma 7.2.16 and Lemma 7.2.17, we have

$$
c_{l, m}=c_{l+1, m-1} \frac{c_{1, l}}{c_{1, m-1}},
$$

and hence

$$
c_{l, m}=c_{l+m-1,1} \frac{c_{1, l+m-2}}{c_{1,1}} \ldots \frac{c_{1, l+1}}{c_{1, m-2}} \frac{c_{1, l}}{c_{1, m-1}}=\frac{\prod_{d=0}^{l+m-1} c_{1, d}}{\left(\prod_{a=0}^{l-1} c_{1, a}\right)\left(\prod_{b=0}^{m-1} c_{1, b}\right)} .
$$

For each $l \in \mathbb{Z}_{\geq 1}$, set

$$
\widetilde{c}_{l}:=\left(\prod_{a=0}^{n_{i}-1} c_{1, a}\right)^{-\frac{l}{n_{i}}}\left(\prod_{a=0}^{l-1} c_{1, a}\right) .
$$

Lemma 7.2.19. Assume that $a_{i} \geq 4$. For all $l \in \mathbb{Z}_{\geq 1}$, we have

$$
\widetilde{c}_{l+n_{i}}=\widetilde{c}_{l} .
$$

Proof. Note that $\prod_{a=l}^{l+n_{i}-1} c_{1, a}=\prod_{a=0}^{n_{i}-1} c_{1, a}$ since $c_{1, b}=c_{1, b+n_{i}}$ for all $b \in \mathbb{Z}$. Then the statement follows from the following equation.

$$
\widetilde{c}_{l+n_{i}}=\left(\prod_{a=0}^{n_{i}-1} c_{1, a}\right)^{-\frac{l+n_{i}}{n_{i}}}\left(\prod_{a=0}^{l+n_{i}-1} c_{1, a}\right)=\widetilde{c}_{l}\left(\prod_{a=0}^{n_{i}-1} c_{1, a}\right)^{-1}\left(\prod_{a=l}^{l+n_{i}-1} c_{1, a}\right)=\widetilde{c}_{l} .
$$

By this Lemma, for all $l \in \mathbb{Z}$ we can define \widetilde{c}_{l} as $\widetilde{c}_{l+n_{i} N}$ by choosing a positive integer N such that $l+n_{i} N \geq 0$, which is independent of the choice of such an N.

Lemma 7.2.20. We have:

$$
\begin{aligned}
& \widetilde{c}_{n_{i}}=1 \\
& \widetilde{c}_{l} \widetilde{c}_{n_{i}-l}=1
\end{aligned}
$$

Proof. $\widetilde{c}_{n_{i}}=\left(\prod_{a=0}^{n_{i}-1} c_{1, a}\right)^{-\frac{n_{i}}{n_{i}}}\left(\prod_{a=0}^{n_{i}-1} c_{1, a}\right)=1$ and
$\widetilde{c}_{l} \widetilde{c}_{n_{i}-l}=\left(\prod_{a=0}^{n_{i}-1} c_{1, a}\right)^{-\frac{l}{n_{i}}}\left(\prod_{a=0}^{l-1} c_{1, a}\right)\left(\prod_{a=0}^{n_{i}-1} c_{1, a}\right)^{-\frac{n_{i}-l}{n_{i}}}\left(\prod_{a=0}^{n_{i}-l-1} c_{1, a}\right)$
$=\left(\prod_{a=0}^{l-1} c_{1, a}\right)\left(\prod_{a=0}^{n_{i}-l-1} c_{1, a}\right)\left(\prod_{a=0}^{n_{i}-1} c_{1, a}\right)^{-1}=c_{l, n_{i}-l}^{-1}=1$.
For each $l \in \mathbb{Z}$, set $\widetilde{w}_{g_{i}^{l}}:=\widetilde{c}_{l} w_{g_{i}^{l}}$.
Lemma 7.2.21. Assume that $a_{i} \geq 4$. In $\operatorname{Jac}^{\prime}\left(f, g_{i}^{l+m}\right)$, we have the following equality

$$
\widetilde{w}_{g_{i}^{l}} \circ \widetilde{w}_{g_{i}^{m}}=x_{i} \widetilde{w}_{g_{i}^{l+m}}
$$

Proof. It follows directly from Lemma 7.2.18.
This lemma states that by replacing the map $\alpha: G_{f} \longrightarrow \mathbb{C}^{*}$ by a suitable one we have a new basis $\left\{\widetilde{v}_{g}\right\}_{g \in G_{f}}$ instead of $\left\{v_{g}\right\}_{g \in G_{f}}$. To summarize, we finally obtain the following

Corollary 7.2.22. Let $g, h \in G$ and (f, G) not of bad type. We have

$$
\widetilde{v}_{g} \circ \widetilde{v}_{h}= \begin{cases}\widetilde{v}_{g} & \text { if } h=\text { id } \\ \widetilde{v}_{h} & \text { if } g=\mathrm{id} \\ x_{i} \widetilde{w}_{g h} & \text { if } \operatorname{Fix}(g)=\operatorname{Fix}(h)=\left\{x_{i}\right\}=\operatorname{Fix}(g h) \\ \kappa x_{i} \widetilde{w}_{g h} & \text { if } \operatorname{Fix}(g)=\operatorname{Fix}(h)=\left\{x_{i}\right\}, g h=\mathrm{id} \\ (-1)^{\text {age }(g)} \kappa q^{-1} x_{1} x_{2} x_{3} & \text { if } \operatorname{Fix}(g)=\operatorname{Fix}(h)=\{0\}, g h=\mathrm{id} \\ 0 & \text { otherwise }\end{cases}
$$

with the κ from Definition 7.1.7.
In particular, for any subgroup G of G_{f} and (f, G) not of bad type, if a G-twisted Jacobian algebra of f exists, then it is uniquely determined by the axioms in Definition 5.2.1 up to isomorphism.

Existence

Throughout this subsection, $f=x_{1}^{a_{1}}+x_{2}^{a_{2}}+x_{3}^{a_{3}}-q^{-1} x_{1} x_{2} x_{3}$ denotes a cusp polynomial. And we show, as mentioned in Section 5.4, the existence of $\operatorname{Jac}^{\prime}(f, G)$ for any $G \subset G_{f}$. Let \mathcal{A}^{\prime} be as in Definition 5.4.7.

Definition 7.2.23. For each $g, h \in G_{f}$, define an element of $\mathcal{A}_{g h}^{\prime}$ by

$$
\bar{v}_{g} \circ \bar{v}_{h}= \begin{cases}\bar{v}_{g} & \text { if } h=\text { id } \\ \bar{v}_{h} & \text { if } g=\mathrm{id} \\ x_{i} \bar{v}_{g h} & \text { if } \operatorname{Fix}(g)=\operatorname{Fix}(h)=\operatorname{Fix}(g h)=\left\{x_{i}\right\} \\ \kappa x_{i}^{2} \bar{v}_{\text {id }} & \text { if } \operatorname{Fix}(g)=\operatorname{Fix}(h)=\left\{x_{i}\right\}, g h=\mathrm{id} \\ (-1)^{\text {age }(g)} \kappa q^{-1} x_{1} x_{2} x_{3} \bar{v}_{\text {id }} & \text { if } \operatorname{Fix}(g)=\operatorname{Fix}(h)=\{0\}, g h=\mathrm{id} \\ 0 & \text { otherwise }\end{cases}
$$

with the κ from Definition 7.1.7.

Lemma 7.2.24. For $g, h \in G_{f}$ we have

$$
\bar{v}_{g} \circ \bar{v}_{h}=(-1)^{\left(n-n_{g}\right)\left(n-n_{h}\right)} \cdot\left(\bar{v}_{h} \circ \bar{v}_{g}\right) .
$$

Proof. This is clear from the definition, since only for $\operatorname{Fix}(g)=\{0\}$ we have $n-n_{g} \equiv 1 \bmod 2$ and so in this case we have if $g=\left(\frac{a_{1}}{r}, \frac{a_{2}}{r}, \frac{a_{3}}{r}\right)$ is an element of age 1 with $0<a_{i}<r, i=1,2,3$, then $g^{-1}=\left(\frac{r-a_{1}}{r}, \frac{r-a_{2}}{r}, \frac{r-a_{3}}{r}\right)$ is an element of age 2 and vice versa (cf. Proposition 7.1.12).

Proposition 7.2.25. For each $g, g^{\prime}, g^{\prime \prime} \in G_{f}$, we have

$$
\left(\bar{v}_{g} \circ \bar{v}_{g^{\prime}}\right) \circ \bar{v}_{g^{\prime \prime}}=\bar{v}_{g} \circ\left(\bar{v}_{g^{\prime}} \circ \bar{v}_{g^{\prime \prime}}\right) .
$$

Proof. We only do not get zero on both sides, if one of $g, g^{\prime}, g^{\prime \prime}$ is the identity, or if $\operatorname{Fix}(g)=$ $\operatorname{Fix}\left(g^{\prime}\right)=\operatorname{Fix}\left(g^{\prime \prime}\right)=\left\{x_{i}\right\}$ for one $i \in\{1,2,3\}$. If one of $g, g^{\prime}, g^{\prime \prime}$ is the identity, this is trivially satisfied since $\bar{v}_{g} \circ \bar{v}_{\mathrm{id}}=\bar{v}_{g}$. For the other case we define the elements $\bar{w}_{g_{i}^{l}}$ of $\operatorname{Jac}^{\prime}\left(f, g_{i}^{l}\right)$ as $\bar{w}_{g_{i}^{l}}=v_{g_{i}^{\prime}}$ for each $l \in \mathbb{Z}$ with $l \notin n_{i} \mathbb{Z}$ and we set the element $\bar{w}_{g_{i}^{l}}=x_{i} v_{\mathrm{id}} \in \operatorname{Jac}^{\prime}(f$, id $)$ for each $l \in n_{i} \mathbb{Z}$. Then we have for $\chi_{A}<0$ and so $\kappa=1:\left(\bar{w}_{g} \circ \bar{w}_{g^{\prime}}\right) \circ \bar{w}_{g^{\prime \prime}}=x_{i} \bar{w}_{g g^{\prime}} \circ \bar{w}_{g^{\prime \prime}}=x_{i}^{2} \bar{w}_{g g^{\prime} g^{\prime \prime}}=$ $x_{i} \bar{w}_{g} \circ \bar{w}_{g^{\prime} g^{\prime \prime}}=\bar{w}_{g} \circ\left(\bar{w}_{g^{\prime}} \circ \bar{w}_{g^{\prime \prime}}\right)$. For $\chi_{A}=0$ we either have $a_{i}=2$ and so both sides are zero or we have $a_{i}=3$ for all $i=1,2,3$. Then we could have $K_{i}=\mathbb{Z} / 3 \mathbb{Z}$ and then we get either $g g^{\prime} g^{\prime \prime}=\mathrm{id}$ and so $g=g^{\prime}=g^{\prime \prime}$ so it is clear or $g g^{\prime} g^{\prime \prime} \neq \mathrm{id}$. Then we get on both sides a multiple of $x_{i} \bar{v}_{g g^{\prime} g^{\prime \prime}}$ which is zero in $\operatorname{Jac}\left(f, g g^{\prime} g^{\prime \prime}\right)$.

Now it is possible to define a $\mathbb{Z} / 2 \mathbb{Z}$-graded \mathbb{C}-algebra structure on \mathcal{A}^{\prime}.

Definition 7.2.26. Define a \mathbb{C}-bilinear map $\circ: \mathcal{A}^{\prime} \otimes_{\mathbb{C}} \mathcal{A}^{\prime} \longrightarrow \mathcal{A}^{\prime}$ by setting, for each $g, h \in G_{f}$ and $\phi(\mathbf{x}), \psi(\mathbf{x}) \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$,

$$
\begin{aligned}
& \left([\phi(\mathbf{x})] \bar{v}_{g}\right) \circ\left([\psi(\mathbf{x})] \bar{v}_{h}\right) \\
& := \begin{cases}{[\phi(\mathbf{x}) \psi(\mathbf{x})] \bar{v}_{g}} & \text { if } h=\mathrm{id} \\
{[\phi(\mathbf{x}) \psi(\mathbf{x})] \bar{v}_{h}} & \text { if } g=\mathrm{id} \\
{\left[\phi(\mathbf{x}) \psi(\mathbf{x}) x_{i}\right] \bar{v}_{g h}} & \text { if } \operatorname{Fix}(g)=\operatorname{Fix}(h)=\operatorname{Fix}(g h)=\left\{x_{i}\right\} \\
\kappa\left[\phi(\mathbf{x}) \psi(\mathbf{x}) x_{i}^{2}\right] \bar{v}_{\text {id }} & \text { if } \operatorname{Fix}(g)=\operatorname{Fix}(h)=\left\{x_{i}\right\}, g h=\mathrm{id} \\
(-1)^{\text {age }(g)} \kappa\left[\phi(\mathbf{x}) \psi(\mathbf{x}) q^{-1} x_{1} x_{2} x_{3}\right] \bar{v}_{\text {id }} & \text { if } \operatorname{Fix}(g)=\operatorname{Fix}(h)=\{0\}, g h=\mathrm{id} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

with the κ from Definition 7.1.7.
Proposition 7.2 .27 . The map \circ equips \mathcal{A}^{\prime} with the structure of a $\mathbb{Z} / 2 \mathbb{Z}$-graded \mathbb{C}-algebra with the identity \bar{v}_{id}, which satisfies Axiom (ii) in Definition 5.2.1.
Proof. The associativity of the product follows from Proposition 7.2.25. By the definition 7.2.23 it is obvious that $\mathcal{A}_{\bar{i}}^{\prime} \circ \mathcal{A}_{\bar{j}}^{\prime} \subset \mathcal{A}_{i+j}^{\prime}$ since we always have zero, when $\left(n-n_{g}\right)+\left(n-n_{h}\right) \not \equiv$ $\left(n-n_{g h}\right) \bmod 2$. It is also clear by the definition of the map \circ above that the natural surjective maps $\operatorname{Jac}(f) \longrightarrow \operatorname{Jac}\left(f^{g}\right), g \in G_{f}$, equip \mathcal{A}^{\prime} with the structure of a $\operatorname{Jac}(f)$-module, which coincides with the product map $\circ: \mathcal{A}_{\text {id }}^{\prime} \otimes_{\mathbb{C}} \mathcal{A}_{g}^{\prime} \longrightarrow \mathcal{A}_{g}^{\prime}$.
Definition 7.2.28. Take the nowhere vanishing 3 -form $q^{-1} d x_{1} \wedge d x_{2} \wedge d x_{3}$ and set $\zeta:=$ $\left[q^{-1} d x_{1} \wedge d x_{2} \wedge d x_{3}\right] \in \Omega_{f}$. Define a \mathbb{C}-bilinear map $\vdash: \mathcal{A}^{\prime} \otimes_{\mathbb{C}} \Omega_{f, G_{f}}^{\prime} \longrightarrow \Omega_{f, G_{f}}^{\prime}$ by setting, for each $g, h \in G_{f}$ and $\phi(\mathbf{x}), \psi(\mathbf{x}) \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$,

$$
\begin{aligned}
& \left([\phi(\mathbf{x})] \bar{v}_{g}\right) \vdash\left([\psi(\mathbf{x})] \omega_{h}\right) \\
& := \begin{cases}\frac{\bar{\alpha}_{g h}}{\bar{\sigma}_{h}}[\phi(\mathbf{x}) \psi(\mathbf{x})] \omega_{g} & \text { if } h=\mathrm{id} \\
\frac{\bar{\alpha}_{g h}}{}[\phi(\mathbf{x}) \psi(\mathbf{x})] \omega_{h} & \text { if } g=\mathrm{id} \\
\frac{\bar{\alpha}_{h}}{\bar{\alpha}_{h}}\left[\phi(\mathbf{x}) \psi(\mathbf{x}) x_{i}\right] \omega_{g h} & \text { if } \operatorname{Fix}(g)=\operatorname{Fix}(h)=\operatorname{Fix}(g h)=\left\{x_{i}\right\} \\
\frac{\kappa g_{g h}}{\bar{\alpha}_{h}}\left[\phi(\mathbf{x}) \psi(\mathbf{x}) x_{i}^{2}\right] \omega_{\text {id }} & \text { if } \operatorname{Fix}(g)=\operatorname{Fix}(h)=\left\{x_{i}\right\}, g h=\mathrm{id} \\
(-1)^{\text {age }(g)} \frac{\kappa \bar{\alpha}_{g h}}{\bar{\alpha}_{h}}\left[\phi(\mathbf{x}) \psi(\mathbf{x}) q^{-1} x_{1} x_{2} x_{3}\right] \omega_{\text {id }} & \text { if } \operatorname{Fix}(g)=\operatorname{Fix}(h)=\{0\}, g h=\mathrm{id} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

with the κ from Definition 7.1.7 and $\bar{\alpha}: G \longrightarrow \mathbb{C}^{*}, g \mapsto \bar{\alpha}_{g}$ is a map we will define now:

Definition 7.2.29.

$$
\bar{\alpha}_{g}:=1 \text { if } \operatorname{Fix}(g)=\{0\} .
$$

All other $g \in G_{f}$ can be written as g_{i}^{l} for the generators g_{i} of $K_{i}, i=1,2,3$. We define for $i \in\{1,2,3\}$ and $m \in \mathbb{Z}_{\geq 0}$ the numbers:

$$
c_{m}^{i}:= \begin{cases}1 & m \equiv 0 \quad \bmod n_{i} \\ 1 & m \equiv n_{i}-1 \quad \bmod n_{i} \\ \sqrt{-1} & \text { otherwise }\end{cases}
$$

Then we define

$$
\bar{\alpha}_{g_{i}^{l}}=\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{l}{n_{i}}}\left(\prod_{m=0}^{l-1} c_{m}^{i}\right) .
$$

Lemma 7.2.30. This is well defined since $\bar{\alpha}_{g_{i}^{l}}=\bar{\alpha}_{g_{i}}{ }^{l+n_{i}}$ and $\bar{\alpha}_{g_{i} n_{i}}=1$ for all $i=1,2,3$.
Proof. Note that $\prod_{m=l}^{l+n_{i}-1} c_{m}^{i}=\prod_{m=0}^{n_{i}-1} c_{m}^{i}$ since in both products we have twice a 1 and $\left(n_{i}-2\right)$ times a $\sqrt{-1}$. Then the statement follows from the following equation.

$$
\bar{\alpha}_{g_{i}^{l+n_{i}}}=\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{l+n_{i}}{n_{i}}}\left(\prod_{m=0}^{l+n_{i}-1} c_{m}^{i}\right)=\bar{\alpha}_{g_{i}^{l}}\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-1}\left(\prod_{m=l}^{l+n_{i}-1} c_{m}^{i}\right)=\bar{\alpha}_{g_{i}^{l}} .
$$

For all $i=1,2,3$ we have: $\bar{\alpha}_{g_{i}^{n_{i}}}=\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{n_{i}}{n_{i}}}\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)=1$.
Lemma 7.2.31. The map $\bar{\alpha}: G \longrightarrow \mathbb{C}^{*}$ satisfies $\bar{\alpha}_{\mathrm{id}}=1$ and

$$
\bar{\alpha}_{g} \bar{\alpha}_{g^{-1}}=1, \quad g \in G_{f} .
$$

Proof. For all $i=1,2,3$ we have $\bar{\alpha}_{\mathrm{id}}=\bar{\alpha}_{g_{i}}^{n_{i}}=1$. For $\operatorname{Fix}(g)=\{0\}$ and for $g=\mathrm{id}$ the second statement is trivially satisfied. In the other cases for $i \in\{1,2,3\}$ we can take $0<l<n_{i}$ and have

$$
\begin{aligned}
& \bar{\alpha}_{g} \bar{\alpha}_{g^{-1}}=\bar{\alpha}_{g_{i}} \bar{\alpha}_{g_{i}}^{n_{i}-l}=\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{l}{n_{i}}}\left(\prod_{m=0}^{l-1} c_{m}^{i}\right)\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{n_{i}-l}{n_{i}}}\left(\prod_{m=0}^{n_{i}-l-1} c_{m}^{i}\right) \\
& =\left(\prod_{m=0}^{l-1} c_{m}^{i}\right)\left(\prod_{m=0}^{n_{i}-l-1} c_{m}^{i}\right)\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-1}=\left(\prod_{m=1}^{l-1} \sqrt{-1}\right)\left(\prod_{m=1}^{n_{i}-l-1} \sqrt{-1}\right)\left(\prod_{m=1}^{n_{i}-2} \sqrt{-1}\right)^{-1} \\
& =\sqrt{-1}^{l-1+n_{i}-l-1-\left(n_{i}-2\right)}=\sqrt{-1}^{0}=1 .
\end{aligned}
$$

The map \vdash induces an isomorphism $\vdash \zeta: \mathcal{A}^{\prime} \longrightarrow \Omega_{f, G_{f}}^{\prime}$ of $\mathbb{Z} / 2 \mathbb{Z}$-graded \mathbb{C}-modules:

$$
\vdash \zeta: \mathcal{A}_{g}^{\prime} \longrightarrow \Omega_{f, g}^{\prime}, \quad[\phi(\mathbf{x})] \bar{v}_{g} \mapsto[\phi(\mathbf{x})] \bar{v}_{g} \vdash \zeta=\bar{\alpha}_{g}[\phi(\mathbf{x})] \omega_{g},
$$

Note that for each $g, h \in G_{f}$ and $\phi(\mathbf{x}), \psi(\mathbf{x}) \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$ we have

$$
\left([\phi(\mathbf{x})] \bar{v}_{g}\right) \vdash\left([\psi(\mathbf{x})] \bar{v}_{h} \vdash \zeta\right)=\left(\left([\phi(\mathbf{x})] \bar{v}_{g}\right) \circ\left([\psi(\mathbf{x})] \bar{v}_{h}\right)\right) \vdash \zeta,
$$

by which we obtain the following
Proposition 7.2.32. The map $\vdash: \mathcal{A}^{\prime} \otimes_{\mathbb{C}} \Omega_{f, G_{f}}^{\prime} \longrightarrow \Omega_{f, G_{f}}^{\prime}$ satisfies Axiom (iii) in Definition 5.2.1.

On \mathcal{A}^{\prime} we have the action of $\varphi \in \operatorname{Aut}(f, G)$ induced by the isomorphism $\vdash \zeta: \mathcal{A}^{\prime} \longrightarrow \Omega_{f, G_{f}}^{\prime}$, which is denoted by φ^{*}. We also use the notation of Remark 5.1.8.

Proposition 7.2.33. Axiom (iv) in Definition 5.2.1 is satisfied by \mathcal{A}^{\prime}, namely, Axioms (iva) and (ivb) hold.

Proof. Let $g \in G_{f}$. For simplicity, set $g^{\prime}=\varphi^{-1} g \varphi$. There exist λ_{φ} and $\lambda_{\varphi_{g}}$ such that

$$
\varphi^{*}\left(\widetilde{\omega}_{\text {id }}\right)=\lambda_{\varphi} \widetilde{\omega}_{\mathrm{id}}, \quad \varphi^{*}\left(\widetilde{\omega}_{g}\right)=\lambda_{\varphi_{g}} \widetilde{\omega}_{g^{\prime}}
$$

First note that $\lambda_{\varphi}= \pm 1$, since all $\varphi \in \operatorname{Aut}(f, G)$ preserve f and so also preserve $q^{-1} x_{1} x_{2} x_{3}$ and so they leave $\omega_{\mathrm{id}}=\left[q^{-1} d x_{1} \wedge d x_{2} \wedge d x_{3}\right]$ invariant except perhaps the order of the $d x_{i}$.

For each $\phi(\mathbf{x}) \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$, we have

$$
\varphi^{*}\left([\phi(\mathbf{x})] \bar{v}_{g}\right)=\left[\varphi^{*} \phi(\mathbf{x})\right] \varphi^{*}\left(\bar{v}_{g}\right),
$$

since

$$
\begin{aligned}
& \varphi^{*}\left([\phi(\mathbf{x})] \bar{v}_{g}\right) \vdash \varphi^{*}(\zeta)=\varphi^{*}\left([\phi(\mathbf{x})] \bar{v}_{g} \vdash \zeta\right)=\varphi^{*}\left(\bar{\alpha}_{g}[\phi(\mathbf{x})] \omega_{g}\right)=\left[\varphi^{*} \phi(\mathbf{x})\right] \varphi^{*}\left(\bar{\alpha}_{g} \omega_{g}\right) \\
& =\left[\varphi^{*} \phi(\mathbf{x})\right] \vdash \varphi^{*}\left(\bar{\alpha}_{g} \omega_{g}\right)=\left[\varphi^{*} \phi(\mathbf{x})\right] \vdash \varphi^{*}\left(\bar{v}_{g} \vdash \zeta\right)=\left[\varphi^{*} \phi(\mathbf{x})\right] \vdash\left(\varphi^{*}\left(\bar{v}_{g}\right) \vdash \varphi^{*}(\zeta)\right) \\
& =\left(\left[\varphi^{*} \phi(\mathbf{x})\right] \varphi^{*}\left(\bar{v}_{g}\right)\right) \vdash \varphi^{*}(\zeta) .
\end{aligned}
$$

Therefore, we only need to show that $\varphi^{*}\left(\bar{v}_{g}\right) \circ \varphi^{*}\left(\bar{v}_{h}\right)=\varphi^{*}\left(\bar{v}_{g} \circ \bar{v}_{h}\right)$.
It easily follows that

$$
\varphi^{*}\left(\bar{v}_{\mathrm{id}}\right)=\bar{v}_{\mathrm{id}}, \quad \varphi^{*}\left(\bar{v}_{g}\right)=\frac{\bar{\alpha}_{g} \lambda_{\varphi_{g}}}{\bar{\alpha}_{g^{\prime}} \lambda_{\varphi}} \bar{v}_{g^{\prime}}
$$

since $\varphi^{*}\left(\bar{v}_{\text {id }}\right) \vdash \varphi^{*}(\zeta)=\varphi^{*}\left(\bar{v}_{\text {id }} \vdash \zeta\right)=\varphi^{*}(\zeta)$ and

$$
\begin{aligned}
\left(\lambda_{\varphi_{g}} \bar{v}_{g^{\prime}}\right) \vdash \zeta & =\lambda_{\varphi g} \bar{\alpha}_{g^{\prime}} \omega_{g^{\prime}}=\bar{\alpha}_{g^{\prime}} \varphi^{*}\left(\omega_{g}\right)=\bar{\alpha}_{g^{\prime}} \varphi^{*}\left(\frac{1}{\bar{\alpha}_{g}} \bar{v}_{g} \vdash \zeta\right) \\
& =\frac{\bar{\alpha}_{g^{\prime}}}{\bar{\alpha}_{g}} \varphi^{*}\left(\bar{v}_{g}\right) \vdash \varphi^{*}(\zeta)=\frac{\bar{\alpha}_{g^{\prime}}}{\bar{\alpha}_{g}} \lambda_{\varphi} \varphi^{*}\left(\bar{v}_{g}\right) \vdash \zeta,
\end{aligned}
$$

So for the multiplication with $\bar{v}_{\text {id }}$ the $\operatorname{Aut}(f, G)$-invariance is clear.
Since the fixed loci of g and g^{\prime} have the same dimension, we only have to show the $\operatorname{Aut}(f, G)$ invariance for each case of Definition 7.2.23.

For $\operatorname{Fix}(g)=\operatorname{Fix}(h)=\{0\}$ and $g h=\mathrm{id}$, we have $\bar{\alpha}_{g}=\bar{\alpha}_{h}=1$ and also $\lambda_{\varphi_{g}}=\lambda_{\varphi_{h}}=1$ since $\omega_{g}=1_{g}$ and $\varphi^{*}\left(1_{g}\right)=1_{g}$. So we have to show that

$$
\varphi^{*}\left(\bar{v}_{g}\right) \circ \varphi^{*}\left(\bar{v}_{h}\right)=\frac{\bar{\alpha}_{g} \lambda_{\varphi_{g}}}{\bar{\alpha}_{g^{\prime}} \lambda_{\varphi}} \frac{\bar{\alpha}_{h} \lambda_{\varphi_{h}}}{\bar{\alpha}_{h^{\prime}} \lambda_{\varphi}} \bar{v}_{g^{\prime}} \circ \bar{v}_{h^{\prime}}=\frac{1}{\lambda_{\varphi}^{2}}(-1)^{\text {age }\left(g^{\prime}\right)} \kappa q^{-1} x_{1} x_{2} x_{3} \bar{v}_{\mathrm{id}}
$$

is the same as

$$
\varphi^{*}\left(\bar{v}_{g} \circ \bar{v}_{h}\right)=\varphi^{*}\left((-1)^{\operatorname{age}(g)} \kappa q^{-1} x_{1} x_{2} x_{3} \bar{v}_{\mathrm{id}}\right)=(-1)^{\operatorname{age}(g)} \varphi^{*}(\kappa) q^{-1} x_{1} x_{2} x_{3} \bar{v}_{\mathrm{id}} .
$$

Since $\lambda_{\varphi}^{2}=1$ we only have to show $\varphi^{*}(\kappa)=\kappa$. For $\chi_{A}<0$ we have $\kappa=1$ and this is clear. In the other three cases κ depends on a multiple $q^{\operatorname{lcm}\left(a_{1}, a_{2}, a_{3}\right)}$, see Definition 7.1.7. So we see directly, when $\varphi \in \operatorname{Aut}(f, G) \subset G L(3+1, \mathbb{C})$ leaves $f=x_{1}^{a_{1}}+x_{2}^{a_{2}}+x_{3}^{a_{3}}-q^{-1} x_{1} x_{2} x_{3}$ invariant it also leaves $q^{\operatorname{lcm}\left(a_{1}, a_{2}, a_{3}\right)}$ and so κ invariant.

For $\operatorname{Fix}(g)=\operatorname{Fix}(h)=\left\{x_{i}\right\}$ for a fixed $i \in\{1,2,3\}$ we have $\varphi^{*}\left(x_{i}\right)=\lambda_{\varphi_{g_{i}}} x_{j}$ for one $j \in\{1,2,3\}$, since $\varphi \in \operatorname{Aut}(f, G)$ and $\omega_{g_{i}}=\left[d x_{i}\right]$. So it is also clear that $\lambda_{\varphi_{g_{i}}}=\lambda_{\varphi_{g_{i}}}$ for all $l \in \mathbb{Z} \backslash n_{i} \mathbb{Z}$. By the definition of the g_{i} we have for $\lambda_{\varphi}=-1$ that $g_{i}{ }^{\prime}=g_{j}^{-1}$ and for $\lambda_{\varphi}=1$ that $g_{i}{ }^{\prime}=g_{j}^{a}$ for one $a \in \mathbb{Z}$ with $\operatorname{gcd}\left(a, n_{j}\right)=1$. That is because φ is G-equivariant and we also have $n_{i}=n_{j}$. (Usually we have $i=j$ but it it also possible that $i \neq j$.) So we have to show for $0<l_{1}, l_{2}<n_{i}$ that

$$
\begin{aligned}
& \varphi^{*}\left(\bar{v}_{g_{i}^{l_{1}}}\right) \circ \varphi^{*}\left(\bar{v}_{g_{i}^{l_{2}}}\right)=\frac{\bar{\alpha}_{g_{i}^{l_{1}}} \lambda_{\varphi_{g_{i}}}}{\bar{\alpha}_{g_{i}^{l_{2}}} \lambda_{\varphi_{g_{i}}}} \bar{v}_{\left(g_{i}^{\prime}\right)^{l_{1}} \lambda_{\varphi}} \overline{\bar{\alpha}}_{\left(g_{i}^{\prime}\right)^{l_{2}} \lambda_{\varphi}} \lambda_{\left.g_{i}^{\prime}\right)_{1}^{l_{1}}} \circ \bar{v}_{\left(g_{i}^{\prime}\right)^{l_{2}}}
\end{aligned}
$$

is the same as

$$
\begin{aligned}
\varphi^{*}\left(\bar{v}_{g_{i}}^{l_{1}} \circ \bar{v}_{g_{i} l_{2}}\right) & = \begin{cases}\varphi^{*}\left(\kappa x_{i}^{2}\right) & \text { if } l_{1}+l_{2}=n_{i} \\
\varphi^{*}\left(x_{i} \bar{v}_{g_{i}+l_{2}}\right) & \text { if } l_{1}+l_{2} \neq n_{i}\end{cases} \\
& =\left\{\begin{array}{ll}
\lambda_{\varphi_{g^{\prime}}}^{2} \kappa x_{j}^{2} & \text { if } l_{1}+l_{2}=n_{i} \\
\bar{\alpha}_{g_{i}}+l_{2} \lambda_{\varphi g_{i}} \\
\bar{\alpha}_{\left(g_{i}^{\prime}\right)}^{l_{1}+l_{2} \lambda_{\varphi}} \lambda_{\varphi_{g_{i}}} x_{j} \bar{v}_{\left.\left(g_{i}^{\prime}\right)^{\prime}\right)_{1}+l_{2}} & \text { if } l_{1}+l_{2} \neq n_{i}
\end{array} .\right.
\end{aligned}
$$

For $l_{1}+l_{2}=n_{i}$ this is clear because $\bar{\alpha}_{g} \bar{\alpha}_{g^{-1}}=1$. So we only have to show, for $0<l_{1}, l_{2}<n_{i}$, $l_{1}+l_{2} \neq n_{i}$:

$$
\frac{\bar{\alpha}_{g_{i}^{l_{1}}} \bar{\alpha}_{g_{i}^{l_{2}}}}{\bar{\alpha}_{\left(g_{i}^{\prime}\right)^{l_{1}}} \bar{\alpha}_{\left(g_{i}^{\prime}\right)}^{l_{2}} \lambda_{\varphi}}=\frac{\bar{\alpha}_{g_{i}^{l_{1}+l_{2}}}}{\bar{\alpha}_{\left(g_{i}^{\prime}\right)^{\prime} l_{1}+l_{2}}}
$$

For $\lambda_{\varphi}=1$ this is $1=1$ since $\bar{\alpha}_{g_{i}^{l}}=\bar{\alpha}_{\left(g_{i}^{\prime}\right)^{l}}$.

For $\lambda_{\varphi}=-1$ we have $n_{i}=n_{j}$ and so $c_{\bullet}^{i}=c_{\bullet}^{j}$. So we can calculate the LHS as

$$
\begin{aligned}
& \frac{\bar{\alpha}_{g_{i}^{l_{1}}} \bar{\alpha}_{g_{i}^{l_{2}}}}{\bar{\alpha}_{\left(g_{i}^{\prime}\right)^{l_{1}}} \bar{\alpha}_{\left(g_{i}^{\prime}\right)^{l_{2}} \lambda_{\varphi}}}=-\frac{\bar{\alpha}_{g_{i}^{l_{1}}} \bar{\alpha}_{g_{i}^{l_{2}}}}{\bar{\alpha}_{g_{j}^{n_{j}-l_{1}}} \bar{\alpha}_{g_{j}^{n_{j}-l_{2}}}} \\
& =-\frac{\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{l_{1}}{n_{i}}}\left(\prod_{m=0}^{l_{1}-1} c_{m}^{i}\right)\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{l_{2}}{n_{i}}}\left(\prod_{m=0}^{l_{2}-1} c_{m}^{i}\right)}{\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{n_{i}-l_{1}}{n_{i}}}\left(\prod_{m=0}^{n_{i}-l_{1}-1} c_{m}^{i}\right)\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{n_{i}-l_{2}}{n_{i}}}\left(\prod_{m=0}^{n_{i}-l_{2}-1} c_{m}^{i}\right)} \\
& =-\frac{\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{l_{1}+l_{2}}{n_{i}}}\left(\sqrt{-1}^{l_{1}-1}\right)\left(\sqrt{-1}^{l_{2}-1}\right)}{\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{2 n_{i}-l_{i}-l_{2}}{n_{i}}}\left(\sqrt{-1}{ }^{n_{i}-l_{1}-1}\right)\left(\sqrt{-1}{ }^{n_{i}-l_{2}-1}\right)} \\
& =\frac{\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{l_{1}+l_{2}}{n_{i}}}}{\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{2 n_{i}-l_{1}-l_{2}}{n_{i}}}}(-1) \sqrt{-1} 2{ }^{2 l_{1}+2 l_{2}-2 n_{i}} \\
& =\frac{\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{l_{1}+l_{2}}{n_{i}}}}{\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{2 n_{i}-l_{1}-l_{2}}{n_{i}}}}(-1)^{1+l_{1}+l_{2}-n_{i}} .
\end{aligned}
$$

The RHS is given by

$$
\begin{aligned}
& \frac{\bar{\alpha}_{g_{i}^{l_{1}+l_{2}}}}{\bar{\alpha}_{\left(g_{i}^{\prime}\right)^{l_{1}+l_{2}}}}=\frac{\bar{\alpha}_{g_{i} l_{1}+l_{2}}}{\bar{\alpha}_{g_{j}}^{n_{j}-l_{1}-l_{2}}}=\frac{\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{l_{1}+l_{2}}{n_{i}}}\left(\prod_{m=0}^{l_{1}+l_{2}-1} c_{m}^{i}\right)}{\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{n_{i}-l_{1}+n_{i}-l_{2}}{n_{i}}}\left(\prod_{m=0}^{n_{i}-l_{1}+n_{i}-l_{2}-1} c_{m}^{i}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& = \begin{cases}\frac{\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{l_{1}+l_{2}}{n_{i}}}}{\left(\prod_{m=1}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{2 n_{i}-l_{1}-l_{2}}{n_{i}}}} \sqrt{-1} 1^{2 l_{1}+2 l_{2}-2 n_{i}+2} & l_{1}+l_{2}<n_{i} \\
\frac{\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{l_{1}+l_{2}}{n_{i}}}}{\left(\prod_{m=0}^{n_{i}-1} c_{m}^{i}\right)^{-\frac{2 n_{i}-l_{1}-l_{2}}{n_{i}}}} \sqrt{-1}{ }^{2 l_{1}+2 l_{2}-2 n_{i}-2} & l_{1}+l_{2}>n_{i}\end{cases}
\end{aligned}
$$

which coincides with the LHS.
Hence, we proved the algebra structure o of \mathcal{A}^{\prime} is $\operatorname{Aut}(f, G)$-invariant.
The G-twisted $\mathbb{Z} / 2 \mathbb{Z}$-graded commutativity (ivb) is a direct consequence of Lemma 7.2.24 since $g^{*}\left(\bar{v}_{h}\right)=\bar{v}_{h}$ for $\operatorname{Fix}(g)=\operatorname{Fix}(h)$ or $g=i d, h=$ id and in all other cases our multiplication is zero.

We have finished the proof of the proposition.
We show the invariance of the bilinear form $J_{f, G}$ with respect to the product structure of \mathcal{A}^{\prime}.

Proposition 7.2.34. For each $g, h \in G_{f}$, we have

$$
J_{f, g h}\left(\bar{v}_{g} \vdash \omega_{h},[\phi(\mathbf{x})] \omega_{(g h)^{-1}}\right)=(-1)^{\left(n-n_{g}\right)\left(n-n_{h}\right)} J_{f, h}\left(\omega_{h},\left(h^{-1}\right)^{*} \bar{v}_{g} \vdash\left([\phi(\mathbf{x})] \omega_{(g h)^{-1}}\right)\right)
$$

for a suitable $\phi(\mathbf{x})$ that this is not zero. As a consequence, the algebra \mathcal{A}^{\prime} satisfies Axiom (v) in Definition 5.2.1.
Proof. We only have to look at the cases for g, h of Definition 7.2.28.
If g or h are the identity the statement is directly clear.
For $\operatorname{Fix}(g)=\operatorname{Fix}(h)=\left\{x_{i}\right\}$ for $i \in\{1,2,3\}$ and $l_{1}, l_{2}, l_{1}+l_{2} \notin n_{i} \mathbb{Z}$ we have: (In this case $a_{i} \geq 3$, otherwise we directly have $\bar{v}_{g_{i}}^{l_{1}} \vdash \omega_{g_{i}}^{l_{2}}=0$.)

$$
\begin{aligned}
J_{f, g_{i}^{l_{1}+l_{2}}}\left(\bar{v}_{g_{i}^{l_{1}}} \vdash \omega_{g_{i}^{l_{2}}}, x_{i}^{a_{i}-3} \omega_{g_{i}^{n_{i}-l_{1}-l_{2}}}\right) & =J_{f, g_{i}^{l_{1}+l_{2}}}\left(x_{i} \omega_{g_{i}^{l_{1}+l_{2}}}, x_{i}^{a_{i}-3} \omega_{g_{i}^{n_{i}-l_{1}-l_{2}}}\right) \\
& =(-1) \frac{1}{a_{i}}|G|
\end{aligned}
$$

and

$$
\begin{aligned}
(-1)^{(3-1)(3-1)} J_{f, g_{i}^{l_{2}}} & \left(\omega_{g_{i}^{l_{2}}},\left(g_{i}^{n_{i}-l_{2}}\right)^{*} \bar{v}_{g_{i}^{l_{1}}} \vdash\left(x_{i}^{a_{i}-3} \omega_{g_{i}^{n_{i}-l_{1}-l_{2}}}\right)\right) \\
& =J_{f, g_{i}}^{l_{2}}\left(\omega_{g_{i}} \bar{v}_{g_{i}^{l_{1}}} \vdash\left(x_{i}^{a_{i}-3} \omega_{g_{i}^{n_{i}-l_{1}-l_{2}}}\right)\right) \\
& =J_{f, g_{i}}\left(\omega_{g_{i}}, x_{i}^{a_{i}-2} \omega_{g_{i}^{n_{i}-l_{2}}}\right)=(-1) \frac{1}{a}|G|
\end{aligned}
$$

For $l_{1}+l_{2} \in n_{i} \mathbb{Z}$ we have:

$$
\begin{aligned}
J_{f, i d}\left(\bar{v}_{g_{i} l_{1}} \vdash \omega_{g_{i}^{l_{2}}}, x_{i}^{a_{i}-2} \omega_{\mathrm{idd}}\right) & =J_{f, \text { id }}\left(\kappa x_{i}^{2} \omega_{\mathrm{id}}, x_{i}^{a_{i}-2} \omega_{\mathrm{id}}\right) \\
& =\frac{-1}{a_{i}}|G|
\end{aligned}
$$

and

$$
\begin{aligned}
(-1)^{(3-1)(3-1)} J_{f, g_{i}^{l_{2}}} & \left(\omega_{g_{i}^{l_{2}}},\left(g_{i}^{n_{i}-l_{2}}\right)^{*} \bar{v}_{g_{i}^{l_{1}}} \vdash\left(x_{i}^{a_{i}-2} \omega_{\mathrm{id}}\right)\right) \\
& =J_{f, g_{i}}\left(\omega_{g_{i}}^{l_{2}}, \bar{v}_{g_{i}^{l_{1}}} \vdash\left(x_{i}^{a_{i}-2} \omega_{\mathrm{id}}\right)\right) \\
& =J_{f, g_{i}}\left(\omega_{g_{i}}, x_{i}^{a_{i}-2} \omega_{g_{i}^{l_{1}}}\right)=(-1) \frac{1}{a}|G|
\end{aligned}
$$

Let Fix $(g)=\{0\}$ and $h=g^{-1}$ then we have

$$
\begin{aligned}
J_{f, \mathrm{id}}\left(\bar{v}_{g} \vdash \omega_{h}, \omega_{(g h)^{-1}}\right) & =J_{f, \mathrm{id}}\left((-1)^{\operatorname{age}(g)} \kappa q^{-1} x_{1} x_{2} x_{3} \omega_{\mathrm{id}}, \omega_{\mathrm{id}}\right) \\
& =-(-1)^{\operatorname{age}(g)}|G|
\end{aligned}
$$

and

$$
\begin{aligned}
(-1)^{(3-0)(3-0)} J_{f, g^{-1}}\left(\omega_{h},\left(h^{-1}\right)^{*} \bar{v}_{g} \vdash\left(\omega_{\mathrm{id}}\right)\right) & =(-1) J_{f, g^{-1}}\left(\omega_{h}, \bar{v}_{g} \vdash\left(\omega_{\mathrm{id}}\right)\right) \\
& =(-1)(-1)^{3-0-\operatorname{age}(h)}|G| \\
& =(-1)^{-\operatorname{age}(h)}|G|
\end{aligned}
$$

and $(-1)^{-\operatorname{age}(h)}=-(-1)^{-\operatorname{age}(g)}=-(-1)^{\operatorname{age}(g)}$ since $h=g^{-1}$.

So we have shown all axioms and with Proposition 5.4.9 we have finished the proof of Theorem 7.2.2.

Remark 7.2.35. We have shown the existence for all cusp polynomials, even for those pairs (f, G) of bad type (Definition 7.2.1). The crucial reason why we cannot prove the uniqueness there can be seen in Lemma 7.2.17. Namely, we cannot prove that the $c_{l, m}$ are not zero. If we take a zero multiplication there, we would also satisfy the axioms.

7.3 Frobenius Algebras Associated to the Gromov-Witten Theory for Orbifold Projective Lines

Remark 7.3.1. In [ST15] and [IST12] it was shown that the Frobenius manifold associated to the pair of a cusp singularity f_{A} and its canonical primitive form ζ is isomorphic to the one constructed from the Gromov-Witten theory for an orbifold projective line with at most three orbifold points.

We are only interested in the Frobenius algebra $\operatorname{Jac}\left(f_{A}\right)$. The proofs in [ST15] and [IST12] were done with the uniqueness theorem for Frobenius manifolds of orbifold projective lines from [IST15]. The interesting facts for the Frobenius algebra are:

Proposition 7.3.2 (cf. [ST15]). For $A=\left(a_{1}, a_{2}, a_{3}\right)$ the Frobenius algebra $\operatorname{Jac}\left(f_{A}\right)$ has dimension

$$
\mu_{A}=\sum_{i=1}^{3}\left(a_{i}-1\right)+2
$$

and a basis $\left\{1, y_{\mu_{A}}, y_{i, j} \mid i=1,2,3 ; j=1,2, \ldots, a_{i}-1\right\}$. The bilinear form $J_{f_{A}}$ satisfies

$$
\begin{aligned}
J_{f_{A}}\left(1, y_{\mu_{A}}\right) & =-1 \\
J_{f_{A}}\left(y_{i_{1}, j_{1}}, y_{i_{2}, j_{2}}\right) & = \begin{cases}\frac{-1}{a_{i}} & \text { if } i_{1}=i_{2}=i \text { and } j_{1}+j_{2}=a_{i} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(cf. Condition (ii) of [IST15, Thm 3.1], where we only have another scaling and -1 instead of +1).

In the limit $q \rightarrow 0$ the Frobenius algebra is isomorphic to

$$
\left.\operatorname{Jac}\left(f_{A}\right)\right|_{q \rightarrow 0} \cong \mathbb{C}\left[y_{1}, y_{2}, y_{3}\right] /\left(y_{1} y_{2}, y_{2} y_{3}, y_{3} y_{1}, a_{1} y_{1}^{a_{1}}-a_{2} y_{2}^{a_{2}}, a_{2} y_{2}^{a_{2}}-a_{3} y_{2}^{a_{3}}, a_{3} y_{3}^{a_{3}}-a_{1} y_{1}^{a_{1}}\right)
$$

where $y_{i, j} \mapsto y_{i}^{j}$ and $y_{\mu_{A}} \mapsto a_{i} y_{i}^{a_{i}}$ (cf. Condition (v) of [IST15, Thm 3.1]).
Proof. This is an easy computation when we take the basis

$$
\left\{1, \kappa q^{-1} x_{1} x_{2} x_{3},\left(\sqrt[a_{i}]{\kappa} x_{i}\right)^{j} \mid i=1,2,3 ; j=1,2, \ldots, a_{i}-1\right\}
$$

(cf. Definition 7.1.8) of $\operatorname{Jac}\left(f_{A}\right)$. We have $q^{-1} x_{1} x_{2} x_{3}=a_{i} x_{i}^{a_{i}} \in \operatorname{Jac}\left(f_{A}\right)$ and so $\kappa q^{-1} x_{1} x_{2} x_{3}=$ $a_{i}\left(\sqrt[a_{i}]{\kappa} x_{i}\right)^{a_{i}} \in \operatorname{Jac}\left(f_{A}\right)$. Then we can take the limit $q \rightarrow 0$. For $q \rightarrow 0$ we even have $\kappa \rightarrow 1$.

Remark 7.3.3. A uniqueness theorem for Frobenius manifolds for orbifold projective lines with r orbifold points, where r is an arbitrary positive integer was given in [Sh14].

Definition 7.3.4 (cf. [ET13a, Thm. 5.12]). Let f_{A} be the cusp polynomial of the tuple $A=\left(a_{1}, a_{2}, a_{3}\right)$ and $G \subset G_{f_{A}}$. For $i=1,2,3$ let be K_{i} be the subgroup of G preserving the i-th coordinate with $\left|K_{i}\right|=n_{i}$. We define

$$
a_{i}^{\prime}=\frac{a_{i}}{\left|G / K_{i}\right|} .
$$

Define a tuple $B=\left(b_{1}, \ldots, b_{r}\right)$ by

$$
\left(b_{1}, \ldots, b_{r}\right)=\left(a_{i}^{\prime} * n_{i}, i=1,2,3\right)
$$

where $u * v=(\underbrace{u, u, \ldots, u}_{v \text {-times }})$. So we have $r=\sum_{i=1}^{3} n_{i}$.
Remark 7.3.5. We are only interested in the commutative part $\operatorname{Jac}\left(f_{A}, G\right)_{\overline{0}}$ of our orbifold Jacobian algebra. For G with $j_{G}=0$ (cf. Proposition 7.1.12) this is the total orbifold Jacobian algebra.

We will now prove a similar statement as Proposition 7.3.2 for $\operatorname{Jac}\left(f_{A}, G\right)_{\overline{0}}$:
Theorem 7.3.6. Let $B=\left(b_{1}, \ldots, b_{r}\right)$ be as in Definition 7.3.4. The Frobenius algebra $\operatorname{Jac}\left(f_{A}, G\right)_{\overline{0}}$ has dimension

$$
\mu_{B}=\sum_{i=1}^{r}\left(b_{i}-1\right)+2
$$

and a basis $\left\{1, y_{\mu_{B}}, y_{i, j} \mid i=1,2, \ldots, r ; j=1,2, \ldots, b_{i}-1\right\}$. The bilinear form $J_{f_{A}, G}$ satisfies

$$
\begin{aligned}
J_{f_{A}, G}\left(1, y_{\mu_{B}}\right) & =-1 \\
J_{f_{A}, G}\left(y_{i_{1}, j_{1}}, y_{i_{2}, j_{2}}\right) & = \begin{cases}\frac{-1}{b_{i}} & \text { if } i_{1}=i_{2}=i \text { and } j_{1}+j_{2}=b_{i} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(cf. Condition (ii) of [Sh14, Thm 3.1], where we only have another scaling and -1 instead of +1).

In the limit $q \rightarrow 0$ the Frobenius algebra is isomorphic to

$$
\left.\operatorname{Jac}\left(f_{A}, G\right)_{\overline{0}}\right|_{q \rightarrow 0} \cong \mathbb{C}\left[y_{1}, \ldots, y_{r}\right] /\left(y_{i} y_{j}, b_{i} y_{i}^{b_{i}}-b_{j} y_{j}^{b_{j}}\right)_{1 \leq i \neq j \leq r}
$$

where $y_{i, j} \mapsto y_{i}^{j}$ and $y_{\mu_{B}} \mapsto b_{i} y_{i}^{b_{i}}$ (cf. Condition (v) of [Sh14, Thm 3.1]).
We will prove the first statement and then give some definitions to prove the remaining parts.

Lemma 7.3.7. We have

$$
\operatorname{dim} \operatorname{Jac}\left(f_{A}, G\right)_{\overline{0}}=\mu_{B}=\sum_{i=1}^{r}\left(b_{i}-1\right)+2
$$

Proof. We have

$$
\begin{aligned}
\mu_{B} & =\sum_{i=1}^{r}\left(b_{i}-1\right)+2=\sum_{i=1}^{3} \sum_{j=1}^{n_{i}}\left(a_{i}^{\prime}-1\right)+2 \\
& =\sum_{i=1}^{3} n_{i}\left(\frac{a_{i}}{\left|G / K_{i}\right|}-1\right)+2=\frac{1}{|G|}\left(\sum_{i=1}^{3} n_{i}^{2} a_{i}-\sum_{i=1}^{3} n_{i}|G|+2|G|\right)
\end{aligned}
$$

On the other hand from Theorem 4.4.4 or since G is abelian from Proposition 4.4.5 we know:

$$
\operatorname{dim}\left(\Omega_{f, G}\right)_{\overline{0}}=\sum_{\substack{g \in G \\ n-n_{g} \equiv 0(\bmod 2)}} \mu_{f^{g} / G}=\frac{1}{|G|} \sum_{\substack{g \in G \\ n-n_{g} \equiv 0(\bmod 2)}} \sum_{h \in G}(-1)^{n_{g}-n_{<g, h>}} \mu_{f<g, h>}
$$

Since $G \subset \operatorname{SL}(n, \mathbb{C})$ this is also the dimension of $\operatorname{Jac}(f, G)_{\overline{0}}$. We have

$$
\begin{array}{ll}
\mu_{f<i \mathrm{~d}, \mathrm{id}>}=\mu_{A}=\sum_{i=1}^{3}\left(a_{i}-1\right)+2, & \mu_{f<\mathrm{id}, g>}=1 \quad \text { if } g \notin K_{i} \forall i=1,2,3, \\
\mu_{f<g, h>}=\left(a_{i}-1\right) \text { if } g, h \in K_{i}, & \mu_{f<g, h>}=1 \quad \text { if } g \in K_{i}, h \notin K_{i} .
\end{array}
$$

So we calculate with $|G|=1+\sum_{i=1}^{3}\left(n_{i}-1\right)+2 j_{G}$, cf. Proposition 7.1.12:

$$
\begin{aligned}
& \operatorname{dim} \operatorname{Jac}(f, G)_{\overline{0}}=\frac{1}{|G|} \sum_{\substack{g \in G \\
n-n_{g} \equiv 0(\bmod 2)}} \sum_{h \in G}(-1)^{n_{g}-n_{<g, h>}} \mu_{f<g, h>} \\
& =\frac{1}{|G|}\left(\sum_{h \in G}(-1)^{n-n_{h}} \mu_{f<\text { id }, h>}+\sum_{i=1}^{3} \sum_{g \in K_{i} \backslash\{\operatorname{id\} }\}} \sum_{h \in G}(-1)^{n_{g}-n_{<g, h>}} \mu_{f<g, h>}\right) \\
& =\frac{1}{|G|}\left(\mu_{A}+\sum_{i=1}^{3}\left(n_{i}-1\right)\left(a_{i}-1\right)-2 j_{G} \cdot 1+\sum_{i=1}^{3}\left(n_{i}-1\right)\left(n_{i}\left(a_{i}-1\right)-\left|G \backslash K_{i}\right| \cdot 1\right)\right) \\
& =\frac{1}{|G|}\left(\sum_{i=1}^{3}\left(a_{i}-1\right)+2+\sum_{i=1}^{3}\left(n_{i}-1\right)\left(a_{i}-1\right)-2 j_{G}+\sum_{i=1}^{3}\left(n_{i}-1\right)\left(n_{i} a_{i}-|G|\right)\right) \\
& =\frac{1}{|G|}\left(\sum_{i=1}^{3} n_{i}^{2} a_{i}-|G| \sum_{i=1}^{3} n_{i}+3|G|-|G|\right)=\mu_{B}
\end{aligned}
$$

Remark 7.3.8. Now we want to give a basis. For this let $v_{g} \in J a c^{\prime}\left(f_{A}, G\right)$ be the elements with $v_{g} \vdash \zeta=\alpha_{g} \omega_{g}$, cf. Definition 5.4.5. We will define $e_{g} \in \operatorname{Jac}^{\prime}\left(f_{A}, G\right)$ by $e_{g}:=\frac{1}{\left|K_{g}\right|} v_{g}$, which is the more natural element as stated in the proof of Theorem 6.3.7. So here since we are only interested in the commutative part, we can write each $g \in G$ with $\operatorname{Fix}(g) \neq\{0\}$ as g_{i}^{l} for $i=1,2,3$ and $l \in \mathbb{Z}$ as in the last section.

We will now define suitable elements.
Let us first consider the case $\chi_{A}<0$: So we have $e_{g_{i}^{l}}:=\frac{1}{n_{i}} v_{g_{i}^{l}}, l \notin n_{i} \mathbb{Z}$ and $e_{\mathrm{id}}=v_{\mathrm{id}}$, since $K_{g_{i}}=K_{i}$. We will additionally define $e_{g_{i}^{l}}=\frac{1}{n_{i}} x_{i} v_{\text {id }}$ for $l \in n_{i} \mathbb{Z}$ (cf. w in Lemma 7.2.9).

From our last section we know

$$
e_{g_{i}^{l}} \circ e_{g_{j}^{m}}= \begin{cases}\frac{1}{n_{i}} x_{i} e_{g_{i}^{l+m}} & i=j \tag{7.1}\\ a_{k} q x_{k}^{a_{k}-1} e_{\mathrm{id}} & i \neq j l \in n_{i} \mathbb{Z} \text { and } m \in n_{j} \mathbb{Z}, k \in\{1,2,3\} \backslash\{i, j\} . \\ 0 & \text { otherwise }\end{cases}
$$

$e_{g_{i}^{l}}$ need not be in $\operatorname{Jac}\left(f_{A}, G\right)$ because it is not necessarily G-invariant. But $x_{i}^{\left|G / K_{i}\right|-1} e_{g_{i}^{l}}$ is G-invariant for all $l \in \mathbb{Z}$.

Definition 7.3.9. For each $i=1,2,3$ and $k=1, \ldots, n_{i}$, put

$$
\left[x_{i, k}\right]:=\sum_{l=0}^{n_{i}-1} \mathbf{e}\left[\frac{(k-1) l}{n_{i}}\right] x_{i}^{\left|G / K_{i}\right|-1} e_{g_{i}^{l}} .
$$

It is straightforward that all $\left[x_{i, k}\right]$ are G-invariant.
Lemma 7.3.10. In $\operatorname{Jac}\left(f_{A}, G\right)$, we have the following equalities

$$
\left[x_{i, k}\right] \circ\left[x_{i, k}\right]=x_{i}^{\left|G / K_{i}\right|}\left[x_{i, k}\right], \quad i=1,2,3, k=1, \ldots, n_{i},
$$

in particular,

$$
a_{i}^{\prime}\left[x_{i, k}\right]^{a_{i}^{\prime}}=\frac{1}{|G|} a_{i} x_{i}^{a_{i}} .
$$

And

$$
\left[x_{i, k_{1}}\right] \circ\left[x_{i, k_{2}}\right]=0, \quad i=1,2,3, \quad k_{1} \neq k_{2},
$$

Proof. By direct calculation we get:

$$
\begin{aligned}
{\left[x_{i, k}\right] \circ\left[x_{i, k}\right] } & =\sum_{m=0}^{n_{i}-1} \sum_{l=0}^{n_{i}-1} \mathbf{e}\left[\frac{(k-1)(l+m)}{n_{i}}\right] \frac{1}{n_{i}} x_{i}^{2\left|G / K_{i}\right|-1} e_{g_{i}^{l+m}} \\
& =n_{i} \sum_{l=0}^{n_{i}-1} \mathbf{e}\left[\frac{(k-1)(l)}{n_{i}}\right] \frac{1}{n_{i}} x_{i}^{2\left|G / K_{i}\right|-1} e_{g_{i}^{l}} \\
& =\frac{n_{i}}{n_{i}} x_{i}^{\left|G / K_{i}\right|}\left[x_{i, k}\right] .
\end{aligned}
$$

So we have

$$
a_{i}^{\prime}\left[x_{i, k}\right]^{a_{i}^{\prime}}=a_{i}^{\prime} x_{i}^{\left(a_{i}^{\prime}-1\right)\left|G / K_{i}\right|}\left[x_{i, k}\right]=\frac{a_{i}^{\prime}}{n_{i}} x_{i}^{a_{i}^{\prime}\left|G / K_{i}\right|}+0=\frac{a_{i}}{\left|G / K_{i}\right| n_{i}} x_{i}^{\frac{a_{i}}{\left|G / K_{i}\right|}\left|G / K_{i}\right|}=\frac{a_{i}}{|G|} x_{i}^{a_{i}} .
$$

For $k_{1} \neq k_{2}$ we always have a sum of all different $e\left[\frac{m}{n_{i}}\right]$ in each summand and we know that the sum over all roots of unity is zero.

Remark 7.3.11. For $\chi_{A}=0$ we define $e_{g_{i}^{l}}=\frac{1}{n_{i}}\left(\sqrt[a_{i}]{\kappa} x_{i}\right) v_{\text {id }}$ (cf. Proof of Proposition 7.3.2). Here we have

$$
e_{g_{i}^{l}} \circ e_{g_{i}^{m}}=\left\{\begin{array}{ll}
\frac{1}{n_{i}} x_{i} e_{g_{i}} & l, m, l+m \notin n_{i} \mathbb{Z} \\
\frac{1}{n_{i}} \sqrt[a_{i}]{\kappa} x_{i} e_{g_{i}^{l+m}} & l \in n_{i} \mathbb{Z} \text { or } m \in n_{i} \mathbb{Z} \\
\frac{1}{n_{i}}(\sqrt[a_{i}]{\kappa})^{a_{i}-1} x_{i} e_{g_{i}^{l+m}}^{l+m} & l, m \notin n_{i} \mathbb{Z} \text { and } l+m \in n_{i} \mathbb{Z}
\end{array} .\right.
$$

So we can calculate

$$
\left(\sum_{l=0}^{n_{i}-1} \mathbf{e}\left[\frac{(k-1) l}{n_{i}}\right]\left(\sqrt[a_{i}]{\kappa} x_{i}\right)^{\left|G / K_{i}\right|-1} e_{g_{i}^{l}}\right)^{a_{i}^{\prime}}=\phi(\kappa) \frac{1}{n_{i}} x_{i}^{a_{i}}
$$

where $\phi(\kappa)$ is a complex number which can depend on κ and we always have $\phi(1)=1$.
Example 7.3.12. We will calculate $\phi(\kappa)$ explicitly for $A=(3,3,3)$ and $G=K_{1} \cong \mathbb{Z} / 3 \mathbb{Z}=$ $\left\{\right.$ id, $\left.g_{1}, g_{1}^{2}\right\}$. So we have $a_{1}^{\prime}=\frac{3}{\left|K_{1} / K_{1}\right|}=3$ and $a_{i}^{\prime}=\frac{3}{\mid K_{1} /\{\text { id }\} \mid}=1$ for $i=2,3$. So we can calculate: e.g. for $k=2$

$$
\begin{aligned}
& \left(\sum_{l=0}^{2} \mathbf{e}\left[\frac{(2-1) l}{3}\right]\left(\sqrt[3]{\kappa} x_{1}\right)^{1-1} e_{g_{1}^{2}}\right)^{3}=\left(\frac{1}{3} \sqrt[3]{\kappa} x_{1}+\mathbf{e}\left[\frac{1}{3}\right] e_{g_{1}}+\mathbf{e}\left[\frac{2}{3}\right] e_{g_{1}^{2}}\right)^{3} \\
& =\left(\frac{1}{9} \sqrt[3]{\kappa} x_{1}^{2}+2 \mathbf{e}\left[\frac{1}{3}\right] \frac{1}{3} \sqrt[3]{\kappa} x_{1} e_{g_{1}}+2 \mathbf{e}\left[\frac{2}{3}\right] \frac{1}{3} \sqrt[3]{\kappa} x_{1} e_{g_{1}^{2}}+\mathbf{e}\left[\frac{2}{3}\right] \frac{1}{3} x_{1} e_{g_{1}^{2}}+2 \mathbf{e}\left[\frac{3}{3}\right] \frac{1}{9} \kappa x_{1}^{2}\right. \\
& \left.\quad+\mathbf{e}\left[\frac{4}{3}\right] \frac{1}{3} x_{1} e_{g_{1}^{4}}\right) \circ\left(\frac{1}{3} \sqrt[3]{\kappa} x_{1}+\mathbf{e}\left[\frac{1}{3}\right] e_{g_{1}}+\mathbf{e}\left[\frac{2}{3}\right] e_{g_{1}^{2}}\right) \\
& =\left(\left(\frac{1}{3}+\frac{2}{3} \sqrt[3]{\kappa}\right) \frac{1}{3} \sqrt[3]{\kappa} 2^{2} x_{1}^{2}+\left(\frac{2}{3}+\frac{1}{3 \sqrt[3]{\kappa}}\right) \mathbf{e}\left[\frac{1}{3}\right] \sqrt[3]{\kappa} x_{1} e_{g_{1}}+\left(\frac{2}{3}+\frac{1}{3 \sqrt[3]{\kappa}}\right) \mathbf{e}\left[\frac{2}{3}\right] \sqrt[3]{\kappa} x_{1} e_{g_{1}^{2}}\right) \\
& \circ\left(\frac{1}{3} \sqrt[3]{\kappa} x_{1}+\mathbf{e}\left[\frac{1}{3}\right] e_{g_{1}}+\mathbf{e}\left[\frac{2}{3}\right] e_{g_{1}^{2}}\right) \\
& =\left(\frac{1}{3}+\frac{2}{3} \sqrt[3]{\kappa}\right) \frac{1}{9} \sqrt[3]{\kappa} \sqrt[3]{3}+0+0+0+0 \\
& \quad+\left(\frac{2}{3}+\frac{1}{3 \sqrt[3]{\kappa}}\right) \mathbf{e}\left[\frac{3}{3}\right] \sqrt[3]{\kappa}{ }^{2} x_{1} \frac{1}{9} \kappa x_{1}^{2}+0+\left(\frac{2}{3}+\frac{1}{3 \sqrt[3]{\kappa}}\right) \mathbf{e}\left[\frac{3}{3}\right] \sqrt[3]{\kappa} x_{1} \frac{1}{9} \kappa x_{1}^{2}+0 \\
& =\left(\frac{1}{3}+\frac{2}{3} \sqrt[3]{\kappa}\right)\left(\frac{1}{9} \sqrt[3]{\kappa^{3}} x_{1}^{3}+\frac{1}{9} \kappa x_{1}^{3}+\frac{1}{9} \kappa x_{1}^{3}\right)=\left(\frac{1}{3}+\frac{2}{3} \sqrt[3]{\kappa}\right) \frac{1}{3} \kappa x_{1}^{3}
\end{aligned}
$$

So here we have $\phi(\kappa)=\frac{1}{3}+\frac{2}{3} \sqrt[3]{\kappa}$.

Definition 7.3.13. For each $i=1,2,3$ and $k=1, \ldots, n_{i}$, we define

$$
\left[x_{i, k}\right]:=\frac{1}{\sqrt[a_{i}^{\prime}]{\phi(\kappa)}} \sum_{l=0}^{n_{i}-1} \mathbf{e}\left[\frac{(k-1) l}{n_{i}}\right]\left(\sqrt[a_{i}]{\kappa} x_{i}\right)^{\left|G / K_{i}\right|-1} e_{g_{i}^{l}}
$$

Lemma 7.3.14. In $\operatorname{Jac}\left(f_{A}, G\right)$, we have the following equalities

$$
\begin{aligned}
& a_{i}^{\prime}\left[x_{i, k}\right]^{a_{i}^{\prime}}=\frac{1}{|G|} a_{i} \kappa x_{i}^{a_{i}}, \\
& {\left[x_{i, k_{1}}\right] \circ\left[x_{i, k_{2}}\right]=0, \quad i=1,2,3, \quad k_{1} \neq k_{2} .}
\end{aligned}
$$

Proof. The first equation is clear from the definition of $\phi(\kappa)$ and the second one is the same as in Lemma 7.3.10.

Remark 7.3.15. Note that for $q \rightarrow 0$ we have $\kappa \rightarrow 1$ and so the Definitions 7.3.9 and 7.3.13 coincide in the limit.

Lemma 7.3.16. In the limit $q \rightarrow 0$ we have for all $1 \leq k_{i} \leq n_{i}, i=1,2,3$ the following equalities in $\left.\operatorname{Jac}\left(f_{A}, G\right)\right|_{q \rightarrow 0}$

$$
\left[x_{i, k_{i}}\right] \circ\left[x_{j, k_{j}}\right]=0 \text { for } i \neq j .
$$

Proof. In the limit we have $x_{i} x_{j}=\left.0 \in \operatorname{Jac}\left(f_{A}, \mathrm{id}\right)\right|_{q \rightarrow 0}=\left.\operatorname{Jac}\left(f_{A}\right)\right|_{q \rightarrow 0}$ and from Equation (7.1) $e_{g_{i}^{l}} \circ e_{g_{j}^{m}}=\left.0 \in \operatorname{Jac}^{\prime}\left(f_{A}, G\right)\right|_{q \rightarrow 0}$ for $i \neq j$.
Proof of Theorem 7.3.6. Let us rewrite

$$
\left(b_{1}, \ldots, b_{r}\right) \text { as }\left(b_{1,1}, \ldots, b_{1, n_{1}}, b_{2,1}, \ldots, b_{2, n_{2}}, b_{3,1}, \ldots, b_{3, n_{3}}\right) .
$$

So we have $b_{i, k}=a_{i}^{\prime}$ for $i=1,2,3, k=1, \ldots, n_{i}$.
We take the basis $\left\{1, \frac{1}{|G|} \kappa q^{-1} x_{1} x_{2} x_{3},\left[x_{i, k}\right]^{j} \mid i=1,2,3 ; k=1, \ldots, n_{i} ; j=1, \ldots, a_{i}^{\prime}-1\right\}$. Therefore the lemmata above yield Theorem 7.3.6.

Problem 7.3.17. For future research it might also be possible to associate a Frobenius manifold to the pair $\left(f_{A}, G\right)$ and the canonical primitive form ζ and show that it is isomorphic to the one constructed from the Gromov-Witten theory for an orbifold projective line with at most r orbifold points.

Bibliography

[Ar75] V. I. Arnold. Critical points of smooth functions, and their normal forms. Uspehi Mat. Nauk 30 (1975), no. 5(185): 3-65.
[AGV85] V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko. Singularities of Differentiable Maps, Vol I. Monographs in Mathematics, 82. Birkhäuser Boston, Inc., Boston, MA, 1985.
[AS89] M. Atiyah, G. Segal. On equivariant Euler characteristics. J. Geom. Phys. 6 (1989), no. 4: 671-677.
[BF98] J. Bryan, J. Fulman. Orbifold Euler characteristics and the number of commuting m-tuples in the symmetric groups. Ann. Comb. 2 (1998), no. 1: 1-6.
[BH95] P. Berglund, M. Henningson. Landau-Ginzburg orbifolds, mirror symmetry and the elliptic genus. Nuclear Phys. B 433 (1995), no. 2: 311-332.
[BH93] P. Berglund, T. Hübsch. A generalized construction of mirror manifolds. Nuclear Phys. B 393 (1993), no. 1-2: 377-391.
[BK91] D. Bättig, H. Knörrer. Singularitäten. Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel, Boston, Stuttgart, 1991.
[BTW16] A. Basalaev, A. Takahashi, E. Werner. Orbifold Jacobian Algebras for Invertible Polynomials. preprint: arXiv: 1608.08962 [math.AG] (2016)
[BTW17] A. Basalaev, A. Takahashi, E. Werner. Orbifold Jacobian Algebras for Exceptional Unimodal Singularities. preprint: arXiv: 1702.02739 [math.AG] (2017)
[CR02] A. Craw, M. Reid. How to calculate A-Hilb \mathbb{C}^{3}. Sémin. Congr., 6, Soc. Math. France, Paris, 2002.
[Di04] A. Dimca. Sheaves in topology. Springer-Verlag, Berlin, 2004.
[DHVW] L. Dixon, J. A. Harvey, C. Vafa, E. Witten. Strings on orbifolds. Nuclear Phys. B 261 (1985), no. 4: 678-686. II. Nuclear Phys. B 274 (1986), no. 2: 285-314.
[Eb07] W. Ebeling. Functions of several complex variables and their singularities. Graduate Studies in Mathematics, 83. American Mathematical Society, Providence, RI, 2007.
[EG12] W. Ebeling, S. M. Gusein-Zade. Orbifold Euler characteristics for dual invertible polynomials. Mosc. Math. J. 12 (2012), no. 1: 49-54.
[EG15] W. Ebeling, S. Gusein-Zade. Equivariant indices of vector fields and 1-forms. European Journal of Mathematics (2015) 1: 286-301.
[EGT16] W. Ebeling, S. M. Gusein-Zade, A. Takahashi. Orbifold E-functions of dual invertible polynomials. Journal of Geometry and Physics (2016): 184-191.
[EL77] D. Eisenbud, H. Levine. An algebraic formula for the degree of a C^{∞} map germ. Ann. of Math. (2) 106 (1977), no. 1, 19-38.
[ET11] W. Ebeling, A. Takahashi. Strange duality of weighted homogeneous polynomials. Compos. Math. 147 (2011), no. 5: 1413-1433.
[ET13a] W. Ebeling, A. Takahashi. Mirror Symmetry between Orbifold curves and Cusp Singularities with Group action. Int. Math. Res. Not. IMRN 2013, no. 10: 22402270.
[ET13b] W. Ebeling, A. Takahashi. Variance of the exponents of orbifold LandauGinzburg models. Math. Res. Lett. 20 (2013), no.01: 51-65.
[ET14] W. Ebeling, A. Takahashi. A geometric definition of Gabrielov numbers. Revista Matematica Complutense 27 (2014), no. 2: 447-460.
[Fu93] W. Fulton. Introduction to toric varieties. Annals of Mathematics Studies, 131. The William H. Roever Lectures in Geometry. Princeton University Press, Princeton, NJ, 1993
[FH91] W. Fulton, J. Harris. Representation theory. A first course. Graduate Texts in Mathematics, 129. Readings in Mathematics. Springer-Verlag, New York, 1991.
[FJJS12] A. Francis, T. Jarvis, D. Johnson, R. Suggs. Landau-Ginzburg mirror symmetry for orbifolded Frobenius algebras. Proc. Sympos. Pure Math., 85, Amer. Math. Soc., Providence, RI, 2012.
[FJR13] H. Fan, T. Jarvis, Y. Ruan. The Witten equation, mirror symmetry, and quantum singularity theory. Ann. of Math. (2) 178 (2013), no. 1: 1-106.
[Ha86] M Hall. Combinatorial Theory. Second edition. John Wiley \& Sons, Inc., New York 1986.
[HH90] F. Hirzebruch, T. Höfer. On the Euler number of an orbifold. Math. Ann. 286 (1990), no. 1-3: 255-260.
[IR96] Y. Ito, M. Reid. The McKay correspondence for finite subgroups of SL(3, C $)$. Higher-dimensional complex varieties (Trento, 1994), 221-240, de Gruyter, Berlin, 1996.
[IST12] Y. Ishibashi, Y. Shiraishi, A. Takahashi. Primitive Forms for Affine Cusp Polynomials preprint: arXiv:1211.1128 [math.AG] (2012)
[IST15] Y. Ishibashi, Y. Shiraishi, A. Takahashi. A uniqueness theorem for Frobenius manifolds and Gromov-Witten theory for orbifold projective lines. J. Reine Angew. Math. 702 (2015): 143-171.
[Ka03] R. Kaufmann. Orbifolding Frobenius Algebras. Internat. J. of Math., 14 (2003): 573-619.
[Ka06] R. Kaufmann. Singularities with symmetries, orbifold Frobenius algebras and mirror symmetry. Contemp. Math., 403, Amer. Math. Soc., Providence, RI, 2006.
[Kh77] G. N. Khimshiashvili. On the local degree of a smooth map. Comm. Acad. Sci. Georgian SSR 85:2 (1977): 309-311.
[Kn73] D. Knutson. λ-rings and the representation theory of the symmetric group. Lecture Notes in Mathematics, Vol. 308. Springer-Verlag, Berlin-New York, 1973.
[Kr09] M. Krawitz. FJRW rings and Landau-Ginzburg Mirror Symmetry preprint: arXiv:0906.0796 [math.AG] (2009)
[Kr94] M. Kreuzer. The mirror map for invertible LG models. Phys. Lett. B 328 (1994), no. 3-4: 312-318.
[KS92] M. Kreuzer, H. Skarke. On the classification of quasihomogeneous functions. Comm. Math. Phys. 150 (1992), no. 1: 137-147.
[Mi68] J. W. Milnor. Singular points of complex hypersurfaces. Ann. of Math.Study no. 61, Princeton, 1968.
[RN16] A. Ros Camacho, R. Newton. Strangely dual orbifold equivalence I. J. Singul. 14 (2016): 34-51.
[Sa82] K. Saito. Primitive forms for a universal unfolding of a function with an isolated critical point. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1982), no. 3: 775-792.
[Sa83] K. Saito. Period mapping associated to a primitive form. Publ. RIMS, Kyoto Univ. 19 (1983): 1231-1264.
[Sh14] Y. Shiraishi. On Frobenius Manifolds from Gromov-Witten Theory of Orbifold Projective Lines with r orbifold points. preprint: arXiv: 1412.3575 [math.AG] (2014)
[ST08] K. Saito and A. Takahashi. From Primitive Forms to Frobenius manifolds. Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008.
[ST15] Y. Shiraishi, A. Takahashi. On the Frobenius manifolds for cusp singularities. Adv. Math. 273 (2015): 485-522.
[tD79] T. tom Dieck. Transformation groups and representation theory. Lecture Notes in Mathematics, 766. Springer, Berlin, 1979.
[Vo02] C. Voisin. Hodge Theory and Complex Algebraic Geometry I. Cambridge Studies in Advanced Mathematics, 76. Cambridge University Press, Cambridge, 2002.
[Wa80] C. T. C. Wall. A note on symmetry of singularities. Bull. London Math. Soc. 12 (1980), no. 3: 169-175.

Lebenslauf

$$
\begin{aligned}
& \text { Elisabeth Werner } \\
& \begin{aligned}
\text { Geburtsdatum } \\
\text { Geburtsort }
\end{aligned} 20.08 .1988 \\
& \text { Hannover } \\
& \text { Bildungsgang } \\
& \text { 10. - 12. 2015 } \text { Auslandsaufenthalt in Japan, eingeladen von Prof. A. Takahashi } \\
& 2013-2017 \text { Promotionsstudium, Betreuer: Prof. Dr. W. Ebeling } \\
& \text { Leibniz Universität Hannover } \\
& 10.2013 \text { Master of Science: } \\
& \text { Algebraisch-geometrische Codes und Gitter } \\
& 2011-2013 \text { Master-Studium der Mathematik, Nebenfach Informatik } \\
& \text { Leibniz Universität Hannover } \\
& 9.2011 \text { Bachelor of Science: } \\
& \text { Algebraisch-geometrische Reed-Solomon- und Goppa-Codes } \\
& 7.2011 \text { Teilnahme an der ACAGM summer school in Leuven, Belgien } \\
& 2008-2011 \text { Bachelor-Studium der Mathematik, Nebenfach Physik } \\
& \text { Leibniz Universität Hannover } \\
& 2001-2008 \text { Erich Kästner Gymnasium Laatzen, Abitur 2008 } \\
& 1999-2001 \text { Orientierungsstufe der Albert-Einstein-Schule Laatzen } \\
& 1995-1999 \text { Grundschule Rethen } \\
& \text { beruflicher Werdegang } \\
& \text { seit 2016 } \begin{array}{l}
\text { wissenschaftliche Mitarbeiterin am Institut für Algebraische Geometrie, } \\
\\
\text { Leibniz Universität Hannover } \\
\text { wissenschaftliche Mitarbeiterin im Graduiertenkolleg 1463 }
\end{array} \\
& 2013-2016 \text { "Analysis, Geometry and String Theory", Leibniz Universität Hannover } \\
& 2011-2013 \text { studentische Hilfskraft, Reine Mathematik, Leibniz Universität Hannover } \\
& \text { Durchführung von Übungen zu Lineare Algebra 1+2 } \\
& \text { studentische Hilfskraft, Reine Mathematik, Leibniz Universität Hannover } \\
& \text { Korrigieren von Übungsaufgaben zu Analysis 1 und Lineare Algebra 1 }
\end{aligned}
$$

Publikationen:

- A. Basalaev, A. Takahashi, E. Werner (2016): Orbifold Jacobian algebras for invertible polynomials. arXiv: 1608.08962
- A. Basalaev, A. Takahashi, E. Werner (2017): Orbifold Jacobian algebras for exceptional unimodal singularities. arXiv: 1702.02739

