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Abstract

High power lasers are required for interferometric experiments, such as the search of

gravitational waves. Besides the high power, excellent beam parameters are essential.

The experiments at the AEI 10 m prototype require up to 8 W of stabilized laser power.

Therefore, the design and installation of the 35 W Enhanced LIGO (eLIGO) amplifier, the

photonic crystal fiber, the mode cleaner and the power stabilization is described. For

power stabilization the aLIGO photo diode array was installed and the stabilization to a

relative power noise of 2×10−9 /
p

Hz was demonstrated.

High power, low noise, fundamental spatial mode, single-frequency lasers are required

for gravitational wave detectors. Solid state amplifiers have been used for this purposes

for decades. A possible laser amplifier for aLIGO, amplifying up to 70 W, was analyzed and

installed in the aLIGO reference system.

For future interferometric gravitational wave detectors, lasers with an output power of

up to 500 W are required. Fiber amplification appears to be a promising candidate. Besides

total optical power, also the power noise, frequency noise, beam pointing fluctuations,

and spatial beam parameters have to meet strict requirements. In collaboration with the

Laser Zentrum Hannover, a two stage fiber amplifier was developed. The resulting output

power is comparable to the high power oscillator and delivers up to 180 W. The technical

feasibility of a long term stable single frequency amplifier without photo-darkening or

stimulated Brillouin scattering was shown. The system has a similar performance in

frequency noise and spatial beam parameters as the aLIGO free running laser. The power

noise and beam pointing fluctuation are better than with the aLIGO laser.
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Zusammenfassung

Für laserinterferometrische Experimente wie zum Beispiel die Suche nach Gravitations-

wellen werden Hochleistungslaser benötigt. Neben hoher Leistung sind exzellente Stahlpa-

rameter essenziell.

Die Experimente am AEI 10 m Prototyp benötigen bis zu 8 W stabilisierten Laserlichts.

Dafür wird der Aufbau und die Installation des 35 W Enhanced LIGO (eLIGO) Verstärkers,

der Photonischen Kristallfaser, des optischen Resonators zum unterdrücken der Laser-

moden und der Leistungsstabilisierung beschrieben. Zur Leistungsstabilisierung wurde

das Advanced LIGO (aLIGO) Photodioden-Array installiert und die Stabilisierung auf ein

relatives Leistungsrauschen von 2×10−9 /
p

Hz demonstriert.

In Gravitationswellendetektoren werden ebensolche Hochleistungslaser verwendet.

Diese müssen rauscharm, schmalbandig und in der transversalen Grundmode sein. Für

diese Zwecke werden seit Jahrzehnten Festkörperverstärker verwendet. Ein möglicher

Laserverstärker für aLIGO, der bis zu einer Ausgangsleistung von 70 W verstärkt, ist im

aLIGO Referenz System installiert und analysiert worden.

Für zukünftige interferometrische Gravitationswellendetektoren werden Laser mit

einer Ausgangsleistung von bis zu 500 W benötigt. Faserverstärkung erscheint als ein

vielversprechender Kandidat. Neben der gesamten optischen Leistung müssen auch das

Leistungsrauschen, das Frequenzrauschen, die Strahllagefluktuationen und die Strahlpa-

rameter strengen Anforderungen genügen. In Zusammenarbeit mit dem Laser Zen-

trum Hannover wurde ein zweistufiger Faserverstärker entwickelt. Die resultierende

Ausgangsleistung ist vergleichbar mit dem aLIGO Hochleistungsoszillator und liefert bis

zu 180 W. Die technische Realisierbarkeit eines langzeitstabilen schmalbandiger Laserver-

stärkers ohne Materialalterung oder stimulierte Brillouin Streuung wurde gezeigt. Das

System hat eine ähnliche Leistung im Frequenzrauschen und den räumlichen Strahlpa-

rametern wie der unstabilisierte aLIGO-Laser. Das Leistungsrauschen und die Strahllage-

fluktuation sind hingegen deutlich besser als beim aLIGO-Laser.
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Chapter 1

Introduction

The detection of gravitational waves in September 2015 started the era of gravitational

wave astronomy [1]. The hunt for gravitational waves was successful after all, due to

decades of innovations and developments of the interferometric detectors. A major key

in making the detectors stable enough for the detection of gravitational waves, was the

development of their laser light sources and their stabilization concepts. This was crucial,

since gravitational wave detectors set most stringent requirements for laser output power,

power and frequency stability, as well as the spatial beam profile.

The aLIGO detectors use a laser system consisting of a 2 W 1064 nm NPRO (Non-

Planar-Ring Oscillators), which is amplified in two stages. The first stage is provided by

a solid state crystal amplifier delivering 35 W output power. It is seeded with the NPRO

to maintain the good noise performance. In a second stage the light is coupled into an

injection locked high-power ring oscillator with four diode pumped Nd:YAG crystals. In

this way 180 W of output power are generated. The laser beam is then stabilized with

passive and active stabilization techniques to meet the stability requirements at the input

of the detectors.

Future Gravitational wave detectors, like the Einstein Telescope, will need an optical

power of around 500 W [36]. The current amplification concepts can not be scaled up

to higher output power, due to technical problems. Therefore new laser amplification

concepts have to be investigated.

The thesis will start with an overview of the aLIGO laser and its initial stabilization

concepts, in the second chapter. Chapter three will discuss, an improved version of the

stabilization concept, which was integrated into the AEI 10 m Prototype Interferometer

[13]. The fourth chapter will discuss the limitations of common solid state amplifiers and
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show a state of the art 70 W amplifier. The last chapter is focusing on a completely new

approach for the generation of high output powers, an all fiber based amplifier concept

developed in close cooperation with the LZH.



Chapter 2

Stabilized Lasers for current and future

Gravitational Wave Detectors

Gravitational wave detection is one of the most demanding measurements, requiring

high laser power, in combination with excellent power and frequency stability as well as

excellent spatial beam profile. The current generation of gravitational wave detectors is

using between 35 W at the GEO600 [2] detector up to 200 W of laser output power at the

Advanced LIGO detectors (aLIGO) [21, 12]. The Einstein Telescope is one of the planed

detectors for the third generation. The interferometric readout is split into high and low

frequency interferometers, called ET-LF and ET-HF. The high frequency interferometers

will be using light of 1064 nm wavelength, as in all current detectors. The output power of

the laser will be raised up to 500 W.

Fig. 2.1 Setup of the aLIGO pre stabilized laser system.
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2.1 Advanced LIGO

In autumn 2015 the major upgrade of the LIGO detectors was completed [38] and the first

science run was started. The upgrade included new mirrors and seismic isolation [14],

signal recycling and an upgrade of the laser system. An High Power Oscillator (HPO) was

installed. It is seeded with the Enhanced LIGO [10] 35 W laser amplifier and provides 200 W

output power [19]. During the first science runs the sensitivity will be gradually increased,

mainly by raising the input power to the interferometer. In the last step a squeezed light

source will be installed, to reduce the shot noise [26]. The new lasers for aLIGO as well

as the stabilization were developed in Hanover. Therefore several prototypes of the laser

were developed in the LZH and the final System was setup at the AEI in Hanover. This

Reference System consists of the 35 W eLIGO amplifier [10] and the 200 W high power

oscillator [45]. A detailed description and the developed stabilization schemes will be

explained in the following sections. A picture of the entire table layout is shown in Figure

2.1. The system consists of the 35 W eLIGO amplifiers , which provides actuators for power

and frequency modulation. It is followed by the HPO, which can produce up to 200 W.

A Faraday Isolator between eLIGO laser and HPO is used to avoid back reflections from

the HPO. This power can be adjusted again with the high power AOM. The beam is then

filtered by the a bow tie Pre Mode Cleaner (PMC) with two stabilization outputs at the

curved mirrors. The power is stabilized with the ISS-PD. The frequency of the laser is

stabilized to the reference cavity. This is followed by the input mode cleaner (IMC), behind

which is the PD array.

2.1.1 35 W eLIGO Amplifier

The 35 W eLIGO laser consists of a NPRO seed laser and a four stage solid state amplifier.

The whole amplifier unit was already used in Enhanced LIGO [10]. The NRPO has an

output power of 2 W at a wavelength of 1064 nm [11], [17]. The active laser material

is neodymium doped yttrium aluminum garnet, which is pumped by laser diodes at

a wavelength of 808 nm. The frequency and power noise of the NPRO is very low and

thus the optimum start to build a high power laser with very good noise characteristics.

This light is amplified to 35 W by a four-head Neodymium-doped yttrium orthovanadate

amplifier. It is pumped via fiber with four pump diodes at a wavelength of 808 nm. A

electro-optical modulator and a acousto-optic modulator are placed in between the NPRO

and the amplifier.
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The EOM serves two purposes. It is used to imprint a modulation on the laser light,

which is later used for the stabilization of the High power oscillator and the mode filter. It

is also used as phase modulator for the frequency stabilization feedback control loop of

the laser light to the reference cavity.

The internal AOM can be used as actuator for power stabilization. This is done at

GEO600 and the AEI 10 m prototype. For this, some laser power with a modulation

frequency of 80 MHz is shifted into the first order of the AOM. For the aLIGO laser a

second AOM is installed behind the HPO.

2.1.2 High Power Oscillator

Downstream of the 35 W Amplifier the light is coupled into the high power oscillator [45].

The HPO is a ring laser consisting of four diode-pumped Nd:YAG crystals. Each crystal

is pumped by seven pump diodes. The individual crystals are pumped via fiber bundles.

To transfer the good frequency stability of the eLIGO laser to the HPO, the length of the

oscillator is matched to the incoming light. To created the error signal for the Pound-

Drever Hall method [5], side bands are generated by the EOM of the eLIGO laser. The

Signal is read by a photo diode in reflection of the HPO and the feedback is applied to a

piezo driven mirror inside the oscillator. The output of the system it over 200 W of 1064 nm

laser light in the fundamental mode maintaining the frequency noise of the NPRO. To

reduce the thermal load at the Nd:YAG crystals it is necessary to cool the crystals directly

by turbulent water flow.

2.1.3 Stabilization of the laser

Four parameters need to be stabilized, power noise, frequency noise, pointing and spatial

beam profile [44],[32],[28]. The first part of the stabilization concept is a pre mode cleaner

(PMC) which is a passive four mirror ring resonator in bow-tie configuration, with two

planar and two curved mirrors. The geometry of the mode cleaner filters higher order

modes and therefore mainly transmits the TEM00 mode [31]. The optical path length

is 2 m. To provide a stable reference the mirrors are glued to an aluminum spacer. The

length of the mode cleaner is stabilized with the Pound-Drever-Hall technique [5]. A piezo

electric transducer (PZT) is glued between one of the curved mirrors and the spacer. The

two plane mirrors serve as an input and output mirror. The finesse of the cavity is 130 with

an FSR of 150 MHz. The higher order mode content of the transmitted beam is reduced
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form 4 % to 0.5 %. The two transmitted beams through the curved mirrors are used for

frequency and power stabilization.

As a reference for the frequency a ridged spacer cavity is used. It is made out of a

quartz glass material, to provide thermal stability. To isolated it from the environment it is

suspended in an ultra high vacuum tank. For vertical isolation coil springs are used and

from there on wire slings are running around the cavity, providing horizontal isolation.

To damp the resonant frequency eddy current damping is used. The laser frequency is

stabilized to the length of this cavity. The feedback is applied to three different actuators.

At high frequencies, the electro-optic modulator of the eLIGO 35 W amplifier is used to

act onto the phase of the laser light. It is located between NPRO and 35 W amplifier. In

the mid frequency range the refractive index of the the NPRO crystal is modulated by a

piezo directly pushing onto the crystal. For low frequencies, the temperature of the NPRO

crystal is adjusted. The offset of the piezo signal is offloaded to the temperature actuator

and by that kept at its operating point.

The power stabilization consists of two sensors [37]. The first sensor is located on an

the laser table, using one of the transmitted beams of the pre mode cleaner. It is sufficient

for the initial stabilization of aLIGO. For the full sensitivity of aLIGO, a relative power

noise of 2×10−9 /
p

Hz has to be achieved. Therefore a second sensor, consisting of an

array of eight photo diodes is needed (see 3.2.3). Four are used as in loop and four as out

of loop detectors. At LIGO the PD-Array is set up and currently under commissioning

[24]. The development was done in the AEI, and build at LIGO. The AEI 10 m Prototype

requires the same power stability and therefore a PD-Array was transfered to Hanover. The

stabilization scheme was adapted and improved to achieve the required sensitivity [15].

2.2 Third Generation - Einstein Telescope

For future interferometric gravitational wave detectors lasers with an output power of up

to 500 W are required [36]. Instead of solid-state laser systems, fiber amplifier seem to

be a promising candidate. In cooperation with the LZH a high power fiber amplifier was

developed. To achieve an output power of 180 W, two fiber amplification stages are used.

The seed laser for the first stage, the pre amplifier, is a 2 W NPRO. The light is amplified to

20 W by two fiber coupled pump diode, each with 25 W. The next stage, the main amplifier,

is pumped by up to four diode. Each individual diode can deliver up to 100 W of output

power with a wavelength of 976 nm.
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For frequency stabilization the same scheme as in aLIGO is used. The power stabiliza-

tion has four different actuators. Modulation of the NPRO pump current, an electro-optic

amplitude modulator (EO-AM) in between the NPRO and the pre amplifier and two

current shunts, one for each fiber amplifier stage.





Chapter 3

A stabilized Light source for the AEI 10 m

Prototype

A 10 m prototype Michelson interferometer is currently being set up at the AEI in Hanover

[13]. The prototype interferometer will be used to test and develop new techniques for

potential future upgrades of gravitational-wave detector. The first task is to set up an all

frequency quantum noise limited 10 m Michelson Interferometer see figure 3.2 [40],[39].

This interferometer is limited in sensitivity by quantum noise in a wide band around

the frequency at which shot noise and radiation pressure noise are equal, the so called

standard quantum limit (SQL). The light source for this experiment it an eLIGO 35 W

Nd:YAG laser amplifier [10]. The coupling of the laser light into the vacuum system will

be done by use of a photonic crystal fiber. The beam is then filtered by a mode filter. The

laser will be stabilized to better than 2×10−9 /
p

Hz in relative power noise.

Fig. 3.1 The AEI 10 m Prototype facility with 100 m3 volume, 3 m diameter tanks and 1.5 m
diameter beam tubes. The ultra-high vacuum system is designed in a rather generous way,
such that it can hold more than one experiment at a time. The pressure inside the system
is below 10−6 mbar after 12 hours of pumping, after one week it is below 10−7 mbar.
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PCF

Frequency
Reference
Cavity

PD-Array

Mode
Filter

SQL Interferometer

Fig. 3.2 Simplified setup of the AEI 10 m prototype. The laser light is coupled into the
vacuum tank by a photonic crystal fiber. The laser light is spatially cleaned with a mode
filter. For the power stabilization of the laser, a PD-Array is placed behind the mode
filter.The laser frequency is stabilized to the triangular reference cavity. The main laser
beam is going to the SQL interferometer.
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3.1 Light source

To reach the SQL an input power of 8 W is required. Therefore a 35 W eLIGO amplifier is

used as a light source. As described in chapter 2.1.1 an EOM is located in between the

NPRO and the amplifier. It modulates a frequency of 35.5 MHz onto the laser light, which

is later used for the stabilization of the mode filter. Additionally it is the fast actuator for

the frequency stabilization of the SQL interferometer. The acousto-optic modulator is

required as an actuator for the power stabilization. For this, some laser power is shifted

into the first order of the acousto-optic modulator and the zero-order beam is stabilized.

3.2 Stabilization concept

Higher order modes reduce the read out sensitivity of the interferometer. To reduce the

higher order mode content, a photonic crystal fiber and a mode filter are installed. The

fiber differs from other optical single-mode fibers by transmitting high powers.

3.2.1 Photonic Crystal Fiber

Photonic crystal fibers are made out of one material in contrast to single mode fibers

with two different materials. Optical fibers conduct the light due to the lower refractive

index of the cladding compared to the core. In photonic crystal fibers, the light guiding

property is generated by the micro structuring of the cladding. A microscope image of

the fiber for the AEI 10 m prototype is shown in Figure 3.4 . The conductive property of

the PCF depends only on diameter and spacing of the structural holes. As a result, large

mode field diameters can be realized and therefore high powers can be transmitted at

tolerable power densities. Additionally, the cladding structure favors the TEM00 mode

of the incoming light field and thereby effects a filtering of the beam geometry. The fiber

used is an LMA-PM-15 from NKT Photonics and is 4.5 m long with a massive core. The

transmissive property of the fiber ranges from 750 nm to 1700 nm and the mode field

diameter is 12µm. It is a polarization maintaining fiber, because of the two stress cores.

They generate a directional dependency of the refractive index. The end faces of the fiber

are fused to seal it and have an angle of 8°. In order to handle the fiber during connection

and disconnection, the fiber is inside of a high power SMA-905 connector.

The fiber is used to guide the laser light into the vacuum system of the AEI 10 m proto-

type. In contrast to a free space beam coupling trough a view port, the beam propagation
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Fig. 3.3 Setup of the laser stabilization at the central tank of the AEI 10 m prototype. In the
green box, the 35 W eLIGO amplifier is shown. The light is then sent through a Faraday
isolator to a power attenuation unit consisting of a lambda half plate and a polarizing
beam splitter. For the fiber coupling, the polarization is adjusted via a second lambda
half plate. The light is transmitted by the photonic crystal fiber into the vacuum tank.
The fiber out coupling, the mode filter and its mode matching telescope are located on a
breadboard, mounted to the optical table. The transmitted light is split up and the main
part is sent to the SQL interferometer. The remaining 320 mW are measured with four in
loop photo diodes to stabilize the laser power and four out of loop photo diodes observed
the achieved power stability.
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Fig. 3.4 Profile of the polarization maintaining photonic crystal fiber. The light remains
trapped in the core due to a micro structured cladding. Two stress cores generate a
directional dependence of the refractive index and thus preserve the polarization.

after the fiber is independent of relative movements between the laser system and the

isolated optical tables inside the vacuum system of the prototype. The components of

the fiber coupling as well as the 35 W amplifier are located on an optical table next to the

central vacuum tank of the AEI 10 m prototype. The layout of the fiber coupling is shown

in figure 3.3. The light passes through a Faraday isolator of the IO-5-1064-HP model from

Thorlabs with a transmission of 93 %. The laser light is attenuated by a half-wave plate

and polarization beam splitter.

The fiber core diameter is 15µm and therefore the mode field diameter must be 12µm

[4]. In order to adapt the laser beam to the mode of the PCF, two lenses are used. A lambda

half-plate is used to adjust the polarization to the fiber axis. A coupling efficiency of over

75 % could be reached. By design, the non-transmitted light is scattered diffusely out of

the fiber cladding. Therefore, recesses are cut into the high power fiber connector. The

maximum transmitted power was 20 W and no effects of stimulated Brillouin scattering

could be found.

3.2.2 Triangular Mode Filter Cavity

To suppress fluctuations of the beam position and angle, a mode filter is used. These

fluctuations can be descried as higher order mode contaminations. A detailed description
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Fig. 3.5 Transmission of higher order modes through the triangular mode filter with varying
g-factor is shown.[3]

can be found in [20]. To suppress the higher order mode content a triangular optical

cavity which favors the TEM00 mode was developed [3]. A mode filter transmits the laser

power as a function of the beam geometry. The fundamental mode and the quantitative

suppression of the higher modes is determined by the optical parameters of the resonator.

The curvatures of the mirrors and the wavelength of the light field, determine the funda-

mental mode of the resonator, which is quantized by the g-factor [3]. The suppression

of the higher order modes is determined by the finesse, the circulating losses and the

g-factor of the resonator. The mode filter consists of three mirrors and forms an isosceles

triangle with the circulating light. A 3d drawing of the mode filter is shown in figure 3.6.

The mode filter consists of two planar and one curved mirror. The planar mirrors serve for

coupling in and out of the laser light. The curved mirror is located on the symmetry axis

of the triangle and creates a stable resonator. The reflectivity of the mirrors determines

the finesse of the resonator. The finesse scales linearly with the suppression of the field

amplitude of the higher order modes. As displayed in figure 3.5 a good suppression is

achieved with a g-factor of 0.735 [3]. Especially modes with a low order are not resonant

at this g-factor. In addition, this is a relatively large distance to the contributions of the

first and second order. The radius of curvature for the curved mirror is 1 m. This results in

a circular length of 53 cm and a beam radius of 386µm between the two planar mirrors.

The optical design parameters of the mode filter are summarized in table 3.1.

To achieve a ridged assembly of the mirrors, a metal spacer is used. The geometry

of the resonator defines the positions and tilting angles of the mirrors. A sectional view

of the mode filter is shown in Figure 3.6. The distance between the two planar mirrors
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255.25 mm

19 mm

4.3°

Fig. 3.6 3D CAD drawing of the mode filter and the mounting structure. The beam path is
shown in red. The two planar mirrors are separated by 19 mm and the curved mirror is at
a distance of 255.25 mm. The angle between the two plane mirrors is 4.3°.

is 19 mm and the distance to the curved mirror is 255.25 mm. This results in a reflection

angle of 2.15°. The spacer is made out of Super Invar, because of its extremely low thermal

expansion coefficient. The two planar mirrors are for coupling in and out of the cavity

and have a reflection of 99.67 % for vertically polarized light. The third concave mirror

is highly reflective with a reflection coefficient of 99.998 % and has a radius of curvature

of 1 m and is designed for an angle of incidence of 0°. In order to be able to adapt the

resonator length to the frequency of the laser light, a piezo is located between the spacer

and the curved mirror. The vacuum-compatible NAC2125-H12-C01 from Noliac is 12 mm

thick and has a stroke of 13.3µm with an operating voltage of −40 V to 200 V.

The mode filter and its mode matching lenses were assembled on a dedicated bread-

board before they were installation inside the vacuum system of the AEI 10 m prototype.

It is located in the north-east corner of the central isolated optical table. The final as-

sembly is shown in picture 3.7. The light passes from the photonic crystal fiber through

the collimating output lens with a focal length of 6.24 mm. Two super polished and anti

reflective coated lenses and adapt the beam to the mode filter. The second lens, with a

focal length of 400 mm, is located at a distance of 10 cm and the third lens, with a focal

length of 300 mm, at a distance of 55 cm from the fiber output.
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Fig. 3.7 Photo from the top of the mode filter breadboard. On the left upper side is
the photonic crystal fiber coming from one of the upper flanges. After decoupling and
collimating the beam with a 6.24 mm lens, the light is sent to the mode filter via two
additional lenses. L2 with a focal length of 400 mm and L3 with 300 mm . Both are super
polished to avoid stray light. To adjust the incoming beam to the mode filter, two mirrors
are placed in front of it.
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Electronics and stabilization

The stabilization of the mode filter is done with a feed back system. A deviation of

the resonator’s resonance frequency from the laser frequency is detected by a photo

diode and stabilized with the Pound-Drever-Hall method [5]. This control difference is

then converted by the controller of an external electronic into a control variable which

is converted by the piezo into a length deviation of the resonator. For this purpose,

the power reflected at the resonator is measured with a locking photo diode (LPD), see

figure 3.3. With a deviation of the resonator length, the light is no longer in resonance

and the reflected power increases. Due to the symmetry of the resonance, this signal

lacks information about the direction of the length deviation. Therefore sidebands are

imprinted onto the incoming laser beam. These are reflected at the in coupling mirror,

when the cavity is resonant for the main beam. The phase measurement of the main

beam, relative to the sidebands, creates an asymmetric error signal. An aLIGO PSL locking

photo diode is used to detect the reflected light, a schematic diagram can be found in the

appendix. The servo electronics are also based on a model from aLIGO. In addition to the

analog stabilization, a digital control of the stabilization is integrated into the CDS of the

AEI 10 m prototype [7]. It also includes an auto lock procedure.

Characterization

In order to characterize the mode filtering effect of the cavity and the photonic crystal fiber,

a series of measurements were performed and analyzed. All measurements were made

after the mode filter was installed in the vacuum system. In order to evaluate the similarity

between the fiber mode and a fundamental Gaussian mode, transmitted by the photonic

crystal fiber, and to determine the finesse of the resonator, a mode scan was analyzed [3].

In figure 3.8 a scan over one FSR and the higher order modes are shown. The open loop

transfer function of the feedback control is used to characterize the stabilization. In order

to analyze the light behind the mode filter, the relative power noise and the frequency

noise were measured.

To adjust the servo to the mode filter, the error signal was optimized for the mixer. For

this purpose, the photo diode signal is mixed with the local oscillator signal in the mixer

electronics. The phase of the local oscillator signal it matched to the phase of the photo

diode signal, when having symmetrical side band signals. The sidebands are spaced from

the fundamental mode at the distance of the modulation frequency. In the mode filter

this is 35.5 MHz.
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Fig. 3.8 Mode scan measured with the mode filter cavity. The peak in the center is due to
the residual horizontal polarization [3]. Measured with two amplifications of the photo
detector.
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Fig. 3.9 Error signal of the mode filter plotted over time. The MIXER signal of the servo
in Green with the fundamental mode is shown in the center and the sideband of the
Pound-Drever Hall signal is offset by 35.5 MHz. In addition the HV-MON is marked in red.



3.2 Stabilization concept 19

-30
-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80

10 100 1k 10k

M
ag

n
it

u
d

e
 [d

B
]

MF closed loop transfer function

-180

-90

 0

 90

 180

10 100 1k 10k

P
h

as
e

 [d
e

g
]

Fourier Frequency [Hz]

Fig. 3.10 Closed loop transfer function of the mode filter length stabilization, with the
unity gain frequency of 5.3 kHz and a maximum suppression of 60 dB at 10 Hz. In the
measurement band of the interferometer, at 200 Hz, there is 45 dB suppression.

In order to characterize the control loop of the stabilization, the transfer function of

the closed control loop was measured. It was measured by a network analyzer, with a

swept sine of an amplitude of 10mV. The amplitude and phase behavior of the control

loop in the range from 10 Hz to 10 kHz is shown in Figure 3.10. With a unity gain frequency

of 5.3 kHz and a maximum suppression of 60 dB at 10 Hz. In the measurement band of

the SQL Interferometer, at 200 Hz, there is 45 dB suppression. The piezo actuator has a

slope of 44 nmV−1 at a voltage offset of 100 V.

The relative power noise of the light was measured by a photo diode in transmission

of the cavity and was analyzed with a spectrum analyzer. The light behind the mode filter

had an output of 8 W and was attenuated by a mirror with a transmission rate of 1 %. The

relative power noise of the light between 10 Hz and 100 kHz is shown in Figure 3.11. It is

4×10−5 /
p

Hz at 10 Hz and 3×10−7 /
p

Hz at 100 kHz.

The frequency noise of the laser is measured with the help of the mode filter by

measuring its length deviation. The mode filter is quieter in length noise than the 35 W

eLIGO amplifier in frequency noise. The measurement is split into two signal paths. At low

frequencies, it is the control signal of the mode filter piezo actuator, at high frequencies,
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Fig. 3.11 Relative power of the 35 W eLIGO amplifier guided through the photonic crystal
fiber and the mode filter. The resonance at 50 Hz and its harmonics are due to a grounding
issue.

the error signal. The projected noise of a NPRO is plotted as a reference. In figure 3.12

it can be seen that the measurement of the noise exactly follows the projected NPRO

measurement. There is a resonance at 600 Hz of the spacer body and the piezo resonance

at 5.3 kHz.

3.2.3 Power stabilization

All classical noise sources must be suppressed below the standard quantum limit at the AEI

10 m prototype. This also includes the relative power noise which should be attenuated in

the experiment down to 2×10−9 /
p

Hz [16].

A photo diode array had been developed at AEI to reach such stabilities at the aLIGO

detectors[25]. A newer iteration of this Array [18], which was built at LIGO, was adapted

and installed at the AEI 10 m prototype. Besides changing the height of the photo diode

array, according to the beam height within the prototype, our adaption included strain

reliefs as well as a second QPD to ensure for perfect alignment. In addition, the elec-

tronics were reworked and equipped with low-noise trans impedance resistors as well as

additional diagnostic signals.
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Fig. 3.12 Measurement of the frequency noise of the laser measured with the length of the
mode filter. The measurement is split into two sections. The error signal and the control
signal. They cross at 5.3 kHz and the resonance of the piezo is visible.

Optical Setup

A detailed overview of the feedback control loop can be found in figure 3.3.

The acousto-optic modulator (AOM) [Crystal Technology Inc., AOMO 3080] of the 35 W

eLIGO amplifier serves as actuator and the photo diode array inside of the vacuum system

is used as sensor. It is located behind the NPRO but before the amplifier unit. 320 mW

were detected by the photo diode array for power stabilization. The first design of the

photo diode array was developed in the AEI and consisted of eight InGaAs photo diodes

[Perkin Elmer,C30642] with an active diameter of 2 mm and an average responsivity of

about 0.79 AW−1 [25]. They are individually movable by 1 mm in transversal direction. A

attenuation unit ensures that the power sent to the photo diode array can be adjusted.

In the housing of the photo diode array 1 % of the light is split of and send to the two

quadrant photo diodes [OSI Optolectronics, Q3000]. The QPDs have an active diameter of

3 mm and a gap of 45µm. In addition to the single QPD design of LIGO, a second photo

diode was installed for the beam alignment to the PD array in a unaccessible area like

inside a vacuum tank. The beam radius on QPD1 is 250µm and on QPD2 it is 100µm,

with a Gouy phase difference of 90° between the two detection points. With this Gouy

phase difference the modified photo diode array provides information on all alignment

degrees of freedom of the laser beam with respect to the photo diodes and hence for

remote alignment. The remaining light of about 310 mW is then split up into half and

send to the two photo diode planes. As displayed in figure 3.13, both planes consist of
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Fig. 3.13 Beam path on one level of the photo diode array with the monolithic beam
separation.

an angled beam splitter and two highly reflective mirrors. The photo diodes are set at an

angle of 45° so that the reflected beam can not influence with the measurement. Each

detect a power of 37.5 mW to 44.5 mW. All non-absorbed light is absorbed in BG39 filters

which is hit under the Brewster angle. The beam diameter on all eight photo diodes is

between 170µm and 330µm.

Electronics

All eight single element photo diodes and the two QPD are connected with a vacuum-

compatible cable which are routed to the outside. The readout electronics consists of a

filtered bias voltage and the trans impedance amplifier (TIA). The eight voltages of the TIA

were band-passed to increase signals between 3 Hz and 2.5 kHz by 34 dB. An additional

high pass reduces the signal at low frequencies by 20 dB. This is done to prevent saturation

effects.

The signals of the four upper photo diodes and respectively the four lower photo diodes

are added up and used as in loop/out of loop signals for the control loop to stabilize the

laser power. With the sum of the other four signals the achieved stability could be verified.

The CDS installed in the AEI 10 m prototype is used for the control of the system. The

in loop sum signal was subtracted from a low-noise low-pass filtered voltage reference

provided by the CDS. The analog electronics of the servo include two optional integrators

and a variable gain stage. This is forming a proportional-integral controller. The error

signal is amplified by the loop gain by more than 90 dB at frequencies below 200 Hz. To
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Fig. 3.14 Performance of the power stabilization. Relative power noise measured by the
in loop and the out of loop photo detectors in comparison to the free-running laser. The
black shot noise limit has a value of 2.29×10−9 /

p
Hz [35] and was calculated by taking

the photo currents of all four photo diode in loop with 115.5 mA and out of loop 128.8 mA.

control the amplitude of the laser beam, a fraction is taped off with an AOM and dumped.

The AOM is modulated with a frequency of 80 MHz for the first diffraction order. The

operating point for the stabilization is at an offset of 5 % for the deflected light.

Shot-noise-limited laser power stabilization

The free-running noise was measured by the photo diode array to determine the gain.

Then, the servo has been adjusted so that the loop gain is suppressing the in-loop

signal below the shot noise [35]. The out of loop signal is limited by shot noise between

100 Hz to 1 kHz . The measured free-running RPN is 4×10−6 /
p

Hz in the frequency region

around 200 Hz. With the closed feedback control loop it was possible to detected an out

of loop RPN of 2.6×10−9 /
p

Hz for frequencies from 100 Hz to 1 kHz. The total powers

measured on the two sensors were out of loop 163 mW and in loop 146 mW resulting in a

relative shot noise level of 2.29×10−9 /
p

Hz.

Furthermore, no performance differences were observed by interchanging the photo

diodes of the in and out of loop path. With this knowledge, we deduced a 3 dB lower RPN of

the laser beam in the out of loop path. At 200 Hz this calculated value is 1.84×10−9 /
p

Hz.

The unity gain frequency was estimated to be 140 kHz. The system is long term stable and
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was running several days. At frequencies greater than 75 kHz, the in loop and out of loop

graphs crossed the free-running measurement and are followed by noise amplification

due to low phase margin, at about 160 kHz not shown in figure 3.14. The main reason for

the excess noise at low frequencies is probably created by beam pointing and scattered

light. Each one of the eight photo diodes are attached to a cone-shaped aluminum case.

With an IR-viewer scattering of light at these cones was observed and could be one of the

scattered light sources. Under vacuum, a constant pointing fluctuation of at least 1µm

was observed with the QPD. Finally, the RPN of the out of loop measurement showed

sharp line harmonics of the power grid frequency of 50 Hz dominating the spectrum. This

effect was assumed to result from ground loops between several electric components in

the environment of the AEI 10 m Prototype and was not analyzed further.

3.3 Summary

Within this thesis a 35 W eLIGO amplifier was set up for the AEI 10 m Prototype inter-

ferometer. Pointing reduction and pure fundamental beam shape was crucial for the

interferometer. To avoid initial pointing and as initial filter for the spatial mode profile,

a photonic crystal fiber was installed and used to coupe up to 8 W of laser power to the

inside of the vacuum system. For additional filtering a triangular spacer cavity is used as a

mode filter directly behind the fiber out coupler.

Furthermore the aLIGO PD Array design was improved with an additional QPD. This

allowed to prealign th PD Array out of the vacuum and find the correct alignment af-

ter installation in the vacuum system. The PD Array was successfully installed within

the AEI 10 m Prototype vacuum system, aligned and used to stabilize the laser beam to

reach the 2×10−9 /
p

Hz in relative power noise. It also serves as a testbed, to ease the

implementation and the long therm use at LIGO.
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35 W Laser System
output power 35 W

frequency 1064 nm
power in ground mode (TEM00) 95 %

Photonic Crystal Fiber
length 4.5 m

mode diameter 12µm
transmission 75 %

Mode Filter
g-factor 0.735

ROC of the HR mirror 1 m
round trip length 53 cm

waist 386µm
R of planar mirrors 99.67 %
free spectral range 566 MHz

line width 604 kHz
finesse 937

transmission 95 %

Stabilization
modulation frequency 35.5 MHz

modulation depth 1.5 mrad
unity gain frequency 6 kHz

Table 3.1 Comprehensive data of the PCF and the mode filter.





Chapter 4

70 W Amplifier for aLIGO

The aLIGO high power oscillator is a complex and difficult to maintain laser system.

Currently it is the only laser system delivering 200 W of output power with excellent beam

parameters. At the LIGO Livingston observatory a failure of the high power oscillator

happened. Until the high power oscillator is running again, a intermediate solution for

the upcoming observation runs had to be found. In this chapter, two different solid state

amplifiers are analyzed. The first is a possible laser amplifier for aLIGO, amplifying up to

70 W and it is described in section 4.2. A second one, described in section 4.3, is used for

weak seed sources, amplifying up to 8 W. For characterization, the diagnostic breadboard

was used and is described in section 4.1.

4.1 Diagnostic Breadboard

The Diagnostic Breadboard (DBB) was developed in the AEI for a detailed laser beam

analysis [22, 23]. The power noise, frequency noise, beam pointing fluctuations and

spatial beam quality can be measured automatically in a Fourier frequency band from

1 Hz to 100 kHz. Additionally power noise can be measured by a spectrum analyzer up

to 100 MHz. The DBB was designed for characterization of linearly polarized, single-

frequency, continuous wave laser beams at a wavelength of 1064 nm and was optimized

for an input power of 135 mW. The optical layout of th DBB is shown in figure 4.1.

The power of the input beam and the power fluctuations were measured with the photo

detector RPD. A photo current of 50 mA can be detected with a bandwidth of 45 MHz. This

results in a shot noise limited sensitivity of 2.5×10−9 /
p

Hz.
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Frequency fluctuations of the input beam were measured with the optical ring res-

onator. It has a finesse of 356 and a FSR of 715 MHz. The round-trip length of 420 mm can

be varied by 5µm with a piezo which is attached in between the spacer and the curved

mirror of the resonator. The resonator is stabilized to the frequency of the input beam

using a dither lock with a modulation frequency of 1 MHz. Frequency fluctuations of the

input beam are composed from the control and error signal in a Fourier frequency band

from 1 Hz to 100 kHz.

The pointing fluctuations of the input beam is measured by using the differential

wavefront sensing (DWS) and the ring resonator as the pointing reference [27]. Pointing

deviations between the fundamental mode, to which the resonator was stabilized, and the

input beam are measured. Two quadrant photo detectors, QPD1 and QPD2, were used to

detect the DWS signals. In order to stay within the linear range of the DWS signals, the

pointing of the input beam was adjusted in servo loops using two mirrors PZT1 and PZT2

that could be tilted with piezos.

The spatial beam quality of the input beam was measured with a length scan of

the resonator. The resonator round-trip length was modulated with a ramp signal by

several micro meters, with a modulation frequency of 10 Hz. The transmitted power was

measured with the photo detector TPD. The high order mode content is the sum of the

power of the higher order modes, transmitted through the resonator.

4.2 neoVAN - 70 W solid state amplifier

The neoLASE neoVAN is a further development of the four-stage amplifier of the eLIGO

35 W amplifier [29]. It consists of four Nd:YVO crystals and is pumped by four laser diodes

via fibers. The pump light has a wavelength of 808 nm. A picture is shown in figure 4.2. A

compact solid state amplifier was analyzed and can now be implemented into the existing

table layout at the detectors. It provides 70 W of output power, when the 35 W amplifier is

used as a seed.

This amplifier will ensure that enough laser power will be available to start the next

science/observation runs with the anticipated input power. Our Implementation will offer

the possibility to choose freely between three configurations, the 35 W amplifier, the 70 W

amplifier and the HPO with 200 W output power ones repaired.
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50/50

50/50
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Resonator

TPD
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QPD1

Fig. 4.1 The schematic composition of the diagnostic breadboard. The main component is
the three-mirror resonator with a curved mirror which can vary the length of the resonator
through a piezo. This is used to measure the intrinsic mode of the incoming beam in
combination with the transmission TPD. To ease the adjustment of the incoming beam, to
the eigenmode of the resonator, a CCD in transmission is set up. The RPD photo diode is
used to determine the relative power noise. To measure the frequency noise, the resonator
is stabilized with a piezo onto the laser light. For pointing measurements, two piezo
for x and y actuation and two quadrant photo diodes are installed, with a Gouy phase
separation of 90°.
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Fig. 4.2 Picture neoVAN of the company NEOLASE which is used in the 70W amplifier
system. With four crystals pumped with four fiber coupled diodes.

First, the amplifier was tested and characterized in the AEI together with 35 W amplifier

of the engineering prototype (EPT). It was then integrated into the aLIGO reference system

to test the possible implementation into the LIGO observatory.

4.2.1 Experiment at EPT 35 W Amplifier

The first test of the new amplifier was done by using the engineering prototype 35 W

amplifier. The optical table was equipped with a DBB to characterize the new amplifier.

With this, it is possible to seed the 70 W amplifier with the full 35 W and measure all

important beam characteristics. Four fibers are connected to the amplifier, each with

45 W pump diode at a wavelength of 808 nm. Via two alignment mirrors the light is fed

into the amplifier. A schematic diagram of the system is shown in figure 4.3. To attenuate

the light for the measurements a mirror with 1 % transmission rate was installed behind

the 35 W amplifier and behind the 70 W amplifier. The maximum achieved power was

80 W, with a higher order mode content of 8 %.

Relative power noise

In order to be able to compare the relative power noise of the 70 W amplifier, the noise

of the 35 W eLIGO amplifier was measured first. This measurement is shown in green in

figure 4.4. The measurement performed with the 70 W amplifier is shown in dark blue. As

the diode driver a LDP-CW series made by PicoLAS was used. It has a wide noise between

500 Hz and 10 kHz as well as peaks of the switching frequencies at 20, 40, 60 and 80 kHz.

To reduce this noise, the initial current drive was replaced by the same model used at the
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Fig. 4.3 Simplified design of the 70 W amplifier. As a seed the 35 W eLIGO amplifier was
used and its light was sent through a variable power stage to the 70 W amplifier. Later the
system was installed in the aLIGO reference system and its 35 W amplifier was used as the
seed.

35 W amplifier, made by Lumina. Afterwards the power noise was measured again (dark

red curve). Here it can be seen that the switching frequencies are significantly smaller but

the broadband noise is still there. Two capacitors by KEMET with a capacity of 1500µF

were installed between the laser diode and the current driver to form a low pass. These

tests were made for both drivers and are drawn in light blue and red. The best result

were achieved with the current drivers of Lumina and the capacitors. For lack of space

however, the combination of the Pico drivers and capacitors were used in the following

measurements. Thus all subsequent measurements used this combination.

Frequency noise

The frequency noise of the new amplifier is compared to the approximated NPRO noise

and the 35 W amplifier in figure 4.5. For this, the noise of a 2 W NPRO is projected. The

measurement for the 35 W amplifier is plotted in green, which follows the NPRO noise

over the entire frequency range. The measurement of the 70 W amplifier is shown in red

and stays close to the NPRO noise as well. At frequencies between 10 Hz and 100 Hz it

is a factor of two more noisy and in the range between 1 kHz and 10 kHz it does not fall

under the projection like the 35 W amplifier. The amplifier is not significantly introducing

additional frequency noise.
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Fig. 4.4 Relative power noise measurements for the 70 W amplifier. As a reference, the
35 W amplifier is shown in red. Two different types of diode current drivers were tested for
the pump diodes of the 70 W amplifier. The switching frequencies between 20 kHz and
100 kHz, can be low pass filtered with additional capacitors (Caps). The two diode drivers
without the capacitors have a significantly higher noise from 1 kHz to 10 kHz. The driver of
PicoLAS., additionally, shows higher switching frequencies between 20 kHz and 100 kHz.
By using the capacitors, both current drivers have a lower noise which almost reaches the
noise of the 35 W amplifier. The switching frequencies also become significantly smaller.
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Fig. 4.5 Frequency noise of the 35 W amplifier and the 70 W amplifier. The projected
frequency noise of the NPRO lasers is applied as a reference. The 35 W amplifier frequency
noise is following the projected NPRO noise. The 70 W amplifier shows a similar behavior
and is not introducing frequency noise. The variations are well inside the expected
measurement range.

4.2.2 Implementation in the aLIGO Reference System

Since the 70 W amplifier characterization showed a sufficient performance, the imple-

mentation, the integration into the aLIGO reference system, at the AEI, could be started.

The possibility, to choose between, the 35 W amplifier, the 70 W amplifier and the high

power oscillator with 200 W, as input to the interferometer, was realized. Additionally an

independent measurement of each stage can be performed with the DBB.

Table layout

The complete design of the amplifier is shown in Figure A.3. The basic idea was to leave

the high power oscillator path as unaffected as possible. This means that only one mirror

before the HPO was exchanged for a combination of lambda half plate and polarization

beam splitter. Thus, the power of the 35 W amplifier can be arbitrarily divided between

HPO and the new 70 W amplifier. Otherwise no change was made to the HPO. The existing

optics which are usually used for the DBB path of the 35 W amplifier are reused to adjust

the laser into the new amplifier. As protection against reflections for the 35 W amplifier,
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Fig. 4.6 Image of the 70 W amplifier, installed inside the reference system.

an additional Faraday Isolators from Newport was installed (ISO-FRDY-08-1064-N). The

amplified light of the 70 W amplifier is then directed into the HPO laser beam via four

adjustment mirrors and two mode matching lenses. The original DBB path of the HPO

can be used to characterize the 70 W amplifier. To obtained the measurements from the

35 W amplifier with the DBB, the mirror before the 70 W amplifier is 1 % transmissive. A

picture of the final integration of 70 W amplifier in the reference system is shown in 4.6.

After the new amplifier was installed, the pump power was carefully increased, while

monitoring the beam profile with a Wincam. The power was increased until the first

saturation effect on the beam profile developed. The Gaussian intensity distribution is

not equally amplified anymore. At the maximal intensity of the seed beam most pump

photons are already converted and the seed can not be amplified furthermore. At the edge

of the beam the amplification is still possible and therefore the beam shape is deformed.

With the maximum seed power of 35 W, an output power of 72 W could be achieved. The

higher order mode content was 8 %.
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Fig. 4.7 Power noise of the 35 W amplifier of the reference system and the 70 W amplifier.
Whereby the 70 W amplifier rushes over the entire frequency range by a factor of two to
three more. At 1 Hz it increases from 2×10−4 /

p
Hz to 4×10−4 /

p
Hz and in the range

between 10 Hz and 3 kHz the noise is broadband flat at 1×10−5 /
p

Hz, then falls on the
1×10−6 /

p
Hz at 10 kHz.

Relative power noise

Since the 35 W amplifiers of reference system has a better noise performance than the

35 W amplifier used in section 4.2.1, the measurement were repeated. The relative power

noise was measured after the installation at the reference system. In figure 4.7, the 35 W

amplifier is shown in green, and the 70 W amplifier in red.

The 70 W amplifier has a higher relative power noise compared to the 35 W amplifier.

A broadband increased noise level from 100 Hz to 2 kHz and increase to low frequencies

are visible. However, the noise is better than the noise of the high power oscillator.

Frequency noise

The frequency noise was also measured for the 35 W amplifier and for the 70 W amplifier.

The results are shown in figure 4.8. Both measurements are split into error and control

signals. The 35 W amplifier is shown in green and the 70 W amplifier in red. It can be seen

that the control signal dominates at low frequencies and both measurements are identical

and follow the NPRO noise. From about 1 kHz the control signal dominates and indicates
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Fig. 4.8 Frequency noise of the 35 W amplifier and the 70 W amplifier as well as the projec-
tion of the NPRO. The individual noise measurements are divided into the control signal
and the error signal. The signal with the higher noise is giving the correct number. It is
recognizable that the 70 W amplifier add no additional noise on the 35 W amplifier.

the noise of the system, here is the noise of the 35 W amplifier higher that of the 70 W

amplifier.

Pointing noise

For a LIGO laser, it is also interesting how the pointing noise behaves. For this purpose the

pointing was measured using the DBB and compared to the noise of the 35 W amplifier.

The measurement is shown in figure 4.9. It can be seen that the pointing noise of both

lasers on the same level is. This means there is no additional noise added by the 70 W

amplifier.

4.3 neoVAN 8 W solid state amplifier

In many applications, a single-frequency master laser with a good beam profile is neces-

sary. For example as a seed source for GWD a Non-Planar-Ring-Oscillator (NPRO) with

a maximum output power of 2 W is used. The NPRO combines the overall good noise

performance with a relatively high output power of 2 W. While there are other laser sources
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Fig. 4.9 Pointing measurement of the 35 W amplifier and the 70 W amplifier. Both were
made with the DBB and the 70 W amplifier add no additional noise on the 35 W amplifier.

with a comparable noise performance, like smaller NPRO or cavity diode lasers, these

lasers lack of the necessary output power for many experiments. Within this thesis, a

solid state amplifier was used to amplify those low noise lasers and test their performance

afterwards. In the next sections two seed lasers, a JDSU NPRO and a RIO ORION diode,

were analyzed. With the neoVAN 8 W amplifier the output power was amplified and again

analyzed.

4.3.1 RIO ORION laser diode

The RIO ORION laser diode is a laser with an external cavity [Redfern-Integrated-Optics],

[30]. The central wavelength is 1064 nm with an output power of 20 mW. The output

of the diode is fiber coupled with a FC/APC connector at its end. A picture is shown in

4.10. This diode is interesting as a seed laser for highly stable amplifier systems since

the manufacturer promises a very low power noise as well as an ultra-low phase noise.

According to its data sheet, the laser should have a narrow line width, smaller than 15 kHz.

The wavelength of the system can be modulated via a modulation input. The laser can

be controlled and its diagnostics signals can be read out via a computer interface. It is

possible to adjust the temperature and thus the wavelength and power of the laser diode.
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The laser itself consists of a diode stack which is coated on one side with an high

reflective coating, on the other side is an anti reflex coating 4.11. A cavity is formed with

the high reflective coating on the diode stack and a the Bragg reflector formed by a planar

lightwave circuit, as the output coupler. This light is then collimated by a lens. The length

of this cavity is stabilized by a temperature stabilization. [30]

Fig. 4.10 Image of an OEM version of the
20 mW RIO ECDL. It has a wavelength
of 1064 nm. The diode is coupled to a
FC/APC fiber.

HR-Coated
End Face

AR-Coated
End Face

Lens

Bragg Reflector

Output
Gain Chip Planar  Lightwave

Circuit

Waveguide

Fig. 4.11 Simple setup of a diode laser
with external cavity. The semiconduc-
tor chip is anti-reflection coated on one
side, and the laser resonator extends to
the Bragg reflector formed by a planar
lightwave circuit, on the right-hand side.

The output power of the laser can be varied with the temperature of the diode. In figure

4.12 the output power is plotted against the temperature of the diode. It was measured

behind a 2 m fiber and the temperature was controlled via the computer interface. At first

the power rises linearly with the increase of the temperature up to a maximum of 16 mW.

After that a steep drop occurs and the power again rises linearly. Over a temperature range

of 15 K three of these slopes were observed. The operating point was set to 293 K with an

output power of 16 mW. This temperature was used for the subsequent measurements.

In figure 4.13, a mode scan, measured with the DBB, is plotted of the RIO laser. The

proportion of higher order modes is 2.7 %.

4.3.2 JDSU NPRO laser

The second laser is a NPRO laser from JDSU. Is is the model Lumentum NPRO 125N-1064

with a power of 25 mW at a wavelength of 1064 nm. It is a single frequency laser with

a linen width of 5 kHzms−1. The laser is shown together with the neoVAN amplifier in

picture 4.14.
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Fig. 4.12 A measurement of the output power of the RIO ORION ECDL, with varying
temperature. Three intervals are shown with minimum on the cold side and a maximum
on the warm side. The power drop on the warm side is instantaneous.
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Fig. 4.13 The mode scan of the Rio Diode showing a higher order mode power of 2.7 % and
a higher oder mode count of 48.
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Fig. 4.14 Picture of the Lumentum NPRO 125N-1064. It is connected by a single mode
fiber to a neoVAN amplifier.

The light of the JDSU laser is decoupled from a fiber. With the DBB a measurement of

the higher order mode content was taken. It is shown in figure 4.15 and the higher order

mode content is 2.4 %.

4.3.3 Fiber coupled solid state amplifier - neoVAN

The amplifier consists of two ND:YVO crystals. The pump diodes with an output power

of up to 45 W and a wavelength of 808 nm are connected to these laser crystals via fibers.

The input of the amplifier is fiber coupled by a FC/APC connector. The amplifier head and

the diode box are water-cooled. The pump current of the diodes and the temperature can

be controlled by a web browser interface. The maximum achieved output power was 8 W.

Both seed lasers were now coupled into the amplifier and again the high order mode

power was measured. An overview of the set up is shown in picture 4.16. For both

measurements, a value of 2.1 % was measured, as plotted in Figure 4.17. The higher oder

mode contend is dominated by the single mode fiber and is therefore the same for both

laser. The amplifier is conserving it and is not adding additional higher order modes.

4.3.4 Characterization

This section describes the properties of two seed lasers together with the two-stage neo-

VAN amplifier, provided by the company Neolase. For this purpose, the two seed lasers

were individually measured in power noise and frequency noise. A time series was gener-

ated for better comparison. Thereafter, the same measurements were repeated with the

amplified lasers. The measurements were then compared to a 2 W NPRO.



4.3 neoVAN 8 W solid state amplifier 41

10-5

10-4

10-3

10-2

10-1

100

 0  0.2  0.4  0.6  0.8  1

N
o

rm
al

iz
e

d
 In

te
n

si
ty

Frequency [FSR]

Measurement
Fundamental Mode Fit
Total Fit

Fig. 4.15 A mode scan of the JDSU NPRO is showing a higher order mode content of 2.4 %
and a higher oder mode count of 41.

Laser
souce PM-Fiber

Two Stage Amplifier
Polarization
cleaning and
attenuation

to DBB

Fig. 4.16 To characterize the neoVAN amplifier the 20 mW NPRO and the 16 mW RIO ECDL
were connected via a polarization maintaining single mode fiber. The output light of the
amplifier was measured with the diagnostic bread board.
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Fig. 4.17 The mode scan of the amplifier showing a higher order mode content of 2.1 %.
Both seed lasers where tested and showing the same behavior. It is dominated by the used
single mode fiber.

The two different lasers were fed into the diagnostic breadboard. A description can be

found in section 4.1. To test the lasers with the DBB the full output power of both lasers

was used. For the test of the amplifier, a maximum of 135 mW was injected into the DBB.

Before the light is sent to the DBB, the polarization is cleaned and the power attenuated,

see picture 4.16.

Relative power noise

The laser power noise is plotted in figure 4.18. In blue, the noise of a 2 W Mephisto NPRO

is plotted as a reference. It is 4×10−6 /
p

Hz at 1 Hz and goes down to 2×10−7 /
p

Hz at

10 kHz.

In bright green, the JDSU NPRO is plotted. It has a slightly higher noise at 1 Hz whereby

it falls under the noise of the 2 W NPRO from 20 Hz. Up to 3 kHz it is better than the

Mephisto NPRO.

The RIO diode, in red, starts at the same level as the JDSU NPRO, but does not drop so

strongly. At 100 Hz it has a factor two more noise than the 2 W NPRO. From 1 kHz, all three

measurements are in the same order of magnitude. The darker color measurements in

red and green are performed with the amplifier. The measurements have a much higher
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Fig. 4.18 Measurement of the relative power noise of the two seed laser, with and without
the neoVAN amplifier. The relative power noise of a 2 W Mephisto NPRO is shown in blue
as a reference. The two seed lasers are show in the bright colors of green (JDSU) and red
(RIO). Both have a high RPN at low frequencies. The RIO diode is the same as the Mephisto
at a frequency of 500 Hz on. The JDSU is even better than the Mephisto, in a frequency
range between 30 Hz and 3 kHz. Both amplified lasers have a much higher noise level,
probably dominated by the noise of the current driver of the pump diodes.

noise over the entire spectrum, at a level of 1×10−5 /
p

Hz. Probably they are limited by

the power supply noise of the pump diodes of the amplifier.

Time series

In order to make an estimate about the long-term stability of different lasers, a 300 s

time series was taken, see figure 4.19. The color key is the same as before. The scale of

the Y-axis is the same in all measurements. The 2 W NPRO has the least variation over

the measurement time. Followed by the JDSU NPRO with and without amplifier. The

fluctuation of the RIO diode is the biggest. The amplifier reduces the fluctuations slightly.

Frequency noise

One of the most important parameters of the new seed laser is the frequency noise. For

this purpose, the frequency noise was measured using the DBB. The measurement is
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Fig. 4.19 A time series of all five configurations is shown over over a time span of 5 min.
The scale of the Y-axis is the same for all measurements. The amplifier is not introducing
more deviation in the two new seed lasers. All four are not as stable as the Mephisto.
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Fig. 4.20 Frequency noise of the two new seed laser and the amplified, compared to a 2 W
Mephisto NPRO. The Mephisto in blue has the typical noise of 10 kHz and is falling of with
1/f. The projection is shown in gray. In light green the 25 mW JDSU NPRO is shown. It has
a better frequency noise in the lower frequencies. At higher frequencies the noise is above
the Mephistos. In dark green, the amplified JDSU NPRO is shown. It has a lower noise in
the frequency region between 5 and 400 Hz, without the amplifier. Due to the low input
power into the DBB, the gain had to be amplified, and thus a gain amplification of the
DBB servo occurred at 1.5 kHz. The RIO diode laser, in red, has a higher frequency noise
overall frequencies. It is up to a factor of 50 more than the Mephisto. The amplified laser
is almost the same in frequency noise than the diode.
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shown in figure 4.20. The color key is the same as for the power noise measurement. As a

reference the 2 W Mephisto NPRO and a general projection of NPRO noise, with 10 kHz

at 1 Hz and a 1/f drop, is plotted. The results of the measurement with the JDSU NPRO

and the amplifier show, that it is even more stable in the range below 200 Hz than the 2 W

Mephisto NPRO. At higher frequencies, the noise is above the reference. In red, the two

measurements with the RIO diode are plotted. The noise of the RIO diode is much higher,

as stated by the company. It is at least one order of magnitude bigger than the Mephisto

NPRO. The amplifier does not add additional noise. The frequency noise that is promised

in the data sheet from the manufacturer is not reached and thus it is not a replacement for

an 2 W Mephisto NPRO.

4.4 Summary

After the recent failure of the HPO at the LIGO Livingston observatory, it still needs to

be fully repaired. Within this thesis a possible intermediate solution was found in an

solid state four stage amplifier. As a seed for this amplifier, the existing 35 W eLIGO

amplifier can be used. With the full 35 W of seed light the output is amplified up to 72 W,

while remaining the good beam quality of the seed laser. The analysis of frequency noise,

power noise and pointing noise showed that these parameters are conserved by the 70 W

amplifier and therefor are better than the high power oscillator [32]. A next iteration of

amplifiers designed for 100 W of output power is currently under development. Solid state

amplifiers are limited by saturation effects of the amplifier crystals [9].

As a possible replacement for the commercially available 2 W Mephisto NPRO, two

small seed laser were amplified with a fiber coupled two stage solid state amplifier from

Neolase and analyzed. This configuration can even deliver up to 8 W of output power. The

combination of a 20 mW JDSU NPRO and the neoVAN amplifier has excellent frequency

noise, and is a good alternative to the Mephisto NPRO, when more power is required. The

power noise of the neoVAN amplifier is still higher, and probably could be improved by

better current drivers for the pump diodes.



Chapter 5

Fiber Amplifier

Most high precision measurements require a very stable and robust light source. The

Einstein Telescope, a third generation gravitational wave detector [36], will be using

a continuous wave 500 W laser at a wavelength of 1064 nm for the high-power room

temperature high-frequency interferometer. Very strict requirements have been placed

on to the frequency and power stability as well as to the spatial beam profile. A possible

first approach is an all-fiber single frequency amplifier with an output power of at least

180 W [41]. The first step towards the stabilization of such a fiber based laser system is a

complete characterization. The advantage of this laser system compared to traditional

solid state systems is the use of new actuators for power stabilization. A combined active

and passive stabilization scheme will be essential to meet the requirements.

5.1 Layout of the 180 W Fiber Laser

The experimental setup consists of a non planar ring oscillator (NPRO) as the seed laser, a

fiber pre amplifier and an all fiber counter-propagation pumped high power fiber amplifier

stage. A picture of the actual fiber laser is shown in 5.2. The NPRO (Innolight Mephisto)

emitted up to 2 W of continuous wave single-frequency output power at a wavelength of

1064 nm. The line width of the NPRO is specified with 10 kHz. A detailed sketch is shown

in figure 5.1. A detailed description of the pre amplifier can be found in section 5.1.2 and

of the main amplifier in section 5.1.3.
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NPRO

Faraday Isolator

EOM

EO-AM

Pump Light Coupler

Pump Light Stripper

2x 35W Pre-Amplifier
Pump Diodes

4x 100W Main-Amplifier
Pump Diodes

Lambda Plates
2W

20W

180W

Main-Amplifier
Pre-Amplifier

Fig. 5.1 A detailed sketch of the fiber amplifier. Starting with a 2 W NPRO at 1064 nm, the
polarization of the light is cleaned by a Faraday isolator. The light passes through, an
electro-optic modulator and an electro-optic amplitude modulator before it is transmitted
through a polarizing beam splitter. The light is then coupled into the pre amplifier with an
efficiency of 65 %. Since both amplifiers are backwards pumped, the pump light stripper is
the first component in the active fiber. The active ytterbium doped fiber of the preamplifier
is 3 m long and has a core diameter of 10µm. The pump light coupler brings the 976 nm
light into the active fiber. The laser light is coupled out and passes through two Faraday
isolators and is fed into the main amplifier. The coupling efficiency is 60 %. The main
amplifier can be pumped with four pump diodes, each with 100 W of 976 nm light.
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5.1.1 Counter-propagating pumped Laser Amplifier

The concept of a reverse pumped amplifier was used for the two amplifier stages. With

this technique the main amplifier is, at the pump powers used in this system, not limited

by stimulated Brillouin scattering. The other big advantage is the distribution of pump

light in the active fiber. Due to the amplification in the fiber, the amount of 1064 nm seed

light increases over the length of the fiber. The pump light comes from the end of the fiber,

and as it is converted into the seed light, the amount of pump light decreases towards the

front of the fiber. The distribution of seed light to pump light is therefore advantageous.

The residual pump light is extracted by a pump light stripper. The pump light is running

in the pump core, witch is around the active core. To extract it, the pump core is cut and

the light is dumped onto a heat sink [6]. It must be ensured that a seed laser with enough

power is always available. Otherwise the pump light is not sufficiently reduced and the

risk of damaging the pump light stripper is significant. A further problem is the buildup of

a giant pulse which then destroys the end faces of the fiber.

5.1.2 Pre Amplifier

To generate sufficient seed light for the high power amplifier, the NPRO output had to be

amplified beforehand. Therefore a pre amplifier was installed. It is made out of a 3 m long

ytterbium doped polarization-maintaining fiber (Nufern-PLMA-YDF-10/125-VIII). The

2 W NPRO is used as a seed for this pre amplifier and the light is amplified to 20 W. The

seed light is coupled into the 10µm fiber via high-power coupler, with an efficiency of up

to 70 %. The light passes through the pump light stripper into the active fiber. At the other

end of the fiber is a 2 + 1/1 pump light coupler, which was developed at the LZH [42]. This

couples the light of two pump diodes into the pump core of the fiber. Each with 25 W of

output power at a wavelength of 976 nm. The amplified light is then coupled out via a

high power connector. In order to protect the preamplifier from backscattering or pulsing

of the main amplifier, two Faraday isolators are placed behind its output. The power of

the preamplifier is measured by a photo diode behind the Faraday isolators. This photo

diode can also be used to stabilize the power of the preamplifier.

5.1.3 Main Amplifier

For the high power amplifier stage, a polarization maintaining Ytterbium doped double-

clad (DC) fiber (Nufern-LMA-YDF-25/250-VIII) is used. It is specified with a core diameter
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Fig. 5.2 The image shows the fiber amplifier. The NPRO is in the rear right and the pre
amplifier in the bottom left. The two coils on the left side hold the main amplifier fiber
and are key feature to suppress stimulated Brillouin scattering. The photo was taken with
a camera without an IR filter so that the NPRO seed beam can be seen in the fibers.
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of 25µm, a numerical aperture of 0.06 and a cladding diameter of 250µm, resulting in a

numerical aperture of 0.46. The cladding absorption at a wavelength of 976 nm is specified

with 4.80 dBm−1. For counter-propagating pump light in the 2.75 m long active fiber, an

4 + 1/1 combiner based on the side-pumping technique, is used [42]. It consists of an

active fiber (Nufern-LMA-GDF-25/250) surrounded by four tapered pump fibers. With

this setup it is possible to pump the active fiber with four pump diodes. Each diode can

emit 100 W at a wavelength of 976 nm. To avoid the occurrence of stimulated Brillouin

scattering [8], the active fiber is wound around two coil towers and a temperature gradient

is applied. The light from the main amplifier is then collimated via a 15 mm lens. The

cladding modes of the active fiber are cut out with an aperture outside of the laser box.

A 1 % transmissive mirror is used to attenuate the light for the measurement with the

diagnostic breadboard. The rest of the light is transmitted trough a Faraday isolator. A

second transmissive mirror is placed behind the Faraday isolator and provides a tap off

for the main amplifier photo diode. This monitors the laser power and is also used as a

sensor for an initial power stabilization. A detailed sketch can be found in figure 5.3.

5.2 Laser amplification Ratio

The first interesting parameter of a laser amplifier is its amplification ratio. For this

purpose, the applied pump current is plotted against the output power of the fiber laser.

The two amplifiers were measured individually.

5.2.1 Pre Amplifier

The pre amplifier is directly seeded by the NPRO. 1.5 W of the NPRO power are coupled in

with an efficiency of 70 % into the pre amplifier. The two built-in pump diodes are con-

trolled by a Beckhoff system. They are supplied with one current driver and temperature

stabilized with one temperature controller. It is only possible to cool the diodes so that

the diodes must heat themselves. This results in a system where the pump light can only

be slowly raised. Otherwise, the pump light deviates in its wavelength and can not be

converted into seed light. It would lead to heat issues at the pump light stripper. Therefore,

the measurement was started at the maximum amplification and then decreased. The

measurement is shown in figure 5.4. The maximum power of the preamplifier is 22 W with

a pump current of 8.8 A. When the current is reduced, the temperature is still optimal,
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NPRO

2W

20W

Main-Amplifier
Pre-Amplifier

TFP

Diagnostic Breadboard

Fig. 5.3 Detailed sketch of the fiber amplifier and the used laser diagnostic. After the
laser is coupled out of the Main Amplifier a 15 mm aspherical lens is used to create a
1 mm diameter laser beam. That beam is than sent into a high power Faraday Isolator
(ISO-FRDY-08-1064-N). Before this a 1 % pickoff is sent to the CDS controlled DBB for
automatic measurements. Behind the FI is another pick-off of 0.1 % that is going to the
main amplifier photo diode. This is used for monitoring, but can also be used to power
stabilize the laser. The main beam further passes through a lambda half wave plate and a
thin film polarizer as an attenuation unit. From there on the beam goes to the aLIGO high
power PMC.
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Fig. 5.4 The graph shows the amplification ratio of the pre amplifier. The output power is
plotted against the pump current of the pre amplifier. 1.5 W of the NPRO power was sent
into the fiber. The coupling efficiency was 70 % and the pump light has a wavelength of
976 nm. At 8.8 A, the amplifier produces 22 W of laser light at 1064 nm.

down to a pump current of 6 A. After that the diodes can not keep the temperature high

enough and the curve kinks.

5.2.2 Main Amplifier

The main amplifier is seeded by the pre amplifier. However, the whole 22 W can not

be coupled into the main amplifier. There are two Faraday isolators with a combined

transmission of 92 %. Only 15 W of light reach the main amplifier. An anti-reflective

coated window sends a small portion of the light to the pre amplifier photo diode, which is

used for monitoring and power noise analysis. The coupling efficiency into the amplifier

is about 65 %. If the main amplifier is not pumped, 10 W of power is transmitted. The

measurement of the main amplifier is made in two steps. First, each diode was used

individually, as a pump for the amplifier. The measurement is plotted in figure 5.5. Three

of the diodes show very similar behavior. Diode 1 is about 10 % more efficient. This is due

to the exchange of diode 1 in an earlier phase. With this new pump diode at the maximum

current of 10 A the pre-amp could be amplified to 75 W 1064 nm light. The three other

diodes amplify to 66 W of output power. For the second measurement, diodes 1 and 4

were used. The maximum power at 10 A pump current for these two diodes was 132 W.

The operation point for subsequent measurement is at 120 W or 9 A pump current.
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Fig. 5.5 The graph shows the amplification ratio of the main amplifier. 10 W of seed power
are coupled through the main amplifier. All four pump diodes are shown individually.
Diodes 2, 3 and 4 show the same behavior, while diode 1 is 10 % more efficient. At a pump
current of 10 A, 66 W are reached. Diode 1 achieves a higher power with 75 W. In addition,
the measurement of diode 1 together with diode 4 is plotted in black. A maximum power
of 132 W at 10 A could be achieved.
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Fig. 5.6 20 day measurement of the main amplifier output power. The main amplifier was
pumped with two diodes. The loss of output power was due to a drift of the in coupling to
the main amplifier and could be be retrieved by alignment optimization.

5.2.3 Long term behavior

The fiber laser has been operated for 20 days at a power of 120 W. During this time, the

power of the laser has dropped by only one percent. By adjusting the in coupling to the

main amplifier the original power level was reached again. The measurement is shown in

figure 5.6.

5.3 Characterization

To characterize the fiber laser, the power noise as well as the frequency noise and the

spatial beam profile are measured. Additionally the beam position fluctuation is a very

important parameter and needs to be measured.

5.3.1 Modescan

The active fiber used for the main amplifier has a core diameter of 25µm. This is larger

than standard single mode fiber for 1064 nm laser. This allows for the higher order modes

to pass the fiber. Therefore, the portion of higher modes was measured. The triangular

mode filter of the diagnostic breadboard is used for this measurement 4.1. The incoming

beam is decomposed into the eigenmodes of the mode filter and thus a statement about
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Fig. 5.7 Measurement of the higher order mode content of the fiber laser. The graph shows
three different curves, the dark red being the actual measurement. Light red and blue
show fit curves. The total higher oder mode content in the fiber laser, operated at120 W
laser power, is 6 % .

the mode purity can be made. The fiber amplifier was operated for these measurements

with a power of 120 W and a pick-off beam was sent into the DBB. The measurements

showed that the main amplifier has a higher order mode content of 6 % and can be seen

in figure 5.7.

5.3.2 Relative power noise

A power noise measurement was performed with the diagnostic breadboard. With the

RPD 65 mW of laser light was detected and read out using the CDS. As a comparison for

the power noise, a measurement with the free-running high power oscillator of the aLIGO

PSL with an output power of 180 W was made. The power of the fiber amplifier was 120 W.

For these measurements, the measurement in the frequency range between 1 Hz and

10 kHz was of particularly interest since it is the measurement band of gravitational wave

detectors. The measurement, in figure 5.8, showed that at low frequencies from 1 Hz to

100 Hz the fiber amplifier is roughly two orders of magnitude better than the aLIGO laser.

The noise at 1 Hz is 3×10−5 /
p

Hz and decreases with a slope of 1 / f. The fiber laser is

affected less since the water cooling is not directly attached to the fiber. A preliminary test

with power stabilization was performed and are discussed in detail in section 5.6.
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Fig. 5.8 Measurement of the relative power noise, plotted against the Fourier frequencies.
The plot shows three graphs, in green the free running aLIGO laser and in blue the fiber
amplifier at 120 W. First experiments with the stabilization of the fiber amplifier have
been performed and are displayed in gray.

5.3.3 Frequency noise

In Figure 5.9 the projected frequency noise of the 2 W NPRO is plotted as a reference.

Three measurements were performed with the fiber laser. First the NPRO without pump

light applied to the two amplifier stages. In the second measurement the pre amplifier

was pumped the full pump power. The main amplifier was not pumped. Finally, the

fully running fiber laser was measured at 120 W of output power. A measurement of the

aLIGO high power oscillator is also plotted. At low frequencies of 1 Hz to 10 Hz, all four

measurements follow the projection of the NPRO. In the range of 10 Hz to 100 Hz, all

configurations are more noisy than the projection. From then on the HPO follows the

projection up to 20 kHz. The three fiber amplifier measurements are less noisy in the

range of 100 Hz to 10 kHz than the projection. The fully pumped amplifier shows the best

noise performance, and is better by a factor of 8 at a frequency of 1 kHz. One possible

explanation for this effect could be the doping of the fiber. The active fiber is doped with

ytterbium, creating an energy level close to 1064 nm. The cross section between this level

and the seed light could be smaller then the linewidth of the NPRO. Another effect could

be the thermal coupling of the environment to the fiber. With low pump power the fiber

is cooler then with high power, therefore the temperature deviations of the environment
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Fig. 5.9 Measurement of the frequency noise of the fiber laser. The typical behavior of
an NPRO is shown in dark green, with a noise of 10 kHz at 1 Hz and a 1/f slope. As an
additional reference, a measurement of the free running aLIGO high power oscillator is
plotted. The fiber laser is characterized by three measurements. In red a measurement of
the NPRO, passing through the two non pumped amplifiers. In gray the pre amplifier is
pumped and the main amplifier is not. The fully operated fiber laser with 120 W output
power is shown in blue. In the frequency range between 1 Hz and 100 Hz, all measure-
ments lie one on top of each other and following the theoretical projection of the NPRO.
Between 100 Hz and 10 kHz, the fiber laser is less noisy. Over 10 kHz it is more noisy and
has noise amplification due to low phase margin at 80 kHz.

couple more into the fiber length change. This causes more frequency noise. At 60 kHz,

noise amplification due to low phase margin can be seen in all measurements of the fiber

laser.

5.3.4 Pointing noise

The pointing behavior of a laser is especially interesting for use in an interferometer.

The beam fluctuations can be converted into power noise by an optical resonator. The

relative pointing noise was measured again with the diagnostic breadboard. In figure

5.10, a comparison between the aLIGO high power laser and the fiber laser can be seen.

For comparability, the measurements were made on the same optical table, so that the

conditions are the same. At low frequencies, the pointing noise of the fiber laser is much

smaller, by two orders of magnitude, than the high power oscillator. From 200 Hz on, both
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Fig. 5.10 Measurement of the relative pointing noise. The aLIGO high power oscillator is
compared to the fiber laser with an output power of 120 W. In the low frequency range
between 1 Hz and 100 Hz, the fiber amplifier is much quieter than the high power oscillator.
It is up to two orders of magnitude better. In the range of 100 Hz to 3 kHz, they are at the
same level. It is assumed that there are many resonances in the relative pointing noise of
the aLIGO laser due to the water cooling.

lasers are equally. The resonances caused by the water cooling of the high power oscillator

stick out at 500 Hz to 1 kHz.

5.4 Problems and Failures

One of the most important characteristics of a laser system is its reliability. This is why one

of the main concerns, is testing the amplifier over long periods of time, with the fiber laser

running at high output powers for as long as possible. Before operating the fiber laser at

its desired output power of 180 W, a 20 day long test period with an output power of 120 W

was performed. To achieve the final output power, three of the four pump diodes were

operated at 90 % of their maximum current. During the power increase, the power was

stepwise raised from 120 W to 180 W. The first step was 20 W and has always been without

any problem. However, when the power was increased to 160 W, the fiber laser broke twice.

A third malfunction happed during a power outage. The first problem occurred at the

pump light combiner. This was due to screw holes that were contaminated with oil from
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the manufacturing process. The oil creped into the fiber when the pump light combiner

was heated. The pump light guide in the fiber can no longer function, since the conditions

for the total reflection at the glass air interface no longer apply. The second failure, again

occurred at the steps from 140 W to 160 W of output power. This time it is not clear what

was causing the malfunction. One possibility is that the internal stress of the fiber caused

the problem. However, this time the newly implemented automatic shutdown functioned.

This easily allowed identification of the place where the fiber was damaged. The third

malfunctioning was caused by a power outage. The input coupler of the pre amplifier was

broken. This was caused by the fast shut down of the seed laser, resulting in a buildup

of a giant pulse which then destroys the end faces of the pre amplifier fiber. During the

renewing off the pre amplifier in coupler, the active fiber was then damaged and therefore

needed to be shortened. After the successful coupling of seed light back into the fiber,

however, due to the length of the fiber, the pump light stripper was overloaded and thus a

new failure of the pre amplifier occurred. A further repair could not be carried out during

this thesis.

5.5 Improvements

Fiber laser often suffer from stimulated Brillouin scattering. This effect limits the absolute

output power. For this fiber laser, two fiber spool towers are built into the main amplifier

stage. A temperature gradient between the two towers is created by two temperature

controllers. The cold coil is running at 16 ◦C and the warm one at 36 ◦C. The two temper-

ature controller can deliver up to 100 W of power, which is applied to the Peltier device

underneath the individual towers. With the temperature gradient, the stimulated Brillouin

scattering was negligible.

To monitor all relevant parameters and to have long term data acquisition, an aLIGO

control and data system (CDS) was set up. This not only eases the data management,

but also allows an easy integration into the aLIGO reference system and the use of the

diagnostic bread board.

The fiber laser is a prototype, and it is very important, in case problems or malfunctions

occur, to improve the design, by structural measures or procedures. With each problem,

which occurred during the operation of the fiber laser, attempts were made to make

improvements to prevent the problem reoccurring
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These included water cooling of the pump light combiner and the pump light stripper

of the main amplifier. Even after a short use of the fiber laser it was clear that the thermal

management was not optimal. Therefore the two critical components were equipped with

better cooling. The pump light combiner was, in the original version, only air-cooled and

attached to an aluminum block. This was exchanged to a water-cooled copper block. No

temperature problems occurred at this component again. The second critical component

is the pump light stripper. In the original design, an aluminum heat sink with water

cooling was installed. The heat extraction was insufficient and it was built in a way such

that it was not possible to reach it without disassembling the pre amplifier. Therefore, a

better heat sink made out of copper was installed. Monitoring of the residual pump light

of the main amplifier was additionally set up.

The mounting of the Faraday isolators and lambda plates needed to be improved. For

this, all rotation mounts were exchanged to Thorlabs RSP1, resulting in a smoother and

more precise adjustment of the lambda plates. Additionally thermal drifts of the rotation

mounts and therefore the power drifts could be reduced. For a better adjustment of the

beam path inside the fiber laser, the Faraday isolators were placed onto the four-axis tables

9071-M from Newport.

A system for implementation of security watchdogs, including photo diodes for power

monitoring and digital control signals, was set up. To circumvent the issue of losing the

seed laser for the pre amplifier an uninterpretable power supply for the NPRO laser was

installed, and a hierarchy for the power shut down of the amplifier stages was introduced.

5.6 Stabilization

To reach the necessary requirements for gravitational wave detectors, stabilization in the

relative power noise, frequency noise and the spatial beam profile have to be applied to the

fiber laser. The relative power noise was measured by a photo detector behind the laser box

of the fiber laser. This signal was used for an initial test of the power stabilization. For the

remaining measurements and stabilizations, the existing stabilization loops of the aLIGO

high power laser reference system should have been used, together with the fiber amplifier

actuators. Due to the malfunctioning of the fiber laser only the power stabilization could

be tested, in an initial state. The following sections explain the available actuators inside

the fiber laser, and the possible points for imprinting the correction signals. Finally, the

realized power stabilization and its performance is presented.
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5.6.1 Modulation and Attenuator

Three options for the power stabilization of the fiber amplifier are installed. The NPRO

used as a seed laser has a modulation input for the installed pump diodes. This input has

a high actuation coefficient but unfortunately a small bandwidth of only 100 Hz. A second

actuator is a current shunt built into the pump diode driver. This is connected to one of

the main amplifier pump diode and has the possibility of varying the power of the diode

by modulating its current. The last actuator is an electro-optic amplitude modulator from

Thorlabs (EO-AM-NR-C2). This is especially designed for high frequencies and can act

up to 100 MHz. For the frequency stabilization, the fiber amplifier can be stabilized to

the aLIGO reference cavity. First, the light of the fiber laser must be coupled through the

aLIGO pre mode cleaner, and is spatially filtered by it. For stabilizing the frequency the

same feedback points in the fiber laser are accessible as in the aLIGO high power oscillator.

They are using the same model of NPRO laser, and the same electro-optic modulator. The

frequency feedback is applied to a 4004 EOM from Newport, for high frequencies. For mid

frequencies the feedback is applied to the piezo of the NPRO and for low frequencies it is

applied to the temperature of the NPRO crystal.

5.6.2 Sensor

Three sensors are available for power stabilization. First, the monitor photo diode of

the pre amplifier. This has also been used for initial stabilization experiments with the

pre amplifier [43]. In order to properly stabilize the entire system, the main amplifier

monitor photo diode is provided. This is located outside the laser box behind the high

power Faraday isolator and was also used for the initial stabilization of the system. This

stabilization scheme is further explained in the next section. For later experiments the

power stabilization photo diodes of the aLIGO system should be used.

5.6.3 Servo

A servo was designed and built to stabilize the power at the pre amplifier and the main

amplifier. The feedback is applied to the current shunt of the laser diode driver of the pre

and the main amplifier pump diodes. A detailed description of the servo can be found in

[43].
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5.6.4 First Results

In figure 5.8, the result of the power stabilization of the fiber laser operated at 120 W is

shown. The feedback from the servo was applied to the to the current shunt. The main

amplifier photo diode was used as the sensor. This stabilization was not optimized, but

it was used as a function test for the actuator. It showed the basic functionality and an

improvement of the relative power noise was measured. Unfortunately, there has been a

malfunction in the main amplifier and no further experiments could be made within this

thesis.

5.7 Summary

As a possible next generation of high power single frequency lasers, a fiber laser prototype

from the LZH was under investigation. Its beam parameters were measured and compared

with the existing aLIGO high power oscillator. At a power level of 120 W, the fiber laser

is equal to the high power oscillator, in terms of frequency noise. The pointing noise

of the fiber laser is much better than the one of the aLIGO laser system. Additionally

the free running relative power noise, is up to two orders of magnitudes lower and the

implementation of power shunts allows an easy application of feedback signals. The

introduction of additional acousto-optic modulators is unnecessary. The compact and

simple set up of the fiber laser, is making it a desirable option for future gravitational

wave detectors. Additionally the fiber laser has a high conversion efficiency of 75 %,

in contrast to the aLIGO high power oscillator with an efficiency of only 20 % [33]. A

few more improvements have to be applied to the next generation of fiber lasers. The

promising measurements of the prototype already make it a auspicious candidate for the

next generation of gravitational wave detectors.





Chapter 6

Conclusion

For future interferometric gravitational wave detectors, lasers with an output power of

up to 500 W are required. Instead of solid state laser systems, fiber amplification are

a promising candidate. Besides total optical power also the power noise, frequency

noise, beam pointing fluctuations, and spatial beam parameters have to meet strict

requirements.

The current laser system of aLIGO provides frequency and power stabilized light at

the specifications required for the input optics chain. The laser system consists of a 2 W

non-planar ring-oscillator at a wavelength of 1064 nm, amplified to an output power of

35 W by four Nd:YVO4 crystals pumped at 808 nm. The high power oscillator, contains an

injection-locked ring oscillator with four Nd:YAG crystals delivering up to 200 W of output

power.

In the Chapter 3, the design and installation of the 35 W eLIGO amplifier, the photonic

crystal fiber, the mode filter, and the power stabilization for the the AEI 10 m prototype is

described. The experiments at the AEI 10 m prototype require up to 8 W of laser power. By

using a photonic crystal fiber a throughput of 20 W is possible without stimulated Brillouin

scattering. Additionally, the fiber serves as a mode filter, with 99.8 % in the fundamental

mode of the laser beam. To further clean the spacial mode, a triangular spacer mode

filter with a finesse of 1000 is installed. For power stabilization, the aLIGO photo diode

array was installed and the stabilization to a relative power noise of 2×10−9 /
p

Hz was

demonstrated.

In Chapter 4 two types of solid state amplifiers were characterized. The first one

is a two stage single frequency Nd:YVO4 amplifier with up to 8 W of output power. As

seed lasers, two different fiber coupled laser were used. An external cavity diode laser
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and a NPRO laser both with an output power of 20 mW and a wavelength of 1064 nm,

were tested and characterized together with the amplifier. It was shown that the power

noise is dominated by the pump current of the amplifier, and the good frequency noise is

transfered from the seed source to the amplifier. The second amplifier is a four stage solid

state system with an output power of 70 W. As a seed source, the aLIGO 35 W amplifier

was used. The frequency noise is on the same level as it is for the 35 W amplifier and the

power noise is only slightly increased. To have an intermediate solution for the power

increase of the upcoming sciences runs, it is planned to implement the 70 W amplifier

in the LIGO Livingston observatory. The VIRGO observatory is currently examining the

possible use of amplifying a 20 W seed laser with a solid state amplifier to 100 W of output

power.

However, the possibilities of solid state amplifiers are almost exhausted and systems,

such as the aLIGO high power oscillator are also not suitable for the next generation.

Systems with higher power and lower maintenance efforts and higher reproducibility are

required.

A fiber based single frequency amplifier was introduced in the chapter 5. In collabora-

tion with the Laser Zentrum Hannover, a two-stage fiber amplifier was developed which

consists of a 2 W NPRO as a seed laser and two fiber amplifiers, using ytterbium-doped

large-mode-area fibers with a pump wavelength of 976 nm. Both amplifiers have a gain

factor of 10 with a high optical-to-optical efficiency of 75 %. The resulting output power

is comparable to the aLIGO high power oscillator, delivering up to 180 W. One of the

advantages of this laser system is the use of actuators directly controlling the laser output

power. For power stabilization, each amplifier stage is equipped with a power-shunt

and an EO-AM is modulating the seed laser power. The technical feasibility of a long

term stable single-frequency amplifier was shown without photo-darkening or stimulated

Brillouin scattering. The fiber laser has a similar performance in frequency noise and

spatial beam profile as the aLIGO high power laser. The power noise and beam pointing

fluctuation are much better than with the aLIGO laser.

The fiber laser is a possible replacement for the current aLIGO laser. The reliability,

however, needs to be improved. The improvement of the fiber laser has already been

started within this thesis and a further cooperation between the AEI and the LZH, for

developing the next generation of fiber lasers, is established.

One possible solution to achieve the required 500 W of laser power for the third gen-

eration of gravitational wave detectors, is to coherently combine two high power lasers.

First experiments, combining the aLIGO high power laser and the fiber laser are started.
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The further step is to use two fiber amplifiers with an output of 250 W each, and combine

both.
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Fig. A.1 Mode matching in the AEI 10 m Prototype tank. Beam profile from the fiber
coupling to the mode filter. All components are marked with their position and their beam
properties.
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Fig. A.5 Layout of the reference table in AEI Grey room Starting with the 200 W high-power
oscillator and the 70 W solid state amplifier. The fiber amplifier can be seen with a DBB.
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Fig. A.6 Schematic representation of the temperature controller for temperature stabiliza-
tion of the two main amplifier coils.
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Fig. A.7
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