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Zusammenfassung 

Ziel dieser Studie war die vergleichende Analyse der mikrobiellen Zusammensetzung 

der Tiefen Biosphäre in vier verschiedenen Sedimenten mit qualitativen und 

quantitativen Methoden. Es handelte sich hier sowohl um marine als auch 

terrestrische Sedimente, die sich hinsichtlich der Temperatur, des Gehaltes an 

organischem Kohlenstoff als auch anderer geochemischer Parameter unterschieden. 

Die mikrobiellen Lebensgemeinschaften wurden mit Hilfe der 

Gesamtzellzahlzählungen, der real-time-PCR (q-PCR), CARD-FISH und der 16S 

rRNA Gensequenzierung analysiert. Die Häufigkeiten von Bakterien und Archaeen 

zeigten deutliche Unterschiede. Mit Hilfe einer verbesserten DNA 

Extraktionsmethode wurde das erste Mal eine Dominanz von Archaeen im kalten, 

oligotrophen Sediment am Meeresboden des mittelatlantischen Rückens (North 

Pond) dokumentiert. Ähnlich häufig kamen die beiden Domänen im relativ 

kohlenstoffarmen Sediment des Flachmeeres von New Jersey vor. Bakterien 

dominierten in den hydrothermal beeinflussten marinen Sedimenten des Okinawa 

Beckens vor Japan ebenso wie in den terrestrischen Sedimenten nahe der 

Chesapeake Bay (Virginia, USA). In Übereinstimmung mit vorherigen Studien zeigte 

sich eine Abnahme der Gesamtzellzahlen mit der Tiefe und dem organischen 

Kohlenstoffgehalt. Dominante bakterielle Gruppen waren die Proteobakterien, das 

vorgeschlagene Phylum 'Atribacteria' (OP9/JS1) und die Klassen Anaerolineae und 

Caldilineae der Chloroflexi. Die Häufigkeiten der Geobacteraceen (Eisen(III) und 

Mangan(IV) reduzierende Bakterien) korrelierten mit den Konzentrationen von 

reaktivem Mangan und Eisen im oberen Sediment. Die Analyse ergab neue Vertreter 

der Archaeen aus den Gruppen 'Bathyarchaeota' (MCG), 'Hadesarchaea' 

(SAGMEG), 'Lokiarchaeota', (Untergruppe der MBG-B/DSAG Gruppe), 

'Aenigmarachaeota' (DSEG), 'Pacearchaeota' (Teil der DHVE-6 Gruppe), 

'Aigarchaeota', 'Thaumarchaeota', der Terrestrial Hot Spring Group sowie 

verschiedener Gruppen der Euryarchaeota. Von diesen häufig in tiefen Sedimenten 

gefundenen Archaeen gibt es bis auf die 'Thaumarchaeota' bisher keine kultivierten 

Vertreter. Die Zusammensetzung der hoch diversen Gruppe der ‘Bathyarchaeota‘ war 

tiefenabhängig. Im Hinblick auf die funktionellen Gene cbbl und aprA legen die 

Ergebnisse nahe, dass autotrophe Mikroorganismen neben heterotrophen und Sulfat 

reduzierenden Bakterien in der Biogeochemie der Sedimente wichtig sind. Die 

Tatsache, dass das funktionelle Gen mcrA kaum nachgewiesen werden konnte, 
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untermauert die Annahme bisher nicht beschriebener methanogener 

Mikroorganismen in der tiefen Biosphäre wie es kürzlich für die 'Bathyarchaeota' 

diskutiert wurde. Die Ergebnisse unterstützen die These, dass Archaeen besser an 

kohlenstoffarme (und extreme) Habitate angepasst sind aber Bakterien im 

Allgemeinen dominieren. 
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Summary 

Aim of this study thesis was the comparative analysis of the microbial composition of 

the deep biosphere in four different sediments. These were either marine or 

terrestrial and differed in temperature, organic carbon content as well as in various 

other geochemical parameters. The microbial communities were analyzed via total 

cell counting, real-time PCR (qPCR), CARD-FISH and 16S rRNA gene sequencing. 

The abundances of Bacteria versus Archaea varied strongly. Using an improved DNA 

extraction protocol, for the first time a dominance of Archaea was found for the cold 

oligotrophic sediment of a marine basin at the mid-Atlantic ridge (North Pond). A 

similar abundance of the two domains occurred in the relative organic lean sediments 

of the shallow shelf of New Jersey, and Bacteria dominated in marine sediments 

influenced by hydrothermal fluids in the Okinawa Trough off Japan as well as in the 

terrestrial sediments in the Chesapeake Bay area, VA, USA. Total cell counts 

decreased with sediment depth and with decreasing organic carbon content in 

agreement with previous studies. Dominant bacterial taxonomic groups were 

Proteobacteria, the candidate phylum 'Atribacteria' (OP9/JS1) and the classes 

Anaerolineae and Caldilineae of the Chloroflexi. The abundance of Geobacteraceae 

(Fe(III)- and Mn(IV)-reducers) correlated with concentrations of reactive manganese 

and iron in the uppermost sediments. The analysis revealed new members of the 

Archaea belonging to the taxonomic groups 'Bathyarchaeota' (MCG), 'Hadesarchaea' 

(SAGMEG), 'Lokiarchaeota', (section of the MBG-B/DSAG group), 'Aenigmarchaeota' 

(DSEG), 'Pacearchaeota' (section of the DHVE-6 group), 'Aigarchaeota', 

'Thaumarchaeota', the Terrestrial Hot Spring Group and different euryarchaeotic 

groups. These groups are often found in deep subsurface sediments but lack except 

the 'Thaumarchaeota' cultured representatives. The highly diverse dominant 

'Bathyarchaeota' revealed a stratification dependent composition. Concerning the 

functional genes cbbl and aprA, the results suggest that autotrophic microorganisms 

could be relevant in addition to heterotrophs and sulfate reducing bacteria for the 

sediment biogeochemistry. The fact that the functional gene mcrA of methanogens 

was hardly detected argues for not yet described methanogens in the deep 

biosphere as recently discussed for the 'Bathyarchaeota'. The results support the 

hypothesis that Archaea are better adapted to organic lean (and extreme) 

environments but Bacteria dominate in general. 
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   subunit A 

APS    adenosine 5’- phosphosulfate 
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cbbl   encoding gene of the large subunit of the ribulose-1,5-  
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dsrA   encoding gene of the α-subunit of dissimilatory sulfite reductase 

dw   dry weight 

ICDP    International Continental Scientific Drilling Program  

IODP   International Ocean Discovery Program or    

   International Ocean Drilling Program 

MBG-B  Marine Benthic Group B 

MBG-D  Marine Benthic Group D 

(m)bsf   (meters) below seafloor 

MCG   Miscellaneous Crenarchaeotic Group 

mcrA    encoding gene of methylcoenzyme M reductase subunit A 
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MG (1 α)  Marine Group (1 α) 

NCBI   National Center of Biotechnology Information 

ODP   Ocean Drilling Program  

OECD   Organization for Economic Co-operation and Development 

qPCR   quantitative PCR 

RuBisCo  ribulose-1,5-bisphosphate carboxylase/oxygenase 

Pg   Petagram (1015 g) 

SAG   single-cell amplified genome  

SAGMEG  South African Gold Mine Group 

SMTZ   sulfate methane transition zone  

TACK   superphylum of the Archaea (includes the proposed   

   'Thaumarchaeota', the candidate phylum 'Korarchaeota', the 

   phylum Crenarchaeota, the proposed 'Aigarchaeota' and the 

   recently discovered 'Lokiarchaeota')  

TCC   total cell counts 

THSCG  Terrestrial Hot Spring Crenarchaeotic Group 

TMEG   Terrestrial Miscellaneus Euryachaeotic Group 

TIC   total inorganic carbon 

TOC   total organic carbon 
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1. Introduction 

1.1. The deep biosphere: microorganisms in deep sediments 

 The term biosphere is not exactly defined. The Russian geologist Vladimir 

Ivanovich Vernadsky (1863–1945) introduced it in science. “Vernadsky understood 

biosphere as the external envelope of the Earth which is inhabited by living things, 

and comprises both all the living organisms of the planet and the elements of 

inorganic nature providing the medium for their habitat.” (Piqueras, 1998). In a 

common sense, a biosphere includes more or less closed habitats and its 

“inhabitants”. “Inhabitants” means any member of all living creatures. In general, 

terrestrial and marine biospheres can be distinguished. 

 Balkwill defined the terrestrial deep biosphere as the biosphere in terrestrial 

sediments deeper than 30 – 35 m (Balkwill et al., 1989). The deep terrestrial 

biosphere can be divided in subtypes. Pedersen distinguished aquifers, ancient salt 

deposits and continental sedimentary rocks and caves (Pedersen, 2000). In 

terrestrial subsurface environments (including the shallow terrestrial subsurface) 

Stevens distinguished sedimentary environments, permafrost, ice sheets and 

glaciers, and bedrock environments (Stevens, 2002). Stevens gave a more functional 

definition of the subsurface biosphere, including also the marine deep biosphere: 

“The subsurface biosphere is the habitable volume of the Earth’s crust, above the 

isotherm of maximum survivable temperature, but below the root zone, or bioturbated 

zone of soils and sediments”. (Stevens, 2002). 

 The marine deep biosphere comprises the sediment and the rock that is 

deeper than 1 meter beneath the seafloor (Jørgensen and Boetius, 2007), (Edwards 

et al., 2012). “Almost 95% of the seabed (67% of the Earth’s surface) lies in water 

depths where the light intensity is too low to sustain photoautotrophic production, the 

temperatures are close to freezing (–1°C to 4°C) and the availability of organic matter 

controls benthic productivity and biomass.” (Jørgensen and Boetius, 2007). 

 Little was known about the marine deep biosphere until 1994 when 

microorganisms were detected and microbial activity measured up to a sediment 

depth of 500 mbsf (Parkes et al., 1994). Schippers et al. showed the viability of 

subseafloor populations in 2005 for depths of up to more than 400 m subseafloor 

sediments (Schippers et al., 2005). Scientific Ocean drilling has also demonstrated 

that microbial populations are ubiquitously detectable in deep marine subsurface 

environments. Roussel et al. provided evidence for bacterial and archaeal life at a 
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depth of 1626 m below the seafloor in sediments mainly composed of hemipelagic 

mudrocks from the Newfoundland Margin (Roussel et al., 2008). For the Canterbury 

Basin off New Zealand, Ciobanu et al. provided evidence for bacterial life up to 

depths of 1922 mbsf (Ciobanu et al., 2014). Inagaki et al. found evidence of microbial 

life in sediments of the Pacific Ocean of Japan up to 2500 mbsf (Inagaki et al., 2015). 

Consequently, the question arose how large this habitat is. Whitman et al. estimated 

the total number of prokaryotes and the total amount of their cellular carbon on earth 

to be 4 - 6 x 1030 cells and 350 - 550 Pg (5.5 x 1017 g) of carbon, respectively 

(Whitman et al., 1998). According to Kallmeyer et al. who collected a larger data set 

of cell counts including more open ocean oligotrophic sediments, the total microbial 

abundance in subseafloor sediments was corrected to a lower number (2.9 x 1029 

cells) which is similar to the estimates for the total number of prokaryotes in seawater 

(1.2 x 1029) and in soil (2.6 x 1029) (Kallmeyer et al., 2012). Microbial biomass below 

the seafloor itself is estimated to be between 4 Gt and 303 Gt (Hinrichs and Inagaki, 

2012). 

 All three domains of life, Archaea, Bacteria and Eukarya are thriving in the 

deep biosphere as well as spores and viruses exist (Edgcomb et al., 2011), 

(Engelhardt et al., 2013), (Lomstein et al., 2012), (Schippers et al., 2012). Therefore, 

conclusions of insights in biomasses and energy fluxes caused by microorganisms in 

marine and terrestrial sediments are important for several aspects of human life, like 

storage of waste, ground water flows, natural gasoline usage, methane production 

and release for example. 

 Concerning deeply-buried marine sediments, the question which factors are 

limiting and controlling microbial life was worked out by Parkes et al. (Parkes et al., 

2000). Hereby, they found the best correlation of overall total cell counts (TCC) with 

depths but less for porosity and age: 
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Figure 1. Correlation of subseafloor sediment prokaryotic cell counts with a) depth, b) age, and c) 
porosity. Data for several ocean drilling sites were compiled. Hydrothermally influenced sediments 
were not included. Modified from (Parkes et al., 2000) 

 

Kieft et al. found similar results for terrestrial sediments; they found a significant 

positive correlation between total organic carbon (TOC) values with the log of the 

direct cell counts and a significant positive correlation between the basal respiration 

rates and the TOC values (Kieft et al., 1995). 

 These insights and data explain the importance of research in these mainly 

unexplored ecosystems and raise many questions: What are the energy sources of 

these from photosynthesis-detached microorganisms? What are electron donors and 

acceptors? Which kind of microbial loops take place there? How do they survive 

under extreme conditions such as nutrient limitation, high pressure and high 

temperature, or in other words, what is limiting microbial life in this environment? For 

the habitable depths, Heim (Heim, 2011) postulated space, (characterized by rock 

porosity), the availability of water and in particular temperature as limitation factors. 

Pedersen focused on temperature and availability of energy (Pedersen, 1993). 

Ghiorse and Wilson suggested that microbial life might exist up to 4000 m and more 

if water, pore space and nutrients are available (Ghiorse and Wilson, 1988). Only six 

years later, in 1994 Szewzyk et al. reported about the isolation of a thermophilic 

bacterium from a depth of 5278 m in a terrestrial sediment (granitic rock in Gravberg, 

Sweden) (Szewzyk et al., 1994). 
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 One major question concerning how microorganisms can survive in the deep 

biosphere is what is their energy source? These microorganisms are separated from 

photosynthesis and therefore need other energy sources. Concerning organic rich 

and/or reduced sediments, these compounds can serve as energy sources. Another 

theory about biospheres separated from these sources is that natural hydrogen 

especially in deeply buried sediments together with natural carbon dioxide could 

serve as energy source (Heim, 2011). Different ways of abiotic hydrogen production 

are proposed. Stevens et al. investigated hydrogen production by serpentinization. 

They demonstrated hydrogen production at room temperature by the reaction of 

water with ultramafic rocks (Stevens and McKinley, 1995), (Stevens, 1997). Another 

theory supports the radiolysis of water (Pedersen, 2000), (D'Hondt et al., 2009), 

(Parkes et al., 2014), (Lin et al., 2005), (D'Hondt et al., 2015). There have been 

several attempts to monitor hydrogen flux. Nevertheless, this question remained 

largely unacknowledged. 

 

1.2.  Biogeochemistry of marine and terrestrial sediments 

 Understanding the principles, reactions and systems how microorganisms are 

able to use possible free energy delivering reactions to gain energy is one of the 

general aims of microbiology. Hereby, sediments represent a stratified system of 

possible energy releasing substrates. This system is amongst others influenced by 

deposition of organic material from above, the thermal gradient, the oxygen gradient 

and the methane gradient. The main principle here is the absence of photoautotrophy 

as a possible energy providing reaction. Although it is not permissible to display 

general biogeochemical processes for all sediments, e.g. terrestrial sediments versus 

marine sediments, the main biogeochemical reactions as related to degradation of 

organic carbon (= oxidation of organic carbon) can be distinguished: 

I. aerobic respiration  

II. nitrate reduction  

III. ammonification 

IV. manganese and iron reduction 

V. sulfate reduction  

VI. anaerobic methane oxidation at the sulfate methane transition zone  

 (CH4 + H2SO4  H2S + H2CO3 + H2O) 

VII. methanogenesis, acetogenesis (Fig. 2) 
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Figure 2. General stratification of concentrations of electron acceptors and methane in sediment pore 
water and relevant redox pairs. Modified from (Engelen, 2007). 

 

The crossing of the methane and sulfate porewater concentration profiles in this 

general stratification scheme indicates the sulfate methane transition zone (SMTZ) 

for which anaerobic methane oxidation has been described. This process occurs in 

different sediment depths (Reeburgh, 1980), (Iversen and Jørgensen, 1985), 

(Thomsen et al., 2001), (Treude et al., 2005), (Berelson et al., 2005). In addition, 

separated SMTZ’s in the same core at different depths have been reported for a 

sediment of the Neuharlingersieler Nacken (53o43’270N and 07o43’718E), German 

Wadden Sea (Wilms et al., 2007) and IODP Leg site 1229, Peru Margin (D'Hondt et 

al., 2004). 

 Thullner et al. focused on microbial redox reactions of microorganisms in 

sediments with special attention to the hydrocarbon degradation following the 

proposed general cycle (Fig. 3) (Thullner et al., 2007). 
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Figure 3. “Key constituents, reaction pathways and redox species involved in the global organic 
matter cycle. The degradation of macromolecular organic matter synthesized by primary production 
causes the successive utilization of external electron acceptors, and the appearance of intermediate 
electron donor substrates. The reduced chemical species produced by the organic matter degradation 
pathways may participate in a variety of secondary redox reactions, hence greatly expanding the 
complexity of biogeochemical reaction networks in subsurface environments. Ultimately the 
degradation of organic matter regenerates inorganic carbon and nutrients that become again available 
to primary producers”. Picture from Thullner et al. (Thullner et al., 2007), the picture was redrawn by 
Thullner et al., originating from (Fenchel and Jørgensen, 1977). 

  

 Fermentation processes are largely unexplored in the deep biosphere; 

research so far has more focused on the final step of organic carbon degradation 

with the various electron-accepting processes. Since more and detailed 

biogeochemical investigations such as the Ocean Drilling program (ODP) Leg 201 

related research in different deeply buried sediments have been carried out, 

exceptions like reversed zones or co-occurring of zones of this simple stratification 

model were found and discussed in detail (D'Hondt et al., 2004), (Parkes et al., 

2005). 

 Despite these activities represent only a small part of a) possible reactions and 

b) known reactions; they are widespreadly found as well in marine, terrestrial and 

limnic systems (Jannasch and Mottl, 1985), (Nealson and Myers, 1992), (Fenchel 

and Jørgensen, 1977). 
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Energy gaining activities (amongst others: dissimilatory pathways) can be 

distinguished from assimilatory pathways. Dissimilatory pathways depend on the 

concurrent energy delivering available redox pairs and consequently the pH and 

principal physical parameters like temperature and pressure. The pH influences the 

possible free energy delivering reaction as well as concentrations of substrates and 

products. Both, dissimilatory and assimilatory pathways (like nitrogen fixation, 

assimilatory sulfate reduction and carbon fixation) are mediated by specific enzymes 

encoded by functional genes. Its genetic code is more or less conserved, e.g. the 

high variable gyrB genes that encode the subunit B protein of DNA gyrase 

(topoisomerase type II), the highly conserved DSR (dissimilatory sulfate reduction, 

last step) gene dsrA or the 16S rRNA gene (Yamamoto and Harayama, 1995), 

(Yamamoto and Harayama, 1996), (Wagner et al., 1998). 

  As mentioned above, substrate availability and therefore the diversity of the 

community is one of the focused items in microbiology. The terminus “oligotrophy” is 

often used to characterize microorganisms in environments that have different limited 

kinds of substrate availability. Nevertheless, it is used inconsistently and not a distinct 

term. 

 

1.2.1. Oligotrophy, extreme environments - what are we talking about? 

 Schut’s review “Oligotrophy and pelagic marine bacteria: facts and fiction” 

(Schut Frits, 1997) summarized the research efforts on oligotrophy. The difficulties to 

define the terminus “oligotrophy” (Schut Frits, 1997) resulted in a list of 16 different 

definitions (for detailed information see appendix). 

They worked out the difficulty to get reliable data of obligatory oligotrophic 

microorganisms and concluded: 

 “It is therefore most conceivable that free-living marine bacteria represent cells 

with a remarkably stable 'low-nutrient-conditioned' phenotype. Often, this is perceived 

as an obligately oligotrophic state.” 

 Hütter focused more on photo autotrophy and defined trophy as the intensity 

of photoautotrophic primary production which reduces carbon of its highest oxidation 

state (CO2) to organic compounds (Reitner and Thiel, 2011). It has to be mentioned, 

that this definition was published for application in limnic systems. According to the 

OECD definition, the most important factor for trophy is the total amount for 

phosphate during spring circulation (Lampert and Sommer, 1999) which can be 
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divided in five subcategories from ultra-oligotrophic to hypereutrophic. Nevertheless, 

this definition was also related to limnic systems and is not widely used for terrestrial 

or marine sediments. 

 Concerning the subseafloor biosphere, Roussel et al. (Roussel et al., 2008) 

confirmed the correlation between the organic matter index and total cell counts. 

Conclusively, it is not surprising that organic carbon outcompetes other possible 

energy donating reactions which release less free energy. Durbin and Teske 

suggested different parameters for marine sediments to define the trophic status 

(Durbin and Teske, 2012): “The combination of higher-energy electron acceptor type 

and slower flux of electron donor substrates likely imposes distinct constraints on life 

in oligotrophic marine sediments, which cover the majority of the surface of Earth “ 

(Durbin and Teske, 2012). Hereby, ultra-oligotrophic sediments exhibit no depletion of 

oxygen or nitrate, oligotrophic sites exhibit nitrate depletion within meters, 

mesotrophic and eutrophic sites are characterized by high DIC and ammonium pore 

water concentrations and high sedimentation rates. Schut focused at marine bacteria 

and defined oligotrophy at least as the inability of bacterial cells to propagate at 

elevated nutrient concentrations (Schut Frits, 1997). According to this short summary, 

there are two different ways to approach to the terminus “oligotrophy”: 

a) by characterizing the environment and therefore to specify the oligotrophic 

parameter 

b) by focusing on the microorganisms and - for example - to include only 

microorganisms that are able to grow at low nutrient conditions but not at elevated 

nutrient conditions 

 Concerning the amount of total organic carbon, it is useful to characterize 

different categories (Durbin and Teske, 2012) given by the concentrations of organic 

carbon as shown in Table 1. 

 

Table 1. Characterization of sediments depending on their TOC content according to Durbin and 
Teske (Durbin and Teske, 2012). 
 
amount of TOC characterization examples 

< 1% organic lean abyssal plains, 
e.g. South Pacific Gyre 

1% - 2% between organic lean and 
organic rich 

South China sea sites 
Gulf of Mexico sites 

> 2% organic rich Eastern Mediterranean Sea: 
Amsterdam mud volcano, Kazan mud volcano 
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 The existence of a deep hot biosphere was postulated in 1992 by the 

American astrophysical scientist Thomas Gold (Gold, 1992). He postulated that life 

under the earth crust is not dependent on photosynthesis as primary energy source 

but uses chemical sources such as fluids from deeper sections of the earth. Its 

energy supply comes from chemical sources, e.g. hydrothermal vents and he 

mentioned “that microbial life exists in all the locations where microbes can survive” 

(Gold, 1992). Gold also favored the Archaea to be the inhabitants of this environment 

(Gold, 1992). Methanopyrus kandleri (DSM 6324T) growths between 84 and 110°C 

(300 kPa pressure) (Kurr et al., 1991); Methanopyrus kandleri strain 116 proliferates 

at temperatures up to 122° C under high pressures (20 MPa) (Takai et al., 2008). An 

intensive discussion about potential limits of life on earth started (Daniel and Cowan, 

2000). Similar to oligotrophic environments, McKay summarized: "There are two 

somewhat different approaches to the question of the limits of life. The first approach 

is to determine the requirements for life. The second approach is to determine the 

extreme environments in which adapted organisms - often referred to as 

extremophiles - can survive." (McKay, 2014). 

 

1.3.  Archaea and Bacteria  

 In 1676 Antonie van Leuwenhoek observed bacteria among the very little 

animalcules in sea water, rain water and pepper water (van Leewenhoeck, 1677), 

(Sapp, 2005). Beside the important work of Robert Koch and Louis Pasteur in 

prevention, defense and identification of infection ways of diseases caused by 

Bacteria, it took about another ~ 250 years until a representative definition of Bacteria 

(formerly often handled as “germs”) differentiating them from Eukarya was 

enunciated: “Bacteria may be defined as extremely minute, simple, unicellular 

microörganisms (sic!), which reproduce themselves with exceeding rapidity, usually 

by transverse division, and grow without the aid of chlorophyl (sic!). They have no 

morphological nucleus, but contain nuclear material which is generally diffused 

throughout the cell body in the form of larger or smaller granules.” (Park and 

Williams, 1914), (Sapp, 2005). Around 50 years later, Woese and Fox introduced the 

“archaebacteria” as the third of three primary kingdoms (Woese and Fox, 1977). 

Besides the ongoing discussion about the last universal common ancestor/last 

eukaryotic common ancestor (LUCA/LECA) (Koonin, 2015), (Evans et al., 2015), 

(Brochier-Armanet et al., 2008), (Spang et al., 2015), and if two or three primary 
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kingdoms exist (Williams et al., 2013), the question of abundances, of Bacteria 

versus Archaea and their contribution to biogeochemical cycles (e.g. 

methanogenesis/methane oxidation) has been raised (Lipp et al., 2008), (Hug et al., 

2016), (Valentine, 2007), (Gubry-Rangin et al., 2010), (Briggs et al., 2012), 

(Schippers and Neretin, 2006). 

 Before this era, most discoveries where made when cultivating techniques 

where established and pathogenic and not pathogenic microorganisms could be 

cultivated and their roles for human beings were identified. However, cultivation 

techniques are often insufficient and need to be supplemented with molecular 

ecological methods if investigations about unexplored complex ecosystems such as 

the deep biosphere are carried out. In 1977, Carl Woese and George fox published 

the article “The primary kingdoms”. This was the beginning of a new era of functional 

and phylogenetic insights basing initially on the analysis the small subunit gene of the 

ribosome of eukaryotic and prokaryotic cells (Woese and Fox, 1977). The analysis of 

the 16S rRNA gene gives enough information to analyze phylogenetic and 

evolutionary relationships and also to detect and categorize new 

species/families/classes with a manageable effort. New culture independent 

approaches not only comprising the 16S rRNA gene (and the eukaryotic 18S rRNA 

gene) but also other at least in parts conserved genes (e.g. the dsrA gene) were 

widely established. The next milestone in phylogenetic approaches was the 

development of the single cell genome amplification method by Zhang et al. (Zhang 

et al., 1992). This approach was first intended to be applied to human health 

questions: "Whole genome amplification beginning with a single cell, or other 

samples with very small amounts of DNA, has significant implications for multipoint 

mapping by sperm or oocyte typing disease diagnosis, forensics, and the analysis of 

ancient DNA." (Zhang et al., 1992). 

 Since the beginning of phylogenetic analysis and discussion, the place of the 

Eukarya in the phylogenetic tree and therefore the root of the tree as a marker for the 

latest common ancestor was attended (Spang et al., 2013). With other words, are 

there two or three primary domains of life and how did they evolve (Williams et al., 

2013), (Woese et al., 1990)? By using a large data set based on ribosomal proteins 

in a multimodal approach including metagenomics analysis and the single-cell 

amplified genome method (SAG) the analysis of Hug et al. sustain the branching of 

the Eukarya with the Archaea (Hug et al., 2016) (Fig. 4). 
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Figure 4. A current view of the tree of life. The tree includes 92 named bacterial phyla, 26 archaeal 
phyla and all five of the Eukaryotic supergroups. Major lineages are assigned arbitrary colors and 
named, with well-characterized lineage names, in italics. Lineages lacking an isolated representative 
are highlighted with non-italicized names and red dots. The names Tenericutes and 
Thermodesulfobacteria are bracketed to indicate that these lineages branch within the Firmicutes and 
the Deltaproteobacteria, respectively. The CPR phyla are assigned a single color as they are 
composed entirely of organisms without isolated representatives, and are still in the process of 
definition at lower taxonomic levels (Hug et al., 2016). Description has been modified from (Hug et al., 
2016). 
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1.3.1. Phylogeny of Archaea 

 The “List of Prokaryotic names with Standing in Nomenclature” 

(http://www.bacterio.net/) contains a generally accepted taxonomic classification and 

a depository of scientific descriptions and knowledge of microorganisms. Up to date 

only two archaeal phyla (the Euryarchaeota and the Crenarchaeota) are validated. 

Whole genome analysis allows identifying genes for entire protein/enzyme families. 

Therefore not only the identification of one metabolic reaction is possible; the 

prediction of feasible metabolic pathways and bases on the knowledge of the 

evolutionary conservation of genes, new phylogenetic relationships have been 

established (Hug et al., 2016), (Baker et al., 2016). For example, the SAG method 

has revealed two new superphyla concerning the Archaea. The TACK superphylum 

includes the 'Thaumarchaeota', the 'Aigarchaeota', the Crenarchaeota and the 

'Korarchaeota' (Guy and Ettema, 2011); the DPANN superphylum includes the 

'Diapherotrites' (clone pMC2A384), the 'Parvarchaeota', the 'Aenigmarchaeota' 

(DSEG), the 'Nanohaloarchaeota' and the 'Nanoarchaeota' (Rinke et al., 2013). It 

has to be mentioned, that the DPANN superphylum is monophyletic only in Archaea 

restricted trees (Rinke et al., 2013). 

 These superphyla were expanded recently due to metagenomics sequencing. 

For example, the 'Lokiarchaeota' (Spang et al., 2015) were described and supposed 

to belong also to the TACK superphylum. Concerning 16S rRNA gene phylogenetic 

analysis, the 'Lokiarchaeota' are part of the Deep-Sea Archaeal Group/Marine 

Benthic Group B (DSAG/MBG-B) (Spang et al., 2015). Phylogenetic analyses of 

universal proteins of the 'Lokiarchaeota' revealed that they form a monophyletic 

group with eukaryotes (Spang et al., 2015), sharing amongst others the ubiquitin 

protein degradation system with the eukaryotes. They are supposed to represent a 

descendant of the last common ancestor of the Eukaryotes and the Archaea (Koonin, 

2015), (Spang et al., 2015), (Embley and Williams, 2015). Similarities with the 

ubiquitin protein modification system genes, an actin skeleton coding signature, 

genes for eukaryotic signal transduction ways and the eukaryotic endosomal sorting 

complex (ESCRT) genes amongst others with the eukaryotes support this thesis 

(Spang et al., 2015). 

 The DSAG/MBG-B group is found widely in marine sediments (Biddle et al., 

2006), (Teske, 2006), (Sørensen et al., 2004) and significantly gas hydrate 
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associated (Parkes et al., 2014). The DSAG/MBG-B group dominated methane 

hydrate bearing zones at Peru Margin (site 1230) and Cascadia Margin (site 

1244/1245 and site 1251). In contrast, methane free zones contained relatively few 

clones of DSAG/MBG-B 16S rRNA encoding genes (site 1225 and site 1227) 

(Inagaki et al., 2006). The group was also present at the sulfate reduction zones and 

therefore the authors inferred that DSAG/MBG-B group plays an important role in 

sulfate reduction and methane oxidation (Inagaki et al., 2006). In summary, the 

DSAG/MBG-B group is active within the SMTZ but is it not limited to this zone (Teske 

and Sørensen, 2008), (Biddle et al., 2006). These results suggest that the MBG-B 

Archaea benefit from methane in marine sediments (Teske and Sørensen, 2008), 

(Sørensen and Teske, 2006) and that the MBG-B assimilate other organic compound 

than methane, maybe by oxidation of methane without its assimilation (Biddle et al., 

2006). The proposed microbial ethanogenesis via acetate reduction (Hinrichs et al., 

2006) might be beside fermentation and methane oxidation a third feasible reaction 

for energy generating of DSAG/MBG-B Archaea (Teske and Sørensen, 2008). 

 Another recently proposed deeply branching phylum is the 'Aigarchaeota' 

former known as HWCG I (Hot Water Crenarchaeotal Group I). As an indicator for 

phylogenetic neighborhood, the 'Aigarchaeota' share the ubiquitin modification 

system and a topoisomerase I B encoding gene with the Eukarya (Nunoura et al., 

2011), verified in its candidate 'Caldiarchaeum subterraneum'.  

 The Marine Group I (proposed phylum 'Thaumarchaeota' Brochier-Armanet 

et al., 2008) is another group that is often found in deep marine sediments (Teske 

and Sørensen, 2008). Similar to the 'Aigarchaeota', Brochier-Armanet et al. showed 

that a eukaryotic-like DNA Topoisomerase B encoding gene is present in sequenced 

genomes of two Archaea ('Nitrosopumilus maritimus' and 'Cenarchaeum 

symbiosum') of the 'Thaumarchaeota' (Brochier-Armanet et al., 2008). The authors 

conclude: "This finding indicates that the last common ancestor of Archaea and 

Eukarya may have harboured a DNA genome." (Brochier-Armanet et al., 2008). 

 The Miscellaneus Crenarchaeotic Group (MCG, 'Bathyarchaeota') is one 

major group that is found widespread in marine and terrestrial sediments (Biddle et 

al., 2006), (Teske, 2006), (Kubo et al., 2012). The MCG group encompasses 

members of the former named Terrestrial Miscellaneous Crenarchaeotic Group which 

were first isolated in waters of a South African Gold Mine (Takai et al., 2001). By 

identifying also members of marine environments, the group was renamed as 



21 

 

Miscellaneous Crenarchaeotic Group (Inagaki et al., 2003). Several attempts to clear 

up the phylogenetic position and suborders of this group were undertaken. These 

approaches reflect the high intragroup phylogenetic diversity of the MCG Archaea 

and the attempt to get more insights in phylogenetic and biogeochemical features of 

these Archaea. For further detail about the history of grouping, see appendix. 

 By performing a metagenomics analysis (including the LSU-SSU rRNA, 

ribosomal proteins and topoisomerase IB genes), Meng et al. supported the thesis 

that the MCG group forms a sister lineage with the 'Thaumarchaeota' and the 

'Aigarchaeota' (Lloyd et al., 2013b) and proposed a new phylum 'Bathyarchaeota' for 

this group (Meng et al., 2014). The proposal of a new phylum was confirmed by 

metagenomic analysis (shotgun metagenomic sequencing) of 53 archaeal 

concatenated conserved single-copy genes (He et al., 2016). The MBG-B and the 

'Bathyarchaeota' were suspected to be responsible for exogenous protein 

degradation in cold anoxic environments (Lloyd et al., 2013b). This finding was 

confirmed by Castelle et al. for the four-, five-, and six meter assemblies from an 

aquifer adjacent to the Colorado River, near Rifle, Colorado, USA by identifying 

peptidases (Castelle et al., 2015): “This expands the potential role of Archaea in 

protein remineralization to terrestrial anoxic sediment.”  

 'Bathyarchaeota' have been found in very different and also extreme 

environments (Teske and Sørensen, 2008), (Lazar et al., 2015). Although they are 

typically found in anaerobic, eutrophic marine sediments, 'Bathyarchaeota' are not 

restricted to eutrophic sediments (Durbin and Teske, 2012). The working hypothesis 

that 'Bathyarchaeota' are heterotrophic anaerobes was expressed (Teske and 

Sørensen, 2008). Stratification dependent analysis showed the 'Bathyarchaeota' 

were exclusively found below the SMTZ (ODP site 1227) and frequently above the 

SMTZ, whereas the SMTZ was dominated by the MBG-B group (Sørensen and 

Teske, 2006). For sediments of the White Oak River estuary, an increasing proportion 

of 'Bathyarchaeota' was found with increasing reducing conditions and increasing 

depths (Lazar et al., 2015). Regarding the 'Bathyarchaeota' subgroups, the MCG-6 

subgroup (Kubo et al., 2012) exhibited a controversial pattern with decreasing clone 

library abundance (Lazar et al., 2015). Interestingly, a recent study of three karstic 

lakes in Spain identified the MCG-6 subgroup as a “generalist group able to cope 

with varying reducing conditions” and the subgroups MCG-5a and MCG-5b (Kubo et 

al., 2012) as “planktonic specialists thriving in euxinic bottom waters” (Fillol et al., 
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2015). Clone library abundances do not reflect real abundances and therefore have 

to be handled with caution. For the Pearl River estuary Jiang et al. found 

'Bathyarchaeota' to be the most abundant group except the top layer and with a 

relative minimum at the SMTZ and a stratification depending on the accorded 

subgroups (Jiang et al., 2011). Nevertheless, 'Bathyarchaeota' play a major, largely 

unknown role in terrestrial and marine biogeochemical cycles. 

 Concerning the Euryarchaeota, 16S rRNA gene sequences of the South 

African Euryarchaeotic Gold Mine group (SAGMEG) were first isolated in waters 

from a South African gold mine (Takai et al., 2001). Biddle et al. showed that they are 

also distributed in marine deep sediments (Nankai Trough, Peru Margin, Sea of 

Okhotsk) (Biddle et al., 2006). Recently, Baker et al. carried out a phylogenomic 

analysis that places the SAGMEG Archaea as a deeply rooting sister clade of the 

Thermococci. They proposed a new phylum 'Hadesarchaea' (former part of the 

Euryarchaeota) (Baker et al., 2016). Although the analyzed bins obviously lack the 

gene for methyl-CoM reductase (mcrA), they contain partially several genes for the 

carbon monoxide dehydrogenase pathway (reductive acetyl CoA pathway, Wood-

Ljungdahl pathway). This pathway is typically used in methanogenic Archaea (Baker 

et al., 2016)). They contain also partially genes for the glycine pathway (Baker et al., 

2016), which is supposed to be a common ancestor of carbon fixation (Braakman 

and Smith, 2012). On the other hand, two of four analyzed bins have the genes of a 

near full Calvin-Benson-Basham cycle for carbon fixation but lack the genes for the 

tricarboxylic acid cycle for carbon fixation (Baker et al., 2016). As pointed out by 

several researchers (Biddle et al., 2006), (Teske and Sørensen, 2008), the 

'Hadesarchaea' are a part of the heterotrophic archaeal community in deep, 

anaerobic and methanogenic Peru Margin sediments at ODP LEG 201 Site 1227. 

The stratified abundances of 'Hadesarchaea' concerning the SMTZ together with the 

possible capabilities in biogeochemical carbon pathways makes it of special interest 

to understand their role in methanogenesis/methanotrophy or syntrophy of 

methanogenic microorganisms. Baker et al. concluded, "They [the 'Hadesarchaea'] 

share several physiological mechanisms with strict anaerobic Euryarchaeota. Several 

metabolic characteristics make them successful in the subsurface, including genes 

involved in CO and H2 oxidation (or H2 production), with potential coupling to nitrite 

reduction to ammonia (DNRA)." (Baker et al., 2016). 
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 16S rRNA gene sequences belonging to the Deep-Sea Hydrothermal Vent 

Euryarchaeotal Group 6 (DHVEG-6) were firstly isolated from a hydrothermal vent 

environment (Takai and Horikoshi, 1999). In 2004, 16S rRNA gene sequences from 

the organic lean Peru Margin ODP Leg 201 site 1231 at 1.8 mbsf were successfully 

isolated. This group as well as the Terrestrial Miscellaneus Euryarchaeotal Group 

(TMEG) has representatives in terrestrial sediments (Teske and Sørensen, 2008). 

According 16S rRNA gene phylogeny, the candidate phylum 'Parvarchaeota' is a 

subgroup of the DHVEG-6 group. The 'Parvarchaeota' include the genus 

'Parvarchaeum' (e.g. Candidatus Parvarchaeum acidiphilum, ARMAN-4) and some 

authors also include (depending on the analysis method and the scientific evaluation) 

the genus ‘Micrarchaeum’ (e.g. Candidatus Micrarchaeum acidiphilum ARMAN-2), 

which was detected in the acidic Richmond Mine at Iron Mountain in northern 

California (Baker et al., 2010), (Comolli et al., 2008), (Rinke et al., 2013), (Baker et 

al., 2006). The placement of the 'Parvarchaeota' cannot be reproduced 

consistently by metagenomic analysis (and 16S rRNA phylogeny); Castelle et al. 

found the genera 'Parvarchaeum' and 'Micrarchaeum' of 'Parvarchaeota' not to be 

monophyletic as proposed by Rinke et al. (Castelle et al., 2015), (Rinke et al., 2013) 

and supposed the additional phylum 'Micrarchaeota'. 

 Other recently identified subgroups of the DHVEG-6 group are the proposed 

new phyla 'Woesearchaeota' and 'Pacearchaeota' (Castelle et al., 2015) which 

form sister lineages to the 'Parvarchaeota' and are part of the DHVEG-6 group 

according 16S rRNA gene phylogeny. They were mainly isolated from an aquifer 

adjacent to the Colorado River, near Rifle, CO, USA. “The organisms have small 

genomes, and metabolic predictions indicate that their primary contributions to 

Earth’s biogeochemical cycles involve carbon and hydrogen metabolism, probably 

associated with symbiotic and/or fermentation-based lifestyles.” (Castelle et al., 

2015). 

 Marine subsurface sediments contain members of the MBG-D group (Marine 

Benthic Group D) (Lloyd et al., 2013b). Similar to other archaeal groups, no isolates 

have been cultivated yet. This group overlaps with the Deep Sea Hydrothermal Vent 

Group 1 (DHVEG-1 or DHVE-1, Deep-Sea Hydrothermal Vent Euryarchaeota 

Group 1) (Takai and Horikoshi, 1999)), (Teske and Sørensen, 2008). In a cultivation 

experiment with samples from the 0.3 - 0.6 m deep SMTZ of Aarhus Bay, Denmark 

(Webster et al., 2011) 16S rRNA gene sequences belonging to the MBG-D group 
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were found continuously during the experiment in stable amounts. SAG analysis 

containing intra- and extracellular peptidases showed that MBG-D/DHVE-1 Archaea 

similar than 'Bathyarchaeota' seem to be able to degrade proteins (Lloyd et al., 

2013b). 

 

1.3.2.  Deep subsurface Bacteria 

 Similarly to the recently efforts in phylogeny of Archaea, the phylogeny of the 

phylum Bacteria is under discussion. For example, metagenomic analysis of samples 

obtained from an aquifer adjacent to the Colorado River near the town Rifle, 

Colorado, USA, revealed a new group of small, numerous biosynthetic pathways 

lacking, monophyletic Bacteria. For these, the name Candidate Phyla Radiation 

(CPR) which contains for example the 'Parcubacteria' (OD1) (Brown et al., 2015) 

was proposed. Due to metagenomics analysis, Brown et al. concluded that CPR-

Bacteria are probably obligate fermenters depending on other organisms and 

exhibiting unusual ribosomes (Brown et al., 2015). 

 Concerning the deep terrestrial subsurface, most abundant are 

Proteobacteria, Actinobacteria, Firmicutes, Chloroflexi, members of the 

Geobacteraceae family, sulfate reducers, denitrifiers, fermenters, and acetogens 

(Boivin-Jahns et al., 1996), (Chandler et al., 1997), (Detmers et al., 2001), (Detmers 

et al., 2004), (Brown and Balkwill, 2008), (Fry et al., 2009). Similarly as described 

above for the CPR, the bacterial phyla Actinobacteria, Cyanobacteria, Thermi 

(Deinococcus-Thermus), Chloroflexi and Firmicutes, were identified to be 

monophyletic, "terrestrial" Bacteria and constitute the proposed superphylum 

'Terrabacteria' (Rinke et al., 2013). 

 Specifically, Balkwill et al. isolated in 1989 Pseudomonas, Acinetobacter (both 

Gammaproteobacteria) and Agrobacterium (Alphaproteobacteria) as typical soil 

Bacteria from surface soils and coastal plain subsurface (up to 265 m) with relative 

high identification security (Balkwill et al., 1989). Similarly, analysis of the Subsurface 

Microbial Culture Collection (SMCC) containing cultivated microorganisms from three 

different terrestrial subsurface sites (USA) revealed Arthrobacter, Bacillus, 

Streptococcus, Acinetobacter, Comamonas, (Betaproteobacteria), Pseudomonas, 

Sphingomonas (Alphaproteobacteria) and Variovorax (Betaproteobacteria) as 

isolates (Balkwill et al., 1997). Gram-positive Firmicutes were the most frequently 

detected phylum followed by smaller contributions of Proteobacteria, Actinobacteria 



25 

 

and Deinococcus-Thermus found in a borehole from Tau Tona gold mine 

(Witwatersrand Basin, South Africa) by metagenomics analysis (Magnabosco et al., 

2016). Similarly, a previous study was successful in cultivating a novel 

actinobacterium from a depth of 940 m (sediment-clast brecchia which filled up the 

crater after the impact), Tessaracoccus profundi from Chesapeake Bay. Growth 

occurred with an optimum between 30 and 40°C as a facultative anaerobe (Finster et 

al., 2009). Also from the deeper section of the Chesapeake Bay impact structure, 

Cockell et al. enriched several bacterial isolates with close affiliation to Clostridium 

sp., Bacillus sp., Paracoccus sp., Halobacterium sp., Clostridium sp. and Cupriavidus 

sp. (Cockell et al., 2012). 

 Webster et al. described in 2004 a novel phylogenetic group, JS1 (Webster et 

al., 2004) associated to the phylum Chloroflexi. The phylum Chloroflexi comprises six 

classes: the class Anaerolineae, the class Caldinilineae, the class Chloroflexia, the 

class Dehalococoidia, the class Ktedonobacteria and the class Thermomicrobia 

(http://www.bacterio.net/-classifphyla.html#Chloroflexi), (Blazejak and Schippers, 

2010). The acronym JS1 originates from the first clones retrieved from the Japan 

Sea. Webster et al. revealed the widespread distribution of members of this group in 

sediments and suggested due to habitation characterization that members of this 

group have an anaerobic metabolism. Webster et al. were also successful to identify 

JS1 Bacteria related genomic markers in an enrichment culture of the Aarhus Bay 

sediment slurry originating from the sulfate methane transition zone (SMTZ) (Webster 

et al., 2011). The analysis with different cultivation independent methods indicated 

that JS1 bacteria metabolize acetate in the presence of sulfate. The JS1 candidate 

division is relative closely related to the OP9 group (Webster et al., 2004). Dodsworth 

et al. confirmed this, they proposed for the OP9 candidate division the name 

'Atribacteria' (Dodsworth et al., 2013). Nobu et al. recently analyzed the relationship 

of the JS1 candidate division and the OP9 candidate division by using single-cell 

amplified genome (SAG) sequencing and metagenomics (Nobu et al., 2016). Their 

analysis supported the monophyly of these two clades and consequently they 

suggested the new phylum 'Atribacteria' for both clades. For catabolism, a propionate 

using metabolic pathway for the JS1 cluster and a sugar using metabolic pathway for 

the OP9 cluster was presented. 16S rRNA gene clone analysis of Inagaki et al. 

revealed that JS1 Bacteria preferentially inhabit strictly anaerobic organic-rich 

environments associated with methane hydrates (Inagaki et al., 2006). Due to the 
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fact, that JS1 Bacteria were represented throughout the hydrate bearing cores even 

in sulfate-free deeper zones, Inagaki et al. concluded that most likely they were not 

responsible for sulfate reduction (Inagaki et al., 2006). Accordingly, the 'Atribacteria' 

seem to be anaerobic heterotrophic microorganisms specialized to habitats which 

have low concentrations or no external electron acceptors and are rich in organic 

compounds (Nobu et al., 2016). Due to their unculturability there is still little known 

about these widespread microorganisms; nevertheless, Blazejak et al. developed a 

qPCR primer to enumerate JS1 and related Bacteria of the classes Anaerolineae and 

Caldinilinae of the phylum Choroflexi (Blazejak and Schippers, 2010). 

 

1.3.2.1. Iron and manganese reduction: the bacterial family 

Geobacteraceae 

 Several Bacteria and Archaea are able to reduce iron(III) to iron(II) e.g. 

Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilus, Archaeoglobus fulgidus 

and Pyroccocus furiosus (Lovley, 2006). Nevertheless, the ability to gain energy by 

ATP generation is restricted to a smaller but diverse group of microorganisms (Fig. 

5). 
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Figure 5. Dissimilatory iron reducers. A phylogenetic tree based on 16S rRNA gene sequences of 
microorganisms known to conserve energy to support growth from iron(III) reduction. Archaea: red 
clade, Deltaproteobacteria: blue clade. Microorganisms as depicted in a phylogenetic tree by Lovley et 
al. (Lovley, 2006) were identified in arb (www.arb.home de) and recently described microorganisms 
were added. For further tree construction see appendix. 

 

 Most iron(III) reducing bacteria are also able to reduce manganese(IV) and 

some additionally reduce uranium(VI). Interestingly, several acidophilic iron oxidizers 

like Acidithiobacillus ferrooxidans are also able to reduce ferric iron by a dissimilatory 

pathway (Bridge, T. A. M. and Johnson, 1998), for review: (Johnson et al., 2012). The 

neutrophilic iron(III) reducing bacteria belong to different families: to the family 

Geobacteraceae (Deltaproteobacteria, e.g. Geobacter metallireducens), the family 

Desulfurobacteraceae (Deltaproteobacteria), Deferribacteraceae (class 

Deferribacteres, e.g. Geovibrio ferrireducens and Deferribacter thermophilus), 

Ferribacter limneticum (Betaproteobacteria), the family Aeromonadaceae, the family 

Ferrimonadaceae, the family Shewallenaceae (all Gammaproteobacteria) for 

example (Slobodkina et al., 2015), (Lovley, 2006). Concerning the Archaea, the 

genus Pyrobaculum (Crenarchaeota) contains several members who are able to 

reduce iron(III) like Pyrobaculum aerophilum, Pyrobaculum arsenaticum, 
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Pyrobaculum islandicum, Pyrobaculum calidifontis and the recently isolated strain 

Pyrobaculum ferrireducens (Slobodkina et al., 2015) (Fig.5). The use of nitrate, sulfur, 

thiosulfate, sulfite, selenite, selenate and arsenate as electron acceptor varies among 

these strains (Slobodkina et al., 2015). Responsible for the most active part of 

iron(III) reduction in natural habitats seems to be the family Geobacteraceae (Holmes 

et al., 2002). Consequently, Holmes et al. developed a qPCR assay to quantify 

Geobacteraceae (Holmes et al., 2002). 

 

1.3.2.2. Sulfate reduction: Enumerating sulfate reducers via qPCR 

quantification of dsrA and aprA encoding genes 

 Sulfate reduction is an important biogeochemical process and is found in 

terrestrial (e.g. the Romashkinskoe oil field, Nazina et al., 1995) as well as in marine 

sediments (D'Hondt et al., 2002), (Leloup et al., 2007) }, (Schippers and Neretin, 

2006), (Schippers et al., 2010), (Blazejak and Schippers, 2011), (Schippers et al., 

2012), (Jørgensen, 1982). Oxidation of organic matter (or methane or hydrogen) by 

reducing sulfate is a main diagenetic process (Kasten and Jørgensen, 2000), 

(Froelich et al., 1979). The most relevant reactions of the biogeochemical sulfur cycle 

on earth are shown in Fig. 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. The sulfur cycle. Red arrows indicate metabolic reactions known from Archaea and 
Bacteria, gray arrows indicate metabolic reactions only known from Bacteria and orange arrows 
indicate metabolic reactions only known from Archaea. 5: S2O3

2− is produced in several different ways 
including abiotic processes. The scheme and description has been slightly modified from Offre and 
Spang (Offre et al., 2013). 
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Sulfate reducing Bacteria can be divided in two groups, those who oxidize organic 

compounds (proteins, lipids, polysaccharides) incompletely to acetate and those that 

oxidize them completely to carbon dioxide (Muyzer and Stams, 2008). Interestingly, 

some sulfate reducing Bacteria respire oxygen and are able to form ATP by oxygenic 

respiration (Dilling and Cypionka, 1990). Sulfate reduction coupled to methane 

oxidation occurs at the SMTZ and is an anaerobic process that normally occurs at a 

distinct zone below the zone of iron and manganese reduction. It is under discussion, 

whether this energetically unfavorable process is mediated by a consortium of 

Bacteria and Archaea or methanotrophic Archaea alone (Muyzer and Stams, 2008), 

(Milucka et al., 2012), (Offre et al., 2013), (Boetius et al., 2000). Different 

mechanisms have been proposed for the reaction carried out by a consortium of 

Bacteria and Archaea, (Wagner, 2015): Firstly, electron transfer through diffusible 

metabolites (e.g. H2); secondly, direct electron transfer through archaeal-bacterial 

connections; thirdly, methane oxidation and sulfate reduction to zero-valent sulfur by 

the Archaea and after sulfur release formation of disulfide in presence of sulfide, this 

disulfide is used by the Deltaproteobacteria and finally converted to sulfide and 

sulfate (Wegener et al., 2015), (McGlynn et al., 2015), (Milucka et al., 2012), (Hoehler 

et al., 1994), (Meyerdierks et al., 2010), (Moran et al., 2008).  

 The known dissimilatory sulfate reducers belong to Deltaproteobacteria, 

Firmicutes or Archaea (Archaeoglobus fulgidus) (Wagner et al., 1998), (Widdel and 

Pfennig, 1977). In dissimilative sulfate reducers, adenosine 5’- phosphosulfate 

reductase catalyzes the two-electron reduction of adenosine 5’-phosphosulfate (APS) 

to sulfite and adenosine-5’-monophosphat (AMP). Dissimilatory sulfite reductase 

catalyzes the 6-electron reduction of sulfite to hydrogen sulfide. 

 Wagner et al. investigated the phylogeny of the dsrA gene (encoding gene of 

the α-subunit of dissimilatory sulfite reductase), (Wagner et al., 1998). They found a 

great accordance between the phylogeny of the DSR gene and 16S rRNA gene 

phylogeny. Therefore they concluded that the “early ancestors of Bacteria and 

Archaea already possessed a key enzyme of sulfate and sulfite respiration” (Wagner 

et al., 1998, 2975). For both genes, dsrA and aprA, qPCR assays were developed 

(Kondo et al., 2004), (Schippers and Blazejak, 2011). 

 



30 

 

1.3.2.3. Carbon fixation via RuBisCo: cbbl gene copy numbers 

 The Calvin-Benson-Bassham cycle or ribulose-1,5-bisphosphate 

carboxylase/oxygenase cycle is one of six known carbon fixation cycles (Berg et al., 

2010) and seems to be a younger evolutionary occurrence (Berg et al., 2010). 

Interestingly, a recent research focused on the phylogenetic evolution of the known 

carbon fixation pathways and their integrated analysis postulated an ancestral 

carbon-fixation pathway by a serine-glycine bypass that “is different from any modern 

form, but better suited to the capabilities of the earliest primitive cells.” (Braakman 

and Smith, 2012). 

 The enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) 

catalyzes the first step, the addition of one molecule CO2 to one molecule 1,5-

ribulosebisphosphate. The unstable intermediate dissociates in two molecules 3-

phosphoglycerate, which are further reduced or regenerated to 1,5-

ribulosebisphosphate to complete the cycle and provide triosephosphates. 

  Four different forms of RuBisCo or RuBisCo related proteins were postulated 

(Tabita, 1999) and found (Selesi et al., 2005), (Ashida et al., 2003). The most 

common enzyme is the form I (Selesi et al., 2007), which is found in photosynthetic 

organisms such as higher plants, algae and autotrophic Proteobacteria (Ashida et al., 

2003). The encoding gene cbbl exist in two forms, the green-like and the red-like 

form (Watson and Tabita, 1997). Analysis of terrestrial soil samples revealed a high 

diversity of the encoding gene of the red-like form of the cbbl gene (Selesi et al., 

2005). Phylogenetic analysis of cbbl-positive bacterial isolates based on 16S rRNA 

gene sequences revealed bacteria belonging to the gram-positive genera Bacillus, 

Streptomyces and Arthrobacter (Selesi et al., 2005). Consequently, a qPCR assay to 

quantify the cbbl gene (red-like form) was developed (Selesi et al., 2007).  

 

1.4. Exploration of the deep biosphere via scientific drilling  

 This work analyzes samples of several ICDP/ODP/IODP expeditions, thus the 

general aims of theses scientific programs are illustrated.  

 The Ocean Drilling Programm (ODP) started in 1983 as a successor of the 

Deep Sea Drilling Project, a scientific American deep ocean coring and downhole 

logging program (Pedersen, 2000). “Research based on the samples strongly 

supported the hypotheses of seafloor spreading - the relationship of crustal age to 



31 

 

the record of Earth’s magnetic reversals - and plate tectonics.” (Consortium for 

Ocean Leadership, Inc.). 

 The Integrated Ocean Drilling Program (IODP), (2003 - 2013), 

(http://www.iodp.org/history), followed it. In 2013, the successor International Ocean 

Discovery Program (IODP), (2013 - 2023) started. IODP is an international marine 

research collaboration to explore subseafloor environments. Aim of IODP is to 

understand earth history and dynamics, to recover data from subseafloor and rocks 

in order to understand geological and biological features (Fig. 7). Twenty-six nations 

are working together within IODP (www.iodp.org). 

 

 
Figure 7. Investigations on earth history and dynamics. (ICDP Office 2015, GFZ German Research 
Centre for Geoscience). 

 

 The International Continental Drilling Program (ICDP) was a logic 

successor of the German Continental Deep Drilling Program KTB and started in 1996 

as an international collaboration. Similar to IODP, the main aims are to understand 

the terrestrial subsurface with all its implications like earthquakes, volcanic activities, 

and deep fluids. Though the terrestrial biosphere is a dynamic system, the main 

principles are to probe, collect, monitor and analyze the subterrean earth 

(http://www.icdp-online.org/profile/). 
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1.5. The sediment sampling sites 

 Distinctive features of the sediments and a short summary of special questions 

concerning the microbiology are described in this chapter. An overview about the 

sampling sites is given in Table 2. 

 

Table 2: Overview about the sediment sampling sites of this thesis. 
 
Sampling area CBIS North Pond New Jersey Okinawa Trough 

Expedition ICDP - 
Chesapeake Bay 
impact structure 

RV Maria S. 
Merian Cruise 

MSM11/1 

IODP Expedition 
313 New Jersey 

shallow shelf 

IODP Expedition 
331 

Deep Hot 
Biosphere 

geographic 
locaction 

Chesapeake Bay 
area 

mid Atlantic ridge 
flank 

New Jersey 
shallow shelf 

Hydrothermal field 
of Okinawa 

Trough 
terrestrial or 

marine 
terrestrial marine marine marine 

overlying water - 4000 - 4500 m ~ 35 m ~ 1100 m 
drilling depths ~ 140 m for this 

study (1766 m in 
total) 

~ 9 mbsf (different 
cores) 

~ 50 mbsf for this 
study (~ 740 mbsf 

in total) 

~ 130 mbsf 

sites Eyreville hole C GEOB 13501, 
13502, 13504, 
13507, 13510, 

13512 

Hole M0027A site C0014 
site C0017 

special 
characteristics 

post impact 
sediments 

very organic lean alternating 
freshwater and 
saltwater layers 

hydrothermal 
influenced area 

mean of TOC total: 0.18%, 
uppermost soil 
(7m): 0.077% 

0.15% total: 1.17% 
upper 50 mbsf: 

0.47% 

site C0017: 0.3% 
site C0014: total: 

0.13% 
upper 40 mbsf: 

0.18% 

 

 As explained above, the applicability of a general definition of oligotrophy to 

characterize sediments correctly is difficult and a clear evident definition to 

characterize marine and terrestrial sediments by the composition of possible energy 

donating substrates and the released products (e.g. DOC, nitrate) cannot be 

performed at all. No previous definition of oligotrophy or another general 

characterization which fits to all the investigated sediments was applicable and 

accurate for this study. Nevertheless, the investigated sediments have relative low 

carbon contents. 
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1.5.1 The Chesapeake Bay impact structure (CBIS) 

 In 2006, the ICDP drilled in the Chesapeake Bay impact structure (CBIS), 

Virginia, USA, which was formed during the late Eocene meteoric impact 

approximately 35.5 million years ago. The total crater of this structure has a diameter 

of 85 km with a central 35 - 40 km wide inner crater (Poag et al., 2004), (Fig.8). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Computer-generated 3-D perspective of the Chesapeake Bay impact crater, showing its 
location beneath the lower part of the Chesapeake Bay, its surrounding peninsulas, and inner part of 
adjacent Atlantic Continental Shelf. (Poag et al., 2004) (Image and description modified from Poag et 
al. 2004). 

 

 The impact eruption formed a crater that was filled with breccia and post 

impact sediments. In the CBIS Project post impact terrestrial sediments were drilled 

up to 1766 m depths at a site within the central crater. The upper 140 m of sediment 

composed of post-impact sandy and clayish sediments (Miocene to Pleistocene) 

were cored in Eyrevillehole C during April and May 2006 and analyzed in this thesis. 

Contamination tests using microscopic counting of fluorescent microsphere beads 

were done.  
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1.5.2. New Jersey - IODP Expedition 313 

 

 
Figure 9: IODP Expedition 313 Site Map with drilling holes of previous expeditions modified from from 
van Geldern et al. (van Geldern et al., 2013). 
 

 The New Jersey shallow shelf marine sediments were drilled in summer 2009 

during IODP expedition 313 (Fig. 9). The overlying seawater was about 35 m deep. 

The sediments are generally characterized by terrigenous input of organic material. 

The more or less sandy sediment is also interstratified by various types of sediment, 

e.g. clay layers. Three different layers can be distinguished: 1) saltwater layers, 2) 

freshwater layers and 3) a deeply buried brine layer (Fig. 10). At the hereby 

investigated Hole M0027A the brine started at 415 mbsf (van Geldern et al., 2013). 

Contamination tests were performed by microscopic counting of fluorescent 

microsphere beads. 

 

 

 

 

 



35 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Profile of porewater chloride concentration at site 
M0027A on the New Jersey shallow shelf. Alternating saltwater 
and freshwater layers and a deeply buried brine are indicated 
by the chloride profile. Blue: freshwater, yellow: saltwater. Brine 
is starting below 415 mbsf. Modified from van Geldern et al. 
(van Geldern et al., 2013). 
 

 

1.5.3. North Pond - RV Maria S. Merian Cruise MSM11/1 

 The very organic lean sediments of the North Pond basin are 7 million year old 

and located on the western flank of the Mid-Atlantic Ridge at 23°N. They were drilled 

during the IODP Expedition 336 (Fig. 11). Before, gravity core sampling was done on 

the site survey cruise with the German R/V Maria S. Merian in 2009 (MSM 11/1) and 

samples for this thesis were taken. The depth of the overlaying water at the sampling 

sites was between 4040 and 4480 m (Villinger, 2009). 

 
Figure 11. Location of the sediment basin North Pond on the western flank of the Mid-Atlantic Ridge 
at 23°N (Edwards, K. J. et al., 2010).  
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1.5.4. Okinawa Trough – IODP Expedition 331 

 IODP Expedition 331 with the Japanese drilling vessel Chikyu and Anja 

Breuker onboard took place in the autumn of 2010. The drilling sites were located 

nearby the Iheya North Knoll field in the Okinawa trough. Due to previous expeditions 

(Nakagawa et al., 2005), the existence of a deep hot biosphere was supposed and 

one of the major aims of this study was to prove this hypothesis. Five sites were 

drilled and sampled for different scientific disciplines including microbiology done by 

Japanese scientist and partly within this thesis (Fig. 12). 

 

 
Figure 12. IODP Expedition 331 site map with five drilling locations in the Iheya North Knoll field in the 
Okinawa trough (Takai, K., Mottl, M.J., Nielsen, S.H., and the Expedition 331 Scientists, 2011). 

 
 Additionally, a comparative analysis concerning potential contamination of 

sediments with seawater organisms during drilling was carried out using microsphere 

beads and perfluorocarbon tracers (PFT) supplied to the sediments simultaneously 

(Yanagawa et al., 2013). 
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1.6. Aims of the study 

 The microbial communities (deep biosphere) at different sediment depths at 

the various sites introduced above were analyzed via total cell counting, real-time 

PCR (qPCR), CARD-FISH and 16S rRNA gene sequencing. By comparing the 

results with those of other laboratories for some sites in joint papers, with 

geochemical analyses and also with published data for other deep biosphere sites, 

the following research questions were addressed: 

 

Do either Bacteria or Archaea dominate and which distinct prokaryotic groups 

are most abundant in the various sediments? 

 

Besides sediment depths which other physiochemical factors in marine and 

terrestrial sediments determine the abundance of prokaryotes? 

 

Is there a relation of geological and biogeochemical stratification with special 

groups of microorganisms? 

 

Can molecular methods be sufficiently improved to investigate oligotrophic 

sediments with low abundances of microorganisms? 
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2. General discussion  

 This thesis revealed a distinct microbial composition of the deep biosphere in 

each of four different sediments. These were all separated from photosynthesis but 

differed in their characteristics and can be characterized as follows: terrestrial, marine 

hydrothermally influenced, marine mesotrophic-oligotrophic and marine deep 

oligotrophic. 

 

2.1. Abundances of microorganisms estimated by different methods 

The abundances of Bacteria versus Archaea varied strongly. Using an improved DNA 

extraction protocol, for the first time a dominance of Archaea was found for the cold 

oligotrophic sediment of a marine basin at the mid-Atlantic ridge (North Pond). A 

similar abundance of the two domains occurred in the relative organic lean sediments 

of the shallow shelf off New Jersey, and Bacteria dominated in marine sediments 

influenced by hydrothermal fluids in the Okinawa Trough off Japan as well as in the 

terrestrial sediments in the Chesapeake Bay area, VA, USA. Total cell counts (TCC) 

decreased with sediment depth and with decreasing organic carbon content in 

agreement with previous studies, and overall fitted well to the qPCR data. 

 As summarized by Schippers (Schippers, 2016) a quantification of particular 

prokaryotic groups (i.e. Bacteria and Archaea) in deep subsurface sediments has 

been done by qPCR in several studies (Inagaki et al., 2003), (Schippers et al., 2005), 

(Inagaki et al., 2006), (Schippers and Neretin, 2006), (Wilms et al., 2007), (Engelen 

et al., 2008), (Nunoura et al., 2009), (Webster et al., 2009), (Schippers et al., 2010), 

(Schippers et al., 2012), (Breuker et al., 2013), (Breuker and Schippers, 2012), 

(Ciobanu et al., 2014). Eukaryotic 18S rRNA genes were orders of magnitude less 

abundant than prokaryotic 16S rRNA genes (Schippers and Neretin, 2006), 

(Schippers et al., 2010), (Schippers et al., 2012), (Ciobanu et al., 2014). Published 

qPCR data on the abundance of Bacteria and Archaea of several sediment studies 

show that the ratio of Archaea versus Bacteria seems to be variable depending on 

the type of sediment (Breuker et al., 2013), (Breuker and Schippers, 2012) and/or the 

qPCR protocols applied in different laboratories (Lloyd et al., 2013a). Using qPCR, an 

almost equal abundance of Bacteria and Archaea has been found for the Porcupine 

Seabight (IODP Exp. 307; Webster et al., 2009), the northeast Pacific ridge-flank 

(IODP Exp. 301; Engelen et al., 2008), Sumatra forearc basins (Schippers et al., 

2010), and sediments of the Black Sea and the Benguela upwelling system off the 
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Atlantic coast of Namibia (Schippers et al., 2012). By contrast, Bacteria dominated 

other sediments such as the Sea of Okhotsk (Inagaki et al., 2003), the Gulf of Mexico 

(IODP Exp. 308), (Nunoura et al., 2009), the Peru continental margin and the 

equatorial Pacific sediments (ODP Leg 201), (Schippers et al., 2005) as well as gas-

hydrate bearing sediments from the Cascadia margin (ODP Leg 204), (Inagaki et al., 

2006) as well as very deep sediments of the Canterbury basin (IODP Exp. 317), 

(Ciobanu et al., 2014). 

 The results of the published literature in general and also those in this thesis 

support the thesis that Bacteria dominate in general in subsurface sediments and are 

in accordance with conclusions from metagenomics analyses carried out by Hug et 

al.: "Domain Bacteria includes more major lineages of organisms than the other 

Domains (sic!). We do not attribute the smaller scope of the Archaea relative to 

Bacteria to sampling bias because metagenomics and single-cell genomics methods 

detect members of both domains equally well. Consistent with this view, Archaea are 

less prominent and less diverse in many ecosystems (for example, seawater, 

hydrothermal vents, the terrestrial subsurface and human-associated microbiomes)." 

(Hug et al., 2016).  

 

2.1.1. Comparison of TCC, qPCR and CARD-FISH data for the CBIS sediments 

 The ribosomal RNA targeting method CARD-FISH was applied to the 

terrestrial CBIS sediments. For the uppermost 7 m sediment depth, CARD-FISH data 

for the domains Bacteria and Archaea were obtained (Fig. 13); in the deeper section, 

they were below the detection limit. The cell numbers were low (mean of CARD-FISH 

data: 1.38 x106 cells/g dw, standard deviation: 7.68 x105 cells/g dw, median: 1.23 x 

106 cells/g dw), whereas the TCC were much higher (mean: 3.84 x108 cells/g dw, 

standard deviation: 1.37 x109 cells/g dw, median: 1.00 x 107 cells/g dw). The mean 

relative proportion of CARD-FISH counts to the TCC was 9.72 % (median 10.87 %, 

standard deviation: 6.72 %). 

 In summary, the proportion of living cells was about one-tenth of the TCC. 

Previous studies on this topic revealed inconsistent results regarding different 

sediments and conditions. Comparison of total cell counts (AODC) and CARD-FISH 

data was performed by Schippers et al. for sediments in the open-ocean of the 

Equatorial Pacific and for the Peru ocean-margin (ODP expedition Leg 201) 

(Schippers et al., 2005). A different proportion of the AODC counts was detected by 
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CARD-FISH analysis: about one-third for the organic-poorer open-ocean and up to 

one-tenth for the organic-richer ocean-margin sediments. Schippers et al. suggested 

the better availability of different electron acceptors at the open ocean sites as an 

explanation for this difference (Schippers et al., 2005).  

 In cultivation experiments of a mixed culture of iron oxidizing microorganisms 

(Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum 

ferrooxidans) cultivated on mine tailings concentrate the CARD-FISH data were 

nearly as much as high as the TCC during the incubation experiment (Schippers et 

al., 2008). Cultivation on tailings concentrate provides optimal conditions for the cells, 

so this should promote growths and enhance the proportion of living microorganisms; 

however this laboratory experiment does not represent environmental conditions. 

Nevertheless, a high proportion of CARD-FISH cell number data as indicator for living 

microorganisms (mean of ~ 12 %) was found by Kock et al. in a study of an 

uncovered, pyrrhotite-containing mine tailings dam (Kock and Schippers, 2006). 

Selection of microorganisms and enhanced growth in the pyrrhotite enhanced 

environment compared with CBIS sediment explain the data. 

 
 
 
 
 
 
 
 
Figure 13. Depth dependent comparison of cell 
numbers determined by three different methods 
for the CBIS sediments. Black triangles: TCC, 
blue triangles: sum of qPCR cell numbers for 
Bacteria and Archaea, green triangles: sum of 
CARD-FISH cell numbers for Bacteria and 
Archaea. 
 
 
 
 
 
 
 

 

 

 More attention was given to the question of the abundances of Archaea and 

Bacteria in sediments highlighting methodological influences on the different 

proportion of FISH or CARD-FISH counts to TCC by Lloyd et al. (Lloyd et al., 2013a). 

They carried out a meta-analysis including data from 65 published studies and found 
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the relative proportion of FISH/CARD-FISH numbers to TCC to be in average ~ 40% 

for marine sediments, whereas the proportion of FISH/CARD-FISH numbers to TCC 

in seawater was clearly higher. Two reasons might explain this result: Firstly, 

seawater can be “concentrated” to overcome a low detection limit. Secondly, a high 

proportion of cells in sediments may be dead (Lloyd et al., 2013a). They also 

mentioned that below 10 mbsf the relative proportion of Archaea to all 

microorganisms increased with depths. Previous reported depths dependent 

decreasing distribution of all microorganisms as depicted by Parkes et al. (Parkes et 

al., 1994) was confirmed only for the uppermost 10 mbsf for all microorganisms, 

below 10 mbsf; Lloyd et al. found stable numbers for Bacteria calculated by qPCR 

and CARD-FISH or FISH and concluded: "Unexpectedly, the trend of decreasing 

bacteria with depth in marine sediments ended at 10 mbsf; below this depth, bacterial 

cell density was not correlated with sediment depth. This may indicate the presence 

of a more stable deep subsurface population that is better equipped for subsurface 

living."  

 Concerning the terrestrial CBIS sediment, the proportion of CARD-FISH 

counts (and also the qPCR data) of Archaea (Fig. 14) were relatively low compared 

to the meta-analysis of Lloyd et al. (Lloyd et al., 2013a). An increasing proportion for 

Archaea to the sums of Archaea and Bacteria as found by Lloyd et al. for the marine 

sediments was not observed. This might be either indicate that the terrestrial CBIS 

sediment hosts enough organic carbon and/or electron acceptors to favor bacterial 

life. Due to the very low archaeal qPCR percentages below 60 m (mean 0,36%) and 

only one maximum at 25 m (100%) it seems to be likely that Bacteria outcompete 

Archaea in this terrestrial environment (data not shown). 
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Figure 14. CBIS: Percentage of Archaea to 
prokaryotic abundance. Blue: percentage of 
archaeal qPCR data. Red: percentage of 
archaeal CARD-FISH data. 
 
 
 
 
 
 
 
 
 
 
 

 

 Nevertheless, the CBIS data do not support the explanation of Schippers et al. 

mentioned above. If organic-lean sediments harbor a higher proportion of living 

bacteria, one would expect higher CARD-FISH counts for CBIS which was not the 

case. It has to be mentioned that no comparable CARD-FISH data for a terrestrial 

sediment site with higher organic input are available to verify general differences 

between marine and terrestrial sediments. 

 A recent study by Boungiorno et al. (Bastin, 1926), (in review) attended 

methodological problems for achieving reliable CARD-FISH data for sediments. They 

investigated the proposed possible positive effects of proteinase K for a better 

detection of Archaea by CARD-FISH suggested by Lloyd et al. (Lloyd et al., 2013a). 

Deeply-buried sediments of the Baltic Sea (IODP expedition 347) were analyzed in 

parallel in two different laboratories. In both laboratories, the proposed use of 

proteinase K did not increase the yield of archaeal CARD-FISH data; (Buongiorno et 

al.). It seems unlikely that their results should not apply to the CBIS sediment and so 

the use of proteinase K would likely not yield to higher archaeal CARD-FISH counts. 

The most probable explanation for the low CARD-FISH counts of the Chesapeake 

sediment is either a loss of cells during the CARD-FISH protocol washing steps 

and/or low ribosomal contents and low activity of cells as pointed out by Buongiorno 

et al. and Schippers et al. (Schippers et al., 2005), (Buongiorno et al.) also for marine 
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sediments. Due to the fact that comparisons for different cell degradation processes 

for marine versus terrestrial sediments have not carried out, it might also be that 

dead cells are better conserved in the terrestrial sediment. In summary, the studies 

by Lloyd et al. and Buongiorno et al. indicate that FISH and CARD-FISH are not 

reliable methods for an absolute quantification of living cells; however they are 

suitable methods for a relative comparison of cell abundances in different samples of 

the same site. Consequently for the CBIS sediment, a correlation between the 

CARD-FISH counts data and TCC data could be found (Fig. 15).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. Correlation between CARD-FISH data and TCC for the uppermost 7 m at the CBIS 
sediment. 

 

 For the CBIS sediments the qPCR data of the sum of Archaea and Bacteria 

were closer to the TCC than the CARD-FISH data; however a close match of qPCR 

data and TCC was not found (Fig. 13). This finding is in agreement with Lloyd et al. 

who concluded of their meta-analysis study: "In sediments, the sum of bacterial and 

archaeal 16S rRNA gene qPCR counts was not closely related to cell counts, even 

after accounting for variations in copy numbers per genome." (Lloyd et al., 2013a). To 

estimate if total organic carbon has an influence on the TCC or the qPCR data, a 

correlation analysis between TOC/TCC and TOC/sum of qPCR data was carried out 

using the CBIS data and the New Jersey data (data not shown). For both analyses, 

there was no correlation. This result seems to be in contrast to the findings of Parkes 
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et al. and Kieft et al. (Parkes et al., 2000), (Kieft et al., 1995) who determined a 

correlation between TOC and cell counts as well as for marine and terrestrial 

sediments. An explanation might be that such a correlation is more difficult to find for 

relative organic lean sediments and the influence of other geochemical features than 

TOC might be higher for the CBIS and New Jersey sediments. 

 

2.1.2. Diversity of Bacteria in terrestrial sediments 

 For the CBIS sediment, full length 16S rRNA bacterial gene sequences were 

retrieved from 50.05 m, 74.71 m, 101 m, 108.86 m and 125.18 m depths. The 

identified bacteria belonged to Alphaproteobacteria, Gammaproteobacteria, 

Betaproteobacteria and Actinobacteria, some single 16S RNA gene sequences to 

other groups (Fig.16). These groups are typically found also in upper soils, as e.g. 

confirmed by Roesch et al., who conducted a pyrosequencing analysis of four upper 

soils in Brazil, Florida, Illinois and Canada. Hereby, the Betaproteobacteria were the 

dominant class except for a Brazilian soil and the second most abundant class were 

the Bacteroidetes (Roesch et al., 2007). 

 Similarly, these groups were identified in deep terrestrial sediments before 

(Magnabosco et al., 2016), (Boivin-Jahns et al., 1996), (Balkwill et al., 1989). A 

comparison of the 16S rRNA gene sequences of this study with the previously 

described 16S rRNA sequences from the deeper section at the CBIS sediment 

(Cockell et al., 2012) revealed no accordance indicating autochthonous microbial 

communities or selective enrichment of very low abundant Bacteria of the deeper 

section. Primer biases should play a minor role for the relatively well described 

Bacteria. Interestingly, although the qPCR analysis revealed significant copy 

numbers of the 'Atribacteria’ (OP9/JS1) and the Chloroflexi classes Anaerolineae and 

Caldinilinae, neither 16S rRNA gene sequences of the 'Atribacteria' nor Chloroflexi 

Anaerolineae and Caldinilinae were found by 16S rRNA gene analysis.  
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Figure 16. Phylogenetic tree representing the identified bacterial 16S rRNA gene sequences and 
major groups. For tree construction see appendix. 

 

 In particular, a 16S rRNA gene sequences belonging to the 'Parcubacteria' 

was retrieved from 109 m depths (Fig. 16). The 'Parcubacteria' (OD1) belong to the 

Candidate Phylum Radiation (CPR), for which Wrighton et al. found evidence to carry 

out widespread fermentation-based metabolism. They also detected several 

pathways for anoxic carbon, hydrogen and sulfur cycling in these organisms which 

share features previously documented only for Archaea (Wrighton et al., 2012). The 

genomes were collected from an anoxic aquifer five, seven and 10 days after starting 
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with addition of acetate (Wrighton et al., 2012). Reduced metabolic capabilities (no 

electron chain) were reported (Rinke et al., 2013), (Wrighton et al., 2012). Nelson and 

Stegen confirmed the reduced genome of 'Parcubacteria' which lacks specific 

encoding sequences. These encoding gene sequences are typically absent in 

symbionts and Nelson and Stegen concluded that 'Parcubacteria' might have a 

symbiotic lifestyle (Nelson and Stegen, 2015). Similarly, Hug et al. confirmed the 

small genome size and metabolic limitations in CPR Bacteria containing incomplete 

tricarboxylic acid cycles and lacking electron transport chain complexes. Conclusively 

the terrestrial deep biosphere may comprise typical soil Bacteria but also specific 

autochthonous organisms and probably even those with a symbiotic lifestyle.  

 

2.1.3. Manganese and iron reduction: The family Geobacteraceae  

 In this study Geobacteraceae were detected at the uppermost layers of the 

sediments off New Jersey, the Okinawa Trough and CBIS supporting the importance 

of this family in sediments (Holmes et al., 2002), (Holmes et al., 2007) 

Geobacteraceae were found with 1 x105 copy numbers/g dw at the uppermost soil 

layer (1 m) at CBIS. At the two marine sediments, Geobacteraceae were detected in 

lower copy numbers (mean: 6.7 x10³ copies/ml up to 13 mbsf for the New Jersey, 

mean: 2.4 x 104 copies per g wet weight for the Okinawa Trough at site C0017 up to 

30 mbsf). Abundances were in the same order of magnitude than previously reported 

data; for example in the porcupine Seabight sediments, abundances of 

Geobacteraceae varied between 0 and 104 copies/ml sediment (Webster et al., 

2009). Frerichs et al. found for upper soils of a volcanic CO2 vent system near the 

Laacher See, Eifel, Germany higher abundances of Geobacteraceae (reference site 

mean 4.97 x 106 copies/g wet weight, vent site mean 1.6 x 105 copies/g wet weight); 

the proportion of Geobacteraceae to the abundances of total Bacteria were by mean 

0.56% at the reference site and 0.12% at the CO2 vent site (Frerichs et al., 2013). For 

the CBIS sediment studied here, these values ranged from 1.35% - 22.63% (data not 

shown). Geobacteraceae were almost exclusively detected in the layers, where 

reactive iron was detected in higher concentrations (Table 4).  
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Table 4. Abundances of Geobacteraceae, total iron and reactive iron at the CBIS sediment. 
 

depths (m) Fe in % reactive Fe in % proportion of reactive Fe 
to total Fe 

Geobacteraceae: 
copy numbers/g dw 

0.23 3.94 0.07 0.02 3.35 x104 

 
0.33 2.10 0.56 0.27 1,89 x 105 
0.43 2.41 1.49 0.62 1,93 x106 

 
0.53 2.35 0.74 0.32 1,15 x 105 
0.63 2.25 1.07 0.48 7,82 x 105 
0.75 1.85 0.68 0.37 3.73 x 104 

 

A correlation between the concentration of reactive iron and Geobacteraceae 16S 

rRNA gene copy numbers was found for the CBIS sediment (Fig. 17). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17. Correlation between the concentration of reactive iron and Geobacteraceae 16S rRNA 
gene copy numbers including the data of the uppermost 7 m of CBIS sediments (no Geobacteraceae 
were identified by qPCR below this depths). 

 

These data stress, although many microorganisms are able to reduce iron, the 

ecological important role of iron(III) reducing Geobacteraceae depending on the 

concentrations of reactive iron in the sediment. 

 Concerning the New Jersey shallow shelf sediment and the recharge site 

C00017 at the Okinawa trough, no correlation could be verified between amounts of 

Geobacteraceae and iron or manganese (reactive iron and manganese for site 

C00017 and Fe2+ and Mn2+ interstitial pore water at the New Jersey shallow shelf 

sediment). This might be due to not corresponding depths of iron and manganese 

data with those of qPCR data for New Jersey. Concerning the Okinawa trough, for 
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site C0017 only a few data points for Geobacteraceae ranging from 103 -104 copies/g 

sediment were obtained. 

 

2.1.4. Analysis concerning the 'Atribacteria' (OP9/JS1) and the Chloroflexi 

classes Anaerolineae and Caldinilinae  

 Concerning the CBIS, the New Jersey and the Okinawa Trough sediment, 

qPCR data were obtained for all sites. For the CBIS and New Jersey sediments, 

members of the 'Atribacteria' JS-1 candidate division and the classes Anaerolineae 

and Caldinilineae were found over the complete sampling depths with maximal copy 

numbers of up to 1.32 x 108 copies/g wet weight at the CBIS sediment at 0.33 m 

depths (mean 1.35 x106 copies g wet weight). In the New Jersey sediment, the qPCR 

copy numbers were slightly lower (mean 3.76 x105 copies/g wet weight) and at the 

Okinawa Trough sediment, mean copy numbers were of 3.93 x106 copies/g wet 

weight were detected for site C0017 up to 30 mbsf. The 'Atribacteria' (OP9/JS1) and 

the Chloroflexi classes Anaerolineae and Caldinilinae are not restricted to special 

environments and have abundantly detected in other marine sediments as well 

(Blazejak and Schippers, 2010). Nobu et al. (Nobu et al., 2016) resumed that the 

'Atribacteria' are likely heterotrophic anaerobes that lack respiratory capacities. A 

SAG- and pyrosequencing analysis of samples of the deep marine sediment at IODP 

Site U1357 in the Adélie Basin offshore Antarctica confirms this; the results of Carr et 

al. showed evidence for sugar and amino-sugar metabolism in the atribacterial 

genomes which would produce fermentation products as acetate, ethanol and CO2 

providing substrates for methanogens (and other) (Carr et al., 2015). 

 

2.1.5. Sulfate reduction: Enumerating sulfate reducers via qPCR quantification 

of dsrA and aprA encoding genes 

 In marine sediments, sulfate reduction is a major biogeochemical process 

because a constant downward flux of seawater maintains sulfate as an electron 

donator (Jørgensen, 1982). The situation in soils is more complex due to changing 

water saturation and therefore different redox potentials and pH favoring more or less 

sulfate reduction depending on the availability of sulfate (Connell and Patrick, 1968). 

As in marine sediments, Lovley and Phillips showed for terrestrial sediments that the 

presence of ferric iron as a terminal electron acceptor outcompetes sulfate reduction 

(and methane production) (Lovley and Phillips, 1987). 
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 The functional genes of sulfate reduction dsrA and aprA were at all three 

investigated sites detectable (not done for the oxic North Pond sediments). 

Concerning the terrestrial CBIS sediment, sulfate reduction seems to play a minor 

role because aprA encoding genes occurred in low copy numbers (mean 4 x105 

copies/g dwt) at distinct layers at about 0,5 m and 80 m depths. In the New Jersey 

sediment, dsrA and aprA encoding genes were in the order of narrow 105 (mean 1.2 

x 105 copies of the dsrA gene per g sediment) with the highest copy numbers at ~ 20 

mbsf. Gene copy numbers of dsrA were generally higher than the gene copy 

numbers of aprA (mean 1.3 x 104 copies/g sediment up to 20 mbsf). Occurring only in 

a few samples, the highest copy numbers were found at ~20 mbsf similar to the dsrA 

copy numbers. The highest gene copy numbers occurred at 20 mbsf where gradients 

of porewater sulfate concentrations and alkalinity and a TOC maximum at the 

boundary between freshwater and saltwater were found. Nevertheless, it is not 

possible to discriminate clearly between freshwater intrusions and/or microbial sulfate 

reduction as mentioned by van Geldern et al. (van Geldern et al., 2013). If active 

sulfate reducers cause the peak of dsrA and aprA gene copy numbers, the electron 

donors for this process should be diffusing organic compounds from the underlying 

freshwater intrusion. The lack of the gene mcrA of methanogens and the absence of 

methane in the uppermost 50 mbsf (van Geldern et al., 2013) do not indicate sulfate 

reduction coupled to methane oxidation. 

 For the Okinawa Trough sediments, gene copy numbers were in the order of 

magnitude of 105 per g sediment for dsrA and 104 for aprA. The copy numbers were 

generally lower for the aprA gene. The gene copy numbers of dsrA and aprA 

decreased with sediment depths, following the general trend of 16S rRNA qPCR 

data. Sulfate reduction is supported by the detection of Deltaproteobacteria up to 

74.9 mbsf. Lower copy numbers of aprA and dsrA were reported from the Porcupine 

sea bight sediments with ~10³ copies/cm³ sediments as well as for the thereby 

investigated carbonate mound site and the marine sediment reference site. Up to 

nearly 108 copies/g of aprA and dsrA were reported for two sediments at the Peru 

Margin Ocean and also for one sediment of the Black Sea (station 20). The aprA and 

dsrA gene copy numbers did not vary from each other (Schippers and Blazejak, 

2011). In forearc sediment basins off Sumatra, dsrA copy numbers were between 103 

- 107 genes/ml (Schippers et al., 2010). Hereby, a high number of dsrA genes 

corresponded to the calculated sulfate reduction rates. The overall sulfate reduction 
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rates were similar to those in other deeply buried sediments but considerably lower 

than those in other near-surface sediments. Schippers et al. concluded that this might 

be due to the overall low sulfate reduction rates in the sediments off Sumatra 

(Schippers et al., 2010). A comparative analysis of sediments of the Black sea with 

sediments of the Benguela upwelling area off Namibia revealed dsrA and aprA copy 

numbers at all sites with higher copy numbers of the aprA gene at the Benguela 

upwelling sites (Schippers et al., 2012). The observed differences between dsrA and 

aprA gene copy numbers may be explained by primers specificity for the dsrA and 

aprA gene with primer mismatches for the dsrA gene. 

 Another open question to interpret the dsrA and aprA copy numbers is, 

whether the amplified dsrA and aprA genes result from different or identical 

microorganisms (Schippers and Blazejak, 2011). If the dsrA and aprA result from the 

same phylogenetic species, the qPCR copy numbers should represent the relation of 

copy numbers of the aprA gene and the dsrA gene in these species. Evidence for the 

amplification of dsrA and aprA genes resulting from the same microorganisms was 

great for the analysis of the Black Sea sediment at 2.7 mbsf due to the fact, that both 

amplified genes could be allocated to the same two species with high similarity 

(Schippers and Blazejak, 2011). However, the observed different distribution of dsrA 

and aprA gene copy numbers in this study (higher gene copy numbers for dsrA at the 

marine sediments, no dsrA gene copy numbers at the terrestrial sediment) remains to 

be clarified. The observed results underline sulfate reduction as a general microbial 

process.  

 

2.1.6. Carbon fixation: cbbl gene copy numbers 

 For the CBIS sediment, the large subunit encoding gene cbbl was detected in 

high copy numbers throughout nearly the whole sediment depths with the highest 

copy numbers at the upper two meters (up to nearly 107 copies/g dwt), the 

percentage of cbbl copy numbers was around one order of magnitude lower than that 

of Bacteria. In contrast, the cbbl gene copy numbers were found for the New Jersey 

sediment to be low (~8 x 103 copies/g sediment); the overall copy numbers were 

around two orders of magnitude lower than those of Bacteria. Previous analysis of 

cbbl copy numbers were performed for top soil samples from a long-term field 

experiment and the cbbl gene copy numbers reached up to 3.4 x 107 per g sediment 

(Selesi et al., 2007). These copy numbers were therefore in the same order of 
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magnitude as the gene copy numbers for the CBIS sediment in the uppermost soil. 

Analysis of top arable soils revealed high cbbl gene copy numbers (Yousuf et al., 

2012), (Yousuf et al., 2014). The percentage of cbbl copy numbers to bacterial copy 

numbers for the CBIS sediment were similar to one of the analyzed rhizosphere soils 

and the agriculture soil (Yousuf et al., 2012) and higher than in the other rhizosphere 

soil, the two saline soils and in the paddy soil (Table 5).  

 

Table 5. Percentages of cbbl copy numbers to total bacterial 16S rRNA gene copy numbers for 
different sediments and soils, respectively. 
 

this 
study 

this 
study 

Yousuf et 
al. 2012

1 
Yousuf et 
al. 2014

2
 

Yousuf et 
al. 2014

2
 

Yousuf 
et al. 
2014

2
 

Yousuf 
et al. 
2014

2
 

Xiao et 
al. 2014

3
 

CBIS 
sediment 

New 
Jersey 

sediment 

rhizosphere 
soil, 

agricultural 
field, India 

rhizosphere 
soil, Gujarat, 

India 

agricultural 
soil, 

Gujarat, 
India 

low 
saline 
soil, 

Gujarat, 
India 

high 
saline 
soil, 

Gujarat, 
India 

paddy 
soil, 

Taoyuan, 
China 

17.76% 0.43% 17.27% 4.62% 11.51% 0.83% 1.92% 0.57% 
 

1: (Yousuf et al., 2012), 2: (Yousuf et al., 2014), 3: (Xiao et al., 2014). 

 

 In nearly the same low copy numbers than in the New Jersey sediment, the 

cbbl gene was previously also detected in marine organic rich sediments of the Black 

Sea with copy numbers ~105 copies/ml sediment and in sediments of the Benguela 

upwelling system off the Atlantic coast (Namibia) with 103-104 copies/ml sediment 

(Schippers et al., 2012). Quantification of the cbbl gene in groundwater samples from 

two superimposed limestone aquifers located in the Hainich region in northwest 

Thuringia revealed abundances of cbbl genes ranging from 1.14 x 103 to 1.75 x 106 

genes/liter over a two year period. Hereby, up to 17% of the microbial population had 

the genetic potential to fix CO2 via the Calvin cycle (Herrmann et al., 2015). It has to 

be mentioned, that the hereby used primers were developed to detect the green like 

form of RuBisCo (Herrmann et al., 2015) which occurs in Alphaproteobacteria, 

Betaproteobacteria, Gammaproteobacteria, Cyanobacteria, Prochlorales, 

Eukaryotes-Viridiplantae (Streptophyta, Chlorophyta), Euglenozoa and the Sargasso 

Sea metagenome whereas the red like form occurs in Alphaproteobacteria, 

Betaproteobacteria, Gammaproteobacteria, Chloroflexi, Eukaryotes-Stramenopiles, 

Rhodophyta and Haptophyceae (Tabita et al., 2007).  

 In summary, in the CBIS sediment high cbbl copy numbers with a relatively 

high proportion to the total Bacteria were detected indicating that autotrophy beside 



52 

 

heterotrophy contributes to carbon cycling. This conclusion is supported by a cbbl 

gene diversity and RuBisCo activity study of different soils incubated in light and dark 

which revealed that the RuBisCo enzyme activity of these soils was closely positive 

related to the synthesis rate of soil organic carbon and the bacterial cbbl gene 

abundance (Yuan et al., 2012). 
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2.2. Phylogenetic analysis of Archaea 

 A main overview of previously identified major taxonomic isolates and recently 

identified new phyla with relationship to the hereby identified 16S rRNA gene 

sequences and the phylogenetic relationship is given in Figure 18. 

 

 

Figure 18. Phylogenetic tree representing major archaeal taxonomic lineages according Baker et al. 
(Baker et al., 2003), representative 16S rRNA gene sequences of recently proposed new phyla 
('Aigarchaeota', 'Bathyarchaeota', 'Lokiarchaeota', ‘Woesearchaota’, 'Parvarchaeota', 'Diapherotrites', 
'Thaumarchaeota', ‘Hadesarchaea’, 'Pacearchaeota') and representatives of small groups to which the 
hereby identified 16S rRNA gene sequences could be allocated. Grey branches lead to the TACK 
superphylum. Light pink branches lead to the DSAG group. For tree reconstruction see appendix, the 
tree was rooted with Aquifex. 
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 For the CBIS sediment 16S rRNA gene sequences could be affiliated to the 

phyla 'Bathyarchaeota', 'Pacearchaeota', 'Hadesarchaea' and one 16S rRNA 

sequence to the 'Aenigmarchaeota' (sequence not published, clone 1572_10, 125m 

depths), (Fig. 19a, Table 6). 

 For the New Jersey sediment, representatives of 'Thaumarchaeota', 

'Aigarchaeota', 'Lokiarchaeota', 'Bathyarchaeota', 'Aenigmarchaeota', 'Hadesarchaea' 

the THSCG group, the MBG-D/DHVEG-1 and different small euryarchaeotic groups 

(SM1K20, 20a-9, 20c-4, CCA47, AMOS1A-4113-D04) were identified (Fig. 19b, Table 

6). 

 'Lokiarchaeota' could be detected in the New Jersey sediment at 8.94 msbf. 

'Lokiarchaeota' belong to the γ-clade of the DSAG group (Spang et al., 2015). A 

comparison of 16S rRNA gene sequences for the sediment off New Jersey with the 

β1-, the β2- and α-clade as described by Spang et al. revealed allocation with the γ-

clade and therefore to the 'Lokiarchaeota' (Fig. 19b). 

 

Table 6. Overview and depths dependent phylogenetic community composition of the CBIS and the 
New Jersey sediments. The TACK superphylum is highlighted in blue. 
 
Phylogenetic classification CBIS sediment Sediment off New Jersey  

'Bathyarchaeota' all depths all depths 

'Lokiarchaota'  8.94 mbsf 

'Aigarchaeota'  8.94 mbsf, 10.23 mbsf, 12.99 mbsf 

'Thaumarchaeota'  12.99 mbsf 

polyphyletic THSCG group  8.94 mbsf, 10.23 mbsf 

'Hadesarchaea' 109 m, 125 m 8.94 mbsf, 10.23 mbsf, 12.99 mbsf 

'Pacearchaeota' 125 m  

'Aenigmarchaeota' 125 m (clone 1572_10arch, not 
published) 

8.94 mbsf, 10.23 mbsf, 12.99 mbsf 

small euryarchaeotic 
groups: SM1K20, 20a-9, 20c-
4, CCA47, AMOS1A-4113-D04 

 8.94 mbsf, 10.23 mbsf, 12.99 mbsf 

MBG-D/DHVEG-1  8.94 mbsf, 10.23 mbsf, 12.99 mbsf 
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Figure 19a. Tree of main phylogenetic groups with the hereby identified 16S rRNA gene sequences of 
the CBIS sediment excluding bathyarchaeotal 16S rRNA gene sequences. For tree construction see 
appendix. 
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Figure 19b. Tree of main phylogenetic groups with the hereby identified 16S rRNA gene sequences of 
the New Jersey sediment excluding bathyarchaeotal 16S rRNA gene sequences. For tree construction 
see appendix. 
 
 Jørgensen et al. observed a significant correlation between the relative 

abundance of DSAG 16S rRNA genes and the content of organic carbon and a 

significant co-variation with iron oxide and dissolved iron and manganese with the 

abundances of DSAG copy numbers in sediment near Loki’s castle vent field in the 

rift valley of the Arctic mid ocean ridge. They concluded, that DSAG Archaea are 

directly or indirectly linked to iron and manganese cycling (Jørgensen et al., 2013). In 

this study, 'Lokiarchaeota' were only retrieved from a depths of 8.94 mbsf, a depth 

with a total organic carbon content of 0.12 w% and extrapolated manganese and iron 

porewater concentration of 7.96 µM and 16.11 µM respectively (data not shown). 

Compared to the Loki's sediment, manganese and iron concentration in the sandy 
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part of the New Jersey sediments are relative low. On the other hand, at depths with 

higher iron concentrations in the pore water and higher organic content, e.g. 12.99 

mbsf, no 'Lokiarchaeota' were detected. Nevertheless, 'Lokiarchaeota' might be 

involved in in manganese and iron cycling at the New Jersey sediment as suggested 

by Jorgensen et al. because concentrations do not reflect the fluxes and therefore a 

direct comparison may fail even if 'Lokiarchaeota' are active. 

 'Aigarchaeota' represented by the first described genome sequence of 

Candidatus 'Caldiarchaeum subterraneum' (Nunoura et al., 2011) were identified at 

8.94 mbsf, 10.23 mbsf and 12.99 mbsf in the New Jersey sediment. Besides sharing 

the ubiquitin modification system and a topoisomerase I B encoding gene with the 

Eukarya (Nunoura et al., 2011) and their deeply branching rooting concerning 

phylogeny, the predicted gene set suggests the potential of chemolithotrophic growth 

in 'Aigarchaeota' using hydrogen or carbon monoxide as electron donor and oxygen, 

nitrate or nitrite as electron acceptor (Nunoura et al., 2011). A characteristic marker of 

'Aigarchaeota' seems to be the presence of a heme copper (terminal) oxidase 

complex, which might be an indicator of the predicted use of oxygen as terminal 

electron acceptor although other electron acceptors (nitrate, nitrite, sulfate) are 

discussed (Hedlund et al., 2014), (Beam et al., 2016). As a possible carbon fixation 

pathways in 'Aigarchaeota' an incomplete dicarboxylate/4-hydroxybutyrate pathway 

missing the 4-hydroxybutyryl-CoA dehydratase was described for 'Caldiarchaeum 

subterraneum' (Nunoura et al., 2011), (Hedlund et al., 2014). Recently, metabolic 

reconstruction of genomic and metatranscriptomic data from Candidatus 'Calditenuis 

aerorheumensis' suggested an aerobic, chemoorganoheterotrophic lifestyle with 

autotrophic potential (Beam et al., 2016). Similar as for Candidatus 

'Caldiarcharchaeum subterraneum', an incomplete 3-hydroxypropionate/4-

hydroxybutyrate cycle was detected. Samples of this analysis were retrieved from an 

alkaline siliceous geothermal spring located in the White Creek Area of the Lower 

Geyser Basin Region of YNP, WY, USA. The hereby described 'Aigarchaeota' are 

distributed in geothermal environments with temperatures ~ 68 - 87 °C (and 

moderately acidic to alkaline pH values, pH: ~5 - 9) (Beam et al., 2016). Although the 

temperature of the New Jersey sediment was not measured during sampling, such 

high temperatures up to 13 mbsf could be excluded and therefore the aigarchaeotal 

New Jersey 16S rRNA gene sequences are not typical. In fact, a check of all 

aigarchaeotal 16SrRNA gene sequences available at the silva arb website (www.arb-
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silva.de) revealed that a minority of ~25% sequences of all aigarchaeotal 16S rRNA 

gene sequences are not from geothermal isolation sources. 

 16S RNA gene sequences belonging to the THSCG group were detected at 

8.94 mbsf and 10.23 mbsf at the New Jersey sediment. The THSCG group is a 

polyphyletic group with relationships to the 'Aigarchaeota' and 'Bathyarchaeota'.  

 'Thaumarchaeota' were identified in the New Jersey sediment at 12.99 mbsf 

but not in upper layers. This group is dominant in prokaryotic picoplankton in 

seawater below 3000 m depths comprising there a major portion of all Archaea 

(Karner et al., 2001). In marine sediments above two meter below seafloor, they are 

the most abundant archaeal group (Parkes et al., 2014). The first cultured 

representative is the candidate 'Nitrosopumilus maritimus', a chemolithoautotrophic 

microorganism that oxidizes ammonia to nitrite (Könneke et al., 2005). Indications for 

nitrification by 'Thaumarchaeota' were also provided by Tully and Heidelberg for 

sediments of the South Pacific Gyre by metagenomics analysis (Tully and 

Heidelberg, 2016). Teske and Sorensen concluded: “The habitat preference of MG-I 

Archaea for the surface layers of oxidized, organic poor marine sediments is 

consistent with an aerobic metabolism and an ability to take up inorganic dissolved 

carbon and to fix carbon autotrophically.” (Teske and Sørensen, 2008). 

 'Bathyarchaeota' were detected at all depths in the CBIS sediment and in the 

New Jersey sediment. Phylogenetic analysis of archaeal 16S rRNA gene sequences 

confirmed that 'Bathyarchaeota' are a widespread group; they constituted 90% of all 

clones of the clone library for the terrestrial CBIS sediment and 76 % of all clones of 

the clone library of the marine New Jersey sediment (data not shown). A meta-

analysis of 11 studies by Fry et al. found that 33% of all archaeal clones belonged to 

the 'Bathyarchaeota' (Fry et al., 2008). Although clone library abundances do not 

represent real abundances, these much higher abundances may be explained by 

high percentages of primer mismatches for the hereby used primer ARC958R (more 

than 80%) of all analyzed clones in DHVE-6 group (Euryarchaeota), the DSAG/MBG-

B group ('Lokiarchaeota') and the MG-1 ('Thaumarchaeota') (Teske and Sørensen, 

2008) as shown in Table 7. This would lead to an overestimation of 'Bathyarchaeota'; 

nevertheless 16S rRNA gene sequences of the groups with a high proportion of 

mismatches could be detected in the CBIS sediment as well as in the New Jersey 

sediments. 
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Table 7: Evaluation of the mismatches of primer ARC958r which was used in this study according the 
data of Teske et al. (Teske and Sørensen, 2008). 
 
phylogenetic group sequences with 

mismatches 
sequences 
analyzed 

percentage of 
sequences with 

mismatches 

SAGMEG: 'Hadesarchaea' 1 10 10% 

DSAG/MBG-B: including the 
'Lokiarchaeota' 

6 7 86% 

MCG: 'Bathyarchaeota' 0 1 0% 

DHVE-6 (including the 
'Pacearchaeota') 

14 14 100% 

MG-1: 'Thaumarchaeota' 17 18 94% 

MBG-D: 'Aenigmarchaeota' 2 4 50% 

other Euryarchaeota 10 24 42% 

other Crenarchaeota 10 16 6% 

 

At 125 m depths of the CBIS sediments and all depths of the New Jersey sediments 

bathyarchaeotal 16S rRNA gene sequences could be allocated to MCG-8/MCG-G 

subgroup (Fig. 21 and 22) for which Meng et al. found indications that members of 

this group may have the ability to utilize aromatic compounds (hereby, 

protocatechuate was used in a feeding experiment) (Meng et al., 2014). 

 SAG analysis showed the possible coexistence of the Embden-Meyerhoff-

Pathway for glycolysis beside parts of the CO2 fixating acetyl-CoA pathway (Wood-

Ljungdahl-Pathway) in 'Bathyarchaeota' (Evans et al., 2015). Acetyl-CoA is hereby a 

central metabolite interlinked between pyruvate from glycolysis and 

methyltetrahydromethanopterin (in one of the analyzed genomes, BA1, associated 

with MCG-3, Fig. 21, Fig. 22). He et al. classified BA1 as a member of MCG-3 (He et 

al., 2016). Methyltetrahydromethanopterin itself can be produced from CO2 fixation 

on the one hand and on the other hand from methyl compound oxidation whereas the 

enzyme for energy conservation via methanogenesis (methyl-

tetrahydromethanopterin: coenzyme M methyltransferase complex, MTR) is absent 

(Evans et al., 2015). Both analyzed genomes harbor the machinery for the CoM-S-S-

CoB cycling with mcrABG (amongst others) homologs (Evans et al., 2015). 

Interestingly, the analyzed genomes lack ATP synthase encoding genes. This raises 

the question, for which reaction the methane cycling machinery is used. It also 
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restricts the microorganisms to substrate level phosphorylation. In conclusion, Evans 

et al. showed for one of the analyzed bathyarchaeotal genomes (BA1) that parts of 

the Wood-Ljungdhal pathway may contribute for CO2 fixation and that glycolysis (via 

Embden-Meyerhoff pathway) and non hydrogenotrophic methanogenesis may 

contribute to energy generation (Evans et al., 2015). Linked over parts of the 

methanogenic machinery, methyl compounds may contribute to carbon assimilation 

(Evans et al., 2015). Similarly, parts of the Wood-Ljungdhal pathway and the Emden-

Meyerhoff pathway were found in other bathyarchaeotal genomes (He et al., 2016), 

(Lazar et al., 2016). For the second analyzed bathyarchaeotal genome (BA2, Fig. 21 

Fig. 22), Evans et al. predicted the use of fatty acids for energy metabolism via 

acetyl-CoA/acetate and also possible the incorporation of acetate as a carbon source 

via acetylCoA into biomass due to the identified metabolism genes (Evans et al., 

2015). Concerning 16S rRNA gene analysis, BA2 is associated with subgroup MCG-

8/MCG-C or, depending on strictness of phylogenetic interpretation, a member of 

subgroup MCG-8/MCG-C for which 16S rRNA gene sequences from 125 m depths in 

the CBIS sediment and all depths in the New Jersey sediment could be allocated 

(Fig. 21, Fig. 22, He et al., 2016). Concerning methanogenesis, a surprising result of 

the study of Evans et al. is that there is substantial mcrA gene diversity outside of the 

phylum Euryarchaeota. Evans et al. showed that the commonly used mcrA primers 

have mismatches to the previously identified euryarchaeotal mcrA genes and 

therefore amplification of the mcrA with the available PCR primers gene may fail. In 

conclusion, "The congruent topologies of these gene trees support the hypothesis 

that the MCR complex has coevolved as a functional unit and that methane 

metabolism was present in the last common ancestor of Euryarchaeota and 

Bathyarchaeota.’ (Evans et al., 2015). Nevertheless, not all analyzed bathyarchaeotal 

genomes harbor mcrA genes (Evans et al., 2015). He et al. found the presence of the 

Wood-Ljungdahl pathway for carbon fixation beside parts of the tricarboxylic acid 

cycle and the acetogenesis pathway but not the mcr gene (key enzyme) for 

methanogenesis in bathyarchaeotal genomes (He et al., 2016). For the role of 

'Bathyarchaeota' they proposed acetogenesis as an important archaeal pathway in 

marine sediments (He et al., 2016) (Fig. 20). 
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Figure 20. Proposed bathyarchaeotal contribution at marine carbon cycling. Picture from “The 
Scientist”, (http://www.the-scientist.com/?articles.view/articleNo/46336/title/A-New-Role-for-Marine-
Archaea/). 

 

Due to low abundances of the mcrA and dsrA gene, Lever et al. compiled that 

methanogenesis and sulfate reduction in the deep subsurface biosphere only support 

a small fraction of the total biomass in the deep biosphere unless the microorganisms 

involved in these processes are too genetically different to be detected with 

conventionally methods (Lever, 2013). Hence, the recently detected dissimilarity of 

mcrA genes in 'Bathyarchaeota' and Euryarchaeota (Evans et al., 2015) underlines 

the importance of methane cycling in deeply buried sediments and argues for the 

latter hypothesis implicating an important role of the detected bathyarchaeotal 16S 

rRNA sequences in the CBIS and the New Jersey sediments. 

 'Pacearchaeota' were detected in the CBIS sediment at 125 m depths. 

'Pacearchaeota' (and ‘Woesearchaeota’) were detected in high abundances in 

surface waters of high-altitude Pyrenean lakes. Hereby, the relative abundances of 

'Pacearchaeota' (and ‘Woesearchaeota’) correlated significantly and positively with 

the phylogenetic diversity of bacterial communities supposing interactions between 

theses archaeal groups and Bacteria (Ortiz-Alvarez and Casamayor, 2016) in the 

high alpine freshwater lakes. Although the total diversity of Bacteria at the CBIS 

sediment was relatively low, it can be asserted that there was no loss in diversity of 
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Bacteria with depths and interactions between the bacterial community and 

'Pacearchaeota' would be reasonable.  

 'Hadesarchaea' were detected at both sampling sites and all depths except at 

16.71 mbsf in the New Jersey sediment. 

 'Aenigmarchaeota' were identified up to 12.99 mbsf in the New Jersey 

sediment and with one clone at 125 m depths in the CBIS sediment. 

 
Figure 21 (this side) and 22 (next side): Diversity of the 'Bathyarchaeota'. Colored clades: described 
phylogenetic groups according to Meng et al. and Kubo et al., proposed related phyla. For tree 
construction see appendix. 
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3. Short summary of publications and author’s contribution 

Chapter 4.1. The deep biosphere in terrestrial sediments of the Chesapeake 

Bay impact structure, Virginia, USA 

 For the first time, quantitative data of Bacteria and Archaea as well as 

phylogenetic and functional microbial groups in organic lean terrestrial sediment were 

obtained. Iron(II) and manganese(IV) reducing Bacteria of the family 

Geobacteriaceae were almost exclusively found in the uppermost meter, where 

reactive iron was detected in higher amounts. By 16S rRNA gene sequencing typical 

soil bacteria were found. Concerning Archaea, new members of the proposed phyla 

'Hadesarchaea', 'Aenigmarchaeota', 'Pacearchaeota' and 'Bathyarchaeota' were 

detected. 

Authors: Anja Breuker, Gerrit Köweker, Anna Blazejak and Axel Schippers 

Author’s contribution: 

Anja Breuker conducted and evaluated the cloning experiments, evaluated and 

partially conducted the qPCR experiments and evaluated the total cell counts. Gerrit 

Köwecker partially conducted the qPCR experiments and the total cell counting. 

Anna Blazejak obtained the samples, amended and reviewed the manuscript. Anja 

Breuker and Axel Schippers designed the experiments and wrote the manuscript. 

(Frontiers in Microbiology, 2, 2011) 

 

Chapter 4.2. Microbial community analysis of deeply buried marine sediments 

of the New Jersey shallow shelf (IODP Expedition 313)  

 Analysis of the organic lean sediments of the shallow shelf at New Jersey 

revealed similar abundances for Bacteria and Archaea by qPCR and relatively low 

total cell counts below 107 cells per ml sediment. In the lowermost part up to 50 mbsf 

Bacteria dominated. The bacterial candidate division JS1 and the classes 

Anaerolineae and Caldinilineae of the phylum Chloroflexi supplied a high proportion 

of Bacteria. Similarly, high dsrA gene copy numbers were found for sulfate reducers. 

Geobacteriaceae (Fe(III) and Mn(IV) reducers) in the uppermost 15 mbsf correlated 

with the concentration of manganese and iron in the pore water. Diversity analysis by 

16S rRNA gene sequencing via clone libraries revealed a high proportion of the 

'Bathyarchaeota' (formerly MCG, Miscellaneus Crenarchaeotic Group) with a high 

intragroup diversity. 16S rRNA gene sequences of the Euryarchaeota, the   DHVEG-

6/MBG-D group and the proposed phyla 'Thaumarchaeota', 'Aenigmarchaeota', 
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'Aigarchaeota', 'Lokiarchaeota' and 'Hadesarchaea' with typical subsurface groups 

were identified. Representatives of small groups were also detected. A detailed depth 

distribution analysis with correlations to geochemical features was carried out.  

Authors: Anja Breuker, Susanne Stadler and Axel Schippers 

Author’s contribution: 

Susanne Stadler obtained the samples. Anja Breuker did the TCC - calculations and 

conducted the qPCR experiments with the help of the laboratory technicians. Anja 

Breuker conducted and evaluated the cloning and sequencing experiments. Anja 

Breuker interpreted the data set with the help of Susanne Stadler and Axel 

Schippers. Susanne Stadler reviewed and amended the manuscript. Anja Breuker 

and Axel Schippers designed the experiments and wrote the manuscript. 

(FEMS Microbiology Ecology, 85, 578–592, 2013) 

 

Chapter 4.3. Data Report: Total cell counts and qPCR abundance of Archaea 

and Bacteria in shallow subsurface marine sediments of North Pond: Gravity 

cores collected on site survey cruise prior to IODP Expedition 336 Higher 

abundances of Archaea than Bacteria in the very oligotrophic sediment of the North 

Pond basin were found. This result supports the thesis, that Archaea are specialized 

to extreme environments (Valentine, 2007). The methods for qPCR and TCC 

especially for Archaea in this carbonate rich sediment were improved. 

Authors: Anja Breuker and Axel Schippers 

Author’s contribution: 

Axel Schippers obtained the samples. Anja Breuker prepared the TCC and the qPCR 

experiments with the help of the laboratory technicians. Anja Breuker interpreted the 

data set. Anja Breuker and Axel Schippers designed the experiments and wrote the 

manuscript. 

(In: Edwards, K. J., Bach, W., Klaus, A., and the Expedition 336 Scientists, 

Proceedings of the Integrated Ocean Drilling Program, Volume 336, 2013) 

 

Chapter 4.4. Microbial community stratification controlled by the subseafloor 

fluid flow and geothermal gradient at the Iheya North hydrothermal field in the 

mid-Okinawa trough (Integrated Ocean Drilling Program Expedition 331). 

 The multiphasic approach investigation of the proposed recharge site of the 

Iheya North Knoll hydrothermal field in the Mid-Okinawa Trough raised insights in a 
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stratification controlled microbial community up to 151 mbsf. The sediments were 

composed of hemipelagic muds and volcaniclastic deposits. Members of the 

Chloroflexi and Deep Sea Archaeal Group mainly colonized the low-temperature 

hemipelagic sediments. In contrast, the interbedded coarse-grained pumiceous 

gravels were dominated by 16S rRNA gene sequences of Marine Group I/ 

'Thaumarchaeota'. In summary, the pore water chemistry together with the microbial 

community analysis supports strongly a potential recharging flow of oxygenated 

seawater. Below this layer, the detection of an uncultivated lineage of the Hot Water 

Crenarchaeotic Group I ('Aigarchaeota') may be associated with hydrothermal fluids. 

Authors: Katsunori Yanagawa, Anja Breuker, Axel Schippers, Manabu Nishizawa, 

Akira Ijiri, Miho Hirai, Yoshihiro Takaki, Michinari Sunamura, Tetsuro Urabe, Takuro 

Nunoura, and Ken Takai 

Author’s contribution: 

Anja Breuker obtained the samples. Anja Breuker conducted and evaluated the 

qPCR experiments with the help of laboratory technicians. Anja Breuker and 

Katsunori Yanagawa conducted the TCC. Katsunori Yanagawa designed the study 

and wrote the manuscript with the help of all coauthors. 

(Applied and Environmental Microbiology, 80, 6126–6135, 2014) 

 

Chapter 4.5. Defining boundaries for the distribution of microbial communities 

beneath the sediment-buried, hydrothermally active seafloor. 

 Investigations of the microbial community beneath an active hydrothermal vent 

at the Iheya North hydrothermal field in the Mid-Okinawa Trough detected microbial 

cells, metabolic activities and molecular signatures in the shallow sediments down to 

15.8 m bsf. Profiles of methane and sulfate concentrations and the isotopic 

compositions of methane suggested the laterally flowing hydrothermal fluids inputs of 

phase-separated hydrothermal fluids and infiltrated seawater and influenced the in 

situ microbial anaerobic methane oxidation. 16S rRNA gene phylotypes found in the 

deepest habitable zone were related to those of thermophiles, although sequences 

typical of known hyperthermophilic microbes were absent from the entire core. The 

results shed new light on the distribution and composition of the boundary microbial 

community close to the high-temperature limit for habitability in the subseafloor 

environment of a hydrothermal field. 

Authors: Katsunori Yanagawa, Akira Ijiri, Anja Breuker, Sanae Sakai, Youko Miyoshi, 
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Shinsuke Kawagucci, Takuroh Noguchig, Miho Hiraih, Axel Schippers, Jun-ichiro 

Ishibashi, Yoshihiro Takaki, Michinari Sunamura, Tetsuro Urabe, Takuro Nunoura 

and Ken Takai.  

Author’s contribution: 

Anja Breuker obtained the samples. Anja Breuker conducted and evaluated the 

qPCR experiments with the help of a laboratory technician. Anja Breuker and 

Katsunori Yanagawa conducted the TCC experiments. Katsunori Yanagawa 

designed the study and wrote the manuscript with the help of all coauthors. 

(The ISME Journal, 11, 529–542, 2017.) 
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Abstract 

 

For the first time quantitative data on the abundance of Bacteria, Archaea and 

Eukarya in deep terrestrial sediments are provided using multiple methods (total cell 

counting, quantitative real-time PCR (Q-PCR) and catalyzed reporter deposition – 

fluorescence in situ hybridization (CARD-FISH)). The oligotrophic (organic carbon 

content of ~ 0.2 %) deep terrestrial sediments in the Chesapeake Bay area at 

Eyreville, Virginia, USA, were drilled and sampled up to a depth of 140 m in 2006. 

The possibility of contamination during drilling was checked using fluorescent 

microspheres. Total cell counts decreased from 109 to 106 cells per g dry weight (dw) 

within the uppermost 20 m, and did not further decrease with depth below. Within the 

top 7 m, a significant proportion of the total cell counts could be detected with CARD-

FISH. The CARD-FISH numbers for Bacteria were about an order of magnitude 

higher than those for Archaea. The dominance of Bacteria over Archaea was 

confirmed by Q-PCR. The down core quantitative distribution of prokaryotic and 

eukaryotic small subunit ribosomal RNA genes as well as functional genes involved 

in different biogeochemical processes was revealed by Q-PCR for the uppermost 10 

m and for 80-140 m depth. Eukarya and the Fe(III)- and Mn(IV)-reducing bacterial 

group Geobacteriaceae were almost exclusively found in the uppermost meter 

(arable soil), where reactive iron was detected in higher amounts. The bacterial 

candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum 

Chloroflexi, highly abundant in marine sediments, were found up to the maximum 

sampling depth in high copy numbers at this terrestrial site as well. A similar high 

abundance of the functional gene cbbL encoding for the large subunit of RubisCO 

suggests that autotrophic microorganisms could be relevant in addition to 

heterotrophs. The functional gene aprA of sulfate reducing bacteria was found within 

distinct layers up to ca. 100 m depth in low copy numbers. The gene mcrA of 

methanogens was not detectable. Cloning and sequencing data of 16S rRNA genes 

revealed sequences of typical soil Bacteria. The closest relatives of the archaeal 

sequences were Archaea recovered from terrestrial and marine environments. 

Phylogenetic analysis of the Crenarchaeota and Euryarchaeota revealed new 

members of the uncultured SAGMEG, DHVEG6, and MCG clusters. 
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1. Introduction 

 

The Earth’s deep biosphere includes a variety of subsurface habitats, such as mines 

and deep aquifer systems in the continental realm, and sediments and igneous rock 

in the marine realm. It has been estimated that nearly half of total biomass on Earth 

resides in the deep biosphere (Whitman et al.., 1998). However, the existing data 

used to generate this global census are highly skewed and in reality reflect habitat 

accessibility. Deeply-buried marine sediments are among the best studied deep 

biosphere habitats. They are populated by a huge number of prokaryotes mainly 

belonging to uncultivated phylogenetic lineages (Parkes et al.., 2000; Teske, 2006; 

Teske and Sørensen, 2008; Biddle et al.., 2008; Fry et al.., 2008). The abundance of 

particular phylogenetic and physiological prokaryotic groups, i.e. Archaea and 

Bacteria, methanogens or sulfate reducers, in deeply-buried marine sediments has 

been quantified based on 16S rRNA and functional gene analysis by quantitative, 

real-time PCR (Q-PCR), FISH and CARD-FISH (catalyzed reporter deposition – 

fluorescence in situ hybridization; Schippers et al.., 2005; Biddle et al.., 2006; Inagaki 

et al.., 2006; Schippers and Neretin, 2006; Engelen et al.., 2008; Nunoura et al.., 

2009; Webster et al.., 2009).  

The terrestrial deep subsurface biosphere has been studied so far only by total cell 

counting, cultivation techniques as well as by molecular 16S rRNA gene diversity 

analyses. The hard rock terrestrial deep biosphere in e.g. granite, basalt or 

metabasalt has been mainly explored by groundwater analyses rather than by deep 

rock drilling (Stevens and McKinley, 1995; Pedersen, 1993; 1997; Fredrickson et al.., 

1997; Chapelle et al.., 2002; Moser et al.., 2003; Lin et al.., 2006; Hallbeck and 

Pedersen, 2008; Sahl et al.., 2008; Borgonie et al.., 2011; Itävaara et al.., 2011).  

Deep subsurface terrestrial sediments defined as deeper than 30-35 m (Balkwill et 

al.., 1989) have just begun to be studied by molecular techniques. Cell numbers 

determined by total cell counting or cultivation indicate that a correlation of cell 

numbers with depth as described for marine sediments (Parkes et al.., 1994; 2000) 

does not exist. Fry et al.. (2009) did not find a decrease in cell numbers with depth in 

a terrestrial drill core of 148 m length including an interbedded coal deposit in New 

Zealand. Hoos and Schweisfurth (1982) also did not find a decreasing number of 

colony forming units (CFU) with depth after analyzing cultivable aerobic and 

anaerobic bacteria up to a sediment depth of 90 m in Lower Saxony, Germany. The 
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lack of decreasing cell numbers with sediment depth is also supported by AODC and 

CFU numbers in coastal plain and fluvial sediment cores from South Carolina 

(Savannah River Site) and Washington State (Hanford Site), USA, sampled up to 265 

m depth (Balkwill et al.., 1989; Sinclair and Ghiorse, 1989; Fredrickson et al.., 1991; 

Kieft et al.., 1995) and Creataceaous sedimentary rock in New Mexico, USA at 190 m 

depth (Takai et al.., 2003).  

Analysis of the microbial diversity by 16S rRNA gene sequencing revealed the 

dominance of the following prokaryotic groups in deep terrestrial sediments. Most 

abundant among the Bacteria were Proteobacteria, Actinobacteria, Firmicutes, 

Chloroflexi, members of the Geobacteraceae family, sulfate-reducers, denitrifiers, 

fermenters, and acetogens. The most frequently occurring Archaea were the 

Miscellaneous Crenarchaeotic Group, Methanosarcinales and Methanobacteriales 

(Boivin-Jahns et al.., 1996; Chandler et al.., 1997; Detmers et al.., 2001; 2004; 

Inagaki et al.., 2005; Takai et al.., 2003; Kovacik et al.., 2006; Brown and Balkwill, 

2009; Fry et al.., 2009). 

Organic carbon seems to be most important for the long term survival of 

microorganisms in the terrestrial deep biosphere because a correlation was found 

between total organic carbon (TOC) and direct counts, basal respiration as well as 

aerobic glucose mineralization (e.g. Kieft et al.., 1995). 

The aim of this study was a comprehensive microbial community analysis of deep 

terrestrial sediments in order to provide missing quantitative data on the abundance 

of prokaryotes in the terrestrial deep biosphere. As terrestrial study site, deep 

sediments up to a depth of 140 m in the Chesapeake Bay area at Eyreville, Virginia, 

USA, were chosen. Total cells stained with SYBR Green were counted with three 

different methods and the microbial diversity was explored by 16S rRNA gene cloning 

and sequencing. In addition, Q-PCR and CARD-FISH were applied for the first time 

to study the deep biosphere in terrestrial sediments. With these quantitative methods, 

16S rRNA and functional genes of phylogenetic and physiological prokaryotic groups 

relevant in deeply-buried marine sediments were analyzed. 
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2.  Materials and Methods 

 

2.1.  Site and sediment description  

 

The Chesapeake Bay impact structure (CBIS), Virginia, USA, was formed during the 

late Eocene meteoric impact approximately 35.5 million years (Ma) ago. It has been 

explored by an international team of scientists in a project of the International 

Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey 

(USGS, Gohn et al.., 2006; 2008; 2009). A cross-section figure showing main 

features of the CBIS and the drill site location is shown elsewhere (Gohn et al.., 

2008). The CBIS project acquired continuously cored sections from three holes 

drilled to a composite depth of 1766 meters at a site within the central zone of the 

structure at the Eyreville drill site near Cape Charles, Virginia, USA. The drill bit 

penetrated a 1322-meter-thick section of impact-related rocks and sediments and an 

overlying 444-meter-thick section of post-impact sandy and clayish sediments. The 

latter consist of upper Eocene to Pliocene (~5.3 to ~1.8 Ma) continental-shelf 

sediments and Pleistocene (~1.8 to ~0.01 Ma) non-marine sediments. The upper 140 

meters (Miocene to Pleistocene) studied here were cored in Eyreville hole C during 

April and May 2006. In this depth interval, the porosity is between 36 to 54 %, and 

the pore water chemistry indicates freshwater conditions, however the NaCl 

concentration is ~ 0.2 % at 100 m depth and increases to ~ 1 % at the bottom of the 

core (Gohn et al.., 2006; 2008; 2010). In this study only post-impact sediments up to 

140 m depth not influenced by the meteoric impact were analyzed.  

 

2.2. Sediment sampling 

 

In this study, cores from Eyreville hole C were sampled for terrestrial microbial 

community analysis. 50 sediment samples were taken from the surface (arable soil) 

down to a depth of up to 140 m. To avoid contamination, samples for microbiological 

analysis were only taken from the centre of each sediment core (63.5 mm diameter) 

using sterilized cut 5 mL syringes or sterilized spatulas. Depth intervals for sampling 

were selected based on the quality of the cores with a higher depth resolution near 

the surface and a lower one at greater depth. As a contamination control, fluorescent 

microspheres were applied during coring for every second core and samples were 
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taken from the periphery as well as the centre of the cores for microscopic inspection 

as previously described (Kallmeyer et al.., 2006; Gohn et al.., 2009). Four samples 

could be identified as potentially contaminated and were not further analyzed.  

For CARD-FISH and counting total cells with fluorescence microscopy, sediment 

samples were fixed in 4% formaldehyde-PBS (phosphate buffered saline) as 

described by Llobet-Brossa et al.. (1998) and finally stored at -20°C in PBS-ethanol 

(1:1). For DNA based molecular as well as geochemical analysis, a parallel set of 

samples was directly frozen at - 20°C. All samples were transported to BGR frozen 

with dry ice as air-freight, and afterwards stored at - 20°C until analysis. 

 

2.3.  Geochemical analysis 

 

The elemental composition of the solid material was determined by XRF analysis 

(Philips PW 2400). Total organic carbon (TOC) and the total amount of carbon (TC) 

and sulfur (TS) were measured with the instrument LECO CS 200 (LECO 

Corporation). TC and TS were measured after acid removal of carbonates. Reactive 

iron was extracted with buffered citrate-dithionite as described by Canfield (1989), 

and measured by ICP-OES (Jobin Yvon Emission 166 Ultrace HR 1000). 

 

2.4.  Total cell counts and CARD-FISH 

 

Total cell numbers were determined in formaldehyde fixed samples by staining with 

SYBR Green II following three different protocols. Cells were counted in the sediment 

matrix as described by Weinbauer et al.. (1998) and were detached from sediment 

particles before counting as described by Kallmeyer et al.. (2008) and Lunau et al.. 

(2005). The latter protocol was modified by replacing the ultrasonic bath with an 

ultrasonic probe. Catalyzed reporter deposition – fluorescence in situ hybridization 

(CARD-FISH) was carried out as described (Pernthaler et al.., 2002, Schippers et 

al.., 2005) and filters were hybridised for Archaea and Bacteria using probes 

ARCH915 or EUB338 I-III as a mixture. As a negative hybridization control the probe 

NON338 was applied. For contamination control fluorescent beads of bacterial size 

were used and counted.  
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2.5.  Quantitative, real-time PCR (Q-PCR) analysis 

 

The quantitative composition of the microbial community was analyzed by Q-PCR 

after DNA extraction. High-molecular-weight DNA was extracted from 0.5 g of a 

frozen sediment sample following a modified FastDNA Spin Kit for Soil (Bio101) 

protocol (Webster et al.., 2003). Sterilized quartz sand treated in a muffle furnace for 

organic carbon removal was used as negative control in the extraction procedure. 

Extracted DNA was amplified by Q-PCR using the device ABI Prism 7000 (Applied 

Biosystems) and master mixes from the companies Applied Biosystems, Eurogentec 

or Invitrogen. Each DNA extract was measured in triplicate. After each Q-PCR, 

melting curves were measured for SYBR Green I assays. The copy numbers of the 

16S rRNA gene were quantified for Archaea (Takai and Horikoshi, 2000), Bacteria 

(Nadkarni et al.., 2002), the JS-1- and Chloroflexi-related bacteria (Blazejak and 

Schippers, 2010), and the Fe(III)- and Mn(IV)-reducing family Geobacteraceae 

(Holmes et al.., 2002). The 18S rRNA gene of Eukarya was determined as previously 

described (Schippers and Neretin, 2006). Functional genes were quantified as 

described: mcrA for methyl coenzyme M reductase subunit A (Wilms et al.., 2007), 

aprA for adenosine 5´-phosphosulfate reductase subunit A (Blazejak and Schippers, 

submitted), and cbbL for the large subunit of the enzyme ribulose-1.5-bisphosphate 

carboxylase/oxygenase (RubisCO, form I ‘red-like’; Selesi et al.., 2007). 

 

2.6.  Cloning and sequencing 

 

High-molecular-weight DNA was extracted from 0.5 g of a frozen sediment sample as 

described above. Four depths (75 - 108 m) were analysed for bacterial 16S rRNA 

gene sequences and two depths (108 - 125 m) were analysed for archaeal 16S rRNA 

gene sequences. PCR reactions were carried out with the 1.1 or 2 Master Mix® 

(Thermo Scientific). PCR for Bacteria was carried out with the universal primers 

GM3f (AGA GTT TGA TCM TGG C) and GM4r (TAC CTT GTT ACG ACT T) (Muyzer, 

1995). The following thermocycling conditions were used: one cycle at 95 or 96°C for 

5 min; 26-30 cycles at 95° or 96°C for 1 min, 42°C for 1 min, and 72°C for 3 min; and 

one cycle at 72°C for 7 min. PCR for Archaea was carried out with the primers 109f 

(ACK GCT CAG TAA CAC GT) (Grosskopf et al.., 1998) and 912r (CTC CCC CGC 

CAA TTC CTT TA) (Lueders and Friedrich, 2000). These thermocycling conditions 
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were used: one cycle at 95 °C for 5 min; 26-30 cycles at 95°C for 1 min, 52°C for 1 

min, and 72°C for 3 min; and one cycle at 72°C for 6 min. Cloning in Escherichia coli 

was carried out with the pGEM-t-Easy Vector Systems (Promega®) Kit following the 

instruction manual. For screening of 16S rRNA genes, 96 clones per sample were 

randomly picked. For template DNA, a small amount of cells from each clone colony 

was picked with a sterile toothpick and suspended in 20 µl of sterile water. One or 

two microliter of this template DNA, after preheating to 95°C for 2 min, were amplified 

by PCR as described above by using a 25-50 µl (total volume) mixture. PCR products 

of the correct size (~1,500 bp resp. 850 bp) were purified with the QIAquick PCR 

Purification Kit (Quiagen®) or directly send for sequencing. Sequencing reactions 

were carried out by Seqlab Laboratories, Göttingen, Germany. Sequences were 

edited with BioEdit (www.mbio.ncsu.edu/BioEdit/bioedit.html). A negative DNA 

extraction control without sediment was treated in parallel. For Bacteria, PCR 

products were also obtained for this negative control (presumably contaminants). The 

negative control of the PCR reaction itself was negative. In conclusion presumably 

contamination happened during the DNA extraction procedure. Fifty clones resulting 

from the negative control were analyzed using BLAST. Partial sequences from 

sediment samples which exhibited more than 98% similarity to the assumed 

contaminants were not included in the analysis of bacterial 16S rRNA gene 

sequences. For Archaea, the negative DNA extraction control did not result in a PCR 

product. All archaeal sequences were aligned by using the SINA Webaligner 

(www.arb-silva.de/aligner) or the integrated Aligner of the ARB software (www.arb-

home.de; Ludwig et al.., 2004) and were manually adjusted. Closest relatives of all 

bacterial and archaeal 16S rDNA sequences found with BLAST 

(www.ncbi.nlm.nih.gov) were also included in the phylogenetic analysis. For tree 

construction, sequences were grouped together in a clone family if they exhibited 99 

% sequence identity using similarity matrix in the ARB software.  

Rarefaction curves were calculated with the mothur software (www.mothur.org; 

Schloss et al.., 2009). 
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2.7.  Phylogenetic analysis  

 

Chimera check was done with the Greengenes Bellerophon program 

(greengenes.lbl.gov/cgi-bin/nph-index.cgi). The closest sequence relatives of the 16S 

rRNA gene sequences based on BLAST searches were imported into ARB and 

aligned using the integrated aligner and manually adjusted. The 16S rRNA gene 

sequence data were analyzed with the ARB software package (www.arb-home.de). 

Phylogenetic trees were calculated by performing distance matrix methods 

(Neighbour Joining with 1000 bootstrap values, both with the Jukes-Cantor correction 

(Jukes and Cantor, 1969)), maximum parsimony analysis and Maximum-Likelihood 

analysis. For tree reconstruction only sequences with more than 800 bp were used. 

Phylogenetic trees were calculated via ARB using the Maximum-Likelihood method. 

The closest sequence relatives and representatives of the major taxonomic groups 

were included (Baker et al.., 2003). Similarity analysis and clone grouping was done 

with the ARB similarity matrix with Jukes Cantor correction (Jukes and Cantor, 1969). 

The phylogenetic groups were arranged according to Teske and Sorensen (2008) 

and Spang et al.. (2010). 

 

3.  Results  

 

In this study, we analyzed the microbial ecology and bulk geochemistry of 50 

samples from the post-impact Chesapeake Bay impact structure (CBIS) terrestrial 

sediment from land surface (arable soil) up to a depth of 140 m. 

 

3.1.  Geochemical results  

 

Data for the geochemical solid phase analysis of 48 sediment samples are 

summarized in Table 1. Total organic carbon (TOC) as substrate for heterotrophic 

microorganisms remained low in the complete sediment depth range with a mean 

value of ~ 0.2 % and a maximum value of 0.9 % (w/w) characterizing the sediments 

as oligotrophic. Reactive iron, relevant for Fe(III)-reducing microorganisms, was more 

than twice as high in the uppermost meter than the mean for the total 140 m (data not 

shown). 
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3.2.  Microbiological results 

 

3.2.1. Total cell counts and CARD-FISH 

 

Total cells stained with SYBR Green were counted following three different protocols. 

Depth profiles of total cell counts are shown in Fig. 1. For all three protocols, the 

maximal cell counts were detected near the surface. The total cell counts indicate a 

logarithmic decline with depth within the upper 20 m, and show no significant depth 

correlation between 20 and 140 m. The method comparison shows that the highest 

cell counts for all depths were obtained with the protocol without detaching cells from 

sediment particles after Weinbauer et al. (1998). Maximum cell counts of more than 

109 cells / g at the surface declined to about 106 cells / g at 20 m depth. Below 20 m, 

counts were highly variable and not correlated with depth. In comparison, the overall 

counts obtained with protocols in which the cells were detached from sediment 

particles before counting gave about half an order of magnitude (Kallmeyer et al.., 

2008) and about one order of magnitude (Lunau et al.., 2005, modified) lower cell 

counts. 

A comparison of the highest total cell counts after Weinbauer et al.. (1998) with 

numbers of living Bacteria and Archaea obtained by CARD-FISH is given in Fig. 2 for 

the top 7 m sediment depth. A significant proportion of the total cell counts could be 

detected with CARD-FISH. Interestingly, the CARD FISH numbers for Bacteria were 

about an order of magnitude higher than those for the Archaea. At some depth 

Archaea were not detectable at all. Below 7 m sediment depth the CARD-FISH cell 

signals were below the detection limit of 105 cells / g. 

 

3.2.2. Quantitative microbial community analysis by Q-PCR  

 

Results of Q-PCR analysis for the uppermost 10 m depth and for 80-140 m depth are 

shown in Fig. 3. The Q-PCR data on bacterial 16S rRNA gene copy numbers 

matched well with the total cell counts after Weinbauer et al.. (1998). Archaea were 

found in lower copy numbers than the Bacteria in the top ten meters. At 80-140 m 

depth, Archaea were detected only at a few depths, and always in lower copy 

numbers using Q-PCR. Thus, the dominance of Bacteria over Archaea in the CBIS 

post-impact sediment was confirmed by Q-PCR and CARD-FISH. 
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In addition to the prokaryotic domains Bacteria and Archaea, Eukarya and specific 

prokaryotic groups were quantified via Q-PCR by 16S rRNA or functional gene 

quantification. Eukarya and the Fe(III)- and Mn(IV)-reducing bacterial group 

Geobacteriaceae were found in the uppermost meter (arable soil) only (besides at 4 

m). In the uppermost meter, reactive iron was detected in higher amounts as a 

potential electron acceptor for the Geobacteriaceae. The bacterial candidate division 

JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi, highly 

abundant in marine sediments (Blazejak and Schippers, 2010), were found in high 

copy numbers up to the maximum sampling depth of 140 m. A similar high 

abundance was found for the functional gene cbbL coding for the large subunit of the 

form I ‘red-like’ ribulose 1.5-bisphosphate carboxylase/oxygenase (RubisCO) 

occurring in autotrophic Proteobacteria that fix CO2 via the Calvin-Benson-Bassham 

(CBB) cycle (Selesi et al.., 2007; Badger and Bek, 2008). The functional gene aprA 

coding for adenosine 5´-phosphosulfate reductase occurring in sulfate reducing 

bacteria was found within distinct layers up to ca. 100 m depth. The gene mcrA for 

methyl coenzyme M reductase of methanogenic Archaea could not be detected.  

 

3.2.3. Microbial diversity 

 

In order to reveal the prokaryotic diversity in the CBIS sediment, a phylogenetic 

analysis of 16S rRNA gene sequences from four depths for Bacteria and two depths 

for Archaea was performed. The results for the Bacteria are shown in Table 2, those 

for the Archaea in Fig. 4 - 7. Overall, the bacterial diversity seems to be very low. 

This finding may partly be a result of the limited number of reported bacterial clone 

data. Many bacterial clones had to be excluded since their 16S RNA gene sequences 

exhibited more than 98 % similarity (checked with BLAST) to the 16S rRNA gene 

sequences obtained from the negative DNA extraction control with no sediment 

(contaminants). Sequences of the remaining bacterial 16S rRNA genes revealed 

typical soil bacteria (Table 2).  

The analysis of 16S rRNA gene sequences of Archaea from two depths, 109 m and 

125 m, resulted in 13 and 103 clones which could be allocated to the phyla 

Euryarchaeota or Crenarchaeota, respectively. The rarefaction curves of the 16S 

rRNA gene sequences indicate a good coverage of the archaeal diversity as can be 

seen in the flattening of the two curves (Fig. 4). The composition of the archaeal 
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community shows a similar ratio of euryarcheotic and crenarcheotic contingents (109 

m: 5 euryarchaeotal sequences, 58 crenarchaeotal sequences, 125 m: 8 

euryarchaeotal sequences, 57 crenarchaeotal sequences) for the two analyzed 

sediment depths (Fig. 5).  

The phylogenetic analysis with different methods (ARB neighbor joining with 1000 

bootstraps, maximum parsimony method, data not shown) gave similar results as the 

maximum likelihood analysis. Phylogenetic trees for the two archaeal phyla, 

Euryarchaeota and Crenarcheaota, are shown in Figs. 6 and 7. Two euryarcheotic 

clone groups, E1 and E2, could be allocated to the South African Gold Mine Group 

(SAGMEG). Group E1 clustered together with a clone received from deeply-buried 

sediments of the Peru margin (AB177011). Group E2 represents a novel 

phylogenetic subgroup of archaeal sequences with less than 98 % similarity to its 

closest sequence, AY093454. A third clone group, E3 could be allocated to the Deep 

Sea Hydrothermal Vent Euryarchaeotal Group 6 (DHVE6). The 16S rRNA gene 

sequence similarity to its closest sequence EU750878 is less than 89 %. Both 

SAGMEG and DHVE6 contain 16S rRNA gene sequences of terrestrial as well as of 

marine origin (Teske and Sørensen, 2008). The three clone groups could be 

allocated to the two different depths. Group E1 includes only sequences from 109 m 

depth while group E2 and E3 include only sequences from 125 m depth.  

All 16S rRNA gene sequences from the phylum Crenarcheaota belong to the 

Miscellaneous Crenarcheotic Group (MCG). Sequences received could be grouped 

into eight different clone groups. Five groups (C1, C2, C3, C6, C7) represent new 

phylogenetic clusters with less than 99 % similarity to their closest related sequences 

in GenBank. Some clone groups were found in one sample only (e.g. C7, 109 m; C4, 

125 m), while others occurred in both samples. Interestingly, the clone groups C3a 

(125 m) and C3b (109 m) are related to each other and belong together to a new 

cluster, but the similarity between C3a and C3b is 96.7 % and thus below the species 

level. 
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4.  Discussion 

 

4.1.  Abundance of total and living cells 

 

The microbial community in terrestrial sediments up to a depth of 140 m in the 

Chesapeake Bay area, Virginia, USA, was thoroughly analyzed by SYBR Green total 

cell counting, Q-PCR and CARD-FISH, and 16S rRNA gene cloning. The organic 

carbon content is low (mean ~ 0.2 %) in these oligotrophic deep terrestrial sediments, 

thus little substrate is available for sustaining a thriving heterotrophic microbial 

community. Nevertheless total cell counts after Weinbauer et al.. (1998) and Q-PCR 

data exhibited an average of about 106 cells / g between 20 m and 140 m depth 

without a decrease with depth. In comparison, the overall counts obtained with 

protocols that detached cells from sediment particles before counting resulted in one 

(Lunau et al.., 2005) to half (Kallmeyer et al.., 2008) an order of magnitude lower cell 

counts. This difference between the protocols can be explained by a loss of cells 

during the detachment procedure and/or counting of unspecific signals without 

detaching cells from sediment particles. A comparison of the total cell counts with the 

16S rRNA gene copy numbers of Bacteria obtained by Q-PCR gives the best match 

with the highest cell counts (Weinbauer et al.., 1998). Thus, cell loss during the cell 

detachment procedures seemed to be more relevant than an overestimation by 

counting unspecific signals. Although the detachment protocols likely result in an 

underestimate of total cell numbers, the protocols are suitable for sediments in which 

the numbers of microorganisms are below 105 cells per mL sediment (D´Hondt et al.., 

2009; Schippers et al.., 2010).  

The CARD-FISH bacterial cell numbers reflecting living cells were lower than the total 

cell numbers (Weinbauer et al.., 1998) which may indicate a minor proportion of living 

cells or overlooked CARD-FISH cells due to insufficient cell staining. More evidence 

for living cells was provided by cultivation experiments (unpublished). In these 

experiments, fresh samples from various depths were incubated for several months. 

A strong CO2 release was observed in aerobic and in anaerobic cultures with or 

without addition of Fe(III) as a terminal electron acceptor, indicating microbial activity 

under these conditions. Assays with additional sulfate and nitrate did not show 

evolution of CO2 (Michael Siegert and Martin Krüger, personal communication).  
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In a previous study of the deeper sediments of the terrestrial Chesapeake Bay impact 

structure (CBIS) at the same drill site total cell counts were obtained after staining 

with DAPI and exhibited significantly higher numbers, between 106 and 108 cells per 

g with high variation over the depth interval 140 - 444 m of the post-impact CBIS 

sediment (Gohn et al.., 2008). The total cell counts increased with depth below 140 m 

of the post-impact sediment. One explanation for this finding might be the changing 

lithology connected to a dramatically changing TOC content with depth. The post-

impact CBIS sediments from 140 - 444 m consist of a generally fine-grained upper 

Eocene to upper Miocene sediment with about a 10times higher TOC content than 

the coarser grained upper Miocene to Pleistocene section above 140 m (Gohn et al.., 

2009). Most likely the higher TOC content at greater depth sustains significantly more 

cells than in the upper oligotrophic sediment. These data represent the first 

observation of a significant increase of cell counts with depth in deep terrestrial 

sediment. The relevance for a lithological control on the deep biosphere has been 

previously pointed out for deeply-buried marine sediments (Coolen et al.., 2002; 

Inagaki et al.., 2003; Parkes et al.., 2005). Below the post-impact CBIS terrestrial 

sediments in the geologically different zones of sediment breccias, schist, pegmatite 

and granite (444-1766 m depth) the total cell numbers were considerably lower (104 

and 106 cells per g or not detectable) (Gohn et al.., 2008). The novel actinobacterium 

Tessaracoccus profundi was isolated and described from a depth of 940 m (Finster et 

al.., 2009).  

The average total cell numbers of about 106 cells / g between 20 m and 140 m depth 

found in this study are in the same order of magnitude or somewhat higher than 

those found in other deep terrestrial sediments in a similar depth range by total cell 

counting or by cultivation (Hoos and Schweisfurth, 1982; Balkwill et al.., 1989; 

Fredrickson et al.. 1991; Kieft et al.., 1995; Takai et al.., 2003; Fry et al.., 2009). 

These studies are in agreement with our study, and did not find a decrease in cell 

numbers with depth. This is in contrast to marine sediments for which a correlation of 

cell numbers with depth was described (Parkes et al.., 1994; 2000; Schippers et al.., 

2005). The reason for the difference in cell numbers vs. depth in marine and 

terrestrial sediments is unknown but has considerable importance for the estimation 

of the global abundance of prokaryotes on Earth (Whitman et al.., 1998) as 

previously stated (Fry et al.., 2009). 
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4.2.  Abundance of Bacteria versus Archaea 

 

This study is the first providing quantitative data on the abundance of Bacteria and 

Archaea in deep terrestrial sediment. The dominance of Bacteria over Archaea in the 

CBIS post-impact terrestrial sediment was confirmed by Q-PCR and CARD-FISH. 

The proportions of Bacteria and Archaea in marine sediments have shown to be 

highly variable in different sediments and sediment layers and conflicting results have 

been published for analyses of nucleic-acids (Q-PCR and CARD-FISH) and intact 

polar lipids (IPL) of cell membranes (Inagaki et al.., 2003; 2006; Schippers et al.., 

2005; 2010; Biddle et al.., 2006; Schippers and Neretin, 2006; ; Wilms et al.., 2007; 

Engelen et al.., 2008; Lipp et al.., 2008; Nunoura et al.., 2009; Webster et al.., 2009). 

Schouten et al.. (2010) and Logemann et al.. (2011) reported about a fossilization of 

archaeal IPL biomarkers in marine sediments indicating that IPL biomarkers detect 

fossil signals rather than living Archaea, thus putting their proposed dominance in the 

marine deep biosphere into question. 

Another explanation for the conflicting results is given by mismatches of archaeal 

primers and probes with 16S rRNA gene sequences of the dominant archaeal groups 

in marine sediments and therefore a potential underestimation of archaeal cell 

numbers by nucleic-acid based methods (Teske and Sørensen, 2008). A comparison 

of our archaeal Q-PCR results with our clone library data for the samples at 109 and 

125 m revealed a discrepancy of the two methods which used different primers and 

probes. While in the clone library several different groups were found, Q-PCR did not 

result in archaeal 16S rRNA gene amplification. For Q-PCR, we used the primers 

Arch349F and Arch806R, and the TaqMan probe Arch516 (Takai and Horikoshi, 

2000). According to Teske and Sørensen (2008) the primer Arch349F has several 

mismatches within the groups SAGMEG, DHVE6 and MCG. We checked the primer 

Arch349F against our sequences and found more than five mismatches with some 

sequences. Similarly, probe Arch516 and primer Arch806R matched only when at 

least three (probe Arch516F) and two (primer Arch806R) mismatches were allowed. 

This finding elucidates the necessity for the development of novel archaeal Q-PCR 

assays. 

 

 

 



83 

 

4.3. Abundance of specific taxa and of functional genes 

 

The detection of the functional gene cbbL coding for the large subunit of the form I 

‘red-like’ RubisCO in many samples in relatively high copy numbers in our study 

indicates that autotrophic Proteobacteria are relevant in the deep terrestrial 

sediments as well. However, their abundance is at least an order of magnitude lower 

than the 16S rRNA gene copy number of the dominant Bacteria, thus heterotrophic 

bacteria play the mayor role in the deep terrestrial sediment despite the low content 

of organic carbon. However, heterotrophs were also found in oligotrophic deeply-

buried marine sediments (D´Hondt et al.., 2004). 

The bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae 

of the phylum Chloroflexi comprised a higher proportion of the Bacteria, but these 

specific groups with almost no cultivated representatives are less abundant than in 

marine sediments where almost identical 16S rRNA gene copy numbers for the 

specific groups and the Bacteria were found (Webster et al.., 2004; 2011; Blazejak 

and Schippers, 2010). 

Fe(III)-, Mn(IV)-, and sulfate-reducers, methanogens as well as Eukarya quantified 

via general 18S rRNA genes (Eukarya), specific 16S rRNA genes (Geobacteriaceae) 

or functional genes (aprA, mcrA) play a minor or no role in the deep post-impact 

CBIS terrestrial sediment while these groups were regularly detected in subsurface 

marine sediments (Schippers and Neretin, 2006; Wilms et al.., 2007; Engelen et al.., 

2008; Nunoura et al.., 2009; Webster et al.., 2009; Schippers et al.., 2010). Eukarya 

and Geobacteriaceae were found in the uppermost meter of the CBIS drill site where 

reactive iron and presumably eukaryotic DNA from farming in the arable soil is 

available. Deeper eukaryotic DNA was detected in one sample only. Due to the low 

TOC and sulfate content of the terrestrial sediment, sulfate reduction and 

methanogenesis are expected to be less relevant than in deeply-buried marine 

continental margin sediments with a higher TOC content (D´Hondt et al.., 2004; 

Parkes et al.., 2005; Schippers et al.., 2005; Schippers and Neretin, 2006; Teske, 

2006). Both processes are also less relevant in oligotrophic deeply-buried marine 

sediments (D´Hondt et al.., 2004; Sørensen et al.., 2004; Teske, 2006; Nunoura et 

al.., 2009) in agreement with our terrestrial study. 
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4.4. Diversity of Bacteria and Archaea 

 

The bacterial 16S rRNA gene sequences belong to three classes: 

Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria. All bacterial 16S 

rRNA gene sequences have more than 98.9% similarity to sequences of cultivated 

heterotrophic bacteria. Almost all of the identified bacteria were previously found in 

other deep terrestrial sediments (Balkwill et al.., 1989; Boivin-Jahns et al.., 1996)  

The phylogenetic analysis of the Archaea identified euryarcheotic as well as 

crenarcheotic 16S rRNA gene sequences including novel phylogenetic clusters 

related to lineages that do not yet contain cultivated representatives. The 

euryarcheotic clone groups E1 and E2 belong to the South African Gold Mine Group 

(SAGMEG). This group includes 16S rRNA gene sequences found in a South African 

gold mine and sequences from the deep marine subsurface (Teske and Sørensen, 

2008). Fry et al.. (2009) also found euryarcheotic sequences belonging to SAGMEG 

in deep terrestrial sediments including an interbedded coal deposit. Sequences 

isolated from hot springs (Greece) or dolomite aquifers (South Africa) also belong to 

the SAGMEG (Fig. 6). In conclusion this group seems not to be restricted to the deep 

subsurface biosphere, and occurs in marine and terrestrial environments. Similarly, 

the Deep Sea Hydrothermal Vent Euryarchaeotal Group 6 (DHVE6) to which clone 

group E3 belongs includes terrestrial and marine sequences. The DHVE6 group 

defined by Takai and Horikoshi (1999) includes sequences from deep sea 

hydrothermal vents in the Eastern Pacific Ocean. Successively, sequences from 

different habitats could be affiliated to this group; examples are from a hydrothermal 

field at 13°N, 141°W in the South Pacific Rise (Nercessian et al.., 2003) and from 

ODP Site 1231 at the Peru Basin (Sørensen et al.., 2004). The closest relative to the 

group E3 is a sequence from a highly stratified meromictic lake on Ellesmere Island 

that is characterized by a high salinity in deeper layers (Poliot et al.., 2009). Further 

related 16S rRNA sequences derive from habitats with high salinity: from a 

hypersaline microbial mat at Guerrero Negro, Mexico (Robertson et al.., 2009) and 

from a commercial gas-water-producing well water in Japan which contains ancient 

seawater at depths of 347-1132 m (Mochimaru et al.., 2007). In conclusion the novel 

group E3 seems to be related to clones that derive from environments with higher 

salinity (Fig. 6). The DHVE6 group is affiliated with reduced (metal-) sulfides at vent 

structures (Takai and Horokoshi, 1999), reduced iron and manganese species 
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(Sørensen et al.., 2004), hydrogen sulfide (Robertson et al.., 2009) and/ or high 

salinity (Robertson et al.., 2009; Poliot et al.., 2009). 

All crenarcheotic clones found in this study belong to the Miscellaneous 

Crenarcheotic Group (MCG). This group contains a huge number of diverse 

phylogenetic lineages from different, partially extreme habitats from terrestrial and 

marine origin (Teske and Sørensen, 2008). We identified clone groups which have 

closely related sequences from other environments (C5, C8, Fig. 7), and also several 

novel groups with a relatively high distance to the closest related sequences (C1, 

C2). As summarized by Teske and Sorensen (2008), the MCG appears to be 

heterotrophic, which corroborates our Q-PCR data on the dominance of heterotrophic 

prokaryotes (see above), despite the low TOC content (in particular 0.24 % for 109 m 

and 0.28 % for 125 m depth). 

 

Conclusions 

 

For the first time quantitative data on the abundance of Bacteria, Archaea and 

Eukarya in deep terrestrial sediments are provided using multiple methods (total cell 

counting, CARD-FISH and Q-PCR). This was done together with the description of 

the bacterial and archaeal lineages and the quantification of specific taxa and of 

functional genes. The presence of a significant fraction of rRNA containing, viable 

bacterial and archaeal cells as revealed by CARD-FISH despite low levels of organic 

carbon is a relevant finding in this study. The dominance of Bacteria over Archaea 

resulted from CARD-FISH and Q-PCR data. Other major findings are the discovery of 

new sequence clusters within previously described cren- and euryarchaeotal lineages 

and the presence of high copy numbers of cbbL encoding for the large subunit of the 

form I ‘red-like’ RubisCO suggesting that autotrophic Proteobacteria could be 

relevant in addition to heterotrophs in the terrestrial deep subsurface. 
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Table 1 Geochemical solid phase analysis of 48 sediment samples. Mean and (standard deviation) 

are given in % (w/w). 

 

Total organic C Total C Total P Total S Total Fe Reactive Fe 

0.18 (0.2) 0.61 (0.62) 0.03 (0.02) 0.65 (0.77) 2.02 (1.6) 0.32 (0.4) 

 

Table 2 Summary of the phylogenetic analysis of bacterial 16S rRNA genes in terrestrial CBIS post-

impact sediment. 

 

Clone 

group 

Number of 

clones 

Depth 

[m] 

Class Next cultivated neighbour Similarity 

[%] 

Bact 1 21 101, 

109, 

125 

Gammaproteobacteria Pseudomonas stutzeri, 

strain ATCC 17588, 

AF094748 

> 98.8 

Bact 2 2 101, 

109 

Gammaproteobacteria Pseudomonas guineae, 

strain LMG 24016T, 

AM491810, 

> 99 

Bact 3 12 109, 

125 

Gammaproteobacteria Acinetobacter lwoffii, strain 

DSM 2403, X81665 

> 98.8 

Bact 4 2 125 Alphaproteobacteria Mesorhizobium amorphae, 

strain ACCC19665, 

AF041442 

> 99 

Bact 5 2 75, 101 Alphaproteobacteria Acidocella aluminidurans, 

strain AL46, AB362219 

> 98.8 

Bact 6 16 109 Actinobacteria Arthrobacter humicola, 

strain KV-653, AB279890 

> 99 
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Figure 1: Total cell counts for the terrestrial CBIS post-impact sediment obtained with three different 
methods (black: method Weinbauer et al.., 1998; red: method Kallmeyer et al.., 2008; blue: method 
Lunau et al.., 2005).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: CARD-FISH numbers for Bacteria (blue) and Archaea (red) displayed with total cell counts 
(black: Weinbauer et al.., 1998) for the uppermost 8 m of the terrestrial CBIS post-impact sediment. 
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Figure 3: Real-time PCR (Q-PCR) data for the terrestrial CBIS post-impact sediment in the uppermost 
10 m depth (A, B), and in 80-140 m depth (C, D). Different phylogenetic groups, blue: Bacteria, red: 
Archaea, green: Eukarya, brown: Geobacteriaceae, black: JS1- Chloroflexi (A, C); functional genes, 
red: aprA, blue: cbbL (B, D). 
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Figure 4: Rarefaction curves for the archaeal 16S rRNA gene sequences from 109 m depth (red) and 
125 m depth (blue). Outer and inner lines: high and low confidence interval (95 %). OTU: operational 
taxonomic unit; cut off of OTU’s = 1%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Figure 5: Analysis of the composition of the archaeal community in the terrestrial CBIS post-
impact sediment at 109 m and 125 m depth. 
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Figure 6: Maximum-Likelihood phylogenetic tree of the Euryarcheota showing clades found in 
terrestrial CBIS post-impact sediment. The tree was rooted with Cenarcheum symbiosum as a 
representative of the deeply branched group “Thaumarcheota”. SAGMEG = South African Gold Mine 
Group, DHVE6 = Deep Sea Hydrothermal Vent Euryarchaeotal Group 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Maximum-Likelihood phylogenetic tree of the Crenarcheota showing clades found in 
terrestrial CBIS post-impact sediment. The tree was rooted with Cenarcheum symbiosum as a 
representative of the deeply branched group “Thaumarcheota”. MCG = Miscellaneous Crenarcheotic 
Group. 
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Introduction 

 

The total number of prokaryotes in deeply buried marine sediments decreases with 

sediment depth and varies over orders of magnitude in different areas of the ocean. It 

is mainly controlled by the content of organic carbon in the sediment as the microbial 

substrate (Parkes et al., 1994; D´Hondt et al., 2004; Schippers et al., 2005; Edwards 

et al., 2012; Kallmeyer et al., 2012; Lomstein et al., 2012; Schippers et al., 2012; 

Hoehler and Jørgensen, 2013). Organic-lean, oligotrophic, and oxic sediments of the 

Pacific host oxygen-respiring prokaryotes (Røy et al., 2012). Specific archaeal 

communities for sediments with different trophic states could be detected (Durbin and 

Teske, 2012). An open question is if Bacteria or Archaea dominate in oligotrophic 

sediments as previously discussed for eutrophic sediments based on qPCR analysis 

(Schippers et al., 2005, 2012). Similar to oligotrophic Pacific sediments, oligotrophic 

(total organic carbon ~0.15% ± 0.07%) and oxic sediments from the North Pond area 

in 7 m.y. old western flank of the Mid-Atlantic Ridge 23°N have been shown to 

contain molecular oxygen down to more than eight meters sediment depth. Aerobic 

respiration likely dominates organic carbon oxidation (Ziebis et al., 2012). During a 

site survey cruise prior to the IODP North Pond Expedition 336, sediment cores were 

collected to 8 m below seafloor. We sampled these cores to count total cells and 

determine the abundance of Bacteria and Archaea by pPCR using modified 

protocols. 
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Materials and Methods 

 

Organic-lean, oligotrophic, oxic sediments from the North Pond area in 7 m.y. old 

western flank of the Mid-Atlantic Ridge 23°N were sampled during the IODP 

Expedition 336 site survey cruise with the German research vessel Maria S. Merian 

in 2009 (MSM 11/1). Sediment cores (12 cm diameter) were successfully retrieved at 

6 locations within the North Pond basin between 4040 and 4480 m below sea level 

by using gravity corers (Ziebis et al., 2012). These cores extended up to 8 m below 

the seafloor. Once recovered on deck, these cores were quickly cut into 1 m sections 

that were immediately carried to the cold storage room. Each 1 m section was 

subsequently split into half-core sections. From one half, samples for microbiological 

analysis were taken from the interior portion of the half core by excavation with a 

sterilized spoon, and the outer cm layer was left in the core liner to avoid 

contamination with seawater. In addition to the gravity cores, an additional 21 

sediment samples from the shallow subsurface (0 - 15 cm depth) were taken with the 

ROV Jason II (push cores) during another cruise of the Maria S. Merian in 2011 

(MSM 20/5). 

For total cell counting, 1 mL of each sediment sample was preserved in 9 mL of  

0.2 µm sterile filtered 2% formaldehyde in seawater. In the home laboratory, 100 µL 

of fixed sediment was transferred in a 2 mL Eppendorf tube and suspended in 1 mL 

0.1 mM hydrochloric acid (after autoclaving sterile filtered) to dissolve carbonates. 

Samples were shaken for 5 min and centrifuged for 20 min at 16,000 g. Afterward, 1 

mL supernatant was carefully removed. The pellet was suspended in 1 mL TE buffer 

and centrifuged. This step was repeated. The pellet was suspended with 900 µL TE 

buffer followed by an ultrasonic treatment for 20 s (Weinbauer et al., 1998). A 

subsample (100 µL) was stained on filters with SYBR Green as described elsewhere 

(Lunau et al., 2005). Cells were counted using fluorescence microscopes (Weinbauer 

et al., 1998). 

For qPCR, samples were immediately frozen at –20°C after sampling onboard. 

Samples were transported and stored frozen in the home laboratory. For DNA 

extraction from thawed samples, a published protocol for DNA extraction (Webster et 

al., 2003) with an additional preceding acid treatment step with iodic acid was applied 

to dissolve carbonates and to improve DNA extraction from cells. Kates et al. (1965) 

published a protocol to break up ether bonds in cell walls of microorganisms using 
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iodic acid. According to the described procedure we applied iodic acid, but in a lower 

concentration and a shorter incubation time (0.1 mol/L vs. ~8 mol/L and 10 min vs. 

24h). We assumed that the modified method dissolved the carbonates and/or 

partially disrupted the cell walls (in particular archaeal ether bondings) but did not 

lyse the cells. FAST-Prep® tubes without matrix were filled with 0.5 g sediment and 

centrifuged for 30 s at 14,000 g. Afterward, 1 mL of 0.1 µm filtered 0.1 M iodic acid 

was added and the pellet was suspended on a shaker for 10 min. The tubes were 

heated for 10 min at 80°C and centrifuged for 15 min at 16,000 g. A subsample of 1 

mL supernatant was removed, and 1 mL TE-buffer was added to the pellet and 

vortexed. After centrifugation this washing step was repeated. The previously 

removed matrix was added, and the further procedure followed the protocol of the 

manufacturer with addition of polyadenine (Webster et al., 2003). Empty tubes were 

used as a negative control. Extracted DNA was amplified in triplicate by qPCR using 

the device ABI Prism 7000 (Applied Biosystems). Published assays for the 

quantification of the 16S rRNA gene copy numbers of Archaea (Takai and Horikoshi, 

2000) and Bacteria (Nadkarni et al., 2002) were applied. 16S rRNA gene copy 

numbers were converted to cell numbers using conversion factors of 1.5 for Archaea 

and 4.1 for Bacteria, as previously done (Schippers et al., 2005). 

The reliability of our new protocols was tested in spiking experiments in which 

known numbers of distinct organisms were added to a sediment sample and the 

recovery of cells was determined. Different numbers of cells of gram-negative 

(Escherichia coli), and gram-positive (Bacillus subtilis) bacteria and archaea 

(Methanohalobium evestigatum), were suspended in sediment samples and the 

recovery of the cells was determined (Fig. 1). The new procedure considerably 

improved the cell number recovery. In addition, the acid dissolution of carbonates 

was confirmed by scanning electron microscopy of samples before and after acid 

treatment (Fig. 2). 
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Results and Conclusions 

 

In agreement with published data for other oligotrophic sediments (Kallmeyer et al., 

2012), our data show overall low cell numbers decreasing with sediment depth (Fig. 

3). An average ~1–2 orders of magnitude higher abundance of Archaea than of 

Bacteria was found, in contrast to the previously studied rather organic carbon-rich 

sediments with a much higher qPCR abundance of Bacteria (Schippers et al., 2005, 

2012). The near-surface sediment samples up to 15 cm depth showed mean values 

(and standard deviation) of 2.2 x 108 (1.9 x 108) cells/mL for Archaea, and 1.5 x 107 

(1.8 x 107) cells/mL for Bacteria. These qPCR data reflect the dominance of Archaea 

even at the sediment surface. As an explanation for their dominance, Archaea are 

likely better adapted to low energy flux (Valentine, 2007) and have therefore an 

advantage over Bacteria in oligotrophic sediments in contrast to eutrophic sediments 

(Schippers et al., 2005, 2012). Another explanation is the deposition of archaeal cells 

from the water column and their preservation in the sediment. Karner et al. (2001) 

counted pelagic cells of Crenarchaeota, Euryarchaeota and Bacteria by fluorescence 

in situ hybridisation in the open ocean up to 5000 m water depth (station in North 

Pacific subtropical gyre). In their results the fraction of Crenarchaeota relative to total 

DNA containing prokaryotes equaled or exceeded the bacterial fraction below 1000 

m. Further work on the composition of the microbial communities should reveal their 

origin and function in the oligotrophic subsurface sediments. 
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Fig. 1. qPCR analysis of sterilized North Pond sediments spiked with 106 cells /g of different species. 
Black: Total cell counts for comparison; blue: Cell numbers with extraction of DNA after Webster et al. 
(2003) without acid treatment; yellow: Cell numbers with HI treatment; red: Cell numbers with HCl 
treatment; 16S rRNA gene copy numbers per cell used for calculation of cell numbers: Escherichia 
coli: 5, Bacillus subtilis: 10, Methanohalobium evestigatum: 1.5. 

 

 

 

 

 

 

 

 

 
Fig. 2. Scanning electron microscopy images of a North Pond sediment sample before (left) and after 
(right) acid treatment. On the left image residual skeletons of diatoms and foraminifera can be seen, 

on the right image the skeletons disappeared. 
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Fig. 3. Total cell counts (left) and qPCR abundance of Bacteria and Archaea (right) in organic-lean, 
oligotrophic and oxic North Pond subsurface marine sediments (sampling sites Geob 13501, -2, -4, -7, 
-10, 12, ref.17; cmbsf: cm below seafloor). Near-surface samples taken with push cores (upper 15 
cmbsf) were only analyzed by qPCR. 
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Abstract 

 

The investigated deeply buried marine sediments of the shallow shelf off New Jersey, 

USA, are characterized by low organic carbon content and total cell counts of less 

than 107 cells/ mL sediment. The qPCR data for Bacteria and Archaea were in the 

same orders of magnitude as the total cell counts. Archaea and Bacteria occurred in 

similar 16S rRNA gene copy numbers in the upper part of the sediments, but 

Bacteria dominated in the lowermost part of the analyzed sediment cores down to a 

maximum analyzed depth of ~ 50 meters below seafloor (mbsf). The bacterial 

candidate division JS1 and the classes Anaerolineae and Caldinilineae of the 

Chloroflexi were almost as highly abundant as the total Bacteria. Similarly high dsrA 

gene copy numbers were found for sulfate reducers. The abundance of the Fe(III)- 

and Mn(IV)-reducers comprising Geobacteraceae in the upper ~ 15 mbsf correlated 

with concentrations of manganese and iron in the pore water. The isolated 16S rRNA 

gene sequences of Archaea in clone libraries could be allocated to the phyla 

Thaumarchaeota, Euryarchaeota and Crenarchaeota with 1 %, 14 % and 85%, 

respectively. The typical deep subsurface sediment associated groups MBG-B, 

MBG-D, MCG, and SAGMEG were represented in the sediment community. MCG 

was the dominant group with a high diversity of the isolated 16S rRNA gene 

sequences.  

 

Introduction 

 

The deep biosphere in deeply buried, subsurface marine sediments has been 

explored in various ocean sites mainly within the framework of the Ocean Drilling 

Program (ODP) and the Integrated Ocean Drilling Program (IODP). Since in the past 

the focus mainly laid on organic carbon-rich, eutrophic sediments (e.g. along 

continental margins or in upwelling areas), Whitmann et al. (1998) estimated the total 

subseafloor sedimentary microbial abundance to be 3.55 x 1030 cells on Earth. A 

recent study included organic carbon-lean, oligotrophic subsurface sediments and 

showed that the total cell counts varied between the investigated ocean sites by ca. 

five orders of magnitude (Kallmeyer et al., 2012). Therefore, the authors proposed a 

corrected estimation of the values for the global biomass in marine sediments to 



110 

 

2.9·1029 cells, corresponding to 4.1 petagram (Pg) C and ~0.6% of Earth’s total living 

biomass. 

This biomass comprises the three domains of life Archaea, Bacteria and Eukarya, as 

well as spores and viruses (Edgcomb et al., 2011; Engelhardt et al., 2012; Lomstein 

et al., 2012; Schippers et al., 2012; Orsi et al., 2013). Prokaryotes are dominant in 

the deep biosphere, however conflicting results on the abundance of Bacteria versus 

Archaea have been published (Schippers et al., 2005; Biddle et al., 2006; Inagaki et 

al., 2006; Lipp et al. 2008). Recent studies argue for an overestimation of living 

Archaea based on the quantification of intact polar lipids of their cell membrane and 

show that the proportion of Bacteria versus Archaea in marine subsurface sediments 

is highly variable in different parts of the ocean, resolving the dispute on the 

dominance of either group in the marine deep biosphere (Schouten et al., 2010; 

Logemann et al., 2011; Schippers et al., 2012).  

 The analysis of the prokaryotic diversity revealed that the majority of the 

prokaryotes in subsurface marine sediments belongs to uncultivated phylogenetic 

lineages (Teske, 2006; Teske and Sørensen, 2008; Fry et al., 2008; Durbin and 

Teske, 2012; Kubo et al., 2012). Among the Bacteria, 16S rRNA gene sequences 

belonging to the JS-1 group and the Chloroflexi were frequently found (Webster et 

al., 2004; 2007; 2011; Blazejak and Schippers, 2010). Typical groups for the Archaea 

include the Marine Benthic Group B (MBG-B), a deeply branching phylum-level 

lineage; the Miscellaneous Crenarchaeotal Group (MCG), a frequently detected 

crenarchaeotal lineage with high intra-group diversity; the South African Gold Mine 

Euryarchaeotal Group (SAGMEG); and the Marine Benthic Group D (MBG-D), an 

euryarchaeotal group affiliated with the Thermoplasmatales (Durbin and Teske, 

2012). The metabolic capabilities of these uncultivated organisms remain unexplored 

so far. The microbial ecology of the deep biosphere has been mainly studied in 

organic-rich, eutrophic sediments and relatively few studies focused on organic 

carbon-lean, oligotrophic subsurface sediments (Inagaki et al., 2001; Sørensen et al., 

2004; Nunoura et al. 2009; Roussel et al., 2009; Durbin and Teske, 2011). The 

analysis of several studies of ultraoligotrophic up to eutrophic marine sediments by 

Durbin and Teske (2012) revealed that there is a shift in the archaeal community 

composition from ultraoligotrophic via oligotrophic and mesotrophic to eutrophic 

sediments. For example the Miscellaneous Crenarchaeotic Group (MCG) has shown 

to be widespread at all investigated sediments. On the other hand, the occurrence of 
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a specific group such as the PISA 7 clade was limited to oxic, suboxic or ambiguous 

sediments. Since organic-lean and/or oligotrophic sediments exhibit specific archaeal 

diversity patterns, the organic-carbon content is obviously relevant for the natural 

selection of distinct Archaea (Durbin and Teske, 2012). 

 This study explores the microbial community in deeply buried marine 

sediments of the New Jersey shallow shelf. These sediments were drilled in IODP 

Expedition 313 and are characterized by low organic carbon content in the upper 

sediment (mean 0.47 % from surface down to 50 mbsf) and freshwater intrusions 

(Mountain et al., 2010; van Geldern et al. 2013). The microbial community analysis 

included total cell counts, real-time PCR quantification of particular phylogenetic and 

physiological prokaryotic groups as well as the analysis of the archaeal diversity by 

16S rRNA gene cloning and sequencing, following the approach of previous deep 

biosphere sediment studies (Inagaki et al., 2006; Nunoura et al., 2009; Webster et 

al., 2009; Breuker et al., 2011). The phylogenetic analyses focussed on Archaea and 

in particular on the MCG (Kubo et al., 2012). The intention of the study was to give 

insights into the microbial community in the uppermost 50 mbsf sediment depths, on 

the background of alternating marine and freshwater influence on the sediment 

geochemistry. 

 

Materials and Methods 

 

Site and sediment description  

 

The New Jersey Atlantic shelf and New Jersey’s coastal plain have been the 

locations of several drilling campaigns including Deep Sea Drilling Project (DSDP) 

Leg 95, ODP Legs 150, 150X, 174A, and 174AX, and the Atlantic Margin Coring 

Project (AMCOR; Mountain et al., 2010; van Geldern et al., 2013). The sediments 

investigated here were cored in summer 2009 during IODP Expedition 313 at site 

M0027 (Fig. 1). The sediment is generally characterized by terrigenous input of 

organic material. The dominantly sandy sediment investigated in the presented study 

is interstratified by various types of sediments. Concerning the uppermost 50 mbsf, 

there is a sandy layer down to 14 mbsf with a mean total organic carbon of 0.13 %, 

and a clay dominated layer from ~ 15-22 mbsf with higher concentrations of total 

organic carbon (mean TOC 0.61 %, Fig. 2A, Table 1). From 23 mbsf to 50 mbsf the 
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sandy sediment contains thin clay layers, and the mean TOC is 0.88 %. According to 

Durbin and Teske (2012), the New Jersey shallow shelf sediment down to 50 mbsf 

can be characterized as organic-lean (TOC < 1 %). 

 Pore water chemical analyses (Fig. 2B and C) of chloride revealed a complex 

pattern of alternating, sharply separated, fresh and salt water intervals beneath the 

shelf, explained by the intrusion of meteoric or meteoric-like freshwater (van Geldern 

et al., 2013). The sulfate/ chloride ratios at different depths are close to that of marine 

seawater (0.05). At ~ 17 - 29 mbsf both chloride and sulfate concentrations are lower 

than in seawater but sulfate is more depleted than chloride (ratio of 0.02-0.03). This 

fact might indicate microbial sulfate reduction because at this depths the alkalinity is 

higher, which could reflect the following reaction: 2 CH2O + SO4
2- -> 2 HCO3

- + H2S. 

However, a definite discrimination between sulfate reduction and freshwater intrusion 

is not possible based on the available data (van Geldern et al., 2013).  

Depth gradients of Fe(II) and Mn(II) concentrations in the pore water did not strictly 

follow the chloride profiles suggesting biogeochemical Fe(III)- and Mn(VI)-reduction. 

The porosity of the sediment fluctuated between ~30 and ~ 50 % in the upper 50 

mbsf (Mountain et al., 2010). This range of porosity does not limit prokaryotic life in 

subsurface sediments (Parkes et al., 2000). Concerning the depth profiles of gas 

concentrations, elevated methane concentrations could not be detected in the 

uppermost 50 mbsf (van Geldern et al., 2013). 

 

Sediment sampling 

 

The cores from site M0027 were sampled for analyzing the microbial ecology. 53 

sediment samples were taken from the surface down to a maximum depth of 621 

mbsf. Samples down to a depth of ~ 50 m were taken via piston coring shown to be 

robust against contamination (House et al., 2003). Samples for microbiological 

analysis (Table 1) were taken from the centre of each sediment core. Samples from 

deeper sediments were obtained mainly by other drilling techniques and many of 

them were shown to be potentially contaminated using fluorescent microspheres of 

bacterial size (Smith et al., 2000; House et al., 2003). Thus, these samples were not 

included in this microbiological study. 

 For total cell counts with fluorescence microscopy, a 1 mL sediment plug 

(mini-core) from a syringe was extruded into a sterile 15 mL-screw capped tube 
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containing 9 mL of 2 % (v/v) filter sterilized (0.2 µm) formaldehyde in 3.5% NaCl-

solution. The vial was closed and shaken vigorously to disperse the sediment 

particles. The fixed samples were stored and transported cooled (< 10 °C) to BGR 

(Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany). For 

DNA based molecular analysis at least 3-4 cm long mini-cores were transferred into 

a sterile 50 mL-screw capped tube using a sterile spatula or sterile spoon. The DNA-

samples were frozen at below – 20°C, and were transported frozen on dry ice to 

BGR and were afterwards stored frozen until analysis. 

 

Total cell counts 

 

Total cell counts were determined in formaldehyde fixed samples (2 % final 

concentration) by staining with SYBR Green I after Weinbauer et al. (1998). For cell 

staining the protocol after Lunau et al. (2005) with a moviol mounting medium was 

used. Cells were counted on two filters per sample and the mean values are 

displayed. 

 

DNA-extraction 

 

High-molecular-weight DNA was extracted from 0.5 g of a frozen sediment sample 

following a modified FastDNA Spin Kit for Soil (Bio101) protocol (Webster et al., 

2003). DNA extracts from blank tubes (no sediment added) were used as negative 

control in the extraction procedure.  

 

Quantitative microbial community analysis by qPCR 

 

Extracted DNA was amplified by qPCR using the device ABI Prism 7000 (Applied 

Biosystems) and master mixes from the companies Applied Biosystems, Eurogentec 

or Invitrogen. Each DNA extract was measured in triplicate. Correlation coefficients of 

standard curves were > 0.99. Data were included if at least two data points matched 

with a standard deviation of less than 0.5. Mean values are displayed. After each 

qPCR, melting curves were measured for SYBR Green I assays. The copy numbers 

of the 16S rRNA gene were quantified for Archaea (Takai and Horikoshi, 2000), 

Bacteria (Nadkarni et al., 2002), the JS-1-related bacteria and the classes 
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Anaerolineae and Caldinilineae of the Chloroflexi (Blazejak and Schippers, 2010), 

and the Fe(III)- and Mn(IV)-reducing family Geobacteraceae (Holmes et al., 2002). 

Functional genes were quantified as described: mcrA for methyl coenzyme M 

reductase (Wilms et al., 2007), dsrA for dissimilatory sulfite (bi)reductase (Schippers 

and Neretin, 2006), aprA for adenosine 5´-phosphosulfate reductase (Blazejak and 

Schippers, 2011), and cbbL for the enzyme Rubisco (Selesi et al., 2007).  

 

Archaeal diversity analysis 

 

High-molecular-weight DNA was extracted from 0.5 g frozen sediment samples from 

various depths as described above. PCR for the amplification of the 16S rRNA gene 

of Archaea was carried out with a one base modified forward primer 21f (TTC CGG 

ATG ATC CYG CCG GA (De Long, 1992)) and reverse primer 958r (YCC GGC GTT 

GAM TCC AAT T, (De Long, 1992)). The following thermocycling conditions were 

used: one cycle at 95 °C for 5 min; 30-38 cycles at 95°C for 1 min, 52°C for 1 min, 

and 72°C for 1.5 min; and one cycle at 72°C for 6 min. For four different depths 

below seafloor (8.9 m, 10.2 m, 13 m and 16.7 m) of site M0027 PCR amplification 

products were obtained. The negative controls (DNA-extraction) did not result in a 

PCR product. Clone libraries were constructed and isolated 16S rRNA genes were 

sequenced by the company Microsynth AG (Balgach, Switzerland). From each 

sample 181-192 16S rRNA gene sequences were analyzed. Sequences were edited 

by using the Geneious programme (www.geneious.com). Chimera check was done 

with the Greengenes Bellerophon programme (greengenes.lbl.gov/cgi-bin/nph-

index.cgi). The >800 bp segments were checked against sequences in the GenBank 

database (www.ncbi.nlm.nih.gov) each by using BLAST for similarity searches. 

Nearest neighbors which were not found in the ARB database 

(SSURef_108_silva_09_09_11_opt.arb; Ludwig et al., 2004; Pruesse et al., 2007) 

were imported and aligned using the integrated aligner and manually curated.  

 All archaeal sequences were aligned by using the SINA Webaligner (www.arb-

silva.de/aligner) or the integrated aligner of the ARB software (www.arb-home.de; 

Ludwig et al., 2004) and manually curated. Rarefaction curves were calculated with 

the Mothur software (version 1.27, www.mothur.org; Schloss et al., 2009) for 

operational taxonomic units (OTUs) for archaeal 16S rRNA gene sequences at 3 % 
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level. The richness estimators Chao1 and ACE were also calculated with the mother 

software (3 % level). 

 

Phylogenetic trees were calculated by Maximum Likelihood analysis via ARB 

software. For tree reconstruction only 16S rRNA gene sequences with more than 

1000 bp were used. Shorter sequences were added to the tree by the Maximum 

Parsimony method. Representatives of the major taxonomic groups (according to 

Baker et al., 2003) and nearest neighbors were displayed in the trees. The 

phylogenetic groups were arranged according to Sørensen et al. (2004), Teske and 

Sørensen (2008) and Spang et al. (2010). According to Kubo et al. (2012) 441 16S 

rRNA gene sequences belonging to the MCG group were grouped with the ARB 

software and analyzed.  

 The 16S rRNA gene sequences obtained in this study were submitted to 

GenBank nucleotide databases under the accession numbers KC003479 - 

KC004012. 

 

Phylogenetic distance analysis 

 

To measure the phylogenetic distances between the four samples according to 

depths, a UniFrac analysis (http://bmf2.colorado.edu, Lozupone and Knight, 2005) 

was carried out with all 16S rRNA gene sequences from the New Jersey shallow 

shelf sediment. The 16S rRNA gene sequences were added to a maximum likelihood 

tree with Nostoc commune as outgroup with the ARB programme. The tree was 

exported and uploaded online. Principal coordinates analysis (PCoA) was run online 

without abundance weights. The geochemical data of corresponding depths were 

extrapolated from the data for depths above and below if not available for the exact 

depths. 

 

Results and Discussion  

 

In this study the microbial ecology of deeply buried sediments of the New Jersey 

shallow shelf, characterized by low organic carbon content and freshwater intrusions, 

was explored by total cell counting, quantitative real-time PCR (qPCR) as well as by 

16S rRNA gene cloning and sequencing for the Archaea. The sediments of the New 
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Jersey shallow shelf were organic-lean in the studied depth range from the sediment 

surface down to about ~ 50 mbsf, except for two sediment depths around 30 mbsf, 

for which a higher content of total organic carbon was measured (Fig. 2A, Table 1). 

We consider sediments with an organic carbon content of less than 1 % as organic-

lean according to Durbin and Teske (2012). However, the organic carbon 

concentration is not a directly proportional index of the sediment trophic state, as 

substrate availability and organic carbon residence time can vary between sediments 

with similar organic carbon contents (Durbin and Teske, 2012). Consequently, Durbin 

and Teske also defined other parameters such as the sedimentation rate, the 

penetration depth of electron acceptors such as sulfate, and the ammonium 

concentration to characterize the trophic state of sediments. Concerning the New 

Jersey shallow shelf sediments, the ammonium concentrations were up to 700 µM in 

the studied depth range. Depletion of sulfate could either be explained by freshwater 

intrusions (van Geldern et al., 2013) or by sulfate reduction (Fig. 2B). Overall, the 

sediment can be characterized as oligotrophic-mesotrophic and falls in the same 

group as e.g. the sediments from ODP sites 1225, 1226 (D´Hondt et al. 2004).  

 

Total cell counts 

 

Total counts of prokaryotic cells generally correlate with the content of organic 

carbon in marine sediments (D´Hondt et al., 2004; Kallmeyer et al., 2012; Schippers 

et al., 2012). The depth profile of the total cell counts for site M0027 is shown in Fig. 

3A, the values are given in Table 1.  

 The total cell counts decreased with sediment depth, which is typical for 

subsurface marine sediments (Parkes et al., 2000; D´Hondt et al. 2004; Kallmeyer et 

al., 2012). Maximum cell counts did not exceed 107 cells/mL sediment reflecting the 

low organic carbon content. The total organic carbon content was higher between 

~10 mbsf and ~35 mbsf (clay layers) than in the upper ~10 mbsf which explains why 

the maximum cell counts were not detected in the near-surface sediment as usually 

found for marine sediments. The impact of lithological features of sediments on total 

cell numbers and qPCR data has been shown previously (Inagaki et al., 2003; 

Parkes et al, 2005; Schippers et al., 2012), and we can assume that clay layers 

provide more substrate for the microorganisms than the bulk sediment. However, the 

highest TOC values around 30 mbsf do not correspond to high total cell counts. This 
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can be explained by thin clay layers analyzed for TOC while total counts were 

analyzed for not exactly the same depth layers (different rather sandy sediment 

samples). Generally, the total cells counts were low and in agreement with data for 

other organic-lean marine sediments (D´Hondt et al., 2004; Nunoura et al., 2009; 

Kallmeyer et al., 2012; Schippers et al., 2012).  

 

Quantitative microbial community analysis by qPCR  

 

Maximal gene copy numbers were detected between ~ 10 and ~ 20 mbsf (Fig. 3), 

corresponding to the elevated organic carbon content, and not in near-surface 

sediments as usually found (Schippers et al., 2010; 2012). The qPCR data of site 

M0027 for Bacteria and Archaea (Fig. 3 B) were in the same orders of magnitude as 

the total cell counts (Fig. 3 A). Archaea and Bacteria had similar copy numbers up to 

a depth of 20 mbsf. In the deeper part of the analyzed core Bacteria dominated. For 

comparison we compiled published qPCR data of several sediment studies which 

show that the proportion of Bacteria versus Archaea in marine sediments is highly 

variable in different parts of the ocean (Table 2). The ratio of Archaea versus 

Bacteria seems to be variable depending on the type of sediment. Using qPCR, an 

almost equal abundance of Bacteria and Archaea has also been found for the 

Porcupine Seabight (IODP Exp. 307; Webster et al., 2009), the northeast Pacific 

ridge-flank (IODP Exp. 301; Engelen et al., 2008), Sumatra forearc basins (Schippers 

et al., 2010), sediments of the Black Sea and the Benguela upwelling system off the 

Atlantic coast of Namibia (Schippers et al., 2012). By contrast, Bacteria dominated 

other sediments such as the Sea of Okhotsk (Inagaki et al., 2003), the Gulf of Mexico 

(IODP Exp. 308; Nunoura et al., 2009), the Peru continental margin and the 

equatorial Pacific sediments (ODP Leg 201; Schippers et al., 2005; Inagaki et al., 

2006), as well as gas-hydrate bearing sediments from the Cascadia margin (ODP 

Leg 204; Inagaki et al., 2006). Most data on the abundance of Bacteria and Archaea 

in deeply buried marine sediments originate from qPCR analysis of rather organic 

carbon-rich, eutrophic sediments with organic carbon contents of more than 1 %. 

Here, Bacteria either dominated or an overall equal proportion of Bacteria and 

Archaea was determined. Archaea were found to be dominant by qPCR only in the 

organic-lean, oligotrophic sediments from “North Pond” (Breuker and Schippers, 
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2013). Further research should include more oligotrophic sediments and investigate 

which parameters control the ratio of Bacteria versus Archaea. 

 Particular phylogenetic and physiological groups were additionally revealed by 

qPCR in this study (Fig. 3 B and 3 C), as was the case in previous marine subsurface 

sediment studies (Schippers and Neretin, 2006; Leloup et al., 2007; Wilms et al., 

2007; Engelen et al., 2008; Nunoura et al., 2009; Webster et al., 2009; Blazejak and 

Schippers, 2010; 2011; Schippers et al., 2010; 2012). The 16S rRNA gene copy 

numbers of the bacterial candidate division JS1 and the classes Anaerolineae and 

Caldinilineae of the Chloroflexi were detectable in the upper 30 mbsf with more than 

105 copies per mL sediment. The bacterial 16S rRNA gene copy numbers were 

higher in most sediment layers, however JS1 and the two classes of Chloroflexi 

comprised a significant part of the bacterial community. Previous studies for the 

sediments off Sumatra, of the Peru margin, the Benguela upwelling system off 

Namibia and of the Black Sea showed that the bacterial candidate division JS-1 and 

the classes Anaerolineae and Caldilineae of the phylum Chloroflexi were even as 

highly abundant as Bacteria (Blazejak and Schippers, 2010; Schippers et al., 2012). 

Obviously, these groups play a dominant role in subsurface marine sediments as 

already discussed elsewhere (Webster et al., 2004; Teske, 2006; Fry et al., 2008), 

although the physiology of these presumably heterotrophic bacterial groups remains 

almost unexplored (Webster et al., 2011). 

 The Geobacteraceae comprising Fe(III)- and Mn(IV)-reducers were found in 

the upper ~ 15 mbsf with increasing 16S rRNA gene copy numbers with depth up to 

105 copies / mL sediment. These data correlated with increasing concentrations of 

manganese and iron in the pore water (Fig. 2 C, maximum of 56 µM Fe at 14.7 mbsf 

and of 16.5 µM Mn at 17.9 mbsf). These results suggest that organic matter 

degradation via Fe(III)- and Mn(IV)-reduction is a relevant biogeochemical process in 

the New Jersey shallow shelf sediments, as previously found for sediments of the 

Sumatra forearc basins (Schippers et al., 2010). 

 Another important biogeochemical process is sulfate reduction as often found 

for subsurface marine sediments (Leloup et al., 2007; Blazejak and Schippers, 2011; 

Schippers et al., 2010; 2012). A high occurrence was found for the functional gene 

dsrA (dissimilatory sulfite reductase gene) of sulfate-reducers up to a depth of ~ 30 

mbsf with maximum gene copy numbers at 20 mbsf (Fig. 3 C) in the sediment layer 

in which a decline of the porewater sulfate concentration and an increase of the total 
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organic carbon concentration was observed (Fig. 2). However, it cannot be clearly 

discriminated between sulfate reduction and/or freshwater intrusion at this depth as 

mentioned above. The second functional gene aprA (adenosine5-phosphosulfate 

reductase gene) of this group was detectable in a few samples only. The gene mcrA 

of methanogens was not detectable. The lack of methanogens is in accordance with 

the virtual absence of methane in the uppermost 50 mbsf (van Geldern et al., 2013) 

and the low total organic carbon content. 

 The copy numbers of the functional gene cbbL encoding for the large subunit 

of ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) of some autotrophic 

microorganisms (Fig. 3 C) were about two orders of magnitude lower than the 

bacterial 16S rRNA gene copy numbers and occurred only in a distinct depth range 

of 15 to 25 mbsf. This gene was previously also detected in low numbers in marine 

sediments of the Black Sea and the Benguela upwelling system off the Atlantic coast 

of Namibia (Schippers et al., 2012). A higher abundance of the same cbbL gene than 

in this study was detected in the organic carbon-poor terrestrial subsurface 

sediments in the Chesapeake Bay area, Virginia, USA (Breuker et al., 2011). Only 

targeting cbbL in our study does not reflect a comprehensive analysis of autotrophs, 

likely other CO2-fixing enzymes than Rubisco are more important in this environment. 

The data just show that autotrophs exist, considering that marine sediments are 

dominated by heterotrophs (Parkes et al., 2000; Biddle et al., 2006). 

 

Archaeal diversity 

 

The phylogenetic analysis of Archaea from four depths (8.9 mbsf, 10.2 mbsf, 13 mbsf 

and 16.7 mbsf) of site M0027 was carried out via clone libraries and 16S rRNA gene 

sequencing. For each depth 124 -162 different clones were achieved. The clones 

could be allocated to the phyla Thaumarchaeota, Euryarchaeota and Crenarchaeota 

with an overall mean abundance of 1 %, 14 % and 85 %, respectively. Richness 

estimators CHAO 1 and ACE for a 3% OTU level are given in Table 3 and reveal a 

decreasing diversity with depth. The composition of the microbial community of all 

16S rRNA gene sequences as percentage of all received 16S rRNA gene sequences 

is displayed in Fig. 4 A. Trees for euryarchaeotal and crenarcheaotal 16S rRNA gene 

sequences are shown in Fig. 5 and Fig. 6.  
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 The overall abundance of crenarchaeotal 16S rRNA gene sequences in the 

clone libraries was 70%-100% (Fig. 4 A). Within the Crenarchaeota, the 

Miscellaneous Crenarchaeotic Group (MCG) was the dominant one. In addition to the 

MCG group, the former group C3 (included into the MCG group by Kubo et al., 2012) 

is the only other group found in a depth of 16.7 mbsf. The MCG is found in a wide 

range of habitats (Vetriani et al., 1999). In subsurface sediments the MCG may utilize 

buried organic carbon and is often found but not restricted to anaerobic sediments 

(Biddle et al., 2006; Durbin and Teske, 2012). Kubo et al. (2012) concluded that 

MCG are not likely to be methanotrophs which is in accordance with the absence of 

methane and the gene mcrA of methanotrophs in the New Jersey shallow shelf 

sediments in the upper ~ 50 mbsf (van Geldern et al., 2013). Recent results by Lloyd 

et al. (2013) showed that MCG are among the most numerous archaea in subsurface 

marine sediments. Single-cell genomic sequencing of one cell of MCG revealed 

encoding of extracellular protein-degrading enzymes indicating that MCG play a role 

in protein remineralization in anoxic sediments. 

 The intragroup diversity of the achieved 16S rRNA gene sequences belonging 

to the MCG group was high. After grouping 16S rRNA sequences with 3% similarity 

to clone groups, 105 different clone groups remained. The depth-dependent 

distribution of all MCG related 16S rRNA gene sequences is displayed in Fig. 4 B. No 

16S rRNA sequences of the New Jersey shallow sediment could be allocated to the 

groups MCG 1, 4, 5, 7, 11 and 16 (Kubo et al., 2012). The proportion of 16S rRNA 

gene sequences of MCG 8 was increasing with depth whereas the proportion of 16S 

rRNA gene sequences of MCG 3 was decreasing with depth (Fig. 4 B). Few 16S 

rRNA gene sequences belonging to MCG 2 were only found at 8.9 mbsf and one 

sequence belonging to MCG 6 could only be detected at 10.2 mbsf. Also 16S rRNA 

gene sequences belonging to MCG 9 and MCG 10 could only be detected at 10.2 

mbsf and 16.7 mbsf in low abundance. The groups MCG 12, MCG 13 and MCG 14 

were weakly represented at all depths with a maximum abundance at 13 mbsf. 16S 

rRNA gene sequences allocated to MCG 15 (former group C3) occurred similarly 

frequent at 8.9 mbsf and 13 mbsf (12.6% and 14.3% of all sequences, respectively). 

This group was represented at 10.2 mbsf with somewhat lower abundance (7.8%) 

and at 16.7 mbsf with only 1.6% of the whole MCG related sequences. Group MCG 

17 was represented with a sequences abundance of 2% - 7% with a maximum at 

10.2 mbsf. 
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 Although the biogeochemical features of the MCG are unknown, this study 

illustrates a depth dependent distribution of the MCG and its subgroups and therefore 

contributes ecological information about the co-occurrence with well described deep 

subsurface archaeal lineages described below. 

 The crenarchaeotal Marine Benthic Group B (MBG-B) was only found at 8.9 

mbsf, the shallowest analyzed depth. Teske and Sørensen (2008) described that 

MBG-B were detected amongst other Archaea by several researchers in different 

habitats such as deep marine sediments, coastal and intertidal sediments as well as 

hydrothermal vent sites. They also pointed out the fact that MBG-B archaea were 

found in some studies in correlation within the methane-sulfate transition zone where 

they may benefit directly or indirectly from anaerobic methane oxidation. Biddle et al. 

(2006) showed that such zones are dominated by MBG-B and MCG archaea. Due to 

the fact that methane is virtually absent in the here studied sediment interval up to ~ 

50 mbsf (van Geldern et al., 2013), a contribution to methane oxidation by MBG-B 

and MCG cannot be inferred. 

 Some sequences belonging to the deeply branching Terrestrial Hot Spring 

Crenarchaeotal Group (THSCG) were detected as well at 8.9, 10.2 and 13 mbsf. The 

THSCG was originally named by Takai & Horikoshi (1999) and divided in two 

subgroups (I, II). The groups included 16S rRNA gene sequences from a 

hydrothermal field in the Okinawa trough and 16S rRNA gene sequences from a hot 

spring area in the Yellowstone National Park, Wyoming (Barns et al., 1994) and were 

not found to be monophyletic. The polyphyletic structure was confirmed by the 

addition of 16S rRNA gene sequences from a sulfide chimney on the Juan de Fuca 

Ridge (Schrenk et al., 2003). The clusters of the THSCG of our study do not show a 

close relationship to any of these previously described 16S rRNA sequences. The 

closest related neighbors of the New Jersey shallow shelf 16S rRNA gene 

sequences are derived from different locations such as White Oak river sediments 

(acc. nr. JN605142, Kubo et al, 2012), a tropical marine sediment (acc. nr. 

JQ258758, Ratnagiri, Arabian Sea coast, unpublished) and hypersaline groundwater 

(acc. nr. JF747774, Manantial del Toro, Dominican Republic, unpublished). 

 Regarding the phylum Thaumarchaeota, some 16S rRNA gene sequences 

belonging to Marine Group 1 α (MG 1) could be exclusively found at 13 mbsf (Fig. 4 

A, Fig. 6). The detected 16S rRNA gene sequences are closely related to the 

subgroup MG 1 α and therefore to Nitrosopumilus maritimus, the first cultivated 
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ammonia-oxidizing archaeum (Könnecke et al., 2005). The MG 1 was described by 

Massana et al. (2000) and subsequently expanded into several subgroups (Sørensen 

et al., 2004; Takai et al., 2004; Durbin and Teske, 2010). This group is usually found 

in the water column or at the sediment surface. However, MG-I archaea also appear 

occasionally in deep sediment samples where they possibly represent seawater 

contamination (Inagaki et al., 2006; Durbin and Teske, 2012). 

 Regarding the Euryarchaeota, their overall percentage of all sequences was 

highest at 13 mbsf. Interestingly, at a depth of 16.7 mbsf euryarchaeotal 16S rRNA 

gene sequences were not detected. The major part within the Euryarchaeota was 

formed by the Marine Benthic Group D / Deep Hydrothermal Vent Euryarchaeotal 

Group 1 (MBG-D / DHVEG-1). MBG-D is not found in the water column and seems to 

be benthic, sediment dwelling archaea (Teske and Sorensen, 2008). Recent results 

by Lloyd et al. (2013) showed that MBG-D are among the most numerous archaea in 

subsurface marine sediments. Single-cell genomic sequencing of three cells of MBG-

D revealed encoding of extracellular protein-degrading enzymes indicating that MBG-

D play a role in protein remineralization in anoxic sediments, as discussed above for 

MCG (Lloyd et al., 2013). 

 Some sequences of small subgroups were found in particular depths (Fig. 4 

A): 16S rRNA gene sequences of the small euryarchaeotal groups belonging to the 

Thermoplasmatales, namely AMOS1A-4113-D04 and Ant06-05, were detected at 8.9 

mbsf. 16S rRNA gene sequences of the AMOS1A-4113-D04 group were first of all 

isolated from a continuous flow bioreactor containing anaerobic methanotrophic 

archaea. Other representatives of this group originate from deep sea hydrothermal 

vents, the Kazan mud Volcano in the Eastern Mediterrean Sea, the Western Pacific 

Ocean or the Madovi estuary sediment (west coast of India). Concerning the group 

Ant06-05, the first isolation source was the Nankai Trough (Japan). Other related 

16S rRNA gene sequences were derived from a hot spring in Kamchatka (Russia). 

 16S rRNA gene sequences of group 20a-9 were found at 10.2 mbsf and 13 

mbsf. At 10.2 mbsf one sequence of group 20c-4 could be detected whereas at 13 

mbsf one sequence of group CCA47 was found. These groups comprise few 

sequences too but related 16S rRNA gene sequences are derived from very different 

isolation sources all over the world. Group 20c-4 contains 16S rRNA gene 

sequences from sediments of the Aegean Sea (Greece), the Southern Okinawa 

Trough, salt marsh sediments and a natural gas field. Group CCA47 contains 16S 
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rRNA gene sequences from oxygen depleted marine environments, methane seep 

sediments, marine sediments from the tropical Western Pacific or methane seep 

influenced sediments off Taiwan. 16S rRNA gene sequences of group 20a-9 are 

derived from different marine sediments (Yonaguni Knoll IV at Southern Okinawa 

Trough, Aegean Sea, Yung-An Ridge (Taiwan), anoxic hypersaline sediment at 

Salton Sea (California), Lake Taihu (China) and estuary sediments (Madovi, India).  

 The small Group SM1-K20 is related to the Deep Sea Euryarchaeotal Group 

(DSEG), which is also commonly found in deep marine sediments. The third 

euryarchaeotic lineage comprises the widespread South African Gold Mine 

Euryarchaeotal Group (SAGMEG) and its small sister group 20a-9. The SAGMEG 

group spans over a wide range from terrestrial to marine environments (Takai et al., 

2001, Inagaki et al., 2003; 2006). 

 

UniFrac analysis 

 

The UniFrac analysis (Fig. 7) revealed that ~ 46 % variation can be explained by 

clustering the samples from 8.9 mbsf, 10.2 mbsf and 13 mbsf together versus the 

sample from 16.7 mbsf. 29 % variation can be explained by clustering the samples of 

the two upper depths against the samples of the two deeper depths. Interestingly, 

another 25 % variation can be explained by clustering the samples of the depths of 

8.9 mbsf, 13 mbsf and 16.7 mbsf versus the sample of 10.2 mbsf. The main variation 

explained that P1 correlates well with lower amounts of TOC, manganese, iron, 

ammonium and calcium. It also correlates with higher amounts of chloride, bromide, 

sodium, boron, lithium, strontium, potassium and magnesium in the pore water (data 

from Mountain et al. 2010, not shown). Concerning the lithological features P1 also 

correlates with the amounts of dolomite/ankerite, kaolinite, pyrite, siderite and total 

sulfur. P2 correlates with the amounts of sulfate and phosphorus in the pore water 

with (in relative terms) higher sulfate and lower phosphorus values for the upper 

samples and the absence of kaolinite and chlorite for the upper samples. P3 

correlates with calcite and total inorganic carbon. Overall, the UniFrac analysis data 

indicate that the observed differences in the microbial community composition go 

along with variations between the four samples based on their mineralogical and 

geochemical properties.  
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 In summary, the microbial community in deeply buried marine sediments of 

the shallow shelf off New Jersey, USA, is characterized by comparably low total cell 

counts reflecting the oligotrophic-mesotrophic nature of the sediments. Archaea and 

Bacteria occurred in similar 16S rRNA gene copy numbers, except in the lowermost 

part of the analyzed sediment at 40 to 50 mbsf where Bacteria dominated. Highly 

abundant were the bacterial candidate division JS1 and the classes Anaerolineae 

and Caldinilineae of the Chloroflexi as well as sulfate reducers. The abundance of the 

Fe(III)- and Mn(IV)-reducing group Geobacteraceae correlated with concentrations of 

manganese and iron in the pore water. Sulfate, Fe(III)- and Mn(IV)-reduction but not 

methanogenesis seem to be important biogeochemical processes in the here studied 

depth range. Typical deep subsurface sediment associated archaeal groups such as 

MBG-B, MBG-D, MCG, and SAGMEG are well represented in the microbial 

community, with MCG as the most dominant, highly diverse group. The subgroup 

MCG 8 tends to increase in sequence abundance with depth while MCG 3 decreases 

in sequence abundance with depth. 
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Figure 1: Map of the New Jersey shallow shelf showing site M0027 (hole M0027A) along with other 
completed boreholes as well as tracks of reconnaissance seismic lines (from Mountain et al., 2010). 
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Figure 2: Geochemistry of New Jersey shallow shelf sediments of Site M0027. A: Concentrations of 
total organic carbon (TOC, x, %) and total inorganic carbon (TIC, o, %); B: Interstitial water 
concentrations of chloride (x, mM x 10); sulfate (o, mM); C: Interstitial water concentrations of 
manganese (x, µM) and iron (o, µM). Data from Mountain et al. (2010). 
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Figure 3: Total cell counts and real-time PCR (qPCR) data of New Jersey shallow shelf sediments of 
site M0027. A: Total cell counts; B: Quantification of 16S rRNA genes of different phylogenetic groups, 
Bacteria, o; Archaea, □; Geobacteraceae, ∆; JS1 and Chloroflexi, +; C: Quantification of functional 
genes of sulfate reducers (apr, ▲; dsr, ●) and autotrophic microorganisms (cbbL, x).  
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Figure 4 
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Figure 4: Diversity of the archaeal community in New Jersey shallow shelf sediments of site M0027. A: 
Overview of the abundance of archaeal groups in the clone libraries from four depths; B: Abundance 
of subgroups of the Miscellaneous Crenarchaeotic Group.  
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Figure 5: Maximum Likelihood phylogenetic tree of the Euryarcheota in New Jersey shallow shelf 
sediments of site M0027 from four depths.  
 

Figure 6: Maximum Likelihood phylogenetic tree of the Crenarcheota and Thaumarchaeota in New 
Jersey shallow shelf sediments of site M0027 from four depths.  
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Figure 7: UniFrac analysis data. 
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Table 1 Table 1: Main lithology, total organic carbon (TOC in % w/w) and total cell counts (TCC in 
cells/mL sediment) for the uppermost 50 msbf (data are partly from van Geldern et al., 2013). 
 

  

depth 
below 
seafloor 
(m) TOC TCC 

 

  

sandy layer 1.44 0.07 1.28E+06    
TOC mean: 0.13% 3.87 0.08 6.65E+05    

  6.21 0.07 2.11E+06    

  8.94 0.12 2.00E+06    
  10.23 0.08 1.28E+06    

  11.1   9.43E+05    
  12.99 0.21 2.16E+06    

  13.71   8.06E+06    

sediment with 14.86   1.02E+05    

thin clay layers (14.73,  15.62 0.57      
15.33, 17.72 mbsf) 16.71   1.54E+06    

17.55   4.99E+05    

and a thicker clay layer  18.13 0.61      

from 19.5 - 22.68 mbsf 19.09   3.05E+05    
  19.78 0.67      

 Mean TOC: 0.61% 20.01   2.22E+05  freshwater intrusion 

21.77 0.59      

sediment with 24.13   2.77E+04  Mean TOC: 1.12% 
thin clay layers (27.39, 27.84   4.80E+06  

27.98 and 28.15 mbsf) 28.18 1.71      
29.53   8.32E+04    

31.28   8.32E+04    

  31.99 1.52      

  41.48 0.13      
 Mean TOC: 0.88% 43.37   9.15E+05    

  47.69 0.15      

  49.28   8.32E+04    
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Table 2 Compilation of published mean total cell counts and qPCR abundance of Bacteria and 
Archaea in the depth range of 1–10 and 10–200 mbsf (meter below seafloor) in subsurface marine 
sediments (cells / mL sediment; nd: not determined). 
 

 1 – 10 mbsf 10 – 200 mbsf  

Expedition/area Total 
counts 

Bacteria Archaea Total 
counts 

Bacteria Archaea Reference 

ODP Leg 201      Peru 
margin 

107-108 107 104-107 107 106 103-105 Schippers et 
al. 2005 

ODP Leg 201      Peru 
margin 

107-108 > 90 % < 10 % 107 > 99 % < 1 % Inagaki et al. 
2006 

ODP Leg 204 
Cascadia margin 

107 > 70 % < 30 % 106 > 70 % < 30 % Inagaki et al. 
2006 

ODP / IODP nd ~ 60 % ~ 40 % nd ~ 60 % ~ 40 % Lipp et al. 
2008 

IODP Exp. 301     
Juan de Fuca 

108-109 106-108 105-106 108 106 106 Engelen et al. 
2008 

IODP Exp. 307 
Porcupine Seamount 

nd nd nd 106-107 105-106 104-105 Webster et al. 
2009 

IODP Exp. 308     Gulf 
of Mexico 

105-106 105-106 105 104-105 104 < 102 Nunoura et al. 
2009 

Sea of Okhotsk 106-107 104-105 < 104 106-107 104-105 < 104 Inagaki et al. 
2003 

North Sea tidal flat 107-108 107 106 nd nd nd Wilms et al. 
2007 

SO189        Forearc 
off Sumatra 

107-108 107-108 107-108 nd nd nd Schippers et 
al. 2010 

M72-5          Black 
Sea 

107-108 105-106 105-106 nd nd nd Schippers et 
al. 2012 

M76-1      Benguela 
Upwelling 

107-109 106-108 106-109 nd nd nd Schippers et 
al. 2012 

MSM11-1         “North 
Pond” 

105-106 104 105-106 nd nd nd Breuker and 
Schippers 

2013 

IODP Exp. 313 New 
Jersey shallow shelf 

106 106 106 106 106 105-106 This study 
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Table 3: Richness estimators CHAO 1 and ACE for a 3% OTU level. 

 

8.9 m 10.2 m 13 m 16.7 m 

Clones per sample 177 172 171 173 

Chao 1 172 103 109 41 

Clones in relation to CHAO 1 estimator  103 % 167 % 157 % 422 % 

ACE 198 187 112 66 

Clones in relation to ACE estimator 89 % 92 % 153 % 262 % 
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ABSTRACT 

 The impacts of lithological structure and geothermal gradient on subseafloor 

microbial communities were investigated at a marginal site of the Iheya North 

hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments 

composed of hemipelagic muds and volcaniclastic deposits were recovered through 

a depth of 151 m below the seafloor at Site C0017 during the Integrated Ocean 

Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene 

clone sequencing in low-temperature hemipelagic sediments were mainly composed 

of members of Chloroflexi and Deep Sea Archaeal Group. In contrast, 16S rRNA 

gene sequences of Marine Group I Thaumarchaeota dominated the microbial 

phylotype communities in the coarse-grained pumiceous gravels interbedded 

between the hemipelagic sediments. Based on the physical properties of sediments 

such as temperature and permeability, the porewater chemistry and the microbial 

phylotype compositions, the shift in the physical properties of the sediments is 

suggested to induce a potential subseafloor recharging flow of oxygenated seawater 

in the permeable zone, leading to the generation of variable chemical environments 

and microbial communities in the subseafloor habitats. In addition, the deepest 

section of sediments under high-temperature conditions (~90˚C) harbored the 

sequences of an uncultivated archaeal lineage of Hot Water Crenarchaeotic Group 

IV that may be associated with the high-temperature hydrothermal fluid flow. These 

results indicate that the subseafloor microbial community compositions and functions 

at the marginal site of the hydrothermal field are highly affected by the complex fluid 

flow structure, such as recharging seawater and underlying hydrothermal fluids, 

coupled with the lithologic transition of sediments.  

 

INTRODUCTION 

 Numerous scientific expeditions have investigated the marine subsurface 

biosphere via molecular biological analyses targeting 16S rRNA and functional genes 

as well as by metagenomics, metatranscriptomics, microscopic analyses, metabolic 

activity measurements and cultivation experiments (15, 45, 66). These previous 

studies demonstrated that the subseafloor biosphere is composed of a vast number 

of microbial cells, including uncultivated, phylogenetically diverse and physiologically 

unknown components. Subseafloor microbiology over the past two decades indicates 

that buried organic matter is the most important energy and carbon source in deep 



141 

 

subsurface environments that affects microbial abundance and the community 

composition (23, 45, 47). Thus, organic-rich subseafloor sediments of continental 

margins and the eastern equatorial Pacific Ocean harbor a larger microbial biomass 

(3, 8, 19, 48) than oligotrophic sediments, where an extremely low microbial cell 

abundance is observed (23). On the other hand, the lithologic control of subseafloor 

microbial community development has also been suggested (20, 47) as the physical 

properties of sediments, such as porosity and permeability, highly affect the 

subseafloor hydrogeologic structures and the spatial, energetic and nutritional 

habitability of the subseafloor microbial community (5, 7, 52).  

 Subseafloor hydrothermal fluid flow regimes have been predicted to provide 

spatially expansive and physicochemically variable habitats for the phylogenetic and 

functional diversity of microorganisms (10, 43, 58, 59, 61). The mixing of high-

temperature reduced hydrothermal fluids and low-temperature interstitial fluids forms 

a wide range of physical and chemical gradients in the subseafloor environment. 

Currently, the variability of 16S rRNA gene phylotype communities has been 

investigated in several deep-sea hydrothermal sediments (11, 39, 42, 65, 69). 

Although the hydrothermal fluid discharging zones around active hydrothermal 

systems have been established to often host the local recharge flows of oxygenated 

deep-sea water (13, 27), the relationship between microbial community development 

and the physico-chemical conditions influenced by the hydrothermal discharging and 

recharging fluid flows in the subseafloor environments remains poorly understood.  

 In this study, we sought to determine the pattern in subseafloor microbial 

community development along with the lithostratigraphic transition and physico-

chemical gradient in a deep-sea hydrothermal system, the Iheya North Knoll in the 

Mid-Okinawa Trough, during the Integrated Ocean Drilling Program (IODP) 

Expedition 331 using the D/V Chikyu (63). The drilling and coring operations at IODP 

Site C0017 located at the margin of the hydrothermal field indicated the potential 

recharge flow of low-temperature seawater into the subseafloor sediments, which 

was likely caused by the complex hydrogeologic structure and the underlying high-

temperature hydrothermal fluid flow (63). The anomalously low heat flows around 

Site C0017 estimated from temperature gradients of surface sediments suggested 

the zonation of seawater recharge (34), and the downhole temperature measurement 

during IODP Expedition 331 showed a concave downward temperature profile (Fig. 

1A), which indicated the lateral flows of recharged seawater in particular lithological 
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layers of coarse-grained pumiceous gravels and breccias (63). The oxygenated 

seawater flows in the porous layers would supply relatively abundant electron 

acceptors to the anoxic subseafloor sedimentary habitats. The lithostratigraphic 

transition between hemipelagic sediments and pyroclastic deposits has been 

predicted by the seismic reflection signals at Site C0017 (63, 67). In deeper sections 

of sediments at Site C0017, a higher temperature gradient was found by the 

downhole temperature measurement during IODP Expedition 331, and the 

temperature in the deepest part was estimated to be 90°C (63). Here, we report the 

variability of subseafloor microbial phylotype communities and functional gene 

distribution (dsrA, aprA and amoA) in the sedimentary habitats influenced by the 

hydrogeologic structure and the temperature gradient near a deep-sea hydrothermal 

system. 

 

MATERIALS AND METHODS 

Site description and sediment sampling 

 IODP Expedition 331 was conducted at the Iheya North hydrothermal field in 

the Mid-Okinawa Trough using the D/V Chikyu in September 2010 (63). IODP Site 

C0017 was located at 1550 m east of the hydrothermal activity center of the Iheya 

North field and was covered with thick terrigenous sediments, hemi-pelagic 

sediments and pumiceous deposits (63). Coring operations retrieved sediments 

down to 151 m below the seafloor (mbsf). The extended shoe coring system (ESCS) 

were used for the coring at 95.0, 108.2, 130.1, 141.1 mbsf and the hydraulic piston 

coring system (HPCS) were used for the rest of the cores (63). Core samples 

collected at Site C0017 were composed of pumiceous volcaniclastic gravels, 

breccias and hemipelagic mud and were lithostratigraphically classified into four units 

(63). The upper Unit I (0 to 18.5 mbsf) was predominantly composed of hemipelagic 

mud, and Units II and III (19.1 to 36.2 and 61.1 to 78.8 mbsf, respectively) consisted 

of pumiceous gravel-dominant layers with minor hemipelagic mud and volcaniclastic 

sediment. Sections from 36.2 to 61.1 mbsf and 78.8 to 94.3 mbsf were not 

recovered. The deepest section (Unit IV), a cored interval from 94.3 to 144.7 mbsf, 

was dominated by hemipelagic mud. In situ temperatures at Site C0017 were 

measured using an advanced piston corer temperature tool (APCT-3) and 

thermoseal strips (Nichiyu Giken Co., Ltd., Kawagoe, Japan) (Fig. 1A). 
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 The retrieved cores were immediately cut into 1.5-m-long sections on deck, and 

whole round cores (WRCs) for microbiological study (approx. 10-20 cm in length) 

were then subsampled from the short sections. The microbiological samples were 

obtained from the inner parts of the WRCs with a sterilized spatula and immediately 

stored at -80°C in heat-sealed laminated foil bags containing an oxygen scavenger. 

The subsamples for geochemical analyses were collected from the sections 

juxtaposed to the WRCs for microbiology.  

 

Geochemical analysis 

Porewater was obtained from 10- to 20-cm-long WRCs; the total alkalinity 

and the ammonium, sulfate and methane concentrations were determined previously 

(63). The nitrate concentration was measured by ion chromatography using a high-

capacity anion exchanger (TSK-gel SAX column, Tosoh) with UV detection (LC-10Ai 

and SPD-10A, Shimadzu) (33, 40). The lower detection limit of the nitrate 

concentration was 0.3 µM, and the reproducibility was better than 10%. Subsamples 

for dissolved organic carbon analysis were stored frozen at -20°C in precombusted 

10-ml glass vials, each with a Teflon-coated septum and screw caps. The acetate 

concentration and stable carbon isotopic composition (δ13Cacetate) were determined by 

isotope ratio monitoring-liquid chromatography-mass spectrometry, as previously 

described (18). 

 

DNA extraction and 16S rRNA gene clone analysis 

 DNA was extracted from approximately 2 g of the frozen innermost parts of the 

WRCs using the PowerMAX Soil DNA Isolation Kit (MO BIO Laboratories, Carlsbad, 

CA) according to the manufacturer's protocol, with minor modifications. A blank water 

sample was also used simultaneously as a negative control during the DNA 

extraction process. The 16S rRNA gene fragments were amplified by PCR using an 

universal primer set, Uni530F-907R (44), for all samples, and an archaea-specific 

primer set composed of Arch_530F, Arch2_530F, Nano_530F (44) and Arc958R (9) 

was used for samples in which indigenous microbial populations were not detected 

using the universal primer set. PCR amplification with LA Taq polymerase (TaKaRa 

Bio Inc., Otsu, Japan) was performed using the following cycle conditions: 40 cycles 

of denaturation at 96°C for 25 s, annealing at 50°C for 45 s, and extension at 72°C 

for 60 s. PCR amplification of the negative control for DNA extraction was used to 
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assess experimental contamination. Cloning and sequencing of the PCR products 

were performed as described previously (62). Approximately 400-bp 16S rRNA gene 

sequences with more than 97% sequence identity were assigned to the same 

phylotype. Representative sequences were aligned using the SINA aligner (51). 

Phylogenetic affiliations were identified by the maximum parsimony method using the 

SILVA SSU Ref 111 Database in the ARB software program (32). The same method 

was previously applied to the drilling fluids, and the 16S rRNA gene sequences from 

the WRCs displaying greater than 97% identity with those of the drilling fluids were 

defined as potential contaminants (70). The 16S rRNA gene clone libraries were 

compared by Jackknife environment cluster analysis and principal component 

analysis (PCA) in the UniFrac program (http://bmf.colorado.edu/unifrac/) (31).  

 

Archaeal amoA gene clone analysis 

 The PCR amplification of amoA, encoding ammonia monooxygenase 

subunit A, was conducted using the primer set of Arch-amoAF and Arch-amoAR (14) 

and Ex Taq polymerase (TaKaRa Bio Inc., Shiga, Japan) with Mg2+ buffer, as 

previously described (41). The amplification condition was 40 cycles of denaturation 

at 96°C for 25 s, annealing at 52°C for 30 s and extension at 72°C for 60 s. The PCR 

products were cloned and sequenced as described above. Sequences presenting 

≥95% identity were assigned to the same phylotype. Representative sequences were 

aligned with closely related amoA gene sequences deposited in public databases 

using the CLUSTALW program, and the ambiguous nucleotide positions were 

corrected manually. Phylogenetic affiliations were assigned based on phylogenetic 

trees constructed by the neighbor-joining method in the ARB software. Bootstrap 

analysis was performed with 1000 replicates. 

 

Quantitative fluorescent PCR 

 Quantitative fluorescent PCR (Q-PCR) for 16S rRNA genes was performed 

as described previously (4, 6, 71). Copy numbers of the 16S rRNA genes were 

determined using a universal primer-probe set (60), an archaea-specific primer-probe 

set (60) and a bacteria-specific primer-probe set (37). Functional genes dsrA and 

aprA, which encode dissimilatory sulfite reductase and adenosine 5’-phosphosulfate 

reductase subunit A, respectively, were quantified as described elsewhere (4, 54), 

using specific primer sets (28, 35). The primers and probes in this study are 
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summarized in Table 1. After each Q-PCR, melting curves were measured for SYBR 

Green I assays. The sizes of the PCR products were further confirmed by gel 

electrophoresis. All Q-PCR assays were run in triplicate. 

 

Nucleotide sequence accession numbers 

 The nucleic acid sequences obtained in this study have been deposited in the 

DDBJ/EMBL/GenBank databases under the following accession numbers: 

AB824899-AB825952 (16S rDNA) and AB936820-AB936831 (amoA).  

 

RESULTS 

Thermal and geochemical variation associated with sediment lithology  

 At IODP Expedition 331 Site C0017, located 1550 m east of the activity center 

of the Iheya North hydrothermal field, in situ temperature measurements did not 

show a significant temperature change in Units I and II, whereas a marked 

temperature increase was observed in Unit III; the temperature at 69 mbsf was 25°C 

(Fig. 1A). At the deepest section of Unit IV, the temperature increased up to 90°C. 

 In the Unit I layer, which mainly consisted of hemipelagic sediments (Fig. 1B 

and C), the porewater alkalinity and ammonium concentration increased from 3.2 to 

7.3 mM and from 0.02 to 0.45 mM, respectively, whereas the sulfate concentration 

slightly decreased as the depth increased (Fig. 2). The nitrate concentration was less 

than 2 µM throughout the unit. These geochemical features were indicative of a 

typical anaerobic sedimentary environment, where oxygen was presumably 

consumed by microbial respiration within the uppermost sediment. Units II and III 

consisted of coarse-grained porous volcaniclastic pumiceous deposits (Fig. 1B and 

C). The Unit II layer presented an inverse trend of alkalinity and ammonium and 

sulfate concentrations compared with Unit I (Fig. 2). Furthermore, the nitrate 

concentration significantly increased up to 34 µM at the bottom of the unit. The nitrate 

concentration and alkalinity value are similar to those in the deep seawater of the 

East China Sea (ca. 38 µM for nitrate and 2.5 mM for alkalinity) (25, 36). Hence, the 

chemical characteristics suggest that porewater with little influence of early 

diagenesis of infiltrated seawater exists in coarse-grained pumiceous gravels and 

breccias localized at 26.6-30.0 mbsf in Unit II. Given the anomalously low thermal 

gradient in this area (34), a lateral flow would be caused by recharging of the 

oxygenated and low-temperature bottom seawater. At the bottom of this hole (Unit 
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IV), we observed no apparent chemical signature for hydrothermal fluid input in the 

porewater chemistry. Throughout the sediment column, the methane concentrations 

were quite low, mostly below 1 µM (63). 

 Acetate is a key intermediate substance of various microbial metabolic 

pathways in anaerobic environments (29). Biogeochemical processes via acetate in 

subseafloor sediments at Site C0017 were examined by the stable carbon isotopic 

analysis of acetate in the porewater (Fig. 2). The acetate concentration highly 

fluctuated, possibly due to the difference in sediment lithology. High acetate 

concentrations of up to 80.6 µM were detected at certain depths in Units I, II and III, 

where the sediment is mostly hemipelagic clay. In contrast, the concentration in the 

layers of volcaniclastic sand ranged from 8.2 to 22.6 µM. A similar variation was also 

found in the total organic carbon content (63). Throughout the sediment column, the 

isotopic composition of acetate (δ13Cacetate) ranged from -37.6‰ to -32.2‰. The local 

maximal stable carbon isotopic compositions of porewater acetate were observed at 

the interface of Units I and II. 

 

Total cell counts and Q-PCR analysis 

 The microbial cell abundance at Site C0017 decreased logarithmically with 

sediment depth from 3.2 × 107 cells per ml of sediment at 0.7 mbsf to less than the 

detection limit of approximately 6.5 × 105 cells per ml of sediment at 68 mbsf (63). 

Similar depth profiles were obtained from the 16S rRNA gene-targeted Q-PCR 

analysis (Fig. 3A). The 16S rRNA gene copy number ranged from 8.8 × 105 to 8.7 × 

107 genes g-1 sediment for total prokaryotes, from 5.7 × 104 to 2.7 × 107 genes g-1 

sediment for bacteria and from 6.4 × 104 to 8.9 × 106 genes g-1 sediment for archaea. 

The highest cell count and 16S rRNA gene number were detected at a depth of 6.4 

mbsf. To reveal the spatial distribution of particular physiological microbial groups, 

we quantified the copy numbers of functional genes dsrA and aprA for potential 

sulfate reducers that encoded dissimilatory sulfite reductase and adenosine 5’-

phosphosulfate reductase subunit A, respectively. They were less abundant than the 

16S rRNA genes but detectable in most of the samples (Fig. 3B). 

 

16S rRNA gene phylotype community 

 In the shallow depths of Unit I above 14.8 mbsf, the 16S rRNA gene phylotype 

communities were dominated by previously uncultivated sequences of typical 
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subseafloor lineages. At 6.4mbsf, bacterial phylotypes affiliated with phylum 

Chloroflexi comprised 27.1% in the 16S rRNA gene clone library (23/86 clones) (Fig. 

4). Members of the Deep Sea Archaeal Group (DSAG), also referred to as Marine 

Benthic Group B (MBG-B), accounted for 26.4% (23/87 clones) at 0.7 mbsf. The 16S 

rRNA gene communities in Unit II, except for those from the upper depth (20.1 mbsf), 

were markedly dominated by members of Marine Group I (MG-I) Thaumarchaeota 

and Alphaproteobacteria (Fig. 4). Archaeal sequences belonging to the 

Miscellaneous Crenarchaeotic Group (MCG) were predominantly detected at depths 

of 63.6 and 68.1 mbsf in Unit III. Data from the deep layer in Unit IV showed that the 

16S rRNA gene communities using a universal primer set likely reflected highly 

biased compositions by external contamination rather than the indigenous 

compositions in these deep sedimentary habitats (data not shown). Due to the 

markedly low microbial cell abundances (Fig. 3A), these samples would be 

susceptible to microbiological contamination from the drilling fluid used for the 

operation during IODP Expedition 331 (70). As no detectable archaeal 16S rRNA 

gene sequences were obtained from the drilling fluid (70), we further constructed 

archaeal 16S rRNA gene clone libraries in the deep sediment samples of Unit IV. 

Notably, we found a drastic transition of the archaeal 16S rRNA gene phylotype 

composition in Unit IV. At a depth of 95.0 mbsf, sequences of South Africa Gold Mine 

Euryarchaeotic Group (SAGMEG) and AK8 predominated the archaeal phylotype 

composition, whereas Hot Water Crenarchaeotic Group IV (HWCGIV) were dominant 

at the depth of 141.1 mbsf, representing 29.0% of the clonal frequency (Fig. 4). 

 Based on the phylogenetic distance and abundance of each 16S rRNA gene 

phylotype, we compared differences in the microbial phylotype composition among 

all samples using UniFrac analysis. The results of the cluster analysis and PCA 

revealed the evident compositional variability among the 11 sediment samples (Fig. 

5A and B). The microbial phylotype compositions in three samples from the 

permeable zone in Unit II were similar to one another and were significantly distinct 

from those in the other sample layers. The predominant phylotypes commonly found 

in the samples within this cluster were the members of MG-I Thaumarchaeota and 

Alphaproteobacteria, as described above. Similarly, the microbial phylotype 

compositions in the shallow sediments of Unit I were also closely related to one 

another. 
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Detection of archaeal amoA genes from the permeable pumice-rich layer 

 Previous studies of microbial communities in marine and soil environments 

showed that most of the MG-I Thaumarchaeota harbor the amoA gene, encoding 

ammonia monooxygenase subunit A, and can oxidize ammonia to nitrite (50). We 

could amplify archaeal amoA gene fragments from a permeable pumice-rich layer at 

a depth of 30.0 mbsf. Forty-three sequences of the archaeal amoA gene were 

evaluated and classified into 12 phylotypes. All the archaeal amoA phylotypes were 

phylogenetically related to sequences detected in ocean waters and sediments (Fig. 

S1 in the supplemental material). Co-occurrence of the MG-I 16S rRNA and archaeal 

amoA genes suggested the potential contribution of ammonia oxidation in the 

permeable layer, where the recharged seawater flows may have created the aerobic 

habitats. 

 

DISCUSSION 

Variation of microbial communities in the subseafloor sediments 

 In this study, microbial cell populations in subsurface marine sediments at Site 

C0017 were quantified using both microscopic observation and Q-PCR. The 16S 

rRNA gene numbers showed a pattern similar to the total cell counts, indicting a high 

reliability of the data produced by both quantification methods (Fig. 3A). Relatively 

low microbial cell abundances in the subseafloor sediments at this site, compared 

with the abundances in other subseafloor sedimentary habitats, would be explained 

by the relatively low productivity of the overlying oligotrophic ocean and the distance 

from land (23).  

 In the Unit I sediment, the increase of the porewater alkalinity and ammonium, 

the decrease of sulfate and the low nitrate concentration are considered as the result 

of anaerobic microbial processes (Fig. 2). Furthermore, it seems likely that the 

anaerobic microbial activity provides the 13C enrichment of acetate at the interface of 

Units I and II. One conceivable explanation would be that slight carbon isotopic 

fractionation occurs during fermentative acetate production (17, 49). However, 

judging from the fact that the maximal stable carbon isotopic compositions of acetate 

are associated with the local minimum concentrations of acetate, the 13C enrichment 

of acetate is a potential signature of microbial consumption as a substrate. This is 

supported by previous laboratory experiments with pure cultures of acetotrophic 

sulfate reducers, which showed that acetate was enriched in 13C up to 19.3‰ (16). 
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The 16S rRNA gene phylotype communities in the Unit I sediments were dominated 

by the members of Chloroflexi and DSAG. Both are widely distributed in many deep-

sea sediments and, in some cases, represent more than half of the 16S rRNA gene 

clone libraries (15). However, no representatives of marine subsurface Chloroflexi 

(Dehalococcoidetes) and DSAG have so far been cultured, and thus their metabolic 

pathways remain elusive. Currently, a single cell genomic approach for 

Dehalococcoidetes from marine subsurface sediments suggests they are strictly 

anaerobic organotrophs or lithotrophs (24, 68). The members of DSAG are 

considered to be involved in the biogeochemical cycling of organic carbon, iron oxide 

and/or manganese (21, 22). 

 The profiles of the dsrA and aprA gene copy numbers suggested that the 

relative abundance of sulfate-reducing bacteria was higher at shallower depths than 

in deeper sections (Fig. 3B), which was comparable with the findings of other 

sediments (4). Indeed, a current biogeochemical modeling of microbial sulfate 

reduction using the concentration and multiple sulfur isotopic compositions of 

porewater sulfate has strongly suggested the occurrence of active microbial sulfate 

reduction in the shallowest zone of sediments down to 20 mbsf (Unit I) (1). 

Correspondingly, the 16S rRNA gene phylotypes affiliated with Deltaproteobacteria 

were detected from sediments above 74.9 mbsf (Fig. 4). These results suggest that 

microbial sulfate reduction may be an important metabolic function that supports 

subseafloor microbial production in anaerobic hemipelagic mud habitats.  

 The 16S rRNA gene phylotype composition drastically changed in the deeper 

sediments, potentially influenced by the subsurface flow of recharged seawater in the 

permeable pumiceous zone. The cluster analysis and PCA also indicated that the 

physical and/or chemical properties associated with the lithological structure would 

differentiate the possible subseafloor microbial community composition responding to 

the lithostratigraphic transition (Fig. 5). A key component of the microbial phylotype 

composition in the permeable pumice-rich sediments was the predominance of the 

MG-I members in Thaumarchaeota (Fig. 4). Several studies have previously reported 

that thaumarchaeal phylotypes are frequently obtained from the aerobic and 

oligotrophic sediments (12) and presumably from the anoxic subsurface sediments 

(19, 21, 53). Although the dissolved oxygen concentration was not measured in this 

study, relatively high concentrations of nitrate in the permeable samples were 

indicative of the presence of dissolved oxygen (46) and were distinct from the typical 
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anaerobic sedimentary environments (Fig. 2). The chemical conditions would provide 

the feasibility of microbial ammonia oxidation in the permeable zone. 

Correspondingly, the members of MG-I Thaumarchaeota are known to possess the 

dissimilatory ammonia oxidation pathway (56). In fact, we successfully detected 

archaeal amoA genes from this zone (Fig. S1 in the supplemental material). The Q-

PCR results also indicated the distinct composition of microbial components in the 

permeable layer. The comparison between archaeal and total 16S rRNA gene copy 

numbers revealed that the archaeal 16S rRNA gene abundance accounted for 25.4-

39.5% of the total prokaryotic 16S rRNA gene abundance in the permeable layer, 

whereas the archaeal population remained as 4.11-24.6% of the total prokaryotic 

16S rRNA gene population at any other sample depth. Thus, the distinct microbial 

community development in the permeable layer might be caused by the dominance 

of potential ammonia-oxidizing MG-I Thaumarchaeota in the possible indigenous 

microbial communities. Although another explanation (e.g., certain Q-PCR biases 

due to a few mismatches of the ARCH516 TaqMan probe with the archaeal 

phylotypes typically found in the anoxic subseafloor sediments (30, 66)) cannot be 

completely excluded, the estimated 16S rRNA gene abundances of MG-I 

Thaumarchaeota in the specific subseafloor habitats are an order of magnitude 

higher than the MG-I cell abundances in the ambient bottom seawater of the Iheya 

North hydrothermal field (55). Therefore, the MG-I Thaumarchaeota likely represent 

one of the predominant indigenous microbial populations in the specific layer rather 

than only being contaminants from the potentially recharged seawater. 

 

Abundant incidence of HWCGIV in high-temperature sediments 

 Based on the microbial community surveys of hydrothermal mixing zones of 

habitats at the seafloor of the Iheya North hydrothermal field, metabolically diverse 

microbial communities (including psychrophilic to hyperthermophilic 

chemolithotrophs) were expected to be distributed abundantly and widely in the 

subseafloor environments beneath the hydrothermal field (38). However, the culture-

dependent attempts for potentially indigenous microbial populations associated with 

hydrothermal activity (such as Thermococcales, Aquificales and 

Epsilonproteobacteria) were unsuccessful throughout the sediments at Site C0017 

(63). The temperature in the deepest sample at 151 mbsf of up to 90°C was below 

the upper temperature limit of life (122°C) (64). The archaeal 16S rRNA gene 
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community composition in the deepest (141 mbsf) and hottest core for the 

microbiological analysis was dominated by the HWCGIV (also known as Terrestrial 

Hot Spring Crenarchaeotic Group [THSCG] or UCII) and MCG (Fig. 4), whereas we 

found no Thermococcales-, Methanococcales- and Archaeoglobales-related 

sequences throughout the sediments that were previously detected in the 

hydrothermal chimney structures of the Iheya North field (38). The HWCGIV have 

been reported in microbial habitats associated with deep-sea hydrothermal vents (42, 

55, 71). The biological thermometer estimation using the GC contents of the 16S 

rRNA gene sequences proposed by Kimura et al. (26) indicates that the potential 

optimal and maximum growth temperatures of the HWCGIV found in this study are 

74°C and 83°C, respectively. These predicted values are consistent with in situ 

temperatures measured with thermoseal strips (Fig. 1A). Accordingly, the HWCGIV 

likely represent an active and indigenous population in the subseafloor sediments 

under the high temperature conditions at Site C0017. Nevertheless, the temperature 

condition does not explain why the hyperthermophilic chemolithotrophic populations, 

such as Thermococcales, Methanococcales and Archaeoglobales, which can grow 

above 70°C (57), were absent. The porewater chemistry in the deepest sediments 

revealed no evident chemical input of hydrothermal fluids. Not only the temperature 

but also the substantial chemical fluxes from hydrothermal fluid flow may be required 

for hyperthermophilic chemolithotrophic microbial community development in the 

subseafloor environments. 

 

Oxic fluid circulation within deep biosphere 

 In hypothetical models of the total hydrothermal circulation of the Iheya North 

field, proposed by Kawagucci et al. (25) and Tsuji et al. (67), the hydrothermal 

circulation would begin with the bottom seawater recharge in the sediments along the 

faults of the Okinawa Trough basin far distant from the hydrothermal field. 

Particularly, this model assumes that the seawater recharge occur not only in the 

Central Valley (estimated to be 2-km square area), but also in the spatially abundant 

and widespread basin-filling sediments surrounding the Iheya North Knoll. During the 

long spatial and temporal migration in the sediments at the recharge stage, the 

microbially produced methane, ammonium and other compounds are likely added to 

the source fluids (25). However, the recharged seawater flow discovered in this study 

is substantially different from such a great spatial and temporal scale of hydrothermal 



152 

 

circulation and is spatially and temporally limited. Indeed, the porewater sulfate is 

partially utilized by potential functions of the indigenous subseafloor sulfate-reducers 

(1), but the concentration is relatively constant throughout the sediments (Fig. 2). In 

addition, none of the methanogen-related sequences were detected in any of the 16S 

rRNA gene clone libraries at Site C00017 (Fig. 4). These results suggest that the 

sediments and porewater in core samples are less affected by the geochemical and 

microbiological alterations than by the large scale of seawater recharge and 

alteration processes. The existence of high concentrations of porewater nitrate is an 

important chemical signature of the oxidative (potentially aerobic) condition and the 

relatively fresh seawater input in the Unit II layer (Fig. 2). The microbial community 

development pattern also suggests the drastic transition within Unit II (Fig. 5). 

Although Units II and III showed quite similar lithologic characteristics, there was a 

hard layer boundary (almost no core recovered) between Units II and III, and the 

unrecovered hard layer would serve as an impermeable layer to prevent possible 

vertical fluid exchange (63). The microbial community compositions inferred from the 

16S rRNA gene clone sequences were also significantly different between Units II 

and III, and the sequences affiliated with MCG dominated the phylotype compositions 

in the Unit III samples, contrasting with the MG-I Thaumarchaeota members in Unit 

II. Thus, the highly permeable layer in Unit II would provide a novel habitat of the 

subseafloor biosphere that has been unexplored in the previous scientific ocean 

drilling expeditions. The seismic reflection survey and its interpretation revealed 

horizontally widespread and vertically multiple distributions of porous and permeable 

layers in the sediments around the Iheya North hydrothermal field (67). If some of 

these permeable layers host the horizontal recharge flow of relatively fresh seawater, 

the microbial community stratification estimated in the sediments of Site C0017 may 

be a common pattern of subseafloor microbial community development in the 

marginal sedimentary environment of the Iheya North field.  

 

CONCLUSIONS 

 This study reports the potential microbial community stratification associated 

with the complex fluid flow structure, such as recharging seawater and underlying 

hydrothermal fluids, coupled with the lithologic transition of sediments at Site C0017 

in the Iheya North hydrothermal field of the Mid-Okinawa Trough. Uncultivated 

microbial components, which are frequently detected in subseafloor sedimentary 
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environments, populated the shallow sections, whereas members of MG-I 

Thaumarchaeota dominated the 16S rRNA gene phylotype communities in the 

pyroclastic deposits. The sharp transition of the potential microbial community is 

most likely controlled by different physical properties of sediments, such as the 

permeability of hemipelagic muds and volcaniclastic sediments, which are further 

related to the hydrogeologic structure and geothermal gradient of the subseafloor 

environment. Our results reveal the dynamics of biogeochemical and microbiological 

processes in the subseafloor sediments, directly and indirectly associated with local 

fluid flows such as fresh seawater recharge and hydrothermal fluid discharge. A great 

spatial and temporal scale of hydrothermal circulation has been extensively 

investigated in crustal aquifers at mid-ocean ridge flanks, which also potentially 

supplies oxidants through the basaltic basement and has a significant role in 

biogeochemical cycles and crustal rock alteration (2, 46). The drilling operation 

during IODP Expedition 331 was unsuccessful in reaching the volcanic basement, 

which might exist at ~450 mbsf at Site C0017 (63). However, this study implies that 

the oxidants transported through the local seawater circulation associated with 

hydrothermal activity are important for generating variable chemical environments 

and microbial communities in the subseafloor sedimentary habitats and even in 

potentially deeper sediment-basement interface habitats. 
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TABLE 1. List of primers and probes used in the Q-PCR assays 

 

Target gene Primer/probe Sequence (5'-3') Reference 
Prokaryotic universal  
16S rRNA gene 

Uni340F CCTACGGGRBGCASCAG (60) 

 Uni806R GGACTACNNGGGTATCTAAT (60) 
 Uni516F (TaqMan probe) TGYCAGCMGCCGCGGTAAHACVNRS (60) 
Archaeal 16S rRNA gene Arch349F GYGCASCAGKCGMGAAW (60) 
 Arch806R GGACTACVSGGGTATCTAAT (60) 
 Arch516F (TaqMan probe) TGYCAGCCGCCGCGGTAAHACCVGC (60) 
Bacterial 16S rRNA gene 331F TCCTACGGGAGGCAGCAGT (37) 
 797R GGACTACCAGGGTATCTAATCCTGTT (37) 
 TaqMan probe CGTATTACCGCGGCTGCTGGCAC (37) 
Dissimilatory sulfite  
reductase (dsrA) 

DSR-1F+  ACSCACTGGAAGCACGGCGG (28) 

 DSR-R GGTTRKACGTGCCRMGGTG (28) 
Adenosine 5’-phosphosulfate 
 reductase subunit A (aprA) 

AprA-1-FW TGGCAGATCATGATYMAYGG (35) 

 AprA-5-RV GCGCCAACYGGRCCRTA (35) 
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FIG 1 Temperature profile (A), lithostratigraphic transition (B) and core photograph (C) of sediment 
samples at IODP Expedition 331 Site C0017, which were originally published elsewhere (63). The 
black diamonds indicate in situ temperature measured by the APCT-3 temperature shoe. The grey 
diamond indicates the exposed minimum temperature determined by a thermoseal strip taped to the 
outer surface of the core liner. The lithologic description was roughly modified to show the entire 
sedimentary structure of the core samples. The photographs were taken from the section closest to 
the microbiology samples used in this study. 

 

 
FIG 2 Depth profile of porewater alkalinity, the ammonium, nitrate, sulfate, and acetate concentrations 
and the carbon isotopic composition of acetate in the core samples at Site C0017. The original data 
regarding alkalinity, ammonium, nitrate and sulfate were published elsewhere (63).  
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FIG 3 Total cell counts and numbers of 16S rRNA and functional genes in the subseafloor core 
samples at Site C0017. (A) Total cell counts (open circles) and the 16S rRNA gene numbers of 
prokaryotes (black circles), bacteria (dark gray triangles) and archaea (light gray diamonds) quantified 
by Q-PCR. The total cell counts were originally reported by Takai et al. (63). (B) Numbers of functional 
genes dsrA (dark gray triangles) and aprA (open squares). 

 

 

FIG 4 The 16S rRNA gene phylotype compositions in the sediments at Site C0017. The 16S rRNA 
gene fragments were amplified with the universal and archaea-specific primer sets of Uni530F-907R 
and Arc530F-Arc958R, respectively. The numbers in parentheses indicate the number of clones. 



164 

 

 
 

 
 

FIG 5 Jackknife environment cluster analysis (A) and PCA (B) in the UniFrac program. The jackknife 
values were estimated using 100 permutations and are shown in the nodes of the dendrogram. Each 
axis of the PCA plot indicates the fraction of the variance in the data. The black circles, plus signs and 
triangles indicate the sediment samples of Units I, II and III, respectively.  
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Fig. S1. Phylogenetic tree of the archaeal amoA gene sequences obtained from the permeable layer 
at the depth of 30.0 mbsf. Boldface type indicates the sequences obtained in this study. The 
parenthetic numbers show the total number of phylotypes. Bootstrap values are expressed as 
percentages of 1000 trials. The values at the nodes represent the scores greater than 50%. The scale 
bar represents 2% estimated sequence divergence. 
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Abstract 

Subseafloor microbes beneath active hydrothermal vents are thought to live near the 

upper temperature limit for life on Earth. We drilled and cored the Iheya North 

hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic 

compositions and the products of metabolic functions of sub-vent microbial 

communities. We detected microbial cells, metabolic activities and molecular 

signatures only in the shallow sediments down to 15.8 m below the seafloor at a 

moderately distant drilling site from the active hydrothermal vents (450 m). At the 

drilling site, the profiles of methane and sulfate concentrations and the δ13C and δD 

isotopic compositions of methane suggested the laterally flowing hydrothermal fluids 

and the in situ microbial anaerobic methane oxidation. In situ measurements during 

the drilling constrain the current bottom temperature of the microbially habitable zone 

to ~45 °C. However, in the past, higher temperatures of 106-198 °C were possible at 

the depth, as estimated from geochemical thermometry on hydrothermally altered 

clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone 

are related to those of thermophiles, although sequences typical of known 

hyperthermophilic microbes were absent from the entire core. Overall our results 

shed new light on the distribution and composition of the boundary microbial 

community close to the high-temperature limit for habitability in the subseafloor 

environment of a hydrothermal field. 

 

Introduction 

Deep-sea hydrothermal vents are extreme environments, especially with respect to 

the high temperatures, which create the limits of life on Earth. Several studies have 

further addressed the potential microbial habitats beneath the seafloor hydrothermal 

vents, the so-called “sub-vent biosphere”, and have indicated the possible 

occurrence of functionally active and metabolically diverse (hyper-)thermophilic 

microbial communities associated with shallow subseafloor hydrothermal fluids and 

mineral deposits (Deming and Baross, 1993; Delaney et al., 1998; Summit and 

Baross, 1998; Huber et al., 2002, 2003). The compositions and functions of the sub-

vent microbial communities have been inferred from culture-dependent and culture-

independent analyses of microbial communities in (i) in situ growth chambers placed 

in hydrothermal fluid flows (Karl et al., 1988; Reysenbach et al., 2000; Corre et al., 

2001; Takai et al., 2004), (ii) crustal fluids collected directly from the shallow 
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subseafloor environments (~10 m below the seafloor [mbsf]) via seafloor drilling or 

probe insertion (Cowen et al., 2003; Higashi et al., 2004; Huber et al., 2006; Kato et 

al., 2009; Orcutt et al., 2011), (iii) hydrothermal sediments (Teske et al., 2002; Dhillon 

et al., 2005; Nunoura et al., 2010; Teske et al., 2014; Dowell et al., 2016; Teske et 

al., 2016) and (iv) chimney structures of active hydrothermal vents (Takai et al., 

2001; Schrenk et al., 2003; Nakagawa et al., 2005). These studies found that 

mesophilic, thermophilic and hyperthermophilic members of Epsilonproteobacteria, 

Gammaproteobacteria, Aquificales, Thermococcales and Methanococales were the 

potentially predominant microbial components in the sub-vent biosphere. 

Additionally, previous studies associated with international scientific ocean drilling 

projects have also indicated the existence of microbial cells in deep subsurface 

sedimentary and rocky habitats in the hydrothermal vent systems on the Juan de 

Fuca Ridge [Ocean Drilling Program (ODP) Leg 139 (Cragg and Parkes, 1994) and 

169 (Cragg et al., 2000; Summit et al., 2000) and Integrated Ocean Drilling Program 

(IODP) Expedition 301 (Lever et al., 2013)] and the Manus Basin [ODP Leg 193 

(Kimura et al., 2003)]. However, these microbial explorations associated with 

scientific ocean drilling projects have not successfully provided data on the 

compositions and functions of potential subseafloor microbial communities. In 

particular, it is unclear how local hydrothermal flow may influence the uneven 

distribution of sub-vent microbial community. Complex subsurface hydrothermal flow 

may limit or stimulate the sub-vent microbial activities. 

 The IODP Expedition 331 by the D/V Chikyu (Takai et al., 2011) provided a 

good opportunity for direct investigation of the sub-vent biosphere at the Iheya North 

hydrothermal field in the Mid-Okinawa Trough. The Iheya North field is located in a 

continental-margin backarc basin, and the hydrothermal activity is highly influenced 

by trough-filling terrigenous sediment and knoll-covering volcaniclastic deposits 

(Kawagucci et al., 2011). The subseafloor geochemical and microbiological 

processes associated with buried organic matter and hydrothermal circulation 

produce unique hydrothermal fluid compositions that are enriched with high 

concentrations of methane and ammonia (Sakai et al., 1990; Kawagucci et al., 2011). 

During IODP Exp. 331, we conducted drilling and coring operations at five sites, 

located at 0 m (C0016), 100 m (C0013), 450 m (C0014) and 1,550 m (C0017) east 

and 600 m (C0015) northwest of the most active hydrothermal mound (Takai et al., 

2011). Previously, we have reported downhole changes in the microbial community 
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corresponding to variations in the subseafloor hydrogeologic and lithostratigraphic 

structures that affected the recharging seawater and hydrothermal fluid input at Site 

C0017 (Yanagawa et al., 2014). That study obtained the 16S rRNA gene sequences 

of putative thermophiles only from the deepest sediments at 141 mbsf, where the in 

situ temperature was estimated to be approximately 90 °C, lower than the previously 

reported upper growth temperature limit of hyperthermophiles (122 °C) (Takai et al., 

2008). The results suggested that the deepest sediment at Site C0017 is inhabited by 

potential thermophilic populations and that the habitable limit of the subseafloor 

microbial community lies at a depth greater than that of the bottom of the drilled hole 

(Yanagawa et al., 2014). 

 In addition to Site C0017, this study investigated the subseafloor environments 

at two additional drilling sites (Sites C0013 and C0014) that have higher thermal 

gradients and are closer (100 and 450 m, respectively) to the vigorous hydrothermal 

vents. We chose these vents to clarify the distribution, composition and function of 

microbial communities occurring adjacent to the high-temperature biosphere limit 

associated with high-temperature hydrothermal fluids. The drilling operations at these 

sites successfully penetrated the subseafloor hydrothermal fluid reservoirs and 

created artificial hydrothermal fluid vents with temperatures of up to 311 °C 

(Kawagucci et al., 2013a). Hence, the recovered core samples were potentially 

exposed to the in situ temperature range of 4°C to >300 °C and provide important 

insights into the boundary microbial community and the limits of the biosphere. 

 

Materials and Methods 

Sampling Sites and Sample Collection 

Subseafloor drilling and coring operations were conducted at the Iheya North 

hydrothermal field in the Mid-Okinawa Trough during IODP Expedition 331 (Takai et 

al., 2011). Coring and in situ temperature measurements were conducted at IODP 

Site C0013 and Site C0014 as previously described (Takai et al., 2011). Sediment 

samples for geochemical and microbiological analyses were collected as previously 

described (Yanagawa et al., 2013b; Yanagawa et al., 2014). Details on the sample 

collections are provided in Supplementary Information Materials and Methods. 

Geochemical Analyses 

The carbon and hydrogen isotopic compositions of methane were determined via 

continuous-flow isotope ratio mass spectrometry as previously described (Umezawa 
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et al., 2009; Kawagucci et al., 2013a). The oxygen isotopic compositions of 

hydrothermally altered mud were determined as previously described (Miyoshi, 

2013). The concentration and isotopic composition of DIC was determined as 

previously described (Miyajima et al., 1995; Toki et al., 2004; Noguchi et al., 2013). 

Details are provided in Supplementary Information Materials and Methods. 

Molecular Analyses of 16S rRNA Genes and Functional Genes 

DNA was extracted from core subsamples using the PowerMAX Soil DNA isolation 

kit (MoBio Laboratories, Carlsbad, CA). Before the physical cell disruption, the 

samples were incubated at 65 °C for 5 min. Then, mechanical shaking was 

performed for 10 min with a ShakeMaster (BioMedical Science, Tokyo, Japan). Other 

subsequent steps were performed according to the manufacturer's protocol. The 

extracted DNA was stored at -80 °C.  

 Q-PCR was performed for prokaryotic and archaeal 16S rRNA genes and the 

functional genes of dsrA, aprA and mcrA as previously described (Nunoura et al., 

2008; Blazejak and Schippers, 2011; Yoshida-Takashima et al., 2012; Breuker et al., 

2013). The primers, probes and amplification conditions used in this study are 

summarized in Supplementary Table S2.  

 For the clone analysis of 16S rRNA genes, the gene fragments were amplified 

by PCR using a universal and archaea-specific primer set (Nunoura et al., 2012). The 

mcrA gene fragments were also amplified using specific primers. Details for primers 

and PCR amplification conditions are described in Supplementary Table S2. The 

amplified 16S rRNA and mcrA genes were cloned, sequenced and aligned as 

previously described (Yanagawa et al., 2013b). The phylogenetic affiliations were 

identified using the SILVA SSU Ref 111 Database (Ludwig et al., 2004) and 

phylogenetic trees were constructed. A detailed description is provided in 

Supplementary Information Materials and Methods. Sequences have been deposited 

in the GenBank database under accession numbers: AB824899-AB825952 for 16S 

rRNA gene sequences and LC061224-LC061266 for mcrA gene sequences. 

Cultivation Tests 

Serial dilution cultivations for anaerobic heterotrophs, methanogens, and sulfate 

reducers were performed to quantify the abundance of populations that can be 

cultivated in the laboratory using sediment slurries from a variety of depths. The 

cultivated population abundance of aerobic heterotrophs was quantified by colony-

forming units on marine agar 2216 (BD). Details for cultivation conditions are 
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provided in Supplementary Information Materials and Methods and Supplementary 

Table S3. 

Microbial Activity Measurements 

The potential rates of methane production and oxidation and acetate oxidation were 

determined through radioisotope tracer incubation experiments (Tasumi et al., 2015). 

The sediment slurry samples were incubated with appropriate radiotracers (14CH4, 

H14CO3
- and [2-14C] acetate) for 1 month at 30 °C and 60 °C based on the in situ 

temperatures in Supplementary Figure S1. The radioactivity of a portion of the 

reaction products in the headspace was measured using a gas chromatograph 

(Shimadzu GC-2014, Shimadzu, Kyoto, Japan) and a high-sensitivity radioactivity 

detector RAGA Star (Raytest, Straubenhart, Germany), as shown in Supplementary 

Information Materials and Methods. The potential activity was calculated based on 

the proportion of radioactive 14C product to total radioactive substrate. 

 

Results and Discussion 

Temperature in the Sub-vent Environment 

 Sediment core samples analyzed in this study were obtained from two holes at 

IODP Site C0013 (Holes C0013B and C0013D) and four holes at Site C0014 (Holes 

C0014B, C0014D, C0014E and C0014G). The depths of the deepest holes were 35 

and 137 mbsf at Site C0013 (Hole C0013D) and Site C0014 (Hole C0014G), 

respectively. Although in situ temperatures were not measured during the drilling at 

Site C0013, it could be estimated from the fact that most of the plastic core liners 

melted several meters below the seafloor (Yanagawa et al., 2013b). The melting 

point of the plastic is >70 °C. The subseafloor environment at Site C0014, at which 

most of the deep coring operations were conducted by using aluminum core liners, 

exhibited a steep temperature gradient of 3 °C/m based on the temperatures 

measured during the drilling operation. At this site, the temperatures increased from 

4.5 °C at the seafloor to >210 °C at 50 mbsf (Takai et al., 2011) (Supplementary 

Figure S1).  

 Hydrothermally altered mud with elemental sulfur and sulfide grit was found in 

shallow sediments at 0.8 and 4.5 mbsf in Holes C0013B and C0013D, respectively 

(Miyoshi et al., 2015). The clay minerals in the hydrothermal mud yielded oxygen 

isotopic values of +8.0 and +9.6‰ (Miyoshi, 2013). These values indicated that the 

clay minerals formed at >138 °C (Supplementary Table S1). At Site C0014, the 
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shallow sediments were not affected by hydrothermal alteration at depths above 

approximately 12 mbsf, whereas the deeper >12 mbsf sediments were 

hydrothermally altered (Miyoshi et al., 2015). The oxygen isotopic values of the 

hydrothermally altered clays at 12.8 and 15.1 mbsf in Hole C0014B were +8.7 and 

+12.5‰, respectively (Miyoshi, 2013). This indicated that the clay formation 

temperatures were >106 °C at Site C0014 (Supplementary Table S1) (Miyoshi, 

2013). The geochemical thermometer estimate based on the oxygen isotopic 

compositions of hydrothermally altered clay minerals suggests that at some point in 

time, even the shallow sediments at Sites C0013 and C0014 have experienced high-

temperature conditions that are close to the known temperature limit of life at 122 °C 

(Takai et al., 2008). Indeed, any of the microbial cell observations, metabolic activity 

measurements, cultivation tests and prokaryotic 16S rRNA gene quantifications 

described below provided positive signatures for the existence of microbial 

populations only in the near-surface sediments at Site C0013. Thus, most of the 

results and discussion in the following sections are described with a focus on Site 

C0014. 

 A rapid increase in the pore-water potassium (K) concentration was observed 

just below the seafloor at 12.1 mbsf in Hole C0014B, 11.5 mbsf in Hole C0014D and 

17.7 mbsf in Hole C0014G (Supplementary Figure S2). These discontinuities in K 

concentrations could be explained by the possible occurrence of impermeable layers 

in the subseafloor environment (Figure 1) and hydrothermal fluid flows just below the 

layers. The distribution pattern of the hydrothermally altered mud supports this 

interpretation (Supplementary Table S1) (Miyoshi et al., 2015). In addition, because 

potassium was enriched in the endmember 310 °C hydrothermal fluids (80 mM) but 

low in the ambient 4 °C seawater (10 mM) (Kawagucci et al., 2011), the K 

concentration is an indicator of the degree of mixing between hydrothermal fluids and 

infiltrated seawater and/or ambient pore-water. Although the magnesium 

concentration is also an excellent indicator of mixing between ambient seawater and 

hydrothermal fluids, the pore-water magnesium concentration could be affected by 

not only mixing but also association and dissociation processes related to 

hydrothermally altered minerals (Takai et al., 2011; Miyoshi et al., 2015). Thus, in this 

study, the pore-water K concentration is likely more reliable than the magnesium 

concentration. Assuming a bimodal mixing between endmember hydrothermal fluid 

and seawater without conductive cooling, K concentrations lower than 37 mM 
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correspond to the temperature range of sediments lower than 122 °C, the potential 

habitable temperature range of previously cultivated microorganisms. In other words, 

K concentrations higher than 37 mM indicate that the sediments are exposed to high 

temperatures exceeding the potentially habitable temperature range. 

Geochemical Evidence of Hydrothermal Fluid Input and Methane Oxidation 

 The total alkalinity and dissolved inorganic carbon (DIC) concentrations 

featured significant peaks at shallow depths in Holes C0014B and C0014D 

(Supplementary Figure S2). Based on the stable carbon isotope compositions, this 

enrichment was probably caused by CO2 in the endmember hydrothermal fluids. 

However, the DIC concentration peaks did not match the vertical K concentration 

profiles in each of the holes even though both components could have been provided 

by the hydrothermal fluids (Supplementary Figure S2). The different profiles for these 

two components (DIC and K) indicated that at least two different hydrothermal fluid 

sources fed the different lithostratigraphic horizons, such as the depth zones of 1-8.4 

mbsf and >12.1 mbsf in the case of Hole C0014B. The hydrothermal fluid input in the 

shallower sediments (1-8.4 mbsf in Hole C0014B and 0-2.2 mbsf at C0014D) 

consisted primarily of low-temperature liquid CO2 and/or enriched gas components, 

whereas the input in the deeper zones (>12.1, >11.5 and >17.7 mbsf in Holes 

C0014B, C0014DE and C0014G, respectively) was derived directly from high-

temperature vapor-lost fluid. Both of these fluids could result from the subseafloor 

phase-separation and phase-partitioning processes of hydrothermal fluids (Von 

Damm and Bischoff, 1987).  

 The methane and sulfate concentrations exhibited more complex vertical 

variations than the DIC and K concentrations (Figure 1). The sulfate concentration 

exceeding the seawater level at Holes C0013B and D (Supplementary Figure S2) 

was probably due to the dissolution of anhydrite with decreasing temperature during 

the core recovery and sampling processes (Takai et al., 2011). In contrast, sulfate 

depletion and methane enrichment (relative to seawater levels) were apparent even 

within the shallow depths for each hole at Site C0014 (Figure 1a). Interestingly, a 

clear inverse relationship existed between methane and sulfate above 14 mbsf in 

Hole C0014B. This indicated the lateral flows of methane-rich hydrothermal fluids in 

the sulfate-rich subseafloor environment. In addition to the lithostratigraphically 

controlled hydrothermal fluid inputs, the δ13CCH4 and δDCH4 profiles suggested the 

contribution of microbial community functions. The patterns in the δ13CCH4 values 



174 

 

along the vertical extent of the core were synchronized with δDCH4 values, and 

isotopically positive shifts in both the δ13C and δD values of methane were observed 

only within the shallow low-temperature zones (7.8-10.7 mbsf in Hole C0014B and 

<15.9 mbsf in Hole C0014G), where the methane concentration was extremely low 

(Figure 1a and Figure 2). These isotopically heavier shifts in methane were not 

directly derived from the 13C- and D-depleted methane in the high-temperature 

hydrothermal fluids (Kawagucci, 2015). The concurrent isotopic changes in methane 

(∆δDCH4/∆δ13CCH4) in the shallow low-temperature zones fell into a range bracketed 

by slopes of 7 to 19 (Figure 2), which have been reported to be representative values 

for microbial methane oxidation (Alperin et al., 1988; Kessler et al., 2006; Holler et 

al., 2009; Feisthauer et al., 2011). 

 The vertical patterns of the geochemical signals differed among the holes 

(Figures 1ab and Supplementary Figure S2). The spatial heterogeneity in the 

subseafloor pore-water geochemistry was likely affected by the local input of 

hydrothermal fluids, and the observed patterns, particularly in Hole C0014B, 

indicated vertical differences in fluid chemistry due to different sources of laterally 

flowing hydrothermal fluids and their mixing behavior with infiltrated seawater and 

ambient pore-water. In combination with the complex variations in the 

lithostratigraphic and physical properties of the core samples, the phase separation, 

flow patterns and mixing behavior of subseafloor hydrothermal fluids are 

hypothesized to be controlled by the lithostratigraphy, such as fresh hemipelagic 

sediments, porous pumiceous deposits and hard impermeable layers (Takai et al., 

2011).  

Abundance Estimation of Microbial Cellular and rRNA Gene Populations 

 The microbial cell abundance at Site C0014 decreased dramatically with depth 

from approximately 1 × 108 cells per ml of sediment just below the seafloor to less 

than the detection limit of approximately 6.5 × 105 cells per ml of sediment (Takai et 

al., 2011) (Figure 1c). A quantitative real-time PCR (Q-PCR) analysis for whole 

prokaryotic and archaeal 16S rRNA genes suggested that microbial populations were 

present only in the shallow sediments above 14.3, 10.2 and 15.8 mbsf in Holes 

C0014B, C0014E and C0014G, respectively (Figure 1c). The abundance of the 

whole prokaryotic 16S rRNA genes with depth showed similar values and profiles to 

the microbial cell abundance in all of the holes. However, several shallow sediment 

depths in Holes C0014B and C0014G exhibited large data gaps between the 
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microbial cell abundance and the whole prokaryotic 16S rRNA gene abundance due 

to the relatively higher detection limit of the microbial cell count, as shown in Figure 

1c, or due to the technical limitations of the Q-PCR (Hoshino and Inagaki, 2012; 

Lloyd et al., 2013; Morono et al., 2014). The relative abundance of archaeal 16S 

rRNA genes increased with depth and represented approximately half of the whole 

prokaryotic 16S rRNA gene assemblages in the deepest zones where Q-PCR could 

detect 16S rRNA genes (Supplementary Figure S3). 

Cultivation and Activity Measurements for Heterotrophs 

 Successful enrichments of heterotrophs were obtained from most of the 

shallow sediment samples from Hole C0014B at a temperature of 30 °C, and 

subsequent quantitative cultivation analyses were conducted on these samples. 

Aerobic heterotrophs, anaerobic heterotrophs and sulfate reducers were detected at 

depths above 8.5, 12.2 and 3.6 mbsf, respectively (Supplementary Figure S4). In 

contrast, 60 °C incubations and onboard cultivation experiments for (hyper-) 

thermophilic heterotrophs and chemolithoautotrophs did not yield any cultivable 

population at any depth (Takai et al., 2011). The cultivated populations ranged up to 

9.6 × 105 CFU g-1 sediment for aerobic heterotrophs, 5.5 × 107 cells g-1 sediment for 

anaerobic heterotrophs and 5.5 × 102 cells g-1 sediment for sulfate reducers. The 16S 

rRNA gene sequences of the isolated aerobic heterotrophs, anaerobic heterotrophs 

and sulfate reducers were highly similar to those of Geofilum rubicundum (100% 

similarity) [NR_112717], Clostridium sp. S710(0)-1 (98% similarity) [GU136592] and 

Desulfomicrobium norvegicum (100% similarity) [NR_025407], respectively 

(Supplementary Table S3). Potential anaerobic heterotrophic activities were also 

detected in the sediment samples from which the anaerobic heterotrophs were 

successfully cultivated (Figure 1e). The activity, defined as the oxidation of the 

methyl group of 14C-labeled acetate to 14CO2, gradually decreased with increasing 

sediment depth. Notably, all of the estimations of cultivation-dependent viable 

heterotrophic populations, 14C-tracer heterotrophic activities and prokaryotic 16S 

rRNA gene quantification provided independent detectable signatures for the 

occurrence of a microbial community in the same depth zone of the subseafloor 

environment (Figures 1c and e and Supplementary Figure S4). 

16S rRNA Gene Community Structures 

 The primer set of Uni530F/Uni907R for the universal prokaryotic 16S rRNA 

gene (Nunoura et al., 2012) was applied to DNA assemblages extracted from the 
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sediment samples. Potentially indigenous 16S rRNA gene communities were 

obtained from the sediment samples from depths above 8.5, 10.2 and 15.8 mbsf in 

Holes C0014B, C0014D and C0014G, respectively (Figure 3a). None of the 16S 

rRNA genes were amplified from environmental DNA assemblages below these 

depths. The 16S rRNA gene phylotype compositions changed significantly with 

transitions in the geochemical and lithostratigraphical environments and/or the 

elevated temperatures. Typical uncultivated microbial members in the marine 

sedimentary environment, such as Deltaproteobacteria, Chloroflexi, JS1 group in 

Candidatus (Ca.) Atribacteria, Deep-sea Hydrothermal Vent Euryarchaeotic Group 6 

(DHVEG-6) and Miscellaneous Crenarchaeotic Group (MCG), were detected in the 

16S rRNA gene clone communities at all depths. Certain members closely related to 

potentially thermophilic bacterial taxa/divisions, such as Thermotogae, 

Thermodesulfobacteria and OP1 (Ca. Acetothermia), were detected as minor 

populations in certain deeper sections (Supplementary Data S1). 

 Members of the HotSeep-1 group composed 60-100% of the total number of 

deltaproteobacterial 16S rRNA gene sequences from the deeper sediment samples 

at 8.5 mbsf in Hole C0014B, 10.2 mbsf in Hole C0014D and 15.8 mbsf in Hole 

C0014G (Supplementary Data S1). The HotSeep-1 group was previously detected in 

hydrothermal sediments in the Guaymas Basin (Teske et al., 2002; Kniemeyer et al., 

2007; Dowell et al., 2016) and in an enrichment culture of anaerobic methane 

oxidizers under high-temperature conditions (Holler et al., 2011). Hence, the 

HotSeep-1 group is thought to be responsible for high-temperature sulfate reduction, 

coupling with the anaerobic oxidation of methane (AOM) by a deeply branching, 

putatively thermophilic group of methanotrophic archaea (ANME-1-Guaymas I) 

(Holler et al., 2011). Although the sequences related to anaerobic methanotrophs 

(ANMEs) were found in certain depth horizons, the members closely related to 

ANME-1-Guaymas I did not co-exist with the bacterial HotSeep-1 group. Notably, the 

ANME-1-Guaymas I phylotypes were detected only at 14.3 mbsf in Hole C0014B, 

representing only 2% of the archaeal clone library (Supplementary Data S1).  

 Archaeal 16S rRNA gene amplicons were obtained from samples from the 

deepest zones at Site C0014, at which many positive signals for the existence of 

microbial communities were detected. These archaeal 16S rRNA gene amplicons 

were detected not by using a universal primer set but by using the archaea-specific 

primer set Arch530F/Arch958R (Figure 3b). The archaeal 16S rRNA gene 
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communities in these sediments were dominated (42-97% of total archaeal 

sequences) by the Hot Water Crenarchaeotic Group IV (HWCGIV; also known as 

UCII or a subcluster of the Terrestrial Hot Spring Crenarchaeotic Group [THSCG]) 

(Supplementary Data S1). They were also detected as the predominant population 

(99% of the total archaeal sequences) in the near-surface sediment at 1 mbsf in Hole 

C0013B, which is the only sample containing detectable 16S rRNA genes at Site 

C0013 (data not shown). The HWCGIV sequences have previously been reported in 

deep-sea hydrothermal vent habitats (Schrenk et al., 2003; Nunoura et al., 2010; 

Yoshida-Takashima et al., 2012) and in a high-temperature zone at 141.1 mbsf at 

Site C0017 (Yanagawa et al., 2014). 

Microbial Functions of Methanogenesis and AOM 

 The metabolic activities of hydrogenotrophic methanogenesis, acetoclastic 

methanogenesis and AOM were traced using radioisotope-labeled substrates at in 

situ temperatures. Hydrogenotrophic and acetoclastic methanogenic activities were 

detected at certain depths in the relatively shallow zones at Site C0014, whereas 

AOM activity occurred widely in the subseafloor environment, from which positive 

signals of the existence of microbial communities were obtained (Figure 4). Although 

the hydrogenotrophic methanogenesis activity outcompeted the AOM activity in the 

shallower zone and the AOM activity dominated in the deeper zone, the opposing 

microbial processes of methane production and consumption occurred at the same 

depths (0.3, 3.6 and 5.0 mbsf in Hole C0014B, 0.2 mbsf in Hole C0014D and 0.3, 4.1 

and 7.8 mbsf in Hole C0014G). In addition, relatively high AOM activities and 

extremely low pore-water sulfate concentrations were observed at the approximate 

depths of 3.6, 8.6 and 15.8 mbsf in Holes C0014B, C0014D and C0014G, 

respectively (Figure 1a). 

 Phylogenetic diversity and the abundance of functional genes related to 

methanogenesis and AOM were also characterized via both Q-PCR for genes 

associated with methyl coenzyme M reductase (mcrA), dissimilatory sulfite reductase 

(dsrA) and adenosine 5’-phosphosulfate reductase (aprA) and clone analysis for 

mcrA (Figure 1d). The Q-PCR data indicated that the mcrA, dsrA and aprA genes 

were widely distributed in most of the shallow sediments that yielded many positive 

signals for the existence of microbial communities, and the abundances decreased 

with increasing depth in the sediment. This pattern also indicated that the complex 

biogeochemical processes associated with the microbial methane- and sulfate-
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related metabolisms co-occur in the sub-vent biosphere at Site C0014. The 

abundances of these functional genes were one to two orders of magnitude lower 

than those of the prokaryotic 16S rRNA genes in the same samples. 

 Based on the sequences of the mcrA genes obtained from the clone analysis, 

the mcrA genes were conventionally classified into the types derived from potential 

methanogenic and methanotrophic populations. The methanogenic type of mcrA 

genes were obtained only from the uppermost sediment at 0.3 mbsf in Hole C0014B 

(Figure 4) and were phylogenetically related to the mcrA genes of Methanococcoides 

(Supplementary Figure S5). The mcrA group a-b genes, which were derived from the 

ANME-1 (Knittel and Boetius, 2009), were most frequently obtained throughout the 

entire depth of the potential microbial habitable zone at Site C0014. In contrast, most 

of the mcrA gene sequences of groups c-d, e and f, hosted by ANME-2a, -2c and -3 

(Knittel and Boetius, 2009), respectively, were found in the shallower depths of 

sediments (Figure 4). Molecular ecological studies have indicated that the ANME-1 

populations occur in deeper, more reductive and more sulfate-depleted habitats than 

the ANME-2 populations (Knittel et al., 2005; Krüger et al., 2008; Nunoura et al., 

2008; Rossel et al., 2011; Yanagawa et al., 2011). Furthermore, the potentially 

thermophilic ANME-1 group has been recognized as a key component in certain 

hydrothermal ecosystems, such as Guaymas Basin and Juan de Fuca Ridge (Biddle 

et al., 2012; Lever et al., 2013; Merkel et al., 2013). This mcrA group of thermophilic 

ANME-1 is defined as Hydrothermal ANME-1 Cluster II (Lever et al., 2013) 

[alternatively classified as mcrA-Guaymas (Biddle et al., 2012) or ANME-1GBa 

(Merkel et al., 2013)]. The optimal growth temperatures of the thermophilic ANME-1 

in the Guaymas site have been estimated to be above 70 °C (Merkel et al., 2013). 

We detected the same group of mcrA gene sequences at 6.7 mbsf in Hole C0014D 

and 15.8 mbsf in Hole C0014G (Figure 4 and Supplementary Figure S5). The 

bacterial 16S rRNA gene sequences of potential thermophiles (Thermotogae and 

OP1) were also detected at these sediment depths (Supplementary Data S1). Thus, 

the possible host archaeal populations of the Hydrothermal ANME-1 Cluster II mcrA 

genes may be thermophilic. Indeed, the radioisotope-tracer AOM activity 

measurements showed relatively high activity, 3.1 pmol cm-3 d-1, at 60 °C at 15.8 

mbsf in Hole C0014G (Figure 4).  
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Synthesis and Interpretation 

Development of Methane-Consuming Microbial Communities 

 Previous studies of microbial communities associated with the hydrothermal 

vent fluids and chimney deposits in the Iheya North hydrothermal field have 

hypothesized the existence of active sub-vent microbial communities that are 

potentially dominated by hyperthermophilic Thermococcales and 

chemolithoautotrophs with H2- and/or sulfur-compound metabolisms. These 

metabolisms were extrapolated from the variability in the microbial communities in 

the most interior and/or reductive seafloor habitats that are highly affected by the 

hydrothermal fluid input (Nakagawa et al., 2005; Takai et al., 2006). However, 

several thermodynamic estimates of chemolithotrophic microbial community 

development in hydrothermal mixing zones have suggested that the populations that 

couple anaerobic methanotrophy with sulfate reduction would energetically dominate 

the microbial communities in the sediment-hosted seafloor and subseafloor habitats 

that are highly affected by hydrothermal fluid inputs (Takai and Nakamura, 2011; 

Nakamura and Takai, 2014; Takai et al., 2014). In this study, all of the pore-water 

geochemical analyses, metabolic activity measurements and cellular and molecular 

microbial community analyses indicated the occurrence of functionally active 

microbial communities dominated by AOM populations in the relatively shallow 

subseafloor habitats down to 15.8 mbsf in Hole C0014G. Several studies have 

examined the abundance, phylogenetic diversity and function of AOM populations 

associated with seafloor hydrothermal activity in the Guaymas Basin and Yonaguni 

Knoll IV fields (Teske et al., 2002; Nunoura et al., 2010; Yanagawa et al., 2013a; 

Dowell et al., 2016). Because these investigations have focused on the shallow 

sediments just beneath the seafloor, where the diffusive mixing of hydrothermal fluids 

and seawater likely characterizes the geochemical environments, there remains a 

lack of knowledge on the subseafloor AOM communities associated with 

hydrogeologically controlled advection and the partitioning and mixing processes of 

hydrothermal fluids and infiltrated seawater near deep-sea vents.  

 The vertical profiles of pore-water methane and sulfate concentrations (Figure 

1a) and stable isotopic values of δ13CCH4 and δDCH4 (Figure 2) indicated the abundant 

occurrence of potentially sulfate-reducing AOM functions in several specific horizons 

within the microbially habitable subseafloor environment (e.g., depths of 0-11.7 mbsf 

in Hole C0014B and 0-10.2 and 0-15.8 mbsf in Hole C0014G). In addition, previous 
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study of significant 34S enrichment in pore-water sulfate strongly suggested the 

presence of microbial sulfate reduction at several depths within the microbially 

habitable terrain, i.e., approximately 5 mbsf in Hole C0014B and 16.1 mbsf in Hole 

C0014G (Aoyama et al., 2014). These compositional and isotopic profiles of pore-

water methane and sulfate are largely dependent on the mass balance of 

hydrothermal fluid and seawater inputs and in situ microbial consumption. Thus, the 

geochemically identified peaks and valleys in the potential microbial methane 

oxidation and sulfate reduction are not necessarily equivalent to the abundance of in 

situ microbial functions. Indeed, the potential in situ microbial activity profile of AOM, 

as determined via radioisotope-tracer experiments, did not match the geochemically 

identified peaks and valleys of microbial methane oxidation (Figure 4), and the mcrA 

and dsrA gene abundances gradually decreased with increasing depth (Figure 1d). 

However, overall, the pore-water geochemistry, the in situ metabolic activities and 

the 16S rRNA and functional gene distributions indicated a significant association 

between subseafloor AOM activity and sulfate reduction. On the other hand, previous 

studies have suggested that microbial AOM activity might be coupled to the reduction 

of iron (hydr)oxide minerals but not sulfate reduction in metalliferous hydrothermal 

sediments (Wankel et al., 2012). The physical and chemical variations in the 

subseafloor environment resulting from advective hydrothermal fluid and seawater 

flows related to the lithostratigraphic and hydrogeologic conditions would create 

diverse biogeochemical processes.  

Constraints on Microbial Community Development in the Sub-Vent Biosphere 

 All of the direct microscopic observations, PCR-based molecular analyses, 

cultivation tests and metabolic activity measurements indicated that functionally 

active, metabolically diverse microbial communities developed in the shallow zones 

of subseafloor sediments associated with hydrothermal fluid flows. The positive 

signals of the existence of microbial communities were obtained from the sediments 

down to 14.3, 10.2 and 15.8 mbsf in Holes C0014B, C0014D and C0014G, 

respectively. Microbial populations were not detected in the deeper, high-temperature 

hydrothermal fluid regimes, due to the limit of microbial habitability and/or the 

methodological detection limit in this study. The Q-PCR and clone library analyses for 

16S rRNA genes showed that the abundance of archaeal 16S rRNA gene phylotypes 

increased with depth, whereas bacterial phylotype populations dominated the 

microbial communities at shallower depths (Supplementary Figure S3). However, 
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neither the culture-dependent nor the culture-independent analyses detected the 

existence of certain previously cultivated hyperthermophilic populations, such as 

Thermococcales, Methanococcales, Archaeoglobales and members of 

Crenarchaota, even though such hyperthermophilic archaeal populations are known 

to dominate the microbial communities in other high-temperature hydrothermal fluid 

and chimney habitats (Nakagawa et al., 2005; Takai et al., 2006). One conceivable 

explanation for this may relate to unstable temperature conditions for their growth 

due to fluctuating hydrothermal fluids, as described below. In the 16S rRNA gene 

clone libraries obtained from the deepest sediments of the microbially habitable 

terrain in the subseafloor environment, putative thermophilic phylotypes, such as 

members of HWCGIV, thermophilic ANME-1, OP1 and Thermotogae, were found 

(Figure 3 and Supplementary Data S1). According to the molecular thermometer 

calculation based on the GC content of the 16S rRNA gene sequences (Kimura et 

al., 2010), the potential growth temperature range was estimated to be the highest 

(50 °C to 76 °C) for members of HWCGIV among the putative thermophilic 

populations.  

 The relationship between microbial habitability and the in situ temperature of 

the subseafloor biosphere has rarely been investigated. Recently, an active 

subseafloor microbial community has been discovered in deeply buried terrigenous 

sediments with a temperature of <60 °C at 2,458 mbsf (Inagaki et al., 2015). The low 

abundance of this community was attributed to the increase in energy used for the 

repair of essential biomolecules such as amino acid and DNA. The energetic costs of 

amino acid racemization and DNA depurination increase exponentially with 

temperature (Lever et al., 2015). However, the physical and chemical conditions that 

form the boundary between habitable and uninhabitable terrains have not been 

directly explored in subseafloor environments (Takai et al., 2014). Sub-vent microbial 

communities are believed to live near the upper temperature limits for life on this 

planet. However, based on the predicted thermal gradient from the temperatures 

measured during the drilling operation (Takai et al., 2011), the temperature near the 

detection limit of microbial populations, activities and molecules in Hole C0014B 

(14.3 mbsf) was estimated to be ca. 45 °C. In contrast, the geochemical thermometer 

estimate based on the oxygen isotopic compositions of hydrothermally altered clay 

minerals from 12.8-15.1 mbsf in Hole C0014B suggested that the boundary habitat 

experienced higher temperatures (>106 °C) (Supplementary Table S1 and 
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Supplementary Figure S1). The former temperature (ca. 45 °C) and latter (>106 °C) 

temperature are far below and similar to the upper temperature limit for microbial 

growth, respectively (Takai et al., 2008). Additionally, the molecular thermometer 

estimate based on the potentially most thermophilic 16S rRNA gene phylotype 

(HWCGIV) population at the depth limit yields a growth temperature range of 50 °C to 

76 °C. It remains uncertain which of the estimated temperatures most accurately 

represents a realistic in situ temperature range because the bottom temperature of 

present microbial habitable zone was not directly measured during the drilling 

operation, and the geochemical and molecular thermometer estimates do not 

necessarily reflect the current in situ temperature range. One plausible interpretation 

is that the deepest microbial habitat in Hole C0014B has been exposed to 

considerably high temperatures (>106 °C) in the past and presently experiences 

fluctuating temperatures that are induced by ever-varying degrees of mixing between 

the subseafloor high-temperature hydrothermal fluids, diffusive and/or advective 

seawater flows and conductive cooling. Similarly, the hydrothermally altered 

sediments that were observed in the shallow sediments at Site C0013 and the 

oxygen isotopic values of the clay minerals indicate formation temperatures of >138 

°C (Miyoshi, 2013) (Supplementary Table S1). The excess levels of pore-water 

sulfate concentrations (relative to the sulfate concentrations of seawater) in these 

sediments were attributed to anhydrite dissolution related to cooling during core 

recovery and sampling (Supplementary Figure S2). Because anhydrite is stable only 

under high temperatures (>150 °C) (Gieskes et al., 2002; Takai et al., 2011), the 

subseafloor sediments at Site C0013 that contain excess pore-water sulfate 

concentrations (relative to seawater) are likely exposed to high temperatures that 

exceed the microbially habitable range at the present. The microbial habitability in the 

sub-vent biosphere is probably highly constrained by the latest temperature history 

and/or the present temperature conditions induced by spatiotemporally variable high-

temperature hydrothermal fluid input. 

 Furthermore, the physical properties of the sediments are another important 

factor constraining the microbially habitable terrain in the sub-vent environment. The 

possible impermeable layers, which are predicted from the discontinuities in the pore-

water chemical compositions, serve as not only shields limiting vertical flow and 

diffusion of fluids but also as barriers limiting vertical migration of microbial cells. 

Interestingly, the potential limit of microbial community development was always 
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located above or near the possible impermeable layers at Site C0014 (Figure 1). 

Fluctuations in temperature in the boundary habitat probably occasionally sterilize the 

microbial community via exposure to high-temperature hydrothermal fluids, and this 

is followed by a gradual return to microbially habitable temperatures. However, the 

existence of impermeable layers may contribute to the slow recolonization of the 

active microbial community after sterilization because the impermeable layer limits 

migration of viable populations from refugia. Additionally, the impermeable layers 

may also serve as the possible microbial refugia from the lethal temperature 

fluctuations associated with the occasional exposure to high-temperature 

hydrothermal fluids. The slow but successful recolonization of the active microbial 

community after a temporary sterilization may be initiated from viable microbial cells 

disseminated throughout the safe interior of impermeable layers. Although the 

permeable and impermeable inter-layer sequences of cores are often difficult to 

recover in IODP-like drilling operations, these hypotheses of the limit and 

recolonization of the sub-vent biosphere should be clarified in future research.  
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Figure 1 (next site) Pore-water concentrations of methane and sulfate (Takai et al., 2011) (a), the 
carbon and hydrogen isotopic composition of methane (b), the numbers of 16S rRNA and functional 
genes (c and d) and heterotrophic activity (e) in the subseafloor core samples at IODP Site C0014. Q-
PCR was used to quantify numbers of 16S rRNA genes of prokaryotes (black circles) and archaea 
(red diamonds), and functional genes of mcrA (purple diamonds), dsrA (green triangles) and aprA 
(orange squares). The total cell counts (gray crosses) were originally reported by Takai et al. (2011). 
Heterotrophic activity was determined based on the potential activity of the anaerobic oxidation of 
acetate. The incubations were conducted at 30 °C and 60 °C based on the in situ temperatures in 
Supplementary Figure S1. The samples incubated at 60 °C were indicated with parentheses, next to 
each symbol. Values below the detection limit for the Q-PCR data and heterotrophic activity are 
plotted as open symbols on the left axes. The red-shaded layers indicate the depth range of the limits 
for microbes based on Q-PCR data and heterotrophic activity. These depth ranges correspond to the 
depths of 14.3-17.2 mbsf in Hole C0014B, 10.2-11.4 mbsf in Hole C0014D and 15.8-17.6 mbsf in Hole 
C0014G. The possible impermeable layers in Supplementary Figure S2 are indicated by the blue 
dashed lines. 
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Cross plots of δ13CCH4 and δDCH4 values. The open star represents the previously reported high-
temperature hydrothermal fluid value (Kawagucci et al., 2011). Open and filled symbols represent 
samples obtained from shallow (low-temperature) and deep (high-temperature) zones in each hole, 
respectively (criteria of the depth are shown in Figure 1). Circles, squares and diamonds represent 
Holes C0014B, C0014DE and C0014G, respectively. Representative values for thermogenic and 
biogenic methane (Kawagucci et al., 2013b) are shown by a shaded area and an arrow, respectively. 
The diagonal lines, with slopes of 7 and 19, represent the lowest and highest values of the co-variation 
exhibited in microbial methane oxidation. 
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16S rRNA gene phylotype compositions in the sediments from Site C0014, displayed (a) with respect 
to sediment depth using a universal primer set (Uni530F-907R) and (b) as pie diagrams at specific 
depths using an archaea-specific primer set (Arc530F-Arc958R). Archaeal 16S rRNA gene amplicons 
were obtained from three samples, which were not amplified with Uni530F-907R (shown as "ND" in 
the black column). The red dotted lines denote the cutoff between Bacteria and Archaea. The 
numbers in parentheses indicate the number of clones. The red-shaded layers represent the possible 
depth limit of active subseafloor microbes, as determined in Figure 1 
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Site C0014 depth profiles of the potential activity of AOM, hydrogenotrophic methanogenesis and 
acetoclastic methanogenesis (from left to right). The phylogenetic affiliation of mcrA genes is shown in 
the rightmost column. Open circles on the y-axes denote analyses below the detection limit. The red-
shaded layers represent the possible depth limit of active subseafloor microbes, as determined in 
Figure 1.  
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Supplementary Information 

Supplementary Information Materials and Methods 

Sampling Sites and Sample Collections.  

 IODP Expedition 331 was conducted at the Iheya North hydrothermal field in 

the Mid-Okinawa Trough using the D/V Chikyu in September 2010 (Takai et al., 

2011). IODP Sites C0013 and C0014 were located 100 and 450 m east, respectively, 

of a hydrothermal activity center that hosts several hydrothermal mounds and high-

temperature fluid vents. The study area was covered with hemipelagic sediments and 

pumiceous volacaniclastic deposits (Takai et al., 2011). A detailed geological and 

lithological description is available elsewhere (Takai et al., 2011; Miyoshi, 2013). The 

drilling sites were surrounded by colonies of chemosynthetic animals, such as 

Shinkaia crosnieri, Bathymodilous spp. and Calyptogena okutanii. In situ 

temperatures were measured using an advanced piston corer temperature tool 

(APCT-3) and thermoseal strips (Nichiyu Giken Co., Ltd., Kawagoe, Japan) during 

the drilling and coring operations (Supplementary Figure S1). 

 The collected cores were immediately cut into 1.5-m-long sections on deck. 

Then, whole round cores (WRCs), approximately 10 to 20 cm in length, were taken 

from each core section for subsequent microbiological and geochemical analyses. 

Microbiological subsamples were obtained from the inner parts of the WRCs with a 

sterilized spatula. For the radiotracer incubation and culture experiments, a portion of 

the sediment was anaerobically stored at 4°C in glass vials with argon as the 

headspace gas. The subsamples for DNA analysis were immediately stored at -80 °C 

in heat-sealed laminated foil bags containing an oxygen scavenger (Lin et al., 2010). 

The WRCs for pore-water chemistry were collected from the sections adjacent to the 

microbiology WRCs. 

Geochemical Analyses. 

 Methane concentrations in the pore-water were derived from the headspace 

concentrations measured using the GC-FID on board the research vessel (Takai et 

al., 2011) and the following mass balance approach: 

CH4 = [χM × Patm × VH]/[R × T × Vpw],   

where   

VH = volume of headspace in the sample vial, 

Vpw = volume of pore-water in the sediment sample, 
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χM = molar fraction of methane in the headspace gas (obtained from GC 

analysis), 

Patm = pressure in the vial headspace (assumed to be the measured 

atmospheric pressure when the vials were sealed), 

R = universal gas constant, and 

T = temperature of the vial headspace in degrees Kelvin. 

The volume of the interstitial water in the sediment sample was determined based on 

the bulk mass of the wet sample, the sediment’s porosity (which was extrapolated 

from shipboard moisture and density [MAD] measurements in adjacent samples), 

shipboard grain density data and the density of the pore-water adjusted for salinity 

based on shipboard data. 

 Stable carbon and hydrogen isotope ratios for CH4 were determined at the 

Japan Agency for Marine-Earth Science and Technology (JAMSTEC) with a MAT253 

(Thermo Fisher Scientific, Bremen, Germany) by continuous-flow isotope ratio mass 

spectrometry (CF-IRMS) as described previously (Umezawa et al., 2009), with some 

modifications. A helium-purged purification line made of stainless-steel tubing 

including several 2-position valves (VICI Precision Sampling, Inc., Louisiana, USA) 

with chemical and cold traps was used. Ultra-pure helium (purity > 99.9999%: Iwatani 

Gasnetwork Corporation, Osaka, Japan) was used with further purification by a 

Molecular Sieve 5A column at -196 ºC (LqN2 bath). The sample gas is introduced into 

a 30 ml/min (approximately +0.2 MPa) helium stream, the ‘precon stream’, in the 

purification line via a gas tight syringe (PRESSURE-LOK® series, VICI Precision 

Sampling, Inc., Louisiana, USA). Methane in the sample gas was first separated from 

CO2, H2O and most non-methane volatile organic carbons by a stainless-steel coil 

held at -110 ºC (ethanol/LqN2 bath) and a chemical trap filled with magnesium 

perchlorate (Mg(ClO4)2; Merck KGaA, Darmstadt, Germany) and Ascarite II (sodium-

hydroxide-coated silica; Thomas Scientific, Swedesboro, New Jersey, USA) and then 

condensed on a stainless-steel tubing trap filled with Hayesep-D porous polymer 

(60/80 mesh, Hayes Separations Inc., Texas, USA) held at -130 ºC (ethanol/LqN2 

bath). After transfer of the condensed CH4 by turning the valve position to another 

helium stream, the ‘GC stream’, set at 1.0 ml/min, the CH4 condensed was released 

at >80 ºC (hot water bath), again condensed in a capillary trap made of PoraPLOT Q 

(length: 20 cm; ID: 0.32 mm) held at -196 ºC (LqN2 bath), and finally released at 

room temperature. After complete separation in the 25-m-long PoraPLOT Q column 
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(ID: 0.32 mm), the effluent CH4 was delivered to combustion or pyrolysis units 

(Thermo Fisher Scientific, Massachusetts, USA) to be converted into CO2 or H2, 

respectively. In this study, the combustion and pyrolysis units were kept at 960 ºC 

and 1,440 ºC, respectively. Prior to the sample injection, the pyrolysis unit was 

conditioned by ≥5 injections of 0.2 ml of pure CH4 to form a graphite coat on the inner 

walls of the tubing for quantitative conversion of the sample CH4. The CH4-derived 

CO2 and H2 were finally introduced into the open split interface of the MAT253 for 

carbon or hydrogen isotope ratio analyses. Mass-2 and -3 signals were processed 

using the ISODAT software package (Thermo Fisher Scientific), on which H3
+ factor 

was corrected. This study presents stable isotope ratios with conventional delta 

notation in permil. The analytical precisions for the δ13CCH4 and δDCH4 values were 

estimated via repeated analyses of a standard gas to be within 0.5‰ and 5‰, 

respectively. The determined δ values were calibrated with commercial and/or in-

house standard gases with the following values: –74.01‰ and –39.03‰ for δ13CCH4 

and –185.9 ‰ for δDCH4. 

 The DIC concentration analysis was conducted by the CO2 acid extraction and 

coulometer detection method onboard the Chikyu during IODP Expedition 331. The 

procedure is described in detail elsewhere (Noguchi et al., 2013). The detection limit 

and precision of this procedure were 66.6 µmol/kg and ±4.9%, respectively.  

The δ13CDIC values of the pore-water samples were measured with a 

ThermoFinnigan Delta Plus XP IRMS instrument connected to a Flash EA 1112 

Automatic Elemental Analyzer via a ConFlo III interface in a similar manner as 

described previously (Miyajima et al., 1995; Toki et al., 2004). The standard deviation 

of the repeated carbon isotope analysis of the laboratory standard (NaHCO3 solution) 

was <0.2‰. 

Oxygen Isotopic Composition and Formation Temperature Estimates of 

Hydrothermally Altered Mud. 

The sediment samples collected from shallow depths at Sites C0013 and C0014 

(C0013B 1T-1 80-82, C0013D 1H-2 68-80, C0014B 2H-7 40-50 and C0014B 2H-10 

20-30) were used in this study. The samples were disaggregated in distilled water 

and rinsed several times to remove dissolved salts. Clay fraction samples (< 2 µm) 

were obtained by suspending bulk sediment samples in distilled water for 5 h 

according to Stokes’ law. Clay minerals in the clay fraction samples were identified 

by X-ray diffraction (XRD) at an onshore laboratory and were reported elsewhere 
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(Miyoshi, 2013). The oxygen and hydrogen isotope values of the clay fraction 

samples were determined and reported by Miyoshi (2013). The clay mineral 

assemblage and oxygen isotope values of the samples are provided in 

Supplementary Table S1.  

 The clay-fraction sample C0013B 1T-1 80-82 from 0.8 mbsf consisted primarily 

of kaolinite and illite. The clay-fraction samples C0013D 1H-2 68-80, C0014B 2H-7 

40-50 and C0014B 2H-10 20-30 consisted primarily of kaolinite and smectite. The 

obtained oxygen isotope value is that of the mixture of these clay minerals. We 

calculated two types of oxygen isotope equilibrium temperatures to estimate the 

formation temperatures of the clay minerals at these depths. One is based on the 

oxygen isotope equilibrium temperature of kaolinite, and the other is based on that of 

illite (C0013B 1T-1 80-82) or smectite (C0013D 1H-2 68-80, C0014B 2H-7 40-50 and 

C0014B 2H-10 20-30).  

 The oxygen isotope equilibration temperatures between the clay minerals and 

water were calculated according to the temperature dependence of the equilibrium 

(Sheppard and Gilg, 1996), which can be described as follows: 

1000 ln α kaolinite-water = 2.76 × 106 × T-2 – 6.75 

1000 ln α illite-water = 2.39 × 106 × T-2 - 3.76 

1000 ln α smectite-water = 2.55 × 106 × T-2 – 4.05 

where T is temperature in Kelvin and “α” is the fractionation factor. 

 Water equilibrated with clay minerals should have oxygen isotope values 

ranging between those of the bottom seawater and the hydrothermal fluid. Indeed, 

high-temperature hydrothermal fluid started to discharge from certain holes at Sites 

C0013, C0014 and C0016 during the drilling (Takai et al., 2011). The newly 

discharged hydrothermal fluids sampled 5 months after the drilling operation had an 

average oxygen isotope value of +1.22‰ (Kawagucci et al., 2013). Although the 

oxygen isotope value of the local bottom seawater in the Iheya North Knoll was not 

reported, the value is considered to have a typical value (0.0‰). In this study, these 

two values (1.22‰ and 0.0‰) were applied in the estimation.  

DNA Extraction, Amplification, Sequencing and Phylogenetic Analysis of the 16S 

rRNA and McrA Genes.  

DNA was extracted from 2 g of sampled sediment using the PowerMAX Soil DNA 

isolation kit (MoBio Laboratories, Carlsbad, CA) according to the manufacturer’s 

protocol, with minor modifications. Before the physical cell disruption, the samples 
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were incubated at 65 °C for 5 min. Then, mechanical shaking was performed for 10 

min with a ShakeMaster (BioMedical Science, Tokyo, Japan). A simultaneous blank 

sample was also used as a negative control during the DNA extraction process. The 

extracted DNA was concentrated by ethanol precipitation and stored at -80°C.  

 The 16S rRNA gene fragments were amplified by PCR using a universal primer 

set, Uni530F-Uni907R (Nunoura et al., 2012), for all samples. An archaea specific 

primer set, composed of Arch_530F, Arch2_530F, Nano_530F (Nunoura et al., 2012) 

and Arc958R (DeLong, 1992), was used for the samples obtained from the deepest 

part of the microbially habitable terrain. PCR amplification of the negative control for 

DNA extraction was used to assess experimental contamination. The gene fragments 

of mcrA were also amplified using primers ME3MF, ME3MF-e and ME2r’ (Nunoura et 

al., 2008). The amplification conditions and primer sequences for each of the PCR 

amplifications are summarized in Supplementary Table S2. 

 The PCR products were purified after gel electrophoresis, cloned into vector 

pCR2.1-TOPO (Invitrogen, Carlsbad, CA) and then transformed into chemically 

competent Escherichia coli DH5α (Invitrogen, Carlsbad, CA, USA). The inserted DNA 

was sequenced with the M13 forward primer using an ABI3730xl DNA analyzer. 

 Partial 16S rRNA and mcrA gene sequences with >97% and >95% sequence 

identity, respectively, were assigned to the same phylotype. Representative 16S 

rRNA gene sequences were aligned using the SINA aligner (Pruesse et al., 2012). 

Phylogenetic affiliations were identified by the maximum-parsimony method using the 

SILVA SSU Ref 111 Database in the ARB software program (Ludwig et al., 2004). 

The 16S rRNA gene sequences from the WRCs with a >97% similarity to those of the 

drilling fluids reported previously (Yanagawa et al., 2013) were defined as potential 

contaminants. Representative mcrA gene sequences were aligned with closely 

related mcrA gene sequences from public databases using the CLUSTALW program, 

and the ambiguous nucleotide positions were corrected manually. Phylogenetic 

affiliations were assigned based on the phylogenetic trees constructed by the 

neighbor-joining method in the ARB software. Bootstrap analysis was performed with 

1,000 replicates. 

Quantitative Fluorescence PCR. 

Q-PCR for 16S rRNA genes was performed as previously described (Nunoura et al., 

2008; Blazejak and Schippers, 2011; Breuker et al., 2013). Copy numbers of the 16S 

rRNA genes were determined using a universal primer-probe set (Takai and 
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Horikoshi, 2000) and an archaea-specific primer-probe set (Takai and Horikoshi, 

2000). The functional genes dsrA, aprA and mcrA, which encode dissimilatory sulfite 

reductase alpha subunit, adenosine 5’-phosphosulfate reductase alpha subunit and 

methyl coenzyme M reductase alpha subunit, respectively, were quantified using 

each specific primer set (Hales et al., 1996; Kondo et al., 2004; Schippers and 

Neretin, 2006; Meyer and Kuever, 2007; Nunoura et al., 2008; Blazejak and 

Schippers, 2011). The primers, probes and Q-PCR conditions used in the present 

study are summarized in Supplementary Table S2. After each Q-PCR, melting 

curves were measured for SYBR green I assays. All Q-PCR assays were performed 

in triplicate. 

Cultivation Tests. 

To estimate the abundance of culturable microorganisms represented by a variety of 

physiological and metabolic characteristics, a series of serial dilution cultures were 

performed using sediment slurries from a variety of depths. For anaerobic 

heterotrophs, methanogens and sulfate reducers, basal culture media were prepared 

using the modified MJ seawater (Takai et al., 1999), which was composed of 0.14 g 

of K2HPO4, 4.5 g of MgCl2•6H2O, 0.125 g of NH4Cl, 20 g of NaCl, 0.8 g of 

CaCl2•2H2O, 0.33 g of KCl, 0.5 mg of NiCl2•6H2O, 2 g of NaHCO3, 1 µg of sodium 

selenite, 0.5 µg of sodium tungstate, 1 mg of resazurin, 10 ml of a trace mineral 

solution containing chloride-based reagents as a substitute for sulfate-based 

reagents, and 1 ml of a vitamin solution (Balch et al., 1979). The pH of the medium 

was adjusted to approximately 7.0-7.5 with HCl or NaOH before autoclaving. 

Anaerobic heterotrophs were cultured using basal medium containing yeast extract 

(0.1% [w/v]), tryptone (0.1% [w/v]) and glucose (0.01% [w/v]) under a headspace gas 

of N2/CO2 (80:20 [v/v]). For the cultivation of methanogens, the basal medium 

containing acetate (5 mM) and formate (5 mM) were used, whereas the basal 

medium for sulfate reducers contained pyruvate (10 mM), lactate (5 mM) and Na2SO4 

(30 mM) under a gas phase of 80% H2 and 20% CO2. The cultivated abundance of 

aerobic heterotrophs was evaluated through colony-forming units on marine agar 

2216 (BD). The incubations were conducted at 30 °C and 60 °C based on the in situ 

temperatures in Supplementary Figure S1. An axenic culture was obtained after the 

serial dilution analysis. The culture purity was determined from cell morphology by 

microscopy (Olympus BX51F). For phylogenetic analysis of the isolates, DNA 

extraction, PCR amplification and sequencing were performed as described 
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previously (Miyashita et al., 2009). The 16S rRNA gene fragment was amplified by 

PCR using EUB338F (Amann et al., 1990; Daims et al., 1999) and 1492R (Weisburd 

et al., 1991). The obtained sequences were subjected to similarity analysis with the 

BLAST program (Altschul et al., 1997). 

Microbial Activity Measurements. 

The potential rates of methane production and oxidation and acetate consumption 

(i.e., acetoclastic methanogenesis and oxidation of the methyl group of acetate to 

CO2) were determined through radioisotope tracer incubation experiments. Sediment 

samples (3 cm3) were added to glass vials, amended with 9 ml of anoxic artificial 

seawater (MJ medium) and sealed with butyl-rubber stoppers in an anoxic glove 

chamber. To estimate the anaerobic methane oxidation (AOM) rate, the headspace 

of the vials was filled with 200 kPa of methane, and this was followed by the injection 

of 14C-labeled methane (0.3 MBq) into the slurry samples. For hydrogenotrophic 

methanogenesis rates, 1% H2 was added to the headspace, and 14C-bicarbonate 

(0.5 MBq) was injected into the samples. The designated concentrations of methane 

and hydrogen were determined based on the results of headspace gas analyses, 

described previously (Takai et al., 2011). For acetoclastic methanogenesis and 

acetate oxidation rates, [2-14C] acetate (0.6 MBq) was injected into the samples 

along with 200 kPa of nitrogen gas in the headspace. The samples were incubated 

for 1 month at 30°C for sediments shallower than 15 mbsf and 60°C for sediments 

deeper than 15 mbsf. After the incubation, microbial reactions were stopped by 

alkalization with 0.5 ml of 10 N NaOH, and the slurry samples were stored at -20°C 

until the radioactivity measurements. To determine the rates of hydrogenotrophic and 

acetoclastic methanogenesis, the headspace gas was injected into a gas 

chromatograph (Shimadzu GC-2014, Shimadzu, Kyoto, Japan) with a stainless 

packed column Shincarbon ST (Shinwa Chemical Industries, Kyoto, Japan) for gas 

separation. The radioactivity of a portion of the reaction products (i.e., 14CH4) in the 

headspace was measured using the high-sensitivity radioactivity detector RAGA Star 

(Raytest, Straubenhart, Germany). For AOM and acetate oxidation rates, the 

samples were acidified with 1 ml of 6 N HCl to release CO2 into the headspace 

before the radioactivity measurement of 14CO2. The potential activity was calculated 

by the following equations: 

 Potential rate = k × Φ × C, 

 Turn over (k) = F × (αp/αs) / t, 
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where Φ is the porosity of the sediments, C is the in situ substrate concentration, F is 

the isotope fraction factor, αp is the radioactivity of the product pool, αs is the 

radioactivity of the substrate pool and t is the incubation time (Tasumi et al., 2015). 

The lower detection limit of the potential activity is on the order of nmol cm-3 d-1. 
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Supplementary Table S1. Oxygen isotopic compositions and formation temperatures of clay minerals 
from Sites C0013 and C0014 
 

Sample ID 
Depth 
(mbsf)

Dominant 
clay 
mineral 

δ18O(clay 

fraction) 

(‰) 

Formation 
temperature of 
kaolinite* 

Formation 
temperature of 
smectite* 

Formation 
temperature of 
illite* 

Reference 

Tseawater

(°C)† 
Thydrothermal

(°C)‡ 
Tseawater

(°C)† 
Thydrothermal

(°C)‡ 
Tseawater

(°C)† 
Thydrothermal

(°C)‡ 
 

C0013B  
1T-1 80-82 

0.8 
kaolinite,  
illite 

+9.6 
138 155     151 171 

Miyoshi 2013; 
Miyoshi et al., 2015

C0013D  
1H-2 68-80 

4.5 
kaolinite,  
smectite 

+8.0 
160 179 187 213   

C0014B  
2H-7 40-50 

12.8 
kaolinite,  
smectite 

+12.5 
106 119 120 136   

C0014B  
2H-10 20-30

15.1 
kaolinite,  
smectite 

+8.7 
150 168 175 198     

 
*Formation temperatures of clay minerals were estimated based on an assumption that the δ18O 
values of kaolinite, illite and smectite were the same as the δ18O values of the clay fraction 
†Oxygen isotope equilibrium temperature between seawater and clay mineral 
‡Oxygen isotope equilibrium temperature between hydrothermal fluid and clay mineral 
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Supplementary Figure S1. Temperature profile at IODP Site C0014, originally published elsewhere 
(Takai et al., 2011), integrating temperature information from adjacent holes. Yellow diamonds indicate 
in situ temperatures determined with the APCT-3 temperature shoe. Black diamonds indicate the 
minimum temperature determined by a thermoseal strip taped to the outer surface of the core liner. 
Stars denote minimum estimates of the temperature. Black bars indicate the estimated formation 
temperatures of the clay minerals in Supplementary Table S1. 
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Supplementary Figure S2. Depth profiles of pore-water sulfate, methane, potassium and total 
alkalinity at Sites C0013, and profiles of potassium, alkalinity and DIC at Site C0014. A portion of the 
data were originally reported by Takai et al. (2011). The red-shaded layers represent the possible 
depth limit of active subseafloor microbes, as determined in Figure 1. The possible impermeable 
layers are indicated by the blue dashed lines. 
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Supplementary Figure S3. Depth profiles of the relative abundance of archaea in Hole C0014B. The 
relative archaeal abundances were determined by the ratio of the number of archaeal 16S rRNA gene 
copies to that of total prokaryotic 16S rRNA genes. The red-shaded layers represent the possible 
depth limit of the active subseafloor biosphere, as determined in Figure 1. 
 
 
 
 
 

 
 
Supplementary Figure S4. Culturability of aerobic heterotrophs, anaerobic heterotrophs and sulfate 
reducers in Hole C0014B core samples. Open symbols on the y-axes denote values below the 
detection limit. The red-shaded layers represent the possible depth limit of active subseafloor 
microbes, as determined in Figure 1. 
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Supplementary Figure S5. Phylogenetic tree of the mcrA gene sequences from the subseafloor 
sediments at Site C0014. The sequences in red were obtained in this study. The numbers in 
parentheses show the total number of phylotypes. Bootstrap values are expressed as percentages of 
1000 trials. The values at the nodes represent scores greater than 50%. The scale bar represents a 
10% estimated sequence divergence. 
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Appendix 

 

Oligotrophy 

Figure: Definitions used to characterize oligotrophic Bacteria (Schut Frits, 1997) 
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Table: 'Bathyarchaeota' 

 

Authors Name of MCG or 
MCG subgroups 

Title Remark 

Vetriani et 
al. 1999 

Subgroup of MCG: 
Marine Benthic 
Group C 

Population structure and 
phylogenetic characterization 
of marine benthic Archaea in 
deep-sea sediments 

 

Takai et al. 
2001 

Terrestrial 
Miscellaneus 
Crenarcheaotic 
Group (TMCG) 

Archaeal diversity in waters 
from deep South African gold 
mines 

 

Reed et al. 
2002 

NT-A3, NT-A4 Microbial communities from 
methane hydrate-bearing 
deep marine sediments in a 
forearc basin 

 

Inagaki et 
al. 2003 

‘MCG’ Microbial communities 
associated with geological 
horizons in coastal 
subseafloor sediments from 
the Sea of Okhotsk 

Proposal to rename the 
Terrestrial Miscellaneus 
Crenarchaeotic Group (TMCG) 
to Miscellaneus Crenarchaeotic 
Group (MCG) 

Sorensen 
and Teske 
2006 

MCG-1 - MCG-4 Stratified Communities of 
active Archaea in deep marine 
subsurface sediments 

MCG-1 = NT-A4 

Webster et 
al. 2006 

PM-1 - PM-8 Prokaryotic community 
composition and 
biogeochemical processes in 
deep subseafloor sediments 
from the Peru Margin 

 

Jiang et al. 
2011 

MCG-A - MCG-F Stratification of archaeal 
communities in shallow 
sediments of the Pearl River 
Estuary, Southern China 

 

Kubo et al. 
2012 

MCG-1 - MCG-17 Archaea of the Miscellaneous 
Crenarchaeotal Group are 
abundant, diverse and 
widespread in marine 
sediments 

 

Meng et al. 
2012 

MCG-A - MCG-F 
(after Jiang et al.)  

Genetic and functional 
properties of uncultivated 
MCG Archaea assessed by 
metagenome and gene 
expression analyses 

metagenomics analysis, 
proposed candidate phylum 
'Bathyarchaeota' for MCG 

 

Table: 'Aigarchaeota' 

Author Name Title Remark 

Nunoura 
et al. 
2005 

Hot Water 
Crenarchaeotic 
Group I (HWCG I) 

Genetic and functional properties of 
uncultivated thermophilic 
crenarchaeotes from a subsurface 
gold mine as revealed by analysis of 
genome fragments 

 

Nunoura 
et al. 2011 

Hot Water 
Crenarchaeotic 
Group I (HWCG I) 

Insights into the evolution of Archaea 
and eukaryotic protein modifier 
systems revealed by the genome of a 
novel archaeal group.  

Ca. ‘Caldiarchaeum 
subterraneum’, proposed 
candidate phylum 
'Aigarchaeota' 
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Table: DSAG/MBG-B and 'Lokiarchaeota' partly from (Jørgensen and Zhao, 

2016)  

 

Author Name Title Remark 

Takai and 
Horikoshi 
1999  

Deep Sea 
Hydrothermal Vent 
Crenarchaeotic 
Group1 

Genetic Diversity of Archaea in 
Deep-Sea Hydrothermal Vent 
Environments 

 

Vetriani et al. 
1999 

Marine Benthic Group 
B (MBG-B) 

Population structure and 
phylogenetic characterization of 
marine benthic Archaea in deep-
sea sediments 

 

Takai et al. 
2001 

DSAG Distribution of Archaea in a Black 
Smoker Chimney Structure 

 

Jorgensen et 
al. 2013 

DSAG: α-, β-, γ- clade Quantitative and phylogenetic 
study of the Deep Sea Archaeal 
Group in sediments of the Arctic 
mid-ocean spreading ridge 

monophyly of the α-, β-
and γ- clade according 
16S rRNA phylogeny  

Spang et al. 
2015 

'Lokiarchaeota' Complex archaea that bridge the 
gap between prokaryotes and 
eukaryotes 

'Lokiarchaeota' are 
affiliated to the γ- clade 
of the DSAG 

 

Phylogenetic tree constructions  

The phylogenetic trees were constructed with the arb software (www.arb-home.de, 

database SSURef_108_SILVA_09_09_11_opt.arb and SILVA_123.1_SSURef_Nr99). 

16S rRNA gene sequences and sequences from whole genome/whole shotgun 

projects were downloaded from NCBI or the SILVA online site (www.arb-silva.de). 

Identification of 16S rRNA gene sequences was carried out with with rnammer 

(Lagesen et al., 2007). Sequences were aligned with the SILVA online aligner (Quast 

et al., 2013) or the Integrated Aligner in arb and manually curated after importing to 

arb. Next neighbors of found 16S rRNA sequences in the New Jersey sediment and 

the CBIS sediment were identified with BLAST (Altschul et al., 1990). 16S rRNA gene 

sequences with more than 1000 bp belonging to major subgroups were selected. The 

archaeal trees were constructed with RAxML (filter "archaea") with Aquifex as 

outgroup. 16S rRNA gene sequences < 1000 bp were added after tree construction. 

The tree of the dissimilatory iron reducers was constructed with filter "bacteria" and 

iron reducing Archaea were chosen as outgroup. The tree of the bacterial 16s rRNA 

gene sequences was constructed with 16S rRNA sequences < 1400 bp without filter 

with RAxML with Archaea as outgroup. MCG trees: Subgroups of 'Bathyarchaeota' 

and the THSCG group are collapsed if no 16S rRNA gene sequences of this study 

could be allocated. Adjustment was made using the itol online service (Letunic and 

Bork, 2016). 
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