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Abstract 

The world population continues rising, while the agricultural land is shrinking. A significant 

part of the agricultural land is lost due to soil salinity. Glycophytes, which are the majority of 

crop plants, hardly grow on saline soil. However, these soils can be used for agriculture with 

salt tolerant plants, called halophytes. They have evolved mechanisms to deal with the salt 

stress. These include, among others, the accumulation of secondary metabolites such as 

antioxidants, which act as radical scavengers, and osmolytes, which prevent loss of water. 

Some secondary metabolites can have a positive effect on human health. Therefore, the aim 

of this work was the attempt to increase the concentration of secondary metabolites through 

salt stress in halophytes (biofortification). However, salt stress inhibits the growth, which leads 

to a reduction in produced biomass. Albeit, the optimum between little biomass loss and 

increased antioxidant concentration should be found. Halophytes showed hardly increased 

secondary metabolites after several weeks of salt stress, compared to prior stress conditions 

and compared to non-stressed plants. It is likely that halophytes have already adapted at this 

time to salt stress. Therefore, partly high salt stress was induced immediately in Lepidium 

latifolium (broadleaved pepperweed) and secondary metabolites were measured in hourly to 

weekly intervals. The secondary metabolites rose to a maximum in the period between 24 

hours and one week, and then decreased slowly afterwards. After one week, the loss in 

biomass overcompensated the overall yield in secondary metabolites. The exception was 

glucoiberin, a glucosinolate. In another experiment, salt stress was directly induced at 

Crithmum maritimum (sea fennel), Triglochin maritima (sea arrow grass) and Halimone 

portulacoides (sea purslane), but this time only mild salt stress was used, to prevent the effect 

of biomass loss. The salt stress did not increase the concentration in secondary metabolites 

enough to compensate for the loss due to the reduced growth. Exception to this was proline, 

acting as an osmolyte, in C. maritimum. Since two individual components have been found to 

increase their yield, despite high losses in biomass, it was searched for further substances by 

mass spectrometry. Two additional substances were discovered which increase massively 

under salinity stress, p-coumaroylquinic acid isomers and another substance that could not be 

identified, yet.  

Keywords: Halophytes, salt stress, metabolites, antioxidants, biofortification, nutraceutical  
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Kurzzusammenfassung 

Die Weltbevölkerung steigt immer weiter, während gleichzeitig die landwirtschaftliche Nutzfläche 

immer kleiner wird. Ein erheblicher Teil davon geht durch Bodenversalzung verloren. Glycophyten, 

die den Großteil der Ackerpflanzen stellen, können auf versalzenem Boden kaum wachsen. Dort 

kann aber Landwirtschaft mit Salztoleranten pflanzen, Halophyten genannt, betrieben werden. 

Sie haben Mechanismen entwickelt um mit dem Salzstress umzugehen. Dazu zählt unter anderem 

die Anreicherung von Sekundärmetaboliten wie Antioxidantien, welche als 

Sauerstoffradikalfänger agieren, sowie Osmolyten, die einen Wasserverlust verhindern. Einige 

Sekundärmetabolite können sich auch positiv auf die Gesundheit des Menschen auswirken. Daher 

war das Ziel dieser Arbeit der Versuch, die Konzentration der Sekundärmetabolite durch Salzstress 

in Halophyten zu erhöhen (Biofortifikation). Salzstress hemmt jedoch das Wachstum, wodurch 

weniger Biomasse gebildet wird. Daher sollte auch das Optimum zwischen möglichst wenig 

Biomasseverlust und erhöhter Antioxidantien Konzentration gefunden werden. Es zeigte sich, dass 

einige Halophyten nach mehreren Wochen Salzstress kaum erhöhte Sekundärmetabolitwerte 

gegenüber dem Ausgangswert und gegenüber nicht gestressten Pflanzen aufwiesen. Es ist 

anzunehmen, dass sich die Halophyten in dieser Zeit schon an den Salzstress gewöhnt haben. 

Daher wurde Lepidium latifolium (Pfefferkraut) direkt unter teilweise hohen Salzstress gesetzt und 

stündlich bis hin zu wöchentlich, die Sekundärmetabolite gemessen. Diese stiegen auf ein 

Maximum im Zeitraum zwischen 24 h und einer Woche und gingen dann langsam wieder zurück. 

Nach einer Woche waren die Einbußen in der Biomasse so groß, dass die Gesamtausbeute in 

Sekundärmetaboliten geringer war. Die Ausnahme hier war Glucoiberin, ein Senfölglykosid. In 

einem weiteren Experiment wurden Crithmum maritimum (Meerfenchel), Triglochin maritima 

(Stranddreizack) und Halimone portulacoides (Portulak-Keilmelde) ebenfalls direktem, jedoch 

geringerem Salzstress ausgesetzt, um den Effekt der Biomasseverluste durch hohen Salzstress zu 

verhindern. Der Salzstress erhöhte die Konzentration in Sekundärmetaboliten aber nicht stark 

genug, um den Verlust durch das geringere Wachstum auszugleichen. Ausnahme hierbei war das 

als Osmolyt wirkende Prolin bei C. maritimum. Da schon zwei Einzelkomponenten gefunden 

wurden, deren Ausbeute sich trotz hohen Biomasseverlustes steigern ließ, wurde mittels 

Massenspektrometrie nach weiteren Substanzen gesucht. Es wurden zwei weitere Substanzen 

gefunden, deren Konzentration unter Salzstress anstieg: p-Cumarsäure Chinasäure Ester und 

deren Isomere, sowie eine weitere, die sich aber noch nicht identifizieren ließ.  

Schlüsselwörter: Halophyten, Salzstress, Metabolite, Antioxidantien, Biofortifikation, 

Nutraceutical  
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Chapter 1 
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General introduction 

The emerging problem of food insecurity 

 

The world’s population reached 7.3 billion in the year 2015 and continues growing, albeit 

slower than in the recent past. A further increase of the world population to 9.7 billion by 

2050 and 11.2 billion by 2100 is projected (United Nations 2015). An additional production of 

another billion tonnes of cereals, plus 200 million tonnes of livestock products every year, is 

necessary to feed a population of just 9 billion (FAO 2011b). Nearly 800 million people are still 

undernourished, most of them in Southern Asia and Sub-Saharan Africa. Furthermore, in these 

areas, a lack of or inadequate intake of micronutrients, like vitamin A, results in different types 

of malnutrition (FAO 2015). Unfortunately, the area of agricultural land decreases slowly and 

climate change enhances the risks of natural hazards, as drought and flooding, and their 

intensity and frequency (FAO 2011a; FAO et al. 2015). Consequently, crops suffer from 

drought and salt stress, which already cause mayor problems (Boyer 1982; Athar and Ashraf 

2009). To prevent an upcoming global food crisis, new ways of crop production have to be 

established. This study shows solutions to deal with the problems caused by salt, but first 

explains the reasons and influence of salt on crops. 

 

Salt causes worldwide problems in agriculture 

 

Before describing further effects of salt, a definition has to be made. Sodium chloride (NaCl) 

is the salt everybody knows from the kitchen to enhance the flavour of his food. But there are 

other elements which can form ionic bonds, producing salts, which have to be taken into 

consideration. Typical seawater contains about 35 g salts per litre, but NaCl makes just 85.7% 

of the ions present in seawater, the rest consisting of Mg2+, SO4
2−, Ca2+, K+, Sr2+ Br–, F–, and B 

(Millero et al. 2008). Assuming NaCl would make up 100% of the salts in seawater, 35 g*l-1 

would be equal to 598.9 mM NaCl, but there are actually only about 513 mM NaCl present in 

seawater. That makes experiments of either seawater use or NaCl use difficult to compare and 

there are experiments using seawater and experiments using NaCl in this study. But another 

possibility for the measurement of the salinity is the electrical conductivity, measuring the 

ionic content of the solution. But the SI unit S (siemens) is difficult to handle and compare in 
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real life. Therefore, in this study Practical Salinity Units (PSU) which is calculated from the 

electrical conductivity, is used. A solution containing 35 PSU is equal 35 g *l-1 or to 3.5%. There 

is a difference conducting experiments with plants if (artificial) seawater is used or just NaCl, 

from the ionic point of view, but not from the osmotic point of view. Salinity of seawater is 

divided into three steps: low salinity (1-7 PSU), a transition zone (8-25 PSU) and high salinity 

(30 PSU and above) (Koyro and Lieth 1998). 

Soil salinity is a severe problem for agricultural crops, but before starting with the reasons one 

has to know the dimensions. Figure 1 shows a graphical overview. More than 8 million km2, 

6% of the world´s land mass (without Antarctica) is covered with different types of salt-

affected soils, which is more than the size of Australia (Pessarakli and Szabolcs 2010). 

Additionally, 11% of the irrigated agricultural area is affected by some level of salinity, 

according to the FAO (2011b). That is 0.34 million km2 and occurs in very highly developed 

countries as well as low developed countries. The United States, China, India and Pakistan 

make up 0.21 million km2 (60%) of that area. Another 0.6-0.8 million km2 are affected by 

waterlogging and consequently by salinization (FAO 2011b). Irrigated agricultural land is about 

one fifth of arable land, but accounts 42 % of all cereal production worldwide (FAO 2011b). 

 

Figure 1. Salt affected land worldwide. From the world land area, 135.7 M km² (without Antarctica), 8 M km² of 

that area are salt affected (Pessarakli and Szabolcs 2010). 49.2 M km² of the world land is used for agriculture 

(The World Bank 2013), which is divided in permanent meadows and pastures, permanent crops and arable land 

of which 3.2 M km² are irrigated (FAO 2011a). From the irrigated area 0.34 M km² are salt affected and 0.6-0.8 

M km² are affected by waterlogging (FAO 2011b).  
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Soil salinization happens almost exclusively in arid or semi-arid areas, where 

evapotranspiration is greater than precipitation (Breckle 2009). There are two types of 

salinization processes of soils. The primary, or natural salinization occurs over a long-time 

period. Weathering of saline minerals or parent rocks releases soluble soils. Furthermore, salt 

from the oceans is transported via air and accumulates on land. Secondary salinization of soils 

is a man-made problem caused by irrigating with salty water, deforestation, or overgrazing 

and insufficient drainage (Richards 1954; Athar and Ashraf 2009; Munns 2009). The latter one 

cause groundwater levels to rise, carrying salts from deeper levels to the root zone. Saline 

soils are defined as soils which electrical conductivity is greater than 4 ds/m which is 2.2 g NaCl 

*l-1 or 37.7 mM NaCl (Richards 1954). There are other definitions of saline soils and 

classifications as sodic soils, for an overview see (Shahid and Rahman 2010). The problem is 

that soil salinity of 4 ds/m decreases the yield of most agricultural crops, for example rice 

(Oryza sativa), beans (Phaseolus vulgaris), carrots (Daucus carota) and onions (Allium cepa) 

(Hillel 2000).  

The crops mentioned above are glycophytes, which happen to be the majority of crop plants 

worldwide, but their growth is inhibited by salinity. Cheeseman (2015) defined glycophytes as 

plant species that “evolved by adaptation under natural selective pressures in ecosystems 

with low soil sodium levels and which maintains low sodium levels in its aboveground tissues, 

especially in its leaves.” This adaption may have been useful to prevent herbivore thread, but 

glycophytes do not thrive in saline soil. There was some effort and attempts to cultivate 

glycophytes under salinity with conventional breeding, which, despite some success, was 

disappointing (Epstein et al. 1980; Flowers, Galal and Bromham 2010). Furthermore, the 

transfer of single genes to improve crop yields in saline soils was very modest (Panta et al. 

2014). 

 

Halophytes as alternative crop plants on saline soils 

 

Instead of using glycophytes as agricultural crop plants, other species can be used which 

thrive in saline soil: Halophytes. They have adapted to survive in saline soil. “They are plant 

species which complete their life cycle in 200 mM NaCl or more” (Flowers, Hajibagheri and 
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Clipson 1986). Even though some glycophytes are more salt-tolerant than others, they are 

not as tolerant as halophytes.  

Figure 2 shows a simplified graph of the growth of halophytes and glycophytes under the 

influence of salt. Salt sensitive crops (glycophytes) can tolerate just a tiny amount of salt and 

their yield decreases fast, if their threshold is exceeded. At low salt concentrations, salt-

tolerant crops thrive up to a threshold, which is around the start of the transition zone, and 

beyond the growth is steadily reduced. Barley (Hordeum vulgare), cotton (Gossypium 

hirsutum), rye (Secale cereale), and asparagus (Asparagus officinalis) are plants classified as 

salt-tolerant and are capable of producing a decent yield in saline soils (Hillel 2000). However, 

increasing salinity would reduce the yield steadily, because they are still glycophytes. The 

growth of halophytes is increased at low salinity, but high salinity decreases the yield slowly. 

They have an optimum growth at a transition zone between low and high salinity. 

 

 

 

 

 

 

 

 

Figure 2. Response of halophytes, salt-tolerant crops (glycophytes) and salt-sensitive crops 

(glycophytes) towards salinity. The salinity of 5, 10, 15, 25 and 35 dS/m is about 2.8, 5.5, 8.5, 

16.5 and 23.9 g/l respectively. Taken from (Hillel 2000)  

There are some halophyte species which are in use as crop plants already, like quinoa 

(Chenopodium quinoa), sea fennel (Crithmum maritimum), sea aster (Tripolium pannonicum), 

Salicornia and Sarcocornia species and many more (Ventura and Sagi 2013; Panta et al. 2014; 

Ventura et al. 2014). Common species like wild rocket (Diplotaxis tenuifolia) and old culinary 

herbs like Common Scurvygrass (Cochlearia officinalis), turn out to be salt-tolerant, adding 

more to the list of halophyte crops. For some, agricultural practices and marketing need to be 
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examined (Lieth, Zeilinger and Papenbrock 2002; de Vos et al. 2013). There are also other 

fields of application for halophytes besides crop plants. They are suitable for forage and feed 

for animals, oilseed and protein crops, energy crops (biofuels and biogas), phytoremediation 

(desalination and phytoremediation of polluted soils) and treatment of nutrient-rich saline 

(waste)water (from aquaculture). Furthermore, their components are valuable for 

pharmaceutical applications and commercial products like cosmetics, functional food and 

nutraceuticals (Buhmann and Papenbrock 2013; Panta et al. 2014; Buhmann and Waller 2015; 

Turcios, Weichgrebe and Papenbrock 2016) 

Reasons for the salt tolerance of halophytes  

 

Halophytes have acquired mechanisms to cope with the salt in the environment. Salt intrusion 

causes osmotic and ionic stress for the plants cells, so they must re-establish ionic and osmotic 

homeostasis (Zhu 2001). Plants have to adjust osmotically to maintain turgor pressure, they 

must contain more solutes inside than the outside media (Flowers, Munns and Colmer 2015). 

Therefore, in many halophytes species, the ions Na+ and Cl- are accumulated in the vacuole 

(intracellular compartmentation). This is different for halophyte species as some accumulate 

either Na+ or Cl- (Koyro et al. 2010). To adjust the osmotic potential of the cytoplasm, 

compatible solutes (or osmolytes) are produced. Figure 3 shows the main distribution of ions 

and possible osmolytes in a cell adapted to salinity. Furthermore, halophytes have a higher 

ability to exclude salts from the roots and developed salt glands for the excretion of ions 

(Flowers and Colmer 2008; Munns and Tester 2008). The compartmentation prevents the ion 

concentration becoming toxic for enzymes in the cytoplasm, but this process is energy 

consuming and currently it is unknown whether toxic concentrations that inhibit metabolism 

are ever reached (Flowers et al. 2015). 
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Figure 3. A cell, after salt adaptation, re-established osmotic and ionic homeostasis. Ions are compartmented 

mainly to the vacuole and osmolytes (polyols, proline, betaine, trehalose, ectoine and 

dimethylsulfoniopropionate (DMSP)) are compartmented in the cytoplasm. Na+ and Cl- transport proteins 

responsible for homeostasis, channels, and electrochemical potentials across the plasma membrane and 

tonoplast are indicated. Organelles (chloroplast (cp), mitochondrion (mt), and peroxisome (perox)) are included. 

Taken from (Hasegawa et al. 2000).  

Before homeostasis is established or if the stress is severe, other reactions take place. Figure 

4 shows the reactions of water shortage under drought, but this osmotic stress is similar to 

salt stress, as mentioned above. Low water potential causes stomata to close, leading to a 

decrease in CO2 uptake. Reduction equivalents like NADPH+H+, which are normally used for 

the CO2-fixation via Calvin cycle, increase. Consequently, the NADP+ concentration decreases 

and therefore, potential electron acceptors for the electron transport chain decrease as well. 

This leads to an over-reduction of the photosynthetic electron transport chain and induces 

the generation of reactive oxygen species through the Mehler-reaction. The antioxidative 

system is triggered producing enzymatic and nonenzymatic antioxidative substances (Ben 

Amor et al. 2005; Selmar and Kleinwächter 2013). Whereas enzymatic antioxidants like the 

superoxide dismutase (SOD) or the ascorbate peroxidase (APX) are enhanced by reactive 

oxygen species (ROS), the oversupply of NADPH+H+ in contrast to NADP+, might lead to an 

increased production of highly reduced compounds, like (poly)phenols, alkaloids or 

isoprenoids (Selmar and Kleinwächter 2013). 

Ca2+ 

Ca2+ ATP 

Cl- 
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Figure 4. Overview of regular (a) and 

stressed (b) energy and metabolic 

pathways in plants. Under regular (a) 

conditions the energy from the 

photosynthetic apparatus is 

transferred to available NADP+ or 

emitted by non-photochemical 

quenching. Therefore, only a tiny 

amount of ROS are produced. Under 

stress conditions (b) closed stomata 

lead to low internal CO2 

concentration, which lowers the 

NADPH+H+ consumption in the 

Calvin cycle, therefore minimizing 

the available NADP+. The surplus of 

energy generated by the 

photosynthetic apparatus can 

neither be reduced by non-

photochemical quenching nor the 

xantophyll cycle or photorespiration, 

generating ROS by the Mehler 

reaction. To prevent oxidative 

damage on the photosynthetic 

apparatus or other proteins or 

metabolites, the ROS have to be 

detoxified, for example by the 

superoxide dismutase (SOD) and 

ascorbate peroxidase (APX). taken 

from (Selmar and Kleinwächter 

2013). 

 

 

Benefits of salinity stress on halophytes  

 

Salt stress can have a beneficial effect because it may increase the non-enzymatic antioxidant 

concentration. There are not many studies about the positive effect of salinity on the non-

enzymatic antioxidants (Ozgur et al. 2013; Bose, Rodrigo-Moreno and Shabala 2014). And 

some studies showed unclear results of antioxidants according to salt in halophytes (Ksouri et 

al. 2007; Alhdad et al. 2013). The factor time is not considered thoroughly, as many studies 

have just one observation time for their analysis of antioxidants.  

The antioxidants which might be present in plants are the (poly)phenols with over 8000 

different structures, divided into the major groups of flavonoids and non-flavonoid 

a 

b 
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polyphenols. Furthermore, there are alkaloids, thiols like glutathione, the vitamins C (ascorbic 

acid) and E (tocotrienol and tocopherol), carotenoids, uric acid and bilirubin. But even some 

osmolytes like proline have an antioxidative effect (Ou et al. 2002; Gill and Tuteja 2010; Rosa, 

Alvarez-Parrilla and Gonzalez-Aguilar 2010; Seal et al. 2010; Del Rio et al. 2013). As the group 

of antioxidants is diverse, some methods were developed to analyze the total antioxidative 

capacity, like the oxygen radical absorbance capacity (ORAC), however no method can analyze 

the combined antioxidative capacity, as either lipophilic or hydrophilic antioxidants can be 

analyzed (Wu et al. 2004). Furthermore, the ORAC mainly analyzes the chain breaking 

antioxidants. Chain breaking antioxidants include (poly)phenols, vitamin C and E, uric acid and 

bilirubin. They donate their hydrogen atom to ROS, becoming stable radical themselves. This 

prevents a further chain reaction or slows it down. Preventive antioxidants are superoxide 

dismutase, catalase, peroxidase, β-carotene, lycopene and bilirubin. They intercept oxidizing 

species before damage can occur (Ou, Hampsch-Woodill and Prior 2001; Ou et al. 2002; 

Buettner and Schafer 2002).  

It is assumed, that this protective effect of the non-enzymatic antioxidants is still present when 

the antioxidants are consumed with the plant material and there are many studies indicating 

that antioxidants have a promising effect on human health (Crozier et al. 2009; López-

Berenguer et al. 2009; Del Rio et al. 2013; Fiedor and Burda 2014; Rodriguez-Mateos et al. 

2014). Therefore, halophytes can serve not only as an additional food resource; they can also 

be described as nutraceutical. As Kalra (2003) stated: “When functional food aids in the 

prevention and/or treatment of disease(s) and/or disorder(s) other than anemia, it is called a 

nutraceutical.” Therefore, they may help to minimize threatening undernourishment or 

malnutrition. The process of enhancing the necessary daily micronutrients directly in the crops 

eaten every day is called biofortification (Hirschi 2009). Albeit halophytes are not part of the 

daily diet everywhere, they are in some regions, and will become more relevant in time (Kaur 

et al. 2013). 

Disadvantages of salinity stress on halophytes  

 

However, apart from the positive effect of increasing the antioxidant concentration in 

Halophytes, which would improve their application for pharmaceutical and commercial 

products, there is a negative effect. Growth is reduced as the result from the closed stomata 



10 
 

and therefore the inadequate photosynthesis, but the direct inhibition of cell division and 

expansion might be more crucial (Zhu 2001). Furthermore, the energetic cost for ion transport 

and the synthesis of compatible solutes and ROS damage decrease growth (Flowers et al. 

2015). 

 

Figure 5. Contrary reactions in Halophytes under salinity stress. Solid line (──) growth; dashed line (---) 

antioxidant concentration short after the stress; dotted line (····) antioxidant concentration after a long exposure 

to salt stress; arrow indicating the time (own drawing).  

 

These opposing reactions are delineated in Figure 5. Low salinity increases growth in 

halophytes but severe salt stress decreases the growth. Contrary to this phenomenon is the 

concentration of antioxidants in halophytes, it increases with elevated salinity. Over time the 

concentration of antioxidants may decrease as halophytes adapt to salt stress. Therefore, it is 

not clear under which salinity and at which time point the maximal yield (antioxidative 

concentration x growth) is achieved.  
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Aims of this Study 

 

• Establishing methods for a fast and high throughput antioxidant determination in 

halophytes. 

• Testing the possibility of a biofortification for halophyte species  

o Evaluation of changes in the metabolite concentration and composition 

through 

▪ different salt stress conditions ranging from low to high salinity stress 

▪ different incubation times ranging from hours to weeks 

o Finding the point in time for the maximum yield of antioxidants induced by 

salinity 

• Evaluating different brackish water raised halophyte crop species in terms of  

o status as possible nutraceuticals  

o comparison to other crops and nutraceuticals 
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Supporting Information 
 

File 1. Mean molarity values from eight commercially available sea salts calculated 

for three different salinity concentrations. Data from Atkinson and Bingman (1997). 

 Major cations (mM) 15 PSU 22.5 PSU 30 PSU 

Na+ 199.9 299.9 399.9 

K+ 4.184 6.276 8.368 

Mg2+ 22.13 33.19 44.25 

Ca2+ 4.184 6.276 8.368 

Sr+ 0.053 0.080 0.106 

Major anions (mM)   

 Cl- 226.4 339.6 452.8 

SO4
2- 10.71 16.07 21.43 

Nutrients (µM)   

 PO4-P 0.219 0.328 0.437 

NO3-N 2.002 3.003 4.004 

NH4-N 2.890 4.335 5.780 
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File 4. Glutathione and cysteine concentrations of different species corresponding to 

different salinities. The asterisk marks the start values of younger plants *1 4 weeks, 

*2 up to 7 weeks old. These plants were harvested just after the adaptation to 220 

mM Na+ + Cl-/15 PSU.  

Species PSU 
mM Na+ 

+ Cl- 
Glutathione 

(nmol g-1 FM) 
Cysteine 

(nmol g-1 FM) 

T. pannonicum*1 15*1 220*1 29.5 ±11.38 1.40 ±0.29 

T. pannonicum 15 220 55.6 ±19.11 1.23 ±0.13 

T. pannonicum 22.5 331 58.8 ±17.19 1.26 ±0.14 

T. pannonicum 30 442 80.4 ±29.62 1.16 ±0.07 

T. pannonicum*2 15*2 220*2 18.5 
 

1.44 
 

T. pannonicum 15 220 43.8 ±9.16 1.79 ±0.64 

S. dolichostachya*2 15*2 220*2 48.5 
 

2.06 
 

S. dolichostachya 15 220 42.2 ±18.47 1.72 ±0.27 

P. coronopus*2 15*2 220*2 28.5 
 

1.64 
 

P. coronopus 15 220 23.1 ±2.97 0.76 ±0.15 

L. latifolium*2 15*2 220*2 14.0 
 

2.50 
 

L. latifolium 15 220 169.1 ±52.37 7.63 ±0.92 

A. portulacoides*2 15*2 220*2 208.1 
 

16.96 
 

A. portulacoides 15 220 126.5 ±4.93 15.85 ±2.93 

A. halimus*2 15*2 220*2 278.2 
 

24.45 
 

A. halimus 15 220 155.9 ±12.91 13.14 ±2.39 

B. cylindrica 15 220 122.5 ±36.80 4.28 ±2.16 

B. cylindrica 30 331 142.1 ±47.43 3.73 ±1.26  
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S1 Table. 

Chemical compound mg*l-1 µmol*l-1 

KNO3 606.60 6000 

Ca(NO3)2 x 4H2O 944.64 4000 

NH4H2PO4 230.16 2000 

MgSO4 x 7H2O 246.48 1000 

KCl 3.73 50 

H3BO3 1.55 25 

MnSO4 x H2O 0.34 2.0 

ZnSO4 x 7H2O 0.58 2.0 

CuSO4 x 5H2O 0.12 0.5 

MoNa2O4 x 2H2O 0.12 0.5 

C10H16FeN2NaO8 0.60 10 

 

 

S2 Table.  

Species Metabolites Flavonoids  Phenols  TAA Proline  

C. maritimum 

ORAC 0.632 *** 0.781 *** 0.16 n.s. 0.297 *** 

flavonoids    0.818 *** 0.227 n.s. 0.407 *** 

phenols       0.378 *** 0.449 *** 

TAA          0.062 n.s 

T. maritima 

ORAC 0.577 *** 0.86 *** 0.344 *** 0.206 * 

flavonoids    0.626 *** 0.295 *** 0.296 *** 

phenols       0.475 *** 0.262 ** 

TAA             0.113 n.s 

H. 

portulacoides 

ORAC 0.775 *** 0.966 *** 0.874 *** 0.643 *** 

flavonoids     0.755 *** 0.694 *** 0.552 *** 

phenols       0.902 *** 0.632 *** 

TAA             0.598 *** 
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Changes in the metabolic profile of Crithmum maritimum under 

salinity stress  
 

Boestfleisch, C., Glasenapp, Y., Papenbrock, J. (in preparation) 

Abstract  

Crithmum maritimum L. is a halophyte of broad scientific interest, as it harbours many 

promising substances of economic value. The aim was to find a suitable and fast technique for 

the identification of individual metabolites, which should change in C. maritimum under the 

influence of mild salt stress. Grown under salinity stress, the amount of valuable phenolic acids 

and osmolytes increased, albeit not uniformly. Putative p-coumaroylquinic acid isomers (5-p-

coumaroylquinic acid, 4-p-coumaroylquinic acid and 3-p-coumaroylquinic acid) increased 

outstandingly, compared to the other (poly)phenols. Furthermore, proline and a compound, 

which is not identified yet, increased exceptionally. However, only prolonged salinity stress, 

from 48 h onwards had a visible impact on the amount of the on the polyphenols and 

osmolytes named above. This could indicate that individual phenols are regulated differently 

and might have additional functions. It is demonstrated how an overview of the changes in 

the metabolite profile via LC-MS was obtained.  

Introduction 

Halophytes are plants that have adapted to live in saline areas (Flowers and Colmer 2008). The 

cracks and cleaves close to the seashore affected by the sea spray at the rocky coastline of the 

Mediterranean Sea and European Atlantic coast is the main habitat of C. maritimum L., a 

halophyte which has a long tradition used as a food or medicinal plant (Franke 1982; Pateira 

et al. 1999). But recently promising components were also discovered, as it was shown that 

essential oils present in C. maritimum showed antioxidant and antibacterial activity (Jallali et 

al. 2014). It belongs to the family of Apiaceae and contains a number of antioxidative 

polyphenols and flavonoids (Atia et al. 2011; Siracusa et al. 2011). These antioxidants are 

generally enhanced at abiotic stress like salinity (Sharma, Jha and Dubey 2010). Crithmum 

maritimum showed indeed enhanced activity of antioxidative enzymes under salinity (Ben 

Amor et al. 2005). It was also shown that the concentrations of phenols change during the 

season (Meot-Duros and Magné 2009) and during application of salt stress (Boestfleisch and 
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Papenbrock 2017), but the influence of salt on single metabolic components in C. maritimum 

was not shown yet. The aim of this study was to see whether salinity has a strong influence 

on single compounds and to demonstrate how it is possible to identify putative compounds 

by a literature screening. 

Material and methods 

Plant material 

The plants were raised under the conditions described in Boestfleisch and Papenbrock (2017). 

A methanol extraction was performed, also described therein. One individual plant sample 

(complete shoot material), at point of time 0 (before the addition of salt) and points of time 

2, 4, 8, 24, 48, 96, 168, 336, and 504 h after salt induction, from plants grown at a salinity of 

15 Practical Salinity Units (PSU) and 0 PSU for comparison, was analyzed for individual 

components via LC-MS. 

LC-MS analysis 

The analysis was performed with an LC-MS system. The HPLC system (Shimadzu, Darmstadt, 

Germany) consisted of a controller (CBM-20A), two pumps (LC-20AD), a column oven (CTO-

20AC) and a photo diode array detector (SPD-M20A). The sample separation was performed 

on a Vertex Plus column (250 x 4 mm, 5 µm particle size, packing material ProntoSIL 120-5 

C18-H) with precolumn (Knauer, Berlin, Germany). 

Prior to analysis the samples were diluted tenfold in 80% methanol (LC-MS grade) and a 

volume of 10 µl was injected. The column oven temperature was set to 30°C. As eluents, water 

(A) and methanol (B), both containing 2 mM ammonium acetate were used with a flow rate 

of 0.8 ml min-1. The following gradient was applied: 10% B at the start, changing linear to 90% 

B in 35 min, 2 min of 90% B, switch to 10% B in 1 min and subsequent equilibration at 10% B 

for 2 min. UV/Vis spectra from 190-800 nm were recorded. For identification, components 

were injected into an AB Sciex Triple TOF mass spectrometer (AB Sciex TripleTOF 4600, Canby, 

USA) following HPLC separation. Negative electrospray ionisation (ESI) was used at a nebulizer 

temperature of 600°C and an ion spray voltage floating of -4500 V. Mass spectra in the range 

of 100-800 Da were measured in the TOF range, in addition MS/MS spectra from 50-800 Da 

at a collision energy of -30 were recorded. 
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Standards for the identification and quantification were prepared the same way. Peaks were 

compared for retention time and fragmentation pattern. A standard curve of three individual 

measurements of proline standards ranging from 1 to 100 mM was used for quantification of 

the proline peaks by MultiQuant™ software (AB Sciex, Darmstadt, Germany).  

Data evaluation and peak identification 

To facilitate the identification process of unknown compounds a classical literature search was 

conducted and a list with possible substances and their molecular formula that might be 

present in C. maritimum was created in Excel® 2007 (Microsoft Corporation, Redmond, USA). 

This list was copied into MasterView™ (AB Sciex) that calculated an expected mass from the 

molecular formula. This mass was compared to the mass of the peaks present in the samples 

and thereby the peaks were assigned. Furthermore, isotopic distribution of each mass was 

analyzed and fragmentation pattern was compared to ChemSpider, wherever possible, for 

further reliability. The parameters of the peaks from the putative compounds, like shape and 

retention time, besides mass, were transferred to a quantification method in MultiQuant™. 

Thereby, all peaks for all substances were extracted, however, just the peak area. Only in the 

case of proline the area was calculated to a concentration based on the standard curve. A 

comparison of the unknown substances with an own library of known phenolic acids was 

conducted using LibraryView™ (AB Sciex). 

Results 

The metabolic composition of the hydrophilic extract from C. maritimum is shown in the 

chromatogram in Figure 1. The mayor metabolites were quinic acid and esters of quinic acid 

with caffeic acid (1-caffeoylquinic acid, 3-caffeoylquinic acid, also known as chlororogenic 

acid, 5-caffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-

dicaffeoylquinic acid) with ferulic acid (5-feruloylquinic acid, 3-feruloylquinic acid, 4-

feruloylquinic acid) and with p-coumaric acid (5-p-coumaroylquinic acid, 4-p-coumaroylquinic 

acid and 3-p-coumaroylquinic acid. Furthermore, sugars (sucrose and trehalose) and sugar 

alcohols (sorbitol, mannitol) were found. Malic acid and diosmin were also two further 

metabolites that were present in notable amounts. All metabolites found in C. maritimum, 

including the ones in smaller amounts which are not visible in Figure 1, are shown in Table 1. 
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All isomeric forms of the same mass were added up for the evaluation of the peak size. The 

peak area of each point in time was compared to the start of the experiment and the ratio of 

change is given for each metabolite, salinity and point in time. Most of the metabolites 

increase over time. Exceptions are sorbitol/mannitol, glycine betaine, proline, falcarionol and 

the unknown metabolite D (n.y.i.). Albeit, in these cases, the values for the salt-stressed plants 

were higher compared to the ones of the non-stressed plant. In all metabolites analyzed in 

this study, the salt stressed plants had higher values than the unstressed plants which could 

be especially well observed in the phenols, but also in the osmolytes. Proline with an increase 

of 88%, p-coumaroylquinic acid isomers with an increase of 38% and D (n.y.i.) with an increase 

of 33% were the most dominant ones. There were only three metabolites that decreased in 

concentration through salinity stress, which are malic acid, glucose, and DMSP with -9%, -1% 

and -4%, respectively. However, in these values, the mean was calculated for the sum of all 

points in time, for the corresponding salinity. The mean values of the two salt concentrations 

were compared as a percentage change. However, this calculation did not consider the 

changes of the components in time. If the changes in time are taken into account, the 

difference between 0 PSU and 15 PSU will be more apparent. Figure 2 is a more detailed 

presentation of the changes in peak area for selected metabolites in time.  
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Figure 2. Temporal pattern of (a) p-coumaroylquinic acid isomers and (b) the unknown substance D (n.y.i.) in C. 

maritimum grown at 0 and 15 PSU. Values represent the peak area of a single measurement (n=1). 

The differences between the values of p-coumaroylquinic acid isomers were small in the first 

96 h but increased to fourfold higher values at 336 h for plants grown at 15 PSU compared to 

plants grown at 0 PSU. This is similar to the temporal pattern of the unknown substance D 

(n.y.i). There were just small differences in the first 48 h of salt stress, but at 96 h the peak 

area for substance D was twice as large in the stressed plants (15 PSU) compared to the 
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unstressed plants (0 PSU). These data are just peak areas, the concentration of the 

components need to be calculated for a better comparison. This was done exemplary with 

proline (Fig. 3). The proline concentration of plants grown at 15 PSU is relatively low at the 

beginning of the experiment but increased from 48 h onwards on to a maximum at 336 and 

504 h, while the proline concentration of plants grown at 0 PSU had one outlier at the 

beginning of the experiment, but remained at a low concentration for the rest of the time.  
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Figure 3. (a) Standard series for proline of three technical repetitions; (b) temporal pattern of the proline 

concentration for plants grown at 0 and 15 PSU (n=1). 

 

Discussion 

The creation of a list with known compounds in the literature helped a lot with the 

identification of unknown substances. But with this identification, only the mass of the 

compounds found, are compared to known masses from the literature. Further steps to 

ascertain the compound identification need to be done. The comparison of the fragmentation 

pattern of compounds and isotopic distribution are further steps to increase the certainty of 

the identification, but fragmentation patterns depend on the methodology (e.g. collision 

energy) and can therefore be different despite the same substance. It is possible to combine 

the LC-MS with a nuclear magnetic resonance (NMR) for the identification, but this requires 

an NMR device (Wu et al. 2007; Saldanha, Vilegas and Dokkedal 2013). The easiest solution 

for certainty is to buy standards from all substances identified, if available. These would be 

necessary for the quantification at least; however, it is assumed that there is a linear 

correlation between the peak area and the concentration for most substances, as the peak 
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area indicates the abundance of a substance. A library of all (poly)phenols is too expensive 

considering the number of 8000 identified structures (Del Rio et al. 2013). Also, the creation 

would take far too long. The best option would be the putative identification of substances, 

as described above, followed by a selective comparison of commercial standards, if the first 

results are promising. In this study, there is no certain identification necessary for some 

components, as they are not changing under the influence of salt. It has to be mentioned that 

this methodology is slightly biased, because it is set in advance, which substances may be 

present. However, this is based on literature and this should be correct. With this method, it 

was not possible to determine some compounds like the sugars and sugar alcohols, because 

they have the same mass and fragmentation pattern. Furthermore, it was not possible to 

distinguish between the isomeric forms of the quinic acid esters but that should be possible 

as Clifford et al. (2006) demonstrated fragmentation patterns, with different intensities and 

fragments for them. This needs to be investigated, especially for p-coumaroylquinic acid 

isomers, to see if one isomeric form is influenced by salinity more than the others. The reason 

for the enormous increase of p-coumaroylquinic acid isomers under salinity is currently 

unknown and needs further investigation. 

Still some compounds which are known to be present in C. maritimum were not found in our 

study. This is due to the fact that method for extraction was limited to hydrophilic substances 

and the volatile oils which are present in many varieties are therefore excluded (Pateira et al. 

1999). Furthermore, falcarindiol and falcarinol were found as formerly described (Cunsolo et 

al. 1993), but falcarindiol was first eluted at a retention time of 36 min during the purge step 

of the column, this leads to a high background and irreproducible results, and was therefore 

omitted.  

In Boestfleisch and Papenbrock (2017) it was shown that salt stress increased the amount of 

the antioxidative (poly)phenols and flavonoids in C. maritimum, though uncertain which 

substances exactly. It was now demonstrated that the phenolic compounds mainly consist of 

quinic acid and quinic acid esters and the flavonoids consist of hesperidin and diosmin. While 

the flavonoids increased together under salinity stress, p-coumaroylquinic acid isomers from 

the phenols increased much more compared towards the other quinic acids. This needs 

confirmation through additional measurements and quantification and a reason needs to be 

found. The identification of the unknown substances, especially D needs further effort.  
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Combining the biomass data for C. maritimum from Boestfleisch and Papenbrock (2017) and 

the peak area of p-coumaroylquinic acid isomers and the unknown substance D (n.y.i.) a 

preliminary estimation for the yield of these substances can be made: From 96 h onwards the 

yield for p-coumaroylquinic acid isomers would be higher in salt-stressed plants, and in the 

unknown substance D (n.y.i.) the yield would be higher from 96 h towards 336 h in salt 

stressed plants. Therefore, it was shown that it is possible to increase the concentration and 

probably yield of single metabolites through saline cultivation and the identification of 

putative (poly)phenols is fast with the help of literature screening. 
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General discussion 
 

Mankind started cultivation of crop plants, like barley (Hordeum vulgare), about 10.000 years 

ago (Badr et al. 2000). This is a very long time compared to the use of halophytes as crop 

plants. Although the process of cultivation of halophytes is difficult and costly (Yensen 2008), 

it is already practiced on a small scale (Ventura and Sagi 2013), but still a lot of work has to be 

done in agricultural practices and marketing (de Vos et al. 2013). Nevertheless, the number 

and potential uses for halophytes increase, solving many problems caused by salinity (Panta 

et al. 2014; Ventura et al. 2014). This study contributes significantly to this field. 

 

Difficulties with the measurements of stress and growth  

Direct stress measurements 

To see if the salt is causing stress reactions in plants, it is a good idea to measure the stress 

directly. There are a few possibilities to do this; one is the measurement of the chlorophyll 

fluorescence. Debez et al. (2010) showed an influence of salt on the electron transport rate 

(ETR) of Batis maritima, but only at 800 mM NaCl and no influence on photochemical (qP) and 

non-photochemical quenching (NPQ). In another experiment, a reaction in fluorescence 

parameters first occurred after 4 months of salt exposure (Jimenez and Gonzalez-Rodriguez 

1997). Maricle et al. (2007) evaluated this among other studies and postulated that there 

appears to be no strong relationship between fluorescence parameters and salt stress. 

Furthermore, the measurement is time consuming so that it would have been impossible to 

measure the chlorophyll fluorescence in-between the first points of time in our experiments.  

Furthermore, infrared thermography can be used to measure stress, as it was shown that 

areas of elevated leaf temperature reflect closed stomata, compared to areas non-elevated 

temperature which reflect open stomata (Jones 1999). This phenomenon was proven for the 

measurement of salt stress in barley (Sirault, James and Furbank 2009), however, there is a 

lack of studies concerning infrared thermography measurements of salt stress in halophytes. 

This could indicate that either the stomata are not closed, or that the NPQ which produces 

the heat is not significantly increased. This might indicate that the photochemistry is more 

resistant in halophytes as indicated by Maricle et al. (2007).  
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Indirect stress measurements 

The measurement of growth of the plants is at the same time also a measurement of stress, 

as growth is inhibited by salinity stress in plants (Flowers, Munns and Colmer 2015). This could 

be done non-invasive by measuring the size, or invasive by measuring the weight, which is 

very quick and simple. Plant growth at optimal conditions should have a maximal gain in 

biomass. The results of halophyte growth in this study were concurring with the literature. 

Growth is elevated under low salinity, compared to higher salinity or non-saline conditions. 

However, the optimum varies for the different halophyte species. Lepidium latifolium had an 

optimal growth at 15 PSU, whereas C. maritimum, H. portulacoides and T. maritima had a 

maximal growth at 5 PSU. Higher salinity reduced the growth of the halophytes indicating 

stress for the plants. The lower tolerance of monocotyledonous halophytes (T. maritima) 

towards salinity stress, compared to dicotyledonous halophytes (C. maritimum, L. latifolium 

and H. portulacoides), as Flowers and Colmer (2008) reported for many species, was not 

observed, probably because they have measured dry weight and not fresh weight. However, 

both fresh weight and dry weight are not optimal growth parameters, as water and 

accumulated ions can make up much of these and the increase in organic matter is the best 

index for growth (Yeo and Flowers 1980). Furthermore, the use of a control with 0 PSU is 

questionable, as this is suboptimal for the halophytes (Flowers and Colmer 2008). It is unclear 

whether gain of fresh weight is a valuable indicator for stress.  

 

Another possibility to determine the stress triggered by salinity is on the molecular level: The 

gene expression. The expression of enzymes from the enzymatic antioxidative system, like 

ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), peroxidise (POD) and 

superoxide dismutase (SOD) were suggested to be good stress markers for salt and have 

already been tested (Sharma et al. 2010; Parida and Jha 2010). However, this requires 

information about the genome of the halophyte which is a very difficult task if there is no 

sequence information available.  

Some metabolites, like the osmolyte proline act as a biochemical stress marker. An increase 

in the proline concentration under salt stress was shown in Spartina anglica (Diggelen et al. 

2006), and was also clearly observed in C. maritimum (chapter 4). However, there are some 

exceptions; as generally accumulated under osmotic stress, proline concentration decreases 
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if free proline is incorporated into proteins for seeds, at least in barley (Wenzel et al. 2015). In 

some species, several other osmolytes are used instead of proline. Additionally, an 

upregulation is not always observed, suggesting a constitutive synthesis of these osmolytes 

(Slama et al. 2015). Triglochin maritima showed signs of a constitutive synthesis of proline and 

as well as with H. portulacoides, however, both might have accumulated other osmolytes as 

well (chapter 4). It was shown that proline acts for some species as a salt stress marker, and 

is also applied as a marker for drought stress, but it does not accumulate in every halophyte 

species. 

 

Metabolites, especially antioxidants as possible stress marker 

The challenging measurement of ascorbic acid 

The measurements of metabolites in this study were always linked to the measurement of 

antioxidants, since all measured metabolites as (poly)phenols including flavonoids, ascorbic 

acid (AA), glucosinolates (GSL) and even proline (Slama et al. 2015) are non-enzymatic 

antioxidative compounds. 

The difference between dehydroascorbic acid (DHA) and ascorbic acid is one of the first 

indicators for antioxidative stress and also an important one. (Foyer, Trebst and Noctor 2006) 

This phenomenon was shown in the halophyte Salicornia brachiata, where the concentration 

of AA decreased after the induction of salt stress while the concentration of DHA increased 

(Parida and Jha 2010). In contrast to this, Hernández et al. (2000) showed a decrease in AA 

and DHA of a salt tolerant and a salt sensitive Pisum sativum cultivar and not a ratio change 

of AA towards DHA. A ratio change of AA towards DHA was not observed in our experiments, 

only concentration changes of AA were observed at salinity stress. Only in T. maritima the AA 

concentration first decreased at 2 h, then increased at 4 h with elevated salinity. This could 

indicate a consumption of AA trough oxidative stress, followed by an adaption shortly after. 

However, there was no increase in DHA and the reaction was very fast compared to Parida 

and Jha (2010), where the decrease in AA concentration was measured after one week. There 

is a possible reason for the absence of a ratio change: The establishment of a measurement 

of AA and DHA was difficult, due to the high number of samples, the test had to have a high 

throughput. The use of enzymatic assays was tested at first, in which the absorption of AA was 

measured directly under UV-light and ascorbate oxidase oxidizes AA to DHA for the blank. The 
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maximum AA amount was measured with the help of DTT, which reduces all DHA to TAA. 

Space for four different reactions on a microtiter plate (including blanks) was required and 

this would have been expensive, considering technical replications, as of the consumption of 

many pricey UV-microtiter plates. The use of another protocol and the measurement with the 

help of ferric chloride seemed more practical for high throughput, as only two wells for two 

reactions were required, and it was also cheaper as no UV-microtiter plates were needed. For 

a comparison of the two methods see Ueda, Wu and Frei (2013). However, problems occurred 

with the ferric chloride method, but were only recognized after the AA measurements of 

chapter 2 and 3. The use of trichloroacetic acid (TCA) and a low-grade FeCl3 led to a wrong, 

lower determination of the AA concentration. Either, the pH of TCA was probably not low 

enough to protect the AA or the FeCl3 was possibly already oxidized prior to the start of the 

experiment and impurities, like CuS04 could interfere with the measurement (Harel 1994; 

Ueda, Wu and Frei 2013). Therefore, the amount of DHA was overrepresented, as it was 

calculated as the total ascorbic acid (TAA) minus the AA concentration. It was a challenging 

task to find and solve the problem, but is was finally achieved by using metaphosphoric acid 

(MPA) and a new and higher grade of FeCl3 as described in chapter 4. This together might 

explain the lack of a ratio change in L. latifolium (chapter 3) of DHA and AA as described by 

Parida and Jha (2010). In chapter 4 this problem was already solved but there was still no ratio 

between DHA and AA. But in these experiments, the salt concentrations were much lower 

compared to the ones of Parida and Jha (2010). Supposedly this is the reason that no ratio 

changes were observed. The various concentration changes of AA and correlations to other 

metabolites are currently unknown and need further investigation 

A mathematical operation increased the precision of the ORAC 

The ORAC gives an overview of the antioxidative capacity, which is valuable to know, if the 

plant is addressed as a nutraceutical for human consumption. However, it does not indicate 

which metabolites are responsible for the antioxidative effect. Furthermore, it was shown 

(chapter 1 and 4) that the ORAC cannot measure every possible antioxidant at the same time, 

either hydrophilic or hydrophobic and mainly chain-braking ones are determined (Ou et al. 

2002). There were some problems with the ORAC during the experiments of chapter 2, which 

are mentioned in chapter 3 and 4. A critical step is the addition of 2,2′-azobis(2-amidino-

propane) dihydrochloride (AAPH) to the mixture of analyte and fluorescine, because the 
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reaction starts at that time. Addition of warm (37°C) AAPH results in lower values at the 

started well and higher ones in the finished well. To prevent this, the AAPH was kept at 0°C 

minimizing the radical production. After the addition of AAPH, the plate was incubated in the 

microtiter plate reader at 37°C and red every minute. However, the microtiter plate heated 

up faster in the corners leading to a gradient from the outside of the plate towards the middle. 

But this was more controllable than the pipetting speed and direction of the user. 

Nevertheless, this influenced the values since the ones further outside were 

underrepresented, but this problem was solved by a mathematical compensation of the 

values which reduced the standard deviation by 50% leading to more precise results. 

The stepwise analysis of (poly)phenols to flavonoids and to individual substances 

The flavonoid and therefore the (poly)phenol concentrations was increased by salinity in this 

study (chapter 2-4). The responsible reasons (over reduced electronic transport chain) were 

addressed in chapter 1. In this study, the main class of metabolites contributing to the ORAC 

seemed to be the one of (poly)phenols. This was indicated by the high correlations between 

the values of ORAC and (poly)phenols. However, to prove this, all components need to be 

identified and analyzed individually for their ORAC.  

The flavonoids make up around 20-22% of the (poly)phenols in L. latifolium and H. 

portulacoides, and 34-38% in C. maritimum and T. maritima. This is a basic calculation, only 

comparing the molarities of the substances which were used as the standards, gallic acid for 

(poly)phenols, and catechin for flavonoids. Due to the difference in percentages, the 

correlations of flavonoids towards ORAC in C. maritimum and T. maritima should be higher, 

but this was not the case. That is because the Pearson correlation is slightly biased since it just 

indicates if values are influenced in the same or opposite direction, not considering the 

amount. Furthermore, the radical scavenging capacity of different flavonoid compounds and 

phenolic compounds differs (Ou, Hampsch-Woodill and Prior 2001). Even if single components 

are analyzed for their ORAC, it may not be possible to simply add the values as there are 

synergistic and antagonistic effects (Jacobo-Velazquez and Cisneros-Zevallos 2009). It was 

possible to analyze the individual (poly)phenols and flavonids in C. maritimum as shown in 

chapter 5. The main part of the phenols was quinic acid and its esters with ferulic acid, p-

coumaric acid and with caffeic acid. These substances are presumable responsible for the 

antioxidative effect, as the radical scavenging efficiency of chlorogenic acid (3-caffeoylquinic 
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acid) was previously shown (Meot-Duros and Magné 2009). The flavonoid components 

present in C. maritimum are diosmin and hesperidin. These were proven to have an 

antioxidative effect, but lower compared to the phenolic compounds (Rice-Evans, Miller and 

Paganga 1996). The antioxidative effects of these substances alone and in combination need 

further investigation, to see whether synergistic or antagonistic effects are present, or 

whether it is possible to “add up” the antioxidative effect.  

The measurement of metabolites via LC-MS has many advantages compared to the 

determination of (poly)phenols and flavonoids. Single compounds are analyzed and not a 

group of substances. Therefore, a more precise picture about the change of the metabolites 

at stress conditions is obtained and the determination of a possible following application is 

easier. But there are drawbacks, at first, the availability, which was also not given till the end 

of this study. If the sample contains many unknown substances it is a difficult and time-

consuming task, but libraries and literature research as described in chapter 5 might help. If a 

metabolite is identified, the structure gives hints, but no certainty about the antioxidant 

capacity. Other tests like the ORAC have to fulfil this part.  

 

Evaluation of the metabolite data, advantage of halophyte crops 

Biofortification through saline cultivation 

It was shown (chapter 2-4) that it is possible to enhance the metabolite concentration through 

saline cultivation. All metabolites were enhanced at some point in time through salinity, even 

though not at the same point in time. This could be described as biofortification, albeit the 

term of biofortification was previously described as the procession of staple crops, so that 

they are capable of delivering the daily necessary micronutrients (Hirschi 2009). This was done 

by fertilizer application, conventional breeding or by genetical modification, but conventional 

breeding takes years and genetic modification is rejected by a large part of the society (Gaskell 

et al. 2010). A typical example for a biofortified crop is “golden rice” (Paine et al. 2005). 

However, the biofortification through saline cultivation does not have the deficits of the 

techniques mentioned above. It should be taken in to consideration to expand the term of 

biofortification for the increase of antioxidants through saline cultivation.  
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Halophytes as possible nutraceuticals 

In comparison to crops like potatoes, corn and beans, and even vegetables, like spinach and 

broccoli, halophytes have a much higher ORAC (Tab.1). The amount of (poly)phenols is on 

average, similar to other crops. Crithmum maritimum can compete with blueberries, which 

are well known for their high (poly)phenol concentration (Prior et al. 1998). With elevated 

salinity, C. maritimum and L. latifolium reach a (poly)phenol concentration of about 4 mg GAE 

g-1 which is higher than the concentration in blueberries. Outstanding is T. pannonicum with 

an average (poly)phenol concentration of 3.8 mg GAE g-1 which increase to values of 4.5 mg 

GAE g-1 under salt stress. The average requirement of AA for men and women are 110 and 95 

mg per day (German Nutrition Society (DGE) 2015). Hence around 50 g of L. latifolium, or 100 

g of the other halophytes are sufficient to fulfil the AA requirement per day.   

The GSL content of L. latifolium is 2.3-7.6 mg g-1 FM, around the same level, or even 20 times 

higher than the GSL concentration of broccoli, depending on the considered source (López-

Berenguer et al. 2008; López-Berenguer et al. 2009; Khan, Ulrichs and Mewis 2010; Zaghdoud 

et al. 2012). If broccoli is grown at saline conditions (80 mM NaCl), the GSL increases, therefore 

reaching two times higher GSL concentration compared to L. latifolium. However, the salt 

causes severe reductions in the growth of broccoli, at conditions which are below an optimum 

for L. latifolium (López-Berenguer et al. 2008; López-Berenguer et al. 2009). Therefore, 

halophyte crops can be rated as nutraceuticals because they are more valuable than just food; 

their high (poly)phenolic, ascorbic and GLS content can prevent diseases (Del Rio et al. 2013; 

Rodriguez-Mateos et al. 2014). The analysis and determination of the single components 

provide important information about the potential use. For example, diosmin and hesperidin 

found in C. maritimum are used as medicine in combination, like Daflon 500 mg (Servier 

Laboratories, France), for the treatment of chronic venous deficiency (Rosa, Alvarez-Parrilla 

and Gonzalez-Aguilar 2010). Quinic acid, also found abundant in C. maritimum has a positive 

effect on DNA repair and/or immune enhancing properties (Pero, Lund and Leanderson 2008). 
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Table. 1 Staple crops, vegetables, healthy foods and halophytes compared for ORAC (µmol TE g-1), 

(poly)phenols (mg GAE g-1) and AA (mg g-1). Values taken from Prior et al. (1998), Haytowitz and 

Bhagwat (2010) and US Department of Agriculture (Agricultural Research Service and Nutrient Data 

Laboratory 2015). Values of the halophytes present the mean of the experiments.  
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ORAC 10 5.9 2.1 15.1 13.5 47 30 52 30 25 82 130 

Phenols 1.6 2.1 0.1 2.1 3.16 3.1 2.5 2.2 1.4 1.1 2.9 3.8 

AA 0.2 0.07 0.1 0.08 0.81 0.1 0.04 1.9 0.9 0.8 0.8 0.9 

 

Consumer needs should be met 

If halophytes should be bought by people as food or nutraceutical, the consumer needs should 

be addressed. The consumer needs vary in the different regions of the world, but luckily 

healthy food is the number one attribute consumers appreciate in every region. Appearance 

alongside smell is the second attribute in the western world (Moser et al. 2011). Halophytes 

are certainly a healthy choice, but it is questionable, if odour or appearance satisfies 

consumers. Astonishingly the taste was not mentioned as decisive criteria, but the taste is still 

important as de Vos et al. (2013) stated and it might become more important in the future. 

The procession of the halophytes should be kept in mind. If a vegetable is new on the market 

and the consumer does not know how to prepare it, he might skip it for a better known one. 

Old traditional recipes might be very useful, if marked simultaneously like the pickled C. 

maritimum. Furthermore, sometimes other cultural groups already consume halophyte 

species on a regular basis, like L. latifoium in India (Kaur et al. 2013). There is certainly much 

more to be learned in case of processing of halophytes. 

 

Extrapolation of halophyte cultivation 

This was a small-scale experiment. Before planting a field with halophytes watered with 

brackish water on a large scale; some further steps have to be taken into consideration. There 
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might be other species or ecotypes with higher or different metabolite concentration, as was 

shown for GSL (Kliebenstein 2001), or a faster growth, resulting in a higher biomass 

production, or multiple harvests. Mature plants, ready to harvest, should be tested for an 

increase of metabolites though severe salt stress. The possibilities of an increase of secondary 

metabolites in halophytes, grown in brackish water, through drought or high radiation should 

be investigated as well. A screening for the best suited ecotype must be made. Furthermore, 

agricultural practices and marketing need to be examined as de Vos et al. (2013) indicated. 

Larger scale flavour studies should be carried out, as well as studies towards seasonal 

availability and storage properties of halophytes. The fields of application should be maximal 

for a species. For example, if a field of C. maritimum is not used completely for food production 

it can be bought to bloom and oil can be obtained from the seeds (Pateira et al. 1999; Jallali 

et al. 2014). 

Possible criticism 

Halophytes adapt to salt stress by accumulation of Na+ and Cl- in their vacuole (Flowers et al. 

2015). This was also shown in our experiment (chapter 3). One could argue that halophytes 

are not suitable for daily consumption because of the high salt concentration. In our study C. 

maritimum, H. portulacoides and T. maritima accumulated 5, 11 and 11 mg Na g-1 FM 

respectively. It is suggested that the average salt intake per day should be less than 5-6 g per 

day (currently 12 g in Europe) (Strazzullo et al. 2009). But this is not much compared to other 

foods, as bread contains about 5 mg Na g-1 and meat products 11 mg Na g-1 (USDA 2015). An 

easy solution to reduce the salt concentration of T. maritima and H. portulacoides is a sturdy 

wash, as they have developed glandular cells and bladder hairs (Koyro et al. 2010), which are 

presumably rinsed off. Nevertheless, for consumption it is better to use halophytes that do 

not accumulate Na in high amounts. 

Toxic substances, like oxalic acid and nitrate may be present in halophyte species (Guil, 

Rodríguez-García and Torija 1997). It should be monitored that these substances do not 

accumulate. No toxic substances were found in C. maritimum with the LC-MS analysis, 

however, not all components are identified yet. The other halophyte species should also be 

screened for toxic substances. 
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Introduced plants can become invasive species, like L. latifolium in Northern America (Francis 

and Warwick 2007). Therefore, fields must be monitored and the uncontrolled spread of 

plants must be prevented. A better solution would be the use of native plant species in the 

according area. 

 

Conclusions 

It was demonstrated that it is possible to manipulate (poly)phenols including flavonoids, 

ascorbic acid, and consequently the ORAC through moderate salt stress, within 24 h (chapter 

2). A longer application of salt stress from 4 days onward let to an adaption of the plants, 

resulting in a decrease in growth and therefore a lower metabolite yield (chapter 3). However, 

the GSL concentration started to increase after a few days rising further with every week. But 

the yield of total GSL did not increase (chapter 3). 

Mild salt stress did increase the concentration of the metabolites slightly, but that was 

overcompensated by the loss of biomass (chapter 4). Single components were influenced so 

strongly by salt stress, like proline, glucoiberin, p-coumaroylquinic acid isomers and a 

substance which is not yet identified, that the yield was still higher despite reduced growth 

(chapter 2-5). So, the method to increase metabolites depends on the preferred metabolite. 

Choose either severe salt stress for a short amount of time, in order to achieve high amounts 

of antioxidants, or mild salt stress for a prolonged time, to obtain an increased concentration 

of individual components. 

In addition, halophytes grow better with low salinity than the control plants without salt, 

making halophyte agriculture with brackish water very attractive, even more if stress is 

applied. 
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