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Kurzzusammenfassung

Der englische Titel dieser Doktorarbeit lautet übersetzt Konstruktionserwägungen für zu-
künftige Erdschwerefeld-Satellitenmissionen und zur weltraumbasierten Laser-Interferometrie.
Diese erwähnten Satellitenmissionen messen sehr präzise den Satellitenabstand mittels Laser-
Interferometrie, der wiederum genutzt wird um die Erdanziehungskraft und damit die Mas-
senverteilung auf der Erde, weltweit und regelmäßig in bestimmten Zeitabständen, zu kar-
tographieren. Diese Karten sind hilfreich um geophysikalische Phänomene zu studieren, z.B.
den Klimawandel oder den Wasserhaushalt der Erde. Der erste Teil dieser Arbeit befasst sich
allgemein mit der Nutzlast und dem Zusammenspiel der Instrumente in solchen Satelliten-
missionen, während der zweite Teil sich der Laser-Interferometrie widmet.

Der erste Teil beginnt mit einer Einleitung zum Erdschwerefeld und zum Messprinzip
der Missionen, sowie einigen Randbedingungen, welche beispielsweise schon durch andere
Studien gegeben sind, z.B. die bevorzugten Umlaufbahnen der Satelliten betreffend. Eine
kohärente Beschreibung der Distanzmessung, welche die Erdschwereinformation beinhaltet,
wird von Grund auf hergeleitet; so werden z.B. die gravitativen Referenzpunkte auf den
Satelliten definiert und diskutiert. Die Messmethoden und Genauigkeiten der wichtigsten
Nutzlast-Instrumente werden zusammen mit anderen wichtigen Kennzahlen adressiert um
mathematische Modelle für die Genauigkeit der späteren Gesamtmessung zu erhalten. Dabei
wird Wert darauf gelegt zwischen zufälligem Rauschen und wohldefinierten oszillierenden
Fehlerquellen zu unterscheiden. Da letztere Störungen oft vernachlässigt werden, wird deren
mögliche Behandlung in der Datenprozessierung angerissen.

Die hergeleiteten Fehler- und Sensitivitätsmodelle für die finale Hauptbeobachtung und
für die einzelnen Instrumente werden genutzt, um die Genauigkeit der Erdschwerefeldbestim-
mung abzuschätzen. Dazu wird der sog. Beschleunigungsansatz verwendet, der im Wesentli-
chen eine Ende-zu-Ende Simulation liefert und es damit erlaubt, den Einfluss von verschiede-
nen Missionsszenarien aber auch von unterschiedlichen Instrumenten zu analysieren. Es wird
herausgestellt, dass zwei Satellitenpaare mit unterschiedlicher Inklination eine wesentlich ge-
nauere Messung des Erdschwerefeldes erlauben und somit eine vielversprechende Option für
zukünftige Missionen darstellen. Des Weiteren wird auf die Zentrifugalbeschleunigung der
Basislinie zwischen den Satelliten in einem Paar eingegangen, die in aktuellen Konzepten
mittels ungenauer GNSS Beobachtungen indirekt bestimmt werden muss. Deshalb werden
auch verschiedene Möglichkeiten einer direkteren Bestimmung dieser Beschleunigung evalu-
iert. Weitere mögliche Verbesserungen in zukünftigen Missionen betreffen die Nutzung sog.
Drag–Free Technologie und die Kalibration verschiedener Nutzlast-Instrumente untereinan-
der. Alles in allem beschreibt dieses Kapitel eine Vielzahl von Ideen und Optionen nachfol-
gende Satellitenmissionen zur Schwerefeldmessung weiterzuentwickeln.

Der zweite Teil dieser Arbeit geht auf die weltraumbasierte Laser-Interferometrie ein
und versucht einen systematischen Zugang zu diesem Gebiet zu liefern, welches bislang von
der Technologie-Entwicklung für die LISA und GRACE Follow-On Mission geprägt wird.
Nach einer kurzen Einführung in die Relativitätstheorie und in die optische Interferome-
trie, welche Aspekte wie Phasenbestimmung und interferometrische Signale umfasst, wird
ein Überblick über die zur Verfügung stehenden und weltraumgeeigneten Teilkomponenten
von typischen Interferometern gegeben. Anschließend wird Interferometrie anhand von funk-
tionalen Konzepten, welche u.a. Transponder- und sog. duale Einweg-Systeme einschließen,
diskutiert. Dazu werden zuerst Spezifika der optischen Implementierung außen vor gelassen,
aber im späteren Verlauf mit einbezogen. Eine detaillierte Beschreibung der Phasen bzw. der
äquivalenten Distanzbeobachtung wird für die verschiedenen funktionalen Konzepte herge-
leitet und miteinander bezüglich ihrer Sensitivität verglichen. Es wird herausgestellt, dass
die Genauigkeit der Instrumente zum einen durch Laserfrequenz-Rauschen und zum anderen
durch eine Suszeptibilität zur Satellitenausrichtung limitiert wird. Daneben werden weitere



mögliche Limitierungsfaktoren und deren Lösungsansätze besprochen, wie z.B. die Unsicher-
heit im Skalierungsfaktor, der einer beschränkten Messgenauigkeit der absoluten Laserfre-
quenz geschuldet wird.

Weiterhin wird angemerkt, dass eine präzise Beschreibung der Beobachtungsgleichungen
relativistische Effekte berücksichtigen muss, die durch die Bewegung der Satelliten und durch
das Erdschwerefeld verursacht werden. Dazu wird eine Herleitung und tiefgehende Analyse
präsentiert, welche die nötigen Methoden zur Korrektur dieser Effekte in der Datennachver-
arbeitung liefert und die auch bei GRACE Follow-On Verwendung finden kann.

Zum Schluss wird der optische Aufbau von Interferometern thematisiert. Referenzpunkte
werden eingeführt, welche eine elegante Charakterisierung der Abhängigkeit zur Satelliten-
ausrichtung erlauben. Zudem wird die Signalstärke der interferometrischen Messung beschrie-
ben. Verschiedene optische Layouts werden vorgestellt und bewertet. Auf Grundlage dieser
Betrachtung werden zwei unterschiedliche Layouts für Schwerefeldmissionen vorgeschlagen,
welche auch hinsichtlich ihrer Umsetzbarkeit und optimalen Kennwerte untersucht werden.

Schlagworte: Laser-Interferometrie, GRACE, Erdschwerefeld
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Abstract

This thesis addresses design considerations for space-borne satellite gravimetry missions,
which utilize precise inter-satellite ranging. These missions measure Earth’s gravity field and
provide valuable snapshots of Earth’s mass distribution on a regular basis. The data is used
to study geophysical phenomena such as, among others, climate change and the water cycle
on large scales. The first part of this thesis is concerned with the overall mission, payload
and system design, while the second part discusses space laser interferometry aboard the
satellites.

The first part starts with an introduction to the Earth’s gravity field, the measurement
principles and some boundary conditions on the mission design, which have been derived
in previous studies, for example, regarding the favored orbit height of the satellites. A
coherent description of the ranging observable, containing the gravity field information, is
provided starting from first principles and covering aspects such as the proper definition of
the gravitational reference points on the satellites. The measurement methods and accuracies
of the main payload instruments are discussed together with other key figures, which are
used to derive precise sensitivity models for this type of satellite mission. It is stressed that,
in general, two different types of measurement errors need to be distinguished: stochastic
fluctuations and deterministic sinusoidal errors. Handling of the latter in post-processing is
sketched, because this error type is often neglected in studies.

The derived sensitivity and error models for the final observable and for the individual
instruments are used to propagate the errors to the level of the gravity field using the so-called
acceleration approach. Thus, an end-to-end simulation is obtained, which is used to assess the
effect of different mission scenarios and instrument types onto the gravity field. It is pointed
out that the gain in gravity field accuracy with a dual pair mission with different inclinations
is significant and, hence, a viable option for future missions. Furthermore, the analysis
shows that the centrifugal acceleration of the baseline, formed by the satellite pair, needs to
be deduced from relatively imprecise GNSS observations. Different approaches to mitigate
this susceptibility by means of direct measurements are discussed. Other aspects regarding
potential improvements in future missions are addressed as well, namely, the utilization of
drag-free technology and the inter-calibration of different on-board instruments. In summary,
this thesis part provides a variety of ideas and option to advance future gravimetric missions.

The second part of this thesis on space laser interferometry attempts to provide a system-
atic approach to the field, which is mainly shaped by the technology development for the LISA
and the GRACE Follow-On mission, so far. After a brief introduction to relativity and optical
interferometry, which includes aspects such as phase-tracking and interferometric signals, an
overview on the available set of technology for the subsystems of typical laser interferometers
is given. Then, interferometry on the level of functional concepts is discussed, which includes
transponder-based ranging and dual one-way ranging but leaves out temporarily contribu-
tions related to the optical layouts. A detailed description for the phase or equivalent ranging
observable is derived for the different functional concepts and they are compared with each
other with regard to their sensitivity. It is shown that the precision of the instruments is
limited by laser frequency fluctuations and by a dependence on the satellite’s attitude. Other
potential limiting factors such as the scale factor uncertainty due to the limited absolute laser
frequency knowledge are also addressed together with mitigation concepts.

Furthermore, it is noted that an accurate description of the measurements requires the
consideration of relativistic effects, which arise due to the motion of the satellites and due
to the gravitational field. A derivation and in-depth analysis of these effects is performed,
yielding the necessary methods to remove these contributions in post-processing, which can
also be applied to the GRACE Follow-On laser ranging instrument.



In the end, the optical layouts and the implementation are thematized. Reference points
are introduced to characterize the S/C attitude dependent errors and the signal strength of
the phase measurement is discussed. Different optical layouts are assessed and novel layouts
based on the previous findings are proposed for future gravimetric missions. These are further
analyzed with the help of power budgets regarding their feasibility. Moreover, an exemplary
parametric study is performed to obtain the optimal parameters for the instrument design.

Keywords: laser interferometry, GRACE, gravity field
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Part 1

Design Considerations for Future
Geodesy Missions

Geodesy is the science of the measurement and mapping of the Earth’s surface [Helmert,
1880, 1884]. In [Seeber, 2003] the basic aims of geodesy are formulated as

1. Determination of precise global, regional and local three dimensional positions (e.g.
establishment of geodetic control).

2. Determination of Earth’s gravity field and linear functions of this field (e.g. a precise
geoid).

3. Measurement and modeling of geodynamical phenomena (e.g. polar motion, Earth
rotation, crustal deformation).

This first part of this thesis deals mainly with the second point, the measurement of Earth’s
gravity field, although interconnections and overlap also exist with the two other points.
Terrestrial measurements using gravimeters provide a good means for this in well-developed
regions. Complementary precise orbit determination of satellites in the vicinity to Earth with
Satellite Laser Ranging (SLR) from ground and with the Global Navigation Satellite System
(GNSS) provide large-scale information of the Earth’s gravity field [Bezdek et al., 2014; Jäggi
et al., 2011; Baur et al., 2014; Matsuo et al., 2013].

For resolving Earth’s small-scale gravity field structure and it’s temporal variations ded-
icated missions like GRACE (Gravity Recovery and Climate experiment, launch 2002) and
GOCE (Gravity field and steady-state ocean circulation explorer, 2009-2013) have been
proven to be vital [Tapley et al., 2004; Johannessen et al., 2003]. GRACE monthly snap-
shots of Earth’s gravity field have provided insights into processes within the system Earth,
consisting of oceans, solid Earth and atmosphere. The gain in understanding of our planet
and the associated importance for society and humankind manifested in the funding of a
GRACE Follow-On mission, which is currently being built. It is designed as a low-risk quick
successor mission, basically a copy of the GRACE satellites, aiming to provide continuity of
data streams with an increased sensitivity due to advances in technology. However, a major
change is the integration of a Laser Ranging Interferometer (LRI) technology demonstrator,
which shall prove the feasibility of laser interferometry between satellites and verify the in-
creased sensitivity of the ranging observable. The LRI has been developed by an US-German
collaboration with involvement of the AEI and the author of this thesis.

Due to the long development and lead times for space missions and space technology,
research and studies on future missions are continuously carried out in preparation for the
next mission calls by space agencies beyond GRACE Follow-On.

In 2013/2014 a collaborative study involving several institutes of geodesy, geoscience,
applied science, and industry partners was conducted and funded by the German Federal
Ministry of Research and Technology (BMBF). The efforts led to a comprehensive pub-
lished report [e.motion2 Team, 2014] providing a concept for a future mission with the name
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1.1. EARTH’S GRAVITY FIELD

e.motion2. At first, during the study, scientific requirements and needs were determined and
assessed, mission goals in terms of geoid accuracy defined, and technological and mission
constraints such as orbit configurations were derived and settled upon. Consequently, the
satellite and payload concept was elaborated, providing realistic models for the sensitivity
of observables. To complete the study, elaborated full-scale simulations were performed to
determine the quality of gravity field solutions and if the mission goals could be achieved.
The payload concept of e.motion2 was worked out as part of this thesis. The author was
responsible for the payload concept (work package 400 of the study).

This chapter starts with a short introduction on the structure and constituents of Earth’s
gravity field, which is the science objective of gravimetric satellite missions, in section 1.1.
Then basic concepts are introduced to measure it. In section 1.2, e.motion2 boundary con-
ditions are addressed, for example, why a particular satellite constellation was selected in
the study. In section 1.3 on the measurement principle of GRACE-like missions, the math-
ematical relation between observations and gravity field is elaborated. This can be based
on high-low satellite-satellite tracking (HL-SST), low-low satellite tracking (LL-SST), or a
combination of both.

To be able to recover the gravity field different observations by various instruments are
required, which are discussed with respect to their important parameters such as sensitivity
and errors in section 1.4 (Instruments and Observations). These instrument models are used
to derive the noise level in the HL-SST and LL-SST channel (section 1.6), which are finally
propagated to the level of gravity fields in section 1.7. This end-to-end simulation, which
relates the errors from the very first observation to the final gravity field solution, is used to
show the strength of the e.motion2 concept and to independently verify the result from the
study. Additionally, it also allows critical quantities in the processing chain to be revealed,
which should be addressed.

It turned out during the analysis that the centrifugal acceleration of the inter-satellite
baseline is not measured with sufficient precision, which makes in-situ approaches of gravity
field recovery undesirable in LL-SST missions. To circumvent the problem, dynamical refer-
ence satellite trajectories are derived, which are again susceptible to errors in the background
gravity field models. Hence, a precise direct measurement of the centrifugal acceleration
would be beneficial but turns out to be difficult. This is shown in section 1.8.

Another important aspect regarding drag-free utilization was addressed only briefly in
the e.motion2 report, and is therefore supplemented in section 1.9 of this thesis. Finally,
section 1.10 presents ideas for the integrated data analysis and calibration of instruments,
and section 1.11 completes part one of this thesis with a summary.

1.1 Earth’s Gravity Field

Earth’s gravity field is static to first order and a pronounced spatial dependency exists due
to Earth’s oblateness. The gravity acceleration at the poles is roughly 9.832m{s2 , while at
the equator it is 9.780m{s2 [Zhang, 2012, p. 66]. Thus, an object’s weight changes by roughly
0.5% between the two locations due to the different distances to the geocenter and the change
in centrifugal acceleration. If a best-fit ellipsoidal gravity field is subtracted from the actual
gravity field, the remaining spatial structure is of the order of ˘100mgal “ ˘1.0mm{s2
(peak-peak), a factor of 10´4 smaller. Commonly, Earth’s gravity field is expressed as a
particular equipotential surface, the so-called geoid. The geoid undulation (height) w.r.t. a
reference ellipsoid is globally between approximately ´100m and `85m. The distribution
of geoid height signal as a function of spatial frequencies, expressed as equivalent spherical
harmonic degrees, is shown by the upper dark blue trace in figure 1.1.
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PART 1. DESIGN CONSIDERATIONS FOR FUTURE GEODESY MISSIONS

1.1.1 Time-Varying Gravity Field

In addition to a large static part there are temporal variations of Earth’s gravity field. They
are of special interest, since they can be used to study mass transport within the system
Earth, e.g. ice mass losses at polar regions, sudden mass shifts due to earthquakes, changing
water resources and so on. In general, one should distinguish between tidal and non-tidal
temporal variations. Tidal variations of the gravity field are caused by gravitational pull
from other celestial bodies, especially from the Moon. The well-known ocean tides, which
reach water elevations of 60 cm over oceans and even higher in shallow regions, have, next to
the principal semi-diurnal component, several constituents with lower frequencies. The solid
Earth and atmosphere are also affected by tides. For example, the solid Earth tides result
in a periodic land uplift with 20-30 cm magnitude, which can be measured e.g. by means
of GNSS. If tidal effects are subtracted from the gravity field, non-tidal variations become
visible, which are often categorized as AOHIS [Gruber et al., 2011] :

❼ Atmosphere: e.g. distribution and propagation of pressure systems,

❼ Ocean: e.g. mass variations due to atmospheric and continental freshwater fluxes and
evaporation, changes in temperature, salinity, or surface height changes due to currents

❼ Hydrology: e.g. terrestrial water storage such as basins, rivers and groundwater,

❼ Ice: e.g. ice mass change in polar regions,

❼ Solid Earth: e.g. glacial isostatic adjustment and seismic deformations.

Many of these effects have a strong connection to weather phenomena and contain high
frequency signals with periods of hours to days. Space-borne gravimetry is sampling Earth’s
gravity field on a global scale and spatial coverage of measurement points is only sufficient
after a few weeks of integration for a gravity field map update. Higher frequencies in the
time-variable gravity field need to be subtracted using background models to avoid aliasing
of the high-frequency content into the (low-frequency) measurement. For this, the Geo-
ForschungsZentrum Potsdam (GFZ) is providing an atmosphere and ocean de-aliasing prod-
uct (AOD1B), which consists of a set of spherical harmonic coefficients (cf. next subsection),
which are updated every 6 hours and are derived from meteorological and ocean models. The
mean monthly non-tidal AOHIS signal is shown in figure 1.2. It was obtained by forward-
modeling [Gruber et al., 2011]. These traces indicate the time-variable components of the
gravity field, which one aims to measure with GRACE-like missions. The typical precision of
gravity field solutions derived on a periodic basis is illustrated in figure 1.3. Please note that
figure 1.3 shows the difference between a static gravity field (Eigen-6c4) and, for example,
monthly gravity field solutions. As is apparent from the plot, the GRACE monthly gravity
field solutions can recover the AOHIS signal up to SH degree « 40.

1.1.2 Observation Techniques

Space-borne geodesy aims to map Earth’s static and temporal gravity field on a global scale.
The gravity field is dependent on the mass distribution within the system Earth. One goal of
geodesy is to determine the gravitational potential function, V pt, x, y, zq, which is in general a
function with spatial and temporal dependency. For simplification it is often assumed that all
mass is concentrated within a sphere (with mean Earth radius a), so that the potential fulfills
the Laplacian equation ∇2V “ 0 for exterior points. In this type of boundary condition the
gravity field outside the sphere is fully determined by a potential function defined on the
sphere. This function is often expressed in terms of a series expansion of global spherical
harmonics (SH) [Barthelmes, 2009] with degree l and order m:

V pr, ϕ, θq “ GM

r
¨

8ÿ

l“0

lÿ

m“0

´a
r

¯l
Pl,mpcos pθqq ¨ rcos pmϕq ¨ Cl,m ` sinpmϕq ¨ Sl,ms. (1.1)
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Figure 1.1: Static gravity field models derived by GRACE, Champ, GOCE, Gravimetry
(G) and Altimetry (A). The upper dark blue trace is the signal of the Eigen-6c4 model,
which contains GRACE, GOCE, Gravimetry and Altimetry information. The other traces
are computed as the difference to the Eigen-6c4 model.

Figure 1.2: Mean of monthly signal in terms of spherical harmonic degree variances for
different AOHIS components (colored traces) compared to mean monthly error of GRACE
derived fields (dashed black line). Plot from [Gruber et al., 2011] under Creative Commons
Attribution 3.0 License.
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Figure 1.3: Typical signal and error content in gravity field solutions derived on a regular
basis with different integration times, e.g., 7 days and 1 month, for CHAMP (green trace)
and for GRACE (red, magenta and light blue traces). The black traces indicate the monthly
variability of the gravity field due to ocean and atmospheric effects derived from AOD1B.
The gray bold trace indicates an upper limit for the time-variable gravity field averaged over
one month, which is the sum of the single components shown in figure 1.2. CSR and DMT
denote two different processing centers and schemes.

However, in recent years expansions or supplementations with local basis functions also came
into focus [Naeimi, 2013]. The SH-coefficients Cl,mptq and Sl,mptq fully determine the gravity
field. The equation refers to a co-rotating Earth-fixed coordinate frame and the coordinates
r, λ, θ denote spherical coordinates. One should note that the orbit height or radial distance
r attenuates coefficients of degree l with 1{rl in the potential V , while the acceleration,
defined as the spatial gradient of the potential ~∇V , is attenuated already by 1{rl`1. The
gravity gradient, the second spatial derivative of the gravity potential, is attenuated by 1{rl`2,
where r is measured from the center of the Earth.

If one aims to compute the physically correct acceleration of a satellite in an Earth-
fixed frame, eq. (1.1) needs to be supplemented by the non-harmonic centrifugal potential
[Barthelmes, 2009, eq. (4)], which accounts for the centrifugal acceleration present in a ro-
tating frame, as well as by the Coriolis acceleration if the object is moving in the Earth-fixed
frame. The Euler acceleration needs to be considered if the angular velocity of the frame is
not constant.

Several means exist to access the potential or its functionals. The three most prominent
principles of space-borne gravimetry are introduced in the following sections:

Gravity Field from Orbit Trajectory

A free-falling satellite within a spherically symmetric gravity field, without disturbances
from atmosphere and other celestial bodies, will orbit the central body in a closed elliptical
(Keplerian) trajectory, if relativistic effects are neglected. Higher moments of the gravity field,
small deviations from the sphericity of the gravity field, induce disturbances in the trajectory,
which can be measured by means of SLR or GNSS. From these, low degree coefficients Cl,mptq
and Sl,mptq can be computed, as shown in the case of the LAGEOS and CHAMP satellites
[Jäggi et al., 2012]. The limited accuracy of orbit tracking of millimeter to centimeter and
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1.1. EARTH’S GRAVITY FIELD

disturbances such as atmospheric drag allow only large-scale features of the gravity field to be
retrieved. The temporal variations of these coefficients have seasonal and annual components
as well as long-term drifts. The residual atmosphere produces drag accelerations, which can
be mitigated by flying at higher altitudes with the detrimental effect of a lower gravity signal
amplitude. Alternatively, the drag acceleration can be measured using accelerometers and
subtracted later in post-processing.

Gravity Field from Satellite-Satellite Tracking

The determination of absolute 3-d positions w.r.t. the Earth is, in general, less accurate than
the measurement of distance changes between close objects, e.g. a pair of satellites. The dis-
tance between close free-falling satellites is influenced by gravitational and non-gravitational
effects and can be read out with high precision via low-low satellite-satellite tracking (LL-
SST). The non-gravitational part can be measured with accelerometers and removed from
the observations. With GRACE one can retrieve spherical harmonic coefficients for the static
field up to degree 180, which corresponds to a spatial (half-wavelength) resolution of approxi-
mately 110 km. Monthly solutions are usually determined up to degree 90 [Dahle et al., 2012,
GFZ RL05], which corresponds to approximately 220 km spatial half-wavelength resolution.
In case of GRACE, the satellites are separated by approx. 220 km.

Gravity Field from Gradiometry

The concept of differential measurements can be extended to multiple close objects, e.g. test-
masses on a single satellite. By measuring their relative acceleration, or equivalent distance
changes, one can form a short-arm gradiometer. Such a setup with six accelerometers has
been used in the GOCE mission, which was capable of retrieving all six degrees of the gravity
gradient tensor. The short baseline nature yields the best sensitivity for high-degree coeffi-
cients. However, a lower orbit and longer integration times compared to GRACE are essential
in order to resolve the weak fine-structure of the static gravity field. The temporal AOHIS
signals of such high-degree coefficients (up to l « 1800) are below the instrument sensitivity.
The sensitivity at low degrees (below 50) for an integration time of one month is insuffi-
cient for resolving the time-variable gravity field. However, use of gradiometry for resolving
the time-variable gravity field is under investigation, for example, within the collaborative
research center geo-Q at the Leibniz University of Hannover1.

Data Fusion

Generally, the measurement quality benefits from an increased number of independent ob-
servations. A GRACE-like mission can exploit information from the precise satellite-satellite
link as well as from orbit trajectory to retrieve the gravity field. The combination of gradiom-
etry and satellite-satellite tracking could be considered. The most accurate gravity models
are obtained from a combination of satellite measurements with terrestrial observations.

However, from a satellite mission design perspective, it is also necessary to justify a space
mission by pointing out a stand-alone benefit to science and society. Therefore, e.motion2

and other studies usually define science objectives in terms of geophysical phenomena to be
observed, or in terms of gravity field resolution. Since this thesis focuses on technology aspects
and system design, the interested reader is referred to [e.motion2 Team, 2014, chapter 2] for
detailed scientific objectives.

1.1.3 Geodesy and Fundamental Gravitational Physics

Measuring the gravity field unavoidably leads to the question on the nature of gravitation. For
most terrestrial applications, the Newtonian description from 1687 as an instantaneous force

1Project B07: http://www.geoq.uni-hannover.de/
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PART 1. DESIGN CONSIDERATIONS FOR FUTURE GEODESY MISSIONS

acting between masses is sufficient. However, the Newtonian formalism is prone to deficiencies
(e.g. perihelion shift of Mercury), which were resolved by Albert Einstein’s General Theory
of relativity (GR) in the beginning of the 20th century. In the framework of GR, space and
time are merged to a four-dimensional spacetime and gravitation is a fictitious force arising
from the curvature of spacetime. This curvature is caused by mass, or equivalently by energy,
through E “ mc2. Thus, measuring Earth’s gravity field is equivalent to the determination
of the curvature of spacetime.

Newton’s first axiom states that force-free objects rest or move with constant velocity
along a straight line. In the Euclidean space, a straight line is the shortest connection
between two points. In GR, a free-falling object is moving along so-called geodesics, which
are the shortest connection between arbitrary points in the 4d-spacetime. The metric of
the spacetime, which defines distances and therefore the trajectory, is connected through
Einstein’s field equations directly to the mass (and energy).

By tracking the orbital trajectory of an ideally free-falling satellite, in other words by
recording its position at certain times, one obtains the 4-dimensional spacetime trajectory,
the geodesic. With this, one can derive the spacetime curvature, known as the gravity
field. The same is achieved by measuring distance changes between free-falling test-masses,
e.g. between GRACE satellites or within a GOCE gradiometer. Earth’s static and time
variable gravity field is equivalent to a static and time-variable spacetime curvature.

Recall that distances, and therefore also positions, are defined by the speed of light c,
i.e. pathlength of light rays in vacuum. In the case of GNSS, position is determined by means
of the travel time of electromagnetic waves. Electromagnetic waves, in particular light, is our
ruler for spacetime. Much research at the AEI is focused on building instruments, which can
read this ruler with ever higher precision.

One such instrument is the planned Laser Interferometer Space Antenna (LISA) [Danz-
mann et al., 2017] mission. It will measure tiny ripples in space-time, so-called gravitational
waves (GW), which propagate through the universe at the speed of light and are generated
by accelerated masses. Due to spacetime’s stiffness, only massive cosmic bodies like stars
and black holes are supposed to produce GW with sufficient amplitude to be detected in our
solar system.

Such waves were predicted by Einstein in 1916 [Einstein, 1916]. Their existence has been
shown indirectly by Hulse-Taylor in 1974 [Hulse & Taylor, 1975], who were rewarded with a
Nobel prize in 1993. On 14th September 2015, the ground-based LIGO detectors succeeded in
the first direct measurement [LSC, 2016]. However, such ground-based detectors are limited
to frequencies above « 10Hz, where disturbances from Earth are manageable. The low-
frequency regime containing most of the gravitational wave sources can be covered by LISA.
LISA can be placed far away from Earth, such that variations in spacetime curvature due to
Earth are sufficiently small.

The spacetime measurements mentioned in this section rely on the measurement of dis-
tance or length changes. The ratio of sensitivity of length measurement, expressed as m{

?
Hz,

and the actual distance between the probing masses, yields the so-called strain sensitivity with
units of 1{

?
Hz. It is a measure of the sensitivity of the spacetime curvature measurements.

In figure 1.4, the acceleration noise and corresponding strain sensitivity are depicted for dif-
ferent instruments. This illustrates that fundamental physics, such as gravitational wave
physics, and the science of precise determination of Earth’s gravity field are closely related.
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Figure 1.4: (Top:) Sensitivity of different instruments and means to probe spacetime curva-
ture expressed as acceleration noise. One should keep in mind that the different instruments
aim to measure different effects (signals) of spacetime curvature, i.e. Earth gravity missions
map the spatial form/distribution, while gravitational wave instruments detect propagating
waves. (Bottom:) Upper plot rescaled to strain sensitivity.

8



PART 1. DESIGN CONSIDERATIONS FOR FUTURE GEODESY MISSIONS

1.2 E.motion2 Boundary Conditions

1.2.1 Previous Studies

The satellite gravimetry missions GRACE, CHAMP, GOCE and GRACE Follow-On have re-
sulted in over 17002 scientific publications to date. Continuously, papers are released concern-
ing ideas, concepts and analysis of future geodesy missions. For example, Sneeuw et al. [2005]
pointed out various (geophysical) science objectives and corresponding sensitivity require-
ments and, furthermore, simulated different cases of high-altitude, gradiometry, GRACE-like
and other satellite formation missions with a quick-look tool. The analysis is limited to static
gravity field recovery and uses various simplifications (e.g. no accelerometer noise). Bender
et al. [2003] suggested laser interferometry along a single axis in a GRACE-like configuration
and along two axes in a Cartwheel configuration. In a later paper, a dual pair GRACE con-
cept with inclinations of 90˝ and 63˝ was suggested for an improved temporal resolution and
therefore a reduction of temporal aliasing [Bender et al., 2008]. Elsaka [2010] analyzed various
formations in his PhD thesis, e.g. Pendulum, Cartwheel, LISA-like, Bender, with regard to
the retrieval of the static and temporal gravity field by means of satellite-to-satellite tracking.
He emphasized that pure along-track measurements as in GRACE introduce anisotropy and
are therefore suboptimal and should be complemented by measurements along the radial or
cross-track component. In addition, it is stated that the proper selection of orbits can sup-
press errors induced by temporal aliasing. Loomis et al. [2012] used different accelerometer
and ranging noise levels to assess the gain by advanced missions. He concluded that a gain
solely in ranging sensitivity does not improve gravity field solutions. Instead, a reduction
of accelerometer errors, e.g. a drag-free mission, and the reduction of temporal aliasing is
required. In [Flechtner et al., 2016] the expected enhancement of gravity field solutions due
to the laser interferometer was analyzed for the GRACE Follow-On mission. The simulation
spanning 5 years predicts a modest gain for the fine structure due to the interferometer, but
accelerometer noise and background model errors are still major contributors to the overall
error.

Other comprehensive resources concerning science objectives and conceptual mission de-
signs are [Rummel et al., 2003] and [Koop & Rummel, 2007].

Additionally, specific studies containing derivation of scientific requirements, formulation
of mission scenarios and of instrument concepts, and end-to-end simulations have been con-
ducted [Alenia-Team, 2010; NG2-Team, 2011; Reubelt et al., 2014]. The precursor of the
e.motion2 study, on which this thesis focuses, was the e.motion study [e.motion Team, 2010].
In Europe, the term Next Generation Geodesy/Gravimetric Missions (NGGM) is coined for
such future missions, with e.motion2 being the German NGGM-D study.

1.2.2 Observation Type and Number of Satellites

The e.motion2 mission concept is designed to study the mass transport within the system
Earth, in particular to track mass changes on Earth over a long period of 10 years with
monthly sampling. As pointed out in previous sections, the strength of a GOCE-like gra-
diometry mission is its ability to provide a finely resolved global gravity field map, but it
requires a long period to obtain global coverage. Hence, it is well suited for the static gravity
field. In addition, the low altitude of a GOCE-like mission requires drag-compensation, which
limits the mission lifetime due to propellant constraints. Therefore, the e.motion2 concept
was based on GRACE-like low-low satellite-satellite tracking (LL-SST). Different pendulum
constellations, as well as a dual-GRACE, so-called “Bender” configuration [Bender et al.,
2008], were considered in the study. More sophisticated formations such as a Cartwheel
have been suggested in literature [Bender et al., 2003] but impose technological challenges,

21369 for GRACE and 11 for GRACE Follow-On according to GFZ website (http://www.gfz-potsdam.
de/sektion/globales-geomonitoring-und-schwerefeld/publikationen/), 333 for GOCE according to ISI
Web of Knowledge search (http://apps.webofknowledge.com/)
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e.g. due to higher relative velocities and formation control, and were therefore not considered
for e.motion2.

As various analyses have shown [Elsaka, 2010; Pour et al., 2013], pendulum formations
with two satellites, as well as the Bender configuration with four satellites, outperform the
classical GRACE concept. However, since a Heisenberg-like uncertainty relation holds, the
product of spatial resolution Dspace and temporal resolution Dtime of gravity field maps is
bounded for a fixed number of measurement links or SST pairs [Pour et al., 2013],

Dspace ¨Dtime ě const. (1.2)

Thus, further improvement requires an increase in measurements, e.g. by a second pair. A
dual pair GRACE mission doubles the measurement points, thus, leading to an improvement
of a factor of

?
2 at least, compared to a single GRACE pair. The gain is even larger due to

reduction in temporal aliasing. Pour et al. [2013] claim a gain factor between 10 and 15 for a
Bender configuration over a single in-line pair for 6-day short-period gravity field solutions.

The superior sensitivity of the Bender configuration w.r.t. a Pendulum for degrees below
60, which contain most of the time-variable signal, was identified in [e.motion2 Team, 2014,
Figure 3-5, p. 25]. Furthermore, the fact that the Pendulum configuration has already been
analyzed in the precursor e.motion study [e.motion Team, 2010] led to a selection of the
Bender configuration as baseline for e.motion2.

1.2.3 Inclination

The inclination of a single satellite pair in a gravimetry missions is usually close to 90˝.
Such a polar orbit ensures coverage of the poles, which are of special interest for geoscience
e.g. due to ice mass loss by global warming. Due to the rotation of the Earth underneath the
satellites, the ground-track pattern can achieve global coverage. One should note that the
poles are crossed at each orbital revolution, while a particular point on the equator may have
long periods between subsequent passes. Usually, the orbits are not exactly polar to avoid
numerical difficulties. Moreover, a small polar gap can increase the coverage in non-polar
regions and can even improve retrieval of particular spherical harmonic coefficients [Elsaka,
2010].

The inclination of a second pair should be significantly smaller to achieve a more ho-
mogeneous global distribution of data points and, in addition, add measurements along the
East-West direction, which helps to reduce the anisotropy and striping in GRACE gravity
field solutions.

Obviously, a four satellite mission is rather demanding concerning funding aspects, so
that a collaborative mission between different space agencies should be envisaged. In the
e.motion2 study the inclination of the second pair was chosen based on a parametric analysis
[e.motion2 Team, 2014, sec. 3.3] such that the second pair can still provide a stand-alone
benefit by means of global gravity field maps, e.g. significant portions of ice mass regions are
covered. Finally, an inclination of 70˝ was selected for the second pair.

1.2.4 Altitude and Groundtrack Repeat Cycle

The selection of altitude and inclination determines the ground-track pattern or equivalently,
the distribution of measurement points over the sphere. While the GRACE altitude is nat-
urally decaying, the pattern changes and might result in short repeat cycles, whereas the
e.motion2 concept envisions an orbit control with a fixed repeat pattern and homogeneous
distribution of measurements over the sphere during the whole mission lifetime. In addition,
as shown for example in [Murböck et al., 2014], the effect of temporal aliasing by tidal and
non-tidal effects in gravity field maps can be suppressed by using particular altitude bands,
e.g. 294 km´309 km, 360 km´370 km, 416 km´426 km or 479 km´495 km. This is based on
the idea of shifting the strongest orbital resonances to high SH orders and therefore SH de-
grees, such that the low degrees and orders containing the monthly time-variable gravity field
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are less affected by temporal aliasing. These orbital resonances are also discussed in [Sneeuw,
2000].

The orbital repeat pattern is usually denoted as the ratio of an integer number of orbital
revolutions β over a period of integer nodal days α. For the e.motion2 concept, long-term
repeat cycles of β{α “ 478{31 for the polar pair and β{α “ 474{31 for the second pair were
selected. These cycles are achieved at orbital altitudes of 434 km and 441 km, respectively. In
addition, Pour et al. [2013] showed that such ground-tracks have subcycles, which also allow
retrieval of 6-day snapshots of Earth’s gravity field, which in turn can help to de-alias the
monthly solutions [Wiese et al., 2011].

In the e.motion2 study technological feasibility with regard to drag compensation and
maintenance of orbit height over a decade was analyzed for altitudes around 455 km and
366 km. For an altitude of 366 km a combination of cold-gas propulsion for attitude control
and electric propulsion (µRIT) for drag compensation was suggested, with propellant demand
of approx. 22 kg for nitrogen and xenon for 10 years. A pure cold-gas system seems feasible
at orbit heights above 400 km with approx. 60 kg propellant, and was selected as baseline in
the e.motion2 study.

1.3 E.motion2 Measurement Principle

The rationale behind the selection of two satellite pairs in a LEO orbits for the e.motion2

study was pointed out in previous sections. Each satellite can exploit high-low satellite
tracking, while each pair enables low-low satellite tracking, as introduced in section 1.1.2
(Observation Techniques) to determine Earth’s gravity field. In the following subsections,
the relation between observations and SH coefficients of Earth’s gravity field is elaborated.

1.3.1 Properties of Gravity Field Induced Signals

The determination of Earth’s gravity field by means of low-low satellite tracking (LL-SST)
can be described by the measurement of a differential gravitational acceleration between two
satellites projected onto the line-of-sight given as

δagptq “
´

pR ¨ ~∇V p~rGRP2q ´ pR ¨ ~∇V p~rGRP1q
¯

¨ ~e12, (1.3)

with ~rGRP1,2 denoting the position of the gravitational reference point (GRP) of each space-

craft and where pR is a rotation matrix, transforming the Earth-fixed pseudo-acceleration3 to
an inertial frame. An idealized case is assumed, where the spacecraft are point masses and
the GRP coincides with the center-of-mass and center-of-gravity. Non-conservative forces
and gravitational perturbations from other celestial bodies are omitted. The vector ~e12 is
the normalized direction vector between the two GRPs in the inertial frame. The functional
in eq. (1.3) is denoted as “projected differential gravitational acceleration” (PDGA) from
now on. It can be evaluated using the spherical harmonic expansion from eq. (1.1) and the
relation ~agp~rq “ `~∇V p~rq with geodesy-typical sign convention, in contrast to the common

expression ~agp~rq “ ´~∇V p~rq in physics.
The result can be written as Fourier sum of the form

δagptq “
lmaxÿ

l“0

lÿ

m“0

ql,mÿ

q“0

p cos p2πfl,m,qt` αl,m,qq ¨ Cl,m ¨ c̄l,m,q

` sinp2πgl,m,qt` βl,m,qq ¨ Sl,m ¨ s̄l,m,qq, (1.4)

where the amplitudes (c̄l,m,q, s̄l,m,q), frequencies (fl,m,q, gl,m,q) and phases (αl,m,q, βl,m,q) are
dependent on the orbits of the satellites. Each spherical harmonic coefficient of particular

3This is a pseudo-acceleration, because the gradient of the SH potential does not include the centrifugal
acceleration apparent in a rotating Earth-fixed frame.
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degree l and order m produces a comb of sinusoidal signals in the PDGA, as illustrated in
figure 1.5 for a particular polar orbit. The magnitude of each trace in figure 1.5 is already
scaled by the SH coefficient of a typical Earth gravity field (model). However, if the traces
are normalized to unity SH coefficients, these traces can be understood as a basis for the
PDGA signal. Decomposition of the PDGA signal into this basis yields the SH coefficients.

Another approach for space gravimetry is to use high-low satellite tracking (HL-SST) of
individual satellites by means of GNSS. This allows to retrieve the 3-d position. Forming
time-derivatives yields velocity and acceleration. Assuming that the state vector ~rGRP1 is
given in the inertial frame, the gravitational acceleration :~r1,gptq can be written as:

:~r1,gptq “ pR ¨ ~∇V p~rGRP1q. (1.5)

Each vector component can be expanded in the same manner as in eq. (1.4) into a Fourier
sum, and a very similar plot to figure 1.5 can be obtained. Expression (1.5) will be denoted
as “direct acceleration” (DA).

Since the spatial (full-wavelength) resolution Λ of coefficients with degree l on Earth’s
surface is [Barthelmes, 2009]

Λplq « 40000 km

l
, (1.6)

the gravitational signals δagptq and :~r1,gptq contain information with frequencies smaller than

f ă v

Λplq , (1.7)

where v is the mean spacecraft velocity of approximately 7.6 km{s in LEO. This provides an
approximate relation between SH degree l and the measurement frequency. For l “ 52, the
full-wavelength resolution is 770 km and the frequency cut-off is at roughly 9.8mHz, as shown
in figure 1.5. In contrast, l “ 200 has a full-wavelength resolution of 200 km and frequencies
below 38mHz (not shown).

The PDGA observation δagptq and the DA observation :~r1,gptq do not consist of single
coefficients but of a superposition of several thousand coefficients at the same time. This
produces a quasi-continuous signal in the frequency domain. Exemplary spectra of the pro-
jected gravitational acceleration (PDGA) for different satellite separations L and orbit heights
h are shown in figure 1.6. They are based on pure gravitational accelerations derived from
the static EGM96 gravity field model. One can see that the signal amplitude scales with the
satellite separation (baseline length) L, which is expected as long as the spatial resolution of
SH coefficients is larger than the baseline length L. If the baseline length approaches the spa-
tial wavelength of particular coefficients, a common-mode suppression appears (cf. [Sneeuw,
2000, Section 4.4]), but this is usually not very pronounced in the final gravity field solutions.

The satellite altitude alters the roll-off frequency in figure 1.6, which is known in geodesy
as upward continuation acting as strong low-pass filter [Zhu & Jekeli, 2007]. With lower
altitude, one can resolve higher frequencies and thus higher spherical harmonic coefficients.
In case of the direct gravitational acceleration :~r1,gptq, upward continuation is also present.
However, the signal is obviously independent of the baseline length L.

1.3.2 Remark on Spectral Densities

A remark is given on the difference between the representation of data as spectrum and as
spectral density : The PDGA signal in figure 1.6 is plotted as a spectrum and not as a spectral
density, because the PDGA signal is the superposition of several thousand single tones and
the tone amplitude and power is correctly displayed in an amplitude spectrum (AS) or power
spectrum (PS), as long as the spectral resolution of the spectrum is sufficient. If the bin-
width of a spectral estimation is larger than the frequency separation between two tones, they
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Figure 1.5: Signal in the projected differential gravitational acceleration due to particular
spherical harmonic coefficients shown as a spectrum. The spacecraft separation is 200 km at
an orbit height of 400 km. The magnitude of the individual traces/coefficients is based on a
typical Earth gravity field (EGM96 model).
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Figure 1.6: Typical spectra of projected differential gravitational acceleration for different
satellite separations L, orbit height h and truncation degree of the SH expansion. A lower
altitude increases the roll-off frequency, such that higher degrees of spherical harmonics are
observable. The light blue trace contains only spherical harmonics up to degree 50.
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may fall into the same frequency bin and are shown as a single peak with the combined tone
power. Ideally, a power spectrum is the visualization of the integrated power in a frequency
bin, and the amplitude spectrum is simply the square root of the power spectrum.

Recall that noise is a stochastic process and is characterized by a well-defined power
spectral density, i.e. power at particular Fourier frequency in a 1Hertz bandwidth. Noise has
a continuous distribution of power in the frequency domain, while the power of sinusoidal
tones is concentrated at single discrete frequencies. Hence, the noise level in a spectrum is
proportional to the frequency resolution, while the peak height of tones is independent of the
frequency resolution.

Thus, a spectrum is not the correct means for visualizing noise in the frequency domain
and spectral densities are used. Loosely speaking, a power spectral density (PSD) is a power
spectrum (PS) divided by the frequency resolution, which is the bin-width of the spectral
estimation. The frequency resolution fres of a single periodogram, consisting of a single
discrete Fourier transformation of a discrete time-series, is given by

fres “ N{fs “ 1{T, (1.8)

where N is the number of samples, fs the sampling frequency and T the total duration of
the time-series.

Noise in a spectral density plot is independent of the frequency resolution. However, the
peak height of sinusoidal signals is proportional to T “ 1{fres in a power spectral density
plot or proportional to

?
T in an amplitude spectral density plot. Thus, it is not possible

to display signal (tones) and noise meaningful in a single frequency domain plot, unless the
frequency resolution is provided to recover the corresponding amplitude without ambiguity.

Correct spectral estimation is even more complicated, as the frequency response of a
discrete Fourier transform is widened due to the finite time series. Hence, for precise spectral
estimates, one needs to apply window functions, which can either be optimized for obtaining
the correct noise spectral density or for obtaining the correct peak height of tone signals. For
a detailed description of the topic, the reader is referred to [Heinzel et al., 2002].

With window functions, the important quantity to convert from a spectrum to a spectral
density and vice versa is not the frequency resolution fres but the so-called “equivalent noise
bandwidth” (ENBW):

ASD2 “ PSD “ PS{ENBW “ AS2{ENBW. (1.9)

As a good practice, all spectral domain plots within this thesis show the ENBW.

The distinction between a sinusoidal tone signal and noise becomes unclear, if the signal
contains so many tones that its power can be considered quasi-continuous in frequency, as
it is the case for the PDGA signal in figure 1.6. The frequency resolution of the spectral
estimate is larger than the mean separation between tone frequencies and the power in most
frequency bins is not dominated by a single tone frequency but by various tone frequencies
within each bin. In such a case it makes sense to also use a spectral density, as it provides
the average power per bandwidth and a quantity, which is independent of the frequency
resolution, i.e. length of time-series.

However, the large peaks apparent at the first integer multiples of the orbital frequency
in figure 1.6 are dominating the corresponding bin power at these frequencies, so that the
peak height needs to be derived from a spectrum in units of m{s2 instead of m{ps2

?
Hzq.

1.3.3 Projected Differential Gravitational Acceleration (PDGA)

The PDGA definition from eq. (1.3) needs to be related to the observations, in particular the
ranging observable. For this purpose one considers

❼ the gravitational reference point (GRP) trajectories ~r1ptq and ~r2ptq of both S/C,
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❼ the connecting line ~r12ptq “ ~r2ptq ´ ~r1ptq, ~e12ptq “ ~r12ptq{|~r12ptq|

❼ the inter-satellite distance ρptq “ |~r12ptq| “
?
~r12 ¨ ~r12,

❼ the non-gravitational accelerations ~ang,1ptq and ~ang,2ptq acting on the GRP and caused
e.g. by atmospheric drag,

Computing the first time-derivative of the inter-satellite distance ρ yields

9ρ “ ~r12 ¨ 9~r12?
~r12 ¨ ~r12

“ ~e12 ¨ 9~r12, (1.10)

while the second-time derivative can be expressed as

:ρ “ ~e12 ¨ :~r12 ` 9~e12 ¨ 9~r12, (1.11)

where the acceleration vector between the two satellites :~r12 is influenced by gravitational and
non-gravitational effects:

:~r12 “ pR ¨ ~∇V p~r1q ` ~ang,1 ´ pR ¨ ~∇V p~r2q ´ ~ang,2

“ pR ¨ xMp~r1, ~r2q ¨ ÝÑ
CS ` ~ang,1 ´ ~ang,2, (1.12)

where pR is simply a rotation matrix transforming from the Earth fixed to the inertial frame.
Since the gravitational acceleration (and potential) is a linear function of the SH coefficients,
one can write all spherical harmonics coefficients into a vector

ÝÑ
CS and use a convenient

matrix-vector notation to compute the potential V or the gradient of the potential ~∇V . The
matrix xM is the so-called design matrix. Finally, by exploiting 9~e12 “ 9~r12{ρ ´ ~r12 ¨ 9ρ{ρ2 and
by re-arranging the desired SH coefficients to the left-hand-side one easily arrives at

~e12 ¨ pR ¨ xMp~r1, ~r2q ¨ ÝÑ
CSlooooooooooooomooooooooooooon

PDGA

“ :ρ´ ang,1,LOS ` ang,2,LOS ´
˜

| 9~r12|2
ρ

´ 9ρ2

ρ

¸
(1.13)

“ :ρ´ pang2,LOS ´ ang1,LOSq ´
9~r 2
12,K
ρ

(1.14)

“ :ρ´ pang2,LOS ´ ang1,LOSq ´ |~ωLOS|2 ¨ ρ, (1.15)

where 9~r12,K is the relative transversal velocity between the spacecraft, i.e. perpendicular to
the line-of-sight, and ang,LOS “ ~ang ¨ ~e12 is the non-gravitational acceleration along the line-
of-sight. The third term on the right hand side can also be written in terms of the angular
velocity ~ωLOS “ p~r12 ˆ 9~r12q{|~r12|2 of the constellation baseline (cf. eq. (1.15)), showing that
the third term is a centrifugal acceleration. Eqs. (1.13)-(1.15) are powerful, since they provide

a linear relation via the design matrix xMp~r1, ~r2q between spherical harmonic coefficients
ÝÑ
CS

and observables such as ranging and accelerometer data at each point in time. In the so-called
classical acceleration approach, the gravity field SH coefficients are determined by solving the
linear equations (1.13)-(1.15) in a least-squares sense for

ÝÑ
CS, which also allows the easy

propagation of errors and noise from the observations into the final gravity field solutions.
Due to the epoch-wise and in-situ nature, the acceleration approach is also well suited to
handle data gaps.

The typical magnitudes of the first ranging and third centrifugal term on the right hand
side of eq. (1.15) are illustrated with red and green traces in figure 1.7. One notices that the
magnitude of the ranging term and centrifugal acceleration is comparable at low frequencies,
while at high frequencies the latter rolls off more quickly.

Unfortunately, the relative transversal velocity 9~r12,K or the angular velocity ~ωLOS cannot
be measured with sufficient sensitivity, as will be discussed in subsequent sections, making this
straightforward approach impractical for real mission data processing [Ellmer, 2011; Naeimi,
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Figure 1.7: Typical spectral density of the projected differential gravitational acceleration
(green trace) using a static gravity field model up to degree 180, spacecraft separation of
200 km and orbit height of 400 km. The range acceleration :ρ is shown in red, while non-
gravitational accelerations are omitted. The centrifugal part is comparable in magnitude to
the ranging content for frequencies below 1mHz. The numerical accuracy of the floating point
arithmetic is shown in black (i.e. orbit integration, computation of range ρ and acceleration
from spherical harmonics).

2013]. More sophisticated methods like variational-equation approaches (used by CSR, JPL
and GFZ), a short-arc (integral-equation) approach [Mayer-Gürr, 2006] or modified acceler-
ation approaches [Liu, 2008] can reduce the negative effect resulting, however, in increased
complexity and computational costs. These approaches typically compute dynamic orbits
based on a-priori force models, e.g. static and temporal gravity field models, and with empir-
ical parameters, such that these dynamic orbits or arcs match the observations. The residuals
are further minimized by adjusting the spherical harmonics coefficients. Sometimes, the high-
quality gravity fields are obtained by iterative methods, which additionally complicates error
propagation from observations to final gravity field solutions.

If inter-satellite ranging information is used to derive the gravity field, information on
the centrifugal acceleration needs to enter the processing chain at some point, since the
baseline is rotating (cf. GOCE data processing in [Stummer, 2013]). Analysis by Ditmar et al.
[2012] using a modified acceleration approach showed that orbit and centrifugal acceleration
errors can explain the noise level in the Delft Mass Transport (DMT-1) monthly gravity field
solutions for Fourier frequencies between 0.1mHz and 1mHz.

One can derive an alternative expression for the centrifugal term using energy conservation
as shown in [Jekeli, 1999] and [Visser et al., 2003], which yields the following result for the
all-important magnitude of relative velocity in eq. (1.15)

| 9~r12ptq|2 “ 2 ¨ E1ptq ` 2 ¨ E2ptq ´ 4
a
E1ptq ¨ E2ptq cospαptqq, (1.16)

with E1 and E2 being the specific energy of satellite 1 and 2, respectively, while αptq is the
angle between the two velocity vectors αptq “ ?p 9~r1, 9~r2q. One can express the specific energy,
i.e. the energy per unit mass, of one satellite in the inertial (space-fixed) frame as [Visser
et al., 2003]

Eiptq “ 1

2
| 9~ri|2 “ V p~riq ` p ~ωe ˆ ~riq ¨ 9~ri `

ż t

t0
~ang,i ¨ 9~ri dt´ Ec, (1.17)
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where the first term is the geopotential with geodetic sign convention, the second term ac-
counts for the rotation of the potential with ~ωe being Earth’s angular velocity. The third
term accounts for energy dissipation, e.g. due to drag, and can be expressed in terms of
accelerometer measurements, while the last term is an energy constant describing the energy
at initial time t0.

In summary, three different methods to describe the centrifugal acceleration can be iden-
tified. The first method (M1) uses eq. (1.13), where | 9~r12|2 is directly taken from GNSS
observations. The second method (M2) using the angular velocity ~ωLOS from eq. (1.15) is
equivalent to M1, if the same GNSS observation is used. However, alternative approaches to
determine ~ωLOS are discussed later in section 1.5.1, which might allow for higher precision.
The third method (M3) is based on the specific energy of the spacecraft (cf. eq. (1.16)).

The equivalence of all three methods in the error-free case is shown in figure 1.7, where the
residuals of each method are depicted (lower three traces). The implementation of method
M3 seems to be less precise, with the white noise floor suggesting it is limited by rounding
errors and numerical precision. Later, in section 1.6.2, the susceptibility of the three methods
to noise and error contributions is analyzed.

1.3.4 Direct Acceleration (DA)

The PDGA provides one observation of the gravity field at each epoch for a satellite pair,
while the second time-derivative of the satellite trajectory (sec. 1.1.2) provides additionally
three equations for each vector component per S/C

pR ¨ ~∇V p~rGRPq “ pR ¨ xMp~rGRPq ¨ ÝÑ
CS “ :~rGRP ´ ~ang, (1.18)

where non-gravitational accelerations ~ang should be subtracted. The matrix xMp~rq is the
design matrix relating the observations on the right hand side linearly to the SH coefficientsÝÑ
CS. pR is a rotation matrix transforming the pseudo-acceleration to an inertial frame. pR
could be as well absorbed in the design matrix xM . Again, the SH coefficients of the gravity
field can be obtained in a least-squares sense by inverting eq. (1.18), where :~r and ~ang on the
right-hand-side can be derived from GNSS and accelerometer, respectively.

1.3.5 Science and Calibration Measurement Bandwidth

The science measurement bandwidth should be selected such that it contains most of the
gravity field signal. As is apparent from figure 1.7, the gravity field signal in the PDGA (and
DA, not shown in the plot) falls off at high frequencies. At some point, the signal to noise
ratio reaches unity and higher frequencies contain only noise. Recording and transmitting
these frequencies to ground should be avoided to save resources.

However, it should be kept in mind that the noise at high frequencies can be used to
assess the sensitivity of instruments and can indicate abnormal instrument behavior.

The upper bound of the science measurement bandwidth is typically given by the Nyquist
theorem as fs{2, where fs is the sampling frequency of the data. Recording data every 5 s
yields an upper resolvable frequency of 0.1Hz, which contains SH degree coefficients up to
degree 500. This is considered to be sufficient, in particular because it turns out in later
sections that unity signal to noise ratio is reached at approx. 0.04Hz for e.motion2.

The lower frequency bound is a trade-off between scientific return and complexity of
instrument development, verification and costs. For an instrument, a lower bound of 0.1mHz
requires that all sub-systems and components are verified down to that frequency, implying
a single measurement of approx. 10 hours4 to state definitely the noise level at 0.1mHz. For
e.motion2 a natural lower bound at the orbital frequency of 0.18mHz was selected, since all
SH coefficients produce signals above this frequency.

40.1mHz corresponds to 2.7 hours, however, due to artifacts in a spectral estimation a longer measurement
is recommended.
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Figure 1.8: Typical PDGA and DA signals at low frequencies expressed as acceleration
amplitude spectral density on a linear frequency axis.

With a science measurement bandwidth (SMBW) of

SMBW : 0.18mHz ă f ă 0.1Hz (1.19)

all SH coefficients containing interesting gravity field information can be recovered. However,
there is still some gravity signal at f ă 0.18mHz, as indicated in figure 1.8, because the orbit
repeat frequency w.r.t. the rotating Earth, i.e. the ground-track repeat cycle, is ! 0.18mHz.

Furthermore, it is pointed out that temporal gravity field variations at monthly time
scales and longer, e.g. frequencies ft ! 1 ➭Hz, do not show up at these frequencies in the
Fourier domain of the PDGA and DA signal. It is not required to extend the measurement
bandwidth to measure these variations. Temporal variations of the SH coefficients produce
sidebands at ˘ft w.r.t. the tone frequencies within the SMBW.

In the e.motion2 study, a novel technique was suggested to continuously calibrate instru-
ments, in particular the accelerometer, with the help of the LRI. The idea is discussed later
in section 1.10. For this, an extension of the higher frequency end by a so-called calibration
measurement bandwidth (CMBW) is suggested

CMBW : 0.1Hz ă f ă 0.3Hz. (1.20)

At these frequencies, all instruments should be limited by intrinsic noise, which means there
is no gravity signal in the ranging data and no drag signal in the accelerometer data present.
Hence, sinusoidal signals injected for calibration purposes in the CMBW can be recovered by
the instruments.

1.3.6 Definition of the Gravitational Reference Point (GRP)

The GRP is the point used to evaluate the PDGA (eqs. (1.13)-(1.15)) and DA (eq. (1.18))
equations. It is usually defined for GRACE-like missions as the center-of-mass (CoM) or
as center-of-gravity (CoG) of the satellite. Ideally, all on-board measurements (GNSS, Ac-
celerometer, Ranging Interferometer) are referred to the GRP, which simplifies gravity field
retrieval.

However, although CoG and CoM are often used interchangeably in literature, the CoG
is defined as the position where the resultant (gravity gradient) torque ~T vanishes [Feynman
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et al., 2013], i.e.

~T “
ż

V

ρp~rq ¨ p~r ´ ~rCoGq ˆ ~gp~rq d3~r !“ 0, (1.21)

with ρ being the satellite’s mass density and ~gp~rq “ ~∇V p~rq being the gravitational acceler-
ation. There is no general solution for this equation. In particular, if a solution exists, it
may be non-unique, i.e. a so-called line-of-action may exist. An alternative but equivalent
implicit definition of the center of gravity ~rCoG is given by

msat ¨ ~gp~rCoGq “
ż

V

ρp~rq ¨ ~gp~rq d3~r, (1.22)

with msat being the satellite’s total mass. For a parallel (uniform) gravity field over the
volume of the satellite or rigid body, the CoG and CoM coincide, causing confusion due to
their interchangeable appearance in literature. If a unique CoG exists, it is located within
the rigid body and depends on the gravity field, the body’s mass distribution and orientation.

Considering the dependence on attitude and gravity, the author of this thesis does not
see a benefit in using the CoG as a reference point and encourages the use of the CoM, since
it depends only on the mass distribution but not on external properties such as attitude or
gravity field. In addition, the motion of the satellite can be separated into a translational and
a rotational part around the CoM, which is not true if the equations of motion are written
w.r.t. the CoG [Kasdin & Paley, 2011, p. 229].

However, using the CoM to solve the translational equations of motion for a spatially
extended rigid body requires a correction for the non-uniform gravitational field. To derive
the correction, one can expand the gravitational acceleration ~g around the center of mass in
a Taylor series

~gp~rCoM ` ~rq « ~gp~rCoMq ` gmn ¨ rn ` gkmn ¨ rm ¨ rn
2

, (1.23)

where gmn “ gmnp~rCoMq is the gravity gradient matrix pG and the Einstein summation con-
vention is used, i.e. the expression gmn ¨ rn can be written as matrix-vector multiplication
pG ¨ ~r. The vector ~r points from the CoM to other parts of the satellite. The latin indices
m,n, k take values 1..3. The tensor gkmn “ gkmnp~rCoMq contains the third spatial derivatives
of the geopotential. The gravitational force acting on a satellite is therefore

msat ¨ ~gsat “
ż

V

ρp~rCoM ` ~rq ¨ ~gp~rCoM ` ~rq d3~r (1.24)

« msat ¨ ~gp~rCoMq ` gmn ¨
ż

V

ρp~rq ¨ rn d3~r ` gkmn

2
¨
ż

V

ρp~rq ¨ rn ¨ rm d3~r. (1.25)

Without loss of generality, one can assume the coordinate frame to be centered in the CoM,
thus, the second term vanishes. The third term can be related to the moment of inertia
tensor pI, which is defined as

pI “ Imn “
ż

V

ρp~rq ¨
`
pr21 ` r22 ` r23qδmn ´ rn ¨ rm

˘
d3~r, (1.26)

with δnm being the Kronecker delta. We define the 3 ˆ 3 matrix pP as

pP “
ż

V

ρ ¨ rn ¨ rm d3~r “ pI ´ 1

2

¨
˝
I22 ` I33 ´ I11 0 0

0 I11 ` I33 ´ I22 0
0 0 I11 ` I22 ´ I33

˛
‚ (1.27)

The moments of inertia tensor pI and pP are antisymmetric, while the tensor gkmn is symmetric
due to Schwarz’ theorem. Due to this symmetry, many terms cancel out in the product
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gkmn ¨ Pmn. Finally, one can write the gravitational force acting on the satellite as

msat ¨ ~gsat « msat ¨ ~gp~rCoMq ` gkmn ¨ Pnm
2

(1.28)

“ msat ¨ ~gp~rCoMq ` 1

2

¨
˝
g111 ¨ P11 ` g122 ¨ P22 ` g133 ¨ P33

g211 ¨ P11 ` g222 ¨ P22 ` g233 ¨ P33

g311 ¨ P11 ` g322 ¨ P22 ` g333 ¨ P33

˛
‚. (1.29)

The second term, the extended body correction (EBC), can be written in the case of a
GM{r monopole field as

~aEBC “3 ¨GM
2r7

¨
˝
x2r2 ¨ p3P11 ` P22 ` P33q ´ 5x2 ¨ pP11x

2 ` P22y
2 ` P33z

2q
y2r2 ¨ pP11 ` 3P22 ` P33q ´ 5y2 ¨ pP11x

2 ` P22y
2 ` P33z

2q
z2r2 ¨ pP11 ` P22 ` 3P33q ´ 5z2 ¨ pP11x

2 ` P22y
2 ` P33z

2q

˛
‚ (1.30)

“ 6 ¨GM
2r7

¨
˝
x2r2 ¨ p3I11 ` I22 ` I33q ´ 5x2 ¨ pI11x2 ` I22y

2 ` I33z
2q

y2r2 ¨ pI11 ` 3I22 ` I33q ´ 5y2 ¨ pI11x2 ` I22y
2 ` I33z

2q
z2r2 ¨ pI11 ` I22 ` 3I33q ´ 5z2 ¨ pI11x2 ` I22y

2 ` I33z
2q

˛
‚, (1.31)

where px, y, zq is the CoM position and r2 “ x2 ` y2 ` z2.

The moments of inertia are referred to the inertial frame and are therefore dependent
on the S/C attitude. Taking the numerical values for GRACE from [Wang, 2003, p. 23]
and considering nominal S/C pointing along the velocity vector, the moments of inertia
are approximately Irr “ 390 kg ¨ m2, Iaa “ 70 kg ¨ m2, Icc “ 340 kg ¨ m2, where r, a and c

denote the radial, along-track and cross-track direction, respectively. For an orbital altitude
of h “ 400 km (R “ 6771 km) and total mass of 420 kg, eq. (1.31) has a magnitude of
5 ¨10´13m{s2 in the direction of the geocenter. Temporal variations are considered to be even
smaller, and can be evaluated using eq. (1.31) but are beyond the scope of this section.

With the gravity gradient being 2.56 ¨10´6 s´2, this yields an effective separation between
the CoM and CoG of p5 ¨10´13m{s2q{p2.56 ¨10´6 s´2q « 0.2 ➭m. A sub-micrometer difference
was also obtained by the derivation in [Wang, 2003, p. 23]. Although the magnitude of this
effect is rather small, a correct physical model should account for the ~aEBC effect, in particular
with regard to future missions with higher sensitivity.

It is emphasized that satellite rotations induced by a pure torque, e.g. by magneto-
torquers, keep the CoM and not the CoG constant and therefore allow rotational and trans-
lational motion of a satellite or a rigid body to be separated.

However, the CoM of a satellite should not be considered as fixed, as it changes due to
propellant consumption or the differential thermal expansion of the satellite structure. In
addition, the accelerometer type has implications on the optimal GRP definition, making the
discussion cumbersome.

In this thesis, two different accelerometer concepts are discussed in the following sections.

1.3.7 GRP in Servo-Accelerometer Concepts

The first accelerometer concept utilizes a servo-accelerometer, as in GRACE(-FO), which has
also been selected as the basis for the e.motion2 study. For such a concept, the GRP is defined
as the time-averaged S/C CoM position. Furthermore, we define the servo-accelerometer
reference point (RP) as the pivot point of rotations, where pure angular accelerations and
zero linear accelerations are measured by the servo-accelerometer. In the ideal case, this
point is given by the test-mass CoM inside the accelerometer.

If the accelerometer RP and the GRP, i.e. the test-mass and S/C CoM, are co-located,
rotations of the S/C will not disturb the linear acceleration measurement. In addition,
fictitious accelerations discussed in sec. 1.4.3 on the accelerometer are minimized. However,
the accelerometer will measure a small bias, because the test-mass CoG and S/C CoG are
not co-located due to the different offset from the corresponding CoM. Nonetheless, resolving
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this small effect is challenging due to the inherent uncertainty in the bias of accelerometers
(cf. sec. 1.4.3).

It is remarked that a mass-trim maneuver by means of magneto-torquers, as performed in
GRACE [Wang, 2003, p. 17], rotates around the CoM. According to [Wang, 2003] and [Wang
et al., 2010], the CoM can be co-located with the accelerometer in-orbit to better than 100 ➭m.
To determine the CoG, a mass-trim maneuver by means of the gravity gradient torque would
be required, which is difficult to realize due to the small magnitude and interference with
other non-gravitational torques.

Recalling the PDGA and DA combination, the dynamics of the GRP are governed by

:~rGRP « ~agrav ` ~ang ` ~aEBC, SC, (1.32)

while the servo-accelerometer discussed in sec. 1.4.3 provides ideally linear accelerations,

~Γ „ ~ang ` ~aEBC, SC ´ ~aEBC, TM. (1.33)

Hence, the DA from eq. (1.18) appears slightly modified

:~rGRP ´ ~Γ ´ ~aEBC, TM “ pR ¨ xMp~rGRPq ¨ ÝÑ
CS. (1.34)

However, ~aEBC, TM « 0 is a valid approximation, considering that the correction for the
S/C was already at |~aEBC, SC| « 10´13m{s2 level. This implies that the projected differ-
ential gravitational acceleration (PDGA) from eqs.(1.13)-(1.15) also remains valid, if the
non-gravitational acceleration ~ang is replaced by the servo-accelerometer measurement ~Γ.

1.3.8 GRP in Drag-Free Concepts

The time-varying S/C center-of-mass location and the difficulty in measuring it can be over-
come by utilizing a drag-free concept (discussed in sec. 1.9). In such a concept, the GRP is
defined as the test-mass CoM, which is physically well-defined and stable w.r.t. the test-mass
geometry. The accelerometer is operated in open-loop mode without suspending the inter-
nal test-mass electro-statically at least not in the sensitive axis. However, the accelerometer
precisely determines the six degrees of freedom of the free-floating test-mass, i.e. position
~xTM with respect to an accelerometer fiducial (reference point) and orientation. Collision of
the test-mass with the accelerometer housing is prevented by actuating the whole satellite in
the translational degrees of freedom, whereby electro-static suspension may be used in the
rotational degrees of freedom to ensure correct pointing of the S/C.

The geometry between the accelerometer reference point and the ranging (interferometer)
reference point needs to be stable. In particular, the vector ~∆ connecting both points needs
to be known.

The dynamics of the GRP is influenced by gravitational accelerations ~agrav and small
electro-static corrections ~aes, e.g. to ensure inter-S/C pointing and to remove long-term drifts,

:~rGRP « ~agrav ` ~aes. (1.35)

Non-gravitational accelerations such as drag are acting on the S/C but not on the test-mass,
except for the residual ~aes.

The ranging observation ρ between the two GRPs is obtained by combining the ranging
observable between the ranging interferometer reference points ρifo with the position sensing
from the accelerometers, i.e.

ρ “ ρifo ` ~∆1 ¨ ~e12 ` ~∆2 ¨ ~e12 ´ ~xTM,1 ¨ ~e12 ´ ~xTM,2 ¨ ~e12, (1.36)

which is illustrated in figure 1.9.
The quantity ρ can be determined with low noise and is independent of the inherently

unstable S/C CoM. The PDGA and DA observables in the form of eqs. (1.13)-(1.15) and
eq. (1.18) remain valid, if the non-gravitational acceleration ~ang is replaced by ~aes.
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Figure 1.9: In a drag-free concept, the gravitational reference point (GRP) is defined as
the center-of-mass (CoM) of the test-mass on a satellite. By combining precise position
information from the accelerometer ~xTM,1 and ~xTM,2 with the ranging information ρifo one
can obtain the ranging observation ρ between both GRPs. The misalignment between the
satellites is exaggerated in this schematic.

In a drag-free concept, the accelerometer can be placed close to the S/C CoM, which might
simplify the analysis and control, since a pure S/C torque will not result in a large translation
of the test-mass. But it is not required, as shown by the LISA and LISA Pathfinder mission
concepts [Danzmann et al., 2017; eLISA/NGO Team, 2012; Danzmann et al., 2007]. For
redundancy concerns, one might consider two accelerometers close to the S/C CoM.

The interested reader is referred to [Reubelt et al., 2014], where the positioning of ac-
celerometers is also discussed.

1.4 Instruments and Observations

In the previous section, the measurement principle of the e.motion2 concept and GRACE-like
missions was introduced. In particular, how the gravity field can be obtained from on-board
measurements was demonstrated. It is important to clearly define the instruments, their
observables and expected sensitivity levels to avoid a discrepancy between predicted and
actual sensitivity, as present in the GRACE mission5.

The aim of this section is to provide sufficient information, such that a realistic overall
sensitivity and error model for the PDGA and DA channel can be obtained, which will then
be propagated to the level of gravity fields.

1.4.1 GNSS: Global Navigation Satellite System

Each e.motion2 satellite requires a high-quality GNSS receiver which can deliver code, phase
and optional Doppler measurements of the GNSS satellites in view. The GNSS processing
unit is connected to an ultra-stable oscillator (cf. sec. 2.3.4 on USO) and will be capable of
deriving a navigation solution consisting of a 3-d position and velocity vector in real-time.
The accuracy of the on-board real-time navigation solution is required to be better than

σ3d ă 30m, (1.37)

for the laser link acquisition and the on-board line-of-sight estimation. Code, phase and
Doppler measurements for all satellites in view are recorded and down-linked as science data
for gravity field recovery. Additional measurements such as radio occultation for atmospheric
studies could be envisioned.

5The errors in current monthly gravity fields [Dahle et al., 2014, GFZ RL05] are a factor 6 higher than the
pre-launch GRACE baseline sensitivity derived in [Kim, 2000]. This factor was steadily decreased in the past
by advances in data processing.
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During the gravity field recovery, GNSS information is used to derive kinematic time-
resolved 3-d position and velocity vectors of the GNSS antenna phase center. This requires
solving phase ambiguities, corrections for the ionosphere, precise GNSS satellite ephemeris
and so forth. Using S/C attitude information and calibration data, the kinematic position
and velocity of the GRP can be derived from the kinematic position and velocity of the GNSS
antenna phase center.

Kinematic orbits are determined geometrically by the distance to the GNSS satellites,
but they do not exploit additional information, for example, from the gravity field. In this
thesis, the following simplified frequency-dependent isotropic position noise is used

ASDr~rGNSS,Es “ p1, 1, 1q⊺ ¨ ASDrrGNSS,Es

“ p1, 1, 1q⊺ ¨

gffe
˜

8 cm{
?
Hz

1 ` f{1mHz

¸2

`
´
1 cm{

?
Hz

¯2
, (1.38)

where the subscript E indicates the error part and is based on the logic that a measurement
can be composed into an error-free signal and an error.

The ASD model is shown in figure 1.10 together with true GRACE kinematic orbits
derived by TU Graz [Zehentner & Mayer-Gürr, 2013] for two different days. Since the epoch-
wise covariance information is provided, formal error estimates are also shown. The rms-
value in each component of the noise model is 4mm with fs “ 0.1Hz, which might seem
low considering that an rms-value of the order of a centimeter is normally given in literature
[Weigelt et al., 2013; Montenbruck et al., 2005]. However, the author assumes that these
rms-values are usually driven by tones or excess noise at the orbital frequency and higher
harmonics, as shown in a plot in [Zehentner & Mayer-Gürr, 2013], and by outliers or non-
Gaussian noise, which is difficult to handle with PSDs. For further information on GNSS
receiver precision and kinematic orbit determination in gravimetric satellite missions, the
reader is referred to [Van Helleputte, 2011].

As will become obvious in subsequent parts of the thesis, precise GNSS observations are
essential for exploiting the full sensitivity of future GRACE-like missions, e.g. of e.motion2.
The author would like to emphasize the following aspects, which may lead to improved
kinematic orbits:

❼ Availability of low-level data and pre-processing: Commercial GNSS receivers often
perform proprietary pre-processing of measurements, which hampers advances by a
broad scientific community. Thus, declaring low-level data streams as scientific data in
early stages of the mission design could circumvent this issue. Moreover, pre-processing
algorithms within the receiver and on-ground need to be documented well and made
available for users.

❼ Number of channels: As opposed to terrestrial GNSS observations, satellites in a LEO
usually do not have obstacles, which may decrease the visibility of GNSS satellites,
with the exception being the Earth. However, due to the increased velocity, LEO
satellites usually observe a particular satellite only for a short time, which complicates
solving integer ambiguities. A high number of simultaneous readout channels should be
envisaged, such that all visible GNSS satellies can be tracked. The maximum number
of 10 GPS satellites from GRACE [Montenbruck et al., 2005] is not sufficient nowadays.

❼ New bands and networks: Tracking of additional bands (e.g. L5 in GPS) and use of the
European GALILEO GNSS network, which is being deployed by the time of writing, and
other networks like GLONASS, BeiDou and QZSS may also improve the measurement.

❼ Advanced data analysis: e.g. GNSS receiver clock modeling, as suggested in [Weinbach
& Schön, 2013], or modeling of relativistic clock effects, as discussed in section 2.5 of
this thesis.
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Figure 1.10: Kinematic positions and covariance information from [Zehentner & Mayer-
Gürr, 2013] plotted as an ASD. The upper figure is a GRACE-A orbit from 2008-01-01,
while the lower plot shows day 2006-02-06. The coordinate frame is ITRF (IGS05). The
noticeable variability in the magnitude of the co-variance estimates between both days was
not investigated further, but may be caused by ionospheric disturbances driven from solar
activity or by changes in the receiver configuration, e.g. activated occultation antenna.
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❼ Reduction of GNSS multipath effects by selecting appropriate materials for S/C struc-
ture and optimizing S/C structure design and antenna positioning.

❼ Thorough on-ground characterization of the GNSS receivers and antennas on the fully-
assembled spacecraft, e.g. phase-center variation maps, delays and cross-talk between
channels.

❼ Two tilted main POD antennas: Due to orbital dynamics of the GNSS receiver, tracked
GNSS satellites appear at low elevation mainly in the ram direction, propagate to the
GNSS antenna zenith and leave at the aft. Two tilted antennas could enhance the
overall field-of-view, while parallel observation of a GNSS satellite with both antennas
could reduce antenna related errors. Furthermore, GNSS-derived attitude information
can be correlated with star camera data. A larger field-of-view enables longer tracking
of satellites, which helps to reduce the number of phase integer ambiguities. Such a
concept was recently analyzed in [Wallat & Schön, 2016].

❼ Availability of velocity information: To the knowledge of the author, Doppler frequency
measurements were not available in GRACE. Thus, a kinematic velocity could only
be obtained by (imprecise) numerical differentiation of the phase observations at low
sampling rate. Time-differenced phase observations at high rate on the receiver or
at least the Doppler observation from the receiver’s tracking loops might improve the
kinematic solutions.

A potential candidate receiver for an e.motion2 mission is the state-of-the-art TriG receiver
[Esterhuizen et al., 2009], which will also be used in GRACE Follow-On [Meehan et al., 2012].
It is a dual processor GNSS receiver with up to 16 antenna input ports and with up 300
configurable satellite signal processing channels [Tien et al., 2012].

1.4.2 Ranging Interferometer

A laser ranging interferometer is capable of measuring inter-satellite distance variations with a
sensitivity of a few tens of nm{

?
Hz along the line-of-sight. In general, each interferometer has

a point or an axis of minimal coupling (POMC), where interferometric pathlength changes
upon rotation are minimized. These POMCs are nominally designed to coincide with the
respective satellite GRP. The interferometer provides only biased ranging ρbiased due to integer
phase ambiguity. The overall noise with contributions from laser frequency noise, spacecraft
attitude jitter, parasitic Sagnac effect, readout noise and many other sources is assumed to
be covered by the following straw man sensitivity formula within the SMBW

ASDrρbiased,Espfq “ 25
nm?
Hz

¨

d
1 `

ˆ
10mHz

f

˙2

¨ L

100 km
, 0.18mHz ă f ă 0.1Hz, (1.39)

where L is the absolute spacecraft separation and the
?

-term is called the Noise-Shape-
Function (NSF). The latter accounts for an increased noise at low frequency, mostly driven
by temperature fluctuations and by 1{f noise present in many electrical components.

An additional error is induced by the limited knowledge of the DC-scale factor SDC,E , in
other words, knowledge of absolute laser frequency, which relates the interferometric phase
measurement to a physical length. The corresponding noise can be described with the spectral
density

ASDrρbiased,DC-SCF,Espfq “ S
(IFO)
DC,E ¨ ASDrρbiased,Ms. (1.40)

This noise is proportional to the actual (measured) signal amplitude ρbiased,M and the pro-

portionality factor is the fractional laser frequency knowledge S
(IFO)
DC,E « 10´6, which will be

further discussed in section 2.3.2 of the thesis. The time variability of the scale factor (AC
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part) is accounted for by eq. (1.39). It might be possible to fit the DC scale factor in the
process of gravity field retrieval. However, a strong correlation between the interferometer
DC scale factor and a common scale factor of SH coefficients may complicate the correction.
In addition, the large post-fit ranging residuals, e.g. from deficiencies in background grav-
ity field models, make such an approach difficult. Direct correlation of GNSS observations,
i.e. GNSS-derived range, with the interferometry observation is another option. However, the
detailed estimation of the DC scale factor was beyond the scope of this thesis.

In addition to ranging, laser interferometry is capable of providing a measurement of the
local S/C misalignment w.r.t. the line-of-sight by the so-called Differential Wavefront Sensing
(DWS) technique, which is assumed to deliver yaw and pitch misalignment with a noise lower
than

ASDrDWSYaw,Es « ASDrDWSPitch,Es À 1 ➭rad{
?
Hz ¨ NSFpfq, (1.41)

where the same noise shape function (NSF) as in eq. (1.39) is considered.

Moreover, a static offset of less than

Yawbias « Pitchbias ă 10 ➭rad (1.42)

in the interferometer reference frame seems realistic.

GRACE-like microwave dual one-way ranging (DOWR) achieves a sensitivity of the order
of [Kim, 2000, p. 144]

ASDrρbiased,Espfq «

dˆ
L

200 km

˙2

`
ˆ
1.8mHz

f

˙4 ➭m?
Hz

, 0.18mHz ă f ă 0.1Hz, (1.43)

which is given here for the sake of completeness. The microwave instrument is limited at
high frequencies by the readout noise, which scales with the carrier-to-noise density and can
be assumed to be linearly dependent on the spacecraft separation [Kim, 2000, p. 112]. For a
detailed description of interferometry, the reader is referred to part 2 of this thesis.

1.4.3 Accelerometer

Each e.motion2 S/C requires an accelerometer, which is capable of measuring linear and
angular non-gravitational accelerations acting on the satellites, e.g. due to atmospheric drag,
thruster, solar radiation pressure, Earth’s albedo radiation pressure, Lorentz forces and other
unexpected disturbances.

Potential candidates are classical electro-static servo-accelerometers from ONERA, which
have been used in CHAMP, GRACE, GRACE Follow-On and GOCE. Alternatively, a LISA
Pathfinder (LPF)-like gravity reference sensor (GRS) [Danzmann et al., 2007] could be uti-
lized in a drag-free concept. All of these inertial measurement devices utilize a metallic
high-density cuboid test-mass, which is located well shielded inside the accelerometer hous-
ing with a gap to the walls. ONERA instruments prefer a few micron thin wire to charge
the test-mass at AC frequencies (« 100 kHz) and to polarize it at DC [Frommknecht et al.,
2003], while the LPF GRS test-mass is kept neutral without physical contact using UV light
discharge [Danzmann et al., 2007, p. 12]. Electrodes in the housing can be used either to sense
the position and orientation of the test-mass (also called proof-mass) by capacitive means,
or to apply a force or torque by electro-static means. Usually, the electrodes are arranged
pair-wise on the axes, such that the common signal provides linear accelerations and the
differential signal the angular quantity.

ONERA accelerometers are typically servo-controlled in all degrees of freedom, meaning
that the test-mass is centered and aligned with high gain and bandwidth in the accelerometer
housing. The actuator signal is calibrated and provides a measure of the linear and angular
non-gravitational acceleration. Obviously, the proof-mass will not follow a geodesic, but will
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follow the accelerometer housing and S/C. However, the deviation from the geodesic can be
derived from the actuator signal.

If a drag-free system is utilized, some degrees of freedom are operated open-loop without
electro-static suspension. In this case, the non-gravitational acceleration is given by the
second time-derivative of the capacitive position sensing. However, to avoid physical contact
between proof-mass and housing, the S/C utilizes a drag-free control loop, which actuates
thrusters to re-center the S/C and accelerometer housing w.r.t. the proof mass. Typically,
such a geodesic (free-fall) motion of the test-mass cannot be realized in all degrees of freedom
due to constraints, e.g. in e.motion2 due to inter-S/C pointing. A further challenge is to
suppress cross-talk between servo-controlled and drag-free degrees of freedom.

In the LISA Pathfinder mission, one of the GRS units is operated in the sensitive axis
in drag-free mode [Armano et al., 2016b], while the second GRS uses electro-static forces
only at very low frequencies out of measurement band to avoid long-term drifts. Both GRS
units feature an optical readout of the respective test-mass along the sensitive axis which
provides, in combination with DWS, three degrees of freedom out of six. Capacitive sensing
is used for the other degrees of freedom as well, in parallel to the interferometric readout. A
high sensitivity of capacitive sensing can, in general, be achieved with a small gap and high
voltages between test-mass and electrode housing [Danzmann et al., 2007, p. 7], although a
larger gap is favorable for drag-free operation due to the low bandwidth of thrusters and the
accompanied motion of the test-mass.

For e.motion2, a servo-accelerometer was considered sufficient with a sensitivity half-way
between the GRACE Follow-On accelerometer and the GOCE in-orbit accelerometer perfor-
mance (cf. figure 1.11), under the premise that drag-compensation is available (cf. sec. 1.9).
As the GOCE mission utilized six accelerometers mounted on a common platform, with each
instrument providing readout for six degrees of freedom, sufficient redundancy is present to
assess the in-orbit accelerometer noise floor [Stummer, 2013, sec. 5.1.3] also at low frequencies.
The obtained noise level of « 10´11m{s2

?
Hz does not agree with the pre-launch predicted

sensitivity of « 10´12m{s2
?
Hz [Marque et al., 2010; Christophe, 2013] to the understanding

of the author of this thesis. One potential explanation could be that the pre-launch predicted
sensitivity considers only intrinsic instrument noise, while the total noise may be larger, as
will be discussed. In the e.motion2 study, the conservative sensitivity of in-orbit GOCE
accelerometers was considered.

At high frequencies, the e.motion2 accelerometer requirement was relaxed (cf. black trace
in figure 1.11), since ranging is dominating the PDGA observation at high frequencies anyway.

The dashed green line at the top of figure 1.11 indicates the GOCE drag-free performance
[Sechi et al., 2011], i.e. the deviation of the proof-mass trajectory from a geodesic. In 2016, the
LISA Pathfinder mission showed a superb in-orbit drag-free sensing noise of « 3 fm{ps2

?
Hzq,

measured optically between the two free-falling test-masses on-board [Armano et al., 2016b].
For LISA Pathfinder, the actual deviation from geodesic motion, e.g. due to electro-static
suspension and perturbing forces, can be considered to be (far) below « 10´12m{ps2

?
Hzq

for all frequencies f ą 0.1mHz (priv. comm. Sarah Paczkowski, AEI).

Such a performance is not directly transferable to LEO gravimetric missions. On one
hand, the thermal, magnetic, gravitational and non-gravitational disturbances are higher
for LEO missions. On the other hand, LISA Pathfinder was designed to push the limits
of available technology and to act as experimental scientific platform with, for example, a
well-balanced self-gravity field [Armano et al., 2016a], low noise truster and high complexity,
which was accompanied by notable costs.

However, the benefit and feasibility of a gravimetric drag-free mission is still a key topic
for future geodesy missions. Hence, this aspect is revisited in section 1.9.

For now, a servo-controlled accelerometer is considered, with the accelerometer refer-
ence point co-located with the S/C CoM. It is emphasized that such a measurement of
non-gravitational accelerations in a rotating S/C frame is susceptible to various fictitious
accelerations. A simplified model for the accelerometer measurement of linear accelerations
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Figure 1.11: Noise levels of accelerometers along the sensitive axis for various missions
(solid lines). The GOCE drag-free trace (dashed green) denotes the precision of geodesic
motion, while all other lines denote the sensing performance.

~Γmeas,SRF in the spacecraft (science) reference frame (SRF) can be written in the following
form [Klinger & Mayer-Gürr, 2016; Frommknecht et al., 2003]

~Γmeas,SRF “δ pRARF ¨ pS ¨
´

pG ¨ ~r ´ pω2 ¨ ~r ´ 2pω ¨ 9~r ´ 9pω ¨ ~r ` pRARF ¨ ~ang ` ~k2 ` ~aEBC

¯

`~b` ~n, (1.44)

where ~ang contains the non-gravitational linear accelerations in the inertial frame acting

on the S/C, ~n is the intrinsic instrument noise, ~b contains biases, pS is a scale factor or
geometry matrix, which is ideally the unity matrix, but may contain scale factors and cross-
coupling between the axes [Klinger & Mayer-Gürr, 2016, eq. 3]. pRARF is the rotation matrix
transforming from the inertial frame into the accelerometer reference frame (ARF), while
δ pRARF denotes the uncertainty in the ARF axes w.r.t. the SRF. pG is the gravity gradient, pω
the angular velocity tensor of the ARF and SRF frame and ~r is the offset between test-mass
CoM and S/C CoM. ~k2 is the quadratic coupling, which can be written as

~k2 “ p pRARF ¨ ~angq⊺ ¨ pK2 ¨ pRARF ¨ ~ang, (1.45)

with pK2 containing the quadratic coupling terms as diagonal elements. The extended body
correction ~aEBC accounts for non-uniform gravitational acceleration of the S/C and test-mass

~aEBC “ ~aEBC, SC ´ ~aEBC, TM, (1.46)

which has been introduced in section 1.3.6.
The e.motion2 accelerometer requirement from figure 1.11 is considered to account for all

potential error contributions from eq. (1.44), and in particular for the fictitious accelerations,
and not only for the intrinsic noise ~n. It is defined for the science measurement bandwidth
from 0.18mHz to 0.1Hz along the two sensitive accelerometer axes in radial and along-track
direction by

ASDrΓX,Es “ ASDrΓY,Es

“ 4 ¨ 10´11 m

s2
?
Hz

¨

dˆ
1mHz

f

˙4

` 1 `
ˆ

f

10mHz

˙4

. (1.47)
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The requirement for the less sensitive cross-track axis is relaxed by one order of magnitude
to

ASDrΓZ,Es “ 4 ¨ 10´10 m

s2
?
Hz

¨

dˆ
1mHz

f

˙4

` 1 `
ˆ

f

10mHz

˙4

. (1.48)

The axes X,Y,Z refer to the accelerometer reference frame (ARF), but are roughly aligned
with radial, along and cross-track direction, respectively. For the angular acceleration sen-
sitivity an effective lever-arm of dl “ 10mm between the sensing electrodes is assumed and
only the less-sensitive axis is taken into account as baseline for all axes

ASDr 9ωX,Es “ASDr 9ωY,Es “ ASDr 9ωZ,Es “ ASDrΓZ,Es
dl

“4 ¨ 10´8 rad

s2
?
Hz

¨

dˆ
1mHz

f

˙4

` 1 `
ˆ

f

10mHz

˙4

. (1.49)

The matrix pS in eq. (1.44) is a critical component and requires particular attention.
Consider the along-track x-axis of the accelerometer to be independent of the other axes.
The ratio between the true in-orbit value Sxx,true and the best estimate Sxx,estim., determined
e.g. from on-ground calibration, is a fractional scale factor

S “ Sxx,true

Sxx,estim.
“ S

(ACC)
S ` S

(ACC)
E « 1 ` S

(ACC)
E , (1.50)

ideally close to unity. The subscripts S and E stand for the signal and unknown error,
respectively.

It is recommended to distinguish between the DC (zero frequency, mean) part and fluc-
tuations (AC) within the measurement band, i.e.

S
(ACC)
E pfq “ S

(ACC)
DC,E ` S

(ACC)
AC,E pfq. (1.51)

The noise coupling into the measured acceleration Γ from the DC scale factor uncertainty
depends on the measured signal, while the AC scale factor fluctuations are multiplied in a
worst-case assessment by the maximum non-gravitational acceleration Γmax, i.e.

PSDrΓS,Es “ pS(ACC)
DC,E q2 ¨ PSDrΓmeass ` Γ2

max ¨ PSDrS(ACC)
AC,E s. (1.52)

For example, the second contribution does not show up in typical noise measurements, where
one tries to measure zero acceleration.

For the PDGA signal, the non-gravitational acceleration along the line-of-sight is of im-
portance. Hence, cross-talk from other axes due to a misaligned accelerometer need to be

prevented. A misalignment would also show up as change in the DC scale factor S
(ACC)
DC,E .

Other important aspects such as accelerometer saturation and requirements for the scale
factors are taken into account later in section 1.9, which deals with drag-free operation and
drag compensation.

1.4.4 Star Cameras

A star camera typically consists of one or several sensor heads and a processing unit. The
sensor heads image the starry sky onto a photosensitive array (e.g. CCD), which provides a
two-dimensional digital picture. The processing unit compares the location of the stars on
the picture with a star catalog and derives the orientation of the sensor head w.r.t. the starry
sky, which is practically an inertial frame. For an overview of the working principle and data
processing of star cameras, the reader is referred to [Frommknecht, 2008] and [Bandikova,
2015]. Multiple sensor heads are required, since illumination by the Sun or Moon can blind
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the sensor head. GRACE used two sensor heads, while GRACE Follow-On will utilize three
sensor heads to avoid parallel blinding of all heads by Sun and Moon. It is also evident that
future missions should utilize at least three sensor heads. Analyses of star camera noise and
errors as well as of camera head data fusion in the context of GRACE can be found in [Inácio
et al., 2015; Harvey, 2016] and [Bandikova & Flury, 2014].

The information provided in [Bandikova & Flury, 2014] was used to assess the sensitivity
of the measurement. A noise of approximately 10´5 rad{ps

?
Hzq at 0.1Hz and proportionality

to the Fourier frequency f , i.e. blue noise in angular rate ASD domain, is considered for the
two sensitive axes. Integration yields a white noise level of approx. 16 ➭rad{

?
Hz.

The orientation of the star camera heads in GRACE allows the S/C roll axis to be
retrieved with highest precision in hot redundant operation of heads, while the other axes are
degraded due to influences from the less-precise sensor head boresight axes [Bandikova, 2015,
Fig. 5.2], in particular in case of non-optimal sensor head fusion. With recent advances,
e.g. optimal fusion [Bandikova, 2015, Fig. 5.5] and debugged stellar aberration correction
routines [Harvey, 2016], a simplified isotropic noise model for the angles (α, β, γ), relating
the satellite attitude to an inertial frame, is considered for e.motion2

ASDrpα, β, γq⊺s “ p1, 1, 1q⊺ ¨ 16 ➭rad{
?
Hz ¨

d
1 `

ˆ
0.01Hz

f

˙2

, (1.53)

where a noise-shape function was introduced to allow for an increased noise at low frequencies
due to thermal variations and drifts.

It is noted that angular biases between star camera frames, satellite (science) frame and
other instrument frames, arising from thermal or launch load effects, need to be calibrated
in-orbit. A typical magnitude of a few milliradian can impose operational challenges for
instruments with tight pointing requirements, e.g. laser ranging interferometers.

1.4.5 Tone Errors

The recent sections focused on stochastic error models, i.e. noise, and partly on errors with
systematic behavior such as biases or scale factors. However, measurement errors can also
have a deterministic origin, e.g. they may be caused by periodic excitation of temperature.
Noise shows a continuous distribution of power over frequency, while sinusoidal signals have
power at a particular discrete frequency, i.e. delta peaks. Noise is characterized by a power
or amplitude spectral density with units of e.g. meter{

?
Hz, while tones are described by an

amplitude unit e.g. meter.
Tone errors are modulations of the instrument output driven by periodic excitations of

environmental quantities such as

❼ Temperature

❼ Magnetic field

❼ Atmosphere / Ionosphere

❼ Gravitational Potential

❼ S/C inertial attitude

All of these environmental quantities have a pronounced variation at the orbital or twice the
orbital frequency for a LEO satellite and, thus, can be written as

Eptq “
8ÿ

n“1

pac,n ¨ cosp2πforbntq ` as,n ¨ sinp2πforbntqq , (1.54)

where two amplitudes (ac,n, as,n) per frequency were used instead of the equivalent represen-
tation of one phase and one amplitude (cf. eq. 5-8 in [e.motion2 Team, 2014]).
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n/rev PDGAE ρE [➭m] ΓE [pm{s2]
1 100 ➭m – 126 pm{s2 25 32
2 20 ➭m – 101 pm{s2 5 25.5
3 5 ➭m – 46 pm{s2 1 11.5
4 0.8 ➭m – 16 pm{s2 0.2 4
5 0.16 ➭m – 5.1 pm{s2 0.04 1.25
6 0.032 ➭m – 1.5 pm{s2 0.008 0.25

Table 1.1: Tone error requirement for the PDGA observation of a SST link (second column),
and flow-down onto S/C instrument level (third and fourth column). The ranging values ρE
are half-roundtrip requirements for a single LRI-instruments (per S/C). The accelerometer
values ΓE are given per instrument (or per S/C).

n/rev GNSS [mm]

1 4
2 4

Table 1.2: Tone error assumption for GNSS and orbit determination.

Usually, the susceptibility of an instrument to this environmental quantity E can be
described by a coupling factor cM,E , which may be time or frequency dependent, such that
the measurement error ME is given by

ME “ cM,E ¨ E , (1.55)

with the equation being deployed in the frequency or the time domain. One should also
recall that non-linearities in a dynamic system produce higher-harmonics at integer multiples
of the excitation frequency, yielding a comb of tones with decreasing amplitude. Since Earth’s
gravity also produces a comb of sinusoidal signals in the PDGA as well as in the direct satellite
acceleration (DA), it is important to study the effect of tones on gravity field retrieval in order
to be able to set proper requirements at instrument level and to develop strategies to mitigate
this error in gravity field recovery.

A first, but preliminary, step in this direction has been done in [e.motion2 Team, 2014,
sec. 5.1.5]. Gravity field recovery has been performed twice, with and without induced tones.
From these results, tone amplitude requirements were derived, such that science objectives in
terms of gravity field precision are met. The instrument tone requirements for the two prime
instruments of the PDGA, accelerometer and interferometer, are adopted from the e.motion2

study and shown in table 1.1. The tone error in the final PDGA observation is distributed
equally on the four instruments per link, two accelerometers and two interferometers, with
following formula

PDGAE “ 2 ¨ ρE ` 2 ¨ ΓE ¨ p2πforb ¨ nq2, rms. (1.56)

However, the approach did not take into account an adopted gravity field recovery algorithm,
which is capable of handling tone errors. Hence, it is very likely that these requirements can be
relaxed with algorithms taking tone errors into account, as will be discussed in section 1.7.2.

Tone errors in the orbit determination have not been handled in the e.motion2 study.
However, based on the covariance information of the kinematic orbit as shown in figure 1.10,
a tone error of 4mm at 2/rev frequency is assumed here. Interestingly, the covariance in-
formation does not show an increased error at 1/rev frequency, which might be caused by
deficiencies in the error modeling. In this thesis, an additional tone amplitude of 4mm at
1/rev frequency is assumed, as summarized in table 1.2.
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It is beyond the scope of this thesis to derive and justify tone error requirements for all
instruments. However, the author of this thesis would like to outline a roadmap on this issue
for future studies. As these satellite gravity mission studies usually consist of different groups,
which are concerned, for example, with gravity field recovery, instrument design, spacecraft
design and so on, it is advised to provide separated dedicated work packages, which can be
performed in parallel.

First, the time series of environmental quantities at the S/C position like magnetic field
strength, temperature (or incident solar irradiation) and S/C attitude needs to be determined
for the particular mission design baseline. From these, the sinusoidal characteristics such as
amplitude and frequency can be determined for each environmental parameter.

The remaining tasks

3. Gravity field recovery: development of potential strategies to cope with tone errors and
the definition of maximum acceptable tone error in the instruments for the different
strategies

2. Instrument design: deriving the transfer functions of the instruments from environmen-
tal parameters such as temperature, magnetic field and attitude to the measurements
such as ranging or accelerations

1. Spacecraft design: derivation of transfer functions from environmental quantities in-
orbit to instrument boxes using a S/C model

need to be iterated with respect to the spacecraft design, such that the final tone errors
permit the science objectives to be met.

1.4.6 Proposed Data Processing

Many instruments on-board a GRACE-like mission are capable of measuring the same phys-
ical quantities, e.g. attitude, baseline angular velocity, inter-spacecraft distance. This redun-
dancy should be exploited to validate and calibrate the different instruments against each
other and to optimally combine the data streams to obtain the baseline state with least er-
rors. A baseline state means here quantities which fully describe an e.motion2 link, consisting
of two satellites, for the gravity field recovery. The baseline state is ideally derived by an
integrated parameter estimation and serves as the interface to gravity field recovery. From a
time-series of baseline state quantities, as illustrated in the scheme in figure 1.12, the SH co-
efficients can be computed. However, the (co)variance information of SH coefficients contains
information on deficiencies in the a-priori information of the integrated parameter estimate
and should be fed back, resulting in a recursive approach.

Although this strategy might be a matter of dispute, as some groups prefer to use directly
low-level or raw observations, the author of this thesis prefers a clear separation between
baseline state parameter estimation and gravity field recovery. The complexity of both steps
individually is already enormous, making a single step procedure from raw observations to SH
coefficients almost impossible to follow. Additionally, the two step procedure from figure 1.12
allows the easy comparison, validation and improvement of different methods of gravity field
recovery without bothering with low-level corrections, e.g. from temperature.

However, the first step of baseline state parameter estimation needs to be open for a
broad scientific community, well documented, replicable and should be improved steadily
and frequently, considering input from gravity field recovery groups. An open question in
data processing remains regarding the use of a-priori gravity field information in the first
step, which has not been addressed here.

The interested reader is also referred to the section on Integrated Instrument Analysis
and Calibration (sec. 1.10 on page 68).
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Figure 1.12: Flow diagram of the proposed e.motion2 data processing chain.
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1.5 Baseline State

The next sections address the recovery of Earth’s gravity field from simulated observations.
This requires that baseline state quantities, in particular the gravitational reference points,
are determined from instrument observations. For the purpose of this thesis, a simplified ap-
proach was selected instead of the integrated parameter estimation introduced in sec. 1.4.6.
An idealized servo-accelerometer concept is considered, where the accelerometer reference
point, interferometer reference point and S/C CoM coincide. Furthermore, the GNSS obser-
vations refer to the S/C CoM instead of the GNSS antenna phase center.

The following straightforward formulas for the GRP have been used

~rGRP,1,GNSS+IFO « ~rGRP,1,GNSS ` ~rGRP,2, GNSS

2
´ ~e12,GNSS ¨ ρunbiased

2
, (1.57)

~rGRP,2,GNSS+IFO « ~rGRP,1,GNSS ` ~rGRP,2, GNSS

2
` ~e12,GNSS ¨ ρunbiased

2
, (1.58)

where ~rGRP,1/2,GNSS is the GRP (=S/C CoM) position derived solely from GNSS kinematic
orbits. Such a definition of the GRP incorporates a low noise distance between the GRPs.
This is important, because the GRPs are used to evaluate the potential function on the left
hand side of the PDGA observation equation (eq. (1.13)) and the right hand side contains
the precise ranging information.

The offset, which is required to transform the interferometrically measured biased ranging
ρbiasedptq into a correct (unbiased) distance, is computed with

ρunbiasedptq “ ρbiasedptq ´xρbiasedy ` x|~rGRP,1,GNSS ´ ~rGRP,2,GNSS|ylooooooooooooooooooooooooooomooooooooooooooooooooooooooon
offset

, (1.59)

where x y denotes temporal averaging.
The line-of-sight - the baseline - is estimated here from GNSS observations at each epoch

according to

~e12,M « ~rGRP,2,GNSS ´ ~rGRP,1,GNSS

|~rGRP,2,GNSS ´ ~rGRP,1,GNSS| . (1.60)

Since the GNSS-derived GRP position is known at the cm{
?
Hz level and the satellite sep-

aration is of the order of 100 km, the angular jitter of the GNSS-derived baseline is of the
order of 0.1 ➭rad{

?
Hz.

The previous equations are, in many aspects, simplified and hence suboptimal. For ex-
ample, they do not consider the different noise characteristics of GNSS and ranging interfer-
ometer observations, e.g. at very low frequencies the interferometric ranging may become less
accurate due to drifts compared to GNSS-derived distance. Additionally, the line-of-sight
estimation dismisses attitude information from other instruments, e.g. DWS, accelerometer
and star camera with respective noise characteristics.

However, these simplifications allow analytical formulas for the expected noise level in the
PDGA channel to be derived in subsequent sections.

1.5.1 Line-of-Sight Angular Velocity

The line-of-sight or baseline angular velocity has been defined by (cf. sec. 1.3.3)

~ωLOS “ ~e12 ˆ 9~e12 “ ~r12 ˆ 9~r12

|~r12|2
“

9~r12,K
|~r12| ,

where 9~r12,K is the relative velocity between both S/C GRPs perpendicular to the LOS. It can
be computed straightforward from the GRP position (eq. (1.58)), however, alternative ways to
determine it will be discussed in sec. 1.8. Since precise ranging information is only available
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along the LOS, the precision of the angular velocity is dominated by GNSS uncertainties
(cf. eq. (1.38)) and the error (denoted with subscript E) in the angular velocity can be
considered in the PSD domain as

PSDr~ωLOS,Es « p1, 1, 1q⊺ ¨ 2 ¨ p2πfq2 ¨ PSDrrGNSS,Es
L2

, (1.61)

where L is the inter-spacecraft separation. Because the assumed position noise is isotropic,
i.e. each vector component has the same PSD, the noise in the angular velocity is isotropic
as well.

It will turn out subsequently, that ~ωLOS is a critical quantity. The precision of ~ωLOS can
be improved by utilizing more precise orbits than directly available from GNSS observations,
which are introduced next.

1.5.2 (Reduced-) Dynamic Orbits

The GNSS-derived kinematic orbits are based on multilateration and do not exploit infor-
mation on the dynamics of the GNSS receiver. The errors in the kinematic orbits can be
understood as readout noise, which can be decreased by using additional information or
constraints, e.g. from

❼ Energy conservation: The energy of the satellite as the sum of kinematic, potential,
rotational and dissipated energy is preserved along the orbit. Evaluating the potential
energy requires a-priori knowledge of the gravity field.

❼ Accordance with ranging: The ranging instrument provides precise distance mea-
surements along the line-of-sight, which can constrain the GNSS observation error along
one axis.

❼ System dynamics and a-priori-knowledge of the gravity field: Approximate
a-priori knowledge of the gravity field can constrain the GNSS observation error sig-
nificantly, if the satellite’s equations of motion are utilized. If the non-gravitational
accelerations are considered in the dynamics, this approach complies typically with the
energy conservation constraints.

Some caution is required, since one aims to measure the gravity field but tries to incorporate
some a-priori knowledge of the gravity field, which might bias the solution. However, with
GRACE-like missions, one aims to measure a small time-variable gravity field signal on an
approximately 10.000 times larger static field, which should be well known.

A straightforward approach is to use an orbit integrator in combination with best-knowledge
force models to derive an orbit trajectory, which approximates the GNSS (kinematic) observa-
tions, i.e. best-fit to the kinematic orbit. This so-called dynamic precise orbit determination
uses only a few free parameters such as the initial state vector of the satellite and a few
quantities describing the force models (e.g. drag coefficient) [Bertiger et al., 1994]. In the
so-called reduced-dynamic precise orbit determination (RDPOD) additional free parameters
are introduced to account for errors in force models as well, and to allow an optimal synthesis
of dynamic and geometrical information [Bertiger et al., 1994].

The accuracy of the (reduced-)dynamic orbits is limited by the knowledge of the forces
acting on the satellite and by the accuracy of the kinematic orbits. Such forces can have a non-
gravitational origin, e.g. atmospheric drag, solar radiation pressure, but also a gravitational
origin, which has a large static part, high-frequency contributions (periods of hours and
days) and a monthly signal, which one actually tries to measure. The latter one cannot be
assumed to be a-priori knowledge. The high-frequency tidal and non-tidal content, as well as
non-gravitational accelerations, need to be reduced from observations by background models.

An estimation of the errors in the (reduced-)dynamic orbits with regard to the true
trajectory is not straightforward, since the true trajectory is not known for real orbits. The
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precision of the accelerometer and the ranging instrument are usually sufficient, such that
these errors are not dominating the dynamic orbit determination.

In this thesis, the position noise in (reduced-)dynamic orbits ~rRDPOD,E is approximated
by colored noise with spectral density obtained by finding the values for the corner-frequency
fc and n in

ASDr~rRDPOD,Es “ ASDr~rGRP,Es ¨ 1

1 ` pf{fcqn
(1.62)

with the help of simulated orbits.

Therefore, it is assumed that the accuracy of gravitational and non-gravitational back-
ground models can be expressed as equivalent SH geoid error. For different accuracy levels of
this a-priori gravity field, the best-fit orbital arcs are computed using a numerical integrator
and multi-dimensional numerical optimization to find the initial state vector. The best-fit
arcs minimize the rms 3-d distance to the kinematic GRP orbits over the arc period, which
is approximately half of the orbital period. The assumed a-priori gravity field knowledge is
shown in the upper-left plot of figure 1.13. Case 1 does not contain errors in the a-priori
gravity field, hence only the noise from GNSS observations is present. Case 4 is adopted as
realistic baseline for the error in the background modeling.

Typical differences between true simulated orbit position and (reduced-)dynamic orbit
position are shown in Figure 1.14, where also a model with fc “ 1mHz and n “ 3 is shown.

In the same manner, the angular velocity of the baseline is determined. The resulting
model reads

ASDrωLOS,E,RDPODspfq « 2 ¨ 10´10 rad{ps
?
Hzq ¨

a
200 km{ρ

p1 ` f{5mHzq2 ¨ p1 ` f{10mHzq4 (1.63)

and is shown on the two lowest panels in figure 1.13. The lower left panel indicates the
fluctuations in the angular rate, determined as the difference ~ωLOS,RDPOD ´ ~ωLOS,True and
rss’ed after spectral estimation over the x, y, z components for the four different cases. The
actual signal ~ωLOS,True is shown as the dark blue trace, while the light blue trace is the angular
velocity noise derived from pure GNSS errors. One can conclude that (reduced-)dynamic
orbits provide baseline angular velocities with significantly lower noise compared to the GNSS-
based angular velocity. The lower right panel shows the angular velocity components in the
RTN frame (see caption) for the noise in case 4 and the actual signal. The signal and
noise in the tangential (T) component, i.e. along the LOS, is significantly smaller and should
actually vanish as per its definition but is likely caused by numerical inaccuracies6. The
model (eq. (1.63)) approximates the noise for the normal (cross-track) and radial direction.

It should be noted that the dependence on the baseline length ρ in eq. (1.63) was estimated
from reproducing the plots for satellite separations of 10 km, 50 km and 100 km.

The plot on the upper right of figure 1.13 shows the acceleration error of the (reduced-
)dynamic orbit w.r.t. the true orbit. Even if no background model errors are present, as in
the magenta case 1 trace, the (reduced-)dynamic orbit does not correspond to the true orbit
due to the GNSS noise. As a result of common-mode rejection of errors, since both satellites
experience a similar environment, the relative acceleration noise between the satellites is lower
(middle left plot) than the absolute acceleration error of one satellite (upper right plot). The
error in the relative acceleration :~r12 is strongly connected to the centrifugal term |~ωLOS|2 ¨ ρ
in the PDGA, as the first time derivative of the baseline angular velocity ~ωLOS contains :~r12:

9~ωLOS “ ~e12 ˆ :~r12 ´ 2 ¨ ~ωLOS ¨ 9ρ

ρ
. (1.64)

The middle right plot shows the noise in the centrifugal acceleration |~ωLOS|2 ¨ ρ.
6The RTN frame of one of the S/C was used instead of the RTN frame of the baseline.
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Figure 1.13: (Upper Left:) Different cases of accuracy for the a-priori gravity field, used
to derive (reduced-)dynamic orbits from kinematic orbits. A lower error in the a-priori field
implies a lower error in the (reduced-)dynamic orbit. Case 1 is not shown, since it has no
error. (Upper Right:) Error in acceleration (root of sum of squares - rss’ed - over x, y, z) for
a single satellite for the different cases. The acceleration noise in the kinematic orbits (GNSS)
is shown in light blue. (Middle Left:) Relative acceleration (rss’ed over x, y, z) between the
two satellites for the different cases. (Middle Right:) Errors in the centrifugal acceleration
term of the PDGA for the different cases. (Lower Left:) Error in the angular velocity (root
of sum of squares over x, y, z). (Lower Right:) Error in the angular velocity for case 4
and the signal in a local orbit frame (RTN: Radial, Tangential/Along-Track, Normal/Cross-
Track). All plots assume an orbit height of 400 km and a spacecraft separation of 200 km.
The gravity field is considered up to degree 180.
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Figure 1.14: The simulated precision of (reduced-)dynamic orbits for a satellite at height
h “ 400 km height and with the background model errors from the cases given in figure 1.13
(upper left). The traces correspond to the root of sum of squared values over x, y, z in the
spectral domain.

The propagation of tones into the (reduced-)dynamic orbit and the corresponding angu-
lar velocity is done in the following way: It is assumed that differential transverse position,
e.g. radial or cross track direction, is subject to common-mode rejection between the (nearby)
satellites in a link, such that the 4mm tone amplitude of kinematic orbits (cf. sec. 1.4.5) is
suppressed to amplitudes of a1 “ 0.3mm and a2 “ 0.1mm at 1/rev and 2/rev frequency, re-
spectively, in the (reduced-)dynamic orbits. From these amplitudes an, the following formula
is used to obtain an error in the angular velocity

ωLOS,E,Tones “
2ÿ

n“1

an,s ¨ sinp2πforbt ¨ nq ` an,c ¨ cosp2πforbt ¨ nq
ρ

¨ 2πforb ¨ n, (1.65)

which translates into the following error in the centrifugal acceleration term:

|~ω|2 ¨ ρ « 2 ¨ |~ωDC | ¨ ωLOS,E,Tones ¨ ρ “ 4π

Torb
¨ ωLOS,E,Tones ¨ ρ. (1.66)

1.6 Sensitivity Model

In section 1.3, the two primary relations between the Earth gravity field and observables were
derived: On the one hand, one can obtain the SH coefficients from the projected differential
gravitational acceleration (PDGA, LL-SST) and on the other hand, directly from the orbit
trajectory (direct acceleration, DA, HL-SST). In section 1.4, error models of the measure-
ments were introduced. In this section, measurement errors are propagated into PDGA and
DA, such that rigorous sensitivity models for PDGA and DA are obtained. In the subsequent
section 1.7, the errors are then related to gravity field solutions.

1.6.1 Direct Acceleration (DA)

Let us denote the error-free, i.e. true, satellite GRP position with the subscript “T,GRP”.
Measurements and errors are denoted with the subscripts “M” and “E”, respectively, such
that one obtains

~rT,GRP “ ~rM,GRP ´ ~rE,GRP “ ~rM ´ ~rE (1.67)
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The term ~rE,GRP contain errors in the determination of the GRP, i.e. GNSS errors. From
eq. (1.18), one easily arrives at an expression for the satellite’s 3-d direct gravitational accel-
eration

ÝÑ
DA in an inertial frame

ÝÑ
DATrueptq “ xMp~rT,GRP q ¨ ÝÑ

CS ` ~ang,T “ xMp~rM,GRP q ¨ ÝÑ
CS ´ pG ¨ ~rE ` ~ang,T (1.68)

“ :~rM ` ~ang,Mlooooomooooon
Measurement

´ pG ¨ ~rE ´ :~rE ´ ~ang,Elooooooooooomooooooooooon
Errors

, (1.69)

where the gravity gradient pG relates a position error to an acceleration. The non-gravitational
accelerations are given by ~ang. The noise in the observation of the direct acceleration (DA)
can be approximatively expressed as power spectral density by

PSDrÝÑ
DAEspfq « || pG||28 ¨ PSDr~rEs ` p2πfq4 ¨ PSDr~rEs ` PSDr~ang,Es

«
˜ˆ

8π2

T 2
Orb

˙2

` p2πfq4
¸

¨ PSDr~rEs ` PSDr~ang,Es, (1.70)

where several approximations were used to derive a handy equation. The square root of
the expression is visualized in fig. 1.15 as light blue dashed trace, which has a white noise
floor at low frequencies and is increasing with f2 (in the ASD domain) due to the double-
differentiation.

In general, the gravity gradient pG in eq. (1.69) is time-dependent and it is mixing the
different vector components. The dominating part of the gravity gradient pG is due to the
zero degree term (point-mass, PM), which is typically written as [Seefelder, 2002, eq. 4-16]

pGPMp~rq “ GM

r3

ˆ
3
~r ¨ ~r ⊺

r2
´ ~r ⊺ ¨ ~r

r2
¨ 13ˆ3

˙
“ 4π2

T 2
orb

ˆ
3
~r ¨ ~r ⊺

r2
´ ~r ⊺ ¨ ~r

r2
¨ 13ˆ3

˙
(1.71)

where 13ˆ3 is the identity matrix and Torb “ 2π ¨
a
r3{GM is the orbital period of a circular

orbit at height |~r|. The eigenvalues of pGPM are

p|| pG||8,´|| pG||8{2,´|| pG||8{2q (1.72)

with the matrix norm || pG||8 « 8π2{T 2
Orb « 2.5 ¨ 10´6 s´2 for a LEO satellite, which cor-

responds to the value for the gravity gradient in radial direction. Eq. (1.70) assumes the
worst-case coupling along the radial direction and is valid as long as the noise in ~rE is
isotropic, which has been assumed for the GNSS observations (cf. eq. (1.38)). The validity of
the simplified model in eq. (1.70) is shown in figure 1.15, where the direct acceleration vector
components of a satellite at 400 km orbit height are depicted together with the errors.

The error traces are based on instrument GNSS noise, which is differentiated twice to
yield the acceleration noise plus the contribution due to evaluating the acceleration at the
wrong position, which is depending on pG. The latter is not a direct measurement error but
rather a disturbance of the gravity retrieval process that shows up, for example, if post-
fit residuals are computed. It is an error in independent variables in the context of least-
squares estimation. In contrast to ordinary least squares, where the independent variables
are considered as error-free, the so-called total least squares estimation considers errors in
both dependent and independent variables and is therefore favored within this thesis. The
total least squares estimation uses a modified covariance matrix for data weighting. The error
model represented by eq. (1.69) can be understood as covariance information for the total
least-squares problem (cf. sec. 1.7.1). However, the difference between a total least-squares
and an ordinary least-squares estimation is expected to be rather small for the DA, since the
white noise from the independent variables is dominant only for frequencies below 3mHz.

The signal trace in y direction in figure 1.15 has a lower amplitude level, because the
orbital plane is oriented in the xz-plane in the inertial frame in this particular example.
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Figure 1.15: ASD of the direct satellite acceleration in x, y and z directions in an inertial
frame. The errors in x, y and z in the acceleration induced by position (and according
acceleration) errors agree with the model shown as light blue dashed trace. An orbit height
of 400 km was used. Only gravitational accelerations from a static field (EGM96) were
considered.

1.6.2 Projected Differential Gravitational Acceleration (PDGA)

The procedure of the previous subsection is used to derive the errors for the projected dif-
ferential gravitational acceleration as well, starting with the error-free expression as given by
the left-hand side of eq. (1.13)

δag “ ~e12T,GRP ¨ pR ¨ ~∇V12T,GRP, (1.73)

where the subscript “T” indicates true (error-free) quantities.
The true line-of-sight vector ~e12T,GRP and the true differential potential V12T,GRP are not

accessible and can only be determined from measurements (subscript “M”), thus measurement
errors (subscript “E”) are present. Using eq. (1.67) for both satellites and the gravity gradient
pG, one arrives at the following expression, which considers errors in the potential term:

δag “ ~e12T,GRP ¨ pR ¨ ~∇V12T,GRP

« ~e12T,GRP ¨ pR ¨ ~∇V12M ´ ~e12T,GRP ¨ pR ¨
´

pGp~r1Mq ¨ ~r1E ´ pGp~r2Mq ¨ ~r2E
¯
. (1.74)

The rotation matrix pR transforms vectorial quantities from the Earth-fixed to the Space-fixed
frame. By introducing directly the inertial quantities with the following tilde-notation, one
reduces the complexity of subsequent equations:

~∇Ṽ12 :“ pR ¨ ~∇V12, (1.75)

p̃
G :“ pR ¨ pG. (1.76)

To consider errors in the true line-of-sight vector ~e12T,GRP, one can exploit that ~e12T,GRP

and ~e12M,GRP “ ~e12M are normalized and that cospx ` δxq « cospxq ´ δx ¨ sinpxq, which
provides

δag « ~e12M ¨ ~∇Ṽ12M ´ ~e12M ¨
´ p̃
Gp~r1Mq ¨ ~r1E ´ p̃

Gp~r2Mq ¨ ~r2E
¯

´ αE ¨ |~e12M ˆ ~∇Ṽ12M| (1.77)
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with the angle αE “ >p~e12M,GRP, ~e12T,GRPq denoting the angle between the true LOS and the
measured LOS. The magnitude of this angle can be approximated as |αE| « |~r12E,K|{|~r12M |,
with ~r12E,K being the relative transverse position error w.r.t. the line of sight. The first
term in eq. (1.77) is the measured projected differential gravitational acceleration. The next
two terms are caused by errors in the position: the second term accounts for errors in the
gravitational potential, while the third term accounts for an error in the LOS direction (αE).
It is sufficient to approximate the potential difference Ṽ12M (in the third term) and the inertial

gravity gradient p̃
G in eq. (1.77) to first order by a spherical gravity field of a point-mass (PM)

Earth, since it is by far the dominating contribution and these quantities are additionally
multiplied with small errors terms. For clarity, a subscript “PM” is added to these quantities.
One should note that with this approximation, one does not need to express Ṽ12M,PM and
p̃
GPM explicitly in terms of SH coefficients

ÝÑ
CS, which one aims to determine later on.

For a spherical gravity field and circular satellite orbits, the expression |~e12M ˆ ~∇V12M,PM|
vanishes. However, it is kept as variable cα to remind that elliptic orbits or non GRACE-like
constellations may lead to a coupling of LOS-direction estimation errors into the PDGA:

cαptq :“ |~e12Mptq ˆ ~∇Ṽ12M,PMptq|. (1.78)

Hence, one obtains

δag « ~e12M ¨ ~∇Ṽ12M ´~e12M ¨
´ p̃
GPMp~r1Mq ¨ ~r1E ´ p̃

GPMp~r2Mq ¨ ~r2E
¯

´ αE ¨ cαloooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon
errors

, (1.79)

where the errors are often ignored in the literature, because they are contained in the inde-
pendent variables, e.g. on the left-hand side of a linear equation pA ¨ ~x “ ~b.

In the same manner, one can expand the right hand side of eq. (1.13)

δag “:ρT ´ p~ang2,T ´ ~ang1,Tq ¨ ~e12T ´XT

“:ρM ´ :ρE ´ p~ang2,M ´ ~ang1,Mq ¨ ~e12M ` p~ang2,E ´ ~ang1,Eq ¨ ~e12M
` |~e12M ˆ p~ang2,M ´ ~ang1,Mq | ¨ αE ´XM `XE, (1.80)

where the centrifugal part is kept in the variable “X”. By combining eq. (1.77) and eq. (1.80)
and collecting all error terms one ends up with

PDGAptq “:ρM ´ ang2,M,LOS ` ang1,M,LOS ´XM

´ :ρE ` ang2,E,LOS ´ ang1,E,LOS ` |~e12M ˆ p~ang2,M ´ ~ang1,Mq | ¨ αE

` ~e12M ¨
´ p̃
GPMp~r1Mq ¨ ~r1E ´ p̃

GPMp~r2Mq ¨ ~r2E
¯

` αE ¨ cα `XE. (1.81)

The first line contains the pure measurements. The two other lines are error terms in the
observations. The measurement of the centrifugal part denoted as XM and the error in the
measurement XE may be expressed in three different ways, based on eqs. (1.13), (1.15) and
(1.16) as discussed in sec. 1.3.3

X
p1q
M “ | 9~r12M|2

ρM
´ 9ρ2M
ρM

(1.82)

X
p1q
E “ ´ρE ¨

˜
| 9~r12M|2
ρ2M

´ 9ρ2M
ρ2M

¸
` 2 ¨ | 9~r12E| ¨ | 9~r12M|

ρM
´ 2 ¨ 9ρE ¨ 9ρM

ρM

“ ´ρE ¨ X
p1q
M

ρM
` 2 ¨ | 9~r12E| ¨ | 9~r12M|

ρM
´ 2 ¨ 9ρE ¨ 9ρM

ρM
(1.83)

X
p2q
M “ |~ωLOS,M|2 ¨ ρM (1.84)

X
p2q
E “ 2 ¨ |~ωLOS,M| ¨ ρM ¨ |~ωLOS,E| ` |~ωLOS,M|2 ¨ ρE (1.85)

X
p3q
M “ 2 ¨ E1M ` E2M ´ 2

?
E1M ¨ E2M cospβMq
ρM

´ 9ρ2M
ρM

(1.86)
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with

EiM “ V p~riMq ` p ~ωe ˆ ~riMq ¨ 9~riM `
ż t

t0
~ang,iM ¨ 9~riM dt´ EcM, i P t1, 2u (1.87)

βM “ >p 9~r1M, 9~r2Mq. (1.88)

A rigorous derivation of the error for the energy-based centrifugal term X
p3q
E is not given

here, since it is cumbersome with lengthy expressions. As will be seen subsequently, all three
representation are dominated by GNSS velocity errors. Other authors have also shown that
energy-based gravity field retrieval is dominated by GNSS velocity errors [Jekeli, 1999; Visser
et al., 2003]. To improve readability, all error terms are numbered as Ti by rewriting eq. (1.81)

PDGAptq “:ρM ´ ang2,M,LOS ` ang1,M,LOS ´XM `
ÿ

i

Ti. (1.89)

An approximative noise model for the PDGA is provided as

PSDrPDGAEspfq “
ÿ

i

PSDrTis, (1.90)

where the single terms are summarized in table 1.3 and visualized for a typical parameter set
in figure 1.16. The ranging noise term has been complemented by scale factor variations, as
discussed in sec. 1.4.2

:ρEptq ÝÑ :ρEptq ` S
(IFO)
DC ¨ :ρMptq. (1.91)

Furthermore the accelerometer measurement Γi on the i-th S/C has replaced ~ai,ng and is
supplemented with scale factor terms, as discussed in sec. 1.4.3,

ang,i,E,LOSptq « Γi,E,LOSptq ` S
(ACC)
DC,i,E ¨ Γi,M,LOSptq ` S

(ACC)
AC,i,Eptq ¨ Γi,M,LOSptq. (1.92)

In many studies on future geodesy missions, in particular in the ones which are based on
quick-look simulations, only the first two terms from the table 1.3 are considered: T1, the
ranging noise along the LOS, and T2, the accelerometer noise along the LOS. For GRACE-
and GRACE Follow-On-like sensitivity levels, this might be sufficient. However, for further
advanced missions it is not sufficient to simply state that an decrease in ranging and ac-
celerometer noise yields a better gravity field, as complex interdependencies start to play a
role.

One should note that the centrifugal part of the PDGA decreases faster with frequency
than the ranging part (solid black and dark blue traces in figure 1.16). All three methods
to describe the baseline centrifugal acceleration (M1, M2, M3) yield the same precision for
the centrifugal acceleration (red, green and black dots overlap in the plot). The precision is
determined by GNSS (velocity) errors. The analytic noise models for the centrifugal term,
eqs. (1.83) and (1.85) shown as solid red and dashed dark blue traces, agree well with the
numerical data (red, green and black dots in figure 1.16). A unity signal-to-noise ratio for
the centrifugal acceleration is reached at « 10mHz in figure 1.16.

Position uncertainties of the kinematic GRP, as assumed in eqs. (1.38) and (1.58), lead
to a non-negligible effective noise of the order of 10´8m{s2

?
Hz in the PDGA measurement

(green trace T4). It arises due to the fact that the evaluation point (position) of the SH gravity
field is fluctuating and is an error in the independent variable in the context of least-squares
adjustment. One has to use the GRP as defined in sec. 1.5 instead of the GNSS position
for the evaluation of the gravity field, if one wants to utilize precise ranging observables,
because the GNSS errors along the LOS are significantly higher than the ranging noise. T5 is
also an error in the independent variable and is caused by inaccuracies in the measured LOS
direction, as well as T3, which is coupling non-gravitational accelerations into the PDGA.
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Figure 1.16: Spectral density of the PDGA signal and error contributions for an orbit height
of 400 km and L “ 200 km. Non-gravitational accelerations have been omitted. The upper
dark blue and dashed black trace indicate the PDGA signal and the centrifugal acceleration,
respectively. The centrifugal acceleration is part of the PDGA signal. The measurement error
in the centrifugal acceleration for all methods (M1, M2, M3) is the same (overlap in the plot)
and crosses the centrifugal acceleration signal at roughly 10mHz. The green traces show the
error contribution from orbit position errors (T4), which is also above the instrument noise
of accelerometer and interferometer proposed in the NGGM-D (e.motion2) study. Traces
labeled with model are the simplified analytic expressions from table 1.3.

T7 describes the uncertainty in the absolute knowledge of frequency or wavelength of the
ranging instrument, which relates the phase measurement to a physical length. T8 accounts
for the similar scale factor uncertainty in the accelerometer. T9 considers fluctuations of the
accelerometer scale factor within the measurement band and should actually be covered by
requirements on instrument level as in the LRI. T10 is the effect of an offset in the unbiased
ranging observable (cf. eq. (1.59)), which is typically negligible, as it is of the order of ∆L{L «
10´7. Thus, it is smaller than the DC scale factor uncertainty of the ranging interferometer,
which will be discussed in the second part of this thesis. T7, T8, T9, T10 are not shown in
figure 1.16 for the sake of readability.

Furthermore, one can conclude that the here presented analytic (simplified) PSD models
in table 1.3 match the PSDs from numerical (time-series) data in figure 1.16.

The sensitivity of the direct acceleration (DA) is limited by GNSS errors. This is expected,
since the gravity field is derived from the orbit trajectory and accelerometer data is only used
to correct for non-gravitational effects. However, in the analysis so far the PDGA approach
cannot utilize its precise ranging or accelerometer measurement, due to the noise in the
centrifugal acceleration term caused by inaccuracies of kinematic orbits (denoted within this
thesis often as GNSS or GRP position noise). For energy-based gravity field retrieval, this
error is usually expressed in terms of velocity. Expressing the centrifugal term in terms of the
baseline angular velocity did not provide better results, since the baseline angular velocity
~ωLOS is determined most precisely by means of GNSS (cf. section 1.5.1). This is the reason
why in-situ approaches such as the acceleration approach or energy-balance approach cannot
be applied directly to data processing of real missions, as mentioned in sec. 1.3.3.

In the next section, many noise contributors are reduced by utilizing reduced-dynamic
orbits, which have been introduced in sec. 1.5.2.
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Figure 1.17: Spectral density of the PDGA signal and error contributions for an orbit
height of 400 km and L “ 200 km. The PDGA signal is composed of the sum of ranging,
centrifugal acceleration and non-gravitational accelerations shown as solid dark blue, black
and green traces, respectively. Two green traces are depicted to indicate the signal variability
between different days and are direct plots of the GRACE Level-1B accelerometer data. The
observation noise of each contribution is shown as dashed dark blue, black and green line. The
gray thick line roughly indicates the GRACE (post-fit) residuals for the year 2006 as given in
[Ditmar et al., 2012]. The light blue and magenta traces are additional error contributions,
as given in table 1.3. The model of the centrifugal acceleration and position noise is based
on reduced-dynamic short arcs, as discussed in section 1.5.2.

1.6.3 Revised PDGA Sensitivity

Figure 1.16 is reproduced with GRACE instrument noise levels instead of with e.motion2

noise levels by utilizing the models from sec. 1.3.3. The results and additionally the real
GRACE residuals as given in [Ditmar et al., 2012] are plotted in figure 1.17. These post-fit
residuals can be compared to the noise models.

It is noted that the residual noise in GRACE for frequencies between 0.2mHz and 2mHz
can be explained by errors in the centrifugal term (dashed black trace in figure 1.17), which
are due to the limited accuracy of force models, in particular of the gravitational background
models. Such inaccuracies also manifest as an error in the precise orbit determination (posi-
tion and velocity of satellites). However, the noise model is based on the simple assumption
that the background models are as good as the monthly mean gravity signal (for SH de-
grees ă 60). A more precise analysis would require the assessment of the errors in actual
background models and propagating them into short arcs of reduced-dynamic satellite orbits.
Also, stationarity of the signals needs to be considered. Such an analysis is beyond the scope
of this section.

Frequency regions higher than approximately 14mHz are dominated by microwave rang-
ing instrument noise, as also stated in [Ditmar et al., 2012]. Particularly, above 30mHz, the
ranging signal should contain only noise, since gravitational and non-gravitational signals are
below the noise level. The noise in GRACE residuals for intermediate frequencies, roughly
between approximately 2mHz and 14mHz, cannot be explained by the models derived in
this thesis. Ditmar et al. [2012] also assigned the noise in this region to unknown physical
origin. The excess noise observed at the orbital frequency of 0.18mHz is likely caused by
deterministic excitation and tone errors of all instruments.
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1.7 Gravity Field Recovery

In the previous section 1.6, the error and noise terms in the projected differential gravitational
acceleration (PDGA) as well as in the direct satellite acceleration (DA) were analyzed, which
are used to derive Earth’s gravity field. In this section, the different noise contributions are
assessed at the level of spherical harmonics.

1.7.1 Method

In this thesis a linear relation between the gravity field SH coefficients
ÝÑ
CS and the measure-

ment vector
ÝÑ
M , either the PDGA or the DA, is utilized

ÝÑ
M “ pD ¨ ÝÑ

CS, (1.93)

where each element of the vector
ÝÑ
M is a measurement at a particular epoch. The matrix

pD is the design matrix. The well-known ordinary least-squares (LSQ) solution obtained by
inverting the normal matrix pN “ pD⊺ pD yields

ÝÑ
CSLSQ “ pN´1 ¨ pD⊺ ¨ ÝÑ

M, (1.94)

which minimizes the Euclidean norm of (post-fit) residuals

|| pA ¨ ÝÑ
CSLSQ ´ ÝÑ

M ||2. (1.95)

This least-squares solution is a so-called best linear unbiased estimate (BLUE, cf. Gauss-
Markov-Theorem) if the noise in the measurement vector

ÝÑ
M is uncorrelated, i.e. Gaussian

white, with variance σ2 and vanishing mean. The (co-)variance matrix of estimates pCfit “
σ2 ¨ pN´1 [Björck, 1996, p. 4] contains the variances for each fit parameter, i.e. SH coefficients,
on the diagonal as well as the co-variance information as off-diagonal elements.

If the noise in the measurement vector is correlated, one can obtain a BLUE by considering
the (co-)variance matrix pCM of measurements/observations. The LSQ solution is then given
as the weighted least squares solution [Gans, 1992, p. 28]

ÝÑ
CSLSQ “

´
pD⊺ ¨ xW ¨ pD

¯´1 pD⊺ ¨ xW ¨ ÝÑ
M, (1.96)

with the weight matrix xW “ pC´1
M and the (co-)variance matrix of estimates as pCfit “´

pD⊺ ¨ xW ¨ pD
¯´1

. A drawback of the ordinary LSQ is the assumption of an error-free de-

sign matrix pD, which is derived from error-free independent variables. By using the total
least-squares estimation, also errors in the independent variables can be considered. Then
the weight matrix is complemented by (co-)variance information of the independent variables
pCIV [Gans, 1992, p. 33]

xW “
´

pKM ¨ pCM ¨ pK⊺

M ` pKIV ¨ pCIV ¨ pK⊺

IV

¯´1
, (1.97)

where the matrices pK contain partial derivatives, such that pKM is the identity matrix for a
linear problem as discussed here (eq. (1.93)).

Usually, additional assumptions and simplifications are applied, such that the weight ma-
trix xW becomes a Toeplitz form or sparse, which can simplify computations. Alternatively,
various methods exist to estimate the measurement (co-)variance matrix iteratively by analy-
sis of post-fit residuals (cf. Variance Component Estimation [Kusche, 2003; Mayer-Gürr, 2006]
[Liu, 2008, sec. 3.4]). Additionally, decorrelation of (post-fit) SH coefficients is widely used
[Kusche, 2007; Kusche et al., 2009], e.g. since an estimation of the measurement co-variance
matrix in the presence of errors in the time-variable gravity background models is non-trivial.
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Also striping in GRACE gravity field maps is associated with correlations of SH and can be
reduced by decorrelation filtering [Swenson & Wahr, 2006].

It is noted that the measurement (co-)variance matrix can contain information on stochas-
tic as well as on non-stochastic errors. The latter ones could be caused for example by tone
errors in the instruments.

1.7.2 Handling Tone Errors in Gravity Field Recovery

Tone errors have been introduced in section 1.4.5 and are sinusoidal errors in measurements.
Tone errors cannot be treated with the same means as noise, since noise is a stochastic process
and tone errors are deterministic errors, which, for example, do not average out. Different
ways for mitigation of tones in gravity field recovery are sketched here:

❼ Correction of data in pre-processing: If the exciting physical process variables
(e.g. temperature) are measured or can be deduced from background models and if the
a-priori coupling factor knowledge is sufficient, the corresponding data streams can be
corrected in pre-processing for tone effects.

❼ Fitting of tone amplitudes: If knowledge of the tones is insufficient, tone amplitudes
can be fitted together with SH coefficients. Ideally, tone errors with a drifting phase
should be considered. Such an approach can absorb the combined error of several in-
struments and the post-fit (co-)variance matrix provides correlations between the tones
and particular SH coefficients. Such correlations are expected, since for example the
zonal coefficients have most of their signal at integer multiples of the orbital frequency,
as shown for C2,0 and C52,0 in figure 1.5.

❼ Notching of frequencies: By assuming a high stochastic noise at tone frequencies as
(a-priori) instrument (co-)variance information, signals at these frequencies are down-
weighted in the gravity field recovery. Although it is not the correct way of handling
deterministic errors, it may still provide sufficient results and does not require additional
parameters to be fitted.

In this thesis, the second approach of these approaches, fitting of tone amplitudes, is
exploited, which basically declares the tone errors as a type of signal one aims to recover
together with SH coefficients. Since errors in the time-variable background models are con-
sidered in the form of a simplified stochastic model, the (co-)variance information for the DA
or PDGA measurement can be described by stochastic means, in particular in terms of PSDs.
Whitening filters (cf. [Monsky, 2010, sec. 4.6.5]) are used in this thesis for decorrelating the
measurements and the design matrix before constructing and inverting the normal matrices.

Since the sensitivity models derived in section 1.6 contain also the errors due to indepen-
dent variables, e.g. the gravity gradient term in eq. (1.70) and the T4 term in table 1.3, the
weighting filter uses the (co)variance information from eq. (1.97) Thus, the SH coefficient
estimation is performed in a total least-squares sense.

1.7.3 Results: Direct Acceleration (Single Satellite)

The gravity fields obtainable from pure kinematic orbits (no dynamic POD) of one polar
satellite at 400 km height with repeat cycle β{α “ 466{30 are shown in figure 1.18 for a
typical 30-day solution with 30¨86400 s¨0.2Hz¨3 « 1.5¨106 observations (all xyz components).
The lowest trace is a sanity check and is a closed-loop simulation without any measurement
errors. The trace has been enhanced by a factor of 106 to improve readability of the figure.
Considering GNSS noise as shown in figure 1.15 yields traces with an error of 5 mm at degree
30, which is comparable to results from [Zehentner & Mayer-Gürr, 2013] shown as black
crosses. When noise whitening (decorrelation of measurements) is used, reasonable results
are obtained for the formal errors (magenta dashed trace), which coincide with the true errors
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Figure 1.18: Geoid rms-error per SH degree for gravity fields from kinematic trajectory
(direct acceleration, HL-SST) of a single polar satellite at h “ 400 km. The thick time-
variable gravity field trace has been replotted from fig. 1.3.

(magenta solid) as one would expect. In particular, the very low SH degrees improve, since
they gain weight in the fit due to the low noise of the measurement at low frequencies. If tone
errors are included in the GNSS measurement, the low degree coefficients degrade (black solid
trace), in particular the C20 coefficient. The tones at 1/rev and 2/rev frequency have a high
correlation with the C20 and other zonal coefficient, as one can already see on figure 1.5 on
page 13 and by evaluating the inverse normal matrix, if tone amplitudes are a fit parameter
(cf. fig. 1.19). The error in the C20 coefficient without tones is « 9 ¨ 10´12, while tones with
4mm amplitude increase the error to above 10´10. Fitting tone amplitudes together with SH
coefficients reduces the error by a factor of 2 in the simulations performed here.

It is well known that monthly GRACE gravity field solutions cannot resolve the C20
coefficient very well and it is recommended to obtain this coefficient from SLR measurements
based on multiple satellites [Cheng et al., 2011]. Due to geophysical effects, the C20 coefficient
oscillates with annual and semi-annual periods with an amplitude of approx. 10´10 [Chen &
Wilson, 2008]. Errors in the tide background models, in particular in the solar tide S2
constituent, are supposed to appear aliased at these frequencies and complicate retrieval of
this signal [Ray et al., 2003; Chen et al., 2009]. One should note that also the β1 angle, the
angle between sun vector and orbital plane, changes with semi-annual period. This likely
leads to cyclic thermal changes at semi-annual and annual periods and possibly modulating
tone errors within GNSS, KBR and ACC at these periods. Also the decreased sensitivity of
monthly C20 estimates [Ogawa, 2010, Fig. 2.3] could be produced by tone errors at 1/rev and
2/rev frequency, as pointed out here. It might be beneficial to evaluate if GRACE gravity
fields based on pure kinematic orbits exhibit the same degraded sensitivity for C20 as the
full solutions containing PDGA and DA information to pinpoint the origin of the decreased
sensitivity for C20.

Adding kinematic information from a second (close-by) satellite would reduce the rms of
SH coefficients by a factor of

?
2 in figure 1.18 (not shown), since the number of observations

is doubled. A 70˝ inclined satellite, e.g. of the Bender configuration as proposed in the
e.motion2 study, shows degraded sensitivity for a global gravity field (orange trace) due to
the polar gaps.

A non-polar mission will in general show poor global SH geoid rms values and the metric
should be adopted, e.g. a latitude dependent weighting in the spatial domain could be used.
In addition, regularization methods are required, since the least-squares adjustment of SH
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Figure 1.19: Correlations between SH coefficients and twelve tone fit parameters ti, which
are sine and cosine components in x, y and z direction for frequencies at once and twice the
orbital frequency. For each SH coefficients α in the triangular plot, the color value in the

plot has been computed as
bř12

i“1 covpα, tiq2{pcovpα, αq ¨ covpti, tiqq from the inverse normal
matrix. Negative orders denote S coefficients, while positive orders denote C coefficients.

coefficients (up to high degrees) is ill-posed for a non-polar satellite [van Lonkhuyzen et al.,
2002]. Therefore, the scenario described by the orange trace considered only a gravity field
up to degree 30, since it was solvable without regularization.

1.7.4 Results: Single Pair

The sensitivity of the direct acceleration (HL-SST) allows to retrieve the geoid at degree 10
with approximately 1mm rms-error, while degree 35 has an rms-error of 1 cm in figure 1.18.
The PDGA sensitivity in terms of geoid error is shown in figure 1.20 for different individual
noise contributions. The ranging instruments (KBR or LRI, black traces) show the lowest
noise. The accelerometer noise is comparable to the noise induced by uncertainties in the
LOS direction, denoted as T5 within this thesis, which is in good agreement with figure 1.16
on page 43. The uncertainties in the GRP position, mainly caused by GNSS (kinematic)
errors and imprecision in background gravity field models, picked up via the (reduced-)
dynamic orbit determination, are denoted as T4 (solid magenta trace). Keeping this in mind,
a comparison with results from [e.motion2 Team, 2014, Fig. 7-22] reveals that other gravity
retrieval approaches from different institutes yield a similar geoid rms-error of 0.1mm for
degree 90, if errors in background-models are omitted.

The geoid errors from the uncertainty in the centrifugal acceleration is dominating in
figure 1.20. Recall, that this error was modelled based on (reduced-) dynamic orbits and an
assumption for the knowledge of the background models. Often, as in the e.motion2 study,
the analysis of GRACE-like mission studies starts with simplified simulations, which do not
consider background model errors, and is concluded with realistic (full-scale) simulations,
which consider background model errors. Comparison with [e.motion2 Team, 2014, Fig. 7-23]
for the two-satellite case shows that the centrifugal acceleration error model used here is in
agreement with the results from full-scale simulations, given by 0.1mm at degree 15 and
2mm at degree 90.

Although the centrifugal acceleration error rolls off quickly between 1mHz and 10mHz
in figure 1.17, it still spoils high degrees of SH in gravity field solutions. One should keep in
mind that noise at high frequencies degrades only the high SH degree coefficients. However,
noise at low frequencies affects both low and high SH degree coefficients (cf. figure 1.5 on
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Figure 1.20: Geoid rms-error per SH degree for gravity fields from projected differential
gravitational acceleration (PDGA, LL-SST) of a polar GRACE-like pair with 400 km orbit
height, 200 km spacecraft separation and with β{α “ 466{30 repeat-orbit. The thick gray
trace denotes the time-variable monthly gravity field and has been replotted from fig. 1.3.
The different traces labeled Ti refer to the error terms from table 1.3 on page 44.

page 13).

Tone errors in the PDGA as shown in figure 1.17 on page 45 yield an error of « 0.6¨10´10 in
the C20 coefficient (not shown in the plots), which is roughly of the same order of magnitude
as the geophysical signal. However, if tone amplitudes are fitted together with SH coefficients,
the error could be reduced by a factor of 2. The free parameters are the tone amplitude and
phase, but both parameter are considered to be constant over one month of data.

The dependency of geoid errors on orbit height and S/C separation is illustrated in fig-
ure 1.21, which considers the instrument and noise models within this thesis. For higher S/C
altitude, the higher SH degree coefficients start to degrade, while a shorter S/C separation
increases the error in all degrees. Combination of PDGA and DA information on the level of
normal equations improves the gravity field solution slightly for SH degrees between 20 and
60, although the geoid error of pure DA observations is always higher than the PDGA error
(cf. figure 1.18). However, as shown by the red trace in figure 1.21, the DA noise falsifies
the geoid slightly at high SH degrees above 100, which might be caused in this thesis by
non-optimal data weighting and decorrelation.

1.7.5 Results: Dual (Bender) Pair

The results for the single polar pair constellation obtained in this thesis are compatible with
the results from the e.motion2 study obtained by various institutes. Finally, the gravity field
results from the combination of two satellite pairs in a Bender configuration are shown in
figure 1.22. The results are obtained by combining the normal matrices and are compared
to full-scale simulations from the e.motion2 study. The magenta traces are the results for
a single polar pair from the previous section. Adding information from an additional 70 ˝

inclined satellite pair does not simply improve the noise in the gravity field by a factor of?
2 but rather by an order of magnitude in the shown root-mean-square error per SH degree.

For SH degrees between 20 and 60, the geoid error is at 0.02mm and comparable with the
e.motion2 results.

Unfortunately, for higher SH degrees, the approach followed here to consider background
model errors as a stationary noise within the centrifugal acceleration with a particular PSD
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Figure 1.21: Geoid rms-error per SH degree from PDGA measurement of a single polar pair
for different orbit heights (h) and spacecraft separation (L). All traces contain accelerometer,
ranging and centrifugal acceleration noise. The red trace indicates the combination of PDGA
and DA measurements from both satellites.

produces too optimistic results. One main outcome of the e.motion2 study was the feasibility
of 1 mm geoid rms error at degree 130 for the suggested Bender configuration, whereby the
results here show 0.2mm geoid error at SH degree 130. However, this circumstance has not
yet been investigated further.

1.7.6 Discussion

The previous sections contain a derivation of the gravity field measurement from first princi-
ples. The sensitivity of the main instruments was discussed together with methods to obtain
baseline state quantities from measurements. From these an error analysis of the projected
differential gravitational acceleration (PDGA or LL-SST) and of the direct acceleration (DA,
HL-SST) was performed. Finally, the sensitivity was transfered to the level of SH coefficients,
yielding an end-to-end simulation.

It was shown that a Bender configuration, as proposed in the e.motion2 study, signifi-
cantly reduces the errors in Earth gravity field estimates compared to a single pair mission.
Furthermore, aspects such as the ability to determine the C20 coefficient were addressed.
The acceleration approach was favored in the analysis, because it establishes a linear relation
between observations and SH coefficients. This linearity leads also to a straightforward error
propagation from observations to gravity field. However, the drawback of the acceleration
approach is a deficiency in the centrifugal acceleration term. It was stated that the centrifu-
gal acceleration term can be written in terms of a transverse relative velocity, in terms of
the baseline angular velocity ~ωLOS or in terms of energy. However, all three representations
turned out to be equivalent.

To overcome the issue, the derivation of more precise orbits, i.e. reduced dynamic orbits,
is inevitable but requires a-priori information of the force models and of the (instantaneous)
gravity field. The problem of gravity field determination needs to be solved in combination
with precise orbit determination (POD). This entanglement complicates the analysis, since
errors in the POD and of the gravity background models propagate into other quantities
such as the S/C position and then finally into the final gravity field solution in a non-trivial
way. However, it is indisputable that gravity field retrieval in combination with precise orbit
determination can provide high resolution gravity maps, as has been demonstrated even in
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Figure 1.22: Geoid rms-error per SH degree from PDGA measurement of a single polar pair
at an orbit height of 419 km, β{α “ 464{30 and 100 km spacecraft separation (in magenta),
compared to the Bender configuration with an additional 70 ˝ inclined satellite pair (β{α “
461{30) in red and black. F.E. denotes formal errors. The dashed lines are independent
results as obtained in the e.motion2 study.

the lunar GRAIL mission [Konopliv et al., 2013].

In this thesis, the error in the POD-part was considered by deriving a stationary noise
model for the centrifugal acceleration term based on an assumption for the knowledge of
an a-priori gravity field and based on an orbit fit of short arcs. This is a strong simpli-
fication but allowed to use the acceleration approach with its benefits, e.g. no linearized
equations as in (reduced-)dynamic orbit determination. The results for the single polar pair
are compliant with current GRACE post-fit residuals and provide an understanding of critical
parameters for future missions. Unfortunately, the results for the double Bender pair are too
optimistic (at high SH degrees) compared to full-scale simulations with proper consideration
of background model errors, but the significant benefit of a second inclined pair could be
demonstrated.

1.8 Centrifugal Acceleration Sensing

The observation technique for GRACE and GRACE Follow-On as well as various mission
proposals for future SST geodesy missions is based on precise ranging between satellites,
measurement of non-gravitational accelerations by means of an accelerometer, orbit deter-
mination using a GNSS receiver and other auxiliary measurements such as star cameras to
measure spacecraft attitude. As discussed in the previous sections, the centrifugal (CF) accel-
eration of the baseline cannot be measured with sufficient precision with current techniques
and needs to be derived by means of (reduced-)dynamic orbit determination, usually implic-
itly in the gravity retrieval process. The author of this thesis is convinced that a precise
measurement of the baseline centrifugal acceleration would simplify the gravity retrieval and
would reduce the effect of background model errors in the gravity field solutions. Therefore,
this section is dedicated to a brief feasibility assessment of different ways to measure this
baseline centrifugal acceleration.

The baseline centrifugal acceleration PDGACF can be written in accordance to eq. (1.13)
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as

PDGACF “ | 9~r12|2
ρ

´ 9ρ2

ρ
“

9~r 2
12,K
ρ

“ |~ωLOS|2 ¨ ρ, (1.98)

where the precise (unbiased) inter-satellite ranging ρ is combined with less precise velocity
information. Obviously, an improvement of GNSS observations would provide better abso-
lute S/C positions as well as a more precise relative position vector ~r12 and therefore more
precise centrifugal accelerations. Strategies to improve the kinematic GNSS orbits have been
addressed in section 1.4.1 but are likely only capable to provide an incremental improvement.

By linearizing eq. (1.98) and using L for the time-averaged unbiased ranging ρptq, one can
derive the noise in terms of the power spectral density in the centrifugal acceleration term,

PSDrPDGACF,Espfq « 2 ¨ L ¨

¨
˝

|ωLOS,DC,x|2
|ωLOS,DC,y|2
|ωLOS,DC,z|2

˛
‚
⊺

¨ PSDr~ωLOS,Espfq, (1.99)

which is a vector product and forms together with the noise in the accelerometer and range
acceleration the main contributors of the overall PDGA (LL-SST) sensitivity. We can as-
sume here that the mean angular velocity ~ωLOS,DC is constant in an inertial frame, e.g. for
GRACE-like missions it points in cross-track direction of both S/C with a magnitude of
2π{Torb. Without loss of generality one can choose a coordinate frame, such that only a
single component is non-zero in ~ωLOS,DC, and hence, only a single component of PSDr~ωLOS,Es
is of importance.

Recalling figure 1.16 on page 43, the centrifugal acceleration noise should be ideally at the
sensitivity level of the accelerometer and ranging instrument. For simplicity, the accelerome-
ter is taken as reference, because it is the dominating noise source at low frequencies. Thus, a
requirement for the measurement noise of the angular velocity along the sensitive axis would
be based on the noise of the accelerometer ΓX,E (cf. eq.(1.47)), i.e.

ASDrωreqspfq :“ ASDrΓX,Espfq
2 ¨ L ¨ 2π{Torb

. (1.100)

Evaluation of the required sensitivity for L “ 200 km and Torb « 5550 s, which corresponds
to h « 400 km, yields values of

ASDrωreqspf “ 10´4Hzq « 1 ¨ 10´11 rad{ps
?
Hzq

ASDrωreqspf “ 10´3Hzq « 2 ¨ 10´13 rad{ps
?
Hzq. (1.101)

As will turn out in the next paragraphs, where different methods to determine or measure
~ωLOS are discussed, reaching such a sensitivity is extremely challenging, if not impossible.

It is remarked that the baseline angular velocity in an e.motion2 or GRACE-like missions
is equivalent to the GOCE S/C angular velocity. However, as the baseline length between
accelerometers in GOCE is approx. 106 times smaller than L “ 200 km, the sensitivity for the
angular velocity can be relaxed by this factor. In the GOCE mission, the gradiometer and
S/C attitude was measured by star cameras and by the gradiometer (accelerometer pairs),
with a pre-launch specified peak-sensitivity of 1 ¨ 10´9 rad{ps

?
Hzq at 5mHz [Stummer, 2013,

Fig. 6.3].

1.8.1 Accelerometer, Star Camera and Laser Interferometry

An alternative method to derive the baseline angular velocity ~ωLOS other than by satellite
velocities is possible by a combination of measurements from an inertial measurement unit
(IMU) and LRI pointing information, typically via Differential Wavefront Sensing (DWS).
The IMU can be an accelerometer, star cameras, a gyroscope or a sensor fusion result of all
of them.
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Each IMU measures the angular rate of the corresponding satellite w.r.t. an inertial frame,
while information on the LOS direction is available from LRI pointing measurements. If both
satellites perfectly faced each other, the LRI pointing signal would be zero (or constant) along
the orbit, while the measured angular rate of the IMU on both satellites is equal to the baseline
angular velocity. However, as the satellites are prone to attitude jitter, the accelerometer and
star camera angular rate measurements are contaminated by jitter noise. This attitude jitter
is measured by the LRI on each satellite and can be used as correction in post-processing.

We wish to derive the sensitivity of the combination of the IMU measurement and LRI
pointing. Consider an IMU capable to measure the orientation of the satellite body frame
(SBF) w.r.t. the inertial frame (IF) in all 3 degrees of freedom, e.g. a star camera, a gyroscope
or an accelerometer (angular accelerations). Note that only the star camera is capable to
measure an unbiased attitude w.r.t. the inertial starry sky, while gyroscope and accelerometer
need additional information to resolve an initial bias, e.g. from sensor fusion.

Such an IMU measurement provides a rotation matrix relating the SBF to the IF

pRSBFÑIF “ pRxpαq ¨ pRypβq ¨ pRzpγq, (1.102)

where α, β and γ describe the rotation angles for rotations around the x, y and z axes,
respectively.

Without loss of generality it is assumed that the orbital planes are oriented such that the
angular velocity predominantly points in y-direction, i.e.

βptq “ ωDC ¨ t` δβptq. (1.103)

Additionally, the LRI measures the line-of-sight (LOS) with respect to the SBF on each S/C.
The DWS-derived LOS ~e12|SBF can be written as

~e12|SBF “ pRypDWSvq ¨ pRzpDWShq ¨

¨
˝
1
0
0

˛
‚

|SBF

. (1.104)

It was assumed without loss of generality that the nominal LOS direction is along the x-axis
in the SBF. Furthermore, the DWS measurement angles DWSv, DWSh were used. Finally,
the line-of-sight vector in the inertial frame is given by

~e12|IF “ pRSBFÑIF ¨ ~e12|SBF. (1.105)

With these definitions, one arrives with the help of an algebraic software such as Mathematica
at a linearized formula for the angular velocity vector

~ωLOS “ ~e12|IF ˆ 9~e12|IF «

¨
˝

0
ωDC

0

˛
‚

looomooon
~ωLOS,DC

`

¨
˝

´pδγ ` δDWShq ¨ ωDC

δ 9β ` δ 9DWSv
δ 9γ ` δ 9DWSh ` δα ¨ ωDC

˛
‚

looooooooooooooooomooooooooooooooooon
~ωLOS,E

. (1.106)

This formula shows the coupling of errors (denoted with δ) into the final angular velocity.
Using this eq. (1.106) in eq. (1.99), one notices that the y-component is the linear domi-
nant component in the power spectral density. The noise in this sensitive angular velocity
component can be described in the power spectral domain as

PSDrωLOS,Es “ PSDrωIMUs ` p2πfq2 ¨ PSDrδDWSvs, (1.107)

where the first term is the noise in the angular rate derived from the IMU, i.e. 9β in eq. (1.106),
and the second term is the noise in the LRI pointing measurement.
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Figure 1.23: Sensitivity of different measurements of LOS angular velocity expressed as
spectral density. The signal is given for a GRACE-like constellation at 400 km height and
with 200 km separation. The magenta requirement trace corresponds to eq. (1.100). IMU:
Inertial Measurement Unit (Laser Fiber Gyroscope), SCA: Star Camera, DWS: Pointing
measurement of the LRI

The corresponding numerical models are given in eq. (1.49) and eq. (1.41), which yields
for the accelerometer IMU

PSDrωLOS,E,ACC+LRIs «2 ¨ PSDr 9ωACC,Es
p2πfq2 ` 2 ¨ p2πfq2 ¨ PSDrDWS,Es (1.108)

«2 ¨

˜
4 ¨ 10´8 rad{ps2

?
Hzq ¨

c´
1mHz
f

¯4
` 1 `

´
f

10mHz

¯4
¸2

p2πfq2
` 2 ¨ p2πfq2 ¨ 10´12 rad2{Hz ¨ NSF2pfq (1.109)

and for the star camera IMU (cf. eq. (1.53))

PSDrωLOS,E,SCA+LRIs «2 ¨ p2πfq2 ¨ PSDrαSCA,Es ` 2 ¨ p2πfq2 ¨ PSDrDWS,Es (1.110)

«2 ¨ p2πfq2 ¨

¨
˝16 ➭rad{

?
Hz ¨

d
1 `

ˆ
0.01Hz

f

˙2
˛
‚
2

` 2 ¨ p2πfq2 ¨ 10´12 rad2{Hz ¨ NSF2pfq (1.111)

The numerical values over frequency are visualized in figure 1.23. For comparison, the sensi-
tivity of the commercially available laser gyroscope ASTRIX➤200 from Airbus7 is shown as
green trace. According to the specifications, the instrument is capable to reach an angular-
random-walk noise of 0.00012˝ {

?
hr, which translates to approx. 3.6 ¨10´8 rad{ps

?
Hzq. Since

the LRI pointing information would be the dominant noise source, it was assumed that the
DWS or pointing readout (eq. (1.41)) can be improved from 1 ➭rad{

?
Hz by one order of

magnitude to 0.1 ➭rad{
?
Hz for the green trace. Even potential Sagnac atom interferometers

[Barrett et al., 2014] would not provide better sensitivity than the GNSS kinematic-derived
baseline angular velocity.

7http://www.space-airbusds.com/en/equipment/astrix-200.html

55



1.9. DRAG-FREE AND DRAG-COMPENSATION

One can conclude that with currently available instruments one can not perform an in-
dependent measurement of the baseline angular velocity with a noise level better than the
required eq. (1.101) shown as magenta trace in figure 1.23.

1.8.2 Sagnac-Interferometry

A very prominent way to measure angular velocities is to exploit the Sagnac effect, which
causes an accumulation of a phase difference between a clockwise and a counter-clockwise
propagating wave, if the setup is rotating in inertial space [Malykin, 2000]. The phase differ-
ence expressed as pathlength ∆x can be computed from

∆x “ ~ω ¨ ~n ¨A
c

, (1.112)

where c is the speed of light and ~n the normal vector of the area A. A laser ranging in-
terferometer is in general susceptible to the Sagnac effect and one needs to ensure that it is
sufficiently small to not disturb the ranging measurement. In the GRACE Follow-On LRI the
area A is approximately 200 km ¨0.6m due to the racetrack configuration. The angular veloc-
ity signal, which is caused by the gravity field with an amplitude of approx. 10´3 rad{ps

?
Hzq

at a Fourier frequency of 10´4Hz (cf. figure 1.23 on page 55), produces a parasitic ranging-
signal of the order of 400 nm{

?
Hz ¨ sinpθq, where θ is the angle between the normal vector

of the area A and ~ω. Since sinpθq is close to zero in the GRACE Follow-On concept, the
parasitic Sagnac contribution is below the sensitivity requirement of the LRI.

One could consider to develop a more sophisticated laser ranging interferometer, which is
capable of distinguishing between the Sagnac effect and ranging (longitudinal displacement).
Such a concept would be beneficial, since it directly measures the angular velocity of the
baseline. However, to reach a sensitivity of 1 ¨ 10´11 rad{ps

?
Hzq in the angular velocity with

the optimal case of sinpθq « 1, one would still need a ranging sensitivity of 10´15m{
?
Hz,

which is far beyond feasibility for low frequencies.
Also sophisticated large ground-based ring laser gyroscopes [Schreiber et al., 2001, 2009],

which exploit the Sagnac effect and can be used to monitor Earth’s rotation rate, hardly
achieve the sensitivity in eq. (1.101).

1.8.3 High-Resolution Star Camera

An alternative approach could be to utilize additional high-resolution star cameras on each
S/C, which are aligned with respect to the nominal line-of-sight direction. The idea is to
measure star positions with high precision as well as laser light from the distant S/C. Since the
distant S/C is co-moving, it will appear as fixed star, while the (real) stars in the background
appear to move with the orbital rate ωDC. The required angular velocity sensitivity translates
to an attitude sensitivity of 16 nrad{

?
Hz at low frequencies. Assuming a star position readout

sensitivity of 0.1 pixel{
?
Hz and a sensor with 4096 ˆ 4096 pixels, the required field-of-view

for the high-resolution star camera would be 650 ➭rad ˆ 650 ➭rad. However, this requires
resolving very faint stars in order to have at least a few objects in the field-of-view and
therefore feasibility is rather questionable. More details can be found in the section on the
acquisition sensor in the second part of this thesis (cf. sec. 2.3.10).

In summary, no suitable method could not be identified within this thesis, which would
improve the centrifugal acceleration measurement. The best mean remains to be based on
precise orbit determination due to the very large S/C separation.

1.9 Drag-Free and Drag-Compensation

The GRACE and the GRACE Follow-On missions do not utilize drag compensation with high
duty cycle. However, sporadic thruster activations are required for orbit and constellation
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maintenance [Yoon et al., 2006]. The GOCE mission used an ion propulsion system to
compensate non-gravitational accelerations [Canuto, 2008]. For space-based interferometers
such as LISA and LISA Pathfinder, a drag-free system is essential. Although the terms
drag-free and drag-compensation are used interchangeably in literature, here, the following
distinction is introduced: A drag-free system has a test-mass (or proof mass) following a
so-called geodesic, meaning that it is influenced only by gravitational forces, i.e., it is free-
falling. In particular, the coupling between spacecraft and proof-mass is very weak within a
particular frequency band, which is usually the (science) measurement bandwidth (MBW).
Typically, a drag-free mode can be realized only in a few degrees-of-freedom of a test-mass,
especially if several drag-free test-masses are present in a satellite [Danzmann et al., 2007,
LISA Pathfinder] or if the satellites form a constellation and inter S/C pointing is required
[eLISA/NGO Team, 2012; Danzmann et al., 2017].

Position sensors measure the position and orientation of the test-mass within the space-
craft or accelerometer, either capacitively or laser interferometrically. The signal is fed back
into a controller, which commands actuators of the satellite to produce a linear and/or an-
gular acceleration to keep the proof-mass centered within a housing. However, at very low
frequencies, i.e. below the interesting measurement band, drifts of the test-mass and S/C
need to be reduced by electro-static suspension, e.g. for orbit and formation maintenance.
The non-gravitational accelerations Γ are obtained by differentiating the position informa-
tion. A drag-free concept is illustrated in figure 1.24 (bottom). Accelerometers in the context
of drag-free systems are often called inertial sensors or drag-free sensors.

In contrast, drag-compensation usually utilizes a servo-accelerometer, where the proof-
mass position is measured by capacitive sensing and the proof mass is centered within the
accelerometer with high control-loop gain and high bandwidth by electro-static means (cf. up-
per panel in figure 1.24). The actuation signal (voltage), which is ideally proportional to the
electro-static force applied to the test-mass, provides the non-gravitational accelerations. The
accelerometers by the French company Onera used in CHAMP, GRACE, GRACE-Follow-
On and GOCE are of the latter servo-controlled type. For a drag-compensation concept,
the measured non-gravitational accelerations, which are derived from the electrostatic feed-
back signals acting on the test-mass, are fed back into another outer control loop, which
actuates the satellite by means of thruster and torquers to counteract the non-gravitational
accelerations (cf. center panel in figure 1.24).

The main difference between drag-compensating and drag-free systems is the bandwidth
of the electro-static suspension, which is a continuous parameter. Hence, the difference be-
tween both concepts is gradual and not black-and-white. Drag-compensation uses two nested
control-loops within the measurement bandwidth, while drag-free operation utilizes only the
Attitude and Orbit Control System (AOCS) loop within the measurement bandwidth. In
an ideal drag-free concept, the proof-mass follows a geodesic. While in drag-compensation,
the proof-mass follows a geodesic only in case of infinite AOCS loop gain. In the case of
finite AOCS loop gain, the high electro-static suspension couples the proof-mass and the
S/C strongly. Any disturbance on the S/C produces a deviation from geodesic motion of the
test-mass, which is, however, suppressed by the finite AOCS loop gain.

Because the proof-mass has non-negligible motion inside the accelerometer housing in
case of drag-free operation, the definition of the gravitational reference point for gravity
recovery was adopted in sec. 1.3.6 (and following). In a drag-free mission, the well-defined
and stable proof-mass CoM needs to serve as ranging reference point. As the S/C shields the
non-gravitational disturbances such as drag and solar radiation pressure, the proof-mass is
ideally only influenced by gravitational accelerations.

1.9.1 Characteristics of Non-Gravitational Accelerations

A potential drag reduction system, either drag-compensating or drag-free, needs to counter-
act the non-gravitational accelerations caused by residual atmospheric drag, by radiation
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Figure 1.24: (Top:) Servo-Accelerometer concept as in GRACE and GRACE Follow-On
simplified for one degree-of-freedom. (Center:) Servo-Accelerometer with feed-back into the
AOCS system, which reduces the measured non-gravitational accelerations Γ. This so-called
drag-compensation scheme has been utilized in the GOCE mission. (Bottom:) Drag-Free
concept with undisturbed proof-mass within the measurement bandwidth. Abbreviations: CS
(Capacitive Sensing), DVA (Drive Voltage Amplifier), Meas (Measurement), AOCS (Attitude
and Orbit Control System), MBW (Measurement Bandwidth)
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e.g. solar or Earth’s albedo radiation pressure, and by Lorentz force. Atmospheric drag is
considered dominant, as future gravity missions will most likely utilize a lower altitude than
GRACE. The drag force can be computed according to [Montenbruck & Gill, 2000, eq. 3.97].

~Fdrag,ITRF “ ´1

2
¨ CD ¨A ¨ ρ ¨ | 9~rITRF|2 ¨

9~rITRF

| 9~rITRF|
, (1.113)

where ITRF refers to an Earth-fixed frame, A is the cross-section area of the S/C, CD is the
drag coefficient and ρ is the atmospheric density. The density ρ is a function of the satellite’s
altitude and position and it depends strongly on the solar activity, usually characterized
by F10.7 flux, and geo-magnetic activity, usually characterized by Kp or Ap coefficients
[Montenbruck & Gill, 2000]. The solar activity exhibits a 11-year cycle. Based on figure 3-20
from [e.motion2 Team, 2014], the following approximate formula for the atmospheric density
ρ between 300 km and 500 km altitude can be derived

ρph “ 400 km ` ∆hq « 10´12 kg{m3 ¨
#
10.0 ¨ 3´∆h{100 km (high case)

0.4 ¨ 10´∆h{100 km (low case)
. (1.114)

With CD “ 2.2, A “ 0.97m2 and 9~r “ 7600m{s this translates to a drag force of

F ph “ 400 km ` ∆hq «
#
0.616mN ¨ 3´∆h{100 km (high case)

0.002mN ¨ 10´∆h{100 km (low case)
. (1.115)

The result illustrates the large range between high and low solar activity. Spectral analy-
sis of the atmospheric drag on a LEO satellite reveals that next to a static part, the sig-
nal power is concentrated at (low) integer multiples of the fundamental orbital frequency
[Frommknecht, 2008, p. 53]. Moreover, Zijlstra et al. [2005] pointed out that atmospheric
models lack frequency-continuous signals when compared to accelerometer data and suggested
a method to model short-term variations by producing an appropriate filter. For a compre-
hensive report on atmospheric density models, also in comparison with satellite accelerometer
data, the reader is referred to [Doornbos et al., 2009].

In this thesis, the spectral behavior of worst-case non-gravitational accelerations for
e.motion2 was approximated rigorously based on the green trace in figure 1.25 by

PSDrang,maxspfq “ 3 ¨ 10´11 m2

s4 ¨ Hz ¨ 1

1 ` pf{0.2mHzq2 , (1.116)

which is shown as dashed light blue trace in the same figure.
It is remarked here that accelerometry in GRACE is perturbed by short twangs, which

might be caused by vibrations, probably induced by insulator foil at the nadir side of the
S/C [Peterseim, 2014]. Also, electro-magnetic susceptibility of the accelerometer, e.g. to
heater switching, has been reported [Peterseim, 2014]. The design of the GRACE Follow-On
satellites was partly optimized to reduce these effects. A potential NGGM mission needs to
address these issues as well, in particular if the accelerometer data is used in a control loop
for drag reduction.

Other non-gravitational disturbances from solar radiation pressure, Earth’s and Moon’s
albedo radiation, unexpected disturbances and Lorentz effects, where the charged S/C in-
teracts with the geomagnetic field, are not covered here in detail. The interested reader is
referred to [Frommknecht, 2008]. It is assumed that all these effects are covered by eq. (1.116).

In this section only linear accelerations are considered, a similar analysis needs to be
performed for angular accelerations.

1.9.2 Requirements on the Accelerometer

The characteristics of non-gravitational accelerations can be used to derive requirements on
the accelerometer. The maximum mean force as given by eq. (1.115) at 400 km height is
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Figure 1.25: Drag compensation requirement (dark blue trace) expressed as residual non-
gravitational acceleration ASD along the LOS. The dashed light blue trace is a worst-case
assumption for the maximum level of non-gravitational accelerations at e.motion2 orbit height
(« 400 km). Drag compensation is not required above 4 ¨10´2Hz, since even under worst-case
assumptions, the non-suppressed acceleration would be sufficiently small. The green trace of
a typical GRACE accelerometer signal corresponds to L1B data from the year 2007.

0.6mN, which corresponds to 7.5 ¨ 10´7m{s2 with a satellite mass of 800 kg. With margin
and converting to peak values, an accelerometer dynamic range of ˘6 ¨ 10´6m{s2 has been
specified for e.motion2.

Due to the quantization noise arising form the finite number of bits in analogue-to-digital
converter, e.g. high-end 24-bit ADCs, the resulting quantization noise is of the order of
(cf. eq. 2.314)

12 ¨ 10´6m{s2 ¨ 2´N
?
6 ¨ fs

« 12 ¨ 10´6m{s2 ¨ 2´24

?
6 ¨ 10Hz

« 10´13m{s2
?
Hz (1.117)

for such a dynamic range.

The amplitude spectral density of non-gravitational accelerations in the worst-case as-
sumption is approximately 10´6m{s2

?
Hz at 1mHz (cf. figure 1.25). The sensitivity of the

accelerometer is at approx. 4 ¨ 10´11m{s2
?
Hz, yielding a signal-to-noise ratio of 25000.

However, this implies that the accelerometer mean (DC) scale factor S
(ACC)
DC (cf. sec. 1.4.3

on accelerometers) needs to be known to one part in 25000 or to 4 ¨ 10´5. A survey of scale
factor requirements in missions and studies is given in table 1.4. Current accelerometers,
e.g. the one used in GRACE Follow-On, achieve an absolute knowledge of about 2%. Al-
though some concepts state a knowledge at the parts-per-million (ppm) level, details on the
technical realization are not provided.

Recall that the scale factor induced noise in the accelerometer measurement is governed
by (cf. eq. (1.52))

PSDrΓS,Es “ pS(ACC)
DC,E q2 ¨ PSDrΓmeass ` Γ2

max ¨ PSDrS(ACC)
AC,E s, (1.118)

which shall be below the overall accelerometer noise PSDrΓX,Es or at least below the PDGA
sensitivity, which is limited at high frequencies by the ranging instrument. One needs to
define values, i.e. requirements, on all of the four terms in eq. (1.118). These need to be
iterated, until suitable and achievable values are obtained for all of the quantities.
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In the e.motion2 study, a DC scale factor knowledge requirement was proposed by the
author of this thesis as

S
(ACC)
DC, req “ 2 ¨ 10´3 “ 0.2%, (1.119)

which was considered already demanding. However, with a dedicated continuous in-orbit
calibration, which will be discussed in the subsequent section 1.10, such a value is achievable.

A requirement for the AC scale factor S
(ACC)
AC,E stability within the measurement bandwidth

is proposed as

S
(ACC)
AC, req “ 10´3 1?

Hz
¨

dˆ
1mHz

f

˙2

` 1, 0.18mHz ă f ă 0.1Hz, (1.120)

which is considered achievable by the author of this thesis. From this requirement, one can
state that maximum in-orbit non-gravitational accelerations Γmax of less than

Γmax, req “ ang, max, req “ 10´8m{s2, (1.121)

will comply with the accelerometer sensitivity requirement. Thus, a drag-reduction scheme is
required on both S/C, which reduces the in-orbit non-gravitational accelerations below this
value.

The last missing requirement from eq. (1.118) is the one for PSDrΓmeass, i.e. on the
highest level of in-orbit non-gravitational accelerations within the science frequency band.

An expression, which is compliant with the PDGA sensitivity and S
(ACC)
DC, req, is proposed here

as

b
PSDrΓmeas, reqspfq

“ ASDrang,DCO,reqspfq “ 1

4 ¨ 0.2% ¨
a
2 ¨ PSDrΓspfq ` p2πfq4 ¨ PSDrLRIspfq ¨ 0.1 (1.122)

for frequencies 0.18mHz ă f ă 40mHz. The factor 1{4 accounts for two satellites and
margin, while the factor 0.1 in the square-root is also a margin, which ensures that the
accelerometer scale factor is not limiting the PDGA sensitivity, even if the LRI noise is one
order of magnitude below the requirement PSDrLRIs. The sensitivity along the sensitive axis
of the accelerometer is labeled as PSDrΓs “ PSDrΓX,Es (cf. eq. (1.47)).

Numerical values for eq. (1.122) are shown as solid dark blue trace in figure 1.25. The
frequency band for the requirement ranges from the fundamental orbital frequency up to the
unity gain frequency, where non-gravitational disturbances reach the sensitivity of the PDGA
sensitivity (« 40mHz). For comparison, the drag-reduction requirement in the Alenia-Team
[2010] study was at 10´8m{s2

?
Hz between 1mHz and 100mHz, which is stricter at higher

frequencies. A similar requirement to eq. (1.122) has been suggested by the author of this
thesis during the e.motion2 study, but was revised for this thesis.

It will turn out subsequently that eq. (1.122) is a design driver for drag-reduction schemes
based on drag-compensation, while drag-free requires smaller fluctuations at low Fourier fre-
quencies (cf. dashed dark blue trace in figure 1.25).

1.9.3 Selection of Drag Reduction scheme

If drag compensation, i.e. reduction of non-gravitational accelerations, is required only to

❼ maintain the orbit height and therefore the ground track repeat cycle,

❼ avoid accelerometer saturation due to constant along-track atmospheric drag,
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Concept/Mission/Study Knowledge Stability within MBW

Alenia [Alenia-Team, 2008] 0.02 % 5 ¨ 10´8 1{
?
Hz

FGM [Reubelt et al., 2014] 0.01 % 1 ¨ 10´6 1{
?
Hz

e.motion [e.motion Team, 2010] - -
NG2 [NG2-Team, 2011] 0.001 % 1 ¨ 10´6

GRACE-FO [Foulon, 2013] 2 % unknown
GOCE spec [Kramer, 2002] 0.1 % 1 ¨ 10´2

GOCE diff. [Cesare, 2002] 0.01 % ă 1 ¨ 10´5 1{
?
Hz

Table 1.4: Accelerometer scale factor requirements in different missions and studies. The
column labeled “Knowledge” refers to the DC (mean) scale factor accuracy.

a feed-forward or DC-compensation approach can be utilized. This means that the attitude
and orbit control system (AOCS) of the S/C is commanded to produce a constant (DC)
linear acceleration, which compensates the average along-track drag over time-scales of days to
months. As shown in the technical note in Appendix A, the accelerometer dynamic range of an
Onera-type accelerometer is sufficiently large, such that saturation due to drag does not occur
at orbit heights greater than 420 km. However, there might be scientific or technical reasons
to use drag compensation within the measurement band, such as the limited knowledge of the
accelerometer scale factor. This led to the derivation of the drag-compensation requirement
in eq. (1.122) and finally to a selection of an e.motion2 baseline [e.motion2 Team, 2014],
where the S/C compensate non-gravitational accelerations with a control loop, i.e. within
the (science) measurement frequency band.

The use of a drag-free concept was only briefly addressed in the e.motion2 study. The
feasibility of a drag-free system as in LISA and LISA Pathfinder has not been shown, to
the author’s knowledge, for a LEO orbit. Drag-free offers the advantage of a well-defined
gravitational reference point and a weak coupling between test-mass and S/C, which results
in a weak coupling of actuator and sensor errors into the motion of the test-mass. Decoupling
the spacecraft from the measurement and using a well-shielded proof-mass as reference point
as done in LISA and LISA Pathfinder should therefore be further investigated for LEO gravity
missions. A starting point for this is provided in the next subsection.

1.9.4 Preliminary Drag-Free Assessment

An important aspect for the assessment of the feasibility of a drag-free system is the residual
test-mass motion, i.e. translation and rotation, within the inertial sensor, as it needs to
be sufficiently small to avoid collision of the proof-mass with the housing. For simplicity we
consider in the following the motion only in the line-of-sight direction, as the non-gravitational
accelerations are considered to be pre-dominant in this direction. The maximum displacement
δx can be computed from a spectral density of (residual) non-gravitational accelerations ang,res
as a function of the bandwidth corner frequency fdco by

δxpk « 3 ¨
dż 8

fdco

p2πfq´4 ¨ PSDrang,resspfq df, (1.123)

where the pre-factor 3 converts the rms-value to a zero-peak (99.7 % probability) value under
the worst-case assumption of a completely Gaussian residual acceleration. The factor would
be

?
2 for sinusoidal residual accelerations. fdco denotes here the upper frequency bound

of the electro-static actuation band or the lower frequency bound of the AOCS bandwidth
(cf. the transfer function at the bottom in figure 1.24).

Figure 1.26 shows the residual test-mass motion as a function of the frequency bound
fdco for different levels of residual non-gravitational accelerations, which are taken from fig-
ure 1.25. As the solid dark blue trace in figure 1.26 shows, if non-gravitational accelerations
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are compensated according to the solid dark blue trace in figure 1.25 and the test-mass is
not electro-statically actuated at frequencies higher than 0.18mHz, the proof-mass CoM mo-
tion within the housing is of the order of 2mm. One could reduce the test-mass motion by
choosing a smaller drag-free bandwidth and actuating electro-statically at higher frequen-
cies. However, this would lead to a servo-accelerometer with the aforementioned drawbacks.
Alternatively, the level of the residual non-gravitational forces needs to be reduced, i.e. by
increasing the AOCS loop gain. Therefore, a drag-free requirement has been derived and is
shown as dashed dark blue trace in figure 1.25 with flat low-frequency shape, which leads to
a residual test-mass motion of approx. 120 ➭m. Such a motion could be tolerable and electro-
static actuation of the test-mass would then be required for frequencies below 0.18mHz,
which are below the (science) measurement band.

The required AOCS loop gain for the drag-compensation and drag-free case is depicted
in figure 1.27, which is the minimum required suppression factor of non-gravitational distur-
bances. As thrusters can typically provide sufficient linear momentum at low frequencies, the
shown loop gain is considered to be realistic.

The requirements for drag-compensation and drag-free systems have been formulated
along the line-of-sight. In principle this is sufficient, as the gravity field is sensed along the
line-of-sight. Practically, the orthogonal axes need to be considered as well, as cross-coupling
between axes cannot be neglected, but a relaxation by a factor of 10 to 100 is likely possible.
Also the cross-talk between rotational and translational degrees as well as the exact equations
of motions of the test-mass needs to be taken into account, but such an analysis is beyond
scope of this thesis.

Regarding the angular degrees of freedom, the plot shown in figure 1.28 illustrates the
variation of the test-mass orientation within the housing. The plot assumes that the e.motion2

S/C points exactly along the line-of-sight. The line-of-sight rotates with a mean angular
rate of 2π{Torb in the inertial frame but has also variations within the science measurement
band due to oblateness of Earth and higher moments of the gravity field. The test-mass
is considered to rotate with constant angular velocity, i.e. no torques from gravity gradient
or electro-static suspension occur. The variation of 1mrad per orbital revolution suggests
that a 300 ➭m gap size for a cuboid test-mass with a 50 millimeter side length is sufficient to
cope with the angular variation and translation. Moreover, strong electro-static suspension
of the angular degrees of freedom is likely not required within the measurement bandwidth.
The traces from figure 1.28 have been converted into spectral densities, which are shown in
figure 1.29 for the sake of completeness.

In summary, no obvious show stopper for a LEO drag-free concept could be identified,
however, the analysis is restricted to a very simplified domain. For example, it was assumed
that the sensitivity and characteristics of the servo-accelerometer hold as well for a drag-free
position sensor. The sensitivity of such position sensing accelerometers was not discussed.
However, these preliminary positive results can hopefully stimulate further research on drag-
free concepts in the context of gravimetric missions.

The here derived information on the AOCS loop gain and the remaining non-gravitational
acceleration after drag-reduction (eq. (1.122)) can be used to derive further requirements on
the thrusters, which are addressed in the next section and apply to drag-compensation with
a classical servo-accelerometer and to drag-free concepts using position sensing.

1.9.5 Actuator Technologies

The linear and angular accelerations required to compensate non-gravitational disturbances
can be produced by various actuators. Pure torque on a satellite can be generated by means
of magnetorquers, also called torque rods, which are based on electromagnetic coils. They
produce a magnetic field, which generates a torque in the geomagnetic field. Usually, an
additional magnetometer is used to measure the geomagnetic field at the satellite. The
GOCE, GRACE and the future GRACE Follow-On missions utilize these actuators. Mo-
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Figure 1.26: Residual test-mass motion δx along the LOS for a drag-free concept, where the
test-mass is not electro-statically actuated within a drag-free frequency band, as a function of
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Figure 1.28: Angular variations of the test-mass w.r.t. the accelerometer housing for the
drag-free case. The S/C is considered to point exactly along the line-of-sight. The test-mass
rotates torque-free with a particular initial angular velocity. The shown period corresponds
to three orbital revolutions.
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Figure 1.29: Spectral densities of angular jitter of the test-mass as shown in figure 1.28.
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mentum wheels are considered as problematic, as vibrations may disturb the accelerometer
measurement. Potential thruster technologies are

❼ Continuous Cold Gas: A pressurized gas tank is connected to a thruster, consisting
basically of a nozzle. A valve controls the flux. This type of thrusters is used in, among
others, GRACE and GRACE Follow-On and provides usually a specific impulse Isp
around 65 s for nitrogen. Micro-Newton N2 cold-gas thrusters manufactured by TAS-I
have been characterized for the GAIA mission [Jarrige et al., 2014]. The thrust noise
was below 1 ➭N{

?
Hz for frequencies below 2mHz at a thrust level of 500 ➭N. The overall

tested thrust range was 1 ➭N (Isp « 50 s) up to 1mN (Isp « 63 s). These thrusters are
being used on LISA Pathfinder [Armano et al., 2015] as well as the Colloid thrusters8.

❼ PWM Cold Gas: The Formosat-5 satellite utilizes a cold-gas system with pulse-width
modulation developed by the German company AST9. Over 109 actuation cycles have
been demonstrated, resulting in a ą 10 year lifetime for a PWM switching frequency of
3Hz.

❼ Kaufman Ion Thruster: Such gridded ion thrusters ionize the propellant atoms
(usually xenon) in a chamber with electrons, which are generated by a cathode and
accelerated towards an anode. The ions are accelerated as well in an electrostatic field
between two grids and ejected, providing the recoil momentum transfer. Charging
of the satellite is counter-acted by a neutralizer, which emits electrons to neutralize
the ejected plasma. The GOCE mission utilized such a type of thruster with 100mm
diameter grid manufactured by QinetiQ Ltd. The thrust range from 0.6mN to 20.6mN
[Wallace et al., 2011] can be achieved with specific impulses from 500 s to 3500 s over
the thrust range, while the electrical power demand is specified from 55W to 585W
over the thrust range [Edwards et al., 2004]. The thrust noise level is 1.2mN{

?
Hz at

1mHz and 12 ➭N{
?
Hz at high frequencies.

❼ RIT: Radio-frequency gridded ion thrusters use conducting coils to produce electro-
magnetic fields (with MHz frequencies) in the discharge chamber, which accelerate free
electrons and ionize the propellant. No cathode in the discharge chamber is required as
for the Kaufman type. These thruster are capable to achieve super high bandwidths,
i.e. they have short reaction times. An extensive description and performance analysis
is provided in [e.motion2 Team, 2014, section 4.4]. A maximum thrust of 2mN should
be sufficient for a gravimetric mission at ą 400 km altitude (cf. eq. (1.115)), which can
be achieved with a 35mm diameter grid. Measurements of a 25mm unit exist and show
a thrust noise of 10 ➭N{

?
Hz at 10mHz and at 200 ➭N setpoint [e.motion2 Team, 2014,

Fig. 4-20]. The ASD decays towards higher frequencies with 1{f . A specific impulse
between 500 s to 4000 s over a thrust range from 50 ➭N to 2mN is specified in [e.motion2

Team, 2014, p. 54].

❼ Colloid Thruster: These micro-newton ion thrusters are also called electrospray
thrusters and emit ionized liquid droplets of propellant. The LISA Pathfinder mission
utilizes this type of thruster, which has been a US contribution, next to the cold-gas
system. The specified thrust ranges from 5 ➭N up to 30 ➭N with Isp ą 150 s and with
a specified noise level of 0.1 ➭N{

?
Hz for frequencies below 1mHz [Ziemer et al., 2007],

whereby the actual noise performance is significantly better according to the publica-
tion.

Due to their higher specific impulse Isp, ion thrusters require significantly less propellant
(mass) with the drawback of higher electrical power consumption. The preliminary assess-
ment of propellant demand for a 10 year mission lifetime shows that a N2 cold-gas propulsion

8Initially, it was intended to use Colloid and FEEP thrusters, but the latter were changed to cold gas.
9http://www.advancedspacetechnologies.de/

66

http://www.advancedspacetechnologies.de/


PART 1. DESIGN CONSIDERATIONS FOR FUTURE GEODESY MISSIONS

10
-4

10
-3

10
-2

10
-1

10
-1

10
0

10
1

10
2

10
3

Fourier Frequency f [Hz]

T
h
ru
st

N
o
is
e
[µ
N
/
√
H
z]

Drag-Compensation Req.
Drag-Free Req.

Figure 1.30: Requirement for thrust noise to reach the drag-compensation or drag-free
requirement in figure 1.25. The thrust noise is referred to a set-point of 0.6mN.

for the e.motion2 baseline of 420 km altitude is sufficient, where 43 kg are required for drag
compensation and 14 kg for attitude control [e.motion2 Team, 2014, p. 42]. For a constellation
at 360 km altitude a combination of cold-gas and electric propulsion was suggested.

In closed-loop operation of a drag-reduction system, the actuator noise is suppressed by
the loop gain in the same way as the external disturbances. Since the requirement for the
residual non-gravitational accelerations ASDrang,DCO,reqspfq with active drag-reduction has
been defined (cf. figure 1.25) as well as the AOCS loop gain Kpfq (cf. figure 1.27), one can
derive a requirement for the thruster noise ASDrFThN,reqspfq according to

ASDrFThN,reqspfq “ 1

10
¨ ASDrang,DCO,reqspfq ¨Kpfq ¨msat. (1.124)

Scaling by factor of 1/10 is assumed to account for several active thrusters, thrust vector
variations and sufficient margin. The results in figure 1.30 for a satellite mass ofmsat “ 800 kg
are equal for the drag-compensation as well as for the drag-free case. The thrust noise
requirement holds for the set-point of 0.6mN corresponding to the maximum expected thrust
(eq. 1.115), while lower setpoints are considered to have a lower noise.

Pulse-width modulation (PWM) thrusters need some precautions concerning the ac-
celerometer design, as the accelerometer internally resolves the PWM signal. A PWM signal
appears as a comb of spikes, which decay in amplitude to high frequencies. The roll-off is
enhanced as the pulses are not perfectly rectangular, but the actual shape depends strongly
on the characteristics of the thruster. A theoretical example is shown in figure 1.31. The
internal accelerometer bandwidth needs to be sufficiently high, such that all signals are pro-
cessed. Otherwise, they could alias into the science measurement band (0.18mHz to 0.1Hz).
In other words, the accelerometer needs to resolve internally each PWM switching cycle suffi-
ciently well. In a digital processing context, this means that the sampling frequency needs to
be sufficiently high to avoid aliasing due to undersampling. Another concern regards aliasing
by downsampling: The internal accelerometer signal needs to be downsampled to a conve-
nient rate for down-link transmission, e.g. to 1Hz. Therefore, a strong anti-aliasing filter
(AAF) is required, as it needs to suppress the signal in the AAF band in figure 1.31 below
the measurement sensitivity, e.g. to 10´12m{ps2

?
Hzq.

In summary, different thruster types exist with key figures such as maximum thrust, which
depends on the final selected orbit and solar activity, the specific impulse, which drives the
propellant mass demand, and thrust noise, which needs to comply with the residual level of
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Figure 1.31: Pulse Width Modulation signal of thruster with switching frequency of 2Hz
(dark blue trace) with the e.motion2 accelerometer sensitivity requirement shown in red.
Higher frequencies are not labelled as the roll-off frequency of the PWM signal is not known.

non-gravitational accelerations after drag-reduction. The here derived requirement for the
thrust noise is demanding, but can be fulfilled by the low-noise cold gas system or colloid
thrusters. RIT thrusters are close to the thrust noise requirement and further iteration of the
drag-reduction concept might lead to a relaxation of the requirement, e.g. the maximum non-
gravitational acceleration level includes ample of margin, which might be too conservative.

1.10 Integrated Instrument Analysis and Calibration

For future gravimetric missions, an integrated instrument analysis and calibration becomes
more important, because more measurements of the same physical quantities are available.
This is depicted in figure 1.32, where the upper part shows the main scientific measurement
instruments (green boxes) and the physical baseline state quantities (blue boxes, cf. sec. 1.5)
for GRACE and the lower part for the e.motion2 concept. As shown in the figure, both mis-
sions can obtain ranging information from GNSS and a dedicated ranging instrument (KBR
or LRI). The precision and accuracy of the measurements is not shown in the plot. However,
this cross-link can be used to improve the kinematic orbit determination or to estimate the
offset in the biased inter-satellite ranging. In the e.motion2 concept, the additional channel of
attitude information from laser interferometric DWS and steering mirror orientation leads to
an increased density of interconnections. For example, the precise GNSS-derived line-of-sight
can be compared to the line-of-sight estimate on each satellite, which is based on DWS and
star camera information.

In the data processing scheme proposed in section 1.4.6 on page 32, the baseline state
quantities (blue boxes in figure 1.32) are obtained by solving a single system of equations,
taking into account all available information. Note that the block diagram in figure 1.32
is simplified in many aspects and does not reflect all interconnections and steps, as various
calibrations are missing, e.g. temperature, scale factors, offsets and so forth.

Two major calibrations will be addressed in the next sub-sections. One is regarding the
accelerometer (DC) scale factor, and the other is the attitude correction for the laser ranging
instrument (box labeled A.C. next to to the LRI in figure 1.32), which causes a coupling
of rotations into the ranging measurement. The last sub-section addresses briefly thermal
aspects in the design of future missions.
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Figure 1.32: Block diagram of instruments (measurements) and baseline state variables
for the GRACE mission (top) and e.motion2 (bottom). Abbreviations: SCA: Star Cameras,
ACC: Accelerometer, LRI: Laser Ranging Instrument
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1.10.1 Calibration of Accelerometer Scale Factor

This calibration is driven by the necessity to determine the accelerometer DC scale factor

S
(ACC)
DC precisely to a level of 2 ¨ 10´3 in-flight (cf. sec. 1.9.2), which is assumed to be beyond

the capability of predictions based calibrations made on ground.

In the e.motion2 proposal, the use of dedicated calibration tones was suggested by the au-
thor of this thesis [e.motion2 Team, 2014, sec. 5.2.4], which can be conveniently implemented
in a drag-compensation or drag-free control loop. A natural idea is to produce a signal which
can be measured simultaneously by accelerometer and LRI. The ratio of both measurements
provides the scale factor of the accelerometer, as the LRI scale factor can be assumed to be
accurate to approx. 10´6. The sinusoidal calibration signal, which is fed to the thruster, is
shown in orange in figure 1.32. Ideally, the calibration frequency (band) should not overlap
with the science measurement band, which is used for gravity field determination, as this
simplifies data analysis.

For a future gravimetric mission with approx. 400 km orbit height, a calibration band
between 0.10Hz and 0.30Hz is suitable, since only instrument noise and no signal is expected
in the accelerometer and ranging measurement (cf. figure 1.33). The modulation of thrust
by the calibration signal, injected into the AOCS loop used for drag-reduction, is directly
measured by the accelerometer. However, it also changes the satellite dynamics, e.g. position,
and therefore the inter-satellite distance, which is measured by the LRI. By using calibra-
tion signals with different frequencies on both satellites, a continuous calibration of both
accelerometers in a link is possible with the LRI.

The calibration tones do not require additional propellant if the mean of the calibra-
tion tone is used to compensate the average (DC) atmospheric drag. Consider an average
drag force of 50 ➭N, which can be compensated by an oscillating thrust between 5 ➭N and
95 ➭N. This yields an acceleration rms-peak amplitude of 3.98 ¨ 10´8m{s2 at the calibration
frequency in the accelerometer measurement and an equivalent 100 nm rms ranging distance
variation in the LRI, if the calibration tone frequency is 0.1Hz and a satellite mass of 800 kg
is assumed. Averaging for three orbital periods (T « 16600 s) yields a spectral density peak
magnitude of 5.13 ¨ 10´6m{ps2

?
Hzq or equivalently 13 ➭m{

?
Hz. To reach a signal-to-noise

ratio of 500, which is equivalent to estimating the accelerometer scale factor to 2 ¨ 10´3, the
ranging measurement noise needs to be À 25 nm{

?
Hz, corresponding to the actual sensitivity

requirement (cf. eq. (1.39)) at the high end of the science measurement band. A tightening
of the LRI requirement for the calibration band could be envisioned, as the two main noise
contributors of the LRI roll-off at high frequencies. The following requirement

ASDrρbiased,Espfq “ 25
nm?
Hz

¨

dˆ
0.1Hz

f

˙4

¨ L

100 km
, 0.1Hz ă f ă 0.3Hz (1.125)

allows to measure the accelerometer scale factor with an accuracy of 2¨10´3 for all frequencies
in the calibration band (0.1Hz...0.3Hz).

The instrument sensitivity level of interferometer and accelerometer in e.motion2, the
respective expected signal level and the calibration tones are depicted in figure 1.33.

Although the calibration modulates the position of the satellites, the precision of the
GNSS observations is not sufficient to resolve the sub-mm effect. The calibration tone ampli-
tude in the range-domain could be enhanced by a higher thrust variation or by using lower
frequencies. However, the first option would result in an increased propellant demand and
the second option yields a superposition of calibration signal and a high signal from orbital
dynamics, i.e. gravity field, and is therefore considered unfeasible.

The here discussed accelerometer scale factor calibration was initially introduced for
a drag-compensation concept with servo-accelerometer and neglects any non-linearities or
quadratic coupling. However, in a drag-free concept with a test-mass motion of ˘120 ➭m and
˘1mrad (cf. sec. 1.9.4) such effects might be non-negligible.
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Figure 1.33: Calibration tones within a calibration band, induced by the drag-reduction
control loop, are measured by accelerometer and LRI. This allows one to retrieve the ac-
celerometer scale factor. The stated ENBW is valid for the calibration tones but not for the
traces labeled with “typical” in the legend.

1.10.2 Calibration of Rotation-to-Ranging Coupling

The spacecraft rotation-to-ranging (or pathlength) coupling is one of the major error con-
tributors in the ranging observation, either with laser or microwave radiation. It mainly
results from the non-perfect pointing of the S/C along the line-of-sight due to disturbance
torques and forces in orbit in combination with an offset between the center-of-rotation and
ranging reference point, e.g. microwave antenna phase center or TMA vertex in GRACE-FO
like laser interferometry. In addition, the baseline (line-of-sight) is not rotating at a constant
angular rate (cf. light blue trace in figure 1.23), which requires active steering of the S/C.
If the satellite misalignment in yaw (yptq), pitch (pptq) and roll (rptq) is written as a vector
~u “ pyptq, pptq, rptqq⊺, the error coupling into the ranging observation ρ due to one spacecraft
can be expanded as a power series to quadratic order as

δρptq « pcy, cp, crq ¨ ~u` ~u⊺ ¨

¨
˝
cyy 0 0
cpy cpp 0
cry crp crr

˛
‚¨ ~u. (1.126)

The critical coupling angles are yaw and pitch, corresponding to an offset between ranging
reference point and CoM perpendicular to the line-of-sight, while the interferometer is less
susceptible to roll rotations and offsets along the line-of-sight. A coupling of 1mm{rad
corresponds to an offset of 1mm in non-LOS direction.

Detailed discussion of the coupling is postponed until section 2.6. It is remarked here that
the linear (and quadratic) coupling is minimized by design in the case of the GRACE Follow-
On and e.motion2 LRI to À 0.1mm{rad, while the GRACE (FO) microwave system has a
linear coupling of the order of a few mm{rad [Horwath et al., 2010]. Unfortunately, the cou-
pling factors cannot be determined credibly to a precision better than approx. 0.1mm/rad
on-ground in case of the LRI, while the microwave precision is even lower due to the ap-
prox. 1.5m offset in LOS direction.

Thus, in-orbit estimation is typically performed by correlating attitude information with
the range measurement in the process of gravity field recovery. However, due to the large
unmodelled signal in the ranging data, i.e. post-fit residuals, the determination of the coupling
coefficients to a level of better than 0.1mm{rad is questionable. One should also consider
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that the S/C CoM may be unstable at the level of 0.1mm{rad due to differential thermal
expansion, thermo-elastic deformations and other effects.

A promising approach for a calibration would be based again on calibration signals in
form of periodic pointing variations with magnitude uc in yaw and pitch, potentially also in
roll, and at high frequencies, where no gravity signal is present, e.g. around 0.15Hz. The
accuracy for estimating the yaw cy or pitch cp coupling factor can be computed with

δc “ ASDrρEs
uc,rms ¨

?
T
, (1.127)

where ASDrρEs is the sensitivity of the ranging measurement. Considering an integration
time of T “ 45min and a pointing excitation of uc “ 25 ➭radrms “ 35.4 ➭radpk, one arrives at
a sensitivity of δc « 20 ➭m{rad. This means the offset between ranging reference point and
CoM can be determined to 20 ➭m every 45min in the plane perpendicular to the line-of-sight.

Such an excitation would also allow one to compare continuously the angular measure-
ments from accelerometer, star cameras and LRI DWS and in particular track the S/C CoM
quasi-continuously, instead of sporadically as currently performed in GRACE [Wang, 2003].

As linear accelerations falsify the calibration, pure torque actuators like magneto-torquer
or reaction wheels should be envisioned. The maximum torque Tmax required to produce
the sinusoidal excitation uc is simply given in case of linearized Euler equations by Tmax “
I ¨ uc,pk ¨ p2πfcq2, where fc “ 0.15Hz is the excitation frequency. In a worst-case assumption
with a S/C moment of inertia of I “ 500 kg ¨ m2, one obtains Tmax “ 0.015 kg ¨ m2{s2. Such a
torque can be produced by rotating a solid disk withm “ 2 kg and 20 cm diameter sinusoidally
with frequency fc by 100 degrees (forth and back). These reaction wheels, which should be
distinguished from fast-spinning momentum wheels, could produce the required sinusoidal
pointing excitation, but one needs to ensure that the induced micro-vibrations are negligible.

A potential calibration or validation of the accelerometer by a well-defined torque might
be considered as well but requires further analysis.

Alternatively, the torque Tmax “ 0.015 kg ¨ m2{s2 can also be exerted with a magnetic lin-
ear dipole moment of approx. 600A ¨ m2 in Earth’s magnetic field with B “ 2.6 ¨ 10´5Tesla
(worst-case at 400 km height). However, such dipole moment would require likely several
magneto-torquers, remarkable electric power and mass resources and special means to mit-
igate electro-magnetic interference with other instruments. In addition, the simultaneous
availability of the torque in all required axes, due to the 3-d structure of the geo-magnetic
field, needs further analysis.

1.10.3 Thermal Monitoring and Control

An aspect of the integrated instrument analysis is the correction of scientific measurements
for temperature effects, either temperature fluctuations with resulting measurement noise or
periodic temperature variations with resulting tone errors. Temperature-induced errors have
been reported for the star cameras, e.g. angles between the sensor heads [Harvey, 2016], for
the accelerometer in terms of a susceptibility of the order of 10´10m{ps2 ¨ Kq [Foulon, 2013]
and for the ranging interferometer (cf. sec. 2.3.6).

The temperature sensitive parts of the main scientific instruments, e.g. laser frequency
stabilization or accelerometer electronics, need to be located in a thermally stabilized zone.
Proper selection of passive and active thermal control in several stages needs to ensure a
thermal stability of better than 10mK{

?
Hz for the LRI [e.motion2 Team, 2014, sec. 5.3.7.3]

within the science measurement band, which is demanding due to the LEO orbit with chang-
ing sun incidence angle and open paths to space for the optical instruments. Furthermore,
the variation in temperature should not exceed 0.1K per orbital revolution in the thermally
stabilized zone to suppress tone errors.

To verify the in-orbit thermal stability, and to enable precise corrections of science data in
post-processing, high-performance temperature sensors have been suggested as scientific pay-
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load on e.motion2 [e.motion2 Team, 2014, sec. 5.5.1]. They shall be read out at a sufficiently
high sampling rate, e.g. 0.1Hz. Suitable sensors with electronics have been developed for the
LISA Pathfinder mission [Sanjuán, 2009] and reach a sensitivity of better than 1mK{

?
Hz at

a Fourier frequency of 1mHz.
In general, it is recommended to consider the temperature stability already in early stages

of the S/C design and to account for a precise measurement of temperature.

1.11 Summary & Conclusion

The first part of this thesis revisited and extended the e.motion2 concept as a future gravi-
metric satellite mission, consisting of two satellite pairs in low Earth orbits in a so-called
Bender configuration. The aim of the mission is the measurement of Earth’s time-varying
gravity field on a monthly basis. In the beginning, the composition of Earth’s gravity field
has been introduced (sec. 1.1.1), together with the basic concepts to measure it (sec. 1.1.2).
The e.motion2 proposal is based on a combination of GNSS-based high-low satellite-satellite-
tracking and ranging-based low-low satellite-satellite tracking.

In many aspects, gravimetric missions with accelerometry and ranging have overlap with
missions from fundamental gravitational physics, which can yield fruitful technology transfer
as demonstrated by laser ranging interferometry (sec. 1.1.3). From a gravitational physics
perspective, Earth’s gravity field produces a curvature in the fabric of space-time, which is
measured by e.motion2.

Some boundary conditions of e.motion2, e.g. the rationale behind the selection of orbits or
altitude, have been explained (sec. 1.2), prior to a mathematical description of the gravity field
measurement (sec. 1.3). It was discussed that each spherical harmonic (SH) coefficient of the
gravity field induces a comb of sinusoidal signals at different frequencies in the observables.
However, as the gravity field is composed of an infinite number of coefficients, the power
distribution is quasi-continuous over frequency. By selecting a science measurement band
from 0.18Hz to 0.1Hz, most of the gravity field signal can be recorded for later gravity field
recovery.

The definition of the gravitational reference point (GRP) was addressed in section 1.3.6,
which is, loosely speaking, the reference point of the satellite which all measurements are
referred to. The difference between center-of-gravity and center-of-mass GRP was pointed
out, as well as the fact that missions utilizing drag-free control should choose a different GRP
compared to missions utilizing servo-accelerometers.

The characteristics of the different scientific instruments and their sensitivity models were
introduced (sec. 1.6) and propagated to the final observables of the projected differential
gravitational acceleration (PDGA) and the direct acceleration (DA). Comprehensive error
models with various contributions revealed that the pure intrinsic instrument noise level of
accelerometer and interferometer are not sufficient to assess the final sensitivity of gravity
field observations. Instead, errors in gravity background models, in GNSS observations as
well as instrument errors beyond simple noise, e.g. scale factors, need to be considered. It
was shown that the analysis is compatible with the GRACE gravity field post-fit residuals
(sec. 1.6.2), providing confidence on the validity for the future e.motion2 mission.

The baseline (or line-of-sight) centrifugal acceleration was identified as a critical compo-
nent. It can be written in terms of the baseline angular velocity, which can be derived from
GNSS observations only with insufficient precision. This issue was completely neglected in
the initial e.motion2 study but was overcome here by replacing the kinematic orbits with
more precise reduced-dynamic orbits. However, the simulation of the full dynamic-orbit de-
termination, which accounts for realistic background gravity field models, was beyond the
scope of this thesis and the precision was derived by a simplified model (sec. 1.5.2).

In sec. 1.7, the sensitivity models of PDGA and DA have been translated to gravity fields
and SH degree variances. The acceleration approach was preferred due to its linear relation,
which allows to easily propagate errors from observation to SH coefficients. For example,
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different strategies to handle tone errors have been considered (sec. 1.7.2), which improve the
measurement of particular SH coefficients being highly correlated with tone errors, e.g. C20.
The gravity field results for a single polar satellite pair obtained by the here-presented method
was comparable to the results obtained previously in the e.motion2 study by independent
other groups. In case of the e.motion2 Bender constellation with two pairs, a significant
improvement over a single-pair constellation could be demonstrated, making an e.motion2-
like mission favorable. Unfortunately, the here-obtained result was significantly better and
probably over-optimistic compared to full-scale simulations from the initial e.motion2 study,
which is possibly due to the simplified handling of errors in reduced-dynamic orbits.

However, the simulation approach from first principles, via instrument sensitivity models
to the final SH gravity field coefficients, allowed to identify critical aspects of the mission
design. One is the aforementioned centrifugal acceleration, which is not measured directly
with high precision by instruments but contains almost as much gravity field information as
the ranging data. A dedicated measurement would certainly improve gravity field solutions,
and was hence discussed in sec. 1.8. However, the here-suggested different methods showed
that it is non-trivial to measure this quantity more precisely than with GNSS or precise orbit
determination.

Another interesting aspect for future missions is the consideration of drag-reduction
schemes (sec. 1.9), which are required generally to maintain the orbit repeat cycles and
to avoid accelerometer saturation. The latter fact does not apply for the e.motion2 parame-
ters as shown in Appendix A. Another benefit of drag-reduction, or more precisely reduction
of non-gravitational forces, is a decreased susceptibility for accelerometer scale factor varia-
tions. These have been identified as a driving requirement and made drag-reduction within
the measurement band mandatory for e.motion2.

Although the initial e.motion2 study used servo-accelerometers and drag compensation
as baseline, the feasibility of a drag-free concept for a LEO gravimetric mission remains an
open interesting question. In particular, the demonstrated superb sensitivity of the LISA
Pathfinder spacecraft [Armano et al., 2016b], orders of magnitude below the noise of servo-
accelerometers, in combination with other advantages such as physically well-defined GRP,
advertise the promising technology for future gravimetric missions. For e.motion2, a prelim-
inary assessment on feasibility in sec. 1.9.4 showed positive results and first requirements on
thruster noise and AOCS loop gain were provided but require more thorough analysis in the
next years.

The last section 1.10 elaborated means of in-orbit calibrations and corrections of measure-
ments for e.motion2 and potentially other future gravity missions. Two calibration schemes
were introduced. The first one due to the need to determine the absolute accelerometer scale
factor to a level of 0.2%. It is based on sinusoidal thrust modulations in the calibration band
(0.1Hz to 0.3Hz) injected via the AOCS control loop. It is found that this would not in-
crease the average propellant consumption required to maintain the (roughly) geodesic orbit
and corresponding repeat pattern. The idea behind the scheme is to measure the calibration
tones on both S/C in a link with the accelerometer and with the ranging instrument in paral-
lel, which allows one to derive the accelerometer scale factors, in particular because the LRI
scale factor is more stable. With the precise scale factor, the accelerometer measurements can
be converted into actual physical non-gravitational accelerations at the specified e.motion2

accelerometer sensitivity level.

The second calibration scheme (sec. 1.10.2) regards the S/C rotation-to-ranging coupling,
which is a major error contributor in the range observation. With small sinusoidal pointing
excitations of the S/C in the calibration band, the coupling coefficients can be determined
sufficiently well, providing the ability to correct the ranging data for gravity field recovery
and to validate other angular measurements from star cameras and accelerometer.

Furthermore, the third correction scheme (sec. 1.10.3) attempts to utilize high-performance
temperature sensors, since the temperature correction of science data will become more im-
portant in the context of an integrated data analysis in future gravity missions with advanced
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Figure 1.34: Overview of the e.motion2 concept as presented within this thesis.

sensitivity. However, such corrections cannot circumvent solid thermal design of the S/C.
This fist thesis part is concluded with figure 1.34, which summarizes the e.motion2 in-

strument concept.
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Part 2

Laser Interferometry in Space

Distance and distance changes can best be determined precisely by means of electro-magnetic
radiation simply because length is defined by the propagation velocity, the speed of light c0,
of such radiation in vacuum (cf. SI definition of length1). Two commonly used techniques
are:

❼ The measurement of the propagation time ∆t of a laser pulse or of a modulation feature
on the light. This can provide the absolute distance d via the relation

d “ c0 ¨ ∆t. (2.1)

Such a direct time of flight measurement requires precise clocks and precise time stamp-
ing of the emission and arrival of the light pulse. Absolute accuracies at millimeter level
are currently achievable, e.g. by laser rangefinder [Eisele, 2014]. This technique is also
used, for example, in lunar laser ranging to determine the absolute distance between
Earth and Moon.

❼ The continuous measurement of the phase of electro-magnetic radiation by means of
interferometry. Electro-magnetic waves are described by an oscillating electro-magnetic
field vector. The phase is part of the state of the electro-magnetic field vector and is a
repetitive feature propagating with the speed of light. For light, the phase can not be
directly measured, since it changes too quickly, but by using interferometry the phase
can be indirectly determined by overlapping the measurement wave with a reference
wave. This allows the phase difference between the measurement wave, which traversed
the distance one aims to measure, and the known reference wave to be determined.
The phase difference can be directly converted to a pathlength difference via the wave’s
frequency or wavelength. However, the repetitive or oscillating nature of the phase
prevents the determination of the absolute distance. Instead, a time-resolved biased
distance, which means the time-varying distance up to an unknown constant offset, can
be measured. Loosely speaking, in interferometry, one determines the distance with the
help of a ladder. The separation between the rungs of the ladder is the electro-magnetic
wavelength. The distance to the next rung of the ladder, which can be understood as
the phase, can be measured precisely. However, the actual rung number is unknown.

Both techniques can also be combined, as it is widely used in Global Navigational Satellite
System (GNSS) applications with a rough absolute but unprecise code measurement and a
precise but biased phase measurement. Radio and microwave signals are routinely used for
ranging purposes, but are less suited for high precision metrology due to the long wavelength.
Lasers in the visible or near-IR part of the spectrum enable relative measurements in the
nano-, pico-, and even femtometer regime using interferometry.

Optical interferometers as high precision inter-satellite ranging instruments have been
developed in the context of the LISA mission since the 1990s [Bender et al., 1998; Danzmann

1General Conference on Weights and Measures 1983, Comptes rendus de la 17e CGPM (1983), 1984, 97
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et al., 2017]. The LISA mission aims to resolve inter-satellite distance variations with a noise
level of a few picometers (10´12m{

?
Hz) at millihertz frequencies between satellites in a quiet

deep-space environment with approx. 2.5 million km (2.5 ¨ 109m) separation between space-
craft. Nowadays, such sensitivities are routinely achieved in laboratories at short time scales,
but stabilization of the optical setups and of the readout electronics over long timescales
(millihertz regime) is demanding. In addition, LISA technology is capable of determining the
absolute inter-satellite distance to sub-meter accuracy by applying additional modulations
on the laser link.

In the last decade, optical space interferometry was also considered for space missions
to measure Earth’s gravity field and resulted in the Laser Ranging Interferometer (LRI) on-
board GRACE Follow-On. The LRI is a technical demonstrator to be launched in 2018 with
a sensitivity requirement of 80 nm{

?
Hz for Fourier frequencies above 10mHz. For future

gravimetric missions this technology is expected to be used as the primary inter-satellite
ranging instrument. In these missions, determination of the absolute inter-satellite distance
is performed by means of GNSS and dedicated absolute ranging is not considered necessary.

This second thesis chapter provides an overview of the current state of inter-satellite laser
ranging interferometry and addresses potential improvements for future instruments. The
author of this thesis has been and is still involved in the development of the GRACE Follow-
On LRI, which is the first inter-satellite laser ranging interferometer, and the author has
provided substantial input within the e.motion2 mission study on the general payload con-
cept and on the laser interferometry, which resulted in a published comprehensive report
[e.motion2 Team, 2014]. For this thesis, many of the ideas have been revisited, advanced and
embedded in a broader context together with completely new aspects.

The outline of this chapter is as follows. The basics of the theory of relativity are re-
viewed in section 2.1, as relativistic effects need to be considered in the data analysis and
are crucial for a precise understanding of the range measurement. The next section 2.2 is
used to introduce fundamental interferometer techniques such as phase retrieval methods and
interferometric observables, e.g. longitudinal phase, differential wavefront sensing (DWS) and
differential power sensing (DPS). The third section 2.3 is concerned with the technology for
subsystems of laser interferometers, e.g. laser sources, photodiodes, phasemeters, clocks, and
so forth. The main specifications, figures of merit and driving requirements are introduced as
they set the boundary conditions for the following study and discussion of interferometers.

Although the field of optical inter-satellite ranging interferometry is just emerging, various
optical layouts and designs have already been suggested in literature for gravimetric missions
[Kawamura et al., 2009; eLISA/NGO Team, 2012; Danzmann et al., 2017; e.motion Team,
2010; e.motion2 Team, 2014; Dehne et al., 2009; Sheard et al., 2012; NG2-Team, 2011; Alenia-
Team, 2010] and for the gravitational-wave mission LISA [Bender et al., 1998; d’Arcio et al.,
2010]. A systematic approach to the field has been attempted here by categorizing the
concepts at different levels, namely at the level of functional concepts and at the level of
optical layouts. The former one includes one-way ranging, dual-one way ranging, transponder-
based ranging and, briefly, passive retro-reflectors, while the latter one is divided into on-
axis and off-axis layouts. The different functional concepts, which are to a large extent
independent of the actual interferometer design, are studied in section 2.4. Mathematical
models of the phase observables are derived for the main functional concepts and the potential
error contributors are discussed including laser frequency noise, relativistic effects and timing
errors. In addition, the relation between phase observables and the instantaneous range
between the satellites, which is typically used in the data analysis of gravimetric missions, is
established. Although optical interferometry differs in many aspects from ranging by means
of radio-waves, e.g. microwaves, some parallels exist and are stressed in this section.

Important contributors to the phase-derived biased range measurement are effects due
to the inter-satellite propagation, which include relativistic effects due to the finite speed of
light and fluctuations from the ionosphere or atmosphere. These are called photon time of
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flight corrections in this thesis, and are addressed in sec. 2.5. Within sec. 2.4 and 2.5 one
obtains the precise relation of the phase measurement to the instantaneous range, so that the
equations and provided corrections, e.g. for relativistic effects, can be readily used in actual
flight-data processing and in the simulation of realistic data streams for studies of future
missions.

Section 2.6 addresses principles of the actual instrument design that can be roughly sep-
arated into aspects regarding the minimization of ranging errors and into aspects regarding
the optimization of the signal strength and signal-to-noise ratio, the so-called carrier-to-noise
density. One major contributor to the ranging errors is the so-called attitude-to-ranging cou-
pling, which is described in this thesis with the help of reference points of the interferometer.
These reference points attempt to provide a geometrical representation of the typical coupling
factors of S/C attitude into the phase-derived range measurement. It turns out that these
points can be used as a figure of merit and characterization criteria for designs, e.g. off-axis
vs. on-axis designs. Moreover, the well-definedness and the stability of these points are im-
portant aspects, since these points can be understood as the fiducial points for the biased
range measurement. The second half of section 2.6 is concerned with the carrier-to-noise
density, which is driven on the one hand by the received power and on the other hand by the
wavefront overlap within the interferometer. Detailed models are derived for both quantities.

Section 2.7 contains a survey of optical layouts, which have been proposed so far for
space laser ranging instruments. The location of the reference points in the different layouts
is discussed and it is pointed out that the optical design should include a retro-reflection
property of the light. An off-axis layout with a corner-cube retro-reflector, which is well
understood from previous work and which offers various advantages, is suggested for a future
e.motion2/NGGM mission. It incorporates various learned lessons Moreover, an on-axis
layout could be derived and proposed as alternative for future missions, which offers the
same advantages as the off-axis concept, however, with the capability to include a telescope
in the laser link.

Both proposed optical layouts have various free parameters, such a beam sizes or telescope
magnification, which are optimized with the help of optical power link budgets and parametric
studies in section 2.8. The budgets are a helpful tool to ensure that the carrier-to-noise density
(discussed in sec. 2.6) is sufficiently high and, thus, the instrument can perform the phase
measurement in the operational conditions including satellite misalignments. It turns out that
an on-axis design with a telescope does not provide much benefit in a gravimetric satellite
mission. However, the proposed on-axis layout may still be a viable option even without a
dedicated telescope as it may show a reduced complexity due to the lack of a corner-cube
retro-reflector.

Finally, section 2.9 concludes this thesis part with a summary and some finishing remarks.

2.1 Introduction to Relativity

Ranging interferometry in GRACE-like missions and even in GNSS would not work without
proper consideration of relativistic effects, which manifest as delays due to the finite speed
of light and due to gravity, as the time dilation of clocks on-board the satellites or simply as
relativistic corrections to the equations of motion. Most effects can be described as corrections
to the classical Newtonian theory. Here, the basic concepts and ideas of special and general
relativity are recalled, but an in-depth introduction to relativity is beyond the scope of this
section and the interested reader is referred to [Misner et al., 1973], [Kopeikin et al., 2011]
and [Schutz, 2009].

In the classical Newtonian theory, the motion of a rigid body, such as a GRACE-like
satellite, can be decomposed into the translation of the center of mass and the rotations
of the body around the center of mass. The translations are governed by Newton’s law of
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motion

~aiptq “ d2~riptq
dt2

“ ~Fiptq{m, (2.2)

while the rotation can be described with Euler’s equations. Equation (2.2) states that the
second time derivative of the center of mass position ~riptq of the i-th S/C, i.e. the acceleration
~ai, is proportional to the force ~F acting on the satellite. The symbol m denotes the mass
of the satellite. It is noted that the acceleration contains gravitational and non-gravitational
contributions. The force and acceleration show a dependency on the S/C attitude, which
means that for precise simulations and calculations all six degrees of freedom need to be
considered simultaneously.

In Newtonian and Galilean theory, the time t is an absolute global parameter. However,
since Einstein’s theory of relativity, it is known that time is not an absolute parameter. Even
ideal error-free clocks accumulate the time at different rates depending on various factors such
as their speed or gravitational potential. In the context of relativity, it is advantageous to
describe the trajectory of a point-mass or a particle through space and time as a four-vector

xαi ptq “ px0i , x1i , x2i , x3i q “ pc0 ¨ t, ~riptqq⊺, (2.3)

which is called the world line. The 3-dimensional trajectory or orbit ~ri through space is now
supplemented by the coordinate time t. Moreover, there exists the proper time τiptq, which
an error-free and co-moving clock would display for the particle. The proper time is the error-
free on-board time of the satellites in the context of this thesis. The symbol c0 is the constant
proper speed of light in vacuum, which is nowadays defined as exactly 299 792 458m{s [Petit
et al., 2010]. Recall that the components of the position ~ri indicate the distances along
different axes from the coordinate frame origin, and distances are in general defined via the
propagation time of light and the constant c0.

The theory of general relativity currently provides the most precise means with which to
describe gravitation on macroscopic scales. It can be accessed from a geometrical perspective,
where it states that an object with a particular initial position and velocity and solely under
the influence of gravitation will follow the shortest world line through the four dimensional
space-time. The term short with regard to a world line requires the definition of a distance in
the four dimensional space-time, which differs from the classical Euclidean distance for purely
spatial trajectories. The squared length of an infinitesimally short section of the world line,
the so-called interval ds2, is defined in general relativity (GR) by the metric tensor gµν as

ds2 “ gµνpxαi q ¨ dxµ ¨ dxν , (2.4)

where the Einstein summing convention was used, meaning that the expression on the right
hand side is summed over each index that appears once up and once down. Greek indices
such as α, β, µ and ν can range from 0..3. Thus, the previous equation can be written as a
left- and right-sided multiplication of the vector ~xi “ xαi with the 4ˆ 4 matrix pgµν . It should
be noted that world lines can be categorized into time-like (s2 ă 0), light-like (s2 “ 0) or
space-like (s2 ą 0) curves.

The metric tensor gµν is, in general, a function of the time and position xαi and of the
matter and energy content in space-time. In the absence of matter and energy2, the space-
time is said to be flat and can be described in Cartesian coordinates by the metric tensor

pgµν “ pηµν “ pηµν “

¨
˚̊
˝

´1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

˛
‹‹‚. (2.5)

2and in absence of exotic objects such as black holes
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This is the so-called Minkowski metric and represents the domain of special relativity (SR).
In the presence of matter and energy, i.e. with gravitation, the space-time is curved and the
metric tensor deviates from eq. (2.5). For the rather small mass and energy density present
in our solar system or in the vicinity of Earth, it is beneficial to express the metric tensor
gµν with a perturbation hµν as

gµνpxαi q “ ηµν ` hµνpxαi q. (2.6)

The metric perturbation can be understood as a generalization of the gravitational potential
from Newtonian theory. With this perturbation, the shortest world line, for example, results
in an elliptic trajectory in the case of a satellite orbiting the Earth.

Although SR seems to be restricted to a small domain of validity, it is of great importance
due to the fact that locally, in a sufficiently small region around the origin of a coordinate
system, the metric tensor can be made flat by a proper choice of the coordinate system. This
is a consequence of relativity, which means that the equations describing the laws of physics
are the same in all admissible frames. For example, the physics within a (small) satellite can
be considered in a flat spacetime, e.g. relativistic effects between on-board instruments are
negligible, light propagation obeys the classical rules on the satellite, and so forth.

In this thesis, relativistic effects become important for the definition of the on-board time
(sec. 2.3.4), the derivation of the phase observable (sec. 2.4) for different functional concepts,
and for relativistic corrections of the light propagation time (sec. 2.5). For the computation
of the orbit trajectory and relativistic effects of LEO satellites, an Earth-centered and quasi-
inertial coordinate system is advantageous, which will be introduced next.

2.1.1 The Geocentric Celestial Reference System (GCRS)

The GCRS, or the realization denoted as Geocentric Celestial Reference Frame (GCRF), is
well-suited for describing the motion of satellites around the Earth and to simulate inter-
ferometric ranging observations in a gravimetric mission. It is a kinematically non-rotating
frame with respect to the solar system barycentric coordinate system (BCRS). The origin of
the GCRS is co-located with Earth’s center of mass and the z-axis is roughly along Earth’s
angular velocity vector. The exact orientation of the GCRS axes w.r.t. the BCRS is not
relevant for the purpose of this thesis.

Transformations between the GCRS and the rotating Earth-fixed International Terrestrial
Reference System (ITRS), where Earth’s geopotential is (almost) constant, are specified in
the IERS conventions [Petit et al., 2010].

The coordinate time t of the GCRS is a theoretical time, which an ideal clock would
provide far away from Earth, i.e. in the absence of a gravitational field, and co-moving with
Earth’s center, i.e. at rest in the GCRS. Although the initial epoch t “ 0 is irrelevant for the
purpose of this thesis, the so-called Geocentric Coordinate Time (TCG) has been established
[Petit et al., 2010, sec. 10.1]. The TCG time is related to the terrestrial time (TT) by the
constant LG [Petit et al., 2010, sec. 10.1] by

dtTT

dtTCG
“ 1 ´ LG “ 1 ´ 6.969290134 ¨ 10´10 . (2.7)

The terrestrial time is realized, for example, by the Terrestrial Atomic Time (TAI) or by
the GPS time and both time scales have (approximately) the same rate as the SI second
on the geoid. Thus, the TCG time used to derive the satellite’s trajectory and simulated
observations is different from the time typically used on Earth. Hence, all constants relying
on the second need to be properly scaled for simulations to account for the correct time
system, e.g. the GM value of a gravity field model [Gurfil & Seidelmann, 2016, sec. 3.8].

The commonly used metric tensor for the GCRS is given in eq. (B.4) in the appendix B.
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2.1.2 Equations of Motion

The equations of motion for a massive or massless test-particle in a gravitational field are
governed, in the context of general relativity and in absence of other forces, by the geodesic
equation

d2xµ

dλ2
“ ´Γµαβpxνi q ¨ dx

α

dλ
¨ dx

β

dλ
, (2.8)

where the Einstein summing convention was used again. The so-called Christoffel symbols
Γµαβpxνi q are defined in appendix B and depend on the metric tensor and, hence, on the
four-dimensional position xνi , which is commonly called an event. The symbol λ is a scalar
parameter of the motion such as the proper time τi. An equivalent equation with respect to
the coordinate time t instead of parameter λ is [Kopeikin et al., 2011]

d2xk

dt2
“ ´Γkαβ ¨ dx

α

dt
¨ dx

β

dt
` 1

c0
Γ0
αβ ¨ dx

α

dt
¨ dx

β

dt
¨ dx

k

dt
with k “ 1..3 (2.9)

The geodesic equation is the analogon to Newton’s equation of motion. As the mass
and energy density in our solar system is rather small in terms of relativistic effects, such
relativistic effects can be described by so-called Parameterized Post-Newtonian (PPN) ap-
proximations [Misner et al., 1973, ➜39.11 PPN Equations of Motion] [Kopeikin et al., 2011,
sec. 6.1.5], where one can write the spatial equations of motion as a function of the coordinate
time t by

d2~riptq
dt2

“ ~aip~ri, ~vi, tq ` ~aPPNp~ri, ~vi, tq. (2.10)

A derivation of ~aPPN can be found in appendix B with the final solution given in eq. (B.28)
to eq. (B.30). Thus, the satellite trajectory can still be obtained by numerical integration,
but requires some additional computational effort.

The proper time τ of a particle or satellite can be determined from the relation [Soffel &
Langhans, 2012, p. 54]

dτ2 “ ´ 1

c20
ds2, (2.11)

which allows the proper time of the satellite τi to be written as a line integral along the
geodesic world line [Kopeikin et al., 2011, eq. 3.225]

τipt1q “
ż t1

0

dτiptq
dt

dt “ 1

c0

ż t1

0

c
´gµνpxαi ptqq ¨ dx

µ
i

dt
¨ dx

ν
i

dt
dt (2.12)

SR«
ż t1

0

b
1 ´ | 9~riptq|2{c20 dt. (2.13)

The proper time τ of a LEO satellite deviates slowly from the GCRS coordinate time t. The
small drift is mainly caused by the absolute velocity of the S/C within the GCRS and by the
gravitational time dilation. The magnitude of the drift of the proper time in a LEO can be
derived from the previous definition as

dτi
dt

´ 1 « ´| 9~riptq|2
2 ¨ c20

´ GM

r ¨ c20
« ´3.21 ¨ 10´10 ´ 0.65 ¨ 10´9 « ´1 ¨ 10´9, (2.14)

which assumed | 9~riptq|2 « 7600m{s, GM “ 3.986 ¨ 1014m3{s2 and r “ p6378 ` 400q km.
Although the effect seems small, it is still measurable, as will be discussed in sec. 2.3.4 on
USO clocks. In addition, a modulation of the proper time also implies a modulation of the
apparent laser frequency, which can yield non-negligible phase variations in interferometry.
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It is remarked that the equations of motion (cf. eq. (2.10)) are also valid for a photon. A
photon follows a so-called null-geodesic, i.e. the interval ds2 vanishes along a photon world
line. Since interferometry measures the phase of electro-magnetic waves, it is necessary to
understand how the phase evolves through space-time. In [Misner et al., 1973] it is shown that
the phasefront of an electro-magnetic wave also follows such a geodesic, thus, it seems natural
to switch between the equivalent wave and photon interpretations of light, where required.
With proper selection of initial conditions for position and velocity one can numerically
integrate eq. (2.10) in the GCRS to obtain the light path. However, one has to note that the
coordinate velocity of a photon is not equal to the proper vacuum speed of light c0 in general
relativity. It equals c0 in a flat space-time metric (cf. eq. (2.5)), and thus, in any local Lorentz
frame along the light path. In general relativity, one can find at each point in space-time a
coordinate frame, the local Lorentz frame, where the metric is flat close to the point, i.e. one
has a Minkowski metric as in special relativity in the neighborhood of the point.

A derivation of the coordinate speed of light cn in the metric of the GCRS is given
in appendix B and can be written as a function of the photon position ~r, the normalized
propagation direction ~d and the GCRS coordinate time t:

cnpt, ~r, ~dq “ c0{ngrpt, ~r, ~dq. (2.15)

One could write the apparent slow down due to the space-time curvature in the form of an
equivalent refractive index ngrpt, ~r, ~d q. The proper time and the coordinate speed of light are
of importance, as they influence the ranging observables obtained by laser interferometry.

2.2 Introduction to Interferometry

An interferometer utilizes the process of interference, which means the coherent superposi-
tion, i.e. addition, of waves with subsequent detection of the intensity. The resulting intensity
pattern is different from the intensity patterns of the individual waves. Interference can be ob-
served for acoustic waves, matter waves, surface water waves as well as with electro-magnetic
radiation such as light, microwave or radio waves. Waves can interfere destructively, meaning
a local annihilation, which can be used, for example, for active acoustic noise cancellation
[Hansen, 2002]. Due to conservation of energy, destructive interference at one location is
accompanied by constructive interference at another location. The interference result at a
particular detection point depends on the state of the involved wave, i.e. on the phase and
polarization of the waves at the point.

This thesis chapter focuses on interference of electro-magnetic waves, light in particular.
Such waves can be described by the real-valued electric field vector ~Ep~r, tq and the real-valued
magnetic field strength ~Hp~r, tq, which both depend on the evaluation point ~r and time t.
There exists a connection between both field quantities, which will be introduced later. For
the moment, only the electric field is considered and it is assumed that the coordinate system
originates at the source of the electro-magnetic field, i.e. it is the rest-frame. Furthermore,
general relativistic effects are omitted, which means that the space-time is flat.

Under such conditions one can write a generic model for a monochromatic vectorial electric
field as

~Ep~r, tq “ ~P p~r, tq ¨ E0p~rq ¨ cosp2πνt` Ψp~rqq “ Re
´
~Ecp~r, tq

¯
, (2.16)

which contains the normalized polarization direction ~P , the amplitude E0, the phase Ψp~rq
and the frequency ν. For the sake of easing some algebraic operations, a complex electrical
field ~Ec can be defined analogously as

~Ecp~r, tq “ ~P cp~rq ¨ E0p~rq ¨ ei¨p2πνt`Ψp~rqq “ ~Ecp~rq ¨ ei¨p2πνt`Ψp~rqq, (2.17)
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where the time-dependence of the polarization vector was dropped, because circular or ellip-
tical polarizations can be achieved by a phase difference between the vector components of
~P c. Throughout this thesis, quantities in the complex domain show a superscript c.

The phasefronts of a wave are the surfaces of constant phase, i.e. all ~r fulfilling Ψp~rq “
const. Such a phasefront propagates locally and in vacuum with the speed of light c0 along
the direction of the local wave vector ~k:

~kp~rq “ ~∇Ψp~rq. (2.18)

In general, the field quantities such as ~E and ~Ec obey Maxwell’s equations. However, in optics
the radiation typically shows a preferred direction and forms a beam. Many (analytical)
beam models fulfill Maxwell’s equations only under paraxial approximations, which means
for points close to the preferred axis.

The phase Ψ for many beam or wave models can be written in the form of

Ψp~rq “ ´~k0 ¨ ~r ´ φEp~rq, (2.19)

with a constant wave vector ~k0 defining the preferred direction and with another slowly
changing and model-dependent phase term φE . The local wave vector ~k and the constant
wave vector ~k0 have the norm

k “ |~k0| “ |~k| “ 2πn{λ0 “ 2πnν{c0, (2.20)

where λ0 is the vacuum wavelength and n is the refractive index of the medium. The phase
term φEp~rq is a constant for plane waves and has a parabolic form in the case of Gaussian
beams, for example.

The instantaneous phase Φp~r, tq of any electro-magnetic wave is defined here as the argu-
ment of the cosine function in eq. (2.16), i.e.

Φp~r, tq “ 2πνt` Ψp~rq “ 2πνt´ ~k0 ¨ ~r ´ φEp~rq. (2.21)

One can show [Zhou et al., 2007; Carter, 1972] that the phase Φ approaches spherical phase-
fronts, i.e.

Φffpr, tq “ 2πνt´ k ¨ r “ 2πνt´ 2πn ¨ r
λ0

, (2.22)

in the far-field along the direction of ~k0, where |~r| “ r is much larger than the transverse
spatial extension of the electric field.

Thus, the instantaneous phase of the electric field increases monotonically with time.
Furthermore, the phase is proportional to the distance between the source and evaluation
point ~r in the far-field, i.e. spherical phasefronts are formed. The proportionality factor is
the wave number k. This linear relationship is exploited in (laser) ranging interferometry to
measure distance changes.

It is important to note that the time-derivative of the phase is an instantaneous frequency
ν or an instantaneous angular frequency ω, i.e.

ω “ d

dt
Φ “ 2πν. (2.23)

The instantaneous phase Φ as introduced and discussed here is a purely theoretical quan-
tity, which can not be measured directly, because only the electric field vector ~E and the
cosine of the phase is accessible. The cosine function is an even function, which makes the
sign of the phase physically irrelevant. Moreover, the cosine function is a periodic function
with 2π periodicity. Hence, the phase can only be determined modulo 2π, which is com-
monly called phase wrapping as values larger than 2π appear wrapped into the interval 0..2π.
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However, sufficiently dense consecutive measurements of the phase allow the phase jumps to
be unwrapped as long as the phase change between consecutive measurements is sufficiently
small, which will be utilized in the next subsection on phase retrieval and tracking.

The instantaneous phase value Φ of the wave ~E propagates along the wave vector ~kp~rq
through space. This allows the phase value at a particular time t and position ~r to be written
in the form of a retarded time, i.e.

Φp~r, tq !“ Φp~r 1, t´ ∆tq “ Φp~r 1, tq ` 2πν ¨ ∆t` δφE , (2.24)

where ∆t is the propagation time of the phase value, i.e. the time of flight of a photon from
the position ~r 1 to the detection point ~r. The last summand δφE is the phase change in
the model-dependent phase φE between the emission point ~r 1 and the evaluation point ~r,
which can often be omitted, since it is usually sufficiently constant. For example, for classical
Gaussian beams δφE is the change in the Gouy phase. This method of rewriting the phase
at the detection point ~r and time t as the phase value at the location ~r 1 and time t1 “ t´∆t
is essential for the precise description of the ranging observables in subsequent sections.

It is insightful to form the time-derivative of the first two terms of the previous equation.
The derivative of the first term Φp~rptq, tq can be written with the help of eq. (2.21) as

1

2π

dΦp~rptq, tq
dt

“ 1

2π
¨ BΦp~rptq, tq

B~r ¨ B~r
Bt ` 1

2π
¨ BΦp~rptq, tq

Bt “ 1

2π
¨ ~k ¨ ~v ` ν, (2.25)

while the second term Φp~r 1, t´ ∆tq yields

1

2π

dΦp~r 1, t´ ∆tq
dt

“ ν ¨ d∆t
dt

` ν. (2.26)

In the first result, the Doppler effect is expressed with the velocity ~v of the detection point
~r, while in the second result the same Doppler shift is expressed with the time derivative of
the propagation time ∆t “ ∆tp~rptq, ~r 1q. Both descriptions are equivalent.

In the next sections, radio waves are considered. They are electro-magnetic waves with
frequencies up to several gigahertz or, in other words, with wavelengths larger than a few
millimeters. Such waves can be directly converted to electrical signals by antennas and
processed with electronics. It is assumed that an antenna converts the electrical field vector
~E into a scalar voltage or current signal yptq, i.e.

~Ep~r, tq Ñ yptq “ ay ¨ cospΦyptqq. (2.27)

For radio waves, the frequency of the voltage yptq is equal to the electric field frequency ν and
the amplitude ay is assumed to change only very slowly w.r.t. the oscillation period of yptq.
The relation between the phase Φy of the scalar signal and the instantaneous phase Φ of the
electro-magnetic wave will be addressed in a subsequent section for light fields (cf. sec. 2.2.2).
As a first step, different techniques to recover the phase, i.e. the argument of the cosine, for
a single scalar input are addressed in the following section.

2.2.1 Phase Retrieval and Phase Tracking Techniques

Phase retrieval and tracking of a measured oscillating signal yptq means the determination of
the phase ϕy and Φy in

yptq “ ay ¨ cospΦyptqq “ ay ¨ cosp2πfyt` ϕyptqq. (2.28)

Here, Φy is decomposed into a time-proportional part 2πfyt, which describes most of the
repetitive structure of yptq, and the much smaller phase variations ϕyptq, which typically
contains the desired ranging information.

The frequency of electric signals in this section is denoted with the symbol f , while the
previous section used the symbol ν for frequencies of electro-magnetic waves, e.g. for light.
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The word phase is a vague word, as it may refer to the instantaneous phase Φy, which
is monotonically increasing with time, or it may refer to phase variations ϕyptq, where a
constant phase ramp is already removed. Sometimes, phase is limited to a range of π or 2π,
and sometimes it is an unwrapped phase with the domain of real numbers. In most cases,
the meaning can be deduced from the context.

Phase retrieval and tracking is typically performed in the digital domain. It is therefore
assumed that the signal yptq is digitized with a sampling frequency fsample larger than twice

the oscillation frequency 9Φy{p2πq, i.e.

Nyquist theorem : fsample ą 2 ¨ fsignal “ 2 ¨ 1

2π
¨ dΦy

dt
. (2.29)

The most common technique for recovering the phase of yptq is to demodulate it into the
in-phase I component and the out-of-phase quadrature Q. The demodulation is performed
by multiplicative mixing with a reference oscillation at a frequency fr, so-called heterodyning,
i.e.

Iptq :“ yptq ¨ cosp2πfrtq
“ α

2
¨ pcosp2πpfy ` frqt` ϕyq ` cosp2πpfy ´ frqt` ϕyqq , (2.30)

Qptq :“ yptq ¨ sinp2πfrtq
“ α

2
¨ psinp2πpfy ` frqt` ϕyq ` sinp2πpfy ´ frqt` ϕyqq . (2.31)

The scheme is illustrated in fig. 2.1. The I and Q signals are low-pass filtered (LF) to remove
the oscillations at the sum frequency. If the input signal has a non-vanishing mean value,
one needs to filter out fr and fy as well. The phase of yptq with respect to the reference
frequency fr can be obtained with

ϕIQptq “ arctan2 pLFpQptqq,LFpIptqqq , (2.32)

while the rms-amplitude is

aIQ,rmsptq “
a
LFpIptqq2 ` LFpQptqq2. (2.33)

The two argument arctan2 function considers the sign of both I and Q to determine the
phase in all four quadrants with a range of 2π compared to the classical arctanpQ{Iq with a
range of π. The bounded or wrapped phase ϕIQptq is the result of the phase retrieval. For
the purpose of ranging interferometry, the phase can be unwrapped by tracking the phase
changes and removing the phase jumps. This yields the measured instantaneous phase Φmeas

of the signal y as

Φmeasptq “ 2πfrt` unwraprϕIQptqs “ 2πfrt` ϕIQptq ` 2π ¨mptq, (2.34)

where mptq is a time-varying integer determined by an unwrapping algorithm [Wand, 2007,
sec. D.2].

The phase Φmeas differs from the true instantaneous phase Φy by an integer multiple of
2π:

Φmeasptq “ Φyptq ` 2π ¨ nloomoon
offset

, n P N. (2.35)

This offset is inaccessible, as the considered electric field model (cf. eq. (2.16)) is periodic with
time. In some applications with transient effects of electro-magnetic waves, e.g. generation
of waves, it might be useful to define the absolute value of the phase. However, within the
scope of this thesis, the absolute value of the instantaneous phase is irrelevant.
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The reference frequency fr can differ slightly from the actual frequency of the signal yptq,
because a small mismatch appears as a phase ramp within the phase ϕIQptq.

The I and Q demodulation, i.e. multiplication with sine and cosines, is the foundation of
the Fourier theory. For example, the complex Fourier coefficient cc is given by

cc “ LFpIptqq ` i ¨ LFpQptqq, (2.36)

if the low-pass filtering consists of forming the average and fr is an integer multiple of
fsample{N with N being the number of samples forming a batch of samples. N is the so-called
length or size of the Discrete Fourier Transform (DFT). If one uses a single frequency fr to
demodulate the signal, it is denoted as a Single-Bin Discrete Fourier Transform (SBDFT).
The more general DFT computes an equally spaced spectrum with N bins by demodulating
the input with N equally spaced frequencies in parallel.

The phase obtained by a SBDFT is the average phase within the batch of N samples.
Thus, the phase ϕIQ is available with a sampling rate of fsample{N and variations of ϕIQptq
on time scales shorter than N{fsample can not be recovered. SBDFT is well suited for signals
where the frequency of the signal yptq is known a-priori and quite stable, i.e. only small phase
variations ϕyptq are expected (cf. eq. (2.28)):

dϕy
dt

! dΦy
dt

. (2.37)

Furthermore, phase unwrapping typically requires the phase change between consecutive
phase samples to be smaller than π:

N

fsample
¨ dϕy
dt

ă π. (2.38)

Both requirements are met for the laser interferometry on-board the LISA Pathfinder satellite
and, in fact, the on-board phasemeters use the SBDFT at a fixed reference frequency fr of
1.0 kHz.

However, the variations of ϕy are typically large in inter-satellite ranging interferometry
due to the relative velocity of the satellites. Thus, the limitations imposed by eq. (2.37) and
(2.38) are severe and the SBDFT is not well suited. One can overcome the limitations with
an extension of the I&Q demodulation, which is phase tracking by means of a (digital) phase-
locked loop (DPLL). This scheme is illustrated in fig. 2.2 and utilizes a variable frequency fr,
which is stored in a so-called phase increment register (PIR). It is derived from the feedback
of ϕIQ. The variable and instantaneous frequency in the PIR is continuously integrated
within the numerically controlled oscillator (NCO) and the resulting phase is stored in a
phase accumulator (PA), which is used to derive the sine and cosine components for the I&Q
demodulation through a look-up table.

For ranging interferometry, this phase tracking system can be designed with a high gain
and bandwidth of the feedback control loop, such that the internally measured error signal
ϕIQ is close to zero. Thus, the value of the phase accumulator directly provides a continuous
and unwrapped phase Φmeas. An analytical model for the phase observation of an ideal DPLL
is

Φmeaspt1q “ 2π

ż t1

t“0
|fr| dt “

ż t1

t“0

ˇ̌
ˇ̌dΦy
dt

ˇ̌
ˇ̌ dt, (2.39)

which is always positive and monotonically increasing.
DPLL phase tracking is a common and well-established technique and can be implemented

conveniently in digital FPGA circuits [Gerberding, 2014]. It will be utilized in the GRACE
Follow-On mission for laser ranging as well as microwave ranging, is commonly used in GNSS
receivers and is also foreseen in the LISA mission.

More details and alternative methods such as zero-crossing detection for phase retrieval
are addressed in the section 2.3.7 on phasemeters.
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Figure 2.1: The electro-magnetic radio waves are transformed into an oscillatory voltage
yptq, amplified, digitized and IQ-demodulated to obtain the phase ϕIQ and amplitude aIQ,rms

Figure 2.2: Working principle of a digital phase-locked loop (DPLL) used for phase retrieval
and tracking. The electro-magnetic radio waves are transformed into an oscillatory voltage
yptq, amplified, digitized and IQ-demodulated to obtain the phase ϕIQ, which is fed back to
the numerically controlled oscillator (NCO). A more realistic scheme can be found in sec. 2.3.7
on the phasemeter.
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2.2.2 Optical Detection

So far, phase retrieval was discussed for electro-magnetic radiation with wavelengths larger
than a few millimeters and for electrical signals. The other side of the electro-magnetic
spectrum, with wavelengths smaller than 1mm, is usually denoted as the optical part of
the spectrum, where the oscillation frequency is larger than 30 terahertz and too fast to
be resolved directly by electrical signals. For the sake of completeness, it is noted that the
frequency range between 300GHz and 30THz is commonly called the terahertz gap, as neither
conventional detectors nor sources from optics or electronics can be used at these frequencies.
However, bridging the gap is being attempted as described in the overview article by Sirtori
[2002].

The photoelectric effect provides a means of accessing the intensity of electro-magnetic
radiation, i.e. the time-averaged energy flux. The directional instantaneous energy flux is
typically expressed as the Poynting vector ~Sptq, which has units of watt per square meter
(W{m2) and is defined by

~Sp~r, tq “ ~Ep~r, tq ˆ ~Hp~r, tq “ Rep ~Ecp~r, tqq ˆ Rep ~Hcp~r, tqq (2.40)

where ~H is the magnetic field vector of the light field with units of A{m and ~E has units of
V{m. The norm of the time-averaged Poynting vector is the intensity with units of W{m2. For
time harmonic fields with temporal dependency ei2πνt, it is given by [Träger, 2012, eq. 3.65]:

<~S>p~r, tq “ 1

2
¨ Re

´
~Ecp~r, tq ˆ ~Hc˚p~r, tq

¯
9 <| ~Ep~r, tq|2> ¨ ~eS . (2.41)

The star ˚ denotes complex conjugation. The vector <~S> is proportional to the squared
electric field | ~E|2, because the magnetic field ~H can be expressed in terms of the electric field
~E as

~Hp~r, tq “ 1

c0 ¨ µ0 ¨ µ ¨
~k

k
ˆ ~Ep~r, tq “ 1

c0 ¨ µ0 ¨ µ ¨ ~eS ˆ ~Ep~r, tq, (2.42)

where µ0 is the magnetic permeability of vacuum and µ is the permeability of the medium.
The direction of the time-averaged Poynting vector ~eS is parallel to the local wave vector ~k in
isotropic non-conducting dielectric media, i.e. parallel to the gradient of the phase function
or phasefront. This can be easily shown for plane waves [Träger, 2012, eq. 3.65] or spherical
waves, but a general proof for arbitrary vector fields from Maxwell’s first principles seems to
be non-trivial, because the local wave vector ~k is not well-defined.

In fact, a general method to define a scalar phase function Φ and the local wave vector
~kp~rq from vector field quantities ~E and ~H may be a relation in the form of3

~eS “ <~S>p~r, tq
|<~S>p~r, tq|

“
~∇Φp~rq
k

“
~k

k
. (2.43)

Since the energy flux is proportional to the squared electric field, light detectors such as
e.g. those using the photoelectric effect are referred to as square-law detectors. For example,
a photodiode provides a photocurrent Iph,

Iph “ ηPD

ż

PD
<~S> d~n, (2.44)

where ηPD is the photodiode responsivity with units of A/W and the brackets denote temporal
averaging. The domain of spatial integration in eq. (2.44) is the active area of the photodiode,

3More generally, one should use the cross product of electric displacement ~D and ~H instead of ~S, since ~E

is not perpendicular to ~k in birefringent media [Träger, 2012, eq. 5.77]. This also means that the energy is

not transported along the electric phase normals ~k in such media.
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where ~n is the normal vector of the active area surface. Detectors in the optical domain can
not resolve the fast oscillation at optical frequencies and can provide only the intensity, in
contrast to antennas and radio waves.

If a light field ~E with single frequency ν and constant amplitude is impinging on the
photodiode, the resulting photocurrent is constant and proportional to the optical power P
within the active area. However, if two electric fields ~Er and ~Ey with nearby frequencies νr
and νy are overlapped, i.e.

~Ecp~r, tq “ ~Ecyp~rq ¨ ei2πνyt`iϕy ` ~Ecrp~rq ¨ ei2πνrt`iϕr
~Hcp~r, tq “ ~Hc

yp~rq ¨ ei2πνyt`iϕy ` ~Hc
rp~rq ¨ ei2πνrt`iϕr , (2.45)

they produce a photocurrent given by

Iphptq “ ηPD ¨ 1
2

¨Re
„ż

PD

~Ecyp~rq ˆ ~Hc˚
y p~rq ` ~Ecrp~rq ˆ ~Hc˚

r p~rq

` ei2πδνt`iδϕ ¨ ~Ecrp~rq ˆ ~Hc˚
y p~rq

`e´i2πδνt´iδϕ ¨ ~Ecyp~rq ˆ ~Hc˚
r p~rq d~n

ı
. (2.46)

The first line is time-independent and yields the sum of the incident light power of both
beams, i.e. Py ` Pr, where Py and Pr are the light power levels of ~Ey and ~Er, respectively.
These values would be measured in the absence of interference, i.e. if only a single beam
is present (cf. eq. (2.44)). The difference phase δϕ “ ϕy ´ ϕr and difference frequency
δν “ νy ´ νr have been introduced as abbreviations. One can show that the integrand in the
second and third line is oscillating at the difference frequency δν, e.g.

Re
”
ei2πδνt`iδϕ ¨ ~Ecrp~rq ˆ ~Hc˚

y p~rq ` e´i2πδνt´iδϕ ¨ ~Ecyp~rq ˆ ~Hc˚
r p~rq

ı
(2.47)

“ cosp2πδνt` δϕq ¨ Rep ~Ecr ˆ ~Hc˚
y q ´ sinp2πδνt` δϕq ¨ Imp ~Ecr ˆ ~Hc˚

y q
` cosp2πδνt` δϕq ¨ Rep ~Ecy ˆ ~Hc˚

r q ` sinp2πδνt` δϕq ¨ Imp ~Ecy ˆ ~Hc˚
r q (2.48)

“ cosp2πδνt` δϕq ¨ Rep ~Ec˚r ˆ ~Hc
yq ` sinp2πδνt` δϕq ¨ Imp ~Ec˚r ˆ ~Hc

yq
` cosp2πδνt` iδϕq ¨ Rep ~Ecy ˆ ~Hc˚

r q ` sinp2πδνt` δϕq ¨ Imp ~Ecy ˆ ~Hc˚
r q (2.49)

“ cosp2πδνt` δϕq ¨ Rep ~Ec˚r ˆ ~Hc
y ` ~Ecy ˆ ~Hc˚

r q
` sinp2πδνt` δϕq ¨ Imp ~Ec˚r ˆ ~Hc

y ` ~Ecy ˆ ~Hc˚
r q (2.50)

“ Re
”
ei2πδνt`iδϕ ¨ p ~Ec˚r ˆ ~Hc

y ` ~Ecy ˆ ~Hc˚
r q

ı
. (2.51)

Using the result eq. (2.51) in eq. (2.46) allows the final photocurrent to be written in the
common forms

Iphptq “ ηPD ¨
´
Py ` Pr ` Repei2πδνt`iδϕ ¨ acq

¯
(2.52)

“ ηPD ¨ pPy ` Prq ¨ p1 ` c ¨ cosp2πδνt` δϕ` ϑqq , (2.53)

“ ηPD ¨
`
Py ` Pr ` 2 ¨

a
Py ¨ Pr ¨ η ¨ cosp2πδνt` δϕ` ϑq

˘
, (2.54)

where ac denotes the complex oscillation amplitude, c P r0..1s is the so-called interferometric
contrast defined by

c “ 2 ¨
a
Py ¨ Pr ¨ η

Py ` Pr
“ |ac|, (2.55)
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Figure 2.3: These block diagrams illustrate frequency down conversion by electrical mixing
(left) and by optical square-law detection (right). High-pass filtering is used to remove a bias
in the electric signal.

and η and ϑ are the amplitude and phase obtained by the complex overlap integral

?
ηeiϑ “

1
2

ş
PD

~Ec˚r ˆ ~Hc
y ` ~Ecy ˆ ~Hc˚

r d~na
Py ¨ Pr

(2.56)

“
1
2

ş
PDp ~Ec˚r ¨ ~Ecyq ¨

´
~kr
kr

` ~ky
ky

¯
´ p ~Ec˚r ¨ ~kyq ¨ ~Ecy ´ p ~Ecy ¨ ~krq ¨ ~Ec˚r d~n
a
Py ¨ Pr

(2.57)

«
ş
PD

~Ec˚r ¨ ~Ecy dSa
Py ¨ Pr

, (2.58)

where dS denotes the surface element. It was assumed here that the beat frequency δν can
be resolved by the photodiode.

The η is often called the heterodyne efficiency and is a measure of the similarity of
both electric fields. It is independent of the absolute power level of each beam due to the
normalization by Py and Pr. Eq. (2.56) is a general expression considering the vectorial
nature of light, which is not commonly found in literature to the knowledge of the author.
The last approximation in eq. (2.58) considers that the phasefronts are almost parallel to the
photodiode surface, i.e. ~ky and ~kr are parallel to ~n, which implies that ~EK~n.

In the derivation of the photocurrent Iphptq (cf. eq. (2.54) and (2.45)) an artificial sep-
aration between the phase ϑ and δϕ “ ϕy ´ ϕr has been introduced. Such an approach
typically eases the computation, because ϕy and ϕr can be used to describe the macroscopic
phase, which includes the effect due to the accumulated optical pathlength traversed by the
light field, while ϑ accounts for a smaller phase effect due to the geometry of the wavefronts.
However, these phases can not be distinguished in the measurement.

The oscillatory photocurrent Iphptq is usually amplified and converted into a voltage
using a transimpedance amplifier (TIA). If the voltage (or current) is high-pass filtered, such
that the static part is removed, one can say that the optical frequencies ν have been down-
converted to a new frequency δν similar to the process in electrical mixing (cf. fig. 2.3).

In a subsequent stage, the phase of the voltage (or current) can be recovered with the
aforementioned phase measurement techniques (cf. sec. 2.2.1).

Thus, in optical interferometry, the phase of the light field ~Ey is obtained by optical mixing

with an optical reference field ~Er to produce an oscillation frequency accessible to electronics,
followed by electrical mixing within the DPLL to zero frequency for phase retrieval. Therefore,
the measured phase depends on the stability of the optical reference field ~Er and on the
stability of the clock driving the reference oscillation within the DPLL.

Eq. (2.54) is also applicable in the case of homodyne interferometry, when the reference
and measurement fields have the same carrier frequency, i.e. δν “ 0. This type of readout
has no oscillatory time-dependence. In such a scheme, a change in the phase ϕy of the light
field is related to a phase change in the photocurrent, whereby the sensitivity

dIph

dϕy
9 2 ¨

a
Py ¨ Pr ¨ η ¨ sinpϕy ´ ϕr ` ϑq (2.59)
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vanishes for ϕy ´ϕr `ϑ “ 0, at the so-called bright-fringe or dark-fringe setpoints, where the
cosine term in eq. (2.54) is maximal or minimal, respectively. The sensitivity is maximized
at the mid-fringe, i.e. ϕy ´ ϕr ` ϑ “ π{2. The direct relation between measured power and
phase can be advantageous for the detection of tiny phase changes, as the sensitivity can be
enhanced by increasing the light power, but requires an optical power stabilization and the
ability to handle higher optical powers. In addition, homodyne interferometers require that
the dynamics of the tracked object, and hence the changes in the optical phase ϕy, are slow
enough, such that the optical reference phase ϕr can follow it to maintain the setpoint.

On the first glance, a homodyne scheme seems beneficial, as only single mixing in the
optical domain is performed. In fact, homodyne schemes for gravimetric inter-satellite ranging
have been considered experimentally by Nagano et al. [2004, 2005] and Yeh et al. [2011], who
state a dynamic range of cm/s for the relative velocity. However, this would require well-
matched satellite orbits and most likely an active control of the relative velocity between
satellites in a gravimetric mission.

Another difficulty with homodyne schemes is that the DC photocurrent, and hence the
phase readout, is falsified by omni-present low-frequency electronic noise and variations of
the optical power, the reference voltage and the wavefront overlap η. In a heterodyne readout
scheme, the desired phase is encoded at a convenient (sub-)radio frequency δν, where most
error contributions are sufficiently small. The demodulation to a DC “frequency” for phase
retrieval is performed digitally within the PLL in the phasemeter, where a phase-value can
be stored and transmitted mostly unaffected by low-frequency variations.

Heterodyne phase readout with phase tracking by means of a digital PLL is considered
in this thesis as the baseline for future gravimetric missions, mainly due to the mature
technology and significant heritage from the development of the LISA and GRACE Follow-
On missions. Such a readout is capable of handling low received light power, e.g. in the
picowatt regime, which is typically encountered in inter-satellite ranging. The sensitivity of
the phase readout is sufficient even under these low-light conditions, which means that several
other noise sources are limiting the ranging sensitivity. Another advantage is the dynamic
range in terms of the maximum relative velocity between satellites, which has been so far
designed to handle a few m/s, corresponding to Doppler shifts of a few MHz in the optical
frequency. However, a potential extension to a larger dynamic range is considered possible
[e.motion2 Team, 2014, sec. 5.3.2.3]. This is an important aspect for future gravity missions
with advanced satellite constellations and orbits, e.g. pendulum [Elsaka, 2010] or even precise
(optical) high-low satellite ranging [Schlie et al., 2015].

2.2.3 Differential Wavefront Sensing (DWS)

Differential Wavefront Sensing [Morrison et al., 1994] is a technique for measuring the relative
phasefront tilt between two laser beams or light fields. It utilizes a segmented photodiode as
shown in fig. 2.4. If the interfering light fields are tilted with respect to each other, the phase
of the left two segments (A and C) differs from the phase of the right two segments (B and
D). The phase differs between upper and lower segments if a phasefront tip is present, The
linear combinations

DWStilt “ ϕA ` ϕC ´ ϕB ´ ϕD

2
, DWStip “ ϕA ` ϕB ´ ϕC ´ ϕD

2
(2.60)

are called DWS signals and have units of radian, where the radian refers to the phase of
the photocurrent. Unfortunately, various conventions with different signs and normalization
factors exist. Therefore, clear documentation of the used implementation in hard- or software
is mandatory. A coherent combination of the different segments is also possible, where the
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Figure 2.4: Working principle of Differential Wavefront Sensing (DWS) with a segmented
photodiode. The phasemeter returns the DWS signals DWStilt and DWStip as well as the
longitudinal phase ϕ, which contains the ranging information.

phase is weighted with the heterodyne amplitude, i.e.

DWStilt “ arg pacA ` ac˚B ` acC ` ac˚D q
“ arg

`
aA ¨ eiϕA ` aB ¨ e´iϕB ` aC ¨ eiϕC ` aD ¨ e´iϕD˘

, (2.61)

DWStip “ arg pacA ` acB ` ac˚C ` ac˚D q
“ arg

`
aA ¨ eiϕA ` aB ¨ eiϕB ` aC ¨ e´iϕC ` aD ¨ e´iϕD˘

, (2.62)

which is equivalent to eq. (2.60) up to a factor of 2, if all segments have the same heterodyne
magnitude. The complex oscillation coefficient acX with X P tA,B,C,Du was defined in
eq. (2.52), whereby the magnitude is aX “ |acX |.

The relation between the differential geometrical phasefront tip and tilt directly in front
of the photodiode and the DWS signal is, in general, dependent on the wavefront (amplitude
and phase) of both light fields, the area and orientation of the segments and the slit width
between segments. Proper selection of beam parameters yields a linear relation between
geometrical tilt and DWS around a working point with aligned phasefronts. For example,
the linear coupling factor for plane waves impinging on a photodiode with radius rPD is
[Sheard et al., 2012]

mDWS “ 16 ¨ rPD
3 ¨ λ , (2.63)

which has units of rad/rad, meaning an electrical phase (angle) over a geometrical an-
gle. For a typical photodiode size of rPD “ 0.5mm and λ “ 1064 nm, this results in
mDWS “ 2506 rad{rad. For more realistic beams with non-flat intensity, the coupling is
of similar magnitude and can be computed numerically by eq. (2.58). This large magnifica-
tion mDWS allows tiny differential phasefront tilts to be resolved. In particular, if mDWS and
the orientation of the reference phasefront is known, DWS provides a precise measure for the
orientation of the measurement beam. Another reason for the excellent DWS performance is
the common mode rejection of errors among different segment channels.

The longitudinal phase ϕlong, i.e. the ranging information, can be obtained from the phase
of the coherent sum of all segments, i.e.

ϕlong “ arg
`
aA ¨ eiϕA ` aB ¨ eiϕB ` aC ¨ eiϕC ` aD ¨ eiϕD

˘
, (2.64)

which is equal to the phase obtained by a single element photodiode in the limit of vanishing
slit (gap) width.
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Figure 2.5: The average phase on the photodiode, i.e. the longitudinal phase, changes from
d ¨ 2π{λ to d ¨ cospαq ¨ 2π{λ by rotating the plane waves around the pivot point. For plane
waves, the average phase over the circular photodiode is the same as the phase at the center
of the diode.

It is noted that zeroing DWS in the case of typical laser beams implies a maximization of
the wavefront overlap η of the coherent sum of all segments. This maximizes the heterodyne
amplitude and the signal-to-noise ratio of the longitudinal (ranging) phase measurement.

Another remark concerns the coupling between phasefront misalignment and the longi-
tudinal phase. In general, the DWS signals couple strongly to the longitudinal phase ϕlong if
rotations of the phasefront are not performed around the photodiode center. This is shown
in fig. 2.5, where the effective lever arm d yields a rotation-to-phase coupling according to

∆ϕ “ d ¨ p1 ´ cospαqq ¨ 2π{λ « ´d ¨ α2{2 ¨ 2π{λ. (2.65)

In the plane wave approximation, d is simply the length given by the projection of the wave
propagation direction ~k onto the vector from the photodiode center to the pivot point. The
quadratic coupling vanishes if the reference beam is rotated by the same amount around the
same pivot point, such that DWS is zeroed again. In practice, an imaging system is often
used to image the rotation pivot point onto the photodiode center, which reduces the effective
lever arm d to a value close to zero.

2.2.4 Differential Power Sensing (DPS)

In the same manner as DWS utilizes a linear combination of the phases from different seg-
ments of a quadrant photodiode, the DPS readout is formed by a linear combination of the
DC photocurrents P of each segment

DPSX “ Pleft ´ Pright

Ptotal
“ PA ` PC ´ PB ´ PD

PA ` PB ` PC ` PD
,

DPSY “ Ptop ´ Pbottom

Ptotal
“ PA ` PB ´ PC ´ PD

PA ` PB ` PC ` PD
. (2.66)

Normalizing the DPS signal to the total beam power makes it independent of beam power
fluctuations. If a single circular Gaussian beam is centered on a quadrant photodiode, each
segment receives approximately one quarter of the total light power. A slight de-centering
results in an imbalance between the segments. DPS is a useful tool for centering a beam on a
photodiode or vice versa, to center the photodiode w.r.t. a beam. After calibrating the DPS
signal with well-known translations, DPS can be used to measure beam walk on a photodiode
in terms of physical length, with a common resolution at the micrometer level.

The DPS signals are linear in the displacement for a nearly centered beam [Wanner, 2010],
but non-linearities appear for considerable offsets. The linearity factor depends on the actual
beam shape and size, as well as on the photodiode size and gaps. If two beams with compa-
rable power levels are impinging on the diode and both are subject to beam walk, DPS in its
simple form cannot provide useful information. However, since inter-satellite interferometers
are typically operated with one powerful and one weak beam, DPS approximately indicates
the beam position of the powerful beam.
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In summary, in laser (ranging) interferometry the phase of the light fields is used to mea-
sure distance changes, because the phase at a receiver depends on the traversed distance of
the light, or in other words, on the propagation time of the light field. Since the phase at
optical frequencies is not directly accessible to electronics, one compares in an interferome-
ter the measurement light field, which contains the ranging information, to a reference light
field with stable phase and frequency. The case with two fields of equal frequencies yields
a homodyne interferometer. However, due to the orbital dynamics in inter-satellite ranging
one prefers a heterodyne scheme with slightly different optical frequencies. This difference
in frequency corresponds to different slopes in the instantaneous phase of the light fields
(with respect to time). By overlapping the light fields and subsequent photodetection one
obtains an oscillating photocurrent at the difference frequency which contains the ranging
information encoded in its phase. The phase of the oscillating photocurrent, which is the
phase difference between both light fields, can be retrieved by a digitial phase-locked loop
(DPLL) within a phasemeter. By using segmented photodiodes one can obtain the ranging
signal, which is often called the longitudinal phase, from the average phase of all photodiode
segments, while differential combinations of the segments allows information on the phase-
front tilt between the light fields, so called DWS signals, and on the position of the light
beams on the photodiode, so-called DPS signals, to be retrieved.

2.3 Optical and Interferometer Technology

The following subsections introduce the currently available technology and subsystems which
are typically required and used to build laser ranging interferometers. The basic working
principle of the subsystems and the relevant figures of merit and design drivers with regard
to ranging interferometry are introduced. The information in these subsections allow to study
the sensitivity limits of ranging instruments in the following parts of this thesis.

2.3.1 Laser

Optical inter-satellite interferometry requires a source of continuous, coherent, single fre-
quency light. Two key parameters are the wavelength and the optical power. The field of
gravitational wave detection by means of optical interferometry prefers 1064 nm light, which
has grown historically, as optical components out of fused silica show low absorption at this
wavelength [Schnabel et al., 2010]. In particular, solid-state Nd:YAG (Neodymium doped Yt-
trium Aluminum Garnet) laser crystals with a non-planar ring oscillator (NPRO) structure
advanced in the last decades yielding a high mechanical stability, a narrow line-bandwidth
of a few kHz and a large separation between longitudinal modes. The actual laser crystal
is usually pumped optically by dedicated pump laser diodes at another wavelength. Space-
qualified lasers of this type are commercially available from the company Tesat-Spacecom
GmbH, which also delivered the LISA Pathfinder and the GRACE Follow-On lasers, both
with an optical output power of a few tens of milliwatt. A higher output power can be
achieved by laser amplifiers as used, for example, in the Laser Communication Terminals
[Muehlnikel et al., 2012].

ESA recently started activities in the development of a NGGM-High Stability Laser [Nick-
laus et al., 2014a], which is specified to provide up to 500mW frequency stabilized 1064 nm
laser light for future gravimetric missions (cf. fig. 2.6). A laser system for space-applications
ideally delivers the light in a single-mode polarization maintaining fiber with a high polar-
ization extinction ratio or as a free beam in a TEM00 mode with a linear or well defined
polarization. As the intrinsic, free-running frequency stability of lasers is generally insuf-
ficient for precise ranging, the lasers need the capability to tune the frequency with high
bandwidth, so that they can be locked to an external frequency standard. For example,
an NPRO crystal can be tuned at low-frequencies via a typical temperature coupling of
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approx. 3GHz{K and with higher bandwidth via a piezo-electric transducer with typical cou-
pling of approx. 1MHz{V. Other candidate technologies are the Distributed Brag Reflector
(DBR) laser, the Distributed Feedback (DFB) laser or a fiber laser [Numata et al., 2010;
Tröbs et al., 2009], which can also provide radiation with a wavelength of 1064 nm.

Although the use of semiconductor DBR or DFB laser diodes seems advantageous due to
the lower mass and lower power consumption, these laser types usually emit strongly elliptical
beams, which require additional beam shaping or acceptance of significant losses in the fiber
coupling efficiency. An additional concern is the relative intensity noise (RIN) at frequencies
used for the phase readout (ą 4MHz). Therefore, the final complexity of such new systems
needs to be assessed and compared to an NPRO laser. It is noted that in [Alnis et al., 2008]
diode lasers at 972 nm have been locked to cavities using AOMs and in [Tröbs, 2005] a DFB
laser has been locked to a cavity with residual (in-loop) frequency noise of 1 kHz{

?
Hz at

10mHz.

Preliminary requirements and key figures for an e.motion2 laser, which can serve as a
starting point for further discussion and iteration, are shown in table 2.1. A critical issue is
the required long lifetime of the laser system, as optical systems are susceptible to degradation
due to contamination, radiation, space corrosion and premature aging. In particular, laser
diodes such as the pump diodes for an NPRO gain medium have shown failures on a previous
mission [Ott et al., 2006] and efforts have focused on improving their reliability, also driven
by the rising need in optical communication applications. Space-qualified hermetically-sealed
arrays of pump diodes with multimode fiber output and utilizing cold-redundancy have been
reported [Traub et al., 2007; Hildebrand, 2005] together with a reliability of 0.9998 over
a 10 years lifetime and with 10W of optical pump power (cf. fig. 2.7). In general, it is
recommended to operate laser diodes at low electrical and thermal load, which corresponds
to a low optical output power, as this enhances the lifetime (cf. so-called Arrhenius model
[Gale, 2008]). Additional engineering efforts are required regarding the thermal dissipation
of a high power laser subsystem on a satellite, but this is considered less critical for a laser
output power ă 1W in gravimetric missions.

One can consider other common wavelengths such as 1550 nm or 532 nm for the laser.
The wavelength influences the divergence of a Gaussian beam, in particular the spot size at
the distant satellite, as well as the photodiode responsivity or more precisely the photodiode
quantum efficiency. The divergence of the beam can also be adjusted using the waist size of a
Gaussian beam, while the quantum efficiency can be improved from approx. 60% at 1064 nm
to above 90% under ideal conditions (cf. sec. 2.3.3 on photodiodes). The latter is beneficial
for the signal-to-noise ratio of the instrument, but it does not reduce the noise in the range
measurement. Although a smaller wavelength implies a higher ranging precision for a fixed
phase readout sensitivity, interferometry in gravimetric missions is currently limited by laser
frequency noise and spacecraft attitude jitter noise, which does not improve with a shorter
laser wavelength. Therefore, the author of this thesis currently does not think it is necessary
to change the well-established wavelength and discard the associated mature technology.

2.3.2 Optical Frequency Standard

The optical frequency ν of a laser is important, because it sets the scale for converting a
physical displacement ∆d to an optical phase change ∆ϕ measured by interferometry:

∆d “ ∆ϕ

2π
¨ c0
ν

“ ∆ϕ

2π
¨ λ. (2.67)

Precise knowledge of the physical distance (in meters) is required in gravimetric missions,
since the ranging data is processed with other physical observations such as accelerations.
Thus, an error in the absolute value of the frequency or wavelength appears as a static scale
factor error. In addition, fluctuations of the frequency are of importance as these appear as a
noise in the interferometric distance measurement. However, the exact coupling of frequency
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Parameter Value Comment

Laser Wavelength λ 1064 nm

Operation Mode CW Continuous wave

Laser Power 500mW Beginning of Life
in SM-PM Fiber 400mW End of Life

RIN for f ą 4MHz ă 10´15 1{Hz
For Phase Readout Noise

(cf. sec. 2.6.9)

RO RIN Peak TBD Avoidance of AC saturation

Knowledge of λ 1 ppm
In-orbit scale factor for

converting phase to length

LFN at 1mHz ă 108Hz{
?
Hz

LFN at 1Hz ă 106Hz{
?
Hz

Lifetime ą 10 years Mission lifetime

Table 2.1: Key figures and requirements of a laser system for a potential e.motion2 mission.
Abbreviations: SM-PM: Single Mode and Polarization Maintaining; LFN: (Free-Running)
Laser Frequency Noise; RIN: Relative Intensity Noise; RO: Relaxation Oscillation

Figure 2.6: Breadboard of the NGGM High Stability Laser. Image courtesy of SpaceTech
Immenstaad GmbH, Germany.
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Figure 2.7: (Left:) NPRO laser for LISA Pathfinder from Tesat-Spacecom GmbH with
approx. 35mW optical output power at 1064 nm. (Right:) Tesat Pump Module with physical
dimensions of 40x40x25 mm3 and a mass of 150 grams. The unit can deliver up to 5W optical
power at a wavelength of 808 nm [Schwander, 2006]. Image courtesy of Tesat-Spacecom
GmbH.

fluctuations into the observations depends on the interferometer concept and this discussion
is postponed until section 2.4, which introduces functional concepts.

The true frequency νtrue of the laser light, which may be stabilized by an external fre-
quency standard, can be expressed as

νtruepτq “ νdesign ` δνDC ` δνLFNpτq, (2.68)

where νdesign is the known design frequency, δνDC is a small static error in the frequency, and
δνLFNpτq are the small time-variable fluctuations with zero mean. The time τ denotes the
proper time for objects on the satellite, which may differ from the coordinate time t, but the
difference is only of importance in later sections. With this notation, one can approximate
the true wavelength λtrue as

λtrue “ c0

νtruepτq « λdesign ¨
ˆ
1 ´ δνDC

νdesign
´ δνLFNpτq

νdesign

˙
, (2.69)

which shows that the fractional and not the absolute frequency errors are of importance for
the fractional error of the wavelength.

Recall that the instantaneous phase Φ of a light field ~Ec 9 ei¨Φ was defined for a monochro-
matic light field at constant frequency as (cf. eq. (2.21))

Φp~r, τq “ 2πντ ` Ψp~rq. (2.70)

Using this, one can write the phase of a light field from an error-prone laser source as

Φp~r, τ 1q “ 2π

ż τ 1

τ“0
νtruepτq dτ ` Ψp~rq (2.71)

“ 2π ¨ pνdesign ` δνDCqloooooooomoooooooon
νtrue,mean

¨τ 1 ` 2π

ż τ 1

τ“0
δνLFNpτq dτ

loooooooooooomoooooooooooon
ΦLFNpτq

`Ψp~rq, (2.72)

which is a phase ramp with a slope proportional to νtrue,mean and which is increasing monoton-
ically with time τ . Furthermore, it contains phase fluctuations ΦLFN due to laser frequency
noise. The spatial dependence of the phase Ψp~rq has no relevance here.

A first indicator of the frequency stability of laser light is the linewidth, but more in-
formative is the spectral density of the frequency noise, i.e. ASDrδνLFNspfq with units of
Hz{

?
Hz, which can be easily converted to a fractional stability or Allan variances.
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Frequency standards are commonly categorized into macroscopic and microscopic. Macro-
scopic standards are usually cavities, where the frequency is defined by the separation between
two mirrors. A fraction of the light to be stabilized is injected into the cavity and kept res-
onant using the so-called Pound-Drever-Hall technique [Drever et al., 1983]. Resonances
occur not at a single particular frequency, but whenever the round-trip distance is an integer
multiple of the wavelength. The frequency separation between adjacent resonances is called
the free-spectral range (FSR), νFSR “ c{p2 ¨ Lcavq, and is approximately 1.5GHz for a 10 cm
long cavity. Therefore, a cavity can provide only stability but not accuracy, i.e. the absolute
frequency value needs to be determined by other means, e.g. from calibration of the laser
wavelength w.r.t. set-points of the laser such as the crystal temperature.

Relevant noise sources for the frequency stability of cavities are shot noise and readout
noise, residual laser amplitude modulations, intrinsic thermal noise and environmental con-
tributions such as accelerations, vibrations and temperature variations. The intrinsic thermal
noise of cavities can be computed by means of the fluctuation-dissipation theorem [Numata
et al., 2004; Kessler et al., 2012] and contributions from the spacer, the mirror coating and
substrate need to be taken into account. For room-temperature, the frequency noise limit
from thermal noise (TN) of a mature cavity design is given approximately by

ASDrδνLFN,TNspfq « 0.2Hz{
?
Hz ¨

d
1Hz

f
¨ λ

1064 nm
(2.73)

“ 7 ¨ 10´16 1{
?
Hz ¨

d
1Hz

f
¨ ν, (2.74)

which is shown as red solid trace in fig. 2.8. Experimental verification of this limit is provided,
for example, by Notcutt et al. [2006] and Chen et al. [2013] and it is shown by the solid
light blue trace. One has to mention that such a stability can be achieved in well-shielded
ground-experiments but may not be attainable in a low Earth orbit with constraints on mass,
dimensions and temperature stability.

The GRACE Follow-On LRI frequency noise requirement

30Hz{
?
Hz ¨

a
p1 ` p3mHz{fq2q ¨ p1 ` p10mHz{fq2q, 2mHz ă f ă 100mHz (2.75)

has been fulfilled by an ultra-low expansion (ULE) glass cavity with a 77.5mm spacer from
Ball Aerospace and Technologies Corporation [Thompson et al., 2011]. Alternatives to linear
cavities, which are often called Fabry-Pérot cavities, are long fiber interferometers. These
have shown a stability of 30Hz{

?
Hz at Fourier frequencies f ą 15mHz [McRae et al., 2013].

In such a concept, the long fiber is used to form an unequal arm interferometer that measures
the laser frequency fluctuations. These measured fluctuations are used to control the laser
frequency, which effectively stabilizes the laser frequency or wavelength to the length of the
fiber.

Instead of stabilizing the wavelength to a macroscopic length, microscopic frequency stan-
dards use the energy transition levels of atoms or molecules. A prominent example is an iodine
cell, containing molecular iodine 127I2, which has absorbing hyperfine transitions near 532 nm.
A 1064 nm laser can be frequency-doubled and locked to such a transition, providing a precise
absolute frequency. Breadboard setups for space-applications have demonstrated a stability
below the GRACE Follow-On LRI requirement [Doringshoff et al., 2010; Schuldt et al., 2012]
(cf. dashed light blue trace in fig. 2.8). As the frequency of the transition Rp56q32 ´ 0 is
known with a relative uncertainty ă 10´11 [BIPM, 2007], the laser frequency is known to
much better than the required 1 ppm from table 2.1, once the frequency is locked to such
standard.

For comparison, the frequency stability of current clocks is depicted in fig. 2.8, which
is given for the Pharao cesium space clock in terms of Allan deviations by σypτavgq “
10´13{?

τavg [Delva et al., 2012] and for the most precise clock in 2015 by σypτavgq “
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Figure 2.8: Laser frequency stability requirement in the GRACE Follow-On mission (dark
blue trace) and for NGGM (black trace). A typical free-running NPRO frequency noise
(green trace) is approximately reproduced from [Tröbs, 2005]. The thermal noise limit (red
trace) agrees well with experimental data as given in [Chen et al., 2013] (light blue trace).
The iodine cell performance is from [Doringshoff et al., 2010]. The corresponding fractional
stability with units of 1{

?
Hz is given on the right axis of the plot. For comparison, the

stability of current clocks is shown in magenta: (i) the Pharao cesium clock [Delva et al.,
2012] in the ACES experiment on the ISS, (ii) an optical lattice clock in a ground laboratory
experiment [Nicholson et al., 2015] (iii) the GRACE USO and a NGGM USO stability (see
sec. 2.3.4). The frequency noise for all traces is referred to 1064 nm wavelength, i.e. rescaled
to a carrier frequency of 282THz.

2.2 ¨ 10´16{?
τavg [Nicholson et al., 2015]. The Allan deviations are translated into spectral

densities according to [Ferre-Pikal & Walls, 2001, Table 1]

ASDrδνspfq « σy ¨ ?
τavg ¨

?
2 ¨ ν, if σypτavgq 9 1{?

τavg. (2.76)

An iodine cell, as well as a linear rigid Fabry-Perot cavity, seem to be the most promising
candidates for optical frequency standards in a NGGM mission. The following requirement
for the frequency stability of the frequency standard in a NGGM mission is proposed:

ASDrδνLFN,reqspfq “ 20Hz{
?
Hz ¨

a
1 ` p10mHz{fq2 ¨ 1

1 ` f{200mHz
. (2.77)

It is compulsory for 1mHz ă f ă 300mHz and is a goal for f ă 1mHz, as the interferometer
is not the limiting instrument in the line-of-sight acceleration (PDGA) sensitivity at these
frequencies. Compared to eq. (5-31) in [e.motion2 Team, 2014], a second factor has been
added to describe a decreasing frequency noise at Fourier frequencies f Á 30mHz (cf. black
trace in fig. 2.8), which is required for the calibration of the accelerometer with the LRI in
the frequency band 100mHz ă f ă 300mHz (cf. section 1.10).

In general, the frequency stability needs to be achieved under the environmental conditions
on the satellite. Thus, the susceptibility to temperature, magnetic and electric fields as well
as rotations needs to be taken into account. For example, centrifugal forces deform the cavity
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and induce a frequency change [Herrmann, 2008], which depends on the cavity geometry and
position of the cavity within the satellite. Even if the pointing of the satellite is ideal along
the line-of-sight, the baseline angular velocity of 10´5 rad{s

?
Hz at 1mHz (cf. fig. 1.23) can

lead to a centrifugal acceleration of 6.3 ¨10´8 rad{s2
?
Hz at 1mHz, which shall not change the

fractional cavity length of the order of 10´13. Detailed structural, mechanical and thermal
analysis is therefore essential.

2.3.3 Photodiodes and Photoreceiver

Photodiodes convert an optical power into an electric current by exploiting the inner pho-
toelectric effect. In so-called semiconducator PIN diodes with an undoped intrinsic (I) layer
between a p- and n-doped layer, the absorption of most photons takes place in the intrinsic
region. The material, and in particular the bandgap energy, of the semiconducting I-layer
defines the spectral response or wavelength dependent responsivity ηPDpλq of diodes. For a
1064 nm wavelength, detectors made of Indium gallium arsenide (InGaAs) offer the highest
responsivity of approx. 0.67A/W. Silicon sensors usually achieve only approx. 0.4A/W or
less at this wavelength, but are better suited for the visible spectrum as shown in fig. 2.9. The
internal quantum efficiency (IQE), i.e. the ratio of produced primary electrons over absorbed
photons, cannot exceed unity, because the photodiodes are operated in a regime where the
photon energy roughly matches the bandgap energy, which excludes multi-photon absorption.
Therefore, the responsivity ηPDpλq is limited to approx. 0.85A/W for 1064 nm light, which
can be computed with

ηPDpλq “ EQE ¨ λ ¨ e
h ¨ c0

(2.78)

where h is the Planck’s constant, c0 is the speed of light, e is the elementary charge and
EQE is the external quantum efficiency. An IQE ă 1 implies additional internal losses
e.g. due to electron-hole recombination. External losses such as reflection or transmission of
photons need also to be considered and are accounted for by the EQE, which is the ratio
of photoelectrons over incident photons. For example, the refractive index of In0.53Ga0.47As
[Dinges et al., 1992] is roughly npλ “ 1064 nmq « 3.65 ´ 0.26i and results via the Fresnel
equation in a normal incidence power reflectivity of R “ |n´1|2{|n`1|2 « 32.6%. Impedance
matching by means of an anti-reflection coating on the active area mitigates this effect and
can yield an overall external quantum efficiency of ą 80%. It is noted that a non-negligible
part of the light is still reflected at the photodiode, which needs to be considered in the
optical stray light analysis.

Another important photodiode property is the bandwidth fBW, where the photocurrent
response from an oscillatory optical stimulus drops below 3 dB. It is usually limited by the
junction capacitance CJ , since the cut-off frequency fBW is inversely proportional to the
square-root of the capacity

fBW 9 1?
CJ

. (2.79)

The junction capacity depends on the area of the detector. If signals up to 20 MHz
need to be detected, an area below 1mm2 should be envisaged. Typical capacities are in the
region of a few tens of picofarads for satellite interferometric applications, where the diodes
are operated in photoconductive mode with a reverse bias voltage, which additionally reduces
the capacitance. High-speed single element photodiodes with gigahertz bandwidth exist, but
have the size of only a few ten micron.

With regard to the space environment and the space qualification of diodes, radiation
induced increase of dark current and changes in responsivity have been reported [Gill et al.,
2005]. However, these issues have been addressed and are nowadays not substantive [Joshi
et al., 2006].
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Figure 2.9: Typical spectral responsivity ηPDpλq for silicon and InGaAs photodiodes. The
black dashed lines indicate different values of the external quantum efficiency (EQE) given
as the ratio of produced primary photoelectrons over incident photons.

Figure 2.10: Photograph of a large circular single-element photodiode (center), a small
quadrant-photodiode with barely visible gaps (bottom), and a large quadrant photodiode
(right).
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Figure 2.11: (Left:) A typical microscope image of a 1mm diameter quadrant photodiode
with four segments. The yellow-white outer parts are the electrodes, which are connected via
wires at the four edges. The pale blue parts denote the active area of the segments. The gap
size between the segments is roughly 50 ➭m in this image. (Right:) A typical DC homogeneity
of a segmented quadrant photodiode is shown as determined from the photocurrent. A small
laser beam was used to perform a two-dimensional scan over the diode and the colorfunction
indicates the summed photocurrent of all segments. Image courtesy of Germán Fernández
Barranco (AEI).

Furthermore, for silicon photodiodes used at 1064 nm wavelength, an abnormal low band-
width has been reported [Diekmann, 2013, sec. 4.2], which might require further investigation.

A remark is given on avalanche photodiodes, which can achieve a significantly higher
spectral responsivity due to the generation of secondary electrons in an avalanche process,
which might appear beneficial. However, secondary electrons do not enhance the signal to
noise ratio of (photon) shot noise limited interferometers such as in the LISA mission. In
addition, avalanche photodiodes are typically operated at a high reverse bias voltage " 30V,
which increases the complexity of the electronics and the dark current. Moreover, the excess
noise due to the inherently unstable gain makes this type of photodiode less favorable for
low-noise phase tracking interferometry, where a large DC photocurrent and a small AC
modulation is present. Nevertheless, these devices might be of interest for detecting weak
light fields in the initial link acquisition, such as in the LITE mission [Boroson, 1993].

Several quadrant photodiodes have been space qualified for the GRACE Follow-On mis-
sion. A typical diode is the commercially available FCI-InGaAs-Q1000 by OSI Opotoelec-
tronics Inc., which offers low cross-talk between neighboring segments and low dark current
ă 15 nA. It has a diameter of 1mm and a gap size of 45 ➭m. A typical measurement of
response uniformity over the active area is shown in fig. 2.11 (right), where issues such as
asymmetry between segments, occultation by objects such as wires or parasitic reflections,
e.g. from the housing, are not apparent.

In heterodyne interferometry, the photocurrent consists of a bias and a small modulation
from the optical beatnote, which needs to be converted to a voltage by a transimpedance
amplifier, typically in several stages. In the first stage a split into a DC and an AC path
is recommended to simplify electronic design. A variable gain for the AC and DC path can
ensure an optimal digitization of the AC and DC signals over mission lifetime, considering
degradation in laser power and the uncertainties in the power link budget, for example. A
characteristic of the whole photoreceiver, formed by the electronic amplifier and the photo-
diode, is the equivalent input current noise [Cervantes et al., 2011]. A typical performance
of

ASDrIPRspfq “ 5 pA{
?
Hz, 4MHz ă f ă 20MHz (2.80)

has been shown in laboratories and in the GRACE Follow-On LRI on-ground testing. The
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equivalent input current noise can be modeled for an active operational amplifier as [Cervantes
et al., 2011]

PSDrIPRspfq “ PSDrInspfq ` PSDrIjspfq ` PSDrIdspfq ` PSDrIvspfq, (2.81)

where PSDrIns is the amplifier current noise, PSDrIjs is the thermal Johnson noise (of the
feedback resistor), PSDrIds is the shot-noise from photodiode dark current and the last term
PSDrIvs accounts for the amplifier voltage noise, which couples into the equivalent input
current noise. It is noted that the equivalent input current noise PSDrIPRspfq increases
towards higher frequencies due to PSDrIvspfq [Cervantes et al., 2011, cf. eq. 4], which is in a
well-designed photoreceiver driven by the intrinsic capacitance of the photodiode segment.

The overall current noise PSDrIPRs can be converted to a noise equivalent optical power
(NEP) via the responsivity or to a voltage noise via the transimpedance gain. Other figures of
merit to be considered are, for example, the phase stability over temperature and frequency,
electrical power consumption and channel cross talk.

An analytical model for the photoreceiver, which converts two optical fields such as
~Ecrp~r, τq 9 eiΦrpτq and ~Ecyp~r, τq 9 eiΦypτq impinging on the photodiode (segment) into voltages
ypτq, can be written as

yDCpτq « GDC ¨ ηPD ¨ pPy ` Prq ` δyPR, DC (2.82)

yACpτq « GAC ¨ HPR

“
ηPD ¨ 2 ¨

a
Py ¨ Pr ¨ η ¨ cospΦrpτq ´ Φypτq ` ϑq

‰
` δyPR, AC (2.83)

« GAC ¨ ηPD ¨ 2 ¨
a
Py ¨ Pr ¨ η ¨ cospΦrpτq ´ Φypτq ` ϑ` ΥPRq ` δyPR, AC, (2.84)

where Py and Pr are the total power values of the impinging individual light fields on the
active area, and which have been defined in sec. 2.2.2 on optical detection. The photodiode
responsivity with units of A/W is denoted as ηPD. The transimpedance gains with units
of V/A for the DC and AC paths are labeled GDC and GAC, respectively. The spatially
averaged overlap between both fields

?
ηeiϑ has been specified in eq. (2.58). Compared to

sec. 2.2.2, the expressions are supplemented here by the term ΥPR, accounting for the effect
of the photoreceiver transfer function and additional noise δyPR,AC/DC.

The GRACE Follow-On photoreceivers [Barranco et al., 2017], and photoreceivers in
general, are complex analog electronic systems. They are optimized to have a flat amplitude
response within the photoreceiver measurement band, e.g. 4MHz..20MHz, and to have a high
suppression out of this band. A transfer function is a good means with which to characterize
photoreceivers for ranging interferometry. This is the ratio of output over input in the
frequency domain and is commonly expressed in terms of the (discrete) Z transform Hcpzq,
in terms of the Laplace transform Hcpsq or in terms of the Fourier transform Hcpfq. Recall
that in this thesis, complex quantities are supplemented with the superscript c. The HPR

operator in eq. (2.83) denotes the application of the photoreceiver transfer function onto the
time series in the argument. It is assumed that the transfer function HPR is normalized
to unity at low frequencies. However, in practice, the product of gain and transfer function
(GAC¨HPR) is difficult to separate. Moreover, under the assumption that the transfer function
has a flat amplitude response, it is justified to consider only the phase response of the transfer
function, which was used in the recast from eq. (2.83) to (2.84).

Although transfer functions offer an accurate way to describe and compute the output
from a given input and they provide much insight and information, they are sometimes
impractical and need to be approximated. Here, the transfer function of the photoreceiver
(or subsequently of the phasemeter) is impractical, because it describes the behavior of the
device in the operational frequency band, e.g. 4MHz..20MHz, which is decades away from
the science measurement band of the actual ranging data, e.g. 0.18mHz to 0.1Hz. This
is advantageous for the ranging sensitivity, because the ranging information is encoded at
high frequencies where it is less susceptible to omni-present low-frequency noise. However,
in principle, the precise simulation of ranging data requires data streams at a MHz sampling
rate, where one can apply the transfer function. Fortunately, this can be avoided by exploiting

103



2.3. OPTICAL AND INTERFEROMETER TECHNOLOGY

the fact that the input signals are stationary to a good approximation on the time scale of
the sampling rate of the science data, i.e. the input signal has a fixed frequency on a time
scale of 1 or 10 seconds. This allows the effect of the photoreceiver transfer function to be
written as an additive term ΥPRpfbeatq in the phase, depending on the input frequency of
the signal fbeat, rather than the more general form as a convolution of the transfer function
impulse response with the time-series. In some sections of this thesis, e.g. when the working
principle of the phase-locked loop is explained in sec. 2.3.9, this justification does not hold,
and the general transfer function formalism from control loop theory is used.

A generic description of the photoreceiver transfer function is given by a polynomial
formula, e.g.

ΥPRpfbeatq “ αPR,off ` αPR,lin ¨ |fbeat| ` αPR,quad ¨ |fbeat|2 ` ..., (2.85)

where the beatnote frequency, i.e. the input frequency to the photoreceiver, can be derived
from eq. (2.84) as

fbeat “ 1

2π
¨ d|Φrpτq ´ Φypτq ` ϑ|

dτ
. (2.86)

The linear term αPR,lin denotes the delay of the output signal w.r.t. the input signal, i.e. a time
shift by a frequency-independent amount ∆τPR. This can easily be shown in the frequency
domain by using the time-shift rule, e.g.

signal output

signal input
“ gpτ ´ ∆τPRq

gpτq
FÝÑe´i2πf∆τPR ¨ F rgpτqs

F rgpτqs “ Hcpfq (2.87)

“ e´i2πf∆τPR . (2.88)

The result in the last line represents a linearly decreasing slope in a Bode phase plot of Hcpfq,
which allows the delay time with units of seconds to be written as ∆τPR “ ´αPR,lin{p2π radq.

The GRACE Follow-On photoreceivers exhibit αPR,lin « ´0.2 rad{MHz [Barranco et al.,
2017] and have a negligible quadratic term αPR,quad. A similar magnitude can also be con-
sidered for future missions. This corresponds to an equivalent delay of ∆τPR « 32 ns. The
constant phase offset αPR,off can be neglected, because it is simply a further offset in the
biased range.

The linear delay αPR,lin is mostly common mode between the channels of the photore-
ceiver, if the same cables and cable lengths are used and if the channels are designed symmet-
rically, e.g. on the electric circuit board. However, a non-negligible phase difference among
channels in the combined photoreceiver and phasemeter chain might remain. This phase dif-
ference needs to be calibrated on-ground and removed within the computation of the DWS
signals in the phasemeter, as it would falsify the DWS signals.

The DWS signals are not susceptible to a common phase change in all four channels.
It is often sufficient to apply a static phase-offset correction for each channel in the DWS
calculation, i.e. up to the first term in eq. (2.85). In theory, the second linear term could also
be corrected by a phasemeter, however, this was not utilized so far to the knowledge of the
author.

Thus, the longitudinal phase and ranging information contains the average effect of αPR,lin

of all channels, which needs to be removed in post-processing. A conservative accuracy of
10% is assumed for the correction in this thesis, i.e. the remaining effect of the photoreceiver
transfer function is

ΥPR,PPpτq « ´2π ¨ 0.1 ¨ ∆τPR ¨ fbeatpτq, (2.89)

which corresponds to a delay of approx. 3.2 ns.
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2.3.4 Ultra-Stable Oscillator (USO)

The USO is an electrical frequency reference, similar to the optical frequency standards
discussed in sec. 2.3.2. It is also used as a clock that triggers all on-board satellite instru-
ments and that provides the time-tag to the measurements. Fluctuations in the frequency
correspond to a timing jitter. Typically, satellite USOs consist of a quartz crystal, which
is a piezoelectric resonator with mechanical eigen-frequencies ranging from kHz to several
hundred MHz depending on the crystal geometry and harmonic number. The electrical sig-
nal is generated by an oscillatory circuit, which is kept in resonance with the mechanical
eigen-frequency or its harmonic.

The USOs in GRACE and GRACE Follow-On are used to generate the microwave carrier
for the microwave ranging instrument via electrical frequency multiplication. Hence, the
USOs act as a length reference for the microwave ranging instrument, in the same way as
the cavity is a length reference for the laser ranging instrument. The typical science-grade
USO frequency stability with units of Hz{

?
Hz, e.g. in GRACE, is approximately 1 order of

magnitude worse than the optical frequency stability (requirement) of a cavity, as shown in
fig. 2.8.

Oscillators are usually characterized by their short-term stability in terms of the IEEE
recommended single-sideband phase noise Lpfq and by their long-term stability in terms of
an Allan variance σ2ypτq. The single-sideband (SSB) phase noise Lpfq is nowadays defined
as one half of the one-sided power spectral density of phase fluctuations PSDrϕUSOs [IEEE,
1999, table A.1] or frequency fluctuations PSDrfUSOs:

2 ¨ Lpfq “ PSDrϕUSOspfq “ PSDrωUSOspfq
p2πfq2 “ PSDrfUSOspfq

f2
. (2.90)

The SSB phase noise Lpfq is commonly expressed in units of dBc{Hz, which is the relative
power in decibels with respect to the carrier in a 1Hz bandwidth. It was historically the power
of the noise in one sideband due to phase fluctuations in a 1Hz bandwidth and normalized to
the total signal power consisting of carrier plus sidebands. The old definition required that
amplitude fluctuations were negligible and that the total noise power was small, such that a
small angle approximation was valid. However, with the new definition, the phase noise can
be expressed unambiguously [IEEE, 1999] and the SSB phase noise is trivially related to a
spectral density

PSDrϕUSOspfq “ 1

2
¨ 1 rad2

Hz
¨ 10

Lpfq
10 , rLs “ dBc{Hz, (2.91)

where, for example, a single-sideband phase noise of L “ 50 dBc{Hz corresponds to a one-
sided power spectral density of 50 ¨ 103 rad2{Hz.

The GRACE mission utilized oven-controlled quartz oscillators (OCXO) manufactured
by JHU/APL with a mass of 3.2 kg, 2.3W electrical power demand and a phase noise of
Lpf “ 10Hzq “ ´112 dBc{Hz “ 6.3 ¨ 10´12 rad2{Hz for a carrier at 76MHz [Weaver et al.,
2004]. This translates to a phase noise of Lpf “ 10Hzq “ ´135 dBc{Hz at a carrier frequency
of 5MHz and is comparable with commercial compact ultra-low noise oscillators such as the
OCXO 8607 from OSCILLOQUARTZ, however, this model is now deprecated and no longer
available. A similar performance can be considered for a potential NGGM USO, which is
depicted together with various other oscillator types in fig. 2.12. The functional model of the
here proposed NGGM USO requirement can be written as

Lpfq “
4ÿ

α“0

hα ¨ f´α

p1Hzq´α (2.92)

with h0 “ 1.0 ¨ 10´15 rad2{Hz, h1 “ 1.0 ¨ 10´14 rad2{Hz, h2 “ 5.0 ¨ 10´15 rad2{Hz, h3 “
3.2 ¨ 10´13 rad2{Hz and h4 “ 3.2 ¨ 10´16 rad2{Hz. This requirement has been derived from
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Figure 2.12: Typical single-sideband (SSB) phase noise of oscillators. All values have been
rescaled for a 5MHz carrier. This figure is an updated and modified version of a plot shown
in a tutorial by John R. Vig [Vig, 2014].

a relaxation of the OCXO 8607 specification at high frequencies and, at low frequencies,
from values given in Thomas [1999] on the estimated GRACE USO performance before the
launch, which were a bit optimistic. The spectrum of phase fluctuations PSDrϕUSOspfq can
be converted to an Allan variance σ2ypτq by [Ferre-Pikal & Walls, 2001]

σ2ypτq “ 2

pπτq2
ż fh

0

PSDrfUSOspfq
f20

¨ sin
4pπτfq
f2

df (2.93)

“ 2

pπτq2
ż fh

0

PSDrϕUSOspfq
f20

¨ sin4pπτfqdf, (2.94)

where f0 is the carrier (USO) frequency and fh is the measurement system bandwidth. The
inverse transformation from Allan variances to low-frequency (ă 1Hz) phase noise is non-
trivial, as knowledge of the high-frequency phase noise (ą 1Hz) and knowledge of fh, which
is usually not provided, are required. Furthermore, one needs to assume a particular shape
(functional model) of the low-frequency phase noise. A derivation of the phase noise from
Allan variances for the GRACE USO is given in [Thomas, 1999] and it is shown in fig. 2.12
as a blue dashed-dotted trace.

The Allan deviation of the NGGM USO requirement is shown as a magenta trace in
the lower panel of fig. 2.13, which is comparable with the red trace of the GRACE USO
performance as specified in table 2.2 and with the GRAIL USO stability. The dark blue
trace indicates the timing accuracy of GNSS in post-processing, where a position uncertainty
at centimeter level (white noise) yields a timing uncertainty at a 10´10 s{τ level. The lower
panel of fig. 2.13 shows that the satellite clock should only be steered in-orbit or in the
ground processing towards GNSS time at low frequencies or at averaging times higher than
few hundred seconds. In fact, the USO clock offset correction in the GRACE data is provided
every 300 sec [Ko & Tapley, 2010; Fackler, 2005].

The red dashed line in the upper panel of fig. 2.13 shows the laser frequency noise of
the optical cavity as defined by eq. (2.77), while the dashed green line is the thermal noise
limit of cavities at room temperature. Although optical frequency standards can reach a
higher stability, the transformation of optical frequencies to electrical signals usually requires
a complex frequency comb. Hence, utilizing a single optical frequency standard for laser
interferometry and as on-board clock is a non-trivial task.

The amplitude spectral density of USO phase fluctuations ASDrϕUSOspfq can be con-
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Figure 2.13: Typical Allan deviations (square root of Allan variance) for various oscillators.
The upper panel is an updated and modified version of a plot shown in a tutorial by John R.
Vig [Vig, 2014]. The lower panel shows the potential NGGM USO requirement with respect
to other comparable USOs.

τavg NGGM USO Requirement GRACE USO

0.2 s 1.3 ¨ 10´12 (1.2 ¨ 10´13) 4 ¨ 10´12

2 s 2.3 ¨ 10´13 (1.9 ¨ 10´13) 2 ¨ 10´13

10 s 1.9 ¨ 10´13 (1.9 ¨ 10´13) 2 ¨ 10´13

100 s 2.3 ¨ 10´13 (2.3 ¨ 10´13) 3 ¨ 10´13

1000 s 4.5 ¨ 10´13 (4.5 ¨ 10´13) 5 ¨ 10´13

10000 s 1.3 ¨ 10´12 (1.3 ¨ 10´12) -

Table 2.2: Allan deviation σypτavgq of USO fractional frequency stability computed for a
measurement system bandwidth fh “ 10 kHz and in brackets for fh “ 10Hz. The GRACE
USO performance is taken from Weaver et al. [2010].
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Figure 2.14: The amplitude spectral density of the proper time τptq of a GRACE-like
satellite (red trace) due to relativistic effects, in comparison with GNSS timing jitter (green
trace) and USO clock stability (black traces). The magenta trace is a (rough) analytical
model for the timing error after post-processing on ground. The axis on the right side is the
timing jitter multiplied with 20m{s.

verted to the equivalent timing jitter δτUSO by

ASDrδτUSOspfq “ ASDrϕUSOspfq
2πf0

, (2.95)

where f0 is again the nominal USO frequency. Every non-static on-board measurement is
falsified by timing jitter. For example, if the relative velocity between two satellites is 1m/s,
a timing jitter of 1 ns{

?
Hz leads to a noise of 1 nm{

?
Hz in a range measurement. This error

is caused by the inability to correctly determine the sampling time in the desired time frame.
For further discussion of the on-board time it is necessary to consider relativistic effects

and to introduce the time frames correctly. The satellite dynamics, the instantaneous inter-
satellite range and the gravity field recovery are typically performed or defined in the GCRS
coordinate system (cf. sec. 2.1.1). The coordinate time t of the GCRS is the so-called Geo-
centric Coordinate Time (TCG). The ideal error-free time of a satellite and of all on-board
instruments, as measured by error-free clocks on the satellite, is given by the proper time τi on
the i-th S/C (cf. eq. (2.12)). The proper time can be expressed as a function of the coordinate
time t and it can be computed in simulations by a numerical integration of eq. (2.12).

The general definition of a time from an oscillator is

τi,USOpτiq “ 2π
şτi
0 fi,USO,truepτ 1

iq dτ 1
i

2πfi,USO,nom
, (2.96)

where fi,USO,nom is the nominal oscillator frequency and fi,USO,truepτq is the true but unknown
instantaneous frequency of the oscillator, which is prone to noise and errors. For the purpose
of this thesis, it is sufficient to write the solution of eq. (2.96) as

τi,USOpτiptqq “ τiptq ` δτi,USOpτiptqq ` δτi,USO,off, (2.97)

where δτi,USO is the timing jitter of the USO (cf. eq. (2.95)) with zero mean and δτi,USO,off is
a static or very slowly varying offset.

A typical result of the proper-time τiptq w.r.t. the coordinate time t for a GRACE like
satellite is shown as a red trace in fig. 2.14 in terms of an amplitude spectral density. The
shown signal arises due to the time dilation caused by the orbital velocity and the gravitational
potential. In addition, the black traces show the USO timing jitter noise δτi,USO discussed
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here. The USO error can be estimated and corrected by the GNSS-based precise orbit
determination for low Fourier frequencies ( f ă 4mHz « 1{250 s ). The precision of the
GNSS-based timing can be computed from c0 ¨ ∆τ “ ∆r, which is shown as the green trace
for an assumed position noise of ASDr∆rs “ 3 cm{

?
Hz. However, this correction works

only in post-processing on ground, since the in-orbit derived GNSS position, the so-called
navigation solution, is accurate to a few ten meters only.

It is apparent from fig. 2.14 that the pronounced peaks of the proper time τi and hence
of the USO time τi,USO (red trace) at the orbital frequency and higher harmonics can be
resolved by the clock time solution of the GNSS-based precise orbit determination.

An analytical model for the timing jitter with incorporated GNSS clock error estimates
from post-processing (PP) can be formulated as

ASDrδτi,USO,PPspfq “ 2 ¨ 10´10 s{
?
Hz

1 ` pf{3mHzq1.5 , (2.98)

which is shown as the magenta trace in fig. 2.14. This expression is used later to estimate
the sensitivity of ranging instruments more realistically.

The USO timing offset δτi,USO,off from eq. (2.97) is assumed to be of the order of

δτi,USO,off « 100 ps, (2.99)

which corresponds to 3 cm. This offset induces a delay, but is uncritical for laser interfer-
ometry as will be shown in later sections, since other digital delays and delay uncertainties
exceed the 100 ps value.

A further remark is given here on a statement found in [Yeh et al., 2011], where it
was claimed that the USO becomes obsolete in a homodyne interferometer, because the
coupling of timing jitter into the ranging observation via the phase ramp from the frequency
offset is removed. Indeed, the susceptibility to timing jitter can be reduced, however, as
the frequency offset and the Doppler shift due to the range rate are of the same order, the
advantage is rather incremental. Moreover, precise clocks improve the orbit determination,
and gravimetric missions should still use a high-performance low-noise science grade USO
clock.

Finally, it is noted that additional requirements for the USO regarding spurs (tones),
radiation hardness and magnetic and electric susceptibility need to be assessed, but are
beyond the scope of this section.

2.3.5 Retro-Reflectors

Hollow Corner-Cube Retro-Reflectors (HCCRR)

A retro-reflector is typically a passive optical system which reverses the propagation direction
of a ray, independent of the angle of incidence, as long as it is within the field-of-view of the
retro-reflector. In general, the exiting ray will be offset laterally w.r.t. the incident ray.
A widely used type of retro-reflector is the corner-cube, which consists of three mutually
orthogonal plane mirrors. The intersection point of all three mirror planes is the so-called
vertex. Corner-cubes can be further classified into solid and hollow types.

In the solid case, the three mirror planes can be obtained by cutting a solid glass cube
diagonally and applying a highly-reflective (HR) coating on the outer planes. The diagonal
face is anti-reflective (AR) coated and serves as entrance aperture. Solid corner-cubes have
the advantage of a higher acceptance angle (field-of-view) [Yang & Friedsam, 1999] due to
refraction compared to hollow corner-cubes, which consist simply of three well aligned mir-
rors (cf. top part in fig. 2.16). Due to the absence of light propagation in glass and its purely
reflective nature, hollow corner-cube retro-reflectors (HCCRR) are preferred by the author
of this thesis for precise ranging interferometry. In addition, they offer interesting properties
regarding the optical pathlength, which is illustrated in fig. 2.15 (for two dimensions). The
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Figure 2.15: Ray-tracing through a right-angled prism, which is the 2-d equivalent of a
3-d hollow corner-cube retro-reflector (HCCRR). The accumulated geometrical pathlength
k1 ` k2 ` k3 is twice the separation d between vertex and virtual plane in all four sub-plots.
(Upper left:) Nominal light path. (Upper right:) HCCRR rotated around its vertex.
The lateral separation between ingoing and outgoing ray remains as 2 ¨ s. (Lower left:)
The ingoing beam is rotated. (Lower right:) Non-required portions of the HCCRR may be
removed to provide a physically accessible virtual vertex point.

accumulated geometrical and optical pathlength through a HCCRR is invariant under rota-
tions of the HCCRR around the vertex, i.e. under changes of the direction of the incident ray.
However, one should note that the virtual detection plane defining the pathlength has to stay
normal to the ray direction. Not-required portions of the mirrors can be removed, such that
the vertex becomes a virtual point well-defined by the intersection of the mirror planes, as
sketched on the lower-right panel in fig. 2.15. This allows collocation of the HCCRR vertex
with the accelerometer reference point and S/C center of mass. Furthermore, it should be
noted that a HCCRR is the generalization of a two-dimensional right-angled prism into three
dimensions.

The lateral separation between the ingoing and outgoing ray is determined by the lateral
separation between ingoing ray and the vertex (cf. upper-right panel in fig. 2.15). The
HCCRR in the GRACE Follow-On LRI with a 60 cm lateral offset is called the Triple Mirror
Assembly (TMA). It is mounted together with the accelerometer and star cameras, as shown
in fig. 2.16. The tube-like design maximizes the free space between the TMA structure and
vertex to almost the maximal possible value of approximately one half of the lateral offset.
In addition, the hollow tube acts as a protection for the light path. The nominal incidence
angles of the light on the three TMA mirrors are 60˝, 60˝ and 45˝. This changing angle in
combination with the fact that the mirror normal vectors are not located in a single plane
requires special attention regarding polarization changes as analyzed diversely in literature
[Liu & Azzam, 1997; Player, 1988; Scholl, 1995; Bieg, 2015; He et al., 2013]. A corresponding
analysis for the GRACE Follow-On TMA and potential future missions can be found in
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Figure 2.16: (Top:) A ray-tracing path through a hollow corner-cube retro-reflector (HC-
CRR) consisting of three mutually perpendicular mirrors. (Center:) An early CAD-model
of the accelerometer and triple-mirror assembly (TMA) without star cameras on the main
equipment platform (MEP) in GRACE Follow-On. Image courtesy of SpaceTech GmbH
Immenstaad. (Bottom:) Photo of final assembly consisting of accelerometer, TMA and
star cameras prior to integration into the GRACE Follow-On S/C. Image courtesy of Airbus
Defence and Space GmbH.
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Figure 2.17: An exemplary interferogram of a hollow corner-cube retro-reflector with cir-
cular open aperture from [Ai & Smith, 1992]. The center point is the vertex. Three physical
edges exist in a corner-cube, but due to reflection six segments appear with different deflection
angles due to imperfect alignment of the mirror planes. Image courtesy of OSA Publishing
with granted permission for fair use under US copyright law.

appendix D.

The GRACE Follow-On LRI is designed such that the light is reflected three times in
a particular order at the mirrors. However, if a full (non-virtual) corner-cube is used with
light entering closely to the vertex, there are in total six different possible paths with three
reflections through a HCCRR, depending on the location of the first reflection [Liu & Azzam,
1997]. Hence, different portions of an extended beam may travel different paths and yield a
mixture of different polarization states for the retro-reflected field. This polarization change
makes HCCRRs not straight-forward to use in optical cavities [Peck, 1962].

Moreover, the output directions of the different portions are altered in the presence of man-
ufacturing tolerances of a HCCRR, as shown in an exemplary interferogram in fig. 2.17. The
sharp edges yield a segmented structure, whereby each segment is caused by a different path
through the HCCRR. Similar interferograms have been used to measure the anti-parallelism
of the GRACE Follow-On TMA [Schütze, 2014]. It is non-trivial to measure parallelism over
a separation of 600mm due to the difficulty to obtain or manufacture flat bars or mirrors of
sufficient size, which can serve as a reference.

If a HCCRR is used as an on-axis retro-reflector, the segmentation of the beam with
the associated polarization and direction changes needs to be considered. Furthermore, the
influence of the non-reflective vertex needs to be taken into account. High-quality HCCRRs
can reach a co-alignment error of less than an arcsecond (<4.84 ➭rad) with a wavefront quality
close to that of a flat mirror. The physically compact tube-shaped retro-reflector of GRACE
Follow-On has been designed to reach a co-alignment error of less than 50 ➭rad with error
contributions from temperature variations, zero-G effects, moisture release, reference flat bar
uncertainties and manufacturing (alignment) tolerances. The Retroreflector in Space (RIS),
a full HCCRR with an open aperture of 50 cm, reached an accuracy of a few ➭rad [Sugimoto
& Minato, 1996].

The geometrical and optical pathlength through an ideal error-free HCCRR is twice the
distance to the vertex (cf. caption of fig. 2.15). Furthermore, rotations around the vertex do
not change the pathlength. However, if the HCCRR has non-perfectly aligned mirror planes,
rotations around the vertex yield a rotation-to-pathlength coupling, whereby the vertex is
still the intersection point of the mirror planes. This error coupling is analyzed in appendix E
together with anti-parallelism errors of a TMA.
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For a potential future NGGM mission, where the accommodation of an interferometer
in the S/C can be considered unconstrained and in an early stage, a more compact retro-
reflector design is recommended. This would allow the use of a highly rigid structure with
enhanced anti-parallelism, most likely of the order of a few arcseconds.

Alternative Retro-Reflector Designs

Another well-known type of retro-reflector is the cat’s eye. It is typically designed out of a
primary lens and a secondary reflective curved or flat surface. Types with two half spheres
as shown in fig. 2.18 have also been analyzed [Goldman, 1996]. A good starting point for
the analysis of such retro-reflector is the paraxial ABCD formalism, as performed by Snyder
[1975]. A retro-reflector ABCD matrix is given by

xMRR “
ˆ

´1 0
0 ´1

˙
, (2.100)

which can be used as the target expression for finding the correct focal lengths or distances
in the design phase. The two diagonal elements in the matrix indicate a pure reflection of
the ray’s lateral displacement at the optical axis and the inversion of the ray direction. This
might suggest that such cat’s eye retro-reflectors can be used to produce a large lateral offset,
however, the ABCD formalism holds only in the paraxial approximation, i.e. when the ratio
of lateral offset over lens curvature radius is small.

The negative identity matrix xMRR implies that the beam mode, e.g. the complex q-
parameter of a Gaussian beam, is not changed by a retro-reflector, i.e.

qcnew “ A ¨ qc `B

C ¨ qc ` d
“ ´qc

´1
“ qc (2.101)

at least in the paraxial approximation, which is the domain of validity for the ABCD for-
malism. However, aberrations and imperfections of the curved surface alter the wavefront
quality, making flat surfaces preferable where applicable. A suggestion for an on-axis retro-
reflector, naturally arising after studying the paper by Snyder [1975], is shown at the bottom
of fig. 2.18. It consists of a lens and a flat surface. The ray’s origin and the flat surface are
located in the focal planes of the lens. The focal length of the lens should be as large as
possible to mitigate aberrations.

It is noted that the accumulated optical pathlength for the on-axis ray and the tilted
ray are equal because they traverse different paths in glass (cf. black and red rays in the
bottom part of fig. 2.18). This becomes especially obvious if the optical system is unfolded
at the mirror, which yields an ideal 1:1 imaging system. A wavefront tilt at the entrance
plane results in a pure tilt at the exit plane without changing the absolute phase in an ideal
imaging system. Equivalent is the statement that spherical wavefronts are reproduced in the
image plane. Hence, the shown origin of the rays in the focal plane is the pivot point of zero
rotation coupling, similar to the vertex in a HCCRR.

Such an on-axis retro-reflector is used in a later section for the optical layout of an on-axis
interferometer.

2.3.6 Optical Components and Optical Bench

The main optical components in an interferometer are beamsplitters, fiber couplers, photo-
diodes, polarizing beamsplitters, mirrors, lenses, waveplates and polarization filters. Most
consist of a substrate on which an optical coating is deposited. Transmissive optical com-
ponents such as beamsplitters and lenses are composed of a transparent isotropic substrate,
typically glass, with a wavelength dependent refractive index between 1.4 and 1.9. BK7 and
fused silica are commonly used glass types in off-the-shelf components with some typical
physical properties shown in table 2.3.
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f f

Figure 2.18: (Upper left:) Ray-tracing through a spherical ball retro-reflector consisting
of two half spheres constructed out of the same material. (Upper right:) Ray paths through
a cat’s eye retro-reflector with a lens and a reflective curved surface. (Bottom:) A retro-
reflector design with a lens and flat reflecting surface.

An important aspect for the interferometer design is the temperature dependence of the
refractive index dn{dT , which is typically accompanied by a mechanical linear expansion
with coefficient α. This coefficient of thermal expansion (CTE) of the substrates should
be compatible with the mounts and baseplates of the components. The optical pathlength
change ∆s upon temperature change ∆T can be computed with [Träger, 2012, eq. 5.127]

∆s “ ∆T ¨ L ¨G “ ∆T ¨ L ¨ pdn{dT ` α ¨ pn´ 1qq . (2.102)

If the total pathlength through the glass in the sensitive path of the interferometer is L “
10 cm and the temperature fluctuations at the components are δT pfq “ 10mK{

?
Hz, one

obtains a resulting pathlength and ranging noise of 8.3 nm{
?
Hz for fused silica. Glasses with

minimal ∆s{∆T coupling are called athermal glasses, e.g. Ohara S-PHM52, but they have
the disadvantage of being more difficult to polish and shape due to brittleness [Heinzel, 2002,
LTP].

The variety of optical payloads that have been launched and used in space [Qian, 2016]
provides sufficient technology heritage such that effects from the space environment on com-
ponents out of glass or birefringent materials, e.g. for wave plates, are well understood and
considered uncritical. Most prominent of these effects are radiation induced absorption and
density (refractive index) changes in glasses [Gusarov et al., 2002]. Space-qualified optical
coatings are also available and need to withstand the radiation and the atomic oxygen flow
if directly or indirectly exposed to sun light or space in a LEO.

As most of the interferometer setups are planar, it is natural to use a common baseplate
for the optical layout. High-precision interferometers such as those in LISA Pathfinder and
planned for LISA use a glass ceramic with ultra-low CTE and superb flatness, such as the
ULE-glasses by Cornig, Ohara Clearceram-Z or Zerodur with α ă 0.1 ppm{K (cf. fig. 2.19).
Substrates can be fixed permanently with a space-qualified technique called hydroxide catal-
ysis bonding [Elliffe et al., 2005], yielding a quasi-monolithic structure which can survive the
launch loads and resist temperature variations. An alternative to bonding is gluing of com-
ponents, which is easier to manufacture and which can also provide stable optical systems if
the glue layer is thin.
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Glass n dn{dT [ppm/K] α [ppm/K] G [➭m{pK ¨ mq]
N-BK7 1.5067 1.1 7.1 4.7

Fused Silica 1.4496 8.1 0.55 8.3

Table 2.3: Properties of glass in vacuum for λ « 1064 nm. The linear thermal coefficient
of expansion is denoted with α, while G is the temperature coefficient of optical pathlength
change for a substrate with 1meter length, i.e. G “ dL ¨ dp∆sq2{dT . All values are taken
from the SCHOTT AG product catalogue.

For the gravimetric GRACE-FO LRI a costly ultra-low CTE bench was not required.
This is because, on one hand, the sensitivity requirement is relaxed to nanometers compared
to picometers, and on the other hand, the LRI design cancels many phase fluctuations on
the bench in the final ranging observable. The optical components in the LRI are tightly
enclosed and fixed in a titanium block, which reduces the thermal fluctuations due to the
large surrounding thermal mass (cf. lower-right part of fig. 2.19). The CTE of titanium is well
matched to the CTE of the BK7 glass used in the LRI [Nicklaus et al., 2014b]. In addition,
the nearly sealed design minimizes contamination of optics. Mitigation of particulate and
molecular contamination should already be addressed in early stages of a potential NGGM
interferometer design, as it might be beneficial to operate some sensitive components at a
higher temperature, which can reduce the contamination, or to budget for some decontami-
nation heaters, as in the LRI.

A metal optical bench, e.g. out of titanium, is a viable option for an NGGM-like laser
interferometer as suggested in the e.motion2 proposal [e.motion2 Team, 2014].

2.3.7 Phasemeter

The main purpose of a phasemeter is the tracking of the phase of the MHz signals provided
by each photodiode segment and photoreceiver (cf. eq. (2.84)). Fast electronics based on
Field-Programmable-Gate-Arrays (FPGAs) have proven to be suitable [Shaddock et al., 2006;
Gerberding, 2014], and FPGAs have been optimized for space applications at least since the
late 1990s [Mavis et al., 1998]. Additional electronics such as Digital-to-Analog and Analog-
to-Digital (DAC/ADC) converters are required to control a potential steering mirror, the
laser, the frequency stabilization, and to read in additional signals such as the AC and DC
channels of the photoreceiver, steering mirror and laser sensors. Additionally, a phasemeter
needs to support different modes, for example, science operation or signal acquisition, which
requires complex logic [Ales et al., 2015].

The GRACE Follow-On LRI phasemeter has been developed by JPL/NASA. A European
study for the LISA Metrology System developed a phasemeter up to TRL 4 [Barke et al.,
2014]. Such a LISA-like phasemeter (cf. fig. 2.20) offers additional features to reach the
desired pm{

?
Hz sensitivity in a deep-space environment, e.g. corrections for USO drifts,

ADC timing jitter subtraction, capability for data transfer via modulation of the laser light
and absolute ranging with a pseudo-random code.

In a low Earth orbit with available GNSS and with a ranging sensitivity goal of nm{
?
Hz,

such features are not required. Therefore, a NGGM phasemeter can be based on the LISA
metrology system, however, with a substantial reduction in complexity. Some effort is still
required to reach TRL 6 or higher, in particular, to achieve a decrease in power consumption
and dissipation, as well as improved thermal stability.

The frequency band of the phase tracking is a key figure that typically ranges from 4MHz
to 20MHz [Bykov et al., 2009]. The lower limit should be sufficiently high so as to stay above
frequency regions with significant laser relative intensity noise (cf. section 2.3.1 on lasers) and
other omni-present low frequency noise sources, which might otherwise lead to a saturation of
the phasemeter ADC channels. The phase retrieval already requires an oscillatory (AC) signal
with zero mean. Hence, the high-pass filter can be designed to define the lower frequency of
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Figure 2.19: (Upper left:) The flight optical bench of LISA Pathfinder (Upper right:)
An optical bench CAD model for LISA (Lower left:) Bonding of optical components of
the LISA Pathfinder optical bench. The three fingers define the position of the component
while the bond is established. (Lower right:) A model of the optical bench in the GRACE
Follow-On LRI. This subfigure image courtesy of SpaceTech Immenstaad GmbH.
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Figure 2.20: (Top:) A typical FPGA-based 4-channel phasemeter for laboratory experi-
ments developed at the AEI Hannover. (Bottom:) An engineering breadboard of a LISA-like
phasemeter developed by DTU Space (Denmark), Axcon ApS (Denmark) and the AEI (Ger-
many). It is based on FPGAs and a modular design. The mainboard is equipped with a clock
module, five ADC module with 4 channels each and a DAC module (4 channels). Images
from [Barke et al., 2014].
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Figure 2.21: Block diagram of a single channel of a digital phase-locked loop (DPLL)
phasemeter. The quadrature (Q) component is used as an error signal ϕe,DPLL, which in
turn is used to derive the phase increment register (PIR), containing the current frequency
of the digital reference signal. Integrating the PIR yields the phase accumulator (PA), which
is the phase of the digital local oscillator within the phasemeter. Decimation of the phase
accumulator, for example, by means of cascaded integrator combs (CIC), yields the final
phase output ϕPM of the single phasemeter channel. A phase-wrapping correction (PWC)
is applied to remove negative side-effects arising from filtering a noncontinuous signal, such
as smoothing and ringing. The average phase (Avg.) and the DWS signals are formed from
multiple channels.

the band prior to digitization (cf. fig. 2.21). If the beatnote frequency approaches zero, which
in the limit corresponds to homodyne detection, the signal amplitude is attenuated by the
filter until the phase lock is lost.

The upper limit of 20MHz is given by the bandwidth of the photoreceiver, in particular
of the photodiode itself, as it acts as a low-pass filter (cf. section 2.3.3 on photodiodes) and
by the increasing noise of the photoreceiver towards higher frequencies. If the upper limit
is increased, e.g. by using smaller photodiodes and choosing appropriate analogue electronic
components, the clock frequency of the FPGAs and the associated sampling frequency of the
digital part becomes the limiting factor. Typically, a low-pass anti-aliasing filter (AAF) is
implemented prior to digitization, which removes frequencies higher than half the sampling
frequency (Nyquist-theorem) or even lower. This avoids aliasing of high frequency noise into
the measurement band during digitization.

Although a larger bandwidth appears beneficial, one should keep in mind that it is more
complicated to ensure a well-behaved amplitude and phase response of the photoreceiver
and phasemeter in a larger bandwidth. If the inter-satellite dynamics require a very high
bandwidth of the phasemeter and the clock frequency is limiting, one can consider using the
aliased beatnote. This desired undersampling is a technique that is used in the LISA metrol-
ogy system for the 75MHz pilot tone measurement [Barke et al., 2014, p. 27], for example.
But this has far-reaching consequences on laser link acquisition and overall performance, and,
to the knowledge of the author, was not well studied yet.

The phase tracking algorithm within a phasemeter is typically based on a digital phase-
locked loop (DPLL) as depicted in fig. 2.21. Compared to fig. 2.2 in the section on optical
detection and phase retrieval, the scheme here shows some additional parts and the arctangent
was removed, because for a sufficiently strong phase-lock one can utilize the small phase
approximation (arctanpxq « x). In the following, an accurate analytical model for the phase
observable ϕPM for a single channel of the phasemeter is derived, which is later used to
compute more complex interferometer signals as well as the longitudinal phase given by the
average of several segments.

It should be recalled that the input to the phasemeter, i.e. the output of the photoreceiver,
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Figure 2.22: Exemplary spectral density of the photoreceiver AC channel, i.e. the phaseme-
ter input yin. For a time series much shorter than the orbital period, the signal appears
quasi-monochromatic with a single frequency (red trace). Laser phase noise and ranging
induced phase changes widen the peak. The frequency is time-varying in a long time series
(dark blue trace). The noise floor is shaped by the band-pass filter in the photoreceiver with
corner frequencies at 4MHz and 20MHz.

can be written for the purpose of this thesis as

yinpτq “
?
2 ¨ ain ¨ cospΦinpτqq “

?
2 ¨ ain ¨ cospωmean ¨ τ ` δϕinpτqq, (2.103)

where the mean angular beatnote frequency ωmean “ 2πfbeat,mean is of the order of MHz times
2π. The mean is formed over a few orbital periods. Of course, the apportioning of the phase
Φin into ωmean ¨ τ and δϕin is performed artificially for the sake of the analysis. The phase
variations Φin and δϕin contain the ranging signal with frequency content below 1Hz and
laser phase noise with frequency content below 100 kHz, e.g. for a free-running laser. These
two contributions are depicted in terms of the spectral density in the upper panel of fig. 2.24.
The only difference between Φin and δϕin is a phase ramp, which is usually not visible in
frequency-domain plots.

The rms-amplitude ain is considered to vary only very slowly, e.g. below 1Hz, and is
rescaled by

?
2 to form the peak value in eq. (2.103). The proper time τ is used instead of

the GCRS coordinate time t, which indicates that signals are defined in the local Lorentz
frame of the S/C.

The input signal yin defined by eq. (2.103), which is exemplarily shown in terms of a
spectral density in fig. 2.22, is demodulated within the digital phase-locked loop (DPLL) into
an in-phase (I) component and an out-of-phase (quadrature Q) component by multiplication
with a digital reference signal (cf. fig. 2.21). The low-pass filtered Q component is proportional
to sinpϕe,DPLLq « ϕe,DPLL if the reference sinusoid has a similar frequency and phase as the
input signal. This error signal ϕe,DPLL is used in a feedback control loop to adjust the digital
reference frequency in the phase increment register (PIR), such that ϕe,DPLL is zeroed. The
I component contains the magnitude of the input signal, if the error signal is zero. The PIR
is quasi-continuously integrated by the numerically controlled oscillator (NCO) and yields
the phase of the reference signal, which is stored in the phase accumulator (PA). The phase
accumulator is a register with a finite number of bits, and hence the ever increasing phase
causes regular overflows of the PA. These result in jumps in the phase and would cause ringing
of the filtered and decimated output. To resolve this issue, one can deliberately introduce a
phase-reducing jump by a well-defined amount in the PA prior to overflow and then correct
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Figure 2.23: Bode plot of an exemplary closed-loop transfer function Hc
2psq of a digital

phase-locked loop (DPLL). It has been (approximately) reproduced from fig. 4.3 in [Gerberd-
ing, 2014].

for the filter response of the jump directly in the phasemeter4. This is called phase-wrapping
correction (PWC) in fig. 2.21. As a result, the filtered output contains a sharp jump and no
artifacts such as ringing.

Alternatively, one can also use the digital frequency in the PIR, which is not subject to
wrapping, for decimation and as science data. This requires a (trivial) integration in on-
ground processing. However, since the JPL phasemeter in GRACE Follow-On utilizes the
phase as science data, the analysis in this thesis follows the same approach.

A DPLL is, in general, a non-linear system due to the presence of a mixer. Furthermore,
it provides several outputs from a single scalar input, such as the amplitude aDPLL, the phase
ϕDPLL and often the error signal ϕe,DPLL. However, one can synthesize a single scalar output
yDPLL according to

yDPLL “ aDPLL ¨ cospϕDPLL ` ϕe,DPLLq (2.104)

« aDPLL ¨ cospϕDPLLq “ aDPLL ¨ cos
ˆ
2π

ż
fDPLLpτqdτ

˙
. (2.105)

Thus, the DPLL performs a phase measurement by fitting a digital sinusoid to the input
signal. The digital copy is typically cleaner, since most of the noise power at frequencies other
than the oscillation frequency is rejected by the DPLL. This digital copy allows an effective
transfer function for the DPLL in the Laplace domain to be defined as

Hc
1psq “ ycDPLLpsq

ycinpsq (2.106)

which includes contributions from the analog-to-digital converters (ADCs) and the DPLL
itself. This transfer function is defined only for the MHz band shown in fig. 2.22. Similarly,
one can define a transfer function for the phase variations, i.e.

Hc
2psq “ δϕcDPLLpsq

δΦcinpsq (2.107)

4To the knowledge of the author, this principle originates from the GRACE-FO LRI team at JPL
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Figure 2.24: (Upper panel:) The two dominating constituents of δϕin and Φin. (Central
panel:) The magnitude of typical decimation filters used to decrease the sampling rate in
a phasemeter. (Lower panel:) The phase response of typical decimation filters is (ideally)
linear, i.e. it is a delay, which appears non-linear in the semi-logarithmic plot shown here.
The decimation filters shown are cascaded-integrator combs (CIC) with N “ 2 and are only
examples.
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which has typically a flat amplitude and phase response up to the bandwidth of the DPLL, for
example, floop,DPLL « 50 kHz. An exemplary Bode plot of the closed-loop transfer function
Hc

2psq with a higher DPLL bandwidth of 300 kHz is given in fig. 2.23. The open-loop gain (not
shown in the figure) crosses unity at the Fourier frequency floop,DPLL and phase fluctuations
in δϕe,DPLL (cf. fig. 2.21) at lower frequencies are suppressed by the loop. It should be noted
that the open-loop and the closed-loop transfer function Hc

2psq depend on the amplitude ain
and on the instantaneous beatnote frequency fbeat, i.e.

fbeatpτq “ 1

2π

ˇ̌
ˇ̌dΦinpτq

dτ

ˇ̌
ˇ̌ . (2.108)

The transfer function Hc
2psq is defined up to the MHz band, but it is well defined also for

low frequencies, where the ranging information is encoded (cf. red trace in upper panel of
fig. 2.24). It is sufficient to use a sampling rate of the order of 1Hz or 10Hz to record the
ranging data in-orbit or to simulate such observations. Since the transfer function of the
DPLL, here Hc

2psq, is basically unity at such low frequencies, one can approximate the effect
of the DPLL transfer function as an additive term ΥDPLL. This has also been done for the
transfer function of the photoreceiver (cf. sec. 2.3.3), i.e.

ϕDPLLpτ 1q “ 2π ¨
ż τ 1

τ 1
0

fDPLLpτqdτ « Φinpτ 1q ` const. ` ΥDPLLpfbeatpτ 1qq ` δϕPM, (2.109)

where fbeat is the beatnote frequency and where the noise due to imprecise phase tracking
was accounted for by the addend δϕPM. The effect of the DPLL transfer function on the
phase ΥDPLL is the argument of Hc

1psq and can be described in a general way as a polyno-
mial (cf. eq. (2.85)) in the phasemeter measurement bandwidth. The linear part in ΥDPLL

w.r.t. fbeat corresponds to a phase delay by a time ∆τUSO,DPLL, which is always non-zero due
to the finite clock frequency of the digital logic. This delay is generally defined with respect
to the USO time, since the USO clock is driving the digital logic.

So far, the derivation did not properly consider the USO clock driving the phasemeter.
The USO clock time τUSO relates the apparent (digital) frequency in the phasemeter fDPLL,
which is measured with respect to the USO time, to the proper true frequency of the input
signal fbeatpτq, which is measured with respect to the proper time τ , via

fbeatpτq
fDPLLpτUSOq « dτUSO

dτ
. (2.110)

The relation is only approximative, as it is assumed that fDPLL contains noise and minor
effects due to transfer functions.

Hence, a more precise description of the DPLL phase, which yields the same result as
eq. (2.109), reads as follows

ϕDPLLpτ 1
USOq “ 2π ¨

ż τ 1
USO

τPM,on

fDPLLpτUSOq dτUSO (2.111)

“ 2π ¨
ż τ 1

USO

τPM,on

fbeatpτq ¨
ˆ
dτUSO

dτ

˙´1

looooooooooooomooooooooooooon
apparent freq. in phasemeter

dτUSO ` δϕPM ` ΥDPLL (2.112)

« Φinpτ “ τ´1
USOpτ 1

USOqq ` const. ` δϕPM ` ΥDPLL, (2.113)

where the arbitrary start time of phase tracking τPM,on yields the constant in the last line and
is a manifestation of the fact that interferometry can only measure a biased range. In fact,
the constant is ideally an integer multiple of 2π, since the reference signal in the DPLL is
in-phase with the input signal. This condition can not be easily incorporated in the integral
form (eq. (2.112)) and was not explicitly written in the last line, because many effects can
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cause a deviation of the constant from an integer multiple of 2π. The integer ambiguity can
often be resolved in GNSS applications, however, for space interferometry with a wavelength
of 1 ➭m or less, this is normally impossible and not necessary due to the limited accuracy of
absolute ranging.

The equivalence of eq. (2.109) and (2.113) implies that a wrong USO time does not falsify
the phase-tracking result directly, e.g. the digital reference oscillation within the DPLL still
follows the input oscillation. However, a wrong USO time falsifies the result indirectly due
to a changed sampling of the results, thus, one does not assign the correct time to the digital
phase samples. For example, the received phase values ϕDPLL are taken at specific USO
instants of time (τUSO “ 0, 1, 2, 3, ...), however, one is interested in the corresponding GCRS
coordinate time t, because most of the higher-level data analysis is performed with respect to
the coordinate time t. One can assume that the USO time τUSOptq is estimated by computing
the relativistic effects, i.e. proper time τ of the S/C, and by applying corrections for drifts
and low-frequency variations of the USO with respect to GNSS observations. This estimated
and best-knowledge USO time τUSO,estptq contains an USO timing jitter noise and an offset
with respect to the real USO time, i.e.

τUSO,estpτptqq “ τptq ´ δτUSOpτptqq ´ δτUSO,off (2.114)

This can be approximated as

τ “ τUSO,estpτq ` δτUSOpτq ` δτUSO,off ñ τpτUSO,estq « τUSO,est ` δτUSOpτUSO,estq ` δτUSO,off

(2.115)

which allows the phase in eq. (2.113) to be written as

Φinpτq « ΦinpτUSO,est ` δτUSO ` δτUSO,offq « ΦinpτUSO,estq ` δϕPM,USO (2.116)

where the phase ΦinpτUSO,estq is, for example, the received phase sample from the S/C, which
is to our best knowledge taken at the proper time τUSO,est. However, the errors in the
estimate, δτUSO and δτUSO,off, are the USO timing jitter and the timing offset, respectively
(cf. sec. 2.3.4 on USO). Both contributions are combined into the phasemeter USO error
δϕPM,USO, which is given by

δϕPM,USO « dΦin

dτ
¨ pδτUSOpτptqq ` δτUSO,offq (2.117)

“ 2πfbeatpτptqq ¨ δτUSOpτptqq ` 2πfbeatpτptqq ¨ δτUSO,off. (2.118)

This error is not a classical measurement error but arises from the limited accuracy of the
sample time. In addition, the error includes assumptions on the accuracy of the final orbital
positions from GNSS observations, since these are used to reduce the magnitude of δτUSO.

Another step to be considered for the realistic modeling of the phasemeter output is the
decimation. The internal phase ϕDPLL from the phase accumulator is decimated in two (or
even more) stages to a rate of approx. 10Hz for transmission to ground. Decimation means
here anti-aliasing filtering and downsampling of the data (cf. fig. 2.21). The effect of two
typical decimation filters is shown as a Bode plot in the middle and lower panels of fig. 2.24.
One can conclude that the magnitude of the ranging data is almost unaffected by decimation
filtering, since the ranging data is at frequencies well below to the first notch frequency. More
complicated filters as in the GRACE Follow-On LRI can achieve a deviation from unity of less
than 10´9 in the science measurement band between 0.1mHz to 0.1Hz. The phase response
of these filters is linear, i.e. they cause only a delay by a time ∆τUSO,Dec, which needs to be
defined with respect to the USO time, because it is a digital decimation filter.

Thus, it is reasonable to model the effect of the decimation filters by

ϕPMpτUSOq “ HDec2 rHDec1 rϕDPLLpτUSOqss « ϕDPLLpτUSOq ` ΥDec, (2.119)
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with

ΥDec « ΥDecpτq “ 2πfbeatpτq ¨ ∆τUSO,Dec, f ă 0.1Hz, (2.120)

which holds only for Fourier frequencies below 0.1Hz. For higher frequencies, the decimation
filters also change the amplitude of the phase, however, this is of little interest as these
frequencies are noise dominated in gravimetric missions.

The effect of the decimation filters is deterministic and can be easily determined from
the phasemeter implementation. Hence, one can correct the received phase values ϕPM in
on-ground post-processing. However, the term ΥDec is kept in the equations as a reminder
of this issue.

With the decimation and the USO induced phase errors, one can finally write the phase
observable ϕPM in terms of the coordinate time t as

ϕPMptq “ Φinpτptqq ` δϕPM,USO ` ΥDPLL ` ΥDeclooooooomooooooon
ΥPM

`δϕPM ` const., (2.121)

The output of the phasemeter ϕPMptq in eq. (2.121) is the input phase Φin of yin, but
falsified by phase errors due to the USO timing uncertainty δϕPM,USO and by the phasemeter
transfer function ΥPM. The latter is predominantly a delay by a time ∆τUSO,PM, which
means that the phase ΥPM has a strong linear dependence on the input frequency fbeat. The
delay time ∆τUSO,PM is driven by the decimation filters (ΥDec), while the delay from ΥDPLL

is negligible, because the DPLL is a fast control loop. In the following, it is assumed that the
effect of the transfer function ΥPM is a pure delay. This is non-trivial to achieve in practice,
as it requires a highly-developed and mature phasemeter.

Under this assumption one can use an alternative expression for the phasemeter output:

ϕPMptq “ Φinpτptq ´ ∆τUSO,PMq ` δϕPM,USO ` δΥPMloomoon
«0

`δϕPM ` const., (2.122)

with a total delay time ∆τUSO,PM “ ∆τUSO,DPLL ` ∆τUSO,Dec. The effects of the transfer
functions are deterministic and can be reversed in ground-based post-processing. This raises
the question on the potential accuracy of a post-processing (PP) reduction of the term ΥPM

in eq. (2.121), or of the delay time ∆τUSO,PM in eq. (2.122). Here, we simply assume that
the delay ∆τUSO,PM can be determined to 25 ns, which corresponds to one clock cycle of a
40MHz phasemeter, such that one obtains

δΥPM,PP « 2πfbeatpτptqq ¨ 25 ns, f ă 0.1Hz, (2.123)

for the error of the correction in post-processing.
In the following, the magnitude of the noise terms δϕPM,USO and δϕPM is addressed. An

upper bound for the former, the USO timing errors, can be given by taking into account a
maximum fixed frequency fbeat,max, which yields

PSDrδϕPM,USOspfq « p2π ¨ fbeat,maxq2 ¨ PSDrδτUSO,PPspfq
` p2π ¨ f ¨ δτUSO,offq2 ¨ PSDrΦinspfq, (2.124)

where PSDrδτUSO,PPs is a spectral density of USO timing jitter. A maximum frequency of
20MHz in combination with eq. (2.98) yields an USO jitter induced phase noise of less than
6mrad{

?
Hz. This is equivalent to a ranging noise of less than 1 nm{

?
Hz (cf. the magenta

trace with the right axis in fig. 2.14). The second summand, depending on PSDrΦinspfq and
on the timing offset δτi,USO,off « 100 ps (cf. eq. (2.99)), is a delay that has the same effect
as the delay uncertainty of the phasemeter transfer function in eq. (2.123), but a different
physical origin. The delay uncertainty of the phasemeter transfer function and the delay due
to the USO timing offset are indistinguishable in the model for the phasemeter observable
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discussed here, and as the assumed uncertainty in the delay of the transfer function is much
larger than the USO timing offset, one could omit the USO timing offset, though it is kept
in this thesis for the sake of generality and completeness. In addition, it is remarked that
the PSDrδτUSO,PPs is based on assumptions on the final accuracy of the satellite orbits in the
GCRS. In the context of GRACE microwave ranging, the error term δϕPM,USO is called the
time-tag correction error [Kim, 2000].

The sensitivity of the phase readout of a phasemeter PSDrδϕPMs, expressed as power
spectral density with units of rad2{Hz, is given by the inverse carrier-to-noise density C{N0,
i.e.

PSDrδϕPMs “ 1 rad2

C{N0
, (2.125)

which also holds for the phase-tracking within GPS receivers [Langley, 1997, eq. 16]. This
expression is called system noise in the context of GRACE KBR ranging [Kim, 2000].

The carrier-to-noise density C{N0 is the sinusoidal beatnote rms power, usually expressed
in terms of the input photocurrent with units of A2

rms in the context of laser interferometry,
divided by the noise power spectral density of the photocurrent, evaluated at the beatnote
frequency and with units of A2

rms{Hz,

C{N0 “ CNR “ Signal RMS Power

Noise PSD
. (2.126)

The C{N0, often also abbreviated as CNR, has units of Hz, but is commonly expressed as
dB-Hz.

At low C{N0, the PLL within the phasemeter may be susceptible to cycle slips and shows
an increased readout noise, while even lower C{N0 may result in loss of the phase lock. Hence,
a phasemeter should be able to continuously track the phase of input signals without cycle
slips for signals with a C{N0 higher than, for example,

C{N0,req “ 70.0 dB-Hz “ 1070.0{10Hz, (2.127)

which is the required minimum during science mode in the GRACE Follow-On LRI project.
This requirement corresponds, via eq. (2.125), to a phase readout noise of 0.3mrad{

?
Hz

or a ranging equivalent fluctuation of 53 pm{
?
Hz with 1064 nm radiation. Thus, even if

the interferometer is operated at the minimum C{N0 value, the phase readout noise is not
limiting the ranging sensitivity of current and future gravimetric missions, which also means
that these interferometers are not shot-noise limited.

A phasemeter can operate at lower C{N0, if the PLL bandwidth and hence the integrated
noise in the PLL bandwidth is reduced. However, this implies a lower loop gain and a slower
control loop, thus, the dynamics of the tracked phase need to be smaller. The author of this
thesis currently sees no necessity for investigating such modifications.

An automatic gain control in the photoreceiver chain is recommended in order to avoid
saturation and profusion of the dynamic range of the ADCs. The resolution in terms of bit-
depth of ADCs and the high sampling rate should be selected such that quantization noise
of ADCs is not limiting the phase readout performance (cf. sec. 2.6.9 on the carrier-to-noise
density)

Alternative methods for phase retrieval and tracking such as zero-crossing phasemeters
have been investigated in the context of the LISA mission [Pollack & Stebbins, 2006], where
effectively the integer and fractional number of zero-crossing of the oscillating signal are
counted in a time interval. Although the LISA phase readout sensitivity (« 1 ➭cycle{

?
Hz)

was demonstrated in a breadboard experiment, some questions regarding low-frequency noise,
aliasing and (optical) intensity fluctuations remain open, at least to the knowledge of the
author of this thesis. Moreover, a zero-crossing phasemeter completely discards information
between the zero-crossings and is not capable of tracking a superposition of several beatnotes.
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Furthermore, as stated in [Barke et al., 2014, p. 40], such a zero crossing phasemeter would
require a challenging 2.7GHz reference clock frequency to reach LISA-like sensitivity for a
20MHz beatnote frequency.

2.3.8 Steering Mirror

A steering mirror in the context of satellite laser interferometry is typically a glass substrate
with a highly reflective coating mounted onto a tip and tilt actuator. Figures of merit are
the dynamic range, precision and the actuation bandwidth. Typically, one is interested in
fine and fast steering mirrors in inter-satellite laser interferometry. The two main available
technologies are voice-coil or piezo-electric actuators, while sensing of the orientation can be
performed by optical, capacitive or inductive means. A closed-loop operation using a servo-
controller and feedback of the sensing signal is recommended, as it reduces overshoots, effects
due to mechanical resonances and hysteresis.

Fast steering capability is required for a potential laser link acquisition search in particular,
where the laser beam is deflected in a pattern to scan an uncertainty cone. Phase and
amplitude fidelity, or at least stability of the transfer function with respect to on-ground
calibration over the operational frequency band, is important in order to avoid distortions
between the commanded and the actual pattern. The electrical power demand and thermal
loads due to dissipation are additional constraints especially in the laser link acquisition
phase.

After successful link acquisition, the pointing signal for the steering mirror can be derived
with the desired precision with the Differential Wavefront Sensing technique by the inter-
ferometer. As such a control loop minimizes the DWS signal, pointing information is not
present in the DWS anymore but instead in the commanded steering mirror position or its
integrated sensor. Hence, these sensors need to be sufficiently accurate in terms of absolute
angles and precise in terms of noise.

More general requirements on robustness against radiation, mechanical and thermal loads
as well as against electro-magnetic interference need to be taken into account. Since the
steering mirror is a moving part within the S/C, one needs to ensure that induced micro-
vibrations are tolerable. This includes assessment of potential side-effects on an accelerometer
or test-mass.

The GRACE Follow-On LRI Fine Steering Mirrors, with a mechanical range of ap-
prox. ˘5mrad, are provided by Airbus Defence and Space GmbH. They have flight heritage
and utilize voice-coil based actuators with Eddy current sensors from Kaman Aerospace
Corp. The servo-controller for closed-loop operation is implemented in two nested stages in
the LRI. The servo-controller of the inner loop, which stabilizes the mirror orientation to a
particular setpoint with the Kaman sensors, is implemented in the Optical Bench Electronics
(OBE). The outer loop, the actual DWS pointing loop, is implemented in the Laser Ranging
Processor (phasemeter). A typical steering mirror for laboratory experiments is shown in
fig. 2.25.

In general, a steering mirror produces a significant rotation-to-pathlength coupling, often
called rotation-to-piston coupling, when used for precise interferometric applications. This
holds even for gimbaled setups, where the pivot point is nominally located on the front
mirror surface. Three axis actuators with tilt, tip and piston degrees of freedom are available
and used, for example, in astronomical telescopes [Alloin & Mariotti, 1994]. However, they
require a dedicated approach for measuring the piston (pathlength) change. The rotation-
to-pathlength coupling has been extensively studied in the LISA context [Chwalla et al.,
2016; Schuster et al., 2016], e.g. for the in-field pointing [Brugger et al., 2014] of the LISA
telescopes. The coupling can be minimized by an interferometer design that is to a large
extent immune to longitudinal motion of a steering mirror, such as the GRACE Follow-On
LRI or the concepts discussed later in this thesis.
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Figure 2.25: A voice-coil based fast steering mirror FSM-300 from Newport Inc. as used in
an AEI laboratory.

2.3.9 Frequency-Offset PLL and DWS Loops

In subsequent sections, transponder-based ranging schemes are discussed, as optical interfer-
ometers in the LISA and GRACE Follow-On missions utilize this concept. A transponder
receives light (or signals) and transmits an amplified version of the light (or signals). Optical
transponders for interferometry need to achieve a stable and well-known relation between
the optical phase of the received light and the phase of the transmitted light. Moreover, the
direction of the transmitted light needs to be controlled in most interferometers, such that
the emitted light of the transponder returns to the sender. In principle, both aspects can
be fulfilled with an extension of the phasemeter functionality and with additional actuators,
as shown in the block diagram in fig. 2.26. Two interfered light fields are impinging on a
quadrant photodiode and each segment of the photodiode provides a photocurrent, which is
amplified and converted to a voltage by the photoreceiver. The phasemeter tracks the phase
of each segment. An average phase of all channels yields the longitudinal phase, i.e. the rang-
ing information, while the differential phase between segments (DWSv and DWSh) measures
the differential phasefront tilt and tip between both interfered light fields (cf. sec. 2.2.3 on
DWS).

In addition to the digital phase-locked loop (DPLL) used to track the phase, extra control
loops are present in fig. 2.26. The two loops shown in the figure are called DWS loops. They
use the DWS signals as the input and derive the error signals from a comparison with set-
points DWSh,0 and DWSv,0. The resulting error signals are used in a controller to derive the
actuator signals in two directions, for example, for a steering mirror. The steering mirror
changes the direction of the local laser beam, and hence the differential phasefront tilt and
tip at the photodiode, until the DWS signals match the desired set-points. Typically, these
set-points are zero and the phasefronts are parallel at the photodiode. Parallel phasefronts at
the photodiode output port of the recombination beamsplitter also cause parallel phasefronts
at the other beamsplitter port, which is labeled TX light in fig. 2.26, due to reciprocity of
light. Instead of deflecting the local laser light with a steering mirror, one can also actuate the
attitude of the S/C, which changes the direction of RX light in a S/C fixed coordinate frame.
Different beam pointing schemes will be discussed in detail in sec. 2.7 on optical layouts.

The other control loop shown in fig. 2.26 is called the frequency-offset PLL, which uses the
average phase of all segments. This longitudinal phase is compared to a phase-ramp stored
in the register PAref, which is simply the integral of a constant frequency foff. The resulting
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Figure 2.26: A block diagram of a DPLL phasemeter with a frequency-offset phase-locked
loop (PLL) and a DWS control loop. The frequency-offset PLL shown here uses a temperature
actuator and a piezoelectric transducer (PZT) to control the frequency of the local laser. The
DWS control loop utilizes a tip and tilt steering mirror as an actuator. The science data
telemetry contains the ranging information as the phase of the channel ϕPM, the heterodyne
amplitude aPM, which is the I-value, and the phase error signal ϕe,PM, i.e. the Q quadrature
value, for each phasemeter channel.

error signal is used in a controller to derive an actuator signal for the frequency actuators of
the laser, e.g. typically a piezoelectric-transducer (PZT) and temperature actuators such as
Peltier elements for an NPRO laser. Temperature actuators are required, as PZTs have only
a limited actuation range. Temperature control is used at low frequencies, while PZTs have
a high bandwidth. Both actuators change the frequency and phase of the local laser. As will
be derived subsequently, this loop forces the measured longitudinal (average) phase to follow
a constant phase ramp with frequency foff, which implies that the phase of the local laser
follows the phase of the received light, offset, however, by the frequency foff. Thus, it enables
the above mentioned operation as a transponder.

In principle, the frequency-offset PLL can be modeled with a single element photodiode
and with reduced complexity, as shown in the block diagram in fig. 2.27. The phasemeter
output without feedback, i.e. the loop is opened by setting HPLL,PZT “ 0, can be readily
derived from the block diagram in the Laplace domain as

ϕ
(OL)
PM psq “ pΦcRX ´ ΦcLO ` ϑcq ¨Hc

PR ¨Hc
ADC ¨Hc

DPLL ¨Hc
Dec1 ¨Hc

Dec2

` δϕcPM,USO ` δϕcPM ¨Hc
Dec1 ¨Hc

Dec2, (2.128)

where each quantity is a complex-valued function (superscript c) of the complex frequency
parameter s “ σ ` iω. The DPLL transfer function Hc

DPLL has been introduced as Hc
2 in

sec. 2.3.7. The term ϑ accounts for a phase change due to the wavefront overlap over the
active area of the photodiode and δϕcPM,USO denotes noise due to USO timing jitter. Although
physically not completely correct, it is assumed that the quantity propagating in the overall
block diagram is a phase, which is sufficient for the purpose of this section. It is remarked
that the phases ΦcRX and ΦcLO are defined here at the (relativistic) event A, i.e. the position
and time, which means the instance of interference and reception at the photodiode. Another
event B for the light emission at the laser is marked in the figure, which will be used in a
later section. The symbol DAB means a delay from event A to B.

It is advisable to compare the previous Laplace representation to the previously derived
time-domain form, which can be obtained from eq. (2.84) and eq. (2.121) as

ϕ
(OL)
PM pτq “ |ΦRXpτq ´ ΦLOpτq ` ϑ` ΥPR| ` δϕPM,USO ` ΥPM ` δϕPM ` const. (2.129)
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Figure 2.27: A simplified block diagram of the frequency-offset PLL, where the measured
phase is used to lock the phase of the local laser with an offset frequency ωoff to the incoming
light field.

One should notice that the transfer functions Hc from ADC, DPLL, and the two decima-
tion filters correspond in the time-domain to the term ΥPM, which holds only under the
assumptions discussed in sec. 2.3.7 on the phasemeter. Otherwise, both representations are
equivalent.

In addition, it should be noted that the optical phase of the local oscillator (LO) laser
beam can be written as

ΦcLOpsq “ pΦcLpsq ` ∆Ψcpsqq ¨Dc
BApsq, (2.130)

where ΦcL is the optical phase of the laser, and includes laser phase fluctuations, e.g. due to
laser frequency noise. The phase ∆Ψcpsq due the temperature and PZT actuators vanishes in
case of an open loop. However, in the closed-loop case, one can express ∆Ψc as a function of
ΦRX and ΦLO by taking into account the loop contributions (in counter-clockwise direction
in the block diagram). This yields an implicit equation for the local oscillator phase of the
form

ΦcLOpsq “ pΦcLpsq ` ∆Ψcps,ΦcLOqq ¨Dc
BApsq, (2.131)

which can be analytically solved for ΦcLOpsq. It is anticipated that the open loop gain of the
frequency-offset PLL is large, i.e.

|Hc
PZT+Temppsq| “ |Hc

PZTpsq `Hc
Temppsq| " 1, (2.132)

where the following abbreviations for the individual loop contributors are introduced:

Hc
PZTpsq “ Hc

Las,PZTpsq ¨Hc
DACpsq ¨Hc

PLL,PZTpsq (2.133)

Hc
Temppsq “ Hc

Las,Temppsq ¨Hc
DACpsq ¨Hc

PLL,Temppsq ¨Hc
PLL,PZTpsq. (2.134)

Further useful abbreviations are

Hc
ppsq “ Hc

PRpsq ¨Hc
ADCpsq ¨Hc

DPLLpsq ¨Hc
Dec1psq (2.135)

Hc
Looppsq “ Hc

PZT+Temppsq ¨Hc
ppsq ¨Dc

BApsq (2.136)

Hc
CLGpsq “

Hc
Looppsq

1 `Hc
Looppsq , (2.137)
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where Hc
Looppsq is the large total open loop gain, while the closed-loop transfer functions

Hc
CLGpsq and Hc

ppsq have a magnitude close to one. With these definitions one can write the
phase ΦLO as

ΦcLOpsq “ Hc
CLG ¨

ˆ
ΦcRX ` ϑc ` ´ωoff{s` δϕcPM ¨Hc

Dec1

Hc
p

˙
` ΦcL ¨Dc

BA

1 `Hc
Loop

(2.138)

« ΦcRX ` ϑc ` ´ωoff{s` δϕcPM ¨Hc
Dec1

Hc
p

(2.139)

` 1

Hc
Loop

¨ pΦcL ¨Dc
BA ´ ΦcRX ´ ϑcq

` 1

Hc
Loop

¨
ˆ
ωoff{s´ δϕcPM ¨Hc

Dec1

Hc
p

˙

where the last approximation holds for a large open loop gain, i.e. Hc
CLG « 1 ´ 1{Hc

Loop. All
terms except the constant ωoff are a function of the complex frequency parameter s. The first
line in the approximation represents the infinite gain limit (|Hc

Looppsq| Ñ 8), where the phase
of the LO light ΦLO corresponds to the phase of the RX light ΦRX but shifted in frequency
by ωoff. Furthermore, ΦLO contains a contribution from ϑ, which is a slowly-varying phase
term arising from averaging the electric fields over the active area of the photodiode. The
second line is proportional to the inverse open loop gain and is a correction for a high but
finite open loop gain. This line contains the phase noise of the laser ΦcL and the phase of
the RX light ΦcRX, both of which might have a high magnitude. The third line is another
correction for a high but finite open loop gain, which can be neglected, because δϕPM,USO is
a small phase readout noise and the ωoff{s term has only a DC component.

It is remarked that the LO phase at the event of emission at the laser B (cf. fig. 2.27) can
be readily derived from the previous equation as

ΦcBpsq “ ΦcLOpsq
Dc

BApsq , (2.140)

which will be used in a later section to derive the phase of the transmitted beam.
In the same manner, it is straightforward to compute the phasemeter output in case of

closed-loop operation as

ϕ
(CL)
PM psq “ Hc

CLGpsq ¨ H
c
Dec2psq ¨ ωoff

s
` δϕPM,USOpsq ` ϕ

(OL)
PM psq

1 `Hc
Looppsq . (2.141)

The first summand in eq. (2.141) is the constant phase ramp, the second term accounts for
USO timing jitter and the third term is the highly suppressed open loop phase (cf. eq. (2.128)).

Under the assumptions of high loop gain Hc
Loop and of a pure constant phase delay in

Hc
Dec2 by ∆τUSO,Dec2, one can obtain the following time-domain expression

ϕ
(CL)
PM pτq « ωoff ¨ pτUSOpτq ´ ∆τUSO,Dec2q ` δϕPM,USO ` const. ` O

˜
1

Hc
Loop

¸
, (2.142)

which contains in the first summand the constant phase ramp, which is delayed by the delay
of the second decimation filter, and the USO timing jitter.

It will be shown in sec. 2.4.4 on the transponder-based ranging concepts that the loop
gain is sufficiently high for the approximation and that the Op1{Hc

Loopq term can be omitted
if, for example, the following open loop gain is assumed

|HLooppfq| « |HPZT+Temppfq| « 1646Hz3 ¨
a
360000 ` 1.4 ¨ 107Hz´2 ¨ f2 ` 40Hz´4 ¨ f4

f3
,

(2.143)
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Figure 2.28: A model of the open loop gain of the frequency-offset PLL, as specified by
eq. (2.143).

which is depicted by the green trace in fig. 2.28. This total loop gain has been derived from the
transfer functions of the PZT and temperature loop, which are the red and dark blue traces
in the plot. The open loop gain within the GRACE Follow-On LRI can be considered to be
even higher5. Thus, the frequency-offset PLL can be designed such that phase variations, as
measured by the phasemeter in open loop, are suppressed at 1mHz by a factor of 1015 or
more.

The model of the frequency-offset PLL discussed here will be used in section 2.4 on
functional concepts to derive a model for the phase observable in transponder-based ranging
schemes.

2.3.10 Acquisition Sensor

Laser interferometers have a narrow angular field of view, which is why precise pointing of
laser beams along the line-of-sight and with an eventual point-ahead angle is crucial to en-
able tracking of the light’s phase. This is particularly challenging, since mechanical loads
from launch and thermo-elastic deformations yield misalignments between the on-board in-
struments that differ from on-ground calibrations before launch. Furthermore, the real-time
estimates of the line-of-sight direction on the satellites depend on the accuracy of the local
S/C position, the local S/C attitude as well as on the accurate knowledge of the distant S/C
position.

Once the link is closed and the DPLL in the phasemeter is locked, precise DWS signals can
be used to minimize residual misalignments and to optimize the signal-to-noise ratio of the
interferometric link. Although the GRACE Follow-On LRI is capable of acquiring the link
without a dedicated acquisition sensor, such a device can significantly reduce the complexity
of the acquisition phase. This sensor is typically called a focal plane array (FPA) and can be
based on common CMOS (Complementary metal-oxide-semiconductor) or on common CCD
(charged coupled device) technology. Its function is the same as a digital camera sensor with
a moderate number of pixels.

Light from the distant S/C is focused by an focusing system, e.g. by a simple lens, onto the
two-dimensional CMOS/CCD pixel array. A tip or tilt of wavefronts in front of the focusing
system due to local S/C or instrument misalignment yields an offset in the spot location
from the nominal position at the FPA, similar to the working principle of a Shack-Hartmann
sensor, autocollimator or star camera. This measured misalignment can be minimized by

5priv. comm. with Kirk McKenzie, JPL/NASA, February 2017
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Figure 2.29: The OWL SWIR 320 focal plane array from Raptor Photonics with an InGaAs
chip.

S/C actuators or fed forward into laser beam steering actuators.
As pointing information from the acquisition sensor needs to be referred to the optical

axis of the interferometer, accommodation of the sensor on the optical bench is recommended
to mitigate effects of misalignments.

A potential candidate device is the compact OWL SWIR 320 camera from Raptor Photon-
ics with specifications shown in table 2.4 and a photograph in fig. 2.29. The camera dissipates
less than 10W of electrical power with activated thermo-electric cooling of the chip. Cooling
of the chip is recommended in order to reduce the dark current driven by thermal generation
of electrons, which is a major noise contributor in low-light cameras. An alternative device
is the SU320KTS-1.7RT from Goodrich Corp, which also utilizes InGaAs for photodetection
and is also sensitive at 1064 nm for this reason.

A typical CCD dark current density jd for InGaAs of [Boisvert et al., 2008]

jd “ 3.06 ¨ 1013 nA{cm2 ¨ e´0.73 eV{kT , (2.144)

implies that a pixel of the size 30 ➭m ˆ 30 ➭m produces on average approx. ndark “ 104 dark
current electrons per second at T “ 253K “ ´20˝ C. According to the well-known shot noise
formula for Poisson processes, this dark current fluctuates with a variance σ2n,shot of

σ2n,shot “ ndark ` nPE, (2.145)

where nPE is the number of actual photo-electrons. The dark current electrons accumulate
in the pixel bins, even if no light is incident, and produce shot noise.

The overall camera noise (rms) per pixel in terms of electrons consisting of shot-noise,
readout noise and ADC quantization noise can be written as [Holst & Lomheim, 2011]

σ2n,sys « σ2n,shot ` σ2n,readout ` σ2n,ADC, (2.146)

where other noise sources such as reset-noise, on-chip and off-chip amplifier noise and pattern
noise are omitted. Furthermore, it was assumed that a background image and hence the
average dark current is subtracted. The readout noise σn,readout is typically specified by the
manufacturers, while the quantization noise σn,ADC is [Holst & Lomheim, 2011]

σn,ADC “ nwell

2b ¨
?
12
, (2.147)
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Sensor Type InGaAs PIN-Photodiode

Active Pixel 320 ˆ 256

Pixel Pitch 30 ➭m ˆ 30 ➭m
Active Area 9.6mm ˆ 7.68mm

Quantum Efficiency @ 1064 nm ą 60%

Noise (RMS) ă 700 e´ (Low Gain), ă 150 e´ (High Gain)

Pixel Well Depth ą 3Me´ (Low Gain), ą 120 ke´ (High Gain)

ADC 14 bit

Exposure Time 500 ns to 40ms

Interface CameraLink

Table 2.4: Specifications of the OWL SWIR 320 camera from Raptor Photonics.

where b denotes the number of available ADC bits and nwell is the full-well capacity in terms
of electrons.

Finally, the signal-to-noise ratio (SNR) of a pixel can be defined by

SNR “ nPE

σn,sys
. (2.148)

Further aspects regarding the optics and the design of the acquisition sensor, calculation of
SNR and the discussion of the expected accuracy of the angular measurement is postponed
to sec. 2.6.12 on laser link acquisition.

It is remarked that an acquisition sensor could be operated as a narrow field of view
(FoV) star tracker, if the software is extended. This would allow the device to be used
continuously and not only for sporadic acquisition events. However, this only makes sense,
if the acquisition sensor FoV is large enough to detect several stars for most of the time.
While star trackers are typically designed to have a FoV of >100 deg2 [Lindh, 2014, p. 4],
an acquisition sensor requires a small FoV or a high number of pixels to precisely resolve the
direction of the incoming laser wavefront.

The angular density of stars on the celestial sphere up to a certain apparent magnitude
is shown in table 2.5. The highest detectable apparent magnitude for a sensor depends on
various aspects, e.g. sensor spectral responsivity, intrinsic noise and coatings of the optics
that direct incoming light onto the sensor. A narrow bandwidth coating centered at the laser
wavelength is certainly beneficial for laser link acquisition as it reduces stray light and can
mitigate risks from over-exposure, e.g. induced by blinding due to the Sun or Moon. On the
other hand, such a coating reduces the available optical power of the stars for star tracking.

Although using the acquisition sensor as a star tracker is a viable option, it adds significant
complexity and constraints on the acquisition sensor subsystem. As such an acquisition
sensor has not been designed nor utilized in inter-satellite interferometry, this thesis does not
consider a star-tracking mode as a baseline in order to reduce the complexity in this early
phase.

Furthermore, the author recommends the revision of the LISA acquisition sensor design,
which has a very narrow FoV with a low resolution in terms of pixels [AEI-TN, 2011], re-
garding the expected average number of stars within the FoV in star-tracking mode.
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Apparent Magnitude N stars / degree2

.. ... ...
6 4958 0.120
7 15256 0.370
8 44772 1.085
9 128421 3.113
10 349741 8.478
.. ... ...

Table 2.5: The typical star density on the celestial sphere from http://www.hnsky.org/

star_count.htm. The total sphere has 41253 degree2. N is the total number of Tycho2 or
UCAC4 catalogued stars up to the apparent visible magnitude. The table assumes a uniform
distribution of stars over the celestial sphere.
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2.4 Functional Concepts

In general, inter-satellite ranging interferometry measures distance variations between satel-
lites by exchanging laser light. Before designing the interferometer, some boundary conditions
need to be clarified, e.g. the expected maximum and minimum inter-satellite distance and
the expected relative velocity along the connection line and transversally. These aspects are
determined by the satellite constellation and orbits. A comparative tabular overview for the
missions LISA, LISA Pathfinder and GRACE Follow-On is given in table 2.6, which also
addresses other interferometric aspects such as the phase readout method. The GRACE
Follow-On column is exemplary for a gravimetric in-line satellite formation and most of the
numbers are applicable to the e.motion2 concept.

For LISA and GRACE-like missions the inter-satellite distance ρ can be approximated by

ρptq “ ρ0 ` ρmod ¨ sinp2πt{Tmodq ` δρptq, (2.149)

which consists of a constant bias ρ0, an approximately sinusoidal modulation with amplitude
ρmod and δρptq containing small variations compared to ρmod. The variations δρptq contain
most of the scientific information, e.g. on the fine gravity field structure in case of e.motion2

and GRACE or on gravitational waves in case of LISA. The modulation period is usually
given by the orbital period, whereby a second strong modulation at twice the period may be
present due to eccentric orbits or orbit mismatch between the satellites. Thus, the spectrum
of ρptq contains a few dominating tones, which might be even not in the frequency band of
the science data, and a quasi-continuous distribution of signal power over frequencies as the
interesting science data (δρptq).

The quantity ρptq is the instantaneous range between the gravitational reference points
(cf. sec. 1.3.6 on GRP) on each S/C, which can be considered here as the center of mass of
each S/C, i.e.

ρptq “ ρinstptq “ |~r1ptq ´ ~r2ptq|. (2.150)

This equation and the constituents are defined in the GCRS, which is a quasi-inertial non-
rotating system.

As already discussed in the first part of this thesis, future gravimetric missions require
inter-satellite range measurements over a distance of 100 km..200 km with a sensitivity be-
tween 25 nm{

?
Hz and 50 nm{

?
Hz at a Fourier frequency of 0.1Hz. The science measurement

band ranges from approx. 0.18mHz to 0.1Hz. The maximum range rate, i.e. the relative ve-
locity along the line-of-sight, is below 5m{s. With clarified boundary conditions, different
functional concepts for inter-satellite interferometry can be assessed. In the next sections,
the most common concepts, namely one-way ranging, dual one-way ranging, transponder
and retro-reflector based ranging, are introduced and their respective sensitivity limits and
constraints are discussed.

At first, the general one-way ranging phase observable is derived, which can be written
in terms of the instantaneous range ρinstptq. However, the phase is only to first order propor-
tional to the range, and many corrections and errors are present due to special and general
relativistic effects, due to errors arising from the specifics of the optical interferometer design
(sec. 2.6) and due to other effects such as clock errors and laser frequency noise.

2.4.1 Derivation of One-Way Ranging

The simplest form of a displacement measurement can be realized by measuring radio-waves
or light, both electro-magnetic waves, emitted by a laser aboard a S/C. If emitter and receiver
are in relative motion, the apparent frequency of the wave at the receiver is shifted due to
the Doppler effect (cf. eq. (2.26) in sec. 2.2). By integrating the Doppler shift frequency in a
phase tracking loop, one obtains a phase (cf. eq. (2.121)), which is to first order proportional
to the biased distance in ranging interferometry (cf. eq. (2.22)). A sketch of a one-way ranging
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LISA LISA Pathfinder GRACE F.O.

# of Spacecraft 3 1 2
Avg. ρ « 2.5Mkm 38 cm 200 km
Max. 9ρ 5m{s « 0 5m{s

Max. Doppler Shift 5MHz « 0 5MHz
Max. ρmod 10000 km « 0 4 km

Modulation Period 1 year 93min
Max. :ρ 1 ➭m{s2 « 0 6mm{s2

Max. Doppler Rate 1Hz{s « 0 6 kHz{s
Max. v12,K 200m{s « 0 250m{s

Point Ahead Angle 1.4 ➭rad « 0 1.6 ➭rad
Beam Div. θTX « 2 ➭rad n.a. « 140 ➭rad

Environm. Condition Deep-Space Deep-Space, LP LEO

Concept Transponder Several MZ IFOs Transponder
Readout Scheme Heterodyne Heterodyne Heterodyne
Phase Retrieval DPLL SBDFT DPLL

Beatnote Frequency 4..20MHz 1.0 kHz 4...20MHz
Laser Wavelength 1064 nm 1064 nm 1064 nm

Science Meas. Band 0.1mHz..0.1Hz 1mHz..0.1Hz 0.1mHz..0.1Hz

Ranging Sensitivity❸ « 10 pm{
?
Hz À 10 pm{

?
Hz 80 nm{

?
Hz

p“9 ➭cycl.{
?
Hz p“9 ➭cycl.{

?
Hz p“75mcycl.{

?
Hz

On-Orbit Ranging Sensitiv. 35 fm{
?
Hz

LFN Reduction Transponder ❹ Transponder
TDI Equal-Arm IFO

Time Reference USO per S/C USO USO per S/C
+ CTT Single Common GNSS avail.

Ranging Ref. Point(s) Test-Mass Test-Mass Virtual at
CoM

Absol. Laser Ranging Yes, « 1m Not Req. Not Req.
accuracy (GNSS avail.)

(Optical) Data Transm. Yes Not Req. Not Req.

Table 2.6: Comparison of three missions utilizing laser interferometric distance measure-
ments. The relative velocity along the line of sight is denoted as 9ρ, while :ρ is the corresponding
acceleration. The transversal relative velocity between the satellites v12,K is measured per-
pendicular to the line of sight. Further abbreviations: LFN: Laser Frequency Noise, LP:
Lagrangian Point; θTX: Gaussian beam divergence of TX beam; CTT: Clock Tone Transfer;
❸: Pre-launch requirement; MZ: Mach Zehnder; ❹: Measure and subtract
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Figure 2.30: (Upper Part:) Simplified one-way ranging scheme by means of (optical)
interferometry. (Lower Part:) Minkowski diagram of the light path in a one-way ranging
scheme. At each event A,B,C, ... the future light cone was indicated with two lines, since light
can reach only these regions. Within the interferometer setup, i.e. in the local Lorentz frame
(LLF) of the S/C, the light is deflected and hence not a straight line. Inter S/C propagation
in free space between events D and C is shown as straight line. The instantaneous range
ρinst and the photon path of an ideal range measurement between both CoM (green arrow)
are shown as well.

scheme by means of optical interferometry is shown in the upper panel of fig. 2.30, whereby
it is also applicable in similar form to electro-magnetic waves, e.g. microwaves.

The specifics of the optical implementation of the interferometer are not considered in
this section, i.e. the interferometer is simply a black box with input and output laser beams.
With eq. (2.121) one can write the observed phase ϕPM of the phasemeter as

ϕPM|jptAq “ |Φin,jpτjptAqq| ` δϕPM,USO,j ` δϕPM,j ` ΥPM,j ` const. (2.151)

where tA is the GCRS coordinate time of the measured phase sample, as provided by the
phasemeter. The emitter satellite is labeled with subscript i, while the receiver is S/C j

as shown in fig. 2.30. It is reminded that the phase ϕPM|j is actually recorded in the local
Lorentz frame (LLF) of the receiver S/C j. The time associated with a particular phase
value is given in the time frame of the on-board USO, however, for the formula, the time has
been converted to the GCRS coordinate time. Errors due to the conversion are covered by
δϕPM,USO,j . The digital phase sample at time tA from the phasemeter is equal to the phase
ΦinpτptAqq, which is the phase of the input signal to the phasemeter up to the effect of the
transfer function ΥPM,j and the errors δϕPM,USO,j ` δϕPM,j .

The phase of the phasemeter input, which is the photoreceiver output, can be written as
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(cf. eq. (2.84))

|Φin,jpτjptAq| “ |Φi|jpτjptAqq ´ Φj|jpτjptAqq ` ϑj ` ΥPRj,| (2.152)

“ ˘
`
Φi|jpτjptAqq ´ Φj|jpτjptAqq

˘
˘ ϑj ` ΥPR,j ` const. (2.153)

where Φi|j and Φj|j are the absolute optical phase values of the light from S/C i and S/C j,
respectively, expressed in the local Lorentz frame of S/C j and with respect to the proper
time τj . These are the phase values of the light fields at the center of the active area of the
photodiode. The phase term ϑj is obtained from the overlap integral of wavefronts over the
active area and is expected to change only very slowly. It accounts for the effect of spatially
averaging the phase of the light fields over a macroscopic active area. The phase change due
to the transfer function of the photoreceiver is denoted with ΥPR,j .

The absolute value (magnitude) was removed in the second line (eq. (2.153)), which eases
the equations later on. Recall that the sign of the phase of a scalar signal such as Φin is ill-
defined, because only the cosine of the phase is physically accessible and the cosine function
is an even function. The measured phase of the phasemeter ϕPM starts at zero, when the
instrument is turned on, and it increase monotonically with time. However, the input to
the phasemeter Φin is defined here analytically as a phase difference and can be positive or
negative. One can replace the magnitude by the sign ˘ without loss of generality, if the upper
sign is selected for Φi|j ą Φj|j , which practically means that the frequency of the received
light is higher than the frequency of the local laser light of the receiver. Such a frequency
ordering is well defined and can not swap during normal operation of the phasemeter, because
the phasemeter is not capable of handling zero crossings of the beatnote frequency, i.e. of the
frequency difference (cf. sec. 2.3.7 on phasemeter).

The phasemeter output ϕPM can be described in good approximation as the difference of
the phase of the two optical fields impinging onto the photodiode. The event of impinging
light fields in the GCRS is labeled in the following as TA|GCRS “ pc0 ¨ tA, ~rj,PDptAqq⊺, which
is a point in the four dimensional space-time. The position of the photodiode in the GCRS is
denoted with ~rj,PD. Events offer the advantage that they fix the time and position and they
can be converted unambiguously with transformations between different coordinate systems.
Thus, one can use a simplified notation TA and express arguments of functions with a shorter
notation, e.g. fpTAq “ fptA, ~rAq.

The paths or world lines of the light fields are shown in the Minkowski diagram in the
lower panel of fig. 2.30 as red and blue lines. Several events (A,B,C...) are marked: the
reception of light and measurement of phase (A), light emission on the receiver and emitter
(B and E) and the free space propagation between C and D.

The phase of the light fields at TA had to propagate through space-time to reach that
event, i.e. one can think of photons carrying or forming the phase information. The light field
of the local laser on the receiver S/C has an electric-field vector ~Ecj 9 eiΦj|j and it’s phase
can be described with the help of eq. (2.72) at the event of emission TB by

Φj|jpTBq “ 2πν̄j|j ¨ τjptBq ` ΦLFN,jpτjptBqq ` ∆ΨB,j , (2.154)

where ν̄j|j is the true and mean laser frequency with units of Hertz of the laser on S/C j as
measured in the S/C j LLF, i.e. in the rest frame. One can reduce the number of symbols
in subsequent equations by using the corresponding angular frequency ω̄ “ 2πν̄. The laser
frequency fluctuations are expressed in terms of a phase noise ΦLFN,j , while all other phase
contributions to the laser light are covered by ∆ΨB,j .

However, since the photon path denotes the path of a constant phase6, the phase at the
event of emission and the phase at the event of reception are equal, i.e.

Φj|jpτjptAqq “ Φj|jpTAq “ Φj|jpτjptBqq “ Φj|jpTBq (2.155)

“ ω̄j|j ¨ τjptA ´ ∆tBAq ` ΦLFN,jpτjptA ´ ∆tBAqq ` ∆ΨB,j (2.156)

6In [Misner et al., 1973] it is shown that the phasefront of an electro-magnetic wave follows a null-geodesic,
i.e. it is a photon path.
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where ∆tBA “ tA ´ tB was used to denote the time difference in the GCRS system between
both events. Some second order phase effects arising from the evolution of non-trivial wave-
fronts (keyword Gouy phase) are omitted here, i.e. a plane wave approximation is used. Such
effects are not of relevance for this section and are introduced when more realistic light beam
models are considered.

With eq. (2.156) one obtains the light’s phase from the local receiver laser at the pho-
todiode of the receiver S/C. This worked out easily, because all the quantities are defined
in the same local Lorentz frame. However, for the phase of the light from the emitter, one
needs to transform the optical light phase from the LLF of S/C i into the LLF of S/C j. For
this, one can use the fact that the light’s phase is Lorentz invariant, i.e. it does not change
upon transformations. This can be easily shown for plane and spherical waves, because the
phase can be written as the invariant product of the four-wave vector and the four-position
[Shiozawa, 2013, sec. 2.5]. However, it also holds for more complex waves. The value of
the phase is simply the number of passed wave crests, and hence, independent of the frame.
Furthermore, the instantaneous real electric and magnetic field vectors vanish for particular
values of the phase, which suggests that they are zero in all frames.

It is interesting to note that the electric field vector ~E, the magnetic field vector ~H and
the Poynting vector ~S are not Lorentz invariant. Thus, the polarization vector changes upon
transformation from one to the other S/C 7.

The Lorentz invariance of the phase states that the phase in the coordinate system of the
emitter S/C i is equal to the phase in the coordinate system of S/C j at the same event,
e.g. for TA:

Φi|jpTAq “ Φi|ipTAq (2.157)

The right-hand-side can be expressed in the same way as eq. (2.156) with ∆tEA denoting
the propagation time of the phase from the event of emission TE to the event of reception
TA, while the left-hand-side can be expressed in the most general form as an integral over a
time-variable instantaneous observed angular frequency ωi|jpτjq. Hence, one can re-write the
previous equation as

Φi|jpτjptAqq “
ż τjptAq

ωi|jpτjq dτj ` const. (2.158)

“ ω̄i|i ¨ τiptA ´ ∆tEAq ` ΦLFN,ipτiptA ´ ∆tEAqq ` ∆ΨE,i, (2.159)

where the integral start time was omitted and accounted for by an arbitrary constant. This
equation can be considered as a definition for the instantaneous observed angular frequency
ωi|jpτjq. The arbitrary constant arises from the lacking (relativistic) synchronizations of the
proper times τi and τj and is not of importance here.

The reception event TA and the event time tA were used for the derivation, however, it is
obvious that for a continuous measurement one can set t “ tA. Now it is easy to determine
the apparent frequency of the received light for the receiver S/C νi|jpτjptqq as

1

2π
¨
dΦi|jpτjptqq

dτj
“ ν̄i|i

dτipt´ ∆tEAq
dτj

` 1

2π
¨ dΦLFN,ipτipt´ ∆tEAqq

dτj
(2.160)

“
ˆ
ν̄i|i

dτipt´ ∆tEAq
dt

` 1

2π
¨ dΦLFN,ipτipt´ ∆tEAqq

dt

˙
¨ dt

dτj
(2.161)

“
ˆ
ν̄i|i

dτi
dt

` 1

2π
¨ dΦLFN,i

dτi
¨ dτi
dt

˙
¨
ˆ
1 ´ d∆tEA

dt

˙
¨ dt

dτj
(2.162)

“
ˆ
ν̄i|i ` 1

2π
¨ dΦLFN,i

dτi |tE

˙
¨
ˆ
1 ´ d∆tEA

dt |t

˙
¨ dτi
dt |tE

¨
ˆ
dτj
dt

˙´1

|t
, (2.163)

7A Lorentz boost mixes the electric and magnetic field vectors. However, since both vectors are in-phase
for linearly polarized light, the phase of the oscillation does not change.
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where the first bracket in the last line shows the instantaneous laser frequency at the time
of emission (tE) in the LLF of the emitter S/C. The second bracket is the classical Doppler
shift, which becomes obvious due to ∆tEA “ ∆tEAptq « ρinstptq{c0 with the instantaneous
S/C distance ρinstptq in the GCRS. The last two terms are present in a relativistic Doppler
theory and give rise to effects such as the so-called transverse Doppler effect, where a frequency
change is observed only from transverse motion due to time dilation [Rindler, 2012, sec. 3.2].
Eq. (2.163) can be readily employed in simulations, since all the quantities can be determined.

Finally, by using eqs. (2.151), (2.153), (2.156) and (2.159), one can formulate a single
expression for the phasemeter observation of the receiver S/C as:

ϕPM|jptq “ ˘ω̄i|i ¨ τipt´ ∆tEAq ˘ ΦLFN,ipτipt´ ∆tEAqq ˘ ∆ΨE,i

¯ ω̄j|j ¨ τjpt´ ∆tBAq ¯ ΦLFN,jpτjpt´ ∆tBAqq ¯ ∆ΨB,j

˘ ϑj ` ΥPR,j ` δϕPM,USO,j ` δϕPM,j ` ΥPM,j ` const. (2.164)

The first line contains the phase of the light from the emitting S/C, the second line contains
the phase of the local laser light, and the third line contains the phase contributions due to the
wavefront overlap ϑ, the photoreceiver ΥPR, the USO timing error δϕPM,USO, the phasemeter
delay ΥPM, and the phase readout noise δϕPM. The first two lines were expressed in terms
of the propagation time between the photon emission and reception event.

Eq. (2.164) is a generic one-way or single path ranging observation, which is expressed in
terms of photon time of flight ∆t between events. It accounts for relativistic effects, which
manifest in the appearance of the proper time τ and as changes in ∆t. In the following, some
algebraic manipulations are performed to partly separate the relativistic from non-relativistic
effects. For this reason one can define a delta proper time δτ according to

δτptq “ t´ τptq, (2.165)

which increases only slowly with a rate of dτ{dt “ δ 9τptq « 10´9 s{s (cf. eq.(2.14)). A spectral
density plot of τ , which is also applicable to δτ , is shown as the red trace in fig. 2.14. It is
remarked that δτ has practically no signal at frequencies higher than 1Hz. Thus, with the
definition, one can approximate the delayed proper time as

τpt´ ∆tq “ t´ ∆t´ δτpt´ ∆tq (2.166)

« t´ ∆t´ δτptq ` ∆t ¨ δ 9τptq, (2.167)

which is justified and accurate, because the delay due to the photon time of flight ∆t is always
much smaller than 1 second in gravimetric missions.

The laser phase noise can be approximated rigorously as well:

ΦLFN,ipτipt´ ∆tqq “ ΦLFN,ipt´ ∆t´ δτptq ` ∆t ¨ δ 9τptqloooooooooomoooooooooon
«0

q

« ΦLFN,iptq ´ δωLFNptq ¨ ∆t, (2.168)

because it decays towards high frequencies and the delay ∆t is small. The quantity δωLFN “
2πδνLFN is the angular laser frequency noise. Furthermore, it is noticed that ΦLFN is a sta-
tionary stochastic variable with zero mean, which means that spectral properties are invariant
under time-shifts.

Moreover, a second definition concerning the optical angular frequencies ω̄i|i and ω̄j|j is
introduced:

ω̄i|i “ ω̃ ˘ ∆ω̃

2
(2.169)

ω̄j|j “ ω̃ ¯ ∆ω̃

2
, (2.170)
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where ω̃ denotes the mean frequency and ∆ω̃ “ |ω̄i|i´ω̄j|j | is the positive difference frequency,
which is the positive angular beatnote frequency. If these new quantities are used in the
phasemeter observable, it is helpful to use the assumption that the Doppler shift from ω̄i|i
to ω̄i|j is smaller than the difference frequency ∆ω̃, which makes the statements ω̄i|i ą ω̄j|j
(“ Φi|i ą Φj|j) and ω̄i|j ą ω̄j|j equivalent. Initially, the upper sign of ˘ and ¯ was used for
ω̄i|j ą ω̄j|j , but with the new assumption it also holds for ω̄i|i ą ω̄j|j , which is much easier to
handle for practical calculations.

In summary, one can approximate the carrier phase terms in ϕPM|j as

˘ ω̄i|i ¨ τipt´ ∆tEAq ¯ ω̄j|j ¨ τjpt´ ∆tBAq

« ˘ω̃t¯ ω̃∆tEA ` ∆ω̃

2
t´ ∆ω̃

2
∆tEA ¯ ω̃δτipt´ ∆tEAq ´ ∆ω̃

2
δτipt´ ∆tEAq

¯ ω̃t˘ ω̃∆tBA ` ∆ω̃

2
t´ ∆ω̃

2
∆tBA ˘ ω̃δτjpt´ ∆tBAq ´ ∆ω̃

2
δτjpt´ ∆tBAq

“ `∆ω̃ ¨ t¯ ω̃ ¨ ∆tEB ´ ∆ω̃

2
¨ p∆tEA ` ∆tBAq

¯ ω̃ ¨ pδτipt´ ∆tEAq ´ δτjpt´ ∆tBAqq ´ ∆ω̃

2
pδτipt´ ∆tEAq ` δτjpt´ ∆tBAqq

“ `∆ω̃ ¨ t¯ ω̃ ¨ ∆tEB ´ ∆ω̃

2
¨ p∆tEA ` ∆tBAq

¯ ω̃ ¨ pδτi ´ δ 9τi∆tEA ´ δτj ` δ 9τj∆tBAq ´ ∆ω̃

2
¨ pδτi ´ δ 9τi∆tEA ` δτj ´ δ 9τj∆tBAq,

(2.171)

where the new propagation time ∆tEB “ ∆tEA ´ ∆tBA appeared. It is the time difference
between the photon emission on the emitting S/C and photon emission of the local laser on
the receiving S/C in the GCRS system (cf. fig. 2.30). The laser phase noise terms can be
written as

˘ ΦLFN,ipτipt´ ∆tEAqq ¯ ΦLFN,jpτjpt´ ∆tBAqq
« ˘ΦLFN,iptq ¯ δωLFN,i ¨ ∆tEA ¯ ΦLFN,jptq ˘ δωLFN,j ¨ ∆tBA, (2.172)

which is a sufficient approximation for the purpose of this section.

Combining the previous approximations into ϕPM|j yields

ϕPM|jptq “ `∆ω̃ ¨ t¯ ω̃ ¨ ∆tEB ˘ ΦLFN,iptq ¯ ΦLFN,jptq
¯ δωLFN,i ¨ ∆tEA ˘ δωLFN,j ¨ ∆tBA
¯ ω̃ ¨ pδτi ´ δτjq
¯ ω̃ ¨ p`δ 9τj ¨ ∆tBA ´ δ 9τi ¨ ∆tEAq

´ ∆ω̃

2
¨ p∆tEA ` ∆tBAq ´ ∆ω̃

2
¨ pδτi ´ δ 9τi∆tEA ` δτj ´ δ 9τj∆tBAq

˘ ∆ΨE,i ¯ ∆ΨB,j ˘ ϑj ` ΥPR,j ` δϕPM,USO,j ` δϕPM,j ` ΥPM,j

` const., (2.173)

with upper signs applying for the frequency ordering ω̄i|i ą ω̄j|j . The first term in the first
line contains a monotonically increasing phase ramp, given by the beatnote frequency ∆ω̃.
The second term is typically the ranging observation, which will be addressed subsequently.
The next two terms indicate the laser phase noise ΦLFN of both S/C. The second line contains
further fluctuations of the laser, which are expressed as laser frequency noise δωLFN. The
third line includes the effect of time dilation and is responsible for a transverse Doppler effect.
The fourth line describes further relativistic corrections, which are multiplied with the mean
optical frequency ω̃. The fifth line has terms proportional to the beatnote frequency ∆ω̃,
while the terms on the last lines have been addressed previously and contain effects due to
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wavefront overlap ϑj , photoreceiver transfer function ΥPR,j , USO timing error δϕPM,USO,j ,
interferometric phase readout noise δϕPM,j and phasemeter transfer function ΥPM,j . The
constant bias indicates that with laser interferometry one can not determine the absolute
inter-satellite distance but only a biased range.

So far, the observation equation for ϕPM|jptq is independent of the actual desired mea-
surement, i.e. the instantaneous range ρinstptq between both S/C CoM in the GCRS. It is
important to state the coordinate system, because the instantaneous range, and distance in
general, is a quantity depending on the coordinate system due to relativistic effects such as
length contraction. The ranging information in a phase observation shows typically up as a
product of an optical frequency ω̃ times a propagation time ∆t, here, it is the second term
in the first line in eq. (2.173). The time difference ∆tEB is the photon time of flight from
emission on the sender S/C to the photodiode at the receiver S/C minus the time of flight
from the local laser to the photodiode on the receiver craft. It can be separated into three
contributions, namely into the desired instantaneous range ρinst, into contributions from the
interferometer instrument δtEB,ifo and into corrections to the inter-satellite time of flight
∆tPQ,corr:

∆tEB “ ∆tEA ´ ∆tBA (2.174)

“ ρinstptq{c0 ` ∆tPQ,corrptqlooooooooooooooomooooooooooooooon
∆tPQ

`δtEB,ifoptq. (2.175)

The term ∆tPQ expresses the light propagation time between the hypothetical events P and
Q (cf. fig. 2.30), which means between emission of the light wave at the emitter CoM and
reception of the light at the receiver CoM at GCRS coordinate time t. This would be the
ideal, error-free, and relativistically correct ranging measurement. However, ∆tPQ differs
from the actual measurement ∆tEB by δtEB,ifo, which is the error due to the interferometer
instrument. The proper vacuum speed of light is labeled as c0. Eq. (2.175) is revisited in
subsequent sec. 2.5 on photon time of flight corrections.

It is remarked that the delta terms ∆ω̃, δτ and δ 9τ in eq. (2.173) are orders of magnitude
smaller then the mean optical frequency ω̃, hence, mutual products of these delta terms
are even smaller and can be approximated or neglected. Furthermore, the magnitude of ∆t
terms expressing the time of flight between both S/C, such as ∆tEB or ∆tEA, is dominated by
ρinstptq{c0. For this reason one can approximate terms in ϕPM|j , which have a small magnitude
and which contain a light propagation time ∆t. With this in mind one obtains from eq. (2.173)
the following final expression for the one-way ranging (OWR) phase observable

ϕ
(OWR)
PM|j ptq “ `∆ω̃ ¨ t¯ ω̃ ¨ ρinstptq{c0 ¯ ω̃ ¨ δtEB,ifoptq ˘ ΦLFN,iptq ¯ ΦLFN,jptq

¯ δωLFN,i ¨ ρinstptq{c0 ˘ δωLFN,j ¨ ∆tBA ´ ∆ω̃

2
¨ ρinstptq{c0

¯ ω̃ ¨ pδτi ´ δτjq ¯ ω̃ ¨ ∆tPQ,corr ´ ∆ω̃

2
pδτi ` δτjq ˘ ω̃ ¨ δ 9τi ¨ ρinstptq{c0

˘ ∆ΨE,i ¯ ∆ΨB,j ˘ ϑj ` ΥPR,j ` δϕPM,USO,j ` δϕPM,j ` ΥPM,j

` const., (2.176)

where the terms with small magnitude were omitted, i.e.

∆tBA ¨ ∆ω̃ « ∆ω̃ ¨ δ 9τi ¨ ∆tEA « δ 9τj ¨ ∆tBA « ˘δωLFN,j ¨ ∆tBA « 0. (2.177)

The first and second line in eq. (2.176) contain the non-relativistic terms, while the third
line accounts for the relativistic effects. One aim of this thesis chapter is to show that all
the constituents in eq. (2.176) are understood and can be removed in post-processing, so
that one can recover the instantaneous range between both S/C center of mass or GRPs.
Similar equations will be derived in the subsequent sections for the other and more relevant
functional concepts such as the transponder scheme. However, at first, the relevance of some
terms in eq. (2.176) is analyzed.
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Figure 2.31: (Left panel:) One-way ranging noise due to (laser) frequency noise (LFN)
for different frequency standards or requirements with a S/C separation of L “ 100 km.
The equivalent laser frequency noise with units of Hz{

?
Hz is shown in fig. 2.8. The gray

trace indicates the frequency noise of microwaves, which are derived from the USO stability
discussed in sec. 2.3.4 on the USO. (Right panel:) The black lines at the top show the
expected ranging signals of a GRACE-like constellation with L “ 100 km and h “ 400 km.
The total ranging signal consists of the sum of time-variable plus static gravity field, however,
both contributions have been separated for illustration. The time-variable signal was derived
from the ESA ESM model [Dobslaw et al., 2015]. The gray bold line indicates the sensitivity
goal of 25 nm{

?
Hz ˆ NSFpfq. The blue, magenta and green traces show noise contributions

present in (laser) interferometry. All traces consider an optical wavelength of λ “ 1064 nm.

2.4.2 One-Way Ranging

The one-way ranging scheme as shown in fig. 2.30 is the most simple ranging approach. The
ranging phase observable, i.e. the phasemeter output, was derived in the previous section

with final result for ϕ
(OWR)
PM|j given in eq. (2.176). It is anticipated that the dominant noise

sources are the laser phase noises from the emitter ΦLFN,iptq and from the receiver ΦLFN,jptq.
In the following, it is assumed that the wave sources on both S/C have a similar frequency
stability and are uncorrelated, which allows the spectral density of phase fluctuations to be
written as

ASDrΦLFN,i ´ ΦLFN,jspfq “
?
2 ¨ ASDrΦLFNspfq “

?
2 ¨ 2π ¨ ASDrδνLFNspfq

2πf
. (2.178)

The phase fluctuations and the phase ϕ
(OWR)
PM|j can be converted to a length by dividing the

phase (fluctuations) with the wave number 2π{λ “ 2πν̄i|i{c0, whereby it is neglected for the
moment that the true and mean in-orbit frequency ν̄i|i is only known with limited accuracy.

The (laser) frequency noise (LFN) of various sources has been discussed in sec. 2.3.2 on
optical frequency standards and was shown in fig. 2.8. One can use this information and
apply eq. (2.178) to produce the plot shown in the left panel of fig. 2.31. The plot can be
compared to the right panel, where the goal sensitivity of 25 nm{

?
HzˆNSFpfq for a NGGM

ranging instrument is depicted (cf. eq. (1.39)). The black traces on the right side show the

expected ranging signal. In addition, three noise contributors present in ϕ
(OWR)
PM|j are shown

as the dark blue, magenta and green traces, which correspond to ΥPR,j , δϕPM,USO,j and
δϕPM,j , respectively. Since the one-way ranging scheme utilizes a single interferometer and
phasemeter, these contributions are solely caused on the receiver side.

The green trace on the right panel of fig. 2.31 indicates the phase readout noise denoted
as ASDrδϕPM,js, which is given by the inverse carrier-to-noise density and has been discussed
in the sec. 2.3.7 on the phasemeter (cf. eq. (2.125)). Here, the shown trace uses a carrier-
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to-noise density of 70.0 dB-Hz, which is a worst-case assumption. This noise would be even
lower for a higher carrier-to-noise density or higher signal-to-noise ratio.

The magenta traces show the phase noise due to USO timing jitter δϕPM,USO,j , which has
been defined in eq. (2.124). The two different magenta traces indicate different underlying
timing jitter ASDrδτUSOs. The solid magenta line considers a stability as specified for the
NGGM USO in sec. 2.3.4. The dashed magenta line assumes the post-processed timing jitter
ASDrδτUSO, PPs, which also includes information from GNSS and was defined in eq. (2.98).
Both magenta traces are based on a worst-case beatnote frequency of 20MHz, which can be
considered as an upper limit for the jitter noise contributor. The noise due to the USO timing
offset (cf. eq. (2.124)) has been omitted here, but will be shown in a subsequent section.

The dark blue traces on the right panel of fig. 2.30 cover the effect of the photoreceiver
transfer function ASDrΥPR,js, which is predominantly a phase delay. The solid blue line
indicates the raw coupling (cf. eq. (2.85)), while the dashed blue trace includes the effect of
a post-processing correction (cf. eq. (2.89)).

It should be noted that even the best frequency standards can not reach the goal sensitiv-
ity, which makes this functional concept unpractical for a GRACE-like or NGGM gravimetric
mission. The laser noise can be significantly reduced by two-way ranging schemes, which will
be introduced in the next subsections.

In addition, there are some other technical difficulties, which arise in one-way schemes.
For example, the laser frequency on emitter and receiver needs to be stabilized to similar
absolute values, shifted only by a few MHz, in order to avoid zero-crossings of the beatnote
frequency at the photodiode (cf. sec. 2.3.7 on phasemeter). Moreover, the emitter satellite
has no information on the correct pointing of the laser beam and would require divergent
beams to strike the distant S/C.

However, one-way microwave ranging is commonly used in satellite Doppler tracking. The
sensitivity of such microwave Doppler tracking can be assessed with the gray trace on the left
panel of fig. 2.30, where the NGGM USO frequency stability (cf. table 2.2 and the magenta
solid-dotted trace in fig. 2.8) were used to plot the equivalent ranging noise due to phase
fluctuations. This means the USO acts as frequency standard and source to produce the
radiation. The noise spectral density of roughly 5 ➭m{

?
Hz ¨ p1Hz{fq1.3 at high frequencies

(f « 1Hz, not shown in the plot anymore) corresponds after averaging for 60 s with a sampling
rate of 1Hz to a line-of-sight (1σ) rms velocity error of

σ “ 1?
2

¨
˜ż 1{2Hz

1{60Hz

´
5 ➭m{

?
Hz ¨ p1Hz{fq1.3 ¨ p2πfq

¯2
df

¸1{2

« 26 ➭m{s, (2.179)

which agrees well with the typical performance in one-way Doppler tracking of 30 ➭m{s [Iess
et al., 2012]. In eq. (2.179), the 1{

?
2 rescales the dual USO noise level from fig. 2.31 to a

single USO level, since the ground station can utilize a more precise clock.

2.4.3 Dual One-Way Ranging (DOWR)

The dual one-way ranging scheme is basically a duplication of the one-way ranging scheme
as shown in the sketch (cf. upper panel of fig. 2.32) and in the Minkowski diagram (lower
panel). Both S/C emit, receive and interfere light. Phasemeter on-board of each S/C track
the phase. The DOWR is characterized by a common reception time tA “ tA1 “ t, which is
achieved in post-processing by interpolating the data streams.

For the analysis of the DOWR phase observable Θ one can directly use eq. (2.176) for

ϕ
(OWR)
PM,j . To derive the observation on S/C i, the following rules can be applied. First, all

indices i and j are exchanged. Secondly, the signs ˘ and ¯ are exchanged, because the
frequency ordering is opposite on the other S/C. Furthermore, all event labels A,B, ... are
replaced by the corresponding primed quantities (cf. fig. 2.32)). One arrives at the following
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Figure 2.32: A sketch of a dual one-way ranging interferometer. The Minkowski diagram
in the central panel shows the actual light paths, while the bottom panel shows the light
paths (green) of an ideal range measurement between the two CoM or GRP of the S/C.
Furthermore, the instantaneous range ρinst is depicted.
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expression for S/C i

ϕ
(OWR)
PM|i ptq “ `∆ω̃ ¨ t˘ ω̃ ¨ ρinstptq{c0 ˘ ω̃ ¨ δtE1B1,ifoptq ¯ ΦLFN,jptq ˘ ΦLFN,iptq

˘ δωLFN,j ¨ ρinstptq{c0 ´ ∆ω̃

2
¨ ρinstptq{c0

¯ ω̃ ¨ pδτi ´ δτjq ˘ ω̃ ¨ ∆tP 1Q1,corr ´ ∆ω̃

2
¨ pδτj ` δτiq

¯ ω̃ ¨ δ 9τj ¨ ρinstptq{c0
¯ ∆ΨE1,j ˘ ∆ΨB1,i ¯ ϑi ` ΥPR,i ` δϕPM,USO,i ` δϕPM,i

` ΥPM,i ` const., (2.180)

which can be combined with ϕ
(OWR)
PM,j to cancel the major laser phase noise terms ΦLFN and

to provide the DOWR phase:

Θptq “ ϕ
(OWR)
PM|i ptq ´ ϕ

(OWR)
PM|j ptq

“ ˘2 ¨ ω̃ ¨ ρinstptq{c0 ˘ ω̃ ¨ pδtEB,ifoptq ` δtE1B1,ifoptqq
˘ pδωLFN,i ` δωLFN,jq ¨ ρinstptq{c0
˘ ω̃ ¨ p∆tPQ,corr ` ∆tP 1Q1,corrq ¯ ω̃ ¨ pδ 9τi ` δ 9τjq ¨ ρinstptq{c0
˘ p∆ΨE,i ´ ∆ΨE1,jq ¯ p∆ΨB,j ´ ∆ΨB1,iq ˘ ϑj ¯ ϑi

´ ΥPR,j ´ δϕPM,USO,j ´ δϕPM,j ` ΥPR,i ` δϕPM,USO,i ` δϕPM,i

´ ΥPM,j ` ΥPM,i ` const. (2.181)

The first summand in the first line in eq. (2.181) contains the ranging information, i.e. twice
the instantaneous distance between both S/C CoM. The second summand accounts for inter-
ferometer instrument errors (δtifo), such as attitude-to-ranging coupling in both OWR paths.
The second line contains the laser frequency noise of both lasers. The third line contains
delays due to relativistic effects and ionosphere (∆tPQ,corr ` ∆tP 1Q1,corr), which will be ad-
dressed in sec. 2.5. The second addend in the third line is a relativistic modulation (9 δ 9τ).
Line four contains the static or only very slowly varying laser phase variations (∆Ψ), which
are highly suppressed due to the difference of unprimed and primed quantities. Furthermore,
ϑ accounts for the phase variations of the light fields over the active area of the photodiode,
which is determined by the overlap integral of the electric fields. The next line contains fur-
ther contributors, which have been discussed in the previous one-way ranging section. The
last line contains the phasemeter transfer function ΥPM,j and the constant bias, which should
remind the reader that one can not determine the absolute inter-satellite distance, but only
a biased range.

The DOWR phase observable Θptq contains twice the inter-satellite distance. However,
it can be converted to a (phase) equivalent distance ρΘptq by

ρΘptq “ c0 ¨ Θptq
¯2 ¨ ω̃est.

` ǫSCF, (2.182)

where ω̃est. is the best-knowledge mean angular frequency of both S/C, since the true mean
in-orbit frequency ω̃ “ pω̄i|i ` ω̄j|jq{2 is not known. This introduces a small scale factor
error ǫSCF, which depends on the magnitude of Θptq. In sec. 2.3.1 on the laser, an in-orbit
knowledge for λ of 1 ppm was stated as realistic for cavity-based frequency standards with
NPRO laser. Thus, the range with unit of meters can be obtained from the phase with an
accuracy of 1 ppm. This is not a classical noise source but a multiplicative error. It is depicted
by the orange trace in the lower panel of fig. 2.33.

The (phase) equivalent distance ρΘ is to first order the desired instantaneous inter-S/C
distance ρinst. However, deviations are present due to noise, errors and relativistic effects.
One major noise source is laser frequency noise, which is shown in the upper panel of fig. 2.33
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Figure 2.33: (Upper panel:) Dual one-way ranging (DOWR) noise due to (laser) frequency
noise (LFN) for different frequency standards or requirements with a S/C separation of
L “ 100 km. The equivalent laser frequency noise with units of Hz{

?
Hz is shown in fig. 2.8.

(Lower panel:) The black lines at the top show the expected ranging signals of a GRACE-
like constellation with L “ 100 km and h “ 400 km. The total ranging signal consists of the
time-variable plus static gravity field, however, both contributions have been separated for
illustration. The time-variable signal was derived from the ESA ESM model [Dobslaw et al.,
2015]. The gray bold line indicates the NGGM sensitivity goal of 25 nm{

?
Hz ˆ NSFpfq.

All traces consider an optical wavelength of λ “ 1064 nm and refer to a single-way distance,
i.e. they are summands in ρΘptq (cf. eq. (2.182)).
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Figure 2.34: Amplitude spectral density of different noise contributions in a dual one-
way ranging measurement. The y-axis refers to the (single-way) distance fluctuations, al-
though the DOWR phase is to first order proportional to twice the distance. This plot
assumes an inter-satellite distance of L “ 100 km. Other parameters for this plot are
λmicrowave “ c{24GHz “ 1.25 cm, λlaser “ 1064 nm, C{N0 “ 70.0 dB-Hz and maximum
beatnote frequencies (for timing jitter) of 20MHz and 1MHz for laser and microwave, re-
spectively.

for various frequency standards or experiments. The thick black trace is the NGGM laser
frequency noise requirement (cf. eq. (2.77)), which will be assumed as baseline in the fur-
ther discussion. It is below the gray sensitivity goal curve, which is 25 nm{

?
Hz ˆ NSFpfq

(cf. eq. (1.39). One should note that the frequency stability of a free-running NPRO laser is
insufficient (green trace) and needs to be improved with a dedicated frequency standard.

The lower panel of fig. 2.33 shows other constituents of Θptq and ρΘptq in the spectral
domain. The magnitudes of the phase readout noise δϕPM and of the timing jitter noise in
δϕPM,USO are scaled by 1{

?
2 in the ASD plot compared to the one-way ranging scheme, since

two uncorrelated phasemeters and USOs are present in DOWR. The effect of the phasemeter
transfer function ΥPM can be corrected in post-processing (cf. sec. 2.3.7). The dashed light
blue trace illustrates already the effect of the error in the correction δΥPM,PP, which is mod-
eled here as a simple delay of the phase output by 25 ns per phasemeter (cf. eq. (2.123)). Since
the effect of the transfer functions Υ from phasemeter and photoreceiver are not stochastically
driven, they are assumed to add up linearly and are hence not rescaled by

?
2. The shown

dark blue photoreceiver ΥPR line is based on the post-processing correction (cf. eq. (2.89) as
well.

The second magenta line at the bottom illustrates the negligible effect from the USO
timing offset δτUSO,off, which is a second term in the USO induced phase error δϕPM,USO

(cf. eq. (2.118) and (2.124)) with the following PSD expression in the DOWR case:

p2π ¨ f ¨ δτUSO,off,jq2 ¨ PSDrϕ(OWR)
PM|j s ` p2π ¨ f ¨ δτUSO,off,iq2 ¨ PSDrϕ(OWR)

PM|i s. (2.183)

For this trace, an offset of δτUSO,off “ 100 ps was assumed per S/C, which can be understood
as the systematic bias or slowly varying offset in the time stamping of phase samples. In
contrast, the timing jitter accounts for fluctuations within the science measurement frequency
band. The offsets δτUSO,off can be caused by errors in the required interpolation of phase
samples to a common reception time. However, this offset corresponds to a a further delay
next to delays from the uncertainty in the phasemeter and photoreceiver transfer functions,
which are assumed to be larger. The three lines showing the errors due to delays (ΥPM, ΥPR
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and USO time offset) in fig. 2.33 are based on the assumption that the DOWR is realized with
a frequency standard and not by a free-running laser, such that the actual phase measurement
is dominated at low frequencies by the ranging (Doppler) signal on both S/C. If free-running
lasers would be used, laser phase noise would dominate the phase measurement and the errors
due to delays would be driven by the laser phase noise. Thus, DOWR with free-running lasers
is more demanding in terms of requirements on delays and timing offsets.

Many relativistic contributions related to the proper time cancel out in eq. (2.181) for

Θ compared to the one-way ranging observable ϕ
(OWR)
PM , for example, the terms related to

the transverse Doppler effect or, more generally, to the gravitational and special relativistic
frequency shift. These are proportional to the product of optical frequency and proper time
(ω̃ ¨ δτ). The typical magnitude of the remaining term ω̃ ¨ pδ 9τi ` δ 9τjq ¨ ρinstptq{c0 in eq. (2.181)
is shown by the red trace in the lower panel of fig. 2.33, which can be regarded as uncritical.
Moreover, it can be corrected in post-processing due to its non-stochastic nature. This
term can be understood as the remaining effect of the gravitational and special relativistic
frequency shift in the DOWR combination, whereby most of the effect (ω̃ ¨ δτ) is canceled by
the two-way ranging combination. Many other relativistic contributions on the propagation
time between the satellites are absorbed in ∆tPQ,corr ` ∆tP 1Q1,corr and will be addressed in a
subsequent section.

The DOWR scheme is used by the microwave ranging instrument in GRACE and GRACE
Follow-On. An approximate frequency stability of microwave radiation is indicated by the
dashed red trace in the upper panel of fig. 2.33, which was derived from the USO stability
discussed in sec. 2.3.4. It is remarked that the frequency stability of the microwave radiation
is approximately one order of magnitude lower than the stability of the laser light. Hence, the
anticipated larger gain in sensitivity of a laser interferometer cannot solely be caused by the
frequency or phase noise of the radiation with units of rad{

?
Hz or Hz{

?
Hz. The sensitivity

difference between a microwave and a laser ranging system is illustrated in fig. 2.34, where
the laser frequency noise δωLFN, the phase readout noise δϕPM and the timing jitter noise
δϕPM,USO are shown for microwave (red traces) and for a laser instrument (black traces). One
should notice that the microwave instrument is limited by phase readout noise δϕPM, which
is called in the GRACE KBR context system noise [Kim, 2000], and timing jitter δϕPM,USO,
while the interferometer is limited by frequency noise δωLFN. The timing jitter and phase
readout noise scale with the wavelength, which is a factor λmicrowave{λlaser « 104 smaller for
the laser light. The used worst-case value for the carrier-to-noise density of 70.0 dB-Hz in the
plot is in agreement with the value from [Kim, 2000, p. 112] for the microwave instrument
and is also realistic for a laser ranging instrument (see sec. 2.3.7 on phasemeter). However,
is is stressed that other important noise contributions such as the spacecraft pointing jitter
and the ionospheric noise have been neglected in this comparison.

Another difference due to the wavelength concerns the beatnote frequencies on both
satellites. A range rate of 5m{s between the satellites induces a frequency Doppler shift
of approx. 5MHz for 1064 nm laser light, while the same rate causes 400Hz at a wave-
length of 1.25 cm. To avoid zero crossings of the beatnote frequency, the USOs on-board of
each GRACE satellite are detuned by 99Hz [Dunn et al., 2003], which corresponds to ap-
prox. 20 ppm or 0.5MHz at the 24.5GHz K band. A crystal oscillator frequency can be easily
altered by a change in the geometry. As laser interferometry exhibits larger Doppler shifts
in terms of Hertz, the offset frequency needs to be higher, e.g. at 10MHz, but the fractional
detuning is smaller around 0.035 ppm, if a 1064 nm laser wavelength is assumed. Such a small
but well-defined detuning is difficult to achieve directly with laser frequency standards and
would likely require additional frequency shifting components to the author’s knowledge.

A transponder scheme can be envisioned to circumvent this issue, which will be explained
in the next sections.
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2.4.4 Derivation of Transponder-based Ranging

In this functional concept both S/C receive and emit laser light and both perform an in-
terferometric phase readout, as in the DOWR case. One satellite emits frequency stabilized
light at an event E in the Minkowski diagram in fig. 2.35. This S/C with active frequency
stabilization is denoted as master (M). The distant S/C denoted as slave receives the light
at coordinate time tA and performs a phase readout with the interferometer and phasemeter,
which can be written as (cf. eq. (2.164)):

ϕ
pOLq
PM|SptAq “ ˘ω̄M |M ¨ τM ptA ´ ∆tEAq ˘ ΦLFN,M pτM ptA ´ ∆tEAqq ˘ ∆ΨE,M

¯ ω̄S|S ¨ τSptA ´ ∆tBAq ¯ ΦLFN,SpτSptA ´ ∆tBAqq ¯ ∆ΨB,S

˘ ϑSptAq ` ΥPR,S ` δϕPM,USO,S ` δϕPM,S ` ΥPM,S ` const., (2.184)

where the first line contains the phase of the light received from the master, the second
line contains the phase of the local light and the third line contains additional contributions
from interferometry, such as the phase due to wavefront overlap (ϑS), contributions from
the transfer function of the photoreceiver and phasemeter (Υ) as well as USO timing errors
δϕPM,USO,S. The previous expression can be approximated as (cf. eq. (2.176))

ϕ
(OL)
PM|S “ `∆ω̃ ¨ tA ¯ ω̃ ¨ ρinstptAq{c0 ¯ ω̃ ¨ δtEB,ifoptAq ˘ ΦLFN,M ptAq ¯ ΦLFN,SptAq

¯ δωLFN,M ¨ ρinstptAq{c0 ˘ δωLFN,S ¨ ∆tBA ´ ∆ω̃

2
¨ ρinstptAq{c0

¯ ω̃ ¨ pδτM ´ δτSq ¯ ω̃ ¨ ∆tPQ,corr ´ ∆ω̃

2
pδτM ` δτSq ˘ ω̃ ¨ δ 9τM ¨ ρinstptAq{c0

˘ ∆ΨE,M ¯ ∆ΨB,S ˘ ϑS ` ΥPR,S ` δϕPM,USO,S ` δϕPM,S ` ΥPM,S

` const., (2.185)

The upper sign applies in the expression, if the laser frequency of the master laser ω̄M |M is
higher than the frequency of the slave S/C ω̄S|S . Furthermore, as in the DOWR case, it is
assumed that the relative velocity between both S/C along the line of sight 9ρinst is low enough
such that the Doppler induced frequency shift does not change the frequency ordering, i.e.

9ρinst{c0 ¨ ω̄M |M ă |ω̄S|S ´ ω̄M |M | (2.186)

However, the slave S/C uses the measured phase in a feedback control loop, the so-called
frequency offset phase-locked loop (PLL) as explained in sec. 2.3.9, to zero the difference
between the measured phase and a reference phase ϕref “ ωoff ¨ τUSO ` const. This is achieved
by actuating the laser frequency, which can be modeled here by an adjustment of ∆ΨS , which
was so far simply a slowly-varying phase term of the laser. The actual measured closed-loop
phase has been derived in the frequency domain in eq. (2.141) in sec. 2.3.9. If the loop gain
HLoop is sufficiently high, one can obtain a simple time-domain expression of the closed-loop
phase measurement as (cf. eq. (2.142))

ϕ
(CL)
PM|SpτSptAqq « ωoff|S ¨ τUSO,SpτSptAqq ´ ωoff,S ¨ ∆τUSO,Dec2,SpτSptAqq

` δϕPM,USO,S ` const. ` O

ˆ
1

HLoop

˙
(2.187)

where the first term is a phase ramp with constant frequency ωoff,S , the second summand
depends on the delay time of the second decimation filter in the phasemeter. This term
is almost constant, however, it may contain a small relativistic modulation and is for this
reason kept for further analysis. The third addend denotes the USO timing error of the phase
measurement, which arises from the conversion of the on-board phase measurement to the
GCRS coordinate time t. It contains the effect of timing jitter and of the timing offset. The
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Figure 2.35: Transponder ranging scheme, where the slave spacecraft locks its laser with
an offset frequency to the incoming light field. The lower plot shows the corresponding
Minkowski diagram of light paths (red and blue arrows) in a transponder concept. The green
arrows indicate the light world lines of an ideal range measurement between the CoM of both
S/C.
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Figure 2.36: Constituents of the closed-loop phase ϕ
(CL)
PM,S on the slave S/C. The frequency

offset PLL open loop gain HLoop has been defined in eq. (2.143). The laser phase noise
for master and slave is based on the NGGM frequency standard and on the free-running
NPRO stability, respectively, shown by the green and black trace in fig. 2.8. The magenta
trace considers already post-processing corrections (cf. eq. (2.124)). The phase variations
have been converted to equivalent displacement spectral densities under the assumption of a
wavelength of λ “ 1064 nm.

jitter induced phase noise depends on the frequency of the beatnote, which is ωoff and can
be considered of the order of 2π ¨ 10MHz for the slave S/C. The phase noise induced by the
static offset ∆τUSO,off depends on the measured phase variations in the measurement band,
which are suppressed and negligible in closed-loop operation on the slave satellite. Thus, as
in the DOWR case, the term δϕPM,USO,S is dominated by timing jitter and is shown in terms
of the equivalent displacement noise as magenta line in fig. 2.36.

To justify the omission of the Op1{HLoopq term in eq. (2.187), one needs to ensure that the
open loop phase contributions are suppressed by the open loop gainHLoop to a negligible level,

which is shown in fig. 2.36 as well. The dominant contributors to ϕ
pOLq
PM|S are the free-running

laser phase noise from the slave S/C (ΦLFN,S , green trace), the laser phase noise from the
frequency-stabilized master laser (ΦLFN,M , black trace) and the actual ranging signal arising
from the Doppler shift (ρinstptq, red trace), which is implicitly given by the propagation time

between both S/C (∆tEA) in eq. (2.184). Thus, the open loop phase variations ϕ
(OL)
PM,S are

suppressed by the control loop to a level below 1 nm{
?
Hz as apparent from fig. 2.36.

The delay term ωoff,S ¨ ∆τUSO,Dec2,S in eq. (2.187) is a pure digital delay of the second
decimation filter, and hence it is dependent on the USO clock rate. However, as the USO
clock time is a good approximation for the proper time, one can approximate it rigorously
with the help of the delta proper time (cf. eq. (2.165)):

ωoff,S ¨ ∆τUSO,Dec2,S « ωoff,S ¨ NUSO,Dec2,S ¨ p1 ´ δ 9τSq
“ const. ´ ωoff,S ¨ NUSO,Dec2,S ¨ δ 9τS , (2.188)

where NUSO,Dec2,S is the proper delay in the local Lorentz frame of the S/C. The magnitude
of NUSO,Dec2,S is determined by the sampling rate of the science data, which is the output of
the second decimation filter. The effect of this term on the phase is negligible even with a
worst-case assumption of NUSO,Dec2,S « 1 s and with ωoff,S “ 2π ¨ 10MHz, which is indicated
by the light blue trace in fig. 2.36. Thus, a post-processing correction of this term is not
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required but would be possible.

In summary, the phase readout at the slave S/C is in good approximation a constant ramp
over time without ranging information. This zero measurement was obtained by imprinting
the phase information from the received light of the master satellite onto the laser light
of the slave S/C. It is important to notice that the same light used for interference and
photodetection on the slave S/C is also transmitted back to the master. The phase of the
light at the emission event B on the slave S/C in fig. 2.35 can be directly deduced from
eq. (2.140) and (2.138) as

ΦBpτSptBqq “ `ΦRXpτSptBq ` ∆τBA,Sq ` ϑSpτSptBq ` ∆τBA,Sq ` δϕPM,S

¯ ωoff,S ¨ pτUSO,SptBq ` ∆τp,SptBq ` ∆τBA,Sq ` O p1{HLoop,Sq (2.189)

“ `ΦRXpτSptAqq
` ϑSpτSptAqq ` δϕPM,SpτSptAqq ¯ ωoff,S ¨ τUSO,SpτSptAqq
¯ ωoff,S ¨ ∆τp,SptBq ` O p1{HLoop,Sq (2.190)

“ `ω̄M |M ¨ τM ptEq ` ΦLFN,M pτM ptEqq ` ∆ΨE,M

` ϑSpτSptAqq ` δϕPM,SpτSptAqq ¯ ωoff,S ¨ τUSO,SpτSptAqq
¯ ωoff,S ¨ ∆τp,SptBq ` O p1{HLoop,Sq (2.191)

where ΦRXpτptAqq is the received phase at event A, i.e. the first line of eq. (2.184), which
was used in the recast to obtain eq. (2.191). The phase of the emitted light ΦB at the slave
S/C does not contain contributions from the slave laser, e.g. no carrier phase ω̄S|S ¨ τS and
no laser phase noise ΦLFN,S , because these are suppressed by the control loop and absorbed
together with other terms in O p1{HLoop,Sq. The light phase ΦB is positive, however, the
sign of the frequency shift ωoff,S depends on the frequency ordering between master and slave
laser. Furthermore, as in the DOWR case, it is required that the Doppler frequency shift is
smaller than the offset frequency, such that the frequency order can not be reversed by the
relative motion between S/C. This means that eq. (2.186) is equivalent to

9ρinst{c0 ¨ ω̄M |M ă ωoff,S (2.192)

which provides an operational lower limit for the selection of the offset frequency ωoff,S de-
pending on the (maximum) expected relative velocity 9ρinst. In the following discussion, the
generic value of ωoff,S “ 2π ¨ 10MHz is kept, which fulfills the condition in eq. (2.192) for the
gravimetric mission concepts discussed in this thesis.

The term ∆τp,S in eq. (2.191) is a delay due to the effect of the transfer functions from
photoreceiver, ADC, DPLL and first decimation filter on the slave S/C (cf. transfer function
Hc
p in sec. 2.3.9). Although this delay is constant in the local Lorentz frame of the slave

S/C, i.e. the proper delay with respect to the proper time of the satellite, it may show a
small variation in the GCRS coordinate time t. Therefore, the term is kept for a subsequent
evaluation.

The emitted light of the slave S/C propagates back to the master, where it is interfered
with the local laser light and the phase of the beatnote is read out. Again, one can exploit
the Lorentz invariance of the phase, which allows the phase at the reception event A1 on
the master satellite to be written simply as the phase at the emission event ΦB on the slave
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satellite. This yields

ϕPM|M ptA1q “ ˘ω̄M |M ¨ τM ptA1 ´ ∆tB1A1q ˘ ΦLFN,M pτM ptA1 ´ ∆tB1A1qq ˘ ∆ΨB1,M

¯ ΦBpτSptBqq
¯ ϑM ptA1q ` ΥPR,M ptA1q ` δϕPM,USO,M ptA1q ` δϕPM,M ptA1q
` ΥPM,M ptA1q ` const. (2.193)

“ ˘ω̄M |M ¨ τM ptA1 ´ ∆tB1A1q ˘ ΦLFN,M pτM ptA1 ´ ∆tB1A1qq ˘ ∆ΨB1,M

¯ ω̄M |M ¨ τM ptA1 ´ ∆tEA1q ¯ ΦLFN,M pτM ptA1 ´ ∆tEA1qq ¯ ∆ΨE,M

¯ ϑSpτSptA1 ´ ∆tAA1qq ¯ δϕPM,SpτSptA1 ´ ∆tAA1qq
` ωoff,S ¨ τUSO,SpτSptA1 ´ ∆tAA1qq ` ωoff,S ¨ ∆τp,Spt1A ´ ∆tBA1q
¯ ϑM ptA1q ` ΥPR,M ptA1q ` δϕPM,USO,M ptA1q ` δϕPM,M ptA1q
` ΥPM,M ptA1q ` const. ¯ O p1{HLoop,Sq , (2.194)

which is a very generic description of the phase observable on the master S/C. It is noted that
the proper time of the master (τM ) as well as of the slave (τS) S/C appear in the equation.
Furthermore, one-way photon propagation times from the slave to the master, such as ∆tAA1 ,
and round-trip delays, e.g. ∆tEA1 , are present.

The same approximations as in sec. 2.4.1 on the one-way ranging can be used to assess the
magnitude of the single contributors and to derive a relation to the instantaneous range ρinst.
At first, terms with the optical frequency ω̄M |M " 1010rad{s are considered. It is recalled
that the proper time τ is increasing with a rate of almost 1 s{s in the GCRS, while the delta
proper time is δτ “ t ´ τ (cf. eq. (2.165)) and has a rate of the order of δ 9τptq « 10´9 s{s
(cf. eq.(2.14)). Furthermore, the photon propagation time ∆t for distances on a single S/C,
one-way between both S/C and round-trip between both S/C are of the order of 10´8 s,
0.33ms and 0.66ms, respectively, for an assumed satellite separation of 100 km.

Thus, one can approximate the terms depending on the optical frequency as

ω̄M |M ¨ pτM ptA1 ´ ∆tB1A1q ´ τM ptA1 ´ ∆tEA1qq
“ ω̄M |M ¨ rtA1 ´ ∆tB1A1 ´ δτM ptA1 ´ ∆tB1A1q ´ ptA1 ´ ∆tEA1 ´ δτM ptA1 ´ ∆tEA1qqs (2.195)

“ ω̄M |M ¨

¨
˚̋´∆tB1A1 ` ∆tEA1loooooooooomoooooooooon

“∆tEB1

`δτM ptA1 ´ ∆tEA1q ´ δτM ptA1 ´ ∆tB1A1q

˛
‹‚ (2.196)

« ω̄M |M ¨ p∆tEB1 ` δτM ptA1q ´ δ 9τM ptA1q ¨ ∆tEA1 ´ δτM ptA1q ` δ 9τM ptA1q ¨ ∆tB1A1q (2.197)

« ω̄M |M ¨ ∆tEB1 ´ ω̄M |M ¨ δ 9τM ptA1q ¨ 2 ¨ ρinstptA1q{c, (2.198)

where the time difference ∆tEB1 contains mainly the ranging information. This quantity is
a difference between ∆tEA1 and ∆tBA1 , where ∆tEA1 is the time of flight of a photon from
the emission event on the master S/C to the reception event at the photodiode after the
round-trip path, while ∆tBA1 is the time of flight of another local oscillator photon from the
master laser to the master photodiode. One can write the propagation time ∆tEB1 in terms
of the instantaneous range and correction terms:

∆tEB1 “ ∆tEA1 ´ ∆tB1A1 (2.199)

“ 2 ¨ ρinstptq{c0 ` ∆tQPR,corrloooooooooooooooomoooooooooooooooon
∆tQPR

`δtifoptq, (2.200)

where δtifo contains corrections due to the interferometer instruments on both S/C, e.g. due
to attitude-to-ranging coupling and other pathlength couplings, while ∆tQPR,corr denotes
corrections for the inter-satellite round-trip time, e.g. due to relativistic delays or ionospheric
effects. The term ∆tQPR is the ideal and relativistically correct round-trip propagation time
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between both S/C CoM shown by the green arrows in the Minkowski diagram in fig. 2.35.
The previous equation is discussed in detail in the subsequent sec. 2.5 on corrections to the
photon time of flight.

The second summand in eq. (2.198) is a relativistic effect, which appeared in similar
form in the DOWR scheme and turned out to be uncritical. It is the remaining effect of
a gravitational and special relativistic frequency shift between the locally used photon for
interference and the round-trip delayed photon. It is pointed out that terms of the form of
optical frequency times delta proper time (ω ¨ δτ), which contain most of the gravitational
and special relativistic frequency shift, canceled out as in the DOWR scheme. Thus, also the
transverse Doppler effect [Rindler, 2012, sec. 3.2] at the optical (carrier) frequency is highly
suppressed in a transponder concept.

The laser phase noise in eq. (2.194) can be rigorously approximated with the help of
eq. (2.168) as

ΦLFN,M pτM ptA1 ´ ∆tB1A1qq ´ ΦLFN,M pτM ptA1 ´ ∆tEA1qq (2.201)

“ ΦLFN,M ptA1 ´ ∆tB1A1 ´ δτM ptA1 ´ ∆tB1A1qq
´ ΦLFN,M ptA1 ´ ∆tEA1 ´ δτM ptA1 ´ ∆tEA1qq (2.202)

« ΦLFN,M ptA1q ´ 2πδνLFN,M ¨ p∆tB1A1 ` δτM ptA1 ´ ∆tB1A1qq
´ pΦLFN,M ptA1q ´ 2πδνLFN,M ¨ p∆tEA1 ` δτM ptA1 ´ ∆tEA1qqq (2.203)

« ´2πδνLFN,M ¨ p´∆tEB1 ` δτM ptA1q ´ δτM ptA1 ´ ∆tEA1qq (2.204)

« 2π ¨ δνLFN,M ptA1q ¨ p`∆tEB1 ´ δ 9τM ptA1q ¨ ∆tEA1q (2.205)

« 2π ¨ δνLFN,M ptA1q ¨ 2 ¨ ρinstptA1q{c. (2.206)

The laser phase variations almost cancel each other, since the phase (noise) is compared to
itself with a small delay. The remaining frequency variations δνLFN,M couple via the round-
trip distance (or delay). The round-trip delay ∆tEA1 was omitted from eq. (2.205) to (2.206),
because it is multiplied with the small δ 9τ and with δνLFN,M , which is also much smaller than
the optical frequency (2π ¨ δνLFN,M ! ω̄M |M ).

The phase ramp due to the frequency offset ωoff,S on the slave S/C in eq. (2.194) is driven
by the USO on the slave S/C, which can be rewritten with the help of eq. (2.97) as

ωoff,S ¨ τUSO,SpτSptA1 ´ ∆tAA1qq (2.207)

“ ωoff,S ¨ τSptA1 ´ ∆tAA1q ` ωoff,S ¨ δτUSO,SpτSptA1 ´ ∆tAA1qq (2.208)

“ ωoff,S ¨ ptA1 ´ ∆tAA1 ´ δτSptA1 ´ ∆tAA1qq ` ωoff,S ¨ δτUSO,SpτSptA1 ´ ∆tAA1qq (2.209)

« ωoff,S ¨ tA1 ´ ωoff,S ¨ δτSptA1qlooooooooooooooooomooooooooooooooooon
ωoff,S ¨τSptA1 q

´ωoff,S ¨ ∆tAA1 ` ωoff,S ¨ δτUSO,SpτSptA1qq (2.210)

« ωoff,S ¨ tA1 ´ ωoff,S ¨ δτSptA1q ´ ωoff,S ¨ ρinstptA1q{c0 ` δϕoff,USO,S . (2.211)

It contains a constant phase ramp ωoff,S ¨ t, which should be ideally modeled via the proper
time, i.e. ωoff,S ¨τS . Because this term depends on the proper time of the slave S/C, it gives rise
to a transverse Doppler effect, however, only for the offset frequency, which is typically of the
order of ωoff{ω̄M |M « 10´7 compared to the optical carrier frequency. Furthermore, a one-
way delay ∆tAA1 « ρinstptA1q{c0 is present, which also causes a longitudinal Doppler effect
in the offset frequency with a small magnitude (« 10´7 ) relative to the primary ranging
information. These terms appear in the phase of the master S/C and may cancel with a
proper combination with the slave data stream in a final ranging measurement, which will
be addressed in the next subsection.

The last approximation concerns the delay term ωoff,S ¨ ∆τp,S from the frequency offset
PLL, which appeared in eq. (2.194). It is the delay from photoreceiver, phasemeter DPLL
and first decimation filter on the slave S/C. This delay is constant in the local Lorentz frame
of the slave S/C, where it is denoted as Np,S . However, in the GCRS, the delay appears
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modulated with the proper time of the slave satellite, which can be written as

ωoff,S ¨ ∆τp,S « ωoff,S ¨ Np,S ¨ p1 ´ δ 9τSq “ const. ´ ωoff,S ¨ Np,S ¨ δ 9τS . (2.212)

This approximation has been already used in eq. (2.188) for the delay of the second decimation
filter NUSO,Dec2,S , which in fact is much larger than Np,S , because Np,S is part of the fast
high-bandwidth DPLL. Thus, bearing the magnitude of NUSO,Dec2,S from fig. 2.36 in mind,
one can safely omit this contribution.

2.4.5 Transponder-based Ranging

Summarizing the recent approximations, one obtains for the phase measurement on the mas-
ter S/C in a transponder scheme the following expression:

ϕPM|M ptq « `ωoff,S ¨ t˘
`
ω̄M |M ¯ ωoff,S{2

˘
¨ 2 ¨ ρinstptq{c0 ` ω̄M |M ¨ δtifoptq

˘ 2π ¨ δνLFN,M ptq ¨ 2 ¨ ρinstptq{c0
´ ωoff,S ¨ δτSptq ¯ ω̄M |M ¨ δ 9τM ptq ¨ 2 ¨ ρinstptq{c0 ˘ ω̄M |M ¨ ∆tQPR,corr
¯ ϑSpt´ ρinstptq{c0q ¯ δϕPM,Spt´ ρinstptq{c0q ` δϕoff,USO,S

¯ ϑM ptq ` ΥPR,M ptq ` δϕPM,USO,M ptq ` δϕPM,M ptq ` ΥPM,M ptq
¯ O p1{HLoop,Sq ` const., (2.213)

The six lines contain 1) a phase ramp due to the offset frequency, the ranging signal and the
interferometer instrument dependent error δtifo of both S/C, 2) the laser frequency noise, 3)
relativistic terms, 4) and 5) other contributors such as effects from the wavefront overlap,
transfer functions and USO induced timing errors, 6) constant bias and terms of the order
O p1{HLoop,Sq.

One should notice from the second addend in the first line in eq. (2.213) that the instan-
taneous range is encoded at the optical frequency

`
ω̄M |M ¯ ωoff,S{2

˘
, which is actually the

mean angular frequency ω̃ between master and slave laser, i.e.

ω̃ “
ω̄M |M ` ω̄S|S

2
“ ω̄M |M ¯ ωoff,S

2
. (2.214)

In addition, the phase ramp due to the offset frequency and its relativistic modulation (ωoff,S ¨
δτS) need to be removed from ϕPM|M to obtain a reasonable ranging measurement. This can

be achieved most easily by subtracting the phase measurement of the slave S/C ϕ
(CL)
PM,S given by

eq. (2.187) from ϕPM|M . In total, one can transform the phase observations in a transponder
scheme to the equivalent (single-way) inter-satellite distance ρMS by (cf. eq. (2.182))

ρMS “
c0 ¨ ϕPM|M ptq ´ c0 ¨ ϕ(CL)

PM|Sptq
˘2 ¨ ω̃est.

` ǫSCF ` const., (2.215)

where ω̃est. denotes the best-knowledge or estimated mean laser frequency of master and
slave laser, and ǫSCF is a scale factor error arising from the difference between ω̃est. and ω̃.
It is remarked that the previous equation used a combination of phase measurements at the
same coordinate time. Another way to define the phase-derived range is via the delayed slave
measurement, which is equivalent to the previous formula in the high loop gain limit, i.e.

ρMS “
c0 ¨ ϕPM|M ptq ´ c0 ¨ ϕ(CL)

PM|Spt´ ρinst,est.ptq{c0q
˘2 ¨ ω̄M |M,est.

` ǫSCF ` const., (2.216)

which now contains the estimated frequency of the master laser ω̄M |M,est. and the estimated
absolute inter-satellite distance ρinst,est.ptq. The latter one needs to be precise to a few
cm{

?
Hz and can be obtained from GNSS observations. For the second approach (eq. (2.216))
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Figure 2.37: Different constituents in the transponder-based phase observable
(cf. eq (2.213)). The phase variations have been converted to (one-way) equivalent dis-
placement variations (cf. eq. (2.214)) under the assumption of a wavelength of λ “ 1064 nm.
All traces are based on the NGGM baseline length L “ 100 km, except for the requirement
of the GRACE Follow-On LRI.

one might omit the simplifications shown in eq. (2.207)-(2.211) for ϕPM|M , because this leaves

the offset frequency terms in the same form as in ϕ
(CL)
PM|S . The validity of eq. (2.215) becomes

apparent, if one expands the phase from the slave S/C:

ϕ
(CL)
PM|Spt´ ρinst,est.ptq{c0q « ϕ

(CL)
PM|Sptq ´

dϕ
(CL)
PM|S
dτS

¨ dτS
dt

¨ ρinst,est.ptq{c0 (2.217)

« ϕ
(CL)
PM|Sptq ´ ωoff,S ¨ ρinst,est.ptq{c0 (2.218)

The delayed slave phase measurement contains a term ωoff,S , which can cancel the correspond-
ing term in the second addend in the first line of eq. (2.213). Thus, the ranging information is
encoded at the frequency of the master laser in the combination of both phase measurements.

The distinction between the estimated optical frequency of the master S/C and of the
estimated mean optical frequency between master and slave is rather of academic interest
for GRACE Follow-On, since the knowledge of the laser frequency and, thus, the scale factor
error is likely larger than ωoff,S{ω̃ « 10´7.

Most of the constituents of ρMS, and hence of ϕPM|M , are shown in fig. 2.37. The black
traces at the top indicate the actual ranging signal between both S/C from the static and
temporal gravity field, which have been separated for illustration in this plot. The gray
dashed trace is the GRACE Follow-On LRI sensitivity with 80 nm{

?
Hz ˆ NSF1pfq, which

is based on a spacecraft separation ď 270 km. The other traces and the thick gray NGGM
sensitivity goal of 25 nm{

?
HzˆNSF2pfq consider a separation of 100 km. The laser frequency

noise shown as thick dark blue line is based on the NGGM stabilized laser frequency noise
requirement (cf. eq. (2.77)), which is far below the actual ranging signal. The scale factor
error ǫSCF of 1 ppm relative to the ranging signal is the orange trace. The dashed purple
line (ωoff,S ¨ ρinstptq{c0) demonstrates the effect of the Doppler shift in the offset frequency,
however, it appears not as an error if eq. (2.216) is utilized. It would appear as an error if,
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for example, the angular frequency of the master laser (ω̄M |M,est.) would be used instead of
the mean frequency of master and slave (ω̃est.) in eq. (2.215). The red trace indicates the
relativistic modulation of the master laser, e.g. due to the velocity of the S/C and due to the
gravitational frequency shift of the laser light. This effect can be reduced in post-processing
from the measurements, since it is a non-stochastic contribution. The solid magenta line
illustrates the effect of USO timing jitter on the phase ramp on the slave satellite (δϕoff,USO,S)
and on the time-tags of phase samples obtained on the master satellite (δϕPM,USO,M ). The
shown curves assume already a post-processing correction, which means that drifts and errors
of both USOs are reduced by GNSS observations (cf. sec. 2.98). At the bottom (magenta
dashed trace) is the error due to the USO timing offset of 100 ps on the master, which is
a second term in δϕPM,USO,M . It is negligible compared to the other delays due to the
uncertainty in the transfer functions (ΥPR,M ` ΥPM,M ), which are shown combined by the
light blue trace. It is recalled that the effect of the transfer function of the photoreceiver
and phasemeter (ADC, DPPL and first decimation filter) was modeled as pure delay, which
is reduced in post-processing to a value of « 25 ns. The dashed dark blue trace (ωoff,S ¨ δτS)
demonstrates the effect of the relativistic modulation of the frequency offset. It would appear
as an error, if one would derive the range ρMS by subtracting a phase ramp in the coordinate
time (ωoff,S ¨ t) from ϕPM|M , instead of using the measurement from the slave S/C, which is
a phase ramp with respect to the proper time (ωoff,S ¨ τS). Finally, the green trace at the
bottom shows the conservative phase readout noise, which would be caused by a carrier-to-
noise density of 70.0 dB-Hz on both S/C. This choice is conservative, because this numerical
value is the threshold for uninterrupted phase tracking (cf. sec. 2.3.7 on phasemeter), while
the actual signal-to-noise ratio is expected to be higher in nominal science operation. Thus,
the phase readout noise would be even lower.

Two terms from eq. (2.213) are not shown in the figure: the effects on the propagation
time of the light ∆tQPR between the satellites and instrument induced errors δtifo. These
will be addressed in subsequent sections of this thesis.

2.4.6 Transponder-based Ranging: Low Gain

The phase observable in a transponder scheme on the master S/C denoted as ϕPM|M (cf.

eq. (2.213)) and on the slave S/C ϕ
(CL)
PM|S (cf. eq. (2.187)) was formulated in the infinite gain

limit (Hloop,S Ñ 8) of the frequency offset PLL, i.e. expanded to zeroth order in 1{Hloop,S.
Terms due to finite gain were absorbed in Op1{Hloop,Sq.

However, the transponder scheme can also be used with low loop gain, which is quickly
derived in the Laplace domain. It is recalled that the closed-loop phase measurement on the
slave S/C can be written according to the block diagram in fig. 2.27 as

ϕ
(CL)
PM,Spsq “ pΦcRXpsq ´ ΦcLOpsqq ¨Hc

ppsq ¨Hc
Dec2psq ` F cpsq, (2.219)

which holds for an arbitrary loop gain, i.e. arbitrary Hc
PZT+Temppsq in sec. 2.3.9, because the

gain is implicitly present in the phase of the local laser light ΦcLO. The transfer function of the
photoreceiver, ADC, DPLL and first decimation filter is denoted as Hc

ppsq, while Hc
Dec2psq

is the transfer function of the second decimation filter. The function F cpsq contains the
wavefront overlap phase ϑc and the USO timing jitter δϕcPM,USO, but it is independent of the
loop gain. The phase of the received light ΦcRXpsq on the slave S/C can be written as the
phase of the master laser ΦcM psq delayed by the propagation time ∆tEA from master to slave
(see event labels in fig. 2.35), i.e.

ΦcRXpsq “ ΦcM psq ¨Dc
EApsq. (2.220)

The phase of the light at the emission event B on the slave S/C has been stated in eq. (2.140)
as

ΦcBpsq “ ΦcLOpsq
Dc
BApsq . (2.221)
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One can write the relation between ϕ
(CL)
PM,Spsq and ΦcBpsq with eq. (2.219) and (2.221) as

ΦcBpsq “ ΦcRXpsq
Dc
BApsq ´

ϕ
(CL)
PM,Spsq ´ F cpsq

Dc
BApsq ¨Hc

ppsq ¨Hc
Dec2psq . (2.222)

The phase measurement on the master S/C can be approximated as the phase difference
between the phase of the local laser and of the received light

ϕcPM,M psq « ΦcM psq ´ ΦcBpsq ¨Dc
BA1psq, (2.223)

where Dc
BA1 is a delay due to the propagation time from slave to master. It is easy to see

that the linear combination ΘMSpsq of master and slave phase measurements

ΘMSpsq “ ϕcPM,M psq ´Xcpsq ¨ ϕ(CL)
PM,Spsq

“ ΦcM psq ´ ΦcM psq ¨ D
c
EApsq ¨Dc

BA1psq
Dc
BApsqloooooooooomoooooooooon

“Dc
EA1 psq

´ Dc
BA1

Dc
BApsqlooomooon

“Dc
AA1

¨ F cpsq
Hc
ppsq ¨Hc

Dec2psq , (2.224)

yields the result in the second line (eq. (2.224)), which is independent of the loop gain, for

Xcpsq “ Dc
BA1psq

Dc
BApsq ¨Hc

ppsq ¨Hc
Dec2psq “ Dc

AA1psq
Hc
ppsq ¨Hc

Dec2psq . (2.225)

The first two summands in eq. (2.224) denote the phase change of the master laser during the
round-trip propagation time ∆tEA1 . This difference contains the ranging information and is
independent of the laser phase noise from the slave S/C. The last addend depending on F c

contains the USO timing jitter and the wavefront overlap phase ϑc from the slave S/C. The
Xc in eq. (2.225) shows the required transformation of the phase measurement from the slave
satellite to cancel the slave laser contributions in ΘMS for an arbitrary loop gain. It consists
of a one-way delay ∆tAA1 , which is the time difference between photon reception on the slave
and on the master S/C. Moreover, the effects of the transfer functions Hc

p and Hc
Dec2, i.e. of

the photoreceiver, ADC, DPLL, and both decimation filters on the slave, need to be reversed.
The reversal of Hc

ppsq ¨ Hc
Dec2psq, which are assumed as pure delays in this thesis, has been

implicitly performed in the previous sections. The effect of the transfer functions after this
post-processing reversal was denoted with ΥPR ` ΥPM in most of the previous plots.

In fact, the transformation derived here in the Laplace domain is in agreement with the
time-domain eq. (2.216), where the estimated propagation time ρinst,est.{c0 corresponds to
∆tAA1 . Thus, the laser phase variations from the slave S/C are canceled even with finite or
low loop gain, if the transponder combination in eq. (2.216) is utilized for for ΘMS

The phase variations in ΘMS consisting of ranging information and noises such as master
laser frequency fluctuations are located completely on the master side in a high gain frequency
offset PLL. Thus, the ranging information is distributed asymmetrically between master and
slave S/C. However, more and more phase variations appear in the slave phasemeter output, if
the gain is gradually decreased. This would yield exactly the same results as in the high-gain
limit, if all delays and the propagation time ∆tAA1 “ ρinst,est.{c0 are known without errors. In
practice, there is a higher noise in ΘMS for a weak phaselock due to the uncertainties in the
delays of the phasemeter and photoreceiver, of the propagation time and of the USO timing
offset. However, the increase in noise would become only noticeable when it exceeds other
noise sources.

In fact, Francis et al. [2015] have suggested to decrease the gain of the frequency offset
PLL in the GRACE Follow-On LRI to test the so-called time-delay interferometry for LISA,
which is essentially a technique to determine the propagation delays and to obtain ΘMS . A
comparison of the low-gain and high-gain transponder scheme and further discussion is post-
poned to the section after next, because an alternative functional concept is briefly addressed
beforehand.
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2.4.7 Passive Retro-Reflector Ranging

A passive retro-reflector concept has been suggested, for example, in [Alenia-Team, 2008] for
a gravimetric mission. The idea is to replace the interferometry on the slave satellite by a
passive retro-reflector, e.g. a corner cube.

As the returned light power to the master satellite scales with L´4 in such a concept,
the maximum inter-satellite separation is limited to L ! 100 km and requires a large open
aperture of the retro-reflector to increase the amount of reflected light and likely a telescope
on the master craft. If a large hollow corner-cube is used, diffraction effects from the edges
and de-polarization effects might degrade the phasefront quality and therefore ranging perfor-
mance. Furthermore, it might become difficult to place the vertex of the large retro-reflector
close to the center of mass of the S/C, and hence to reduce attitude-to-ranging coupling. In
addition, as there is no frequency offset imposed onto the reflected light, the interferometry
on the master satellite needs to handle zero crossings of the beatnote frequency, or additional
frequency shifting components need to be introduced. These points let the author of this
thesis consider such a scheme to be less suited for precise inter-satellite ranging.

2.4.8 Comparison and Summary

This section 2.4 has addressed one-way ranging, dual one-way ranging, transponder-based
ranging and touched briefly on passive retro-reflectors. The one-way ranging turned out to
be unfeasible for a gravimetric mission, because the (laser) phase noise is not suppressed in
such a scheme. One approach to mitigate this issue is to perform a round-trip measurement
by sending the laser light back to the emitter S/C, e.g. by a passive retro-reflector on the
distant S/C. Then one can perform a comparison between the delayed and non-delayed light
phase by beating the round-trip delayed light with the local laser light, which removes the
common phase, while the remaining part is, for small round-trip delays ∆t, the product
of instantaneous laser frequency and round-trip propagation time ∆t. The delay time ∆t
contains the ranging information, while the instantaneous frequency of the light consists of
the (constant) carrier light frequency and laser frequency noise. Thus, the observed phase
is not falsified by laser phase noise anymore but by the laser frequency noise, which turns
out to be beneficial for frequencies in the science measurement band (f ! 1Hz) and for S/C
separations present in gravimetric missions.

Although the use of a passive retro-reflector is conceptionally simple, it turns out to
be practically suboptimal due to the scaling of the returned power with the inverse fourth
power of the distance L´4 and due to clipping of beams. Furthermore, regular zero crossings
of the beatnote frequency appear due to the sinusoidal modulation of the range rate in
gravimetric missions, which are difficult to handle in heterodyne interferometry. These issues
can be circumvented by transponder-based concepts, where the slave S/C acts as active
retro-reflector. This means the slave S/C amplifies the received light power by transmitting
a power enhanced laser beam with the same phase as the received beam. It is beneficial for
the master S/C and for the slave S/C, which is the transponder, if the transponder introduces
a small frequency-offset into the back-reflected light, such that zero crossings of the beatnote
frequencies are removed on both S/C.

The laser source on the transponder S/C can have a higher phase and frequency noise
than the master laser, because the phase of the slave laser needs to be locked anyway to the
phase of the incoming light field by means of a frequency offset PLL. Typically, the control
loop gain can be made sufficiently high, such that the slave S/C measures simply a phase
ramp due to the offset frequency, while the master S/C measures the phase ramp, the round-
trip ranging information, i.e. twice the one-way Doppler shift, and the laser frequency noise
of the master laser. In principle, one can discard the phase measurement of the slave S/C in
on-ground processing, since the ranging information is in the data stream of the master S/C.
The frequency noise of the master laser does not cancel out, which means that the master
laser should be stabilized to a frequency standard such as a cavity.
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It is remarked that the laser subsystems on both S/C need the capability to actuate
the optical frequency with high bandwidth to achieve a high gain frequency offset PLL on
the slave and to lock the laser to a frequency standard on the master. Thus, the role of
master and slave S/C can be made interchangeable, if both S/C are equipped with frequency
standards and frequency offset PLLs, which introduces cold-redundancy for some parts as
demonstrated in the GRACE Follow-On LRI.

The transponder concept can also be used with an intermediate or low gain frequency
offset PLL, where the phase measurement on the slave is not simply a phase ramp but contains
also ranging information and noise. Then, the phase measurement from slave and master need
to be combined with the correct delay. This delay is the light propagation time from the slave
to the master S/C, in other words, one needs to evaluate the phase measurements from master
and slave at slightly different instances of time. The phase difference removes the phase and
frequency noise from the slave laser and the phase ramp, whereby the correct round-trip
ranging information is restored. However, additional noise is practically introduced in a
low gain transponder, since the delay for the synthesis of the combined phase has a limited
accuracy. It should be noted that a weak phaselock still needs sufficient gain, so that the
beatnote frequencies on both S/C are maintained in the measurement frequency band of the
photoreceiver and phasemeter.

Major advantages of a high-gain transponder are the lower susceptibility to errors in times-
stamps and delays and the cancellation of laser phase noise directly in the optical domain
prior to the photodiodes and digitization in contrast to a cancellation in post-processing.

Similar to the low-gain transponder is a dual one-way ranging (DOWR) approach, where
data streams from both S/C are evaluated at a common (reception) time. It is being utilized
in the microwave ranging of GRACE and GRACE Follow-On. The DOWR synthesis does
not cancel the phase or frequency noise of a particular laser, because both wave sources are
assumed to have the same noise characteristics. Instead, the DOWR removes the phase noise
of both lasers symmetrically for time-scales of the one-way delay time and larger. Thus, what
remains is the laser frequency noise of both lasers scaled by the one-way propagation time.
The DOWR is optimal, if both lasers have the same frequency noise and are uncorrelated,
because it reduces the remaining laser noise by a factor of

?
2. The individual phase mea-

surements of both S/C contain the full phase noise of both wave sources, as in the low-gain
transponder. Hence, the DOWR shows also a higher susceptibility to delays and timing
offsets compared to the high-gain transponder.

Although the balanced distribution of phase variations on master and slave S/C in the
DOWR and low-gain transponder is accompanied with higher susceptibility to timing off-
sets and delays, it has the advantage that the range rate induced Doppler frequency shift
can be distributed onto two photoreceivers and phasemeters. The beatnote frequency of
the photodiode signal on the master, i.e. the slope of the measured phase ramp, consists
in a high-gain transponder concept of the round-trip Doppler shift plus the frequency off-
set, while in the balanced scheme it is only the one-way Doppler plus the frequency offset.
Thus, the maximum relative velocity along the line-of-sight, where the beatnote frequency
exceeds the measurement frequency band of photoreceiver and phasemeter, can be twice as
high under optimal conditions. For example, if one considers an operational frequency band
of 4MHz..20MHz and an offset frequency of 12MHz, it would allow a maximum one-way
Doppler shift of ˘4MHz in a high-gain transponder and of ˘8MHz in a DOWR scheme.
These values correspond to an approximate maximum range rate of ˘4m{s and ˘8m{s for
an optical wavelength of 1064 nm. However, the dynamic range of the high-gain transponder
can be doubled as well, if a time-dependent offset frequency is used to counteract the a-priori
well-known sinusoidal ranging induced Doppler shift.

Dual one-way ranging by means of optical interferometry is difficult to achieve, because
the laser light on both S/C needs to be stabilized to an absolute frequency offset by a few
MHz between satellites. Thus, one can not simply lock both lasers to cavity-based frequency
standards, which have indistinguishable and equally spaced resonance frequencies. Further-
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20

Figure 2.38: Executive summary of the comparison of dual one-way ranging (left column)
and of transponder-based ranging (right column). The following abbreviations are used:
Laser Phase Noise (LPN); Laser Frequency Noise (LFN), which is the time-differentiated
LPN; absolute inter-satellite distance (L); Master (M); Slave (S).

more, a cavity has a poor absolute frequency stability, because 1 ppm absolute frequency
stability requires a mechanical stability and a manufacturing tolerance of the absolute length
of the cavity at the level of 0.5 picometer (at DC), if optical light with 1 ➭m wavelength is
used.

An executive summary for the comparison of the relevant functional concepts is shown in
fig. 2.38.

In space laser interferometry, such as in the LISA pathfinder mission and in the LISA
mission concept, NPRO lasers at 1064 nm wavelength are favored, since they show a low
intrinsic free-running frequency noise and a low amplitude noise, and they can be easily shifted
in the optical frequency by a few per mill with temperature and piezo-electric actuators.
In general, lasers can stably operate on a single longitudinal mode (frequency) only in a
particular range of setpoints, which can even vary among lasers of the same batch due to
manufacturing tolerances. Thus, frequency standards based on cavities are very prominent
in precision metrology, since they can serve at various frequencies. In addition, they are to
a large degree independent of the wavelength8 and of the used lasers as long as the laser can
be frequency locked to the cavity resonances.

NPRO-based lasers with a cavity-based frequency stabilization likely offer the simplest
means to obtain frequency stabilized light in space, not least since both components have
a stand-alone value and can be developed and advanced as independent subsystems. In
combination with a transponder functional concept, they enable precise laser ranging inter-
ferometry. This combination is very appealing for space missions and has been extensively
studied for decades within the LISA mission and it has been qualified for flight, i.e. reached
TRL 8, within the GRACE Follow-On mission by the time of this writing.

The aforementioned advantages and the maturity from the heritage of LISA and GRACE
Follow-On makes transponder-based ranging with NPRO lasers and cavity-based frequency
standards a good choice for future gravimetric missions, especially because the next gener-
ation of gravimetric missions will be likely not limited by ranging noise. Some operational
constraints of this interferometry concept such as the maximum range rate of a few m{s
can be extended with a time-variable offset frequency or even further with more complex
extensions discussed in [e.motion2 Team, 2014, sec. 5.3.2.3, enhanced dynamic range].

Detailed expressions for the phase observables in dual one-way ranging schemes and in

8The optical coatings within the cavity are wavelength dependent.
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transponder-based ranging concepts have been derived from first principles in the previous
sections. The constituents of the phase observable depending on the functional concept
have been discussed, while the discussion of corrections to the photon time of flight and the
instrument specific errors δtifo, which contain the major attitude jitter induced noise, are
postponed to the next section and to sec. 2.6, respectively.

The other major contributor to the overall instrument noise is the laser phase or frequency
noise. Furthermore, the analysis in the previous sections showed that the limited knowledge
of the absolute laser frequency of 1 ppm yields a scale factor error, which can be plotted as
an effective noise with a 1 ppm magnitude relative to the actual ranging signal. It is not
a stochastic noise and can be, in principle, corrected in post-processing by estimating the
optical frequency in the process of gravity field recovery. This error is specific to gravimetric
missions, as in these missions the ranging information with SI unit of meters is combined
with other measurements, while gravitational wave missions, for example, measure a relative
distance change, i.e. dimensionless strain. It might be rather challenging to improve the
1 ppm value significantly, since in a concept with cavity-based frequency standard, discussed
here, the absolute frequency is derived from the setpoint of the laser. One way to improve
the knowledge on the absolute value of the wavelength is to use a dedicated instrument to
measure it directly in-orbit, e.g. with a wavemeter or diffraction grating. However, these
instruments can hardly exceed the 1 ppm resolution to the knowledge of the author, such
that an absolute frequency standard may be more favorable.

In summary, the cavity and transponder based approach is most likely sufficient for the
next gravimetric mission(s). However, as this thesis also aims to advance space laser interfer-
ometry, the following concept is proposed, which is motivated by the findings of the previous
sections.

Challenges in laser interferometry discussed so far are the reduction of laser frequency
noise, improvement of the absolute frequency knowledge and increase of the maximum al-
lowed range rate. Moreover, it should be envisioned to reduce the complexity in the laser
link acquisition (cf. sec. 2.3.10 and 2.6.12). The maximization of the allowed range rate was
addressed priorly (see above). The knowledge of the absolute frequency can be enhanced by
several orders of magnitude with an absolute frequency standard (cf. sec. 2.3.2 on optical fre-
quency standards), e.g. the transitions in an iodine cell are known to a level of approx. 10´11.
This would still allow to use a transponder scheme and, for the sake of redundancy, one might
want to equip both S/C with such a standard to make the role of slave and master swappable.
In addition, this yields almost identical S/C, which is often advantageous in terms of the inte-
gration and testing complexity and of accompanied costs. The phase and frequency noise of
a laser locked to an iodine cell is comparable to the frequency noise of a cavity (cf. sec. 2.3.2).
However, if two frequency standards are present on both S/C, one could also operate them
in hot redundancy with a DOWR concept. This would provide two-fold advantages: on the
one hand, the laser frequency noise is reduced by

?
2 and, on the other hand, the laser link

acquisition is simplified significantly, since a degree of freedom is removed from the acquisi-
tion search. The disadvantage is that additional frequency-shifting components are required
to obtain the frequency offset between the laser beams for heterodyne interferometry. In
addition, the susceptibility to timing offsets and delays is increased. However, the effect of
these offsets and delays can be regarded as negligible, which has been shown as a matter of
prudence in fig. 2.34. It is noted that the transponder concept could still be used as fallback
option without additional hardware, if a frequency standard fails, for example. In addition, it
is remarked that these changes could be made completely in the back-end of the instrument
and do not require modifications of the optical layout of the interferometer, e.g. the GRACE
Follow-On LRI optical benches could be reused. The advantages of such a concept justify the
higher complexity introduced by additional frequency shifting components, which is a first
assessment made by the author of this thesis.
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2.5 Photon Time of Flight Corrections

The one-way ranging phase observable of a laser interferometer on a satellite j can be written
according to the previous section as (cf. eq. (2.164))

ϕj 9 ω̄i|i ¨ τipt´ ∆tEAq ´ ω̄j|j ¨ τjpt´ ∆tBAq ` ¨ ¨ ¨ ` const. (2.226)

where ϕj is the measured phase in radian, ω̄i|i and ω̄j|j are the constant optical angular
frequencies with units of rad/s of the emitter and receiver S/C, respectively, ∆tEA and ∆tBA
are the propagation times of the light from the respective source to the photodetection at
event A. The event labels A,B, . . . used here are shown in fig. 2.30. With approximations
given in eq. (2.171) one arrives at the following simplified expression

ϕj 9 ω̃ ¨ ∆tEBloomoon
∆tEA´∆tBA

` ¨ ¨ ¨ ` const., (2.227)

where ω̃ is the mean optical angular frequency between ω̄i|i and ω̄j|j . Terms depending on
the beatnote frequency ∆ω̃ have been omitted in eq. (2.227), because these are significantly
smaller (∆ω̃{ω̃ « 10´7) and have been discussed to the relevant order already in the previous
sec. 2.4. The actual inter-satellite ranging information is contained in ∆tEB « ∆tEA.

The most generic expression for a propagation time is given by a line integral along the
path of the photon

∆t “
ż
nptpsq, ~rpsqq
cnptpsq, ~rpsqq ds, (2.228)

where cn is the instantaneous coordinate speed of light and n denotes the refractive index of
the media, where the light is propagating. The light path is parameterized with a parameter
s.

In the non-relativistic limit, when the proper time ∆τ and the coordinate time ∆t are
equivalent, and in good approximation also in a local Lorentz frame (LLF) of a satellite, one
can split the light path into segments and determine the propagation time ∆τ from piece-wise
segments by

∆τ “ AOPL

c0
“

ř
seg nseg ¨ GPLseg

c0
, (2.229)

where AOPL is the total accumulated optical pathlength, GPLseg is the geometrical path-
length of a light path segment and nseg is the refractive index of the segment. The sum is
taken over all segments and all quantities are referred to the LLF or the non-relativistic limit.
The proper vacuum speed of light is denoted with c0 “ 299 792 458m{s, which is equal to
the coordinate speed of light cn in the non-relativistic limit.

To simplify the succeeding calculations, the light propagation time is expressed as small
variation with respect to the ideal propagation time, which is the propagation time (∆tPQ)
of a freely and directly traversing photon between the start and end point. Recall that in
inter-satellite laser interferometry the light is guided through optical setups, so-called optical
benches, which are present on both satellites. One aims to measure the distance between
both satellite gravitational reference points (GRPs), e.g. the center of mass (cf. eq. (2.150)).
Thus, the ideal propagation time ∆tPQ is defined by the event Q, which denotes the photon
reception at the GRP of the receiver S/C, and event P , which is the corresponding photon
emission at the GRP of the emitter S/C, such that P and Q are connected via a freely
propagating photon.

In addition, in gravimetric missions one is typically interested in the instantaneous geo-
metrical distance ρinst between the GRPs. This motivates the expression for ∆tEB in terms
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of the desired quantity ρinst and correction as done previously, for example, in eq. (2.175):

∆tEBptq “ ∆tEAptq ´ ∆tBAptq “ ρinstptq{c0 ` correction (2.230)

“ ρinstptq{c0 ` ∆tPQ,corrptqlooooooooooooooomooooooooooooooon
∆tPQ

`δtEB,ifoptq. (2.231)

This equation is a definition for the correction and therefore exact. The correction has
been divided into a term depending on the interferometer and optical benches δtEB,ifo, or in
other words, on local interferometer quantities, and into a term ∆tPQ,corr absorbing other
variations in the time of flight between satellites, which are not covered by the non-relativistic
ideal time of flight in vacuum ρinstptq{c0. Non-relativistic refers to a static scenario, i.e. non-
moving satellites or parts, and to a flat space-time with the Minkowksi metric tensor applying
to the GCRS.

Even though the instantaneous inter-satellite distance ρinst is well-defined, it can not be
measured by the satellites directly. It can only be recovered in post-processing when all
observations are transformed to the GCRS and relativistic and non-relativistic effects are
subtracted from the observations. If ρinst{c0 is supplemented by ∆tPQ,corr, which contains
relativistic corrections and corrections due to the refractive index n, one obtains the ideal
range measurement between the GRPs ∆tPQ. However, the measurement or observation
∆tEB differs from ∆tPQ by the laser interferometric error term δtEB,ifo, which is mainly
because the interferometer does not measure exactly the GRP-GRP distance but the distance
between interferometer reference points.

The correction terms to the photon time of flight ∆tPQ,corr can be decomposed into a sum

∆tPQ,corr « ∆tSR ` ∆tGR ` ∆tIono ` ∆tAtmo, (2.232)

with special relativistic effects ∆tSR, general relativistic effects ∆tGR, effects due to the
ionosphere ∆tIono and due to the neutral atmosphere ∆tAtmo. The formulation of ∆tcorr as a
sum of different effects is an approximation, because the effects are in general coupled. Since
the space-time curvature and atmospheric density is small, deviations of the light path from a
straight line and deviations of cn from c0 are small as well. Hence, the additive approximation
is justified and sufficient for the purpose of this thesis.

The rather arbitrary separation of ∆tEB into terms ∆tPQ,corr and δtifo is driven by the
idea that ∆tPQ,corr vanishes in the case of the non-relativistic limit and with vacuum as
medium, which eases the comparison and interrelation of δtifo with simulation results of
the interferometers obtained from ray-tracing, e.g. with the AEI in-house developed ifocad

software. In such simplified domain, optical ray- and beam-tracing is typically performed with
fixed optical setups on the time scales of light propagation and δtifo is expressed with the help
of accumulated optical pathlengths (cf. eq. (2.229)). Whereas the here stressed time of flight
domain stressed here, allows one to evaluate relativistic effects more easily. Furthermore, one
has the advantage that the corrections in ∆tPQ,corr can be determined solely between the
GRPs and, hence, they are independent of the state of the interferometer or of the optical
layout.

The expressions ∆tcorr and δtifo are of importance for forward-modeling, i.e. generation
of realistic ranging observations in simulations, and also for the retrieval of the instantaneous
range from flight telemetry with real measured phase values, e.g. in the GRACE Follow-On
LRI. The term δtifo, describing the local interferometry, and the time of flight corrections
∆tcorr are analyzed in detail in the following subsections.

2.5.1 Local Interferometry

In one-way ranging, the local interferometry correction δtEB,ifo to the photon time of flight
can be expressed in a general way with the help of eq. (2.231) as

δtEB,ifoptq “ ´∆tPE,i ` ∆tQB,j , (2.233)
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where ∆tPE,i is the correction from the emitter S/C and ∆tQB,j is the correction from the
receiver side. These are time differences between events shown in fig. 2.30. In the non-
relativistic limit and with ideal vacuum (∆tPQ,corr “ 0), one can obtain a more insightful
expression as follows

δtEB,ifoptq “ ∆tEBptq ´ ρinstptq
c0

“ AOPLEA ´ AOPLBA ´ ρinstptq
c0

. (2.234)

This equation states simply that the interferometer error is the difference between the desired
GRP-GRP distance and the interferometric range measurement, which is the optical path-
length difference of measurement and local oscillator beam. Thus, the local interferometry
correction should be understood here as a heuristic description of all local interferometer ef-
fects, which may contain, among others, temperature or actuator induced optical pathlength
changes and effects from parasitic beams affecting the phase measurement.

It is self-evident that practically δtEB,ifo can contain an unknown bias, which can not
be resolved by a phase measurement. However, in case of optical simulations, where the
propagation time can be written in terms of the accumulated optical pathlengths, the quantity
δtEB,ifo can be determined with correct bias.

The most important effect in δtEB,ifo is probably the susceptibility to satellite rotations,
which yields an attitude-to-ranging coupling. This coupling can be interpreted as an offset
between the center of mass of the satellite, which is the pivot point of rotations, and the
interferometer reference point, which can be understood as the fiducial point for the range
measurement. The attitude-to-ranging coupling is in detail treated in sec. 2.6. It should be
noted that the magnitude of δtEB,ifo is in sensible interferometers close to the instrument
noise level. Thus, relativistic effects within δtEB,ifo, which are a few orders of magnitude
smaller, are negligible.

2.5.2 Special Relativity

The special relativistic correction ∆tSR in the propagation time ∆tPQ between the satellite
GRPs accounts for the effect of the motion of the satellites in the GCRS, which includes
changes due to relativistic length contraction and Sagnac-like contributions. The measured
range by a ranging interferometer contains these effects and they need to be reduced from
the phase observable to obtain the desired instantaneous range ρinst. It is assumed for the
moment that the medium, where the light is traversing between the satellites, is vacuum with
n “ 1 and that space-time is flat, i.e. the coordinate speed of light cn equals the proper speed
of light c0 in vacuum.

Under these assumptions, the light is propagating along a straight line in the GCRS with
speed of light c0. The photon propagation time between the two satellites labeled i and j

can be obtained from the well-known implicit light-time equation [Montenbruck & Gill, 2000,
eq. (6-23)]

∆tPQptq “ ∆tijptq “ |~rjptq ´ ~ript´ ∆tijptqq|
c0

. (2.235)

A successive approximation by iterative means starts with ∆t
p0q
ij “ 0 and solves

∆t
pnq
ij ptq “

|~rjptq ´ ~ript´ ∆t
pn´1q
ij ptqq|

c0
. (2.236)

The coordinate time t is the reception time of the light, which equals tA and tQ in the context
of this and previous sections. It is assumed that the coordinate position ~r, the coordinate
velocity ~v “ d~r{dt and the coordinate acceleration of ~a “ d2~r{dt2 of both satellites are known,
such that one can approximate the position of both satellites around the measurement time
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t by

~rpt` ǫq « ~rptq ` ǫ ¨ ~vptq ` ǫ2 ¨ ~aptq
2

. (2.237)

This approximation is sufficient, since the time derivative of the acceleration is for gravimetric
missions of the order of 9a « 0.01m{s3, which yields with ǫ « 10´3 sec a displacement error of
ǫ3{6 ¨ 9a « 10´12m. Thus, the above expression describes the satellite position with picometer
accuracy.

With given derivatives one can can approximate the solution to eq. (2.236) after a few
iterations as a Taylor series in c´1

0 by

∆tijptq “ρinst

c0
´ ~vi ¨ ~rji

c20
` ~vi ¨ ~vi ¨ ρinst

2 ¨ c30
` ~ai ¨ ~rji ¨ ρinst

2 ¨ c30
` p~vi ¨ ~rjiq2

2 ¨ c30 ¨ ρinst

´ p~vi ¨ ~viq ¨ p~vi ¨ ~rjiq
c40

´ ~ai ¨ ~vi ¨ ρ2inst
2 ¨ c40

´ p~ai ¨ ~rjiq ¨ p~vi ¨ ~rjiq
c40

` Opc´5
0 , ;~rq. (2.238)

These eight terms of the sum are depicted as spectral density in the upper panel of fig. 2.39
for a typical GRACE-like formation (cf. caption). The legend contains also the average (DC)
part of the terms. It can be concluded that the last two terms have negligible magnitude.
The first summand is the actual instantaneous range, thus, the remaining terms form the
sought special relativistic correction ∆tSR for the one-way ranging observable, i.e.

∆t
(OWR)
SR “ ∆tijptq ´ ρinst

c0
(2.239)

« ´~vi ¨ ~rji
c20

` ~vi ¨ ~vi ¨ ρinst
2 ¨ c30

` ~ai ¨ ~rji ¨ ρinst
2 ¨ c30

` p~vi ¨ ~rjiq2
2 ¨ c30 ¨ ρinst

´ p~vi ¨ ~viq ¨ p~vi ¨ ~rjiq
c40

(2.240)

The corresponding correction for the dual one-way ranging scheme can be obtained in a
trivial way by swapping indices, i.e.

∆t
(DOWR)
SR “ ∆tijptq ` ∆tjiptq ´ 2 ¨ ρinst

c0
. (2.241)

This expression is shown in the central panel of fig. 2.39, where all terms were added
summand-wise to maintain the same nomenclature of the traces as in the upper panel. It is

noted that the first term of the correction ∆t
(DOWR)
SR , which is the trace labeled as T2 in the

figure, can be written as follows

~vi ¨ ~rji
c20

` ~vj ¨ ~rij
c20

“ ~vi ¨ ~rji
c20

´ ~vj ¨ ~rji
c20

“ ~vji ¨ ~eji
c20

¨ ρinst “ 9ρinst ¨ ρinst
c20

, (2.242)

where 9ρinst “ d
a
~rjiptq ¨ ~rjiptq{dt is the time-derivative of the instantaneous range with respect

to the GCRS coordinate time t. This T2 term is reduced in magnitude compared to the one-
way ranging observable, because the common part of the coordinate velocities between both
S/C vanishes.

The transponder scheme is characterized by a consecutive combination of propagation
times, in contrast to the common reception time in DOWR, which requires a solution to

∆tQPR “ ∆tMSpt´ ∆tSM ptqq ` ∆tSM ptq, (2.243)

where the first summand indicates the propagation time from master to slave satellite (cf. the
events Q and P in fig. 2.35) and the second term from slave to master (from event P to R).
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Figure 2.39: Typical spectral content of the constituents of the inter-satellite photon time of
flight: the instantaneous range (traces labeled T1) and special relativistic effects in the time
of flight. (Upper panel:) one-way ranging observable ∆tijptq from eq. (2.238); (Central
panel:) dual-one way ranging p∆tijptq ` ∆tjiptqq{2; (Lower panel:) transponder scheme
∆tQPR from eq. (2.244). The respective terms of the sum with units of time have been
converted to an equivalent displacement. The plots are based on a simulation of a GRACE-
like constellation with L “ 200 km and h “ 400 km. The legend contains the mean (DC)
value of each addend of the sum.
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With given satellite position, velocity and acceleration of slave (S) and master (M) at the
reception epoch, one can obtain an approximative solution to the light-time equations as

∆tQPR “ 2 ¨ ρinst
c0

´ 2 ¨ 9ρinst ¨ ρinst
c20

` 2 ¨ ~aM ¨ ~rSM ¨ ρinst ´ ~aS ¨ ~rSM ¨ ρinst
c30

` p~vS ¨ ~rSM q2
c30 ¨ ρinst

` 2 ¨ ~vM ¨ ~vM ¨ ρinst ´ 2 ¨ ~vS ¨ ~vM ¨ ρinst ` ~vS ¨ ~vS ¨ ρinst
c30

` Opc´4
0 , ;~rq, (2.244)

which is shown in the lower panel of fig. 2.39 and which defines the special relativistic cor-

rection ∆t
(MS)
SR .

It is repeated that the just derived special relativistic corrections ∆t
(OWR)
SR , ∆t

(DOWR)
SR

and ∆t
(MS)
SR are part of the time of flight corrections ∆tPQ,corr, ∆tPQ,corr ` ∆tP 1Q1,corr and

∆tPQR,corr, which have been used in the respective phase observable in eq. (2.176), (2.181)
and (2.213) in sec. 2.4 on the functional concepts.

Although the corrections ∆tSR depend on the instantaneous range ρinst, it is sufficient to
utilize a low precision estimate of ρinst within ∆tSR, e.g. from GNSS observations, because
the magnitude of ∆tSR is small as shown in fig. 2.39. Thus, it is still possible to recover
a precise instantaneous range ρinst from the interferometric phase after reducing the special
relativistic effects with the help of ∆tSR.

The dominant term of ∆tSR in the DOWR and transponder case is proportional to the
product 9ρinst ¨ ρinst and this one is also corrected within the GRACE microwave ranging
instrument. GRACE data processing handles this term by the so-called light-time correction
ρTOF, which is provided separately in the GRACE KBR Level-1B data streams and defined
by [Kim, 2000, eq. 4.39] [Wu et al., 2006, App. E]

ρTOF “ ωi

ωi ` ωj
¨ 9ρinst ¨ ∆tji ´ ωi

ωi ` ωj
¨ ηj ¨ ∆t` ωi ´ ωj

ωi ` ωj
¨ ηj ¨ ∆tij , (2.245)

“ ηi ¨ ∆tij ¨ ωi
ωi ` ωj

´ ηj ¨ ∆tji ¨ ωj
ωi ` ωj

(2.246)

with ηj “ ~vj ¨ ~eij , ηi “ ~vi ¨ ~eij , 9ρinst “ ηj ´ ηi and ∆t “ ∆tij ´ ∆tji. As stated in Wu et al.
[2006], the light-time correction is derived by solving the light-cone equation (eq. (2.236))
iteratively, which most likely utilizes reduced-dynamic orbit information. The magnitude of
the correction as provided in the GRACE KBR Level-1B data is shown by the red trace
in fig. 2.42. It exhibits some artifacts at high frequencies, which are probably caused by
some sort of filtering, but these are uncritical as they are below the microwave instrument
sensitivity shown in magenta. The light-time correction has signals above the microwave
instrument noise for Fourier frequencies below 3mHz.

The GRACE light-time correction is dominated by the first addend in eq. (2.245), which
is almost equivalent to the term derived here in eq. (2.242) and shown by the light blue
trace in fig. 2.42. One can easily derive an expression similar in form to eq. (2.246) with
∆tij « ρinst{c0 ¨ p1 ` ηi{c0q and ∆tji « ρinst{c0 ¨ p1 ´ ηj{c0q from the general DOWR phase
observable

c0 ¨ ϕ
(DOWR)

ωi ` ωj
“ ωi ¨ ∆tij ` ωj ¨ ∆tji

ωi ` ωj
« ρinst ` ωi ¨ ρinst{c0 ¨ ηi ´ ωj ¨ ρinst{c0 ¨ ηj

ωi ` ωj
, (2.247)

which suggests that the propagation times ∆tij and ∆tji in eq. (2.245f). should be replaced by
ρinst{c0. However, the difference is more of academic than practical relevance for microwave
ranging.

2.5.3 General Relativity

In the general relativistic case, the computation is more complicated due to the non-trivial
metric gαβ of space-time, which yields a non-uniform motion of a photon in the GCRS and
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effects such as light bending. The coordinate speed of light cn differs from the proper (local)
vacuum speed of light c0. However, the light path between the satellites in a gravimetric
mission is in good approximation still a straight line. The light bending angle towards the
geocenter ∆θgr as a function of the inter-satellite distance L is derived in appendix C as

∆θgrpr, Lq “ 2 ¨GM ¨ L
r2 ¨ pc0q2 (2.248)

which is well below 0.1 nrad for the in-line satellite constellations discussed here. It is note-
worthy that the light bending falsifies also DWS measurements on the satellites, but this is
uncritical due to the small magnitude. For ranging interferometry, this lateral drift of the
general relativistic photon compared to the special relativistic path is not as important as
the longitudinal separation due to the lower coordinate speed of light cn, i.e. the delay. As
shown in appendix C, one can compute the delay ∆tGR with respect to the special relativistic
path in terms of three contributors

∆tGRpti, ~ri, tj , ~rjq “ ∆tPMpti, ~ri, tj , ~rjq ` ∆tHMpti, ~ri, tj , ~rjq ` ∆tSMpti, ~ri, tj , ~rjq, (2.249)

where ∆tPM is the delay due to Earth’s monopole gravity field (cf. eq. (C.9)), ∆tHM is
the delay due to Earth’s higher moments of the gravity field (cf. eq. (C.10)) and ∆tSM
(cf. eq. (C.9)) is the delay due to Earth’s angular (spin) moment, which also curves space-
time and modifies the coordinate speed of light. The ∆tSM is often called gravito-magnetic
effect. The total propagation time of the photon is ∆tGR ` ∆tSR under the assumption of
vacuum. The photon emission position ~ri at time ti and photon reception location ~rj at time
tj in eq. (2.249) need to fulfill the light-time equation in a special relativistic sense, i.e.

|~riptiq ´ ~rjptjq|
c0

“ tj ´ ti, (2.250)

because the general relativistic aspect is implicitly in the propagation time.
At first, the validity of the analytical expression for ∆tPM, ∆tHM and ∆tSM is verified.

This is performed in the following way: A typical GRACE-like satellite orbit is taken, which
has a sampling time of 5 s. At each epoch t a photon is launched from the location of the
S/C ~ri in the direction ~d0 towards the other distant craft, i.e. along the line-of-sight. The
coordinate speed of the photon cn is determined by eq. (B.38), which fixes the initial values
of the photon for a numerical integration of the geodesic equation (cf. eq. (B.27)) in the
GCRS. The photon path is integrated for a propagation time ∆tsim “ 200 km{c0 with a high
sampling rate of 106Hz. In this simulation, the metric tensor is formed by a high fidelity
static gravity field model and includes the vector potential due to Earth’s spin moment. The
numerically determined end position of the photon ~rend,num is compared to the analytical
position obtained by

~rend,ana “ ~ri ` ~d0 ¨ p∆tsimloomoon
“∆tSR

`∆tGRq ¨ c0. (2.251)

The longitudinal distance between numerical and analytical end position, i.e.

|p~rend,num ´ ~rend,anaq ¨ ~d0|, (2.252)

is a measure for the accuracy of the analytical expressions, if one can ensure that the numerical
trajectory has a higher accuracy. The longitudinal distance refers to the projection along
~d0 and is required, since the total distance is dominated by the lateral displacement from
gravitational bending. The result of the comparison is shown in terms of different constituents
of ∆tGR in the spectral domain in fig. 2.40.

The red trace at the top shows the error, i.e. the longitudinal distance, if no general
relativistic correction is performed (∆tGR “ 0). The mean (DC) component of the error
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Figure 2.40: Distance as defined in eq. (2.252) between numerically determined photon end
position and analytical expressions for different ∆tGR. The analytical model with all three
contributors (∆tGR “ ∆tPM ` ∆tHM ` ∆tSM) shown by the magenta trace is expected to be
the most accurate, which was confirmed by this plot. The legend contains the DC (mean)
value of the underlying distance error time-series. The light blue trace shows the contribution
of Earth’s spin moment term c0 ¨ ∆tSM and is not an error but a signal.

in the time-domain, which is not apparent from the spectral density plot but from the leg-
end, amounts to 262 ➭m. The DC component is reduced to 62 nm and the once per orbital
revolution peak is removed, if the monopole term correction (∆tGR “ ∆tPM) is considered
(green trace). Taking into account higher moments of Earth’s gravity field to first order

(∆tGR “ ∆tPM `∆t
p1q
HM) reduces the error further (dark blue trace). The correction ∆tHM is

generally a line integral of the geopotential along the special relativistic path (cf. appendix C).
Here, first order refers to an approximation of the line integral with the trapezoidal rule and
evaluation of the geopotential along the photon path at two, namely emission and reception,

events. The magenta trace uses a 9th order higher moment correction ∆t
p9q
HM, which means

that the line integral is approximated by nine segments and by evaluating the geopotential
at 10 equally spaced points along the special relativistic trajectory. This reduces the mag-
nitude of the errors further. The magenta trace contains also the correction from Earth’s
spin moment ∆tSM. However, this gravito-magnetic effect is negligible as shown by the light
blue trace. Its spectral components and the mean value are below 1 pm{

?
Hz and 2 pm,

respectively.

It is remarked that the numerical integration has been performed with floating-point
arithmetic with double (64 bit) precision, which requires precautions regarding numerical ac-
curacy. Due to the approx. 15 significant digits it is not possible to integrate the photon
path directly in the GCRS system, however, it was integrated with respect to the special
relativistic trajectory in order to avoid large numbers in the position variables. In addition,
the rotation matrices for the transformation between GCRS and ITRS were implemented
in a way with enhanced numerical precision9. This provided an accurate light path with a
general-relativistic interval ds2 close to zero even at the end position. Thus, the numerically
integrated light path was considered as a good reference to determine the accuracy of the
analytical expressions within the post-Newtonian approximation of the metric for the GCRS.
The deviation between numerical and analytical model (magenta trace in fig. 2.40) is be-

9Since the time t consists of a potentially large integer part and a small fractional part, it is beneficial for
the numerical precision to split the time into an integer and a fractional part and to compute the elements
of the rotation matrix as a product and sum of trigonometric functions rather than as a single trigonometric
function.
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low 1 pm (DC) and below 10 pm{
?
Hz (AC), hence, the accuracy of the analytical model is

regarded as sufficient for gravimetric missions.

The analytical model of the general relativistic effects on the time of flight have been
applied in fig. 2.41 to the one-way ranging, dual one-way ranging and the transponder scheme
for a GRACE-like constellation. The gravitomagnetic effect ∆tSM due to Earth’s spin moment
is direction dependent and is highly suppressed in a two-way ranging combination (dark blue
trace). For the central and lower plot the terms ∆tPM, ∆tHM and ∆tSM were determined for
both ways between the S/C separately and added term-wise.

With fig. 2.41 it can be concluded that the general relativistic effects in the propaga-
tion time manifest mainly as tones at 1/rev and 2/rev frequency, which was also the con-
clusion by Turyshev et al. [2014]. The magnitude of the tones is in the spectral domain
approx. 50 ➭m{

?
Hz with an equivalent noise bandwidth (ENBW) of 15 ➭Hz, which yields a

root-mean-square amplitude of

50 ➭m{
?
Hz ¨

?
ENBW « 193 nmrms, (2.253)

and which is far below the expected instrument tone errors (cf. sec. 1.4.5). However, the
magnitude of these tones depends on the orbital parameters of both S/C such as on the
orbit mismatch. Real missions likely exhibit larger sinusoidal variations, since the orbital
parameter were numerically optimized in the simulation performed here. In addition, one
can summarize that the general relativistic delay of the photons, often referred to as Shapiro
delay, has a sub-mm DC magnitude. As the DC component is anyway not accessible to biased
ranging interferometry, this effect is rather of academic relevance. However, the simulation
revealed also that relativistic effects show variations of the time of flight with a continuous
power distribution over Fourier frequencies, for example, with a magnitude of ą 1 nm{

?
Hz

at 1mHz, which can be corrected in post-processing despite being below the anticipated
instrument sensitivity.

2.5.4 Ionosphere

The satellites of a GRACE-like gravimetric mission utilize a low Earth orbit with an alti-
tude, where the residual atmosphere contains ions and free electrons. Thus, the atmosphere
is a plasma and commonly called ionosphere. A plasma has a characteristic frequency νp
[Chengalur et al., 2007, ch. 16] [Subirana et al., 2013]

νp “ 1

2π

d
Ne ¨ e2
ǫ0 ¨me

« 9Hz ¨
d

Ne

1 e´{m3
, (2.254)

where e is the electron charge, me is the electron mass, ǫ0 is the vacuum permittivity and
Ne is the charge number density. The ionosphere shows a maximum charge number density
of Ne « 1011 to 1012 e´{m3, which means that the ionosphere has a plasma frequency of the
order of 10MHz. Electro-magnetic waves with lower frequency are absorbed and reflected by
the plasma. Light and microwaves can propagate through the ionosphere, but the propagation
velocity is altered. It can be computed with the help of the wave number k “ 2π{λ from the
approximative dispersion relation [Subirana et al., 2013, ch. 5.4.1]

ω2 “ c20 ¨ k2 ` p2πνpq2 (2.255)

as

vph “ ω

k
“

c
c20 ` p2πνpq2

k2
“ c0 ¨

d
1 ` p2πνpq2

c20 ¨ p2π{λq2 “ c0 ¨

d

1 `
ν2p

ν2
. (2.256)
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Figure 2.41: The general relativistic effects on the photon propagation time in a one-way
ranging scheme (upper panel), in a dual one-way ranging concept (central panel) and in the
transponder case (lower panel).
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This result illustrates that the phase velocity is higher than the proper vacuum speed of light
c0, which also implies that the refractive index of the plasma is below unity, i.e.

nplasma “ c0

vph
« c0 ¨

˜
1 ´ 1

2

ν2p

ν2

¸
« 1 ´ 40.3Hz2

ν2
¨ Ne

1 e´{m3
. (2.257)

The group velocity vgr “ dω{dk is subluminal (ă c0) as shown in [Subirana et al., 2013].
Ionospheric effects are of importance for GNSS applications, which yield an advance of the
phase observation via the phase velocity, but a delay of the code measurement via the group
velocity. Also microwave ranging in GRACE and GRACE-like missions is affected by the
ionosphere, which has, in general, a time and position dependent electron number density
Ne. The change in the propagation time of a photon can be computed with the line integral
along the propagation path (cf. eq. (2.228))

∆tiono « ´40.3Hz2

ν2
¨ 1

1 e´{m3
¨ 1

c0
¨
ż
Nept, ~rqds

loooooomoooooon
“STEC

, (2.258)

where ν is the optical or microwave frequency of the photon and STEC is the so-called slant
total electron content, which is typically given in units of 1 e´{m2 or 1TECU “ 1016 e´{m2.
The previous equation is derived in the special relativistic limit, i.e. the coordinate speed of
light was replaced by c0, which is based on the valid assumption that the deviation of the
actual photon path from the special relativistic path is small. Furthermore, it is mentioned
that the derivation shown here considers only the first-order ionospheric effect, while higher-
order corrections are possible [Hernandez-Pajares et al., 2007].

The ionospheric effects are mitigated in GRACE and GRACE Follow-On microwave rang-
ing by dual band measurements at 24GHz (K-band) and 32GHz (Ka-band) [Kim, 2000,
sec. 2.2.3] [Ko, 2008]. With dual band measurements one obtains two phase-derived ranges

ρΘ,K « ρ´ 40.3Hz2

ν2K
¨ 1

1 e´{m3
¨ STEC ` . . . (2.259)

ρΘ,Ka « ρ´ 40.3Hz2

ν2Ka

¨ 1

1 e´{m3
¨ STEC ` . . . , (2.260)

which can be linearly combined to obtain the variations in the STEC as

STECptq « pρΘ,Kptq ´ ρΘ,Kaptqq ¨ ´ν2Kaν
2
K

ν2Ka ´ ν2K
¨ 1 e´{m3 ` bias (2.261)

Thus, the ionospheric non-static effect can be reduced from the range measurement, while the
static DC value is anyway not accessible due to the bias present in interferometry. For the
sake of completeness, the one-way DC term is computed for Ne « 1012 e´{m3, L “ 200 km
and ν “ 32GHz as

40.3Hz2

ν2
¨ Ne ¨ L{c0
1 e´{m3

« 8mm

c0
, (2.262)

which is the mean advance in the photon propagation time for microwaves.
The correction term in eq. (2.261) is provided in terms of a length in meters separately in

the GRACE KBR Level-1B data. It is depicted as the black solid trace in fig. 2.42. Due to
the quadratic scaling of the ionospheric contributions with the radiation frequency ν, these
effects are downscaled in optical interferometry by the factor

ˆ
32GHz

282THz

˙2

« 10´8 (2.263)
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Figure 2.42: GRACE Level-1B KBR data from 26th July 2011. The antenna offset correc-
tion (green) and the light time correction (red) need to be added to the biased ranging (dark
blue) as described in the GRACE data product handbook [Case et al., 2010]. The light blue
trace is a simplified model for the light-time correction given by 9ρ ¨ ρ{p2 ¨ c0q.

for light with a wavelength of 1064 nm. This makes dual band measurements or a post-
processing correction of ionospheric effects unnecessary in optical interferometry (cf. dashed
black trace at the bottom in fig. 2.42).

The ionospheric correction from GRACE shown in fig. 2.42 is measured in a dual one-
way ranging combination, which is strictly speaking not the same as a transponder-based
combination. However, it is reasonable to assume that the STEC does not change significantly
over timescales of milliseconds (L{c0) and, thus, that the DOWR and transponder STEC are
approximately the same.

The other traces in fig. 2.42 show the actual KBR-derived ranging signal (dark blue trace),
the attitude-to-ranging coupling via the antenna offset (green trace) and the so-called light
time correction [Kim, 2000] (red trace), which are the special relativistic effects discussed in
sec. 2.5.2. The light time correction in the GRACE Level-1B data shows some artifacts below
the instrument sensitivity and can be approximated by the expression given in eq. (2.242),
which is shown by the light trace.

2.5.5 Atmosphere

The remaining undiscussed term in eq. (2.232) influencing the photon propagation time be-
tween the satellites is the refractive index n “ na due to the residual neutral atmosphere in
a low Earth orbit, which delays the light by

∆tatmo « 1

c0
¨
ż

P

pnapt, ~rq ´ 1q ds “ 1

c0
¨
ż

P

∆napt, ~rq ds, (2.264)

where the line integral is solved along the light path P. The refractive index na of the
atmosphere is close to unity for a satellite constellation in 400 km height, e.g.

∆na “ na ´ 1 À 10´14loomoon
“:∆na,max

, (2.265)
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which can be derived from the Clausius–Mossotti relation [Choy, 2016, eq. 4.14] or the so-
called Lorentz-Lorenz relation [Owens, 1967]:

n2a ´ 1

n2a ` 2
“ Btot, (2.266)

with symbol Btot being subsequently defined. For gases with small refractivity and refractive
index close to unity, the following approximative solution for na can be used

na “ 1 ` ∆na « 1 ` 3

2
¨Btot. (2.267)

The quantity Btot on the right hand side of eq. (2.266) can be computed for a mixture
with atomic or molecular constituents X P tO2, N2, O, . . . u by

Btot “
ÿ

X

NX

3ǫ0
¨ αX , (2.268)

where NX is the number density with units of m´3 of the atoms or molecules, αX is the
electric polarizability of the atoms or molecules with units of C ¨ m2{V and ǫ0 is the vacuum
permittivity in SI units. The number density of atoms and molecules can be obtained from
an atmospheric model, e.g. the NRLMSISE00 model [Picone et al., 2002], which is also often
used to compute the atmospheric drag force acting on the satellite. Typical values for the
number densities for different orbit heights are shown in the lower part of table 2.7, which
have been derived for the year 2001 with high solar activity. The corresponding deviation of
the refractive index from unity ∆na is also shown in the table. The used polarizability αX
for the different atoms and molecules is shown in the central part of table 2.7.

Furthermore, ∆na has been derived for the Earth’s typical sea-level atmosphere to provide
a sanity check of the formulas. The result of ∆na “ 274 ¨ 10´6 (last line in the lower
table 2.7) is in good agreement with values from the literature such as in [Ciddor, 1996] with
∆napλ “ 1 ➭mq “ 273 ¨ 10´6.

Thus, the upper bound ∆na,max from eq. (2.265) can be justified with the results from
table 2.7. With such small ∆na,max one obtains a worst-case difference between geometrical
and optical pathlength of the order of 2 nm for an inter-satellite distance of L “ 200 km.
However, such a static and small value is neither measurable nor harmful due to the inac-
cessible bias present in ranging interferometry. The variations of the refractive index are of
importance, which yield variations in the photon time of flight and cause equivalent fluctu-
ations in the phase-derived range measurement. For gravimetric missions the variations in
the science measurement frequency band between approx. 0.18mHz and 0.1Hz need to be
analyzed.

One can certainly assume that the variations of the refractive index are smaller than
the mean (static) part ∆na,max, which includes already plenty of margin, thus, the fluctua-
tions should not exceed a root-mean squared value of 2 nm in an amplitude spectrum and
2 nm{

?
Hz in an amplitude spectral density over the science measurement frequency band.

A more quantitative analysis also with regard to future generations of gravimetric missions
is attempted in the following.

At first, it should be noted that the refractive index deviation ∆na is in good approxima-
tion proportional to the atmospheric density ρa with units of kg{m3. Furthermore, one can
assume that the composition of the atmosphere does not change much, so that one can use

∆napt, ~rq « ∆na,mean ¨ ρapt, ~rq
ρa,mean

. (2.269)

Thus, the analysis of refractive index variations can be reduced to the analysis of atmospheric
density variations. Typical variations of the refractive index along a GRACE-like polar orbit
at 400 km height are shown by the magenta traces in the upper plot in fig. 2.43. These
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Table 2.7: Calculation of the refractive index for different orbit heights for two days within
the year 2001, which was a year with high solar activity. SLA stands for sea-level atmosphere.
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2.5. PHOTON TIME OF FLIGHT CORRECTIONS

traces have been derived from the NRLMSISE00 atmospheric model for various different
epochs in the year 2001 and 2002 to show the variability of the atmosphere. Since this model
provides the composition of the atmosphere, one can directly compute the refractive index.
However, as some other models may provide only the atmospheric density ρa, eq. (2.269) is
still interesting, especially since the accelerometer data of gravimetric missions can be used
to derive the atmospheric density variations [Doornbos et al., 2009].

As pointed out by Zijlstra et al. [2005], the NRLMSISE00 and most likely other models
produce a smoothed atmospheric density with little high-frequency signals and with lacking
continuous background in a spectral density plot when compared to accelerometer derived
densities. A typical accelerometer measurement is shown, for example, in fig. 1.25 of a
previous section. Based on this figure and on the plots in [Zijlstra et al., 2005], an approximate
stochastic model as an upper bound was derived, which is shown by the green trace in fig. 2.43
and has the analytical form

ASDr∆naspfq “ ∆na,max ¨ ASDrρa{ρa,meanspfq “ ∆na,max ¨ 1a
1 ` pf{0.2mHzq2

. (2.270)

The fluctuations of the refractive index have been multiplied by L “ 200 km to obtain a
displacement noise ASD with units of m{

?
Hz in the figure. Thus, the upper plot of fig. 2.43

confirms the anticipation that fluctuations of the refractive index do not produce a ranging
noise above approx. 2 nm{

?
Hz.

So far, the analysis did not properly solve the path integral in eq. (2.264) between both
S/C, but the following assumption was implicitly used

∆tatmo « 1

c0
¨
ż

P

∆napt, ~rq ds « ∆naptq ¨ L
c0

, (2.271)

i.e. an average refractive index along the photon path was assumed. The difficulty with
solving the line integral is that the atmospheric models do not properly reflect fluctuations of
the atmospheric density on short spatial scales of the order of meters to 200 km. However, one
can use the fact that the accelerometer aboard the S/C samples the density fluctuations along
the approximate light path, not with the speed of light but with a velocity of v « 7600m{s.
If one assumes that the spatial atmospheric density pattern does not change much over time
scales of a few seconds, one can approximate the line integral by

c0 ¨ ∆tatmo “
ż

P

∆napt, ~rq ds «
ż t1“t`L{c0

t1“t
∆napt1, ~rpt1qq ¨ v dt1, (2.272)

which can be conveniently solved in the spectral domain as

c0 ¨ ASDr∆tatmospfq “ v ¨ ASDr∆naspfq
2πf

¨ |1 ´ e2πifL{c0 |. (2.273)

The result is shown by the dashed dark blue trace in the upper plot of fig. 2.43. The magnitude
of the dashed dark blue trace is reduced compared to the green trace, which means that the
stochastic spatial variations along the photon (or satellite) path average out partly.

The fluctuations of the refractive index along the orbit ∆napt, ~rptqq can be expressed as
function of the time, i.e. ∆naptq, which has a spectral density ASDr∆naspfq, where f is the
Fourier frequency in Hz. However, an alternative method is to parameterize the fluctuations
in terms of a spatial coordinate x, e.g. the position along the orbit. The time t and position
x are related via t ¨ v “ x, and thus, one has ∆napxq “ ∆napt ¨ vq. Now one can equivalently
formulate the path integral as follows

c0 ¨ ∆tatmo “
ż

P

∆napt, ~rq ds «
ż x1“x`L

x1“x
∆napx1qdx1, (2.274)
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while the spectral solution can be written as

c0 ¨ ASDr∆tatmospkq “ ASDr∆naspkq
2πk

¨ |1 ´ e2πikL|, (2.275)

with k denoting the spatial frequencies with units of m´1. Eq. (2.273) and (2.275) are
equivalent, since

ASDr∆naspkq “ ASDr∆naspf{vq (2.276)

relates the fluctuations in the temporal frequency with spatial frequencies. The fractional
density fluctuations or the fractional refractive index fluctuations

ASDr∆naspkq
∆na,mean

“ ASDrρaspkq
ρa,mean

(2.277)

are shown in the lower plot of fig. 2.43 as a function of the spatial wavelength 1{k. The do-
main of spatial fluctuations k is physically more adequate to describe the effects during the
short photon propagation time and may allow better analysis and comparison of different at-
mospheric density models, because the spatial frequencies k are a property of the atmospheric
models, while the temporal Fourier frequency f depends on a particular orbital velocity. It
is noted that the notching features at high frequencies of the dark blue trace in the upper
plot in fig. 2.43 appear for spatial fluctuations in ∆napxq with a wavelength corresponding to
an integer multiple of the inter-satellite distance L. Such wavelengths cancel out in the line
integral.

In summary, the effect of the neutral atmosphere and the refractive index yields a small
noise in the ranging measurement, which is below approx. 1 nm{

?
Hz for L “ 100 km even at

the lower end of the science measurement frequency band. Also sinusoidal variations at integer
multiples of the orbital frequency are caused by the refractive index, but they have a negligible
amplitude compared to other tone errors. The effects of the neutral atmosphere discussed
here likely impose a fundamental sensitivity limit in GRACE-like gravimetric missions, as
these errors can not be removed by dual band measurements.
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Figure 2.43: (Upper panel:) Ranging noise due to refractive index variations. (Lower
panel:) Spatial spectral density of the stochastic model used to describe spatial fractional
fluctuations of the atmospheric density and refractive index with units of 1{

?
m´1. Both

plots assume an inter-satellite distance of L “ 200 km.
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2.6 Design Principles of Satellite-Satellite Interferometers

In the previous sections, the phase observable for the interferometric range measurement was
derived for different functional concepts. Noise sources such as laser frequency noise and
the USO timing jitter have been accounted for. Furthermore, relativistic and atmospheric
corrections were addressed, which are required to obtain the instantaneous geometrical dis-
tance between the satellites ρinst. However, the light and its phase was mainly treated in the
plane-wave approximation or within the traversing photon picture. In addition, errors due to
the specifics of the optical design of the interferometers, which includes the severe coupling
of satellite rotations into the range measurement, have not been discussed but absorbed in a
single correction term to the photon time of flight: δtifo (cf. sec. 2.5.1). Moreover, aspects re-
garding the interferometric signal amplitude or signal-to-noise ratio, which are mainly driven
by the available light power, have been avoided. These will be addressed in this and the
following sections.

This section 2.6 is dedicated to principles of (optical) satellite-to-satellite interferometry
(SSI), which are important for the design, analysis and understanding of optical ranging inter-
ferometers. At first, the coupling of satellite attitude into the range measurement is addressed
with the help of reference points, which provide a geometrical meaning to the coupling factors
of satellite or interferometer orientation into the pathlength. These reference points turn out
to be helpful also in the further discussion of different optical layouts (cf. sec. 2.7). For sen-
sible interferometer designs, this attitude-to-ranging coupling is the other major error source
next to the laser frequency noise. The second part of this section on design principles covers
the signal strength and signal-to-noise ratio of an interferometric readout, which allows one
to derive detailed power link budgets for different interferometer designs in sec. 2.8. Another
important aspect related to the signal strength is the laser link acquisition, which is briefly
discussed in sec. 2.6.12.

2.6.1 Gaussian Beam models

The attitude-to-ranging coupling in SSI depends on the used laser beams, e.g. on their spatial
modes. It is recalled that electro-magnetic waves generally have a vectorial nature and can
be described by the electric field vector ~Epx, y, zq 9 cosp2πνtq with time-harmonic time-
dependence (cf. introduction to interferometry in sec. 2.2). Laser sources ideally provide a
linear polarized Gaussian beam in TEM00 mode (cf. sec. 2.3.1 on lasers), which is an eigen-
mode of many optical resonators present in lasers and which will be subsequently described
in detail. To simplify the calculations, a scalar field theory is often used with a scalar electric-
field function E given by (cf. eq. (2.16) and (2.19))

Epx, y, zq “ | ~Ep~rq| “ E0p~rq ¨ cosp2πνt´ ~k0 ¨ ~r ´ φEp~rqq, (2.278)

where ~k0 “ k ¨ ~d0 “ 2π{λ ¨ ~d0 is the wave vector defining the normalized beam propagation
direction ~d0, φE is a term describing the phasefront and ~r “ px, y, zq⊺ is the evaluation point
of the field. Gaussian beams arise as solutions of the so-called scalar Helmholtz equation:

pB2
x ` B2

y ` B2
z ` k2q ¨ Epx, y, zq “ 0, (2.279)

under a paraxial approximation10 and under the assumption that the wavelength λ is much
larger than the transversal size of the beam. The scalar Helmholtz equation follows directly
from Maxwell’s equations. Gaussian beams have proven to be a suitable means to describe
coherent laser radiation and it is mentioned that complete orthogonal sets of Gaussian beam
modes can be found, e.g. so-called Hermite-Gaussian or Laguerre-Gaussian modes, which
allow to uniquely decompose arbitrary light fields into a set of modes.

10Paraxial means close to the beam axis.
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The first or fundamental Gaussian beam mode is common in the Hermite-Gaussian and
Laguerre-Gaussian set and it is commonly denoted as TEM00. It offers a good starting
point for the initial conceptual design of interferometers, as one usually tries to produce laser
beams with such a mode. This mode is predestined to be used as transmit (TX) beam by an
interferometer, which is explained in a moment.

A typical analytical expression for the fundamental Gaussian mode, which propagates
without loss of generality along the z-direction, reads in the complex representation as

Ecpx, y, zq “
?
2P

ω0 ¨ ?
π

¨ ω0

ωpzq ¨ e´ px2`y2q

ωpzq2 ¨ e´ik¨z´iφEp~rq ¨ ei2πνt, (2.280)

where the electric field amplitude Ec has absorbed the vacuum impedance and has for this
reason units

?
VA{m “

?
W{m instead of V/m. The quantity P is the total optical power of

the beam in watts. This convention for Ec is also used in the IFOCAD software and it allows
the intensity I with units of W{m2 to be written as the squared modulus of the electric field:

Ipx, y, zq “ |Ecpx, y, zq|2 “ 2 ¨ P
w2
0 ¨ π ¨ ω2

0

ωpzq2 ¨ e´ 2¨px2`y2q

ωpzq2 , (2.281)

with ωpzq “ ω0 ¨
a
1 ` pz{zRq2 describing the 1{e2 spot radius as a function of the longitudinal

position z and with ω0 denoting the 1{e2 waist radius, i.e. the minimum spot radius, which
is located here at z “ 0. The quantity zR “ πω2

0{λ is the so-called Rayleigh range. At each
longitudinal position z, the intensity decays with the Gaussian function in radial direction,
which means that the maximum intensity is transported along the beam axis (x “ y “ 0).

Furthermore, the phase evolution of a Gaussian beam, which is the argument of the
complex-valued electric-field Ec, reads as

´k ¨ z ´ φEp~rq “ ´k ¨ z ´ k
x2 ` y2

2 ¨Rpzq ` arctanpz{zRq (2.282)

with phasefront radius of curvature Rpzq “ z ¨
`
1 ` pzR{zq2

˘
. The arctan term is the so-called

Gouy phase, which can be neglected here, because this phase contribution is almost constant
in the far-field (z " zR). The radius of curvature is divergent at the waist position (z “ 0),
which means plane phasefronts are present at the location with the smallest spot size. In the
far-field (z " ω0, z " zR), the phase of a Gaussian beam approaches parabolic phasefronts,
i.e.

x2 ` y2

2 ¨Rpzq ` z
z"zR« x2 ` y2

2 ¨ z ` z. (2.283)

In fact, the parabolic shape arises from the used approximations in the derivation of the
Gaussian beams. In general, one can show that a confined laser beam in the near-field
produces spherical phasefronts in the far field [Zhou et al., 2007; Carter, 1972]:

x2 ` y2

2 ¨Rpzq ` z
z"zR«

a
x2 ` y2 ` z2. (2.284)

The distinction between parabolic and spherical phasefronts is rather of academic relevance,
since the difference is negligible for the interferometers discussed in this thesis.

It is noted that (ideal) fundamental Gaussian beams show a minimum beam parameter
product, which is given by the waist size ω0 and far-field divergence angle θdiv, i.e.

ω0 ¨ θdiv “ λ

π
. (2.285)

This means, for a fixed wavelength λ and waist size ω0, fundamental Gaussian beams are
optimal to transport the light power along the optical axis (~d0), since the divergence angle is
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minimal. It is recalled that a confinement of radiation in the near-field yields a higher spread
of the radiation in the far-field, i.e. a smaller waist size ω0 yields a larger far-field divergence
angle θdiv for Gaussian beams.

The minimal beam parameter product in combination with spherical phasefronts makes
this type of beam a reasonable and natural choice for the transmitted (TX) light towards
the distant satellite. Furthermore, Gaussian beams can be easily transformed in a well-
defined way by optics, e.g. magnified by a telescope to reduce the divergence in the far-field.
However, the generation of a Gaussian beam with a spot radius ωpzq requires typically that the
optical path has a free aperture diameter of 6 ¨ωpzq in order to avoid clipping and associated
diffraction effects. This might impose challenges regarding space and mass constraints in a
space mission. Therefore, clipped Gaussian beams can also be considered as TX laser beam,
which are addressed in appendix F. However, clipped Gaussian beams currently seem to be
required only for missions with very low beam divergence requirements such as the LISA
mission. In these missions, telescopes are used to produce a large beam with associated small
divergence. It is remarked that even clipped Gaussian beams can be approximated well close
to the beam axis by a fundamental Gaussian beam with slightly different beam parameters
as described in appendix F.

In the following, fundamental Gaussian beams are used to describe the laser beams in
interferometers. These are mathematical models, which have proven to describe the actual
behavior of laser beams well. However, one should keep in mind that the Gaussian beam
model is derived under a paraxial approximation and that polarization effects are omitted.
In addition, a realistic description of laser beams need to consider higher-order modes, which
often contain few percent of the total beam power. These inaccuracies are tolerable in an
early design phase, but have to be tackled at later stages.

With clarified properties of the transmit laser beam, the differences between transmitter
and receiver pointing errors can be addressed.

2.6.2 Transmitter vs. Receiver Pointing

The discussion of pointing effects in interferometry requires care, as there is no such term
as the interferometer pointing. Reasonable SSI interferometers have a received (RX) beam
axis and a transmit (TX) beam axis, which may not be co-aligned, e.g. due to a point-ahead
mechanism. Furthermore, the relation of these two axes to the satellite’s attitude may be
non-trivial in case of an active beam steering.

If the transmit beam is misaligned with respect to the line-of-sight, which is the connecting
line between the two S/C, the intensity at the receiver S/C drops as depicted in the upper
sketch of fig. 2.44. At the receiver, the phasefronts have an almost spherical shape with a
center of curvature ideally co-located with the CoM of the transmitter S/C and with the pivot
point of rotations, so that the phase at the distant S/C does not change upon rotations.

In case of a receiver misalignment, illustrated in the lower part of fig. 2.44, the intensity
stays to first order constant, because the laser beam has diverged (typically) to a size sig-
nificantly larger than the S/C. However, the overlap of the laser beams at the receiver, the
so-called heterodyne efficiency (cf. sec. 2.2), decreases. The misalignment between the local
oscillator beam (red in fig. 2.44) and the received beam (blue) can be measured with DWS. If
the rotation of the receiver is performed around a particular point, indicated with the green
dot in the figure, the longitudinal phase or ranging signal as measured with both photodiodes
does not change. Here, it was assumed that both photodiodes in the figure measure exactly
the same signal, such that only a single green dot is present. In addition, it should be noted
that the direction of the received beam in the receiver spacecraft is always along the x-axis,
the line-of-sight, due to the quasi-spherical shape of phasefronts and as the waves propagate
in vacuum normal to the phasefronts.

In summary, a local satellite misalignment influences the interferometric wavefront over-
lap, the phase and the DWS signals, while the misalignment of the transmitter, more precisely
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Figure 2.44: (Upper sketch): The transmitter S/C and TX beam are misaligned by
rotation around the center of phasefront curvature, indicated with the green dot, which
yields an intensity drop at the receiver. The beams on the receiver stay aligned. The phase
or ranging signal at the receiver does not not change, as the spherical phasefront is rotated
around it’s center. (Lower sketch): The receiver is misaligned, which yields a misalignment
between local oscillator beam (red) and the received beam (blue). It is noted that the beam
size at the distant S/C is not up to scale as it is usually significantly larger than the satellite.
The pivot point of rotation is indicated in the sketches with a green dot.

the misalignment between transmitted beam and the line-of-sight, changes the received light
power. As the rotational sensing based on DWS is unaffected by the transmitter to a large
extent, one can utilize DWS in a control loop for laser beam steering or for the attitude of the
satellite, because DWS is affected only by local influenceable parameters. However, extensive
transmitter misalignment leads to a drop of the signal amplitude below the tracking threshold
of the phasemeter and to a loss of DWS and phase measurements. Furthermore, deviations
of the phasefront from spherical or parabolic shape can couple transmitter misalignment and
the DWS signals. Thus, for real instruments, it is essential to precisely determine the mode
content of the transmit beam to be able to assess the magnitude of such disturbances.

2.6.3 Attitude-to-Ranging Coupling

The term attitude-to-ranging coupling is coined in this thesis. Other common names are
tilt-to-pathlength, tilt-to-length or rotation-to-pathlength coupling. Due to this coupling
mechanism, rotational degrees of freedom of a satellite, of a single component or of a test-
mass produce an apparent length change in the longitudinal phase measurement. Therefore,
fluctuations of the attitude can produce so-called attitude jitter noise in the phase-derived
range measurement. The interferometers discussed in this thesis for gravimetric missions do
not utilize an optical read-out of a test-mass, hence, attitude-to-ranging coupling refers to
the attitude of the satellites, which is described in the following by three angles α, β and
γ for roll, pitch and yaw, respectively. Furthermore, it is recalled that the satellites rotate
around their center of mass, for example, in presence of disturbance torques.

In a DOWR and transponder-based ranging scheme, each satellite emits and receives
laser light. It is assumed that the inter-satellite distance is large compared to the size of the
laser beams, such that far-field approximations apply, i.e. the phasefronts are spherical at
the distant S/C. The phase of the light is measured at each S/C and both measurements are
subtracted to cancel the phase ramp due to the offset frequency. Moreover, the phase values
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Figure 2.45: A two-way ranging scheme, where each S/C has an interferometric receiver
reference point (RX RP) and a transmitter reference point (TX RP).

are scaled with the laser wavelength to obtain a displacement, i.e. the (biased) instantaneous
geometrical distance ρ “ ρinst between the satellites (cf. sec. 2.4 on functional concepts):

ρ « 1

2
¨ pϕ1 ´ ϕ2q ¨ λ

2π
(2.286)

Relativistic effects, e.g. due to the translational motion of the satellites, have been treated
in the previous sections. For the sake of simplicity, only the rotational degrees of freedom
of the satellites are considered in the following generic derivation of the attitude-to-ranging
coupling. A sketch of the considered setup is depicted in fig. 2.45, which shows two laterally
separated beam axes. In total four points are highlighted, which are denoted as TX and
RX reference points (RPs). The TX reference points are the sources of the laser beams
with spherical phasefronts, i.e. the center of phasefront curvature as measured at the distant
satellite. The RX reference points are the locations of point-like phase measurement systems.
Specifics and technical details of the interferometer such as a local oscillator beam are omitted
for the moment.

The phase ϕ1 as measured by S/C 1 in this simplified scenario is proportional to the
instantaneous geometrical distance between RX-RP1 and TX-RP2. If the position of the
RPs is given as ~∆ relative to the respective CoM, one can easily derive the following Taylor
series for the pathlength coupling:

ϕ1 ¨ λ
2π

« ˘ ρ1,DC ˘
`
0, γ1,´β1

˘
¨ ~∆RX

1 ˘ 1

2
¨
`
α1, β1, γ1

˘
¨

¨
˝
0 0 0
0 ∆RX

1,x 0

0 0 ∆RX
1,x

˛
‚¨

¨
˝
α1

β1
γ1

˛
‚

(2.287)

¯
`
0, γ2,´β2

˘
¨ ~∆TX

2 ¯ 1

2
¨
`
α2, β2, γ2

˘
¨

¨
˝
0 0 0
0 ∆TX

2,x 0

0 0 ∆TX
2,x

˛
‚¨

¨
˝
α2

β2
γ2

˛
‚. (2.288)

The derivation used the fact that the inter-satellite distance is large, e.g. much larger than
the size of the satellites or the lateral separation between the beam axes, and it was assumed
that the rotations are performed in the order yaw-pitch-roll, i.e. they can be described with
the total rotation matrix

pR “ pRxpαq ¨ pRypβq ¨ pRzpγq, (2.289)

where α, β and γ correspond to roll, pitch and yaw rotation angles, respectively.

For this particular order, the quadratic coupling matrix becomes very simple. The signs
in the Taylor series depend on the frequency ordering and are not of importance here. It is
only noteworthy that the signs and the frequency ordering is reversed for S/C 2 (cf. sec. 2.4
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on functional concepts), i.e.

ϕ2 ¨ λ
2π

« ¯ ρ2,DC ˘
`
0, γ2,´β2

˘
¨ ~∆RX

2 ˘ 1

2
¨
`
α2, β2, γ2

˘
¨

¨
˝
0 0 0
0 ∆RX

2,x 0

0 0 ∆RX
2,x

˛
‚¨

¨
˝
α2

β2
γ2

˛
‚

¯
`
0, γ1,´β1

˘
¨ ~∆TX

1 ¯ 1

2
¨
`
α1, β1, γ1

˘
¨

¨
˝
0 0 0
0 ∆TX

1,x 0

0 0 ∆TX
1,x

˛
‚¨

¨
˝
α1

β1
γ1

˛
‚. (2.290)

With both phase measurements, the phase-derived range measurement ρ reads up to quadratic
order in the angles as follows

ρ « 1

2
¨ pϕ1 ´ ϕ2q ¨ λ

2π
(2.291)

« const. ˘ 1

2
¨
`
0, γ1,´β1

˘
¨ p~∆RX

1 ` ~∆TX
1 q

˘ 1

4
¨
`
α1, β1, γ1

˘
¨

¨
˝
0 0 0
0 ∆RX

1,x ` ∆TX
1,x 0

0 0 ∆RX
1,x ` ∆TX

1,x

˛
‚¨

¨
˝
α1

β1
γ1

˛
‚

˘ 1

2
¨
`
0,´γ2, β2

˘
¨ p~∆RX

2 ` ~∆TX
2 q

˘ 1

4
¨
`
α2, β2, γ2

˘
¨

¨
˝
0 0 0
0 ∆RX

2,x ` ∆TX
2,x 0

0 0 ∆RX
2,x ` ∆TX

2,x

˛
‚¨

¨
˝
α2

β2
γ2

˛
‚, (2.292)

where the first two lines of eq. (2.292) describe the attitude coupling on S/C 1 and the third
and fourth line describe the attitude coupling on S/C 2.

It is noted that the transversal y and z components of the offset vectors ~∆i couple linearly
with pitch angle β and yaw angle γ, while a longitudinal offset along the x-axis (∆1,x or ∆2,x)
couples quadratically with yaw and pitch. The roll angle α does not change the phase-derived
range ρ in this simplified analysis.

In addition, it is remarked that the attitude coupling vanishes, if the satellites rotate
around the centroid between the RX and the TX reference point, which means that the CoM
of S/C 1 is co-located with the centroid, such that the term p~∆RX

1 ` ~∆TX
1 q{2 is zero.

The attitude-to-ranging coupling was derived with the help of the simplified sketch shown
in fig. 2.45. However, even in the case of a setup with a realistic interferometer, coupling
factors of interferometer or satellite rotations into the range can be measured. One might
be tempted to assign the measured coupling factors a geometrical meaning, for example, in
terms of the offset vector ~∆, which is, loosely speaking, a lever arm. This defines apparent
and effective reference points for the interferometer, which have no necessary relation to
the physical structure of the interferometer, i.e. they are virtual points. Of course, such
an approach is only an approximation, because the coupling terms may generally have a
fully populated quadratic coupling matrix, the quadratic coupling in yaw and pitch may be
different or the roll-coupling may not vanish. Nevertheless, it is an interesting approach,
which is followed in this thesis, since most of the attitude-to-ranging contributions can be
covered with the model given in eq. (2.292).

A formal definition of the RPs is attempted as follows: RPs are pivot points of rotations,
where the linear and quadratic coupling of yaw and pitch rotations into the measured phase
vanish. The RX RP is defined as vanishing rotation-coupling for a phase measurement at the
local rotating S/C, while the TX RP has vanishing rotation-coupling for a phase measurement
at the distant (non-rotating) S/C. The RX RPs are the locations, where one would locate an
equivalent ideal point-like phase measurement system instead of the complex interferometer.
The TX RPs are the points, where one would place, based on phasefront observations at
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the distant craft, an equivalent radiation source emitting ideal spherical waves instead of the
actual transmit beam.

The motivation for reference points is to assign the linear and quadratic rotation-to-
pathlength coupling factors with a geometrical meaning. These coupling factors are a major
error contributor in the range measurement and key figures of inter-satellite ranging instru-
ments. Expressing the coupling factors as a position is more vivid, in particular, it enables a
systematic analysis of new interferometers and a comparison of different interferometer types.
The systematic analysis should of course also include the stability and well-definedness of
these points. Furthermore, it is an attempt to condense and approximate the complex inter-
ferometric setup with two points, which is only possible with simplifications, as these points
typically depend on the state of the interferometer such as the temperature or the position
of actuators and they are based on a linearization around an attitude set-point.

However, TX and RX reference points are properties of the interferometer and they can
be used as categorization criteria. For example, if both points are located on the line-of-sight,
the instrument can be denoted as an on-axis interferometer. Otherwise, the term off-axis
interferometer is appropriate.

It is also repeated that the overall attitude-to-ranging coupling for a satellite depends
on the centroid of RX RP and TX RP and the total attitude-to-ranging noise in the range
measurement is equally driven by both satellites. Therefore, the centroid should be located
close to the S/C CoM on both satellites to reduce the attitude jitter noise in the displacement
measurement. Within the GRACE Follow-On LRI, this co-location has an accuracy of the
order of 100 ➭m for the transversal y and z directions, while the line-of-sight direction has
a more relaxed requirement, because this degree couples only quadratically. In fact, in the
GRACE Follow-On mission, the vertex of the corner-cube is positioned at the CoM on each
S/C, which equals the position of the centroid of RX- and TX RP as will be explained in
sec. 2.7 on optical layouts. The effect of attitude-to-ranging coupling is depicted in terms of
spectral densities in fig. 2.46, where the red trace in the lower panel shows the contribution
in case of the GRACE Follow-On LRI. It has been derived from the pointing jitter simulation
shown in the upper panel.

For microwave interferometry, the TX RP and RX RP are usually considered to be co-
located with the antenna phase center. However, antennas have an anisotropic response and
the phase center depends on the working point, e.g. the orientation of the antenna w.r.t the
incident wavefronts and on the used frequency.

In optical interferometry, the determination of the RPs is also a non-trivial task as many
optical components induce additional rotation-to-length coupling and moving objects such
as actuators may alter the position. In the next two sub-sections, the RX and TX reference
points are studied in more detail and approaches for the determination of the RPs based on
sketches of the optical layouts are given. The RPs are also addressed in sec. 2.7 on optical
layouts.

2.6.4 RX Reference Points

Photodiodes measure the phase of the laser light in optical interferometry. In general, each
photodiode providing a longitudinal phase measurement has its own RX RP, because the
attitude-to-ranging coupling factors can be determined for each photodiode individually. In
addition, the reference points of different photodiodes may not be co-located. Of course,
it would be appealing to directly infer the reference points from an interferometer sketch.
Although this is not always possible, an empirical 3-step procedure for well-behaving and
aligned interferometers, without guarantee for universal applicability, is the following:

The phasefronts arriving from the distant S/C are locally flat and appear as plane waves
in front of the S/C with normal vector ~k. One of these phasefronts is taken as a virtual plane
(VP) as shown in fig. 2.47.

In a first step, one determines a ray originating from the VP and with direction ~k, which
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Figure 2.46: (Upper panel:) Attitude variations with respect to the line-of-sight for a
single satellite. Data from a high-fidelity AOCS simulation by Airbus D&S for GRACE
Follow-On. (Lower panel:) The corresponding pointing jitter noise is shown by the red
trace, which includes the contributions of both satellites. A coupling of 100 ➭m/rad was
assumed in the lateral y and z direction, which corresponds to an offset of 100 ➭m between
the centroid of RX RP and TX RP and the satellite CoM. The laser frequency noise (LFN)
requirement and the current best estimate (CBE, 2016) are shown by the dark blue traces,
which forms, together with the attitude-to-ranging coupling, the two major error contributors
in inter-satellite laser ranging.
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Figure 2.47: Determination of the RX reference points, RP1 for photodiode PD1 and
RP2 for photodiode PD2. The intermediate point ~B matches accidentally both photodiodes.
The RX RPs are located on the axis ~k, which propagate through the interferometer onto
the center of the photodiodes. The longitudinal position on the axis is determined by the
effective distance to the photodiodes. The photodiode PD1 has a longer effective distance
(pathlength) due to the beamsplitter substrate, hence, RP1 has a larger separation to ~B

compared to RP2.

impinges onto the center of the photodiode under interest. The ray needs to propagate
through the (complex) interferometer. The origin point of the ray on the VP is denoted with
~B. In fig. 2.47, the point ~B matches both photodiodes, which is, in general, not the case.

In a second step, the accumulated effective distance is determined, which the light ray
traversed from the VP to the center of the photodiode. For purely reflective setups with flat
surfaces, the effective distance is the accumulated geometrical pathlength. However, if a glass
plate or an imaging system is passed, the equivalent distance is not the geometrical distance.
Ideal imaging systems have zero effective distance from the input plane to the output plane.
A planar beamsplitter at normal incidence with thickness d and refractive index n exhibits
an effective distance of d{n. The effective distance is the B element of an ABCD ray transfer
matrix.

In the last third step, the RX RP ~∆RX is computed with

~∆RX “ ~B `
~k

|~k|
¨ deff,RX, (2.293)

which is shown for the two photodiodes (RP1 and RP2) in fig. 2.47.
The method presented here did not consider the phase change from the local oscillator

beam, i.e. it was assumed that the local oscillator beam is fixed. However, if the local oscillator
is actuated to stay aligned with the RX beam and to zero DWS, the phase of the photodiode
is also changed by the local oscillator. Thus, the previous expression needs to be modified to

~∆RX “ ~B `
~k

|~k|
¨ pdeff,RX ´ deff,LOq, (2.294)

where deff,LO is the effective distance for the local oscillator beam from the steering mirror (or
the pivot point of rotation) to the photodiode center. Furthermore, it is remarked that this
procedure considered that the attitude-to-ranging coupling is purely quadratic for rotations
around the pivot point ~B, which should apply for good-natured designs.

Another example for this procedure is shown for the GRACE Follow-On LRI design
(cf. fig. 2.63), where the center of the RX aperture can be used as point ~B. Then, the

189



2.6. DESIGN PRINCIPLES OF SATELLITE-SATELLITE INTERFEROMETERS

effective distances for RX and LO beam are zero (deff,RX “ deff,LO “ 0), because the common
imaging system images the RX aperture and the steering mirror onto the photodiode. Hence,
the RX RP is at the center of the RX aperture. Even if the imaging system is removed and the
individual effective distances are non-zero, the difference deff,RX ´deff,LO remains small, since
the pathlengths from recombination beamsplitter to steering mirror and from recombination
beamsplitter to aperture are almost identical. A significant shift of the RX RP would appear,
if neither beam steering nor an imaging system would be present, because then eq. (2.293)
would apply.

It follows from eq. (2.293) and (2.294) that the RX RP is located on the beam axis
entering the satellite, however, the precise location depends on the specific optical layout.
In addition, it is stressed again that the procedure stated here may not apply for all setups
and the more general approach is to rotate the interferometric setup in optical simulations
or even experimentally and to measure the attitude-to-ranging coupling factors directly.

2.6.5 TX Reference Points

The TX reference points have been introduced as the center of phasefront curvature (CoC) as
apparent for the distant satellite (cf. upper sketch in fig. 2.48). Strictly speaking, the location
of the TX RP within the satellite depends on the separation L between the satellites, although
the effect is rather small within the far-field approximation (L " 1 km).

If the transmit beam is fixed in the S/C frame, i.e. no beam steering is present, rotations
around the CoC do not change the phase, because a spherical phasefront is rotated around
its center. The CoC is a virtual point and can be determined, in theory or in simulations,
by measuring the phase at the distant satellite while rotating the local satellite around the
CoM. With the linear and quadratic coupling factors one obtains the offset between the CoM
and the TX RP.

Since far-field measurements are, in general, difficult, an alternative method is as follows:
The transmit beam leaving the satellite is in good approximation a Gaussian beam for the
interferometers considered in this thesis (cf. sec. 2.6.1). One can determine the Gaussian
beam parameters, for example, the so-called complex q-parameter, at a particular position
along the TX beam outside of the interferometer or satellite. With known properties of
the beam, the virtual waist position of the beam on the prolonged TX beam axis can be
calculated, which is the position of the CoC and of the TX RP. It is noted that the virtual
waist or CoC may differ from the actual unfolded waist position, for example, if a telescope
is present in the TX path. This is illustrated in the central sketch in fig. 2.48.

However, some interferometer concepts utilize active TX beam steering, which changes the
direction and the light path through the S/C. This complicates the determination of the TX
RP, because one needs to distinguish between attitude of the satellite and the orientation of
the actuator and of the TX beam with respect to the line-of-sight, since these are non-trivially
connected in interferometers with active beam steering. In the following, it is assumed that
the beam steering is performed with a steering mirror, which rotates around the mirror surface
center, where the laser beam is impinging (cf. lower sketch in fig. 2.48). The path along the
central axis of the beam is parameterized with s, whereby s “ 0 denotes the waist position.

The mirror pivot point is denoted with ~A. At this point, the Gaussian TX beam has a
phasefront radius of curvature Rps “ soffq, with soff being the pathlength between the waist
position and point ~A. The unfolded pivot point ~A is denoted with ~C “ pcx, cy, czq⊺ as shown
in the bottom sketch of fig. 2.48. The process of unfolding needs to account for potential
imaging effects in the light path. If the steering mirror is rotated, the TX beam outside of the
satellite seems to rotate around the pivot point ~C. The phasefront curvature at the virtual
point ~C is equal to the phasefront curvature at ~A. Thus, it is straightforward to compute the
location of the CoC, since the distance between ~C and CoC is soff.

If the rotations of the satellite in roll, pitch and yaw are denoted with angles α, β and γ,
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Figure 2.48: (Upper sketch:) Gaussian beam with almost spherical phasefront in the
far-field. The waist and center of phasefront curvature (CoC) are co-located in the far-field
approximation valid for inter-satellite ranging. (Central sketch:) Gaussian beam folded in
a satellite interferometer without steering mirror. The CoC is the TX RP. It is a virtual
waist position located on the transmit beam axis and corrected for imaging effects e.g. due
to telescopes. The unfolded waist position would be located further to the left compared to
the CoC. (Lower sketch:) Interferometer with steering mirror. The TX RP is denoted by
point ~C, which is the unfolded version of the steering mirror pivot point ~A and corrected for
imaging effects.
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respectively, one can write the rotated position ~C 1 of the point ~C as

~C 1 “ pRpα, β, γq ¨ ~C, (2.295)

where pR is a rotation matrix given in eq. (2.289). The direction of the TX beam ~d is
parameterized in case of lacking beam steering by

~d “ pRpα, β, γq ¨ ~ex, (2.296)

which means the TX beam rotates with the satellite, while in case of active beam steering it
is

~d “ pRpδα, δβ, δγq ¨ ~ex, (2.297)

which means the TX beam direction is inertially fixed up to some small beam pointing errors
with respect to the line-of-sight denoted with δα, δβ and δγ. The vector ~ex is the unit vector
along the x-direction, which is the nominal TX beam direction and the line-of-sight.

With the direction ~d and the point ~C 1 one can compute the CoC with ´~d ¨ soff ` ~C 1. This
enables one to derive the pathlength coupling for a phase measurement at the distant S/C
in absence of an active beam steering as

ρ « const. `

¨
˝

0
´cz
cy

˛
‚¨

¨
˝
α

β

γ

˛
‚ (2.298)

` 1

2
¨ pα, β, γq ¨

¨
˝
0 0 0
0 cx ´ soff 0
0 0 cx ´ soff

˛
‚¨

¨
˝
α

β

γ

˛
‚, (2.299)

and with TX beam steering one obtains

ρ « const. `

¨
˝

0
´cz
cy

˛
‚¨

¨
˝
α

β

γ

˛
‚ (2.300)

` 1

2
¨ pα, β, γq ¨

¨
˝
0 0 0
0 cx 0
0 0 cx

˛
‚¨

¨
˝
α

β

γ

˛
‚ (2.301)

` 1

2
¨ pδα, δβ, δγq ¨

¨
˝
0 0 0
0 ´soff 0
0 0 ´soff

˛
‚¨

¨
˝
δα

δβ

δγ

˛
‚ (2.302)

These results illustrate that in case of a fixed TX beam in the S/C frame, the TX reference
point is the center of phasefront curvature given by CoC “ pcx ´ soff, cy, czq, i.e. it is the
unfolded waist position of the Gaussian beam, but corrected for effects from potential imaging
systems. In case of active TX beam steering, the TX reference point is located at the point
~C “ pcx, cy, czq. However, if there are residual errors in the TX beam pointing with respect
to the line-of-sight (δβ, δγ), the offset soff produces changes in the measured phase, which are
of quadratic order in the yaw and pitch angles. The offset soff is the pathlength between the
steering mirror pivot point ~A and the actual waist position as shown in the lower sketch in
fig. 2.48. Thus, the waist position of the laser beam should be located at the steering mirror,
which is also the design baseline of the GRACE Follow-On LRI.

In summary, the TX RP is of importance for the satellite attitude-to-ranging coupling,
because the coupling is determined by the centroid of RX and TX RP. For interferometers
without active beam steering along the line-of-sight, such as the LISA mission, the TX RP is
given by the center of the phasefront curvature as apparent in the far-field. For setups with
active beam steering along the line-of-sight, such as the GRACE Follow-On LRI, the TX
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RP is located at the apparent pivot point for the TX beam, which is, loosely speaking, the
unfolded steering mirror pivot point. Thus, it does not dependent on the phasefront or the
waist position of the TX beam. However, if there are pointing errors of the TX beam with
respect to the line-of-sight, caused, for example, by noise in the steering mirror, the offset
soff between steering mirror and waist position couples quadratically with the yaw and pitch
beam pointing error.

For a numerical example of the magnitude of this induced beam jitter noise, it is assumed
that the waist position is known with an accuracy of 10% of the Rayleigh range zR and that
the pointing noise with respect to the line-of-sight is of the order of ASDrσs “ 5 ➭rad{

?
Hz in

yaw and pitch. For the GRACE Follow-On LRI, the Rayleigh range is approximately zR “
18m, which yields soff “ 1.8m. Furthermore, with a static offset of σ0 « 50 ➭rad, this results
in a noise of the order of

soff ¨ σ0 ¨ ASDrσs ¨ 2 « 1 nm{
?
Hz, (2.303)

where the factor of two accounts for two satellites (
?
2) and for two axes (

?
2). Thus,

the magnitude of the noise term is uncritical but noteworthy. Other pref-factors might be
required, if the pointing noise ASDrσs is referred to the motion of a steering mirror, which
often deflects the beam by twice the angle.

2.6.6 Validity and Extensions of Reference Points

Reference points have been defined in the previous sections as pivot points of vanishing
attitude-to-ranging coupling for rotations around yaw and pitch axes. However, this definition
holds only in an idealized case. For a particular rotation axis, there exists a line of pivot
points, which is parallel to the rotation axis and where the coupling vanishes (cf. appendix E).
In the non-ideal and realistic case, roll-rotations around the x-axis change the ranging signal
and a line of zero coupling exists for the roll angle as well.

Furthermore, in the ideal case, yaw, pitch and roll lines intersect in a single point, however,
in general, the lines are slightly skew. Hence, there is no intersection point and no reference
point. This may apply for the RX RP and the TX RP. For example, in the TX path, skew
lines of vanishing yaw and pitch pathlength coupling are caused by different phasefront radii
of curvature along two transverse principal directions of the TX beam.

An extension of the reference points are axes or lines of vanishing coupling, which can be
defined for the RX, TX and the combination of both, which is the important quantity as it
determines total attitude-to-ranging coupling.

Another possible extension of the RPs are points of minimal coupling (POMC), which can
be defined as the point closest to the lines of vanishing coupling as shown in appendix E. The
magnitude of the residual attitude-to-ranging coupling at the RX-POMC and TX-POMC, the
ability to measure the POMC location and the POMC position stability need to be analyzed
in detail in the advanced design phase of an interferometer.

However, such an in-depth analysis for the various optical layouts shown in subsequent
section 2.7 is beyond the scope of this thesis and the layouts are treated with reference points,
which is sufficient in an early design phase.

2.6.7 Retro-Reflection, Point-Ahead Direction and Angle

This short sub-section addresses a design principle for interferometers, which has been used
without further notice in previous sections and which applies in particular for gravimetric
missions. This principle is the retro-reflection property, which interferometers need to exhibit
to efficiently exchange light. Retro-reflection means here that the interferometers on the
satellites send their TX beam in the direction of the received phasefronts. This can be
efficiently achieved with the help of differential wavefront sensing (DWS). Furthermore, this
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property motivates the use of retro-reflecting optical components within the optical layout,
such as in the GRACE Follow-On LRI.

However, strictly speaking, retro-reflection is only correct if the satellites are non-moving
transversally to the line-of-sight. This is because point-ahead effects play a role due to the
finite speed of light c0 and due to the non-zero time-delay ∆t between photon emission at
the transmitter S/C and reception at the distant S/C. Hence, the light should be emitted
not exactly along the anti-parallel direction of the incoming phasefronts, but along the point-
ahead direction, where the distant S/C will be located at the time of reception. The important
quantity is the transversal velocity v12,K between the satellites, because it determines the
point-ahead angle θpa [Sheard et al., 2012]

θpa « 2 ¨ |~v12,K|
c0

, (2.304)

under the typical valid assumption L " |~v12,K| ¨ ∆t. The relative transversal velocity is given
by

~v12,K “ p~v2 ´ ~v1q ´ p~v2 ´ ~v1q ¨ ~e12, (2.305)

where ~e12 is the line-of-sight direction between both satellites. Numerical values for the
relative transversal velocity can be found in table 2.6.

A point-ahead angle θpa is a desired misalignment from retro-reflection and it needs to be
compared to the divergence of the transmitted (Gaussian) beam θTX. The ratio θpa{θTX is «
0.01 for the exemplary gravimetric mission GRACE Follow-On as apparent from table 2.6 and
indicates that the misalignment due to the point-ahead angle is acceptable without further
action, while θpa{θTX « 1 for a LISA mission type requires a point-ahead compensation.

Because the point-ahead direction is a vectorial quantity, the point-ahead angle θpa can
be decomposed into a local S/C or an interferometer coordinate frame, e.g. yaw and pitch
directions. For a gravimetric in-line constellation the (negligible) point-ahead angle is mostly
in pitch direction. If the point-ahead direction is constant in a local S/C or interferometer
frame, a static misalignment of a mirror can induce the desired deflection. However, even
a constant θpa value might still imply that the point-ahead direction changes between the
different axes, which would require a dynamic point-ahead actuator.

It is summarized that the interferometers for gravimetric missions discussed here do not
require a point-ahead compensation in the beam pointing, i.e. it is sufficient for the interfer-
ometers to retro-reflect the light.

2.6.8 Optical Detection Schemes

The previous sections were mainly concerned with the longitudinal phase, i.e. the ranging
information, and the susceptibility to rotations and pointing. In the following sections, the
signal amplitude of the interferometric phase readout is addressed, which can be used to
derive the signal-to-noise ratio of the phase measurement.

To obtain an observable interference between laser beams, the beams need to be in the
same polarization state and they need to be overlapped, i.e. co-located and co-aligned in
their propagation direction (cf. overlap integral eq. (2.56)). The spatial overlap is typically
achieved by a beamsplitter, while matching of polarization states can be performed before
or after overlapping. In satellite interferometry, the interfered beams are typically detected
with a quadrant photodiode, which provides DWS, DPS and the ranging (longitudinal) signals
after phase-tracking (cf. sec. 2.2). Various implementations of the optical detection scheme
with different degrees of redundancy can be utilized. The most common detection schemes
are briefly discussed in this subsection.

The most simple setup is illustrated in scheme 1 of fig. 2.49. This scheme has only a single
beamsplitter and one port of the beamsplitter is unused. Thus, the local oscillator in the
open port can be used, for example, as TX beam. It is noted that the local oscillator beam
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Figure 2.49: Different optical detection schemes for interferometric phase readout with
required combination of photocurrents for redundant or balanced operation.
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and the measurement beam are parallel in both ports, if the DWS signal is zero, i.e. both
phasefronts are aligned at the photodiode. In addition, this thesis adopts the nomenclature
from the GRACE Follow-On LRI project for the QPD segments, i.e. the labeling of segments
(A,B,C,D) is always line-wise from left to right when looking onto the photodiode active
area, with segments C and D being in the direction of the interferometer bottom baseplate11.
The wires of the photodiode or the photoreceiver output channels are labeled (A,B,C,D) like
the segments, so that all photodiodes are inter-changeable. However, the photocurrents are
labeled in this thesis with greek letters (α, β, γ, δ), which becomes useful when the correct
combination of redundant photodiode signals is discussed.

The detection scheme 1 with a single quadrant photodiode offers no redundancy, i.e. failure
of a single segment or channel implies loss of the DWS and DPS signals. Redundancy can
be introduced with a second beamsplitter and photodiode, which is shown in scheme 2 of
fig. 2.49. The horizontal direction appears flipped in terms of photocurrents for QPD 2 due to
the additional reflection in the path of the beams towards QPD 2. To obtain a hot-redundant
phase readout, the signals pα, β, γ, δq of QPD 1 need to be added to the signals pα, β, γ, δq of
QPD 2, which means a combination of segments according to

pA1,B1,C1,D1q ` pB2,A2,D2,C2q. (2.306)

Alternatively, one can also phase-track all 8 segments with a phasemeter, and perform the
correct combination afterwards with the complex oscillation coefficients in the domain of
phase and heterodyne amplitude. It is noted that the GRACE Follow-On LRI follows the
redundancy scheme 2, with combination of photodiode signals prior digitization and phase-
tracking in the analog electric domain. Furthermore, it is remarked that this scheme also
provides an open port with a local oscillator beam aligned to the measurement beam in case
of minimized DWS signals.

Another type of detection is shown in scheme 3, where only a single beamsplitter is
present, i.e. no unused local oscillator beam is available anymore. The photocurrents of
QPD 2 are flipped w.r.t. QPD 1, because QPD 2 has no reflection for the measurement
beam. In addition, the photocurrents in QPD 2 have a phase shift of 180˝, i.e. are multiplied
with ´1. This phase shift between output ports of an interference-generating beamsplitter,
which is often called recombination beamsplitter, follows from energy conservation. If a hot-
redundant phase readout is desired, the different segments need to be subtracted according
to (cf. fig. 2.49)

pA1,B1,C1,D1q ´ pB2,A2,D2,C2q. (2.307)

The heterodyne amplitudes in both ports are equal in scheme 3, if a 50:50 beamsplitter
is used. This case is commonly called balanced detection and offers the advantage that
some noise sources, most importantly the relative intensity noise, cancel out in the combined
output.

Scheme 4 enables a balanced detection with full redundant readout of both anti-correlated
ports, which requires 16 QPD segments.

It was assumed in the schemes 1-4 that both input beams are in the same polarization
state such that interference occurs upon overlap at the beamsplitter. Scheme 5 illustrates a
method, where both beams are overlapped in different polarization states, and interference
is generated afterwards by a polarizing beamsplitter, which usually reflects s-polarized light.
Again, both photodiodes have anti-correlated signals with 180˝ phase difference due to energy
conservation. In addition, this scheme offers the advantage that the s-polarized part of the
local oscillator input remains available, while all light of the measurement beam is used. The
latter statement does not hold for schemes 1 and 2, where a part of the measurement beam
is always transmitted at the first beamsplitter.

11In the so-called plus orientation of a QPD. Cross-orientation is not discussed here.
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A balanced detection scheme is not mandatory for gravimetric missions with nm{
?
Hz sen-

sitivity and MHz beatnotes, because the relative intensity noise is typically sufficiently small
at these frequencies. The phase detection in LISA Pathfinder, which used kHz beatnotes,
required balanced detection schemes to remove the relative intensity noise of the laser.

The availability of an unused local oscillator beam, which can be aligned by means of
DWS with the incoming measurement (RX) beam, is typically required for interferometers
with active TX beam steering such as the GRACE Follow-On LRI. Thus, scheme 1 and 2,
depending on the redundancy concept of the mission, are also potential candidates for future
gravimetric missions. However, since these schemes waste some part of the weak RX light,
also scheme 5 is an interesting option. In fact, it will be used in an optical layout proposed
here for future gravimetric missions in sec. 2.7.

In general, the selection of the optimal scheme is a difficult trade-off between the degree of
redundancy, complexity and sensitivity. Further in-depth analysis of potential other detection
methods and a trade-off of these would surely advance the field of inter-satellite ranging,
but it was beyond the scope of this thesis. Regardless the scheme, it was pointed out in
this subsection that the correct phasing and the reflection-induced flips of the segments
need to be taken into account, when signals are combined in experiments or simulations.
Moreover, it should be noted that the detection scheme, e.g. the number of present photodiode
segments, determines the amount of noise and the signal power available for phase-tracking.
In particular, it influences the carrier-to-noise density, which is addressed next.

2.6.9 Carrier-To-Noise Density C{N0

As discussed in the section 2.3.7 on phasemeters, the carrier-to-noise density of the electric
beatnote obtained by photodetection limits the phase readout sensitivity. This phase readout
noise can typically be reached or measured only at high frequencies in gravimetric missions,
since other noise sources such as laser frequency fluctuations or attitude-induced noise are
dominating at low frequencies and the actual ranging signal is present as well.

However, the C{N0 is still important as it represents the signal strength, e.g. dividing the
C{N0 by the bandwidth of the phase measurement system yields the signal-to-noise ratio.
For the operation of a laser ranging system, the C{N0 needs to exceed the tracking threshold
for all operational conditions and over the mission lifetime, e.g. considering degradation or
contamination of optics. The C{N0 is a major driver of requirements on laser power, beam
parameters and optical layout.

The C{N0 is, in general, a property of an oscillating signal and is defined by the ratio of
signal power over the noise PSD. In satellite interferometry, the oscillatory signal is obtained
from the photodiode and the C{N0 can be computed as

C{N0 “ I2rms

PSDrIPRs ` PSDrISNs ` PSDrIRINs ` PSDrIQNs , (2.308)

where the four most important noise contributors are considered.
The carrier power is given by eq. (2.54), i.e.

I2rms “ 4 ¨ η ¨ PLO ¨ PRX ¨ ηPD ¨ 1
2
, (2.309)

with factor 1
2 rescaling the zero-peak photocurrent to an rms-value. The heterodyne efficiency

η is determined by the overlap integral (cf. eq. (2.56)) and the photodiode responsitvity ηPD
with units of A/W is a property of the photodiode. The quantities PRX and PLO denote
the optical power of the local oscillator and of the measurement or received (RX) light beam
impinging onto the active area under consideration. For the interferometers discussed within
this thesis, the RX light is much weaker than the local oscillator (PRX ! PLO).

The noise of the photoreceiver chain ASDrIPRs “
a
PSDrIPRs has been introduced in

sec. 2.3.3 on photodiodes and can be considered below 5 pArms{
?
Hz for the segment of a
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quadrant photodiode. The noise is assumed to be white within the measurement bandwidth
for the sake of simplicity.

The shot noise (SN) results from the energy quantization of light fields. The arrival
statistics of the quanta, called photons, in a (classical) electro-magnetic field obeys the well-
known Poisson distribution. Furthermore, the variance p∆nq2 of the number of arriving
photons n is given by the mean number of photons in the field, p∆nq2 “ xny. The same holds
for electrons in an electric circuit.

The single-sided shot noise power spectral density in terms of electric current I or optical
power P is

PSDrIs “ 2 ¨ e ¨ xIy, PSDrP s “ 2 ¨ hν ¨ xP y, (2.310)

where e “ 1.609 ¨ 10´19C is the electron charge, h “ 6.626 ¨ 10´34 J ¨ s is the Planck constant
and ν is the photon’s frequency.

In space laser interferometry, the photons are converted into electron-hole pairs by means
of the photoelectric effect with an efficiency ηPD ď 1. Single photon absorption is the domi-
nating process, on the one hand due to the band gap energy of the absorbing semi-conductor,
and on the other hand due to low intensity levels. Hence, the average number of photons
per unit time does not exceed the number of electrons per unit time, and the signal-to-noise
ratio in the electric domain can not exceed the signal-to-noise ratio in the photon domain.

In general, heterodyne interferometry is characterized by a non-stationary number of
photons arriving at the photodiode due to oscillatory intensity resulting from the interference
of two fields with unequal frequency. However, due to the low power level of the received light
in inter-satellite ranging, the interferometric contrast is low (c « 10´3). Hence, the average
number of photons is dominated by the strong local oscillator field and the shot noise can be
considered white with single-sided spectral density

PSDrISNs “ 2 ¨ e ¨ xIy « 2 ¨ e ¨ ηPD ¨ PLO. (2.311)

If both interfering light fields have comparable amplitude and the interferometric contrast
is high (c « 1), the resulting shot noise is cyclo-stationary [Niebauer et al., 1991], which
might become of interest, if additional local interferometers are used to read out the test
mass position, for example.

The third noise contribution in eq. (2.308) accounts for the intensity fluctuations of the
laser at once and twice the beatnote frequency, as these appear in the phase measurement at
the beatnote frequency12

PSDrIRINs “ PSDrδPLOpfq{PLOs ¨ η2PD ¨ P 2
LO ` PSDrδPRXpfq{PRXs ¨ η2PD ¨ P 2

RX

` pPSDrδPLOp2fq{PLOs ` PSDrδPRXp2fq{PRXsq ¨ η
2
PD ¨ PLO ¨ PRX ¨ η

4
(2.312)

PRX!PLO« PSDrδPLOpfq{PLOs ¨ pηPD ¨ PLOq2, (2.313)

with η denoting the heterodyne efficiency. The RIN contribution at twice the heterodyne fre-
quency vanishes in weak light interference with low interferometric contrast. The magnitude
of this noise contributor can be calculated for a generic relative intensity noise requirement
of PSDr

`
δP
P

˘
s “ 10´15 1{Hz, which has been suggested in table 2.1 in section 2.3.1 on the

laser.

The last noise term in eq. (2.308) accounts for the quantization noise arising from the
digitization of the analog voltage or photocurrent. It can be described under some particular

12This can easily be derived by computing the photocurrent as I “ ηPD ¨
ş

|E1 ` E2|2dA with Ei “ eiωit ¨

eipx, yq ¨
a
1 ` ǫi,1 ¨ cosppω1 ´ ω2qtq ` ǫi,2 ¨ cosp2 ¨ pω1 ´ ω2qtq, where ǫi,1{2 is a small RIN amplitude at once

and twice the beatnote frequency.
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assumptions [Gerberding, 2014, p. 69] as white noise with amplitude spectral density as
[Heinzel et al., 2002]

ASDrUQNs “ ULSBa
6 ¨ fs,ADC

“ 2 ¨ UADC,max

2N ¨
a
6 ¨ fs,ADC

(2.314)

in units of Vrms{
?
Hz. ULSB is the step size of the least-significant bit with unit of volts, N

denotes the number of bits, while fs,ADC represents the ADC sampling frequency in Hertz.
Typical numerical values of N “ 14, UADC,max “ 10V and fs,ADC “ 40MHz yield

PSDrUQNs “ p78 nVrms{
?
Hzq2 “ 6.2 ¨ 10´15V2

rms{Hz, (2.315)

which can be converted to the equivalent photocurrent noise by dividing with the squared
transimpedance gain, which is much larger than unity (GTIA " 1Ω), i.e.

PSDrIQNs “ PSDrUQNs
G2

TIA

! 6.2 ¨ 10´15A2
rms{Hz. (2.316)

Hence, in a reasonable design, the quantization noise can be made negligible compared to the
equivalent current noise of the photoreceiver chain of « 25 pA2

rms{Hz and other contributions.
Furthermore, the supscript rms is dropped in the following for the sake of readability, since
the numerator and denominator of the carrier-to-noise density contain rms values.

Finally, with an abbreviation for the effective power Peff,seg “ ηseg ¨ PRX,seg one can
approximate the C{N0 as

C{N0,seg « 2 ¨ PLO,seg ¨ Peff,seg ¨ ηPD
25 pA2{Hz ` 2 ¨ e ¨ ηPD ¨ PLO,seg ` 10´15 1{Hz ¨ η2PD ¨ P 2

LO,seg

. (2.317)

This equation holds for a single channel of the photoreceiver. This channel can be connected,
for example, to a single element photodiode or to a segment of a quadrant photodiode.
However, the optical power values PLO,seg and Peff,seg and the heterodyne efficiency ηseg need
to be referred to the connected active area.

The C{N0 from eq. (2.317) and its inverse are visualized by the magenta traces in fig. 2.50
as a function of the local oscillator power. An optimum with minimum phase readout noise
is at

PLO,seg “ 0.19mW, (2.318)

which is a good starting point for many interferometer designs. Based on this number, one can
compute the required power per photodiode, and then the power in front of the recombination
beamsplitter based on the beamsplitter transmissivity.

The C{N0 of an individual channel of the phasemeter is of importance, since all channels
need to be tracked and, hence, all channel need to exceed the minimum tracking threshold for
the C{N0. However, the actual noise in the longitudinal phase ϕlong or in the DWS signals
(DWSv and DWSh) is determined by the average or difference of various segments. For
example, ϕlong is formed by the average phase of all segments of a quadrant photodiode. The
averaging is typically performed within the phasemeter and can be implemented in different
ways. One method is to track the four channels of a quadrant photodiode and average the
phases with

ϕlong “ ϕA ` ϕB ` ϕC ` ϕD

4
. (2.319)

An alternative is to weight the phase values with the corresponding heterodyne amplitude a,
and form the so-called coherent sum:

ϕlong “ arg

˜ÿ

n

an ¨ eiϕn
¸

(2.320)
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Figure 2.50: (Upper panel:) The phase readout noise (magenta trace) given by
1 rad{

a
C{N0 and its constituents as a function of the local oscillator power. This plot as-

sumes a single segment (channel) with Peff “ 10 pW. (Central panel:) C{N0 in dB-Hz
as a function of the local oscillator power. The optimal power for a single segment is
PLO,seg « 0.19mW. A lower level causes excess photoreceiver noise, while a higher power
causes an excess of RIN. The traces for the coherent sum of 4 and 8 segments have 4 and 8
times, respectively, more effective power available, i.e. 1 pW per segment. (Lower panel:)
The same as the central panel, only rescaled for a total effective power of 1 pW. All plots
consider a photodiode responsivity of ηPD “ 0.8A{W.
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Such an averaging is usually difficult to perform with the FPGA-based hardware of a phaseme-
ter. However, a practical method is to sum the digital counts of each channel and use an
additional phase-tracking loop for the sum of the segments. The resulting phase is equivalent
to eq. (2.320). Furthermore, it is noted that the longitudinal phase from eq. (2.320) would
be measured by an equivalent circular single-element diode in the limit of vanishing gap size
between segments.

However, in practice, the difference between eq. (2.319) and (2.320) is small, because the
heterodyne amplitude of all segments is usually similar.

The following expression can be used to calculate the carrier-to-noise density for the
coherent sum of ns segments

C{N0,ns

«
2 ¨ ηPD ¨

ˇ̌ř
n

a
PLO,n ¨ Peff,n ¨ eiϕn

ˇ̌2

25 pA2

Hz ¨ ns ` 2 ¨ e ¨ ηPD ¨ ř
n PLO,n ` 10´15Hz´1 ¨ η2PD ¨ |ři PLO,n ¨ eiϕn |2

, (2.321)

« 2 ¨ PLO,seg ¨ Peff,seg ¨ ηPD ¨ n2s
25 pA2

Hz ¨ ns ` 2 ¨ e ¨ ηPD ¨ PLO,seg ¨ ns ` 10´15Hz´1 ¨ η2PD ¨ P 2
LO,seg ¨ n2s

, (2.322)

which considers that the photoreceiver noise and the shot noise are uncorrelated, while the
beatnote signal and the RIN are correlated among segments. This typically applies for the
segments of a single quadrant photodiode (with ns “ 4). The simplified eq. (2.322) was
derived under the assumption of similar power levels (Peff,n and PLO,n) and similar phase ϕn
among the segments of the sum.

The C{N0 for a single quadrant photodiode (QPD) is displayed by the solid light blue
trace in fig. 2.50. The central panel shows the C{N0 for an effective power of 1 pW per
segment, while the lower panel has a total effective power of 1 pW, i.e. 0.25 pW per segment.
The local oscillator power on the x-axis refers to a single segment.

The previous formula can also be utilized for two redundant quadrant photodiodes (ns “
8) in non-balanced detection schemes, such as scheme 2 in the previous sec. 2.6.8. In such a
scheme, the photocurrents of both photodiodes are correlated and they are added to form the
hot-redundant phase measurement. Furthermore, the RIN is positively correlated between
both photodiodes and it remains in the hot-redundant phase combination. The summation
of photodiode signals for hot-redundant operation can be performed in the analog domain
prior digitization, in the digital domain prior phase-tracking or even after phase-tracking. In
GRACE Follow-On, the summation is implemented within the optical bench electronics in
the analog domain, since the phasemeter has only 4 AC input channels.

It is noted that in case of scheme 5 from the previous section, the beatnotes are anti-
correlated on both photodiodes and the photocurrents need to be subtracted. However,
the RIN is still positively correlated on both photodiodes. Thus, if the power splitting ratio
between both photodiodes is 50:50, the combination of both photodiodes suppresses the RIN.
For such a combination, one obtains

C{N0,ns“8,bal

« 2 ¨ PLO,seg ¨ Peff,seg ¨ ηPD ¨ 82

25 pA2

Hz ¨ 8 ` 16 ¨ e ¨ ηPD ¨ PLO,seg ` ǫ2bal ¨ 10´15Hz´1 ¨ η2PD ¨ P 2
LO,seg ¨ 82

, (2.323)

where ǫbal was introduced to describe the suppression of the RIN. The magnitude of this factor
depends on the power splitting ratio at the interference-generating beamsplitter and on the
similarity of both ports, which may be disturbed by decentered photodiodes, for example. A
generic value of ǫbal “ 0.1 is assumed here. The magnitude of eq. (2.323) is shown by the
black trace in fig. 2.50.

One should notice that there is no common optimal PLO,seg value for the coherent sum,
e.g. the ranging signal, and the single segments. In this thesis, the value of the local oscillator
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power is selected such that it optimizes the C{N0 of a single segment, because the phase
readout noise is not limiting the ranging sensitivity in gravimetric missions opposed to the
shot-noise limited LISA mission.

With this decision and according to the central panel of fig. 2.50, one obtains the following
numerical values for the C{N0 of a single segment

C{N0,seg “ 65 dB-Hz ` 10 ¨ log10
ˆ
Peff,seg

1 pW

˙
dB, (2.324)

which means that 5 dB or equivalently approx. 3.2 pW effective power per segments is re-
quired to reach 70 dB-Hz, which was a potential phase-tracking requirement (cf. sec. 2.3.7 on
phasemeter).

If an optical layout with detection scheme 2 from previous section is used, which agrees
with the one used in GRACE Follow-On, for example, one can compute the C{N0 of the
longitudinal phase or of the DWS signals with

C{N0,ns“8 “ 69 dB-Hz ` 10 ¨ log10
ˆ
Peff,seg

1 pW

˙
dB, (2.325)

while

C{N0,ns“8,bal “ 75 dB-Hz ` 10 ¨ log10
ˆ
Peff,seg

1 pW

˙
dB, (2.326)

applies for detection scheme 5 with polarizing components. Both schemes use two photodiodes
and a hot-redundant summation of photodiode signals. Scheme 5 offers the advantage of a
balanced detection, which suppresses the relative intensity noise of the laser light and which
yields a higher C{N0. However, it is recommended to not rely on this gain, because this
contradicts the idea of redundant operation of photodiodes, i.e. the interferometer should be
capable to operate also with a single photodiode in case of failure of one diode.

In gravimetric missions, the C{N0 is not limiting the ranging sensitivity, however, it is
still an important quantity for the acquisition of the laser link (cf. sec. 2.6.12) and for the
power budget of the interferometer (cf. sec. 2.8), which are subsequently addressed. The
reader interested in carrier-to-noise densities and in the combination of photodiode signals is
also referred to [Delgado, 2012], where this aspect is covered with regard to the LISA mission
interferometry and in more detail than in this thesis.

For the calculation of the C{N0, the effective power Peff is needed, which is discussed in
the next two subsections.

2.6.10 Effective Power: RX Beam Power

The effective power Peff for the C{N0 is defined as the product of heterodyne efficiency η and
of the received power PRX used for the interference, which is the power of the weak beam
containing the ranging information. It can be defined for the segment of a circular quadrant
photodiode or for a circular photodiode (CPD), i.e.

Peff,seg “ ηseg ¨ PRX,seg (2.327)

Peff,CPD “ ηCPD ¨ PRX,CPD. (2.328)

Although the interferometer optical layouts in this thesis utilize quadrant photodiodes, the
circular photodiode can be used to represent, in a good approximation, the coherent sum of
the segments, which forms the longitudinal phase.

The received power PRX used for the interference and photodetection had to enter the
satellite and interferometer, which is assumed to happen through a circular receiver aperture
with radius rRX,AP. Since the light within the receiver aperture has effectively a constant
intensity and a flat phasefront, it is a so-called flat top or top hat beam behind the aperture
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and within the interferometer. The power in the receiver aperture PRX,AP is related to
PRX,CPD via

PRX,CPD “ PRX,AP ¨ ηAPÑCPD ¨ ηRX,mask,CPD, (2.329)

where ηAPÑCPD represents the power transfer efficiency from the receiver aperture to the
circular photodiode. The term ηRX,mask,CPD accounts for the ratio of light power in front of
the CPD to the power in the active area of the CPD. It makes sense to require that the RX
beam is smaller or equal to the size of the photodiode in order to avoid wasting of already
weak light. Hence, for a circular single-element photodiode one obtains ηRX,mask,CPD “ 1.
However, if the CPD is a circular segmented quadrant photodiode with radius rPD and with
a small gap g ! rPD between the segments, the value is approximately given by

ηRX,mask,CPD « 1 ´ Agaps

ACPD
« 1 ´ 4 ¨ g ¨ rPD

πr2PD
, (2.330)

which is ηRX,mask,CPD « 98.7% for an ordinary 1mm diameter diode with g “ 50 ➭m slit
width between segments. Thus, the difference between a segmented circular photodiode and
a full circular photodiode is often negligible for the RX light with assumed flat intensity.

The optical RX beam power within a segment PRX,seg can typically be approximated as
one quarter of the power of the segmented quadrant CPD, i.e.

PRX,seg « PRX,CPD

4
, (2.331)

while more precise calculations require the integration of the light’s intensity over the segment
area. Of course, the previous formulas need to be adjusted to account for the actual optical
layout under consideration, for example, which may contain several redundant photodiodes.

The power within the receiver aperture PRX,AP can be easily derived from the Gaussian
beam far-field intensity for small misalignments of the TX beam with respect to the line-of-
sight (cf. eq. (2.281))

IRX « 2 ¨ PTX

πωpLq2 ¨ e´2pβ2
TX`γ2TXq¨L2{ωpLq2 (2.332)

and from the effective area of the aperture A “ πr2RX,AP ¨ cos
´b

β2RX ` γ2RX

¯
as

PRX,AP « IRX ¨ πr2RX,AP ¨
ˆ
1 ´ β2RX ` γ2RX

2

˙
. (2.333)

The angles βTX and γTX denote the yaw and pitch transmit beam misalignment w.r.t. the
LOS, while βRX and γRX are the yaw and pitch misalignment angles of the receiver. The
expression ωpLq « θTX,div ¨L represents the spot size of the transmitted beam in L « 100 km
distance, for example. PTX is the transmitted laser beam power in watts. The dependency of
the receiver power on the receiver misalignment βRX and γRX is of quadratic order and can
be neglected, since these angles are typically very small in laser interferometric applications.

Moreover, the laser beam shows a rotational symmetry and it is sufficient to consider only
a single misalignment direction, e.g. with the angle αTX, such that eqs. (2.332) and (2.333)
lead to

PRX,APpαTXq «
2 ¨ PTX ¨ r2RX,AP

L2
¨ e

´2¨α2
TX{θ2

TX,div

θ2TX,div

. (2.334)

The on-axis intensity and the power in the distant S/C aperture can be maximized by
decreasing the divergence θTX,div or equivalently increasing the waist size of the TX beam.
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For a particular maximal TX misalignment αTX,max, the power in the distant RX aperture
PRX,AP is maximal for

θTX,div “
?
2 ¨ αTX,max (2.335)

with

PRX,AP,maxpαTX,maxq «
PTX ¨ r2RX,AP

L2 ¨ α2
TX,max

¨ 0.37 rad2, (2.336)

if other parameters such as wavelength λ and total TX power PTX are kept fixed. These are
important relations, since an interferometer design is typically tuned to work under the worst-
case assumptions such as with maximum receiver and maximum transmitter misalignment.
Thus, eq. (2.335) can provide the optimal divergence of the TX beam.

Eq. (2.334) and (2.336) assume a diffraction-limited fundamental Gaussian TX beam
without clipping, which means that the limiting aperture radius in the TX beam path rTX,AP

is significantly larger than the Gaussain 1{e2 beam radius ω, i.e. rTX,AP ą 3 ¨ω. The far-field
intensity in case of beam clipping is discussed in appendix F. It turns out that for a particular
clipping aperture radius rTX,AP, the on-axis power in the far-field is maximized by a Gaussian
beam waist radius prior clipping of ω0 “ 0.892 ¨ rTX,AP. In the LISA mission context, this
beam parameter maximizes the power throughput of the telescope, which is the limiting
aperture. The telescope, more precisely a beam expander, has a characteristic magnification
mT and the largest mirror is assumed as the limiting aperture with radius rTAP “ rTX,AP.

Under these assumptions, the power in the far-field aperture for a clipped Gaussian TX
beam can be approximated as (cf. eq. (F.21f.))

PRX,APpαTXq «
2 ¨ PTX,PC ¨ r2RX,AP

L2

¨
´
1 ´ e´r2TAP{pω0,TIN¨mTq2

¯2
¨ e

´2α2
TX{pθTX,ncg¨ψpω0,TIN¨mT{rTAPqq2

θ2TX,ncg

(2.337)

“
2 ¨ PTX,AP ¨ r2RX,AP

L2
¨ tanh

˜
r2TAP

2 ¨ ω2
0,TIN ¨m2

T

¸
¨ e

´2α2
TX{pθTX,ncg¨ψpω0,TIN¨mT{rTAPqq2

θ2TX,ncg

, (2.338)

where ω0,TIN is the Gaussian 1/e2 waist radius in the input plane of the telescope prior
magnification and θTX,ncg is the far-field divergence of a magnified non-clipped Gaussian
beam, i.e.

θTX,ncg “ λ{pπ ¨ ω0,TIN ¨mTq. (2.339)

The function ψ accounts for the increased divergence due to the clipping parameter (ratio)
ω0,TIN ¨ mT{rTAP and is given in table 2.8. The TX beam power prior clipping is denoted
with PTX,PC, while PTX,AP describes the clipped power, i.e. within the limiting TX aperture.

These methods to compute the far-field power for a fundamental Gaussian beam and
for a clipped Gaussian beam are required for the calculation of the effective RX power and
are applied in subsequent sec. 2.8 on the laser link power budget and on the determination
of optimal parameters for different optical layouts. In addition, it should be noted that the
optical power in the receiver aperture of a satellite is to first order independent of the receiver
misalignment, but strongly dependent on the transmit beam misalignment with respect to
the line-of-sight.

A word of warning is advisable concerning large TX beam misalignments. The power or
intensity far away from the central beam axis is not represented correctly by the equations in
this section, since only the fundamental Gaussian mode was considered and approximations
were used, which hold only close to the beam axis. Furthermore, it is highly non-trivial to
experimentally determine the mode content of actual laser beams precisely. Moreover, beams
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delivered by optical fibers have a fiber mode [Mahrdt, 2014], which deviates from a Gaussian
shape and complicates the analysis as well. Hence, the author of this thesis recommends to
consider in early design studies a conservative maximum misalignment αTX,max, which does
not exceed an intensity drop of 1{e2 « 13.5% w.r.t. the on-axis intensity, as these levels can
be predicted reliably.

2.6.11 Effective Power: Heterodyne Efficiency

The heterodyne efficiency η of the interference is the second factor in the effective power
(cf. eq. (2.327)). It is a function of the impinging complex electric fields Ec from local
oscillator (LO) and received light (RX) and it depends on the geometry of the active area
A of the photodiode or photodiode segment. The heterodyne efficiency η can be computed
with help of (cf. eq. (2.56))

?
η ¨ eiϕ “

ş
A
EcRX ¨ Ec˚LOdx dyb`ş

A
EcRX ¨ Ec˚RXdx dy

˘
¨
`ş
A
EcLO ¨ Ec˚LOdx dy

˘ “
ş
A
EcRX ¨ Ec˚LOdx dy?
PRX ¨ PLO

, (2.340)

where ϕ is the phase of the photodiode segment, which would be measured by a phasemeter.
The star denotes complex conjugation. The heterodyne efficiency η is a real-valued quantity
between 0 and 1 and a measure for the overlap or similarity between the two electric fields.
Common distortions to both fields, such as a common tilt of both fields, do not alter η.

The local oscillator field can be considered as a Gaussian beam, while the received light
has usually a top hat, also called flat top, shape. This indicates a constant non-zero intensity
and phase in the entrance aperture and zero magnitude outside. Such an electric field has
a wide angular spectrum, which causes diffraction patterns to appear upon propagation.
These are typically mitigated by imaging the entrance aperture onto the active area of the
photodiode, where the electric fields are measured. Imaging also implies that the beam stays
centered on the photodiode upon tilts, i.e. there is no beam walk upon rotations, which allows
one to use simple expressions for the electric field.

The electric field amplitude of a top hat beam with radius rTH and tilted by a small angle
αEF can be defined in polar coordinates as

EcRXpr, θq „
#
ei¨2π{λ¨αEF¨cospθq¨r, r ď rTH

0, r ą rTH

(2.341)

while the Gaussian local oscillator with waist at the photodiode has a functional dependency
according to

EcLOpr, θq „ e´r2{ω2
0,LO . (2.342)

Due to the circular symmetry of the fields and the photodiode, only a tilt αEF and no tip
angle between the phasefronts is considered, as it simplifies the computation.

It makes sense to assume that the top hat beam formed by the RX aperture is completely
imaged onto the active area of a photodiode, i.e. rTH « rPD, otherwise received light is
wasted. The ratio between the top hat radius (= RX aperture radius) and photodiode radius
provides the required magnification of the beam compressor, which is used to demagnify the
flat top beam to fit the size of the photodiode, and potential other imaging optics such as
telescopes. The term magnification by a factor m is also used here, if m is smaller than unity
and actually a de-magnification. Any magnification of a beam size by a factor m yields a
phasefront tilt magnification by 1{m.

This duality implies that an ideal imaging system used for both beams does not change
the heterodyne efficiency, if the area of the top hat beam is used for the computation of the
heterodyne efficiency.
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In polar coordinates, it is straightforward to compute η as the squared modulus of
eq. (2.340). The polar angle θ ranges from 0..2π for a circular photodiode (CPD), which
yields

ηCPD “
8 ¨

ˇ̌
ˇ
şrRX,AP

r“0 e´r2{ω2
0,LO ¨ r ¨ J0p2π{λ ¨ αEF ¨ rq dr

ˇ̌
ˇ
2

r2RX,AP ¨ ω2
0,LO ¨

´
1 ´ e

´2r2
RX,AP

{ω2
0,LO

¯ , (2.343)

“
8 ¨

ˇ̌
ˇ
ş1
q“0 e

´q2¨r2RX,AP{ω2
0,LO ¨ q ¨ J0p2π{λ ¨ αEF ¨ rRX,AP ¨ qq dq

ˇ̌
ˇ
2

ω2
0,LO{r2RX,AP ¨

´
1 ´ e

´2r2
RX,AP

{ω2
0,LO

¯ , (2.344)

where J0 is the Bessel function of first kind. For the second line (eq. (2.344)), the integral
was recast to dimensionless boundaries, which illustrates that a magnification by a factor m,
i.e. replacing

rRX,AP Ñ m ¨ rRX,AP (2.345)

ω0,LO Ñ m ¨ ω0,LO (2.346)

αEF Ñ αEF{m, (2.347)

does not alter the heterodyne efficiency.
For αEF “ 0, the heterodyne efficiency can be solved analytically:

η0,CPD “
2ω2

0,LO

r2RX,AP

¨ tanh
˜
r2RX,AP

2 ¨ ω2
0,LO

¸
. (2.348)

The expression for η0,CPD approaches unity for ω0,LO " rRX,AP, which is expected as a very
large Gaussian beam has constant intensity in the central region and shows similarity to a
flat top beam.

The dependency of the heterodyne efficiency on the angle αEF is depicted in the left
panels of fig. 2.51. The plots have been derived by numerically integrating eq. (2.343). The
angle αEF, where the heterodyne efficiency reaches 1{e2, is shown in fig. 2.52. If the waist
size of the Gaussian local oscillator is smaller than approximately half the radius of the top
hat (ω0,LO{rRX,AP ă 0.5 ), the drop in the heterodyne efficiency is nearly Gaussian with
1{e2 level given by the divergence angle of the local oscillator θLO “ λ{pπ ¨ ω0,LOq. A 6th
order polynomial model has been derived, which enables to write an approximate solution
for eq. (2.343) as a Gaussian decay

ηCPD,modpαEFq “ η0,CPD ¨ e´2α2
EF{pθLO¨ψpω0,LOq{rRX,APq2 (2.349)

with ψpxq “ ř6
i“0 pi ¨ xi and coefficients pi given in table 2.8. The model accuracy in terms

of the difference ηCPD,mod ´ ηCPD is shown in the right panels of fig. 2.51.
The heterodyne efficiency for a single segment requires evaluation of the integral in

eq. (2.340) for a polar angle range of 0..π{2 for segment A, for example, which yields

ηseg,A “
8 ¨

ˇ̌
ˇ
şrRX,AP

r“0 e´r2{ω2
0,LO ¨ r ¨ pJ0p2π{λ ¨ αEF ¨ rq ` i ¨H0p2π{λ ¨ αEF ¨ rqq dr

ˇ̌
ˇ
2

r2RX,AP ¨ ω2
0,LO ¨

´
1 ´ e

´2r2
RX,AP

{ω2
0,LO

¯ , (2.350)

“ ηCPD `
8 ¨

ˇ̌
ˇ
şrRX,AP

r“0 e´r2{ω2
0,LO ¨ r ¨H0p2π{λ ¨ αEF ¨ rq dr

ˇ̌
ˇ
2

r2RX,AP ¨ ω2
0,LO ¨

´
1 ´ e

´2r2
RX,AP

{ω2
0,LO

¯ (2.351)

with H0 denoting the so-called Struve-function. For co-aligned phasefronts, i.e. αEF “ 0, the
Struve-function vanishes and the value of the circular photodiode is reproduced, i.e.

η0,seg,A “ η0,seg,B “ η0,seg,C “ η0,seg,D “ η0,CPD. (2.352)
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Figure 2.51: (Left panels): The heterodyne efficiency for a CPD as a function of αEF and
normalized at αEF “ 0. For a particular value of ω0{rRX,AP, the drop along the x-axis can
be considered Gaussian. The x-axis is given in units of the Gaussian beam divergence θLO “
λ{pπω0,LOq. (Right panels): The residuum consisting of a Gaussian model (cf. eq. (2.349))
minus the actual heterodyne efficiency, as shown on the left panel. The absolute model
accuracy is below 0.04. Hence, the model should not be used far away from the maximum.
These plots do not depend on the used wavelength.

i pi qi gi
0 0.9567 1.8663 0.0051

1 1.0143 1.5448 1.7809

2 -5.0297 -8.2989 4.02283

3 10.1075 16.1162 -11.8986

4 -8.3148 -12.3148 11.1682

5 3.1866 4.3253 -4.6103

6 -0.4688 -0.5788 0.7125

Table 2.8: The coefficients of the polynomial functions ψpxq “ ř6
i“0 pi ¨xi for the heterodyne

efficiency of a CPD, of ψ2pxq “ ř6
i“0 qi ¨ xi for the heterodyne efficiency of a photodiode

segment and of χpxq “ ř6
i“0 gi ¨ xi as used in eq. (2.358) and shown in fig. 2.56. These

coefficients do not depend on the wavelength.
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Figure 2.52: The traces indicate the phasefront tilt αEF, in units of the Gaussian beam
divergence θLO “ λ{pπω0,LOq, where the heterodyne efficiency drops to 1{e2 with respect to
the heterodyne efficiency of non-tilted phasefronts. The dark and light blue traces consider
a CPD and a segment, respectively. The red and magenta traces are polynomial fits with
coefficients given in table 2.8. These plots do not depend on the used wavelength.

As the segments of a quadrant photodiode break the circular symmetry, precise calcula-
tions need to distinguish between tilt angle αEF and tip angle βEF and different segments,
which is exemplarily shown in fig. 2.53 for GRACE-FO LRI parameters such as ωLO “ 2.5mm
and rRX,AP “ 4mm. The heterodyne efficiency of a single segment is not perfectly circular
symmetric due to the geometrical shape of a segment.

However, the derivation of an approximative analytical model ηseg is attempted to ease
subsequent parameter studies. This approximative model is derived for a single misalignment
angle αEF, i.e. βEF “ 0. The values for ηseg,ApαEFq{η0,CPD obtained by numerical integration
(cf. eq. (2.351)) are depicted on the left two panels of fig. 2.54 for 1mm and 10 cm RX
aperture and top hat radius. The misalignment angles αEF, where the heterodyne efficiency
reaches the 1{e2 level, are shown by the light blue trace in fig. 2.52. If a Gaussian drop of
heterodyne efficiency is assumed as for the CPD case, i.e.

ηseg,approxpαEFq “ η0,CPD ¨ e´2α2
EF{pθLO¨ψ2pω0,LO{rRX,APqq2 , (2.353)

residuals with a magnitude of 9% appear for small ratios ω0,LO{rRX,AP (cf. right panels of
fig. 2.54). The ψ2pxq function is a polynomial of 6th order, obtained by a fit of the data shown
by the light blue trace in fig. 2.52. The polynomial coefficients are provided in table 2.8 and
the model is shown by the dashed magenta trace in fig. 2.52 as well. Furthermore, the model
and the accuracy of the model is illustrated in the two bottom panels of fig. 2.53.

The simple model in eq. (2.353) provides a rough and quick means to estimate ηseg,
however, precise calculation should solve the two-dimensional integral over the area of the
photodiode segments.

Another effect is studied in the following, which influences the heterodyne efficiency and
is caused by a (residual) differential phasefront curvature between the RX and LO beams,
which can be accounted for with a quadratic term in one of the electric field models, e.g.

EcRXpr, θq „ ei¨2π{λ¨αEF¨cospθq¨r ¨ ei
k¨r2

2¨Rz , (2.354)

with Rz denoting the radius of phasefront curvature. This residual curvature can be caused
by imperfections of optics or by alignment tolerances. It is beneficial to express the radius of
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Figure 2.53: The four upper plots show the normalized heterodyne efficiency
ηsegpαEF, βEFq{η0,CPD of single segments (A,B,C,D) as a function of tilt αEF and tip βEF angles
for GRACE-FO LRI beam parameters, e.g. local oscillator waist radius of ω0,LO “ 2.5mm and
rRX,AP “ 4mm. The heterodyne efficiency has been normalized by the factor η0,seg “ η0,CPD

to unity for αEF “ βEF “ 0. The bottom-left panel shows the circular symmetric model
given by eq. (2.353), while the bottom-right panel displays the difference between the cir-
cular symmetric model and segment A efficiency. These plots do not depend on the used
wavelength.
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Figure 2.54: (Left panels:) The heterodyne efficiency for a photodiode segment as a
function of αEF, normalized at αEF “ 0. For a particular value of ω0,LO{rRX,AP the drop can
be considered approximately Gaussian. The x-axis is given in units of the Gaussian beam
divergence θLO “ λ{pπω0,LOq. (Right panels:) The residuum consisting of a Gaussian model
minus the actual heterodyne efficiency, as shown on the left panel. The accuracy of the model
is poor for small ratios of ω0{rRX,AP, indicating that the drop in heterodyne efficiency does
not follow exactly an Gaussian shape. These plots do not depend on the used wavelength.
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Figure 2.55: The effect of a differential phasefront curvature Rz on the heterodyne efficiency
of a CPD as a function of ω0,LO{rRX,AP. This plot considers a wavelength of 1064 nm.

curvature, which is given for a fundamental Gaussian beam as

Rzpzq “ z ¨
ˆ
1 `

´zR
z

¯2
˙
, (2.355)

in terms of the Rayleigh range zR of the LO beam. For example, a waist offset of Ω “ 10% “
0.1 of the Rayleigh range zR corresponds to radius of curvature of

RzpΩq “ Rzpz “ Ω ¨ zRq “ Rzpz “ 0.1 ¨ zRq « 10 ¨ zR “ 10 ¨
π ¨ ω2

0,LO

λ
. (2.356)

This curvature yields a drop in the heterodyne efficiency of a CPD, which is depicted by the
dark blue trace in fig. 2.55. The drop is 0.4% or 0.018 dB for a GRACE-FO LRI parameter
of ω0,LO{rRX,AP « 0.6, which is expressed here in decibel, because the numerical values are
used in a subsequent section for the power link budget, which is more intuitive and insightful
with units of decibel.

The plots for the heterodyne efficiency of a CPD (left panels in fig. 2.51) are to first order
independent of a phasefront curvature, because the plots are normalized and the differential
phasefront curvature does not change the way the normalized heterodyne efficiency drops
upon misalignment. Thus, the previous model for the heterodyne efficiency of a CPD can
still be used, but may account for the additional constant efficiency drop.

The maximum heterodyne efficiency of a single segment drops as well in the presence of
a phasefront curvature, but the change is significantly smaller compared to the CPD (cf. the
upper panel of fig. 2.56). Furthermore, it should be noted that the phasefront curvature
parabola is centered at the inner corner of the segment and not in the center of the segment.
This asymmetry causes a phase slope of

dϕ

dr
“ k ¨ rRX,AP

2 ¨Rz
“ π ¨ rRX,AP

λ ¨Rz
(2.357)

over a segment in radial direction, which can be derived directly from geometrical considera-
tions. Such a slope implies a non-optimal phasefront overlap and, thus, the maximum of ηseg
is shifted in radial direction to

αEF,max “ βEF,max « rRX,AP?
2 ¨ 2 ¨Rz

¨ χ, (2.358)
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where the RX and LO phasefronts are as parallel as possible. The dimensionless factor χ is
shown in the lower plot of fig. 2.56 and it accounts for a weighting of the curvature due to the
intensity distribution of the LO beam. The factor χ depends on the parameter ω0,LO{rRX,AP

and has been fitted with a 6th order polynomial as well (cf. table 2.8).

The heterodyne efficiency of all segments in presence of a differential phasefront curvature
is shown in fig. 2.57. The position of the maximum from eq. (2.358) is shown with red dots
in the four upper panels, which agrees well with the numerical data. Such a shift of the
heterodyne amplitude maximum has also been observed during the testing of the GRACE
Follow-On LRI. It is emphasized that the maximum of the heterodyne efficiency for the CPD
(bottom-left panel), i.e. for the longitudinal phase measurement, is not shifted.

An approximate model for the heterodyne efficiency of a segment with phasefront curva-
ture is

ηseg,approx2pαEF, βEFq « ηseg,approx

ˆb
pαEF ˘ αEF,maxq2 ` pβEF ˘ βEF,maxq2

˙
, (2.359)

where the signs depend on the segment. The function ηseg,approx was given in eq. (2.353).
The accuracy of the model is shown on the lower right panel of fig. 2.57.

In summary, a phasefront curvature decreases the heterodyne efficiency of a circular pho-
todiode ηCPD, but shifts the location of the maximum in the heterodyne efficiency of a segment
ηseg. For aligned phasefronts of LO and RX beam (αEF “ βEF “ 0), one obtains

ηCPD “ ηseg,A “ ηseg,B “ ηseg,C “ ηseg,D. (2.360)

Furthermore, it is remarked that a change in the differential phasefront curvature also alters
the longitudinal phase and, hence, can produce noise in a range measurement.

Other aspects of the heterodyne efficiency computation should be considered in more
detailed studies of specific interferometer concepts. Namely the gaps within a segmented
photodiode yield a cross-like pattern in the heterodyne efficiency, as shown in fig. 2.58. Fur-
thermore, concentric ripples are present in the heterodyne efficiency of a CPD and of single
segments, which have been omitted so far but are visible in fig. 2.58. These can be explained
as follows: the main lobe of the heterodyne efficiency represents operation, where the inter-
ference pattern is mostly oscillating in-phase over the active area of the photodiode. The
first zero-crossing of η indicates a full fringe on the active area, i.e. portions of the interfer-
ence oscillate in-phase while other portions oscillate out-of-phase, yielding zero heterodyne
amplitude in total. The second zero-crossing represents two full fringes on the active area.
For example, one might want to ensure that the interferometer does not accidently lock to
the maximum of such a side lobe.

The heterodyne efficiency was written in this section as a function of the differential
phasefront tilt between local oscillator and received light αEF. Usually, one can relate this
tilt to the pointing of the receiver satellite αRX w.r.t. the line-of-sight, i.e.

αEF “ αRX ` δαEF,RX, (2.361)

where δαEF, RX is a quantity depending parameters such as steering mirror orientation or
integration tolerances of the interferometer into the satellite. Hence, the effective power
Peff factorizes into a quantity depending on the local receiver S/C misalignment αRX and a
quantity depending on the TX beam misalignment αTX of the distant S/C:

Peff “ ηpαRX ` δαEF,RXq ¨ PRXpαTXq. (2.362)

The model for the effective power derived within this and the previous subsections is applied
in sec. 2.8 on the laser link power budget. Beforehand, the laser link acquisition is addressed,
which is also strongly dependent on the received power PRX.
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Figure 2.56: (Upper panel:) The effect of a differential phasefront curvature Rz on
the maximum heterodyne efficiency of a single segment as a function of ω0,LO{rRX,AP. The
black trace indicates the maximum possible phasefront curvature of the local oscillator beam.
(Lower panel:) The function χ is determined from numerical integration and by utiliz-
ing the relation given in eq. (2.358). The dashed magenta trace is a polynomial model
(χpω0,LO{rRX,APq “ ř6

i“0 gi ¨ pω0,LO{rRX,APqi) with coefficients gi given in table 2.8. Both
plots consider a wavelength of 1064 nm.
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Figure 2.57: Heterodyne efficiency of segments and CPD with present strong phasefront
curvature. The efficiency is normalized by the factor η0,CPD. The red circles indicate the
position of the maximum according to eq. (2.358). The lower-right plot shows a residual,
given by the difference between the model from eq. (2.359) and segment A. The parameters
used for the plots are ω0,LO “ 2.5mm, rRX,AP “ 4mm, Rzpz “ zRq and λ “ 1064 nm.
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Figure 2.58: Square root of heterodyne efficiency for the coherent sum of all four quadrants
with 30µm gap (left) and without gap (right). The surface plot is parameterized by the
relative tip and tilt angle between the Gaussian beam and the flat top beam. The parameters
used for the plots are ω0,LO “ 2.5mm, rRX,AP “ PDr “ 4mm, Rz “ 8 and λ “ 1064 nm.

2.6.12 Laser Link Acquisition

Acquisition is the process of achieving an interferometric connection between the satellites,
which enables the phasemeter to track the beatnote and to obtain DWS and longitudinal
(ranging) signals. This requires that both satellites receive sufficiently high light power
levels (depending on TX beam pointing) and that the interferometric contrast (depending on
receiver S/C pointing) is high enough, such that the signal-to-noise-ratio is above a detection
and tracking threshold. In addition, the laser frequency difference between both satellites has
to be within some band, which allows the beatnote to be measured with the photoreceivers
and the phasemeter.

In general, the very first (initial) acquisition is more difficult, since unknown biases in
the orientation and position of all instruments are present due to the vibrations and shocks
during launch, de-moisturization or zero G-effects. Once these biases are calibrated and
known, a re-acquisition needs to cover a smaller uncertainty cone in the parameter space and
is therefore less time consuming.

A line-of-sight (LOS) estimate is required on both satellites in both acquisition cases,
which can be obtained by orbit predictation and by sensor fusion of attitude and position
information (star cameras, GNSS and other sensors via AOCS). The LOS estimate is an esti-
mation for the direction to the distant satellite and serves as starting point for the acquisition
search. The difference between the LOS estimate and true LOS is the pointing error, which
is dominated by the unknown static bias prior to initial acquisition.

The acquisition process is additionally complicated due to the fact that the interferometers
on both satellites need to detect light at the same time, in general, without exchanging
information due to the lack of real time communication.

Since the GRACE Follow-On concept has a fixed dependency between the orientation of
the local oscillator beam and of the TX beam, the acquisition is a five dimensional search: two
angular degrees on each satellite and the frequency difference of the lasers need to be matched
simultaneously. The current acquisition strategy for GRACE Follow-On foresees that the
steering mirror on each satellite scans a spatial pattern, while the laser frequency on one
satellite is swept (see fig. 2.59). A non-autonomous scheme is used for the initial acquisition,
also called LOS-calibration, where both satellites record the events of received light (so-called
flashes) and where on-ground data processing is used to derive the bias angles between laser
interferometers and LOS estimates, which determines the desired instrument misalignment
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Figure 2.59: Working principle of the 5-dimensional acquisition search in the GRACE
Follow-On LRI. (Left:) Each of the S/C performs a 2-dimensional search scan with the
steering mirror to cover the uncertainty cone. (Right:) In parallel the laser frequency on the
slave satellite is swept. Image from [Mahrdt, 2014].

and biases. Once the bias values are uploaded to the satellites, an autonomous re-acquisition
is started with much smaller angular uncertainties to establish the link. Furthermore, during
science operation of the LRI, a re-acqusition is initiated whenever the laser link is lost.

Extended studies have been performed on the optimal search strategy including different
spatial scan patterns and coherent and incoherent detection methods of the photodetector
signals [Mahrdt, 2014; Wuchenich et al., 2014; Ales et al., 2014]. The incoherent sum of
segments has a wider acceptance angle compared to the coherent sum, i.e. the heterodyne
efficiency of a segment drops more slowly with misalignment compared to a single circular
photodiode (cf. previous sec. 2.6.11 on heterodyne efficiency), and might appear beneficial at
the first glance. However, the coherent combination allows one to pin-point the direction of a
single detection flash more accurately and was finally selected as baseline for the GRACE-FO
initial acquisition.

The initial acquisition or LOS-calibration in GRACE-FO will take several hours, while re-
acquisition might need up to a few minutes, although most re-acquisition events are expected
to finish within a few seconds, since short interruptions of the laser link connection should
not induce large pointing errors or large laser frequency offsets.

A GRACE-FO-like acquisition scheme is based on a complex five dimensional search,
which requires a complex and well tested on-board software and fast beam steering capabili-
ties. Advantageous is the detection of light from the remote satellite with the photodetectors,
which also perform the measurement of the optical phase (ranging), since less optical and
electrical components are required.

A significant reduction in the acquisition complexity can be achieved by an additional
acquisition sensor, which splits the 5-dimensional parameter search space into three individual
subsets. The sensor consists of a 2-d pixel array, e.g. a focal plane array such as CCD or
CMOS, on which a part of the received light is focused. A phasefront tilt of the received light
due to local S/C misalignment produces a spot, which is displaced from the sensor center,
such as in a star camera or Shack-Hartmann sensor. It is an incoherent DC measurement,
which does not require an additional well-aligned local oscillator beam nor a well-matched
laser frequency. An a-priori ground calibration from displacement to optical angle is needed,
so that the measurement can be referred to a direction. The acquisition sequence could
be established as follows: at first both S/C perform in parallel a fast scan in the pointing
uncertainty cone for some time, such that both acquisition sensors detect some flashes at a
particular pixel location, equivalent to particular angles. These angles are used to improve
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the local estimation of the line-of-sight. In a next step, each S/C aligns itself (or the LO
beam) and the TX beam along the improved LOS estimate, and a frequency scan is performed
until the interferometric link is established, i.e. until the phasemeter is tracking the phase of
the beatnotes measured by the photodiodes. The frequency scan is required, if the absolute
laser frequency is not fixed, but can be skipped if two absolute frequency standards are used
in a DOWR combination (cf. sec. 2.4.8).

It is important that the optical axis of the acquisition sensor is well aligned with the
interferometer axis and that it is sufficiently stable, such that the measurement from the
acquisition sensor can be converted into a pointing direction for the steering mirror or space-
craft. This likely requires an accommodation of the sensor on the optical bench. Although
a field-of-view for the acquisition sensor of less than 1˝ ˆ 1˝ (17.4mrad ˆ 17.4mrad) is suf-
ficient, a few background stars may be present (cf. sec. 2.3.10) and need to be considered in
the data processing. On the one hand, a narrow reflection coating can reduce the amount of
light originating not from the distant S/C, however, on the other hand, omitting such a filter
could allow to use the acquisition sensor as an additional star camera.

Two additional or supplementing ideas are mentioned for the sake of completeness, but are
not considered in detail in this thesis. The first is based on a dedicated de-focus mechanism
in the optical path, which increases the divergence angle of the TX beam in the acquisition
phase. This may avoid a dedicated scanning of the uncertainty cone as suggested in the
LISA mission [LISA-Team, 2009]. The second idea utilizes a dedicated incoherent high-
power acquisition light source with wide divergence and was suggested in [e.motion2 Team,
2014, sec. 4.5.1.1].

The GRACE Follow-On acquisition strategy and acquisition with a dedicated acquisition
sensor are valuable options for laser interferometry in future gravimetric missions. Because
the latter option is less studied, some further analysis is performed here and also in the section
on the power budget of laser links.

An accurate analysis of the acquisition phase with a dedicated acquisition sensor requires
knowledge on the scan pattern. However, for a preliminary analysis in the design phase, one
can assume a simple rectangular NˆM grid pattern of the TX beam with an angular spacing
̺grid in each direction, where the laser beam remains fixed for a time period th at each point.
For such a scan pattern, the worst-case angular TX beam misalignment ̺aq for acquisition is
diagonally in-between grid points, i.e.

̺aq “
?
2 ¨ ̺grid{2, (2.363)

which can be used to compute the optical power and the number of photons arriving at the
distant S/C in acquisition mode.

Furthermore, the total scan duration T given by

T “ pth ` tmq ¨N ¨M (2.364)

should be assessed, where tm denotes the average time to move to the next point in the scan.
The relation between tilt of incoming wavefront α and offset ∆x in the focal plane [Yuan

& Long, 2003]

∆x “ f ¨ tanpαq (2.365)

can be used to evaluate the accuracy and field-of-view of the acquisition sensor design, to
assess an appropriate CCD chip size and to define the lens focal length f .

The intensity distribution Ipx, yq in the focal plane given from a plane wave input limited
at a circular aperture with radius rap is [Träger, 2012, ch. 7.2, p. 435]

Ipx, yq “
Pπr2ap

λ2f2
¨
˜
2 ¨ J1p2πrap

a
x2 ` y2{pλfqq

2πrap
a
x2 ` y2{pλfq

¸2

, (2.366)

“ P

π
¨
˜
J1p2πrap

a
x2 ` y2{pλfqqa
x2 ` y2

¸2

, (2.367)
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with the incident optical power P in the aperture and with J1pxq being the Bessel function of
first kind. The intensity distribution corresponds to the well known airy disk pattern, where
the first zero occurs at rdisc [Meschede, 2008, p. 68]

2πrap
a
x2 ` y2{pλfq « 3.83 ñ rdisc “

a
x2 ` y2 « 3.83 ¨ λf

2πrap
. (2.368)

The radius of the inner disc is approx. rdisc « 62 ➭m with typical values of f « 0.38m,
rap “ 4mm and λ “ 1064 nm . A common pixel pitch of 30 ➭m means that the inner disc is
spread over several pixels and that the centroid can be determined with sub-pixel accuracy,
if the signal-to-noise ratio is sufficiently high. It is beyond the scope of this thesis to provide
details on centroid determination as these methods are steadily advanced in the context
of, for example, Shack-Hartmann sensors [Thomas, 2004; Vyas et al., 2009] or star cameras
[Samaan, 2003; Knutson, 2012].

However, an alternative method for direct centroid determination could use a template-
based correlation. The ideal response of the optical system (eq. (2.366)) can be used to
compute templates with a few pixels size. A single template with centered peak Ip0, 0q may
be sufficient, however, further templates with fractional pixel offsets could be envisioned.
These templates can be correlated with the measured CCD image, with some interpolation
even to sub-pixel accuracy. Such a template based approach allows one to define a signal-
to-noise ratio for a measured spot, which is higher than the signal-to-noise ratio of a single
pixel (cf. eq. (2.148)).

For the purpose of this thesis, an angular accuracy for the acquisition system of

δαreq “ 40 ➭rad (2.369)

with a generic field-of-view of ˘7mrad is sufficient to establish the laser link and to account
for the overall in-orbit uncertainty cone consisting of instrument misalignments (e.g. star cam-
era sensor w.r.t. interferometer optical bench), component induced deflections (e.g. corner-
cube errors or steering mirror errors), satellite pointing errors (e.g. attitude determination
uncertainty), satellite position errors (e.g. orbit prediction and GNSS navigation solution
uncertainty) and margin.

For such an accuracy and field-of-view, a pixel array with only 256 ˆ 256 pixels seems
sufficient, i.e.

2 ¨ 7mrad

255 px
¨ 0.7 px « 38 ➭rad ă δαreq, (2.370)

if the spot center can be determined to better than 0.7 pixel, which is not very demanding.
Furthermore, with these parameters, one can verify that the aforementioned focal length

f « 0.38m of the lens produces a displacement on the CCD chip for the overall field-of-view.
For example, considering a pixel pitch of 30 ➭m{px, one obtains a half-width chip size of
30 ➭m{px ¨ 255 px{2 “ 3.825mm. Thus, the field of view of 7mrad is contained on the chip
due to

f ¨ tanp7mradq “ 2.7mm ă 3.825mm. (2.371)

With these simple calculations, a first initial design for an acquisition sensor could be derived.
The study of the signal-to-noise ratio of the acquisition sensor is postponed to sec. 2.8 on
the power budget of laser links. Beforehand, different optical layouts for interferometers are
addressed.

2.7 Optical Layouts

The optical layout of a laser ranging interferometer realizes or implements a functional concept
such as the dual one-way ranging or the transponder scheme, which have been discussed in
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sec. 2.4 with block diagrams. The distinction into optical layouts and functional concepts
has been introduced in this thesis in an attempt to systematically characterize inter-satellite
ranging instruments. Furthermore, the design of optical layouts is driven by aspects and
boundary conditions, which have been addressed in section 2.3 and 2.6, such as

❼ the attitude-to-ranging coupling, which can be expressed approximately in terms of TX
and RX reference points, and which should be minimized for rotations around the S/C
CoM (cf. sec. 2.6.3f.),

❼ the laser link acquisition, which can be reduced in complexity with a dedicated ac-
quisition sensor (cf. sec. 2.6.12) and which usually requires the capability to point the
transmit laser beams

❼ the point-ahead angle, which is negligible for the gravimetric missions studied in this
thesis (cf. sec. 2.6.7),

❼ the photodiode size, which typically requires beam compressors in front of the photo-
diodes (cf. sec. 2.3.3 and 2.6.11),

❼ the carrier-to-noise density (cf. sec. 2.6.9), which is determined by the transmit beam
pointing, by the local S/C or interferometer alignment and by parameters such as the
laser power and the beam sizes.

Optical layouts may comprise telescopes. A telescope in the received (RX) beam path
typically increases the light collecting area, which is beneficial for the carrier-to-noise density,
and it is acting as a beam compressor. A telescope in the TX path typically reduces the
transmit (TX) beam divergence by increasing the beam size, i.e. it acts as beam expander.
This increases the optical power throughput along the axis, which is also beneficial for the
carrier-to-noise density, but requires a stricter pointing of the TX beam. A common telescope
instead of two single telescopes is often required due to mass, space and cost constraints in
space missions. Such layouts have co-located RX and TX beam axes and are denoted in
the following as on-axis interferometers, in contrast to off-axis interferometry with laterally
separated axes. In an on-axis interferometer, the TX and RX reference points are located on
a common axis, but they are usually separated along the axis.

Off-axis interferometers can usually be realized with fewer optical components, because
of a lacking necessity for polarizing optical components. Fewer components implies less com-
plexity, because every optical component can have various negative side effects as summarized
in table 2.9. The rationale in space interferometer design is achieving the science or sensitivity
goals with as few components and with as little complexity as possible.

In the next two subsections, various optical layouts, which have been found in literature,
are introduced, while subsection 2.7.3 contains a discussion of the different proposed concepts.
Based on the findings and the current state of knowledge, an on-axis and an off-axis layout
are proposed for NGGM in sec. 2.7.4.

2.7.1 On-Axis Interferometry

In gravimetric missions, the inter-satellite distance variations between the center of mass of
both S/C shall be tracked. It is a natural idea to send electro-magnetic radiation along the
connecting line of both CoM to sense these variations. It is in particular useful, if a common
telescope is used to enhance the received light power and to reduce the divergence of the
transmitted beam as in the LISA mission concept [eLISA/NGO Team, 2012; Danzmann
et al., 2017]. The transmitted and received light share a common optical path. Usually
one tries to minimize power losses in the transmitted path. However, due to the reversion
principle in optics, the so-called Helmholtz reciprocity, this implies that most of the received
light power will propagate towards the source of the TX beam. In order to avoid this, one
typically exploits different polarization states of the light and uses polarizing optics to guide
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Effect Description
Counteraction
/ Mitigation

Temperature
coupling

Mainly transmissive optics;
Optical phase changes due to
temperature variations; Two
effects: ∆n/∆T value and
thermal expansion of compo-
nent;

Optimization of thermal sta-
bility of optical bench; glass
substrates with low temper-
ature coupling; Thin compo-
nents

Attitude
coupling

Transmissive optics induce an
optical pathlength variation
dependent on the light inci-
dence angle; the light inci-
dence angle might change due
to spacecraft attitude (jitter),
beam steering or jitter of laser
beam

Compensation plates can help
to reduce linear coupling, but
increase quadratic coupling;
Optimization of optical layout
might reduce linear coupling

Power loss

Absorption within component
or due to contaminant on
the optical surfaces (in-orbit
contamination); non-perfect
coating reflectivity/transmis-
sivity

Glass substrates with low ab-
sorption; optimization of IFO
and S/C design to mini-
mize contamination; use of
high-quality coatings; suffi-
cient margin in optical laser
link budget

Ghost beams

Non-zero reflectivity produces
parasitic reflections within
components, which might
propagate into the sensitive
path

Optimization of optical lay-
out, beam dumps, use of
wedged components

Wavefront
errors

Planarity or quality of sur-
faces influences wavefront
of transmitted and reflected
light

Use of high quality optics

Polarization
changes

Some combination of optical
components, e.g. periscopes,
might rotate the polarization;
polarization purity decrease
due to reflection (e.g. metals)

Use of additional polarizer
components; use of high qual-
ity coatings; analysis of polar-
ization changes

Beam over-
lap & co-
alignment

Parasitic wedges on compo-
nents change direction of light
(static offset): increased com-
plexity in manufacturing (in-
terferometer alignment)

Use of high quality substrates

Mass
increase

Especially large components
(telescopes) increase total op-
tical bench mass

Use of light-weight structures,
reflective vs. refractive tele-
scopes

Table 2.9: Potential negative side effects of (additional) optical components. Some effects
may cancel or may not apply in specific configurations.
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Figure 2.60: Laser interferometer concept from [e.motion Team, 2010]. FSU: Fiber Switch-
ing Unit, LFSU: Laser Frequency Stabilization Unit. HWP: Half-Wave Plate, QWP: Quarter-
Wave Plate, PBS: Polarizing Beamsplitter.

most of the received light towards the photodiode and to adjust a reasonable power ratio
between received beam and local oscillator field, which is used to sense the phase of the
received light by means of optical mixing.

In figures 2.60-2.62 three interferometer layouts from the gravimetric mission concepts
[e.motion Team, 2010], [NG2-Team, 2011] and [Alenia-Team, 2010] are shown. They are
all drafted without actuators in the optical path, meaning that the local oscillator beam
and the transmit beam have a stationary path through the interferometer, while the path
of the received light depends on the attitude of the spacecraft. A potential misalignment
between the local oscillator and received light field can be measured with DWS and needs
to be counter-acted by rotating the satellite or the optical bench, such that the TX beam
is send back in the direction of the received wavefronts and to the distant S/C. Hence, the
satellite can be understood as an active retro-reflector by control, where active refers to the
apparent amplification of the retro-reflected light, and control refers to the measurement of
the misalignment and correction by means of a control loop and actuators.

Accomplishing beam pointing by an optical bench rotation has the drawback, that the
pivot point of the rotation needs to be co-located with the interferometer reference point13,
which is ideally co-located with the S/C CoM. As in most cases the reference point has a
fixed position w.r.t. the optical bench, the actuator needs to perform a pure rotation without
any motion along the sensing axis to not disturb the displacement measurement. In addition,
due to the considerable mass and moments of inertia of typical optical benches, rotations can
only be performed with low actuation bandwidth and might in addition have an influence on
the S/C CoM position and on other instruments such as the accelerometer.

The alternative to optical bench rotation is TX beam pointing by means of S/C rotation,
which has been extensively studied within the LISA mission [eLISA/NGO Team, 2012; Danz-
mann et al., 2017]. It is feasible in a quiet deep space environment with little disturbance

13centroid of RX RP and TX RP
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Figure 2.61: Laser interferometer concept by Airbus from [NG2-Team, 2011]. The figure
has been reproduced and supplemented with the polarization states and additional labels by
the author of this thesis.

Figure 2.62: Laser interferometer concept from [Alenia-Team, 2010] by ThalesAlenia Space.
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torques and where low-noise micro-Newton thruster are sufficient. In this approach, the low-
noise high-bandwidth DWS signal of the interferometer, which is measuring the spacecraft
tip and tilt w.r.t. the line of sight, is fed into the AOCS together with conventional attitude
information from star trackers and gyroscopes, for example. The satellite uses thrusters and
other available actuators to keep misalignments between RX and local oscillator (LO) beam
and between TX beam and the line-of-sight small, once the laser link has been established.
The interferometer and LO beams are fixed in the satellite frame, thus, TX beam pointing
and spacecraft attitude are equivalent up to some static offsets. In the LISA mission, the
beam pointing is more complicated due to an once-per-orbit annual variation of the inner-
constellation angle, which requires an additional pointing mechanism at very low frequencies,
either by rotating the telescopes, the optical bench or by using a steering mirror (in-field
pointing) [Brugger et al., 2014]. In addition, the point-ahead angle needs to be accounted for
in LISA.

A generic requirement for the maximum tolerable yaw and pitch TX beam pointing er-
ror is 100 ➭rad in gravimetric missions, which is revised in the subsequent sec. 2.8 on the
laser link power budgets and optimal parameter selection. Generally, this value depends on
the inter-satellite distance and on the divergence of the transmitted beam. The concept in
[Alenia-Team, 2010] even requires a permissible error of only 20 ➭rad. Such a value could
impose significant challenges on the AOCS design of a LEO craft, its actuators and sensors,
particularly, if the beam pointing is performed solely by S/C rotations. However, capability
of accurate pointing has been shown in other space missions, exemplary, Hubble with ap-
prox. 40 nrad at an altitude of 630 km [van Woerkom, 1999], TerraSAR-X with an in-orbit
pointing accuracy better than 290 ➭rad (60 arcsec) at 514 km height [Kahle et al., 2007] or
the Transition Region and Coronal Explorer (TRACE) mission with a yaw and pitch design
pointing accuracy of below 100 ➭rad at less than 660 km height [Zimbelman et al., 1995].

Next to the need for accurate S/C pointing to maintain the interferometric link, typically
expressed by the maximum permissible pointing error or 3σ value, it is also beneficial to
have a small attitude jitter of the S/C, as it reduces the ranging noise arising from the
attitude-to-ranging coupling.

2.7.2 Off-Axis Interferometry

In this type of interferometer, the received beam and the transmit beam are separated spa-
tially, which makes a common telescope unpractical, but reduces significantly the complexity
of the optical layout due to lacking necessity for polarizing components. Hence, such a lay-
out is only feasible, where the spacecraft separation and available laser power allows one to
dismiss a common telescope (cf. subsequent section 2.8 on the laser link budget).

The off-axis interferometry scheme was first introduced in the GRACE Follow-On mis-
sion to the knowledge of the author, because the line-of-sight between the CoM of both
S/C is occupied by cold-gas tanks and the microwave ranging instrument. William Folkner
(NASA/JPL) initially suggested to use a hollow corner-cube retro-reflector (HCCRR) to pro-
duce the lateral offset in a so-called racetrack configuration shown in fig. 2.63. The HCCRR
is called Triple Mirror Assembly (TMA) in the GRACE Follow-On project and introduces a
600mm lateral offset between incoming and outgoing beam.

In the subsequent development of the LRI, it turned out that this racetrack concept in
combination with the transponder scheme has various appealing benefits, such as

❼ Identical interferometer hardware on both S/C: The interferometers consisting of optical
bench, triple mirror assembly (TMA) and other sub-systems (laser, frequency stabiliza-
tion, phasemeter) can be made identical in terms of hardware on both spacecraft. This
introduces cold redundancy for the laser frequency stabilization unit, since only one
operational unit is required in the racetrack. The designation of master and slave S/C
can be made interchangeable between the S/C. The operational difference between the
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satellites is that the master S/C uses the cavity-based frequency reference, while the
slave S/C locks its laser to the incoming field by means of a frequency-offset PLL.

❼ Automatic Beam Alignment: A steering mirror can easily be incorporated on the optical
bench to align the local oscillator and the received wavefronts. This can be performed
efficiently with a control loop with high gain and high bandwidth [Sheard et al., 2012]
by a feed back of the DWS signals of the photodiodes. The loop ensures that the beam
exiting the optical bench is parallel to the received wavefronts, i.e. on the same axis as
the received beam. In addition, the loop maximizes the wavefront overlap (heterodyne
efficiency), and hence the signal-to-noise ratio of the phase measurement. The working
principle of the steering mirror DWS control loop is shown in fig. 2.64. As the DWS
signal is zeroed, the misalignment of the S/C in two dimensions w.r.t. the line-of-sight
can be retrieved by measuring the steering mirror orientation.

❼ TX Beam Pointing and Anti-Parallelism: The TMA retro-reflects the powerful beam
leaving the optical bench, such that it is send in the direction of the received wavefronts
and hence towards the distant spacecraft. The static error in the anti-parallelism is
typically dominated by the errors of the TMA such as manufacturing tolerances or
temperature dependency. Other contributions from the DWS steering mirror control
loop and deflections by the optical bench are significantly smaller in terms of static
errors. Residual noise in the steering mirror control loop yields a small jitter in the
TX beam pointing direction typically not exceeding 1 ➭rad{

?
Hz in a proper design .

Such small TX beam pointing jitter mitigates the phasefront jitter noise in the range
measurement to an uncritical level, which arises from a phasefront center of curvature
offset (cf. sec. 2.6.5 on TX reference points).

❼ Reference Points at the CoM: The interferometer can be easily designed in a way that
the centroid of RX and TX reference point, i.e. the effective phase center, is at the
vertex of the TMA. And the TMA can be designed so that the vertex point, i.e. the
intersection point of the three mirror planes, is offset from the physical structure of the
assembly. This allows the accelerometer reference point to be co-located with the TMA
vertex at the S/C CoM, as shown in fig. 2.63.

❼ Suppression of off-racetrack contributions: Phase changes on the path from beam
launcher (FIA, Fiber injector assembly, in fig. 2.63) to the recombination beamsplitter,
e.g. induced by the motion of the steering mirror, as well as on the path from the re-
combination beamsplitter to the photodiodes, are highly suppressed in the final ranging
observable [Sheard et al., 2012]. Furthermore, the final ranging observable is to first
order immune to motion of the optical bench within the spacecraft.

❼ Extended field-of-regard of the interferometer: The automatic beam alignment ensures
that misalignments and attitude jitter of the spacecraft w.r.t. the line-of-sight are com-
pensated and the interferometric lock is maintained. Hence, the absolute pointing
accuracy of the spacecraft can be relaxed, i.e. the absolute S/C pointing error can ex-
ceed the tight interferometer field-of-view. However, the absolute S/C pointing error
needs to remain within the range of the steering mirror and within the field-of-regard
of the interferometer, e.g. in order to avoid beam clipping.

The aspect from the last bullet point was required in the GRACE Follow-On mission, as
the LRI is classified as a technical demonstrator and a significant modification of the AOCS
was undesired. Hence, the interferometer field-of-regard was designed to account for S/C
pointing errors and on-board misalignments. There is no feedback of the interferometric
alignment signal such as DWS or steering mirror orientation to the AOCS in GRACE-Follow
On. Although a large field-of-regard might suggest that such a feedback is not necessary, it
is still beneficial to reduce the overall S/C attitude jitter w.r.t. the line-of-sight, because it
mitigates the associated rotation-to-ranging noise.
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Figure 2.63: The GRACE Follow-On LRI racetrack optical layout, consisting of a master
and a slave S/C. TMA: Triple Mirror Assembly, FIA: Fiber Injector Assembly, CP: Com-
pensation Plate, RBS: Recombination Beamsplitter, Pol.-Filter: Polarization Filter. Image
originally published in [Sheard et al., 2012], but it has been revised and updated for this
thesis.
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Figure 2.64: Working principle of the steering mirror DWS control loop. (Left:) The
incoming RX field (red) is aligned with the local oscillator (blue) in front of the photodiode,
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control loop zeros the DWS signal by rotating the steering mirror. RX and outgoing beam
are parallel again.

225



2.7. OPTICAL LAYOUTS

2.7.3 Discussion of Layouts

The on-axis interferometer concepts in figures 2.60-2.62 utilize polarizing components. Al-
though polarizing optics and interferometers are commonly used in laboratory experiments,
their use in a gravimetric mission needs to be assessed carefully. Experimental results by
Dehne et al. [2009] for gravimetric applications suggest that a ranging sensitivity of nm{

?
Hz

is achievable, however, the effect of S/C rotations and changing incidence angles on the po-
larizing components has not been considered in that work to the knowledge of the author.
The changes in the longitudinal phase and polarization upon varying angle-of-incidence in
polarizing birefringent components such as waveplates is non-trivial to compute [Meshksar,
2015] but should be considered.

According to the figures 2.60-2.62, on-axis interferometers favor circularly polarized light
for the inter-satellite path. Circular polarization is also preferred in radio communications,
for example, from Space to Earth, due to the lacking necessity of polarization adjustment at
the ground stations [Freer, 1996, p. 55], higher suppression of multi-path signals and immu-
nity to polarization rotation from the Faraday effect in combination with Earth’s magnetic
field [Laheurte, 2012, ch. 7]. Furthermore, depolarization by the atmosphere plays a role in
particular radio frequency bands. In optical communication links such as the Laser Commu-
nication Terminal (LCT), circular polarization is used for the TX beam [Muehlnikel et al.,
2012]. However, circular polarization in phase sensitive ranging yields a susceptibility to roll
rotations of the S/C due to a cork screw, also called phase wind-up, effect. A roll rotation by
one degree (α “ 17mrad) yields a change in the phase derived range by α{p2πq ¨ λ « 3 nm
for 1064 nm light, which is uncritical but noteworthy. In case of linear polarization, such
rotations alter the heterodyne amplitude but not the measured phase. On the other hand,
circular polarization does not degrade the heterodyne amplitude and carrier-to-noise density
at the receiver, which might be beneficial in interferometers with very low light power levels.

It is noted that the instrument in fig. 2.62 contains two interferometers: a reference
interferometer, which determines the phase difference between the two frequency shifted
light beams, and a science interferometer, where the actual ranging signal is obtained. In
total five waveplates are used. Whereas, the layout in fig. 2.61 utilizes three waveplates.
Both layouts have a similar optical configuration, where the received light passes through a
quarter-waveplate, is transmitted through a polarizing beamsplitter, passes again through a
quarter-waveplate, is then reflected at a flat mirror, passes again through a quarter waveplate
and is finally reflected at the polarizing beamsplitter towards the photodiodes. The received
light is typically weak in terms of power and in addition clipped, which yields diffraction
rings while traversing. Hence, the author of this thesis prefers to keep the path simple for
the RX light, e.g. as few reflections and transmissions as possible, leaving the more complex
path with many components for the powerful TX beam. However, it might be beneficial
to transmit a TX beam with high power as directly as possible in order to avoid parasitic
thermal or stray light effects.

It is remarked that the NG2 concept seems to consider different TX polarization states
for the two S/C, or in other words, the RX and the TX beam have different polarizations
as shown in fig. 2.61. In case of the Alenia design, this polarization change is achieved due
to the uneven number of reflections at the passive S/C, but for the transponder baseline of
the NG2 concept, this implies non-identical S/C and introduces additional complexity, for
example, in the ground support equipment.

The NG2 and Alenia concepts overlap the received light and the local oscillator in or-
thogonal linear polarization states and produce the interference by rotating both polarization
states by 45 degree in front of the photodiode. These different polarization states traverse
even a beam compressor prior to interference in fig. 2.61. The author of this thesis rec-
ommends to produce the interference, i.e. the same polarization state, as early as possible
to maximize the common mode rejection. Otherwise, some components may produce a non-
common attitude-to-ranging coupling for local oscillator and received beam, for example, due
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to stress-induced birefringence in the optical components.

The e.motion layout in fig. 2.60 shows a number of additional mirrors, because the TX
and LO beam are at first separated spatially. The polarizing beamsplitter is not used to
overlap the LO and RX beam. This has the advantage that the beam modes of TX and LO
can be independently adjusted as indicated with the small lens in front of the half-wave plate
(HWP). The e.motion polarization scheme is also simpler, since only two waveplates are used
and the overlapped LO and RX field interfere due to a common polarization state.

The e.motion and Alenia designs accommodate a common telescope for the TX and RX
beam in contrast to the NG2 layout, which could raise the question on the necessity for
polarizing optics and an on-axis system in NG2.

None of the three shown on-axis concepts utilize an active LO beam alignment mechanism,
which would enhance the carrier-to-noise density upon receiver misalignment. The TX beam
is fixed in the S/C frame and beam pointing is achieved by rotating the S/C or optical
bench. Thus, the angular jitter of the TX beam w.r.t. the line-of-sight is driven by the
considerable S/C attitude jitter present in gravimetric missions. As stated in section 2.6.5
on TX reference points, designs without TX beam steering have the TX RP at the center
of phasefront curvature as apparent in the far-field at the distant satellite. The phasefront
curvature can be easily determined for a small point-like laser source. However, the TX beam
after a telescope has typically a low divergence, which is equivalent to a long Rayleigh range
or a large waist size. Small changes in the telescope, for example induced by temperature,
may lead to a significant shift in the phasefront center of curvature. Hence, the centroid
of RX and TX reference point (RP) can easily vary along the line-of-sight. This offset in
combination with the TX beam angular jitter could yield a noteworthy noise in the range
measurement.

The exact location of the RX RP in the layouts is difficult to predict, because the telescope
parameters, imaging systems and exact dimensions are not specified. For a well-behaving
system, the RX RP is located on the RX beam axis as described in section 2.6.4.

For the well-studied off-axis GRACE-FO LRI layout, the RX RP is located at the center
of the RX aperture, as this plane is imaged onto the photodiodes by the two lens imaging
system (cf. fig. 2.63). Any rotation around this point does not change the longitudinal phase
at the photodiode.

It is recalled that the GRACE-FO LRI utilizes TX and LO beam steering, thus, the TX
RP is not the center of phasefront curvature but at the effective pivot point of the TX beam
steering. If the procedure for the TX RP determination from sec. 2.6.5 is applied to the
GRACE-FO LRI, it turns out that the TX RP is located to first order at the reflection point
of the RX RP at the TMA vertex, which is due to the pathlength and lateral offset properties
of the TMA and due to the design of the optical bench, i.e. equal distances from the steering
mirror to the recombination beamsplitter and from the RX aperture to the recombination
beamsplitter.

Taking into account second order effects, the TX RP is offset by a few millimeters along the
line-of-sight, since beamsplitter and compensation plate induce a small quadratic coupling.
Thus, the centroid of TX and RX RP is very close to the TMA vertex and the linear and
quadratic attitude-to-ranging coupling can be minimized by co-locating TMA vertex and S/C
CoM. The remaining offset in lateral direction w.r.t. the LOS is expected to be of the order of
100 ➭m in the GRACE-FO LRI, which couples linearly with 100 ➭m{rad into the pathlength
upon yaw and pitch rotations.

In the successor study for e.motion, the e.motion2 proposal, the suggested interferometry
layout is based on the LRI of GRACE Follow-On with modifications to account for some
learned lessons [e.motion2 Team, 2014]. Major differences are the use of a dedicated acqui-
sition sensor, use of a high power laser source and feedback of the interferometry-derived
attitude information into the AOCS to reduce the noise due to attitude-to-ranging coupling.

A comparison of the different layouts in tabular form is given in table 2.10. As stated in
the last row, the angular jitter of the TX beam is relatively high for the on-axis interferometers
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On-Axis Off-axis
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 (Master S/C)

TX&RX 
Anti-Parallelism

LO&RX Beam 
Alignment; 
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TX beam angular 
pointing jitter 

w.r.t line-of-sight

AOCS in Deep Space 
~ nrad/√Hz

AOCS in LEO (TBC)
~ 100 μrad/√Hz

SM DWS Loop
 < 5 μrad/√Hz

SM DWS Loop
 < 1 μrad/√Hz

Table 2.10: Comparison of various laser ranging concepts. Abbreviations: PAAM: Point-
Ahead Angle Mechanism, WTD: Wavefront-Tilt-Detection, SM: Steering Mirror, IFO: Inter-
ferometer, AOCS: Attitude & Orbit Control System, LEO: Low-Earth orbit

in a low-Earth orbit, as it is determined by the AOCS or S/C pointing jitter. In combination
with an undesired phasefront curvature in the far-field, this could lead to a non-negligible
noise contribution.

In summary, the off-axis layout offers a simple setup with only a few optical components.
Furthermore, it enables a simple implementation of active beam steering, which maximizes
the carrier-to-noise density in case of a S/C misalignment, yields optimal TX beam pointing
and provides a well-defined RP for the distance measurement. Moreover, the beam steering
can be utilized in the acquisition phase of the interferometric link. On the other hand, the
on-axis layouts allow to incorporate a single telescope in the optical path to decrease the
divergence of the TX beam and to enhance the collected light power.

In the next subsection, the off-axis layout of e.motion2 is revised and suggested as a
potential instrument for NGGM. Furthermore, an evolved on-axis layout with most off-axis
advantages is presented as alternative.

2.7.4 Proposed Layouts for NGGM

Two optical layouts of laser ranging interferometers are proposed in this subsection for future
gravimetric missions. The most promising is probably the off-axis type with substantial
heritage from the GRACE Follow-On LRI. It has also been suggested in [e.motion2 Team,
2014] by the author of this thesis and it is shown slightly modified in fig. 2.65.

In front of the two hot-redundant photoreceivers, each containing an approx. 1mm di-
ameter segmented quadrant photodiode, is a two lens beam compressor, which images the
optical bench RX aperture and steering mirror onto the photodiodes and adjusts the beam
sizes to fit the photodiodes. Thus, the RX and LO beam have minimal beam walk on the
photodiode upon tip and tilt of the beam or upon S/C rotations. In particular, the RX RP
of the interferometer is located at the center of the RX aperture.

The recombination beamsplitter has a moderate reflectivity (ą 90%), such that most of
the RX light is deflected towards the photodiodes and most of the LO light is transmitted
to the retro-reflector and finally towards the distant S/C. A small wedge angle in the beam-
splitter reduces the influence of ghost beams in the interferometer. However, a single 45˝

beamsplitter induces a lateral beam offset of the order of ˘1.5mm and an associated non-
negligible linear rotation-to-pathlength coupling of ˘1.5mm{rad. The sign depends on the
orientation of the beamsplitter. Hence, an additional beamsplitter (AqBS in fig. 2.65) with
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Figure 2.65: Off-axis layout with dedicated redundant acquisition sensors and with a
300mm virtual hollow corner-cube retro-reflector. The reference point of the interferome-
ter, given as the centroid of RX and TX reference point, is at the vertex of the retro-reflector,
which is co-located with the S/C CoM. The RX reference point is located at the center of
the RX aperture.

229



2.7. OPTICAL LAYOUTS

same thickness, negative wedge angle and rotated by 90 degree can be utilized to zero the
linear coupling. A negative wedge angle is required, since both components in transmission
should not deflect the light. With this configuration, the RX beam at the aperture and the
TX beam entering the corner-cube are co-aligned along the same axis. It is noted that this
co-alignment means that the TX beam has no lateral offset with respect to the RX beam,
which is an important feature for the determination of the TX RP position.

In the GRACE-FO layout, the additional beamsplitter features anti-reflective coatings on
both sides and is called compensation plate. It is located in the TX beam path (cf. fig. 2.63).
However, in the layout proposed here, the additional beamsplitter is partially reflective in the
RX path, so that it branches off some light power for the acquisition sensors. Although this
compensation plate or second beamsplitter cancels the linear coupling, it doubles the small
quadratic coupling, which is less critical.

The dimensions of the corner-cube are reduced significantly to 300mm lateral offset
compared to the GRACE Follow-On LRI with 600mm, which eases the ground testing
(cf. sec. 2.3.5) and should allow a final co-alignment error of less than 20 ➭rad with a more
rigid HCCRR design.

The special properties of the corner-cube (cf. sec. 2.3.5) yield a TX RP location, which
is approximately the reflection point of the RX RP at the retro-reflector vertex. Thus, the
centroid of the TX and the RX RP is approximately at the vertex and at the S/C CoM.
The approximately refers to a small offset of the order of millimeters in the less critical LOS
direction, which is caused by the quadratic coupling arising from the two beamsplitters in the
racetrack. If the beamsplitters are very thin, the quadratic coupling vanishes, and the TX RP
is exactly at the reflection point of the RX RP at the TMA vertex. However, this holds only if
the distance between the RX aperture and the recombination beamplitter equals the distance
between the steering mirror and the recombination beamsplitter (which is unfortunately not
very well represented in fig. 2.63).

An alternative and of course less mature optical layout is shown in fig. 2.66, which serves as
starting point for further discussion. It accommodates a common refractive telescope for the
RX and TX path, which could also be easily changed into a reflective telescope. Furthermore,
the telescope could be removed if not required. This on-axis design has been derived from
the off-axis layout by simply replacing the hollow corner-cube retro-reflector with the on-axis
retro-reflector discussed in sec. 2.3.5. In addition, a deflection mirror in the baffle, in front
of the telescope, has been incorporated to shift the interferometer RP into the S/C CoM.
Some further changes such as wave plates and recombination beamsplitter with polarization
dependent coatings are applied to appropriately adjust the interference light power levels.
This on-axis design utilizes a steering mirror, which provides automatic beam alignment and
proper control of TX beam direction. Hence, most of the off-axis or racetrack advantages are
preserved along with the potential advantages of a telescope.

As the telescope images the telescope aperture onto the virtual intermediate aperture,
and the beam compressor images the intermediate aperture onto the photodiodes, the RX
RP is located virtually at the center of the telescope aperture (purple dot in the center of the
telescope aperture in fig. 2.66). However, due to the mirror in the baffle, the virtual RX RP
is unfolded into the point labeled S/C CoM. Rotations of the S/C around its CoM produce a
pure tilt of the RX beam and no piston effect in the telescope aperture, in the intermediate
aperture and at the photodiode. Thus, the RX RP is at the S/C CoM.

It is assumed that the local oscillator beam waist is located at the steering mirror in
fig. 2.66, as in the racetrack configuration. One focal plane of the retro-reflector (RR) lens
coincides with the RR-mirror surface of M2. The other focal plane is co-located with the
steering mirror and with the virtual intermediate aperture, since both distances are matched.
Due to the telescope, the TX RP in the virtual intermediate aperture is imaged further into
the telescope aperture center. Hence, there are three fix-points of the LO/TX beam upon
steering mirror rotations: the reflection point of the steering mirror, which is the pivot point
of the steering mirror rotation, the center of the virtual intermediate aperture and the center
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Figure 2.66: On-axis interferometer layout with on-axis retro-reflector and common TX
and RX telescope. The recombination beamsplitter (RecBS) has a polarization dependent
coating. The polarization states of the different beam paths are provided. The purple dot in
the telescope aperture center is the virtual RX and TX RP, which is unfolded into the S/C
CoM. Some RX light is transmitted at the recombination beamsplitter (not shown).
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of the telescope aperture. Thus, the TX RP is virtually in the center of the telescope aperture
but unfolded into the S/C CoM as the RX RP.

The distance ∆L between the telescope aperture and the baffle mirror defines the distance
between the interferometer RP and the baffle mirror. Hence, due to the baffle mirror, an
optical layout is obtained, where the interferometer RP, which is given by the centroid of TX
and RX RP, is physically separated from the optical bench (OB) and baffle structure.

There is no compensation plate in the on-axis layout, because the TX beam traverses the
recombination beamsplitter twice in different directions, which cancels the linear coupling.
Furthermore, the recombination beamsplitter can have a small wedge angle to suppress ghost
beams on the photodiodes. The polarizing recombination beamsplitter has a reflectivity close
to unity for s-polarized light and is almost transparent for p-polarized light.

Figure 2.66 shows no acquisition sensor for the sake of simplicity, but it can be easily
implemented. For example, one can place a polarizing acquisition beamsplitter between wave
plate 2 and the recombination beamsplitter, such that some fraction of the s-polarized RX
light is transmitted onto the acquisition sensor, while most of the RX light and the TX light
is reflected, which does not induce additional attitude-to-ranging coupling and avoids losses
in the TX path.

In addition, it should be noted that one might be able to remove the baffle mirror, if a
reflective telescope is used in an appropriate configuration.

Unfortunately, the off-axis and the on-axis designs (cf. fig. 2.65 and 2.66) transmit some
of the weak received light at the recombination beamsplitter. The loss can be mitigated by
overlapping the RX and LO beams in different polarization states with a polarizing recombi-
nation beamsplitter as shown in fig. 2.67. However, this requires an additional wave plate and
a polarizing coating on the redundancy beamsplitter. It is remarked that the same technique
can be utilized in an off-axis layout as well (not shown).

Another noteworthy constraint is present in both layouts, off-axis and on-axis, which
concerns the spatial beam modes. So far, the LO laser beam mode used for the interference
was equal to the beam mode entering the telescope (on-axis) or leaving towards the distant
S/C (off-axis/racetrack). It is not possible to add a beam expander in the TX path in the
racetrack layout, since the telescope magnifies also the angular variations and would falsify
the TX beam pointing. However, it is easy to see in the on-axis layout, that the retro-
reflector ABCD matrix (cf. sec. 2.3.5) can be modified with a curved mirror M2 to produce
a magnification of the laser beam by a factor mRR, i.e.

ˆ
´1 0
0 ´1

˙
Ñ

ˆ
´mRR 0

0 ´1

˙
, (2.372)

which does not alter the beam direction. Even in an off-axis design it is likely possible to
change the TX beam mode by a two-lens system, as long as the ABCD matrix for the overall
TX path is of the form of eq. (2.372). However, such an extension needs to be analyzed
thoroughly regarding phase errors and attitude-to-ranging coupling within the field of regard
of the TX beam.

The optical layouts presented here are further elaborated with the help of laser link power
budgets, which allow in the end to derive the optimal interferometer parameter such as laser
beam sizes and aperture sizes.

2.8 Laser Link Power Budgets

A power budget of a laser link is an indispensable tool in the design process of ranging inter-
ferometers. It shows the allocation of available optical power in the laser link, in particular,
the amount received by the photodiodes. Such a link budget is typically a table with available
optical (input) laser power, losses in the optical path and the final received optical power.
However, it can easily be extended to contain or account for
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Figure 2.67: On-axis layout without transmission loss of the RX light at the recombination
beamsplitter. Based on fig. 2.66.
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❼ beam modes, i.e. sizes of the beams,

❼ photodiode properties such as photodiode responsivity,

❼ noise levels of the photoreceiver and of the laser light, such as the relative intensity
noise,

❼ expected wavefront overlap of the interference pattern, i.e. the heterodyne efficiency,

❼ misalignment of beams and/or of the S/C.

With this information, an otherwise purely optical link budget can account for the transition
into the electric domain and enables to derive the carrier-to-noise density, i.e. the signal-
to-noise ratio of the instrument. Hence, such budgets directly provide information on the
feasibility of particular designs as the carrier-to-noise density needs to exceed a tracking
threshold, for example.

A comprehensive and precise budget can be created with computer-aided spreadsheets,
which can use formulas and allow to assess the effect of parameter changes such as sizes of
apertures, beams or telescopes or the noise level of the photoreceivers. Such budgets easily
become a tabular representation of the whole interferometer.

Different columns of the budget can be used to evaluate different operational states of the
interferometers and satellites, e.g. with different misalignment angles or between the worst
case and the best or high case, which represent the minimal and maximal possible power
levels, respectively.

Exemplary laser link budgets for the two proposed optical layouts (cf. fig. 2.65 and 2.67)
are given in tables 2.11-2.14.

The rows of the budgets are arranged in categories:

❼ constants: natural physical constants and parameters intended not to change, e.g. be-
cause some formulas are valid only for particular parameter values,

❼ fixed : parameters and noise levels, which are constant throughout the budget (in all
columns),

❼ case: parameters such as S/C misalignment angles or parameters strongly changing
between the columns, e.g. from worst to high case,

❼ setup: design parameters of the interferometer,

❼ computed : quantities automatically computed within the spreadsheet.

The classification into categories fixed, case and setup parameters is not strict and may
be changed, for example, if further constraints or boundary conditions exist. Here, the
assignment was motivated by the subsequent optimization of setup parameters in sec. 2.8.4.

2.8.1 Off-Axis Interferometer

Tables 2.11 and 2.12 contain the power budget for the off-axis or racetrack layout. The table
columns represent a GRACE-FO LRI-like setup and a NGGM interferometer in worst and
high case, which is shown in fig. 2.65. The two setup parameters in rows 28 and 29 are the
beam waist radius of the local oscillator ω0,LO, which is equal to the transmit (TX) beam
mode ω0,TX, and the RX aperture radius rRX,AP. The number of surfaces traversed by the
beams are given in rows 14-17. These numbers are required to calculate the loss arising from
an eventual degradation of optical surfaces due to molecular and particulate contamination,
which is considered here in a simplified manner with a constant loss per surface in row 22.
Although one percent loss of optical power per traversed surface might appear conservative,
this value already leads to a desired advantage for less complex layouts with only a few optical
components.
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Table 2.11: Part 1 of 2 of the laser link budget for the off-axis concept (cf. fig. 2.65)
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Table 2.12: Part 2 of 2 of the laser link budget for the off-axis concept (cf. fig. 2.65).
Abbreviations: ACS: Acquisition (Sensor), BS: Beamsplitter, QPD: Quadrant Photodiode,
RecBS: Recombination Beamsplitter, BOL: Beginning of life, EOL: End of life, WCCA: worst-
case closest approach, OB: Optical Bench, RoC: Phasefront Radius of Curvature, RX-AP:
RX Aperture
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Based on the development of the ESA High-Stability-Laser system (cf. sec. 2.3.1 on the
laser) and in accordance with the e.motion2 study, a laser power of 100mW has been selected
as end-of-life value in row 17. The required laser power for the frequency stabilization is
specified with 3mW in row 13. The budget assumes a degradation of the laser power from
beginning to the end of the mission by a factor of 3 as shown in row 25. The TX beam and
the receiver S/C misalignment angles are 133 ➭rad for the NGGM worst case in rows 26 and
27.

The photoreceiver characteristics from rows 9-11 are used to calculate the electric cur-
rent noise density in row 45 and the optimal local oscillator power per segment in row 32,
which maximizes the carrier-to-noise density (cf. sec. 2.6.9). Furthermore, this allows the
optimal local oscillator power at the recombination beamsplitter to be computed in row 33
and, hence, the optimal reflectivity of the recombination beamsplitter can be determined as
shown in row 39. Another interesting parameter is the required de-magnification of the beam
compressor, which is computed in row 44.

The effective power, which depends on the receiver S/C misalignment, on the transmit
beam misalignment and on the heterodyne efficiency is computed with the methods discussed
in sec. 2.6.10f. At first, the heterodyne efficiency is calculated for aligned phasefronts (αRX “
0, row 52). Then, the drop due to the phasefront tilt and due to a potential phasefront
curvature mismatch, which is specified in row 24, is calculated in row 53. This drop accounts
also for the shift in the maximum position of the heterodyne efficiency (cf. sec. 2.6.11).
Moreover, a generic heterodyne efficiency drop of 2% accounts for an eventual polarization
mismatch in row 54.

The main result of the laser link budget is the carrier-to-noise density for a single segment
given in rows 56 and 57 in table 2.12, which is the product of the rows 49-55. With the selected
NGGM worst case parameters for the inter-satellite separation L “ 150 km from row 23 and
with the available laser power of 100mW from row 18, one obtains approx. 80 dB-Hz for the
carrier-to-noise density, which has a sufficient 10 dB margin to the tracking requirement of
70 dB-Hz (cf. eq. (2.127)).

An exemplary budget for the acquisition sensor is starting from row 58. A rectangular
acquisition scan pattern is assumed. Each S/C scans the 6mrad ˆ 6mrad uncertainty space
specified in row 70 by pointing the TX beam with the steering mirror. The beam is assumed
to stop at each scan point for a duration defined in row 67, while the transition time between
points is given in row 68. The angular separation between the TX beam and the actual distant
S/C may be zero, if the TX beam points accidentally in the correct direction. However, under
worst case assumptions, the closest approach should be bound by the threshold in row 73,
which yields in combination with the field-of-view from row 70 the number of grid points in
the scan pattern in row 80. The total scan duration in row 81 should be sufficient short to
ensure a quick acquisition, which is fulfilled with 0.36 s in this design.

The focal length in row 72 of the acquisition sensor optics is selected such that the spot
size on the sensor illuminates several pixels as shown in row 79. Furthermore, the FoV does
not exceed the dimensions of the sensor (cf. rows 76 vs. 77), which has been addressed in
sec. 2.6.12 on the laser link acquisition.

The worst case angular separation in row 73, the noise characteristics of the acquisition
sensor in rows 60-63 and the sensor integration time in row 66 are used to compute the
expected signal to noise ratio in row 91 of the illuminated signal pixels in the acquisition
phase. The final SNR of the whole spot can be expected even larger, as information from
multiple pixels is combined, but such a calculation was beyond the scope of this budget.

2.8.2 On-Axis Interferometer

The on-axis laser link budget in table 2.13 and 2.14 has been structured in the same way as
the off-axis budget, which eases comparison of both setups. The number of optical surfaces
traversed by the laser beams is higher in rows 14-17 compared to the racetrack design, which
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increases the losses in the TX and RX path with regard to degradation of optical surfaces.
However, the disadvantage is mostly compensated by the smaller losses at the recombination
beamsplitter, since almost all RX light can be reflected with the polarization dependent
coatings. This fact is especially appealing for interferometers with low laser power, since the
optimal beamsplitter transmission is 7.1% with a 30mW laser and 2.0% with a 100mW laser
(cf. row 39 in table 2.11), which means that 7.1% or 2.0% of the RX light power is lost in
an off-axis design without polarization dependent coatings.

An end-of-life and worst-case laser power of 25mW was considered for the on-axis design
as shown in row 18 in table 2.13, which is further split into 3mW for the laser frequency
stabilization shown in row 13 and 1.68mW for the local oscillator in row 40. Most of the
remaining light power (14.20mW, row 47) is transmitted through the telescope and leaving
towards the distant S/C (13.92mW, row 49).

The four setup parameters in the on-axis budget are the waist radius of the local oscillator
ω0,LO in row 28, the telescope magnification mT in row 29, the magnification of the retro-
reflector mRR in row 30, which is kept at 1 throughout this thesis, and the radius of the
telescope aperture rTAP in row 31. The constraint mRR “ 1 yields the relation ζ “ ζ2. The
ratio ζ “ ω0,LO{prTAP{mTq in row 34 is important for the computation of the interference,
i.e. heterodyne efficiency, while ζ2 “ mT ¨mRR ¨ ω0,LO{rTAP in row 35 is the clipping ratio of
the TX beam at the telescope and is important for the computation of the transmit beam
divergence and the rejected power at the telescope.

The same noise levels for the photoreceivers are assumed as in the off-axis budget, which
yields a normalized carrier-to-noise density of 3.14 ¨ 106Hz « 65 dB-Hz per picowatt effective
power and per photodiode segment. The final C{N0 values are listed in row 64 and indicate
for 80 ➭rad TX and RX misalignment a satisfying 14.3 dB margin to the phasemeter tracking
threshold of 70 dB-Hz (cf. eq. (2.127)).

These power budgets show that the on-axis and the off-axis layouts are feasible, however,
they represent only a snapshot for a particular parameter set and do not provide much
insight, for example, on similarities or differences of both interferometer types. Furthermore,
the selection of the numerical values for the setup parameters is not justified. However, with
the budgets and the underlying formulas, one can easily derive analytical expressions for
the carrier-to-noise density as a function of the setup parameters, for example. Then, the
expressions can be used to perform a parametric study, which is the outline for the next two
subsections.

2.8.3 Budget Analysis: Carrier-To-Noise Density

Based on the power budgets in the previous subsections, one can write the carrier-to-noise
density C{N0 for the on-axis and off-axis interferometers as product of four terms, i.e.

C{N0 “ 1065{10Hz
1 pW

¨ 2

πL2
¨ PTX,PC ¨Gifo. (2.373)

The first factor is the carrier-to-noise density of the interferometric readout normalized to
1 pW effective power, while the other three terms form the actual effective power. The
local oscillator power and the recombination beamsplitter transmission were optimized in the
budgets to maximize the carrier-to-noise density to the 65 dB-Hz “ 65 dBpHzq “ 1065{10Hz
value, which is referred to 1 pW effective power on a photodiode segment (cf. sec. 2.6.9). This
65 dBpHz{pWq value might be a few dB higher for a sophisticated low-noise phase readout
system, or a few dB lower, if the interferometer is operated at a sub-optimal working point,
for example, with slightly higher or lower local oscillator power.

Since the total C{N0 in eq. (2.373) should fulfill the tracking threshold requirement of
70 dB-Hz (cf. eq. (2.127)), the effective power needs to exceed 3.16 pW or 5 dBppWq. The
effective power is a function of the inter-satellite separation L, the second term in eq. (2.373),
and of the transmitted power PTX,PC, the third term. The last factor Gifo has units of m2
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Table 2.13: Part 1 of 2 of the laser link budget for the on-axis concept (cf. fig. 2.67).
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Table 2.14: Part 2 of 2 of the laser link budget for the on-axis concept (cf. fig. 2.67).
Abbreviations: RoC: Phasefront Radius of Curvature, IAP: Intermediate aperture (image
plane of telescope), RR: Retro-Reflector. For further abbreviations see table 2.12.

and depends strongly on the interferometer design and beam parameters. However, the first
three terms are generic and apply for all interferometer types.

For the off-axis design with non-clipped Gaussian beams, the PTX,PC value is given by PTX

as stated in row 40 of table 2.11. In the on-axis layout with a telescope, the Gaussian beams
may be clipped by the telescopes. For this case, the link budget shows the TX power prior
clipping PTX,PC and the power in the TX aperture PTX,AP, i.e. leaving the S/C (cf. rows 47
and 49 in table 2.14).

Although it may appear counter-intuitive at the first glance to use the prior-clipping
value (PTX,PC) in eq. (2.373), it is advantageous, because PTX,PC does not depend on setup
parameters such as the size of the laser beams or the size of the telescope. It is self-evident
that the product PTX,PC ¨Gifo needs to be formulated consistent to obtain the correct results.

The optical power PTX,PC has a functional dependence on the laser power Plaser according
to

PTX,PC « κ ¨ pPlaser ´ Pfreq.stab. ´ PLOq , (2.374)

where κ denotes the transmission efficiency from fiber injector on the optical bench to the
TX beam prior eventual clipping. PTX,PC is reduced by Pfreq.stab. « 3mW, which is the
required light power for the laser frequency stabilization unit, and by the local oscillator power
PLO « 1.68mW required for local interference. The 1.68mW are split onto 8 photodiode
segments in the interferometers considered here. The racetrack configuration with only a few
surfaces in the optical path has a higher κ « 0.8 value compared to the on-axis design with
κ « 0.6. For on-axis layouts, the power value PTX,PC is related to the power leaving the
limiting aperture PTX,AP by

PTX,AP “ PTX,PC ´ Prej, (2.375)
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Figure 2.68: The first three terms of eq. (2.373) as a function of the S/C separation L and
transmitted optical power PTX,PC prior-clipping on a logarithmic scale. The color function
denotes 10 ¨ log10p106.5Hz{1 pW ¨ 2{pπL2q ¨ PTX,PCq, i.e. it has units of dBpHz{m2q. The
magenta line indicates the 45 dBpHz{m2q values, which is a soft limit for the feasibility of
off-axis or telescope-free designs as discussed in the next sec. 2.8.4.

where Prej is the rejected light power due to beam clipping (cf. eq. (F.19)).
Figure 2.68 illustrates the magnitude of the first three factors in eq. (2.373) as a function

of the S/C separation L and laser TX power PTX,PC, which are both independent of the
interferometer type. Gravimetric missions reach a value of approx. 60 dBpHz{m2q, while LISA
mission parameters are in the region of 0 dBpHz{m2q. From this plot and from the desired
carrier-to-noise density of 70 dBpHzq, one can derive requirements on the interferometer-
describing factor Gifo, which has units of m2 and which can be written as the product of five
terms:

Gifo “ GRX ¨Gcollect ¨GαTX
¨ η0,seg ¨GαRX

. (2.376)

The first term GRX denotes the efficiency of the optical power transfer from the receiving
aperture to the photodiode segment and includes the polarization overlap (cf. row 21 in ta-
ble 2.11). The term Gcollect describes the interferometer’s ability to collect light and depends
on the size of the receiving aperture and on the TX beam divergence. Furthermore, Gcollect

contains the effect of the rejected power, if the TX beam is clipped at the telescope. The
maximum heterodyne efficiency η0,seg is derived for perfectly aligned phasefronts and de-
pends on the size of the RX aperture and on the beam modes. The terms GαTX

and GαRX

denote the intensity and heterodyne efficiency drop upon transmitter αTX and receiver αRX

misalignment, respectively. Analytical expressions for the terms are provided in the next
subsection.

The link budgets from tables 2.11-2.14 have been condensed and rewritten in table 2.15 in
terms of the quantities shown in eq. (2.373) and (2.376). The lower part of the table is simply
a decibel representation of the upper part, i.e. all values are computed as 10 ¨ log10pxq of the
values from the upper part. Decibel is, in general, a controversial unit and should be avoided
in interferometric applications, where optical light power is used to produce a sinusoidal
voltage, since field quantities (20 ¨ log10pxq) and power quantities (10 ¨ log10pxq) are not easily
distinguishable. However, the logarithmic scale offers the advantage that a multiplicative
chain can be expressed as an illustrative sum. Since all dB values are accompanied by the
non-dB values, the dB scale is exceptionally used here.

As apparent from table 2.15, the factor GRX is approximately 0.10 for all designs. It
is dominated by the splitting into the eight photodiode segments and contains some other
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Table 2.15: Condensed laser link budgets for the different interferometer designs. The lower
part of the table is a logarithmic representation (dB) of the upper part.

minor losses, e.g. due to the acquisition sensors. The gain in the RX power due to lacking RX
transmission at the recombination beamsplitter in the on-axis design is mostly compensated
by the additional contamination losses due to the higher number of traversed optical surfaces.

The remaining last four terms in eq. (2.376) depend strongly on setup parameters in the
link budget such as beam sizes or the telescope magnification. The determination of optimal
parameters for the different optical layouts, which maximize Gifo, is covered in the following
subsection.

2.8.4 Optimal Parameter Selection

The rationale in the selection of the setup parameters is to ensure operation of the interferom-
eter under worst-case conditions, for example, for a maximal misalignment of the transmitter
S/C αTX, which implies a misalignment of the TX beam w.r.t. the LOS, and for a maximal
misalignment of the receiver S/C αRX w.r.t. the LOS. The cost function for the optimization
can be defined as

GsetuppαTX, αRX, ...q :“
Gifo

GRX
“ Gcollect ¨GαTX

¨ η0,seg ¨GαRX
. (2.377)

Since each S/C acts as receiver and transmitter at the same time and both S/C of the laser
link are equitable, the misalignment angles of the transmitter (αTX) and of the receiver (αRX)
can be considered equal for the worst-case analysis. This does not mean that αRX and αTX

have the same effect on Gsetup, but that the misalignment of both S/C is similar. Generally,
the laser beam misalignment and the S/C pointing error need to be considered in the yaw
and pitch directions, however, a simplified analysis with rotational symmetric laser beams is
used here.

In the off-axis layout, the beam mode used as the local oscillator is equal to the beam
mode transmitted towards the distant S/C. Here, the beam mode is defined by the waist size
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ω0,LO “ ω0,TX of a fundamental Gaussian beam. The size of the flat top beam is determined
by the RX aperture radius rRX,AP “ rAP. With these setup parameters, one can write Gsetup

with units of m2 for the off-axis layout as follows

GsetuppαTX, αRX, ω0,LO, rAPq

“ πr2AP

θ2TX

¨ e
´2

α2TX

θ2
TX ¨

2ω2
0,LO tanh

´
r2AP{p2ω2

0,LOq
¯

r2AP

¨ e
´2

pαRX`αRoCq2

θ2
LO

¨Ψ2
2 (2.378)

“
π3 ¨ ω4

0,LO

λ2 ¨ ζ2 ¨ e´2
α2TX¨π2¨ω20,LO

λ2 ¨ 2ζ2 tanh
`
1{p2ζ2q

˘
¨ e´2

pαRX`αRoCq2¨π2¨ω20,LO

λ2¨Ψ2pζq2 , (2.379)

where ζ “ ω0,LO{rAP is used as an abbreviation (cf. row 37 in table 2.11). The recast from
eq. (2.378) to (2.379) used the fact that the TX beam divergence θTX is equal to the LO beam
divergence θLO. The four single product terms in eq. (2.379) correspond to Gcollect, GαTX

,
η0,seg and GαRX

, respectively. The function is depicted in fig. 2.69, where the four upper
panels are based on the heterodyne efficiency of a single segment of the photodiodes, while
the lower four lower panels show the efficiency for a circular photodiode or the coherent sum
of four segments. The heterodyne efficiency of a single segment is computed with the help of
the polynomial Ψ2-function, which was derived from a fit to results obtained by the electric
field overlap integral (cf. sec. 2.6.11). In addition, it is recalled the heterodyne efficiency
of a segment is susceptible to a phasefront curvature mismatch between RX and LO beam,
which causes a shift in the position of the maximum heterodyne efficiency. This angular shift
is denoted with αRoC “ αEF,max (cf. eq. 2.358) and is based on the assumption, that the
differential phasefront curvature is caused by a longitudinal shift in the LO waist position of
Ω “ 10% of the Rayleigh range.

The parameters ζ « 0.7 and rAP “ 3mm are selected for the NGGM off-axis layout within
this thesis, i.e. these are the values in the laser link budget. These parameters result in a
slightly smaller Gaussian waist radius of ω0,LO « 2mm compared to the GRACE Follow-On
LRI (2.5mm), which eases on-ground measurements of the mode content of the laser beams.
Furthermore, for a misalignment of αTX “ αRX “ 130 ➭rad, these values yield Gsetup «
22 dBpm2q, which is fairly close to the overall maximum at this misalignment (cf. fig. 2.69)

The upper-left panel in fig. 2.69 shows a Gsetup « 28.5 dBpm2q value for non-misaligned
S/C in case of the NGGM off-axis parameter set, which agrees with the values provided in
table 2.15 (sum of rows 14 and 16). Some regions are blank or blue in fig. 2.69, as they are
considered undesirable by the author of this thesis. These regions mark the parameter space,
where

❼ the local oscillator waist radius is higher than 3mm, which would require an inter-
ferometer optical bench with large optical components. In addition, it is difficult to
characterize precisely the mode content of such large beams due to the long Rayleigh
range.

❼ the heterodyne efficiency drops below 0.13, i.e. ηseg “ η0,seg ¨ GαRX
ă 0.13. This in-

dicates, for example, that only a small region of the RX or of the LO beam is used
in the interference, which increases the susceptibility of the interferometric readout to
localized wavefront distortions.

❼ the factor GαTX
is smaller than 0.13. This means the Gaussian TX beam intensity is

evaluated far away from the central axis and it can not be predicted reliably unless a
precise model of the mode content of the TX beam is available.

It is remarked that the total carrier-to-noise density C{N0 in units of dBpHzq can be
obtained by adding up GRX « 0.1 “ ´10 dB with the colorbar values from fig. 2.68 and
from fig. 2.69 (upper four panels). Furthermore, the overall maximum value for Gsetup in the
upper-left panel of fig. 2.69 is approx. 35 dBpm2q, which can be understood as a soft limit
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Figure 2.69: Gsetup is shown for the off-axis (racetrack) layout based on the heterodyne
efficiency of a single photodiode segment (upper four panels) and of a circular photodi-
ode (lower four panels). The color function is defined as 10 ¨ log10pGsetupq, i.e. it has units of
dBpm2q. White areas denote parameter regions, where the heterodyne efficiency η or GαTX

is below 0.13. The blue region at the upper right in the sub-plots denotes the parameter
space in which the Gaussian local oscillator waist radius is larger than 3mm. For this region,
Gsetup was artificially set to 0 dBpm2q. This figure considers a wavelength λ of 1064 nm.

244



PART 2. LASER INTERFEROMETRY IN SPACE

for the capability of off-axis layouts. In combination with GRX « ´10 dB and the tracking
threshold of 70 dBpHz{m2q, this leads to the magenta 45 dBpHz{m2q limit line in fig. 2.68.
However, it is a soft limit as it depends on the rather empirical limit given by the maximum
LO and TX waist radius of 3mm and it considers error-free pointing of the interferometers
(αTX “ αRX “ 0).

For the sake of completeness, the four lower panels in fig. 2.69 show Gsetup with the
heterodyne efficiency of a circular photodiode instead of a single segment. These plots are
obtained from a modified eq. (2.379), where Ψ2 is replaced by Ψ1 and αRoC is set to zero.
At higher misalignment angles, more regions are blank compared to the panels for the single
segment in fig. 2.69, because the heterodyne efficiency of the circular photodiode falls off
more quickly with misalignment than the efficiency of a single segment (cf. sec. 2.6.11 on
heterodyne efficiency).

The on-axis layouts have the advantage that a common telescope can be used, which can
enhance the light-collecting area and reduce the divergence of the TX beam. The telescope
aperture radius rTAP, which defines the light-collecting area, and the telescope magnification
mT (cf. row 29 in table 2.13) are assumed as setup parameters in the power budget. Moreover,
the LO waist size ω0,LO is a free parameter to be analyzed. The LO beam is used for the
interference with the top hat beam, which has a radius of rTAP{mT at the recombination
beamsplitter. In addition, one part of the LO beam is sent through the on-axis retro-reflector
(cf. fig. 2.66), which may produce a magnification by mRR, and through the telescope, which
further magnifies the beam by mT . The formed TX beam may be clipped by rTAP, which
would increase the far-field divergence of the TX beam and which would cause some power
loss due to the clipping.

Similar to eq. (2.379), the on-axis layout figure of merit can be defined for the parameter
optimization as

GsetuppαTX, αRX, ω0,LO, rTAP,mTq :“ Gifo

GRX
“ Gcollect ¨GαTX

¨ η0,seg ¨GαRX

“ πr2TAP ¨ p1 ´ e´r2TAP{pω0,LOmTmRRq2q2
θ2TX,ncg

¨ e
´2

α2TX

θ2
TX,div ¨

2ω2
0,LO tanh

´
r2IAP{p2ω2

0,LOq
¯

r2IAP

¨ e
´2

pmTαRX`αRoCq2

θ2
LO

¨Ψ2
2 (2.380)

“
π3r2TAP ¨ ω2
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2
T ¨ p1 ´ e´1{ζ2q2
λ2looooooooooooooooooooomooooooooooooooooooooon

“Gcollect

¨ e
´2

ˆ
αTX¨π¨ω0,LO¨mT¨Ψ1pζ2q

λ
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looooooooooooooomooooooooooooooon
“GαTX

¨ 2ζ2 tanh
`
1{p2ζ2q

˘
loooooooooomoooooooooon

η0,seg

¨ e´2
pmTαRX`αRoCq2¨π2¨ω20,LO

λ2¨Ψ2pζq2looooooooooooooomooooooooooooooon
GαRX

. (2.381)

For the sake of simplicity, the on-axis retro-reflector is assumed to maintain the beam mode,
i.e. mRR “ 1. Hence, the zeta parameters ζ “ ω0,LO{rIAP “ mT ¨ ω0,LO{rTAP and ζ2 “
mRR ¨ mT ¨ ω0,LO{rTAP are equal. However, the zeta parameters have a different meaning,
i.e. Ψ2pζq is used to compute the heterodyne efficiency of a photodiode segment, while ζ2
is the clipping parameter at the telescope and used in combination with Ψ1pζ2q to calculate
the beam divergence θTX,div of the clipped Gaussian beam (cf. appendix F). The non-clipped
Gaussian beam divergence is θTX,ncg “ λ{pπ ¨mRR ¨mT ¨ ω0,LOq.

The Gcollect factor in eq. (2.381) contains the expression p1 ´ e´1{ζ2q2, which accounts
for the rejected light power at the telescope due to clipping. In addition, is noted that the
phasefront tilt at the photodiodes αRX is magnified by mT due to the telescope as apparent
from the last term GαRX

in eq. (2.381).
Numerical values of Gsetup for a potential NGGM on-axis design with a convenient LO

waist radius of ω0,LO “ 1mm are shown in fig. 2.70. The selected 20mm diameter telescope
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with a magnification of mT “ 4 yields a flat top beam radius of 2.5mm on the optical
bench. This flat top beam is imaged onto the photodiodes with 0.5mm radius by the beam
compressor with a de-magnification factor of 5 (cf. row 53 in table 2.14). The upper-left panel
of fig. 2.70 indicates a magnitude of Gsetup « 41 dBpm2q for non-misaligned S/C with the
selected NGGM on-axis parameters, which is approx. 10 dB higher than in the off-axis layout.
With a larger telescope, the value can be increased to 80 dBpm2q, for example, required for
LISA-like missions.

However, the on-axis gain in the effective power is accompanied by a faster decay of the
power with S/C misalignment, i.e. stricter pointing requirements. The selected parameters for
the NGGM on-axis layout are optimal for a misalignment of approx. 80 ➭rad, which complies
with the accuracy of the acquisition sensor and with the co-alignment accuracy of a compact
on-axis retro-reflector.

The parameter space with ζ “ ζ2 ą 2.0 or ζ “ ζ2 ă 2.0 is excluded from the plots,
because the functions Ψ1 and Ψ2 have been computed only within these ranges. In addition,
white areas show undesired areas with GαRX

ă 0.13 or with GαTX
ă 0.13.

The parameters selected here should not be considered as a final decision, but as a starting
point for further discussion. Further analysis is desirable, for example, related to a possible
change in the TX beam mode via a magnification in the retro-reflector mRR ‰ 1. Further-
more, it is stressed that the on-axis layout proposed in this thesis can also be used without
a telescope. This might be appealing, because the co-alignment of RX and TX field can
be verified more easily in on-axis concepts, where the beams are not separated by a large
amount. Moreover, the footprint of the interferometer in the S/C can be made smaller, since
only a single baffle is required.
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Figure 2.70: Gsetup is shown for the on-axis layout with ω0,LO “ 1mm based on the
heterodyne efficiency of a single photodiode segment (upper four panels) and of a circular
photodiode (lower four panels). The color function is defined as 10 ¨ log10pGsetupq, i.e. units
of dBpm2q. Please note that the colorbar is different for all sub-plots. White areas denote
parameter regions with ζ ą 2, ζ ă 0.2, GαTX

ă 0.13 or GαRX
ă 0.13. This figure considers a

wavelength λ of 1064 nm.
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2.9 Summary & Conclusion

The second part of this thesis (chapter 2) discussed design considerations for laser interferom-
etry aboard current and potential future gravimetric satellite missions. Laser interferometers
in this context are used to measure distance variations between the satellites. This chapter
started with a brief introduction to relativity (sec. 2.1), because one aspect of this thesis
was to derive a relativistically correct description of the phase-derived range measurement.
These relativistic effects need to be characterized and understood, since one might want to
remove them in post-processing to obtain the instantaneous geometrical distance between the
satellites, which is often used in gravity field recovery. In addition, these effects need to be
considered in the forward-modeling, where one aims to simulate realistic phase observations.

The introductory part included a description of phase-tracking and the interferometric
signals such as the longitudinal phase, which contains the ranging information, the differential
wavefront sensing (DWS) signals and the differential power sensing (DPS) signals (cf. sec. 2.2).
The relation between the photocurrent and the light fields was formulated taking into account
the vectorial nature of electro-magnetic waves (cf. eq. (2.56)), which is not commonly found
in the literature to the knowledge of the author. This enables one to simulate and evaluate
precisely polarization effects in laser interferometers, which immediately suggests an extension
of the work performed by Meshksar [2015] with the more precise equations.

In section 2.3, various subsystems of typical laser interferometers were addressed such
as laser sources, photodiodes and frequency standards for the optical and electrical domains.
The two most prominent optical frequency standards are based on the macroscopic mechanical
stability of optical cavities, and on the energy transition levels of atoms, e.g. so-called iodine
cells. It was pointed out that both standards achieve approximately the same stability but
differ in accuracy. For example, cavities show a poor accuracy, because they can stabilize light
at various absolute frequencies, i.e. resonances occur at equidistantly separated frequencies.
On the one hand, this is beneficial, since a cavity can be used at different frequencies and
wavelengths, but on the other hand, the absolute frequency needs to be deduced by other
means.

It was attempted to provide an overview on the state-of-the-art technology of interfer-
ometer subsystems available for space missions together with the key figures such as noise
levels. Variations of some systems were also addressed, for example, on-axis retro-reflectors
as alternative to corner-cubes in section 2.3.5. Mathematical models were provided where
applicable for the subsystems, e.g. for the phase obtained by a phasemeter, for the pho-
tocurrent from photoreceivers or for the signal stength. In addition, it was briefly mentioned
(cf. sec. 2.3.4) that a single frequency standard serving after conversion at optical and elec-
trical frequencies would be beneficial, since it could tie GNSS, laser ranging, time stamping
and eventual microwave measurements to a single frequency source. However, this requires
the use of a complex frequency comb, which is likely beyond the scope of the next generation
of gravimetric missions.

To cope with the complexity and variety of different laser interferometers, their descrip-
tion and modeling was divided into a description of the functional concepts (cf. sec. 2.4),
into effects arising from the light propagation between satellites (cf. sec. 2.5), and into con-
tributions from the optical layout and implementation (cf. sec. 2.6f.). The discussion of
functional concepts encompassed one-way ranging, dual one-way ranging, transponder-based
ranging and briefly ranging based on passive retro-reflectors. Mathematical descriptions of
the phase observables were derived under consideration of the subsystems’ transfer functions
and relativistic effects. These effects manifest in gravimetric missions as a variation of the
proper time, which influences the phase of the laser light and the time-stamping of phase
samples, and as a variation of the propagation time of light between the satellites, which was
discussed in section 2.5.2 and 2.5.3. It turned out that a precise description of the phase ob-
servable is best accomplished through a description of the phase in terms of the propagation
time between events, which differs from the typical domain of optical pathlengths utilized in
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non-relativistic optical simulations.

The different terms in the analytical expressions for the phase observables in section 2.4
were visualized with the help of spectral densities. These plots include traces for the effects
of USO timing errors, transfer functions of phasemeter and photoreceiver, laser frequency
noise and relativistic phase modulations, among others. In addition, the plots allow the
magnitude of these effects to be compared with the expected ranging signal from the gravity
field. As laser interferometry and interferometry by means of microwaves show similarities,
it was appropriate to provide a comparison of both technologies in section 2.4.3 on dual
one-way ranging. Furthermore, it should be mentioned that the mathematical description
in section 2.4 and 2.5 yields the recipe for the conversion of the phase measurement aboard
the satellites to the instantaneous geometrical distance between the satellites in GRACE
Follow-On and future missions.

With regard to this conversion, it turned out that the knowledge of the absolute laser
frequency or wavelength is likely a limiting quantity in future gravimetric missions. In inter-
ferometers with cavity-based frequency standards, the absolute frequency of the laser needs
to be deduced from the setpoint of the laser, which limits the fractional accuracy of the
wavelength to an approximate magnitude of 1 ppm. Thus, this uncertainty yields an ef-
fective noise with a 1 ppm magnitude relative to the actual ranging signal. One option to
circumvent this issue is to fit this scale factor in the process of gravity field recovery, but
the more desirable approach is to achieve a better a-priori knowledge on the wavelength and
frequency. This can be accomplished through an absolute frequency standard such as one
based on an iodine cell.

Subsequently in section 2.4.8, a comparison of the transponder and the dual one-way
ranging (DOWR) scheme was provided, which also summarized the relevant functional con-
cepts. It was pointed out that a DOWR approach with an absolute frequency standard could
be beneficial for future gravimetric missions, since it would improve the scale factor and re-
duce one of the major noise sources in laser ranging interferometry, the laser frequency noise,
by a factor of

?
2. Furthermore, this would simplify the acquisition phase of laser interfer-

ometers, since the differential frequency between the lasers would be fixed. However, the
DOWR approach would require more frequency shifting components in the interferometer
back-end to obtain beatnote frequencies of correct magnitude, whereby the required changes
in the optical layouts are expected to be marginal. In addition, it was stressed that the
transponder scheme, which is a well-established and mature technique used within the LISA
development and GRACE Follow-On mission could still be applied as fallback option to add
(more) redundancy, e.g. in case of failure of one optical frequency standard.

Section 2.5 treated apparent variations of the range measurement due to the inter-satellite
propagation of light, which included effects from special relativity, general relativity, iono-
sphere and (neutral) atmosphere. The relativistic effects on the phase measurements can
be reduced with the formulas presented here, so that the instantaneous geometrical distance
between the satellites is obtained. The ionospheric effects are uncritical in optical laser in-
terferometry due to the reciprocal scaling of these disturbances with the radiation frequency.
The atmospheric effects, which arise due to the deviation of the refractive index from unity
in a low Earth-orbit, are also uncritical for gravimetric mission with an approximate height
of 400 km. It should be mentioned that the Faraday effect, which causes the polarization of
light to rotate in a magnetic field, such as the geomagnetic field, was not assessed in this
thesis, but may be worth to analyze in future work.

In section 2.6, some principles of the interferometer design were discussed: the attitude-
to-ranging coupling, which is typically the second major error contributor in satellite laser
interferometry, and the carrier-to-noise density of interferometers, which describes loosely
speaking the signal-to-noise ratio of the measurement and needs to exceed a tracking thresh-
old. The attitude-to-ranging coupling (cf. sec. 2.6.3f.) was described with the help of reference
points, which express the coupling factors in terms of an equivalent geometrical offset of the
pivot point of rotations or the center of mass from the fiducial of the range measurement. It
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was pointed out that one can not describe the complete coupling with reference points and
extensions such as the points of minimal coupling (cf. appendix E) have been introduced.
However, the approximation with reference points is sufficient for design studies and for a
comparison of different optical layouts as conducted here.

The carrier-to-noise density of a phase measurement aboard a S/C depends on the noise
of the phase readout system (cf. sec. 2.6.9), on the amount of the received light, which is influ-
enced by the TX beam misalignment (cf. sec. 2.6.10), and on the receiver S/C misalignment
(cf. sec. 2.6.11). Although a general analytical closed-form solution for the carrier-to-noise
density is not achievable, approximative expressions were obtained, which account for effects
such as a differential phasefront curvature between the interfering light fields or the photodi-
ode size. The analytical models eased the subsequent parametric studies and the derivation
of power budgets for the laser links.

A further aspect, the laser link acquisition, was briefly covered in section 2.6.12, which is
a complex procedure in GRACE Follow-On. Future missions could use dedicated acquisition
sensors to reduce the complexity, which have been analyzed regarding their accuracy and
signal-to-noise ratio in this thesis.

A short survey of optical layouts was given in section 2.7. The layouts have been cat-
egorized into on-axis and off-axis types with the help of reference points. The GRACE
Follow-On LRI is the prototype of an off-axis interferometer. It is a mature design utiliz-
ing corner-cube retro-reflectors. It shows various advantages such as an automatic beam
alignment, which maximizes the local carrier-to-noise density and ensure correct pointing
of the TX beam, which in turn maximizes the optical power at the distant S/C. In addi-
tion, the layout discriminates pathlength fluctuations outside of the racetrack in the final
phase observable. On-axis interferometers (cf. sec. 2.7.1) have been suggested in literature
and allow to use a single telescope in the RX and TX beam path, which enhances the light
collecting area and decreases the TX beam far-field divergence for the detriment of stricter
pointing requirements. Various optical layouts have been assessed regarding their complex-
ity, advantages and disadvantages in section 2.7.3. Based on this assessment, an on-axis and
an off-axis optical layout have been suggested in section 2.7.4 for application in potential
future gravimetric missions. The proposed off-axis design includes minor modifications in
comparison to the GRACE Follow-On LRI such as a smaller corner-cube retro-reflector and
a dedicated acquisition sensor. The on-axis design has been derived from the well-studied
off-axis layout by replacing the corner-cube with an on-axis retro-reflector. This preserves the
advantages such as beam steering and, in addition, it allows a telescope to be implemented
in the interferometer, if required.

The last section 2.8 analyzed the carrier-to-noise density of the proposed optical layouts
with the help of power budgets. A power budget of a laser link allows one to assess the
feasibility of a particular interferometer design as the budget takes into account the available
laser power, the satellite separation, pointing errors and so forth. Such a budget is also used
within the GRACE Follow-On LRI project and the learned lessons were incorporated into the
budgets shown here, so that they provide a good starting point for the development of future
ranging instruments. The exemplary budgets of the proposed on-axis and off-axis design were
compared in sec. 2.8.3 and the parameter space, where telescope-free designs are feasible, was
derived. In addition, the functional relations present in the budgets were extracted and it was
shown how to perform a parametric study to derive optimal parameters for the beam mode,
aperture size or telescope magnification (cf. sec. 2.8.4) of the interferometer. These values
might need to be refined in later stages of the design, if further constraints or requirements
become apparent. However, with the presented formalism this should be straightforward.

Although various aspects of the interferometer design were addressed in this thesis, it is
by far not a complete description. The description of various further error and potential noise
contributors was beyond the scope of this work, which includes among others: ghost beams
in the interferometer, effects arising from the non-Gaussian beam mode in local interferom-
etry and in the far-field phase, supply voltage fluctuations, temperature induced errors, the
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Faraday effect and the parasitic Sagnac effect. However, the most important errors, which
are sufficient for the conceptual design of interferometers, have been addressed in this thesis.
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Appendix A

NGGM Drag Compensation:
Accelerometer Saturation and
Propellant

The technical note presented in this section was initially written during the e.motion2 study
under NGGM-AEI-TN-004-V2 in February 2014. It was revised and slightly adopted for
this thesis. The aim is to analyze GRACE Level-1B accelerometer data to assess eventual
occurrences of accelerometer saturation in a potential e.motion2 accelerometer. In addition,
the propellant consumption for a drag-compensation or drag-free concept is estimated. The
analysis is restricted to linear accelerations.

A.1 Accelerometer

The current e.motion2 baseline assumes a GOCE-like servo-accelerometer with a sensitivity
of 4 ¨ 10´11m{ps2

?
Hzq in the sensitive along-track and radial direction and a less-sensitive

cross-track axis with a noise of 4 ¨10´10m{ps2
?
Hzq. The GOCE pre-launch design sensitivity

is approximately one order of magnitude better [Alenia-Team, 2008, p. 101], whereby the
actual in-orbit performance is at 1 ¨ 10´11m{ps2

?
Hzq for the ultra-sensitive axis [Stummer,

2013, p. 83] . The dynamic range of the measurement is assumed here to be ˘4 ¨10´6m{s2 or
8 ¨ 10´6m{s2 as peak-to-peak value, which is of the same order as the GOCE accelerometer
with ˘6 ¨ 10´6m{s2 [Visser, 2009].

A.2 GRACE Level 1B data

To assess the magnitude of non-gravitational accelerations the Level-1B data of the GRACE-
A and GRACE-B accelerometer was analyzed for an 11-year period, i.e. from 7th April 2002
to 7th April 2013. For each day, the mean, the maximum and the minimum acceleration along
the three axes was computed from the 1Hz data. Data samples with reduced quality were
omitted, i.e. with a non-zero quality flag. This flag is set upon interpolation of missing samples
or upon abnormal proof mass bias voltage. The data has been corrected for scale factors and
biases according to [Bettadpur, 2009], whereby one should note that these corrections are
only accurate for data before the 31st of March 2009, since the corrections were obtained by
a fit with data until this date. The results are shown in fig. A.1 and fig. A.2. One notices that
the variations of non-gravitational accelerations for time scales smaller than one day, which
are given by the difference between maximum and minimum value, are small compared to the
assumed accelerometer dynamic range, especially in the relevant along-track direction. Since
the atmospheric density and, hence, the air drag are influenced by the solar and geomagnetic
activity, one can explain the quiet along-track period between day 1500 and 3000 in fig. A.3
with a low solar activity.
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Figure A.1: GRACE-A accelerometer data is shown for a period of 11 years. The x-axes
start at 7th April 2002. The dashed horizontal lines indicate the biased dynamic range of
the e.motion2 accelerometer.

A small step at day 1350 (December 2005) is visible in the along track direction, which
is due to a swapping maneuver of the satellites. Since the satellites rotated by 180 degree
along the radial (yaw) direction, the sign of the air drag changed.

The steps and jumps visible after 3000 days, in particular in the cross-track direction, are
partly caused by changes in the spacecraft temperature control and accelerometer turn-off
periods imposed by the reduced battery capacity1.

The cross-track direction is the less sensitive axis of the accelerometer [Case et al., 2010].
Most of the spikes in the radial and cross-track direction are assumed to be caused by high-
frequency perturbations on the spacecraft, e.g. by twangs [Peterseim, 2014], by electric
current fluctuations induced by heater switching or by thruster activation. For the e.motion2

study, it is assumed that these disturbances can be significantly reduced by design.
The GRACE orbit height decreased from 500 km in 2002 to approx. 450 km in 2013. An

increased drag due to orbital decay could not be observed in the accelerometer data in this
analysis. However, for e.motion2, with an orbit height between 420 km and 430 km an in-
creased atmospheric density should be considered. According to [Montenbruck & Gill, 2000],
the average atmospheric density is approx. 2 times higher in 420 km than in 460 km for mean
solar activity. An additional safety factor of 3 is assumed, and that all non-gravitational
accelerations in the along-track direction scale with orbit height, which yields fig. A.4. The
radial and cross-track components of the GRACE Level-1B data are dominated by pertur-
bations and not by typical non-gravitational surface forces such as air drag, solar radiation
pressure and Earth’s albedo [Frommknecht, 2008]. These components are considered to be
less susceptible to accelerometer saturation.

Based on fig. A.4, one can state that an e.motion2 accelerometer will not saturate, even

1private communication, Jakob Flury, Institut für Erdmessung, Universität Hannover, January 2012
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A.3. PROPELLANT
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Figure A.2: GRACE-B accelerometer data is shown for a period of 11 years. The x-axes
start at 7th April 2002. The dashed horizontal lines indicate the biased dynamic range of the
e.motion2 accelerometer. Some very few points are outside of the plot axes and were omitted.

if a constant thrust is used for drag-compensation over 11 years, except for some very short
periods, e.g. at day 595 with strong solar flares (cf. fig. A.3).

A.3 Propellant

The absolute mean acceleration in along-track direction for the GRACE-A data in fig. A.1 is
8.2 ¨ 10´8m{s2, which results for a period of 3694 days (10.5 years)2 in a total ∆V of

∆V “ 26m{s.

These values are in good agreement with modeled values considering air drag, solar radiation
pressure and Earth’s albedo [Frommknecht, 2008]. Models for the GRACE non-gravitational
accelerations in along-track direction provide accelerations of the order of 1 ¨10´7m{s2, which
corresponds to approximately 50µN for a satellite with 500 kg mass and a total ∆V of 35m/s
for the 10.5 year period.

To compensate for these forces, approximately 30 kg propellant with a specific impulse of
60 s is required. However, one should be aware of the fact that the solar cycle 24 (starting
March 2008) was very weak and that the air drag was very low for the GRACE satellites.
Assuming a scaling factor of 6 for e.motion2 due to the lower altitude and increased solar
activity, the required propellant mass is of the order of 150 kg to 200 kg for a satellite of
500 kg mass.

23694 days is the number of valid daily samples, while most plots in this document show 4021 days, which
is the day number after 7th April 2002.
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Figure A.3: The solar and geomagnetic activity is shown, which is based on data from
NGDC Space Weather Website (ftp://ftp.ngdc.noaa.gov). The x-axis starts at 7th April
2002.

A.4 Summary

This analysis showed that accelerometer saturation will most likely not appear for an altitude
between 420 km and 430 km, even if drag compensation is dismissed at all. However, to avoid
orbital decay and to maintain the orbit repeat cycles, drag compensation is required. A simple
feed-forward control with almost fixed thrust seems sufficient. An AOCS drag compensation
within the measurement band and accelerometer feedback is not necessary with regard to
accelerometer saturation.
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Figure A.4: The minimum, maximum and mean non-gravitational accelerations for 420 km
orbit height are shown, which apply for a potential e.motion2 mission. These values are
derived by rescaling the upper plot in fig. A.1 with a factor of 6. The dashed horizontal lines
indicate the biased dynamic range of the e.motion2 accelerometer. The bias is removed by
drag compensation in e.motion2. The x-axis starts at 7th April 2002.
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Appendix B

Relativistic Quantities

Throughout this thesis the sign convention ηαβ “ diagp´1,`1,`1,`1q is employed as used
by [Kopeikin et al., 2011]. The Greek indices such as α and β range from 0..3, while Latin
letters like m and n denote spatial components and range from 1..3. In this section c0 denotes
the proper speed of light in vacuum with a numerical value of 299 792 458m{s, whereby the
coordinate speed of light is cn. Furthermore, the Euclidean norm is used for three dimensional
spatial vectors showing a vector arrow, e.g. ~r.

The metric tensor gαβ of the Earth in the GCRS is approximated by a Post-Newtonian
expansion as [Turyshev et al., 2014] [Soffel & Langhans, 2012, p.54]

gαβ “ ηαβ ` hαβ , (B.1)

with

h00 “ 2W

c20
´ 2W 2

c40
` Opc´6

0 q (B.2)

h0m “ hm0 “ ´4V m

c30
` Opc´5

0 q (B.3)

hmm “ 2W

c20
` Opc´4

0 q (B.4)

where W is Earth’s scalar gravitational potential (cf. eq. (1.1), W=U) and ~V “ V m is a
vector potential accounting for Earth’s spin moment, which also curves space-time. Tidal
contributions from other celestial bodies are not considered here.

Let us denote coordinates in the co-rotating geocentric frame (ITRF) with

x̃α “ pc0 ¨ T,X, Y, Zq “ pc0 ¨ T, ~̃xq “ px̃0, x̃1, x̃2, x̃3q⊺, (B.5)

and in the GCRS as

xα “ pc0 ¨ t, x, y, zq “ pc0 ¨ t, ~rq “ px0, x1, x2, x3q⊺, (B.6)

where the common four-vector notation from relativity is used. The relation between both
frames is considered to be given by

c0 ¨ T “ c0 ¨ t, ~̃x “ pRzpωe ¨ tq ¨ ~r, (B.7)

where ωe is a constant angular velocity of Earth’s rotation. The rotation matrix pRzpωe ¨ tq “
pRptq is the 3-d rotation matrix around the z-axis transforming a vector from GCRS to ITRF
frame in a simplified way. Proper conversions between both frames are described in the IERS
conventions [Petit et al., 2010] and include corrections due to precession, nutation and polar
motion.
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In Earth’s co-rotating frame, the gravitational potentialW is considered time-independent,
while all partial derivatives can be written as

BW
BT “ 0,

BW
BX “ ãx,

BW
BY “ ãy,

BW
BZ “ ãz, (B.8)

where the gravitational acceleration vector ~̃a “ pãx, ãy, ãzq⊺ in the ITRF frame can be com-
puted from the spherical harmonic expansion of Earth’s gravity field.

The partial derivative with respect to the coordinate time t of the GCRS can be computed
as

BW
Bt “ BW

BTloomoon
“0

BT
Bt ` BW

BXloomoon
ãx

BX
Bt ` BW

BYloomoon
ãy

BY
Bt ` BW

BZloomoon
ãz

BZ
Bt (B.9)

“ ~̃a⊺ ¨ B
Bt
~̃x “ ~̃a⊺ ¨

¨
˚̊
˝

B pR
Bt ¨ ~r ` pRptq ¨ B~r

Btloomoon
“0

˛
‹‹‚ (B.10)

“ ~a⊺ ¨ pR⊺ ¨ B pR
Btlooomooon

´~ωˆ

¨~r (B.11)

“ ´~a⊺ ¨ p~ω ˆ ~rq “ we ¨ y ¨ ax ´ we ¨ x ¨ ay, (B.12)

where the rotated acceleration ~a “ pax, ay, azq⊺ “ pR⊺ ¨ ~̃a and the angular velocity vector of
Earth’s rotation ~ω “ p0, 0, ωeq⊺ were introduced. The vector ~a is the coordinate acceleration
in the GCRS system, which can be used to numerically integrate satellite orbits, while ~̃a is
the acceleration vector in the ITRF system. This follows from the spatial partial derivatives:

BW
Bxm “ BW

BTloomoon
“0

BT
Bxm ` BW

BXloomoon
ãx

BX
Bxm ` BW

BYloomoon
ãy

BY
Bxm ` BW

BZloomoon
ãz

BZ
Bxm (B.13)

“ ~̃a⊺ ¨ B~̃x
Bxmloomoon
“ pR

(B.14)

~∇W “ ~̃a⊺ ¨ pR “ ~a⊺. (B.15)

The vector potential ~V , which is present in the metric tensor, is usually approximated as
[Turyshev et al., 2014, eq. 5]

~V pt, ~rq « GM

2 ¨ |~r|3 ¨ ~S ˆ ~r ` Opx´4, c´2q, (B.16)

with Earth’s spin moment ~S, i.e. angular momentum per unit of mass, given in a good
approximation by the angular momentum of a sphere:

~S « 2

5
¨R2

e ¨ ωe ¨

¨
˝
0
0
1

˛
‚« 1.18 ¨ 109m2{s ¨

¨
˝
0
0
1

˛
‚ (B.17)

where Re « 6378 km is Earth’s radius and ωe « 7.29 ¨ 10´5 rad{s is Earth’s angular rate. A
more precise value for the moment is |~S| « 9.80 ¨ 108m2{s [Petit et al., 2010, p. 156], which
follows from Earth’s moments of inertia. In some succeeding equations, the abbreviation ξ is
used as defined by

~ξ “ GM

2
¨ 2
5

¨R2
e ¨

¨
˝
0
0
1

˛
‚, (B.18)
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APPENDIX B. RELATIVISTIC QUANTITIES

which has the norm ξ “ |~ξ| “ |~S|{ωe ¨GM{2.
The Christoffel symbols of second kind, which are required to formulate the equations of

motion in the context of general relativity, are [Kopeikin et al., 2011, eq. 3.34]

Γµαβ “ 1

2
¨ gµλ ¨

ˆBgλα
Bxβ ` Bgλβ

Bxα ´ Bgαβ
Bxλ

˙
, (B.19)

“ 1

2
¨ gµλ ¨

ˆBhλα
Bxβ ` Bhλβ

Bxα ´ Bhαβ
Bxλ

˙
, (B.20)

where again the Einstein sum convention was utilized, i.e. the expression on the right hand
side is summed over λ ranging from 0..3. The dual metric gµλ is the inverse of the metric
tensor gµλ. The partial derivatives of the metric tensor with respect to pc0 ¨ t, x, y, zq are
required to compute the Christoffel symbols Γµαβ , which can be written for the GCRS as

h
p1q
00,t “ we ¨ y ¨ ax ´ we ¨ x ¨ ay (B.21)

h
p2q
00,t “ 2 ¨ pwe ¨ y ¨ ax ´ we ¨ x ¨ ayq ¨W {c20 (B.22)

Bhαβ
Bc0t

“ 2{c30 ¨

¨
˚̊
˚̊
˝

h
p1q
00,t ` h

p2q
00,t 0 0 0

0 h
p1q
00,t 0 0

0 0 h
p1q
00,t 0

0 0 0 h
p1q
00,t

˛
‹‹‹‹‚
, (B.23)

Bhαβ
Bx “ 2{c20 ¨

¨
˚̊
˚̋

ax ´ 2ax ¨W {c20 ´6ωeξxy
c0¨r5

´2ωeξ¨pr2´3x2q
c0¨r5 0

´6ωeξxy
c0¨r5 ax 0 0

´2ωeξ¨pr2´3x2q
c0¨r5 0 ax 0

0 0 0 ax

˛
‹‹‹‚, (B.24)

Bhαβ
By “ 2{c20 ¨

¨
˚̊
˚̋

ay ´ 2ay ¨W {c20
2ωeξ¨pr2´3y2q

c0¨r5
`6ωeξxy
c0¨r5 0

2ωeξ¨pr2´3y2q
c0¨r5 ay 0 0

`6ωeξxy
c0¨r5 0 ay 0

0 0 0 ay

˛
‹‹‹‚, (B.25)

Bhαβ
Bz “ 2{c20 ¨

¨
˚̊
˚̋

az ´ 2az ¨W {c20 ´6ωeξyz
c0¨r5

`6ωeξxz
c0¨r5 0

´6ωeξyz
c0¨r5 az 0 0

`6ωeξxz
c0¨r5 0 az 0

0 0 0 az

˛
‹‹‹‚, (B.26)

where the abbreviation r “ |~r| was used. It is recalled that tidal accelerations from Sun and
Moon were neglected here.

Finally, the geodesic equation describing the motion of a test particle, such as a photon
or a satellite, reads in the GCRS as [Kopeikin et al., 2011]

:xk “ d2xk{dt2 “ ´Γkαβ ¨ 9xα ¨ 9xβ ` 1

c0
Γ0
αβ ¨ 9xα ¨ 9xβ ¨ 9xk, (B.27)

where k ranges from 1..3 and denotes the spatial components. :x0 is in fact zero, which can
be used to validate the implementation. The equation is convenient for numerical integration
and the expansion up to c´2

0 is given here:

:x “ ax ` c´2
0 ¨ p´3axv

2
x ´ 8ωeξvy{r3 ´ 4ayvxvy ` axv

2
y ´ 4azvxvz ` axv

2
z ´ 4axW

` 12ωeξvypx2 ` y2q{r5 ` 12ωeξvzyz{r5 ` 3vxωe ¨ payx´ axyqq (B.28)

:y “ ay ` c´2
0 ¨ p8ωeξvx{r3 ` ayv

2
x ´ 4axvxvy ´ 3ayv

2
y ´ 4azvyvz ` ayv

2
z ´ 4ayW

´ 12ωeξvzxz{r5 ´ 12ωeξvxpx2 ` y2q{r5 ` 3vyωe ¨ p`ayx´ axyqq (B.29)

:z “ az ` c´2
0 ¨ pazv2x ` azv

2
y ´ 4axvxvz ´ 4ayvyvz ´ 3azv

2
z ´ 4azW

` 12ωeξvyxz{r5 ´ 12ωeξvxyz{r5 ` 3vzωe ¨ payx´ axyqq, (B.30)
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which can be written in compact vector form as

:~r “ ~a` ~aPPN (B.31)

“ ~a` 9~r ¨ 3 ¨ p~a ¨ p~ω ˆ ~rqq
c20

(B.32)

` ~a ¨ p| 9~r|2 ´ 4 ¨W q
c20

´ 9~r ¨ 4 ¨ p~a ¨ 9~rq
c20

´ p~ξ ˆ 9~rq ¨ 4ωe
c20 ¨ |~r|3 ´ p 9~r ˆ ~rq ¨ 12ωe ¨ p~ξ ¨ ~rq

c20 ¨ |~r|5 . (B.33)

It is remarked that the here presented relativistic correction ~aPPN equals the formula from
the IERS convention [Petit et al., 2010, eq. (10.12)], if the acceleration ~a in the relativistic
correction ~aPPN is considered only for Earth’s monopole gravity field and ~ξ “ ~S{ωe ¨GM{2 is
used. Then, the first c´2

0 term vanishes in line (B.32), since ~a ‖ ~r. However, the here derived
equations are more general and agree with the results given in [Zschocke, 2016, eq. (20)].

We wish now to derive the coordinate speed of light for vacuum cn in the GCRS, which
differs from the speed of light c0 apparent in a local Lorentz frame. Therefore, we assume
the following coordinate four velocity of the photon

dxα

dt
“ pc0, ~d0 ¨ cnq⊺, (B.34)

where ~d0 is the normalized propagation direction of the photon, ~r is the 3-d position of
the photon and t is the coordinate time in the GCRS. One might be tempted to write the
coordinate speed of light as cn “ c0{ngr, where ngr is an apparent refractive index in the
GCRS, which is caused by the space-time curvature and slows down the photon.

The interval ds2 of a world line of a massless particle vanishes (cf. sec. 2.1), i.e.

ds2 “ gαβpt, ~rq ¨ dxα ¨ dxβ “ 0. (B.35)

which yields a single equation to solve after dividing with dt2, i.e.

0 “ gmnpt, ~rq ¨ dxm{dt ¨ dxn{dt (B.36)

“ c20 ¨ g00 ` ~G ¨ ~d0 ¨ cn ¨ c0 ` c2n ¨ gm, (B.37)

where the post-Newtonian metric definition from eqs. (B.1)-(B.4) was used to rewrite gm “
g11 “ g22 “ g33 and ~G “ 2 ¨ pg01, g02, g03q⊺. The quadratic equation can be solved and the
solution with positive propagation velocity is taken:

cn “ c0 ¨

d
1 ´ h00

1 ` hm
` p~G ¨ ~d0q2

4 ¨ p1 ` hmq2 ´ c0 ¨
~G ¨ ~d0

2 ¨ p1 ` hmq , (B.38)

where the metric perturbation hmn was inserted for the metric tensor gmn according to
eq. (B.1). In addition, one has hm “ h11 “ h22 “ h33. The argument of the square-root is
positive, since ~G “ ´8~V {c30, hm and h00 are close to zero. Thus, the coordinate speed of light
is always positive.
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Appendix C

General Relativistic Delay of Light

In the context of general relativity, the light path is not a straight line, since light and photons
follow a geodesic. This yields effects such as gravitational bending of light. Furthermore, the
coordinate speed of light cn of the GCRS differs from the proper speed of light c0. However,
for light in a low Earth orbit, the difference between c0 and cn does not exceed 1m/s. It is
well known that the acceleration of light-like particles is twice the acceleration of slow (! c0)
objects: Einstein predicted that the amount of light bending by the Sun is twice that given by
a Newtonian theory of gravity [Kopeikin et al., 2011, Preface]. Thus, if light is send between
low Earth orbiters, the photons and the phasefronts are bended towards the geocenter with
a constant acceleration of 2 ¨ GM{r2. The approximate deflection angle ∆θgr can be easily
determined as

∆θgrpr, Lq “ 2 ¨GM{r2 ¨ L{c0
c0

“ 2 ¨GM ¨ L
r2 ¨ pc0q2 , (C.1)

which is for a LEO application (r “ 6371 ` 400 km) with L “ 200 km well below 0.1 nrad.
This small value justifies the assumption that the light path P in a gravimetric mission is
nearly a straight line, which can be parameterized by a parameter λ P r0, 1s:

~rphpλq “ ~r 1
j ` p~ri ´ ~r 1

j q ¨ λ, (C.2)

where ~r 1
j denotes the position of the photon emission, i.e. the start position, and ~ri denotes

the position of the light reception, i.e. the end position. The primes illustrate simply the event
or position at an earlier time with respect to the reception instance. We wish to compute the
propagation time ∆t of a photon between start and end position. Therefore, one can utilize
the line integral

∆t “
ż

P

npt, ~rphq
cnpt, ~rphq ds, (C.3)

where n denotes the refractive index of the medium and cn is the coordinate speed of light.
The light propagation is assumed to be in vacuum (n “ 1), which yields

∆t “
ż

P

c´1
n pt, ~rphq ds “

ż 1

λ“0
c´1
n pt, ~rphq ¨

ˇ̌
ˇ̌d~rph
dλ

ˇ̌
ˇ̌ dλ

“ |~ri ´ ~r 1
j | ¨

ż 1

λ“0
c´1
n pt, ~rphq dλ. (C.4)

The coordinate speed of light from eq. (B.38) is recast in terms of the geopotential W
and vector potential V accounting for Earth’s angular momentum (cf. eq. (B.16))

cn “

d
c60 ´ 2 ¨ c20 ¨W 2 ` 4 ¨W 3 ` 16 ¨ p~V ¨ ~d0q2

pc20 ` 2 ¨W q2 ` 4 ¨ ~V ¨ ~d0
c20 ` 2 ¨W , (C.5)
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which allows to obtain the following approximate formula for the inverse coordinate speed of
light

c´1
n “ 1 ` 2 ¨W {c20 ´ 4 ¨ ~V ¨ ~d0{c30

c0
` O

`
c´5
0

˘
, (C.6)

where ~d0 is the normalized propagation direction of the photon in the GCRS. The geopotential
W can be separated into the dominating central term and higher moments (HM) of the gravity
field, i.e.

W pt, ~rq “ GM

|~rptq| `WHMpt, ~rq. (C.7)

The higher moments of the gravity field are time-dependent due to the rotation of the Earth,
however, on time-scales of the light propagation time (! 1 s) the field can be often regarded
as constant.

Plugging eq. (C.6) into eq. (C.4) yields

∆t «
|~ri ´ ~r 1

j |
c0looomooon

∆tSR

` 2 ¨ ∆tSR ¨
ż 1

λ“0

GM

c20 ¨ |~rphpλq| dλ
looooooooooooooooooomooooooooooooooooooon

∆tPM

` 2 ¨ ∆tSR ¨
ż 1

λ“0

WHMptpλq, ~rphpλqq
c20

dλ
loooooooooooooooooooooooomoooooooooooooooooooooooon

∆tHM

`∆tSR ¨
ż 1

λ“0

´4 ¨ ~V p~rphpλqq ¨ ~d0
c30

dλ
loooooooooooooooooooooomoooooooooooooooooooooon

∆tSM

, (C.8)

where ∆tSR is the classical propagation time from special relativity, ∆tPM is the gravitational
delay due to Earth’s central gravity field, ∆tHM are corrections from higher moments of the
gravity field and ∆tSM is the delay or advancement due to Earth’s spin moment. It is noted
that ∆tPM is always positive, i.e. a delay.

The integral for ∆tPM can be solved analytically [Turyshev et al., 2014, eq. (21)]:

∆tPM “ 2 ¨GM
c30

¨ ln
˜

|~ri| ` ~d0 ¨ ~ri
|~r 1
j | ` ~d0 ¨ ~r 1

j

¸
with ~d0 “

~ri ´ ~r 1
j

|~ri ´ ~r 1
j | , (C.9)

which is commonly called Shapiro time delay in literature.
The higher moments (HM) of the gravity field in terms of spherical harmonics can be

considered as well. Turyshev et al. [2014] derived analytical expressions for the quadrupole
moments. However, for a more general approach one can simply solve the line integral using
the trapezoidal rule and discretized sampling of the photon path, i.e.

∆t
pN´1q
HM “ 2

c20
¨
N´1ÿ

n“1

WHMptn, ~rphpλnqq `WHMptn`1, ~rphpλn`1qq
2

¨ ptn`1 ´ tnq. (C.10)

The first order solution ∆t
p1q
HM uses the geopotentialWHM “ W´GM{r at two events, namely

at the photon emission location ~r 1
j at coordinate time t1 “ tj and at the photon reception

event ~ri with time tN “ tj . This solution can be easily extended with higher N for a denser
sampling of the photon path. The time dependence of the gravitational potential WHM over
time scales of the photon propagation is practically negligible and can be omitted for the
sake of computational effort.

The integrand of the last term ∆tSM concerning Earth’s spin moment can be recast with
the help of eq. (B.16) and (B.18) into

~V p~rphpλqq ¨ ~d0 “
ˆ
~ξ ˆ ~rphpλq

|~rphpλq|3
˙

¨ ~d0 “ ~ξ ¨
˜
~r 1
j ` ~d0 ¨ c0 ¨ tSR ¨ λ

|~rphpλq|3 ˆ ~d0

¸
(C.11)

“ ~ξ ¨
˜

~r 1
j

|~rphpλq|3 ˆ ~d0

¸
“

´
~ξ ˆ ~r 1

j

¯
¨ ~d0 ¨ 1

|~rphpλq|3 . (C.12)
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With this simplification one can approximate the line integral for ∆tSM by the trapezoidal
rule to first order, i.e.

∆tSM « ´ 4

c30
¨
´
~ξ ˆ ~r 1

j

¯
¨ ~d0 ¨

˜
1

|~r 1
j |3 ` 1

|~ri|3

¸
¨ 1
2
. (C.13)

The magnitude of ∆tSM is much smaller than ∆tPM and ∆tHM, which justifies the approxi-
mation of the integral.
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Appendix D

Polarization and Phase Changes
within the GRACE-FO TMA

The following analysis was initially performed in 2012 within the GRACE Follow-On LRI
project and resulted in an internal technical note, which was also re-printed in the (unpub-
lished) master thesis of the author of this thesis. As the analysis is also applicable for potential
future gravimetric missions, it has been revised and updated for this thesis.

This appendix chapter analyzes polarization and phase effects of three mirrors, which are
aligned in a corner-cube configuration. Different mirror materials are considered. Various
paper exist on polarization effects of corner-cube retro-reflectors [Player, 1988; Liu & Azzam,
1997; Scholl, 1995; Liu & Azzam, 1997]. Unfortunately, the authors usually use local beam
coordinate frames, which are aligned with corner-cube faces, while the analysis here is focused
on space-fixed polarization states and takes into account phase changes upon rotations of the
corner-cube, which alter an interferometric displacement measurement.

For this analysis, the ifocad [Kochkina et al., 2013] software1 was extended to allow
polarization tracing of beams. A 3-d Jones-matrix formalism as described in [Yun et al.,
2011] was used to compute the output polarization vector for different mirror materials. The
complex reflectivity and transmittance coefficients for each mirror are computed from well-
known Fresnel equations. A detailed description of the implementation can be found in the
master thesis by Meshksar [2015].

D.1 Setup

An optical bench with normal vector in `x direction is assumed as shown in fig. D.1. The
initial beam direction is `z. After three reflections at the mirror surfaces of the corner-cube,
the outgoing beam is anti-parallel to the incoming beam. This property is independent of
corner-cube orientation as long as the mirror surfaces are hit by the beams. The geomet-
rical pathlength of a beam is also invariant under rotations of the corner-cube around the
intersection point of all three mirror planes, which is commonly called vertex.

In the GRACE-FO mission the so-called Triple Mirror Assembly (TMA) is used, which
is a hollow corner-cube, where unused mirror surface areas are removed. With other words,
the TMA consists of three separated mirrors, whereby all mirror planes are mutually perpen-
dicular. The positions of the mirrors and the normal vectors of the mirror planes define the
vertex position.

In [STI-TMA, 2013] the following mirror configuration is given, which was used in this

1A ray- and beam-tracing software framework developed at the AEI
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Figure D.1: Coordinate frame and mirror location used in the simulation.

analysis2.

~c1 “

¨
˝

24.000
´300.000
´333.941

˛
‚mm, ~c2 “

¨
˝

´24.000
´266.058
´300.000

˛
‚mm, ~c3 “

¨
˝

´24.000
300.000

´300.000

˛
‚mm (D.1)

~n1 “

¨
˝

´1{
?
2

0.5
´0.5

˛
‚, ~n2 “

¨
˝
1{

?
2

0.5
´0.5

˛
‚, ~n3 “

¨
˝

0

´1{
?
2

´1{
?
2

˛
‚ (D.2)

The body diagonal of the corner-cube is given by ~nd “ p~n1 ` ~n2 ` ~n2q{
?
3, which is here

not parallel to the input beam direction. This case is referred to as non-normal incidence in
the literature.

In nominal TMA alignment, the laser beam is reflected at the center of each mirror. The
separation between in- and outgoing beam is 600mm. The origin of the coordinate system
coincides with the vertex of the TMA as shown in fig. D.1.

The angle of incidence (AOI) at each mirror is dependent on the orientation of the corner-
cube. In nominal case, the AOIs at M1, M2 and M3 are 60.0˝, 60.0˝, 45.0˝, respectively. The
linear polarization states s (perpendicular, german “senkrecht“) and p (parallel) are defined
with respect to the optical bench and correspond to the polarization vectors ~Ps “ p1, 0, 0q⊺ and
~Pp “ p0, 1, 0q⊺, respectively (cf. fig. D.1), for a normalized input wave vector ~k “ p0, 0,`1q⊺.
The first two components of the polarization vector form the so-called Jones vector, if the
propagation direction is along the z-direction.

D.2 Material constants

The laser beams are reflected at the mirrors, which consist of a single thick layer of metal
in this simulation. The (real) refractive indices and the extinction coefficients for considered
metals are shown in fig. D.2. Using a wavelength of 1064 nm yields refractive indices shown
in table D.1. A hypothetical highly-absorbing material with n “ 1.4 ` i ¨ 200 was added to
the list. It represents an ideal mirror, where the reflection is maximal for all incidence angles
and for s- and p-polarization.

2reversed normal vectors were used, because normal vectors point outwards in IFOCAD
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Figure D.2: The real and imaginary part of the refractive index is shown for different
materials. The data is taken from the web database http://refractiveindex.info, which
used [Babar & Weaver, 2015] for gold and silver and [Rakić et al., 1998] for aluminum.

Material Real refractive index Extinction coefficient

Gold (Au) 0.10444 6.8635
Silver (Ag) 0.076623 7.6481
Aluminum (Al) 1.3850 9.9911
Highly-Absorbing (HA) 1.4000 200.0

Table D.1: Refractive indices used in the simulation.

D.3 Polarization Matrices

The polarization matrix P̂ describes the change of a polarization vector ~Pin upon reflection
or transmission at an interface. Furthermore, it transforms the wave vector ~kin, i.e.

P̂~Pin “ ~Pout, P̂~kin “ ~kout. (D.3)

The polarization matrix of an optical system such as a corner-cube is the product of single
polarization matrices P̂ “ P̂3 ¨P̂2 ¨P̂1 [Yun et al., 2011], where the single matrices represent the
reflection at the mirrors and dependent on the actual angle of incidence. The final polarization
matrix is only valid for a particular input wave vector ~kin, but it is independent of the input
polarization vector. The polarization matrices for the different material scenarios are:

P̂Au “

¨
˝

0.984261 ¨ e60.6312˝i 0.027838 ¨ e54.3342˝i 0.000000 ¨ e0.0000˝i

0.027753 ¨ e´113.9657˝i 0.985004 ¨ e56.4564˝i 0.000000 ¨ e0.0000˝i

0.000000 ¨ e0.0000˝i 0.000000 ¨ e0.0000˝i 1.000000 ¨ e180.0000˝i

˛
‚ (D.4)

P̂Ag “

¨
˝

0.990536 ¨ e54.6290˝i 0.022811 ¨ e48.5298˝i 0.000000 ¨ e0.0000˝i

0.022769 ¨ e´120.9513˝i 0.991034 ¨ e50.7644˝i 0.000000 ¨ e0.0000˝i

0.000000 ¨ e0.0000˝i 0.000000 ¨ e0.0000˝i 1.000000 ¨ e180.0000˝i

˛
‚ (D.5)

P̂Al “

¨
˝

0.906446 ¨ e41.3447˝i 0.012409 ¨ e51.1810˝i 0.000000 ¨ e0.0000˝i

0.012175 ¨ e´120.8918˝i 0.912236 ¨ e38.2639˝i 0.000000 ¨ e0.0000˝i

0.000000 ¨ e0.0000˝i 0.000000 ¨ e37.2159˝i 1.000000 ¨ e180.0000˝i

˛
‚ (D.6)

P̂HA “

¨
˝

0.999722 ¨ e2.1238˝i 0.000035 ¨ e2.6968˝i 0.000000 ¨ e0.0000˝i

0.000035 ¨ e´176.8981˝i 0.999744 ¨ e1.9561˝i 0.000000 ¨ e0.0000˝i

0.000000 ¨ e0.0000˝i 0.000000 ¨ e0.0000˝i 1.000000 ¨ e180.0000˝i

˛
‚ (D.7)
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Figure D.3: The direction of electric field vector is shown for a s-polarized field as blue line
and of the polarization given in eq. (D.8) as red line. Please note that the axis scale is not
equal for both transversal direction.

The first column of the polarization matrices corresponds to the outgoing polarization for
s-polarized input. The second column for the p-polarized case. For example, the polarization
vector of a s-polarized input beam will be transformed by the TMA in case of aluminum
mirrors into

~P “ p0.906446 ¨ e41.3447˝i, 0.012175 ¨ e´120.8918˝i, 0q⊺. (D.8)

The corresponding electric field vector (direction) is shown in fig. D.3 (red), which is denoted
here as elliptical left-circulating3. The input s-polarization is the dark blue trace. It is
noted that the ellipticity appears highly exaggerated in the plot due to an unequal scale
of the axes. The corresponding p-polarized electric field amplitude is only 0.012V{m for a
s-polarized input of 1V{m, which is in terms of optical power only 0.0122 « 1.4 ¨ 10´4.

D.4 TMA Polarization Change

The outgoing polarization ellipses for p- and s-polarized inputs are depicted in fig. D.4 for the
different materials as given by the matrices eqs. (D.4)-(D.7). Other helpful numerical values
can be found in table D.2. The de-polarization or polarization extinction ratio (PER), which
is defined here as ratio of optical power in one linear input polarization to the orthogonal
linear polarization at the output, is similar for s- and p-polarized input. However, in the case
of silver or gold, the retardation is almost 0˝ or 180˝ for the p-input, which means that the
output polarization is almost linear. The reflectivity is also higher for p-polarized input in
these cases. Silver shows the highest reflectivity in the table. In fact, p-polarization and a
silver coating is used within GRACE Follow-On and it is also a reasonable choice for future
missions. The actual GRACE-FO TMA coating is named CZ322 by Cassidian Optronics
GmbH, which is a proprietary space-qualified product. It compromises next to the silver
base also a protective layer against space corrosion.

Although the polarization state is altered by a TMA, the changes are not severe, as
less than one percent of power is transformed into the orthogonal polarization state. This
yields a small decrease in heterodyne amplitude, because the effective power in the right
mode and polarization is reduced. Furthermore, the light in the wrong polarization state
might have a different phase and is transmitted to the distant craft. This is uncritical, if the

3two contradicting conventions exist for the sense of rotation
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Figure D.4: Output polarization states for a TMA with different mirror materials for s-
polarized input (upper plot) and p-polarized input (lower plot). Please note the unequal axes
scale.
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Aluminum Silver Gold Highly-Absorb.

In-Power 1.000000 1.000000 1.000000 1.000000
Power-Out-s 0.821644 0.981161 0.968769 0.999444
Power-Out-p 0.000148 0.000518 0.000770 0.000000
PER -37.4 dB -32.8 dB -31.0 dB -89.0 dB
Pa 0.821785 0.981678 0.969536 0.999444
Pb 0.003367 0.001738 0.002572 0.000001
Ellipticity Angle |χ| 0.23˝ 0.10˝ 0.15˝ 0.00˝

Phase Difference s-p ´162.24 ˝ ´174.60 ˝ ´172.47 ˝ ´179.02 ˝

Ellipse Rot. Angle Φ 0.73 ˝ 1.31 ˝ 1.61 ˝ 0.00 ˝

Polarization Type weakly elliptical linear
left-circulating

In-Power 1.000000 1.000000 1.000000 1.000000
Power-Out-s 0.000154 0.000520 0.000775 0.000000
Power-Out-p 0.832174 0.982148 0.970233 0.999488
PER -37.3 dB -32.8 dB -31.0 dB -89.0 dBdB
Pa 0.832324 0.982668 0.971007 0.999488
Pb 0.002531 0.000881 0.001015 0.000000
Ellipticity Angle |χ| 0.17˝ 0.05˝ 0.06˝ 0.00˝

Phase Difference s-p ´12.92 ˝ 2.12 ˝ ´0.71 ˝ ´0.74 ˝

Ellipse Rot. Angle Φ 0.76 ˝ 1.62 ˝ ´1.39 ˝ 0.00 ˝

Polarization Type weakly ellipt. almost linear linear
right-circulat.

Table D.2: Polarization parameter of outgoing beams for s-input (upper table) and p-
input (lower table). Pa is the power of the major axis, while Pb is the power of the minor
axis of the polarization ellipse. The polarization extinction ratio is computed as PER “
10 ¨ log10pPKin{Pinq, where Pin is the output power in the input polarization. The ellipticity
angle is defined as |χ| “ arctanp

a
Pb{Paq.
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receiver local oscillator is perfectly p-polarized. However, in the presence of S/C attitude
jitter, in particular roll rotations by an angle uRX, the receiver senses the phase of the wrong
polarization. A worst case assessment considering a phase difference of 90˝ between main
and disturbing polarization state and a relative power of ∆P “ 0.1 in the wrong polarization
yields the following phase-derived displacement coupling

ρ “ λ

2π
arg

´?
1 ´ ∆P ¨ cospuRXq `

?
∆P ¨ sinpuRXq ¨ eiπ{2

¯
(D.9)

« λ

2π
¨ uRXa

1{∆P ´ 1
« 56 nm{rad ¨ uRX, (D.10)

where λ “ 1064 nm was used. The result illustrates that the effect is uncritical for gravimetric
missions, since other couplings such as the attitude-to-pathlength typically have a larger
magnitude.

D.5 TMA Rotation Induced Phase Changes

The geometrical pathlength of a beam passing through a corner-cube is independent of rota-
tions around its vertex. However, the phase of the light changes upon reflection at an interface
with non-vanishing imaginary part of the refractive index, which is the so-called extinction
coefficient. Metallic mirrors generally have a non-vanishing extinction coefficient. Further-
more, the phase change is in general dependent on the angle of incidence (AOI) and appears
also in mirrors with a dielectric multilayer coating [Apfel, 1982; Delay, 2015]. However, such
dielectric mirrors are not considered in this section.

The phase change upon reflection is already apparent from the phases in the polarization
matrices in eqs. (D.4)-(D.7). In the previous section, receiver misalignment and the effect of a
rotated local oscillator polarization was considered. Here, a misalignment of the local satellite
is taken into account, which yields a change in the AOI for particular interferometers such
as the GRACE-FO LRI. The changing AOI induces phase changes and leads to an apparent
displacement change in an interferometric measurement. The effect is estimated by rotating
the TMA around the vertex by angles u, v, w along the x, y and z axis, respectively, from
´1mrad to `1mrad. These angles correspond to yaw, pitch and roll, respectively. The phase
in the polarization matrices is computed for different AOIs and the first numerical derivative
was derived, which can be translated into a pathlength coupling factor with units of m{rad.
The results are shown in table D.3.

The phase changes in the correct polarization, i.e. p-p or s-s, are less than 1 ➭m/rad and
negligible compared to other linear coupling factors present in laser interferometry. The phase
changes of the opposite polarization, i.e. the cross-terms s-p and p-s, are larger, but they are
not severe, because the phase of the wrong polarization is not measured in case of perfectly
aligned receiver and local oscillator. If the receiver is slightly misaligned by an roll-angle
uRX, the coupling is suppressed by the low relative power, i.e. sinpuRXq ¨

?
∆P , as shown in

eq. (D.9)
Hence, one can conclude that the TMA induced phase changes upon reflection for the

simulated mirror types are uncritical. However, metallic mirrors require a protective coating,
which was not considered here. Furthermore, it might be of interest to analyze the effects in
dielectric mirrors as well.
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Aluminum Silver

In-Out u v w u v w

s-s 0.054 0.000 0.000 0.069 -0.001 0.001
p-p 0.019 0.000 0.000 0.024 0.001 -0.001
s-p -0.002 5.458 -0.668 -0.000 4.165 -0.494
p-s 0.068 -5.459 0.670 0.092 -4.165 0.494

Gold Highly-Absorbing

In-Out u v w u v w

s-s 0.075 -0.001 0.001 0.0 0.0 0.0
p-p 0.027 0.001 -0.001 0.0 0.0 0.0
s-p -0.001 3.73 -0.435 0.0 97.429 -13.995
p-s 0.101 -3.730 0.435 0.0 -97.429 13.995

Table D.3: Coupling factors in units of ➭m/rad due to a TMA orientation induced phase
change. A wavelength of 1064 nm was used.
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Appendix E

Relation between TMA
Co-Alignment, Vertex and POMC

This analysis was initially performed in 2013 within the GRACE Follow-On LRI context
and resulted in an internal technical note, which was also re-printed in the (unpublished)
master thesis of the author. As the analysis is also applicable for potential future gravimetric
missions, it has been revised and updated for this thesis.

In this appendix chapter, the effect of mirror misalignments in a hollow corner-cube retro-
reflector (HCCRR) is analyzed with regard to beam parallelism and to coupling coefficients
of rotations into the pathlength. A single pre-defined light path is considered as shown in
fig. D.1, i.e. it is assumed that the light is reflected at the three mirrors in a pre-defined
order. The analysis is based on analytical raytracing and the plane-wave approximation.
Polarization effects of corner-cubes, refractive index changes or spatial extension of laser
light are omitted.

The analysis was carried out with the help of the symbolic mathematical computation
program Mathematica developed by Wolfram Research.

E.1 Analytical Raytracing

In the beginning, some basic ideas of analytical raytracing are introduced, which are deployed
in the next subsections. Throughout this appendix chapter, computations are performed in
the Euclidean space R

3, meaning that vectors have three components and matrices have the
dimension 3 ˆ 3, which are shown with a hat, e.g. pR.

A laser beam is defined as a straight line with a beam direction ~d and with beam origin
at position ~p. Moreover, the beam is parameterized by an independent parameter l, so that
points along the beam are given by

~bplq :“ ~p` l ¨ ~d. (E.1)

A mirror is defined in this appendix chapter as a plane, which is given by a mirror center ~c and
by a mirror normal vector ~n. It is recalled that the points on a plane ~x can be parameterized
using the so-called Hessian normal form with Mp~c, ~n, ~xq “ 0, where the function M is given
by

Mp~c, ~n, ~xq :“ ~n ¨ ~x´ ~c ¨ ~x, (E.2)

with ~x “ px, y, zqT being the position vector. When a light ray is reflected at a mirror, its
direction is changed according to

~dout “ pDp~nq ¨ ~din, (E.3)
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with

pDp~nq :“ ´ pRp180˝, ~nq, (E.4)

where pRp180˝, ~nq is a rotation matrix for a rotation around the axis ~n by 180˝. The intersec-
tion or reflection point of a ray at a mirror can be computed by solving

Mp~c, ~n,~bplqq “ Mp~c, ~n, ~p` l ¨ ~dq “ 0 (E.5)

for the parameter l, which yields

ls “ Lp~c, ~n, ~p, ~dq :“ p~c´ ~pq ¨ ~n
~n ¨ ~d

. (E.6)

The intersection point can be found with eq. (E.1) as ~bplsq. All these functions can be easily
implemented in an algebraic manipulation program.

E.2 The Nominal Setup

We analyze the propagation of a light ray through a hollow corner-cube retro-reflector con-
sisting of three mirrors M1,M2 and M3, which are given by the following nominal mirror
centers ~ci and mirror normal vectors ~ni:

~c1 :“

¨
˝

300.0
300.0
´24.0

˛
‚mm, ~c2 :“

¨
˝

300.0
´266.0588745

´24.0

˛
‚mm, ~c3 :“

¨
˝
333.9411255

´300.0
24

˛
‚mm, (E.7)

~n1 :“

¨
˝

1{
?
2

´1{
?
2

0

˛
‚, ~n2 :“

¨
˝

0.5
0.5

1{
?
2

˛
‚, ~n3 :“

¨
˝

0.5
0.5

´1{
?
2

˛
‚. (E.8)

These numerical values apply for the Triple Mirror Assembly (TMA) of the GRACE Follow-
On LRI. The setup is depicted in fig. D.1, but for this appendix chapter the coordinate
frame was rotated compared to appendix D, so that the nominal input beam direction points
along the x-axis and the order of mirrors was reversed. This changes yield no physical or
computational advantage but are due to an inconsistency in notation, since the analysis in
this chapter was independently performed of the analysis in the previous chapter.

The nominal vertex ~Vnom of the corner-cube, in other words the intersection point of all
three mirror planes, can be computed by the formula [Glassner, 2013, p. 305]

~Vnomp~c1, ~n1,~c2, ~n2,~c3, ~n3q :“ (E.9)

p~c1 ¨ ~n1q ¨ p~n2 ˆ ~n3q ` p~c2 ¨ ~n2q ¨ p~n3 ˆ ~n1q ` p~c3 ¨ ~n3q ¨ p~n1 ˆ ~n2q
|~n1~n2~n3| , (E.10)

where |~n1~n2~n3| is the determinant of a matrix, which contains the vectors ~n1, ~n2 and ~n3 in
the columns. In the case of an ideal corner-cube without mirror misalignments, the nominal
vertex is located at the coordinate origin p0, 0, 0qTmm for the particular numerical values
given here.

We assume the initial input ray into the corner-cube is defined by

~b0plq :“ ~p0 ` l ¨ ~d0 “

¨
˝

x0
300.0 ` y0
´24.0 ` z0

˛
‚mm ` l ¨

¨
˝

´1
0
0

˛
‚, (E.11)

where x0 ą 300.0mm is a variable for the distance between the corner-cube and the origin
of the ray. The parameters y0, z0 describe a lateral displacement of the initial ray w.r.t. the
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nominal optical axis given by y0 “ z0 “ 0. The input ray ~b0 is reflected at M1 and forms a
ray called ~b1, which is reflected at M2 and forms ray ~b2, which is again reflected at M3 and
forms the final ray ~b3. The nominal angles of incidence are 45˝, 60˝ and 60˝ on M1, M2 and
M3, respectively.

In addition, a virtual plane is used, which is normal to the direction of the initial ray ~b0,
and intersects with the origin of the initial ray. The final ray ~b3 intersects with the virtual
plane and is terminated at that point. In total, one obtains four ray segments through the
corner-cube and starting and ending at the virtual plane. The first ray length l0 can be
computed using eq. (E.6) as

l0 “ Lp~c1, ~n1, ~p0, ~d0q. (E.12)

This allows to write ray ~b1 as

~b1plq “ ~p1 ` l ¨ ~d1 “ ~b0pl0q ` l ¨ pDp~n1q ¨ ~d0. (E.13)

The ray segment length l1 can be computed again using eq. (E.6). Iteratively, one can derive
all beams until ~b3. The final beam ~b3 is a function of all mirrors. Its direction can be written
as

~d3 “ pDp~n3q ¨ pDp~n2q ¨ pDp~n1q ¨ ~d0, (E.14)

where ~d0 is simply the initial ray direction p´1, 0, 0qT. Since the nominal setup consists of
an error-free retro-reflector, the final direction is anti-parallel to the incoming beam:

~d3 “

¨
˝
1
0
0

˛
‚, (E.15)

which follows directly from the fact that

pDp~n3q ¨ pDp~n2q ¨ pDp~n1q “ ´p1 (E.16)

for three mutually orthogonal and normalized vectors ~n1, ~n2 and ~n3 (cf. eq. (E.4)). A
precondition is that the normal vectors ~n1, ~n2 and ~n3 form a left-handed system, which
applies for the here analyzed corner-cube.

The final beam intersects with the virtual plane at

~b3pl3q “

¨
˝

x0
´300.0 ´ y0
24.0 ´ z0

˛
‚, (E.17)

showing that the corner-cube produces a lateral displacement of 600mm in y-direction and
48mm in z-direction (when y0 “ z0 “ 0). The accumulated geometrical pathlength ρ through
the setup is the sum of all segments:

ρ “ l0 ` l1 ` l2 ` l3. (E.18)

It simplifies in the nominal setup to 2¨x0, which is twice the distance between virtual plane and
vertex. With eq. (E.18) one can compute a lengthy analytical expression for the pathlength,
which depends on the mirror positions and orientations.

E.3 TMA Rotations

The effect of TMA rotations is investigated by introducing the rotation angles u for roll
around the x-axis, v for pitch around the y-axis, and w for yaw around the z-axis. The
combined rotation matrix

pRpu, v, wq “ pR
´

`u, p1, 0, 0qT
¯

¨ pR
´

`v, p0, 1, 0qT
¯

¨ pR
´

`w, p0, 0, 1qT
¯
, (E.19)
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is composed of elementary rotation matrices for rotations around the x, y and z direction.
Since the angles u, v, w are small, the rotation matrices are commuting and the order of
rotations does not matter. This holds only up to linear order in the angles. If quadratic
terms are considered, the expressions are generally dependent on the used convention for
rotations.

The TMA mirrors rotate around a pivot point ~δ “ pδx, δy, δzqT and not around the
coordinate origin or the nominal TMA vertex. The transformation of each mirror can be
written as

~nipu, v, wq “ pRpu, v, wq ¨ ~ni, (E.20)

~cipu, v, wq “ pRpu, v, wq ¨ p~ci ´ ~δq ` ~δ. (E.21)

Since rotations of all three normal vectors maintain the orthogonality of the vectors, the final
beam direction is invariant under TMA rotations:

~d3 “ pDp~n3pu, v, wq q ¨ pDp~n2pu, v, wq q ¨ pDp~n1pu, v, wq q ¨ ~d0 “

¨
˝
1
0
0

˛
‚. (E.22)

The pathlength ρ is a lengthy expression, therefore, it is expanded in a series up to second
order in u, v, w:

ρ p ~c1pu, v, wq, ~n1pu, v, wq, ~c2pu, v, wq, ~n2pu, v, wq, ~c3pu, v, wq, ~n3pu, v, wq q

« 2 ¨ x0 `

¨
˝

0
2 ¨ δz

´2 ¨ δy

˛
‚¨

¨
˝
u

v

w

˛
‚`

¨
˝

0
´δx
´δx

˛
‚¨

¨
˝
u2

v2

w2

˛
‚. (E.23)

The first term is again twice the distance between virtual plane and vertex, which is generally
not accessible in interferometry due to the integer ambiguity of the phase. The second term
contains the linear coupling and the third term describes the quadratic coupling of rotations
into the pathlength. It is remarked that the expression is equal to the coupling obtained
in section 2.6.3 on reference points, which was derived not in the context of retro-reflectors.
This implies that the here analyzed ideal corner-cube has actually a reference point, where
rotation-to-pathlength coupling around arbitrary or all axes vanishes. In fact, the reference
point is the vertex position, i.e. ~δ “ ~Vnom. This cannot be presumed in general, since the
coupling around different rotation axes may not be the same. It is evident that the offset
pδx, δy, δzq between the pivot point of rotation and the vertex should be minimized to reduce
the coupling of (spacecraft) rotations into the geometrical and optical pathlength.

E.4 TMA mirror misalignment

So far, the coupling was computed for an error-free corner-cube. In this subsection, the
mirrors are misaligned with respect to their nominal orientation. It is advised to incorporate
the misalignments for each mirror in a frame, which has the same origin as the nominal vertex
~Vnom “ p0, 0, 0qT, but with axes along the normal vectors of the mirrors. In this TMA frame,
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the mirror centers become

~c1,loc :“ pR´1
TMAÑSC ¨ p~c1 ´ ~Vnomq ` ~Vnom “

¨
˝

0
316.970563
283.029437

˛
‚mm,

~c2,loc :“ pR´1
TMAÑSC ¨ p~c2 ´ ~Vnomq ` ~Vnom “

¨
˝
400.264069
33.941125

0

˛
‚mm,

~c3,loc :“ pR´1
TMAÑSC ¨ p~c3 ´ ~Vnomq ` ~Vnom “

¨
˝
448.264069

0
33.941125

˛
‚mm, (E.24)

(E.25)

and the normal vectors transform to

~n1,loc :“ pR´1
TMAÑSC ¨ ~n1 “

¨
˝
1
0
0

˛
‚,

~n2,loc :“ pR´1
TMAÑSC ¨ ~n2 “

¨
˝
0
0
1

˛
‚,

~n3,loc :“ pR´1
TMAÑSC ¨ ~n3 “

¨
˝
0
1
0

˛
‚. (E.26)

The rotation matrix for the transformation from the spacecraft frame to the TMA frame is
given by

pR´1
TMAÑSC :“

¨
˝

Ð ~n1 Ñ
Ð ~n3 Ñ
Ð ~n2 Ñ

˛
‚“ pRp´α, ~qq, (E.27)

where the order of vectors was swapped to obtain a right-handed system and a matrix de-
terminant of `1. The rotation axis ~q is the eigenvector of pR´1

TMAÑSC to the eigenvalue `1,
while the angle of rotation ´α can be computed using the trace of the matrix:

tr
´

pR´1
TMAÑSC

¯
“ 1 ` 2 ¨ cosp´αq. (E.28)

For each mirror, small tip and tilt misalignments are introduced, which are denoted in the
following by angles αi and βi. This yields

~ne1,loc :“

¨
˝

1
α1

β1

˛
‚,

~ne2,loc :“

¨
˝
α2

β2
1

˛
‚,

~ne3,loc :“

¨
˝
α3

1
β3

˛
‚. (E.29)

Finally, the error-prone normal vectors are transformed back into the original (spacecraft)
frame according to

~nei :“ pRTMAÑSC ¨ ~nei,loc “ pRp`α, ~qq ¨ ~nei,loc. (E.30)
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The new vertex is denoted as true vertex and can be derived from eq. (E.10)

~Vtruep~c1, ~ne1,~c2, ~ne2,~c3, ~ne3q linearized«

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

¨
˝
224.132
200.132
224.132

˛
‚¨ ~α `

¨
˝
200.132
16.9706
16.9706

˛
‚~β

¨
˝

´224.132
200.132
200.132

˛
‚¨ ~α `

¨
˝

´200.132
16.9706
16.9706

˛
‚~β

¨
˝

0.
283.029

´316.971

˛
‚¨ ~α `

¨
˝

0.
24.0

´24.0

˛
‚~β

˛
‹‹‹‹‹‹‹‹‹‹‹‹‚

mm{rad, (E.31)

with ~α “ pα1, α2, α3qT and ~β “ pβ1, β2, β3qT being the mirror misalignments in radian. The
true vertex is accessible, e.g. by measuring the mirror planes physically with a coordinate
measurement machine, while the nominal vertex ~Vnom is purely virtual and not a good refer-
ence point anymore.

It is anticipated that the relative error angles γ1, γ2 and γ3 between the mirror planes are
a helpful quantity, which are often denoted as diahedral angles in literature:

~γ “

¨
˝
γ1
γ2
γ3

˛
‚“

¨
˝
α1 ` α3

α2 ` β1
β2 ` β3

˛
‚“

¨
˝
π{2 ´ >p~ne1, ~ne3q
π{2 ´ >p~ne1, ~ne2q
π{2 ´ >p~ne2, ~ne3q

˛
‚. (E.32)

E.4.1 Anti-Parallelism Errors

The retro-reflection property of corner-cubes is exploited in laser interferometry such as in the
GRACE Follow-On LRI. However, the retro-reflected beam is not anti-parallel to the incident
beam in a corner-cube with misaligned mirrors. This effect is assessed in this subsection.
Therefore, eq. (E.30) and eq. (E.21) are combined to obtain the error-prone mirror normal
vectors upon spacecraft or TMA rotations, i.e.

~nei pu, v, wq “ pRpu, v, wq ¨ ~nei , (E.33)

which are used to derive the final dimensionless beam direction

~d3 “ pDp~ne3pu, v, wq q ¨ pDp~ne2pu, v, wq q ¨ pDp~ne1pu, v, wq q ¨ ~d0
linearized«

¨
˝
1
0
0

˛
‚`

¨
˝

0 0 0

´
?
2 ´

?
2 0

1 ´1
?
2

˛
‚~γ ¨ 1

rad
(E.34)

`

¨
˝

0 0 0

´u` v u´ v ´
?
2 ¨ u´

?
2 ¨ v

´
?
2 ¨ u` w ´

?
2 ¨ u´ w ´

?
2 ¨ w

˛
‚~γ ¨ 1

rad2
, (E.35)

where one can see that in case of no misalignments (~γ “ 0), the outgoing beam direction
is p1, 0, 0qT, i.e. perfectly anti-parallel. The second term provides the dependency of the
outgoing beam direction w.r.t. the mirror misalignment angles. The last term shows that
the beam direction can depend on the spacecraft or TMA orientation u, v, w. However, the
effect is rather small, since γi has a typical magnitude of ➭rad and u, v, w of mrad. The
static misalignment given by the second term has coefficients of the order of 1, meaning that
a mirror misalignment angle of 1 ➭rad causes a beam deflection of the order of 1 ➭rad.

The static misalignment matrix in the second term was independently verified by nu-
merical raytracing using IFOCAD and it has been partly verified in laboratory experiments
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Figure E.1: The required accuracy for the alignment of the two angles γ1 and γ2 in a TMA
is shown in terms of an error ellipse for the particular assumptions given in the text.

[Schütze, 2014, sec. 4.2.5.3]. The matrix can be used to derive the following half-cone beam
deflection angle δ

δ “
b
δ2y ` δ2z “

b
2 ¨ pγ1 ` γ2q2 ` pγ1 ´ γ2 `

?
2 ¨ γ3q2, (E.36)

where the following misalignment angles δy and δz were used

¨
˝

0
δy
δz

˛
‚“

¨
˝

0 0 0

´
?
2 ´

?
2 0

1 ´1
?
2

˛
‚~γ ¨ 1

rad
. (E.37)

Example: Application to TMA requirements

For this example, it is assumed that a requirement of δ ď 15 ➭rad for the total beam deflection
due to a TMA is given and that the two close-by mirrors M2 and M3 are aligned with an
error below γ3 “ 5 ➭rad. Thus, eq. (E.36) can be used to derive the error ellipse for the
remaining angles γ1 and γ2, which is shown in fig. E.1. If both angles are within the ellipse,
the total beam deflection δ is ď 15 ➭rad.

Also Yoder [1958] derived the beam deflection due to corner-cube errors. In the paper
it is stated that misalignment angles |γi| below θ result in a maximum beam deflection of
3.26 ¨ θ. However, one can show with eq. (E.36) that the total error is bound by 3.41 ¨ θ,
if γ1 “ ´γ2 “ γ3 “ θ. The cause of this discrepancy was not further investigated, but
might be due to the present non-normal incidence into the TMA. Normal incidence is often
used in literature on corner-cubes and means that the incident ray direction ~d0 is parallel or
anti-parallel to the cube-diagonal ~nd “ p~n1 ` ~n2 ` ~n3q{

?
3.

E.4.2 Pathlength errors of a misaligned TMA

This subsection discusses the changes in the accumulated geometrical pathlength of a light
beam, which passes through a corner-cube retro-reflector with misaligned mirrors. Such a
corner-cube has a true vertex position ~Vtrue. In this section, it is assumed that rotations of
the retro-reflector are performed around the pivot point ~Vtrue ` ~δ, where ~δ “ pδx, δy, δzq⊺ is
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a small offset vector. The pathlength coupling can be obtained as

ρ p ~c1pu, v, wq, ~ne1pu, v, wq, ~c2pu, v, wq, ~ne2pu, v, wq, ~c3pu, v, wq, ~ne3pu, v, wq q

« 2 ¨ x0 ` 2 ¨ δz ¨ v
rad

´ 2 ¨ δy ¨ w
rad

(E.38)

`

¨
˝

?
2 ¨ y0 ` 1.0 ¨ z0?
2 ¨ y0 ´ 1.0 ¨ z0?

2 ¨ z0

˛
‚¨ ~γ ¨ 1

rad
(E.39)

` u ¨

¨
˝

266.1mm ` py0 ´ δyq `
?
2pz0 ´ δzq

´333.9mm ´ py0 ´ δyq `
?
2pz0 ´ δzq

424.3mm `
?
2py0 ´ δyq

˛
‚¨ ~γ ¨ 1

rad2
(E.40)

` v ¨

¨
˝

´300.0mm ´ y0 ` δx

300.0mm ` y0 ´ δx

424.3mm `
?
2py0 ` δxq

˛
‚¨ ~γ ¨ 1

rad2
(E.41)

` w ¨

¨
˝

24.0mm ´ z0 `
?
2δx

´24.0mm ` z0 `
?
2δx

´33.94mm `
?
2z0

˛
‚¨ ~γ ¨ 1

rad2
, (E.42)

The line (E.38) is the nominal TMA coupling given in eq. (E.23). The next line vanishes,
if the lateral beam offset y0 and z0 is zero. Since all quantities are static in this term, it is
negligible. The next three lines provide the TMA orientation dependent coupling. This linear
coupling is less than 25 ➭m{rad for all rotations, if a magnitude of 5 ¨ 10´5 rad is assumed
for the diahedral angles γ. As this linear coupling w.r.t. yaw, pitch and roll rotations can
be compared to, for example, the TMA vertex offset coupling, it is beneficial to rewrite it in
form of partial derivatives:

¨
˝

Bρ{Bu
Bρ{Bv
Bρ{Bw

˛
‚“ 1mm{rad2 ¨

¨
˝
266.059 ´333.941 424.264
´300.0 `300.0 424.264
24.0 ´24.0 ´33.9411

˛
‚¨ ~γ (E.43)

`

¨
˝

0 ´γ1 ` γ2 ´
?
2γ3 ´

?
2γ1 ´

?
2γ2

γ1 ´ γ2 `
?
2γ3 0 2?

2γ1 `
?
2γ2 ´2 0

˛
‚¨

¨
˝
δx

δy

δz

˛
‚¨ 1

rad2
, (E.44)

where no lateral beam offset (y0 “ z0 “ 0) was assumed. One should notice that mirror
misalignments ~γ induce a roll pathlength coupling (Bρ{Bu), however, it can be compensated
by a large value for δy and/or δz. On the other side, the yaw and pitch (v and w) coupling
can be minimized by small adjustment of δy and δz due to the 2 elements in the matrix.
Hence, one cannot zero the linear coupling for all rotations by a set of δx, δy, δz, or in other
words, the matrix in line (E.44) is not invertible due to a vanishing determinant.

In the linear approximation (eq. (E.43)-(E.44)) and for a particular rotation axis, there
is a plane of pivot points, where the linear coupling vanishes. For example, for rotations in
roll direction, the points of the plane (δx, δy, δz) need to fulfill

1
mm

rad2
¨

¨
˝

266.059
´333.941
424.264

˛
‚¨ ~γ `

¨
˝

0

´γ1 ` γ2 ´
?
2γ3

´
?
2γ1 ´

?
2γ2

˛
‚¨

¨
˝
δx

δy

δz

˛
‚¨ 1

rad2
“ 0. (E.45)

Moreover, it is noted that the rotation axis is always in the plane of zero coupling.
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If one extends the coupling also to quadratic terms, i.e.

¨
˝

B2ρ{Bu2
B2ρ{Bv2
B2ρ{Bw2

˛
‚“ 1mm{rad3 ¨

¨
˝

224.132 ´200.132 ´16.9706
´212.132 ´212.132 0

´12.0 `12.0 ´16.9706

˛
‚¨ ~γ (E.46)

` 1

2

¨
˝

0
?
2 ¨ pγ1 ` γ2q ´γ1 ` γ2 ´

?
2γ3

´2 0 γ1 ´ γ2 `
?
2γ3

´2 ´
?
2 ¨ pγ1 ` γ2q 0

˛
‚¨

¨
˝
δx

δy

δz

˛
‚¨ 1

rad3
,

one can reduce the plane of zero coupling to a line of zero coupling, where the direction of
the line is the rotation axis.

Seeking for solution with vanishing linear and quadratic coupling, one arrives at the
following three lines

~luptq «

¨
˚̊
˝

t
634.0¨pγ21`γ1γ2q`48.0¨pγ2`γ1q¨γ3

´3γ21{2´γ1pγ2`
?
2γ3q´3γ22{2`

?
2γ2γ3´γ23

` 300.0

´412.0γ31`60.0γ21γ2`508.0γ1γ22´24.0γ23 ¨pγ1`γ2q´634.0γ1γ3pγ1`γ2q`36.0γ32
p´3γ21{2´γ1pγ2`

?
2γ3q´3γ22{2`

?
2γ2γ3´γ23q¨pγ1`γ2q

˛
‹‹‚¨ 1mm (E.47)

~lvptq «

¨
˝

´212.132 ¨ pγ1 ` γ2q
t

150.0 ¨ pγ1 ´ γ2q ´ 212.132γ3

˛
‚¨ 1mm (E.48)

~lwptq «

¨
˝

´12.0 ¨ pγ1 ´ γ2q ´ 16.9705γ3
12.0 ¨ pγ1 ´ γ2q ´ 16.9705γ3

t

˛
‚¨ 1mm (E.49)

for roll rotations by an angle u around the x-axis, for pitch rotations by an angle v around the
y-axis and for yaw rotations by an angle w around the z-axis. t is simply the dimensionless
parameter of the line. The solution for lu is divergent for a perfectly aligned TMA, because
the pathlength coupling vanishes and rotations around arbitrary points have zero coupling.

It is noted that the closest approach between the v and w lines occurs for ~lv at

~lv «

¨
˝

´212.132 ¨ pγ1 ` γ2q
12.0 ¨ pγ1 ´ γ2q ´ 16.9705γ3
150.0 ¨ pγ1 ´ γ2q ´ 212.132γ3

˛
‚¨ 1mm (E.50)

and for ~lw at

~lw «

¨
˝

´12.0 ¨ pγ1 ´ γ2q ´ 16.9705γ3
12.0 ¨ pγ1 ´ γ2q ´ 16.9705γ3
150.0 ¨ pγ1 ´ γ2q ´ 212.132γ3

˛
‚¨ 1mm, (E.51)

which differ slightly in the x-coordinate.

This illustrates that a corner-cube with misaligned mirrors has a non-zero rotation-to-
pathlength coupling (for yaw and pitch), even if the pivot point coincides with the true vertex.
The arising question on the optimal pivot point for interferometric measurements is addressed
in the next subsection.

E.5 Point of Minimal Coupling for a misaligned TMA

The point of minimal coupling (POMC) is the pivot point of rotations, where the rotation-
to-pathlength coupling is minimal. As there are (typically) three different rotation types,
e.g. roll, pitch and yaw, and the coupling cannot be zeroed at the same time for all of them
for a real TMA with mirror misalignments, one needs to define a metric in form of weights.
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For example, one seeks for a solution for δx, δy, δz given by the linear eq. (E.44) and
quadratic eq. (E.47):

xW ¨

¨
˚̊
˚̊
˚̊
˝

1 mm
rad2

¨

¨
˝
266.059 ´333.941 424.264
´300.0 `300.0 424.264
24.0 ´24.0 ´33.9411

˛
‚

1 mm
rad3

¨

¨
˝

224.132 ´200.132 ´16.9706
´212.132 ´212.132 0

´12.0 `12.0 ´16.9706

˛
‚

˛
‹‹‹‹‹‹‚

¨ ~γ (E.52)

“ ´xW ¨

¨
˚̊
˚̊
˚̊
˝

1
rad2

¨

¨
˝

0 ´γ1 ` γ2 ´
?
2γ3 ´

?
2γ1 ´

?
2γ2

γ1 ´ γ2 `
?
2γ3 0 2?

2γ1 `
?
2γ2 ´2 0

˛
‚

1
2¨rad3 ¨

¨
˝

0
?
2 ¨ pγ1 ` γ2q ´γ1 ` γ2 ´

?
2γ3

´2 0 γ1 ´ γ2 `
?
2γ3

´2 ´
?
2 ¨ pγ1 ` γ2q 0

˛
‚

˛
‹‹‹‹‹‹‚

¨

¨
˝
δx

δy

δz

˛
‚.

A diagonal 6ˆ6 weight matrix xW is assumed with weights w1, w2, w3 for the linear terms and
with weights w4, w5, w6 for the quadratic terms. The over-determined system can be solved
in a least-squares sense, and the solution can be linearized to linear order in γi, which yields

~δPOMC “

¨
˝
δx

δy

δz

˛
‚«

¨
˝

´212.13¨pγ1`γ2q¨w5`12.0¨pγ1´γ2q¨w6`16.9706¨γ3¨w6

w5`w6

12.0 ¨ pγ1 ´ γ2q ´ 16.9705 ¨ γ3
150.0 ¨ pγ1 ´ γ2q ´ 212.132 ¨ γ3

˛
‚¨ 1mm{rad. (E.53)

The solution in this approximation does not depend on the weights w1..w4, thus, not on
the information from the roll-coupling (w1 and w4). Only the weights w5 and w6 appear in
the x-component. For equal weights w5 “ w6, the x-component simplifies to ´112.066γ1 ´
100.066γ2 ´ 8.4853γ3. The result in eq. (E.53) is the point of minimal coupling (POMC),
which is given with respect to true vertex, i.e. the position of the POMC is ~δPOMC`~Vtrue. The
residual rotation-to-pathlength coupling for rotations around the POMC is to linear order
given by

¨
˝

Bρ{Bu
Bρ{Bv
Bρ{Bw

˛
‚« 1mm{rad2 ¨

¨
˝
266.059 ´333.941 424.264

0 0 0
0 0 0

˛
‚¨ ~γ, (E.54)

which was experimentally determined for the GRACE Follow-On TMA in [Schütze, 2014,
sec. 4.2.5.1] and agrees well with the here presented formula.
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Appendix F

Far-Field of Clipped Gaussian
Beams

This appendix chapter contains a derivation of the far-field intensity of a symmetrically
clipped Gaussian beam. The derivation uses a scalar field and omits polarization effects or
the vectorial nature of light. Moreover, it is assumed that the Gaussian beam is clipped at
the waist position with a circular aperture in the xy-plane, while the beam propagates along
the z-axis. The intensity I with units of W{m2 of a non-clipped Gaussian beam at the waist
position (z “ 0) with optical power P is

Ipx, y, z “ 0q “ Iwaistpx, yq “ 2

π ¨ w2
0

¨ P ¨ e´2px2`y2q{w2
0 , (F.1)

while the far-field (FF) intensity with units of W{m2 at distance L is given by

Ipx, y, z “ Lq “ IFFpx, yq « 2

π ¨ L2 ¨ θ2div
¨ P ¨ e´2px2`y2q{pL¨θdivq2 , (F.2)

where the divergence angle θdiv “ λ{pπ ¨ ω0q was used. The 1{e2 waist radius is commonly
denoted as ω0, which is required to be larger than the wavelength λ. The electric field of a
Gaussian beam at the waist position can be considered real-valued, because the phasefront is
flat. In addition, it is assumed that the electric field E has units of

?
VA{m, i.e. the vacuum

impedance is absorbed in the electric field. This allows to write the electric field E simply as
the square root of the intensity

Ewaistpx, yq “
a
Iwaistpx, yq. (F.3)

From Fourier optics it is well known that the 2-d Fourier transform of the electric field
provides a plane wave decomposition, sometimes called the angular spectrum [Goodman,
2005, sec. 3.10.3]. Furthermore, the irradiance (intensity) distribution in the far-field is
proportional to the squared modulus of the Fourier transform [Shannon et al., 2005]. This is
shown in cartesian coordinates by computing the squared modulus as

|FrEwaistpx, yqspkx, kyq|2 “
ˇ̌
ˇ̌
ż `8

x“´8

ż `8

y“´8
Ewaistpx, yq ¨ e´i2πpkx¨x`ky ¨yq dx dy

ˇ̌
ˇ̌
2

(F.4)

“ 2π ¨ P ¨ w2
0 ¨ e´2¨pk2x`k2yq¨π2¨w2

0 (F.5)

“ 2 ¨ λ2
π ¨ θ2div

¨ P ¨ e´2¨pk2x`k2yq¨λ2{θ2
div . (F.6)

By comparing eq. (F.6) and eq. (F.2) one obtains the useful relation of the angular frequencies
kx and ky to the far-field position as

kx ¨ λ “ x{L “ θx, ky ¨ λ “ y{L “ θy. (F.7)
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Furthermore, the far-field intensity can be written as follows

IFFpx, yq “ 1

λ2 ¨ L2
¨
ˇ̌
ˇFrEwaistpx, yqspkx “ x

λ ¨ L, ky “ y

λ ¨ Lq
ˇ̌
ˇ
2
. (F.8)

For symmetrical clipping of the beam at a circular aperture it is advised to use polar
coordinates pr, ψq. In these coordinates, the electric field Ewaistpr, ψq “ Ewaistpr ¨ cospψq, r ¨
sinpψqq can be transformed into the spectral domain with

|FrEwaistpr, ψqspkr, kψq|2 “
ˇ̌
ˇ̌
ż `8

r“0

ż `2π

ψ“0
Ewaistpr, ψq ¨ r ¨ ei2πkr¨r¨cospψ´kψq dψ dr

ˇ̌
ˇ̌
2

(F.9)

“ 8π ¨ P
ω2
0

ˇ̌
ˇ̌
ż `8

r“0
r ¨ e´r2{ω2

0 ¨ J0p2πkr ¨ rq dr

ˇ̌
ˇ̌
2

(F.10)

“ 2π ¨ P ¨ ω2
0 ¨ e´2k2r ¨π2¨ω2

0 (F.11)

“ 2P ¨ λ2
π ¨ θ2div

¨ e´2k2r ¨λ2{θ2
div , (F.12)

where J0pxq is the Bessel function of first kind. Again, the far-field intensity is obtained by
multiplying the squared modulus of the Fourier transform with 1{pL2 ¨ λ2q:

IFF “ 1

λ2 ¨ L2
¨ |FrEwaistpr, ψqspkr, kψq|2 . (F.13)

Furthermore, the angular component kr can be written as

kr ¨ λ “
b
θ2x ` θ2y “

a
x2 ` y2{L. (F.14)

To account for clipping, the electric field Ewaist needs to be multiplied with the transmittance
function of the circular aperture, which is a rectangular box function in radial direction. The
radius of the clipping aperture is labeled as rap. Hence, the far-field behind the aperture can
be determined by changing the integral limit from `8 to rap in eq. (F.10) to account for the
aperture, i.e.

IFFpkrq “ 1

λ2 ¨ L2
¨ 8π ¨ P

ω2
0

ˇ̌
ˇ̌
ż rap

r“0
r ¨ e´r2{ω2

0 ¨ J0p2πkr ¨ rq dr

ˇ̌
ˇ̌
2

(F.15)

IFFpx, yq “ 1

λ2 ¨ L2
¨ 8π ¨ P

ω2
0

ˇ̌
ˇ̌
ż rap

r“0
r ¨ e´r2{ω2

0 ¨ J0p2π{λ ¨
a
x2 ` y2{L ¨ rq dr

ˇ̌
ˇ̌
2

. (F.16)

It is remarked that the same integral as in eq. (F.16) appeared in sec. 2.6.11 on the heterodyne
efficiency, where a polynomial approximation was derived. It will be utilized subsequently.
Moreover, to avoid confusion, we write the power P more precisely as the power of the beam
prior clipping PPC and we label the 1{e2 waist radius ω0 as the non-clipped Gaussian (ncg)
quantity ω0,ncg.

Unfortunately, there is no general analytical solution for the integral in eq. (F.16). A
special case for the on-axis intensity, kr “ 0, can be obtained as

IFF,OnAxis “ PPC

L2
¨
2π ¨ ω2

0,ncg

λ2
¨
´
1 ´ e´r2ap{ω2

0,ncg

¯2
, (F.17)

which agrees with well-known results as, for example, given in [Barke, 2015, p. 34]. The
on-axis intensity can be maximized for a given aperture radius rap with

ω0,ncg “ 0.892135 ¨ rap, (F.18)

which is independent of the used wavelength. The result is well known from the LISA mission
concept, where the transmit Gaussian beam is clipped due to the finite size of the telescope. It
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states the optimal relation of telescope size to transmit beam waist radius after magnification
(but before or without clipping), i.e. the waist radius at the telescope input plane ω0,in times
the telescope magnification (m).

The optical power within the aperture Pap can be computed as

Pap “ PPC ´ Prej “ PPC ¨
´
1 ´ e´2¨r2ap{ω2

0,ncg

¯
, (F.19)

which is slightly different from the factor appearing in eq. (F.17). The term Prej is called the
rejected power by the aperture or by the telescope throughout this thesis.

The two left panels in fig. F.1 show the dimensionless far-field intensity as a function of
rap and of the non-clipped Gaussian (ncg) 1{e2 radius ω0,ncg “ ω0,in ¨ m. The optimal ratio
as specified in eq. (F.18) is shown as magenta line. On this line approx. 8% of the power is
rejected due to the aperture, which is shown on the right side of fig. F.1. Losses higher than
20% are considered as unpractical and are left blank in the right panels.

Combining eq. (F.19) and (F.17) yields with the help of a complex identity for the hyper-
bolic tangent:

IFF,OnAxis “ Pap

L2
¨
2π ¨ ω2

0,ncg

λ2
¨ tanh

˜
r2ap

2ω2
0,ncg

¸
“ Pap

L2
¨ 2

π ¨ θ2ncg
¨ tanh

˜
r2ap

2ω2
0,ncg

¸
. (F.20)

The dependency of the far-field intensity as a function of the beam misalignment θ « r{L
has been computed by numerical integration of eq. (F.16). The result is shown in the two
left panels of fig. F.2 for two different aperture radii rap. The misalignment angle θ on
the x-axis is expressed in units of the divergence angle of the non-clipped Gaussian beam
θncg “ λ{pπ ¨ ω0,ncgq, while the waist radius ω0,ncg on the y-axis is expressed in units of the
clipping aperture radius rap. The intensity (and color function) is normalized to unity at
θ “ 0.

The upper parts (ω0,ncg{rap ă 0.5) of the left plots in fig. F.2, where the clipping aperture
is significantly larger than the beam, show a Gaussian intensity decay with 1{e2 radius given
by θncg, i.e. the intensity drops to 1{e2 for θ{θncg “ 1. However, if the beam size is comparable
or larger than the clipping aperture, the divergence of the clipped beam increases due to
diffraction. The divergence angle, i.e. the angle where the far-field intensity dropped to a
level of 1{e2, is shown as blue trace in fig. F.3. A polynomial fit up to 6th order has been
performed, which yields the red trace.

This allows to write the far-field intensity of a clipped Gaussian beam as a function of
the beam misalignment θ as

IFFpθq “ PPC

L2
¨
2π ¨ ω2

0,ncg

λ2
¨
´
1 ´ e´r2ap{ω2

0,ncg

¯2
¨ e´2θ2{pθncg¨ψpω0,ncg{rapqq2 , (F.21)

“ Pap

L2
¨
2π ¨ ω2

0,ncg

λ2
¨ tanh

˜
r2ap

2ω2
0,ncg

¸
¨ e´2θ2{pθncg¨ψpω0,ncg{rapqq2 , (F.22)

where the function ψpxq “ ř6
i“0 pi¨xi and the coefficients pi are given in table 2.8 in sec. 2.6.10.

The function ψpxq does not depend on the used wavelength λ for practical considerations1

and provides an approximation for the actual far-field divergence θdiv of the clipped Gaussian
beam via

θdiv “ θncg ¨ ψpω0,ncg{rapq. (F.23)

The absolute accuracy of eq. (F.21) is better than 0.04 for reasonable input parameters,
which is as shown on the two right panels in fig. F.2. However, for large misalignment angles
and a small intensity with respect to the on-axis intensity, where ψ ă 0.1, the relative accuracy
of the model is poor and the ψ-approximation should be replaced by a precise (numerical)
solution of the integral eq. (F.16).

1as long as the wavelength is larger than the waist size of the beam.
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Figure F.1: The two left panels show the dimensionless far-field on-axis intensity as a
function of the clipping aperture radius rap and of the non-clipped Gaussian (ncg) 1{e2 radius
ω0. To obtain an intensity with units of W{m2, the color function needs to be multiplied
with the optical power PPC of the non-clipped beam and divided by the squared distance L2.
The maximum intensity for a particular rap is shown as magenta line. The two right panels
show the loss (or rejection) due to the aperture in terms of optical power. The color function
is clipped at 20% to improve readability. The upper and lower subplots differ only in the
shown parameter space. A wavelength of 1064 nm was used in these plots, which scales the
absolute value (colorbar) on the left panels.
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Figure F.2: The two left panels show the normalized far-field intensity drop upon misalign-
ment by angle θ as a function of the Gaussian beam radius ω0,ncg. The right panels show the
residuum, if a Gaussian model is subtracted from the intensity shown on the left side. The
upper and lower subplots differ only in the shown parameter space. Due to the normalization,
these plots are independent of the wavelength.

Figure F.3: Far-field divergence angle of a clipped Gaussian beam as a function of the
clipping parameter ω0,ncg{rap. This plot is independent of the wavelength.
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Ring Lasers As Local Earth Rotation Sensors. Surveys in Geophysics, 22(5-6), 603–611.

Schuldt, T., Keetman, A., Doringshoff, K., Reggentin, M., Kovalchuk, E., Nagel, M., Gohlke,
M., Johann, U., Weise, D., Peters, A., & Braxmaier, C. 2012 (April). An ultra-stable
optical frequency reference for space applications. Pages 554–558 of: European Frequency
and Time Forum (EFTF), 2012.
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