
Sensitivity of soil organic matter in
cryoturbated arctic soils against permafrost

thaw

Von der Naturwissenschaftlichen Fakultät

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

DOKTOR DER NATURWISSENSCHAFTEN

Dr. rer. nat.

genehmigte Dissertation

von

Diplom-Geograph Norman Gentsch

2017



Referrent: Prof. Dr. Georg Guggenberger
Koreferrent: Prof. Dr. Robert Mikutta
Tag der Promotion: 20.05.2016



Acknowledgements

I like to thank both of my supervisors, Prof. Dr. Georg Guggenberger and Prof. Dr. Robert
Mikutta who guided me through my PhD. Their door was always open to discuss questions,
findings, or problems. Grateful thanks to my dear girlfriend Claudia for her patience with me in
the last years and her important statistical contributions. Thank you for introducing me to R. I
will never forget your efforts to keep my back free to focus on my PhD. Thanks to all members
of the CryoCARB project for the incredible team spirit and beautiful field trips. For the sup-
port of my PhD thesis I like to thank all members of the Institute of soil science Hanover and
particularly: Leopold Sauheitl, Olga Shibistova, Michael Klatt, Silke Bokoloh, Elke Eichmann-
Prusch, Waldemar Walter, Heike Steffen, Ulrike Pieper and Pieter Wiese. Thanks to my office
mate Norbert Bischoff for the nice atmosphere and our frequent discussions of latest scientific
theories and statistics. Thanks to Tommy and Sandy Burns and Anja Matuszak for the help
with typesetting and Marco Kraegen for the bookbinding. I am grateful for the financial sup-
port from the Evangelisches Studienwerk Villigst, without their support, this thesis would not
have been possible. Special thanks to my parents, my lovely sister and her family, all my dear
friends and especially the Dud-Ranch who supported me in all circumstances of life. Thanks to
all institutions that made this work possible.

I





Abstract

Permafrost soils store half of the global soil organic carbon (SOC) pool and are currently the
largest terrestrial sink for atmospheric carbon. A warming climate in permafrost ecosystems
can induce changes in the soil system and stimulate microbial break down of soil. The per-
mafrost carbon feedback is the amplification of global climate change by the release of green-
house gases (CO2 and CH4) from SOC degradation. The vulnerability of permafrost SOC
depends on the future changes in the major controlling factors of biodegradation such as tem-
perature, hydrology, nutrient availability, and/or physicochemical protection. These factors af-
fect the microbial-enzyme activity and the physical access of organic carbon (OC) sources to
microorganisms. This study provides a comprehensive data set on storage, composition, and
the bioavailability of differently stabilized soil organic matter (OM) compartments within 28
cryoturbated soil profiles across the Siberian Arctic. Additionally, the intensity of pedogenic
processes was studied and the relevant secondary minerals with the potential to protect OM
were quantified. Therefore, X-ray diffraction analyses, sequential dissolution-extraction tech-
niques of Fe and Al and various standard soil methods were applied. The data indicate that
despite slow physicochemical weathering, mineral transformation and formation of exchange-
able metal ions and secondary Fe-Al-oxide occurs. Soil OM fractions of different functionality
were studied for their structural and chemical composition. Across all soil profiles, the total OC
storage was 20.2 ± 1.5 kg m−2 (mean ± standard error) to 1 m soil depth with 81% in subsoil
horizons. Mineral-associated OM was separated by density fractionation as the heavy fraction
(HF, > 1.6 g cm−3) and was with 55% the dominant OC fraction in the soils. Particulate OM in
organic horizons and the light fraction (LF, < 1.6 g cm−3) contributed 13% and 19% to the total
OC storage and a considerable proportion (13%) was mobilized during the density fractiona-
tion. Results of elemental and spectroscopic analyses confirm the consecutive transformation
of SOM with increasing soil depth and the enrichment of alkyl and aromatic compounds over
thousands of years in deep soil horizons. The bioavailability of the bulk soil, HF and LF was
investigated in aerobic laboratory incubation experiments and showed the largest amounts of
bioavailable OC in the topsoil and in permafrost horizons. Surprisingly, the turnover of the
LF-OC in the subsoil was even lower than in the HF while topsoil LF-OC was readily min-
eralized. Radiocarbon analyses suggested that the bioavailable mineral-associated OM pool is
composed of fast cycling OM most likely attached with weaker chemical bonds to soil miner-
als. The dominant part of the mineral-associated OM pool (> 9%) was largely resistant against
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ABSTRACT

biological attacks and is likely hold by high binding energy in adsorption complexes. The lower
temperature sensitivity in subsoil horizons was the direct cause of the restricted accessibility of
mineral-associated OC and nutrients to decomposers. Overall, better aeration increases the risk
of additional CO2 release from thawing permafrost soils. Despite this, the results of this study
emphasize the relevance of mineral-organic associations for the current OC storage and their
possible attenuating effect on the permafrost carbon feedback.

Keywords: Permafrost soils, soil organic matter, climate change
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Zusammenfassung

Permafrostböden speichern die Hälfte des globalen organischen Bodenkohlenstoffs und sind
bis heute die größte natürliche, terrestrische Senke für atmosphärischen Kohlenstoff. Die im
Zuge des Klimawandels steigenden Temperaturen können das empfindliche Gleichgewicht in
Permafrostböden stören und die Mikroorganismentätigkeit stimulieren. Die steigende Mineral-
isierung der organischen Bodensubstanz (OBS) in Permafrostgebieten kann zusätzliche Treib-
hausgase, wie Kohlendioxid (CO2) oder Methan (CH4), in die Atmosphäre emittieren und als
positive Rückkopplung den Klimawandel verstärken. Die Zersetzungsanfälligkeit der OBS in
Permafrostböden hängt von den Veränderungen der stabilisierend wirkenden Faktoren ab, wie
z.B.: Temperatur, Hydrologie, Nährstoffverfügbarkeit und physikochemische Stabilisierung.

Die vorliegende Studie legt einen umfangreichen Datensatz vor, der die Verteilung der organ-
ischen Kohlenstoffvorräte, deren strukturchemische Zusammensetzung und dessen Bioverfüg-
barkeit anhand von 28 Bodenprofilen entlang eines Ost-West Gradienten der sibirischen Arktis
untersucht. Darüber hinaus wurde die Intensität der bodenbildenden Prozesse untersucht und
die wichtigsten pedogenen Minerale quantifiziert, welche mit organischen Substanzen in Inter-
aktion treten können. Dafür nutzte die Studie - neben verschiedenen physikalisch-chemischen
Bodenstandardanalysen - unter anderem Röntgenbeugungsanalysen. Die mineralogischen Un-
tersuchungen führten zu dem Schluss, dass trotz langsam ablaufender Mineraltransformations-
prozesse in Permafrostböden, vergleichbare Mengen an austauschbaren Metallkationen sowie
pedogenen Oxiden wie in den Böden der gemäßigten Breiten zu finden sind. Zur Charakter-
isierung der OBS und deren funktionell unterschiedlichen Fraktionen wurden strukturchemis-
chen Analysen durchgeführt. Im Mittel waren in allen untersuchten Böden 20,2 ± 1,5 kg m−2

(Mittelwert ± Standartfehler) organischer Kohlenstoff (OC) bis 1 m Bodentiefe gespeichert,
wovon 81% in Unterbodenhorizonten zu finden waren. Die mineral-assoziierte organische
Fraktion wurde mittels Dichtefraktionierung als schwere Fraktion (HF, > 1,6 g cm−3) von
der partikulären organischen Fraktion (LF, < 1,6 g cm−3) separiert. Der Anteil der unter-
schiedlichen Fraktionen am Gesamtkohlenstoffvorrat der Böden war von der HF dominiert
(55%). Partikuläre organische Substanzen in den organischen Auflagehorizonten und in der
LF trugen mit 13% und 19% zum Gesamtkohlenstoffvorrat der Böden bei. Ungewöhnlich
hohe OC-Mengen wurden beim Spülen der Dichtefraktionen mobilisiert (13%), die in etwa
zu 80% von der HF desorbiert wurden. Die Ergebnisse der Elementar- und Spektroskopieanal-
ysen lassen eine fortschreitende Zersetzung der OBS mit zunehmender Bodentiefe erkennen.
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ZUSAMMENFASSUNG

Langsame und über tausende von Jahren verlaufende Transformation der OBS, führen zur
Anreicherung von Akylgruppen und Aromaten in den Unterböden. Zur Untersuchung der
Bioverfügbarkeit der OBS in der Gesamtproben, der HF und der LF, wurden Brutversuche
im Labor durchgeführt. Hohe Bioverfügbarkeit der OBS wurde in den Permafrosthorizonten
und der organischen Auflage festgestellt, dagegen wiesen kryoturbierte Horizonte geringe OC-
Mineralisationsraten auf. Obwohl die LF in den Oberböden schnell bioverfügbar war, wurde
deren Zersetzung in den Unterböden stark gehemmt. Dies lässt sich durch Auswaschung leicht
verfügbarer Substanzen und Transformationsprozesse erklären. Radiokarbonuntersuchungen
lassen darauf schließen, dass der bioverfügbare Pool des mineral-assoziierten OC aus schnell
verfügbaren Substanzen besteht, welche möglicherweise über relativ schwache Bindungen an
die Mineralphase gebunden sind. Der überwiegende Teil des mineral-assoziierten OC (> 9%)
beinhaltet deutlich ältere Substanzen, die wahrscheinlich aufgrund höherer Bindungsenergien
nicht zugänglich für die Zersetzung durch Mikroorganismen sind. Als direkte Folge der Schutz-
wirkung der Mineralphase auf die Zersetzung der OBS war die Temperaturanfälligkeit der OC-
Mineralisierung in den Unterböden deutlich herabgesetzt. Die Ergebnisse dieser Studie zeigen,
dass mit zunehmend oxischen Bedingungen in tauenden Permafrostböden, ein hohes Risiko für
steigende CO2 Emissionen in die Atmosphäre besteht. Darüber hinaus konnte die Studie zeigen,
dass mineral-organisch Assoziationen wichtige Mechanismen zur Langzeitstabilisierung von
OC in Permafrostböden darstellen und auf temperaturinduzierte, zusätzliche Treibhausgase-
missionen in die Atmosphäre abschwächend wirken können.

Stichwörter: Permafrostboden, organische Bodensubstanz, Klimawandel
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Nomenclature

Al aluminium

C carbon

Cmic microbial biomass carbon

CH4 methan

CO2 carbon dioxide

DNA deoxyribonucleic acid

DOC dissolved organic carbon

DOM dissolved organic matter

Fe iron

Gt giga ton

H2O water

HF heavy fraction, mineral associated organic matter > 1.6 g cm−3

ka kilo years

LF light fraction, particulate organic matter < 1.6 g cm−3

MOA mineral-organic associations

MoF mobilizable fraction

N nitrogen

Nmin mineral nitrogen

nm nano meter

NMR nuclear magnetic resonance
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OC organic carbon
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Pg peta gram

Q10 temperature response ratio of soil respiration to 10°C temperature increase

rRNA ribosomal ribonucleic acid

SOC soil organic carbon

SOM soil organic matter

WHC water holding capacity

XPS X-ray photoelectron spectroscopy

XRD X-ray diffraction analysis
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1 State of the art and general
hypotheses

1.1 Structure

The following thesis is structured in five chapters. The first chapter starts with a brief overview
on system theory and the most important cycles on Earth, followed by explanations about the
terrestrial carbon (C) cycle and the formation of soil organic matter (SOM). Afterwards the
turnover and stabilization of SOM are briefly reviewed and the relevance of permafrost ecosys-
tems in the global climate system and the permafrost carbon feedback are outlined. Reasons
for the large organic carbon stocks in permafrost soils and their potential vulnerability to global
climate change are emphasized. The following chapters return partial results of this thesis in the
form of three papers (two published, one prepared for submission). Chapter five summarizes
and discusses the main findings, and finally gives implications for the relevance of this study.

1.2 The Earth System

The Earth as a system comprises countless numbers of couplings, feedback loops and cycles.
At the introduction of this thesis it may be of worth to have a brief view on system theory and
the most important cycles on Earth. I prefer to begin with a theory which effectively inspired
my understanding of Earth system processes. In the 1970’s, the biochemist James Lovelock
and the microbiologist Lynn Margulis developed a new and challenging theory. The so called
“Gaia hypothesis” in its most basic form, postulates that Earth is a self-regulating system in
which biota play a key role. In their classical work from 1974, the authors suggested that since
the appearance of life, it affects all physical and chemical cycles on Earth and maintains its sur-
vival through homeostasis (Margulis and Lovelock, 1974). In other words, the presence of life
is the principle reason for the long-term stability of the Earth’s climate over billions of years.
One of their core arguments, for example, includes the way in which organisms influence the
C cycle. Biological pathways level out the steady increase in solar luminosity by regulating
the amount of atmospheric greenhouse gases such as carbon dioxide (CO2) or methane (CH4)
trough oceanic or land element cycles (Lovelock, 1979; Margulis and Lovelock, 1974). The
Gaia hypothesis has attracted much attention, because it promised explanations of how the

1



CHAPTER 1. STATE OF THE ART AND GENERAL HYPOTHESES

Earth systems works and why this planet has been a stable habitat throughout geologic history.
Forty years later, there is still an ongoing debate about the existence of “Gaia” and especially
as the overarching “terra forming” role of the biota appeared not consistent with modern sci-
entific evidence (Tyrell, 2013). There is a general acceptance in the scientific community, that
coevolution between life and its environment exists. In the same way as biological processes
influence their physicochemical surroundings, organisms have to put in effort to fit the envi-
ronmental constraints by evolution. Tyrell (2013) wrote in his book “On Gaia” that there is
no evidence for an over-riding force to protect our planet’s life support system. By rejecting a
theory which suggests stabilising feedback and buffering systems against human perturbations,
we are able to acknowledge the vulnerability of the Earth system (Tyrell, 2013). In order to face
the future challenges of anthropogenic forces, it is important to have a correct picture of how
our global system works. Despite all of its critics, the Gaia hypothesis was big-picture science,
the beginning of a new way of thinking, and an inspiration for generations of scientists. Many
of the initial ideas from the framework are inherent parts of all fields of Earth system science
and biogeochemistry today. There is certainly no doubt, that life plays an overall function in
the Earth system after its appearance around 3.5 billion years ago (Kump et al., 2009). Life has
introduced a number of positive and negative couplings with its environment and the interac-
tion of such couplings are called feedback loops. Feedback loops are defined as self-perturbing
mechanisms of change and the response to that change (Kump et al., 2009). They can either
be positive, which means the effects of disturbance will be amplified, or negative, meaning the
effects of disturbance will be attenuated. Photosynthesis, for example, uses sunlight, CO2 and
H2O to build up OM. A positive coupling in this example would be a higher primary production
by the increase in the atmospheric CO2 level. In turn, by fixation of CO2-C in the biomass, pho-
tosynthetic organisms create a negative coupling to the atmosphere. Together, both couplings
create a loop, which can be negative if the fixation of CO2 in the biomass compensates the rising
CO2 levels in the atmosphere. A positive feedback may arise if the increase in biomass produc-
tion stimulates the release of CO2 by OM decomposition while at the same time amplifying the
rise of the atmospheric CO2 level. This simple example should demonstrate that feedback loops
of biological processes can have different directions and these directions depend on the strength
of the perturbation they have to overcome. The cycling of the elements is the key to maintaining
all living functions on Earth. Within the Earth system many essential nutrient cycles exist, but
among all, the C cycle plays a major role. Carbon is a component in all living organisms and
their trophy, part of the most important greenhouse gases (CO2, CH4), driver of the oceanic bio-
logical pump, and the long term atmospheric stability depends on C transfer trough sedimentary
rocks and tectonic circulation (Kump et al., 2009). In order to break down the complexity of the
global C cycle, a couple of short- and long- term, organic and inorganic cycles between the main
C reservoirs can be differentiated (Fig. 1.1). Inorganic C cycling comprises the CO2 exchange
between oceans and the atmosphere, chemical weathering, and precipitation of C in organism
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1.3. THE TERRESTRIAL OC CYCLE AND THE FORMATION OF SOM

Fig. 1.1: The global C cycling between the major C reservoirs: atmosphere, oceans, terrestrial
biosphere (including soils), and lithosphere (fossil carbon). Approximate reservoir
size is given in white numbers in giga tons (Gt). Yellow numbers are natural annual
fluxes and red are the anthropogenic annual contribution (Riebeek, 2011).

shells on the seafloor. The inorganic C cycle should only be mentioned in passing here, but it
should be kept in mind that all changes that occur on land rapidly respond to the oceans. Fluvial
and atmospheric transport processes induce feedbacks loops between all organic and inorganic
C reservoirs. The following section will briefly focus on the terrestrial organic carbon (OC)
cycle, because this is in part the research objectives of this thesis.

1.3 The terrestrial OC cycle and the formation of SOM

Natural terrestrial C cycling comprises two major OC reservoirs: living biomass with 550 Gt
and soils with 2400 Gt (Köchy et al., 2015). The speed of the cycling depends on the residence
time in the reservoir and its exchange with the atmosphere and hydrosphere. The residence
time, in turn, is controlled by various exergonic and endergonic reactions. In the course of pri-
mary production, autotroph organisms such as plants convert inorganic C (atmospheric CO2) via
photosynthesis into OC to build up OM. Heterotrophs, like animals and most of the microor-
ganisms, supply their cellular demands by the consumption of OC sources. The OC cycle is
completed if the primary products are emitted throughout oxidative processes (heterotroph res-
piration or fire) to the atmosphere. However, once OM is incorporated to the ground it becomes
soil organic matter (SOM).

3



CHAPTER 1. STATE OF THE ART AND GENERAL HYPOTHESES

1.3.1 SOM formation

Organic matter enters the soil from various sources and via different pathways. Soil organic
matter can be defined as the sum of dead plant and animal residues and their resynthesized
products which have accumulated on and within the mineral soil (Scheffer et al., 2010). For
the purpose of scientific studies, SOM can be differentiated in operational fractions. These
SOM fractions have different functionalities, different mechanisms of soil entry and different
residence time in the soil.

Particulate OM. The term particulate OM refers to all plant and animal residues, of detritus
origin. Particulate OM includes, for example, remnants of leaf litter, coarse woody debris,
roots, seeds or fruit bodies, and charcoal. The proportion of particulate OM in soils, can
be analytically considered by particle size or density separation methods (see study I).
According to the light particle density of those OM species, the term light fraction (LF)
will be used in the following. Light fraction materials are the major proportion of litter
(L), and organic (O) soil diagnostic horizons. The incorporation of the LF to mineral
soil horizons may occur by three main processes: (1) death of plant roots or hyphae,
(2) vertical allocation processes such as bioturbation, peloturbation, or cryoturbation, (3)
sedimentation, or syngenetic soil formation. Cryoturbation and syngenetic soil formation
are important processes in high latitude soils and will be the topic in the next chapter.

Dissolved OM. Dissolved OM (DOM) considers all organic compounds in the aqueous phase
of soils. By definition, DOM is a continuum of organic molecules of different sizes and
structures passing a 0.45 μm membrane filter (Kalbitz et al., 2000). According to this
definition it should be kept in mind, that the “dissolved” fraction also contains colloidal
substances < 0.45 μm. The origin of DOM starts with precipitation passing the surface
vegetation and entering the soil. While cycling through the soil layers, water acts as a
transport medium for organic molecules from active metabolism or biomass decay. Those
molecules derive from plant litter, microbial biomass, roots exudates, or solid SOM frac-
tions. Dissolved OM is the major control on the transport of organic acids or pollutants
and the driver for mineral weathering and soil forming processes (Kalbitz et al., 2000).
The transport of DOM throughout the soil column follows first of all the gravitational
force. With larger distance to the ground water table or stagnating water, the impact of
the matrix potential (capillary forces) of the soil increases. The migration of moisture
along thermal gradients in frozen stage and the formation of segregation ice are impor-
tant mechanisms for DOM distribution especially in high latitude soils (Ostroumov et al.,
2001). Additionally, frequent freeze-thaw-cycles also disrupt organic tissue (e.g. micro-
bial cell walls) and may contribute to the formation of DOM (DeLuca et al., 1992).

Mineral associated OM. Pedogenic minerals and OM are able to perform interactions, de-
fined as mineral-organic associations (MOA). Those interactions are of high complexity
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1.3. THE TERRESTRIAL OC CYCLE AND THE FORMATION OF SOM

and only imaginable in abstract forms. Numerous concepts have been released during
the past decades and a summary of the current knowledge on MOA have been recently
published by Kleber et al. (2015). The authors identified five key factors as promoters
for the formation of MOA: (1) the presence of water as a transport medium and to en-
able soil live, (2) the presence of plants to provide primary products or roots exudates,
(3) the presence of microorganisms with their function as OM decomposers (see sect.
1.3.2) as well as provider of organic molecules from metabolic compounds or extracel-
lular enzymes, (4) reactive pedogenic minerals such as variably charged Fe oxides and
short-range ordered Al-silicates as well as the mainly permanently charged phyllosilicate
clay minerals and (5) low soil pH. Soil moisture is the principle driver of the formation
of MOAs. Soil water and the organic acids therein, control the soil pH and the formation
of reactive secondary minerals. Dissolved OM appears as the major source for mineral-
associated OM. Organic molecules in the soil solution are small enough to pass through
the soil pore system and have a high affinity to react with mineral surfaces and metal
cations. Further direct sources can be exudates of roots, cell walls of microorganisms and
extra polymeric substances (Kleber et al., 2015). According to the authors, there are two
mechanistic approaches for MOA formation in soils. First, adsorption refers to the ac-
cumulation of organic ligands from the soil solution at mineral surfaces or the interlayer
of phyllosilicates. If the organic molecules permeate the hydration shells of the reaction
partners, short-range atomic interaction such as covalent bonds, give rise to the forma-
tion of inersphere complexes (Evans, 1989). Adsorption complexes which derive from
such kind of interactions revealed the highest binding energy. Weaker associations occur
if the minerals retain their hydration shells and the organic molecule is held by long-
range electrostatic or Coulomb forces. Those formations are referred to as outersphere

complexes. Furthermore, complexes with comparably weak adsorption energy can re-
sult from H-bond formation, van der Waals and hydrophobic interactions. As the second
mechanisms coprecipitation of organic ligands together with hydrolysed Fe-Al-species
from the soil solution can form MOAs of variable chemical bonds. Coprecipitation in-
volves the absorption of OM to neoformed Fe-Al-oxides, aggregation and precipitation of
metal-organic complexes, and the occlusion of OM into Fe-Al-precipitates (Kleber et al.,
2015; Mikutta and Kaiser, 2011; Scheel et al., 2007). The basic drivers of coprecipitation
reactions are supposed to be the metal to carbon ratio, soil pH, and the affinity of organic
moieties to the metal species (Fe(III), Al(III)). In natural systems, the occurrence of co-
precipitation is ruled by the mobility of the reacting metals and OM in the soil solution.
Therefore, hydromorphic soil conditions such are to be found in Glaysols, Stagnosols,
Gelisols (see sect. 1.4), or Histosols, support the formation of MOA by coprecipitation.
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CHAPTER 1. STATE OF THE ART AND GENERAL HYPOTHESES

1.3.2 SOM decomposition and stabilization

The build-up of soil OC stocks by the incorporation in SOM represents a negative feedback to
the atmosphere (Davidson and Janssens, 2006). The soil carbon feedback compensates green-
house gas fluctuations in the geological short term (years to millennia). However, once SOM is
formed, it is subject to degradation processes. Decomposition of SOM is driven by microorgan-
isms and to a smaller extent by the soil fauna, but in the following the term will be exclusively
used for microbial decomposition. Leaching and fire also alter the structure of OM but those
processes are not subject of this study. The process of SOM decomposition includes a chain of
complex reactions with the complete mineralization to inorganic compounds (e.g. CO2, CH4,
H2O) at the end. At the first step of decomposition, microorganisms rely on detritus, secreting
extracellular enzymes as catalysts to break down the complex organic biopolymers. Depoly-
merisation produces low molecular weight monomers (primarily soluble) which can be assim-
ilated by microorganisms from the soil solution (Conant et al., 2011). Outside the soil matrix,
litter experiments have shown that the rates of decomposition can vary widely between plant
species and organs. For example, Hobbie (1996) demonstrated for tundra plants that graminoid
species and deciduous leaf litter, containing high amounts of soluble carbohydrates, decompose
rapidly. By contrast, plant materials containing high proportions of lignin and waxes as well as
low N contents, such as mosses, woody stems and evergreen leaf litter decompose slowly. How-
ever, within the soil matrix, microorganisms are in a permanent state of starvation (Lappin-Scott
and Costerton, 1990). Limited substrate access and sporadic supply have evolved high spe-
cialized microbial communities, able to decompose any SOM that promises nutrients for their
metabolic demands (Dungait et al., 2012). Recent studies using compound specific labelling
techniques found that even lignin compounds and long-chain n-alkanes, a product of the epi-
cuticular wax layer, can be effectively cycled by microorganisms (Dungait et al., 2012; Stewart
et al., 2015; Wentzel et al., 2007). Stoichiometric requirements of the decomposer metabolism
reduce the OC concentrations of the SOM disproportionally (Ekschmitt et al., 2008). This is
often reflected by stoichiometric gradients (e.g. C : N ratio, stable C isotope fractionation) in
soil profiles from the topsoil to the subsoil. The expression SOM quality is a relatively abstract
term and is often used in literature with various meanings. On the one hand SOM quality may
expresses compound chemistry and structural complexity of substrates. On the other hand, the
term refers to the decomposability or bioavailability of substrates. The latter will be used in
the following. Nevertheless, in the soil environment constraints exist on the efficiency of the
microbial community for SOM cycling. These constraints result in slow turnover rates of SOM
and partially long residence times of hundreds to ten thousands of years in the soil. Stabilization
of SOM against decomposition is governed by a complex array of interlinked forces. Opera-
tionally we may cluster stabilizing controls by environmental constraints and the accessibility
of SOM.
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1.3. THE TERRESTRIAL OC CYCLE AND THE FORMATION OF SOM

Environmental constraints. In soils, microorganisms have to face a range of abiotic con-
ditions which may fluctuate seasonally (soil pH, water availability, redox stage) or even
daily (temperature). Beside climate controls, environmental constraints also cover land-
scape controls (e.g. topographic position), litter quality controls (plant species distri-
bution), and nutrient availability. Each of those constraints may affect the activity and
functional differentiation of the microbial community (Schimel and Schaeffer, 2012).
Specialized organism groups have developed to deal with high water content, anaero-
bic conditions, or particular substrates. For example, lignin is preferentially decomposed
by basidiomycete fungi which are suppressed in anaerobic soil environments. Thus, envi-
ronmental constraints can result in selective preservation of specific compounds in SOM
if comparable abilities for decomposition are not buffered within the community. Like
all biochemical reactions, decomposition is temperature-dependent and its kinetics can
be described by the Arrhenius equation (Davidson and Janssens, 2006). Overall, environ-
mental constraints are in charge of the accumulation of high SOM stocks if the habitat
does not support optimal growth condition for decomposer organisms. On the global
scale, SOM storage is positively related to mean annual precipitation and negatively re-
lated to mean annual temperatures (Jobbágy and Jackson, 2000). As a result strong latitu-
dinal gradients exist (Fig. 1.2), with larger C stocks in moist and cold ecosystems as well
as in frequently water saturated soils (Moyano et al., 2013).

Accessibility. Emerging views on SOM turnover assume if soil microorganisms can access
SOM then they are able to degrade it relatively rapidly (von Lützow et al., 2006). There-
fore, restricted accessibility is supposed to be an effective mechanism for SOM protection
and the key control of C turnover in soils (Dungait et al., 2012; Schmidt et al., 2011). The
access of microorganisms and extracellular enzymes to SOM sources may be restricted
by (1) spatial segregation or (2) physicochemical interactions by mineral-organic associa-
tions. In mineral soils, SOM is randomly distributed and the soil volume that is occupied
by microorganisms is less than 1% (Schmidt et al., 2011). Even if microorganisms are
surrounded by about 50 times of their mass from SOM (Kemmitt et al., 2008), decompo-
sition can only occur if water, air, microorganisms and SOM come together at the same
point in space and time (Dungait et al., 2012). In this context, soil structure and aggrega-
tion are active controls on preferential water and nutrient flow paths, and the connectivity
between SOM and its consumers. According to von Lützow et al. (2006), mechanisms
for the spatial inaccessibility of SOM against decomposer organisms have been found
due to occlusion into soil aggregates, intercalation (interlayer fixation by clay minerals),
hydrophobicity, and encapsulation into organic macromolecules. Mineral-organic asso-
ciations influence the accessibility by adsorption to mineral surfaces or coprecipitation
(described in sect. 1.3.1). If the adsorption affinity of SOM to the minerals exceeds that
of the enzyme activity, the energy of the microorganisms may not be large enough for
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Fig. 1.2: Global distribution of SOC in soils (USDA, 2006).

desorption (Dungait et al., 2012). Formation of MOAs are generally accepted as the most
effective controls on long-term OM stabilization within soils (Baldock and Skjemstad,
2000; von Lützow et al., 2008; Mikutta and Kaiser, 2011; Rumpel and Kögel-Knabner,
2011; Mikutta et al., 2011). Mineral-associated OM in soil can account for about 90% of
the total soil C storage in soils and their residence time has been found to exceed those
of the LF or occluded SOM by multiple times (Kleber et al., 2015). The relevance of
MOAs in soils receives much interest from the scientific community, especially from the
perspective of mitigating greenhouse gas emissions.

1.4 Permafrost soils and accumulation of OM

Permafrost is defined as ground (soil or rock) which remains frozen for at least two consecutive
years (Harris et al., 1988). Permafrost-affected landscapes are almost entirely restricted to high
latitudes in the northern hemisphere and mountainous areas such as the Alps and Himalaya
(Fig. 1.3). The latter will not be part of discussion in the following. The latest estimates
calculate the northern circumpolar permafrost region, including the non-continuous permafrost,
to 17.8 × 106 km2 (Hugelius et al., 2014). This number corresponds to 13.8% of the global
ice-free land surface (Loveland et al., 2000). Maintenance of a permafrost regime requires
extreme climate conditions with annual average temperatures below zero and short frost free
periods. The uppermost layer is subjected to seasonal temperature fluctuations. This zone of
consecutive thawing and refreezing is referred to as the active layer (study I, Fig. 2). The
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thickness of the active layer varies annually and depends on various factors such as vegetation
cover, depth of the organic layer, parent material, soil texture, water content, inclination and
exposition (Harris et al., 1988). Surveys from this study on continuous permafrost regimes,
for example, revealed active layer variability from 0.3 to 1.5 m depth at the culmination of the
summer season (study I, Table 1). The passive layer is the perennial frozen ground below the
active layer and its thickness varies between few metre to 1500 m. The intersection between the
active and passive layer is the so called transient layer (study I, Fig. 2). The transient layer is a
geochemical high active zone, and the migration of elements with the soil solution can lead to
an increase in salinity or OM content therein.

The presence of permafrost creates a unique soil environment, different in its physicochem-
ical processes from all other soil types. Soils which are affected by permafrost are designated
as Cryosols according to WRB (2014) or Gelisols according to Soil Survey Staff (2014). Both
taxonomies have the same definition for the permafrost soil group: a cryic horizon (perennially
frozen soil horizon in mineral or organic materials) with in the upper 100 cm, or within 200 cm
and presence of gelic materials (showing evidence of cryogenic processes). Cryogenic pro-
cesses include vertical soil mixing, frost heave, separation of coarse from fine materials, cracks
or patterned ground, ice segregation or cryodesiccation (WRB, 2014). Bockheim et al. (1997)
identified all these processes as pendogenic relevant, and therefore they should be designated
as cryopedogenic processes. The principle mechanisms of cryopedogenic processes are based
on frequent freeze-thaw-cycles (and the volume expansion of water during freezing by 9 vol%)
in combination with moisture migration along a thermal gradient (Bockheim et al., 1997). Cry-

oturbation is the major soil forming factor in permafrost-affected soils and refers to all soil
movements due to frost action processes (Bockheim and Tarnocai, 1998). Cryoturbation leads
to irregular or broken soil horizons as well as involutions and subduction of organic-rich materi-
als from near-surface horizons to the subsoil. The physical mass exchange due to cryoturbation
results in the rejuvenation of soil materials (cryohomogenization) which is important for chem-
ical weathering (Bockheim, 2007). Soil drainage is restricted by the permafrost surface and can
only occur laterally. Thus, permafrost soils are water saturated most of the frost-free period and
the chemical weathering products accumulate within the active or transient layer. Changing re-
dox conditions in the upper active layer often results in redoximorphic features (such as mottles
or Fe-Mn concretion and nodules) while reducing conditions towards the permafrost give rise
to reductaquic conditions and gleization.

Freezing substantially modifies the thermodynamic soil conditions, and the translocation
of solutes and particles are important processes. Moisture is transported as vapour or liquid
throughout the soil matrix. The former results in the accumulation of ablimational ice in pores
and frost cracks. Frequent sublimation and ablimation leads to the appearance of a zone of sub-
limantional drying and a layer of ice enrichment (Ostroumov, 2004). As pore water migrates
towards the freezing front, segregation ice can aggregate in forms of ice needles or lenses with
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the size of few millimetres to several metres (Harris et al., 1988). Crystal growth of ice re-
move the water molecules from the soil solution while the dissolved molecules or the colloidal
loading concentrate in the unfrozen liquid. Zones of concentrated pore solution favour colloid
flocculation and the formation of metal-loaded organic coprecipitates (Ostroumov, 2004; Van
Vliet-Lanoë, 1998). The DOM migration due to cryogenic processes have been referred as
cryogenic retenization (Mergelov and Targulian, 2011). Retenization involves the formation of
DOM in the topsoil, slow cryogenic and gravitational migration down the profile, and SOM ac-
cumulation on top of the permafrost table. In poorly drained soils, such a kind of cryochemical
precipitation can result in a progressive increase of OC in mineral horizons (Ping et al., 2015).
The sources for SOM formation in permafrost soils are similar to other soils (sect. 1.3.1). The
basic difference from low latitude soils, however, are the vast stocks of OC in comparison to
the low primary productivity of high latitude ecosystems. Circum-Arctic permafrost soils store
1035 Pg OC within the upper 3 m (Hugelius et al., 2014). On the global scale, permafrost re-
gions account for 45% of the soil OC pool within the top first metre (Köchy et al., 2015) while
the vegetation of those regions covers only 10-20% of the global vegetation pool (Ping et al.,
2015). As outlined above (sect. 1.3.1), the primary cause for high OC accumulation is the slow
OM turnover upon unfavourable habitat conditions (low temperatures, water logging, anaero-
biosis) for decomposers. Additionally, cryogenic processes as described above, relocate OM
from the topsoil towards deeper mineral soil horizons where the bioavailability of OM is pro-
tected by abiotic constraints or restricted accessibility. Another relevant process for the build-up
of large OC stocks in permafrost environments is the deposition of eolian, alluvial, colluvial,
and lacustrine sediments accompanied by the syngenetic growth of the permafrost table (Ping
et al., 2015). Syngenetic soil formation in permafrost regions during the Pleistocene resulted
for example in the development of Yedoma deposits (Schirrmeister et al., 2008). Accumulation
of loess-like sediments together with plant detritus, forces the permafrost table to rise and for-
mer topsoil stages can remain frozen for thousands of years. Latest estimates report 213 Pg OC
stored in the Siberian Yedoma deposits (Hugelius et al., 2014).

1.5 The Anthropocene and the permafrost C feedback

The Earth system is currently altered by human activity. Since the industrial revolution, the
release of greenhouse gases has warmed the atmosphere. The global mean surface temperature
(combined ocean and land surface temperature, Fig. 1.4) has increased linearly by 0.85°C over
the period from 1890 to 2012 (IPCC, 2013). It was the Dutch atmospheric chemist and Nobelist
Paul Cruzen who proclaimed that we are no longer living in the Holocene. Mankind has shaped
the geology and ecology of the earth as no other natural force before; it seems appropriate to
assign the term Anthropocene to the present geological epoch (Crutzen, 2002). The Anthro-
pocene should follow up the Holocene and the onset could be set to the late eighteenth century
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Fig. 1.3: Global distribution of permafrost. The colours represent no permafrost (green) and
the adjacent regions of permafrost (purple from the lightest to the darkest): sporadic
permafrost, isolated permafrost, discontinuous permafrost, and continuous permafrost
(Starr et al., 2008).

when geological records (such as ice cores) indicate rising greenhouse gases in the atmosphere.
Although the term has not been adopted in the international geologic stratification (ICS, 2009)
so far, a proposal has already been submitted to the ICS and several scientific groups work on
the acceptance.

The Arctic climate system is particularly vulnerable to external forcing. Air temperatures
in the Arctic and surrounding areas have increased by a rate of 1°C per decade over the past
30 years, which is significantly larger than the global average (IPCC, 2013). The central role
for the amplification of the Arctic air temperatures is attributed to the positive feedback from
changing arctic sea ice extend. Increasing arctic land surface temperatures have warmed the
upper permafrost layer (< 20 m) in most regions from less than 1 to 2°C (Romanovsky et al.,
2010). As response, the active layer thickness has increased in the last 30 years from few
centimetres to tens of centimetres (IPCC, 2013). For example, composite data from the Siberian
hydrological observation stations provide evidence for the increase of the active layer thickness
by 20 cm since the start of the observations in 1950 (Fig. 1.5). The thawing of ground ice and
ice rich soils results in the extended formation of thermokarst features (Schaefer et al., 2011).
Subsidence of the surface upon ice melting creates depressions and holes subsequently filled
from drainage water of the surrounding permafrost soils. The number and area of thermokarst
lakes have extended in Siberia, Canada, and Alaska during the last decades. For example,
thermokarst expansion has effected 10% of the peatland landscape of northeast Canada since
the 1970s and thermokarst features in permanent observatory plots in Alaska have doubled since
1990 (Schuur et al., 2015).

The fundamental concerns about the recent observations of permafrost degradation regard
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Fig. 1.4: Multiple evidence for global climate change about the last century. Each line repre-
sents independent research evidence on temperature increase (upper tree panels), sea
level rise (second panel from below), and arctic sea ice or glacier shrinking (lowermost
panel). Taken from IPCC (2013).
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Fig. 1.5: Average active layer thickness obtained from all Russian hydrometeorological stations
in Siberia from 1950 to 2008. The black line shows a linear trend of increasing active
layer thickness. Taken from IPCC (2013).

the fade of the massive OC stocks in permafrost soils. The permafrost carbon feedback is the
amplification of atmospheric greenhouse gases by the release of CO2 and CH4 from the miner-
alization of preserved permafrost SOC (Schaefer et al., 2011). Rising greenhouse gas concen-
trations will further increase atmospheric temperatures and introduce a positive feedback loop
between permafrost ecosystems and the atmospheric system. Earth history provides evidence
for the amplification of warming events by the permafrost carbon feedback. DeConto et al.
(2012) found at the Palaeocene-Eocene thermal maximum an increase of the global tempera-
tures by 5°C within a few thousand years. Such an event was explained by the authors as orbital
triggered decomposition of soil OC in circum- Arctic and Antarctic terrestrial permafrost.

Climate scenarios for high latitude ecosystems project soil temperature increases, further ac-
tive layer deepening, increases in precipitation, higher evaporation during the summer months,
and increases in surface runoff and drainage (Sushama et al., 2007). Permafrost thaw may also
result in soil drying of upland areas (Olefeldt et al., 2013), increasing discharge of DOM by
the drainage systems (Vonk et al., 2013) and higher frequency of freeze-thaw cycles (Bock-
heim, 2007). Warming of high latitude ecosystems is also predicted to result in larger nutrient
availability caused by new inputs of OC from shifting plant communities, increasing plant pro-
ductivity and the spread of deep-rooting plant species (Hartley et al., 2012). Labile OC inputs
and higher nutrient availability are likely to cause positive priming by the stimulated decompo-
sition of old OC sources (Wild et al., 2014). A summary of 12 projections of cumulative carbon
emissions from thawing permafrost indicated the release of 120 ± 85 Gt until 2100 (Schaefer
et al., 2011). However, the methods of the current available projections deviate from each other
and none of them included the complete permafrost carbon feedback loop.

Overall, the timing and magnitude of the permafrost carbon feedback remains highly uncer-
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tain. The carbon release depends on if and to what extent the current stabilization mechanisms
of permafrost SOM will cease or be compensated. Deeper knowledge on the current pedogenic
processes, the state of SOM composition, and the SOM availability to decomposers are key to
providing reliable climate projections for policy makers.

1.6 Motivation and general hypotheses

The composition and bioavailability of SOM are important determinants in the permafrost car-
bon feedback. Ping et al. (2015) summarized the current knowledge of 20 studies on permafrost
SOM characterization. As general findings, the bulk of OM in permafrost soils are less de-
composed, plant-derived compounds are often more prominent than microbial residues, and
environmental constraints promote the preservation of easily bioavailable compounds such as
solutes or root exudates. Less consensus is available regarding the role of MOAs in permafrost
soils and only a few studies have addressed this topic (Dutta et al., 2006; Gundelwein et al.,
2007; Höfle et al., 2013). Höfle et al. (2013) suggest from a single sandy soil core only minor
relevance of MOAs for OM stabilization in permafrost soils. Laboratory incubation studies pro-
vide more direct estimates of the potential bioavailability of permafrost SOM and large research
progress has been made in the recent years. Most of the studies found the highest mineralization
rates from SOM in less decomposed compounds, rich in polysaccharides and proteins (Waldrop
et al., 2010; Diochon et al., 2013; Treat et al., 2014). Schädel et al. (2013) projected in a syn-
thesis of long term (> 1 year) aerobe experiments, 20 to 90% mineralization of the initial OC
content within 50 years at 5°C. Despite its importance, information on the temperature sensi-
tivity of permafrost SOM is sparse. Only three studies (Dutta et al., 2006; Karhu et al., 2010,
2014) have addressed the temperature sensitivity of OC in mineralization experiments from per-
mafrost soils so far, and those have all focused on the topsoil horizons (< 40 cm depth). Subsoil
SOM dynamics of mineral permafrost soils are poorly considered in the available literature.
However, the response of the physicochemical soil conditions to a changing environment will
certainly have the strongest impact in the subsoil SOM dynamics (Rumpel and Kögel-Knabner,
2011). Most of the studies cited above, investigated permafrost soils from the North American,
Greenland, or the Scandinavian Arctic. Siberian landscapes cover about 50% of the circumpo-
lar permafrost zone but only a few studies on SOM dynamics from a few spots are available
(Dutta et al., 2006; Kawahigashi et al., 2006; Rodionow et al., 2006; Gundelwein et al., 2007;
Kaiser et al., 2007; Rodionov et al., 2007; Guggenberger et al., 2008; Sommerkorn, 2008; Höfle
et al., 2013). In order to gain a deeper knowledge in SOM dynamics and pedogenic processes
of permafrost soils, the aims of this study are:

1. to provide a large data set from remote and poorly studied locations across the Siberian
Arctic,
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2. to characterize the dominant pedogenic processes and the assemblage of pedogenic min-
erals,

3. to characterize the chemical composition of SOM and physical-separated OM fractions
within all major genetic horizons of soil profiles,

4. to investigate the bioavailability and temperature sensitivity of the bulk SOM and OM
fractions across a wide range of sampling sites and soil depth profiles.

Based on the theoretical background above, the following general research hypotheses have
been addressed:

H 1 As a result of the extreme climate conditions in Arctic environments, physical weathering
dominates over chemical weathering. Primary minerals dominate the mineral assem-
blage while secondary minerals, the product of pedogenic mineral transformation and
constituents for MOAs, are small in comparison to temperate environments.

H 2 The capacity of permafrost soils to mitigate SOM accessibility to decomposers by the
formation of MOAs is low in comparison to temperate soil environments. Constrained
physicochemical protection will result in high sensitivity of permafrost SOM to climate
change.

H 3 Organic matter that was subducted by cryoturbation in deep active layer horizons or incor-
porated into the permafrost layer is less decomposed and close to the chemical composi-
tion of the organic topsoil materials. The subsoil of mineral permafrost soils contains high
proportions of LF and readily bioavailable SOM compounds. In consequence of changing
abiotic soil conditions (temperature, moisture, acidity), the mineralization of SOC from
permafrost soils of the Siberian Arctic will amplify the permafrost carbon feedback.

It should be noted that in the cause of the investigations new insights give rise to a different
way of thinking, especially about the role of MOAs in permafrost soils. Thus, the hypotheses
in study III already deviate from the general hypotheses above. To test the hypotheses, a wide
range of standard and specific methods have been used (Fig. 1.6). The specific methodological
protocols will be described in detail within the individual studies.

Study I used standard soil methods, such as texture analyses, wet-chemical dissolution, and
X-ray diffraction analyses (XRD) to characterise the mineralogical assemblage of 28 soil
profiles across the Siberian Arctic. Furthermore, density fractionation in combination
with elemental and stable isotope analyses were used to investigate the storage and trans-
formation of the bulk SOM and three different OM fractions.

Study II was an in depth case study from the West Siberian sampling sites. In addition to
the methods from Study I, nuclear magnetic resonance (NMR) and X-ray photoelectron
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Fig. 1.6: The structure and methods of the thesis at a glance.

spectroscopy (XPS) were used to investigate the chemical composition of SOM fractions.
Radiocarbon analyses and results from a 90 day incubation experiment provide insights
to the turnover of the different SOM fractions.

Study III summarizes the results of a 180 day incubation experiment. Different temperature
treatments (5 and 15°C) were used to investigate the potential mineralization and tem-
perature sensitivity of bulk soil and the HF. Determination of the microbial biomass and
mineral N (Nmin) provide insights to the activity of the decomposer communities. Ad-
ditionally, radiocarbon measurements of the respired CO2 at the end of the incubation
allowed statements on the accessibility of specific pools of mineral-associated OM.
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2 Study I

Storage and transformation of organic matter fractions in
cryoturbated permafrost soils across the Siberian Arctic

Contribution: I participated in the field work and performed most of the laboratory analyses.

I collected and evaluated the data, compiled the graphs, and wrote the manuscript.
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5Aarhus University, Center for Geomicrobiology, Aarhus, Denmark
6Stockholm University, Department of Physical Geography and Quaternary Geology, Stockholm, Sweden
7Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
8University of Vienna, Department of Microbiology and Ecosystem Science, Vienna, Austria
9Austrian Polar Research Institute, Vienna, Austria
10University of New Hampshire, Department of Natural Resources and the Environment, Durham, NH, USA
11V.N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russia
12University of Gothenburg, Department of Earth Sciences, Gothenburg, Sweden

Correspondence to: N. Gentsch (gentsch@ifbk.uni-hannover.de)

Received: 25 November 2014 – Published in Biogeosciences Discuss.: 06 February 2015

Revised: 23 June 2015 – Accepted: 24 June 2015 – Published: 30 July 2015

Abstract. In permafrost soils, the temperature regime and the

resulting cryogenic processes are important determinants of

the storage of organic carbon (OC) and its small-scale spa-

tial variability. For cryoturbated soils, there is a lack of re-

search assessing pedon-scale heterogeneity in OC stocks and

the transformation of functionally different organic matter

(OM) fractions, such as particulate and mineral-associated

OM. Therefore, pedons of 28 Turbels were sampled in 5 m

wide soil trenches across the Siberian Arctic to calculate OC

and total nitrogen (TN) stocks based on digital profile map-

ping. Density fractionation of soil samples was performed

to distinguish between particulate OM (light fraction, LF,

< 1.6 g cm−3), mineral associated OM (heavy fraction, HF,

> 1.6 g cm−3), and a mobilizable dissolved pool (mobilizable

fraction, MoF). Across all investigated soil profiles, the total

OC storage was 20.2± 8.0 kg m−2 (mean±SD) to 100 cm

soil depth. Fifty-four percent of this OC was located in the

horizons of the active layer (annual summer thawing layer),

showing evidence of cryoturbation, and another 35 % was

present in the upper permafrost. The HF-OC dominated the

overall OC stocks (55 %), followed by LF-OC (19 % in min-

eral and 13 % in organic horizons). During fractionation, ap-

proximately 13 % of the OC was released as MoF, which

likely represents a readily bioavailable OM pool. Cryogenic

activity in combination with cold and wet conditions was the

principle mechanism through which large OC stocks were se-

questered in the subsoil (16.4± 8.1 kg m−2; all mineral B, C,

and permafrost horizons). Approximately 22 % of the subsoil

OC stock can be attributed to LF material subducted by cry-

oturbation, whereas migration of soluble OM along freezing

gradients appeared to be the principle source of the dominant

HF (63 %) in the subsoil. Despite the unfavourable abiotic

conditions, low C /N ratios and high δ13C values indicated

substantial microbial OM transformation in the subsoil, but

this was not reflected in altered LF and HF pool sizes. Partial

least-squares regression analyses suggest that OC accumu-

lates in the HF fraction due to co-precipitation with multiva-

lent cations (Al, Fe) and association with poorly crystalline

iron oxides and clay minerals. Our data show that, across all

permafrost pedons, the mineral-associated OM represents the
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dominant OM fraction, suggesting that the HF-OC is the OM

pool in permafrost soils on which changing soil conditions

will have the largest impact.

1 Introduction

The storage and turnover of organic matter (OM) in Arctic

soils has received broad interest due to the potential of per-

mafrost environments to influence climate forces (Schaefer

et al., 2011; UNEP, 2012). Earth history records have linked

past extreme warming events to permafrost thaw and the re-

lease of greenhouse gasses from decomposing, previously

frozen OM (DeConto et al., 2012). Similar signals for the

onset of changing environmental conditions in these regions

have been recently observed and include the degradation of

continuous permafrost (Smith et al., 2005), an increase in ac-

tive layer depth (the annual thawing layer), and rising per-

mafrost temperatures (Fountain et al., 2012). Such changes

will strongly affect all pedogenetic processes, including min-

eral weathering and OM cycling.

Alongside peat formation, cryoturbation is the major soil-

forming process in permafrost-affected soils and is primarily

responsible for the distribution of OM within soil (Bockheim

and Tarnocai, 1998). The principle mechanisms of cryope-

dogenic processes are based on frequent freezing–thawing

cycles in combination with moisture migration along a ther-

mal gradient (Bockheim et al., 1997). Cryoturbation leads

to irregular or broken soil horizons as well as involutions

and subduction of organic-rich materials from near-surface

horizons to the subsoil. Pockets of topsoil (O and A hori-

zons) material are incorporated into deeper mineral soil, in-

cluding the upper part of the permafrost. Radiocarbon ages

of several thousand years demonstrate that OM decomposi-

tion is hampered in cryoturbated materials as a result of the

unfavourable abiotic conditions in deeper soil layers (Bock-

heim, 2007; Hugelius et al., 2010; Kaiser et al., 2007). Low

and, for most of the year, subzero soil temperatures and fre-

quent waterlogging during the short unfrozen period enable

otherwise labile OM compounds to be preserved in the sub-

soil (Kaiser et al., 2007). Across the entire northern circum-

polar permafrost region, approximately 400 Pg of organic

carbon (OC) and approximately 16 Pg of nitrogen (N) is

estimated to be stored in cryoturbated soil horizons alone

(Harden et al., 2012).

Increased subsoil temperatures, longer frost-free periods,

and permafrost thaw might enhance the degradation of this

preserved OM (Schuur et al., 2008). As microbial decompo-

sition is more temperature-sensitive than primary production

processes (Davidson and Janssens, 2006), this may gener-

ate a positive feedback of greenhouse gas emissions from

permafrost areas to climate warming (Koven et al., 2011;

Ping et al., 2015; Schuur et al., 2013; Schuur and Abbott,

2011). Recent concepts consider the persistence of soil OM

to be an ecosystem property, primarily controlled by physico-

chemical and biological conditions rather than its molecular

structure (Schmidt et al., 2011). Therefore, the magnitude of

greenhouse gas emissions from permafrost regions depends

not only on changes in soil environmental conditions but also

on the contribution of different functional OM fractions, the

operating protection mechanisms, and inherent kinetic prop-

erties. For temperate soils, it has been shown that interac-

tion with mineral surfaces and metal ions, as well as physi-

cal stabilization by occlusion in soil aggregates, protect OM

against decomposition (Kögel-Knabner et al., 2008; Von Lüt-

zow et al., 2006). Only a few studies have investigated dif-

ferent OM fractions in permafrost soils, and those have re-

lied mainly on a select number of soil profiles (Dutta et al.,

2006; Gentsch et al., 2015; Gundelwein et al., 2007; Höfle et

al., 2013). Hence, data about pool sizes of different OM frac-

tions, such as mineral- or metal-associated OM versus partic-

ulate OM (largely plant debris) on a larger spatial scale, are

still missing. Moving forward in understanding high-latitude

soil OM cycling requires an integration of studies that aim

to upscale OC and TN stocks to the landscape and regional

levels (Hugelius et al., 2014; Kuhry et al., 2010; Palmtag et

al., 2015; Tarnocai et al., 2009) with more process-oriented

pedon-scale studies.

Consequently, the objectives of this study were to (1)

quantify OC and TN stocks in permafrost soils along a lon-

gitudinal gradient in the Siberian Arctic, with particular em-

phasis on the spatial distribution of cryoturbated topsoil ma-

terial; (2) use density fractionation in combination with sta-

ble isotope (13C) analyses to investigate the storage and

transformation of OC in three different OM classes (i.e. po-

tentially mobilizable dissolved OM, particulate, and mineral-

associated OM); and (3) investigate the relevance of mineral

properties for the accumulation of OC in permafrost soils.

To address these objectives, 28 soil pits located under tundra

vegetation in western, central, and eastern Siberia were sam-

pled and cryogenic features were mapped in each pedon over

a distance of 5 m within the active layer. From these maps, we

derived precise information about pedon-scale distribution

and total storage of soil OC and TN. The mineralogical as-

semblage of the soils (clay mineral and metal oxide compo-

sition) was characterized by X-ray diffraction and selective

extractions. The importance of mineral–organic associations

for the accumulation of OC in the permafrost soils was as-

sessed using multivariate statistical analyses to relate miner-

alogical properties to the quantity of mineral-associated OC.

2 Materials and methods

2.1 Study area and soil sampling

Soil samples were collected from nine sites on continuous

permafrost in the Siberian Arctic (Fig. 1). The sampling sites

were selected in different tundra types (Table 1 and detailed
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Figure 1. Sampling locations in western Siberia (1), central Siberia (2), and the Taimyr Peninsula and eastern Siberia (3). Each star marks

a sampling site with three replicate soil profiles. Abbreviations are as follows: CH, Cherskiy; AM, Ari-Mas; LG, Logata; TZ, Tassovskiy

(generated by ArcGIS 10).

Figure 2. Overview of the soil diagnostic terminology used in this

study. Horizon nomenclature according to Keys to Soil Taxonomy

(Soil Survey Staff, 2010).

site description in the Supplement) in western (Tazowskiy,

TZ), central (Ari-Mas, AM; Logata, LG), and eastern Siberia

(Cherskiy, CH). For comparability, all sampling sites were

located in level areas. Soil profiles were excavated in at least

three field replicates (28 profiles in total), with each repli-

cate consisting of a 5× 1 m wide trench extending down

to the permafrost table. The large dimension of the pro-

files provided a representative cross section through micro-

topographic features (hummocks, patterned ground) and cry-

oturbation patterns. Soils were described according to Keys

to Soil Taxonomy (Soil Survey Staff, 2010); a schematic

overview of soil diagnostics and the terminology is summa-

rized in Fig. 2.

Diagnostic horizons, including subducted topsoil material,

were sampled at various positions within the soil profile. The

upper permafrost layer was cored (up to 30–40 cm depth be-

low the permafrost table) with a steel pipe at two positions

in each profile: one directly underneath a hummock and the

other in between the hummocks. Directly after sampling, liv-

ing roots and animals were removed. An aliquot of the sam-

ples was then air-dried for transport to the laboratory, and the

samples were sieved to < 2 mm if coarse rock fragments were

present. Samples for the determination of bulk density (BD)

were collected in triplicate over the 5 m profile in all diagnos-

tic soil horizons using a 100 cm3 core cutter. Organic hori-

zons were cut in dimensional blocks and measured by length,

width, and height. All BD samples were dried at 105 ◦C and

BD was determined gravimetrically. In thin horizons, where

it was impossible to extract a proper soil core, the BD of

the surrounding mineral horizon was adopted and corrected

for the respective OM content using the equation given by

Rawls (1983).

www.biogeosciences.net/12/4525/2015/ Biogeosciences, 12, 4525–4542, 2015



4528 N. Gentsch et al.: Storage and transformation of organic matter fractions

T
a
b

le
1
.

L
o
catio

n
an

d
site

co
n
d
itio

n
s

o
f

th
e

stu
d
y

sites,
w

ith
so

il
classifi

catio
n

acco
rd

in
g

to
K

ey
s

to
S
o
il

T
a
x
o
n
o
m

y
(S

o
il

S
u
rv

ey
S

taff,
2
0
1
0
).

M
o
rp

h
o
lo

g
ical

featu
res

are
d
escrib

ed

acco
rd

in
g

to
th

eir
d
iam

eter
(D

)
an

d
h
eig

h
t

(H
).

S
ite

co
d
e

U
T

M
co

o
rd

in
ates

S
am

p
le

L
an

d
co

v
er

class
D

o
m

in
an

t
sp

ecies
M

o
rp

h
o
lo

g
ical

featu
res,

size
(cm

)
A

ctiv
e

lay
er

S
o
il

classifi
catio

n

y
ear

d
ep

th
(cm

)

C
H

A
-C

5
7
W

0
6
0
7
7
8
1
,
7
7
0
6
5
3
2

2
0
1
0

S
h
ru

b
b
y

g
rass

tu
n
d
ra

B
e
tu

la
ex

ilis,
S
a
lix

sp
h
e
n
o
p
h
y
lla

,
C

a
rex

lu
g
e
n
s,

F
ro

st
b
o
ils

(D
3
0
–
4
0
)

3
0
–
7
0

R
u
p
tic-H

istic
A

q
u
itu

rb
el,

C
a
la

m
a
g
ro

stis
h
o
lm

ii,
A

u
la

c
o
m

n
iu

m
tu

rg
id

u
m

fi
n
e

silty

C
H

D
-F

5
7
W

0
6
0
6
2
0
1
,
7
7
0
5
5
1
6

2
0
1
0

S
h
ru

b
b
y

tu
sso

ck
tu

n
d
ra

E
rio

p
h
o
ru

m
v
a
g
in

a
tu

m
,
C

a
rex

lu
g
e
n
s,

B
e
tu

la
ex

ilis,
F

ro
st

b
o
ils

(D
3
0
–
4
0
)

3
5
-6

0
R

u
p
tic-H

istic
A

q
u
itu

rb
el,

S
a
lix

p
u
lch

ra
.,

A
u
la

c
o
m

n
iu

m
tu

rg
id

u
m

clay
ey

to
fi

n
e

silty

C
H

G
-I

5
7
W

0
6
0
4
9
3
0
,
7
6
2
8
4
5
1

2
0
1
0

S
h
ru

b
b
y

lich
en

tu
n
d
ra

B
e
tu

la
ex

ilis,
V
a
c
c
in

iu
m

u
lig

in
o
su

m
,

H
u
m

m
o
ck

s
(H

3
0
,
D

2
0
0
),

3
5
-9

0
T

y
p
ic

A
q
u
itu

rb
el,

F
la

v
o
c
e
tra

ria
n
iv

a
lis,

F
la

v
o
c
e
tra

ria
c
u
c
u
lla

ta
b
arren

p
atch

es
fi

n
e

silty
to

lo
am

y
-sk

eletal

A
M

A
-C

4
7
X

0
5
8
9
7
0
7
,
8
0
4
4
9
2
5

2
0
1
1

S
h
ru

b
b
y

m
o
ss

tu
n
d
ra

B
e
tu

la
n
a
n
a
,
D

ry
a
s

p
u
n
c
ta

ta
,
V
a
c
c
in

iu
m

u
lig

in
o
su

m
,

P
o
ly

g
o
n
al

crack
s,

fro
st

b
o
ils

6
0
–
8
5

T
y
p
ic

A
q
u
itu

rb
el,

C
a
rex

a
rc

tisib
iric

a
,
A

u
la

c
o
m

n
iu

m
tu

rg
id

u
m

(D
5
0
–
7
0
),

b
arren

p
atch

es
co

arse
lo

am
y

(th
ix

o
tro

p
)

A
M

D
-F

4
7
X

0
5
8
8
8
7
3
,
8
0
4
5
7
5
5

2
0
1
1

S
h
ru

b
b
y

m
o
ss

tu
n
d
ra

C
a
ssio

p
e

te
tra

g
o
n
a
,
C

a
rex

a
rc

tisib
iric

a
,

P
o
ly

g
o
n
al

crack
s,

fro
st

b
o
ils

6
5
–
9
0

T
y
p
ic

A
q
u
itu

rb
el,

fi
n
e

A
u
la

c
o
m

n
iu

m
tu

rg
id

u
m

(D
5
0
–
6
0
)

lo
am

y
to

co
arse

lo
am

y
(th

ix
o
tro

p
)

L
G

A
-C

4
7
X

0
4
8
2
6
2
4
,
8
1
4
7
6
2
1

2
0
1
1

D
ry

as
tu

n
d
ra

D
ry

a
s

p
u
n
c
ta

ta
,
R

h
y
tid

iu
m

ru
g
o
su

m
,

S
m

all
h
u
m

m
o
ck

s
3
5
–
7
0

T
y
p
ic

A
q
u
itu

rb
el,

H
y
lo

c
o
m

iu
m

sp
le

n
d
e
n
s

(H
2
0
–
3
0
,
D

3
0
–
1
0
0
)

fi
n
e

clay
ey

to
fi

n
e

silty

L
G

D
-F

4
7
X

0
4
7
9
7
9
7
,
8
1
5
0
5
0
7

2
0
1
1

G
rassy

m
o
ss

tu
n
d
ra

B
e
tu

la
n
a
n
a
,
C

a
rex

a
rc

tisib
iric

a
,
H

y
lo

c
o
m

iu
m

S
m

all
h
u
m

m
o
ck

s
3
0
–
6
5

T
y
p
ic

A
q
u
itu

rb
el,

sp
le

n
d
e
n
s,

T
o
m

e
n
ty

p
n
u
m

n
ite

n
s

(H
2
5
–
4
0
,
D

3
0
–
1
0
0
)

fi
n
e

clay
ey

to
fi

n
e

silty

T
Z

A
-C

4
4
W

0
4
0
6
7
6
2
,
7
4
6
3
6
7
0

2
0
1
2

S
h
ru

b
b
y

lich
en

tu
n
d
ra

E
m

p
e
tru

m
n
ig

ru
m

,
L

e
d
u
m

p
a
lu

stre
,
B

e
tu

la
n
a
n
a
,

F
ro

st
b
o
ils

(D
4
0
–
8
0
),

1
0
0
–
1
2
0

T
y
p
ic

A
q
u
itu

rb
el,

fi
n
e

silty
o
r

fi
n
e

C
la

d
o
n
ia

ra
n
g
ife

rin
a
,
C

.
ste

lla
ris

b
arren

p
atch

es
silty

o
v
er

co
arse

lo
am

y
(th

ix
o
tro

p
)

T
Z

D
-F

,Y
4
4
W

0
4
1
2
0
1
5
,
7
4
4
1
1
1
2

2
0
1
2

L
arch

w
o
o
d
lan

d
w

ith
sh

ru
b
b
y

lich
en

L
a
rix

sib
iric

a
,
L

e
d
u
m

p
a
lu

stre
,
B

e
tu

la
n
a
n
a
,

1
3
0
–
1
5
0

T
y
p
ic

A
q
u
itu

rb
el,

fi
n
e

silty
o
r

u
n
d
ersto

ry
(fo

rest–
tu

n
d
ra

zo
n
e)

V
a
c
c
in

iu
m

u
lig

in
o
su

m
,
C

la
d
o
n
ia

ra
n
g
ife

rin
a
,
C

.
ste

lla
ris

fi
n
e

silty
o
v
er

co
arse

lo
am

y
(th

ix
o
tro

p
)

2.2 Soil chemistry and mineralogy

Soil pH was measured in suspension with H2Odeion at a

soil-to-solution ratio of 1 : 2.5 (CG 842, Schott instruments,

Mainz, Germany). Exchangeable cations were extracted with

Mehlich 3 solution (for detailed methodology see Carter

and Gregorich, 2008) and measured by inductively cou-

pled plasma optical emission spectroscopy (ICP-OES; Var-

ian 725-ES, Palo Alto, California). The effective cation ex-

change capacity (CECeff) was calculated as the sum of ex-

changeable cations (Ca, Mg, K, Na, Al, Fe, and Mn) and the

base saturation (BS) is expressed as the percentage of the ba-

sic cations (Ca, Mg, K, and Na) to CECeff.

Soil texture was analysed by means of the sieve-pipette

method according to DIN ISO 11277 (2002) after OM ox-

idation with 30 wt % hydrogen peroxide and dispersion of

residual soil aggregates in 0.05 M sodium pyrophosphate.

Iron and Al fractions in bulk soils were analysed using 0.2 M

ammonium oxalate (pH 2) and sodium dithionite–citrate–

bicarbonate (McKeague and Day, 1966). Oxalate-soluble Fe

and Al (Feo, Alo) represent poorly crystalline aluminosili-

cates, iron oxides such as ferrihydrite, and organically com-

plexed Fe. Sodium dithionite dissolves all pedogenic oxides

(Fed), thus representing the total amount of poorly crystalline

and crystalline iron oxides such as goethite, hematite, and

ferrihydrite (Cornell and Schwertmann, 2003). As described

by Eusterhues et al. (2008) and Lutwick and Dormaar (1973),

sodium pyrophosphate (0.1 M; pH 10) was used to extract

organically complexed Fe and Al from the heavy soil frac-

tions (see Sect. 2.3). To avoid the mobilization of colloids

(Parfitt and Childs, 1988), the extracts were ultracentrifuged

at 300 000 g for 6 h. All extracts were measured for Fe and Al

by ICP-OES (Varian 725-ES, Palo Alto, California). The ac-

tivity index Feo/Fed represents the proportion of poorly crys-

talline iron oxides (e.g. ferrihydrite) to the total free Fe (Cor-

nell and Schwertmann, 2003). The proportion of well crys-

talline iron oxides can be described by the term Fed – Feo,

whereas Feo – Fep exclusively comprises the proportion of

less crystalline Fe forms.

Clay-sized minerals (< 2 µm) were identified by X-ray

diffraction (XRD) analysis. Organic matter and iron oxides

were removed by treatment with 6 wt % sodium hypochlo-

rite (Moore and Reynolds, 1997) and sodium dithionite–

citrate–bicarbonate, respectively. The clay fraction was iso-

lated by sedimentation in Atterberg cylinders, according to

Stoke’s law, and saturated with either K+ or Mg2+ (Moore

and Reynolds, 1997). Oriented clay specimens were prepared

by drying the clay suspension onto glass slide mounts. The

samples were scanned between 1 and 32◦ θ with 0.05◦2θ in-

crement using a Kristalloflex D-500 spectrometer (Siemens

AG, Munich, Germany). XRD scans were recorded for the

following treatments: K saturation, K saturation with heating

to 550 ◦C, Mg saturation, and Mg saturation with ethylene

glycol treatment (Moore and Reynolds, 1997).
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2.3 Soil fractionation and OC and TN determination

Mineral soil horizons were fractionated by density according

to Golchin et al. (1994) with some modifications. The light

fraction OM (LF, < 1.6 g cm−3) was separated from the heavy

fraction (HF, > 1.6 g cm−3) by floating the sample in sodium

polytungstate (SPT). Soil aggregates were destroyed by soni-

cation (for details see Supplement Sect. S3). During washing

of both fractions, considerable amounts of OM were mobi-

lized. This “mobilizable fraction” (MoF) was collected sepa-

rately, passed through syringe filters (PVDF, < 0.45 µm), and

analysed for dissolved OC (LiquiTOC, Elementar, Hanau,

Germany). The LF was imaged using a laser scanning mi-

croscope (Keyence VK-9700, Osaka, Japan), and scanning

electron microscope images (FEI Quanta 200 FEG, Oregon,

USA) were produced for both the LF and the HF.

Organic C and TN concentrations and the 13C isotope con-

tent of bulk soils, as well as of the HF and LF fractions,

were measured in duplicate using an Elementar IsoPrime

100 IRMS (IsoPrime Ltd, Cheadle Hulme, UK) coupled to

an Elementar vario MICRO cube EA C /N analyser (Ele-

mentar Analysensysteme GmbH, Hanau, Germany). Before

measurements, samples containing traces of carbonates were

exposed to acid fumigation (Harris et al., 2001). Isotope val-

ues are expressed in the delta notation relative to the Vienna

Pee Dee Belemnite (VPDB) standard (Hut, 1987).

OC and TN stocks of the cryoturbated soils were calcu-

lated using the sketch-based method described in Michaelson

et al. (2001). Based on photo images taken during field ex-

cursions referenced by scaled drawings, detailed digital maps

of soil horizons were generated using AutoCAD 2010 (Au-

todesk Inc., San Rafael, USA). From these maps, the horizon

area (A) of a certain diagnostic horizon was calculated as

the sum of the individual shapes (Figs. 3 and S7). Organic C

and TN stocks per designated horizon were calculated using

Eq. (1) down to 100 cm soil depth, where n is the number

of designated horizons. Finally, the stocks were related to a

1 m2 soil surface.

OCstock(kgm−2)=∑n

i=1
BD (gcm−3)×OC (%)×A(m2)× 10 (1)

2.4 Statistical analyses

Statistical analyses were performed with SPSS 21 (IBM, Ar-

monk, USA). All variables were tested for a normal dis-

tribution and log-transformed when required. Pearson cor-

relation coefficients were calculated to describe linear re-

lationships between parameters. The influence of soil hori-

zons and sampling location on individual parameters (e.g.

element content or isotopic ratios) was analysed using one-

way and two-way analysis of variance (ANOVA). Following

ANOVA, post hoc tests (Tukey’s HSD) were conducted to

Figure 3. Selected profile maps from three different sampling sites

at Cherskiy (CH), Ari-Mas (AM), and Logata (LG) (all other profile

maps are presented in Fig. S7). Horizon symbols according to Keys

to Soil Taxonomy (Soil Survey Staff, 2010). Note that the hatched

areas (frozen zones) were not excavated, but cryoturbation also oc-

curs in the upper permafrost, and subducted topsoil materials (Ojj,

Ajj) can stretch into the permafrost.

identify subsets of sites or horizons (p < 0.05). Interactions

of OC with soil mineral parameters were studied with par-

tial least-squares regression (PLSR) analysis (for details see

Supplement Sect. S2). Please note that the few Ojj horizons

were combined with the Ajj horizons for statistical analyses.

3 Results

3.1 Soil characteristics and morphology

All soils were classified in the Aquiturbel great group (Soil

Survey Staff, 2010) or characterized as cryohydromorphic

soils (Sokolov et al., 2004), with aquic soil conditions be-

ing present in all soil profiles. In the upper 10–20 cm of the

mineral soil, redoximorphic features were indicated by redox

depletion and mottling (zones of Munsell soil colour value

≥ 4 and chroma < 4). Toward the permafrost surface, the soils

showed strong reducing conditions, with low Munsell colour

values (≤ 4), low chroma (2), and, frequently, colour hues

between 5G and 10BG. All soil profiles showed strong signs

of cryoturbation by disrupted horizons or subducted OM-

rich pockets, involutions, or tongues (Figs. 3 and S7). Be-

cause samples from the permafrost were received by coring,

the morphology of subducted topsoil materials could not be

traced in the frozen parts of the profiles (e.g. Ajjff). Never-

theless, many profiles from central and eastern Siberia (pro-

files CH D-I, AM A-C, LG D; Fig. S7) contain a zone 20 cm

above the permafrost table, and within the upper 10 cm of

the permafrost that is enriched with OC (see Sect. 3.3). This

www.biogeosciences.net/12/4525/2015/ Biogeosciences, 12, 4525–4542, 2015
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zone is referred to as the “transient layer” (Fig. 2). This layer

depends on decadal climate fluctuations (French and Shur,

2010) and shows pronounced signs of Fe reduction. For data

evaluation, the following five horizon groups were distin-

guished: organic topsoil horizons (Oa, Oe, Oi), mineral top-

soil horizons (A, AB), cryoturbated OM-rich pockets in the

subsoil (Ajj, Ojj, referred to as “subducted topsoil”), mineral

subsoil horizons (BCg, BC, and Cg often showed signs of

cryoturbation, shown with the suffix jj, and permafrost hori-

zons (commonly designated as Cf, Cff, but partly incorporate

subducted topsoil materials).

The soils were loamy, clayey, or fine silty, with an absence

of coarse materials, and were partly thixotropic. Rock frag-

ments from the near-surface bedrock were only incorporated

into profile CH-H in eastern Siberia. The CH soils were all

dominated by silt (Fig. S2), indicating an aeolian origin of

the parent material. At the Taimyr Peninsula (central Siberian

sites), the soils were rich in silt and clay (silty clay loam) at

LG, but more sandy (sandy loam) at AM. Vertical textural

differences (fine silty to coarse loamy) in TZ suggest distinct

sedimentation conditions during deposition of the parent ma-

terial and less cryogenic mixing in the deeper soil. Clay con-

tent increased in the order AM (12± 4 %), TZ (20± 10 %),

CH (21± 8 %), and LG (27± 6 %).

The active layer depth in CH and Taymyr soils varied

from 30 to 90 cm, depending on the thickness of the organic

layer and position. Small-scale variability in the thickness

and the insulating effect of the organic layer associated with

patterned ground formation (Ping et al., 2008) often caused

a wavy upper boundary of the permafrost surface (Fig. 3).

In contrast, the permafrost table of the TZ soil profiles was

smooth and considerably deeper (100–150 cm). The surface

morphology and horizon boundary of these soil layers were

planar and less disturbed by cryoturbation (Fig. S7). The up-

per permafrost (30–40 cm) was recorded as dry permafrost

(Cff) containing little vain ice and no massive ice bodies.

3.2 Chemical soil parameters and mineral composition

Topsoil pH ranged from strongly acidic in organic topsoil to

slightly acidic in mineral topsoil horizons (Table S1). Sub-

soil pH increased with soil depth from slightly acidic in the

upper active layer to neutral or moderately alkaline within

permafrost horizons. The CECeff was larger only in the LG

soils (Tukey’s HSD, p < 0.001), with an interquartile range

from 20 to 34 cmolc kg−1 across all sites (Table S1), and no

difference between soil horizons was evident. The BS var-

ied from 33 to 88 %, and the dominating cations were Ca2+

(from 17 to 64 % of CECeff) and Mg2+ (from 8 to 33 % of

CECeff) at all sites. Tukey’s HSD indicated increasing BS in

the order CH < TZ < AM < LG and rising values towards the

permafrost. Concurrently, exchangeable acid cations such as

Al3+ (contributing from 11 to 64 % to CECeff) showed sig-

nificantly smaller values at AM and LG compared with TZ

and CH (Tukey’s HSD, p < 0.001) and decreased with soil

depth only at the latter sites.

In the CH soils, the clay fraction was composed of il-

lite, vermiculite, kaolinite, and mixed-layer clays, with an in-

creasing abundance of smectite clays towards the permafrost

table (Fig. S4). Primary minerals such as quartz and traces of

feldspars were also detected in all samples. Smectite miner-

als clearly dominated the clay fractions in central and west-

ern Siberian soils (Figs. S3 and S4). In addition, soils from

AM contained illite, vermiculite, and kaolinite. The LG and

TZ samples showed somewhat higher peak intensities for il-

lite and kaolinite and an abundance of chlorite instead of ver-

miculite. The intensity of smectite signals increased strongly

in the permafrost table at TZ, whereas chlorite was enriched

in the upper active layer.

Pedogenic Fe and Al in the CH soils have already been

presented in Gittel et al. (2014) and Gentsch et al. (2015).

Dithionite-extractable Fe ranged from 1.7 to 26.4 g kg−1

(Table S2), and all sampling sites showed significant dif-

ferences to each other (two-way ANOVA, F(3,127) = 113.7,

p < 0.001) but no variations with soil depth (F(3,127) = 1.0,

p= 0.38). Oxalate-extractable Fe (0.7 to 26.4 g kg−1) and

Al (0.02 to 5.0 g kg−1) varied significantly between sites and

soil horizons (two-way ANOVA, FFe(9,128) = 2.7, p= 0.005,

FAl(9,128) = 14.3, p < 0.001). The largest content of Fed, Feo,

and Alo was found in the CH soils and decreased in the or-

der LG, TZ, and AM. Tukey’s HSD indicated, as an overall

trend, a significant enrichment of Feo and Alo in subducted

topsoil materials compared with the surrounding horizons

(p < 0.05).

The concentrations of Fe in well crystalline oxides ranged

from 0.8 to 6.0 g kg−1 and were largest at CH (Table S2).

The smallest amounts were observed in subducted topsoil

(1.8± 1.6 g kg−1), but no clear differences were detected be-

tween the topsoil, subsoil (B /C), and the permafrost hori-

zons. Concurrently, the activity index Feo / Fed varied from

0.4 to 1.0 across soil horizons and sites with the highest

values in subducted topsoils. Pyrophosphate-extractable Fe

and Al ranged from 0.04 to 10.03 and 0.01 to 2.91 g kg−1,

respectively. The highest concentrations were found at CH

and LG, and subducted topsoils were significantly enriched

(up to 7-fold) compared with surrounding subsoils (two-way

ANOVA, Tukey’s HSD, pFe < 0.001, pAl < 0.01; Table S2).

3.3 Organic carbon and total nitrogen storage and

stable 13C isotopic composition of the bulk soil

The average OC and TN concentrations (Table S3) did not

vary significantly across the four study areas for O and A

horizons (Tukey’s HSD, p > 0.05). Please note that a portion

of the bulk OC and TN data have been reported elsewhere

(Gentsch et al., 2015; Gittel et al., 2014; Schnecker et al.,

2014; Wild et al., 2013). Subducted topsoil horizons revealed

twice as much OC and TN at CH and LG when compared

with AM and TZ (Table S3). For B /C horizons, OC con-
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centrations were significantly larger at CH, AM, and LG, ex-

ceeding those at TZ soils by up to 5 times (Tukey’s HSD,

p < 0.05). This difference increased to factors of 8 to 11 in

the permafrost horizons (Table S3).

The OC stocks to 1 m soil depth ranged from

6.5 to 36.4 kg m−2, with a mean value across all

soils of 20.2± 8.0 kg m−2 (Table 2). The soils in east-

ern (CH: 24.0± 6.7 kg m−2) and central Siberia (AM:

21.1± 5.4 kg m−2; LG: 24.4± 7.0 kg m−2) contained about

twice as much OC as those sampled in western Siberia

(TZ: 10.8± 4.3 kg m−2). On average, 2.6± 2.4 kg OC m−2

or 13 % of the total OC was stored in the organic topsoil.

The amount of OC stored in the mineral active layer was

11.5± 3.8 kg m−2 (57 %), of which 3.5± 2.5 kg m−2 (18 %)

was located in subducted topsoil materials. The proportion of

soil OC located in active layer horizons with signs of cryotur-

bation (include Ajj, Ojj, BCgjj, and Cgjj horizons) ranged

from 33 to 83 % with an average of 54 %. All mineral subsoil

horizons, including permafrost, stored 16.4± 8.1 kg OC m−2

(81 % of the total soil OC). Within the first soil metre, the

eastern and central Siberian soils stored 8.1± 5.5 kg OC m−2

(35 %) in the upper permafrost. Due to the large active layer

thickness in the western Siberian soils, no OC was located in

the permafrost within the examined soil depth.

The δ13C ratios of soil OC (Fig. 4) showed significant

differences between sites and genetic horizons, represent-

ing soil depth categories (two-way ANOVA, F(12,324) = 4.4,

p < 0.001). Overall, bulk OC showed increasing δ13C ratios

from eastern to western Siberia, with no difference between

the two central Siberian sites. The δ13C values generally in-

creased with soil depth (O < A, Ajj/Ojj < B /C < Cff, Tukey’s

HSD, p < 0.05), and no difference was observed between

topsoils and subducted topsoil horizons (Tukey’s HSD, p=

0.99). Concurrently, C /N ratios decreased with soil depth

(Fig. 4; ANOVA, F(4,333) = 81.9, p < 0.001), with no dif-

ferences between topsoil horizons and subducted topsoils

(Tukey’s HSD, p = 1) or between B /C horizons and the up-

per permafrost layer (Tukey’s HSD, p = 1).

The TN stocks of the bulk soil increased from 0.8± 1.4 kg

m−2 in TZ to 1.3± 0.3 and 1.7± 0.3 kg m−2 in AM and

LG, and 1.8± 0.4 kg m−2 in CH, with an average of

1.4± 0.5 kg TN m−2 across all soils (Table 2). On average,

0.1± 0.1 kg TN m−2 (7 %) was stored in the organic layer

and 0.9± 0.2 kg TN m−2 (61 %) was stored in the mineral ac-

tive layer, of which 0.2± 0.1 kg m−2 (15 %) was located in

subducted topsoils. In the eastern and central Siberian soils,

0.5± 0.4 kg TN m−2 (32 %) was found in the permafrost

layer.

3.4 Organic carbon and total nitrogen storage in

organic matter fractions

At AM, LG, and CH, the relative proportion of LF-OC to the

bulk OC increased from 24 % in topsoil to 30 % in subducted

topsoil horizons (Table S3). The permafrost horizons stored

Figure 4. Vertical pattern of δ13C values and C /N ratios of bulk

soils with respect to different sampling sites and soil horizon clus-

ters (mean±SD; n is given in Table S1).

relatively more OC in the LF than the overlying mineral sub-

soils (21 vs. 16 %). In contrast, in soils from TZ with the

permafrost table at > 100 cm soil depth, the relative storage

of LF-OC decreased continuously from the topsoil (23 %) to-

wards the permafrost (11 %).

When considering the organic layers and the different OM

fractions in the mineral soil across all study sites (Table 2

and Fig. 8), the average storage of 20.2± 8.0 kg OC m−2

within 1 m soil depth can be separated into the follow-

ing fractions: organic layer 2.6± 2.4 kg m−2 (13 %), LF

3.8± 2.3 kg m−2 (19 %), HF 11.1± 5.0 kg m−2 (55 %), and

MoF 2.7± 1.8 kg m−2 (13 %). With the exception of the

AM soils, the contribution of the individual fractions to to-

tal stocks was quite constant between profiles, with no ma-

jor deviation from the mean percentage of HF (ANOVA,

F(3,24) = 0.98, p= 0.42) and MoF (ANOVA, F(3,24) = 1.16,

p= 0.35). Only the AM soils contained on average 47 %

more LF-OC than the other sites (ANOVA, F(3,24) = 6.63,

p < 0.01). This larger value was primarily due to a larger

LF storage in subducted topsoil (Table 2). All mineral

subsoil horizons including permafrost stored on average

3.6± 2.3 kg OC m−2 as LF, 10.3± 4.9 kg OC m−2 as HF, and

2.6± 1.8 kg OC m−2 as MoF, corresponding to a contribu-

tion of 22, 63, and 15 % of the total subsoil OC. Remark-

ably, at AM and LG, up to 3 times more particulate OM was

located in the subsoil as LF-OC than was found as LF-OC

in the mineral topsoil and the organic layer combined. The

permafrost horizons at CH, AM, and LG stored on average

1.8± 1.9 kg OC m−2 as LF, 5.0± 3.1 kg OC m−2 as HF, and

1.3± 1.3 kg OC m−2 as MoF, which contributes 40, 38, and

41 % of the individual fraction within the whole soil.
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Table 2. Mean soil OC and TN stocks (0–100 cm) with respect to different sampling sites and soil horizons plus standard deviation (SD).

Bulk values (unfractionated stocks) were separated into light fraction (LF), heavy fraction (HF), and the mobilized fraction (MoF). The total

bulk values include the organic topsoil.

Horizon cluster OM fraction CH AM LG TZ AL∗ < 100 cm All sites

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

OC (kg m−2)

Organic topsoil Bulk 3.71 3.45 1.56 1.49 1.54 0.89 2.92 2.09 2.47 2.59 2.59 2.45

Mineral topsoil Bulk 0.89 0.95 1.47 1.59 1.62 1.09 0.96 1.28 1.26 1.19 1.19 1.19

LF 0.20 0.20 0.28 0.33 0.31 0.27 0.24 0.38 0.25 0.25 0.25 0.28

HF 0.58 0.57 1.06 1.22 1.22 0.87 0.60 0.73 0.90 0.88 0.82 0.84

MoF 0.12 0.30 0.12 0.16 0.08 0.03 0.12 0.18 0.11 0.21 0.11 0.20

Subducted topsoil Bulk 3.06 0.99 6.23 3.22 2.08 0.93 3.13 2.78 3.68 2.47 3.54 2.51

LF 0.94 0.39 2.52 1.77 0.57 0.31 0.60 0.60 1.28 1.24 1.11 1.14

HF 2.01 0.64 2.89 1.76 1.28 0.47 1.87 1.76 2.05 1.18 2.01 1.31

MoF 0.10 0.58 0.82 0.89 0.23 0.20 0.66 0.57 0.34 0.66 0.42 0.65

B /C horizons Bulk 7.63 2.08 5.44 3.00 10.18 2.42 3.74 0.57 7.73 2.97 6.74 3.12

LF 0.90 0.19 0.91 0.77 2.09 0.57 0.60 0.32 1.24 0.74 1.08 0.71

HF 4.66 1.17 4.12 2.29 6.83 2.14 2.61 0.54 5.12 2.07 4.50 2.11

MoF 2.07 1.50 0.41 0.45 1.27 0.37 0.53 0.56 1.37 1.22 1.16 1.14

Permafrost Bulk 8.71 5.10 6.41 5.95 8.99 6.38 – – 8.13 5.54 6.10 5.96

LF 1.62 1.12 1.88 2.70 2.07 2.12 – – 1.83 1.87 1.37 1.80

HF 5.76 3.55 3.42 2.54 5.52 2.84 – – 5.03 3.12 3.77 3.48

MoF 1.33 0.67 1.10 1.77 1.39 1.56 – – 1.28 1.26 0.96 1.22

Total Bulk 24.00 6.72 21.10 5.42 24.41 7.01 10.76 4.33 23.29 6.31 20.16 8.01

LF 3.66 1.13 5.59 2.58 5.04 2.19 1.44 1.01 4.60 2.03 3.81 2.29

HF 13.01 3.96 11.49 2.72 14.86 4.51 5.09 2.48 13.10 3.86 11.10 4.99

MoF 3.62 1.94 2.46 1.94 2.97 1.58 1.30 0.71 3.10 1.82 2.65 1.79

TN (kg m−2)

Organic topsoil Bulk 0.16 0.15 0.06 0.05 0.08 0.05 0.09 0.07 0.11 0.11 0.10 0.10

Mineral topsoil Bulk 0.07 0.08 0.10 0.10 0.10 0.05 0.05 0.05 0.08 0.08 0.08 0.07

LF 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

HF 0.05 0.06 0.08 0.09 0.08 0.05 0.04 0.04 0.07 0.06 0.06 0.06

MoF 0.01 0.02 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.00

Subducted topsoil Bulk 0.18 0.06 0.35 0.15 0.13 0.06 0.17 0.11 0.22 0.13 0.20 0.12

LF 0.04 0.02 0.11 0.07 0.03 0.02 0.02 0.01 0.05 0.05 0.04 0.05

HF 0.15 0.05 0.20 0.10 0.09 0.04 0.13 0.09 0.15 0.08 0.14 0.08

MoF 0.00 0.03 0.04 0.04 0.01 0.01 0.03 0.02 0.01 0.01 0.02 0.01

B /C horizons Bulk 0.67 0.18 0.43 0.18 0.75 0.14 0.44 0.08 0.63 0.20 0.58 0.20

LF 0.03 0.01 0.03 0.03 0.08 0.02 0.02 0.01 0.05 0.03 0.04 0.03

HF 0.57 0.22 0.39 0.17 0.60 0.13 0.42 0.06 0.53 0.20 0.50 0.18

MoF 0.07 0.25 0.01 0.03 0.07 0.04 0.00 0.07 0.05 0.04 0.04 0.03

Permafrost Bulk 0.71 0.32 0.36 0.31 0.65 0.27 – – 0.59 0.33 0.45 0.38

LF 0.07 0.06 0.09 0.13 0.07 0.07 – – 0.08 0.08 0.06 0.08

HF 0.62 0.32 0.27 0.17 0.50 0.14 – – 0.49 0.27 0.37 0.32

MoF 0.02 0.25 0.00 0.05 0.08 0.07 – – 0.03 0.04 0.02 0.03

Total Bulk 1.79 0.38 1.30 0.29 1.71 0.29 0.76 0.14 1.63 0.38 1.41 0.51

LF 0.14 0.06 0.24 0.12 0.19 0.07 0.04 0.03 0.19 0.09 0.15 0.10

HF 1.39 0.34 0.94 0.18 1.27 0.22 0.59 0.10 1.23 0.32 1.07 0.40

MoF 0.10 0.39 0.06 0.05 0.17 0.09 0.03 0.06 0.11 0.06 0.09 0.04

Number of soil profiles 9 6 6 7 21 28

∗ Only include profiles from AM, LG, and CH with active layer (AL) < 100 cm.

Compared with OC, relatively more TN was located

in the mineral-associated fraction. The average storage

of TN in the bulk soil was 1.41± 0.51 kg m−2, with

the HF containing 1.07± 0.40 kg TN m−2 (76 %). Only

0.10± 0.10 kg TN m−2 (7 %) was stored in the organic lay-

ers and 0.15± 0.10 kg TN m−2 (10 %) was isolated as LF.

The mobilized TN in the rinsing solutions could not be

measured directly due to detector problems, but was calcu-

lated based on mass balance. On average, 0.09± 0.13 kg m−2

(6 %) of the total TN stocks was mobilized. The TN in

all subsoil horizons was present as 0.14± 0.10 kg m−2 LF,

1.01± 0.39 kg m−2 HF, and 0.08± 0.04 kg m−2 MoF, which
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contributes 11, 82, and 7 % of the total subsoil stocks. The

permafrost horizons at CH, AM, and LG stored on average

0.08± 0.08 kg TN m−2 in the LF, 0.49± 0.29 kg TN m−2 as

HF, and 0.03± 0.07 kg TN m−2 as MoF, which represents 41,

40, and 29 % of the individual fraction within the whole soil.

3.5 Composition of LF and HF

The LF was primarily composed of discrete debris of plants

and microorganisms. Confocal laser scanning microscope

images show remnants of leaves, fine roots, wood, and bark

from dwarf shrubs and hyphae of fungi (Fig. 5). The particle

size of these materials is not related to depth. Coarse plant

fragments (> 1 mm) were observed in whole soil profiles in-

cluding the permafrost. The LF was composed of fairly well-

decomposed particles (< 1 mm) in organic layers and topsoils

(Oa, Oe, OA) at the rim of hummocks to frost cracks or in

subducted topsoils at various depths. In contrast to the het-

erogeneous LF particle size distribution in subducted top-

soils, the LF in B and C horizons was very uniform and

coarse fragments were missing. Scanning electron micro-

scope images of the HF (Fig. S8; panel a and b) showed that

soil aggregates were largely disrupted after density treatment

and that the LF floated properly in the SPT. The images also

indicate amorphous structures which were associated with

primary mineral particles of different sizes.

Compared with the HF, which showed narrow C /N ra-

tios and substantial enrichment in 13C (1.38± 0.14 ‰ in av-

erage), the C /N and δ13C ratios of the LF were closer to

the ranges observed in organic topsoil and the plant residues

from which they derived (Fig. 6). Tukey’s HSD indicated no

difference in δ13C values of the LF and HF between cen-

tral and eastern Siberian soils (pLF = 0.17, pHF = 0.37) but

significant differences in δ13C values between soils in these

two regions and the western Siberian soils (pLF < 0.001,

pHF < 0.001). Here, the δ13C values of the LF and HF

were on average 1.38± 0.14 and 1.04± 0.14 ‰, respec-

tively, more positive than those in the central and eastern

Siberian soils. This effect can be explained by the larger 13C

content of the source plants at TZ, which had more pos-

itive δ13C values (1= 0.44 to 2.55 ‰) than at the central

and eastern Siberian sites (Fig. S6). The δ13C values of the

LF increased in the order A < Ajj/Ojj < B /C and Cff, with

no difference among B /C and Cff horizons (Tukey’s HSD,

p = 0.98). Further, Tukey’s HSD grouped two subsets of

δ13C values for the HF. Less negative δ13C values were found

in the B /C and the Cff horizons (Tukey’s HSD, p = 0.98)

and more negative values were detected in the A and Ajj/Ojj

horizons (Tukey’s HSD, p = 0.49).

Figure 5. Laser scanning microscope images from the LF for one

profile in western Siberia. The images were arranged according to

the increasing soil depth of various genetic horizons. Red, green,

and purple arrows denote fine roots, woody tissue, and bark, re-

spectively. Red and green circles denote seeds and fungal hyphae,

respectively.

3.6 Organic matter in mineral–organic associations

Across all sampling sites, the concentration of HF-OC was

highly correlated with the concentration of Fep (r = 0.83,

p < 0.001) and Alp (r = 0.72, p < 0.001), thus supporting

the use of Fep and Alp as indicators for organically com-

plexed metals (Fig. S5). To identify preferred interaction of

OC with different mineral parameters (Fed–Feo, Feo–Fep,

Alo–Alp, Fep, Alp, clay- and clay+silt-sized minerals), we

performed PLSR analyses with HF-OC as a response vari-

able. The cumulative r2 values of the significant components,

as listed in Table 3, describe the total explanatory power of

the model (Carrascal et al., 2009). With the exception of the

CH subsoils, we obtained two significant latent factors (see
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Figure 6. δ13C vs. C /N ratios for individual soil fractions and the

most abundant plants. The values of the soil fractions were grouped

according to the genetic soil horizons (mean value±SD) and plot-

ted for the different sampling sites. The central Siberian plot incor-

porated the two sampling sites, AM and LG, where no significant

differences were observed for the evaluated parameters. Note the

different scale of the plot in the lower right corner.

Sect. 2.4). These factors explained between 42 and 94 % of

the HF-OC variance, and the first factor alone explained be-

tween 84 and 95 % of the total variance. For this factor, the

VIP (variable importance in the projection) values of the in-

dividual predictor variables are shown in Fig. 7. Accordingly,

organically complexed Fe and Al (Fep and Alp) had the

highest explanatory loading for HF-OC in the topsoils and

the subducted topsoils. For subsoils and permafrost horizons,

the VIP values indicated strong interactions with poorly crys-

talline Fe and Al forms (Feo–Fep, Alo–Alp) in CH and LG

and a strong affinity to clay-sized minerals in AM and LG.

Over all sites and examined soil horizons, well crystalline

Fe (Fed–Feo) appeared to have either no effect or negative

effects on HF-OC.

4 Discussion

4.1 Organic carbon storage in soil horizons linked to

cryogenic processes

The average OC storage of 20.2 kg m−2 to 100 cm soil depth

across all sites corresponds well with integrated landscape-

level studies (Table S4). The soil trenches from eastern

Siberia described in this study correspond to the tussock

tundra and grass tundra classes investigated by Palmtag et

al. (2015), which together cover 64 % of the total area. At the

Taimyr sites, the soil trenches were representative of wet and

dry uplands, which together represent 47 % (AM) and 48 %

(LG) of the study areas (Table S4). Hence, the results of our

pedon-scaled studies are considered to be representative of

Figure 7. The influence of the PLSR predictor variables on HF-

OC concentrations plotted as variable importance in the projection

(VIP; see Sect. S2) for the first latent factor (see Table 3). Parame-

ters representing the soil mineral phase were used as response vari-

ables. Values above the dashed line indicate an above average in-

fluence on the response variable. The stars denote negative loadings

on a given factor.

the investigated landscape classes across the Siberian Arctic.

The OC distribution map (Fig. 8) summarizes the principle

findings of this study.

Approximately 81 % of the bulk OC stocks resided in the

subsoil. This demonstrates the relevance of deeper soil hori-

zons in cryohydromorphic soils as a long-term C sink and po-

tential source of greenhouse gases (Michaelson et al., 1996).

Subduction of topsoil material by cryoturbation, visible as

OM-rich pockets, involutions, or tongues in the active layer,

was calculated to account for 18 % of the total soil OC and

22 % of the subsoil OC stocks. In their landscape-scale stud-

ies, Palmtag et al. (2015) calculated that the landscape-level

mean soil OC storage in subducted topsoil materials (includ-

ing cryoturbations in the permafrost) represented up to 30 %

of the total SOC in the first metre. Apart from these most

obvious patterns, cryoturbation leads to continuous mixing

and rejuvenation of the whole solum, referred to as cryoho-

mogenization (Bockheim et al., 2006; Sokolov et al., 2004).

This process was especially relevant for the central and east

Siberian sampling sites, and led to high OC content in B

and C horizons (Table S3) and a fairly homogenous miner-

alogical composition. In contrast, the OC content in western

Siberian B, C, and permafrost horizons was up to 11 times

lower, reflecting the lack of OM input by cryohomogeniza-

tion.

In addition to the input via root biomass, cryogenic mass

exchange is the principle way for LF materials to enter the

deep subsoil, as the studied soils did not exhibit any char-

acteristics of syngenetic soil formation or colluvial deposits.
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Table 3. Results from the PLSR analysis between HF-OC and various mineral parameters. The PLSR factors (latent factors) are given

in descending order of importance and the goodness of fit of the model is indicated by regression coefficients for the response variable

(cumulative Y variance).

Site Horizon Latent X Cumulative Y Cumulative Y Adjusted

cluster factor variance X variance variance variance (r2) r2

CH topsoil 1 0.61 0.61 0.79 0.79 0.78

2 0.12 0.73 0.10 0.88 0.88

subsoil 1 0.44 0.44 0.62 0.62 0.61

AM topsoil 1 0.23 0.23 0.74 0.74 0.73

2 0.22 0.44 0.07 0.81 0.79

subsoil 1 0.48 0.48 0.66 0.66 0.64

2 0.19 0.67 0.08 0.74 0.70

LG topsoil 1 0.16 0.16 0.38 0.38 0.34

2 0.31 0.47 0.05 0.42 0.36

subsoil 1 0.56 0.56 0.79 0.79 0.76

2 0.15 0.71 0.11 0.90 0.87

TZ topsoil 1 0.46 0.46 0.79 0.79 0.78

2 0.26 0.72 0.15 0.94 0.93

subsoil 1 0.33 0.33 0.75 0.75 0.74

2 0.22 0.55 0.04 0.78 0.76

Figure 8. OC distribution map across the Siberian sampling sites.

The grey circles show the total OC stock for each profile individu-

ally and the coloured bars present the proportion of the specific OM

fraction. The pie charts summarize all of the soil profiles. Note that

the percentage of permafrost OC summarizes all profiles, while the

number in brackets includes only profiles with permafrost within

100 cm depth.

Subduction of LF by cryoturbation increased the total sub-

soil OC storage by 22 %. In comparison, the amount of LF

in temperate environments is often negligible in subsoil and

highly vulnerable to disturbances and land management in

the topsoil (see review article by Gosling et al., 2013). Cry-

oturbation is a unique mechanism in permafrost soils to by-

pass particulate OM from the access and breakdown by the

soil fauna, which is restricted to the well-drained topsoil (Van

Vliet-Lanoë, 1998). Thus, coarser plant materials, such as

seeds or woody debris (Fig. 5), were distributed across the

entire soil profile, including the permafrost, where the sub-

soil LF decomposition is restricted to biochemically medi-

ated microbial processes. Therefore, the particle size of LF

materials in the subsoil is expected to depend on the time of

subduction and the stage of detritus formation.

Besides cryoturbation, the vertical transfer of dissolved

and colloidal organic compounds, often not considered in

permafrost soils, also appears to be important with regard

to OC storage. Preferred OC accumulation was observed in

the transient layer of several profiles (profiles CH D-I, AM

A-C, LG D; Fig. S7). Within these profiles, a sharp increase

in HF-OC (from 8.2± 4.0 to 14.4± 10.0 g kg−1) and MoF-

OC (from 1.7± 1.8 to 3.6± 4.8 g kg−1) was observed in the

upper BCgjj and Cgjj horizons towards the Cgjj and Cff hori-

zons of the transient layer. On the basis of our profile maps,

we calculated the area of the accumulation zone and the dif-

ference in MoF-OC and HF-OC between the upper subsoil

horizons and the transient layer. This difference accounted

for an increase in OC storage of 0.2 to 3.7 kg m−2, which

translates into 1–12 % of the respective bulk soil OC stock.

Enrichment of well-decomposed, humic-rich OM in the tran-

sient layer has also been reported elsewhere (Gundelwein et

al., 2007; Mergelov and Targulian, 2011; Ostroumov et al.,

2001). Mergelov and Targulian (2011) explained this enrich-

ment by the concept of “cryogenic retenization”, denoting

the vertical migration and subsequent precipitation of mo-

bile OM during ice segregation along freezing gradients. Be-

cause the LF can only be transferred by cryoturbation, only

the pools of HF and MoF are affected by this process.

By considering all soil horizons with evidence of cryo-

genic processes (including BCgjj and Cgjj horizons), an av-

erage of 54 % of the total OC storage can be attributed

to re-allocation by cryogenesis in the active layer. Bock-

heim (2007) published an almost equal number (55 %) for
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21 pedons in Alaska, which was calculated using a similar

approach. Cryogenic processes as a mechanism to sequester

OC are often not incorporated into discussions about subsoil

OM (e.g. Rumpel and Kögel-Knabner, 2011), but the global

relevance of this process cannot be neglected. Gelisols cover

9.1 % of the global ice-free land area (USDA, 1999) and

Turbels account for 61 % of the Gelisol area (Hugelius et al.,

2014). The latter calculated the amount of soil OC in circum-

polar Turbels to be 207 Pg. Assuming that the first metre of

the global soils store 1324 Pg of OC (Köchy et al., 2015), cry-

oturbated permafrost soils account for approximately 15 %

of this global value. Based on the 54 % re-allocation of OC

by cryogenesis, approximately 8 % or 110 Pg of the global

soil OC pool within the first metre can be attributed to the

redistribution by cryogenic processes. This proportion will

increase when cryoturbated materials within the permafrost

and > 1 m are taken into account (Harden et al., 2012).

4.2 Transformation of organic matter in the

cryoturbated soils

We used C /N values and δ13C ratios together with density

fractionation to assess the OM transformation within the cry-

oturbated soils. Smaller C /N ratios and more positive δ13C

values of OM with soil depth (Fig. 4) are both indicative

of consecutive microbial transformation from organic topsoil

towards permafrost horizons. In this study, OM in deep B and

C horizons as well as in the upper permafrost underwent the

strongest transformation. This is in contrast to the findings of

Xu et al. (2009) from sites in Alaska and might indicate tem-

porarily greater thawing depths and/or microbial OM trans-

formation at subzero temperatures (Gittel et al., 2014; Hob-

bie et al., 2000). However, the subducted topsoil material did

not fit with this pattern. The transformation proxies of the

bulk soil OM did not resemble those of the surrounding sub-

soil, but rather those of the respective topsoil horizons. In ad-

dition, when considering the HF, mineral-associated OM did

not indicate alteration in the subducted topsoils compared to

the A horizons. The LF in the subducted topsoil material,

however, was significantly enriched in 13C and had smaller

C /N ratios than that of the topsoil. This pattern can likely

be attributed to the availability of large amounts of unpro-

tected particulate OM over a longer time period for micro-

bial decomposition. According to Gentsch et al. (2015), the

LF 14C signals decreased from modern values in the topsoil

to 81 and 84 pMC (∼ 1300 to 1600 years BP) in subducted

topsoil. The reduced bioavailability during incubation exper-

iments indicates depletion of energy-rich plant material.

Narrow C /N ratios in the HF relative to LF indicate a

larger proportion of microbial products (Christensen, 2001)

and the HF as principle source of N in the soil (Khanna

et al., 2001). The strong decline in the C /N values of the

HF from the topsoil towards the permafrost (Fig. 6) mirrors

the increasing contribution of microbial residues to mineral-

associated OM at greater soil depth. Very narrow HF C /N

ratios in the subsoil at TZ (5± 1) and CH (8± 4) likely re-

flect the fixation of NH+4 in the interlayer of expandable 2 : 1

clay minerals (Dixon and Schulze, 2002). However, con-

sidering the generally low concentrations of mineral N in

the soils (< 2 %; data not shown) and the loss thereof dur-

ing the density fractionation, the proportion of mineral N to

the TN in the whole soil HF appears to be negligible. For

LF-OM, higher C /N ratios were found in the topsoil from

TZ (40± 3) and CH (38± 8) relative to AM and LG soils

(26± 4), reflecting signals from plant sources with wider

C /N ratios, such as mosses or lichen (Fig. 6). Although the

C /N ratio of the plant input was wider at TZ and CH than at

the AM and LG sites, the ratio became narrower with depth

at the former, suggesting stronger decomposition, and for TZ

less active cryogenic processes (discussed above). The gen-

erally less negative δ13C values of OM at TZ sites were,

however, the result of less strong isotope discrimination by

the plant sources instead of an advanced stage of decompo-

sition. This can be linked to environmental forces (e.g. the

less pronounced continentality; see Supplement) influenc-

ing water-nutrient use efficiency and water vapour pressure,

which in turn affect photosynthetic discrimination (Bowling

et al., 2002; Dawson et al., 2002).

Overall, the bulk and fraction-related OM showed a strong

microbial transformation with soil depth. The subducted top-

soil material was an exception, however, as only the LF ap-

peared to be more decomposed than the respective fraction

in the topsoil. For the CH sample subset, Gittel et al. (2014)

showed a relatively high abundance of bacteria (especially

actinobacteria) in subducted topsoil materials, but a similar,

low abundance of fungi as in the surrounding subsoil. Dif-

ferences in the microbial community composition, therefore,

cannot explain the preferential degradation of LF material in

the cryoturbated pockets, as LF materials with high C /N are

favoured by the fungal community (Six et al., 2006). Concur-

rently, Schnecker et al. (2014) suggested low adaption of the

microbial community to the available substrate in subducted

topsoils. These findings imply that subsoil OM decomposi-

tion in cryohydromorphic soils largely depends on the adap-

tion of the microbial community composition to microenvi-

ronments (abiotic conditions) instead of the availability of

OC sources. Consequently, the retarded OM decomposition

in cryoturbated permafrost soils may not be a matter of sub-

strate availability (Kaiser et al., 2007) nor substrate quality

(Schnecker et al., 2014; Xu et al., 2009), but instead may be

restricted by abiotic conditions (Harden et al., 2012) and ni-

trogen limitation of enzyme production (Wild et al., 2014).

4.3 Potentially solubilizable organic matter

The concentrations of K2SO4-extractable dissolved OC

(DOC) from fresh soil of the CH and Taimyr soils ranged

from 5.2 mg g−1 in organic topsoil to 0.01 mg g−1 in sub-

soil, representing approximately 2.3 to 0.04 % of the total OC

(data not shown). Similar values were reported from water
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extracts by Dutta et al. (2006) for Kolyma lowland soils. In

contrast, the DOC concentrations measured in the MoF were

remarkably larger and accounted from 0.3 to 75 % (on aver-

age 13 %) of the total OC content (Table S3). The maximum

proportion of the initial OC release (> 30 %) was found in

B /C and Cff horizons from TZ and LG where total OC con-

tent was small (1–8 mg g−1 soil) and the HF strongly dom-

inated the OC storage. As shown in Fig. S1, approximately

80 % of the MoF-OC was derived from the HF as a result

of the SPT-induced desorption of OM outlined by Crow et

al. (2007) and Kaiser and Guggenberger (2007). However,

the release of OM by SPT was found to be small in temperate,

arable, and high-latitude forest soils (e.g. John et al., 2005;

Kaiser and Guggenberger, 2007; Kane et al., 2005). The data

from this study, however, point towards a relatively large

pool of mineral-associated OM, which is retained in weaker,

chemically exchangeable bindings. The high soil pH in the

subsoil, usually pH > 6 and up to pH 9 in permafrost hori-

zons, might directly affect the binding strengths. Maximum

OM sorption to sesquioxides occurs at pH 4–5, while OM

is most soluble at pH 6–8 due to the increasing deprotona-

tion of OM and the decreasing positive charge on metal ox-

ide surfaces (Andersson et al., 2000; Whittinghill and Hob-

bie, 2012), thus causing an overall increase in OM mobi-

lization at higher pH (Kalbitz et al., 2000). The anaerobic

conditions in the subsoil may promote the OM release, be-

cause anaerobic decomposition of OM leaves a high propor-

tion of water-soluble intermediate metabolites behind (Kalb-

itz et al., 2000), and the reductive dissolution of iron ox-

ides leads to the mobilization of the formerly sorbed OM

(Fiedler and Kalbitz, 2003; Hagedorn et al., 2000). Further-

more, frequent freezing–thawing cycles have been found to

increase dissolved OM loads by disrupting microbial tissue

and cell lysis (DeLuca et al., 1992). As water-soluble OM

is the most bioavailable fraction (Marschner and Kalbitz,

2003), the MoF includes a potentially vulnerable soil OM

pool.

The mobility of soluble compounds (including metal ions

and dissolved OM) in the annual thawing zone is con-

trolled by the formation of segregation ice. During crys-

tal growth, the soluble compounds remain in the pore solu-

tion and increase electrolyte concentrations (Ostroumov et

al., 2001). Zones of concentrated pore solution favour col-

loid flocculation and the formation of metal-loaded organic

precipitates (Ostroumov, 2004; Van Vliet-Lanoë, 1998). Co-

precipitation has been postulated as an important mechanism

for OM preservation in soils (Gentsch et al., 2015; Kalbitz

and Kaiser, 2008; Scheel et al., 2007), and on this basis,

freeze and thaw cycles would not only increase the produc-

tion of DOC but also stimulate the formation of mineral–

organic associations.

4.4 Mineral controls on organic matter storage

Approximately 55 % of the total OC in the first soil metre and

63 % of the OC within subsoil horizons was associated with

the mineral phase. Soil OM that interacts with reactive miner-

als is supposed to be less available for microbial decomposi-

tion, thus contributing to the “protected” or “stabilized” OM

pool (Schmidt et al., 2011). The extent of protection thereby

depends on the mineralogical assemblage and the soil envi-

ronmental conditions (Baldock and Skjemstad, 2000).

The PLSR analyses (Fig. 7) highlight the site-specific sig-

nificance of certain mineral phases that act as potential bind-

ing partners for OM. Well crystalline iron oxides (Fed–Feo),

generally low in abundance, have no or a negative effect on

HF-OC variability across all sites. The significance of well

crystalline minerals for the stabilization of OM in mineral–

organic associations has been addressed in several studies

on temperate (Eusterhues et al., 2005; Mikutta et al., 2007)

and tropical soils (Mikutta et al., 2009; Torn et al., 1997)

and is generally considered low. Poorly crystalline Fe and Al

phases (Feo–Fep, Alo–Alp) are more important at CH and

TZ, where weathering was found to be strongest (see Sup-

plement Sect. S4).

Clay-sized minerals have a strong influence on HF-OC in

the subsoils at sites dominated by highly reactive smectite

clays (AM, LG). This finding is in agreement with Six et

al. (2002), who showed that stabilization of OC is related to

the type of clay minerals (2 : 1 or 1 : 1) present in soil. The

authors suggest that the stronger adsorption capacity of 2 : 1

clays is based on differences in CEC and surface area.

The PLSR further identified organically complexed Fe and

Al (Fep, Alp) as an overwhelming factor explaining the

variations in HF-OC concentrations across all study sites

(Fig. 7). Sorption of OM to the surfaces of phyllosilicate

clays, partly complexed with Fe and Al, may reduce their

specific surface area and “glue” them together under for-

mation of ternary complexes (OM–Fe/Al–oxi(hydroxy)des–

clay complexes) complexes (Wagai and Mayer, 2007). The

interplay between OM, clay minerals, and less polymeric Fe

and Al species may partly reduce the explanatory power of

the clay–OM relation alone during statistical analyses. In ad-

dition to the formation of ternary complexes, the presence of

Fep and Alp in the HF may also result from co-precipitation

reactions between OM and dissolved Fe and Al (Scheel et al.,

2007; Schwertmann et al., 2005). When plotting the molar

concentration of HF-OC versus those of Fep+Alp, linear re-

lations were observed with different regression slopes for dif-

ferent sites (Fig. S5; r = 0.63 to 0.97; p < 0.001). The slopes

show molar metal /C ratios of 0.02 for CH and TZ sites and

< 0.01 for the Taimyr sites. These strong relationships sug-

gest a proportional increase in Fe /Al–OM associations with

the amount of OC present in the soil. Several studies have re-

ported that the precipitation of OM with hydrolysed Al and

Fe species already begins at low metal /C ratios of < 0.05

(Nierop et al., 2002; Scheel et al., 2007). These findings sup-
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port our previous conclusion – that, besides clay–organic in-

teractions, co-precipitation of OM with Fe and Al is another

important process in cryohydromorphic soils (Gentsch et al.,

2015).

Overall, it appeared difficult to differentiate distinct mech-

anisms of mineral–organic interactions for cryohydromor-

phic soils of the Siberian Arctic. Statistical evidence was

found for (i) complexation of OM with metal cations, (ii)

formation of Fe /Al co-precipitates, and (iii) sorption of OM

to clay minerals and poorly crystalline Fe and Al phases.

Whether the formation of mineral–organic associations may

retard the decomposition of OM depends, however, on the

stability of these complexes (Mikutta et al., 2007). Reduc-

tive dissolution of iron oxides may liberate the attached

OM (Fiedler and Kalbitz, 2003; Knorr, 2013). The strongest

mineral–organic binding, such as ligand exchange, occurs in

acid soils (Von Lützow et al., 2006), whereas weaker out-

ersphere complexes prevail in the neutral to alkaline con-

ditions that dominate the subsoil of northern Siberia. In an

artificial cryoturbation experiment, Klaminder et al. (2013)

found that mixing of humus into mineral soil from cryotur-

bated soils primed heterotrophic respiration, possibly as re-

sult of contact with mineral surfaces. Gentsch et al. (2015)

performed incubation experiments over 90 days using bulk

soils, HF, and LF materials from the CH sites. In this study,

only up to ∼ 3 % of the initial mineral-associated OC was

respired. Jagadamma et al. (2013) reported slightly higher

native OC mineralization of mineral-associated OM from a

Typic Aquiturbel relative to non-permafrost soils from vari-

ous environments, and no significant difference between the

HF and LF was observed. Although the stability of mineral–

organic associations as protecting agents against microbial

OM degradation appears uncertain so far and warrants fur-

ther research, our results suggest that soil minerals in cry-

oturbated permafrost soils are crucial factors facilitating high

OC stocks in the subsoil.

5 Conclusions

This study investigated 28 cryoturbated soils on poorly

drained, silty-loamy parent material with relatively flat to-

pography in a gradient from western to eastern Siberia. All

soils belonged to the Aquiturbel great group. Differences

in physico-chemical properties and processes depend on the

heterogeneity of the parent material, the annual thawing

depth, and the occurrence of cryogenic processes. Based on

the average storage of 20.2± 8.0 kg OC m−2, 54 % was re-

distributed by cryogenic processes as principle drivers for

the high subsoil OC stocks of 16.4± 8.1 kg OC m−2. The

vast majority of the subsoil OC was associated with min-

erals (HF: 10.3± 4.9 kg OC m−2) and dominated by micro-

bially resynthesized products. The size of this pool depends

on the yield of dissolved compounds delivered by microbial

transformation, migration along freezing gradients, and the

mineral assemblage. Substantial microbial OM transforma-

tion in the subsoil was indicated by low C /N ratios and

high δ13C values, despite the unfavourable abiotic conditions

(i.e. water saturation, anaerobiosis, low temperatures). Under

current soil conditions, mineral–organic associations emerge

from complexation of OM with metal cations, the formation

of Fe /Al–OM co-precipitates, as well as sorption of OM to

poorly crystalline Fe and Al surfaces and clay minerals. In

the absence of segregated ground-ice bodies, future climate

scenarios predict increases in active layer depth and deep

drainage (IPCC, 2013; Schaefer et al., 2011; Sushama et al.,

2007), likely resulting in dryer and more oxic soil conditions.

Drainage and oxygen availability give rise to proceeding soil

development (acidification) as well as mineral alteration un-

der the release of Fe and Al to the soil solution, formation

of iron and aluminium oxides, reduction of exchangeable ba-

sic cations, and clay mineral transformation. This, in turn,

may increase the relevance of mineral–organic associations

to mitigate the permafrost carbon feedback to climate change

by reducing the microbial excess to the OC source. However,

further studies are needed to understand the specific mecha-

nisms that cause the enrichment of OC on mineral surfaces

(adsorption versus co-precipitation reactions) and the role of

minerals in permafrost soils as a substantial protection factor

for OM.

The Supplement related to this article is available online

at doi:10.5194/bg-12-4525-2015-supplement.
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S1 Study area
The east Siberian sampling sites were located along the Kolyma River north of Cherskiy. The
climate in the Cherskiy (CH) region is characterized by extreme continentality with a mean annual
temperature (MAT) of –10.7°C and a mean annual precipitation (MAP) of 272 mm (http://
meteo.infospace.ru/wcarch/html/e_day_stn.sht?num=78). While the northern sampling sites
(CH A-C) are located in the typical tundra, the southernmost sampling sites (CH G-I) resided
already in the transition zone from southern to forest tundra (Table 1). This area has never been
glaciated during the Pleistocene (Astakhov, 2008), and the parent material consists of aeolian,
fluvial, and alluvial sediments covering granitic bedrock from a Cretaceous batholith intrusion
(Patyk-Kara and Postolenko, 2004). As we aimed at investigating comparable soils affected by
cryoturbation (Gelisol order, Turbel suborder; Soil Survey Staff (2010)) along the Siberian gradient,
we excluded sites belonging to the “Yedoma Suite” (Dutta et al., 2006; Schirrmeister et al., 2008).
Two study sites reside in the typical tundra zone on the Taimyr Peninsula in central Siberia. Ari-
Mas (AM) and Logata (LG) were located 70 and 180 km north-west of Chatanga. The climate in
the interior Taimyr Peninsula (Chatanga meteorological station) is extremely continental with a
MAT of –12.6°C and a MAP of 278 mm. The Taimyr Peninsula was glaciated several times during
the Quaternary but remained periglacial through the last glacial maximum. At AM, the sampling
sites resided on sand- and silt-rich fluvial-marine sediments derived from sea transgression during
the Eemian interglacial (Svendsen et al., 2004). The LG sites were located on marine deposits
from a Kara Sea transgression after the Early Weichelian glaciation (Svendsen et al., 2004). The
northern sampling site on the West Siberian Plain near Tazovsky (TZ) is located in the southern
tundra (TZ A-C) while the southern sampling site (TZ D-F) is in the transition zone to forest
tundra. The climate is under a stronger influence of the arctic sea, with a MAT of –8.3°C MAT
and a MAP of 452 mm. The parent material composed of a mixture of silt-rich marine and
alluvial post-glacial deposits (Svendsen et al., 2004). Characteristic to all sampling sites was a
landscape with rolling hills and gentle slopes. According to the formula of Gorczynsky (Blüthgen
and Weischet, 1980), the index of continentality increased from meteorological stations in Tazovsky
(K = 57) over Chatanga (K = 61) to Cherskiy (K = 68).

S2 PLSR Statistics
Interactions of OC with soil mineral parameters were studied with partial least squares regression
(PLSR) analysis. This approach has proven as insensitive to multicolinearity effects or if the num-
ber of predictors exceed the number of observations (Carrascal et al., 2009). The PLSR technique
constructed latent factors by linear combinations between predictor and response variables such
that the original multidimensionality is reduced to a lower number of orthogonal factors (Carrascal
et al., 2009). In line with Carrascal et al. (2009), we only report “significant” latent factors which
explain > 5% of the original variance. Variable importance in the projection (VIP) values were
used as indicator for the weight of each predictor on the result matrix. In general, VIP values >
1 indicate an above average influence on the response variable and, thus, represent the variable
having the highest explanatory power (Mehmood et al., 2012; Chong and Jun, 2005). Based on
the ANOVA results and subsequent Post-hoc tests, the sample pool for PLSR analysis was divided
into two horizon clusters, i.e., topsoil horizons (including subducted topsoil) and subsoil horizons
(including permafrost horizons), and performed for each site individually.
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S3 Density fractionation
Twenty-five g (25 g) of the bulk soil were weighed in duplicates into centrifugation bottles and
amended with 125 ml sodium polytungstate (SPT) adjusted to a density of 1.6 g cm−3. After
one hour of equilibration, soil samples were dispersed by sonication (LABSONIC ultrasound ho-
mogenizer, Sartorius Stedim Biotech GmbH) using an energy input of 60 J ml−1 (Cerli et al.,
2012). As most of the soil samples had a plastic soil structure with little or absent aggregation,
we did not distinguish “free” and “occluded” particulate OM but separated the total particulate
material as “light fraction” (LF) from the “heavy fraction” (HF), which contained OM associated
with minerals. After sonication, the suspension was allowed to settle for one hour and thereafter
centrifuged at 3,000 × g for 20 minutes. The floating LF was transferred on a quartz fibre filter
(Whatman GF 6) placed in a Büchner funnel connected to a vacuum pressure device. The LF
material was rinsed with deionised water until the electric conductivity of the cleaning solution was
< 50 µS cm−1. The HF pellet was resuspended in deionized water and centrifuged at 6,000 × g
for up to 60 minutes to remove residual SPT. The procedure was repeated until the electric con-
ductivity dropped below 50 µS cm−1. Both, the LF and HF materials were freeze-dried for further
analyses. The separation of soil into light (LF) and heavy (HF) fractions was performed with an
average dry mass recovery of 93.9 ±3.5%, and the vast majority (96.9 ± 6.6%) of the soil was
recovered as HF. Within these two fractions, the recovery was 85.2 ± 15.9% of the initial soil OC,
and 89.7 ± 15.7% of the initial TN. During density fractionation, substantial amounts of soluble
OC and TN were mobilized by the SPT solution (termed ’MoF’). From that, 80.3 ± 12.3% OC
was released from HF and 19.7 ± 12.3% from LF (Fig. S3).

Fig. S 1: Contribution of LF and HF to the total proportion of mobilizable OC (MoF-OC) during
density fractionation. Values derived from measurements of DOC in rinsing solutions. The values were
expressed as percentage of the respective fraction to the total MoF-OC pool (inner bar chart) and percent
MoF-OC related the total OC concentration.

S4 Mineral composition and transformation
Soils in the Kolyma region developed from sediments of aeolian origin and clay mineral transfor-
mation in this region is primarily ascribed to the degradation of illite and chlorite under formation
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of randomly interstratified illite-smectite and chlorite-smectite (Alekseev et al., 2003). Soils at
CH contained an assemblage of 1:1 and 2:1 clay minerals dominated by illite, chlorite, and kaolin-
ite, with increasing abundance of smectite and interlayered smectite minerals within the transient
layer. In contrast to the east Siberian sites, the shallow marine-alluvial deposits in west and cen-
tral Siberia were almost entirely dominated by the 2:1 clay mineral smectite which is in line with
previous reports about soils from the Taimyr Peninsula (Sokolov et al., 2004; Vasil’evskaya, 1980)
and northwest Siberia (Mahaney et al., 1995). The smectites at our study sites likely originated
from smectite-bearing sediments of paleosols from the Siberian Tap Province (Rossak et al., 1999;
Svendsen et al., 2004).

The eastern and western Siberian soils showed an advanced state of soil development compared
to their central Siberian counterparts. This was indicated by smaller amounts of exchangeable
Mg2+ and Ca2+ in coincidence with higher proportions of Al3+ at the exchange complex, thus
reflecting a stronger degree of weathering and higher leaching losses of nutrients (Table S1). The
release of Al3+ partially result in the formation of Al hydroxide interlayers in smectite as is evident
from the XRD pattern in the topsoil (Fig S2). Incipient “chloritization” by polymerization of Al
hyroxides in the interlayer of smectite (Wilson, 1999) is considered to be very likely under the
present pH of 4.7 to 5.7 (Rich, 1968). But only in the east Siberian sites, with highest contents
of total (Fed > 1%) and well crystalline (Fed−Feo) pedogenic Fe oxides, the soil development
led to the formation of larger amounts of sesquioxides. The high Feo contents and activity ratios
(Feo/Fed) of 0.4 to 1.0 suggest a strong redox influence in the soils with continuous mobilization and
immobilization of Fe (Cornell and Schwertmann, 2003). Further crystallization of Fe oxyhydroxide
is likely impeded by high amounts of OM (Eusterhues et al., 2008) such as present in subducted
topsoils, leading to the overall enrichment of poorly crystalline Fe forms in mineral horizons.
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Fig. S 2: Texture composition (in %) from mineral soil horizonsacross the sampling locations in the
Siberian Arctic. Texture classes according to the FAO (Food and Agriculture Organization) system.
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Fig. S 3: X-ray diffraction pattern of the clay sized fraction across the Siberian sampling sites (TZ-
Tazowskiy, AM-Ari-Mas, LG-Logata, Cherskiy). The left panel shows the different treatments (Mg-
saturated, Mg-saturated and ethylene glycol solvated, K-saturated, K saturated heated to 550°C) for one
of the respective samples from the left.The right panel shows the Mg-saturated ethylene glycol solvated
treatments from topsoil horizons (A) following a depth gradient to the permafrost (Cff).
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Fig. S 4: Continued figure from the previous page.
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Table S 1: Soil pH and exchangeable cations across the four sampling locations (TZ, AM, LG, CH) and
soil horizons (following a depth gradient)
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Table S 2: Concentrations of dithionite (Fed), oxalate (Feo)and pyrophosphate (Fep) extractible iron
(Fe) and aluminum (Al). Mean values, standard deviation (SD) and the number of samples (N) were
given with respect to soil horizons and sampling location in the Siberian Arctic.
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Table S 3: Contribution of the different soil fraction (LF, HF, MoF) to the total OC and TN concen-
tration at different sampling locations. Mean values, standard deviation (SD)and the number of samples
(N were given with respect to soil horizons and sampling location in the Siberian arctic.
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Table S 4: Comparison of bulk OC stocks (in kg m−2 to 100 cm soil depth, mean ± SD) from this
study (study 1) to Palmtag et al. (in press) (study 2), and Palmtag et al. (in preparation) (study 3).
The investigated soil profiles from study 1 were representative for tussock tundra and grass tundra from
study 2, together covering 64% of the total landscape area. At the AM and LG sites, soil profiles from
study 1 were representative for wet and dry uplands from study 3, together representing 47% and 48% of
the total landscape area.

Study Site Land
Cover

Area of
the total
lanscape
(%)

0-100 cm Organic
layer

Mineral
layer

Active
layer

Permafrost
layer

1 CH D-F Tussock
tundra

28.5 ± 6.0 4.7 ± 5.7 23.8 ± 5.1 16.5 ± 5.9 12.0 ± 4.5

2 Shalaurovo Tussock
tundra

46.5 29.0 ± 4.0 4.4 ± 2.5 24.6 ± 2.8 22.0 ± 5.9 7.0 ± 4.9

1 CH A-C Grass tun-
dra

18.4 ± 3.3 2.7 ± 2.9 15.7 ± 2.5 13.1 ± 3.2 5.4 ± 0.7

2 Shalaurovo Grass tun-
dra

17.5 21.3 ± 3.9 2.3 ± 0.9 19.0 ± 4.4 17.0 ± 3.0 4.5 ± 2.6

1 AM Upland
wet/dry

21.1 ± 5.4 1.6 ± 1.5 19.5 ± 5.5 14.7 ± 4.4 6.4 ± 5.9

3 Ari Mas Upland
wet

7.5 18.6 ± 1.7 5.5 ± 2.2 13.1 ± 0.6 12.7 ± 1.4 5.9 ± 1.3

3 Ari Mas Upland
dry

39.6 14.6 ± 5.8 2.0 ± 0.6 12.6 ± 5.9 13.4 ± 5.5 1.2 ± 1.2

1 LG Upland
wet/dry

24.4 ± 7.0 1.5 ± 0.9 22.9 ± 7.4 15.4 ± 3.4 9.0 ± 6.4

3 Logata Upland
wet

11.5 28.7 ± 0.0 2.2 ± 0.4 26.5 ± 0.4 15.7 ± 1.3 13.0 ± 1.3

3 Logata Upland
dry

36.3 24.5 ± 8.2 1.9 ± 0.9 22.6 ± 8.3 18.8 ± 8.5 5.8 ± 3.8
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(a)

(b)

(c)

Fig. S 7: Profile sketches from the four sampling sites across Siberia (CH, AM, LG, TZ). All sketches
were drawn by AutoCAT2010 and the areas of designated soil horizons were used to calculate OC and
TN stocks up to one meter soil depth.

13



(d)

(e)

(f)

Fig. S 7: Continued figure from the previous page.
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(g)

(h)

(i)

Fig. S 7: Continued figure from the previous page.
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(j)

(k)

(l)

Fig. S 7: Continued figure from the previous page.
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(m)

(n)

(o)

Fig. S 7: Continued figure from the previous page.
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(p)

(q)

(r)

Fig. S 7: Continued figure from the previous page.
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(s)

(t)

(u)

Fig. S 7: Continued figure from the previous page.
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(v)

(w)

(x)

Fig. S 7: Continued figure from the previous page.
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(y)

Fig. S 7: Continued figure from the previous page.

Fig. S 8: Scanning electron images from the HF of an A horizon (A) and an Ajj horizon from 80 cm
depth (B). The related LF images from these horizons are shown in C and D.
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Summary

Permafrost degradation may cause strong feedbacks of arctic ecosystems to global warming, but this will
depend on if, and to what extent, organic matter (OM) is protected against biodegradation by mechanisms
other than freezing and anoxia. Here, we report on the amount, chemical composition and bioavailability of
particulate (POM) and mineral-associated OM (MOM) in permafrost soils of the East Siberian Arctic. The
average total organic carbon (OC) stock across all soils was 24.0± 6.7 kg m−2 within 100 cm soil depth. Density
fractionation (density cut-off 1.6 g cm−3) revealed that 54± 16% of the total soil OC and 64± 18% of OC in
subsoil horizons was bound to minerals. As well as sorption of OM to clay-sized minerals (R2 = 0.80; P< 0.01),
co-precipitation of OM with hydrolyzable metals may also transfer carbon into the mineral-bound fraction.
Carbon:nitrogen ratios, stable carbon and nitrogen isotopes, 13C-NMR and X-ray photoelectron spectroscopy
showed that OM is transformed in permafrost soils, which is a prerequisite for the formation of mineral-organic
associations. Mineral-associated OM in deeper soil was enriched in 13C and 15N, and had narrow C:N and
large alkyl C:(O-/N-alkyl C) ratios, indicating an advanced stage of decomposition. Despite being up to several
thousands of years old, when incubated under favourable conditions (60% water-holding capacity, 15∘C, adequate
nutrients, 90 days), only 1.5–5% of the mineral-associated OC was released as CO2. In the topsoils, POM had
the largest mineralization but was even less bioavailable than the MOM in subsoil horizons. Our results suggest
that the formation of mineral-organic associations acts as an important additional factor in the stabilization of
OM in permafrost soils. Although the majority of MOM was not prone to decomposition under favourable
conditions, mineral-organic associations host a readily accessible carbon fraction, which may actively participate
in ecosystem carbon exchange.

Introduction

An increase in surface air temperatures, as already experienced
during recent decades, facilitate permafrost thaw and promote
active layer deepening, thermokarst formation, and river and coastal

Correspondence: R. Mikutta. E-mail: mikutta@ifbk.uni-hannover.de

Received 7 July 2014; revised version accepted 12 March 2015

erosion (Fountain et al., 2012). The most important consequences
of climate change in permafrost environments are gradual or
sometimes abrupt changes in the soil environmental conditions
(such as thermal and moisture regime, and aeration) with direct
consequences on organic carbon (OC) destabilization (Ping et al.,
2015). Long-term preserved OC will get increasingly exposed to
microbial decomposition and be released from the active layer
and the previously frozen ground to the atmosphere as CO2 and
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CH4 (Nowinski et al., 2010) or discharged by the drainage system
(Vonk et al., 2013). Warming of permafrost soils is also predicted
to result in larger nutrient availability caused by new inputs of
OC from shifting plant communities, increasing plant productivity
and the spread of deep-rooting plant species (Hartley et al., 2012).
Under these conditions, priming reactions induced by the addition
of fresh carbon sources might facilitate the release of older OC from
subsoil horizons (Wild et al., 2014). However, the magnitude of the
processes stimulating OC loss from mineral soil horizons strongly
depends on the soil parent material and the protective capabilities
of the soil minerals.

Mineral-organic associations play a crucial role in soil organic
matter (OM) preservation and mineral-associated OM (MOM)
often accounts for the majority of total soil carbon (Kleber et al.,
2015). Variation in the mineral assemblage has been reported to not
only to alter the OC contents and the composition of OM but also
its bioavailability (Mikutta et al., 2007). In this context, MOM is
considered to be an amorphous structure of variable composition
and bound to single or multiple mineral surfaces. In permafrost
soils, the frequent moderately acidic to neutral pH (Alekseev et al.,
2003) and anoxic conditions, which induce the reduction of Fe(III)
oxyhydroxides (Lipson et al., 2012), might impair the stabilization
of OM by Fe oxides in the subsoil. Despite the importance of OC
preservation through mineral interactions, only a few studies have
addressed the dynamics of MOM in high-latitude soils (Gundelwein
et al., 2007; Höfle et al., 2013; Jagadamma et al., 2013) and very
little is known about the role of minerals in terms of their ability to
sorb and stabilize OM.

Compared with OC that is attached to minerals, particulate OM
(POM) from decaying plant material represents a more bioavailable
carbon fraction (Schrumpf et al., 2013). Such organic debris can
accumulate close to the permafrost surface or within the permafrost
as a consequence of cryoturbation (vertical soil mixing upon
frequent freeze-thawing cycles) and is stabilized there over longer
periods (Kaiser et al., 2007). In contrast to the recognition that POM
is more degradable than OM associated with minerals, Jagadamma
et al. (2013) showed that, unlike for other soil types such as
Andisols, Mollisols, Ultisols and Oxisols, MOM and POM from a
Gelisol were decomposed at comparable rates during an incubation
experiment and that MOM in the Gelisol tended to be respired
faster than that from the other soils. Therefore, knowledge on
the transformation of OM, its distribution in functional fractions
across different soil horizons, and their potential decomposability,
is important in order to assess the overall stabilization potential of
OM in permafrost soils. Consequently, the main objectives of this
study were to (i) investigate the soil mineralogical composition and
quantify the OC portion associated with the mineral phase versus
the OC proportion bound in POM, (ii) determine the degree of OM
decomposition and (iii) test the potential bioavailability of MOM in
comparison with POM. Organic matter fractions of permafrost soils
were physically isolated by density separation and characterized for
stable isotopes (13C and 15N), and their chemical composition was
determined with solid-state 13C nuclear magnetic resonance and
X-ray photoelectron spectroscopy. Finally, both MOM and POM

Figure 1 Study area and site locations of the different tundra types (SG,
shrubby grass tundra; ST, shrubby tussock tundra; SL, shrubby lichen
tundra) along the Kolyma River in east Siberia.

Figure 2 Profile images of selected Gelisol (Cryosol, WRB) pedons under
shrubby grass (top), shrubby tussock (middle) and shrubby lichen (below)
tundra vegetation. The width of the profiles is 5 m, the scale is 50 cm. FB,
frostboil; C, crack; PF, permafrost table.

fractions were incubated for 90 days under optimal nutrient and
temperature conditions to assess their potential bioavailability.

Materials and methods

Soil sampling and terminology

For this study we sampled three tundra ecosystems of northeastern
Siberia along the lower Kolyma River, Russia (Figure 1): shrubby
grass tundra (SG), shrubby tussock tundra (ST) and shrubby lichen
tundra (SL). Detailed descriptions of the sites and sampling design
are given in File S1 and Gentsch et al. (2015). Diagnostic horizons
of three replicated 5-m soil trenches per tundra type were sampled
(Figure 2), including two soil cores from the upper 45 cm of the
permafrost. Bulk density (BD) samples from each horizon were
taken in triplicate with 100-cm3 stainless core cutters.

All soils showed strong signs of cryoturbation with hummock
topography or bare frost boils being located adjacent to vegetated
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depressions or cracks (Figure 2). Depressions had aquic moisture
regimes and strong accumulation of OM. The soils were classified
as Cryosols according to the IUSS Working Group WRB (2014)
or Gelisols according to USDA Soil Taxonomy (Soil Survey Staff,
2010) (Table 1). Pockets of OM-enriched material (compared with
topsoil materials) transferred into the subsoil by cryoturbation were
sampled from several locations within the active layer; in the fol-
lowing these are referred to as ‘subducted topsoil’. Living roots and
macroscopic soil fauna were removed from all soil samples before
they were dried and sieved to < 2 mm. The following terminology
is used to summarize diagnostic soil horizons (symbols according
to Soil Taxonomy): organic topsoil (O, Oa, Oe), mineral topsoil
(A, AB), subducted topsoil (Ojj, Ajj) and subsoil horizons (BCg,
Cg, Cff).

Soil characteristics

The texture composition was determined by the standard
sieve-pipette method after removal of OM and Fe oxides (DIN
ISO 11277, 2002). The effective cation exchange capacity (CECeff)
was determined by extraction of soils with a Mehlich-3 solu-
tion (Ziadi & Tran, 2006); the extracted cations were measured
by inductively coupled plasma optical emission spectroscopy
(ICP-OES; Varian 725-ES, Varian Australia Pty Ltd, Mulgrave,
Australia). The base saturation (BS) was calculated as percentage
contribution of the basic cations (Ca, Mg, K and Na) to CECeff.
Pedogenic Fe and Al fractions were determined by standard
dithionite-citrate-bicarbonate (Fed) and acid oxalate extraction
(Feo, Alo) according to Pansu & Gautheyrou (2006). The Fed

extract represents the amount of pedogenetically formed Fe within
(hydr)oxides and silicates, as well as in organic complexes capable
of acting as an electron acceptor, whereas Feo and Alo originate
from poorly crystalline aluminosilicates, ferrihydrite, Al-gels and
Al- and Fe-organic complexes. Oxalate-soluble Fe also reflects
the proportion of pedogenic Fe that dissolves in the initial stage
of the dissimilatory Fe(III) reduction but may also contain some
Fe extracted from biotite (Vodyanitskii et al., 2008). The ratio
Feo:Fed mirrors the portion of poorly crystalline Fe oxides to total
pedogenic Fe oxides. Organically complexed Fe and Al (Fep, Alp)
were determined by extraction of mineral-organic associations
by 0.1 m sodium-pyrophosphate solution adjusted to pH 9.0 and
shaken for 16 hours. In order to avoid the dispersion of Fe and Al
colloids, extracts were centrifuged at 300 000 g for 6 hours and Fe
and Al in the supernatant liquid were measured by ICP-OES. Soil
pH was measured in a soil-water suspension at a ratio of 1:2.5. The
clay mineral composition of Fe-oxide and OM-free clay samples
saturated with either K+ (including heating to 550∘C), Mg2+ or
Mg2+/glycol was determined by X-ray diffraction (Kristalloflex
D500, Siemens AG, Mannheim, Germany) by CuK𝜶 radiation, at a
step size of 0.05∘ and 10-s acquisition per time-step. Identification
of the most abundant clay minerals was as outlined in section S1 of
File S1.

Density fractionation, soil organic matter analyses and carbon
storage

Density fractionation using sodium polytungstate (SPT; density
cut-off 1.6 g cm−3) was used to separate POM and MOM in min-
eral soil horizons. Because the investigated soils had a plastic
consistency and little sign of aggregation, we did not isolate an
aggregate-occluded POM fraction as is routine for non-permafrost
soils. Twenty-five grams of soil were dispersed in 125 ml SPT for
about 10 minutes with a total sonication energy of 60 J ml−1 using a
LABSONIC® ultrasound homogenizer (Sartorius Stedim Biotech
GmbH, Göttingen, Germany). The floating POM fraction was sep-
arated from the heavier MOM fraction by decantation after settling
for 1 hour and centrifugation (3500 g; for 10 minutes). Both frac-
tions were washed with 18-MΩ water until the electrical conduc-
tivity was< 50 μS cm−1, and freeze-dried. For samples with incom-
plete recovery of POM, the procedure was repeated without soni-
cation until no POM remained floating. During the cleaning from
SPT remnants, considerable amounts of OC and TN were mobilized
from the MOM fraction. This mobilized fraction (MoF) was quan-
tified by mass balance (Table 3) and may contain OM components
that in soil might also easily move into the soil solution. Organic
carbon and total nitrogen as well as the isotopic composition (13C
and 15N) of fractionated and bulk samples were measured with an
IsoPrime 100 IRMS (IsoPrime Ltd, Cheadle Hulme, UK) coupled
to an Elementar vario MICRO cube (Elementar Analysensysteme
GmbH, Hanau, Germany). Traces of carbonates (< 0.5%) were
removed by acid fumigation according to Harris et al. (2001) and
subsequent neutralization was carried out over NaOH pellets (for
48 hours each). The 𝛿13C and 𝛿15N values of soil samples were cor-
rected by calculating response factors determined by linear regres-
sions between measured 13C or 15N contents and respective 𝛿13C or
𝛿15N values of standard compounds (for 13C, sucrose, glutamic acid
and caffeine; for 15N, glutamic acid and caffeine, IAES (NH4)2SO4

standards). The 13C and 15N values were expressed in the delta
notation related to the Vienna Peedee-Belemnite-Standard (−20‰)
and atmospheric N2 (0‰), respectively. Dissolved OC (DOC) was
quantified by extraction of soil with bi-distilled water (organic hori-
zons 1:10 wt:vol; mineral horizons 1:20 wt:vol) for 2 hours. The fil-
tered extracts (0.45 μm; MN-GF 5, MACHEREY-NAGEL, Düren,
Germany) were analysed for DOC by a LiquiTOC analyser (Ele-
mentar Analysensysteme GmbH).

The radiocarbon content (Δ14C) of selected OM fractions
was determined by accelerator mass spectrometry at the
Klaus-Tschira-Laboratory for Radiometric Dating Methods at
the Curt-Engelhorn-Centre for Archaeometry GmbH, Germany.
Homogenized samples were pretreated by rinsing with 0.5 m HCl
to remove traces of carbonates. The 14C results were expressed in
as a percentage of modern carbon (pMC), and conventional 14C
ages were calculated according to Stuiver & Polach (1977) and
referenced to 1950 (1950 A.D.= 0 B.P).

Solid-state cross-polarization magic angle spinning 13C-NMR
analyses of ground OM fractions were made with a Bruker DSX 200
instrument (Bruker Biospin GmbH, Karlsruhe, Germany). Sam-
ples were filled into zirconium dioxide rotors and spun in a magic
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Table 1 Site description, dominant plant species, morphological properties and soil taxonomic classification for three investigated tundra types

Land cover class
Site code/profile
identifier UTM

CAVM
class/index

Dominant
plant species

Active layer
depth / cm

Soil classification
(Soil Taxonomy)a

Soil classification
(WRB)b

Shrubby grass
tundra

SG/CH A-C 57W 0607781,
7706532

D/G3 Betula exilis, Salix

sphenophylla, Carex
lugens, Calamagrostis

holmii, Aulacomnium

turgidum

30–70 Ruptic-Histic
Aquiturbel, fine
silty

Histic Turbic
Reductaquic
Cryosol (Siltic)

Shrubby tussock
tundra

ST/CH D-F 57W 0606201,
7705516

D/G4 Eriophorum vaginatum,
Carex lugens, Betula

exilis, Salix pulchra.,
Aulacomnium turgidum

35–60 Ruptic-Histic
Aquiturbel, clayey
to fine silty

Histic Turbic
Reductaquic
Cryosol (Siltic)

Shrubby lichen
tundra

SL/CH G-I 57W 0604930,
7628451

E/S2 Betula exilis, Vaccinium

uligonosum, Flavocetraria
nivalis, Flavocetraria

cucullata

35–90 Typic Aquiturbel,
fine silty to
loamy-skeletal

Turbic Reductaquic
Cryosol (Siltic)

aSoil Survey Staff (2010).
bIUSS Working Group WRB (2014).
CAVM denotes the Circum Arctic Vegetation Map according to Walker et al. (2005).

angle spinning probe at 6.8 kHz to minimize chemical anisotropy.
A ramped 1H pulse was used during a contact time of 1 ms to pre-
vent Hartmann–Hahn mismatches. The delay times ranged from
400 ms for MOM fractions to 1000 ms for POM fractions. Chemical
shifts were referenced to tetramethylsilane (TMS= 0 ppm). Prior
to analysis, the MOM fractions were treated with 10% hydrofluo-
ric acid to remove mineral material, including paramagnetic com-
pounds such as iron, and to concentrate OM (section S3, File S1).
For integration, the following chemical shift regions were used:
alkyl C (−10 to 45 ppm), O/N-alkyl C (45–110 ppm), aryl/olefine
C (110–160 ppm) and carbonyl/carboxyl/amide C (160–220 ppm)
(Höfle et al., 2013).

X-ray photoelectron spectroscopy (XPS) was applied to nine
MOM samples (the same number as used for 13C-NMR) to study
the composition of OM at the outermost mineral-organic interface
(top ∼10 nm). The samples (< 63 μm) were deposited onto adhe-
sive copper-nickel tape and analysed by a Kratos Axis Ultra DLD
instrument (Kratos Analytical Ltd, Manchester, UK). The scans for
survey spectra (pass energy, 160 eV; step size, 1 eV) and C1s detail
spectra (pass energy, 10 eV; step size, 0.1 eV) were acquired in the
hybrid lens mode with photoelectrons originating from an area of
300× 700 μm. After charge correction, the C1s peak centered at
285 eV was de-convoluted into several sub-peaks representing dif-
ferent carbon oxidation states by least square fitting (Mikutta et al.,
2014). The following carbon types were distinguished according
to Gerin et al. (2003): (i) carbon bound to hydrogen and carbon
(C–C, C=C, C–H; at 285± 0.1 eV), (ii) carbon making a single
bond to O or N as located in polysaccharides (C–O, C–N; at
286.5± 0.1 eV), (iii) carbon making two bonds to oxygen (C=O,
O–C–O; at 287.9± 0.1 eV) and (iv) carbon making three bonds
to O and N (O–C=O, O=C–N; at 289.3± 0.1 eV). For duplicate
element quantification the error was typically< 5%; variation of
duplicates for the different carbon species was on average 12%, with
a median of 9%.

The OC stocks of the soils were quantified from the digitized 5-m2

soil profiles by multiplying the area of a specific horizon with the
bulk density and OC concentration (Gentsch et al., 2015).

Incubation experiment

In order to test the potential bioavailability of OM fractions in
comparison to the bulk soil in different soil horizons, 10 POM
samples,18 MOM samples and 18 bulk soil samples were incubated
in triplicate for 90 days at 60% water-holding capacity and 15∘C
in the dark. A Hoagland’s solution provided all the necessary
macro- (N, P, K, Ca, Mg and S) and micro-nutrients (Fe, Mn,
Mo, B, Zn and Cu). We applied a purified quartz-silt mixture to
ensure the same OC contents (50 mg total OC), substrate mass
(20 g) and water-holding capacity in all treatments. Samples were
inoculated with a solution containing 106 cells (determined by
SYBR Green staining and fluorescence microscopy) extracted from
a mixture of all 18 horizons (mineral top- and sub-soils, subducted
topsoils and permafrost from all three tundra types). Previously,
the microbial community in the soil mixture was reactivated with
a 28-day incubation in the dark at 15∘C and 60% water-holding
capacity and thereafter extracted with 0.004 m CaCl2 and filtered
through 5–8-μm cellulose filters. After addition of the inoculum,
the flasks were closed by polyethylene wool to allow for gas
exchange with the atmosphere. Pre-equilibration of soil and OM
fractions before the first gas sampling lasted for 7 days to avoid
the rewetting-induced CO2 pulse. Twenty-four hours before each
gas sampling the flasks were closed and flushed with CO2-free air.
Gas samples were transferred to 20-ml pre-evacuated vials at days
0, 7, 14, 21, 28, 42, 56 and 90. Carbon dioxide emissions were
measured with a GC equipped with an electron capture detector
(Shimadzu GC 2014, Kyoto, Japan) and corrected for the CO2

release from an inoculated quartz powder. Bulk soils were incubated
analogously. Because of the similar mineralization rates of bulk OM
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Table 2 Basic properties of the investigated soil pedons with respect to different tundra types (profile identifiers in parentheses are in accordance with Table 1)

pH (H2O) Clay / % Silt / % Sand / % Fed / mg g−1 Feo / mg g−1 Alo / mg g−1 Fep / mg g−1 Alp / mg g−1 Feo: Fed

CECeff /

cmolc kg−1 BS / %

Horizon N Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Shrubby grass tundra (A–C)

O 4 5.14 0.12 nd nd nd nd nd nd 7.70 1.13 6.03 1.11 2.17 0.31 nd nd nd nd 0.79 0.11 nd nd nd nd

A 4 5.64 0.19 18.09 3.98 75.18 4.24 6.73 1.84 11.88 1.76 6.49 1.71 1.56 0.55 0.88 0.69 0.46 0.36 0.54 0.06 23.33 4.26 42.51 4.57

Ajj/Ojj 8 6.08 0.66 24.56 4.73 71.81 3.56 3.63 1.75 9.44 3.03 8.51 3.19 2.35 0.57 3.51 2.54 1.12 0.60 0.89 0.11 35.14 4.43 58.80 6.11

B/C 8 6.49 0.80 14.14 2.14 81.15 4.19 4.71 2.60 9.45 1.56 4.62 1.64 1.05 0.29 0.44 0.23 0.20 0.10 0.48 0.11 20.37 2.83 45.24 8.25

Cff 10 8.06 0.34 12.93 1.03 85.60 1.12 1.47 0.43 7.32 0.43 6.88 0.70 0.95 0.09 0.49 0.30 0.08 0.03 0.94 0.10 25.29 2.56 67.19 3.22

Shrubby tussock tundra (D–F)

O 6 5.28 0.12 nd nd nd nd nd nd 8.93 3.29 7.80 2.98 2.83 0.77 nd nd nd nd 0.88 0.10 nd nd nd nd

A 4 5.49 0.34 22.14 5.25 71.24 3.89 6.62 1.46 12.43 1.93 7.82 1.36 1.85 0.80 0.63 0.11 0.40 0.05 0.64 0.17 23.99 3.82 39.87 3.24

Ajj/Ojj 6 5.34 0.13 36.66 11.13 59.46 9.35 3.88 2.42 19.87 5.16 19.09 6.49 3.19 0.32 7.09 2.94 1.63 0.35 0.95 0.15 30.31 1.49 46.14 5.71

B/C 9 5.64 0.16 20.18 0.86 73.21 1.51 6.61 1.10 10.52 3.15 9.45 1.73 1.44 0.14 1.39 0.79 0.35 0.04 0.89 0.30 21.84 0.74 36.18 2.56

Cff 12 6.68 0.82 20.11 4.89 72.63 6.80 7.27 2.53 11.27 2.62 7.09 3.03 1.20 0.34 0.90 0.59 0.21 0.09 0.68 0.32 23.61 1.36 52.56 5.65

Shrubby lichen tundra (G–I)

O 5 4.79 0.35 nd nd nd nd nd nd 6.75 2.22 4.21 1.02 2.32 0.59 nd nd nd nd 0.64 0.07 nd nd nd nd

A 4 5.36 0.44 19.77 5.11 71.91 3.70 8.31 3.20 11.25 0.60 4.60 1.34 1.59 0.59 0.85 0.90 0.58 0.44 0.41 0.10 22.27 1.15 48.34 5.35

Ajj/Ojj 12 5.87 0.29 27.21 6.15 67.45 5.22 5.34 2.13 11.69 1.56 7.44 2.13 2.47 0.60 2.37 1.35 1.13 0.48 0.63 0.15 32.79 2.43 54.45 3.60

B/C 8 6.32 0.46 16.48 1.33 74.57 2.75 8.95 2.68 11.52 0.38 4.55 0.63 1.15 0.11 0.34 0.12 0.25 0.07 0.39 0.05 22.91 1.31 46.45 5.01

Cff 4 6.26 0.34 17.39 3.62 76.83 3.88 5.78 4.88 11.26 1.06 6.85 3.19 1.43 0.61 1.01 0.91 0.39 0.29 0.60 0.24 23.70 4.93 49.92 4.65

CECeff, effective cation exchange capacity; BS, base saturation; Fed, Fe extractable in dithionite-citrate-bicarbonate; Feo and Alo, Fe and Al extractable in acid oxalate; Fep and Alp,
pyrophosphate-extractable Fe and Al, respectively; SD, standard deviation; nd, not determined.

compared with the density fractions, we can rule out toxic effects
caused by tungsten residues (present at< 1 atom% on mineral
surfaces based on XPS) during incubation of the MOM and POM.
Averaged cumulative mineralization curves were most accurately
described by a first-order decay model: f = a× exp(−k t), where f
is the remaining OC calculated from CO2 loss (mg OC g−1 OC), a
the fitted initial OC concentration scaled to one gram of OC, k the
decomposition rate constant, and t the time. Note, the first-order
decay model was applied to derive mineralization rates without
underlying assumptions regarding the number of rate-limiting
reactants or presence of multiple OC pools.

Statistics

Pearson correlation coefficients between soil, OM and incubation
conditions, as well as regression analyses, were calculated with
the software package SPSS Statistics vs. 21. If necessary, the data
were log transformed to achieve a normal distribution. Differences
between medians of properties were tested by the non-parametric
Mann–Whitney U-test. Differences between soil horizons and
incubation treatments were explored using analysis of variance
(anova), setting horizons and treatments as fixed or random effects,
respectively. Significant differences within horizons or treatments
were compared by the least significant difference (LSD) test. The
figures 3 and 9 were produced with the R packages lattice and
ggplot2.

Results and discussion

Mineral and organic matter properties

The soils had developed on late Pleistocene sediments and were
all rich in silt (mean±SD; 74± 8%; N = 86; Table 2), with smaller

contributions of clay (21± 8%) and sand (6± 3%). Soil pHwater val-
ues ranged from 4.8 to 8.1, with smaller values in the organic and
mineral topsoil horizons and larger ones in the mineral subsoils
(Table 2). The CECeff of all analysed horizons ranged between 20
and 35 cmolc kg−1 and the base saturation varied from 36 to 67%
(Table 2), implying that weathering of the tundra soils released
considerable amounts of acidic cations (primarily Al), which were
subsequently present in the exchange complex. Calcium and Mg2+

contributed on average 47± 9% to the exchange capacity: inclu-
sion of Al3+ increased this portion to 94± 2%. Concentrations
of total pedogenic soil Fe (Fed) were between 7 and 12 g kg−1

soil and similar to those reported in Vodyanitskii et al. (2008). A
large proportion of Fe resided in forms capable of being reduced
within a short time, such as ferrihydrite, as also indicated by aver-
age Feo:Fed ratios of between 0.39 and 0.95. Organically com-
plexed Fe and Al were more enriched in subducted topsoil horizons
(Fep, 2.3–7.1 g kg−1; Alp, 1.1–1.6 g kg−1; Table 2) than in adjacent
subsoil horizons (Fep, < 1.5 g kg−1; Alp, < 0.6 g kg−1). The X-ray
diffraction of clay fractions from selected soil horizons revealed
a fairly homogeneous clay mineral assemblage dominated by dis-
ordered, expandable interstratified minerals (1.4–1.7 nm), vermi-
culite, chlorite, illite and kaolinite (Figure 3; Figure S1, File S1).
The minor variation of clay minerals in the different tundra soil hori-
zons might indicative a homogeneous aeolian parent material or the
mixing of soil material by cryoturbation (‘cryo-homogenization’).
While kaolinite is of detrital origin, the slight change from illite
towards vermiculite in topsoils (Figure 3) reflects abundant but
slow chemical weathering in these high-latitude soils (Borden et al.,
2010).

Average OC concentrations in the soils were largest in the organic
topsoil, followed by the subducted topsoil horizons (Ajj/Ojj) where
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Figure 3 X-ray diffractograms of clay fractions from one soil profile under shrubby grass tundra vegetation. Diffractograms of clays from all tundra sites are
provided in File S1. Diagnostic soil horizons and clay sample treatment (MG, Mg2+; MG+GLY, Mg2+/glycol; K, K+; K 550, K+/heating to 550∘C) are given
in the heading. S, smectite; V, vermiculite; C, chlorite; K, kaolinite; I, illite (Mica); Q, quartz. The d-scale is given in Ångstroms.

average values for the three tundra types ranged between 68 and
155 mg OC g−1 soil, and smallest in the mineral subsoil (BCgjj
and Cgjj) and permafrost (Cff) horizons (Schnecker et al., 2014).
Total OC stocks of the soils ranged between 15 and 33 kg m−2 OC
(average 24± 6 kg m−2) within the upper 100 cm, with only slight
differences among the tundra types (Gentsch et al., 2015; Table S1,
File S1). When considering all soil pedons (N = 9), 36± 20% of
the total OC stocks were in the upper permafrost, while 20± 12
and 13± 4% were stored in topsoil (O and A) and subducted
topsoil horizons (Ojj and Ajj), respectively. The large stock of
19± 6 kg m−2 OC in subsoil horizons (82± 27% of the total OC)
highlights the relevance of subsoil environments for storing large
quantities of OM.

Density fractions and mineralogical controls on carbon
accumulation

Density fractionation revealed that 19± 10% of the bulk OC in
mineral soil horizons was present as POM. The largest proportion
of POM-C was found in subducted topsoils as well as permafrost
horizons (Table 3). The fraction of OC bound to minerals (MOM)
accounted for 62± 13% of the bulk OC, with no significant

differences between the soil horizon classes (anova; Table S2,
File S1; mean values Table 3). Despite the good recovery of soil
mass (96± 2%), 19± 14% of the total OC was mobilized during
density fractionation, with the smallest proportions in subducted
topsoil horizons (8± 4%). Whereas 2–13% (0.1–0.4 mg g−1) of the
MoF can be attributed to initial DOC in mineral horizons (Table 3),
most of it results from the SPT-induced desorption of OM from
mineral-organic associations (Gentsch et al., 2015). Nevertheless,
the MOM fraction was the dominant OC pool, holding 54± 16%
of OC in the upper 100 cm of the pedon, with an even larger share
(64± 18%) in subsoil horizons (Table S1, File S1).

Mineral-associated OC was strongly related to the clay content
(R2 = 0.80; P< 0.01) and Alo concentrations (R2 = 0.82; P< 0.01),
as well as to Fep and Alp concentrations (R2 = 0.90 and 0.91,
respectively; P< 0.001). Weaker linear relationships were observed
with Fed (R2 = 0.37; P< 0.01) and Feo concentrations (R2 = 0.60;
P< 0.01). Figure 4 shows that across all pedons the molar concen-
tration of mineral-associated OC plotted against those of Fep +Alp

is a straight line with a slope of 0.0181± 0.0004 (N = 85), which
translates into an overall molar (Fe+Al):C ratio of 0.02. This
result suggests that MOM in the tundra soils is ‘proportionally’
loaded with Fe and Al depending on the amount of OM present,
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Table 3 Organic C and TN concentrations of the bulk soil and OM fractions received from density fractionation

OC / mg g−1 TN / mg g−1 DOC / mg g−1

Bulk POM MOM MoF Bulk POM MOM MoF Bulk

Horizon

N

Bulk

N

Fractions Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Shrubby grass tundra

O 4 nd 206.10 49.39 nd nd nd nd nd nd 9.35 1.03 nd nd nd nd nd nd 1.42 0.89

A 4 4 28.10 29.46 5.29 5.25 17.65 19.85 5.17 4.59 2.05 1.88 0.18 0.20 1.48 1.29 0.52 0.47 0.23 0.14

Ajj/Ojj 8 8 109.87 61.62 48.68 62.20 55.39 19.45 5.79 2.28 6.44 2.58 2.06 2.59 5.05 2.25 0.30 0.17 0.41 0.12

B/C 8 8 10.42 2.53 1.67 0.57 6.80 1.39 1.95 1.66 0.95 0.15 0.06 0.03 1.23 1.11 0.22 0.19 0.08 0.03

Cff 10 10 8.98 1.88 1.90 0.94 5.22 1.15 1.86 1.10 0.96 0.12 0.11 0.06 2.30 2.21 0.19 0.13 0.16 0.08

Shrubby tussock tundra

O 6 nd 262.58 68.12 nd nd nd nd nd nd 11.42 1.80 nd nd nd nd nd nd 1.82 0.95

A 4 3 47.24 51.21 5.74 1.18 12.82 4.47 3.12 2.06 2.84 2.96 0.15 0.05 1.04 0.27 0.28 0.01 0.42 0.19

Ajj/Ojj 6 5 154.87 43.44 62.92 17.96 101.52 27.82 5.87 3.18 8.36 2.29 2.51 0.79 6.11 1.75 0.46 0.27 0.44 0.15

B/C 9 9 16.57 4.97 1.96 0.81 11.62 4.47 3.47 2.21 1.28 0.28 0.05 0.03 0.98 0.26 0.28 0.18 0.10 0.04

Cff 12 11 25.64 24.55 3.07 2.28 11.76 7.11 9.15 21.15 1.64 0.84 0.12 0.11 1.05 0.39 0.36 0.44 0.24 0.15

Shrubby lichen tundra

O 5 nd 257.15 74.38 nd nd nd nd nd nd 10.12 2.34 nd nd nd nd nd nd 2.30 1.50

A 4 4 51.74 54.85 9.76 6.74 30.88 25.59 19.29 20.87 2.33 1.53 0.28 0.22 2.07 1.62 0.38 0.16 0.62 0.58

Ajj/Ojj 12 10 67.59 31.82 12.10 6.56 55.81 22.72 8.80 4.42 4.54 2.04 0.45 0.25 4.06 1.48 0.71 0.42 0.44 0.24

B/C 8 8 12.02 5.98 1.07 0.31 6.08 1.74 4.86 5.66 1.06 0.26 0.04 0.01 0.69 0.13 0.33 0.20 0.08 0.02

Cff 4 4 28.92 26.35 4.98 5.28 17.75 19.32 6.19 1.91 2.05 1.57 0.19 0.23 1.45 1.29 0.41 0.07 0.65 1.07

All land-cover classes combineda

O 15 nd 245.71 66.16 nd nd nd nd nd nd 10.43 1.94 nd nd nd nd nd nd 1.90 0.29

A 12 11 42.36 43.44 7.04 5.18 21.14 19.55 8.79 12.57 2.41 2.03 0.21 0.17 1.57 1.22 0.41 0.30 0.42 0.11

Ajj/Ojj 26 23 100.74 56.07 35.87 42.31 66.05 29.29 7.24 3.73 6.01 2.68 1.46 1.77 4.88 1.94 0.55 0.38 0.43 0.04

B/C 25 25 13.15 5.27 1.58 0.69 8.30 3.83 3.43 3.68 1.11 0.27 0.05 0.03 0.97 0.66 0.29 0.19 0.09 0.01

Cff 26 25 19.74 20.65 2.90 2.67 10.10 9.44 5.62 13.70 1.44 0.88 0.13 0.12 1.61 1.56 0.33 0.34 0.28 0.09

aPublished in Gentsch et al. (2015).
DOC, dissolved OC; POM, particulate organic matter; MOM, mineral-associated organic matter; MoF, mobilizable fraction; SD, standard deviation; N, sample number; nd, not
determined.

irrespective of the soil horizon considered. A linear regression
between the moles of Fep +Alp and the mass of MOM (OC-OM
conversion factor, 1.7) results in a slope of 9× 10−4 ± 2× 10−5 mol
[Fep +Alp] g−1 OM, which is in the reported range of Fe concentra-
tions that can be complexed by humic substances at pH 5–7 (10−3 to
10−4 mol g−1; Tipping et al., 2002). These estimates show that under
the arctic conditions sufficient mineral weathering must take place
to produce dissolved Fe and Al concentrations large enough to sat-
urate the remaining available binding sites of the MOM. Moreover,
the molar (Fep +Alp):C ratio of 0.02 is close to the metal:C ratio
of 0.03–0.05 at which significant precipitation of metal-organic
complexes has been reported (see review by Kleber et al., 2015).
Therefore, apart from adsorption of DOC onto mineral surfaces,
another conceivable pathway in the formation of mineral-organic
associations in permafrost soils involves the formation of Fe and
Al co-precipitates, which represent variable mixtures of insoluble
metal-organic complexes and poorly ordered mineral phases (Kle-
ber et al., 2015).

As a result of the temporal anoxic conditions in the Kolyma low-
land soils and the reductive dissolution of Fe(III) oxides and Fe(III)
in phyllosilicates (Vodyanitskii et al., 2008), Fe2+

aq accumulates in
the active layer as the permafrost table impedes drainage (Alekseev
et al., 2003). Upon aeration, Fe2+ becomes re-oxidized to Fe3+ and
precipitates with dissolved OM as either Fe-organic complexes and

Figure 4 Relationship between the sum of pyrophosphate-extractable Fe
and Al concentrations (Fep +Alp) and the amount of mineral-associated
OC in mineral horizons of the nine soil profiles. The errors of the linear
regression were tested for normality by a Q–Q plot.

or organically loaded Fe oxides such as poorly crystalline Fe phases,
ferrihydrite or lepidocrocite (the latter was described by Alekseev
et al., 2003). The annual freezing in the active layer also forms seg-
regation ice while increasing the absolute solute concentrations in

© 2015 British Society of Soil Science, European Journal of Soil Science
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(a) (b) (c)

(d) (e) (f)

Figure 5 Bulk soil relationships between (a) 𝛿13C and C:N ratios and (b) 𝛿15N and C:N ratios, as well as between (c) the 𝛿13C and 𝛿15N isotopic ratios across
all examined pedons. (d–f) Show the relationship between the 𝛿13C and C:N ratio of mineral-associated (cycles) and particulate OM (stars) under different
tundra vegetation. Note, C:N ratios below about five as observed for some samples at the shrubby grass tundra site (d) imply a contribution from inorganic N.

the pore water. Thus, DOC, Fe and Al concentrations can be such
that they flocculate or co-precipitate (Ostroumov, 2004). Overall,
our data provide evidence that most of the OM in mineral hori-
zons exists in association with clay-sized minerals (mainly phyl-
losilicates and poorly ordered Fe and Al phases), while the cry-
ohydromorphic soil conditions are able to promote the formation of
co-precipitates from OM and hydrolyzable metals. The large con-
tribution of exchangeable multivalent metals and the moderately
acidic conditions further suggest that the clay minerals primarily
hold OM through the formation of cation bridges (Mikutta et al.,
2007).

Isotopic composition of bulk organic matter and density
fractions

There was a general decrease in the C:N ratio of bulk OM from
organic layers to topsoil mineral horizons, subsoil horizons and
to the permafrost (Figure 5; Schnecker et al., 2014), indicating
a preferential loss of carbon relative to nitrogen. The decline of
C:N ratios was accompanied by an enrichment of both 13C and
15N (Figure 5a, b), suggesting an on-going decomposition and
subsequent enrichment of isotopically heavy microbial products
with soil depth. Likewise, Nadelhoffer et al. (1996) observed a
2–5‰ increase in 𝛿15N within the top 20–30 cm of moist sedge
and tussock tundra soils in Alaska. When examining the MOM
and POM fractions individually, the linear relationships between
the C:N ratios and 𝛿13C values persisted but the POM consistently
had more scatter than the MOM (Figure 5d–f). Combining all bulk
samples (including organic layers and mineral horizons; N = 100)

demonstrated a significant linear relationship between 𝛿13C and
𝛿15N with a slope of 1.07± 0.08 (Figure 5c), suggesting that
in the tundra soils studied, C and N transformation processes
are tightly coupled. Although N losses from permafrost-affected
soils are negligible because of poor drainage and efficient N
cycling, N transformation processes (ammonification, nitrification
and denitrification) occur at slow rates (Wild et al., 2013), which is
also indicated by the presence of [NO3 +NH4]-N in our soils (data
not shown). Because nitrification, denitrification and enzymatic
hydrolysis discriminate against 15N by the preferential use of 14N,
the residual OM will become enriched in 15N. Mycorrhizal activity
might also cause N isotope fractionation, but as fungal biomass
at the study sites declines with soil depth (Gittel et al., 2014),
fungal activity cannot explain the increase in 15N with soil depth.
Therefore, it is more reasonable to assume that the declining
dilution with isotopically lighter POM, as well as the slow but
persistent OM transformation over time, caused the enrichment of
13C and 15N in older OM at greater depth (14C data see Figure 6).
As the 𝛿13C values of MOM were significantly larger and C:N ratios
smaller (P< 0.001; N = 84) than for POM, microbial-derived 13C-
and N-enriched compounds provide an important source for the
formation of MOM.

Two soil profiles were investigated for 14C activities of OM
density fractions. The MOM had mean 14C activities ranging
from 88.0 pMC (1060 years BP) to 34.9 pMC (8410 years BP) and
was 150–3000 years older than the respective POM (Figure 6).
Although the soils are characterized by cryogenic activity, the
14C activity of the MOM declined conventionally with soil depth.
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14
C activity / pMC

(a)

(b)

Figure 6 14C activity of mineral-associated (MOM) and particulate OM
(POM) in two soil profiles (profile A (a) and D (b); Table 1) under shrubby
grass and tussock grass vegetation as an approximate function of soil depth.
Analytical errors are smaller than the symbols; one POM fraction in the
lower panel could not be measured because of insufficient amounts.

The presence of younger POM (309 years BP) in the deep Cgjj
horizon (Figure 6, lower panel) resulted from its incorporation from
adjacent subducted topsoil pockets. This suggests that cryogenic
mass exchange transfers younger POM to the subsoil while ‘fresh’
dissolved OM appears not to be leached directly from topsoil into
the subsoil, which would have caused a rejuvenation of the subsoil
MOM. The existing difference in 14C activity between POM and
MOM in most horizons, however, mirrors the stabilization of OM
by the formation of mineral-organic associations.

Chemical composition of OM fractions

The 13C-NMR spectroscopy showed that in comparison with
organic soil layers, both MOM and POM were depleted in
O-/N-alkyl C but enriched in aryl C (Table S3, File S1). Never-
theless, O-/N-alkyl C as contained in polysaccharides constituted
the dominant fraction of MOM, followed by alkyl C and aryl C
(Figure 7). Compared with POM, the MOM fraction was slightly
but significantly depleted in aryl C (P= 0.024; N = 9) but tended
to contain more O-/N-alkyl C (44± 3%), alkyl structures (30± 5%)
and carboxyl/amide C (9± 5%).

An increasing transformation of OM with soil depth was reflected
by the increasing alkyl C:(O-/N-alkyl C) ratio in POM and MOM
in all observed profiles (Table S3, File S1). Together with the nar-
rower C:N ratios and the 13C/15N enrichment with soil depth this
also reflects the ongoing degradation of the POM and contribution

Figure 7 Chemical composition of the organic layer and MOM fractions
in a shrubby grass tundra pedon as revealed by solid-state 13C-NMR
spectroscopy. The following chemical shift regions were used: alkyl C (−10
to 45 ppm), O/N-alkyl C (45–110 ppm), aryl/olefine C (110–160 ppm) and
carbonyl/carboxyl/amide C (160–220 ppm). All NMR data are summarized
in Table S3 of File S1.

of microbial products to the MOM, such as cell wall remains and
lysis products or extracellular polymeric substances. The ratio of
O-alkyl C as derived from C2, C3 and C5 signals of carbohydrates
(70–75 ppm) to the methoxyl C signal of lignin (52–57 ppm) serves
as another indirect proxy of OM decomposition (Bonanomi et al.,
2013). The increase of the (70–75 ppm):(52–57 ppm) ratio with
soil depth (Table S3, File S1) suggests that in comparison to the
organic layers, both POM and MOM were depleted in carbohy-
drates, implying a preferential degradation of carbohydrates once
OM enters the mineral soil, while lignin is selectively preserved.
Under anaerobic conditions lignin is apparently not biodegradable
by fungi or lignin-decomposing Actinobacteria and other bacteria
present in permafrost soil (Gittel et al., 2014) and requires at least
temporarily oxic conditions. Gittel et al. (2014), however, identified
some anaerobic lignin-degrading bacteria in the study soils but their
activity is presumably slow. The greater proportion of aryl compo-
nents in MOM than in the organic topsoil can, in addition to bio-
logical processes, be explained by the retention of lignin-containing
DOC, which forms stronger surface complexes with minerals than
hydrophilic OM rich in carbohydrates and is more readily pre-
cipitated (Kleber et al., 2015). Höfle et al. (2013) also found in
clay fractions from a tundra Gelisol that aryl components became
more enriched in progressively older OM with increasing soil depth
(0–30 cm) than carbohydrates.

We applied XPS as a complementary, non-destructive method,
yielding information about carbon oxidation states at the
outermost particle surfaces. Carbon 1 s spectra (Figure 8) showed
that the outermost MOM was composed of carbons primarily
bonded in aliphatic and aromatic structures (type-I carbon; at
285± 0.1 eV; 52± 8%; N = 9), followed by O–C (and N–C
carbons) mainly located in polysaccharides (type-II carbon; at
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Figure 8 The XPS C1s spectra from the MOM fraction in a shrubby grass
tundra pedon. Spectra are arranged from the top down with increasing soil
depth and include the fitted carbon sub-components, the sum curve and the
underlying measured spectrum (black line). The following carbon species
were distinguished (all sample data summarized in Table S4, File S1):
aliphatic and aromatic carbon (C–C, C=C, C–H), carbon making a single
bond to O (or N) as located primarily in polysaccharides (C–O, C–N),
carbon making two bonds to oxygen (C=O, O–C–O), and carbon making
three bonds to O and N (O–C=O, O=C–N) as present in carboxylic acids
and proteins.

286.5± 0.1 eV; 29± 5%). Carboxyl and amide carbons constituted
about 8± 2% of total C (Table S4, File S1). Particles in subducted
topsoil horizons contained more type-II carbons than those in either
adjacent topsoil or subsoil horizons, suggesting that polysaccha-
rides were more effectively protected against biodegradation in the
subducted topsoils. The ratio of the type-(I) and type-(II) carbons
indicated a similar trend to that observed for the NMR-based
degradation ratios, with less oxidized carbon forms (aromatic and
aliphatic C) increasing in deeper soil horizons (Table S4, File S1).
All chemical characteristics, therefore, suggest that mineral-organic
associations in the deep active layer contain a larger portion of
microbial-derived OM, which agrees with the declining C:N ratios
and increasing 𝛿13C and 𝛿15N bulk values with soil depth.

Potential bioavailability of organic matter fractions

Density fractionation generally affects the integrity of a given sam-
ple as it disperses soil particles, and thereby potentially enhances
the spatial accessibility of OM for microbes, and causes loss of
OC (MoF; Table 3). Because minerals stabilize OM by formation
of chemical bonds between functional groups and the mineral sur-
face (Kleber et al., 2015), OM recovered as MOM must, therefore,
be held by stronger bonds than the MoF. Hence, we can test the
potential bioavailability of the OM associated with minerals by

using the > 1.6-g cm−3 soil fraction in an incubation experiment.
When the different OM fractions, spanning a wide range of chemi-
cal compositions and 14C ages, were exposed to an active microbial
community at 15∘C (approximately the maximum topsoil temper-
ature in the study area) for 90 days under optimal nutrient condi-
tions, roughly 1.5–5% of the initial OC was mineralized. The total
mineralization was significantly larger in mineral topsoil horizons
than in any of the subsoil horizons (anova [1], Tables S5 and S6,
File S1). Because of minor deviations in the subsoil respiration, top-
soil (AB, Figure 9) and subsoil horizons (Ajj, BCg and Cg/Cff,
Figure 9) were clustered as two independent subsets. In topsoil
horizons, the largest OC mineralization was with the POM fraction
(4.4± 0.7%), followed by the bulk soil (3.8± 1.0%) and MOM frac-
tion (3.1± 0.6%), although these differences were not statistically
significant (anova [2], Tables S5 and S6, File S1). In contrast, sig-
nificant differences between treatments were observed in the subsoil
(anova [3], Tables S5 and S6, File S1), with the most mineraliza-
tion occurring for the MOM fraction, followed by POM and bulk
soil (2.5± 0.5, 1.9± 0.4 and 1.6± 0.2%).

The amount of respired carbon corresponds well with the fast
cycling OM fraction as judged from a meta-analysis of long-term
incubation data of circum-arctic soils (Schädel et al., 2013) and was
also comparable to recent results reported for a 98-day biodegrada-
tion experiment with mineral soil horizons from Canadian Cryosols
(Gillespie et al., 2014). We observed a respiration pulse from the
bulk soil at the beginning of the experiment that can be assigned
to an easily available OM fraction that was removed from the OM
fractions during density fractionation. This large initial CO2 flush
reflects the greater bioavailability of the MoF. However, given that
the bulk soils still contained the MoF-OC but the overall extent of
OC mineralization was even less than that of the OM fractions, the
carbon lost during the density fractionation either was not signif-
icantly more bioavailable than the remaining OM or it was well
stabilized by the mineral phase and only became mobilized upon
addition of SPT. The fit of a first-order decay model to CO2 emis-
sion data showed equally valid results statistically as those for the
total mineralization (Figure 10). The POM fractions had the largest
mineralization rates compared with MOM and bulk material in the
topsoil (anova [4], Tables S5 and S6, File S1), while the LSD
test (anova [5], Tables S5 and S6, File S1) indicated significant
differences between all treatments in the subsoil, with the fastest
rates for the MOM fraction, followed by POM and the bulk soil.
The NMR-based O-alkyl C:methoxyl C ratio of the MOM frac-
tions was related to the mineralization rate constant (R2 = 0.37;
P< 0.05; N = 9) and suggests that MOM rich in carbohydrates (top-
soil horizons) decomposed faster than that containing more lignin
compounds in the subsoil.

Implications of the incubation experiment and controlling
factors

Despite the larger accessibility of OM and the optimal temperature
and nutrient conditions in this experiment, the MOM largely
resisted microbial decomposition. The total amount of respired
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Figure 10 Observed first-order decay rate constants from 90-day incuba-
tion experiments for OM fractions and the bulk soil (N equals those in
Figure 9).

OC was in a lower range than that from laboratory incubation
studies with soil heavy density fractions or artificial mineral-organic
associations (Table S7, File S1). Jagadamma et al. (2013) found
only slight differences in the decomposability of POM and MOM
from a Gelisol after 150 days incubation (about 10% of total OC
mineralized), with the MOM fraction being mineralized faster than
the POM fraction. In laboratory incubations, a stabilizing effect

of the mineral phase on mineral-bound OM is often inferred from
decomposition rates that are less than those for the respective
unprotected OM that is not adsorbed or precipitated. For tundra
sites in Alaska, Michaelson et al. (1998) reported that DOC, as
a potential source of MOM, leached from thawing soil cores
(pH 4.6 and 7.3) was primarily composed of polysaccharide-rich
components and bioavailable, losing 34–46% of C in a 14-day
incubation at 4∘C. Hence, DOC from permafrost soils appears
to be much more vulnerable to decomposition than our MOM
fractions. The fact that the O-alkyl C:methoxyl C ratio of MOM
was positively related to the mineralization rate constant agrees
with the view that aromatic-rich dissolved OM is intrinsically more
resistant to biodegradation than carbohydrate-rich OM and also
interacts more strongly with minerals, resulting in less desorption
and, therefore, mineralization (Kleber et al., 2015). Gillespie et al.
(2014) also found a larger mineralization potential for OM from
Cryosol B horizons, which comprised more carbohydrate C relative
to ketone C. However, they suggested that lignin-derived phenolics
likewise represented a labile OM source. The negative relationship
between decomposition rates and the Fep:Feo ratio (R2 = 0.41;
P< 0.01; N = 18) implies that organically complexed Fe rather
than the whole pedogenic Fe pool reduces the bioavailability
of mineral-bound OM, probably by minimizing the solubility in
Fe-OM co-precipitates.
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The extremely slow decomposition of POM in the subsoil is sur-
prising and probably occurs because the easily available C neces-
sary to stimulate microbial breakdown had already been leached
or consumed by the decomposers during its longer residence time
(Figure 6). A lack of easily available C (and N) has been demon-
strated in priming experiments, particularly for the subsoil horizons
(Wild et al., 2014). The poor bioavailability of MOM, which is
comparable to that in other climates (Table S7, File S1), is surpris-
ing given the less optimal soil conditions for the formation of sta-
ble mineral-organic associations in permafrost soils. The pH value
(pH 5–8; Table 2), which is close to the point of zero charge of Fe
and Al oxides (pH 7–9), theoretically diminishes the effective sorp-
tion and stabilization of OM on the surface of these minerals or clay
edges. The aquic conditions (Vodyanitskii et al., 2008) accompa-
nied by reductive dissolution of Fe(III) oxides in permafrost soils
should also not favour the effective stabilization of OM by Fe
oxides. The restricted decomposability of MOM even under opti-
mal conditions, however, in addition explains the formation of large
MOM stocks and small 14C activities (between 0.82 and 0.35 pMC)
in the soil that we studied.

Conclusions

This study confirms that OM in permafrost-affected tundra soils
is not ‘inactivated’ but microbially transformed over thousands of
years under unfavourable conditions, leading to a large fraction
of 13C and 15N-enriched OM associated with minerals and to an
enrichment of alkyl and aromatic compounds with soil depth.
The build-up of the large MOM pool (54± 16% of the total soil
OC) in these permafrost soils is the result of multiple processes,
including the adsorption of DOC or microbial remnants to clay
minerals and Al and Fe oxides (with a stronger emphasis on
Al phases) as well as the co-precipitation of DOC, which is
a yet under-rated mechanism in permafrost soils. Although the
majority of MOM was not readily available under the optimal
temperature and nutrient conditions, it contains a biologically
active OM pool (< 5%) that can be used by microorganisms. The
finding of less bioavailable POM in the subsoil than in the topsoil
is indicative of the limited energy-rich C sources required for
microbial decomposition in deep soil horizons. An increasing input
of easily available OM has been claimed as being responsible for
stimulation of microbial activity in mineral subsoil in a 20-year
soil warming experiment (Sistla et al., 2013) and recent priming
experiments (Wild et al., 2014). For our results, this suggests that
a part of this activity results from the use of mineral-bound OM
under the ‘neutral’ soil conditions. We assume that as well as
freezing and water-logging, stabilization of OM by associations
with minerals is one key mechanism for OM conservation in arctic
permafrost soils, which might become increasingly important with
a future rise in soil temperatures and drier conditions. Given the
abundance of a bioactive OC fraction, future research should not
ignore the function and fate of mineral-organic associations, which
hold the dominating OC pool in mineral horizons of permafrost
soils.

Supporting Information

The following supporting information is available in the online
version of this article:
File S1. Properties and bioavailability of particulate and
mineral-associated organic matter in Arctic permafrost soils,
Lower Kolyma Region, Russia.
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 10 

S 1 Site description 11 

The shrubby grass and tussock tundra were classified as typical tundra according to the 12 

subzone D of the Circumpolar Arctic vegetation map, the shrubby lichen tundra belonged 13 

to the southern subzone E (Walker et al., 2005). The shrubby grass tundra sites were lo-14 

cated at 2−32 m above sea level at slopes of 7−8°. The shrubby tussock tundra sites were 15 

at more gentle slopes (1−3°) and 59−66 m above sea level while the shrubby lichen tun-16 

dra sites were located at higher altitude and on moderate slopes (315−348 m above sea 17 

level, 3−5°). At the study sites, the mean annual temperature ranged from -8° to -12°C 18 

with 115 to 145 days of above-zero temperature, and around 200 to 300 mm annual pre-19 

cipitation, respectively (Weather Server Russia, 2014). All soils developed on loess-like 20 

deposits of both lacustrine-alluvial and aeolian genesis (Vodyanitskii et al., 2008). 21 



2 

S 2 Clay mineral characterization by X-ray diffraction 22 

Smectite was distinguished from vermiculite by expanding in Mg treatments under gycol sal-23 

vation to 17 Å. Kaolinite was identified from the 7 Å peak with heating to 500° C causing 24 

dehydration of the interlayers and the disappearance of the peak. Vermiculite was distin-25 

guished from chlorite by the d-space shift from 14 Å Mg treated to 10 Å K treated, while 26 

chlorite remained at 14 Å. Illite (mica), remained unchanged at 10 Å across all treatments, 27 

and the peak in the Mg treatment provided an estimate for its proportion. The clay fraction 28 

also contained quartz (3.3 Å) and traces of feldspar (3.1 Å).  29 

 30 

Figure S1 X-ray diffractograms of OM- and oxide-free clay fractions (Mg2+/glycol-treated) 31 

from selected soil horizons under different tundra vegetation. Abbreviations: S, smectite; V, 32 

vermiculite; C, chlorite; K, kaolinite; I, illite; Q, quartz. The d-spacing scale is given in 33 

Ångstrom (Å).   34 
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S 3 Organic matter composition prior to  13C-NMR spectroscopy 35 

Prior NMR analyses, hydrofluoric acid (HF) treatment was applied to the MOM fractions and 36 

the organic topsoil (bulk) samples. The 10% HF treatment was used to concentrate OM and to 37 

enhance the signal-to-noise ratio in the spectra by removal of minerals and paramagnetic 38 

compounds. Several studies recommended or used HF as a routine treatment prior to solid-39 

state 13C and 15N NMR on mineral soil samples (Skjemstad et al., 1994; Schmidt et al., 1997; 40 

Kögel-Knabner, 1997; Fontaine et al., 2007). In order to test the effect of HF on OM chemis-41 

try, we analysed two samples without HF treatment: an organic horizon (O bulk) and a MOM 42 

fraction of a topsoil horizon (A MOM; see Figure S2). We did not find significant structural 43 

changes in major functional groups, particularly no decline in O-alkyl C, but a strong im-44 

provement in of the signal-to-noise ratio after HF treatment. Without HF treatment, the aryl-C 45 

and O-alkyl-C peaks remained difficult to quantify because of background noise. Because 46 

XPS (Table S3) yielded similar depth-depending information on the composition of OM 47 

(same trend) without any pre-treatments, this makes us confident that the HF treatment caused 48 

no biased results. 49 



4 

50 

Figure S2 NMR spectra of two topsoil samples prior an51 NMR spectra of two topsoil samples prior and following HF treatment

 

HF treatment. 
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Table S1 Total OC stocks and bulk density with respect to different tundra systems. 52 

Abbreviations: particulate organic matter (POM), mineral-associated organic matter (MOM), 53 

mobilizable fraction (MoF), standard deviation (SD), number of samples (N), not determined 54 

(nd). The detailed calculation method (based on digital mapping of 5-m wide soil profiles) is 55 

reported in Gentsch et al. (2015). 56 

57 
  Bulk density 

/ g cm-3 
OC stocks / kg m-2 

  Bulk POM MOM MoF 

 N Mean SD Mean SD Mean SD Mean SD Mean SD 

shrubby grass tundra (A-C) 
O 4 0.2 0.1 2.7 2.9 nd nd nd nd nd nd 
A 4 1.2 0.3 2.1 0.5 0.4 0.2 1.3 0.4 0.4 0.2 

Ajj/Ojj 8 0.9 0.3 2.8 0.3 1.1 0.5 1.5 0.3 0.1 0.0 
B/C 8 1.4 0.1 5.5 1.3 0.9 0.2 3.5 0.4 1.1 1.1 
Cff 10 1.4 0.0 5.4 0.7 1.1 0.3 3.5 0.1 0.7 0.5 

Total    18.4 3.3 3.5 1.1 9.8 0.2 2.4 1.7 

shrubby tussock tundra (D-F) 
O 6 0.3 0.1 4.7 5.7 nd nd nd nd nd nd 
A 4 1.1 0.3 0.2 0.1 0.1 0.0 0.1 0.1 0.0 0.0 

Ajj/Ojj 6 0.7 0.1 2.7 0.2 1.1 0.1 1.9 0.4 0.0 0.5 
B/C 9 1.5 0.0 8.8 1.0 0.9 0.3 6.0 0.5 1.9 1.4 
Cff 12 1.4 0.2 12.0 4.5 2.2 1.5 8.2 2.9 1.6 0.2 

Total    28.5 6.0 4.3 1.3 16.2 2.1 3.3 1.8 

shrubby lichen tundra (G-I) 
O 5 0.2 0.1 3.7 1.8 nd nd nd nd nd nd 
A 4 1.1 0.6 0.5 0.2 0.2 0.1 0.5 0.2 0.0 0.5 

Ajj/Ojj 12 0.9 0.1 3.7 1.7 0.6 0.3 2.7 0.6 0.4 0.9 
B/C 8 1.5 0.1 8.6 2.0 0.9 0.2 4.5 0.8 3.2 1.6 
Cff 4 1.1 0.4 8.7 7.1 1.5 1.3 5.5 5.0 1.7 0.8 

Total    25.1 7.4 3.1 1.1 13.0 5.2 5.2 1.8 

Total 
O 15 0.2 0.1 3.7 3.4 nd nd nd nd nd nd 
A 12 1.1 0.4 1.0 1.0 0.2 0.2 0.6 0.6 0.1 0.3 

Ajj/Ojj 26 0.8 0.2 3.1 1.0 0.9 0.4 2.0 0.6 0.1 0.6 
B/C 25 1.5 0.1 7.6 2.1 0.9 0.2 4.7 1.2 2.1 1.5 
Cff 26 1.3 0.3 8.7 5.1 1.6 1.1 5.8 3.5 1.3 0.7 

Total    24.0 6.7 3.7 1.1 13.0 4.0 3.6 1.9 



6 

Table S2 Analysis of Variance (ANOVA) on the percentage of HF-OC (mineral-associated 58 

OC; referred to total OC) between soil horizons. No differences were observed between soil 59 

horizon classes across all sampling sites. 60 

Source 
Degrees of 
freedom 

Sum of 
squares 

Mean square F ratio P 

Between 
horizons  

3 407.55 135.85 0.82 0.49 

Within hori-
zons (residu-
als) 

79 13066.45 165.40   

Total 83 333055.71    

 61 

  62 
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Table S3 Isotopic and chemical composition of OM in the bulk soil as well as of the mineral-63 

associated (MOM) and particulate OM (POM) of three soil profiles (profile identifier in 64 

brackets). OC concentrations of fractions refer to the mass of bulk OC (nd, not determined). 65 

     Carbon species revealed by 13C NMR / %   

Horizon Fract.a OC / mg g-1 δ13C / ‰ δ15N / ‰ Alkyl-C O-Alkyl-C Aryl-C 
Carboxyl-/ 
Amide-C 

A:Ob 70-75:52-
57c 

Shrubby grass tundra (A) 

O Bulk 241.5 -28.4 1.23 19.7 60.4 13.9 7.6 0.3 4.3 

AB Bulk 16.8 -26.9 5.06 nd nd nd nd nd nd 

 POM 4.0 -29.4 2.55 22.3 50.9 19.9 8.5 0.4 4.5 

 MOM 10.8 -26.3 12.50 27.9 43.5 16.6 11.8 0.6 3.5 
Ajj (20-
50 cm) 

Bulk 93.5 -27.3 1.77 nd nd nd nd nd nd 

POM 38.1 -28.3 0.50 25.4 47.9 19.2 9.1 0.5 2.6 

 MOM 51.8 -27.3 3.32 30.7 44.7 14.4 10.4 0.7 2.9 

Cgjj Bulk 11.6 -26.5 4.38 nd nd nd nd nd nd 

 POM 2.7 -27.6 2.77 24.9 44.1 24.3 7.0 0.6 1.8 

 MOM 7.1 -26.1 9.87 30.4 45.0 20.1 4.3 0.7 2.0 

Shrubby tussock tundra (D) 

Oe Bulk 315.2 -28.9 1.77 20.1 59.7 12.6 7.6 0.3 4.3 

Oa Bulk 190.6 -27.7 3.22 24.2 60.9 14.2 9.9 0.4 3.4 

A Bulk 18.6 -27.2 4.81 nd nd nd nd nd nd 

 POM 4.4 -29.5 0.85 21.8 54.2 17.4 6.6 0.4 4.4 

 MOM 9.8 -26.8 4.83 26.5 47.2 15.1 10.8 0.6 4.4 
Ajj/Ojj 
(60-65 
cm) 

Bulk 176.2 -27.7 3.34 nd nd nd nd nd nd 

POM 53.1 -28.4 2.63 34.0 47.7 17.2 9.4 0.7 2.8 

MOM 122.9 -27.5 3.36 31.8 43.2 14.1 10.9 0.7 3.2 

BCgjj Bulk 15.4 -27.1 4.21 nd nd nd nd nd nd 

 POM 2.0 -28.4 2.88 29.1 47.2 19.0 6.5 0.6 2.9 

 MOM 11.4 -27.1 4.38 39.2 37.4 13.4 9.8 1.0 2.5 

Shrubby lichen tundra (G) 

Oe Bulk 283.9 -28.2 -0.13 14.2 62.6 13.7 9.4 0.2 4.0 

Oa Bulk 240.0 -27.7 0.38 21.0 58.8 12.0 7.9 0.4 5.9 

AB Bulk 26.5 -26.8 2.83 nd nd nd nd nd nd 

 POM 6.9 -27.5 0.58 19.5 58.4 18.5 3.6 0.3 4.5 

 MOM 14.6 -26.4 3.67 20.7 49.5 18.8 11.1 0.4 4.0 
Ajj (80 

cm) 
Bulk 34.4 -27.7 2.38 nd nd nd nd nd nd 

POM 5.0 -27.5 0.71 37.1 37.0 21.3 4.7 1.0 1.9 

 MOM 25.9 -26.2 3.85 30.7 42.6 17.1 9.7 0.7 2.8 

Cgjj Bulk 11.3 -25.6 3.82 nd nd nd nd nd nd 

 POM 1.6 -27.2 1.38 21.6 26.5 21.7 10.1 0.8 2.0 

 MOM 7.7 -25.5 5.07 29.2 46.7 20.9 3.4 0.6 2.2 

Mean ± SD (A, D, G) 

O Bulk 254.3 ± 47.5 -28.2 ± 0.5 1.3 ± 1.3 19.8 ± 3.6 60.5 ± 1.4 13.3 ± 0.9 8.5 ± 1.1 0.3 ± 0.1 4.4 ± 0.9 

A Bulk 20.6 ± 5.1 -27.0 ± 0.2 4.2 ± 1.2 nd nd nd nd nd nd 

 POM 5.1 ± 1.6 -28.8 ± 1.1 1.3 ± 1.1 21.2 ± 1.5 54.5 ± 3.8 18.6 ± 1.3 6.2 ± 2.5 0.4 ± 0.1 4.5 ± 0.1 

 MOM 11.7 ± 2.5 -26.5 ± 0.2 7.0 ± 4.8 25.0 ± 3.8 46.7 ± 3.0 16.8 ± 1.9 11.2 ± 0.5 0.5 ± 0.1 4.0 ± 0.5 

Ajj/Ojj Bulk 101.4 ± 71.2 -27.6 ± 0.2 2.5 ± 0.8 nd nd nd nd nd nd 

 POM 32.1 ± 24.6 -28.1 ± 0.5 1.3 ± 1.2 32.2 ± 6.1 44.2 ± 6.2 19.2 ± 2.1 7.7 ± 2.6 0.7 ± 0.3 2.4 ± 0.5 

 MOM 66.9 ± 50.2 -27.0 ± 0.7 3.5 ± 0.3 31.1 ± 0.6 43.5 ± 1.1 15.2 ± 1.7 10.3 ± 0.6 0.7 ± 0.0 3.0 ± 0.2 

B/C Bulk 12.8 ± 2.3 -26.4 ± 0.8 4.1 ± 0.3 nd nd nd nd nd nd 

 POM 2.1 ± 0.6 -27.7 ± 0.6 2.3 ± 0.8 25.2 ± 3.8 39.3 ± 11.2 21.7 ± 2.7 7.9 ± 2.0 0.7 ± 0.1 2.2 ± 0.6 

 MOM 8.7 ± 2.3 -26.2 ± 0.8 6.4 ± 3.0 32.9 ± 5.5 43.0 ± 5.0 18.1 ± 4.1 5.8 ± 3.5 0.8 ± 0.2 2.2 ± 0.3 

a  Bulk = soil material sieved to < 2 mm, POM and MOM = particulate and mineral-associated OM, respectively.  66 
b  Alkyl C:(O-/N-alkyl C) ratio. 67 
c  Ratio between NMR signal integrals between 70-75 ppm and 52-57 ppm representing carbohydrates and lignin, 68 

respectively (Bonanomi et al., 2013). 69 

  70 



8 

Table S4 Carbon species (in %) in the surface (top 10 nm) of the mineral-associated fraction 71 

(MOM) as obtained from least square fitting of the C1s peak as measured by X-ray photoelec-72 

tron spectroscopy. For the assignment of carbon species see Material and methods section of 73 

the paper. 74 

 75 

 Tundra type (Profile) Horizon 
C-C, C-H, C=C 

(type I) 
C-O, C-N 
(type II) 

C=O,   
O-C-O O-C=O (I):(II) 

/ % / % / % / % 

Shrubby grass (A) AB 51.0 30.5 7.9 10.3 1.7 

Ajj (20-50 cm) 37.6 35.6 20.1 6.8 1.1 

Cgjj 65.5 20.8 5.9 7.8 3.2 

Mean 51.4 29.0 11.3 8.3 2.0 

Shrubby tussock (D) A 54.0 24.6 10.2 11.2 2.2 

Ajj/Ojj (60-65 cm) 46.2 35.1 13.3 4.8 1.3 

BCgjj 61.1 23.9 6.0 8.9 2.6 

Mean 53.8 27.9 9.8 8.3 2.0 
Shrubby lichen (G) AB 52.6 31.2 7.0 9.2 1.7 

 Ajj (80 cm) 49.5 31.7 14.5 4.4 1.6 

 Cgjj 54.0 28.1 8.1 9.3 1.9 

Mean   52.0 30.3 9.9 7.7 1.7 

 76 
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Table S5 Summary of Analysis of Variance (ANOVA) of incubation experiments between 78 

treatments (Bulk, POM, MOM) and soil horizons (AB, Ajj, BCg, Cg/Cff). Fixed and 79 

randomly used factors are indicated in brackets. The cluster "topsoil" comprises A horizons 80 

while the "subsoil" includes Ajj, B/C , and Cff horizons. Data were log-transformed to 81 

achieve normaly distribution and the untransformed data are presented in Figure 9 and 10. 82 

The numbers in brakets are identifiers for the comparison by least significant difference 83 

(LSD) test as given in Table S7. 84 

 85 

Source Degrees of 
freedom 

Sum of 
squares 

Mean square F ratio P 

[1] ANOVA total respiration, between soil horizons and treatments 
Horizon (fixed) 3 1.16 0.387 48.88 < 0.001 

Residuals 131 1.04 0.008   

Treatments (random) 2 0.50 0.249 31.42 < 0.001 

Residuals 131 1.04 0.008   

[2] ANOVA total respiration, between treatments in topsoils 
Treatment (fixed) 2 0.05 0.026 2.55 0.106 

Residuals 18 0.19 0.010   

Total 21 50.11    

[3] ANOVA total respiration, between treatments in subsoils 
Treatment (fixed) 2 0.71 0.355 67.19 < 0.001 

Residuals 111 0.59 0.005   

Horizon (random) 2 0.09 0.047 8.90 < 0.001 

Residuals 111 0.59 0.005   

[4] ANOVA decay rate (K), between treatments in topsoils 
Treatment (fixed) 2 0.34 0.172 3.26 0.062 

Residuals 18 0.95 0.053   

Total 21 1302.86    

[5] ANOVA decay rate (K), between treatments in subsoils 
Treatment (fixed) 2 4.31 2.155 97.18 < 0.001 

Residuals 111 2.46 0.022   

Horizon (random) 2 0.36 0.180 8.11 0.001 

Residuals 111 2.46 0.022   

  86 
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Table S6 Pairwise comparison between the different treatments (Bulk, POM, MOM) and soil 88 

horizons (AB, Ajj, BCg, Cg/Cff) resulting from least significant difference (LSD) tests 89 

following ANOVA (Table S6). The cluster "topsoil" comprises A horizons while "subsoil" 90 

includes Ajj, B/C , and Cff horizons. Data were log-transformed to achieve normaly 91 

distribution while the untransformed data are presented in Figure 9 and 10. Differences 92 

between treatments and /or horizons were considered significant at P  < 0.05. 93 

Horizon/ Treatment Mean difference  SE LSD (P) 
Y Z Y-Z   

[1] Total respiration, between soil horizons and treatments 
AB Ajj 0.270 0.022 < 0.001 

 BCg 0.221 0.027 < 0.001 
 Cg/Cff 0.193 0.027 < 0.001 

Ajj AB -0.270 0.022 < 0.001 
 BCg -0.048 0.022 0.032 
 Cg/Cff -0.076 0.022 0.001 

BCg AB -0.221 0.027 < 0.001 
 Ajj 0.048 0.022 0.032 
 Cg/Cff -0.028 0.027 0.303 

Cg/Cff AB -0.193 0.027 < 0.001 
 Ajj 0.076 0.022 0.001 
 BCg 0.028 0.027 0.303 

[2] Total respiration, between treatments in topsoils 
Bulk MOM 0.068 0.048 0.175 

 POM -0.078 0.068 0.267 
MOM Bulk -0.068 0.048 0.175 

 POM -0.146 0.068 0.046 
POM Bulk 0.078 0.068 0.267 

 MOM 0.146 0.068 0.046 

[3] Total respiration, between treatments in subsoils 
Bulk MOM -0.178 0.015 < 0.001 

 POM -0.070 0.019 < 0.001 
MOM Bulk 0.178 0.015 < 0.001 

 POM 0.108 0.019 < 0.001 
POM Bulk 0.070 0.019 < 0.001 

 MOM -0.108 0.019 < 0.001 

[4] Decay rate (K), between treatments in topsoils 
Bulk MOM 0.041 0.108 0.707 

 POM -0.341 0.153 0.039 
MOM Bulk -0.041 0.108 0.707 

 POM -0.382 0.153 0.022 
POM Bulk 0.341 0.153 0.039 

 MOM 0.382 0.153 0.022 

[5] Decay rate (K), between treatments in subsoils 
Bulk MOM -0.439 0.032 < 0.001 

 POM -0.190 0.038 < 0.001 
MOM Bulk 0.439 0.032 < 0.001 

 POM 0.249 0.038 < 0.001 
POM Bulk 0.190 0.038 < 0.001 

 MOM -0.249 0.038 < 0.001 

  94 
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Abstract 

Climate change in arctic ecosystems fosters permafrost thaw and massive amounts of ancient 

soil organic carbon (OC) likely become subject to microbial breakdown. However, also in 

permafrost soils, parts of the organic matter (OM) may be associated with minerals and by 

thus protected against rapid decomposition. This study investigates the effects of 

temperature and mineral-organic associations on the potential OC mineralisation of 120 soil 

samples from 16 cryoturbated permafrost soil profiles across the Siberian Arctic. The 

samples were taken from five major soil horizons including the upper permafrost. The 

mineral-associated OM was separated as heavy fraction (HF) by density fractionation and 

with 55% (11.1 ± 0.9 kg m–2) represented the dominant OC fraction in the soils. A laboratory 

incubation of the bulk soil and the HF material at 5 and 15°C revealed the largest amounts 

of bioavailable OC in the topsoil and in permafrost horizons. The average contribution of 

the HF to the total OC mineralisation (lower and upper 95% confidence interval in brackets) 

was 70% (61, 79) regardless to depth of the soil horizon or temperature. Radiocarbon 

measurements in the bulk and HF samples and their CO2 respiratory equivalents indicated 

similar 14C signature between the SOM source and their respiration products in the topsoil. 

All subsoil horizons, however, revealed decomposition of more recently fixed carbon pools 

at the end of the incubation. Those differences were largest in the permafrost (up to 26 ka) 

and suggest different pools of mineral associated OM with different bioavailability. 

Temperature sensitivity, expressed as Q10 values, was higher for the HF and decreased 

constantly from organic topsoil towards the permafrost (from 2.5 to 1.5). Linear mixed 

effects models (LMM) indicated limited accessibility of decomposers to OC and nutrient 
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sources by significant reduction of OC mineralization as the effect of association with clay 

sized minerals and complexation with Fe or Al. The microbial biomass (measured by 

chloroform fumigation extraction) only showed significant positive effects on OC 

mineralisation in organic topsoil horizons. The results highlight the importance of OM 

within mineral-organic associations as the largest OC pool in mineral permafrost soils. 

Despite that changing abiotic conditions towards better aeration will lead to higher CO2 

release from permafrost soils, we found evidence that the response of OC mineralisation to 

higher temperatures in cryoturbated permafrost soils can be attenuated by mineral-organic 

associations.  

1  Introduction  

Decomposition of soil organic matter (SOM) depends on the soil environmental conditions 

and the accessibility of organic compounds to the decomposer community. In arctic 

permafrost soils, low temperatures and high moisture appeared as principle factors 

mitigating biodegradation of OM (Wild et al. 2014; Schnecker et al. 2014) and are 

responsible for the accumulation of large organic carbon (OC) stocks in the soils. Increasing 

active layer depth and deeper drainage, as predicted by future climate scenarios (Sushama et 

al. 2007; Schaefer et al. 2011; Harden et al. 2012; IPCC 2013), will likely change water and 

temperature gradients as well as oxygen availability in permafrost soils, enabling favourable 

conditions for a broader specified microbial community (Gittel et al. 2014). Changing 

climate, however, will not only affect the abiotic soil conditions, but also the 

physicochemical properties such as soil structure, adsorption-desorption processes, or 

nutrient availability. Understanding the temperature response on OM turnover is thus vital 

to understand soil OC dynamics in high latitude soils (Schuur et al. 2015). 

The decomposability of SOM, in terms of the bioavailability of organic molecules and 

nutrients to the metabolism of decomposers, serves as an index for the SOM quality (Dungait 

et al. 2012). Since SOM is composed of functionality different fractions, the bioavailability 

depends on their intrinsic properties. Though soil OM represents a continuum with respect 

to its turnover, separation into functionally reasonable fractions, e.g., by separation of 

particulate OM (e.g. plant residues) from mineral-associated OM by physical fractionation 

has provided much insight in the stabilization of OM (Kögel-Knabner et al. 2008). 

Particulate OM (in the following defined as light fraction, LF < 1.6 g cm–3) traditionally 

represents the faster cycling OC. Retardation of LF decomposition arises from occlusion in 
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soil aggregates, compounds that inhibit enzyme activity (e.g. tannins), or the lack of 

specialized decomposer organisms. Longer turnover times and larger 14C ages have been 

reported from OM associated with pedogenic minerals or metal ions such as phylosilicates 

or Fe and Al oxides (Kögel-Knabner et al. 2008; Schrumpf et al. 2013; Herold et al. 2014). 

Strong bonds, as effect of OM sorption to mineral surfaces and/or precipitation of mineral-

organic complexes, limit the microbial access to the carbon source (Mikutta et al. 2007). The 

proportion of mineral bound OC with delayed turnover depends on the sorption capacity of 

the mineral phase, the reactivity of the SOM and the surface loading, regulated by the OC 

input (Kaiser and Guggenberger 2003). The LF is mostly restricted to topsoil horizons (O, 

A) in temperate environments, while the relative proportion of mineral bound OC as well as 

the strength of bonding increases with soil depth (Kaiser and Guggenberger 2003; Kögel-

Knabner et al. 2008). Vertical transport of dissolved OC (DOC) and products of microbial 

resynthesis are the principle source for mineral-organic associations in the subsoil (Kaiser 

and Guggenberger 2000; Rumpel and Kögel-Knabner 2011). In permafrost soils, however, 

cryoturbation (the cryogenic mass exchange between soil horizons) transfers LF materials 

towards the subsoil were it can be incorporated to the permafrost and contributes to about 

20% of the subsoil OC storage (Gentsch et al. 2015a). Cryogenic migration delivers high 

DOC input to the subsoil and successively increase the OC storage in mineral-organic 

associations by the formation of colloid-complexes and precipitates (Ostroumov et al. 2001; 

Gundelwein et al. 2007). The assemblage of pedogenic minerals in permafrost soils express 

the current geochemical conditions (low temperature, hydromorphism, reducing conditions) 

and emphasize soil development on a low level (Alekseev et al. 2003; Borden et al. 2010). 

However, already small changes in redox conditions, and soil pH have direct influence on 

the mineralogical assemblage (Borden et al. 2010) and therefore on the type of mineral-

organic interactions.  

Cryogenic processes are unique features in permafrost environments and transferring high 

amounts of OC towards the subsoil (~ 80% of the total OC storage within the upper first 

meter; Gentsch et al., 2015). Despite this, information on the temperature sensitivity of deep 

SOM and its different fractions from permafrost soils are sparse. Only few studies (Dutta et 

al. 2006; Karhu et al. 2010) have addressed temperature sensitivity of OC turnover in 

mineralization experiments from soils of permafrost environments so far, and those focused 

on the topsoil horizons (maximum 40 cm depth). This study fills a research gap by 

addressing the urgent demand for experimental studies of permafrost SOM decomposition 

from remote sites, recently highlighted by Schuur et al. (2015). 
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The first aim of this study is to investigate the influence of temperature on OC mineralization 

within all major soil horizons including the upper permafrost. Further, it has been suggested 

that mineral organic associations in permafrost soils are less important for OM stabilization 

(Höfle et al. 2013; Ping et al. 2014). Thus, the second aim is to test the bioavailability of 

mineral-associated OC under 5 and 15°C. For this purpose, the density separated mineral-

associated OM (defined in the following as heavy fraction, HF > 1.6 g cm–3) and bulk soil 

material from five soil horizons of 24 soil profiles across the Siberian Arctic were incubated 

to determine the temperature response on the natural OC mineralization under optimal 

moisture conditions. Determination of the relative 14C activity from soil samples and their 

respired CO2 was used, to distinguish different pools during OC mineralization. We used 

statistic models to evaluate the principle factors controlling OC mineralization in different 

soil horizons from organic and mineral parameters under temperature control. We 

hypothesize that (i) the mineral-organic associations constrain the accessibility of 

decomposers to OC sources and (ii) subsoil OC turnover is stronger temperature sensitive 

than topsoil decomposition. 

2  Materials and methods  

2.1 Field sites and basic soil properties  

Soil samples were collected from four Tundra sites on continuous permafrost in the east, 

central and west Siberian Arctic (Fig. 1; Tazovskiy, TZ; Ari-Mas, AM; Logata, LG; 

Cherskiy, CH). Characteristic to all sampling sites was a landscape with rolling hills and 

gentle slopes. For a detailed description of the sampling sites and the sampling design see 

Gentsch et al. (2015a). Briefly, five meter wide soil pits were excavated to the permafrost 

table and samples from all designated soil horizons were taken across the whole profile. 

Permafrost samples were cored from the upper 30-40 cm. Living roots were carefully 

removed and the air dried samples were passed through a 2 mm sieve. Soil diagnostic 

horizons according to Soil Taxonomy (Soil Survey Staff 2010) were clustered to the 

following five major groups: organic topsoil horizons (O), mineral topsoil horizons (A), 

cryoturbated OM-rich pockets in the subsoil (Ajj, Ojj, hereafter subducted topsoil), mineral 

subsoil horizons (BCg, BCgjj, Cgjj, Cg, hereafter summarized as B/C), and permafrost 

horizons (Cff). Mineral subsoil and permafrost horizons, unless otherwise defined, will be 

commonly discussed as “subsoil” in the following. 

Soil pH was measured in water extracts (soil water ratio 1:2.5) and soil texture was 
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determined by sive-pipett method after OM oxidation and dispersion (DIN ISO 11277 2002). 

Waterholding capacity (WHC) was measured according to (Schinner et al. 1993) with 

modifications of sampling weight (10 g DW) and drainage time (24 h). Iron and Al were 

extracted from dried soil samples using selective extraction standard methods for sodium 

dithionite-citratebicarbonate, acid-ammonium oxalate (Carter and Gregorich 2008) and 

sodium pyrophosphate (modified according to Mikutta et al., 2014. The extracts give 

estimates for the total amount of pedogenic Fe (Fed), poorly crystalline or short ranged 

ordered forms (Feo, Alo) and organically complexed Fe and Al (Fep, Alp). For a detailed 

description of methods see Gentsch et al. (2015a). 

Physical fractionation of the bulk soil samples by density (method according to Golchin et 

al. 1994 modified in Gentsch et al. 2015a) released two different OM fractions by floating 

the sample in sodium polytungstate (density cut of 1.6 g cm–3) and destroying soil aggregates 

with sonication (60 J ml–1). The obtained light fraction (LF, < 1.6 g cm–3) covers mostly 

particulate OM (e.g. fine roots, wood, bark, charcoal, and litter fragments) whereas the heavy 

fraction (HF, > 1.6 g cm–3) represents the mineral associated OM (Cerli et al. 2012). Prior to 

total OC and total nitrogen (TN) elemental analysis, inorganic C was removed by 

hydrochlorid acid fumigation (Harris et al. 2001). All bulk soil samples as well as physical 

soil fractions were measured for OC and TN contents as well as for the δ13C ratios in 

duplicates using an Elementar IsoPrime 100 IRMS (IsoPrime Ltd., Cheadle Hulme, UK) 

coupled to an Elementar vario MICRO cube EA C/N analyzer (Elementar Analysensysteme 

GmbH, Hanau, Germany). Isotope ratios are expressed in the delta notation relative to the 

Vienna Pee Dee Belemnite standard (Hut 1987). 

2.2 Incubation and assessment of temperature sensitivity 

Incubation experiments were performed in the laboratory with bulk soil samples and their 

respective HF. All samples were adjusted to 60% water holding capacity (WHC; Howard 

and Howard 1993). Since the HF comprised the > 80% and the LF cover only < 5% of the 

total dry weight we were not able to extract a suitable amount for LF incubation from the 

limited amount of sample. From each site (TZ, AM, LG, CH) six profiles and 5 types of 

horizons per pit (O, A, Ajj, B/C, Cff; reflecting incrementing depth categories) were chosen 

for the bulk soil incubation (n = 120). For the HF, samples from four mineral horizons (A, 

Ajj, B/C, Cff) and tree profiles (maximum handling capacity) per site were chosen (n = 48). 

Bulk and HF samples were incubated at constant 5 and 15°C (total n = 336) for 175 days in 

the dark. In the following, the term treatments refers to specific fractions (bulk or HF) and 
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temperatures (5 or 15°C).  

Ten grams of material from mineral horizons and 5 g for organic horizons were weight to 

120 ml flasks and adjusted to 60% WHC. The flasks were plugged by polyethylene wool to 

keep ambient conditions and minimize water loss. The moisture level was maintained 

gravimetrically, replacing the loss by ultrapure water weekly. A preliminary incubation 

experiment (14 days at 15°C) was conducted to test the restoration of the microbial activity 

in the bulk soil and the effect of density fractionation on microbial diversity in the HF. The 

preincubation (see supporting information) revealed that only archaea (in general of very 

low abundance [< 0.3%] of rRNA gene copie numbers in the samples) were affected by the 

fractionation treatments. Bacteria and fungi (~30% and 70% of the initial microbial biomass) 

were restored properly. Hence, no inoculum was added and the microbial activity was 

reactivated by pre-incubating all samples for 14 days starting at 15°C. Further, (Gentsch et 

al. 2015b) ruled out toxic effects by sodium polytungsten residues (tungsten present at < 1 

atom% on mineral surfaces based on XPS) in the HF of our samples. The lower temperature 

treatment was set to 5°C at day 7 of the pre-incubation. Gas sampling started after pre-

incubation (day 0) and continued on day 7, 14, 21, 28, 42, 56, 84, 112 and 175. Prior to gas 

flux sampling, the flasks were crimped with hollow stoppers (IVA, Meerbusch, Germany) 

and flushed with synthetic air (20% O2, 80% N2) air until the headspace was replaced 

minimum tree times. Headspace samples were taken by rubber tight syringes 24 h after 

closing and injected to 20 ml pre-evacuated exetainers. The proper closing time was tested 

before to avoid concentrations causing inhibiting effects on microorganisms and 

concentrations below the detection limit. The CO2 concentrations were measured by a gas 

chromatograph, equipped with an electron capture detector (Shimadzu GC 2014, Kyoto, 

Japan) and corrected for the dissociated CO2 in the soil solution according to (Sparling and 

West 1990). The CO2 evolution was expressed per gram of the initial soil OC (µg per g soil 

OC per day) and the cumulative OC release was fitted to a first order decay function (Eqn. 

1)  

 �(�) = �(�) × �
���       (1) 

were C(0) is the pre-incubation OC concentration of the sample (µg OC), k the decay rate 

constant and C(t) the difference between C(0) and cumulative amount of respired CO2-OC at 

time t. The temperature dependence of OC mineralization was calculated as Q10 (Lloyd and 

Taylor 1994; Kirschbaum 1995) by Eqn. 2, from the decay rate constants at 5 and 15°C (see 

table S1). 
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Cumulative OC mineralization (OC mineralization) over the incubation period was 

calculated as sum of the daily CO2-C evolution. The days between the individual 

measurement points was interpolated, applying a cubic spline function on the measured CO2-

C release rates (in µg g-1 OC-1 day-1). The proportion of the HF to total OC mineralization 

was expressed as percentage of the respective bulk sample. 

2.3 14C analysis  

Radiocarbon contents (14C) in the bulk soil and the HF as well as of CO2 evolved at 15°C 

incubation were analyzed from four profiles at two sites (AM, LG). The headspace CO2 

production was collected between the incubation days 144 and 174 in order to obtain at least 

0.4 mg of carbon for the measurements. Solid samples (free of inorganic carbon) were 

combusted in an elemental analyzer and measured for 13C by IRMS. The evolved CO2 was 

purified, reduced to graphite over an iron/silver catalyst and pressed into targets. Gas 

samples were separated from other gasses in a cryogenic CO2 trap and treated like the CO2 

from solid samples above. The 14C content was analyzed by accelerator mass spectrometry 

(HVEE, Amersfoort, The Netherlands) at Jena radiocarbon laboratory, Germany. In detail 

description of the sample preparation was reported by Steinhof et al. (2004) and the data 

were analysed according to Steinhof (2013) and expressed as percent modern carbon (pMC; 

100 pMC = 1950 AD; Stuiver and Polach 1977). Ages were calibrated by OxCal 4.2 

(Ramsey 2014) with the calibration curves IntCal13 for pMC < 100 (Reimer et al. 2013) and 

Bomb13NH2 for pMC > 100 (Hua et al. 2013). 

2.4 Post incubation measurements  

Microbial biomass carbon (Cmic) was determined by the chloroform fumigation-extraction 

method (CFE) following the protocols in Brookes et al. (1985) and Sparling et al. (1990). 

Subsets of samples were incubated in a desiccator for 24h under chloroform atmosphere in 

the dark. Extracts in a 0.5 M K2SO4 solution (soil:solution ratio 1:10) with and without 

fumigation with ethanol-free chloroform were filtered through ash free filters (Sartorius 

Stedim, grade 389) and measured for OC and TN (VarioTOCcube, Elementar, Hanau, 

Germany). The chloroform labile C and N is proportional to the microbial biomass and Cmic 

was calculated as difference between fumigated and non-fumigated samples (Whittinghill 

and Hobbie 2012). Inorganic N (Nmin) was measured photometrically (SAN-plus, Skalar 

Analytical B.V., Breda, The Netherlands) as sum of NO3
- and NH4

+ from the same extracts 
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of non-fumigated samples. 

2.5 Data analysis 

All statistical analysis were performed with R 3.1.3 (R Core Team 2015) and graphics were 

built by the ggplot2 package (Wickham 2009). The effect of incubation treatments on total 

OC mineralization was analyzed by linear mixed-effects modeling (LMM), where 

temperature and soil horizon were used as fixed effects (lmer, R package lme4: Bates et al., 

2014). We tested various models where sites, horizons, fraction and/or sample numbers were 

set as random effects and allowed to interact with temperature effects. Their residuals were 

checked for normal distribution and the data were log transformed when needed. The model 

that fitted the OC mineralization data best was selected by the Akaike information criterion 

(AIC). Linear contrasts between the predictions (differences between treatments within the 

horizons) were tested based on least-squares means obtained from the fitted model to the 

factor combinations (R package lsmean: Lenth and Hervé, 2015) followed by comparison 

using approximative t-statistics (supplementary Table S2). Post incubation measurements 

(Cmic, Nmin) were analyzed in with the same approach as described before.  

We hypothesized, that in each horizon cluster distinct soil parameters may have different 

impact on OC mineralization. For example, in our prior investigation (Gentsch et al. 2015a), 

we found that the storage of OC in mineral soil horizons is strongly controlled by 

mineralorganic interactions, but the impact of specific mineral compounds (e.g. clay, silt, 

Fe, Al) on the OC storage depended on the type of horizon. Therefore, we decided to model 

the influence of various soil parameters on OC mineralization by applying five LMM’s with 

respect to the horizon clusters (O, A, Ajj, BC, Cff). At the first step, we explored the 

predictor variables for multicollinearity by running principle component analysis (PCA) on 

the correlation matrix of the predictor variables. Additionally, we applied a simple linear 

model and excluded redundant predictors, which is based on high variance inflation factors 

(VIF). In the next step, we applied a LMM (lmer) on OC mineralization with the categorical 

predictors temperature (5 and 15°C) and type of sample (bulk, HF) as fixed factors. At the 

same time, we allow their intercepts and/or slopes to vary between sampling sites 

(temperature and fraction as random effects). To find the optimal random effects structure, 

we tested more complex models to simpler models and the best fit (based on Akaikes 

information criterion with small sample correction; AICc) was extended by the numeric 

predictor variables of interest. The following numeric predictors were included and tested 
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for effects on OC mineralization: Cmic, Nmin, pH, clay, Feo, Fep, and C/N. Highly right-

skewed variables were log-transformed. The improvement of the models after inclusion of 

numeric variables were tested by analysis of variance (ANOVA) and AICc. Despite low VIF 

values, multicollinearity between clay, pH, Feo, Fep, and OC interfered the interpretation of 

the results in some models. In those cases, the non-interfering variables were set as null-

model (variables were held constant), while the multicollinear variables were tested 

individually in the model. Additionally, we tested interactions between variables (e.g. Fep : 

pH). The final models (Table S3) included only predictors that do not show clear 

multicollinearity. Variables with no significant influence on OC mineralization, and were 

collinear to other variables, or did not improve the model significantly were excluded. The 

significance of each predictor independent from the position effect in the model was tested 

by type I and type III ANOVA (R package lmerTest; Kuznetsova et al., 2015). In order to 

visualize the model results in a comprehensive graph, we summarized the p-value from the 

LMM’s of all explored predictors. The overall goodness of fit was assessed by a simple 

linear regression between the model results to the observed values and r² was obtained 

according to Nakagawa and Schielzeth (2013). 

Analysis of variance (ANOVA) was applied on basic soil parameters and groups were 

compared by Tukey’s HSD. In the following the term ‘significant’ is only used if p < 0.05 

and mean values were given with standard error (± SE) or confidence intervals (lower CI, 

upper CI). 

  

3  Results  

3.1 Soil parameters  

All soils were classified as Aquiturbel (Soil Survey Staff 2014) or Turbic Cryosols (IUSS 

Working Group WRB 2014), displaying strong evidence of cryoturbation and aquic 

conditions in the active layer during the thawing period. Soil pH increased from slightly acid 

in the topsoil to moderately alkaline in the permafrost (supplementary Table 1). Soil texture 

classes were silty clay loam or silt loam in TZ, LG and CH and sandy loam and loam in AM 

(Table 1). Total pedogenic Fe and Al increased in the order AM > TZ > LG > CH but did 

not change significantly across horizons (two-way ANOVA, F(3, 79) = 46, p(site) < 0.001; F(3,79) 

= 0.2, p(horizon) = 0.88) with the larger proportion of poorly crystalline (short range ordered) 

Fe minerals (Feo). The amount of organically complexed Fe (Fep) varied between sites and 
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horizons (two-way ANOVA, F(9, 79) = 46, p(site*horizon) < 0.05) and higher values were found 

in the CH, LG soils compared to AM and TZ. The highest amounts of organically complexed 

Fe and Al were found in subducted topsoil horizon exceeding those of the surrounding 

mineral horizons in average by a factor of 3. Concurrently, the OC and TN content in the 

subducted topsoil were up to 3 times higher than in the surrounding mineral subsoil (Table 

1). The metal to carbon ratio (molar (Fep+Alp):OC-HF ratio) was in a range between 0.01 to 

0.5 with an average of 0.03 and was significantly different in topsoil and subducted topsoil 

compared to mineral subsoil and the permafrost.(Fig. S7). The OC and TN concentrations 

increased towards the permafrost, except the TZ soils with their seasonally deeper active 

layer and less strong evidence of cryogenic processes. High proportions of LF OC were 

found in subducted topsoil and permafrost horizons (again TZ soils as an exception) but the 

larger proportion of OC and TN (HF OC 66 ± 2%; HF TN 84 ± 4%) was associated with 

minerals. The total soil OC storage within the upper first soil meter (calculations according 

to Gentsch et al. 2015a), varied from 6.5 kg m–2 in TZ up to 36.4 kg m–2 in LG. From the 

average OC storage of 20.2 ± 1.5 kg m–2, we found 18% (2.5 ± 0.5 kg m–2) that was stored 

in subducted topsoil materials and 34% (8.1 ± 1.2 kg m–2) in the permafrost (except TZ). 

Organic horizons store 13% (2.6 ± 0.5 kg m–2) of the total OC in the upper first meter, 

whereas the LF and HF OC contribute with 18% and 55% (3.6 ± 0.4 and 11.1 ± 0.9 kg m–2) 

in mineral horizons. 

3.2 OC mineralization and temperature response  

The CO2 production rates from the bulk soil were highest at beginning of the measurements 

(day 0) and thereafter decreased until the end of the experiment (Fig S3). The lag time (time 

from the start of the experiment until the maximum respiration) was 5 to 7 days longer for 

the HF compared to the bulk samples. As we express cumulative OC mineralization per gram 

of soil OC, this metric rules out the different scales of OC concentrations but emphasizes 

the differences in OC quality (Lee et al. 2012). After 175 days of incubation, the range of 

total OC mineralization was 1.5 - 178.8 mg C g-1 OC-1 (Fig 2). Total OC mineralization 

followed a U-shape distribution with soil depth, being highest in O and Cff horizons 

followed by A and B/C horizons and lowest in Ajj horizons. Total OC mineralization did 

not deviate significantly across all sampling sites in topsoil (O and A) and subducted topsoil 

(Table S3). Significant larger OC mineralization was observed in B/C samples from TZ and 

in permafrost samples from TZ and CH. The comparison of the different treatments by LMM 



108  

(summarized in Fig. 2 right panel) showed significant differences between bulk and HF at 

the 5°C treatment (except for the permafrost) but not for the 15°C approach. The proportion 

of the HF to the total OC mineralization was 70.3% (61.3, 79.3) with no significant 

difference between soil horizons or temperature treatments (Fig S4). The average Q10 

tended to be higher for the HF compared to the bulk soil across all horizons (Fig. 3), but 

showed statistical significance (LMM, p = 0.03) in subducted topsoil only. For the bulk and 

the HF treatment, the Q10 decreased gradually from the topsoil (2.4 ± 0.1 and 2.9 ± 0.5) 

towards the permafrost (1.4 ± 0.1 and 1.5 ± 0.2).   

3.3 Microbial biomass C and mineral N  

The Cmic at the end of the incubation (Fig 4) was largest in organic topsoil samples and 

decreased in the order O > A = Ajj > B/C = Cff. Multiple comparisons by LMM’s indicated 

significantly larger Cmic in the 15°C treatments compared to the 5°C treatments across all 

soil horizons (Table S6). Similarly, Cmic was approximately twice the amount in bulk soil 

samples compared to the HF (Table S6). A strong positive linear relationship (justified by 

the AIC) was found between Cmic and OC concentration in the bulk samples (Fig. S5, upper 

panel). Such a trend was weaker but also highly significant in the HF (Fig. S5, lower panel). 

The Nmin decreased significantly from the topsoil towards the subsoil samples and LMM 

comparison indicated site specific increase in the order LG > AM > CH > TZ (supplementary 

Table 2). 

3.4 Radiocarbon  

The organic topsoil horizons had a modern 14C signature (>115 pMC), suggesting the OM 

accumulated since the mid of 1980’s (Fig 6). Subducted topsoil showed high 14C signals (78 

to 96 pMC) in comparison to the surrounding soil material (21 to 68 pMC), suggesting strong 

cryogenic activity during the last 2 ka. The lowest 14C activity was found in the permafrost 

of LG samples (5 to14 pMC) and translated into 14C ages between 19 to 28 ka BP. Except 

of four samples, lower 14C concentrations were found in the HF compared to the bulk soil. 

In these four samples, the high proportions of LF-OC (72% in Ajj, 20% in B/C, and 44% in 

Cff) were measured, with apparently lower 14C activity than the HF. The 14C in CO2 released 

during the final 30 days of incubation from topsoil and subducted topsoil horizons were 

slightly higher (4-5 pMC) than that of the solid OM but generally followed the signal of the 

solid samples. The almost equal 14C values among the solid-phase and their CO2 response 

from O-horizons signalizing turnover of recent OM. Except of one sample, the 14C activity 
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in the CO2 from subsoil samples (B/C, Cff) was between 55 to 77 pMC higher than the 

signals from the solid samples. 

4  Discussion  

Permafrost environments contain unique soil systems where slow degradation of primary 

OM residues and unfavourable abiotic conditions results in accumulation of high stocks of 

ancient OC (Hugelius et al. 2014; Tarnocai et al. 2009). The velocity of the incorporation in 

frozen horizons and the residence time in the active layer are driven by cryogenic processes 

and are crucial for the decomposition stage of the buried OM. There are a number of studies, 

showing that in arctic landscapes the preserved SOM can be enriched by low molecular 

weight, highly labile substances (Xu et al. 2009; Waldrop et al. 2010; Mueller et al. 2015), 

readily available for microbial degradation (Vonk et al. 2013; Mann et al. 2015). 

We compared the potential bioavailability of SOM from five major genetic horizons of 

permafrost-affected soils during laboratory incubation. The results showed that permafrost 

horizons have similar or partially even higher OC mineralization rates as organic topsoil 

horizons. Lee et al. (2012) reported similar observations from arctic soils and suggested a 

very high availability of the OC sources in the permafrost. By comparison to organic and 

mineral topsoil, the total OC release in subducted topsoil was between 2 to 4 and 1 to 3 times 

of magnitude lower and quite constant across the sampling sites. This indicates reduced 

availability of OC sources from subducted topsoil to microbial metabolism. The key factor 

for OM turnover in soils is the accessibility of organic substrates to microorganisms and 

their release of extracellular enzymes (Dungait et al. 2012). The accessibility, however, 

depends on a complex interaction of the biotic and abiotic soil environment, the nutrient 

availability, and the composition and reactivity of the OM with mineral soil constituents 

(Schmidt et al. 2011). Selective enrichment of complex compounds, often served as 

explanation for reduced OC mineralization with soil depth. The OM in the subsoil horizons 

of the investigated profile was subject of substantial transformation processes. 

Stoichiometric requirements of microbial activity reduce the OC concentrations of the SOM 

disproportionally compared to the topsoil, which was indexed by decreasing C/N and 

increasing δ13C ratios. Depletion of energy rich OC species (e.g. depletion of carbohydrates) 

was indexed from the CH sites and microbial resynthesized OM increased in proportion from 

the organic topsoil towards the subsoil (Gentsch et al., 2015b, Dao et al., in preparation). 

However, there was no difference in OM compound chemistry between mineral topsoil and 
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subducted topsoil. Therefore, substrate complexity (i.e. carbon limitation) can hardly explain 

the different OM mineralization pattern between the individual soil horizons by itself. Other 

parameters must limit the OM turnover. 

The Cmic was not different between mineral topsoil and subducted topsoil. Obviously, the 

so-called birch-effect (impulse of microbial activity following rewetting) during the 

preincubation likely provided sufficient nutrients to restore the microbial biomass to a 

similar level (Borken and Matzner 2009). After the assimilation of the readily available 

compounds (necromass and osmoregulatory substances) the activity, i.e. CO2 release, of 

microorganisms attenuated in the subducted topsoil. The first step of OM degradation 

requires depolymerization by extracellular enzymes secreted by microorganisms. Production 

of enzymes is an energy and especially N intensive process (Allison and Vitousek 2005). 

Organic C mineralization in subducted topsoil was found to depend on the allochthonous 

nutrients and solutes from the topsoil (Čapek et al. 2015). During our incubation the link 

between topsoil and subsoil was broken which likely influenced nutrient availability. In 

parallel incubation Wild et al. (in preparation) simulated allochthonous supply by the 

addition of C and N sources (see also Wild et al. 2014). Positive priming was found after the 

addition of cellulose and protein to the samples with a stronger response to protein, 

indicating primarily N limitation. Moreover, our models (Fig 5) indicated reduced OC 

mineralization with higher substrate C/N ratios in all subsoil horizons. This might suggest 

that decomposers reduce their relative investment to OC mineralization if the nutrient supply 

is too low to sustain their stoichiometric C to N requirements. Taken together, these findings 

suggest that nutrient limitation and especially the limitation of N is an important mechanism 

in permafrost soils to reduce enzyme production and the bioavailability of OC sources in 

permafrost soils. 

The Q10 values was found to decrease gradually from the topsoil to the permafrost (Fig. 4). 

The obvious question arise, whether constrains on temperature sensitivity can be caused by 

the microbial community structure. The temperature and moisture regime in subsoil is 

buffered from rapid changes driven by the atmosphere and provide stable niches for 

specialists such as anaerobic decomposers (Gittel et al. 2014). One might suppose that 

microorganisms in the subsoil of permafrost soils are adapted to a smaller temperature range 

and respond less strong to temperature increase. However, the findings of this study did not 

support such an assumption. Firstly, the size of the microbial population was driven by the 

availability of OC and TN sources in the sample (Fig. S4) regardless of soil depth. Secondly, 

the response ratio of the Cmic to 10°C temperature increase was between 2 to 6 and did not 
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change significantly with soil depth (Fig S5). Similarly, Ernakovich and Wallenstein (2015) 

observed increasing growth rates of permafrost communities up to 20°C which was still 

below their temperature optimum for growth. The authors found that permafrost 

communities have no different functional diversity than topsoil horizons. From the profiles 

of this study, Gittel et al. (2014) reported that species richness and diversity in the subsoil 

were only slightly, but not significantly lower compared to the topsoil. Overall, these 

findings suggest that the temperature sensitivity along the depth profiles may not constrained 

by microbial community composition. Instead, subsoil communities are able to adapt their 

growth rates quickly to temperature and thereby using the available substrates more 

efficiently than in the topsoil (Wild et al. in preparation). 

In order to get deeper insights to SOM turnover in mineral horizons, we were interested in 

the distribution of OM between functionally different fractions. On average, we found that 

66% of the total OC stocks in the subsoil was fractionated into the HF, representing mineral-

associated OM. The LF, i.e. the particulate OM accounted for 22% of the subsoil OC stocks 

and the rest was found as MoF containing the DOC pool (~1%). Migration of DOC is the 

major source for the formation HF-OC in the subsoil (Kleber et al. 2015), especially in 

shallow rooted tundra soils. During the incubation, we discovered that the proportion of the 

HF to total respiration was quite constant around 70% across all mineral soil horizons (Fig 

S4). In previous incubations, Gentsch et al. (2015b) found that the LF in subsoil horizons 

had even lower mineralization rates compared to the HF, which was likely due to the lack of 

easily available OC compounds and their spacial segregation. The 14C activity and the 

respective age of the bulk OC were in most cases controlled by the HF. An exception is one 

permafrost sample (Fig.4; AM-C, Cff), which contained the highest proportion of LF-OC 

(45 %) of obviously greater age and was subducted by cryoturbation. These results show 

that the HF controls the variability of CO2 fluxes from mineral permafrost soils. 

Interestingly, the respired CO2 in the subsoil (Fig. 4, B/C and Cff horizons) was between 12 

and 26 ka younger compared to solid samples. Those large differences at the final stage of 

incubation, demonstrate that the mineral-associated OM pool is not a homogeneous fraction. 

The bioavailable HF-OC pool during the incubation (< 9% of the total OC) had maximum 

ages between 0.7 to 1.5 ka, while the much older pool in the subsoil was not bioavailable. 

These findings are in agreement with Mueller et al. (2014) and confirm that the more recently 

fixed OC was respired first during the incubation. We suppose association of OM with 

poorly crystalline iron oxides and clay minerals or its co-precipitation with multivalent 
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cations (Al, Fe) decreases the accessibility of the old HF-OC to enzymatic decomposition 

(Guggenberger and Kaiser 2003a). The partially strong negative effect of the HF, clay sized 

minerals, and Fep on the OC mineralization (Fig. 5) support the assumption of considerable 

mineral stabilization in permafrost soils. In line with previous studies from temperate 

environments (Swanston et al. 2005; Schrumpf et al. 2013), we conclude that the HF-OC in 

permafrost soils is composed of at least two pools: a more recent, fast-cycling pool; and an 

old, more stable pool. We suppose that the fast cycling pool could be dominated by weaker 

bindings, such as outersphere complexes, with less protective capacity against 

biodegradation. The high bioavailability of the fast cycling pool in permafrost might suggest 

the presence of easily available low molecular weight substances while high molecular 

weight, more hydrophobic substances preferentially remain in the adsorption complexes 

(Guggenberger and Kaiser 2003b; Kaiser and Guggenberger 2007; Kleber et al. 2015). 

Temperature was the principle driver explaining higher OC mineralization throughout the 

incubation and the strength of the effect attenuated with soil depth (Fig 5). According to the 

principles of kinetic theory, temperature sensitivity of OM increased with substrate 

complexity (Davidson and Janssens 2006). This so called carbon-quality-temperature 

hypotheses explains the higher temperature sensitivity of the HF compared to the bulk soil 

(Lefèvre et al. 2013). The HF showed slow reaction rates and has higher activation energy 

than the bulk soil, containing labile OM with lower activation energy. Decreasing 

temperature sensitivity with soil depth (Fig. 3) was previously described from incubation 

experiments (Waldrop et al. 2010; Gillabel et al. 2010; Xu et al. 2014). While in the same 

time OM complexity increased and biodegradation in the permafrost was as high as in 

topsoil, this contradicts the carbon-quality-temperature hypotheses and the general view that 

turnover of slowly decomposing soil OC (such in subducted topsoil) is more sensitive to 

temperatures compared to rapidly decomposing soil OC (Conant et al. 2011). Such a 

discrepancy between kinetic theory and observed temperature sensitivity was explained as a 

result of reduced OC availability (Xu et al. 2014), and more specifically, as result of mineral 

SOM protection (Gillabel et al. 2010). Enzymes for decomposition can be excluded by 

physiochemical protection of OM with the mineral soil matrix and Q10 values below 2 

suggesting substrate limitation to decomposers in the subsoil (Davidson and Janssens 2006). 

Those constrains attenuate the inherent kinetic properties of organic molecules in mineral 

horizons with the effect of a much lower response to temperature compared to organic 

horizons. This was evident from the high OC loading on mineral surfaces in topsoil and 

subducted topsoil compared to the subsoil (Fig. S7). The proportionally small volume of Fe-
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Al- oxide surfaces are saturated with OC and give rise to higher amounts of OC that can be 

mobilized upon temperature induced increase of microbial activity. Subsoil horizons, by 

contrast, revealed poor OC saturation at the Fe-Al-oxide sorptive sites and the bindings 

between minerals and OM did not respond to the 10°C temperature increase by stronger 

desorption. The potential of reactive minerals such as phyllosilicates and Fe- and Al- 

oxyhydroxides to perform mineral-organic associations was high and explained between 43 

to 94% of the HF-OC variability in the investigated samples (Gentsch et al. 2015a). The 

limiting effect of mineral-organic associations on OC mineralization was most evident from 

the LMM’s (Fig. 5). Significant reduction of OC mineralization was observed for the HF 

and the increasing content of clay sized minerals and Fep. Besides direct effects of pedogenic 

minerals on OC mineralization, they may stabilize OM also by indirect effects. Expansive 

clay minerals, for example, are able to fix NH4
+ in their interlayer position. The capability 

of clay minerals for interlayer fixation was indicated by the positive relation of the clay 

content to NH4
+ concentrations (lm with interaction NH4

+ * Horizon: r² = 0.36, p < 0.05, 

F7,35 = 2.8). In consequence, nitrifying organisms lacking access to NH4
+ sources which in 

turn effects enzyme production and OM depolymerization. This may explain the negative 

effect of Nmin on OC mineralization in the permafrost. 

5  Implication  

In upland tundra soils drainage is restricted by the presence of a shallow permafrost table. 

Warming of permafrost soils in the Siberian arctic has resulted in active layer deepening 

(IPPC 2013) and changes in hydrology with the systematic decrease of water storage in 

catchments (Karlsson et al. 2012; Streletskiy et al. 2015). Climate models highlight the 

sensitivity to hydrologic changes in permafrost environments and project significant soil 

drainage upon permafrost thaw (Sushama et al. 2007; Olefeldt et al. 2013; Lawrence et al. 

2015). While most of the Fe is currently present in a mobile stage in the active layer (Rivkina 

et al. 1998; Alekseev et al. 2003), the availability of oxygen will rapidly form new mineral-

organic associations by adsorption or coprecipitation processes (Kleber et al. 2015). The 

latter is the major mineral-organic association process in hydromorphic soils, frequently 

suffering in oxygen availability such as Gelisols (Kleber et al. 2015; Gentsch et al. 2015b). 

Evidence for the stronger sorptive capacity and retention of dissolved OM with increasing 

active layer thickness at a forest tundra site was provided by Kawahigashi et al. (2006). The 

results of this study highlight the relevance of mineral-organic associations for the current 
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OC storage and possible future stabilization. Mineral permafrost soil classes, such as Turbels 

and Orthels together, cover 84% of the northern circumpolar permafrost region (Hugelius et 

al. 2014), and wherever pedogenic minerals and OM come together, mineral-organic 

associations are fundamental mechanisms for soil OC protection. We suppose that, more 

favourable habitat conditions for decomposer communities in mineral permafrost soils give 

rise to enlarged CO2 release, particularly from topsoil and permafrost horizons, while the 

amount of carbon losses with temperature increase can likely be attenuated by mineral-

organic associations. 
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Fig. 1 Map of sampling sites with names and abbreviations in brackets. Each point is  

representative for three replicated soil profiles (27 soil profiles in total).The blue line marks the 

polar circle.  



126 

  

Fig. 2 Total OC mineralization during the 175day incubation period, related to the initial OC 

content of the samples. The panel columns TZ, AM, LG, and CH show the mean values ± SE 

(as bars and wisker) of treatments (Bulk 5°C, Bulk 15°C, HF 5°C, HF 15°C) for the individual 

sampling sites with respect to the individual soil horizon classes (O, A, Ajj/Ojj, B/C, Cff). 

The position of the points indicates the OC mineralization of each single sample, while the 

color showing the initial OC concentration (in % dry weight) of the sample. The right panel 

column (All sites) summarize all sampling sites (mean ± SE, total n = 336). Significant 

differences between the treatments (box brackets) were compared by four linear mixed 

model’s (ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001, see statistic section and table 

S2). 
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Fig. 3 Temperature sensitivity of OC mineralization expressed as Q10 values (mean ± 95% 

CI) in the bulk soil and the respective HF. Soil horizons were organized as depth increment 

from the organic topsoil (O) to the permafrost (Cff). Small letters denote significant 

differences between horizons and fractions from LMM comparison (p < 0.05). 
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Fig. 4 Radiocarbon activity (14C in pMC) versus soil horizons, plotted as depth increments 

from the organic topsoil (O) to the permafrost (Cff) for each of two soil profiles from Taimyr 

Peninsula (AM, TZ). The 14C activity of the solid bulk values (circles) and their respective 

HF (rectangles) are shown in black. Red symbols indicate the 14C activity form CO2 sampling 

during the last month of incubation at 15°C. The blue dashed line displayed the northern 

hemisphere atmospheric 14C signature during the sampling campaign 2011 (Levin et al. 

2013). Uncertainties of the 14C measurements were smaller than the Symbols size. 
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Fig. 5 Composite plot of linear mixes effects modulations of multiple soil parameters 

(predictors as fixed factors) on OC mineralization during laboratory incubation. Red colors 

indicate positive effects (amplification) and blue colors indicate negative effects (reduction) 

of OC mineralization. The color hue indicates the strength of the effect. Significance level of 

the predictor: ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; nd, not determined. 

Acronyms of the predictors from left to right: Temperature, mineral stabilization, microbial 

biomass, C/N ratio, soil pH, clay content, short range ordered Fe minerals, organically 

complexed Fe. For all model parameters and detailed description see Table S5.  
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Supplementary material: 

Bioavailability of permafrost soil organic carbon is attenuated by 

organic matter protection  

 

S1 Pre-incubation experiment  

In order to investigate the reactivation of the microbial community after rewetting of dried 

soil material, we performed a small pre-incubation experiment. Further, we aimed to 

investigate the microbial community structure in the heavy fraction (HF) after density 

fractionation. Therefore, we incubated 5 g of bulk soil and HF material from the same A-

horizon at 60% water holding capacity (WHC) and 15°C for 14 days (d). The CO2 

evolution was monitored by a gas chromatograph, equipped with an electron capture 

detector (Shimadzu GC 2014, Kyoto, Japan). The abundance of bacterial, archaeal and 

fungal small subunit rRNA genes was analysed by quantitative PCR at day 0 and day 14. 

Therefore, nucleic acids of soil samples were extracted according to the manufacturer’s 

protocol (FastDNA® Spin Kit for Soil, MP Biomedicals, Santa Ana, CA, US) with some 

modifications (Webster et al. 2003). Quantitative PCR was performed in a StepOnePlus™ 

Real-Time PCR System (Applied Biosystems, Life Technologies, Carlsbad, CA, US) using 

SYBR® Green I chemistry. Reactions were carried out in 10 μl volumes containing 5 μl 

Platinum SYBR Green qPCR SuperMix-UDG with ROX (Life Technologies) for archaea 

and bacteria, and FastStart Universal SYBR Green Master (ROX) (Roche, Rotkreuz, 

Switzerland) for fungi, 1 μl BSA (3 g l-1, Sigma-Aldrich, St. Louis, MO, US), forward and 

reverse primer (Table S1), 1 μl DNA template and filled to final volume with sterile 

distilled H2O. Samples, standards and controls were run in triplicates and sample DNA was 

used in three dilutions to reduce the effect of co-extracted PCR inhibitors. Product 

specificity was confirmed by melt curve analysis and amplicon size was verified by 

agarose gel electrophoresis. Standards were made from purified PCR product obtained 

from whole genome extracted from pure cultures (Table S1). 

The CO2 production in the pre-incubation increased in both samples until day six and 

decreased exponentially until the end of the incubation experiment (Fig. S1). During all 

measurements, the bulk sample released more CO2 than the HF. The relative gene 

abundance in bulk samples, was highest for fungi (~70%) followed by bacteria (~30%). 

Archaea showed less than 0.3% relative abundance and the total copy numbers hardly 
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increased until day 14 (Fig. S3). The abundance of the bacteria gene copy numbers 

increased by 25% after 14 d of incubation, while fungi showed markedly larger growth 

rates in comparison. Thus, fungi were the dominating taxa at the end of the pre-incubation. 

In Fig. S3, the gene copy numbers of fungi and bacteria in the HF grow substantially until 

day 14 compared to the bulk soil. These findings suggest that both communities could be 

reactivated properly during the pre-incubation. Only the Archaea were not detected in the 

HF. However, considering the very low relative abundance in the bulk soil, we suppose 

that archaea did barely contribute to soil respiration from the samples. 

 

Fig .S1 Carbon dioxide evolution of the samples from the pre-incubation experiment 

(15°C, 60% WHC). The CO2 evolution is related to the amount of total OC in the bulk soil 

and the respective HF from A-horizon material. The blue, dashed line marks the period of 

pre-incubation.   
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Fig. S2 Absolute numbers of copied cells derived from quantitative PCR analysis. The 

colours present the time point of the sampling (day 0 and day14).  
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Fig. S3 Respiration rates across different soil horizons during 175 days of incubation 

expressed as CO2 - C evolution per g dry weight (DW) per day. Mean values ± standard 

error ware calculated for the different sampling sites (symbol shape) and temperature 

treatments (blue, 5°C , red, 15°C).   



135 
 

 

Fig. S4 Mean percentage of the HF-OC on total OC mineralization across diagnostic soil 

Horizons. Bars show mean ± standard error and colours represent different incubation 

temperatures (Temp.). The dashed lines show the total average (blue), 15°C average (dark 

gray), and 5°C average (light gray). Differences between treatments and soil horizons 

where not statistic significant (LMM comparison).  
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Fig. S5 Relationship between initial OC concentrations and microbial biomass carbon 

(Cmic) following 175 days incubation of the bulk soil and the HF under 5 and 15°C. Colors 

are indicative for different soil horizons while the linear regression was fitted through all 

samples. The linear type of function was justified by the lowest AIC index when fitting 

linear and non-linear functions to the data. Note, both axes are log10 scaled.  
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Fig. S6 Response ratio of the microbial biomass C (Cmic) to temperature increase of 10°C. 

The blue line represents Cmic at 5°C. Bars show the mean ± standard error and small letters 

indicate significant differences based on LMM comparison with sampling site as random 

effect.  
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Fig. S7 Molar metal to OC ratio calculated for the HF-OC and the organically complexed 

Fe and Al (Fep, Alp). Bars show the mean ± confidence intervals and small letters indicate 

significant differences based on LMM comparison with sampling site as random effect. 
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Table S1 Quantitative PCR conditions 

Target gene Primer Sequence (5’-
3’) 

Primer conc. 
(μM) 

Standard Thermal 
profile 

Reference 

Archaeal 16S 
rRNA 

Arch 915F AGGAATTG
GCGGGGGA

GCAC 

0.4 Methano-
sarcina 
barkeri 

95°C – 5 min Kubo et al. 
(2012) 

 Arch1059R GCCATGCA
CCWCCTCT 

  40x: 95°C – 
15 sec, 60°C 

– 45 sec 

 

     95°C – 15 
sec 

 

Bacterial 16S 
rRNA 

U1048F GTGITGCAI
GGIIGTCGT

CA 

0.25 Pseudo-
monas 
stutzeri 

95°C – 7 min Gray et al. 
(2011) 

 U1371 ACGTCITCC
ICICCTTCC

TC 

  40x: 95°C – 
30 sec, 

60.5°C – 30 
sec, 72°C – 

40 sec 

 

     95°C – 15 
sec 

 

Fungal 18S 
rRNA 

nu-SSU-817-
F 

TTAGCATG
GAATAATR
RAATAGGA 

0.5 Fusarium 
oxysporum 

95°C – 10 
min 

Borneman 
and Hartin 

(2000) 
 nu-SSU-

1196-R 
TCTGGACC
TGGTGAGT

TTCC 

  40x: 95°C – 1 
min, 56°C – 1 
min, 72°C – 1 

min 

 

     95°C – 1 min  
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Table S2 Post incubation measurements (mean ± SE) of all investigated samples, pH, 

decay rate constant (k), microbial carbon, mineral nitrogen (Nmin) with respect to 

temperature (Temp.) and soil OM fraction.  

Fraction Site Horizon Temp
. (°C) 

 pH  k (x10-4) Cmic (μg g-1DW) Nmin (μg g-1 DW) 

    n Mean SE Mean SE Mean SE Mean SE 

Bulk AM O 5 6   1.39 0.24 625.18 144.85 294.98 98.35 
   15 6 6.46 0.18 3.54 0.58 549.97 139.40 230.72 71.02 
  A 5 5   0.62 0.11 79.19 15.23 25.95 3.23 
   15 5 6.55 0.26 1.15 0.16 68.97 23.41 35.01 5.02 
  Ajj 5 9   0.59 0.17 73.24 12.21 21.79 3.54 
   15 9 7.05 0.19 0.77 0.17 76.81 13.89 32.05 5.95 
  BC 5 5   1.11 0.20 30.05 6.11 9.34 0.59 
   15 5 7.43 0.14 1.22 0.24 35.13 3.72 10.25 0.47 
  Cff 5 5   1.04 0.35 27.23 8.27 17.03 2.51 
   15 5 7.96 0.19 1.20 0.35 23.49 4.68 22.58 4.02 
             
 CH O 5 6   1.58 0.28 1667.62 546.01 295.85 44.86 
   15 6 5.22 0.06 3.60 0.73 3316.99 394.68 243.65 60.08 
  A 5 5   0.99 0.23 118.23 30.06 16.43 8.71 
   15 5 5.60 0.15 2.08 0.40 511.16 137.09 13.79 10.59 
  Ajj 5 5   0.39 0.03 389.50 81.64 30.89 15.90 
   15 5 5.95 0.23 0.90 0.08 1061.99 120.43 24.30 15.28 
  BC 5 8   0.65 0.06 68.17 20.05 2.49 0.95 
   15 8 5.80 0.10 1.22 0.09 338.62 32.93 0.98 0.13 
  Cff 5 6   2.52 1.14 123.83 28.21 6.56 1.78 
   15 6 7.14 0.52 3.98 1.77 364.09 44.26 3.28 0.72 
             
 LG O 5 4   1.60 0.12 548.62 76.55 439.49 64.25 
   15 4 6.01 0.31 4.23 0.47 621.66 59.96 554.64 72.38 
  A 5 5   1.19 0.07 238.73 37.89 168.73 21.46 
   15 5 5.58 0.06 2.26 0.20 212.98 33.69 220.19 35.92 
  Ajj 5 8   0.49 0.05 154.05 17.11 46.79 4.11 
   15 8 6.52 0.13 0.88 0.07 172.58 21.68 78.80 4.24 
  BC 5 8   0.50 0.05 59.39 5.52 22.21 1.84 
   15 8 6.47 0.16 0.76 0.07 88.61 9.20 26.52 2.26 
  Cff 5 5   1.39 0.13 27.95 4.53 45.43 4.32 
   15 5 6.98 0.07 1.48 0.09 85.24 16.61 60.38 6.63 
             
 TZ O 5 6   1.78 0.27 1418.53 296.30 5.36 1.95 
   15 6 4.89 0.24 4.32 0.56 3004.14 404.54 3.71 0.51 
  A 5 5   1.01 0.10 47.37 19.35 15.82 6.22 
   15 5 5.36 0.18 2.33 0.21 294.76 72.66 14.98 9.44 
  Ajj 5 6   0.76 0.23 32.23 10.94 3.30 0.94 
   15 6 6.03 0.27 1.05 0.25 219.54 44.32 1.60 0.23 
  BC 5 7   2.53 0.71 18.31 4.53 0.93 0.11 
   15 7 6.56 0.25 3.60 1.27 98.21 22.97 1.12 0.19 
  Cff 5 6   4.72 0.71 22.64 5.32 1.11 0.29 
   15 6 7.20 0.06 6.26 1.10 103.50 10.37 1.08 0.25 

Continued on the next page.  
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Table S2 Continued from the previous page. 

Fraction Site Horizon Temp
. (°C) 

 pH  k (x10-4) Cmic (μg g-1DW) Nmin (μg g-1 

DW) 
    n Mean SE Mean SE Mean SE Mean SE 

HF AM A 5 2   0.42 0.04 21.42 14.20 26.63 0.40 
   15 2 8.10 0.72 2.03 1.25 87.02 0.61 38.74 7.95 
  Ajj 5 4   0.31 0.08 34.42 4.59 31.75 4.63 
   15 4 7.50 0.14 0.63 0.16 113.14 62.65 29.78 5.19 
  BC 5 3   1.18 0.65 25.73 13.74 26.77 2.44 
   15 3 7.91 0.63 1.35 0.72 36.93 11.23 22.62 2.47 
  Cff 5 2   1.06 0.76 34.98 25.30 23.61 1.63 
   15 2 8.18 0.63 0.87 0.06 82.57 67.99 21.00 4.22 
             
 CH A 5 3   0.81 0.10 42.73 12.24 28.05 2.16 
   15 3 6.73 0.06 2.17 0.16 41.85 15.81 47.50 8.43 
  Ajj 5 3   0.35 0.02 245.16 58.80 76.46 6.87 
   15 3 7.20 0.16 0.81 0.20 93.30 27.69 93.53 7.33 
  BC 5 3   0.36 0.09 58.12 21.68 26.81 1.37 
   15 3 7.01 0.17 0.76 0.18 27.66 10.28 26.39 1.93 
  Cff 5 3   2.26 0.51 38.02 9.27 28.16 1.08 
   15 3 9.01 0.05 3.50 0.78 27.59 3.61 26.17 1.86 
             
 LG A 5 3   0.65 0.14 111.24 18.34 140.55 45.02 
   15 3 6.74 0.09 1.09 0.17 189.09 80.35 164.76 33.76 
  Ajj 5 3   0.46 0.02 144.67 86.36 78.44 4.83 
   15 3 7.59 0.11 1.14 0.04 59.97 38.00 124.10 6.05 
  BC 5 3   0.37 0.22 59.49 39.81 34.87 2.98 
   15 3 7.31 0.24 0.57 0.17 90.00 64.79 30.64 1.21 
  Cff 5 3   1.08 0.14 7.15 2.98 39.90 3.59 
   15 3 8.46 0.09 2.04 0.50 10.83 7.42 38.49 1.73 
             
 TZ A 5 3   0.40 0.08 113.31 56.42 28.74 5.23 
   15 3 6.25 0.30 1.14 0.24 71.69 18.56 40.34 6.87 
  Ajj 5 3   0.26 0.06 36.29 4.11 31.97 3.53 
   15 3 6.56 0.17 0.61 0.11 51.29 5.90 37.22 4.42 
  BC 5 3   1.13 0.43 10.14 7.26 18.45 0.49 
   15 3 7.16 0.27 1.37 0.54 30.22 5.29 14.87 0.58 
  Cff 5 3   3.09 0.32 15.41 5.35 19.95 1.03 
   15 3 7.66 0.08 3.08 0.66 42.96 5.33 14.43 0.75 
  Total  334         
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Table S3 Comparison of differences in OC mineralization between sampling sites across 

different soil horizon clusters from incubation experiments by linear mixed effect 

modeling (abbreviations: CI, confidence interval; ns, not significant). 

 
Horizon Comparison Estimated 

ratio of the 
mean 

95% CI 
lower limit 

95% CI 
upper limit 

p-value Sign. level  

O CH/AM 1.21 0.59 2.47 0.9000 ns 

O LG/AM 1.35 0.59 3.07 0.7813 ns 

O TZ/AM 1.43 0.7 2.96 0.5698 ns 

O LG/CH 1.12 0.55 2.27 0.9787 ns 

O TZ/CH 1.19 0.65 2.15 0.8808 ns 

O TZ/LG 1.06 0.52 2.19 0.9964 ns 

A CH/AM 1.23 0.76 1.98 0.6882 ns 

A LG/AM 1.28 0.8 2.04 0.5150 ns 

A TZ/AM 1.04 0.64 1.68 0.9970 ns 

A LG/CH 1.04 0.64 1.7 0.9960 ns 

A TZ/CH 0.85 0.51 1.4 0.8284 ns 

A TZ/LG 0.81 0.5 1.32 0.6877 ns 

Ajj/Ojj CH/AM 1.14 0.72 1.81 0.8899 ns 

Ajj/Ojj LG/AM 1.31 0.87 1.98 0.3321 ns 

Ajj/Ojj TZ/AM 1.24 0.8 1.94 0.5849 ns 

Ajj/Ojj LG/CH 1.15 0.71 1.86 0.8706 ns 

Ajj/Ojj TZ/CH 1.09 0.66 1.81 0.9680 ns 

Ajj/Ojj TZ/LG 0.95 0.6 1.51 0.9915 ns 

B/C CH/AM 0.74 0.46 1.18 0.3487 ns 

B/C LG/AM 0.52 0.33 0.83 0.0023 ** 

B/C TZ/AM 1.8 1.11 2.9 0.0090 ** 

B/C LG/CH 0.7 0.46 1.08 0.1511 ns 

B/C TZ/CH 2.43 1.56 3.77 0.0000 *** 

B/C TZ/LG 3.45 2.22 5.37 0.0000 *** 

Cff CH/AM 2.35 1.42 3.91 0.0001 *** 

Cff LG/AM 1.76 1.04 2.97 0.0279 * 

Cff TZ/AM 4.98 2.99 8.28 0.0000 *** 

Cff LG/CH 0.75 0.46 1.22 0.4222 ns 

Cff TZ/CH 2.11 1.31 3.4 0.0004 *** 

Cff TZ/LG 2.83 1.73 4.61 0.0000 *** 
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Table S4 Comparison differences in OC mineralization between treatments from the 

incubation experiment by four linear mixed effect models (abbreviations: CI, confidence 

interval). 

Horizon Comparison 
Estimated 

ratio of means 
95% CI lower 

limit 
95% CI upper 

limit 
p-value 

Sign. 
level 

Bulk 

O 15/5°C 2.36 1.91 2.91 0.0000 *** 

A 15/5°C 2.02 1.64 2.49 0.0000 *** 

Ajj/Ojj 15/5°C 1.78 1.45 2.18 0.0001 *** 

B/C 15/5°C 1.47 1.2 1.8 0.0017 ** 

Cff 15/5°C 1.34 1.09 1.65 0.0099 ** 

HF 

A 15/5°C 2.54 1.93 3.34 0.0000 *** 

Ajj/Ojj 15/5°C 2.24 1.74 2.89 0.0000 *** 

B/C 15/5°C 1.69 1.3 2.21 0.0002 *** 

Cff 15/5°C 1.4 1.06 1.84 0.0179 * 

15°C 

A HF/Bulk 0.73 0.42 1.26 0.2108 ns 

Ajj/Ojj HF/Bulk 0.86 0.5 1.46 0.5162 ns 

B/C HF/Bulk 0.6 0.35 1.03 0.0592 ns 

Cff HF/Bulk 0.91 0.52 1.6 0.7088 ns 

5°C 

A HF/Bulk 0.58 0.42 0.8 0.0014 ** 

Ajj/Ojj HF/Bulk 0.68 0.5 0.91 0.0119 * 

B/C HF/Bulk 0.51 0.38 0.7 0.0001 *** 

Cff HF/Bulk 0.86 0.61 1.23 0.4017 ns 
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Table S5 Summary of the fixed effects from eight linear mixed effects models, predicting 

OC mineralization from the incubation experiment. The first model comprised all soil 

horizons and sites. For mineral topsoil (A) and permafrost (Cff) horizons two models ware 

necessary to fit, due to the strong interrelation of various parameters (e.g. pH, Nmin, 

Temperature, Fraction) and their biasing effect on copredictors. Note, the intercept gives 

the expected value of the response if all covariates are zero, and therefore, is not relevant 

for the interpretation of the estimates. Abbreviations: SE; standard error; df, degrees of 

freedom (Satterthwaite approximation).  

Predictor Factor of 
change 

Estimate SE df p-value 

¶ Complete profile; goodness of fit: r²c =  0.78,  r²m = 0.44, F = 694, p < 0.001, n = 254 

(Intercept)  17.82 2.31 156.94 < 0.001 
Temperature †10°C 1.69 1.06 237.98 < 0.001 
Fraction Bulk-HF 0.42 1.11 242.00 < 0.001 
Cmic ‡ doubling 1.06 1.03 241.07 0.025 
Nmin doubling 0.99 1.03 236.12 0.743 
pH 1 unit 1.57 1.07 238.81 < 0.001 
Clay doubling 0.85 1.07 240.88 0.018 
Feo doubling 0.96 1.12 235.63 0.730 
Fep doubling 0.54 1.29 240.04 0.018 
C/N ratio doubling 0.58 1.10 240.87 < 0.001 
§ Feo : Feo doubling 1.21 1.07 240.65 0.003 

¶ O-Horizon; goodness of fit: r²c =  0.74,  r²m = 0.61, F = 92, p < 0.001, n = 34  

(Intercept)  0.52 5.20 22.60 0.696 
Temperature 10°C 1.99 1.16 6.20 0.004 
Cmic doubling 1.26 1.10 15.11 0.025 
Nmin doubling 1.05 1.05 5.09 0.396 
pH 1 unit 0.98 1.14 21.58 0.866 
C/N ratio doubling 1.36 1.36 24.77 0.331 

¶ A-Horizon; goodness of fit: r²c = 0.75, r²m =  0.51, F = 148, p < 0.001, n = 57  

(Intercept)  18.54 1.31 12.10 < 0.001 
Temperature 10°C 2.24 1.10 49.17 < 0.001 
Fraction Bulk-HF 0.54 1.12 51.56 < 0.001 
Nmin doubling 1.07 1.04 48.06 0.116 
Fep doubling 0.58 1.24 51.35 0.013 

¶ A-Horizon; goodness of fit: r²c = 0.84, r²m =  0.46, F = 175, p < 0.001, n = 57  

(Intercept)  1.20 2.16 40.65 0.816 
Temperature 10°C 2.24 1.09 48.89 < 0.001 
Fraction Bulk-HF 0.37 1.18 51.99 < 0.001 
Nmin doubling 1.06 1.04 51.96 0.114 
pH 1 unit 1.50 1.12 51.99 < 0.001 

¶ Ajj-Horizon; goodness of fit: r²c = 0.72, r²m = 47, F = 148, p < 0.001, n = 77  

(Intercept)  242.05 4.42 58.10 < 0.001 
Temperature 10°C 1.97 1.09 5.91 < 0.001 
Fraction Bulk-HF 0.64 1.18 15.20 0.017 
Cmic doubling 0.96 1.04 57.79 0.371 
Nmin doubling 0.91 1.04 11.31 0.054 
pH 1 unit 1.25 1.13 61.11 0.069 
Clay doubling 0.69 1.18 64.13 0.026 
Feo doubling 1.07 1.80 62.80 0.906 

Continued on the next page.  
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Table S5 Continued from the previous page. 
 
Fep doubling 0.96 1.20 64.07 0.807 
C/N ratio doubling 0.56 1.18 63.15 < 0.001 
Clay : Feo doubling 1.05 1.08 62.47 0.570 

¶ BC-Horizon; goodness of fit: r²c = 0.80, r²m = 0.44, F = 268, p < 0.001, n = 80  

(Intercept)  266571.34 139.50 59.27 0.014 
Temperature 10°C 1.61 1.12 3.48 0.019 
Fraction Bulk-HF 0.28 1.31 3.41 0.014 
pH 1 unit 1.87 1.12 42.44 < 0.001 
Clay doubling 0.19 1.98 64.30 0.016 
C/N ratio doubling 0.02 5.55 62.87 0.018 
Clay : C/N 
ratio 

doubling 1.66 1.26 64.40 0.031 

¶ Cff-Horizon; goodness of fit: r²c = 0.83, r²m = 0.62, F = 212, p < 0.001, n = 44  

(Intercept)  2706.32 4.02 23.69 < 0.001 
Temperature 10°C 1.36 1.16 33.63 0.044 
Fraction Bulk-HF 1.38 1.33 25.73 0.269 
Nmin doubling 0.74 1.11 15.87 0.010 
Clay doubling 0.67 1.19 27.27 0.029 
Fep doubling 0.25 1.47 34.79 < 0.001 
Feo doubling 1.70 1.53 5.78 0.262 
 C/N ratio doubling 0.71 1.17 36.00 0.036 

¶ Cff-Horizon; goodness of fit: r²c = 0.88, r²m = 0.56, F = 295, p < 0.001, n = 44  

(Intercept)  35.32 6.73 27.73 0.072 
Temperature 10°C 1.33 1.14 33.63 0.034 
Fraction Bulk-HF 1.07 1.31 34.76 0.818 
Nmin doubling 0.67 1.10 28.73 < 0.001 
Clay doubling 0.62 1.18 32.82 0.006 
Feo doubling 1.65 1.51 12.20 0.246 
pH doubling 1.86 1.14 32.36 < 0.001 
 C/N ratio doubling 0.72 1.14 35.90 0.018 

† Example of interpretation: if the temperature in model (1) increased by 10°C the OC 

mineralization in soil horizons will increase by the factor 1.69. 

‡ With doubling of Cmic values mean OC mineralization values changed by factor 1.06 (i.e. increase 

by 6%). 

¶ Derived from multiple linear regression model without random effects, r²c and r²m give the 

goodness of fit with- and without random effects (Nakagawa and Schielzeth 2013). 

§ Interaction effects are marked by colon  



146 

Table S6 Multiple comparison of Cmic by two LMM’s with site, horizon and 

temperature/fraction as random effects (abbreviations: CI, confidence interval).  

Horizon Comparison 
Estimated 
ratio of the 

mean 

95% CI 
lower limit 

95% CI 
upper limit 

p-value Sign. level 

Temperature 

O 15/5°C 1.57 1.04 2.37 0.0304 * 

A 15/5°C 2.13 1.4 3.24 0.0005 *** 

Ajj 15/5°C 1.92 1.33 2.77 0.0005 *** 

B/C 15/5°C 2.86 2 4.09 0.0000 *** 

Cff 15/5°C 2.8 1.88 4.17 0.0000 *** 

Fraction 

A HF/Bulk 0.45 0.29 0.69 0.0003 *** 

Ajj HF/Bulk 0.49 0.34 0.71 0.0002 *** 

B/C HF/Bulk 0.46 0.31 0.67 0.0001 *** 

Cff HF/Bulk 0.36 0.24 0.54 0.0000 *** 
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5 Summarized discussion

5.1 Pedogenic processes in Arctic permafrost soils

The sampling sites of 28, five metre wide soil profiles were located at unconsolidated parent ma-
terial at four tundra sites in the Siberian Arctic (study I, Fig. 1). Sandy glaciofluvial, alluvial,
loesslike or silt-rich fluvial-marine sediments are ubiquitous parent materials for soil formation
in the North Siberian Lowlands (Karavaeva, 2004; Naumov, 2004). As the first overwhelming
factor for pedogenesis, the soil survey revealed a whole set of cryogenic processes, such as
cryoturbation, retenization, polygon formation, and patterned ground. The second omnipresent
pedogenic process was gleyzation. Aquic conditions during most of the frost free period gener-
ate hydromorphic diagnostics in the active layer and reducing conditions downwards the profile.
As a third relevant soil forming factor, accumulation of OM in the topsoil or in frost cracks with
the development of histic properties was identified.

Soil texture analyses (study I, Fig. S2) indicated the general dominance of the silt size frac-
tion, except of the fine sandy AM sites. Clay sized minerals were in a range between 10 and
40% of the dry mass content. X-ray diffraction analyses of the clay fraction indicated the dom-
inance of the expandable interstratified minerals illite, vermiculite, chlorite and kaolinite at the
eastern Siberian sites. The central and western Siberian sites were almost mono dominated by
smectite clays. Cryogenic processes (see cryohomogenization sect. 1.4) prevent the progression
of mineral weathering gradients within the soil profiles. This contrasts temperate environments,
where less stable minerals such as illite can often be found at the weathering base of profiles,
while progressive leaching and mineral transformation select towards more stable minerals such
as kaolinite in the topsoil (Wilson, 1999). Nevertheless, abundance of mineral transformation
was traced in topsoil horizons by the shift of illite towards vermiculite and enrichment of chlo-
rite. The overwhelming presence of smectite minerals was the effect of the preserving soil
environment. Smectites are effective adsorbents for OM due to their large specific surface areas
(> 800 m2 g−1) and the capacity of interlayer exchange (Hassink, 1997). However, smectite
clays are metastable and require poor drainage, alkaline conditions, and high Mg, Ca, and Si
loadings in the soil solution as such were found in the investigated soils. Progressive pedoge-
nesis and acidification promote the dissolution or alteration of smectites (Dixon et al., 2002;
Lessovaia et al., 2014). Stronger degree of weathering and higher leaching losses of nutrients
were detected at the east and west Siberian sites (TZ, CH). Lower exchangeable Mg2+ and Ca2+
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accompanied by higher proportions of Al3+ give rise to chlorite formation by polymerisation
of Al hydroxides in the smectite interlayer (Wilson, 1999). Soil acidity was found as one of the
major drivers for weathering and clay mineral transformation in arctic soils regardless of soil
temperatures (Borden et al., 2010).

Total pedogenic Fe extracted by sodium-dithionite was between 0.2 and 2% and well in the
range compared to soils from temperate environments (Cornell and Schwertmann, 2003). High
Feo : Fed ratios between 0.4 and 1 indicate a high active soil environment and frequent oxida-
tion and reduction of Fe. The larger proportion of Feo is indicative for the amount of Fe(III)
being reduced within a short time such as poorly ordered soil Fe (hydr)oxides (Vodyanitskii
and Shoba, 2014). Up to 7 times higher amounts of organically complexed Fe and Al (study I,
Table S1) were found in subducted topsoil horizons compared to the surrounding soil. Subsoil
horizons suffering from oxygen deficiency, provide sufficient supply of Fe(III) and DOC, and
therefore, fulfil the requirements to build up Fe-OM coprecipitates (Kleber et al., 2015).

Bockheim et al. (2006) summarize a long list of soil-forming factors, which have been re-
ported from permafrost soil research and the most relevant are: brunification, gleization/ hydro-
morphism, alkalization/salinization, podzolization, chemical weathering of phyllosilicate min-
erals, paludification (accumulation of organic materials) and retenization. The point of view,
that permafrost soils are poorly developed, and primarily subject of mechanical weathering need
to be revised. Based on the results of study I and the review of literature, physical and chemi-
cal weathering in permafrost soils should not be considered without context. Rather, the terms
physicochemical weathering or more specifically cryogenic weathering appear appropriated.
Cryogenic weathering is not only the mechanical disruption of rock and minerals but comprises
also a set of chemical reactions. For example, freez-thaw-cycles disrupt effectively quartz min-
erals even preferentially over feldspars (Schwamborn et al., 2012). The disintegration of those
minerals is pH dependent, highest at pH < 6 and lowest at soil pH > 8 (Konishchev and Rogov,
1993). Moreover, the formation of sublimation- or segregation-ice increases the concentration
of solutes in the pore solution and chemical precipitation takes place (Ostroumov et al., 2001).
Cryogenic weathering was found to respond in neoformation of clays, secondary precipitates
of amorphous Fe or Fe needles, Fe-OM aggregates and precipitates, and precipitates of calcite
and sulphates with crystalline features (Konishchev and Rogov, 1993; Vogt and Larqué, 2002).
Cryogenic weathering increases linearly with the frequency of freeze-thaw-cycles (Konishchev
and Rogov, 1993).

Considering the long history of potential soil development (indicated by radiocarbon mea-
surements below), the overall degree of weathering and mineral transformation in the investi-
gated permafrost soils under the current soil conditions is weak, but detectable. Changes of
the current “preserving” soil conditions, such as soil drainage, increase of organic acids, and
freeze-thaw-cycles, will likely affect the assemblage of pedogenic minerals in permafrost soils.
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5.2 SOC storage and SOM composition

In order to investigate the influence of microtopography and cryogenic processes on the OC
variability in the soil profiles, the SOC storage was calculated based on digital profile mapping.
The total SOC storage to 1 m soil depth ranged from 6.5 to 36.4 kg m−2 with the average of
20.2 kg m−2 across all sites (study I, Table 2 and Fig. 8). The large variability between the
sites was found to be an effect of cryogenic activity. Subducted topsoil horizons, visible as OM
rich involutions, pockets or tongues, stored quite constantly around 18% of the total SOC but
were not the reason for the site variability. The basic differences between the sites were found
in the BCgjj and Cgjj horizons (study I, Fig. 3). In soils of low OC stocks, such as in western
Siberia, these horizons were up to 11 times more depleted of OC compared to the eastern and
central Siberian sites. Concurrently, the western Siberian sites revealed the deepest active layer
(up to 1.5 m) and most likely cryohomogenization was less effective to redistribute OM across
the profiles. Subsoil horizons stored on average 81% and permafrost horizons 35% of the total
OC within the first soil metre. Calibrated radiocarbon ages indicated a range from 0.3 ka in
subducted topsoil up to 28 ka in permafrost horizons. Those data emphasize the relevance of
subsoil OC stocks in their function as recent and long-term sink for atmospheric C. Conversion
into greenhouse gases of just a fraction of those vast ancient OC stocks provide a potential risk
for feedbacks with climate change (Schuur et al., 2015).

Density fractionation separated three OM fractions from samples of mineral soil horizons:
LF, HF, and MoF (see study I or nomenclature). Organic horizons were considered primarily
to be composed of particular substances (LF) and were not treated by density fractionation.
Around 13% of the total OC storage of the upper first metre was located in the organic hori-
zons. The LF and HF-OC in mineral horizons contributes with 19% and 55% to the total OC
storage. On average 13% of the OC was leached as MoF during the fractionation procedure.
The highest OC losses (up to 40%) were recorded in the permafrost and several profiles indi-
cated a sharp increase of the MoF and HF in the transient layer. The range of fractionation
losses from temperate soils were generally found to be minor (John et al., 2005; Crow et al.,
2007; Kaiser and Guggenberger, 2007). The source for the unexpected large OC mobilization
was traced by DOC measurements from the rinsing solutions. Around 80% of the MoF derived
from the HF and represents most likely a potentially vulnerable OM pool which is retained in
weaker chemical bindings. Cryogenic DOM migration results in the successive increase of OC
in mineral horizons by the formation of colloid-complexes and precipitates (Gundelwein et al.,
2007). These mechanisms can possibly contribute to the limited retention of the MoF in MOAs.

The HF dominated with the average contribution of 61% the OC stocks in mineral soil hori-
zons. Mineral-organic interactions are generally supposed as the most effective mechanisms
to reduce the accessibility of decomposers to OC and nutrient sources (Kögel-Knabner et al.,
2008a; Schmidt et al., 2011; Schrumpf et al., 2013). The effectivity of MOAs for long-term OC
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protection depends, however, on the assemblage of pedogenic minerals and the soil environ-
ment (Baldock and Skjemstad, 2000). The content of HF-OC was in a range between 0.7 and
128.8 g kg−1 with an average of 19.3 g kg−1 (n = 261) and appeared very high in comparison
to temperate soils. Kögel-Knabner et al. (2008b) reviewed findings from temperate soils and
reported contents of mineral-associated OC in a range between 0.7 to 104 with an average of
14.3 g kg−1 (n = 57) and the largest values from highly developed Oxisols and Alfisols. This
comparison underlines the high relevance of MOAs in permafrost soils.

Multivariate regression analyses indicated significant positive linear relation between clay-
sized minerals and OC content particularly at sites dominated by high reactive smectite clays
(AM, LG). Organically complexed Fe and Al (Fep, Alp) were found to increase linearly with
the HF-OC content across all samples (study I, Fig. S5) while poorly ordered Fe and Al phases
(Feo-Fep, Alo-Alp) had strong positive impact at sampling sites where weathering was found to
be more advanced (TZ, CH). As a result of the large SOC loadings, metal to C ratios were in a
range of 0.02 to 0.5 with an average of 0.03 (study III, Fig. S7). Nierop et al. (2002) suggested
that formation of Fe-Al-OM coprecipitates occurs already at low metal to C ratios (< 0.05) but
their reactivity and stability are highest at large metal to C ratios (> 0.1). The high soil pH in the
subsoil reduces the competition of H+ ions for organic binding sites and promotes together with
the available hydrolysed Fe and Al species the metal-induces flocculation and precipitation of
OM (Kleber et al., 2015; Nierop et al., 2002). Moreover, formation of segregation ice increases
the concentrations of Fe, Al and OC in the pore solution such that they coagulate or coprecipitate
(Ostroumov, 2004).

Overall, the results of study I and II proofed that the formation of MOAs in permafrost soils
are important processes to build up large OC stocks in mineral horizons. Evidence was found
for the formation of MOAs by (1) complexation of OM with metal cations, (2) Fe-Al-OM
coprecipitates or ternary OM- Fe/Al-oxyhydroxide- clay associations, and (3) sorption of OM
to clay minerals and poorly ordered Fe-Al phases. Cryochemical precipitation is considered
as a fundamental mechanism to build up MOAs in permafrost soils. Large stocks of LF-OC
were found in the subsoil (21% of the subsoil OC storage) and agglomerate particularly in the
subducted topsoil and permafrost horizons.

Physical mass exchange in terms of cryoturbation was the principle way to relocate LF mate-
rial to the subsoil since the rooting zone was confined to the topsoil. Microscope imaging un-
covered the structure and composition of the LF materials. The LF was very heterogeneous in
size and remnants of litter, woody tissue, fine roots, seeds, and charcoal were distributed across
the whole profile. Despite this, C to N and stable isotope stoichiometry indicated consecutive
transformation of LF from the topsoil towards the permafrost. Concurrently, 13C-NMR spec-
troscopy displayed an increase in the alkyl C : (O-/N-alkyl C) ratio and the (70-75 ppm) : (52-
57 ppm) ratio of the LF with soil depth. These findings indicate microbial decomposed LF
materials in the subsoil. The HF deviates from the LF in chemical composition, origin, and
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age. Compared to the LF, the HF showed narrow C : N ratios and enrichment of the heavy
isotope 13C (study I, Fig. 6). The 13C-NMR spectroscopy of the HF indicated significant deple-
tion of aryl-C (aromatic compounds), and enrichment of O/N-alkyl C and alkyl-C such as from
carbohydrate derived compounds or amino acids. Similar to the LF, stoichiometric gradients
existed from the topsoil down to the permafrost indicated by decreasing C : N and increasing
δ

13C ratios. Congruently, the alkyl C : (O-/N-alkyl C) ratio and the (70-75 ppm) : (52-57 ppm)
ratio of the HF increased in deep soil horizons. XPS analyses suggested that the outermost
(top ~ 10 nm) particle surface of the HF was enriched in aliphatic and aromatic compounds
followed by polysaccharide compounds (study II, Fig. 8). Additionally, increasing proportions
of hydrocarbon compounds confirm the enrichment of less oxidized C forms and progressive
SOM decomposition with increasing depth. Despite of the unfavourable habitat conditions in
the subsoil, all chemical SOM analyses reflected ongoing biodegradation and the predominant
contribution of microbial products such as cell wall remains or exoenzymes to the HF. Mea-
surements of the radiocarbon activity did not provide such clear pattern of consecutive aging of
SOM with soil depth as it have been observed from temperate environments (Schrumpf et al.,
2013; Torn et al., 1997). Although the greatest ages (up to 28 ka) were found in the permafrost,
cryogenic processes transported lower age OC compounds towards the subsoil. Thus, the LF in
the subsoils was up to 3.5 ka younger than the HF, or vice versa. The 14C activity of the bulk
soil was controlled from the fraction that dominated the SOM composition (study II, Fig. 6 and
study III, Fig. 4). The source substances for the formation of HF-OC in subsoils derived either
from slow in situ SOM decomposition, microbial remains and excretions, or relocated DOM
from topsoil horizons. Cryogenic migration of DOC is especially relevant below frost cracks,
acting as an ideal migration pathway for soluble OM compounds with younger 14C signature
(study III, Fig. 4).

Fungal communities, are thought to be the major producers of exoenzymes as catalysts for
SOM depolymerisation and provide assimilable compounds to microbes (Talbot et al., 2008).
The reduced abundance of fungal communities with depth (the result of low temperatures and
high soil moisture) was considered as relevant factor to retard SOM decomposition in high lat-
itude soils (Gittel et al., 2014). Despite this, the authors found stable niches for fermentative,
anaerobic, sulfur-and metal reducing metabolic pathways in the subsoil. Bacterial and facul-
tative anaerobic decomposers of SOM, such as members of the Actinobacteria were able to
substitute functional traits of fungi in the subsoil of permafrost soils. Overall, analysing the
chemical nature of OM suggests progressive transformation of OM with soil depth regardless
the type of OM fraction. The subsoil environments of permafrost soils sustain slow microbial
activity even at low temperature ranges and anaerobe soil conditions.
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5.3 Bioavailability and protection of SOM

The bioavailability of SOM was tested in two different laboratory incubation experiments. The
first experiment aimed to compare the potential OC mineralization of different SOM fractions
(LF, HF) to the bulk soil (study II). In order to get comparable conditions within the incuba-
tion vessels, the samples were mixed with quartz powder, inoculated by a mixture of native
soil microorganisms, and were incubated for 90 days at 15°C and 60% WHC. The results in-
dicated significant differences between topsoil and subsoil horizons. Topsoil horizons, with
the turnover of 2.5 to 5% of the initial OC, showed the highest mineralization rates. Calcu-
lation of the rate constants (k) from first order decay-models (study II, Fig. 10) indicated the
faster turnover of the LF compared to the bulk soil and the HF. Similar results are known from
temperate soils and indicate readily accessibility of free particulate organic substances, not pro-
tected in aggregates (Liao et al., 2006; Jagadamma et al., 2013). Subsoil horizons showed lower
total mineralization (1.5 to 3.5% of the initial OC) and therein significant faster OC decay rates
of the HF compared to the LF and the lowest in the bulk samples. Respiration pulses in the bulk
samples were not present in the HF and the LF immediately after the start of the experiment.
These pulses indicate the abundance of a fast bioavailable pool that was discharged during the
density fractionation with the MoF. Despite those mineralization pulses, the OC decay rates in
the subsoil bulk samples were the lowest observed. Intact microaggregate structures in the bulk
samples might be a possible explanation for their slow OC turnover (Six et al., 2002). Micro-
morphological features, unfortunately, were not studied and statements on this topic missing
proof. Nevertheless, the formation of cryogenic fabrics in permafrost soils produce microag-
gregates of various shapes and occlusion of OM in those structures was shown by Vliet-Lanoë
et al. (2004). The most surprizing outcome from the first experiment was the low availabil-
ity of the LF in the subsoil horizons. Leaching and consumption of the most easily available
compounds from the LF during the longer residence time in the subsoils may cause the slow
decomposition. A positive correlation between the O-alkyl C : methoxyl C ratio with the OC
mineralization (study I, p.10), suggests for the HF larger availability of OC species containing
more carbohydrates, compared to samples containing more lignin derived compounds. In con-
clusion of the first incubation study, the observed OC mineralization rates were in a lower range
in comparison to similar studies (study I, Table S7). Associations of OM with minerals and the
chemical composition of the LF are supposed to restrict the bioavailability of OC sources in the
subsoil of the East Siberian sampling sites.

The second experiment aimed to investigate the temperature sensitivity of SOM and the po-
tential bioavailability of MOAs across a wide range of permafrost soils. Therefore, 120 samples
from 24 soil profiles of all four Siberian sampling sites were incubated. From 47 mineral hori-
zons the HF was included and all samples were incubated under 5 and 15°C for 180 days at
60% WHC. The CO2 evolution during the incubation period was monitored by gas chromatog-
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raphy and the CO2-C release was related to the initial OC content in the sample. In a pre-
incubation experiment (study III, supplementary material) quantitative PCR analyses of rRNA
genes showed that from the initial soil microorganism community, bacteria and fungi were re-
stored properly. The density fractionation only affected the DNA of Archeae. Considering,
however, the minor abundance of Archean gene copy numbers (0.3%) in the bulk samples and
no noticeable growth after 14 days of the pre-incubation experiment, these microbes are consid-
ered to have negligible effects on OC mineralization in the samples. The total OC mineralization
(cumulative sum of interpolated fluxes) was in the range between 0.2 and 18% of the initial OC
content (study III, Fig. 2) and the highest values were measured in permafrost and organic top-
soil horizons. Similar high OC mineralization was observed in several long-term experiments
(Lee et al., 2012; Schädel et al., 2013) and suggested the abundance of highly bioavailable OC
sources in topsoil and permafrost horizons. Subducted topsoil materials showed up to four
orders of magnitude lower OC mineralization compared to organic and mineral topsoil. The
similar C : N ratios and δ13C values to topsoil horizons suggests that some factors, others than
the chemical SOM composition, have to restrict the accessibility of OC and nutrient sources
in subducted topsoil. Priming experiments (Wild et al., 2014, and Wild et al. in preparation)
indicated that the addition of easily available C and N sources (with a stronger response to N)
stimulate the decomposition of subsoil OC. The authors suggest that the added N was invested
in the production of extracellular enzymes for SOM decomposition. Indications for N limitation
were proved by the statistical modelling of various predictors on OC mineralization (study III,
Fig. 5). Significant higher OC mineralization at low substrate C : N ratios indicates that decom-
posers are able to use SOM of proportionally larger N content more efficiently in the subsoil.
Since the microbial biomass (Cmic) was concurrently related to increasing OC content in the
samples (study III, Fig. S5), this suggests higher substrate use efficiency in subsoils, i.e. higher
growth rates over respiration (Manzoni et al., 2012).

More than two third (70%) of the total OC turnover in mineral soil horizons was contributed
by the HF-OC. This large proportion was quite constant across sites, horizons, and temperature
treatments (study III, Fig. S4) and indicates that the HF is not only the major provider to the
total SOC storage, but also the largest contributor to soil CO2 fluxes from mineral soil hori-
zons. Radiocarbon analyses in the headspace of the incubation vessels (14CO2) at the end of the
experiment, detected similar 14C activity in the source samples and their respiratory products
for organic topsoil horizons. Similar ages indicate recent SOM (< 30a) and no partitioning of
certain SOM pools. The 14CO2 activity in the mineral horizons was substantially larger (and
thus younger) compared to the source samples. In subsoil samples (B/C, Cff) those differences
increased between 55 to 77 pMC (12 to 26 ka). In line with previous findings (Schrumpf et al.,
2013), the conclusion was drawn that the HF-OC comprises at least two pools with different
accessibility: a small, fast cycling, more recent pool (< 9% of the HF-OC); and an old pool that
largely resists decomposition. So far, no data exists on type and binding energy in MOAs from
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permafrost soils and the data presented in this study only allows indirect conclusions. Never-
theless, it appears reasonable that the fast cycling pool is hold by weaker chemical bindings
(such as outersphere complexes) while the old pool is held by higher binding energy (such as
inersphere complexes).

Temperature sensitivity expressed as Q10 values was higher in the HF as in the bulk soil
(study III, Fig. 3). According to the principles of kinetic theory, the slow reacting HF-OC re-
quires higher activation energy than the faster reacting bulk-OC containing more easily available
compounds (such as from the MoF) with lower activation energy (Davidson and Janssens, 2006;
Conant et al., 2011). The very low Q10 values in the subsoil, however, did not correspond to the
kinetic theory that the decomposition of more complex OM responds stronger to temperature
than less complex substances (the carbon-quality-temperature hypotheses, Lefévre et al. 2013).
The intrinsic temperature sensitivity, which is the theoretic temperature sensitivity based on the
molecular structure (Davidson and Janssens, 2006), was constrained in the subsoil. As we kept
the conditions in the incubation vessels controlled, the lower apparent temperature sensitivity

(observed temperature sensitivity) in the subsoil must result from control mechanisms others
than environmental constraints. Indeed, metal to C ratios were significantly larger in subsoil
horizons and model results showed strong reduction of OC mineralization by the larger pres-
ence of MOAs interacting with clay sized minerals and organically complexed Fe (study III,
Fig S7 and 5). These results confirm the attenuating effect of MOAs on the intrinsic temper-
ature sensitivity of SOM in mineral horizons of permafrost soils. In line with Gillabel et al.
(2010), it is possible to hypothesise that the observed lower Q10 values in the subsoil originates
from SOM protection in MOAs rather than from microbial properties or other nutrient limita-
tions. Therefore, the nutrient limitation that have been observed (Wild et al., 2014, and Wild
et al. in preparation) might not exclusively be the result of the low ecosystem productivity. An
indirect effect might be nutrient fixation, for example in the interlayer of 2 : 1 clay minerals or
the intra-particular pore space between Fe-Al-oxides.

Rising temperatures will not only stimulate soil microorganism activity in arctic ecosystems,
but also plant species migration, litter production, and inputs of easily assimilable rhizospheric
substrates (Hartley et al., 2012; Schuur et al., 2007). The newly arriving C and N sources pro-
vide microorganisms additional energy for C- and nutrient mining in substrates. Under those
scenarios, the high stocks of OM in permafrost soils that are currently lacking accessibility by
their chemical composition (LF) or interactions with minerals (HF) are likely to be subject of
stimulated decomposition. The big unknown, however, is the moisture stage that will remain af-
ter the permafrost regime disappears or equilibrates. The relevance of the oxygen availability on
SOC mineralization in permafrost soils was addressed by (Elberling et al., 2013). The authors
highlighted from 12 years incubation at 5°C only 9% OC loss at nearly saturated conditions
while 75% was mineralized under aerobe conditions.

Most of the current models predict soil drainage and reduced soil moisture (e.g. Sushama
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et al., 2007; Olefeldt et al., 2013; Lawrence et al., 2015) and under those conditions our experi-
ments demonstrated that the fast cycling SOM pools can be consumed within short time. Oxy-
gen availability and more frequent freeze-thaw-cycles in the soils will likely enhance physic-
ochemical and cryogenic weathering and give rise to the neoformation and transformation of
Fe-Al-oxides and clay minerals (Ping et al., 2015). Further, the availability of oxygen will
form rapidly new mineral-organic associations by adsorption or coprecipitation processes and
reduce the SOM accessibility. Mineral-organic associations are supposed to attenuate the effect
of stimulated SOM decomposition in mineral horizons including the permafrost. Most of the
current biogeochemical models use a globally constant Q10 value to predict soil respiration and
SOC losses over the next centuries. Recently, progress has been made to distinguish specific
Q10 ranges for different biomes and Zhou et al. (2009) reported projections from 1.4 to 2.0,
with the highest value in tundra and the lowest value in deserts. The results from this study
suggest that beside spatial differentiation of Q10 ranges, the vertical adaption of Q10 values to
soil properties is recommended. The inclusion of a soil depth depending temperature sensitiv-
ity on OC mineralization could help to predict the response of arctic and global SOC stocks
to expected climate changes more precisely. Unfortunately, the current available studies of
SOM decomposition to increasing temperature are often contradictory and no common consent
have been found so far (Conant et al., 2011). Despite this study provided new insights on this
topic, future studies are highly recommended to proof the validity of the results across different
ecosystems.
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5.4 Conclusions

This is the first study providing a comprehensive dataset on SOM storage, structural and chem-
ical composition, decomposability, and temperature sensitivity about all major horizons of per-
mafrost soils across the Siberian Arctic. In the course of the study an overall picture was drawn
on potential stabilization and destabilization processes of SOM in permafrost soils. The initial
research hypotheses, as addressed in sect. 1.6, need to be partly revised in the next paragraphs.

Response to H1 Physical and chemical weathering, are highly relevant under the unique
cryogenic processes in cold environmental soils and the term cryogenic weathering ap-
pears to be appropriate. Production and transformation of pedogenic minerals were ob-
served in the investigated soils and their content did not deviate from temperate soils.
With respect to the long history of soil development the weathering intensity was low but
detectable.

Response to H2 Soil OC in MOAs was the dominant SOC fraction in mineral soil horizons
of permafrost soils. Comparing the high HF-OC stocks in Gelisols to temperate soils,
this study found even larger HF-OC stocks than in highly developed temperate soils. The
formation of MOAs was found to attenuate the temperature sensitivity of SOC to decom-
position. Mineral-organic associations are strong mechanisms for SOC stabilization in
permafrost soils and are very likely to mitigate the permafrost carbon feedback.

Response to H3 Soil OM in subsoil horizons of permafrost soils was affected by decom-
position and shows gradients of consecutive transformation with soil depth. Residues
of microorganism origin were largely recovered in the HF and considerable proportions
of coarse plant debris (LF) were found in all horizons. Structural and chemical trans-
formation of the LF in the subsoil results in reduced bioavailability compared to topsoil
horizons. High bioavailable OC pools were found particularly in the organic topsoil and
the permafrost and environmental constraints prevent their decomposition. Activation of
the easily accessible OC pools from permafrost soils will likely amplify the permafrost
carbon feedback.

In summary, the response of mineral permafrost soils to climate change depends on how strong
the current constraints on SOM decomposition will be modified. This study suggests higher
bioavailability of SOM upon larger oxygen availability in the permafrost soil system. Mineral-
organic associations, however, are able to attenuate the temperature response of SOM decom-
position. The challenge is now to validate those results for circum-Arctic permafrost soils and
include them to models on the vulnerability of SOM in permafrost environments.
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H., Shibistova, O., Urich, T., Watzka, M., Zrazhevskaya, G., and Richter, A.: Input of
easily available organic C and N stimulates microbial decomposition of soil organic mat-
ter in arctic permafrost soil, Soil Biology and Biochemistry, 75, 143–151, doi:10.1016/
j.soilbio.2014.04.014, URL http://www.sciencedirect.com/science/article/pii/

S0038071714001345, 2014.

Wilson, M. J.: The origin and formation of clay minerals in soils: past, present and future
perspectives, Clay Minerals, 34, 7–7, doi:10.1180/000985599545957, 1999.

WRB, I.: World Reference Base for Soil Resources 2014. International soil classification system
for naming soils and creating legends for soil maps., World Soil Resources Reports No. 106.,
Food and Agriculture Organization, Rome, 2014.

Zhou, T., Shi, P., Hui, D., and Luo, Y.: Global pattern of temperature sensitivity of soil het-
erotrophic respiration (Q10) and its implications for carbon-climate feedback, Journal of
Geophysical Research: Biogeosciences, 114, G02 016, doi:10.1029/2008JG000850, URL
http://onlinelibrary.wiley.com/doi/10.1029/2008JG000850/abstract, 2009.

170



APPENDIX

Eidesstattliche Erklährung

Ich erkläre an Eides statt, dass ich die bei der Naturwissenschaftliche Fakultät der Gottfried
Wilhelm Leibniz Universität Hannover zur Promotionsprüfung vorgelegte Arbeit mit dem Titel:

Sensitivity of soil organic matter in cryoturbated arctic soils against permafrost thaw

am Lehrstuhl für Bodenkunde unter der Anleitung und Betreuung von Prof. Dr. Georg Guggen-
berger gemäß §6(1) der Promotionsordnung eigenständig verfasst habe. Ich versichere, dass
ich keine anderen, außer den genannten Literaturquellen und Hilfsmitteln, verwendet habe. Ich
habe die Dissertation in dieser oder ähnlicher Form in keinem anderen Prüfungsverfahren als
Prüfungsleistung vorgelegt.

171



LEBENSLAUF  

Dipl. Geogr. Norman Gentsch  
 
 
 
 

Persönliche Daten  

Name : Norman Gentsch  

Adresse : Dannenbergstraße 14  
30459 Hannover 

Telefon:  +49 0176 23848202 
E-Mail: gentsch@ifbk.uni-hannover.de 

Geburtsdatum: 29. September 1980 

Geburtsort: Altenburg 

Nationalität : deutsch  

Familienstand: ledig 
 

Bildungsweg 
10/2002-10/2010 Diplomstudium, Universität Leipzig , Institut für Geographie 

Hauptfach: Physische Geographie 
Nebenfach 1: Geologie  
Nebenfach 2: Ost- und Südosteuropawissenschaften  
Abschlussnote: 1,2 
Titel der Abschussarbeit: “Landscape controls of organic carbon 
content and fraction composition in permafrost soils, Central 
Siberia”  
 

08/1997-06/2000 Platanengymnasium Altenburg, mathematisch- 
naturwissenschaftliches Profil, allgemeine Hochschulreife 
 

08/1987-06/1997 Grund- und Regelschule Langenleuba-Niederhain, Mittlere Reife 
 

Berufserfahrung 
Seit 07/2011 Wissenschaftlicher Mitarbeiter Leibniz Universität Hannover, 

Institut für Bodenkunde, Abteilung für Bodenchemie  
  

01/2008-06/2011 Freiberuflicher Mitarbeiter, Vermessungs- und 
Projektmanagement Andreas Schmidt, Naunhof (bei Leipzig) 

 

Militärdienst 
07/2000 – 06/2002 Wehrdienst: 2. KRK Transportbataillon 133 Erfurt, Militär- und 

Zivilkraftfahrer für Gefahrguttransporte 



Expeditionen und Studienaufenthalte   
06-09/2012 Feldexpedition West Sibirisches Tiefland, Russland, 

Vegetations- und Bodenkundliche Untersuchungen, Entnahme 
von Bodenproben, Institut für Bodenkunde, Hannover 
 

01-02/2012 Feldexpedition Neuseeland,  Bodenkundliche Untersuchungen 
und Entnahme von Bodenproben, Institut für Bodenkunde, 
Hannover 
 

07-10/2011 Feldexpedition Taimyr Halbinsel, Zentralsibirien, Russland. 
Vegetations- und Bodenkundliche Untersuchungen, Entnahme 
von Bodenproben, Institut für Bodenkunde, Hannover 
 

07-10/2009 
 
 

Forschungsaufenthalt in Zentralsibirien, Anfertigung der 
Diplomarbeit am „V.N. Sukachev Institute of Forest“, 
Krasnojarsk, Russland 
 

07-09/2008 
 
 

Feldexpedition Zentralsibirisches Bergland, Messungen zur 
Parametrisierung von klimabeeinflussenden Umweltfaktoren, 
Max-Planck-Institut für Biogeochemie, Jena 
 

08-09/2007 Studienaufenthalt Teneriffa, Spanien, geomorphologische- und 
bodenkundliche Untersuchungen, Institut für Geographie, Leipzig 
  

Förderung 
07-10/2009 

 
DAAD Stipendium 

01/2012-01/2015 Promotionsförderung, Evangelisches Studienwerk Villigst 
 

Veröffentlichungen  

 

Čapek, P., Diáková, K., Dickopp, J.-E., Bárta, J., Wild, B., Schnecker, J., Alves, R. J. E., 
Aiglsdorfer, S., Guggenberger, G., Gentsch, N., Hugelius, G., Lashchinsky, N., Gittel, A., 
Schleper, C., Mikutta, R., Palmtag, J., Shibistova, O., Urich, T., Richter, A. and Šantrůčková, 
H.: The effect of warming on the vulnerability of subducted organic carbon in arctic soils, Soil 
Biol. Biochem., 90, 19–29, doi:10.1016/j.soilbio.2015.07.013, 2015. 

Gentsch, N.: Permafrost Soils in Central Siberia : Landscape Controls on Soil Organic 
Carbon Storage in a Light Taiga Biome, Akademische Verlagsgemeinschaft München.  

Gentsch, N., Mikutta, R., Shibistova, O., Wild, B., Schnecker, J., Richter, A., Urich, T., Gittel, 
A., Šantrůčková, H., Bárta, J., Lashchinskiy, N., Mueller, C. W., Fuß, R. and Guggenberger, 
G.: Properties and bioavailability of particulate and mineral-associated organic matter in 
Arctic permafrost soils, Lower Kolyma Region, Russia, Eur. J. Soil Sci., 66, 722–734, 
doi:10.1111/ejss.12269, 2015a. 

 



Gentsch, N., Mikutta, R., Alves, R. J. E., Barta, J., Čapek, P., Gittel, A., Hugelius, G., Kuhry, 
P., Lashchinskiy, N., Palmtag, J., Richter, A., Šantrůčková, H., Schnecker, J., Shibistova, O., 
Urich, T., Wild, B. and Guggenberger, G.: Storage and transformation of organic matter 
fractions in cryoturbated permafrost soils across the Siberian Arctic, Biogeosciences, 12(14), 
4525–4542, doi:10.5194/bg-12-4525-2015, 2015b. 

Gittel, A., Bárta, J., Kohoutová, I., Mikutta, R., Owens, S., Gilbert, J., Schnecker, J., Wild, B., 
Hannisdal, B., Maerz, J., Lashchinskiy, N., Čapek, P., Šantrůčková, H., Gentsch, N., 
Shibistova, O., Guggenberger, G., Richter, A., Torsvik, V. L., Schleper, C. and Urich, T.: 
Distinct microbial communities associated with buried soils in the Siberian tundra, ISME J., 
8(4), 841–853, 2014. 

Schnecker, J., Wild, B., Hofhansl, F., Eloy Alves, R. J., Barta, J., Capek, P., Fuchslueger, L., 
Gentsch, N., Gittel, A., Guggenberger, G., Hofer, A., Kienzl, S., Knoltsch, A., Lashchinskiy, 
N., Mikutta, R., Santruckova, H., Shibistova, O., Takriti, M., Urich, T., Weltin, G. and Richter, 
A.: Effects of Soil Organic Matter Properties and Microbial Community Composition on 
Enzyme Activities in Cryoturbated Arctic Soils, PLoS ONE, 9(4), e94076, 
doi:10.1371/journal.pone.0094076, 2014. 

Schnecker, J., Wild, B., Takriti, M., Eloy Alves, R. J., Gentsch, N., Gittel, A., Hofer, A., Klaus, 
K., Knoltsch, A., Lashchinskiy, N., Mikutta, R. and Richter, A.: Microbial community 
composition shapes enzyme patterns in topsoil and subsoil horizons along a latitudinal 
transect in Western Siberia, Soil Biol. Biochem., 83, 106–115, 
doi:10.1016/j.soilbio.2015.01.016, 2015. 

Turner, S., Schippers, A., Meyer-Stüve, S., Guggenberger, G., Gentsch, N., Dohrmann, R., 
Condron, L. M., Eger, A., Almond, P. C., Peltzer, D. A., Richardson, S. J. and Mikutta, R.: 
Mineralogical impact on long-term patterns of soil nitrogen and phosphorus enzyme 
activities, Soil Biol. Biochem., 68, 31–43, doi:10.1016/j.soilbio.2013.09.016, 2014. 

Wild, B., Schnecker, J., Alves, R. J. E., Barsukov, P., Bárta, J., Čapek, P., Gentsch, N., 
Gittel, A., Guggenberger, G., Lashchinskiy, N., Mikutta, R., Rusalimova, O., Šantrůčková, H., 
Shibistova, O., Urich, T., Watzka, M., Zrazhevskaya, G. and Richter, A.: Input of easily 
available organic C and N stimulates microbial decomposition of soil organic matter in arctic 
permafrost soil, Soil Biol. Biochem., 75, 143–151, doi:10.1016/j.soilbio.2014.04.014, 2014. 

Wild, B., Schnecker, J., Knoltsch, A., Takriti, M., Mooshammer, M., Gentsch, N., Mikutta, R., 
Alves, R. J. E., Gittel, A., Lashchinskiy, N. and Richter, A.: Microbial nitrogen dynamics in 
organic and mineral soil horizons along a latitudinal transect in western Siberia, Glob. 
Biogeochem. Cycles, 2015GB005084, doi:10.1002/2015GB005084, 2015. 

 

 

 

 

 

 

 

 

 

 

 

 




