
 

 

 

 

 

 

 

 

Regulation of plant carbon transport mechanisms during 

arbuscular mycorrhizal symbiosis 

 

 

 

 

 

 

Von der Naturwissenschaftlichen Fakultät der 

Gottfried Wilhelm Leibniz Universität Hannover 

 

Zur Erlangung des Grades 

Doktorin der Naturwissenschaften (Dr. rer. nat.) 

 

 

 

genehmigte Dissertation 

von 

Stefanie Wegener, M. Sc. 

 

2017 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referent: Dr. rer. nat. Sascha Offermann 

Korreferent: Prof. Dr. rer. nat. habil. Georg Guggenberger 

Tag der Promotion: 11.04.2017 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

“It is a natural human impulse to think of evolution as a long chain of improvements, of 

a never-ending advance towards largeness and complexity – in a word, towards us. 

We flatter ourselves. Most of the real diversity in evolution has been small-scale. We 

large things are just flukes – an interesting side branch. Of the twenty-three main 

divisions of life, only three – plants, animals and fungi – are large enough to be seen 

by the human eye, and even they contain species that are microscopic. Indeed, 

according to Woese, if you totaled up all the biomass, microbes would account for at 

least 80 per cent. The world belongs to the very small – and it has done for a very long 

time.”  

― Bill Bryson, A Short History of Nearly Everything 
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Abstract 

 

The symbiotic interaction between plants and fungi is present in 70 to 90% of all 

terrestrial plant species. The main benefit of this symbiotic interaction is the supply of 

the fungi with photosynthetically fixed carbon in exchange for mainly phosphate (P), 

nitrogen and water for the plant. The regulatory mechanisms of carbon transport and 

partitioning between plant and fungi have not yet been fully discovered. Hence, it is 

still a matter of debate whether the mycorrhizal fungi can become parasitic in case of 

less beneficial conditions for the symbiotic interaction. In this study, plants in an 

established mycorrhizal interaction with AM fungi were shaded or optimally supplied 

with P to create a situation in which the symbiotic interaction is less beneficial for the 

plant. Additionally, a super less beneficial situation was created, in which mycorrhizal 

plants were both, optimally supplied with P and shaded. 

Mycorrhization of plants supplied with limited P (AM-P plants) resulted in an increased 

growth, independent of the light treatment. Mycorrhization of plants grown under 

optimal P supply (AM+P) had no effect on biomass gain during growth, independent of 

the light treatment. The carbon transport from roots to the AM fungi (traced by 13C 

labeling) was reduced by shading. Furthermore, the concentration as well as the 13C 

content in neutral lipid fatty acids and phospholipid fatty acids were reduced under 

shading. Additionally, optimal P supply further reduced the neutral lipid fatty acid 

concentration. Plant biomass, fungal fatty acid contents and analysis of carbon flux 

from the plant to the fungi did not indicate a shift to a parasitic interaction between the 

mycorrhizal fungi and the plant in case of less beneficial situations. A comparative 

transcriptomic analysis between beneficial and less beneficial situations identified two 

sucrose synthases, and a hexokinase as possible candidates to be involved in sugar 

transport and partitioning between plant and fungi. The pathways of lipid synthesis, 

glycolysis, and pyruvate dehydrogenase of the tricarboxylic acid cycle were found to 

be partly regulated during mycorrhizal symbiosis. This study provides new insights into 

the regulation of carbon partitioning between plant and fungi when an established 

mycorrhizal symbiotic interaction becomes less beneficial for the plant. Our study 

demonstrates, that intensive shading for 21 days did not turn the symbiont into a 

parasite as the plant is able to reduce the carbon supply of the fungi. 

Keywords: plant-mycorrhiza interaction, carbon limitation, phosphate supply
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Zusammenfassung 

Die symbiotische Interaktion zwischen Pflanzen und Pilzen bildet sich in 70 bis 90% 

aller Landpflanzen. Ein wesentlicher Teil der Symbiose zwischen Pflanze und Pilzen 

ist der Austausch von Kohlenstoff (C) aus der Photosynthese gegen Phosphat (P), 

Stickstoff und Wasser aus dem Boden. Gegenwärtig sind die regulatorischen 

Mechanismen von Kohlenstofftransport und -verteilung zwischen Pflanze und Pilzen 

unbekannt und es wird kontrovers diskutiert ob arbuskuläre Mykorrhizapilze in 

Situationen, in denen die Pflanze den Pilz nicht benötigt, parasitär werden können. Um 

dies zu untersuchen, wurden Pflanzen in einer etablierten Mykorrhiza-Symbiose 

schattiert oder optimal mit P versorgt (AM+P). Zusätzlich wurde durch Schattieren von 

optimal mit P versorgten Pflanzen eine besonders unvorteilhafte Situation für die 

Symbiose erzeugt. Die Mykorrhizierung von P-limitierten Pflanzen (AM-P) führte 

unabhängig von der Lichtintensität, zu einem gesteigerten Wachstum. Mykorrhizierung 

von AM+P Pflanzen hatte keinen Einfluss auf den Biomassezuwachs der Pflanzen 

während des Wachstums. Der Transport von C aus den Wurzeln zum Mykorrhizapilz 

(quantifiziert durch 13C labeling) sowie die Konzentration der Pilzfettsäuren der 

Neutrallipide und Phospholipide wurde durch Schattierung reduziert. Eine optimale P-

Versorgung der Pflanze reduzierte ebenfalls den C Transport in die Wurzeln, sowie die 

Fettsäuren der Phospholipide und der Neutrallipide. In für die Symbiose weniger 

günstigen Situationen, konnte bezüglich der Pflanzenbiomasse, des 

Pilzfettsäuregehalt und anhand der Analysen des Kohlenstoffflusses von der Pflanze 

zu den Pilzen keinerlei Verschiebung in Richtung einer parasitären Wechselwirkung 

ausgehend von den Mykorrhizapilzen detektiert werden. Eine vorteilhafte und weniger 

vorteilhafte Situation vergleichende Transkriptomanalyse identifizierte zwei 

Saccharose-Synthasen und eine Hexokinase als mögliche Kandidaten, die in den 

Zuckertransport und die Partitionierung zwischen Pflanzen und Pilzen involviert waren. 

 Zusätzlich zeigten Lipidsynthese, Glykolyse und die Pyruvatdehydrogenase eine 

erhöhte Regulation. Diese Studie bietet neue Einblicke in die Regulation der 

Kohlenstoffverteilung zwischen Pflanze und Pilzen, wenn eine etablierte Symbiose 

weniger vorteilhaft für die Pflanze wird und zeigt dass die Pflanze in der Lage ist den 

Kohlenstofftransport zum Pilz zu reduzieren. Es konnte gezeigt werden, dass auch 

eine intensive Schattierung für 21 Tage keine Transformation des Symbionten in einen 

Parasiten verursacht. 

Schlagwörter: Pflanze-Mykorrhiza Interaktion, Kohlenstoff Limitierung, Phosphat
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1. Introduction 

 

Crop production is highly dependent on fertilizers to promote plant growth and to 

increase crop productivity. The three major nutrients which are required by plants and 

provided by fertilizers are nitrogen, phosphorus and potassium (Roy-Bolduc and 

Mohamed 2011). In this composition, phosphorus represents the most critical 

compound, as it is a limiting factor for crop yield and in addition, a non-renewable 

resource (Cordell et al. 2009; Plenchette et al. 2005; Vance et al. 2003). During the 

next 50 to 125 years, the global resources of phosphate could be critical depleted, due 

to the predicted need for food and current phosphorus extraction rates (Cordell et al. 

2009; Vance et al. 2003; Gilbert 2009). Today, agriculture is highly dependent on 

external phosphate supply and the input of phosphate-based fertilizers has increased 

from 9 million to 40 million tons per year between the years 1960 and 2000 (Vance et 

al. 2003). This potential crisis of agriculture phosphate availability, as it was pointed 

out by Gilbert (2009), needs to be addressed with several approaches against the issue 

of phosphate scarcity. One of these approaches is the use of mycorrhizal fungi which 

can supply plants with additional phosphate (Smith and Gianinazzi-Pearson 1990). 

Today, the application of mycorrhizal fungi is not integrated in agricultural systems in 

Europe and North America. In countries such as Cuba, India and Mexico, striking 

results for mycorrhizal application in agriculture have already been made (reviewed in 

Zimmerman et al. 2009). Up to now, it is not known in detail, how the symbiotic 

interaction between mycorrhizal fungi and host plants is regulated. Plants adapt to 

phosphate starvation with several mechanisms, which could possibly influence the 

symbiosis. Additionally, the consequences of less beneficial situations on the 

symbiosis is poorly understood. The less beneficial situation for the symbiosis could 

be an optimal P supply for the plant, due to fertilization. Such a situation could occur if 

crops are not homogenously inoculated with mycorrhizal fungi and phosphate 

fertilization becomes necessary. Another less beneficial situation could be a reduction 

of carbon availability for the plant, due to shading. These shading situations can occur 

due to cloudy weather, shading by neighboring plants or the development of microbial 

biofilms on leaves. To apply mycorrhizal fungi in agriculture systems it is important to 

understand how the symbiotic interaction is regulated. This knowledge can be used to 

increase yield and avoid yield losses. 
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1.1 The symbiotic interaction between plants and mycorrhizal fungi 

 

The symbiotic interaction between plants and fungi occurred early in evolution 

(Redecker 2000) and can be found in nearly all ecosystems. Basically, there are two 

types of mycorrhizal interactions. The ectomycorrhiza remains, as its name indicates, 

outside of the plant cells and builds a network around the plant root (Frank 1885). 

Ectomycorrhiza, which are mainly represented by basidiomycetes and to a lower 

percentage by ascomycetes, can be found predominantly at trees that are growing in 

temperate forests. In contrast, endomycorrhiza grow inside the plant cell. 

Endomycorrhiza can be divided into three groups: orchid, ericoid and arbuscular 

mycorrhiza (AM). About 70 to 90% of all terrestrial plant species are associated with 

fungi belonging to the monophyletic phylum of Glomeromycota (Schüβler et al. 2001; 

Hibbett et al. 2007; Smith and Read 2008). About 18% of vascular plants are estimated 

to not interact with arbuscular mycorrhizal fungi and 6% do not interact with mycorrhizal 

fungi at all (reviewed in Brundrett 2009). These “non-host” plants can be divided in two 

groups: one group of plants with highly specialized nutrition like carnivores, parasites, 

species with cluster roots, and species which mainly grow in wet, arid, saline, very cold 

and disturbed habitats (reviewed in Lambers et al. 2010 and Brundrett 2009). The 

other group consist of species of the families Brassicaceae, Polyganaceae, 

Amaranthaceae and Caryophyllaceae (reviewed in Wang and Qiu 2006). The high 

number of angiosperm species which can be colonized by mycorrhizal fungi may 

suggest that these plants are harboring a special genetic program to perform symbiotic 

interactions with mycorrhizal fungi (Oldroyd et al. 2009; Parniske 2008). AM fungi are 

considered to be ancient asexuals with an aseptate, coenocytic hyphal network. The 

spores contain hundreds of nuclei and up to now there are no confirmed reports of a 

sexual stage in the life cycle, but there is a possibility of exchange and recombination 

of genetic material via the fusion of hyphae (Giovannetti et al. 2004). 

The main benefit of the symbiotic interaction is the exchange of carbon, 

photosynthetically fixed by the plant, for mainly phosphate, nitrogen and water, 

supplied by the fungus (Smith and Smith 1990; Smith and Smith 1997). The extensive 

hyphal network of the fungi is able to acquire nutrients behind the root depletion zones 

(Smith and Smith 1990). Furthermore, plants can benefit in many ways from the 

symbiosis with the fungus. The plant growth and reproduction is supported, and the 
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resistance to pathogens as well as the tolerance to abiotic stress is increased 

(Valentine et al. 2001; Wu and Xia 2006; van Wees et al. 2008; Liu et al. 2007).  

In exchange for nutrients, 20 to 30% of photosynthetically fixed carbon is transported 

to the obligate biotrophic fungi (Bago et al. 2003; Douds, 2000; Jakobsen and 

Rosendahl 1990). This means that approximately 5 billion tons of carbon are estimated 

to be consumed by the fungi, per year (Parniske 2008).The symbiotic interaction 

between plants and fungi contributes significantly to global phosphate and carbon 

cycling and influences primary productivity in terrestrial ecosystems (Fitter, 2005). Up 

to now, it is not well understood which regulatory mechanisms are underlying this 

symbiosis, but it was shown, that the amount of colonization typically decreases with 

increasing nutrient availability (Olsson et al. 2010).  

When plant cells are infected by a mycorrhizal fungus, they actively prepare the 

intracellular environment for the mycorrhizal fungal hyphae (Genre et al. 2005; 

Genre et al. 2008). A prepenetration apparatus (PPA) is built in the plant cell, defining 

the intracellular passage for the fungus. A PPA is a subcellular structure, build by a 

cytoplasmic bridge across the vacuole of the host cell. This cytoplasmic bridge contains 

microtubes and microfilaments. Together with cisternae from the endoplasmic 

reticulum a hollow tube in the PPA is formed, which connects the nucleus with the site 

of the apressorium (Genre et al. 2005; Siciliano et al. 2007). 

 

1.2 Arbuscules: The main exchange site between plant and arbuscular mycorrhizal 

fungi 

 

During arbuscular mycorrhizal symbiosis, tree-shaped structures are formed within the 

plants cells. This so called arbuscules are important sites for the uptake of nutrients 

like phosphate and they are a result of a coordinated development of plant and fungus 

(Harrison 2002). The fungal hyphae enter root cortical cells and form the arbuscules 

generated by repeated hyphal branching. A characteristic of arbuscules is the large 

membrane surface, which represents the interface between plant and fungi (Parniske 

2008; Bapaume and Reinhardt 2012). This so called periarbuscular membrane (PAM) 

contains a special protein composition delivered from the plasma membrane and, in 

addition, transporters which play a keyrole in the nutrient exchange between fungi and 

host (Wright et al. 1998a; Boldt et al. 2011; Graham and Abbott 2000). The structure 

can vary depending on the fungal and host genotype (Smith and Read, 2008), but is 
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not dependent on the environment they are growing in (Smith and Smith, 1997). Two 

different forms of arbuscules are known (Smith and Smith, 1997). The arnum type, in 

which hyphae penetrate the cell walls at the inner cortex, then branch in the apoplast 

and finally form the above described tree-like structure. The other arbuscule type is 

called paris type. Here, the hyphae grow from cell to cell and build an intracellular 

structure which is coil shaped. These structures are growing in the entire root cortex, 

and several arbuscules can be found in one cell. Nutrients and perhaps signals are 

exchanged via this plant-fungal interface. The periarbuscular space exists between the 

two periarbuscular membranes, the fungal plasmamembrane and the periarbuscular 

membrane (Harrison 2005). The mycorrhiza specific phosphate transporter PT4 for 

example, is located in the PAM (Harrison 2002). Additionally, a H+-ATPase is localized 

in arbusculated cells and provides the proton gradient for active transport processes 

across the PAM (Krajinski et al. 2002). Arbuscules have a lifetime of around 8.5 days, 

which is shorter than the lifetime of the host cells (Alexander et al. 1989). Arbuscules 

grow until their maximum size is reached. After that, degradation and senescence are 

induced and the arbuscular hyphae are separated by septation from the of remaining 

cytoplasm (Javot et al. 2007). Subsequently, arbuscules collapse and disappear (Fig. 

I.1) 

 

 
Fig. I.1 Stages of arbuscule development. In Stage I the prepenetration apparatus (PPA) is formed, displayed by a conically 

arranged microtubule array (Genre et al. 2005; 2008). In Stage II the fungus enters the cell and the arbuscule trunk is formed.  

Stage III is characterized by rough and low branching with a pattern similar to a bird´s foot. In Stage IV mature arbuscules with a 

tree-like structure are built. In Stage V arbuscules collapse and are disconnected from the hyphal network via a septum. PM: 

peripheral plasma membrane; PAS: periarbuscular space. Figure adapted from Gutjahr and Parniske (2013). 
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1.3 The role of carbohydrates in the mycorrhizal symbiotic interaction 

 

1.3.1 Sucrose as the main transport form of carbohydrates in plants 

 

Mycorrhizal fungi are acting as an additional sink for the host plant, which results in an 

increase of sucrose export from the source organs (Wright et al. 1998a; Boldt et al. 

2011). Sucrose is mainly synthesized in the cytosol of photosynthetically active cells. 

To a minor part, sucrose can result from a breakdown of starch and lipid reserves. It 

has been hypothesized that disaccharides are translocated in the phloem by pressure 

flow (Münch 1930). This high concentration chases the sieve sap towards the sites of 

low turgor which is caused by the escape of photosynthates at the sink ends (VanBel, 

1995; Knoblauch and Peters 2010). While sucrose is transported in the phloem and 

can be unloaded for the supply of flanking tissues (Thompson 2006). When plants are 

colonized by heterotrophic organisms like arbuscular mycorrhiza, sugars can be 

transported via the phloem to non-plant sinks which have an increased sugar demand 

(Doidy et al. 2012).  

 

1.3.2 Carbohydrate uptake by mycorrhizal fungi 

 

During symbiotic mycorrhizal interaction respiration is increased by the fungi resulting 

in a higher substrate demand. Caused by the interaction with the mycorrhizal fungi, the 

plant metabolism is reorganized and photosynthesis, carbon metabolism and transport 

processes are adapted to the symbiosis (Wright et al. 1998a; Wright et al. 1998b; Black 

et al. 2000). Arbuscules are located in the cortical cells near the epidermis which 

results in the direct access to the carbon in the phloem (Blee and Anderson 1998). 

NMR spectrometry experiments demonstrated that intraradical hyphae of mycorrhizal 

fungi are not able to take up sucrose, but hexoses mainly represented by glucose and 

to a smaller extent fructose (Shachar-Hill et al. 1995; Solaiman and Saito 1997; Pfeffer  

et al. 1999). Up to now, no sucrose cleaving activities have been identified in 

mycorrhizal fungi (Schubert et al. 2004). Therefore, sucrose has to be cleaved by 

apoplastic and symplastic invertases (Sturm 1999) and/or sucrose synthases (Huber 

and Akazawa, 1986) before the arbuscular mycorrhizal fungus is able to take up the 

carbohydrates. Inverse carbon transport from the fungus to the plant was not detected 
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(Pfeffer et al. 2004). Additionally, the expression profiles of genes which are involved 

in sucrose breakdown (Blee and Anderson 2002; Hohnjec et al. 2003) and sugar 

transport are upregulated during mycorrhizal interaction (Harrison 1996; Garcia-

Rodriguez et al. 2005). 

In a model for sucrose transport from plant to fungi adapted from Manck-Götzenberger 

and Requena (2016) the SWEET transporters play an important role (Fig.I.2). Sucrose 

reaches the cortex symplastically and can be directly exported into the periarbuscular 

space (PAS) and to the apoplast of cells which are directly in contact with the fungus 

by SWEET transporters such as SWEET12a. The sucrose in the PAS can then be 

cleaved with the help of cell wall invertases (CWIN) and glucose would be taken up 

into the fungal cell by the fungal monosaccharide transporter MST2 (Helber et al. 

2011). Sucrose can also be cleaved in the cytoplasm by sucrose synthase and/or 

cytoplasmic invertases, which could increase the glucose concentration, so that 

glucose is further exported into the PAS. 

 

 

 
Fig. I.2 Model of sugar transport and partitioning during arbuscular mycorrhiza symbiosis. Sucrose (Suc) and glucose 

(Gluc) are imported into arbusculated cells symplastically or by transporter (e.g. Mtst1, SWEET7a and 12a). In the cytoplasm, 

sucrose can be cleaved into glucose and fructose (Fru) by invertases (MtCIN) or sucrose synthases (MtSucS1). The hexoses are 

then transported via e.g. SWEET7a or 12a through the periarbuscular membrane (PAM) into the arbuscular apoplast. In the 

arbuscular apoplast, sucrose could also be cleaved by a cell wall invertase (MtCWIN). Sucrose which is in the vacuole can also 

be cleaved into hexoses via a vacuolar invertase (MtVIN) and transported in the cytoplasm via the SWEET2c. Once cleaved, 

hexoses can be taken up via the RiMST2 transporter by the fungi. The transporter can also take up mannose (Man), xylose (Xyl), 

galactose (Gal) and glucose from the apoplast. Hexoses are further transformed into triacylglycerade (TAG) and glycogen (Gly). 

The figure is adapted from Manck-Götzenberger and Requena (2016) and (Doidy 2012). 
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When hexoses reach the intraradical mycelium (IRM), there are two routes for the 

transfer into the extraradical mycelium (ERM) (Bago et al. 2003). Hexoses can be 

converted into glycogen or triacylglycerol. 13C labeling experiments showed, that the 

first carbon pools from hexose which are found to be labeled in the intraradical 

mycelium are trehalose and glycogen (Shachar-Hill et al. 1995). 

The regulation of carbon partitioning in the interaction between plant and fungi is not 

well understood. Several candidates like carbohydrate transporters and sucrose 

cleaving enzymes which are specifically induced during symbiosis, came into focus 

during the last years (Hohnjec et al. 2003; Schaarschmidt et al. 2006) . 

The restructuring of cells due to arbuscule development induces changes in transcript 

levels of hundreds of genes (Gaude et al. 2012; Gomez et al. 2009; Hogekamp et al. 

2011). The most prominent functional groups which showed an induction of transcripts 

were related to transport processes, transcriptional regulation and lipid metabolism 

(Gaude et al. 2012). Furthermore, genes which are involved in sucrose breakdown 

(Blee and Anderson 2002; Hohnjec et al. 2003; García-Rodríguez et al. 2007) and 

sugar transport are optimized for mycorrhizal energy supply (Harrison 1996; Garcia-

Rodriguez et al. 2005). The highest number of induced genes was found in cortical 

cells next to arbusculated cells (Gaude et al. 2012). 

 

1.3.3 Carbohydrate transporter exclusively influenced by mycorrhization 

 

In G. mossae colonized tomato plants, SUT1 and SUT4 (sucrose transporter) family 

members were found to be upregulated in leaves and roots (Boldt et al. 2011), which 

could show a possible role in sugar allocation towards the mycorrhizal fungi. The role 

of SUT1 may be specific for the individual to the AM species. A downregulation for this 

transporter was shown in Rhizophagus intraradices colonized plants Ge et al. (2008). 

Additionally, the expression of the SUT1 transporter correlates with the level of 

phosphate supply. An overexpression of this transporter doubled the colonization of 

mycorrhiza when phosphate was highly concentrated (Gabriel-Neumann et al. 2011). 

Some of the transporters which are of importance during mycorrhizal symbiosis are 

exclusively expressed in arbusculated cells and hyphae. One of these transporters is 

the MST2 high affinity monosaccharide transporter, which can be found in 

arbusculated cells and intercellular hyphae (Helber et al. 2011). MST2 is able to 

transport several monosaccharides, including pentoses, but the highest affinity is found 
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for glucose. The knockdown of MST2 interferes with the formation of arbuscules 

(Helber et al. 2011). Some of the SWEET transporters are also induced by the fungus 

in arbuscule containing cells (Manck-Götzenberger and Requena 2016).  

Not only transporters are upregulated during mycorrhization. Mycorrhizal roots show a 

significant increase in cell wall bound invertase activity (Schaarschmidt et al. 2006). 

However, increasing invertase activity did not increase colonization rates 

(Schaarschmidt et al. 2007). The importance of sucrose and sucrose cleaving in 

mycorrhizal roots is demonstrated by the finding that a higher sucrose level can be 

observed in mycorrhizal roots, but glucose and fructose levels are lower, compared to 

non-mycorrhizal roots (Campos-Soriano and Segundo 2011). Transcript amounts of 

MtSUT1 increased in cells of mycorrhizal roots which were not directly infected (Gaude 

et al. 2012). MtSUT1 has a function in export of sucrose from the vacuole and 

mobilization of carbohydrates which are close to mycorrhizal structures in the root. The 

uptake of glucose by the fungi is carried out by the GiMST2. This transporter can also 

be induced in the ERM by Xylose (Helber et al. 2011). The localization of GiMST2 in 

arbuscules and hyphae suggests a sugar transfer between host and fungi in both 

structures. Starch granules are typically absent from arbusculated cells, indicating the 

sink strength of the mycorrhizal fungi (Bonfante 2001; Kovács et al. 2003). 

 

1.3.4 Mycorrhizal impact on invertases and sucrose synthases  

 

Sucrose synthase and invertase activities have been found to be high in meristems of 

sink tissues (Koch 1996; Chin and Weston 1973). Vacuolar invertases and sucrose 

synthases of cortical cells are responsible for a gradient allowing the diffusion of 

sucrose through plasmodesmata. Hohnjec et al. (2003) showed the promoter activity 

of a Medicago sucrose synthase gene (MtSucS1) in colonized cells and cells next to 

arbuscules and hyphae. Schaarschmidt et al. (2006) found an increased expression of 

a cell wall bound invertase in colonized cells and in the central cylinder. Several 

experiments showed an upregulation for all type of sucrose cleaving enzymes when 

arbuscular mycorrhiza were present (Wright et al. 1998a; Ravnskov et al. 2003; 

García-Rodríguez et al. 2007; Tejeda-Sartorius et al. 2008). MtSucS1 antisense lines 

showed a downregulation of carbon related genes and that arbuscules could not 

develop (Baier et al. 2010). Plants which have a decrease in acid invertase activity 
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showed a reduction in mycorrhization, whereas an overexpression did not increase the 

fungal growth (Schaarschmidt et al. 2007).  

 

1.4 Influence of mycorrhization on lipid metabolism 

 

1.4.1 Synthesis of lipids in plants 

 

Lipids play a major role in plants. For example, structural lipids are synthesized to 

function as membrane constituents. Furthermore, carbohydrates can be stored in the 

form of lipids. Membrane and storage lipids consist of a trivalent alcohol with three acyl 

residues. Storage lipids are triacylglycerine or triacylglycerides, whereas phospholipids 

contain two esterified acyl residues and a polar substituent like phosphate 

(phospholipids) or sugar moieties (glycolipids). During lipid metabolism, plastids, 

cytoplasm and endoplasmic reticulum (ER) are involved. In plants, the synthesis of 

fatty acids takes place in plastids, whereas fungi synthesize their fatty acids in the 

cytoplasm (Los and Murata 1978). In plastids, fatty acids are synthesized from acetyl-

CoA by pyruvate dehydrogenase or from acetate (Harwood 1996). The synthesis is 

interrupted as soon as C16 or C18 chains are synthesized, which are namely palmitoyl-

ACP (16:0-ACP) and stearoyl-ACP (18:0-ACP). The products of fatty acid synthesis in 

plastids are used for membrane lipid synthesis or they are exported into the cytoplasm 

(Browse et al. 1993). Acyl-CoA-synthetase generates acyl-CoA from the fatty acids 

under consumption of ATP (Kornberg and Pricer 1953). The acyl-CoAs (palmitoyl-CoA, 

stearoyl-CoA and oleoyl-CoA) can then be connected in several ways. Firstly chain 

elongation at the ER can result in producing storage lipids. A second option is the 

integration into membrane lipids. And finally, the acyl-CoAs can participate in the 

synthesis of the polyunsaturated fatty acids linoleic acids and linolenic acids (Browse 

and Somerville 1991). The plastidic glycolysis plays a major role in converting sugars 

for de novo fatty acid biosynthesis. Pyruvate dehydrogenase acts as a primary source 

of acetyl-CoA for lipid synthesis (Oliver et al. 2009). Based on this finding, Daher et al. 

(2017) suggested depending on the mycorrhizal development, the fatty acid 

biosynthesis pathway may be rapidly starved for plastidic carbon sources necessary 

to assemble lipids. Saturated and monosaturated fatty acids are mostly synthesized in 

the plastid stroma to be further used for synthesis of phospholipids at the ER.  
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1.4.2 Synthesis of lipids in arbuscular mycorrhizal fungi 

 

During root colonization, plant genes for lipid biosynthesis are induced to produce lipids 

for the establishment of the periarbuscular membrane (Gaude et al. 2012). The 

intraradical growth, development of fungal storage organs and membrane proliferation 

requires large amounts of fatty acids. Studies of Pfeffer et al. (1999) and 

Trepanier et al. (2005) suggested that the de novo synthesis of fatty acids is absent 

from the extraradical mycelium (ERM) and germinating spores, but the intraradical 

mycelium (IRM) is able to synthesize 16:0 fatty acids. 

AM fungi receive hexoses directly from the host and transform them into trehalose and 

glycogen, which are the characteristic fungal carbohydrates (Shachar-Hill et al. 1995). 

In the IRM, carbohydrates are mainly stored in the form of triacylglyceride (TAG) 

(Beilby and Kidby 1980; Jabaji-Hare 1988; Pfeffer et al. 1999). After building vesicles 

as storage organs in the IRM, some of the storage lipids are transported into the ERM 

(Pfeffer et al. 1999). When TAG reach the ERM, they can be transformed into 

carbohydrates via the glyoxylate cycle (Fig. I.3).  

 

 
Fig.I.3 Scheme of proposed routes by which carbon can move from the IRM to the ERM during mycorrhizal symbiosis. 

Carbon, represented by hexoses can be taken up from host and is then converted to storage lipids in the IRM. The lipids and 

glycogen are translocated from IRM to ERM. The storage carbohydrates, represented by glycogen and trehalose and the structural 

carbohydrates, namely chitin, are synthesized in the ERM. The figure is adapted from Bago et al. (2002a; 2002b; 2003) 
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The lipid bodies, which are built by the fungi, were found in arbuscular trunks, 

intercellular hyphae, extraradical spores and germ tubes (Bonfante et al. 1994). Most 

of the lipid bodies were observed to move with the cytoplasmic stream, others are 

stationary (Bago et al. 2002a). These so called oleosomes consist of insoluble lipids 

with a surrounding phospholipid monolayer, often with inserted proteins of the TAG 

metabolism (Kamisaka and Noda 2001). The large amounts of lipids which are present 

in the AM fungal hyphae of the Glomales reveal that they are “oleogenic” fungi. 

Oleogenic fungi are able to accumulate about 25% of their dry weight as lipids  (Jabaji-

Hare 1988). It was postulated that the regulation of lipid utilization would be at the level 

of transcription and/or posttranscriptional activation of the proteins responsible for 

directing carbon from lipid bodies into storage, catabolism or anabolism (Bago et al. 

2002a). 

The fatty acids typically found in AM fungi are 16:1ω5 and 18:1ω7 (Nakano et al. 2001; 

Pearson and Jakobsen 1993). Additionally polyunsaturated 20-carbon fatty acids can 

be found. To estimate the biomass of AM mycelium in soil and roots the fatty acids in 

PLFA and NLFA can be used (Olsson et al. 1995). Rhizophagus intraradices contains 

50 to 70% of 16:1ω5 fatty acids in their NLFA (Olsson and Johansen 2000) which is 

uncommon for other fungi (Müller et al. 1994; Olsson 1999). The specific fatty acids in 

PLFA and NLFA show the relation between biomass of mycelium and storage 

structures, which can be used to determine the amount of carbon allocation to the fungi 

(Peng et al. 1993; Olsson et al. 1997). Olsson and Johansen (2000) hypothesized that 

energy stores in the mycelium can mainly be found in roots and that successful root 

colonization is a prerequisite for accumulation of energy storage products in external 

mycelium. 

The use of PLFA analysis was first applied to soil by Frostegård (Frostegård et al. 

1993). PLFA can be used as biomarker for the living hyphae because they are rapidly 

hydrolyzed after cell death. 

 

1.5 Adaptions of plants to phosphate deficiency 

 

The interactions between plants and mycorrhizal fungi are mostly analyzed under 

phosphate limited conditions. The phosphate limitation itself influences the plant 

among other factors in growth and carbohydrate metabolism. 
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1.5.1 Plants adapt to phosphate starvation with changes in root morphology 

 

Plants can increase their ability to acquire P from soil and improve their ability to 

reutilize P internally via transcriptional, biochemical and physiological responses 

(Vance et al. 2003; Franco-Zorrilla et al. 2004). There are some adaptions to P 

starvation like a reduced primary root growth, increased lateral root number, increased 

root hair number and length as well as anthocyanin accumulation (Miura et al. 2005). 

Concentrations as well as the transport from the shoots to the roots of the 

phytohormones auxin, ethylene and cytokinin have to be balanced. Hormone 

regulation and distribution is maybe also involved in systemic responses to P starvation 

(Abel et al. 2002; Franco-Zorrilla et al. 2005; Hammond et al. 2004; Vance et al. 2003). 

A low rhizosphere P concentration, combined with an increased ethylene production 

results in the initiation and elongation of root hairs (Zhang et al. 2003). This increases 

the root surface and as a result, an increased amount of soil can be reached for P 

acquisition (Zhang et al. 2003). Many plant species respond with the formation of root 

clusters to P starvation (Lambers et al. 2006). In these clusters, root exudates can be 

concentrated and insoluble organic and inorganic sources of P can be exploited (Shen 

et al. 2005). Cytokinin concentrations were shown to decrease in roots when plants 

were starving due to a lack of P (Kuiper et al. 1988).  

 

1.5.2 Plants adapt to P starvation by modifying the rhizosphere 

 

Phosphate starving plants are able to modify their rhizosphere via secretion of organic 

acids (e.g. citrate, malate or oxalacetate) to release inorganic phosphate which is 

bound to clay particles (Lopez-Bucio et al. 2000a; López-Bucio et al. 2000b). 

Additionally to the release of organic acids, plants increase the amount of phosphate 

transporters to optimize the phosphate uptake (Versaw and Harrison, 2002). Three Pi 

transporter subfamilies were identified, namely Pht1, Pht2 and Pht3 (Daram 1999; 

Rausch and Bucher 2002; Mudge et al. 2002; Takabatake et al. 1999). 
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1.5.3 Phosphate starvation influences the carbohydrate metabolism 

 

Several studies indicate that shoot-derived carbohydrate signals, like sucrose, are 

involved in the systemic control of plant P starvation responses (Muller et al. 2007). 

The main problem of studies of phloem-sucrose signaling is that sucrose participates 

in many mechanisms. Sucrose participates in signaling, drives the phloem transport, 

delivers C skeletons to sink tissues, influences the osmotic status of tissues and is 

further rapidly broken down into glucose and fructose (Franco-Zorrilla et al. 2005; 

Gibson 2005). 

Phosphate starvation has direct consequences for photosynthesis, glycolysis and 

respiration (Plaxton and Carswell, 1999). When inorganic phosphate reserves in the 

vacuole decrease, a lack of Pi occurs in the cytoplasm which inhibits photosynthesis 

and results in an inhibition of Calvin Cycle enzymes. In turn, this results in a feedback 

inhibition based on pH changes across the thylakoid membrane or redox state of 

electron carriers (Plaxton and Carswell, 1999). Another effect of decreasing cellular Pi 

contents, is a reduced activity of ATP synthases in the thylakoid membranes and 

RuBisCo resulting in a reduced but not terminated carbon assimilation (Cakmak et al. 

1994).  

 

1.5.4 Phosphate starvation influences transcript amounts of genes of the carbohydrate 

metabolism 

 

Transcriptional studies of phosphate starving plants showed a rapid change in shoot 

carbohydrate metabolism (Muller et al. 2007). Transcripts encoding invertases, 

sucrose synthase, sucrose phosphate synthase and sucrose-phosphate phosphatase 

were found to be differentially expressed under phosphate starvation (Hammond et al. 

2005; Uhde-Stone et al. 2003). Additionally, carbohydrate transporters of shoots and 

roots responded to P starvation (Muller et al. 2007). Hexokinase acts as a sensor for 

glucose and glucose signaling pathways (Moore et al. 2003). During phosphate 

starvation, hexokinase activity decreases (Rychter and Randall 1994). 
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1.5.5 Carbon availability can influence plant responses to phosphate starvation 

 

When sucrose is reduced by decreasing photosynthetic capacity via shading, 

phosphate starving plants show a reduction in transcripts which are otherwise known 

to be upregulated during phosphate starvation (for example PT1, Liu et al. 2005). This 

means, that carbon limited plants with a reduced sucrose phloem transport are not 

able to react to phosphate starvation fast enough (Hammond and White 2008).  

 

1.6 Mycorrhizal symbiosis in less beneficial situations 

 

It is unclear what happens in less beneficial situations when plants are already in an 

established symbiotic interaction with arbuscular mycorrhizal fungi. A less beneficial 

situation could be an optimal phosphate supply. Due to this the plant would not need 

the fungi anymore for a better phosphate supply, but the fungi would still gain carbon 

from the host.  

Plants colonized by AM fungi change their phosphate uptake from the direct 

rhizodermal uptake pathway to the symbiotic-uptake pathway, which also includes a 

switch of host phosphate transporters (Smith 2003; Yang et al. 2012). In contrast, the 

symbiotic pathway of phosphate uptake is suppressed during high phosphate 

availability (Breuillin et al. 2010). High phosphate availability can have several effects 

on AM development. These effects encompass the quantitative suppression of 

colonization and abnormal arbuscule formation in petunia (Breuillin et al. 2010) to a 

decrease of hyphopodium induction and nearly no intraradical colonization in pea 

(Balzergue et al. 2011). But the particular mechanisms inhibiting the growth of AM fungi 

in host roots under sufficient phosphate conditions are unknown. 

As it is unknown whether the plant or the fungi controls the amount of arbuscules in 

the roots, the investment of energy in new arbuscules is used as a sign for mutualism, 

whereas an investment in fungal storage organs like vesicles is an indicator for a shift 

to parasitism of the fungus (Johnson 1993). Another less beneficial situation could be 

carbon limitation of mycorrhizal plants. When plants would not have enough carbon to  

supply their own metabolism, the fungi could possibly turn useless. However, 

responses of mycorrhizal plants to carbon limitation caused by shading are variable 

(reviewed in Konvalinkova and Jansa 2016). It was reported that the limitation of plant 
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photosynthesis reduced mycorrhizal growth response and inorganic phosphate uptake 

(Tester et al. 1985). Up to now it is not even clear whether the decrease of arbuscular 

mycorrhizal fungal colonization of roots under low light is actively driven by the host 

plant or just a consequence of the lack of assimilates within the roots (Konvalinkova 

and Jansa 2016). Another theory for the regulation of the symbiotic interaction between 

plant and fungi in a less beneficial situation assumes that carbohydrate and phosphate 

distribution are controlled by the actual needs of the symbionts (Landis and Fraser 

2008). Accordingly, plants should not supply AM fungi with carbohydrates in situations 

where growth and/or reproduction are not primarily limited by nutrients, but by energy 

availability such as occurring light deprivation (Konvalinkova and Jansa 2016). The 

extent to which plants can reduce the carbon flux to arbuscular mycorrhizal fungi is 

unknown (Konvalinkova and Jansa 2016). 

 

1.7 Aim 

 

As it is unknown how light limitation and/or optimal phosphate supply by fertilization 

can influence yields in agricultural systems which are influenced by mycorrhizal fungi, 

it was analyzed whether plants are able to control the carbon partitioning to fungi when 

a less beneficial situation occurs. To this end, Medicago truncatula plants under 

phosphate limitation were inoculated with the arbuscular mycorrhizal fungi 

Rhizophagus intraradices. After establishing the symbiotic interaction, mycorrhizal 

plants were transferred in less beneficial situations. The less beneficial situations were 

induced via shading to limit the carbon availability, or by providing optimal phosphate 

supply, or both. Mycorrhizal plants in less beneficial situations were compared with 

plants in conditions optimal for mycorrhiza (low phosphate availability, fully illuminated) 

and nonmycorrhizal control plants. Influence on physiological parameters was 

determined. Furthermore, the analyses of 13C transport from plants to fungi under less 

beneficial conditions and the changes in amounts of fungal lipids were used to gain 

insights on the influence of less beneficial situations on the carbon partitioning from 

the host plant to the fungal partner. Finally, transcriptomic analyses based on 

Microarray analyses were performed to study the influence of less beneficial situations 

on plants genes in a mycorrhizal interaction, which control the major and minor 

carbohydrate pathway. Additionally, enrichment analyses of pathways in plant 

metabolism were done. In summary, the following hypothesis was drafted: 
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Plants are able to reduce the carbon transport to the fungi under less beneficial 

conditions. 

 

The hypothesis was grouped in three parts: 

 

1. How does a less beneficial situation caused by shading and/or optimal phosphate 

supply influence the colonization status, fresh weight gain, root carbohydrate and root 

phosphate content of mycorrhizal plants? 

 

2. Does the mycorrhizal fatty acid content and the carbon transport to the fungi change 

under less beneficial conditions? 

 

3. Are specifically regulated genes or pathways for carbon partitioning between plant 

and fungi detectable when a less beneficial situation occurs? 
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2. Material and Methods 

 

2.1 Material 

 

2.1.1 Chemicals and consumables  

 

The commonly used chemicals had at least a purity of p.a. if not further specified in the 

method description. Chemicals were ordered at the following companies: 

AppliChem (Darmstadt), Carl Roth GmbH (Karlsruhe), Duchefa Biochemistry (Harlem, 

Netherlands), Larodan Ltd. (Sweden), Merck KGaA (Darmstadt), Sigma Aldrich (St. 

Louis, USA) 

 

The commonly used consumables were ordered from the following companies: 

BioRad Laboratories GmbH (München), Eppendorf (Hamburg), Greiner (Solingen), 

Sarstedt (Nümbrecht), Serva (Heidelberg), Sigma Aldrich (St. Louis, USA), VWR 

International GmbH (Darmstadt) 
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2.1.2 Special chemicals and consumables 

 

Table II.1 Special chemicals and consumables 

Chemical/Consumable Company  

Rhizophagus intraradices  
research grade inoculum 
10 000 spores/g 
 

Symplanta 
(München) 

DAOM197198, 
DAOM181602 and 
MUCL43194 

Carrier Material for inoculation of 
control plants  
 

Symplanta 
(München) 

Attapulgit-clay based 
carrier in mineral powder 

Phosphate standard solution Merck KGaA 
(München) 
 

 

Germ Agglutinin, Alexa Fluor® 488 
Conjugate  
(catalogue W11261) 
 

Thermo Fisher 
Scientific 
(Waltham, USA) 

Staining of mycorrhizal 
roots for magnified 
intersection method 

Sodium carbonate- 13C 
99 atom % 13C 
 

Sigma Aldrich 
(St. Louis, USA) 

13C label of plants 

cOmplete™ Protease Inhibitor 
Cocktail 
 

Sigma Aldrich 
(St. Louis, USA) 

 

 

 

2.1.3 Reaction kits 

 

Table II.2 Reaction kits used for experiments 

Reaction kit Company  

NucleoSpin® RNA Plant 
 

Macherey-Nagel (Düren)  

RNeasy MinElute Cleanup 
Kit 
 

Qiagen (Hilden) Clean up of RNA prior 
Microarray analyses 

Total Carbohydrate Assay 
Kit 

Sigma Aldrich (St. Louis, 
USA) 
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2.1.4 Frequently used Buffer and Solutions 

 

Table II.3 Frequent used buffer and solutions 

Buffer Component Final concentration 

PBS Buffer NaCl 
KCl 
Na2HPO4 
KH2PO4 

pH 7.3 with 10% KOH 

137 mM 
2.7  mM 
8     mM 
2     mM 

0.5 x Hoagland Solution CA(NO3)2 x 4 H2O 
KNO3 

MgSO4 x 7H2O 
KH2PO4+K2HPO4 

NaFeEDTA 
Na2MoO4x2H2O 
H3BO3 

NiSO4x6H2O 
ZnSO4x7H2O 
MnCl2x4H2O 
CuSO4x5H2O 
CoCl2x6H2O 

2.5 mM 
2.5 mM 
1    mM 
20  µM/1 mM 
20  µM 
0.2 µM 
10  µM 
0.2 µM 
1    µM 
2    µM 
0.5 µM 
0.2 µM 

   
 

2.1.5 Software and databases 

 

Table II.4 Software and databases 

Software/Tool  

PageMan for 
Enrichment analyses 

http://mapman.gabipd.org/web/guest/robin 
 

ionOS 3.0 for 
Stable Isotope processing 

http://www.isoprime.co.uk/products/ 
software/ionos.html 

R  
for multiple variance testing 

https://www.r-project.org/ 
Version 3.2.2 

Databases  

NCBI for 
Sequence analyses 

http://ncbi.nlm.nih.gov/ 

Medicago truncatula Genome 
Project v4.0 

http://jcvi.org/medicago/search.php?pageName=
Search&section=Locus 

Mtgea noble database http://mtgea.noble.org/v3/probeset.php?id=Mtr.46
023.1.S1_at&submit=Go 
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2.2 Methods 

 

2.2.1 Plant growth 

 

2.2.1.1 Seed sterilization 

 

Medicago truncatula Gaertn. Jemalong line A17 seeds (provided by Prof. Dr. Helge 

Küster, Leibniz Universität Hannover, Institute of plant genetics) were surface 

sterilized. At first Medicago truncatula seeds were put into 98% sulfuric acid. After 10 

minutes the seeds were washed three times with sterilized ultrapure water, to avoid 

sulfuric acid leftovers. After that the surface was sterilized with 20% hypochlorite for 

15 minutes. After this the seeds were again washed three times with sterile ultrapure 

water and then left in water for 30 minutes for swelling. For germination seeds were 

put onto water agar (phyto agar 7.5 g/l) and wrapped in foil to ensure complete 

darkness. Seeds were transferred to 4°C for two days to overcome seed dormancy, 

and following that they stayed for two days in the dark at 24°C. The seeds were then 

transferred into 23°C temperature and 350 µmol*m-2s-1 light intensity for 10 days. 

 

2.2.1.2 Inoculation 

 

Plants were potted in 13 cm diameter pots filled with sterile foamed clay. Mycorrhizal 

plants were inoculated with 5g of Rhizophagus intraradices spores, which were in an 

attalpugit-clay based mineral powder mixture, directly into the potting hole. Control 

plants were potted in the same substrate but inoculum was replaced with sterile carrier 

material. 

 

2.2.1.3 Growth conditions 

 

Plants were grown in phytochambers (Johnson Controls, Ireland). Plants were watered 

with demineralized water when needed until three weeks after potting. After three 

weeks, plants were supplied with 50 mL 0,5x Hoagland solution (see Table II.3) once 

a week. Depending on treatment, the 0.5x Hoagland solution contained either 20 µM 

or 1 mM Phosphate. Additionally plants were watered with demineralized water 

whenever needed. Temperature and light intensity followed a program published by 
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Sulieman et al. (2013). The temperature was 23°C during the day which lasted for 16 

hours and 18°C at night. The light intensity was 350 µmol*m-2s-1 during the day. The 

humidity was around 70 %.  

 

2.2.1.4 Harvest 

 

Plants were harvested six, eight and nine weeks after inoculation. Leaves were 

counted and shoot length was measured. After that the plants were removed from the 

pots and roots were washed with demineralized water. After that root and shoot fresh 

weight was measured, root samples for Alexa Fluor® staining (see 2.2.3) were taken 

and shoots and roots were directly frozen in liquid nitrogen.  

 

2.2.2 Induction of less beneficial situations 

 

Less beneficial defines a situation in which the fungi are not beneficial to the plant, due 

to the limitation of carbon availability or optimal nutrient availability. The experiments 

are analyzed under the assumption that mycorrhizal plants are able to control and 

therefore limit carbon transport to the fungi under less beneficial conditions. These less 

beneficial situations were created in two different ways. Firstly, plant carbon availability 

was limited by reducing photosynthetic performance through light limitation. Secondly, 

high phosphate fertilization was used to create a situation, in which the plant does not 

need the fungi for phosphate supply and hence, symbiotic interaction with the 

mycorrhizal fungi can also be considered as less beneficial.  

After establishing the symbiotic interaction between plant and fungi for six weeks, 

twelve plants per replicate were shaded for the following three weeks and twelve plants 

per replicate remained in full light. All plants were grown in the same phytochamber, 

independent of light or phosphate treatment. For shading treatments light intensity was 

reduced to ̴ 9 µmol m-2s-1 light intensity with a shading mesh.  

Additionally to the light treatments, plants were supplied with 20 µM P (-P) or 1 mM P 

(+P) in 0.5x Hoagland´s solution to investigate the influence of P on carbon transport 

from the plant to the fungi. Furthermore, the shading of AM+P plants was used to 

create a super less beneficial situation.  
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Fig. II.1 Overview over the experimental setup to create less beneficial situations with mycorrhizal and 

nonmycorrhizal plants.  

 

 

2.2.3 Alexa Fluor® staining of roots and determination of mycorrhizal colonization 

 

Root pieces were incubated for 10 min in 10% KOH (w/v) at 95°C. After that, roots 

were washed three times with sterile water and covered with staining solution. Staining 

stock solution contained 20 µg/ml Alexa Fluor® in PBS buffer. For staining, the stock 

solution was diluted 1:50 with PBS buffer. After staining for 12 hours in darkness, root 

samples were washed with sterile water and stored in sterile PBS buffer in the dark. 

The Alexa Fluor® stained roots were used to determine mycorrhizal colonization with 

the magnified intersection method of McGonigle et al. (1990) with the additional 

parameter of stunted arbuscules. Fluorescence microscopy was performed using a 

Nikon Eclipse Ti fluorescence microscope (Nikon, Japan). Images and counting were 

carried out through a Nikon Plan Apo, 10x/0.45 objective. The fluorescence of Alexa 

Fluor® was analyzed by excitation at 480/20 nm. Image processing was performed 

using the NIS-Elements AR 4.40.00 software (Nikon, Japan).  
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2.2.4 Physiological measurements 

 

2.2.4.1 Determination of inorganic phosphate 

 

Inorganic phosphate of root material was measured following an adapted protocol of 

Taussky and Shorr (1953). 100 mg root material was ground in liquid nitrogen and 

transferred into 800 µL of 3% perchloric acid. After 20 minutes of shaking and 

centrifugation for 5 minutes at 14 000xg, 120 µl of supernatant was transferred to a 96 

well plate for photometric purposes. 80 µl reaction solution (10 ml 10 % (w/v) 

(NH4)6Mo7O24 in 10 N H2SO4, 0.18 M FeSO4, in H2O) were added, and a KH2PO4 

solution was used as standard. The measurement was done with a BioTek Synergy 

MX (BioTek, USA) at 750 nm absorption.  

 

2.2.4.2 Total soluble carbohydrate assay  

 

The total soluble carbohydrate assays was performed with the Total Carbohydrate 

Assay Kit (Sigma-Aldrich, USA). The procedure followed the description in the manual. 

50 mg of root material ground in liquid nitrogen and then homogenized in 200 µl of cold 

assay buffer. To get a clear supernatant, homogenized root material was centrifuged 

at 13 000 xg for 5 minutes. 30 µl of the supernatant was used for the assay. The 

absorbance was measured at 490 nm with the BioTek Synergy MX (BioTek, USA).  

 

2.2.4.3 RNA isolation 

 

Root RNA was isolated with the NucleoSpin® RNA Plant kit. 50 mg of ground root 

material was used for RNA isolation. The procedure was followed as described in the 

manual. 350 µl of buffer RA1 with 3.5 µl β-mercaptoethanol was used. RNA was 

eluated with 60 µl H2O. After eluating the RNA, an additional DNase digestion was 

done, as described in the manual.  
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2.2.5 Transcriptomic analyses 

 

The root RNA of mycorrhizal plants was isolated with the NucleoSpin® RNA Plant kit 

and additionally cleaned up with the RNeasy MinElute Cleanup Kit. The microarray 

analysis was done by IMGM Laboratories GmbH (Planegg) and was based on the 

GeneChip® Medicago Genome Array (Medicago Genome (IVT) Array) from Affymetrix 

(Santa Clara, USA). 

A total number of 12 Gene Chips was analyzed. The resulting relative expression 

numbers were assigned to identifiers of the Medicago truncatula genome.  

 

2.2.5.1 Analyses of regulated candidates in the sucrose pathway 

 

To analyze if candidates for the regulation of carbon transport from plant to fungi can 

be found in carbohydrate pathways, AM-P Light to Shading and AM+P Light to Shading 

was compared. The analyses was restricted to identifier which were assigned to the 

pathways of major and minor CHO metabolism and sugar transport.  

The pattern for the identification of candidate identifiers is exemplified in Fig. II.2. 

Firstly, the ratios of AM-P (AM-P Light/AM-P Shaded) and AM+P (AM+P Light/AM+P 

Shaded) roots were calculated. Ratios between 0.5 and 1.5 were assigned as not 

relevant. Secondly, the other ratios <0.5 and >1.5 were analyzed for significantly 

different regulated identifiers, using Student´s t-test. Thirdly, significantly differing 

ratios (p-values AM-P compared to AM+P <0.05) with a difference (ratio AM-P-ratio 

AM+P) of more than 0.5 or less than -0.5 were then assigned as candidates.  
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Fig. II.2 Example calculation for the identification of candidates in carbohydrate metabolism. Ratios from 

AM-P Light to AM-P Shaded and AM+P Light and AM+P Light were calculated and statistically compared. Not 

significantly different ratios were assigned as not relevant. Significant differences were used for further calculations. 

The differences between the ratio of AM-P (AM-P Light/AM-P Shaded) and AM+P (AM+P Light/AM+P Shaded) 

were calculated. Based on the difference the identifiers were assigned as candidate matching pattern 1, candidate 

matching pattern 2 or as a not candidate. The criteria for the assignment of a not candidate can be based on the 

calculated ratio or on the calculated differences. Calculated ratios (AM-P Light/AM-P Shaded; AM+P Light/AM+P 

Shaded) between 0.5 and 1.5 were defined as not relevant. Likewise, calculated differences between ratios (Ratio 

AM-P-Ratio AM+P) between -0.5 and 0.5 were defined as not relevant. 

 

Additionally, candidate genes were analyzed for mycorrhiza induction. For this the 

microarray dataset of control plants and mycorrhizal plants of Hogekamp et al. 2011 

was used. The datasets were derived from the mtgea homepage 

(https://mtgea.noble.org/v3/slides.php#a_treatment_type_3). Candidates which did 

not show an increase in relative expression due to mycorrhization were excluded. 

Exceptions were made for candidates with mycorrhizal induction and known role in 

fungal carbohydrate supply. 

 

2.2.5.2 Enrichment analyses with the PageMan tool 

 

To analyze if mycorrhiza dependent pathways were influenced by shading, an 

enrichment analysis was performed. For the enrichment analysis the PageMan tool of 
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the MapMan software was used. Here, the identifier of the Medicago truncatula Gene 

Chip with the associated expression data were sorted into the pathways. With this 

informations the PageMan tool analyzed, if identifiers of a metabolic pathway are over- 

or underrepresented in regulation, compared to the data from the Medicago truncatula 

Affymetrix GeneChip. The analyses of the influence of shading on mycorrhiza 

dependent metabolic pathways were split into two parts. Firstly it was analyzed which 

pathways in AM-P and AM+P plants were influenced by carbon limitation. These 

analyses were based on the ratios of AM-P Light/AM-P Shaded and AM+P Light/AM+P 

Shaded. Second, we tested the effect of mycorrhization on the identified pathways. 

The ratios of AM-P Light/AM-P Shaded and AM+P Light/AM+P Shaded were 

compared to nonmycorrhizal Medicago truncatula Gene Chip data from 

Hogekamp et al. (2011). These nonmycorrhizal data are based on 6 weeks old –P 

(20 µM) and +P (2 mM) Medicago truncatula roots. 

To investigate which pathways in AM-P and AM+P roots were more regulated by 

carbon limitation, many informations of the performed experiments needed to be 

summarized. For this purpose, two tables were built and analyzed with PageMan 

(Usadel et al. 2006). One table contained information about differentially regulated 

identifiers from AM-P Light to AM-P Shaded plants. The other table contained 

information about differently regulated identifiers from AM+P Light to AM+P Shaded 

plants. At first the fold changes of the relative expression of the identifiers from Light 

to Shaded were calculated (AM-P Light/AM-P Shaded and AM+P Light/AM+P 

Shaded). This was done for each identifier in every biological replicate. The three ratios 

of the identifier of AM-P (AM-P Light/AM-P Shaded) were compared to the three ratios 

of the identifier of AM+P (AM+P Light/AM+P Shaded; Fig. II.3). 
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Fig. II.3 Example calculation for the first step of 1 and 0 decision. Regulatory ratios from AM-P Light to AM-P 

Shaded and AM+P Light and AM+P Shaded were calculated and significance was calculated with Student´s t-test. 

Only significantly different regulated identifier were used for further calculations. 

 

The information about regulated identifiers were represented by yes and no decisions, 

indicated by “zero” (no) or “one” (yes). On the one hand, zero can represent no 

significant differences in regulation between AM-P (AM-P Light/AM-P Shaded) and 

AM+P (AM+P Light/AM+P Shaded) ratios. On the other hand the zero was assigned 

for example in the AM+P table when the regulation of an identifier was found to be 

higher in AM-P plants from Light to Shaded (Fig. II.4).  

When the differences from light to shading were found to be significant, the differences 

between the AM-P ratio (AM-P Light/AM-P Shaded) and the AM+P ratio (AM+P 

Light/AM+P Shaded) were calculated. All differences between -0.5 and 0.5 were also 

assigned with zero, because the difference was defined as no different regulation. 

Differences higher than 0.5 were defined as higher regulated in AM-P from Light to 

Shaded compared to AM+P. This resulted in the assignment of a 1 for AM-P and a 0 

for AM+P. Differences lower than 0.5 were defined as higher regulated in AM+P from 

Light to Shaded compared to AM-P (AM-P Light/AM-P Shaded). This resulted in the 

assignment of a 1 for AM+P and a 0 for AM-P. 
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Fig. II.4 Example calculation of regulated identifier. Firstly it was analysed the difference between AM-P and AM+P ratios for 

each identifier using the Student´s t-test. Significantly different identifier were substracted to get an overview in which treatment 

identifier were higher regulated.  
 

Both lists were analyzed using the Medicago_Affy_09 Map, summary statistics type 

ORA-Fisher, and Benjamini-Hochberg correction. The statistics and corrections were 

done with the tool of the RobinA software (Lohse et al. 2010). 

 

2.2.6 13C-Tracer experiment  

 

2.2.6.1 13CO2 pulse labelling  

 

After the plants were shifted in light limitation for three weeks, a 13CO2 pulse labeling 

experiment was conducted. To ensure that shaded plants were able to take up enough 

13C, labelling was performed in full light (light intensity of 350 µmol m-2s-1) for 2 hours. 

Plants were put into an airtight foilbox (45 cm x 60 cm x 130 cm). 1 g of 13C sodium 

carbonate (99 atom% 13C, Sigma-Aldrich, USA) was mixed with 10 ml 1M Sulfuric acid. 

To ensure a proper distribution of 13CO2 in the foilbox, three fans were used. The 

labeling period was restricted to two hours. After labelling plants were shifted into light 

limitation and full illumination again, and harvested three and seven days later.  
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2.2.6.2 Measurement of 13C isotopy in plant material 

 

The frozen and ground root and shoot samples were dried in a freeze dryer (Christ 

alpha 1-4 LD plus, Christ, Osterode am Harz, Germany) and ground into a fine powder 

with a ball mill (MM200 ReTCh GmbH, Haan, Germany). Five to ten mg of 

homogenized root and shoot material was filled in tin capsules. The measurement of 

carbon content and stable carbon isotope composition (δ13C) was done with an 

elementar analyzer (vario ISOTOPE cube, elementar Analysensysteme GmbH, 

Hanau, Germany) coupled with an isotope ratio mass spectrometer (GC-5 System, 

elementar Analysensysteme GmbH, Hanau). For calibration, a number of standard 

substances was used (see appendix Tab. V.3). The 13C concentrations were 

referenced with a linear calibration of five IAEA standards (see appendix Tab. V.3), 

with an additional CaCO3 “in-house” standard.  

 

The 13C values were corrected with the 13C values of plants which were not labeled, 

but grown in the same phytochamber like the labeled plants. Additionally, the isotopic 

composition was calculated with respect to the Vienna Pee Dee Belemnite (VPDB) 

standard: 

 

 

   

 

 

2.2.7 Analyses of fungal fatty acids 

 

2.2.7.1 Extraction of fungal fatty acids 

 

Root samples were ground in liquid nitrogen. 110 mg of root material was transferred 

into centrifugation beakers with 18 ml of Bligh and Dyer Solution (Bligh and Dyer 1959). 

Additionally 25 µl of Internal Standard 1 and Internal Standard 2 were added. The 

samples were put on a horizontal shaker for 15 min at 325 rpm, than sonificated for 15 

minutes and again put on a horizontal shaker at 325 rpm for 15 minutes. Samples were 

centrifuged at 7 °C and 3000 xg for 12 minutes. Supernatant was transferred into a 

(100*0.0111803*(corrected 
13

C/1000+1)) 

(1+0.0111803*(corrected 
13

C/1000+1)) 

13
C (atom %) = 
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separating funnel. Additional 20 ml of Bligh and Dyer solution was added onto the root 

samples, and the beakers were put again on a horizontal shaker for 15 minutes at 325 

rpm. Again beakers were centrifuged at 7°C and 3000 xg for 12 minutes. The 

supernatant was removed and combined with the supernatant from the first extraction 

step. 20 ml of chloroform and 20 ml citrate buffer (0.15 M citric acid monohydrate, pH 

4 with NaOH) were put into the separating funnel, to establish a two phase solution. 

The separating funnel were transferred onto a horizontal shaker for 15 minutes at 300 

rpm. After establishment of a phase boundary, the lower phase was transferred into a 

copped bottom flask. An additional 20 ml of chloroform was add into the separating 

funnel and they were shook on a horizontal shaker for 15 minutes at 300 rpm. The 

separating funnels were left over night to establish two phases. Lower phases were 

drained into the copped bottom flasks containing the lower phase from the day before. 

To reduce the lower chloroform phase copped bottom flasks were fixed on a rotation 

evaporator. At 45°C and maximum rotation speed, the pressure was reduced to 

400 mbar. Evaporation was stopped when the liquid reached a volume of 500 µl. 

Custom made glass columns were packed with silica and the liquid remaining in the 

copped bottom flasks was transferred onto the silica columns, including 3 time of 

rinsing with chloroform. Neutral lipids were eluted with 5 ml chloroform into a copped 

bottom flask. The column was washed with 20 ml of acetone to remove glycolipids. 

Finally phospholipids were eluted with 40 ml of methanol into another copped bottom 

flask. The volume of the samples was reduced down to 500 µl with a rotation 

evaporator (400 mbar for chloroform and 150 mbar for methanol). The samples were 

transferred into reactivials and dried under a nitrogen stream. 25 µl of internal standard 

1 and 3 were added to the reactivials. To hydrolyze the samples, 500 µl of 0.5 M NaOH 

in methanol were added into the reactivials, ultrasonificated for 10 minutes and 

vortexed for 5 minutes. The vials were heated for 5 minutes at 100 °C. 750 µl of 12.5 

M BF3 in methanol were added to each sample and heated at 80 °C for 15 minutes. 

500 µl of a saturated NaCl solution and 1 ml of hexane were added to each vial. After 

30 seconds of intensive shaking the upper apolar phase was transferred into a new 

reactivial. The hexane extraction was repeated two more times. The samples were 

dried under a nitrogen stream. 15 µl of internal standard 2 was added to each vial, as 

well as 185 µl of toluol. Vials were sonificated for 10 minutes, and vortexed for 5 

minutes. All liquid was transferred into GC vials, containing an inlet and then sealed 

tightly. GC vials were stored at -20°C until measurement. 
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All chemicals used for the extraction and measurement of fungal fatty acids had a 

suitability for GC. Glasware was incubated at 300°C overnight, or washed with 

acetone. 

 

2.2.7.2 Content and stable carbon isotope composition of fatty acids 

 

The samples were measured with a gas chromatograph (Agilent Technologies 7890A 

GC-System) combined with an isotope ratio mass spectrometer (IRMS, GC5 System; 

elementar analyzer, vario ISOTOPE cube, elementar Analysensysteme GmbH, 

Hanau) for analyzing isotopy. The samples were analyzed with additional 17 

substances as multistandards and three internal standards (see appendix table V.1 

and table V.2). The settings of GC-IRMS are given in table II.6. 
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Table II.6 Settings of the GC-IRMS 

Parameter Setting 

Oven temperature 80°C 1 min, heat rate of 7°C/min up to 180°C  
180°C 0 min, heat rate of 0.7°C/min up to 190°C, 190°C 
for 3.5 min, heat rate of 0.7°C/min up to 209°C, 209°C 
for 0 min, heat rate of 50°C/min up to 300°C, 300°C for 
5 min 
 

Injector temperatur 250°C 
 

Septum purge 3 ml/min 
 

Split modus Splitless 
 

Splitless time  0.75 min 
 

Column flow 1 ml/min for 61 min, afterwards with 1 ml/min up to 1.5 
ml for 6 min 
 

Detector  IRMS 
 

Interface temperature 350°C 
 

Oven temperature 
(filled with CuO2) 
 

850°C 

H2O removal With Nafion tube 
 

Online calibration With reference gas CO2 (Linde, purity: 99.99995%) 
 

Referencing International standards: 
Pure substances were measured with EA-IRMS and 
referenced to international standards 

 

 

2.2.8 Statistical methods 

 

2.2.8.1 Multi-factor analysis of variance (ANOVA)  

 

Analyses of variance was performed with the acknowledgement of Philipp Bohnhorst 

(Institute for Botany, Leibniz Universität Hannover). 
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The statistical analyses of the magnified intersection method to calculate the 

mycorrhizal colonization was performed with a multi-factor ANOVA in R (version 3.2.2). 

For this the following packages were used: 

 

- “lsmeans” , Lenth 2016 

- “lme4” , Bates et al. 2015 

- “lmerTest” , Kuznetsova et al. 2015 

 

Confidence level: 0.95 

P value adjustment: tukey method for comparing a family of 4 estimates 

Significance level used: alpha= 0.05 

 

2.2.8.2 Student´s t-test 

 

P values were calculated according to Students t-test, two-tailed with homogeneity of 

variance.  

Significance level used: p< 0.05 
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3. Results 

 

To investigate how carbon transport in an arbuscular mycorrhizal symbiotic interaction 

is influenced under carbon limitation and optimal phosphate supply, plants in an 

established symbiotic interaction were shaded and analyzed (2.2.2). 

The scheme in figure 3.1 displays the analyses performed with the different treatments. 

The results in chapter one are based on mycorrhizal and nonmycorrhizal plants. In 

chapter two and three only mycorrhizal plants were analyzed. 

 

 
Fig. III.1 Scheme of experiments, methods and analyses which were done with different treated plants. 

Numbers show the chapters in which the assigned experiments are shown. 

 

The results of the experiments are divided into four chapters. In chapter one, the 

influence of mycorrhization and phosphate supply on growth, root carbohydrate 

content and root phosphate content are shown. The second chapter shows the results 

of 13C pulse labeling experiments. The 13C pulse labeling was used to investigate 

changes in 13C contents in roots and fungal fatty acids and to analyze how the carbon 

transport from plant to fungi is directly influenced by shading and phosphate supply. In 

the third and fourth chapter, results of transcriptomic analysis are shown. These 

analyses were used to identify possible candidates which are involved in the regulation 

of carbon transport mechanisms during the interaction between plant and fungi.  
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3.1 Mycorrhizal infections influence plant growth under different light and phosphate 

treatments 

 

The following experiments were performed with the aim to test, if mycorrhizal plants 

are able to control carbon transport to the fungi in a less beneficial situation. If 

mycorrhizal plants are able to control the carbon transport mechanism to the fungi 

when a less beneficial situation occurs, weight gain of mycorrhizal plants would not be 

negatively affected by shading or phosphate overabundance. 

 

3.1.1 Plant phenotypes were influenced by mycorrhiza, shading and phosphate supply 

 

AM-P plants showed an increased shoot growth compared to -P plants, when light was 

not limited (Fig. III.2a, b). Furthermore, the minimal P supply (-P) was not too low to 

survive for nonmycorrhizal plants in full light treatments. AM+P plants showed an 

increased shoot growth compared to +P control plants in full light conditions 

(Fig. III.2c, d). All fully illuminated plants showed a black spot on their leaves, which 

was found in pre-experiments to occur under high light conditions. AM-P plants showed 

an increased shoot growth compared to -P control plants under shading conditions 

(Fig. III.2e, f). The growth of AM+P plants and +P control plants did not show 

differences under shading conditions (Fig. III.2g, h). Shading generally resulted in the 

loss of the black spot on the leaves. All plants survived the shading treatment. 

In summary, mycorrhization had no visible negative effect on plant growth during the 

less beneficial and super less beneficial situations. 
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Fig. III.2: Pictures of mycorrhizal (a, c, e, g) and nonmycorrhizal control plants (b, d, f, h), 9 weeks past 

infection and 21 days past shift; Scale bar = 10 cm, -P plants are supplied with 20 µM P, +P plants are supplied 

with 1 mM P. The pictures are representative for the six replicates which were used in the different experiments. C 

and e are less beneficial situations, g shows the super less beneficial situation. 

a b -P Light 

c d +P Light 

e f -P Shaded 

g 

AM+P Light 

h 

AM-P Light 

AM-P Shaded 

AM+P Shaded +P Shaded 
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3.1.2 Influence of optimal phosphate supply and light limitation on mycorrhizal 

structures 

 

To investigate the influence of phosphate supply and light limitation on mycorrhizal 

structures, the colonization status was determined using the magnified intersection 

method (McGonigle et al. 1990). After staining the roots with Alexa Fluor® (2.2.3), 

different mycorrhizal structures like hyphae, arbuscules, vesicles and stunted 

arbuscules (Fig. III.3) were quantified.  

 

 
 
Fig. III.3 Alexa Fluor® staining of mycorrhizal roots. In panel a, the fungal structures arbuscules (1) and vesicles 

(2) are visible. In part b, hyphae (3) and stunted arbuscules (4) are marked visible. 

 

AM-P plants showed a high amount of vesicle and hyphae, independent of light 

limitation (Fig. III.4a, b). The amount of arbuscules was significantly reduced by about 

45% when AM-P Shaded plants were compared to AM-P Light treated ones. 

Consistent with this observation, the amount of stunted arbuscules increased by about 

13%. Nonmycorrhizal controls did not show any stained fungal structures. 
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(a)                   (b) 

Fig. III.4 Mycorrhizal colonization under P limitation (a) and optimal P supply (b) under full illumination and 

light limitation using the magnified intersection method (± SE; n=4). Each experiment is based on 4 biological 

replicates with 12 individual plants in each replicate.  

 

The counting data were further statistical analyzed (Table III.1, 2.2.8.1, for detailed 

results see appendix table V.4-7). The comparison of counting data from AM-P Light 

and AM-P Shaded plants, which represented a less beneficial situation, showed that 

shading resulted in a significant reduction of arbuscules, with a significant increase of 

stunted arbuscules at the same time. Due to phosphate supply a less beneficial 

situation was induced, AM+P Light plants showed a significant reduction of hyphae, 

compared to AM-P Light plants. The comparison from AM-P Light to AM+P Shaded, 

which presented the super less beneficial situation, resulted in a significant reduction 

of hyphae, vesicles and arbuscules. The same result was observed for the comparison 

of AM+P Light and AM+P Shaded plants. The comparison of AM-P Shaded and AM+P 

Shaded plants showed a significant reduction of hyphae and vesicles due to phosphate 

supply. 
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Table III.1 Statistical analyses for significant variances between the treatments. Data were tested for variance 

with a multivariate ANOVA. NS abbreviates no significant variance, S abbreviates significant variance. 

comparison Hyphe Vesicle Arbuscule st. Arbuscule 
AM-P Light     → AM-P Shaded NS NS S S  
AM-P Light     → AM+P Light S NS NS NS 
AM-P Light     → AM+P Shaded S S S NS 
AM+P Light    → AM+P Shaded S S S NS 
AM-P Shaded→ AM+P Shaded S S NS NS 

 

Fungal structures were found in AM+P plants under full illumination (Fig.III.3b). Due to 

shading, the amount of fungal structures was reduced (Fig. III.4b). The amount of 

vesicles (45%), hyphae (70%) and arbuscules (58%) was quite high. When AM+P 

plants were shaded, a super less beneficial situation was induced. It was expected that 

the amount of fungal structures in AM+P Shaded plants would be highly reduced 

compared to AM+P Light plants. Shading reduced the amount of vesicles significantly 

by about 50%. The amount of hyphae was significantly reduced by about 20%. The 

amount of arbuscules showed the highest reduction by about 48%, which was also 

significant. Accordingly, the amount of stunted arbuscules increased by about 25%.  

In summary, all treatments showed fungal structures. Shading of AM-P plants reduced 

only the amount of arbuscules, whereas shading of AM+P plants resulted in a reduction 

of all mycorrhizal structures.  

Nonmycorrhizal controls did not show any stained fungal structures. 

When AM-P Light plants were compared to AM+P Light plants, the amount of vesicles 

was reduced by about 15%. The amount of hyphae was significantly reduced by about 

22% due to phosphate supply. The amount of arbuscules was reduced by about 12%. 

The amount of vesicles was significantly reduced by about 38% in AM+P Shaded 

compared to AM-P Shaded plants. The amount of hyphae was significantly reduced to 

about 30%, whereas the arbuscule abundance did not show a difference. This result 

indicates, that the influence of optimal phosphate supply is more important, when 

carbon availability is limited.  

To summarize the results, the induction of less beneficial situations reduced the 

amount of fungal structures in roots. In AM-P plants, shading and the resulting 

reduction of carbon availability reduced the arbuscule amount. Optimal phosphate 

supply of mycorrhized plants resulted in the reduction of all fungal structures. In this 

super less beneficial situation, in which AM+P plants were shaded, the reduction of 

fungal structures was found to be the highest.    
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3.1.3 Influence of mycorrhization on plant weight under light limitation and optimal 

phosphate supply 

 

To investigate if the induction of less beneficial situations or a super less beneficial 

situation via shading, optimal phosphate supply or shading of optimal phosphate 

supplied plants results in a negative effect of mycorrhizal fungi on the host plant, the 

root and shoot weight of mycorrhizal and nonmycorrhizal plants was determined (Fig. 

III.5a, b). When AM-P plants were carbon limited, no negative effect of the mycorrhizal 

fungi was detectable (Fig. III5a). AM-P Shaded plants were bigger in shoot, root and 

total fresh weight. The total fresh weight of AM-P plants was significantly higher 

compared to -P plants, in shaded (p= 0,013, according to Student´s t-test, two-sided, 

homogeneity of variance, 2.2.8.2) and fully illuminated (p= 0,035 according to 

Student´s t-test, two-sided, homogeneity of variance, 2.2.8.2) treatments. Compared 

to fully illuminated plants, fresh weight of shaded plants was always much smaller in 

both, mycorrhizal and nonmycorrhizal plants. This indicates, that shading indeed 

resulted in carbon limitation. 

 

(a)                                        (b) 

              

Fig. III.5 Fresh weight gain of shoots, roots and whole plants under phosphate limitation (a) and optimal 

phosphate supply (b) within 21 days of carbon limitation. (± SE; n=4). Each experiment is based on 4 biological 

replicates with 12 individual plants in each replicate. Asterisks show significant differences according to Students 

t-tests (*p<0.05, n.s. not significant) 
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The super less beneficial situation of optimal phosphate supply and shading of 

mycorrhizal plants, was also investigated. Therefore, the fresh weight gain in optimal 

P supplied mycorrhizal plants (AM+P Shaded) compared to nonmycorrhizal plants (+P 

Shaded) was additionally tested (Fig. III.5b). No significant differences were observed. 

This indicates, that likewise the combination of the two parameters shading and optimal 

P supply did not result in a negative growth effect for mycorrhizal plants compared to 

nonmycorrhizal plants. Notably, the positive effect of mycorrhization for plants under 

phosphate limitation and shading (AM-P Shaded) was not detected for AM+P plants. 

A positive effect of mycorrhization was neither detected for +P plants when they were 

fully illuminated. 

In summary, both, the light limitation and optimal P supply experiments gave no 

indication for a parasitic behavior since plants fresh weight was not negatively 

influenced compared to the nonmycorrhizal control. 

 

3.1.4 Influence of mycorrhization on total soluble carbohydrate content in roots under 

light limitation 

 

The previous experiments indicated that plants might be able to regulate carbon 

allocation to the fungi in less beneficial situations. Therefore, the carbon content in 

roots, again under light limitation and full illumination, as well as under phosphate 

limitation and optimal P supply was measured (2.2.4.2). 

Based on the hypothesis that plants are able to control carbon transport to the fungi in 

less beneficial situations, reduction of total soluble carbohydrates (TC) caused by 

mycorrhization was not expected. The amount of TC in AM-P Shaded roots was not 

differing from the amount determined in –P Shaded roots (Fig. III.6). In fully illuminated 

plants, the TC content of AM-P roots was significantly (p= 0,014 according to Student´s 

t-test, two-sided, homogeneity of variance, 2.2.8.2) higher compared to -P roots. 

Notably, the TC content in -P Light roots was as high as in -P Shaded and AM-P 

Shaded roots.  
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 (a)                                                       (b) 

   

Fig. III.6 Amount of total soluble carbohydrates in roots under P limitation (a) and optimal P supply (b). Total 

soluble carbohydrates were measured in roots after 21 days of shading. (± SE; n=4). Each experiment is based on 

4 biological replicates with 12 individual plants in each replicate. Asterisks show significant differences according 

to Student´s t-tests (*p<0.05, **p<0.001, n.s. not significant) 

 

Under optimal P supply, mycorrhization did not influence the content of TC in roots, 

independent of light treatments (Fig. III.6b).  

Under shading conditions, the TC content in roots was found to be the same for all 

treatments. In full light, AM-P, AM+P and +P roots showed the same TC. 

 

3.1.5 Influence of mycorrhization on inorganic phosphate content in roots under light 

limitation and optimal phosphate supply 

 

The previous data indicated, that plants are able to control carbon transport to the fungi 

when a less beneficial situation occurs. The P content of roots was measured to 

investigate the influence of shading and optimal P supply on mycorrhizal plants 

(2.2.4.1). It was hypothesized, that plants are able to control carbon transport to the 

fungi in a less beneficial situation. Thus, we analyzed, whether in such situations a 

positive effect of the mycorrhizal fungi on root phosphate content was measurable.  

Only at the starting point of different light treatments (0 dps) AM-P plants showed a 

significantly higher root phosphate content than -P plants (p= 0.04 according to 

Student´s t-test, two-sided, homogeneity of variance; Fig. III.7a). 
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(a)       (b) 

 

Fig. III.7 Changes of inorganic phosphate (Pi) content in roots under P limitation (a) and optimal P supply 

(b) during light treatments. The changes in Pi content were calculated between mycorrhizal roots and the 

nonmycorrhizal control roots (± SE; n=3). Data in each column is based on 3 biological replicates with 9 plants in 

each biological replicate. Asterisks show significant differences according to Students t-tests (*p<0.05) 

 

In AM+P plants, mycorrhization did not have a positive effect on root phosphate 

content (Fig. III.7b). Fully illuminated AM+P plants showed a significantly reduced root 

phosphate content, after 21 days of light treatments (p= 0.03 according to Students t-

test, two-sided, homogeneity of variance, 2.2.8.2). 

In summary, less beneficial situations and the super less beneficial situation did not 

increase the root phosphate content, but a negative trend for AM+P Shaded plants 

was visible 

 

3.2 Analyses of fungal fatty acids and carbon transport from plant to fungi with 13C 

labeling 

 

To see how the carbon transport from the plant to the fungus is influenced by light 

limitation, plants were labeled with 13CO2, 21 days after carbon limitation (2.2.6). After 

another three and seven days, the plants were harvested. Mycorrhization was 

determined by Alexa Fluor® (2.2.3) staining. Fresh weight was determined and 

incorporation of 13C into shoots, roots and mycorrhizal fatty acids was measured. The 

following figures are based on two replicates. Therefore, only descriptive statistics 

were performed and the standard error was calculated. 
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3.2.1 Validation of mycorrhization during light limitation and optimal phosphate supply 

using the magnified intersection method 

 

To validate how mycorrhization of AM-P plants was influenced by light limitation, 

colonization was counted with the magnified intersection method (Fig. III.8, McGonigle 

et al. 1990), which was described previously (3.1.2). The abundance of stunted 

arbuscules was not determined. It was expected that shading would reduce the amount 

of fungal structures. In AM-P roots, shading reduced the amount of vesicles by about 

15 % at 3 dpl and by about 40 % at 7 dpl. The amount of hyphae in AM-P roots was 

reduced by about 13 % at 3 dpl and by about 24 % at 7 dpl. The reduction of arbuscules 

in AM-P plants was reduced to about 5 % at 3 dpl and to about 46 % at 7 dpl, due to 

shading. 

 

 

  

Fig. III.8 Mycorrhizal colonization under P limitation under full illumination and light limitation using the 
magnified intersection method (± SE ; n=2). Plants were labeled 9 weeks past infection, and harvested three and 
seven days after labeling. 
 

AM-P Light roots showed about 10% more vesicles compared to AM-P roots in 

Fig. III.4. The amount of hyphae did not differ between the experiments. The amount 

of arbuscules in AM-P Light plants was reduced by about 10 to 22% compared to the 

former experiment. AM-P Shaded plants, the amount of vesicles was reduced by about 

20 to 30% compared to the experiment explained in 3.1.2. Only the amount of hyphae 

did not differ between the two experiments. 
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In summary, shading reduced the amount of fungal structures in the roots of AM-P 

plants. 

The magnified intersection method was also used to evaluate the influence of shading 

on mycorrhizal plants which were supplied with an optimal amount of phosphate 

(Fig. III.9). Due to shading of AM+P plants a reduction of all fungal structures was 

expected. This expectation was based on the hypothesis and the results displayed in 

Fig. III.4b, which showed a significant reduction of hyphae, vesicles and arbuscules for 

AM+P Shaded plants (3.1.2). Shading of AM+P plants reduced the amount of vesicles 

by about 10% at three dpl and by about six% at seven dpl. The amount of hyphae did 

not change at three dpl. At seven dpl the amount of hyphae was reduced by about 50% 

due to shading. The abundance of arbuscules was reduced by about 35% at three dpl 

in AM+P Shaded plants compared to AM+P plants. At seven dpl, the amount of 

arbuscules was reduced by about 58% in AM+P Shaded plants. 

 

Fig. III.9 Mycorrhizal colonization under optimal P supply in full illumination and light limitation using 
magnified intersection (± SE ; n=2). Columns and bars are based on two independent biological replicates. Plants 
were labeled 9 weeks past inoculation, after 21 days of different light treatments and harvested three and seven 
days past label (dpl). 
 

In comparison to the results described in 3.1.2, the amount of fungal structures in 

AM+P Light and AM+P Shaded plants was different. In AM+P Light roots, the amount 

of vesicles was reduced by about 26 to 29% compared to the results in 3.1.2. The 

amount of hyphae was reduced by 22% at 3 dpl and no difference was detectable at 

7 dpl. The amount of arbuscules was reduced by about 4 to 14% in the AM+P roots 

(Fig. III.9). In AM+P Shaded roots, the amount of vesicles was reduced by about 10 to 
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11%, compared with the data in 3.1.2. The amount of hyphae was reduced by 10 to 

20% and 2 to 9% reduction of arbuscules was detected. 

In summary, shading of AM+P roots resulted in a reduction of fungal structures, 

compared to AM+P roots. 

 

3.2.2 Influence of carbon limitation on carbon transport from plants to mycorrhizal fungi 

under phosphate limitation and optimal phosphate supply 

 

To investigate how much carbon is transported from plants to the mycorrhizal fungi 

when a less beneficial situation occurs, plants were pulse labeled with 13CO2 as a 

tracer (2.2.6). The 13C content in roots and in the mycorrhizal fatty acid was measured. 

The fatty acids which are commonly used for the identification are represented by 

16:1ω5 fatty acids (2.2.7). The 13C in 16:1ω5 phospholipid fatty acid (PLFA) is 

indicative for the amount of plant derived carbon, integrated into growing fungal 

structures like hyphae, whereas the 13C in 16:1ω5 neutral lipid fatty acids (NLFA) 

indicates the amount of carbon integrated into the vesicles of the fungi. For the 

analyses of carbon transport the 13C content of the whole root was compared to the 

13C content in PLFA and NLFA. The ratio of root 13C divided by PLFA 13C or NLFA 13C 

displays how much carbon from the root is transported to the fungi and how this ratio 

is influenced in less beneficial situations. The 13C incorporation in NLFA over time at 

three and seven days past label was investigated. It was hypothesized, that less 

beneficial situations would result in a reduction of carbon transported from plant to 

fungi under shading, optimal phosphate supply and the super less beneficial situation 

in which AM+P plants are shaded. 

The ratios of 13C in roots compared to 13C in fatty acids in AM-P plants showed, that 

the amount of 13C which was incorporated into the fungal fatty acids was reduced by 

shading (Fig. III.10a). In the fully illuminated plants, the amount of 13C in NLFA and 

PLFA was found to be twice as high as in roots at three dpl. This allocation of 13C was 

reduced to a distribution of the same amount of 13C in roots and NLFA or PLFA, 

respectively, at 7 dpl. When AM-P plants were shaded, the amount of 13C found in fatty 

acids was lower than the amount of 13C measured in AM-P Shaded roots. At three dpl, 

the 13C content in PLFA was not detectable. The 13C atom% in NLFA was low at three 

dpl and showed an increase at seven dpl, but the standard error was quite high. These 
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findings show that shading reduces the carbon transport from plants to fungi under 

phosphate limitation.  

 

(a)        (b) 

  

Fig. III.10 Influence of shading on 13C content in mycorrhizal fatty acids divided by 13C content in roots under 

phosphate limitation (a) and optimal phosphate supply (b) (± SE ; n=2). Columns and bars are based on two 

independent biological replicates. Plants were labeled 9 wpi, after 21 days of different light treatments and harvested 

3 and 7 days past label.  

 

In AM+P Shaded roots the 13C amount was found to be more abundant compared to 

13C in NLFA and PLFA (Fig. III.10b). The 13C in NLFA did not differ between three and 

seven dpl. The 13C in PLFA was close to the detection threshold at seven dpl. In AM+P 

Light roots, the 13C was more abundant in PLFA and NLFA compared to root 13C. The 

ratio of 13C in PLFA and NLFA to 13C in roots was higher at three dpl compared to 

seven dpl. In fully illuminated plants the ratios for 13C NLFA/13C root and 13C PLFA/13C 

roots were nearly the same, independent of phosphate treatment. 

In summary, shading reduced the 13C in NLFA and PLFA compared to root 13C. This 

was independent of phosphate treatment. It is suggested that plants are able to control 

carbon transport to the fungi when a less beneficial situation occurs. 

The ratios of 13C NLFA/13C root and 13C PLFA/13C root were nearly the same for AM-

P Light and AM+P Light plants.  
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3.2.3 Influence of shading and optimal phosphate supply on neutral- and phospholipid 

fatty acids in roots 

 

In the previous experiment, the carbon transport dynamics were investigated. The 13C 

labeling illustrated how much carbon was incorporated in NLFA and PLFA three and 

seven dpl. The labeling experiment did not allow any conclusions about the total 

amount of NLFA and PLFA in the mycorrhizal roots. 

Based on the previous results and the hypothesis that plants are able to control carbon 

transport to the mycorrhizal fungi when a less beneficial occurs, it was analyzed if the 

amount of NLFA and PLFA was reduced when mycorrhizal plants were shaded, under 

optimal P supply or both (2.2.7). 

In AM-P Shaded plants, the amount of NLFA was considerably reduced to 1000 µg/g 

root fresh weight (Fig. III.11a). PLFA were not detectable at both points in time. These 

data indicating, that AM-P plants are able to control carbon transport to the fungi when 

plants are shaded. 

 

(a)                        (b) 

  

Fig. III.11 Concentrations of neutral lipid fatty acids (NLFA) and phospholipid fatty acids (PLFA) in 

mycorrhizal roots under phosphate limitation (a) and optimal phosphate supply (b) in full illumination and 

shading treatments. (± SE ; n=2). Columns and bars are based on two independent biological replicates. Plants 

were labeled 9 wpi, after 21 days of different light treatments and harvested 3 and 7 days past label. 
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In AM+P Shaded plants, the amount of NLFA in AM+P Shaded roots was reduced 

compared to AM+P Light (Fig. III.11b). PLFA were detected in a low amount with 

20 µg/g root at 3 dpl. At 7 dpl PLFA were not detectable. The results are indicating that 

plants under optimal P supply might control the carbon transport to the fungi when 

shading reduces the carbon availability. 

Additionally, the amount of NLFA and PLFA in AM-P Light roots was compared to the 

amount in AM+P Light roots. Plants under optimal phosphate supply and full 

illumination showed a reduction of NLFA and PLFA compared to AM-P Light plants. 

Under shading conditions, the amount of NLFA and PLFA was similar in AM-P Shaded 

and AM+P Shaded plants. 

In summary, these results indicate that shading as well as optimal phosphate supply, 

reduced the amount of NLFA and PLFA in mycorrhizal roots.  

 

3.3 Influence of carbon limitation via shading on relative expression patterns of genes 

involved in the carbohydrate pathway in mycorrhizal roots 

 

Previously analyzed physiological data (see 3.1) and analyses of mycorrhizal fatty 

acids (see 3.2) indicated, that plants are able to control carbon transport mechanisms 

to the mycorrhizal fungi under shading conditions. To investigate possible mechanisms 

of regulation, transcriptomic analyses with Microarrays were conducted (2.2.5). 

Therefore, roots of the following treatments were used: AM-P Light, AM-P Shaded, 

AM+P Light, AM+P Shaded in three independent biological replicates. At first, identifier 

which are known to be involved in the mycorrhizal interaction were analyzed 

(Fig. III.12). The relative expression of the mycorrhiza induced phosphate transporter 

MtPT4 was reduced due to shading and optimal phosphate supply (Fig. III.12a). In 

contrast, the relative expression of ENOD40 was found to be induced in shading 

treatments (Fig. III.12b). The optimal phosphate supply did not influence the relative 

expression of ENOD40. 
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(a)         (b) 

 
Fig. III.12 Relative expression of the identifier of MtPT4 (a) and ENOD40 (b) known to be influenced during 

symbiotic interaction (± SE; n=3). 

 

3.3.1 Identification of candidate genes for regulation of carbon transport mechanisms 

in carbohydrate pathways in mycorrhizal roots 

 

Sucrose plays a major role in carbon transport in plants. Due to the fact that 

mycorrhizal fungi are not able to take up sucrose but hexoses, all mechanisms which 

are involved in sucrose transport, sucrose degradation and transport of hexoses are of 

further interest. Furthermore, the synthesis of sucrose could be interesting, because it 

could be involved in mechanisms for the reuptake of carbon. The metabolism of 

sucrose degradation is one of the most important parts in mycorrhizal C supply.  

 

3.3.1.1 Identification of candidates differentially regulated in AM-P and AM+P roots 

 

To analyze if candidates for the regulation of carbon transport from plant to fungi can 

be found in carbohydrate pathways, the changes of expression of identifiers from AM-

P Light to Shading and AM+P Light to Shading was compared. The analyses were 

restricted to identifier which were assigned to the pathways of major and minor CHO 

metabolism and sugar transport (2.2.5.1). 

Changes in relative expression from light to shading of AM-P and AM+P roots were 

compared. Two different regulatory patterns were accepted as candidate identifier for 
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the regulation of carbohydrate transport mechanisms between plant and fungi 

(Fig.II.2).  

The first pattern showed a high regulation from AM-P Light to AM-P Shaded. AM+P 

plants showed a regulation from AM+P Light to AM+P Shaded to a lower extent. This 

pattern is based on the theory, that AM-P plants show a higher downregulation of 

candidate genes, because they are more colonized by the AM fungi than AM+P plants. 

The second pattern showed a higher reduction from AM+P Light to AM+P Shaded 

plants compared to the regulation from AM-P Light to AM-P Shaded. Mycorrhizal fungi 

could represent an unnecessary additional carbon sink under shading conditions, 

when phosphate is available in an optimal amount. At this point plants would have the 

highest interest to quit the carbon transport to the fungi.  

Candidate identifiers of genes which were higher regulated in AM-P roots compared to 

AM+P roots (pattern 1) were found in several pathways of the major and minor CHO 

metabolism (Table III.2). 

 

Table III.2 Candidates for regulation of carbon transport mechanisms between plant and fungi in less 

beneficial situations, following pattern 1. Candidates are higher regulated in AM-P roots compared to AM+P 

roots. p-values according to Student´s t-test, two-sided, homogeneity of variance (2.2.8.1). 

 
Pathway Identifier 

Ratio 
AM-P 

Ratio 
AM+P p-value 

     major CHO metabolism      
 1   synthesis.sucrose.SPP mtr.43643.1.s1_at 3.93 1.71 0.00 
 2   synthesis.starch.AGPase mtr.40327.1.s1_at 1.71 1.21 0.01 
 3   synthesis.starch.AGPase mtr.51589.1.s1_at 2.61 1.62 0.00 
 4   synthesis.starch.starch synthase mtr.37384.1.s1_at 9.09 1.96 0.01 
 5   synthesis.starch.transporter mtr.37984.1.s1_at 10.22 3.91 0.00 
 6   degradation.sucrose.fructokinase mtr.26527.1.s1_at 2.97 1.74 0.03 
 7   degradation.sucrose.hexokinase mtr.11173.1.s1_at 1.84 1.35 0.03 
 8   degradation.sucrose.hexokinase mtr.42779.1.s1_at 2.17 1.36 0.03 
      minor CHO metabolism      
 9   myo-inositol.InsP-Kinases mtr.22065.1.s1_at 6.55 1.95 0.00 
 10 myo-inositol.inositol phosphatase mtr.14192.1.s1_at 4.85 2.00 0.00 
 11 galactose.alpha-galactosidases mtr.10236.1.s1_at 9.31 2.51 0.00 
 12 others mtr.45308.1.s1_at 7.02 3.72 0.00 
 13 others mtr.12414.1.s1_at 6.04 2.60 0.00 
 14 others mtr.31917.1.s1_at 8.39 4.27 0.01 
 15 transport.sugars mtr.8579.1.s1_at 2.12 1.66 0.01 
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Only one candidate was found in the pathway of sucrose synthesis (Table III.2). The 

candidate represents a sucrose-phosphatase (pathway 1). Four candidates were 

found in the pathway of starch synthesis. Two identifier represented AGPases 

(pathway 2, 3). The other identifier represented a starch synthase (pathway 4) and a 

transporter which is part of starch synthesis (pathway 5). Both were highly 

downregulated when AM-P plants were shaded. The downregulation was also found 

when AM+P plants were shaded, but to a lower extent. Three candidates were found 

in the pathway of sucrose degradation. The candidates were represented by one 

fructokinase (pathway 6) and two hexokinases (pathway 7, 8). Fructokinases are 

involved in the degradation of sucrose. Hexokinases phosphorylating hexoses and 

convert them into hexosephosphates. Two hexokinases were found to be higher 

regulated in AM-P plants during shading (higher ratio in AM-P Light/AM-P Shaded) 

compared to AM+P (AM+P Light/AM+P Shaded) plants. In the minor CHO metabolism, 

six candidates were found. Two of them were part of the myo-inositol pathway 

(pathway 9, 10) and the other represented a galactosidase (pathway 11). The other 

three identifier were not assigned in a special pathway (pathway 12, 13, 14). For sugar 

transporters, only one identifier (pathway 15) was found to be a possible candidate for 

the regulation of carbon transport mechanisms from plant to fungi when a less 

beneficial situation occurs. 

Based on regulatory pattern 2, shading of AM+P plants would create a super less 

beneficial situation. The major and minor pathways were analyzed for candidates 

which are downregulated from AM+P Light to AM+P Shaded to a higher extend 

compared to AM-P Light to AM-P Shaded. One candidate in the minor CHO 

metabolism and three candidates in sugar transport followed regulatory pattern 2 

(Table III.3). 

 

Table III.3 Candidates for regulation of carbon transport mechanisms between plant and fungi in less 

beneficial situations, following pattern 2. Candidates are higher regulated in AM+P roots compared to AM-P 

roots. p-values according to Student´s t-test, two-sided, homogeneity of variance (2.2.8.1). 

           Pathway Identifier 
Ratio 
AM-P 

Ratio 
AM+P p-value 

           minor CHO metabolism     
    16   raffinosefamily. 
           galactinolsynthases.putative mtr.25494.1.s1_at 6.25 9.30 0.01 

    17   transport.sugars mtr.11311.1.s1_at 1.58 2.64 0.01 

    18   transport.sugars.sucrose mtr.12339.1.s1_at 1.56 2.34 0.03 

    19   transport.sugars.sucrose mtr.43055.1.s1_s_at 1.59 3.00 0.03 
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The candidate which was identified in the minor CHO metabolism, represented a 

putative galactinolsynthase (pathway 16). Two of the three sugar transporters 

(pathway 17, 18, 19) were identified as sucrose transporter (pathway 18, 19).  

In summary, 15 identifier were found to be significantly higher downregulated from AM-

P Light to AM-P Shading compared to AM+P Light to AM+P Shading. One identifier 

was part of sucrose synthesis, four were found in the pathway of starch synthesis and 

three identifiers represented enzymes of the sucrose degradation pathway. In the 

minor CHO metabolism two candidates were found in the myo-inositol metabolism, 

one was a galactosidase and three candidates have not been specified. The last 

candidate represented a sugar transporter. For the hypothesis of the super less 

beneficial situation, in which the regulation of candidates would be higher from AM+P 

Light to AM+P Shading compared to AM-P Light to AM-P Shading, four candidates 

have been identified. One candidate was a galactinolsynthase, the three other 

candidates were identified as sugar transporters. 

 

3.3.1.2 Identification of candidates with similar regulatory patterns in AM-P and AM+P 

roots 

 

The analyses of candidates shown in 3.3.1.1 were based on the hypothesis that 

mycorrhizal plants under low and optimal phosphate supply would react differently to 

carbon limitation. Hence, identifiers were expected to show significant differences in 

regulation. Possible candidates for the regulation of carbon transport mechanisms in 

mycorrhizal symbiosis have been published before and some of them have already 

been shown to be involved in carbon supply for the fungi. In the analyses which 

identified candidates following regulatory pattern 1 and 2, none of these candidates 

were found. Plants could react to less available carbon with a general downregulation 

of transcripts of carbohydrate metabolism. This would result in a downregulation of 

identifiers of carbon metabolism which would not be correlated with the amount of 

colonization. To analyze the data for such candidates, the ratios of AM-P and AM+P 

plants were compared to each other. Candidates were those identifiers, which were 

downregulated due to shading, but to the same extent in AM-P ratios and AM+P ratios. 

These candidates were specifically analyzed in the “major CHO pathway. 

degradation.sucrose” and in sugar transport (Table III.4). 
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Table III.4 Candidates which are generally regulated in the major CHO metabolism when mycorrhizal plants 

are in less beneficial situations. Candidates are regulated in the same way in AM-P and AM+P roots due to 

shading. p-values according to student´s t-test, two-sided, homogeneity of variance (2.2.8.1). 

Pathway Identifier 
Ratio 
AM-P 

Ratio 
AM+P p-value 

     major CHO metabolism         
     major CHO       
     metabolism.degradation.sucrose         

20 fructokinase mtr.43020.1.s1_at 2.17 2.20 0.99 
21 fructokinase mtr.39221.1.s1_s_at 2.49 1.75 0.09 
22 fructokinase mtr.43528.1.s1_at 2.51 1.91 0.12 
23 invertases.cell wall mtr.24871.1.s1_s_at 2.35 1.90 0.41 

24 invertases.cell wall mtr.24817.1.s1_at 2.68 3.75 0.22 
25 invertases.cell wall mtr.45666.1.s1_at 3.87 2.58 0.58 
26 invertases.vacuolar mtr.43881.1.s1_at 5.97 7.26 0.95 
27 Susy mtr.45190.1.s1_at 1.58 1.80 0.80 
28 Susy mtr.32293.1.s1_at 1.76 1.69 0.84 
29 Susy mtr.22018.1.s1_s_at 2.21 2.00 0.54 
30 Susy mtr.43059.1.s1_at 5.77 5.69 0.83 

 

Based on the hypothesis that candidates for regulation of carbon transport 

mechanisms from plant to fungi can be regulated generally as a reaction to carbon 

limitation, 11 candidates were identified. Three of the candidates represented 

fructokinases (pathway 20, 21, 22), three represented cell wall invertases (pathway 23, 

24, 25) and one identifier was a vacuolar invertase. The other four candidates 

represented sucrose synthases (Susy: 27, 28, 29, 30). Especially, 

mtr.22018.1.s1_s_at is of further interest, because this is the identifier for MtSucS1. 

The sucrose synthase MtSucS1 is known to be a keyplayer during mycorrhizal carbon 

supply (Baier et al., 2010). 

In the cluster of sugar transporters, 16 candidates were found to be downregulated in 

the same amount in AM-P roots as well as in AM+P roots due to shading (pathway 31-

46; Table III.5).  
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Table III.5 Candidates for regulation which are involved in carbon transport between plant and fungi in less beneficial 

situations. Candidates are regulated in the same way in AM-P and AM+P roots due to shading. p-values according 

to Student´s t-test, two-sided, homogeneity of variance (2.2.8.1). 

Pathway Identifier 
Ratio 
AM-P 

Ratio 
AM+P p-value 

31 transport.sugars mtr.35093.1.s1_at 1.59 2.12 0.37 

32 transport.sugars mtr.39507.1.s1_at 1.63 2.40 0.10 

33 transport.sugars mtr.17856.1.s1_at 1.67 1.69 0.92 

34 transport.sugars mtr.48631.1.s1_at 1.69 2.42 0.19 

35 transport.sugars mtr.21035.1.s1_at 1.97 2.22 0.75 

36 transport.sugars mtr.50247.1.s1_at 2.25 2.49 0.78 

37 transport.sugars mtr.43120.1.s1_at 2.33 2.85 0.54 

38 transport.sugars mtr.37475.1.s1_at 2.63 2.73 0.85 

39 transport.sugars mtr.9967.1.s1_at 2.81 2.12 0.24 

40 transport.sugars mtr.38695.1.s1_at 2.82 4.02 0.55 

41 transport.sugars mtr.48836.1.s1_at 2.83 2.50 0.33 

42 transport.sugars mtr.433.1.s1_at 3.60 2.84 0.65 

43 transport.sugars mtr.31164.1.s1_at 3.60 3.17 0.85 

44 transport.sugars mtr.38001.1.s1_at 3.85 3.28 0.95 

45 transport.sugars mtr.39031.1.s1_at 4.06 6.49 0.28 

46 transport.sugars mtr.10221.1.s1_at 18.81 19.10 0.78 

     
In summary, 27 candidates were found to react to shading with the same pattern of 

downregulation. Eleven candidates represented enzymes of sucrose degradation, and 

16 represented sugar transporters. We hypothesized that plants are able to control 

carbon transport to the fungi when a less beneficial situation occurs. The candidates 

which were identified in this study, were all regulated in the less beneficial situation of  

carbon limitation caused by shading, but not under optimal phosphate supply. These 

candidates could indicate that plants might react with different regulatory mechanisms 

to different less beneficial situations. Alternatively, regulation of carbon transport from 

plants to fungi could be driven by carbon availability. 

 

3.4 Enrichment analyses of mycorrhizal plants under carbon limitation 

 

After focusing on the identifiers of sucrose synthesis, an enrichment analyses as an 

additional method to study metabolic pathways was performed (2.2.5.2, Fig. II.3, Fig. 

II.4). Small changes, with a ratio (AM Light/AM Shaded) of less than 0.5 in the relative 

expression have not been recognized as candidates, but can have an influence.  
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3.4.1 Comparison of transcriptomic regulations in shaded AM-P and AM+P plants 

 

We found an enrichment in the “major CHO metabolism.synthesis.starch.AGPase” for 

the AM-P (AM-P Light/AM-P Shaded) treatment. Additionally, parts of glycolysis and 

the TCA cycle showed an enrichment. The most prominent part was an enrichment in 

lipid metabolism. This was split into the metabolic pathways of “FA synthesis and FA 

elongation” and “lipid degradation”. Furthermore, the regulations in AM-P (AM-P 

Light/AM-P Shaded) plants showed more enriched pathways than AM+P (AM+P 

Light/AM+P Shaded) plants. In AM+P plants starch synthesis was the only 

carbohydrate involved metabolism which showed an enrichment in regulation from 

Light to Shaded. Based on an enrichment analysis, no difference in gene regulation in 

carbon transport mechanisms or sugar converting enzymes was found. To ensure that 

this finding did not result from a phosphate effect, the identifiers were compared to -P 

(20 µM) and a +P (2 mM) treated Medicago truncatula plant dataset from Hogekamp 

et al. (2011). This comparison showed, that most of the enriched pathways were not 

based on a phosphate effect (Table III.6). 

 

Table III.6 Results from PageMan enrichment analyses for AM-P (AM-P Light/AM-P Shaded) and AM+P (AM+P Light/AM+P 

Shaded) treatments compared to enrichment analyses of nonmycorrhizal –P and +P datasets. Blue color indicates a higher 

abundance of regulated identifier than it would be expected. The nonmycorrhizal –P and +P data are based on the work of 

Hogekamp et al., 2011. 

 

Pathway AM-P AM+P -P +P

major CHO metabolism major CHO metabolism

major CHO metabolism.synthesis

major CHO metabolism.synthesis.starch

major CHO metabolism.synthesis.starch.AGPase

glycolysis glycolysis

glycolysis.enolase

glycolysis.PK

glycolysis.PEPCase

TCA/org. transformation TCA/org. transformation

TCA/org. transformation.TCA

TCA/org. transformation.TCA pyruvate. DH

TCA/org. transformation.TCA pyruvate. DH.E3

lipid metabolism lipid metabolism

lipid metabolism. FA synthesis and FA elongation

lipid metabolism. FA synthesis and FA elongation. Acetyl CoA Carboxylation

lipid metabolism. FA synthesis and FA elongation. ketoacyl ACP synthase

lipid metabolism. FA synthesis and FA elongation. ACP oxoacyl reductase

lipid metabolism. FA synthesis and FA elongation. beta hydroxyacyl ACP dehydratase

lipid metabolism. FA synthesis and FA elongation. enoyl ACP reductase

lipid metabolism. FA synthesis and FA elongation. pyruvate kinase

lipid metabolism. FA synthesis and FA elongation. pyruvate DH

lipid metabolism. 'exotics' (steroids, squalene etc) sphingolipids. ceramide.glucosyltransferase

lipid.metabolism.lipid degradation. lysophospholipases

lipid.metabolism.lipid degradation.lysophospholipases.carboxylesterase

lipid.metabolism.lipid degradation.lysophospholipases.glycerophosphodiester phosphodiesterase

lipid.metabolism.glycolipid synthesis

lipid.metabolism.glycolipid synthesis.MGDG synthase

lipid.metabolism.glycolipid synthesis.sulfolipid synthase
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In summary starch synthesis AGPase, enolase and pyruvate kinase in glycolysis, 

pyruvate dehydrogenase E3 in TCA/org transformation and the FA synthesis and FA 

elongation pathway in lipid metabolism could be involved in the regulation of plant 

carbon transport mechanisms between plant and fungi in a less beneficial situation. 

Candidates for the regulation of carbon transport mechanisms between plant and fungi 

which were published by other groups, did not meet the requirements for mycorrhizal 

dependent regulation. 

Additionally, we found pathways which were higher regulated from AM-P Light to AM-

P Shaded, compared to AM+P Light to AM-P Shaded.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 

Discussion 

 

 

 

4. Discussion 

It was hypothesized that plants are able to control carbon transport mechanisms to the 

fungi when a less beneficial situation occurs. The symbiotic interaction between plant 

and fungi has been observed to potentially depress plant growth and is expected to 

play an important role for plant growth when carbon is limited (Hayman 1974; Peng et 

al. 1993). It has been shown before that light limitation or phosphate supply could result 

in a lower root colonization (Tester et al. 1986; Bruce et al. 1994; Olsson et al. 1997). 

Especially under light limited conditions, it could be a consequence of a lack of 

assimilates in the roots (Konvalinkova and Jansa 2016). Plants which were in an 

established symbiotic interaction were supplied with low phosphate (AM-P) to create a 

control situation and with an optimal phosphate supply (AM+P) to create a less 

beneficial situation (2.2.2). Additionally both treatments were shaded to create a 

carbon limited situation (AM-P Shaded and AM+P Shaded), to investigate how the 

regulation of carbon transport mechanisms is done. 

 

4.1 Plants regulate the carbon transport to mycorrhizal fungi when a less beneficial 

situation occurs 

 

To answer the question, how the induction of less beneficial situations influence 

physiological parameter of the plant, several situations where the fungi could be less 

beneficial for the plant were induced. We expected that mycorrhizal plants in such less 

beneficial situations would not show any negative responses if they are able to control 

carbon allocation to the fungi. The fresh weight measurement showed that shading led 

to a reduction in plant weight, demonstrating that the artificial carbon limitation, which 

was one of the most important aims of the experimental setup, was successful (3.1.3).   

In comparison to -P plants, AM-P plants showed a higher fresh weight gain which was 

surprisingly independent of light treatment (3.1.3). Shading experiments of mycorrhizal 

plants were conducted before, and the studies observed no or even negative reactions 

of mycorrhizal growth response (MGR) on shading treatments (Bereau et al. 2000; 

Zheng et al. 2015; Son and Smith 1988; Konvalinkova et al. 2015; Marschner and 

Timonen 2005; Gehring 2003; Smith and Gianinazzi-Pearson 1990; reviewed in 

Konvalinkova and Jansa 2016). Studies with mycorrhizal Medicago truncatula and 
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Trifolium sp. in treatments comparable to the shown experimental setup, did not show 

a benefit from the fungi under long-term shading (Olsson et al. 2010; Konvalinkova et 

al. 2015). 

AM-P Light and AM-P Shaded plants showed a significantly higher fresh weight gain 

compared to -P Light and -P Shaded plants. The increase in plant weight showed that 

there must be a regulatory mechanism that prevents a parasitic situation. 

The novel observation of positive influence on fresh weight gain of AM-P Shaded plants 

fits in the model of (Tuomi et al. 2001) which states that nutrient limited plants profit 

most from the symbiosis with AM fungi. Under shading conditions the positive effect 

could still occur if the increase of P-acquisition by AM symbiosis allows an increase of 

C assimilation, which is high enough to compensate the carbon demand of the fungi. 

Additionally, this observation confirms the suggestion that C costs of AM fungi are 

lower than the photosynthetic capacity of the host (Johnson et al. 2015). If plants can 

regulate the amount of transported carbon to the fungi, both partners can stay in a 

symbiotic interaction. As soon as the photosynthetic capacity is upregulated again, the 

fungi can again receive more carbon from the plant. 

The surprising observation of the positive influence of mycorrhizal fungi on the fresh 

weight gain of AM-P Shaded plants could also be explained with the establishment of 

the symbiotic interaction in full light. The mycorrhizal fungi had the chance to store a 

lot of energy in the form of vesicles during phases of light treatment and can use this 

energy store to keep on growing if the plant does not supply the fungus with carbon 

anymore. This hypothesis was confirmed by the observation, that shading reduced the 

fungal neutral lipid fatty acids. The analysis of NLFA and PLFA allowed an inside view 

on nutritional and growing status of the fungus, as their synthesis is based on host 

carbon supply. NLFA are found in mycorrhizal vesicles, which are used for carbon 

storage in mycorrhizal fungi. The reduction of NLFA has been compared with the status 

of mycorrhizal colonization before (Olsson et al. 2010). The hypothesis of a regulation 

of carbon partitioning from plant to fungi was also promoted by the finding, that the 

amount of NLFA was massively reduced due to shading (3.2.3). PLFA, as membrane 

constituents, can be used as biomass indicators for the amount of mycorrhizal fungi in 

roots and soil. PLFA were found to be reduced in AM-P Shaded plants (3.2.3). 

Mycorrhizal colonization, evaluated with the magnified intersection method, showed no 

clear reduction of mycorrhizal fungi (3.1.2, 3.2.1). The shading of AM-P plants resulted 

in a significant reduction of arbuscules, but no significant changes for the amount of 
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vesicles and hyphae were observed. In comparison to other studies, the reduction of 

arbuscules confirmed the results of Son and Smith (1988) and Vierheilig et al. (2002). 

Using the mycorrhizal marker MtPT4 (Fig. III.12), a clear reduction of interaction due 

to shading was detected. This observation confirms the above described reduction of 

arbuscules, as MtPT4 is located in the periarbuscular membrane (Harrison 2002). It 

was shown before that shading of mycorrhizal plants resulted in a reduction of 

mycorrhizal structures in plant roots (Konvalinkova et al. 2015), but the fungi are not 

completely eliminated (Schubert et al. 1992). The decrease of fungal colonization due 

to shading has also been described in different experimental setup in pots (Olsson et 

al. 2010; Shi et al. 2014) and in field studies (Heinemeyer et al. 2004). A significant 

reduction of arbuscules under shaded conditions point towards a reduced amount of 

carbon allocated from the plant to the fungi. As arbuscules are important exchange 

sites in the mycorrhizal symbiosis, with a lifetime of about 8.5 days (Alexander et al. 

1989), the observed reduction is of further interest. A reduction of carbon transport 

from plant to fungi should result in a reduction of arbuscules, if a reduction of carbon 

allocation from the plant to the fungi affects living and growing structures first. Following 

the reduction of arbuscules, a reduced growth of vesicles and hyphae should follow. It 

was hypothesized by others before, that a reduction of exchange structures like 

arbuscules, with an additional increase of storage organs like vesicles, indicates a shift 

towards parasitism by the fungi (Johnson 1993). 

Another indication for the control of fungal carbon availability by the plant was the result 

of total carbohydrate determination. We observed an increase of total carbohydrates 

in AM-P Light roots compared to -P roots (3.1.4). Shading decreased the amount of 

total soluble carbohydrates to the same amount found in nonmycorrhizal -P plants. The 

amount of total soluble carbohydrates in roots is known to be increased by 

mycorrhization (Hampp and Schaeffer 1999). The reduction could be a reaction of the 

plant to reduce the available carbohydrates for the fungi. As the fungi depend on plant 

hexoses, a reduction of hexoses could be crucial for a continuing interaction with the 

fungi. The mycorrhizal fungus is an obligate biotroph and is not able to take up sucrose. 

The fungus needs the plant to cleave sucrose in hexoses, these hexoses are taken up 

by the fungi.  

A reduction of carbohydrates in the plant roots reduces the amount of hexoses 

available for the fungi. This is an indication for the reduction of carbon transferred from 
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the plant to the fungi. To confirm this findings, a specific measurement of sucrose and 

hexose concentrations needs to be performed.  

The influence of optimal phosphate supply on mycorrhizal plants was investigated with 

the comparison of AM-P Light to AM+P Light plants. Plants under optimal phosphate 

supply showed a lower abundance of hyphae (3.1.1). Furthermore, the total amount of 

PLFA and NLFA was reduced in AM+P Light roots compared to AM-P Light (3.2.3). 

The total amount of NLFA was reduced by a factor three. 

AM+P Light plants were not able to benefit from the fungi, but also no reduction of fresh 

weight was observed (3.1.3). Shading likewise did not result in a fresh weight reduction 

for AM+P Shaded plants (Olsson et al. 2010). The counting data of mycorrhization 

were again differing from transcriptomic and NLFA data. Furthermore, vesicles were 

found in AM+P plants (3.1.1). To build these storage organs, fungi need to be supplied 

with carbon by the plant. NLFAs which serve as carbon storage to the fungi showed a 

clear reduction from AM+P Light to AM+P Shaded plants. A high phosphorus 

availability in soil usually reduces the mycorrhizal formation in plants (Jasper et al. 

1979) and as a result reduces the carbon allocation to roots and mycorrhizal 

components (Eissenstat 1993; Graham et al. 1997). Olsson et al. (2010) suggested an 

influence of phosphate supply on mycorrhization rates, independent of the fact that 

Rhizophagus intraradices is highly tolerant to phosphate supply (Douds and Schenck 

1990). Former studies showed that phosphate supplied mycorrhizal plants decreased 

in mycorrhization rates when they were shaded (Tester et al. 1986; Bruce et al. 1994; 

Olsson et al. 1997). The reduction of colonization following the phosphate supply which 

is often observed (Bruce et al. 1994) has been explained with a reduction in AM germ 

tube formation of spores, reduced exudation of branching factors and finally a faster 

growth of roots (Smith and Read 2008). The argument of faster growing roots is valid 

for the AM+P treatment, because the gain in root fresh weight for AM+P plants was 

higher compared to AM-P plants. During full illumination, vesicles were detected in 

AM+P Light plants, but not as much as in AM-P Light plants. It is still questionable if 

the mycorrhizal structures are actively reduced by the plants, as fungal structures 

usually do not disappear, but growing roots are not newly colonized by the mycorrhizal 

fungi (Olsson et al. 2010).  

This explanation would be also valid for our observation during the shading treatments. 

It has been shown that the C allocation to fungal partners is coupled with the exchange 

of phosphate or nitrogen (Hammer et al. 2011; Kiers et al. 2011; Fellbaum et al. 2014). 
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But the +P plants may supply the fungi with carbohydrates in advance of environmental 

conditions in which the plant would need an arbuscular mycorrhizal fungi. It was 

hypothesized, that the additional carbon sink can be easily compensated in full light, 

but can also turn out to be problematic during light limitation. We did not observe a shift 

into a parasitic situation. Furthermore, there may exist other benefits for the plants from 

the fungi, like increased resistance against pathogens, which are currently not known.  

A super less beneficial situation was created by shading of mycorrhizal plants under 

optimal phosphate supply when AM-P Shaded plants were compared to AM+P Shaded 

plants, the amounts of arbuscules, vesicles and hyphae were found to be significantly 

reduced in AM+P Shaded plants (3.1.1). The comparison of fungal fatty acids in the 

super less beneficial situation showed no outstanding effect (3.2.3). PLFA amounts 

were mainly influenced by light intensity. The amount of NLFA was only reduced by 

optimal phosphate supply, when light was not limited. 

It has been shown in a comparable experimental setup with Trifolium sp. that NLFA 

are reduced by phosphate supply and not by shading (Olsson et al. 2010). In our 

experiments, whereas the total amount of PLFA was found to be mainly influenced by 

light intensity, the amount of NLFA was found to react to phosphate availability as well 

as to light intensity. 

The 13C labeling was used to follow the carbon transported from plant to fungi and to 

determine the amount of carbon that was transported from the plant to the fungi under 

less beneficial situations (3.2.2). When AM-P plants were shaded, the 13C transport 

from plant to fungi was reduced. Olsson et al. (2010) found a reduction of carbon 

transport to Rhizophagus intraradices when clover plants in an established symbiotic 

interaction were supplied with phosphate, whereas shading did not have the same 

effect. With regards to the fact that shading influences the total amount of 13C in the 

roots, the fraction of root 13C to fungal 13C was calculated. This calculation showed a 

clear reduction of 13C in fungal fatty acids, due to shading. This reduction was 

independent of the optimal phosphate supply of the plant. Furthermore, the 13C amount 

in NLFA and PLFA was also reduced due to shading. The 13C in PLFA was nearly not  

detectable in shading treatments. When the 13C transport from AM+P plants to the 

fungal fatty acids was analyzed, the influence of light was found to be more important 

than the amount of available phosphate. 

The evaluation of the physiological data showed, that mycorrhizal plants are able to 

control the carbon partitioning in less beneficial situations. AM-P plants can benefit 
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from the symbiotic interaction with Rhizophagus intraradices, independent of light 

treatments. For AM+P plants, no effect of the mycorrhizal fungi on fresh weight gain 

was observed and this was independent of light treatment. Several studies were 

carried out to investigate the influence of less beneficial situations on the mycorrhizal 

symbiosis (reviewed in Kovalinkova and Jansa, 2016). The studies were based on 

different plants species and fungi and in addition, the experimental setup were highly 

variable. The plants were shaded at differing times after inoculation, with different light 

intensities for different shading durations. Even the results of shading are displayed in 

various ways. The mostly used mycorrhizal growth response (MGR) is not always 

calculated in the same way, but always displays the differences between mycorrhizal 

and nonmycorrhizal plants. Due to this, published data are hardly comparable. A 

detailed review of the effects of light limitation on mycorrhizal fungi has been published 

by Konvalinkova and Jansa (2016). Their comparison showed, that the effects of light 

limitation on mycorrhizal fungi were highly variable. It was hypothesized, that the 

amount of vesicles are an indicator for the influence of shading on the fresh weight 

gain of mycorrhizal plants. To review this hypothesis, an experimental setup focused 

on vesicle number and NLFA concentration would be of further interest. If mycorrhizal 

plants with nearly no vesicles become shaded, the fungi should turn parasitic 

immediately if vesicles are keyplayer in the interaction and if carbon transport is not 

regulated. In a study with a similar experimental setup in which mycorrhized Trifolium 

subterraneum were shaded under an optimal P supply, it was shown that the plants 

were able to control the carbon transport to the fungi under optimal P supply, but not 

under shading conditions (Olsson et al. 2010). This result was not reproduced in this 

experiment with Medicago truncatula. Instead it was shown that light intensity was 

more important than phosphate supply. Another study with mycorrhized Medicago 

truncatula showed that host plants could not benefit from the Rhizophagus intraradices 

under long-term shading depending on plant weight and phosphate uptake 

(Konvalinkova et al. 2015). Therefor both of these studies differ from this one. One 

reason could be the different inocula used. Whereas in this study only mycorrhizal 

spores were used, the inocula of Konvalinkova and Olsson also contained bacteria 

which represent an additional sink of unknown intensity. This was not the case for the 

plants which were used in this study. Furthermore, Olsson et al. (2010) could not show 

that Trifolium benefit from the symbiotic interaction in full light. Shading massively 

reduced the amount of vesicles and living fungal structures indicating that the fungi 
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had to use their energy storage to keep on growing when light was limited. The low 

colonization rate in shaded plants observed by other groups was hypothesized to be 

the reason for a reduced C supply of the fungi, and not an active regulation of carbon 

flux by the plant (Olsson et al. 2010). At this point it is obvious, that plants can control 

the carbon transport and partitioning to the fungi under our experimental conditions. If 

this is due to an active or a passive mechanism cannot be differentiated. 

PLFA and NLFA amounts showed a clear reduction due to shading which supported 

the results of the transcriptomic MtPT4 measurements. The growth data revealed the 

symbiotic interaction between plant and fungi must underlie a regulatory mechanism 

when plants were shaded and phosphate was limited. The total amount of PLFA and 

NLFA in AM-P Shaded and AM+P Shaded roots was reduced. A reduction of NLFA 

shows a decrease in storage organs of the fungi, an indicator for fungal starvation. In 

summary, the mycorrhizal infection of Medicago truncatula was reduced by additional 

P supply and/or shading. The amount of 13C was reduced in NLFA and PLFA due to 

shading. It was hypothesized that the C drain of mycorrhizal fungi would not be high 

enough to decrease mycorrhizal growth response under low light (Hayman et al. 1974). 

This hypothesis was confirmed in our experimental setup. When AM-P and/or AM+P 

plants were shaded no negative effects on plant fresh weight gain were observed and 

the 13C amount transported from the host to the fungi were found to be reduced. These 

data lead to the assumption that plants are able to control the carbon partitioning to 

the fungi, and the mycorrhizal interaction did not get parasitic.  

 

4.2 Transcriptomic analyses  

 

With the knowledge of a regulatory mechanism, transcriptomic analyses were 

performed to identify possible candidates involved in the regulation of carbon transport 

and partitioning mechanisms. We hypothesized, that candidates can be found in the 

carbohydrate metabolism, and that the regulation of carbon transport and partitioning 

is an active process. 

 

4.2.1 Candidates for regulation of carbon partitioning in carbohydrate metabolism  

 

The analyses of transcriptomic data identified potential candidates which could be 

involved in the regulatory processes. The candidates were identified as an aldehyde 
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dehydrogenase homolog, two sucrose synthases, a hexokinase, a porin/voltage 

dependent anion selective channel protein and a sugar porter /SP) family Major 

Facilitator Superfamily (MFS) transporter (3.3). The aldehyde dehydrogenase could 

not be further specified. The sucrose synthases were the Mtr.22018.1.s1_at and 

Mtr.43059.1.s1_at. It was hypothesized before that sucrose synthases might partly 

support the hexose demand of symbionts (Shachar-Hill et al. 1995). Studies revealed 

that sucrose synthases play important roles in symbiosis, for example during the 

interaction with rhizobia (Gordon et al. 1999; Xie et al. 2003) and mycorrhiza (Hohnjec 

et al. 2003). The sucrose synthase which is assigned to Mtr.22018.1.s1_at represent 

MtSucS1. MtSucS1 was first shown to be nodule enhanced and specifically 

upregulated in endosymbiotic tissues (Hohnjec et al. 1999), and later also during 

mycorrhizal symbiosis (Hohnjec et al. 2003). Promoter studies showed a predominant 

activity in colonized cells (Hohnjec et al. 2003). A knockdown of MtSucS1 affected 

arbuscule maturation and conservation (Baier et al. 2010). Considering the importance 

of sucrose synthases for symbiotic interactions, these synthases are suitable 

candidates to act as keyplayer in the regulation of carbon transport from plant to fungi 

when a less beneficial situation occurs. However, it is not clear if a reduction of 

transcripts results from an active regulation of the plant or from a previous reduction of 

mycorrhizal colonization, as the candidate was identified to be regulated by light 

intensity (3.3.1.2).  

This hexokinase was identified by Mtr.11173.1.s1_at and Mtr.42779.1.s1_at. 

Hexokinases are key enzymes for glucose utilization and sensing (Jang et al. 1997). 

These enzymes are catalyzing the phosphorylation of glucose to glucose-6-phosphate. 

Furthermore, hexokinases can act as important signaling molecules. Saito (1995) 

found a high activity of hexokinase in intraradical hyphae of Gigaspora margarita, 

which showed that there is also an active glycolysis in fungal hyphae (Solaiman and 

Saito 1997). To ensure that the identified hexokinase was not only expressed in 

intraradical hyphae, expression was compared to expression data in the mtgea.noble 

database. As hexokinases play a major role in the degradation of sucrose they are 

suitable candidates for the regulation of carbon transport from plant to fungi in a less 

beneficial situation. 

Additionally, to the enzymes which were identified as candidates for the regulation of 

carbon transport from plant to fungi when a less beneficial situation occurs, two sugar 

transporters were found. The transporter Mtr.37475.1.s1_st was assigned to a 
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porin/voltage-dependent anion selective channel protein (VDAC) and 

Mtr.10221.1.s1_at was identified as a sugar porter (SP) family MFS transporter. Both 

transporters are not specified in more detail, and their role in mycorrhiza symbiotic 

interactions is unknown.    

 

4.2.1.1 Sucrose synthase as a keyplayer in symbiotic interactions 

 

One of the candidates which remained from the analysis described above was the 

sucrose synthase Mtr.22018.1.S1_s_at and Mtr.43059.1.S1_at. Sucrose synthases 

are known to play important roles in symbiosis, e.g. during the interaction with rhizobia 

(Gordon et al. 1999; Xie et al. 2003) and mycorrhiza (Hohnjec et al. 2003). Thus, 

sucrose synthases are suitable candidates as keyplayers in the regulation of carbon 

transport from plant to fungi when a less beneficial situation occurs. The regulation of 

sucrose synthase is carried out in many ways. Sucrose synthases respond, among 

others, to sugar availability and some of them are upregulated by sugar depletion, 

whereas others are upregulated by sugar abundance (Koch et al. 1992; Koch 1996). 

Additionally, the localization of sucrose synthase can be affected by sugars and other 

signals (Hardin et al. 2004; Winter and Huber 2000; Winter et al. 1998). Under some 

conditions the sucrose synthase protein shows an extreme stability  and several 

mechanisms control its turnover (Halford et al. 2004; Koch 2004). This means that an 

increase in transcript amount does not necessarily have an influence on carbon flux 

from plant to fungi. The enzyme is activated via phosphorylation (Huber et al. 1996; 

Zhang et al. 1999) and the phosphorylation at the first site marks the sucrose synthase 

to be phosphorylated at the second site (Hardin et al. 2003). The second 

phosphorylation site plays an important role for the degradation of the protein. This site 

targets the sucrose synthase for ubiquitin-mediated degradation via the proteosom 

(Hardin et al. 2003). An important point when sucrose synthase stability is discussed 

in context with symbiotic interaction is the influence of ENOD40. The breakdown of 

sucrose synthase can be inhibited by blocking the second phosphorylation site, for 

example by ENOD40 proteins. The ENOD40 protein plays an important role in early 

nodule development, many other functions of this protein in plants were detected 

(Hardin et al. 2003; Rohrig et al. 2002; Kouchi et al. 1999). The association of ENOD40 

with sucrose synthase potentially indicates involvement of ENOD40 in the control of 

vascular function, phloem loading/unloading and assimilate import (Hardin et al. 2003; 
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Varkonyi-Gasic and White 2002; Kouchi et al. 1999) Therefore, symbionts can possibly 

have an active influence on the stability of proteins in carbon transport pathways in the 

plant. The ENOD40 is known to be induced by mycorrhizal interactions (van Rhijn et 

al. 1997). Due to the lower mycorrhization in shaded plants, a reduction of ENOD40 in 

the shading would be expected, but an increase of ENOD40 due to shading was 

observed. This could mean, that a symbiotic interaction could influence the activity of 

sucrose synthase by increasing the stability and as a result the lifetime of the enzyme. 

Due to the fact that the mycorrhizal fungi depend on the supply of hexoses by the plant, 

an increased stability of the sucrose converting enzyme is of high interest because it 

could increase the carbon supply for the fungi. As a consequence, the fungi would be 

able to control its situation and this would be a hind for a parasitic tendency of the 

fungi. 

It was hypothesized by Shachar-Hill et al. (1995) that the encoded sucrose synthase 

might partly support the hexose demand of symbionts. Due to MtSucS1 expression 

patterns it is likely that not only arbuscule containing cells (Blee and Anderson 1998) 

but also intraradical hyphae are a predominant interface for hexose supply from plant 

to fungi (Bago et al. 2002b). Due to the known role of MtSucS1 in the carbon supply of 

mycorrhizal fungi and the influence of stabilizing symbiotic plant factors, it is likely that 

the reduction in transcript amounts plays an important role in carbon flux regulation. It 

cannot clearly be differentiated if the MtSucS1 transcripts are downregulated due to 

the reduction of mycorrhization, or if the downregulation results from a reduction of 

mycorrhization. In summary, MtSucS1 plays an important role in mycorrhizal carbon 

supply and a downregulation of transcripts is an important part of regulation of the 

transport mechanism.  

 

4.2.2 Shading of mycorrhizal plants results in an enrichment of regulation in different 

pathways 

 

It was hypothesized that metabolic pathways or components would be influenced by 

shading of mycorrhizal plants. Glycolytic enolase, pyruvate kinase, the pyruvate 

dehydrogenase E3 of the TCA/org. transformation pathway and the pathway of fatty 

acid synthesis were overrepresented in regulation (3.4). 
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4.2.2.1 Shading of mycorrhizal plants results in a regulation of the fatty acid synthesis 

pathway 

 

The most prominent pathway regulated in AM-P plants which were shifted from light to 

shading was the fatty acid synthesis. When the parts of the pathway were compared 

to the synthesis of fatty acids in plants, it was obvious that nearly every step of the 

pathway showed a higher regulation and transcript amount in AM-P plants compared 

to the AM+P treatment (Fig. IV.1). 3-ketoacyl-ACP-synthase is crucial for the synthesis 

of fatty acids. The reaction which is catalyzed by this enzyme cannot be reversed.  

 

Fig. IV.1 Synthesis of fatty acids in plants. Enzymes and reactions enriched in regulation are written in red. 

It is known, that mycorrhizal interactions increase the plant's need for fatty acids. 

During mycorrhizal infection, membranes and cell morphology needs to be massively 

reorganized. Therefore large amounts of plant cell membranes are required (Gaude et 

al. 2012). The periarbuscular membrane (PAM) represents an area between fungus 

and plant. These lipids can be delivered by the synthesis of new fatty acids, or via the 

breakdown of storage lipids. Gaude et al. (2012) showed that the remodeling of cellular 

membrane systems leads to an induction of expression of genes which are involved in 

lipid metabolism. The colonization of host cells resulted in an upregulation of 27 

transcripts involved in lipid metabolism. Only two transcripts were downregulated. In 

adjacent cells the enhanced expression was comparable to colonized ones. 
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Furthermore, Gaude et al. (2012) showed an upregulation of transcripts involved in 

lipid breakdown in arbusculated cells. High expression levels were found for example 

for genes encoding key enzymes of fatty acid synthase system.  

This could explain our observation that fatty acid synthesis is downregulated when the 

plants are shaded, since mycorrhization is also reduced under shading. However, 

phospholipid synthesis which is mainly needed to build up new membranes, was not 

upregulated. If these fatty acids are used for synthesis of membranes, the plant could 

stop the symbiotic interaction by a downregulation of the transcript. Another 

explanation could be the supply of the fungi with lipids from the plant. Up to now it has 

only been described that plants support the fungi with carbohydrates. In GUS staining 

experiments of hyphae it was shown that hyphae of Rhizophagus intraradices showed 

a blue coloration, even when the GUS construct was under control of the plant 

MtSucS1 promoter (Hohnjec et al. 2003). It was hypothesized that the hydrophobic 

GUS complex might be stored in lipid bodies and would visualize the proposed flow of 

lipids in vicinity of fungal carbon uptake (Hohnjec et al. 1999; Bago et al. 2002b; Bago 

et al. 2002a). Journet et al. (2001) observed the same but hypothesized that this was 

an artifact resulting from local diffusion of soluble monomeric products of the GUS 

reaction. In fungi, the fatty acid synthase complex is necessary to catalyze the fatty 

acid synthesis (Wakil et al. 1983). It was found, that Glomus intraradices and the 

phylogenetically distant fungus Gigaspora rosae are lacking the fatty acid synthase, 

and it was hypothesized that fungi acquire palmitic acid from their plant host (Trepanier 

et al. 2005). Furthermore, it was proposed that the large amounts of fatty acids in AM 

fungi could be a result of a very efficient lipid transfer mechanism between two 

organisms (Trepanier et al. 2005). It has been shown by Pfeffer et al. (1999) that the 

fungal lipid synthesis occurs in root compartments. In plant defense mechanisms, lipid 

transfer proteins are active (Kader 1996), and they could be produced during hyphal 

penetration (Blilou 2000). These proteins could be involved in this transport 

mechanisms (Trepanier et al. 2005). Labeling experiments which used 14C sucrose 

and acetate showed that synthesized 16-carbon fatty acids occur exclusively in 

intraradical hyphae, but not in extraradical hyphae or germinating spores (Trepanier et 

al. 2005). The major problem of analyzing fatty acids is the fact, that plants and fungi 

are synthesizing the same fatty acids. Therefore, it is hard to distinguish between their 

origins. The downregulation of the metabolic pathways which are used to synthesize 

the lipids could be a hint for a regulation of fungal carbon support. One way of the plant 
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to control the transfer of carbon or lipids to the fungus could be the inhibition of the 

transport of 16-C carbon fatty acids. Without these substructures the fungus is not able 

to synthesize its own fatty acids and would not be able to grow. If the fatty acids are 

used to prepare the membrane structures for the symbiotic interaction, a 

downregulation of the synthesis of these fatty acids would result in a downregulation 

of mycorrhization. Both mechanisms would mean that the plant controls the situation 

and could quit the interaction when it turns less beneficial.  

 

4.2.2.2 Shading of mycorrhizal plants results in a regulation of glycolysis enolase and 

pyruvate kinase 

 

We found glycolytic enolase and pyruvate kinase to be enriched amongst the regulated 

genes. Enolases are ubiquitous enzymes which are catalyzing the conversion of 2-

phosphoglycerate to phosphoenolpyruvate. They are also called 2-phospho-D-

glycerate hydrolases, and the reaction catalyzed by these enzymes is the only 

dehydration step in the glycolytic pathway (van der Straeten et al. 1991). Enolases play 

an important role in non-green tissues, which depend on glycolysis and oxidative 

phosphorylation for their energy supply (Goodwin and Mercer 1983). The regulation of 

enolases is based on complex mechanisms, which involves the control at the level of 

transcription and also at translational and post-translational levels (van der Straeten et 

al. 1991). Other studies found that in nodules enolases were expressed at high levels 

in infected cortical cells, as well as in the pericycle of the central vascular bundle of a 

nodule lobe (van der Straeten et al. 1991).  

Pyruvate kinases catalyze the reaction of Phosphoenolpyruvate to pyruvate (Plaxton 

1996). The generated pyruvate can participate in different pathways. Pyruvate can be 

respired, or it can participate in the biosynthesis of fatty acids, for example. It was 

hypothesized that the decrease in transcript amounts of enolase and pyruvate kinase 

results from a downregulation of root respiration or the downregulation of fatty acid 

biosynthesis due to shading of mycorrhizal plants. The other option is the usage of 

pyruvate in mitochondrial respiration (Plaxton et al. 1996). Due to the reduction of 

mycorrhization, it is likely that the transport of pyruvate to mitochondria is likewise 

reduced. It is unclear if glycolysis is downregulated because of the reduction of 

mycorrhization, or if the mycorrhization is reduced due to a downregulation of 

glycolysis. Plant glycolysis is known to be regulated from the bottom up. Primarily, the 
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regulation is based on the usage of PEP by pyruvate kinase (Paul and Pellny 2003). 

An explanation could be that the major reason for the downregulation of the transcripts 

of enolases and pyruvate kinases is the reduction of pyruvate usage in the above 

described mechanisms and not vice versa. 

 

4.2.2.3 Downregulation of pyruvate dehydrogenase as a part of TCA/organic 

transformation 

 

A possible explanation for the downregulation of pyruvate dehydrogenase transcripts 

could be the downregulation of pyruvate kinase (4.2.2) which could result in a reduction 

of pyruvate. Pyruvate dehydrogenase produces acetyl-CoA from mitochondrial 

pyruvate for the TCA cycle (Sweetlove et al. 2010). As already mentioned above (4.2.1, 

4.2.2), enzymes of glycolysis showed up as candidates for regulation of carbon 

partitioning between plant and mycorrhizal fungi (Fig. IV.2). A possible reason for the 

enrichment in downregulation of pyruvate dehydrogenase could be a reduction of 

pyruvate delivered from glycolysis. 
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Fig.IV.2 Scheme of the glycolytic pathway with candidates for regulation of carbon partitioning between 

plant and fungi. Candidates are marked in red. 

 

Overall, no negative influence of arbuscular mycorrhizal fungi on fresh weight gain of 

AM-P and AM+P plants, independent of light treatment was found. Analyses of fungal 

fatty acids and carbon partitioning via 13C label showed a reduction due to shading. 

AM-P Shaded plants showed a reduction of soluble carbohydrates in roots, compared 

to AM-P Light plant roots. These results allowed the assumption that plants were able 

to control the carbon partitioning in less beneficial situations and the arbuscular 

mycorrhizal fungi did not become parasitic. Transcriptomic analyses identified three 

candidates in the carbohydrate metabolism. One candidate represented a hexokinase, 

the other two sucrose synthases. It cannot be differentiated if these candidates were 

passively regulated by light intensity or actively by the plant. In glycolysis, enolase, 

pyruvate kinase and pyruvate dehydrogenase were found to be enriched in regulation 

from light to shaded, in AM-P plants. Furthermore, the “TCA/ org. transformation 
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pathway” and “Fatty acid synthesis pathway” showed up to be enriched in regulation 

from light shaded in AM-P plants. These pathways were identified to be candidates for 

the regulation of carbon partitioning between plant and fungi. To review the candidate 

genes from the carbohydrate metabolisms and the enriched pathway a detailed 

validation would be needed. Up to now, the candidates can only be seen as hinds for 

keyplayers in regulatory mechanisms of the symbiotic interaction between plant and 

fungi.  

With the novel observation that the plant is in charge to control the transport of carbon 

to the fungi under long-term shading and optimal phosphate supply, we were able to 

confirm the hypothesis that carbon transport to arbuscular mycorrhizal fungi is reduced 

under less beneficial conditions. 
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4.3 Counting data did not show the same results as transcriptomic and fatty acid data 

 

There are some reasons for the discrepancy between counting data, transcript (MtPT4) 

and NLFA/PLFA amounts (3.1.1, 3.2.3, 3.2.1, 3.3). During the first three weeks of 

establishment of the symbiotic interaction, plants were only supplied with water. In this 

time, the plant needed the fungus and an intensive hyphae growth was expected. 

Living and dead hyphae were still stained if no vital stain was used. Fungal structures 

were grown during the three weeks without additional P supply. For hyphae this could 

be the case, for arbuscules it is not a probable reason as they are only active for around 

8.5 days and arbuscules degenerate at the end of their life cycle (Alexander et al. 

1989). This is visible after staining and microscopy. Furthermore, only the presence or 

absence but not the amount of arbuscules, hyphae or vesicles could be determined, 

which is a weakness of the microscopy technique we used. Another problem with the 

counting data of vesicles is that the formation of the lipid storage organs is not 

correlated with lipid accumulation. The results of van Aarle and Olsson (2003) indicated 

that vesicles are formed first and are filled with lipids only later.  

In summary, NLFA and PLFA analyses are the best method to get an overview over 

the mycorrhizal status in plant roots. The methods of fatty acid analyses are time 

consuming and special equipment is needed. Depending on the experimental setup, 

the magnified intersection method can be sufficient. The use of vitality stains increases 

the usability. 

 

4.4 The content of inorganic phosphate in roots was not positively influenced by 

mycorrhizal interaction 

 

After 21 days of shift AM+P Light plants showed a significantly lower Pi content 

compared to their +P Light control (3.1.5). When plants were mycorrhized, the 

formation of symbiosis changed the expression of plant epidermal Pht1 transporters. 

For Medicago truncatula this was shown for Pht1;1 and 2 by Liu et al. (1998). This 

downregulation of phosphate transport by the plant is usually equalized by the 

phosphate transport of the fungi and may underlie the Pi reduction in AM+P Light 

plants. When the plant phosphate transport is not induced again after the reduction of 

mycorrhization, a lack in phosphate would occur, which could result in a reduced Pi 
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content in the roots. Alternatively, due to a reduced carbon supply of the plant by the 

fungi, the phosphate transfer of the fungi to the plant may be reduced. Without 

reactivating the plant phosphate transport mechanisms, the plant suffers from reduced 

phosphate uptake compared to control plants. The analyses of the mycorrhiza induced 

phosphate transporter MtPT4, showed a massive reduction due to optimal phosphate 

supply and shading of mycorrhizal plants in our experiment.  

The inorganic phosphate content in roots was found to be significantly higher in AM-P 

plants compared to -P plants, six weeks after inoculation. However, at 14 and 21 days 

past shift this difference was not detectable, independent of light treatment. The reason 

for this can be explained on the above described mechanisms. 

For AM+P Light plants, a significant reduction of inorganic phosphate content in roots 

was observed at 21 days past shift. To investigate the reasons for this, transcripts of 

above named genes should be analyzed. Based on the agricultural view, phosphate 

fertilization of mycorrhizal plants could be less beneficial for the plant. 
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V. Appendix 

 

Tab. V.1 Composition of multistandards for the determination of fatty acid concentrations 

Single standard 

Concentration in 
Multistandard 

[µg/µl] 
Straight chain saturated fatty acids   
14:0 0.0300 
15:0 0.0299 
17:0 0.0299 
18:0 0.0299 
Cyclopropyl branched fatty acids   
Cy19:0 0.0300 
10-Methyl branched saturated fatty acids   
10Me16:0 0.0300 
Anteiso branched saturated fatty acids   
a15:0 0.0300 
a17:0 0.0302 
Iso branched saturated fatty acids   
i15:0 0.0284 
i16:0 0.0300 
i17:0 0.0300 
Monosaturated straight chain fatty acids   
16:1w5c 0.0300 
16:1w7c 0.0300 
18:1w7c 0.0300 
18:1w9c 0.0291 
Polyunsaturated straight chain fatty acids   
18:2w6,9c 0.0300 
18:3w3,6,9c 0.0300 
20:4w6,9,12,15c 0.0300 

 

Tab. V.2 Internal standards for the analyses of fatty acid concentrations 

Analysed fatty acid Designation Standard Conc. 

PLFA Internal 
Standard  1 

19:0 1 µg/µl 

NLFA Internal 
Standard 2 

12:0 1 µg/µl 

FAME Internal 
Standard 3 

13:0 1 µg/µl 
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Tab. V.3 Standard substances for 13C measurements 

Substance 

Weight 

[mg] Company 

Quartz sand * (blank) 20 In-house standard 

High organic sediment 

(HOS) 20 

IVA Analysetechnik, Meerbusch, Germany (In-

house) 

Cellulose 4.8 IAEA** 

Caffeine 4.2 IAEA** 

CaCO3 16 In-house standard 

Needle litter (Nadel) 5-10 In-house standard (Waldstein) 

Acetanilide 2-2.5 Merck KGaA, Darmstadt, Germany (In-house) 

*washed with HCl and glowed at 1040 °C 

** International Atomic Energy Agency, Seibersdorf Laboratory, Vienna, Austria 

 

 

Tab. V.4 Detailed results of analysis of variance (ANOVA) for hyphae 
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Tab. V.5 Detailed results of analysis of variance (ANOVA) for vesicle 

 

 

 

 

 

Tab. V.6 Detailed results of analysis of variance (ANOVA) for arbuscules 

 

 

 

 

Tab. V.7 Detailed results of analysis of variance (ANOVA) for stunted arbuscules 
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(a)          (b) 

 
Fig. V.1 13C content in shoots and roots under P limitation (a) and phosphate overabundance (b) in full 

illumination and under shading treatments. (± SE; n=2), Plants were labeled 9 wpi, after 21 days of different 

light treatments and harvested 3 and 7 days past label. 
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