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ABSTRACT 
 

Rhizomania is currently one of the most important plant diseases in all sugar beet 

growing-regions that causes great yield and sugar losses. Despite breeding progress, a 

higher yield is required under rhizomania conditions. Several biotechnology approaches 

have been employed to further understand and enhance disease resistance. Among these, 

virus-induced gene silencing (VIGS) has lately attracted special interest e.g. for 

identification of plant gene functions.  

The aim of this study was to verify if two benyviruses, namely 

Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV) 

are in general suitable tools for VIGS and to investigate the molecular interaction between 

both viruses. Both viruses belong to the genus Benyvirus in the family Benyviridae. They 

have a similar morphology and genome organisation, are transmitted by the same vector 

and share the same host range. In this study, infectious full-length cDNA clones of 

BNYVV (A-type) and BSBMV for Rhizobium radiobacter-mediated infection have been 

successfully constructed by the Gibson Assembly in vitro recombination technique. In 

addition, clones with the monomeric red fluorescent protein (mRFP) or green fluorescent 

protein (GFP) based on RNA2 of BNYVV or BSBMV were first prepared by replacing a 

part of the read-through domain open reading frame. These clones were R. radiobacter 

inoculated together with a full-length clone of RNA1 into Nicotiana benthamiana and 

Beta macrocarpa. With this experimental approach the labeled viruses were detectable in 

locally and systemically infected leaves by fluorescence microscopy. On the basis of 

these vectors, RNA2 of both viruses was equipped with appropriate restriction sites. A 

578 bp fragment of phytoene desaturase (pds) gene from N. benthamiana and a 549 bp 

fragment of magnesium chelatase (chlH) gene from Nicotiana tabacum were amplified 

for the silencing experiments and were integrated by restriction enzyme digest and 

ligation in sense and antisense orientation into the modified RNA2 of BNYVV and 

BSBMV. The clones were inoculated in N. benthamiana and silencing phenotypes of PDS 

and ChlH were recorded at 26 days past inoculation. Subsequently, significant reductions 

in both pds sense (59-77%) and antisense (49-60%), as well as chIH sense (67-85%) and 

antisense (74-86%) mRNA levels were measured by quantitative real-time PCR in the 

photobleached leaves of both BSBMV/BNYVV VIGS-treated plants, respectively. 
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As a further step in optimization of the VIGS vectors, the biological characteristics of 

both viruses were studied, using reassortants of BNYVV/BSBMV. In this part of the 

thesis we demonstrated that both (RNA1+2) in vitro reassortants were viable and capable 

of viral systemic movement in N. benthamiana. However, the plants infiltrated with both 

reassortants displayed a difference in symptom severity. In addition, RNA3 or 4 of 

BNYVV or BSBMV were exchangeable and able to move systemically in B. macrocarpa 

plants. Furthermore, co-infection and super-infection experiments based on labeled 

BNYVV and BSBMV as well as the two unrelated viruses Tobacco rattle virus (TRV) 

and Potato virus X (PVX) were conducted in N. benthamiana. From previous results of 

this study, the conclusion can be drawn that BSBMV and BNYVV tend to be spatially 

separated during plants infection whereas distant related viruses show clear co-infected 

cells in both co- and super-infection experiments. 

Keywords: Beet necrotic yellow vein virus, Beet soil-borne mosaic virus, Virus-induced 

gene silencing 
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ZUSAMMENFASSUNG 
 

Rizomania ist derzeit eine der wichtigsten Pflanzenkrankheiten in allen 

Zuckerrübenanbaugebieten, die zu hohen Ertrags und Zuckerverlusten führt. Auch die 

Fortschritte in der Züchtung können den negativen Effekten der Krankheit in Bezug auf 

Ertrag und Zuckergehalt nicht entgegenwirken. Mehrere biotechnologische Ansätze 

wurden eingesetzt, um die Krankheitsresistenz besser zu verstehen und zu optimieren. 

Vor allem hat das Virus-induzierte Gen Silencing (VIGS), z.B. zur Identifizierung von 

Pflanzengenfunktionen in den letzten Jahren zunehmend an Aufmerksamkeit gewonnen. 

Ziel dieses Projektes war die Überprüfung zweier Benyviren, 

Beet necrotic yellow vein virus (BNYVV) und Beet soil-borne mosaic virus (BSBMV) 

als generelle Werkzeuge für VIGS, sowie die molekulare Interaktion zwischen beiden. 

Beide Viren gehören zur Gattung Benyvirus in der Familie der Benyviridae. Sie haben 

eine ähnliche Morphologie und Genomorganisation, werden von demselben Vektor 

übertragen und teilen sich den gleichen Wirtsbereich. In dieser Studie wurden infektiöse 

Volllängen-cDNA-Klone von BNYVV (A-Typ) und BSBMV für 

Rhizobium radiobacter-vermittelte Infektionen erfolgreich durch Gibson Assembly 

in vitro Rekombinationstechnik konstruiert. Zunächst wurden mehrere Klone mit dem 

monomeric red fluorescent protein (mRFP) oder dem Green Fluorescent Protein (GFP) 

basierend auf RNA2 des BNYVV beziehungsweise BSBMV hergestellt, indem ein Teil 

des read-through Domain offenen Leseframes ersetzt wurde. Diese Klone wurden dann 

zusammen mit einem Volllängen-Klon von RNA1 mittels R. radiobacter in 

Nicotiana benthamiana und Beta macrocarpa inokuliert. Mit diesem Versuchsansatz ist 

es gelungen, die markierten Viren mittels Fluoreszenzmikroskopie in lokal und 

systemisch infizierten Blättern nachzuweisen. Auf Basis dieses Konstrukts wurde RNA2 

erfolgreich mit Restriktionsschnittstellen ausgestattet. Ein 578 bp-Fragment des 

phytoenedesaturase (pds) Gens aus N. benthamiana und ein 549 bp-Fragment des 

magnesium chelatase (chlH) Gens aus Nicotiana tabacum wurden für die silencing-

Experimente amplifiziert und durch Restriktionsenzymverdau und Ligation in sense und 

antisense-Orientierung in die modifizierte RNA2 von BNYVV und BSBMV integriert. 

Diese Klone wurden daraufhin in N. benthamiana inokuliert und nach 26 Tage nach 

Inokulation die silencing-Phänotypen des PDS und ChlH bonitiert. Anschließend wurden 

signifikante Reduktionen des pds in sense (59-77%), beziehungsweise in antisense (49-

60%) und des chIH in sense (67-85%), beziehungsweise in antisense (74-86%) 
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Transkriptionslevel mittels Real-Time quantitative PCR in den gebleichten Blättern der 

beiden BSBMV/BNYVV VIGS-behandelten Pflanzen gemessen. Als weiteren Schritt in 

der Optimierung der VIGS-Vektoren wurden die biologischen Eigenschaften beider 

Viren genauer studiert, in dem wir eine Reihe von Reassortanten des BNYVV/BSBMV 

getestet haben. In diesem Teil der Arbeit wurde gezeigt, dass beide (RNA1 + 2) in vitro 

Reassortanten vermehrungsfähig und zur systemischen Ausbreitung in N. benthamiana 

in der Lage waren. Allerdings zeigten die Pflanzen, die mit Reassortanten infiltriert 

wurden, einen Unterschied in der Symptomausprägung. Darüber hinaus waren RNA3 

oder 4 von BNYVV oder BSBMV austauschbar und konnten sich systemisch in 

B. macrocarpa Pflanzen ausbreiten. Des Weiteren wurden Co-Infektion und Super-

Infektion Experimente auf Basis von markiertem BNYVV und BSBMV sowie zwei nicht 

verwandten Viren, Tobacco rattle virus (TRV) und Potato virus X (PVX) in 

N. benthamiana durchgeführt. Aus den vorherigen Ergebnissen dieser Dissertation lässt 

sich die Schlussfolgerung ziehen, dass BSBMV und BNYVV während der 

Pflanzeninfektion räumlich getrennt bleiben, während nicht verwandte Viren bei Co- und 

Super-Infektion Experimenten klare co-infizierte Zellen aufweisen. 

Schlagworte: Beet necrotic yellow vein virus, Beet soil-borne mosaic virus, Virus-

induziertes Gen Silencing
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1. Chapter 1: General Introduction 
 

1.1. Sugar beet (Beta vulgaris subsp. vulgaris) 
 

Sugar beet (Beta vulgaris subsp. vulgaris) is one of the most important agricultural crop 

and it is mainly cultivated for sugar production. Initially, at the end of the eighteenth 

century, sugar beet was developed in Europe from various Beta species, which proved to 

be the best alternative source to the tropical sugar cane for sugar production (Monteiro et 

al., 2013; Panella and Lewellen, 2007; Watson and Dallwitz, 1999). The cultivar 

B. vulgaris subsp. vulgaris was formerly assigned to the family Chenopodiaceae and the 

genus Beta L. This family includes about 1400 species, which is divided into 102 genera 

(Ajayi et al., 2017; Letschert et al., 1994). In the recent taxonomy of the APG II System 

(2003), B. vulgaris belongs to the family Amaranthaceae (Monteiro et al., 2013). B. 

vulgaris is a biennial root crop, but can reach flowering in the first year under certain 

conditions. In the first growing year (vegetative phase) the plant develops approximately 

20 glabrous leaves, the beet body and an expanding storage root. In the second year 

(reproductive phase), after a period of vernalisation, sucrose is utilized for flower and 

seed production (Dohm et al., 2014; Panella and Lewellen, 2007). 

In commercial production, the sugar beet root is harvested after the first growing season, 

as the time, when the sugar concentration in the root is the highest. The sugar beet has a 

cultivation period of about 6 months in the temperate climatic zone of the northern 

hemisphere. The sugar beet is planted in spring and harvested in the autumn of the same 

year. The ability of sugar beet to store sugar (sucrose) at high concentration within its 

root makes it commercially and physiologically very interesting for sugar production. 

Although the sugar concentration based on the fresh weight of the root has increased from 

about 4% in the last century to maximum of 20% today, there are still diverse factors that 

affect the sugar content of the root (Draycott, 2008; Kühnel et al., 2011). In recent years, 

improvement in chemical properties of the root and sugar concentration by breeding has 

created interest in growing sugar beet in many new areas worldwide. Additionally, 

tolerance and/or resistance to diseases and pests have positive impacts on sugar 

production (Joersbo, 2007). The main objectives of breeding are, as before, an increase 

in the sugar content in the root as well as an increase in the beet yield. However, there is 

a negative correlation between these properties, the cause of which is still unknown. For 

this reason, types of varieties have been developed which meet different perspectives: the 
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Z-type (high sugar concentration but low root yield), and the E-type (low sugar 

concentration but high root yield), as well as the intermediate normal genotype (N-type) 

(Loel et al., 2014). 

Sugar beet is cultivated as raw material for sugar production (sucrose) and industrial 

production. The root of the sugar beet (taproot) consists in average of 14% of sugar 

(sucrose), 3.7 % of molasses, 5.5% of pulp and 76.8% of water, however, these data vary 

depending on the cultivar and growing conditions (Campbell, 2002; FAO, 2009). The 

viscous by-product molasses can be used for yeast and alcohol production or as a raw 

material for the production of citric acid. Beet vinasse is produced as a sugar free by- 

product after molasses has been fermented (Haaksma and Vecchiettini, 1988). The rest 

residue of sugar refining, sugar beet pulp can be used directly as feed for sheep and cattles 

or can be used as substrate in ethanol production (Sutton and Peterson, 2001). Currently, 

sugar beets are considered as energy crops, as they can be used to produce bioethanol and 

biogas (FAO, 2009; Schnepf, 2006). Aditionally, sugar beet serves as an important source 

for the chemical industry and for degradable materials (plastic, packaging) as well as in 

the cosmetics sector (Duke et al., 1984). 

The sugar beet can be attacked by many pathogens like viruses, bacteria, fungi such as 

Aphanomyces cochlioides, Cercospora beticola, Rhizoctonia solani, Ramularia beticola, 

Erysiphe betae and Peronospora farinose, nematodes as Meloidogyne spp. and 

Heterodera schacchtii. Bacterial pathogens cause only a few significant diseases in sugar 

beet cultivation. Under German cultivation conditions Pseudomonas syringae pv. aptata 

is known as a causative agent for the bacterial leaf spot disease on the sugar beet 

(Lennefors et al., 2006; Stevens et al., 2006). The other bacterial diseases are harmless 

and therefore they are not economically significant. On the other hand, most diseases on 

sugar beet are caused by viruses such as Beet mosaic virus (BtMV), 

Beet mild yellowing virus (BMYV), Beet yellows virus (BYV), 

Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV). 

BNYVV is one of particular economic relevance worldwide that causes rhizomania 

disease on sugar beet (Tamada, 2007; Wintermantel et al., 2009). BNYVV and BSBMV 

are transmitted to the root of the sugar beet by the obligate root-infecting parasite 

Plasmodiophoromycete Polymyxa betae Keskin (Keskin, 1964; Tamada and Kondo, 

2013). Rhizomania was first reported by Canova in Northern Italy in 1952 (Canova, 

1959). Since that the virus was distributed to all other beet growing regions of Europe 
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and the Middle East (Kutluk Yilmaz et al., 2007; Lennefors et al., 2005), as well as USA, 

China and Japan (Gao et al., 1983; Schirmer et al., 2005). In contrast, BSBMV exists so 

far only in the United States (Koenig et al., 2008; Nielsen et al., 2001). The root yield 

reduction that caused by this disease can be as high as 90%, whereby the sugar content 

can decrease dramatically from 18% to under 10% (Joersbo, 2007; Stevens et al., 2006). 

It although caused undesirable enrichment of constituents (amino nitrogen, potassium and 

sodium) for the sugar production. This has made the disease very important in sugar beet 

cultivation (Heijbroek, 1989; Johansson, 1985; Rush and Heidel, 1995). The symptoms 

of Rhizomania can be observed in the whole sugar beet plant and vary greatly. The above-

ground symptoms are less specific and occur only at the end of the vegetation period, in 

the form of leaf yellowing, wilting, chlorosis and necrotic yellow veins (Fig. 1C). 

Whereas the symptoms on the root are characterized by excessive lateral root proliferation 

and yellow-brown colouring of vascular bundles (Peltier et al., 2008). This abnormal 

proliferation of dark necrotic roots is the reason for the common name of the disease 

(rhizomania- root madness) (Canova, 1966; Rush and Heidel, 1995). Additionally, the 

infected beet body is small and woody compared to the healthy beet body (Fig. 1A and 

B) (Heidel et al., 1997; Peltier et al., 2008). However, BNYVV can cause only latent 

infections without visible symptoms under cool spring conditions (Lindsten, 1986; Pavli 

et al., 2011). Despite the plant protection products and pesticides were utilized to against 

various pathogens and their vectors, sugar beet cultivation and production still suffer from 

massive losses of up to 30% of the total yield. The sugar beet viruses cause worldwide 

income losses of 6-7% itself (Oerke and Dehne, 2004). Currently, the only practical 

means to control yield losses due to rhizomania infection is the use of genetically partially 

resistant cultivars. To date, such resistance is mainly based on dominant inherited genes 

(Rz1, Rz2 and Rz3) that when exist reduce virus replication and movement from infected 

hair-roots to the main root (Biancardi et al., 2002; Pavli et al., 2011). The first partially 

rhizomania-resistant variety (Rizor) was introduced in 1985 in Italy and in the early 1990s 

grown in the infested fields of many European countries (Asher, 1993; De Biaggi, 1987). 

Later, following the primary field observations in 1983, the rhizomania-resistant cultivar 

(Holly source) has been introduced in 1987 in the USA (Lewellen, 1988). Further, it has 

been verified that “Holly” type resistance was simply inherited and based on the dominant 

Rz1 gene (Lewellen and Biancardi, 1990; Pelsy and Merdinoglu, 1996). It has been 

suggested that both “Rizor” and “Holly” type resistances presumably share the same 

resistance gene (Rz1) (Barzen et al., 1997). Despite several resistance genes (Rz1-Rz5) 
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that lately have been identified, the majority of modern commercial sugar beet cultivars 

were developed based on the Rz1gene (Grimmer et al., 2007; Pavli et al., 2011). BNYVV 

can continue to replicate in the hair-roots of these resistant cultivars without penetrating 

into the main root (Scholten and Lange, 2000; Tamada et al., 1999). However, it has been 

assumed that the inoculum potential has no influence on the occurrence of resistance 

overcoming isolates (Pferdmenges and Varrelmann, 2009). Lately, resistance breaking 

(RB) isolates of BNYVV have been found in some sugar beet-growing areas in Europe 

(Acosta-Leal et al., 2008; Bornemann et al., 2015; Liu and Lewellen, 2007). To overcome 

these difficulties and hurdles in sugar beet production, new methods and strategies such 

as VIGS can be explored and investigated. 

 

 

Fig. 1 Rhizomania symptoms on sugar beet. A) Beet body with many hairy secondary 

roots, which form a so-called root beard. B) Healthy sugar beet root. C) Leaf symptoms: 

yellowing along the leaf veins. (Photos:  from M. Laufer and S. Liebe, IfZ, Göttingen). 

 

1.2. Characteristics of benyviruses genomes 
 

1.2.1. Beet necrotic yellow vein virus (BNYVV) 
 

According to the International Committee on Taxonomy of Viruses (ICTV), 

Beet necrotic yellow vein virus (BNYVV), Beet soil-borne mosaic virus (BSBMV), 
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Rice stripe necrosis virus (RSNV) and Burdock mottle virus (BdMV) were assigned to 

the genus Benyvirus of the family Benyviridae (ICTV, 2017).  

BNYVV is a multipartite RNA virus and depending on the isolate, it consists of 4 or 5 

rod-shaped particles that include 4-5 genomic ss (+) strand RNAs (Gilmer et al., 2017; 

Jupin et al., 1991; Kiguchi et al., 1996; Koenig et al., 1997; Peltier et al., 2008) (Fig. 2). 

All RNA segments are encapsidated by the same viral coat protein (CP). Each RNA 

species has a poly-A sequence at the 3' end and a cap structure at the 5' end (Peltier et al., 

2008; Putz et al., 1983). The various RNA particles are about 85-390 nm in length and 

20-30 nm in diameter (Richards and Tamada, 1992). Under artificial conditions, RNA 1 

and RNA 2 are sufficient to initiate systemic movement and distribution throughout 

different tissues in Nicotiana benthamiana (Chiba et al., 2013; Rahim et al., 2007). 

However, RNA3 particle is still required for long distance movement in other host plants, 

such as Beta macrocarpa (Lauber et al., 1998; Ratti et al., 2009). For the viral infection 

process under natural conditions, all RNA particles (1-4) are necessary. 

RNA1 with 6,746 nucleotides in length is the largest RNA particle in the BNYVV 

genome. RNA1 is associated with RNA replication, comprises a single open reading 

frame (ORF), encoding a 237 kDa polypeptide (Bouzoubaa et al., 1987; Lennefors et al., 

2005). The polypeptide own motifs for a helicase (HEL), methyltransferase (MTR), 

RNA-dependent RNA polymerase (RdRP) and papain-like protease (PRO) (Bouzoubaa 

et al., 1987; Quadt and Jaspars, 1989; Richards and Tamada, 1992). This protein is 

autocatalytically cleaved after translation by a papain-like protease (PRO), located 

between helicase (HEL) and RNA polymerase, into two smaller proteins of 150-kDa and 

66-kDa (Hehn et al., 1997). 

RNA2 has 4,588 nucleotides and encodes six proteins. At the 5′-terminus the cistron for 

the coat protein (CP) is located, followed by the read-through (RT) domain, the triple 

gene block cluster (TGB 1-3) and at the 3′-terminus with the cistron for the suppressor of 

gene silencing (p14) (Bouzoubaa et al., 1986; Richards et al., 1985; Ziegler et al., 1985). 

RNA2 is responsible for many biological and genetic viral functions such as 

encapsidation, cell-to-cell movment, vector transmission by P. betae and suppression of 

the posttranscriptional gene silencing mechanism (PTGS) (Dunoyer et al., 2002; Gilmer 

et al., 1992; Haeberle et al., 1994; Tamada et al., 1999). The p21, known as a coat protein 

(CP; 21-kDa) form together with read-through (RT; 54-kDa) the p75. The translation of 

p75 (75-kDa) can occur only when the leaky UAG termination codon, that located 
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between the 3' end of the 21-kDa ORF and the 5' end of the 54-kDa ORF undergo 

suppression (Haeberle et al., 1994; Niesbach-Klösgen et al., 1990; Richards et al., 1985; 

Ziegler et al., 1985). The C-terminal part of p75 contains the peptide motif (KTER) which 

appears to be particularly necessary for fungal vector transmission (Adams et al., 2001; 

Tamada et al., 1996). Remarkably, Tamada and Kusume (1991) and Schmitt et al. (1992) 

have shown that any type of mutations in the C-terminus of p75 can adversely affect the 

function of vector transmission. 

The central region of RNA2 represents the triple gene block (TGB), which consists of 

TGB1 (p42), TGB2 (p13), and TGB3 (p15) (Gilmer et al., 1992; Lennefors et al., 2005; 

Verchot-Lubicz et al., 2010). These three overlapping proteins interact with each other in 

a highly specific manner to allow efficient movement of the virus between cells (Lauber 

et al., 1998). Bleykasten et al (1996) described that p42 can bind either single- and double-

stranded DNA or RNA by a ATP / GTP binding domain (p-loop). This property probably 

allows the binding of p42 to genomic RNA of BNYVV. Furthermore, it was assumed that 

p13 and p15 facilitate the entry of p42 into punctate bodies that connect to the edge of 

plasmodesmata to enable BNYVV cell-to-cell movement (Bleykasten et al., 1996; 

Erhardt et al., 2000; Erhardt et al., 2005; Lauber et al., 1998; Niesbach-Klösgen et al., 

1990). The last open reading frame on RNA2 translates into the cysteine-rich protein p14 

(14-kDa), which expressed from a subgenomic RNA regulates the accumulation of RNA2 

(Gilmer et al., 1992; Hehn et al., 1995). Additionally, p14 plays an important role in 

planta as a suppressor of post-translational gene silencing (PTGS) (Chiba et al., 2013; 

Dunoyer et al., 2002). 

Beside RNA1 and RNA2, all BNYVV isolates contain two additional smaller RNAs: 

RNA3 and RNA4. RNA3 comprises of 1,775 nucleotides and encodes three proteins: the 

p25, p6.8 and p4.6 (Haeberle and Stussi-Garaud, 1995; Jupin et al., 1992; Tamada et al., 

1999). The pathogenicity factor p25 is responsible for the symptom expression on roots 

in the natural host plant like B. vulgaris as well as for the formation of local lesions in 

leaves of inoculated experimental hosts like C. quinoa (Jupin et al., 1992; Jupin et al., 

1991; Koenig et al., 1991; Tamada et al., 1999; Thiel and Varrelmann, 2009). In sugar 

beet, p25 mainly affects the intensity of typical BNYVV symptoms (leaf yellowing along 

the veins and formation of secondary roots). The defective type of p25, in which about 

half of the C-terminus was deleted, in comparison with wild-type p25, causes often milder 

symptoms following mechanical inoculation of leaves in experimental plants such as C. 



CHAPTER 1                                                                                            GENERAL INTRODUCTION 
 

7 
 

quinoa (Commandeur et al., 1991; Jupin et al., 1991; Koenig et al., 1991). Haeberlé and 

Stussi-Garaud (1995) were able to show that the p25 possess a nucleo-cytoplasmic 

localisation signal KRIRFR (NLS) and a nuclear export signal VYMVCLVNTV (NES) 

that offer p25 the ability to enter both cytoplasm and nuclear compartment of the infected 

cells (Vetter et al., 2004). It has been suggested that p25 may act as the avirulence target 

that is recognised in the mechanically inoculated leaves of some BNYVV-resistant sugar 

beet genotypes (Chiba et al., 2011; Chiba et al., 2008). This was supported by the 

accordance of the occurrence of B. vulgrais resistance-breaking strains of BNYVV, 

overcoming a single Rz1 gene in several sugar beet-growing areas, with p25 harboring 

specific mutations in the tetrad 67-70 (Bornemann and Varrelmann, 2011; Koenig et al., 

2009). Furthermore, due to the interaction of p25 with proteins of sugar beet, there is 

evidence of a possible influence on plant defense and viral pathogenicity, respectively 

(Thiel and Varrelmann, 2009). It was also possible in further investigations to show that 

the p25 has the 26S proteasome of the sugar beet as the "target" involved in the 

hypersensitive response (HR) (Thiel et al., 2012). 

In addition, RNA3 encodes two other small proteins: p6.8 and p4.6 (Jupin et al., 1991). 

p6.8 overlaps the 3'-terminus of p25 and if it is deleted, strong necrotic symptoms are 

caused in leaves of inoculated plants (Balmori et al., 1993; Bouzoubaa et al., 1985; Jupin 

et al., 1992). According to the studies of Jupin et al. (1991, 1992) the role of protein p4.6 

that is expressed from the subgenomic RNA3 is so far unknown. Deletion of the p4.6 

region in the same study had no effect on the symptoms expression in Tetragonia expansa 

(Balmori et al., 1993; Jupin et al., 1992). The noncoding RNA3 (ncRNA3), produced by 

5’-3’ exoribonuclease activity that is blocked by a structural motif involving the 

conserved coremin sequence present in the ‘Core region’ plays an important role in the 

systemic infection of the virus in Beta species. The “coremin” sequence of 20 nucleotides 

is present on RNA3 and RNA4 of BSBMV as well as on  RNA3 and RNA5 of BNYVV 

(Gilmer et al., 2017; Lauber et al., 1998; Peltier et al., 2012). 

Three major groups of BNYVV have been characterized, none of which is serologically 

distinct. The separation of the different BNYVV A-, B-, and P-pathotypes is based on 

molecular differences, identified by e.g. restriction fragment length polymorphism 

(RFLP), sequence comparisons, as well as single-strand conformation polymorphism 

(SSCP) of different BNYVV-RNA segments (Chiba et al., 2011; Koenig et al., 1995; 

Kruse et al., 1994). B-Pathotype is the most common in Germany, France and Japan, 
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while the A- pathotype is more prevalent worldwide. In the region of amino acid tetrad 

aa 67-70 of the BNYVV-RNA3 pathogenicity factor P25, B-pathotype has a low 

variability compared to the A-pathotype (Drake and Holland, 1999; García-Arenal et al., 

2003; Peltier et al., 2008; Sohi and Maleki, 2004). The A- and B-pathotypes differ from 

the P-pathotype by possessing only 4 RNA segments in contrast to the P-pathotype, which 

additionally has a 5th RNA (Koenig et al., 1997; Koenig and Lennefors, 2000). The P-

pathotype is mostly distributed in Japan and China and causes significantly more severe 

symptoms in the test plants compared to the A- and B-types (Miyanishi et al., 1999; 

Tamada et al., 1996). Schirmer et al. (2005) assumed a further seperation into P- and J-

type and demonstrated that due to sequence variability of RNA 5 the J-pathotype can not 

be assigned to the P-pathotype. 

The 1,470 nucleotides of RNA4 comprise two ORFs coding for a 31-kDa protein (p31) 

and for a 6.5-kDa protein (p6.5) (Bouzoubaa et al., 1985). P31 plays an important role for 

efficient transmission of the BNYVV by P. betae (D'Alonzo et al., 2012; Tamada and 

Abe, 1989), whereas the function of p6.5 is still unknown (Jupin et al., 1992; Jupin et al., 

1991). P31 is also involved in both the suppression of RNA silencing in roots and 

enhancement of BNYVV symptom expression in N. benthamiana (Rahim et al., 2007). 

The rarely occurring RNA5 is not found in all isolates, it is mainly found in some Asian 

isolates in Japan (Miyanishi et al., 1999; Tamada and Abe, 1989). In Europe, the RNA5 

is found only in some isolates in limited regions of England and France (Heijbroek et al., 

1999; Koenig and Lennefors, 2000; Ward et al., 2007). The RNA5 has 1,350 nucleotides 

and encodes a 228-amino-acid protein (p26) (Kiguchi et al., 1996). P26 of RNA5 displays 

a sequence homology with the pathogenicity factor p25 of RNA3 and this may support 

that p26 act as additional pathogenicity factor (Koenig et al., 1997). The p26 is involved 

in the long-distance movement of the virus in the vascular bundles, as well as in the 

enhancement of the rhizomania symptoms in sugar beet (Kiguchi et al., 1996; Koenig et 

al., 1997; Link et al., 2005; Miyanishi et al., 1999). Since the two proteins p25 and p26 

can interact in a synergistic manner, this could be the reason why all BNYVV isolates 

with the additional RNA5 cause more severe symptoms than isolates that only possess 

RNA1-4 (Heijbroek et al., 1999; Koenig et al., 1997; Link et al., 2005; Tamada and Abe, 

1989). 
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Fig. 2 Genome organization and expression strategy of the 

Beet necrotic yellow vein virus (BNYVV). All BNYVV RNAs 1-5 have a cap structure 

at the 5' terminus and a poly-A sequence at the 3' terminus. The open reading frame (ORF) 

are shown in different colors depending on the function. RNA1 encodes all important 

motifs for replication (green). Helicase (HEL), methyltransferase (MTR), RNA-

dependent RNA polymerase (RdRP) and papain-like protease (PRO). CP "Coat protein" 

for encapsidation (yellow); "Read-through domain" (RTD) for the vector transmission 

(light-blue); "Triple gene block" (TGB) for cell-to-cell movment (dark green) and p14 

"suppressor of gene silencing" (orange). RNA3 encodes p25, p6.8 and p4.6, which are 

responsible for symptom expression (red). P31 of RNA4 is used for vector transfer (light-

blue). P26 acts as p25 during the symptom expression (red). Noncoding RNAs (ncRNA3 

and ncRNA5) are responsible for long distance movement in Beta species. This figure is 

modified after (Gilmer et al., 2017; Varrelmann, 2007). 
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1.2.2. Beet soil-borne mosaic virus (BSBMV) 
 

Beet soil-borne mosaic virus has been characterized and classified to the genus Benyvirus 

(Lee et al., 2001). BSBMV was first reported in 1988 in Texas, USA (Liu and Duffus, 

1988). In contrast to the worldwide distributed BNYVV, the distribution of BSBMV is 

still limited to certain areas in the USA (Lee et al., 2001; Wisler G.C., 1994). 

The BSBMV consists of four ss (+) strand RNAs and shows a similar genome 

organisation and morphological structure like BNYVV. Despite this similarity, both 

viruses exhibit a sufficient molecular difference to be classified as two different species 

(Lee et al., 2001; Rush, 2003).  BSBMV differs primarily serologically from BNYVV 

and causes systemic leaf symptoms which have a different appearance from that of 

BNYVV (Heidel et al., 1997; Peltier et al., 2012; Rush and Heidel, 1995). BSBMV 

mainly induces systemic mosaic symptoms, mottling, yellow vein-banding on leaves or 

slightly disordered growth (Peltier et al., 2008; Rush and Heidel, 1995). The BSBMV 

symptoms in the open field can be observed more often on the sugar beet leaves than 

those caused by BNYVV. The effect of BSBMV on the sugar beet yield and the quality 

is very variable and depends on the soil moisture, as well as the temperature (Workneh et 

al., 2003). Generally, BSBMV causes significantly less yield reduction in sugar beets in 

comparision to BNYVV, which is due to the main infection of BNYVV of the roots, 

whereas BSBMV is prominent on leaves (Heidel et al., 1997; Workneh et al., 2003). 

 

1.3. RNA interference (RNAi): Discovery and biological perspectives 
 

1.3.1. Origins of RNA interference 
 

RNA-mediated gene silencing, also commonly known as RNA interference (RNAi), is a 

complex molecular biology, evolutionarily conserved mechanism that can affect 

transcription by DNA methylation, influence mRNA stability, or inhibit translation (Guo 

et al., 2016; Matzke and Birchler, 2005; Schramke and Allshire, 2004; Tijsterman et al., 

2002). This mechanism plays a key role in regulation of gene expression, maintaining 

genome integrity and adaptive responses to abiotic and biotic stresses as well as a natural 

defense mechanism against pathogens and foreign genetic elements such as viruses and 

transposons in the cells of eukaryotic organisms (Baulcombe, 2004; Tijsterman et al., 
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2002; Voinnet, 2001; Wilson and Doudna, 2013). RNAi has been discovered and 

examined very early in plants (Napoli et al., 1990). Additionally, RNA silencing has been 

extensively studied in many different eukaryotic organisms, e.g. in 

Caenorhabditis elegans, in fungi (Neurospora crassa), insects, animals, and human 

(Elbashir et al., 2001; Ipsaro and Joshua-Tor, 2015; Kanakala and Ghanim, 2016; 

Misquitta and Paterson, 1999; Napoli et al., 1990; Romano and Macino, 1992). As early 

as 1928, this mechanism was described when some tobacco plants were infected with the 

Tobacco ringspot virus (TRSV), the new non-inoculated upper leaves could recover and 

show a kind of resistance to a secondary infection with the same virus (Baulcombe, 2004). 

Matzke et al. (1989) reported that after a rhizobium-mediated double transformation a T-

DNA insert was inactivated by the insertion of a second T-DNA fragment. The authors 

hypothesized that the promoters in both T-DNA vectors possess a sequence similarity 

that could lead to methylation of the promoter sequence (Matzke et al., 1989). 

The tale of RNA silencing began in 1990 when the research group C. Napoli and R. 

Jorgensen discovered the mechanism by chance in plants (Napoli et al., 1990). They 

attempted to intensify the pigmentation in Petunia hybrida (petunia) by upregulation the 

activity of the gene for chalcone synthase (chs) or dihydroflavonol-4-reductase (dfr) 

(Napoli et al., 1990; Van der Krol et al., 1990). In contrast to expectations, the transgenic 

petunias showed different patterns of flowering coloring varying between dark purple and 

mixtures of purple, white, and pure white (Napoli et al., 1990; Sen and Blau, 2006; Van 

der Krol et al., 1990). Similarly, the overexpression of a Polygalacturonase gene in the 

tomato during fruit maturation resulted in a strong reduction in expression of endogenes 

exhibiting sequence similarity with the Polygalacturonase gene (Smith et al., 1990). For 

the discovery of the mechanism of RNA interference in C.elegans in 1998, the two 

American scientists, Craig C. Mello and Andrew Z. Fire, received the Nobel Prize in 

physiology / medicine in 2006 (Fire et al., 1998).  

This phenomenon was also described in different terms. In plants, it refers to post-

transcriptional gene silencing (PTGS) (Agrawal et al., 2003; Cogoni and Macino, 2000). 

In fungi, especially in Neurospora crassa was called  “quelling” (Cogoni and Macino, 

1997). In animals and various insect species, e.g. Trypanosoma, Drosophila it is called 

RNA interference (RNAi) (Cogoni and Macino, 2000). 
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1.3.2. The RNA interference biogenesis machinery 
 

Since the first discovery of RNA silencing in plants in the early 1990s, remarkable 

progress in understanding the molecular mechanisms of RNA silencing have been made 

(Agrawal et al., 2003; Guo et al., 2016; Ipsaro and Joshua-Tor, 2015; Wilson and Doudna, 

2013). The description in this thesis refers mainly to posttranscriptional gene silencing 

(PTGS) in plants by mRNA degradation. This process is based on a natural process in 

which the cells of the infested organisms recognize the conserved molecular "markers" 

of the pathogens. Small double-stranded RNAs (dsRNA) are known pathogen markers 

classified as small interfering RNA (siRNA) or microRNA (miRNA) (Meister and 

Tuschl, 2004). 

DsRNA can be produced by several processes in a plant cell, e.g. as an intermediate in 

the replication of many viruses in the infected cells, transgenic plants with a transgene in 

different orientation and translation of plant genes that may deliver mRNA with internal 

complementarity (Angell and Baulcombe, 1997; Axtell, 2013; Walkey, 2012). However, 

the RNAi can also be artificially triggered. For this purpose, specific constructs, e.g. the 

hairpin RNA (hrRNA) constructs or antisense constructs are introduced into a single cell 

or into the whole organism (Douchkov et al., 2005; Senthil-Kumar et al., 2010). To create 

a hairpin construct, the sequence of the target gene must occur twice between a promoter 

and a terminator. The sequences can be separated by an intron and installed in a reverse 

direction in the construct. The two complementary RNA strands join together after 

transcription to form a double-stranded RNA (dsRNA) (Smith et al., 2000). Therefore, 

the hrRNA do not require the RDRs to produce dsRNA arm (Guo et al., 2016). At the 3' 

end, the intron forms a loop (O-shaped piece) that is removed by splicing, which can 

contribute to improve RNA silencing efficiency in plants (Wang et al., 1997; Waterhouse, 

2000). To introduce these constructs in different organisms numerous methods and 

strategies have been described. In plants, besides the transformation of protoplasts and 

the particle bombardment, viral vectors are most frequently used to introduce the dsRNA 

constructs into plants by Rhizobium radiobacter (Kanno et al., 2000; Klahre et al., 2002; 

Wesley et al., 2001). On the other hand, C. elegans can be fed with dsRNA, injected with 

dsRNA or inserted for 1-3 hours into a dsRNA solution (Ambros, 2003). In Drosophila 

other methods can be employed, e.g. introducing cultured Drosophila cells directly into 

dsRNA solution or production of transgenic fruit flies that are capable of transcribing the 

dsRNA (Kanakala and Ghanim, 2016; Schwarz et al., 2002). After the dsRNA has been 
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entered into the cytoplasm of the cell, it will be specifically cleaved by the cell. DsRNAs 

are recognized by Dicer-like enzymes in the cell nucleus or cytoplasm, bound and cut 

into small ∼20-24 nucleotide long dsRNA fragments with 2-nt 3' overhangs at the 3' ends 

(Axtell, 2013; Guo et al., 2016; Papp et al., 2003).  

The Dicer protein is a RNase III-like enzyme that possesses several domains (two 

dsRNA-BD, RNaseIII, RNA helicase / ATPase and PAZ domains) (Bernstein et al., 2001; 

Bologna and Voinnet, 2014; Ketting et al., 2001). Generally, Dicer is associated with 

Argonaute proteins in the cells. Also different Dicer enzymes are involved in the different 

RNA silencing pathways in different organisms. While C. elegans and humans can 

produce only a single Dicer enzyme, Drosophila has two Dicer (Dcr1 and Dcr2) and 

Arabidopsis thaliana has four core-localized Dicer-like proteins (DCL1-DCL4) 

(Henderson et al., 2006; Hiraguri et al., 2005; Papp et al., 2003). DsRNA is generally 

used as an RNAi initiator that can detect target mRNA specifically using siRNA. 

However, these two small RNAs, si- and miRNA, are similar in function but differ in 

their pathway and origin (Borges and Martienssen, 2015; Meister and Tuschl, 2004). In 

plants, dsRNA is bound by DCL4 and cut into double-stranded RNA fragments (siRNA) 

in 21-23 nucleotide lengths that have two base pairs of overhangs at the 3' end (Fig. 3A) 

(Guo et al., 2016; He et al., 2005). For the protection against degradation and the 

stabilization of the small RNAs, they are modified in various ways. It was shown that the 

2'-OH group at the 3'-terminal of miRNAs is methylated by the methyltransferase HUA 

ENHANCER 1 (HEN1), which can protect it from polyuridylation and degradation 

(Allen et al., 2005; Zhai et al., 2013). For the same purpose, the 5'-terminal of siRNA in 

plants is phosphorylated by a kinase (Akbergenov et al., 2006). The production of siRNA 

in plants is based on the first line on DCL4, whereas the miRNAs are produced as 

products of DCL1 activity from primary miRNA transcripts that have partial dsRNA with 

hairpin loops (Fig. 3A and D). The miRNAs are approximately 21 base pairs long and 

cause the degradation of mRNA or the inhibition of translation depending on matching 

percentage (Fig. 3D). Thus, various cellular and biological processes in plants can be 

controlled, e.g. the flower development or the regulation of growth in plants (Palatnik et 

al., 2007; Schwab et al., 2006; Wang et al., 2008). Precursor transcripts from these small 

RNAs are generally converted by Dicer proteins in the nucleus to the 20-24 nt long 

dsRNAs (Castel and Martienssen, 2013; Fukunaga and Doudna, 2009). For the activities 

at the chromatin level, these stabilized small sRNA duplexes (21-23 nt) can remain in the 

cell nucleus or they can be exported to the cytoplasm via the exportin-5 homologous 
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protein HASTY (HST) (Bologna and Voinnet, 2014; Poulsen et al., 2013). In plants, the 

sRNA duplexes from the cell nucleus can also be transported into the cytoplasm via HST-

independent mechanisms (Eamens et al., 2009; Park et al., 2005). A protein complex, that 

is known as RNA-induced silencing complex (RISC) with Argonaute protein (AGO), will 

bind these siRNA duplexes in an ATP-dependent reaction and separate them into two 

single-stranded RNA molecules (Bernstein et al., 2001; Fang and Qi, 2016; Wilson and 

Doudna, 2013). One of these two single-stranded RNAs serves as a guide and binds to 

RISC. This contributes that the RISC complex binds to specific complementary regions 

of the target mRNA and then degrades it. In this case, the structure and sequence of the 

siRNA play an important role in order to be selected as a leader strand “guide” by the 

RISC complex. If the guide strand remains in the RISC complex, it is further used to 

digest the target mRNA by splicer activity of the Argonaute enzyme. If the other strand 

binds to the RISC complex, it has no effect on the gene expression or on the inserted 

construct (Fang and Qi, 2016; Matranga et al., 2005; Tomari and Zamore, 2005). 

In addition to siRNA and miRNA, the trans-acting siRNA (ta-siRNA) also belongs to the 

small RNA (sRNA). Ta-siRNAs are derived from non-coding transcripts from loci known 

as TAS genes, which suppresses gene expression by PTGS in plants (Fig. 3C). There are 

currently four TAS gene families (TAS1-4) in A.thaliana that are closely linked to 

miRNA for the synthesis of ta-siRNA and the targeted degradation of mRNA (Endo et 

al., 2013; Peragine et al., 2004; Vazquez et al., 2004). The primary ta-siRNA transcript is 

bound in the cytoplasm by a miRNA and cleaved by AGO1. The cleaved ta-siRNA is 

converted to a dsRNA by an RNA-dependent RNA polymerase 6 (RDR6) (Chen et al., 

2010). The putative RNA binding protein SGS3 (Suppressor of Gene Silencing 3) 

probably plays a role in the stabilization of the cleavage fragments of the ta-siRNA 

(Cuperus et al., 2010; Peragine et al., 2004). This dsRNA is finally processed by the 

dsRNA-binding protein 4 (DRB4) and DCL4 into 21-nt siRNAs (Guo et al., 2016; 

Montgomery et al., 2008). In the same manner as for miRNA, the ta-siRNAs specifically 

suppress a sequence and lead to mRNA degradation. The regulatory factor AGO1 is 

involved in most ta-siRNA TAS1,2 and 4-mediated regulation (Baumberger and 

Baulcombe, 2005; Fang and Qi, 2016), Whereas in ta-siRNA TAS3- directed regulation 

probably acts AGO7 as a regulating factor (Adenot et al., 2006; Allen et al., 2005; Axtell, 

2013).  
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Fig. 3 Schematic representation of RNA silencing in plants. A) Exogenous siRNA-
mediated gene silencing. Exogenous siRNAs are 21-nt long and are produced from directly 
introduced dsRNA, infected virus (VIGS) or transgenes. RNA pol II, RDR6, AGO1 and DCL4 
are involved as host proteins in this silencing pathway. B) Silencing targeted to repetitive mobile 
genetic sequences and transposable elements (TEs) is caused by the RNA-dependent DNA 
methylation after binding to the siRNA duplex. In this pathway, DCL3, Pol IV, Pol V, RDR2, 
and AGO proteins (AGO4, 6 and 9) are involved. C) Trans-acting (ta-siRNA) mediated gene 
silencing. An additional class of small RNAs is the 21-nt long ta-siRNAs made from the 
endogenous TAS gene following the action of DCL4. RNA pol II, RDR6 and AGOs (AGO1 and 
probably 7) are involved in this ta-siRNA silencing as host proteins. D) MicroRNA (miRNA) 
mediates gene silencing. MiRNAs also belong the small RNAs that are about 21-nt long. MiRNAs 
are produced by the endogenous MIR gene after the action of DCL1 and RNA pol II. In this 
silencing pathway, AGO1 is involved as a host protein. This figure is modified after (Elvira-
Matelot and Martínez, 2017; Ghildiyal and Zamore, 2009; Liu and Chen, 2016). 
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After many different experiments it was found that a locally triggered RNA silencing can 

spatially spread in various organisms (fungi, plants, C.elegans) (Voinnet and Baulcombe, 

1997). However, it has to differentiate in plants between local silencing, cell-to-cell 

movment and systemic silencing resulting in a movement through the whole plant. 

The possible signal molecules for local and systemic silencing are in particular dsRNA 

and siRNA (Hamilton and Baulcombe, 1999; Waterhouse et al., 2001). Dunoyer et al. 

(2005) described that the small siRNA (21 nucleotides) as components of the local 

silencing (10-15 cells) in A. thaliana, which can spread with the help of a protein via the 

plasmodesmata from one cell to the other (Dunoyer et al., 2005; Kobayashi and 

Zambryski, 2007). On the other hand, Kehr and Buhtz (2008) demonstrated that the larger 

siRNAs (24-26 nucleotides) act as a signal for systemic silencing, which can spread 

through the phloem over long distances (Hamilton et al., 2002; Kehr and Buhtz, 2008; 

Pant et al., 2008). 

Transient-induced gene silencing (TIGS) and virus-induced gene silencing (VIGS) are 

among the most widely used methods to introduce dsRNA into an organism and thereby 

trigger RNAi. With the help of TIGS one is able to test a wide number of gene functions 

(thousands of genes) in a short time. The TIGS system is known as reverse genetics, but 

is also often associated with forward genetics (Nelson and Bushnell, 1997; Schweizer et 

al., 1999). This method is based on the biolistic gene transfer, this means that particles 

(tungsten or gold) are shot at the targeted tissue under high pressure. These microparticles 

may contain, in addition to an antisense or RNAi construct, a provided vector with 

reporter genes (e.g. mrfp or gus). The introduced genetic material (DNA) with the 

microparticles is firstly expressed in the cell when a particle encounters the cell nucleus 

of a cell (Nielsen et al., 1999; Panstruga, 2004). Thus, it is possible to investigate and 

evaluate the effect of an antisense or RNAi construct on the level of the individual cell. 

This method is employed, especially in the investigation of host-pathogen interaction (e.g. 

cereals and powdery mildew), since the cereal mildew interaction is restricted only to the 

level of individual cells of the epidermis in an early phase (Douchkov et al., 2005; Nowara 

et al., 2010; Zimmermann et al., 2006). Although the TIGS method can be used to test a 

wide range of genes in a short time, this method is only suitable for single cells. In 

contrast, the VIGS method offers the possibility to modify larger parts of the plants. 

Additionally, this natural phenomenon can be utilized to control agronomically important 

plant diseases, based on the observation that in vitro feeding of dsRNA can trigger PTGS 
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of target genes in several plant pathogens and pests, such as fungi, nematodes and insects 

(Nunes and Dean, 2012; Zhang et al., 2016). Expression of such pathogen-derived 

dsRNAs in the relevant host plant conferred protection from infection or infestation by 

pests. This method, termed host-induced gene silencing (HIGS), has arose as an 

encouraging alternative in plant protection because it is highly selective for the target 

organism and has only marginal side effects in comparison with chemical treatments 

(Baulcombe, 2015; Koch and Kogel, 2014). 

RNA-silencing as modern technology brings many advantages. One of the advantages of 

RNA silencing is a huge variability and flexibility. In principle, any gene can be silenced 

in the plants. With these characteristics, it is possible to silence an entire multigene family 

and homologous genes in polyploids, which are of tremendously importance for the 

organisms with a complex genome, e.g. hexaploid wheat (Triticum aestivum) (Lawrence 

and Pikaard, 2003; Miki et al., 2005; Travella et al., 2006). Previous studies found  

effective interference with ~ 520 nucleotides long dsRNAs that were 88% identical to the 

target sequence (41 nucleotides maximum uninterrupted identity) (Parrish et al., 2000; 

Rual et al., 2007). This makes it possible to silence several genes at the same time with 

comparatively low costs and without great technical effort that makes the difficult and 

complicated production of stable mutants unnecessary (Matthew, 2004). In addition, 

RNA-silencing leads mostly to partial downregulation of the mRNA expression level, 

thus producing a range of silencing phenotypes that may differ in severity. RNAi offers 

the possibility to study essential genes, whose complete inactivation (mutation) would 

produce lethal effects for the studied organism (Senthil-Kumar and Mysore, 2011a).  

Despite all the advantages of RNA silencing, it also has some disadvantages, like any 

other method. Off-target silencing is one of the greatest disadvantages of RNA silencing. 

The term means that not only the targeted gene but also other genes in the investigated 

organism could be silenced by RNAi. This can occur when partial sequence similarity 

permits siRNA to cleavage mRNA for genes that are a non target. The reason for this is 

the limited sequence specificity of siRNA. Earlier study prognosticated that about 50–

70% of mRNA transcripts in A. thaliana produce off-target effects when used as silencing 

trigger for PTGS (Xu et al., 2006). Basically, it has been demonstrated that the off-target 

silencing correlated with the length and amount of the initial dsRNA (Qiu et al., 2005; 

Warthmann et al., 2008). Off-target effects lead to complications in identifying the 

precise functional role of target genes. This problem can be solved with the aid of 
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software, e.g. "SiRNA-scan" by checking the sequence in advance for its potential to 

cause an off-target effect (Xu et al., 2006). However, the problem remains for organisms 

with unknown or only partially known sequences. Furthermore, it is necessary to avoid 

selecting the required sequences for RNAi constructs from a highly conserved gene 

region if only a single gene is intended as silencing target. 

Another problem of RNAi is often the occurrence of variable silencing effects. Inefficient 

RNAi constructs may give a false understanding of the importance of the gene studied 

for the observed phenotype. Reasons for this phenomenon can primarily be the target-

sequence of the silencing-construct by localizing many secondary structures or proteins 

to the target site of the target-mRNA and thereby blocking the binding of the siRNA 

(Tomari and Zamore, 2005). Furthermore, the dsRNA might be introduced inversely into 

the RISC complex (Tomari et al., 2004).  

Finally, the effect of RNAi on a target mRNA or as a secondary effect on non-target 

mRNA can be visually observed and evaluated. In addition, a number of the molecular 

biological methods are also contemplated to confirm silencing effects by measuring 

transcript levels by e.g. RT-PCR and qRT-PCR analyzes or arrays and ELISA 

experiments. 

1.4. Overview of virus-induced gene silencing (VIGS) 
 

1.4.1 Development of the VIGS technology 
 

In addition to bacteria and fungi, viruses are the most frequently occurring pathogens in 

plants. However, the plant viruses are intracellular pathogens and possess a genome that 

can encapsidate and replicate only within the host cells. Plant viruses have been utilized 

for virus-induced gene silencing (VIGS) to produce rapid gene silencing phenotypes in 

several plant species. The term virus-induced gene silencing (VIGS) was first used by A. 

van Kammen in 1997, which described the phenomenon of plant recovery after virus 

infection (Gupta et al., 2014; Van Kammen, 1997). In the literature, the plant defense 

mechanism is referred to as VIGS only when the viruses naturally or artificially infected 

a plant to trigger RNAi. However, the term has been applied almost exclusively to the 

technique in which recombinant viruses have been used for "knock-down" experiments 

in the expression of endogenous genes (Baulcombe, 1999; Ruiz et al., 1998). 
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VIGS is an alternative and rapid method that can be used for the silencing of plant gene 

expression without generation of transgenic plants (Burgyán and Havelda, 2011; 

Ramegowda et al., 2014). It is a modern, molecular biological technique that exploits the 

advantages of RNAi-mediated antiviral defense mechanisms. VIGS has often been used 

in plants for the analysis of gene functions and adapted for high-throughput methods in 

functional genetics (Ramanna et al., 2013; Senthil-Kumar and Mysore, 2011c). To use 

VIGS, a short sequence of a plant gene is specifically cloned into a viral vector. The virus 

vector is transferred into R. radiobacter and then introduced into the host cells by 

rhizoinoculation in order to infect a young plant. After virus replication and local 

infection, the virus with the inserted sequence will spread through the whole plant. In a 

few weeks after inoculation, the natural defense mechanism of the plant can lead to the 

suppression of viral replication and also to a specific degradation of the mRNA of the 

endogenous plant gene (Benedito et al., 2004; Hileman et al., 2005). The viral siRNAs 

that are required for VIGS can come from many different sources. One of the most 

important source for siRNA is dsRNA, which is formed during the viral replication in the 

plant cell. The second source are the hairpin or sense (s) and antisense (as) constructs that 

have been incorporated into the viral background and introduced into the plant cell (Härtl 

et al., 2017; Voinnet, 2005). In addition, host-RNA-dependent RNA polymerases (RDR1, 

RDR2 and RDR6) are involved in some siRNA biosynthesis pathways, which is similar 

to the host endogenous siRNA pathway (Dunoyer et al., 2010; Wang et al., 2010).  

In principle, VIGS could be used for the analysis of gene functions in all plants, but most 

of the work so far was done on N. benthamiana. Over the past ten years, efficient VIGS 

has been successfully used and established for many dicotyledons and monocotyledons 

plants using various DNA- or RNA-virus-based vectors (Kant and Dasgupta, 2017; Mei 

et al., 2016; Scofield and Nelson, 2009; Wang et al., 2016). 

One of the first vectors based on Tobacco mosaic virus (TMV) was used to inhibit the 

biosynthesis pathway of carotenoids in N. benthamiana (Kumagai et al., 1995). Here, 

transcripts from a recombinant virus carrying a part of the sequence from the 

phytoene desaturase (pds) gene were prepared in vitro and inoculated into 

N. benthamiana for a successful silencing of the PDS. A further VIGS vector is based on 

Potato virus X (PVX) which was developed by Ruiz et al., (1998). Although this vector 

is more stable than the TMV-based vector, PVX has a more narrowly limited host 

spectrum as TMV (Ratcliff et al., 2001; Voinnet and Baulcombe, 1997). By developing 
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a VIGS vector based on Tobacco rattle virus (TRV) the host spectrum could be extended. 

Liu and colleagues (2002) demonstrated that the use of a recombinant TRV-based vector 

could produce an efficient gene silencing in tomato plants. Using this system, various 

genes like pds, ctr1 and ctr2 (constitutive triple response 1/2 genes) have been suppressed 

in tomato plants (Brigneti et al., 2004; Fantini and Giuliano, 2016; Zheng et al., 2017). 

In monocotyledonous plants, a VIGS vector was developed for silencing of the pds gene 

expression in barley and wheat (Liu et al., 2016). This vector based on the 

Barley stripe mosaic virus (BSMV) is one of the few vectors for VIGS in monocots 

(Burch-Smith et al., 2004). A VIGS vector based on the Tomato golden mosaic virus 

(TGMV) was used as the first DNA virus for successful silencing of a meristematic gene 

in N. benthamiana (Kjemtrup et al., 1998; Peele et al., 2001). This TGMV-vector also 

has a restricted host spectrum. A further vector based on a DNA virus was constructed in 

the background of Cabbage leaf curl virus (CaLCuV) and used for silencing of 

endogenous genes in A. thaliana (Turnage et al., 2002). VIGS vectors are also described 

in the literature from Pepper Huasteco yellow vein virus (PHYVV), 

African cassava mosaic virus (ACMV), the satellite (DNAβ) associated with 

Tomato yellow leaf curl China virus (TYLCCNV) and the satellite Tobacco mosaic virus 

(STMV) (Beyene et al., 2017; Carrillo-Tripp et al., 2006; Stanley et al., 2005). All these 

vectors have been developed for silencing gene expression in different plants which are 

often used in the investigation of host-pathogen interactions (Tiwari et al., 2017; Whitham 

et al., 2016b). Recently, several viruses have been modified to be used as VIGS vectors 

in various plant species, e.g. Apple latent spherical virus (ALSV) in various Prunus 

species (Kawai et al., 2016), Rice tungro bacilliform virus (RTBV) in rice (Kant and 

Dasgupta, 2017), Bean pod mottle virus (BPMV) in soybean (Whitham et al., 2016a), 

TRV in Spinacia oleracea L. (Lee et al., 2017) and Cucumber mosaic virus (CMV) in 

maize (Wang et al., 2016). 

1.4.2. Viral suppressors of RNA silencing (VSR) 
 

In the course of evolution, viruses have developed many properties and proteins in 

response to the PTGS, with this function of which it is possible to suppress the PTGS in 

different host plants (Ikegami et al., 2016; Luna et al., 2017). These proteins, referred to 

as viral suppressors of RNA silencing (VSR), act on the PTGS in various ways. Not only 

the development of the PTGS but also the local or systemic movement of the silencing 
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signal in the host plant are influenced by VSR (Jiang et al., 2012; Moissiard and Voinnet, 

2004). The VSRs target the most important elements of the RNAi to suppress them 

directly. For the suppression of RNAi, the VSRs can interact with and inhibit both the 

RISC complex and the enzymes of DNA methylation. In this process, the multifunctional 

viral proteins play the crucial role, e.g. the p14 protein of BNYVV and BSBMV, the p19 

of Tomato bushy stunt virus (TBSV), the HC-Pro of Potato virus Y (PVY) and the p1 of 

Rice Yellow mottle virus (RYMV), which influence and suppress the accumulation of 

siRNA in plant cells (Csorba et al., 2015; Flobinus et al., 2016; Gillet et al., 2013). Recent 

studies postulated that the p19 protein binds the siRNA and can create a new 

conformation that prevents the incorporation of the siRNA in RISC and thereby disabling 

the plant defense system (Kontra et al., 2016). 

Other proteins, such as the p38 of the Turnip crinkle virus (TCV), attack the defense 

system by binding the dsRNA and make it inaccessible to bind the Dicer or the AGO1 of 

the RISC and thus inhibit their cutting activity (Azevedo et al., 2010; Iki et al., 2017). 

The 2b protein of the CMV and the AC2 protein of ACMV are able to suppress the 

function of AGO proteins, which can prevent the endonucleolytic cleavage in viral RNAs 

(Dong et al., 2016; Du et al., 2014). 

Another example of proteins that attack the AGO protein and inhibit their ability to cut is 

the p1 protein from the Sweet potato mild mottle virus (SPMMV). P1 interacts with AGO1 

through glycine-tryptophan (GW) motifs and inhibits the mi/siRNA-programmed RISC 

activity (Machado et al., 2017). It has been shown that the conserved motif (GW / WG) 

located at the N-terminal half of p1 serves as a hook to bind to AGO proteins and is 

required for several RISC functions that play a crucial role in silencing system (Giner et 

al., 2010; Szabó et al., 2012). 

The activity of the p14 as silencing suppressor of BNYVV and BSBMV is associated 

with the reduction of the accumulation of primary and secondary siRNAs (Chiba et al., 

2013; Flobinus et al., 2016). The p14, the VSR of BNYVV and BSBMV is more efficient 

in the roots than in the leaves and also more efficient in the vascular tissue than in the 

mesophyll (Andika et al., 2012; Andika et al., 2016; Chiba et al., 2013). However, it is 

not yet known whether the reason for these efficiency differences in silencing suppression 

in different tissues is the p14 protein itself, or whether it is due to one of its so far unknown 

partners (Andika et al., 2005; Zhang et al., 2005). 
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Li and colleagues (2002) have shown that some of the animal viruses also have silencing 

suppressors, e.g. the protein B2 of the Flock house virus (FHV). The special feature of 

the B2 protein is that it can act as a silencing suppressor both in plant cells and in animal 

cells (Drosophila S2 cells) (Lu et al., 2005; Rao and Seo, 2017). The natural phenomenon 

has been artificially exploited for a long time in which the function of these effectors for 

PTGS suppression is used to improve the transient expression of transgenes (Csorba et 

al., 2015; Voinnet et al., 2003). 

 

1.4.3. Reporter genes for VIGS 

 

A reproducible silencing effect in VIGS experiments requires an optimal protocol for 

virus inoculation, stable infection rates and suitable plant growth conditions in the 

greenhouse (Burch-Smith et al., 2004; Senthil-Kumar and Mysore, 2011c). Studies have 

shown that various environmental factors, such as humidity, temperature and photoperiod 

influence the effectiveness and efficiency of VIGS in different plants like barley, tomato 

and A. thaliana (Bruun-Rasmussen et al., 2007; Fu et al., 2005; Padmanabhan and 

Dinesh-Kumar, 2009). In addition, inoculation methods, insert orientation, size and 

region of the insert play an important role in VIGS efficiency (Lacomme and Hrubikova, 

2003). For the optimization of variables within an experiment, it is necessary to find a 

reporter gene with a reproducible, clear silencing phenotype. Various genes have been 

tested, such as the H subunit of the magnesium chelatase (chlH), 

phytoene desaturase (pds), actin, chalcone synthase and the β7 subunit of the 20S 

proteasome (20S-β7), which cause in case of a down-regulation a visual silencing 

phenotype. For these reasons, they have been used as reporter genes for the development 

and optimization of VIGS vectors in a number of different plant species (Tab.1).  

Pds and chlH genes were most commonly used to test and to evaluate the VIGS efficacy 

(Hiriart et al., 2002; Holzberg et al., 2002; Kumagai et al., 1995; Ratcliff et al., 2001). 

Magnesium chelatase is an enzyme consisting of three components (ChlD, ChlI, and 

ChlH), that is associated with the chlorophyll biosynthesis pathway and required for 

inserting Mg2+ into protoporphyrin IX (Castelfranco and Jones, 1975; Walker and 

Weinstein, 1991). Phytoene desaturase (PDS) is the first enzyme in carotenoid 

biosynthesis that catalyzes the dehydrogenation (desaturation) from the colorless 

phytoene to the colored ζ-carotene in plants (Bartley and Scolnik, 1995; Garcia-Asua et 
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al., 1998; Grünewald et al., 2000). Carotenoids are color pigments that protect the 

chlorophyll in plants from photobleaching. Plants with ζ-carotene deficiency develop 

symptoms known as photobleaching, if they are exposed to light, cause of degradation of 

chlorophyll (Bartley and Scolnik, 1995; Norris et al., 1995). The silencing phenotype of 

pds as a reporter gene for VIGS varies only slightly depending on the test plants and the 

target tissues. In tomato, downregulation of pds renders plant leaves yellow and lead to 

lycopene-depleted fruits, whears in monocotyledonous plants symptoms are mostly 

restricted to narrow stripes parallel to leaf veins (Ding et al., 2006; Orzaez et al., 2009; 

Ruiz et al., 1998; Scofield et al., 2005). 

According to Ding et al. (2002), the PDS silencing effects disappear usually by the fourth 

systemically infected leaf, depending on the host plant. In a previous study it has been 

demonstrated that even before the photobleaching appears, a significant 65% reduction 

of the relative pds transcript level was seen. On the other hand, even after silencing 

disappeared after 4 weeks a 48% decrease of the pds mRNA was observed (Bruun-

Rasmussen et al., 2007). These studies underline the importance of molecular biology 

techniques to confirm and to verify the silencing phenotypes at the molecular level. 

Nowadays, numerous of molecular, biochemical and genetic techniques are available for 

this aim, such as real-time semiquantitative / quantitative reverse transcription PCR (qRT-

PCR), which could be used to measure transcript level of the target gene (Burch-Smith et 

al., 2004; Rotenberg et al., 2006). High performance liquid chromatography (HPLC) is 

another molecular technique that is used to determine the silencing efficiency of various 

reporter genes. HPLC can be used to separate the various substances as well as to identify 

and quantify the specific chemical compounds. Based on this principle, HPLC is used to 

confirm the silencing efficiency of PDS by measuring the amount of phytoene in the 

tissue of the infected plants (Holzberg et al., 2002).
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1.5. Aims of the study 
 

The aim of the investigation carried out within this work was to develop a new vector 

systems for establishing VIGS in sugar beet based on the Beet necrotic yellow vein virus 

(BNYVV) and Beet soil-borne mosaic virus (BSBMV). Infectious full-length cDNA 

clones are indispensable as a starting material for the methodical approach to develop a 

VIGS systems. Full-length cDNA clones of BNYVV (A-type) and BSBMV under control 

of the 35S promoter of Cauliflower mosaic virus (CaMV) in a binary vector (pDIVA) for 

rhizobium-mediated infection have been successfully generated by an isothermal in vitro 

recombination (Manuscript 1). In order to estimate possible interaction between BNYVV 

and BSBMV during mixed infection, both cDNA clones should be used to create 

BNYVV/BSBMV reassortants in N. benthamiana (Manuscript 1). 

Additionally, various reporter genes such as monomeric red fluorescent protein (mrfp) or 

green fluorescent protein (gfp) should be cloned into the existing full-length cDNA clones 

of the RNA2 of BNYVV and BSBMV, respectively (Manuscript 2). After 

rhizoinoculation of plants, the presence of the modified RNAs in the primary or 

systemically infected plant parts can be detected indirectly by fluorescence microscopy. 

This is to show the ability of RNA2 modification of BNYVV or BSBMV (insertion of 

foreign genes) to impact particle formation and the viral protein function such as 

replication, movement and symptom induction. Furthermore, the fluorescent labeled 

viruses (BNYVV and BSBMV) were used to study the interaction between both viruses 

as closely related viruses and two unrelated viruses, namely Tobacco rattle virus (TRV) 

and Potato virus X (PVX), in co-infection and super-infection experiments (Manuscript 

2).  

The replication and propagation of altered RNAs are the prerequisite for an efficient 

VIGS system. For this approach, parts of both phytoene desaturase (pds) gene from 

N. benthamiana and magnesium chelatase (chlH) gene from Nicotiana tabacum were 

amplified as model genes for the silencing experiments. The generated fragments were 

integrated by restriction enzyme digest and ligation into the modified BNYVV and 

BSBMV RNA2. N. benthamiana plants that were inoculated with pds and chlH fragments 

in the background of BNYVV and BSBMV RNA2 displayed an obvious silencing 

phenotype at 26 dpi (Manuscript 3).  
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2.1. Abstract 
 

Two members of the Benyviridae family and genus Benyvirus, 

Beet soil- borne mosaic virus (BSBMV) and Beet necrotic yellow vein virus (BNYVV), 

possess identical genome organization, host range and high sequence similarity; they 

infect Beta vulgaris with variable symptom expression. In the US, mixed infections are 

described with limited information about viral interactions. Vectors suitable for 

agroinoculation of all genome components of both viruses were constructed by isothermal 

in vitro recombination. All 35S promoter-driven cDNA clones allowed production of 

recombinant viruses competent for Nicotiana benthamiana and Beta macrocarpa 

systemic infection and Polymyxa betae transmission and compared to available BNYVV 

B-type clone.  BNYVV and BSBMV RNA1+2 reassortants were viable and capable of 

viral long-distance movement in N. benthamiana with symptoms dependent on the 

BNYVV type. Small genomic RNAs were exchangeable and moved long-distance in 

B. macrocarpa species. These infectious clones represent a powerful tool for the 

identification of specific molecular host-pathogen determinants 

2.2. Introduction 
 

Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV) 

are both members of the genus Benyvirus in the family Benyviridae with BNYVV 

representing the type species (Gilmer and Ratti, 2012, 2017). Both virus species mainly 

infect plants of the family Amaranthaceae (Heidel et al., 1997). BNYVV is well-known 

as the causative agent of rhizomania with worldwide distribution in nearly all sugar beet-

growing areas (Peltier et al., 2008). In contrast, BSBMV is currently restricted to the 

United States (Heidel et al., 1997; Lee et al., 2001). BNYVV and BSBMV are both 

vectored by the soil-borne Plasmodiophoromycete Polymyxa betae Keskin where viral 

particles persist in the protozoa resting spores and therefore in the soil for decades (Keskin 

1964; Tamada and Kondo 2013). Although representing closely related species sharing 

the similar host range (Heidel et al., 1997) and vector species, the symptoms in the natural 

host sugar beet (Beta vulgaris) differ considerably. In the field BSBMV infected sugar 

beet roots appear symptomless, whereas leaves displays light yellow vein banding, 

mottling or mosaic patterns and growth disorders (Heidel and Rush, 1994; Rush and 

Heidel, 1995). In contrast BNYVV infections are mainly confined to the root system that 

displays extensive proliferation of necrotizing secondary rootlets, a stunted tap root and 
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a brownish discolouration of the vascular system. The leaves in upright position only 

rarely show symptoms like vein yellowing and necrotic leaf tissue (reviewed in Peltier et 

al., 2008). The impact of BNYVV on root weight is higher for BNYVV than BSBMV 

after mechanical inoculation (Heidel et al., 1997) and corresponds to higher yield losses 

with BNYVV compared to BSBMV (Wisler et al., 2003). Remarkably, Rz1 gene used for 

rhizomania control has no effect on BSBMV infection (Wisler et al., 2003). Among the 

three major BNYVV subgroups (namely A, B and P), B-type is so far limited to Central 

and Northern Europe, whereas A-type is present worldwide (Koenig and Lennefors, 

2000). Specific P25 amino acid residue variations, required for Rz1 resistance-breaking 

abilities in sugar beet have only been detected in A-type isolates (Bornemann et al., 2015; 

Koenig et al., 2008; Koenig et al., 2009; Liu and Lewellen, 2007; Pferdmenges et al., 

2008). Geographic genetic variability in BSBMV has not been analysed yet. 

Benyviruses represent multipartite single-stranded positive-sense RNA viruses and 

consist of four capped, polyadenylated RNA segments that are separately encapsidated in 

rod-shaped particles (reviewed in Peltier et al., 2008). Some isolates of BNYVV possess 

an additional fifth RNA species (Tamada et al., 1996). While BNYVV and BSBMV 

display a similar genome organisation, sufficient sequences differences allow 

classification as distinct species (Lee et al., 2001; Gilmer and Ratti, 2012, 2017). RNA1 

and RNA2 carry genes required for replication, movement, silencing suppression, 

packaging and vector transmission (Lee et al., 2001; Peltier et al., 2008). BNYVV 

RNA1+2 segments alone are sufficient for systemic infection in the experimental host 

Nicotiana benthamiana (Rahim et al., 2007). The single 237K open reading frame (ORF) 

on RNA1 produces a polypeptide possessing methyltransferase (MetT), helicase (Hel), 

papain-like protease (Prot) and RNA-dependent RNA polymerase (RdRp) motifs. The six 

ORFs of RNA2 encode the coat protein (CP) which leaky UAG stop codon allows the 

translation of the readthrough protein (RT) associated with vector transmission (Tamada 

and Kusume, 1991). The next three overlapping ORFs form a cluster named triple gene 

block (TGB1-3) essential for cell-to-cell movement (Gilmer et al., 1992, Verchot-Lubicz 

et al 2010). The 3’-proximal ORF encodes for a 14 kDa cysteine-rich protein with viral 

suppressor of RNA silencing (VSR) activity (Chiba et al., 2013; Dunoyer et al., 2002). 

Nearly all the molecular biology of Benyvirus RNA1 and RNA2 has been investigated 

on BNYVV. However, the high sequence similarity of the different proteins encoded by 

the viruses suggests functional similarity of BSBMV (Lee et al., 2001). BNYVV RNA3 

has been described to be involved in viral pathogenicity and required for long distance 
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movement in Beta macrocarpa (Lauber et al., 1998; Peltier et al., 2012, Flobinus et al 

2016). It encodes the P25 protein responsible for virus pathogenicity and the rhizomania 

disease phenotype in sugar beets (Chiba et al., 2008; Koenig et al., 1991). BSBMV RNA3 

is also involved in long-distance movement and encodes a P29 protein that shows 23% 

sequence similarity compared to BNYVV P25 and a much higher (43%) similarity to 

BNYVV RNA5-encoded P26 (Ratti et al., 2009). Both RNA4-encoded BNYVV P31 and 

BSBMV P32 proteins are responsible for vector transmission (D`Alonzo et al., 2012; 

Tamada and Abe, 1989). Sequence similarity suggests that P32 might be involved in 

symptom expression and suppression of RNA silencing that has been evidenced for P31 

only in N. benthamiana roots (Rahim et al., 2007). BSBMV smaller RNAs species, 

namely RNA 3 and RNA4, are replicated and encapsidated by the BNYVV housekeeping 

machinery and complement the corresponding cognate RNA functions in trans 

(D`Alonzo et al., 2012; Ratti et al., 2009). The opposite situation of BNYVV smaller 

RNA replication by BSBMV RNA1+2 has not been reported yet. 

To understand functional differences in molecular biology, pathogenicity mechanisms, 

symptom expression as well as interaction with the host and between viral species, a 

reverse genetic system represents a prerequisite. For BNYVV B-type, infectious cDNA 

clones for agroinoculation for RNA1-4 are available (Delbianco et al., 2013); however, 

A-type and BSBMV cDNA infectious clones were lacking. Initial construction of 

BNYVV B-type infectious clone for generation of infectious in vitro transcripts of RNA2 

(Ouillet et al., 1989), was associated with stability or toxicity problems in 

Escherichia coli. Therefore Delbianco et al. (2013) successfully transformed ligated 

plasmids from reamplified BNYVV B-type cDNA and and binary expression vectors into 

Rhizobium radiobacter. 

The aim of this study was to generate infectious BSBMV and BNYVV A-type cDNA 

clones. In order to avoid possible cloning problems, the standard restriction enzyme based 

cloning was replaced with a one-step isothermal in vitro recombination assembly named 

Gibson assembly (GA) (Gibson et al., 2009). Recently, this method was applied for the 

first time for the generation of an infectious full-length clone of tomato blistering mosaic 

virus (ToBMV) (Blawid and Nagata, 2015). The clones obtained were characterized for 

their ability to reproduce the entire infection cycle including systemic colonisation, 

symptom expression in different host plants and vector transmission to demonstrate major 

functionality of the virus encoded proteins. We applied this approach on BSBMV and A-
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type BNYVV to extend the availability of cDNA clones and study the biological 

properties of standardized isolates and artificial reassortants. Viral accumulation, 

symptom expression and long-distance movement were assayed in N. benthamiana and 

B. macrocarpa to demonstrate the exchangeability of genome components between 

species. 

2.3. Materials and methods 
 

2.3.1. Virus and plant material 
 

A BSBMV isolate (BSBMV-CA) from California USA, originally isolated by H.-Y. Liu 

(United States Department of Agriculture, Salinas, CA) and a BNYVV A-type isolate 

BNYVV-Yu2 (Kruse et al., 1994), (Leibniz Institute DSMZ- German Collection of 

Microorganisms and Cell Cultures, Braunschweig, Germany PV-0649) originated from 

former Yugoslavia were provided by DSMZ. As BNYVV-Yu2 did not allow RNA4 

amplification, roots from sugar beet plants grown in BNYVV A-type containing soil from 

Rovigo (Italy) were used as source for RNA4. 

The benyviruses hosts C. quinoa (local lesion), B. macrocarpa Guss., B. vulgaris ssp. 

vulgaris (B. vulgaris) susceptible genotype (without Rz1 or Rz2 resistance) and 

N. benthamiana served as host plants for the experimental work under greenhouse 

conditions (24°C/14h 18°C/10h).  

2.3.2. Virus detection  
 

Plant total RNA extracts were prepared using the RNeasy Plant Mini Kit (Qiagen) 

according to the manufacturer’s instructions. For each genome fragment of BNYVV and 

BSBMV, respectively, specific primers were developed (Table S1, see Supporting 

Information) to allow RT-PCR detection. The cDNA synthesis was performed using 

RevertAid H Minus Reverse transcriptase (Thermo Fisher Scientific) and specific 

antisense primers. The PCR reaction was conducted with Phusion Flash High-Fidelity 

PCR Master Mix (Thermo Fisher Scientific) according to the manufacturer´s instruction. 

PCR products were visualized following agarose gel electrophoresis. 

BNYVV genomic RNA detection by Northern hybridization was performed as previously 

described (Link et al., 2005; Schmidlin et al., 2005) while BSBMV RNAs 1 and 2 were 
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detected using 32P labeled RNA probes corresponding to position 4747-6549 of RNA1 

and 2311-3774 of RNA2.  

Additionally, a specific enzyme-linked immunosorbent assay (ELISA) of infected 

N. benthamiana leaves was performed to determine the virus content as previously 

described (Pferdmenges et al., 2008). 

2.3.3. BNYVV B-type full-length clones 
 

The BNYVV B-type full-length clones (RNA1-4) for agroinoculation have been 

described previously (Delbianco et al., 2013). 

2.3.4. Generation of BSBMV and BNYVV A-type full-length clones  
 

For generation of full-length cDNA clones of both benyvirus species, total RNA 

preparations (RNeasy Plant Mini Kit, Qiagen) and dsRNA preparations (Darissa et al., 

2010) from C. quinoa virus-induced local lesions were produced. Gibson assembly was 

applied as in vitro recombination method for the cloning of full-length cDNA of BSBMV 

and BNYVV A-type RNA1-4 into a small binary vector. For the full-length clones 

construction the plasmid pDIVA was used (Acc. No. KX665539), which is based on the 

mini binary vector pCB (Xiang et al., 1999), supplemented with a 

Cauliflower mosaic virus (CaMV) 35S promoter followed by a Hepatitis delta virus 

(HDV) ribozyme and the polyadenylation signal of CaMV. All fragments (viral cDNA 

inserts and vector fragments) were generated by PCR amplification using Phusion Flash 

High-Fidelity PCR Master Mix (Thermo Fisher Scientific) following the manufacturer´s 

instructions. The vector plasmid was linearized by means of PCR amplification with a 

sense primer annealing to the 5´-end of the HDV ribozyme and an antisense primer 

annealing to the exact end of 35S promoter sequence. For successful GA the following 

sequence overlaps were generated during PCR. The 5´-end of each viral genome fragment 

was supplied with 25 nucleotides overlap to the exact 35S end. If multiple viral cDNA 

fragments had to be produced, a ca. 30-50 nt overlap between fragments was generated. 

The 3´-viral cDNA end was supplied with 18 nt overlap to the 5´-end of the HDV 

ribozyme sequence. The following Genbank nucleotide sequences represented the basis 

for the primer design: BSBMV RNA1 (6 683 nt, NC_003506.1), RNA2 (4 615 nt, 

NC_003503.1), RNA3 (1 720 nt, NC_003507.1), RNA4 (1 730 nt, FJ424610.2), BNYVV 

RNA1 (6 746 nt, NC_003514.1), RNA2 (4 609 nt, NC_003515.1), RNA3 (1 774 nt, 
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NC_003516.1), RNA4 (1 465 nt, NC_003517.1). Viral cDNA was generated with the 

appropriate 3´-end antisense primer for each genome fragment (including the overlap) 

with RevertAid H Minus Reverse Transcriptase. Primers for amplification of the different 

viral genome components are displayed in Table S1 (see Supporting Information). All 

PCR products were gel-purified with NucleoSpin Gel and PCR Clean-up kit (Macherey-

Nagel).  

The GA was performed as described by Gibson et al. (2009). In vitro recombination 

products were transformed into chemical competent E. coli cells (strain DH5α) (Inoue et 

al., 1990). Viral inserts were sequenced by commercial capillary Sanger sequencing 

(Eurofins MWG Operon, Ebersberg, Germany and Seqlab, Goettingen, Germany) with 

specific primers. Resulting sequences were assembled with the Molecular Evolutionary 

Genetics Analysis (Tamura et al., 2013) software. Clustal Omega of the European 

Molecular Biology Laboratory-European Bioinformatics Institute was used to create a 

multiple sequence alignment and to check for sequence similarity with NCBI published 

genome sequences (http://www.ebi.ac.uk/Tools/msa/clustalo/). Subsequently all 

plasmids were electroporated into R. radiobacter strain GV2260 (pGV2260). Plant 

infection was performed by means of agroinoculation according to Voinnet et al. (1998) 

with an OD600 = 0.5 for B. macrocarpa infection at BBCH12 stage. Fourteen-day-old 

N. benthamiana were agroinfiltrated with an OD600 of 0.1. Lower bacterial concentration 

was applied for N. benthamiana due to necrosis induction of suspensions with 

OD600 = 0.5. R. radiobacter cultures carrying the different clones were mixed in equal 

amounts.  

Leaves of C. quinoa were mechanically rub-inoculated with plant sap (1/5 diluted in 0.05 

M phosphate buffer) from systemically agroinfected N. benthamiana plants. Besides 

agroinoculation, vortex-inoculation was used to infect B. vulgaris seedlings (BBCH 10) 

as described by Bornemann and Varrelmann (2011).  

 

2.3.5. Electron microscopy 
 

To obtain evidence for particle formation, transmission electron microscopy (TEM) was 

performed. N. benthamiana leaf tissue, systemically infected with BSBMV and BNYVV 

RNA1-4, respectively, initiated from agroinoculation of lower leaves was used for 

preparation of plant sap that was applied for TEM specimen preparation and visualisation 
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(Milne and Lesemann, 1984). Particle decoration with specific antisera was performed at 

Julius-Kühn-Institute, Institute for Epidemiology and Pathogen Diagnostics 

(Braunschweig, Germany). 

2.3.6. Polymyxa betae transmission   
 

The BSBMV and BNYVV full-length clones derived from RNA1-4, respectively, were 

used for agroinoculation of N. benthamiana and leaf tissue sap was used for mechanical 

inoculation of 42 sugar beet seedlings. Seven plants per pot were planted into virus-free 

field soil (six pots in total) that contained P. betae according to Bornemann and 

Varrelmann (2011). After growth for five weeks, plants and roots were removed and new 

seedlings were planted into the virus loaded soil for another period of five weeks. Finally, 

lateral roots were harvested and virus infection was assayed by means of RT-PCR with 

specific primers for RNA3 and RNA4. 

2.4. Results 
 

2.4.1. Generation of full-length cDNA clones of BSBMV and BNYVV A-type 

for agroinoculation 
 

To generate full-length cDNA clones BSBMV RNA1 (6,683 nt) was converted into 

cDNA and PCR amplified in three overlapping products with size ranging from 2,255 to 

2,275 nt. Two overlapping PCR fragments (from 908 to 3,879 nt) were generated for 

BSBMV RNA2 (4,615 nt), A-type BNYVV RNA1 (6,746 nt), RNA2 (4,609 nt), RNA3 

(1,774 nt), whereas the smaller BSBMV RNAs 3 (1,720 nt), 4 (1,730 nt) and BNYVV 

RNA4 (1,465 nt) were RT-PCR amplified in one fragment each. Following GA in vitro 

recombination into pDIVA (Acc. No. KX665539), the presence of viral cDNA inserts 

within plasmids was verified by means of appropriate restriction enzyme digestions and 

cDNA inserts were sequenced. The 35S-promoter cDNA and Hepatitis delta virus (HDV) 

ribozyme junction sequences were particularly verified. Sequencing results showed that 

GA had worked precisely, without introducing any deletions or insertions between viral 

cDNA and regulatory sequences. After in silico assembly of the complete viral cDNA 

inserts the following BSBMV genome sizes (excluding polyA-tail) were obtained: 

BSBMV RNA1 6 674 nt, RNA2 4 615 nt, RNA3 1 720 nt and RNA4 1 729 nt. For 

BNYVV A-type the different RNA components displayed the following lengths: RNA1 

6 746 nt, RNA2 4 588 nt, RNA3 1 775 nt and RNA4 1 470 nt. Viral sequences were 
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submitted to Genbank (Acc. No. KX352033, KX352170, KX352171, KX352034, 

KX665536, KX665537, KX665538 and MF476800).  

To gain knowledge about degree of similarity against published sequences of the 

characterized BSBMV isolates MRM06 (originating from Texas, USA; D’Alonzo et al., 

unpublished; D´Alonzo et al., 2012; Ratti et al., 2009) and EA (originating from 

Colorado, USA; Lee et al., 2001), sequence comparisons at nucleotide and amino acid 

levels were performed (Table S2 and Table S3, see Supporting Information). RNA4 

described by Lee et al. (2001) represents a non-functional deleted form of genomic 

species deficient for vector transmission (D’Alonzo et al 2012). Therefore, this sequence 

(Acc. no. NC_003508.1) was omitted. Sequence similarity of isolate BSBMV-CA at 

nucleotide level over all RNA components was closer to isolate MRM06 than EA 

suggesting a close relation between BSBMV-CA and –MRM06. (Table S2). The amino 

acid sequence similarities between isolate BSBMV-CA and MRM06 was striking for all 

ORF except for the RNA3 encoded P29 and RNA4 encoded 32K protein, respectively. A 

100% similarity was found for all RNA2 encoded proteins and 99.95% similarity was 

retrieved for the 239K polyprotein. Furthermore, 99.48% and 99.22% similarities were 

retrieved for RNA4-encoded P32 and RNA3-encoded P29, respectively. CA and EA 

isolates differ in the RNA1-encoded P239 and RNA2-encoded RT proteins (97.68% and 

99.71% similarity, respectively; Table S3). 

The genome sequence of the Japanese A-type isolate (BNYVV-S) is now supplemented 

with the nucleotide sequence of BNYVV Yu2 isolate produced in this work (Saito et al., 

1996). We determined the relatedness of these two geographically distant A-type strains 

and compared them to European B-type and P-type strains. The complete genome 

sequence (RNA1-3) of Yu2 and RNA4 from Italy was compared with those of major A- 

(BNYVV-S), B- (BNYVV-B; isolate F2/13) and P-type (BNYVV-Pithiviers) sequences 

(Bouzoubaa et al., 1985; Bouzoubaa et al., 1986; Bouzoubaa et al., 1987; Gilmer et al., 

unpublished; Klein et al., 2007; Schirmer and Gilmer, unpublished). The RNA1, -2 and -

3 highest nucleotide sequence homologies (99.41%; 98.69% and 98.76, respectively) 

were found between Yu2 and Pithiviers isolates while RNA4 was closer to isolate F2 with 

99.85% similarity (Table S4). At the amino acid level, homologies between the two A-

types were high for RNA1+2 encoded proteins (237K 99.38%, 21K 100%, 75K 98.39%, 

42K 99.74%, 13K 98.31%, 15K 98.48%, 14K 95.42%) and for proteins encoded by 

smaller genomic RNAs (25K 94.52% and 31K 96.81%). Only RNA2-encoded 14K 
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protein was identical for Yu2 and Pithiviers. The 42K sequences were similar among 

isolates (99.74%). Overall, the B-type isolate was the most distant except for RNA4-

encoded 31K protein (99.65%). The remaining proteins encoded by RNAs 3 and 4 

displayed lower similarity versus isolate S and Pithiviers, respectively (Table S5, see 

Supporting Information). To summarize, the ORF sequence comparison confirmed the 

closer relationship between the two A-type isolates compared to the P-type isolate. 

2.4.2. Proof of infectivity  
 

To obtain evidence that cDNA clones of both viral species are able to generate in vivo 

transcripts that carry out a complete infection cycle, each cDNA clone was transformed 

into Rhizobium radiobacter (syn. Agrobacterium tumefaciens) (GV2260) and 

agrobacterial clones harbouring RNA1-4 cDNA of each species were mixed and 

agroinfiltrated into leaf tissue of known host plants N. benthamiana, 

Chenopodium quinoa, B. macrocarpa and B. vulgaris. In N. benthamiana BSBMV 

RNA1-4 cDNA clones produced systemic symptoms of chlorotic vein banding, yellow 

blotches and leaf crinkling 12 to 16 days post-infiltration (dpi) (Fig. 1a). Necrosis 

appeared 22 dpi. The same approach performed with BNYVV A-type RNA1-4 cDNA 

clones led to systemic infection with deviating symptoms consisting of light yellow 

chlorosis that appeared delayed at 20-22 dpi (Fig.1b). 

 

 

  

Fig. 1 Symptom expression on Nicotiana benthamiana systemically infected leaves 

obtained after agroinoculation of (a) BSBMV cDNA clones RNA1-4 and (b) BNYVV 

cDNA clones RNA1-4 compared to (c) mock-inoculated healthy control at 22 dpi. 
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The experimental Benyvirus local lesion host C. quinoa turned out to be resistant towards 

agroinoculation (data not shown). Therefore, sap from systemically infected tissues 

issued of agroinoculated N. benthamiana was used for rub-inoculations. Both viruses 

induced typical species specific local lesions at 7-10 dpi with BSBMV lesions developing 

to necrotic spots quite rapidly comparable to wild-type viruses (data not shown). 

Agroinoculation of B. macrocarpa leaves with cDNA clones (RNA1-4) of both viruses 

initially resulted in local lesion formation at 6-9 dpi inside the infiltrated patch (data not 

shown). Systemic spread and symptoms development occurred at 25-33 dpi (BSBMV) 

and 19-22 dpi (BNYVV), respectively (Fig. 7, c, h, see below). BSBMV or BNYVV 

agroinoculation of B. vulgaris leaf tissue of three weeks old plants (BBCH 12) resulted 

in local lesions formation inside the infiltrated patch at 13 and 18 dpi, respectively (data 

not shown). Lesions increased in size and yellow blotches developed at 25 dpi, spreading 

to leaf veins, indicative for slow basipetal movement (data not shown). However systemic 

spread associated with virus symptoms in newly emerging leaves was not observed with 

any of the two viruses. This observation was in accordance with mechanical leaf 

inoculation of the wild-type viruses (data not shown). Additionally, variation of 

agroinoculation methods like vacuum-infiltration, root-dipping or vortex-inoculation of 

B. vulgaris roots with A. tumefaciens suspensions did not result in development of 

systemic infection (data not shown). To analyse if missing an effective root infection by 

agrobacteria was responsible for this absence of systemic infectivity, vortex-inoculation 

of 12 days old seedlings was applied according to Bornemann and Varrelmann (2011) 

using sap from C. quinoa local lesions obtained as described above. Following this 

approach, first systemic viral symptoms were observed on newly emerging leaves at 

35 dpi with cDNA derived BSBMV, 26 dpi with wild-type BSBMV, 30 dpi with cDNA 

derived BNYVV and 26 dpi with wild-type BNYVV (Fig. 2). Both cDNA derived (Fig. 

2a) and wild-type (Fig. 2b) BSBMV inocula induced yellow blotches and bands. Typical 

necrotic yellow veins and chlorotic parenchymatic leaf tissue were observed with cDNA 

derived (Fig. 2c) or wild-type BNYVV (Fig. 2d). Viral accumulation within B. vulgaris 

lateral roots was assayed using species-specific antisera and ELISA based virus detection. 

Mean absorbance (A405nm) values were similar between cDNA derived and wild-type 

virus (0.40 vs 0.44 for BSBMV and 1.18 vs 1.46 for BNYVV). To prove the presence of 

replicating viral RNAs transcribed from the cDNA clones, total RNA was extracted from 

systemically infected leaf tissue of N. benthamiana, B. macrocarpa (agroinoculated) and 

B. vulgaris (vortex-inoculated), displaying clear viral symptoms. RT-PCR with specific 
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primers detected all BSBMV or BNYVV RNA-components according to infiltrated or 

inoculated combinations. 

 

Fig. 2 Systemic symptom expression on Beta vulgaris systemically infected leaves 

produced after mechanical root vortex-inoculation with plant sap from C. quinoa local 

lesions infected with (a) BSBMV cDNA clones RNA1-4, (b) wild-type BSBMV, (c) 

BNYVV cDNA clones RNA14 and (d) wild-type BNYVV compared to (e) healthy 

control at 48 dpi. 

2.4.3. Electron microscopy 
 

N. benthamiana leaf tissues, systemically infected following agroinoculation of BSBMV 

and BNYVV, were used for negative contrast transmission electron microscopy (TEM). 

Rod shaped viral particles of varying lengths displaying a central core were observed 

from both samples (Fig. 3). Clear decoration was observed when specimens were treated 

with specific antisera supporting that particles observed indeed represented virions of 

BNYVV and BSBMV origin.  

 

 

Fig. 3 (a) Transmission electron microscopy (TEM) of Beet soil-borne mosaic virus 

(BSBMV) and (c) Beet necrotic yellow vein virus (BNYVV) particles from systemically 

infected N. benthamiana leaf tissue and (b) BSBMV and (d) BNYVV particles, 

respectively, decorated with virus specific antisera. Bar represents 100nm. 
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2.4.4. Polymyxa betae transmission of recombinant viruses 
 

Having shown the abilities of BSBMV and BNYVV cDNA clones to initiate virus 

replication, followed by cell-to-cell and long distance movement as well as particle 

assembly, we verified their ability to be vectored by P. betae. To serve as source for the 

transmission, N. benthamiana plants were agroinoculated with the full-length clone 

RNA1-4 and sap used for sugar beet mechanical vortex inoculation. Plants displaying 

systemic symptoms were transplanted into the vector-containing soil to allow P. betae 

virus loading from rootlets. Composite root samples from all source plants in each pot 

were ELISA-tested. BSBMV and BNYVV were detected in five out of six and six out of 

six pots, respectively (data not shown). Bait plants were subsequently grown in the loaded 

soil. RT–PCR confirmed the efficient transmission of BSBMV (4/6) and A-type BNYVV 

(4/7). 

2.4.5. Viability of different BNYVV and BSBMV RNA1+2 reassortants in 

N. benthamiana 
 

Previous work evidenced the exchangeability of small genomic RNA3+4 of BSBMV in 

B-type BNYVV RNA1+2 background, suggesting possible interaction of both viral 

species during mixed infection (D`Alonzo et al., 2012; Ratti et al., 2009). We aimed to 

test for viability of RNA1+2 reassortants of the two viral species in N. benthamiana to 

assess the possibility for the production of reassortants during natural infection. As A 

(BNa) and B-type (BNb) BNYVV differ substantially, we used both cDNA clones to 

produce BNYVV/BSBMV reassortants. To simplify the designation, we summarized the 

viral species by two capital followed if required by a lower case designating A or B-type 

such as exemplified: BNa1BS2 corresponds to A-type BNYVV RNA1 inoculated in the 

presence of BSBMV RNA2, while BS1BN2b stands for BSBMV RNA1 inoculated in 

the presence of B-type BNYVV RNA2. N. benthamiana symptoms produced by the 

inoculation of BS12 and BNa12 were undistinguishable from those produced after the 

inoculation of the all set of BSBMV and BNYVV RNAs suggesting that the smaller 

genomic RNA species did not significantly affect the systemic movement and symptom 

induction in this experimental host (compare Fig. 1a and 1b to Fig. 4a and 4b). BNa1BS2, 

BNb1BS2 and BS1BNb2 combinations were able to systemically infect N. benthamiana 

(9/9; 7/9 and 9/9 plants inoculated) (Fig. 4c, 4f, 4g and Table 1). However, symptoms 

appeared delayed and were less pronounced when compared to the natural RNA1+2 
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combination of each species (BNa12, BNb12 and BS12). BNb1BS2 did not result in 

visible symptoms while BS1BNb2 displayed severe necrosis 21-23 dpi (Fig. 4 and Table 

1).  

 

Fig. 4 Systemic symptom expression on N. benthamiana systemically infected leaves at 

17 days post agroinoculation of (a) BSBMV cDNA clones RNA1-2 (BS12), (b) BNYVV 

A-type cDNA clones RNA1-2 (BNa12) and reassortants consisting of (c) BNYVV 

RNA1+BSBMV RNA2 cDNA clones (BNa1BS2) and (d) BSBMV RNA1+BNYVV 

RNA2 cDNA clones (BS1BNa2), (e) BNYVV B-type cDNA clones RNA1-2 (BNb12) 

and reassortants consisting of (f) BNYVV B-type RNA1+BSBMV RNA2 cDNA clones 

(BNb1BS2) and (g) BSBMV RNA1+BNYVV B-type RNA2 cDNA clones (BS1BNb2)  

compared to (h) healthy control. 

 

BNa12, BNb12 and BS12 infections appeared systemic 12-16 dpi while 

pseurorecombinants containing A-type BNYVV RNA species produced mild symptoms 

16-23 dpi (BNa1BS2) and 23-29 dpi (BS1BNa2). Only one plant was systemically 

infected with BS1BNa2 and displayed faint systemic symptoms 23-29 dpi including rare 

occurrence of mild yellow veins. BNa1BS2 symptoms were similar but less pronounced 

to BS12. Leaf tissues were harvested at 29 dpi for ELISA based detection of BSBMV and 

BNYVV (Table 1). High ELISA values were obtained for all plants displaying systemic 

symptoms as well as some symptomless plants inoculated by BNb12 and BN1bBS2 
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combinations. Symptomless plants inoculated with BS1BNa2 produced ELISA values 

similar to the healthy control. BS12, BNa1BS2 and BNb1BS2 resulted in mean ELISA 

absorbance (A405nm) values of 0.41, 0.43 and 0.40, respectively, when assayed with 

BSBMV specific antiserum. When a BNYVV specific antibody was used, mean values 

of 0.91 (BNa12), 0.94 (BNb12), 0.83 (BS1BNa2) and 0.86 (BS1BNb2) were obtained. 

 

Table 1. Occurrence of local and systemic symptoms in Nicotiana benthamiana, systemic 

infection rate and ELISA values after agroinoculation of BSBMV and BNYVV RNA1+2 

(A or B-type) full-length clones compared to RNA1+2 BSBMV/BNYVV reassortants 

(see text for nomenclature). * only one plant was infected 

Full-
length 
clone 

Symptom 
appearance (dpi) 

Efficiency of 
systemic 

movement 
(%) 

ELISA 
values 

(average) 
Systemic symptoms 

Local Systemic 

BS12 4-6 12-16 100 (9/9) 0.41 
Chlorotic veins, leaf 

crinkling  
BNa12 4-6 12-16 100 (9/9) 0.91 Light yellow chlorosis 

BNb12 4-6 12-16 100 (9/9) 0.94 
Mild yellowing/No 

symptoms 

BNa1BS2 4-6 16-23 100 (9/9) 0.43 
Chlorotic veins, leaf 

crinkling 
BS1BNa2 4-6 23-29 11,1 (1/9) 0.83* Faint leaf crinkling 

BNb1BS2 6-7 26-28 77.7 (7/9) 0.40 
Mild yellowing/No 

symptoms 

BS1BNb2 6-7 21-23 100 (9/9) 0.86 
Necrotic veins, leaf 

crinkling 

 

 

2.4.6. Influence of different RNA components on local lesion expression in 

C. quinoa 

Sap from systemic leaves of N. benthamiana inoculated with BNa12, BNb12, BS12, 

BNa1BS2, BS1BNa2, BNb1BS2 and BS1BNb2 was applied for rub-inoculation of 

C. quinoa leaves and lesions appeared at 7 dpi (Fig. 5). BNa12 and BNb12 lesions were 

faint whereas BS12 lesions quickly developed necrosis. Lesions produced by reassortants 

BNa1BS2 (Fig. 5 c) were comparable to BS12 whereas BNb1BS2 (Fig. 5 f) displayed a 

more faint and BS1BNb2 (Fig. 5 g) showed necrotic appearance. Interestingly, BS1BNa2 

sap from infiltrated leaves applied for rub-inoculation of C. quinoa leaves did not produce 
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local lesions (Fig. 5 d). There was no consistent specific RNA component effect on local 

lesion phenotype formation. 

 

Fig. 5 Local lesions in C. quinoa inoculated leaves (7 dpi) obtained by rub-inoculation of 

sap from N. benthamiana leaves infiltrated by (a) BS12, (b) BNa12, (c) BNa1BS2, (d) 

BS1BNa2, (e) BNb12, (f) BNb1BS2, (g) BS1BNb2, (h) healthy. Bars represent 5 mm. 

 

 

2.4.7. Influence of different RNA components on viral RNA accumulation in 

C. quinoa 
 

To evidence the effective replication of reassortants and find indications for an RNA 

species effect, lesions derived from BS12, BNb12 and corresponding reassortant infection 

were individually (5 each) collected for RNA extraction and northern blot analysis using 

BNYVV and BSBMV RNA species specific probes (Flobinus et al., 2016). ImageJ 

software (Schneider et al., 2012) was used to quantify the accumulation of viral RNAs 

within each local lesion with was normalized to the RNA loading (ribosomal RNAs). 

Image processing highlighted a higher accumulation of both genomic RNAs in BNb1BS2 

reassortants when compared to BS1BNb2 and BNb12 or BS12 combinations (Fig. 6).  
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Fig. 6 Northern blot analysis of RNA extracted from local lesions of C. quinoa described 

in Fig. 5. BNYVV and BSBMV RNAs 1 and 2 were detected using specific 32P labeled 

RNA probes while ribosomal RNAs (rRNA) have been used as loading control. Blotting 

image has been analyzed by the Imagej software to quantify the viral RNAs accumulation. 

Each bar in the presented graph indicates accumulation of BNYVV or BSBMV RNA1 

and 2 normalized to the RNA loading (rRNAs). 
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2.4.8. Long distance movement function of BSBMV and BNYVV RNA3 in 

cis and in trans 
 

In the USA, mixed infections occur between viral species coexisting in the soil, namely 

between A-type BNYVV and BSBMV. As BNYVV RNA3 is required for long-distance 

movement in B. macrocarpa (Lauber et al., 1998; Peltier et al., 2012) and BSBMV RNA3 

species can substitute for this function (Ratti et al., 2009), we focused on this combination 

for further experiments. As expected, agroinoculation of B. macrocarpa with BSBMV 

and BNYVV RNA1-2, respectively, did not lead to systemic infection (0/10 plants 

inoculated) (Fig. 7a, f, Tab. 2). Local lesions that were formed in the inoculated patch did 

not increase in size and no systemic viral movement and associated symptoms were 

observed (data not shown). Agroinoculation of primary leaves resulted in yellowing at 4-

6 dpi and necrosis development at 12-18 dpi with no phenotypic differences between 

species and no such effect was observed when empty binary vector was used (data not 

shown). However, when RNA3 was supplemented to the inocula, systemic movement 

occurred with different kinetics. Systemic symptoms produced by wild-type BNYVV 

RNA1-3 (BNa1-3) were more pronounced and occurred rapidly (9/10 plants, 19-22 dpi) 

when compared to BSBMV RNA1-3 (BS1-3; 5/10 plants, 25-33 dpi). Systemic 

symptoms produced by BS1-3 or BNa1-3 were comparable to those formed in B. vulgaris. 

BSBMV infection induced yellow blotches and bands (Fig. 7b, c) while BNYVV mainly 

provoked vein yellowing (Fig. 7g, h). Systemic infection using BSBMV RNA1-

2+BNYVV RNA3 reassortants (BS12+BNa3, Fig. 7d) was visible 19-25 dpi with 

symptoms comparable to those provoked by BS1-3. The systemic infection produced by 

BNYVV RNA1-2+BSBMV RNA3 reassortants (BNa12+BS3, Fig 7i) appeared delayed 

(33-39 dpi) with symptoms similar to those formed by BS1-3 (Fig. 7b) and BS1-4 (Fig. 

7c). When RNA4 was added to the three genomic species combinations, no differences 

were observed on the phenotype or infection kinetics (Fig. 7e, j and Table 2). In all 

treatments, presence or absence of individual viral RNAs in systemically infected 

B. macrocarpa tissue was assayed with specific primers by RT-PCR and corresponded to 

the input (data not shown). 
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Fig. 7 Symptom expression in Beta macrocarpa systemically infected leaves obtained 

after agroinoculation of cDNA clones a) BSBMV RNA1+2, b) BSBMV RNA1-3, c) 

BSBMV RNA1-4, d) BSBMV RNA1+2 plus BNYVV RNA3, e) BSBMV RNA1-3 plus 

BNYVV RNA4, f) BNYVV RNA1+2, g) BNYVV RNA1-3, h) BNYVV RNA1-4, i) 

BNYVV RNA1+2 plus BSBMV RNA3, j) BNYVV RNA1-3 plus BSBMV RNA4, 

compared to k) healthy control at 43 dpi. 

 

Table 2. Development of local and systemic infection in Beta macrocarpa after 

agroinoculation of BSBMV and A-type BNYVV cDNA clones with different RNA 

composition compared to BSBMV and BNYVV reassortants. 

Full-length clone Symptoms occurrence (dpi) Efficiency of 
systemic 
movement (%) 

 Local Systemic 

BS12 6-9 - 0 (0/10) 
BS1-3 6-9 25-33 50 (5/10) 
BS1-4 6-9 25-33 30 (3/10) 
BS12BNa3 6-9 19-25 80 (8/10) 
BS1-3BNa4 6-9 22-26 70 (7/10) 
BNa12 6-9 - 0 (0/10) 
BNa1-3 6-9 19-22 90 (9/10) 
BNa1-4 6-9 19-22 90 (9/10) 
BNa12BS3 6-9 33-39 80 (8/10) 
BNa1-3BS4 6-9 19-22 100 (10/10) 



CHAPTER 2                                                                        BENYVIRUS FULL-LENGTH CLONES 
 

45 
 

2.5. Discussion 
 

This study describes successful application of the GA single step in vitro recombination 

technique for the generation of agroinfectious cDNA clones of a multipartite RNA virus. 

Using GA lead to successful assembly of three cDNA fragments in the case of BSBMV 

RNA1 (6683 nucleotides total cDNA) and two fragments for BNYVV RNA1 (6746 

nucleotides) without any detectable functional errors. It can be speculated that GA will 

speed up the establishment of plant viral reverse genetic systems. Using this approach, 

we reported the generation of fully infectious cDNA clones of a Californian BSBMV and 

a European A-type BNYVV isolates. Identical properties were found when artificial and 

natural isolates were compared.  

Agroinoculation represents a quick and easy method to infect plants with cDNA clones 

of viruses (Nagyová and Šubr, 2007). However, our study illustrated also some 

limitations of agroinfiltration. Indeed, agroinoculation of C. quinoa leaves failed and no 

systemic infection occurred after root agroinoculation of B. vulgaris. Flores Solís et al. 

(2003) and Komari (1990) reported difficulties to transform C. quinoa by A. tumefaciens. 

Furthermore, in the natural host plant B. vulgaris leaf infection either using rub-

inoculation (Chiba et al., 2008) or agroinoculation (this study) does not lead to systemic 

infection. Besides the impossibility to initiate a systemic infection from B. vulgaris leaves 

whatever the method employed, agroinfection failure could be explained by a general 

lower efficiency of A. tumefaciens to transform root cells (Grevelding et al., 1993) and 

particularly by the sugar beets ability being recalcitrant to transformation (Krens et al., 

1996; Wozniak, 1999), combined with a synergistic antiviral defence. Further work is 

required to bypass this issue, possibly by using A. rhizogenes described to efficiently 

transform sugar beet roots (Cai et al., 1997; Pavli et al., 2010). For such purpose, disarmed 

A. rhizogenes described by Mankin et al. (2007) will be required to alleviate undesired 

hairy roots phenotypic effect. Alternatively, BSBMV or BNYVV viral combinations 

could be loaded through B. macrocapra agroinoculated plants and transmitted through 

the vector P. betae to the natural host if RNA3 and 4 species are supplemented to the 

inoculum (Delbianco et al., 2013, D’Alonzo et al., 2012). Meanwhile, root inoculation 

with sap issued from agroinfected tissues provided an alternative inoculation method that 

successfully produced specific symptoms with viral accumulation assays similar to those 

observed in naturally infected plants (Heidel et al., 1997; Peltier et al., 2008). 
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This work also describes for the first time a direct comparison of BSBMV and BNYVV 

effects on several host plants including the natural host sugar beet. Specific symptoms 

observed on N. benthamiana, B. macrocarpa and B. vulgaris reflect the interspecies 

genetic variability observed and reproduced with the artificial clones. A-type BNYVV 

RNA1+2 and BSBMV RNA1+2 derived from cDNA clones are sufficient for long-

distance movement in N. benthamiana confirming previous observations with BNYVV 

(Rahim et al., 2007). Such behaviour underlines the functional similarities of the two large 

genomic RNAs for both species. Our work also confirmed the involvement of both 

BSBMV and BNYVV RNA3 in virus long distance movement in Beta species (Lauber 

et al., 1998; Ratti et al., 2009, Peltier et al., 2012) as well as for the viral long distance 

movement of the reassortants produced (Table 2). Similar observation applied as well for 

the RNA4 species for their involvement in vector transmission. The infectious cDNA 

clones described in this study offer many possibilities to investigate the rhizomania 

disease complex in different B. species hosts either BNYVV-susceptible or tolerant such 

as Rz1 or Rz2 plus combinations of both. While some RNA segment exchanges were 

performed in our study, all reassortment were not assessed. However, taking advantage 

of infectious cDNA agroclones availability, there might be no limit for segment 

exchanges and recombinant production. Gene-exchange recombinants or mutants using 

A- and B-type BNYVV will provide more precise information about the molecular basis 

of resistance breaking found in certain strains by analysis of viral amplification and plant 

response depending on the host genotype (Bornemann and Varrelmann, 2013 and 2011; 

Koenig et al., 2009).  

The initial work performed by Ratti et al (2009) illustrated the compatibility of BSBMV 

RNA3 with BNYVV viral replication, movement and packaging machineries. Benyvirus 

(BSBMV and BNYVV) RNA1 and 2 reassortment analysed in N. benthamiana gave a 

first clear hint for the involvement of genome segments in symptom development mainly 

determined by the RNA2 species that encode the most divergent proteins. From a 

phylogenetic point of view, sequence similarity between BNYVV and BSBMV suggests 

the evolution from a common ancestral virus species. Interestingly, BS1BN2b reassortant 

was efficiently amplified and moved long distance in N. benthamiana whereas the same 

combination using A-type BNYVV did not led to reproducible and significant infection. 

Some of the combinations tested revealed the possible fitness penalty of reassortants 

compared to wild-type isolates. These combinations require further extensive analyses 

that were not the first objective of this study. An open question remains about the 
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phenotypes observed in host plants where some reassortants symptoms appeared more 

severe than wild type viruses or did not produced progeny in some hosts. One could 

expect a lethal effect of some combinations for infected cells or necrotic phenotype that 

would restrict the viability of the reassorted virus. Detection of reassorted 

BSBMV/BNYVV in sugar beet has never been described in the USA where both viruses 

could infect the same plant. However, if such situation occurs, a reassorted virus 

displaying properties highlighted in this study would not be selected (Willemsen et al., 

2017). Besides this hypothesis, exclusion from the same cell in mixed infection as well 

as super-infection exclusion is another possibility that requires further analysis. It is 

known that some monopartite potyvirus species colonise plants in mixed infections with 

other species from the same family in spatial separation but mix with viruses from 

separate families (Dietrich and Maiss, 2003). Understanding if members of the genus 

Benyvirus follow a similar colonisation strategy, will require labeling of individual 

genome components including RNA2 for future investigations. Preliminary experiments 

using replicons derived from BSBMV and BNYVV RNA3 species already evidenced the 

exclusion of the smaller RNA species (Ratti et al, 2009). Interestingly, under natural 

mixed infections (Rush and Heidel, 1995), BSBMV infection is lowered by BNYVV 

(Wisler et al., 2003) and cross protection has been described (Mahmood and Rush, 1999). 

If true recombinants occur in natural infections, leading to new virus genotypes with 

different properties and abilities to cause damage and disease needs to be investigated. 

 

2.6. Author contributions 
 

MV, EM, CR and DG conceived the study and experiments; EM and HM designed and 

constructed pDIVA and generated the BNYVV (A-type) cDNA clones including 

infectivity tests; ML generated the BSBMV cDNA clones, performed infectivity tests, 

vector transmission and reassortant analysis; KRP performed the TEM experiments; 

MDA performed the BNYVV (B-type)/BSBMV reassortant experiments; SL performed 

the BNYVV (A-type)/BSBMV reassortant experiments on C. quinoa; MDA and CR 

performed the Northern blot experiments; ML, MV, CR and DG wrote the manuscript. 

 

 

 



CHAPTER 2                                                                        BENYVIRUS FULL-LENGTH CLONES 
 

48 
 

2.7. Supporting information 
 

Table S2. Oligonucleotides used for viral full-length cDNA cloning 

genome component 

and primer name 

sequence (5’- 3’) 

BSBMV RNA1   
RNA1-up1 AGGAAGTTCATTTCATTTGGAGAGGAAATTCTTCCC

ATTCGCCATCATTG 
RNA1-low1 CGATCTGACCAAGTGATACCCTT 
RNA1-up2 TGTTGGAGAAGTTGATGAAG 
RNA1-low2 CATAATAGTAGCCTCCAAAA 
RNA1-up3 GCTGATAGTGGTGTGTCTCCAAC 
RNA1-low3 GAGATGCCATGCCGACCCTTTTTTTTTTTTTTTTTTTT

TTATATCAATA 
BNYVV RNA1   
RNA1-up1 AGGAAGTTCATTTCATTTGGAGAGGAAATTCGATTC

TTCCCATTC 
RNA1-low1 GTGTAGGAATTTTCTGATGTACACCTATTAAC 
RNA1-up2 GTTAATAGGTGTACATCAGAAAATTCCTACAC 
RNA1-low2 GAGATGCCATGCCGACCCTTTTTTTTTTTTTTTTTTTT

TTATATCAATATAC 
BSBMV RNA2  
RNA2-up1 AGGAAGTTCATTTCATTTGGAGAGGAAATTCTAATT

ATTATCTCCATTG 
RNA2-low1 GAAGACACGTCTAATCTTTCTACTA 
RNA2-up2 CGGCAATTAAGTTGGATATAGTAG 
RNA2-low2 GAGATGCCATGCCGACCCTTTTTTTTTTTTTTTTTTTT

TTCAATAAACT 
BNYVV RNA2  
RNA2-up1 AGGAAGTTCATTTCATTTGGAGAGGAAATTCTAACT

ATTATCTCC 
RNA2-low1 CATTTATACCCATCCTCTACTAGTGTTTTCTC 
RNA2-up2 GAGAAAACACTAGTAGAGGATGGGTATAAATG 
RNA2-low2 GAGATGCCATGCCGACCCTTTTTTTTTTTTTTTTTTTT

TTCAATATACTG 
BSBMV RNA3   
RNA3-up AGGAAGTTCATTTCATTTGGAGAGGAAATTTAAATC

TATCACCACATT 
RNA3-low GAGATGCCATGCCGACCCTTTTTTTTTTTTTTTTTTTT

TTCTTCAATAT 
BNYVV RNA3   
RNA3-up1 AGGAAGTTCATTTCATTTGGAGAGGAAATTCAAAAT

TTACCATTACATATTG 
RNA3-low1 CGAGGGAAATTTGTTGCATTAGGC 
RNA3-up2 GCCTAATGCAACAAATTTCCCTCG 
RNA3-low2 GAGATGCCATGCCGACCCTTTTTTTTTTTTTTTTTTTT

TTGTCAATATACTGAC 
BNYVV RNA4   
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RNA4-up AGGAAGTTCATTTCATTTGGAGAGGAAATTCAAAAC
TCAAAAATATAA 

RNA4-low GAGATGCCATGCCGACCCTTTTTTTTTTTTTTTTTTTT
TTAATAAACTG 

pDIVA vector 

amplification 

 

35S-as CCTCTCCAAATGAAATGAACTTCCTTATATAG 
 

HDV-s GGGTCGGCATGGCATCTCCACCTCCTC 
 

Underlined sequences represent the pDIVA vector sequences required for Gibson 
assembly. 

 

 

Table S2. Overall nucleotide sequence similarity in percentage (%) of BSBMV-CA 

genome components RNA1-4 compared to BSBMV isolate EA (NC_003506.1, 

NC_003503.1, NC_003507.1) and MRM06 (JF513082.1, JF513083.1, EU410955.1, 

FJ424610.2) 

genome components RNA1 RNA2 RNA3 RNA4 
MRM06 99.79 100 99.77 99.48 
EA 99.34 99.85 99.88 -* 

*Because EA RNA4 sequence represents a deletion variant, it was omitted from the 
sequence comparison 

 

 

Table S3. Sequence similarity of the virus encoded proteins on amino acid level of 

different BSBMV isolates in percentage (%): isolate CA compared to EA and MRM06  

Protein 239K   21K  75K  42K  13K 15K 14K 29K 32K  

MRM06 99.95  100 100 100 100 100 100 99.22  99.
48  

EA 97.68  100 99.71 100 100 100 100 100 - 
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Table S4. Overall nucleotide sequence similarity in percentage (%) of BNYVV A-type 

isolate Yu2 genome components RNA1-3 and RNA4 from Italian isolate compared to 

isolates S (NC_003514.1, NC_003515.1, NC_003516.1 NC_003517.1), F2/13 

(X05147.1, X04197, M36894, M36896.1) and Pithiviers (HM126464.1, HM117903, 

DQ682454, DQ682453) 

genome 
components  

RNA1  RNA2  RNA3  RNA4  

S 99.35  98.69 98.76 95.84 
Pithiviers 99.41 98.65 98.37 97.07   
F2/13 98.43 95.82 97.35 99.85 

 

 

 

Table S5. Sequence similarity of the virus encoded proteins on amino acid level of 

different BNYVV isolates in percentage (%): A-type isolate Yu2 (RNA1-3) and Italian 

RNA4 compared to Japanese A-type isolate S, B-type F2/13 and P-type Pithiviers  

Protein 237K  21K  75K  42K  13K  15K 14K  25K 31K  

S 99.38  100 98.39  99.74 98.31 98.48 95.42  94.52 96.81 

Pithiviers 99.67 98.94 97.66 99.74 98.31 97.73 100 95.89  96.10  

F2/13 98.91 97.87 95.76  99.74 96.61 96.97 94.49  95.43 99.65 
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3.1. Abstract 
 

Infectious full-length clones of Beet soil-borne mosaic virus (BSBMV) and 

Beet necrotic yellow vein virus (BNYVV) were used for fluorescent labelling with the 

aim to study the interaction between both viruses in co-infection and super-infection 

experiments. Labelling was achieved by replacement of a part of the read-through domain 

on RNA2 with either the gfp or the mrfp gene. This resulted in a fusion protein made of 

the coat protein and the fluorescent marker protein. The labeled recombinant viruses were 

infectious, replicated to wild-type virus levels and moved systemically in 

Nicotiana benthamiana, as well as in Beta macrocarpa, producing wild-type like 

symptoms. Electron microscopy revealed a partial overcoat of virus particles with the 

fluorescent marker protein, demonstrating that the read-through domain is dispensable 

for particle formation. Co-infection experiments revealed a spatial separation of 

differentially labeled populations of BSBMV after agroinoculation of N. benthamiana. A 
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similar observation was made when BNYVV and BSBMV were co-infected. In contrast, 

co-infections of BSBMV and Potato virus X (PVX) or Tobacco rattle virus (TRV) 

showed massively co-infected cells with only marginal spatial separation. Microprojectile 

co-bombardment of N. benthamiana leaves with differently labeled populations of TRV 

revealed that both viral populations co-infect only a few cells before they start to separate. 

In super-infection experiments, BSBMV and BNYVV could not establish a secondary 

infection in N. benthamiana plants that have been previously infected with BNYVV or 

BSBMV as primary infecting viruses. Only the two unrelated viruses PVX and TRV were 

able to establish a secondary infection.  

 

3.2. Introduction 
 

Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV) 

belong to the genus Benyvirus in the family Benyviridae with BNYVV representing the 

type species (Gilmer and Ratti, 2012). BNYVV is the causal agent of rhizomania disease 

that is world-wide distributed in nearly all sugar beet growing areas (Peltier et al., 2008) 

whereas BSBMV is restricted to the United States (Heidel et al., 1997; Lee et al., 2001). 

Both viruses are transmitted by the soil-borne plasmodiophoromycete Polymyxa betae 

Keskin, which produce resting spores that allow the virus to persist in soil for decades 

(Keskin 1964; Tamada and Kondo 2013). Although both viruses are closely related 

species with the same host-range (Heidel et al., 1997), symptoms caused in the natural 

host sugar beet (Beta vulgaris) differ considerably. Roots infected with BSBMV appear 

asymptomatic whereas light yellow vein banding, mottling, mosaic patterns and slight 

leaf distortion can be observed on the foliar (Heidel et al., 1997). In contrast, BNYVV 

infections are mainly restricted to the root system with characteristic necrosis of vascular 

veins and massive root proliferation. Foliar symptoms comprise vein yellowing and 

yellow chlorotic spots (reviewed in Peltier et al., 2008). Since BNYVV and BSBMV 

share the same host-range and vector species, mixed infections in sugar beet plants have 

been found in different fields (Workneh et al., 2003). Moreover, reassortment 

experiments revealed that BSBMV RNA3 can even be trans-replicated and trans-

encapsidated by BNYVV (Ratti et al., 2009).    

In general, mixed infections of related or unrelated viruses can occur after co-infection or 

super-infection depending on the interval between two viruses infect the same host plant 

(reviewed in Syller, 2012; Syller and Grupa, 2016). The term co-infection is used when 
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a host plant is infected by two viruses simultaneously. In contrast, the term super-

infection is used when a host, that has been previously systemically infected by a primary 

virus, is subsequently infected a secondary virus (after an incubation time). The outcome 

of an interaction after super-infection of two viruses can be either synergistic or 

antagonistic. Synergistic interaction occurs between more unrelated viruses leading to 

enhanced symptom development and virus replication as shown for different Potyviruses 

with Potato virus X (PVX) (González-Jara et al., 2004; Vance, 1991). Furthermore, two 

viral species interacting in a synergistic manner after super-infection are able to replicate 

within the same cells as recently shown for Wheat streak mosaic virus (WSMV) and 

Triticum mosaic virus (TriMV) (Tatineni and French, 2016). In contrast, related viruses 

tend to interact in an antagonistic manner which is also referred to as super-infection 

exclusion. In this case, the infection with a primary virus prevents a subsequent infection 

with a secondary virus. Similar to co-infection, the exclusion mechanisms seem to be 

strongly driven by the degree of relationship. Folimonova et al. (2010) showed that super-

infection exclusion of Citrus tristeza virus (CTV) occurred only between isolates of the 

same strain and not between isolates of different strains. Mahmood and Rush (1999) 

showed very early that super-infection exclusion can also occur between BNYVV and 

BSBMV indicating an antagonistic interaction between both viruses.  

Similarly, to super-infection co-infection of two different viruses can either results in a 

synergistic or non-synergistic interaction (Dietrich and Maiss, 2003). On cellular level, 

two viral populations of one virus remain spatially separated (co-infection exclusion) with 

only a few doubly infected cells at the border between the two populations. This exclusion 

mechanism indicates an antagonistic interaction that has been described for a broad range 

of viruses including Apple latent spherical virus (ALSV), Clover yellow vein virus 

(ClYVV), PVX, Plum pox virus (PPV), Tobacco mosaic virus (TMV), 

Tobacco vein mottling virus (TVMV), Turnip mosaic virus (TuMV), TriMV and WSMV 

(Dietrich and Maiss, 2003; Gutiérrez et al., 2015; Julve et al., 2013; Takahashi et al., 

2007; Tatineni and French 2016). The same spatial separation can be also observed when 

two viral populations of closely related viruses are co-infected as shown for TVMV and 

PPV (Dietrich and Maiss, 2003). However, co-infection can also lead to synergistic 

interaction with massive doubly infected cells without spatial separation when two distant 

related viruses are co-infected. This interaction has been described for mixed infections 

with Potato virus X and another distant related virus like Plum pox virus, 

Tobacco vein mottling virus and Clover yellow vein virus (Dietrich and Maiss, 2003). On 
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the whole-organisms level, Wisler et al. (2003) could show in greenhouse experiments 

that BNYVV suppress BSBMV in mixed infections. However, it is not known whether 

both viruses also remain spatially separated on a cellular level.  

Previous studies investigating the interaction between viruses in either co-infection or 

super-infection experiments used fluorescent labeled full-length clones (Dietrich and 

Maiss, 2003; Folimonova, 2012; González-Jara et al., 2009; Julve et al., 2013; Takahashi 

et al., 2007; Tatineni and French 2016). With this approach, the distribution of 

differentially labeled populations from one or two viruses can be easily visualized using 

confocal laser scanning microscopy (CLSM). However, it requires flexible viral genomes 

that allow the integration of additional coding sequences and expression of fluorescent 

proteins. BNYVV and BSBMV have four single-stranded positive-sense RNAs with a 

similar genome organisation. Some isolates of BNYVV possess an additional fifth RNA 

species. RNA1 of both viruses harbour one open reading frame (ORF) responsible for 

replication of viral RNAs. The first ORF on RNA2 encodes the 21 kDa major viral coat 

protein (CP) and terminates with an amber stop codon (UAG) which can undergo 

suppression leading to a 75 kDa coat protein readthrough (CP-RT) protein referred to as 

P75. The 54 kDa RT domain of CP-RT following the CP sequence is important for 

transmission by the fungal vector Polymyxa betae (Tamada and Kusume, 1991). The next 

three overlapping ORFs, named triple gene block (TGB1-3), are responsible for cell-to-

cell movement (Gilmer et al., 1992) and the last ORF encodes the viral suppressor of 

RNA silencing (Chiba et al., 2013). BNYVV RNA3 is involved in long distance 

movement (Lauber et al., 1998; Peltier et al., 2012) and encodes the pathogenicity factor 

P25 (Chiba et al., 2008; Koenig et al., 1991). BSBMV RNA3 is also involved in long 

distance movement and encodes a P29 protein that is probably responsible for virus 

pathogenicity (Ratti et al., 2009). The RNA4-encoded BNYVV P31 and BSBMV P32 

proteins are responsible for vector transmission (D`Alonzo et al., 2012; Tamada and Abe, 

1989). In previous studies, fluorescent labelling of BNYVV and BSBMV was achieved 

by co-infection with viral replicons based on RNA3, expressing fluorescent marker genes 

(Erhardt et al., 2000; Ratti et al., 2009) or RNA5 (Schmidlin et al., 2005). Erhardt et al. 

(2001) integrated the GFP gene into the RNA2 of BNYVV by replacing a part of the RT 

domain of the P75. Infectivity was only confirmed in the local lesion host 

Chenopodium quinoa but infection of a host that allows systemic movement was not 

studied. Based on previous results, it was assumed that CP-RT is required for efficient 
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virus assembly (Schmitt et al., 1992). Furthermore, Haeberlé et al. (1994) and Erhardt et 

al. (2001) showed that CP-RT is located at the extremities of wild-type BNYVV particles.  

In this study, labelling of BNYVV and BSBMV full-length clones was achieved by nearly 

a complete replacement of the RT domain with different fluorescent proteins, leaving 249 

nucleotides of the RT domain upstream of the TGB to act as a subgenomic promoter. The 

generated clones were tested for systemic infection and symptom expression in different 

host plants. Furthermore, the influence of fluorescent reporter protein fusions on particle 

formation was investigated. Finally, co-infection and super-infection experiments 

including BNYVV and BSBMV as well as two unrelated viruses, namely Potato virus X 

(PVX) and Tobacco rattle virus (TRV), were conducted in N. benthamiana. Based on 

these results, the interaction between two closely related Benyviruses on the cellular level 

is revealed.  

 

3.3. Methods 
 

3.3.1. Construction of labeled full-length clones 
 

Both BSBMV and BNYVV RNA2 cDNA clones for agroinoculation (Laufer et al., 

submitted) were modified to express the monomeric red fluorescent protein (mRFP) 

(Campbell et al., 2002), soluble modified red-shifted green fluorescent protein (smRS-

GFP) (Davis & Vierstra,1998) and the UV-excited green fluorescent protein (GFPuv) 

(Baulcombe et al., 1995). Labelling was achieved by replacing the RT part of the cp-rt 

gene, thereby retaining the leaky stop codon of the cp-gene and the first two codons 

(CAATTA) of the RT domain. Replacement of the RT by mrfp, smRS-gfp and gfpuv 

gene, respectively, was followed by two stop codons (TGATAG) and the remaining 249 

nucleotides of the rt-gene containing the putative subgenomic (sg) promotor for the 42 

kDa triple gene block protein (P42) (Figure 1). This modification resulted in a large read-

through protein made of the CP and the fluorescent proteins. The DNA fragments of 

fluorescent marker genes coding sequences were cloned into linearized plasmids of 

BNYVV/BSBMV RNA2 clones (Laufer et al., submitted) by means of Gibson assembly 

(Gibson et al., 2009). For this purpose, the marker genes coding sequences were amplified 

with Phusion Flash High-Fidelity PCR Master Mix (ThermoScientific, Schwerte, 

Germany) according to the manufacturer's instructions. Specific primers (Supplementary 

Table 1) contained 5´- and 3´-extensions overlapping with RNA2 of BNYVV/BSBMV 
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(25-28nt). The BNYVV/BSBMV RNA2 clones were linearized by PCR amplification 

using primers BNYVV2-s/BNYVV2-as and BSBMV2-s/BSBMV2-as (Supplementary 

Table 1). All PCR products were gel-purified with NucleoSpin Gel and PCR Clean-up kit 

(Macherey-Nagel, Dueren, Germany) according to the manufacturer's instructions. After 

Gibson assembly, in vitro recombination products were transformed into chemical 

competent Escherichia coli cells (strain DH5α) as described by Inoue et al. (1990). 

Plasmids carrying cDNA fragments of the fluorescent proteins were identified by means 

of appropriate restriction enzyme digest and all mutations were verified by commercial 

capillary Sanger sequencing (Eurofins MWG Operon, Ebersberg, Germany). The 

resulting clones were named BNYVV-RNA2-mRFP/-smRS-GFP/-GFPuv and BSBMV-

RNA2-mRFP/-smRS-GFP/-GFPuv. 

To optimize the fluorescence of GFPuv, an alanine to lysine mutation at amino acid 

position 206, as described by von Stetten et al. (2012), was introduced into the coding 

sequence of GFPuv. The mutation was generated by amplification of BNYVV-RNA2-

GFPuv and BSBMV-RNA2-GFPuv with specific primers for site directed-mutagenesis 

(Supplementary Table 1). To introduce the 5' phosphate, PCR amplification product was 

phosphorylated by further reaction with T4 Polynucleotide Kinase (Promega, Mannheim 

Germany). After ligation with T4 DNA Ligase (Promega, Mannheim Germany), 

transformation of in vitro recombination products was performed and the resulting clones 

were named BNYVV-RNA2-GFPuvA206K and BSBMV-RNA2-GFPuvA206K. 

To study the effect of the RT deletion on particle assembly, the RT coding sequence was 

deleted from the BSBMV RNA2 cDNA clone. The cp-gene leaky stop codon TAG was 

mutated to TGA. The RT sequence downstream of the stop codon was deleted except for 

the last 249 nucleotides of the RT. This was achieved by PCR amplification of BSBMV 

RNA2 with the primers BSBMV-deltaRT-fw and BSBMV-deltaRT-rv (Supplementary 

Table 1). The resulting clones were named BSBMV-RNA2-deltaRT. 

The infectivity of the above mentioned constructs was tested in Beta macrocarpa and 

Nicotiana benthamiana using agroinoculation. For this purpose, viral cDNA clones in 

binary vectors were transformed into Rhizobium radiobacter (syn. 

Agrobacterium tumefaciens) strain C58C1. Bacterial cultures were prepared according to 

the method of Voinnet et al. (2003) with an optical density at 600 nm (OD600) of either 

0.1 (N. benthamiana) or 0.5 (Beta macrocarpa). The first two pairs of true leaves were 

inoculated. Different cDNA components from multipartite viruses were mixed in a 1:1 

ratio prior to inoculation. All plants were grown under greenhouse conditions with 24°C 
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for 14h and 18°C for 10h. CLSM (see below) was applied to visualize fluorescent labeled 

full-length clones in systemically infected leaf tissue. 

 

Fig. 1 Schematic representation of infectious full-length cDNA clones of BNYVV-

/BSBMV-RNA2 (A, C) and modified variants carrying either a fluorescent marker gene 

(C and D) or a deletion in the RT-ORF (E). Underlined capital letters highlight the last 

nine nucleotides of the viral background whereas italic capital letters indicate the start 

and stop codon of the coding sequence from the fluorescent proteins (mRFP, smRS-GFP, 

GFPuv). Insertion of specific bases are indicated by bold capital letters. Numbers indicate 

the nucleotide position in the original sequence of BNYVV-RNA2 (Acc. No. KX665537) 

and BSBMV-RNA2 (Acc. No. KX352170). LB: Left border; 35S: 

Cauliflower mosaic virus (CaMV) 35S promoter; CP: coat protein for encapsidation; RT: 

read-through domain for transmission; P42, P13 and P15: triple gene block for 

movement; P14: viral silencing suppressor; mRFP: monomeric red fluorescent protein; 

smRS-GFP: soluble modified red-shifted green fluorescent protein; GFPuv: UV-excited 

green fluorescent protein; HDV: Hepatitis delta virus ribozyme; T35S: CaMV 

Terminator 35S;  RB: Right border; *: leaky stop codon; **: stop codon.  
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3.3.2. Co-infection and super-infection exclusion of BNYVV, BSBMV, PVX 

and TRV 
 

Co-infection exclusion was studied with newly developed fluorescent labeled full-length 

clones of BNYVV and BSBMV. Additionally, fluorescent labeled full-length clones of 

the two unrelated viruses PVX and TRV were included in the experiments as controls. 

PVX expressing either dsRED (Dietrich and Maiss, 2002; PVX201-optRed) or GFPuv 

(Draghici and Varrelmann, 2009; 35S-PVX-GFP) have been described previously. TRV 

vectors expressing either dsRED or GFP composed of pTRV1 (Liu et al. 2002) and 

pTRV2-dsRED/pYL156-GFP (Ghazala and Varrelmann, 2007). Two differentially 

labeled viruses were inoculated simultaneously but in separte leaves of 3 weeks old 

N. benthamiana plants using agroinoculation as described above. After symptom 

development, virus distribution was visualized in systemically infected leaf tissue by 

means of CLSM. In addition to agroinoculation, particle bombardment was applied to 

study the spread of differentially labeled viruses starting from a single doubly infected 

mesophyll cell. For this purpose, detached leaves from 4- to 5-week-old N. benthamiana 

plants were subjected to microprojectile co-bombardment with a particle inflow gun 

(Gray et al. 1994) using 10 µl purified plasmid DNA corresponding to each viral RNA 

component. Detached leaves were placed in a petri dish with watered filter paper and 

incubated at room temperature in the dark. Virus distribution was visualized with CLSM 

after 2-5 days. 

Super-infection exclusion experiments were performed in N. benthamiana plants using 

BNYVV-GFPuv as primary virus and BNYVV-mRFP, BSBMV-mRFP, TRV-dsRED 

and PVX-dsRED, respectively, as secondary virus. For this purpose, N. benthamiana 

plants were first infected with BNYVV-GFPuv using agroinoculation as described above. 

After three weeks, leaves displaying systemic symptoms were mechanically inoculated 

with the challenging viruses. Prior to the secondary infection, the establishment of the 

primary infection was confirmed with CLSM. The inoculum for the secondary infection 

was produced in N. benthamiana using agroinfiltration as described above. Leaves 

displaying systemic symptoms were grinded in phosphate buffer (10 mM Na2SO3, pH 

7.0) and rub inoculated on N. benthamiana leaves infected with the protecting virus. After 

three weeks, the establishment of the secondary infection was checked in inoculated and 

upper non-inoculated leaves using CLSM. Each variant comprised of 5 repetitions. 
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3.3.3. Confocal laser scanning microscopy 
 

Systemic infected leaf tissue from B. macrocarpa and N. benthamiana was harvested and 

visualized with the TCS-SP5 confocal laser scanning microscope (Leica Microsystems, 

Wetzlar, Germany). Excitation/emission wavelengths for the different fluorescent 

proteins were as follows: mRFP 561 nm/520-540 nm, dsRED 561 nm/520-540 nm, 

smRS-GFP 488 nm/515-523 nm and GFPuv 405 nm/490-520 nm. All confocal images 

were processed with the LAS-AF software version 2.6.3.8173 (Leica Microsystems). 

3.3.4. Transmission electron microscopy 
 

Purified virions were absorbed to formvar-carbon coated Ni-grids. They were fixed with 

4% paraformaldehyde, quenched with 20 mM glycin, and immunostained using the 

described sera, followed by addition of Protein A-gold (10 nm). The preparations were 

then washed repeatedly with TPBS and high-salt TPBS (0.5 M NaCl) and post-fixed with 

2% glutaraldehyde. After counterstaining with 1% uranylacetate samples were 

investigated using a CM120 Philips electron microscope using a TemCam F416 CMOS 

camera (TVIPS, Gauting, Germany). Samples were bound to a glow discharged carbon 

foil covered grid. After staining with 1% uranyl acetate the samples were evaluated at 

room temperature with a CM 120 transmission electron microscope (FEI, Eindhoven, and 

The Netherlands). Summed averaged images of the virions were calculated using 

RELION. 7000 individual overlapping segments of the virions, respectily were boxed 

using RELION. The images were sorted by MSA and summed to obtain a class average 

image of the virions (Van Heel et al., 2016). 

3.4. Results 
 

3.4.1. Effect of fluorescent labeling on infectivity of full-length clones 
 

Different strategies were developed to identify a suitable place in the genome of 

BNYVV/BSBMV to introduce genes of different fluorescence markers. A replacement 

of the RT ORF by a fluorescence marker gene including a doubling of the sg promoter of 

P42 failed. Similarly, clones with an insertion between P15 and P14 including doubling 

of the sg promoter of P42 were not infectious. The replacement of P29 on RNA3 and P32 

on RNA4 produced local fluorescence but systemic movement of labelled RNAs was not 
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observed. However, the replacement of the RT part of the cp-rt gene by ORFs from 

fluorescence markers allowed fluorescence labelling of BNYVV/BSBMV.  

In order to verify that fluorescent labelling of BNYVV and BSBMV full-length clones 

does not negatively interfere with replication, encapsidation and systemic movement, 

plant infection was investigated by agroinoculation into leaf tissue of N. benthamiana and 

B. macrocarpa. For this purpose, a clone of BNYVV or BSBMV RNA1, respectively, 

was always inoculated together with an unlabeled or labeled clone of RNA2. In 

N. benthamiana, the unmodified full-length clone of BSBMV produced systemic 

symptoms including chlorotic vein banding, yellow blotches, leaf crinkling and necrosis 

16 days a past inoculation (dpi) (Fig. 2A). The deletion of the RT encoding sequence in 

BSBMV-deltaRT did not affect symptom development and the speed of systemic 

infection (Fig. 2B). Similarly, the replacement of the RT domain by mRFP had no effect 

on symptom onset and severity (Fig. 2C). In contrast, plants infected with BSBMV-

smRSGFP showed a delay in symptom development and a reduced symptom severity 

(Fig. 2D). No improvement was observed when smRSGFP was replaced by GFPuv (Fig. 

E). The unmodified full-length clone of BNYVV caused also systemic symptoms 

consisting of light yellow chlorosis (Fig. 2F). Also in case of BNYVV RNA2 the 

replacement of the RT domain by mRFP, smRSGFP or GFPuv had no effect on symptom 

onset and severity (Fig. 2G-I). In addition to N. benthamiana infection, mRFP labeled 

full-length clones from BNYVV and BSBMV were also inoculated on B. macrocarpa, a 

host for both viral species that requires the presence of RNA1-3 for systemic movement. 

Both BNYVV and BNYVV-mRFP caused similar symptoms with chlorotic lesions, vein 

yellowing and leaf crinkling 13 dpi (Fig. 2K-L). Symptoms caused 13 dpi by the 

unmodified full-length clones of BSBMV were chlorosis, necrotic lesions and leaf 

crinkling (Fig. 2M). In contrast, plants infected with BSBMV-mRFP developed the first 

systemic symptoms 30 dpi (Fig. 2N), visualized by means of CLSM of fluorescent 

proteins in leaf tissue displaying symptoms of a systemic infection. A clear homogeneous 

mRFP expression was observed in mesophyll cells of N. benthamiana plants infected with 

BSBMV-mRFP (Fig. 3A) and BNYVV-mRFP (Fig. 3E). In contrast, the fluorescence of 

smRS-GFP expressed by BNYVV or BSBMV was unevenly distributed in small bright 

clusters (Fig. 3B,F). A similar pattern was observed for both recombinant viruses when 

the smRS-gfp gene was replaced by gfpuv (Fig. 3C,G). This indicated a poor solubility of 

both fluorescent proteins. Therefore, an alanine to lysine mutation at amino acid position 

206, as described by von Stetten et al. (2012), was introduced into the coding sequence 
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of gfpuv with the aim to increase the protein solubility. The resulting constructs BNYVV-

GFPuvA206K and BSBMV-GFPuvA206K led to a better distribution of the fluorescence but 

still several small bright clusters remained (Fig. 3D,H). In case of B. macrocarpa, both 

BNYVV-mRFP (Fig. 3I) and BSBMV-mRFP (Fig. 3J) displayed a clear homogeneous 

expression of mRFP in mesophyll cells. 

 

Fig. 2 N. benthamiana leaves displaying systemic symptoms following agroinfection with 

RNA1 and 2 cDNA clones of (A) BSBMV at 16 dpi, (B) BSBMV-deltaRT at 16 dpi, (C) 

BSBMV-mRFP at 16 dpi, (D) BSBMV-smRSGFP at 20 dpi, (E) BSBMV-GFPuv at 20 

dpi, (F) BNYVV at 24 dpi, (G) BNYVV-mRFP at 24 dpi, (H) BNYVV-smRSGFP at 24 

dpi and (I) BNYVV-GFPuv at 20 dpi in comparison to (J) healthy control. B. macrocarpa 

(28-37 dpi) leaves displaying systemic symptoms following agroinfection with RNA1-4 

cDNA clones of (K) BNYVV, (L) BNYVV-mRFP, (M) BSBMV and (N) BSBMV-

mRFP in comparison to (O) healthy control. 
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Fig. 3 Confocal imaging of N. benthamiana leaf tissue systemically infected with cDNA 

clones of fluorescently labeled RNA1 and 2 of (A) BSBMV-mRFP, (B) BSBMV- smRS-

GFP, (C) BSBMV-GFPuv, (D) BSBMV-GFPuvA206K, (E) BNYVV-mRFP, (F) BNYVV-

smRS-GFP, (G) BNYVV-GFPuv and (H) BNYVV-GFPuvA206K. Confocal imaging of 

B. macrocarpa leaf tissue systemically infected with cDNA clones of fluorescently 

labeled RNA1, 2 and 3 of (I) BNYVV-mRFP and (J) BSBMV-mRFP.  

 

 

3.4.2. Effect of fluorescent labelling on particle formation of BNYVV and 

BSBMV 
 

Fluorescent labelling of recombinant BNYVV and BSBMV was achieved by retaining 

the leaky stop codon in the CP open reading frame on RNA2 leading to fusion of CP and 

a fluorescent marker protein. Since both CP and CP-RT are part of wild-type virus 

particles, it was hypothesized that the fusion protein is also incooperated into virus 

particles. For proof of this hypothesis, particle composition of BSBMV was studied in 

detail with TEM. The presence of rod shaped virus particles in systemically infected 

N. benthamiana leaf tissue could be confirmed for all BSBMV-derived constructs (Fig. 

4A-D) Also in case of BNYVV-derived constructs rod shaped virus particles were 
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observed (data not shown). Comparison of average particle diameter between the 

unmodified viruses from the full length-clone BSBMV (20.32 nm) and the fluorescent 

labeled clones BSBMV-mRFP (21.38nm) and BSBMV-GFPuv (20.36 nm) revealed no 

significant differences in particle diameter. Similarly, virus particles from 

BSBMV-deltaRT (20.88 nm) with a complete deletion of the RT domain were not 

distinguishable from BSBMV particles. Virus particles from BSBMV-GFPuv were also 

treated with 10 nm colloidal gold-labeled GFP antibodies to localize the GFP protein on 

the particle surface. A decoration with gold particles could be observed indicating that 

the read-through protein made of CP and GFP is incorporated over the entire surface of 

virus particles (Fig. 4E-F). 

 

 

 

Fig. 4 Electron microscope images after negative staining of virus particles derived from 

the RNA1 and 2 cDNA clones of (A) BSBMV, (B) BSBMV-deltaRT, (C) BSBMV-

GFPuv and (D) BSBMV-mRFP. Virus particles of BSBMV-GFPuv were also treated 

with 10 nm colloidal gold-labeled GFP antibodies (D and E). All virus particles were 

isolated from leaf tissue displaying systemic symptoms. mRFP: monomeric red 

fluorescent protein; GFPuv: UV-excited green fluorescent protein. 

 

3.4.3. Co-infection exclusion of different labeled viruses 
 

Co-infection exclusion of differentially labeled populations from one or two virus species 

was studied in N. benthamiana plants following agroinoculation in systemically infected 

tissue. Primary infections were initiated in separate leaves and the virus distribution was 

visualized with CLSM in upper non-inoculated leaves after the expression of systemic 

symptoms. GFPuvA206K displayed a better distribution of the fluorescence signal but 

requires a UV laser (405 nm) for visualization that causes fast necrosis of mesophyll cells 

during specimen evaluation. Therefore, co-infection experiments were performed with 

BNYVV and BSBMV full-length clones expressing smRS-GFP that could be visualized 
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at longer wavelengths with less damaging potential (488 nm). Comparison of the results 

from both fluorescence markers revealed no differences (data not shown). 

Depending on the combination of virus populations, the areas of mixed fluorescence 

varied from marginal overlapping of two different fluorescent cells to large clusters of 

cells. When two differentially labeled clones of BSBMV (BSBMV-smRSGFP + 

BSBMV-mRFP) were inoculated, the presence of both virus populations could be 

confirmed by a clear fluorescence of the two reporter proteins (Fig. 5A-D). Merged 

images revealed that both virus populations entered distinct areas in systemically infected 

leaves clearly indicative for a spatial separation. High resolution imaging of the border 

separating both viral populations showed that mixed fluorescence (yellow) was restricted 

to a few cells. This separation effect was also observed in leaves systemically infected by 

BSBMV-mRFP and BNYVV-smRSGFP (Fig. 5E-H). Thus all interactions between 

differentially labeled populations from one or two viruses belonging to the genus 

Benyvirus led to a spatial separation. PVX (Genus Potexvirus) and TRV (Genus 

Tobravirus) were included in the experiments as two unrelated viruses. BSBMV-mRFP 

was either co-infected with TRV-GFPuv or with PVX-GFPuv. Confocal imaging 

revealed that virus populations in the combinations BSBMV-mRFP + TRV-GFPuv (Fig. 

5M-O) and BSBMV-mRFP + PVX-GFPuv (Fig. 5Q-S) infected the same areas in 

systemically infected leaf tissues. Close-ups of co-infected mesophyll cells showed 

massively co-infected cells with yellow fluorescence indicating that both viruses replicate 

within the same cell (Fig. 5P, T). In order to identify the viral RNA responsible for the 

exclusion effect between BNYVV and BSBMV, a reassortants made of BNYVV-RNA1 

and BSBMV-mRFP was co-inoculated with BNYVV-smRSGFP (Fig. 5I-L). However, 

visualization of viral populations in systemically infected leaves showed also a clear 

separation with a few double infected cells at the border between both populations. A 

reassortants made of BSBMV-RNA1 and BNYVV-mRFP was not infectious and thus 

could not be tested.  



CHAPTER 3                                                        FLUORESCENT TAGGING OF BENYVIRUSES 
 

65 
 

 

Fig. 5 Virus distribution in systemically infected N. benthamiana tissues following 

agroinfection with cDNA clones of BSBMV-mRFP (A) + BSBMV-smRSGFP (B); 

BSBMV-mRFP (E) + BNYVV-smRSGFP (F); BNYVV RNA1 BSBMV-RNA2-mRFP 

(I) + BNYVV-smRSGFP (J); BSBMV-mRFP (M) + TRV-GFPuv (N) and BSBMV-

mRFP (Q) + PVX-GFPuv (R). Confocal images (C), (G), (K), (O) and (S) are merged 

images of RFP (A, E, I, M, Q) and GFP (B, F, J, N, R) channels. Spatially separated 

populations are indicated by different colored fluorescence cluster (C, G, K) whereas 

mixed populations show large yellow clusters (O, S). Close-ups of co-infected mesophyll 

cells are shown in (D), (H), (L), (P) and (T). Co-infection in spatially separated 

populations is restricted to a few cells at the border between both population (D, H, L) 

whereas mixed populations show massive co-infected cells (P, T).  
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Agroinoculation of differentially labeled populations from one or two viruses revealed 

spatial separation in systemically infected leaf tissue. It was not possible to show that both 

viral populations start to separate when the infection is initiated from a doubly infected 

cell. Therefore, co-infection exclusion was also studied using microprojectile co-

bombardment of viral cDNA clones that allows initiating a primary double infection in a 

single cell. TRV-dsRED and TRV-GFPuv were chosen for this experiment as they 

displayed the highest infection rate after particle bombardment. When cDNA clones of 

TRV RNA1, TRV-dsRED and TRV-GFPuv were co-bombarded, both viral populations 

replicated in distinct areas (Fig. 6C). High resolution imaging of the border between both 

viral populations showed a clear spatial separation (Fig. 6D). Primary infection sites could 

be identified by the yellow appearance of mesophyll cells (indicated by arrows) (Fig. 6E-

H). Doubly infected cells were surrounded by spatially separated viral populations 

indicating a rapid onset of co-infection exclusion after co-bombardment. Besides co-

infection of differentially labeled populations from one virus, combinations of two 

unrelated viruses were also co-bombarded as control. In case of BSBMV-mRFP and 

PVX-GFPuv, both viral populations were identified in the same area indicated by massive 

co-infected cells with yellow fluorescence (Fig. 6K-L). A similar pattern was observed 

for TRV-dsRED co-infected with PVX-GFPuv (Fig. 6O-P). 
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Fig. 6 Virus distribution in detached leaves of N. benthamiana after microprojectile co-

bombardment with cDNA clones of TRV-dsRED (A) + TRV-GFPuv (B); BSBMV-

mRFP (I) + PVX-GFPuv (J) and TRV-dsRED (M) + PVX-GFPuv (N). Confocal images 

(D-H), (K-L) and (O-P) are merged images of RFP (A, I, M) and GFP (B, J, N) channels. 

After co-bombardment, differentially labeled virus populations of TRV started cell-to-

cell movement from a single infected cell that appears yellow (E-H). Both viral 

populations co-infected a few cells (indicated by arrows) and then started to separate 

leading to spatially separated populations (C-D). In contrast, co-bombardment of 

BSBMV-mRFP with PVX-GFPuv and TRV-dsRED with PVX-GFPuv lead to mixed 

populations represented by large yellow clusters (K, O). Close-up of massively co-

infected cells are shown in (L) and (P).  
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3.4.4. Super-infection exclusion of different labeled viruses 
 

Besides co-infection exclusion, differentially labeled full-length clones were applied to 

study the interaction between BNYVV and BSBMV in super-infection exclusion 

experiments. For this purpose, N. benthamiana plants were inoculated with BNYVV-

GFPuv as a primary virus. After 21 dpi, leaves displaying systemic symptoms were 

mechanically super-inoculated with BNYVV-mRFP, BSBMV-mRFP, PVX-dsRED or 

TRV-dsRED as secondary viruses. Virus expressed fluorescence was observed in 

inoculated and upper non-inoculated leaves displaying systemic symptoms 42 dpi (Table 

1). When plants were super-infected with BNYVV-mRFP or BSBMV-mRFP as 

secondary virus, only a green fluorescence belonging to BNYVV-GFPuv could be 

observed in upper non-inoculated leaves, however, small fluorescence clusters of 

BNYVV-mRFP and BSBMV-mRFP were observed in super-infected leaves. Thus, the 

secondary virus could not establish a systemic infection. In contrast, super-infection with 

the two unrelated viruses PVX-dsRED or TRV-dsRED resulted in a mixed fluorescence 

indicating that the secondary virus could successfully establish an infection and moved 

systemically in non-inoculated upper leaves. The infectivity of the inoculum used for 

super-infection was confirmed in parallel by mechanical inoculation of N. benthamiana 

plants. 
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3.5. Discussion 
 

In this study, fluorescently labeled viruses derived from full length-clones of two closely 

related Benyviruses, namely BNYVV and BSBMV, were developed. Labelling was 

achieved by a nearly complete deletion of the RT domain - despite of removing 249 nts 

in front of the TGB - and replacement with genes encoding different fluorescent proteins. 

Fluorescent labelling did not hamper the infectivity as both viruses moved systemically 

in two different host plants, induced characteristic disease symptoms and formed particles 

comparable to the unmodified virus. As BSBMV-deltaRT with a mutated leaky stop 

codon and a complete deletion of the RT region as well was able to infect N. benthamiana 

systemically and formed virus particles, it can be concluded that the RT domain including 

the P75 minor coat protein is dispensable for particle formation, systemic infection and 

symptom development. This is in contrast to the observations made in previous studies. 

Schmitt et al. (1992) and Tamada et al. (1996) analyzed the effect on BNYVV RT 

deletions on virion formation by means of an encapsidation assay employing exogenous 

nucleases during RNA extraction. With this assay they were able to demonstrate that all, 

even small in-frame N-terminal deletions negatively affected virion formation. 

Furthermore, a mutant in which the leaky stop codon was converted to UAA and 

reinforced by two additional termination codons displayed also impaired packaging 

(Schmitt et al, 1992). However, electron microscopic analysis was not performed. It may 

be possible that altered RT proteins with deletions interfere with particle assembly that 

cannot occur when the whole RT domain is deleted. To clarify this question, a detailed 

analysis of RT deletion mutants with TEM is required.  

In this study, TEM virion analysis and decoration of recombinant BSBMV expressing 

CP-GFPuv revealed incorporation of the fusion protein along the whole surface of the 

rod-shaped particle. This was unexpected as Haeberlé et al. (1994) showed by TEM and 

immunogold labelling with an RT-specific antiserum that CP-RT/P75 is located only at 

the extremities of the wild-type BNYVV particles. Incorporation of the RT protein near 

one extremity of virus particles has been also shown for potato mop-top virus (PMTV; 

Cowan, et al., 1997). We cannot say if the smaller size of GFP (27 kDa) compared to the 

RT-domain (54 kDa) allows the CP-GFP fusion to be encapsidated over the entire particle 

surface, if recognition of specific CP-RT epitopes by the antiserum only permitted the 

RT-detection at particle extremities or if the RT domain contains specific sequences that 

are required for an integration of P75 at the extremity of virus particles. Nevertheless, as 
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no effect of CP-GFP on particle diameter could be detected, it seems that the CP-GFP 

overcoat is only partial, which is in accordance to the fact that suppression of the leaky 

stop codon occurs at a rate of 10% when ribosomes encounter it (Schmitt et al., 1992). 

Similarly, the particle diameter of the virus from construct BSBMV-deltaRT did not 

differ from the unmodified virus.  

The fluorescence of mRFP expressed by BNYVV and BSBMV was clear and 

homogeneously distributed throughout the cytoplasma of infected cells whereas the 

fluorescence of smRS-GFP and GFPuv was unevenly distributed in small bright clusters 

indicating a poor solubility of both fluorescent proteins fused to the viral CP. The alanine 

to lysine mutation in BNYVV-GFPuvA206K and BSBMV-GFPuvA206K led to a better 

distribution of the fluorescence but several small bright clusters remained. It was 

suspected that the clusters represent virus particles that localize to mitochondria as 

reported by Erhardt et al. (2000). Co-localization studies with mitochondrial markers, 

however, could not confirm this hypothesis (data not shown). It was also reported by 

Erhardt et al. (2000) that at later times during infection virus particles relocated to 

semiordered clusters in the cytoplasm. However, it is also possible that the CP-smRSGFP 

and –GFPuv fusion interfered with the encapsidation process. This might also explain 

why both fluorescent proteins when expressed by the virus caused a delay in symptom 

development. Nevertheless, it was assumed that this had no effect on the spatial separation 

of viral populations in co- and super-infection experiments. 

The results from co-infection experiments showed that populations of identical, but 

differentially labeled viruses of Benyvirus species BNYVV and BSBMV replicated 

predominantly in discrete areas and remained separately. A similar spatial separation was 

observed when BNYVV and BSBMV were co-inoculated. The contact of differentially 

labeled virus populations from BNYVV and BSBMV were restricted to a small number 

of cells at the border of different fluorescent cell clusters indicating that both viral species 

in principle can replicate within the same cell. A similar observation was reported in 

infected tissues with populations of identical but differentially labeled monopartite 

potyviruses (Dietrich and Maiss, 2003). A reassortants viral population consisting of 

BNYVV-RNA1, BSBMV-RNA2-mRFP and BNYVV-smRSGFP showed also a clear 

spatial separation indicating that RNA1 is not required to induce spatial separation of the 

two viruses. In contrast, viral populations of BSBMV and two distantly related viruses 

(PVX and TRV) showed large leaf areas with mixed fluorescence. This confirms previous 

observations that viral species of the same family remain spatially separated whereas viral 
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species belonging to different families show massive co-infected cells (Dietrich and 

Maiss, 2003; Takahashi et al., 2007). An identical pattern was observed after particle 

bombardment of detached leaves, which confirms a previous observation that spatial 

separation occurs in primary and systemically infected leaves (Dietrich and Maiss, 2003). 

During systemic movement, it is supposed that virus genotypes move together and are 

individually isolated during the first phase of leaf infection (Gutiérrez et al., 2015). In our 

study, co-bombardment of N. benthamiana leaves with differentially labeled populations 

of TRV revealed that two viral populations co-infect only a few cells before they start to 

separate. This indicates an efficient mechanism that induce a rapid spatial separation of 

two viral populations, even though the molecular basis is still unknown. 

The exclusion pattern of BNYVV and BSBMV in super-infection experiments was 

similar to the co-infection experiments. Neither BNYVV-mRFP nor BSBMV-mRFP 

could establish a secondary infection in N. benthamiana plants that have been previously 

infected with BNYVV-GFPuv, even though small fluorescence clusters of the 

challenging viruses could be observed in super-infected leaves. This indicates that virus 

replication was possible in primary infected cells but cell-to-cell movement was inhibited 

by the secondary virus. Only the two unrelated viruses PVX and TRV were able to 

establish a secondary infection. Different mechanisms have been proposed for the 

exclusion of two viral species after super-infection but experimental evidence is restricted 

to a few plant viruses. It was shown very early that super-infection exclusion between 

two closely related plant viruses can be elicited by RNA silencing (Ratcliff et al., 1997). 

More recently, it was shown that super-infection exclusion by CTV requires the 

production of the viral protein p33 (Folimonova, 2012). This protein mediates super-

infection exclusion at the whole organism level but is not required for exclusion at the 

cellular level (Bergua et al., 2014). Similarly, Tatineni and French (2016) demonstrated 

that WSMV- and TriMV-encoded CP and NIa-Pro proteins trigger super-infection 

exclusion independently of each other. However, further studies will be needed to clarify 

whether co-and super-infection exclusion of Benyvriuses shares similar features with 

previously reported mechanism. 

The data presented here provides the first evidence that BNYVV and BSBMV remain 

also spatially separated in their natural host sugar beet. Considering that BNYVV is the 

nearest known relative of BSBMV, co-and super-infection exclusion of both viral species 

seems to be plausible in terms of virus evolution. The viral population within in a host, 

also referred to as quasi species, is a collection of related viral variants subjected to a 
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continuous process of genetic variation, competition, and selection. The ability of viral 

variants to exclude each other in mixed infections eliminates the competition for the host 

resources. Furthermore, it has great implications for the stability of viral sequences and 

the genetic structure of a virus population (Folimonova, 2012). Newly emerging viral 

variants have a benefit by favouring uninfected cells rather than already infected host 

cells (Syller and Grupa, 2016). However, replication of two or more viral genomes in one 

cell increase the likelihood of recombination and reassortments. This is of particular 

relevance as it can increase the genetic diversity within a viral population leading to new 

viral variants. Considering the results of the present study, the likelihood of 

recombination and reassortants of BNYVV and BSBMV in mixed infections seems to be 

very low due to the spatial separation on the cellular level. Moreover, both viral species 

seem to have developed different infection strategies since BNYVV infections are mainly 

restricted to the root and BSBMV cause more systemic foliar symptoms (Heidel et al., 

1997). The fluorescence labeled viruses derived from full length-clones developed in this 

study represent versatile tools to address this question in the natural host sugar beet. 
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4.1. Abstract 
 

The RNA2 encoded read-through domain (RTD) of 

Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV) is 

dispensable for virus encapsidation, systemic colonisation and symptom development in 

Beta macrocarpa and Nicotiana benthamiana. Therefore, we tested if in infectious full-

length clones of both viruses the RTD can be substituted by untranslatable cDNA 

fragments from magnesium chelatase H subunit (chIH) and phytoene desaturase (pds) to 

create tools for virus-induced gene silencing (VIGS). Agroinfection of N. benthamiana 

resulted in systemic infection and development of a photobleaching phenotype with green 

and white/yellow leaves, indicative for systemic virus movement and silencing of chlH 

and pds. Quantitative real-time PCR displayed significant reductions in pds (59-77%) and 

chIH (67-85%) transcripts in the photobleached leaves of both BSBMV/BNYVV VIGS-

treated plants, respectively. VIGS-constructs with sense or antisense fragments displayed 
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similar silencing efficiencies indicating that development of ChlH or PDS-VIGS is 

independent of insert orientation.  

 

RNA interference (RNAi) is a genetically conserved mechanism involved in several 

biological processes like regulation of gene expression, maintaining genome integrity and 

adaptive responses to abiotic and biotic stresses as well as in antiviral defense (Brodersen 

and Voinnet, 2006; Li and Ding, 2006; Meister and Tuschl, 2004). During RNAi, dsRNA 

from different sources is cleaved into small interfering RNAs (siRNAs) of 21-25 

nucleotides by the RNase-like enzyme DICER. One strand of the siRNA is subsequently 

incorporated into the RNA-induced silencing complex (RISC). RISC targets specific 

single-stranded mRNA transcripts complementary to the siRNA. This procedure leads to 

degradation or a reduction in the accumulation of the target mRNA (Unver and Budak, 

2009). Virus induced gene silencing (VIGS) is a powerful technique adapted from the 

RNA-mediated antiviral defense mechanism (Kumagai et al., 1995; Lindbo et al., 1993). 

In the last twenty years several DNA and RNA viral vectors have been successfully 

constructed for silencing different genes such as magnesium chelatase (chlH) or 

phytoene desaturase (pds) in different plants (Hiriart et al., 2002; Ratcliff et al., 2001; 

Robertson, 2004). To verify if two Benyviruses are in general suitable tools for VIGS, 

RNA2 of BNYVV and BSBMV was successfully equipped with the appropriate 

restriction sites to insert different target genes and finally tested in N. benthamiana. 

Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV) 

are members of the genus Benyvirus in the family Benyviridae and naturally infect plant 

species in the family of Amaranthaceae and Chenopodiaceae (Gilmer et al., 2017). Both 

viruses are naturally transmitted by zoospores of the plasmodiophorid Polymyxa betae 

(Adams et al., 2001). Both viruses possess a similar genome organisation and 

morphological structure but display sufficient sequence variability to be assigned to 

different species (Lee et al., 2001; Ratti et al., 2009). Both BNYVV and BSBMV possess 

a multipartite RNA genome, which is composed of four plus-sense single stranded RNAs. 

In addition, some BNYVV isolates contain a fifth RNA (Miyanishi et al., 1999). RNA1 

is associated with the replication of viral RNAs, it possess one single open reading frame 

(ORF) encoding a 237 kDa protein that includes motifs for a helicase (HEL), 

methyltransferase (MTR), RNA-dependent RNA polymerase (RdRp) and a papain-like 

protease (PRO) (Link et al., 2005; Peltier et al., 2008). RNA2 encodes six proteins. At 
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the 5′-terminus the cistron for the coat protein (CP) is located, followed by the read-

through domain (RTD), the triple gene block cluster (TGB 1-3) and the cistron for the 

suppressor of gene silencing (Haeberle et al., 1994). Proteins of RNA2 have a function in 

virus encapsidation, cell-to-cell movement, replication and suppression of 

posttranscriptional gene silencing (PTGS) (Dunoyer et al., 2002; Richards and Tamada, 

1992). BNYVV and BSBMV contain beside RNA1 and RNA2 two additional smaller 

RNAs: RNA 3 and RNA 4. RNA 3 is important for the development of rhizomania 

symptoms in roots of sugar beet, whereas RNA 4 is involved in virus transmission by 

Polymyxa betae (Chiba et al., 2008; Jupin et al., 1992). In principle RNA 1 and RNA 2 

are sufficient to initiate systemic movement and distribution throughout different tissues 

in N.benthamiana (Rahim et al., 2007). 

Recently, we have shown that the RTD on RNA2 of the newly developed full-length 

cDNA clones of BNYVV and BSBMV is dispensable for systemic colonisation and 

symptom development in both agroinoculated Beta macrocarpa and N. benthamiana 

(Laufer et al., submitted). Moreover, the RTD can be replaced by different genes encoding 

fluorescent proteins allowing the construction of fluorescent labeled cDNA clones. In this 

study, we addressed the question whether cDNA clones of BNYVV and BSBMV can 

also be used as tools for VIGS by partial replacement of the RTD encoding sequence with 

untranslatable cDNA fragments from magnesium chelatase H subunit (chIH) of 

Nicotiana tabacum and phytoene desaturase (pds) of N. benthamiana. Furthermore, both 

VIGS-constructs should be optimized using coding sequences from chlH and pds in 

different orientations. 

For this purpose, total RNA was extracted from N. benthamiana leaves using a 

NucleoSpin® RNA Plant Kit (Macherey-Nagel, Dueren, Germany) according to the 

manufacturer’s instructions. In a reverse transcription PCR (RT-PCR), cDNA was 

produced using the RevertAid Reverse Transcriptase (Thermo Fisher Scientific, USA). 

To amplify a 549 bp ChlHNb as sense and antisense cDNA fragment using Phusion Flash 

High-Fidelity PCR Mastermix (Thermo Fisher Scientific, USA), oligonucleotides were 

designed based on the chlH sequence of N. tabacum (GenBank accession number 

2318136). All primers used to amplify chlH and pds were extended with AscI (5′-

GGCGCGCC-3′) and PacI (5′-TTAATTAA-3′) recognition sites. To produce a 578 bp  

PDSNb sense and antisense fragment, primers were designed according to the 

N. benthamiana pds sequence (GenBank accession number 93117609) (Table 1).  
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Table 1. Oligonucleotide primer sequences used in this study. Restriction sites are 

underlined. 

 

 

 

The PDS PCR products of ChlH were digested with AscI and PacI restriction enzymes, 

purified from agarose gels with NucleoSpin® Gel and PCR Clean-up (Macherey-Nagel, 

Düren, Germany) and cloned into RNA2 cDNA clones of BNYVV and BSBMV, 

respectively (Laufer et al., submitted). For this purpose, these clones were firstly re-

amplified, thereby deleting the RTD but leaving 249 bp upstream of the TGB1 ORF 

retaining the subgenomic promotor and creating the single restriction enzyme recognition 

sites AscI and PacI followed by two stop codons (TGATAG) to facilitate the cloning of 

chIH or pds fragments downstream of the CP-ORF. Additionally, all VIGS-constructs 

comprise the mutated opal (TGA) stop codon of the coat protein and the first two codons 

Primer Sequence (5′-3′) 

S-ChlHNb-AscI-for 5′-TTGGCGCGCCGAATCTCCTTGACCGAGCAGTC-3′ 
S-ChINb-PacI-rev 5′-CGTTTAATTAAATGCCTTCATACCACTTGGGGT-3′ 
AS-ChINb-PacI-for 5′-GATTAATTAAGAATCTCCTTGACCGAGCAGTC-3′ 
AS-ChINb-AscI-rev 5′-TTGGCGCGCCATGCCTTCATACCACTTGGGGT-3′ 
S-PDSNb-AscI-for 5′-TTGGCGCGCCTTGTTATTGCTG-3′ 
S-PDSNb-PacI-rev 5′-GATTAATTAAAGTTCAAAGCAATCAAAATGCA-3′ 
AS-PDSNb-PacI -for 5′-CGTTTAATTAAGTTCAAAGCAATCAAAATG-3′ 
AS-PDSNb-AscI-rev 5′-TTGGCGCGCCTTGTTATTGCTGGTGCAGG-3′ 
BN-RNA2-AscI-rev 5′-ATGGCGCGCCTTGTCCGGGTGGACTGGTTC-3′ 
BN-RNA2-PacI-for 5′-GATTAATTAATGATAGACGTGGGGCTGGTTCTTC-3′ 
BS-RNA2-AscI-rev 5′-

ATGGCGCGCCTCAATTGGTGCGTGGAACGGCAGGAGTAACACCC
C-3′ 

BS-RNA2-PacI-for 5′-GATTAATTAATAGTATGTTACGAACACGTGGTGTTAGTAATA-
3′ 

PDSNb-for 5′-TTCTTTTGCCTGAAGACTGGAAA-3′ 
PDSNb-rev 5′-GAACTCCCACTAGCTTCTCCAACT-3′ 
ChlHNb-for 5′-AGCGTGACCTTGTGGTAGGAA-3′ 
ChlHNb-rev 5′-TGGAGGTTCACCAATGATGTGA-3′ 
60S-Nb-for 5′-AAGGATGCCGTGAAGAAGATGT-3′ 
60S-Nb-rev 5′-GCATCGTAGTCAGGAGTCAACC-3′ 
FBOX-Nb-for 5′-GGCACTCACAAACGTCTATTTC-3′ 
FBOX-Nb-rev 5′-ACCTGGGAGGCATCCTGCTTAT-3′ 
PDSNb-1for 5′-CGAGCTGAATGAGGATGGAAGTG-3′ 
PDSNb-1rev 5′-GCACCTTCCATTGAAGCCAAG-3′ 
ChlHNb-1for 5′-GCTGATGCAGTTCTCCACTTTGG-3′ 
ChlHNb-1rev 5′-GACGGAGCAGCTCCACATCTC-3′ 
Act-Nb-1for 5′-GGCAGGTCGTGACCTCACTG-3′ 
Act-Nb-1rev 5′-CACCACTGAGCACTATGTTTCCG-3′ 
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(CAATTA) of the RTD. In vitro recombination products were transformed into chemical 

competent Escherichia coli cells (strain DH5 α) (Inoue et al., 1990). Subsequently all 

constructs (Table S2) were electroporated into Rhizobium radiobacter (syn. 

Agrobacterium tumefaciens) strain GV2260 via heat shock transformation (Panja et al., 

2008) and inoculated into 2-3 leaves of 3-4 week old N. benthamiana plants as described 

by Voinnet et al. (1998) 

Non-inoculated plants and plants inoculated with the empty vector developed no systemic 

symptoms (Fig. 1A and B; Fig. 2A and B). All plants inoculated with the wild-type 

BNYVV RNA1+ BNYVV-RNA2 (BN1BN2) without the pds or chlH insert showed only 

typical systemic BNYVV symptoms in form of a chlorosis and necrotic yellow veins (Fig. 

1C). Similarly, plants inoculated with the wild-type BSBMV RNA1+ BSBMV-RNA2 

(BS1BS2) displayed mosaic patterns and yellow blotches (Fig. 2C) without a PDS or 

ChlH silencing phenotype. In contrast, all plants inoculated with BNYVV/BSBMV as 

tools for VIGS showed a typical PDS or ChlH silencing phenotype. First symptoms of 

photobleaching caused by BNYVV RNA1+ BNYVV RNA2-PDS (BN1BN2-PDS) and 

BNYVV RNA1+ BNYVV RNA2-ChlH (BN1BN2-ChlH) both in sense (s) and antisense 

(as) orientations, respectively, were observed about 19 days post inoculation (dpi), and 

became more apparent after 28 dpi (Fig. 1D, E, G and H). In the same manner, all plants 

infected with the BSBMV RNA1+ BSBMV RNA2-PDS (BS1BS2-PDS) and BSBMV 

RNA1+ BSBMV RNA2-ChlH (BS1BS2-ChlH) VIGS constructs in different 

orientations, respectively, developed photobleaching after 21 dpi (Fig. 2D, E, G and H). 

PDS and ChlH silencing phenotype appeared first with a white/yellow color and faint 

green regions in new upper leaves above the inoculated leaves, without any 

photobleaching in stems and petioles. PDS and ChlH silencing was already described in 

previous reports using Potato virus X (PVX), Tobacco rattle virus (TRV) and 

Tobacco mosaic virus (TMV) with pds or chlH inserts (Kumagai et al., 1995; Lange et 

al., 2013; Thomas et al., 2001; Yuan et al., 2011). The observed white/yellow color of 

PDS and ChlH silencing phenotype in the BNYVV or BSBMV RNA2 background is 

similar to PDS or ChlH silencing phenotype in N. benthamiana described in preceding 

studies (Kjemtrup et al., 1998; Thomas et al., 2001; Voinnet et al., 2000). 
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Fig. 1 Silencing of endogenous phytoene desaturase (pds) and magnesium chelatase H 

subunit (chlH) genes in Nicotiana benthamiana after agroinfiltration with different VIGS-

vectors from BNYVV (31dpi). A) Healthy N. benthamiana plants. B) Plants inoculated 

only with infiltration buffer containing only A. tumefaciens GV 2260 without vector. C) 

N. benthamiana plants with typical BNYVV symptoms after infection with BN1BN2. D) 

Phenotype caused by the BN1BN2-PDS-s silencing vector. E) Phenotype of the 

BN1BN2-PDS-as silencing vector. F) An intensive white/yellow photobleaching 

occurring at 31 dpi in upper non-inoculated leaves of plants infected with BN1BN2-

ChlH-s and G) with BN1BN2-ChlH-as.  
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Fig. 2 Silencing of endogenous phytoene desaturase (pds) and magnesium chelatase H 

subunit (chlH) genes in N. benthamiana after agroinfiltration with different VIGS-vectors 

from BSBMV (31dpi). A) Healthy N.benthamiana plants. B) Plants inoculated only with 

infiltration buffer containing only A. tumefaciens GV 2260 without vector. C) 

N. benthamiana displaying typical BSBMV symptoms after infection with BS1BS2. D) 

Phenotype caused by the BS1BS2-PDS-s silencing vector. E) Phenotype of the BS1BS2-

PDS-as silencing vector. F) An intensive white/yellow photobleaching occurring at 31 

dpi in upper non-inoculated leaves of plants infected with BS1BS2-ChlH-s and G) with 

BS1BS2-ChlH-as. 
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In the next step, the silencing effect on transcript levels of chlH and pds was analyzed by 

means of quantitative real-time PCR (qRT-PCR). Therefore, leaf samples from five 

systemically infected plants displaying silencing symptoms were collected and subjected 

to RNA extraction using the NucleoSpin® RNA Plant Kit. The first strand cDNA was 

synthesized from 1 μg of total RNA using RevertAid RT Reverse Transcriptase. A primer 

pair for qRT-PCR was used to generate a 66 bp pds and a 95 bp chlH PCR-product 

targeting a region outside of the coding sequences inserted in the BNYVV/BSBMV based 

VIGS-vectors (Table S1). The 60S rRNA gene and the F-BOX gene served as 

endogenous controls for normalization (Liu et al., 2012). The relative mRNA expression 

of pds and chlH to the non-inoculated control plants was calculated using the 2-ΔΔCt 

method (Schmittgen and Livak, 2008). Fold change values were log10 transformed prior 

to statistical analysis with SAS Version 9.4 (SAS Institute Inc., Cary, USA). The qRT-

PCR analysis revealed that pds gene expression was reduced by 7% and chlH gene by 

16% in BN1BN2 infected plants compared to the non-inoculated control plants (Fig. 3A 

and B) However, plants infected with VIGS constructs from BNYVV displayed in both 

target genes a significant reduction of the transcript level. In case of chlH, there were no 

significant differences between sense (85%) and antisense (86%) constructs (Fig. 3A). In 

contrast, the silencing effect of pds with a sense construct (77%) was significantly higher 

compared to the antisense construct (60%) (Fig. 3B). Plants infected with BS1BS2 

displayed also a reduction in mRNA expression level of chlH (25%) whereas no reduction 

in the pds mRNA expression level was detected (Fig. 3C and D). VIGS constructs of 

BSBMV carrying a chlH fragment in sense (67%) or antisense (74%) orientation caused 

also a markedly reduction of the transcript level (Fig. 3C) but this effect was not 

significantly different from the empty full-length clone. In contrast, the transcript level of 

pds was significantly reduced by sense (59%) and antisense (49%) constructs as well (Fig. 

3D).  
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Fig. 3 Magnesium chelatase (chlH) and phytoene desaturase (pds) expression levels for 

different silencing constructs of BNYVV (A and B) and BSBMV (C and D). Fold change 

values are mean values of five N. benthamiana plants calculated relative to the mock-

inoculated plants. Error bars indicate standard deviation. Small letters represent different 

statistical groups based on a 0.05 confidence level. 

 

 

Our data show that there is no apparent difference between sense and antisense constructs 

with one exception in case of BNYVV-PDS. This indicates that the development of ChlH 

or PDS-VIGS is independent of insert orientation. Similar results were also reported in 

N. benthamiana and N. tabacum, where the sense and antisense insertion in TMV, PVX 

or in a hybrid viral vector consisting of sequences from Tomato mosaic virus (ToMV) 

and TMV had the same PDS silencing effect (Gosselé et al., 2002; Hiriart et al., 2002; 

Kumagai et al., 1995; Ruiz et al., 1998). This corroborates the presumption that the 

initiator of PTGS is the dsRNA represented by a replicative intermediate of the viral RNA 
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(Montgomery et al., 1998; Morel and Vaucheret, 2000; Waterhouse et al., 1998). 

However, many approaches have been proposed to insert a target gene into a VIGS-

vector. Among other, inserting a fragment of the pds gene between the large coat protein 

(L-CP) and movement protein (MV) and in frame with the viral polyprotein of 

Bean pod mottle virus (BPMV) (Zhang et al., 2010). In the previous TRV-VIGS vector a 

target gene fragment was inserted into the multiple cloning sites (MCS) of the TRV vector 

in different orientations (Lee et al., 2017). Similarly, fusion protein expression was used 

for both BPMV and Apple latent spherical virus (ALSV) VIGS studies (Igarashi et al., 

2009). In this study, we inserted the target genes (pds, chlH) after the mutated opal stop 

codon of the CP of BNYVV and BSBMV. VIGS efficiency seems to be dependent on the 

virus-host interaction as well as on the replication cycle of the virus (Senthil-Kumar and 

Mysore, 2011b). However, different target genes (pds, chlH) display different 

quantitative effects. ChlH constructs in BNYVV as well as in BSBMV delivered higher 

silencing levels than the PDS constructs. This might be explained by the fact that RNAi 

produces in many cases variable effects, which may occur when the siRNA molecules 

cannot bind to the target mRNA, because the target region is bound to proteins or is not 

accessible due to secondary structures (Tomari and Zamore, 2005). Recent studies 

demonstrated that the silencing efficacy and stability might be influenced by the sequence 

of the insert (Bruun-Rasmussen et al., 2007; Pignatta et al., 2007; Zhong et al., 2005). 

Additionally, several observations showed that the 3`-end derived siRNAs were better for 

PDS VIGS compared to siRNAs derived from the 5`-end of the gene, which was found 

particularly more pronounced for the antisense orientation than the sense orientation 

(Igarashi et al., 2009; Zhang et al., 2010).  

In summary, we have shown that full-length cDNA clones of BNYVV/BSBMV can be 

used as tools for VIGS in N. benthamiana. To our best knowledge, BNYVV and BSBMV 

are the first Benyviruses modified for efficient VIGS. These VIGS-constructs can be 

utilized as a simple tool to determining the gene function in reverse genetics analyses. 

Moreover, the VIGS-systems should be optimized to be suitable in their natural hosts 

B. vulgaris and B. macrocarpa.
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4.2. Supporting information 

 

Supplementary Fig. 1 Schematic representation of BNYVV/BSBMV-RNA2 cDNA 

infectious clones and genomic modifications. A, Organization of BNYVV/BSBMV 

plasmids used in VIGS analysis of PDS/ChlH. The BNYVV/BSBMV open reading 

frames are shown as CP (coat protein); RT (read-through domain); TGB1-3 (triple gene 

block ORF1-3) and VSR (viral silencing suppressor). LB and RB (left and right borders 

of the binary vector); p35S (Cauliflower mosaic virus 35S promoter); HDV 

(Hepatitis delta virus ribozyme); pA35S (Cauliflower mosaic virus 35S polyadenylation 

signal). B, BNYVV/BSBMV-RNA2 after insertion of phytoene desaturase (PDS) sense; 

(PDS) antisense; magnesium chelatase (ChlH) sense and (ChlH) antisense.  : refer to 

stop codon. 

Supplementary Table 1. List of plasmids and VIGS constructs 

 

 

Construct Insert Virus Abbreviation 
pDIVA:BNYVV-RNA1 none BNYVV BN1 

pDIVA:BSBMV-RNA1 none BSBMV BS1 

pDIVA:BNYVV-RNA2 none BNYVV BN2 

pDIVA:BSBMV-RNA2 none BSBMV BS2 

pDIVA:BNYVV-RNA2-CP-NbPDS-s PDS-s (578 bp) BNYVV BN2-PDS-s 

pDIVA:BNYVV-RNA2-CP-NbPDS-as PDS-as (578 bp) BNYVV BN2-PDS-as 

pDIVA :BNYVV-RNA2-CP-NbChlH-s ChlH-s (549 bp) BNYVV BN2-ChlH-s 

pDIVA :BNYVV-RNA2-CP-NbChlH-as ChlH-as (549 bp) BNYVV BN2-ChlH-as 

pDIVA:BSBMV-RNA2-CP-PDS-s PDS-s (578 bp) BSBMV BS2-PDS-s 

pDIVA:BSBMV-RNA2-CP-PDS-as PDS-as (578 bp) BSBMV BS2-PDS-as 

pDIVA:BSBMV-RNA2-CP-ChlH-s ChlH-s (549 bp) BSBMV BS2-ChlH-s 

pDIVA:BSBMV-RNA2-CP-ChlH-as ChlH-as (549 bp) BSBMV BS2-ChlH-as 
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5. GENERAL DISCUSSION 
 

Infectious full-length cDNA clones of plant viruses provide valuable knowledge about 

the replication cycle of viruses, viral functionality and pathogenicity in diverse host plants 

using in vitro mutagenesis (insertions, substitutions and deletions) or by labeling with 

various reporter genes for replication and expression studies. In addition, infectious full-

length clones are useful in the exploration of the genesis of satellite RNA, mechanisms 

of defective interfering RNA, as well as of induced or natural recombination (Nagyová 

and Šubr, 2007). Last, but not least, the infectious clones are considered as essential 

source for the investigation and analysis of antiviral strategies, as well as a raw material 

for generation and development of the new viral vectors (Bujarski and Miller, 1992). In 

this work, infectious full-length cDNA clones of BNYVV (A-type) and BSBMV under 

control of the 35S promoter of Cauliflower mosaic virus (CaMV) in a binary vector 

(pDIVA) for rhizoinfection have been successfully constructed (Manuskript 1). For this 

purpose we have used Gibson Assembly (GA) as a single step in vitro recombination 

technique (Gibson et al., 2009). GA provides a fast, flexible and reliable alternative to the 

other conventional DNA cloning procedures. Firstly for the construction of an infectious 

cDNA full-length clone, GA was applied for a Potyvirus genome (Bordat et al., 2015) as 

well as of Tomato blistering mosaic virus (ToBMV) (Blawid and Nagata, 2015). In this 

study, the GA strategy has been applied to the generation of infectious cDNA full-length 

clones of multipartite plant RNA viruses (BNYVV and BSBMV). Furthermore, the newly 

produced infectious full-length clones were tested for their viral functions like replication, 

local or systemic propagation, and ability to form viral particles on different plants such 

as N. benthamiana, B. vulgaris, B. macrocarpa and C. quinoa. In comparison with the 

wild-type viruses, the prepared infectious cDNA clones of both BNYVV and BSBMV 

induce similar symptoms on the tested plants, which indicate their ability for replication, 

encapsidation and movement. 

In order to transfect plants with cDNA full-length clones of BNYVV or BSBMV, several 

possibilities were investigated in this study. Especially, rhizoinoculation was used as a 

fast and uncomplicated method for N. benthamiana (Kang et al., 2015; Nagyová and 

Subr, 2007). On the other hand, our study demonstrated that the usage of this method can 

be restricted, since rhizoinoculation of B. vulgaris roots and C. quinoa leaves did not lead 

to an infection and any systemic symptoms. Therefore, the mechanical root inoculation 
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(vortex-inoculation) with sap from rhizoinfected B. macrocarpa plants was required to 

produce infections of B. vulgaris root system, since the other methods of leaf inoculation, 

such as mechanical inoculation (Chiba et al., 2008) or rhizoinoculation (Manuscript1) did 

not cause systemic infection. However, previous attempts to transform B. vulgaris using 

Rhizobium in both transient and stable transformation systems were only of limited 

success (Chiba et al., 2008; Hisano et al., 2004; Yang et al., 2005). Various factors might 

be the reason for this phenomenon. In contrast to other dicotyledonous plants, sugar beet 

is especially recalcitrant to transformation needing a laborious, costly and time 

consuming procedure to recieve an acceptable number of plants that are successfully 

transformed and regenerated (Kifle et al., 1999; Yang et al., 2005). Thus, the recalcitrance 

of transformed sugar beet plants may be caused by a small number of morphogenic cells 

and perhaps also by a limited access to such cells if they are surrounded by high numbers 

of non-morphogenic cells (Joersbo, 2007). In addition, further studies demonstrated, that 

beside a general lower ability of Rhizobium to transform root cells, also the number of 

bacterial cells infiltrated in the test plants play a key role in the efficiency of 

transformation; a low concentrations of Rhizobium cells cause a reduction in the 

frequency of T-DNA transfer, whereas an excessive number can lead to stress and the 

inoculated plant cells have a reduced regeneration ability (Costa et al., 2002; Grevelding 

et al., 1993). Strongly dependent upon genotype of plants, both the regeneration rate and 

transformation frequency of T-DNA after rhizo-mediated transformation of sugar beet 

cells are very low (Fry et al., 1991; Jacq et al., 1993; Kifle et al., 1999). Alternatively, the 

silencing level in leaves of some experimental plants (e.g. N. benthamiana and 

A. thaliana) is higher than those in root cells, which especially increase the ability of some 

soil-borne viruses to initiate the infection with high efficiency in roots than leaves 

(Andika et al., 2016). For example, BNYVV suppress RNA silencing in roots of 

N. benthamiana more effectively than leaves, which contributes to a high BNYVV RNA 

genome and lower siRNA accumulation in root cells compared to leaf cells (Andika et 

al., 2016; Andika et al., 2005). In addition, BNYVV p31 display high efficiency RNA 

silencing suppression in roots compared to leaves that leads to a successful transmission 

of virus into roots by P. betae (Andika et al., 2016; Chiba et al., 2013; Rahim et al., 2007; 

Zhang et al., 2005). Unlike R. radiobacter, A. rhizogenes transformation of sugar beet as 

an alternative method leads to hairy root cultures (Hamill et al., 1987). To overcome this 

issue, disarmed A. rhizogenes have been used to successfully transform sugar beet roots 

(Ehlers et al., 1991; Mankin et al., 2007; Pavli and Skaracis, 2010). Alternatively, a novel 
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method of rhizoinoculation, called ‘agrodrench’ may be used to transform very young 

seedlings of sugar beet where the leaf inoculation method is not possible (Ryu et al., 

2004).  

The modified full-length cDNA clones of BNYVV/BSBMV have been applied for the 

generation of VIGS-constructs suitable to produce RNA silencing in different 

experimental plants (Manuscript 3). In order to achieve this aim, BNYVV-/BSBMV-

RNA2 was equipped with fragments of the pds (578 bp) and the chlH (549 bp) genes in 

sense and in antisense orientation. Rhizoinfection of N. benthamiana with BNYVV or 

BSBMV constructs containing chlH or pds genes in different orientations produced an 

obvious photobleaching phenotype and a reduction in the mRNA accumulation of pds 

and chlH genes. Many previous studies already described the use of pds and chlH as 

marker genes in silencing experiments in the background of different viruses, like 

Tobacco rattle virus (TRV), Potato virus X (PVX) and Tobacco mosaic virus (TMV) 

(Guo et al., 2016; Lange et al., 2013; Ma et al., 2015; Thomas et al., 2001; Yuan et al., 

2011). In this study, the visual silencing phenotypes (yellow/white color) caused by 

suppression of chlH and pds gene expression in N. benthamiana after inoculation with 

different PDS or ChlH VIGS-constructs seem to be similar to those observed in the 

preceding studies (Liu et al., 2016; Voinnet, 2001; Zhao et al., 2016). Both PDS and 

ChlH-constructs were not able to produce photobleaching on the whole infected plant. 

The silencing effect appears mainly on new and middle non-inoculated leaves causing 

yellowing on 60-70% of the leaf's area. Generally, symptoms induced by VIGS in many 

experimental plants show a patchy distribution, probably because parts of the plant tissue 

remain not silenced at all or only poorly silenced, due to a limited spread of the virus or 

incomplete distribution of the silencing signal (Dong et al., 2007; Mustafa et al., 2015; 

Rotenberg et al., 2006; Unver and Budak, 2009).  

The obtained results were verified using the qRT-PCR technique. The conducted qRT-

PCR demonstrated a significant lower mRNA expression level of pds or chlH genes in 

most of the tested plants infiltrated with BNYVV-/BSBMV-RNA1+RNA2 equipped with 

the target genes in comparission with healthy non-infected or only with 

BNYVV/BSBMV (wild-type) infected plants. However, one exceptional case was 

observed with the BSBMV-ChlH construct. This construct displays a visually clear 

photobleaching phenotyp in the target plants, however, no significant difference in chlH 

expression level could be confirmed with qRT-PCR compared to control plants infected 
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only with BSBMV (wild-type). Nevertheless, we might bypass this by increasing the 

number of plants per test to convert the trend into a statistically significant result. 

In this work, we could not determine any visual differences in the silencing phenotype or 

any significant differences in mRNA expression level measured by qRT-PCR between 

antisense and sense PDS- or ChlH-constructs. This points out that the development of 

ChlH- or PDS-VIGS is independent of the insert orientation in both BNYVV and 

BSBMV. Indeed, early studies demonstrated similar results in N. benthaiana and 

N. tabacum after infection with a PDS-construct in sense and antisense orintation in the 

background of TMV and PVX (Gosselé et al., 2002; Kumagai et al., 1995; Ruiz et al., 

1998). Nevertheless, the BN2-PDS-s construct showed via qRT-PCR a higher silencing 

effect than the BN2-PDS-as construct. The reason for the BN2-PDS-as lower silencing 

efficacy in N. benthamiana encountered in the work presented here is unclear but might 

be due to a difference in silencing induction caused by differences in viral RNA 

accumulation that affect the mRNA accumulation of the target gene. In similar way, Ruiz 

et al. (1998) assumed a correlation between VIGS efficiency of GFP and the reduction in 

PVX genomic RNA accumulation in N. benthamiana-16c plants after infection with a 

PVX construct including a part of the GFP sequence. On the other hand, the correlation 

between the level of virus accumulation and VIGS efficiency in target plants might be 

dependent on the replication cycle of the virus itself as well as on the virus-host 

interaction (Ramegowda et al., 2014; Senthil-Kumar and Mysore, 2011b).  

Both VIGS reporter genes used in this study (pds and chlH) display visually similar 

silencing phenotypes but have slightly different quantitative effects in the test plants. 

QRT-PCR results indicated that plants infiltrated with ChlH-constructs in the background 

of both viruses produced higher silencing levels than those infiltrated with PDS-

constructs. It was previously shown that the 5` end of the pds gene coding region 

displayed little PDS silencing in N. benthamiana, whereas the middle to 3` end PDS part 

resulted in higher silencing effects (Igarashi et al., 2009; Zhang et al., 2010). This 

underlines an important role of the selected sequence part on the silencing efficacy 

(Bruun-Rasmussen et al., 2007; Mei et al., 2016; Pflieger et al., 2008). Studies corroborate 

that in many target plants RNAi has an inconstant effect, which could be due to siRNA 

molecules, which are not able to bind to the target mRNA, since the target region is 

occupied with a protein or is not reachable due to secondary structures (Ogita et al., 2004; 

Ossowski et al., 2008; Tomari and Zamore, 2005). Furthermore, the silencing efficiency 
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might be also influenced by the viral suppressors of RNA silencing (VSR) of BNYVV 

and BSBMV (p14) (Andika et al., 2012; Andika et al., 2016; Zhang et al., 2005). Chiba 

et al. (2013) postulated that the VSR is involved in the downregulation of the DICER 

activity and the primary siRNA creation, probably because of an intervention with AGO-

siRNA loading, which produces a mild silencing suppression.  

This work has established efficient BNYVV/BSBMV based VIGS systems that can be 

used successfully to silence endogenous genes in N. benthamiana within 21 days. 

Additionally, these VIGS-systems may serve as a simple tool for determining the 

functions of many candidate genes in reverse genetics analyses. To our knowledge, 

BNYVV and BSBMV are the first Benyviruses modified to be used as VIGS-vectors. 

Furthermore, the VIGS-systems could be optimized to be applicable in their natural hosts 

B. vulgaris.  

As a further step in the optimization of the silencing concept, the infectious full-length 

cDNA clones of both viruses have been used to produce a number of BNYVV/BSBMV 

RNA 1+2 reassortants in N. benthamiana (data not shown). In this study we indicated 

that both in vitro reassortants were viable and capable of viral systemic infection in the 

target plants. Remarkably, the plants infiltrated with both reassortants showed a 

difference in symptom severity, where symptoms occurred later compared to the wild-

type (BNYVV/BSBMV) combinations. Interestingly, BSBMV-RNA1 with BNYVV-

RNA2 A-type produces very mild symptoms on the experimental host N. benthamiana, 

which may allow for a better and quicker recognition of silencing phenotypes. According 

to Ratti and colleagues (2009) RNA3 of BSBMV is supported by BNYVV in terms of 

viral replication and systemic movement. Our BNYVV/BSBMV reassortants analyses 

gave a clear evidence for the important role of genome segments in symptoms expression 

and development in N. benthamiana, which seem to be mostly regulated by the RNA2 

segment or by proteins encoded thereof. However, wild-types of both viruses display 

species-specific symptoms on different host and test plants (e.g. B. vulgaris, 

B. macrocarpa and N. benthamiana). We could also confirm that RNA1+2 of BSBMY 

and BNYVV (A-type) derived from the generated cDNA clones are sufficient to initiate 

systemic movement and propagation throughout different tissues in N. benthamiana 

(Chiba et al., 2013; Rahim et al., 2007). This supports the functional similarities of RNA1 

and RNA2 for BNYVV (A-type) and BSBMV. Sequence and genomic homologies 

between BSBMV and BNYVV hypothesize the possibility that both viruses evolved from 
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a common ancestral virus species. Conversely, this study and other reports demonstrated 

that both BNYVV and BSBMV RNA3 is involved in long distance movement in Beta 

species for both wild-type and reassortants (Lauber et al., 1998; Peltier et al., 2012; Ratti 

et al., 2009).  

In addition to the developed VIGS-vectors based on RNA2 of BNYVV and BSBMV, this 

study further used full-length clones of both viruses for fluorescent labeling.  The labeled 

viruses were investigated to study the interaction between both viruses in super-infection 

and co-infection experiments in different host plants. Firstly, the labeled BSBMV and 

BNYVV constructs were achieved by almost a complete replacement of the RT domain 

on RNA2 with various reporter genes. Here, many clones with the green fluorescent 

protein (GFPuv; GFPuvA206K and smRSGFP) or the monomeric red fluorescent protein 

(mRFP) based on RNA2 of BNYVV or BSBMV were successfully generated. The 

labeled BNYVV and BSBMV clones were then inoculated with R. radiobacter into 

different host plants such as B. macrocarpa and N. benthamiana. The inoculated plants 

displayed typical but delayed BNYVV or BSBMV disease symptoms after 23 and 30 dpi, 

respectively. This indicates that the labeled clones of both BNYVV and BSBMV are 

infectious and able to move systemically through the phloem in different host plants. 

These results demonstrate that p75 minor coat protein is not required for efficient virus 

assembly. This might be explained by the mutated RT proteins with deletions in different 

positions in the C- or N-terminal parts interfering with particle formation, whereas that 

can not take place when the whole RTD is deleted. Nevertheless, it has been shown in 

previous studies that p75 is needed for viral particle formation and successful 

transmission by the fungal vector P. betae (Haeberle et al., 1994; Schmitt et al., 1992; 

Tamada and Kusume, 1991; Tamada et al., 1996). Particularly, it has been assumed that 

the RT domain of p75 consists of two different subdomains: the N-terminal half contains 

sequences implicated in virion assembly, while the C-terminal portion carries sequences 

involved in interactions with the fungal vector (Adams et al., 2001; Tamada and Kusume, 

1991; Tamada et al., 1996). Remarkably, any type of mutations in the N-terminal part of 

p75 can adversely affect or inhibit production of viral particles (Schmitt et al., 1992; 

Tamada et al., 1996). Many informations are still missing about the exact role of p75 in 

virus assembly, however, the most plausible probability is that the protein intervenes in 

the assembly initiation (Schmitt et al., 1992; Tamada et al., 1996). In this study, we could 

confirm a successful encapsidation of viral RNA by the presence of BNYVV or BSBMV 

characteristic rod shaped virus particles in systemically infected leaves of N. benthamiana 
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via electron microscopy. In addition, these results showed that the fluorescent labeling of 

BNYVV or BSBMV with different reporter genes (gfpuv; gfpuv A206K; smRS-gfp and 

mrfp) have no impact on viral particle diameter and did not interfere with symptom 

development and systemic movement in two different host plants.  

Remarkably, the fluorescence of smRS-GFP and GFPuv expressed by BSBMV and 

BNYVV was unequally distributed in spherical shaped clusters whereas mRFP displayed 

a strong fluorescence signal evenly distributed throughout the cytoplasm. Several 

observations proposed that GFP is monomeric and homogeneous at low concentrations, 

while it tends to dimerization at high protein expression level, which might cause a kind 

of artefacts in microscopy experiments (von Stetten et al., 2012; Yang, 1997). To ensure 

a truly monomeric state of GFPuv, the alanine to lysine mutation at position 206 (A206K) 

has been introduced into BSBMV-GFPuvA206K and BNYVV-GFPuvA206K, with marginal 

effect on the spectroscopic properties. The mutated GFPuvA206K was visualised by a 

homogeneous and well distributed green fluorescence signal, however, many spherical 

shaped clusters remained. This might be explained probably by virus particles addressed 

to the cytosolic surfaces of mitochondria, since these places are known as sites of virion 

assembly (Erhardt et al., 2000; Valentin et al., 2005). Furthermore, plants infected with 

GFPuv and smRSGFP in the background of BNYVV or BSBMV showed a delay in 

symptom development compared to plants infected only with wild-type viruses. This 

might be explained by the GFPuv- and smRSGFP-CP fusion protein developed in this 

study that presumably interfered with virus encapsidation. 

Additionally, co-infection and super-infection experiments based on recently constructed 

fluorescent labeled clones of BSBMV and BNYVV were performed in N. benthamiana. 

The results from co-infection experiments presented in this work showed that double 

infections of identical, but differently labeled viruses of BSBMV and BNYVV revealed 

a discrete colonisation and separate fluorescent clusters. These discrete clusters with 

different fluorescence (red and green) were detected in both primary and systemically 

infected leaf tissue in co-inoculated plants independently of the inoculation method 

(particle bombardment or rhizoinoculation). CLSM images of mesophyll cells confirmed 

that both fluorescence signals were recognizable only in a few number of cells at the 

border region of two adjacent, different fluorescent cell clusters. Taken together, these 

results indicate that both viral populations can principally co-replicate simultaneously 

within the same cell. Several studies reported a similar spatial separation effect in infected 
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leaves with identical but different labeled potyviruses (monopartite viruses) or with 

cheraviruses (bipartite viruses) (Dietrich and Maiss, 2003; Takahashi et al., 2007). In the 

same manner, a reassortant of double infections including BNYVV-RNA1, BNYVV-

smRSGFP and BSBMV-RNA2-mRFP displayed an obvious spatial separation pattern. 

This means that RNA1 does not play a key role to induce spatial separation of BNYVV 

and BSBMV. On the other hand, double infections of different virus populations (e.g. 

BSBMV with two unrelated viruses TRV and PVX) pointed out that both viruses were 

able to replicate and distribute simultaneously in the same infected leaf tissue. Hence, our 

data are consistent with several prior reports, which demonstrated that distantly related 

viruses of different families show clear co-infected cells whereas closely related viruses 

belonging to the same genus or family remain spatially distributed (Aaziz and Tepfer, 

1999; Dietrich and Maiss, 2003; Masuta et al., 1998; Takahashi et al., 2007). Taken 

together, such a behaviour of populations of identical virus isolates and strains seems to 

be a widely distributed common phenomenon, however, the molecular basis of this 

mechanism is still not clear and only poorly understood. 

Our data show that BNYVV and BSBMV act in super-infection experiments in the same 

manner as in the co-infection experiments. A preexisting viral infection of BNYVV-

GFPuv prevents or interferes with the establishment of a secondary infection with the 

same or a closely related strain (BNYVV-mRFP and BSBMV-mRFP) in N. benthamiana 

plants. In other words, when infected with BNYVV-GFPuv (protecting virus), the test 

plant becomes resistant to super-infection with BNYVV-mRFP and BSBMV-mRFP 

(challenging viruses), or disease symptoms induced by the challenging virus are 

suppressed. However, secondary infection by distantly related viruses (TRV and PVX) 

can be mostly unaffected. Indeed, previous studies demonstrated similar results in 

N. benthamiana plants and suggested several mechanisms to explain this phenomenon 

(Lecoq and Raccah, 2001; Syller, 2012; Ziebell and Carr, 2010). These include, the 

disassembly of the challenging virus, which could be prevented by expression of the CP 

of the protecting virus (Abel et al., 1986; Bendahmane and Beachy, 1999; Folimonova, 

2012). Recently, it was shown that TriMV- and WSMV-encoded NIa-Pro and CP proteins 

are super-infection exclusion effectors (Tatineni and French, 2016). However, the 

induction of RNA silencing by the protecting virus is the most rational explanation of this 

phenomenon, which probably causes a sequence-specific degradation of the challenging 

virus RNA (Fagoaga et al., 2006; Ratcliff et al., 1999). In addition, precursor exhaustion 

has also been suggested as a mechanism that may explain this phenomenon. Here it is 
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hypothesized that the protecting virus using some cell components that were needed by a 

closely related virus or by occupying of some cellular replication sites that are shared by 

related viruses but are not required for distantly related viruses (Ziebell and Carr, 2010). 

Further work is required to better elucidate if super-and co-infection exclusion of 

Benyviruses shares identical properties with earlier observed mechanisms.  

In conclusion, this study contributed to improve our knowledge about BNYVV and 

BSBMV biological features such as host-pathogen interactions, symptom induction, 

behavior in mixed infections and tissue colonisation strategies. For this purpose, we 

constructed infectious full-length cDNA clones of an European A type BNYVV (Yu2) 

and a Californian BSBMV isolate using the GA single step in vitro recombination 

technique. Furthermore, VIGS-constructs based on the newly generated 

BNYVV/BSBMV clones have been successfully developed. The results presented in this 

study demonstrated that RNA2 of BNYVV or BSBMV are suitable as tools for VIGS 

together with BNYVV-/BSBMV-RNA1 in N. benthamiana. However, so far these 

constructs have not been able to produce silencing effects on B. vulgaris.  

Assuming the VIGS vectors can be adapted for silencing in sugar beet, the exact role and 

function of various disease resistance genes present in the sugar beet gene pool as well as 

in the wild-type Beta species could be verified. Furthermore, it could be applied to 

characterize metabolic pathways in sugar beet. Last, but not least VIGS-constructs might 

be used to uncover host genes associated with virus replication and movement in sugar 

beet plants.  

This work additionally delivered several BNYVV and BSBMV vectors labeled with 

different fluorescent reporter genes (mrfp, smRS-gfp and gfpuv), which can be helpful for 

further characterization of the interaction between both viruses in co- and super-infection 

experiments. Multipartite benyviruses BSBMV and BNYVV tend to be spatially 

separated during plant colonisation whereas distant related viruses show clear co-infected 

cells in co- and super-infection experiments. Finally, further work will be needed to 

further investigate the colonisation strategies in natural mixed infections and the 

suitability of BNYVV/BSBMV based VIGS-constructs in their natural host sugar beet.
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Supplementary Fig. 4: Vector map of pDIVA (accession number KX665539). 

Tab.2: Characteristics of pDIVA vector 

Feature Description Position 

oriV  1-630 
NptIII   Aminoglycoside resistance   839-1633 
TrfA Plasmid replication initiator protein 1932-3080 
T-DNA right border  3235-3259 
35S promoter Cauliflower mosaic virus 35S RNA promoter 3330-3757 
HDVagrz Hepatitis delta virusantigenomic “core” ribozyme 3755-3839 
PA35s Cauliflower mosaic virus 35S RNA terminator 3875-4079 
T-DNA left border  4206-4230 
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Nucleotides sequence of N. benthamiana phytoene desaturase (pds) gene; 578 bp 
 

ttgttattgctggtgcaggtttgggtggtttgtctacagcaaaatatctggcagatgctggtcacaaaccgatattgctggagg

caagagatgtcctaggtgggaaggtagctgcatggaaagatgatgatggagattggtacgagactgggttgcacatattctt

tggggcttacccaaatatgcagaacctgtttggagaactagggattgatgatcggttgcagtggaaggaacattcaatgata

tttgcgatgcctaacaagccaggggagttcagccgctttgattttcctgaagctcttcctgcgccattaaatggaattttggcc

atactaaagaacaacgaaatgcttacgtggcccgagaaagtcaaatttgctattggactcttgccagcaatgcttggagggc

aatcttatgttgaagctcaagacggtttaagtgttaaggactggatgagaaagcaaggtgtgcctgatagggtgacagatga

ggtgttcattgccatgtcaaaggcacttaacttcataaaccctgacgagctttcgatgcagtgcattttgattgctttgaac 

  NCBI Reference Sequence: EU165355.1 

 

Nucleotides sequence of N. tabacum magnesium-chelatase subunit (chlH) gene; 549 bp 
 

tgaatctccttgaccgagcagtcaagatggttgcagagctcgacgagccagaagaccaaaactacgtcaggaaacatgca

ctagaacaagcaaaaacactcggagttgatgttcgtgaagctgctacaaggatcttctcaaatgcttcaggatcttactcctc

caacattaaccttgctgttgagaattcaacatggaatgatgagaagcaacttcaagacatgtacttgagccgaaagtcatttg

catttgactgtgatgcccctggtgttggcatgactgagaagaggaaagtttttgagatggctcttagcacggctgatgccaca

ttccagaaccttgactcatctgaaatttcattcacagacgtgagtcactacttcgattcagacccaaccaaccttgtgcaaaac

ctcaggaaagacgggaagaagcctagtgcatacattgctgacaccactactgctaatgctcaggtacgtacgttgtctgag

actgtgaggcttgacgcaaggacaaagttgttgaaccccaagtggtatgaaggcat 

  NCBI Reference Sequence: NM_001325713.1 

 

Nucleotides sequence of monomeric red fluorescent protein (mrfp) gene; 675 bp 
 

atggcctcctccgaggacgtcatcaaggagttcatgcgcttcaaggtgcgcatggagggctccgtgaacggccacgagtt

cgagatcgagggcgagggcgagggccgcccctacgagggcacccagaccgccaagctgaaggtgaccaagggcgg

ccccctgcccttcgcctgggacatcctgtcccctcagttccagtacggctccaaggcctacgtgaagcaccccgccgacat

ccccgactacttgaagctgtccttccccgagggcttcaagtgggagcgcgtgatgaacttcgaggacggcggcgtggtga

ccgtgacccaggactcctccctgcaggacggcgagttcatctacaaggtgaagctgcgcggcaccaacttcccctccgac

ggccccgtaatgcagaagaagaccatgggctgggaggcctccaccgagcggatgtaccccgaggacggcgccctgaa

gggcgagatcaagatgaggctgaagctgaaggacggcggccactacgacgccgaggtcaagaccacctacatggcca

agaagcccgtgcagctgcccggcgcctacaagaccgacatcaagctggacatcacctcccacaacgaggactacaccat

cgtggaacagtacgagcgcgccgagggccgccactccaccggcgcc 

  NCBI Reference Sequence: AF506027.1 
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Nucleotides sequence of soluble-modified red-shifted green fluorescent protein (smRSGFP) 

gene; 714 bp 
 

atgagtaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagatggtgatgttaatgggcacaaattttctgt

cagtggagagggtgaaggtgatgcaacatacggaaaacttacccttaaatttatttgcactactggaaaactacctgttccat

ggccaacacttgtcactactttcacttatggtgttcaatgcttttcaagatacccagatcatatgaagcggcacgacttcttcaa

gagcgccatgcctgagggatacgtgcaggagaggaccatctctttcaaggacgacgggaactacaagacacgtgctgaa

gtcaagtttgagggagacaccctcgtcaacaggatcgagcttaagggaatcgatttcaaggaggacggaaacatcctcgg

ccacaagttggaatacaactacaactcccacaacgtatacatcacggcagacaaacaaaagaatggaatcaaagctaactt

caaaattagacacaacattgaagatggaagcgttcaactagcagaccattatcaacaaaatactccaattggcgatggccct

gtccttttaccagacaaccattacctgtccacacaatctgccctttcgaaagatcccaacgaaaagagagaccacatggtcct

tcttgagtttgtaacagctgctgggattacacatggcatggatgaactatacaaa 

  NCBI Reference Sequence: U70496.1 

 

Nucleotides sequence of green fluorescent protein (gfp) gene; 714 bp 
 

atgagtaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagatggtgatgttaatgggcacaaattttctgt

cagtggagagggtgaaggtgatgcaacatacggaaaacttacccttaaatttatttgcactactggaaaactacctgttccat

ggccaacacttgtcactactttctcttatggtgttcaatgcttttcaagatacccagatcatatgaaacggcatgactttttcaag

agtgccatgcccgaaggttatgtacaggaaagaactatatttttcaaggatgacgggaactacaagacacgtgctgaagtc

aagtttgaaggtgatacccttgttaatagaatcgagttaaaaggtattgattttaaagaagatggaaacattcttggacacaaat

tggaatacaactataactcacacaatgtatacatcatggcagacaaacaaaagaatggaatcaaagttaacttcaaaattaga

cacaacattgaagatggaagcgttcaactagcagaccattatcaacaaaatactccaattggcgatggccctgtccttttacc

agacaaccattacctgtccacacaatctgccctttcgaaagatcccaacgaaaagagagaccacatggtccttcttgagtttg

taacagctgctgggattacacatggcatggatgaactatacaaa 

  NCBI Reference Sequence: U17997.1 
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Nucleotides sequence of green fluorescent protein (gfp)_A206K gene; 714 bp 
 

atgagtaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagatggtgatgttaatgggcacaaattttctgt

cagtggagagggtgaaggtgatgcaacatacggaaaacttacccttaaatttatttgcactactggaaaactacctgttccat

ggccaacacttgtcactactttctcttatggtgttcaatgcttttcaagatacccagatcatatgaaacggcatgactttttcaag

agtgccatgcccgaaggttatgtacaggaaagaactatatttttcaaggatgacgggaactacaagacacgtgctgaagtc

aagtttgaaggtgatacccttgttaatagaatcgagttaaaaggtattgattttaaagaagatggaaacattcttggacacaaat

tggaatacaactataactcacacaatgtatacatcatggcagacaaacaaaagaatggaatcaaagttaacttcaaaattaga

cacaacattgaagatggaagcgttcaactagcagaccattatcaacaaaatactccaattggcgatggccctgtccttttacc

agacaaccattacctgtccacacaatctaagctttcgaaagatcccaacgaaaagagagaccacatggtccttcttgagtttg

taacagctgctgggattacacatggcatggatgaactatacaaa 

Underlined sequences represent the mutation position
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