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Abstract 
Nanostructured bio-fibrous membranes prepared by electrospinning (ESP) technique, 

offer unique properties, such as large specific surface area, high porosity, excellent 

flexibility and the ability to incorporate selectively reactive molecules. These enable such 

nano-bio-fibrous membranes to have wide biomedical applications. 

In this work, Polylactic acid (PLA)-, Polyethylene glycol (PEG)-, Hydroxypropyl 

cellulose (HPC)- and N-Vinylcaprolactam (NVCL)- molecules have been combined. Pre-

studies on PLA-HPC thin-film membranes have been done, before producing fibrous 

membranes. Thin-film membranes have the advantage of unified surface in comparison 

of fibrous membranes. PLA-HPC membranes (thin-film and fibers) show volume-phase 

transition, proposing pulsatile model drug release under changes in temperature effect.   

PLA-PEG-NVCL composite fibrous membranes are functionalized with magnetic 

nanoparticles (MNPs) and therapeutic effective molecules. Such membranes behave like 

actuators, controlled by external magnetic stimuli, proposing triggered drug release at a 

specific time and location.  

Biotinylated bovine serum albumin (BSA) is embedded in PLA-PEG composite fibrous 

membranes and attached via the biotin-streptavidin interaction. Its specific 

immobilization is validated by the added fluorescent-labeled avidin molecules. This idea 

demonstrates the suitability of the material for biosensor applications. 

Therefore, smart nano-fibrous membranes are developed today for smart nanomedicine 

of tomorrow.  
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Zusammenfassung  

Nanostrukturierte Bio-Faser-Membranen, hergestellt durch Elektrospinning (ESP) zeigen 

außergewöhnliche Eigenschaften, wie eine hohe spezifische Oberfläche, hohe Porosität, 

hervorragende Flexibilität und die Fähigkeit, reaktive Moleküle selektiv einzubauen. 

Dadurch wird für Nano-Bio-Faser-Membranen ein breites biomedizinisches 

Anwendungsfeld geschaffen. 

In der vorliegenden Arbeit werden folgende Moleküle: Polymilchsäure (PLA), 

Polyethylenglykol (PEG), Hydroxypropylcellulose (HPC) und N-Vinylcaprolactam 

(NVCL) unterschiedlich miteinander kombiniert. Vor der Herstellung der 

Fasermembranen sind Vorstudien mit Dünnschicht-Membranen aus PLA, kombiniert mit 

HPC in unterschiedlichen Gewichtsanteilen, durchgeführt worden. Der Vorteil dieser 

Dünnschicht-Membrane im Vergleich zu den Fasermembranen liegt in ihrer einheitlichen 

Oberfläche. PLA-HPC-Membranen (Dünnschicht und Fasern) zeigen bei 

Temperaturänderungen einen Phasen-Volumen-Übergang mit einer pulsierenden 

Freisetzung von Modellarzneistoffen. 

PLA-PEG-NVCL-Verbundfasermembranen sind mit magnetischen Nanopartikeln 

(MNPs) und therapeutisch wirksamen Molekülen funktionalisiert worden. Solche 

Membranen verhalten sich wie Aktuatoren, die durch externe magnetische Reize 

gesteuert werden, wodurch eine Arzneimittelfreisetzung lokal zu einem bestimmten 

Zeitpunkt ausgelöst werden kann.  

Rinderserumalbumin mit Biotin (BSA) wird in PLA-PEG-Verbundfaser-Membranen 

eingebettet und über die Biotin-Streptavidin-Wechselwirkung angebunden. Die 

spezifische Immobilisierung des BSA wird durch die zugegebenen fluoreszenzmarkierten 

Avidin-Moleküle nachgewiesen. Mit dieser Idee wird die Eignung des Materials für 

Biosensor-Anwendungen demonstriert.  

So können heute intelligente Nanofaser-Membrane für die intelligente Nanomedizin von 

morgen entwickelt werden. 

 

  

 

Stichwörter: Elektrospinning, Nano-Bio-Fasern, Komposite-Faser-Membrane, 

Biomedizinische Anwendungen 
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1.  Introduction 

Energy transfer and –conversion exists in many fold-ways. In fact, it is the essence of life.  

In the present work, the focus is on energy transfer and –conversion in functional 

nanofibrous membranes for biomedical applications. Such membranes may be used for 

on-demand drug delivery and biosensors in daily life applications. Figure 1.1 shows 

energy transfer and –conversion scheme and biomolecule detection.  

 

Figure 1.1: Schematic illustration of the energy transfer and –conversion scheme. First functional nanofibers with 

tailored properties are fabricated by electrospinning technique. After this, the functionalized nanofibers are treated with 

an external energy source and stimulated (on-demand) therapeutic release is measured. The functionalized nanofibers 

are treated with biological samples [1] and their binding ability is demonstrated (Picture: M. Kumar).  

A global increasing pressure in achieving better quality of life with decreasing costs of 

healthcare, provide the ideal framework to explore the new possibilities created by 

nanotechnology and biomaterials science, to tackle these demanding health-related 

problems from a radical new angle [2]. One key issue is the materials being used in 

biomedical field called biomaterials. It is predicted that nanotechnological approaches of 

biomaterials in medical fields will have a long lasting impact on safety, accuracy and 

efficacy of currently available medical devices [3][4][5]. The major target areas are drug 

delivery, tissue engineering as well as biosensors [6][7]. 

Synthetic biopolymer have captured the interest to fabricate electrospun biofibrous 

membranes of different size (micro- or nano sized) and surface functionality [8][9]. These 

membranes have been routinely used as vehicles for drug delivery, due to their ability to 
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protect the encapsulated drug, the ease of fabrication, tunable degradation kinetics and 

high surface to volume ratio [10]. Different synthetic biofibers have proved their potential 

for efficient controlled delivery of drug [11]. However, some diseases require, that drug 

level should be accelerated within the therapeutic index (the difference between minimum 

effective level and the toxic level) to treat complex diseases such as cancer with better 

performance. This need catalyzed the development of “stimuli-responsive” nano-bio-

fibrous membranes, which will be able to measure minute changes in the heterogeneity 

of the system and subsequently provide responses. 

Taking inspiration from mother nature for stimuli-responsive materials, for examples the 

leaves of Mimosa pudica collapse suddenly when touched, sunflowers turn toward the 

sun and chameleons change color according to their environment [12][13]; scientists have 

succeeded to synthesize stimuli-responsive polymers, that can be switched by using 

temperature, light, ultrasound, electromagnetic fields, pH and biomolecules.  This  trigger 

a corresponding change in the polymer’s physical properties such as size, shape, 

hydrophobicity and degradation rate [14]. These switching properties of the polymer have 

a significant effect on the vast area of biomedical applications [12]. Stimuli-responsive 

polymers have been variously called stimuli-sensitive [15], intelligent [16], smart 

[17][18] and environmentally-sensitive polymers [19]. Fabricating such stimuli-

responsive materials in nano-bio-fibers, also called stimuli-responsive fibers (SRFs) 

become possible due to the major advancement in nanotechnology [20].  

At the nanoscale, materials exhibit novel or improved chemical, thermal, and biological 

properties. Combining these unique properties with their remarkable recognition 

capabilities have resulted in systems with significantly improved performance and novel 

applications. An important use of nanomaterials is in composites, materials that combine 

one or more separate components, which are designed to exhibit overall the best 

properties of each component. This occurs because nano-size composites have the much 

higher surface area and the number of defects might be reduced at the nano level [21].  

1.1 Nano-Bio-Fibers and Biocomposites 

Nano-bio-fibers developed from biopolymers become an important resource for energy 

saving materials, which have the advantages of energy recovery, good biodegradability, 

sustainability and are less hazardous to health [22]. Biopolymers are the diverse and 

versatile class of materials that have potential applications in virtually all sectors of the 

economy. For example, they can be used as energy storage, drug delivery vehicles, 

cosmetics, biosensors, and even switching devices. Currently, many biopolymers are still 

in the developmental stage, but various opportunities are arising in the areas of biomedical 

applications, from sensing (such as biosensors) to diagnostics (such as on-demand drug 
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delivery).  Figure 1.2 shows exponential rise of journal articles published on use of 

nanofibers for biomedical applications for the past 12 years. 

 

Figure 1.2: Number of publication related to nanofibers for biomedical applications (Source: Web of Science accessed 

on 6 March 2017). 

Several materials, that are used in biomedical applications lack certain characteristics 

such as chemical nature, biodegradability and renewability [23][24], for these reasons, 

use of biocomposite materials improved their tailor-made characteristics and properties. 

In this way, biocomposite enhance material properties and reduce energy needs [25]. 

Composite materials are attractive because they combine material properties in ways not 

found in nature. The purpose of composite is the manipulation of properties to produce 

result in biocomposites. Fabrication of nano-bio-fibers from biocomposites could produce 

smart fibers which have the advantages of low density, biodegradability, structural and 

functional stability. 
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1.2 Objectives and Methodology 

Nano-bio-fibers developed from biopolymers attracted significant attention because of its 

wide biomedical applications. Within the presented work, the aim was to explore and 

establish suitable electrospinning conditions for several biocompatible polymers (e.g. 

PLA, PEG, and HPC). The basic studies on these fibrous membranes were investigated 

and applied to technical biomedical applications.  

The main objectives of this thesis were divided into the following parts: 

Objective I: To explore the efficient routes for production of polylactic acid (PLA) 

electrospun fibers. The study investigates how PLA fibers diameter vary by changing 

electrospinning parameters. PLA fibers were further functionalized with polyethylene 

glycol (PEG) and magnetic nanoparticles (MNPs) to provide the resulting material 

magnetic properties. The study investigates how magnetic properties were influenced by 

a change in concentration of MNPs.  

Objective II: To study magnetic stimulated on-demand drug delivery, PLA-PEG-NVCL 

composite fibrous membranes were fabricated. An antibiotic was embedded into these 

composite membranes, and their antimicrobial properties were investigated. The study 

evaluate how on-off conditions of magnetic field affect drug release.  

Objective III: To study temperature induced on-demand drug delivery, PLA-HPC 

membranes were fabricated. Pre-studies on PLA-HPC thin film were also done. The study 

investigates how drug release influence under temperature stimuli.  

Objective IV: To develop a suitable material for paper based biosensors, biotinylated 

bovine serum albumin (BSA) was incorporated into PLA-PEG composite membranes. 

These membranes were examined for their binding ability towards fluorescently labelled 

avidin. The study investigates biotin-avidin binding and blocking on fiber surface. 

Figure 1.3 and Figure 1.4 show working plans for the development of functional nano-

bio-fibrous membranes and their use for biomedical applications.  

 

 

 

 

Abbreviations used: PLA: Polylactic acid; PEG: Polyethylene glycol; NVCL: N-vinylcaprolactam;     HPC:  

Hydroxypropyl cellulose. 
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Figure 1.3: From raw materials to functional nano-bio-fibrous membranes by electrospinning technique and their 

potential biomedical applications (Picture: M. Kumar). 

 

Figure 1.4: Working package for the development of functional nano-bio-fibrous membranes and their potential 

biomedical applications (Picture: M. Kumar). 
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2 State-of-the-Art of Electrospinning Process 

2.1 Fundamental of Electrospinning 

Electrospinning (ESP) becomes a fascinating technique for research activity worldwide 

[26]. It is an effective technique to produce micro/nano–sized polymer fibrous 

membranes [27]. These membranes have significant advantages due to their large surface-

area-to-volume ratio, high porosity, flexibility and the ability to incorporate selectively 

reactive molecules. Fibers with a complex architecture such as randomly oriented, aligned 

fibers, core-shell fibers, hollow fibers, porous fibers, side-by-side structures can be easily 

produced with this technique [28].  

There are several techniques for obtaining nanofibers such as drawing with a 

micropipette, template synthesis, phase separation, self-assembly and electrospinning. 

However, out of all available techniques, electrospinning is the only technique in which 

the process can be scaled to a commercial level [29]. Therefore, huge interest has been 

shown in the last fifteen years and there are many companies build across the world. Table 

2.1 shows some of the electrospun companies with their product/service offer and web 

address. This table shows rising market demand of electrospun fibers.  

Table 2.1: Some of the electrospun production sites. 

Company Country Product/Service Website 

PolyNanoTec Germany Formulation of 
electrospinning 

material 

http://www.polynanotec.com/ 

Bioinicia Spain Nanofibers http://www.bioinicia.com/ 

Nano-FM Netherlands Biomaterials 
company 

http://nano-fm.nl/ 

Pardam 
nanotechnology 

Czech 
Republic 

Inorganic and 
polymer 

nanofibers 

http://pardam.cz/ 

Elmarco 
Czech 

Republic 

Industrial 
production of 

nanofibers 

http://www.elmarco.com 

Kato Tech Co. Ltd. Japan 
Equipment 

manufacturers 
http://www.keskato.co.jp 

Hirose Paper Mfg 
Co., Ltd 

Japan 
Nanofiber coated 

paper 

http://www.hirose-paper-
mfg.co.jp/english/pdct_nanof
iber.html 
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Finetex 
Technology 

Korea Nanofibers 
http://www.finetextech.com 

Nanofiber Future 
Technologies 
Corp. 

Canada 
Polymer based 

nanofibers 

http://www.nftc.cc 

eSpin 
Technologies Inc. 

U.S. Nanofibers 
http://www.espintechnologies.com 

BioSurfaces Inc. U.S. 

Drug loaded 
electrospun fibers 

for medical 
applications 

http://www.biosurfaces.us/ 

RevolutionFibres New 
Zealand 

Nanofiber http://www.revolutionfibres.com/ 

 

Most nanofiber producers as well as research institutes have constructed their own 

electrospinning equipment, because of its simplicity. Mechanical and bioprocess research 

institute, University of applied science and arts also has its own, as shown in Figure 2.1. 

 

 

Figure 2.1: Electrospinning lab set-up (Picture:F. Böttcher and M. Kumar). 
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The first patent on electrospinning was issued by Formhals in 1934 [30] and since then 

hundreds of patents have been done in over eighty two years. Although the term 

"electrospinning,"derived from "electrostatic spinning", was used relatively recently (in 

around 1994), its fundamental idea dates back more than 70 years earlier. From 1934 to 

1944 Formhals published a series of patents [30][31][32][33][34] describing an 

experimental setup to produce polymer filaments using an electrostatic force. Table 2.2 

shows the history of electrospinning.  

Table 2.2: History of electrospinning. 

Year Scientist Work Reference 

1934 Formhals The first U.S. patent on electrospinning [30] 

1939 Formhals Revised the disadvantages of the earlier 
setup by altering the distance between the 
spinneret and the collection device 

[31][32] 

1952 Vonnegut 
and 
Neubauer 

Produce streams of highly-electrified 
uniform droplets of about 0.1 mm in 
diameter 

[35] 

1955 Drozin Investigated the dispersion of a series of 
liquids into aerosols under high electric 
potentials 

[36] 

1960 Tylor Showed that as the intensity of the electric 
field is increased, the hemispherical surface 
of the fluid at the tip of the capillary tube 
elongates to form a conical shape known as 
the Taylor cone 

[37] 

1966 Simons Patented an apparatus to produce 
nonwoven fabrics of ultra-thin and very 
light weight with different patterns using 
electrical spinning 

[38] 

1971 Baumgarten Design an apparatus to electrospin acrylic 
fibers with diameters in the range of 0.05–
1.1 μm 

[39] 

Up till 
now 

 Electrospinning processes are like that 
described by Baumgarten 
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2.2 Typical Electrospinning Setup 

A typical setup for traditional electrospinning consists of four key components [28]: 

1. A high voltage power supply (10-30 kV); 

2. A polymer reservoir that can maintain a constant flow rate of solution, commonly 

a syringe connected to either a mechanical or a pneumatic syringe pump; 

3. A conductive dispersing needle  

4. A conductive substrate serves as collector.  

When high voltage is applied to the needle, the polymer solution at the needle tip become 

unstable and a jet is issued [40][41]. The jet flows away from the needle initially in a 

nearly straight line, then it bends in a complex path during which electrical forces stretch 

and thin it to the nanometer scale [42][43]. The initial straight section of the jet is the 

“Near Field regime region” [44]. The area, where the electrical instabilities dominate 

creating a whipping motion of the jet, is called “Far Field regime region” [45].  

The main parameters, involved in electrospinning that can be varied to optimize the 

results for specific applications, are listed in Table 2.3. 

Table 2.3: Important parameters for electrospinning experiments 

S. No. Parameters Effects 

1 Polymer 

precursor material 

The material, that is electrospun, affects the final fibers 

morphology. 

2 Polymer solution 

concentration 

This parameter mainly influences the thickness of the 

fibers. The more diluted solutions generally lead to 

thinner fibers and vice versa. When the solution is too 

concentrated, electrospinning might not be possible.  

3 Needle-to-

collector- distance 

The typical electrode-to-collector distance can vary from 

8 cm to 30 cm and can influence fibers distribution, 

density, thickness and homogeneity. 

4 Flow rate Similarly, to the needle-to-collector distance, the flow 

rate can influence fibers distribution, density, thickness 

and homogeneity. 

5 Voltage The intensity of the applied voltage mainly influences 

the thickness of the fibers, which decreases when a 

higher voltage is applied. 



State-of-the-Art of Electrospinning Process 

 

Page 10 

 

 -In the first step, the polymer droplet would assume spherical-like shape as controlled by 

the surface tension of the solution. With the introduction of high voltage, the polymer 

droplet stretches more and more, until it gets close to a critical potential acquiring the 

characteristic conical shape, referred to as Taylor cone [46]. The fibers are produced when 

the voltage crosses this critical point. The resulting fibers come from evaporation of the 

solvents from the polymer solution and stretching deformations due to applied electric 

field.  

There are several theories on ESP process [47], three are given as below, 

1. Theory on the fluid charging; 

2. Theories on the liquid droplet under high voltage—Taylor Cone theory; 

3. Theories on the jet in flight—Instability Theories. 

 

1.  Theory on the fluid charging: A high voltage power is applied to the viscous fluid, 

which generate charges. The generated charge carriers as free electron, ions or ion pairs 

form double layer in the fluid owing to the ion mobility.  

 

2. Taylor Cone theory: It describe the deformation of one-drop of viscous fluid under 

the high voltage power supplied.  

 

(I) The stable shape of viscous fluid could be acquired owing to the equilibrium 

of the electric forces and the surface tension of viscous fluid; 

(II) When the voltage is further increased, the equilibrium 

will be abolished, resulting a conical shape from the 

viscous fluid. The conical shape has a half angle of 49.3 

(a whole angle of 98.6), referred to as the Taylor Cone.   

  

3. Instability Theories: Initially, the fibrous jet is nearly in a 

straight line then it formed into a complex path known as whipping instability. Whipping 

instability is the reason for the formation of nano dimension fibrous structures. The 

following forces are acting on the whipping charged jet;  

 

(I) Gravitational force, FG (towards the collector plate in a vertically arranged 

apparatus). FG = ρπr2g, where ρ is the density of the liquid and g is the 

acceleration due to gravity. 

(II) The electrostatic force, FE, which extends the jet and propels it towards the 

grounded collector.  
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(III) Coulombic repulsion forces FC on the surface of the jet, which introduce 

instability and whipping motions.  

(IV) Viscoelastic forces, which work against elongation of the jet in the electric 

field.  

(V) Surface tension forces, which work against the stretching of the jet.  

 

The specific surface area of these electrospun fibers is high, due to the small fiber 

diameter, the length can be many kilometers [48]. There inherent property of the 

electrospun fiber makes suitable for advanced biomedical applications [49] [50], such as 

(Figure 2.2): drug delivery, wound dressing, medical implants, biosensors and much 

more.  

 

Figure 2.2: Some of the advanced biomedical applications of electrospun nanofibers (Picture: M. Kumar) 
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2.3 Electrospinning Experimental Setup Type 

 Single Nozzle Spinning 

As the name suggest, in single nozzle electrospinning (ESP) system the polymer solution 

is forced from a single nozzle syringe, connected with the electrospinning set-up (as 

shown in Figure 2.3). This one is the simplest technique for fabricating one-dimensional 

nanofibers. The working principle is same, as described in section 2.2. Here, only one 

type of polymers solution or one mixture of two or more different types of polymer 

solutions can be spun. In the experiments, the needle used was the blunt-tip type with a 

diameter of 0.80 x 22 mm (21G x 7/8”). One example of single nozzle fiber (PLA fiber) 

is shown in Figure 2.6. 

 

 

  

Figure 2.3: (a) Schematic illustration of single nozzle electrospinning setup and (b) designed lab apparatus displaying 

the single nozzle system (Pictures: M. Kumar). 

 

 

 

 

 

 

 

 

a b 

Single 
Nozzle 
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 Coaxial Spinning 

Coaxial spinning (co-electrospinning) is an expansion of the single nozzle spinning. In 

this, core fiber could consist of a material which cannot be electrospun to fibers such as 

low molecular weight polymer, oil or even water molecules [51][52][53]. In this case, 

two polymers (containing different spinning solutions) are arranged in a concentric 

configuration and are connected to two reservoirs, as shown in Figure 2.4. In the 

experiments, the needle used was the blunt-tip type with an outer diameter of 1.37 mm, 

inner diameter of 0.51 mm. In this technique, drug molecules can be coated with the 

polymer shell which provides temporal protection for drug molecules and offers their 

controlled release [54][55]. Coaxial electrospinning has been applied so far for the 

preparation of polymer core-shell fibers as well as hollow fiber. The mechanism by which 

the two layers hollow fiber is prepared is based on the evaporation of the core solution 

through the shell yielding the deposition of the core material onto the shell layer [56].  

These methods are directly integrated into the production process and reduce the effort 

for post process coatings massively. One example of coaxial fiber (Cellulose acetate- 

PLA) is shown in Figure 2.6. 

 

 

 

Figure 2.4: (a) Schematic illustration of coaxial electrospinning setup and (b) designed lab apparatus displaying the 

core-shell system (Pictures: M. Kumar). 

 

 

 

a b 
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 Side-by-side Spinning 

To enhance the production and functionality of nanofibers, the side-by-side spinning 

technique is used as shown in Figure 2.5. This is an advanced ESP technique, in which 

two different kinds of the polymer solution can be easily fabricated. In such kind of 

advanced ESP technique, it is possible to spray one type of polymer/drug over another 

kind of polymer fiber surface. One example of side-by-side spun fiber (PLA-Cellulose 

acetate) is shown in Figure 2.6. 

 

 

 

 

Figure 2.5: (a) Schematic illustration of side-by-side electrospinning setup (b) designed lab apparatus displaying the 

two side on single collector (Pictures: M. Kumar) 

 

a 

b 
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Figure 2.6 shows SEM micrographs of PLA fibers fabricated using these three techniques 

(single nozzle spinning, coaxial spinning and side-by-side spinning).  

 

 

Figure 2.6: SEM micrographs of electrospun PLA fibers fabricated by using (a) Single nozzle spinning (b) coaxial 

spinning [Cellulose acetate (core) – PLA (shell)] (c) side-by-side spinning [PLA (one side) – cellulose acetate (second 

side)]. (Pictures: F. Dencker) 
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2.4 Different Morphology of Nanofibers 

Depending on the polymer characteristics, the process parameters, and the ambient 

conditions, the generated fibers can vary vastly in diameter and morphology [57] (smooth 

and circular, flat ribbon-like structure, fibers with beads, highly porous, hollow fibers and 

core-shell fibers) (as shown in Figure 2.7). The reasons for such phenomena were 

explained in different ways by various authors [58][59][60]. This method presents an 

outstanding possibility to adjust the fibers morphology for the enhancement in advanced 

biomedical applications. 

 

Figure 2.7: SEM micrographs of different morphologies of fibers (a) beaded PLA fibers (b) circular PLA fibers (c) 

porous PLA fibers (d) core-shell (Cellulose acetate-PLA) fibers (e) ribbon-like cellulose acetate fibers (f) hollow PLA 

fibers. (Pictures: F. Dencker) 
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2.5 Factors Affecting Electrospinning 

There are several important parameters (process-, physical-, systemic- and solution-) 

which affect the fiber morphology and properties of electrospun fibers [29]. Table 2.4 

shows a list of key factors affecting electrospun fibers [61]. 

Table 2.4: List of variable parameters affecting the characteristics of electrospun fibers 

Process Parameters Systemic 

Parameters 

Solution 

Parameters 

Physical 

Parameters 

Voltage 

Flow rate 

Collector 

Distance 

Angle 

Rotar Speed 

Polymer type 

Molecular weight 

Solvent used 

-- 

-- 

-- 

Viscosity 

Concentration 

Dielectric constant 

Surface tension 

Charge of jet 

Conductivity 

Humidity 

Temperature 

Air velocity 

-- 

-- 

-- 

 

2.6 Possibility of Errors during the Electrospinning 

In the electrospinning technique, several procedures are important to have consistent 

results. Some are listed as below: 

1. Accuracy in the sample weighing measurement 

2. Temperature in which solution was prepared 

3. Room temperature and humidity also affect the fibers 

4. Air bobble in the syringe should be avoided 

5. Once-injects should be used 

In the following Table 2.5, some hints are listed for what can be done in typical situations 

facing problems during electrospinning experiments. 

 

 

 

 



State-of-the-Art of Electrospinning Process 

 

Page 18 

 

Table 2.5: Typical problems and their solutions during electrospun fiber formation 

 

Problems 

Solutions 

Increase the following values Decrease the following values 

Beads formation 

 

Applied electric field; conductivity 

of the solution 

Surface tension of the solution 

(e.g., addition of surfactants) 

Deposition of 

fragments  

Applied electric field, homogeneity 

of the solution 

Weight concentration of the 

polymer; solution flow rate 

Spraying Molecular weight of the polymer; 

viscosity 

Applied electric field 

2.7 Advantage of Using Nanofibers 

Polymer nanofibers have many advantages; some of these are as follow: 

1. Large specific surface area and active reaction sites 

2. Possibility of hosting functional molecules 

3. Ability to protect from the outside environment (Core-shell)  

The large specific surface area, i.e. the surface of a unit area of a nanofiber becomes 

higher, so, it is possible to collect more foreign objects, which lead to improving the 

properties of the existing device. It is also possible to integrate functionalities to 

nanofibers by chemical and physical technique. The sensitive molecules can also be 

protected from the environment by using core-shell fiber structure, as describe in section 

2.3.2. In nanofibers, molecules are arranged in places, so there are improved properties 

that were not possible to obtain from micro or bigger scale of fibers before. For example, 

higher strength and higher heat-resistance properties are expected. Also, high 

conductivity can be obtained like carbon nanofibers. In addition to this, fibers generated 

from ESP technique do not require further purification.  
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3 Theoretical Background 

3.1 Drug Delivery Systems 

At present, the global advanced drug delivery market is forecast to grow at a compound 

annual growth rate (CAGR) of 4.9% from roughly $-178.8 billion in 2015 to nearly             

$ 227.3 billion by 2020, according to recent BCC Research [62]. One reason for this rapid 

growth is many genetically engineered protein drugs that are now being introduced. 

Encapsulation of protein in biopolymer materials prevent from being prematurely 

destroyed by attacking enzymes. The major area of application for these novel sustained-

release systems is in the treatment of cancers and geriatric diseases.  

In general, drug delivery systems (DDS) are engineered technologies for administering 

pharmaceutical compounds in the living body [63]. Therapeutic drugs play an important 

role in almost all aspects of medical treatment. However, when the drug is conventionally 

administered as a single dose and is metabolized rapidly inside the living body, resultant 

in a peak-to-valley concentration in blood plasma. This concludes to a poor patient 

response since the time frame over which the drug concentration is above the minimum 

effective level may not be long enough to produce a significant effect in a single dose. 

Low concentrations of drugs in the target tissues will lead to the suboptimal therapeutic 

effects and require more frequent administration and more side-effects. Albeit this 

situation can be improved by increasing the amount of dose, this quickly raises the drug 

level to the toxic region [64]. Figure 3.1 shows hypothetical drug delivery profiles, which 

shows an immediate drug release profile in the systemic circulation, resulting from the 

consecutive administration of multiple doses.  

 

Figure 3.1: Drug concentration level in blood showing conventional release system (Multiple dosing at regular intervals 

leads to oscillating drug concentrations, which may fall outside the therapeutic range for significant time periods). 

(Picture: M. Kumar). 
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 So, there is a great need to develop controlled release systems. A century had been 

devoted in developing those kinds of system. 

Controlled drug delivery systems are an extensively investigated research area due to 

several advantages, e.g. they preserve drugs that are rapidly destroyed by the living body 

and maintain the drug within the desired therapeutic range as shown in Figure 3.2(a), 

hence reducing toxicity and improving patient comfort [65]. However, challenges in this 

area still remain such as overcoming biological barrier owing to the structures of the 

materials, the solubility of many small-molecule drugs, the difference between in-vitro 

and in-vivo conditions, the assessment of device stability and the complexity of the 

regulatory issues. Even, many useful drugs are hydrophobic in nature, therefore it is 

difficult to solubilize in an aqueous environment. In order to address some of these 

challenges, following area should be improved:  

(1) Enhanced efficacy,  

(2) Reduced side-effects,  

(3) Increased ease of use,  

(4) Polymeric material properties  

Therefore, the current demand for sophisticated drug delivery devices continues to drive 

this development.  

In addition to this, 95% of all newly developed therapeutics have poor pharmacokinetics 

and biopharmaceutical properties [66]. Therefore, there is a great desired to tune the DDS 

that distribute the therapeutically active drug molecule only to the site of action, without 

affecting healthy organs and tissues. The solution of the presented problem is the 

incorporation of therapeutics molecules to the “Biomaterials”. Biomaterial is defined as 
“Any substance (other than a drug) or combination of substances, synthetic or natural in 
origin, which can be used as a whole or as a part of system which treats, augments or 

replaces any tissue, organ, or function of the body” [67]. Biomaterials used in drug 

delivery systems are mainly focused on natural biopolymer-based biometrics, as such as 

collagen, chitosan and hyaluronic acid; synthetic biodegradable polymers, as such as 

poly-lactic acid / poly-glycolic acid (PLA/PGA) copolymers, polyanhydrides and 

synthetic non-biodegradable polymers, like silicone, cellulose derivatives etc.  

For in-vivo applications, controlled release means once a drug which includes the active 

ingredient and polymers for delivery, enters the living body and delivers the active 

ingredient at a precise rate. The therapeutic range is the concentration needed in the 

plasma for effective treatment. In certain cases, it is preferred that the drug is expected to 

release upon external stimuli, as the exact time and dosing can be adjusted to match the 
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patient’s needs e.g. for pain control or treatment of infections, as shown in Figure 3.2(b). 

Several years of research has shown that these controlled release systems can be triggered 

by environmental conditions. There are two ways to trigger release. One is an 

environmental response inside the body and the other is a response externally triggered 

outside the body. As the drug is released over an external triggered period, less frequent 

dosing is required, resulting in an enhanced safety of the system and better patient 

compliance [68]. 

 

 

Figure 3.2: Drug concentration level in blood showing (a) controlled release system (drug concentration in blood lies 

within the therapeutic range, which is bounded below by the minimum toxic concentration and above by the minimum 

effective concentration) and (b) triggered release system. (Pictures: M. Kumar). 

3.2 Mechanism of Drug Release  

Drug release from biodegradable polymers is controlled by: (i) erosion and (ii) diffusion, 

or a combination of these mechanism [69]. These mechanisms are shown below in 

Figure 3.3. They depend on the nature of the encapsulated drugs, the nature of the polymer 

materials and the site of interest. Diffusion-controlled release from polymer membrane 

often occurs in combination with erosion/degradation processes [70]. There is no reported 

evidence for significant PLA degradation in an initial period of time corresponding to 

two-three months [71]. Therefore, it can be assumed that diffusion through the PLA fiber 

membranes would be the predominant mechanism for drug release during an initial period 

of time [72]. The second mechanism which is mainly governed by polymer degradation 

can occur after a period of two-three months or even a couple of years, thus making PLA 

based polymeric material, ideal for biomedical applications [73]. 
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Figure 3.3: Different mechanisms of drug release 

As it is mentioned above, diffusion is the main initial mechanism that occurs when PLA 

fiber membranes are used for drug delivery [71]. Diffusion is especially high for 

hydrophilic drugs, since they have a strong affinity towards aqueous physiological 

environments [64]. The flux (movement) of the drug across the membrane is governed by 

Fick’s first and second law of diffusion [74], which is directly proportional to the 

concentration gradient that takes places from a region of higher drug concentration to a 

region of lower concentration, as shown in Equation 3.1 (steady state diffusion).  𝑱 =  −𝑫 𝒅𝒄𝒅𝒙                                                Equation 3.1 

where, J is the flux across a surface of per unit area (mol/m2sec); D is the diffusion 

coefficient of the drug in the membrane (m2/sec); dc/dx is the concentration gradient of 

the drug molecule across a diffusional path with thickness dx; and a negative sign is used 

to define the direction of diffusion from a region with high concentration to a region with 

low concentration [75].  

The second law of diffusion is the extension of Fick’s I law to a non-steady state. Here, 

at any given instant, the flux is not the same at different cross- sectional planes along the 

diffusion direction x. 

Let consider a slab of unit area, having thickness x along the diffusion distance x. The 

volume of the slab is then x. In a non-steady state conditions, the flux is not equal to in 

(Jx) and out (Jx+x) of the slab. The rate of depletion of the diffusing atoms within this 

elemental volume is (∂c/∂t)x. This can be expressed as:  (𝝏𝒄𝝏𝒕)𝒙 = 𝑱𝒙 − 𝑱𝒙+𝒙 =  𝑱𝒙 −  {𝑱𝒙 + (𝝏𝑱𝝏𝒙)𝒙}         Equation 3.2 
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 𝑱𝒙+𝒙 =  {𝑱𝒙 + (𝝏𝑱𝝏𝒙)𝒙}                Equation 3.3 

 (𝝏𝒄𝝏𝒕)𝒙 =  𝑱𝒙 − 𝑱𝒙 − (𝝏𝑱𝝏𝒙)x          Equation 3.4 

 (𝝏𝒄𝝏𝒕)𝒙 =  − (𝝏𝑱𝝏𝒙)𝒙                 Equation 3.5 

Therefore, (𝝏𝒄𝝏𝒕) =  − (𝝏𝑱𝝏𝒙)                  Equation 3.6 

Now considering Equation 3.1 𝑱 =  −𝑫 𝒅𝒄𝒅𝒙 

Substituting Equation 3.1 in Equation 3.6, (𝝏𝒄𝝏𝒕) =  − 𝝏𝝏𝒙 (−𝑫 𝝏𝒄𝝏𝒙)                    Equation 3.7 

 (𝝏𝒄𝝏𝒕) =  𝝏𝝏𝒙 (𝑫 𝝏𝒄𝝏𝒙)                           Equation 3.8 

This is Fick’s second law of diffusion under unsteady state conditions. If D is independent 

of concentration then Equation 3.8 becomes, (𝝏𝒄𝝏𝒕) = 𝑫 (𝝏𝟐𝒄𝝏𝒙𝟐)                       Equation 3.9 

where, c is the concentration (mol.m-3); x is the length (m) and t is the time (Sec.). 

In order to further understand the mechanism of drug release, Korsmeyer and Peppas 

developed a general model for drug release [76] [77] as shown in Equation 3.10:  𝑴𝒕𝑴∞  = 𝒌𝒕𝒏                                        Equation 3.10 

Taking log both the side (Equation 3.10): 𝒍𝒐𝒈 𝑴𝒕𝑴∞  = 𝒍𝒐𝒈𝒌 + 𝒏𝒍𝒐𝒈𝒕                               Equation 3.11 
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where, 
𝑴𝒕𝑴∞ is the fractional release of the drug, t is the drug release time, k is a constant 

related to the drug diffusion coefficient and n is the diffusional exponent, which is an 

indication for the drug release mechanism (Table 3.1). 

Table 3.1: Analysis of diffusional release mechanisms [76] 

Diffusional release 

exponent (n) 

Time-dependence of 

solute release rate 

(dMt/dt) 

Overall solute diffusion 

mechanism 

0.5 t-0.5 Fickian diffusion 

0.5 < n < 1.0 tn-1 Anomalous (non-

Fickian) diffusion 

1.0 Zero-order (time-

independent) release 

Case-II transport 

n > 1.0 tn-1 Super Case II transport 

 

When fiber membranes are used for drug release measurements, there are several 

assumptions to be considered [78]; (1) the electrospun fibrous membranes, that are 

randomly arranged and constitute of three-dimensional macrostructures with large voids 

among them; (2) the randomly oriented fibrous membranes, could prevent the uniform 

soaking and wetting from the surrounding medium in the first stage. On considering these 

assumptions and following above mentioned mechanism, the diffusion coefficient can be 

determined [79].  

3.3 Advantages of Synthetic Polymers over Natural Polymers 

Synthetic polymers are prepared in a controlled platform with a fixed quantity of 

monomers. Whereas natural polymer productions depends upon environmental and 

seasonal factor [80], so there is a large batch-to-batch variation in the reproducibility of 

polymers. The rate of hydration is nearly uncontrollable because of the difference in 

collection time, region, species and environment condition of the natural polymers. The 

degradation of naturally occurring polymers almost always relies on enzymatic processes. 

There will inevitably be some patient to patient variation in the degradation rate 

depending on the activity of the specific degradative enzyme in each individual. In 

addition to this, natural polymers are exposed to natural environment which lead to 

microbial contamination because of the presence of moisture. Therefore, it is widely 

proposed to use synthetic polymers for biomedical applications [81].  
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3.4 Fabrication of Different Stimuli Responsive Systems for On-
Demand Drug Release 

In certain cases, it is preferred, that the drug is released upon external stimuli, as the exact 

time and dosing can be adjusted to match the patient’s needs. Different types of external 

stimuli (physical, chemical and biological) can also be applied to provide a means for 

controlling “on-off” -release of the encapsulated therapeutic reagents within the fibrous 

membranes. The physical stimuli include e.g. temperature, electric field, magnetic field, 

solvent compositions, light, pressure and sound; while the chemical stimuli consist of e.g. 

pH-value, ions and various ‘‘signaling’’ molecules. Biological stimuli consist of e.g. 

specific biomolecules, like enzymes, amino acids, nucleotides, sugars, fatty acids, 

proteins, and lipids (Table 3.2). These stimuli-responsive systems, which can undergo an 

abrupt volume change in response to small changes in external parameters, such as 

temperature, pH, irradiation, and so on, lead to controlled on-demand drug release. One 

important feature of this type of material is reversibility, i.e. the ability of the polymer to 

return to its initial state upon application of a counter-trigger. They are also termed ‘smart’ 
[82], ‘intelligent’ [83], or ‘environmentally sensitive’ polymers. Figure 3.4 shows 

classification of stimuli of stimuli-responsive polymers.  

 

Figure 3.4: Classification of stimuli of stimuli-responsive polymers (Picture: M. Kumar) 
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3.5 Development of Stimuli-Responsive Nanofibers 

Synthetic biodegradable polymers have proved their potential for efficient drug delivery 

systems. They are efficient at delivering controlled drug release. But some disease 

requires, that the drug level should be accelerated within the therapeutic index (the 

difference between minimum effective level and the toxic level), to treat complex disease 

with ever better performance such as cancer, tumor etc. To do this, we need to design a 

very sensitive stimuli-responsive nanofibrous surface, which will be able to measure 

minute changes in the heterogeneity of the system and subsequently provides a response. 

Figure 3.5 shows a symmetric diagram of stimuli-responsive drug-release from fibrous 

membranes. The amount of active substance transported and dispersed by the fibrous 

membranes can be controlled and externally triggered. This makes now possible to use 

even highly toxic drugs, which can’t be used directly. 

 

 Figure 3.5: A symmetric diagram shows a stimuli-responsive drug-release system (Picture: M. Kumar) 

Recent advancement in material chemistry and nanotechnology, makes externally 

triggered drug release possible by using functional nano-bio-fibers. Implementation of 

such fibers requires the use of biocompatible materials that are susceptible to a change in 

conformation, solubility or alternation of the hydrophilic-hydrophobic balance and 

consequently release of therapeutic molecules. Stimulus responsive polymeric nanofibers 

have the capability to respond to external stimuli by changing their physico-chemical 

properties, such as e.g. volume, water content, refractive index, permeability, and 

hydrophilicity–hydrophobicity balance [84][85]. Table 3.2 shows the effect of various 

external-internal stimuli, release mechanism, advantages, limitations, and their examples 

[12][86].  
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Table 3.2: Some effects of various external stimuli, release mechanisms, advantages, limitations and examples 

Stimulus Release 

Mechanism 

Advantages Limitations Examples 

Thermal Intermolecular 

and 

intramolecular 

hydrogen 

bonding below 

and above the 

LCST 

Ease of 

incorporation of 

active molecules 

Injectability 

issues under 

application 

conditions 

Poly(N-

isopropylacr

ylamide) 

(PNIPAAM) 

Simple 

manufacturing and   

formulation 

Low mechanical 

strength, 

biocompatibility 

issues and 

instability of 

thermolabile 

drugs 

Magnetic 

 

Forces acting on 

the magnetic 

nanoparticles 

are changing the 

shape of 

polymer 

network 

Magnetic 

nanoparticles are 

used as drug 

carrier and stimuli 

for drug–release 

Magnetic field 

need to be 

focused in deep 

tissue 

Iron oxide 

particles, 

NdFeB 

particles 

Electrical Electrophoresis 

of charged 

drugs; diffusion 

of drug from the 

electro-erodible 

polymers. 

Pulsative release 

with changes in 

electric current 

Difficulty in 

optimising the 

magnitude of 

electric current 

Vinyl 

alcohol, 

Allyl amine, 

Acrylonitrile 

Surgical 

implantation 

required 

Light Photodynamic 

release in which 

low energy light 

is used to 

generate 

reactive oxygen 

species from the 

combination of 

Ease of controlling 

the trigger 

mechanism 

Tissue 

penetration depth 

Doxorubicin 

(DOX) 

loaded 

hollow gold 

nanospheres 

(HAuNSs) 

coated with 

Accurate control 

over the stimulus 

Inconsistent 

responses to light 
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light, a 

photosensitizer 

(PS), and 

oxygen. 

polyethylene 

glycol (PEG) 

Ultrasound Microbubbles 

break down 

faster with 

exposer of 

ultasound 

Controllable 

release 

Optimal 

ultrasound 

sensitivity to 

allow reduction of 

transmitted 

energy 

10 – 

Hydroxycam

ptothecin 

loaded PLA 

microbubbles 

Mechanical 

stress 

Applied 

mechanical 

stress deform 

the structures 

Possibility to 

achieve the drug 

release 

Difficulty in 

destress and 

therefore in 

controlling the 

release profile 

Alginate 

pH-value 

 

 

 

Diffusion –
controlled; 

Swelling –
controlled 

Suitable for 

thermolabile drugs 

Lack of toxicity 

data 

Poly(methacr

ylic acid) 

Chemical 

species 

Electron-

donating 

compounds 

cause charge 

transfer.  

Easy to apply Difficulty in 

controlling the 

release profile 

N, N-

diethylacryla

mide 

(DEAA) 

Enzymes 

 

 

Physical 

entanglements 

between 

chemically 

different 

polymer 

networks 

Wide variety of 

enzymes are 

available, which 

can be used as 

important signals 

for site-specific 

delivery  

In-vivo conditions 

differ person-to-

person, therefore 

difficult to 

optimize 

Interpenetrati

ng polymer 

network of 

oligopeptide-

terminated 

poly 

(ethylene 

glycol) and 

dextran 

 Physical stimuli  Chemical stimuli  Biological stimuli  
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 Magnetically-Sensitive Release System 

Magnetic-sensitive release system is an efficient method of delivering drug to a localized 

disease site. This method can also be applied to fibrous membranes. For this, membranes 

are loaded with magnetic nanoparticles (MNPs) and interacts with an oscillating magnetic 

field. This results in the generation of local heat within the nanocarriers, which in turn 

enhance release of the drug. Magnetic nanoparticles are used to generate heat, either from 

hysteresis losses or from Néel or Brownian relaxation processes [87].  

Applying high intensity magnetic field (amplitude >> kA/m) around the MNPs can cause 

thermally induced damages to the surrounding tissues, resulting in pain in the living body 

because of high local heat generation. These thermal effects can be accepted in cancer 

therapy (i.e. cell apoptosis), but they may be not still accepted for a chronic disease 

treatment, such as inflammatory diseases. Therefore, it is recommended to use the lower 

intensity magnetic field (amplitude << kA/m). Hence, induced drug release is controlled 

by a mechanical oscillation, instead of heat generation. In this way, on-demand drug 

release can be obtained without a macroscopic heat generation, thus preventing damage 

from temperature and eddy current loss and safety secondary effect [88]. Figure 3.6 shows 

a symmetric diagram of the magnetically controlled drug release system.  

 

 

Figure 3.6: Symmetric diagram shows magnetically-sensitive release system (Picture: M. Kumar) 
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 Temperature-Sensitive Release System 

Some polymers change their solubility behavior upon heating and cooling [89]; they show 

phase separation at a certain temperature, known as lower critical solution temperature 

(LCST). Polymers, which become insoluble upon heating, have a so-called LCST, and 

which become soluble upon heating, have an UCST. The phase diagram of a 

polymer/solvent mixture vs. temperature shows both: a one-phase and a two-phase region, 

as depicted in Figure 3.7. One can be identified as the critical solution temperature: the 

UCST or LCST; it is the maximum (UCST) or the minimum (LCST) of the phase diagram 

[90]. The LCST is mainly dependent on the hydrogen bonding between water molecules 

and the structure of functional monomer unit of polymers. 

 

Figure 3.7: Schematic illustration of phase diagram for polymer/solvent mixture (a) lower critical solution temperature 

(LCST) behavior and (b) upper critical solution temperature (UCST) behavior (Pictures: M. Kumar). 

The temperature-sensitive polymers generally consist of hydrophobic groups, such as 

methyl-, ethyl- and propyl-group. The common examples are; Poly(N-

isopropylacrylamide) (PNIAAm), Poly(N,N-diethylacrylamide) (PDEAAm) and 

Pluronics. These materials have a lower critical solution temperature (LCST) in the range 

of 25 – 34°C. The temperature sensitivity of polymers is associated with the temperature 

dependence of hydrogen bonding and hydrophobic interactions [91]. At lower 

temperature, the polymer chains dissolve or swell in water because hydrophobic polymer 

chains are highly hydrogen bonded which lower the free energy of mixing. At higher 

temperatures, the hydrogen bonds weaken. At the same time, the tendency of the system 

to minimize the contact between water and hydrophobic surfaces, i.e., the hydrophobic 

interaction, increases [92]. As a result, on heating a polymer solution, a transition from 

swollen to collapsed state occurs at a critical temperature.  



Theoretical Background 

 

Page 31 

 

3.6 Present Challenge and their Solutions 

Because of the adverse side-effect of therapeutic molecules during treatment, there is a 

dire need to change the approach of diagnosis. Even some of the disease treatment 

requires that drugs should be delivered in the feedback controlled loop system. This is 

possible by developing stimuli responsive drug delivery system.  

It is always better to precisely detect and quantify levels of disease by understanding their 

molecular heterogeneity and then accordingly provide treatment. This is a truly complex 

challenge. To do this, it is needed to design a very sensitive functional nano-bio surface, 

which will be able to measure minute changes in the heterogeneity of the system. This 

could be possible by incorporating the temperature sensitive molecules in the nanofibers. 

This leads to the development of functional nano-fibrous membranes, which permit rapid 

detection in the change of biological environments and provide an effective requirement 

for drug release.  
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4 Materials and Methods 

An exhaustive list of utilized chemicals and solvents including their suppliers is provided 

in Table 4.1. General analytical techniques are described below in Section 4.2. More 

specialized procedures relevant for the single parts of this work can be found in the 

respective experimental sections (Sections 7.3, 8.3, 9.3 and 10.3).  

4.1 Materials 

Table 4.1: Utilized chemicals, their abbreviation used and suppliers 

Chemicals Average Mw 

g/mol and 

density (d) 

Abbreviation Supplier; 

Grade/Purity 

2,2,2-Trifluorethanol 

(CF3CH2OH) 

100.04 TFE Carl Roth, 

Germany, 99.8% 

Biotin-XX-NHS  

 

-- BTN Sigma Aldrich, 

Finnland 

Cellulose acetate

 

50,000; d-1.3 CA Sigma Aldrich, 

Germany 

Dichloromethane 

(CH2Cl2) 

84.93; d-1.33 DCM Carl Roth, 

Germany, 99.95% 

Di-sodium hydrogen phosphate 

dihydrate 

(Na2HPO4 . 2 H2O) 

177.99, d-2.1 -- Carl Roth, 

Germany, 99.5% 

Escherichia coli -- E. coli Institute of 

organic 

chemistry; LUH 
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Hydroxypropyl cellulose

 

1,000,000, 

powder, 20 

mesh particle 

size 

HPC Sigma Aldrich, 

99% 

Iron(II) acetate anhydrous 

(C4H6FeO4) 

173.95 FeAce Abcr, Germany, 

97% 

MagSilica  

(Fe3O4@SiO2) 

-- MagSilica® Evonik formally 

Degussa AG, 

Germany 

Methanol  

(CH3OH) 

32.04; d-0.79 MeOH Carl Roth, 

Germany, 99.95% 

Methylene blue trihydrate 

(C16H18ClN3S · 3H2O) 

319.85 MEB Sigma Aldrich 

N-Vinylcaprolactam (C8H13NO) 139.2; d -

1.029 

NVCL Sigma Aldrich, 

Germany 

Polyethylene glycol,  

(C2H4O)nH2O 

1500, d-1.07 PEG 1500 abcr, Germany 

Polylactic acid  

 

-- PLA  

IngeoTM 

biopolymer 

NatureWorks 

USA 

Polyvinylpyrrolidone 

 

360,000 PVP Sigma Aldrich, 

Germany 

Potassium chloride (KCl) 74.56, d-

1.984 

-- Carl Roth, 

Germany, 99% 

Potassium dihydrogen 

phosphate  

(KH2PO4) 

136.09, d-

2.34 

-- Carl Roth, 

Germany, 99% 
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Rhodamine 6G 

 

479.02 Rh6G Sigma Aldrich, 

Germany 

Sodium chloride  

(NaCl) 

58.44; d-2.17 -- Carl Roth, 

Germany, 99.8% 

Tetracycline hydrochloride 

 

480.90 TCH Carl Roth, 

Germany 

Trichloromethane (CHCl3) 119.38; d-

1.48 

TCM Carl Roth, 

Germany, 99% 

Tetrahydrofuran (C4H8O) 72.11;d-0.89 THF Carl Roth, 

Germany, 99.9% 
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4.2 General Analytical Methods 

 Scanning Electron Microscopy (SEM) 

To study specimen morphology scanning electron microscope (SEM) (Zeiss Leo VP 

1455, Germany) is used. In SEM, an electron beam is generated by a filament in a vacuum 

chamber and is focused by electromagnetic lenses to form a beam point. When the 

primary electron beam impinges on the specimen surface, secondary electrons are emitted 

and collected by a detector to generate an image [93]. The high radiation density of the 

electron beam leads to static charges, which can contradict the measurements. This 

happens due to electrons accumulation at the measuring spot interacting with the electron 

beam. These charges occur in non-conductive samples, which can be prevented. For this 

purpose, all samples are coated with a conductive layer of platinum or gold of about 10 

nm thickness (SC7620 Mini Sputter Coater, Quorum Technologies). This coating step is 

very important for obtaining high quality pictures with low noise interference. For the 

measurements, all specimens are operated on an accelerating voltage of 10 KV in high 

vacuum. 

 Ultraviolet-Visible (UV-Vis) Spectroscopy 

To study the unknown concentration of a releasing compound in solution ultraviolet-

visible spectroscopy (UV-Vis) (PerkinElmer, Lambda 650 S, Germany) is used. The basic 

theory behind this is the relationship between the absorbance of a species of interest and 

its concentration in a solution. The theory follows Beer’s Lambert Law as shown below 

in Equation 4.1. 𝑨 = ԑ • 𝒍 • 𝑪                                               Equation 4.1 

where, A is the absorbance, ԑ is the absorbance constant, l is the cell path length and C 

is the concentration of the analyte of solution [94][95].  

The concentration of a compound of interest in a sample can be determined using the 

linear relationship between absorption and concentration in a calibration graph of the 

compound of interest. For the measurements with methylene blue the maximum 

absorption of light was determined at a wavelength of 664 nm. Similarly, for tetracycline 

hydrochloride the wavelength for the maximum absorption of light is located at 358 nm.  

 Thermogravimetric Analysis (TGA)  

To study the thermal degradation, moisture absorbance, the level of inorganic and organic 

components and solvent residues of the specimen thermogravimetric analysis (TGA) 
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(NETZSCH STA 409, Germany) were conducted. TGA examines the mass change of a 

material as function of temperature in the scanning mode or as a function of time in the 

isothermal mode [96][97]. It can also be used to identify types of polymers in polymer 

blends or mixtures by comparison of degradation curves, as well as to identify and 

quantify additives and also give an indication of thermal stability.  

A TGA curve consist of two portions: 1. Horizontal and 2. slanting portion. Horizontal 

portion indicates the region where there is no mass change. This state thermal stability of 

the materials. It reveals the temperature in which substances like polymer, packing 

materials and alloys may be safely used. Whereas the slanting downward portion indicates 

the region which represents weight loss, due to dehydration/rupture/formation of volatile 

products, due to decomposition or dissociation etc.. Hence, the qualitative and/or 

quantitative information regarding the substance can be obtained from thermogram. 

In qualitative analysis: 

 Stability of the substance at elevated temperature 

 Identification of the substances and their purity determinations 

 Decomposition mechanisms of polymers, inorganic salts etc.  

 In quantitative analysis: 

 How much of a substance is present in the sample 

 To find out the amount of filler in a polymeric sample 

Tg values also depend on the molecular weight of polymers according to the Flory-Fox 

equation [98].  𝑻𝒈 =  𝑻𝒈∗ − 𝑲𝑴𝒏                                      Equation 4.2 

where, 𝑇𝑔∗ is the glass transition temperature at infinite molecular weight and K is a 

constant [98]. 

 Differential Scanning Calorimetry (DSC)  

To study fusion and crystallization events as well as to identify the glass transition (Tg) 

temperature and melting temperature (Tm), differential scanning calorimetry (DSC) 

(NETZSCH STA 409, Germany) was used. In DSC technique, the difference in the 

amount of heat required to increase the temperature of a sample and reference is measured 

as a function of temperature. As the temperature increases, an amorphous polymer will 

become less viscous and at some stage, the polymer chains may obtain a freedom of 

motion to rearrange themselves into crystalline domains. This is known as the 
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crystallization temperature (Tc). The transition of crystalline to amorphous forms is an 

exothermic process seen as an exothermic peak in the DSC curve. A further increase in 

the temperature causes the polymer to reach its melting temperature [97].  

A considerable amount of PLA properties depends on its degree of crystallinity. Different 

grade (molecular weight) has a considerable influence on the melting temperature (Tm) 

of polymeric crystals. One of the most generally employed methods to determine the 

crystallinity of PLA is DSC by the following equation. 

 𝑪𝒓𝒚𝒔𝒕𝒂𝒍𝒍𝒊𝒏𝒊𝒕𝒚 (%) = ∆𝑯𝒎∆𝑯𝒎°                        Equation 4.3 

 

Where, ∆𝐻𝑚 is the enthalpy of fusion of the studied sample and ∆𝐻𝑚° is the enthalpy for 

100% crystalline PLA samples being equal to 93.7 J/g [99] assuming no cold 

crystallization taking place during the heating run, otherwise the cold-crystallization 

enthalpy should be subtracted from the melting enthalpy.   

 Micro Raman Spectroscopy (MRS) 

To study molecular information on the specimen, micro Raman spectroscopy (MRS) 

(Bruker Optik GmbH, Germany) was used. In Raman spectroscopy the frequency changes 

arises in molecules, when exposed to electromagnetic radiation [100]. Raman 

spectroscopy provides complementary information on the sample to infrared 

spectroscopy, as the selection rules involved mean that some bands visible in Raman are 

not seen in the infrared and vice versa. One of the important advantages of Raman 

spectroscopy is that the symmetrical bonds such as C-C, C=C and C≡C manifest 
themselves by giving the most intensive bands in the Raman spectra, while being inactive 

in the infrared [101][96]. In this study, such information is important because very small 

amount of TCH is incorporated in nanofibers (see Chapter 8). The exact molecular 

composition, quantitatively and qualitatively can be determined with the MRS. 
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 Contact Angle (CA) 

To study wetting behavior of a specimen by a liquid, contact angle (CA) (Universal, 

Surftens, OEG GmbH, Germany) measurements were performed. In CA measurements, 

a drop of liquid (water) is laid on a nanofibrous membrane. The drop will be in an 

equilibrium position where the three forces involved known as the interfacial tensions 

between solid and liquid are balanced. The interfacial tension between solid, liquid, and 

gas is described by the relationship between the cosine of the drop/surface contact angle 

and the three surface tensions, given by Young’s equation, as follows: 

 𝜸𝑺𝑽 =  𝜸𝑺𝑳 + 𝜸𝑳𝑽 (𝑪𝒐𝒔𝜽)                            Equation 4.4 

 

where, γSV is interfacial energy between solid and vapor, γSL is interfacial energy between 

solid and liquid and γLV is interfacial energy between liquid and vapor, respectively [102].  

If the substrate is hydrophobic, then θ > 90°, since the droplet does not wet the surface. 

On a hydrophilic substrate (θ < 90°), the droplet partially or fully wets the surface. 

Figure 4.1 shows components of a three phase system for contact angle measurements. 

 

 

Figure 4.1: Schematic illustration of the contact angle measurements on fibrous membranes (Picture: M. Kumar) 
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5 Biopolymers 

In literature and patents there is no consensus on the exact definition of the generic terms 

biopolymers and bio-based which appear to have multiple and overlapping meanings.  

The term “biopolymers” has been defined in a variety of ways by researchers in different 
disciplines. In general, biopolymers fall into two principal categories [103]: 

(1) Polymers that consist (partly) of bio-based (renewable) raw materials, for example 

plants, animals, microorganisms etc. 

(2) Materials, that are in some way biodegradable  

Bio-based term applies to polymers which derive from renewable resources. ASTM 

(American Society for Testing and Materials) defines a bio-based material as “an organic 

material in which carbon is derived from a renewable resource via the biological process”. 

Currently, there are no standards on what can be called “bio-based product”. However, 
there are objective ways to quantify the bio-based content of a product. The bio-based 

content of a biopolymer can be determined by calculating the number of carbon atoms 

that come from the short CO2 -cycle, that is, from biomass as raw material. It is known 

that carbon-14 (14C), which has a half-life of about 5700 years, found in bio-based 

materials but not in fossil fuels. Thus, “bio-based materials” refer to organic materials in 
which the carbon comes from non-fossil biological sources. The detection of 14C is 

indicative of a bio-based material.  

Biopolymer is a current trending topic in research as confirmed by the increasing number 

of scientific publications as reported by ISI Web of knowledge. Figure 5.1 shows the 

exponential trend of the scientific publications from the year 2000 up to 2016.  

 

Figure 5.1: Number of scientific papers published on biopolymers (Source: Web of Science accessed on 6 March 2017) 
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5.1 Classification of Biopolymers  

Biopolymers can be divided also into two broad groups, namely biodegradable and non-

biodegradable polymers. Biodegradable polymers are further categorized in two main 

groups, 1) agro-polymers 2) biopolyesters. A broad classification of biopolymers is 

shown in Figure 5.2 [104]. Examples of biodegradable polymers are cellulose, wheat and 

PLA and examples of non-biodegradable polymers are Epoxy, PU (Polyurethane), PVC 

(Polyvinyl chloride) etc. Further classifications of biodegradable polymers are shown in 

Figure 5.3. 

 

 

Figure 5.2: A broad classification of biopolymers 

 

Figure 5.3: Classification of the biodegradable polymers (Adapted from Reference [105].) 
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Some of the mentioned biopolymers can be derived from both agro-polymers and 

biopolyesters resources, such as PLA (Polylactic acid). Although PLA is largely produced 

by fermentation from renewable resources such as starch and sugarcane, it can be 

synthesized also from fossil fuels.  

5.2 Poly(lactic acid) (PLA) 

In today’s world of “green chemistry”, polymers from renewable resources are attracting 
increasing interest as potential substitutes for petrochemical-based materials in many 

applications [106]. The most attractive and commonly used synthetic polymers are 

polylactic acid (PLA), polyglycolide (PGA) and polylactic-co-glycolic acid (PLGA), 

which carry all important characteristic properties of a biodegradable biomaterial [107]. 

Furthermore, these materials are commercially available in different compositions and 

molecular weights, which allow the control of polymer degradation [108]. 

Polylactic acid (PLA) is at present, represents front-runner biocompatible thermoplastic 

aliphatic polyester [98], as an alternative to conventional polymers, such as polypropylene 

(PP), polyethylene terephthalate (PET) and polystyrene (PS). PLA offers environmental 

benefits, such as low energy to produce and reduced green-house gas production. It 

belongs to polyester family, characterized by their potentially hydrolysable ester bonds. 

The building block, or monomer, for PLA synthesis is lactic acid. Lactic acid is a chiral 

molecule, this means that two optical isomers or enantiomers exits. One is known as L-

(+)-lactic acid and the other is as the D-(-)-lactic acid, and a mixture of both, the racemic 

lactic acid as shown in Figure 5.4. 

 

 

Figure 5.4: Structures of mono D-, L- and DL-lactic acid 
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Lactic acid (2-hydroxypropionic acid), is synthesized by fermentation process using 

renewable resources such as glucose. These sugar feedstocks are drawn from agricultural 

(potato skins and corn) and dairy wastes. The lactic acid monomers produced by 

fermentation can be used to create either low or high molecular weight polylactide 

polymers. Variation of the reaction conditions, such as temperature and choice of catalyst, 

provides control over the molecular weight of the polymer. Figure 5.5 shows the life cycle 

of PLA. 

 

 

Figure 5.5: PLA life cycle  

 

PLA can be prepared by (a) direct condensation of lactic acid and (b) ring-opening 

polymerization [109] of the cyclic lactide dimer. Direct condensation route of lactic acid 

limits the high molecular weight PLA, because of the difficulty in removing trace amount 

of water in late stage of polymerization. Therefore, ring-opening polymerization (ROP) 

of lactic acid is favorable by using different initiator such as Sn(II)2-ethylhexanoate 

(Sn(Oct)2) [110], Zn-Lactat [111], Al-Isopropoxid [112] etc. Out of these initiator, 

Sn(Oct)2 is preferred because of the high reaction rate of the polymerization, the low 

degree of racemization, solubility in common organic solvents and its commercial 

availability [113][114]. Several mechanisms have been proposed for the Sn(Oct)2 induced 

polymerization [115]. According to the most recent results [116], the polymerization 

mechanism of PLA using Sn(Oct)2 initiator is shown below in Figure 5.6.  
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PLA-based materials have been extensively investigated for biomedical applications, 

such as controlled drug release, packaging materials and biosensors, as shown in       

Figure 5.7. The reason for this is, that the final degradation product of PLA, lactic acid, 

is a metabolite and can be easily eliminated from the human body via the Krebs cycle. 

Even lactic acid is biodegraded by microbes into carbon dioxides, methane and water 

[117]. The use of PLA is interesting due to its hydrolytic degradability and low toxicity 

[118]. Figure 5.8 show digital image of PLA pellets. In this thesis, the focus is in the 

development of PLA based fibrous membranes with on-demand drug delivery capability 

and biosensors applications. 

 

Figure 5.7: Some of the biomedical applications of PLA (Source: Web of Science accessed on 20 Dec 2016) 

 

Figure 5.8: PLA 6202 pellets (Picture: M. Kumar). 
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5.3 PLA Advantages and Disadvantages  

The properties of PLA can be tailored by the ratio of lactic acid isomers (L and D lactic 

acid) used. 

Essential advantageous properties of PLA are: 

1. It is obtained from a renewable agricultural source (corn). 

2. Its production consumes quantities of carbon dioxide (low environmental 

impact). 

3. It is recyclable and compostable. 

4. It is degraded by the human body. 

5. It has high modulus of elasticity. 

6. It has high transparency (low degree of crystallinity). 

7. It is water, oil, fat, and some alcohol resistance. 

However, PLA has some disadvantageous properties:  

1. It is strong hydrophobic. 

2. It has poor thermal stability (glass transition temperature 45-65°C, melting 

temperature 150-160°C). 

3. It is low resistance to solvents, acids, and bases. 

There are several approaches to improving hydrolysis resistance and/or chemical 

resistance in PLA materials, such as: 

1. End group modification 

2. Blending 

3. Co-monomer 

4. Minimizing residual monomer 
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5.4 Polyethylene Glycol  

Polyethylene glycol (PEG) is a hydrophilic, non-ionic polyether. It is synthesized from 

ethylene oxide via an anionic ROP in the presence of small amount of water and metal 

hydroxides (MOH). Synthesis of PEG is shown in Figure 5.9. PEG is widely resistant to 

hydrolytic and enzymatic degradation, yet susceptible to oxidation of its terminal 

hydroxyl group and subsequent chain shortening by a single oxyethylene unit. PEG 

influences the pharmacokinetic properties of a multitude of drugs and biologically active 

compounds such as proteins, DNA, and also small molecules. Therefore, it play a key 

role in many biomedical applications [119].  

 

Figure 5.9: Polyethylene glycol preparation by using ethylene oxide polymerization 

PEG is one of the most widely used biocompatible polymers. It is mainly used because it 

improved solubility, controlled permeability through biological barriers and longevity in 

the blood stream [120]. It is used for surface modification, to provide protein- and cell- 

rejecting properties, and to control electro-osmosis. The main property of PEG is its 

“exclusion effect” or “steric stabilization effect”. It is well accepted that heavy hydration, 
good conformational flexibility and high chain mobility are principally responsible for 

the exclusion effect [121][122]. PEG work only as a hydrogen bond acceptor, not as a 

donor [123].  

PEG molecules are completely soluble in water at low temperature, whereas it loses its 

solubility at elevated temperatures [124]. This happens because at lower temperatures, 

the solubility of non-polar substances is increased due to a formation of a relatively 

ordered water layer around the non-polar substance. The structure is preserved to maintain 

as many hydrogen bonds between the water molecules as possible, despite the presence 

of the solute. At higher temperatures, where entropy becomes more important, the 

solubility decreases [124].  

PEG is most popularly used polymer because of many advantages, such as good 

hydrophilicity, flexibility, antiphagocytosis against macrophages, nontoxicity and 

biocompatibility [125]. 
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5.5 N-vinyl Caprolactam 

N-vinylcaprolactam (NVCL) is one of an important group of vinyl compounds. It is a 

non-ionic, nontoxic, water soluble, thermosensitive and biocompatible monomer. NVCL 

finds wide applications for biomedical applications. NVCL shows of its stability against 

hydrolysis, which makes it more biocompatible than other existing thermo-responsive 

polymer such as (N-isopropylacrylamide, (NIPAAm)). It is dissolved in both polar and 

non-polar organic substances. Solvents such as benzene, hexane, isobutanol, isopropanol 

are used with a free radical initiator for the solution polymerization of N-

vinylcaprolactam [126]. The mechanism for the synthesis of NVCL is shown in         

Figure 5.10. Table 5.1 shows physical properties of NVCL monomers. 

 

 

 

Figure 5.10: Mechanism for the preparation of NVCL (Adapted from Reference [127]) 
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Table 5.1: Characteristics of N-Vinylcaprolactam NVCL. 

 

Molecular Formula C8H13NO 

Appearance White Crystals 

Melting point 35-38°C 

Density, g/mL at 25°C 1.029 g/mL 

Viscosity 6.16 mm2/s 

Stability Stable at RT 

Solubility Water, alcohols (methanol, ethanol, 

propanol, etc.), amides (DMF), 

chlorinated hydrocarbons (CH2Cl2) 

and aromatic hydrocarbons (toluene, 

benzene, xylol). 

5.6 Hydroxypropyl Cellulose 

Hydroxypropyl cellulose (HPC) is a non-ionic cellulose derivative which can be 

synthesized by substituting with hydroxypropyl ether groups [128]. HPC could also be 

used in the field of biomedical application such as drug delivery [129][130], because it is 

a physiologically inert substance and is considered to be non-toxic. A mechanism for the 

preparation of HPC is shown in Figure 5.11.  

 

Figure 5.11: Structure of Hydroxypropyl cellulose (HPC) (Adapted from Reference [131]) 
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HPC- molecule is more lipophilic than other water-soluble cellulose ethers. This makes 

it compatible with a large number of anionic, cationic, non-ionic, and amphoteric 

surfactants.  It shows an unusual combination of properties such as [132]: 

1. Solubility in organic solvents at any temperature 

2. Hydration in cold water 

3. Insolubility in hot water 

4. Thermoplasticity 

The stability of HPC against process-related changes of temperature, pH value and shear 

force is high. The HPC- molecules react to these parameters by temporary and reversible 

changes in its physical state. Upon removal of these factors, the original texture can be 

retained. Table 5.2 shows some of the characteristics of HPC molecule. 

 

Table 5.2: Characteristics of Hydroxypropyl cellulose (HPC) 

Origin Wood pulp or cotton  

Chemical composition Linear molecule of β-D-glucose with 

uncharged hydrophilic (CH2CHOHCH3) 

substituents 

Fiber content 97% soluble dietary fiber 

Toxicology No 

Solubility in H2O T = 0-38°C: high, 100% soluble 

T > 40-45°C: insoluble (precipitation of 

dissolved HPC) 

Solubility in other solvents e.g. Methanol, Ethanol, Propylene glycol 

Appearance of an aqueous 

solution 

Water-clear, transparent 

pH stability High (from pH 2-11) 

Film formation High 

Gelation No 

Emulsion stabilization Support of emulsifiers 

Surface activity High, good foam generator 

Protein activity Low 
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6 Electrospinning of PLA 

The transformation of PLA into fibers structures depends on structural changes in the 

polymer during processing (physical, systemic and solution). There are distinct features 

of each of these properties, subsequently reflected in fiber morphologies.  

6.1 PLA Solution Property 

 PLA Solubility 

The solubility of a biopolymer is determined by its morphology (polarity, presence or 

absence of crystallinity, etc.) and composition. Generally, biopolymers with low 

crystallinity are easy to dissolve than those of high crystallinity. A good solvent for PLA 

is Dichloromethane (DCM) and trichloromethane (TCM). PLA is also soluble in some 

other organic solvents like tetrafluoroethylene (TFE), tetrahydrofuran (THF). PLA is 

insoluble in water, some alcohols (e.g. ethanol, methanol) and alkanes [133]. Table 6.1 

shows solubility of PLA with different solvent and their fiber formation ability [134].  

Table 6.1: Solubility of PLA with different solvent. 

 

Biopolymer Product 

Code 

Solvent Mol. Mass 

of Solvent 

(g/mol) 

Solubility Fibers 

formation 

PLA 6202 Dichloromethane 

(DCM), CH2Cl2 

84.9 Soluble and 

transparent 

Yes 

Trichloromethane 

(TCM), CHCl3 

119.4 Soluble and 

transparent 

Yes 

Tetrahydrofuran 

(THF), C4H8O 

72.1 Partially 

Soluble  

Yes 

2,2,2-Trifluorethanol 
(TFE), C2H3F3O 

100 Soluble and 

opaque 

Yes 

Methanol (CH3OH), 32 Not soluble No 

Ethanol (C2H5OH) 46 Not soluble No 

Water (H2O) 18 Not soluble No 
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 PLA Miscibility 

For the development of functional biodegradable materials, the two most important issues 

should be satisfied: (1) miscibility or compatibility of the biopolymer blend, and (2) 

suitable solvent. The miscibility of PLA biopolymer with another biopolymer is presented 

in Table 6.2. These functional materials improve the end-use properties of biodegradable 

polymers.  

Table 6.2: Miscibility of PLA (6202) with other biopolymers 

6.2 PLA Fiber Formation by Electrospinning 

8 wt% PLA was dissolved in chloroform (CHCl3) solvent at room temperature and stirred 

for 10 hours to obtain a uniform viscous solution. The used concentration of 8 wt% was 

an experience value (choice) of author, which was obtained from more than 100 PLA 

electrospun samples. PLA electrospun fibers were possible to fabricate at concentration 

range between 1 wt% to 20 wt%. This 8 wt% of PLA viscous solution was filled in a 3mL 

plastic syringe equipped with a blunt end stainless steel needle having a size of 0.8022 

mm2 (217/8 G’’).  

During electrospinning at room temperature, a positive high voltage was maintained 

between needle (as a positive terminal) and stainless steel flat surface covered with 

aluminum foil (as negative terminal). Under this applied electrostatic field, the polymeric 

hemi-sphere droplet surface gets elongated to form the “Taylor cone” and when it reaches 
the critical point, the repulsive force overcomes the surface tension of the polymeric 

solution. Hence, the charged jet was emitted from the end of Taylor cone and converted 

PLA (6202) + 

polymers 

Molecular 

weight 

Provider Solvent Miscibility 

Polyethylene 

glycol (PEG) 

1500 abcr TCM (CHCl3) Miscible 

(transparent) 

N-

vinylcaprolactam 

139.19 Sigma 

Aldrich 

TCM (CHCl3) Miscible 

(transparent) 

Hydroxypropyl 

cellulose (HPC) 

1,000,000 Sigma 

Aldrich 

TFE (C2F4) Miscible 

(opaque) 

Cellulose acetate 

(CA) 

50,000 Sigma 

Aldrich 

TFE (C2F4) Miscible 

(opaque) 

TCM: Trichloromethane (CHCl3); TFE: Tetrafluoroethylene (C2F4). 
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into a web of fibrous material which is collected on the grounded substrate. In this 

experiment, single-nozzle electrospinning apparatus was used as described in section 

2.3.1. An electrode distance of 12 cm, a flow rate of 1 ml/h, and a voltage of 10 KV (at 

the syringe) gives PLA fibers with diameters approximately of 6 µm. These electrospun 

membranes were then peeled off from the collector and kept for drying at room 

temperature to remove the residual solvent [135]. Figure 6.1 show 3 D image of the PLA 

electrospun fibrous membrane in CHCl3 solvent.  Figure 6.2 shows SEM image of a single 

PLA fiber. 

 

Figure 6.1: 3D image of PLA electrospun fibrous membrane (Picture: M. Kumar) 

 

    

 

 

 

 

 

 

 

Figure 6.2: SEM image of single PLA fiber in chloroform solvent (Picture: F. Dencker) 

3 µm 
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The choice of solvent, polymer molecular weight, and parameters of electrospinning, 

strongly influences the fibers diameter and their morphology. Another organic solvent 

like, DCM, THF and TFE can also be used for electrospinning of PLA but the morphology 

of the fibers will be different. For example, 8 wt% PLA fibers in DCM solvent are porous 

because the applied voltage is low enough and the solvent is more volatile (Figure 6.3 a), 

[136], whereas PLA fibers pores are covered in THF solvent (Figure 6.3 b).  

 

Figure 6.3: SEM micrograph of PLA electrospun fiber in (a) DCM solvent and (b) THF solvent  

For average fibers diameter more than 50 measuring points per fibrous membrane are 

used. As discussed above, PLA fibers are porous, which provide additional sites for 

adsorption. The porosity is induced as a result of condensation of moisture in the air. 

 

Figure 6.4: SEM micrograph shows electrospun fiber of (a) 8 wt% PLA in DCM (b) 8 wt% PLA in TCM (c) 20 wt% 

PLA in TCM and (d) 0.1 g/mL PLA in TFE solvent 
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Figure 6.4 shows the effect of different solvents (DCM, TCM and TFE) on PLA fibers 

porosity. It is observed that 8 weight% of PLA in DCM and TCM solvent have an ability 

to form spherical-like pores, whereas pores of 20 weight% of PLA in TCM solvent 

changed from spherical to spindle-like shape because of increased concentration. It is also 

observed that pores of 0.1 g/mL PLA in TFE solvent are vanished [137]. 

 Concentration Effects 

By analyzing different concentration of PLA samples (8 wt% in CHCl3, 8 wt% in C2F4, 

10 wt% in CHCl3 and 20 wt% in CHCl3), where the distance between the tip of the needle 

and collector was 20 cm, applied voltage was 15 KV and the feed rate was 1 ml/h, it was 

found that, by increasing the concentration, fibers with higher diameters were obtained, 

as shown in Figure 6.5. Increased concentration means that the viscosity is strong, which 

brings greater resistance of the solution to be stretched by the charges on the jet [29].  

Optimal concentration is required to yield fibers without beads.  Higher concentration => 

higher diameter. 

 

Figure 6.5: Average fibers diameter distribution v/s concentration of PLA 

 Voltage Effects 

By analyzing 8 wt% PLA sample, where the distance between the tip of the needle and 

collector was 20 cm and the feed rate was 1 ml/h, applied voltage was varied (10 KV, 15 

KV, 18 KV, 20 KV and 22 KV), it was found that by increasing the applied voltage, fibers 

with lower diameters were obtained, as shown in Figure 6.6. This effect occurs because- 

the fibers were more stretched, due to high electric field strength (greater columbic forces) 

between the needle tip and collector, and also encourage faster solvent evaporation [29]. 
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If the voltage applied is too high, the increased instability of the jet can result in beads 

formation. Higher voltage => lower diameters. 

 

Figure 6.6: Average fibers diameter distribution v/s applied voltage for PLA 

 Feed Rate Effects 

By analyzing 8 wt% PLA sample, where the distance between the tip of the needle and 

collector was 15 cm, applied voltage was 15 KV and the feed rate was varied (0.5 ml/h, 

1 ml/h, 2 ml/h and 2.5 ml/h), it was found that, the average fiber diameters were increased, 

as shown in Figure 6.7. When the feed rate is increased, there is a greater volume of 

solution that is drawn away from the tip of the needle, which increasing the fiber diameter 

[29]. More solution => higher diameter.   

 

 

Figure 6.7: Average fiber diameter distribution v/s PLA flow rate 
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6.3 Surface Modification of PLA Electrospun Fibers 

In general, surface properties can be divided into two major groups: (1) physical and (2) 

chemical. Physical properties include the morphology (roughness and smoothness), 

specific surface area and surface polarity. Chemical properties include elemental, 

molecular and functional group composition. In term of PLA fibers surface modification, 

the use of a surface treatment is desirable to promote wettability and increase the 

interfacial bonding by removing native surface material and hence leave behind a more 

active functional group. 

Therefore, two methods are adopted to alter the surface of PLA electrospun fibers: (1) 

Plasma treatment and (2) blending, as shown in Figure 6.8. 

 

 

Figure 6.8: Surface modification technique applied on PLA electrospun fibers (A, C) Co-electrospinning and (B) 

Plasma treatment (Picture: M. Kumar) 

 

Plasma jet is applied on PLA fibrous membranes. The distance between the plasma needle 

and sample (PLA membranes) is 6 centimeters. PLA fiber decreases their hydrophobicity 

as shown by a decrease in water contact angle from 130° to 100°. SEM analysis showed 

morphology of PLA fiber retained even after plasma etching (Figure 6.9).  In order to 

further decrease in hydrophobicity, blending of PEG and NVCL to PLA is applied. PLA-

PEG-NVCL fibrous membrane became hydrophilic as shown by a decrease in water 

contact angle from 130° to 50.8°. Therefore, blending method is applied for the further 

development of nano-bio-fibrous materials.  
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Figure 6.9: SEM micrograph of PLA electrospun fibers (a) before plasma treatment and (b) after plasma treatment 

6.4 BET Surface Area 

The BET surface area of the PLA pellets (bulk) is 0.3 m2/g, however, PLA fibers in TCM 

solvent have 86% increase in surface area from 0.3 to 2.1 m2/g. PLA-PEG composite 

fibers in TCM solvent shows 93% increase in surface area from 0.3 to 4.5 m2/g compared 

to PLA pellets. The characteristic of fibrous structure consists of interparticle spacing and 

more number of voids distribution which leads to increase in surface area.                     

Figure 6.1 shows increment in surface area from PLA pellets to PLA fibers to PLA-PEG 

composite fibrous membrane. 

 

 

Figure 6.10: BET surface area of PLA (a) Pellets, (b) PLA fibers and (c) PLA-PEG composite fibers 
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6.5 PLA Electrospun Fibers: Crystallinity 

The control of the polymer fiber crystallinity is important, because it can strongly affect 

the solubility as well as degradation rate, which are vitally important for the biomedical 

applications. By changing the morphology of PLA, it is possible to tune the degree of its 

crystallinity [138]. The crystalline structure of PLA is investigated by X-ray diffraction 

(XRD) analysis. The diffraction pattern of PLA pellet and its fiber is illustrated in      

Figure 6.11. A diffuse peak close to 2θ = 17.8° is observed for the crystalline part of PLA 

pellets, whereas PLA fibers does not show sharp peak. These results suggest that PLA 

fibers are amorphous in nature, whereas PLA pellets are semi-crystalline.  

 

 

Figure 6.11: XRD spectrum of PLA fibers show amorphous nature whereas PLA pellet show semi-crystalline 
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7 Preparation of Magnetic PLA Fibrous Membranes 

7.1 Abstract 

Polylactic acid (PLA) is blended with Polyethylene glycol (PEG) and magnetic 

nanoparticles (MNPs). A series of mixtures are converted to fibers via electrospinning at 

room temperature. The fiber diameter of PLA decreases on blending with PEG from 6 

down to 3 micrometers and with PEG + MNPs down more ca. 1 micrometer. The 

thermogravimetric study confirms the effect of blending, enhancing the stability on 

adding PEG to PLA. The magnetic properties of polymer fibers containing different 

concentrations of MNPs are studied by vibrating sample magnetometer (VSM). The fiber 

blends show proportionally reduced saturation magnetization compared to pure magnetic 

nanoparticles. The MNPs incorporated PLA-PEG nanocomposite mat show 

magnetization and therefore promise the possibility for temperature effects, such as 

hyperthermia treatment. 

7.2 Introduction 

Polymer fiber containing magnetic nanoparticles (MNPs) open novel opportunities in the 

biomedical field such as hyperthermia treatments [139], biosensors [140], magnetically 

triggered drug delivery [141][142][143] and beyond. This is the one most promising 

strategies, as a system consists of magnetic nanoparticles and suitable therapeutic agent 

into a biocompatible polymer composite [144][145][146]. Designing such composites to 

be nontoxic with a proper degree of degradability and having an active responses are 

considered to be a primary requirement [147]. For this purpose, biopolymer-based fibers 

prepared by the electrospinning technique have been most widely studied because of high 

aspect ratio, high surface area, high porosity and outstanding properties [148].  

Due to good biocompatibility, biodegradability and nontoxicity, polylactic acid (PLA) is 

being used in biomedical and ecological applications [149][150][151]. Polylactic acid 

electrospun mats are porous and cylindrical [152] and it is well known, that they are 

hydrophobic [153], because of the presence of methyl groups in its chemical structure. 

Hendrick and Fey also found, that water contact angle can be decreased by blending with 

a water-soluble polymer such as polyethylene glycol (PEG) which further increases 

solubility [154]. The magnetic property is a vital requirement for the use of the material 

in biomedical applications, especially for hyperthermia therapy. Therefore, MagSilica® 

is carefully chosen as nanometric heat-generating sources, which can be triggered 

remotely by the utilization of an external alternating magnetic field. Silica-coated 

magnetic nanoparticles (Fe3O4@SiO2 core-shell NPs) are hydrophilic, nontoxic and 
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provide good stability under aqueous conditions [155]. The main advantage of such 

magnetic polymer fibers is local and precise heating of the membranes, which is ideal for 

hyperthermia treatment. Such advanced materials could also be used as “smart” fibers 

and fabrics for protective clothing and in first-response personnel health care [156]. 

Figure 7.1 shows magnetisation of PLA-PEG-MNPs3 composite fibrous membrane. 

 

 

Figure 7.1: PLA-PEG-MNPs3 composite fibrous membrane in distilled water shows the magnetic attraction by the lab 

magnet [155] 

With this in mind, here magnetic polylactic acid fiber membrane by means of 

electrospinning technique is developed. To enhance the hydrophilicity, PEG is 

incorporated. And to gain the magnetic properties MagSilica® is incorporated. The 

processing tools to produce magnetic fibers are described and their magnetic properties 

are investigated for biomedical applications.  

7.3 Experimental 

 Materials Used 

All chemicals were of analytical grade and used without prior treatment. Polylactic acid 

6202 (PLA) was provided by Prof. Dr. –Ing. Hans-Josef Endres, Institute for Bioplastics 

and Biocomposites (Ifbb) Hannover, Germany. MagSilica® 50 (Fe3O4@SiO2) was 

purchased from Evonik formally Degussa AG, Germany. Poly(ethylene glycol) 1500 was 

purchased from Abcr, Germany and chloroform from Roth, Germany. 
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 Material Characterization 

7.3.2.1   Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy (SEM) (Zeiss Leo VP 1455) was used to analyze the 

surface morphology and diameter of the prepared fibers. Three samples were prepared; 

in the first sample PLA fibrous mat, in the second sample PLA-PEG blends fibrous mat 

and in the third sample PLA-PEG-MNPs fibrous mat. All specimens were vacuum coated 

with gold/platinum before taking SEM image to minimize sample charging.  

7.3.2.2   Thermogravimetric Analysis (TGA)  

To study the thermal degradation, moisture absorbance and solvent residues of the 

polymer fibers TGA was conducted using thermogravimetric analyzer (NETZSCH STA 

409, Germany) under argon atmosphere. The heating rate was 10 K/min, and the scanning 

range was from 40°C to 500°C. All specimens with a weight of approximately 8 – 10 mg 

were used.  

7.3.2.3  X- ray Diffractometer (XRD) 

X-ray powder diffraction (XRD) patterns of injected specimens were obtained using a 

Bruker D2 powder diffractometer with CuKα radiation (λ = 1.5406 Å, power = 40 KV, 

2θ = 60°).  

7.3.2.4   Vibrating Sample Magnetometer (VSM) 

The magnetic properties (M–H curves) of pure MNPs and PLA-PEG-MNPs composite 

fibers, were evaluated by Vibrating Sample Magnetometer (VSM) (EG&G Princeton 

Applied Research Model 4500). All the specimens were measured at a room temperature.  

 Synthesis of PLA, PLA-PEG and PLA-PEG-MNPs Composite Fibers  

Three sets of viscous polymer solution were prepared, in one set, 8 wt% PLA was 

dissolved in trichloromethane (TCM) and stirred for 10 hours at room temperature. In the 

second set, PEG (1:1 wt%) was added to the prepared PLA solution and stirred for 5 

hours. And in the third set, MNPs dispersed in methanol (1mL) were made into composite 

solutions with PLA-PEG solution. The concentrations of MNPs in PLA-PEG were 

determined at 1, 2 and 3 wt% (referred as MNPs1, MNPs2 and MNPs3, respectively). 

The blend solution was ultrasonically agitated for 2 minutes. To obtain a homogeneous 

and stable nanocomposite solution, they were stirred for another 5 hours. This 

nanocomposite suspension was filled in a 10 mL plastic syringe equipped with a blunt 
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end stainless steel conducting needle having a size of 0.80  22 mm2 (21  7/8 G’’) and 
connected to electrospinning unit. Table 7.1 shows performed parameters for 

electrospinning.    

Table 7.1: Summary of electrospinning conditions 

 

Sample Concentration 

[ wt %] 
Flow 
rate 

[mL h
-1

] 

Voltage 

[kV] 
Height 
[cm] 

Rotor 

Speed 

[m/s] 

Mean 
Diameter 
[µm±SD] 

PLA 8 1 12 10 10 6.39 ± 0.02 

PLA-PEG 8-8 1 12 12 10 2.90 ± 0.34 

PLA-PEG-

MNPs1 

8-8-1 2 15 15 12 1.12 ± 0.29 

PLA-PEG-

MNPs2 

8-8-2 2 15 15 12 0.87 ± 0.39 

PLA-PEG-

MNPs3 

8-8-3 2 15 15 12 1.33 ± 0.45 

 

7.4 Results and Discussion of Magnetic PLA Fibrous Membranes 

 Scanning Electron Microscopy (SEM)  

The morphology of the electrospun fibers (Figure 7.2) shows that prepared fibers are 

porous, bead-free, interconnected and smooth surface with almost uniform diameters. 

Figure 7.2a revealed that electrospun PLA fibers are porous and cylindrical [152]. The 

porous structure is induced by phase separation, resulting from the rapid evaporation of 

the solvent (CHCl3) during electrospinning. The mean diameter of the fibers is 6.4 ± 0.02 

µm. Figure 7.2b revealed that PLA- PEG blend fibers with a diameter of 2.9 ± 0.3 µm. A 

significant decrease in fiber diameter was observed when PEG copolymer is incorporated 

into PLA solution by physical blending. This is expected because PEG works as a 

plasticizer which attributes to decrease in electrospun fiber diameter [157]. In addition, 

incorporation of PEG to PLA decreases the viscosity of the polymer solution because of 

the flexible PEG chains, which led to the production of smaller fiber diameter. The 

resultant fiber mat shows smooth and cylindrical morphology. Figure 7.2(c-e) revealed 

that the PLA-PEG-MNPs blends fibers with a mean diameter of 1.1 ± 0.3 µm, 0.9 ± 0.4 

µm and 1.3 ± 0.5 µm for MNPs1, MNPs2 and MNPs3, respectively.  While the addition 
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of MNPs up to 2% progressively and gradually decreased the fiber diameter, the addition 

of 3% increased the fiber diameter. It is considered that other factors such as solution 

electrical conductivity and viscosity should be changed with the addition of MNPs, which 

affected the fiber diameter significantly. Figure 7.3 revealed the mean fibers diameter 

distribution. It is observed that the MNPs are randomly separated into the polymeric 

composite fibers due to segregation effect [158].  

 

 

Figure 7.2: Scanning electron micrographs for electrospun (a) PLA fibers (b) PLA-PEG blend fibers (c) PLA-PEG-

MNPs1 blend fibers (d) PLA-PEG-MNPs2 blend fibers and (e) PLA-PEG-MNPs3 blend fibers [159]. 



Preparation of Magnetic PLA Fibrous Membranes 

 

Page 64 

 

 

Figure 7.3: Average mean fibers diameter measurement of (a) PLA fibers (b) PLA-PEG blend fibers (c) PLA-PEG-

MNPs1 blend fibers (d) PLA-PEG-MNPs2 blend fibers and (e) PLA-PEG-MNPs3 blend fibers [159]. 

 Energy Dispersive X-ray (EDX) 

EDX was carried out to confirm the element compositions (C, Si and Fe) of the PLA-

PEG-MNPs1 fiber blends. The result is shown in Figure 7.4 and indicates the presence of 

MNPs in the fibers without any other impurity. 

 

Figure 7.4: Energy dispersive x-ray micrographs for electrospun PLA-PEG-MNPs1 composite fibers 
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 Thermal Analysis 

The thermal behavior of electrospun fibers is investigated by TGA analysis, as shown in 

Figure 7.5. Figure 7.5a revealed single step weight loss of 92.1% from PLA fibers in the 

temperature range of 240°C and 375°C, which is in agreement with previous studies by 

M. Liu and co-worker [160]. The weight losses below 200°C can be assigned to 

physisorbed water, which is 1.2%. This result indicates that PLA has a higher 

decomposition temperature.  In order to improve the hydrophilicity, PEG is incorporated 

[161] which shows two-step weight loss as shown in Figure 7.5b. In the first interval, 

there is 55% weight loss in the temperature region from 225°C to 370°C which is 

corresponding to the PLA. In the second interval, there is 39% weight loss in temperature 

region 370°C to 450°C which is corresponding to PEG. From TGA analysis of PLA and 

PLA-PEG fibers, it is observed that blend fibers of PLA-PEG are more stable than pure 

PLA fibers. This may be due to the plasticizer effect of PEG molecules.  This could make 

PLA-PEG blend fibers as an ideal material for medical applications such as hyperthermia 

[162]. All the treatments are shown in Table 7.2.  

 

Figure 7.5: Thermal degradation of (a) PLA fibers (b) PLA-PEG blend fibers as measured through TGA [159]. 
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Table 7.2: Thermogravimetric data table for PLA and PLA-PEG blend fibers [159] 

Sample Weight loss 

Interval  

Tonset °C   

(±3°C) 

Tendset °C  

(±3°C) 

Weight Loss 

(%)  

PLA 1 240 375 92.10 

PLA-PEG 2 225 370 55.11 

370 450 38.85 

 X-ray Diffractometer Analysis 

The crystalline phases present in the samples were identified by XRD. XRD patterns of 

the pure MNPs and different weight % of MNPs (1, 2 and 3 wt% of MNPs) composite 

PLA-PEG membranes as PLA-PEG-MNPs1, PLA-PEG-MNPs2 and PLA-PEG-MNPs3 

are shown in Figure 7.6. The characteristic peaks in different intensities at the same 2θ – 

value are shown in the XRD patterns. There are no diffraction peaks of other substances 

observed, which clearly indicate the presence of MNPs inside the composite fibers 

membrane. 

 

Figure 7.6: XRD pattern of (a) pure MNPs (b) PLA-PEG-MNPs1 composite fibers (c) PLA-PEG-MNPs2 composite 

fibers and (d) PLA-PEG-MNPs3 composite fibrous membrane 
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 Magnetic Properties of Fibers 

The magnetic properties of the MNPs and MNPs incorporated PLA-PEG composite fibers 

are determined by measuring their M-H curves (Figure 7.7). The result shows that the 

MNPs within the nanofibers are easily magnetized by an applied external magnetic field. 

Samples are measured over a range of applied fields between -6000 and +6000 G.  The 

saturation magnetization (Ms) value reaches near to 2000 G. For pure MNPs, the Ms 

reached 18.58 emu g-1. The PLA-PEG-MNPs composite fibers still possessed magnetism, 

but considerably lower than that of pure MNPs. The values measured are 1.26, 2.40, 3.37 

emu g-1 for the MNPs1, MNPs2 and MNPs3, respectively [163]. The Ms values are 

roughly proportional to the MNPs content in polymer fibers. The results clearly show that 

MNPs incorporated fiber produced by the electrospinning technique retained magnetic 

properties at room temperature which has potential for broad biomedical applications 

[164].  

 

 

Figure 7.7: Magnetization curves measured at room temperature for (a) PLA-PEG-MNPs1 (b) PLA-PEG-MN1Ps2 (c) 

PLA-PEG-MNPs3 and (d) Pure MNPs [159]. 
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The literature on magnetic polymer composites is exponentially increasing and the variety 

of materials already exists (as some are summarized in Table 7.3).  However, just a few 

of those shows stability.  

Table 7.3: Some materials based on magnetic polymer composites and their potential medical applications. 

Materials Stimuli Medical Applications Ref. 

PCL-MNPs fibers Magnetic field Bone Regeneration [165] 

PVA-Fe3O4 Magnetic field Drug delivery  [166] 

PNIPAM-MNPs Magnetic field On-demand drug delivery [142] 

PLGA-MNPs Magnetic and 

NIR irradiation 

Drug and hyperthermia therapy [167] 

PLA-MWCNT-

Fe3O4 

Magnetic field Drug delivery [168] 

PLA-PEG-MNPs Magnetic field Drug delivery and 

hyperthermia 

This 

work 

PCL: Poly(caprolactone); PVA: Poly(vinyl alcohol); PNIPAM: Poly(N-

isopropylacrylamide); PLGA: Poly(lactic acid-co-glycolic acid); MWCNT: 

Multiwalled carbon nanotubes. 

 

7.5 Conclusions of Magnetic PLA Fibrous Membranes 

In summary, the modifications of PLA polymer fibers to tune their properties for 

applications was investigated, e.g. in the present case PLA with PEG and MNPs was 

modified. A simple way of preparation by blending MNPs into PLA-PEG to yield 

magnetic composite nanofibers by electrospinning technique was presented. The 

thermogravimetric analysis confirmed that the PLA fiber is modified by PEG. SEM 

analysis showed that the fibers mean diameter decreases with blending, PEG to PLA from 

6µm to 3µm and MNPs to PLA+PEG from 3µm to 1µm while all the others 

electrospinning parameters were kept constant. During and after synthesis the 

magnetization of the MNPs in the fibers is retained. The magnetic properties of the fibers 

could be changed by incorporating MNPs, while the topological morphology remained 

constant only the diameter varied slightly around 1±0.3µm. The saturation magnetization 

of the composite fibers is proportional to the amount of MNPs. The results are promising 

for further investigation of advanced biomedical applications.  
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8 Preparation of PLA-PEG-NVCL Fibrous Membranes   

8.1 Abstract 

In this study, Polylactic acid (PLA), Polyethylene glycol (PEG) and N-Vinylcaprolactam 

(NVCL) composite fibrous membranes were fabricated via electrospinning. An antibiotic 

was embedded into these composite membranes and used as an antimicrobial membrane. 

These (PLA-PEG-NVCL) composite fiber membranes were further functionalized with 

magnetic nanoparticles (MNPs) and employed for magnetic thermo-drug delivery system 

using an external magnetic field. The release rate significantly increases upon exposure 

to the magnetic field and can be controlled by on and off situation.  

8.2 Introduction 

The administration of safer drug doses using a controlled drug delivery system is an 

attractive alternative to the systemic treatment [169]. One of the main advantages of 

controlled drug delivery system is that the entrapped drug can be gradually released, 

achieving therapeutic levels but avoiding toxic and inefficient concentrations, which 

usually occurred in traditional ways of administering drugs. Therefore, undesirable 

effects are reduced and the efficacy of the treatment is increased with these systems [170]. 

By using targeted drug release with precise local administration, it is possible to use such 

drugs, which until now have been considered as too toxic to be used at all. 

The glass transition temperature (Tg) can be used as a reversible thermoresponsive switch. 

Thermal switch is based on a significant change in diffusivity of a solute around the glass 

transition temperature (Tg) of a polymer. At a temperature below the glass transition 

temperature of the polymer (T < Tg), the polymer is in a glassy state, where polymer chain 

movement and hole free volume are low. Therefore, the diffusion coefficient of the 

incorporated drug is low, limiting drug release. Increasing the temperature to above the 

Tg of the polymer (T > Tg), it changes from the glassy to the rubbery state. In the rubbery 

state, polymer chain movement and hole free volume are significantly higher than in the 

glassy state. This significantly increases the flexibility and free volume of the polymer, 

resulting in several orders of magnitude higher release. Since the glass transition is a 

reversible transition, subsequent lowering of the temperature significantly decreases the 

drug release rate from the membrane, enabling pulsatile drug administration [171].  

Figure 8.1 shows the effect of phase transition temperature on the polymers volume and 

drug delivery.  
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Figure 8.1: Effect of phase transition temperature on the polymer fiber volume and drug delivery (Picture: M. Kumar) 

PLA-PEG composite fibrous membranes are described in chapter seven. 

Here, N-Vinylcaprolactam (NVCL), is incorporated into PLA-PEG. 

NVCL is a monomer with amphiphilic character. It possesses 

hydrophilic carboxylic and amide group (lactam ring), where the 

hydrophilic amide group is connected to the hydrophobic vinyl group 

and carbon-carbon backbone chain. So, its hydrolysis does not produce small amide 

compounds, which are undesirable for biomedical applications. Moreover, this polymer 

has been intensively studied because of their interesting physicochemical properties and 

their structural similarity to proteins [172].   

In this work, PLA-PEG-NVCL composite fibrous membranes by means of 

electrospinning technique is developed. To provide thermo-switch ability with reduced 

glass transition temperature, NVCL monomer is embedded. Tetracycline hydrochloride 

(TCH) is used as an antimicrobial to show the antibacterial activity. Further, these 

composite membranes (PLA-PEG-NVCL) are functionalized by magnetic nanoparticles 

(MNPs). The processing tools to produce composite fibrous membranes are described and 

applied for on-demand drug delivery under magnetic stimuli.  

8.3 Experimental 

 Materials Used  

All chemicals were of analytical grade and used without prior treatment. Poly(lactic acid) 

6202 (PLA) was provided by Prof. Endres, Institute for Bioplastics and Biocomposites 

(Ifbb) Hannover, Germany. Tetracycline Hydrochloride, TCH, (Mw = 480.9 g/mol) was 

purchased from Roth, Germany. N-Vinylcaprolactam, (NVCL) (Aldrich) was used as a 

monomer (NVCL, FW = 139.2, d = 1.029 g/mL). Rhodamine 6G (Rh6G), (Mw = 479.02 
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g/mol) was purchased from Sigma. The solvent used in this study was chloroform from 

Roth, Germany. 

 Material Characterization 

8.3.2.1   Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy (SEM) (Zeiss Leo VP 1455) was used to analyze the 

surface morphology and diameter of the prepared fibers. All specimens were vacuum 

coated with gold/platinum before taking SEM image to minimize sample charging.  

8.3.2.2 Micro Raman Spectroscopy (MRS) 

Raman spectra were scanned on a SENTERRA Dispersive Raman Microscope 

Spectrometer (Bruker Optik GmbH, Germany) with a thermoelectrically cooled CCD 

detector (charge–coupled device). For the analysis, a diode laser with the excitation 

wavelength of 785 nm was used. All specimens were analyzed with an Olympus LWD 

50× (NA = 0.50) microscope in a spectral range from 90 to 3500 cm-1 (2 s integration 

time, 5 accumulations, 100 mW laser power). All samples were measured at a controlled 

temperature of (22 ± 1)°C.  

8.3.2.3 Differential Scanning Calorimetry (DSC)  

DSC data were obtained using NETZSCH STA 409, Germany under argon atmosphere. 

Temperature and enthalpy calibration was performed using indium and lead. The heating 

rate was 10 k/min and the scanning range was from 40°C to 500°C. All specimens with a 

weight of 8 – 10 mg were used. From thermograms glass transition (Tg), melting point 

(Tm) and degree of crystallinity were estimated.  

8.3.2.4 Contact Angle (CA) 

The contact angle measurements of the designed composite membranes were performed 

by Universal, Surftens, OEG GmbH, Germany.  The syringe full of water was connected 

with the instrument on a balance table. Slowly, a drop of water was placed on the sample 

and contact angle measurement was automatically controlled through the software. The 

contact angles were determined by the Wilhelmy technique. 
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8.3.2.5 UV-VIS Spectrophotometry 

Ultraviolet-visible spectrophotometry measurements were taken with a Shimadzu UV-

1601 UV-VIS double beam spectrophotometer. For measurements with Rhodamine 6G 

(Rd6G) the maximum absorption of light was determined at a wavelength of 529 nm.  

8.3.2.6 Microbiological Tests 

The antibacterial activity of the composite fibrous membranes from PLA-PEG-NVCL 

and PLA-PEG-NVCL-TCH was tested against Gram-negative bacteria (E. coli). A solid 

agar medium was poured into Petri dishes and its surface was inoculated with the bacterial 

suspension. The composite fibrous membrane was shaped as a disk with a diameter of 10 

mm and weight of 2 mg and then placed on the medium surface. After incubation of the 

Petri dishes (at 37°C for 24 hours) the zone of inhibition was measured. PLA-PEG 

composite fibrous membranes were used to check fungus cell adhesion on its surface.  

 Synthesis of PLA, PLA-PEG and PLA-PEG-NVCL Composite Fibrous 

Membranes 

8 wt% PLA, were dissolved in trichloromethane (TCM) and stirred for 10 hours at room 

temperature. To this, 8 wt% PEG and 8 wt% NVCL was mixed, to form a PLA-PEG-

NVCL composite solution. These samples were filled in a 10 mL plastic syringe equipped 

with a blunt end stainless steel conducting needle, having a size of 0.80  22 mm2 (21  

7/8 G’’) and connected to the electrospinning unit. For the fabrication of PLA-PEG-

NVCL composite fibrous membranes, side-by-side electrospinning apparatus was used 

as described in section 2.3.3. Table 8.1 shows the parameters used for the electrospinning 

experiment.  

Table 8.1: Summary of electrospinning conditions 

Sample Concentration 
[wt %] 

Flow 
rate 

[mL h-1] 

Voltage 
[kV] 

Height 
[cm] 

Rotar 

speed 

[m/s] 

Mean 
Diameter 
[µm±SD] 

PLA 8 1 12 13 -- 6.3 ± 0.13 

PLA-PEG 8-8 1 15 15 10 2.1 ± 0.27 

PLA-NVCL 8-8 2 18 15 10 -- 

PLA-PEG-

NVCL 

8-8-8 2 12 12 10 1.1 ± 0.3 
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For the antimicrobial experiment, tetracycline 

hydrochloride (TCH) (0.08 wt %) was first dissolved in 

methanol. Methanol was chosen as a co-solvent, because 

it has reported the best encapsulation efficiency [173]. 

10g of PLA-PEG-NVCL composite solution was slowly 

added to the TCH solution and stirred for another 4 hours. 

TCH incorporated PLA-PEG-NVCL composite fibrous membranes were prepared by 

using side-by-side electrospinning apparatus.  

For the magnetic stimuli experiments, MagSilica® (3 wt %), as 

magnetic nanoparticles (See chapter seven) + Rhodamine 6G  

(0.08 wt %) (Rh6G, as a model drug), were dissolved in methanol.  

Rh6G is a highly fluorescent dye, which can be easily detected. To 

this, 10g of PLA-PEG-NVCL composite solution was slowly 

added. Side-by-side electrospinning apparatus was used for fabricating these composite 

membranes.  

8.4 Results and Discussion of PLA-PEG-NVCL Fibrous Membranes   

 Scanning Electron Microscopy (SEM)  

The SEM images and fiber size distribution of PLA, PLA-PEG, PLA-NVCL and PLA-

PEG-NVCL composite fibrous membranes are shown in Figure 8.2. The morphology of 

the electrospun fibers shows that prepared fibers are porous, bead-free and smooth with 

almost uniform diameters. Figure 8.2 a revealed that electrospun PLA fibers are porous 

and cylindrical [152]. The mean diameter of the PLA fiber is 6.3 ± 0.13 µm. Figure 8.2 b 

revealed that PLA- PEG blend fibers with a diameter of 2.1 ± 0.27 µm. A significant 

decrease in fiber diameter is observed as describes in chapter 7.4.1. Figure 8.2 c revealed 

that the PLA-NVCL composite fibers have losses in the fibers morphology. Here, PLA-

NVCL fibers show half-tubes like structure. But it may be possible to fabricate PLA-

NVCL membranes with different composition ratios. However, PLA-PEG-NVCL gain 

the structure of smooth fibers with a mean diameter of 1.1 ± 0.3 µm (Figure 8.2 d), and 

this may have happened because of the balance of the lacking entropy. It is considered 

that other factors such as solution, electrical conductivity and viscosity should be changed 

with the addition of PEG, which could affect the fiber diameter significantly. Figure 8.3 

reveals the mean fiber diameter distribution.  
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Figure 8.2: Scanning electron micrographs for electrospun fibrous membranes of (a) PLA (b) PLA-PEG (c) PLA-

NVCL and (d) PLA-PEG-NVCL composite fibrous membranes 

 

Figure 8.3: Average mean fibers diameter measurements of (a) PLA (b) PLA-PEG and (c) PLA-PEG-NVCL 

composite fibrous membranes 

 

 

a b c 
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 Micro Raman Spectroscopy (MRS)  

Raman is used to investigate the chemical characteristic of the bulk and electrospun 

composite membrane. Figure 8.4 depicts the Raman spectra of bulk PLA, PEG and NVCL 

and electrospun PLA, PLA-PEG and PLA-PEG-NVCL composite fibrous membranes. 

PLA pellets exhibited a characteristic peak at 1450 cm-1 (CH3 asymmetric deformation 

vibration), 873 cm-1 (C – COO vibration) [174].  Two other bands appear for PLA near 

1130 and 1048 cm-1 and are assigned to rCH3 rocking and C-CH3 stretching-mode, 

respectively [175]. PEG bulk pellets reveled characteristic peaks at 1482 cm-1 (CH2 

vibration), 1233 cm-1 (C – C vibration), 1140 cm-1 (C – O vibration) and 843.5 cm-1 (C-

O-C vibration) [176][177]. NVCL bulk exhibited characteristic peaks at 1644 cm-1 (C = 

N vibration), 1440 cm-1 (Amide groups) and 1280 cm-1  (C – N stretching) [178]. The 

spectrum of composite fibers revealed minor shifts in the characteristic peaks while the 

peaks of amide ring are not clearly detected due to the overlap with the spectrum of PLA-

PEG composite fibers. The minor shifts can be a result of possible hydrogen bonds 

between the amide groups of NVCL molecules and PLA-PEG molecules. From this, it 

can be concluded that substances used, has not undergone any major molecular changes 

during the electrospinning process (12-18 KV). Molecular reactions are not observed. 

Only characteristic bonds of the individual substances could be found in the composites. 

The characteristic peaks exhibited by bulk and electrospun composite fibers are 

summarized in Table 8.2.  

 Table 8.2: Comparative study of Raman main characteristic peaks for bulk and electrospun composite fibers as 

observed in Figure 8.4 and their tentative assignments 

 Main peaks at wavenumbers [cm-1]  

Sample Bulk (pellets, 

powder) 

Electrospun 

composite fibers 

Tentative assignment 

PLA 873 873 ν(C- COO) 

PEG 843.5 -- ν(C-O-C) 

PLA-PEG -- 844.5 ν(C-O-C) 

NVCL 1440 -- ν(CN) 

PLA-PEG-NVCL -- --  

ν = Stretching 
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Figure 8.4: Raman spectra of (a) Bulk samples of (i) PLA, (ii) PEG and (iii) NVCL (b) Electrospun (i) PLA, (ii) PLA-

PEG and (iii) PLA-PEG-NVCL composite fibrous membranes 
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 Differential Scanning Calorimetry (DSC)  

DSC curves are used to determine the thermal stability of the electrospun PLA, PLA-PEG 

and PLA-PEG-NVCL composite fibrous membranes, as shown in Figure 8.5.             

Figure 8.5(a) shows DSC curve for PLA fibers membrane with a glass transition 

temperature of around 75°C. These results are comparable with the existing literature 

[179][180]. Figure 8.5(b) shows DSC curve for PLA-PEG composite fibrous membrane 

with a lower glass transition temperature of around 60°C. The probable reason for the 

reduction in glass- temperature is the plasticizer effect [125]. The micro Raman assay has 

shown that the functional groups are still present. In this case, the PEG is not covalently 

bond into the polymer, but interacts with the polymer of its polar groups like hydrogen-

hydrogen bonding. This increases the chain mobility, which intern decrease the Tg of 

composite fibrous membranes.  

Figure 8.5(c) shows DSC curve for PLA-PEG-NVCL composite fibrous membrane with 

further reduced glass transition temperature of around 45.7°C. This could happen because 

of NVCL molecules presence (melting temperature around 35-38°C), which further 

reduce the glass transition temperature. All the three composite fibrous membranes were 

found in the amorphous phase. These DSC data are summarized in Table 8.3.  
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Figure 8.5: DSC curve for electrospun: (a) PLA, (b) PLA-PEG and (c) PLA-PEG-NVCL composite fibrous membrane 
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Table 8.3: DSC parameters for the thermal transitions of electrospun (a) PLA (b) PLA-PEG and (c) PLA-PEG-NVCL 

composite fibrous membranes 

 Samples Structures Orientation Tg (°C) 

(a) PLA 

 

Aligned 75 

(b) PLA-PEG 

 

Aligned 60 

(c) PLA-PEG-NVCL 

 

Aligned 45.7 

Tg = Glass transition temperature 

 

We can conclude from the Table 8.3, that an addition of PEG and NVCL to PLA 

membrane reduces glass transition temperatures (Tg).  

 Contact Angle (CA) 

The hydrophobicity of electrospun PLA, and PLA-PEG-NVCL composite fibrous 

membranes are measured by contact angle goniometer. It is found that PLA fibrous 

membranes are hydrophobic with a contact angle of 130°, as shown in Figure 8.6(a) [154]. 

Figure 8.6(b) shows wettability of PLA-PEG-NVCL composite fibers membrane with a 

lower contact angle of 50.8°. This could happen because PEG and NVCL molecules are 

water soluble. The chain terminal of hydroxide of PEG and carboxyl of NVCL  provide 

additional hydrophilicity, which results in lower contact angle [181]. All measurements 

are carried out longitudinal to the fiber and after rotating the membrane by 90° horizontal. 

From this it can be concluded, that the fiber-direction has no influence to the contact 

angle.  

O

CH
3

O

OH

H

n
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Figure 8.6: Contact angle measurements on electrospun: (a) PLA (b) PLA-PEG-NVCL composite fibrous membranes 

 Biological Properties of PLA-PEG-NVCL and PLA-PEG-NVCL-TCH 

Composite Fibrous Membranes 

It is known that Tetracycline hydrochloride (TCH) exhibit antibacterial activity against a 

broad range of pathogenic microorganisms [182]. In this study, the antibacterial activity 

of the electrospun PLA-PEG-NVCL and PLA-PEG-NVCL-TCH composite fibrous 

membrane against the Gram-negative bacteria (E. coli) is evaluated. As expected, PLA-

PEG-NVCL composite fibrous membranes did not exhibit any antibacterial effect as 

shown in Figure 8.7(a). Figure 8.7(b) shows the antibacterial activity of PLA-PEG-

NVCL-TCH composite fibers membrane with the well-defined inhibitory zone. The mean 

diameter of the inhibitory zone is 2.5 cm. The results obtained are in agreement with 

previously reported data [183]. 

 

Figure 8.7: Digital images of a test for bacteria inhibition after 24 h contact of the composite membrane with E.coli; 

(a) PLA-PEG-NVCL composite fibrous membranes and (b) PLA-PEG-NVCL-TCH composite fibrous membranes. 

The inhibitory zone is indicated by a dashed line. 
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The bacterial cells ability to adhere and form a biofilm on the electrospun composite 

fibrous membrane surface is estimated. Figure 8.8 shows SEM micrograph after 24 h 

contact of the membrane with Trichoderma reesei (T. reesei) fungus suspension. PLA-

PEG composite fibrous membranes are a good substrate for the adhesion of fungus cells 

(T. reesei) and the formation of fungal biofilms [184].   

 

 

Figure 8.8: Scanning electron micrographs for electrospun PLA-PEG composite fibrous membranes after 24 h contact 

with the T. reesei fungus suspension with different scale of magnification. 

 Magnetothermally-Triggered Drug Release 

In many clinical scenarios, for an effective treatment, drug delivery requires only 

intermittent drug administration to deal with occasional exacerbation, or pulsatile periodic 

administration to mimic diurnal variation in drug levels [185]. For this, magnetic fields 

based delivery systems are very effective approaches for localizing drug in the living body 

[186], because magnetic forces can be concentrated on a desired region, reducing 

collateral effects, which do not affect other biological tissues and can be tolerated in the 

living body [187] [188]. Thus, this local therapy could improve the efficiency of the 

treatment by reducing adverse toxic effect of drug [189].  

The drug carrier composed with MNPs and polymer composite fibrous membranes, 

should satisfy some conditions for biomedical applications like [190];  

(1) No sedimentation of MNPs; 

(2) Uniform magnetic content; 

(3) No toxicity; 

(4) No iron leakage; 

(5) High selectivity.  
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Drug directly conjugated with MNPs has some limitations; drug release control and drug 

loading capacity [191]. To resolve these problems, drug and MNPs have been embedded 

into PLA-PEG-NVCL composite fibrous membranes. The heat generated by applying an 

AC magnetic field depends on the properties of MNPs (composition, size) as well as the 

frequency of the magnetic field [192]. Therefore, MagSilica® nanoparticles (50 nm 

diameter) were carefully chosen as heating agents for magnetic thermo-drug delivery (see 

chapter seven). MNPs under AC magnetic field show heating effects due to losses during 

the magnetization (hysteresis loss, Néel or Brown relaxation and frictional losses) in 

viscous suspensions [186][193]. Néel relaxation is the reorientation of the magnetic 

moment within the particles, generating thermal energy by crossing an anisotropy barrier. 

Brown relaxation is the reorientation of the magnetic particles itself, generating thermal 

energy by viscous friction with the carrier fluid. This reorientation results in friction 

between the particles and the medium, hence frictional losses occur generating heat. The 

heat generated from MNPs is transported by conduction, whereby, drug delivery can be 

carried out locally. Therefore, AC magnetic field supplies energy and helps the magnetic 

moments to overcome the energy barrier. This energy is dissipated as heat when the 

particle moments relax to their equilibrium [194]. 

In the present experiment, a custom-built setup was used to provide an alternating 

magnetic field with a maximum frequency of 799 kHz and intensity of 40%. Figure 8.9 

shows an illustration of the experiment with magnetic coil inductor.  

 

 

 
 

Figure 8.9: Magnetization setup with (a) schematic illustration of of PLA fibrous membrane under magnetic 

coil (b) photograph of the solenoid (coil-shaped heating station) with fiber inside. (Picture Courtesy: Prof. 

Kirschning, LUH, Hannover) 

a b 
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Release experiments were performed by placing 10 mg of composite fibers membrane in 

a test tube containing 10 mL PBS (phosphate buffer saline). This experiment was started 

by placing the test tube in the setup for 15 minutes at room temperature, then the AC 

magnetic field was powered on for 10 minutes, then 5 minutes stop – no magnetic field 

was applied, then for 10 minutes AC magnetic field again. The cumulative release of 

Rh6G from the composite membranes in on-off condition of magnetic field is shown in 

Figure 8.10. 

 

 

 

Figure 8.10: The on-demand local Rh6G delivery using PLA-PEG-NVCL-MNPs composite fibrous membrane induced 

by alternating magnetic field 

A quick release (15 µg/ml) from the membrane surface within the first 15 minutes is seen 

in off condition of magnetic field. On applying magnetic field for 10 minutes, the 

releasing quantity reached to 25.62 µg/ml in 25 minutes. The release rate became slow in 

off condition of magnetic field. Only 2.2 µg/ml of Rh6G is released, which makes total 

release of 27.8 µg/ml. This slow release happens because of hydrogen bonding between 

atom (O) with strong negativity in Rh6G and hydrogen of OH in PLA. A further apply of 

magnetic field for other 10 minutes, the releasing quantity again accelerates to 33.7 µg/ml. 

Heat generated by MNPs, changes membrane property from glassy to rubbery state. It is 

also assumed, that hydrogen bond is destroyed. These results indicate, that the magnetic 

field has triggered releasing performance. 

RT RT Magnetic 

field 

Magnetic 

field 

Magneto-thermally triggered drug release 
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The MNPs embedded in the composite membranes (PLA-PEG-NVCL) was heated, when 

subjected to an external oscillating magnetic field, resulting in power absorption and 

subsequent magnetic relaxation of MNPs [195]. At the applied magnetic frequency, the 

membrane in the solution heated by the micro Brownian motion of the MNPs.  

In vitro experiments of drug release under external alternating magnetic field, 

demonstrated that accelerating drug release have been achieved from the composite 

membranes. After removal of an external oscillating magnetic field, the release rate 

decreases, demonstrating the switch-ability of the system. This could happen, because of 

the reversible glass transition temperature switch. This result is in proportion to earlier 

existing studies [191].  

Hence, magnetic thermo-drug delivery from PLA-PEG-NVCL composite fibrous 

membrane can significantly improve the efficiency of the drug therapy, because it enables 

the patient or physician to control the dosing of the patient’s needs and releases the drug 
only at the required quantity in the human body. Therefore, patient compliance and 

efficacy will increase and toxic side effects will decrease. 

8.5 Conclusions of PLA-PEG-NVCL Fibrous Membranes   

PLA-PEG-NVCL composite fibrous membranes are developed using electrospinning 

technique. SEM analysis showed, that the fibers mean diameter decreases with blending, 

PEG to PLA from 6µm to 2µm, and further blending of NVCL to PLA-PEG decrease the 

fibers mean diameter from 2µm to 1µm. DSC study confirmed composite membranes are 

in an amorphous state. Tetracycline hydrochloride, an antibiotic is embedded within a 

composite membrane. The fabricated membrane exhibits antibacterial activity. The 

composite membranes are functionalized with MNPs + model drug and show triggered 

drug delivery by the production of heat energy using an alternating magnetic field.  
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9 Preparation of PLA-HPC Thin Film Membranes 

9.1 Abstract 

This study deals with the development of PLA and cellulose derivatives, especially the 

temperature-responsive HPC (Hydroxypropyl cellulose) based thin film for drug delivery 

system. The release of methylene blue (MEB) and tetracycline hydrochloride (TCH) was 

investigated via UV-VIS spectrophotometry. Two different kinds of cells were used in 

this work: (i) side-by-side Franz cell and (ii) Franz cell simulating simplified blood 

pressure conditions. 

The blend containing PLA and HPC shows the formation and dispersion of a chiral 

nematic phase in the matrix. It was possible to notice the formation of mesophase through 

visual confirmation of the circular dichroism. It may be assumed, that these liquid crystals 

exhibit anisotropic mechanical properties because the dye release was noticeable under a 

mechanical stimulus. 

9.2 Introduction 

With the discovery of new drug, the need for innovating methods to effectively deliver 

therapeutics has risen. In this regard, the use of in vitro diffusion cells has evolved into a 

major research methodology. The advantages of using Franz-type diffusion cell in 

comparison to other administration routes are: facilitates avoidance of first pass 

metabolism, decreased toxicity as well as fewer side effects. In Franz diffusion cell, 

synthetic membranes are used to model skin tissue as they are easily resourced, less 

expensive and structurally simpler [196]. The kinetics of skin permeation can be more 

precisely analyzed by studying the permeation profiles of drug across a synthetic 

membrane mounted on a Franz diffusion cell.  

The Franz cell analysis is an in-vitro skin permeation assay used to determine a particular 

formulation of an active agent through the skin [197]. The Franz cell apparatus consists 

of two primary chambers separated by a membrane. Two different experimental setups 

were used, (1) Side-by-side Franz cell (Figure 9.1) (2) Franz cell simulating simplified 

blood pressure conditions (Figure 9.3).  
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(1) Franz cell 

 

 

Figure 9.1: Franz horizontal (Side-by-side) diffusion test apparatus (a) Schematic illustration of the horizontal Franz 

cell (b) lab developed set-up (Pictures: M. Kumar) 

Franz cell chambers are made of Poly(methyl methacrylate) (PMMA). It is 6.2 cm in 

length, 3 cm in diameter. The Franz cell was filled on one side with 10 mL of water or 

PBS (phosphate buffer saline, receptor chamber) and on the other side (donor chamber) 

with the same solution containing additionally a dissolved dye, for example methylene 

blue (0.01 mg/mL). The filling itself was executed almost simultaneously on both sides 

in order to avoid pressure gradients on the thin film / membrane.  

Then the Franz cell was placed in a furnace (Thermo-Fisher Scientific) and heated for a 

certain amount of time at a specific temperature or kept outside of the furnace at room 

temperature. After a fixed time interval (30 minutes) the Franz Cell was moved out of the 

oven and 3 mL of the samples from receptor chamber was taken into UV-VIS cuvettes 

and the absorbance was measured. Afterwards the receptor chamber was filled again with 

the same liquid and put again in the oven or left outside at room temperature. This 

procedure was repeated. Figure 9.2 a shows a cross section sketch of the side-by-side 

Franz cell and Figure 9.2 b shows digital image of the components of Franz cell. 

 

a b 
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Figure 9.2: (a) Cross section sketch of the side-by Franz cell chamber with the diameters a = 2.1 cm and b = 3 cm (b) 

Digital image of the lab developed Franz cell (Picture: K. Smolik). 

(2) Modified vertical Franz cell, simulating simplified blood pressure conditions 

 

Figure 9.3: Modified vertical pressure cell, simulating blood pressure (Picture: K. Smolik and M. Kumar) 

The Erlenmeyer flask was a VWR 214-1171 with a base diameter of 6.4 cm and a neck 

diameter of 3.4 cm. The height measures 10.5 cm and it has a volume of 100 mL. The test 

tube / test glass has a height of 12.8 cm and an inner diameter of 1.3 cm. It has a volume 

of 20 mL and is sealed at the top. This means it is a closed system for the gas. The 

Erlenmeyer flask was sealed with transparent sheet at the top for measurements in the 

Thermo Scientific Heratherm drying oven. The test tube had a beading and was placed 

0.5 cm below the water surface. 

b a 



Preparation of PLA-HPC Thin Film Membranes 

 

Page 88 

 

The pressure which is build up in this cell consists mainly of three processes, which can 

be described in an approximation: 

1. Pressure due to the ideal gas law 

2. Pressure due to the saturation vapor of water / Clausius-Clapeyron relation 

3. Hydrostatic pressure due to Pascal’s law 

The pressure will be estimated in the following part with the help of above three laws to 

give an insight about the pressure, i.e. the mechanical stress, which is applied to the thin 

film or membrane. The author underline that all calculations are just approximations. 

1.  Pressure due to the ideal gas law [198] 

 𝒑𝑽 = 𝒏𝑹𝑻         Equation 9.1 

where, p is pressure; V is volume; n is amount of substance; R is universal gas constant 

and T is temperature. 

In the closed system of the test tube the volume V and the amount of substance n are 

approximately constant because it contains the same volume of air at each time. The 

pressure can be calculated for different temperatures. This leads to following equation: 𝒑𝟏𝒑𝟐 = 𝑻𝟏𝑻𝟐                                          Equation 9.2 

For an air pressure of p1=1013 mbar and at an average room temperature of 25 °C or 298 

K, this leads upon heating up to 41 °C or 314 K to a pressure of p2=1067 mbar. Hence the 

pressure difference Δp is 54 mbar. 

2. Pressure due to saturation vapor of water / Clausius-Clapeyron relation [198] 

The pressure can be estimated by the ideal gas approximation of Clausius-Clapeyron at 

low temperatures according to equation 9.3 [198] 𝒍𝒏 𝒑𝟏𝒑𝟐 = − 𝑳𝑹 ( 𝟏𝑻𝟏 − 𝟏𝑻𝟐)       Equation 9.3  

where, p1 and p2 are pressures at specific points; R is universal gas constant; T1 and T2 are 

temperatures at specific points and L is specific latent heat. 

For a temperature of T1= 298 K and T2= 314 K it results an additional vapor pressure of 

water of pmax,add= 73.8 mbar (=74 mbar). The vapor pressure of water is in this case the 

pressure at which the water vapor is in thermodynamic equilibrium with its condensed 

state. 
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3. Hydrostatic pressure due to Pascal’s law [198] 

The hydrostatic pressure applied in this system is low compared to the other processes. It 

is described by equation 9.4. 𝜟𝒑 = 𝝆𝒈(𝜟𝒉)         Equation 9.4 

where, Δp is hydrostatic pressure; ρ is fluid density; g is standard acceleration due to 

gravity and Δh is height of fluid above the point of measurement. 

If the test glass is filled with 2 mL of solution the hydrostatic pressure is around 2 mbar. 

4. Summing up the pressures 

 

phydrostatic+pideal+psaturation = 2 mbar + 54 mbar + 74 mbar = 130 mbar  

This is the approximated pressure in the system in addition to the air pressure. 

130 mbar equates to 95 mmHg. This resides in the range of the human blood pressure, 

which itself is for example in between 120 mmHg (systolic) to 80 mmHg (diastolic). The 

force applied to the membrane is according to equation 9.5: 

 F= p · A = 13000 Pa · 1.33·10^-4 m2 = 1.72 N. 𝒑 = 𝑭𝑨          Equation 9.5 

The author is aware that there are a lot of disadvantages of the modified vertical cell. For 

example, no exact pressure is determinable because the pressure is not measurable in this 

experimental setup or at least it is very hard to measure it. Furthermore, a lot of other 

processes are involved. One assumption was the use of ideal gas behavior, besides that 

the system does not contain pure water, but a solution was in some samples also 

containing a dye and phosphate-buffered saline. Long heating periods were also other 

problem in the condensation processes. Nevertheless, this experimental setup was used to 

get a first insight into measurements with a mechanical stress in range of the blood 

pressure.  

This work mainly deals with the distribution of hydrophilic molecules, i.e. simulating 

drug delivery, across thin films as a basis for a later potential application for a drug release 

out of electrospun fibers (next chapter). Here, the drug passage across membranes by 

diffusion is shortly described in order to show the need of on-demand drug release. 
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9.3 Experimental 

 Materials Used  

All chemicals were of analytical grade and used without prior treatment. Polylactic acid 

6202 (PLA) was provided by Prof. Endres, Institute for Bioplastics and Biocomposites 

(Ifbb) Hannover, Germany. Methylene blue, MEB, (Mw = 319.85 g/mol) was purchased 

from company sigma-aldrich, Germany. Tetracycline hydrochloride, TCH, from Roth, 

Germany. Hydroxypropyl cellulose, HPC, (Mw ≈ 1.150.000 g/mol, as high molecular 

weight (HMW-HPC) and Mw  ≈ 80.000 g/mol, as low molecular weight (LMW-HPC) was 

obtained from Ashland, EF pharm, GF pharm and HF pharm. The solvent used in this 

study was 2,2,2-Trifluorethanol (TFE) from Roth, Germany. Potassium chloride, Sodium 

chloride, Disodium phosphate dehydrate and potassium dihydrogen phosphate, were used 

to prepare phosphate-buffered saline (PBS) with a pH of 7.4 from company Roth. 

Distilled deionized water was used throughout the experiments.  

 Material Characterization 

9.3.2.1 UV-VIS Spectrophotometry 

Ultraviolet-visible spectrophotometry measurements were taken with a Shimadzu UV-

1601 UV-VIS double beam spectrophotometer. For measurements with methylene blue 

the maximum absorption of light was determined at a wavelength of 664 nm and for 

tetracycline hydrochloride at 358 nm. 

 Synthesis of PLA-HPC Thin-film Membranes 

Different amount of thermoresponsive polymer, i.e. HMW-HPC, was added to PLA 

pellets (wt.% based on 1g PLA) and dissolved in 10 mL TFE. After 24 hours in the lab 

shaker the samples were cast out on a glass plate by using the solvent casting method. If 

the HPC, especially the HMW-HPC did not dissolve, then the time in the lab shaker was 

extended (next 24 hour) until the solution was visibly clear. The samples were dried for 

at least an hour in the fume hood and then at the air for 24 hours. For the casting of the 

thin films a film applicator of BYK Gardner (cat.no.2041, Ser.No.: 1168280) was used 

(50 µm, 100 µm, 150 µm, 200 µm). Figure 9.4 shows different colors from a dried PLA-

HPC thin film.  

HPC was used as liquid crystals to prepare thin film by solvent casting method. Upon 

evaporation of the solvent, in this work mostly TFE was used, the self-assembly of the 

HPC chains takes place. The hydrophobic regions of HPC are aligned towards the PLA 
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which itself is also hydrophobic and the hydrophilic hydroxyl groups initiate the 

formation of hydrogen bond, probably enforced by TFE.  

 

Figure 9.4: PLA-HPC dry thin film shows red/green color (a) shows dark color in the shadow whereas bright color in 

light (b) thin film shows cloudy or milky appearance at 45°C (Picture: Prof. Dr. F. Renz) 

9.4 Results of PLA-HPC Thin-film Membranes 

 Results from the Side-by-Side Franz Cell 

In Figure 9.5 the photometric measurement (λ= 358 nm) of a tetracycline hydrochloride 
release through a 200 μm thin film, (94,85 wt.% PLA, 5,15 wt.% HMW-HPC) using a 

side-by-side Franz Cell is being illustrated. A continuous heating was applied. One 

explanation for the release through the thin film might be the phase separation between 

PLA and HMW-HPC leading to aggregates which could be triggered by temperature at 

or above the LCST.  
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Figure 9.5: Photometric measurements (λ= 358 nm) of a tetracycline hydrochloride release through a 200 μm thin film 
(94.85 wt.% PLA, 5.15 wt.% HMW-HPC) using a side-by-side Franz cell 

In Figure 9.6 the photometric measurement (λ= 358 nm) of a tetracycline hydrochloride 

release through a 200 μm thin film (94,85 wt.% PLA, 5,15 wt.% HMW-HPC) using a 

side-by-side Franz Cell is shown. The experiment was executed with demineralized 

water. For 90 minutes samples are measured at 24°C and then it was heated at 45 °C. A 

strong triggered was notices on providing heat to the samples. The thin films had cloudy 

or milky appearance (Figure 9.4) at some spots pointing to a phase separation between 

PLA and HMW-HPC.  

 

Figure 9.6: Photometric measurements (λ= 358 nm) of a tetracycline hydrochloride release through a 200 μm thin film 
(94.85 wt.% PLA, 5.15 wt.% HMW-HPC) using a side-by-side Franz cell 
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The blend showed as mentioned before a phase separation. Additionally, the LCST 

behavior was visible by the formation of the white collapsed state of HMW-HPC 

entangled in the PLA matrix. One explanation might be the rise in hydrophobicity as the 

LCST was reached. The HMW-HPC changed from a swollen and hydrophilic state to a 

hydrophobic collapsed state.  

 Results from the Modified Vertical Franz Cell - Simulating Simplified Blood 

Pressure Conditions 

Figure 9.7 and Figure 9.8 shows result for the modified vertical cell simulating simplified 

blood pressure conditions. Realistically the human body has in many different regions a 

pressure available and this should be taken into account besides the body temperature and 

the occurring pH. HPC is known to be pH-independent which might be helpful because 

the pH changes in different parts of the human body. The applied pressure in this cell is 

rather high and near to the arterial blood pressure.  

 

 

Figure 9.7: Photometric measurements (λ= 664 nm) of a methylene blue release through a 200 μm thin film               
(98.85 wt.% PLA, 1.15 wt.% HMW-HPC) using a modified vertical Franz cell 

 The thin films are quite thick (50 µm up to 150 µm) compared to biological membranes 

(lipid membranes are 8 nm of thickness). Nonetheless the cell gives a first insight into 

pressure-related measurements of thin films which are treated like membranes.  
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Figure 9.8: Photometric measurements (λ= 664 nm) of a methylene blue release through a 50,100 and 150 μm thin film 
(89.7 wt.% PLA 6202, 10.30 wt.% LMW-HPC) using a modified vertical Franz cell 

9.5 Discussion of PLA-HPC Thin-film Membranes 

These results indicate a temperature responsive PLA-HPC thin film. A possible 

mechanism for temperature-responsivness PLA-HPC thin film membranes could be the 

LCST- and lyotropic-behavior of HPC. This leads to an induced phase transition from an 

anisotropic to an isotropic state.  

Drug release from PLA-HPC thin film membranes takes place at room temperature 

(21°C) and highest possible human body temperature (43°C). Drug release rises with the 

rise in temperature. On lowering the temperature, the drug still gets released but at lower 

concentration. At change in temperature (from 21°C to 45°C), these membranes show 

transition from swollen (hydroplilic) to shrink (hydrophobic) state, which increases the 

release rate. 

PLA-HPC thin film membranes used HPC molecules, which show the formation of 

mesophase (from clear at 21°C to cloudy at 45°C), as change in turbidity in water. Since, 

the dipole moments of water is 1.85 D,  and dipole moment of TFE (Trifluoroethanol) is 

2.03 D, which are similar and it is expected that HPC will behave in same manner in TFE 

solvent as in water.  

PLA and HPC is compatible in TFE solvent for the preparation of thin film. There is 

hydrogen bonding between fluorine from TFE (solvent) and hydroxypropyl group from 

HPC, which makes HPC stable in the PLA membrane in the thin film prepartion. The 

TFE is integrated in the helix of the hydroxypropyl cellulose.   
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These PLA-HPC thin film membranes are placed in the side-by-side Franz cell and in the 

modified vertical Franz cell. An external pressure was not applied in case of side-by-side 

Franz cell, where in modified vertical Franz cell external pressure were employed. The 

mechanical stress in form of pressure of 130 mbar (equals 95 mm HG) was applied with 

the thermic stress. This applied pressure is in the range of the arterial human blood 

pressure. This force was strong enough to overcome the hydrophobic effect of the PLA 

and the increased surface hydrophobicity at the LCST of HPC. The model drug 

(Methylene blue) could bypass the thin films at these conditions and enter the second 

chamber. This was repeatable until equilibrium for the upper chamber and the chamber 

below was reached.  

The author is aware that both approaches are simplified in comparison to the processes in 

the human body. The pH, enzymes and the degradation of the PLA matrix and many other 

factors are not included in this very basic approach. Yet it is still suitable for the 

development of drug delivery systems and the mechanisms involved. 

The thin films used in the experiments had a thickness of 50 µm, 100 µm, 150 µm and 

200 µm. The decrease of the thickness might also decrease the pressure which is necessary 

to overcome the very hydrophobic surface by the dye or the drug. An approximation to 

the human cell membrane thickness of ca. 8 micrometers could also be achieved by using 

the multi-responsive system of electrospun nanofibers. This might be one chance to reach 

the goal, as human-like membranes and might be a first step into a drug release. 

The possible existence of circular dichroism or its interference can be seen with the eye 

(red/green color) (Figure 9.4).  

The research on membranes or thin films containing liquid crystals might be interesting 

in the near future. Lyotropic liquid-crystalline phases are available in living systems like 

biological membranes. This is often referred to as lipid polymorphism. In addition to that, 

the membrane is very flexible because these molecules can inter-mingle quite easily but 

remain still in the membrane due to the fact that much energy would be required for the 

process to dissolve away. The lipids can vary in shape and therefore also influence the 

diffusion. This complex and yet very fascinating biological membranes are a good model 

for the development of drug delivery systems. This partially biomimetic approach in this 

work was very useful.  
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9.6 Conclusion of PLA-HPC Thin-film Membranes 

In view of drug release mechanisms two different types of approaches were presented. A 

simple side-by-side Franz cell was used in order to gain insight about diffusion processes. 

Temperatures between 24°C – 45°C were investigated. Another, more complicated cell, 

with a pressure gradient was used to examine the drug release in connection with an 

applied mechanical stress (additional to the thermic stress). The formation of liquid 

crystals of HPC in a highly hydrophobic PLA environment showed red-green circular 

dichroism or interference at visible light, which can be observed with eye.  

Although HPC is known to have a lower critical solution temperature (LCST) near 41 °C, 

the diffusion in the horizontal Franz cell was highly hindered, probably due to increased 

surface hydrophobicity. PLA-HPC membranes show phase transition. The cell with the 

mechanical stress although showed increased dye release rates while being stable under 

air pressure. This process was repeatable until the equilibrium was reached in both cell 

chambers. The PLA-HPC thin films showed phase separation during the formation of the 

thin films by the solvent casting method leading to a typical morphology.  
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10 Preparation of PLA-HPC Fibrous Membranes 

10.1 Abstract 

In this study, Polylactic acid and Hydroxypropyl cellulose (PLA–HPC) fibers were 

fabricated by electrospinning. Methylene blue (MEB), as a model hydrophilic drug was 

embedded into PLA–HPC fibrous membranes. SEM results depicted that fibers are 

smooth, cylindrical, uniform and it confirmed the incorporation of MEB in PLA fibers 

alter the fibers morphology. Release studies show the on-demand release of drug from 

PLA–HPC fibrous membranes under temperature stimuli which were absent in 

membranes manufactured out of PLA. This can be attributed to reversible volume phase 

transitions of HPC molecules in response to applied external temperature. This study may 

provide more efficient strategies for developing materials with on-demand drug release 

capability. 

10.2 Introduction 

The ongoing efforts to improve drug delivery systems (DDS) for long lasting effects and 

improved medicinal potential beyond the basic application are receiving a major impetus 

towards the development of “smart” materials [199][200][201]. When materials are 

designed for biomedical applications such as drug delivery and biosensors, three 

important factors have to be taken into account: (1) biocompatibility, (2) surface 

functionalities and (3) hydrophilicity [157]. Polylactic acid (PLA) is a most common 

biopolymer used for biomedical application because it is non-toxic, biocompatible and 

biodegradable [150]. Hydroxypropyl cellulose (HPC) is a non-ionic cellulose derivative, 

which can also be used in the field of biomedical applications [129], because it is a 

physiologically inert substance, and is considered to be non-toxic and biocompatible. 

HPC is mainly used as an excipient in oral solid dosage forms, in which it acts as a 

disintegrate [202] and as a binder [203].  It is also an ingredient of so-called ‘‘artificial 
tears’’, used in the treatment of the dry eye syndrome (i.e., insufficient tear production) 

and to moisten contact lenses.  

An interesting feature of HPC structure is the presence of both hydrophobic and 

hydrophilic groups. At 42°C, the HPC-molecules display a lower critical solution 

temperature (LCST) [204]. At room temperature (below LCST), HPC is soluble in water. 

The solution has a low viscosity and clear appearance. Above the LCST (43°C) its 

solubility decreases and already dissolved HPC precipitates, as shown in Figure 10.1 

[205]. The formation of precipitation is also called “flocculation” and is thermo-reversible 
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[206]. This property could be utilized in the development of materials with on-demand 

drug release capability.  

 

Figure 10.1: Thermal responsiveness of hydroxypropyl cellulose (HPC). (a) Photographs of aqueous solution (5 mg 

(HPC) / mL (H2O)) sample at room temperature (RT) (b) and at 43°C (turbidity temperature) [207]. 

 

Temperature-responsive release system is an efficient method of delivering drugs to a 

localized disease site because of their ease control in practical applications [208]. This 

method can also be applied to fibrous membranes. In fibrous membranes, temperature 

responsive materials are incorporated within. Such materials show a phase separation at 

a certain temperature, known as LCST. The LCST is mainly dependent on the hydrogen 

bonding and hydrophobic interactions between water molecules and the structure of 

functional units of the polymer [91]. Figure 10.2 shows a symmetric diagram of the 

thermally induced drug release system. Such smart membranes are proposed to be used 

for wound healing applications by delivering drug on-demand.   

 

 

Figure 10.2: A symmetric diagram shows temperature-responsive drug-release system [207]. 
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HPC has a compatibility with another biopolymer such as PLA because of its dual 

solubility (organic solvents and water). The addition of HPC to PLA fibers improves 

flexibility, and reduces the water resistance properties of PLA fibers. PLA is chosen as a 

base material for fiber formation, whereas HPC act as a temperature responsive material. 

There are a number of studies exists on temperature responsive materials for biomedical 

applications [208]. Table 10.1 shows a different structure of selective temperature –
responsive materials with LCST behavior. However, few studies related to 

electrospinning of HPC-based composites have been reported [209][210][211]. To date, 

neither PLA-HPC [212] based electrospun fibrous membranes have not been reported nor 

tested for drug release. 

Table 10.1: A comparative studies on selected temperature-responsive materials with LCST behavior for drug 

delivery applications [207]. 

Materials Structure LCST (°C) Ref. 

PNIPAAm Hydrogels 25 – 32 [213]  

PDMAAm Hydrogels 15 – 32 [214] 

PNVCL Hydrogels 32 – 34 [215] 

P(PEGMA-co-Boc-Cyst-

MMAm) 

Particles 20 – 57 [216] 

PNIPAAm and PNBAAm Films 37 [217] 

PNIPAAm-PLA Micelles 38 – 42 [218] 

ELPs peptides 40 [219] 

PLA-HPC Nanofibers 43 This work 

PNIPAAm: Poly( N -isopropylacrylamide);  PDMAAm: Poly(dimethyl acrylamide); 

PNVCL: Poly(vinyl caprolactam); PEG-MEMA: Poly(ethylene glycol) methyl 

methacrylate; Boc-Cyst: [[[mono-(N-tert-butyloxycarbonyl)amino]ethyl]dithio] ethyl; 

PLA: Polylactic acid; ELPs: Elastin-like polypeptides; PNBAAm: Poly(N-

butylacrylamide);  HPC:  Hydroxypropylcellulose. 

 

Here, the aim was to obtain stable thermo-reversible fibrous membranes in the 

physiological relevant range of temperatures. The fibrous structure leads to a large 

surface-to-mass ratio, and would thus enable efficient release of substances [220][221]. 

For this purpose, PLA-HPC fibers were fabricated by electrospinning. These fabricated 

fibrous membranes (PLA–HPC) were tested as a carrier for the drug methylene blue 

(MEB) and applied for on-demand drug delivery systems. The present work reveals that 

PLA–HPC composite fibrous membranes are thermo-responsive, stable and tuneable and 

would provide a better control over conventional drug delivery.   
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10.3 Experimental 

 Materials Used  

All chemicals were of analytical grade and used without prior treatment. Poly(lactic acid) 

4043 (PLA) was provided by Prof. Endres, Institute for Bioplastics and Biocomposites 

(Ifbb) Hannover, Germany. Hydroxypropyl cellulose (HPC) (average molecular weight 

of 1,000,000 g/mol), and methylene blue (MEB) (average molecular weight of 319.85 

g/mol) was obtained from company Sigma-Aldrich. The solvent used in this study were 

2,2,2-Trifluorethanol (TFE) from company Roth, Germany. Di-Sodium hydrogen 

phosphate dehydrate (Mw = 178 g/mol, Roth), Potassium dihydrogen phosphate (Mw = 

136 g/mol, Roth), Potassium chloride (Mw = 74.5 g/mol, Roth), Sodium chloride (Mw = 

58.4 g/mol, Roth) were purchased and used without any further purification. Distilled – 

deionized water was used throughout the experiments.  

        Material Characterizations 

10.3.2.1   Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy (SEM) (Zeiss Leo VP 1455) was used to analyze the 

surface morphology and diameter of the prepared fibers. Three samples were prepared; 

first sample PLA fibrous mat, second sample PLA-MEB composite fibrous mat, and third 

sample PLA-MEB-HPC composite fibrous mat. All specimens were vacuum coated with 

gold/platinum before taking SEM image to minimize sample charging.  

10.3.2.2 In vitro Release Profile of MEB 

MEB release was performed using phosphate buffer saline (PBS) with pH 7.4 at room 

temperature (RT) and 43°C. The drug-loaded composite membrane of ca. 10 mg was cut 

and placed in 10 ml buffer solution. The solution was kept in the shaking incubator (100 

rpm). The release kinetic was determined by withdrawing aliquots from the solution at 

determined time intervals and recorded their absorbance at a wavelength of 665 nm (λmax) 

using UV-vis Spectroscopy (PerkinElmer Lambda 650 S). The amount of the released 

MEB over time was calculated using the standard graph (absorbance vs concentration of 

free drug) with correlation coefficient R2 ~ 0.998.   
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 Synthesis of PLA, PLA-MEB and PLA-MEB-HPC Composite Fibrous 

Membranes 

PLA, PLA-MEB and PLA-MEB-HPC polymer solutions for electrospinning were 

prepared separately. Firstly, 0.1 g/mL of PLA (Pellets) in 2,2,2-Trifluorethanol (TFE) 

was dissolved. To this, 0.01 g/mL MEB (powder) was added into PLA solution, to form 

PLA-MEB solution and finally, 0.005 g/mL HPC (powder) was incorporated to PLA-

MEB solution, to form PLA-MEB-HPC solution. These solutions were stirred (Vortex 

Genie) until all polymer was dissolved. These three polymer solutions were separately 

filled in a 10 mL syringe pump and connected to the electrospinning unit [157][159][222]. 

Electrospinning was performed in a closed chamber (relative humidity = 20 % and 

chamber temperature, 22°C). For the fabrication of these three-fibrous membranes, side-

by-side electrospinning apparatus as described in section 2.3.3 was used. The 

electrospinning conditions used for these experiments are given in Table 10.2. 

 

Table 10.2: Summary of electrospinning conditions [207] 

Sample Concentration 

[g/mL] 

Flow rate 

[mL h-1] 

Voltage 

[kV] 

Height 

[cm] 

Rotar 

speed 

[m/s] 

PLA 0.1 0.15 12 15 15 

PLA-MEB 0.1-0.01 0.15 12 15 15 

PLA-MEB-HPC 0.1-0.01-0.005 0.15 12 15 15 

 

10.4 Results and Discussion of PLA-HPC Composite Fibrous 
Membranes 

 Scanning Electron Microscopy (SEM)  

SEM micrographs of the PLA, PLA-MEB and PLA-MEB-HPC nanofibers are shown in 

Figure 10.3. PLA fibers are beaded and cylindrical and have a mean diameter of 0.4 ± 0.1 

µm without bead (Figure 10.3(a)). The bead structure is mainly due to their low 

concentration effect. The fibers made of PLA-MEB composite are rather homogeneous 

and have a mean diameter of 0.12 ± 0.03 µm, as shown in Figure 10.3(b). A smooth and 

uniform morphology is observed when MEB model drug is incorporated into the PLA 

solution by physical blending. The fibers made of PLA-MEB-HPC composite are 
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cylindrical and have a mean diameter of 0.17 ± 0.03 µm (Figure 10.3(c)). The addition of 

HPC gradually increases the fiber diameter, due to decrease of uniformity and smoothness 

[159]. For all samples, 50 fibers were chosen randomly and their mean and standard 

deviation (SD) of fibers diameter were analyzed using image analysis software 

(Digimizer, version 4.5). Figure 10.3(d) reveals the mean fibers diameter distribution. 

 

 

Figure 10.3: Scanning electron micrographs for electrospun (a) PLA (b) PLA-MEB (c) PLA-MEB-HPC composite 

fibrous membranes and (d) Average mean fibers diameter measurements [207]. 

 In-vitro Release of MEB  

The cumulative release profiles of MEB from the PLA and PLA-HPC composite fibrous 

membranes are shown in Figure 10.4. These membranes (PLA and PLA-HPC) are 

incubated in PBS environment at pH = 7.4, at room temperature (22°C, below the LCST) 

and 43°C (above the LCST). The release of MEB from PLA and PLA–HPC composite 

fibrous membranes depends on many factors, including the solubility, swelling and 

weight reduction. Both membranes show initial burst release, therefore, composite fibrous 

membranes were initially washed (5 times, in 10 min) with 10 ml distilled water, so that 

the surface available drugs are removed. After washing, a sustained release of MEB is 

achieved from the composite membranes because MEB molecules are hydrophilic. The 

MEB release is accelerated at the temperature above the LCST, in the case of PLA–HPC 
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composite fibrous membranes. PLA fibrous membranes show an initial release of 0.75% 

with the almost negligible release over 1 hour, even under applied temperature (43°C). 

This is likely due to hydrophobic and semi-crystalline nature of PLA, which limits the 

diffusion of MEB from the fibrous membranes. The time scale of these release 

experiments is too short to expect the significant release of MEB, resulting from 

hydrolysis of PLA. Therefore, it can be expected that Fickian diffusion through the PLA 

fibrous membranes would be the predominant mechanism [223].    

 

Figure 10.4: Drug release profile showing the cumulative drug release Vs time (min) of drug loaded (a) PLA fibers (b) 

PLA-HPC composite fibrous membranes [207]. 

However, a significant variation in MEB release is observed by PLA–HPC fibrous 

membranes. The initial release of 4.03% is observed, which is much higher than the 

release by PLA fibrous membranes (0.75%). This may be assigned to the presence of 

water-soluble HPC molecules in the membranes. The MEB release is accelerated at a 

temperature above the LCST. HPC molecules show critical solution temperature around 

which the hydrophobic and hydrophilic interactions between the polymeric chains and 

aqueous media changes with the temperature [224][225]. When the temperature is below 

the LCST, the PLA–HPC fibers are stable and therefore, shows slow diffusion of MEB.  

However, when the temperature is increased to a value above the LCST, hydrophobic 

interactions in PLA–HPC fibrous membranes are strengthened and thus accelerate MEB 

diffusion. This happened because of the disruption of intra- and intermolecular 

electrostatic and hydrophobic interactions and results in chain collapse or expansion 

(phase transition) [226][227]. The construction or destruction of primary/secondary 

forces (chain dynamics, i.e. the energy level of the polymer/solvent system, hydrogen 
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bonding, hydrophobic effects, electrostatic interactions, phase change etc.) are 

responsible for pulsatile MEB release [228] (Figure 10.5). The maximum 25.4% MEB is 

released in 7-8 hours in case of PLA–HPC fibrous membranes and in the same time period 

only 1% MEB released from PLA fibrous membranes. These results show that HPC 

molecules in the composite fibrous membranes are the cause of MEB release in response 

to the external temperature. 

 

Figure 10.5: Schematics of cellulose repeat chain, showing the proposed hydrogen bonding (dotted line) with PLA. 

Thus, in-vitro studies demonstrate that MEB release form PLA–HPC fibrous membranes 

within the period of 7-8 hours, which is quite good for the acute injuries, where there is 

an on-demand supply of drug required. Hence, electrospinning approach of drug delivery 

is quite useful, especially for heat-sensitive drugs molecules.    

10.5 Conclusions of PLA-HPC Fibrous Membranes 

In the present work, temperature sensitive electrospun fibers are developed using PLA 

and HPC. The morphology of fibers is shown by SEM analysis. A sustained release of 

the MEB is achieved from the membranes. MEB release from the PLA membranes has 

no effect on temperature, whereas MEB release from the PLA–HPC membranes has 

accelerated when the temperature is raised slightly above the LCST. The results are 

promising for further investigation of biocompatibility, and site specific sustained release 

(especially for wound care treatments), in order to implement PLA–HPC composite 

fibrous membranes for a clinical trial.  
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11 Preparation of PLA-PEG-BSA Fibrous Membranes  
Biologically sensitive sensors are a promising technology for detecting pathogens, 

enzyme, antigen-antibody complexes, and tumor markers. As the state of the art advances, 

demand for accurate, sensitive, specific, high-throughput and rapid detection methods of 

molecular identities are increased [229][230][231][232]. To meet these needs, it is 

proposed to use biotin-avidin complex on the electrospun fibers. The unique advantages 

of electrospun fibers are large specific surface area, reduced grain size and nanoporosity, 

which will greatly enhance the performance of the biosensors.  

11.1 Biosensors 

According to IUPAC recommendations, a biosensor is an independently integrated 

receptor transducer device, which is capable of providing selective quantitative or semi-

quantitative analytical information using a biological recognition element [233][234]. It 

uses specific biochemical reactions mediated by enzymes, antibody, or whole cell to 

monitor the presence of various chemical compounds on a substrate usually by chemical, 

electrical, thermal or optical signals [235]. Its role is to interact specifically with the target 

analyte and the result of biochemical reaction is consequently transformed through 

transducer to measurable signal. The basic principle of the biosensor is shown in the 

Figure 11.1. The ability of biomolecules to react with very low concentrations of 

substances allows biosensors to be used in various biomedical applications such as in 

early detection of cancer [236]; in recognition of biological molecules such as enzyme, 

bacteria, and cholesterol [237][238][239]; and biosensors with microelectrodes are used 

to examine nerve signal in brain [240].   

 

 

Figure 11.1: The principles of the biosensors 
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11.2 Avidin-Biotin 

Avidin is a tetrameric protein recognized as a biological factor in egg white [241]. It has 

two-fold symmetry, i.e. the binding sites being arranged in two pairs on opposed faces of 

the molecules (as shown in Figure 11.2 and Figure 11.3). It has a remarkable strength of 

the interaction with the vitamin biotin. The extraordinary affinity between avidin-biotin 

system is characterized by an association constant (Ka) of the order of 1015 M-1. This value 

corresponds to a free energy of association of about 21 kcal/mol, a staggeringly large 

value for the noncovalent interaction of a protein with a molecule as small as biotin [242]. 

The interaction between avidin-biotin is so strong that even chemically modified and any 

biologically active compound with biotin can be attached. The four biotin-binding sites 

of avidin, provide the possibility of cross-linking between different biotin molecules, 

which could be used for signal amplifications, diagnostics and even selective 

eliminations.   

 

Figure 11.2: Schematic illustration of an avidin molecule (2-fold symmetry) complexed with four biotins [157] 

 

Figure 11.3: Avidin tetramer with subunit is colored to red and blue according to dual chain avidin subunits [243] 
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11.3 Advantages of Avidin-Biotin 

Avidin-biotin offers several advantages, some are as follows [242]: 

1. Avidin-biotin has high affinity of interaction and stability. 

2. Biotin can be used to attach binders and probes to avidin and, biotinylation, does 

not affect the biological activity and physical characteristics. 

3. Tetrameric structure of avidin allows signal amplification. 

4. A wide spectrum of different biotinylated chemicals, reagents and avidin-

containing probes are available. 

5. The system is highly versatile, i.e molecular interaction can be analyzed by 

various means.  

11.4 Challenges 

The typical problems of biosensors are stability, sensitivity, low analyte-antigen 

concentrations (∼ nM), lifetime of biological components and limited dynamic ranges. In 

addition to this, reversibility may be a problem. Therefore, the growth condition such as 

culture age, temperature and population can affect the response of the biosensors. In this 

regard, biosensor developed by electrospinning technique could be greatly benefited from 

the availability of high surface area and miniaturized size (ultimately nanoscale), which 

allows one to easily decouple excitation and signal emission. Sensors with such 

technology will improve sensitivity, detection limit, response time and selectivity. 
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12 Conclusions 

Electrospinning (ESP) has become a popular polymer processing technique to produce 

functional nano-bio-fibers for many biomedical applications (e.g., drug delivery, 

antibacterial, and biosensors). Uniquely tunable qualities such as high surface to volume 

ratio, degradability, and porosity is the major advantage of electrospun nano-bio-fibers, 

which greatly enhances their response rate, selectivity and sensitivity. 

This thesis addresses several structural and functional features of polylactic acid (PLA) 

and its composite fibrous membrane. For the first objective, PLA fibers were obtained 

using a single solvent (DCM, TCM, or THF).  By varying ESP parameters, PLA fibers of 

different diameters and surface porosities were produced. The degree of crystallinity of 

PLA fibers were compared with the native PLA pellets. PLA was blended with 

Polyethylene glycol (PEG) and magnetic nanoparticles (MNPs) and was converted into 

fibers. PLA-PEG-MNPs nanocomposite fibrous membranes showed proportionally 

reduced saturation magnetization compared to pure magnetic nanoparticles and therefore 

promise the possibility for temperature effects, such as hyperthermia treatment. 

For the second objective, PLA was blended with PEG and N-Vinylcaprolactam (NVCL). 

This blend solution was converted to fibers. Tetracyline hydrocholride (TCH) was 

embedded into these composite fibrous membranes, and the antibacterial activity was 

proved. Further, MNPs were embedded into these composite fibrous membranes. These 

composite membranes (PLA-PEG-NVCL-MNPs) showed on-demand drug release under 

switch on-off condition of magnetic field.  

For the third objective, the smart thin-film and fibrous membranes were developed using 

PLA and Hydroxypropylcellulose (HPC) and were used for on-demand drug delivery 

under temperature stimuli. A switch on-off behavior of drug release was established. 

These smart membranes allow a local chemotherapy without causing other collateral 

damage to the patient’s body. Hence, the developed system will offer significant 

advantages in contrast to conventional delivery systems, in terms of increased efficiency 

in drug delivery applications. Due to decreased drug concentration throughout the body 

(local application with the use of the nanofibers), many drugs where the therapeutic 

dosage is above the toxic level for the human body may now find its application. In 

general side-effects of drugs will be significantly reduced.  

For the forth objective, biotinylated bovine serum albumin was embedded into PLA-PEG 

fibers, these enabled specific immobilization of fluorescently labelled avidin. An alkaline 

phosphatase enzyme was immobilized via biotin-streptavidin interaction on the hybrid 

nanofibers, demonstrating the suitability of the material for biosensing applications. 



Conclusions 

 

Page 118 

 

There are still plenty of challenges which need to be addressed. The stimuli may differ 

from one patient condition to another, providing difficulty in benchmarking, 

reproducibility and potential cytotoxicity in vivo is also not fully understood. Extensive 

research and developments are still needed in order to make a bond between materials 

and biological environment, so that clinical applications could be done. 

It is firmly believed that, with sustained effort and enough time from the scientific and 

engineering community, electrospun functional nano-bio-fibers will become one of the 

most promising tools for fabricating high performance advanced materials with a broad 

range of functionalities and applications in multidisciplinary areas of biomedicine in the 

near future.  
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Symbols and Abbreviations 

Symbols and abbreviations are listed in the following notation: 

Symbols and 

Abbreviations 

Descriptions 

µm Micrometer 

CEs Cellulose ethers 

cm Centimeter 

DCM Dichloromethane 

DDS Drug Delivery Systems 

DSC Differential scanning calorimetry 

E. coli Escherichia coli 

ESP Electrospinning  

FTIR Fourier transform infrared  

g Gram 

h Hour 

HPC Hydroxypropyl cellulose 

kV Kilovolt 

kV Kilovolt 

LCST Lower critical solution temperature 

MEB Methylene blue 

mg Milligram 

min Minute 

mL Milliliter 

Mn Number-average molecular weight 

Mw Mass average molar mass 

Mw Weight-average molecular weight 

nm Nanometer 
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NVCL N-Vinylcaprolactam 

PBS Phosphate buffered saline 

PCL Poly-ε-caprolactam 

PEG Polyethylene glycol 

PLA Polylactic acid 

PNIPAm Poly(N-isopropyl acrylamide) 

R Universal gas constant 

RT Room temperature 

SEM Scanning electron microscopy 

TCM Trichloromethane 

TFE 2,2,2-Trifluoroethanol 

Tg Glass transition temperature 

TGA Thermogravimetric analysis 

THF Tetrahydrofuran 

Tm Melting temperature 

UCST Upper critical solution temperature 

UV-VIS Ultraviolet-visible 

V Volume 

wt% Weight percentage 

wt.% Percentage by weight 

XRD X-ray diffraction 

ΔG Gibbs Free Energy 

ΔH Enthalpy term 

ΔS Entropy term 

λ Wavelength 
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Supporting Information 

Confocal microscopy  

 

Figure I (a) Shows a fluorescent confocal microscopy image of the PLA-PEG fibers. (b) The same fibers were 

immersed in fluorescently labelled avidin solution and fluorescence at 488 nm was measured. (c) PLAPEG fibers 

merged with fluorescently labelled avidin, which clearly indicate no immobilization of avidin on the PLA-PEG fibers 

because the biotin binding sites in avidin were not present. (d-f) The non avidin immobilized PLA-PEG fibers were 

treated with excess of biotin. There were no blocking occurred due to unavailability of avidin molecules. (g-l) The same 

analysis as in (a-f) was conducted for PLA-PEG fibers containing biotinylated BSA, which clearly indicate 

immobilization of avidin on fibers. (j-l) indicates the same analysis, where the immobilized avidins are blocked with 

excess of free biotin. 
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Franz Cell Apparatus 

 

 
 

Figure II: Franz diffusion cell (a) basic model (b) lab developed apparatus (Pictures: M. Kumar) 

 

FTIR spectral studies of PLA fibers 

The infrared spectrum of PLA fibrous membranes was determined by Fourier Transform 

Infrared (FT-IR) as shown in Figure 2. Table 1, shows a comparison of PLA fibers data 

with the data published in the review paper by Auras et al. and by Furukawa et al. 

 

Figure III: FTIR absorption spectrum of PLA fibrous membranes 
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Table I: Comparative studies of infrared spectroscopy peak band assignment for PLA and its fibers 

 

Assignment Peak Position (cm-1) 

 Furukawa et al. 

[244] 

Auras et al. [106] PLA fibers 

-OH stretch (free)  3571 3453 

-CH-stretch  2997 (asym), 2946 

(sym), 2877 

2996 (asym), 

2944 (sym), 2880 

-C=O carbonyl 

stretch 

1752 (C), 1744 

(A) 

1748 1756 

-CH3 bend 1450 (asym), 1380 

(sym), 1356 (sym, 

C) 

1456 1458 

-CH- deformation 

(symmetric and 

asymmetric bend) 

1356, 1256 (A) 1382, 1365 1384 

-C=O bend  1225  

-C-O- stretch 1265, 1210 (C), 

1179, 1080 

1194, 1130, 1093 1184 

-OH bend  1047 1090 

-CH3 rocking modes 1125 956, 921  

-C-C- stretch 1044 926, 868 874 

C= Crystalline; A= Amorphous. 

Liquid crystal (LCs) 

Liquid crystal (LCs) is a state of matter that is intermediate between the solid crystalline 

and the ordinary (isotropic) liquid phases. It is also known as mesomorphic state (meaning 

intermediate form) or liquid crystals. 

 

Figure IV: Liquid crystals lies between solid and liquid 
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Figure V: Optical micrograph image of PLA-HPC fibrous membranes. The dichroism caused by the optical activity 

of the HPC can be seen. 

 

 

 

 

Figure VI: Digital image of (1) PLA-MEB fibrous membrane (2) PLA-HPC-MEB fibrous membrane at room 

temperature and (3) PLA-HPC-MEB fibrous membrane at 43°C. 
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SEM image of Cellulose acetate - PLA core-shell fibrous membranes  

 

Figure VII: Morphology of the cellulose acetate - PLA core-shell fibrous membranes with different magnifications 

SEM image of magnetic PLA fibrous membranes  

 

Figure VIII: Morphology of the magnetic PLA fibrous membranes (a) SEM images (b) digital images of the 

membranes.  
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Preparation of Phosphate Buffered Saline (PBS)  

PBS has many applications since the solution is isotonic and not harmful to cells. It can 

be used to dilute the substance for drug delivery application.   

1. Dissolve the following chemicals in 800ml distilled H2O. 

 
8.0g of NaCl 
0.2g of KCl 
1.44g of Na2HPO4 
0.24g of KH2PO4  

 

Table 2 shows a literature review on PLA based electrospun fiber membrane mainly for 

biomedical applications.  

 

Tetracycline hydrochloride (TCH) release from PLA-HPC thinfilm membrane 

 

 

Figure IX: TCH release or transport from donor compartment to receptors compartments (Franz Cell) through PLA-

HPC thin film membrane at 24°C, 45°C and changing between them (24 – 45 °C).  

 



Supporting Information 

 

Page 150 

 

Mössbauer analysis 

 

Figure X: Mössbauer spectra of (a) Magnetic nanoparticles (MNPs) and (b) PLA-PEG-MNPs composite fibrous 

membranes measured at room temperature [222]. 

 

Table II: Literature review on PLA electrospun fibers, year workers and process highlight 

Year Researchers Process highlight 

2002 Kenawy et al. [223] Fibers electrospun from chloroform solutions 

containing a small amount of methanol to 

solubilize drug 

2003 Zong et al. [245] A mechanism of structure, morphology and 

property changes during in vitro degradation of 

electrospun PLGA nanofibers was proposed  

2005 You et al. [246] Fabrication of nanofiber matrices. Optimum 

solution concentration for fiber formation is 5 

wt% 

2006 Tsuji et al. [247] Stereocomplex nanofibers of high molecular 

weight PLLA/PDLA = 1:1 was prepared and 

suppresses the formation of homo-crystallites 
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2007 Kim et al. [248] Produce blending nanofibers made of PLA and 

gelatin to improve the cellular responses of 

PLA 

2008 Iwatake et al. [23] Green-composites of PLA/cellulose nanofibers 

were reported. Mechanical and thermo-

mechanical properties were studied 

2009 Ishii et al. [249] PLLA and stereocomplexed PLA nanofibers 

was implanted in rats for 4 – 12 weeks.  

stereocomplexed PLA nanofiber caused milder 

inflammatory reaction than PLLA nanofiber 

2010 Noh et al. [250] Small concentration of the bioactive glass was 

incorporated in PLA nanofibers. Osteoblastic 

cells were demonstrated to adhere on 

composite nanofibers 

2011 Peng et al. [251] Highly porous hydroxyapatite (HA)/PLLA 

nanofibers were fabricated. Cell morphology 

viability and alkaline phosphatase (ALP) 

activity were examined. 

2012 Mai et al. [252] Curcumin incorporated (5 wt%) PLA 

nanofibers were fabricated and used for 

biomedical application  

2013 Wang et al. [253] PLA/chitosan core/shell nanofibers were 

fabricated and potentially be used as vascular 

gasket 

2014 Wagner et al. [152] Blends of PLLA and PHBV in 

chloroform/DMF were electrospun and optimal 

electrospinning conditions were determined. 

2015 Lee et al. [254] PLA nanofiber was used as a piezoelectric 

sensor material to operate LEDs. 

2016 Goh et al. [255] PLA/Chitosan nanofibers were coated with 

functional bioglass and used for in-vitro 

bioactivity  

2017 This work [159] [157] 

[222] [207] 

PLA, PEG, HPC, NVCL and BSA based 

composite fibrous membranes were fabricated 

and used for biomedical applications 
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