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Abstract 

Agricultural production is claimed to use integrated pest management strategies to reduce 

threads arising from chemical crop protection. Integrated pest management considers all 

available pest management techniques, thereby prefers environment friendly techniques and 

minimises chemical pesticide use. The joint project ‘WeGa’ aimed to develop integrated pest 

management strategies using vegetable Brassicas as model crop. This thesis contributes by 

characterising landscape effects (with special attention to oilseed rape witch is closely related 

to Brassica vegetables) on pest and natural enemy presence on Brussels sprout plants. The 

thesis further investigates how weather conditions and crop cover nets influence colonisation 

and infestation of Brussels sprout plants. 

The first chapter tests effects of potential source habitats and weather conditions on 

colonisation of Brussels sprouts by different pests and their natural enemies. Colonisation by 

cabbage whiteflies increased with upwind oilseed rape area in up to 1 km from the study site, 

pointing towards passive downwind transport. Colonisation by cabbage aphids increased with 

downwind oilseed rape area in 1 km radius, implying that aphids can be attracted upwind for 

about 1 km. This is surprising, as aphids are known to be transported downwind. The number 

of syrphid larvae did not respond to landscape characteristics but was positively related to 

prey (mainly whitefly) abundance.  

The second intensely investigates the importance of oilseed rape area for colonisation of 

Brussels sprouts by cabbage whiteflies, the most abundant pest species in our study chapter 

more. Upwind oilseed rape area in wide landscapes (2-8 km radius) explained colonisation 

remarkably better than oilseed rape area in local landscapes (0.2-1 km radius). This can be 

explained by flight behaviour of cabbage whiteflies, which ignore host cues at the beginning 

of migratory flights. 

The third chapter evaluates the effect of crop cover nets on different pests and their natural 

enemies in Brussels sprout fields. Commonly used 0.8 mm nets reduced colonisation by 

cabbage whiteflies and spiders, but their effect decreased during the growing season.  

The fourth chapter investigates to what extend results on factors driving colonisation in early 

summer, gained on standardised plants, can be transferred into crop production situation in 

Brussels sprout fields. The positive effect of oilseed rape area on the most abundant pest, 

cabbage whitefly, persisted throughout the cropping season. In contrast, further landscape 



ABSTRACT 

4 
 

effects on colonisation by different pest species disappeared, probably due to less standardised 

and population growth affected situation in Brussels sprout fields. This shows that landscape 

effects on colonisation can, but not necessarily have to, determine pest densities even shortly 

before harvest.  

In conclusion whitefly pest pressure can be of high importance even if the local landscape is 

poor in oilseed rape as colonisation by whiteflies was most strongly affected by oilseed rape 

area in radii > 1 km. The cultivation of Brassica varieties sensitive to cabbage whitefly 

infestation in landscapes with high amount of oilseed rape area in the wide surroundings 

(> 1 km radius) implies a high need for crop protection by e.g. the use of crop cover nets. 

Following suggestions are made to increase crop protection efficacy: nets should be installed 

in time and kept close; natural enemies could be released under nets; nets might be used to 

reduce initial colonisation by pests and then be removed to allow pest control by natural 

enemies; promoting natural enemies such as syrphids and parasitoids, e.g. by flower strips, 

can be effective as syrphids are attracted by high densities of prey including whiteflies. 

 

Key words: Brussels sprout, cabbage whitefly, oilseed rape 
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Zusammenfassung 

Die Landwirtschaft ist gefordert mittels integriertem Pflanzenschutz Risiken durch 

Agrochemikalien zu reduzieren. Integrierter Pflanzenschutz berücksichtigt alle zur Verfügung 

stehenden Methoden und bevorzugt umweltfreundliche Verfahren, um den Einsatz 

chemischer Pflanzenschutzmittel zu reduzieren. Ziel des ‚WeGa‘-Netzwerkes war die 

Entwicklung neuer Methoden des integrierten Pflanzenschutzes am Beispiel von Kohlgemüse. 

Diese Arbeit trägt dazu bei, indem sie die Effekte von Landschaftsbestandteilen (insbesondere 

die von mit Kohlgemüse verwandtem Raps) auf Schädlinge und Nützlinge von Rosenkohl 

beschreibt. Weiterhin werden Einflüsse von Wind, Temperatur und Pflanzenschutznetzen auf 

Besiedlung und Befall von Rosenkohlpflanzen untersucht. 

Das erste Kapitel beleuchtet den Einfluss potentieller Quellhabitate und Wetterbedingungen 

auf die Besiedlung von Rosenkohl durch Schädlinge und Nützlinge. Die Besiedelung durch 

die Kohlmottenschildlaus nahm mit dem windaufwärts gelegenen Rapsanteil im 1 km Radius 

zu, was auf eine passive Windverbreitung hinweist. Die Besiedelung durch die mehlige 

Kohlblattlaus nahm hingegen mit der windabwärts gelegenen Rapsfläche im 1 km Radius zu, 

was auf windaufwärts gerichtete Flüge in zu ihren Wirtspflanzen hindeutet. Dies ist 

überraschend, da im Allgemeinen auch für Blattläuse passive Windverbreitung angenommen 

wird. Die Zahl der Schwebfliegenlarven wurde nicht von den untersuchten 

Landschaftsbestandteilen beeinflusst, war aber durch die Zahl der Beuteorganismen, 

hauptsächlich der Kohlmottenschildlaus, positiv beeinflusst. 

Im zweiten Kapitel wird die Bedeutung von Raps für die Besiedlung von Rosenkohl durch die 

Kohlmottenschildlaus, den häufigsten Schädling unserer Studie, genauer untersucht. Der 

windaufwärts gelegene Rapsanteil der großräumigen Landschaft (2-8 km Radius) erklärte die 

Besiedlung deutlich besser als der Rapsanteil in der lokalen Umgebung (0.2-1 km Radius). 

Dies kann dadurch erklärt werden, dass die Kohlmottenschildlaus zu Beginn ihrer 

Ausbreitungsflüge Wirtssignale ignoriert. 

Das dritte Kapitel befasst sich mit der Wirkung von Pflanzenschutznetzen auf Schädlinge und 

Nützlinge in Rosenkohlfeldern. Im Gartenbau verbreitete Netze mit einer Maschenweite von 

0,8 mm reduzierten die Besiedlung durch die Kohlmottenschildlaus und Spinnen, wobei diese 

Effekte im Laufe des Jahres schwanden.  
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Das vierte Kapitel untersucht, inwieweit sich die Ergebnisse zum Einfluss von 

Landschaftsbestandteilen auf die Besiedlung standardisierter Pflanzen im Frühsommer auf die 

Situation im Rosenkohlabbau übertragen lassen. Der positive Effekt von Raps auf den 

häufigsten Schädling, die Kohlmottenschildlaus, war im Rosenkohlanbau während der 

gesamten Anbauperiode zu finden. Im Gegensatz dazu ließen sich weitere Landschaftseffekte 

auf die Besiedlung durch verschiedene Schädlingsarten hier nicht nachweisen, was vermutlich 

auf die weniger standardisierte und durch Populationswachstum beeinflusste Situation in 

Rosenkohlfeldern zurückzuführen ist. Dies zeigt, dass Landschaftseffekte auf die Besiedlung 

den Schädlingsbefall bis zum Erntezeitpunkt bestimmen können, aber nicht müssen. 

Es wird gefolgert, dass bezüglich bestimmter Schädlinge (hier Kohlmottenschildlaus) auch 

dann mit hohem Schädlingsdruck gerechnet werden muss, wenn die nahe Umgebung nur eine 

geringen Rapsfläche aufweist. Die Ursache ist, dass für die Besiedlung hauptsächlich 

Rapsflächen in der weiteren Umgebung (> 1 km Radius) relevant sind. In Landschaften mit 

hohem Rapsanteil in der weiteren Umgebung muss beim Anbau von Kohlsorten, die für den 

Befall durch die Kohlmottenschildlaus anfällig sind, mit einem hohen Pflanzenschutzbedarf 

gerechnet werden. Die Wirksamkeit von im biologischen und integrierten Pflanzenschutz 

relevanten Maßnahmen könnte wie folgt gesteigert werden: Pflanzenschutznetze sollten 

rechtzeitig ausgebracht und möglichst undurchlässig gehalten werden; Ausbringung von 

Nützlingen unter den Netzen; Netze könnten zum Herabsetzen der Anfangsbesiedlung durch 

Schädlinge genutzt und dann entfernt werden um Schädlingskontrolle durch natürliche 

Gegenspieler zuzulassen; natürliche Gegenspieler wie Schwebfliegen und Parasitoide können 

z.B. durch Blühstreifen gefördert werden um Schädlinge zu reduzieren, Schwebfliegenlarven 

zeigten hierfür Potential, da ihre Dichte mit der Dichte der Beuteorganismen, auch der 

Kohlmottenschildlaus, zunahm. 

 

Schlagwörter: Rosenkohl, Kohlmottenschildlaus, Raps 
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General introduction 

Ensuring the production of food for a growing world population is one of the major tasks of 

our time (Godfray et al., 2010). Crop pests and pathogens can cause remarkable yield loss and 

therefore a need for crop protection (Oerke & Dehne, 2004; BMEL, 2013). On the other hand, 

widespread traditional chemical crop protection causes threads to the environment (Carson, 

1962; Lexmond et al., 2015; Sluijs et al., 2015) and humans (Carson 1962, Clarke et al. 1997, 

Blair et al. 2014). Therefore the European Union passed the ‘Directive 2009/128/EG of the 

European Parliament and of the Council’ to reduce risk and impacts of pesticide use on 

human health and the environment. Germany implemented this directive into national law 

with the ‘national action plan on sustainable use of plant protection products’ (Nationaler 

Aktionsplan zur nachhaltigen Anwendung von Pflanzenschutzmitteln; BMEL, 2013). In this 

plan the federal ministry of food and agriculture aims to reduce risks to the environment that 

emerge from the use of plant protection products by 30 % until 2023. This aim shall be 

reached by advancements of integrated pest management (BMEL, 2013). The ‘Food and 

Agriculture organisation of the United Nations’ defines integrated pest management (IPM) as 

“ […] careful consideration of all available pest control techniques and subsequent integration 

of appropriate measures that discourage the development of pest populations and keep 

pesticides and other interventions to levels that are economically justified and reduce or 

minimize risks to human health and the environment. IPM emphasizes the growth of a healthy 

crop with the least possible disruption to agro-ecosystems and encourages natural pest control 

mechanisms.” (FAO, 2016). 

This thesis was part of the joint project ‘reliability through sustainable crop protection’ 

(Sicherheit durch nachhaltigen Pflanzenschutz) within the ‘competence network: value chain 

horticulture’ (Kompetenznetz: Wertschöpfungskette Gartenbau [WeGa]). The joint project 

aimed to foster a paradigm shift from a curative, short term effective crop protection concept 
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to a holistic crop protection concept with strong use of biotic interactions affecting the 

infestation dynamics of crop pests as required for integrated pest management (Smith et al., 

1976). The holistic crop protection concept in WeGa was based on three pillars: prediction, 

prevention and intervention. The predictive pillar incorporates the consideration of spatial 

composition and configuration of the landscape around a study site, weather conditions or 

(automated) pest monitoring to predict potential pest pressure and pest outbreaks. It aimed to 

define where and when preventive or interventive protection measures against a certain pest 

are needed. The preventive pillar aimed to keep herbivores under damage threshold by 

measures such as the support of natural enemies, site selection, planting and harvesting time 

and mechanical barriers (e.g. nets). The pillar of intervention was thought to control pests 

when preventive measures are not sufficient and to develop and use more environment 

friendly techniques compared to classical crop protection. It included measures such as the 

release of beneficial organisms, confusion as well as push and pull strategies. 

Ecosystem services are defined as the benefits provided by ecosystems (MA, 2005). They can 

be divided into provisioning services, regulating services (e.g. pest control) and cultural 

services (MA, 2005). Negative ecosystem services, which reduce productivity and increase 

production costs, are called ecosystem disservices (Zhang et al., 2007). The approach of 

integrated crop protection aims to encounter ecosystem disservices, such as pest damage, with 

the support of ecosystem services, such as pest control. Ecosystem services and disservices of 

concern for this thesis (pest control and pest damage) are provided by the landscape 

surrounding a crop field. Natural habitats as well as other crops play a role as additional food 

source, as refuge and as a source of spill-over (Blitzer et al., 2012). 

The development of holistic plant protection concepts needs to be based on solid knowledge 

on the ecology and behaviour of pests and natural enemies. Particularly knowledge on the 

importance of habitats which affect pests and/or natural enemies can be used to suppress pests 
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and support natural enemies (Wissinger, 1997; Blitzer et al., 2012; Dale et al., 2013). This 

thesis focused on effects of different habitats in the landscape surrounding Brussels sprout 

fields on the abundance of pests and their natural enemies. It investigates colonisation 

processes at different spatial scales as well as crop infestation throughout the copping season, 

considers climatic conditions (prevailing wind directions and temperature) and evaluates 

broadly used preventive plant protection measures (crop cover nets).  

Pests and their natural enemies on Brussels sprouts (Brassica oleracea var. gemmifera) were 

used as study system. Brussels sprouts originates from the wild cabbage (B. oleracea var. 

oleracea) from which also several other important vegetable crops stem from (cauliflower [B. 

oleracea var. botrytis], broccoli [B. oleracea var. italica], kale [B. oleracea var. sabellica], 

kohlrabi [B. oleracea var. gongylodes], red cabbage [B. oleracea var. capitata f. rubra], savoy 

cabbage [B. oleracea var. capitata f. sabauda], white cabbage [B. oleracea var. capitata f. 

alba] and others). Additionally Ethiopian mustard (B. carinata = B. oleracea x B. rapa) and 

oilseed rape (B. napus = B. oleracea x B. rapa) originate from the species (Ahuja et al. 2010). 

The family of Brassicaceae includes further crops such as mustard (Sinapis sp.) and radish 

(Raphanus sp.) and widespread weeds such as wild mustard (Sinapis arvensis), field 

pennycress (Thlaspi arvense) and shepherd's purse (Capsella bursa-pastoris). Several of the 

named crops are of global importance. In central Europe especially the growing of oilseed 

rape increased during the last decades (Statistisches Bundesamt, 2016). 

The crops and weeds of the Brassicaceae family share several more or less specialised pests 

due to their close relationship and similar defensive compounds (mainly glucosinolates). This 

thesis was focused on pests and their natural enemies which can be found on leaves, such as 

cabbage whitefly (Aleyrodes proletella), cabbage aphid (Brevicoryne brassicae), peach-potato 

aphid (Myzus persicae), diamondback moth (Plutella xylostella), syrphid larvae, spiders and 

aphid parasitoids.  
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In chapter 1 we investigated the colonisation of young standardised Brussels sprout plants by 

different pests and their natural enemies. Thereby, we examined effects of different land use 

categories under consideration of weather conditions, i.e. temperature and wind direction. In 

this chapter we tested three hypotheses stating that: 

1. oilseed rape, as the most widespread agricultural Brassica crop, is an important source 

habitat for Brassica pests and their natural enemies, while also other annual crops and 

permanent habitats can play a role,  

2. thereby source habitats differ in importance according to their location relative to the 

study site and prevailing wind directions due to passive wind dispersal or olfactory 

orientation in host location and  

3. dispersal activity and consequently colonisation increases with increasing temperature. 

Chapter 2 focused on the effect of oilseed rape area on colonisation by the most abundant 

pest, cabbage whitefly. Thereby we used satellite data to examine colonisation from source 

habitats in distances of up to 8 km. In this chapter we tested three hypotheses stating that: 

1. oilseed rape area on two different spatial scales affects colonisation of Brussels 

sprouts due to the existence of two whitefly morphs with different flight behaviour.  

2. downwind transport is of importance for wide landscape-scale dispersal. Thus, giving 

additional weight to upwind located source habitats at the wide landscape-scale should 

increase the model’s explanatory power. 

3. upwind olfactory oriented flights play a role in host finding on the local scale. 

Consequently, giving additional weight to downwind located source habitats at the 

local landscape scale should increase the model’s explanatory power. 

All farms used crop cover nets to protect their Brassica vegetables from pests. Therefore, 

effects of crop cover nets on population development of different pests and their natural 
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enemies were investigated in chapter 3. By considering findings of the first chapter we tested 

the importance of oilseed rape as source habitat for Brassica pests with a new dataset. In this 

chapter we tested three hypotheses stating that: 

1. the abundance of pests and natural enemies on Brussels sprouts decreases with 

decreasing net mesh size.  

2. the effect of nets reducing pest and natural enemy numbers decreases during the 

growing season. 

3. infestation by pests predominantly specialised to the family Brassicaceae (i.e. cabbage 

whitefly, cabbage aphid and diamondback moth) increases with increasing amount of 

oilseed rape in the surroundings of Brussels sprout fields. 

Colonisation intensity lays the foundation for future pest populations in crop fields. However, 

not colonisation itself but a potentially following high pest infestation is the direct cause of 

crop damage. Chapter 4 investigates to what extend results of chapter 1 on factors that drive 

colonisation of monitoring plants by pests and their natural enemies can be transferred into 

crop production situation in Brussels sprout fields during the course of the cropping season. 

We thereby considered infestation data from three consecutive years and aimed to answer the 

following questions:  

1. Are the abundances of different pest and natural enemy species affected by the area of 

different land use types in the surrounding landscape? 

2. Are the detected landscape effects strengthened by giving additional weight to upwind 

or downwind located habitats? 

3. Do the detected landscape effects change throughout the growing season? 
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Abstract 

Most crop fields are annually cleared including arthropod populations. Recolonisation 

depends on source habitat presence in the landscape and is often affected by weather 

conditions. This study identified source habitats and effects of temperature and prevailing 

wind direction on colonisation of Brussels sprouts by pests and their natural enemies. We 

sampled arthropods on standardised monitoring plants in 18 landscapes with different area of 

potential source habitats. Most abundant pests and antagonists were Aleyrodes proletella, 

Brevicoryne brassicae, Plutella xylostella and syrphid larvae. Variation in A. proletella 

colonisation was explained best by upwind area of oilseed rape (positive effect) and 

temperature (negative effect). Variation in B. brassicae colonisation was explained best by 

downwind area of oilseed rape (positive effect), whereas P. xylostella colonisation was 

marginally positively affected by downwind permanent habitats. Syrphid colonisation was 

significantly affected by prey abundance only (positive effect). Results suggest that 

A. proletella was transported downwind, whereas B. brassicae and P. xylostella locate host 

plants during an upwind flight for about 1 km. This is remarkable for aphids with often 

limited upwind flight ability. Considering prevailing wind directions improves forecasting the 

colonisation intensity by pests from important source habitats.   
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1. Introduction 

The occurrence of insects on field crops, their population densities and population dynamics 

are affected by processes that occur at spatial scales larger than the field scale (Tscharntke & 

Brandl, 2004). In particular, regularly disturbed crop fields are colonised annually from 

surrounding landscapes (Wissinger, 1997; Blitzer et al., 2012). Thus, integrated farming 

practices must consider the landscape scale if reliable colonisation forecasting is to be realised 

(Vialatte et al., 2007). Colonisation (immigration), in addition to emigration, mortality and 

birth rates, determines pest presence and crop damage (Naranjo et al., 2010). Emigration 

peaks from surrounding habitats can cause colonisation peaks in crops. Several insect groups 

show periodic migratory behaviour; for example, many aphid species switch hosts in spring 

and autumn (Döring, 2014). Polyvoltine insects usually stay in their habitats in summer as 

long as habitat quality remains suitable. Especially in agricultural landscapes, numerous 

habitats such as cereal or oilseed rape fields become unsuitable for herbivorous insects when 

the crops mature in summer (Wissinger, 1997). 

Winter oilseed rape (Brassica napus) fields can be important source habitats for colonisation 

of Brassica vegetables (cultivars of Brassica oleracea) planted in early summer (Richter & 

Hirthe, 2014b; Ludwig & Meyhöfer, 2016). Both plants have a similar pest and natural enemy 

complex (Alford et al., 2003). The area of winter oilseed rape has increased remarkably in the 

last few decades in Germany and now covers 11 % of total arable area (Statistisches 

Bundesamt, 2016). In particular, large numbers of A. proletella and B. brassicae overwinter 

on winter oilseed rape (Hafez, 1961; Collier & Finch, 2007). On the other hand, permanent 

habitats, such as forests, forest edges, grasslands and settlement areas, are often source 

habitats for pests and natural enemies in crop fields (Blitzer et al., 2012). Moreover the 

abundance of syrphids with aphidophagous larvae increases with increasing presence of crop 

fields that serve as larval habitat (Meyer et al., 2009) and overwintering sites (Raymond et al., 
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2014). Crop fields, even without crops of the family Brassicaceae, may support Brassica pests 

by offering host plants among common weeds, e.g. Thlaspi arvense or Sinapis arvensis 

(Capinera, 2001). 

Insect dispersal is affected by weather conditions (Khaliq et al., 2014). Take-off behaviour 

usually has a minimum temperature threshold and the number of take-offs increases with 

temperature (Kring, 1972). Wind may affect dispersal in different ways. On the one hand, 

wind transports odours downwind. Consequently, insects can follow olfactory cues upwind to 

find food or mating partners (Moser et al., 2009; Webster, 2012). This mainly applies to large 

insects, as flight ability increases with body size (Compton, 2002), whereas smaller insects 

can fly upwind into low wind speeds only. Dispersing small insects, such as aphids or 

whiteflies, are phototactically attracted to heights where they are passively transported by the 

wind (Döring, 2014), allowing them to move much larger distances than by active flight 

(Compton, 2002). Thus, source habitats located upwind from a focal habitat may have a larger 

effect on colonisation by small wind-dispersed insects than downwind located habitats 

(Fig. 1.1). Although it is known that colonisation processes can be affected by the wind, only 

few studies have investigated landscape effects combined with prevailing wind directions 

(Moser et al., 2009). 

This study aimed to identify source habitats in agricultural landscapes that affect colonisation 

of Brassica vegetables by important pest species and their natural enemies. It also 

investigated the weather conditions that can influence colonisation. We hypothesised that (1) 

oilseed rape, as the most widespread agricultural Brassica crop, is an important source habitat 

for Brassica pests and their natural enemies, while also other annual crops and permanent 

habitats can play a role, (2) thereby source habitats differ in importance according to their 

location relative to the study site and prevailing wind directions due to passive wind dispersal 
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or olfactory orientation in host location and (3) dispersal activity and consequently 

colonisation increases with increasing temperature. 

 

Fig. 1.1 Schema illustrating the high importance of upwind source habitats for passively downwind 

dispersed arthropods and the high importance of downwind source habitats for arthropods with 

(olfactory oriented) upwind flight. 

 
2. Materials and methods 

2.1. Field survey 

Fields of Brussels sprouts on 18 organic horticultural farms located in southern Lower Saxony 

and northern North Rhine-Westphalia, Germany, were selected as study sites (Appendix A 

Fig. A.1). A wide variety of vegetables was grown on selected farms, including Brussels 

sprouts (planted between late April and early June) and other Brassica vegetables. All farms 

used nets to protect the Brassica vegetables from (large) insect and vertebrate pests. The nets 

had a mesh size of 0.8 or 1.3 mm or, on one farm, 7 mm. Insecticides were applied only after 

data were collected in July (described below). To quantify the area and location of potential 

source habitats, we recorded agricultural land use in circular 1 km radius areas around the 

study sites. Data regarding area and location of forests and settlements were taken from the 

official topographic-cartographic information system (ATKIS). Landscapes surrounding the 
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study sites differed in land use and represented a gradient in area of agricultural land, 

permanent habitats and oilseed rape fields (Fig. 1.2). Weather stations (PCE-FWS 20; PCE 

Deutschland GmbH, Meschede, Germany) recorded wind direction and temperature at 15 

minutes intervals at each study site. 

Twenty monitoring plants on each study site were exposed monthly from May to October 

2012 to record colonisation by pests. The monitoring plants were potted organic Brussels 

sprout plants, standardised in terms of exposure duration (2 weeks), soil type (mixture of 1.7 g 

water storing granulate [Broadleaf P4; AgriPol, Bournmoor, England] per litre potting soil), 

age (3 – 4 weeks) and variety (Brassica oleracea var. gemmifera, cultivar ‘Topline F1’; 

Gartenbau Homann, Blender, Germany). We exposed 20 monitoring plants in two groups of 

10 plants per study site. The plants were selected randomly from the stock. These two groups 

of monitoring plants were placed adjacent to the farmers’ Brussels sprout fields (in 0.5 - 5 m 

distance), preferably on opposite sides of a field to account for spatial heterogeneity at the 

field scale. Water reservoirs were embedded in the ground to supply the plants with water via 

a wick. 

 

Fig. 1.2 Percentage land cover of analysed land use types (oilseed rape fields, other annual crop 

fields, permanent habitats) in circles of 500, 750 and 1,000 m radius around the 15 study sites. 

Percentage land cover is also shown for subcategories of ‘other annual crop’ and ‘permanent 

habitats’. 
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Pests and natural enemies were counted on the monitoring plants after a two-week exposure. 

Terminal buds were opened to assess aphids, small caterpillars or syrphid larvae, which often 

hide there. Caterpillars that could not be identified in the field were collected and reared until 

identification was possible. Sampling was done monthly in six replications over time: ‘June’ 

(29.05.-13.06.2012), ‘July’ (27.06.-12.07.2012), ‘August’ (02.-13.08.2012), ‘September’ 

(31.08.-30.09.2012), ‘October’ (01.-12.10.2012) and ‘November’ (02.-13.11.2012). 

We further monitored pest infestation in oilseed rape fields, which were presumably the main 

source habitat for Brussels sprout pest insects. One field close to each study site was selected 

to sample insects on stems and leaves of 20 oilseed rape plants close to the field edge. Plants 

were selected at random distances of 1 – 5 m. Oilseed rape plants had lost most of their leaves 

on several fields in July. Hence, in those fields, we sampled as many plants with remaining 

leaves as available, up to a maximum of 20 plants. 

2.2. Data analysis 

2.2.1. Generals 

Three of 18 study sites were excluded from the analysis due to missing or outlying 

environmental data (see Appendix A.2 for details). To examine the effect of landscape, wind 

direction and temperature on Brussels sprout pest colonisation, we analysed the data collected 

in (early) July. Almost no colonisation of monitoring plants occurred in June, whereas July 

had the highest median colonisation of monitoring plants by A. proletella, B. brassicae and 

syrphids and the second highest colonisation by P. xylostella (Fig. 1.4). The colonising pests 

in July must have originated mainly from the surrounding landscape, as no older whitefly 

larvae, syrphid pupae and only a few aphids and diamondback moth pupae were detected in 

nearby Brussels sprout fields until July. 
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2.2.2. Colonisation of monitoring plants 

One value for colonisation of monitoring plants was calculated for different insect species or 

groups at each study site. The mean number of A. proletella egg clutches per leaf was 

calculated including larvae that hatched during exposure time (4.678 larvae are equivalent to 

one clutch, see Appendix A Fig. A.3); mean numbers of B. brassicae aphids and P. xylostella 

caterpillars were calculated; and the numbers of syrphid eggs and larvae (no pupae were 

found in July) found per leaf at each study site were calculated. Syrphids, particularly 

Episyrphus balteatus as the dominant species in agricultural landscapes, do not lay eggs in the 

absence of prey (Verheggen et al., 2008). Therefore, we included only plants that harboured 

prey (aphids or whiteflies). 

2.2.3. Land use and weather conditions 

Three categories of potential source habitats were defined: oilseed rape fields, other annual 

crop fields (mainly cereals, maize, vegetables and sugar beets) and permanent habitats 

(settlement area, grasslands and forests). We calculated the percentage area of these potential 

source habitats in circular landscape areas with radii of 500, 750 and 1,000 m around the 

study sites. To weight habitats according to their location relative to the study site and 

prevailing wind directions, the circular landscape areas were separated into eight sectors 

dedicated to wind directions (N, NE, E, SE, S, SW, W, NW; see Fig. 1.3). To account for 

higher importance of upwind source habitats for passively wind dispersed insects, the area of 

the three habitat categories was weighted. For this purpose, we first calculated the proportion 

of wind records (> 0.3 m/s) blowing from each of the eight sectors towards the study site 

during the time the monitoring plants were exposed. Second, the percentage area covered by 

the three habitat categories per sector was multiplied by the proportion of wind records 

blowing towards the study site. The sum of the resulting eight values (one value per sector) 

led to an area index with increased weight for upwind located habitats, hereafter called 
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‘upwind weighted’ area. To account for a higher importance of downwind source habitats for 

insects attracted by wind transported odours, we weighted the areas of the three habitat 

categories as follows: the percentage area covered by the three habitat categories per sector 

was multiplied by the proportion of wind records blowing from the study site towards the 

sector. The sum of these resulting eight values (one value per sector) led to an area index with 

increased weight for downwind located habitats, hereafter called ‘downwind weighted’ area. 

 

Fig. 1.3 Example of the division of the landscapes surrounding study sites (triangle) into circular areas 

of 500, 750 and 1,000 m radii (black circles) and into sectors dedicated to wind directions (dashed 

lines). The specific sectors’ habitat area was multiplied by the percentage of wind events either in 

direction to the study site or in direction from the study site to weight land use type area by wind 

(oilseed rape: grey dotted, other annuals crops: white, permanent habitats: crosshatched). 

 

Degree-days were calculated as a measure of temperature at each study site (Raworth, 1994), 

considering the species-specific threshold temperature for dispersal activity, i.e. 10 °C for 

A. proletella (Stein, 1958), 15 °C for B. brassicae and syrphids (Lowe, 1961; Gilbert, 1985) 

and 7 °C for P. xylostella (Goodwin & Danthanarayana, 1984). Only the time during the day 

with dispersal activity of the relevant insects was used when calculating the weather condition 

variables (degree-days and weighting of potential source habitats by wind direction). We used 
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the time from 1 h after sunrise to 1 h before sunset for diurnal species (A. proletella, 

B. brassicae and syrphids) (Broadbent, 1949; Stein, 1958) and the time from 1 h after sunset 

to 1 h before sunrise for nocturnal P. xylostella (Goodwin & Danthanarayana, 1984). 

2.2.4. Statistics 

Regression models were used to analyse the effects of different land use types in the 

surrounding landscape and weather conditions on Brussels sprout colonisers. Response 

variables (numbers of A. proletella egg clutches, B. brassicae, P. xylostella caterpillars and 

immature syrphids on monitoring plants) were log-transformed to account for the non-

normally distributed count data. First, we used the amount of one of the potential source 

habitats (oilseed rape fields, other annual crop fields or permanent habitats) in one of the 

spatial scales (radii of 500, 750 or 1,000 m) as a single explanatory variable for each response 

variable. Second, this basic set of models (nine models for each response variable) was 

modified using the area of potential source habitats with either upwind or downwind 

weighting of habitats (18 additional models for each response variable) and third by adding 

degree-days as an additional explanatory variable to the 27 named models (overall, 54 models 

per response variable). For syrphids additional 54 models were calculated that contained the 

mean abundance of potential syrphid prey per plant for each study site (sum of aphids, 

A. proletella egg clutches, larvae and adults) as additional covariable. Correlated explanatory 

variables (R > 0.25) were not used in the same model (Appendix A Table A.4). We ranked the 

models using the Akaike Information Criterion corrected for small sample size (AICc), which 

is a measure to assess relative model accuracy. The model with the lowest AICc (AICc min) 

thereby represents the model with the highest accuracy, whereas all models within a 

AICc min + 2 range (∆AICc ≤ 2) are assumed to be of similar accuracy and are reported 

(Burnham & Anderson, 2002). Only effects with p < 0.1 in those models are discussed. 
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Analyses were performed using R version 3.3.0 (R Core Team, 2016). We used the package 

AICcmodavg version 2.0-4 to acquire AICc values (Mazerolle, 2016). 

3. Results 

3.1. Colonisation of monitoring plants 

During the sampling period from June to November 2012, we recorded three species of 

phloem-sucking pests on the monitoring plants (a total of 1,739 plants corresponding to 

12,225 leaves). A. proletella (77,435 egg clutches, 149,089 larvae and 82,882 adults) was the 

most abundant species followed by B. brassicae (29,977 individuals) and Myzus persicae 

(1,504 individuals). Additionally, caterpillars from seven Lepidoptera species were recorded. 

Among them P. xylostella (177 individuals) was the dominant species followed by Pieris 

rapae (64), Pieris brassicae (16), Autographa gamma (6), Mamestra brassicae (5), Pieris 

napi (2) and Evergestis forficalis (1). Syrphids were the most frequently observed group 

of predatory arthropods (355 eggs and 326 larvae), followed by spiders (125), common 

lacewings (59 eggs, 4 larvae) and coccinellids (4 larvae and 11 adults). The most important 

and abundant groups, namely A. proletella, B. brassicae, P. xylostella and syrphids, were 

considered in detail. 

Dispersal activity throughout the season varied considerably. The monitoring plants were 

colonised by the main pest species A. proletella, B. brassicae and P. xylostella from the 

beginning of sampling in early June. The first syrphid eggs and larvae were recorded in late 

June. Colonisation by all four groups peaked in July (Fig. 1.4), and B. brassicae and 

P. xylostella peaked again in October when colonisation by A. proletella and syrphids was 

negligible. 
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Fig. 1.4 Colonisation of monitoring plants throughout the season by (A) Aleyrodes proletella, (B) 

Brevicoryne brassicae, (C) Plutella xylostella and (D) syrphids. June: n = 12 study sites, July – 

November: n = 15 study sites. 

 

3.2. Pests and syrphids in oilseed rape 

Only adult A. proletella were found frequently on young oilseed rape in October and 

November, whereas all A. proletella developmental stages occurred frequently on maturing 

oilseed rape in June and July (Table 1.1). Finding exuviae of the fourth whitefly larval stage 

in July indicated that A. proletella could complete at least one generation in oilseed rape 

fields. B. brassicae was found only occasionally in oilseed rape fields throughout the year, 

whereas P. xylostella caterpillars and pupae were rarely found in June and July but more often 

in October and November. Syrphid eggs and larvae were generally rare in oilseed rape fields. 

3.3. Land use 

Cereals were the most widespread crops (11 % – 61 % of the landscape within 1 km radius 

around the study sites). Other frequent land use types were settlement area and grassland, 
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followed by maize (Fig. 1.2). Oilseed rape, most likely affecting insect colonisation of 

Brassica vegetables, comprised 0 % – 12 % of the landscape within a 1 km radius. Forests, 

vegetables and sugar beets rarely reached 10 % of the landscape area (Fig. 1.2). The 

percentages of the different land use categories were similar among the different spatial scales 

(radii of 500, 750 and 1,000 m). 

Table 1.1 Number of oilseed rape fields harbouring pests and natural enemy groups. n = number of 

fields sampled. No oilseed rape fields were present in August and September. 

Month A. proletella B. brassicae P. xylostella Syrphids n 

June 11 2 1 1 11 

July 12 6 2 3 14 

October 11 5 5 0 14 

November 13 6 5 1 14 

 

3.4. Weather conditions 

Southern and western wind directions (SE, S, SW, W and NW) were dominant during the day 

at all study sites. The prevailing winds came from the southwest at 12 of 15 study sites 

(80 %), whereas wind came least frequently from north at nine study sites (60 %). None of the 

wind directions dominated at night, further it was calmer than during the day (42 % records 

with no wind moving at night compared to 4 % during the day). Temperatures were 7.3 °C –

 32.3 °C (mean, 19.9 °C) during the day and 5 °C – 24 °C (mean, 14.7 °C) at night. 

3.5. Effects of land use and weather conditions on colonisation of monitoring plants 

3.5.1. Cabbage whitefly (Aleyrodes proletella) 

A single model explained the variance in colonisation by A. proletella best (R2 = 0.66). The 

model showed a highly significant positive effect of oilseed rape area in the 1,000 m radius 
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around the study sites when oilseed rape area was upwind weighted (p = 0.001, Table 1.2). 

The model also included a significant negative effect of temperature (p = 0.011). 

3.5.2. Cabbage aphid (Brevicoryne brassicae) 

The two best models for B. brassicae explained 32 and 44 % of the variance in colonisation 

(Table 1.2). Both included significant positive effects of downwind weighted oilseed rape 

area in a 1,000 m radius. 

3.5.3. Diamondback moth (Plutella xylostella) 

Five models explained the variance in colonisation of P. xylostella best (13 % – 24 % 

explained variability, Table 1.2). The very best model showed a marginally significant 

negative effect of downwind weighted area of ‘crop fields other than oilseed rape’ (p = 0.06). 

The second best model showed a marginally significant positive effect of downwind weighted 

area of permanent habitats (p = 0.09). Both landscape variables were highly correlated 

(R2 = 0.93, p < 0.001). The remaining three models contained effects of ‘crop fields other than 

oilseed rape’ and permanent habitats but with p > 0.1. 

3.5.4. Syrphids 

The two best models for syrphids explained 43 % – 50 % of the variance in Brussels sprouts 

colonisation (Table 1.2). Both models contained a highly significant positive effect of prey 

abundance. The most abundant potential prey items were A. proletella egg clutches (38.4 %), 

followed by A. proletella larvae (37.6 %) and B. brassicae aphids (18.3 %). Prey abundance 

varied between 2.4 and 90.1 prey individuals / leaf (median, 42.9 prey individuals / leaf). The 

effects of landscape variables were not significant. However, we did not include the full set of 

variable combinations because of multicollinearity of variables (omitting combinations of 
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prey abundance and oilseed rape area in a 1,000 m radius with and without weighting by 

wind; Appendix A Table A.4). 

 

Table 1.2 Models for the effects of land use and weather conditions on Aleyrodes proletella (AP), 

Brevicoryne brassicae (BB), Plutella xylostella (PX) and syrphids (S) within a range of ∆AICc ≤ 2. 

Wind = weighting by wind; Est. = estimate; OSR = oilseed rape; Perm = permanent habitats 

(settlement, grassland and forest); OAC = other annual crop fields than oilseed rape (mainly cereals, 

maize, vegetables and sugar beets); Up / Down = upwind / downwind weighted habitats; - = parameter 

not included in the best models; x = parameter not tested. 

Taxon 
Land 
use  

Radius 
(m) 

Wind 

Landscape Temperature 
Prey 

abundance 
Overall model 

Est. p Est. p Est. p p R
2
 ∆AICc 

AP OSR 1,000 Up 0.259 0.001 -0.024 0.001 x x 0.001 0.66 0.00 

BB OSR 1,000 Down 0.117 0.027 - - x x 0.027 0.32 0.00 

BB OSR 1,000 Down 0.110 0.030 0.015 0.149 x x 0.032 0.44 1.10 

PX OAC 1,000 Down -0.002 0.065 - - x x 0.065 0.24 0.00 

PX Perm 1,000 Down 0.001 0.095 - - x x 0.095 0.20 0.74 

PX OAC 750 Down -0.001 0.115 - - x x 0.115 0.18 1.11 

PX OAC 1,000 no -0.001 0.117 - - x x 0.117 0.18 1.15 

PX Perm 1,000 no 0.001 0.187 - - x x 0.187 0.13 1.99 

S - - - - - - - 0.003 0.008 0.008 0.43 0.00 

S Perm 500 Down 0.002 0.210 - - 0.003 0.005 0.020 0.50 1.78 

 

4. Discussion 

This study aimed to identify the effects of landscape elements and weather conditions on 

colonisation of Brussels sprouts by pests and natural enemies. Thereby, we investigated the 

effects of percentage area of oilseed rape, other annual crop fields and permanent habitats as 

potential source habitats within different radii around the study sites (500, 750 and 1,000 m 

radii). As hypothesised, oilseed rape, the most widespread agricultural Brassica crop, 

significantly affected colonisation of Brussels sprouts by investigated pest species, 
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particularly under upwind or downwind weighting of habitats. The high importance of upwind 

source habitats pointed towards wind dispersal, whereas the high importance of downwind 

source habitats indicated olfactory oriented upwind flights.  

4.1. Cabbage whitefly (Aleyrodes proletella) 

According to our hypothesis, the occurrence of A. proletella on monitoring plants was 

strongly positively related to oilseed rape area. Furthermore A. proletella frequently occurred 

in winter oilseed rape fields in autumn and early summer, indicating that oilseed rape fields 

are important source habitats for colonisation of Brussels sprouts (see also Richter & Hirthe, 

2014b; Ludwig & Meyhöfer, 2016). A. proletella uses winter oilseed rape as hibernation 

habitat and for reproduction in spring when vegetable Brassica crops are not available (Belder 

et al., 2008). Exuviae of the fourth larval instar found in oilseed rape fields in early summer 

demonstrated that at least one generation can develop in oilseed rape fields. However, 

A. proletella adults are forced to move from oilseed rape fields during June and July, when 

maturing oilseed rape plants dry out and drop their leaves. This decline in host quality during 

late June and July explains why peak colonisation of vegetable Brassica crops occurred in 

early July and not at oilseed rape harvest in early August (Richter & Hirthe, 2014b). 

The radius that explains most of the variance is supposed to represent the main dispersal 

distance of the studied species when the explanatory power of different models considering 

different landscape radii is compared (Schmidt et al., 2008). The variability in the 

colonisation of monitoring plants was explained best by the oilseed rape area on the largest 

investigated scale (1,000 m radius). Thus, our results suggest that dispersal by A. proletella 

covers distances of at least 1,000 m. No references for A. proletella are available, but other 

whitefly species (Trialeurodes vaporariorum and Bemisia tabaci) are reported to perform 

migratory flights covering 500 – 1,000 m (Bährmann, 2002). Byrne et al. (1996) report peak 

B. tabaci migration 2 km from the source but also dispersal of 7 km has been reported (Cohen 
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et al., 1988). In accordance with our hypothesis, the explained variation increased when 

oilseed rape area was upwind weighted. This corresponds with the finding that whitefly 

dispersal is characterised by passive downwind transport (Byrne et al., 1996). 

Surprisingly, temperature had a negative and not a positive effect on colonisation by 

A. proletella. The movement activity of A. proletella increases with temperature to a peak at 

27 °C and decreases at higher temperatures (Stein, 1958). Our weather recordings showed a 

mean daytime temperature of 19.9 °C, but 90 % of daytime records remained < 27 °C. 

Therefore, it is unlikely that the negative temperature effect on colonisation resulted from 

decreasing flight activity at temperatures > 27 °C. Temperature has a positive effect on 

B. tabaci abundance in trap heights of 7.2 m, whereas catches at lower heights remain 

unaffected (Isaacs & Byrne, 1998), as shown in melon fields in Arizona, USA. Consequently, 

whitefly dispersal may be affected by vertical and horizontal air movements. Thermal 

columns of rising air may frequently occur above sparsely covered soil of vegetable fields on 

warm days in early summer. This rising air can lift the whiteflies, preventing them from 

landing on host plants, particularly on warm days. However, this explanation for the negative 

temperature effect on colonisation by whiteflies is speculative and needs further investigation. 

4.2. Cabbage aphid (Brevicoryne brassicae) 

Downwind weighted oilseed rape area in a 1,000 m radius was the most important variable in 

explaining B. brassicae colonisation of monitoring plants. Overwintering B. brassicae are 

often found in oilseed rape fields (Hafez, 1961; Collier & Finch, 2007). However, they were 

detected only occasionally in oilseed rape fields in our study. This low abundance is 

consistent with the comparably weak effect of oilseed rape area. The difference in 

A. proletella and B. brassicae abundance may be due to different sensitivities to insecticides. 

First, B. brassicae is often found highly exposed on the stem of oilseed rape plants, whereas 

A. proletella is more sheltered on the lower side of leaves. Second, pyrethroids, which are 
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usually sprayed in oilseed rape fields in October and March, affect B. brassicae populations 

(Alford et al., 2003) and pyrethroid resistance has only been reported in Asian countries 

(Ahmad & Akhtar, 2013). In contrast, A. proletella developed resistance at least in some parts 

of Europe (Springate & Colvin, 2012). 

Downwind weighted oilseed rape area explained the variability in colonisation best, 

suggesting that B. brassicae located their hosts by upwind movement. Aphids are seen as 

weak fliers, unable to cope with headwinds > 0.5 m/s and are dispersed downwind for large 

distances (Kring, 1972). However, upwind flights towards optical or olfactory stimuli are 

reported (Döring, 2014). Several aphid species use olfactory cues to locate hosts (Webster, 

2012), but for B. brassicae results on the reaction on odours differ (Nottingham et al., 1991; 

Nottingham & Hardie, 1993). The scale on which olfactory cues are used to determine the 

location of host plants is still unknown (Döring, 2014). Dispersing B. brassicae fly for about 

two hours (Kring, 1972). As aphids fly at 0.4 – 0.9 m/s (1.3 – 3.2 km/h), they can cover 

1,000 m in that time (Kring, 1972). Our finding that downwind weighted oilseed rape area 

explained the variability in colonisation better than oilseed rape area without weighting by 

wind is the first report that aphids are attracted upwind over a surprisingly large distance of 

about 1,000 m. 

4.3. Diamondback moth (Plutella xylostella) 

Downwind weighted permanent habitats in a 1,000 m radius showed a positive, and 

downwind weighted annual crops in a 1,000 m radius a negative marginal significant effect on 

colonisation by P. xylostella. Both variables were highly negatively correlated (R2 = 0.93, 

p < 0.001) and their effects could not be separated. Landscapes with a low proportion of 

annual crops and high proportion of permanent habitats, including grasslands and gardens, 

may provide more nectar as food for adult P. xylostella, leading to high colonisation of host 

plants (Winkler et al., 2005). Surprisingly, the amount of oilseed rape in surrounding 
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landscapes had no significant effect on this Brassica pest species, probably because it was 

already fruiting during July when field survey took place. Similarly, other studies have shown 

no effect of the quantity of oilseed rape on damage by Brassica pests whose adults depend on 

floral resources such as Delia radicum and Meligethes aeneus (Thies & Tscharntke, 1999; 

Josso et al., 2013). Furthermore, permanent habitats may be suitable overwintering habitats, 

although the overwintering strategy of P. xylostella in temperate regions remains uncertain 

and at least part of the population immigrates from warmer regions (Talekar & Shelton, 

1993). As P. xylostella uses olfactory cues to locate hosts (Pivnick et al., 1994), permanent 

habitats in downwind direction may have been important for P. xylostella colonising the 

monitoring plants (Moser et al., 2009).  

4.4. Syrphids 

No effects of oilseed rape, other annual crops or permanent habitats were detected regarding 

colonisation of monitoring plants by syrphids. Aphidophagous syrphids use different habitats 

during different life stages. Adults are highly mobile and require flower-rich habitats as 

source of nectar and pollen to supply energy for flight and protein for egg development 

(Haslett, 1989). The effects of oilseed rape fields on syrphids may be limited to their 

flowering time in April/May (Riedinger et al., 2014). Adults move to other habitats after 

oilseed rape flower (Meyer et al., 2009). Crop fields are of importance for egg deposition and 

larval development, as they provide large amounts of food for larvae (Meyer et al., 2009). 

Syrphids hibernate in different habitats, such as crop fields or grasslands (Raymond et al., 

2014; Sarthou et al., 2014), while some important aphidophagous syrphids are at least 

partially migratory and independent from local habitats (Raymond et al., 2013). High mobility 

and different habitat requirements of syrphids probably led to no significant landscape effects.  

Instead, colonisation of monitoring plants by syrphids was strongly affected by prey 

abundance, which was dominated by A. proletella (88 %). Syrphids are important natural 
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enemies of aphids (Tenhumberg & Poehling, 1995). E. balteatus, the most common syrphid 

species in Brussels sprout fields in Germany (Hafez, 1961), is known to also feed on 

whiteflies and to develop into an adult while feeding on whiteflies only (Rijn et al., 2008). 

Different syrphid species, including E. balteatus, are attracted by honeydew and pheromones 

from particular aphid species (Budenberg & Powell, 1992; Verheggen et al., 2008). Rijn et al. 

(2008) reported increased egg laying by syrphids on plants with whiteflies compared to clean 

plants. These reports are supported by the strong positive effect of prey abundance on 

colonisation by syrphids in our study. 

4.5. Conclusion 

The effects of different land use types and weather conditions on colonisation of young 

Brussels sprout plants by Brassica pests and natural enemies were species specific. As 

expected, oilseed rape as most widespread agricultural Brassica crop was an important source 

habitat for A. proletella and B. brassicae. In contrast, colonisation by P. xylostella increased 

with area of permanent habitats, possibly due to consistent floral resources for nectar-feeding 

adults and was unaffected by oilseed rape farming. Syrphids were significantly affected by 

prey abundance, but not by tested land use types probably due to their high mobility and 

miscellaneous habitat requirements.  

The effect of oilseed rape area on colonisation by A. proletella increased when additional 

weight was given to upwind located habitats, pointing towards downwind dispersal of this 

species. In contrast, the effect of oilseed rape area on colonisation by B. brassicae increased 

when additional weight was given to downwind located habitats, suggesting that this species 

follows olfactory cues of host plants upwind. These findings emphasise the importance of 

considering prevailing wind directions when investigating or predicting colonisation by pest 

species, which probably also applies to other arthropods, including natural enemies such as 

ballooning spiders and pollinators such as moths and bees (Wright & Schiestl, 2009). 
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Abstract 

The occurrence of species in rapidly changing environments, such as agricultural landscapes, 

is largely affected by their ability to recolonise habitats. Knowledge of the scale of importance 

for colonisation processes is essential for landscape-scale management of wildlife 

populations, e.g. pest management strategies. Colonisation by many insects, such as 

whiteflies, can be affected on multiple landscape scales, as they have different morphs with 

specific dispersal abilities and behaviours. The cabbage whitefly (Aleyrodes proletella) is a 

major pest of Brassica vegetables and is known to colonise them primarily from oilseed rape 

fields. We used field mapping and remote sensing to characterise the relevant scales for 

colonisation of Brussels sprouts by cabbage whiteflies. Surprisingly, oilseed rape areas in 

wide landscapes (2 – 8 km around study sites) explained colonisation remarkably better than 

oilseed rape areas at the local scale (200 – 1,000 m around study sites). The explained 

variance increased when additional weight was given to upwind source habitats, indicating 

wind transport of whitefly colonisers and consequently explaining the importance of large 

landscape scales for colonisation. Relatively low importance of local compared to wide 

landscape source habitats can be explained by the specific flight behaviours of different 

whitefly morphs. Migratory morphs show phototactic attraction but are attracted by host cues 

only during the later phases of flight. Therefore, they ignore potential host plants close to their 

place of origin and disperse several kilometres. Trivial flight morphs rarely move more than a 

few hundred metres. In conclusion, as most whitefly colonisers reached Brassica vegetables 

from source habitats as far away as 2 – 8 km, predictions on pest pressure and landscape-scale 

whitefly management should consider these distances. In contrast, oilseed rape fields in the 

local landscape, which usually worry farmers, have a relatively negligible effect on 

colonisation pressure. 
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1. Introduction 

Colonisation processes impact species communities, including pest outbreaks and species 

survival, particularly in rapidly changing habitats, such as agricultural landscapes (Wissinger, 

1997; Tscharntke et al., 2005). Dispersal is a major driver of colonisation and defined as the 

movement of organisms away from their parental source to other locations (Lewis et al., 

2013). It thereby includes movement within as well as among populations and habitats, thus, 

movement on different scales. In terms of insect flights, so-called ‘trivial flights’ can be 

distinguished from ‘migratory flights’ (Johnson, 1969; Danthanarayana, 1986). Trivial flights, 

also called vegetative or appetitive flights, are random short distance flights usually associated 

with feeding, mating or oviposition behaviour inside habitats (Danthanarayana, 1986). In 

contrast, migratory flights cover relatively long distances and are, with exception of the late 

phase of flight, undistracted by stimuli referred to everyday (‘trivial’) needs (Johnson, 1969). 

Migratory flights are often associated with switches among and colonisation of new habitats 

(Danthanarayana, 1986). Knowledge on the spatial dimension, in which dispersal affects 

colonisation, is important for management of wild animal populations regarding subject areas 

such as conservation, utilisation or crop protection (Mazzi & Dorn, 2012). 

In this study, we investigated colonisation of young Brussels sprout plants by the cabbage 

whitefly (Aleyrodes proletella), a serious pest in Brassica vegetable fields, such as kale, 

Savoy cabbage and Brussels sprouts (Pelgrom et al., 2015). The cabbage whitefly prefers 

Brassicaceae plants but also occurs less frequently on plants in the families Asteraceae and 

Papaveraceae (Bährmann, 2002). The worldwide spread of cabbage whitefly and its 

importance as a vegetable pest have increased dramatically in the last few decades (El-Helaly 

et al., 1972; Barro & Carver, 1997; Pelgrom et al., 2015). Furthermore, the species has 

developed resistance to pyrethroid insecticides (Springate & Colvin, 2012). The increasing 

abundance of cabbage whiteflies in Europe may be related to increased production of oilseed 
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rape in the last few decades (Dixon, 2007). Cabbage whiteflies use winter oilseed rape fields 

as hibernation and spring reproduction habitat when Brassica vegetables are unavailable 

(‘green bridge’; Dixon, 2007; Belder et al., 2008). In early summer, when oilseed rape fields 

mature, whiteflies disperse to the surrounding landscape due to the decrease in host quality 

(Richter & Hirthe, 2014b). At this time of the year, newly planted Brassica vegetables are 

available as alternative hosts. Therefore, oilseed rape fields are an important source for 

colonisation of Brassica vegetable fields by the cabbage whitefly (Richter & Hirthe, 2014b).  

Dispersal ability largely determines the relevant scale for colonisation processes. Whiteflies 

have been traditionally seen as weak flyers, unable to actively fly more than few hundred 

metres (Byrne & Bellows, 1991). Thus, the availability of source habitats within the local 

landscape seems to be the key factor for the successful colonisation of a habitat and 

colonisation built up. Accordingly, oilseed rape area in up to 1,000 m distance affects 

colonisation by cabbage whiteflies (Ludwig & Meyhöfer, 2016; chapter 1). However, the 

importance of more distant source habitats is unknown. Studies on the silverleaf whitefly 

(Bemisia tabaci) show a bimodal dispersal pattern with peaks at 100  and 2,000 m distances 

from the dispersal source (Byrne et al., 1996). Byrne et al. (1996) concluded that the different 

peaks of the silverleaf whitefly result from two morphs differing in their specific ability and 

willingness to fly, namely from the so-called ‘trivial flight morph’ (100 m peak) and from the 

‘migratory flight morph’ (2,000 m peak). Migratory and host finding behaviour of aphids and 

whiteflies is similar. During migratory flights they are attracted by UV- or white skylight and 

thereby ignore host cues (Isaacs et al., 1999; Döring, 2014). Subsequent host finding is 

similar to behaviour during trivial flights and characterised by attraction to green to yellow 

surfaces (Blackmer et al., 1994; Isaacs et al., 1999), while some species additionally respond 

to olfactory cues (Butler, 1938; Döring, 2014). Finally, host suitability is tested by probe 

sucking after landing (Noldus et al., 1986). 
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Similar to the silverleaf whitefly also the cabbage whitefly has different morphs with specific 

flight abilities (Iheagwam, 1977). Consequently, cabbage whiteflies colonising Brassica 

vegetables may either (1) be migratory morphs derived from source habitats (particularly 

oilseed rape fields) up to several kilometres away or (2) trivial flight morphs derived from 

source habitats in the local landscape of a few hundred metres distance. Upwind source 

habitats should be of utmost importance for wind-dispersed migratory morphs to colonise 

Brassica vegetables (Naranjo et al., 2010). In contrast, colonisation by trivial flight morphs 

should either be independent of prevailing wind directions as they fly in calm conditions close 

to the ground and find their hosts by random landing on green surfaces and probing (Byrne & 

Bellows, 1991), or downwind source habitats should be of the highest importance, if cabbage 

whiteflies follow olfactory cues (Fig. 1.1; Butler, 1938; Pasek, 1988; Bleeker et al., 2009). 

Consequently, colonisation by whiteflies might be affected simultaneously on multiple 

landscape scales. 

1.1. Questions and hypotheses 

To answer the question in which landscape radii oilseed rape area mainly affects colonisation 

of Brussels sprouts by cabbage whiteflies, the variance explained by individual landscape 

radii (200 – 8,000 m) was compared. 

First, we hypothesised that colonisation of Brassica vegetables by the cabbage whitefly 

depends on the amount of oilseed rape as a source habitat in the local landscape, due to the 

typical dispersal behaviour by trivial flights, as well as in the wide landscape, due to 

migratory flights. Therefore, a model simultaneously considering oilseed rape area at these 

two different spatial scales should explain the colonisation pattern better than a model 

considering only one of these scales. As the exact distance covered by cabbage whiteflies in 

trivial and migratory flights is unknown, different radii for the local (200 – 1,000 m) and wide 

landscapes (1,000 – 8,000 m) were tested.  
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Second, we hypothesised that downwind transport is of importance for dispersal on wide 

landscape scale. Thus, giving additional weight to upwind source habitats at the wide 

landscape scale should increase the model’s explanatory power. 

Third, we hypothesised that olfactory orientation towards host plants plays a role in trivial 

flights by the cabbage whitefly. Consequently, giving additional weight to downwind source 

habitats at the local landscape scale should further improve the model’s explanatory power. 

2. Methods 

2.1. Field survey 

Eighteen Brussels sprout fields on organic horticultural farms located in northwest North 

Rhine-Westphalia and southern Lower Saxony, Germany, were selected. Farmers grew a 

large variety of vegetables, including Brussels sprouts (planted from late April to early June) 

and other Brassica vegetables. The agricultural landscape surrounding the study site (Brussels 

sprout fields) differed in land use and represented a gradient in the area of oilseed rape, e.g. 

0 to 20 % and 0.5 to 11 % oilseed rape at 200 and 8,000 m radii around the study sites, 

respectively. A weather station (PCE-FWS 20; PCE Instruments, PCE Deutschland GmbH, 

Meschede, Germany) recorded wind directions at 15 minutes intervals on each study site.  

Colonisation of Brussels sprouts by cabbage whiteflies was sampled on monitoring plants 

exposed at all study sites in early July 2012 at the peak of cabbage whitefly early summer 

migration (Ludwig et al., 2014, chapter 1). Monitoring plants were potted organically 

cultivated Brussels sprout plants free of pests and natural enemies. They were standardised in 

terms of soil type (mixture of 1.7 g water storing granulate [Broadleaf P4, AgriPol, 

Bournmoor, England] per litre potting soil), age (3 – 4 weeks), variety (Brassica oleracea var. 

gemmifera, cultivar ‘Topline F1’) and were selected randomly from stock. Twenty monitoring 

plants were exposed per study site in 0.5 - 5 m distance from the farmer’s Brussels sprout 

plants. The plants were placed in two groups of ten plants each, preferably on two different 
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sides of a field to account for spatial heterogeneity on the field. After 2 weeks eggs and larvae 

of cabbage whiteflies were counted on all leaves of the monitoring plants.  

2.2. Landscape survey by manual mapping and remote sensing 

To quantify the position and area covered by oilseed rape fields in 8 km radii around study 

sites, we manually mapped the local agricultural landscape (1 km radius) around study sites 

and used relatively less time-consuming remote sensing methods to assess land use in radii 

from 1 to 8 km. Manually mapping of land use types took place on site by car and foot using 

aerial photos (scale: 1:10,000). Agricultural land use types were thereby grouped in ten crop 

type classes (Appendix B Table B.1.1). These data, in addition to forest and urban areas 

mapped on the basis of satellite images, were digitised using ESRI ArgGIS 10 

(Environmental Systems Research Institute, Redlands, Californien, USA).  

In a further step, these results were used as reference data to determine land use in the wide 

landscape (up to 8 km) using satellite images and remote sensing methods. Therefore the 

reference data objects were separated into training data (70 %) to train the classification 

algorithm ‘Random Forests’ and holdout (30 %) for final validation of the classification 

(Breiman, 2001; Appendix B Table B.1.1). ‘Random Forests’ is a machine learning method 

that is widely used to classify remote sensing data (Pal, 2005) including the identification of 

different crops (Conrad et al., 2014). 

The classification of pixel-based satellite image units into land use types was performed as 

follows: Five Landsat 7 ETM+ scenes were used for the classification (acquisition DOYs in 

2012: 66, 146, 199, 247 and 279). Clouds were masked out using a threshold on the blue band 

and the ‘Normalised Differenced Vegetation Index’ (NDVI). As classifications do not require 

an atmospheric correction (Song et al., 2001), this step was applied to the top-of-atmosphere 

reflectance data. Four spectral bands (blue, green, red and near-infrared), as well as the 

vegetation indices ‘Soil-adjusted Vegetation Index’ (SAVI), NDVI and the ‘Simple Ratio’ 
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(SR) were utilised as input for the classification (Appendix B Table B.1.2). Due to cloud 

coverage and the ‘Scan Line Correction error’ (SLC) (Wulder et al., 2014), we classified and 

merged multiple Landsat scene combinations to cover the entire study area. In the final class 

decision for a single pixel, the classification with more input scenes was prioritised over the 

classification based on fewer Landsat scenes to ensure that the full potential of the multi-

temporal dataset was used and that the major part of the study area was classified. The 

resulting post-classification map was clumped using ‘ENVI’ version 4.8 (Exelis Visual 

Information Solutions, Boulder, Colorado, USA) to ensure spectral coherency.  

The final land cover map was validated using the holdout described above. The classification 

accuracies were calculated according to Congalton (1991) and are shown in Appendix B 

Table B.1.3. Overall accuracy was 79.89 % (Kappa coefficient = 0.76), whereas the 

accuracies of the class of interest (oilseed rape) were higher (producer’s accuracy = 89.51 % 

and user’s accuracy = 88.96 %; Appendix B Table B.1.3). The landscape classification 

resulted in maps with compact, often rectangular cropland units (Appendix B Fig. B.1), which 

can be seen as additional proof of the accurate classification results. 

2.3. Data preparation 

As recording wind data failed at two of the 18 study sites and no remote sensing landscape 

data were available from another study site, all data analyses were conducted with 15 of the 

initial 18 study sites. The mean number of egg clutches laid per leaf within a 2 week exposure 

time at each study site was used as a measure of colonisation. Thereby, egg clutches that 

hatched during the exposure time were included (4.678 larvae corresponded to one clutch; 

chapter 1, Appendix A Fig. A.3). 

The percentage area covered by oilseed rape within circular areas around the study sites was 

calculated at 16 radii ranging from 200 to 1,000 m in 100 m steps (local landscape) and from 

1,000 to 8,000 m in 1,000 m steps (wide landscape) to investigate the importance of oilseed 
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rape fields as source habitats at different radii. Data recorded by personal mapping were used 

to ensure the highest accuracy for the nine local landscape radii, whereas the data obtained 

from satellite image analysis were used for the eight wide landscape radii, allowing us to 

consider the large-scale landscapes (which could not be mapped manually). The data 

generated from the satellite images at the 1,000 m radius and those from personal mapping 

were highly correlated (R2 = 0.84, p < 0.001). 

To weigh the contribution of the oilseed rape areas according to their location relative to the 

study site and prevailing wind directions, the circular landscape areas were separated into 

eight wind direction sectors (N, NE, E, SE, S, SW, W and NW; Fig. 2.1). To account for a 

greater importance of upwind source habitats in cases of passive wind dispersal, we first 

calculated the proportion of wind events (> 0.3 m/s) blowing from each of the eight sectors 

towards the study site during the time the monitoring plants were exposed. Second, the 

percentage oilseed rape area per sector was multiplied by the proportion of wind events 

blowing towards the study site. The sum of the resulting eight values (one value per sector) 

produced an area index with increased weight for upwind located habitats, hereafter referred 

to as ‘upwind weighted’ area (Appendix B Table B.2). To account for a greater importance of 

downwind source habitats in cases of attraction by wind-transported odours, we weighted the 

area of the three habitat categories accordingly: The percentage oilseed rape area per sector 

was multiplied by the proportion of wind events blowing from the study site towards the 

sector. The sum of these resulting eight values (one value per sector) produced an area index 

with increased weight for downwind located habitats, hereafter referred to as ‘downwind 

weighted’ area. 
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Fig. 2.1 Separation of one of the analysed landscapes into circular areas with different radii around the 

study site (thin grey circles) and sectors dedicated to wind direction (differrentiated by bold black 

lines). Grey areas represent oilseed rape fields.  

 
2.4. Statistics 

Regression models were used to analyse the effects of oilseed rape area at different scales 

with and without weighting by wind on colonisation of Brussels sprout. The number of 

A. proletella egg clutches was used as a response variable in all models and was log-

transformed to account for the non-normally distributed count data. To identify landscape 

radii in which oilseed rape mainly affected colonisation by pests, we calculated 34 models 

containing one of the 34 explanatory variables (nine radii from 200 m to 1,000 m for the local 

scale once with and once without downwind weighting of oilseed rape area and eight radii 

from 1,000 m to 8,000 m for the wide scale once with and once without upwind weighting of 

oilseed rape area). To investigate whether including two spatial scales explained colonisation 

better than one scale, we calculated models with two explanatory variables (percentage 

oilseed rape area on the local and wide scales) covering all possible combinations of local-

scale (nine radii) and wide-scale radii (eight radii). Thereby, the combinations with correlated 

explanatory variables were excluded (Appendix B Table B.3), leading to a total of 65 models. 

Furthermore, we calculated 194 models in which one or both variables were weighted by 
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wind (again excluding combinations with correlated explanatory variables). All of these 

models (34 + 65 + 194 = 293) were ranked using Akaike Information Criterion corrected for 

small sample size (AICc), which is a measure of relative goodness-of-fit and simplicity of the 

statistical models for a given data set. The best models in a range of delta AICc ≤ 2, which are 

supposed to be of similar quality (Burnham & Anderson, 2002), are shown. All analyses were 

performed using R version 3.3.1 (R Core Team, 2016). 

3. Results 

The cabbage whitefly was the most abundant pest species on Brussels sprout plants and 

density reached 0.2 – 61.4 egg clutches/leaf (median = 15.3, mean = 19.4). No natural 

enemies specialised on whiteflies (e.g. chalcid wasp Encarsia tricolor or lady beetle 

Clitostethus arcuatus) were observed, but syrphid larvae and spiders were present. Due to the 

absence of specialised natural enemies and the general weak effects of natural enemies on 

cabbage whiteflies (Rijn et al., 2008), they were not considered in the analyses. The 

prevailing wind directions were southern or western directions (SE, S, SW, W and NW) for 

all study sites. The most frequent wind direction was southwest at 12 of the 15 study sites 

(80 %), whereas north was the direction with the least wind at nine study sites (60 %). 

A comparison of the explained variance (R2) of the models that included oilseed rape area on 

single scales showed two peaks (Fig. 2.2): the first peak marked a moderate explained 

variance at the smallest landscape radius (200 m with R2 = 0.12), where colonisation 

increased with decreasing oilseed rape area. The second peak marked the highest explained 

variance at the 5,000 m radius (R2 = 0.36), with a steep increase in explained variance from 

700 to 2,000 m. Here colonisation of Brussels sprouts increased as oilseed rape area 

increased.  
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Fig. 2.2 Explained variance (R
2
) of cabbage whitefly colonisation of Brussels sprouts by the 

percentage of oilseed rape area (i.e. source habitat) in 17 radii resulting from separate models for 

each radius. Continuous grey line = local and wide landscape scale without weighting by wind, dashed 

black line = wide scale landscape with upwind weighted oilseed rape area, black dotted line = local 

scale landscape with downwind weighted oilseed rape area. 

 

After comparing all combinations of oilseed rape area at the wide-scale and/or local-scale 

landscapes with and without weighting by wind, eight of the total 293 models were in the 

∆AICc ≤ 2 range (Table 2.1). All of these models showed a significant effect of oilseed rape 

area at the wide scale, but local scale landscapes were not included in any of these best 

models. 

Five of the eight best models for the wide landscape scale contained upwind weighting of 

source habitats, including the model with the lowest AICc (5,000 m radius with upwind 

weighting of oilseed rape area, R² = 0.41, p = 0.011). The comparison of variance explained 

by models with oilseed rape area in different radii with and without weighting by wind as a 

single explanatory variable showed that upwind weighting of oilseed rape area on a wide 

landscape scale increased the explained variance of all scales with a radius ≥ 2,000 m 

(Fig. 2.2). Downwind weighting of oilseed rape area on local landscape scale increased 

explained variance only at the 200 m radius. 
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Table 2.1 Models in a ∆AICc ≤ 2 range for colonisation of young Brussels sprout plants by cabbage 

whiteflies. AICc = Akaike Information Criterion corrected for small sample size. wei = weighting of 

oilseed rape area by wind direction, + = with weighting, - = without weighting, est = estimate. Oilseed 

rape area was upwind weighted on the wide landscape scale (2,000 – 8,000 m radius) and downwind 

weighted on the local landscape scale (200 – 1,000 m radius). Empty cell = variable was not part of 

the model. 

Wide landscape scale  Local landscape scale  Overall model 

radius wei est p  radius wei est p  p R
2 

∆AICc 

5000 + 0.176 0.011             0.011 0.41 0.00 

7000 + 0.194 0.016             0.016 0.37 0.90 

5000 - 0.171 0.018             0.018 0.36 1.17 

6000 + 0.178 0.018             0.018 0.36 1.17 

4000 + 0.152 0.020             0.020 0.35 1.35 

7000 - 0.191 0.023             0.023 0.34 1.63 

6000 - 0.177 0.026             0.026 0.33 1.87 

8000 + 0.187 0.026             0.026 0.33 1.90 

 
 
4. Discussion 

Our results show that the area of oilseed rape fields (source habitats), within a 5,000 m radius 

from the study sites, explained 36 % of the variance in colonisation of young Brussels sprout 

plants by the cabbage whitefly. The explained variance increased (to a maximum of 41 %) 

when source habitats were upwind weighted. In contrast, oilseed rape area at the local 

landscape scale showed no or only a weak effect on colonisation of young Brussels sprout 

plants by the cabbage whitefly. These findings highlight the importance of source habitats on 

a wide landscape scale for even weak fliers such as whiteflies (Byrne & Bellows, 1991) and 

reveal the importance of passive downwind transport for dispersal. 

The low proportion of explained variability in whitefly colonisation by oilseed rape area in 

the local landscape and the steep increase in explained variation from radii of 700 to 2,000 m 

suggest that landscapes up to 700 m play a negligible role, whereas landscapes ≥ 700 m are 

particularly important for whitefly colonisation. Accordingly, an analysis of ring-shaped 

landscape areas (i.e. when only landscape > 700 m from the study site was considered) 
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showed almost the same results as those of the circle-shaped landscape with the 

corresponding radius (unpublished data). This leads to the question of why source habitats in 

a wide-scale landscape are more important for colonising Brassica vegetable fields compared 

to that of local-scale source habitats. A possible reason is that cabbage whitefly migratory 

morphs are the main colonisers of Brassica vegetable fields. Trivial flight morphs fly for a 

very short time only (19 seconds on average; Iheagwam, 1977) and immediately land on 

spotted green surfaces (Blackmer et al., 1994). Therefore, they may only be able to reach a 

new habitat if it directly borders their source habitat. In our study, we did not detect 

colonisation by trivial flight morphs, as none of the studied Brussels sprout fields directly 

adjoined an oilseed rape field (the minimal distance was > 100 m with one exception of 

> 40 m but shielded by field hedges). In contrast, migratory whitefly morphs fly for 

15 minutes on average (Iheagwam, 1977). They show positive phototactic behaviour and 

ignore visual host cues during the first phase of their flight (Iheagwam, 1977; Isaacs et al., 

1999), which can cover 2 – 7 km (Cohen et al., 1988; Byrne et al., 1996). This behaviour, 

which is similar to dispersal strategy of other insects such as aphids (Döring, 2014), can be 

meaningful in order to avoid exploitation of the local resources as consequence of population 

growth or decrease in resource availability. Consequently, most migratory morphs may not 

colonise Brussels sprout fields close to their source habitat, as their specific flying behaviour 

leads them directly to a height where they are transported by the prevailing wind. Thus, 

whitefly populations of the wide-landscape’s oilseed rape fields may colonise Brussels sprout 

fields independently from whitefly populations in the local landscape. 

Consequently, these results do not confirm our first hypothesis, stating that a model involving 

two spatial scales (considering the different morphs) explains colonisation by the cabbage 

whitefly better than a model considering only one spatial scale. All eight of our best models 

contained only wide-scale landscape variables, indicating that the wide landscape was the 
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most important for colonisation of Brussels sprouts by cabbage whiteflies, whereas the local 

landscape seemed to be almost negligible. 

The second hypothesis stated that wind transport is important for a wide-landscape scale 

dispersal of the cabbage whitefly and, consequently, models including upwind weighted 

oilseed rape area explain colonisation particularly well. Three of the eight best models 

considered oilseed rape area without weighting by wind; thus, there is no solid proof for high 

importance of wind effects during colonisation by cabbage whitefly. On the other hand, the 

models including upwind weighting of oilseed rape area always had a lower AICc and 

explained more variance than equivalent models without weighting by wind (Table 2.1, 

Fig. 2.2). The importance of wind transport in dispersal has been suggested previously for 

other whitefly species (Byrne et al., 1996; Bährmann, 2002). Silverleaf whitefly dispersal can 

peak 2 km downwind from the source habitat while single individuals travel distances of 7 km 

(Cohen et al., 1988; Byrne et al., 1996). For aphids passive wind transport of even hundreds 

of kilometres is reported, while flights of < 20 km are seen as local movement (Loxdale et al., 

1993). 

While optical orientation is most important, also olfactory orientation can be used by 

whiteflies to find host plants (Butler, 1938; Vaishampayan et al., 1975; Bleeker et al., 2009). 

Therefore, we hypothesised that cabbage whiteflies are attracted by Brussels sprout fields 

from nearby downwind located oilseed rape fields (which decrease in host plant quality while 

they mature). This hypothesis was not confirmed, as oilseed rape area at the local scale 

(200 m radius) had, if any, a negative effect on colonisation of Brussels sprout. In addition, 

the quality of oilseed rape host plants is generally weak in July but oilseed rape plants with 

delayed development (often found on lanes inside the fields) may be suitable cabbage 

whitefly hosts. Therefore, they may attract cabbage whiteflies that otherwise might have 

colonised Brussels sprout fields in landscapes with low oilseed rape area within the 200 m 
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radius. The negative effect was even more pronounced when oilseed rape area was downwind 

weighted. A similar effect of decreasing colonisation with increasing downwind source 

habitat area was found for pollen beetles, which use olfactory cues to locate hosts (Moser et 

al., 2009). The authors explained this effect by stating that lower numbers of herbivores reach 

a study site when alternative source habitats are along their way. However, the role of 

olfactory orientation is not well investigated in whiteflies. The most important host location 

cues for whiteflies are visual (Mound, 1962; Vaishampayan et al., 1975), but olfactory stimuli 

affect pre-alighting host selection behaviour (Vaishampayan et al., 1975; Bleeker et al., 

2009). The cabbage whitefly was found to orientate towards the scent of crushed cabbage 

leaves (Butler, 1938), but no orientation towards the scent of intact cabbage leaves could be 

detected (P. Hondelmann, pers. com.). 

4.1. Conclusion 

The combination of wind and landscape configuration data as well as determining the most 

important landscape scale (5,000 m radius) using satellite images in our study is an important 

step to successfully predict colonisation of cabbage plants by the cabbage whitefly. We 

combined wind and landscape configuration data by upwind weighting of source habitats (i.e. 

oilseed rape fields) on a wide landscape scale (assuming wind dispersal) and downwind 

weighting of source habitats on a local landscape scale (assuming olfactory orientation during 

host finding). The wide landscape radii of 2,000 – 8,000 m explained colonisation best, 

particularly when source habitats were upwind weighted, indicating wind transport by 

whitefly colonisers. Local landscapes (up to 1,000 m radius) were only slightly important for 

colonisation by cabbage whiteflies. This was explained by the specific flight behaviour of 

migratory morphs, ignoring potential host plants close to their place of origin and dispersing 

several kilometres. Thus, predictions on pest pressure and landscape scale whitefly 

management need to consider large landscape scales. In contrast, oilseed rape fields at 
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distances up to 1,000 m, of which farmers usually are most concerned, are relatively 

negligible for colonisation. These predictions could be further refined by implementing other 

environmental factors, such as temperature or rainfall (Naranjo et al., 2010, chapter 1) and 

may be useful to develop integrated plant protection strategies.  

Apart from its relevance in crop protection, the combined use of wind and landscape effects is 

of interest for landscape ecological science, as they represent further development of the 

common nested circles method (Thies & Tscharntke, 1999). The combination of wind and 

landscape effects are useful to predict not only pest outbreaks but also colonisation by other 

arthropods affected by wind, either by downwind transport of small arthropods, such as 

aphids, whiteflies or ballooning spiders (Compton, 2002; Schmidt & Tscharntke, 2005), or for 

upwind oriented olfactory searchers, such as the pollen beetle or parasitoid wasps (Steinberg 

et al., 1993; Moser et al., 2009).  
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Abstract 

Crop cover nets are used in vegetables to reduce damage by pests. Recently, nets with 0.8 mm 

mesh size were recommended to protect Brassica vegetables from whiteflies, but farmers 

doubted their efficacy. We compared the impact of different mesh sizes on the abundance of 

insect pests and their antagonists on Brussels sprouts in a field study and considered also 

important resource habitats, i.e. oilseed rape, in the surroundings. Cabbage whitefly was the 

most abundant pest followed by peach-potato aphid, cabbage aphid and diamondback moth. 

Aphid parasitism reached 48 % while syrphid larvae and spiders were the most abundant 

predatory taxa. The cabbage whitefly was less abundant under 0.8 mm nets in June and 

August compared to 7 mm nets, while no effect was observed in October. In general cabbage 

aphid, diamondback moth, syrphids and aphid parasitism were not affected by nets, but 

peach-potato aphid density increased under 7 mm nets late in the season. In contrast, spiders 

were less abundant under 0.8 mm than under 7 mm nets. Moreover, only the cabbage whitefly 

was positively affected by oilseed rape growing. In summary, 0.8 mm nets may be beneficial 

to reduce colonisation by cabbage whiteflies, especially in early summer and in landscapes 

with high colonisation pressure. Nets with wider mesh size may be appropriate in landscapes 

with low colonisation pressure by cabbage whiteflies since 0.8 mm mesh size had the 

disadvantages to support the peach-potato aphid and hinder colonisation by spiders. 

 

Key words: net mesh size, Aleyrodes proletella, Brevicoryne brassicae, Myzus persicae, 

Plutella xylostella, hoverfly 
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1. Introduction 

Crop cover is a preventive measure used in several vegetable crops to minimise damage by 

pests in integrated and organic farming. In Brassica crops, nets with a mesh size of 1.35 mm 

are recommended against vertebrate, aphid, lepidopteran and dipteran pests (Ester et al., 

1994). In the last decades, the cabbage whitefly (Aleyrodes proletella) has become an 

increasing pest problem in Brassica vegetables (Nebreda et al., 2005). Recently, nets with 

0.8 mm mesh size are recommended against cabbage whitefly (Saucke & Giessmann, 2003; 

Saucke et al., 2004). However, cabbage whiteflies can still transit 0.8 mm nets (Lessing, 

2013) and several farmers expressed doubt on their efficacy (pers. com.). During previous 

field studies, we additionally observed lower whitefly numbers on Brussels sprouts under fine 

meshed nets compared to unprotected Brussels sprout plants early in the cropping season, but 

also high whitefly numbers under fine meshed nets in the late cropping season. In sum, there 

is need for a comprehensive comparison of the effect of crop cover nets with different mesh 

sizes on whitefly abundance, thereby also considering other pests of Brussels sprouts as well 

as natural enemies. 

The cabbage whitefly is oligophagous, feeding on several plant species of the family 

Brassicaceae but also on other families (see Evans, 2007 for a list of host species). Since the 

cabbage whitefly overwinters and reproduces in oilseed rape, areas with high oilseed rape 

farming suffer from severe damage (Belder et al., 2008; Ludwig et al., 2014; Richter & 

Hirthe, 2014b). Overwintering whitefly females start laying eggs on oilseed rape in April, and 

adults of the first generation appear in June (Richter & Hirthe, 2014b). Those adults disperse 

to find new host plants in June and July when oilseed rape fields dry during ripening (Ludwig 

et al., 2014; Richter & Hirthe, 2014b). Dispersing whiteflies are reported to fly for 0.5 to 1 

km (Bährmann, 2002). 
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Besides whiteflies, also cabbage aphid (Brevicoryne brassicae), peach-potato aphid (Myzus 

persicae) and diamondback moth (Plutella xylostella) are important Brassica pests and 

frequently found on Brussels sprout. Under the temperate climate conditions in the study 

region, both aphid species hibernate predominantly as eggs, cabbage aphids on host plants of 

the family Brassicaceae (such as winter oilseed rape, overwintering cabbages or wild 

Brassicas) and peach-potato aphids on Prunus sp. (Capinera, 2001). After the hatching of the 

fundatrices in spring, they bear a new generation on of potential colonisers of new host plants. 

In April (peach-potato aphid), respectively, May (cabbage aphid), first winged individuals can 

be found on the new host plants such as vegetable Brassicas (Kirk, 1992). While cabbage 

aphids almost exclusively colonise Brassicaceae, the peach-potato aphid has a very broad host 

range (Capinera, 2001). Overwintering of the diamondback moth under temperate climate 

conditions is not conclusively clarified. It may either be migratory or hibernate locally (Jacobs 

et al., 1998; Furlong et al., 2013). However, first adults are observed in May in central Europe 

(Jacobs et al., 1998). The caterpillars feed on plants of the family of Brassicaceae only 

(Capinera, 2001). 

As nets can also hinder colonisation by natural enemies (Hommes, 1993), we were also 

interested in aphid parasitism as well as presence of predators such as hoverfly larvae and 

spiders. The parasitic wasp Diaeretialla rapae is an important parasitoid of cabbage aphid and 

peach-potato aphid, reducing population growth of both species (Hafez, 1961; Pike et al., 

1999; Desneux et al., 2005; Neuville et al., 2016). D. rapae hibernates inside mummies. It 

hatches and colonises aphid colonies from April onwards (Hafez, 1961). Syrphid larvae are 

another important natural enemy of aphids (Tenhumberg & Poehling, 1995). They also feed 

on whiteflies and small caterpillars (Dempster, 1967; Rijn et al., 2008). The most abundant 

syrphid species in fields of vegetable Brassicas in the study region is Episyrphus balteatus 

(Hafez, 1961). This species is partly migratory and partly overwinters locally (Hondelmann & 
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Poehling, 2007). Its eggs can be found from end of March on winter host plants of aphids 

(Zwölfer et al., 1984; Schier, 1988), while the second generation starts to colonise summer 

hosts of aphids late May (Tenhumberg & Poehling, 1995). Also spiders can affect aphid 

populations seriously (Wyss et al., 1995; Schmidt et al., 2003; Monzó et al., 2009). In 

Brussels sprout fields as well as in other agricultural area Linyphiidae are often the most 

abundant spider family (Schmidt et al., 2003; Geiger et al., 2009). Linyphiid spiders 

frequently overwinter in grassy field margins (Geiger et al., 2009). 

To address the suitability of crop covers regarding whiteflies, other Brassica pest species and 

important natural enemies, we compared the impact of nets with different mesh size on 

infestation of Brussels sprouts by pests and their antagonists in a field study. Additionally, the 

amount of oilseed rape growing in the surrounding landscape was considered. We hypothesise 

that: 1. The abundance of pests and natural enemies on Brussels sprouts decreases with 

decreasing net mesh size. 2. The effect of nets reducing pest and natural enemy numbers 

decreases during the growing season. 3. Infestation by pests predominantly specialised to the 

family Brassicaceae (i.e. cabbage whitefly, cabbage aphid and diamondback moth) increases 

with increasing amount of oilseed rape in the surroundings of Brussels sprout fields. 

 

2. Materials and methods  

The study was carried out on eleven organic horticultural farms in north-western Germany in 

2014. All farmers grew a wide variety of vegetables including Brussels sprouts (Brassica 

oleracea var. gemmifera) and other cole crops (Brassica oleracea varieties). They planted 

Brussels sprouts between late April and late May and harvested for the first time in late 

October or November. In mild winters harvesting continues until spring and the remaining 

parts of the pants are ploughed under between February and March, one to two months before 
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new cole crops are planted. Farmers covered newly planted cole crops either with fine 

(0.8 mm) or intermediate (1.35 mm) mesh size nets (see Appendix C Table C.1). To 

investigate effects of net mesh size, two control plots with ten plants each were considered per 

farm. Control plots were initially covered by the farmer’s fine / intermediate mesh size nets, 

which we changed against wide (7 mm) mesh nets about 3 weeks after planting to protect 

plants from vertebrate pests but allow access to the crop by most arthropods. The survey took 

place in June (the time of summer migration of the cabbage whitefly (Richter and Hirthe 

2014)), in August and in October (shortly before harvest). We recorded the presence of pest 

insects (whiteflies, aphids and all kinds of caterpillars) and their natural enemies (syrphid 

eggs, larvae and pupae, all kinds of spiders, lady beetles, common lacewings, earwigs and 

aphid mummies) on 12 plants per farm under fine or intermediate meshed nets and on 20 

plants per farm under the 7 mm nets (plant numbers sampled under different net types differ 

because data were initially collected for two different studies). Whitefly parasitism was not 

recorded. As long as plants were small (≤ 15 leaves) insects on all leaves were recorded. 

When plants had > 15 leaves, we checked ten randomly selected leaves per plant covering 

different leaf ages. In case of heavy infestation by one or more developmental stages of the 

cabbage whitefly (egg clutches, larvae or adults), this developmental stage was only recorded 

on six plants per farm and net treatment. Heavy infestation was defined as > 50 individuals of 

a developmental stage on each of the first six plants sampled. We mapped oilseed rape fields 

in a 1 km radius around all farms. 

 

2.1. Analysis of data 

Data were excluded from statistical analysis if nets were removed by farmers before the end 

of the study or if nets of 1.35 mm mesh size were used, which were too rarely used in recent 

years on sampled farms for a statistically sound analysis (for data including all fields and 
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mesh sizes with indications of net removal, see Appendix C Table C.1 and Fig. C.1 – C.2). To 

investigate the impact of net mesh size and the amount of oilseed rape in the surrounding 

landscape within the three sampling periods (June, August and October) we calculated the 

mean number of individuals of each pest or natural enemy group per leaf for each sampling 

period, net type and farm. These dependent variables were log-transformed to account for 

non-normality in count data. Aphid parasitism rates were not transformed. As explanatory 

variables we used: net mesh size (0.8 vs. 7 mm) and sampling period (June vs. August vs. 

October) as categorical variables. For pest species, the oilseed rape area in a 1 km radius was 

added as additional explanatory variable. Further, all two-way interactions were included. For 

natural enemies, the mean availability of prey (sum of aphids, whitefly egg clutches, larvae 

and adults), respectively, hosts (aphids) per leaf for each sampling period, net type and farm 

was calculated and included as covariable. The analysis of aphid parasitism was done with 

data from August and October only, because hosts were observed in June on a few farms 

only. The data were analysed using linear mixed effects models to account for repeated 

sampling at each study site (random effect = farm). Models were simplified by calculating the 

second-order Akaike information criterion (AICc, appropriate for small sample sizes) for all 

full model subsets using the dredge function in the muMIn (multi-model inference) package 

(Burnham & Anderson, 2002; Barton, 2015). Variables remaining in the model with the 

lowest AICc are discussed. All calculations were run with R version 3.3.0 (R Core Team, 

2016). R2 values were calculated using the sem.model.fits function from the piecewiseSEM 

package version 1.1.2 (Lefcheck, 2015). We report marginal R2 (marg. R2) values 

corresponding to the proportion of variance explained by fixed factor(s) alone and conditional 

R2 (cond. R2) corresponding to the proportion of variance explained by fixed and random 

factors (Nakagawa & Schielzeth, 2013). 
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3. Results 

Pests counted on 4965 leafs of 500 sampled plants were included in the analyses (310 ± 23 

leaves were sampled per farm and sampling date, mean ± SD). The cabbage whitefly was the 

most important pest with a median density of 175 egg clutches, 605 larvae and 160 adults per 

100 leaves. The second most abundant pest was the peach-potato aphid (median of 23 

individuals per 100 leaves) followed by the cabbage aphid (median of 17 individuals per 100 

leaves) and the diamondback moth (median of 0.5 caterpillars and 0.3 pupae per 100 leaves). 

Aphid parasitism ranged between 0.5 and 37 % (median of 17 %). The most frequent 

predators were spiders (median of 5 individuals per 100 leaves) followed by syrphids (median 

of 0.3 eggs, 0.3 larvae and 0 pupae per 100 leaves). While the cabbage whitefly and both 

aphids showed the highest densities in October, diamondback moth and natural enemies were 

most abundant in August (Table 3.1). 

Table 3.1 Median, maximum and minimum abundances of the investigated taxa per 100 leaves per 

farm for each sampling month. 

 June  August  October 

 Median Max Min  Median Max Min  Median Max Min 

Cabbage whitefly 158 3685 22  2545 19115 830  9186 22532 691 

     Egg clutches 114 2324 13  592 5045 69  0 19 0 

     Larvae 0 844 0  1194 10887 509  5479 18838 501 

     Adults 50 530 9  398 3183 60  3675 3707 191 

Cabbage aphid 2 35 0  26 992 9  85 650 13 

Peach-potato aphid 1 61 0  56 2421 4  461 864 25 

Diamondback moth 0 4 0  21 90 1  0 3 0 

     Caterpillars 0 3 0  12 76 0  0 1 0 

     Pupae 0 1 0  10 14 1  0 2 0 

Aphid parasitism [%] 5 10 1  20 37 14  5 25 1 

Syrphids 0 9 0  13 35 3  0 1 0 

     Eggs 0 6 0  7 20 1  0 0 0 

     Larvae 0 3 0  6 13 1  0 1 0 

     Pupae 0 0 0  1 2 0  0 0 0 

Spiders 3 4 0  13 29 5  7 14 4 
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The model with the lowest AICc for the cabbage whitefly contained effects of net mesh size 

(p < 0.001), sampling period (p < 0.001), a positive effect of oilseed rape area in a 1 km 

radius area around the study sites (p = 0.076), an interaction between sampling period and 

oilseed rape area (p = 0.001) as well as an interaction between sampling period and net mesh 

size (p = 0.036; model’s marg. R2 = 0.75, cond. R2 = 0.90). The interaction between sampling 

period and oilseed rape area shows that the number of whiteflies increased only slightly with 

oilseed rape area in June, while the slope was steeper in August and steepest in October 

(Fig. 3.2a). The interaction between sampling period and net mesh size showed that the 

difference between 0.8 mm and 7 mm nets was visible as a trend in June, most pronounced in 

August, but disappeared in October (Fig. 3.1a, Fig. 3.2b). For the cabbage aphid, the null 

model showed the lowest AICc. For the peach-potato aphid net mesh size (p = 0.026), 

sampling period (p = 0.081) and an interaction between sampling period and net mesh size 

(p = 0.034) remained in the best model (model’s marg. R2 = 0.36, cond. R2 = 0.42). Peach-

potato aphid density was generally low in June and increased with time under 0.8 mm nets, 

while no change in peach-potato aphid numbers occurred under 7 mm nets (Fig. 3.1c, 

Fig. 3.2c). For the diamondback moth, the best model showed an effect of sampling period 

(p = 0.029; model’s marg. R2 = 0.21, cond. R2 = 0.22) with increasing abundance during the 

growing season (Fig. 3.1d). 
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Fig. 3.1 Population development of different pest insects and natural enemies on Brussels sprouts under 

nets of 0.8, 1.35 and 7 mm mesh size in June, August and October: a) cabbage whitefly, b) cabbage 

aphid, c) peach-potato aphid, d) diamondback moth, e) aphid parasitism f) syrphid eggs, larvae and 

pupae, g) spiders. 

 

For the aphid parasitism rate, the null model showed the lowest AICc, but a trend towards 

higher parasitism under 7 mm nets compared to 0.8 mm nets is visible in Fig. 3.1e. For 

syrphids, the sampling period (p = 0.001) and a positive effect of prey availability (p = 0.039) 
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remained in the model with the lowest AICc (marg. R2 = 0.43, cond. R2 = 0.43). Syrphid 

presence increased during the season (Fig. 3.1f). Spiders on Brussels sprout plants were 

affected by net mesh size (p < 0.001), sampling period (p < 0.001), prey availability 

(p < 0.001) and an interaction between sampling period and net mesh size (p = 0.001; model’s 

marg. R2 = 0.76, cond. R2 = 0.81). The interaction clearly shows that higher spider densities 

were found under 7 mm nets compared to 0.8 mm nets in August, while spider numbers were 

generally low in June and October (Fig. 3.1g, Fig. 3.2d). 

 

Fig. 3.2 Interacting effects of a) sampling period and oilseed rape area in a 1 km radius around study 

sites on whitefly densities. Data points and model predictions: June: dots and continuous line, August: 

triangles and dashed line, October squares and dotted line. Interacting effects of sampling period and 

net mesh size on b) whitefly c) peach-potato aphid and d) spider densities. Data points are horizontally 

jittered. Diamonds indicate 0.8 mm nets, triangles 7 mm nets. Filled small symbols are data points, 

large empty symbols are model predictions with 95 % confidence intervals. 

 

4. Discussion 

Effects of net mesh size on abundance of pests and natural enemies varied considerably 

between species and sampling periods. We hypothesised that the abundance of pests and 

natural enemies is the smaller the finer the net mesh size is, which was confirmed for the 

cabbage whitefly and for spiders. Also aphid parasitism tended to be lower under fine meshed 

nets. Thus, fine meshed nets seem to affect the colonisation of Brussels sprouts by both, pest 

species and natural enemies. The difference in whitefly and spider abundance under 0.8 mm 

and 7 mm nets was most pronounced in August but could not be detected in October. This is 
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in accordance with our second hypothesis, stating that the effect of nets decreases during the 

growing season. Different reasons may cause this pattern. The first reason concerns the net 

mesh size: As 0.8 mm nets are an obstacle to cabbage whiteflies but can be crossed (Lessing, 

2013), more and more whiteflies may cross the nets with passing time and start to reproduce 

under the net. Secondly, pests and natural enemies can find their way under nets through holes 

in damaged nets, during net removal for weeding or because some farmers did not take 

enough care to keep their nets as close as possible, e.g. nets were lifted from the ground by 

growing plants, building gateways for colonisation. Also the frequency and duration of net 

removal for weeding may have been handled differently by farmers. 

In contrast to findings of Ester et al. (1994) some pests and antagonists were not affected by 

nets (cabbage aphid, diamondback moth, syrphids). The number of individuals of these 

insects colonising the crop was generally low in June, and therefore small differences between 

net types may not have been recognised. The peach-potato aphid showed even higher 

abundances under the fine 0.8 mm nets than under wider nets in October. A favoured 

microclimate or lower numbers of natural enemies (e.g. spiders) may have led to higher 

population build-up. Spiders can effectively reduce aphid populations (Wyss et al., 1995; 

Monzó et al., 2009). Therefore, some pests may develop high densities on plants protected by 

fine meshed nets (Hommes, 1993), as observed here for the peach-potato aphid. 

The third hypothesis stated that abundance of pests specialised to the Brassicaceae will 

increase with increasing amount of oilseed rape in the surrounding landscape. This was only 

found for the cabbage whitefly and supports that oilseed rape is an important overwintering 

and early summer reproduction habitat for the cabbage whitefly (Belder et al., 2008; Ludwig 

et al., 2014; Richter & Hirthe, 2014b). While whitefly numbers increased only slightly with 

increasing oilseed rape area in June, the slope of the oilseed rape effect on cabbage whitefly 

abundance increased with time (Fig. 3.2a). Previous analyses indicated that this interaction 
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was mainly caused by whitefly abundances under 0.8 mm nets. Especially in June and August 

the effect of oilseed rape area seemed to be stronger on plants covered by 7 mm nets than on 

those covered by 0.8 mm nets, which hinder colonisation. 

The other pest species appeared in considerably lower densities than the cabbage whitefly 

which may hamper the detection of a relation between their numbers on Brussels sprouts and 

oilseed rape as a source habitat. Additionally, the location of source habitats in relation to 

prevailing wind directions may be important for wind dispersed species such as aphids or 

whiteflies, as those insects are mainly transported from upwind source habitats towards the 

study sites (Byrne et al., 1996; Compton, 2002). Additionally, interference with barriers such 

as hills, forests or hedges affects wind dispersal (Pasek, 1988). Therefore, the incorporation of 

prevailing wind directions and presence of relevant landscape elements into analyses could 

have led to (more) distinct pattern. However, cabbage aphids were rarely found in winter 

oilseed rape fields in the study region (chapter 1). This reduces the probability of oilseed rape 

fields being source habitats for cabbage aphids – although they are sometimes found to 

overwinter in large numbers in oilseed rape fields (Hafez, 1961; Collier & Finch, 2007). 

The peach-potato aphid is probably affected by different habitats, because it is a generalist 

species that feeds on several plant species of which at least pumpkin, potato and corn were 

present on the horticultural farms of the current study. It hibernates on Prunus sp. trees in the 

egg stage but may also overwinter on plants in (green-) houses with temperatures > 4°C 

(Capinera, 2001). Also the diamondback moth shows no strong relation to oilseed rape in 

central Europe, in contrast to other parts of the world (Williams, 2010). One reason may be 

that it is a migratory species in temperate regions that reaches the study region not before May 

(Jacobs et al., 1998; Furlong et al., 2013) . Therefore the diamondback moth does not profit 

from high availability of oilseed rape fields as hibernation or early year reproduction habitats. 
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In conclusion, 0.8 mm nets can minimise the colonisation of Brassica vegetables by the 

cabbage whitefly and therefore are recommended in landscapes with high colonisation 

pressure by cabbage whiteflies, e.g. landscapes with high amount of oilseed rape. The use of 

0.8 mm nets in practice has to be optimised to extend their effect to the end of the cropping 

period. We suggest minimising net removal during periods of high dispersal activity of pests, 

i.e. for cabbage whiteflies between midday and afternoon at days with warm and sunny 

weather conditions. Instead, net removal on cloudy days or during cool morning conditions 

may reduce colonisation by whiteflies (Stein, 1958). Additionally, the release of natural 

enemies under nets could help to increase the efficacy of nets, although this technic needs 

further development (Saucke et al., 2011). Because 0.8 mm nets had negative effects on the 

presence of spiders, did not affect cabbage aphid and diamondback moth but even promoted 

peach-potato aphid, we recommend using wider nets in landscapes with low colonisation 

pressure by cabbage whiteflies. 
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Abstract 

The occurrence of pests and natural enemies in agricultural crops is related to colonisation 

from the surrounding landscape. Effects of different landscape elements (mainly area of 

oilseed rape and arable land or permanent habitats) on colonisation of young Brussels sprout 

plants by pests and natural enemies were investigated in chapters 1 and 2. These landscape 

effects on colonisation can, but not necessarily need to, affect later pest densities and crop 

damage. This chapter investigates how landscape elements with potential relevance for crop 

colonisation affect pest pressure in Brussels sprout fields during the cropping season. We 

counted arthropods in Brussels sprout fields in three consecutive years and recorded the 

surrounding landscapes as well as prevailing wind directions for each field. The most 

abundant pests were cabbage whiteflies followed by cabbage aphids, peach-potato aphids and 

diamondback moths; the most abundant natural enemies were syrphid larvae, spiders and 

aphid parasitoids (recorded as parasitism rate). Cabbage whitefly abundance was positively 

related to oilseed rape area throughout the year. Marginal and significant positive effects by 

arable land area were shown for cabbage aphids and spiders in midsummer, respectively. No 

further landscape effects on abundances of the named species were found, and no increased 

model quality due to weighting of habitats by prevailing wind directions could be detected. 

Thus, some effects of importance for colonisation detected in chapter 1 did not persist under 

crop production situation in Brussels sprout fields, possibly due to additional variability 

caused by differences in management practices, population development or data inclusion 

from three years. The example of the effect of oilseed rape area on the cabbage whitefly 

showed that landscape effects on colonisation in early summer can determine pest densities 

even shortly before harvest. Therefore the need for crop protection and the cost effectiveness 

can be directly related to the area of oilseed rape in the surrounding landscape for the 

production of Brassica vegetables which are sensitive to damage by the cabbage whitefly. 
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1.  Introduction 

The occurrence of most organisms in their habitats, such as arthropods in crop fields, is 

related to the surrounding landscape (Andrén, 1994; Tscharntke et al., 2005). Especially in 

agricultural landscapes, which are characterised by periodic and abrupt changes in habitat 

quality and availability, crop fields are frequently recolonised from the surroundings 

(Wissinger, 1997). Sources for recolonisation by many arthropod species, among them pests 

and their natural enemies, can be semi-natural habitats such as extensively used grasslands, 

field margins or waysides but also other crop fields (Blitzer et al., 2012; Riedinger et al., 

2014). Sustainable crop protection concepts such as integrated or organic farming need a 

detailed knowledge on which habitats affect the presence of pests and natural enemies. They 

need to consider time and scale of this mostly species-specific relationship (Naranjo et al., 

2010; Dinsdale et al., 2012). 

Winter oilseed rape fields are source habitats for colonisation of vegetable Brassicas by pests, 

which are often specialised to plants of the family of Brassicaceae (chapters 1, 2 and 3, 

Richter & Hirthe, 2014b). Additionally, several studies showed that landscape complexity, 

which is often measured as area of arable land, negatively affects the occurrence of in 

particular predatory and parasitoid species (Roschewitz et al., 2005; Haenke et al., 2009; 

Meyer et al., 2009). Landscapes with high complexity often offer a high proportion of 

permanent, extensively used habitats (Vollhardt et al., 2008). These permanent (often called 

‘semi-natural’) habitats are important source habitats for colonisation of crop fields by many 

arthropods, but special attention has been payed to their importance for natural enemies of 

pests (Blitzer et al., 2012). Field margins and waysides, for example, are important 

overwintering habitats for spiders and other natural enemies; therefore they can support 

colonisation of crop fields and control of pests (Geiger et al., 2009). Also grasslands can serve 

as source habitats as they have many spider species in common with arable fields and harbour 
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higher densities (Schmidt & Tscharntke, 2005). In contrast, the abundance of aphidophagous 

syrphids was shown to increase in landscapes with high proportion of arable land, which 

effectively support their larvae with prey (Haenke et al., 2009; Meyer et al., 2009). 

The importance of source habitats for a patch that is colonised (e.g. a crop field) can vary 

depending on their relative location to the colonised patch. Source habitats in an up-wind 

direction from the colonised patch can be of high importance, as the dispersal of several small 

arthropods such as aphids, whiteflies or ballooning spiders is characterised by wind transport 

(Compton, 2002, chapters 1 and 2). On the other hand, several insects such as moths or 

syrphids locate food by following olfactory cues in an upwind flight (Palaniswamy et al., 

1986; Budenberg & Powell, 1992, chapters 1 and 2). Consequently, source habitats in down-

wind direction from the colonised patch are of highest importance for colonisation by those 

olfactory orientated insects (Moser et al., 2009). 

Previous chapters show increasing colonisation of young Brussels sprout plants by cabbage 

whiteflies (Aleyrodes protelella) and cabbage aphids (Brevicoryne brassicae) in early summer 

with increasing oilseed rape area in the surrounding landscape (chapters 1 and 2). Thereby 

upwind oilseed rape area was of increased importance for colonisation by cabbage whiteflies 

(passive wind transport) while downwind oilseed rape area was of increased importance for 

cabbage aphids (possibly due to olfactory orientated upwind flight). In contrast, colonisation 

of young Brussels sprout plants by the diamondback moth (Plutella xylostella) was not 

affected by oilseed rape area but tended to be higher in landscapes with higher landscape 

complexity (lower area of arable land) when additional weight was given to downwind 

located habitats (chapter 1).  

In chapters 1 and 2 colonisation of the named species was investigated in early summer using 

standardised monitoring plants. In contrast to samplings of plants of Brussels sprout fields, 

data from monitoring plants are a snapshot, focussing on immigration and minimising 
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additional variability due to different management practices that affect reproduction, mortality 

and emigration. Colonisation intensity is of great importance for crop damage forecasts as it 

lays the foundation for future pest populations in crop fields. However, not colonisation itself 

but a potentially following high pest infestation, built up during the growing season, is the 

direct cause of crop damage. This final chapter investigates to what extend results on the 

factors that drive colonisation of monitoring plants can be transferred into crop production 

situation in Brussels sprout fields. Thereby it not only refers to the early summer, the time of 

colonisation peak of most cabbage pests, but also to later dates of the cropping season when 

pest infestation is highest. Thus we investigated pests’ and natural enemies’ abundances on 

plants of Brussels sprout fields at different times of the year. Since the importance of different 

colonisation sources can vary between years (Vialatte et al., 2007), a high generality and 

transferability of our results was ensured by including data from three years. Furthermore, 

additional landscape characteristics with potential effects on the presence of natural enemies 

were considered. 

 

1.1. Research questions and hypotheses 

1. Are the abundances of different pest species (cabbage whitefly, cabbage aphid, peach-

potato aphid (Myzus persicae), diamondback moth) affected by oilseed rape area or 

landscape complexity (area of arable land) in the surrounding landscape? 

We thereby hypothesise, based on the results of the first chapter, that the abundances of 

cabbage whitefly and cabbage aphid are positively affected by oilseed rape area, while the 

diamondback moth is positively affected by landscape complexity (i.e. negatively by the 

area of arable land). 
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2. Are the abundances of syrphid larvae and spiders as well as aphid parasitism rates affected 

by landscape complexity (area of arable land), the area of waysides or grasslands in the 

surrounding landscape in addition to prey/host availability? 

We hypothesise, following the results of the first chapter, that landscape complexity does 

not affect syrphid abundance in addition to a positive effect of prey availability.  

3. Are the detected landscape effects strengthened by giving additional weight to upwind or 

downwind landscape? 

We hypothesise in accordance to the results of the first chapter, that the landscape effect 

on cabbage whitefly is strongest when additional weight is given to upwind landscape 

(indicating wind dispersal) and the landscape effects on cabbage aphid and diamondback 

moth are strongest when additional weight is given to downwind landscape (indicating 

olfactory orientation in upwind flights). 

4. Do the detected landscape effects change throughout the growing season? 

 

2. Materials and methods 

2.1. Field work 

Data on abundances of pests and natural enemies originated from samplings in organic 

Brussels sprout fields in north-western Germany in three consecutive years (11 to 16 fields 

per year). Each field was sampled once during three sampling periods named ‘June/July’ 

(6th of June to 12th of July), ‘July/August’ (29th of July to 22th of August) and ’October’ (1st to 

24th of October). Sampled plants were selected at random distances between one and five 

meters along a transect through the field. The number of sampled plants and the number of 
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sampled leaves per plant differed among years (as data originated from studies with different 

key issues in the different years) and among sampling periods (as the sampling effort was 

reduced in the later sampling periods to hold similar survey time periods when plants size and 

arthropod abundances increased; see Appendix D Table D.1). We accounted for these 

differences in sampling methodology by calculating mean arthropod abundances per 

100 leaves for each farm and year. All farms used nets as crop protection measure; most nets 

had a mesh size of either 0.8 or 1.35 mm. As some farms used insecticides, only data from 

samplings before insecticide treatments at those farms were included. 

 

2.2. Land use and wind 

Land use was mapped in 1 km radii around study fields in each of the three years. We 

grouped land use by the categories oilseed rape, arable land and grassland. The percentage 

land cover of these land use categories was calculated in the 1 km radii around study fields. 

Further, the percentage area of waysides in 1 km radii around study fields was estimated by 

taking roads and tracks outside settlement areas from ATKIS maps (Official Topographic-

Cartographic Information System, Germany) and assuming a mean wayside width of 0.5 m on 

both sides of each road or track. The percentage of wayside area in 1 km radius landscapes 

per study field and year was calculated. Weather stations were placed to record wind 

directions on all study fields and in every year. Wind data were used to weight the landscape 

variables, once by giving additional weight to upwind located habitats (to account for passive 

wind dispersal, hereafter named ‘upwind weighted’ habitats) and once by giving additional 

weight to downwind located habitats (to account for upwind oriented host finding, hereafter 

named ‘downwind weighted’ habitats). The weighting was processed as described in chapters 

1 and 2, but instead of only using separate wind data for day and night time recorded 2 weeks 

before sampling we used 24 h wind data recorded from June to October of the relevant years. 
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The distribution of prevailing wind directions of this period in time was similar compared to 

the 2 week recordings used in chapters 1 and 2 (see Appendix D Fig. D.1). 

 

2.3. Statistics 

The statistical analysis was done in R (version 3.3.2., R Core Team, 2016). Mean abundances 

of the following taxa were calculated per 100 leaves for each farm and year (field) as response 

variables: cabbage whiteflies (egg clutches, larvae, adults and sum of these developmental 

stages), cabbage aphids, peach-potato aphids, diamondback moths (sum of caterpillars and 

pupae), syrphids (sum of eggs, larvae and pupae) and spiders. These data were log-

transformed to account for non-normality of count data. Aphid parasitism rates were 

calculated as number of mummies divided by the total number of aphids (including 

mummies). The aphid parasitism rate was logit-transformed.  

Since landscape in an 1 km radius around study fields explained colonisation best in 

chapter 1, the percentage areas of oilseed rape and arable land in an 1 km radius were used as 

explanatory variables regarding pest species. Regarding predators (syrphids, spiders) and 

aphid parasitism rates, we additionally used the percentage areas of waysides and grasslands 

as explanatory variables and always added prey or host availability as covariable. Testing for 

oilseed rape amount was omitted due to its strong correlation with prey or host availability. In 

addition, these maximum models contained two further covariables: the day of the sampling 

period (to account for population growth during sampling periods) and a variable coding for 

mesh size (in June/July and July/August) or presence of nets (in October). Explanatory 

variables and covariables were log-transformed whenever necessary to lower the importance 

of extreme values (oilseed rape area, grassland area, number of prey and host insects). The 

absolute values of Spearman’s correlation coefficients among included explanatory variables 
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were always below 0.6 and variance inflation factors in a linear model were always 

below three (|r| ≤ 0.6, VIF ≤ 3; Zuur et al., 2010; Dormann et al., 2013). Variance inflation 

factors are a measure for how much of an explanatory variable’s variation is explained by the 

other explanatory variables of a model (Zuur et al., 2010).  

Linear mixed-effects models were used to account for repeated sampling on the same farm’s 

fields during the three years (package: lmerTest, version 2.0-32, Kuznetsova et al., 2016). 

Additionally to the named maximum models, we calculated models testing each of the 

maximum models’ explanatory variables separately. In the next step, models for all possible 

combinations of variables with at least marginal significant effects (p < 0.1) were calculated. 

All models were ranked for each investigated taxon according to the second-order Akaike 

information criterion appropriate for small sample sizes (AICc) (Burnham & Anderson, 

2002). If the best models, i.e. the models in a ∆AICc = 2 range, contained marginal significant 

or significant effects (p < 0.1) of landscape variables, we additionally calculated models 

including the relevant landscape variables once with upwind weighting and once with 

downwind weighting of habitats. Variables which showed an effect with p < 0.1 in models 

within the final ∆AICc = 2 range were discussed. 

 

3. Results 

We sampled pests and their natural enemies on altogether 26,426 leaves belonging to 2,630 

plants on 43 Brussels sprout fields within three years. The cabbage whitefly was the by far 

most numerous pest species. Due to its high abundance, its developmental stages could be 

analysed separately. Other important pests (cabbage aphid, peach-potato aphid, diamondback 

moth) were found less frequently and their developmental stages were pooled in the analysis. 

The most abundant natural enemies were syrphids, spiders and aphid parasitoids (recorded as 
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parasitism rate). The population development of these most numerous pests and natural 

enemies is displayed in Fig. 4.1.  

 
Fig. 4.1 Population development of the most numerous pests and natural enemies in Brussels sprout 

fields during the course of the year: cabbage whitefly a) egg clutches, b) larvae, c) adults, d) sum of all 

whitefly stages, e) cabbage aphids, f) peach-potato aphids, g) sum of diamondback moth caterpillars 

and pupae, h) sum of syrphid eggs, larvae and pupae, i) spiders and j) aphid parasitism rate. 

Displayed are also samplings from early June, September and November 2012, which were not part of 

the analyses. The figures show mean abundances per 100 leaves per field and sampling day in three 

consecutive years: red dots = 2012, green triangles = 2013, blue squares = 2014, grey lines = 

smoothed line showing the overall trend. Two outliers are not displayed: 2415 peach-potato aphids per 

100 leaves, 05. August 2014 (f) and 43 immature syrphid stages per 100 leaves, 31. July 2014 (h).  
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Other pests and natural enemies were generally observed in low abundances within the three 

years, namely small whites (Pieris rapae: 130 eggs, 128 caterpillars, 19 pupae), large whites 

(Pieris brassicae: 116 caterpillars), cabbage moths (Mamestra brassicae: 82 caterpillars), 

Silver Ys (Autographa gamma: 17 caterpillars, 3 pupae), green lacewings (Chrysopidae: 11 

eggs, 3 larvae, 1 pupa), lady beetles (Coccinellidae: 13 larvae, 7 pupae, 62 adults of which 52 

were Harmonia axyridis). Although the named minor pests generally occurred in low 

abundances, some reached high densities on single farms and caused severe damage. 

Statistical analyses of different developmental stages of the cabbage whitefly showed similar 

results (Tables 4.1 and 4.2). Abundances of all developmental stages of each sampling period 

could be analysed except for larval abundance in June/July and egg clutch abundance in 

October. All developmental stages of the cabbage whitefly were found more often in 

landscapes with a high percentage of oilseed rape in all three analysed sampling periods (p-

values ranged from 0.020 to < 0.001). Even though upwind or downwind weighting of oilseed 

rape area in some cases showed lower p-values, the model without weighting by wind was 

always in the range of the best models (∆AICc = 2). This indicates no significant differences 

between models with and without weighting of oilseed rape area by prevailing wind 

directions. Furthermore, the abundance of all developmental stages increased during the 

sampling periods June/July and July/August (lowest p-values = 0.003 and 0.025, respectively; 

Tables 4.1 and 4.2). 

Cabbage aphid abundance could be analysed in July/August and October. It was marginally 

positively related to the area of arable land in July/August (lowest p-value = 0.066). Thereby 

models without weighting by wind were of better quality (lower AICc) than models with 

upwind or downwind weighting of area of arable land. Additionally, cabbage aphids were 

more abundant under nets with a wider mesh size in July/August (lowest p-value = 0.037). 

However, the similar quality of the null model (∆AICc = 0.26) indicated weakness of both 
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effects. Neither the investigated landscape variables nor net cover significantly affected 

cabbage aphid abundance in October, but cabbage aphid abundance significantly decreased 

during the sampling in October (p = 0.019). 

Peach-potato aphid abundance could only be analysed in July/August. The null model was the 

only model in the ∆AICc = 2 range, and none of the tested variables had significant effects on 

peach-potato aphid abundance. 

The diamondback moth abundance, analysed in July/August only, was not affected by any of 

the landscape variables. More diamondback moths were found under fine meshed than under 

wide meshed nets (p = 0.052), while their abundance decreased significantly during the 

sampling period (lowest p-value = 0.006; Tables 4.1 and 4.2).  

Syrphid abundance, likewise analysed in July/August only, was related to none of the 

landscape variables. It significantly increased with increasing abundance of prey insects 

(p = 0.017).  

Spider abundance was analysed in July/August and October. Its abundance increased with 

increasing area of arable land (lowest p-value = 0.036). Thereby models without weighting by 

wind explained spider abundance similarly well as models with upwind or downwind 

weighting of arable land. Spider abundance further increased during July/August (lowest p-

value = 0.004). In October, spider abundance was not affected by any of the investigated 

landscape variables, but was higher on fields that were still covered by nets (lowest p-

value = 0.007). Further, spider abundance significantly decreased during the sampling in 

October (p = 0.080). 

The parasitism of aphids could be analysed in July/August and October, but was not 

significantly affected by any tested variable in both sampling periods. The lowest AICc was 

ascribed to the null model in both sampling periods. 
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Table 4.1 Best models according to the ∆AICc = 2 criterion for cabbage whiteflies (CW), cabbage 

aphids (CA), peach-potato aphids (PPA), diamondback moths (DMB), syrphids, spiders and aphid 

parasitism rates (Para. rate). Landscape variables of importance were: area of oilseed rape [%] 

(OSR), arable land [%] (AL) and area of waysides [%] (WS). Significant landscape variables within the 

best models were tested with downwind weighting of habitats (down) and with upwind weighting of 

habitats (up) in addition to their unweighted version. Models included the following covariables: day of 

the sampling period (day), mesh size of nets (net_mw), presence/absence of nets (net_pa) and prey 

abundance (prey). Estimates ± standard errors (Est. ± SE) and p-values are given. In some sampling 

periods abundances were too low for the analysis (x). 

Taxon 
Sampling 

period 

No 
farms / 
fields 

Landscape Covariables 

∆AICc Land 
use 

Wind Est. ± SE p Name Est. ± SE p 

CW clutches ‘June/July’ 15 / 36 OSR - 1.048 ± 0.345    0.005 day 0.159 ± 0.048    0.005 0.00 

CW clutches ‘June/July’ 15 / 36 OSR down 0.908 ± 0.334    0.011 day 0.169 ± 0.047    0.003 0.71 

CW clutches ‘June/July’ 15 / 36 OSR up 1.023 ± 0.361    0.008 day 0.160 ± 0.048    0.006 1.34 

CW clutches ‘July/Aug.’ 14 / 26 OSR up 1.543 ± 0.300 < 0.001 day 0.132 ± 0.055    0.025 0.00 

CW clutches ‘July/Aug.’ 14 / 26 OSR - 1.523 ± 0.305 < 0.001 day 0.125 ± 0.057    0.038 0.82 

CW clutches ‘July/Aug.’ 14 / 26 OSR - 1.352 ± 0.303 < 0.001 - -    - 1.21 

CW clutches ‘October’ 16 / 33 x x x    x x x    x x 

CW larvae ‘June/July’ 15 / 36 x x x    x x x    x x 

CW larvae ‘July/Aug.’ 14 / 26 OSR - 1.545 ± 0.438    0.002 - -    - 0.00 

CW larvae ‘July/Aug.’ 14 / 26 OSR up 1.474 ± 0.451    0.004 day 0.164 ± 0.082    0.057 0.45 

CW larvae ‘July/Aug.’ 14 / 26 OSR - 1.422 ± 0.453    0.004 day 0.125 ± 0.081    0.140 1.00 

CW larvae ‘July/Aug.’ 14 / 26 OSR up 1.601 ± 0.458    0.002 - -    - 1.01 

CW larvae ‘October’ 16 / 33 OSR up 1.370 ± 0.208 < 0.001 - -    - 0.00 

CW larvae ‘October’ 16 / 33 OSR - 0.900 ± 0.225 < 0.001 - -    - 0.80 

CW adults ‘June/July’ 15 / 36 OSR - 1.200 ± 0.261 < 0.001 day 0.077 ± 0.032    0.022 0.00 

CW adults ‘June/July’ 15 / 36 OSR up 1.190 ± 0.270 < 0.001 day 0.085 ± 0.033    0.014 0.80 

CW adults ‘July/Aug.’ 14 / 26 OSR up 1.632 ± 0.382 < 0.001 day 0.157 ± 0.071    0.036 0.00 

CW adults ‘July/Aug.’ 14 / 26 OSR - 1.203 ± 0.378    0.004 - -    - 0.92 

CW adults ‘July/Aug.’ 14 / 26 OSR up 1.408 ± 0.403    0.002 - -    - 1.58 

CW adults ‘July/Aug.’ 14 / 26 OSR - 1.232 ± 0.391    0.005 day 0.107 ± 0.068    0.145 1.67 

CW adults ‘October’ 16 / 33 OSR - 1.428 ± 0.217 < 0.001 - -    - 0.00 

CW adults ‘October’ 16 / 33 OSR up 1.441 ± 0.225 < 0.001 - -    - 1.43 

CW sum ‘June/July’ 15 / 36 OSR - 1.022 ± 0.362    0.009 day 0.169 ± 0.050    0.005 0.00 

CW sum ‘June/July’ 15 / 36 OSR down 0.867 ± 0.350    0.020 day 0.178 ± 0.049    0.003 0.85 

CW sum ‘June/July’ 15 / 36 OSR up 0.990 ± 0.379    0.014 day 0.171 ± 0.050    0.005 1.23 

CW sum ‘July/Aug.’ 14 / 26 OSR up 1.525 ± 0.363 < 0.001 day 0.157 ± 0.067    0.028 0.00 

CW sum ‘July/Aug.’ 14 / 26 OSR - 1.440 ± 0.367 < 0.001 - -    - 1.00 

CW sum ‘July/Aug.’ 14 / 26 OSR - 1.426 ± 0.375 < 0.001 day 0.125 ± 0.069    0.084 1.02 

CW sum ‘July/Aug.’ 14 / 26 OSR up 1.571 ± 0.383 < 0.001 - -    - 1.85 

CW sum ‘October’ 16 / 33 OSR up 1.362 ± 0.204 < 0.001 - -    - 0.00 

CW sum ‘October’ 16 / 33 OSR - 0.882 ± 0.224 < 0.001 - -    - 0.56 

 
  



CHAPTER 4  ─ PERSISTENCE OF LANDSCAPE  EFFECTS UNDER PRODUCTION SITUATION 
 

80 

Table 4.1 (continued): 

Taxon 
Sampling 

period 

No 
farms / 
fields 

Landscape Covariables 

∆AICc Land 
use 

Wind Est. ± SE p Name Est. ± SE p 

CA ‘June/July’ 15 / 36 x x x    x x x    x x 

CA ‘July/Aug.’ 14 / 26 AL - 0.041 ± 0.020    0.066 net_mw 1.374 ± 0.621    0.037 0.00 

CA ‘July/Aug.’ 14 / 26 - - -    - - -    - 0.26 

CA ‘July/Aug.’ 14 / 26 - - -    - net_mw 1.080 ± 0.636    0.103 0.54 

CA ‘July/Aug.’ 14 / 26 AL - 0.029 ± 0.018    0.138 - -    - 0.90 

CA ‘October’ 16 / 33 - - -    - day -0.163 ± 0.019   0.019 0.00 

PPA ‘June/July’ 15 / 36 x x x    x x x    x x 

PPA ‘July/Aug.’ 14 / 23 - - - - - -    - 0.00 

PPA ‘October’ 12 / 24 x x x    x x x    x x 

DBM ‘June/July’ 15 / 36 x x x    x x x    x x 

DBM ‘July/Aug.’ 14 / 23 - - -    - day -0.098 ± 0.034    0.012 0.00 

       net_mw -0.689 ± 0.333    0.052  

DBM ‘July/Aug.’ 14 / 23 - - -    - day -0.117 ± 0.036    0.006 0.78 

DBM ‘October’ 12 / 24 x x x    x x x    x x 

syrphids ‘June/July’ 15 / 36 x x x    x x x    x x 

syrphids ‘July/Aug.’ 14 / 23 - - -    - prey 0.216 ± 0.083    0.017 0.00 

syrphids ‘October’ 12 / 24 x x x    x x x    x x 

spiders ‘June/July’ 15 / 36 x x x    x x x    x x 

spiders ‘July/Aug.’ 14 / 23 AL down 0.015 ± 0.007 0.036 day 0.075 ± 0.028    0.015 0.00 

spiders ‘July/Aug.’ 14 / 23 AL - 0.015 ± 0.007 0.044 day 0.079 ± 0.028    0.010 0.38 

spiders ‘July/Aug.’ 14 / 23 AL up 0.014 ± 0.007 0.052 day 0.082 ± 0.028    0.008 0.64 

spiders ‘July/Aug.’ 14 / 23 - - -    - day 0.095 ± 0.029    0.004 1.48 

spiders ‘October’ 12 / 24 - - -    - day 

net_pa 

-0.042 ± 0.018 

-0.702 ± 0.235 

   0.080 

   0.007 

0.00 

spiders ‘October’ 12 / 24 - - -    - net_pa -0.705 ± 0.255    0.011 0.46 

Para. rate ‘June/July’ 15 / 36 x x x    x x x    x x 

Para. rate ‘July/Aug.’ 14 / 23 - - -    - - -    - 0.00 

Para. rate ‘July/Aug.’ 14 / 23 - - -    - day 0.056 ± 0.044    0.212 1.49 

Para. rate ‘July/Aug.’ 14 / 23 WS - 3.199 ± 2.739    0.255 - -    - 1.78 

Para. rate ‘October’ 12 / 24 - - -    - - -    - 0.00 

 

4. Discussion 

The strong positive effect of oilseed rape area on colonisation of monitoring plants by 

cabbage whitefly (chapter 1) persisted under crop production situation in Brussels sprout 

fields. Also the highly significant positive effect of prey abundance on colonisation of 

monitoring plants by syrphids could be transferred into crop production situation in Brussels 

sprout fields. However, the positive effects of oilseed rape and arable land area on 
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colonisation by cabbage aphids and diamondback moths, respectively, as well as the effects of 

prevailing wind directions found in chapter 1 did not persist under crop production situation 

in Brussels sprout fields. This nullification of effects might be ascribed to different population 

development within the Brussels sprout fields or to additional variability due to different 

management practices and inclusion of data from three years. The consideration of pests’ and 

natural enemies’ abundances on plants of Brussels sprout fields at different times of the year 

showed the seasonal persistence of the positive effect of oilseed rape amount on cabbage 

whiteflies as well as a positive effect of arable land amount on cabbage aphid and spiders in 

July/August. The covariables regarding crop protection nets had species specific effects, 

thereby extending results of chapter 3 by the comparison of finer mesh sizes and net removal.  

4.1. Landscape effects 

4.1.1. Cabbage whitefly (Aleyrodes proletella) 

The abundances of all developmental stages of the cabbage whitefly in Brussels sprout fields 

increased with increasing oilseed rape area. This is in accordance with our first hypothesis and 

with findings in chapters 1, 2 and 3 (chapters 1 and 2 focussed on colonisation, chapter 3 on 

plants in Brussels sprout fields). Oilseed rape fields can support whitefly populations as 

habitats for overwintering and reproduction of the first generation before vegetable cabbages 

are planted (Belder et al., 2008; Richter & Hirthe, 2014b). Colonisation of vegetable 

Brassicas takes place mainly in July when oilseed rape plants mature and dry (chapter 1). 

Results of the present chapter showed that oilseed rape area determined whitefly densities in 

Brussels sprout fields throughout the year including October, the month with highest whitefly 

densities. As oilseed rape fields are harvested in August, direct effects of oilseed rape in 

October are extremely unlikely. Thus, high oilseed rape area in the surroundings of Brussels 

sprout fields led to high colonisation rates by whiteflies in early summer and consequently to 

high whitefly densities during the course of the year. 
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No evidence for higher importance of upwind oilseed rape area could be detected contrasting 

with our second hypothesis and findings from chapters 1 and 2. In general, whitefly dispersal 

is supposed to be characterised by passive wind transport (Byrne et al., 1996), while upwind 

flights are possible in slow wind speeds only (Byrne, 1999). Accordingly, we detected an 

increased importance of upwind area in chapters 1 and 2 when investigating colonisation of 

standardised monitoring plants. In this chapter, we analysed arthropod abundances in Brussels 

sprout fields, reflecting not only colonisation but also reproduction, mortality and emigration. 

Thereby wind effects on colonisation might have disappeared in time in Brussels sprout 

fields. Furthermore, lower standardisation of plants in the fields adds additional variation that 

may have disguised a high importance of upwind source habitats. Additionally, the landscape 

in distances larger than 1 km was shown to be of higher importance for colonisation of 

Brussels sprout fields than the landscape up to 1 km distance (chapter 2). Consequently, a 

weighting by prevailing wind directions is expected to increase the effect of oilseed rape area 

most effectively on radii larger than 1 km (unfortunately, data on landscape composition in 

landscapes larger than 1 km were available for 2012 only, see chapter 2).  

4.1.2. Cabbage aphid (Brevicoryne brassicae) 

The abundance of cabbage aphids showed a weak positive relation to arable land and no 

relation to the area of oilseed rape fields contrasting with our first hypothesis. A positive 

relation between oilseed rape area and cabbage aphid colonisation was found on standardised 

monitoring plants in 2012 (chapter 1), the year with the by far highest density of cabbage 

aphids (Fig. 4.1e). High cabbage aphid densities in 2012 and standardised conditions possibly 

made the effect of oilseed rape area significant (chapter 1), while lower cabbage aphid 

abundance in 2013 and 2014 and less standardised conditions in the Brussels sprout fields 

may have concealed this effect of oilseed rape in chapter 3 and the current chapter. 

Additionally, the importance of different source habitats for aphids can vary between years 
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(Vialatte et al., 2007). The positive effect of area of arable land on cabbage aphid abundance 

may be explained by higher natural pest control in complex landscapes. Different natural 

enemies of aphids are shown to positively respond to landscape complexity and the presence 

of semi-natural habitats, which is often negatively related to and measured by the amount of 

arable land (Roschewitz et al., 2005; Thies & Tscharntke, 2010; Chaplin-Kramer & Kremen, 

2012). High abundance of natural enemies may restrict cabbage aphid populations in 

landscapes with low proportion of arable land, even if we could not detect any effect of the 

area of arable land on natural enemies in Brussels sprout fields. 

Table 4.2 Summary of the results reported in Table 4.1 for cabbage whiteflies (CW), cabbage aphids 

(CA), peach-potato aphids (PPA), diamondback moths (DMB), syrphids, spiders and aphid parasitism 

rates (Para. rate). Landscape variables of importance were: area of oilseed rape [%] (OSR), arable 

land [%] (AL) and area of waysides [%] (WS). Significant landscape variables within the best models 

were tested with downwind weighting of habitats (down) and with upwind weighting of habitats (up) in 

addition to their unweighted version. Models included the following covariables: day of the sampling 

period (day), mesh size of nets (net_mw), presence/absence of nets (net_pa) and prey abundance 

(prey). The direction of the effects is indicated: either positive (pos.) or negative (neg.). In some 

sampling periods abundances were too low for the analysis (x). 

Taxon 
 Sampling period  

‘June/July’ ‘July/Aug.’ ‘October’ 

CW clutches OSR (pos.; wind: no, up, 
down) 

day (pos.) 

OSR (pos.; wind: no, up) 

day (pos.) 

x 

CW larvae x OSR (pos.; wind: no, up) 

day (pos.) 

OSR (pos.; wind: no, up) 

 

CW adults OSR (pos.; wind: no, up) 

day (pos.) 

OSR (pos.; wind: no, up) 

day (pos.) 

OSR (pos.; wind: no, up) 

 

CW sum OSR (pos.; wind: no, up, 
down) 

day (pos.) 

OSR (pos.; wind: no, up) 

day (pos.) 

OSR (pos.; wind: no, up) 

CA x AL (pos.; wind: no) 

net_mw (pos.) 

day (neg.) 

PPA x x x 

DBM x day (neg.) 

net_mw (neg.) 

x 

syrphids x prey (pos.) x 

spiders x AL (pos.; wind: no, up, 
down) 

day (pos.)  

day (neg.)  

net_pa (neg.) 

Para. rate x - - 
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4.1.3. Peach-potato aphid (Myzus persicae) 

None of the landscape variables affected peach-potato aphid abundance. Peach-potato aphids 

have a very broad range of summer hosts including crops, ornamentals and wild plants from 

over 40 plant families (Capinera, 2001). Therefore, lots of different habitats such as crop 

fields (e.g. oilseed rape, beet and potato fields), home gardens and semi-natural habitats can 

affect peach-potato aphid populations simultaneously. Also overwintering of the peach-potato 

aphid may depend on different habitats in the study region. The main winter host of the 

peach-potato aphid (Prunus persicae) is rarely grown in the study region, but other less 

preferred Prunus species are available (Emden et al., 1969). In addition, it can overwinter as 

adult on plants in heated human buildings (e.g. greenhouses) and outside in mild winter 

(Emden et al., 1969). In summary, several divergent habitats affect peach-potato aphids in 

summer and winter, leading to no outstanding effect by the investigated landscape elements 

on this species. 

4.1.4. Diamondback moth (Plutella xylostella) 

In contrast to our hypothesis, expecting a negative effect of arable land, we did not detect any 

landscape effect on the diamondback moth. Although diamondback moth is one of the 

economically most important pests worldwide (Zalucki et al., 2012), little is known about the 

effects of specific landscape elements on diamondback moths (Furlong et al., 2013). A 

comparably low importance of the local landscape can be explained by the facts that (1) the 

species does not hibernate in the study region but immigrates from regions with milder 

winters each year (Furlong et al., 2013) and (2) individuals show only low willingness to 

move once they are established in a crop (Mo et al., 2003). However, positive effects of 

permanent habitats on colonisation by the diamondback moth could be shown in chapter 1 

and were explained by a high food offer for adults in these habitats. Less standardisation of 
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sampled plants in the Brussels sprout fields as well as different population development over 

time might have led to no significant landscape effects. 

4.1.5. Syrphids 

According to our second hypothesis and to results regarding colonisation of monitoring plants 

in chapter 1, the abundance of immature syrphid stages in Brussels sprout fields was not 

related to landscape complexity or any other of the investigated landscape variables. Other 

studies suggest that the abundance of aphidophagous syrphids increases in landscapes with 

high proportions of arable land supporting their offspring with food (Haenke et al., 2009; 

Meyer et al., 2009). In contrast, Chaplin-Kramer & Kremen (2012) found high syrphid 

densities in complex landscapes with low proportion of arable land. As syrphids are highly 

mobile, potential relations to landscape elements may be temporarily restricted. This was 

already shown for effects of oilseed rape fields on syrphids, being limited to their flowering 

time in April/May (Riedinger et al., 2014). 

4.1.6. Spiders 

Spider abundance increased significantly with the percentage area of arable land in 

July/August. This is surprising, as often less managed habitats such as field margins or 

grasslands are seen as important source habitats of spiders (Schmidt & Tscharntke, 2005; 

Geiger et al., 2009). Annual spider dispersal by ballooning shows two peaks: the first between 

June and July and the second between September and October (Blandenier & Fürst, 1998; 

Blandenier, 2009). The first peak may be raised by high emigration from crop fields that are 

harvested in July (Blandenier & Fürst, 1998) and explains the positive effect of percentage 

area of arable land on spider abundances in Brussels sprout fields in July/August. As models 

including arable land with and without weighting by wind were of similar quality, also wind 

independent dispersal by crawling spiders may have contributed to spider abundances in 
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Brussels sprout fields in July/August. The second peak in spider dispersal is supposed to be 

caused by physiological and meteorological reasons (Blandenier, 2009) and explains why the 

effect of arable land on spider abundance in Brussels sprout fields disappeared in October.  

4.1.7. Aphid parasitism 

Aphid parasitism was related to none of the investigated variables. In contrast, parasitism 

rates of aphids in cereals and of pollen beetles in oilseed rape fields are shown to increase 

with increasing landscape complexity in landscapes of 1 – 2 km radius (Roschewitz et al., 

2005; Thies & Tscharntke, 2010). Flower rich habitats may support most parasitoids in 

providing nectar, which in addition to honeydew from phloem sucking insects increases 

longevity and fecundity of parasitoid adults (Singh et al., 2000; Tylianakis et al., 2004). The 

parasitic wasp Diaeretialla rapae is the only parasitoid of the cabbage aphid and an important 

parasitoid of the peach-potato aphid (Hafez, 1961; Pike et al., 1999; Desneux et al., 2005; 

Neuville et al., 2016). D. rapae is known for a low tenacity for sustained flight (Sheehan & 

Shelton, 1989; Vaughn et al., 1996; Vaughn & Antolin, 1998), but even testing for landscape 

effects in a 500 m radius around the study fields remained without significant effects 

(unpublished data). The surrounding landscape might be of low importance for D. rapae 

populations as the investigated organic horticultural farms providing nectar from weeeds and 

honeydew from phloem sucking insects at any time of the growing season. 

4.2. Covariables 

The following covariables were included: (1) the day of the sampling period to account for 

short term temporal changes in arthropod abundances during the 24 to 37 days lasting 

sampling periods, (2) mesh size or presence of crop protection nets and (3) prey / host 

availability for natural enemies. The consideration of day of the sampling period to account 

for short term temporal changes was useful, as it had significant effects on the abundance of 
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some of the investigated taxa. Also covariables regarding crop protection nets and prey / host 

availability for natural enemies showed significant effects and will be discussed in more 

detail, as they are substantively meaningful for sustainable crop protection concepts. 

Nets included in this study had a relatively fine mesh size from 0.8 mm to 1.35 mm (eight 

farms each) to the widest mesh size of 1.75 mm (one farm). In contrast to chapter three, 

comparing the effects of fine and wide meshed nets in 2014 (0.8 mm vs. 7 mm mesh size), 

cabbage whitefly and spider abundances were not affected by net mesh size, probably due to 

the smaller difference in net mesh size in this chapter. On the contrary, cabbage aphid 

abundance increased with net mesh size in July/August in this chapter, while no significant 

effects were shown by comparing fine with wide meshed nets in 2014. However, a trend 

towards higher cabbage aphid densities under 7 mm compared to 0.8 mm nets in August 2014 

was visible (Fig. 3.1 in chapter 3), even though aphid numbers were generally low in 2014. 

Other studies recommend net mesh sizes from 0.5 mm (Hommes, 1993) to 0.6 mm (Dixon, 

2007) and 1.35 mm (Ester et al., 1994) against aphids in vegetable Brassicas. Our findings 

suggest that in particular nets with a mesh size ≥ 1.35 mm are permeable to aphids in 

vegetable Brassicas. Diamondback moth abundance showed a weak negative effect by net 

mesh size. Although chapter 3 showed no significant effect, a similar trend of higher 

diamondback moth abundance under fine meshed nets was visible (Fig. 3.1b in chapter 3). In 

general, nets are shown to effectively reduce diamondback moth in vegetable Brassicas 

(Martin et al., 2006). However, it may be possible that diamondback moths which once 

reached Brussels sprout plants under the net (e.g. during weeding in the early morning) find in 

particular under fine meshed nets suitable conditions for population growth such as protection 

from natural enemies. This is supported by findings from chapter 3 with lower densities of 

spiders (a highly abundant group of natural enemies in our studies) under 0.8 mm than under 

7 mm nets in August. However, in the present chapter were found higher densities of spiders 
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in Brussels sprout fields still covered by nets than under uncovered fields in October. But here 

as well might be a potential reason the (intraguild) predation e.g. by birds, which are 

effectively deterred by nets independently from their mesh size (Mooney et al., 2010).  

The abundance of immature syrphid stages was related to prey availability according to 

findings in chapters 1 and 3. Episyrphus balteatus, the most abundant syrphid in Brussels 

sprout fields of the study area (Hafez, 1961; Laurenz & Meyhöfer, 2015b), is known to be 

attracted by high aphid densities (Budenberg & Powell, 1992; Verheggen et al., 2008). In our 

studies, prey abundance was clearly dominated by cabbage whiteflies (96 % whiteflies and 

4 % aphids), suggesting that syrphids are not only attracted by high aphid (Budenberg & 

Powell, 1992; Verheggen et al., 2008) but also by high cabbage whitefly densities. This was 

affirmed by additional analyses replacing prey availability (aphids and whiteflies; p = 0.017, 

AICc = 74.8) by only whitefly or aphid prey, showing that whitefly prey explained syrphid 

abundance similarly well (p = 0.017, AICc = 74.1) but much better than aphid prey 

(p = 0.212, AICc = 79.0). Interestingly, in contrast to findings from chapter 3, spiders were 

not related to prey densities – or, more precisely, this effect indeed was significant in 

July/August when separately tested (p-value = 0.016, estimate ± SE = 0.218 ± 0.082), but the 

model quality clearly remained behind the stated models without this variable (∆AICc = 

2.87). This positive effect of prey availability might have been displaced by the positive effect 

of arable land area in July/August.  

4.3. Conclusion 

This chapter deals with the relation between different landscape elements and the occurrence 

of pests and natural enemies under production situation in Brussels sprout fields. Colonisation 

of Brussels sprout plants by inter alia cabbage whitefly increased with oilseed rape area, 

offering host plants to all investigated pest species (chapters 1 and 2). The positive effect of 

oilseed rape area on this most abundant pest in our studies persisted under crop production 
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situation in Brussels sprout fields regarding all different developmental stages throughout the 

cropping season. This showed that landscape effects on colonisation in early summer can 

determine pest densities even shortly before harvest. The damage caused by whiteflies is 

directly related to their abundance (Richter & Hirthe, 2013). Therefore, the need for crop 

protection and the cost effectiveness can be directly linked to the area of oilseed rape in the 

surrounding landscape for the production of Brassica vegetables which are sensitive to 

damage by the cabbage whitefly. Chapters 1 and 2 showed a higher importance of upwind 

oilseed rape area for colonisation by cabbage whiteflies, indicating wind dispersal by 

whiteflies for radii ≥ 1 km, as well as effects of divergent landscape elements on cabbage 

aphids and diamondback moths. These relations were no longer present in this chapter, 

probably due to less standardised and population growth affected crop production situation in 

Brussels sprout fields. Furthermore, cabbage aphid abundance responded positively to the 

amount of arable land implying an underlying negative effect of landscape complexity. 

Generally, complex landscapes are shown to boost natural enemy abundance, even if no 

effects of landscape elements on syrphids and aphid parasitoids (parasitism rate) were found 

in this chapter. In contrast, positive effects by the area of arable land on spider abundance in 

July/August were shown, most probably related to spiders that emigrated from harvested crop 

fields. Even though spiders always were an abundant group of natural enemies, the similar 

abundant syrphid larvae showed most potential for control of whiteflies, as their abundance 

responded positively to availability of this by far most abundant pest species on all farms 

during three years. 
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Synthesis 

The overarching objective of the joint project ‘reliability through sustainable crop 

protection’ within the ‘competence network: value chain horticulture’ (Kompetenznetz: 

Wertschöpfungskette Gartenbau [WeGa]) was to develop environment friendly, holistic crop 

protection strategies. This thesis contributes to this aim by gathering knowledge on potential 

source habitats for pests of vegetable Brassicas and their natural enemies in the landscape 

surrounding Brussels sprout fields. It further shows how wind, temperature and crop cover 

nets influence effects of source habitats. This synthesis highlights the main results of the 

thesis, relates them to associated bachelor and master theses, argues how results of different 

chapters add up to a coherent picture and discusses how these findings can contribute to 

environment friendly holistic crop protection strategies. 

The first chapter deals with effects of different potential source habitats on colonisation of 

young Brussels sprout plants by different pests and their natural enemies. Colonisation by the 

cabbage whitefly (Aleyrodes proletella) increased with increasing upwind oilseed rape area. 

The importance of oilseed rape for the cabbage whitefly was already suggested (Belder et al., 

2008; Richter & Hirthe, 2014a). Accordingly, a master thesis linked to our study shows that 

cabbage whitefly populations in oilseed rape and Brussels sprout fields are genetically similar 

(Hüweler, 2015). Several studies revealed the importance of wind in dispersal of different 

whitefly species (Byrne & Bellows, 1991; Byrne et al., 1996). We merged these findings and 

showed that 66 % of the variation in colonisation of young Brussels sprout plants by the 

cabbage whitefly was explained by upwind oilseed rape area in a 1 km radius around the 

study site and by temperature. 

Colonisation by cabbage aphids (Brevicoryne brassicae) was found to increase with 

increasing oilseed rape area downwind from the study sites (chapter 1). This is surprising as, 
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similar to whiteflies, aphids are known to use downwind drift in their dispersal and to have 

limited abilities to fly upwind (Loxdale et al., 1993; Compton, 2002). However, also upwind 

flights towards olfactory stimuli are reported for aphids, but there is no knowledge about how 

far aphids follow olfactory host cues (Döring, 2014). Results of chapter 1 are a first hint on 

upwind flights by aphids for a surprisingly large distance of 1 km. Another master thesis 

associated with our study aimed to assess the genetic exchange, i.e. similarity, of populations 

in Brussels sprout and oilseed rape fields (Yakti, 2013). Sadly, a reliable genetic comparison 

of cabbage aphid populations failed due to technical difficulties with the use of microsatellite 

markers. However, the extensive optimisation of the procedure now allows for genetic 

comparisons of cabbage aphid populations by microsatellites.  

Another project associated master thesis showed, based on kohlrabi, that colonisation by 

cabbage root fly (Delia radicum) correlates with oilseed rape area in 500 m and 1,000 m radii 

around kohlrabi fields too (Lessing, 2016). Contrastingly, no effect of oilseed rape area in 50 

– 500 m distance on colonisation of broccoli fields by cabbage root flies in northern Brittany, 

France, was found (Josso et al., 2013). Likewise, no significant effects by oilseed rape area, 

but marginal positive effects by downwind permanent habitats offering high amount of nectar 

resources even beyond flowering period of oilseed rape, were shown in chapter 1 for 

colonisation of Brussels sprouts by diamondback moths (Plutella xylostella). 

The colonisation of Brussels sprouts by syrphid eggs and larvae did not respond to any of the 

tested potential source habitats. Instead, syrphids significantly increased with increasing 

number of prey insects, which were dominated by the cabbage whitefly (88 %). Syrphids are 

known to be important natural enemies of aphids (Tenhumberg & Poehling, 1995). The most 

abundant syrphid species in agricultural landscapes in Germany, including Brussels sprout 

fields, is the marmalade hoverfly (Episyrphus balteatus) (Hafez, 1961; Freier et al., 2007; 

Haenke et al., 2009). While this species is known to be attracted by honey dew from aphids 
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and by high aphid densities (Budenberg & Powell, 1992; Freier et al., 2007), chapter 1 shows 

that also cabbage whitefly densities positively affect syrphid abundance. 

The second chapter focuses on cabbage whitefly as the most numerous pest species in 

Brussels sprout fields of our study. Effects of oilseed rape were intensively investigated on 

different spatial scales up to a distance of 8 km. Thereby special attention was payed to effects 

of upwind flights towards olfactory stimuli and passive wind dispersal, possibly acting in 

opposite directions. The results showed that upwind oilseed rape area in a radius of 5 km 

explained colonisation best. The finding that cabbage whiteflies disperse over relatively large 

distances is supported by the genetic similarity of geographically separated whitefly 

populations (Hüweler, 2015). The oilseed rape area in the closer vicinity of 200 m to 1,000 m 

around the study sites was not correlated to colonisation by cabbage whitefly, showing that 

the local landscape is of minor importance for its colonisation of vegetable Brassicas. 

The third chapter evaluates the effect of crop cover nets, a common preventive crop 

protection measure, on different pests and their natural enemies in Brussels sprout fields. 

Commonly used 0.8 mm nets, compared to wide meshed 7 mm nets, reduced colonisation by 

cabbage whitefly and spiders early in the year. This effect of nets decreased during the 

growing season. Additionally and in accordance to chapters 1 and 2, we could detect a 

positive effect of oilseed rape area on cabbage whitefly presence, which was most pronounced 

late in the year. 

The fourth chapter investigates to what extend results on the factors that drive colonisation 

of highly standardised monitoring plants in early summer (chapters 1 and 2) can be 

transferred into crop production situation in Brussels sprout fields. A high generality of results 

was ensured by including data from three years, while four pest species and three groups of 

natural enemies were considered as well as an extended set of landscape variables compared 

to previous chapters. The positive effect of oilseed rape area on the most abundant pest in our 
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studies, cabbage whitefly, persisted under crop production situation in Brussels sprout fields 

throughout the cropping season. This showed that landscape effects on colonisation in early 

summer can determine pest densities even shortly before harvest. Thus, the need for crop 

protection and the cost effectiveness can be directly related to the area of oilseed rape in the 

surrounding landscape for the production of Brassica vegetables which are sensitive to 

damage by the cabbage whitefly. Effects of prevailing wind directions as well as of divergent 

landscape elements on colonisation by different pests shown in chapters 1 and 2 were no 

longer present, probably due to less standardised and population growth affected crop 

production situation in Brussels sprout fields. Also in this chapter, abundance of syrphid 

larvae responded positively to whitefly prey availability. 

Results of the different chapters are widely consistent and build a largely coherent picture 

particularly for the cabbage whitefly, being the most abundant pest throughout the cropping 

season in all years and consequently involved in all four chapters of the thesis. Colonisation 

of Brussels sprouts by this species was positively affected by the amount of oilseed rape in the 

surrounding landscape, while the wider landscape was of higher importance compared to radii 

≤ 1 km (chapters 1 and 2). Consideration of prevailing wind directions pointed towards 

passive wind dispersal for distances of about 5 km (chapter 2). The positive effect of oilseed 

rape area on colonisation of Brussels sprouts by cabbage whiteflies (chapters 1 and 2) also 

persisted under less standardised crop production situation in Brussels sprout fields 

throughout the cropping season (chapters 3 and 4). Thus, as crop damage by cabbage whitefly 

is known to be closely linked to its abundance (Richter & Hirthe, 2013), the need for crop 

protection can be directly related to the area of oilseed rape in the surrounding landscape.  

Comparing the importance of different radii in different chapters (comparison of single radii ≤ 

1 km in chapter 1, 2 and 4; comparison of combinations of radii ≤ 8 km in chapter 2), we 

found a remarkable part of cabbage whitefly abundance explained by oilseed rape area in 1 
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km radius in chapter 1 (as well as in chapters 3 and 4). This finding seems to contrast with the 

findings from chapter 2, showing that the explained variability is only high for oilseed rape in 

radii > 1 km. This contrast bears from the special situation around one study site, which was 

included in analyses of chapter 2, but not in chapters 1, 3 and 4. While the oilseed rape area in 

1 km radius approximately reflected the oilseed rape area of the wider radii for all other study 

sites, the landscape around this particular study site abruptly changed from high amount of 

oilseed rape in < 1 km to low amount of oilseed rape in > 1 km distance from the study site. 

Thus, oilseed rape amount in 1 km radius around study sites was a good predictor for cabbage 

whitefly colonisation as long as it approximately reflected the wider landscape. This shows 

that cabbage whiteflies colonise Brussels sprout fields mainly for distances > 1 km as shown 

in chapter 2 and supported by the results of Hüweler (2015) (see above). Furthermore, results 

of chapters 1, 3 and 4 do not lose in validity due to the exclusion of the only study site of 

which the local landscape not even roughly reflected the composition of the wider landscape. 

 

Recommendations for the development of crop protection strategies 

Oilseed rape fields in distances > 1 km affected colonisation of Brussels sprouts by cabbage 

whiteflies strongest, while oilseed rape area in the closer surroundings was shown to be of 

lower importance. Thus, there is no need for farmers of vegetable Brassicas to avoid oilseed 

rape fields in the local surroundings, i.e. in up to 1 km distance (possible exception might be 

oilseed rape fields directly bordering vegetable Brassicas, pers. observation). If much oilseed 

rape is grown in the wider landscape Brassica vegetables should be expected to be colonised 

by pests in high numbers, particularly by cabbage whiteflies. Farmers who still decide to grow 

Brassica varieties sensitive to cabbage whitefly (such as Brussels sprout, kale or savoy 

cabbage) have to accept a higher need for crop protection measures such as promotion of 

natural enemies or use of crop cover nets. 
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Several Brassica pests can be effectively reduced by crop cover nets (Hommes, 1993; Ester et 

al., 1994). Nets with a mesh size of 0.8 mm compared to 7 mm mesh width effectively 

reduced colonisation by cabbage whitefly early in the season, while no effects were detected 

in October (chapter 3). Unfortunately, the use of close meshed (0.8 mm) compared to wide 

meshed crop cover nets (7 mm) also reduced the presence of natural enemies such as spiders 

and, as a trend, also aphid parasitism (chapter 3). However, these protective effects by nets 

disappeared more and more in the later season. Due to potential effects of crop cover nets on 

pest and natural enemy abundance, we included only Brussels sprout fields using the more 

common close meshed nets (0.8 mm vs. 1.35 mm) in analyses of chapter 4 and additionally 

used mesh width as a covariable. Results suggest lower cabbage aphid abundance and higher 

diamondback moth abundance under 0.8 mm nets compared to 1.35 mm nets in mid cropping 

season as well as less spiders on Brussels sprout plants if nets were removed in October. 

However, the differences in close meshed crop cover nets used as covariables in chapter 4 

should not be overestimated as the range in mesh width was small and design less balanced 

compared to chapter 3, of which mesh width was a focal issue. In conclusion, closed meshed 

nets seem to hinder colonisation by some species and to favour infestation of plants by other 

species probably due to lowered pressure by natural enemies. However, almost all effects of 

nets disappeared in the later season (chapters 3 and 4). One important reason may be that 

farms need to remove nets frequently for weed management, allowing pests and natural 

enemies to enter or escape from plants.  

Different strategies may increase the efficacy of crop cover nets and overcome the 

shortcomings described above. First, potential reasons leading to decreased efficacy of nets 

during the season need to be identified and minimised; theese may be that: (i) 0.8 mm nets are 

not completely insurmountable to cabbage whiteflies as shown by an project associated 

bachelor thesis (Lessing, 2013), (ii) nets are installed belatedly that is not directly after 
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planting, (iii) worn nets with holes are used, (iv) nets are not properly fixed to the ground and 

lifted by wind or growing plants, (v) temporary net removal for weeding takes place at 

inadequate times, while the optimal time for net removal is supposed to be cool and cloudy 

mornings when pests such as cabbage whitefly and cabbage root fly show low flight activity 

(Stein, 1958; Hawkes, 1972). All these potential reasons for decreased efficacy of crop cover 

nets were observed in the field and often result from compromises demanded by farming 

practice. However, if compromises should be accepted consciously and not unintentionally 

lead to inefficacy of nets, more knowledge on landscape- and pest-specific consequences of 

different mesh widths, times of net installing and removal, manner of temporal net removal 

for weeding and degree in accuracy is needed. Second, the disadvantage that crop cover nets 

can reduce natural enemy abundance could be compensated by releasing natural enemies 

under nets. However, this technic is only poorly approved up to now and needs further 

optimisation (Saucke et al., 2011). Third, a useful strategy might be to use nets in the early 

season for reduction of initial colonisation by pests, while they are replaced by other crop 

protection measures such as the support of natural enemies during the later season. This 

strategy has the advantage to hinder colonisation by pests early in the year, when natural 

enemies are rare, and to allow natural enemies to attack pests later in the year when natural 

enemies are more abundant (Tenhumberg & Poehling, 1995). Furthermore, the early support 

of natural enemy populations e.g. by creation of flower strips close to the crop might 

effectively suppress pest populations as soon as nets are removed. 

Flower strips are often recommended to support adult parasitoids and syrphids in offering 

nectar (Haenke et al., 2009; Balmer et al., 2013). Syrphids are effective natural enemies of 

aphids (Tenhumberg & Poehling, 1995), thereby showing a strong numerical response to 

aphid numbers (Freier et al., 2007). Although it is shown that some syrphid species prey on 

whiteflies including A. proletella (Evans, 2007; Rijn et al., 2008), little is known on their 
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efficacy in pest control regarding whiteflies. In chapters 1, 3 and 4 was shown that abundance 

of syrphid larvae, the most abundant generalised predators besides spiders, was driven by the 

abundance of prey organisms, more precisely by the abundance of whiteflies (chapter 4). 

Thus, syrphids may have more potential to control cabbage whitefly populations than 

previously assumed. 

The calcid wasp Encarsia tricolor is an effective parasitoid of the cabbage whitely, reaching 

parasitism rates of more than 90 % in extreme cases (Saucke et al., 2011). A median cabbage 

whitely parasitism rate of 1.7 % (min. = 0 %, max. = 44 %) had been observed at our study 

sites in October (Ludwig et al., 2014). E. tricolor does not benefit from oilseed rape fields 

contrary to their host A. proletella. This is because cabbage whiteflies occur in winter oilseed 

rape fields only as adults in autumn and winter (since winter oilseed rape is sown in autumn 

only, chapter 1 Table 1.1, Belder et al., 2008) and E. tricolor hibernates as pupa inside the 

larvae skin of it hosts (Arzone, 1977). However, E. tricolor could overwinter on remnants of 

vegetable Brassicas, if remnants are not entirely ploughed under, as leaves of Brussels sprouts 

often contain a large number of parasitised whitefly larvae (pers. obs.). Therefore, remnants of 

vegetable Brassicas could be stored during winter and placed close to a Brussels sprout field 

in the following year, ensuring high parasitism rates. Thereby, colonisation of crops by pests 

overwintering on these leaves could be avoided by covering the exposed leaves with nets of 

mesh sizes just large enough for the small parasitoids to pass, but too small for Lepidoptera. 

Furthermore, leaves could be exposed in a certain distance to the field to ensure that un-

winged fundatrices, hatched from overwintering cabbage aphid eggs, are not able to reach the 

crop. Another potential strategy to support overwintering of E. tricolor close to the crop is the 

offer of alternative indigenous winter hosts which hare harmless to the cultivated crop 

(Laurenz & Meyhöfer, 2015a), such as honeysuckle whitefly (Aleyrodes lonicerae) and ash 

whitefly (Siphoninus phillyreae) (Evans, 2007; Heraty et al., 2007; Noyes, 2016). A 
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disadvantage may be that they are minor pests of strawberries (A. lonicerae), apple and 

Prunus species (S. phillyreae). 

Though cabbage whiteflies were the by far most abundant pest in our studies, aphid species 

such as cabbage aphid and peach-potato aphid (Myzus persicae) were observed frequently 

(e.g. chapter 4). A potential method of environment friendly crop protection may be crop 

cover nets (Hommes, 1993; Ester et al., 1994). However, we found partly opposing effects of 

crop cover nets on aphids: while abundance of peach-potato aphids was higher under 0.8 mm 

compared to 7 mm nets, the cabbage aphid abundance showed no differences (chapter 3) but 

seemed to be less abundant under 0.8 mm compared to 1.35 mm nets (chapter 4). 

Furthermore, close meshed nets seem to prevent aphid parasitoids from pest control, even if 

the trend towards lower parasitism rates under close meshed nets was not significant 

(chapter 3). Consequently, there is need to improve the use of nets in farming practice and to 

develop further environment friendly crop protection strategies for Brassica crop production. 

Although differing results on the reaction of B. brassicae to odours are shown (Nottingham et 

al., 1991; Nottingham & Hardie, 1993), our results indicate that cabbage aphids are attracted 

by olfactory host cues (chapter 1). Consequently, olfactory orientation could be used to 

construct specific traps e.g. for monitoring or push and pull strategies (Döring, 2014). Aphids 

parasitoids, besides syrphid larvae, belong to the most effective natural enemies of aphids 

(Hafez, 1961; Desneux et al., 2005). Parasitism rates can possibly be increased by release of 

parasitoids under crop protection nets or by support of their natural populations. Flower strips 

supply adult parasitoids with nectar, pollen and hosts for oviposition (Tylianakis et al., 2004). 

However, it is uncertain if parasitoids leave flower strips in sufficient numbers to effectively 

control aphid populations in adjacent Brussels sprout fields. A project associated bachelor 

thesis compared aphid parasitism rates on standardised monitoring Brussels sprout plants 

within flower strips and adjacent Brussels sprout plots after releasing the parasitoid 
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Diaeretiella rapae (Brun, 2013). Interestingly, more aphids were parasitised on standardised 

monitoring plants in Brussels sprout plots than in flower strips, indicating a preference for 

hosts surrounded by an attractive ‘scent cocktail’ produced by aphids and plants in Brussels 

sprout plots (Reed et al., 1995). Thus, flower strips can be an crop protection strategy in 

promoting parasitoids as well as syrphids (Tylianakis et al., 2004; Haenke et al., 2009), two 

important antagonists of major Brassica crop pests such as aphids and cabbage whiteflies. 
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Appendix A 

Appendix A.1: Location of study sites in 2012 

 

Fig. A.1 Location of study sites (filled squares) in southern Lower Saxony and northern North Rhine-

Westphalia, Germany. 
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Appendix A.2: Study site exclusion 

We excluded three study sites from the dataset. Two study sites on which weather recording 

failed were excluded to increase comparability between analyses with and without weather 

data. The third study site was an outlier in preliminary analyses of effects of oilseed rape area 

on colonisation of monitoring plants. Therefore we checked the landscape configuration 

surrounding this study site: While the 1 km radius was dominated by agricultural land use, the 

wider surroundings consisted on three sides of a wooded mountain-ridge and on the fourth 

side of a city. This special situation may have hindered colonisation of the monitoring plants 

(and other plants within the 1 km radius) by pests and natural enemies from agricultural 

landscape around the 1 km radius. In no other study site the landscape configuration changed 

that dramatically from inside to outside the 1 km radius. Additionally, data collection at this 

study site was influenced by extraordinary heavy rain showers in July that partly destroyed 

the monitoring plants. Consequently we excluded it from analyses. 



APPENDIX A 
 

117 
 

Appendix A.3: Egg number per Aleyrodes proletella egg clutch  

 

Fig. A.3 Boxplot-diagram showing egg numbers per Aleyrodes 

proletella egg clutch on Brussels sprout leaves at different times of 

the year 2013. Each dot represents one egg clutch. Dots are 

vertically jittered. Mean for June-July = 4.678, August = 8.273 and 

October = 5.232 
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Appendix A.4: Correlation between explanatory variables 

Table A.4 Pearson’s correlation between explanatory variables. T.day.10 and T.day.15 = degree days 

from 1 h after sunrise to 1 h before sunset with a threshold of 10 °C and 15 °C, respectively; T.night.7 

= degree days from 1 h after sunset to 1 h before sunrise with a threshold of 7 °C. Coefficients of 

determination > 0.25 (|r| > 0.5, marked in bold) were used as threshold for collinearity (Dormann et al. 

2013). Not displayed within the table is the coefficient of determination of > 0.01 for correlation 

between prey availability and T.day.15. 

Landscape variable 
Prey 

availability 
T.day.10 T.day.15 T.night.7 Weighting by 

wind 
Land use type 

Radius 
(m) 

No weighting 

oilseed rape 

500 0.14 < 0.01 < 0.01 0.01 

750 0.22 0.02 < 0.01 0.02 

1000 0.42 0.04 0.03 0.06 

other annual 
crop fields 

500 0.03 0.01 < 0.01 0.05 

750 0.10 0.01 < 0.01 0.07 

1000 0.10 0.02 < 0.01 0.06 

permanent 
habitat 

500 0.13 < 0.01 < 0.01 0.03 

750 0.13 < 0.01 < 0.01 0.05 

1000 0.12 < 0.01 < 0.01 0.04 

Upwind weighted 
habitats using 
wind by day 

oilseed rape 

500 0.13 0.01 < 0.01 
 

750 0.19 0.06 0.02 
 

1000 0.43 0.05 0.03 
 

other annual 
crop fields 

500 0.05 0.01 < 0.01 
 

750 0.13 0.01 < 0.01 
 

1000 0.13 0.03 0.01 
 

permanent 
habitat 

500 0.12 < 0.01 0.01 
 

750 0.14 < 0.01 < 0.01 
 

1000 0.13 0.01 < 0.01 
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Table A.4 (continued): 

Landscape variable 
Prey 

availability 
T.day.10 T.day.15 T.night.7 Weighting by 

wind 
Land use type 

Radius 
(m) 

Downwind 
weighted habitats 
using wind by 
day 

oilseed rape 

500 0.11 0.02 0.04  

750 0.19 < 0.01 0.01  

1000 0.35 0.01 0.01  

other annual 
crop fields 

500 0.02 0.02 < 0.01  

750 0.08 0.02 < 0.01  

1000 0.06 0.02 < 0.01  

permanent 
habitat 

500 0.10 < 0.01 < 0.01  

750 0.10 0.01 < 0.01  

1000 0.09 0.01 < 0.01  

Upwind weighted 
habitats using 
wind by night 

oilseed rape 

500 
   

0.01 

750 
   

0.01 

1000 
   

0.10 

other annual 
crop fields 

500 
   

0.07 

750 
   

0.07 

1000 
   

0.07 

permanent 
habitat 

500 
   

0.03 

750 
   

0.05 

1000 
   

0.04 

Downwind 
weighted habitats 
using wind by 
night 

oilseed rape 

500 
   

< 0.01 

750 
   

< 0.01 

1000 
   

0.01 

other annual 
crop fields 

500 
   

0.08 

750 
   

0.12 

1000 
   

0.13 

permanent 
habitat 

500 
   

0.09 

750 
   

0.15 

1000 
   

0.13 

Reference 

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., 

Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., 

Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D. and Lautenbach, S. (2013), 

Collinearity: a review of methods to deal with it and a simulation study evaluating their 

performance. Ecography, 36: 27–46. doi: 10.1111/j.1600-0587.2012.07348.x 
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Appendix B 

Appendix B.1: Classification of the remote sensing data 

Table B.1.1 Overview of the crop type classes and the number of objects used for training and 

validation. 

Crop type class Total  Training Validation  

Flower strip 13 
 

9 4 

Vegetable 65 44 21 

Cereal 226 151 75 

Potato 23 16 7 

Cabbage 15 10 5 

Maize 128 86 42 

Oilseed rape 95 64 31 

Beet 44 30 14 

Other vegetation  14 9 5 

Grassland 292 
 

195 97 

 
 
Table B.1.2 Overview of the calculated vegetation indices. The bands of the ETM+ were named 

according to the part of the spectra they represent (e.g.: BLUE = 0.45 µm - 0.52 µm; GREEN = 

0.53 µm - 0.61 µm; RED = 0.63 - 0.69 µm; NIR (near-infrared) = 0.78 µm - 0.90 µm; L = 0.5). SAVI = 

‘Soil-adjusted Vegetation Index’; NDVI = ‘Normalised Differenced Vegetation Index’; SR = ‘Simple 

Ratio’. 

Index Equation Reference 

SAVI �� + 1� ∗
���	 − 	���

���	 + 	�� + ��
 Huete 1988 

NDVI 
���	 − 	��	�

���	 + 	��	�
 Rouse et al. 1974 

SR  
���

���
  None  
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Figure B.1 Example of the classification result from an 8 km radius landscape around one of the study 

sites. 
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Table B.1.3 Accuracy table showing the producer’s accuracy (percentage of the elements of a class 

that are correctly dedicated to that class), the user’s accuracy (percentage of the elements dedicated 

to a class that really belong to that class), the overall accuracy and the Kappa coefficient (Congalton 

1991). 

Crop type classes  Producer’s accuracy [%] User’s accuracy [%] 

Flower strip 62.22 100.00 

Vegetable 50.00 62.14 

Cereal 86.34 79.96 

Potato 78.92 96.68 

Cabbage 94.92 73.68 

Maize 71.56 79.31 

Oilseed rape 89.51 88.96 

Beet 85.44 92.05 

Other vegetation 65.87 75.34 

Grassland 83.77 61.47 

Overall accuracy [%]                             79.89 

Kappa coefficient                              0.76 
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Appendix C 

Table C.1 Net mesh sizes used on different horticultural farms. Round brackets indicate that the net was 

removed by the farmer for the rest of the cropping period. Squared brackets indicate that parts of the nets 

were removed. - indicates that no data could be collected. Sampling events marked in bold were used for 

the statistical analysis. 

Farm 
no. 

June 
 

August 
 

October 

Fine or inter-
mediate mesh 

net [mm] 

Wide 
mesh net 

[mm]  

Fine or inter-
mediate mesh 

net [mm] 

Wide 
mesh net 

[mm]  

Fine or inter-
mediate mesh 

net [mm] 

Wide 
mesh net 

[mm] 

1 1.35 - 
 

1.35 - 
 

(1.35) - 

2 1.35 7 
 

(1.35) 7 
 

(1.35) [7] 

3 1.35 7 
 

1.35 7 
 

(1.35) 7 

4 0.8 7 
 

0.8 7 
 

(0.8) 7 

5 0.8 7 
 

0.8 7 
 

0.8 7 

6 0.8 7 
 

0.8 7 
 

(0.8) 7 

7 0.8 7 
 

(0.8) [7] 
 

- - 

8 - 7 
 

- 7 
 

- 7 

9 0.8 7 
 

0.8 7 
 

0.8 7 

10 0.8 7 
 

0.8 7 
 

- - 

11 0.8 7 
 

0.8 7 
 

0.8 7 
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Appendix D 

Table D.1 Variation in sampling intensity among years and sampling periods. CW = cabbage whitefly, 

CA = cabbage aphid. 

Year Sampling 
period 

No. of fields Plants 
sampled 
per field 

Leaves 
sampled 
per plant 

Comment 

2012 June/July 15 20 all  

2012 July/August 9 (all insects) 

+3 (CW +CA only) 

20 10 10 plants / field if CW densities 
were high 

2012 October 15 10 10  

2013 June/July 11 12 all  

2013 July/August 7 12 10 6 plants / field if CW densities 
were high 

2013 October 10 12 10 6 plants / field if CW densities 
were high 

2014 June/July 10 12 all  

2014 July/August 7 12 10  

2014 October 8 12 10 CW on only 6 plants / field if CW 
densities were high 
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Fig. D.1 Examples for the relation between wind data recorded in 2 weeks before arthropod sampling 

in June/July (blue line) as used in chapters 1 and 2 and wind data sampled from June to October (red 

line) as used in chapter 4.  



CURRICULUM VITAE 

 

130 

Curriculum vitae 

Martin Ludwig 
 

Personal Data 

Date and place of birth 28 March 1983, Herdecke 

 

Education 

May 2011 – March 2017 PhD-Student at the Institute of Horticultural Production Systems, 

Department Phytomedicine, Gottfried Wilhelm Leibniz 

Universität 

Topic: “Pest prevention by functional biodiversity at Brassica” 

Sept. 2003 – Apr. 2010 Biology (Diploma), University of Bochum and University of 

Göttingen, mark: „with distinction” 

Main subjects: animal ecology, landscape ecology, vegetation 

sociology, conservation 

Diploma thesis in the Agroecology group, title: „Nest predation in 

hedges and forest edges – a landscape scale experiment“ 

Oct. 2009 Participation in the Greek Summer School of the Society for 

Conservation Biology 

Aug. 1993 – June 2002 Comprehensive School Werdohl 

 

Work experience 

March 2016 – June 2016 Staff, Toom Baumarkt Butzbach 

May 2011 – Dec. 2015 Scientific associate, Gottfried Wilhelm Leibniz Universität 

Apr. 2011 – Aug. 2011 Freelancer, Arillus gGmbH (environmental and experiential 

education) 

May 2010 – Feb. 2011 Scientific assistant, Georg-August University Göttingen  

Sept. 2002 – June 2003 Civilian service, NABU-Naturschutzstation Kranenburg e.V. 



PUBLICATION LIST 

 

131 

Publication list 

 

Peer-reviewed articles 

2017 

Ludwig M., Schlinkert H. & Meyhöfer R. (accepted) Wind modulated landscape effects on 
colonisation of Brussels sprouts by insect pests and their syrphid antagonists. Agricultural and 

Forest Entomology. 

2016 

Ludwig M. & Meyhöfer R. (2016) Efficacy of crop cover netting against cabbage pests and their 
natural enemies and relevance of oilseed rape. Journal of Plant Diseases and Protection, 123, 

331–338. DOI: 10.1007/s41348-016-0038-8. 
Schlinkert H., Ludwig M., Batáry P., Holzschuh A., Kovács-Hostyánszki A., Tscharntke T. & 

Fischer C. (2016) Forest specialist and generalist small mammals in forest edges and hedges. 
Wildlife Biology, 22, 86–94. DOI: 10.2981/wlb.00176. 

2015 

Schlinkert H., Westphal C., Clough Y., László Z., Ludwig M. & Tscharntke T. (2015) Plant 
Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators 
across 21 Brassicaceae Species. PloS one, 10, e0135928. DOI: 
10.1371/journal.pone.0135928. 

Schlinkert H., Westphal C., Clough Y., Ludwig M., Kabouw P. & Tscharntke T. (2015) Feeding 
damage to plants increases with plant size across 21 Brassicaceae species. Oecologia, 179, 

455–466. DOI: 10.1007/s00442-015-3353-z.  

2013 

Fischer C., Schlinkert H., Ludwig M., Holzschuh A., Gallé R., Tscharntke T. & Batáry P. (2013) 
The impact of hedge-forest connectivity and microhabitat conditions on spider and carabid 
beetle assemblages in agricultural landscapes. Journal of Insect Conservation, 17, 1027–1038. 
DOI: 10.1007/s10841-013-9586-4. 

2012 

Ludwig M., Schlinkert H., Holzschuh A., Fischer C., Scherber C., Trnka A., Tscharntke T. & 
Batáry P. (2012) Landscape-moderated bird nest predation in hedges and forest edges. Acta 

Oecologica, 45, 50–56. DOI: 10.1016/j.actao.2012.08.008. 
 

Conference contributions 

2015 

Hüweler L.A., Reineke A., Ludwig M., Hondelmann P. & Meyhöfer R. (2015) Untersuchungen 
von saisonalen Dispersionsprozessen mit Hilfe von Mikrosatelliten am Beispiel der 
Kohlmottenschildlaus. In: Tagungsband der Entomologentagung. Frankfurt am Main, 2.–
5.3.2015. 



PUBLICATION LIST 

 

132 

Ludwig M. & Meyhöfer R. (2015) Efficacy of crop protection netting on cabbage pests and 

their natural enemies and relevance of oilseed rape, Meeting oft the IOBC-WPRS Working 
Group "Integrated Protection in Field Vegetables" 04.-07. Oct., Hamburg. 

Ludwig M., Schlinkert H., Hüweler L.A., Reineke A. & Meyhöfer R. (2015) Impact of land use 
on pest control in Brassica – a first synthesis. In: Tagungsband der 50. 

Gartenbauwissenschaftliche Tagung. Freising-Weihenstephan, 24.-28.2.2015. 
Ludwig M., Schlinkert H. & Meyhöfer R. (2015) Impact of land use on colonization process in 

Brassica – a first synthesis. In: Tagungsband der Entomologentagung. Frankfurt am Main, 
2.–5.3.2015. 

2014 

Hüweler L.A., Reineke A., Ludwig M., Hondelmann P. & Meyhöfer R. (2014) Welche 
Bedeutung hat Winterraps bei der Besiedlung von Gemüsekohl durch die 
Kohlmottenschildlaus: Populationsgenetische Untersuchungen mit Hilfe von Mikrosatelliten. 
Relevance of winter rape for colonisation of cabbage by cabbage whitefly: Studying 
population genetics with microsatellite markers. In: Julius-Kühn-Archiv, pp. 267–268. 
Freiburg, 23.-26.9.2014. 

Ludwig M. & Meyhöfer R. (2014) Impact of landscape on cabbage pests and natural enemies: 
Launching a system oriented plant protection approach. IOBC wprs Bulletin, 107, 113–114.  

Ludwig M., Schlinkert H. & Meyhöfer R. (2014a) Bedeutung von Rapsanbau für 
Kohlschädlinge und Gegenspieler: Modulierung durch lokale Besonderheiten und 
Wetterverhältnisse. Relevance of rape growing for cabbage pests and natural enemies: 
Modulation by local characteristics and weather conditions. In: Julius-Kühn-Archiv. Freiburg, 
23.-26.9.2014. 

Ludwig M., Schlinkert H. & Meyhöfer R. (2014b) Impact of oilseed rape on initial colonisation 
and pre-harvest infestation of Brussels sprouts by cabbage aphid, cabbage whitefly and 
whitefly parasitoids. IOBC wprs Bulletin, 107, 163–169. 

2013 

Ludwig M., Schlinkert H. & Meyhöfer R. (2013a) Der Einfluss von Raps auf die Besiedlung 
von Kohl durch Schädlinge und Nützlinge. In: Tagungsband der Entomologentagung. 

Göttingen, 18.-21.3.2013. 
Ludwig M., Schlinkert H. & Meyhöfer R. (2013b) Einfluss des zunehmenden Rapsanbaus auf 

Kohlschädlinge und Nützlinge, 8. Bioland-Wintertagung Nord. 13.-14. Jan., Hermannsburg. 

2012 

Ludwig M. & Meyhöfer R. (2012a) Landschaftseinfluss auf Schädlinge und Nützlinge im Kohl. 
In: Julius-Kühn-Archiv, p. 388. Braunschweig, 10.-14.9.2012. 

Ludwig M. & Meyhöfer R. (2012b) Einfluss von großflächigem Rapsanbau auf Kohlschädlinge 

und Nützlinge, 7. Bioland-Wintertagung Nord. 10.-11. Jan., Hermannsburg. 
Ludwig M. & Meyhöfer R. (2012c) Landschaftseinfluss auf Schädlinge und Nützlinge im Kohl, 

Profi-Tag Gemüsebau, 13. Nov., Hannover. 

2010 

Fischer C., Schlinkert H., Ludwig M., Holzschuh A., Gallé R., Tscharntke T. & Batáry P. (2010) 
The impact of hedgerow-forest connectivity on carabid beetle and spider communities in 



PUBLICATION LIST 

 

133 

agricultural landscapes. In: Programme and Book of Abstracts des IX European Congress of 

Entomology. Budapest, 22.-27. Aug., Vol. 169. 
Ludwig M., Schlinkert H., Fischer C., Holzschuh A., Tscharntke T. & Batáry P. (2010a) 

Differences in predation of dog rose seeds between hedges and forest edges. In: 
Verhandlungen der Gesellschaft für Ökologie, p. 248. Giessen, 30. Aug. - 3. Sept., Vol. 40. 

Ludwig M., Schlinkert H., Holzschuh A., Fischer C., Scherber C., Trnka A., Tscharntke T. & 
Batáry P. (2010b) Landscape-mediated effects on nest predation in hedges and forest edges. 
In: Booklet of the Multitrophic Interactions Workshop. Göttingen, 25.-26. März, Vol. 15. 

Schlinkert H., Fischer C., Ludwig M., Holzschuh A., Kovács A., Tscharntke T. & Batáry P. 
(2010) The impact of hedgerow-forest connectivity on small mammals in agricultural 
landscapes. In: Verhandlungen der Gesellschaft für Ökologie, p. 128. Giessen, 30. Aug. - 3. 
Sept., Vol. 40. 

 


