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A B S T R A C T

We establish an original framework referred to as “unified approach” that

seeks to generalize the existing theory of integration. For this purpose, we

introduce the concept of semimartingale fields and develop the related

stochastic integration theory. Meanwhile, we prove that our framework

includes the Walsh stochastic integral, integrals with respect to an infinite

dimensional Wiener process and the Poisson random measure. As an ap-

plication, we study the infinite dimensional stochastic partial differential

equations (SPDEs) driven by random fields and investigate the stability

and regularity properties of their solutions. In particular, we are interested

in the Lp-existence of mild and weak solutions to SPDEs with general C0-

semigroups, where the driving noise is a continuous martingale field with

independent increments.

Keywords: Unified Approach, Random Fields, Stochastic Partial

Differential Equations, Mild and Weak Solutions, Stochastic Integration
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Z U S A M M E N FA S S U N G

Wir werden einen “universellen Ansatz” zur Verallgemeinerung der beste-

henden Integrationstheorie ent-wickeln. Dazu führen wir das Konzept von

Semimartingalfeldern und eine zugehörige stochastische Integrationstheo-

rie ein. Wir beweisen, dass unser mathematischer Rahmen das Walsh’sche

stochastische Integral, Integrale bezüglich unendlich dimensionaler Wie-

nerprozesse und das Poisson’sche Zufallsmaß umfasst. Als Anwendung

untersuchen wir unendlich dimensionale stochastische partielle Differenti-

algleichungen (SPDEs), die durch Zufallsfelder angetrieben werden, und

bestimmen die Stabilitäts- und Regularitätseigenschaften der Lösungen.

Insbesondere sind wir an der Lp-Existenz milder und schwache Lösungen

von SPDEs mit allgemeinen C0-Halbgruppen interessiert, bei denen der

treibende Störterm ein stetiges Martingalfeld mit unabhängigen Zuwächsen

ist.

Schlüsselwörter: Einheitlicher Ansatz, Zufälliges Feld, Stochastische

partielle Differentialgleichung, Milde und schwache Lösungen,

Stochastische Integration
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L I S T I N G S

a). We start by giving all different abbreviations for the word writing:

• i.e. : stands for that is

• w.r.t. : stands for with respect to

• e.g. : stands for for example

• a.s. : stands for almost surely

• resp. : stands for respectively

• SDE : stands for stochastic differential equations

• SPDE : stands for stochastic partial differential equations

b) We establish basic notations that will be used through the dissertation.

Let (Ω,F, (Ft)t>0, P) be a stochastic basis that satisfies the usual hypo-

thesises of completeness and right-continuity. Let (H, ‖ · ‖) and (U, ‖ · ‖U)

be separable Hilbert spaces, (X,X) be a measurable space and (E,Σ) be a

Blackwell space. Let T > 0 be a fixed horizon time. We denote and define:

1. # : the counting measure; δx : the Dirac measure sitting at the point x.

2. λ : the Lebesgue measure on R+.

3. L
p
loc(λ;H) : the space of all predictable processes f : Ω×R+ ×H→ H

such that

P

(∫T

0

∫

E

‖f(s, x)‖p ds <∞

)
= 1.

4. Lp(Ω;H) = Lp(Ω,F, P;H) is a Lebesgue space with the standard

norm

‖M‖Lp(Ω;U) := E
[
‖M‖pU

]1/p .

We shall write Lp = Lp(Ω; R) for all p > 0.

ix



Listings x

5. O (resp. P) : the optional (resp. predictable) σ-fields on Ω× R+, that

is generated by all càdlàg (resp. càg) adapted processes on Ω× R+.

6. V+ (resp. V) the class of all real-valued adapted and càdlàg processes

N having a non-decreasing path t 7→ Nt(ω) (resp. a finite variation

over finite interval of the form [0, t] for t ∈ R+) and N0 = 0.

The variation process VN of N on [0, t] is

VN(t)(ω) = lim
n→∞

n∑

k=1

|Ntk/n(ω) −Nt(k−1)/n(ω)|, for any ω ∈ Ω.

7. A+(resp. A) the set of all N ∈ V+ such that E[N∞] <∞ (resp. N ∈ V

such that E[VN(∞)] <∞).

8. M the space of all real-valued integrable martingale processes.

9. H2 the space of all real-valued square-integrable martingale processes.

10. 〈M,N〉 the predictable process belonging to V so that MN− 〈M,N〉 ∈
Mloc, for any M,N ∈ H2

loc.

11. S : the class of all real-valued semimartingale processes Y of the form:

Y =M+N, with M ∈ Mloc,N ∈ V.

12. L2(U,H) the space of Hilbert-Schmidt operators from U and H.

13. PT the predictable σ-fields on Ω× [0, T ], while P the predictable σ-

fields on Ω× R+.

14. M2
T (H) the space of all square-integrable càdlàg martingales Y : Ω×

[0, T ] → H, where indistinguishable processes are identified.

15. Gloc(µ) the space of all P⊗ Σ-measurable real-valued functions h on

Ω× R+ × E such that the stochastic integral h ∗ (µ− ν) exists in the

sense of [47] (see Page 72) for any random measure µ on R+ × E with

its dual predictable projection ν.



I N T R O D U C T I O N

Stochastic partial differential equations (SPDEs) are increasingly playing

an important role in applications to finance, numerical analysis, physics,

and biology. In literature, the theory of SPDEs developed from the work

of Walsh [96] on one hand and the from studies on stochastic evolution

equations in Hilbert spaces H (such as [22], [16] and [34]) on the other hand.

These two approaches led to the development of two distinct methods of

understanding SPDEs, based on different theories of stochastic integration.

Walsh theory emphasizes integration with respect to a set of functions

called “martingale measures” (see [96]) whereas the theory of integration in

a Hilbert space H is with respect to H-valued processes such as Q-Wiener

processes (see Da Prato and Zabczyk [22]).

Motivated by the above two arguments, we propose and develop a noval

integration theory based on a semimartingale field. Walsh describes a

random field as an L2-valued and σ-finite martingale measure on a Lusin

space (see [96]). In contrast, we define a random field as mapping on R+×Σ,

viewed as a process in the direction of time and a random premeasure on Σ

for some Blackwell space (E,Σ). First, we shall introduce the generalized

Bochner integral with respect to finite variation fields and then build the Itô

stochastic integration with respect to a martingale field. We shall establish

the unified approach for stochastic integrations and show that our integrals

are related to both stochastic integrations cited above.

According to Da Prato and Zabczyk [22], SPDEs can be viewed as sto-

chastic perturbations of partial differential equations. In other words, some

factor of randomness (e.g. a infinite dimensional Wiener process) is added

to a (semi-linear) PDE to obtain a stochastic partial differential equation

(SPDE) of the form

dut = [Aut +α(t,ut)]dt+ σ(t,ut)dWt, u0 ∈ H. (0.1)

xi
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for some σ : Ω×H→ H and a separable Hilbert space H. The existence and

uniqueness as well as stability and regularity conditions of solutions have

been studied in general cases. For instance in the case of cylindrical-Wiener

process (see [16] or [34]) or non-Gaussian Lévy noise (see [71]). Further

developments led to jump-diffusions SPDEs in Hilbert spaces (see [1] or

[31]) of the form

dut = [Aut+α(t,ut)]dt+σ(t,ut)dWt+

∫

B

γ(t,ut, x)µ(dt, dx), u0 = ξ,

(0.2)

for some infinite dimensional Wiener process W and compensated Poisson

random measure µ. The type of SPDE given in (0.2) includes a large class of

equations driven by H-valued Lévy noise. According to [31], the existence

and uniqueness of mild and weak solutions to SPDE (0.2) can be established

through a “moving frame” approach. This consists of a time-dependent

transformation of the given SPDE to an SDE that is relatively easier to solve

then obtain results to the original SPDE through a pull-back transformation

of the results to the SDE.

In this dissertation, we are interested studying stochastic partial differen-

tial equations of the form:

dut = Aut dt+
∫

E

β(t,ut− , x)X(dt, dx), u0 = ξ, (0.3)

for some Blackwell space (E,Σ), generator A of C0-semigroup (St)t>0 and a

semimartingale field X. By means of the moving frame approach, introduced

by [31], we prove the existence and uniqueness of mild and weak solutions

to the SPDE (0.3) with càdlàg paths. In addition, we investigate the stability

and regularity dependence on the initial data for the solutions. Meanwhile,

we show that the SPDE (0.2) is a particular case of (0.3). At the end, we

examine the case where (St)t>0 is a general C0-semigroup and X is a

continuous martingale field. We derive the Lp-existence and uniqueness of

solutions.

The rest of the dissertation is as follows: In Chapter 1, basic definitions

and concepts related to the random fields are given, starting with finite

variation fields and the definition of the Bochner integral followed by the
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martingale fields and the related stochastic integration. We present the

concept of semimartingale field which is a combination of finite variation

and martingale field. Then define the stochastic integration with respect to

semimartingale field and introduce the unified approach. For each class of

random fields, we also present illustrative examples to aid understanding

of the concepts. In Chapter 2, we investigate the SDE induced by the SPDE

(0.3) when A = 0. In particular, we study the existence and uniqueness of

strong solutions, making a fixed point argument on a specific Banach space.

The stability and regularity of solutions are also discussed. Chapter 3, starts

with the establishment of the concepts of strong, weak and mild solutions

followed by the transfer of all results from Chapter 2 to show the existence

and uniqueness of mild and weak solutions to the SPDE (0.3), for the case of

pseudo-contractive C0-semigroup, including stability and regularity. Next

we show that the SPDE (0.2) is a fundamental example of our framework

and then present the full theory of Lp-estimates for solutions of SPDEs,

with general C0-semigroup, driven by continuous martingale.



1
R A N D O M F I E L D S A N D I N T E G R AT I O N T H E O RY

Random fields play a crucial role in the development of stochastic integrals

or stochastic differential equations. In this chapter we aim to describe

the unification approach to semimartingale fields. For this propose, we

introduce the notion of semimartingale fields. Likewise for the classical

semimartingale processes, we define a semimartingale field as sum of a

finite variation (FV) field and a martingale field. We present the related

integral theory for each class of these random fields and finally, discuss the

main result of this Chapter arising from our unified approach.

This chapter is organized as follows. In Section 1 we introduce the basic

notation and terminology concerning random fields. In Section 2 we des-

cribe the concept of finite variation fields and present some fundamental

examples. This is followed by the definition of Bochner integrals w.r.t. FV

fields. Section 3 is an introductory section focusing on martingale fields

including several examples under different settings. The notion of bracket

process for martingale fields and the integration theory shall be revisited.

Section 4 is devoted to describing the semimartingale field and its basic

properties. We then derive the integrability condition of a stochastic integral

w.r.t. a semimartingale field. We present the unification framework which

consists of combining two stochastic integrals w.r.t. different semimartingale

fields to derive a single integral process.

1.1 preliminaries

In the existing literature, there are several definitions of random fields but

we shall adopt the one where a random field is viewed as a set function,

precisely a premeasure.

1



1.1 preliminaries 2

Let (Ω,F, (Ft)t>0, P) be a (continuous-time) stochastic basis satisfying

the usual hypothesis of completeness and right-continuity. In the sequel,

let (E,Σ) be a Blackwell space (e.g. N or a Polish space), i.e., there is a

countable semi-ring E on E such that it contains an exhausting sequence

(En)n∈N (i.e. En ր E) and Σ = σ(E).

Definition 1.1.1 A mapping Φ : Ω× R+ × E → R is said to be random field

on R+ × E if

1. Φ(ω; 0,A) = Φ(ω; t, ∅) = 0 for each ω ∈ Ω, (t,A) ∈ R+ × E.

2. (ω, t) 7→ Φ(ω; t,A) is an adapted stochastic process for each A ∈ E.

3. A 7→ Φ(ω; t,A) is a signed σ-finite premeasure on (E,E) for ω, t fixed.

Definition 1.1.2 A random field Φ is continuous (resp. càdlàg) if the map-

ping t 7→ Φ(ω; t,A) is continuous (resp. càdlàg) for any fixed A ∈ E and

ω ∈ Ω.

Throughout this work, we set A0 is the set of countable disjoint unions

of semi-open intervals (a,b] with 0 6 a 6 b. It can be verified that A0 is

an algebra and σ(A0) = B(R+) (see e.g. [85]). Let Φ be a random field on

R+ × E. We are now ready to define the increment process associated to Φ.

Definition 1.1.3 The increment process of Φ is a random signed premeasu-

re IΦ on (R+ × E,A0 × E) such that

IΦ((s, t]×A) := Φ(t,A) −Φ(s,A), for all A ∈ E, (s, t] ∈ A0.

Furthermore, for each A ∈ E, we say that Φ has

1. independent increments: if IΦ((s, t]×A) is independent of Fs, for

every (s, t]×A ∈ A0 × E.

2. stationary increments: IΦ((s, t] × A) has the same distribution as

Φ(t− s,A), for every (s, t]×A ∈ A0 × E.

Remark 1 As far as stochastic integration w.r.t a random field is concerned later

on and since E is not a σ-algebra, it is important to point out that in order to define

stochastic integrals one has to extend the premeasure A 7→ φ(·,A) to a measure
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on (E,Σ). First, if φ takes positive value, then by Lemma A.1.2 there exists a

unique positive random field Φ̂ on R+ × Σ such that the mapping Φ̂(ω; t, ·)
defines a measure on (E,Σ) and the restriction of Φ̂|R+×E = Φ. In the case where

φ(ω; t, ·) is a signed σ-finite premeasure for each (ω, t) ∈ Ω×R+ then one needs

some extra conditions. In other words, if φ is a signed random field, one first

take φ = φ+ −φ− where φ− and φ+ are positive random fields. To avoid the

problem of having ∞−∞, one should ensure for instance that φ+ +φ− <∞ and

then for each (ω, t) ∈ Ω× R+ the extension procedure for the signed premeasure

φ(ω; t, ·) makes sense after extending respectively both premeasures φ−(ω; t, ·)
and φ+(ω; t, ·) to measures φ̂−(ω; t, ·) and φ̂+(ω; t, ·) on (E,Σ). Therefore, we

also obtain the extended signed measure A 7→ Φ̂(·,A) = φ̂+(·,A) − φ̂−(·,A) on

(E,Σ) so that the mapping Φ̂ defines a random field on R+ ×Σ and the restriction

of Φ̂|R+×E = Φ.

Moreover, note that the construction of integral processes is not affected by the

choice of countable generator E. Indeed, this is due to the fact that if two different

countable semi-rings E1 and E2 are both generators of Σ (i.e. Σ = σ(E1) = σ(E2)).

Then they should lead to the same unique mapping Φ̂ by the extension argument.

1.2 finite variation fields

Let N be a càdlàg random field on R+ × E. To begin, we briefly present

the definition of variation process of N. Let Πt =
{

ϑ = {t0 < t1 <

· · · } | ϑ is a partion of [0,t]
}

for t > 0. For any fixed A ∈ Σ, denote by

VN(ω, t,A) := VN(·,A)(ω, t) the total variation process of N(·,A) up to time

t and for ω ∈ Ω. Then define

VN(ω; t,A) = sup
π∈Πt

{
∑

ti,ti+1∈π
ti<t6ti+1

∣∣N(ω; ti+1,A) −N(ω; ti,A)
∣∣
}

. (1.1)

1.2.1 Basic Properties

We consecutively introduce few notions.



1.2 finite variation fields 4

Definition 1.2.1 A random field N : Ω× R+ × E → R+ is called an increa-

sing field if the following are satisfied

1. For each A ∈ E, the process (N(t,A))t>0 belongs to V+.

2. For any (ω, t) ∈ Ω× R+, N(ω; t, ·) is a σ-finite premeasure on (E,E).

Denote by V+
E the set of all increasing fields on R+ × E. Note that, since

N(·,A) ∈ V+ for any A ∈ E, then the process N(·,A) coincides with its

variation process up to evanescent set, i.e., VN(t,A) = N(t,A) for all t ∈ R+

almost surely.

Example 1 Recall that (E,Σ) is a Blackwell space such that Σ = σ(G) with G

is a countable ring. Let F be a positive σ-finite measure on (E,Σ). Then there is

(An)n∈N be an increasing sequence of sets in Σ such that E =
⋃

n∈N
An and

F(An) <∞ for all n ∈ N. Construct the countable1 ring:

E :=
⋃

n∈N

{B∩An : B ∈ G},

so that Σ is countably generated by E, i.e. σ(E) = Σ. Define the field

N(t,A) = λ([0, t])F(A), for all t ∈ R+.

Hence N is an increasing field. Indeed, since λ is a Lebesgue measure for each

A ∈ E, then N(·,A) ∈ V+. One the other hand, we also have N(ω; t, ·) is a

σ-finite premeasure on (E,Σ) for every (ω, t) ∈ Ω×R+ as F is a σ-finite measure

on (E,Σ).

Definition 1.2.2 A random field N : Ω × R+ × E → R is called a finite

variation (FV) field if

1. For each A ∈ E, the process (N(t,A))t>0 belongs to V.

2. For any (ω, t) ∈ Ω×R+, VN(ω; t, ·) is a σ-finite premeasure on (E,E).

Denote by VE the set of all finite variation fields on R+ × E.

1 By construction, E is a ring. Since the set {B∩An : B ∈ G} is countable for any n ∈ N, then

its countable union is also countable. Moreover, σ(E) is separable and σ(E) ⊂ Σ thus it

follows Σ = σ(E).
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Since, by definition, any increasing stochastic process is obviously a finite

variation process. Then the same holds for increasing and finite variation

fields. The following result shows the decomposition of finite variation

field.

Lemma 1.2.1 For every countable semi-ring E on E with Σ = σ(E), then we have

VE = V+
E ⊖V+

E , P-almost surely,

i.e. for each N ∈ VE, there exist unique N1,N2 ∈ V+
E such that N = N1 −N2

and VN = N1 +N2.

Proof Let N ∈ VE.To prove the next point it is sufficient to prove that N

can be written as N = N1 −N2 with a unique pair (N1,N2) of increasing

fields up to a P-null set. For any fixed A ∈ E, by a path-wise argument,

we obtain the existence of two unique pair (N1(·,A),N2(·,A)) of processes

which are càdlàg, with N1(0,A) = N2(0,A) = 0 and non-decreasing paths,

such that N(·,A) = N1(·,A) −N2(·,A) and VN(·,A) = N1(·,A) +N2(·,A)
almost surely (see [47], Proposition 3.3). Namely, one can construct both

processes by the following way

N1(·,A) =
VN(·,A) +N(·,A)

2
and N2(·,A) =

VN(·,A) −N(·,A)
2

for any A ∈ E. Lastly, since E is countable, then we deduce that

⋃

A∈E

({
ω ∈ Ω : N(ω; t,A) 6= N1(ω; t,A) −N2(ω; t,A), t ∈ R+

}

⋃{

ω ∈ Ω : VN(ω; t,A) 6= N1(ω; t,A) +N2(ω; t,A), t ∈ R+

})

is a P-null set. This completes the proof.

Remark 2 For every FV field N ∈ VE, we define the jump process associated to

N(·,A) for any fixed A as follows

∆N(t,A) = N(t,A) −N(t−,A), for all t > 0,

where

N(t−,A) = lim
s↑t

N(s,A).
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We now present a canonical example of FV fields in the following lemma.

Lemma 1.2.2 Assume that E = N and set Σ = σ(E) where

E = {A ⊂ E : A is a finite set}.

Let (Ni)i∈N be a family of processes from V+ and define the random field as

N(t,A) =
∑

i∈A

Ni(t), for A ∈ E, t ∈ [0, T ],

which is a finite variation field on R+ × E.

Proof To prove this lemma, one need to verify that Definition 1.2.2 is

fulfilled for the field N. But before proceeding, it is important to say that E

is a countable ring by construction. Next we have by construction:

(1) without of lose of generality, let n ∈ N and take A = {1, . . . ,n}. Then,

by formula 1.1, we compute

VN(t,A) = sup
π∈Πt

{
∑

ti,ti+1∈π
ti<t

∣∣∣∣
∑

k∈A

Nk(ti+1) −Nk(ti)

∣∣∣∣

}

, for each t > 0.

=
∑

k∈A

sup
π∈Πt

{
∑

ti,ti+1∈π
ti<t

[
Nk(ti+1) −Nk(ti)

]
}

=
∑

k∈A

VNk
(t) =

∑

k∈A

Nk(t) <∞, for each t > 0.

(1.2)

This implies that N(·,A) ∈ V for any fixed set A ∈ E, i.e. each path

t 7→ N(ω; t,A) has a finite variation over each interval [0, t] for every

ω ∈ Ω.

(2) Next we show that N(ω; t, ·) is a premeasure on (E,E) for any (ω, t) ∈
Ω× R+. Indeed, we have:

• by construction, VN(t, ∅) = 0 almost surely;
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• for every sequence (An)n∈N of pairwise disjoint sets from E with
⋃

n∈N
An ∈ E (i.e. there is n0 ∈ N such that An = ∅ for n > n0) and

by equation (1.2) we get

VN(t,∪n∈NAn) =
∑

i∈
⋃

n∈N
An

Ni(t) =
∑

i∈A1

Ni(t) + · · ·+
∑

i∈An0−1

Ni(t)

=
∑

n∈N

∑

i∈An

Ni(t) =
∑

n∈N

VN(t,An), a.s.

(1.3)

Example 2 Let λ > 0 and (Ni)i∈N be a family of Poisson processes with intensity

λ (see e.g. [47]). Let us take E = N. As Ni ∈ V+ for any i ∈ N, thus by Lemma

1.2.2, the field associated to the collection (Ni)i∈N defined as follows

N(t,A) =
∑

i∈A

Ni(t), for A ⊂ N is finite, t ∈ [0, T ],

is a finite variation field on R+ × E where E = {A ⊂ N : A is a finite set}.

1.2.2 Bochner Integral

This subsection aims to define the integral process with respect to a finite

variation field. To this end, we first start with the construction of the so-

called Bochner integral with respect to a non-decreasing field. Then we

extend it to the class of finite variation fields.

1. Let assume that N ∈ V+
E . In order to perform the construction of the

integral process we first need to show that, for any fixed ω, the mapping

(t,A) 7→ N(ω; t,A) induces a random premeasure on (R+ × E,A0 × E).

Then we use the Carathéodory extension theorem (see Lemma A.1.2) to get

a random measure on (R+ × E,B(R+)⊗ Σ).

Lemma 1.2.3 For every increasing field N, there exists an unique optional and

σ-finite random measure ζ on (R+ × E,B(R+)⊗ Σ) such that

ζ
(
(s, t]×A

)
= N(t,A) −N(s,A), for each (s, t]×A ∈ A0 × E,

Conversely, every such random measure defines an increasing field in V+
E .
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Proof We want to show that there is one-to-one correspondence between

the class of finite premeasure on A0 × E and the class of increasing fields

V+
E . The proof is done by two steps.

(a). Let N ∈ V+
E . For any (s, t]×A ∈ A0 × E, let us define a set function η

as follows

η
(
(s, t]×A

)
=






n∑

i=1

N(ti,Ai) −N(si,Ai) if (s, t]×A =

n⋃·
i=1

(si, ti]×Ai

N(t,A) −N(s,A) otherwise

(1.4)

for some sequence
(
(si, ti]×Ai

)
i=1,...,n of pairwise disjoint rectangles in

A0 × E. Note that η is well-defined and additive. For the proof of countable

additivity of η, it suffices to observe that if {(sn, tn]×An}n∈N is an increa-

sing sequence of rectangles in A0 × E whose union (s, t]×A is an element

of A0 × E as well. Then we have

η((s, t]×A) = lim
n→∞

η((sn, tn]×An),

that is, by Lemma A.1.1, this is equivalent to say that

η

( ⋃·
n∈N

(an,bn]×Bn

)
=

∞∑

n=1

η((an,bn]×Bn),

whenever sequence of pairwise disjoint rectangles {(an,bn]×Bn} ⊂ A0 ×E.

Indeed, by the continuity of the process N(·,A) for any A ∈ E and the

continuity of the premeasure N(ω; t, ·) for (ω, t) ∈ Ω× R+, we can write

lim
n→∞

η((sn, tn]×An) = lim
n→∞

N(tn,An) −N(sn,An)

= N(t,A) −N(s,A) = η((s, t]×A),

where tn ↑ t, sn ↓ s, An ↑ A, (sn, tn]×An ↑ (s, t]×A ∈ A0 × E. Next, fix

A ∈ E, by definition N(·,A) is an increasing adapted process then follows

directly η((u, v]×A) is Ft-measurable for any t > 0 and (u, v] ⊂ (0, t]. That

is, η is an adapted2 premeasure. Moreover, it is optional because N(·,A) is

O-measurable for each A ∈ E. Lastly, it remains to show that η is σ-finite.

2 A random measure ζ is said to be “adapted” if ζ(·,B) is Ft-measurable for any B ⊂ [0, t]×E
for all t > 0.
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By definition, for each ω, t, the premeasure N(ω; t, ·) is σ-finite then there

exists a sequence An increasing to E such that E
[
|N(ω; t,An)|

]
<∞. That

implies that E
[
|η(ω; (0, t]×An)|

]
<∞ and thus by Definition A.2.4 we get

η is σ-finite premeasure.

Conversely, let ν be an optional and σ-finite random premeasure on

(R+ × E,A0 × E) with ν({0}×A) = 0 for any A ∈ E. Define a random field

N as follows

N(t,A) := ν((0, t]×A), for all t ∈ R+,A ∈ E. (1.5)

We want to show that N ∈ V+
E . Fix A ∈ E, we have from its definition that

N(·,A) is an increasing process and N(0,A) = 0. Moreover, by construction

it follows that N(·,A) is adapted for each A ∈ E. Next, by the countable

additivity of ν, if {tn} is a sequence in R+ such that tn ↑ t ∈ R+ and

(0, tn]×A ∈ A0 × E then we obtain

lim
n→∞

N(tn,A) = lim
n→∞

ν((0, tn]×A) = N(t,A) and lim
t→0

N(t,A) = 0,

that is, N(·,A) is càdlàg process and belongs to V+. One the other hand, fix

(ω, t) ∈ Ω× R+, again by the σ-additivity of ν if {An} is a sequence in E

such that An ↑ A ∈ E and (0, t]×An ↑ (0, t]×A ∈ A0 × E. Hence

lim
n→∞

N(t,An) = lim
n→∞

ν((0, t]×An) = ν((0, t]×A) = N(t,A),

with N(t, ∅) = 0. This means that the mapping A 7→ N(ω; t,A) is a σ-finite

premeasure on (E,E), in particular N defines an increasing field on R+ × E.

At the end, we get the uniqueness due to the fact that one can define

ν((s, t]×A) = N(t,A) −N(s,A),

whenever (s, t]×A ∈ A0 × E. If N satisfies equations (1.4) and (1.5) then it

follows directly η = ν.

(b). Since B(R+)⊗ Σ = σ(A0 × E) (see Lemma A.1.4), then by Lemma

A.1.2, we can uniquely extend the random σ-finite premeasure η to a

random σ-finite measure, denoted by ζ, on (R+ × E,B(R+)⊗ Σ) such that

ζ((s, t]×A) = N(t,A) −N(s,A), for any (s, t]×A ∈ A0 × E.

This completes the proof.
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As result, we can now define the Bochner integral w.r.t an increasing

field that we denote by f ·N or
∫•
0

∫

E f(s, x)N(ds, dx) for some H-valued

functions f.

Definition 1.2.3 For each (ω, t) ∈ Ω×R+ and for every H-valued optional

process f such that

∫t

0

∫

E

‖f(ω, s, x)‖VN(ω; ds, dx) <∞, (1.6)

we define the integral process f ·Nt as

f ·Nt(ω) :=

∫t

0

∫

E

f(ω, s, x)N(ω, ds, dx) =
∫t

0

∫

E

f(ω, s, x)ζ(ω, ds, dx), (1.7)

and if f is an elementary function of the form

f = fa✶(a,b]×A, (a,b]×A ⊂ R+ × E,

with fa is an H-valued bounded and Fa-measurable random variable, then

f ·Nt = fa
(
N(t∧ b,A) −N(t∧ a,A)

)
, t > 0.

Next, we give some properties of the integral process f ·N.

Proposition 1.2.1 Let N be an increasing field and h be a H-valued optional

process satisfying condition (1.6). Then the following properties are satisfied:

i. (f ·N(t))t>0 is a H-valued, adapted and càdlàg process with finite variation

path, namely, for ω ∈ Ω

sup
n∈N

n∑

k=1

∥∥f ·N(ω, tk/n) − f ·N(ω, t(k− 1)/n)
∥∥ <∞, for all t > 0.

ii. ∆(f ·N) = f ·∆N.

iii. If f and N are predictable, then f ·N is predictable.

iv. The mapping h 7→ f ·N is a linear.

v. (f ·X)τ =
(
f✶J0,τK

)
·X, for each stopping time τ with P(τ 6 T) = 1.

Proof (i). Despite the fact that f is an optional function and N(·,A) ∈ V+

for any A ∈ E. It follows if f ·N is well-defined then it is also càdlàg with
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f ·N(0) = 0 almost surely. On the other hand, fix t > 0, the set function

γ(ω; ds× dx) := N(ω; ds, dx)✶{s6t} for each ω defines a premeasure on

[0, t]× E, such that γ(·;A×B) is Ft-measurable for each Cartesian product

A× B ⊂ [0, t]× E. Moreover, f(ω, s, x) is Ft ⊗B([0, t])⊗ Σ-measurable on

Ω× [0, t]× E, and thus by Fubini’s Theorem for transition measures we

deduce that f ·Nt is Ft-measurable for any t > 0.

Last, the finite variation path comes from relations (1.1) and (1.6) where

n∑

k=1

∫t k
n

tk−1
n

∫

E

‖f(ω, s, x)‖N(ω; ds, dx) 6
∫t

0

∫

E

‖f(ω, s, x)‖VN(ω; ds, dx),

for all n ∈ N, and which leads to

sup
n∈N

n∑

k=1

∫t k
n

tk−1
n

∫

E

‖f(ω, s, x)‖N(ω; ds, dx) <∞.

(ii). To prove ∆(f ·N) = f · ∆N, we first consider f is an elementary

function of the form

f = f0✶[0,a]×A, [0,a]×A ⊂ R+ × E,

where f0 is a H-valued bounded and F0-measurable. Then it follows

f ·Nt = f0N(t∧ a,A)

with f0 is an H-valued bounded, F0-measurable random variable and we

compute

∆(f ·N)t = f ·Nt − f ·Nt− = f0[N(t∧ a,A) −N(t− ∧ a,A)] = f ·∆Nt.

Thus, the result is also true if f is a simple function. To complete the

proof, we use the limit approximation argument. More precisely, let f be

an optional function satisfying (1.6) and let {fn} be a sequence of simple

functions such that ∆(fn ·N) = fn ·∆N and ‖fn− f‖ → 0 as n→ ∞. Noting

that if ‖fn − f‖ → 0 then follows fn ·N → f ·N as, by Definition 1.2.3, we

have
∥∥∥∥
∫t

0

∫

E

[fn(s, x) − f(s, x)]N(ds, dx)

∥∥∥∥ 6

∫t

0

∫

E

‖fn(s, x) − f(s, x)‖VN(ds, dx).

Therefore, we deduce that

∆(f ·N) = ∆( lim
n→∞

fn ·N) = lim
n→∞

∆(fn ·N) = lim
n→∞

fn ·∆N = f ·∆N.
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(iii). By [47, Proposition 2.6, p.17] and (i), f ·N− is predictable as f ·N is

an H-valued càdlàg and adapted process. Similarly, by (ii), we also have

∆(f ·N) = f ·∆N is predictable as f and N are predictable. Therefore, we

deduce that f ·N = f ·N− +∆(f ·N) is predictable.

(iv). Let f,g be H-valued optional processes satisfying respectively condi-

tion (1.6) and c be a real constant. Since f+ cg is also optional, so it holds

that
∫t

0

∫

E

‖f(s, x) + cg(s, x)‖VN(ds, dx) <∞,

as ‖f(s, x) + cg(s, x)‖ 6 ‖f(s, x)‖+ |c|‖g(s, x)‖ for (s, x) ∈ R+ × E. Then the

integral process of f+ cg w.r.t N is well-defined and we have

∫t

0

∫

E

[f+cg](s, x)N(ds, dx) =
∫t

0

∫

E

f(s, x)N(ds, dx)+c
∫t

0

∫

E

g(s, x)N(ds, dx).

(v).Let t ∈ [0, T ], ω ∈ Ω be arbitrary. If f is an elementary function of the

form

f = f0✶[0,a]×A, [0,a]×A ⊂ R+ × E.

then, ω-by-ω, we have

(f ·N)τt (ω) =

∫t∧τ(ω)

0

∫

E

f(ω, s, x)N(ω; ds, dx)

= f0(ω)
[
N(ω; t∧ T(ω)∧ a,A) −N(ω; 0,A)

]
,

(1.8)

and

(f✶J0,τK) ·Nt(ω) =

∫t

0

∫

E

f(ω, s, x)✶J0,τK(ω, s)N(ω; ds, dx)

=

∫t

0

∫

E

f0(ω)✶A(x)✶J0,τ∧aK(ω, s)N(ω; ds, dx)

= f0(ω)
[
N(ω; t∧ T(ω)∧ a,A) −N(ω; 0,A)

]
,

(1.9)

This implies that (f ·N)τ = (f✶J0,τK) ·N for f an elementary function. Then

by the limit approximation (as in (ii)), we obtain

(f ·N)τ = lim
n→∞

(fn ·N)τ = lim
n→∞

(fn✶J0,τK) ·N = (f✶J0,τK) ·N.

This completes the proof
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Remark 3 For any a ∈ H such that 〈f,a〉H > 0, 〈f ·N,a〉H belongs to V+ and

〈f ·N,a〉H (t) := (〈f,a〉H ·N)t = 〈f,a〉H ·Nt is the real-valued Bochner integral.

Indeed, we compute that

〈f ·N,a〉H (t) =

∫t

0

∫

E

(f(ω, s, x)N(ω, ds, dx),a)H

=

∫t

0

∫

E

〈f,a〉H (ω, s, x)N(ω, ds, dx) = 〈f,a〉H ·N(t).

By Proposition 1.2.1, we obtain that 〈f ·N,a〉H is càdlàg and adapted with

〈f ·N,a〉H (ω; 0) = 0 for ω ∈ Ω. Since the process 〈f,a〉H is optional with

〈f,a〉H > 0 and N is an increasing field, thus it follows that 〈f ·N,a〉H still

remains an increasing process. This implies that 〈f ·N,a〉H ∈ V+.

2. At end, we now extend this definition of the Bochner integral to the

class of FV fields. LetN ∈ VE such that we can uniquely writeN = N+−N−

(by Lemma 1.2.1). We next give the definition of the Bochner integral
∫•
0

∫

E f(s, x)N(ds, dx).

Definition 1.2.4 Let f be H-valued optional process and N is a finite varia-

tion field such that
∫t

0

∫

E

‖f(ω, s, x)‖VN(ω, ds, dx) <∞.

Thus, for all (ω, t) ∈ Ω×R+, the Bochner integral f ·N exists and is defined

by

f ·N(ω; t) :=
∫t

0

∫

E

f(ω, s, x)N+(ω; ds, dx)−
∫t

0

∫

E

f(ω, s, x)N−(ω; ds, dx),

(1.10)

where both integrals in right side are defined as in Definition 1.2.3.

Similarly to the increasing field, all results in Proposition 1.2.1 can be

extended to the class of finite variation fields. In other words, the integral

process f ·N is a H-valued, adapted and càdlàg process with finite variation

path and satisfies all properties in Proposition 1.2.1.

Remark 4 For any arbitrary p > 1. For T > 0, we define LpT (N;H) as the space

of all predictable processes f : Ω× R+ ×H→ H such that

E

[∫T

0

∫

E

‖f(s, x)‖pVN(ds, dx)

]
<∞.
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Furthermore, we extend the space LpT (N;H) to L
p
loc(N;H) the space of all predic-

table processes f : Ω× R+ ×H→ H which satisfies

P

(∫T

0

∫

E

‖f(s, x)‖pVN(ds, dx) <∞

)
= 1, for all T > 0.

Note that this can be performed by the so-called localization procedure, (see

Section 1.3.4), and the stopping time result in Proposition 1.2.1.

Proposition 1.2.2 Let a : Ω×R+ → H be an optional and λ-integrable mapping.

Then there exists a Borel space (E,Σ) and a function f ∈ L
p
loc(N;H) so that

∫t

0

a(s)ds =
∫t

0

∫

E

f(s, x)N(ds, dx), for all t ∈ R+.

Proof For the existence of space E, we take (E,Σ) as any arbitrary Blackwell

space such that E 6= ∅. Let η be a finite measure on (E,Σ). For t ∈ [0, T ],

x ∈ E and A ∈ Σ, we define

f(t, x) := a(t) and N(t,A) := λ([0, t])
η(A)

η(E)
,

Then N is a finite variation field by construction. The Bochner integral f ·N
is well-defined and it holds

∫t

0

∫

E

f(s, x)N(ds, dx) =
∫t

0

∫

E

a(s)ds
η(dx)
η(E)

=

∫t

0

a(s)ds.

1.3 martingale fields

In this section, we describe the class of martingale fields and then we

perform the associated integration theory.

1.3.1 Definitions and Properties

Let M is a random field on R+ × E (or R+ × Σ) such that (M(t,A))t>0 is a

locally square-integrable martingale process for all A ∈ E (resp. Σ). Let us

introduce the concept of quadratic variation or bracket process associated to
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M(·,A). Fix A ∈ E (resp. Σ), by the standard argument (see [47], Theorem

4.2), there exists an unique predictable process 〈M〉(t,A) := 〈M(·,A)〉t with

〈M〉(0,A) = 0 a.s that makes M(·,A)2 − 〈M(·,A)〉 a local martingale.

Remark 5 Later on, we perform the stochastic integration w.r.t martingale fields

by following the Itô construction, i.e. we use the Itô isometry to construct the

stochastic integrals and then we formulate the integrability condition in terms of

the quadratic variation. As E is not a σ-algebra, so again we shall need to extend the

premeasure induced by the increasing random field A 7→ 〈M〉(·,A) to a measure

on (E,Σ) (see Remark 1).

Before we start, it is important to point out that there are two different

types of martingale fields, namely, cylindrical martingale field and true-

martingale field. The difference between both fields lies on the space where

they are defined.

Definition 1.3.1 a) A cylindrical martingale field is a random field M on

R+ × E which satisfies

1. For each A ∈ E, the stochastic process (M(t,A))t>0 belongs to H2
loc.

2. there is a predictable non-decreasing field B on R+ × E such that

〈M〉(·,A) = B(·,A), up to an evanescence set, for all A ∈ E.

Then 〈M〉(·,A) is called the quadratic variation process of M(·,A) for each

A ∈ E, while the covariance functional of M(t, ·) is a premeasure on (E,E)

with

〈M〉(t,A∩B) := 〈M(·,A),M(·,B)〉t,

for any fixed t > 0 and for all A,B ∈ E. By polarization, we define the

co-variance process of two martingale fields M,N by the following process:

〈M,N〉(t,A) = 1

4

[
〈M+N〉(t,A) − 〈M−N〉(t,A)

]
, for any A ∈ E, t > 0.

Denote by ME the class of cylindrical martingale fields defined on R+ × E.

b) A true martingale field is a cylindrical martingale field on R+ × Σ, i.e.

E = Σ, and the mapping A 7→ B(·,A) is a measure on (E,Σ). We denote by

MΣ the class of true martingale fields.
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It is clear that MΣ ⊂ ME. In the sequel, without lose of generality,

for simplicity we use the name ”martingale field“ to refer a cylindrical

martingale field.

Proposition 1.3.1 For every M ∈ ME, the field B is unique up to a P-null set.

Proof Fix A ∈ E and let B and B ′ two predictable increasing fields on

R+ × E such that respectively 〈M〉(·,A) = B(·,A) and 〈M〉(·,A) = B ′(·,A)
up to evanescent sets (denote respectively by NA and N

′

A). By Theorem

4.2 [47, p38-39], for all the bracket process 〈M〉(·,A) is unique up to an

evanescent set (denote by N
′′

A). This implies that both processes B(·,A) and

B ′(·,A) coincide in the sense that
{

ω ∈ Ω : B(ω; t,A) 6= B ′(ω; t,A) for some t ∈ R+

}

= NA ∪N
′

A ∪N
′′

A

is a P-null set.

It follows from the countability of E that the set, defined as

N =
⋃

A∈E

{

ω ∈ Ω : B(ω; t,A) 6= B ′(ω; t,A) for some t ∈ R+

}

, (1.11)

is also a P-null set. This completes the proof.

Let us introduce new definitions.

Definition 1.3.2 Let M,N ∈ ME. All equalities are up to evanescence.

a) M and N are called orthogonal if, for each A ∈ E, their product

M(·,A)N(·,A) is a local martingale or equivalently 〈M,N〉(t,A) = 0.

b) M is orthogonal to itself if, for any two disjoint sets A and B in E,

〈M〉(t,A∩B) = 〈M(t,A),M(t,B)〉 = 0.

c) A martingale field M is called a purely discontinuous martingale field

if M(0, ·) = 0 and 〈M,N〉(·,A) = 0, for any continuous martingale

fields N and A ∈ E.

Lemma 1.3.1 Suppose that M has independent and stationary increments. Then,

for A ∈ E fixed, the quadratic variation process 〈M〉(·,A) is deterministic up to

evanescent set, i.e. 〈M〉(·,A) is uniquely determined by

〈M〉(t,A) = E

[
IM((0, t]×A)2

]
, for t > 0.
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Proof Fix A ∈ E. Since M(·,A) ∈ H2
loc, we have

E

[
M(t,A)2 −M(0,A)2

]
= E

[
IM((0, t]×A)2

]
.

As M(·,A)2 − 〈M〉(·,A) is a martingale, then it follows

E

[
IM((s, t]×A)2|Fs

]
= E

[
〈M〉(t,A) − 〈M〉(s,A)|Fs

]
, for any 0 6 s < t.

If M has independent increments, then we obtain

E

[
IM((s, t]×A)2

]
= E

[
〈M〉(t,A) − 〈M〉(s,A)|Fs

]
,

this means that 〈M〉(·,A) is deterministic and it holds , by the tower property

of conditional expectation, that

〈M〉(t,A) = E

[
IM((0, t]×A)2

]
= E

[
M(t,A)2 −M(0,A)2

]
.

Since we are more interested in martingale fields having independent

and stationary increments. Then we assume all martingale fields, that shall

be used throughout the thesis, have independent and stationary increments.

1.3.2 Fundamental Examples

We next provide divers example of martingale fields.

Definition 1.3.3 An (extended) Poisson field on R+ × E, relative to the

Filtration F, is an integer-valued martingale field M which satisfies

1. A 7→ m(·,A) = E[M(·,A)] is σ-finite premeasure on (E,E).

2. IM((s, t]×A) is independent of Fs, for any (s, t]×A ∈ B(R+)× E.

The premeasure m is called the intensity of M.

Example 3 (Compensated Poisson field) Let (E,Σ) be a Blackwell space such

that Σ = σ(G) with G is a countable semi-ring. Let F be a positive σ-finite measure

on (E,Σ), namely, there is (An)n∈N be an increasing sequence of sets in Σ such
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that E =
⋃

n∈N
An and F(An) < ∞ for all n ∈ N. Construct the countable

semi-ring:

E :=
⋃

n∈N

{B∩An : B ∈ G}.

Let µ be a homogeneous Poisson random measure on R+ × E with intensity

measure ν(dt× dx) = dt⊗ F(dx). We define a Poisson field on R+ × E as

Mµ(t,A) =
∫t

0

∫

E

✶A(x)
[
µ(ds× dx) − dsF(dx)

]
, for all A ∈ E, t > 0.

(1.12)

Note that the integral process in (1.12) is well-defined as it is a stochastic integral

of the form ✶A ∗ (µ− ν) (see [47, p.71]).

To prove the above claim, we make the following two steps:

(a). Fix A ∈ E. The compensated random measure µ− ν is by definition an

integer-valued random measure, so Mµ also takes its values in N. We also have

µ − ν is integrable (see [47, I.1.6]) and ✶A ∗ (µ − ν) is a local martingale as

✶A ∈ Gloc(µ). Define C(✶A) as in [47, I.1.31] and compute:

C(✶A)t = ✶
2
A ∗ ν =

∫t

0

∫

E

✶A(x)2 dsF(dx) = tF(A) <∞.

Therefore, we have C(✶A) ∈ A+ and then by [47, I.1.33.(b)] we obtain ✶A ∗
(µ − ν) ∈ H2 and 〈Mµ〉(t,A) = 〈✶A ∗ (µ − ν),✶A ∗ (µ − ν)〉t = C(✶A)t.

Namely, the process Mµ(·,A) ∈ H2 and there is a non-decreasing field B such

that B(t,A) := tF(A). This shows that Mµ is a martingale field3 on R+ × E.

(b). Next, we prove that (1) and (2) in Definition (1.3.3) are fulfilled. Since F be a

σ-finite premeasure on (E,E) and by the integrability of µ− ν, so we obtain A 7→
E[Mµ(t,A)] = E[µ((0, t]×A) − tF(A)] is a premeasure on (E,E). Moreover, as

µ(·; (s, t]×A) is independent of Fs, for any s > 0 and (s, t]×A ∈ B(R+)⊗ E

with (s, t]×A ⊂ R+ × E, so also is IMµ
((s, t]×A) independent of Fs. This

means that Mµ is a Poisson field.

There is very little to say about discrete-space martingale fields. We

consider the case where E ⊆ N and Σ = P(E).

3 If F is finite measure then Mµ becomes a true martingale field as we can take E = Σ.
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Lemma 1.3.2 Let I ⊂ N finite and (Mi)i∈I be a family of local square integrable

martingale processes with 〈Mi,Mj〉t = 0 for i 6= j. Then the field defined as

M(t,A) =
∑

i∈A

Mi(t), for A ⊂ N finite, t ∈ [0, T ],

is a martingale field on R+ × E where E is a collection of all finite subsets of N.

Proof First, consider E = {A ⊂ N : A is a finite set}. Fix A ∈ E, by construc-

tion, M(·,A) defines a square-integrable local martingale process. Moreover,

we obtain that there is a non-decreasing field B on N × E such that

B(·,A) := 〈M〉(·,A) =
∑

i∈A

〈Mi〉+
∑

i,j∈A
i 6=j

〈Mi,Mj〉 =
∑

i∈A

〈Mi〉.

It is clear that B(·, ∅) = 0. Next we shall show that A 7→ B(·,A) is a premea-

sure on (N,E). Indeed, if (An)n∈N a sequence of disjoint sets in E with

∪n∈NAn ∈ E (i.e. there is n0 ∈ N such that An = ∅, for any n > n0). Then,

we have

B(·,∪n∈NAn) =
∑

i∈∪n∈NAn

〈Mi〉 =
∑

i∈A1

〈Mi〉+ · · ·+
∑

i∈An0

〈Mi〉 =
n0∑

n=1

B(·,An),

this implies the σ-additivity of A 7→ B(·,A) as

n0∑

n=1

B(·,An) =
∑

n∈N

B(·,An).

This completes the proof.

Definition 1.3.4 A Gaussian martingale field is a martingale field G on

R+ × E such that:

a) G(0, ·) = 0 up to evanescence;

b) for each A ∈ E, G(·,A) is a Gaussian process4.

Example 4 (Finite dimensional Wiener processes) Let d be a positive inte-

ger number with d > 1 and W = (W1, . . . ,Wd) be a d-dimensional Wiener

4 That is the distribution of any finite family, (G(t1,A), · · · ,G(tn,A)) is Gaussian.
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process. Consider E = {1, . . . ,d} and Σ = P(E). Then, by Lemma 1.3.2, we can

construct a true Gaussian field 5 G associated to W as follows

G(t,A) =
∑

i∈A

Wi(t), for A ∈ Σ and t ∈ R+,

with the quadratic variation

〈G〉(t,A) =
∑

i∈A

〈Wi〉t = t#(A), for A ∈ Σ and t ∈ R+.

Example 5 (Cylindrical Wiener processes) LetW be a cylindrical Wiener pro-

cess on U on some separable Hilbert space U, and {ei}i∈N be an orthonormal basis

of U. Namely, the sequence (W(ei))i∈N is a sequence of independent standard

Wiener process.

By taking E = N with Σ = P(N), and setting E = {A ⊂ N : A is a finite set}.

Then we can associate a martingale field M to the family (W(ei))i∈N by the

following way:

M(t,A) =
∑

i∈A

Wt(ei), for all t ∈ R+, A ∈ E. (1.13)

Moreover, M is a Gaussian martingale field with

〈M〉(t,A) =
∑

i∈A

〈W(ei)〉t = t#(A), for A ∈ E and t ∈ R+.

Indeed, it follows from Lemma 1.3.2 that M is a Gaussian martingale field on

N × E as (W(ei))i∈A is a family of Gaussian martingale processes.

Last, we provide the definition of Lévy random field.

Definition 1.3.5 A martingale field L on R+ × E is said to be a Lévy field if

the following conditions are fulfilled:

a) L(0, ·) = 0;

b) L has independent and stationary increments.

Example 6 Let (λn)n∈N ⊂ R+ be a sequence with
∑

n∈N
λn < ∞ and let

(l2λ, 〈·, ·〉l2λ) be a Hilbert space consisting of all weighted sequences

l2λ :=

{

(vn)n∈N ⊂ R :
∑

n∈N

λn|v
n|2 <∞

}

and 〈u, v〉l2λ =
∑

n∈N

λnu
nvn.

5 The Gaussian field G is characterised by: G(0,A) = 0; G has independent and stationary

increments; G(t,A) ∼ N(0, t#A).
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Let Q ∈ L(l2λ) be a self-adjoint, positive definite trace class operator. Let {eλn}n∈N

be an orthonormal basis of l2λ that consists of eigenvectors of Q with corresponding

eigenvalues (λn)n∈N such that

Qeλn = λne
λ
n, for all n ∈ N.

Let X be an l2λ-valued square integrable Lévy martingale with covariance operator

Q (see Tappe [92]). Namely, X is a Lévy martingale with E
[
‖X(t)‖2

l2λ

]
<∞ and

E
[
X(t)

]
= 0, and we have

E

[
〈X(s), x〉l2λ〈X(t),y〉l2λ

]
= (s∧ t)〈Qx,y〉l2λ , x,y ∈ l2λ, t, s ∈ R+.

According to [92, Proposition 5.4], 〈X, eλn〉l2λ is a sequence of standard Lévy pro-

cess for every n ∈ N. That is, it consists of square-integrable martingales with

〈〈X, eλi 〉l2λ , 〈X, eλj 〉l2λ〉t = δij · t for all i, j ∈ N, t > 0. Here δij denotes the

Kronecker delta.

Again let E = N with Σ = P(E). In the following, we derive two different

examples of martingale fields from the process X.

a) Set E = {A ⊂ E : A is finite} and define

L1(t,A) =
∑

n∈A

1√
λn

〈X(t), eλn〉l2λ , for A ∈ E, t ∈ R+. (1.14)

Note that L1 is well-defined and is a Lévy (cylindrical) martingale field on R+ × E.

Indeed, since {〈X, eλn〉l2λ}}n∈N defines a standard Lévy process, then the sum in

(1.14) converges for all A ∈ E. Moreover, it holds:

1. as 〈X, eλn〉l2λ has independent and stationary increments for any n ∈ N, so

also is the field L1 given in equation (1.14) and L1(0,E) = 0;

2. by definition, 〈X, eλn〉l2λ ∈ H2
loc for each n ∈ N, then any finite sum

∑

n∈A

1√
λn

〈X, eλn〉l2λ , for any fixed A ∈ E,

belongs to H2
loc.
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3. Fix t > 0 and A ∈ E. Since 〈〈X, eλi 〉l2λ , 〈X, eλj 〉l2λ〉t = 0 for i 6= j, then we

compute

〈L1〉(t,A) =
∑

n∈A

1

λn
〈〈X, eλn〉l2λ , 〈X, eλn〉l2λ〉t

+
∑

n,k∈A
n 6=k

2√
λnλk

〈〈X, eλn〉l2λ , 〈X, eλk〉l2λ〉t

=
∑

n∈A

t

λn
〈Qeλn, eλn〉l2λ = t#(A) <∞.

(1.15)

This shows that (t,A) 7→ 〈L1〉(t,A) is a non-decreasing field on R+ × E. In

other words, L1 is a cylindrical martingale field.

b) Now set E = Σ = P(E) and define a Lévy field L2 : Ω× R+ × Σ→ R,

L2(t,A) =
∑

n∈A

〈X(t), eλn〉l2λ , for A ∈ Σ and t ∈ R+, (1.16)

which is a true martingale field. Likewise to example (a), we indeed have:

1. by construction, L2(·,A) has independent and stationary increments;

2. for each A ∈ Σ, L2(·,A) belongs to H2
loc;

3. Fix t > 0 and A ∈ Σ. We compute and obtain

〈L2〉(t,A) =
∑

n∈A

t〈Qeλn, eλn〉l2λ +
∑

n,k∈A
n 6=k

2t〈Qeλn, eλk〉l2λ

= t
∑

n∈A

λn = tαA <∞,

where αA defines a measure on (E,Σ). This yields that (t,A) 7→ 〈L2〉(t,A)
is a non-decreasing field on R+ × Σ.

1.3.3 Stochastic Integration

In this section, we present the Itô stochastic integral with respect to mar-

tingale fields. Then we shall investigate the some special cases in which

we show the possible connection of our stochastic integral with the classic

integration theory in the standard textbooks.

In what follows, let H be a real-separable Hilbert space andM be a martin-

gale field on R+×E. Denote by f ·M the integral process
∫•
0

∫

E f(s, x)M(ds, dx).
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1.3.3.1 Definition of the Stochastic Integral

Let us fix the time horizon T > 0 and define

L2T (M;H) := L2(Ω× [0, T ],PT ⊗ Σ, P ⊗ 〈M〉;H),

the space of all predictable mappings f : Ω× [0, T ]× E→ H for which:

E

(∫T

0

∫

E

‖f(s, x)‖2〈M〉(ds, dx)

)
<∞. (1.17)

Notice that the space L2T (M;H) is a real Hilbert space equipped with the

norm ‖ · ‖T defined by:

‖φ‖T = E

(∫T

0

∫

E

‖φ(s, x)‖2〈M〉(ds, dx)

)1/2

, for φ ∈ L2T (M;H).

Definition 1.3.6 For each t ∈ [0, T ], a predictable process f is M-integrable

if f ∈ L2T (M;H) and we write

f ·M(ω; t) :=
∫t

0

∫

E

f(ω, s, x)M(ω, ds, dx). (1.18)

Moreover, if M is a continuous then f ·M is continuous .

Let us give here a short explanation regarding to the construction of the

integral.

1. Let ET (M;H) denote the space of H-valued elementary functions adap-

ted to the filtration (Ft)t6T that are of the form

φ =

n∑

i=0

φi✶(ti,ti+1]×Ai
, for some n ∈ N, (1.19)

where {t0, . . . , tn} is a partition of [0, T ], A0, . . . ,An are pairwise disjoints

sets in E with (ti, ti+1]×Ai ⊂ R+×E for i = 0, . . . ,n, and φi is a H-valued,

bounded and Fti-measurable random variable with
〈
φi,φj

〉
H

= 0 for i 6= j.

2. The stochastic integral of φ with respect to M is canonically defined as

φ ·Mt :=

n∑

i=0

φiM
(
(t∧ ti, t∧ ti+1],Ai

)
, for all t ∈ (0, T ]. (1.20)

Next, we shall find the properties of the stochastic integral.
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Theorem 1.3.1 Let M be a martingale field and f,g ∈ ET (M;H). The following

proprieties are satisfied:

(i) The mapping f 7→ f ·M is a linear isometry from ET (M;H) into M2
T (H).

(ii) For any stopping time τ with P(τ 6 T) = 1, (f ·M)T = (f✶J0,τK) ·M.

(iii) For any u, v ∈ H, the covariance process of f ·M is determined by

〈(f ·M,u)H, (g ·M, v)H〉t =
∫t

0

∫

E

(f(s, x),u)H(g(s, x), v)H〈M〉(ds, dx).

(1.21)

Proof Let f,g ∈ ET (M;H) be arbitrary such that

f = f0✶(0,a]×A and g = g0✶(0,b]×B, for (0,a]×A, (0,b]×B ⊂ [0, T ]×E

where f0 and g0 are respectively H-valued, bounded and F0-measurable

random variables.

(i) First, we show that f ·M is a H-valued square-integrable martingale.

Let h ∈ H be arbitrary. Then, for 0 6 s < t, we compute

E[〈f ·Mt,h〉H |Fs] = E
[
〈f0,h〉H IM

(
(0, t∧ a],A

)
|Fs

]

= 〈f0,h〉H IM
(
(0, s∧ a],A

)
= 〈f ·Ms,h〉H ,

proving that the process f ·M is an H-valued martingale.

Next, using the independent increment property of M, we compute

E

[
‖f ·Mt‖2

]
= E

[∥∥f0IM
(
(0, t∧ a],A

) ∥∥2
]

= E

[(
M(t∧ a,A) −M(0,A)

)2 ‖f0‖2
]

= E

[
E

[
M(t∧ a,A)2 −M(0,A)2

∣∣F0

]
‖f0‖2

]

= E

[ (
〈M〉(t∧ a,A) − 〈M〉(0,A)

)
‖f0‖2

]

= E

[∫t

0

∫

E

||f(s, x)||2〈M〉(ds, dx)

]
= ‖f‖2t ,

which shows the isometry property and if f satisfies (1.17) then we obtain

f ·M ∈M2
T (H). Moreover, if α ∈ R is an arbitrary constant then we have

‖f+αg‖t 6 ‖f‖t + |α|‖g‖t <∞, for all t > 0.
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This means that f+αg is M-integrable and we obtain

(f+αg) ·Mt =

∫t

0

∫

E

(f0✶(0,a]×A(s, x) +αg0✶(0,b]×B(s, x))M(ds, dx)

= f ·Mt +αg ·Mt, for all t > 0,

and the linearity of stochastic integral follows.

(ii) Let t ∈ [0, T ], ω ∈ Ω be arbitrary. By definition, ω-by-ω, we write:

(f ·M)τt (ω) =

∫t∧τ(ω)

0

∫

E

f(ω, s, x)M(ω; ds, dx)

= f0(ω)
[
M(ω; t∧ T(ω)∧ a,A) −M(ω; 0,A)

]
,

(1.22)

and

(f✶J0,τK) ·Mt(ω) =

∫t

0

∫

E

f(ω, s, x)✶J0,τK(ω, s)M(ω; ds, dx)

=

∫t

0

∫

E

f0(ω)✶A(x)✶J0,τ∧aK(ω, s)M(ω; ds, dx)

= f0(ω)
[
M(ω; t∧ T(ω)∧ a,A) −M(ω; 0,A)

]
,

(1.23)

This implies that (f ·M)τ = (f✶J0,τK) ·M.

(iii) First, we compute 6

∫t

0

∫

E

〈
f(s, x),u

〉
H

〈
g(s, x), v

〉
H
〈M〉(ds, dx)

= 〈f0,u〉H 〈g0, v〉H
[
〈M〉(t∧ a∧ b,A∩B) − 〈M〉(0,A∩B)

]

= 〈f0,u〉H 〈g0, v〉H 〈M(·∧ a,A),M(·∧ b,B)〉t.

(1.24)

Equation (1.24) yields

〈f ·Mt,u〉H 〈g ·Mt, v〉H −

∫t

0

∫

E

〈
f(s, x),u

〉
H

〈
g(s, x), v

〉
H
〈M〉(ds, dx)

= 〈f0,u〉H 〈g0, v〉H
(
[M(t∧ a,A)M(t∧ b,B) − 〈M(·∧ a,A),M(·∧ b,B)〉t

−M(0,A)M(t∧ b,B) −M(0,B)M(t∧ a,A) −M(0,A)M(0,B)
)

,

(1.25)

which is a martingale as M is a martingale field. Therefore, by definition of

quadratic covariation of real-valued process, we must have

∫t

0

∫

E

〈
f(s, x),u

〉
H

〈
g(s, x), v

〉
H
〈M〉(ds, dx) = 〈〈f ·M,u〉H , 〈g ·M, v〉H〉t.

6 〈M〉(·∧ a∧ b,A∩B) is the bracket process of both processes M(·∧ a,A) and M(·∧ b,B).
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In order to extend this definition to the larger space L2T (M;H), one may

use the fact that the class of bounded elementary processes ET (M;H) is

dense in L2T (M;H) and then apply the limit approximation argument.

Lemma 1.3.3 Let f ∈ L2T (M;H), then there exists a sequence fn in ET (M;H)

approximating f in L2T (M;H). That is,

‖fn − f‖2T = E

(∫T

0

∫

E

‖fn(s, x) − f(s, x)‖2〈M〉(ds, dx)

)
→ 0,

as n→ ∞.

Proof We follow the idea in [96]. We aim to show that ET (M;H) is dense

in L2T (M;H).

(1) Let f ∈ L2T (M;H) and define a sequence of bounded functions

fn(t, x) =






f(t, x) if ‖f(t, x)‖ < n

0 otherwise.

Then

‖fn − f‖2T = E

(∫T

0

∫

E

‖fn(s, x) − f(s, x)‖2〈M〉(ds, dx)

)
→ 0

by monotone convergence theorem, as n→ ∞. This implies that bounded

functions are dense in L2T (M;H).

(2) We assume now that f is bounded and predictable. We construct

ω-by-ω

fn(t, x,ω) =
1

2n

∫k/2n

(k−1)/2n

f(s, x,ω)ds, if t ∈
[
k

2n
,
k+ 1

2n

)
.

Then ‖fn − f‖2T → 0 by Lebesgue dominated convergence theorem. This

shows that the space of simple functions dense in the bounded functions.

(3) By definition, it is clear to see that ET (M;H) is dense in the space of

simple functions. This implies that ET (M;H) is dense in L2T (M;H).

(4) Next, we use the isometry property of f 7→ f ·M to obtain the existence

of approximating sequence. By Lemma A.4.2, the map f 7→ f ·M has a
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further extension to the space L2T (M;H). Namely, there exists a sequence

{fn} ⊂ ET (M;H) and

E

(∫T

0

∫

E

‖fn(s, x) − f(s, x)‖2〈M〉(ds, dx)

)
→ 0, as n→ ∞. (1.26)

To conclude the proof, by analogous reasoning if {f ′n} ⊂ ET (M;H) is another

sequence satisfying (1.26) then both sequences lead to the same function

f. That is the definition of stochastic integral f ·M does not depend on the

choice of approximating sequence.

At the end, for every f ∈ L2T (M;H), the stochastic integral f ·M or
∫•
0

∫

E f(s, x)M(ds, dx) is thus well-defined and we write

f ·Mt =

∫t

0

∫

E

f(s, x)M(ds, dx) = lim
n→∞

∫t

0

∫

E

fn(s, x)M(ds, dx), t ∈ [0.T ],

where {fn} is a sequence of functions in ET (M;H) and by Lemma 1.3.3, all

properties in Theorem 1.4.1 hold true for any function f ∈ L2T (M;H).

Remark 6 Note that for any predictable function f ∈ L2T (M;H), the integral

process
∫•
0

∫

E f(s, x)M(ds, dx) has càdlàg sample paths.

1.3.3.2 Special Cases

In the following, we provide the connection between stochastic integra-

tion w.r.t martingale fields developed previously and those already exis-

ting in literature that is used to study SPDE’s: (1) stochastic integral w.r.t

Hilbert-space-valued processes; (2) stochastic integral w.r.t Poisson random

measures.

1) Fix T > 0 and suppose that E is countable and Σ = P(E). Define

E = {A ⊂ N : A is finite} such that Σ = σ(E). Let M be a martingale

field on R+ × E and H be a separable Hilbert space. For k ∈ E, we set

Mk(t) := M(t, {k}) and according to Definition 1.3.1, Mk(t) is a square-

integrable martingale process. Moreover, we have:

M(·,A) :=
∑

k∈A

Mk(·) and 〈M〉(·,A) =
∑

k∈A

〈Mk〉, for all A ∈ E. (1.27)

Before going further, we consider the following result.
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Proposition 1.3.2 Let f : Ω× [0, T ]× E→ H be such that f ∈ L2T (M;H). Then

f is Mk-integrable for each k ∈ E and it holds
∫t

0

∫

E

f(s, x)M(ds,dx) =
∑

k∈E

∫t

0

f(s,k)Mk(ds).

Proof Let k ∈ E. By definition 〈Mk〉 is an increasing process, then we can

write

E

[ ∫t

0

‖f(s,k)‖2〈Mk〉(ds)
]
<

∑

n∈E

E

[ ∫t

0

‖f(s,n)‖2〈Mn〉(ds)
]

. (1.28)

Since f ∈ L2T (M;H), and by equation (1.27), we have

∑

n∈E

E

[ ∫t

0

‖f(s,n)‖2〈Mn〉(ds)
]
= E

[ ∫t

0

∫

E

‖f(s, x)‖2〈M〉(ds, dx)
]
<∞.

This yields that the Itô integral
∫•
0 f(s,k)Mk(ds) is well-defined since

E

[ ∫t

0

‖f(s,k)‖2〈Mk〉(ds)
]
<∞,

Now let f be an elementary function of the form

f = fa✶(a,b]×A, (a,b]×A ⊂ [0, T ]× E,

where fa is a H-valued and Fa-measurable random variable. On one hand,

the stochastic integral f ·Mt is given by

f ·Mt = fa[M(t∧b,A)−M(t∧a,A)] =
∑

n∈A

fa[Mn(t∧b)−Mn(t∧a)].

(1.29)

One the other hand, we also have f is Mk-integrable for each k ∈ E, with
∫t

0

f(s,k)Mn(ds) = fa[Mn(t∧ b) −Mn(t∧ a)]. (1.30)

Thus combining equations (1.29) and (1.30) yields

f ·Mt =

∫t

0

∫

E

f(s, x)M(ds,dx) =
∑

n∈E

∫t

0

f(s,k)Mn(ds).

Finally, by Lemma 1.3.3, the result holds true for any predictable process

f ∈ L2T (M;H).

Thanks to the above result, we next present the equivalence between

stochastic integrals w.r.t a cylindrical Wiener process on some separable

Hilbert space and w.r.t a martingale field.
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Let U be a separable Hilbert space and W be a cylindrical Wiener process

on U. Let {fi}i∈N be an orthonormal basis of U. We recall that for any

predictable Φ ∈ L2(U,H), i.e.

E

[∫t

0

‖Φ(s)‖2L2(U,H) ds

]
<∞, for all t > 0,

we denote Φ ·W =
∫•
0Φ(s)W(ds) and we define the H-valued stochastic

integral
∫t
0Φs dWs as in [22] and [34]. That is, we can define Φ ·W by the

following serie representation (see e.g. [34, Lemma 2.8]):

∫•

0

Φ(s)W(ds) =
∞∑

i=1

∫•

0

(Φ(s)fi)dWs(fi). (1.31)

Note that the sum in (1.31) does not depend on the chosen orthonormal

basis.

Proposition 1.3.3 If Φ ∈ L2(U,H), then there exists f ∈ L2T (M;H) such that

∫t

0

Φs dWs =

∫t

0

∫

N

f(s, x)M(ds, dx), (1.32)

where

f(t, i) = Φ(t)ei, for t ∈ [0, T ], i ∈ N.

Proof By equation (1.13), we can construct a sequence of standard inde-

pendent Wiener processes {Mi}i∈N such that

Mi(t) :=Wt(fi), for all t > 0, i ∈ N,

and we define a martingale field M(t, {i}) :=Mi(t). Then we obtain

∫•

0

Φ(s)dWs =

∞∑

i=1

∫•

0

[
Φ(s)fi

]
Mi(ds). (1.33)

According to Proposition 1.3.2, there is a mapping f : Ω× R+ × Σ → H

associated to Φ with

f(t, i) = Φ(t)fi, for any t ∈ [0, T ], i ∈ N,

which is Mi-integrable and satisfies

∞∑

i=1

∫t

0

[
Φ(s)fi

]
dWs(fi) =

∞∑

i=1

∫t

0

f(t, i)Mi(ds) =
∫t

0

∫

N

f(s, x)M(ds,dx).
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This concludes the proof.

As a consequence, we also compare our random field integral to the

infinite-dimensional stochastic integral as established in [22]. Let Q ∈ L(U)
be a positive, definite, symmetric, linear trace-class operator. If W is a Q-

Wiener process on U, there is a natural way to associate to it a cylindrical

Wiener process on U (for more details see [22] and [34]). Namely, we set

Wt =Wt ◦Q1/2 :=

∞∑

i=1

√
λiWt(ei)ei, for all t > 0. (1.34)

where the serie converges in L2(Ω;C([0, T ];U)) and the λi are the eigenva-

lues of Q, each ei is an eigenvector corresponding to λi (i.e. Qei = λiei).

We denote by L2(UQ,H) the space of all predictable processes φ satisfying

E

[∫t

0

‖φ(s)‖L2(UQ,H) ds

]
<∞, for all t > 0,

here UQ = Q1/2U is a separable Hilbert space with an orthonormal basis

{
√
λiei}i∈N and is equipped with the scalar product

〈u, v〉UQ
=

∞∑

i=1

1√
λi

〈u, ei〉U〈v, ei〉U.

We recall that the serie representation of the stochastic integral φ ·W in

terms of ordinary Itô integrals of real-valued processes as in [22] and [34].

The integral process can be written in the form:

∫•

0

φ(s)W(ds) =
∞∑

i=1

∫•

0

(φ(s)ei)d〈Ws, (ei)〉U. (1.35)

Corollary 1.3.1 If φ ∈ L2(UQ,H), then there exists g ∈ L2T (M;H) such that
∫•

0

φs dWs =

∫•

0

∫

N

g(s, x)M(ds, dx), (1.36)

where

g(t, i) = φ(t)ei, for t ∈ [0, T ], i ∈ N.

Proof The proof follows directly from Proposition 1.3.3. Indeed, we first

obverse that 〈Ws, (ei)〉U defines a sequence of standard independent Wiener

processes. Since k 7→Wt(k) = 〈Wt,k〉U is a Cylindrical Wiener process on

U and Ws(ei) = 〈Ws, (ei)〉U for all i ∈ N. Therefore, by Proposition 1.3.3
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and equation (1.35), we have the existence a mapping g ∈ L2T (M;H) such

that

g(t, i) = φ(t)ei, for t ∈ [0, T ], i ∈ N,

and

φ ·W =

∞∑

i=1

∫•

0

[
φ(s)ei

]
d〈Ws, (ei)〉U =

∫•

0

∫

N

g(s, x)M(ds,dx).

This completes the proof.

2) Now, we assume that (E,Σ) is a Blackwell space such that there is

a countable ring E with Σ = σ(E). We recall that Mµ is a compensated

Poisson field R+ × E as in Example 3, that is

Mµ(t,A) =
∫t

0

∫

E

✶A(x)[µ(ds× dx) − ν(ds× dx)], for A ∈ E, t > 0,

where ν(ds × dx) = dsF(dx) is the intensity of homogeneous Poisson

random measure µ. Fix T > 0 and for every predictable functions f that

satisfies

E

[ ∫T

0

∫

E

‖f(s, x)‖2F(dx)ds
]
<∞ (1.37)

both stochastic integrals f ∗ (µ− ν) and f ·Mµ are well-defined. Note that

first f ∗ (µ− ν) is defined as in [93] (i.e. the extension of stochastic integral

w.r.t random measures developed in [47] to Hilbert-space-valued functions).

The aim is to prove that stochastic integral w.r.t Poisson random measures is

in fact captured by the stochastic integration w.r.t martingale fields. Namely,

we have the following equivalence
∫T

0

∫

E

f(s, x)Mµ(ds, dx) =
∫T

0

∫

E

f(s, x)[µ(ds× dx) − F(dx)ds].

Proposition 1.3.4 Let f be a predictable function satisfying condition (1.37). Then

it holds f ∗ (µ− ν) = f ·Mµ (up to indistinguishability).

Proof By extending the stochastic integration in [47], we first denote by

GH
loc(µ) the space of all H-valued predictable functions f such that the

process C(f) = ‖f‖2 ∗ ν ∈ A+, that is

E

[ ∫T

0

∫

E

‖f(s, x)‖2F(dx)ds
]
<∞.
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One the other hand, we have seen in Example 3 that Mµ is a martingale

field with

〈Mµ〉(t,A) = tF(A), for all t > 0,A ∈ E.

Hence, by Defintion 1.3.6, f is Mµ-integrable if and only if the following

condition is fulfilled

E

[ ∫T

0

∫

E

‖f(s, x)‖2〈Mµ〉(ds, dx)
]
= E

[ ∫T

0

∫

E

‖f(s, x)‖2F(dx)ds
]
<∞.

This implies that both spaces GH
loc(µ) and L2T (Mµ;H) coincides and we

have f ∗ (µ− ν) = f ·Mµ.

1.3.4 Extension of the Stochastic Integral by Localisation

In this section, we conclude the construction of the stochastic integral

by extending Definition 1.3.6 to the class of integrands satisfying a less

restrictive assumption on the integrability condition.

Furthermore, we denote L2
loc(M;H) the space of all predictable processes

f : Ω× R+ ×H→ H such that

P

(∫T

0

∫

E

‖f(s, x)‖2 〈M〉 (ds, dx) <∞

)
= 1, for all T > 0.

We can relax the integrability condition (1.3.6) by showing that L2T (M;H) is

dense in L2
loc(M;H).

Lemma 1.3.4 Let f ∈ L2
loc(M;H) be arbitrary. Then there exists an approximati-

on sequence fn ∈ L2T (M;H) such that

f ·Mt = lim
n→∞

∫t

0

∫

E

fn(t, x)M(ds, dx),

Proof Let f ∈ L2
loc(M;H) and T > 0 be arbitrary. We define

τn := n∧ inf
{

t ∈ [0, T ] :
∫t

0

∫

E

‖h(s, x)‖2〈M〉(ds, dx) > n
}

, (1.38)

where τn ↑ T as n→ ∞ and wet set

fn(ω, t, x) = f(ω, t, x)✶J0,τnK(t,ω), for t ∈ R+, x ∈ E,ω ∈ Ω. (1.39)
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Then τn is a sequence such that

E

[ ∫t

0

∫

E

‖fn(s, x)‖2〈M〉(ds, dx)
]
= E

[ ∫t

0

∫

E

‖f(s, x)✶J0,τnK‖2〈M〉(ds, dx)
]
6 n,

(1.40)

This implies that the stochastic integral (f✶J0,τnK) ·M is well-defined and

fn = f✶J0,τnK ∈ L2T (M;H) for all n ∈ N.

Now define

f ·Mt := (f✶J0,τnK) ·Mt, t ∈ [0, T ], (1.41)

where n ∈ N is arbitrary such that τn > t. Observe that if we take arbitrary

τm > t and m > n then by Proposition 1.4.2 we have P-a.s

(f✶J0,τmK) ·Mt = (f✶J0,τmK) ·Mτn
t = (f✶J0,τnK) ·Mt.

On the other hand, if τ ′n ↑ T another sequence of stopping time satisfying

1.40 thus both (f✶J0,τ ′
nK) ·M and (f✶J0,τnK) ·M lead to the same process f ·M

P-a.s. This means that the definition in (1.41) is consistent and does not

depend on the choice of sequence of stopping times.

As result, we conclude that the stochastic integral of any function f ∈
L2
loc(M;H) with respect to M is determined by

f ·Mt = lim
n→∞

∫t

0

∫

E

fn(t, x)M(ds, dx) = lim
n→∞

∫t

0

∫

E

f✶{t6τn}M(ds, dx).

Remark 7 We conclude this section by pointing out that analogous approach has

been developed in [96]. In fact, let (E,Σ) be a Lusin space (see [91] or [19]), on the

one hand the Walsh’s terminology assumes that there is a ring A and an increasing

sequence En such that

• E =
⋃

n∈N
En

• Σn := Σ|En
⊆ A

Walsh defines his set functionM onΩ×R+×A as a martingale measure, namely,

P-almost surely

1. Mt(A) is square-integrable martingale with M0(A) = 0, for every A ∈ A.
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2. Mt(A∪B) =Mt(A) +Mt(B), for all t > 0 and all disjoint A,B ∈ A.

3. M(A),M(B) are orthogonal martingales for all disjoint A,B ∈ A.

4. sup
{

E[‖Mt(A)‖2],A ∈ Σn

}
<∞ for all t > 0.

Moreover, Walsh [96], if M is a martingale measure then there exists a random

σ-finite positive measure ν on R+ × E such that

〈
M(A)

〉
t
:= ν((0, t]×A), t > 0,A ∈ Σ.

Since the Lusin set E has the Blackwell property (see [86]) and if we consider a

countable ring

E =
⋃

n∈N

{A∩ En : A ∈ Σ},

then the martingale measure M meets Definition 1.3.1. More precisely, M is a

martingale field on R+ × E with B(t,A) = ν((0, t]×A) for all t > 0,A ∈ E.

On the other hand, Walsh follows the Itô spirit to construct his integration

theory. However, in order to perform the stochastic integration, one need to assume

that the martingale measure is worthy, i.e., the existence of a dominating measure

(see [96, p.291]). In contrast, our approach do not require such condition and we

only works with fairly easy integrability conditions. This shows that by choosing

the measure induced by field B as a dominating measure we obtain that Walsh

integral shall coincide with our Itô stochastic integral.

Moreover, as shown in [26], stochastic integrals w.r.t cylindrical and Q-Wiener

processes coincide with the Walsh’s stochastic integral. However, Proposition 1.3.3

and Corollary 1.3.1 also prove that the stochastic integral constructed in Subsection

1.3.3.1 captures both integral processes w.r.t infinite dimensional Wiener processes.

This means that again Walsh’s stochastic integral meets our stochastic integral.

1.4 semimartingale fields

In this section, we begin with new concepts and notions. That is the des-

cription of the semimartingale field, that combines both class of fields seen

previously, as well its properties. The stochastic integration w.r.t. semimar-

tingale fields shall be the main focus, including the Fubini’s theorem and

the unification result of two stochastic integrals.
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1.4.1 Definitions

Definition 1.4.1 A semimartingale field on R+ × E is a random field X of

the form X =M+N where M ∈ ME and N ∈ VE. If the set A is fixed, we

have S(·,A) defines a semimartingale process which admits a decomposition

S(·,A) =M(·,A) +N(·,A). We denote by SE the class of all semimartingale

fields on R+ × E.

It is clear that the decomposition in Definition 1.4.1 is not unique. Howe-

ver, under some conditions, there is at most one decomposition if the field

N is in addition predictable as the following result shows.

Theorem 1.4.1 Any semimartingale field X admits a unique decomposition up to

an evanescence set if its finite variation part is a predictable finite variation field.

Proof Let (M,N), (M ′,N ′) ∈ ME ×VE such that they satisfy respectively

the decomposition X = M+N in Definition 1.4.1. On the one hand, we

define

N1 =
⋃

A1∈E

{

ω ∈ Ω : X(ω; t,A1) 6=M(ω; t,A1) +N(ω; t,A1), t ∈ R+

}

,

and

N2 =
⋃

A2∈E

{

ω ∈ Ω : X(ω; t,A2) 6=M ′(ω; t,A2) +N
′(ω; t,A2), t ∈ R+

}

,

are respectively P-null sets. One the other hand, we set

N = N1 ∪N2,

which is a P-null set. Indeed, for any fixed A ∈ E, one can check that

N ′(·,A) −N(·,A) = M(·,A) −M ′(·,A) = 0 (up to an evanescent set) due

to the fact that this difference process is a predictable local martingale

belonging to V (see [47, Corollary 3.16]). Now let ω ∈ Nc. It follows that

for any A ∈ E

M(ω; t,A) −M ′(ω; t,A) = N ′(ω; t,A) −N(ω; t,A) = 0, for each t > 0.

This shows the uniqueness of the decomposition.
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This result leads to the following definition.

Definition 1.4.2 A special semimartingale field is a semimartingale field X

which admits an unique decomposition X =M+NwhereM is a martingale

field and N is a predictable finite variation field. We denote by S
p
E the set of

all special semimartingale fields.

Remark 8 Here are some other properties of both spaces SE and S
p
E:

1. SE and S
p
E are stable under stopping. That is, if X ∈ SE (resp. X ∈ S

p
E) (Tn)

is a localizing sequence of stopping times, then the stopped semimartingale

field XTn ∈ SE (resp. XTn ∈ S
p
E).

2. (SE)loc = SE and (S
p
E)loc = S

p
E.

Example 7 In the following, we provide diverse examples of semimartingale fields.

a. Since VE and ME are in SE, there are many examples of semimartingale

fields.

b. Recall respectively both finite variation and martingale fields in examples 1

and 5. Let A ⊂ N be a finite set and define

S(t,A) =
∑

i∈A

Ni(t) +
∑

i∈A

Wt(ei), for t > 0.

If we denote E = {A : A ⊂ N and is finite}, the field S is a (special) semimar-

tingale field on R+ × E as all Poisson processes (Ni)i∈N are predictable.

c. Take E be a countable set. It is also interesting to recognize any family of

semimartingale processes of the form S = S0 +M+N (as in [47, Definition

4.21]) defines a semimaringale field. Namely, let t > 0 and (Si)i∈E be a

family of semimartingale processes such that by Corollary 4.16 in [47] we

have a decomposition

Si = Si0 +M
i +Ni,
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where Mi ∈ Mloc, Ni ∈ V and Si0 is a real-valued F0-measurable random

variable for each i ∈ N. Let A ⊂ E be a finite set and set

S(t,A) =
∑

i∈A

Sit =
∑

i∈A

Mi
t +

∑

i∈A

[Si0 +N
i
t]

=M(t,A) +N(t,A),

where M and N define respectively martingale and finite variation fields

on R+ × E with E = {A : A ⊂ E, finite set}. Thus, we obtain S is a

semimartingale field on R+ × E.

1.4.2 Stochastic Integration

In this subsection, we proceed to constructing the stochastic integral of

predictable processes with respect to a semimartingale field.

Let f : Ω× R+ × E → H predictable mapping and denote by f · X the

integral process defined as

f ·Xt =

∫t

0

∫

E

f(ω, s, x)X(ω; ds, dx).

1. Note that if X is a semimartingale field on R+ × E and when f is

simple enough, then the integral process f ·X has only one definition (even

if X(ds, dx) is not well-defined), namely:

f ·Xt = fa(X(t∧b,A)−X(t∧a,A)), if f = fa✶(a,b]×A, t ∈ [0, T ], (1.42)

where (a,b]×A ⊂ [0, T ]×E, fa is an H-valued bounded and Fa-measurable

random variable. To show the existence of the stochastic integral f ·X, for the

general case, we use the density property of the space of simple functions.

Therefore, we get

f ·Xt = lim
n→∞

∫t

0

∫

E

fn(s, x)X(ds, dx), for t > 0.

for some approximation function fn from the space of simple functions

such that fn → f and the integral process fn · X converges (in sense of

equation (1.42)).

2. As we have seen in the two previous sections, the stochastic integral

f ·X can be defined when X belongs to one of the following two classes of

fields:
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a. if X ∈ VE and for every optional process f satisfying the following:

∫t

0

∫

E

‖f(s, x)‖VX(ds, dx) <∞.

b. if X ∈ ME and for every predictable process f satisfying the following:

E

[∫t

0

∫

E

‖f(s, x)‖2〈X〉(ds, dx)

]
<∞.

Putting these two classes together we obtain the following definition.

Definition 1.4.3 An H-valued process f is said to be locally integrable

with respect to a semimartingale field X, if there exists a decomposition

X = M+N such that both integrals f ·M and f ·N are defined as above.

Namely, f satisfies

E

[ ∫t

0

∫

E

‖f(s, x)‖2〈M〉(ds, dx) +
( ∫t

0

∫

E

‖f(s, x)‖VN(ds, dx)
)2]

<∞,

(1.43)

In this case, we define the stochastic integral f ·X by

f ·X = f ·M+ f ·N. (1.44)

where f ∈ LT (N;H) and f ∈ L2T (M;H). Denote by L2T (X;H) the space of all

predictable processes that satisfied condition (1.43).

Remark 9 Note that the definition of stochastic integral in (1.44) is independent

of the decomposition of X. Moreover, the stochastic integral w.r.t to semimartingale

field does not preserve the isometry property but instead one has the following

E

[∥∥∥∥
∫t

0

∫

E

f(s, x)X(ds, dx)

∥∥∥∥
2
]
6E

[ ∫t

0

∫

E

‖f(s, x)‖2〈M〉(ds, dx)
]

+ E

[( ∫t

0

∫

E

‖f(s, x)‖VN(ds, dx)
)2]

.

(1.45)

Remark 10 If f ∈ L2T (N;H) and f ∈ L2T (M;H), then by Cauchy-Schwartz

inequality the following condition is sufficient to make f integrable w.r.t. X:

E

[∫t

0

∫

E

‖f(s, x)‖2
(
〈M〉(ds, dx) + VN(ds, dx)

)
]
<∞, t ∈ [0, T ]. (1.46)
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It is clear that (1.46) implies (1.43). In this case, we can define a non-decreasing

field [X] := 〈M〉+ VN up to indistinguishability for every semimartingale field

X =M+N. Then we shall use L2T ([X];H) instead L2T (X;H).

3. We now can extend the space L2T (X;H) to the space L2
loc(X;H) con-

sisting of all predictable processes f : Ω× R+ × E → H such that for all

T ∈ R+

P

(∫T

0

∫

E

‖f(s, x)‖2〈M〉(ds, dx) +
( ∫T

0

∫

E

‖f(s, x)‖VN(ds, dx)
)2

<∞

)
= 1.

This is always possible because by condition (1.43) we can define

L2T (X;H) = LT (N;H)∩ L2T (M;H),

and by Remark (4) and Lemma (1.3.4) we can respectively extended LT (N;H)

to Lloc(N;H) and L2T (M;H) to L2
loc(M;H). Therefore, we extend L2T (X;H)

to L2
loc(X;H) where

L2
loc(X;H) = Lloc(N;H)∩L2

loc(M;H).

4. Last, we state various properties of the stochastic integrals.

Proposition 1.4.1 Let X be a semimartingale field and f be an H-valued predicta-

ble process satisfying 1.43. Then the following statements hold:

1. f 7→ f ·X is linear.

2. f ·X is an H-valued semimartingale process 7.

3. (f ·X)τ =
(
f✶J0,τK

)
·X, for each stopping time τ with P(τ 6 T) = 1.

Proof We proceed according to the following steps:

1. The linearity follows directly Propositions 1.2.1 and 1.4.2.

2. By Decomposition (1.42), together with Propositions 1.2.1 and 1.4.2,

we obtain f · X = f ·M+ f ·N is a sum of H-valued martingale and

finite variation processes.

7 A H-valued semimartingale process is any process of the form S =M+A where M is an

H-valued martingale process while A is an H-valued finite variation process
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3. By Propositions 1.2.1 and 1.4.2, we compute

(f ·X)τ = (f ·M)τ+(f ·N)τ =
(
f✶J0,τK

)
·M+

(
f✶J0,τK

)
·N =

(
f✶J0,τK

)
·X.

This completes the proof.

1.4.3 Stochastic Fubini Theorem

Here we shall present a form of stochastic Fubini’s theorem which can be

adequate for our later needs. Let X =M+N be a semimartingale field on

R+ × E and (U,U,η) be a finite measure space.

Let us fix T > 0 and let L2T (X,η;H) be the real Hilbert space of all

P ⊗ Σ ⊗ U-measurable functions f : Ω × [0,∞) × E × U → H for which

‖f‖T ,η <∞, where

‖f‖T ,η =E

[ ∫

U

( ∫T

0

∫

E

‖f(s, x)‖2〈M〉(ds, dx)
)
η(du)

]

+ E

[ ∫

U

( ∫T

0

∫

E

‖f(s, x)‖VN(ds, dx)
)2

η(du)
]

.

(1.47)

Theorem 1.4.2 Let f be in L2T (X,η;H). Then for each t ∈ [0, T ],

∫

U

[∫t

0

∫

E

f(s, x,u)X(ds, dx)

]
η(du) =

∫t

0

∫

E

[∫

U

f(s, x,u)η(du)
]
X(ds, dx).

(1.48)

Proof First it is important to note that if condition (1.47) is fulfilled then

both integrals in equation (1.48) are well-defined.

1) Assume f is an elementary function, i.e.,

f = f0✶(0,a]×A×B, (0,a]×A×B ⊂ [0, T ]× E×U,

where f0 is a bounded F0-measurable random variable. Note that by com-

puting both integrals in (1.48), lead to the same process

f0IX((0, t∧ a],A)η(B),

that is the result holds true.
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2) In a second step, we use the limit approximation argument to show

the result for L2T (X,η;H). Let (fn)n∈N be a sequence of simple function

converging to some function f ∈ L2T (X,η;H), i.e., ‖fn − f‖T ,η → 0 as n →
+∞.

a. To do so, we first assume X ∈ VE, then

E

[∥∥∥∥
∫t

0

∫

E

(∫

U

[
fn(s, x,u) − f(s, x,u)

]
η(du)

)
X(ds, dx)

∥∥∥∥
2
]

6 E

(∫t

0

∫

E

∥∥∥∥
∫

U

[
fn(s, x,u) − f(s, x,u)

]
η(du)

∥∥∥∥VX(ds, dx)

)2

6 E

(∫t

0

∫

E

∫

U

∥∥fn(s, x,u) − f(s, x,u)
∥∥η(du)VX(ds, dx)

)2

6 ‖fn − f‖T ,η → 0 as n→ +∞.

Next, we estimate

E

[∥∥∥∥
∫

U

( ∫t

0

∫

E

[
fn(s, x,u) − f(s, x,u)

]
X(ds, dx)

)
η(du)

∥∥∥∥
2
]

6 E

[∫

U

∥∥∥∥
∫t

0

∫

E

[
fn(s, x,u) − f(s, x,u)

]
X(ds, dx)

)∥∥∥∥
2

η(du)

]

6 E

(∫

U

∫t

0

∫

E

∥∥fn(s, x,u) − f(s, x,u)
∥∥VX(ds, dx)η(du)

)2

6 ‖fn − f‖T ,η → 0 as n→ +∞.

Therefore, we deduce that

∫

U

[∫t

0

∫

E

f(s, x,u)X(ds, dx)

]
η(du)

= lim
n→∞

∫

U

[∫t

0

∫

E

fn(s, x,u)X(ds, dx)

]
η(du)

= lim
n→∞

∫t

0

∫

E

[∫

U

fn(s, x,u)η(du)
]
X(ds, dx)

=

∫t

0

∫

E

[∫

U

f(s, x,u)η(du)
]
X(ds, dx).

(1.49)
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b. A similar argument to prove that the result also holds true if X ∈ ME.

By Itô isometry (1.4.2), we estimate

E

[∥∥∥∥
∫t

0

∫

E

(∫

U

[
fn(s, x,u) − f(s, x,u)

]
η(du)

)
X(ds, dx)

∥∥∥∥
2
]

= E

[∫t

0

∫

E

∥∥∥∥
∫

U

[
fn(s, x,u) − f(s, x,u)

]
η(du)

∥∥∥∥
2

〈X〉 (ds, dx)

]

6 E

[∫t

0

∫

E

∫

U

∥∥[fn(s, x,u) − f(s, x,u)
]∥∥2η(du) 〈X〉 (ds, dx)

]

6 ‖fn − f‖T ,η → 0 as n→ +∞.

and

E

[∥∥∥∥
∫

U

( ∫t

0

∫

E

[
fn(s, x,u) − f(s, x,u)

]
X(ds, dx)

)
η(du)

∥∥∥∥
2
]

6 E

[∫

U

∥∥∥∥
∫t

0

∫

E

[
fn(s, x,u) − f(s, x,u)

]
X(ds, dx)

)∥∥∥∥
2

η(du)

]

6 E

(∫

U

∫t

0

∫

E

∥∥fn(s, x,u) − f(s, x,u)
∥∥2 〈X〉 (ds, dx)η(du)

)

6 ‖fn − f‖T ,η → 0 as n→ +∞.

Then using the limit approximation yields

∫

U

[∫t

0

∫

E

f(s, x,u)X(ds, dx)

]
η(du) =

∫t

0

∫

E

[∫

U

f(s, x,u)η(du)
]
X(ds, dx).

(1.50)

Finally, we use the decomposition X = M +N together with equations

(1.49) and (1.50) to conclude that for any semimartingale field X and f ∈
L2T (X,η;H) it holds that

∫

U

[∫t

0

∫

E

f(s, x,u)X(ds, dx)

]
η(du) =

∫t

0

∫

E

[∫

U

f(s, x,u)η(du)
]
X(ds, dx).

(1.51)

1.4.4 Unification Framework

Recall H is an Hilbert space and let (E1,Σ1), (E2,Σ2) be two Blackwell

spaces such that there are respectively two countable semi-rings E1,E2 with
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Σ1 = σ(E1) and Σ2 = σ(E2). We consider two semimartingale fields X1 and

X2 based respectively on R+ × E1 and R+ × E2.

Theorem 1.4.3 Let φ and ϕ be respectively two mappings belong to L2
loc(X1;H)

and L2
loc(X2;H). There exist a Blackwell space (E,Σ) with Σ = σ(E), a semimar-

tingale field X on R+ × E and a mapping Ψ : L2
loc(X1;H)× L2

loc(X2;H) →
L2
loc(X;H) such that

∫t

0

∫

E1

φ(s, x)X1(ds, dx)+
∫t

0

∫

E2

ϕ(s,y)X2(ds, dy) =
∫t

0

∫

E

Ψϕ
φ(s, z)X(ds, dz),

(1.52)

with Ψϕ
φ = φ✶E1

+ϕ✶E2
.

Proof The proof is done in three steps:

1. Let τ be an abstract point that is not respectively in both sets E1,E2. We

extend respectively E1 to Ẽ1 := E1 ∪ {τ} and E1 to Ẽ2 := E2 ∪ {τ} by adjoining

the cemetery point τ. Both semi-rings E1,E2 are respectively extended ana-

logously to Ẽ1 = E1 ∪
{
{τ}

}
, Ẽ2 = E2 ∪

{
{τ}

}
so that (Ẽ1,σ(Ẽ1)), (Ẽ2,σ(Ẽ2))

are Blackwell spaces as well. We can now define a new set E = Ẽ1 × Ẽ2 and

a countable semi-ring E := Ẽ1 × Ẽ2 on E such that (E,Σ) is Blackwell space

with Σ := σ(Ẽ1 × Ẽ2) (see Lemma A.2.1).

2. Next, we construct a semimartingale field X on R+ × E from X1 and

X2. First, we denote by δ2τ the Dirac premeasure on (Ẽ2, Ẽ2) and we extend

the premeasure A 7→ X1(t,A) to a premeasure X1 on (Ẽ1, Ẽ1), that is:

X1(·,A) =






X1(·,A) if A ∈ E1

0 else.

Since both δ2τ and X1 are σ-finites, therefore for each t > 0 the set function

X̃1(t, ·) : E → [0,∞], X̃1(t,C×D) = X1(t,C)δ2τ(D),

defines (uniquely) a premeasure (E,E) (see A.1.5). Note that for any decom-

position X1 =M1 +N1, we get

X̃1(t,C×D) =M1(t,C)δ2τ(D) +N1(t,C)δ2τ(D), for all t > 0,C×D ∈ E,
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and here the field (t,C×D) 7→ M1(t,C)δ2τ(D) belongs to ME as if M1 ∈
ME1

then it follows that:

a) M1(·,C)δ2τ(D) ∈ H2, for each C×D ∈ E.

b) (t,C×D) 7→ 〈M1δ
2
τ〉(t,C×D) = δ2τ(D)〈M1〉(t,C) exists and belongs

to V+
E .

On the other hand, we also obtain that (t,C×D) 7→ N1(t,C)δ2τ(D) belongs

to VE since δ2τ is a finite measure and N1 ∈ VE1
. This implies that X̃1 is a

semimartingale field on R+ × E.

Analogously, by symmetry and repeating the same arguments, if δ1τ is

the Dirac measure on (Ẽ1, Ẽ1) and X2(t, ·) is the extended premeasure of

X2(t, ·) =M2(t, ·)+N2(t, ·) on (Ẽ2, Ẽ2) for any t > 0. Then it can be verified

that the field defined by

X̃2(t,C×D) = δ1τ(C)M2(t,D) + δ1τ(C)N2(t,D), for all t > 0,C×D ∈ E,

is actually a semimartingale field on R+ × E as respectively δ1τ(·)M2(·) ∈
ME and δ1τ(·)N2(·) ∈ VE.

Finally, combining these two semimartingales fields, we can define the

field X as follows: X = X̃1 + X̃2.

3. After constructing the semimartingale field X, now we shall show that

there is a mapping Ψ : L2
loc(X1;H)×L2

loc(X2;H) → L2
loc(X;H) such that

for any φ ∈ L2
loc(X1;H), ϕ ∈ L2

loc(X2;H) it holds that
∫t

0

∫

E1

φ(s, x)X1(ds, dx)+
∫t

0

∫

E2

ϕ(s,y)X2(ds, dy) =
∫t

0

∫

E

Ψϕ
φ(s, z)X(ds, dz).

(1.53)

Indeed, let Ψ : (φ,ϕ) 7→ Ψϕ
φ be a mapping from L2

loc(X1;H)×L2
loc(X2;H)

into L2
loc(X;H). This implies that for all t > 0 the stochastic integral

∫t
0

∫

E Ψ
ϕ
φ(s, z)X(ds, dz) is well-defined and we have

∫t

0

∫

E

Ψϕ
φ(s, z)X(ds, dz) =

∫t

0

∫

E

Ψϕ
φ(s, z)X̃1(ds, dz)+

∫t

0

∫

E

Ψϕ
φ(s, z)X̃2(ds, dz).

(1.54)

In order to have the equivalence between relations (1.53) and (1.54), the

following conditions must be satisfied
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i-
∫t
0

∫

E1
φ(s, x1)X1(ds, dx) =

∫t
0

∫

E Ψ
ϕ
φ(s, z)X̃1(ds, dz) = Ψϕ

φ · X̃1(t),

ii-
∫t
0

∫

E2
ϕ(s, x2)X2(ds, dy) =

∫t
0

∫

E Ψφ,ϕ(s, z)X̃2(ds, dz) = Ψϕ
φ · X̃2(t).

Since X1(t, {τ}) = X2(t, {τ}) = 0, so by Fubini’s theorem we respectively

compute

Ψϕ
φ · X̃1 =

∫•

0

∫

Ẽ1

∫

Ẽ2

Ψϕ
φ(s, x,y)δ2τ(dy)X1(ds, dx) =

∫•

0

∫

E1

Ψϕ
φ(s, x, τ)X1(ds, dx)

Ψϕ
φ · X̃2 =

∫•

0

∫

Ẽ2

∫

Ẽ1

Ψϕ
φ(s, x,y)δ1τ(dx)X2(ds, dy) =

∫•

0

∫

E2

Ψϕ
φ(s, τ,y)X2(ds, dy)

(1.55)

and combining both expressions in (1.55) with conditions (i) and (ii) yields

Ψϕ
φ(s, x, τ) = φ(s, x) and Ψϕ

φ(s, τ,y) = ϕ(s,y), for any s > 0. (1.56)

Now to construct Ψ, intuitively, we suppose that Ψ is defined as,

Ψϕ
φ(t, x,y) = φ(t, x) +ϕ(t,y), if x ∈ E1,y ∈ E2. (1.57)

Furthermore, if we combine the expression of Ψϕ
φ in (1.57) with equation

(1.53) and then we identify the result with (1.54). So we obtain φ · X̃2 =

ϕ · X̃1 = 0, namely,

φ · X̃2 =

∫•

0

∫

Ẽ2

[∫

Ẽ1

φ(s, x)δ1τ(dx)

]
X2(ds, dy) =

∫•

0

∫

E2

φ(s, τ)X2(ds, dy) = 0

and

ϕ · X̃1 =

∫•

0

∫

Ẽ1

[∫

Ẽ2

ϕ(s,y)δ2τ(dy)

]
X1(ds, dx) =

∫•

0

∫

E1

ϕ(s, τ)X1(ds, dx) = 0.

This justifies the convention that any function takes value 0 at the cemetery

point because the natural way to extend φ (resp. ϕ) to Ẽ1 (resp. Ẽ2) is

by taking φ(t, τ) = 0 (resp. ϕ(t, τ) = 0). This means that we must have

Ψϕ
φ(t, τ, τ) = 0 which shows that Ψϕ

φ is well-defined on R+ × E and the

mapping Ψ is defined as

Ψϕ
φ = φ✶E1

+ϕ✶E2
.

As a consequence, we examine its real application in the existing integra-

tion theory. Let Q be a self-adjoint, positive, symmetric, definite trace class
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operator on U and {ek}k∈N be an orthonormal basis in U diagonalizing

Q. Let W be a Q-Wiener process taking value in U. Let µ − λ ⊗ F be a

compensated Poisson random measure defined on R+ × E with intensity

dt× F(dx).

Corollary 1.4.1 Let f ∈ L2(UQ,H) and g ∈ GH
loc(µ). Then there exists a space

Λ := N × E, a countable semi-ring EΛ on Λ, a Lévy martingale field L on

R+ × EΛ and a mapping Ψ taking value in S(L) such that

∫•

0

f(s)W(ds)+
∫•

0

∫

E

g(s, x)[µ(ds×dx)−dsF(dx)] =
∫•

0

∫

Λ

Ψf,g(s, z)L(ds, dz),

(1.58)

where L =MW +Mµ for some martingale fields MW,Mµ on R+ × EΛ,

with Ψf,g(·, x,y) = φ(·, x)✶N(x) + g(·,y)✶E(y) such that

φ(t, x) = f(t)ex, for any t > 0, x ∈ N,

and N (resp. E) is the completion of N (resp. E) by adjoining an arbitrary cemetery

point.

Proof This follows directly from Proposition 1.4.3 combined with Proposi-

tion 1.3.4 and Corollary 1.3.1. Indeed, Proposition 1.3.4 and Corollary 1.3.1

lead respectively to the existence of two martingales fields MW,Mµ, where

MW(t, {x}) = 〈Wt, ex〉U and Mµ(t,A) = ✶A ∗ (µ− ν)t. Then we define the

set Λ := N × E and a countable semi-ring EΛ = ẼN × ẼE as in Proposition

1.4.3. Simultaneously, we also extend respectively both fields MW,Mµ to

MW,Mµ on R+ × EΛ so that we can define a Lévy random field L with

L =MW +Mµ by Proposition 1.4.3. To complete the proof, we just apply

Proposition 1.4.3.

To conclude this chapter, we highlight that the main purpose is to esta-

blish the unified approach for multiple stochastic integrals with respect

to semimartingale fields. For this end, we introduced the concept of finite

variation and martingale fields. We developed integration theory related

to both class of fields. From then, we introduce the definiton of semimar-

tingal field and the related stochastic integrations. Concurrently, we also

examined the relationship between our approach and the existing ones in
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literature. For instance we showed that we can derive a unified integral

from both stochastic integrals with respect to a Q-Wiener and a Poisson

random measure.



2
G E N E R A L I Z E D H I L B E RT S PA C E - VA L U E D S D E S

In this chapter, we study a generalized SDE version of SPDE of the kind

(0.3) by taking A ≡ 0. Typically, we consider a SDE problem in infinite

dimension on a Hilbert space. The study of Hilbert space-valued SDEs is

not something new in the related literature. Moreover, several approaches

and results already exist on the existence and uniqueness of solutions.

However, the idea of introducing a Hilbert-space valued SDE driven by

random fields is not yet well-established and it is worth exploring. This

motivated us to implement our random field framework to study Hilbert-

space valued SDE apart the fact it is essential later on.

The Chapter is organized as follows: In Section 1 we introduce the prelimi-

naries and notations. In Section 2 we prove existence and uniqueness results

for strong solutions to Hilbert Space-Valued SDEs driven semimartingale

fields. In Section 3 we discuss the stability and regularity of solutions.

2.1 preliminaries

This section provides the required preliminaries and notations. We assume

that a probability space (Ω,F, P) together with a filtration F = (Ft)t>0 are

given.

Let T > 0 be arbitrary the time horizon and (H, ‖ · ‖) be a separable Hilbert

space. We denote by B(H) the Borel σ-fields on the separable Hilbert space

H. Let (E,Σ) be a Blackwell space such that there is a countable semi-ring E

with Σ = σ(E). We recall that SE the space of all semimartingale fields X of

the form X =M+N.

For any fixed ξ ∈ L2(F0;H) = L2(Ω,F0, P;H), we consider the stochastic

differential equations, on [0, T ] in H, of the kind:

dyt =
∫

E

b(t,yt, x)X(dt, dx) and y0 = ξ, (2.1)

48
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where b : Ω× R+ ×H× E −→ H and X ∈ SE.

Now we define the space where we want to find the solutions. We define

H2
T as the Banach space of all H-valued predictable processes (φt)t∈[0,T ]

for which

sup
t∈[0,T ]

E

[
‖φt‖2

]
<∞.

The typical norm of H2
T is

‖φ‖
H2

T
= sup

t∈[0,T ]

(
E

[
‖φt‖2

]) 1
2

.

To deal with SDE (2.1), we proceed as follow: we show directly, using the

extended Banach fixed point theorem, the existence and uniqueness of

strong solution on the Banach space H2
T . In a second step, we shall prove

that the solution has a càdlàg modification which solves the stochastic

convolution equation

yt = ξ+

∫t

0

∫

E

b(s,ys− , x)X(ds, dx), for all t ∈ [0, T ], P-a.s.

Remark 11 For simplicity, we study our SDE on [0, T ]. Nevertheless it is always

possible to extend all results on a larger space H2 consisting of H-valued adapted

processes φ such that for each T ∈ R+ the restriction of φ to Ω× [0, T ] belongs to

H2
T . Indeed, if y ∈ H2

T is a solution for SDE (2.1) then one can always construct

Y ∈ H2 such that y = Y|[0,T ]. For instance, consider the stopped process Y := yT .

Remark 12 In our framework, we allow space dependent coefficients which may

depend on the randomness ω, the time t and the state of the path of the solution

in order to capture a wide class of SDEs. In addition, the continuous drift term

does not appear in our SDE (2.1) because it is already incorporated in the driving

noise X (see the proof of Theorem 3.4.1). In fact, this is always possible by means of

unified approach developed in Chapter 1.

2.2 existence and uniqueness of solutions to hilbert space-

valued sdes

In this section, we next establish existence and uniqueness of strong soluti-

ons to Hilbert space-valued SDEs of the type (2.1).
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Definition 2.2.1 A process y ∈ H2
T with lifetime T is called a strong solution

for SDE (2.1) if y0 = ξ ∈ L2(Ω,F0;H) and b ∈ L2
loc(X;H) such that

yt = ξ+

∫t

0

∫

E

b(s,ys, x)X(ds, dx), for all t ∈ [0, T ], P-a.s. (2.2)

Remark 13 Note that the stochastic integrals at the right-side of SDE (2.2) is

well-defined up to indistinguishability. That implies that the uniqueness of solutions

for SDE (2.1) is also meant up indistinguishability on R+ as explained in the

following definition.

Definition 2.2.2 We say that uniqueness of strong solutions to SDE (2.2)

holds, if Z,Z ′ are respectively two strong solutions to SDE (2.2) with initial

conditions z0, z ′0 and lifetime τ then we have up to indistinguishablity

Zτ
✶{y0=z0} = (Z ′)τ✶{y0=z ′

0}
. (2.3)

We shall study the existence and uniqueness problem under standard

regularity assumptions on the coefficients of SDE (2.1) that include:

Assumption 1 - b is a P⊗B(H)⊗ Σ− measurable.

Assumption 2 - Lipschtiz continuity:

a- b is Lipschtiz function, i.e there is a non-decreasing function L : R+ → R+,

such that for all h1,h2 ∈ H and t ∈ [0, T ], P-a.s,
∫

E

‖b(t,h1, x) − b(t,h2, x)‖VN(t, dx) 6 L(t)‖h1 − h2‖.
∫

E

‖b(t,h1, x) − b(t,h2, x)‖2〈M〉(t, dx) 6 L(t)2‖h1 − h2‖2.
(2.4)

b- L ∈ L2
loc(λ,H) and denote by LT = sup

t∈[0,T ]
L(t)2.

Assumption 3 - b(·, 0, ·) ∈ L2T (X;H), i.e., for t ∈ [0, T ] we have

E



(∫t

0

∫

E

‖b(s, 0, x)‖VN(ds, dx)

)2

+

∫t

0

∫

E

‖b(s, 0, x)‖2〈M〉(ds, dx)


 <∞.

(2.5)

Before, we state the main result for the existence and uniqueness of

solutions we need the following lemmas.



2.2 existence and uniqueness of solutions to hilbert space-valued sdes 51

Lemma 2.2.1 For every y ∈ H2
T , if Assumptions (2) and (3) are fulfilled. Then

the functions

t 7→ E

[( ∫t

0

∫

E

‖b(s,ys, x)‖VN(ds, dx)
)2]

(2.6)

t 7→ E

[ ∫t

0

∫

E

‖b(s,ys, x)‖2〈M〉(ds, dx)
]

(2.7)

are well-defined and continuous on R+.

Proof First, let us fix y ∈ H2
T . For simplicity, we define respectively the

mappings q1,q2 : Ω× R+ → H,

t 7→ q1(t) =

( ∫t

0

∫

E

‖b(s,ys, x)‖VN(ds, dx)
)2

(2.8)

t 7→ q2(t) =

∫t

0

∫

E

‖b(s,ys, x)‖2〈M〉(ds, dx) (2.9)

1. By the growth estimate (2.4) and Assumption (2-b), for every càdlàg

process y ∈ H2
T and t ∈ [0, T ], we have:

E
[
q1(t)

]
6 2

∫t

0

L(s)2 sup
r∈[0,s]

E

[
‖yr‖2

]
ds+ 2E

[( ∫t

0

∫

E

‖b(s, 0, x)‖VN(ds, dx)
)2
]

E
[
q2(t)

]
6 2

∫t

0

L(s)2 sup
r∈[0,s]

E

[
‖yr‖2

]
ds+ 2E

[∫t

0

∫

E

‖b(s, 0, x)‖2〈M〉(ds, dx)

]

yielding, by condition (2.5),

E
[
q1(t)

]
6 2 sup

r∈[0,t]
E

[
‖yr‖2

] ∫t

0

L(s)2 ds+ 2C1 <∞

E
[
q2(t)

]
6 2 sup

r∈[0,t]
E

[
‖yr‖2

] ∫t

0

L(s)2 ds+ 2C2 <∞.

(2.10)

for some positive real constants C1 and C2. This implies that both functions

(2.6) and (2.7) are well-defined.

2 . The proof of continuity is done by applying the Lebesgue dominated

convergence on the mapping (ω, t) 7→ qi(ω, t), for any i ∈ {1, 2}. Likewise

for equation (2.10), we estimate

q1(t) 6 2 sup
r∈[0,T ]

‖yr‖2
∫T

0

L(s)2 ds+ 2 sup
r∈[0,T ]

( ∫r

0

∫

E

‖b(s, 0, x)‖VN(ds, dx)
)2

q2(t) 6 2 sup
r∈[0,T ]

‖yr‖2
∫T

0

L(s)2 ds+ 2 sup
r∈[0,T ]

∫r

0

∫

E

‖b(s, 0, x)‖2〈M〉(ds, dx).
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(2.11)

Hence by the dominated convergence theorem, if (tn)n∈N is an arbitrary

sequence with tn → t as n→ ∞. Then it follows qi
(
tn
)
→ qi(t), i.e.

lim
n→∞

E

[
qi
(
tn,
)]

= E
[
qi(t)

]
, for each i ∈ {1, 2}.

This implies the continuity of both functions (2.6) and (2.7).

Next, let us fix ξ ∈ L2(F0;H), t ∈ [0, T ] and y ∈ H2
T . Then we define the

process Iξ(y) by:

(Iξ(y))t = ξ+

∫t

0

∫

E

b(s,ys, x)X(ds, dx), (2.12)

and by Lemma 2.2.1, this process is well-defined, mean-square continuous

and Iξ(y) ∈ H2
T . Therefore, it induces a mapping I : L2(F0;H)×H2

T → H2
T .

Lemma 2.2.2 For any ξ ∈ L2(F0;H), if b is a Lipschitz function then there is

n0 ∈ N such that the mapping In0

ξ is a contraction on H2
T .

Proof Let Y,Z ∈ H2
T and t ∈ [0, T ] be arbitrary. For any t ∈ [0, T ], we

denote by

qN(t) =

( ∫t

0

∫

E

‖b(s, Ys, x) − b(s,Zs, x)‖VN(ds, dx)
)2

(2.13)

qM(t) =

∫t

0

∫

E

‖b(s, Ys, x) − b(s,Zs, x)‖2〈M〉(ds, dx) (2.14)

Combining Hölder’s inequality, Assumption (2) and equation (1.45) yields

E

[
‖Iξ(Y)t − Iξ(Z)t‖2

]
=E

[∥∥∥∥
∫t

0

∫

E

[b(s, Ys, x) − b(s,Zs, x)]X(ds, dx)

∥∥∥∥
2
]

6 2E
[
qN(t)

]
+ 2E

[
qM(t)

]

6 4E

[∫t

0

L2(s)‖Ys −Zs‖2 ds

]

6 4 sup
r∈[0,T ]

L2(r)E

[∫t

0

‖Ys −Zs‖2 ds

]

6 4LTE

[∫t

0

‖Ys −Zs‖2 ds

]

6 4LT

∫t

0

E

[
‖Ys −Zs‖2

]
ds.
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(2.15)

Thus, altogether, we obtain that for a certain constant C, we have

sup
t∈[0,T ]

(
E

[
‖Iξ(Y)t − Iξ(Z)t‖2

]) 1
2

6 C

(∫T

0

E

[
‖Ys −Zs‖2

]
ds

) 1
2

. (2.16)

Next, by induction for every n ∈ N and using inequality (2.16), we iterate:

‖Inξ (Y) − Inξ (Z)‖H2
T
6

(
C

∫T

0

E

[
‖In−1

ξ (Y)t1 − I
n−1
ξ (Z)t1‖2

]
dt1

) 1
2

6


C2

∫T

0

(∫T

0

E

[
‖In−2

ξ (Y)t2 − I
n−2
ξ (Z)t2‖2

]
dt2

)
dt1




1
2

6 · · ·

6

[
Cn−1

∫T

0

∫T

0

· · ·
∫T

0

∫T

0

E

[
‖Iξ(Y)tn−1

− Iξ(Z)tn−1
‖2
]

dtn−1 dtn−2 . . .dt1

] 1
2

6

[
Cn

∫T

0

∫T

0

· · ·
∫T

0

∫T

0

∫T

0

E

[
‖Ys −Zs‖2

]
dsdtn−1 dtn−2 . . .dt1

] 1
2

6

[
Cn

∫T

0

∫T

0

· · ·
∫T

0

∫T

0

∫T

0

dsdtn−1 dtn−2 . . .dt1

] 1
2

6


Cn T

n

n!
sup

t∈[0,T ]
E

[
‖Yt −Zt‖2

]



1/2

6

(
Cn T

n

n!

) 1
2

‖Y −Z‖
H2

T
,

(2.17)

leading to, lim
n→∞

‖Inξ (Y) − Inξ (Z)‖H2
T
= 0. More precisely, there exists an

index n0 ∈ N such that In0

ξ is a contraction on H2
T .

Theorem 2.2.1 Suppose that Assumptions (1), (2) and (3) are fulfilled. Then for

each ξ ∈ L2(F0;H) there exists a unique càdlàg strong solution y ∈ H2
T for SDE

(2.1) on [0, T ] and

E


 sup
t∈[0,T ]

‖y(t)‖2

 <∞, for all T > 0. (2.18)

Moreover, the mapping I(·,y) : L2(F0;H) → H2
T is Lipschitz continuous for all

y ∈ H2
T . In this case, the Lipschitz constant does not depend on y.
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Proof The proof of theorem is done in three steps:

a) Using Lemma 2.2.2, the existence and uniqueness of strong solution

y(ξ) ∈ H2
T of SDE (2.1) with initial condition ξ ∈ L2(F0;H) follows by the

extension of the Banach fixed point theorem (see Corollary A.4.1) on the

mapping I(ξ, ·) = Iξ(·). Namely, we get the unique fix point y(ξ) ∈ H2
T

such that

I(ξ,y(ξ)) = y(ξ),

for every ξ ∈ L2(F0;H) fixed, y := (y(ξ)t)t∈[0,T ] is the solution of (2.1). Next,

we discuss the path regularity of the solution. By Remark 6 and Proposi-

tion 1.2.1, both stochastic integral processes
∫•
0

∫

E b(s,ys, x)M(ds, dx) and
∫•
0

∫

E b(s,ys, x)N(ds, dx) have respectively càdlàg paths on [0, T ]. Moreover,

the integral process

∫t

0

∫

E

b(s,ys, x)M(ds, dx) +
∫t

0

∫

E

b(s,ys, x)N(ds, dx),

is adapted and mean-square continuous (by Lemma 2.2.1), then by Lem-

ma A.4.3 the stochastic integral
∫t
0

∫

E b(s,ys, x)X(ds, dx) has a predictable

version on [0, T ] which is càdlàg. This implies that the solution process

(yt)t∈[0,T ] admits a predictable modification with càdlàg paths on [0, T ] that

solves the stochastic convolution equation

yt = ξ+

∫t

0

∫

E

b(s,ys− , x)X(ds, dx).

b) Fix y ∈ H2
T . For any t ∈ [0, T ], we estimate

‖y(t)‖2 6 2‖ξ‖2 + 2
∥∥∥∥
∫t

0

∫

E

b(s,ys, x)X(ds, dx)

∥∥∥∥
2

sup
t∈[0,T ]

‖y(t)‖2 6 2‖ξ‖2 + 2 sup
t∈[0,T ]

∥∥∥∥
∫t

0

∫

E

b(s,ys, x)X(ds, dx)

∥∥∥∥
2 (2.19)
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Noting that, for any t ∈ [0, T ], we can estimate

∥∥∥∥
∫t

0

∫

E

b(s,ys, x)X(ds, dx)

∥∥∥∥
2

6 2

∥∥∥∥
∫t

0

∫

E

b(s,ys, x)M(ds, dx)

∥∥∥∥
2

+ 2

∥∥∥∥
∫t

0

∫

E

b(s,ys, x)N(ds, dx)

∥∥∥∥
2

62

∥∥∥∥
∫t

0

∫

E

b(s,ys, x)M(ds, dx)

∥∥∥∥
2

+ 2

[ ∫T

0

∫

E

‖b(s,ys, x)‖VN(ds, dx)
]2

(2.20)

and by Doob’s martingale inequality, this leads to

sup
t∈[0,T ]

∥∥∥∥
∫t

0

∫

E

b(s,ys, x)X(ds, dx)

∥∥∥∥
2

6 4

∥∥∥∥
∫T

0

∫

E

b(s,ys, x)M(ds, dx)

∥∥∥∥
2

+ 2

[ ∫T

0

∫

E

‖b(s,ys, x)‖VN(ds, dx)
]2

(2.21)

Combining Lemma 2.2.1 and Proposition 1.4.1 with equations (2.19) and

(2.21) yields

E

[
sup

t∈[0,T ]
‖y(t)‖2

]
62‖ξ‖2 + 8E

[ ∫T

0

∫

E

‖b(s,ys, x)‖2 〈M〉 (ds, dx)
]

+ 4E

[( ∫T

0

∫

E

‖b(s,ys, x)‖VN(ds, dx)
)2]

<∞.

(2.22)

c) To conclude the proof, we show that I(·,y) : L2(F0;H) → H2
T is

Lipschitz for any fixed y ∈ H2
T . For any ξ ∈ L2(F0;H) we compute:

‖I(ξ1,y)t − I(ξ2,y)t‖2 = ‖ξ1 − ξ2‖2, for all t ∈ [0, T ], (2.23)

which leads to ‖I(ξ1,y) − I(ξ2,y)‖
H2

T
= ‖ξ1 − ξ2‖L2(F0;H), i.e. I(·,y) is

Lipschitz function for any y ∈ H2
T .

2.3 stability and regularity of hilbert-space valued sdes

In this section, we deal with the stability theory of stochastic differential

equations (2.1). This followed by the regular dependence on initial data for

SDE (2.1).
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2.3.1 Stability of Solutions for SDE

Stability of a system is the ability of the system to resist a small influence

or perturbation unknown beforehand. In practice, one talks about stability

of the solution y0t , t > 0, ‖yt − y0t‖ could be made small enough if some

reasonable conditions are imposed, for instance, that the initial disturbance

scale ‖y0 − y00‖ is very small. Indeed, we shall be interested with H-valued

SDE of the form

dynt =

∫

En

bn(t,ynt− , x)X(dt, dx), with yn0 = ξ0, t ∈ [0, T ], (2.24)

for each n ∈ N, and we want to establish a stability result for solutions of

the SDE (2.1) under appropriate regularity conditions.

We assume by Theorem 2.2.1, there is a unique (particular) solution

(yt)t>0 of the SDE (2.1). One the other hand, for each n ∈ N, there exists a

unique solution yn ∈ H2
T for the SPD (2.24). However, in order to assume

the existence and uniqueness result (as in Theorem 2.2.1) for equation (2.24),

we need to make the following regularity assumptions on the coefficients

of (2.24) for each n ∈ N:

Assumption 4 - For each n ∈ N, bn is a P⊗B(H)⊗ Σ− measurable.

Assumption 5 - For each n ∈ N, there is a non-decreasing function L : R+ →
R+, such that for all h1,h2 ∈ H and t ∈ [0, T ], P-a.s,

∫

E

‖bn(t,h1, x) − bn(t,h2, x)‖VN(t, dx) 6 L(t)‖h1 − h2‖.
∫

E

‖bn(t,h1, x) − bn(t,h2, x)‖2〈M〉(t, dx) 6 L(t)2‖h1 − h2‖2.

Assumption 6 - For each n ∈ N, bn(·, 0, ·) ∈ L2T (X;H), i.e., for each t ∈ [0, T ]

we have

E



(∫t

0

∫

E

‖bn(s, 0, x)‖VN(ds, dx)

)2

+

∫t

0

∫

E

‖bn(s, 0, x)‖2〈M〉(ds, dx)


 <∞.

In addition, we also consider the following assumption to obtain the

convergence of solutions.

Assumption 7 - For any Y ∈ H2
T , we assume that, when n→ ∞,
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a- En → E;

b- we have

E

[ ∫t

0

∫

En

‖bn(s, Ys− , x) − b(s, Ys− , x)‖2 〈M〉 (ds, dx)
]
→ 0

E

[( ∫t

0

∫

En

‖bn(s, Ys− , x) − b(s, Ys− , x)‖VN(ds, dx)
)2]

→ 0.

Under these assumptions, we now investigate the stability problem for

the solution (yt)t∈[0,T ] of the SDE (2.1). More precisely, one says that a

particular solution y for SDE (2.1) is stable if, for every sequence {yn}n∈N

of (unique) solutions for SDE (2.24), ‖ξn − ξ‖ → 0 as n → ∞ then ‖yn −

y‖
H2

T
→ 0 as well.

Theorem 2.3.1 Suppose that Assumptions (1), (2), (3) and (4), (5), (6), (7) are

fulfilled. Then there exists a positive constant K such that

sup
t∈[0,T ]

E

[
‖ynt − yt‖2

]
< K(T)

[
‖ξn − ξ‖2

H2
0
+ cn(T)

]
, for all n ∈ N, T > 0,

(2.25)

where cn(T) → 0 as n→ ∞. Note that here K and cn only depend on T and the

Lipschitz function L.

Proof The proof is done by the two following steps:

1. First, we shall show the existence of constant cn which converges to

0. Computing yn − y, for any n ∈ N and t ∈ [0, T ], yields

ynt −yt = ξn−ξ+

∫t

0

∫

En

bn(s,yns− , x)X(ds, dx)−
∫t

0

∫

E

b(s,ys− , x)X(ds, dx),

(2.26)

and we compute
∫t

0

∫

En

bn(s,yns− , x)X(ds, dx) −
∫t

0

∫

E

b(s,ys− , x)X(ds, dx)

=

∫t

0

∫

En

bn(s,yns− , x)X(ds, dx) −
∫t

0

∫

En

bn(s,ys− , x)X(ds, dx)

+

∫t

0

∫

En

bn(s,ys− , x)X(ds, dx) −
∫t

0

∫

En

b(s,ys− , x)X(ds, dx)

+

∫t

0

∫

En

b(s,ys− , x)X(ds, dx) −
∫t

0

∫

E

b(s,ys− , x)X(ds, dx)
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which leads to
∫t

0

∫

En

bn(s,yns− , x)X(ds, dx) −
∫t

0

∫

E

b(s,ys− , x)X(ds, dx)

=

∫t

0

∫

En

[bn(s,yns− , x) − bn(s,ys− , x)]X(ds, dx)

+

∫t

0

∫

En

[bn(s,ys− , x) − b(s,ys− , x)]X(ds, dx)

+

∫t

0

∫

En\E

b(s,ys− , x)X(ds, dx).

(2.27)

Then we obtain the following inequality

E

[∥∥∥
∫t

0

∫

En

bn(s,yns− , x)X(ds, dx) −
∫t

0

∫

E

b(s,ys− , x)X(ds, dx)
∥∥∥
2
]

6 2E

[∥∥∥
∫t

0

∫

En

[bn(s,yns− , x) − bn(s,ys− , x)]X(ds, dx)
∥∥∥
2
]
+ 2cn(t)

(2.28)

where we define

cn(t) :=E

[∥∥∥
∫t

0

∫

En

[bn(s,ys− , x) − b(s,ys− , x)]X(ds, dx)
∥∥∥
2
]

+ E

[∥∥∥
∫t

0

∫

En\E

b(s,ys− , x)X(ds, dx)
∥∥∥
2
] (2.29)

Next, we shall successively estimate each term of (2.28).

a) By the growth estimate in Assumption (5) and equation 1.45 we

obtain

E

[∥∥∥
∫t

0

∫

En

[bn(s,yns− , x) − bn(s,ys− , x)]X(ds, dx)
∥∥∥
2
]

6 2E

[∥∥∥
∫t

0

∫

En

[bn(s,yns− , x) − bn(s,ys− , x)]M(ds, dx)
∥∥∥
2
]

+ 2E

[∥∥∥
∫t

0

∫

En

[bn(s,yns− , x) − bn(s,ys− , x)]N(ds, dx)
∥∥∥
2
]

6 2E

[ ∫t

0

∫

En

∥∥bn(s,yns− , x) − bn(s,ys− , x)
∥∥2 〈M〉 (ds, dx)

]

+ 2E

[( ∫t

0

∫

En

‖bn(s,yns− , x) − bn(s,ys− , x)
∥∥VN(ds, dx)

)2]

6 4E

[ ∫t

0

L(s)2‖yns− − ys−‖2 ds
]
6 4

∫t

0

L(s)2 sup
r∈[0,s]

E

[
‖ynr − yr‖2

]
ds

6 4‖yn − y‖
H2

T

∫t

0

L(s)2 ds.

(2.30)
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Therefore, if ‖yn − y‖
H2

T
→ 0 as n→ ∞, so we deduce

sup
t∈[0,T ]

E

[∥∥∥
∫t

0

∫

En

[bn(s,yns− , x)−bn(s,ys− , x)]X(ds, dx)
∥∥∥
2
]
→ 0, as n→ ∞.

(2.31)

b) We shall show that cn(T) → 0when n→ ∞. Indeed, we first estimate:

E

[∥∥∥
∫t

0

∫

En

[bn(s,ys− , x) − b(s,ys− , x)]X(ds, dx)
∥∥∥
2
]

6 E

[∥∥∥
∫t

0

∫

En

[bn(s,ys− , x) − b(s,ys− , x)]M(ds, dx)
∥∥∥
2
]

+ E

[∥∥∥
∫t

0

∫

En

[bn(s,ys− , x) − b(s,ys− , x)]N(ds, dx)
∥∥∥
2
]

(2.32)

where, by triangle inequality and Itô isometry, we have

E

[∥∥∥
∫t

0

∫

En

[bn(s,ys− , x) − b(s,ys− , x)]M(ds, dx)
∥∥∥
2
]

6 E

[ ∫t

0

∫

En

‖bn(s,ys− , x) − bn(s, 0, x)‖2 〈M〉 (ds, dx)
]

+ E

[ ∫t

0

∫

En

‖bn(s, 0, x) − b(s, 0, x)‖2 〈M〉 (ds, dx)
]

+ E

[ ∫t

0

∫

En

‖b(s, 0, x) − b(s,ys− , x)‖2 〈M〉 (ds, dx)
]

.

(2.33)

Noting that, by the uniform convergence in Assumption (7-b), there is a

constant CM
t > 0 such that

E

[ ∫t

0

∫

En

‖bn(s, 0, x) − b(s, 0, x)‖2 〈M〉 (ds, dx)
]
6 CM

t , (2.34)

Moreover, by Lipschitz continuity of bn and b combined with relation 2.33,

for all t ∈ [0, T ] we estimate

E

[∥∥∥
∫t

0

∫

En

[bn(s,ys− , x) − b(s,ys− , x)]M(ds, dx)
∥∥∥
2
]

6 2E

[ ∫t

0

L2(s)‖ys−‖2 ds
]
+CM

t 6 2 sup
r∈[0,T ]

E

[
‖yr‖2

] ∫t

0

L2(s)ds+CM
t

(2.35)

Since the right-hand side of this last inequality does not depend on n ∈ N,

so we deduce from Lesbesgue’s dominated convergence theorem

sup
t∈[0,T ]

E

[∥∥∥
∫t

0

∫

En

[bn(s,ys− , x)−b(s,ys− , x)]M(ds, dx)
∥∥∥
2
]
→ 0, as n→ ∞.
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(2.36)

Analogously, we proceed with the same manner with

E

[∥∥∥
∫t

0

∫

En

[bn(s,ys− , x) − b(s,ys− , x)]N(ds, dx)
∥∥∥
2
]

6 E

[(∫t

0

∫

En

‖bn(s,ys− , x) − bn(s, 0, x)‖VN(ds, dx)

)2 ]

+ E

[(∫t

0

∫

En

‖bn(s, 0, x) − b(s, 0, x)‖VN(ds, dx)

)2 ]

+ E

[(∫t

0

∫

En

‖b(s, 0, x) − b(s,ys− , x)‖VN(ds, dx)

)2 ]
.

(2.37)

where under the Assumptions (7-b), (2) and (5), there is a constant CN
t > 0

and we also obtain

E

[∥∥∥
∫t

0

∫

En

[bn(s,ys− , x) − b(s,ys− , x)]N(ds, dx)
∥∥∥
2
]

6 2 sup
r∈[0,T ]

E

[
‖yr‖2

] ∫t

0

L2(s)ds+CN
t

and by Lesbesgue’s dominated convergence theorem, it follows

sup
t∈[0,T ]

E

[∥∥∥
∫t

0

∫

En

[bn(s,ys− , x)−b(s,ys− , x)]N(ds, dx)
∥∥∥
2
]
→ 0, as n→ ∞.

(2.38)

This shows that, by equations (2.29) and (2.32), cn(T) → 0 when n → ∞,

for all T > 0. This is because by Assumption (7-a) the integral
∫t

0

∫

En\E

b(s,ys− , x)X(ds, dx) → 0.

2. By growth estimates (2.28),(2.30) and equation (2.26), we can write

sup
s∈[0,t]

E

[
‖yns − ys‖2

]
62‖ξn − ξ‖

H2
0
+ 2c2n(T)

+ 16

∫t

0

L2(s) sup
r∈[0,s]

E

[
‖ynr − yr‖2

]
ds,

(2.39)

To get explicitly the constant K, we use the Gronwall Lemma (see A.4.1)

to the function t 7→ sup
s∈[0,t]

E

[
‖yns − ys‖2

]
. Namely, by equation (2.39), we

have

sup
s∈[0,t]

E

[
‖yns − ys‖2

]
6 2

(
‖ξn − ξ‖

H2
0
+ c2n(T)

)
e16

∫t
0 L

2(s)ds, (2.40)
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Therefore, we deduce that

‖yn − y‖
H2

T
6 K

(
‖ξn − ξ‖

H2
0
+ c2n(T)

)
, with K = 2e16

∫T
0 L2(s)ds.

As result of Theorem 2.3.1, if ‖ξn − ξ‖
H2

0
→ 0 as n → ∞, thus follows

‖yn − y‖
H2

T
→ 0 as well. Then we obtain the stability of solution y for SDE

(2.1) relative to any (perturbed) solution yn, n ∈ N.

2.3.2 Regularity of Solutions for SDE

In this subsection, we study regular dependence on initial data for SDEs.

More precisely, in sequel with the stability problem in Subsection 2.3.1,

we shall prove the differential and continuity dependence of the solution

of SDE (2.1) with respect to the initial data. Motivated by ideas from [31],

we extend the regularity approach in [31] to our regularity problem of

solutions.

1) We begin by fixing the curve of initial data ε 7→ c(ε) which is smooth

enough (i.e. differentiable everywhere) such that its derivative c ′(ε) ∈
L2(F0,H). Now we consider two solutions that can solve the SDE of the kind

(2.1). Namely, under Assumptions (1), (2), (3), we consider (yt)t∈[0,T ] ∈ H2
T

the unique solution for

dyt =
∫

E

b(t,yt− , x)X(dt, dx) and y0 = ξ = c(0), (2.41)

While we denote by (yεt)t∈[0,T ] ∈ H2
T the unique solution for SDE of the

form

dyεt =

∫

E

b(t,yεt− , x)X(dt, dx) and yε0 = c(0), (2.42)

under some regularity conditions to ensure the existence and uniqueness.

For ε 6= 0, but belongs to a neighborhood of 0, we define the variation

process relative to both solutions (yε,y)

∆ε
t =

yεt − yt

ε
, t > 0. (2.43)
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which is indeed the unique solution of the following SDE

d∆ε
t =

∫

E

[
b(t,yt− + ε∆ε

t− , x) − b(t,yt− , x)
]
X(dt, dx), ∆ε

0 =
c(ε) − c(0)

ε
,

(2.44)

Therefore, the study of regular dependence solution of SDE (2.1) reduces to

a problem of stability (as in Theorem 2.3.1) between ∆ε and the following

process determined by

dJ[y](v)t =
∫

E

Db(J[y](v))(t, J[y](v)t− , x)X(dt, dx), J[y](v)0 = v0, (2.45)

where y is the unique solution to SDE (2.41) and Db(v) is the Fréchet

derivative at the point b into direction v. In [31], such process J[y](v) is

defined as the first variation process at point y (the unique solution to SDE

(2.41)) in direction v with the following properties:

1. yε − y =

∫ε

0

J[y](c ′(η))dη.

2. v 7→ J[y](v) is a linear map from L2(F0;H) into H2
T and additionally

it is continuously depending 1 on v.

Note that those results follow from the following theorem.

Theorem 2.3.2 Let ε 7→ c(ε) be a curve of initial values. Suppose that Assumpti-

ons (4), (5),(6) are respectively satisfied for SDE (2.44). We assume furthermore

that

• b(·,h, ·) is Fréchet differentiable in H.

• when ε→ 0, then

b(·, [y+ εJ[y](v)]−, ·) − b(·,y−, ·)
ε

→ Dαb
(J[y](v))(·, J[y](v)−, ·)

in L2([X];H). Here we have J[y](v)− := (J[y](v)t−)t>0.

1 Continuously depend means: if for any sequence {vn}n∈N with ‖vn − v‖ → 0 then

sup
t∈[0,T ]

E

[
‖J[y](v) − J[y](v)‖2

]
→ 0.
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If we also assume conditions (1), (2),(3) for SDE (2.45) with v = c ′(0), then in a

neighborhood of 0, we have

sup
t∈[0,T ]

E

[
‖J[y](v)t −∆ε

t‖2
]
< K

(∥∥∥∥c
′(0) −

c(ε) − c(0)

ε

∥∥∥∥
2

+ cε(T)
2

)
, T > 0,

(2.46)

where ∥∥∥∥c
′(0) −

c(ε) − c(0)

ε

∥∥∥∥
2

+ cε(T)
2 → 0, as ε→ 0.

Proof First, as mentioned above, the regular dependence on initial data

for SDE (2.24) is equivalent to a stability problem relative to both processes

(J[y](v),∆ε). Therefore, in an analogously fashion, the proof can be thought

as a corollary of Theorem 2.3.1. Here as we are allowed use the analogy

because we do not deal with almost-sure convergence and all necessary

conditions in Theorem 2.3.1 are fulfilled.



3
H I L B E RT S PA C E - VA L U E D S P D E S D R I V E N B Y

S E M I M A RT I N G A L E F I E L D S

In sequel with Chapter 2, we aim to study the SPDE of the kind (0.3) in

the case of pseudo-semigroup. By mean of the “moving frame” approach

we prove successively the existence, uniqueness, stability and regularity of

solutions for (0.3). Later on, we consider an infinite dimensional SPDE with

a general C0-semigroup and driven by continuous martingale.

This Chapter is organized as follows. In Section 1, we provide all basic

notations. In Section 2, we introduce the different concepts of solutions.

In Section 3, we prove with the existence and uniqueness of solutions for

SPDE (0.3). In Section 4, we deal with stability of solutions. In Section 5, we

present some fundamental examples in which we discuss the advantage of

our framework compared to the existing literature. Last Section is devoted

for the real application of our approach in interest rate modeling.

3.1 notations

In this section, we recall the SPDE type that we are going to deal with. Let

T > 0 be arbitrary the time horizon and (H, ‖ · ‖) be a separable Hilbert

space. We assume that a probability space (Ω,F, (Ft)t>0, P) is given.

Let (St)t>0 be a C0-semigroup on the Hilbert space H with infinitesimal

generator A : D(A) ⊂ H → H such that there are constants M > 1 and

c ∈ R and we have

‖St‖ 6Mect, for t > 0.

Note that both domains D(A) and D(A∗) are dense in H (see Appendix

A.3), where A∗ is the adjoint operator of A. Recall that SE the space of all

semimartingales fields on R+ × E.

64
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Let ξ be a H-valued and F0-random variable. Given an initial data u0 = ξ,

we consider the following SPDE on [0, T ] in H:

dut = Aut dt+
∫

E

β(t,ut− , x)X(dt, dx), (3.1)

where β : Ω× R+ ×H× E −→ H and X ∈ SE of the form X =M+N.

3.2 concept of solutions

This section is devoted to study and review all concepts solutions (i.e.

strong, mild and weak solutions) related to SPDE (3.1). We then establish

their possible connections.

Before we define all the three solutions concepts, we point out that

uniqueness of solutions for (3.1) up to indistinguishability on the interval

t ∈ [0,∞).

Definition 3.2.1 A process u ∈ H2
T is called a strong solution to (3.1), if

u0 = ξ and for any t ∈ [0,∞) we have:

1. P
(
ut ∈ D(A)

)
= 1;

2. Au ∈ Lloc(λ;H) and β ∈ L2
loc(X;H);

3. ut = ξ+
∫t

0

Aus ds+
∫t

0

∫

E

β(s,us− , x)X(ds, dx), P-a.s.

Definition 3.2.2 A process u ∈ H2
T is called a weak solution to (3.1), if u0 = ξ

and for any φ ∈ D(A∗), t ∈ [0,∞) it holds that:

1. Au ∈ Lloc(λ;H) and β ∈ L2
loc(X;H);

2. and we have, P-a.s,

〈φ,ut〉H = 〈φ,u0〉H+

∫t

0

[〈A∗φ,us〉H]ds+
∫t

0

∫

E

〈φ,β(s,us− , x)〉HX(ds, dx).

Definition 3.2.3 A process u ∈ H2
T is called a mild solution to (3.1), if

1. Au ∈ Lloc(λ;H) and β ∈ L2
loc(X;H);

2. ut = Stu0 +
∫t

0

∫

E

St−sβ(s,us− , x)X(ds, dx).

Next, we give the connection between these solutions.
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Lemma 3.2.1 Let u ∈ H2
T with u0 = ξ. Then if u is a strong solution (resp. a

weak solution) of SPDE (3.1), so u is also a weak solution (resp. a mild solution) of

SPDE (3.1).

Proof 1) Consider u is a strong solution of equation (3.1) and let φ ∈ D(A∗).

Since ut ∈ D(A) for any t > 0, then 〈A∗φ,ut〉H = 〈φ,Aut〉H and it follows

that (P-a.s):

〈φ,ut〉H =〈φ,u0〉H +

∫t

0

〈φ,Aus〉H ds+
∫t

0

∫

E

〈φ,β(s,us− , x)〉HX(ds, dx)

=〈φ,u0〉H +

∫t

0

〈A∗φ,us〉H ds+
∫t

0

∫

E

〈φ,β(s,us− , x)〉HX(ds, dx).

This implies that u is a weak solution.

2) We assume that u is a weak solution of equation (3.1). For any t > 0 and

φ ∈ D(A∗) we obtain S∗t−sφ ∈ D(A∗) and by Definition 3.2.2 we compute:

〈S∗t−sφ,ut〉H =〈S∗t−sφ,u0〉H +

∫t

0

〈A∗S∗t−sφ,us〉H ds

+

∫t

0

∫

E

〈S∗t−sφ,β(s,us− , x)〉HX(ds, dx)

=
〈
S∗t−sφ,u0 +

∫t

0

∫

E

β(s,us− , x)X(ds, dx)
〉
H

and as the set D(A∗) dense in H we deduce that

ut = Stu0 +

∫t

0

∫

E

St−sβ(s,us− , x)X(ds, dx), P-a.s,

namely u is a mild solution . This completes the proof.

Remark 14 Under some regularity conditions, the converse of above statements

hold true as well. In other words, if u is a mild solution (resp. a weak solution and

u ∈ D(A)) of SPDE (3.1) with

E



(∫t

0

∫

E

‖β(s,us− , x)‖VN(ds, dx)

)2

+

∫t

0

∫

E

‖β(s,us− , x)‖2〈M〉(ds, dx)


 <∞,

(3.2)

then u is a weak solution (resp. a strong solution). We make the proof in two steps.

a) Let u be a mild solution of SPDE (3.1). To prove that u is also a weak solution,

we proceed analogously with the same technique used in [72, Theorem 9.15]. We

recall the mild solution that

ut = Stu0 +

∫t

0

∫

E

St−sβ(s,us− , x)X(ds, dx),
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and for simplicity we denote by the Bochner integral Λt =
∫t
0〈A∗φ,us〉H ds.

Thanks to condition (3.2) we can use the Fubini Theorem in 1.4.2 so that one

can perform the change of order on integration for the stochastic integral w.r.t. the

field X such that

Λt =

∫t

0

〈
A∗φ,Ssu0 +

∫s

0

∫

E

Ss−rβ(ur− , x)X(dr, dx)
〉
H

ds

=
〈
A∗φ,

∫t

0

Ssu0 ds+
∫t

0

∫t

0

∫

E

✶[0,s](r)Ss−rβ(r,ur− , x)X(dr, dx)ds
〉
H

=

〈
A∗φ,

∫t

0

Ssu0 ds+
∫t

0

∫

E

[ ∫t

0

✶[0,s](r)Ss−r ds
]
β(r,ur− , x)X(dr, dx)

〉

H

=
〈
A∗φ,

∫t

0

Ssu0 ds
〉
H
+

∫t

0

∫

E

〈
A∗φ,

[ ∫t

r

Ss−r ds
]
β(r,ur− , x)X(dr, dx)

〉

H

=
〈
A∗φ,

∫t

0

Ssu0 ds
〉
H
+

∫t

0

∫

E

〈 ∫t

r

S∗s−rA
∗φds,β(r,ur− , x)X(dr, dx)

〉

H

yielding, as
d

dt
Stx = StAx and A

(∫t

0

Ssxds

)
= Stx− x,

Λt =
〈
φ,Stu0 − u0

〉
H
+

∫t

0

∫

E

〈 ∫t

r

[
d

ds
S∗s−rφ

]
ds,β(r,ur− , x)X(dr, dx)

〉

H

=
〈
φ,Stu0 − u0

〉
H
+

∫t

0

∫

E

〈
S∗t−rφ−φ,β(r,ur− , x)X(dr, dx)

〉

H

=
〈
φ,Stu0〉H −

〈
φ,u0

〉
H
+
〈
φ,

∫t

0

∫

E

St−rβ(r,ur− , x)X(dr, dx)
〉

H

−

∫t

0

∫

E

〈
φ,β(r,ur− , x)X(dr, dx)

〉

H

and then
∫t

0

〈A∗φ,us〉H ds =
〈
φ,Stu0 +

∫t

0

∫

E

St−rβ(r,ur− , x)X(dr, dx)
〉

H

−
〈
φ,u0

〉
H

−

∫t

0

∫

E

〈
φ,β(r,ur− , x)X(dr, dx)

〉

H

We conclude that, P-a.s,

〈φ,ut〉H =
〈
φ,u0

〉
H
+

∫t

0

〈A∗φ,us〉H ds+
∫t

0

∫

E

〈
φ,β(r,ur− , x)X(dr, dx)

〉

H

.

That is u is a weak solution because it holds for any φ from the dense set ∈ D(A∗).
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b) Let φ ∈ D(A∗) be arbitrary. Again since ut ∈ D(A), so 〈A∗φ,ut〉H =

〈φ,Aut〉H and we compute:

〈φ,ut〉H =〈φ,u0〉H +

∫t

0

〈A∗φ,us〉H ds+
∫t

0

∫

E

〈φ,β(s,us− , x)〉HX(ds, dx)

=〈φ,u0〉H +

∫t

0

[〈φ,Aus〉H]ds+
∫t

0

∫

E

〈φ,β(s,us− , x)〉HX(ds, dx)

=
〈
φ,u0 +

∫t

0

Aus ds+
∫t

0

∫

E

β(s,us− , x)X(ds, dx)
〉
H

.

As D(A∗) is dense in H, and therefore we obtain

ut = u0 +

∫t

0

Aus ds+
∫t

0

∫

E

β(s,us− , x)X(ds, dx), P-a.s.

Remark 15 For the sake of completeness, it is also worth it to mention (without

a detailed proof) that if the semigroup S is norm continuous, i.e. St = etA, for

all t > 0. Then we have the equivalence between those three concept of solutions.

Namely, we obtain:

Strong solution ⇐⇒ Weak solution ⇐⇒ Mild solution.

Indeed, by Lemma 3.2.1, it is already clear that

Strong solution =⇒ Weak solution =⇒ Mild solution.

It remains to prove that a mild solution is also a strong solution. First, we consider

the mild solution

ut = e
tAu0 +

∫t

0

∫

E

e(t−s)Aβ(s,us− , x)X(ds, dx), t > 0,

and the process

Zt =

∫t

0

∫

E

e−sAβ(s,us− , x)X(ds, dx), t > 0,

then it follows that P-a.s,

ut = e
tA(u0 +Zt), t > 0,

The proof can be done by using Itô-formula on the function g : R+ ×H→ H with

g(t, x) = etAx, and also the fact that

etAx− x =

∫t

0

AetAxds,

in order to get

ut = u0 +

∫t

0

Aus ds+
∫t

0

∫

E

β(s,us− , x)X(ds, dx), t > 0.
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3.3 hilbert space-valued spdes

In this section, we establish the existence and uniqueness of mild solutions

to Hilbert space-valued SPDEs of the type (3.1) by using the moving frame

approach. To this end, we firstly introduce the moving framework and then

establish existence and uniqueness of strong solutions to the transformed

SDEs. Secondly, we proceed with the existence and uniqueness results for

mild solutions to SPDEs by using the pull-back method from the moving

frame.

3.3.1 Moving Framework

We first introduce the concept of the moving frame. For an SPDE, the

moving framework is described as the time-dependent transformation from

the original differential equation to a SDE in which the non-continuous

drift term disappears. The methodology of the moving frame consisted of

three steps:

1. Jump to the moving frame:

Apply the time-dependent transformation ut 7→ yt = S−tut =

U−tlut to reduce the SPDE (3.1) to SDE problems

2. Solve the transformed SDE:

Use the framework developed in Chapter 2 to solve the derived SDE

3. Leave the moving frame:

Deduce a mild solution of the original SPDE by pulling-back the

solution process for the transformed SDE by yt 7→ ut = Styt =

πUtlyt, as the following diagram shows,
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H0 H0

H H

l

Ut

π

St

Abbildung 3.1: Leaving frame diagram

for some C0-group (Ut)t∈R on separable Hilbert space H0, and conti-

nuous linear operators l ∈ L(H,H0), π ∈ L(H0,H).

Remark 16 As argued and showed in [31], such diagram is always possible if the

semigroup S is assumed to be pseudo-contractive.

To get the existence and uniqueness of a mild solution on [0, T ] we make

the following assumptions.

Assumption 8 - β is P⊗B(H)⊗ Σ− measurable.

Assumption 9 - Lipschtiz continuity:

a- There is a non-decreasing function L : R+ → R+, such that for all h1,h2 ∈
H and t ∈ [0, T ], P-a.s,

∫

E

‖β(t,h1, x) −β(t,h2, x)‖VN(t, dx) 6 L(t)‖h1 − h2‖.
∫

E

‖β(t,h1, x) −β(t,h2, x)‖2〈M〉(t, dx) 6 L(t)2‖h1 − h2‖2.
(3.3)

b- L ∈ L2
loc(λ;H).

Assumption 10 - β(·, 0, ·) ∈ L2T (X;H), i.e., for t ∈ [0, T ], P-a.s we have

E



(∫t

0

∫

E

‖β(s, 0, x)‖VN(ds, dx)

)2

+

∫t

0

∫

E

‖β(s, 0, x)‖2〈M〉(ds, dx)


 <∞.

(3.4)

Assumption 11 Assume S is pseudo-contractive semigroup. Then there exists

always another separable Hilbert space H0, a C0-group (Ut)t∈R on H0, and
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continuous linear operators l ∈ L(H,H0), π ∈ L(H0,H) such that we have the

leaving frame diagram 3.1, i.e.

πUtlh = Sth and S−th = U−tlh, for all t ∈ R+,h ∈ H,

where π = l∗ and there is constants M > 1, c ∈ R such that

‖Ut‖ 6Mec|t|, for all t ∈ R.

Remark 17 Note that the pseudo-contractive property of S is sufficient to have

the existence of H0, U, l and π as in Diagram 3.1. Indeed, this follows from

the Szökefalvi-Nagy Theorem on unitary dilations (see [90]). Precisely, if S is

pseudo-contractive then there is c > 0 such that e−ctSt, t > 0 is contractive and

by Szökefalvi-Nagy Theorem there are another separable Hilbert space H0 and a

unitary C0-group U on H0 such that

πUtl = e
−ctSt, for all t > 0,

with l ∈ L(H,H0) is an isometric embedding, π = l∗ ∈ L(H0,H) is the orthogonal

projection from H0 into H.

Let ξ be a H-valued and F0-random variable. Since we are interested in

finding mild solutions then we recall the stochastic convolution equation

ut = Stξ+

∫t

0

∫

E

St−sβ(s,us− , x)X(ds, dx) with u0 = ξ.

Then applying the time-dependent transformation yt = S−tut to the above

SPDE leads to the dynamics of the transformed SDE, namely,

yt = y0 +

∫

E

b(t,yt− , x)X(dt, dx) and y0 = u0, (3.5)

or equivalently

dyt =
∫

E

b(t,yt− , x)X(dt, dx), (3.6)

where b : Ω× R+ ×H× E −→ H such that

b(t,h, x) := U−tlβ((t,πUth, x)). (3.7)

Indeed, if we have

ut = Stξ+

∫t

0

∫

E

St−sβ(s,us− , x)X(ds, dx) with u0 = ξ.
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By replacing u = πU•ly and S = πU•l, we obtain

πUtlyt = πUtlξ+

∫t

0

∫

E

πUt−slβ(s,πUs−lys− , x)X(ds, dx)

and then we deduce that

yt = ξ+

∫t

0

∫

E

πU−slβ(s,πUs−lys− , x)X(ds, dx)

= ξ+

∫t

0

∫

E

U−slβ(s,πUslys− , x)X(ds, dx)

Therefore, solving SPDE (3.1) is equivalent to solve the following SDE

dyt =
∫

E

U−tlβ(s,πUtlyt− , x)X(dt, dx) with y0 = ξ.

Remark 18 If β is P ⊗ B(H) ⊗ Σ-measurable, then it follows that b is P ⊗
B(H)⊗Σ-measurable because the mapping x 7→ Utx is continuous. Moreover, it is

important to point out that the structure u = πU•ly preserves the path regularity

between both processes u and y. In other words, if the process y has a càdlàg path

then the same for u due to the continuity property of the mapping (t, x) 7→ Utx.

The main concern is now to solve the SDE in fashion way as in Chapter 2.

Lemma 3.3.1 If β is Lipschtz as in Assumption (9) and assume that Assumption

(11) is fulfilled. Then b is Lipschitz function and Assmuption (2) is satisfied.

Proof For any h1,h2 ∈ H, t ∈ [0, T ], we compute

‖b(t,h1, x) − b(t,h2, x)‖ = ‖U−tlβ(t,πUth1, x) −U−tlβ(t,πUth2, x)‖

6 ‖U−tl‖‖β(t,πUth1, x) −β(t,πUth2, x)‖.

(3.8)

1. On one hand, we start with VN and we use equation (3.8) and

Assumption (9) to estimate
∫

E

‖b(t,h1, x) − b(t,h2, x)‖VN(t, dx)

6 ‖U−tl‖
∫

E

‖β(t,πUth1, x) −β(t,πUth2, x)‖VN(t, dx)

6 ‖U−tl‖L(t)‖πUth1 − πUth2‖ 6 ‖U−tl‖‖πUt‖L(t)‖h1 − h2‖

6 ‖π‖‖Ut‖2‖l‖L(t)‖h1 − h2‖.

(3.9)
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2. On the other hand, with 〈M〉, by equation (3.8) we estimate

∫

E

‖b(t,h1, x) − b(t,h2, x)‖2 〈M〉 (t, dx)

6 ‖U−tl‖2
∫

E

‖β(t,πUtlh1, x) −β(t,πUtlh2, x)‖2 〈M〉 (t, dx)

6 ‖U−tl‖2L(t)2‖πUth1 − πUth2‖2 6 ‖U−tl‖‖πUt‖2L(t)2‖h1 − h2‖2

6 ‖π‖2‖Ut‖4‖l‖2L(t)2‖h1 − h2‖2.

(3.10)

By Assumption (11) and taking into account both equations (3.9) and (3.10),

we deduce that there exists a non-decreasing function L1 : R+ → R+ such

that for all h1,h2 ∈ H and t ∈ [0, T ],
∫

E

‖b(t,h1, x) − b(t,h2, x)‖VN(t, dx) 6 L1(t)‖h1 − h2‖.
∫

E

‖b(t,h1, x) − b(t,h2, x)‖2〈M〉(t, dx) 6 L1(t)2‖h1 − h2‖2.
(3.11)

where the new Lipschitz function is given by

L1(t) =M
2e2ct‖π‖‖l‖L(t), for all t > 0.

This completes the proof.

3.3.2 Existence and Uniqueness of Solutions for SPDEs

We shall deal with the existence and uniqueness of solutions for SPDE (3.1)

using the moving frame framework.

Theorem 3.3.1 Suppose that Assumptions (8), (9), (10) and (11) are fulfilled for

SPDE (3.1). Then, for each ξ ∈ L2(F0;H) there existe a unique mild and weak

solution u ∈ H2
T for SPDE (3.1) with càdlàg paths on [0, T ] and satisfies

E


 sup
t∈[0,T ]

‖ut‖2

 <∞, for all T > 0.

Proof The proof is done in four steps:
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1. We show that if Assumptions (8), (9), (10) and (11) are satisfied for

(3.1) then also Assumptions (1), (2), (3) are fulfilled for SDE (3.6). First, by

Lemma 3.3.1, we have

Assumption (9) =⇒ Assumption (2).

Next, by equations (3.7) and (3.8), we obtain

Assumptions (8), (10) =⇒ Assumptions (1), (3).

Therefore, by Theorem 2.2.1, there exists a unique strong solution for SDE

(3.6) with càdlàg paths such that, P-almost surely,

yt = lξ+

∫t

0

∫

E

b(s,ys− , x)X(ds, dx), for all t ∈ [0, T ] (3.12)

and

E


 sup
t∈[0,T ]

‖yt‖2

 <∞, for all T > 0. (3.13)

2. We prove, using the leaving frame procedure, that we shall get the

existence of mild solution for (3.1), that is, the solution process u = πUy is

well-defined in H2
T and has càdlàg paths on [0, T ]. Indeed, by Assumption

(11) and equation (3.12), for each t ∈ [0, T ] we compute

ut = (πUy)t = πUtyt

= πUt

(
lξ+

∫t

0

∫

E

b(s,ys− , x)X(ds, dx)

)

= πUt

(
lξ+

∫t

0

∫

E

U−slβ(s,πUsys− , x)X(ds, dx)

)

= πUtlξ+

∫t

0

∫

E

πUt−slβ(s,us− , x)X(ds, dx)

= Stξ+

∫t

0

∫

E

St−sβ(s,us− , x)X(ds, dx).

Noting that, by Definition 3.2.3, the process (ut)t∈[0,T ] is a mild solution for

(3.1) on [0, T ]. Moreover, since the mapping t 7→ Uth is continuous for any

h ∈ H, so Uy has càdlàg paths. In other words, u also has càdlàg paths.
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3 . Last, it remains to show that u is also a weak solution for SPDE (3.1).

Indeed, by Assumption (11) and Theorem 2.2.1, for each T > 0 we have

E


 sup
t∈[0,T ]

∥∥∥∥
∫t

0

∫

E

St−sβ(s,us− , x)X(ds, dx)

∥∥∥∥
2



6 sup
t∈[0,T ]

‖πUt‖E


 sup
t∈[0,T ]

∥∥∥∥
∫t

0

∫

E

b(s,ys− , x)X(ds, dx)

∥∥∥∥
2

 .

Showing that

E


 sup
t∈[0,T ]

‖ut‖2

 <∞.

and noting that it follows from Remark 14 that if u is a mild solution for

SPDE (3.1) then it is also a weak solution.

Remark 19 Let ξ ∈ L2(F0;H) be an initial data for SPDE (3.1). If u is a mild

solution to SPDE (3.1) with initial condition ξ, then SDE (3.6) admits a unique

strong solution with the inital condition lξ. Indeed, this can be proven by using the

jumping to the moving frame procedure, i.e., one can consider the transformation

t 7→ yt := U−tlut, t > 0, leading to the solution process

yt = (U−lu)t = U−tlut

= U−tl

(
Stξ+

∫t

0

∫

E

St−sβ(s,us− , x)X(ds, dx)

)

= U−tl

(
πUtlξ+

∫t

0

∫

E

πUt−slβ(s,πUsys− , x)X(ds, dx)

)

= lξ+

∫t

0

∫

E

b(s,ys− , x)X(ds, dx), P-a.s.

which is well-defined and has càdlàg paths on [0, T ].

3.3.3 Stability for Solutions

We now establish the stability and regularity of solutions for SPDE (3.1).

Again, by the leaving the moving frame procedure, we transfer respectively

the results on stability and regularity from Subsections 2.3.1 and 2.3.2.

We start with the stability problems. By Theorem 3.3.1, we assume there

exists a unique solution u ∈ H2
T for SPDE (3.1) (without perturbations). For
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each n ∈ N, we also assume the existence of a unique solution un ∈ H2
T

for the (perturbed) SPDE

dunt = Aunt dt+
∫

En

βn(t,unt− , x)X(dt, dx), un0 = ξn ∈ L2(F0;H). (3.14)

where, by jumping to moving frame procedure, its transformed SDE is

dynt =

∫

E

bn(t,ynt− , x)X(dt, dx) and yn0 = lξn. (3.15)

Therefore, the stability problem between (u,un) is now reduced to stability

problem between (y,yn).

Proposition 3.3.1 Suppose that Assumptions (11) and (8), (9), (10) are analo-

gously fulfilled for both SPDEs (3.1) and (3.14). We assume Assumption (7) is

also fulfilled for both coefficients bn and b. Then there exists a positive constant

K1 such that

sup
t∈[0,T ]

E

[
‖unt − ut‖2

]
< K(T)

[
‖ξn − ξ‖2

H2
0
+ cn(T)

]
, for all n ∈ N, T > 0,

(3.16)

where cn(T) → 0 as n→ ∞. Note that here K only depends on T and the Lipschitz

function L.

Proof First of all, by Assumption (11), it is important to recall that we have

respectively the implication

Assumptions (8), (9), (10) =⇒ Assumption (1), (2), (3).

This allows us to transfer all results from Theorem 2.3.1 to get the stability

for SPDE (3.1). Next, we compute and then estimate

‖ut − unt ‖2 = ‖πUty− πUty
n‖2 6 ‖π‖2‖Ut‖2‖y− yn‖2 (3.17)

(3.18)

Since Assumptions (1), (2), (3) are analogously satisfied for SDEs (3.6) and

(3.15). Then, by Assumption (7), we get existence of sequence

Cn(t) :=E

[∥∥∥
∫t

0

∫

En

[bn(s,ys− , x) − b(s,ys− , x)]X(ds, dx)
∥∥∥
2
]

+ E

[ ∫t

0

∫

En\E

b(s,ys− , x)X(ds, dx)
∥∥∥
2
]
→ 0, as n→ ∞.
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(3.19)

If we consider the transformation t 7→ ut = πUtyt, (3.19) can be written as

Cn(t) =E

[∥∥∥
∫t

0

∫

En

U−tl
[
βn(s,us− , x) −β(s,us− , x)

]
X(ds, dx)

∥∥∥
2
]

+ E

[ ∫t

0

∫

En\E

U−tlβ(s,us− , x)X(ds, dx)
∥∥∥
2
]

6‖U−t‖2‖l‖2E

[∥∥∥
∫t

0

∫

En

[
βn(s,us− , x) −β(s,us− , x)

]
X(ds, dx)

∥∥∥
2
]

+ ‖U−t‖2‖l‖2E

[ ∫t

0

∫

En\E

β(s,us− , x)X(ds, dx)
∥∥∥
2
]

6‖l‖2cn(t),
(3.20)

where cn(T) is a sequence of the form (2.36), i.e.,

cn(t) =M
2e2ct

(
E

[∥∥∥
∫t

0

∫

En

[
βn(s,us− , x) −β(s,us− , x)

]
X(ds, dx)

∥∥∥
2
]

+E

[ ∫t

0

∫

En\E

β(s,us− , x)X(ds, dx)
∥∥∥
2
])

→ 0,

(3.21)

when n→ ∞. One the other hand, by Theorem 2.3.1, we have the existence

of a constant

K1(T) = 2e
16

∫T
0 L1(s)

2 ds
6 2e16M

4‖π‖2‖l‖2e4cT
∫T
0 L(t)2 ds

By Theorem 2.3.1 and the growth estimate (3.21), equation (3.17) can be

expressed as

sup
t∈[0,T ]

E

[
‖ut − unt ‖2

]
6 ‖π‖2‖UT‖2 sup

t∈[0,T ]
E

[
‖y− yn‖2

]

6 ‖π‖2M2e2cTK1(T)
[
‖yn0 − y0‖2H2

0
+Cn(T)

]

6 K(T)
[
‖ξn − ξ‖2

H2
0
+ cn(T)

]
(3.22)

where K(T) = 2M2‖π‖2‖l‖2e2cT+16M4‖π‖2‖l‖2e4cT
∫T
0 L(t)2 ds. This shows

that if ‖ξn − ξ‖2
H2

0

→ 0, as n→ ∞, then ‖ut − unt ‖2H2
T

→ 0. In other words,

the unique solution u for SDPE (3.1) is stable.
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3.4 special case : martingale fields

In this section we study SPDE (3.1) where X is simply a martingale field.

First, we show that our approach includes the SPDE (0.2) in the case where

S is a pseudo-contractive semigroup. Next, we investigate the case where

driving noise is a continuous martingale field and (St)t>0 is just a general

C0-semigroup. We establish the Lp-existence and uniqueness of solutions.

Let H be a separable Hilbert space. We aim to study SPDE of the form:

dut = [Aut+a(t,ut)]dt+
∫

E

β(t,ut− , x)M(dt, dx) and u0 = ξ, (3.23)

where a : Ω× R+ ×H → H, b : Ω× R+ ×H× E → H are P⊗B(H)⊗ Σ−
measurables, M ∈ ME is a martingale field.

Corollary 3.4.1 Suppose that a and b are Lipschitz functions, i.e. there is function

L : R+ → R+ such that for all h1,h2 ∈ H and t ∈ [0, T ], P-a.s,

‖a(t,h1) − a(t,h2)‖ 6 L(t)‖h1 − h2‖.

‖β(t,h1, x) −β(t,h2, x)‖2〈M〉(t, dx) 6 L(t)2‖h1 − h2‖2.
(3.24)

and we assume that Assumption (11) is fulfilled and

a- L ∈ L2
loc(R+).

b- β(·, 0, ·) ∈ L2T (M;H) and a(·, 0) ∈ L2T (λ;H).

Then, for ξ ∈ L2(F0;H), there exists a unique mild and weak solution u ∈ H2
T

for

ut = Stξ+

∫t

0

St−sa(s,us)ds+
∫t

0

∫

E

St−sβ(s,us− , x)M(ds, dx), (3.25)

satisfying

E

[
sup

t∈[0,T ]
‖ut‖2

]
<∞.

Proof The proof follows directly from Theorem 3.3.1 and Proposition 1.2.2.

By Proposition 1.2.2, stochastic convolution equation (3.25) can be rewritten

as

ut = Stξ+

∫t

0

∫

R

St−sα(s,us, x)N(ds, dx)+
∫t

0

∫

E

St−sβ(s,us− , x)M(ds, dx),
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(3.26)

where the FV field N and the coefficient α are respectively determined as

follows

α(s,h, x) := a(s,h)✶[0,1](x) and N(t,A) := λ([0, t])λ(A),

for any t > 0, h ∈ H and A ⊂ R. Note that the mapping A 7→ N(t,A) is a

σ-finite premeasure on (R,B(R)) for all t > 0. Then the Bochner integral

α ·N is well-defined and it holds

∫t

0

St−sa(s,us)ds =
∫t

0

∫

R

St−sα(s,us, x)N(ds, dx).

Now, by the unification approach in Theorem 1.4.3, there exists a Blackwell

space (E ′,Σ ′) such that there is a countable semi-ring E ′ with Σ ′ = σ(E ′), a

mapping ψ := α✶R + β✶E and a semimartingale field X on R+ × E ′ such

that
∫t

0

∫

E ′
ψ(s,us− , x)X(ds, dx)

:=

∫t

0

∫

R

α(s,us, x)N(ds, dx) +
∫t

0

∫

E

β(s,us− , x)M(ds, dx)

(3.27)

Now the equation (3.23) becomes as a SPDE problem in view of equation

(3.1), i.e., SPDE (3.23) is reduced to

dut = Aut dt+
∫

E ′
ψ(t,ut− , x)X(dt, dx), (3.28)

Noting that if a and β are Lipschitz functions then Ψ satisfies Assumption

(9). Moreover, Assumptions (8) and (10) are also fulfilled for SPDE (3.28).

Finally, by Theorem 3.3.1, we get the existence and uniqueness of mild and

weak solution u ∈ H2
T for SPDE (3.28) (equivalent to SPDE (3.23)). Namely,

u is also mild and weak solution for SPDE (3.23) and all results follow as

well.

3.4.1 Fundamental Example

Let Q be a self-adjoint, positive, symmetric, definite trace class operator

on U and {ek}k∈N be an orthonormal basis in U diagonalizing Q. Let W
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be a Q-Wiener process taking value in U. Let µ− λ⊗ F be a compensated

Poisson random measure defined on R+ × E with intensity dt× F(dx).
As a consequence of the above result, we consider the following Markovi-

an SPDE

drt = [Art + a(t, rt)]dt+ σ(t, rt)dWt +

∫

E

γ(t, rt− , x)(µ(dt, dx) − F(dx)dt)

r0 = h0,

(3.29)

where a : R+ × H → H, σ : R+ × H → H, γ : R+ × H × E → H are

predictable mappings, and A : D(A) ⊂ H→ H is an infinitesimal generator

of a C0-semigroup (St)t>0 on H.

Noting that such type of infinite dimension stochastic differential equati-

on has been very well studied in the area of SPDEs for the last two decades.

It has recently received a lot of attention among researches and practitioners

as it is not only more realistic for modeling purpose but also it covers

wide class of SPDEs. Motivated by these reasons, it is worth to show that

equation (3.29) is a particular case of SPDE (3.23).

Corollary 3.4.2 We assume that Assumptions (11) is fulfilled and there is a

function L ∈ L2
loc(R+) such that for all h1,h2 ∈ H and t ∈ [0, T ], P-a.s,

‖a(t,h1) − a(t,h2)‖ 6 L(t)‖h1 − h2‖.

‖σ(t,h1) − σ(t,h2)‖L0
2
6 L(t)‖h1 − h2‖

∫

E

‖γ(t,h1, x) − γ(t,h2, x)‖2F(dx) 6 L(t)2‖h1 − h2‖2.

(3.30)

and we suppose that ‖a(·, 0)‖, ‖σ(·, 0)‖L0
2
∈ L2

loc(R+) and
∫

E ‖γ(·, 0, x)‖2F(dx) ∈
Lloc(R+). Then, for h0 ∈ L2(F0;H), there exists a unique mild and weak solution

r ∈ H2
T for

rt =Sth0 +

∫t

0

St−sa(s, rs)ds+
∫t

0

St−sσ(s, rs)dWs

+

∫t

0

∫

E

St−sγ(s, rs− , x)(µ(ds, dx) − F(dx)ds),

(3.31)

satisfying

E

[
sup

t∈[0,T ]
‖rt‖2

]
<∞.
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Proof We use the unification procedure two times, first with both mar-

tingale parts to get a unified martingale field, and then combine this field

with the FV derived from the continuous drift term. Namely, we proceed as

follows:

1. By Corollary (1.4.1), we obtain the existence of martingale field M such

that under Assumptions (11) we have the stochastic convolution:
∫t

0

St−sσ(s,h)W(ds) +
∫t

0

∫

E

St−sγ(s,h, x)
[
µ(ds, dx) − dsF(dx)

]

=

∫t

0

∫

B

St−sβ(s,h, z)M(ds, dz), for all h ∈ H, t ∈ [0, T ],

(3.32)

where B := N × E and β(t,h, x,y) := φ(t,h, x)✶N(x) + g(t,h,y)✶E(y) with

φ(t,h, x) = σ(t,h)ex, for all h ∈ H and t ∈ [0, T ].

This implies that equation (3.29) is reduced to SPDE problem (3.23) and

by Corollary 3.4.1 we have the existence and uniqueness of mild and weak

solution for SPDE (3.29) such that

rt = Sth0 +

∫t

0

St−sa(s, rs)ds+
∫t

0

∫

B

St−sβ(s, rs− , x)M(ds, dx) (3.33)

or equivalently

rt =Sth0 +

∫t

0

St−sa(s, rs)ds+
∫t

0

St−sσ(s, rs)dWs

+

∫t

0

∫

E

St−sγ(s, rs− , x)(µ(ds, dx) − F(dx)ds),

(3.34)

Moreover, it follows

E

[
sup

t∈[0,T ]
‖rt‖2

]
<∞,

which concludes the proof.

3.4.2 Continuous Martingale

In this subsection, we shall deal with the existence and uniqueness problem

for SPDE (3.23) but driven by continuous martingale field. We extend our

framework in order to work with Lp-setting and we also relax the pseudo-

contractive assumption to a general C0-semigroup.

Let H be a separable Hilbert space. We aim to study SPDE of the form:

dut = [Aut+a(t,ut)]dt+
∫

E

β(t,ut, x)M(dt, dx) and u0 = ξ, (3.35)
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where a : Ω × R+ × H → H, b : Ω × R+ × H × E → H, M ∈ ME is a

continuous martingale field, and A : D(A) ⊂ H → H is an infinitesimal

generator of a general C0-semigroup (St)t>0 on H.

Now, for p > 1, we introduce H
2p
T as a Banach space of all H-valued

adapted processes (φt)t∈[0,T ] for which

sup
t∈[0,T ]

E

[
‖φt‖2p

]
<∞.

We define the norm of H
2p
T

‖φ‖
H

2p
T

= sup
t∈[0,T ]

(
E

[
‖φt‖2p

]) 1
2

.

3.4.2.1 Stochastic Convolution integrals

Before we state the main result for the existence and uniqueness of solutions.

We need to consider the following auxiliary results that allows to estimate

the stochastic convolution integral.

Lemma 3.4.1 Let h ∈ H, T > 0, φh ∈ L2T (M;H) and p > 1 be arbitrary. Then

there exists two positive constants Cp,T and cp such that

E

[∥∥∥∥
∫t

0

∫

E

φh(s, x)M(ds, dx)

∥∥∥∥
2p
]
6 cpE

[ ∫T

0

∫

E

‖φh(s, x)‖2〈M〉(ds, dx)
]p

6 Cp,TE

[ ∫T

0

∫

E

‖φh(s, x)‖2p〈M〉(ds, dx)
]

.

(3.36)

Proof (1) To prove the first inequality we shall apply the Itô’s formula on

the function

F : H→ R+, x 7→ F(x) := ‖x‖2p,

which is continuous and twice Fréchet differentiable with derivatives, for

all y, z ∈ H,

DxF[x](y) = 2p‖x‖2(p−1)〈x,y〉H

DxxF[x](y, z) = 4p(p− 1)‖x‖2(p−2)〈x,y〉H〈x, z〉H + 2p‖x‖2(p−1)〈y, z〉H
(3.37)
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are also continuous and bounded on bounded subsets of H with

‖DxxF[x]‖L(H×H,R+) 6 2p(2p− 1)‖x‖2(p−1). (3.38)

Let us denote by mt =
∫t
0

∫

Eφh(s, x)M(ds, dx) with m0 = 0. By Itô’s

formula (see e.g. Métivier [65]), we obtain

‖mt‖2p 6

∫t

0

DxF[ms](dms) +
1

2

∫t

0

∫t

0

DxxF[ms](dms, dms) (3.39)

We estimate

‖mt‖2p 62p

∫t

0

‖ms‖2p−2 〈ms, dms〉H + p(2p− 2)

∫t

0

∫t

0

‖ms‖2p−2‖dms‖2

(3.40)

Noting that we can estimate

∫t

0

〈ms, dms〉H 6

∫t

0

∫t

0

〈
✶[0,s] dmr, dms

〉
H

6

∫t

0

∫t

0

‖dms‖2 6 ‖mt‖2.

(3.41)

Taking the expectation of (3.40) and using Hölder’s, Doob’s maxmimal

inequalities, Itô isometry and equation (3.41), yield

E

[
‖mt‖2p

]
6 2pE

[
sup

06s6t

‖ms‖2p−2

∫t

0

∫t

0

‖dms‖2
]

+ p(2p− 1)E

[
sup

06s6t

‖ms‖2p−2

∫t

0

∫t

0

‖dms‖2
]

6 p(2p+ 1)E

[
‖mt‖2 sup

06s6t

‖ms‖2p−2

]

6 p(2p+ 1)E

[
sup

06s6t

‖ms‖2p−2

∫t

0

∫

E

‖φh(s, x)‖2 〈M〉 (ds, dx)

]

6 p(2p+ 1)

(
E

[
sup

06s6t

‖ms‖2p
])p−1

p

×
(

E

[ ∫t

0

∫

E

‖φh(s, x)‖2 〈M〉 (ds, dx)
]p) 1

p

6 p(2p+ 1)

((
2p

2p− 1

)2p

E

[
‖mt‖2p

])p−1
p

×
(

E

[ ∫t

0

∫

E

‖φh(s, x)‖2 〈M〉 (ds, dx)
]p) 1

p

(3.42)
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Taking the p-power of both sides of (3.42), we deduce that

E

[∥∥∥∥
∫t

0

∫

E

φh(s, x)M(ds, dx)

∥∥∥∥
2p
]
6 cpE

[ ∫t

0

∫

E

‖φh(s, x)‖2 〈M〉 (ds, dx)
]p

(3.43)

where

cp =
[
p(2p+ 1)

]p
[
2p

2p− 1

]2p(p−1)

.

(2) Finally, to get the second inequality we again use the Hölder’s inequa-

lity to [ ∫T

0

∫

E

‖φh(s, x)‖2〈M〉(ds, dx)
]p

.

Namely, applying Hölder’s inequality to ‖φh‖2 and ✶Ω×E, leads to

∫T

0

∫

E

‖φh(s, x)‖2p〈M〉(ds, dx) 6

[∫T

0

∫

E

‖φh(s, x)‖2p〈M〉(ds, dx)

] 1
p

×
[∫T

0

∫

E

‖〈M〉(ds, dx)

]p−1
p

(3.44)

Therefore, taking the p-power to (3.44) and then the expectation, we deduce

E

[∥∥∥∥
∫t

0

∫

E

φh(s, x)M(ds, dx)

∥∥∥∥
2p
]
6 Cp,TE

[ ∫T

0

∫

E

‖φh(s, x)‖2p〈M〉(ds, dx)
]

,

where Cp,T := cp〈M〉(T ,E)p−1 and this shows the second inequality.

Corollary 3.4.3 Let (St)t>0 be a C0-semigroup on H and p > 1. For h ∈ H,

φh ∈ L2T (M;H) and t ∈ [0, T ]

E

[∥∥∥∥
∫t

0

∫

E

St−sφh(s, x)M(ds, dx)

∥∥∥∥
2p
]

6 cM,T
p,c E

[ ∫T

0

∫

E

‖φh(s, x)‖2〈M〉(ds, dx)
]p

6 CM,T
p,c E

[ ∫T

0

∫

E

‖φh(s, x)‖2p〈M〉(ds, dx)
]

.

(3.45)

where ‖Ss‖ 6Mecs, M > 1 and c ∈ R for all s > 0.

Proof The proof is just consequence of the above result.
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(1) First, note that if φh is predictable then so also is St−sφh(s, ·) for all

t > 0, s ∈ [0, t]. Then, for t ∈ (0, T ], by Lemma 3.4.1, we have

E

[∥∥∥∥
∫t

0

∫

E

St−sφh(s, x)M(ds, dx)

∥∥∥∥
2p
]

6 cp, E

[ ∫T

0

∫

E

‖St−sφh(s, x)‖2〈M〉(ds, dx)
]p

6 cpE

[ ∫T

0

∫

E

Mec(t−s)‖φh(s, x)‖2〈M〉(ds, dx)
]p

6 cpM
2e2cTE

[ ∫T

0

∫

E

‖φh(s, x)‖2〈M〉(ds, dx)
]p

(3.46)

we take cM,T
p,c = CpM

2e2cT .

(2) Likewise, by Lemma 3.4.1, we estimate

E

[∥∥∥∥
∫t

0

∫

E

St−sφh(s, x)M(ds, dx)

∥∥∥∥
2p
]

6 Cp,TE

[ ∫T

0

∫

E

‖St−sφh(s, x)‖2p〈M〉(ds, dx)
]

6 Cp,TE

[ ∫T

0

∫

E

Mec(t−s)‖φh(s, x)‖2p〈M〉(ds, dx)
]

6 CpM
2e2cTE

[ ∫T

0

∫

E

‖φh(s, x)‖2p〈M〉(ds, dx)
]

(3.47)

so we have CM,T
p,c = CpM

2e2cT . This concludes the proof.

Lemma 3.4.2 LetM be a continuous martingale field and (St)t>0 be a general C0-

semigroup. Let y ∈ H
2p
T be a continuous process, φ : Ω× R+ ×H× E→ H be a

predictable mapping and there is a constant p > 1 such that φ(·,ys, ·) ∈ L2T (M;H)

for all s ∈ [0, T ] and

E

[∫T

0

∫

E

‖φ(s,ys, x)‖2p〈M〉(ds, dx)

]
<∞, for all T > 0,h ∈ H.

Then the stochastic convolution Sφ ∗M is well-defined and has a continuous

version.

Proof To deal with the existence of the continuous modification, we use

the factorization method performed in [22] (or see [73]). The proof consists

of the following steps:
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(1) We find a good candidate for a modification version of the stochastic

convolution
∫t

0

∫

E

St−sφ(s,ys, x)M(ds, dx). In fact, we have the following

identity:

∫t

v

(t− s)θ−1(s− v)−θ ds =
π

sin(πθ)
, for 0 < θ < 1, v < t. (3.48)

It follows that for t ∈ (0, T ]

∫t

0

∫

E

St−sφ(s,ys, x)M(ds, dx)

=
sin(πθ)
π

∫t

0

∫

E

( ∫t

r

(t− s)β−1(s− r)−β ds
)
St−rφ(r,yr, x)M(dr, dx),

(3.49)

and applying the Fubini theorem 1.4.2 and using the fact that St−u =

St−sSs−u, we obtain

π

sin(πθ)

∫t

0

∫

E

St−sφ(s,ys, x)M(ds, dx)

=

∫t

0

∫

E

( ∫t

r

(t− s)θ−1(s− r)−θ ds
)
St−rφ(r,yr, x)M(dr, dx)

=

∫t

0

(t− s)θ−1St−s

[ ∫s

0

∫

E

(s− r)−θSs−rφ(r,yr, x)M(dr, dx)
]

ds

(3.50)

Let us set

Zt =

∫t

0

∫

E

(t− r)−θSt−rφ(r,yr, x)M(dr, dx), for t ∈ [0, T ],

and we can consider the following process as the modification of our

stochastic convolution

Sφ ∗Mt :=
sin(πθ)
π

∫t

0

(t− s)θ−1St−sZs ds, for t ∈ [0, T ]. (3.51)
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(2) Let us fix 1
2p < θ <

1
2 . We shall show that Sφ ∗Mt is well-defined. For

this, by Hölder’s inequality and Lemma 3.4.1, we estimate

E

[∥∥∥∥
sin(πθ)
π

∫t

0

(t− s)θ−1St−sZs ds

∥∥∥∥
2p
]

6

(∫T

0

(T − s)(θ−1) 2p
2p−1 ds

)2p−1(
MecT sin(πθ)

π

)2p ∫T

0

E

[
‖Zs‖2p

]
ds

6 C1

∫T

0

E

[
‖Zs‖2p

]
ds

6 C2

∫T

0

E

[ ∫s

0

∫

E

(s− r)−2pθ‖φ(r,yr, x)‖2p〈M〉(dr, dx)
]

ds

6 C2

∫T

0

∫s

0

∫

E

(s− r)−2pθ
E

[
‖φ(r,yr, x)‖2p〈M〉(dr, dx)

]
ds

6 C2

[ ∫T

0

s−2pθ ds
]

E

[ ∫T

0

∫

E

‖φ(r,yr, x)‖2p〈M〉(dr, dx)
]

6 C3E

[ ∫T

0

∫

E

‖φ(r,yr, x)‖2p〈M〉(dr, dx)
]
<∞

(3.52)

where C3 > 0 and it depends only on p,M, θ, c. This shows that the process

(Zt)t∈[0,T ] has almost surely 2p-integrable paths.

(3) Last, it remains to prove that for any fixed θ ∈ (0, 1] and q > 1 the

mapping

t 7→ Fθ(f)t =

∫t

0

(t− s)θ−1St−sf(s)ds

is a continuous mapping and there is a constant C such that ‖Fθ(f)t‖ 6

C‖f‖Lq
T (λ;H) for all t ∈ [0, T ], f ∈ LqT (λ;H).

Indeed, fix t ∈ [0, T ] and et (tn)n∈N be a sequence such that tn → t as

n→ ∞. We compute

‖Fθ(f)tn − Fθ(f)t‖ =

∥∥∥∥
∫tn

0

(tn − s)θ−1Stn−sf(s)ds−
∫t

0

(t− s)θ−1St−sf(s)ds

∥∥∥∥

6

∥∥∥∥
∫tn

0

(tn − s)θ−1Stn−sf(s)ds−
∫tn

0

(t− s)θ−1Stn−sf(s)ds

∥∥∥∥

+

∥∥∥∥
∫tn

0

(t− s)θ−1Stn−sf(s)ds−
∫t

0

(t− s)θ−1St−sf(s)ds

∥∥∥∥

6

∥∥∥∥
∫tn

0

[
(tn − s)θ−1 − (t− s)θ−1

]
Stn−sf(s)ds

∥∥∥∥

+

∥∥∥∥
∫tn∧t

0

(t− s)θ−1
[
Stn−s − St−s

]
f(s)ds

∥∥∥∥

+

∥∥∥∥
∫tn∨t

tn∧t

(t− s)θ−1Stn∨t−sf(s)ds

∥∥∥∥
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(3.53)

Noting that Stn−sx → St−sx, for all x ∈ H, due to the continuity of the

mapping t 7→ Stx. So when n→ ∞ then we obtain
∥∥∥∥
∫tn

0

[
(tn − s)θ−1 − (t− s)θ−1

]
Stn−sf(s)ds

∥∥∥∥→ 0

∥∥∥∥
∫tn∧t

0

(t− s)θ−1
[
Stn−s − St−s

]
f(s)ds

∥∥∥∥→ 0

∥∥∥∥
∫tn∨t

tn∧t

(t− s)θ−1Stn∨t−sf(s)ds

∥∥∥∥→ 0

(3.54)

That imply that ‖Fθ(f)tn − Fθ(f)t‖ → 0, namely, Fθ(f) is continuous. It

follows

‖Fθ(f)t‖p =

∥∥∥∥
∫t

0

(t− s)θ−1St−sf(s)ds

∥∥∥∥
p

6 Tθ−1MecT
∫T

0

‖f(s)‖p ds

(3.55)

which leads to

‖Fθ(f)t‖ 6 T
θ−1
p M

1
p e

cT
p

(∫T

0

‖f(s)‖p ds

) 1
p

6 C‖f‖Lq
T (λ;H)

Finally, the existence of the continuous modification of
∫t

0

∫

E

St−sφ(s,ys, x)M(ds, dx)

follows from the continuity of Fθ(Z)t, i.e,

Sφ ∗Mt =
sin(πθ)
π

Fθ(Z)t,

has a continuous version.

First, we start with the deterministic stochastic convolution
∫t
0 St−sf(s, x)ds

which can be viewed as a standard Bochner integral.

Lemma 3.4.3 Let a : Ω× R+ ×H → H be a progressively measurable process

such that

P

(∫t

0

‖a(s,h)‖2p ds <∞

)
= 1, for t > 0,p > 1.

Then the mapping Y : Ω× R+ ×H→ H with

Y(ω, t,h) :=
∫t

0

St−sa(ω, s,h)ds, for t > 0 and ω ∈ Ω,

is well-defined and continuous in L2p.
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Proof (1) Concerning the existence, by Hölder inequality, one compute for

t > 0:

E

[
‖Y(t,h)‖2p

]
= E

[∥∥∥∥
∫t

0

St−sa(s,h)ds

∥∥∥∥
2p
]

6 TM2pe2pcTE

[∫t

0

‖a(s,h)‖2p ds

]
<∞.

(2) To obtain the continuity, one may use the Lebesgue’s theorem. Indeed,

we consider an arbitrary sequence (tn)n∈R+
sucht that tn → t and we

compute

‖Y(tn,h) − Y(t,h)‖2p =

∥∥∥∥
∫t

0

St−sa(s,h)ds−
∫tn

0

Stn−sa(s,h)ds

∥∥∥∥
2p

6

∫t∧tn

0

∥∥∥∥St−sa(s,h) − Stn−sa(s,h)

∥∥∥∥
2p

ds

+

∫t∨tn

t∧tn

∥∥∥∥S(t∨ tn − s)a(s,h)

∥∥∥∥
2p

ds.

(3.56)

We have Stn−sh → St−sh, for h ∈ H, as mapping t 7→ Sth is continuous.

Then, one can apply the Lebesgue’s dominated convergence theorem here

and obtain

E

[∫t∧tn

0

‖St−sa(s,h) − Stn−sa(s,h)‖2p ds

]
→ 0, as n→ ∞.

Likewise, when n goes to ∞ therefore we have

E

[∫t∨tn

t∧tn

‖S(t∨ tn − s)a(s,h)‖2p ds

]
→ 0.

Then the continuity follows.

3.4.2.2 Existence and Uniqueness of Mild Solutions

We now proceed with the proof of the existence and uniqueness of mild

and weak solutions for SPDE (3.35) using the Banach fixed point argument.

For any p > 1, we replace our previous assumptions by the following

conditions:

Assumption 12 - a and β are predictable mappings.
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Assumption 13 - There is a non-decreasing function L ∈ L
2p
loc(λ; R+) such that

for all h1,h2 ∈ H and t ∈ [0, T ], P-a.s,

‖a(t,h1) − a(t,h2)‖2p 6 L(t)2p‖h1 − h2‖2p.
∫

E

‖β(t,h1, x) −β(t,h2, x)‖2p〈M〉(t, dx) 6 L(t)2p‖h1 − h2‖2p.

Assumption 14 - b(·, 0, ·) ∈ L2pT (M;H) and a(·, 0) ∈ L2pT (λ;H).

Lemma 3.4.4 Suppose Assumptions (12), (13) and (14) are fulfilled. For every t ∈
[0, T ] and continuous processes Y,Z ∈ H

2p
T , there exist two constants C1,C2 > 0

such that we have

E

[∥∥∥∥
∫t

0

St−s

[
a(s, Ys) − a(s,Zs)

]
ds

∥∥∥∥
2p
]
6 C1

∫t

0

L(s)2pE

[
‖Ys −Zs‖2p

]
ds;

E

[∥∥∥∥
∫t

0

∫

E

St−s

[
β(s, Ys, x) −β(s,Zs, x)

]
M(ds, dx)

∥∥∥∥
2p
]

6 C2

∫t

0

L(s)2pE

[
‖Ys −Zs‖2p

]
ds.

Proof By lemmas 3.4.2 and 3.4.3, we have the existence of both constants

C1 = C1(p, c, T ,M) and C2 = C2(p, c, T ,M, θ) such that

E

[∥∥∥∥
∫t

0

St−s

[
a(s, Ys) − a(s,Zs)

]
ds

∥∥∥∥
2p
]
6 C1E

[∫T

0

‖a(s, Ys) − a(s,Zs)‖2p ds

]

and

E

[∥∥∥∥
∫t

0

∫

E

St−s

[
β(s, Ys, x) −β(s,Zs, x)

]
M(ds, dx)

∥∥∥∥
2p
]

6 C2E

[∫T

0

∫

E

‖β(s, Ys, x) −β(s,Zs, x)‖2p〈M〉(ds, dx)

]
.

Under condition (13), we shall obtain

E

[∥∥∥∥
∫t

0

St−s

[
a(s, Ys) − a(s,Zs)

]
ds

∥∥∥∥
2p
]
6 C1

∫t

0

L(s)2pE

[
‖Ys −Zs‖2p

]
ds

E

[∥∥∥∥
∫t

0

∫

E

St−s

[
β(s, Ys, x) −β(s,Zs, x)

]
M(ds, dx)

∥∥∥∥
2p
]

6 C2

∫t

0

L(s)2pE

[
‖Ys −Zs‖2p

]
ds.

This completes the proof.
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For any fixed ξ ∈ L2(F0;H), t ∈ [0, T ] and a continuous process u ∈ H
2p
T ,

let us define the process Iξ(u) by:

Iξ(u)t = ξ+

∫t

0

St−sa(s,us)ds+
∫t

0

∫

E

St−sβ(s,us, x)M(ds, dx), (3.57)

note that, by Lemma 3.4.4, this process is well-defined as we can estimate

E

[∥∥∥∥
∫t

0

St−sa(s,us)ds

∥∥∥∥
2p
]
6 sup

r∈[0,t]
E

[
‖ur‖2p

] ∫T

0

L(s)2p ds+K1

E

[∥∥∥∥
∫t

0

∫

E

St−sβ(s,us, x)M(ds, dx)

∥∥∥∥
2p
]
6 sup

r∈[0,t]
E

[
‖ur‖2p

] ∫T

0

L(s)2p ds+K2

where

K1 = E

[∫T

0

‖a(s, 0)‖2p ds

]
and K2 = E

[∫T

0

∫

E

‖φ(s, 0, x)‖2p〈M〉(ds, dx)

]
,

Note that both terms in right side of the above inequality are finite under

Assumptions (13) and (14), and we deduce that Iξ(u) ∈ H
2p
T as

sup
t∈[0,T ]

E

[
‖Iξ(u)t‖2p

]
<∞.

Therefore, it induces a mapping I : L2(F0;H)× H
2p
T → H

2p
T .

Theorem 3.4.1 Assume that ξ ∈ L2(F0;H) and conditions (12), (13) and (14)

are satisfied. Then there exists a unique mild and weak solution u ∈ H
2p
T for SPDE

(3.35) with

E


 sup
t∈[0,T ]

‖u(t)‖2p

 <∞, for all T > 0. (3.58)

Moreover, it has a continuous modification and the mapping ξ 7→ uξ is Lipschitz

continuous for all u ∈ H
2p
T .

Proof We show the existence and uniqueness of mild solution u(ξ) ∈ H
2p
T

of (3.35) with initial condition ξ ∈ L2(F0;H) by using the extension of the

Banach fixed point theorem on the mapping I(ξ, ·). The proof of the theorem

is done in four steps:

a) Let Y,Z ∈ H
2p
T be continuous processes. First, we compute

E

[
‖Iξ(Y)t − Iξ(Z)t‖2p

]

6 22p−1
E

[∥∥∥∥
∫t

0

St−s

[
a(s, Ys) − a(s,Zs)

]
ds

∥∥∥∥
2p
]

+ 22p−1
E

[∥∥∥∥
∫t

0

∫

E

St−s

[
β(s, Ys, x) −β(s,Zs, x)

]
M(ds, dx)

∥∥∥∥
2p
]

.

(3.59)
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By Lemma 3.4.4, we estimate

E

[
‖Iξ(Y)t − Iξ(Z)t‖2p

]
=

6 22p−1

[
C1

∫t

0

L(s)2pE

[
‖Ys −Zs‖2p

]
ds+C2

∫t

0

L(s)2pE

[
‖Ys −Zs‖2p

]
ds

]

6 22p−1(C1 +C2)

∫t

0

L(s)2pE

[
‖Ys −Zs‖2p

]
ds

(3.60)

Thus, altogether, we obtain that for a certain constant C, we have

sup
t∈[0,T ]

(
E

[
‖Iξ(Y)t − Iξ(Z)t‖2p

]) 1
2

6 C

(∫T

0

E

[
‖Ys −Zs‖2

]
ds

) 1
2

. (3.61)

b) Next, by induction for every n ∈ N and using (2.16), we iterate:

‖Inξ (Y) − Inξ (Z)‖H
2p
T

6

(
C

∫T

0

E

[
‖In−1

ξ (Y)t1 − I
n−1
ξ (Z)t1‖2

]
dt1

) 1
2

6


C2

∫T

0

(∫T

0

E

[
‖In−2

ξ (Y)t2 − I
n−2
ξ (Z)t2‖2p

]
dt2

)
dt1




1
2

6 · · ·

6

[
Cn−1

∫T

0

∫T

0

· · ·
∫T

0

∫T

0

E

[
‖Iξ(Y)tn−1

− Iξ(Z)tn−1
‖2p
]

dtn−1 dtn−2 . . .dt1

] 1
2

6

[
Cn

∫T

0

∫T

0

· · ·
∫T

0

∫T

0

∫T

0

E

[
‖Ys− −Zs−‖2p

]
dsdtn−1 dtn−2 . . .dt1

] 1
2

6


Cn sup

t∈[0,T ]
E

[
‖Yt −Zt‖2p

] ∫T

0

∫T

0

· · ·
∫T

0

∫T

0

∫T

0

dsdtn−1 dtn−2 . . .dt1




1
2

6


Cn T

n

n!
sup

t∈[0,T ]
E

[
‖Yt −Zt‖2p

]



1/2

6

(
Cn T

n

n!

) 1
2

‖Y −Z‖
H

2p
T

,

(3.62)

leading to, lim
n→∞

‖Inξ (Y) − Inξ (Z)‖H
2p
T

= 0. More precisely, there exists an

index n0 ∈ N such that In0

ξ is a contraction on H
2p
T . It follows that, by the

extension of Banach fixed point theorem (A.4.1), the mapping I(ξ, ·) has a

unique fixed point u ∈ H
2p
T .
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c) The existence of continuous version follows from Lemmas 3.4.2 and

3.4.3, denoted by

ξ+

∫t

0

St−sa(s,h)ds+
sin(πθ)
π

Fθ(Z)t

By Doob’s martingale maximal inequality, we obtain (3.63), i.e.,

E


 sup
t∈[0,T ]

‖ut‖2p

 6

(
2p

2p− 1

)2p

E

[
‖uT‖2p

]
<∞, for all T > 0. (3.63)

d) Last, we show that I(·,u) : L2(F0;H) → H
2p
T is Lipschitz for any fixed

u ∈ H2
T . For any ξ ∈ L2(F0;H) we compute:

‖I(ξ1,u)t − I(ξ2,u)t‖2 = ‖ξ1 − ξ2‖2, for all t ∈ [0, T ], (3.64)

which leads to ‖I(ξ1,u) − I(ξ2,u)‖
H

2p
T

= ‖ξ1 − ξ2‖L2(F0;H), i.e., I(·,u) is

Lipschitz function for any u ∈ H
2p
T .

3.5 applications to interest rate theory

In this section we give an overview of the evolution of interest rate modeling

from the point of view of stochastic differential equations. Then motivate

why the approach developed in this dissertation is relevant and useful in

interest rate modeling.

Starting with models assigned constant coefficients, for instance Ho and

Lee [42] which assume the following dynamics:

drt = αdt+ σdWs,

where W is standard Brownian motion, α and σ are real constants. Ap-

proaches to modeling term structure dynamics have grown tremendously

in sophistication over the last two decades. The most popular was the

model introduced by Heath, Jarrow and Morton (1992). They approached

the problem by specifying the dynamics of all instantaneous forward rates

(f(t, T))06t6T with

P(t, T) = exp

(
−

∫T

t

f(t,u)du

)
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where P(t, T) is the price at time t of a bond paying one unit at time T > t.

They assume that, for all T > 0, the dynamic of forward rates are governed

by the Itô process of the form:

df(t, T) = α(t, T)dt+
N∑

n=1

σn(t, T)dWn
t , t ∈ [0, T ], (3.65)

where W = (W1, . . . ,WN) is a standard Brownian motion in RN. The

advantages of this model among others is that they do not admit negative

interest rates after some calibrations and they also include a wide class

of interest rate models. Moreover, they do not require drift estimation for

no-arbitrage principle which asserts that the drift coefficients should be

functions of their volatilities and the correlations among themselves.

However, the HJM framework presents some drawbacks. For instance, the

time-dependence coefficients are deterministic and need to be constantly

updated in order to fit the new term structure. Indeed, this problem comes

form the fact that in general there does not exist a possible realization of the

N-dimensional Brownian motions. In practice, it seems any model that is

only driven by Gaussian processes does not provide good fitting to observed

marked data since empirically observed log returns of zero-coupon bonds

are not normally distributed. In many cases observed empirically, as argued

in Bjrök et al [11, 10], the dynamics of interest rates do not look like only

diffusion processes, but rather as diffusions and jumps. To address these

issues, two approaches have been introduced to model term structure

dynamics.

1. The first approach extends the HJM framework to jumps-diffusions

model consistent with term structure innovation. [32] have introduced an

extended of HJM term structure model which follows the SDE of the form

df(t, T) = α(t, T)dt+
∑

n

σn(t, T)dWn
t +

∫

E

γ(t,y, T)(µ(dt, dx)−F(dy)dt),

(3.66)

where {Wn} denotes an infinite or finite sequence of real-valued indepen-

dent Brownian motions, µ is a homogeneous Poisson random measure

on R+ × E with compensator dt⊗ F(dy). The term
∫

E γ(t,y, T)(µ(dt, dy) −

F(dy)dt) represents jumps of forward rates.
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Denoting by H a Hilbert space of forward curves h : R+ → R and (St)t>0

the shift semigroup on H with Sth = h(t+ ·), Musiela parametrization gives

the short rate as

rt = f(t, t+ x), x > 0,

Consequently, equation 3.66 leads to a short-rate stochastic partial differen-

tial equation

drt =
[

d
dx
rt +α(rt)

]
dt+

∑

n

σn(rt)dWn
t +

∫

E

γ(rt− ,y)(µ(dt, dy) − F(dy)dt),

r0 = h0.

(3.67)

with h0 ∈ H represents the initial forward curves. Note that, as we pointed

out previously, the drift and volatility coefficients should not be determini-

stic but instead should be functions of prevailing forward curves. Namely,

we have α : H→ H, σn : H→ H and γ : H× E→ H.

Under various regularity assumptions, the HJM no-arbitrage condition

for the drift coefficient for (3.67) is derived in [32], precisely the map

α = αHJM : H→ H is determined as follows

h 7→ αHJM(h) =
∑

n

σn(h)Υn(h) −

∫

E

γ(h,y)(eΦ(h,y) − 1)F(dx),

where both Υn and Φ are given by

Υn(h)(x) :=

∫x

0

σn(h)(z)dz and Φ(h,y)(x) := −

∫x

0

γ(h,y)(z)dz.

The existence and uniqueness of solutions to the SPDE (3.67) are well-

studied in [32], including the positivity preserving forward curves. One

says that a short-rate process r = (rt)t>0 is a mild solution for (3.67) with a

given initial forward curve h0 if it follows an Itô process of the form:

rt =Sth0 +

∫t

0

St−sαa(rs)ds+
∫t

0

St−sσ(rs)dWs

+

∫t

0

∫

E

St−sγ(rs− ,y)(µ(ds, dy) − F(dy)ds),

(3.68)

2. An alternative approach proposes a random field model for the interest

rate term structure. The main advantages of random field models are:

they do not require re-calibration and they do accommodate both finite
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and infinite factor models. Kennedy [51, 52] was the first to develop a

model of forward rates as a continuous Gaussian random field which has

independent increments. More precisely, the dynamics of the forward rates

is given by: f(s, t) = µs,t + Xs,t, with µs,t being deterministic and Xs,t

a Brownian sheet (see, e.g. [96] for this concept). Goldstein [35, 36] and

Kimmel [54] generalized the Kennedy model by introducing the conditional

volatility, which have resulted in non-Gaussian random fields. Later on,

Lijun et al. [60] proposed an extended HJM term structure model driven by

a Lévy random field. They assume the forward rate admits the following

dynamics

df(t, T) =µ(t, T − t)dt+
∫

Rd

σ(x, t, T − t)YG(ds, dx)

+

∫

Rd

γ(x, t−, T − t−)YP(ds, dx),
(3.69)

where YG is a martingale measure (see [Walsh]), YP is a compensated

Poisson random measure. Y = YG + YP defined as a Lévy random field

Rd × (0, T ].

In conclusion, taking into account all these challenges, we are inspired to

build a tractable forward interest rates model driven by a martingale field

which already incorporates the continuous diffusive risk and the jump risk.

By unification approach, we can generalize the short-rate model 3.67 to the

following SPDE

drt =
[
Art +α(rt)

]
dt+

∫

E

σ(t, rt− , x)M(dt, dx),

r0 = h0.
(3.70)

for some infinitesimal generator A of strongly continuous semigroup of

shifts (St)t>0. Under the HJM framework, the goal is to derive an arbitrage-

free term structure models of the form

df(t, T) =α(t, T)dt+
∫

E

σ(t, x)M(dt, dx), (3.71)

that preserves the positivity of forward rates and can address all issues

mentioned previously. Note that model (3.71) is more general as it includes

wide classes of term structure models (even both models (3.66) and (3.69)).

Practically, such type of term structure models may be beneficial for both
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researchers and practitioners. Indeed, model (3.71) is easy to work with and

the fitting procedure shall be much more simpler. Solving the stochastic

evolution (3.70) leads to a new open problem for further researches and

development.
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A
B A C K G R O U N D S A N D P R E L I M I N A I R E S

In this appendix, we present all useful concepts and results (without proofs)

that we will use through in this dissertation. All materials are taken from

standard textbooks (see [6],[47], [85],[14],[87],[4],[82],[97],[38], [98]).

a.1 premeasure theory

Assuming that the reader is familiar with notions of σ-algebra and measure,

within a few definitions, the reader will get to be familiar with pre-measure.

Let X be a set where P(X) denotes its power set.

Definition A.1.1 1. A family R ⊂ P(X) is called a ring if it has the

following properties:

• ∅ ∈ R

• A∪B ∈ R if A,B ∈ R.

• A \B ∈ R if A,B ∈ R.

If X ∈ R, then R is called an algebra.

2. A semi-ring is a family S of subsets of a set X with the following

properties:

• ∅ ∈ S

• A,B ∈ S ⇒ A∩B ∈ S.

• A,B ∈ S ⇒ there exist finitely many disjoint A1, . . . ,An ∈ S such

that A \B =

n⋃

i=1

Ai.

If X ∈ R, then R is called a semi-algebra.

99
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Remark 20 Let R be a ring of subsets of a set X. Note that if R is closed with

respect to countable unions then it is called a σ-ring. Moreover, if X ∈ R then R

becomes a σ-algebra.

It is also useful to consider the property of σ-additivity.

Lemma A.1.1 Let υ : R → [0,∞) be an additive1 set function on a semi-ring R

(or an algebra) on X. Then the following conditions are equivalent:

(i) the function υ is countably additive, i.e. if (An)n∈N ⊂ R is a family of

pairwise disjoint sets, then

υ

( ⋃·
n∈N

An

)
=

∑

n∈N

υ(An).

(ii) the function υ is continuous at zero, i.e. if An ∈ R, An+1 ⊂ An for all

n ∈ N and ∩∞
n=1An = ∅, then

lim
n→∞

υ(An) = 0.

(iii) the function υ is continuous from below, i.e. if An ∈ R, An ⊂ An+1 for all

n ∈ N and ∪∞
n=1An ∈ R, then

lim
n→∞

υ(An) = υ




∞⋃

n=1

An


 .

Proof For the proof, the reader may refer to [85] or [14].

We are now ready to define pre-measure. Let R be a semi-ring on X.

Definition A.1.2 A pre-measure defined on a semi-ring R is a positive set

function υ : R → [0,∞] which satisfies the following:

• υ(∅) = 0.

• For any sequence of pairwise disjoint sets {Bn}n∈N ⊆ R with
⋃

n Bn ∈
R, then

υ

(⋃

n

Bn

)
=

∑

n

υ(Bn).

1 Additive in the sense: if A,B ∈ R with A∩B = ∅, then υ(A∪B) = υ(A) + υ(B).
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Moreover, a pre-measure µ is said to be σ-finite and (X,R,µ) is called a σ-

finite pre-measure space, if it contains an increasing sequence (Ai)i∈N ⊂ R

with X =
⋃

i∈N

Ai such that µ(Ai) <∞ for all i ∈ N.

In general, it is not an easy task to assign explicitly a µ-value to every set

X from a σ-algebra X for any measure space (X,X,µ). Rather than doing

this it is often more natural to assign µ-values to sets from some generator G

of X. To address this issue one can use the Carathéodory extension theorem.

Lemma A.1.2 If µ is σ-finite pre-measure on R then there is an unique measure

µ̂ : σ(R) → [0,∞] such that µ̂ is an extension of µ, i.e. µ = µ̂|R.

Proof This follows from [6, Theorem 5.6].

Next, we will recall some useful results regarding the notion of product

spaces and product σ-algebras 2. Let (Y,Y) be a measurable space. The first

problem which we are faced is that the family

X× Y = {A×B : A ∈ X and B ∈ Y} (A.1)

is, in general, not a σ-algebra but rather it is a semi-ring as the following

shows.

Lemma A.1.3 If G ⊂ P(X) and H ⊂ P(Y) are respectively semi-rings on X

and Y. Then G×H is a semi-ring on X× Y.

Proof The reader may refer to [85, Lemma 13.1].

Definition A.1.3 Let (X,X) and (Y,Y) be two measurable spaces. Then

X⊗ Y := σ(X× Y) is a σ-algebra, and (X× Y,X⊗ Y) is called the product of

measurable spaces.

The following lemma allows to reduce considerations for X⊗ Y to respec-

tive generators of X and Y. Let G and H be respectively two semi-rings on

X and Y.

2 For the proofs of all results we will refer the reader to the reference.
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Lemma A.1.4 If X = σ(G) and Y = σ(H) and if G,H contain respectively

increasing sequences (Xi)i∈N ⊂ G with Xi ↑ X and (Yi)i∈N ⊂ H with Yi ↑ Y.

Then we have

X⊗ Y := σ(X× Y) = σ(G×H).

Proof The proof can be found in [85, Lemma 13.3].

Next, we discuss about the product pre-measure on a product space.

Let (X,G,µ) and (Y,H,ν) be σ-finite pre-measure spaces with G,H are

respectively semi-rings on X, Y. We want to define a product pre-measure ρ

on rectangles of the form A×B.

Lemma A.1.5 If (X,G,µ) and (Y,H,ν) are σ-finite pre-measure spaces. Then

there exists a unique σ-finite pre-measure ρ on (X× Y,G×H) such that

ρ(A×B) = µ(A) · ν(B), for all A×B ∈ G×H.

In this case, (X× Y,G×H,µ× ν) is called the product pre-measure space.

Proof The proof follows from [85, Theorem 13.5].

Remark 21 Observe that, by Lemma A.1.2, the product pre-measure ρ can always

be extended to a measure on the product σ-algebra σ(G×H).

a.2 random measures and stochastic integration

In this section, we review the notion of random measures and focus on

describing so some special type of random measures that are used in the

dissertation. We do not go deeper into details but for more exposure on this

topic the reader may refer to [47] which gives complete and more detailed

results, including integration theory and its applications.

a.2.1 Integer-Valued Random Measures

Let us consider a measurable space (E,Σ).The following definitions and

notions are based on [86],[62] and [27].
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Definition A.2.1 A σ-algebra Σ said to be separable if

1. Σ is countably generated, i.e., there is a countable semi-ring E (or a

ring or an algebra) such that Σ = σ(E).

2. {x} ∈ Σ for all x ∈ E.

Definition A.2.2 We say that (E,Σ) is a Blackwell space if Σ is separable and

for every separable σ-algebra A ⊂ Σ, then A = Σ.

Lemma A.2.1 Let (E1,Σ1) and (E2,Σ2) be two Blackwell spaces. Then the pro-

duct space (E1 × E2,σ(Σ1 × Σ2)) is a Blackwell space.

Proof First, since both measurable spaces (E1,Σ1) and (E2,Σ2) are Black-

well spaces then there are respectively countable semi-ring E1 and E2

such that Σ1 = σ(E1) and Σ2 = σ(E2). By Lemma (A.1.3), the product

E1 × E2 defines a semi-ring on E1 × E2. Moreover, one can define a σ-

algebra Σ = σ(Σ1 × Σ2) = σ(E1 × E2) (see LemmaA.1.4).

We next need to prove that the semi-ring E1 × E2 is countable. Inde-

ed, E1 (resp. E2) is a countable so there is a bijection ψ1 (resp. ψ2) :

E1 (resp. E2) → N. So for the existence of a bijection for the product space,

one can set ψ(A,B) := ψ1(A)ψ2(B) for all pairs (A,B) ∈ E1 × E2. Thus, ψ

is a bijection from ∈ E1 ×E2 into N. Moreover, it is straightforward to show

that for all x ∈ E then {x} ∈ Σ. Let x ∈ E, this means that {x} = {x1}× {x2}

where x1 ∈ E1, x2 ∈ E2. But observer that {x1} ∈ Σ1 and {x2} ∈ Σ2, hence

{x1}× {x2} ∈ Σ1 × Σ2. It follows {x1}× {x2} ∈ Σ.

Last, it remains to prove that if A ⊂ Σ is a separable σ-algebra on E,

then A = Σ. By definition, if A is a separable σ-algebra, so there is a

countable semi-ring R with A = σ(R). Then there exist respectively R1

and R2 two countable semi-rings on E1 and E2 such that R = R1 ×R2 and

σ(R) = σ(R1 × R2) = σ(σ(R1)× σ(R2)). Then σ(R1) ⊂ Σ1 and σ(R1) is

separable as is σ(R). But (E1,Σ1) is a Blackwell space so it must follows

σ(R1) = Σ1. The same argument holds true for σ(R2) = Σ2. We conclude

that σ(R) = σ(E1 × E2), i.e., A = Σ.

Now, let (E, E ) to be a Blackwell space such that E is generated by a

countable algebra. On the other side, by [27], the space (E, E ) satisfies the
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disintegration property, namely for any measurable space (G, G ) if γ is a

positive finite measure on (E×G, E ⊗ G ) then we shall write γ(dx, dy) =

α(y, dx)m(dy) on E ⊗ G with m(A) = γ(E×A).

Definition A.2.3 A random measure on R+ × E is a mapping µ : B(R)⊗
E → L1(Ω; R+) satisfying for any ω ∈ Ω:

1. µ(ω; {0}× E) = 0 P-almost surely.

2. A 7→ µ(ω;A) is a measure on defined on a σ-algebra B(R)⊗ E .

Next, we present the other properties of random measures.

Definition A.2.4 A random measure µ on R+ × E is said :

1. σ-finite if there exists a sequence En increasing to E such that, for any

t ∈ R+, E
[
|µ([0, t]× En)|

]
<∞.

2. adapted if µ(ω;A) is Ft-measurable for any A ⊂ [0, t]× E, for each

ω ∈ Ω and t ∈ R+.

Here we give a special type of random measure that we are interested.

Definition A.2.5 An integer-valued random measure is a random measure

with the following properties:

1. µ(ω; {t}× E) 6 1 P-almost surely, for any t > 0.

2. µ : Ω×B(R)⊗ E → N.

3. µ is optional and P-σ-finite.

We present the following result in order to characterize explicitly any

integer-valued random measure by a thin random set.

The most useful example of integer-valued measure is the following:

Definition A.2.6 An extended Poisson measure on (R+ × E,B(R+)× E ),

relative to the filtration F, is an integer-valued random measure µ which

satisfies the following conditions:

1. the positive measure, also called intensity measure of µ, A 7→ m(A) =

E[µ(A)] defined on R+ × E is σ-finite.
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2. the random variable µ(·,A) is independent of Fs for all s ∈ R+ and

A ∈ B(R+)⊗ E with m(A).

Example 8 There are two fundamental example of extended Poisson measures,

namely:

a) If for each t ∈ R+ we havem({t}×E) = 0 then we call µ a Poisson measure.

b) If m has the form m(dt, dx) = dt × F(dx) on R+ × E , where F is a

positive σ-finite measure on (E, E ), then we shall call µ a homogeneous

Poisson measure. The measure µ := µ− λ⊗ F is called compensated Poisson

measure.

Lemma A.2.2 If µ is an extended Poisson measure on (R+ × E,B(R+)× E ),

relative to the filtration F, with intensity measure m. Then its compensator defined

on B(R+)×E is determined byA 7→ µp(ω;A) = m(A) for allω ∈ Ω. Moreover,

if {An} is an increasing sequence with ∪n∈NAn = E with m(An) <∞ and for

any fixed A ∈ E,

E :=
⋃

n∈N

{B∩An : B ∈ E },

the process ZA(t) := (µ−m)[(0, t]×A] is a martingale with respect to F.

Proof (1) For the first claim, the reader may refer to [[47], Proposition 1.21,

p.71].

(2) For the martingale property, we use the independent increments

and the distribution of Poisson random measure. Let A ⊂ E such that

(0, t]×A ∈ B(R+)× E for any t > 0. Set X(t) = (µ−m)[(0, t]×A]. Since µ

has independent increments (see Definition A.2.4) then we compute

E[ZA(t) −ZA(s)|Fs] = E

(
(µ−m)[(0, t]×A] − (µ−m)[(0, s]×A]

∣∣Fs

)

= E

(
(µ−m)[(s, t]×A]

∣∣Fs

)
= E

(
(µ−m)[(s, t]×A]

)

= E
(
(µ[(s, t]×A]

)
−m[(s, t]×A] = 0.

Next we describe the integration theory with respect to random measure,

in particular with respect to Poisson random measure, with less details.
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a.2.2 Stochastic integration

We denote:

Ω̃ = Ω× E, with the σ-fields Õ = O⊗ E and P̃ = P⊗ E

Definition A.2.7 Let µ be a random measure and h an optional function

on Ω̃, i.e. h is Õ-measurable.

1. Since h is B(R+)⊗ E -measurable and if
∫∫

[0,t]×E

|h(ω, s, x)|µ(ω; ds, dx) <∞, for all (ω, t)× R+ × E,

then for any ω ∈ Ω we define the stochastic integral, h ⋆ µ, as

h ⋆ µt(ω) =

∫∫

[0,t]×E

h(ω, s, x)µ(ω; ds, dx).

2. µ is said to be optional measure if the integral process f ⋆µ is optional

for every optional function f.

3. µ is called integrable if µ is option measure and the integral process

✶ ⋆ µ ∈ A+ where ✶ ⋆ µt = µ(·; [0, t]× E) for any t > 0.

4. mu is P̃-σ-finite if there exists a P̃-measurable partition (An)n∈N of

Ω̃ such that each (✶An
⋆ µ)∞ is integrable.

Now we provide the characterization of the compensator of random

measure through the integral process.

Lemma A.2.3 If µ is an optional P̃-σ-finite random measure. Then there is an

unique predictable random measure µp up to a P-null set, which satisfies either

one of the two following equivalent properties:

a) E[h ⋆ µ
p
∞] = E[h ⋆ µ∞] for any positive P̃-measurable function h on Ω̃.

b) If |h| ⋆ µ ∈ A+
loc, then |h| ⋆ µp ∈ A+

loc or h ⋆ µ− |h| ⋆ µp ∈ Mloc.

Moreover, h ⋆ µp is the compensator of h ⋆ µ as µp is the compensator of µ.

Proof The reader may refer to [47, Theorem II.1.8, p.67].
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a.3 semigroup theory

The aim of this section is to introduce the notion of C0-semigroups and

their generators, including divers properties. Concerning the proofs of the

upcoming results, the reader is referred to [82] or [97].

C0-semigroups, also known as a strongly continuous one-parameter

semigroup, is a generalization of the exponential function that serve to

describe the time evolution of autonomous linear systems of type

∂xt = Tx, x(0) = x0 ∈ X, (A.2)

where x takes values in some Banach space X and T is a possibly unbounded

operator on X. If such a solution exists, one expects the existence of a linear

operator St that maps the initial condition x(0) onto the solution x(t) of

equation (A.2) at time t. Moreover, if such a solution is unique, then the

family of operators St, t > 0, should satisfy S0 = 1 and St · Ss = St+s.

Let (X, ‖ · ‖X) be Banach space and denote by L(X) the Banach space of

bounded linear operators on X equipped with the norm:

‖T‖L(X) = sup
x∈X,‖x‖X=1

‖Tx‖X, T ∈ L(X).

Definition A.3.1 From a formal point of view, a family St ∈ L(X), t > 0,

of bounded linear operators on a Banach space X is called a strongly

continuous semigroup if

1. S0 = I,

2. St+s = StSs for every t, s > 0,

3. lim
t→0+

Stx = x for every x ∈ X.

For any C0-semigroup St and x ∈ X, the mapping t 7→ Stx is continuous.

Moreover, there exists constants α > 0 and M > 1 such that

‖St‖L(X) 6Me
αt, t > 0.

Definition A.3.2 A semigroup St is called uniformly continuous if

lim
t→0+

‖St − I‖L(X) = 0.
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We now give all terminologies in semigroup theory.

Definition A.3.3 Let St, t > 0, be a C0-semigroup on a Banach space X.

Then

1. If M = 1, then St is a pseudo-contraction semigroup.

2. If α = 0, then St is uniformly bounded.

3. If α = 0 and M = 1, then St is a semigroup of contractions.

4. If for every x ∈ X, the mapping t 7→ Stx is differentiable for t > 0,

then St is called a differentiable semigroup.

5. If the operators St, t > 0, are compact then St is compact semigroup.

Next we introduce the notion of generator of a semigroup.

Definition A.3.4 Let St be a C0-semigroup on a Banach space X. The linear

operator A on the Banach space X with domain

D(A) =

{

x ∈ X : lim
t→0+

Stx− x

t
exists

}

defined by

Ax = lim
t→0+

Stx− x

t

is called the infinitesimal generator of the semigroup St.

Recall that the graph of a linear operator T on a Banach space X with a

domain D(T) is defined as the subset of X×X consisting of all elements of

the form (x, Tx) where x ∈ D(T). Moreover, the operator T is closed if its

graph is a closed subspace of X× X. The operator T is closed operator if

and only if the fact that if {xn}n∈N ⊂ D(T) is Cauchy in X and {Txn}n∈N is

also Cauchy.

Lemma A.3.1 D(A) is dense in X, and A is a closed linear operator.

We denote by D(A∗) the domain of the adjoint A∗ which is defined as

the set of all elements ϕ ∈ X∗ such that there exists an element A∗ϕ ∈ X∗

with the property that (A∗ϕ)(x) = ϕ(Ax) for every x ∈ D(A).
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Lemma A.3.2 A linear operator A is the infinitesimal generator of a uniformly

continuous semigroup St on a Banach space X if and only if A ∈ L(X). For each

t > 0, we have the series

St = e
tA =

∞∑

n=0

(tA)n

n!

converges in norm.

Remark 22 In some cases, it may happen that A 6∈ L(X) so the series representa-

tion is no longer possible, for instance, as in the Cauchy problem

du(t)
dt

= Au(t), u(0) = x ∈ X. (A.3)

The following proposition provides useful facts about semigroups.

Proposition A.3.1 Let A be an infinitesimal generator of a C0-semigroup St,t >

0, on a Banach space X. Then, the following properties hold

1. For x ∈ X,

lim
h→0

1

h

∫t+h

t

Stxds = Stx.

2. For x ∈ D(A),

Stx ∈ D(A), and
d

dt
Stx = AStx = StAx.

3. For x ∈ X,

∫t

0

Ssxds ∈ D(A), and A

(∫t

0

Ssxds

)
= Stx− x.

4. If St is differentiable then for n ∈ N

St : X→ D(An) and S(n)(t) = AnSt ∈ L(X).

5. For x ∈ D(A),

Stx− Ssx =

∫t

s

S(u)Axdu =

∫t

s

AS(u)xdu.

6.
⋂

n∈N

D(An) is dense in X.

The following result shows that if A is the generator of a C0 -semigroup

St, then u(t) = Stu(0) is indeed the solution to (A.2) in a weak sense.
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Lemma A.3.3 If a function u : [0,∞) → D(A) satisfies d
dtu(t) = Au(t) for

every t > 0, then u(t) = Stu(0) . In particular, no two distinct C0-semigroups

can have the same generator.

Conditions under which an operator A can be an infinitesimal generator

of a C0 -semigroup involve the resolvent of A.

Definition A.3.5 The resolvent set ρ(A) of closed linear operator A on a

Banach space X is the set defined by

ρ(A) = {λ ∈ C : range(λ−A) is dense in X and λ−A has a continuous inverse}.

The family of bounded linear operators

R(λ,A) = (λI−A)−1, λ ∈ ρ(A)

is called the resolvent of A.

Lemma A.3.4 Let St be a C0-semigroup with infinitesimal generator A on a

Banach space X. If n0 = limt→∞
ln‖St‖L(X)

t , then any real number Re(λ) > n0

belongs to the resolvent set ρ(A), and

R(λ,A)x =
∫∞

0

e−λtStxds, x ∈ X.

Theorem A.3.1 Let A : D(A) ⊂ X→ X be a linear operator on a Banach space

X. In order to have A as the generator of a C0-semigroup St, it is sufficient and

necessary that the following are fulfilled

1. A is closed and D(A) = X.

2. There exist real numbers M and α such that for every Re(λ) > α, λ ∈ ρ(A)
and

‖[R(λ,A)]n‖L(X) 6M(Re(λ) −α)−n, for n > 1.

For a special case, consider X = H where H is a real separable Hilbert

space. Let A be a closed linear operator on H and define the graph norm

‖h‖D(A) = (‖h‖H + ‖Ah‖H)1/2.

Then (D(A), ‖ · ‖D(A)) is a real separable Hilbert space.
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Theorem A.3.2 Let g : [0,∞) → D(A) be measurable, and let
∫∞
0 ‖g(s)‖D(A) <

∞. Then
∫t

0

g(s)ds ∈ D(A), and A

∫t

0

g(s)ds =
∫t

0

Ag(s)ds.

a.4 banach’s fixed point theorem

This section is concerned with an optimal application of Banach’s fixed point

theorem. It applies to ”contractive“ mappings between complete metric

spaces, yielding the existence of unique fixed-point to operator involved.

Let (X,d) be a complete metric space and let f : X→ X be a mapping.

Definition A.4.1 The mapping f is called a contraction, if there exists a

constant 0 6 K < 1 such that

d(f(x), f(y)) 6 Kd(x,y), for all x,y ∈ X.

Moreover, x ∈ X is said to be a fixed point of f, if we have f(x) = x.

The following result is the well-known Banach fixed point theorem.

Theorem A.4.1 Let (X,d) be a complete metric space and let f : X → X be a

contraction. Then the mapping f has a unique fixed point.

Proof For the proof, reader may refer to [4, Theorem 3.48].

Corollary A.4.1 (Extended Banach fixed point theorem) Let (X,d) be a com-

plete metric space and let f : X→ X such that for some n ∈ N the mapping fn is

a contraction. Then the mapping f has a unique fixed point and it holds

f(x) = f(fn(x)) = fn(f(x)), n ∈ N.

Proof By Theorem A.4.1, the mapping fn has a unique fixed point then

there is x ∈ X such that fn(x) = x. Namely, we get f(x) = f(fn(x)) =

fn(f(x)).

Next, we iterate

fn(x) = fn−1(f(x)) = fn−1(x) = · · · = f(x) = x.
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This implies that x is a unique fixed point of f.

Next, we give an useful tool for proving existence and uniqueness of

solutions for SDEs and SPDEs.

Lemma A.4.1 (Gronwall’s inequality) Let T > 0 be fixed, let f : [0, T ] → R+

be a continuous mapping, and let C > 0 be a constant such that

f(t) 6 C

∫t

0

f(s)ds, for all t ∈ [0, T ].

Then we have f ≡ 0.
Moreover, if C : [0, T ] → R+ integrable function and c > 0 is a constant with

the property that

f(t) 6 c+

∫t

0

C(s)f(s)ds, for all t ∈ [0, T ].

Then, it holds

f(t) 6 c exp

(∫t

s

C(r)dr

)
, for all t ∈ [0, T ].

Proof The reader may refer to [38].

Last, we present the extension theorem for continuous linear Opera-

tors and recall the existence of predictable version for any adapted and

stochastically continuous process.

Lemma A.4.2 (Hahn-Banach theorem) Let (X, ‖ · ‖) be a normed space, Y be a

Banach space, D ⊂ X be a dense subspace and Φ : D→ Y be a continuous linear

Operator. Then there exists an unique continuous extension Φ̂ : X→ Y such that

Φ̂|D = Φ and ‖Φ̂‖ = ‖Φ‖.

Proof See [[98], Satz II.1.5].

Lemma A.4.3 Let Z be an adapted and stochastically continuous process on a

closed interval [0, T ]. Then the process Z admits a predictable version on [0, T ].

Proof See [[22], Proposition 3.6, page 77].
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