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Abstract

Economic and financial time series often exhibit nonlinear features. In order to be able to

correctly identify the effect of shocks and to generate reliable forecasts, an appropriate model

has to be fitted to the data. In doing so, the trade-off between goodness of fit and model

complexity becomes apparent: Are the nonlinear features of the data important for further

inference or can a simpler model be applied?

In this thesis the model selection procedure between linear and nonlinear time series models is

studied with a focus on regime-switching models and structural breaks.

In Chapter 2 the performance of information criteria to detect nonlinearity and to distinguish

between different transition functions is assessed in an extensive simulation study. Since in-

formation criteria perform well in linear models, different versions are suggested that to some

degree exploit the linearity of the single regimes of the nonlinear models. Certain information

criteria and specific versions are recommended depending on the aim of application.

In Chapter 3 the influence of outlying observations on the model selection procedure is investi-

gated. Outliers generate spurious nonlinearity in linear time series. Linearity tests for example

suffer from severe size distortions in the presence of outliers. In several simulation studies the

sensitivity of information criteria to additive outliers is assessed. The results suggest that infor-

mation criteria are more robust to additive outliers than linearity tests.

Chapter 4 deals with the effect of outliers on the performance of the tests for a change in

persistence. In the simulation study the performance of the tests in uncontaminated, outlier

contaminated, and adjusted series is investigated and compared. Since additive outliers dete-

riorate the performance of the tests if the series under consideration exhibits a high degree of

persistence, additive outliers have to be located and removed before the application of the tests.

A modified outlier detection and removal method from the unit-root literature is recommended.

The tests and the outlier detection algorithm are applied to inflation data of the G7 countries.

Keywords: Information Criteria · Nonlinearity · Additive Outliers · Innovative Outliers ·

Change in Persistence · Outlier Detection
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Zusammenfassung

Ökonomische und Finanzzeitreihen weisen oftmals nichtlineare Charakteristika auf. Damit die

weitere Inferenz zuverlässige Ergebnisse liefert, muss ein Modell an die vorliegenden Daten

angepasst werden, das sämtliche wichtige Eigenschaften der Daten abbilden kann. Dabei tritt

der bekannte Zielfkonflikt zwischen Güte der Anpassung und Modellkomplexität auf: Es gilt zu

entscheiden, ob die nichtlinearen Eigenschaften der Daten wichtig für die weitere Analyse sind

und in das Modell mitaufgenommen werden oder ob ein einfacheres Modell ausreichend ist.

Die vorliegende Arbeit behandelt die Modellselektion zwischen linearen und nichtlinearen Zeitrei-

henmodellen mit einem Fokus auf Regimewechsel-Modellen und Strukturbrüchen.

In Kapitel 2 wird mittels diverser Simulationsstudien untersucht, inwieweit Informationskriterien

genutzt werden können, um Nichtlinearität zu erkennen und die Form der Übergangsfunktion

nichtlinearer Modelle zu bestimmen. Da Informationskriterien sehr gut geeignet sind, um zwi-

schen linearen Modellen zu selektieren, werden verschiedene Versionen der Informationskriterien

vorgeschlagen, die zum Teil die Linearität der einzelnen Regime ausnutzen. Je nach Ziel der

Anwendung werden bestimmte Versionen einzelner Informationskriterien empfohlen.

In Kapitel 3 wird der Einfluss von Ausreißern auf die Modellselektion untersucht. Ausreißer

erzeugen scheinbare Nichtlinearität in linearen Prozessen. Daher steigt z.B. die Wahrschein-

lichkeit für den Fehler erster Art bei Linearitätstests stark an. In umfangreichen Simulations-

studien wird die Sensitivität von Informationskriterien gegenüber Ausreißern untersucht. Die

Ergebnisse zeigen, dass Informationskriterien robuster gegenüber additiven Ausreißern sind als

Linearitätstests.

Kapitel 4 behandelt den Einfluss von Ausreißern auf Persistenzbruchtests. In verschiedenen

Simulationsstudien wird das Abschneiden der Tests in unkontaminierten, kontaminierten und

bereinigten Reihen untersucht und verglichen. Die Ergebnisse zeigen, dass additive Ausreißer

in Reihen mit einer hohen Persistenz die Güte der Tests verzerren. Additive Ausreißer müssen

demnach vorab lokalisiert und die Reihe um deren Effekte bereinigt werden. Ein modifizierter

Algorithmus aus der Einheitswurzel-Literatur wird dafür empfohlen. Die Tests und der Berei-

nigungsalgorithmus werden auf Inflationsdaten der G7 Länder angewendet.

Stichworte: Informationskriterien · Nichtlinearität · Additive Ausreißer · Innovative Ausreißer ·

Persistenzbruch · Ausreißerermittlung
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Introduction

For several decades linear models dominated in time series analysis and econometrics, starting

with the autoregressive model of Yule (1927) and becoming more frequently used after the in-

troduction of the modeling approach of Box and Jenkins (1970). This is due to the fact that

linear models allow for a good model fit with a parsimonious parametrization, they are easy to

estimate, and according to Tong and Lim (1980) they yield good one-step-ahead predictions.

Despite these desirable properties, linear models suffer from serious shortcomings when applied

to economic or financial time series. Real data often exhibits nonlinear features, like regime-

switching behavior or a structural break. Examples for these types of nonlinearity include the

asymmetry between recessions and expansions in the business cycle (cf. van Dijk et al., 2002)

and the change in the degree of persistence in inflation rates due to monetary policy changes (cf.

Bai and Perron, 2003 among others). Since the existing class of linear models was not able to

capture these stylized facts, multiple-regime models as well as tests and estimation procedures

to detect different types of structural breaks were introduced to incorporate nonlinearity into

time series models. As a result, the model fit and the forecast performance are improved, but

also the complexity of the models increases compared to linear models. So, there exists the

well-known trade-off between goodness of fit and model complexity.

In this thesis the model selection procedure between linear and nonlinear time series models

is studied in a univariate framework. It consists of three independent chapters dealing with

different aspects of the model selection between linear and nonlinear models. The main focus is

on regime-switching models in Chapters 2 and 3 and on changes in persistence in Chapter 4.

In Chapter 2, co-authored with Philipp Sibbertsen, the model selection between linear autore-

gressive and nonlinear threshold autoregressive models using information criteria is considered.

Regime-switching models were introduced by Tong and Lim (1980), Chan and Tong (1986), and

Hamilton (1989). The idea of this model class is to extend the linear autoregressive model with

its desirable properties to capture nonlinearity. In threshold autoregressive models two or more

linear regimes are linked via a transition function and are combined into one model. A switch

between the regimes occurs if a fixed threshold value is exceeded. In case of the self-exciting

threshold autoregressive model (SETAR) of Tong and Lim (1980) and Tong (1983), the transition

function is the indicator function, implying that the shifts between different regimes are discreet

jumps. Replacing the indicator function with a continuous function that takes values in the unit
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interval, the smooth transition autoregressive model (STAR) of Chan and Tong (1986) (cf. also

Teräsvirta, 1994) is obtained. Depending on the form of the transition function, STAR models

can be symmetric like the ESTAR or asymmetric like the LSTAR model.

To select among different linear models, information criteria are frequently applied. However,

it is not clear whether the criteria maintain their optimality properties if they are applied to

nonlinear models (cf. Clements and Krolzig, 1998) and thus, can be used instead of linearity

tests to detect nonlinearity. Therefore, in Chapter 2 different versions of information criteria

are proposed which to some extent exploit the linearity of the single regimes of the threshold

autoregressive models. Their performance is assessed in an extensive simulation study. The

results suggest that the information criteria perform well in general. Several factors influencing

the performance of the information criteria are identified and depending on the aim of applica-

tion the use of certain versions and of particular information criteria is recommended.

In Chapter 3 the sensitivity of information criteria to outlying observations is assessed.

The nonlinear features of a process can be the result of only a few observations, especially in small

to moderate samples (cf. van Dijk et al., 1999). In this case it is not clear whether nonlinearity

is an important feature of the data that should be appropriately captured by a model or whether

the few observations that generate the nonlinearity are outlying observations and the process

exhibits only spurious nonlinearity. In the presence of outliers the discrimination between linear

and nonlinear models using linearity tests becomes unreliable since the tests become oversized

and spuriously reject the null hypothesis of linearity (cf. van Dijk et al., 1999 and Ahmad and

Donayre, 2016). This is due to the fact that regime-switching models can generate data that

resembles an outlier contaminated linear process (cf. van Dijk et al., 2002).

In Chapter 3 the performance of information criteria to detect nonlinearity in outlier contam-

inated series is compared to the linearity test against SETAR nonlinearity of Hansen (1999).

The simulation results show that the information criteria can clearly outperform the linearity

test in terms of size in larger samples and for larger outlier magnitudes. Hence, information

criteria are able to detect spurious nonlinearity due to outlying observations more reliably.

In Chapter 4, co-authored with Tristan Hirsch, tests for a change in persistence are considered.

In addition to regime-switching behavior, nonlinearity can also be induced by a structural break.

This implies a change in at least one parameter value, i.e. the mean, the persistence, the trend

or the variance. Examples of a structural break might be a lower growth rate after the oil price

shock in 1973 (cf. Perron, 1989) or a change in the persistence of inflation rates due to different
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monetary policy regimes (cf. Bai and Perron, 2003 among others). Identifying a structural

break is crucial since the data generating process changes and thus, the model structure has to

be modified and updated to be able to appropriately capture the important features of the data,

to correctly forecast the series and to be able to assess the true influence of shocks. Depending

on the type of structural break, different tests and detection methods are available. An overview

is given in Perron (2006).

The tests under consideration in Chapter 4 are designed to detect a structural break in the

persistence. They exhibit a linear process under the null hypothesis, whereas under the alter-

native a change in persistence occurs and the series becomes nonlinear. In a simulation study

the effect of outlying observations on the performance of the tests is assessed. The results show

that there occur serious size and power distortions if the process is highly persistent. Therefore,

a modified version of the outlier detection method of Shin et al. (1996) is applied to remove

additive outliers before the application of the tests. In an empirical example, the tests and the

detection method are applied to the quarterly inflation rates of the G7 countries.



Chapter 2

Information Criteria for Nonlinear Time Series Models
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The Influence of Additive Outliers on the Performance of

Information Criteria to Detect Nonlinearity

3.1 Introduction

Model identification is one of the major challenges in time series analysis due to the trade-off

between goodness of fit and model complexity. In general, linear models perform as benchmark

models because they yield a good model fit while being simple and easy to estimate. Although

nonlinear models are more complex, they may be able to better capture certain characteristics of

the true data generating process (DGP), which improve the forecasting performance enormously.

However, there are factors like outlying observations that further complicate the model selection

procedure.

In order to select between linear and nonlinear models, generally, linearity tests are conducted.

Outliers can lead to serious size distortions of linearity tests and hence to a spurious selection

of nonlinear models. This is due to the fact that multiple regime models can generate data

resembling an outlier contaminated linear process (cf. van Dijk et al., 2002). So, van Dijk et al.

(1999) find that the test against smooth transition nonlinearity of Luukkonen et al. (1988b)

becomes oversized in the presence of additive outliers (AOs) and thus, the null hypothesis of

linearity is rejected too often. For a high outlier probability or large outlier magnitudes the size

decreases again, but the power of the test is deteriorated. Recently, Ahmad and Donayre (2016)

also detect size distortions but power improvements due to outliers for the test against threshold

autoregressive nonlinearity of Hansen (1996, 1997).

As an alternative to linearity tests, information criteria can be used to detect nonlinearity. So,

the application of information criteria to identify the number of regimes of autoregressive (AR)

and self-exciting threshold autoregressive (SETAR) models is treated in Gonzalo and Pitarakis

(2002), Hamaker (2009), and Rinke and Sibbertsen (2016). The selection of the model class in

general with information criteria is also considered in Kapetanios (2001) and Psaradakis et al.

(2009). Since the application of information criteria is less popular to detect nonlinearity, the

performance of information criteria in outlier contaminated time series has not been assessed

yet.

Therefore, in this paper the effect of AOs on model selection between AR and SETAR models

using information criteria is investigated by means of simulations. The influence of the outlier

magnitude, the degree of persistence, and the sample size on the performance of information

criteria is assessed. Their performance is then compared to the performance of the linearity test

against a SETAR alternative of Hansen (1999) in order to evaluate whether information criteria
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can be a useful alternative for model selection in outlier contaminated time series.

The rest of the paper is organized as follows. In Section 3.2 the model framework is presented.

In Section 3.3 the methods to detect nonlinearity are introduced. Section 3.4 contains the

simulation set-up and the simulation results. Finally, Section 3.5 concludes.

3.2 Additive Outliers in Linear and Nonlinear Time Series

According to Davies and Gather (1993) and van Dijk et al. (1999) outliers can only be defined

in the context of a certain model. In this paper linear AR(1) and two-regime SETAR models

consisting of AR(1) specifications in both regimes (SETAR(1,1)) are considered. The AR(1)

model is defined as

xt = φxt−1 + εt,

for t = 1, . . . , n, where n denotes the sample size, φ is the persistence parameter, and εt ∼

iid (0, σ2
ε). The SETAR(1,1) model is given by

xt = φ1xt−11{xt−d > c}+ φ2xt−11{xt−d ≤ c}+ εt,

where φ1 and φ2 are the persistence parameters of the first and second regime, respectively, 1{·}

is the indicator function, d is the delay parameter, and c denotes the threshold. In this set-up an

observation can be an outlier in the AR(1) process but a regular observation in the SETAR(1,1)

model. This is the reason why linearity tests tend to spurious test decisions in the presence of

outlying observations (cf. van Dijk et al., 1999).

To model outlier contaminated processes, the general replacement model of Martin and Yohai

(1986) can be used. It divides the observable contaminated process yt into an unobservable core

process xt and a contaminating process ζt,

yt = xt (1− δt) + ζt δt. (3.1)

The AR(1) and SETAR(1,1) model form the unobservable core process xt. The contaminating

process ζt models AOs according to

ζt = xt + ζ, (3.2)

where ζ is the constant outlier magnitude. In order to model symmetric contaminations, the

random variable δt takes the values 0 with the probability 1−π and ±1 each with the probability

π/2. The probability π is referred to as the outlier probability. Combining the definitions of Eq.

(3.1) and (3.2), the contaminated process can be written as

yt = xt + ζδt.
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Other specifications of the contaminating process ζt can be used to model other types of outliers,

like innovative outliers, level shifts or temporary changes (cf. Galeano and Peña, 2013). However,

the main focus in time series analysis is on AOs and innovative outliers as introduced by Fox

(1972). According to van Dijk et al. (1999) and Ahmad and Donayre (2016) innovative outliers do

not seriously deteriorate the performance of linearity tests. Therefore, this paper only considers

AOs.

The effect of an AO is illustrated in Figure 3.1. The core process follows an AR(1) process

with φ = 0.5 and εt ∼ N (0, 1). An AO of magnitude ζ = 5 occurs at observation t = 50. The

contaminated process (black) and the core process (grey) only differ at t = 50 since the AO has

no influence on the core process xt. Thus, AOs only affect one single observation. If there were

more outliers introduced in a linear process, they could be modeled as an additional regime,

favoring the alternative hypothesis of a linearity test.

Time

0 20 40 60 80 100

−
2

0
2

4
6 observable process

core process
additive outlier

1

Figure 3.1: Effect of an Additive Outlier

3.3 Discriminating Linear and Nonlinear Models

There are two strands of procedures in order to discriminate between linear and nonlinear models,

i.e. linearity tests and information criteria. There exists a variety of linearity tests designed

to detect different types of nonlinearity. In this paper the focus is on the detection of SETAR

nonlinearity. Therefore, the test against SETAR nonlinearity of Hansen (1999) is considered to

compare the sensitivity of linearity tests and information criteria to AOs.
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3.3.1 A Test against SETAR Nonlinearity

The test of Hansen (1999) is a F-type test to determine the number of regimes of a SETAR

model. Since a SETAR model with one regime equals an AR process, the test can be used to

detect SETAR nonlinearity. The focus of this paper is on the discrimination between linear

and nonlinear models, not on lag order selection. Therefore, for simplicity the lag order is fixed

at 1 and only AR and two-regime SETAR models are considered. These assumptions are not

restrictive since a model order has to be determined before the application of the test, e.g.

by using an information criterion. Therefore, only the first step of lag order determination is

simplified in this set-up. The corresponding hypotheses of the test are given by

H0 : yt ∼ AR(1) H1 : yt ∼ SETAR(1,1)

or equivalently

H0 : φ1 = φ2 H1 : φ1 6= φ2.

One of the major drawbacks of this test is the fact that both models have to be fully specified

which increases the computational effort. Estimation is done by least-squares. In the case of

the SETAR model, the autoregressive parameters are estimated conditionally on the threshold

and on the delay. For both parameters a grid search is applied, for the threshold in the interval

[y0.15, y0.85] to ensure that at least 15% of the observations lie in each regime (cf. Hansen, 1997),

and for the delay in the interval [1, p] by convention (cf. Pitarakis, 2006). Since here p is fixed at

1, the delay is given by 1 as well. The parameter vector
(
c, d, φ1(c, d ), φ2(c, d )

)
that minimizes

the residual sum of squares (RSS) of the SETAR model is selected. The test statistic is then

given by

F = n

(
RSSAR − RSSSETAR

RSSSETAR

)
.

It depends on the estimated threshold ĉ and on the estimated delay d̂ through the RSS of

the SETAR model. Since these parameters are only specified under the alternative, the test

statistic does not converge asymptotically to a standard distribution. Therefore, critical values

or p-values have to be simulated. In this paper the approach of Hansen (1999) is applied. Since

critical values have to be determined under the null hypothesis, the estimated AR(1) model is

the starting point of the simulation. So, residuals {e∗t }nt=1 are sampled with replacement from

the residuals of the AR(1) model. Under the initial condition y∗0 = 0 combined with the least

squares estimate φ̂ from the original data, the simulated dependent variable y∗t can be calculated

recursively for t = 1, . . . , n according to

y∗t = φ̂y∗t−1 + e∗t .
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For this simulated sample the test is conducted and the test statistic is saved. The procedure

is repeated 2000 times and the empirical distribution function of the simulated test statistics

is calculated. If the test statistic of the original sample exceeds the (1 − α)-quantile of the

simulated test statistics, the null hypothesis will be rejected.

3.3.2 Information Criteria

Information criteria consist of a goodness of fit term and a penalty term to prevent overfitting.

Different choices of the penalty term generate different information criteria with different char-

acteristics. Generally, AIC (cf. Akaike, 1974), SIC (cf. Schwarz, 1978), and AICc (cf. Hurvich

and Tsai, 1989) are applied. In this paper the focus will be on SIC and WIC (cf. Wu and

Sepulveda, 1998) since AIC and AICc have a tendency to select the nonlinear model and hence

are oversized, especially if the two regimes of the SETAR model are considered separately (cf.

Gonzalo and Pitarakis, 2002; Pitarakis, 2006; Rinke and Sibbertsen, 2016),

SIC = n log(σ̂2) + p log(n),

WIC = n log(σ̂2) +

(
2n (p+ 1)/(n− p− 2)

)2
+
(
p log(n)

)2

2n (p+ 1)/(n− p− 2) + p log(n)
.

The SIC tends to underfit in small samples. The WIC is a weighted version of AICc and SIC

and is supposed to combine their advantages and thus perform well independent of the sample

size.

For the SETAR model the two regimes are not considered separately, but the goodness of fit

and the number of parameters are assessed for the whole model to calculate the values of the

information criteria (cf. Rinke and Sibbertsen, 2016). Including the threshold as an additional

parameter into the number of parameters of the SETAR model and applying the unbiased error

term variance estimator

σ̂2 =
RSS

n− p− 1

prevents overfitting (cf. Kapetanios, 2001; Rinke and Sibbertsen, 2016; McQuarrie et al., 1997).

The delay is not considered to be an additional parameter since it is fixed at 1 and does not

have to be estimated.

The information criteria are calculated for both models, AR(1) and SETAR(1,1). Again, this

implies a high computational effort, because both models have to be fitted to the data by

(conditional) least-squares, similar to the estimation procedure of the linearity test. Given the

parameter estimates, φ̂ for the AR(1) and φ̂1, φ̂2, ĉ, and d̂ for the SETAR(1,1), the corresponding

RSS, σ̂2, and the values of the information criteria can be calculated and a model can be selected.

The linear model is selected if ICAR < ICSETAR.
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3.4 Simulation Study

In the simulation study AR(1) and SETAR(1,1) models with different degrees of persistence

φ, φ1, φ2 = {±0.75,±0.50,±0.25, 0.00}, different outlier magnitudes ζ = {0, 1, 2, 3, 5}, and dif-

ferent sample sizes n = {100, 250, 500, 1000} are considered. Throughout, the error terms εt are

Gaussian white noise, the delay is fixed at 1, the threshold equals 0, and the outlier probability is

π = 0.05 (cf. Ahmad and Donayre, 2016). Every series has a burn-in period of 200 observations

to avoid a starting value bias. The initial values are set to zero. The simulation results are

based on 1000 replications.

3.4.1 Size Properties

Let the size of information criterion be defined as the probability of selecting the nonlinear

SETAR(1,1) model if the true DGP is a linear AR(1) process. The upper panel of Table

3.1 tabulates the size properties of the Hansen (1999) test for the typical significance levels

α = {1%, 5%, 10%} and of the SIC and the WIC for different degrees of persistence φ.

φ = 0.25 φ = 0.75

n 1% 5% 10% SIC WIC 1% 5% 10% SIC WIC

ζ = 0

100 0.012 0.056 0.111 0.054 0.114 0.011 0.053 0.101 0.048 0.102

250 0.008 0.037 0.078 0.015 0.037 0.004 0.040 0.099 0.009 0.041

500 0.014 0.057 0.094 0.015 0.039 0.009 0.042 0.102 0.010 0.023

1000 0.010 0.044 0.089 0.004 0.014 0.015 0.060 0.102 0.006 0.024

ζ = 3

100 0.023 0.071 0.125 0.069 0.130 0.065 0.185 0.282 0.172 0.276

250 0.026 0.097 0.180 0.050 0.101 0.150 0.318 0.455 0.202 0.311

500 0.043 0.149 0.252 0.045 0.096 0.292 0.511 0.636 0.290 0.430

1000 0.101 0.307 0.450 0.060 0.144 0.554 0.781 0.867 0.454 0.621

ζ = 5

100 0.028 0.092 0.162 0.088 0.160 0.241 0.540 0.679 0.518 0.675

250 0.064 0.201 0.303 0.102 0.198 0.748 0.891 0.945 0.801 0.893

500 0.148 0.389 0.520 0.147 0.273 0.982 0.999 0.999 0.982 0.997

1000 0.398 0.659 0.787 0.304 0.475 1.000 1.000 1.000 1.000 1.000

Table 3.1: Size Properties of the Hansen (1999) Test and the Information Criteria. The DGP

is an AR(1) process with φ = {0.25, 0.75} and ζ = {0, 3, 5}.

The linearity test has good size properties independent of the persistence and more importantly



3.4 Simulation Study 14

independent of the sample size due to the sample size dependent simulated critical values. In

contrast, the size properties of the information criteria depend on the number of observations.

So, in small samples the SIC and the WIC perform like the test at the 5% and the 10% level,

respectively. For an increasing sample size the type I error of the information criteria decreases

and converges towards zero since SIC and WIC are consistent (cf. Shibata, 1986; McQuarrie,

1999; Wu and Sepulveda, 1998). This can be seen in Figure 3.2 as well.

Figure 3.2 illustrates the effect of AOs with different outlier magnitudes ζ = {0, 1, 2, 3, 5} on the

size of the linearity test and of the information criteria. In small samples n = 100 AOs only have

a minor effect on the size of the linearity test and of the information criteria. This is probably due

to the fact that there are only a few outliers (the expected number of outliers equals n ·π), which

do not form a separate regime. The effect becomes more pronounced in larger samples. For

small outlier magnitudes ζ = {1, 2} the size is not seriously deteriorated. However, for a larger

outlier magnitude ζ = {3, 5} the Hansen (1999) test becomes seriously oversized. In contrast,

the size of the information criteria decreases with the number of observations. Although the

introduction of AOs increases the size again, the overall effect is less severe than for the linearity

test. In large samples the SIC and the WIC outperform the test at the 1% and the 5% level,

respectively.

The effect of AOs on the size depends besides the outlier magnitude ζ and the sample size also on

the degree of persistence. In the two lower panels of Table 3.1 the size of the Hansen (1999) test

and of the information criteria is presented for different degrees of persistence φ and different

outlier magnitudes ζ. The higher the degree of persistence, the higher are the size distortions.

This coincides with the findings of Ahmad and Donayre (2016).
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(b) SIC
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(c) α = 5%
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(d) WIC
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(e) α = 10%

Figure 3.2: Size of the Hansen (1999) Test and the Information Criteria for Different Sample

Sizes and Outlier Magnitudes ζ. The DGP is an AR(1) process with φ = 0.25.
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3.4.2 Power Properties

Let the power of an information criterion be defined as the probability of correctly selecting

the SETAR(1,1) model. The power properties of the linearity test and of the information

criteria depend on the sample size and on the difference between the regimes of the SETAR(1,1)

model, i.e. the difference between the persistence parameters φ1 and φ2. To facilitate the

interpretation of the power results, four different scenarios are distinguished depending on the

absolute difference between φ1 and φ2.

Equal Regimes Similar Regimes Intermediate Regimes Distinct Regimes

|φ1 − φ2| 0.00 0.25 [0.50, 1.00] [1.00, 1.50]

The Power in Uncontaminated Series. The effect of the difference between the regimes

and the sample size is illustrated in Figure 3.3. The more distinct the regimes, the higher is

the power of the test and of the information criteria. For equal regimes the SETAR(1,1) model

reduces to an AR(1) process. Thus, on the main diagonal the size is depicted. In small samples

the power of the test and of the information criteria in similar regimes is relatively low. With

an increasing number of observations the differentiation between linear and nonlinear models

becomes easier and the power of the test and of the information criteria increases.
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(b) α = 1% and n = 1000
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(d) α = 5% and n = 1000
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(e) α = 10% and n = 100
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(f) α = 10% and n = 1000
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(g) SIC and n = 100
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(h) SIC and n = 1000
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(i) WIC and n = 100
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(j) WIC n = 1000

Figure 3.3: Power of the Hansen (1999) Test and the Information Criteria. The DGP is an

uncontaminated SETAR(1,1) process.
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The Power in Contaminated Series. The influence of the degree of persistence and of the

outlier magnitude in contaminated series is pointed out in Figure 3.4 for the SIC. Again, the

more distinct the regimes, the higher is the power of the SIC. However, the introduction of

AOs changes the shape of the power plots. The size of the SIC increases, especially in highly

persistent series. So, the power plot of the contaminated series with ζ = 5 and n = 100 bends

upwards at both ends of the diagonal. Therefore, the higher the absolute degree of persistence,

the higher is the size distortion. In addition to increasing selection frequencies of the SETAR

model in equal regimes, the power also increases in similar regimes with the outlier magnitude

ζ and with the sample size. So, the differentiation between AR(1) and SETAR(1,1) in similar

regimes becomes more reliable. Since the increase in power is at least partly due to the overall

increase of the selection frequency of the nonlinear model, there exists a trade-off between power

gains and size distortions.

In small samples the power decreases in distinct regimes. With an increasing number of obser-

vations the power approaches 1, but then power losses occur in intermediate regimes.
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(a) n = 100 and ζ = 0
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(b) n = 100 and ζ = 3
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(c) n = 100 and ζ = 5
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(d) n = 1000 and ζ = 0
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(e) n = 1000 and ζ = 3
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(f) n = 1000 and ζ = 5

Figure 3.4: Power of the SIC. The DGP is a SETAR(1,1) process.

Since the power plots of the Hansen (1999) test and of the information criteria look very alike,

the power plots of the contaminated series are only presented for the SIC. Instead, the change



3.4 Simulation Study 19

in power due to the introduction of AOs is visualized in Figures 3.5 and 3.6. The power for

the outlier contaminated series with ζ = {3, 5} is compared to the uncontaminated series.

Positive values indicate power gains, whereas negative values indicate power losses due to the

contamination. The border color of the power plot facets and the corresponding red-green color

bar help to quantify the change in power.

−0.5

0.0

0.5

−0.5

0.0

0.5

−1.0

−0.5

0.0

0.5

1.0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

φ
2

φ1

equalequalequalequal similarsimilarsimilarsimilar interm.interm.interm.interm. distinctdistinctdistinctdistinct

1

(a) n = 100 and α = 1%
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(b) n = 1000 and α = 1%
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(c) n = 100 and α = 5%
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(d) n = 1000 and α = 5%
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(e) n = 100 and α = 10%
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(f) n = 1000 and α = 10%
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(g) n = 100 and SIC
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(h) n = 1000 and SIC
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(i) n = 100 and WIC
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(j) n = 1000 and WIC

Figure 3.5: Change of Power for ζ = 3 compared to ζ = 0. The DGP is a SETAR(1,1) process.

In small samples AOs lead to power gains in similar regimes, which also implies size distortions

in equal regimes. In distinct regimes power losses occur. In large samples the main change is

due to the size distortions. There occur no power losses in distinct regimes. However, there can

be power losses in intermediate regimes, especially if the outlier magnitude increases (cf. Fig.

3.6).
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(a) n = 100 and α = 1%
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(b) n = 1000 and α = 1%
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(c) n = 100 and α = 5%
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(d) n = 1000 and α = 5%
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(e) n = 100 and α = 10%
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(f) n = 1000 and α = 10%
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(g) n = 100 and SIC
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(h) n = 1000 and SIC
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(i) n = 100 and WIC
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(j) n = 1000 and WIC

Figure 3.6: Change of Power for ζ = 5 compared to ζ = 0. The DGP is a SETAR(1,1) process.
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Comparison of the Hansen (1999) Test and the Information Criteria. The highest

power is achieved by the Hansen (1999) test with α = 10%. In small samples the difference

between the power of SIC and WIC compared to the test at the 10% level is negligible. Figure

3.7 depicts the power losses of the SIC and the WIC compared to the test at the 10% level for

n = 1000.
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(a) SIC and ζ = 0
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(b) SIC and ζ = 3
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(c) SIC and ζ = 5
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(d) WIC and ζ = 0
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(e) WIC and ζ = 3
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(f) WIC and ζ = 5

Figure 3.7: Comparison of the SIC and WIC with the Hansen (1999) Test at the 10% level. The

DGP is a SETAR(1,1) with n = 1000.

In uncontaminated series the power loss of SIC and WIC occurs in similar regimes. For an

increasing outlier magnitude the power loss increases in intermediate regimes. The power loss

of the SIC is larger than that of the WIC. The “power loss” of the information criteria in

equal regimes is actually the smaller size distortion. So, for the higher power of the test for

large significance levels, severe size distortions have to be accepted. The power losses of the

information criteria compared to the test approach zero with decreasing levels of significance.

In small samples SIC and WIC perform like the linearity test at the 5% and 10% significance

level, respectively. In larger samples the information criteria perform approximately like the test

at the 1% level.
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3.5 Conclusion

In this paper the effects of additive outliers on the Hansen (1999) test against SETAR non-

linearity and on the information criteria SIC and WIC are investigated. AOs with a small

outlier magnitude ζ = {1, 2} do not seriously deteriorate the performance of the test and the

information criteria. For larger outlier magnitudes ζ = {3, 5} the size increases. Especially in

persistent series and in larger samples test decisions become unreliable. Also the power can be

negatively affected by large outliers. In small samples power losses occur in distinct regimes,

in large samples in intermediate regimes. The effect of AOs on the power of the information

criteria is similar to their effect on the Hansen (1999) test. In terms of size the results differ. In

small samples of an uncontaminated series the size of SIC and WIC coincides with the size of

the test at the 5% and 10% significance level, respectively. In contrast to the test, the size of

the information criteria decreases with the number of observations and converges to zero. The

size distortions in contaminated processes are less severe. In small samples the effect of AOs is

not seriously deteriorating anyway, but in larger samples SIC and WIC are able to outperform

the test at the 1% and 5% significance level, respectively. Due to their higher robustness against

outlier contaminations in terms of size, the two information criteria are a valuable alternative

to linearity tests.



Chapter 4

Changes in Persistence in Outlier Contaminated Time Series
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Changes in Persistence in Outlier Contaminated Time Series

Co-authored with Tristan Hirsch

4.1 Introduction

Since the introduction of additive outliers (AOs) and innovative outliers (IOs) by Fox (1972),

the effect of outliers on statistical inference in time series has been investigated. Martin and

Yohai (1986) consider the effect of outliers on parameter estimation. They show that isolated

outliers induce a downward bias of the AR coefficients, whereas patches of outliers induce an

upward bias. Franses and Haldrup (1994) assess the effect of AOs on the Dickey and Fuller

(1979) unit-root test and find that the null hypothesis of a random walk is rejected too often

(cf. also Shin et al., 1996). Besides, they also consider the Johansen (1991) trace test for

cointegration and find cointegration too often. Hence, they conclude that AOs yield spurious

stationarity as well as spurious cointegration and expect similar results in case of a temporary

change. Also the performance of linearity tests is deteriorated in the presence of outliers and

nonlinear models are preferred to linear models. According to van Dijk et al. (2002) this is

due to the fact that nonlinear models can generate data resembling an outlier contaminated

linear process. So, van Dijk et al. (1999) find that the test for smooth transition nonlinearity of

Luukkonen et al. (1988b) becomes oversized in the presence of AOs. In extreme scenarios the

size distortion improves but power losses occur. In contrast, IOs do not seriously deteriorate

the performance of the test. Therefore, they conclude that the influence of AOs is much more

severe than the effects of IOs. Ahmad and Donayre (2016) find evidence for size distortions but

power improvements due to outliers for the test against threshold autoregressive nonlinearity of

Hansen (1996, 1997).

The effect of outliers on tests for a change in persistence has not been assessed yet. Therefore,

in this paper we investigate the performance of the ratio-based tests of Kim (2000); Kim et al.

(2002) and of Leybourne et al. (2007) in outlier contaminated processes. Both tests are based

on a ratio of the subsample cumulative sum of squared residuals. Outliers influence the test

statistic via the residuals and thus can lead to spurious test decisions.

In our simulation studies we vary the outlier magnitude, the sample size, and the change mag-

nitude to assess their individual effects. Furthermore, we apply the outlier detection method of

Shin et al. (1996) which is designed for unit-root testing and compare the performance of the

tests in the contaminated and in the adjusted series.

The rest of the paper is organized as follows. In Section 4.2 the model framework and the
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different outlier types are introduced. In Section 4.3 the tests for a change in persistence are

explained. Section 4.4 introduces the outlier detection and removal methods. In Section 4.5

the simulation set-up and the simulation results are presented. Section 4.6 contains a real data

example of the G7 inflation rates. Finally, Section 4.7 concludes.

4.2 Modeling Outliers and Changes in Persistence

Outliers can only be defined in the context of a certain model under consideration (cf. Davies

and Gather, 1993; van Dijk et al., 1999). In our analysis we will focus on autoregressive processes

of order 1 with and without a change in persistence,

Φ(L)xt = εt, t = 1, . . . , T, (4.1)

where T is the sample size, Φ(L) = 1 − φ1L1{t ≤ bτ · T c} − φ2 L1{t > bτ · T c}, L is the lag

operator, 1{·} is the indicator function, bτ · T c is the change point, and εt ∼ N(0, σ2
ε). There is

no change in persistence if φ1 = φ2, τ = 0, or τ = 1. A common way to model outliers in the

context of linear time series is the general replacement model of Martin and Yohai (1986),

yt = xt (1− δt) + ζtδt, t = 1, . . . , T.

The observable contaminated process yt consists of the unobservable core process xt and the

contaminating process ζt. The random variable δt takes the values −1 and 1, each with the

probability π/2, and 0 otherwise, where the probability π is the outlier probability. Allowing δt

to take positive and negative values, enables us to model symmetric contaminations. The core

process is the AR(1) model of Eq. (4.1).

Depending on the specification of the contaminating process ζt, different types of outliers are

generated, i.e. AOs, IOs, level shifts, and temporary changes (cf. Galeano and Peña, 2013). In

the context of time series mostly AOs and IOs are considered (cf. Fox, 1972; van Dijk et al.,

1999). For AOs the contaminating process ζt and the respective contaminated process yt are

given by

ζt = xt + ζ,

and yt = xt + ζδt,

where ζ is the constant outlier magnitude depending on the standard deviation of the core

process, σx. An IO contamination ζt and its observable process yt can be modeled as

ζt = xt + ζ/Φ(L)

and yt = xt +
(
ζ/Φ(L)

)
δt.
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AOs only have a one-time effect on the series since they do not affect the core process xt. In

contrast IOs have a one-time effect on the errors but influence several observations through

the dynamics of the core process. Therefore, IOs have different effects in stationary and in

nonstationary core processes. In contrast to IOs in stationary processes, the effect of an IO in

a unit-root process is permanent and similar to a level shift.

4.3 Tests for a Change in Persistence

Several procedures exist to test for a change in persistence. They include the ratio-based tests

of Kim (2000), Kim et al. (2002), Busetti and Taylor (2004), and Leybourne et al. (2007) among

others, the sub-sample augmented Dickey-Fuller-type test of Leybourne et al. (2003), and the

variance ratio test of Leybourne et al. (2004). All tests assume a constant persistence under

the null hypothesis, either I(0) like in Kim (2000) or I(1) like in Leybourne et al. (2007).

The alternative is a change from I(0) to I(1) (I(0) → I(1)) or a change from I(1) to I(0)

(I(1) → I(0)). We will focus on the test of Kim (2000); Kim et al. (2002) (the Kim test)

since it is frequently applied and on the test of Leybourne et al. (2007) (the Leybourne test)

due to its good size and power properties. The idea of the tests is to divide the time series

into two subsamples and take the ratio of the subsample cumulative sum (CUSUM) of squared

residuals. For both tests simulated critical values are tabulated for the relevant sample sizes

and significance levels of the simulation study in Section 4.5.

4.3.1 The Kim Test

Kim (2000) and Kim et al. (2002) test the null hypothesis of constant I(0) against a change in

persistence I(0)→ I(1) with the test statistic

KbτT c =
(T − bτT c)−2∑T

t=bτT c+1

(∑t
i=bτT c+1 ṽi,τ

)2

bτT c−2
∑bτT c

t=1

(∑t
i=1 v̂i,τ

)2 ,

where v̂t,τ are the residuals from the OLS regression of yt on a constant term for observations

up to bτT c to obtain invariance to a constant. Similarly, ṽt,τ are the OLS residuals from the

regression of yt on a constant term for t = bτT c + 1, . . . , T . Since the true change point τ∗

is unknown, Kim (2000), Kim et al. (2002), and Busetti and Taylor (2004) use the sequence

of statistics {KbτT c} for τ ∈ Λ, where the change fraction τ∗ is assumed to lie in Λ = [τl, τu],

an interval in (0, 1) which is symmetric around 0.5, typically [0.2, 0.8]. Following Leybourne

et al. (2007) we will only consider the maximum test. Then, the test statistic and the estimated
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change fraction are given by

MX = max
τ∈Λ

KbτT c,

τ̂ = arg sup
τ∈Λ

Ξ(τ),

with Ξ(τ) =
(

(T − bτT c)−2∑T
t=bτT c+1 ṽ

2
i,τ

)(
bτT c−2

∑bτT c
t=1 v̂2

i,τ

)−1
. The null hypothesis will be

rejected if the value of the test statistic MX is smaller or larger than the lower or upper tail

critical value, respectively.

In Table 4.1 simulated upper and lower tail critical values of the Kim test for different sample

sizes are given. They are based on 100 000 replications.

Quantile

T 0.005 0.025 0.050 0.950 0.975 0.995

50 0.534 0.910 1.185 16.878 21.588 35.050

100 0.594 0.992 1.292 17.047 21.591 34.001

250 0.647 1.087 1.402 17.776 22.425 36.033

500 0.681 1.111 1.438 17.932 22.646 35.489

1000 0.679 1.140 1.475 18.202 23.084 36.036

Table 4.1: Simulated Critical Values of the Kim Test

4.3.2 The Leybourne Test

In contrast to the Kim test, Leybourne et al. (2007) test the null hypothesis of constant I(1)

against a change in persistence from I(0) → I(1) or I(0) → I(1) with the following two-tailed

test statistic

R =
Kf (τ)

Kr(τ)
=

bτT c−2
∑bτT c

t=1 v̂2
t,τ

(T − bτT c)−2
∑(T−bτT c)

t=1 ṽ2
t,τ

, (4.2)

where Kf (τ) is the forward test statistic with v̂t,τ as defined above and Kr(τ) is the test statistic

for the reversed series. Note that a change I(1)→ I(0) is equivalent to a change I(0)→ I(1) in

the reversed series, ỹt ≡ yT−t+1, occurring at time T − bτ∗T c.

Leybourne et al. (2007) show that Kf (τ) converges in probability to zero for a change I(0) →

I(1) for all τ ≤ τ∗ and is of Op(1) if the persistence changes from I(1)→ I(0) for all τ . Kr(τ)

converges in probability to zero if I(1) → I(0) for all τ > τ∗ and is of Op(1) if I(0) → I(1) for

all τ . So, if the true change point τ∗T is known, a test of the null hypothesis I(1) against a
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change in persistence, either I(0)→ I(1) or I(1)→ I(0), can be based on Eq. (4.2), because a

ratio of Kf (τ∗) and Kr(τ∗) collapses to zero for I(0)→ I(1) and diverges to positive infinity for

I(1) → I(0). Because the true change fraction τ∗ is unknown, the test is based on the infima

of Kf (τ) and Kr(τ) for τ ∈ Λ. The null hypothesis of I(1) throughout will be rejected if R

exceeds or falls below the upper or the lower tail critical value, respectively. The estimated

change fraction τ̂ is given by arg infτ∈ΛK
f (τ) for a change I(0)→ I(1) and by arg infτ∈ΛK

r(τ)

for a change I(1) → I(0). In Table 4.2 simulated upper and lower tail critical values of the

Leybourne test for different sample sizes are given. They are based on 100 000 replications.

Quantile

T 0.005 0.025 0.050 0.950 0.975 0.995

50 0.131 0.213 0.276 3.600 4.686 7.616

100 0.117 0.194 0.256 3.950 5.149 8.572

250 0.104 0.180 0.239 4.177 5.502 9.531

500 0.100 0.177 0.234 4.278 5.684 10.017

1000 0.101 0.177 0.234 4.327 5.773 10.152

Table 4.2: Simulated Critical Values of the Leybourne Test

Leybourne et al. (2007) show that the test is conservative against a constant I(0) process. Thus,

in contrast to the Kim test the Leybourne test does not spuriously detect changes in persistence.

4.4 Outlier Detection and Removal Methods

There are several publications emphasizing the deteriorating effect of outliers on the perfor-

mance of estimation and testing methods (cf. Franses and Haldrup (1994); van Dijk et al.

(1999); Ahmad and Donayre (2016) among others). Two strands of procedures exist in order to

handle outlier contaminated series. Either the outliers have to be detected and removed before

parameters are estimated and tests are conducted, or the approaches have to be robust against

outliers (cf. e.g. van Dijk et al., 1999). Several outlier detection methods have been proposed

starting with Chang et al. (1988) and Tsay (1988). The approach of Tsay (1988) works under

the initial assumption of an uncontaminated series and consists of specification and estimation

in an outer loop and detection and removal of outliers in the inner loop (cf. Figure 4.1). In a

first step the critical value C as well as the order of an ARMA model have to be selected and

the corresponding parameters are estimated. The inner loop starts with the calculation of the

residuals and the estimation of the error term variance σ̂2
ε . For each outlier type j = AO, IO
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and each observation t = 1, . . . , T the test statistic λj,t = ζ̂j,t/σ̂j , where ζ̂j,t is the estimated

outlier effect and σ̂j is the corresponding standard deviation depending on σ̂ε, is calculated to

test the null hypothesis of no outlier of type j at observation t,

H0 : ζ̂j,t = 0 H1 : ζ̂j,t 6= 0.

Let tj denote the observation with the highest probability of being an outlier of type j. In order

to identify tj , Tsay (1988) takes the maximum of the test statistics λj,t over all t. The maximum

of both λAO,tAO
and λIO,tIO denotes the final test statistic λ to determine the outlier type and

position. If λ exceeds the critical value C the outlier is removed depending on the type and the

inner loop further iterates.

select model order

and critical value C

parameter

estimation

calculate residuals and

estimate error term variance

calculate test statistics

λAO, t,   λIO, t,   t = 1, …, T

find maximum for both outlier types
λAO, tAO

= max
t

λAO, t,   λIO, tIO = max
t

λIO, t

find maximum of test statistics

λ = max{λAO, tAO
, λIO, tIO}

λ ≥ C

remove outlier

accor. to type

λ < Cno outliers in the series

inner loop
outer loop

Figure 4.1: The Outlier Detection and Removal Method of Tsay (1988)

If the inner loop is completed after one single iteration, the algorithm stops and the series is

uncontaminated. If however the inner loop stops after iterating several times to remove outliers,

the outer loop starts again to check a refined model.

The described algorithm detects outliers sequentially, which is computationally easier and per-

forms well if there exists only a single outlier in the series but can lead to biased estimates if

there are multiple outliers (cf. Chen and Liu, 1993). Therefore, Chen and Liu (1993) propose a

procedure consisting of three different stages.
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In the first stage the algorithm of Tsay (1988) is applied to detect possible outliers. Given the

information of the first stage about the estimated time points where outliers occur, the outlier

effects can be estimated jointly and the significance of the outliers is assessed. Insignificant

outliers are deleted one-by-one until all remaining outlier effects are significant. Finally the

model parameters are estimated. Given this information, in the third stage the procedure starts

again with the refined parameter estimates.

According to Galeano and Peña (2013) the procedure of Chen and Liu (1993) is the standard

approach for outlier detection in linear time series. However, it has three major drawbacks,

firstly, the type of outlier (IO or level shift) may not be correctly identified which affects the

adjustment of the series, secondly, the algorithm depends on initial parameter estimates, may

resulting in the break down of the procedure due to biased initial values, and finally, patches

of outliers may not be identified due to the masking effect. Sánchez and Peña (2003) further

modify the approach in order to solve these problems. For example, they calculate robust initial

estimates by eliminating influential points (cf. also Peña, 1991) and use lower critical values C to

be able to identify patches of outliers. Although further extensions lead to improved results, the

computational burden increases enormously. Moreover, the main aim of the detection algorithms

is to obtain unbiased parameter estimates for an ARMA model.

Since we are primarily interested in the demeaned series, we apply the algorithm of Shin et al.

(1996) which focuses on outlier detection for unit-root testing and works under the assumption

of the series being a random walk. This approach can be valuable in our analysis, since the test

by Leybourne et al. (2007) is I(1) under the null hypothesis. However, the test of Kim (2000);

Kim et al. (2002) is I(0) under the null hypothesis and Shin et al. (1996) admit that their

outlier detection algorithm does not perform well if the process under consideration exhibits

only a small degree of persistence. Nevertheless, our results in the simulation studies show that

the performance of the Kim test is not deteriorated by outliers if the process only exhibits a low

degree of persistence. Due to the assumption of a random walk, the procedure of Shin et al.

(1996) does not need an initial model selection and parameter estimates, thus minimizing the

computational effort.

The idea of the Shin et al. (1996) algorithm is illustrated in Figure 4.2. An AO only affects one

single observation but two consecutive residuals, i.e. the differences between two consecutive

observations, et = yt − yt−1. Thus, a test can be based on the difference between the residuals.

Since the difference may be negative, the absolute value is considered. Due to the fact that it is

not known a priori when an AO occurs, the maximum of the absolute differences is determined.

Let tAO = arg max2≤ t≤T−1

∣∣et+1 − et
∣∣, then tAO is the observation that is most likely to
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be contaminated by an AO. To test whether there occurs an AO at tAO, |etAO+1 − etAO | is

standardized by the estimated standard deviation of etAO+1− etAO . The general test statistic is

given by

λ =
1√
2σ̂

(
max

2≤t≤T−1
|et+1 − et|

)
,

where σ̂2 = (T − 3)−1
(

(
∑T

t=2 e
2
t )− e2

tAO
− e2

tAO+1

)
is a robust estimator of σ2

ε . If the test

statistic equals or exceeds a critical value C, an AO is detected. We follow Shin et al. (1996)

and use the critical value C = 3. A further discussion of the distribution of λ can be found in

the supplementary material.
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Figure 4.2: Idea of the Shin et al. (1996) Algorithm
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Shin et al. (1996) recommend to replace an AO contaminated observation with its lagged value

to adjust the series. This procedure only takes into account the information up to tAO and

leads to constant parts in the time series, resulting in a larger residual etAO+1. Therefore,

we suggest to use the full sample information and to replace the outlying observation ytAO

by its best full sample prediction, i.e. the mean of the lagged value and the future value,

ŷtAO = (ytAO−1 +ytAO+1)/2. The procedure is repeated until no additional outliers are detected,

i.e. λ < C.

The approach can be adjusted to detect IOs (cf. Shin et al., 1996). However, as we will show in

the following section, this is not necessary, since IOs do not seriously affect the performance of

the tests for a change in persistence.

4.5 Simulation Study

In our simulation study we consider the linear model given in Eq. (4.1) without contaminations

(ζ = 0) and with AOs as well as IOs of different outlier magnitudes ζ with an outlier probability

of π = 0.05 (cf. Ahmad and Donayre, 2016). The errors form a Gaussian white noise process.

In order to assess the performance of the tests, we apply them to the uncontaminated, contam-

inated, and adjusted series. To adjust the series we use the modified algorithm of Shin et al.

(1996) with a critical value of C = 3. We vary the following parameters,

sample size T = {50, 100, 250, 500, 1000},

persistence φ1, φ2 = {0.00, 0.25, 0.50, 0.75, 0.95, 1.00},

outlier magnitude ζ = {0σx, 1σx, 2σx, 3σx}.

For every series 200 additional observations are simulated as a burn-in period to avoid a starting

value bias. All initial values are set to zero. The simulation results are based on 1000 replica-

tions. The following figures and tables report the simulation results for τ = 0.5. In general we

find that the power of the tests is higher if the change point occurs early in the series under the

condition that the stationary part of the series is at least as large as the nonstationary part.

4.5.1 Performance in Uncontaminated Series

Table 4.3 tabulates the size properties of the Kim and the Leybourne test in uncontaminated

series for different sample sizes T and different levels of significance α. The size of the Kim and

of the Leybourne test coincides with the nominal size. Since the critical values depend on the

number of observations, the tests perform well in terms of size for all sample sizes.

Table 4.4 tabulates the power results of the Kim test for I(0)→ I(1) and of the Leybourne test
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significance level α

T 1% 5% 10%

50 0.009 0.049 0.093

100 0.011 0.052 0.110

250 0.009 0.045 0.094

500 0.008 0.048 0.095

1000 0.010 0.050 0.093

(a) Kim Test I(0)

significance level α

T 1% 5% 10%

50 0.011 0.046 0.105

100 0.011 0.047 0.097

250 0.010 0.042 0.094

500 0.010 0.052 0.107

1000 0.009 0.046 0.102

(b) Leybourne Test I(1)

Table 4.3: Size Properties

for both I(0)→ I(1) and I(1)→ I(0). The power of both tests increases with the sample size.

However, in small samples the power of the Kim test is already high and it converges to 1 with

an increasing number of observations. In contrast, the power of the Leybourne test crucially

depends on the sample size. In very small samples T = 50 the power is only slightly higher than

its size. Also for T = 100 the power is relatively low. For sample sizes of T ≥ 250 the power

increases and the test decision is reliable. With an increasing number of observations the power

of the test converges to 1.

significance level α

T 1% 5% 10%

50 0.779 0.868 0.907

100 0.947 0.978 0.982

250 0.997 0.998 0.999

500 1.000 1.000 1.000

1000 1.000 1.000 1.000

(a) Kim Test

I(0)→ I(1)

significance level α

T 1% 5% 10%

50 0.017 0.081 0.156

100 0.084 0.262 0.400

250 0.408 0.690 0.803

500 0.798 0.935 0.977

1000 0.963 0.997 0.999

(b) Leybourne Test

I(1)→ I(0)

significance level α

T 1% 5% 10%

50 0.087 0.246 0.393

100 0.238 0.504 0.666

250 0.612 0.858 0.934

500 0.882 0.979 0.995

1000 0.987 1.000 1.000

(c) Leybourne Test

I(0)→ I(1)

Table 4.4: Power Properties

All presented results are valid for φ1, φ2 = {0, 1}. In general, the size of the Kim test increases if

the degree of persistence increases and the power decreases with a decreasing change magnitude

|φ1−φ2| (cf. Fig. 4.15 and 4.16). For the Leybourne test the size decreases to zero if the process

becomes stationary. The power decreases if |φ1 − φ2| decreases (cf. Fig. 4.17 and 4.18).



4.5 Simulation Study 35

4.5.2 Performance in Contaminated Series

Figure 4.3 illustrates the effects of AOs and IOs on the size of the Kim test for different sample

sizes, outlier magnitudes ζ, and significance levels. The results show that there is no difference

between the effects of AOs and IOs on the size of the Kim test. This is due to the fact that the

degree of persistence of the core process is zero under the null hypothesis and an IO can only

affect one observation exactly like an AO. The effect of outliers is mostly pronounced for large

outlier magnitudes ζ and small to moderate sample sizes.
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(a) AOs and α = 1%

200 400 600 800 1000

0.
00

0.
01

0.
02

0.
03

0.
04

Number of observations

S
iz

e

ζ = 0σx

ζ = 1σx

ζ = 2σx

ζ = 3σx

1

(b) IOs and α = 1%
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(c) AOs and α = 5%
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(d) IOs and α = 5%
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(e) AOs and α = 10%
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(f) IOs and α = 10%

Figure 4.3: Size of the Kim Test (I(0)) for Additive and Innovative Outliers with Different

Outlier Magnitudes ζ and Different Levels of Significance
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The higher the persistence of the simulated processes, the higher are the size distortions in small

samples (cf. Fig. 4.15 and 4.16). However, the size is not deteriorated seriously, but holds the

nominal significance level.

The power of the Kim test is not affected by AO contaminations if ζ is small. Only for large

outlier magnitudes ζ = 3σx the power of the test decreases in small samples. The power of the

test is not affected by IO contaminations (cf. Fig. 4.4).
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(a) AOs and α = 1%
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(b) IOs and α = 1%
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(c) AOs and α = 5%
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(d) IOs and α = 5%
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(e) AOs and α = 10%
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(f) IOs and α = 10%

Figure 4.4: Power of the Kim Test (I(0) → I(1)) for Additive and Innovative Outliers with

Different Outlier Magnitudes ζ and Different Levels of Significance
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Figure 4.5 presents the size of the Leybourne test in outlier contaminated series for different

sample sizes, outlier magnitudes, and levels of significance. In the left panel the results for

AOs can be found. The introduction of AOs decreases the size of the Leybourne test for all

sample sizes and all significance levels. This implies that the test becomes undersized. The

size distortion increases with the sample size and the outlier magnitude. For large sample sizes

combined with large outlier magnitudes the size converges to zero. This is due to the fact that

an AO contaminated unit-root process can be confused with a stationary process (cf. Franses

and Haldrup, 1994). Since the size of the Leybourne test converges to zero for a constant I(0)

process, the size of the Leybourne test decreases to zero in AO contaminated series. In the right

panel of Figure 4.5 the size properties of the Leybourne test in IO contaminated time series are

depicted. The size distortions are less severe compared to AO contaminations (cf. also van Dijk

et al., 1999). Only in small samples and for large outlier magnitudes the size differs from the

nominal significance level.

In terms of size the Leybourne test is more affected by outliers than the Kim test due to the

higher degree of persistence under the null hypothesis. The effect of AOs is more serious than

the effect of IOs.

Figures 4.6 and 4.7 illustrate the power properties of the Leybourne test for I(0) → I(1) and

I(1) → I(0), respectively. For both alternatives the results are qualitatively the same. For

a change I(0) → I(1) the power is slightly higher across sample sizes, significance levels, and

outlier magnitudes. This coincides with the findings in the uncontaminated series (cf. Tab. 4.4).

In the left panels the effects of AOs on the power properties are depicted. The power decreases

and approaches zero for increasing outlier magnitudes because the contaminated series can be

confused with a stationary I(0) process.

In contrast, IOs do not decrease the power, but lead to power gains since the stationary and the

nonstationary part of the series markedly differ (cf. Fig. 4.8a).
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(a) AOs and α = 1%
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(b) IOs and α = 1%
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(c) AOs and α = 5%
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(d) IOs and α = 5%
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(e) AOs and α = 10%
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(f) IOs and α = 10%

Figure 4.5: Size of the Leybourne Test (I(1)) for Additive and Innovative Outliers with Different

Outlier Magnitudes ζ and Different Levels of Significance
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(a) AOs and α = 1%
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(b) IOs and α = 1%
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(c) AOs and α = 5%
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(d) IOs and α = 5%
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(e) AOs and α = 10%
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(f) IOs and α = 10%

Figure 4.6: Power of the Leybourne Test (I(0) → I(1)) for Additive and Innovative Outliers

with Different Outlier Magnitudes ζ and Different Levels of Significance
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(a) AOs and α = 1%
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(b) IOs and α = 1%
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(c) AOs and α = 5%
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(d) IOs and α = 5%
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(e) AOs and α = 10%
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(f) IOs and α = 10%

Figure 4.7: Power of the Leybourne Test (I(1) → I(0)) for Additive and Innovative Outliers

with Different Outlier Magnitudes ζ and Different Levels of Significance
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4.5.3 Performance in Adjusted Series

The results in Figures 4.3 and 4.4 show that the performance of the Kim test does not suffer

from size distortions or power losses due to outliers for low degrees of persistence. Hence, it is

not necessary to adjust the series before applying the test. Moreover, the modified algorithm of

Shin et al. (1996) is developed for nonstationary time series and thus does not perform well in

series with a low degree of persistence. Although the application of the Kim test to the adjusted

series results in power gains, it also suffers from an increased size (cf. Fig. 4.15 and 4.16).

Figure 4.9 shows the size properties of the Leybourne test in the adjusted series. In all uncon-

taminated series the size is not affected by the adjustment procedure. Therefore, the algorithm

does not spuriously detect outliers. Applying the modified algorithm of Shin et al. (1996) to

AO contaminated series increases the size of the test back to its nominal significance level in all

sample sizes independent of the outlier magnitude. In IO contaminated series the application

of the algorithm does not influence the size properties. In fact, the size is not deteriorated by

IOs, anyway. Figures 4.10 and 4.11 present the power properties of the Leybourne test in the

adjusted series. In the uncontaminated series the power is not affected by the adjustment of

the series. The application of the modified algorithm of Shin et al. (1996) to AO contaminated

series increases the power especially in series with large outlier magnitudes and equals the power

in the uncontaminated series. In IO contaminated series the power increases and is higher than

in the uncontaminated series. This is due to the fact that the algorithm can detect IOs only in

the stationary part and thus, the differentiation between the stationary and the nonstationary

part becomes easier (cf. Fig. 4.8).
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Figure 4.8: Influence of the Adjustment on an IO Contaminated Series with I(0)→ I(1)
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(a) AOs and α = 1%
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(b) IOs and α = 1%
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(c) AOs and α = 5%
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(d) IOs and α = 5%
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(e) AOs and α = 10%
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(f) IOs and α = 10%

Figure 4.9: Size of the Leybourne Test (I(1)) for Additive and Innovative Outliers with Different

Outlier Magnitudes ζ and Different Levels of Significance.
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(a) AOs and α = 1%

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of observations

P
ow

er

ζ = 0σx

ζ = 1σx

ζ = 2σx

ζ = 3σx

1

(b) IOs and α = 1%
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(c) AOs and α = 5%
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(d) IOs and α = 5%
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(e) AOs and α = 10%
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(f) IOs and α = 10%

Figure 4.10: Power of the Leybourne Test (I(0) → I(1)) for Additive and Innovative Outliers

with Different Outlier Magnitudes ζ and Different Levels of Significance.
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(a) AOs and α = 1%
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(b) IOs and α = 1%
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(c) AOs and α = 5%
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(d) IOs and α = 5%
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(e) AOs and α = 10%
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(f) IOs and α = 10%

Figure 4.11: Power of the Leybourne Test (I(1) → I(0)) for Additive and Innovative Outliers

with Different Outlier Magnitudes ζ and Different Levels of Significance.
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4.6 Empirical Example

In this section we apply the tests for a change in persistence of Kim (2000); Kim et al. (2002)

and of Leybourne et al. (2007) and the outlier detection method of Shin et al. (1996) to inflation

data of the G7 countries. Following Busetti and Taylor (2004), we use quarterly CPI data from

the OECD retrieved from FRED from 1970Q1 until 2014Q4 and define the inflation rates as

πt = log(CPIt)− log(CPIt−1).

Thus, our data set consists of 180 observations for each country. We use the R package X13 for

seasonal adjustment. The properties of the series change over time. During the Great Inflation

in the 1970s and early 1980s inflation rates appear to exhibit a higher degree of persistence. At

the beginning of the 1980s there is an overall decrease in the persistence. This period is referred

to as the Great Moderation. The transition of the Great Inflation to the Great Moderation

could present a change in persistence.

In Table 4.5 the critical values of both tests for a sample size of T = 180 are presented.

Quantile

0.005 0.025 0.050 0.950 0.975 0.995

Kim 0.625 1.049 1.358 17.490 22.153 34.887

Leybourne 0.109 0.186 0.246 4.101 5.469 9.382

Table 4.5: Simulated Critical Values for T = 180

The test statistics of the Kim and Leybourne test applied to the G7 inflation rates for the

original and the adjusted series are given in Table 4.6. Bold numbers indicate the rejection of

the null hypothesis. In the original series the Kim test rejects the null hypothesis for Japan at

the 10% significance level with an estimated change in 2005Q4. The Leybourne test rejects the

null hypothesis in the original series for France at the 10% significance level and for the USA at

the 1% level with the estimated changes in 1991Q4 and 1991Q1, respectively. After adjusting

the series with the modified algorithm of Shin et al. (1996) the Kim test does not reject the null

hypothesis for any country. In contrast, the Leybourne test rejects the null hypothesis for France

at the 5% significance level and for Great Britain, Italy and Japan at the 10% significance level

with the estimated changes in 1985Q2, 1990Q3, 1996Q1 and 1981Q4.

In Figure 4.12 the original and the adjusted series of the G7 inflation rates are presented. The

estimated change points are indicated by dashed lines.
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Figure 4.12: Inflation Rates of the G7 Countries
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CAN FRA GBR GER ITA JPN USA

Kim Test 4.0159 8.9347 3.0654 2.6954 4.5738 1.1486 6.9269

Leybourne Test 2.9018 4.3994 2.2575 1.7306 1.6157 2.7578 23.0157

(a) Original Series

CAN FRA GBR GER ITA JPN USA

Kim Test 3.7260 8.1539 2.3005 2.5883 6.6409 1.9316 5.8816

Leybourne Test 3.1757 6.0435 5.0082 1.9686 4.9083 4.5627 3.8323

(b) Adjusted Series

Table 4.6: Test Statistics of the Kim and Leybourne Test

In order to support the test results, we conduct the unit-root test of Dickey and Fuller (1979).

Given the estimated change points, the ADF test is conducted for the respective subsamples.

The p-values in Table 4.7 confirm the results of the tests for a change in persistence.

FRA JPN USA

1st subsample 0.2625 0.0817 0.2176

2nd subsample > 0.01 0.0980 > 0.01

(a) Original Series

FRA GBR ITA JPN

1st subsample 0.5386 0.2486 0.0741 0.3337

2nd subsample 0.0296 > 0.01 0.0195 0.0442

(b) Adjusted Series

Table 4.7: Subsample p-values of the ADF-Test

Except for Japan in the original series and Italy the test detects a unit root in the first subsample

and stationarity in the second subsample. This points to a change in persistence from I(1) to

I(0) for France (in both series), the USA (in the original series), as well as Great Britain

and Japan (in the adjusted series). Although the results for Italy are not as conclusive as for

other countries, the p-values differ among the two subsamples. In the first subsample the null
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hypothesis can be rejected at the 10% level, whereas in the second subsample the p-value falls

below 2%. Therefore we conclude that there occurs a change in persistence from I(1) to I(0)

in the Italian series, which is also supported by the time series plot in Figure 4.12. In contrast,

for Japan in the original series the p-values and the time series plot do not indicate a change in

persistence. We deduce that the result of the Kim test is due to a type I error and that there is

no change in persistence.

Summarizing our results we find different test decisions for the original and the adjusted series

for four of the G7 countries. In Great Britain, Italy, and Japan the Leybourne test cannot

detect a change in persistence in the original series due to outlier contaminations but confuses

the series with a stationary process. After adjusting the series the Leybourne test rejects the

null hypothesis in favor of a change in persistence from I(1) to I(0) which is supported by the

results of the subsample ADF tests.

4.7 Conclusion

In this paper the effect of two different types of outliers on the performance of the tests for

a change in persistence of Kim (2000); Kim et al. (2002) and of Leybourne et al. (2007) are

assessed. We find that the Kim test is not seriously affected by outliers. Especially the size

of the test is not deteriorated. Due to the low degree of persistence under the null hypothesis

of the test, AOs and IOs have the same effect on the series under the null hypothesis. The

contaminated stationary process is identified as a stationary process and thus the size is not

affected. Therefore, we conclude that it is not necessary to detect and remove outliers before

applying the test. In contrast, the Leybourne test suffers from severe size and power distortions

due to AOs. IOs do not affect the size but can even lead to power gains. As a result, we

recommend to adjust the contaminated series and remove AOs before applying the test. The

modified algorithm of Shin et al. (1996) performs well and is easy to implement. After adjusting

the series, the size of the test coincides with the nominal significance levels and the power

converges to 1 with an increasing sample size. In the empirical application we use the tests

to find changes in persistence in the G7 inflation rates. We detect a change in persistence for

France in the original and the adjusted series, and for Great Britain, Italy, and Japan after

adjusting the series.
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4.8 Supplementary Material

A Limiting Distribution

Suppose the core process of the data generating process is a random walk, which coincides with

the null hypothesis of the Leybourne test,

xt = xt−1 + εt, t = 1, . . . , T,

where εt ∼ N(0, σ2
ε). The observable series {yt} is contaminated with AOs of magnitude ζ if

δt = ±1,

yt = xt + ζδt.

For an AO at t = s, we obtain

ys−1 = xs−1 = xs−2 + εs−1 ys = xs + ζ = xs−1 + εs + ζ ys+1 = xs+1 = xs + εs+1.

Under the assumption of {yt} being a random walk, the residuals are given by

es = εs + ζ es+1 = εs+1 − ζ,

where es ∼ N(ζ, σ2
ε) and es+1 ∼ N(−ζ, σ2

ε) (cf. Shin et al., 1996). The linear combination

es+1 − es follows a normal distribution with µ = −2 ζ and σ2 = 2σ2
ε . If the random variable

X ∼ N(µ, σ2), then Z = |X| follows a folded normal distribution (cf. Leone et al., 1961), with

the density function

f(z) =
1√

2π σ2

[
exp

(
−(z − µ)

2σ2

)
+ exp

(
−(z + µ)

2σ2

)]
.

Under the null hypothesis the series {yt} is uncontaminated and therefore ζ = 0. Thus, es, es+1 ∼

N(0, σ2
ε), es+1−es ∼ N(0, 2σ2

ε), and |es+1−es| follows a folded normal distribution with density

function

f(|es+1 − es|) =
1√
π σ2

ε

exp

(
−(|es+1 − es|)2

4σ2
ε

)
.

This coincides with twice the right tail of the normal distribution N(0, 2σ2
ε).

The test statistic

λ∗ =
1√
2 σ̂2

ε

(|et+1 − et|) t = 2, . . . , T − 1,

where σ̂2
ε is a robust estimator for the error term variance σ2

ε , hence follows a standard folded

normal distribution. Critical values can be obtained according to qλ
∗

1−α = z1−α/2 for α ≤ 0.5,

where z is a quantile of the standard normal distribution.
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Figure 4.13 and Table 4.8 illustrate the convergence of the test statistic λ∗ to the standard folded

normal distribution.
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Figure 4.13: Estimated Density of λ∗ and the Standard Folded Normal Distribution

Quantile

0.01 0.05 0.1 0.9 0.95 0.99

T = 102 0.0109 0.0412 0.0704 1.8610 2.2003 2.7312

T = 103 0.0109 0.0641 0.1323 1.6383 2.0642 2.6630

T = 104 0.0146 0.0681 0.1294 1.6431 1.9664 2.6194

T = 105 0.0129 0.0613 0.1242 1.6518 1.9667 2.5872

T = 106 0.0124 0.0629 0.1256 1.6448 1.9623 2.5773

std. folded N 0.0125 0.0627 0.1257 1.6448 1.9600 2.5758

Table 4.8: Quantiles of the Estimated Density of λ∗ and of the Standard Folded Normal Dis-

tribution

Since it is not known a priori when an AO occurs, the maximum of the absolute difference

between two consecutive residuals is taken,

λ =
1√
2 σ̂2

ε

(
max

2≤ t≤ (T−1)
|et+1 − et|

)
.

According to the extreme value theory, the maximum of random variables from a distribution

of the exponential family follows the Gumbel distribution (cf. Gumbel, 1958, pp. 164f, Kotz
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and Nadarajah, 2000, p. 59) with density function

f(x) =
1

β
exp

(
− x− µ

β
+ exp

(
− x− µ

β

))
.

However, the test statistic λ does not follow a standard Gumbel distribution (µ = 0 and β = 1)

since the standard Gumbel distribution allows for negative realizations (cf. Tab. 4.9), whereas

the absolute does not. In order to determine appropriate critical values, we calculate λ for

random walks of different sample sizes T = {102, 103, 104, 105}, each with 1000 replications. We

find that the distribution of λ crucially depends on the sample size. For an increasing number

of observations, the distribution shifts to the right and the quantiles increase (cf. Tab. 4.9).

Quantile

0.01 0.05 0.1 0.9 0.95 0.99

T = 102 2.1052 2.2251 2.3351 3.3154 3.5183 4.0632

T = 103 2.8462 2.9854 3.0545 3.8856 4.0141 4.3855

T = 104 3.4985 3.6176 3.6831 4.4230 4.6072 4.8394

T = 105 4.0520 4.1789 4.2331 4.8525 4.9963 5.3274

std. Gumbel -1.5272 -1.0972 -0.8340 2.2504 2.9702 4.6001

Table 4.9: Quantiles of the Estimated Density of λ and of the Standard Gumbel Distribution

In addition to the sample size, the distribution of λ also depends on the number of iterations.

If the test is applied more than once to the (adjusted) series, the distribution shifts to the left.

For an increasing number of iterations (detection of the maximum in the adjusted series), the

distribution asymptotically converges to the standard folded normal distribution. The estimated

quantiles of λ based on 10000 replications for different sample sizes T = {100, 500, 1000} and

different numbers of iterations {1, 2, 9, 100} are illustrated in Figure 4.14.
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Figure 4.14: Estimated Quantiles of λ after Different Iterations

From Figure 4.14 we conclude that a critical value for λ cannot be derived from a limiting

distribution since it is not clear beforehand how many iterations are needed to remove AOs

from the series. Applying a large critical value reduces the risk of falsely identifying outliers,

but may prevent the algorithm from detecting true outliers. In contrast, using a small critical

value guarantees that outliers are correctly identified, but will also lead to spurious detection of

outliers. The critical value of C = 3 recommended by Shin et al. (1996) seems to balance this

trade-off. On the one hand the probability for a standard folded normal distributed random

variable to exceed a value of C = 3 only amounts to 0.270%. Therefore, we do not expect the

algorithm to detect many falsely classified outliers or to get stuck in an endless loop. On the

other hand according to Figure 4.14 the critical value of C = 3 is small enough for the test not

to be conservative.
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(a) Original Series, T = 100, ζ = 0
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(b) Adjusted Series, T = 100, ζ = 0
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(c) Original Series, T = 1000, ζ = 0
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(d) Adjusted Series, T = 1000, ζ = 0
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(e) Original Series, T = 100, ζ = 3
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(f) Adjusted Series, T = 100, ζ = 3
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(g) Original Series, T = 1000, ζ = 3
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(h) Adjusted Series, T = 1000, ζ = 3

Figure 4.15: Power of the Kim Test for Additive Outliers, Different Degrees of Persistence, and

α = 5%.
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(a) Original Series, T = 100, ζ = 0
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(b) Adjusted Series, T = 100, ζ = 0
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(c) Original Series, T = 1000, ζ = 0
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(d) Adjusted Series, T = 1000, ζ = 0
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(e) Original Series, T = 100, ζ = 3
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(f) Adjusted Series, T = 100, ζ = 3
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(g) Original Series, T = 1000, ζ = 3
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(h) Adjusted Series, T = 1000, ζ = 3

Figure 4.16: Power of the Kim Test for Innovative Outliers, Different Degrees of Persistence,

and α = 5%.
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(a) Original Series, T = 100, ζ = 0
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(b) Adjusted Series, T = 100, ζ = 0
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(c) Original Series, T = 1000, ζ = 0
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(d) Adjusted Series, T = 1000, ζ = 0
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(e) Original Series, T = 100, ζ = 3
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(f) Adjusted Series, T = 100, ζ = 3
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(g) Original Series, T = 1000, ζ = 3
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(h) Adjusted Series, T = 1000, ζ = 3

Figure 4.17: Power of the Leybourne Test for Additive Outliers, Different Degrees of Persistence,

and α = 5%.
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(a) Original Series, T = 100, ζ = 0
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(b) Adjusted Series, T = 100, ζ = 0
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(c) Original Series, T = 1000, ζ = 0
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(d) Adjusted Series, T = 1000, ζ = 0
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(e) Original Series, T = 100, ζ = 3
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(f) Adjusted Series, T = 100, ζ = 3
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(g) Original Series, T = 1000, ζ = 3
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(h) Adjusted Series, T = 1000, ζ = 3

Figure 4.18: Power of the Leybourne Test for Innovative Outliers, Different Degrees of Persis-

tence, and α = 5%.
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