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Summary 

A possible enhancement of defense mechanisms of crop plants to pathogens by the application of 

increased amounts of sulfur-containing fertilizers, is based on the fact that sulfur-containing compounds 

of the primary and secondary metabolism accumulate in the plant and may act as defense compounds. 

Therefore, diseases derived from plant pathogens can be restricted in an effective and environmentally 

friendly way. A possible regulation of the sulfur metabolism by the circadian clock can give information 

about the right time of the application of sulfur-containing fertilizers that will enhance the defense even 

further as the susceptibility of plants varies in the course of a day. Therefore, the aim of this thesis was 

to investigate the involvement of the sulfur metabolism in the circadian regulated immunity in the 

agriculturally important crop species Brassica napus. In the first place different canola cultivars 

exhibiting different features and different levels of resistance to the fungus Verticillium longisporum 

were analyzed in their reaction to sulfur deficiency and infection with the fungus. Long term sulfur-

deficient conditions led to a drastic reduction in biomass and in the content of the sulfur-containing 

metabolites involved in the pathogen defense. Under these conditions the plants were more susceptible 

to the infection as the biomass production as well as the efficiency of the photosynthesis were further 

decreased. Under sulfur-sufficient as well as under sulfur-deficient conditions the total sulfur content 

was increased in the leaves of infected plants in comparison to non-infected plants. The cultivar Genie 

showed in this context the most obvious reactions to the sulfur deficiency and infection. Therefore, 

further experiments were performed with this cultivar. For investigating the circadian regulation of the 

sulfur metabolism plants grown with sufficient sulfur and deficient sulfur supply were harvested in the 

course of a day under diurnal and circadian conditions. For the expression analysis Northern blot 

analysis was chosen after careful comparisons with qPCR analysis. For Northern blot analysis the RNA 

could directly be used without the need of transcribing the RNA into cDNA. Furthermore, the transcripts 

of the genes of interest could be directly visualized on the membrane and the resulting band intensity 

represented the expression level. For evaluating the data obtained by Northern blot analysis in a 

quantitative way the method had to be optimized first. This was achieved by using reference genes for 

normalization. The selected reference genes were affected in different ways by the experimental 

conditions. With the help of an algorithm a suitable set of reference genes could be validated. Transcript 

levels of the selected genes involved in the sulfur assimilation as well as the content of glutathione 

showed diurnal oscillations with a period ranging from 20 to 23 h independent from the sulfur status. 

Under continuous light the period remained the same, whereas the amplitude of this oscillations were in 

most cases lowered and a shift in the phase occurred. An exception was on one hand the transcript 

amount of Sultr4;2 as the expression was unaffected by light and on the other hand the content of the 

glucosinolates which showed ultradian oscillations. The oscillations of the latter one were altered by the 

sulfur status and led to a loss in the rhythmic oscillations of the aliphatic glucosinolates under circadian 

conditions. In a last experiment it should have been determined, whether the susceptibility of B. napus 

to the fungus V. longisporum is dependent on the time point of infection. As the infection itself might 

have not been successful in this experiment no final conclusions in this context could have been drawn 

yet. 

Keywords: Brassica napus, circadian rhythm, defense, diurnal, metabolites, sulfur, Verticillium 

longisporum  
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Zusammenfassung  
Eine mögliche Verbesserung der Abwehrmechanismen in Pflanzen gegenüber Pathogenen durch die 

vermehrte Zugabe von schwefelhaltigen Düngern beruht auf der Tatsache, dass die Metabolite des 

primären und sekundären Schwefelmetabolismus in der Pflanze angereichert werden und womöglich 

als Abwehrstoffe fungieren. Somit bietet sich hier eine effektive und umweltfreundliche Möglichkeit 

Pflanzenkrankheiten einzuschränken. Eine mögliche Regulation des Schwefelmetabolismus durch die 

circadiane Uhr kann Aufschluss darüber geben, ob die Zugabe von schwefelhaltigem Dünger zu einer 

bestimmten Zeit eine gesteigerte Verbesserung der Abwehr bewirken kann, da die Anfälligkeit von 

Pflanzen im Tagesverlauf variiert. Daher war das Ziel der Arbeit die Rolle des Schwefelmetabolismus 

in der circadian regulierten Pathogenabwehr in der landwirtschaftlich wichtigen Nutzpflanze Brassica 

napus zu verstehen. Zunächst wurden verschiedene Rapssorten mit unterschiedlichen Eigenschaften und 

unterschiedlicher Anfälligkeit gegen den Pilz Verticillium longisporum im Hinblick auf die Reaktion 

gegenüber Schwefelmangel und Infektion untersucht. Durch die mangelnde Versorgung mit Schwefel 

kam es zu einer drastischen Reduktion der Biomasse sowie der schwefelhaltigen Metabolite, von denen 

einige an der Pathogenabwehr beteiligt sind. Es konnte zudem gezeigt werden, dass unter diesen 

Umständen die Pflanzen anfälliger für die Infektion waren, da die Biomasseproduktion in den infizierten 

Pflanzen weiter zurückging und die Photosyntheseleistung weiter abnahm. Sowohl mit ausreichender 

Schwefelversorgung als auch unter Schwefelmangel war der Gesamtschwefel erhöht in infizierten im 

Vergleich zu nicht infizierten Pflanzen. Die Sorte Genie zeigte in dieser Hinsicht die offensichtlichsten 

Reaktionen im Hinblick auf den Schwefelmangel und auf die Infektion. Daher wurden weitere 

Untersuchungen mit dieser Sorte durchgeführt. Für die Untersuchung einer möglichen circadianen 

Regulation des Schwefelmetabolismus wurden die Pflanzen mit ausreichend Schwefel sowie unter 

Schwefelmangel im Tagesverlauf unter diurnalen, sowie unter circadianen Bedingungen geerntet. Für 

die Expressionsanalyse ausgewählter Gene, die an der Schwefelassimilation beteiligt sind, wurde die 

Northern Blot-Analyse gewählt, nachdem diese sorgfältig mit der qPCR verglichen worden war. Für die 

Northern Blot-Analyse konnte die RNA direkt verwendet werden, ohne diese vorher in cDNA 

umschreiben zu müssen. Weiterhin konnten die Transkripte der Gene direkt auf der Membran 

visualisiert werden und die resultierenden Bandenintensitäten repräsentierten die Expressionsstärke. Um 

diese Daten quantitativ auswerten zu können, war es notwendig, die Methode zu optimieren. Dies konnte 

durch den Einsatz von Referenzgenen ermöglicht werden. Unter den experimentellen Bedingungen 

wurden die ausgewählten Referenzgene in ihrer Expression unterschiedlich beeinflusst. Mit der Hilfe 

eines Algorithmus konnte ein geeignetes Set von Referenzgenen ausgewählt werden. Die 

Transkriptlevel der ausgewählten Gene, die an der Schwefelassimilation beteiligt sind, sowie der Gehalt 

von Glutathion zeigten diurnale Schwingungen mit einer Periode zwischen 20 und 23 h unabhängig von 

dem Schwefelstatus. Bei konstantem Licht blieb zwar die Periode gleich, aber die Amplitude dieser 

Schwingungen war kleiner und es zeigte sich eine Verschiebung der Phase. Ausnahmen machten hierbei 

zum einen die Expression des Sulfattransporters Sultr4;2, da diese nicht vom Licht beeinflusst wurde, 

und zum anderen der Gehalt der Glucosinolate, die ultradiane Schwankungen im Tagesverlauf zeigten. 

Die Schwankungen der Glucosinolate wurden durch die Schwefelversorgung beeinflusst und führten 

sogar zu einem Verlust der rhythmischen Schwankungen der aliphatischen Glucosinolate unter 

circadianen Bedingungen. In einem letzten Versuch sollte überprüft werden, ob die Anfälligkeit von B. 

napus gegenüber dem Pilz V. longisporum von dem Zeitpunkt der Infektion abhängig ist. Da die 

Infektion in diesem Versuch nicht erfolgreich war, konnten in dieser Frage noch keine Aussagen 

getroffen werden. 

Schlüsselwörter: Abwehr, Brassica napus, circadianer Rhythmus, diurnal, Metabolite, Schwefel, 

Verticillium longisporum 
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The importance of controlling pathogen-derived diseases in crop plants 

The world population is growing extremely fast and led to an increased world food crop demand 

and production over the past years. This was achieved by improved cultivation techniques 

including the use of varieties providing higher yields. These, however, showed often a higher 

susceptibility to diseases resulting in increased infection rates (Oerke, 2005). Yield losses 

caused by plant pathogens comprise up to 20% of the world's harvest (Flood, 2010). In the near 

future the percentage might be even increased as pathogens are further spreading by human 

activity. In this context plant diseases had become a major issue of the global food security 

(Flood, 2010). There are a number of common methods controlling pathogen-derived diseases 

such as soil tillage measures, crop rotation, mixed cropping systems, and the breeding of 

internal resistances in plant cultivars specific to the pathogen. The latter one was extensively 

used in the recent years and nowadays a number of cultivars are available with internal 

resistances to certain pathogens. Due to climatic changes and modification in the natural 

environment by human activity new species of pathogens might evolve which might be able to 

overcome these internal resistances (Fisher et al., 2012). The use of pesticides is also a strategy 

for disease control, however, especially in the case of organic farming this is no option. A 

promising possibility for long term control and without the use of pesticides would be fertilizing 

strategies based on the nutrient enhanced defense in plants. For applying such strategies in 

agriculture effectively, better understanding of the regulation of the essential elements 

associated metabolism is required as well as the plant-pathogen interaction. 

Verticillium longisporum - a serious threat for the cultivation of Brassica napus 

The biggest proportion of biotic threats on crop plants comprises the fungi and oomycetes 

(Fisher et al. 2012). The crucial effect of fungal infections is long known as in the 19th and 20th 

century single fungi led to starvation and baring forest landscapes. Modifying the natural 

environments by human activity led to an increased appearance of fungal diseases (Institute of 

Medicine, 2011; Pennisi 2010). In fact, the fungi and the oomycetes were the most widespread 

crop pest and pathogen (CPP) in the recent years compared to other CPPs. Despite their more 

restricted host range they were also the most rapidly spreading CPP (Bebber et al., 2014). In 

general, control of these pathogens can be achieved by using fungicides. However, diseases 

deprived from soil-borne pathogens are challenging in agriculture, as these cannot be controlled 

effectively due to their persistence in soil by forming survival structures such as oospores, 

chlamydospores, and sclerotia. These root-infecting pathogens are able to cause significant 

reduction in yield and quality of many crop plants (Okubara and Paulitz, 2005; Okubara et al., 

2014). One of those soil-borne pathogens is the ascomycete Verticillium longisporum which is 
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mainly restricted to crucifers causing Verticillium wilt. The fungus is an allopolyploid that 

might be evolved from Verticillium dahliae and Verticillium alboatrum (Clewes et al., 2008; 

Inderbitzin et al., 2011). First infections of the agriculturally important crop plant Brassica 

napus with the fungus occurred in Sweden in 1969 (Kroeker, 1970). Upon spreading in the 

recent years V. longisporum is found in Europe (Gladders et al., 2011; Karapapa et al., 1997; 

Steventon et al., 2002; Zeise and Tiedemann, 2002), Russia (Pantou et al., 2005) and, recently, 

in Canada (CFIA, 2015). As Europe and Canada represent important areas for the cultivation 

of oilseed rape, V. longisporum became a serious threat in the production of this oilseed plant. 

The suggested yield loss due to infection with V. longisporum ranges between 10% and 50% 

(Dunker et al. 2008).  

The disease cycle of V. longisporum can be divided in three stages: dormant, parasitic, and a 

limited saprophytic stage (Figure 1). In the first stage root exudates of the plant induce the 

germination of the melanized microsclerotia that can remain in the soil until the infection of the 

host. The growth of hyphae out of the microsclerotium, is directed to the roots enabling the 

fungus to colonize the surface of the root hairs. Thus penetration of rhizodermal cells take place 

enabling the fungus to enter the roots, whereas this is only possible if the endodermis is 

physically damaged or as in the root tips not yet developed. Inside the plant the hyphae grow 

in the root cortex towards the central cylinder. In the parasitic stage conidia are formed and 

carried upwards through the vascular elements. New conidias are formed and the plant becomes 

increasingly colonized. The limited sacrophytic stage occurs at senescence of leaves, where the 

stem parenchyma is invaded and formation of microsclerotia is carried out leading to dark 

unilateral striping on the stem during the ripening of the crop. Typical symptoms upon infection 

are wilting, stunting, chlorosis, vascular discoloration, and early senescence (Fradin and 

Thomma, 2006). As wilting symptoms of the infection of oilseed rape are absent due to 

prematurely ripening, disease symptoms cannot be distinguished from natural senescence. 

Furthermore, as the stem striping occurs only at later stages in the growing season (Heale and 

Karapapa, 1999) early detection of the infection is difficult. As no effective fungicide for V. 

longisporum is available yet other ways have to be developed guaranteeing a long-term control. 
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Figure 1: Disease cycle of Verticillium longisporum on oilseed rape (taken from Depotter et al., 2015). 

Microsclerotia as persistent resting structures remain in the soil until the infection (1). Germination of the 

microsclerotia is induced by root exudates (2). Penetration of epidermal cells of lateral roots or root hairs and 

growth of the hyphae towards the central cylinder (3). Absence of disease symptoms during the growing season 

(4). Developement of dark unilateral striping on the stems during the ripening and formation of microsclerotia (5). 

Release of the microsclerotia into the soil (6). 

 

Brassica napus as an agriculturally important crop plant 

Enhancing the resistance in B. napus against the fungus V. longisporum by applying internal 

resistances is one of the aims in breeding new cultivars, as oilseed rape has become an important 

crop plant in agriculture over the past years. Besides its cultivation as leaf vegetable or leafy 

fodder crop, the role as an oilseed is nowadays the most important one. In the world oilseed 

production oilseed rape takes after soybean the second place with a percentage of 12,8 % 

(Figure 2). With a share in the world production of oilseed rape of 32 % the EU-28 takes the 

leading role. About 57% of the cultivable land for oilseeds is comprised by oilseed rape 

cultivation and is therefore, the most important crop plant in the EU-28 (Goldhofer and Schmid, 

2016). Approximately 20 % of the cultivable area in Germany is used for oilseed rape 

cultivation where winter oilseed rape cultivation dominates, as it comprises 99,7% of the 

cultivable area (Statistisches Bundesamt, 2016). With a market share of 40% is canola oil the 

most sold oil in Germany (UFOP, 2016). Looking at the history of B. napus in agriculture the 

road to its role as valuable oilseed took some time and effort. 
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Figure 2: Oilseed and oilseed rape production in the world 2015/2016 (data taken from Goldhofer and 

Schmid, 2016). 

Vegetables and oilseed of Brassica plants are known to be the earliest cultivated plants by 

humanity. Oilseed rape as a member of the Brassicaceae is a very recent species based on the 

fact that there are no wild forms. With an age of only a few hundred years Brassica napus is 

the youngest species among our crop plants, whereas researchers agree that this plant is a 

product created by humankind ~7500 years ago. Among closely-related Brassica species 

spontaneous chromosome doubling in crossing occurred in the recent years. When the species 

Brassica oleracea and Brassica rapa were cultivated in geographical proximity the 

allypolyploid hybrid B. napus evolved containing 18 chromosomes from B. oleracea and 20 

chromosomes from B. rapa. Until the 20th century cultivation of B. napus for leafy fodder was 

not attractive, as the high content of erucic acid and glucosinolates (GSL) led to disruption in 

the metabolism in animals. Furthermore, these components led to a bitter tasting oil and causing 

cardiac health problems, when consumed in high doses, making it unsuitable for human 

consumption. Nevertheless, the oil could be used as biofuel and as a source of lamp oil 

production. In the 1970s and 1980s oilseed rape underwent targeted selection reducing the 

content of these compounds resulting in the single and double low rapeseed varieties 

(Stefansson 1983; Downey and Röbbelen, 1989; Downey, 1990). These cultivars are called 

canola when the content of erucic acid is less than 2 % and the meal must contain less than 30 

µmol g-1 seed DM of aliphatic GSLs. Therefore, the canola oil became a valuable source of 
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nutritional oils and fats and the oil no longer used solely as biofuel. With these achievements 

in the breeding, the consumption of the rapeseed oil in the world increased from 11.7 Mio t in 

1995 up to 26.7 Mio t in 2015/16 (Goldhofer and Schmid, 2016). Meeting the increasing 

demand, the seed yield potential was improved by developing functional male sterility system 

also known as the Male Sterility Lembke (MSL) system for the production of fully restored 

rapeseed hybrids without any yield or quality penalty. With the invention of those hybrids, line-

bred cultivars became less important as the potential yield as well as the yield assurance was 

much higher in hybrids than in line-bred cultivars. In fact in Germany more than 84% of the 

oilseed rape area is used for the cultivation of hybrids. In France hybrids comprises 77% and in 

North America about 99% (DSV, 2016). Nowadays a number of cultivars for summer and 

winter oilseed rape are available with different properties based on its role and utility in human 

agricultural systems. As the seed quality traits for breeding the double low cultivars were 

continuous selected since the 1970s the genetic diversity in those cultivars was relatively low 

and lacks a broad spectrum of disease resistances (Allender and King 2010). In 2003 the 

extensive screening of the germplasm of B. napus revealed that there are no sources for the 

resistance to V. longisporum (Happstadius et al., 2003). By interspecific hybridization of the 

parental species B. oleracea and B. rapa the transfer of V. longisporum resistance into 

resynthesized B. napus lines was successful (Rygulla et al., 2007). Newer cultivars show now 

internal resistances against V. longisporum. However, the internal resistance might not solely 

prevent an infection or guarantee a long-term disease control. Therefore, a strategy needs to be 

developed enhancing the natural resistance and thus improving the plant-pathogen tolerance. 

This might be achieved by developing a nutrient-based fertilizer strategy as the natural 

resistance in plants is dependent on the nutrient status in the plant. 

 

Sulfur and its role in the disease control  

The involvement of the nutritional status in the susceptibility of plants against pathogens was 

already introduced in 1873 by Justus von Liebig. Thus a sufficient supply of essential nutrients 

by fertilizing the right amount can enhance the natural resistance in plants (Huber and 

Haneklaus, 2007; Walters and Bingham, 2007). The nutritional requirements for plants 

comprises 18 important nutrients. All essential nutrients are involved in the plant pathogen 

response, but among them the importance of the macronutrient sulfur increased in the recent 

years. Already in 1802 the fungicidal effect of elemental sulfur foliar-applied to the plants was 

determined by Williams Forsyth. This became even more prominent, as the atmospheric sulfur 
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due to enhanced emission controls in the 1980s decreased resulting in sulfur-deficient soils. The 

reduction of crop-available sulfur in the soil was even more increased, as fertilizers were used 

containing little or no sulfur (Schnug and Haneklaus, 1994). Deficient sulfur supply can affect 

the use of other nutrients such as carbon and nitrogen negatively resulting in deficiencies, as 

well as decreases in protein biosynthesis, chlorophyll content and yield (Lunde et al., 2008; 

Mazid et al., 2011; Iqbal et al., 2013). Furthermore, the susceptibility in plants under sulfur-

deficient conditions was increased and infection rates, especially in crop plans with a high sulfur 

demand increased as well (Schnug, 1997). In sulfur fertilization experiments in the greenhouse 

the disease index for various host/pathogen relationships were reduced by 5 to 50%. In field 

experiments the reduction ranged from 17 to 35 % respectively. In this context in 1995 the term 

sulfur-induced resistance (SIR) was introduced by Schnug et al., describing the enhanced 

stimulation of metabolic processes involving sulfur by applying fertilizer to the soil. In recent 

studies the term sulfur-enhanced defense (SED) occurred as to prevent misinterpretation of the 

term resistance (Rausch und Wachter, 2005; Kruse et al., 2007).  

The sulfur assimilation as initial point for the sulfur-enhanced defense 

The SED mechanism is mediated by a variety of sulfur-containing defense compounds (SDCs). 

The precursor of these compounds is the amino acid cysteine which is the product of the sulfate 

assimilation und thus the prerequisite for the biosynthesis of the SDCs (Figure 3). Plants have 

the ability to take up the sulfur in its most frequent form as sulfate from the soil. The uptake 

into the roots across the plasma membrane takes place under energy consumption through a 

proton/sulfate co-transport. The biggest portion of the sulfate is transported via xylem vessels 

to the shoot mediated by the transpiration stream. The uptake, transport, as well as the 

distribution of sulfate is mediated by a number of tissue specific transporters which are divided 

in 5 groups according to their translocation and specific role in the sulfate transport (Buchner 

et al., 2004; Hawkesford, 2003). In B. napus 14 members homolog to the transporters in 

Arabidopsis thaliana were identified (Parmar et. al., 2007). The primary uptake of sulfate from 

the soil is enabled through members of the group 1 that are mainly located in the roots, 

exhibiting a high sulfate affinity. Members of group 2 with a low sulfate affinity are found in 

the vascular tissue mediating the transport within the stele via xylem and phloem. Excessive 

sulfate can be stored in the vacuole and be restored by members of group 4 sulfate transporters 

localized in the tonoplast under sulfur-deficient conditions. Transportation into the chloroplasts 

of the leaves is mediated by the group 3 transporters where the sulfur assimilation takes place. 

In the first step adenosine 5’-phosphosulfate (APS) is generated, catalyzed by ATP sulfurylase 
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under energy consumption. The second reduction is mediated by the enzyme APS-reductase 

(APR) forming sulfite with glutathione (GSH) as electron donor. Further activation of APS by 

APS kinase leads to the formation of 3’-phosphoadenylylsulfate (PAPS) which is among other 

sulfation reactions required for the biosynthesis of GSLs which are mostly found in the family 

Brassicaceae (Brown and Morra, 1997). For the synthesis of cysteine the sulfite is further 

reduced to sulfide by the sulfite reductase. The last step is mediated by the O-

acetylserine(thiol)lyase (OAS) fixating the sulfide in cysteine, the first stable organic sulfur 

compound of the sulfur metabolism. The uptake as well as the sulfur assimilation are mainly 

regulated by the sulfate availability in the soil. Therefore, by using increased amounts of sulfur-

containing fertilizers the metabolism of the SDCs might be increased, enhancing the resistance 

in plants against certain pathogens. 

 

Figure 3: Sulfur assimilation and biosynthesis of sulfur-containing defense compounds (SDCs) (taken from Rausch and 

Wachter, 2005). Sulfate is taken up from the soil by high-affinity transporters (1). Inside the plant sulfate is mainly transported 

to the shoot and activated under energy consumption via the ATP sulfurylase generating 5’-adenylylsulfate (APS) (2). APS is 

reduced by the APS-reductase to sulfite (3). Alternatively, further activation of APS by the APS kinase lead to the formation 

of 3’-phosphoadenylylsulfate (PAPS) which is required for the glucosinolate synthesis (4). Sulfite is reduced to H2S via the 

sulfite reductase (6). H2S is incorporated into O-acetylserine generating cysteine (8). Cysteine is incorporated in sulfur-

containing compounds. H2S can be released from cysteine (9). Excess sulfite is converted to sulfate, releasing H2O2 (5). 
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Sulfur availability influences the formation of sulfur-containing defense compounds 

Applying sulfate as sulfur-source to the soil for the SED might be preferred due to the rapid 

availability of sulfates for the plant resulting in a fast significant effect on the resistance (Schnug 

et al., 1995). With increasing sulfur supply GSH und secondary plant metabolites accumulate, 

which is strongly dependent on the cysteine pool. Therefore, the OAS is upgraded, which in 

turn induces the expression of sulfate transporters and a number of genes involved in the sulfur 

assimilation (Rausch and Wachter, 2005). Upon infection the biosynthesis of the SDCs is likely 

to be increased, which is the case for a wide range of pathogens, whereas this is most prominent 

for fungal-derived infections (Kruse et al., 2007). The increase is accompanied by a higher 

demand of sulfur. Therefore, a constantly high plant available sulfur reserve in the soil is 

required to satisfy the enhanced sulfur demand for plant defense during infection (Haneklaus, 

2009). An optimal sulfur supply provides a better protection against pathogens and plants are 

additionally able to activate resistance and mechanisms faster and intensely compared to plants 

grown under sulfur-deficient conditions (Kruse et al. 2012). Furthermore, symptom 

developement and fungal spread can be reduced under high sulfur nutrition (Klikocha et al., 

2005; Bollig et al., 2012). In contrast, under sulfur-deficient conditions the susceptibility of the 

plants is likely to be promoted as the SED is restricted under these conditions (Dubuis et al., 

2005). Special attention in this context should be given to oilseed rape as the demand for sulfur 

is elevated due to high contents of proteins and sulfur-containing GSLs (Schnug and Haneklaus, 

2005). Especially double low cultivars of B. napus have a high requirement of sulfur due to the 

modified GLS metabolism (Haneklaus et al., 2007). An oilseed crop removes between 20 and 

30 kg sulfur ha-1 whereas about 10 to 15 kg sulfur ha-1 is removed by cereals (Walker and Booth, 

1992). According to the high demand oilseed rape plants are very sensitive to sulfur deficiency. 

Already a sulfur content of 3.5 mg sulfur g-1 DM in the double low varieties is considered to be 

a critical value leading to symptoms of sulfur deficiency (Scherer, 2001). Therefore, a sulfur 

supply for B. napus is required which covers the metabolic sulfur needs as well as the enhanced 

demand for the plant-pathogen interaction. In summary, optimal sulfur nutrition can enhance 

the capability of a plant to cope with stress and the extra demand under stress can be met. 

Regarding the effect of sulfur on the resistance in plants, the use of sulfur-containing fertilizers 

is required to prevent sulfur-deficient conditions.  
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Sulfur-containing defense compounds are involved in the defense response in plants 

As the SED seems to be an effective protection against the plant diseases the involvement of 

the SDCs in the plants defense should be clarified. In the sulfur metabolism of plants a broad 

range of SDCs is given (Figure 4). Some of them exhibit direct fungicidal effects, such as the 

sulfur-rich proteins, phytoalexins, elemental sulfur, H2S, and the GSLs (Kuc, 1994; Cooper et 

al., 1996; Wallsgrove et al., 1999; Hughes et al., 2000). Whereas, for the latter one only the 

breakdown products are known to be toxic for the fungus. (Mithen, 1992; Wallsgrove et al., 

1999). Other SDCs such as the thiols are directly involved in the defense immunity. To 

understand their role in the plant defense it is necessary to understand the plant immune system. 

As an adaption to pathogens plants evolved a robust multi-layered innate immune system. The 

first layer of the defense, also known as the basal defense response is triggered by the pathogen 

invading the plant. If the pathogen is non-specific to the host the infection can be avoided by 

the pathogen associated molecular pattern (PAMP)-triggered immunity (PTI) (Jones and Dangl, 

2006). Transmembrane pattern recognition receptors (PRR) are able to detect the PAMPs 

derived from the pathogen leading to molecular and physiological responses such as callus 

deposition in the cell wall or accumulation of reactive oxygen species (ROS). As some 

pathogens evolved effectors suppressing the PTI, secure nutrients and water from the host, 

plants developed the effector triggered immunity (ETI) (Dangl and Jones, 2001; Macho and 

Zipfel, 2015). These effectors can be detected directly or indirectly by plant resistance (R) 

proteins. This mechanism is based on the gene for gene resistance (Flor 1971), where the 

virulent gene as aviurlent gene from the pathogen is complementary to a resistance gene from 

the plant. The R-mediated resistance is important for the defense against biotrophic pathogens 

(Glazebrook, 2005). This form of resistance is accompanied by an oxidative burst, which is 

required for the hypersensitive response (HR) a type of programmed cell death. The HR induces 

the systematic acquired resistance, which is dependent on salicylic acid (SA). Expression of 

pathogenesis-related proteins (PR) is induced by SA and accelerate the oxidative outburst as an 

early signal for defense activation. The oxidative outburst is accompanied by the formation of 

ROS. With the function of GSH as a redox buffer the connection of the sulfur metabolism to 

the defense response in plants were given by the Foyer-Halliwell-Asada pathway as here in the 

detoxification of ROS the involvement of GSH was verified (Foyer and Halliwell, 1976). 

Cysteine, as the precursor of GSH, is also involved in the R-mediated defense as it is essential 

for the HR (Alvarez et al., 2012). The resistance against necrotrophic pathogens can either be 

solely jasmonic acid (JA) dependent or dependent on JA and ethylene (ET). The JA is known 

to induce the biosynthesis of indolic GSLs and a set of genes involved in the sulfur metabolism 
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such as the serineacetyltransferase (SAT) and APR (Jost et al., 2005). It is also involved in the 

regulation of the GSH formation leading to an increase in the content (Cai et al., 2011). This 

demonstrates that the sulfur metabolism and the corresponding metabolites play an important 

role in the defense response against biotrophic as well as against necrotrophic pathogens. As 

mentioned before there is a linear relationship between the sulfur supply and the SDCs, 

however, the relationship between the sulfur supply and the fungal infection is not always 

predictable as there are a number of factors which needs to be taken into consideration as well 

(Bloem et al., 2004; Salac et al., 2005). One important factor is the timing and the extent of the 

plants defense response. It might be more beneficial applying sulfur at a certain time of the day, 

as the susceptibility of the plant might be dependent on the daytime. This would require a 

regulation by an endogenous rhythm. Plants have evolved such a mechanism also known as the 

circadian rhythm.  

 

Figure 4: The involvement of the sulfur metabolism in the plant defense (taken from Bloem et al., 2014). 

Salicylic acid (SA) induces the oxidative burst and triggers the camalexin biosynthesis (1). Jasmonic acid (JA) 

induces the biosynthesis of indolic GSL and sulfur-related genes (2). Increase of the ascorbate and glutathione 

(GSH) content under stress by JA (3). 

 

The role and function of the plant circadian clock  

In organisms a number of processes are regulated by an endogenous mechanism enabling the 

anticipation of daily events in a more predictable way. Fluctuations in the behavior and 
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biological processes in response to the daily changes in light and dark conditions due to the 

rotation of the earth are known as diurnal. If these fluctuations persists in the absence of an 

external cue they are called circadian. The term circadian, from the Latin words “circa” (about) 

and “dies” (day) in this context is referred to the period, which is defined as the time to complete 

one cycle of ~24 h (Halberg 1959). Circadian rhythms persist under constant environmental 

conditions such as constant light or temperature as they are endogenously generated and self-

sustaining. Under those called free-running conditions the period can diverge from the 24 h 

period. Another defining characteristic of the circadian rhythm is that the periodicity is 

maintained relatively constant over a broad range of physiological temperatures, which is also 

known as temperature compensation. The entrainment of the clock to the environment is an 

important aspect in the circadian system. Entrainment is achieved by environmental time cues 

such as light or temperature also known as ‘zeitgebers’, resetting the clock to synchronize the 

inner clock with the local time. In the case of light the sunrise and sunset synchronize the clock 

every day. Evolving such endogenous mechanism in plants with the same period as the Earth’s 

rotation had a beneficial effect in the adaption to the environment as plants are able to predict 

daily as well as seasonal changes. 

The first report of the circadian rhythm in plants goes back to 1729 as the movement of the 

leaves from plants kept in dark followed a 24 h rhythm (de Mairan, 1729). Henceforward 

researches in this field increased, illuminating the complexity of the circadian system in plants 

(McClung, 2006). In general, it can be divided in three parts: the oscillator that generates 

rhythmicity, the input pathways setting the oscillator to the environment, and regulated by the 

oscillator the output rhythms. The model of the circadian clock had been best described so far 

in A. thaliana (Figure 5). The circadian clock of A. thaliana consists of three interlocked 

feedback loops. The central loop represents the core oscillator of the circadian clock with two 

single Myb domain transcription factors, CIRCADIAN AND CLOCK ASSOCIATED1 

(CCA1) and LATE ELONGATED HYPOCOTYL (LHY) together with a member of the 

PSEUDO-RESPONSE REGULATOR (PRR) family TIMING OF CAB1 (TOC1). Upon 

upregulation of CCA1 and LHY in the morning activation of the daytime-expressed genes 

PSEUDO-RESPONSE REGULATOR (PRR) occur which in turn repress transcription of CCA1 

and LHY. Thus the proteins CCA1 and LHY decrease in the day and cannot repress the 

expression of TOC1 anymore. In the evening the produced TOC1 activates the evening genes 

and represses the genes of the morning loop. Upon degradation of the TOC1 protein by the 

ZEITLUPE (ZTL) protein in the night the expression of CCA1 and LHY is not repressed 

anymore. Thus the proteins can be produced again in the morning. The genes of the circadian 
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clock are not only regulating themselves, they are also involved in the regulation of a number 

of genes. In this way physiological processes such as the photosynthesis or hormone signaling 

pathways are coordinated to the daily changes for optimizing their growth (Farré, 2012). The 

stress signaling in plants is also under circadian control enabling plants to cope with abiotic and 

biotic stress in a more predictable way and to gate appropriate responses in a timely manner 

(Seo and Mas, 2015). The circadian clock indeed plays an important role in the plant-pathogen 

interaction by balancing the immune responses with the cellular metabolism due to the closely 

association of the pathogens life cycle with the diurnally regulated host metabolism. 

 

Figure 5: The regulatory network of the circadian clock in Arabidopsis thaliana (taken from Chen, 2013). 

The circadian clock consists of a central loop and two side loops. The CIRCADIAN CLOCK-ASSOCIATED 1 

(CCA1) and LATE ELONGATED HYPOCOTYL (LHY) and their regulator TIMING OF CAB EXPRESSION 

1 (TOC1) represent the central loop. CCA1 and LHY are activating the gene expression of the genes in the morning 

loop. In the course of the day CCA1 and LHY decrease and TOC1 can be produced as the expression is inhibited 

by CCA1 and LHY. The protein TOC1 accumulates in the evening inhibiting the expression CCA1 and LHY. 

Expression of the genes in the evening loop are induced TOC1. In the night TOC1 decreases and CCA1 and LHY 

can be expressed again at dawn.  
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The circadian-regulated pathogen defense in plants 

The regulation of central components of the defense pathway by the circadian clock enables the 

plant to anticipate the pathogen attack in a more predictable way. The role of the circadian clock 

in the immunity of the plants got more prominent as it was shown that a functional clock is 

beneficial for an enhanced fitness (Dodd et al., 2005). Transcriptome analysis in A. thaliana led 

to the identification of circadian clock regulated genes involved in the PTI and the R-mediated 

defense (Sauerbrunn and Schlaich, 2004; Wang et al., 2011). The defense hormone signaling 

in plants is also under circadian control as the accumulation of SA and JA is clock regulated 

(Goodspeed et al., 2012). In this context variations in the susceptibility dependent on the time 

of the day and pathogen are likely to occur (Bhardwaj et al., 2011; Ingle et al., 2015). The 

circadian control of the immunity might have been evolved as a response to the timed stages of 

the pathogens to be strongest at the time when they are most susceptible to an infection. The 

fungal sporulation as an example is likely to occur at night, whereas the spore dissemination 

mainly occurs at dawn (Wang et al., 2011; Slusarenko and Schlaich, 2003). Therefore, it would 

be beneficial for the plant maximizing the level of defense compounds at the time of the day 

when the encounter with the pathogen is more likely to occur. Applying sulfur at a certain time 

of the day might improve the SED in plants as the immunity in plants is dependent on the time 

of the day. The dynamic nutrient fluxes are tightly linked to rhythmic physiology and nutrient 

uptake is likely to be under circadian control (Haydon et al., 2015). As the nutrient uptake 

mainly occurs at dawn applying sulfur at that time would be more beneficial. In this context a 

circadian regulation of the sulfur metabolism might result in a maximized defense response. 

Based on that fertilizer strategies can be developed maximizing the resistance response in plants 

when applying sulfur at the right time of the day. This leads ultimately to the question: Is it 

possible to maximize the SED by applying sulfur at the right time resulting in further 

enhancement of the plant defense? 
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Aims of the thesis 

 Comparison of different B. napus cultivars in response to induced sulfur deficiency 

and pathogen attack 

 Development of a growth system in a suitable and reproducible way for analyzing the 

circadian rhythm in B. napus 

 Optimization of the method for the expression analysis in a complex experimental 

setting in B. napus 

 Determining a circadian regulated sulfur assimilation regarding the sulfur status in the 

plants by analyzing key enzymes of the sulfur metabolism as well as sulfur-containing 

compounds 

 Analyzing the circadian regulated immunity in B. napus by infecting the plants with V. 

longisporum at different times of the day 
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Brassica napus L. cultivars show a broad variability in their morphology, 

physiology and metabolite levels in response to sulfur limitations and to 
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Figure S3. 
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Table S1. Differences in root hair length among the varieties. Statistical tests were 

performed using Sigma Plot. Mean values of five plants ± SD are shown along with letters 

indicating significant differences for pairwise comparisons (Tukey test) among the cultivars. 

 

  Root hair length [cm]   

Compass Exocet Genie King10 

    
1.166±0.282a 1.14±0.287a 0.582±0.079b 0.698±0.085b 

 

 

Table S2. Influence of S-fertilization, infection and cultivar on the total dry mass. 

Statistical analysis was performed using R. The p-values refer to pairwise comparisons (Tukey 

test) of the data shown in Figure 2A. Significances: p<0.05*, p<0.01**,p<0.001***. 

 

variable comparison p-value significance 

S-fertilization 1 mM – 0.025 mM <0.001 ∗∗∗ 

 1 mM – 0.01 mM <0.001 ∗∗∗ 

 0.025 mM – 0.01 mM 0.556 ns 

infection Compass: INF - C 0.064 ns 

 Exocet: INF - C <0.001 ∗∗∗ 

 Genie: INF - C <0.001 ∗∗∗ 

 King10: INF - C 0.100 ns 

cultivar  C: Compass - Exocet 0.639 ns 

 C: Compass - Genie 0.015 ∗ 

 C: Compass - King10 <0.001 ∗∗∗ 

 C: Exocet - Genie 0.260 ns 

 C: Exocet - King10 <0.001 ∗∗ 

 C: Genie - King10 0.546 ns 

 INF: Compass - Exocet <0.001 ∗∗∗ 

 INF: Compass - Genie <0.001 ∗∗∗ 

 INF: Compass - King10 <0.001 ∗∗∗ 

 INF: Exocet - Genie 0.367 ns 

 INF: Exocet - King10 0.989 ns 

 INF: Genie - King10 0.206 ns 
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Table S3. Influence of S-fertilization, infection and cultivar on the shoot-to-root ratio. 

Statistical tests were performed using R. The p-values refer to pairwise comparisons (Tukey 

tests) of the data shown in Figure 2B. Significances: p<0.05*, p<0.01**, p<0.001***. 

 

variable comparison p-value significance 

S-fertilization 1 mM – 0.025 mM <0.001 ∗∗ 

 1 mM – 0.010 mM 0.082 ns 

 0.025 mM – 0.010 mM 0.510 ns 

infection INF- C 0.220 ns 

cultivar Compass - Exocet <0.001 ∗∗∗ 

 Compass - Genie <0.001 ∗∗∗ 

 Compass - King10 <0.001 ∗∗∗ 

 Exocet - Genie 0.918 ns 

 Exocet - King10 0.033 ∗ 

 Genie - King10 0.154 ns 

 

 

Table S4. Influence of the interaction of S-fertilization, infection and cultivar on the leaf 

temperature. Statistical analysis was performed using R. The p-values refer to pairwise comparisons 

(Tukey tests) of the data shown in Figure 3. Since all interactions were significant in the F-test, 

comparisons were carried out separately at all factor levels. Significances: p<0.05*, p<0.01**, 

p<0.001***. 

 

variable comparison p-value significance 

S-fertilization C: Compass: 1 mM – 0.025 mM 0.413 ns 

 C: Compass: 1 mM – 0.01 mM 0.999 ns 

 C: Compass: 0.025 mM – 0.01 mM 0.387 ns 

 C: Exocet: 1 mM - 0.025 mM 0.858 ns 

 C: Exocet: 1 mM - 0.01 mM 0.747 ns 

 C: Exocet: 0.025 mM - 0.01 mM 0.422 ns 

 C: Genie: 1 mM - 0.025 mM 0.945 ns 

 C: Genie: 1 mM - 0.01 mM 0.122 ns 

 C: Genie: 0.025 mM - 0.01 mM 0.058 ns 

 C: King10: 1 mM - 0.025 mM 0.339 ns 

 C: King10: 1 mM - 0.01 mM 0.859 ns 

 C: King10: 0.025 mM - 0.01 mM 0.654 ns 

 INF: Compass: 1 mM - 0.025 mM <0.001 ∗∗∗ 

 INF: Compass: 1 mM - 0.01 mM 0.729 ns 

 INF: Compass: 0.025 mM - 0.01 mM <0.001 ∗∗∗ 

 INF: Exocet: 1 mM - 0.025 mM 0.673 ns 

 INF: Exocet: 1 mM - 0.01 mM 0.686 ns 

 INF: Exocet: 0.025 mM - 0.01 mM 0.999 ns 
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 INF: Genie: 1 mM - 0.025 mM 0.851 ns 

 INF: Genie: 1 mM - 0.01 mM 0.971 ns 

 INF: Genie: 0.025 mM - 0.01 mM 0.948 ns 

 INF: King10: 1 mM - 0.025 mM <0.001 ∗∗∗ 

 INF: King10: 1 mM - 0.01 mM 0.004 ∗∗ 

 INF: King10: 0.025 mM - 0.01 mM 0.006 ∗∗ 

infection 1 mM: Compass: INF - C 0.869 ns 

 1 mM: Exocet: INF - C 0.251 ns 

 1 mM: Genie: INF - C 0.537 ns 

 1 mM: King10: INF - C 0.516 ns 

 0.025 mM: Compass: INF - C <0.001 ∗∗∗ 

 0.025 mM: Exocet: INF - C 0.012 ∗ 

 0.025 mM: Genie: INF - C 0.402 ns 

 0.025 mM: King10: INF - C <0.001 ∗∗∗ 

 0.01 mM: Compass: INF - C 0.333 ns 

 0.01 mM: Exocet: INF - C 0.212 ns 

 0.01 mM: Genie: INF - C 0.005 ∗∗ 

 0.01 mM: King10: INF - C <0.001 ∗∗∗ 

cultivar C: 1 mM: Compass - Exocet 0.999 ns 

 C: 1 mM: Compass - Genie 0.573 ns 

 C: 1 mM: Compass - King10 0.675 ns 

 C: 1 mM: Exocet - Genie 0.637 ns 

 C: 1 mM: Exocet - King10 0.736 ns 

 C: 1 mM: Genie - King10 0.999 ns 

 C: 0.025 mM: Compass - Exocet 0.326 ns 

 C: 0.025 mM: Compass - Genie 0.987 ns 

 C: 0.025 mM: Compass - King10 0.589 ns 

 C: 0.025 mM: Exocet - Genie 0.177 ns 

 C: 0.025 mM: Exocet - King10 0.016 ∗ 

 C: 0.025 mM: Genie - King10 0.793 ns 

 C: 0.01 mM: Compass - Exocet 0.819 ns 

 C: 0.01 mM: Compass - Genie 0.922 ns 

 C: 0.01 mM: Compass - King10 0.326 ns 

 C: 0.01 mM: Exocet - Genie 0.435 ns 

 C: 0.01 mM: Exocet - King10 0.844 ns 

 C: 0.01 mM: Genie - King10 0.092 ns 

 INF: 1 mM: Compass - Exocet 0.700 ns 

 INF: 1 mM: Compass - Genie 0.305 ns 

 INF: 1 mM: Compass - King10 0.374 ns 

 INF: 1 mM: Exocet - Genie 0.915 ns 
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 INF: 1 mM: Exocet - King10 0.953 ns 

 INF: 1 mM: Genie - King10 0.999 ns 

 INF: 0.025 mM: Compass - Exocet <0.001 ∗∗∗ 

 INF: 0.025 mM: Compass - Genie <0.001 ∗∗∗ 

 INF: 0.025 mM: Compass - King10 0.816 ns 

 INF: 0.025 mM: Exocet - Genie 0.986 ns 

 INF: 0.025 mM: Exocet - King10 <0.001 ∗∗∗ 

 INF: 0.025 mM: Genie - King10 <0.001 ∗∗∗ 

 INF: 0.01 mM: Compass - Exocet 0.656 ns 

 INF: 0.01 mM: Compass - Genie 0.621 ns 

 INF: 0.01 mM: Compass - King10 <0.001 ∗∗∗ 

 INF: 0.01 mM: Exocet - Genie 0.999 ns 

 INF: 0.01 mM: Exocet - King10 0.019 ∗ 

 INF: 0.01 mM: Genie - King10 0.022 ∗ 

 

Table S5. Influence of the interaction of S-fertilization, infection and cultivar on the 

cholorophyll fluorescence. Statistical analysis was performed using R. The p-values refer to 

pairwise comparisons (Tukey test) of the data shown in Figure 4. Since all the interactions were 

significant in the F-test, comparisons were carried out separately at all factor levels. 

Significances: p<0.05*, p<0.01**, p<0.001***. 

 

variable comparison p-value significance 

S-fertilization C: Compass: 1 mM - 0.025 mM <0.001 ∗∗∗ 

 C: Compass: 1 mM - 0.01 mM <0.001 ∗∗∗ 

 C: Compass: 0.025 mM - 0.01 mM 0.633 ns 

 C: Exocet: 1 mM - 0.025 mM <0.001 ∗∗∗ 

 C: Exocet: 1 mM - 0.01 mM 0.999 ns 

 C: Exocet: 0.025 mM - 0.01 mM <0.001 ∗∗∗ 

 C: Genie: 1 mM - 0.025 mM 0.964 ns 

 C: Genie: 1 mM - 0.01 mM 0.861 ns 

 C: Genie: 0.025 mM - 0.01 mM 0.962 ns 

 C: King0.01: 1 mM - 0.025 mM <0.001 ∗∗∗ 

 C: King0.01: 1 mM - 0.01 mM <0.001 ∗∗∗ 

 C: King0.01: 0.025 mM - 0.01 mM 0.569 ns 

 Inf: Compass: 1 mM - 0.025 mM <0.001 ∗∗∗ 

 Inf: Compass: 1 mM - 0.01 mM <0.001 ∗∗∗ 

 Inf: Compass: 0.025 mM - 0.01 mM 0.964 ns 

 Inf: Exocet: 1 mM - 0.025 mM <0.001 ∗∗∗ 

 Inf: Exocet: 1 mM - 0.01 mM <0.001 ∗∗∗ 

 Inf: Exocet: 0.025 mM - 0.01 mM 0.500 ns 

 Inf: Genie: 1 mM - 0.025 mM <0.001 ∗∗∗ 
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 Inf: Genie: 1 mM - 0.01 mM <0.001 ∗∗∗ 

 Inf: Genie: 0.025 mM - 0.01 mM 0.781 ns 

 Inf: King0.01: 1 mM - 0.025 mM <0.001 ∗∗∗ 

 Inf: King0.01: 1 mM - 0.01 mM <0.001 ∗∗∗ 

 Inf: King0.01: 0.025 mM - 0.01 mM 0.845 ns 

infection 1 mM: Compass: Inf - C 0.474 ns 

 1 mM: Exocet: Inf - C 0.360 ns 

 1 mM: Genie: Inf - C 0.681 ns 

 1 mM: King0.01: Inf - C 0.706 ns 

 0.025 mM: Compass: Inf - C <0.001 ∗∗∗ 

 0.025 mM: Exocet: Inf - C 0.001 ∗∗ 

 0.025 mM: Genie: Inf - C <0.001 ∗∗∗ 

 0.025 mM: King0.01: Inf - C 0.896 ns 

 0.01 mM: Compass: Inf - C 0.030 ∗ 

 0.01 mM: Exocet: Inf - C <0.001 ∗∗∗ 

 0.01 mM: Genie: Inf - C <0.001 ∗∗∗ 

 0.01 mM: King0.01: Inf - C 0.555 ns 

cultivar C: 1 mM: Compass - Exocet 0.812 ns 

 C: 1 mM: Compass - Genie 0.702 ns 

 C: 1 mM: Compass - King0.01 0.997 ns 

 C: 1 mM: Exocet - Genie 0.997 ns 

 C: 1 mM: Exocet - King0.01 0.899 ns 

 C: 1 mM: Genie - King0.01 0.812 ns 

 C: 0.025 mM: Compass - Exocet 0.748 ns 

 C: 0.025 mM: Compass - Genie 0.091 ns 

 C: 0.025 mM: Compass - King0.01 0.002 ∗∗ 

 C: 0.025 mM: Exocet - Genie 0.005 ∗∗ 

 C: 0.025 mM: Exocet - King0.01 0.044 ∗ 

 C: 0.025 mM: Genie - King0.01 0. ∗∗∗ 

 C: 0.01 mM: Compass - Exocet 0.001 ∗∗ 

 C: 0.01 mM: Compass - Genie 0.016 ∗ 

 C: 0.01 mM: Compass - King0.01 0.324 ns 

 C: 0.01 mM: Exocet - Genie 0.894 ns 

 C: 0.01 mM: Exocet - King0.01 0. ∗∗∗ 

 C: 0.01 mM: Genie - King0.01 0. ∗∗∗ 

 Inf: 1 mM: Compass - Exocet 0.698 ns 

 Inf: 1 mM: Compass - Genie 0.866 ns 

 Inf: 1 mM: Compass - King0.01 0.999 ns 

 Inf: 1 mM: Exocet - Genie 0.989 ns 

 Inf: 1 mM: Exocet - King0.01 0.606 ns 
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 Inf: 1 mM: Genie - King0.01 0.794 ns 

 Inf: 0.025 mM: Compass - Exocet 0.817 ns 

 Inf: 0.025 mM: Compass - Genie 0.961 ns 

 Inf: 0.025 mM: Compass - King0.01 0.976 ns 

 Inf: 0.025 mM: Exocet - Genie 0.519 ns 

 Inf: 0.025 mM: Exocet - King0.01 0.967 ns 

 Inf: 0.025 mM: Genie - King0.01 0.802 ns 

 Inf: 0.01 mM: Compass - Exocet 0.108 ns 

 Inf: 0.01 mM: Compass - Genie 0.972 ns 

 Inf: 0.01 mM: Compass - King0.01 0.999 ns 

 Inf: 0.01 mM: Exocet - Genie 0.263 ns 

 Inf: 0.01 mM: Exocet - King0.01 0.141 ns 

 Inf: 0.01 mM: Genie - King0.01 0.989 ns 
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CHAPTER 3 

 

Quantitative expression analysis in Brassica napus by Northern 

blot analysis and reverse transcription-quantitative PCR in a 

complex experimental setting 
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analysis and reverse transcription-quantitative PCR in a complex experimental setting. PLoS 
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S1 Table: Two-way ANOVA analysis of the expression data obtained for CCA1. 

 

 

S2 Table: Three-way ANOVA analysis of the expression data obtained for CCA1. 

 

 

 p-value 

 Sulfur status (S) Time point of harvest (T) SxT 

Non-normalized <0.001 <0.001 <0.001 

Set of reference genes <0.001 <0.001 <0.001 

ACT2 0.004 <0.001 0.075 

EF1α 0.950 <0.001 0.001 

  p-value 

 Sulfur status 

(S) 

Time point of 

harvest (T) 

Light (L) SxL SxT LxT SxLxT 

Non-normalized <0.001 <0.001 <0.001 0.054 <0.001 <0.001 <0.001 

Set of reference 

genes 

<0.001 <0.001 <0.001 0.029 <0.001 <0.001 <0.001 

ACT2 0.005 <0.001 <0.001 0.246 0.006 <0.001 0.457 

EF1α 0.012 <0.001 <0.001 0.536 <0.001 <0.001 0.333 
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S3 Table: Two-way ANOVA analysis of the expression data obtained for APR3. 

 

 

S4 Table: Three-way ANOVA analysis of the expression data obtained for APR3. 

 

 

 

 p-value 

 Sulfur status (S) Time point of harvest (T) SxT 

Non-normalized <0.001 <0.001 <0.001 

Set of reference genes <0.001 <0.001 <0.001 

ACT2 <0.001 <0.001 0.002 

EF1α 0.005 <0.001 0.085 

  p-value 

 Sulfur status 

(S) 

Time point of 

harvest (T) 

Light SxL SxT LxT SxLxT 

Non-normalized <0.001 <0.001 <0.001 0.014 0.078 0.089 <0.001 

Set of reference genes <0.001 0.003 <0.001 0.023 0.089 0.070 <0.001 

ACT2 <0.001 0.006 <0.001 0.117 0.166 0.773 0.014 

EF1α <0.001 <0.001 0.01 0.026 0.037 0.054 0.221 
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CHAPTER 4 

 

The circadian clock influences the levels of sulfur-containing metabolites in 

Brassica napus and its defense status against the fungal pathogen Verticillium 

longisporum (in preparation) 
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Abstract 

 

The circadian rhythm evolved in plants as an adaption to daily changes in their environment. 

Adapting biological processes to an endogenous rhythm enable plants to cope with the daily 

changes in light and temperature in a more predictable way enhancing growth and fitness. A 

number of biological processes such as metabolic pathways as well as the immunity in plants 

are under circadian control. Certain time periods of the day might be more suitable for pathogen 

attack than others. In this study a possible circadian regulation of key enzymes in the sulfur 

assimilation and the corresponding metabolites with respect to possible circadian oscillations 

was investigated in the agriculturally important crop plant oilseed rape (Brassica napus). 

Therefore, a commercially available cultivar was harvested in a course of a day under diurnal 

conditions. In addition, plants were harvested under free-running conditions with constant light. 

The same cultivar was infected with the fungus Verticillium longisporum at different time 

points verifying the dependence of the host-pathogen interaction on the time of the day. 

Analyses in this study were focused on sulfur-containing metabolites and expression analysis 

of enzymes involved in sulfur metabolism. Expression analysis showed that the transcripts 

amounts of the sulfate transporters Sultr3;1 and Sultr4;2 as well as APR2 and APR3 oscillated 

diurnally. Results revealed a periodic rhythm of certain sulfur-containing metabolites such as 

glutathione (GSH), sulfate and certain glucosinolates (GSLs) in the course of a day which were 

partly maintained under constant light. In the infection experiments GSH and a small number 

of GSLs were affected due to infection after 7 dpi.  

 

Keywords: canola, Circadian rhythm, diurnal, oilseed rape, sulfur-containing metabolites, 

Verticillium longisporum. 

 

1. Introduction 

Life on earth is exposed to daily changes in light, temperature and other environmental factors 

due to the rotation of the earth. Most organisms developed endogenous rhythms to be able to 

react faster to periodic exogenous influences. The metabolism, behavior, and physiology in 

organisms adapted to theses daily changes differ in the light and in the dark. Those oscillations 

are known as diurnal rhythms. In the absence of an external cue many of these oscillations 

persist and free-run with an endogenous period that is close to 24 h. Those rhythms are called 

circadian (from the Latin circa, approximately, and dies, day) deprived from an endogenous 

biological clock. Under natural conditions light and temperature cycles act as environmental 
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“zeitgeber” and these “zeitgeber” serve to entrain the endogenous organismic clock in each cell 

with the local time (McClung, 2006; Harmer 2009).  

The model of the circadian clock in plants had been so far best described in Arabidopsis 

thaliana (Salome and McClung, 2004, 2005; Harmon et al., 2005; Mizuno and Nakamichi, 

2005). The myb domain transcription factors CIRCADIAN AND CLOCK ASSOCIATED 1 

(CCA1) and LATE ELONGATED HYPOCOTYL 1 (LHY1) along with TIMING OF CAB 1 

(TOC1) represent the core oscillator of the circadian clock. Linked to this core oscillator further 

feedback loops are formed regulating the expression of so called morning as well as evening 

genes (for detailed information see McClung 2006). Up to 80% of the transcriptome in rice, 

poplar, and A. thaliana are regulated by the circadian clock enabling the timing of a number of 

biological processes and stress responses respectively (Michael et al., 2008; Filichkin et al., 

2011; Dawn et al., 2015). Circadian-regulated processes such as water and carbon availability 

and light and hormone signaling pathways affect the growth of plants. Furthermore, molecular 

processes like the expression of genes or protein phosphorylation can be circadian-regulated as 

well (reviewed in Farré et al., 2012). The circadian rhythm influences the movements of leaves, 

localization of chloroplasts as well as opening and closing of the stomata. The photosynthesis 

as the primary biological process in this respect shows circadian oscillations in the light 

harvesting complex and a circadian-regulated CO2 fixation by Rubisco (reviewed in Dodd et 

al., 2014). As mentioned before the circadian rhythm is also involved in certain stress responses. 

It could already be shown that the phytohormone abscisic acid (ABA) as an essential factor in 

response to drought stress is under circadian regulation. In this connection a clock gene of the 

core oscillator directly regulates the expression in an antagonistically way (Legnaioli et al., 

2009). The involvement of the circadian rhythm in reactive oxygen species (ROS) mediated 

stress was already shown in A. thaliana where the overexpression of the CCA1 led to an 

enhanced drought tolerance by increasing the expression of ROS controlling genes (Lai et al., 

2012). Furthermore, cold responsive genes are regulated by the circadian clock as well (Fowler 

et al., 2005). However, the circadian rhythm is not solely involved in abiotic stress responses 

but also in plant immunity (reviewed in Bolouri Moghaddam and van den Ende, 2013). Here a 

particularly sensitivity of the clock to sucrose-mediated signaling which is involved in 

immunity and abiotic stress responses is described. Furthermore, plant immune responses go 

along with hormones which interact with the circadian clock as well. Dodd et al. (2005) reported 

an adaptive advantage and increased fitness due to a functional circadian oscillator with a period 

of approximately 24 h. Plants with a circadian clock period entrained to the environment had a 

higher chlorophyll content, higher carbon fixation, a faster growth rate, and higher survival 
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rates compared to plants with an altered circadian clock period. Furthermore, it is well known 

that many plant pathogens attack plants only during special seasons of the year (reviewed in 

Roden and Ingle, 2009). The magnitude of the attack depends on the environmental conditions 

among other factors. Results from Wang et al. (2011) indicate that defense genes are under 

circadian control by CCA1, allowing plants to estimate infection at dawn when the pathogen 

normally disperses the spores and time immune responses according to the perception of 

different pathogenic signals upon infection. Temporal control of the defense genes by CCA1 

differentiates their involvement in basal and R-gene-mediated defense. The studies revealed a 

key functional link between the circadian clock and plant immunity. Mutants overexpressing 

CCA1 showed enhanced resistance against downy mildew supporting a direct interaction of the 

clock with plant immunity (Wang et al., 2011). In recent studies infection experiments with A. 

thaliana at different time points were performed analyzing a clock-mediated variation in 

resistance (Bhardwaj et al., 2011; Ingle et al., 2015). Plants in these experiments showed a 

decreased susceptibility when infected at dawn with a bacterial pathogen and fungus 

respectively. Based on these results the resistance network in plants is indeed influenced by the 

circadian clock.  

The importance of the plant clock due to its role in agriculture is now rising. In recent studies 

involvement of clock genes homolog to A. thaliana in the regulation of photoperiodic flowering 

in barley, wheat and sorghum was reported (Turner et al., 2005; Murphy et al., 2011; Shaw et 

al. 2012). Furthermore, alteration in the expression of clock genes influences the yield (Preuss 

et al., 2011). As an agriculturally important oilseed crop Brassica napus is the most closely 

related species to the crucifer A. thaliana with a number of highly conserved genes among both 

species. Thus findings in A. thaliana according to the circadian rhythm might be similar in B. 

napus. Compared to other crops and cereals the requirements for nitrogen, phosphorus and 

sulfur is higher making it more sensitive against sulfur-deficient conditions (Schnug and 

Haneklaus, 2005). Enhanced emission controls led to sulfur-deficient soils as well as to the 

reduction of the atmospheric deposition of sulfur causing a high demand of sulfur 

supplementation (Dämmgen et al., 1998; Lewandowska and Sirko, 2008).  

Sulfur is an essential macroelement for plant growth and has various biological functions 

(Leustek et al., 2000). Sulfur is taken up into roots from the soil as inorganic sulfate. The rate 

of uptake and assimilation of sulfur is mainly controlled by the sulfur content of the plant and 

depends on the requirements for growth, which can be defined as the rate of sulfur uptake and 

assimilation required per gram plant biomass produced with time (De Kok et al., 2000). The 

sulfur requirement fluctuates during plant development and may vary between species and even 
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genotypes differing in sulfur need for growth and the potential sink capacity of secondary sulfur 

compounds.  

The uptake of sulfate by the roots and its transport to the shoot seem to be one major site of 

regulation of sulfur assimilation (Hawkesford and Wray, 2000). In A. thaliana and B. napus 14 

sulfate transporter genes have been identified (Parmar et al., 2007; Takahashi et al., 2012), 

which are subdivided into five different groups with different affinities to sulfate and located in 

different organs and organelles (Yamaguchi and Sano, 2001; Hawkesford and De Kok, 2006). 

The function and localization of the sulfate transporters of group three was long unknown. A 

recent study revealed that the transporter 3;1 is located in the chloroplast enabling the sulfate 

uptake of chloroplasts (Cao et. al, 2013). Furthermore, transcriptome analysis revealed a 

circadian regulation of this transporter in A. thaliana (Covington et al., 2008). Members of 

group 4 are known to be localized at the tonoplast enabling the efflux of sulfate out of the 

vacuole. It was already shown that the transporter Sultr4;2 in B. napus was only expressed 

under sulfur-deficient conditions, thus playing a major role in the response to sulfur deficiency 

(Parmar et al., 2007). 

Feeding experiments using 35SO4
2- showed that the incorporation of 35S into reduced sulfur 

compounds in vivo was significantly higher in light than in the dark (Kopriva et al., 1999) in 

accordance with investigations on adenosine 5′-phosphosulphate reductase (APR), considered 

to be a key enzyme of sulfate assimilation in higher plants. The mRNA levels of all three APR 

isoforms showed a diurnal rhythm, with a maximum at 2 h after the onset of light. Summarizing 

all results, in higher plants APR mRNA, APR activity and in vivo sulfate reduction change with 

a diurnal rhythm, sulfate assimilation also takes place during the dark period, and sucrose 

feeding positively affects APR mRNA expression and APR activity in roots (Kopriva et al., 

1999).  

The first stable sulfur-containing compound in the sulfur assimilation cysteine acts next to its 

role in the protein synthesis as a precursor for essential biomolecules such as vitamins and 

cofactors. A small portion of the cysteine content is used for the biosynthesis of the tripeptide 

glutathione (GSH). Levels of cysteine and GSH have been suggested as markers for the elevated 

activity of primary sulfur metabolism after pathogen infection (Kruse et al., 2007). Sulfur is 

also present in secondary compounds, i.e. glucosinolates (GSLs). As a member of the class of 

secondary metabolites, mainly found in family of the Brassicaceae, GSLs play an important 

role in the response to abiotic stresses such as salinity, drought, extreme temperatures, light 

cycling, and nutritional deficiency (reviewed in Martínez-Ballesta et al., 2013). Previous studies 

revealed a circadian regulation of genes as part of the biosynthesis of GSLs (Goodspeed et al., 
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2013; Kerwin et al., 2011). One of the major roles of the GSL-myrosinase system was thought 

to be a source for sulfur by degradation of the GSLs (Schnug et al., 1990). Regarding the 

portion, the GSL comprises of the total sulfur content in single and double low genotypes of B. 

napus this function had to be rejected (Fieldsend et al., 1996). Even if the GSL content can be 

altered by a number of factors the most accepted function for the role of the GSL-myrosinase 

system by now is the involvement in the defense against herbivores and pathogens (reviewed 

in Redovnikovic et al., 2008). Whereas the role of GSLs in defense against herbivores was 

already well studied, little is known in the role of GSLs against pathogens. Nevertheless, there 

is evidence that the breakdown products of GSLs in Brassica crops affect soil-borne pathogens 

negatively (Angus et al., 1994; Brown et al., 1996). 

In addition to volatile sulfur compounds the accumulation of elemental sulfur in the veins and 

vascular tissues might also be involved in resistance against pathogens (Cooper et al., 1996; 

Williams et al., 2002). In Brassica napus L. plants it was observed that the GSH and GSL 

contents in plants are not major sources of sulfur during sulfur deficiency (Blake-Kalff et al., 

1998). These results indicate that under sulfur deficiency these compounds are not adequate for 

a fast and efficient answer to pathogen attack. Therefore, sulfur-enhanced defense (SED) 

(Rausch and Wachter, 2005) is probably based on other sulfur-containing compounds. For B. 

napus fertilization experiments showed a higher susceptibility towards the fungus Verticillium 

longisporum under sulfur-deficient conditions verifying the importance of a sufficient sulfur 

supply (Davidson and Goss, 1972; Schnug, 1996). 

Verticillium wilt as a cause of infection with the fungus is a relatively novel disease on oilseed 

rape threatening its production particularly in Northern Europe (Dunker et al., 2008; Friedt and 

Snowdon, 2009). Because of the circumstances that Verticillium spp., especially V. 

longisporum, in oilseed rape cannot be controlled efficiently with fungicides as well as the 

extended survival of microsclerotia in the soil (Heale et al., 1999), it is required to understand 

the host-pathogen interaction in more detail to be able to develop alternative control strategies.  

There are emerging evidences for a relationship between the nutrient status and circadian 

rhythm in plants (reviewed in Haydon et al., 2015). For nitrate metabolism and during nitrate 

deficiency, respectively, interactions with the circadian clock could already be shown (Sweeney 

and Folli, 1984; Gutiérrez et al., 2008; Chiasson et al., 2014). However, a direct interaction of 

the circadian clock and the sulfur status was not analyzed in detail so far. A number of key 

genes in metabolic pathways including the sulfur metabolism have been reported as circadian-

regulated in A. thaliana (Harmer et al., 2000; Michael and McClung, 2003).  
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Therefore, B. napus plants entrained to a 12 h light/12 h dark cycle were harvested during the 

course of a day. For analyzing gene expression and metabolites under free-running conditions, 

plants were exposed to continuous light. As the sulfur status might lead to alterations in the 

clock period, plants were additionally grown under sulfur-deficient conditions for 4 d. Sulfur-

containing metabolites and selected genes as part of the sulfur assimilation pathway as well as 

sulfate transporters were analyzed under diurnal and circadian conditions. Further on, plants 

were infected with V. longisporum at different time points of the day analyzing the dependence 

of the immunity on the day time. In this experiment, sulfur-deficient conditions were applied at 

an earlier developmental stage to increase the susceptibility against the fungus. In these 

infection experiments GSH and some GSLs were already affected 7 days post inoculation (dpi). 

 

2. Material and Methods 

 

2.1. Plant material and growth conditions 

Seeds from the MSL-hybrid (Male Sterility Lembke) winter oilseed rape cultivar Genie were 

obtained from the Deutsche Saatveredelung AG (DSV) (Lippstadt, Germany). The cultivar is 

very vital, has a medium-size root system, shows a resistance to Verticillium wilt and has a high 

oil content in comparison to other cultivars from the DSV (for more information see: 

http://www.dsv-saaten.de/raps/winterraps/sorten/genie.html). Plants were grown and harvested 

as described in Rumlow et al. (2016). Infection experiments were conducted as described in 

Weese et al. (2015). For the production of Verticillium longisporum spores, 500 µl of a frozen 

spore culture (isolate VL43, Eynck et al., 2009) was cultivated in 500 ml potato dextrose liquid 

medium (Difco PDB, Becton, Dickinson and Company, New Jersey, USA) in 1 L flasks. The 

flasks were incubated at 23°C in a rotary incubator at 150 rpm in darkness for two weeks until 

a dense spore suspension was produced. The concentration of the filtered spores per ml 

suspension was determined using a Thoma chamber and diluted with sterile water (pH 7.0) to 

1*106 spores per ml. Brassica napus seedlings were mock-inoculated with water or root dip-

inoculated for 30 min. 

In this study seedlings were infected at four different time points according to the harvesting 

time points chosen in Rumlow et al. (2016) and harvested after 7, 14, and 21 dpi (Fig. 1). 

Infection for 0 and 16 h were performed in the dark according to their growth conditions where 

at this time the light was switched off. After 7, 14 and 21 dpi leaves from plants for each 

treatment was harvested and directly frozen into liquid nitrogen. Due to the small size of the 
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plants after 7 dpi six plants were harvested and pooled for each treatment. After 14 and 21 dpi 

3 plants were harvested and pooled. This experiment was performed three times. 

 

Figure 1. Experimental design and pictures of the experimental plants under both sulfur regimes. A) scheme 

for the infection experiment at different time points, B) plants grown under diurnal conditions, C) plants infected 

at different time points 7 dpi. 

 

 

2.2. Sequence analysis and primer design 

Sequences homolog to A. thaliana DNA sequences for APR2, APR3 and CCA1 were searched 

for the primer design in the recently closed B. napus database 

(http://compbio.dfci.harvard.edu/compbio) using BLAST. The data bank used parts of short 
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homologous sequences (high-fidelity virtual transcripts and tentative consensus sequences) to 

generate EST sequences (Quackenbush et al., 2000). For the primer pair design the program 

Dosbox with the Primer Design version 2.2 (Scientific & Educational Software, Cary, USA) 

was utilized (http://www.dosbox.com). To design the primer pairs for the amplification of 

cDNA fragments of sulfate transporters, the respective homologous sequences from Brassica 

oleracea were used (Buchner et al., 2004). The amplification of cDNA with the chosen primers 

generated fragments between 339 and 973 bp (Table 1). For a molecular proof of infection 

several genes were tested, either generally used molecular marker like ITS (Eynck et al., 2007) 

or differentially expressed genes identified by an RNA Sequence (RNA-Seq) analysis of single 

samples.  

For the RNA-Seq analysis isolated RNA from different samples of the cultivar Genie from the 

experiment described in Weese et al. (2015) were chosen. In addition to samples from non-

infected and infected plants, samples from plants grown under sufficient sulfur supply as well 

as under sulfur-deficient conditions were selected. Consequently, genes could be selected 

whose expression was only affected by the infection. Total RNA was purified with the 

RNAeasy MiniElute Cleanup Kit (Qiagen, Hilden, Germany) and DNA was digested with 

DNAseI (Qiagen, Hilden, Germany). An amount of 1 µg purified RNA was used for the 

transcriptome sequencing. The analysis was performed via Illumina technology generating 50 

bp single reads (GATC, Biotech, Konstanz, Germany). After obtaining the results from 

database of GATC a quality assessment with the program FastQC 

(http://www.bioinformatics.babraham.ac.uk) was performed. With the program RobiNA 

(http://mapman.gabipd.org/web/guest/robin) the adapters from the Illumina sequencing were 

removed. Afterwards the processed sequences were imported into the CLC Genomics 

Workbench 7.5.1 (http://www.clcbio.com/products/clc-genomics-workbench/; Qiagen). The 

reference genome and annotation from B. napus was taken from the Brassica napus Genome 

Browser Genoscope (http://www.genoscope.cns.fr/brassicanapus/). For identifying a gene 

involved in the pathogen defense the reads for each gene were chosen as expression values in 

the different samples and were compared with each other in a heat map.  

 

Table 1. Primer pairs used in this study. To identify homologous genes in B. napus, the known sequences from 

A. thaliana genes were used to search the B. napus database using the BLAST program. s, sense; as, antisense; 

for, forward; rev, reverse; f, forward; r, reverse. BoST: BRASSICA OLERACEA SULFATE TRANSPORTER; 

CCA1: CIRCADIAN CLOCK ASSOCIATED1; APR: ADEONOSINE 5’-PHOSPHOSULFATE REDUCTASE; 

18S rRNA: 18S RIBOSOMAL RNA; PP2A: SERINE/THREONINE PROTEIN PHOSPHATASE 2A; GDI1: 
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GUANOSINE NUCLEOTIDE DIPHOSPHATE DISSOCIATION INHIBITOR 1; PR2: PATHOGEN RELATED 

PROTEIN 2. 

Primer pairs A. thaliana 

AGI 

Sequences 

P216BoST3;1s At3g51895 5’-TTCTTGTGGCTCGAACACTCCT-3’ 

P217BoST3;1as  5’-GCCTTACATGTCAACAGCTCTC-3’ 

P226BoST4;2s At3g12520 5’-GGTCTTTGACGTGTGAAGCATG-3’ 

P227BoST4;2as  5’-GTGTACGCTTCTGGATACTGC-3’ 

P741_Bn_CCA1_for 

P742_Bn_CCA1_rev 

At2g46830 5'-TTCTTGTGGCTCGAACACTCCT-3' 

5'-GGATTGGTGTTGCTGATGACTC-3' 

P743_BnAPR2_for At1g62180 5’-CAAGAAGGAAGATGACACCACC-3’ 

P744_BnAPR2_rev  5’-GCGAATCGACATCTCTATGCTC-3’ 

P745_Bn_APR3_for 

P746_Bn_APR3_rev 

At4g21990 5'-CATCAAGGAGAACAGCAACGCA-3' 

5'-TCGGGAACACTAGTATCGTCGG-3' 

P782_Bn_18S rRNA_for 

P783_Bn_18S rRNA_rev 

X16077.1 5'-ATGAACGAATTCAGACTGTG-3' 

5'-ACTCATTCCAATTACCAGAC-3' 

P968_Bn_PP2A_f At1g69960 5’-ACGAGGACGGATTTGGTTCC-3’ 

P969_Bn_PP2A_r  5’-GCTCCGAGCTTGTCATCGAA-3’ 

P984_Bn_GDI1_f At2g44100 5’-TGCACGTTTCCAAGGAGGTT-3’ 

P986_Bn_GDI1_r  5’-CGGTCTGAGGGTTGTCAGTC-3’ 

P954_Bn_PR2_f At3g57260 5’-CTCCGCATTCGGCACACTTG-3’ 

P955_Bn_PR2_r  5’-CTTCCAGGCGATGCAGAACA-3’ 

 

2.3. Production of probes and Northern blot analysis 

Total RNA was extracted according to Sokolowsky et al. (1990) from ground plant material 

and quantified spectrophotometrically. Fifteen µg of the RNA were separated on 1% denaturing 

agarose-formaldehyde gels. Equal loading was controlled by staining the gels with ethidium 
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bromide. After RNA transfer onto nylon membranes, they were probed with digoxigenin-

labeled cDNA probes obtained by PCR (PCR DIG probe synthesis kit, Roche, Mannheim, 

Germany). To amplify the respective probes, the sequence-specific primers listed in Table 1 

were used. The colorimetric detection method with nitro blue tetrazolium (NBT) and 5-bromo-

4-chloro-3-indolyl-phosphate (BCIP) as substrates for alkaline phosphatase was applied. 

Quantitative analysis of the Northern blot results was done by GelAnalyzer5 

(http://www.gelanalyzer.com). Normalization of the genes of interests (GOI) was performed 

with a validated set of reference genes according to Rumlow et al. (2016).  

 

2.4. Elemental analysis of plant material 

For the analytical measurements, pooled samples were measured at least three times and up to 

six times. Dry plant material was ground to fine powder (MM 400, Retsch GmbH, Haan, 

Germany). About 38 mg of the ground powder was incinerated for a minimum of 8 h in a muffle 

furnace (M104, Thermo Fisher Scientific Corporation, Waltham, Massachusetts, USA) for each 

sample. After cooling the samples to room temperature (RT) (between 21 and 23°C), 1.5 ml of 

66% nitric acid was added. After 10 min, 13.5 ml of ultrapure water was pipetted to the samples. 

The solutions were filtered (0.45 µm pore size, Carl Roth, Karlsruhe, Germany) and stored in 

vials at −20°C before final analysis. The samples were analyzed by inductively coupled plasma 

optical emission spectrometry (ICP- OES) (iCAP 6000 ICP Spectrometer, Thermo Fisher 

Scientific Corporation). 

 

2.5. Sulfate determination and extraction and analysis of soluble thiol compounds 

Sulfate concentrations were analyzed by ion chromatography as described (Bloem et al., 2004; 

2012). The determination of thiols was done according to Riemenschneider et al. (2005).  

 

2.6. Analysis of GSLs  

Samples were prepared as described by Gigolashvili et al. (2012) with some modifications. The 

content of GSLs was determined using 25 mg freeze-dried material. GSLs were extracted twice 

with 1 ml 80% (v/v) methanol and centrifuged at 13,000 g for 5 min. Before the centrifugation, 

samples were put on a shaker for 15 min after the first extraction and 30 min after the second 

extraction at RT. The supernatants were pooled and loaded onto a column containing 2 ml of a 

5% (w/v) suspension of DEAE Sephadex A25 (Sigma-Aldrich, Taufkirchen, Germany) in 0.5 

M acetic acid (pH 5). Columns were washed five times with 2 ml H2O and two times with 2 ml 
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0.02 M acetic acid (pH 5). For desulfating the GSLs 50 µl of sulfatase (Sigma-Aldrich) solution 

was added to 450 µl 0.02 M acetic acid (pH 5) and loaded on to the columns as well (Thies, 

1979). Desulfation took place over night at room temperature. Afterwards desulfated GSLs 

were eluted three times with 2 ml HPLC H2O and dried overnight in a vacuum centrifuge, and 

then dissolved in a total amount of 300 µl HPLC H2O. Analysis was performed with high-

performance-liquid chromatography (HPLC) system (Knauer, Berlin, Germany) equipped with 

an Ultra AQ C-18 column (150 x 4.6 mm, 5 µm particle size) (Restek GmbH, Bad Homburg, 

Germany). A water (solvent A)-acetonitrile (solvent B) gradient at a flow rate of 0,5 ml min-1 

at 45°C (injection volume 50 µl). The 52 min long run consisted of 100% A for 6 min, 100-

70% A for 27 min, 70-40% A for 0.1 min, a 4.9 min hold of 40% A, 40-100 % A for 0.1 min 

and a 19.9 min hold of 100% A. The detection of the GSL was performed with DAD and FAD 

(Knauer, Berlin, Germany) at 229 nm. Quantification of the measured GSL was performed by 

using Sinigrin (Phytolab, Vestenbergsgreuth, Germany) and relative response factors. 

 

2.7. Identification of GSLs in B. napus 

For the identification of the GSL in B. napus samples were analyzed by LC-MS. A volume of 

10 µl was injected in the HPLC system (Shimadzu, Darmstadt, Germany) and separated on a 

Knauer Vertex Plus column (250x 4mm, 5µm particle size, packing material ProntoSIL 120-5 

C18-H) equipped with a pre-column (Knauer, Berlin, Germany). A water (solvent A)-methanol 

(solvent B), both containing 2 mM ammonium acetate and 0.01% acetic acid gradient was used 

with a flow rate of 0.8 ml min-1 at 30°C. For measuring the samples the following gradient was 

used: 10-90% B for 35 min, 90% for 2 min, 90-10% B for 1 min and 10% B for 2 min. Detection 

of the spectra in the range 190-800 nm was performed with a diode array detector (SPD-M20A, 

Shimadzu, Darmstadt, Germany). The HPLC system was connected to an AB Sciex Triple TOF 

mass spectrometer (AB Sciex TripleTOF 4600, Canby, USA). At a temperature of 600°C and 

an ion spray voltage floating of -4500 V the negative electrospray ionization (ESI) was 

performed. For the ion source gas one and two 50 psi and for the curtain gas 35 psi were used. 

In the range of 100-1500 Da in the TOF range the mass spectra as well as the MS/MS spectra 

from 150-1500 Da at a collision energy of -10 eV were recorded. With the mass of characteristic 

fragments of every GSL peaks could be identified. Due to lack of a number of standards 

fractions of the measured samples were collected in a fraction collector (FRC-10A Shimadzu, 

Darmstadt, Germany). Afterwards the fractions were dried in a vacuum centrifuge and 

dissolved in 300 µl ultrapure water. The retention time for every GSL was then determined by 

measuring them in the HPLC system as described before. 
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2.8. Databases used for the expression analysis 

The database AGRIS (www.arabidopsis.med.ohio-state.edu, Davuluri et al., 2003; 

Palaniswamy et al., 2006; Yilmaz et al., 2011) was used to search for circadian clock related 

binding site motifs. The tool from Mockler et al. (2007) (http://diurnal.mocklerlab.org/) was 

used to compare array-based transcriptome analysis in A. thaliana with the data obtained in this 

study.  

 

2.9. Statistical analysis 

Statistics were performed using a Two-Way and Three-Way ANOVA with the values of the 

expression data and metabolic content as dependent variable and sulfur concentration, time 

point of harvesting, and light condition (diurnal/circadian) as independent factors. Significance 

of factors and their interactions was assessed by means of F-tests. In the presence of 

interactions, the Tukey comparisons were carried out separately for each level of the interacting 

factor. Statistical computations were done in InfoStat (http://www.infostat.com.ar, InfoStat 

version 2016).  

The evolution of GOIs and sulfur-containing metabolites over time were analyzed using 

statistical model selection with AICc, a small-sample version of the widely known Akaike 

Information Criterion (Hurvich and Tsai, 1989; Burnham and Anderson, 2002). A set of 

"candidate models" with a linear time response as well as trigonometric functions (sinus and 

cosine) were assembled. The model with the lowest AICc value was considered to be the one 

that gets most support from the experimental data. The "candidates" are linear models with the 

corresponding data for the expression and content of the sulfur-containing metabolites as 

endpoint; the independent variables include light, sulfur, time, and replication, as well as any 

reasonable interaction terms. Considering both linear and sine functions modeling the influence 

of time and allow for interactions so that slope and intercept or amplitude, average, and phase 

shift may or may not depend on light and sulfur. Statistical computations were done in R3.1.1 

(RCoreTeam, 2014). All graphs were generated with SigmaPlot 12.5 (Systat Software, Inc., 

San Jose, CA). 
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3. Results 

 

3.1. Establishment of a highly controlled cultivation system and investigation of the role 

of sulfur in a circadian-regulated system by expression analysis 

For investigating the interaction of the circadian clock and sulfur metabolism a growth system 

had to be established first. Confirming a suitable growth system for our purposes the expression 

of clock-controlled genes as well as genes involved in sulfate transport and assimilation were 

analyzed by Northern blot analysis (Fig. 2, Fig. S1). Plants grown under sufficient sulfur supply 

with 1 mM MgSO4 and under sulfur-deficient conditions with 0.01 mM were harvested every 

4 h, beginning 1 h before the light was switched on. For analyzing the expression data in a 

quantitative way, results of the Northern blot analysis were normalized according to Rumlow 

et al. (2016) with a validated set of reference genes (Fig. 2A). To check the stability and 

reproducibility of controlled manipulation of the cultivation system, a segment of the B. napus 

CCA1 gene was isolated and used in Northern blot hybridization as a probe to follow the CCA1 

expression (Fig. 2A). Its expression pattern in light/dark (LD) conditions showed a maximum 

of expression antemeridian 3 h after the light was switched on and remained undetectable before 

midnight, 3 h after the light was switched off. This pattern is comparable to other plant species 

(Mizoguchi et al., 2002; Harmer, 2009). Regarding the sulfur fertilization, statistics revealed a 

significantly higher transcript amount of CCA1 under sulfur-deficient conditions (Table S1). In 

samples from plants harvested under light/light (LL) conditions the expression pattern remained 

the same. However, a significant reduction in its amplitude was observed (Table S2). Taking 

the influence of all three factors on the expression of CCA1 together there is a highly significant 

(p<0.0001) interaction between them (Table S2). To be able to follow the sulfur status in the 

plants the sulfate transporter Sultr4;2, known as a gene highly expressed under sulfur-deficient 

conditions in several species was included into the investigation. Plants grown in our 

experimental system showed a significant up-regulation of Sultr4;2 indicating a successful 

application of sulfur limitation (Fig. 2A). Statistical analysis of the Sultr4;2 expression in plants 

grown under sufficient sulfur supply resulted in relatively high standard deviations due to low 

signals. However, the transcript levels fluctuated significantly in the course of a day with higher 

transcript levels in the middle of the light phase (Table S1). In plants exposed to continuous 

light the expression of Sultr4;2 was not significantly influenced (Table S2) except for 28 h 

where lower transcript amounts were detected. Furthermore, the influence of the sulfur status 

on the expression is independent from the light (Table S2). To analyze the influence of the LD 

conditions on the key genes of sulfur metabolism known from A. thaliana homologous genes 
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were identified in B. napus. Data known from literature (Kopriva et al., 1999) and motif 

research (http://arabidopsis.med.ohio-state.edu/AtcisDB/bindingsites.html) gave hints about 

genes which might be clock-controlled. Northern blot analysis of Sultr3;1 in plants grown under 

sufficient sulfur supply (Fig. 2A) showed a significant up-regulation under LD conditions for 

approximately 8 h beginning 1 h before the light was switched on. Followed by a significant 

decrease in the transcript level transcript amounts were maintained at a lower level in the dark 

phase and started to increase again at 24 h (Table S1). At 28 h transcript amounts of Sultr3;1 

were 2 fold higher compared to the measured transcript amount at 4 h. At 32 h the expression 

was already down-regulated and transcript amounts of Sultr3;1 decreased further in the light 

phase. Regarding the sulfur status there was no influence on the expression of Sultr3;1 

measureable. In accordance with statistical analysis a p-value of 0.6414 was calculated for the 

factor sulfur supporting the independence of the expression of Sultr3;1 on the sulfur status 

(Table S1). In LL conditions analysis of the transcript levels resulted in a significantly decrease 

in the subjective night compared to LD conditions (Table S2). Furthermore, the transcript 

maximum of Sultr3;1 was detected 8 h later than in plants grown under LD conditions. In 

accordance with statistics there is a highly significant interaction of the light and the harvesting 

time point independent from the sulfur status (Table S2). 

Furthermore, the expression of members of the APR gene family was analyzed (Fig. 2A). The 

expression of the APR2 gene oscillated for both sulfur regimes significantly in the course of a 

day in plants harvested under LD conditions with an up-regulated expression in the light phase. 

In plants grown under sufficient-sulfur supply and harvested at 0, 4, and 8 h the measured 

transcript level of APR2 was relatively constant. In the beginning of the dark phase at 16 h a 

down-regulation of APR2 in the plants was detected. At 24 h the expression was up-regulated 

again reaching 4 h later a maximum in the transcript level. Afterwards the expression of APR2 

was down-regulated again. In plants grown under sulfur-deficient conditions transcript amounts 

of APR2 were significantly higher compared to plants grown under sufficient sulfur supply 

(Table S1). The highest transcript amounts were measured in the beginning and in the middle 

of the light phase respectively. In plants harvested under LL conditions the oscillations detected 

in the transcript levels of APR2 were significantly affected by the light dependent on the time 

point the plants were harvested (Table S2). For the second isoform APR3 expression analysis 

in the plant harvested under LD conditions resulted in nearly the same oscillations compared to 

APR2. In plants grown under sulfur-sufficient conditions a higher degree of up-regulation of 

APR3 was measured in the beginning of the light phase and in the end of the dark phase. Sulfur-

deficient conditions led to a significant increase in the transcript amount measured in the plants 
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(Table S1). The oscillations in the transcript level of APR3 in these conditions were comparable 

to those in plants grown under sufficient sulfur supply. Analyzing the expression of APR3 in 

plants harvested under LL conditions resulted in a shift in the expression pattern which was 

highly dependent on the sulfur status (Table S2). Only in plants grown under sulfur-deficient 

conditions the up-regulation began 4 h earlier in LL conditions compared to the expression in 

LD conditions. Comparing both isoforms the expression of APR3 was more influenced by the 

LL conditions (Table S2). 

Results obtained by Northern blot analysis reflect the successful establishment of a reliable 

growth system investigating circadian aspects with sufficient sulfur supply as well as under 

sulfur-deficient conditions. This experiment was performed twice verifying the reproducibility. 

All GOIs analyzed in the plants harvested under LD conditions showed diurnal oscillations with 

an up-regulation in the light phase and down-regulation in the dark phase. Analysis of the 

expression in plants harvested in LL conditions resulted in increased or decreased transcript 

amounts, and partly in alterations of the expression pattern.  

As all transcripts oscillated diurnally sine functions were generated based on the candidate 

model with a certain period chosen by AICc (see 2.9 for more information) for each GOI, 

respectively (Fig. 2B). Oscillations for the isoform APR2 showed a 23 h rhythm under LD as 

well as under LL conditions, whereas for the latter one a lowered amplitude and an advanced 

phase (shifts earlier in time) was shown. For APR3 oscillations comprise only a 20 h period and 

the amplitude under sulfur-deficient conditions was increased. Under sulfur-deficient 

conditions an advanced phase was shown. For the clock gene CCA1 periodic oscillations of 23 

h were determined. The amplitudes in the oscillations were unaffected by the sulfur status. 

Under LL conditions a delayed phase (shifts later in time) was shown. For the sulfate transporter 

Sultr3;1 oscillations in the transcript level follow a 23 h rhythm. The amplitude was unaffected 

by the sulfur status but lowered under LL conditions and showed a delayed phase of 4 h. Higher 

transcript levels of Sultr3;1 on the second day under LD conditions resulted in a higher 

amplitude. For the second transporter Sultr4;2 the model of a 20 h rhythm was determined. In 

plants under sufficient sulfur supply the amplitudes of the oscillations were very low compared 

to the amplitudes of the oscillations under sulfur-deficient conditions. For both sulfur regimes 

the second amplitude of the oscillations was higher under LD conditions. As the expression was 

unaffected by light no differences in the amplitude between LD and LL conditions were 

observed.  
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Figure 2. Expression of GOIs under circadian and sulfur-deficient conditions. Transcript amounts were 

determined in plants (with five fully expanded leaves) grown with 1 mM MgSO4 as a control and 0.01 mM MgSO4 

for four days to obtain sulfur-deficient conditions. Plants grown under 12 h dark/ 12 h light (LD) were harvested 

over a period of 36 h every 4 h starting 1 h before the onset of light. In addition, plants grown in a chamber with 

24 h light (LL) were parallel harvested beginning at 16 h and ending at 40 h fulfilling a 24 h rhythm. Total RNA 

was isolated, and for Northern blot analysis 15 µg RNA was electrophoretically separated and transferred onto 

membranes. For the detection DIG labeled probes were used. A) Normalization of the GOIs with a validated set 

of reference genes under LD and LL conditions. Data are shown as the mean of three technical replicates ± SD. 

Relative expression calculation was based on band intensity. B) Sine functions of the oscillations for the GOIs 

together with the according mean from the three technical replicates under LD and LL conditions. Abbreviations 

for probes see Table 1. 

 

 



CHAPTER 4 

101 
 

3.2. Metabolic analysis of sulfur-containing compounds in a circadian-regulated system  

3.2.1. Measurements of total sulfur amounts in leaves 

Previous results indicated changes of the total sulfur content during the day (Weese et al., 2015). 

To understand the influence of the light period on the total sulfur content in the leaves, dried 

material was analyzed by ICP-OES. In addition the effect of the sulfur treatments could be 

followed. The total sulfur content in plants grown under 1 mM sulfur supply showed 

significantly higher amounts in the light phase in plants grown under sufficient sulfur supply 

(Fig. 3, Table S1). Interestingly, in plants harvested under LD conditions the highest amount of 

sulfur with approximately 7 mg g-1 DM was measured. In plant material harvested from plants 

grown under sulfur-deficient conditions the sulfur content was significantly decreased reaching 

approximately 4 mg g-1 DM (Table S1). Furthermore, the measured content was maintained at 

relatively constant levels in the plants harvested under LD conditions. Under LL conditions the 

sulfur content measured in the plants decreased significantly independent from the sulfur status 

(Table S2). In the plant material from plants grown under sufficient sulfur supply and harvested 

under LL conditions the sulfur content decreased down to 4.4 mg g-1 DM in the course of the 

day. Under sulfur-deficient conditions the content reached a minimum of 2.7 mg g-1 DM at 36 

h. For both sulfur regimes and light conditions oscillations in the content were rather random. 

Therefore, generating sine models with a certain period was not suitable.  

 

Figure 3. Total sulfur content under circadian and diurnal conditions. The elemental sulfur was measured in 

dried material (DM) of plants treated as described in Figure 2 with ICP-OES. Results calculated as mg g-1 DM 

represent the mean of two technical replicates ±SD. 

 

3.2.2. Determination of sulfate levels in the leaves of B. napus plants 
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As the expression of the sulfate transporters Sultr3;1 and Sultr4;2 showed oscillations in the 

course of a day (Fig. 2) the sulfate contents measured in plants grown with sufficient sulfur 

supply oscillated significantly with maxima of approximately 5 mg g-1 DM 1 h before the onset 

of light and 1 h before the offset of light (Fig. S2, Table S1). Lowest amounts of sulfate were 

measured in plants harvested in the dark phase with 3.5 mg g-1 DM. In plants grown under 

sulfur-deficient conditions the measured sulfate content significantly decreased in the light 

phase from 3.6 to 2.1 mg g-1 DM (Table S1). After an increased content measured in the plants 

harvested in the dark phase the content of sulfate was further decreased down to 1.34 mg g-1. 

For both sulfur regimes the measured sulfate amounts in the plants were significantly decreased 

under LL conditions which was highly dependent on the sulfate status and the time point of 

harvest (p-value <0.0001), respectively (Table S2). In plants grown under sufficient sulfur 

supply the decrease was significantly more drastic than under sulfur-deficient conditions; here 

the sulfate content was significantly decreased by 60% at 24 h and was then maintained at a 

constant level. In conclusion, the interaction of all three factors influencing the sulfate content 

in the plants was highly significant (p-value 0.0001, Table S2).  

 

3.2.3. Cysteine and glutathione contents in leaves 

As representatives of the primary sulfur assimilation pathway the cysteine content was analyzed 

via HPLC and the contents of the most important transport molecule of reduced sulfur, GSH 

(Fig. 4). The cysteine concentrations measured in plants grown with 1 mM MgSO4 and 

harvested under LD conditions were higher during the day with a maximum of approximately 

20.6 nmol g-1 FM than at night with a minimum of about 11 nmol g-1 FM (Fig 4A). Under 

sulfur-deficient conditions measurements of cysteine resulted in significant lower contents with 

a minimum of approximately 9.9 nmol g-1 FM without significant oscillations in the course of 

a day (Table S1). According to statistics with a p-value of 0.8352 the oscillations of the cysteine 

content in the course of the day were not significant independent from the sulfur status. 

Regarding the third factor light the measured cysteine contents in plants were not significantly 

influenced independent from the sulfur status (Table S2). The content of reduced GSH 

measured in plants grown with 1 mM MgSO4 oscillated diurnally in the course of a day with 

high amounts up to 560 nmol g-1 FM at the end of the light phase and significant lower amounts 

of 240 nmol g-1 at the end of the dark phase (Fig. 4B, Table S1). The decrease of the GSH 

measured in plants grown under sulfur-deficient conditions was highly significant with a 

calculated p-value of 0.0002 (Table S1). With a maximum of approximately 403 nmol g-1 FM 

in the light phase and a minimum of 269 nmol g-1 FM the measured contents oscillated 
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significantly as well in the course of a day (Table S1). In agreement with statistics with a p-

value of 0.1556 these oscillations were independent from the sulfur status (Table S2). 

Regarding the third factor light the GSH content measured in the plants was harvested under 

LL conditions was significantly influenced dependent on the time points the plants were 

harvested. Taking all three factors together the content of the measured GSH was not 

significantly influenced (Table S2). In agreement with the diurnal oscillations of the GSH 

content periodic oscillations with a period of 23 h was determined (Fig. 4C). The amplitude in 

LL conditions was lowered for both sulfur regimes. Under sulfur-deficient conditions an 

advanced phase could be observed. To summarize the results for the thiols the cysteine was 

only affected by the sulfur status and showed no oscillations in its content. The GSH content in 

contrast was influenced by all three factors. According to statistics the factor that influenced 

the oscillations of the GSH content the most was the time point the plants were harvested.  
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Figure 4. Thiol contents under circadian and diurnal conditions. Cysteine (A), GSH (B), the sine function of 

the periodic oscillations with the corresponding mean (C). The cysteine and GSH contents were determined in 

plants treated and collected as described in Figure 2 by HPLC. Data in nmol g-1 FM represent the mean of three 

technical replicates ±SD. 

 

3.2.4. Quantification of GSLs in leaves 

As representatives of the secondary sulfur metabolism intact GSLs were measured as desulfated 

GSLs in the leaves (Fig. 5, Fig. S3, S4). The identified GSLs showed different oscillations in 

the course of the day and were affected in different ways by the sulfur status and the light 

conditions. Taking all aliphatic GSLs together the measured content in plants grown with 

sufficient sulfur supply and harvested under LD conditions was maintained from 0 to 12 h at 

approximately 0.7 µmol g-1 DM (Fig. 5A). This was followed by a significant increase in the 
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content of aliphatic GSLs up to 1 µmol g-1 DM in the beginning of the dark phase (Table S1). 

After a slight decrease in the content in plants harvested in the dark phase the content reached 

1 µmol g-1 DM again one hour after the onset of light. Afterwards the measured content of the 

aliphatic GSLs in the plants was decreased by 20% at 32 h and increased up to 0.9 µmol g-1 

DM again at 36 h. The content of the aliphatic GSLs was significantly decreased in plants grown 

under sulfur-deficient conditions (p<0.0001) and the pattern in the oscillations in the content 

was altered (Table S1). Under sulfur-deficient conditions the measured concentration of the 

aliphatic GSLs was significantly decreased by 40% starting from one hour before the onset of 

light until the end of the light phase. In plants harvested in the dark phase the content was 

increased again reaching approximately 0.7 µmol g-1 DM. At the end of the dark phase the 

content of the aliphatic GSLs was decreased again by about 40%. In plants harvested at 32 h a 

maximum of 0.8 µmol g-1 DM was measured followed by a rapid decrease down to 0.5 µmol 

g-1 DM again. Considering the third factor light the content of the aliphatic GSLs was 

significantly influenced independent from the sulfur status (Table S2). Under sufficient sulfur 

supply the amount of aliphatic GSLs measured in plants harvested under LL conditions was 

lower in the subjective night at 16 and 20 h compared to plants harvested under LD conditions. 

Furthermore, from 24 to 36 h the content in the plants was decreased by about 30% followed 

by an increase in the subjective night at 40 h. In plants grown under sulfur-deficient supply and 

harvested under LL conditions the content of the aliphatic GSLs was significantly lower 

compared to plants harvested under LD conditions (Table S2). The content was maintained at 

approximately 0.45 µmol g-1 DM in the course of the day. Regarding the individual aliphatic 

GSLs nearly the same pattern in the oscillations could be observed (Figure S3). Except for 

glucoraphanin the oscillations in the content of the individual aliphatic GSLs were highly 

dependent on the sulfur status with p-values <0.0001 (Table S1). Interestingly gluconapin and 

glucoraphanin were not significantly influenced by the light independent from the sulfur status 

and the time point the plants were harvested.  

In plants grown under sufficient sulfur supply and harvested in LD conditions, the highest 

concentration of the indolic GSLs with 0.15 µmol g-1 DM was measured at 0 h and 12 h 

respectively (Fig. 5B). Afterwards the content was decreased down to approximately 0.1 µmol 

g-1 DM and maintained at this level. Although the content of the indolic GSLs was not 

significantly decreased in plants grown under sulfur-deficient conditions an altered pattern in 

the oscillations were observed (Table S1). A maximum of approximately 0.25 µmol g-1 DM 

was measured in plants harvested three hours after the onset of light. Afterwards the content 

was decreased by about 70% in plants harvested at 8 h. In the beginning of the dark phase the 
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content of the indolic GSLs was increased again to 0.15 µmol g-1 DM. The content measured 

in the plants harvested at the end of the dark phase was decreased down to 0.1 µmol g-1 DM 

again. Afterwards the content of the indolic GSLs in the plants was slightly increased in the 

light phase and decreased again at the end of the light phase. In agreement with statistics the 

significant oscillations were highly dependent on the sulfur status with a p-value <0.0001 (Table 

S1). In plants harvested in LL conditions the content of the indolic GSLs was not influenced in 

a significant way independent from the sulfur status and the time point the plants were harvested 

(Table S2). Comparing the two GSLs glucobrassicn and neoglucobrassicin representing the 

indolic GSLs, for the former one oscillations were higher in the course of the day was (Fig. S4).  

The only aromatic GSL measured in B. napus was gluconasturtiin (Fig. 5C). In plants grown 

with sufficient sulfur supply and harvested under LD conditions a content of approximately 

0.06 µmol g-1 DM was measured one hour before the onset of light. The decrease in the content 

down to 0.05 µmol g-1 DM measured in plants harvested at 4 and 8 h was followed by a 

significant increase up to 0.085 µmol g-1 DM four hours later (Table S1). In the middle of the 

night phase the content of gluconasturtiin was significantly decreased by 50%. Already 4 h later 

the measured content was increased again up to 0.065 µmol g-1 DM. At the end of the light 

phase the content in the plants was decreased by 30%. The sulfur-deficient conditions led to no 

significant decrease in the content of the aromatic GSL, whereas the pattern of the oscillations 

in the content in plants harvested under LD conditions was altered (Table S1). After the increase 

of the content in the beginning of the light phase up to 0.12 µmol g-1 DM a decrease by about 

60 % occurred. At the end of the light phase the measured content of gluconasturtiin in the 

plants began to increase again reaching 0.09 µmol g-1 DM in plants harvested in the middle of 

the dark phase. This was followed by a decrease down to 0.05 µmol g-1 DM in plants harvested 

at 24 h. Maintained at this level the content of gluconasturtiin began to decrease again at 36 h. 

Regarding the third factor light the content in the plants of gluconasturtiin was affected in a 

significant way independent from the sulfur status (Table S2). In plants grown with sufficient 

sulfur supply and harvested under LL conditions the content was significantly decreased by 

50% between 24 and 40 h. In plants grown under sulfur-deficient conditions the content of 

gluconasturtiin was significantly lower compared to plants harvested under LD dark conditions 

(Table S2). The same level in the content of gluconasturtiin as measured in plants harvested 

under LD conditions was reached at 32 h. To summarize the measurements of the GSLs in B. 

napus the oscillations in the content of the GSLs was dependent on the sulfur status. Only the 

aliphatic GSLs were reduced in their content under sulfur-deficient conditions. Furthermore, 

only for the indolic GSLs the content was unaffected by the circadian conditions.  
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For the individual GSLs oscillations in the content with a certain period could not be determined 

properly by statistical analysis. 

 

 

Figure 5. GSLs in leaves under diurnal/circadian conditions. Aliphatic (A) and indolic GSLs (B) as well as 

one aromatic GSL (C) were measured by HPLC in plants treated and collected as described in Figure 2. The 

contents of the GSLs were calculated in µmol g-1 FM. Data represent the mean of three technical replicates ±SD. 

 

3.3. Influence of different infection times on gene expression and sulfur-containing 

metabolites 

As the resistance in plants is dependent on the time of the day B. napus plants were infected 

with the fungus V. longisporum at different time points in the morning and in the evening 
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respectively (Fig. 1). Plants were infected according to Weese et al. (2015). As here the fungus 

could not be directly detected at this early stage the increased total sulfur content and sulfur-

containing metabolites as well as physiological measurements were taken as confirmation of 

the infection. However, results obtained in the study by Weese et al. (2015) for Genie could not 

be reproduced in this study. Either the infection was not successful or the infection rate was too 

low leading to underestimation of differences in comparison of infected to non-infected plants 

and differences between the different infection time points. On the other hand, a number of 

differences in the expression and metabolite analysis could be observed after 7 dpi in 

comparison to non-infected plants. For 14 and 21 dpi differences between infected and non-

infected plants were indistinct. Therefore, only results for 7 dpi are shown.  

 

 

3.3.1. Analysis of gene expression after infection at different time points  

Transcript levels of APR2 were higher under sufficient sulfur supply than under sulfur-deficient 

conditions. In infected plants the expression of APR2 was down-regulated under sufficient 

sulfur supply compared to non-infected plants. At 0 h the highest expression was observed. In 

infected plants grown under sulfur-deficient conditions the expression was unaffected. In 

contrast the transcript amount of the second isoform APR3 was down-regulated under sufficient 

sulfur supply and nearly reached undetectable levels. Under sulfur-deficient conditions higher 

transcript levels were detected. In infected plants grown under sufficient sulfur supply an 

increased expression was only determined at 0 h. In infected plants grown under sulfur-deficient 

conditions APR3 was slightly down-regulated compared to non-infected plants. Regarding the 

time point of infection the lowest transcript level was measured at 16 h. As a gene involved in 

the pathogen response the expression of PR2 was analyzed. In non-infected plants with 

sufficient sulfur supply at 0 h the highest transcript level was measured whereas under sulfur-

deficient conditions at 0 h and 16 h the lowest levels were detected. In infected plants the 

expression of PR2 was up-regulated. Under sufficient sulfur supply the lowest transcript 

amount was measured at 0 h and highest amount at 12 h. In plants grown under sulfur-deficient 

conditions at 0 h the lowest transcript amount was measured as well. Differences between the 

other three infection time points could not be determined. After 14 dpi transcript levels of PR2 

could not be detected any more in control plants. Only in infected plants under sulfur-deficient 

conditions PR2 could be detected at 0 and 4 h (data not shown). The transcript amounts of 

Sultr3;1 were very low and could not be properly detected. After 14 dpi transcript levels were 

increased (data not shown). Nevertheless, expression was neither affected by the infection nor 
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by the sulfur status the plants were grown under. The second sulfate transporter Sultr4;2 was 

undetectable in non-infected plants under sufficient sulfur supply. The expression of this 

transporter was increased in non-infected plants under sulfur-deficient conditions. Interestingly, 

in infected plants at 0 h and grown under sufficient sulfur supply transcript amounts were 

detected. In infected plants and under sulfur-deficient conditions expression of Sultr4;2 was 

drastically down-regulated in plants infected at 12 and 16 h, respectively. Analyzing the 

expression of CCA1 a down-regulation of the expression in infected plants was determined 

which seemed to be independent from the time point of infection. In infected plants under 

sulfur-deficient conditions the degree of down-regulation appeared to be higher.  
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Figure 6. Expression of GOIs in leaves after infection at different time points. Seven days old seedlings were 

mock-inoculated or infected with V. longisporum spores at different time points. The time points were chosen 

according to Figure 1 at 0, 4, 12 and 16 h. Plants were grown under sufficient sulfur supply (1 mM MgSO4) and 

under sulfur-deficient conditions (0.01 mM MgSO4) in a climate chamber for 7 dpi. Four plants with leaves fully 

expanded per treatment were harvested. Northern blot analyses were done with specific digoxigenin-labeled 

probes. For abbreviations see Table 1. 

 

3.3.2. Analyzing the effect of the infection time on total sulfur amounts in the leaves 



CHAPTER 4 

111 
 

The total sulfur amount measured in plants 7 dpi under sufficient sulfur supply was neither 

affected by the infection nor the time point of infection (Fig. 7). The content ranged from 

approximately 10 to 12.5 mg sulfur g-1 DM. Under sulfur-deficient conditions the content was 

decreased to a minimum of about 1 mg sulfur g-1 DM. In infected plants under these conditions 

the sulfur content was increased at 0, 12, and 16 h reaching a maximum of approximately 4.5 

mg S g-1 DM at 16 h. The main factor influencing the total sulfur amount was the sulfur supply. 

 

 

Figure 7. Total sulfur in leaves after infection at different time points. The elemental sulfur was measured in 

dried material (DM) of plants treated as described in Figure 3 with ICP-OES. Results calculated as mg g-1 DM 

represent one measurement. Filled bars represent the control plants (C) and striped bars infected plants (INF). 

 

3.3.3. Thiol content in the leaves from plants infected at different time points 

The cysteine content in the leaves harvested after 7 dpi reached under sufficient sulfur supply 

a maximum of approximately 30 nmol g-1 FM (Fig. 8A). In plants grown under sulfur-deficient 

conditions the cysteine content was decreased down to the half. Although in infected plants the 

cysteine content was increased, the infection and the time point of infection had no effect on 

the amount of cysteine. In plants 14 dpi the cysteine content was decreased further down to 7 

to 15 nmol g-1 FW (data not shown). Again the content was not affected by the infection and 

the time point of infection.  

The GSH content on the contrary was affected differently (Fig. 8B). After 7 dpi a maximum of 

approximately 350 nmol g-1 FM in the leaves of plants grown under sulfur-sufficient supply 

was measured. The content was not influenced due to the infection. In plants grown under 

sulfur-deficient conditions the content was decreased to a minimum of 100 nmol g-1 FM. In 

leaves of infected plants the GSH content was increased which was dependent on the time point 

of infection. At 4 h the GSH content was increased up to approximately 200 nmol g-1 FM. In 

plants infected 3 h after the light was switched off (16 h) the content was even doubled 

compared to the control plants. After 14 dpi highest amounts of GSH in the leaves of plants 
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grown under sufficient sulfur supply up to 400 nmol g-1 FM were measured (data not shown). 

In contrast to plants at 7 dpi the GSH was increased in infected plants compared to control 

plants independent from the time point of infection. In plants grown under sulfur-deficient 

conditions the amount of GSH was further decreased down to a minimum of 80 nmol g-1 FM. 

Interestingly, the GSH content was not increased due to infection with the fungus. Thus also 

the time point of infection did not affect the GSH content.  

 

 

 Figure 8. Thiol content in leaves after infection at different time points. cysteine (A) and GSH (B) were 

measured in plants treated as described in Figure 6 by HPLC analysis. Calculated data in nmol g-1 FM represent 

one measurement. Filled bars represent the control plants (C) and striped bars infected plants (INF). 

 

3.3.3. Analysis of GSLs after infection at different time points  

As it is hypothesized that breakdown products of GSL play a major role pathogen defense the 

GSL contents were analyzed as well. Measurement of the aliphatic GSL under sufficient sulfur 

supply showed no clear tendencies when comparing non-infected and infected plants (Fig. 9A). 

The highest amount was measured in plants infected at 12 h with approximately 0.6 µmol g-1 

DM and the lowest amount with about 0.2 µmol g-1 DM at 0 h in non-infected plants. The latter 

one was doubled in putatively infected plants. As the content seemed to be increased in infected 

plants at 0 and 12 h the content at 4 h was decreased and at 16 h no differences at all were 
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shown. Under sulfur-deficient conditions, however, at 16 h the content was 2.5 fold higher in 

infected plants, whereas for the other infection time points no real differences were shown. 

Regarding the indolic GSLs the highest amount was measured under sufficient sulfur supply at 

12 h with approximately 0.5 µmol g-1 DM in infected plants (Fig. 9B). Here the content was 

nearly doubled compared to the non-infected plant. For the other infection time points however, 

only small differences appeared between non-infected and infected plants. The content of 

indolic GSLs in control plants under sulfur-deficient conditions did not differ between the 

infection time points and were about 0.2 µmol g-1 DM. Except for the time point 0 h the content 

was increased in infected plants reaching the highest amount in plants infected at 16 h with 

approximately 0.35 µmol g-1 DM. For the one aromatic GSL gluconasturtiin an increase was 

measured in infected plants under sufficient sulfur supply for the infection time points 0, 12, 

and 16 h (Fig. 9C). Here the highest amount was reached in plants infected at 12 h with 

approximately 0.12 µmol g-1 DM. No differences for the infection time point at 4 h could be 

observed. Under sulfur-deficient conditions only in plants infected at 16 h an increase in the 

content up to 0.15 µmol g-1 DM could be determined. Here the content was doubled compared 

to non-infected plants. To summarize, the GSLs were differently affected due to the infection 

and the time point of infection. However, no clear tendencies were observed. 
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Figure 9. GSL content in leaves after infection at different time points. Aliphatic (A) and indolic (B) GSLs, 

as well as one aromatic (C) GSL were measured in plants treated as described in Figure 6 by HPLC analysis. 

Calculated data in µmol g-1 DM represent one measurement. Filled bars represent the control plants (C) and striped 

bars infected plants (INF). 
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4. Discussion 

The aim of this work was to investigate a possible relationship between the circadian clock, the 

primary and secondary sulfur metabolism, and the infection with a fungus at different time 

points.  

 

4.1. Investigating circadian aspects in B. napus in a reproducible way by establishing a 

suitable growth system is possible 

For analyzing the influence of the circadian clock on the biosynthesis of sulfur-containing 

metabolites a highly controlled growth system had to be established. By analyzing the 

expression of the clock gene CCA1 as a regulatory element of the core oscillator of the circadian 

clock stability of the growth system was verified. The expression was analyzed in plants 

collected every 4 h over a period of 40 h under diurnal conditions with 12 h light and 12 h dark 

as well as under free-running conditions with 24 h continuous light, respectively (Fig. 2, Fig 

S1). The expression pattern from Northern blot analysis of CCA1 in B. napus is comparable to 

other plant species (Mizoguchi et al., 2002; reviewed in Harmer, 2009) indicating a suitable 

harvest pattern. However, the amplitude under constant light was significantly lowered. 

Transcriptome analysis of CCA1 in A. thaliana where plants were grown in a light/dark cycle 

and exposed to constant light showed the same degree of down-regulation (Mockler et al., 

2007). In the study of Kim et al. (2003) it was discussed that light may influence the activity of 

a positive effector of CCA1 and LHY leading to an altered amplitude of the transcript level. As 

a possible candidate they named the TOC1 protein as it showed interactions with a phytochrome 

B-related transcription factor protein (Makino et al., 2002). On the basis of the expression 

analysis it was possible to verify a circadian period of 23 h for CCA1 in B. napus. As in this 

study the zeitgeber was light, a circadian period of 24 h would have been assumed. It was 

already demonstrated in A. thaliana and Brassica rapa that the shortening in the period is 

dependent on the temperature (Lou et al., 2011; Kusakina et al., 2014). Plants grown under 

17°C showed a circadian period around 24 h whereas under 27°C the period was shortened 

down to 20 h. It is postulated that a shorter period at higher temperatures may confer a 

performance advantage. Therefore, it can be suggested that the circadian period of the clock 

with 23 h in B. napus is more beneficial when grown at a temperature of 22°C. Investigation 

with other clock genes in B. napus would be helpful verifying this circadian period. 

Furthermore, half of the plants were grown under sulfur-deficient conditions for 4 d. The plants 

were grown under sulfur-deficient conditions determining in the first place a possible influence 

of sulfur limitation on the circadian clock. There are indeed a number of nutrients which are 
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influenced by the circadian rhythm and vise versa (reviewed in Haydon et al., 2015). The 

nitrogen metabolism in A. thaliana as an example as it is regulated by CCA1 which binds to the 

promoters of nitrogen-assimiliation genes (Gutiérrez et al., 2008). It was already shown that 

nitrate depletion affected the circadian clock by shortening the circadian period hours (Sweeney 

and Folli, 1984). In our study this was not the case as the period of CCA1 was unaffected by 

sulfur-deficient conditions. Therefore, it can be concluded that in our study the given conditions 

have no influence on the expression of clock transcripts. This has to be further investigated by 

analyzing additional clock transcripts as well as prolonged growth under sulfur-deficient 

conditions. Therefore, to verify the sulfur deficiency in the plants the expression of the sulfate 

transporter Sultr4;2 was analyzed (Fig. 2) which is predominantly detectable under sulfur-

deficient conditions (Buchner et al., 2004). In plants grown under sulfur-sufficient conditions 

low amounts of transcripts were detected. One explanation would be that the supply of 1 mM 

MgSO4 was not enough for a sufficient supply. Another explanation would be that a high degree 

of excessive sulfate triggered the up-regulation of the transporter. Thus the efflux of the sulfate 

out of the vacuole is triggered preventing an over-accumulation of sulfate in the vacuole 

(Kataoka et al., 2004; Reich et al., 2016). In plants grown with 0.01 mM MgSO4
 the expression 

of Sultr 4;2 was up-regulated. This was also confirmed in a previous study with B. napus where 

this transporter was up-regulated under sulfur-deficient conditions (Buchner et al., 2004; 

Parmar et al., 2007; Weese et al., 2015). According to these results a suitable growth system 

was established for further detailed investigations.  

 

4.2. The sulfate transport is differently affected by the diurnal and circadian conditions 

In previous studies the expression of all members of the sulfate transporters ordered in the four 

groups in Brassica oleracea and all members of the five groups in B. napus under sulfur 

deprivation was analyzed in detail (Buchner et al., 2004; Parmar et al., 2007). In B. oleracea 

the sulfate transporter Sutlr3;1 was expressed in the stem and roots independent from the sulfur 

supply of the plants. However, in leaves the expression of this transporter was only up-regulated 

under sulfur deprivation lasting at least 10 d (Buchner et al., 2004). Interestingly, in the study 

by Parmar et al. (2007) the expression of the transporter Sultr3;1 could not be detected at all in 

the leaves from B. napus plants. This is in contrast to our results as the transporter was expressed 

at a relatively high level independent from the sulfur status (Fig. 2). Furthermore, transcript 

levels oscillated under diurnal and circadian conditions with a period of 23 h whereas under 

free-running conditions the amplitude was decreased and delayed in the phase. As the period 

matches the period of CCA1 and remained the same in LL conditions a regulation by the 
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circadian clock can be assumed. This is even further supported as in A. thaliana the transporter 

Sultr3;1 contains an evening element promoter motif (EE) (http://arabidopsis.med.ohio-

state.edu/) where CCA1 can directly bind and regulate the expression (Wang et al., 1997; 

Hamer et al., 2000; Nagel et al., 2015). Genes with this motif are likely to be expressed in the 

evening as binding of CCA1 in this promoter region inhibits the expression. Therefore, one 

would expect a down-regulation in the expression of Sultr3;1 in the morning and an up-

regulation in the evening. This is contradictory to our results, as the expression was up-regulated 

in the morning and down-regulated in the evening (Fig. 2A, B). However, our results for the 

expression of Sultr3;1 are in agreement with microarray analysis in A. thaliana under different 

light conditions (Mockler et al., 2007). In the study from Nagel et al. (2015) a number of target 

sequences for CCA1 next to the EE were genome-wide identified in A. thaliana revealing a 

morning-phased expression. Based on that it can be assumed that the sequence of the Sultr3;1 

in B. napus contains no EE and instead one of the other targets, thus leading to a peak of the 

expression in the beginning of the light phase. This is confirmed by our results as the transcript 

levels peak in the beginning of the light phase when CCA1 was up-regulated as well. In the 

course of the day transcript amounts are decreasing such as the transcript amount of CCA1. 

Confirming a regulation by the circadian clock one would assume that under continuous light 

oscillations the transcript levels of Sultr3;1 would be unaffected. However, in this study the 

amplitude was lowered and a delay in the phase occurred. A possible explanation would be the 

transcript amount of CCA1 which was significantly decreased under free-running conditions. 

Thus the amplitude in the beginning of the light phase for the transcript level of Sultr3;1 was 

decreased as well, underestimating differences in the course of a day. Nonetheless there is 

evidence that sulfur uptake in chloroplasts is regulated by the clock due to the circadian-

regulated sulfate transporter 3;1 which is localized at the chloroplast membrane (Hayden et al., 

2011; Cao et al., 2013). It is postulated that other members of group 3 transporters are also 

located at the chloroplast membrane (Cao et al., 2013). Therefore, expression analysis of the 

other members would be helpful confirming a circadian-regulated uptake into the chloroplast.  

The expression of Sultr4;2 was predominantly analyzed as detection for the sulfur limitation 

(Fig. 2). Interestingly, diurnal oscillations of the transcript levels under sulfur-deficient 

conditions were detected and were unaffected under free-running conditions in the subjective 

night. Based on that one would assume a regulation by the circadian clock. However, as the 

expression of the group 4 transporters is probably solely regulated by a sulfate gradient at the 

tonoplast a direct circadian regulation is likely to be excluded (Kataoka et al., 2004; Reich et 

al., 2016). This needs to be further investigated by analyzing the second member of the group 
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4 transporter as the transporter Sultr4;2 plays only a minor role under sulfur-sufficient 

conditions (Buchner et al., 2004; Kataoka et al., 2004; Parmar et al., 2007).  

 

4.3. The isoforms of the key enzyme in the sulfate reduction are affected differently in B. 

napus under diurnal and circadian conditions 

As key enzymes of the sulfate assimilation pathway the expression of two isoforms of the 

adenosine-5’-phosphosulfate (APS) reductase (APR) was analyzed (Fig. 2). According to 

sequence analysis by using BLAST all three isoforms present in A.thaliana are also present in 

B. napus. As in the study from Kopriva et al. (1999) APR1 and APR3 showed a similar 

expression, for our study only the isoform APR3 was included in the expression analysis next 

to APR2. For both isoforms transcript amounts oscillated diurnally with higher transcript 

amounts in the light phase under sulfur-sufficient as well as under sulfur-deficient conditions. 

This is in accordance with the expression of APR in A. thaliana and maize, oscillating diurnally 

with a maximum during the light period (Kocsy et al., 1997; Kopriva et al., 1999). Under sulfur-

deficient conditions the amplitude of the oscillations increased as the expression of both 

isoforms was increased under sulfur-deficient conditions. The periodic oscillations in the 

transcript level of APR2 comprise 23 h with a peak in the morning phase which is equal to the 

period of CCA1, thus supporting a regulation by the circadian clock. Under free-running 

conditions oscillations of 23 h were observed whereas the amplitude was lowered and showed 

an advanced phase with a peak in the subjective night. In the case of APR3 oscillations comprise 

only 20 h. The amplitude was lowered by the continuous light and an advanced phase appeared 

under sufficient sulfur supply. In the study of Kopriva et al. (1999) the regulation of APR 

expression and APR activity by an endogenous rhythm was excluded as mRNA levels of all 

three isoforms decreased in continuous dark. However, it was already reported that the 

expression of APR2 is under circadian control in A. thaliana (Harmer et al., 2000) which is in 

accordance with the presence of the EE in the sequence of APR2 (http://arabidopsis.med.ohio-

state.edu/). As already described for Sultr3;1 genes with an EE are likely to peak in the night. 

This is in agreement with the results from the microarray analysis in A. thaliana as highest 

transcript amounts were measured in the night and lowest in the day, respectively, independent 

from the given light conditions (Mockler et al., 2007). As APR2 transcripts contribute 75% of 

the APR activity in A. thaliana (Loudet et al., 2007) one would assume that the APR activity 

would show the same oscillations. However, in previous studies APR activity had only been 

shown to undergo diurnal rhythm in plants adapted to short days (Kopriva et al., 2009); when 

plants were grown in long days APR activity was again higher during the light period than in 
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the dark, but without the strong maximum observed under short days (Huseby et al., 2013). In 

summary, the results obtained in our study are contradictory for APR2 regarding the circadian 

regulation thus making a proper conclusion difficult. That both isoforms differ in their period 

of the oscillations might be due to different regulation mechanisms which need to be further 

investigated.  

 

4.4. Is there a circadian regulation in the transport and reduction of sulfate? 

In this study the aim was to determine whether the transport and the reduction of sulfate might 

be under circadian control. For investigating an influence by the circadian clock the light was 

chosen as zeitgeber. Plants grown with sufficient sulfur supply as well as with sulfur-deficient 

supply were entrained to a 12 h light/dark rhythm. By exposing part of the plants to continuous 

light the external cue was absent. Under these conditions circadian regulated genes should show 

the same oscillations as under diurnal conditions. Except for Sultr4;2 oscillations in the 

transcript levels of the analyzed GOIs showed lowered amplitudes and in some cases an 

advanced or delayed phase, whereas the period of the oscillations under these conditions 

remained the same. (Fig. 2B). Nevertheless, a circadian regulation could not be unambiguously 

determined. It can only be assumed that there might be a regulation by the circadian clock as 

the transporter Sultr3;1 and APR2 oscillate in the same period as CCA1 with a peak in the 

morning under diurnal conditions. Therefore, a direct interaction of CCA1 with the target genes 

by binding to specific binding motives might be possible (Nagel et al., 2015). However, under 

LL conditions there was a shift in the phase and a lowered amplitude by up- or down-regulation 

even though the period of the oscillations remained the same. Potential targets of CCA1 were 

identified genome-wide in A. thaliana by ChipSeq analysis under LD and LL conditions (Nagel 

et al., 2015). A large portion of the putative target genes were non-cycling under LL conditions. 

It was discussed that this might be stress-related as plants were not expecting light in the night 

and consequently did not cycle in LL conditions (Velez-Ramilez et al., 2011). As a response to 

the LL induced stress the generation of reactive oxygen species (ROS) might be triggered. As 

GSH is involved in the detoxification of ROS (Foyer and Halliwell, 1976) it is likely that under 

LL conditions GSH accumulates in the plants thus leading to an altered activity of the enzymes 

involved in the sulfur assimilation as here the precursor for GSH cysteine is formed. It was 

shown in A. thaliana that the sulfate transport is negatively regulated by GSH thus leading to a 

decrease in the expression (Vauclare et al., 2002) which would be an explanation for the down-

regulation of Sultr3;1 under LL conditions. Based on that a possible regulation of the sulfur 

assimilation by the clock might be underestimated by the use of LL. As the sulfur assimilation 
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is dependent on the reducing equivalents produced in the photosynthesis, which is circadian 

regulated, a regulation by the circadian clock especially for the transport into the chloroplast is 

plausible (Harmer et al., 2000; Dodd et al., 2005; Haydon et al., 2011). Furthermore, is the 

nitrogen-metabolism known to be under circadian control and as these nutrients are dependent 

on each other a circadian regulation by the clock might be possible (reviewed in Haydon et al., 

2015). Therefore, experiments with mutants of B. napus with a disrupted clock by the loss of, 

for example, CCA1 are necessary.  

 

4.5. Representatives of the primary and secondary metabolism differed in their 

oscillations under the given conditions 

Measuring the total sulfur content in addition to the detection of the sulfate transporter Sultr4;2 

was a second way to detect sulfur deficiency in plants. Brassia napus plants with a sulfur 

content of 3.5 mg sulfur g-1 DM are considered to suffer deficiency (Scherer, 2001). This is in 

accordance with the data obtained in our study (Fig. 3). Following the total sulfur content in the 

course a day, can give first information on the regulation of the sulfur metabolism. The total 

sulfur content showed variations in the course of the day, however, statistics excluded diurnal 

oscillations and instead supported a more linear trend. As sulfate-sulfur comprises the biggest 

portion of the total sulfur in plants (Blake-Kalff et al., 1998; Zhao et al., 1999) it was not 

surprising that the content did not oscillate diurnally (Fig. S2). Interestingly, under constant 

light the sulfate-sulfur content and consequently the total sulfur showed a decrease. This might 

be due to a stress response induced by the LL as mentioned before resulting in an increased use 

of the sulfate for the generation of GSH. In the period of 40 h the plants were harvested, sulfate 

and consequently total sulfur levels decreased which might be due to decreasing sulfate 

amounts in the sand the plants were grown on. It would have been necessary to measure the 

sulfate in the substrate as well verifying the decrease which might have led to the decrease of 

the sulfur in the plants. 

In previous experiments it was reported that the two major sulfur-containing metabolites, GSH 

and GSL, as representatives of primary and secondary sulfur metabolism showed only minor 

or no fluctuation during a light/dark period. GSH levels were higher during the light period than 

in the dark, without a clear maximum and GSL levels were relatively stable except for a peak 

8 h after the onset of light (Huseby et al., 2013). On the other hand, no diurnal changes in 

cysteine or GSH contents were observed in poplar (Noctor et al., 1997). In our study, GSH 

showed diurnal oscillations with a period of 23 h with a maximum at the end of the light phase 

(Fig.4B, C). Same oscillations in the content of GSH could be observed in plants harvested in 
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LL conditions, whereas the amplitude of the oscillations was lowered and a delay in the phase 

under sulfur-deficient conditions occurred. As mentioned before, this incident might be based 

on the continuous light plants were exposed to. As a consequence, ROS might have been 

accumulated and thus GSH synthesis was up-regulated. This assumption needs to be clarified 

by determining an accumulation of ROS in the plants harvested under LL conditions, for 

example by a lipid peroxidation assay in the samples (Jambunathan et al., 2010). Nevertheless 

one could assume that the GSH synthesis is regulated by the circadian clock, as there is a CCA1 

binding site motif in GSH1 (http://arabidopsis.med.ohio-state.edu/) catalyzing the first step of 

the GSH synthesis. The precursor of GSH, cysteine, was measured as well and no diurnal 

oscillations with a certain period were determined (Fig. 4A). In the study by Huseby et al. 

(2013) it was demonstrated that the reduced sulfur is first incorporated in GSH and GSLs and 

at the end of the light phase in proteins thus it is not surprising that the content of cysteine as 

the source of the reduced sulfur was non-cycling. Furthermore, cysteine acts as a precursor for 

cofactors and iron-sulfur clusters (Hell, 1997; Beinert, 2000).  

As representatives of the secondary metabolites the individual GSLs were measured in the 

leaves by HPLC (Fig. 5; Fig. S3, S4). As the sulfur-containing amino acid methionine acts as 

the precursor for the biosynthesis of aliphatic GSLs those are more sensitive to sulfur deficiency 

than the indolic and aromatic GSLs (Mailer, 1989). In agreement with our results after 4 d of 

sulfur-deficient conditions only the aliphatic GSL were significantly decreased in their content, 

whereas the indolic and the aromatic ones were unaffected in their content by the treatment. 

Regarding the oscillations of the content of the aliphatic, indolic and the one aromatic GSLs 

ultradian rhythms were shown which were altered under sulfur-deficient conditions. Ultradian 

rhythms show oscillations shorter than 20 h and were already reported to occur in plants for a 

number of processes such as glycolysis, sap flow, enzyme activity, root elongation, and leave 

movements (Salisbury and Ross, 1992; Solheim et al., 2009, Iijima and Matsushita, 2011). Rosa 

et al. (1998) found a significant variation in the total and individual GSLs levels during a single 

day in B. oleracea as well, whereas these were most prominent when plants were grown at 30°C 

compared to the optimal growth temperature of 20°C. In this context the sensitivity to 

temperature of the ultradian rhythms is discussed. At an optimal temperature for the growth and 

development the photoperiod influences the synthesis of major GSLs, whereas under 

temperatures close to inducing stress variations are likely to derive from the temperature (Rosa 

et al., 1998). For vegetative growth of canola the optimum temperature is 25°C (Edwards and 

Hertel, 2011). The plants in our study were grown under 22°C which is in the ideal temperature 

range of canola plants. Thus, ultradian rhythms might not be derived from the temperature. As 
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the oscillations in the content of all GSLs measured in our study were dependent on the sulfur 

status the ultradian rhythms might derive from the sulfur supply the plants were grown under. 

In plants harvested in LL conditions the oscillations in the content of the indolic and aromatic 

GSLs were maintained under both sulfur regimes indicating that the biosynthesis might be 

regulated by an endogenous mechanism which can be altered by the sulfur supply. Furthermore, 

the rhythmic oscillations in the content of the aliphatic GSLs were absent under free-running 

conditions in plants grown under sulfur-deficient conditions. Regarding the total sulfur content 

and sulfate-sulfur measured in this study the content was further decreased in plants grown 

under sulfur-deficient conditions and harvested in LL conditions. It can be assumed that such 

low levels led to the loss of the rhythmic oscillations in the content of the aliphatic GSLs as the 

biosynthesis of the aliphatic GSL is more sensitive to sulfur-deficient conditions (Mailer, 1989). 

These results indicate that the sulfur status the plants are grown under, can indeed influence the 

rhythmic oscillations of the GSLs. This needs to be further investigated for example by reducing 

the sulfur supply even further or increasing the sulfur supply verifying the nature of the 

ultradian rhythms. Regarding the dependence of the oscillations in the content of the GSLs on 

the sulfur supply, the time of application of sulfur to the plants might also be a factor influencing 

the oscillations. This needs to be analyzed as well in further experiments. Nevertheless, so far 

only in the study by Rosa et al. (1998) ultradian oscillations in the content of GSLs in B. 

oleracea were reported. Diurnal oscillations in the content of the GSLs were already shown in 

A. thaliana (Huseby et al., 2013) where the total GSL content was increased during the day 

which is contradictory to measurement of the GLSs in B. oleracea as they accumulated in the 

night (Rosa et al., 1998). These different outcomes were reasoned due to different 

developmental stages of the plants. This is indeed a criterion when measuring the GSL content 

in plants. It was already shown in B. napus that the content of individual GSL can vary during 

the development (Clossais-Besnard and Larher, 1991; Fieldsend and Milford, 1994). Besides 

the temperature and the developmental stage the quality and intensity of light dependent on the 

genotype can lead to altered contents of GSLs as it was shown in B. oleracea (Pérez-Balibrea 

et al., 2008; Björkman et al., 2011). Interestingly, a circadian regulated accumulation of GLSs 

was already reported in A. thaliana and cabbage disks entrained to a 12 h light/ 12 h dark 

rhythm. Under continuous light elevated levels of GSLs were measured at the beginning of the 

subjective day and decreased amounts were measured in the subjective night (Goodspeed et al., 

2013). Nevertheless, for the GSL content in our study oscillations in the content were 

comparable to ultradian oscillations, which were highly dependent on the sulfur status. 
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4.6. Regulation of the GSL biosynthesis seems to be more complex in B. napus 

The expression analysis in this study did not include genes of the GSL biosynthesis. The 

biosynthesis of GSL in A. thaliana is well understood and a number of regulatory key genes 

have been identified so far (Sonderby et al., 2010). As genes in B. napus underwent duplications 

and subsequent functional divergence transferring the knowledge on B. napus might be 

problematic and regulation of the GSL biosynthesis might be more complex than in A. thaliana 

or another diploid Brassica spp. As a consequence multiple copies of homologues in B. napus 

are present and may exhibit a different expression pattern and functional divergence. As an 

example, for the transcript factor MYB28 regulating the biosynthesis of aliphatic GSL there are 

actually six homologues in the genome of B. napus and four in Brassica juncea being highly 

similar in their sequence to the AtMYB28 (Augustine et al., 2015; Long et al., 2016). However, 

these showed differences in their structural features exhibiting different expression patterns. 

When checking RNA-Seq derived data for GSL genes in B. napus a number of homologues 

could be found (data not shown). Comparing them resulted in most of the cases in different 

expression values regarding the sulfur status or were not even expressed at all. Thus, a brief 

analysis of all homologues have to be done first before appropriate expression analyses can be 

performed.  

Therefore, microarray data from A. thaliana was used to compare the oscillations in the 

expression of key genes involved in the biosynthesis of the GSLs with the oscillations in the 

content of GSL measured in our study. Looking at the fluctuations in the microarray analysis 

in A. thaliana (Mockler et al., 2007) for key genes involved in the biosynthesis of aliphatic GSL 

most of the genes were mainly up-regulated in the light phase and down-regulated in the night. 

These changes were highly affected by different light/dark conditions as well as for long and 

short days. The expression of the transcription factor MYB28 showed an up-regulation in the 

dark phase whereas this was only prominent in plants exposed to LL conditions. This was also 

the case when comparing the expression of genes involved in the biosynthesis of indolic and 

benzenic GSLs where the genes were highly affected also under light conditions. For example, 

AtSOT16 and SUR1 showed under light/dark conditions an up-regulation in the light phase 

whereas under LL conditions they were up-regulated in the dark phase instead. To summarize, 

the oscillations for the GSLs measured in our study are not comparable to the microarray of A. 

thaliana derived data for the corresponding genes.  
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4.7. The relationship of the time-dependent susceptibility in B. napus and the sulfur 

metabolism 

That the defense response in plants is under circadian control was already shown in the model 

plant A. thaliana (Bhardwaj et al., 2011; Ingle et al., 2015). In the study from Bhardwaj et al. 

(2011) the susceptibility to the bacterial pathogen Pseudomonas syringae could be 

demonstrated as circadian controlled. In the morning, plants showed highest resistance and thus 

decreased bacterial growth compared to plants infected in the evening with an increase of 

bacterial growth under free-running conditions. This could also previously be demonstrated for 

infecting A. thaliana with the fungus Botrytis cinerea where the susceptibility towards the 

fungus was influenced by the circadian regulated jasmonate signaling pathway (Ingle et al., 

2015). Therefore, a possible dependence of the susceptibility on the daytime in B. napus to the 

fungus V. longisporum was analyzed. Thus, plants were infected at different time points and 

additionally grown under sufficient sulfur supply as well as under sulfur-deficient conditions 

for enhancing the susceptibility (Fig. 1A). In our study this could not be determined properly 

as no significant differences among infected and non-infected plants and therefore, no 

differences between the infection time points could be observed. Preliminary qPCR data using 

primer for the ITS regions surrounding the 5.8S rDNA specific for V. longisporum were used 

based on previous studies (Eynck et al., 2007; Reusche et al., 2013). As the amount of fungal 

DNA might have been too low or not present at all in the plants harvested, detection by qPCR 

was not successful (data not shown). A promising candidate for the proof of successful infection 

was PR2 as this was only up-regulated in infected plants according to RNA-Seq derived data 

(data not shown). The PR2 encodes a β-1,3-glucanase which is proposed to be involved in the 

degradation of the cell walls of invading fungal pathogens by catalyzing endo-type hydrolytic 

cleavage of the 1,3-ß-D-glucosidic linkages in β-1,3-glucans (Leubner-Metzger and Meins, 

1999). It was also reported that the PR2 protein is involved in the generation of elicitors 

inducing defense responses (van Loon et al., 2006). Furthermore, PR2 is suggested to function 

as a modulator of callose- and SA-dependent defense response (Oide et al., 2013). However, 

detection of PR2 by Northern blot analysis in plants 7 dpi (Fig. 6) could not determine the 

infection clearly as transcripts could also be determined in control plants. It can be postulated 

that PR2 might be up-regulated at an early developmental stage as part of the defense system 

even in the absence of an infection. The samples used for the RNA-Seq analysis were from 

plants harvested at a later developmental stage (Weese et al., 2015). For the samples the PR2 

was only detectable in infected plants (data not shown).  
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Consequently, the infection itself might not have been successful or the infection rate was too 

low. Nevertheless, for plants harvested 7 dpi differences between non-infected and infected 

plants could be observed. Levels of cysteine and GSH have been suggested as markers for the 

elevated activity of primary sulfur metabolism after pathogen infection (Kruse et al., 2007). In 

experiments where A. thaliana plants grown under 50 or 500 µM sulfate supply were sprayed 

with Alternaria brassicola their contents increased upon infection until 7 dpi under both sulfate 

regimes. This was not the case for the results in our study, as in plants grown under sulfur-

sufficient conditions supply no differences in the thiol content between the infected and non-

infected plants were determined (Fig. 8). Under sulfur-deficient conditions differences were 

measured, but without a clear trend regarding the infection time point. If there is a higher 

susceptibility of B. napus against V. longisporum in the night, one would expect a higher degree 

of accumulation in the GSH content due to a higher infection rate. Thus expression of genes 

involved in the sulfur assimilation would be increased as well. This could not be determined in 

this study properly (Fig. 6). Furthermore, accumulating thiols would require a higher degree of 

uptake of sulfate compared to plants infected in the morning, fulfilling the demand for an 

efficient defense response. Expression analysis of Sultr4;2 in this study would support this 

assumption as in plants infected in the evening and grown under sulfur-deficient conditions 

transcripts of the transporter could not be detected anymore. This can be correlated with the 

total sulfur amount measured in leaves 7 dpi where higher amounts compared to non-infected 

plants were measured (Fig. 7). Therefore, it can be postulated that the efflux of sulfate from the 

vacuole would not be necessary anymore leading consequently to a decrease of the transcript 

amount of the transporter Sultr4;2.  

The plant secondary metabolites are also involved in the plant defense (reviewed in Bloem et 

al., 2014). Among them the GSLs, only present in the Brassicales, are involved in more than 

one way. The breakdown products exhibit anti-fungal effects (Brown and Morra, 1997). Thus 

one would assume that in infected plants the amount of GSLs would be decreased and might 

correlate with the rate of infection. This is contradictory to the measurements of the GSLs in 

our study (Fig. 9). Upon infection the GSLs were increased in the plants. It can be postulated 

that accumulation of the GSLs and therefore, an up-regulation of the genes involved in the 

biosynthesis might be involved in an early defense response of B. napus to the infection with 

the fungus V. longisporum. In an infection experiment with A. thaliana and Sclerotinia 

sclerotiorum genes involved in the GSL biosynthesis were up-regulated upon infection and 

elevated levels of aliphatic and indolic GSLs content could already be measured 48 h post-

inoculation in infected plants (Stotz et al., 2011). Furthermore, in a study, where Brassica rapa 
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was treated with different signal molecules such as methyl jasmonate and jasmonic acid (JA) 

the content of indolic as well as well as of aliphatic GSLs was increased (Wiesner et al., 2013). 

As the JA is involved in the innate immunity in plants it is likely that upon infection the 

biosynthesis of the GSLs is up-regulated by the JA (Robert-Seilaniantz et al., 2011) An increase 

in the indolic GSLs after infection is likely to occur as these act as signal for the callose 

deposition (Clay et al., 2009). Regarding the differences in the measured contents for the GSLs 

for the different infection time points in plants grown under sufficient-sulfur supply most 

prominent differences were determined at 12 h as here the content of the GSLs was increased 

in a higher degree in infected plants compared to the other infection time points. Under sulfur-

deficient conditions, however, infecting plants at 16 h resulted in a higher degree of 

accumulation of the GSLs compared to non-infected plants.  

Results for this experiment gave only hints that there might be a dependence of the 

susceptibility on the time point of infection. One could suggest from the results that plants 

infected at 16 h were more susceptible or resistant as here the total sulfur and the GSH content 

as well as some GSLs accumulated in a higher degree compared to the other infection time 

points. Determining an increased or decreased susceptibility based on the data obtained in this 

study were not successful. Therefore, the experiment needs to be repeated as no final 

conclusions could be drawn yet. Before a reliable detection method need to be developed 

enabling the quantification of the fungus at an early infection stage, either by a PCR method or 

microscopically. Probably a more efficient infection system has to be applied as well. An option 

would be the use of a non-resistant variety to obtain larger differences between infected and 

non-infected plants. Although the variety Genie shows a V. longisporum resistance ranked from 

middle to good in a previous study this variety was next to Exocet more affected by the infection 

(Weese et al., 2015). Results clearly showed a reaction due to the infection with V. longisporum 

such as the decreased biomass and altered physiological parameters such as the leaf temperature 

as well as the accumulation of sulfur-containing metabolites. However, results obtained from 

the study described in Weese et al. (2015) could not be reproduced.  

 

Conclusions 

A growth system for B. napus was established to investigate circadian aspects in the sulfur 

metabolism. In this study the circadian period of the clock in B. napus plants entrained to a 12 

light/ 12 dark rhythm was 23 h, probably as an adaption to the temperature the plants were 

grown under. We were able to show diurnal oscillations of genes involved in the transport and 

reduction of the sulfate with a period comparable to that of CCA1. As under free-running 
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conditions the amplitude was lowered and a shift in the phase was determined the circadian 

control could not be determined unambiguously. The same could be shown for the GSH content 

measured in the plants. The use of continuous light in this study might have underestimated 

circadian oscillations as it might have resulted in a stress response affecting the sulfur 

metabolism in the plants. The GSLs showed ultradian oscillations which were altered by the 

sulfur supply the plants were grown under. Probably the concentration of single GSLs is not 

regulated by the circadian clock but in an ultradian way. The infection experiment needs to be 

repeated as the infection rate was too low to be detected and to cause major significant 

transcriptomic and metabolic changes. The analysis of mutants or transgenes in key genes in 

cysteine and GSH biosynthesis could clarify whether contents of sulfur-containing metabolites 

are only regulated by the circadian clock because they need reducing equivalents produced in 

photosynthesis or whether they act as signal molecules. 
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Supporting information 

 

Figure S1. Northern blot analysis of the GOIs under diurnal/circadian conditions. Transcript amounts were 

determined in plants (with five fully expanded leaves) grown with 1 mM MgSO4 as a control and 0.01 mM MgSO4 

for four days to obtain S-deficient conditions. Plants grown under 12 h dark/ 12 h light (LD) were harvested over 

a period of 36 h every 4 h starting 1 h before the onset of light (first row). In addition, plants grown in a chamber 

with 24 h light (LL) were parallel harvested beginning at 16 h (second row). Total RNA was isolated, and for 

Northern blot analysis 15 µg RNA was electrophoretically separated and transferred onto membranes. For the 

detection DIG labeled probes were used. Results for one technical replicate are shown. For abbreviations see Table 

1. 
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Figure S2. The content of sulfate-sulfur in the leaves under diurnal/circadian conditions. The sulfate content 

in the plant material treated and harvested as described for Figure 2 was determined in 500 mg freeze dried material 

by ion chromatography. Calculated data for the sulfate-sulfur in mg g-1 DW represent two technical replicates 

±SD. 
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Figure S3. Individual aliphatic GSL in leaves under diurnal/circadian conditions. Individual aliphatic GSL 

were identified by LC-MS and quantified by HPLC measurements in plants treated and collected as described in 

Figure 2. The contents of the GSLs were calculated in µmol g-1 FM. Data represent the mean of three technical 

replicates ±SD. 



CHAPTER 4 

143 
 

 

 

Figure S4. Individual indolic GSL in leaves under diurnal/circadian conditions. Individual indolic GSL were 

identified by LC-MS and quantified by HPLC measurements in plants treated and collected as described in Figure 

2. The contents of the GSLs were calculated in µmol g-1 FM. Data represent the mean of three technical replicates 

±SD. 
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Table S1: Two-way ANOVA analysis of the expression data and the measured sulfur-containing compounds 

under diurnal and circadian conditions. 

 p-value 

 Sulfur status (S) Time point of harvest (T) SxT 

APR2 0.0002 <0.0001 0.0245 

APR3 <0.0001 0.0001 0.0048 

CCA1 <0.0001 <0.0001 <0.0001 

Sultr3;1 0.6414 <0.0001 0.4611 

Sultr4;2 <0.0001 0.0001 0.0011 

Total sulfur <0.0001 0.0063 0.0281 

Sulfate <0.0001 <0.0001 <0.0001 

GSH 0.0118 <0.0001 0.1556 

Cysteine 0.0212 0.8352 0.4920 

Aliphatic GSLs <0.0001 0.0001 <0.0001 

Indolic GSLs 0.7735 <0.0001 <0.0001 

Progoitrin <0.0001 0.0004 <0.0001 

Glucoraphanin <0.0001 0.0106 0.0535 

Glucoalyssin <0.0001 0.0002 <0.0001 

Gluconapin <0.0001 0.0057 0.0016 

Glucobrassicanapin 0.0004 <0.0001 <0.0001 

Glucobrassicin 0.7067 <0.0001 <0.0001 

Gluconasturtiin 0.6170 <0.0001 <0.0001 

Neoglucobrassicin 0.1013 <0.0001 <0.0001 
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Table S2: Three-way ANOVA analysis of the expression data and the measured sulfur-containing 

compounds under diurnal and circadian conditions.  

 

 

 

  p-value 

 Sulfur 

status 

(S) 

Time point 

of harvest 

(T) 

Light 

(L) 

SxL SxT LxT SxLxT 

APR2 <0.0001 <0.0001 0.0561 0.2427 0.0135 0.0007 0.2067 

APR3 <0.0001 0.0217 0.0072 0.0119 0.0646 0.2059 0.0141 

CCA1 <0.0001 <0.0001 <0.0001 0.0291 <0.0001 <0.0001 <0.0001 

Sultr3;1 0.0723 <0.0001 <0.0001 0.6544 0.7347 <0.0001 0.3965 

Sultr4;2 <0.0001 0.0183 0.2711 0.7722 0.0741 0.1772 0.1239 

Total sulfur <0.0001 0.0312 <0.0001 0.1850 0.0030 0.0938 0.6654 

Sulfate <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

GSH 0.0002 0.0002 0.0018 0.1910 0.0396 0.0003 0.6312 

Cysteine 0.0001 0.3206 0.1863 0.7663 0.3350 0.8574 0.7001 

Aliphatic GSLs <0.0001 0.1421 <0.0001 0.6490 0.0001 0.0212 0.0153 

Indolic GSLs 0.3288 0.0066 0.1931 0.4712 0.0209 0.4621 0.2137 

Progoitrin <0.0001 0.2401 <0.0001 0.6282 0.0015 0.0321 0.0087 

Glucoraphanin 0.0007 0.4794 0.5492 0.2016 0.9431 0.4455 0.4128 

Glucoalyssin <0.0001 0.6481 0.0015 0.4506 0.0196 0.0436 0.0065 

Gluconapin <0.0001 0.5670 0.5549 0.1429 0.1434 0.2888 0.0608 

Glucobrassicanapin <0.0001 0.0013 <0.0001 0.6470 <0.0001 0.0001 0.1741 

Glucobrassicin 0.0757 0.0298 0.1026 0.1670 0.0004 0.2213 0.6741 

Gluconasturtiin 0.4192 0.0082 0.0007 0.5925 0.0129 0.6681 0.7074 

Neoglucobrassicin 0.3110 0.0001 0.4120 0.9839 0.0487 0.8406 0.1761 
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Problems in detecting the infection in B. napus with V. longisporum 

Infection of plants in general is accompanied by disease symptoms which can help detecting 

the infection by a certain pathogen. By using an assessment key disease symptoms as well as 

the progress of infection can be evaluated (Eynck et al., 2007). Typical symptoms upon 

infection with V. longisporum are wilting, stunting, chlorosis, vascular discoloration, and early 

senescence (Fradin and Thomma, 2006). These frequently observed symptoms cannot be found 

in infected B. napus plants under field conditions. Here only later in the growing season dark, 

unilateral striping on the stem appears (Heale and Karapapa, 1999). However, infecting B. 

napus by artificial root dip inoculation exhibited the typical symptoms mentioned above (Eynck 

et al., 2007, 2009; Zeise and Tiedemann, 2002). Therefore, by using an assessment key disease 

symptoms as well as the progress of infection can be evaluated (Eynck et al., 2007). Symptoms 

in this key were only focused on the yellowing and black veins which were absent in infected 

plants from the experiments described in Chapter 2, making the use of this key inappropriate. 

The only symptom detectable was the stunting growth of the infected plants by measuring the 

weight showing a decreased biomass as well as a lower shoot to root ratio. However, nowadays 

molecular methods have been developed for improving the accuracy and reliability detecting 

the infection. One of those is the PCR-based method with the internal transcribed spacer (ITS) 

as target DNA to amplify. This region enables the unambiguous molecular identification of 

fungi. The gold standard method for detecting the fungus in the plants is currently the 

quantitative real time PCR (qPCR). The high sensitivity and specificity of this technique 

enables the accurate quantification of the target pathogen. Therefore, the progress of the disease 

can be monitored (Garrido et al., 2009). This technique was successfully applied for detecting 

V. longisporum in B. napus plants (Eynck et al., 2007). After 7 dpi the fungus was already 

detectable in the hypocotyls of infected plants increasing steadily until 35 dpi. The detection of 

V. longisporum in the leaves was positive after 14 dpi. In this study, however, detecting the 

fungus by PCR-based detection of the ITS marker in the hypocotyl of infected plants from the 

experiments described in Chapter 2 and 4 at an early stage was not successful. Data of qPCR 

analysis revealed no differences between the control and infected plants. This might be 

explained by the use of resistant cultivars in this study. The systemic spread of V. longisporum 

in a resistant B. napus cultivar in comparison to a susceptible cultivar was already analyzed 

(Eynck et al., 2009). The authors observed that vascular occlusions and deposition of the cell 

wall-bound phenolics and lignin inhibited the systemic spread of the fungus. Thus detecting 

fungal DNA with qPCR in the hypocotyl tissues resulted in very low amounts of amplified 

DNA until 65 dpi. In a very recent experiment we were able to detect the fungus in the hypocotyl 
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of infected plants 28 dpi by qPCR analysis, whereas these plants were infected in a different 

way resulting probably in higher infection rates (data not shown). Based on these results the 

infection method should be modified and optimized for further experiments. For a distinct 

detection of the fungus infection experiments need to be prolonged as the fungus can only be 

detected in a later stage than 7 dpi. For analyzing the effect of the infection at an early stage it 

would be necessary to harvest only one part of the plants and let the other part grow longer. 

Then the infection could be detected at a later stage in the remaining plants. However, regarding 

the sulfur-deficient conditions the plants were grown in the experiments described in Chapter 

2 and 4 it might be difficult to keep the plants alive. Another option would be to apply sulfur-

deficient conditions at a later stage as it was performed for the experiments described in Chapter 

3 and 4, respectively. Nevertheless, a distinct detection of the fungus may require weeks which 

could not be scheduled in this study for repeating the experiment described in Chapter 4. In 

addition, a more susceptible cultivar than the cultivars used in our studies with a resistance 

ranging from average to good, should be used for further experiments. 

 

The sulfur-enhanced defense in B. napus against the fungus V. longisporum under 

different sulfur regimes 

One aim of this study was to investigate the SED in B. napus in response to the infection with 

V. longisporum (Chapter 2 and 4). According to the SED plants are more susceptible under 

sulfur-limiting conditions. This was verified in the experiment described in Chapter 2 by 

chlorophyll fluorescence measurements where the photosynthesis efficiency was significantly 

decreased in infected plants grown under sulfur-deficient conditions. Furthermore, the 

reduction in biomass production was further increased by the infection under sulfur-limiting 

conditions. Regarding the contents of total sulfur and the sulfur containing compounds this 

relationship became less distinct. Therefore, it was calculated for both sulfur regimes how the 

content of the sulfur-containing compounds were changed with an infection and how much of 

the sulfur in these compounds is actually involved in the pathogen defense in relation to the 

total sulfur content (Table 1). In this calculation the GSLs content was included as well. The 

method for measuring the GSLs in B. napus had to be established first before the samples from 

the experiments described in Chapter 2 could be measured (Hornbacher, 2016). Only a small 

percentage of the sulfur in the measured compounds was involved in the pathogen defense 

(Table 1). In the cultivars Exocet and Compass the total of sulfur involved the pathogen defense 

accounted only for 0.51% and 0.60% under full sulfur supply. In Genie and King10 more sulfur 
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was involved in the pathogen defense under full supply accounting for 0.92% and 0.95% 

respectively. Under sulfur-limiting conditions in Compass nearly the same percentage was 

involved in the pathogen defense. For the other cultivars the sulfur involved in the pathogen 

defense was higher under sulfur-deficient conditions compared to sulfur-sufficient conditions. 

For Exocet the sulfur accounted for 0.68% and in King10 the percentage was doubled. In the 

cultivar Genie the highest percentage with 2.53% of sulfur was involved in the pathogen 

defense under sulfur-deficient conditions. Based on these data one would assume that the 

infection in Compass and Exocet is not necessarily dependent on the sulfur status the plants 

were grown under. Whereas for the cultivar Genie and King10 the infection is influenced by 

the sulfur status. The small fractions calculated are in accordance with field experiments where 

the infection of B. napus with Pyrenopeziza brassicae led to an increase in the cysteine-sulfur 

which only comprises 0.2% of the total sulfur in the leaves. The decrease of GSH-sulfur 

accounted for less than 1% after the infection (Salac, 2005, Haneklaus et al., 2007). Regarding 

the single sulfur-fractions the cultivars showed differences especially under sulfur-deficient 

conditions in their reaction to the fungus. For all cultivars under full sulfur supply the sulfur in 

the aliphatic GSLs was degraded. For the cultivar Genie and King10 the degradation comprised 

0.8% and for the cultivar Exocet and Compass 0.45% of the total sulfur content respectively. 

Therefore, the aliphatic GSLs seems to play a major role in the pathogen defense in B. napus 

against V. longisporum when plants are grown with sufficient sulfur supply. The breakdown 

products of the aliphatic GSLs exhibit antifungal activity (Manici et al., 1997, Sarwar et al., 

1998) and certain GSL breakdown products are able to inhibit the growth of V. longisporum 

(Witzel et al., 2013). This would be one explanation for the decrease in the aliphatic GSLs. 

Another possibility for the decrease would be the translocation of the aliphatic GSLs from the 

shoots to the roots as the primary infection site (Madsen et al., 2014, Witzel et al., 2015). The 

involvement of the breakdown products in the pathogen defense in B. napus in response to 

infection with V. longisporum might be clarified by including measurements of the breakdown 

products and GSL measurements in the roots. Under sulfur-deficient conditions the aliphatic 

GSLs were accumulating in infected plants except for the cultivar Compass. In the infection 

experiment with A. thaliana and V. longisporum from Witzel et al. (2015) the infection might 

have led to an inhibition of the production of breakdown products as these were reduced in their 

content. This could be a possible explanation for the accumulation of the aliphatic GSLs under 

sulfur-deficient conditions. The breakdown products from aromatic GSLs are also known to 

exhibit antifungal effects (Manici et al., 1997, Sarwar et al., 1998). However, gluconasturtiin 

was likely to be increased in infected plants under both sulfur regimes, whereas under sulfur-
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deficient conditions a higher degree in the accumulation occurred. The indolic GLSs are known 

to be involved in the activation of the innate immunity protecting the plant against fungal 

penetration as possible precursor for the camalexin biosynthesis (Bednarek et al., 2009, Clay et 

al., 2009). Except for Compass the content of the indolic GLSs was increased after infection 

under full sulfur supply and accounted for less than 0.05% of the total sulfur. Due to sulfur-

deficient conditions the accumulation in infected plants was further increased and accounted 

for a maximum in King10 of 0.46% of the total sulfur. Comparing the involvement of the sulfur 

in the GSLs in the pathogen defense the cultivars can be ranked in the following order starting 

with the cultivar with the highest percentage of GSL-sulfur: King10, Genie, Compass and 

Exocet. This can be correlated with the resistances in the cultivars as King10 is the least and 

Exocet the most susceptible cultivar (Chapter 2). As the double low cultivars are modified in 

their GSL content the contribution of the GSLs to plant defense was doubted. This was 

supported by experiments with Brassica lines differing in their GSL levels but the resistance to 

fungal attacks failed to correlate with high and low GSL levels (Mithen and Magrath, 1992; 

Mithen, 1992; Wretblad and Dixelius 2000). Results in our study clearly showed a change in 

the content of the GSLs in plants upon infection compared to non-infected plants and might 

therefore contribute to the plant defense in B. napus against V. longisporum. For all cultivars 

the sulfur incorporated in cysteine was likely to be increased after infection under both sulfur 

regimes and accounted for less than 0.04% of the total sulfur content. Regarding the 

involvement of cysteine in the HR an increase is likely to be occur upon infection as the 

metabolite (Álvarez et al., 2012). For the cultivars Genie and Exocet the GSH-sulfur was 

increased upon infection under full sulfur supply, whereas in Compass and King10 the sulfur 

in GSH was degraded. For the pathogen defense in the cultivars Genie, Exocet, and King10 the 

increase of the GSH-sulfur accounted for 1.4%, 0.40%, and 0.46% of the total sulfur content. 

In Compass the degradation of the GSH-sulfur comprised 0.02 % of the total sulfur content. 

The accumulation of GSH is induced by pathogen infection and rapidly accumulating after 

fungal attack and may act as a messenger for non-infected tissues by carrying information 

concerning the pathogen attack (Edwards et al., 1991; Foyer and Rennenberg, 2000). As the 

GSH for the cultivars was further increased in infected plants under sulfur-deficient conditions 

one can assume a higher susceptibility. As the cultivar Genie incorporated the highest 

percentage in GSH upon infection it can be postulated that this cultivar was more susceptible 

to the infection which is contradictory to the internal resistance in Genie. The relationship 

between the sulfur status and the infection is not always clear. The time of harvesting the plants 

seems to be one critical point as for example shown by Kuzniak and Sklodowska (2005). 
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Enzymes involved in the detoxification of ROS were significantly increased immediately after 

infection, whereas after two days the activity decreased again. Same could be observed for H2S 

in the infection experiment with B. napus and P. brassicae as the H2S increased relatively fast 

after the infection (Bloem et al., 2007). In the study from Kruse et al. in 2012 infected A. 

thaliana plants grown under optimal sulfur supply were able to react faster to the infection 

compared to plants under sulfur-limiting conditions. Already after 1 dpi only plants with 

optimal sulfur supply showed elevated levels of GSH and GSLs. The increase of GSH after 

infection was reported for a number of infection experiments whereas this was only the case 

over a period of time until the content decreased (Edwards et al., 1991, Foyer and Rennenberg, 

2000). This indicates that measuring the sulfur containing compounds and corresponding genes 

involved in the pathogen defense is strongly dependent on the time the plants are harvested. 

There might have been greater differences for the sulfur-containing compounds between plants 

with full sulfur supply and plants grown under sulfur-deficient conditions in this study at an 

earlier stage of the infection. This should be investigated in further experiments. Therefore, 

conclusions on the SED cannot always be drawn properly. Nevertheless, results in this study 

clearly showed that the different resistances resulted in different reactions in the sulfur 

metabolism dependent on the sulfur supply. As the total sulfur content was likely to be increased 

upon the infection under both sulfur regimes it would be interesting to calculate the distribution 

of the sulfur fraction in infected plants. However, this was not possible as the sulfate 

measurement for all samples could not be performed. It is likely that the uptake of sulfate was 

increased upon infection as under sulfur-deficient conditions the expression of the sulfate 

transporter Sultr4;2 was down-regulated in the experiments described in Chapter 2 and 4. This 

needs to be further investigated by the analysis of other sulfate transporters and sulfate 

measurements. As the measured sulfur-containing metabolites in the experiment described in 

Chapter 2 accounted for only a small percentage of the total sulfur (Table 1) measurements of 

other sulfur-containing compounds should be included in further studies as well. The sulfur-

containing phytoalexin camalexin as an example is involved in the pathogen defense as well 

and accumulates during HR (Foyer and Rennenberg, 2000; Hammerschmidt and Nicholson, 

2000).  
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Table 1: Change in the content of the sulfur-containing compounds in the of leaves of four B. napus cultivars after infection 

with V. longisporum grown under 0.01 and 1 mM MgSO4 and the change in relation to the total sulfur content in the plants. 

The data for the GSLs were taken from Hornbacher, 2016. Values are based on the mean of the five harvesting time points. 

cultivar sulfur-fraction after the infection [µg g-1] share in the total sulfur (%) 

  1 mM 0.01 mM 1 mM 0.01 mM 

Compass aliphatic GSLs-S -19.64 -1.75 0.4530 0.2070 

 indolic GSLs-S -2.54 1.18 0.0587 0.1403 

 aromatic GSLs-S 0.36 1.41 0.0082 0.1675 

 Cysteine-S 1.08 0.34 0.0249 0.0399 

 GSH-S -2.46 -0.18 0.0568 0.0211 

 total   0.6016 0.5785 

Exocet aliphatic GSLs-S -17.46 0.69 0.4027 0.0817 

 indolic GSLs-S 1.39 0.61 0.0321 0.0720 

 aromatic GSLs-S 0.01 0.59 0.0002 0.0696 

 Cysteine-S 1.12 0.20 0.0259 0.0242 

 GSH-S 2.25 3.62 0.0519 0.4292 

 total   0.5128 0.6767 

Genie aliphatic GSLs-S -42.49 2.94 0.7901 0.3710 

 indolic GSLs-S 2.16 2.95 0.0401 0.3724 

 aromatic GSLs-S -1.20 2.38 0.0224 0.3005 

 Cysteine-S 0.19 0.60 0.0036 0.0754 

 GSH-S 3.56 11.19 0.0663 1.4120 

 total   0.9225 2.5313 

King10 aliphatic GSLs-S -33.69 5.10 0.7770 0.6035 

 indolic GSLs-S 2.24 3.85 0.0517 0.4559 

 aromatic GSLs-S 0.74 4.67 0.0172 0.5530 

 Cysteine-S -0.05 0.16 0.0011 0.0195 

 GSH-S -4.29 3.90 0.0990 0.4617 

 total   0.946 2.0936 
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Influence of the circadian conditions on the sulfur distribution in the leaves of B. napus 

under different sulfur regimes 

In the experiment described in Chapter 4 sulfate measurements were included. Therefore, it was 

possible to calculate the distribution of sulfur in the leaves of the cultivar Genie under 

conditions of sufficient sulfur supply and sulfur deficiency as well as under circadian conditions 

(Table 2). The two major pools of sulfur incorporated in proteins and sulfate account for 

approximately 95% (Table 1). Under sufficient sulfur supply and light/dark (LD) conditions 

71% of the total sulfur was incorporated in sulfate. Under sulfur-limiting conditions only 53% 

of the total sulfur was incorporated in sulfate as it acts as the major sulfur source in the case of 

sulfur deficiency (Blake Kalff et al., 1998). The sulfur was incorporated in proteins accounting 

for 43%. Already in 1991 it was shown from Mengel that an increasing sulfur availability 

decreases the ratio of organic sulfur to inorganic sulfur. The fraction of sulfur incorporated into 

GSLs was unaffected by the sulfur status and accounted for approximately 1,4%. This is in 

agreement with literature where the GSLs in double low oilseed rape varieties comprise less 

than 5% in vegetative tissues (Blake Kalff et al., 1998). The sulfur incorporated in GSH account 

for 1.92% under sufficient sulfur supply and 2.40% under deficient sulfur supply respectively. 

The smallest fraction accounts for the cysteine with less than 0.07% under sufficient as well as 

under deficient sulfur supply. Therefore, neither the GSLs nor the thiols acts as a sulfur source 

under sulfur deficiency. The distribution was not only affected by the sulfur status. Under 

light/light (LL) conditions more sulfur was incorporated in proteins accounting compared to 

plants grown under LD conditions. The sulfur incorporated in sulfate accounted for 54% and 

41% under sufficient sulfur supply and deficient sulfur supply of the total sulfur respectively. 

The incorporation of sulfur in the cysteine was unaffected by the LL conditions. In GSLs and 

GSH a slightly higher percentage of the sulfur was incorporated in these compounds under LL 

conditions.  
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Table 2: Distribution of the sulfur in the leaves of the B. napus cultivar Genie grown with 0.01 and 1 mM MgSO4  

under light/dark (LD) and light/light (LL). The values represent the mean of all harvesting time points ± SD in %. 

 Percentage of sulfur in sulfur fractions % 

 1 mM 0.01 mM 

 LD LL LD LL 

SO4-S 71.10 ± 15.58 53.84 ± 6.87 52.63 ± 16.31 40.54 ± 8.03 

GSLs-S 1.30 ± 0.19 1.46 ± 0.35 1.38 ± 0.26 1.40 ± 0.19 

GSH-S 1.92 ± 0.35 2.50 ± 0.47 2.40 ± 0.64 3.31 ± 0.33 

Cysteine-S 0.07 ± 0.01 0.07 ± 0.01 0.08 ± 0.01 0.07 ± 0.01 

Protein-S 25.61 ± 15.57 42.14 ± 6.93 43.25 ± 16.15 54.68 ± 7.98 

 

Sequence analysis among the canola cultivars 

In the experiment described in Chapter 2 sequence analyses between the cultivars were 

performed determining possible differences in the sequence of key genes of the sulfur 

assimilation pathway. The sequence analysis of the transporters Sultr3;1 and Sultr4;2 was 

accompanied by difficulties in the amplification of the fragments using the cDNA as templates 

(Figure 1).  

 

Figure 1: Amplification of the region of the transcripts used for expression analysis for the sulfate 

transporters Sultr3;1 and Sultr4;2 by PCR. The resulting amplicons were separated on a 1% agarose gel with a 

1 kb DNA Ladder (Thermo Fisher scientific, Braunschweig). Abbreviations: bp, base pairs; M, marker; G, Genie; 

C, Compass; E, Exocet; K, King10; Sultr, sulfate transporters. 

Except for the cultivar Genie amplification resulted in several products of different sizes for 

Sultr3;1. By changing the conditions of the PCR single bands could be amplified in the three 

cultivars Compass, Exocet, and King10 with the right size of the fragment (data not shown). 
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One possibility for the differences can be different splice variants caused by alternative splicing 

(AS). The amplificates for Sultr4;2 of Compass, Exocet, and King10 seemed to be doubled as 

the fragments comprised ~2000 bp. Blasting the forward primer for the Sultr4;2 resulted in two 

homologs of the transporter. Therefore, it might be possible that both homologs were amplified. 

This can only be clarified by sequencing the 2000 bp fragment in a further experiment. 

Changing the PCR conditions resulted in an amplificate with the right size. Sequencing results 

of the group 3 sulfate transporter revealed no differences among the cultivars. The identity of 

Sultr3;1 fragments with the homologous partial sequence in B. oleracea was 99% and in B. 

rapa 98% respectively. When blasting the sequence of Sultr4;2 from the cultivar Genie a GT-

AG Intron was found which are the most common introns. Intron gain due to transcription is 

known. The most common intron gain event is the intron transposition where an intron 

transposes or “reverse splices” into a previously intron-less position in a transcript. The intron 

containing mRNA is then reverse transcribed and result in intron-containing cDNA. As this 

intron could not be found in the RNA Sequencing (RNA-Seq) derived data the intron might be 

the result of an error made by the reverse transcriptase in the cDNA synthesis. As this 

experiment was only performed once it should definitely be repeated with newly synthesized 

cDNA. However, one has to keep in mind that only a region of the sequence of the transporter 

was analyzed. Therefore, the whole sequence of the transporters should be analyzed. The best 

option in this case would be the use of RNA-Seq as here splice variants can be determined as 

well. 

 

Figure 2: Part of the sequence alignment of the sulfate transporter 4;2 (Sultr4;2) between the cultivars King10 and 

Genie.  
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RNA-Seq analysis as a powerful tool for the expression analysis 

In the infection experiment described in Chapter 4 RNA-Seq derived data were used 

determining genes involved in the pathogen defense. Nowadays high-throughput sequencing 

technology is the standard method for measuring RNA expression levels (Mortazavi et al., 

2008). The mRNA fragmentation approach is used to gain sequence coverage of the whole 

transcript. The total number of reads for a given transcript is proportional to the expression level 

of the transcript multiplied by the length of the transcript. The longer the transcript the more 

reads are recorded compared to shorter transcripts which might be of similar expression 

(Oshlack and Wakefield, 2009). Therefore, it is necessary for the differential expression 

analysis to normalize the transcript length to the sequence which can be performed by a number 

of statistical algorithms. RNA-Seq analysis is indeed a powerful tool for expression analysis. 

However, even for this method the replicates of samples is the most significant factor for an 

accurate expression analysis (Robles et al., 2012). However, for a fast screening for possible 

candidates involved in the plant defense one replicate might be enough. Furthermore, with the 

help of the RNA-Seq derived data possible reference genes can be identified which are 

unaffected by the infection. Regarding the expression analysis for the circadian rhythm in the 

experiments described in Chapter 3 and 4 the use of only one replicate per harvesting time point 

would have been inappropriate. It would be interesting to perform the expression analysis for 

the circadian rhythm with RNA-Seq as here the whole transcriptome can be analyzed and not 

only one single gene. However, regarding the replicates and the sample amount the costs would 

be too high. The provided RNA-Seq analysis by different companies is still very expensive with 

prices ranging from 250-1200 € per sample, dependening on the type of RNA-Seq. 

Furthermore, as the genome of B. napus is very big (Chalhoub et al., 2014) the size of the data 

for one sample can comprise 10 gb. Handling the data for such a high sample amount would 

therefore, be very difficult.  

 

Conclusions and further experiments 

In this study it was determined that the sulfur metabolism of B. napus is involved in the 

pathogen defense against V. longisporum which differed among the cultivars according to their 

internal resistances. This was highly affected when plants were grown under sulfur-deficient 

conditions as here the susceptibility might have been enhanced. However, by using resistant 

cultivars typical symptoms upon the infection with the fungus were not exhibited and direct 

detection of the fungus in the plants was not possible as plants were analyzed at an early stage 
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of the infection. The involvement of the GSLs in the pathogen defense of B. napus could be 

determined. However, the way how they are actually functioning in the defense response needs 

to be further investigated. It was possible to investigate a circadian regulation in the expression 

of selected genes with a traditional method by optimizing the quantification resulting in reliable 

results comparable to modern techniques. Sulfur-containing metabolites which might be 

involved in the pathogen defense showed oscillations in their content in the course of a day as 

well. The dependence of the resistance in B. napus against the fungus V. longisporum on the 

time point could not be clearly validated in this study as the infection rate with the fungus might 

have been too low and therefore, needs to be repeated. Further experiments should be performed 

with a more susceptible cultivar enabling the quantification of the fungus for following the 

progress of the infection. The systemic spread in a more susceptible cultivar might be faster and 

therefore, detectable at an earlier stage. As the sulfur assimilation seems to be under circadian 

control experiments with mutants should be performed to clarify if the circadian control is only 

based on the need for the reduced equivalents of the photosynthesis or based on the role in the 

pathogen defense. It would be interesting to analyze in future experiments the oscillations in 

infected plants to see if the fungus is able to alter the clock period. As all the experiments were 

performed under a 12 h dark/ 12 h light cycle it would be interesting to perform these 

experiments under short and long day conditions as the oscillations might change.  
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Abbreviations 

ANOVA analysis of variance 

APK  adenosine phosphosulfate kinase 

APR  adenosine phosphosulfate reductase 

APS  adenosine phosphosulfate 

ATP  adenosine triphosphate 

BLAST Basic local alignment searching tool 

Bn  Brassica napus 

C  non-infected plants 

CCA1  Clock circadian associated 1 

CE  Capillary electrophoresis 

cDNA  complementary Deoxyribonucleic acid 

DFCI  Dana Farber Cancer Institute Gene Index 

DM  dry mass 

Dpi  Day post inoculation 

EE  Evening Element 

EST  expressed sequence tags 

Et al.  Et alii 

FM  Fresh mass 

Fv/Fm  maximal PS II quantum yield 

GOI  gene of interest 

GSL  Glucosinolate 

GSH  reduced Glutathione 

H2S  hydrogen sulfide 

HPLC  High pressure liquid chromatography 

HR  hypersensistive response 

ICP-OES inductively coupled plasma optical emission spectroscopy 

ITS  Internal transcribed spacer 

INF  infected plants 

LD  light/dark 

LL  light/light 
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MgSO4 Magnesiumsulfate 

mRNA  messenger ribonucleic acid 

NPQ  non-photochemical quenching 

PAM  pulse-amplitude-modulation 

PAPS  3‘-phosphoadenosine 5‘-phosphoslufate 

PCR  Polymerase chain reaction 

PDB  potato dextrose broth 

PR  pathogen related 

PS II  photosystem II 

RNA  Ribonucleic acid 

rRNA  ribosomal ribonucleic acid 

ROS  reactive oxygen species 

RT  room temperature 

SD  Standard deviation 

Sultr  sulfate transporter 

Y (II)  effective PS II quantum yield 
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