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Abstract

Faithful conversion of quantum signals between microwave and optical frequencies is
crucial for building quantum networks based on superconducting circuits and for detection
of weak microwave signals. A promising route towards this task uses transducers based on
mechanical oscillators, which interact with light via radiation pressure and with microwave
fields by electrostatic forces. Existing theoretical proposals and experimental efforts
focus on two avenues towards optomechanical transduction: time-independent schemes
for conversion of propagating fields or state transfer via adiabatic passage. The former
approach results in simple experimental setups but its applicability is limited by narrow
conversion bandwidth. The latter strategy avoids this problem; nevertheless, this gain
requires complex time-dependent control schemes and strong opto- and electromechanical
coupling, which is out of reach for current systems. In an ideal optomechanical transducer,
we would like to combine the advantages of both strategies, namely large bandwidth and
simple, time-independent control.

In this dissertation, I tackle this challenge and develop two schemes for quantum
networking of superconducting circuits based on two different tactics. In the first case,
the transducer is optimized for a specific task: generation of entanglement between two
superconducting qubits. I show how two established experimental techniques—parity
measurements on superconducting qubits and optomechanical force sensing—can be
combined to create a conceptually simple device, in which entanglement between the
qubits is generated by measurement and postselection. Second, I demonstrate that an
array of optomechanical transducers is capable of converting arbitrary input signals within
a large bandwidth. The conversion process is based on adiabatic passage but, unlike
existing proposals, uses spatial (and not temporal) variation of the system parameters. This
approach does not require strong coupling and significantly reduces added noise. Together,
these two protocols pave the way to future quantum networks with superconducting
systems. The scheme for entanglement generation can be implemented with current
experimental technology and is well suited for proof of principle experiments. Large
quantum networks with many nodes will, on the other hand, require transducers capable
of reaching high communication rates. This goal can be achieved with the large bandwidth
of optoelectromechanical arrays.
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Zusammenfassung

Effiziente Umwandlung von Quantensignalen zwischen Mikrowellen- und optischen
Frequenzen ist erforderlich für den Aufbau von Quantennetzwerken supraleitender Schalt-
kreise und zur Messung schwacher Mikrowellensignale. Einen vielversprechenden Weg
zur Lösung dieser Aufgabe bieten Transducer auf Basis mechanischer Oszillatoren, die mit
Licht durch Strahlungsdruck und mit Mikrowellenfeldern durch elektrostatische Kräfte
wechselwirken. Bestehende theoretische und experimentelle Arbeiten konzentrieren
sich auf zwei Vorgehensweisen zur optomechanischen Transduktion: zeitunabhängige
Protokolle zur Umwandlung propagierender Felder sowie Zustandsübertragung durch
adiabatischen Übergang. Ersteres führt zu einfachen experimentellen Aufbauten, deren
Anwendbarkeit jedoch durch eine schmale Bandbreite begrenzt ist. Letzteres vermeidet
dieses Problem, aber erfordert komplexe zeitabhängige Regelschemata und starke opto-
und elektromechanische Kopplung, die mit heutigen Systemen nicht erreichbar ist. In
einem idealen optomechanischen Transducer möchten wir die Vorteile beider Strategien,
nämlich große Bandbreite und einfache, zeitunabhängige Steuerung, kombinieren.

In dieser Dissertation stelle ich mich dieser Herausforderung und entwickle zwei
Schemata für die Vernetzung supraleitender Schaltkreise. Im ersten Falle ist der Trans-
ducer für eine bestimmte Aufgabe optimiert: Erzeugung von Verschränkung zwischen
zwei supraleitenden Qubits. Ich zeige, wie zwei etablierte experimentelle Methoden –
Paritätsmessungen auf supraleitenden Qubits und optomechanische Kraftmessung – kom-
biniert werden können, um ein konzeptionell einfaches Gerät zu schaffen, in dem die Ver-
schränkung zwischen den Qubits durch Messung und Postselektion erzeugt wird. Zweitens
zeige ich, dass beliebige Quantensignale innerhalb einer großen Bandbreite in einem Array
optomechanischer Transducer konvertiert werden können. Der Prozess basiert auf adia-
batischem Übergang, verwendet aber im Gegensatz zu bestehenden Strategien räumliche
(und nicht zeitliche) Variation der Systemparameter. Diese Methode erfordert keine starke
Kopplung und reduziert erheblich das zusätzliche Rauschen. Gemeinsam weisen diese
beiden Protokolle den Weg zu zukünftigen Quantennetzwerken mit supraleitenden Syste-
men. Das Schema für die Verschränkungserzeugung kann mit aktueller experimenteller
Technologie umgesetzt werden. Andererseits werden große Quantennetzwerke mit vielen
Knoten Transducer benötigen, die hohe Kommunikationsraten erreichen können. Dieses
Ziel kann mit der großen Bandbreite optoelektromechanischer Arrays erreicht werden.

Schlagwörter: Optomechanik, hybride Quantensysteme, Frequenzkonversion
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Shrnutí

Supravodivé elektronické obvody patří mezi nejslibnější kandidáty pro systémy umožňující
kvantové zpracování informace. S využitím Josephsonových přechodů je možné vytvařet
nelineární obvody, které se chovají podobně jako jednotlivé atomy a mohou tak být využity
jako kvantové bity v kvantových počítačích. Kvantové počítače pak umožňují efektivně
řešit problémy, které jsou neřešitelné na počítačích klasických, a měly by nám tak mimo
jiné pomoci s hlubším porozuměním mnoha problémů moderní fyziky, chemie a biologie.
Supravodivé obvody je s velkou přesností možné kontrolovat pomocí mikrovlnných
signálů, což ale představuje zásadní problém při tvorbě kvantových komunikačních sítí,
neboť efektivní kvantová komunikace vyžaduje signály o optických frekvencích, které, na
rozdíl od signálů mikrovlnných, nejsou při pokojové teplotě vystaveny termálnímu šumu.

Výzkum v oblasti kvantového zpracování informace se v posledních letech zaměřuje na
problematiku hybridních kvantových systémů, ve kterých jsou odlišné kvantové systémy
zkombinovány tak, aby výsledné zařízení využívalo výhody jednotlivých podsystémů.
Pozornosti tak neunikla ani otázka převodu elektromagnetických kvantových signálů
mezi jednotlivými frekvenčními oblastmi, obzvlášť mezi mikrovlnami a světlem. Jako
nejperspektivnější systémy pro frekvenční konverzi se v současnosti jeví mechanické
oscilátory, které interagují se světlem díky tlaku záření a s mikrovlnnými poli pomocí
elektrostatických sil. Teoretické i experimentální práce se zaměřují buď na časově nezávislé
protokoly založené na optomechanicky indukované transparenci, které však operují pouze
v silně omezené šířce pásma, nebo strategie využívající adiabatický přechod, jež sice mohou
dosáhnout výrazně větší šířky pásma, ale vyžadují složitá časově proměnná kontrolní
schémata a silnou optomechanickou a elektromechanickou interakci; experimentální
realizace těchto systémů je tak podstatně složitější než u protokolů využívajících časově
nezávislé interakce. V ideálním konvertoru bychom přitom chtěli zkombinovat výhody
obou přístupů: velkou šířku pásma a časově nezávislé kontrolní schéma.

V rámci této disertaci se věnuji tomuto problému a představuji dva nové protokoly pro
stavbu kvantových komunikačních sítí se supravodivými čipy založené na časově nezávislé
kontrole. První schéma využívá optomechanický konvertor, který je optimalizovaný
pro jeden konkrétní účel – generaci kvantové provázanosti (entanglementu) mezi dvěma
supravodivými kvantovými bity. Ukazuji, jak je možné zkombinovat dvě etablované
experimentální techniky – měření parity dvou supravodivých kvantových bitů a optome-
chanickou detekci slabých sil – a vytvořit tak konceptuálně jednoduchý systém, v němž
je kvantová provázanost generována pomocí měření a postselekce. Entanglement je pak
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možno využít pro teleportaci kvantových stavů nebo pro kvantové zpracování informace
distribuované přes několik izolovaných kvantových procesorů. V druhém případě se
věnuji problematice konverze libovolných signálů a ukazuji, že je možné zlepšit šířku
pásma konverze v jednorozměrné řadě optomechanických konvertorů. Tento proces je
založen na adiabatické konverzi signálu, využívá však, na rozdíl od standardních protokolů,
prostorově (a nikoli časově) proměnné parametry. Adiabaticita tohoto systému současně
pomáhá výrazně redukovat šum, který vstupuje do systému z termálních rezervoárů
mechanických oscilátorů. Frekvenční konverzi libovolných kvantových signálů lze použít
pro kvantovou komunikaci a distribuci kvantové provázanosti mezi jednotlivými uzly
kvantové sítě.

Společně oba protokoly ukazují cestu k tvorbě sítí pro kvantovou komunikaci se
supravodivými obvody. První zmíněný protokol pro tvorbu entanglementu mezi dvěma
supravodivými kvantovými bity je možné implementovat se současnou technologií a je
tak vhodný pro tvorbu prvních kvantových sítí. V delším časovém horizontu bude však
třeba vyvinout protokoly umožňující rychlou a efektivní komunikaci mezi mnoha uzly.
Tohoto cíle je možné dosáhnout s frekvenčním multiplexováním, podobně jako u sítí pro
klasickou komunikaci. Převodníky pro tyto systémy tedy budou muset pracovat ve velké
šířce pásma; tato podmínka je splněna u druhého zmiňovaného projektu – konverotru na
bázi jednorozměrných optoelektromechanických řad.
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Introduction

Quantum physics is set to revolutionize the way we collect, process, and transfer in-
formation. Using nonclassical states, we can make measurements with unprecedented
precision, quantum parallelism promises an exponential speedup for calculations, and the
impossibility of cloning of quantum states enables unconditionally secure communica-
tion. Hundred years after the birth of quantum mechanics, we are witnessing the second
quantum revolution [1]—we not only understand how microscopic systems behave but we
can also use this behaviour to encode and process information.

The field of quantum information matures fast and many commercial applications
are already available (or will be in the near future) [2–4]. This progress goes hand in
hand with increased national [5, 6] and international funding [7–10] into both basic
and applied research of quantum physics and quantum information. The emerging
quantum technologies can be divided into the following four categories: quantum sensing
[11, 12], quantum communication [13, 14], quantum simulation [15, 16], and quantum
computing [17].

One of the best platforms for quantum measurements are mechanical oscillators. Pre-
paration of nonclassical mechanical states for quantum metrology is extremely challenging
but this drawback is compensated by the large susceptibility of mechanical motion to
various external forces. Additionally, mechanical oscillations can be actuated and read
out using optical and microwave fields, enabling highly sensitive measurements of their
position [18]. The most striking example of such a measurement is the recent detection of
gravitation waves where mechanical displacement of 10−20 metre has been detected with
massive, 40-kilogram mirrors [19]. But mechanical oscillators are not the only system
suitable for quantum limited measurements. Another possibility for quantum sensing lies
in using solid-state spins, such as nitrogen–vacancy centres [20, 21]. These systems are well
isolated from their environment and can be addressed optically.

Light is the only medium suitable for quantum communication owing to its high
propagation speed, low loss, and negligible thermal noise. Both discrete- [22] and
continuous-variable [23, 24] degrees of freedom (such as polarization or time-bin en-
coded pulses for the former and amplitude and phase quadratures for the latter) can be
used to encode and transmit information. These systems have been successfully used for
quantum key distribution with increasing distance [25–27] or to distribute entanglement
to two distant parties, enabling quantum teleportation [28–30] or violation of Bell inequal-
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2 Introduction

ities [31–34]. Light can also be used to construct networks of other quantum systems such
as atoms and solid-state spins [35–38].

Quantum simulation enables us to study problems that cannot be simulated on clas-
sical computers. Simulators can thus bring increased understanding of various models in
condensed-matter physics, lattice gauge theories, or chemical reactions. In the two com-
mon approaches, one can either create a quantum system whose dynamics closely mimic
the system one wants to understand (analog quantum simulation) or encode the simulation
into gates applied to quantum bits (digital quantum simulation); particularly the latter
approach can be seen as an important step towards building a universal quantum computer.
Among the most interesting platforms for quantum simulation are neutral atoms in optical
lattices that closely resemble crystalline structure of solid-state systems, superconducting
circuits [39, 40] and trapped ions [41] owing to their suitability for quantum comput-
ing (discussed below), and light where the difficulty of implementing photon–photon
interactions is compensated by low losses and easy manipulation of individual qubits [42].

Finally, the most promising approaches to quantum computing rely on two-level
systems, similar to classical computers. Quantum bits formed by trapped ions can be
controlled by light and microwave fields [43, 44]. Nevertheless, larger systems require
sophisticated trap designs, possibly with the ions being shuffled around between storage and
interaction regions [45, 46]. Recently, superconducting circuits emerged as the workhorse
of quantum computing [47–49]; in these systems, Josephson tunnel junctions can be used
to build qubits, owing to their strongly nonlinear response to electric fields. Fabrication of
these systems is well mastered and they can reach strong coupling to microwave fields that
are used to control them. Experiments in recent years demonstrated quantum gates with
several superconducting qubits [50–53], basic quantum algorithms [54–56], and quantum
error correction [57–60].

This short overview reveals a problem with future quantum technologies: differ-
ent quantum systems are suitable for different tasks. Quantum states of light can be
well transmitted over macroscopic distances thanks to fast propagation, low noise, and
weak interactions with the surrounding environment. Yet, it is precisely this lack of
coupling that makes it virtually impossible to use light for processing of quantum informa-
tion. On the other hand, superconducting circuits are extremely suitable candidates for
quantum processors but their coupling to microwave fields prohibits their coupling to
room-temperature quantum channels for communication across macroscopic distances
(although short-distance communication is possible at microwave frequencies [61, 62]).

As a result, research in the past years started to focus on combining various quantum
systems into larger, hybrid devices that combine the advantages of their subsystems [63–
65]. An interface between a superconducting circuit and light, for instance, offers the
possibility of fast quantum information processing and its transmission over macroscopic
distances. The link between microwave and optical frequencies can be provided by atomic,
molecular, and solid-state impurity spins [66–73], magnons in ferromagnetic materials
[74], electrooptic modulators [75–77], or mechanical oscillators [78–87].
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Of all these hybrid devices, optomechanical transducers are the most developed. In
these systems, an optical cavity and a microwave resonator couple to the same mechanical
oscillator; radiation pressure and electrostatic force result in dispersive interaction in
which the position of the mechanical oscillator determines the resonance frequency of the
electromagnetic resonator [18]. This nonlinear interaction is typically weak but can be
enhanced by a strong classical driving field. A large steady-state amplitude of the cavity
field leads to linearized interaction where Stokes and anti-Stokes scattering of the pump on
phonons results in creation of photon–phonon pairs or exchange of excitations between
the cavity field and the mechanical motion. The relative weight of the two processes can
be changed by driving the system on one of the mechanical sidebands; driving on the
lower mechanical sideband results in an effective beam splitter-like interaction between
the mechanical motion and cavity field. Quantum states can be transmitted between two
cavity fields coupled to the same mechanical oscillator by a sequence of π-pulses [88]
or using adiabatic passage with a mechanically dark mode [79, 80]; practical application
of these strategies requires first storing the signal in one of the cavities, which can be
technically challenging.

This problem can be avoided by using the mechanically dark mode for conversion of
propagating fields using interference effects similar to optomechanically induced transpar-
ency [79, 80, 82]. The bandwidth of this conversion process, however, is limited to the
optomechanically broadened mechanical linewidth which is, in any practical application,
just a small fraction of the linewidth of the electromagnetic resonator. For applications
in quantum information processing, the issue of storage can also be partially avoided
by coupling a superconducting qubit directly to the mechanical oscillator [78]. In this
situation, we do not need to transmit the microwave signals from the qubit to a resonator,
simplifying the system and relaxing our requirements on experimental parameters. Ex-
isting schemes for coupling superconducting qubits to light—either directly [78] or via
microwave resonators [89, 90]—assume adiabatic state transfer between the superconduct-
ing and optical systems. Such strategies are robust against small imperfections in pulse
shapes but require limiting decoherence to levels unthinkable with current technology.

The aim of this dissertation is to address these limitations of optomechanical transduc-
tion and to develop new strategies for frequency conversion in hybrid optoelectromechan-
ical systems. To this end, I follow two complementary approaches: optimizing transduc-
tion for a specific task and designing new devices for general-purpose frequency conversion.
When we abandon the idea of a universal transducer and focus on a single application, we
can find novel, surprisingly efficient strategies by combining well-known experimental
techniques. I will show that entanglement between two superconducting qubits can be
generated when we combine parity measurements [91, 92] with optomechanical force
sensing [93, 94]. For efficient entanglement generation, only optomechanical cooperativ-
ity moderately larger than unity and sufficient qubit lifetimes are necessary [95]; both
requirements can be fulfilled with current technology. On the other hand, new strategy for
frequency conversion of propagating electromagnetic fields can be inspired by combining
adiabatic state transfer with approach based on optomechanically induced transparency.



4 Introduction

The resulting device enables adiabatic conversion of propagating fields in an array of
optomechanical transducers. Admittedly, such a device is challenging to implement but
this disadvantage is outweighed by the conversion bandwidth that grows with the array
size, which also helps to suppress the added noise [96].

Outline of the dissertation The main prerequisite to developing hybrid quantum
devices is a deep understanding of their individual constituents and the ways they can
be coupled to each other. I therefore introduce the systems I will use throughout the
dissertation in chapter 1. I start by reviewing cavity optomechanics and electromechanics
and showing how these platforms can be combined to build a frequency converter between
microwaves and light. The second important field I will work with is circuit quantum
electrodynamics. I show how superconducting electrical circuits can be quantized and
how Josephson junctions can be used to build effective two-level systems. I then discuss
approaches to coupling superconducting circuits with mechanical oscillators—both with
coupling to light and without it. The former can be used to build an interface between
superconducting qubits and light; the latter allows for measurements and control of
superconducting qubits using mechanical oscillators or using superconducting qubits as
nonlinear controllers of mechanical motion. Finally, I also briefly discuss main research
efforts with other kinds of hybrid systems, in which, for instance, superconducting qubits
are interfaced to light using solid-state spins or where mechanical motion is coupled to
electron spins. This chapter thus does not present any new results but merely reviews
current state of the field.

Chapter 2 introduces the mathematical tools needed to describe hybrid quantum
systems under continuous measurements. I start by developing the formalism of stochastic
master equations (following the approach of Wiseman and Milburn [97]) and review
applications of continuous measurements in optomechanics and circuit quantum electro-
dynamics. Next, I consider the special case of linear quantum dynamics, for which the
description can be greatly simplified; instead of describing the system using its density
matrix, the dynamics can be characterized by the first and second statistical moments
of the canonical operators. I then use these results to adiabatically eliminate Gaussian
dynamics from conditional quantum dynamics of systems containing both Gaussian and
non-Gaussian elements. This chapter is largely (apart from the introduction of the formal-
ism) based on reference [98] where I contributed the main analytical and numerical results;
the general idea was developed together with Denis Vasilyev, who also contributed to the
description of continuous measurements on Gaussian systems.

I apply these results on optomechanical force sensors in chapter 3. Force measurements
to date focus on detecting classical forces through their action on the mechanical oscillator
whose position is monitored using a cavity field. If the force is exerted by a quantum
system, richer physics can be expected due to coherence of such objects and interference
effects when measuring more such systems simultaneously. On the particular case of two
superconducting qubits coupled capacitively to two mechanical oscillators, I show that a
joint measurement can be used to generate entanglement between the qubits [95]. Each
qubit exerts a state-dependent force on the oscillator; joint measurement of the oscillators’
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motion reveals the total spin of the qubits, which leads to conditional generation of
entanglement; this setup thus enables us to build quantum networks with superconducting
systems. In the second part of this chapter, I consider another example, namely quantum
nondemolition detection of single photons. The cavity mode, in which the photon
number is measured, couples nonlinearly to a mechanical oscillator so that the resulting
force depends on the number of photons. I show that such a measurement results in
quantum Zeno effect if the photons arrive into the cavity from an external source and
discuss fundamental detection limits for systems where the incoupling of photons into the
detector can be improved by controlling their pulse shape. This chapter presents the results
of reference [95] where I contributed the main analytical and numerical results; moreover,
it contains alternative schemes for qubit readout and analysis of quantum nondemolition
counting of photons that are not discussed in the publication [95].

Finally, I discuss frequency conversion with an array of optomechanical transducers
in chapter 4. In this system, two waveguides—one for light and one for microwaves—
couple to a one-dimensional array of transducers; at each site, an optical cavity and a
microwave resonator couple to a common mechanical oscillator. Varying the opto- and
electromechanical coupling from site to site, we can achieve efficient adiabatic frequency
conversion between the propagating fields. Remarkably, the conversion bandwidth is
limited only by the adiabatic condition and the error resulting from its discretization;
the conversion bandwidth can be increased by using a larger array. This chapter is based
on reference [96] to which I provided the main analytical and numerical results; Sahand
Mahmoodian contributed to the calculation of conversion bandwidth in a transducer array.
In contrast, the chapter contains an extended discussion of previously proposed schemes
for optomechanical transduction.

A few words on notation Throughout the dissertation, I use hats to distinguish quantum
operators from classical numbers. For instance, x can refer to the expectation value of the
position operator (or to classical position) but never represents the operator itself; that is
denoted by x̂ . Vectors and matrices are denoted using bold roman font with small letters
usually (though not always) used for vectors and capital letters denoting matrices. The vec-
tor of canonical operators is thus written as r̂ (with elements r̂i ) and the covariance matrix
as Γ (which is easy to distinguish from a general decoherence rate Γ). The identity matrix
is denoted In (with the subscript giving the dimensionality) and the identity operator is Î.

Time derivatives of classical numbers are denoted by a dot, ẋ . Since such notation
would clash with the hats worn by quantum operators, those have the derivative written
out either using the standard full notation in displayed equations,

d ρ̂
dt
,

or using the shorthand notation dt ρ̂ when used in line. Finally, the differential d, the
imaginary unit i, and the Euler’s number e are set in roman (and not in cursive) to
distinguish them from the variables d and i and from the elementary charge e . Throughout
the dissertation, I work in the natural units with ~ = 1 unless otherwise noted.





Chapter 1

Hybrid quantum systems

Development of hybrid quantum systems demands a thorough understanding of their
individual constituents. Without understanding how the individual quantum systems
operate, one cannot expect to find practical ways how to combine them in larger devices.
This necessity goes deeper than knowing how to couple these systems; if one does not
understand their internal workings, one cannot be aware of the systems’ main advantages
and limitations. This knowledge is crucial: one can not only find efficient ways to couple
disparate quantum systems but also ensure that the resulting hybrid system will have
interesting applications.

I therefore start my dissertation by giving an overview of the basic building blocks
of systems for quantum networking of superconducting circuits. I start by reviewing
opto- and electromechanical systems in section 1.1; in these devices, a mechanical oscillator
interacts with an electromagnetic field of either optical frequency via radiation pressure or
microwave frequency via electrostatic forces. Although the underlying coupling mechan-
ism is different in both kinds of systems, the mathematical description is identical; in both
cases, the mechanical position linearly shifts the resonance frequency of an electromag-
netic resonator. With a strong driving field, this interaction can be linearized and result
in—depending on the driving frequency—beam splitter-like, quantum nondemolition, or
two-mode squeezing interaction.

In section 1.2, I show how an opto- and electromechanical system can be combined to
build a frequency converter between microwaves and light. I outline existing theoretical
proposals [79, 80, 99]; in this effort, I focus on the most practical approach [79, 80, 82]
in which propagating optical and microwave fields can be bidirectionally converted with
high efficiency and low added noise. I show the main limitations of this approach and
briefly discuss how they can be alleviated in an array of such transducers.

I change topics in section 1.3 by discussing the working principles of superconducting
circuits for quantum information processing. I explain how the strong nonlinearity of
Josephson tunnel junctions can be used to build effective two-level systems and how such
circuits can be described using quantum mechanics.

I then discuss how superconducting qubits can be coupled to mechanical motion in
section 1.4. The mechanism is the same as for electromechanical systems—the mechanical
oscillator forms one electrode of a parallel-plate capacitor—but, owing to the nonlinearity

7
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Figure 1.1: Schematic representation of an optomechanical system. The field inside a Fabry–Perot
cavity exhibits radiation pressure on its mechanically compliant end mirror (shown in yellow).

of the Josephson junctions, richer dynamics can be realized. I also show how such interac-
tions can be used to couple superconducting qubits to light and what the requirements on
such systems are.

Finally, I give a brief overview of other hybrid systems for frequency conversion and
for other applications in section 1.5. Together with the previous sections, this discussion
shows the rich possibilities that hybrid quantum systems offer not only for applications in
quantum information processing but also for investigations of fundamental physics.

1.1 Cavity optomechanics

1.1.1 Optomechanical interaction

We start by considering a Fabry–Perot cavity with an end mirror that is free to move;
see figure 1.1. The position of the mechanical oscillator determines the length of the
cavity and thus the resonance frequency for light. The light intensity, on the other hand,
determines the force with which the oscillator is pushed out of its equilibrium position.
As the mechanical oscillator changes position, the resonance condition for light changes.
This shift results in a new light intensity inside the Fabry–Perot resonator which, in turn,
changes the force acting on the mechanical oscillator and the mechanical displacement.

Mathematically, the interaction is described by the Hamiltonian

Ĥ = ~ωc(x ) â† â +
p2

2m
+

1
2
mω2

mx2 + iE ( âeiωL t+iφ − â†e−iωL t−iφ). (1.1)

The first term describes the cavity field with annihilation operator â and resonance
frequency determined by the (classical) mechanical position x . The second and third
term describe the harmonic motion of the mechanical oscillator of mass m and resonance
frequency ωm. The last term in the Hamiltonian describes driving of the cavity with a
classical field E .

Next, we use the relation between cavity length and its resonance frequency,

ωc(x ) =
c

L + x
, (1.2)
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where L is the equilibrium cavity length. Since the mechanical motion is typically much
smaller than the cavity length, x � L, we can expand the expression (1.2) to first order in
the mechanical displacement,

ωc(x ) ≈
c
L

(
1 −

x
L

)
. (1.3)

If we now quantize the mechanical motion and introduce the annihilation operator
b̂ = ( x̂ + ip̂/mωm)/2xzpf with xzpf =

√
~/2mωm, we can rewrite the Hamiltonian (1.1) as

Ĥ = ~ωc â† â + ~ωmb̂†b̂ − ~g0 â† â(b̂ + b̂†) + iE ( âeiωL t+iφ − â†e−iωL t−iφ) (1.4)

with the optomechanical coupling rate

g0 = ωc
xzpf

L
; (1.5)

by ωc, we denote the equilibrium resonance frequency.
For typical micro- and nanomechanical oscillators, the zero-point motion is extremely

small: for a mechanical frequency of the order of 1 MHz and effective mass of 10 ng, the
zero-point fluctuation is about 0.1 fm. With cavity length L = 10 mm and frequency
ωc ∼ 1015s−1, the coupling strength is g0 ∼ 10 Hz. Such coupling can be larger than the
mechanical decay rate (mechanical oscillators can reach quality factors of several million),
but optical decay by far remains the dominating process in the system.

To enhance the optomechanical coupling, we can use the classical driving of the
cavity mode â at frequency ωL. First, we move to the rotating frame with respect to the
Hamiltonian ~ωL â† â which gets rid of the time-dependence of the driving term in the
Hamiltonian (1.4),

Ĥ = ~∆â† â + ~ωmb̂†b̂ − ~g0 â† â(b̂ + b̂†) + iE ( âeiφ − â†e−iφ) (1.6)

with ∆ = ωL − ωc. Rigorous treatment of the cavity drive now requires us to write the
classical equations of motion for the cavity field and the mechanical oscillator [apart from
the dynamics described by the Hamiltonian (1.6), the cavity field decays at a rate κ and
the mechanical motion at a rate γ ] and find the new steady state [100].

In this dissertation, however, we will be interested only in the linearized optomechan-
ical interaction that is the result of this strong driving. To understand this effect, we can
follow this simplified argument: the driving results in a strong, coherent field inside the
cavity with small quantum fluctuations on top of the classical field, â = α + δ â. We now
have

â† â = (α∗ + δ â†)(α + δ â) = |α |2 + α∗δ â + αδ â† + δ â†δ â, (1.7)

which, upon plugging into (1.6), gives rise to three kinds of terms: the first type, propor-
tional to |α |2 > 1 is a classical shift of the zero-point energy of the Hamiltonian ∆|α |2

and of the mechanical equilibrium. The cross terms combining the classical amplitude
and quantum fluctuations give a linearized interaction between the cavity field and the
mechanical motion, −~g0(α∗δ â + αδ â†)(b̂ + b̂†). The last term can be dropped from
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the interaction since it is smaller than the linearized interaction. We thus obtain the
Hamiltonian

Ĥ = ~∆δ â†δ â + ~ωmb̂†b̂ − ~g (δ âe−iϕ + δ â†eiϕ)(b̂ + b̂†) (1.8)

with the coupling enhanced by the strong coherent component, g = g0 |α |, and the
interaction phase ϕ set by the phase of the cavity field α = |α |eiϕ. The phase generally
depends on the phase of the driving field and the field’s detuning from cavity resonance
and can be found by solving the classical equation of motion for the mean field, α = 〈â〉;
in the following, I put ϕ = 0 for simplicity. I will also use â (and not δ â ) to denote the
quantum fluctuations of the cavity field.

The classical driving of the Fabry–Perot resonator that results in the linearized Hamilto-
nian (1.8) provides ample control over the system. Time-dependent driving amplitude
can be used to modulate the optomechanical coupling, which can be used for quantum
nondemolition measurement of the mechanical displacement [101] or for generation of
squeezing [102, 103]. Detuning of the driving field from cavity resonance can lead to
cooling of the mechanical oscillator or to amplification of the mechanical motion.

In the frame rotating with respect to the free evolution of the two oscillators, Ĥ0 =

~∆â† â + ~ωmb̂†b̂ , the interaction Hamiltonian becomes

Ĥint = ~g ( âei∆t + â†e−i∆t )(b̂eiωm t + b̂†e−iωm t )

= ~g
(
âb̂†ei(∆−ωm)t + b̂ â†e−i(∆−ωm)t

)
+ ~g

(
âb̂ei(∆+ωm)t + â†b̂†e−i(∆+ωm)t

)
. (1.9)

Proper choice of the detuning ∆ enables three relevant regimes: By driving the cavity
on the lower mechanical sideband, ∆ = ωm, we bring the first term in equation (1.9) on
resonance. The cavity field and mechanical oscillator exchange excitations; the second
term, describing generation and annihilation of quanta in pairs can be neglected in the
rotating wave approximation (which is valid provided the mechanical sidebands can be
resolved by the cavity, ωm > κ ). The resulting coupling,

ĤBS = ~g ( âb̂† + b̂ â†), (1.10)

describes beam splitter-like interaction between the two systems. Since the cavity is
coupled to a zero-temperature bath while the mechanical oscillator is in contact with
a thermal reservoir, this coupling can be used to cool the mechanical oscillator into its
ground state [104–107]. The interaction also allows state transfer between the cavity field
and the mechanical oscillator, which is crucial for optomechanical transduction.

If we drive the cavity on the upper sideband, ∆ = −ωm, the second term in the
Hamiltonian (1.9) becomes resonant and the first term can be neglected in the rotating
wave approximation. The resulting Hamiltonian

ĤTMS = ~g ( âb̂ + â†b̂†) (1.11)

describes two-mode squeezing interaction between the field and the oscillator. This
coupling can be used to generate entanglement [108], amplify the mechanical motion
[109, 110], or to drive the mechanical oscillator into a limit cycle [111, 112].
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(a) (b) (c)

(d) (f)(e)

Figure 1.2: Overview of optomechanical platforms. (a) Fabry–Perot cavity with a movable end
mirror. (b) Fabry–Perot resonator with a vibrating membrane in the middle. The motion of the
membrane changes the optical path inside the cavity and thus affects the cavity resonance frequency.
(c) An optomechanical crystal. In this nanoscale structure, even small variation of the cavity field or
mechanical displacement affects the other mode, giving rise to strong optomechanical interaction.
(d,e) Whispering gallery resonators. The cavity field can interact with a flexural mode of the
microdisk (d) or its evanescent field couples to a nearby nanobeam via gradient force (e). (f) An lc

resonator with a mechanically compliant capacitor. The mechanical motion shifts the capacitance,
leading to electromechanical coupling with the microwave field stored in the resonator.

Finally, if the system is driven on resonance, ∆ = 0, we are left with the full linearized
Hamiltonian (1.8). In this situation, the mechanical position quadrature (b̂ + b̂†)/

√
2 gets

imprinted onto the phase quadrature of the cavity field, i( â† − â)
√
2. Homodyne detection

of the output field can thus be used to infer the mechanical displacement [113]. In this
regime, sideband resolution is not necessary; on the contrary, large cavity decay enables
fast readout of the mechanical position.

1.1.2 Experimental platforms

The coupling between mechanical motion and light can be realized in a variety of systems;
a Fabry–Perot cavity with a movable end mirror [figure 1.2(a)] is just one example. In most
of these devices, the interaction is described by the Hamiltonian (1.4); this picture is valid
as long as the mechanical oscillations change the optical path of light in a resonator and
the leading-order correction to the resonance frequency is linear. With more complicated
setups, however, other forms of coupling can be achieved; in some systems, the motion of
the end mirrors results in position-dependent decay of the optical field [114].

One of the most versatile optomechanical platforms is a vibrating membrane in the
middle of an optical cavity with fixed length [115]; see figure 1.2(b). The field propagating
through the membrane feels a refractive index that is different from the rest of the cavity;
the motion through the standing wave in the cavity changes the effective refractive index
of the cavity and thus also the resonance frequency. Placing the membrane in the middle
between a minimum and maximum of the standing wave results in the usual linear
interaction whereas membrane placed at the minimum or maximum leads, due to mirror
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symmetry of the field around the extremum, to quadratic coupling [116],

Ĥint = ~g0 â† â(b̂ + b̂†)2. (1.12)

Moreover, with a highly reflecting membrane, two optical modes (with annihilation
operators âR,L ) can form in the right and left half of the cavity; the mechanical oscillator
is subject to radiation pressure from both modes,

Ĥint = ~g0( â†R âR − â†L âL)(b̂ + b̂†). (1.13)

(The minus sign is due to the opposite directions of the radiation pressure from the two
modes.) For normal modes of the cavities â± = ( âR ± âL)/

√
2, the interaction results in

mechanically mediated photon hopping,

Ĥint = ~g0( â†+ â− + â†− â+)(b̂ + b̂†). (1.14)

In this setting, it is possible to reach strong nonlinear coupling if the mechanical frequency
matches the detuning between the cavity fields [117] or to perform quantum nondemoli-
tion measurements of the phonon number [118]. These different forms of coupling that
can be achieved with a vibrating membrane offer interesting possibilities for many experi-
mental applications and illustrate the large variability of optomechanical systems; they
are, however, not directly relevant for the rest of this dissertation where I focus on the
linearized optomechanical interaction.

With cavity implementations of optomechanics, the bare optomechanical coupling is
limited; much stronger coupling can be achieved with nanostructures where the field is
strongly confined. The strongest optomechanical coupling to date has been achieved in
optomechanical crystals. These suspended systems [shown schematically in figure 1.2(c)]
have a periodic structure of holes drilled into the material, creating a band structure
for photons and phonons. By creating a continuous defect in the structure (by slowly
changing the shape and spacing of the holes), it is possible to trap a photonic and a
phononic mode. Owing to strong confinement of both fields and changes in the effective
refractive index caused by the mechanical motion, strong optomechanical coupling can be
realized [119, 120].

Similar coupling rates can be achieved with microdisk optical resonators supporting
whispering gallery modes of light. These structures can either support mechanical modes
themselves [121]—as shown in figure 1.2(d)—or whose cavity modes are coupled to nan-
obeams via evanescent fields [122]; cf. figure 1.2(e). With the micrometer size of these
optomechanical systems, even a small variation of the optical path length strongly affects
the resonance frequency and thus gives rise to strong coupling.

Finally, optomechanical interactions are not limited to electromagnetic fields at optical
frequencies. Using a superconducting microwave lc circuit with mechanically compliant
capacitor [figure 1.2(f)], one can realize the same interaction. With a parallel-plate capacitor
with one electrode formed by a suspended membrane, the capacitance (and thus the
resonance frequency of the circuit) depends on the mechanical position. To leading order,
this dependence is linear and we recover the optomechanical Hamiltonian (1.4) [113, 123].
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1.1.3 Optomechanical force sensing

Mechanical oscillators are susceptible to external forces; they respond to gravitational
fields and can react strongly to an electric or magnetic field if made from a conducting or
magnetic material. Light can be used for precise measurements of mechanical position using
interference. Combining both systems in an optomechanical device thus enables extremely
sensitive measurements of external forces. Owing to the quantum mechanical nature of the
interaction, the sensitivity is limited by an effect akin to Heisenberg uncertainty relation
[11, 18]. Detailed understanding of the measurement sensitivity that these devices can
achieve is critical for many applications, including the scheme for generating entanglement
between two superconducting qubits in chapter 3.

We start by writing the Heisenberg–Langevin equations for the optomechanical system,

dq̂m

dt
= ωm p̂m, (1.15a)

dp̂m

dt
= −ωm q̂m −

√
2g ( â + â†) − γ p̂m + F̂ , (1.15b)

dâ
dt
= −i
√
2g q̂m −

κ

2
â +
√
κ âin. (1.15c)

The mechanical oscillator is described by its quadrature operators q̂m = (b̂ + b̂†)/
√
2,

p̂m = −i(b̂ − b̂†)/
√
2, has a linewidth γ, and is subject to a force having a deterministic part

F̂0 that we are trying to estimate and an unwanted stochastic part f̂th, F̂ = F̂0 + f̂th. The
optical field is described using its annihilation operator â and decay rate κ and is driven
by quantum fluctuations âin with correlations 〈âin(t ) â†in(t ′)〉 = δ (t − t ′). In addition, we
have the following input–output relation for the cavity field:

âout =
√
κ â − âin. (1.16)

To analyse the sensitivity of this optomechanical position measurement, we write the
equations (1.15) in frequency domain,

−iωq̂m − ωm p̂m = 0, (1.17a)

(γ − iω) p̂m + ωm q̂m +
√
2g ( â + â†) = F̂ , (1.17b)(

κ

2
− iω

)
â + i
√
2g q̂m =

√
κ âin; (1.17c)

here, I use the convention Ô (ω) = (1/
√
2π)

∫
dte−iωtÔ (t ) for the Fourier transform.

Using the first two equations, we obtain an expression for the position quadrature

q̂m(ω) = χm(ω)
[
F̂ (ω) −

4g
√
κ

κ − 2iω
q̂in(ω)

]
, (1.18)

where χm(ω) = ωm/(ω2
m − ω

2 − iγω) is the mechanical susceptibility and q̂in(ω) =(
âin(ω) + [ âin(ω)]†

)
/
√
2 is the amplitude quadrature of the fluctuations driving the cavity.
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Figure 1.3: Added optical noise S2
opt = S2

add − S2
th in optomechanical displacement measurement.

(a) Optical noise as a function of frequency for different driving powers [from dark to light g =
(0.002, 0.01, 0.5, 2)ωm ]. For small frequencies, ω < ωm, the sensitivity is limited by backaction
noise; sensitivity at large frequencies is limited by shot noise. The dashed line is the optimum
sensitivity (1.22). (b) Added noise on mechanical resonance versus driving power. For small powers,
the measurement is limited by imprecision noise (dashed green line); backaction noise (dot-dashed
red line) limits sensitivity at high driving powers. The total added noise (solid blue line) is given by
the sum of these two quantities and is minimized when the imprecision and backaction noise are
equal.

The result (1.18) can be used to find the cavity and output field. For the phase
quadrature of the output signal, we get

p̂out(ω) = −i
âout(ω) − â†out(ω)

√
2

=
κ + 2iω
κ − 2iω

p̂in(ω) +
4g
√
κ

κ − 2iω
χm(ω)

[
F̂ (ω) −

4g
√
κ

κ − 2iω
q̂in(ω)

]
. (1.19)

The spectrum of the output phase quadrature, S2
pout (ω) = 1

2

∫
dt 〈[ p̂out(t ), p̂out(0)]+〉eiωt ,

is given by the expression

S2
pout (ω) = S2

pin
(ω) +

16g2κ

κ2 + 4ω2 | χm(ω) |2
[
S2
F (ω) + S2

th(ω) +
16g2κ

κ2 + 4ω2 S
2
qin

(ω)
]
; (1.20)

here, S2
F is the spectrum of the signal F̂0 and S2

th = γ (2n + 1) of the thermal mechanical

fluctuations f̂th. The signal on the detector has four components: the signal S2
F and three

noise contributions coming from the thermal mechanical bath and the amplitude and
phase of the input field. The measurement sensitivity is given by the noise added to the
measured signal,

S2
add(ω) = S2

th(ω) +
16g2κ

κ2 + 4ω2 S
2
qin

(ω) +
κ2 + 4ω2

16g2κ

1
| χm(ω) |2

S2
pin

(ω). (1.21)

The thermal noise can be reduced by working at low temperatures but the optical noise
is more difficult to combat. While the shot noise (coming from the phase uncertainty
associated with S2

pin
) can be reduced by increasing the coupling rate g , this simultaneously

increases the backaction noise [second term in equation (1.21)]. Moreover, the amplitude
and phase noise of the input field are bound by the Heisenberg uncertainty relation,
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S2
qin
S2
pin
≥ 1 (assuming no correlations between the two). The noise is minimized when

the contributions from imprecision and backaction noise are equal; the required coupling
strength is g2

opt = (κ2 + 4ω2)/16κ | χm(ω) | and depends on the frequency component ω are
optimizing for. The added noise then simplifies to

S2
opt(ω) = S2

th(ω) +
2

| χm(ω) |
. (1.22)

For forces acting on mechanical resonance, ω = ωm, the susceptibility simplifies to
χm(ωm) = (−iγ)−1; the measurement sensitivity reaches the standard quantum limit and
the added noise is S2

SQL = S2
th + 2γ. These relations are illustrated in figure 1.3.

1.1.4 Backaction evasion

The noise in amplitude and phase quadratures of light are bound by Heisenberg uncer-
tainty; we cannot reduce one without increasing the other. Each of these noise sources
affects a different mechanical quadrature: the uncertainty in phase limits the precision of
the position measurement while the noisy amplitude quadrature disturbs the mechanical
momentum. This momentum noise affects future evolution of the position [cf. equations
(1.15)], reducing our knowledge of the external force.

The solution that can improve the displacement sensitivity is to measure an operator
that is a constant of motion. The backaction noise will still be present but if it does
not drive the measured operator, it will not disturb the measurement and reduce its
sensitivity. This task can be achieved with an optomechanical cavity driven equally on
both mechanical sidebands [101, 124, 125]. This driving results in modulation of the
optomechanical coupling rate at the mechanical frequency,

Ĥ = ~ωmb̂†b̂ + 2~g cos(ωmt )( â + â†)(b̂ + b̂†). (1.23)

In the rotating frame with respect to the free mechanical oscillations, Ĥ0 = ~ωmb̂†b̂ , we
can drop the fast oscillating terms in the interaction (provided the cavity operates in the
resolved-sideband regime, κ < ωm ) and obtain the quantum nondemolition interaction

Ĥ = ~g ( â + â†)(b̂ + b̂†). (1.24)

This measurement is different from the measurement of the mechanical position in
that we are measuring the operator b̂ + b̂† =

√
2x̂m in the rotating frame. From the nature

of the interaction, it is clear that the measurement backaction (connected with the noise in
the amplitude quadrature of the light, â+ â† ) affects the orthogonal mechanical quadrature,
−i(b̂ − b̂†). Since the position quadrature is a constant of motion, the backaction does not
affect its evolution and the measurement sensitivity is not bound by the standard quantum
limit.

Driving the cavity on both sidebands is not the only possibility to beat the standard
quantum limit. Improved sensitivity can also be achieved with squeezed light. The phase
quadrature is squeezed (reducing the shot noise responsible for measurement insensitivity)
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and sensitivity at the level of the standard quantum limit can be reached with smaller
pump power [126, 127]. The strategy thus allows us to use a weaker driving field to achieve
the same sensitivity; this approach can be beneficial for limiting absorption heating of the
mechanical oscillator.

Another possibility is to measure a different quadrature than the phase quadrature of
the output field; this strategy is known as variational measurement [128, 129]. Such an
approach does not extract the maximum information about the mechanical position; this
drawback is compensated by extracting information about the measurement backaction.

Finally, the standard quantum limit can be surpassed with entanglement [130–133].
In this setting, a second harmonic oscillator (an auxiliary optical cavity or an atomic
cloud) is used as a reference for the measurement. This second oscillator is coupled
to the probe field in the same way but has an effective negative mass; consequently, it
experiences backaction force of equal size but opposite direction. Since both oscillators are
measured simultaneously, the measurement backaction does not affect the joint readout
and sensitivity below the standard quantum limit is possible.

1.2 Frequency conversion between light and microwaves

By combining an opto- and electromechanical system in a single device, we obtain a system
in which the mechanical oscillator mediates interactions between an optical cavity field
and a microwave resonator; see figure 1.4(a,b). This device can serve as a link between the
two frequency regimes, opening a whole plethora of applications. The linearized dynamics
of such a system are given by the Hamiltonian

Ĥ = ~∆1 â†1 â1 +~ωmb̂†b̂ +~∆2 â†2 â2 +~g1( â1 + â†1 )(b̂ + b̂†)+~g2( â2 + â†2 )(b̂ + b̂†); (1.25)

here, â1,2, b̂ are the annihilation operators for the microwave and optical cavity and the
mechanical oscillator. The most straightforward approach is to drive both cavities on the
red sideband, ∆1 = ∆2 = ωm, which leads to state transfer from the optical cavity to the
microwave resonator via the mechanical oscillator (or vice versa),

Ĥ = ~g1( â†1 b̂ + b̂
† â1) + ~g2( â†2 b̂ + b̂

† â2). (1.26)

We can understand the dynamics best using the state space model [80, 82]; we start by
writing the Heisenberg–Langevin equations and the input–output relations in the vector
form

dâ
dt
= Aâ + Bâin, (1.27a)

âout = Câ +Dâin (1.27b)

with the vector â = ( â1, b̂, â2)T (with similar vectors for the input and output fields).
Fourier transforming the operators, we can write the relation between the input and
output fields using the scattering matrix,

âout(ω) = S(ω)âin(ω) = [D −C(A + iωI3)−1B]âin(ω). (1.28)
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(a) (b) (c)

Figure 1.4: (a) Basic optomechanical transducer formed by connecting an optical cavity and a
microwave resonator to a common mechanical oscillator. (b) Schematic representation of the
transducer including waveguides for input and output fields. (c) Transducer array for spatially
adiabatic frequency conversion.

We can find the matrix A from the Hamiltonian and decay,

A =
*.....
,

−
κ1
2
−ig1 0

−ig1 −
γ

2
−ig2

0 −ig2 −
κ2
2

+/////
-

; (1.29)

we further have B = C = diag(
√
κ1,
√
γ,
√
κ2) and D = −I3. We then obtain the scattering

matrix

S(ω) =
*..
,

t1 n1 c
n1 m n2

c n2 t2

+//
-

(1.30)

with coefficients that are, close to cavity resonance, ω ≈ 0, given by

ti =
−Ci +Ci⊕1 + 1
C1 +C2 + 1

, (1.31a)

c = −
2
√
C1C2

C1 +C2 + 1
, (1.31b)

m = −
C1 +C2 − 1
C1 +C2 + 1

, (1.31c)

ni = −
2i
√
Ci

C1 +C2 + 1
, (1.31d)

where we defined the classical cooperativity Ci = 4g2
i /κiγ and ⊕ denotes addition mod-

ulo 2 (i.e., 1 ⊕ 1 = 2, 2 ⊕ 1 = 1).
High conversion efficiency is achieved if |c | ∼ 1; this requires that the opto- and

electromechanical cavities be impedance matched, C1 = C2 > 1. Furthermore, the noise
added during conversion has to be small compared to the signal. Thermal noise is limited
if |ni | < |c | which can be achieved in the strong-cooperativity regime, C = 4g2

i /κiγn > 1.
Additionally, heating through the counterrotating terms is negligible in the resolved-
sideband limit, κi < ωm. Under these conditions, interference prevents any signal that
enters the transducer to leave through the port where it entered and the signal is effectively
decoupled from the noisy mechanical motion. The conversion bandwidth is given by
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the optomechanically broadened mechanical line, ∆ω = γ (C1 +C2 + 1) [134]. I provide
more detailed discussion and derivations of the conversion bandwidth and added noise
in chapter 4 where I compare this basic scheme to frequency conversion in an array of
optomechanical transducers.

Intracavity fields can be efficiently converted using adiabatic state transfer [79, 80]. In
the strong-coupling regime, gi > κi , the dynamics can be diagonalized, resulting in three
normal modes

d̂+ =
1√

2(g2
1 + g2

2 )
(g1 â1 + g2 â2) +

1
√
2
b̂, (1.32a)

d̂− =
1√

2(g2
1 + g2

2 )
(g1 â1 + g2 â2) −

1
√
2
b̂, (1.32b)

d̂2 =
1√

g2
1 + g2

2

(−g2 â1 + g1 â2). (1.32c)

The mode d̂2 is a dark mode of the mechanical motion and is thus insensitive to thermal
mechanical noise. Frequency conversion with the dark mode uses adiabatic passage: start-
ing with a signal in the microwave resonator and optomechanical interaction switched on,
g1 � g2, we gradually lower the optomechanical coupling while turning the electromech-
anical coupling on. At the end of the process, the optomechanical coupling is completely
turned off and the electromechanical coupling is switched on; we thus changed the dark
mode from microwave to optical, d̂2(t = 0) = â1 → d̂2(T ) = −â2.

Advantages of the two approaches—conversion of propagating fields and large band-
width of adiabatic state transfer—can be combined in a single system; see figure 1.4(c).
A one-dimensional array of optomechanical transducers supports a mechanically dark
mode of the two propagating fields. If we slowly vary parameters from one transducer
to the next (e.g., by varying the single-photon coupling of the optical and microwave
cavities), the nature of the normal mode gradually changes, similar to adiabatic conversion
of intracavity fields. I describe this scheme in detail in chapter 4.

When one of the systems is driven on the blue sideband, entanglement between the
two cavity fields can be generated. The Hamiltonian in the rotating frame becomes

Ĥ = ~g1( â1b̂ + â†1 b̂
†) + ~g2( â†2 b̂ + b̂

† â2). (1.33)

The blue-detuned interaction between the microwave resonator field and the mechanical
oscillator generates a two-mode squeezed state of the two modes; the red-detuned interac-
tion of the mechanical oscillator and the optical cavity transfers the mechanical state onto
the microwave field. It is important to keep the red-detuned interaction stronger g2 > g1
for stability; the mechanical excitations have to be transferred from the system faster
than they are being created. The generated entanglement can be used to transmit signals
between the two frequency domains by quantum teleportation [99], to entangle distant
microwave modes by entanglement swapping [135], or for quantum illumination [136].
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Once we established a link between optical and microwave domains, a window of
opportunities opens. We can use the transducer to network distant superconducting chips
[89, 90] or for routing of microwave and optical photons [137]. The transducer can also
be used to improve detection of weak microwave signals [83, 138], including detection of
individual microwave photons [139].

1.3 Circuit quantum electrodynamics

1.3.1 Elements of superconducting systems

Linearly coupled quantum harmonic oscillators—like optical cavities, microwave reson-
ators, or mechanical oscillators—are quantum systems that can be well understood and
controlled. Their main limitation, however, is that they work in the quantum–classical
correspondence regime and cannot be used for universal quantum computing [140]; one
can find a classical description that will give rise to the observed quantum behaviour. To
truly embrace the possibilities of quantum mechanics and open all opportunities it offers,
we need to include at least one nonlinear element.

The ultimate nonlinear device is a two-level system. Such systems can take a broad
range of forms from fermionic spin- 12 systems to atoms with complicated level structures;
the latter can be considered two-level systems owing to the possibility of addressing a single
transition. Particularly atoms and ions are interesting for many quantum experiments
since they can be controlled by electromagnetic fields, giving rise to the field of cavity
quantum electrodynamics [141]. The coupling in such systems is then limited by the mode
volume of the field (limited, in a cavity, to the cube of the wavelength) and the dipole
moment of the atom.

The coupling can be enhanced in artificial solid-state structures. In a conductor
(or a superconductor), the field can be confined well below its wavelength. Artificially
created atoms are mesoscopic structures and thus have largely enhanced dipole moments.
Working with gigahertz-frequency fields and transitions, we can achieve coupling that is
much stronger than that observed in cavity quantum electrodynamics. The nonlinearity
can be provided by Josephson tunnel junctions that, together with linear inductors
and capacitors, form the basic building blocks of superconducting circuits. Working
at cryogenic temperatures not only enables the Josephson effect but also ensures that the
circuit does not suffer from losses associated with electrical resistance and from thermal
noise.

A Josephson junction is built from two superconducting electrodes sandwiching a thin
layer of insulator; see figure 1.5(a,b). The superconducting layers are characterized by
their respective order parameters, ψi = Aieiϕi . Two additional parameters of the junction
are the critical current I0 (above which the quantum transition to normal metal occurs)
and the capacitance CJ. These two parameters define the energy scale of the junction,
characterized by the Josephson and charging energy [142],

EJ =
~I0
2e
, Ec =

(2e )2

2CJ
. (1.34)
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Superconductor

Superconductor

Insulator

(a) (b) (c)

Figure 1.5: (a) Josephson junction formed by a small insulating island between two superconducting
electrodes. (b) Schematic depiction of a Josephson junction. (c) A dc squid formed by two
Josephson junctions connected in parallel.

The potential energy of the Josephson junction can be expressed in terms of the gauge-
invariant phase ϕ = ϕ1 − ϕ2 [49],

V = −EJ cos ϕ. (1.35)

More intricate dynamics can be found in a dc squid, which is a circuit formed by two
parallel Josephson junctions; see figure 1.5(c). In such a circuit, the total inductive energy
is given by the sum of the inductive energies of the two junctions,

V = −EJ1 cos ϕ1 − EJ2 cos ϕ2. (1.36)

(Here, the quantities ϕi refer to the phase difference across the ith Josephson junction.)
The two phases are not independent but related through the magnetic flux threading
through the loop, ϕ1 = Φext/Φ0 − ϕ2, where Φ0 = ~/2e is the flux quantum. The potential
energy of the dc squid can thus be recast as

V = −(EJ1 + EJ2) cos
(
Φext

2Φ0

) √
1 +

( EJ2 − EJ1

EJ1 + EJ2

)2

tan2
(
Φext

2Φ0

)
cos ϕ

= −EJ(Φext) cos ϕ (1.37)

with ϕ = 1
2 (ϕ1 + ϕ2). Effectively, we get the same potential as for a single Josephson

junction; the important distinction is that in a dc squid, the Josephson energy EJ(Φext) is
tuneable by the external magnetic flux.

1.3.2 Quantization of electrical circuits

An electric circuit is fully characterized by the voltage vb (t ) across and current ib (t )
through every branch; equivalently, we can specify the branch flux and charge,

Φb (t ) =
∫ t

−∞

dτ vb (τ), Qb (t ) =
∫ t

−∞

dτ ib (τ). (1.38)

The fluxes forming a loop and charges meeting at a node follow the Kirchhoff’s laws∑
b ∈ loop

Φb = Φl ,
∑

b ∈ node

Qb = Qn ; (1.39)
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Figure 1.6: A superconducting lc circuit. Its capacitive and inductive subnetworks are formed
by the branch containing the capacitor and the inductor, respectively. The circuit has two nodes
(denoted by dots), both of which are active; the node at the bottom of the circuit is the ground.

therefore, not each branch gives rise to a pair of degrees of freedom.
To find the degrees of freedom—and thus the Hamiltonian—of the circuit, we follow

the approach of Vool and Devoret [49]: we divide the circuit into its capacitive and
inductive subnetworks and focus on the former. We now turn our attention to nodes,
which we divide into active and passive—at an active node, both capacitive and inductive
elements meet; passive nodes connect only capacitive (or only inductive) elements.

Although it is possible to formulate the method of nodes in full generality, I focus
less on the formal aspects and more on practical applications; see reference [49] for more
details. We can start with the simplest example: an lc oscillator. The circuit (shown in
figure 1.6) has two active nodes; one of them—the ground—serves as a reference point and
the node charge and flux are determined with respect to this node.

The electrostatic energy now plays the role of the kinetic energy and the magnetic
energy corresponds to the potential energy. Owing to the linearity of the capacitor, we can
express the electrostatic energy in terms of voltage (the time derivative of flux), T = 1

2C0φ̇
2.

(The inductance in an lc circuit is, of course, also linear but this is no longer true for
circuits containing Josephson junctions.) Together with the potential V = φ2/2L0, the
kinetic energy gives the Lagrangian L = V − T ; the circuit obeys the Euler–Lagrange
equation

d
dt
∂L
∂φ̇
−
∂L
∂φ
= 0, L =

φ2

2L0
−

1
2
C0φ̇

2. (1.40)

We can use the Lagrangian to find the generalized momentum conjugate to the node
flux,

q =
∂L
∂φ̇
= C0φ̇. (1.41)

Next, we apply the Legendre transformation and find the Hamiltonian

H = φ̇q − L =
1

2C0
q2 +

1
2L0

φ2. (1.42)

The equations of motion of the circuit are equivalent to the Hamilton’s equations,

φ̇ =
∂H
∂q

, q̇ = −
∂H
∂φ

, (1.43)
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(a) (b)

Figure 1.7: (a) Transmon qubit (right part of the circuit, formed by the dc squid shunted by the
capacitance CB ) connected to an lc resonator (middle) and a voltage source (left). The coupling
between the qubit and the resonator is provided by the capacitor Cg while the voltage is connected
via the input capacitor Cin. The circuit has one passive three active nodes; three of these are
numbered and described by the node fluxes φi . The fourth node serves as the ground. (b) Voltage
source Vg replaced by a capacitor C∞ with a large charge qg.

and the Poisson bracket for branch flux and charge is

{Φb ,Qb} = ∂Φb
∂φ

∂Qb
∂q
−
∂Qb
∂φ

∂Φb
∂q
= ±1. (1.44)

The sign of the Poisson bracket depends on the nature of the branch; we get +1 for a
capacitive branch and −1 for an inductive one.

Quantum mechanical variant of the Hamiltonian can be obtained by treating the flux
and charge as operators and imposing the commutation relation

[φ̂, q̂ ] = i~. (1.45)

If we now introduce the annihilation and creation operators via the relations

φ̂ = φzpf( â + â†), q̂ = −i qzpf( â − â†), (1.46)

we recover the Hamiltonian of a quantum harmonic oscillator,

Ĥ = ~ω0

(
â† â +

1
2

)
. (1.47)

Here, we introduced the resonance frequency ω0 = 1/
√
L0C0 and the zero-point fluctu-

ations φzpf =
√
~Z0/2, qzpf =

√
~/2Z0 with circuit impedance Z0 =

√
L0/C0.

We can also consider more complicated circuits, such as the one shown in figure 1.7(a);
see also reference [143]. Here, a dc squid shunted by a capacitor serves as a qubit. It is
capacitively coupled to an lc resonator and the circuit is driven by an external voltage Vg.
Before formulating the Hamiltonian, we have to understand how we can treat the voltage
source. We can adopt the following approach [figure 1.7(b)]: we replace the source by
a capacitor C∞ on which a large charge qg is stored. We treat the source as a node of its
own and find the Hamiltonian of the system. In the end, we take the limit C∞ → ∞ while
requiring that the ratio qg/C∞ → Vg.
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The capacitive branches give the total kinetic energy of the circuit,

T =
1
2
CBφ̇

2
1 +

1
2
C0φ̇

2
2 +

1
2
C∞φ̇2

3 +
1
2
Cg(φ̇1 − φ̇2)2 +

1
2
Cin(φ̇2 − φ̇3)2. (1.48)

The first three terms come from the branches connecting the nodes with the ground; the
remaining terms stem from branches connecting the numbered nodes with each other and
therefore depend on the difference of the node voltages. The magnetic potential energy
has two terms,

V = −EJ cos
(
φ1

ℎ

)
+

1
2L0

φ2
2 . (1.49)

This result is the consequence of the inductive branches connecting nodes only with the
ground but not with each other.

We can now formulate the Lagrangian, L = V −T , and find the generalized momenta qi .
Writing the kinetic energy in the matrix form T = 1

2φ̇
T
Cφ̇ with the capacitance matrix

C =
*..
,

Cg +CB −Cg 0
−Cg C0 +Cin +Cg −Cin

0 −Cin Cin +C∞

+//
-
, (1.50)

we have q = Cφ̇. The Hamiltonian of the circuit can be expressed as H = 1
2q

TC−1q +V ;
taking the limit C∞ → ∞, qg/C∞ → Vg and imposing the commutation relation [φ̂i, q̂ j ] =
i~δi j , we get the quantum mechanical Hamiltonian

Ĥ =
Cin +C0 +Cg

2C 2
∗

q̂2
1 − EJ cos *

,

φ̂1

ℎ
+
-
+
CB +Cg

2C 2
∗

q̂2
2 +

1
2L0

φ̂2
2

+
Cg

C 2
∗

q̂1 q̂2 +
CinVg

C 2
∗

[Cg q̂1 + (CB +Cg)q̂2 ], (1.51)

where C 2
∗ = CBCg +CBCin +CgCin +CBC0 +CgC0.

As the next step, we assume that the capacitance forming the lc circuit is larger
than any other capacitance in the circuit, C0 > Cg,CB,Cin. Moreover, we express the
nonlinear part of the circuit in the number basis [143]: we introduce the number and phase
operators n̂ = q̂1/2e , ϕ̂ = φ̂1/ℎ for the qubit. Together with an annihilation operator
â = (φ̂ + iZ0 q̂ )/

√
2~Z0 for the lc resonator, this gives the Hamiltonian

Ĥ = 4Ec(n̂ − ng) − EJ cos ϕ̂ + ~ω0 â† â + 2βeVrmsn̂( â + â†). (1.52)

Here, we have the charging energy Ec = e2/2CΣ with CΣ = Cg +CB, ng = CgVg/2e is the
energy offset induced by the voltage, β = Cg/CΣ gives the ratio of the gate capacitance to
the total qubit capacitance, and Vrms =

√
~ω0/2C0 is the root-mean-square voltage of the

lc oscillator.
Finally, we diagonalize the internal transmon dynamics and—since we are dealing with

a nonlinear circuit—focus on the first two levels only. We thus obtain the Hamiltonian

Ĥ = ~
ωq

2
σ̂z + ~ω0 â† â + ~g σ̂x ( â + â†), (1.53)
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which describes the dipole interaction between a transmon qubit and a harmonic oscil-
lator. The coupling rate is given by ~g =

√
2e βVrms(EJ/8Ec)1/4 and the qubit transition

frequency is ~ωq =
√
8EJEc.

1.3.3 Artificial atoms and microwave resonators

The fundamental interaction between a microwave resonator and a transmon qubit is the
dipole coupling, Ĥint = ~g σ̂x ( â + â†). If both systems are on resonance, ωq = ω0, we can
apply the rotating-wave approximation and arrive at the Jaynes–Cummings Hamiltonian

ĤJC = ~ω0 â† â + ~
ωq

2
σ̂z + ~g (σ̂+ â + â†σ̂−). (1.54)

These circuits can reach the strong-coupling regime where the coupling rate g is stronger
than the cavity decay and qubit relaxation [144, 145], enabling the observation of various
quantum optical effects such as nonlinearity of the Rabi oscillations with cavity field
intensity [146–148], observation of collapse and revival of a coherent state [149], or
generation of nonclassical states of microwave fields [150–153].

With novel circuit designs, it is possible to reach a situation where the coupling rate
is a considerable fraction of the resonance frequency [154–156]. In this regime, the qubit
and resonator hybridize and can no longer be considered as separate entities. Theoretical
description of circuits in the ultrastrong regime becomes problematic since one has to take
into account the full Rabi model [equation (1.53)] and the number of excitations is no
longer preserved. This effect can lead to situations where the ground state of the cavity
field is a Schrödinger cat state [157].

If the qubit and resonator are non-resonant, they enter the dispersive regime of the
Jaynes–Cummings interaction. We start from the Jaynes–Cummings Hamiltonian ĤJC

and transform it using the unitary transformation

Û = exp
[ g
∆

(σ̂+ â − â†σ̂−)
]
, (1.55)

where ∆ = ωq−ω0 is the detuning between the qubit and the resonator. We can expand the
resulting Hamiltonian to second order in the parameter g/∆ < 1 and obtain the dispersive
Hamiltonian

Ĥ = Û ĤJCÛ † = ~ω0 â† â +
1
2
~(ωq + χ)σ̂z − ~χσ̂z â† â −

1
2
~χ, (1.56)

where χ = g2/∆.
The interaction does not lead to exchange of excitations between the qubit and the

resonator since they are off-resonant. Now, the systems experience a phase shift that
depends on the state of the other subsystem: measuring the phase of the qubit can provide
information on the photon number inside the resonator [158]; alternatively, phase shift
of light leaving the cavity can be used to infer the state of the qubit. In circuit quantum
electrodynamics, the interaction is often used for quantum nondemolition measurement
of the qubit state [159–161], including joint measurement of several qubits [92, 162]; I
discuss these measurements in more detail in chapter 2.
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The main drawback of the dispersive coupling is its perturbative character. The
quantum nondemolition interaction described by Hamiltonian (1.56) is a first order
expansion in the small parameter g/∆ and is thus significantly weaker than the resonant
interaction. Moreover, the underlying Hamiltonian does not commute with the free
qubit Hamiltonian; the dispersive readout can be considered a quantum nondemolition
measurement only in the perturbative sense and generally leads to Purcell decay.

The solution to this problem lies in using longitudinal coupling between the qubit and
the resonator [163, 164],

Ĥ = ~
ωq

2
σ̂z + ~ω0 â† â + ~λσ̂z ( â + â†). (1.57)

Such interaction can be achieved in a transmon qubit coupled to an lc resonator via mutual
inductance. [The transversal coupling (1.53) is achieved with the qubit and resonator
coupled capacitively; cf. figure 1.7.] Initially, such interaction was proposed as a platform
for quantum computing in superconducting circuits but it can also be used for qubit
measurements. Fast quantum nondemolition readout of the qubit state is possible when
the coupling rate is modulated at the frequency of the resonator, λ = λ0+λ1 cos(ω0t ) [165];
in a frame rotating with the free qubit and resonator evolution, Ĥ0 =

1
2~ωqσ̂z + ~ω0 â† â,

the interaction is resonantly enhanced, Ĥint =
1
2~λ1σ̂z ( â + â†).

Two qubits can be coupled either via a microwave resonator serving as a bus [50, 51]
or directly by mutual capacitance [53, 166]. In circuits containing more qubits, basic
primitives for quantum information processing can be implemented. Quantum teleporta-
tion [167, 168], basic quantum gates [50–53] and algorithms [54–56], quantum simulation
[39, 40], and quantum error correction [57–60] are among the tasks that have been
demonstrated in superconducting circuits.

1.4 Coupling artificial atoms to mechanical oscillators

Nonlinear superconducting circuits can interact with mechanical oscillators in similar way
as linear lc circuits. In most cases, these systems use mechanically compliant capacitors;
the displacement of the mechanical oscillator determines electric properties of the circuit.
Depending on the type of the circuit, both transversal [169] and longitudinal coupling
[170] between a superconducting qubit and a mechanical oscillator can be realized.

Mechanically compliant capacitors are typically built as parallel-plate capacitors. One
of the electrodes can be formed by a membrane [171, 172] or a nanobridge [173], which
typically results in mechanical frequencies in the megahertz range. Alternatively, the
capacitor can be made from a piezoelectric material so that the electric field between the
electrodes induces a change of the mechanical position [81, 169]. The mechanical frequency
of these oscillators depends on the thickness of the piezoelectric material and can reach
several gigahertz.

For concreteness, let us consider the circuit depicted in figure 1.8; see also reference
[172]. Here, a transmon qubit is built with mechanically compliant gate capacitor. The
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Figure 1.8: Transmon qubit with a mechanically compliant gate capacitor Cg.

Hamiltonian for the system is

Ĥ = ~ωmb̂†b̂ + 4Ec [n̂ − ng( x̂ )]2 − EJ(Φext) cos ϕ̂; (1.58)

here, the gate charge introduced by the voltage source depends on the gate capacitance
and thus on the mechanical displacement. (The charging energy Ec is also affected by
the mechanical motion but its effect on the qubit dynamics is much smaller and can be
neglected.) The Josephson energy of the dc squid can be controlled using an external flux
Φext as described by equation (1.37).

Next, we linearize the gate charge,

ng( x̂ ) ≈
dCg

dx
Vg

2e
x̂ =

Vg

2e
Cg

(
1 +

1
Cg

dCg

dx

�����x=0
x̂
)
= n0 + nx x̂, (1.59)

where now n0 and nx are independent of the mechanical position. We can now expand
the Hamiltonian (1.58) to leading order in the mechanical displacement, which gives us
the Hamiltonian

Ĥ = 4Ec(n̂ − n0)2 − EJ(Φ) cos ϕ̂ + ~ωmb̂†b̂ + ~χ(n0 − n̂)(b̂ + b̂†). (1.60)

The coupling rate is, for a parallel-plate capacitor, given by

~χ = 2Ec
CgVg

e
xzpf

d
; (1.61)

here, d is the capacitor gap, that is, the distance between the static and mechanically
compliant electrode. Finally, we focus only on the first two levels of the transmon; in the
charge basis, we obtain the Hamiltonian

Ĥ = ~ωmb̂†b̂ + 2Ecσ̂z + EJσ̂x + ~χ(b̂ + b̂†)σ̂z . (1.62)

Hybrid nonlinear electromechanical circuits represent an interesting platform for
investigating quantum optics in a solid-state system. Basic quantum optical phenomena,
such as Rabi oscillations, Stark shift, or hybridization of a phonon mode and a supercon-
ducting qubit, have been observed in a transmon qubit coupled to a membrane [172]. Such
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coupling can also be used to control the qubit dynamics by the mechanical oscillator or
vice versa. Particularly the latter offers interesting possibilities of generating nonclassical
mechanical states. It is possible to use a superconducting qubit to prepare mechanical Fock
states [174, 175], squeezing [176, 177], Schrödinger-cat states [171, 178], or entanglement of
two mechanical oscillators [179].

A superconducting qubit can also be used to enhance the nonlinear interaction between
a mechanical oscillator and microwave resonator [173, 180–182]. In such a setup, the qubit
(typically a Cooper-pair box) mediates the interaction of the two resonators. The qubit
serves as a charge-dependent inductance of the microwave resonator; the gate charge
controlling the Josephson inductance has a component that depends on the mechanical
position. Combination of the qubit nonlinearity and large gate voltage results in an en-
hanced single-photon electromechanical coupling enabling us to reach the strong-coupling
regime [173].

Finally, superconducting circuits coupled to mechanical oscillators can be used to
realize quantum networks. In the conceptually simplest scenario, a qubit is coupled to
light via an optomechanical transducer as discussed in section 1.2: the qubit is placed in a
microwave cavity that interacts with a mechanical oscillator. The mechanical oscillator
also interacts with an optical cavity field, enabling conversion of quantum signals between
the two cavities. Existing proposals [89, 90] then suggest to use adiabatic state transfer
between the qubit and the optical cavity for sending signals from one superconducting
chip to another.

In these devices, the microwave resonator can be skipped and the qubit can couple
directly to the mechanical oscillator. This interaction will, in practice, reduce the qubit
lifetime but also eliminate decoherence due to the decay of the microwave cavity. Such a
scheme can, again, be used for adiabatic state transfer between the qubit and a propagating
light field [78, 183, 184] or for measurement-induced generation of entanglement between
two qubits [95]. Particularly the latter approach (discussed in detail in chapter 3) is
attractive for experimental implementations; by focusing on a single primitive in quantum
communication, we can highly optimize the device operation. This optimization results
in requirements on the system parameters that are achievable with current technology.

1.5 Other hybrid systems

Optoelectromechanical systems are not the only platform that enables efficient conversion
between microwaves and light. Theoretical proposals suggest also the use of single spins
[66, 67, 71, 185] (recently, the first transduction between microwaves and light using a
nitrogen–vacancy centre has been reported [73]) or spin ensembles [68–70]; experimental
efforts have also focused on using surface acoustic waves [84, 86], electrooptic modulators
[75–77], and magnonic systems [74]. Of all these technologies, frequency conversion using
localized mechanical oscillations is certainly the most mature.

Many more hybrid systems can be realized. Effective interactions between mechanical
oscillators and atomic ensembles [186, 187] can be used for cooling of mechanical resonat-
ors [188, 189] or backaction-evading measurements of mechanical position [131, 133, 190].
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Mechanical oscillators coupled to nitrogen–vacancy centres enable direct measurement
of magnetic fields at the level of a single spin [93] or of mechanical motion [191, 192],
observation of interesting effects known from quantum optics [193], or quantum informa-
tion processing [194]; in these systems, the interaction is provided either by a magnetic
field [195, 196] or strain [197, 198]. Surface acoustic waves can be used to couple to
various systems: light and microwave signals [84, 199], to electron spins in trapped ions,
nitrogen-vacancy centres, or quantum dots [200, 201], as well as to superconducting
circuits [202, 203].

All in all, optoelectromechanical systems are just a small subset of hybrid quantum
systems; nevertheless, already at this level, there is a broad range of interesting processes
and applications. In the rest of this dissertation, I focus on a single task: improving op-
tomechanical transduction. I consider two approaches to this problem: in the first strategy,
the transducer is optimized for a specific task—generation of entanglement between two
superconducting qubits. The resulting transducer is less general than in the experiment of
Andrews et al. [82], which allows us to relax requirements on the experimental parameters.
Nevertheless, in the context of quantum networks with superconducting circuits, long-
distance entanglement between qubits is sufficient for transmitting quantum information
and performing quantum gates between nodes via teleportation [204]. The other approach
involves a new design for a general-purpose optomechanical transducer. By building an
array of optoelectromechanical systems, we can greatly enhance the conversion bandwidth.
Before diving into these topics, however, we need one more tool: an effective description
of hybrid quantum systems subject to continuous homodyne measurement, which is
presented in the next chapter.



Chapter 2

Continuous measurements on hybrid quantum systems

Quantum systems interact with their environment; the larger the system, the more
pronounced this effect is. For a large part, this process is unwanted—it leads to decoherence
and classical behaviour. Nonetheless, the interaction enables us to measure the dynamics
of the system. For example, the photons leaving an optomechanical cavity can give us
information about the state of a mechanical oscillator inside the cavity. The interplay of
unitary dynamics, decoherence, and measurements requires advanced mathematical tools
to describe the resulting stochastic dynamics.

In this chapter, I discuss stochastic master equations that describe dynamics of density
matrices under continuous measurements. I start by developing the necessary formalism
(following the approach of Wiseman and Milburn [97]) in section 2.1 before moving to its
applications in circuit quantum electrodynamics and cavity optomechanics in section 2.2.
In these systems, individual quantum trajectories can be observed [205] or the measure-
ment can be used to steer the system towards a desired state with measurement-based
feedback [97, 206].

Applying stochastic master equations to hybrid quantum systems requires more care.
Although one can, of course, write an equation of motion for an optoelectromechanical
system, numerical simulations of such systems are problematic. Hybrid systems consist of
several subsystems evolving on different timescales and coupled to different environments.
This problem is particularly apparent for an optomechanical transducer that is used to
read out the state of a superconducting qubit (situation I discuss in detail in chapter 3): the
qubit is coupled to an optomechanical system that, on its own, obeys Gaussian dynamics.
Numerical simulations of such a device require truncation of its infinite-dimensional
Hilbert space; the low frequency of mechanical oscillations (and correspondingly large
thermal occupation) results in cutoff at extremely large Fock numbers. The size of the
Hilbert space needed for efficient numerical simulations leads to memory requirements
beyond current technological possibilities.

To solve this issue, I show how one can obtain an effective equation of motion for
the system of interest (the superconducting qubit) by adiabatically eliminating Gaussian
systems (the transducer) from conditional quantum dynamics. The precise dynamics
of the transducer are irrelevant for our purposes; by deriving an effective equation of
motion for the qubit, we significantly simplify the problem without discarding any crucial

29
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information about its dynamics. Although various methods exist to adiabatically eliminate
subsystems from quantum dynamics [91, 207–213], none is capable of treating thermally
driven systems under continuous measurements. Here, I solve this problem and show
that thermally driven systems can be adiabatically eliminated from stochastic quantum
evolution if they obey Gaussian dynamics [98].

I start by considering Gaussian systems alone in section 2.3. These systems have
Hamiltonians that are quadratic in the canonical operators and jump operators that are
linear; moreover, they are measured using homodyne detection. Consequently, these
systems possess Gaussian Wigner function and can be fully described by the first and
second statistical moments of the quasi-probability density. The stochastic master equation
can be used to derive equations of motion for these moments.

In section 2.4, I show how one can adiabatically eliminate Gaussian subsystems from
stochastic dynamics containing both Gaussian and non-Gaussian systems. The approach
uses a hybrid description where the non-Gaussian system is described by its density matrix
and the Gaussian system using its statistical moments. This strategy allows straightforward
elimination of systems suffering from thermal noise or consisting of several modes; these
features are the main advantage compared to other adiabatic elimination methods in
stochastic quantum dynamics.

I then use this approach on several examples in section 2.5. I take the model systems
from circuit quantum dynamics and compare the method to the full dynamics and elim-
ination for low-temperature thermal bath (with average number of excitations n . 2).
Already on this level, the new approach clearly outperforms existing methods and I ar-
gue that it can be used also for larger thermal occupations (such as those seen in cavity
optomechanics).

2.1 Principles of continuous measurements

2.1.1 Quantum-optical master equation

Consider an optical cavity. The cavity field will leak out owing to imperfect reflection on
mirrors and finite mode overlap with the field outside the cavity. The field is described by
the annihilation operator â and the modes of the bath by the annihilation operators b̂k ;
in full generality, k is a multi-index describing the wavenumber and polarization of the
mode. The dynamics of the combined state ρ̂SE are given by the free Hamiltonian of the
cavity field and the environment and their mutual interaction,

d ρ̂SE

dt
= −i


ω â† â +

∑
k

ωk b̂
†

k b̂k +
∑
k

gk ( â†b̂k + b̂
†

k â), ρ̂SE


. (2.1)

The master equation that describes the evolution of the state of the cavity field,
ρ̂ = trE{ ρ̂SE}, is best derived in the interaction picture with respect to the free Hamiltonian
Ĥ0 = ω â† â +

∑
k ωk b̂

†

k b̂k . The density matrix and the interaction Hamiltonian in the
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interaction picture are

ρ̂IP
SE = eiĤ0 t ρ̂SEe−iĤ0 t , (2.2a)

Ĥ IP
int = eiĤ0 t Ĥinte−iĤ0 t =

∑
k

gk
(
â†b̂kei(ωk−ω)t + b̂†k âe

−i(ωk−ω)t
)
. (2.2b)

For the density operator in the interaction picture, we can write the solution generally as

ρ̂IP
SE(t ) = ρ̂IP

SE(0) − i
∫ t

0
dt1

[
Ĥ IP

int(t1), ρ̂IP
SE(t1)

]
. (2.3)

We can substitute this solution back to the equation of motion for ρ̂IP
SE and obtain

d ρ̂IP
SE(t )

dt
= −i

[
Ĥ IP

int(t ), ρ̂IP
SE(0)

]
−

∫ t

0
dt1

[
Ĥ IP

int(t ),
[
Ĥ IP

int(t1), ρ̂IP
SE(t1)

] ]
. (2.4)

Now, we trace out the environment degrees of freedom and arrive at an effective equation
of motion for the system.

To enable tracing out the environment explicitly, we make the following assumptions:
first, at the initial time, t = 0, the system and environment are uncorrelated, ρ̂IP

SE(0) =
ρ̂IP(0)⊗ ρ̂IP

E . Next, we presume that the interaction Hamiltonian has no diagonal elements
in the eigenbasis of the environment Hamiltonian, trE

{
Ĥ IP

int(t ) ρ̂IP
SE(0)

}
= 0. The equation

for the system density matrix now becomes

d ρ̂IP(t )
dt

= −

∫ t

0
dt1trE

{[
Ĥ IP

int(t ),
[
Ĥ IP

int(t1), ρ̂IP
SE(t1)

] ]}
. (2.5)

The last step invokes the Born–Markov approximation. The Born approximation replaces
the joint state by a product state. Furthermore, the state of the environment is—owing to
its large size—unaffected by the coupling, ρ̂IP

SE(t ) = ρ̂IP(t ) ⊗ ρ̂IP
E . The Markov approxima-

tion assumes that the integrand in equation (2.5) is sharply peaked around t1 = t , which
enables us to replace the lower integration limit by −∞ and the state ρ̂IP(t1) by ρ̂IP(t ).
The Born–Markov master equation then takes the form

d ρ̂IP(t )
dt

= −

∫ t

−∞

dt1trE
{[
Ĥ IP

int(t ),
[
Ĥ IP

int(t1), ρ̂IP(t ) ⊗ ρ̂IP
E

] ]}
. (2.6)

With the interaction Hamiltonian (2.2b) and the commutation relation [b̂k, b̂
†

l ] = δkl ,
the Born–Markov master equation for the cavity field becomes

d ρ̂IP

dt
= −

∫ t

−∞

dt1Γ(t − t1)( â â† ρ̂IP − â ρ̂IP â† − â† ρ̂IP â + ρ̂IP â† â) +H.c., (2.7a)

Γ(t − t1) =
∑
k

g2
ke
−i(ωk−ω)(t−t1) . (2.7b)

The cavity field couples to a continuum of modes outside the cavity; we can replace the
sum in equation (2.7b) by the integral,

Γ(t − t1) =
∫

dΩ%(Ω)g2(Ω)e−i(Ω−ω)(t−t1), (2.8)
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where %(Ω) is the density of states. The product %(Ω)g2(Ω) is a slowly varying function
of frequency and we assume it to be constant around the cavity frequency, Ω ∼ ω. We can
then write the master equation in the Lindblad form

d ρ̂IP

dt
= κ (n + 1)D [ â ] ρ̂IP + κnD [ â† ] ρ̂IP. (2.9)

Here, n = [exp(~ω/kBT ) − 1]−1 is the mean thermal photon number of the external field
at frequency ω, κ ≈ 2π %(ω)g2(ω) is the cavity decay rate, and

D [Â] ρ̂ = Âρ̂Â† −
1
2

(Â†Âρ̂ + ρ̂Â†Â). (2.10)

Equation (2.9) is expressed in the rotating frame. Moving back to the laboratory frame,
we just need to include a term describing the free cavity evolution, −i[ĤS, ρ̂ ]. In fact, we
can include other unitary dynamics, such as driving or nonlinearity of the cavity medium,
in the same manner. The full Lindblad master equation for a cavity field in the laboratory
frame is

d ρ̂
dt
= −i[Ĥ , ρ̂ ] + κD [ â ] ρ̂. (2.11)

Here I used the fact that at optical frequencies, the thermal population number n = 0 at
room temperature.

I derived the master equation (2.11) for a cavity field but the same approach can be
applied to other systems as well [97, 214]. Mechanical oscillators obey the same dynamics
with Lindblad terms describing phonon loss and gain. Decay of two-level systems is
described by the term D [σ̂− ] ρ̂ and pure dephasing by D [σ̂z ] ρ̂. Hence, the Lindblad
master equation is a powerful tool in quantum optics enabling efficient treatment of all
kinds of systems.

2.1.2 Stochastic unravellings

Measurement of the field leaking out of a cavity can provide useful information about the
system inside the cavity. Mathematical description of such dynamics needs to go beyond
the master equation approach and include the stochastic contribution of the random
measurement outcomes. Such a dynamical equation can be obtained from the master
equation by its stochastic unravelling. This process is not unique for a given equation;
first, I will show how detecting leaked photons leads to stochastic dynamics with discrete
quantum jumps. Afterwards, I will show how combining the photons leaking from
the cavity with a strong laser field leads to a diffusive state evolution under homodyne
detection.

We start from the master equation for a cavity field,

d ρ̂
dt
= −i[Ĥ , ρ̂ ] + κD [ â ] ρ̂. (2.12)

Continuous monitoring of the cavity output implies that at every time infinitesimal dt
we will detect either zero or one photon; since dt → 0, we can neglect the probability of
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detecting more photons during a single time step. The density matrix is then given by
summing over the two measurement outcomes,

ρ̂(t + dt ) =
1∑
j=0

M̂ j (dt ) ρ̂(t )M̂ †j (dt ) (2.13)

with measurement operators

M̂0(dt ) = Î −
(
κ

2
â† â + iĤ

)
dt, M̂1(dt ) =

√
κdt â. (2.14)

To first order in the infinitesimal dt , the operators M̂0,1(dt ) are valid measurement operat-
ors since

∑
j M̂

†

j (dt )M̂ j (dt ) = Î. Moreover, from the measurement operators acting on the
density matrix, we obtain the master equation,

ρ̂(t + dt ) =
∑
j
M̂ j (dt ) ρ̂(t )M̂ †j (dt ) = ρ̂(t ) − i[Ĥ , ρ̂(t )]dt + κD [ â ] ρ̂(t )dt . (2.15)

The probability of detecting a photon in the cavity output is

p1(dt ) = tr{M̂1(dt ) ρ̂M̂ †1 (dt )} = κtr{â† â ρ̂}dt . (2.16)

For almost all time intervals, we have the measurement result j = 0 since p0(dt ) =
1−p1(dt ) = 1−O (dt ). During these time intervals, the state evolves according to M̂0(dt )—
infinitesimally but non-unitarily. When the outcome j = 1 occurs, the state changes
abruptly according to M̂1(dt ); we call such events quantum jumps. A single quantum
trajectory is then given by a series of the continuous evolutions and quantum jumps.

The number and timing of photodetections are encoded in a function N (t ) which
gives the number of detections from time t = 0 to time t . For the stochastic increment
dN (t ), we then have

dN 2(t ) = dN (t ), 〈dN (t )〉 = 〈M̂ †1 (dt )M̂1(dt )〉. (2.17)

Assuming a pure state |ψ(t )〉, we can divide the evolution into two processes: when
dN (t ) = 0, no quantum jump took place and the system evolves according to M̂0(dt ). On
the other hand, we observe a quantum jump if dN (t ) = 1; then, the system evolves accord-
ing to M̂1(dt ). These two contributions can be combined in the stochastic Schrödinger
equation

d|ψ(t )〉 = dN (t ) *
,

â√
〈â† â〉

− 1+
-
|ψ(t )〉 + dt [1 − dN (t )]

[
κ

2
(〈â† â〉 − â† â) − iĤ

]
|ψ(t )〉

= dN (t ) *
,

â√
〈â† â〉

− 1+
-
|ψ(t )〉 + dt

[
κ

2
(〈â† â〉 − â† â) − iĤ

]
|ψ(t )〉; (2.18)

in the second line, we used the fact that dN (t )dt = O (dt 3/2).
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The stochastic Schrödinger equation can be turned into an equation for the density
operator by defining the projector ρ̂(t ) = |ψ(t )〉〈ψ(t ) | and using the Itō rule d(XY ) =
(dX )Y + XdY + (dX )(dY ),

d ρ̂(t ) = (d|ψ(t )〉)〈ψ(t ) | + |ψ(t )〉(d〈ψ(t ) |) + (d|ψ(t )〉)(d〈ψ(t ) |)

= −H

[
iĤ +

κ

2
â† â

]
ρ̂(t )dt + κG [ â ] ρ̂(t )dN (t ); (2.19)

here, I defined the superoperators

G [Â] ρ̂ =
Âρ̂Â†

tr{Âρ̂Â†} − ρ̂, (2.20a)

H [Â] ρ̂ = (Â − 〈Â〉) ρ̂ + ρ̂(Â − 〈Â〉). (2.20b)

The stochastic master equation (2.19) describes the stochastic evolution of an arbitrary
quantum state under photodetection. One can easily check that averaging over the
ensemble reduces the stochastic master equation to the master equation dt ρ̂ = −i[Ĥ , ρ̂ ] +
κD [ â ] ρ̂. Finally, to fully describe the stochastic dynamics, we have to specify also the
photocount function N (t ) or, more usually, the photocurrent

I (t ) = Ṅ (t ). (2.21)

The stochastic dynamics is fully described by both equations (2.19) and (2.21).
Homodyne detection is realized by mixing the output field with a strong coherent field.

To derive a conditional master equation for homodyning, we start by the observation that
the master equation dt ρ̂ = −i[Ĥ , ρ̂ ] + κD [ â ] ρ̂ is invariant under the transformation

â → â + α, Ĥ → Ĥ − i
κ

2
(α∗ â − α â†), (2.22)

which corresponds to displacing the origin of the phase space. The new measurement
operators are (assuming for simplicity that α is real)

M̂0(dt ) = Î −
[
iĤ +

κ

2
α( â − â†) +

κ

2
( â† + α)( â + α)

]
dt, (2.23a)

M̂1(dt ) =
√
κdt ( â + α) (2.23b)

and, for the photodetection rate, we have

〈dN (t )〉 = 〈M̂ †1 (dt )M̂1(dt )〉 = κtr{[α2 + α( â + â†) + â† â ] ρ̂(t )}dt . (2.24)

If the classical pump is much stronger than the output field, this expression simplifies to a
strong classical field with a term proportional to â + â†. The number of photodetections
approaches infinity but the effect of each photodetection becomes infinitesimal because
most detections come from the classical field.

During a small time window dt with a large number of detections, dN ∼ α2dt , the
Poissonian statistics of the pump field will be approximately Gaussian. The mean and
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variance of the Gaussian-distributed photocounts are

µ = κtr{[α2 + α( â + â†) + â† â ] ρ̂(t )}dt ≈ κ [α2 + α〈â + â†〉]dt, (2.25a)

σ2 = κα2dt . (2.25b)

We can thus write
dN = κ [α2 + α〈â + â†〉]dt +

√
καdW ; (2.26)

here, dW is Wiener increment with mean 〈dW 〉 = 0 and variance dW 2 = dt .
If we use these results—the displaced frame (2.22) and the Gaussian-distributed photo-

counts (2.26)—in the stochastic master equation (2.19), we obtain the stochastic master
equation for homodyne detection,

d ρ̂(t ) = −i[Ĥ , ρ̂(t )]dt + κD [ â ] ρ̂(t )dt +
√
κH [ â ] ρ̂(t )dW (t ), (2.27a)

D [Â] ρ̂ = Âρ̂Â† −
1
2

(Â†Âρ̂ + ρ̂Â†Â), (2.27b)

H [Â] ρ̂ = (Â − 〈Â〉) ρ̂ + ρ̂(Â† − 〈Â†〉). (2.27c)

Additionally, the equation for photocurrent becomes

I (t )dt =
√
κ〈â + â†〉dt + dW . (2.28)

2.2 Quantum measurements on physical systems

Originally, quantum trajectories have been introduced as an interesting and efficient
method to solve master equations numerically [215]. At that time it was difficult to
imagine that control of individual quantum systems would reach such a level where their
monitoring in real time would become possible. Nowadays—only 25 years later—quantum
trajectories are routinely observed in laboratories the world over and continuous meas-
urements and measurement-based feedback are important tools for control of quantum
systems.

Probably the most famous example of observation of quantum trajectories are the
experiments with microwave cavities and Rydberg atoms performed by the group of
Serge Haroche [216–218]. In these experiments, the atoms are used to perform Ramsey
interferometry on the cavity field; the atoms are sent individually through the cavity and
their dispersive interaction with the cavity field encodes the field intensity in the phase the
atomic state acquires. Measurement of the atomic state after the interaction thus reveals
the photon population in the cavity and enables observation of its jumps between different
photon numbers.

In circuit quantum electrodynamics, individual quantum trajectories have also been
observed [159, 219]. In the simplest scenario, a single superconducting qubit dispersively
interacts with a cavity mode,

Ĥint = χ â† âσ̂z, (2.29)

which is followed by a measurement of the phase quadrature of the output field. Through
the interaction, the field acquires a phase shift that depends on the qubit state. If the
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measurement is weak, the qubit state slowly drifts towards one of the pointer states; with
a strong measurement, the qubit jumps between the ground and excited states.

With more intricate circuits, more complex dynamics can be studied. For instance,
simultaneous measurement and Rabi drive can result in quantum Zeno effect [209, 220];
the measurement process counteracts the driving and the transitions between the two
qubit states are suppressed. Other interesting concepts studied in circuit quantum electro-
dynamics include simultaneous measurements of non-commuting observables [221] and
continuous measurement of the transverse component of the qubit state [222].

Continuous measurements also open new possibilities for state manipulation, especially
when followed by postselection. In such a scenario, the measurement signal is used to
determine whether the system reached a desired state; if that is not the case, the protocol
is repeated. It is possible to use postselection to initialize the state of a superconducting
qubit [160, 223]. Here, the dispersive interaction and homodyne detection are used to
determine whether the qubit is in the ground or excited state; if it is found in the excited
state, a single π-pulse can be applied to bring it to the ground state.

One can also generate entanglement between two superconducting qubits by measuring
their total spin [91, 92]. For this task, dispersive coupling of a cavity mode to two qubits
is used,

Ĥint = χ1 â† âσ̂1
z + χ2 â† âσ̂2

z . (2.30)

If the coupling to both qubits is equally strong, χ1 = χ2, the phase quadrature carries
information about the total spin of the two qubits, σ̂1

z + σ̂
2
z . For qubits initially prepared

in the state |ψ0〉 =
1
2 (|0〉 + |1〉)( |0〉 + |1〉), the qubits collapse onto the Bell state |Ψ+〉 =

( |01〉 + |10〉)/
√
2 with probability of 50 %. The greatest advantage of this approach is that

the qubits do not have to be placed in the same cavity; the scheme works also when the
qubits are in separate cavities and the output of one cavity is fed into the second one.

Even more applications are possible when continuous measurements are accompanied
by measurement-based feedback [97, 206]. In such a scenario, the measurement signal
is used to apply a feedback operation on the system. This approach is experimentally
more demanding since it requires instantaneous correction of the dynamics based on the
measurement outcome in each time step; it enables, however, deterministic entanglement
generation [162]. Feedback can also be used to counteract backaction of the measurement
[224, 225], thus stabilizing quantum trajectories [161, 226–228]. State stabilization is also
possible using stroboscopic measurements and feedback [229]. Here, a strong projective
measurement is applied periodically at times when the system is assumed to be in a specific
eigenstate of the measurement; if it is not, feedback is used to bring it to this state.

In optomechanics, measurement feedback can be used to cool a mechanical oscillator
to its ground state [126, 230–232]. Homodyne detection of light provides information
about the position of the mechanical oscillator; a second laser uses this information to
counteract the thermal fluctuations and confine the mechanical motion to a small region
around its equilibrium position.

Another interesting approach to feedback control in optomechanics involves systems
driven on the blue sideband [233]. The blue-detuned optomechanical interaction generates
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entanglement between the mechanical oscillator and the light field and can be combined
with time-continuous Bell measurements [234]. With these tools, it is possible to teleport
an arbitrary quantum state onto the mechanical oscillator or to entangle two mechanical
oscillators.

2.3 Gaussian dynamics

Stochastic master equations are a crucial tool for describing quantum dynamics under con-
tinuous measurements; their weakness lies in the difficulty of their simulation. One needs
to generate many quantum trajectories to be able to understand the statistical properties
of the physical processes. In addition, when not all decay channels are monitored, one
usually has to work with density matrix—and not the wavefunction—which significantly
limits the size of problems that can be simulated numerically.

One can avoid the necessity of generating many trajectories for Gaussian systems, that
is, systems characterized by a Gaussian quasi-probability distribution in phase space [235].
Such systems can be fully described using the first and second statistical moments of the
quasi-probability distribution, for which algebraic equations of motion can be derived. A
Gaussian system is described by continuous-variable operators with linear dynamics; the ca-
nonical operators can be collected in a vector r̂ = (q̂1, p̂1, . . . , q̂N , p̂N )T with commutation
relations defining the symplectic matrix

[ r̂i, r̂ j ] = iσi j, σ = *
,

0 1
−1 0

+
-
⊕ . . . ⊕ *

,

0 1
−1 0

+
-
. (2.31)

In terms of the canonical vector r̂, the unitary dynamics is bilinear and jump and measure-
ment operators are linear,

d ρ̂ = −i[Ĥ , ρ̂ ]dt +
∑
n
D [ ̂n ] ρ̂dt +

∑
m
H [λ̂m ] ρ̂dWm, (2.32a)

Ĥ =
1
2
r̂TRr̂, R = RT ∈ R2N × R2N , (2.32b)

̂n = ξTn r̂, ξn ∈ C
2N , (2.32c)

λ̂m = (cm + imm )T r̂, cm,mm ∈ R
2N . (2.32d)

[In equation (2.32b), we do not include linear terms to the Hamiltonian, which would
only result in a displacement with respect to the origin of the phase space.] Since the
system is Gaussian, it is fully described by the first and second statistical moments of the
canonical operators,

x = 〈r̂〉 = tr{ ρ̂r̂}, Γi j = 〈[ r̂i, r̂ j ]+〉 − 2x i x j . (2.33)

In the following, I show how to derive equations governing the dynamics of the statistical
moments which fully characterise the evolution of the Gaussian system.

We start by considering the master equation

d ρ̂
dt
= −i[Ĥ , ρ̂ ] +

∑
n
D [ ̂n ] ρ̂, (2.34)
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from which we first derive the equation of motion for the mean vector x. For the ith
mean value, we have

ẋ i = tr
{
d ρ̂
dt

r̂i
}

= −i tr{[Ĥ , ρ̂ ] r̂i} +∑
n

tr{D [ ̂n ] ρ̂ r̂i}
= −i tr{ ρ̂ [ r̂i, Ĥ ]} + tr

{
ρ̂

(
̂†n r̂i ̂n −

1
2
[ ̂†n ̂n, r̂i ]+

)}
; (2.35)

in the last line and in the following, I use the Einstein summation convention. The
commutator in the first term can be rewritten as

[ r̂i, Ĥ ] =
1
2
R jk [ r̂i, r̂ j r̂k ] =

1
2
R jk ([ r̂i, r̂ j ] r̂k + r̂ j [ r̂i, r̂k ]) = iσi jR jk r̂k, (2.36)

where I used the fact that the Hamiltonian matrix is symmetric, R = RT . For the Lindblad
terms, we have

tr{D [ ̂n ] ρ̂ r̂i} = ξn j ξ∗nktr
{
ρ̂

(
r̂k r̂i r̂ j −

1
2
[ r̂k r̂ j, r̂i ]+

)}
=

1
2
ξn j ξ

∗

nktr{ ρ̂(r̂k [ r̂i, r̂ j ] − [ r̂i, r̂k ] r̂ j )}
= −

i
2
σi j (ξ∗n j ξnk − ξn j ξ

∗

nk )xk . (2.37)

Combining everything, we can write

ẋ i = σi jR jk xk −
i
2
σi j (ξ∗n j ξnk − ξn j ξ

∗

nk )xk, (2.38)

or, in the matrix form,

ẋ = Ax, A = σR −
i
2
σ

∑
n

(ξ∗nξ
T
n − ξnξ

†
n). (2.39)

For the covariance matrix, we need to evaluate the expression

Γ̇i j = tr
{
d ρ̂
dt

[ r̂i, r̂ j ]+
}
− 2( ẋ i x j + x i ẋ j ). (2.40)

We start with the coherent evolution. The commutator

[ r̂i r̂ j, Ĥ ] =
1
2
Rkl (r̂i [ r̂ j, r̂k ] r̂l + r̂k [ r̂i, r̂l ] r̂ j + [ r̂i, r̂k ] r̂ j r̂l + r̂k r̂i [ r̂ j, r̂l ]), (2.41)

which, combined with [ r̂ j r̂i, Ĥ ], gives

[[ r̂i, r̂ j ]+, Ĥ ] = i(σikRkl [ r̂ j, r̂l ]+ − [ r̂i, r̂l ]+Rl kσk j ). (2.42)
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For the decay terms, we have

D† [ ̂n ] r̂i r̂ j = ̂†n r̂i r̂ j ̂n −
1
2
[ ̂†n ̂n, r̂i r̂ j ]+

=
1
2
ξ∗nkξnl ([ r̂k, r̂i r̂ j ] r̂l + r̂k [ r̂i r̂ j, r̂l ])

=
i
2
ξ∗nkξnl (σ j l r̂k r̂i + σil r̂k r̂ j − σ jk r̂i r̂l − σik r̂ j r̂l ), (2.43)

where we used

[ r̂i r̂ j, r̂k ] = r̂i [ r̂ j, r̂k ] + [ r̂i, r̂k ] r̂ j = iσ jk r̂i + iσik r̂ j . (2.44)

Combined with D† [ ̂n ] r̂ j r̂i and summed over n, this expression gives∑
n
D† [ ̂n ] [ r̂i, r̂ j ]+ = [ βkl (σ jk [ r̂i, r̂l ]+ + σik [ r̂ j, r̂l ]+) − 2αklσ jkσl i ], (2.45)

where
αkl =

1
2

(ξ∗nkξnl + ξnkξ
∗

nl ), βkl =
i
2

(ξnkξ
∗

nl − ξ
∗

nkξnl ). (2.46)

Plugging everything into (2.40), using ẋ i x j = Aik xk x j , and writing the resulting expres-
sion in matrix form, we get the Lyapunov equation

Γ̇ = AΓ + ΓAT + 2N, (2.47)

where A is given in equation (2.39) and

N =
1
2
σ

∑
n

(ξ∗nξ
T
n + ξnξ

†
n)σT . (2.48)

When the dynamics are described by the conditional master equation

d ρ̂ = −i[Ĥ , ρ̂ ]dt +
∑
n
D [ ̂n ] ρ̂dt +

∑
m
H [λ̂m ] ρ̂dWm, (2.49)

we also need to evaluate the contributions from the measurement terms H [λ̂m ] ρ̂. We
start by splitting the measurement operator in its Hermitian and anti-Hermitian part,
λ̂m = (cm + imm )T r̂ =

∑
k (cmk + immk ) r̂k , so we can write

H [λ̂m ] ρ̂ = [cTm (r̂ − x), ρ̂ ]+ + i[mT
m r̂, ρ̂ ]. (2.50)

For the mean values, this gives the contribution

tr{r̂iH [λ̂m ] ρ̂}dWm = tr{cmk ρ̂([ r̂i, r̂k ]+ − 2xk r̂i ) + immk ρ̂ [ r̂i, r̂k ]}dWm

= (Γikcmk − σikmmk )dWm . (2.51)

The mean vector thus obeys the equation

dx = Axdt +
∑
m

(Γcm − σmm )dWm . (2.52)
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For the covariance matrix, we need to evaluate the term

tr{[ r̂i, r̂ j ]+H [λ̂m ] ρ̂}dWm − 2[(dx i )x j + x i (dx j ) + (dx i )(dx j )],

where we used the Itō rule for the mean values. In the following, we concentrate on
the stochastic contribution in the increments dx j [second term on the right-hand side of
equation (2.52)] as the deterministic contribution is the same as in equation (2.47). We
start by considering

tr{[ r̂i, r̂ j ]+d ρ̂} = cmktr{ ρ̂([ r̂k, [ r̂i, r̂ j ]+ ]+ − 2xk [ r̂i, r̂ j ]+)} + immktr{ ρ̂ [ r̂i r̂ j + r̂ j r̂i, r̂k ]}
= 2cmk (Γik x j + Γjk x i ) − 2mmk (x iσ jk + x jσik ). (2.53)

In the first sum on the right hand side, we used the identity

〈[ r̂i, [ r̂ j, r̂k ]+ ]+〉 = 2(Γi j xk + Γjk x i + Γki x j + 2x i x j xk ) (2.54)

which I prove in appendix 2.A. We further use

d(x i x j ) = (dx i )x j + x i (dx j ) + (dx i )(dx j )

= x i (Γjkcmk − σ jkmmk )dWm + x j (Γikcmk − σikmmk )dWm

+ (Γikcmk − σikmmk )(Γj l cml − σ j lmml )dt . (2.55)

Combined together, the stochastic contributions to the covariance matrix cancel out,
and we are left with the term −2(Γcm − σmm )(Γcm − σmm )T dt . The dynamics of the
covariance matrix are thus given by the Riccati equation

Γ̇ = AΓ + ΓAT + 2N − 2
∑
m

(Γcm − σmm )(Γcm − σmm )T . (2.56)

Remarkably, the covariance matrix of the conditional state obeys a deterministic equation.
This result further accentuates the significance of the statistical moments for stochastic
quantum dynamics of Gaussian systems; the mean vector is often irrelevant and the
covariance matrix carries all important information about the state.

2.4 Adiabatic elimination of Gaussian subsystems

The description of Gaussian systems using the statistical moments of their canonical
operators is practical not only for standalone systems but also when they are coupled to
other, non-Gaussian systems. Such a scenario is common to many measurement settings:
a system of interest (e.g., a superconducting qubit, see figure 2.1) is coupled to an auxiliary
system; measurement on the second, readout system gives information about the state of
the first system. In many situations, the second system is a harmonic oscillator (or consists
of several harmonic oscillators), is subject to homodyne measurement, and hence obeys
Gaussian evolution. Since the exact dynamics of the transducer is irrelevant, we would
like to eliminate its evolution from the conditional master equation that describes the
measurement. Describing the Gaussian transducer using its statistical moments enables its
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System Transducer

...

(a) (b)

Figure 2.1: (a) Schematic of the considered setup: a quantum system is monitored by an ancillary
system—a transducer—whose continuously emitted light field is detected. The simplest example
of such a setup—a qubit coupled to a cavity mode with monitored output—is shown in (b). The
transducer can also be a much more complex device, such as an optomechanical transducer for
frequency conversion of electromagnetic fields.

elimination, provided the coupling between the system and the transducer is weak and
the transducer quickly reaches a Gaussian steady state. We thus reduce the dimension
of the problem and overcome the memory requirements of Monte Carlo simulations in
stochastic dynamics.

In the measurement, the system of interest (e.g., a qubit) couples to the transducer (e.g.,
a cavity mode) whose output fields are continuously measured in a homodyne detection.
The conditional dynamics of the overall system, including losses, noise, and the effect of
the continuous diffusive measurement, are described by the stochastic master equation

d ρ̂ = LS ρ̂dt + LT ρ̂dt + Lint ρ̂dt +
∑
m
H [λ̂m ] ρ̂dWm . (2.57)

Here, LS is the system Liouvillian that contains, in general, coherent dynamics given by a
system Hamiltonian ĤS and Lindblad operators describing decoherence. The Liouvillian
for the transducer is

LT ρ̂ = −i[ĤT, ρ̂ ] +
∑
n
D [ ̂n ] ρ̂ (2.58)

with ĤT =
1
2 r̂

TRr̂ and ̂n = ξTn r̂. Furthermore, we assume the interaction between system
and transducer linear in the transducer operators

Lint ρ̂ = −iε [Ĥint, ρ̂ ], Ĥint = ŝT r̂, (2.59)

where ŝ is a 2N -dimensional vector of Hermitian operators acting on the system S. We
use the small parameter ε to remind us that the interaction is weak and can be treated
perturbatively. Finally, the measurement terms correspond to a homodyne detection, that
is, the measurement operators λ̂m = (cm + imm )T r̂. The measurements also give rise to
classical measurement currents that take the form

Imdt = 〈λ̂m + λ̂†m〉dt + dWm . (2.60)

To zeroth order in the coupling parameter ε , the transducer dynamics are Gaussian
and can be fully described using the first and second statistical moments of the canonical
operators, now defined with respect to the reduced state of the transducer, ρ̂T = trS{ ρ̂}.
The covariance matrix of the conditional state Γc obeys the Riccati equation (2.56); the
dynamics of the covariance matrix of the unconditional state Γu (obtained by averaging
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over the measurement result) are governed by the Lyapunov equation (2.47). (I use the
superscripts c, u to distinguish the covariance matrices describing the conditional and
unconditional state.)

Our goal is to derive a closed, effective equation of motion for the conditional state of
the system ρ̂S = trT{ ρ̂} which is correct to leading order of ε based on the assumption
that transducer dynamics LT is fast on the time scale of the system–transducer interaction
Ĥint. Under this condition, the state of the system will be given by ρ̂ = ρ̂S ⊗ ρ̂T +O (ε ).
The strategy now is to determine equations of motion for the order-ε correction to this
approximation, solve them formally, and substitute the solution into the equation of
motion for ρ̂S. In this way, we arrive at a closed, effective equation of motion for ρ̂S,
which will be of second order in ε in the deterministic and of first order in the stochastic
part.

So far, I have left the system dynamics LS unspecified. For the adiabatic elimination,
we will have to make an assumption regarding LS relative to Ĥint and LT. We will
consider two main regimes: in the first case (section 2.4.1), the system dynamics are trivial,
LS = 0. Such a situation arises in an interaction picture when the system operators ŝ j in
Ĥint are constants of motion and covers, in particular, the important case of a quantum
nondemolition measurement. Otherwise, LS = 0 can be fulfilled approximately if the
time scales of LS are much slower than those of Ĥint. When the interaction and system
Hamiltonians do not commute, moving to the interaction picture with respect to the
system Liouvillian LS results in a time-dependent interaction. In the simplest and most
common case, the system operators oscillate at a particular frequency ±ω; this situation is
described in section 2.4.2.

2.4.1 Effective equation of motion for quantum nondemolition measurement

We start the adiabatic elimination by tracing out the transducer dynamics from the
stochastic master equation (2.57),

d ρ̂S = trT{d ρ̂} = −iε [ ŝi, η̂i ]dt + 2cmi µ̂idWm, (2.61)

where we defined

η̂i = trT{r̂i ρ̂}, µ̂i = η̂i − x i ρ̂S. (2.62)

In view of the definition µ̂i = trT{r̂i ( ρ̂− ρ̂S ⊗ ρ̂T)}, we can give a simple physical meaning
to the quantities µ̂i : they measure the deviation of the exact state ρ̂ from the tensor
product state ρ̂S ⊗ ρ̂T with respect to the first order moments of the transducer’s canonical
variables r̂i . Accordingly, for the tensor product state ρ̂ = ρ̂S ⊗ ρ̂T, we have µ̂i = 0, and,
as we will see, the µ̂i are of first order in ε . Next, we derive equations governing the
evolution of η̂i and µ̂i , solve them formally to first order in ε , and plug the solutions into
equation (2.61).



2.4 Adiabatic elimination of Gaussian subsystems 43

To obtain an equation for η̂i , we need to evaluate the expression

dη̂i = trT{r̂id ρ̂}
= trT{r̂iLT ρ̂}dt − iε trT{r̂i [ ŝ j r̂ j, ρ̂ ]}dt + cmj trT{r̂i [ r̂ j − x j, ρ̂ ]+}dWm

+ immj trT{r̂i [ r̂ j, ρ̂ ]}dWm

= Ai j η̂ jdt −
i
2
ε (Γci j + 2x i x j )[ ŝ j, ρ̂S ]dt +

1
2
εσi j [ ŝ j, ρ̂S ]+dt

+ cmj (Ûi j + 2x i µ̂ j )dWm − σi jmmj ρ̂SdWm . (2.63)

Here, the first term on the right hand side of the above equation is analogous to terms
appearing in the equation of motion for the mean values of the canonical operators (2.39),
and is therefore equal to Ai j η̂ j . For the other deterministic part, we used

〈r̂i r̂ j 〉 =
1
2
〈[ r̂i, r̂ j ]+ + [ r̂i, r̂ j ]〉 =

1
2

(Γci j + 2x i x j + iσi j ), (2.64)

and ρ̂ = ρ̂S ⊗ ρ̂T to 0th order in ε . Finally, we defined Ûi j = trT{[ r̂i − x i, r̂ j − x j ]+ ρ̂}. To
solve equation (2.63), we also need an equation of motion for x i x j ρ̂S; since this quantity
is a first order correction to η̂i (which is a first order term in the equation for the reduced
density matrix ρ̂S ), it is sufficient to consider its deterministic part to 0th order in ε—the
stochastic part would give rise to a stochastic contribution of second order for ρ̂S.

Using the Itō product rule, we have

dx i = trS{dη̂i}
= Ai j x jdt + εσi j 〈ŝ j 〉dt + (Γci j cmj − σi jmmj )dWm, (2.65a)

d(x i ρ̂S) = (dx i ) ρ̂S + x id ρ̂S + dx id ρ̂S

= Ai j x j ρ̂Sdt + εσi j 〈ŝ j 〉 ρ̂Sdt + (Γci j cmj − σi jmmj )(2cmk µ̂kdt + ρ̂SdWm )

− ix iε [ ŝ j, η̂ j ]dt + 2x icmj µ̂ jdWm, (2.65b)

d(x i x j ρ̂S) = Aik xk x j ρ̂Sdt + x i xk ρ̂SAT
k jdt

+ (Γcikcmk − σikmmk )(Γcj l cml − σ j lmml ) ρ̂Sdt

= Aik xk x j ρ̂Sdt + x i xk ρ̂SAT
k jdt +

1
2

(AikΓ
c
k j + Γ

c
ikA

T
k j + 2Ni j ) ρ̂Sdt, (2.65c)

where we used the Riccati equation (2.56) in the last equation; moreover, we used µ̂i =

η̂i − x i ρ̂S = O (ε ). Equation (2.65c) is a Lyapunov equation; generally, the steady-state
solution of a Lyapunov equation AX +XAT + B = 0 can be written as

X =
∫ ∞

0
dteAtBeA

T t . (2.66)

A straightforward calculation shows that, in this case, this amounts to

x i x j ρ̂S =
1
2

(Γui j − Γ
c
i j ) ρ̂S. (2.67)



44 Continuous measurements on hybrid quantum systems

This result can be plugged into equation (2.63), which gets the form

dη̂i = Ai j η̂ jdt −
i
2
εΓui j [ ŝ j, ρ̂S ]dt +

1
2
εσi j [ ŝ j, ρ̂S ]+dt

+ (Γci j cmj − σi jmmj ) ρ̂SdWm ; (2.68)

here we used ρ̂ = ρ̂S ⊗ ρ̂T +O (ε ) which gives, in leading order, trT{[ r̂i, r̂ j ]+ ρ̂} − 2η̂i x j =

Γci j ρ̂S. We formally solve this equation; the solution is

η̂i =
i
2
εA−1i j Γ

u
jk [ ŝk, ρ̂S ] −

1
2
εA−1i j σ jk [ ŝk, ρ̂S ]+ − A−1i j (Γcjkcmk − σ jkmmk ) ρ̂S

dWm

dt
. (2.69)

We can already see that the unconditional part of the reduced equation will not depend on
the conditional state, as expected; since µ̂i enters equation (2.61) only in the stochastic term,
the unconditional part of equation (2.69) gives the only contribution to the unconditional
dynamics of the system density operator ρ̂S.

We proceed similarly to obtain an equation of motion for µ̂i . Combining equations
(2.63) and (2.65b) and keeping terms to first order in ε , we have

dµ̂i = dη̂i − d(x i ρ̂S)

= Ai j µ̂ jdt − 2(Γcikcmk − σikmmk )cmj µ̂ jdt +
1
2
εσi j [ ŝ j − 〈ŝ j 〉, ρ̂S ]+dt

−
i
2
εΓci j [ ŝ j, ρ̂S ]dt + Ω̂i j cmjdWm, (2.70)

where Ω̂i j = Ûi j − Γ
c
i j ρ̂S. The quantities Ω̂i j can be interpreted in a similar way as the

µ̂i in equation (2.62): Ω̂i j measure the deviation of the exact state ρ̂ from the tensor
product state ρ̂S ⊗ ρ̂T with respect to the second moments of the transducer’s canonical
variables r̂i . The equation of motion for Ω̂i j can be derived in a similar way as for µ̂i , and
shows that it is a second order quantity, Ω̂i j = O (ε 2); refer to Appendix 2.C for more
information about this quantity and the general structure of the equations of motion for
the deviations of the exact and tensor states with respect to the statistical moments of
the transducer. Since the deviations Ω̂i j are of second order, the stochastic term can be
dropped in equation (2.70), and the solution is

µ̂i = −
1
2
εQ−1i j σ jk [ ŝk − 〈ŝk〉, ρ̂S ]+ +

i
2
εQ−1i j Γ

c
jk [ ŝk, ρ̂S ], (2.71a)

Q = A − 2(Γccm − σmm )cTm . (2.71b)

Plugging the results (2.69) and (2.71a) into the equation of motion for the system
density operator, equation (2.61), we recover the effective equation

d ρ̂S =
1
2
A−1i j Γ

u
jk [ ŝi, [ ŝk, ρ̂S ]]dt +

i
2
A−1i j σ jk [ ŝi, [ ŝk, ρ̂S ]+ ]dt +H [iΛmi ŝi ] ρ̂SdWm, (2.72)

where we have the measurement term

Λm = (Γc − iσ)Q−T cm +A−1(Γccm − σmm ). (2.73)
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As expected, the deterministic part of the stochastic master equation [first two terms
in equation (2.72)] depends only on the unconditional state of the transducer through
its covariance matrix Γu; the stochastic term, however, does depend on the conditional
state Γc.

The effective equation of motion (2.72) is not manifestly in Lindblad form. In order
to bring it into the Lindblad form, we rewrite it as

d ρ̂S = −i[Ĥ , ρ̂S ]dt + Pi j

[
ŝi ρ̂S ŝ j −

1
2

( ŝ j ŝi ρ̂S + ρ̂S ŝ j ŝi )
]
dt +H [iΛmi ŝi ] ρ̂SdWm, (2.74)

where

Ĥ =
i
4
ŝT [A−1(Γu + iσ) − (Γu − iσT )A−T ]ŝ, (2.75a)

P = −
1
2
[A−1(Γu − iσ) + (Γu + iσT )A−T ]. (2.75b)

The individual jump operators and corresponding decay rates are given by eigenvectors
vi and eigenvalues wi > 0 of the matrix P,

∑
i wiD [vTi ŝ] ρ̂S. The decay matrix P is

indeed positive semidefinite, as shown in appendix 2.B. Finally, the effective equation of
motion has to be appended with an equation relating the measured photocurrent to the
system observables ŝi after elimination of the transducer degrees of freedom [replacing
equation (2.60)],

Imdt = 〈iΛT
m ŝ − îs†Λ∗m〉dt + dWm . (2.76)

2.4.2 Effective equation of motion for oscillating system–transducer interaction

When moving to the rotating frame with respect to the system Hamiltonian, the interaction
stays time independent only for special cases. Generally, the system operators will become
time-dependent. To go beyond the model presented in section 2.4.1, we now consider the
simplest case of time-dependent operators—those oscillating at frequency ±ω. We write
the interaction Hamiltonian as Ĥint(t ) = ŝT (t )r̂, where ŝ(t ) = ŝ+eiωt + ŝ−e−iωt , and the
operators ŝ± are time independent and Hermitian conjugate of each other, ( ŝ+)†i = ( ŝ−)i .
Although this is not a completely general form of system–transducer coupling, together
with the time-independent case, it can cover a large range of scenarios, including arbitrary
qubit dynamics.

Since the system operators now oscillate at frequency ω, the essential part of the signal
will be transmitted by the sidebands and not in the carrier frequency. To recover this signal,
we perform the measurements with local oscillators that are detuned from the standard
reference frame. Denoting the frequency of the standard reference frame (corresponding,
e.g., to the frequency of the laser light used to drive the system) as ω0 and the frequency
of the local oscillator as ωm , we can use the following description [233]: the adjustment
results in time-dependent measurement operators λ̂m (t ) = (cm + imm )T r̂(t ), where we
have

q̂i =
âie−i∆m t + â†i e

i∆m t

√
2

, p̂i = i
â†i e

i∆m t − âie−i∆m t

√
2

(2.77)
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with ∆m = ω0 − ωm . Alternatively, we can rewrite the measurement operators so that
the time-dependence enters through the coefficients, λ̂m (t ) = [cm (t ) + imm (t )]T r̂ (with
the canonical operators r̂ time-independent), which will prove useful when adiabatically
eliminating the transducer dynamics. Overall, the stochastic master equation takes the
form

d ρ̂ = −iε [ŝT (t )r̂, ρ̂ ]dt + LT ρ̂dt +
∑
m
H [λ̂m (t )] ρ̂dWm, (2.78)

where we explicitly write the time dependence of the interaction Hamiltonian and the
measurement operators.

Before proceeding with the adiabatic elimination, we have to pay attention to the
conditional steady state of the Gaussian system. Since the measurement terms are now
time-dependent, the Riccati equation (2.56) for this system is ill-defined. To circumvent
this problem, we perform rotating wave approximation in the measurement terms by
introducing the coarse-grained Wiener increments

dW c
m =

∫
√
2 cos(∆m t )dWm, dW s

m =

∫
√
2 sin(∆m t )dWm . (2.79)

For integration intervals long on the time scale of ∆−1m but short on all other time scales,
this produces two independent Wiener increments, dW a

mdW b
n = δmnδabdt ; a, b ∈ {c, s},

effectively turning every measurement into two,

H [λ̂m (t )] ρ̂dWm →
1
√
2
H [λ̂c

m ] ρ̂dW c
m +

1
√
2
H [λ̂s

m ] ρ̂dW s
m, (2.80)

where λ̂a
m = (cam + ima

m )T r̂ and

cm (t ) = ccm cos(∆m t ) + csm sin(∆m t ), (2.81a)

mm (t ) = mc
m cos(∆m t ) +ms

m sin(∆m t ). (2.81b)

These measurement operators are time-independent and thus give rise to a valid Riccati
equation

Γ̇c = AΓc + ΓcAT + 2N −
∑
m

∑
a∈{c,s}

(Γccam − σm
a
m )(Γccam − σm

a
m )T . (2.82)

We treat the matrix Q [equation (2.71b)], which now also becomes time-dependent, in a
similar manner; it becomes

Q = A −
∑
m

∑
a

(Γccam − σm
a
m )(cam )T . (2.83)

With these adjustments, we are now ready to adiabatically eliminate the transducer dynam-
ics and obtain an effective equation of motion for the system density matrix ρ̂S.

Since we made no assumptions about time-dependence of the system operators in
deriving equations of motion for ρ̂S, η̂i , x i x j ρ̂S, and µ̂i in equations (2.61), (2.63), (2.65c),
(2.70), these equations stay valid also in the present case. It is only their formal solution
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where the time-dependence of the system and measurement operators starts to play a role.
The solution is, nevertheless, analogous to the time-independent case, only with additional
oscillation terms, e±iωt . Solving the equations of motion for x i x j ρ̂S, η̂i , µ̂i formally and
performing the rotating wave approximation, we arrive at the equation

d ρ̂S = L ρ̂Sdt +H [Λ̂m ] ρ̂SdWm, (2.84a)

Imdt = 〈Λ̂m + Λ̂
†
m〉dt + dWm . (2.84b)

Here, the deterministic part is given by

L ρ̂S =
1
2

(A + iω)−1i j {Γujk [( ŝ+)i, [( ŝ−)k, ρ̂S ]] + iσ jk [( ŝ+)i, [( ŝ−)k, ρ̂S ]+ ]}+
+

1
2

(A − iω)−1i j {Γujk [( ŝ−)i, [( ŝ+)k, ρ̂S ]] + iσ jk [( ŝ−)i, [( ŝ+)k, ρ̂S ]+ ]}, (2.85)

and the particular form of the measurement term depends on the choice of local oscillator
detuning, for which one has to distinguish two relevant cases ∆m = ±ω,

Λ̂m = iΘT
m ŝ+ + iΞT

m ŝ−, ∆m = −ω, (2.86a)

Λ̂m = iΞT
m ŝ+ + iΘT

m ŝ−, ∆m = ω, (2.86b)

Θm = (Γc − iσ)(Q + i∆mI)−T c+m + (A − i∆mI)−1(Γcc+m − σm
+
m ), (2.86c)

Ξm = (Γc − iσ)(Q − i∆mI)−T c−m + (A + i∆mI)−1(Γcc−m − σm
−
m ), (2.86d)

where we denote cm (t ) = c+mei∆m t + c−me−i∆m t and m±m are defined similarly.
To bring the deterministic part of this equation to Lindblad form, we can proceed

similarly to the time-independent case. Since now the system operators ( ŝ±)i are non-
Hermitian, we first need to express them using some Hermitian basis (in the case of qubits,
for instance, that would be the set of the Pauli operators and the identity). We can then
recover the Hamiltonian part and the dissipative part, the diagonalization of which reveals
the individual decay channels.

2.5 Examples

In this section, I illustrate the use of the adiabatic elimination method presented in section
2.4 on a few simple examples. The model scenarios are taken from circuit quantum
electrodynamics where small amounts of thermal noise—typically unaccounted for by
other adiabatic elimination methods—can be present even in cryogenically cooled systems.
I show that the adiabatic elimination of Gaussian systems (which I henceforth refer to as
Gaussian adiabatic elimination) can provide significantly increased accuracy for thermal
noise at the level of few quanta.

The examples are shown in figure 2.2. In section 2.5.1, I consider dispersive readout of
a qubit using a cavity that is coupled to a thermal reservoir; see figure 2.2(a). I compare
Gaussian adiabatic elimination with results obtained by density operator expansion (dis-
cussed in detail below) and show that significant qualitative and quantitative improvements
can be achieved with the former method. I extend this system in section 2.5.2 [figure
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(a) (b)

(c)

Figure 2.2: Schematic illustrations of the setups to exemplify Gaussian adiabatic elimination. In
sections 2.5.1, 2.5.3, we analyse dynamics of a qubit coupled to a thermal cavity via dispersive and
Jaynes–Cummings interaction, respectively, shown in (a). (b) Setup for entanglement generation
by measurement as discussed in section 2.5.2. Here, two qubits interact dispersively with the same
cavity but not with each other. With a suitable initial state and using the information obtained from
the measurement record, it is then possible to postselect an entangled state of the two qubits. Finally,
in section 2.5.4, I study a qubit coupled to the two-oscillator transducer shown in (c), where the first
oscillator couples to a thermal bath; the second oscillator—which is used to read out the state of the
first oscillator—is effectively at zero temperature.

2.2(b)] where I study the effect of thermal noise on generating two-qubit entanglement
by measurement, following the approach of Hutchison et al. [91]. Next, I illustrate the
use of Gaussian adiabatic elimination with time-dependent interaction in section 2.5.3
where I consider a single qubit coupled to a cavity field via Jaynes–Cummings Hamilto-
nian. Finally, in section 2.5.4, I consider the system shown in figure 2.2(c): a transducer
consisting of two coupled oscillators, one of which is coupled to a thermal bath. This
setup differs from all other scenarios considered here by having a different unconditional
and conditional steady state of the transducer, and I show how the Gaussian adiabatic
elimination fares in this case. All numerical calculations in this section are done in python

using Qutip [236–238].

2.5.1 Quantum nondemolition readout of a qubit

We consider the system shown in figure 2.2(a), where a qubit couples in a quantum
nondemolition interaction to a cavity mode whose output field is subject to continuous
homodyne detection. In such a system the cavity itself serves just as a transducer, and
can be adiabatically eliminated if the cavity decay rate is sufficiently large (faster than the
coupling). We start with the qubit–cavity Hamiltonian of the form

Ĥ =
ω

2
σ̂z + ∆â† â + g â† âσ̂z + iE ( âeiφ + â†e−iφ). (2.87)

We move to the interaction picture with respect to the free qubit evolution, cancelling the
first term. The second term shows the free cavity dynamics; we choose to drive the cavity
mode at the centre frequency, ∆ = 0, maximising the measurement efficiency. The third
term gives the standard dispersive interaction, and the last term describes the cavity drive.



2.5 Examples 49

To obtain interaction that is linear in the cavity quadrature operators, we linearize
the Hamiltonian by moving to the displaced frame, ρ̂ → D̂†(α) ρ̂D̂ (α), where D̂ (α) =
exp(α â† − α∗ â) is the displacement operator and α = 2Ee−iφ/κ (with cavity decay rate
κ ) is the steady state cavity field. (The linearization also makes it possible to eliminate
the cavity field using density operator expansion approach later.) This procedure brings
the interaction Hamiltonian to the form Ĥint = g (α∗ â + α â†)σ̂z + g â† âσ̂z . If the driving
field is strong enough, we can drop the second term, getting the interaction Hamiltonian
Ĥint = χ r̂φσ̂z , where r̂φ = ( âeiφ + â†e−iφ)/

√
2 and χ =

√
2g |α |. The phase φ is set by the

field E driving the cavity.
Since the cavity field couples to a thermal bath (with average number of excitations

n), the measurement term takes the form
√
κ/(2n + 1)H [(n + 1) â − nâ† ] ρ̂ [97]. The full

dynamics of the qubit–cavity system is thus described by the equation

d ρ̂ = −iχ[σ̂z r̂φ, ρ̂ ]dt + κ{(n + 1)D [ â ] + nD [ â† ]} ρ̂dt
+

√
κ

2n + 1
H [(n + 1) â − nâ† ] ρ̂dW . (2.88)

Here, we assume that the cavity leaks only through its output port at rate κ and the
homodyne detector has unit efficiency; numerical simulations indicate that additional decay
has little effect on the accuracy of the adiabatic elimination methods. The measurement
signal has the form Idt =

√
2κ/(2n + 1)〈q̂〉dt + dW .

Following the recipe from section 2.4.1, we have the transducer Hamiltonian ĤT =

0, jump operators ̂1 =
√
κ (n + 1) â, ̂2 =

√
κn â†, and measurement operator λ̂ =√

κ/(2n + 1)[(n + 1) â − nâ† ], or

R = 0, (2.89a)

ξ1 =

√
κ (n + 1)

2
*
,

1
i

+
-
, ξ2 =

√
κn
2

*
,

1
−i

+
-
, (2.89b)

c =
√

κ

2(2n + 1)
*
,

1
0

+
-
, m =

√
κ (2n + 1)

2
*
,

0
1

+
-
. (2.89c)

It then follows that A = − 1
2 κI2, N = (n+ 1

2 )I2 and both the unconditional and conditional
steady states are the thermal state Γu = Γc = (2n+1)I2. Furthermore, from the interaction
Hamiltonian, we can read off ŝ = χσ̂z (cos φ,− sin φ)T . After plugging everything into
equation (2.72), a straightforward calculation reveals the effective equation

d ρ̂S =
2χ2

κ
(2n + 1)D [σ̂z ] ρ̂Sdt +

√
2χ2

κ (2n + 1)
H [−i(2n cos φ + e−iφ)σ̂z ] ρ̂SdW , (2.90a)

Idt = −

√
8χ2

κ (2n + 1)
sin φ〈σ̂z 〉dt + dW . (2.90b)

Obviously, the optimal phase for an efficient readout of the qubit state is φ = π/2, which is
not surprising—this phase choice corresponds to an interaction of the from Ĥint = χσ̂z p̂
accompanied by a q̂ measurement.



50 Continuous measurements on hybrid quantum systems

0.00
0.25
0.50
0.75
1.00

〈 σ̂ x〉

(a)

0.05

0.00

0.05

〈 σ̂ y〉
(b)

0 10 20 30 40 50
Time (units of −1)

1.0
0.5
0.0
0.5

〈 σ̂ z〉

(c)

0 10 20 30 40
Time (units of −1)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

T
ra

ce
 d

is
ta

n
ce

(d)

0 10 20 30 40 50
Time (units of −1)

(e)

Figure 2.3: Determination of the average trace distance. Starting from a single quantum trajectory
[expectation values of the Pauli matrices shown in plots (a–c)], we calculate the trace distance
between the full model [dotted blue line, equation (2.88)], and the result obtained by Gaussian
adiabatic elimination [full green line, equation (2.90)], or using the density operator expansion [dot-
dashed red line, equation (2.92)]. The resulting trace distances are shown in (d). We further average
using 500 quantum trajectories in (e) to obtain an average trace distance. Using time averaging on this
result, we further obtain a single figure of merit that determines quality of the two approaches. For
the results shown here with n = 2, χ = 0.1κ, φ = π/2 and initial qubit state |ψ0〉 = ( |0〉 + |1〉)/

√
2,

we have the average trace distance D ≈ 0.05 for Gaussian adiabatic elimination and D ≈ 0.22 for
density operator expansion (cf. figure 2.4).

I contrast the Gaussian adiabatic elimination with a more common approach based
on expanding the density operator in the Fock basis of the cavity around its vacuum state
assuming no thermal excitations in the cavity [91, 207],

ρ̂ = ρ̂00 |0〉〈0| + ρ̂10 |1〉〈0| + ρ̂01 |0〉〈1| + ρ̂11 |1〉〈1| + . . . , (2.91)

where the elements ρ̂i j are operators acting on the Hilbert space of the qubit, and are
of the order i + j in the small coupling parameter ε . Expanding up to second order, the
reduced state of the qubit is given by ρ̂S = trT{ ρ̂} = ρ̂00 + ρ̂11, and the elements ρ̂00, ρ̂11
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depend on ρ̂i j with i + j ≤ 2. The qubit equation of motion takes the form

d ρ̂S =
2χ2

κ
(2n + 1)D [σ̂z ] ρ̂Sdt +

√
2χ2

κ
H [e−i(φ+π/2)σ̂z ] ρ̂SdW , (2.92a)

Idt = −
√

8χ2

κ
sin φ〈σ̂z 〉dt + dW . (2.92b)

Here we took into account the effect of thermal noise in the deterministic part (first
term), which can be easily done using, for example, projection operator method [214].
The only difference between equations (2.90) and (2.92) is thus in the measurement term.
Qualitatively speaking, the density operator expansion overestimates the effective strength
of the measurement by a factor of 1/

√
n. The actual rate at which information about

the qubit state is transferred to the output field does not depend on the temperature of
the cavity (it is proportional to χ2/κ ) but, since the noise level increases with increasing
temperature, the signal-to-noise ratio decreases, leading to a decrease of the effective
measurement rate. For a zero temperature bath, both methods give the same results; in
the presence of thermal excitations, however, this difference quickly starts to play a role.

To quantify the difference between the full model given by equation (2.88) and the
effective qubit equation (2.90) or (2.92), we calculate the trace distance between the
corresponding qubit states (I use ρ̂1 to denote state obtained from the exact dynamics and

ρ̂2 for the approximation methods), D ( ρ̂1, ρ̂2) = 1
2 tr| ρ̂1 − ρ̂2 | with |X̂ | =

√
X̂ †X̂ . Since

the density matrices describe the state of a single qubit, the trace distance can be expressed
using the expectation values of the Pauli matrices 〈σ̂ j

i 〉 = tr{ ρ̂ j σ̂i} as

D ( ρ̂1, ρ̂2) =
1
2

√ ∑
i∈{x,y,z}

(〈σ̂1
i 〉 − 〈σ̂

2
i 〉)

2. (2.93)

To obtain an average trace distance between the full model and the reduced dynamics,
we generate a large number of quantum trajectories. We are thus able to study how the
average trace distance changes in time; in addition, upon time averaging, we obtain a single
figure of merit quantifying the discrepancy between the full and reduced dynamics; the
averaging process is illustrated in figure 2.3.

The results of the numerical investigations are shown in figure 2.4. In panel (a), I plot
the average trace distance as a function of the interaction phase φ for Gaussian adiabatic
elimination (green squares) and density operator expansion (black stars). Both methods
provide best results for φ = π/2, corresponding to an interaction of the form Ĥint = χ p̂σ̂z .
This feature is particularly beneficial since, as discussed before, this phase choice is optimal
for nondemolition readout of the qubit state.

In panel (b) of figure 2.4, I plot the average trace distance versus thermal occupation
number. While the average trace distance with Gaussian adiabatic elimination (green
squares for φ = π/2, blue circles for φ = 0) eventually saturates (with the phase φ = 0 this
happens at n ≈ 3, which is not shown in the plot), the error with density operator expan-
sion (black stars for φ = π/2, red crosses for φ = 0) grows with increasing temperature.
Moreover, the Gaussian adiabatic elimination performs a factor of about 2 better than
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Figure 2.4: Average trace distance for Gaussian adiabatic elimination and density operator expansion
as compared to the full model. (a) Trace distance as a function of the measurement phase with
green squares showing results for the Gaussian adiabatic elimination and black stars for density
operator expansion. The bottom panels show the trace distance versus thermal occupation number
(b) and the overall measurement time (c) for two choices of phase: φ = π/2 (green squares for
Gaussian adiabatic elimination, black stars for density operator expansion), and φ = 0 (blue circles
for Gaussian adiabatic elimination, red crosses for density operator expansion). The parameters used
for the simulations are χ = 0.1κ, n = 2 [for (a,c)], measurement time T = 50 [(a,b)], and initial
qubit state |ψ0〉 = ( |0〉 + |1〉)/

√
2. The Fock space of the cavity field for the full model is cut off at

Nmax = 20.

density operator expansion already for half a thermal excitation present in the bath; with
the phase choice φ = π/2, which corresponds to the optimal qubit readout, the difference
between the two methods quickly grows.

Finally, in figure 2.4(c), I investigate how the measurement time affects the accuracy of
the two methods. Gaussian adiabatic elimination remains unaffected by the length of the
measurement (φ = 0) or even slightly improves with time (φ = π/2), whereas accuracy of
the density operator expansion method slowly deteriorates over time. This feature can
be seen already from the time-dependence of the trace distance [cf. figure 2.3(e)], where
the trace distance with Gaussian adiabatic elimination reaches a maximum shortly after
the begin of the evolution ( t ≈ 5κ−1 ) and then settles at a smaller steady state value, while
the trace distance with density operator expansion continues to grow throughout the
evolution.

The choice of a single initial qubit state |ψ0〉 = (|0〉 + |1〉)/
√
2 does not affect the

completeness of our analysis. Since the evolution for eigenstates of the σ̂z operator is
trivial, the dynamics starting on the equator of the Bloch sphere is the most interesting
from the point of view of solution accuracy. As there is no preferred phase for the qubit,
the adiabatic elimination methods perform equally for all these states.

Additionally, generating quantum trajectories with the approximation methods is, due
to smaller size of the Hilbert space, about four times faster than with the full model; in
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Figure 2.5: Example histograms of the integrated current at the beginning of the readout [T = 5κ−1,
(a)] and at a later time [T = 100κ−1, (b)]. In panel (c), I plot the probability of the two qubits to
be in the state |00〉 (dot-dashed green line), |11〉 (dotted red line), and |Ψ+〉 (full blue line) for an
example quantum trajectory. The simulations were run with the parameters χ = 0.1κ, n = 0, and
1000 trajectories were used for generating the histograms.

systems with larger thermal noise, this effect will be even larger. Moreover, as the qubit
dynamics happen on a slower time scale than the evolution of the cavity field, it is possible
to use larger time steps in the numerical solution, speeding the numerics up even more.

2.5.2 Two-qubit entanglement in presence of thermal noise

Extending the system presented in the previous section, we now consider two qubits
dispersively coupled to a common cavity field, Ĥint =

∑
j χ j r̂φσ̂

j
z , where σ̂ j

z acts on the
jth qubit. Such a system is of particular interest as the joint measurement of the two qubits
can generate entanglement between them [91, 92]. Indeed, a straightforward generalization
of equation (2.90) (with φ = −π/2) gives the effective dynamics

d ρ̂S =
2
κ

(2n + 1)D [ χ1σ̂
1
z + χ2σ̂

2
z ] ρ̂Sdt +

√
2

κ (2n + 1)
H [ χ1σ̂

1
z + χ2σ̂

2
z ] ρ̂SdW ,

(2.94a)

Idt =
√

8
κ (2n + 1)

〈χ1σ̂
1
z + χ2σ̂

2
z 〉dt + dW . (2.94b)

We thus get an effective measurement of the total spin of the two qubits. If we prepare
the qubits in the state |ψ0〉 =

1
2 ( |0〉 + |1〉) ⊗ (|0〉 + |1〉), engineer the interaction so

that χ1 = χ2 = χ, and postselect only those trajectories with measurement outcome
〈σ̂1

z + σ̂
2
z 〉 = 0, the two-qubit state takes the form |Ψ+〉 = (|01〉 + |10〉)/

√
2 since there is
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Figure 2.6: Logarithmic negativity (full blue line) and success probability (dashed green line) versus
the postselection threshold ν for n = 0 (a) and n = 2 (c). The measurement time is T = 100κ−1

in (a) and T = 250κ−1 in (c); moreover, in the insets, I plot the logarithmic negativity and success
probability for T = 75κ−1 (left) and T = 150κ−1 (right) for both (a) and (c). In addition, in panels
(b,d), histograms of the integrated currents corresponding to the results in (a,c) are shown. I use the
coupling χ = 0.1κ and average over 1000 quantum trajectories.

one excitation in the system but we have no information on which of the two qubits is
excited. Moreover, this state is also a dark state of the Lindblad term D [σ̂1

z + σ̂
2
z ] ρ̂S so it

is a conditional steady state of the stochastic master equation (2.94).
In more detail, the entanglement is generated using the following protocol: first, the

qubits interact with the cavity mode and the output field is measured, which is described
by equation (2.94). After time T , we have accumulated the signal

J (T ) =
∫ T

0
dt I (t ); (2.95)

if the integrated current is close to zero, the expectation value 〈σ̂1
z + σ̂

2
z 〉 = 0 and the

qubits are in the state |Ψ+〉. The whole measurement is illustrated in figure 2.5. At an early
time in the evolution [panel (a)], the distribution of the integrated current is Gaussian
but at a later time [panel (b)] three distinct peaks form with the centre one corresponding
to the qubits in the state |Ψ+〉. Quantitatively, the postselection is performed by using a
threshold ν and keeping the state if and only if | J | ≤ ν . A small threshold thus results in a
pure entangled state, albeit with a small success probability; increasing the threshold value,
in turn, results in a mixed state with reduced amount of entanglement.

I plot the results of the numerical simulations in figure 2.6. I analyse the logarithmic
negativity [239] of the resulting postselected state (full blue line) and the corresponding
success probability (dashed green line) for cavity coupled to a vacuum bath [panel (a)]
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and a bath with n = 2 [panel (c)]. Generally, in the presence of thermal photons, longer
measurement times are needed to reach a maximally entangled state—I use the measurement
times T = 100κ−1 for zero temperature bath and T = 250κ−1 in presence of thermal noise.
This effect is due to the reduced signal-to-noise ratio, cf. figure 2.6(b,d). In the histograms,
one can see that the local minima between peaks are slightly less pronounced for n = 2
even with a measurement that is longer by a factor of 2.5.

These observations are further accentuated in the insets of figure 2.6(a,c), where I
plot the logarithmic negativity and success probability for T = 75κ−1 (left inset) and
T = 150κ−1 (right). With thermal photons present, the logarithmic negativity does
not reach unity in the limit ν → 0 for the shorter time; at this point, a plateau of unit
entanglement starts to form with vacuum bath. For the latter time, we reach a large
plateau of success probability of 0.5 with zero temperature, making it possible to generate
the |Ψ+〉 Bell state in half the cases; a similar plateau with the thermal bath starts to form
only around T = 250κ−1. In any practical setting, this will present a problem since other
decoherence mechanisms—such as intrinsic relaxation and dephasing of the qubits—will
start to play a role.

2.5.3 Single-qubit measurement using Jaynes–Cummings interaction

To illustrate adiabatic elimination with oscillating system operators, I now consider an
example of a single qubit coupled to a cavity mode via Jaynes–Cummings Hamiltonian,

Ĥ =
1
2
ωσ̂z + ∆â† â + g ( âσ̂+eiφ + â†σ̂−e−iφ). (2.96)

In the rotating frame of the qubit, this interaction gives rise to the stochastic master
equation

d ρ̂ = −i[g ( âσ̂+ei(ωt+φ) + â†σ̂−e−i(ωt+φ)) + ∆â† â, ρ̂ ]dt + κ{(n + 1)D [ â ] + nD [ â† ]} ρ̂dt
+

√
κ

2n + 1
H [(n + 1) âe−iδ t − nâ†eiδ t ] ρ̂dW (2.97)

with homodyne detection performed with detuning δ. To obtain a full model without
oscillating measurement operators, we choose the detunings ∆ = ω = −δ. Equation (2.97)
simplifies to (in rotating frame with respect to the cavity Hamiltonian ∆â† â )

d ρ̂ = −ig [ âσ̂+eiφ + â†σ̂−e−iφ, ρ̂ ]dt + κ (n + 1)D [ â ] ρ̂dt + κnD [ â† ] ρ̂dt+

+

√
κ

2n + 1
H [(n + 1) â − nâ† ] ρ̂dW , (2.98a)

Idt =
√

2κ
2n + 1

〈q̂〉dt + dW . (2.98b)

In the following, I use equation (2.98) for comparison with the adiabatic elimination
methods; it is equation (2.97), however, that I use as a starting point for the elimination
of the cavity dynamics. This choice enables us, in principle, to go beyond the scenario
with ∆ = ω = −δ in the adiabatic approximation; using the Gaussian adiabatic elimination
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method, it is possible, for instance, to describe dynamics with measurement performed at
the other sideband, δ = ω.

The transducer dynamics are given by the Hamiltonian ĤT = ∆â† â, jump operat-
ors ̂1 =

√
κ (n + 1) â, ̂2 =

√
κn â†, and measurement operator λ̂ =

√
κ/(2n + 1)[(n +

1) âe−iδ t − nâ†eiδ t ], so we have R = ∆I2, ξ1,2 the same as for the dispersive readout in
equations (2.89b), and the measurement operator

λ̂ =

√
κ

2(2n + 1)
[cos(δ t ) − i(2n + 1) sin(δ t )]q̂

+

√
κ

2(2n + 1)
[sin(δ t ) + i(2n + 1) cos(δ t )] p̂, (2.99a)

cc =
√

κ

2(2n + 1)
*
,

1
0

+
-
, mc =

√
κ (2n + 1)

2
*
,

0
1

+
-
, (2.99b)

cs =
√

κ

2(2n + 1)
*
,

0
1

+
-
, ms =

√
κ (2n + 1)

2
*
,

0
−1

+
-
, (2.99c)

c+ =
√

κ

8(2n + 1)
*
,

1
−i

+
-
, m+ =

√
κ (2n + 1)

8
*
,

i
1

+
-
, (2.99d)

with c− = (c+)∗, m− = (m+)∗. We thus haveA = − 1
2 κI2+∆σ, N = (n+ 1

2 )I2, and the cavity
steady state (both unconditional and conditional) is the thermal state Γu = Γc = (2n+1)I2.
Together with the system operators

ŝ− =
g
√
2
e−iφσ̂− *

,

1
−i

+
-
, ŝ+ =

g
√
2
eiφσ̂+ *

,

1
i

+
-
, (2.100)

and the choice of frequencies ∆ = ω = −δ, this gives the effective equation

d ρ̂S =
4g2

κ
{(n + 1)D [σ̂− ] + nD [σ̂+ ]} ρ̂Sdt

+
2g√

κ (2n + 1)
H [(n + 1)σ̂−e−i(φ+π/2) − nσ̂+ei(φ+π/2) ] ρ̂SdW , (2.101a)

Idt =
2g√

κ (2n + 1)
〈σ̂y cos φ − σ̂x sin φ〉dt + dW . (2.101b)

With density operator expansion (and a correction for thermal noise in the Lindblad
terms), the qubit dynamics are described by the equation

d ρ̂S =
4g2

κ
{(n + 1)D [σ̂− ] + nD [σ̂+ ]} ρ̂Sdt +

2g
√
κ
H [σ̂−e−i(φ+π/2) ] ρ̂SdW , (2.102a)

Idt =
2g
√
κ
〈σ̂y cos φ − σ̂x sin φ〉dt + dW . (2.102b)

Both adiabatic elimination methods, equations (2.101), (2.102), give identical results for
zero-temperature cavity bath.

The average trace distance for Gaussian adiabatic elimination and density operator
expansion is analysed, in complete analogy with the dispersive readout, in figure 2.7. The
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Figure 2.7: (a) Average trace distance for Gaussian adiabatic elimination (green squares) and density
operator expansion (black stars) as a function of the interaction phase φ. In the bottom panels, I plot
the average trace distance versus thermal occupation (b) and measurement time (c) for the choice
of phase φ = 0 (blue circles showing Gaussian adiabatic elimination and red crosses for density
operator expansion) and φ = π/2 (Gaussian adiabatic elimination shown in green squares, density
operator expansion in black stars). The parameters used to run the simulations are g = 0.1κ, n = 2
[for panels (a,c)], measurement time T = 50 [for (a,b)], and initial qubit state |ψ0〉 = (|0〉 + |1〉)/

√
2.

The cavity field for the full model has been cut off at the Fock number Nmax = 20.

error is minimised for phase φ = 0 [panel (a)], which corresponds to a σ̂y measurement;
for a σ̂x measurement (phase φ = π/2), the average trace distance reaches its maximum.
The error with the Jaynes–Cummings readout is, however, much less phase-sensitive than
with the dispersive measurement. Performance of the Gaussian adiabatic elimination does
not depend on the thermal occupation [panel (b)] while the average trace distance with
the density operator expansion increases with temperature. Finally, for long measurement
times [panel (c)], the average trace distance for both methods gradually decreases as
the measurement approaches a projective readout and the qubit approaches one of its
conditional steady states.

2.5.4 Qubit readout with a two-oscillator transducer

All examples considered so far had one special property in common: the unconditional
and conditional steady states of the transducer were equal. To show how Gaussian
adiabatic elimination can be applied to systems where this is not the case, I now consider
the following example [see figure 2.2(c)]: A qubit, our system of interest, couples to a
harmonic oscillator by means of a quantum nondemolition interaction, similar to the
example in section 2.5.1. This oscillator decays into a thermal bath and, at the same time,
couples to another oscillator of much higher frequency so its reservoir is effectively in the
ground state. Finally, we measure the output of the second oscillator.
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Figure 2.8: (a) Average trace distance as a function of thermal occupation for three regimes: weak
coupling ( g = 0.2κ, green squares), intermediate coupling ( g = 0.5κ, blue circles), and strong
coupling ( g = κ, black stars). In (b), I show the average trace distance versus time for n = 2,
g = κ. Other parameters used in the simulations are χ = 0.2κ, ω = 5κ, γ = 0.1κ, initial qubit state
|ψ0〉 = ( |0〉 + |1〉)/

√
2, and we averaged over 100 quantum trajectories.

The conditional master equation of the overall system has the form

d ρ̂ = −i[ χσ̂z r̂φ + ω1 â† â + ω2b̂†b̂ + g q̂1 q̂2, ρ̂ ]dt + γ{(n + 1)D [ â ] + nD [ â† ]} ρ̂dt+
+ κD [b̂ ] ρ̂dt +

√
κH [b̂eiϕ ] ρ̂dW , (2.103a)

Idt =
√
κ〈b̂eiϕ + b̂†e−iϕ〉dt + dW . (2.103b)

Here, â describes the first (i.e., thermal) oscillator, b̂ is used for the second, readout
oscillator, and r̂φ = ( âeiφ + â†e−iφ)/

√
2 denotes a general quadrature operator of the

thermal oscillator. Such a system can be realised by coupling superconducting qubit to
a mechanical oscillator [173, 184] and reading out the signal in the mechanical oscillator
optically. The oscillator coupling has the form of standard linearized optomechanical
interaction [18], Ĥosc = g q̂1 q̂2, and I consider the scenario where the optomechanical
system is driven on the red sideband, ω1 = ω2 = ω; in this case, the states of the mechanical
oscillator and the optical cavity field are swapped. The readout efficiency can further be
maximized by letting the qubit couple to the phase quadrature of the thermal oscillator and
measuring the phase quadrature of the readout oscillator. The stochastic master equation
then takes the form

d ρ̂ = −i[ χσ̂z p̂1 + ω( â† â + b̂†b̂ ) + g q̂1 q̂2, ρ̂ ]dt + γ{(n + 1)D [ â ] + nD [ â† ]} ρ̂dt+
+ κD [b̂ ] ρ̂dt +

√
κH [ib̂ ] ρ̂dW . (2.104)

As the transducer dynamics are more complex than for the simple transducers con-
sidered in the previous sections, I perform the whole adiabatic elimination numerically;
see the simulation files [238] for details. The results of the numerical simulations are
shown in figure 2.8. In panel (a), I investigate how the bath temperature for the thermal
oscillator affects the average trace distance in three distinct regimes: for weak ( g = 0.2κ,
green squares), intermediate ( g = 0.5κ, blue circles), and strong ( g = κ, black stars)
coupling. As the strength of the coupling between the two oscillators grows, the trace
distance becomes less temperature sensitive. This effect is a natural consequence of the
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optomechanical coupling which effectively cools the mechanical oscillator so that its steady
state occupation is lower for stronger coupling. The error of the adiabatic elimination
is, however, for all three values of coupling an order of magnitude smaller than for the
readout using simple transducer in sections 2.5.1, 2.5.3. In figure 2.8(b), I plot an example
trace distance as a function of time. This plot illustrates that the time dependence has
features similar to simpler transducers considered in the previous sections: after a short
initial transient time, the trace distance saturates and stays constant for the rest of the
evolution.

These small errors in accuracy come with drastically reduced computational require-
ments. With only two thermal excitations in the heat bath, the full model needs 700
times longer time to be simulated compared to the adiabatic elimination; this difference
can be further increased by using larger time steps for the approximate dynamics since
the qubit evolution happens at longer time scales. The main limitation in the numerical
analysis, however, are the memory requirements. With two thermal excitations (and
corresponding Fock space cutoffs at 20 and 10 excitations for the thermal and readout
oscillator, respectively), the storing of the full density matrix for the whole time evolution
requires several gigabytes of working memory. Since the cutoff energy grows superlinearly
with increasing temperature and the size of the density matrix grows quadratically with
the cutoff, it is not possible to perform reliable numerical simulations for larger bath
temperatures. Nevertheless, the results presented in this section strongly suggest that
Gaussian adiabatic elimination can be used for systems with tens or hundreds thermal
excitations present.

2.6 Summary

In this chapter, I showed how the unavoidable interaction of quantum systems with their
environment can be used to measure and control them and how such dynamics can be
described. Afterwards, I discussed how the description using a stochastic master equation
can be simplified for Gaussian systems and for systems consisting of both Gaussian and
non-Gaussian elements.

Gaussian systems can be efficiently described using the statistical moments of their
quasi-probability distribution; equations of motion for the mean vector and the covariance
matrix can be derived from the stochastic master equation. Remarkably, the covariance
matrix obeys a deterministic Riccati equation, which can be efficiently solved. Since the
exact mean value is often irrelevant, this approach represents a very powerful tool for
describing Gaussian systems under continuous measurements.

This description of Gaussian systems enables their efficient adiabatic elimination from
dynamics containing both Gaussian and non-Gaussian elements. Adopting the formalism
of the covariance matrix, we are able to treat Gaussian transducers coupled to thermal
bath or consisting of multiple bosonic modes. While eliminating several modes using the
approach based on density operator expansion or polaron transformation quickly becomes
tedious, this method requires only basic linear-algebraic tools and can be easily applied
numerically.
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Since the procedure relies on the fact that the system of interest itself has no free
evolution, I did not present a completely general treatment; instead, I focused on the most
relevant scenarios. In the first case, moving to the rotating frame with respect to the system
Hamiltonian leaves its interaction with the transducer time independent, corresponding,
in particular, to a quantum nondemolition interaction. Second, I considered a scenario,
where the interaction has terms oscillating at the frequency ±ω. Adapting the method for
other forms of coupling is straightforward.

Further improvements can be achieved with ideas borrowed from adiabatic elimination
using polaron transformation; for strong coupling between the system and the transducer,
one has to consider different steady states of the transducer for individual states of the
system and perform adiabatic elimination with respect to these conditional states. Using
similar tools, it should be possible to eliminate any Gaussian transducer with respect
to several conditional steady states. In addition, one should be able to generalize the
method for system–transducer coupling that is quadratic in the canonical transducer
operators; one could, for instance, use such a result to analyse a full dispersive readout of a
superconducting qubit, described by the Hamiltonian Ĥint = g σ̂z â† â.

The results can find applications in circuit quantum electrodynamics and cavity op-
tomechanics. Compared to the method of expanding the density operator around the
vacuum state of the readout cavity, the new method provides significantly better results
already for a few thermal excitations present and is thus relevant to qubit readout in su-
perconducting systems. Typical frequencies of mechanical oscillations, on the other hand,
correspond to thermal noise of a few hundred quanta even with cryogenic cooling. Such
systems cannot be eliminated from stochastic master equations using present methods; the
toy model in the last example shows how similar tasks can be achieved.

2.A Properties of Gaussian characteristic functions

The characteristic function of an arbitrary state ρ̂ is defined as

χ(z) = tr{D̂ (z) ρ̂}; (2.105)

here, z ∈ R2N and D̂ (z) = exp(−izTσr̂) (with the symplectic matrix σ and vector of
canonical operators r̂) is the displacement operator. For a single-mode system (N = 1), we
have r̂ = (q̂, p̂)T and the displacement operator can be expressed using the following two
expressions:

D̂ (z) = exp
(
−

iz1z2

2

)
exp(iz2 q̂ ) exp(−iz1 p̂) (2.106a)

= exp
(
iz1z2

2

)
exp(−iz1 p̂) exp(iz2 q̂ ). (2.106b)

From these formulas, it follows that the derivative of the displacement operator can be
expressed as

∂D̂ (z)
∂z i

= −
i
2
[σi j r̂ j D̂ (z) + D̂ (z)σi j r̂ j ]. (2.107)
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With the definition (2.105) and identity (2.107), we can evaluate the first, second, and third
derivative of the characteristic function,

∂ χ(z)
∂z i

�����z=0
= tr




∂D̂ (z)
∂z1

�����z=0
ρ̂



= −iσi j 〈r̂ j 〉, (2.108a)

∂2 χ(z)
∂z i∂z j

�����z=0
= −

1
2
σikσ j l 〈[ r̂k, r̂l ]+〉, (2.108b)

∂3 χ(z)
∂z i∂z j∂zk

�����z=0
=

i
4
σilσ jmσkn〈[ r̂l , [ r̂m, r̂n ]+ ]+〉. (2.108c)

The characteristic function of a general Gaussian state can be written as

χ(z) = exp
(
−izTµ −

1
4
zTVz

)
(2.109)

with some mean vector µ and covariance matrix V = VT . We can evaluate the derivatives
also for this Gaussian characteristic function,

∂ χ(z)
∂z i

�����z=0
=

(
−iµi −

1
2
Vi j z j

)
χ(z)

�����z=0
= −iµi, (2.110a)

∂2 χ(z)
∂z i∂z j

�����z=0
= −

1
2
Vi j − µi µ j, (2.110b)

∂3 χ(z)
∂z i∂z j∂zk

�����z=0
=

i
2

(µiVjk + µ jVki µkVi j + 2µi µ j µk ); (2.110c)

by direct comparison with equations (2.108), we identify

µ = σx, V = −σΓσT = −σT Γσ. (2.111)

Equations (2.108c) and (2.110c) now yield

〈[ r̂i, [ r̂ j, r̂k ]+ ]+〉 = 2(Γi j xk + Γjk x i + Γki x j + 2x i x j xk ), (2.112)

which is the identity (2.54) that we used in section 2.3.

2.B Positive-semidefiniteness of decay

In order to give rise to valid Markovian dynamics, the decay rates in a quantum-optical
master equation have to be positive. For the effective dynamics after adiabatic elimination
of the transducer, this means that the eigenvalues of the decay matrix P [equation (2.75b)]
have all to be non-negative. Using its definition, equation (2.75b), together with the
Lyapunov equation (2.47), and the definitions given in equations (2.39) and (2.48), we can
write

P = A−1
[
N +

i
2

(Aσ − σTAT )
]
A−T = A−1σ

∑
n

ξTn ξ
∗
nσ

TA−T . (2.113)

The decay matrix P is thus positive semidefinite and gives rise to a valid master equation.
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Next, each measurement channel in the stochastic master equation has to have a
corresponding decay process. Quantitatively, matrix P in equation (2.75b) describing all
decay terms needs to be larger than the matrix

∑
m ΛmΛ

†
m characterizing all measurement

channels; the matrix
P′ = P −

∑
m

ΛmΛ
†
m (2.114)

has to be positive semidefinite. In words, all information we obtain from the measurement
comes from the system and not its environment. I did not prove this statement in the
general case but checked it for all of the cases treated in section 2.5.

2.C Hierarchy of dynamical equations for transducer cumulants

To understand the adiabatic elimination [in particular, deriving equation (2.71a)], we
need to understand the hierarchy of equations of motion for deviations of the exact and
tensor-product state with respect to the cumulants of the transducer and their general
structure. (In the following, I will, for simplicity, refer to these quantities as cumulants.) I
use the term cumulant here since, as we will see, the cumulants are more fundamental for
the expansion than statistical moments. The distinction is, nevertheless, important only
for higher order cumulants and moments—the first cumulant is equal to the mean value,
and the second and third cumulant are equal to the second and third central moment,
respectively.

We start by writing the equation of motion for the second cumulant Ω̂i j = trT{[ r̂i −
x i, r̂ j − x j ]+( ρ̂ − ρ̂S ⊗ ρ̂T)}, which can be derived in complete analogy with section 2.4.1,

dΩ̂i j = ε (σik [ ŝk − 〈ŝk〉, µ̂ j ]+ + σ jk [ ŝk − 〈ŝk〉, µ̂i ]+)dt + (AikΩ̂k j + A jkΩ̂ki )dt

+ ν̂i jkcmkdWm, (2.115)

where

ν̂i jk = trT{[[ r̂i − x i, r̂ j − x j ]+, r̂k − xk ]+ ρ̂} − 2(Γci j µ̂k + Γ
c
jk µ̂i + Γ

c
ki µ̂ j ) (2.116)

is the third cumulant. We can now see from the deterministic part of the equation that
the second cumulant Ω̂i j is of second order in ε since it couples to the first cumulant
µ̂i = trT{r̂i ( ρ̂ − ρ̂S ⊗ ρ̂T)} (which is a first order quantity) via ε . I further conjecture that
the third cumulant is of higher order, ν̂i jk = O (ε 3). In the rest of this section, I justify
this assumption by presenting the expected hierarchy of the cumulants.

We start by defining the deviation of the exact state from the tensor-product state

ω̂ = ρ̂ − ρ̂S ⊗ ρ̂T. (2.117)

The equation of motion for the reduced state now describes the evolution of the reduced
deviation ω̂S = trT{ω̂}; note that the tensor-product state (a zero-order quantity) does
not evolve since there is no free evolution of ρ̂S and the equilibration of ρ̂T is effectively
instantaneous. The reduced deviation ω̂S can then be viewed as the zero-order cumulant.
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With this observation, we can now rewrite the equations of motion for the zeroth, first,
and second cumulant,

dω̂S = −iε [ ŝi, η̂i ]dt + 2cmi µ̂idWm, (2.118a)

dµ̂i = Qi j µ̂ jdt +
1
2
εσi j [ ŝ j − 〈ŝ j 〉, ρ̂S ]+dt −

i
2
εΓci j [ ŝ j, ρ̂S ]dt + Ω̂i j cmjdWm, (2.118b)

dΩ̂i j = ε (σik [ ŝk − 〈ŝk〉, µ̂ j ]+ + σ jk [ ŝk − 〈ŝk〉, µ̂i ]+)dt + (AikΩ̂k j + A jkΩ̂ki )dt

+ ν̂i jkcmkdWm ; (2.118c)

moreover, the cumulants can be written as

ω̂S = trT{ω̂}, (2.119a)

µ̂i = trT{r̂iω̂}, (2.119b)

Ω̂i j = trT{{[ r̂i, r̂ j ]+ − 2(x i r̂ j + x j r̂i )}ω̂}, (2.119c)

ν̂i jk = trT
{{[[ r̂i, r̂ j ]+, r̂k ]+ − 2(x i [ r̂ j, r̂k ]+ + x j [ r̂k, r̂i ]+ + xk [ r̂i, r̂ j ]+)

− 2(Vi j r̂k +Vjk r̂i +Vki r̂ j ) + 8(x i x j r̂k + x j xk r̂i + xk x i r̂ j )}ω̂}
, (2.119d)

where Vi j = trT{[ r̂i, r̂ j ]+ ρ̂T} is the second raw moment of the transducer.
The cumulants are now clearly generalizations of regular cumulants that include the

effect of the partial trace, such as x i x j → x itrT{r̂ jω̂} + x j trT{r̂iω̂}, etc. Furthermore, the
equations of motion have a clear structure; for the nth cumulant, denoted κ̂

(n) , we can
symbolically write

dκ̂(n)
= R (n)κ̂

(n)dt + εS (n)κ̂
(n−1)dt + εT (n)M(n+1)dt +V (n)κ̂

(n+1)dWm (2.120)

with M(n) denoting nth central moment of the transducer and some superoperators R (n) ,
S (n) , T (n) ,V (n) . In words, the nth cumulant (apart from its own free evolution) couples
to the (n − 1)th cumulant via ε in the deterministic part and to the (n + 1)th cumulant in
the stochastic part. In addition, there is also coupling to a higher order central moment of
the transducer which is, nevertheless, present only for the first order deviation because the
transducer is Gaussian so that M(n) = 0 for n > 2. Finally, the deterministic part of the
equation of motion for the zeroth cumulant ω̂S has a somewhat different structure since it
cannot couple to a lower order cumulant; as a result, there is coupling to η̂i = trT{r̂i ρ̂}
instead of the first moment of the transducer. The moments appear for ρ̂ = ρ̂S ⊗ ρ̂T which
is correct to leading order only for the first cumulant; as there is no −1st cumulant in the
equation for the zeroth cumulant, this approximation is not valid for ω̂S.

The hierarchy (constructed explicitly for n ≤ 2 and conjectured for n > 2) is related
to the cumulant expansion method of van Kampen [240–242]. With this method, the
effect of a bath is expressed via a series of cumulants of the bath operators in which the
nth cumulant is of the order εn in the system–bath coupling. For Markovian systems, it is
sufficient to consider the first and second cumulants (i.e., the mean and the covariance);
for a general non-Markovian bath, represented by coloured noise, higher orders have to be
considered [243]. In our treatment, the role of the bath is played by the transducer which
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can, in the most general case, act as a non-Markovian medium. For a short correlation
time, which corresponds to a quickly decaying transducer and is thus relevant to adiabatic
elimination methods, the Markovian approximation is valid and only the first and second
cumulants play a role. Since we are interested in the deviation of the exact and tensor
product state, which is a small quantity already, ω̂ = ρ̂ − ρ̂S ⊗ ρ̂T = O (ε ), it is sufficient
to consider the contributions of the first cumulant µ̂i in the effective equation of motion
for the system density matrix.



Chapter 3

Quantum force sensing with optomechanical transducers

Optomechanical force sensing is a well-established measurement technique that can reach
remarkable precision. The core of the setup is a mechanical oscillator which serves
to translate an external force into mechanical motion. The main advantage of mech-
anical oscillators in this context lies in their large susceptibility to external influences:
micromechanical oscillators quickly and strongly respond to electric and magnetic fields,
and to mechanical effects. Radiation pressure interaction is then used to transfer the
information about the force onto the phase of a light field, which can be measured with
high precision using interferometric techniques.

Such measurements are subject to the standard quantum limit as discussed in chapter 1:
if the optomechanical interaction is too weak, we cannot successfully resolve the resulting
phase shift; a strong coupling leads to measurement backaction since the fluctuations of the
light beam strongly affect the mechanical motion. With an intermediate coupling strength,
the measurement sensitivity is maximized. The sensitivity can be further increased if we
use—instead of a coherent state, for which the standard quantum limit is formulated—an
entangled state of light or more sophisticated readout schemes where the measurement
backaction can be avoided [101, 124, 133, 244]. Quantum physics can thus be used to
improve the measurement sensitivity.

The opposite situation—where the force acting on the mechanical oscillator is quantum-
mechanical—received no attention so far. After all, such a scenario is of little or no
interested for most applications. Whether the force is exerted by a quantum object or
not, the force estimate will be a single figure; if the source of the force was in a quantum
superposition at the beginning, it will have collapsed into one particular eigenstate of the
measurement.

Quantum coherence of the source starts to play a role when several such systems are
read out using a single beam of light. Owing to interference effects, different states of the
system can give rise to the same measurement outcome. For example, in a measurement
of the spin of two qubits, the information about which qubit is excited can be erased
when they are measured with a single probe. Several question then arises: Can quantum
coherence of the force source survive the optomechanical measurement? And can it be
used for interesting applications?

65
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In this chapter, I answer both questions in the affirmative. I consider a scheme where
an optomechanical system is used to read out the state of a superconducting transmon
qubit; cascading two such systems results in the measurement of the total spin of the
two qubits (see figure 3.1) [95]. Generation of entanglement by spin measurement has
been demonstrated in a purely microwave system [91, 92, 245]; here, I show that such a
measurement is possible with optomechanical transducers under realistic conditions. The
advantage of using light instead of microwaves for the measurement lies in the possibility
of bridging room-temperature environment between the qubits; the approach can thus
be used to generate entanglement between distant superconducting qubits, thus solving a
long-standing open problem of building quantum networks with superconducting circuits.

I describe the system theoretically in section 3.1 and consider possible experimental
implementations in section 3.2; the latter include transmon qubits, flux qubits, and
magnetic sublevels of nitrogen–vacancy centres. In section 3.3, I consider two extensions
of the scheme: quantum nondemolition measurements to measure one quadrature of
the force and the use of a microwave cavity, which serves as a filter for the qubit-state-
dependent force. Technical details—derivation of the effective equations of motion and
their analysis—are delegated to sections 3.4 and 3.5.

In section 3.6, I apply the effective equation of motion on quantum nondemolition
detection of the photon number [117, 246, 247]. Instead of the state of a superconducting
qubit, the force felt by the mechanical oscillator is coming from a nonlinearly coupled
cavity and thus depends on the number of photons in this cavity. If the photons arrive into
the cavity from an external source, the measurement performance is limited by quantum
Zeno effect [209, 220, 246], which gives rise to a variant of the standard quantum limit.
I then briefly discuss a few strategies that can be used to combat the quantum Zeno
effect and, finally, address fundamental limits on photon counting with optomechanical
transducers.

3.1 Generation of entanglement between two superconducting qubits

3.1.1 Measuring qubit-state-dependent forces

To get a simple, intuitive understanding of the system shown in figure 3.1, we start
by considering a single node of the system. Here, a superconducting qubit interacts
capacitively with a mechanical oscillator so that the position of the oscillator determines
the transition frequency of the qubit, Ĥint = ~χσ̂z (b̂ + b̂†), as shown, for example, in
references [172, 173]. The qubit thus exerts a state-dependent force F = ±~χ/

√
2xzpf

on the oscillator with position operator x̂ =
√
2xzpf(b̂ + b̂†) and zero-point fluctuation

xzpf =
√
~/2mωm.

In order to determine the force (and thus the state of the qubit), we measure the
mechanical position using a resonantly driven optical cavity. Via the optomechanical
interaction Ĥom = ~g ( â + â†)(b̂ + b̂†), the mechanical position determines a phase
shift on the light field which can be measured with homodyne detection. Assuming the
measurement is shot-noise limited, the sensitivity of the readout at Fourier frequency ω is
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Figure 3.1: Schematic depiction of the setup for generation of entanglement between two supercon-
ducting qubits. Each of two superconducting transmon qubits (shown as black circuits) interacts
with a mechanical oscillator (here in the form of nanobeams, shown in yellow). The position of the
oscillators is read out optically using microdisk resonators supporting whispering-gallery modes
(shown in blue). The two systems are unidirectionally coupled using an optical fibre; homodyne
measurement at the output provides information about the joint state of the qubits, making it
possible to postselect an entangled state.

given by the spectral density of the added noise

S2
F (ω) =

κx2
zpf

8g2 χ2
m(ω)

, (3.1)

where χm(ω) = [m (ω2
m −ω

2) − imγω]−1 is the mechanical susceptibility and κ, γ are the
optical and mechanical linewidth.

The force sensitivity of the optomechanical system and the qubit force together
determine the measurement time needed to successfully distinguish the qubit states |0〉,
|1〉, namely,

τmeas =
S2
F (ω)

F 2 =
κω2

m
16χ2g2 . (3.2)

Here, we used the fact that the qubit force is quasi-static so the Fourier frequencies we are
interested in are smaller than the mechanical frequency, ω � ωm, and the susceptibility
can be approximated as χm(ω) ' 1/mω2

m. For an efficient readout, the measurement
time τmeas has to be shorter than the lifetime of the qubit which is characterised by its
intrinsic decoherence (quantified by the intrinsic relaxation and dephasing lifetimes T1,2 )
and decoherence due to the interaction with the transducer.

For the intrinsic decoherence, we consider a superconducting transmon qubit with
T1,2 ≈ 20 µs and coupling χ/2π = 5 MHz to the mechanical oscillator [172, 173]. The
required force sensitivity is then SF = F√τmeas ∼ 0.5 fN/

√
Hz which can be achieved

with state-of-the-art optomechanical systems. To compare the measurement time with the
decoherence due to the interaction with the transducer, we analyse the force the oscillator
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exerts on the qubit, f̂ (ω) = χ x̂ (ω)/
√
2xzpf; here, x̂ (ω) = χm(ω) f̂th(ω) is the noisy

mechanical position driven by the thermal force f̂th with spectrum Sth(ω) = 2γm~ωmn
and n ' kBT /~ωm is the mean occupation number of the oscillator at temperature T .
This random, thermal force results in dephasing of the qubit at a rate that is given by the
spectral density of the force f̂ (ω) for ω � ωm,

Γmech = S2
f (ω) =

2χ2

ω2
m
γn. (3.3)

Comparing the dephasing time τmech = 1/Γmech with the measurement time τmeas, we see
that the former is longer than the latter for strong optomechanical cooperativity,

C = 4g2/κγn >
1
2
. (3.4)

3.1.2 Equation of motion

With a clear picture for the action of the protocol, we now turn to the full system
comprising two nodes connected by a unidirectional optical link as shown in figure 3.1. To
rigorously include all decoherence channels and to accommodate for the finite duration of
the measurement, we describe the system using the stochastic master equation (with ~ = 1
in the following)

d ρ̂ = −i[Ĥ , ρ̂ ]dt + Lq ρ̂dt +
2∑
j=1

γ{(n + 1)D [b̂ j ] + nD [b̂†j ]} ρ̂dt
+ κD [ â1 − â2 ] ρ̂dt +

√
κH [( â1 − â2)eiφ ] ρ̂dW . (3.5)

The Hamiltonian describes the coherent evolution of the system,

Ĥ =
2∑
j=1

[ χσ̂ j
z (b̂ j + b̂†j ) + ωmb̂†j b̂ j + g ( â j + â†j )(b̂ j + b̂†j )] +

iκ
2

( â1 â†2 − â2 â†1 ), (3.6)

with terms corresponding (from left to right) to the interaction between the qubits and the
mechanical oscillators, the free mechanical evolution, and the optomechanical coupling.
The last term in the Hamiltonian (3.6) together with the Lindblad term κD [ â1 − â2 ] ρ̂
describes the joint decay of the cascaded optical cavities [214]. Next, the Liouvillian

Lq ρ̂ =

2∑
j=1

(
1
T1
D [σ̂ j

− ] +
1
T2
D [σ̂ j

z ]
)
ρ̂ (3.7)

describes the intrinsic decoherence of the qubits, characterised by their relaxation and
dephasing lifetimes T1,2. The Lindblad terms on the first line of equation (3.5) describe the
thermal noise of the mechanical oscillators and the last term on the second line describes
the effect of homodyne measurement of the outgoing light field. To remind the reader,
D [Ô ] ρ̂ = Ô ρ̂Ô† − 1

2 (Ô†Ô ρ̂ + ρ̂Ô†Ô ),H [Ô ] ρ̂ = (Ô − 〈Ô〉) ρ̂ + ρ̂(Ô† − 〈Ô†〉), and dW
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is Wiener increment with mean value 〈dW 〉 = 0 and variance 〈dW 2〉 = dt . Finally, the
measurement gives rise to a classical measurement signal that obeys the equation

Idt =
√
κ〈( â1 − â2)eiφ +H.c.〉dt + dW . (3.8)

The conditional master equation (3.5) is too complicated to be integrated analytically
or numerically. Simulating the dynamics using Monte Carlo trajectories would need to
take into account the thermal baths of the mechanical oscillators, which can easily contain
several hundreds or thousands of phonons on average. Instead, since the dynamics of
the transducer is Gaussian, we adiabatically eliminate the optical and mechanical degrees
of freedom following the approach presented in chapter 2. If we assume that the qubit
coupling rate χ is smaller than the rate of the transducer dynamics (in the examples
considered in the next section, this timescale is of the order of the cavity decay rate κ ), the
effective equation for the state of the two qubits ρ̂q is

d ρ̂q = Lq ρ̂qdt +
2∑
j=1
ΓmechD [σ̂ j

z ] ρ̂qdt + ΓmeasD [σ̂1
z + σ̂

2
z ] ρ̂qdt

+
√
ΓmeasH [σ̂1

z + σ̂
2
z ] ρ̂qdW ; (3.9)

see section 3.4 for detailed derivation. The measurement and dephasing rates are given by

Γmeas = 16
χ2g2

κω2
m
, Γmech =

χ2γ

ω2
m

(2n + 1), (3.10)

in perfect agreement with the argument of force sensing presented in the previous sec-
tion. Finally, the classical measurement signal corresponding to the conditional master
equation (3.9) is given by

Idt = 2
√
Γmeas〈σ̂

1
z + σ̂

2
z 〉dt + dW . (3.11)

So far, we assumed that all light leaving the cavities arrives at the detector. In any
practical realization of the measurement, however, part of the light will necessarily be
lost via absorption in optical fibres, transmission through imperfect mirrors, or other
processes. All these effects can be modelled by adding a beam splitter into an otherwise
perfect system. First, we characterize the losses between the two nodes by transmissivity τ;
we modify the dynamics of the cascaded optical cavities as follows [214]:

Lcasc ρ̂ =
κ

2
[ â1 â†2 − â2 â†1, ρ̂ ] + κD [ â1 − â2 ] ρ̂

→
κ
√
τ

2
[ â1 â†2 − â2 â†1, ρ̂ ] + κ (1 − τ)D [ â1 ] ρ̂ + κD [

√
τ â1 − â2 ] ρ̂. (3.12)

Second, optical loss after the second node results in a limited detection efficiency η ∈ (0, 1).
Thus, it does not directly introduce additional decoherence but necessitates the use of
longer measurement times during which other decoherence processes degrade the state.

Before we discuss the resulting effective equation governing the dynamics of the two
qubits, we have to address one more point: the protocol for entanglement generation relies
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on equal measurement rates for both qubits which guarantee that the states |01〉, |10〉 give
rise to the same signal and are thus indistinguishable. Since part of the signal from the first
qubit is lost due to the limited transmission between the systems, its effective measurement
rate is reduced. We compensate this effect by reducing the coupling rate of the second
qubit with respect to the coupling of the first qubit, χ2 =

√
τ χ1; see section 3.4 for an

in-depth discussion. With this adjustment, the effective conditional master equation reads

d ρ̂q = Lq ρ̂qdt + [(1 − τ)Γmeas + Γmech ]D [σ̂1
z ] ρ̂qdt + τΓmechD [σ̂2

z ] ρ̂qdt

+ τΓmeasD [σ̂1
z + σ̂

2
z ] ρ̂qdt +

√
τηΓmeasH [σ̂1

z + σ̂
2
z ] ρ̂qdW (3.13)

with Γmeas and Γmech given in equation (3.10) and the measurement signal

Idt = 2
√
τηΓmeas〈σ̂

1
z + σ̂

2
z 〉dt + dW . (3.14)

We see that optical loss between the two systems presents an additional dephasing channel
for the first qubit and losses after the second system limit the detection efficiency.

3.2 Experimental realizations

The discussion so far was completely general and did not assume any specific experimental
realization. In this section, we consider several possible implementations as shown in
figure 3.2: the most promising platform is provided by superconducting transmon qubits
coupled to mechanical motion using a mechanically compliant gate capacitor [172, 180].
We further consider flux qubits where, following the proposal by Xue et al. [170], the
mechanical oscillator forms a part of the qubit loop and experiences a qubit-state-dependent
Lorentz force. Finally, solid-state spin qubits—such as magnetic levels of nitrogen–vacancy
centres—can interact with mechanical oscillators via magnetic fields [192, 194, 248, 249].
Experimental parameters of the systems are summarized in table 3.1.

3.2.1 Transmon qubits

The first implementation uses superconducting transmon qubits that interact with mech-
anical oscillators via mechanically compliant gate capacitors, Cg = Cg( x̂ ) [171, 172, 180];
see also chapter 1. The Hamiltonian for the qubit–mechanical system,

Ĥ = ωmb̂†b̂ + 4Ec(n̂−n0)2 − EJ(Φext) cos ϕ̂− E−(Φext) sin ϕ̂+ χ(n̂−n0)(b̂ + b̂†), (3.15)

has a nonzero transversal interaction in the diagonal basis of the qubit. To see how we can
limit its contribution, we can rewrite the Josephson energy using the sum and difference
of the Josephson energies of the two junctions EJ1,2; the Josephson energy is controlled
using an external flux Φext,

EJ(Φext) = (EJ1 + EJ2) cos
(
π
Φext

Φ0

)
, E−(Φext) = (EJ1 − EJ2) sin

(
π
Φext

Φ0

)
, (3.16)
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(c)

(d)

(b)

(a)

Figure 3.2: Illustrations of possible experimental realizations of the proposed scheme for entangle-
ment generation. Transmon qubits can interact with mechanical oscillators via position-dependent
gate capacitance; the mechanical oscillator can take the form of a nanobeam, which interacts with the
near field of a toroidal optical resonator (a), or a membrane, which forms one end of a Fabry–Perot
cavity or is placed in the middle of an optical cavity (b). Mechanical oscillators can further be
integrated into the circuit of a flux qubit and, at the same time, form an end mirror of an optical
cavity (c). The setups are not limited to superconducting systems; the qubit can also be formed by
magnetic sublevels of a nitrogen–vacancy centre that interacts with the magnetic field of a cantilever
with a magnetic tip (d). Superconducting circuits are indicated in black, nitrogen-vacancy centre in
red, mechanical oscillators in yellow, and optical modes in blue.

where Φ0 is the flux quantum. For flux Φext = Φ0/2 and equal Josephson energies
EJ1 = EJ2, the potential energy of the qubit in the Hamiltonian (3.15) is identically zero
and the qubit Hamiltonian has only the longitudinal component,

H =
ωq

2
σ̂z + ωmb̂†b̂ + χ(b̂ + b̂†)σ̂z . (3.17)

Small discrepancies between the Josephson energies do not pose a problem; the resulting
transversal coupling is weak and can be neglected in the rotating wave approximation.

The mechanical oscillator can take the form of a nanobeam interacting with an
evanescent field of a microtoroidal cavity [122, 232]; see figure 3.2(a). In such a system, the
opto- and electromechanical parts of the system are well spatially separated and photon
absorption will not heat up the superconducting circuit. Alternatively, the mechanical
oscillator can be a membrane forming an end of a Fabry–Perot cavity or placed in the
middle of such an optical resonator as has been used in recent experimental demonstrations
of microwave-to-optical conversion [82, 83]; cf. figure 3.2(b). Particularly the system of
Andrews et al. [82], which uses a second harmonic mode of a membrane-in-the-middle
setup with optical and microwave field interacting with different antinodes of motion,
is well suited for the interface since it minimises optical heating of the superconducting
circuit.
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Transmon qubit
Quantity Symbol Nanobeam Membrane Flux qubit NV centre
Qubit–mechanical coupling χ/2π 5.8 MHz 3.7 MHz 2.4 MHz 50 kHz
Mechanical frequency ωm/2π 8.7 MHz 1.0 MHz 2.3 MHz 2.0 MHz
Effective mass m 3.8 pg 30 ng 10 pg 25 pg
Mechanical quality factor Qm 5 × 104 5 × 105 105 104

Mechanical linewidth γ/2π 170 Hz 2 Hz 22 Hz 200 Hz
Thermal occupation n 48 420 185 210
Optical quality factor Qopt 5 × 106 107 107 2 × 108

Optical decay rate κ/2π 39 MHz 19 MHz 19 MHz 1 MHz
Single-photon optomechanical coupling g0/2π 300 Hz 25 Hz 65 Hz 20 Hz
Linearized optomechanical coupling g/2π 900 kHz 140 kHz 450 kHz 300 kHz
Driving optical power P 138 µW 300 µW 370 µW 90 µW
Optomechanical cooperativity C 10 5 10 8.5
Measurement rate Γmeas/2π 150 kHz 230 kHz 190 kHz 900 Hz
Measurement time 1/Γmeas 1.1 µs 0.7 µs 0.8 µs 177 µs
Force sensitivity SF 130 aN/

√
Hz 1.9 aN/

√
Hz 38 aN/

√
Hz 18 aN/

√
Hz

Displacement sensitivity Sx 11 am/
√
Hz 1.6 am/

√
Hz 18 am/

√
Hz 4.1 am/

√
Hz

Schematic figure 3.2(a) 3.2(b) 3.2(c) 3.2(d)

Table 3.1: Suggested experimental parameters for systems realizing the measurement of the total spin of two qubits. I consider transmon qubits (section 3.2.1)
coupled to either nanobeams or vibrating membranes, flux qubits (section 3.2.2), and nitrogen–vacancy centres (section 3.2.3). For the thermal occupation of the
mechanical bath, I assume that each system is cooled to 20 mK temperature. All setups are schematically depicted in figure 3.2.
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Nanobeam mechanical oscillators We consider a silicon nitride beam of length l =
70 µm that is w = 400 nm wide and t = 100 nm thick. The gate capacitor and the
microtoroid are placed so that they both lie at the antinode of the second harmonic mode
of frequency ωm/2π ≈ 8.7 MHz with effective mass m = 3.8 pg and zero-point motion
xzpf = 16 fm. If one third of the beam is covered by a superconductor, the gate capacitance
Cg = 275 aF for a beam–circuit distance dq = 75 nm. Considering typical charging
energy Ec = 5 GHz and gate voltage Vg = 10 V, the qubit coupling χ/2π ≈ 5.8 MHz.
Our values of qubit coupling and mechanical frequency are somewhat lower than in a
recent experiment by Pirkkalainen et al. [173] since our mechanical oscillator is smaller;
reaching a coupling rate comparable with the mechanical frequency has, nevertheless, been
demonstrated in their system.

The bare optomechanical coupling between an oscillating nanobeam and a toroidal
optical cavity can reach values up to g0/2π = 20 kHz [232]. Here, we consider a beam–
toroid distance of dom = 50 nm and a toroid with radius r = 30 µm supporting optical
resonance for the wavelength λ = 1550 nm. These parameters result in moderate coupling
of about g0/2π ≈ 300 Hz. Driving the optical resonator with the power

P =
1
2
~
2πc
λ
κ

(
g
g0

)2

≈ 138 µW (3.18)

for linewidth κ/2π = 39 MHz (toroidal whispering gallery resonators can reach decay
rates an order of magnitude smaller [122]), we can reach the optomechanical coupling
rate g/2π ≈ 900 kHz and a measurement rate Γmeas/2π ≈ 150 kHz, corresponding
to a measurement time of about 1 µs. Such a measurement is strong enough to be
performed within the coherence time of transmon qubits, which is typically around 10 µs
to 20 µs [92, 162].

Entanglement generation with nanobeam oscillators We study entanglement gener-
ation with the nanobeam mechanical oscillators in figure 3.3. To this end, we consider
the following protocol for entanglement generation: measuring for time T , we accumu-
late the total signal J (T ) =

∫ T
0 dt I (t ). We then compare this signal with a predefined

postselection cutoff ν and keep the state if and only if | J (T ) | < ν . Two parameters are of
interest to us—the entanglement of the resulting state and the success probability, that is,
the probability of the signal being smaller than the cutoff. I discuss the protocol in more
detail in section 3.5 and derive a simplified model that enables us to find the resulting state
analytically without generating quantum trajectories.

In figure 3.3(a), I plot the concurrence [250] of the final state as a function of time:
at early times, t < τmeas/2, the entanglement is limited by indistinguishability of the
measurement outcomes resulting in an inconclusive measurement and a strongly mixed
postselected state of the qubits. Next, the concurrence reaches its maximum around
t ∼ τmeas and then steadily decays owing to dephasing and relaxation of the qubits. In the
following, I consider the optimum value as a figure of merit characterizing the system.

In panel (b), I analyse how optical losses affect the concurrence. I consider the
transmission losses between the two nodes (horizontal axis), as well as finite detection
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Figure 3.3: Entanglement generation with the nanobeam optomechanical transducer of figure 3.2(a).
In panel (a), I show the time dependence of the concurrence for success probability Psucc = 0.1
(solid blue line) and Psucc = 0.5 (dashed green line). In the bottom panels, I plot the concurrence
(optimized over the measurement time) versus optical transmission τ between the two nodes; in (b),
the concurrence is shown for various detection efficiencies [η = 1 (solid blue line), η = 0.8 (dashed
green line), η = 0.6 (dotted red line), η = 0.4 (dot-dashed magenta line), and η = 0.2 (thin black
line)]; in (c), the plotted curves represent different success probabilities [Psucc = 0.1 (solid blue
line), Psucc = 0.3 (dashed green line), and Psucc = 0.5 (dotted red line)]. I consider the qubit
coupling χ/2π = 5.8 MHz, mechanical frequency ωm/2π = 8.7 MHz and quality Qm = 5 × 104,
optical decay rate κ/2π = 39 MHz, optomechanical coupling g/2π = 900 kHz, and temperature
20 mK (corresponding to thermal occupation n = 48); I further assume the intrinsic relaxation
and coherence lifetimes of the qubits T1,2 = 20 µs. Finally, I use the values τ = η = 1 for panel (a),
Psucc = 0.1 for (b), and η = 1 for (c).

efficiency (individual curves in the plot, see figure caption for more details). Remarkably,
entanglement can be generated with up to 80 % transmission loss; with increased qubit
lifetime and optomechanical cooperativity, it is possible to generate entanglement with
even higher losses. Finally, in figure 3.3(c), the effect of transmission losses is investigated in
combination with success probability of the postselection. While larger success probability
generally leads to a smaller concurrence, it has little effect on the transmission loss for
which the concurrence reaches zero.

Oscillating membranes For a system using a vibrating membrane, we consider a
membrane-in-the-middle optomechanical system, similar to the recent experiment by
Andrews et al. [82] with membrane dimensions 1 mm × 1 mm and second harmonic
frequency of ωm/2π = 1 MHz placed dq = 500 nm from the gate capacitor with capacit-
ance Cg = 60 fF. In such a system, qubit–mechanical coupling χ/2π = 3.7 MHz can be
achieved. (A similar value has been obtained in a recent experiment with significantly
smaller oscillator [172].) With optomechanical coupling g/2π = 140 kHz and decay rate
κ/2π = 19 MHz, the effective measurement rate can reach value of 230 kHz.
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3.2.2 Flux qubits

For measurements with flux qubits, we consider the magnetomechanical qubit coupling
proposed by Xue et al. [170]; see figure 3.2(c). The mechanical oscillator forms a part of
the qubit loop and its fundamental out-of-plane mode is excited by applying an external
magnetic field B0. The current in the qubit loop results in a Lorentz force in the suspended
part of the loop (i.e., the mechanical oscillator); the direction of the force depends on the
direction in which the current is running. The coupling rate is given by

χ = B0Ipleffxzpf, (3.19)

where Ip is the persistent current in the qubit loop (typically 500 nA) and leff is the
effective length of the mechanical oscillator.

We consider a 12 µm-long bridge resulting in mechanical frequencyωm/2π = 2.3 MHz,
effective mass m = 10 pg, and coupling rate χ/2π = 2.3 MHz, which is somewhat smaller
than in the proposal of Xue et al. [170]. The bridge can form one end of a Fabry-Perot
cavity; with coupling rate g/2π = 450 kHz and optical decay rate κ/2π = 19 MHz, the
effective measurement rate is Γmeas/2π = 190 kHz. Since lifetimes of flux qubits are shorter
than those of transmons (typically around 5 µs), weaker entanglement will be generated
with such a system. Moreover, due to the integration of the mechanical oscillator into
the superconducting circuit as well as the optomechanical Fabry–Perot cavity, optical
absorption will lead to unwanted heating of the circuit.

3.2.3 Nitrogen–vacancy centres

The protocol for entanglement generation is not limited to superconducting systems. Here,
we consider entanglement of the magnetic sublevels of electron spins in nitrogen–vacancy
centres using the transducer schematically depicted in figure 3.2(d). Each qubit interacts
with a cantilever with a magnetic tip and, at the same time, the cantilever works as an end
mirror in a Fabry–Perot optical cavity.

In such a system, magnetomechanical coupling χ/2π = 50 kHz can be reached [194, 248].
For mechanical frequency ωm/2π = 2 MHz, optomechanical coupling g/2π = 300 kHz,
and optical linewidth κ/2π = 1 MHz (thus requiring extremely high-quality Fabry–Perot
resonator), the effective measurement rate is about Γmeas/2π = 0.9 kHz, requiring qubit
lifetime on the order of milliseconds; such values of the magnetomechanical coupling, cav-
ity decay rate, and nitrogen–vacancy centre dephasing time put very strong requirements
on the fabrication of the system.

Alternatively, other kinds of solid-state spins can be used. For instance, the coherence
lifetime of phosphorus donors in silicon can reach several seconds [251]. With such
systems, the requirements on the magnetomechanical coupling and the optical decay
can be somewhat relaxed. If we consider the values χ/2π = 10 kHz, κ/2π = 10 MHz
(with other parameters same as before), the qubit measurement rate Γmeas/2π = 3 Hz,
corresponding to a measurement time of about 50 ms.
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Strategy Measurement rate Dephasing rate Conditions for efficient readout

Basic approach 16
χ2g2

κω2
m

χ2γ

ω2
m

(2n + 1)
4g2

κγn
>

1
2

Modulated coupling 16
χ2g2

κγ2
χ2

γ
(2n + 1)

4g2

κγ (2n + 1)
>

1
4

Modulated coupling with
squeezing

16
χ2g2

1
κγ2

χ2

γ

(
1 − 32

g1g2
γκ

)
(2n + 1)

4g2
1

κγ (2n + 1)
+ 2

4g1g2
κγ

>
1
4

Microwave cavity 256
χ2g2

a g2
c

κ2
aω

2
mκc

4
χ2

κa
+ 256

χ2g4
a

κ3
aω

2
m
+ 16

χ2g2
aγ

κ2
aω

2
m

(2n + 1)
4g2

c
κcγn

>
1
2
,

g2
c
κc

>
g2
a
κa
,

4g2
a

κaγ

4g2
c

κcγ
>

1
4
Q2

m

Microwave cavity and mod-
ulated coupling

1024
χ2g2

a g2
c

κ2
aγ

2κc
4
χ2

κa
+ 64

χ2g2
a

κ2
aγ

(2n + 1)
4g2

c
κcγ (2n + 1)

>
1
4
,

4g2
a

κaγ

4g2
c

κcγ
>

1
16

Table 3.2: A summary of the measurement rates, dephasing rates, and conditions for efficient readout for the various strategies for entanglement generation.
I compare the basic scheme (described in section 3.1) with the approach using modulated coupling (section 3.3.1), protocol where the coupling between the qubit
and the mechanical oscillator is mediated by a microwave resonator (section 3.3.2), and a strategy that combines modulated coupling and the use of a microwave
cavity (section 3.3.3). On top of the conditions listed here, the measurement rate has to exceed the intrinsic qubit lifetime for each of the strategies.
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3.3 Alternative schemes

Coupling superconducting qubits directly to mechanical oscillators comes with a significant
disadvantage: the readout is slow because the quasi-static force the qubit exerts on the
mechanical oscillator is not resonant with the natural frequency of the mechanical motion.
This problem can be alleviated by modulating the coupling at the mechanical frequency.
In the rotating frame of the mechanical oscillator, such modulation results in a resonant
interaction between the qubit, mechanical oscillator, and cavity field; this modification
greatly enhances the speed of the qubit readout.

Second, placing the qubit in free space—thus coupling it to a continuum of electromag-
netic modes—significantly decreases its lifetime. If the qubit were placed in a cavity with a
different resonance frequency, the lifetime would be enhanced by the Purcell effect. The
output of the microwave resonator will, however, serve as an additional dephasing channel
for the qubit. An important question arises whether efficient entanglement generation is
possible in this case.

I analyse these alternative schemes in this section. I start by the scheme where the
coupling is modulated at the mechanical frequency, leading to quantum nondemolition
coupling. Next, I analyse the strategy where the qubit is first coupled to a microwave
resonator which then interacts with the mechanical oscillator and show that qubit dephas-
ing associated with the decay of the microwave cavity dominates the dynamics. Finally,
to avoid the resonantly enhanced dephasing of the qubit through the microwave output,
I consider an approach where the coupling is modulated to achieve a quantum nondemoli-
tion interaction between the qubit, microwave resonator, mechanical oscillator, and optical
cavity. The main parameters of the protocols (i.e., the measurement rates, dephasing rates,
and conditions for efficient optical readout of the qubit state) are summarized in table 3.2.

3.3.1 Quantum nondemolition interaction

We start with a scheme where the coupling of the optical cavity and the qubit to the
mechanical oscillator is modulated at the mechanical frequency. In an optomechanical
system, such modulation can be introduced by driving the cavity (which is in the resolved-
sideband regime, ωm > κ ) at both mechanical sidebands. If the sidebands are driven with
the same amplitude, backaction-evading measurement of a single mechanical quadrature
can be performed [101, 124, 125]; the use of unequal driving amplitudes leads to squeezing
of the light field [103] or of the mechanical oscillator [102, 252]. Additionally, modulation
of the qubit coupling is achieved by driving the qubit with time-dependent gate voltage
[176].

When the optical cavity is driven on both sidebands with equal amplitudes, the linear-
ized optomechanical coupling rate in the laboratory frame is given by g (t ) = −2g sin(ωmt ).
Similarly, modulating the gate voltage of the qubit, Vg(t ) = V0 +V1 cos(ωmt ), results in
qubit–mechanical coupling

χ(t ) = 2Ec
CgV0

e
xzpf

d
+ 2Ec

CgV1

e
xzpf

d
cos(ωmt ) = χ0 + χ cos(ωmt ). (3.20)
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The overall Hamiltonian for a single system is

Ĥ =
ωq

2
σ̂z + ωmb̂†b̂ + χ(t )σ̂z (b̂ + b̂†) + g (t )( â + â†)(b̂ + b̂†). (3.21)

Moving to the rotating frame with respect to the free Hamiltonian Ĥ0 =
1
2ωqσ̂z +ωmb̂†b̂

and applying the rotating wave approximation, we get the interaction-picture Hamiltonian

Ĥ =
χ

2
σ̂z (b̂ + b̂†) − ig ( â + â†)(b̂ − b̂†). (3.22)

Here, the relative phase between the optical drives and the voltage modulation is chosen
such that the qubit and cavity field couple to orthogonal mechanical quadratures. The
information about the qubit state is thus imprinted on the momentum quadrature of the
mechanical oscillator which is then read out optically; homodyne detection of the output
phase quadrature reveals this state.

We can adiabatically eliminate the mechanical and optical degrees of freedom in analogy
with the previous case; the resulting two-qubit equation reads

d ρ̂q = Lq ρ̂qdt +
χ2

γ
(2n + 1){D [σ̂1

z ] +D [σ̂2
z ]} ρ̂qdt

+ 16
χ2g2

γ2κ
D [σ̂1

z + σ̂
2
z ] ρ̂qdt +

√
16
χ2g2

γ2κ
H [σ̂1

z + σ̂
2
z ] ρ̂qdW . (3.23)

The measurement and dephasing rates differ from the previous case by a factor of Q2
m.

The measurement is thus significantly faster while keeping the dephasing induced by
the mechanical bath low; the measurement rate dominates over the dephasing for strong
optomechanical cooperativity, 4g2/[κγ (2n + 1)] > 1

4 .

When the mechanical sidebands of the cavity are not driven with the same amplitude,
the cavity field couples, in the rotating frame, to both mechanical quadratures,

Ĥom = −g1( â + â†)(b̂ + b̂†) + g2( â − â†)(b̂ − b̂†). (3.24)

The coupling rates depend on the coupling of the sidebands; we have g1 = g+ + g−,
g2 = g− − g+, where, g− ( g+ ) is the coupling of the lower (upper) motional sideband to the
mechanical oscillator and we assume g− > g+ to ensure stability. Furthermore, we assume
g1,2 > 0 without loss of generality. Such interaction can be used to squeeze the mechanical
motion [102]; it is natural to expect that if the qubit couples to the squeezed mechanical
quadratures, its readout will be improved compared to the unsqueezed motion.

To check this expectation, we write the Hamiltonian for a single system,

Ĥ = −
iχ
2
σ̂z (b̂ − b̂†) − g1( â + â†)(b̂ + b̂†) + g2( â − â†)(b̂ − b̂†), (3.25)
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and adiabatically eliminate the optomechanical transducer. The resulting stochastic master
equation reads

d ρ̂q = Lq ρ̂qdt +
χ2

γ

(
1 − 32

g1g2
γκ

)
(2n + 1){D [σ̂2

z ] +D [σ̂2
z ]} ρ̂qdt

+ 16
χ2g2

1
γ2κ

D [σ̂1
z + σ̂

2
z ] ρ̂qdt +

√
16
χ2g2

1
γ2κ

H [σ̂1
z + σ̂

2
z ] ρ̂qdW . (3.26)

The optomechanical interaction described by the Hamiltonian (3.24) indeed reduces noise
in the mechanical momentum quadrature which, in turn, reduces dephasing of the qubits;
the measurement rate is not affected by the squeezing since it depends on the first term
in equation (3.24) only. Equation (3.26) is valid only for weak optomechanical coupling,
g1g2 < γκ, which can be fulfilled since g2 is given by the difference of the coupling rates
of the sidebands.

3.3.2 Coupling via a microwave cavity

When the coupling between the qubit and mechanical oscillator is mediated by a microwave
resonator, the Hamiltonian takes the form

Ĥ = χσ̂z ( â + â†) − iga ( â − â†)(b̂ + b̂†) + ωmb̂†b̂ + gc (ĉ + ĉ†)(b̂ + b̂†); (3.27)

now, â is the annihilation operator for the microwave field and the annihilation operator
for the optical cavity is denoted by ĉ . Interaction of the qubit and the mechanical oscillator
with orthogonal microwave quadratures can be achieved if the qubit couples longitudinally
to the microwave resonator in the laboratory frame, Ĥint = χσ̂z ( â + â†) [163, 164]. If
we now strongly drive the cavity and move to the displaced frame, â → α + â, the
coupling is unchanged since the drive results merely in a constant energy offset for the
qubit, δωq = χ(α + α∗). The microwave quadrature which interacts with the mechanical
oscillator, on the other hand, is determined by the phase of the driving field; it is thus
possible for the qubit and the mechanical oscillator to couple to orthogonal microwave
quadratures. Finally, the longitudinal interaction between the qubit and microwave field
can be made resonant in the rotating frame if suitable modulation of the coupling rate is
used [165].

After adiabatic elimination of the optomechanical transducers (now consisting of the
microwave, optical, and mechanical modes; we also assume that each microwave resonator
couples to a vacuum bath), the effective equation of motion for the qubits reads

d ρ̂q = Lq ρ̂qdt +
[
4
χ2

κa
+ 256

χ2g4
a

κ3
aω

2
m
+ 16

χ2g2
aγ

κ2
aω

2
m

(2n + 1)
]
{D [σ̂1

z ] +D [σ̂2
z ]} ρ̂qdt

+ 256
χ2g2

a g2
c

κ2
aω

2
mκc
D [σ̂1

z + σ̂
2
z ] ρ̂qdt +

√
256

χ2g2
a g2

c

κ2
aω

2
mκc
H [σ̂1

z + σ̂
2
z ] ρ̂qdW . (3.28)

The presence of the microwave cavity results in two additional dephasing channels for the
qubit (described by the first two terms in the square bracket): the first dephasing process
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corresponds to the signal from the qubit leaving directly through the microwave output
port; the second channel describes the signal reflected by the mechanical oscillator. It
travels to the mechanical oscillator where it is converted back to microwaves, which then
decay to the microwave bath.

The latter process can be suppressed if the mechanical oscillator couples more strongly
to the optical output than to the microwave output, g2

c /κc > g2
a/κa . The former channel

presents a more considerable challenge—it is the only dephasing process that is resonant
(i.e., independent of the mechanical frequency). If the measurement is to dominate over
this dephasing, the condition

4g2
a

κaγ

4g2
c

κcγ
>

1
4
Q2

m (3.29)

has to be satisfied. With current experimental technology, this condition is virtually
impossible to fulfil.

3.3.3 Combining microwave cavity and modulated coupling

Finally, we can combine the two approaches discussed above in a single system—the
qubit interacts with a microwave cavity which is driven on both sidebands to realize
nondemolition coupling to the mechanical oscillator. The optical cavity is driven the same
way so we obtain a quantum nondemolition interaction of the qubit, microwave resonator,
mechanical oscillator, and optical cavity. In the ideal case (i.e., within validity of the
rotating wave approximation, κa,c < ωm ), the interaction is described by the Hamiltonian

Ĥ = χσ̂z ( â + â†) − iga ( â − â†)(b̂ + b̂†) − igc (ĉ + ĉ†)(b̂ − b̂†). (3.30)

Adiabatic elimination of the microwave, optical, and mechanical degrees of freedom
results in the stochastic master equation

d ρ̂q = Lq ρ̂qdt +
[
4
χ2

κa
+ 64

χ2g2
a

κ2
aγ

(2n + 1)
]
{D [σ̂1

z ] +D [σ̂2
z ]} ρ̂qdt

+ 1024
χ2g2

a g2
c

κ2
aγ

2κc
D [σ̂1

z + σ̂
2
z ] ρ̂qdt +

√
1024

χ2g2
a g2

c

κ2
aγ

2κc
H [σ̂1

z + σ̂
2
z ] ρ̂qdW . (3.31)

There is now one dephasing channel less than in the previous case, equation (3.28), since
the signal that enters the mechanical oscillator leaves through either the mechanical
bath or the optical cavity and cannot be reflected back to the microwave resonator.
The dephasing through the measurement channel dominates over the mechanical and
microwave dephasing if

4g2
c

κcγ (2n + 1)
>

1
4
,

4g2
a

κaγ

4g2
c

κcγ
>

1
16
. (3.32)

Additionally, the measurement rate also has to be larger than the intrinsic relaxation
and dephasing rates of the qubits; this condition can be fulfilled more easily since the
measurement rate is increased by a factor of Q2

m compared to the case of non-resonant
qubit and mechanical oscillator.
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3.4 Derivation of effective equations of motion

In this section, I derive the effective equation (3.13) governing the dynamics of two qubits
under continuous measurement by optomechanical transducers. To this end, I start by
considering a single node and show how to adiabatically eliminate the mechanical and
optical degrees of freedom. Then, I discuss the case of two such systems connected by a
directional optical link; after treating the case of an ideal system without optical losses,
I analyse the role of imperfections, specifically the presence of optical loss and asymmetry
in the parameters of the two transducers.

3.4.1 Single-qubit readout

To derive an effective equation of motion for a single qubit, we start from the stochastic
master equation for the qubit coupled to a transducer,

d ρ̂ = −i[Ĥ , ρ̂ ]dt + Lq ρ̂dt + γ{(n + 1)D [b̂ ] + nD [b̂† ]} ρ̂dt + κD [ â ] ρ̂dt

+
√
κH [ âeiφ ] ρ̂dW (3.33)

with the Hamiltonian Ĥ = χ(b̂ + b̂†)σ̂z + ωmb̂†b̂ + g ( â + â†)(b̂ + b̂†). To adiabatic-
ally eliminate the mechanical and optical degrees of freedom, we consider the equation
governing the dynamics of the transducer

d ρ̂T = −i[ωmb̂†b̂ + g ( â + â†)(b̂ + b̂†), ρ̂T ]dt + γ{(n + 1)D [b̂ ] + nD [b̂† ]} ρ̂Tdt

+ κD [ â ] ρ̂Tdt +
√
κH [ âeiφ ] ρ̂TdW , (3.34)

where I use the subscript T to remind us that the density matrix ρ̂T describes the state of
the transducer. Since the dynamics are linear, the state is fully described by the first and
second statistical moments of the canonical operators which we collect in the vector

r̂ =
1
√
2
[ â + â†,−i( â − â†), b̂ + b̂†,−i(b̂ − b̂†)]T . (3.35)

The covariance matrix of the conditional state of the transducer obeys the Riccati equation

Γ̇
c
= AΓc + ΓcAT + 2N − 2(Γcc − σm)(Γcc − σm)T , (3.36a)

A =

*.........
,

−
κ

2
0 0 0

0 −
κ

2
−2g 0

0 0 −
γ

2
ωm

−2g 0 −ωm −
γ

2

+/////////
-

, (3.36b)

N = diag
[
κ

2
,
κ

2
, γ

(
n +

1
2

)
, γ

(
n +

1
2

)]
, (3.36c)

c =
κ
√
2

(cos φ,− sin φ, 0, 0)T , (3.36d)

m =
κ
√
2

(sin φ, cos φ, 0, 0)T ; (3.36e)
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see also chapter 2. On the other hand, the unconditional state of the transducer follows
the deterministic master equation

d ρ̂u
T

dt
= −i[ωmb̂†b̂ + g ( â + â†)(b̂ + b̂†), ρ̂u

T ] + γ{(n + 1)D [b̂ ] + nD [b̂† ]} ρ̂u
T

+ κD [ â ] ρ̂u
T; (3.37)

the corresponding covariance matrix obeys the Lyapunov equation

Γ̇
u
= AΓu + ΓuAT + 2N. (3.38)

The Riccati and Lyapunov equations, (3.36a), (3.38), can be solved analytically in the
limit of weak optomechanical coupling, g < κ, but I omit the resulting expressions since
they are too cumbersome. The solution, together with the general expression for the
effective equation presented in chapter 2 gives the equation

d ρ̂q = Lq ρ̂qdt + (Γmeas + Γmech)D [σ̂z ] ρ̂qdt +
√
ΓmeasH [σ̂z ] ρ̂qdW , (3.39)

where the measurement and dephasing rates Γmeas, Γmech are given by equations (3.10).

3.4.2 Two-qubit measurement

When two such systems are cascaded, the dynamics are described by the equation

d ρ̂ = −i[Ĥ , ρ̂ ]dt + Lq ρ̂dt +
2∑
j=1

γ{(n + 1)D [b̂ j ] + nD [b̂†j ]} ρ̂dt
+ κD [ â1 − â2 ] ρ̂dt +

√
κH [( â1 − â2)eiφ ] ρ̂dW (3.40)

with the Hamiltonian

Ĥ =
2∑
j=1

[ χσ̂ j
z (b̂ j + b̂†j ) + ωmb̂†j b̂ j + g ( â j + â†j )(b̂ j + b̂†j )] +

iκ
2

( â1 â†2 − â2 â†1 ). (3.41)

Apart from the local dynamics of the two nodes—given by the square bracket in the
Hamiltonian (3.41) and by the dissipation of the qubits and the mechanical oscillators—
there is the unidirectional coupling of the optical cavities. This effect appears in the form
of the last term in the Hamiltonian (3.41) and in the Lindblad and measurement terms
which now describe the joint decay and measurement of the two cavity modes [214]. (The
minus sign in the Lindblad and measurement terms is due to our choice of the relative
phase between the two cavity fields; see the discussion below.) For the moment, we assume
that the two qubit–oscillator–cavity systems are identical and can be described by the same
frequencies, coupling constants, and decoherence rates.

After adiabatically eliminating the mechanical and optical degrees of freedom (in
complete analogy with the single-qubit readout), the effective two-qubit equation takes the
form

d ρ̂q = Lq ρ̂qdt + Γmech{D [σ̂1
z ] +D [σ̂2

z ]} ρ̂qdt + ΓmeasD [σ̂1
z + σ̂

2
z ] ρ̂qdt

+
√
ΓmeasH [σ̂1

z + σ̂
2
z ] ρ̂qdW . (3.42)



3.4 Derivation of effective equations of motion 83

Here, the relative phase between the two qubits in the measurement and two-qubit
dephasing terms is set by the phase between the two cavities in the Hamiltonian Ĥcasc =
1
2 iκ ( â1 â†2 − â2 â†1 ) and the Lindblad term D [ â1 − â2 ] ρ̂; this phase can be controlled by
applying an additional phase shift to the light field between the cavities. The relevant
choices are σ̂1

z + σ̂
2
z [which can be used to generate the entangled state |Ψ+〉 = ( |01〉 +

|10〉)/
√
2] and σ̂1

z − σ̂
2
z [with which the state |Φ+〉 = (|00〉 + |11〉)/

√
2 can be prepared];

the latter measurement can be obtained from the former one by applying a π phase shift
between the cavities, â2 → −â2. Any other phase results in the signals from the two qubits
appearing in different quadratures.

With optical losses in the channel between the cavities and limited detection efficiency,
the overall dynamics are described by the equation

d ρ̂ = −i[Ĥ , ρ̂ ]dt + Lq ρ̂dt +
2∑
j=1

γ j{(n j + 1)D [b̂ j ] + n jD [b̂†j ]} ρ̂dt
+ κ1(1 − τ)D [ â1 ] ρ̂dt +D [

√
κ1τ â1 −

√
κ2 â2 ] ρ̂dt

+
√
ηH [(

√
κ1τ â1 −

√
κ2 â2)eiφ ] ρ̂dW (3.43)

where the Hamiltonian takes the form

Ĥ =
2∑
j=1

[ χ j σ̂
j
z (b̂ j + b̂†j ) + ωm, j b̂†j b̂ j + g j ( â j + â†j )(b̂ j + b̂†j )]

−
i
2
√
κ1κ2τ( â†1 â2 − â†2 â1). (3.44)

Here, τ ∈ (0, 1] is the transmittance of the channel between the two cavities (including
optical losses in the first cavity) and η ∈ (0, 1] is the detection efficiency (it includes
any optical losses in and after the second cavity). Furthermore, I now assume different
parameters for the two qubits, mechanical oscillators, and optical cavities. The effective
two-qubit equation of motion takes the form

d ρ̂q = Lq ρ̂qdt + 16(1 − τ)
χ2

1 g
2
1

κ1ω
2
m,1
D [σ̂1

z ] ρ̂qdt +
2∑
j=1

χ2
j γ j (2n j + 1)

ω2
m, j

D [σ̂ j
z ] ρ̂qdt

+D



√√
16τ

χ2
1 g

2
1

κ1ω
2
m,1

σ̂1
z +

√√
16

χ2
2 g

2
2

κ2ω
2
m,2

σ̂2
z


ρ̂qdt

+
√
ηH



√√
16τ

χ2
1 g

2
1

κ1ω
2
m,1

σ̂1
z +

√√
16

χ2
2 g

2
2

κ2ω
2
m,2

σ̂2
z


ρ̂qdW . (3.45)

For a total-spin measurement, we require that both qubits be measured at the same rate,
τ χ2

1 g
2
1/κ1ω

2
m,1 = χ2

2 g
2
2/κ2ω

2
m,2. For most implementations, the easiest way to fulfil this

condition is to tune the coupling (the qubit–mechanical coupling can usually be tuned
using external fields, similar to the optomechanical coupling). I consider tuning the
coupling of the second qubit, χ2 =

√
τ χ1, since enhancing any of the coupling strengths
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in the first node would increase the dephasing rate of the first qubit; furthermore, the
reduction of the qubit coupling (compared to reducing the optomechanical coupling) also
reduces the dephasing of the second qubit. The resulting equation of motion is

d ρ̂q = Lq ρ̂qdt +
[
16(1 − τ)

χ2g2

κω2
m
+
χ2γ (2n + 1)

ω2
m

]
D [σ̂1

z ] ρ̂qdt

+
τ χ2γ (2n + 1)

ω2
m

D [σ̂2
z ] ρ̂qdt + 16τ

χ2g2

κω2
m
D [σ̂1

z + σ̂
2
z ] ρ̂qdt

+

√
16τη

χ2g2

κω2
m
H [σ̂1

z + σ̂
2
z ] ρ̂qdW

= Lq ρ̂qdt + [(1 − τ)Γmeas + Γmech ]D [σ̂1
z ] ρ̂qdt + τΓmechD [σ̂2

z ] ρ̂qdt

+ τΓmeasD [σ̂1
z + σ̂

2
z ] ρ̂qdt +

√
τηΓmeasH [σ̂1

z + σ̂
2
z ] ρ̂qdW , (3.46)

where the mechanical coupling rate of the first and second qubit is χ,
√
τ χ, respectively,

and Γmeas, Γmech are given in equations (3.10). Finally, individual tuning of the coupling
rates (both χ and g ) can also be used to compensate other differences between the systems
arising during manufacture, such as the difference in optical decay rates or mechanical
frequencies.

3.5 Analysis of stochastic master equations

Conditional master equations are usually solved using Monte Carlo techniques. When used
with postselection, however, stochastic dynamics can be approximated using an analytical
approach. This treatment is possible since we are interested only in the final state and
not the precise evolution during the measurement. We start from the conditional master
equation which we write as

d ρ̂ = γ−{D [σ̂1
− ] +D [σ̂2

− ]} ρ̂dt + γ1D [σ̂1
z ] ρ̂dt + γ2D [σ̂2

z ] ρ̂dt

+ ΓD [σ̂1
z + σ̂

2
z ] ρ̂dt +

√
ηΓH [σ̂1

z + σ̂
2
z ] ρ̂dW , (3.47)

Idt = 2
√
ηΓ〈σ̂1

z + σ̂
2
z 〉dt + dW . (3.48)

We assume that both qubits relax at the same rate γ− while their dephasing rates γ1,2

can, in principle, differ. (This situation describes two identical qubits coupled to light
via optomechanical transducers with optical losses between them.) Now, we prepare the
qubits in the state |ψ0〉 =

1
2 (|0〉 + |1〉) ⊗ (|0〉 + |1〉) and measure for time T , accumulating

the signal

J (T ) =
∫ T

0
Idt . (3.49)

Clearly, if J (T ) ≈ 0, the expectation value 〈σ̂1
z+σ̂

2
z 〉 = 0 and the qubits are in the entangled

state |Ψ+〉 = (|01〉 + |10〉)/
√
2 (assuming all decoherence channels are negligible compared

with the measurement) while for J (T ) � 0 they are in the state |11〉 [ |00〉 for J (T ) � 0].
Choosing a suitable postselection cutoff ν , we keep the state if | J (T ) | ≤ ν and discard it
otherwise.
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To get a deeper understanding of the system dynamics, we can adopt the following
simplified approach: first, we assume that the system evolves according to the unconditional
master equation

d ρ̂
dt
= γ−{D [σ̂1

− ] +D [σ̂2
− ]} ρ̂ + γ1D [σ̂1

z ] ρ̂ + γ2D [σ̂2
z ] ρ̂ + ΓD [σ̂1

z + σ̂
2
z ] ρ̂ (3.50)

from time t = 0 to time t = T . Afterwards, a fast, strong measurement is applied,
returning the result J (T ). Finally, using the cutoff ν , we either keep or discard the state;
we are interested in the entanglement of the state we keep. This approach is generally
not valid since nonlinearity in the measurement term H [σ̂1

z + σ̂
2
z ] ρ̂ = (σ̂1

z + σ̂
2
z ) ρ̂ −

tr{(σ̂1
z + σ̂

2
z ) ρ̂} ρ̂ + H.c. mixes the subspaces corresponding to the three measurement

outcomes, 〈σ̂1
z + σ̂

2
z 〉 = 2 (spanned by the state |00〉), 〈σ̂1

z + σ̂
2
z 〉 = 0 (spanned by |01〉,

|10〉), and 〈σ̂1
z + σ̂

2
z 〉 = −2 (spanned by |11〉), which can be considered independent in

the unconditional dynamics under weak relaxation, γ− < γ1,2, Γ. Nevertheless, if the
measurement is strong enough (so that the inter-subspace coherences quickly decay), this
treatment is a good approximation of the true stochastic dynamics which can otherwise
be studied only using quantum trajectories.

Formally, we start by solving the deterministic master equation (3.50) with the initial
condition ρ̂(t = 0) = |ψ0〉〈ψ0 |; although this equation can be solved analytically, I omit the
solution for brevity. The qubits then interact with the measurement apparatus (initially in
the vacuum state), which we then project on an eigenstate of the measurement operator,
resulting in the unnormalized state

%̂x = 〈x | exp(−iµŜz p̂) ρ̂(T ) ⊗ |0〉〈0| exp(iµŜz p̂) |x〉. (3.51)

Here, Ŝz = 1
2 (σ̂1

z + σ̂
2
z ), p̂ is the phase quadrature of the measurement apparatus, and

µ is the measurement strength which can be evaluated from the classical signal (3.49):
each of the projections 〈Ŝz 〉 = 0,±1 gives rise to normally distributed signals J (T ) with
mean value 4

√
ηΓ〈Ŝz 〉T and variance T . Considering we want to treat the measurement

apparatus as a bosonic mode and the interaction with the two qubits as a conditional
displacement, the measurement strength is given by the mean (for 〈Ŝz 〉 = 1) renormalized
by the square root of the variance so that µ = 2

√
ηΓT [a factor of 1

2 appears due to the
used definition of the amplitude quadrature x̂ = ( â + â†)/

√
2].

We can express the unnormalized projected state %̂x using phase-quadrature representa-
tion for the measurement apparatus

%̂x =
1

(2π)3/2

∫
dp exp

[
−
p2

4
+ i(x − µŜz )p

]
ρ̂(T )

∫
dp ′ exp

[
−
p ′2

4
− i(x − µŜz )p ′

]

=

√
2
π

1∑
S,S′=−1

e−(x−µS )2 P̂S ρ̂(T )P̂S′e−(x−µS′)2

= D̂ (x ) ρ̂(T )D̂ (x ). (3.52)

Here, P̂S is projector onto the subspace with 〈Ŝz 〉 = S and

D̂ (x ) = 4

√
2
π

diag{exp[−(x − µ)2 ], exp(−x2), exp(−x2), exp[−(x + µ)2 ]}. (3.53)
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Figure 3.4: Comparison of the analytical model (dashed red line) to numerical simulations (solid blue
line). In the first row [panels (a–c)], we consider system with parameters γ− = 0.1Γ, γ1 = γ2 = 0.2Γ,
η = 0.6; in the second row [panels (d–f)], the parameters are γ− = 0.1Γ, γ1 = Γ, γ2 = 0.3Γ, η = 1;
for the last row [panels (g–i)], we use the parameters γ− = 0.8Γ, γ1 = γ2 = 0, η = 1. The success
probability is Psucc = 0.1 for the first column [panels (a,d,g)], Psucc = 0.3 for the second column
[panels (b,e,h)], and Psucc = 0.5 for the last column [panels (c,f,i)].

Integrating over the interval x ∈ (−ν, ν ), we obtain the final postselected state

ρ̂f =

∫ ν

−ν
dx %̂x

tr{∫ ν

−ν
dx %̂x} ; (3.54)

the normalization factor gives the success probability of the postselection procedure,
Psucc = tr{∫ ν

−ν
dx %̂x}. It is possible to express the final density matrix analytically but the

resulting expression is too cumbersome to be presented here.
I compare the analytical model with numerical simulations in figure 3.4. As expected,

the analytical model breaks down when the qubit relaxation rate becomes large so that
the nonlinearity of the measurement term in the stochastic master equation starts to play
a role [panels (g–i)]. Furthermore, the analytical model and the numerical simulations
start to deviate when the success probability is increased [panels (c,f,i)]. This behaviour
is, however, merely a result of different data analysis procedure—while the analytical
model evaluates entanglement of the average state obtained by postselection, the numerical
simulations reveal the average entanglement that can be obtained. In the extreme case of
a perfect measurement (i.e., dynamics described by the stochastic master equation d ρ̂ =
ΓD [σ̂1

z + σ̂
2
z ] ρ̂dt +

√
ΓH [σ̂1

z + σ̂
2
z ] ρ̂dW ) and success probability 100 % (corresponding
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Figure 3.5: Comparison of the total-spin measurement (solid blue line) with the measurement of
the spin difference (dashed red line). (a) Decoherence dominated by dephasing, γ1 = γ2 = 0.2Γ,
γ− = 0.05Γ, Psucc = 0.2. (b,c) Comparable dephasing and relaxation, γ1 = γ2 = 0.1Γ, γ− = 0.3Γ,
Psucc = 0.1 (b), Psucc = 0.5 (c). For all plots, the detection efficiency η = 1.

to simply disregarding the measurement record), the average state is a statistical mixture of
all possible measurement outcomes,

ρ̂ =
1
4
|00〉〈00| +

1
2
|Ψ+〉〈Ψ+ | +

1
4
|11〉〈11| =

1
4

*.....
,

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

+/////
-

, (3.55)

which is a separable state. Simulating individual quantum trajectories, on the other hand,
we obtain the maximally entangled state |Ψ+〉 with 50 % probability and the average
entanglement equals 0.5 ebit.

We can treat the measurement of the spin difference σ̂1
z − σ̂

2
z in a similar manner. This

time, the entangled state |Φ+〉 = ( |00〉 + |11〉)/
√
2 can be generated from the initial state

|ψ0〉 =
1
2 ( |0〉 + |1〉) ⊗ (|0〉 + |1〉). The two measurements, of the total spin σ̂1

z + σ̂
2
z and

of the spin difference σ̂1
z − σ̂

2
z , are compared in figure 3.5. When the decoherence of the

qubits is dominated by their dephasing [panel (a)], there is no difference between the two
strategies since dephasing affects both cases equally. When the qubit relaxation cannot be
neglected, the success probability decides which measurement ought to be used. For small
success probabilities [panel (b)], it is beneficial to measure the total spin σ̂1

z + σ̂
2
z ; with

this measurement, only states in the relevant subspace (spanned by the states |01〉,|10〉)
are postselected. While this is the case also for the spin difference measurement (where
the preferred subspace is spanned by |00〉, |11〉), the ground state population contains also
contributions from the decayed odd-parity states |01〉, |10〉, which leads to a reduction
of concurrence. The measurement of the spin difference is, however, a better choice if
the success probability is large [panel (c)]; in such a situation, the total-spin measurement
results in a state that is a mixture of all three subspaces and its entanglement is thus reduced.
There is, nevertheless, a little difference between the two strategies for times up to the
optimal measurement time, independent of the chosen success probability.
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measurement
cavity
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Figure 3.6: Scheme for optomechanical quantum nondemolition detection of single photons. A
photon in the measurement cavity transfers part of its momentum to a mechanical oscillator; this
momentum is then measured using a second, readout cavity mode. An incoming photon can be
modelled with a third, source cavity (left) with an embedded photon source (e.g., an atom).

3.6 Photocounting with optomechanical transducers

Generation of entanglement is but a single possible application of optomechanical trans-
ducers for quantum force sensing. The purpose of the device is to measure a force that, in
this case, comes from a superconducting qubit. The source of this force, however, can be
another object. For instance, using a nonlinearly coupled optomechanical cavity, we can
use the transducer to count photons.

The scheme is depicted in figure 3.6. An optical cavity (which I will refer to as the
measurement cavity) interacts with a mechanical oscillator via the nonlinear optomechan-
ical coupling g0 â† â(b̂ + b̂†). The mechanical oscillator thus feels a force Fn = ng0/

√
2xzpf

that depends on the number of photons n = 〈â† â〉 in the measurement cavity. We use
another, readout cavity to estimate this force and determine the number of photons in the
measurement cavity. The dynamics of the measurement cavity are, in full analogy with
the qubit readout, described by the conditional master equation

d ρ̂ = κD [ â ] ρ̂dt + (Γmeas + Γmech)D [ â† â ] ρ̂dt +
√
ΓmeasH [ â† â ] ρ̂dW ; (3.56)

the first term on the right-hand side accounts for the cavity decay, the terms proportional
to Γmeas describe the measurement, and the term with Γmech gives the mechanically induced
dephasing; the rates are given by

Γmeas = 16
g2
0 g

2

κrω
2
m
, Γmech =

g2
0γ

ω2
m

(2n + 1). (3.57)

Here, κr is the linewidth of the readout cavity and g is its linearized coupling to the
mechanical oscillator.

In the following, I will focus on the simplest scenario: distinguishing between the
presence and absence of a single photon. The transducer allows a quantum nondemolition
detection of the photon—it is not absorbed by the detector but imparts a momentum
kick to the mechanical oscillator that can be measured using a second cavity mode. To
fully exploit the possibilities this measurement offers, I will consider a situation where
the photon arrives in the measurement cavity from some outer source, is measured, and
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decays from the cavity. I will show that the sensitivity of such a measurement is limited
by the quantum Zeno effect [209, 220, 246]: the measurement prevents the photon from
entering the measurement cavity. I will then argue that basic evasion of the measurement
backaction is possible if the arrival time of the photon is known; the sensitivity in such a
case is limited by imperfect coupling of the photon into the measurement cavity. Finally, I
will briefly discuss a scenario where the photon is coupled perfectly into the cavity and
the technical requirements to successfully detect its presence in this setting.

3.6.1 Measurement strategy

The basic model for sending the photon to the detector from an outside source is the
following (see figure 3.6): we consider a third, source cavity, which is prepared in the single
photon state. The source cavity is cascaded with the measurement cavity so that the photon
decaying from the source enters the detector where its presence is measured. Finally, the
photon decays from the measurement cavity and is available for further operations. The
detector can thus be used to improve the efficiency of the source.

Formally, we introduce the annihilation operator of the source cavity âs and describe
the source and measurement cavity using the conditional master equation

d ρ̂ =
√
κsκ [ â†s â − â† âs, ρ̂ ]dt +D [

√
κs âs +

√
κ â ] ρ̂dt + ΓD [ â† â ] ρ̂dt

+
√
ΓH [ â† â ] ρ̂dW . (3.58)

Here, κs is the linewidth of the source cavity and we neglect mechanically induced
dephasing of the measurement cavity; for the simple task of distinguishing the presence and
absence of a photon, this dephasing effect is irrelevant. The initial state is a single photon
in the source cavity and vacuum in the measurement cavity, ρ̂1(t = 0) = |1s, 0〉〈1s, 0| [or
the vacuum ρ̂0(t = 0) = |0s, 0〉〈0s, 0|], and the measurement gives rise to the classical signal

Idt = 2
√
Γ〈â† â〉dt + dW . (3.59)

The distinguishability of the vacuum and single-photon states can be maximized by
using an appropriate filter F (t ),

J =
∫ T

0
dt F (t )I (t ); (3.60)

the filter is optimized by taking F (t ) ∝ I1(t ); we assume the filter function to be normal-
ized

∫
dt F 2(t ) = 1. Here I1(t ) = 2

√
Γn1(t ) is the signal we expect from a single photon

and n1(t ) is the unconditional population of the measurement cavity. The population can
be found by solving the master equation

d ρ̂
dt
=

√
κsκ

2
[ â†s â − â† âs, ρ̂ ] +D [

√
κs âs +

√
κ â ] ρ̂ + ΓD [ â† â ] ρ̂ (3.61)

with the initial state ρ̂1; we obtain

n1(t ) =
4κsκe−κt

Γ + κ − κs
*
,

1 − e−(κs−κ)t

κs − κ
+ 2

e−
1
2 (Γ−κ+κs)t − 1
Γ − κ + κs

+
-
. (3.62)
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Figure 3.7: (a) Histograms of signals coming from the vacuum (red) and single-photon states
(green). (b) Error probabilities versus the discrimination threshold. The plot shows the dark-count
probability (dashed red line), false detection (dotted green line), and their average (solid blue line).

This choice of filter maximizes, on average, the signal from the single photon since the
filtered signal J is given by the scalar product of the photon population with itself; any
other (normalized) filter must necessarily give rise to a smaller filtered signal. At the same
time, unfiltered signals from the vacuum state fluctuate around zero; the expected signal is
thus n0(t ) = 0 and the expected filtered signal is zero.

Under these conditions, vacuum gives rise to normally distributed signals with
zero mean and unit variance. The mean signal for the single-photon state is J1 =∫

dt F (t )I1(t ) = 2
√
Γ

√∫
dtn2

1(t ). The signals due to a single photon do not have a
Gaussian distribution. We can, nevertheless, still use the mean signal J1 as an approxima-
tion of the signal-to-noise ratio; unlike the exact signal-to-noise ratio or any other measure
of distinguishability of the two states, this quantity can be calculated analytically. For long
measurement times, T > 1/κ, we can take the limit T → ∞ and the single-photon signal
becomes

J1 = 4

√
2Γκsκ [Γ + 3(κ + κs)]

(κ + κs)(Γ + κ + κs)(Γ + 3κ + κs)(Γ + κ + 3κs)
. (3.63)

This quantity can be numerically maximized: for κs = κ, Γ = 2.355κ, we get J1 = 1.34.

Results of numerical simulations for these parameters are shown in figure 3.7. From
panel (a), we see that the histograms of signals corresponding to the vacuum and single-
photon state are largely overlapping. This result is further illustrated in panel (b), where
the measurement error is plotted as a function of the discrimination threshold. In this
setting, a threshold ν is picked and the signal is interpreted as coming from a single photon
if and only if J > ν ; we ask what the probability of a wrong determination of the cavity
state is. The best performance in this case reaches measurement infidelity of about 31%.
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3.6.2 Quantum Zeno effect and the standard quantum limit

We can understand the limitations of the measurement scheme by introducing Stokes
operators for the source and measurement cavity,

Ŝ0 =
1
2

( â†s âs + â† â), (3.64a)

Ŝ1 =
1
2

( â†s â + â† âs), (3.64b)

Ŝ2 = −
i
2

( â†s â − â† âs), (3.64c)

Ŝ3 =
1
2

( â†s âs − â† â). (3.64d)

The interaction of the two cavities (up to the Lindblad term D [
√
κ s âs +

√
κ â ] ρ̂ ) is given

by the Stokes operator Ŝ2. The transducer measures, on the other hand, the combination
Ŝ0 − Ŝ3. Owing to the commutation relation [Ŝi, Ŝ j ] = iε i jk Ŝk , i, j, k = 1, 2, 3, the
measurement of the Stokes operator Ŝ3 necessarily disturbs the second Stokes operator Ŝ2;
this disturbance is then reflected in the measurement of Ŝ3 at a later time.

We can get a deeper understanding of this phenomenon from circuit quantum elec-
trodynamics [209, 220]: a qubit under a Rabi drive and continuous measurement of its
population exhibits quantum Zeno effect. The coupling of the cavities (analogous to the
Rabi drive) and the measurement are two competing processes; while the former leads to a
change of the cavity population, the latter freezes the dynamics and prevents any popula-
tion change. With a weak measurement, the driving is stronger and the cavity becomes
populated by the photon; the measurement is, however, too weak to observe it. A strong
measurement, which dominates over the drive, prevents this effect and the measurement
cavity remains empty, giving a false negative in the detection. Similar effect has been
observed also for quantum nondemolition detection with two nonlinearly coupled cavity
fields [246].

The solution to this problem and a way to improve the detection efficiency is to turn
the measurement on after the photon entered the measurement cavity. This adaptation
leads to a less general measurement than the one we started with—we now need to know
when the photon arrives so we know when to start the measurement. In its simplest form,
this can be modelled with the time-dependent measurement rate

Γ(t ) = ΓΘ(t − t0), (3.65)

where Θ(t ) is the Heaviside step function; the measurement is switched on at time t0,
which is achieved by turning on the driving of the readout cavity. The photon thus
enters the measurement cavity without any backaction, and only then do we switch the
measurement on.

The off–on measurement is compared with the simple approach in figure 3.8(a). The
time-dependent measurement can outperform the simplest strategy already for moderate
measurement rates (Γ . 3κ ). The performance of both approaches is further analysed in
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Figure 3.8: (a) Signal-to-noise ratio (SNR) as a function of the measurement rate. The curve shows
results for the off–on measurement numerically optimized over the switching time t0. The black
horizontal line represents the standard quantum limit obtained for time-independent measurement.
(b) Measurement infidelity for the simple measurement scheme (blue circles) and the time-dependent
measurement (red squares) versus the measurement rate. (c) Sample histograms for vacuum (red)
and single-photon states (green) for the off–on measurement with Γ = 10κ.

panel (b). The off–on measurement indeed outperforms the basic scheme; its performance,
however, does not improve with increasing measurement rate beyond Γ ∼ 2.5κ.

We can understand this behaviour from figure 3.8(c), which shows the histograms
for vacuum and single-photon states with the time-dependent measurement for Γ = 10κ.
Owing to the non-Gaussianity of the single photon, the corresponding histogram has a
long tail with strong measurement signals that skews the signal-to-noise-ratio. A significant
number of the single-photon trajectories do not result in a click due to imperfect coupling
of the photon to the measurement cavity. Since the cavity population reaches a maximum
of about 50 %, the photon can be detected only with the same efficiency.

3.6.3 Fundamental limits on measurement precision

To maximize the detection efficiency, we need to improve the coupling of the photon into
the measurement cavity. We can achieve this goal if we have control over the pulse shape
of the photon. With an inverted-exponential profile, the photon will couple perfectly into
the measurement cavity. If we now turn the measurement on, measurement backaction
will not limit the distinguishability of the vacuum and single photon states. This scheme
is, however, the most problematic to implement—apart from knowledge of the arrival
time of the photon, we also need to be able to control its pulse shape.
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Figure 3.9: (a) Histograms for vacuum (red) and single-photon (green) states for scheme with a
single cavity and Γ = κ. (b) Corresponding error probabilities versus the discrimination threshold.
The plot shows the dark count probability (dashed red line), false detection (dotted green line), and
their average (solid blue line). (c) Scaling of the measurement infidelity with measurement rate. The
blue points represent simulation data, the line is a polynomial fit. The inset shows the same data on
a logarithmic scale.

The dynamics are now described by the conditional master equation

d ρ̂ = κD [ â ] ρ̂dt + ΓD [ â† â ] ρ̂dt +
√
ΓH [ â† â ] ρ̂dW . (3.66)

For an efficient measurement, the measurement rate has to be larger than the cavity decay
rate, Γ > κ. Using the expression for the measurement rate, equation (3.57), we can
rewrite this condition as

4g2
0

κγ

4g2

κrγ
> Q2

m. (3.67)

We can also estimate the resulting signal-to-noise ratio: the expected measurement signal is
now an exponential, n(t ) = e−κt , so we have

SNR = 2
√
Γ

√∫
dt n2(t ) =

√
2Γ
κ
. (3.68)

Results of numerical simulations are shown in figure 3.9. Panel (a) shows signal
histograms for Γ = 5κ and in panel (b), the corresponding error rates are plotted versus the
discrimination threshold. The performance is greatly improved compared to the previous
strategies but there still is a finite overlap between the histograms corresponding to the
vacuum and single-photon states.
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To investigate how this overlap depends on the measurement rate, figure 3.9(c) shows
the measurement infidelity as a function of the measurement rate. Polynomial fit (black
line) to the simulated data (blue points) shows that the infidelity scales approximately as
Γ−0.37. From the signal-to-noise ratio in equation (3.68), we would expect the infidelity to
scale as Γ−1/2; the discrepancy is caused by the non-Gaussian character of the distribution
of the single-photon signals; cf. figure 3.9(a).

To analyse experimental feasibility of this scheme, let us consider the following para-
meters: in recent experiments, the ratio g0/ωm ∼ 10−2 can be expected. Together with a
readout rate g2/κr ∼ 1 MHz, this value gives a measurement rate of about 1 kHz, which
is significantly smaller than typical cavity decay rates. The single-photon coupling coup-
ling can be enhanced by mediating the optomechanical coupling by a two-level system
[173, 180] or by parametrically driving the mechanical motion [253]. With current techno-
logy, however, these strategies improve the measurement rate only by one or two orders
of magnitude; the scheme thus remains extremely challenging to implement.

3.7 Summary

Optomechanical force sensing is a measurement method that can reach remarkable pre-
cision. In a typical scenario, the object exerting the force on the oscillator is treated
classically. Here, I showed on two examples that treating the source of the force quantum
mechanically can bring useful practical applications and interesting new effects.

First, I considered using two optomechanical transducers for joint readout of two
superconducting qubits. The optomechanical system is used to measure the qubit-state-
dependent force on the mechanical oscillator; the topology of the system results in an
effective measurement of the total spin and can thus be used for generation of entanglement
between the qubits, following recent experimental efforts in microwave systems [92].
An important open question was whether the coherence of the qubits can survive the
measurement; the transducer introduces a dephasing channel for the qubit so this question
is highly nontrivial. I demonstrated that the qubit coherence is well preserved during the
measurement if the transducer has large cooperativity; moreover, the system tolerates a
substantial optical loss. The strategy builds on existing experimental techniques and can
thus be readily implemented.

Second, I considered using an optomechanical transducer for quantum nondemolition
detection of single photons. In this case, a single photon—a highly nonclassical object—
imparts a momentum kick to the mechanical oscillator, which can be detected using a
second, strongly driven cavity mode. We saw that a continuous measurement gives rise to
backaction that limits the population of the measurement cavity. We can avoid the resulting
quantum Zeno effect with a time-dependent measurement setting for which, however,
knowledge of the arrival time of the photon is necessary. The detection performance is
then limited by the natural imperfection of the coupling of the incoming photon to the
measurement cavity. The solution to this problem is a manipulation of the temporal profile
of the photon; the resulting measurement, nevertheless, puts very strong requirements on
the system parameters and is far from being feasible with current technology.



Chapter 4

Spatially adiabatic frequency conversion in transducer arrays

An optomechanical transducer formed by an optical and a microwave cavity coupled to a
common mechanical oscillator [figure 4.1(a)] is a conceptually simple, yet versatile device.
Frequency conversion of propagating fields is possible with time-independent control
using optomechanically induced transparency [254]; arbitrary input signals in one mode
can be converted into the output of the other mode. The main limitation of this scheme
is its small bandwidth, given by the optomechanically broadened mechanical linewidth,
which is, for typical experimental parameters, much smaller than the linewidth of the
cavity modes [134].

Conversion bandwidth can be improved by using adiabatic passage with intracavity
fields [79, 80]; in this case, the bandwidth is equal to the cavity linewidth. This approach
requires complicated time-control schemes to store incoming signals inside one of the
cavities and for efficient conversion. The main limitation, however, is the requirement for
strong coupling, which is not available with current opto- and electromechanical systems.
Although the process can be sped up using shortcuts to adiabaticity [255, 256] (which relax
the conditions on the coupling strength), the correction Hamiltonian that compensates
nonadiabatic transitions results in more complex time-control schemes.

A solution to this conundrum lies in developing new strategies for frequency conver-
sion in optoelectromechanical systems. In this chapter, I take this approach and show that
the conversion bandwidth can be increased in an array of optomechanical transducers [96];
see figure 4.1(b). Two propagating fields (one optical and one microwave) form two
normal modes, one of which is decoupled from the mechanical motion. Varying the opto-
and electromechanical coupling rates within the array, we can change the nature of the
mechanically dark mode from purely microwave to purely optical. This variation, which
needs to be sufficiently slow so the orthogonal normal mode is not excited in the process,
adiabatically converts any signal initially in the microwave field to light (or vice versa).
The conversion bandwidth can be improved by increasing the array size and is limited
only by the frequency of the mechanical oscillations.

Using a mechanically dark mode also leads to a strongly suppressed added noise. Even
though the total noise that enters the propagating fields scales with the array size, it gets
added predominantly to the mechanically bright mode. This effect is more pronounced as
the array size increases and the adiabaticity improves. Added noise is thus suppressed in
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(a) (b) (c)

Figure 4.1: (a) Schematic representation of a basic optomechanical transducer. Conversion between
a microwave mode ĉ1 (red circle) and an optical mode ĉ2 (blue) via the mechanical mode b̂ (yellow)
is possible using a mechanically dark mode. (b) Transducer array for spatially adiabatic frequency
conversion. The opto- and electromechanical coupling rates are varied throughout the array so that
a mechanically dark mode of the propagating fields â1,2(z ) changes from a purely microwave mode
to a purely optical mode. The transducers are directionally coupled; signals propagate from left to
right. (c) Continuous model for spatially adiabatic frequency conversion where the propagating
fields are coupled via a spatially extended phonon mode b̂ (z ).

the regime where the collectively enhanced optomechanical cooperativity is strong; we do
not need each transducer to be in the strong-cooperativity regime.

I start by describing existing strategies of optomechanical transduction, namely con-
version of propagating fields and conversion of intracavity fields by adiabatic passage in
section 4.1. I describe both approaches in detail and outline their limitations for practical
applications. I then briefly outline how frequency conversion of propagating fields via
adiabatic passage could be implemented in a continuous optoelectromechanical system
[figure 4.1(c)].

Next, I show how spatially adiabatic dynamics can be effectively achieved in an array
of optomechanical transducers. An array is only an approximation of the continuous
dynamics; as the array size grows, however, the dynamics are closer to the continuous
model. I find a simple analytical expression for the conversion bandwidth and provide an
intuitive explanation for its scaling with system parameters.

In section 4.3, I address losses and noise in the system and show that efficient frequency
conversion is possible even in presence of imperfections. I identify the main sources of
decoherence and find regimes in which these imperfections can be neglected. Particularly,
I show that the mechanical noise is suppressed in large arrays by the adiabatic parameter.
I also identify a loss mechanism—backscattering of electromagnetic signals—that has
no analogue in temporal adiabatic dynamics and analyse its role in spatially adiabatic
frequency conversion.

Finally, I discuss possible implementations and summarize the chapter in section 4.4.
Apart from implementations in optoelectromechanical nanostructures, I also briefly
discuss the main hurdles in implementing direct conversion between propagating fields in
the spirit of the continuous model discussed in section 4.1.
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4.1 Single optomechanical transducer

4.1.1 Transduction of itinerant fields

The most versatile approach to optomechanical transduction uses time-independent control
and is capable of converting arbitrary input fields [79, 80, 82]. In this transducer [see
figure 4.1(a)], a single mechanical oscillator (annihilation operator b̂ ) is coupled to a
microwave and an optical cavity (annihilation operators ĉ1,2) via a beam splitter-like
Hamiltonian

Ĥ = g1(ĉ†1 b̂ + b̂
† ĉ1) + g2(ĉ†2 b̂ + b̂

† ĉ2). (4.1)

To understand how input fields are converted by the transducer, we solve its state-space
model (see also chapter 1): we start by writing the Heisenberg–Langevin equations and
the input–output relations in the vector form

dâ
dt
= Aâ + Bâin, (4.2a)

âout = Câ +Dâin (4.2b)

with the vector â = (ĉ1, b̂, ĉ2)T (and similar vectors for the input and output fields). For
the matrices, we have

A =
*.....
,

−
κ1
2
−ig1 0

−ig1 −
γ

2
−ig2

0 −ig2 −
κ2
2

+/////
-

, (4.3a)

B = C = diag(
√
κ1,
√
γ,
√
κ2), (4.3b)

D = −I3; (4.3c)

here, κ1,2, γ are the decay rates of the cavity fields â1,2 and the mechanical mode b̂ .

The Heisenberg–Langevin equations (4.2) can be solved in the frequency domain; the
relation between the input and output fields is described by the scattering matrix

âout(ω) = S(ω)âin(ω) = [D −C(A + iωI3)−1B]âin(ω). (4.4)

For the optomechanical transducer, the scattering matrix is

S(ω) =
*..
,

t1 n1 c
n1 m n2

c n2 t2

+//
-
; (4.5)
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the coefficients are, close to cavity resonance, ω ≈ 0, given by

ti =
−Ci +Ci⊕1 + 1
C1 +C2 + 1

, (4.6a)

c = −
2
√
C1C2

C1 +C2 + 1
, (4.6b)

m = −
C1 +C2 − 1
C1 +C2 + 1

, (4.6c)

ni = −
2i
√
Ci

C1 +C2 + 1
; (4.6d)

here, Ci = 4g2
i /κiγ is the classical cooperativity and ⊕ denotes addition modulo 2.

Efficient conversion requires |c | ≈ 1; this condition is fulfilled if the opto- and elec-
tromechanical systems are impedance matched, C1 = C2 = C > 1. In this case, the
conversion coefficient simplifies to c = −2C /(2C + 1) ≈ −1, while direct transmission is
strongly suppressed, ti = 1/(2C + 1) ≈ 0. Impedance matching thus results in destructive
interference between signal reflected off the input mirror and from inside the cavity [80].

To fully characterize transduction of quantum signals, we must further determine
the added noise. To this end, we compare the conversion coefficient [given by equation
(4.6b)] with the coefficient quantifying the noise that enters the same output mode from
the thermal mechanical bath [equation (4.6d)]. For an impedance-matched system, we
have

ni
c
=

i
√
C
. (4.7)

Since the average occupation of the thermal mechanical bath is n, the total noise compared
to the signal is |ni/c |2n = n/C = 1/C ; to successfully limit thermal noise, we thus need to
operate in the regime of strong optomechanical cooperativity,

C =
4g2

κγn
> 1. (4.8)

This condition is similar to the requirement on efficient generation of entanglement
between two qubits presented in the previous chapter; both results illustrate the important
of the cooperativity as a figure of merit for optomechanical systems.

The final figure of merit we are interested in is the transducer bandwidth, that is, the
frequency range across which efficient transduction is possible. To evaluate the bandwidth,
we need to find the scattering coefficients away from resonance; we can proceed as follows:
we write the Heisenberg–Langevin equation for the mechanical oscillator with adiabatically
eliminated cavity fields,

db̂
dt
= − *

,

γ

2
+

4g2
1

κ1
+

4g2
2

κ2
+
-
b̂ −

2ig1
√
κ1

ĉ1,in −
2ig2
√
κ2

ĉ2,in +
√
γ b̂in, (4.9)

and solve it in frequency space. After plugging the result into the input–output relation

ĉ2,out = −
2ig2
√
κ2

b̂ + ĉ2,in, (4.10)
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we can identify the conversion coefficient in the term containing ĉ1,in. We obtain

c = −
8g1g2
√
κ1κ2

1
Γ − 2iω

, Γ = γ +
8g2

1
κ1
+

8g2
2

κ2
. (4.11)

Equation (4.11) reveals that the conversion coefficient has a Lorentzian profile with width
given by the optically broadened mechanical linewidth Γ. We thus have the conversion
bandwidth ∆ω = Γ. Together, the conversion bandwidth and added noise fully characterize
the optomechanical transducer [257].

4.1.2 Frequency conversion by adiabatic passage

Efficient conversion of cavity fields is possible using adiabatic state transfer [79, 80]. The
two cavity fields interact with a mechanical oscillator via the time-dependent Hamiltonian

Ĥint(t ) = g1(t )(ĉ†1 b̂ + b̂
† ĉ1) + g2(t )(ĉ†2 b̂ + b̂

† ĉ2). (4.12)

In the strong-coupling regime, gi > κi , the cavity fields hybridize into two normal modes,

d̂1 =
g1(t )ĉ1 + g2(t )ĉ2

g (t )
, d̂2 =

g2(t )ĉ1 − g1(t )ĉ2
g (t )

, (4.13)

where g2(t ) = g2
1 (t ) + g2

2 (t ). The normal mode d̂2 is mechanically dark; it does not
appear in the interaction Hamiltonian Ĥint = g (t )(d̂†1 b̂ + b̂

†d̂1) and is thus insensitive to
mechanical losses and associated noise.

Frequency conversion between the two cavity fields can be achieved by adiabatically
varying the two coupling rates. In this process, the nature of the dark mode is changed
from purely microwave at t = 0 [achieved for g1(0) � g2(0)] to purely optical at a later
time t = T [now, g1(T ) � g2(T )]. Adiabaticity is ensured if the conversion is slow and
does not lead to excitation of the bright mode d̂1. This condition is fulfilled whenever the
rate of change of the coupling rates is smaller than the frequency spacing of the normal
modes [79]; mathematically, we can write

| ġi (t ) | < g2
1 (t ) + g2

2 (t ). (4.14)

This requirement bounds the duration of the process from below, T > 1/g . On the other
hand, the conversion has to be fast compared to the lifetime of the cavity fields. We thus
get a hierarchy of time scales 1/κi > T > 1/g ; this hierarchy cannot be fulfilled with
current systems.

Imagine now that we perform the conversion in a spatially extended structure, in
which the coupling rates can be varied in space, rather than in time; cf. figure 4.1(c). The
two fields (now with annihilation operators â1,2(z ) and propagating with velocity v1,2)
are coupled to a phonon mode b̂ (z ) extended over length L via beam splitter interaction.
The Hamiltonian of the full system now has to take into account the propagation of the
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fields; we have Ĥ = Ĥ0 + Ĥint with the free propagation Hamiltonian and interaction

Ĥ0 =

∫ ∞

−∞

dz
2∑
i=1

vi

â†i (z )

∂

∂z
âi (z ) +

∂ â†i
∂z

âi

, (4.15a)

Ĥint =

∫ L

0
dz [G1(z ) â†1 (z ) +G2(z ) â†2 (z )]b̂ (z ) +H.c.

=

∫ L

0
dzG [d̂†1 (z )b̂ (z ) + b̂†(z )d̂1(z )]; (4.15b)

in the interaction Hamiltonian, I introduced the propagating normal mode d̂1(z ) =
[G1(z ) â1(z ) +G2(z ) â2(z )]/G (z ) with G2(z ) = G2

1 (z ) +G2
2 (z ). The orthogonal normal

mode d̂2(z ) = [G2(z ) â1(z ) −G1(z ) â2(z )]/G (z ) is not directly coupled to the mechanical
mode. To ensure that the mode d̂2 is mechanically dark, however, we have to ensure that
the normal modes are not coupled in the free Hamiltonian Ĥ0.

To derive conditions under which the normal modes stay decoupled, we collect the
propagating fields in a vector â(z ) = [ â1(z ), â2(z )]T [the normal modes are collected in
a similar vector d̂(z )]. The transformation between the propagating fields and normal
modes can be described by the orthogonal matrix O(z ),

â(z ) = O(z )d̂(z ) = G−1 *
,

G1 G2

G2 −G1
+
-

*
,

d̂1

d̂2

+
-
. (4.16)

Plugging this expression into the free Hamiltonian (4.15a) [which we write in the matrix
form Ĥ0 =

∫
dz â†v∂z â + H.c. with v = diag(v1, v2)], we find that the normal modes

remain decoupled if the matrices OT vO and OT v∂zO + (∂zOT )vO are diagonal. The
matrix OT vO is diagonal if both fields propagate at the same velocity, v1 = v2 = v ; the
other matrix is, under this condition, identically zero. The normal modes thus remain
decoupled and the mode d̂2 is a dark mode of the mechanical oscillator.

Adiabatic frequency conversion between the propagating fields â1,2 is now possible by
slowly varying the coupling rates G1,2(z ). To ensure that the conversion stays adiabatic,
the change of the coupling rates has to be slow so that we do not excite the orthogonal
normal mode d̂1. From equation (4.14), we can express the time derivative using the spatial
derivative and get the condition |dGi/dz | < G2/v .

4.2 Transducer array

The continuous dynamics can be approximated in an array of optomechanical transducers;
see figure 4.1(b). Each transducer is formed by a mechanical oscillator coupled to an
optical and a microwave cavity; the interaction is described by the interaction Hamiltonian
Ĥint = g1(ĉ†1 b̂ + b̂

† ĉ1) + g2(ĉ†2 b̂ + b̂
† ĉ2). The dynamics are governed by the Heisenberg–
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Langevin equations

dĉi
dt
= −

κi
2
ĉi − igi b̂ +

√
κi âi (z−), (4.17a)

db̂
dt
= −

γ

2
b̂ − ig1 ĉ1 − ig2 ĉ2 +

√
γ b̂in (4.17b)

with the input–output relations, for a transducer at position z , âi (z+) =
√
κi ĉi − âi (z−);

the input fields are denoted âi (z−) and the outputs are âi (z+).
Conversion via the mechanically dark mode is achieved by varying the coupling rates

from g1(0) ≈ 0, g2(0) = ḡ2 at the beginning of the array to g1(L) = ḡ1, g2(L) ≈ 0 at its
end; this ensures that the mode varies from d̂2(0) = â1 to d̂2(L) = â2. The condition of
equal propagation velocities implies that the two fields have to acquire the same phase
in propagation between two sites. (In the following, I set this phase to 0 without loss of
generality.) The adiabatic condition is fulfilled for ḡi

√
N > κi ; this result follows from

eliminating the cavity fields, from which we obtain Gi = 4g2
i /κi .

4.2.1 Transfer matrix formalism

The Heisenberg–Langevin equations (4.17) can be solved in frequency domain, which
enables us to describe the relation between the input and output fields by the scattering
matrix, âout(ω) = â(z+, ω) = S(ω)â(z−, ω) = S(ω)âin(ω). We write the equations of
motion in the matrix form

−iωâ(ω) = Aâ(ω) + Bâin(ω), (4.18a)

âout(ω) = Câ(ω) +Dâin(ω), (4.18b)

where â = (ĉ1, ĉ2, b̂ )T , âin = [ â1(z−), â2(z−)]T , and âout = [ â1(z+), â2(z+)]T . The
matrices are given by

A =
*.....
,

−
κ1
2

0 −ig1

0 −
κ2
2
−ig2

−ig1 −ig2 −
γ

2

+/////
-

, (4.19a)

BT = C = *
,

√
κ1 0 0
0

√
κ2 0

+
-
, (4.19b)

D = −I2; (4.19c)

here, I2 is the 2 × 2 identity matrix. With these matrices, the scattering matrix can be
expressed as

S(ω) = D −C(A + iωI2)B. (4.20)

In this description, I intentionally dropped the effect of thermal noise on the propagating
fields (which was included in the scattering matrix derived in section 4.1); its role is
discussed in section 4.3.1.
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The state-space model can be solved analytically; we obtain the scattering matrix

S =
*...
,

8g2
2 κ1 + 2κ1(κ2 − 2iω)(γ − 2iω)

D
− 1 −

8g1g2
√
κ1κ2

D

−
8g1g2

√
κ1κ2

D
8g2

1 κ2 + 2κ2(κ1 − 2iω)(γ − 2iω)
D

− 1

+///
-

≈

*....
,

κ1 + 2iω
κ1 − 2iω

−
8g2

1 κ1

(κ1 − 2iω)2(γ − 2iω)
−

8g1g2
√
κ1κ2

(κ1 − 2iω)(κ2 − 2iω)(γ − 2iω)

−
8g1g2

√
κ1κ2

(κ1 − 2iω)(κ2 − 2iω)(γ − 2iω)
κ2 + 2iω
κ2 − 2iω

−
8g2

2 κ2

(κ2 − 2iω)2(γ − 2iω)

+////
-

. (4.21)

Here, D = 4g2
1 (κ2 − 2iω) + 4g2

2 (κ1 − 2iω) + (κ1 − 2iω)(κ2 − 2iω)(γ − 2iω) and the second
line approximates the scattering matrix in the weak-coupling regime, gi < κi . This
approximation is not valid close to resonance, ω ≈ 0; on resonance, we can express the
scattering matrix using the classical cooperativities Ci = 4g2

i /κiγ,

S(0) =
1

C1 +C2 + 1
*
,

−C1 +C2 + 1 −2
√
C1C2

−2
√
C1C2 C1 −C2 + 1

+
-
. (4.22)

For one-sided cavities, the scattering matrix is identical with the transfer matrix. We
can now describe the transfer of signals through the array by the transfer matrix of the
array, which we obtain by multiplying the scattering matrices of the transducers,

T = SN SN−1 . . . S1; (4.23)

in this expression, S j is the scattering matrix of the jth transducer in the array. Frequency
conversion from microwaves to light is characterized by the matrix element T21(ω) of the
resulting scattering matrix T(ω).

4.2.2 Conversion bandwidth

Far off resonance, the probability of conversion in a single transducer is small owing to the
large frequency detuning, p1 = |S21(ω) |2 ∝ g1g2κ/ω3 � 1. (Here, I assume equal cavity
linewidths, κ1 = κ2 = κ.) In an array, the probability is enhanced by sending the photon
through many transducers so that pN ≈ N p1 = g1g2κN /ω3. We can therefore expect the
bandwidth to grow with the cubic root of the array size, ∆ω ∝ (g1g2κN )1/3.

We can check this expectation rigorously using the transfer matrix formalism. For
equal linewidths of the microwave and optical cavities, κ1 = κ2 = κ, we can write the
transfer matrix of the jth transducer as

S j = *
,

t c j
c j t

+
-
; (4.24)

the transmission and conversion coefficients can be written as

t ≈
κ + 2iω
κ − 2iω

, c j ≈ −
8g1 j g2 j κ

(κ − 2iω)2(γ − 2iω)
. (4.25)
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In the transmission coefficients, we dropped the effect of the opto- and electromechanical
interaction, which is, for off-resonant signals, small compared to direct transmission.
Equations (4.25) do not hold on resonance and thus cannot give us the proper spectrum;
when estimating the bandwidth of large arrays, we are, however, interested only in
frequencies far off resonance where this approximation of the scattering matrix is valid.

Although the transfer matrices differ from site to site, they can all be diagonalized
simultaneously. Using the transformation U−1S jU with

U =
1
√
2

*
,

1 1
1 −1

+
-
, (4.26)

we obtain the diagonal form

Sdiag
j = diag(t + c j, t − c j ). (4.27)

In the diagonal form, we can multiply all scattering matrices and obtain the diagonal form
of the transfer matrix of the array,

Tdiag =

N∏
j=1

Sdiag
j = diag



N∏
j=1

(t + c j ),
N∏
j=1

(t − c j )

. (4.28)

For weak coupling and far off resonance, |c j | � 1, we can keep only terms linear in c j ,

N∏
j=1

(t ± c j ) ≈ tN ± tN−1
N∑
j=1

c j . (4.29)

The conversion coefficient of the array can be found by transforming Tdiag back to the
laboratory frame, T = UTdiagU−1, which yields the conversion coefficient

T21(ω) = tN−1
N∑
j=1

c j . (4.30)

Next, we assume that the coupling rates are varied linearly across the array, g1 j = j g/N ,
g2 j = g (1 − j/N ). We can now perform the sum in equation (4.30) and obtain the
conversion coefficient

T21(ω) =
(
κ + 2iω
κ − 2iω

)2 8g2κ

(κ − 2iω)2(γ − 2iω)
1 − N 2

6N
. (4.31)

To find the bandwidth [the full-width half-maximum of the energy conversion coefficient
|T21(ω) |2], we put |T21(ω) |2 = 1

2 and solve for frequency. We obtain a cubic equation in
ω2 with two complex roots; from the third, real root, we get

ω± = ±

−32/3κ2 + 31/3 *
,
6
√
2g2κ

N 2 − 1
N

+ κ

√
72g4 (N 2 − 1)2

N 2 + 3κ4+
-

2/3

6 *
,
6
√
2g2κ

N 2 − 1
N

+ κ

√
72g4 (N 2 − 1)2

N 2 + 3κ4+
-

1/3 . (4.32)



104 Spatially adiabatic frequency conversion in transducer arrays

1.0 0.5 0.0 0.5 1.0
Frequency (units of )

0.0

0.2

0.4

0.6

0.8

1.0
C

o
n
v
e
rs

io
n
 |T

21
|2 (a)

100 101 102 103

Array size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
a
n
d
w

id
th

 (
u
n
it

s 
o
f 

)

(b)

4 8 12 16 20
Array size

0.0

0.1

0.2

B
a
n
d
w

id
th

 p
e
r 

2
π

 p
h
a
se

 s
h
if
t 

(u
n
it

s 
o
f 

)

(c)

-1 1
−15π

15π

P
h
a
se

ω/

Figure 4.2: (a) Energy conversion spectrum |T21(ω) |2 for different array sizes. From dark colours
to light, the array size is N = 3, 10, 50, 200. (b) Transducer bandwidth (full-width half-maximum
of the energy conversion coefficient |T21 |

2 ) versus array size. Blue squares show results of numerical
simulations; the red line represents the analytical result (4.33). The inset shows the phase of the
conversion coefficient for array sizes N = 5 (solid blue line) and N = 20 (dashed red line). (c)
Bandwidth per phase shift of 2π as a function of the array size. For all panels (and following figures),
I use g = 0.1κ.

The frequency ω+ is always positive (and ω− is always negative): the negative term in the
numerator is compensated by the last term under the square root in the numerator. The
conversion bandwidth is ∆ω = ω+ − ω− = 2ω+. In the large-array limit, g

√
N > κ, the

bandwidth can be further simplified to

∆ω = *
,

4
√
2

3
g2κN +

-

1/3

. (4.33)

For symmetric transducer arrays, the bandwidth depends only on the maximum coupling
rate, the cavity linewidth, and the array size. If the maximum coupling rates are not equal
for the two fields, i.e., if the coupling rates vary as g1 j = j ḡ1/N , g2 j = ḡ2(1− j/N ), we can
replace the g2 term in the bandwidth by the product of the maximum coupling rates ḡ1 ḡ2.

4.2.3 Numerical simulations

Results of the transfer matrix analysis are plotted in figure 4.2. Panel (a) shows the energy
conversion coefficient |T21(ω) |2 as a function of frequency for an increasing array size
(from dark to light). As the array size increases, the dynamics better approximate the
continuous adiabatic state transfer, resulting in larger conversion bandwidth. Remarkably,
frequency conversion with unit efficiency is possible even when the adiabatic condition is
not fulfilled. The bandwidth is further analysed in panel (b), where it is shown versus array
size. In the large-array limit, the bandwidth (blue squares showing results of the numerical
simulations) indeed scales with cubic root of the array size and approaches the analytical
formula given by equation (4.33) (shown as the red line). The converted signal acquires
a large phase shift (inset) owing to reflection from a large number of cavities; the phase
across the whole frequency spectrum grows linearly with array size and is equal to 2πN .
In practical applications, this phase shift has to be taken into account in postprocessing or
compensated by a suitable phase shift on the input or output field.
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Figure 4.3: (a) Conversion bandwidth versus array size for symmetric (solid blue line) and asymmet-
ric (dashed red line, κ2 = 1.2κ1 ) array. The inset shows bandwidth (in units of κ1 ) with N = 105

transducers as a function of the linewidth imbalance κ2/κ1. (b) Bandwidth with variable cavity
decay rates. Throughout the array, the microwave decay rate changes from κ1 to 1.5κ1; the optical
linewidth varies in the opposite direction from 1.5κ2 to κ2. The curves show bandwidth for κ2 = κ1
(solid blue line), κ2 = 1.2κ1 (dashed red line), κ2 = 1.5κ1 (dot-dashed green line), and κ2 = 1.8κ1
(dotted black line). (c) Variation of the decay rates throughout the array used to obtain the results in
panel (b). For all curves, the variation of the decay rate of the microwave cavity κ1 is the same (thin
black line); the colour coding for the optical decay rates κ2 corresponds to the colours used in (b).

Alternatively, if the phase shift cannot be compensated, we might want to find strategies
that can limit it. In figure 4.2(c), I demonstrate that a small transducer array can still
provide an advantage in this situation. I plot the conversion bandwidth over which the
total phase shift is within 2π. For very small arrays, the total phase shift across the
bandwidth is smaller than 2π and, therefore, the bandwidth grows with increasing array
size. Once the phase shift across the bandwidth reaches 2π, the bandwidth per 2π phase
shift starts to drop; the total bandwidth grows with cubic root of the array size while the
phase shift across the whole frequency spectrum grows linearly.

In figure 4.3, I study conversion bandwidth with asymmetric transducer arrays (i.e.,
with κ1 , κ2). One could naïvely expect that this imbalance can be compensated by
changing the coupling rates since adiabatic elimination of the cavity fields gives Gi =

4g2
i /κi ; this statement is, however, true only close to cavity resonance. From panel (a),

we see that any imbalance between the decay rates quickly kills the cubic-root scaling and
leads to saturation of the bandwidth. Interestingly, this scaling can be recovered if we vary
the cavity linewidth across the array. We vary the decay rates in the same direction as the
coupling rates—the microwave cavity linewidth κ1 increases while the linewidth of the
optical cavities κ2 decreases—and observe that, as long as the linewidths are equal at one
site in the array, the bandwidth monotonically increases with array size; see panel (b) for
the bandwidth and panel (c) for the variation of the decay rates. This variation can be
moderate and does not require the decay rate to approach zero at the edges of the array.

4.3 Losses and noise

So far, the only imperfection we considered was mechanical loss; we did not include the
associated noise or losses related to the propagation of the electromagnetic fields. These
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factors are, however, important for any experimental implementation. Electromagnetic
losses will reduce conversion efficiency which is, together with added noise, an important
figure of merit characterizing transducer performance [257].

Apart from the thermal mechanical noise (discussed below), noise comes from heating
due to Stokes scattering associated with the opto- and electromechanical interaction. The
full interaction between a cavity field and a mechanical oscillator under a classical drive
is described by the Hamiltonian Ĥint = gi (ĉi + ĉ†i )(b̂ + b̂†). If the cavity is driven on the
lower mechanical sideband, we can apply the rotating wave approximation and obtain
the beam splitter interaction necessary for state transfer. This approximation (which
neglects the heating associated with the two-mode squeezing part of the interaction) is
valid if the device operates in the resolved-sideband regime, κi < ωm. Furthermore, the
approximation implies that Fourier frequencies of interest follow the same rule, ω < ωm;
the mechanical frequency thus provides a limit on conversion bandwidth in practical
realizations.

4.3.1 Mechanical noise

For optomechanical transducers, the main source of noise is the thermal bath of mechanical
oscillators. The noise that enters the signal from this bath can be suppressed in the strong-
cooperativity regime, C = 4g2/κγn > 1 (here, n is the average thermal occupation). In an
array, we can expect the noise to be enhanced by the array size N . On the other hand,
conversion via a mechanically dark mode is protected from mechanical noise. The noise
amplitude is suppressed by the adiabatic parameter 1/N (we obtain this result from the
expression (dg/dz )/g with linear variation of coupling rates). The noise spectral density
is then suppressed by the square of the adiabatic parameter and the total added noise scales
as (CN )−1. For frequency conversion in a transducer array with low added noise, we
thus need only the collectively enhanced optomechanical cooperativity to be strong; the
cooperativity of individual transducers does not have to be.

To prove this expectation, we start by introducing a source term describing the
mechanical noise into the scattering process,

â(z+j , ω) = S j (ω)â(z−j , ω) + V j (ω) f̂ j . (4.34)

Here, f̂ j is the noise operator of the mechanical bath of the jth transducer and V j (ω)
describes the coupling of the bath to the propagating fields; we have

V j (ω) = −
4ig√κγ

4(g/N )2(N 2 − 2 jN + 2 j2) + (κ − 2iω)(γ − 2iω)

(
j
N
, 1 −

j
N

)T
; (4.35)

for a symmetric transducer ( κ1 = κ2 = κ, ḡ1 = ḡ2 = g ) with linear variation of coupling
rates.

We can obtain the total added noise by incoherently summing the noise contributions
from each transducer in the array,

S2
add(ω) =

N∑
j=1
|χ j (ω) |2S2

f (ω); (4.36)
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here, S2
f (ω) = 2n + 1 is the noise spectral density of the thermal force f̂ j (we assume that

all mechanical reservoirs have the same temperature). Moreover,

χ j (ω) =
N∏

k= j+1

Sk (ω)V j (ω) (4.37)

is the noise susceptibility of the jth transducer. In equation (4.36), the absolute value of
the noise susceptibility is taken element-wise, |χ j (ω) |2 = [ | χ1 j (ω) |2, | χ2 j (ω) |2 ]T ; we can
thus describe noise added to both normal modes.

In the following, I will consider two different regimes for evaluating the added noise:
in the first one, we operate close to resonance and use the scattering matrix given by
equation (4.22). Alternatively, we consider off-resonant signals and use approach similar
to the one we employed to find the conversion bandwidth.

Added noise on resonance On cavity resonance, the scattering matrix of a single trans-
ducer is real and given by equation (4.22). It can be diagonalized by the orthogonal
transformation O jS jOT

j where

O j =
1√

C1 +C2

*
,

√
C1

√
C2

−
√
C2

√
C1

+
-
; (4.38)

with strong total cooperativity, C1 +C2 > 1, the diagonal form of the scattering matrix
is Sdiag

j = diag(−1, 1). The matrix O j describes a rotation with rotation angle tan θ j =√
C2/C1. In a large array, the rotation angles for two neighbouring transducers are almost

identical; we therefore have OT
j+1O j = I2 + ε with

ε =
1
N

*
,

0 1
−1 0

+
-
. (4.39)

When evaluating the noise susceptibility, we can diagonalize all scattering matrices
simultaneously; to first order in the small correction ε, we obtain the expression

χ j (0) =
N∏

k= j+1

Sk (0)V j (0) = OT
N

*.
,

N∏
k= j+1

Sdiag
j +

N∑
k= j+1

N∏
m=k+1

Sdiag
m ε

k∏
n= j+1

Sdiag
n

+/
-
O j+1V j (0)

= −2i
√
C

C + 1

(
(−1)N+ j,

1
2N

[−1 + (−1)N+ j ]
)T

(4.40)

with C = 4g2/κγ. For the total added noise, we now have

S2
add(0) =

4C (2n + 1)
(C + 1)2

(
N ,

1
2N

)T
. (4.41)

This expression clearly reveals the advantage of using the dark mode for frequency con-
version: with the dark mode, the noise is suppressed for CN > n (second component of
the noise spectral density) and larger array thus helps to reduce the noise. The noise in
the bright mode, on the other hand, grows with array size; we would need C > nN to
suppress the noise.
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Off-resonant noise In estimating the added noise off resonance, we proceed similar to
evaluating the conversion bandwidth. We assume that the scattering matrix of a single
transducer is given by equation (4.24) which enables us to simultaneously diagonalize the
scattering matrices of all transducers. We then transform the added noise V j (ω) f̂ j by the
same transformation and thus obtain the total added noise. The result of this calculation
(which I omit here for brevity) is the same as for noise on resonance, namely, that thermal
noise is suppressed for CN > n.

4.3.2 Optical and microwave losses

Loss of signal in propagation comes in two different processes: first, electromagnetic fields
decay directly during propagation in waveguides and via intrinsic loss in cavities. These
losses are similar to cavity loss in temporal adiabatic dynamics; for efficient conversion, they
have to be smaller than the effective coupling of the propagating fields to the mechanical
oscillators. Second, part of the signal can be reflected off a cavity and propagate backwards,
interfering with the incoming field. This process is not present in temporal adiabatic
conversion since it would imply the backscattered signal propagates backwards in time.

Direct losses To model optical and microwave losses, we modify the state-space model
describing the transducers. In the Heisenberg–Langevin equations for the cavity modes,
we consider two decay channels, the waveguide and an intrinsic loss channel,

dĉi
dt
= −

κi + κi,int

2
ĉi − igi b̂ +

√
κi âi (z−) +

√
κi,int ĉi,in; (4.42)

here, κi,int is the intrinsic decay rate and ĉi,in the associated input field.
Propagation loss can be described by a transfer matrix for free propagation. Generally,

the propagating fields will acquire a phase shift and decay when travelling between two
transducers. Denoting the propagation distance between neighbouring transducers d , we
can write the free propagation transfer matrix

Tfree(ω) = diag
[
exp

(
−ζ1d + iω

d
v1
+ ik1d

)
, exp

(
−ζ2d + iω

d
v2
+ ik2d

)]

≈ diag
[
exp

(
−ζ1d + ik1d

)
, exp

(
−ζ2d + ik2d

)]
. (4.43)

The parameters ζi > 0 describe decay of the signals and ki is the resonant wavenumber for
field i; moreover, in the second line, we dropped the dispersion, which can be neglected for
propagation distances smaller than the wavelength associated with the frequency detuning,
d � vi/ω. The requirement of both fields propagating with the same acquired phase
implies k1d = k2d mod 2π . (In principle, the two fields can propagate different distances;
in this case, the condition would change to k1d1 = k2d2 mod 2π.) Without loss of
generality, we can set k1d = k2d = 2mπ with m ∈ Z; the transfer matrix then contains
only two parameters, Tfree = diag(τ1, τ2), where τi = e−ζid .

The total transfer matrix is now obtained from scattering on the transducers and free
propagation. For the jth unit cell of the array, we obtain the transfer matrix by multiplying
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Figure 4.4: Conversion efficiency in presence of intrinsic cavity loss (top row) and propagation loss
(bottom). (a) Conversion spectrum with κi,int = 0 (solid blue line), κi,int = 0.001κ (dashed green
line), κi,int = 0.005κ (dot-dashed red line), and κi,int = 0.01κ (dotted black line). (b) Conversion
efficiency on resonance as a function of array size for κi,int = 0.001κ (solid blue line), κi,int = 0.005κ
(dashed green line), κi,int = 0.01κ (dot-dashed red line), and κi,int = 0.05κ (dotted black line). (c)
Conversion efficiency versus cavity loss for array size N = 10 (solid blue line), N = 20 (dashed green
line), and N = 50 (dot-dashed red line). Panels (d–f) show the same for various propagation losses
instead of cavity loss; the values are (in the same order as above) ε = 1 − τ = 0, 0.001, 0.005, 0.01
for panel (d) and ε = 0.001, 0.005, 0.01, 0.05 for panel (e); the array sizes in panel (f) are identical
with sizes used in (b). For all plots, the loss rates are equal for both fields, κ1,int = κ2,int, τ1 = τ2 = τ.

the scattering matrix for the jth transducer with transfer matrix for free propagation,

T j,cell(ω) = TfreeS j (ω). (4.44)

We can now find the total transfer matrix by multiplying the transfer matrices of individual
unit cells,

T(ω) =
N∏
j=1

T j,cell(ω). (4.45)

The effect of direct losses on frequency conversion is analysed in figure 4.4. For both
intrinsic cavity loss (top row) and propagation loss (bottom), the behaviour is qualitatively
the same; cavity loss is, generally, more detrimental than propagation loss. From the con-
version spectra [panels (a,d)], we can see that losses limit the overall conversion efficiency
without changing the bandwidth or spectral profile. The following plots [conversion
efficiency versus array size in panels (b,e) and versus cavity and propagation loss in panels
(c,f)] show the efficiency on resonance.

Backscattering Backscattering of propagating fields on the transducers can also be
included in the state-space model. With the cavities driven by and decaying into left- and
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right-propagating fields, the Heisenberg–Langevin equations become

dĉi
dt
= −

κi,R + κi,L

2
ĉi − igi b̂ +

√
κi,R âi,R(z−) +

√
κi,L âi,L(z+). (4.46)

Moreover, we have the input–output relations

âi,R(z+) =
√
κi,R ĉi − âi,R(z−), âi,L(z−) =

√
κi,L ĉi − âi,L(z+) (4.47)

with input fields âi,R(z−), âi,L(z+) and outputs âi,R(z+), âi,L(z−); note the different
position argument for the right- and left-propagating fields.

Next, we collect the localized modes in the vector â = (ĉ1, ĉ2, b̂ )T and the propagating
fields in the vector âin = [ â1,R(z−), â2,R(z−), â1,L(z+), â2,L(z+)]T (and similar for âout ); we
group the propagating fields by their direction of propagation. We can now write the
scattering matrix in the block form

S = *
,

SR SRL

SLR SL
+
-
. (4.48)

Here, the diagonal elements describe scattering processes, in which the field does not
change direction of propagation; the off-diagonal terms describe scattering processes, in
which the propagation direction is changed.

The scattering matrix describes the relation between input and output fields. To
describe propagation of signals through the array, we need to convert it to a transfer matrix
which describes the relation between fields at z− and z+ via â(z+) = Ttransâ(z−); we find
(see also reference [258])

Ttrans = *
,

SR − SRLS−1L SLR SRLS−1L
−S−1L SLR S−1L

+
-
. (4.49)

Additionally, propagation of the fields between two transducers is described by the transfer
matrix

Tfree = diag
(
eik1d, eik2d, e−ik1d, e−ik2d

)
; (4.50)

propagation through a unit cell of the array is now described by a product of the transfer
matrices for the transducer and free propagation, T j,cell = TfreeT j,trans and propagation
through the whole array by the product of transfer matrices over all unit cells, T =
TN ,cellTN−1,cell . . .T1,cell. We can convert the transfer matrix T into a scattering matrix
using a formula analogous to equation (4.50); the resulting matrix characterizes scattering
of arbitrary signals by the array.

Conversion spectra in presence of backscattering are plotted in figure 4.5 for arrays
with (a) N = 10 and (b) N = 50 transducers. The backscattering rate κi,L/κi,R reduces the
overall conversion efficiency; this decrease is independent of the array size. Additionally,
owing to the large phase shift the signal acquires during propagation through the array, the
forward- and backward-propagating signals partially interfere. This interference manifests
as oscillation of the conversion efficiency with frequency. The modulation depth depends
on the backscattering rate while its frequency depends on the acquired phase shift and
thus on the array size.
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Figure 4.5: Conversion spectra with (a) N = 10 and (b) N = 50 transducers in presence of
backscattering. For both panels, the backscattering rate increases from dark colours to light; we have
κi,L/κi,R = 0, 0.1, 0.2, 0.5, 0.9.

4.4 Discussion

Optoelectromechanical arrays for frequency conversion can be implemented in integrated
systems such as optomechanical crystals or microdisk optical resonators. Both opto-
and electromechanical interactions have been demonstrated in the former [259, 260];
additionally, optomechanical arrays (albeit with photon hopping between sites and not
directional propagation) have been constructed with the latter system [261]. Variation
of the coupling rates can be achieved by varying the single-photon coupling rates across
the array; a single driving field can then be used for each type of cavities (i.e., one drive
for microwaves and one for light). Building a large array would be extremely challenging,
but even a moderate size is sufficient to significantly improve the conversion bandwidth
and reduce added noise. Since the strategy uses adiabatic passage for state transfer, it
is insensitive to small variations (compared to the adiabatic requirements) in system
parameters across the array that are bound to arise in the fabrication process.

Going beyond implementations in transducer arrays, it would be interesting to in-
vestigate whether direct conversion of propagating fields is possible in continuum sys-
tems [262, 263]. Interaction between propagating light and acoustic waves is well under-
stood, but coupling of propagating microwave fields to mechanical vibrations has received
no attention so far. With efficient interaction of both propagating fields to mechanical
vibrations, the most important issue would be finding ways in which the coupling rates
can vary throughout the device to achieve adiabatic state transfer. Finally, an import-
ant question would be how to couple propagating optical and microwave fields to the
same mechanical mode without disturbing the microwave mode (probably guided in a
superconducting transmission line) by optical absorption.

In summary, I showed that efficient frequency conversion is possible in one-dimensional
optoelectromechanical arrays. The strategy uses a mechanically dark mode formed by two
propagating fields; by varying the opto- and electromechanical coupling rates throughout
the array, we can change the nature of the dark mode and achieve adiabatic conversion of
signals between the two fields. This approach thus combines the advantages of existing
conversion strategies based on the mechanically dark mode: large bandwidth (achievable
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with adiabatic conversion of intracavity fields) and multimode operation (possible between
propagating fields via optomechanically induced transparency).

In the adiabatic limit, g
√
N > κ, the conversion bandwidth grows with array size and

is limited only by the mechanical frequency. This condition corresponds to the strong-
coupling regime with respect to the collectively enhanced optomechanical interaction.
In this sense, the system is similar to existing proposals for enhancing optomechanical
interaction by coupling a cavity field to an array of dielectric membranes [264, 265].
In a membrane array, strong interaction of the collective motion to the cavity field is
possible even though each membrane couples only weakly to the cavity. Similar effect
can be observed here; at each transducer, the opto- and electromechanical interaction (and
thus the effective coupling between the two fields) is weak but the overall interaction
is enhanced by the array, resulting in an overall strong coupling and large conversion
bandwidth. The collective enhancement also helps to reduce the added noise—we saw that
the relevant figure of merit for quantifying mechanical noise is the collectively enhanced
optomechanical cooperativity.

Surprisingly, a transducer array offers an advantage also far away from the adiabatic
regime; a small array possesses a larger bandwidth than a single transducer. This regime
will be of interest for quantum networks with superconducting circuits in the near future.
Since a small array has a larger bandwidth than a single transducer, it enables higher
communication rates between nodes of a network. At the same time, it will be easier to
implement than a large array.



Conclusion

Optomechanical transducers are a versatile platform for frequency conversion between
microwaves and light. Various strategies have been proposed and implemented: some
protocols enable conversion of arbitrary input signals, either using quantum state transfer
between the two fields [79, 80, 82, 96] or via generation of entanglement and teleporta-
tion [99]; other schemes focus on specific tasks, such as detection of weak microwave and
radio signals [83, 87, 138] or quantum networks with superconducting systems [78, 95].
Each of these approaches has its own advantages and limitations. State transfer methods
based on adiabatic dynamics require time-dependent control; time-independent schemes
often provide only a limited bandwidth.

The strategies for optomechanical transduction I presented in this dissertation avoid
one of the pitfalls: they work with time-independent control. This limitation—which
might appear critical at first—does not preclude us from achieving crucial tasks needed for
quantum networking with superconducting circuits. In particular, generation of entangle-
ment between two superconducting qubits is possible with a conceptually simple system
inspired by existing experimental techniques [95]. Additionally, frequency conversion in a
transducer array goes beyond near-future applications and shows that efficient transduction
across a large bandwidth is possible with low added noise [96].

Consider the proposal for generation of entanglement between two superconduct-
ing qubits presented in chapter 3. The main strength of this scheme lies in its sim-
ilarity to existing experimental techniques: parity (or half-parity) measurements are
commonly employed in circuit quantum electrodynamics for generation of entanglement
on a chip [92, 162] and optomechanical force sensing is a strategy with broad range of
applications from measuring the force from individual spins [93] to detecting gravita-
tional waves [19]. Together, these techniques represent a simple and beautiful method for
connecting superconducting circuits into quantum networks.

On a more fundamental note, a rigorous mathematical description of the optomechan-
ical measurement required the development of new mathematical methods. An interesting
side result of this problem is the method of adiabatic elimination of Gaussian subsystems
from conditional dynamics containing both Gaussian and non-Gaussian elements [98]
that I discussed in chapter 2. This approach is, to the best of my knowledge, the only elim-
ination procedure for systems including both a continuous measurement and a thermal
reservoir. As such, it can find applications with other hybrid systems that combine Gaus-
sian and non-Gaussian elements with homodyne measurements. With this approach, many
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systems might be mapped onto simple systems known from different context, similar to
mapping the protocol for entanglement generation onto total-spin measurement.

Looking forward, frequency conversion in an array of optomechanical transducers
discussed in chapter 4 is an interesting and feasible strategy for advanced superconducting
quantum processors and complex quantum networks. For more sophisticated devices,
current transducers [73, 74, 82] do not offer sufficient bandwidth to allow fast and efficient
quantum communication between individual chips. These devices will require transducers
capable of multimode conversion over a large frequency range; these converters will enable
efficient transmission of frequency-multiplexed quantum signals between the nodes of
a large quantum network. An optoelectromechanical transducer array falls precisely in
this category. From the perspective of current technological progress, such a device is
extremely challenging to build. But state of the art in experimental quantum science
evolves at a remarkable pace; tasks that now seem impossible might soon become reality
just as experiments that seemed unfeasible twenty years ago are routinely performed
nowadays.

All in all, optomechanical transducers have earned their place in the growing field
of hybrid quantum systems. But mechanical motion plays a pivotal role in many other
interesting applications in quantum information processing: mechanical oscillators can
serve as engineered reservoirs for optical and microwave fields [266, 267], form nonre-
ciprocal devices for controlling the propagation of electromagnetic fields [268–270], be
used as quantum memories [271–274], or mediate interactions between various quantum
systems [200]. On a more fundamental note, hybrid systems with mechanical oscillators
enable us to observe well-known effects in novel settings, providing us with a deeper insight
into similarities and differences between various quantum systems [172, 193]. All these
results show the importance of opto- and electromechanical systems for future quantum
technologies; I can only hope that the work I presented here will play an important role
in these developments.
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